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Abs t r ac t .  Let 7) be a Hermitian symmetric space of tube type, S its Shilov boundary and 
G the neutral component of the group of bi-holomorphic diffeomorphisms of 7). In the model 
situation 7) is the Siegel disc, S is the manifold of Lagrangian subspaces and G is the symplectic 
group. We introduce a notion of transversality for pairs of elements in S, and then study the 
action of G on the set of triples of mutually transversal points in S. We show that there is 
a finite number of G-orbits, and to each orbit we associate an integer, thus generalizing the 
Maslov index. Using the scalar automorphy kernel of 7), we construct a C*-valued, G-invariant 
kernel on 7) • 7) • 7). Taking a specific determination of its argument and studying its limit 
when approaching the Shilov boundary, we are able to define a Z-valued, G-invariant kernel 
for triples of mutually transversal points in S. It is shown to coincide with the Maslov index. 
Symmetry properties and cocycle properties of the Maslov index are then easily obtained. 

I n t r o d u c t i o n  

In the theory of partial  differential equations a key role is played by the so-called 
Maslov index, invented by Maslov and Leray and developed further (see [G-S], [L-V], 
[M], [Go], [C-L-M]). I t  has several interesting properties, especially since it is int imately 
connected with the Segal-Shale-Weil representation of the metaplectic group. But  its 
definition is subtle, and has not been connected to geometric properties of the meta-  
plectic group. In this paper  we give a novel way of looking at the Maslov index in order 
to encode some natural  geometry. In particular we use the holomorphic geometry of 
the Hermit ian symmetr ic  space introduced by Siegel as a generalized upper  half space, 
and obtain a natural  definition of the Maslov index, which also works for other tube  
type domains. In this paper,  we limit ourselves to the transversal  situation, but  hope 
to s tudy the non-transversal  case in the future. The infinite-dimensional case could be 
developed along the same lines as well. 

We briefly indicate the setting. Let A = Ar be the space of Lagrangian subspaces in 
a 2r-dimensional symplectic space, and denote by A~- the space of triples of transversal  
Lagrangians.  The geometric result, on which the theory of the Maslov index is based, 
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is the fact that  the symplectic group has a finite number of open orbits in h~-. For 
a choice of a symplectic basis, it is possible to describe a set of representatives of the 
orbits. 

The Maslov index ~ : A~ -+ Z is invariant under the symplectic group, so, in some 
sense, it is enough to know its value on a set of representatives. However, it has symmet- 
ry properties and cocycle type properties that  are not transparent from this definition. 

We thus propose a new approach to the Maslov index, which on the one hand makes 
the symmetry and cocycle properties almost obvious, and on the other hand works for 
more general geometric situations. 

The space Ar is classically known as the Shilov boundary of the Siegel disc D = 7)~. 
In this interpretation, the symplectic group appears as the (neutral component of the) 
group of bi-holomorphic diffeomorphisms of the Siegel disc. This introduces some bolo- 
morphic theory in the picture. In the reference [M], the space A~ is also viewed as the 
Shilov boundary of the domain 7) (viewed as the space of complex positive Lagrangians), 
and extensions to 7) of the Maslov index (in connection with the metaplectic represen- 
tation) are obtained. Our point of view is close, but more geometric. We show that  the 
Maslov index can be defined by using the (scalar) automorphy kernel of the domain 7), 
which has a well known covariance property with respect to the action of the symplectic 
group. It is also strongly related to the Bergman kernel of the domain. 

The Siegel disc is holomorphically equivalent (under the Cayley transform) to the 
Siegel upper half-space, which is the tube domain over the cone of positive-definite sym- 
metric matrices. This correspondence extends in some sense to the Shilov boundaries 
of both domains, and the orbit picture in A~- under the symplectic group is strongly 
related to the orbit picture of the linear group GL(r, ~) acting on the space of symmetric 
matrices by (g, X )  --+ gXg  t for g E GL(r, ~), X E Sym(r, ]~). 

Our construction extends to the Shilov boundary S of any Hermitian symmetric 
space 7) of tube type. These domains in turn are in one-to-one correspondence with the 
Euclidean Jordan algebras (see the appendix for a list of such spaces). It is important  
to remark that  the basic geometric fact (the existence of open orbits in S x S x S) is 
not t rue for non-tube-type domains. 1 

In Section 1, we present as a pedagogical introduction the case of A1, which is the 
circle viewed as the boundary of the unit disc 7)1 in C. In this case, the Maslov index can 
be interpreted as an area (with respect to the Poincar@ metric), which makes symmetry 
and cocycle properties even more transparent.  Since we wrote this paper, several authors 
told us tha t  such an interpretation of the Maslov index was known, but  no written 
reference seems to exist. Sections 2, 3 and 4 introduce the tube-type domains, their 
relation to Euclidean Jordan algebras and derive properties of their Shilov boundary. 
The main result of our work is Theorem 5.2 which exactly expresses the Maslov index 
in terms of the intrinsic holomorphic geometry of the tube domain. Section 6 is a kind 
of functorial property for the Maslov index. 

For more information on the Maslov index and applications, see [G-S], [L-V] and 
bibliographical references there. For more recent work, see [C-L-M], [Go]. 

