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Abstract

Let D be an irreducible Hermitian symmetric space of tube-type, S its Shilov
boundary, G its group of holomorphic diffeomorphisms. For a generic triple of
points (σ1, σ2, σ3) ∈ S ×S ×S, a characteristic G-invariant ι(σ1, σ2, σ3), called
the Maslov index was introduced in [C-Ø1]. For D of classical type (i.e. for
all cases except for the exceptional domain associated to Albert’s algebra), the
definition of the Maslov index is extended to all triples, by using a holomorphic
embedding of D into a Siegel disc, which corresponds to an embedding of S into
a Lagrangian manifold. When D is the Lie ball, the extension of the definition
is obtained through a realization of S in the Lagrangian manifold of a spinor
space.
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54506 Vandœuvre-lès-Nancy Cedex France
e-mail : clerc@iecn.u-nancy.fr

1



0. Introduction

In [C-Ø1] the present author in collaboration with B. Ørsted introduced a
generalization of the Maslov index for triples of points in the Shilov boundary
S of a bounded symmetric domain of tube-type D. However, the Maslov index
is defined only for generic triples (σ1, σ2, σ3) ∈ S3, those such that any two
elements of the triple satisfy a condition called transversality.

Here the definition of the Maslov index is extended to all triples, at least
for classical domains. Considering only irreducible domains, there are four
infinite series of classical domains, associated to classical (also called special)
simple Euclidean Jordan algebras, namely Sym(r, R), Herm(r, C), Herm(r, H)
and the Lorentz algebras Lp of rank 2 associated to the light cone in Rp. There
is only one simple Euclidean Jordan algebra which is not classical, it is the
so-called Albert’s algebra, the algebra of 3 × 3 Hermitian matrices over the
octonions O, which will not be considered here. Classical Euclidean Jordan
algebras J can be characterized abstractly by the existence of a non trivial
representation (in the sense of Jordan algebras) of J .

The extended Maslov index has all the expected properties. It takes integral
values, it is invariant by the group G of holomorphic diffeomorphisms of the
domain D (G may be thought of as the group of conformal transformations of
S in the sense of [B]), it is skew-symmetric with respect to permutation of the
indices and satisfies a cocyle relation.

In section 1, the basic facts about the classical Maslov index are recalled. The
domain D is the Siegel disc and its Shilov boundary is realized as the Lagrangian
manifold , and connection is made, for this exemple, with the presentation of
the generalized Maslov index in [C-Ø1] (see also [M] for earlier work in this
direction). Kashiwara’s definition of the Maslov index, valid for any triple
of Lagrangians is recalled. This section is meant both as a model and as a
preparation for the rest of the paper.

In section 2, the definition of the generalized Maslov index for mutually trans-
verse triples in the Shilov boundary of a (general) tube-type domain D is pre-
sented following [C-Ø1]. The definition of the Maslov index is extended by
using an arbitrary representation of the associated Euclidean Jordan algebra
and shown to be independant of the representation used.

The three remaining classical series (the first one has been treated in section 1)
are treated in the next sections. A specific realization of the domain D is used
and the corresponding realization of the Shilov boundary S is described. For
the algebra Herm(r, C) (section 3) and for the algebra Herm(r, H) (section
4), the extension of the definition of the Maslov index is obtained by using a
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standard representation of the Jordan algebra. This allows us to give a defintion
of the Maslov index à la Kashiwara, in fact very close to the real case.

The last sections (5,6 and 7) deal with the Lorentz algebra Lp. This is the most
delicate part of the paper. Classical realizations of the associated domain are
presented in section 5 (one is the Lie ball realization), together with a descrip-
tion of the Shilov boundary S. The open orbits of the action of G = SO0(p, 2)
on S×S×S are characterized. Although elementary, these geometrical results
seem to be new. The representations of Lp are related to the theory of Clifford
modules (see [C]), and hence to spinor spaces. In section 6, we introduce a
new realization of the Shilov boundary S as a special orbit of G (or rather the
spin group) in the Lagrangian manifold of the spinor space corresponding to
the signature (p, 2). In section 7, a concrete expression of the extended Maslov
index is obtained also in this case.

1. The Siegel disc, the Lagrangian manifold and Kashiwara’s Maslov
index

Let (E, A) be a real symplectic vector space of dimension 2r. Let

g = sp(E) = {X ∈ End(E), A(Xv, v′) + A(v, Xv′) = 0}

be the Lie algebra of the symplectic group G = Sp(E).

Choose J ∈ g such that J2 = − Id and such that the bilinear form B(v, v′) =
A(v, Jv′) (which is automatically symmetric) is positive-definite. This can be
done by using a symplectic basis of E (see [Sa] for details). Associated to the
choice of J is a Cartan decomposition of g. In fact denote by Sym(B) (resp.
Skew(B)) the space of symmetric (resp. skew symmetric) endomorphisms of
E with respect to B. Then let

k = g ∩ Skew(B) = {X ∈ g | JX = XJ}

and
p = g ∩ Symm(B) = {X ∈ g | JX = −XJ} .

Then g = k⊕p is a Cartan decomposition of g. Moreover, the element H0 = 1
2J

is in the center of k, and for X ∈ p

(adH0)2X =
1
2

adH0(JX − XJ) =
1
4
(J(JX − XJ) − (JX − XJ)J) = −X

so that adH0 defines a complex structure on p. The (non-compact) Riemannian
symmetric pair (g, k) is of Hermitian type.
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Let E be the complexification of E, extend J as a complex linear map of E,
and consider

V
0
+ = {v ∈ E | Jv = iv}, V

0
− = {v ∈ E | Jv = −iv} .

The spaces V0
+ and V0

− are totally isotropic for (the complexification of) A
(or B) and the restriction of A (or B) to V0

+ × V0
− induces a non-degenerate

duality.

Let gC be the complexified Lie algebra of g (viewed as a complex subalgebra of
End(E)) , and define similarly kC and pC. Let

p± = {X ∈ pC | ad(H0)X = ±iX} .

Let X ∈ p+. Then JX − XJ = 2iX. So if v ∈ V0
+, then

JXv = (XJ + 2iX)v = 3iXv,

so that Xv = 0. If v ∈ V0
−, then

JXv = (XJ + 2iX)v = iXv ,

so that X maps V0
− to V0

+. Morover, for v, w ∈ V0
−,

B(Xv, w) = A(Xv, Jw) = −A(v, XJw) = A(v, JXw) = B(v, Xw)

so that the induced map from V0
− to V0

+ is symmetric with respect to the
duality. The converse statement is easily verified, so that p+ can be identified
with the space (denoted by Sym(V0

−, V0
+)) of homomorphisms of V0

− into V0
+

which are symmetric with respect to the duality induced by B.

The formula
h(v, v′) = iA(v, v′)

defines a Hermitian form(*) on E. It is easily verified that E = V0
+ ⊕ V0

− is an
orthogonal decomposition w.r.t. h, and that h | V0

+ × V0
+ (resp. h | V0

− × V0
−)

is positive-definite (resp. negative-definite). It shows in particular that h has
signature (r, r).

Let us consider the set D of all r-dimensional complex linear spaces V− of E

such that

(1) A|V−×V− = 0 and h|V−×V− � 0 .

(*) Hermitian forms are assumed to be C-linear in the second variable.
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The set D is a submanifold of the Grassmannian of r-dimensional subspaces in
E, and hence a complex manifold. After complexifying its action, G acts on D.
This action turns out to be transitive on D, and D is the Hermitian symmetric
space associated to the simple Lie group G.

The space D can be realized as a bounded symmetric domain as follows. If
V− is any subspace satisfying (1), then the restriction to V− of the orthogonal
projection on V0

− is an isomorphism (as V−∩V0
+ = {0}), and hence there exists

a linear operator z from V0
− to V0

+ such that

(2) V− = V
z
− = {v− + zv− | v− ∈ V

0
−} .

Moreover, the map z is symmetric for the duality on V0
− × V0

+ induced by A,
in other words z belongs to Sym(V0

−, V0
+). Finally, for z ∈ Sym(V0

−, V0
+), the

space Vz
− defined by (2) satisfies the conditions (1) if and only if

∀v− ∈ V
0
− h(zv−, zv−) < −h(v−, v−) ,

so if and only if z is a contraction from (V0
−,−h) to (V0

+, h).

For a more explicit realization, choose an orthonormal basis (e1, e2, . . . , er) of
V+ and for 1 ≤ j ≤ r, let ej+r = ej . Then (er+1, . . . e2r) is an orthogonal basis
of V0

−.

Still denote by z the matrix of this operator with respect to these basis of V0
−

and V0
+. The conditions on z which correspond to the conditions (1) on V−

turn out to be

(3) z ∈ Sym(r, C) and 1 − zz � 0 .

Thus D is realized as a the unit ball (for the spectral norm) in Sym(C). In this
realization D is called the Siegel disc. The Shilov boundary of D is

S = {σ ∈ Sym(r, C) | σ = σ−1} .

(see [F-K]).