1One of the referees of this paper pointed out the reference [C], where an invariant for triples 
on the unit sphere in C 2 (the Shilov boundary of a non-tube-type Hermitian symmetric space) 
is introduced in a way very similar to ours. 
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1. T h e  M a s l o v  i n d e x  on  t h e  c i rc le  via  t h e  a u t o m o r p h y  k e r n e l  
for  t h e  un i t  disc 

Let D be the open unit disc in the complex plane, 

{z = x + i y  e C, lzl < 1}, 

equipped with its Poincar@ metric, which is given infinitesimally by 

ds 2 = (dx 2 + dy2)/(1 - H2) 2. 

There is a corresponding Riemannian measure 

d m =  dx dy / (1 -Iz12) 2. 

Recall tha t  the metric is conformal with respect to the Euclidean metric, and it has 
constant curvature equal to - 1 .  The geodesics are known to be (segments of) the 
circles orthogonal to the unit circle S = OD = {z E C, ]z] = 1}. 

The Poincar~ disc has a large group of holomorphic automorphisms. Let 

[ O~ /3 ] , a [ 2 _ [ / ~ [ 2 = 1 } .  G=SU(1,1)={ ~ ~ , 

[ a ~ ] r  defineg(z)=(c~z+~)/(-~z+-~). Thisformuladef ines  F o r g =  ~ 

an action of G on 73. 
Let (z, w) be two distinct points in D. Let T = d(z, w) be the Poincar@ distance 

between z and w. Then there is a unique geodesic curve v(t),  t E [0, T] with endpoints 
z = V(0) and w = 7(T).  Let us orientate this geodesic from z to w, and define the 
angular variation Z (z, w) from z to w as 

(1) Z (z, w) = Z (+(0), +(T)). 

Of course, this is not an invariant notion for the isometries of the Poincar@ disc. On 
the contrary, it measures the Euclidean deviation of the tangent vector to the geodesic, 
whereas the tangent vector is invariant under parallel t ransport  for the Poincar@ metric 
along the geodesic. 

But these quantities are very useful to compute areas of polygonal domains. First 
recall a general formula for the area. Let D be a bounded simply connected domain 
with piecewise smooth boundary contained in 7:). Fix a tangent vector v at some point 
of the boundary 0D so that  the direction of v corresponds to travelling counterclockwise 
on OD. Let PODV denote the parallel t ransport  of the vector v along the boundary of 
D. The area of D is related to the angular variation of v under parallel t ransport  by 
the formula 

- /~ dm = Z (v, PaDV). (2) 

The minus sign comes from the value - 1 for the curvature. If the boundary is travelled 
in the opposite direction (clockwise), then the right-hand side of formula still makes 
sense, and is the opposite of the corresponding quantity for the counterclockwise orien- 
tation. Hence it may be used to define the oriented area of the domain D. 

Assume now D = T is a geodesic triangle (its sides are assumed to be geodesic 
segments). We have the following formula for the oriented area of T. 
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FIGURE 1. 

T h e o r e m  1.1. Let T be a geodesic triangle with summits zl ,  z2, ~3 E D. The oriented 
area A ( T )  is given by 

(3) A(T)  = - ( / ( z l ,  z2) + Z(z2, z3) + Z(z3, zl)) .  

Proof. I t  is enough to prove the formula when the orientation on the boundary  (start ing 
from zl,  going to z2, z3 and then back to Zl) is positive. The parallel displacement along 
a geodesic curve preserves the unit tangent vector, and is a direct isometry between the 
two tangent planes at  two arbi t rary  points of the curve. So the formula is easily obtained 
(see Figure 1). Needless to say, this formula is equivalent to the more classical formula 
giving the area in terms of the angles of the triangle. [] 

Now there is a very convenient way for computing Z (z, w) for z, w E D. Consider 
the points z ~ = 1/V and w ~ = 1 /~ .  Then the four points z ,w ,  zl, w ~ are cocyclic, and in 
fact they belong to  the circle containing the geodesic segment from z to w. Let  w be its 
(Euclidean) center. Then an elementary argument  (see Figure 2) shows tha t  

~ ~ w,-----~w)=argW - z '  w - w' 1 - wE 
z (~, ~ ) = z ( ~ , ~ ) = z ( ~  ~ , z  w ) + z  (~ '~ ,  ~ _ ~, +arg  ~ ,  =arg  1 

z - - ~z"  

FIGURE 2. 
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T h e o r e m  1.2. Let T be a geodesic triangle with summits zl,  z2, z3. Then the following 
formula holds for its oriented area .A(T) 

1 - z l ~  1 - z 2 ~  1 - z 3 ~  
(4) A(T)  = arg 1 - ~z2  + arg 1 - ~z3  + arg 1 - ~-~z---~" 

There is still another way to write and understand this formula. Let us introduce 
the automorphy kernel defined for z, w E ~ by the formula 

k ( z ,w)  = 1 -  z~.  

[ a  f l l E G b y  Let us also introduce the automorphy factor, defined for z E T) and g = ~ 

j ( g , z )  = ~z + ~ .  

The automorphy kernel is holomorphic in the variable z and anti-holomorphic in the 
variable w. It has the Hermitian symmetry property k(w, z) = k(z,  w) and transforms 
under the action of G by the following formula 

(5) k(g(z),  g(w)) = j(g, Z) -1 k(z, w) j(g,  w) 

Given three distinct points Zl, z2, z3 we may form the expression 

(6) c(zl,  z2, z3) = k(zl ,  z2)k(z2, z l ) - l k ( z2 ,  z3)k(z3, z2)- lk(z3 ,  z l )k ( z l ,  z3) -1. 

From the transformation law for k it is easily seen that  C(Zl, z2, z3) is invariant under 
the action of G, tha t  is c(g (zl), g (z2), g (z3)) = c(zl, z2, z3), V g E G. From the Hermitian 
symmetry property, it is also obvious that  c(zl, z2, z3) is a complex number of modulus 1. 
Now observe that  the right-hand side in formula (4) is a specific determination of the 
argument of c(zl,  z2, z3). Notice that  for z, w E 7), the complex number k(z, w) = 1 - z ~  
always belong to the open right half-plane, and the same is t rue for its inverse. Then we 
define arg c(zl,  z2, z3) by adding the principal determination of the argument for each 
of the six factors. With this convention, we can restate the previous theorem. 

T h e o r e m  1.3. Let T be a geodesic triangle with summits z l ,z2,  z3. Then its oriented 
area A ( T )  is given by the formula 

(7) A(T) = arg e(zl, z2, 

The formulae we have obtained can be extended to ideal triangles. An ideal triangle 
is a geodesic triangle with summits at the boundary. In more precise terms, let 41,42,43 
be three distinct points on the unit circle S = 0/),  to be thought of as the points at 
infinity of 7:), and draw the three (infinite) geodesics joining 41 to 42, 42 to ~3 and ~3 to 
~1- Notice that  the value of the "angles" is 0, and the area of the triangle is ~. More 
precisely, the oriented area is ~r if on travelling counterclockwise from 41 to ~3 one hits 
~2, and - ~  on the contrary. Define the Maslov index ~(~1,42,~3) to be +1 in the first 
case, and - 1  in the second case. Then ~(~1,r = 1 ~A(~I, ~2, ~3) where A(~I, ~2, ~3) 
denotes the oriented area of the ideal triangle with summits ~1, r 43 in this order. 

The formulae we have obtained for the area of geodesic triangles can be extended to 
give analytic expressions for the Maslov index. 
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T h e o r e m  1.4. Let (~1,r162 be three distinct points of the unit circle S. Then the 
Maslov index L((I , ~2, ~3) is given by 

(S) ~(r162 = ~ l i m a r g  c(zl,z2,z3) 

when zl -+ ~1, z2 --~ ~2, z3 --~ ~3 "from inside". 

The formula shows immediately that  the Maslov index is invariant under G. This 
invariant is somewhat subtle. If one views the unit circle S as the real one-dimensional 
projective space, then the real projective group operates transitively on triplets of dis- 
tinct points (a basic result in projective geometry). The real projective group has two 
connected components, and one way to distinguish them is to introduce an orientation 
on S. Then the neutral component corresponds to those transformations preserving the 
orientation. Choosing an orientation of S is tantamount to introducing the complex 
plane into the picture. The unit circle S is then automatically given an orientation. It 
is also equivalent to approaching points in S from the interior of 7). The Maslov index is 
the extra information necessary to characterize orbits of G in triplets of distinct points 
in S. 

From the formula (8) it is easy to get the cocycle relation for the Maslov index (the 
statement and its proof are deferred to Section 5 since it is exactly the same as in the 
general case). 

There are several variations of the Maslov index. Following H6rmander, we may 
define a four-points cross-index. Consider four points (zl, z2,z3, z4) of 7). Define 

(9) d(z l , z2 , z3 , z4 ) - -k ( z l , z3 )k ( z2 , z3) - l k ( z2 , z4)k ( z l , z4 )  -1. 

From the transformation formula for the automorphy kernel, it is easily seen that  d 
is invariant under G. The formula can be extended to points in S, provided they are 
distinct. For ~1, ~2, ~3, r four distinct points of S, using the relation Cj = 1/~j, we get 

k(~1,r l _ ~ , a n d s o o n ,  s o d ( ~ l , r 1 6 2 1 6 2  

' ~ - ~  and so r162 ) / k  r162 7' 

(10) d(~l, ~2, ~3, ~4) = [~1, r ~3, ~4], 

where the symbol [ . , . , . , . ]  is used for the (complex) cross-ratio. As this quantity is 
already invariant by the full complex projective group, no information is gained. But we 
may consider as before the argument (or rather a specific determination of the argument) 
of the complex number d(Zl, z2, z3, z4) and then let zj tend to ~j, 1 ~ j <_ 4, within 7). 

To choose a determination of the argument, we use the same convention as before. 

L e m m a  1.5. Let zl ,  z2, zs, z4 be four points in 7). Then the following identities holds: 

(11) 

(12) 
z2, z4) = c( 1,  2)c(zl, z4), 

2 arg d(zl, z2, z3, z4) = arg c(zl, z~, z2) + arg c(zl, z2, z4). 
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Proof. We have 
d/-d - k(zl ,  z3) k(za, z2) k(z2, z4) k(z4, zl) 

k(z3, Zl) ]~(z2, z3) k(z4, z2) k(Zl, z4) 
k(Zl,Z3) k(z3, z2) k(z2, z1) k(zl, z2) k(z2, z4) k(z4, Zl) 
k(z3, Zl) k(z2, z3) k(Zl, z2) k(z2, Zl) k(z4, z2) k(zl, z4) 

= ~(z~, z3, z~)~(z~, z2, z~). 