Viewing σ as an element in Sym(V0
−, V0

+), this means that σ is a unitary map
from (V0

−,−h) to (V0
+, h). Going back to the geometric realization, the Shilov

boundary of D consists in the r-dimensional complex vector spaces of the form

(4) W
σ = {v− + σv− | v− ∈ V

0
−}

for σ ∈ S. Such a space W satisfies the conditions

(5) A|W×W = 0 and h|W×W = 0 ,
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and conversely, any r-dimensional subspace W of E which satisfies (5) can be
written as Wσ for some σ ∈ S. The conditions (5) imply that W is A-orthogonal
to W, and hence W = W. So W is the complexification of the (real) Lagrangian
subspace W = W ∩ E of E. Conversely, if W is a Lagrangian subspace of E,
then its complexification W satisfies (5). This shows that the Shilov boundary
S of D can be identified with the (real) Lagrangian manifold of all Lagrangian
spaces in E.

A more explicit expression of the identification σ 	−→ W σ = Wσ ∩ E will be
needed, at least when σ is diagonal. For 1 ≤ j ≤ r, set

fj =
ej + ej+r√

2
, fj+r =

−ej + ej+r

i
√

2
.

Then {fj}1≤j≤2r is a symplectic basis of W . For 1 ≤ j ≤ r, let λj = eiθj be a
complex number of modulus 1, and consider

σ =

⎛
⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 0 . . . λr

⎞
⎟⎟⎠ .

The associated Lagrangian W σ is the subspace

(6) W σ =
⊕

1≤j≤r

R (λ
1
2
j ej + λ

− 1
2

j ej+r) =
⊕

1≤j≤r

R(cos(
θj

2
)fj + sin(

θj

2
)fj+r) .

Transversality of two Lagrangian spaces W1, W2 is denoted by

W1�W2 ⇐⇒ W1 ∩ W2 = {0} .

For σ, τ ∈ S, let W σ = Wσ ∩ E and W τ = Wτ ∩ E. Then the relation
W σ�W τ is equivalent to σ−τ being injective or equivalently to Det(σ−τ) �= 0.
This condition is denoted by σ�τ . The symplectic group G acts on pairs of
transverse Lagrangians spaces, and this action is transitive.

Now consider three mutually transverse Lagrangian spaces (W1, W2, W3) in
E. There exists a normal form for the triple. More precisely, there exists a
symplectic basis {f1, f2, . . . , fr, fr+1, . . . , f2r} of E such that

W1 = Rf1 ⊕ Rf2 . . . ⊕ Rfr

(7) W2 = Rfr+1 ⊕ Rfr+2 . . . ⊕ Rf2r
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W3 = R(f1 + fr+1) ⊕ . . . R(fk + fr+k) ⊕ R(fk+1 − fr+k+1) ⊕ . . . R(fr − f2r)

where k is an integer, 0 ≤ k ≤ r (see Corollary 1.5.7 in L-V]). Denote by S3
� the

set of triples of mutually transverse Lagrangians spaces in E. The existence
of a normal form implies that there are exactly r + 1 orbits in S3

� under the
action of G.

M. Kashiwara (see [L-V] section 1.5) proposed a definition of the Maslov index
for any triple of Lagrangian spaces (not necessarily mutually transverse). Let
W1, W2, W3 be three Lagrangian spaces in E. On W1 ×W2 ×W3, consider the
quadratic form Q defined by

Q(v1, v2, v3) = A(v1, v2) + A(v2, v3) + A(v3, v1)

and defines the Maslov index by

ι(W1, W2, W3) = sgn (Q)

where sgn stands for the signature of the quadratic form. It is by construction
invariant by G, hence constant on the orbits. For a triple in S3

�, the Maslov
index is shown to be equal to r − 2k, where k is the integer which appears in
the normal form of the three mutually transverse Lagrangian spaces (see [L-V]
corollary 1.5.7).

A slightly more general formula for the Maslov index (covering some non mu-
tually transverse cases) will be needed.

Lemma 1.1. Let {f1, f2, . . . , fr, fr+1, . . . , f2r} be a symplectic basis of E. For
1 ≤ j ≤ r, let θj ∈ R/2πZ and consider the three following Lagrangian spaces

W1 = Rf1 ⊕ Rf2 . . . ⊕ Rfr

W2 = Rfr+1 ⊕ Rfr+2 . . . ⊕ Rf2r

W3 =
⊕

1≤j≤r

R(cos(
θj

2
)fj + sin(

θj

2
)fj+r) .

Then

(8) ι(W1, W2, W3) = �{j | sin θj < 0} − �{j | sin θj > 0} .

As W1 and W2 are transverse, the proof of (8) is a consequence of Lemma 1.5.4
in [L-V].

These results can be transferred to S. For (σ1, σ2, σ3) ∈ S3, set

ι(σ1, σ2, σ3) = ι(W σ1 , W σ2 , W σ3) .
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Lemma 1.2. For 1 ≤ j ≤ r, let θj ∈ R/2πZ. Let

σ =

⎛
⎜⎜⎝

eiθ1 0 . . . 0
0 eiθ2 . . . 0
...

. . .
...

0 0 . . . eiθr

⎞
⎟⎟⎠ .

Then

ι(Idr,−Idr, σ) = �{j | sin θj < 0} − �{j | sin θj > 0} .

The Maslov index is skew-symmetric with respect to permutations of the three
arguments, namely

(9) ι(σπ(1), σπ(2), σπ(3)) = ε(π)ι(σ1, σ2, σ3)

for any permutation π of the set {1, 2, 3} of signature ε(π) = ±1. The Maslov
index satisfies the cocycle relation

(10) ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4) .

for any four elements σ1, σ2, σ3, σ4 of S.

2. The Maslov index on the Shilov boundary of a classical bounded
domain of tube type

The present author in a joint work with B. Ørsted (see [C-Ø1]) proposed a
generalization of the Maslov index on the Shilov boundary of any bounded
domain of tube-type.

Recall there are two main equivalent approaches to Hermitian symmetric do-
mains. One uses Lie theory, the other uses the theory of Jordan triples. Both
of them will be considered. Main references are [F-K], [F-al], [Ko], [Lo], [Sa].

Let g be a simple real Lie algebra of the non-compact type. Let g = k ⊕ p

be a Cartan decomposition. Then the corresponding symmetric space is of
Hermitian type if and only if there exists an element H0 (then unique up to a
sign) in the center of k, such that (adH0 |p)2 = − Idp. Hence ad H0 induces a
complex structure on p. Let gC be the complexified Lie algebra of g and denote
by σ the conjugation of gC with respect to the compact real form g = k ⊕ ip.
Let pC be the complexification of p, and let

p± = {X ∈ pC | adH0(X) = ±iX} .
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The space p+ is a commutative subalgebra of gC and has a structure of positive-
definite Hermitian Jordan triple system. The triple product is given by

{x, y, z} = −1
2
[
[x, σy], z] .

Observe that it is C-linear in x and z, and C-conjugate linear in y.

For x, y ∈ p+, let x�y be the endomorphism of p+ given by

(x�y)z = {x, y, z} .

Then the Hermitian symmetric space is realized à la Harish Chandra as

D = {z ∈ p+ | ‖z�z‖op < 1} ,

where p+ is equipped with a certain inner product constructed from the Killing
form of g, and ‖ ‖op is the operator norm with respect to this innner product.

The Shilov boundary S of the domain D is

S = {σ ∈ p+ | {σ, σ, σ} = σ} .

The domains of tube type correspond to the case where p+ has a structure
of positive-definite Hermitian Jordan algebra. This occurs if and only if there
exists an element e in p+ such that

{e, e, z} = z,∀z ∈ p+

or in Lie terms
[e, σ(e)] = 2iH0 .

The real subspace J =
{
z ∈ p+ | {e, z, e} = z

}
is then a Euclidean Jordan

algebra for the Jordan multiplication

x.y = {x, e, y}

with e as unit element.

The domain D is realized à la Harish Chandra as the unit ball (in the com-
plexification J of J) for a certain norm, called the spectral norm.

The process can be reversed, by using the Koecher-Kantor-Tits construction
to recover the Lie algebra g (see [Sa]). For tube-type domains, a more global
approach is presented in [F-K], which notation and results are freely used in
the sequel.
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Let J be a simple Euclidean Jordan algebra. Let e be the unit in J , Ω the
(open) cone of squares in J , and det the determinant polynomial (also called
norm). Let J be the complexification of J and denote by | |op the spectral
norm on J . The corresponding unit ball

D = DE = {z ∈ J | |z|op < 1}

is a bounded symmetric domain of tube-type. It is holomorphically equivalent
to the tube domain T = J + iΩ ⊂ J (this is why D is said to be of tube-
type). Let G = Hol(D)0 be the neutral component of the group of holomorphic
diffeomorphisms of D.

The Shilov boundary S of D is described as

S = {σ ∈ J | z = z−1} .

Two elements σ, τ of S are said to be transverse (see [C-Ø1]) if and only if

σ�τ
def⇐⇒ det(σ − τ) �= 0 .

The group G preserves the tranversality, and acts transitively on

S2
� =

{
(σ, τ) ∈ S × S | σ�τ

}
.

Let
S3
� = {(σ1, σ2, σ3) ∈ S × S × S | σj�σk, for j �= k} .

There are a finite number of orbits under G in S3
� (exactly r +1 where r is the

rank of the Jordan algebra J and also the rank of D as a Riemannian symmet-
ric space). Representatives of the orbits can be described. To each triple of
mutually transverse elements of S is associated its Maslov index ι(σ1, σ2, σ3).
The Maslov index is invariant by G, satisfies the skew-symmetry property (9)
and the cocycle relation (10). The Maslov index characterizes the orbits of G
in S3

�in the sense that two triples are conjugate under G if and only if they
have the same Maslov index.