This shows (11). The proof of (12) is about the same, just by following carefully the 
convention for the choice of the determination of the argument. Details are left to the 
reader. [] 

Now, for four distinct points ~1, ~2, ~3, ~4 in S, set 

(13) ~(~1, ~2, ~3, (4) = 1 lira arg d(zl,  z2, z3, z4) 

when zj -+ ~j within 7), 1 < j <_ 4. This Maslov index can be computed using the 
ideal geodesic quadrangle (~1 --+ ~3 -+ ~2 --~ ~4 -> ~1), and following the variation of the 
tangent vector at some point under parallel transport, or by evaluating the algebraic 
area of the quadrangle. 

• ~ 

FIGURE 3. 

P r o p o s i t i o n  1.6. For any four distinct points ~1, ~2, r ~4 in S, we have 

1 
(14) ~(~1, r ~3, ~4) = ff (~(r ~2, ~4) - ~(~1, ~2, ~3)). 

This is an easy consequence of Lemma 1.5. 

2. Shi lov b o u n d a r y  of  a H e r m i t i a n  s y m m e t r i c  space  of  t u b e  t y p e  

The classical theory of the Maslov index deals with the space of Lagrangiaxm. Let 
E, w be a real symplectic space of dimension 2r, and consider the space of Lagrangian 
subspaces S = A(E). It is well known that  it may be considered as the Shilov boundary 
of the so-called Siegel disc, a Hermitian symmetric space of tube type, thus generalizing 
the realization of the unit circle as the boundary of the Poincar6 disc. Our goal is to 
generalize the theory of the Maslov index to the Shitov boundary of any Hermitian 
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symmetric space of tube-type. In turn the best way to look at these domains is to use 
the Jordan algebra approach as presented in [F-K], to which we refer for details. 

Let V be a Euclidean Jordan algebra with identity element e, which for simplicity 
we assume to be simple. By complexification, we get a complex Jordan algebra V, with 
the inner product  on V extended to the Hermitian inner product  defined by 

(z, w) : tr(z ) 

For z E V, denote by L(z)  the linear operator defined by w ~+ L ( z )w  = zw,  and 
introduce the quadratic representation P ( .  ) and the "square" operator El, defined by 

P(z )  = 2L(z) 2 - L(z2), z D w  : L (zw)  + [L(z) ,L(w)]  

where the brackets denote the commutator.  Departing slightly from notation in [F-K], 
denote by L = ~tr(V) the structure group of V. 

Let 
s =  {zcVl =z-1}. 

P r o p o s i t i o n  2.1. For z 6 V the following properties are equivalent: 

(i) z s ,  
(ii) [L(z),  L(~)] : 0 and z-2 = e, 

(iii) zO~ = Id, 
(iv) z -- exp(iu) with u 6 V,  
(v) There exists a Peirce frame (cJl<j<_r of Y and complex numbers (Q)I<_j<_r of 

r 
modulus 1, such that z = ~ j = l  ~jcj. 

Proof. (see [F-K] Proposition X.2.3). [] 

Define the group 
L(S) : {g e GL(V) ] g(S) = S}. 

Then L(S) : IL n U(V), where U(V) denotes the unitary group for the Hermitian inner 
product  on V. Moreover, the stabilizer of e in L(S)  coincides with Aut(V),  the group of 
automorphisms of the real Jordan algebra V (extended as complex linear automorphisms 
of V). Let U be the identity component of L(S),  and let Ue be the stabilizer of e in U. 
The group Ue contains the identity component K of Aut(V). 

P r o p o s i t i o n  2.2. Let c l , c 2 , . . . , c r  be a Jordan frame in V.  Then every z E V can be 
written in the form z : u ( ~ j =  1 •jaj) where u 6 U and 0 < A1 < . . .  < hr. The scalars 
(Aj)l<j<_r are unique and called the spectral values of z. 

For an element z C V, define its spectral norm by 

Izl = sup Aj. 
l < j ~ r  

It turns out to be a norm on V, invariant under the group U. Introduce the domain ~D 
in V as the open unit ball for the spectral norm 
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P r o p o s i t i o n  2.3. The domain I) can be described as 

(i) D = {z r V I I d - z [ q ~  >> 0}, 
(ii) V = {z C g l I d - P ( z ) P ( - 2 )  >> 0}, 

(iii) D is the connected component of O in the set { z e V  I Id-2zg]-2+P(z)P(-2)  >>0}. 

The main  resutt for what concerns us is 

T h e o r e m  2.4. The Shilov boundary of 7) is the set S. 

There  is a realization of the domain 2) as a tube  domain through the Cayley trans- 
form. First let ~t be the (interior of the) cone of squares, i.e., the connected component  
of the unit e in the set of invertible elements 

Y x = {x r Y ]get(x)  ~ 0}. 

The  set ft is an open, convex, proper, generating, symmetric,  homogeneous cone. In 
particular,  let L(ft)  be the subgroup of linear t ransformations of V which preserve ft. 
Then L(ft) is a reductive group, which acts transitively on ft. The same properties 
are true for its neutral  component,  which we denote by L. The stabilizer K = Le of 
the point e is a maximal  compact  subgroup of L and it is the neutral  component  of 
Aut(V),  the automorphism group of the Jordan algebra V, and also K = L n O(V), 
where O(V) is the orthogonal group for the inner product  on V. The space gt _~ L / K  
is a Riemannian symmetr ic  space. It  can be thought of as the noncompact  dual of S. 

Now form the tube  over ~,  namely 

= { z = x + i y � 9  �9 

Next define 

D(p) = {z �9 V l det(z + ie) # O}, D(c) = { w � 9  # 0 } ,  

and for z in D(p),  w in D(e) 

(15) p ( z )  = (z  - ie)(  + ie) -1 ,  = i (e  + w ) ( e  - ,1 , )<.  

P r o p o s i t i o n  2.5. The map p is a bijection of D(p) onto D(c), and c, called the Cay- 
Icy trans]orm, is its inverse. D(p) contains Tn, the map p induces a biholomorphic 
isomorphism :from T~ onto D, and p(V) = {z E S I det(e - z) # 0}. 

See [F-K] Proposit ion X.2.3. Both domains Tn and 7) are holomorphically equivalent, 
and V can be thought  of as the Shilov boundary of T~. Its image under the Cayley 
t ransform is a lmost  all of S. The complementary set S \ p(V) is a "small" set, and 
corresponds to points at infinity in a compactification of V. This idea will be studied 
more systematical ly in the next section. 

Let us denote by G = G(D) the neutral  component  of the group of biholomorphic 
diffeomorphisms of :D. Equipped with the topology of uniform convergence on compact  
sets, G has a s tructure of a Lie group. I t  is a semisimple Lie group. The stabilizer of the 
element 0 in G is contained in the linear group GL(V), and can be shown to coincide 
with the group U. I t  is also a maximal  compact  subgroup of G. 

To describe more accurately the group G, we use the Cayley transform. Let G(T~) 
be the neutral  component  of the group of biholomorphic diffeomorphisms of Ta. The 
mapping g --~ c -1 o g o c is an isomorphism of G onto G(T~). 
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Proposition 2.6. The group G(Tn) is generated by the following transforms: 

(i) the group N + of translations tv : z F-~ z + v with v E V,  
(ii) the complexified action of the group L, 

(iii) the inversion s: z ~-+ - z  -1. 

The subgroup L normalizes the group of translations. Moreover, the semidireet 
product  L ~( N + is the neutral component of the subgroup of afi:ine biholomorphic 
diffeomorphisms of T~. 

3. T h e  3 - t r a n s i t i v i t y  p r o p e r t y  o n  X 

Denote by V • the set of invertible elements, 

V • = {z e V I det(z) r 0}. 

The determinant (which is the holomorphic extension to V of the polynomial det on 
V) is semi-invariant under the action of L: 

(16) det(gz) = x(g) get(z), 

where X is a certain character of L. Moreover, this property characterizes the elements 
of the structure group. For z E V x , P(z)  is an element of L and 

(17) x (P(z ) )  = (det z) 2. 

Denote by N + the group of translations tw : z ~+ z + w for w C V and by s the 
mapping, defined on V x by z ~ - z  -1. It is a rational map, and det(z) z -1 is in fact 
a polynomial mapping from V into V. At a point z E V • its differential is equal to 
Ds(z)  = P(z )  -1. The subgroup G = Co(V) of rational transforms of V generated by 
N + , L, and the map s is a closed (hence Lie) subgroup, called the conformal group of 
V. If g E G, and if z is a point where g is defined, then the differential Dg(z)  belongs 
to L (this is essentially a characteristic property, see Liouville theorem in [B]). Define 
the scalar automorphy factor to be 

(18) j (g,  z) = x(Dg(z)) .  

It satisfies the cocycle property 

(19) j(glg2, z) = j(g~, g2(z))j(g2, z). 

Notice the following formulae: 

(i) for w E V , j ( t~ ,  z) = 1, 
(ii) for g E S t r (V) , j (g , z )  = x(g), 

(iii) j (s ,  z) = (det z) -=. 

The first two are obvious, whereas the third is a consequence of (17). 
The subgroup N + is invariant under the inner automorphisms associated to the ele- 

ments of 8tr(V), and hence we can form the semidirect product  

1P + ---- Str(V) x N +. 
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This is the subgroup of affine transformations in G, and it is a maximal parabolic 
subgroup of (}. Hence the manifold X = G/F + is compact, and the mapping u ~ t~ o s 
is an imbedding of V into X with dense image. Any element g E G which was defined 
as a birational map of V extends to a diffeomorphism of X. In particular, this is true 
for the element s, and we define the "point at infinity" by c~ -- s(0). Let 

F- = s o F + o s .  

Then F -  can be shown to be exactly the stabilizer of the point 0 in G, whereas the 
stabilizer of co is F +. 

The transversality is known to be an important ingredient in the theory of the Maslov 
index. We define now this notion for points in X . Let us first investigate this notion 
when both points are in V. 

D e f i n i t i o n  1. Let z, w E V. Then the points z and w are transversal if one of the 
following equivalent conditions are satisfied: 

(i) det(z - w) ~ 0, 
(ii) get P ( z  - w) # O. 

Now recall the important Hua's formula. 

P r o p o s i t i o n  3.1. (Hua's formula) Let z ,w  C V • . Then 

(20) det(s(z) - s(w)) = det(z) -1 det(z - w) Get(w) -1. 

Pro@ See [F-K], Lemma X.4.4. [] 

Hua's formula shows the invariance of the notion of transversality under the conformal 
group. 

P r o p o s i t i o n  3.2. Let z, w E •, and g C G, such that z and w are transversal, and g 
is defined at z and w. Then g(z) and g(w) are transversal. 