The question now to be addressed is the existence of an extension of the Maslov
index to all triples, including triples which do not satisfy the tranversality
condition. When J = Sym(r, R), the situation was studied in the first section,
and so there is indeed an extension, given by Kashiwara’s formula.

For a classical Euclidean Jordan algebra the question can be answered by using
a representation of the Jordan algebra.
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Let (F, (. | .)) be a Euclidean vector space, of dimension N . A representation
of J in F is a Jordan algebra homorphism Φ : J −→ Sym(F ). For any x ∈ J ,
Φ(x) is an endomorphism of F such that for all x, y ∈ J, λ ∈ R, ξ, η ∈ F

i) Φ(x + λy) = Φ(x) + λΦ(y)

ii) Φ(xy) = 1
2

(
Φ(x)Φ(y) + Φ(y)Φ(x)

)
, Φ(e) = IdE

iii) (Φ(x)ξ | η) = (ξ | Φ(x)η) .

Two consequences of the axioms are :

(11) Φ(P (x)y) = Φ(x)φ(y)Φ(x) for all x, y ∈ J

(P is the quadratic representation of J), and

(12) Φ(x) � 0 for x ∈ Ω .

If e =
∑r

j=1 cj is a Peirce decomposition of the unit of J , then

IdF =
r∑

j=1

Φ(cj)

is an orthogonal decomposition of the identity in F . For any j, 1 ≤ j ≤ r, Φ(cj)
is an orthogonal projection, and its rank is easily seen to be independant of j

(see e.g. [C]), so that d =:
N

r
is an integer.

Let F be the complexification of F and still denote by Φ the complex extension
of Φ. As Φ maps idempotents of J to idempotents of Sym(F ), one verifies that
for any z ∈ J,

|Φ(z)|op = |z|op ,

so that Φ maps D into the Siegel disc DF = {z ∈ Sym(F) | IdF −zz � 0}.
Moreover, Φ sends the Shilov boundary S of D into the Shilov boundary SF

of the Siegel disc, preserves transversality and satisfies the following relation
(proved in even greater generality in [C-Ø1] Theorem 6.3) :

(13) ∀ (σ1, σ2, σ3) ∈ S3
�, ι(Φ(σ1),Φ(σ2),Φ(σ3)) =

N

r
ι(σ1, σ2, σ3) .

Now the left handside of the formula is defined (by Kashiwara’s formula) for
any triple. Take as a definition of the extended Maslov index the formula

(14) ι(σ1, σ2, σ3) =
r

N
ι(Φ(σ1),Φ(σ2),Φ(σ3)) .
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Theorem 2.1. The extended Maslov index as defined by (14) is independant
of the representation Φ used for its definition. It takes integral values between
−r and r, is invariant by G, skew-symmetric with respect to the permutations
of the three indices, and satisfies the cocyle relation (10).

The proof is divided in several steps.

Step 1. Let us first prove the invariance by G. From the representation Φ, it
is possible to construct a Lie algebra homomorphism of g = Lie(G) into the
Lie algebra sp(E × E), to which it corresponds a (local) homomorphism of G
into the symplectic group, which could be used to prove the invariance. There
is a more global approach, for which no reference seems to be available. Hence
a couple of lemmas are needed.

Denote by Str(J) the structure group of J . Define

H = {(l, g) ∈ GL(J) × GL(F ) | Φ(lx) = gΦ(x)g′} .

Clearly H is a closed subgroup of GL(J) × GL(F ).

Lemma 2.2. Let (l, g) ∈ H. Then l ∈ Str(J).

Proof. Let x be in J . For all y ∈ J ,

Φ(P (lx)y) = φ(lx)Φ(y)Φ(lx) = gΦ(x)g′Φ(y)gΦ(x)g′ .

Assume further that x is invertible. This last identity can be rewritten as

Φ
(
P (x−1)l−1P (lx) y

)
= g′Φ(y)g .

But as J is assumed to be simple, Φ is injective, and hence P (x−1)l−1P (lx) is
independant of x, so there exists a certain element h ∈ GL(J) such that

P (lx) = lP (x)h

for any invertible element x, and hence by continuity for any x ∈ J . From
[F-K], Lemma VIII.2.3, this implies that h = l′ and l ∈ Str(J).

Lemma 2.3. Let l ∈ Str(J)0. Then there exists g ∈ GL(F ) such that (h, g)
belongs to H.

Let x ∈ J be invertible. Then P (x) ∈ Str(J). Formula (11) shows that
(P (x),Φ(x)) belongs to H. But the subgroup of Str(J) generated by the
{P (x), x ∈ J} (called the inner structure group in [Sp]) contains the neutral
component of the group Str(J). Hence the projection on the first factor, from
H into Str(J), contains Str(J)0 in its image.
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Recall that TΩ = J + iΩ is holomorphically equivalent to the domain D. If
y ∈ Ω, then Φ(y) is positive definite, so that Φ maps TΩ into the Siegel half-
space

TF = {s + it | s, t ∈ Sym(F ), t � 0} .

The group Hol(T )0 ( = connected component of the identity in the group of all
holomorphic diffeomorphisms of T ) is isomorphic to G, but is easier to handle
(a family of generators is easy to describe). In fact, let us consider the group
generated by

• the translations tv : z 	−→ z + v, for v ∈ J
• the transformations z 	−→ lz, where l ∈ Str(J)0

• the inversion ι : z 	−→ −z−1

All these transformations belong to Hol (TΩ) and the group they generatd
contains Hol (TΩ)0 (see [F-K] Theorem X.5.6).

Let
C = {(h, g) ∈ Hol (TΩ) × Hol (TF ) | Φ(h(z)) = g(Φ(z))}

Clearly C is a closed subgroup of Hol (TΩ) × Hol (TF ).

Lemma 2.3. Let h ∈ Hol (TΩ)0. Then there exists g ∈ Hol (TF ) such that
(h, g) ∈ C.

Proof. For h = tv for some v ∈ J , one has Φ(z + v) = Φ(z) + Φ(v), and hence
(tv, tΦ(v)) ∈ C. For l ∈ Str(J)0, there exists by Lemma 2.2. g ∈ GL(F ) such
that (l, g) ∈ H. By complexification,

Φ(lz) = gΦ(z)g′, ∀z ∈ J .

Hence (l, g) ∈ C. Finally, as Φ is a homomorphism of Jordan algebras,
Φ(−z−1) = −Φ(z)−1, and hence (ι, ιSym(F )) ∈ C. As the group generated
by all these transformations contains Hol (TΩ)0, the lema follows.

Use a Cayley transform to conclude that for any element l ∈ G = Hol(D)0,
there exists an element g ∈ Hol (DF ) such that Φ(l(z)) = g(Φ(z)) for all
z ∈ D. Recalling that the group Hol (DF ) is isomorphic to the symplectic
group of F × F and that the map σ 	−→ W σ is equivariant with respect to
this isomorphism, this last result implies that the extended Maslov index is
invariant by G.

Step 2. The independance from the representation Φ will be a consequence
of a computation of the extended Maslov index for triples in which only one
couple is not assumed to be transverse.

13



Fix a Peirce decomposition of the unit e =
r∑

j=1

cj . For p, q such that p ≥ 0, q ≥

0, p + q ≤ r, let

εp,q = −i
( p∑

j=1

cj

)
+ i

( p+q∑
j=p+1

cj

)
−

r∑
j=p+q+1

cj .

Observe that εp,q belongs to S and εp,q�e.

Lemma 2.4. Let (σ1, σ2, σ3) ∈ S3, and assume that σ1�σ2 and σ1�σ3 . Then
there exists two integers p, q with p ≥ 0, q ≥ 0, p + q ≤ r and an element g ∈ G
such that

(σ1, σ2, σ3) =
(
g(e), g(−e), g(εp,q)

)
.

The proof is completely similar to the proof of Theorem 4.3 in [C-Ø1]. As G
acts transitively on S2

�, it is possible to assume that σ1 = e, σ2 = −e. As σ3 is
also tranverse to e, the Cayley transform c(z) = i(e+z)(e−z)−1 is well defined
at σ3. Set ξ3 = c(σ3) ∈ J . The image of the stabilizer of (e,−e) under the
Cayley transform is L = Str(J)0. Now any element of J is conjugate under L
to

p∑
j=1

cj −
p+q∑

j=p+1

cj

for some integers p, q with p ≥ 0, q ≥ 0, p + q ≤ r. Apply the inverse Cayley
transform to get the lemma.

The image through Φ of the triple (σ1, σ2, σ3) is conjugate under the symplectic
group to the triple (IdF ,−IdF , Ep,q) where

Ep,q = −i
( p∑

j=1

Φ(cj)
)

+ i
( p+q∑

j=p+1

Φ(cj)
)
−

r∑
j=p+q+1

Φ(cj) .

All three maps (IdF ,−IdF , Ep,q) are diagonal in the basis {fj , 1 ≤ j ≤ N}.
Lemma 1.2 can be used to compute the corresponding Maslov index, namely

ι(W Id, W− Id, WEp,q ) = (p − q)d .

Hence the definition of the extended Maslov index gives

ι(σ1, σ2, σ3) = ι(e,−e, εp,q) = (p − q) .

So for these triples, the value of the extended Maslov index is an integer and
does not depend on the representation used for the definition.