Proof. If g is a translation, the result is obvious. If g E ~tr(Y), then det(g(z) - g(w)) = 
det(g(z - w)) = x(g) det(z - w), so the the result again is true. Now if g = s, then 
Hua's  formula shows that det(s(z) - s(w)) # O. As these elements generate the group 
G, the theorem follows. [] 

This invariance property now allows us to extend the definition of transversality to 
the compactification X. Namely, given two points z, w in X, it is always possible to 
find an element go E G such that  go(z) and go(w) both belong to V. Then z , w  are 
said to be transversal if go(z) and go(w) are transversal. Needless to say, one verifies 
that  this condition is independent of the element of G used to send z and w in V, as a 
consequence of the invariance result. For a more intrinsic point of view, see [Kh]. 

As for notation, we write z T w  for a pair of transversal points in X. For z E X, let 

Xz = {w ~ X I wTz}.  

Notice in particular that  X ~  = V and that  Xoo n Xo = V • . 
Let X 2 be the open set of transversal points in X x X. Clearly {} preserves X 2. 
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P r o p o s i t i o n  3.3. The group G is transitive on X~. The stabilizer in G of the element 
(0, oc) is the subgroup Str(V). 

Let 

: ~  = {(z~,z2,z3)  ~ :~ x :~ x X ] Zl TZ2 ,z2X~3,z3Tz~} .  

Again G preserves X~. 

P r o p o s i t i o n  3.4. The group G acts transitively on X 3. The stabilizer of the element 
(0, 1, oc) is the automorphism group o] V. 

This just reflects the fact that  the structure group is transitive on the set of invertible 
elements (see [F-K], Proposition VIII.3.5). The stabilizer of the unit e in ~tr(V) is the 
automorphism group of V. 

4. T h e  o p e n  o rb i t s  in S~  

We now want to study a similar problem for the action of G on the Shilov boundary 
S. The transversality condition for a, ~ C S amounts to a T (  ~ det(a  - ~ )50 .  From 
the previous construction and result, we know that  this notion is invariant under the 
action of G. Let 

S#- = {(~1,a2) e S x S I o-~To'2 }. 

T h e o r e m  4.1. The group G operates transitively on S~. The stabilizer o] the element 
(e, - e )  in G is the group e -1 o L o c. 

Proof. Let (a, ~) C S, with a t e .  As the group U is transitive on S, we may assume 
that  cr = e. Next we observe that  #Te implies ~ C D(p), and in fact p(V) is exactly the 
set of transversal elements to e. Now c(~) is an element of V and by an appropriate 
translation it can be mapped to 0 = c(-e) .  By using the inverse Cayley transform, we 
get the first statement. For the second statement, we can also transform the problem 
by using the Cayley transform. Then we look for the stabilizer of 0 in the subgroup of 
affine transforms in G(T~). This gives the subgroup of linear transformations in G(T~) 
which is equal to L. [] 

Now let 

S~-={(zl ,z2,  a3) e S x S x S l a i T z j , l < _ i r  <3}.  

?. 

Choose a Peirce decomposition e = ~ j = l  cj, and for j = 0, 1 , . . . ,  r, let 

~0 ~ --e~ Cj --~ ~ J  r 
i -~ l  e i  - -  Ei----j+I Ci~ Cr  = e .  

The space 
r a = @j=l ~ ( c ~ )  

is a Cartan subspace of [ = Lie(L) = Lie(L(~)).  Let 

A = expa  = {P(a) la = ~ j= l ) t j c j ,V j ,  1 < j _< r,)~j > 0}. 



THE MASLOV INDEX REVISITED 315 

P r o p o s i t i o n  4.2.  There are exactly r + 1 orbits in V • under the action of L. The 
elements 6j, 0 ~ j ~ r, are a set of representatives of all the orbits. 

The result is presumably well known, but for lack of a firm reference let us give a 
proof. Let x be any element of V. Let ()~j)l<_j<_r be its spectral  values, repeated as many  

r t imes as their multiplicity. Then x is conjugate under K = Aut(V)0 to a = ~ j = l  ,~jCj. 
If moreover x is invertible, all )~j are different from 0. Hence we may separate  negative 

k r 
and positive eigenvalues, say a = ~ j = l  )~jcj - ~ j = k + l  ] ) ~ j ] C j .  Now using the action 
of A, it is possible to map the element a on zk- So any element of V • is indeed 
conjugate to one of the Cj. Conversely, define the signature of an invertible element 
to be the number  of positive spectral values minus the number  of negative eigenvalues. 
The signature is clearly invariant under any automorphism of V, and it is also invariant 
under the action of P(x) ,  x E ~, because fl is arcwise connected. But  now by using the 
Car tan  decomposition of L, any element of g E L can be writ ten as g = kP(x) ,  where 
k E K and x E ~t, and hence g preserves the signature. 

T h e o r e m  4.3. There are exactly r + 1 orbits in S 3 under the action of G. The family 
(e, - e ,  -iEj),O ~ j ~ r, is an exhaustive family of representatives of the orbits. 

Proof. Given any triplet of transversal  points (al ,a2,a3),  we have already seen tha t  
it is possible to map  al  to e and 0" 2 to - e .  Then we apply the Cayley t ransform to 
the situation, and use Proposit ion 4.2 to map c(a3) to some ~j. Now an elementary 
computat ion shows that  p(~j) = - iE j .  So the result is obtained by using back the 
Cayley transform. 