14



Now let (σ1, σ2, σ3) ∈ S3 be an arbitrary triple. Then choose an element σ4 ∈ S
such that σ4 is transverse to all σ1, σ2, σ3. Then, thanks to the cocycle relation
(10) for the classical Maslov index, one has

ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4) .

As σ4 is transverse to the two other elements of any triple in the right handside
of the formula, these three terms are of the type already considered. Hence, the
left handside is an integer and does not depend on the particular representation
considered.

Step 3. The extended Maslov is skew-symmetric with respect to permutations
of the indices {1, 2, 3}, and satisfies the cocycle relation, as these properties are
true for the classical Maslov index. This completes the proof of Theorem 2.1.

3. The unitary case

Let V a vector space over C of dimension 2r, and let h be a skew-Hermitian(*)
form h of signature (r, r). Denote by G = U(V, h) � U(r, r) the subgroup of
linear transformations preserving the form h. Let V 0

+ and V 0
− be subspaces such

that

V = V 0
+ ⊕ V 0

−, V 0
+ ⊥ V 0

−, ih | V 0
+ � 0, ih | V 0

− � 0 .

Denote by p+ (resp. p−) the orthogonal projection on V 0
+ (resp. V 0

−).

Let us consider the set D of all r-dimensional subspaces V− of V such that
ih|V− � 0. It is an open set in the Grasmanniann of r-dimensional subspaces of
V , on which G acts and D is a realization of its associated Hermitian symmetric
space (see [Sa] Appendix).

Let V− ∈ D. As V 0
+ ∩V− = {0}, the restriction of p− to V− is a linear bijection

of V− on V 0
−, and hence there exists a linear map z : V 0

− −→ V 0
+ such that

(15) V− = V z
− = {ξ + zξ | ξ ∈ V 0

−} .

Moreover, the space V z
− defined by (15) belongs to D if and only if z satisfies

ih(zξ, zξ) < −ih(ξ, ξ)

for all ξ ∈ V 0
−, which means that

|z|op < 1

(*) The use of a skew-Hermitian form rather than a Hermitian form is to stress
the analogy with the real and quaternionic case
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as a map from (V 0
−,−ih |V 0

−
) into (V 0

+, ih |V 0
+
). This shows that, by taking

appropriate basis in V 0
− and V 0

+, the Hermitain symmetric space is realized as
the unit ball in Mat (r, C).

Consider the Euclidean Jordan algebra J = Herm(r, C) with the Jordan prod-
uct x.y = 1

2 (xy + yx) and inner product Re tr(xy). Its complexification can
be realized as J = Mat(r, C), the conjugation with respect to the real form J
being x 	→ x∗ = (x)t. The spectral norm coincides with the operator norm and
so the associated Hermitian symmetric space is the unit ball in Mat(r, C).

In this picture, it is easy to determine the Shilov boundary of D. It is the space
of unitary matrices

S = {σ ∈ Mat(r, C) | σ = σ−1} � U(r) .

Transfering back to the first picture of D, the Shilov boundary appears as the
space of r-dimensional subspaces W = W σ in V defined by

W σ = {ξ + σξ | ξ ∈ V 0
−}

where σ : V 0
− −→ V 0

+ is an isometry for the inner products −ih |V 0
−

and ih |V 0
+
.

The space W σ is easily seen to be totally isotropic for h, and conversely, any
maximal totally isotropic subspace of V is of the form W σ for some unitary
σ : V 0

− −→ V 0
+. Hence the Shilov boundary S of D can be identified with the

manifold of (complex) Lagrangians in V .

The Jordan algebra Herm(r, C) has a natural representation. Let us consider
F = (Cr)R the real vector space of dimension 2r underlying the complex vector
space Cr, and consider the Euclidean inner product defined by

(ξ, η) = Re < ξ, η >

where < ξ, η > is the standard inner product on Cr. Then, for x ∈ J and ξ ∈ F
let

Φ(x)ξ = xξ .

This defines a Euclidean representation, and the index d equals 2r
r = 2. As

explained in section 2, this representation extended to the complexification J

can be used to extend the definition of the Maslov index.

In turn, the space E = F × F can be viewed as the real vector subspace
underlying the 2r-dimensional complex space V , the symplectic form being
Re h (this where the choice of h as a skew-Hermitian rather than Hermitian
form is justified) and the representation associates to a complex Lagrangian
W in V the real Lagrangian subspace WR in E underlying W . This leads to a
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definition of the extended Maslov index à la Kashiwara for triples of complex
Lagrangians. For three complex Lagrangians W1, W2, W3 in V , define Q on
(W1 × W2 × W3) × (W1 × W2 × W3) by

(16) Q
(
(ξ1, ξ2, ξ3), (η1, η2, η3)

)
=

(
h(ξ1, η2) − h(ξ2, η1) + h(ξ2, η3) − h(ξ3, η2) + h(ξ3, η1) − h(ξ1, η3)

)
.

As h is assumed to be skew-Hermitian, this defines an Hermitian form on
W1 × W2 × W3.

Theorem 3.1. Let W1, W2, W3 be three complex Lagrangians in V . The
extended Maslov index is given by

(17) ι(W1, W2, W3) = sgn(Q) ,

where sgn Q is the signature of the Hermitian form Q on W1×W2×W3 defined
by (16).

Proof. The corresponding real quadratic form (on (W1 × W2 × W3)R) is given
by

Q(ξ1, ξ2, ξ3) = 2 Re h(ξ1, ξ2) + 2 Re h(ξ2, ξ3) + 2 Re h(ξ3, ξ1) .

The signature of this quadratic form is (Kashiwara’s definition of) the classical
Maslov index ι(W1R, W2R, W3R). But the the signature sgnC of Q as a Hermi-
tian form is half the signature sgnR of Q viewed as a real quadratic from. Hence
the extended Maslov index for W1, W2, W3 as defined in section 2 is given by

(17) ι(W1, W2, W3) =
1
2
ι(W1R, W1R, W1R) =

1
2
sgnRQ = sgnC(Q) .

4. The quaternionic case

Let H be the quaternion field, with its standard involution. Quaternions will
be described by two complex numbers

q = a + bi + cj + dk = z + wj

where z = a + ib and w = c + id for a, b, c, d ∈ R. With this notation, notice
that for z, w ∈ C, jz = zj and q = z − wj.

Let V be a (right) vector space over H of dimension p, and let h be a non-
degenerate skew-Hermitian H-valued form on V , i.e. h : V × V −→ H satisfies

h(v, v′q) = h(v, v′)q, h(vq, v′) = q h(v, v′), h(v′, v) = −h(v, v′)

17



for all q ∈ H and v, v′ ∈ V . The main references (and most of the notation)
are from [H] (or occasionally from [Sa]). Now introduce the C-valued forms A
and B defined on V (viewed as by complex vector space of dimension 2p)

(18) h(v, v′) = A(v, v′) + jB(v, v′) .

The form B is C-bilinear and symmetric, whereas A is skew-Hermitian. More-
over, the forms A and B are related by

(19) A(v, v′) = −B(vj, v′) .

As a consequence,
A(vj, v′j) = A(v, v′)

for v, v′ ∈ V . If V+ is a (complex) subspace of V such that iA|V+×V+ � 0, then
letting V− = (V+)j one has iA|V−×V− � 0, so that the Hermitian form iA is of
signature (p, p).

Let G = U(V, h) be the group of H-linear transformations which preserve the
form h. It can also be looked at as the group of C-linear transformations
g which preserve the symmetric form B and such that g(vj) = (gv)j for all
v ∈ V . This last group is usually denoted by O∗(2p, C).

Let us consider the p-dimensional subspaces V− of V such that

(20) B|V−×V− = 0, iA|V−×V− � 0 .

These conditions are stable by the action of G, and the space D of such sub-
spaces (viewed as a subspace of the Grassmnnian G(r, 2r)) turns out to be a
Hermitian symmetric space, with G as the neutral component of its group of
biholomorphic transforms. To make connections with matrix realizations of
D, fix a base point V 0

− in D, and observe that V 0
+ = V 0

−j is a complementary
subspace, such that B|V 0

+×V 0
+

= 0 and iA|V 0
+×V 0

+
� 0. If V− is any element of

D, then the projection on V 0
− parallel to V 0

+ is a (C-linear) isomorphism. Hence
there exists a linear map z : V 0

− −→ V 0
+ such that

V− = V z
− = {ξ + zξ, ξ ∈ V 0

−}.

Moreover, the space V z
− thus defined satisfies the conditions (19) are satisifed

if and only if for appropriate choices of dual basis in V 0
− and V 0

+

zt = −z, I − z∗z � 0

(see [Sa] Appendix). So D is realized as the unit ball in the space of complex
p × p skew-symmetric matrices. The domain D is of tube-type if and only if p
is even, say p = 2r, which will be assumed for the rest of this section.

18



Consider the Euclidean Jordan algebra J = Herm(r, H) with the Jordan prod-
uct x.y = 1

2 (xy + yx). Its complexification can be described as Skew(2r, C)
with a certain Jordan product whose exact formulation is not necessary for
our purpose. The associated Hermitian symmetric domain is the unit ball in
Skew(2r, C) (see [F-K] for details).

In this picture the determination of the Shilov boundary S of D is easy. It is
given by the conditions

z = −zt, I − z∗z = 0 .

Going back to the previous realization of D, a 2r-dimensional complex subspace
W belongs to the Shilov boundary of D if and only if

W ∈ S ⇐⇒ B|W×W = 0 and iA|W×W = 0 .