Let (0-1,0-2, a3) E S 3. Then define the Maslov index of the triplet (0-1,0-2,0"3) to be 

(21) t(0"1,0"2,0"3) = k - (r - k) = 2k - r 

where k is the unique integer, 0 < k < r, such tha t  (0"1,0"2, 0"3) is conjugate under G to 
the triplet ( e , - e , - i s k ) .  [] 

5. T h e  M a s l o v  i n d e x  a n d  t h e  a u t o m o r p h y  k e r n e l  

For z, w E V, set 
K(z ,  w) = (I  - 2z[]~ + P ( z ) P ( ~ ) ) .  

The operator-valued function K(z ,  w), when restricted to ~9 coincides with the canonical 
automorphy kernel of the Hermitian domain :D (in its action on p+ _~ V, see [Sa]), and 
for z, w E :D it is invertible and belongs to ~tr(V). I t  is clearly holomorphic in z and 
antiholomorphic in w, satisfies the symmetry  proper ty  K(z ,w)*  = K ( w , z ) ,  and the 
t ransformat ion proper ty  

(22) N(g(z) ,  g(w)) = J(g, z )K( z ,  w)J(g,  w)* 

for g E G and z , w  C l)  (see [Sa], Chapter  2, Lemma 5.2). 
Define, for z, w C Z) 2 

k(z, w) = x ( K ( z ,  w)). 

2The definition we used in Section 1 for the automorphy kernel was slightly different. The 
1 present kernel is the square of the former. This is responsible for the factor ~ in (8) instead of 

1 in formula (26). A similar remark applies to the automorphy factor. 
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This satisfies the transformation property 

(23) k(g(z),  g(w)) = j(g, z )k(z ,  w)j(g,  w), 

for g E G and z, w E 7:). 
The  quanti ty k ( z , z )  is a positive real number for z E 7~, and more precisely, if 

z = u ~ j = l  ~jcj, with u C U and 0 ~ Aj < 1, then 

(24) k(z , z )  r 1 A j ) .  = I - [ j = 1 (  - 2 

(cf. [F-K], Proposition X.4.5). 
As :D x 7) is simply connected, there is a unique continuous determination of the 

argument of k(z,  w) which is 0 on the diagonal {z = w}, which we denote by arg k(z, w). 
For z l ,z2,z3 E 79, let 

(25) c(zl, z2, z3) = k(zl, z2)k(z2,  3)k(z3,  2)-Ik(z3, z3) -1 

Again, as 7:) • 79 • 7) is simply connected, there exists a unique continuous determi- 
nation of the argument of c(zl ,z2,z3)  which is 0 on {zl -- z2 --- z3}. From (23) we 

d e d u c e  that  a r g c  is invariant under the action of G, namely arg c(g(zl),  g(z2), g(z3)) = 
arg c(zl~ z2, z3). In fact, as the function c is invariant, both sides are continuous deter- 
minations of the argument of the same function on 79 • 79 • 79, and they coincide on 
the diagonal {zl = z2 = z3}, hence everywhere. 

L e m m a  5.1. Let O'1,O" 2 E S, and assume (71 and 0-2 are transversal. Then K(al,0-2) 
is invertible. 

Proof. Taking advantage of the transformation law for K,  we may assume 0-1 = e, and 
r ~2 = ~ j = l  ~jej, with KJl = 1 and Cj # I for all j ,  1 < j < r (see Proposition 2.1(v)). 

Then K(e ,  0"2) : Id - 2 L ( ~ )  + 2L(~-~) 2 - L(~-~ 2) is a diagonal operator  with respect to 
the (complexified) Peirce decomposition of the Jordan algebra V = (~)l<i<j<_r Vi.j and 

the eigenvalue on Vi j  is 1 -  (~ i+~j)+2((~i  + ~j) /2)  2 -2 -2 , - ( r  + r  = # 0, 
hence the result. [] 

From the lemma it follows that  the function k can be continuously extended, with 
values in C*, to points (al,  a2), provided al  and 0-2 are transversal. In turn, this implies 
that  the function C(Zl, z2, z3) can be extended continuously (with values in C*) to S 3, 
and the same is t rue for arg e(zl, z2, z3). So now define 

1 
(26) 7(a l ,  0-2, 0"3) = ~ lim arg c(zl, z2, z3) 

when 79 ~ z~ --+ r D S z2 --+ 0"2 and 79 2 z3 --+ 0"3. By construction, 7 is clearly invariant 
under G. 

T h e o r e m  5.2. Let (0"1,0"2,0"3) E S~. Then t (al ,  as, 0"3) = 7(a l ,  0"2, a3). 

Proof. Taking advantage of the invariance of 7 and L under G, we may assume that  
ch = e, a2 = - e  and a3 = - - igk  for some k, 0 < k < r, and we need to compute 
" y ( r  [] 
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L e m m a h . 3 .  Let O < k < r. Then 

(27) v ( e , - e , - - i gk )  = 2k - r. 

The proof requires the following lemma. 

L e m m a  5.4. Let (r (~j) for 1 < j <<_ r be r-uples of complex numbers of a modulus 
strictly less than 1. Then 

r r ~ 1 _ r  (2s) k(Ej=l Cjcj, E =I  jcj) = IIj=l( 

Proof. As both expressions are holomorphic in the Q and antiholomorphic in the ~j, it 
is enough to prove the formula when (j = ~j for all j, 1 < j < r. But then the result is 
a consequence of (24). [] 

For the proof of Lemma 5.3 we need to compute limtl,l,t2,l,t~'rl a r g c  (tie, t2e, --it3ek). 
Now c can be easily computed, using Lemma 5.4. For instance 

k( - t2e ,  --itaek)k(--it3ek, --t2e) -1 = 1 + t2(ita) 1 + t2(--ita) 
1 t2(it3) 1+ t2(it3) j=l  j=k+l 

1+it ~r Hence, as tl~t2,t3 --~ 1, As t -+ 1, arg ~ -~ y. 

k(-t2e,--it3ak)k(--it3ak,--t2e) -1 -+ 2(k -- (r -- k)) 2 = (2k - r)~r. arg 

The other computations are similar. [] 

T h e o r e m  5.5. The Maslov index ~ is skew-invariant: 

/`(r (~(2), r = sgn(T) t(r (2, CS) 

for any permutation T Of {1, 2, 3}. 