So W is totally isotropic for the full form h = A+Bj. Moreover, the space Wj
is A-orthogonal to W and hence contained in W , so that W is a quaternionic
subspace of V . The Shilov boudary Σ is realized as the space of all quaternionic
Lagrangian subspaces (i.e. maximally h-istotropic subspaces) of V .

The Jordan algebra J = Herm(r, H) has a natural representation. Let us con-
sider F = (Hr)R the real vector space of dimension 4r underlying the quater-
nionic vector space Hr, and consider the Euclidean inner product defined by

(ξ, η) = Re < ξ, η >

where < ξ, η > stands for the standard quaternionic inner product on Hr.
Then, for x ∈ J and ξ ∈ F , let

φ(x)ξ = xξ .

This defines a Euclidean representation, and the index d equals 4r
r = 4. As

before, extend this representation to the complexification J and then use its
restriction to the Shilov boundary in order to define the extended Maslov index.

The space F × F is the real vector space underlying the quaternionic vector
space V, and ω = Re h is the corresponding (real) symplectic form on F × F .
Hence to a quaternionic Lagrangian space W in V is associated through the
representation Φ the real underlying space WR, which is a Lagrangian for ω.
Conversely, notice that if a Lagrangian of VR � F × F for ω is indeed the
real vector space underlying a quaternionic space W , then W is a Lagrangian
subspace of V for h, as a consequence of formulae (18) and (19).

As a result, a Kashiwara’s type definition of the Maslov index is available. For
three quaternionic lagrangians W1, W2, W3 in V define Q on W1 ×W2 ×W3 by

(21) Q
(
(ξ1, ξ2, ξ3), (η1, η2, η3)

)
=(

h(ξ1, η2) − h(ξ2, η1) + h(ξ2, η3) − h(ξ3, η2) + h(ξ3, η1) − h(ξ1, η3)
)

.

This defines a quaternionic Hermitian form on W1 × W2 × W3.
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Theorem 4.1. Let W1, W2, W3 be three complex Lagrangians in V . The
extended Maslov index is given by

(22) ι(W1, W2, W3) = sgn(Q) ,

where sgn Q is the signature of the quaternionic Hermitian form Q on W1 ×
W2 × W3 defined by (21).

The proof is almost the same as for the complex case, except that the signature
over H of the Hermitian form Q is a quarter of the signature of the associated
real quadratic form on (W1 × W2 × W3)R. This is balanced by the fact that
the index d equals 4 in this case.

5. The domains of type IV : elementary approach

A domain of type IV corresponds to the Lorentzian Euclidean Jordan algebra.
Let J = Lp = Rp = R ⊕ Rp−1 with the Jordan product

(x1, x2, . . . , xp)(y1, y2, . . . , yp) = (z1, z2, . . . , zp)

with
z1 = x1y1 + x2y2 + . . . xpyp, zj = x1yj + y1xj (2 ≤ j ≤ p)

and use the standard inner product on Rp. The unit is e = (1, 0, . . . , 0) and
the associated cone is the future cone

Ω = {(x1, x2, . . . , xp) | x2
1 − x2

2 − . . . − x2
p > 0, x1 > 0} .

In this section the classical geometric realization of the associated Hermitian
symmetric doamin D is recalled and its Shilov boundary S is determined. An
elementary and explicit description of the open orbits in S ×S ×S is given, as
this does not seem to be available in the literature.

Let V be a real vector space, with a non-degenerate quadratic form S on V of
signature (p, 2), where p ≥ 2. Let V = V ⊗R C be its complexification, extend
S to V as a complex bilinear symmetric form, still denoted by S, and on the
other hand, let H be the Hermitian form on V defined by

H(x, y) = S(x, y) .

Consider the complex lines W in V which satisfy the following conditions :

(23) S|W = 0 H|W � 0 .
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Fix once for all a basis {e1, e2, . . . , ep+1, ep+2} such that

S(ej , ek) = 0, if j �= k

S(ej , ej) = 1 if 1 ≤ j ≤ p, S(ej , ej) = −1 if j = p + 1 or p + 2 .

A line W = C (
p+2∑
j=1

zjej) satisfies the conditions (23) if and only if

(24)
{

z2
1 + . . . + z2

p −z2
p+1 − z2

p+2 = 0
|z1|2 + . . . + |zp|2 −|zp+1|2 − |zp+2|2 < 0 .

These conditions imply |z2
p+1+z2

p+2| < |zp+1|2+|zp+2|2. Hence zp+1 �= 0, zp+2 �=
0, and (

zp+1

zp+2
)2 �∈ R

+, so (
zp+1

zp+2
) �∈ R. Hence �(

zp+1

zp+2
) > 0 or �(

zp+1

zp+2
) < 0. The

space D̃ of all complex lines satisfying (23) has two connected components, and
let D be the component that corresponds to the condition

(25) �(
zp+1

zp+2
) > 0 .

Let W = C(
p+2∑
j=1

zjej) be in D. Condition (25) implies that zp+1 + izp+2 �= 0.

Hence for 1 ≤ j ≤ p, set
tj =

zj

zp+1 + izp+2
.

Then observe that

p∑
j=1

t2j =
z2
p+1 + z2

p+2

(zp+1 + izp+2)2
=

zp+1 − izp+2

zp+1 + izp+2
.

Moreover, notice that

|zp+1|2 + |zp+2|2
|zp+1 + izp+2|2

=
1
2

(
1 +

∣∣∣ izp+1 + zp+2

zp+1 + izp+2

∣∣∣2) .

Hence the condition (24) now reads

(26)
p∑

j=1

|tj |2 <
1
2
(1 + |

∑
j=1

t2j |2)
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whereas the condition (25) amounts to |∑p
j=1 t2j | < 1 (by Cayley transform

from the upper half-plane into the unit disc), which thanks to the condition
(26) is equivalent to the (seemingly) stronger condition

(27)
p∑

j=1

|tj |2 < 1 .

Recall that Cp can be endowed with a structure of complex Jordan algebra
with Jordan product defined by

(t1, t2, . . . , tp)(s1, s2, . . . , sp) = (u1, u2, . . . , up)

where u1 = t1s1 − t2s2 − . . . − tpsp and for j ≥ 2, uj = t1sj + tjs1. The real
form

J = {(t1, it2, . . . , itp), tj ∈ R}
is (isomorphic to) the Euclidean Jordan algebra of Lorentzian type of dimension
p. The spectral norm in V is given by

N(z) =
(
‖ξ‖2 + ‖η‖2 + 2

√
‖ξ‖2 + ‖η‖2 − (ξ, η)2

) 1
2

where t = (tj)1≤j≤p, tj = ξj + iηj , ξj , ηj ∈ R and ξ = (ξ1, ξ2, . . . , ξp) and
η = (η1, η2, . . . , ηp) (see [F-K], ch X, exercice 2). The Lie ball is the domain
defined by

B = {z ∈ C
p | N(z) < 1} .

The conditions (26) and (27) amount to say that W belongs to D if and only if
(t1, t2, . . . , tp) belongs to B. In fact observe that the condition (26) amonts to

‖ξ‖2 + ‖η‖2 <
1
2

(
1 + (‖ξ‖2 − ‖η‖2)2 + 4(ξ, η)2

)
or

‖ξ‖2 + ‖η‖2 <
1
2

(
1 + (‖ξ‖2 + ‖η‖2)2 − 4‖ξ‖2‖η‖2 + 4(ξ, η)2

)
which is equivalent to

4(‖ξ‖2‖η|2 − (ξ, η)2) < (1 − (‖ξ‖2 + ‖η‖2)2 .

As ‖ξ‖2 + ‖η‖2 < 1, this is equivalent to

(28) ‖ξ‖2 + ‖ξ‖2 + 2
√

‖ξ‖2 + ‖η‖2 − (ξ, η)2
)

< 1
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which is the desired condition.

The Shilov boundary SB of the domain B is the set

SB =
{
σ ∈ C

p | σ = e−iθu, u ∈ R
P , ‖u‖ = 1, θ ∈ R/2πZ

}
(see [F-K]). As e−iθu = e−i(θ+π)(−u), SB � Sp−1 × S1/Z2.

To find the Shilov boundary S of the domain D, let σ =
∑p

j=1 tjej ∈ SB, with
tj = e−iθuj , uj ∈ R. Then,

(29)
p∑

j=1

t2j = e−2iθ

p∑
j=1

u2
j = e−2iθ =

cos θ − i sin θ

cos θ + i sin θ

and hence a generator of the corresponding complex line in V is the element

(u, cos θ, sin θ) =
p∑

j=1

ujej + cos θep+1 + sin θep+2 .

Theorem 5.1. The correspondance

e−iθu −→ C

(
u + sin θ ep+1 + cos θ ep+2

)
is a diffeomorphism of SB onto S .

As a consequence, the Shilov boundary Σ of D is the set of all real isotropic
lines in V .

The determinant corresponding to the Jordan algebra structure on V is given
by

Δ(z) = z2
1 + z2

2 + . . . + z2
p .

Two points of S, say ζ = e−iθu and η = e−iφv are transverse if and only if

ζ�η
def⇐⇒ Δ(ζ − η) �= 0 ⇐⇒ cos(θ − φ) �= (u, v) .

As
S((u, cos θ, sin θ), (v, cos φ, sinφ)) = (u | v) − cos(θ − φ) ,

two isotropic lines W1 and W2 in V are transverse (this will be denoted by
W1�W2) if and only if they are distinct and the plane they generate is not to-
tally isotropic. It implies that the restriction of S to W1⊕W2 is non-degenerate,
and of signature (+,−).
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The group O(p, 2) has four connected components. To describe its neutral
component G = O(p, 2)0, first recall that for g ∈ O(p, 2), (det g)2 = 1, so that
det g = 1 for g ∈ G by connectedeness. Then let V = V 0

+ ⊕ V 0
− be a fixed

orthogonal decomposition such that the form is positive-definite on V 0
+ and

negative-definite on V 0
−. Let p− be the orthogonal projection on V 0

−. Then, for
any subspace V− of V such that the restriction of the form to V− is negative
definite, the restriction of p− to V− is injective. Now let g ∈ O(p, 2). Then
g(V 0

−) is such a subspace, hence the map

V 0
−

g−→ V−
p−−→ V 0

−

is a linear isomorphism. Denote by δ−(g) its determinant (which is not 0).
Then

G = O(p, 2)0 = SO0(p, 2) = {g ∈ O(p, 2),det g = 1, δ−(g) > 0} .

Lemma 5.2. Let w1 = e1 + ep+2, w2 = e1 − ep+2. Then

S(w1, w1) = S(w2, w2) = 0, S(w1, w2) = 2

and the stabilizer in G of the pair (w1, w2) is isomorphic to SO0(p − 1, 1).

The first statement is obvious. For the second statement, let g ∈ G which
stabilizes both w1 and w2. It then stablilizes the plane Π = Re1 ⊕ Rep+2,
hence also its orthogonal Π⊥, which is the space generated by e2, e3, . . . ep and
ep+1. The matrix of g is of the form⎛

⎜⎜⎜⎜⎝
1 0 . . . 0 0
0 0
... γ

...
0 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎠

where γ is a p×p matrix. The restriction of g to Π⊥ stabilizes the restriction of
S to Π⊥, and hence g|Π⊥ ∈ O(Π⊥). So γ ∈ O(p−1, 1). But Det g = Det(γ) = 1.
From the orthogonal decomposition V = (Re1 ⊕ . . .⊕Rep)⊕ (Rep+1 ⊕Rep+2),
it is easily seen that δ−(g) > 0 ⇐⇒ g2,2 = gp+1,p+1 > 0, which shows that
γ ∈ SO0(p − 1, 1).

Lemma 5.3. G operates transitively on couples of vectors w1, w2 such that
S(w1, w1) = S(w2, w2) = 0, S(w1, w2) = 2.

Let(w1, w2) be any couple which satisfies the assumption. From Witt’s the-
orem, there exists g ∈ O(p, 2) such that gw1 = e1 + ep+2, gw2 = e1 − ep+2.
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The element g is determined up to left multiplication by an element of O(p, 2)
which stabilizes both w1 and w2. The stabilizer in O(p, 2) is isomorphic to
O(p − 1, 1), hence has four connected components. But the matrices

⎛
⎜⎜⎜⎝

1 0 . . . 0 0
0 −1 . . . 0 0
0 0 Ip−2 0 0
0 0 . . . 1 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 . . . 0 0
0 1 . . . 0 0
0 0 Ip−2 0 0
0 0 . . . −1 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 . . . 0 0
0 −1 . . . 0 0
0 0 Ip−2 0 0
0 0 . . . −1 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎠

and the identity matrix Ip+2 are in the stabilizer, and their corresponding
restrictions give representatives of the four connected components of O(p−1, 1).
The lemma follows from these observations.

Denote as before by S3
� the set of triples (W1, W2, W3) such that Wj�Wk for

j �= k.

Theorem 5.4. There are exactly three orbits in S3
� under the action of the

group G. Representatives (viewed as a triple of istropic lines in V ) of the orbits
are given by :

• (R(e1 + ep+2), R(e1 − ep+2), R(e1 + ep+1))
• (R(e1 + ep+2), R(e1 − ep+2), R(e1 − ep+1))
• (R(e1 + ep+2), R(e1 − ep+2), R(e2 − ep+2)).

Proof. Let (W1, W2, W3) ∈ S3
�. As the restriction of S to W1 ⊕ W2 is non-

degenerate, choose w1 ∈ W1, w2 ∈ W2 such that

S(w1, w1) = S(w2, w2) = 0, S(w1, w2) = 2 .

These conditions determine the couple (w1, w2) up to a real number λ �= 0,
in the sense that any other solution is of the form λw1,

1
λw2. For a specific

choice of w1, there exists a unique w3 ∈ W3 such that S(w1, w3) = 1. Then
S(w2, w3) = μ �= 0. Changing w1 to λw1 replaces w2 by 1

λw2 and w3 by 1
λw3,

hence changes μ into ( 1
λ )2μ. It is always possible to assume that

S(w1, w3) = 1, S(w2, w3) = ε

with ε = ±1. Let Π = Rw1⊕Rw2, and Π⊥ its orthogonal, so that V = Π⊕Π⊥.
According to this decomposition, write w3 = p3 + q3, with p3 ∈ Π and q3 ∈
Π⊥. Then it is easily verified that p3 = 1

2 (εw1 + w2). Note further that, as
S(w3, w3) = 0, S(q3, q3) = −S(p3, p3) = −ε.

Thanks to Lemma 5.2, it suffices to consider the case where w1 = e1 + ep+2,
w2 = e1 − ep+2, so that p3 = e1 if ε = 1, and p3 = −ep+2 if ε = −1.
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Recall that there are two orbits under S00(p − 1, 1) in the set

{x2e2 + . . . + xpep + xp+1ep+1 | x2
2 + . . . + x2

p − x2
p+1 < 0}

with representative respectively +ep+1 and −ep+1, and one orbit in the set

{x2e2 + . . . + xpep + xp+1ep+1 | x2
2 + . . . + x2

p − x2
p+1 > 0}

with representative e2. The case where ε = 1 gives raise to two orbits, with
representative q3 = ep+1 and q3 = −ep+1 (and hence w3 = e1 + ep+1, w3 =
e1−ep+1) and the case where ε = −1 gives raise to one orbit, with representative
q3 = e2 (and hence w3 = e2 − ep+2). The theorem follows from these results.

6. Isotropic lines in V and pure Lagrangians in the spinor space

The Lorentzian Jordan algebra Lp has non trivial representations. The space E
of such a representation is a Clifford module for the Clifford algebra constructed
on the Euclidean space Rp−1, and vice-versa (see [C]). It is more involved that
the previous cases. In order to describe the embedding of the Shilov boundary
S (= the manifold of isotropic lines) of the domain D (= the Lie ball) into the
corresponding Lagrangian manifold of E × E in geometric terms, it is more
convenient, in agreement with the geometric presentation of the space D in
section 5 to start with a real vector space V of dimension p+2 equipped with a
quadratic form S of signature (p, 2), to consider the associated Clifford algebra
C = C(V, S) and the associated space of spinors Σ. It turns out that Σ has a
natural symplectic structure. For each isotropic line in V a certain Lagrangian
subspace of Σ is constructed. This construction will be interpreted in section
7 as an embedding of the Shilov boundary S into the Lagrangian manifold of
Σ, associated to a holomorphic embbedding of the Lie ball in the Siegal disc
associated to the symplectic space Σ.

Recall that the Clifford algebra(*) C = C(V, S) is the algebra generated over
R by V with the relations xy + yx = 2S(x, y). The space V itself will be
regarded as a subspace in C. Let ̂ be the conjugation of C, i.e. the unique
antiautomorphism of C such that x̂ = −x for x ∈ V .

Let Cev (resp. Codd) be the even (resp. odd) part of C(V, S). The structure
of the algebra Cev is well-known. It is either simple or direct sum of two
simple ideals. In any case, a simple ideal is isomorphic to a matrix algebra
over K = R, C or H. The algebra of N × N matrices with coefficients in K is
denoted by Mat(N, K).

(*) a general (and excellent) reference for Clifford algebras and spinors is [H].
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The description mod 8 of Cev is given by the following list.

• case p ≡ 0 (8) : Cev � Mat(N, C), N = 2
p
2

• case p ≡ 1 (8) : Cev � Mat(N, R), N = 2
p+1
2

• case p ≡ 2 (8) : Cev � Mat(N, R) ⊕ Mat(N, R), N = 2
p
2

• case p ≡ 3 (8) : Cev � Mat(N, R), N = 2
p+1
2

• case p ≡ 4 (8) : Cev � Mat(N, C), N = 2
p
2

• case p ≡ 5 (8) : Cev � Mat(N, H), N = 2
p−1
2

• case p ≡ 6 (8) : Cev � Mat(N, H) ⊕ Mat(N, H), N = 2
p−2
2

• case p ≡ 7 (8) : Cev � Mat(N, H), N = 2
p−1
2

(see [H] for a proof of these facts).

In any case, denote by Σ a simple module under the action of Cev. It is a
(right) K-module of dimension N , called ”the” space of spinors.

Proposition 6.1. There exists a (unique up to a non zero real constant) K

skew-Hermitian non-degenerate product h on Σ such that

h(aξ, η) = h(ξ, âη)

for ξ, η ∈ Σ and a ∈ Cev. Moreover in the complex case (K = C), the form h
is split.

For a proof, see [H].

A Lagrangian subspace is a K vector subspace of Σ of half dimension (= N
2 )

which is totally isotropic for the form h. The spin group Spin(V, S) acts on Σ
by the spinor representation, preserving the form h, and hence Spin(V, S) acts
on the Lagrangian manifold of Σ. A specific specific orbit of this action will be
described now.

Denote by N the cone of isotropic vectors in V

N = {x ∈ V | S(v, v) = 0}

and by N ∗ the set of non zero vectors of N .

Lemma 6.2. Let x ∈ N ∗. Set

Jx = {a ∈ Cev | ax = 0} .
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Then Jx = Coddx.

Fix an orthogonal decomposition of V as V+⊕V−, where the restriction of S to
V+ is positive-definite, whereas the restriction of S to V− is negative-definite.
For x ∈ V , set x = x+ + x−, with x+ ∈ V+ and x− ∈ V−. Hence, if x ∈ N ,

S(x+, x+) = −S(x−, x−), S(x+, x−) = 0 .

If moreover x �= 0, then x+, x− �= 0, and as Jx does depend projectively on
x, it is possible to assume that S(x+, x+) = −S(x−, x−) = 1. Introduce the
following elements of Cev :

(30) ax =
1
4
(x+ − x−)(x+ + x−), bx =

1
4
(x+ + x−)(x+ − x−) .

The following properties are easily verified :

a2
x = ax, b2

x = bx, axbx = bxax = 0, ax + bx = 1

axx = 0, xax = x, xbx = 0, bxx = x .

Let J ′
x = Coddx. Clearly J ′

x ⊂ Jx. Now let c ∈ Jx. Then

c = c(ax + bx) = cax + cx(
x+ − x−

4
) = cax = c(

x+ − x−
4

)x ∈ J ′
x .

Hence Jx ⊂ J ′
x.

The proof also shows that

Jx = Coddx = Cevax .

Similarly let

Hx
def= {a ∈ Cev | xa = 0} = xCodd = bxCev .

Lemma 6.3. Let x ∈ N ∗, and let ξ ∈ Σ. Then

Jxξ = 0 ⇐⇒ axξ = 0 ⇐⇒ bxξ = ξ ⇐⇒ ξ ∈ HxΣ .

Hxξ = 0 ⇐⇒ bxξ = 0 ⇐⇒ axξ = ξ ⇐⇒ ξ ∈ JxΣ .

Proof. Let ξ be such that Jxξ = 0. Then axξ = 0, hence bxξ = ξ, so that
ξ ∈ HxΣ. Conversely, let ξ ∈ HxΣ. This means that there exists η ∈ Σ, such
that ξ = bxη, and hence axξ = 0, so that Jxξ = 0. The proof of the second line
is similar.
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For x ∈ N ∗, define

(31) Σx = {ξ ∈ Σ | Jxξ = 0} = HxΣ, Σx = {ξ ∈ Σ | Hxξ = 0} = JxΣ .

Lemma 6.4. Let x ∈ N ∗. Then Σx and Σx are transverse Lagrangian sub-
spaces of Σ.

Proof. As the action of K commutes with the action of the Clifford algebra,
Σx (resp. Σx) is a K vector subspace. Let ξ, η ∈ Σx. Then, as âx = bx

h(ξ, η) = h(bxξ, η) = h(ξ, axη) = 0 .

This shows that Σx is totally isotropic. A similar argument shows that Σx is
also totally isotropic. For any ξ ∈ Σ, write ξ = axξ + bxξ. The first term
belongs to Σx and the second to Σx. Hence Σ = Σx + Σx, and as a totally
isotropic subspace has a dimension less than half the dimension of the space, the
dimensions of Σx and Σx are equal to N

2 , and the conclusion follows. Observe
moreover that Σx = Σx′ with x′ = x+ − x−.

A Lagrangian subspace Λ in Σ which is of the form Σx (or equivalently Σx)
for some x ∈ N ∗ is said to be pure. Denote by Λpure the subset of pure
Lagrangians in the Lagrangian manifold of σ.

Theorem 6.5. The mapping
x 	−→ Σx

is a bijective map from the projectivized space N ∗/R∗ on Λpure, which is
equivariant with respect to the action of the spin group.

Proof. Let us first prove the equivariance. Denote by G = Spin(V, S) the spin
group. Λpure is invariant under the action of G. Let g ∈ G. Let x ∈ N ∗, and
let g.x = gxg−1. Then

c ∈ Jg.x ⇐⇒ cgxg−1 = 0 ⇐⇒ cgx = 0 ⇐⇒ cg ∈ Jx .

Hence Jg.x = Jxg−1. Now

ξ ∈ Σg.x ⇐⇒ Jg.xξ = 0 ⇐⇒ Jxg−1ξ = 0 ⇐⇒ g−1ξ ∈ Σx .

Hence Σgx = gΣx, which gives the equivariance property. The map is surjective
by definition. The stabilizer Px of the isotropic line Rx is known to be a
maximal parabolic subgroup of G , hence the stabilizer of Σx is either G or Px.
As the spinor representation is irreducible, it cannot be G. Hence it is equal to
Px. So if Σx = Σy, then Px = Py, and hence Rx = Ry. This finishes the proof.

The last result of this section sheds a new light on the notion of transverse
isotropic lines introduced in section 5.
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Proposition 6.6. Let x, y ∈ N ∗. Thern

x�y ⇐⇒ Σx ∩ Σy = {0} .

Proof. Let x, y ∈ N ∗ verifying x�y. The restriction of S to the plane Rx⊕Ry
is of signature (+,−). Fix an orthogonal basis {f+, f−} such that S(f+, f+) =
1, S(f−, f−) = −1. Let x = λf+ + μf−. Then, as x is isotropic, λ2 = μ2. By
scaling of x and possibly changing f− to −f−, one can assume w.l.o.g. that
λ = μ = 1, hence x = f+ + f−. By a similar argument applied to y, one can
assume that y = f+ − f−. The arguments used during the proof of Lemmas
6.2. and 6.3. imply that Σy = Σx and hence Σx ∩Σy = {0}. Now suppose that
on the contrary, x and y are not transverse. Then S(x, y) = 0, hence

0 �= xy = −yx ∈ Jx ∩ Jy

and so Σx ∩ Σy �= {0}.

7. The case of type IV : the spinor approach

The embedding of the space of istropic lines of V into the space of pure
Lagrangians as realized in section 6 is associated to a representation of the
Lorentzian Jordan algebra Lp, and this will lead to a formula à la Kashiwara
for the Maslov index of three isotropic lines in V (not necessarily tranverse).

In turn, such a representation is equivalent to a homomorphism

ρ : g = o(V, S) −→ sp(Σ)

which satisfies Satake’s condition (H2) (see [Sa] p. 84). It turns out to be
easier to start from such an embedding and then deduce the correspondance
between the Shilov boundary S and the Lagrangian manifold. The first step is
to interpret o(V, S) as a Lie subalgebra of the Clifford algebra C(V, S).

In fact, the Lie algebra g = o(V, S) has a realization in Cev as

g = {x ∈ Cev | x̂ + x = 0, [x, V ] ⊂ V } ,

the Lie bracket being just the commutator in the Clifford algebra.

Fix an S-orthogonal basis {ej}1≤j≤p+2 of V , such that

S(ej , ej) = +1 for 1 ≤ j ≤ p, S(ej , ej) = −1 for j = p + 1, p + 2 .

A concrete realization of g is

g =
⊕

1≤i<j≤p+2

Reiej .
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Let e− = ep+1ep+2. Observe that e−1
− = −e− = ê−, and consider the inner

automorphism of the Clifford algebra given by

α : a 	−→ e−1
− a e−

The automorphism α commutes with ̂ and preserves Cev. It stabilizes V ,
and induces + id on the space generated by the ej , 1 ≤ j ≤ p, and − id on the
space generated by ep+1, ep+2. The subspace g is stable by the involution α
and it induces a Cartan involution of g, hence a splitting g = k ⊕ p (see [Sa]
Appendix). The space p is given by

p =
( p⊕

j=1

Rejep+1

)
⊕

( p⊕
j=1

Rejep+2

)
.

The element H0 = 1
2e− is in the center of k and satisfies

[H0 , ejep+1] = ejep+2 , [H0 , ejep+2] = −ejep+1 ,

hence induces a complex structure on p. The eigenspace of ad H0 for the
eigenvalue +i is denoted by p+ and

p+ =
( p⊕

j=1

Cej

)
(
ep+1 − iep+2

2
) � C

p .

Let σ be the conjugation with respect to the compact real form k ⊕ ip. The
involution σ maps p+ into p−. For v ∈ ⊕p

j=1 Cej ,

σ
(
v(

ep+1 − iep+2

2
)
)

= (−v)(
ep+1 + iep+2

2
) .

Now let
e = e1(

ep+1 − iep+2

2
) .

This is an element of p+, and it satisfies

[e, σ(e)] = iep+1ep+2 = 2iH0 .

Moreover, let v = z1e1 +z2e2 + . . .+zpep. Then a straightforward computation
shows that

−1
2
{
e, v(

ep+1 − iep+2

2
), e

}
= v′(

ep+1 − iep+2

2
)
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where v′ = z1e1 − z2e2 − . . . − zpep. The corresponding real form (cf section
2) is

J = {v(
ep+1 − iep+2

2
) | v = x1e1 + i(x2e2 + . . . xpep), x1, x2, . . . , xp ∈ R}

isomorphic to Rp, and the Jordan algebra structure coincides with the one
presented in section 5.

Recall form section 6 that Σ is a spinor space for Cev. If a ∈ g ⊂ Cev, then
â = −a, and hence

h(aξ, η) + h(ξ, aη) = 0

for all ξ, η ∈ Σ. The form A = Re h is a symplectic form on Σ. By restriction
of the action of Cev on Σ, one obtains a homomorphism ρ of Lie algebras

ρ : o(V, S) −→ sp(Σ, A) .

Our next goal is to show that this homomorphism satisfies Satake’s condition
(H2) condition, namely

ρ(H0) =
1
2
J

where J ∈ sp(Σ) is a complex structure on Σ such that A(ξ, Jη) is a positive-
definite form on Σ.

The Clifford algebra C is isomorphic (as vector space) to the exterior algebra
Λ(V ). There is a canonical non-degenerate symmetric R-bilinear form on Λ(V ),
denoted by < , >. It satisfies

(32) < ab, c >=< a, cb̂ >=< b, âc >

for all a, b, c in C. In particular

(33) < a, b >=< 1, âb >=< 1, bâ >

The subspaces Cev and Codd are orthogonal for < , >, and hence the restriction
of < , > defines a non-degenerate symmetric bilinear form on Cev. Similarly,
in the non-simple case Cev

+ and Cev
− are orthogonal. In fact, let a ∈ Cev

+ and
b ∈ Cev

− . Then

< a, b >=< λa, b >=< a, λ̂b >=< a, λb >= − < a, b >

so that < a, b >= 0 for all a ∈ Cev
+ and b ∈ a ∈ Cev

− . So the restriction of the
form < , > to Cev

± is non-degenerate.
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Proposition 7.1.
(i) Assume Cev is simple. For all a, b ∈ Cev,

(34) < a, b >=
1
N

Tr R ρ(ab̂)

where N = dim Σ.

(ii) Assume p ≡ 2, 6 mod 8. For all a, b ∈ Cev
± ,

(34′) < a, b >=
2
N

Tr R ρ±(ab̂)

where N = dim Σ±.

Proof. The notation for statement ii) will be explicited during the proof.
Assume Cev is simple. Thanks to (33), it suffices to show that

< 1, a >=
1
N

Tr ρ(a)

for any a ∈ Cev Let Ψ(a) = 1
N Tr ρ(a). This defines a linear form Ψ on Cev,

which satisfies Ψ(ab) = Ψ(ba). As < , > is non-degenerate on Cev, there exists
c ∈ Cev such that Ψ(a) =< a, c > for all a ∈ Cev. Now

< ab, c >=< ba, c > =⇒ < a, cb̂ >=< a, b̂c >

for any a, b, and hence cb̂ = b̂c for any b ∈ Cev, so that c must belong to the
center of Cev.

In the odd case, the center of Cev is reduced to R1, so c is a multiple of 1, and
one checks that the normalizing constant 1

N is the proper one.

For the even case we need more notation. Let λ = e1e2 . . . ep+1ep+2 (volume
element). Observe that λ up to a sign does not depend on the specific choice
of the (ej)1≤j≤p+2. The center of Cev is R ⊕ Rλ, so that c = α + βλ, with
α, β ∈ R. By setting a = 1,

Φ(1) =
1
N

Tr ρ(1) = 1 = α < 1, 1 > +β < 1, λ >= α + 0 ,

Hence α = 1. Set a = λ to get

Φ(λ) =
1
N

Tr ρ(λ) = β < λ, λ > .

As < λ, λ >= ±1, it suffices to show that Tr ρ(λ) = 0 to be able to conclude
that β = 0.
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If p ≡ 0, 4 mod 8, λ2 = −1 and ρ(λ) is a complex structure on Σ. Hence
Tr ρ(λ) = 0.

It remains to study the case where p ≡ 2, 6 mod 8. It corresponds to the proof
of ii). In this case, λ̂ = λ and λ2 = 1. Accordingly, the algebra Cev splits
as Cev

+ ⊕ Cev
− . Now Cev

± � Mat(N, K) and let ρ± : Cev
+ −→ EndK(Σ±) be

corresponding half-spin representations. Extend ρ± to Cev by taking it equal
to 0 on Cev∓. Arguing as before, it is enough to compute TrR ρ+(λ). Now
write

λ =
1 + λ

2
+

−1 + λ

2

and observe that
1 + λ

2
is the unit element in Cev

+ . Hence

Tr Rρ+(λ) = Tr ρ+(
1 + λ

2
) = dim Σ+ = N.

Hence, for a ∈ Cev
+ ,

1
N

Tr ρ+(a) =< a, 1 > + < a, λ >= 2 < a, 1 > .

As above, this implies (34′). The proof for ρ− is similar.

Let e− = ep+1ep+2. Observe that e−1
− = −e− = ê−, and consider the automor-

phism
α : a 	−→ e−1

− a e−

The automorphism α commutes with ̂ and preserves Cev. Moreover the
quadratic form

a 	−→< α(a), a >

is positive-definite on Cev (see [Sa]) .

Let J = ρ(e−). Then

J2 = −1, h(Jξ, η) = −h(ξ, Jη)

for all ξ, η ∈ Σ. As a consequence, (ξ, η) = h(Jξ, η) is a K-Hermitian non-
degenerate form on Σ.

Proposition 7.2. The form ( , ) defined on Σ by

(ξ, η) := h (Jξ, η)
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is positive-definite or negative-definite.

Proof. The proof will be given in the case where Cev is simple, but the proof
for the non simple case is almost identical. Let T in EndK(Σ), and denote by T̂
its adjoint with respect to h , and by T ∗ its adjoint with respect to ( , ). Then

T ∗ = −JT̂J .

Hence ρ(α(a))̂ = −Jρ̂(a)J = ρ(a)∗ for any a ∈ Cev, and hence TrR

(
ρ(a)∗ρ(a)

)
is positive-definite on Cev. It implies that TrR(T ∗T ) is a positive-definite form
on EndK(Σ). Now let ξ ∈ Σ. Let Tξ be the operator on Σ defined by

Tξ(η) = ξ (ξ, η)

Then T ∗
ξ = Tξ, and TrR(T ∗

ξ Tξ) = dim K (ξ, ξ)2. If ξ �= 0, then (ξ, ξ)2 can never
be 0. The real quadratic form (ξ, ξ) has no non trivial isotropic vector, hence
is either positive-definite or negative-definite.

By changing h to −h if necessary, the form ( . , . ) can be assumed to be positive-
definite. Hence the homomorphism ρ : o(V, S) −→ sp(Σ) satisfies the (H2)
condition. So the map ρ maps the Shilov boundary of D (the Lie ball) into the
corresponding Shilov boundary of the Siegel disc associated to Σ.

In the present realization of p+, the Shilov boundary of D is (cf section 5)

S =
{

eiθu (
ep+1 − iep+2

2
)
}

where u ∈ V+, ‖u‖ = 1, θ ∈ R/2πZ, and (−u, θ + π) corresponds to the same
point as (u, θ).

Let ΣC be the complexification of Σ, and let V0
− = {ξ ∈ ΣC | Jξ = −iξ}. Let

Rx be an isotropic vector in V . As before, normalize x so that

x = u + cos θep+1 + sin θep+2 ,

with u ∈
p⊕

j=1

Rej , ‖u‖ = 1. In the present realization of the Shilov boundary,

this corresponds to the point eiθu(ep+1 − iep+2). Now associate to this the
point ρ(eiθu(ep+1 − iep+2)) and take the corresponding Lagrangian space of Σ

(35) W = Wx = {ξ + eiθu(ep+1 − iep+2)ξ | ξ ∈ V
0
−} ∩ Σ
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Theorem 7.3. The space Wx defined by (35) is a pure Lagrangian space.

Proof. The space {ξ + eiθu(ep+1 − iep+2)ξ | ξ ∈ V0
−} is (by construction or

by direct checking) a complex Lagrangian space in ΣC, which is stable by the
conjugation with respect to Σ. Hence

Wx = {Re(ξ + eiθu(ep+1 − iep+2))ξ | ξ ∈ V
0
−} .

An element of V0
− is of the form ξ = (1 + iep+1ep+2)η with η a real spinor

(η ∈ Σ). Now

(
ep+1 − iep+2

2
)(1 + ep+1ep+2)η = (ep+1 − iep+2)η

so that

Re
(
ξ + eiθu(ep+1 − iep+2) ξ

)
=

(
1 + u(cos θep+1 + sin θep+2)

)
η

and hence, by comparaison with (30) and (31)

Wx =
(
1 + u(cos θep+1 + sin θep+2)

)
Σ = axΣ = Σx ,

showing that Wx is a pure Lagrangian space.

Theorem 7.4. The extended Maslov index for a triple of isotropic lines
(Rx1, Rx2, Rx3) is given by

ι(Rx1, Rx2, Rx3) =
2

N dim(K)
ιΣ (Wx1 , Wx2 , Wx3)

where ιΣ is the (classical) Maslov index for triples of Lagrangians in the sym-
plectic space (Σ,Re h).

This is formula (14) applied to our case (the rank of Lp is 2). Needless to say,
the Lagrangians Wxi are (right) K-subspaces, and so this formula can also be
written as

ι(Rx1, Rx2, Rx3) =
2
N

ι̃Σ (Wx1 , Wx2 , Wx3)

where now ι̃ means the Maslov index for Lagrangians of the K vector space
(Σ, h) (as defined in sections 3 and 4).
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