Let us prove the result for the transposition which exchanges 1 and 2. Let zl, z2, z3 
be three points in 79. Then the following identity is easily verified: c(z2,zl ,z3) = 
c(zl, z2, z3) - I  and hence 

(29) arg c(z2, Zl, z3) = - arg c(zl, z2, z3). 

Let (r162162 e S 3. Let (zl,z2,z3) tend to (r162162 E S~-. Then (29) becomes 
~(r r r = -~(r r r The proof is similar for the two other transpositions. 

T h e o r e m  5.6. Let r r r ~4 be four points of S, such that r for any i , j ,  1 < i, 
j <_ 4, i ~ j .  Then 

(30) ~(r r r : /~(r r r "~ t(r r r + /'(r r r 

Proof. Let Zl, z2, z3, z4 be four points in 79. Then, from the definition of the function c, 
it is easy to verify the similar cocycle property 

C(Zl, Z2, Z3) ~-- e(Zl, Z2, Z4)C(Z2, Z3, Z4)C(Z3, Zl, z4). 

With the choice of the determination of the argument we have described, it is fairly obvi- 
ous that  we also get arg c(zl, z2, z3) = arg c(zl, z2, z4) +arg  c(z2, z3, z4) +arg  c(z3, zl ,  z4). 
Then (30) is obtained by letting zj --+ Q, 1 < j _< 4. [] 
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6. A functorial  property  of the  Mas lov  index  

Let 1/1, V2 be two Euclidean Jordan algebras, which as before are assumed to be 
simple. We use same notation as before with a subscript 1 or 2. For instance, let r l  
(resp. r2) be the rank of V~ (resp. V~). Recall that  a linear map  �9 : 1/1 -+ V2 is said to 
be a Jordan algebra homomorphism if 

r  = r  ~(e~) = e2 for all x , y  ~ Yl. 

L e m m a  6.1. Let ~ : V1 --4 1/2 be a Jordan algebra homomorphism. Then r2/rI is an 
integer and 

(31) det2O(x) = (detlx) r~/~ 

for all x E V1. 

Proof. Let x C V1 be invertible. Then there exists by definition a polynomial  p E I~[X] 
such tha t  xp(x)  = el. But as �9 is a Jordan algebra homomorphism, ~(q(x))  = q(~(x))  
for any polynomial  q E I~[X]. Hence O(x)p(~(x))  = e2, which shows tha t  O(x) is 
invertible. Conversely, assume tha t  O(x) is invertible. Then there exists p E ~[X] such 
tha t  ~(x )p (~(x ) )  = e2, which implies ~(xp(x))  = e2 = ~(e l ) .  The kernel of �9 is a 
proper ideal of V1, so it is {0} as V1 is assumed to be simple. Hence ~ is injective, and 
xp(x) = el, proving that  x is invertible. The sets {x ~ V1 [ det24,(x) # 0} coincides with 
the set {x ~ V1 [ de t lx  # 0}. But as V is assumed to be simple, the polynomial  det2 is 
absolutely irreducible (cf. [Sp]), and hence there exists an integer u and a real number  
A such tha t  det2~(x)  = A ( d e h x )  ", Vx e V~. Checking on x = e~ gives A = 1. Now 
det~ and det2 are homogeneous polynomials of degree, respectively r l  and r2. Hence 
v = r2/rl .  [] 

P r o p o s i t i o n  6.2. Under the previous assumptions, the C-linear extension of �9 maps 
l)1 into l)2, and the corresponding automorphy kernels satisfies the relation 

(32) Vz, w �9 ~, k2(r162 = k l ( z ,w )  ~ / ~ .  

Proof. Because it is easier, we first derive a similar formula for the tube, and then use 
the Cayley t ransform to get the result. As O(x 2) = ~(x)  2 for any x C V1, �9 maps the 
cone f~l into the cone ~2, and the C-linear extension of �9 (still denoted by ~) maps the 
tube  Ta 1 into the tube T ~ .  For z, w e T~ 1 , notice tha t  ( z -  ~ ) / 2 i  is invertible, and the 
kernel l l ( z ,w)  = XI (P( ( z  - ~ ) / 2 i ) )  is well defined. It  is the analog for the tube  T ~  of 
the au tomorphy kernel for 2)1. The same observations are valid for Ta2. Using (17) and 
(31), we get x2( P(  ( g?(z) - ~(~) ) /2 i ) )  = x2( P(  ~(  ( z - ~ )  /2i) ) ) = det2( O( ( z -  ~ )  /2i) ) 2 = 
detl ((z - ~) /2 i )  2~/r~ = X1 (P((z  - ~ ) /2 i ) )  ~2/~ , hence 

(33) = 

Next, we transfer  these results by Cayley transform to the bounded domains T)l and 
:D2. Let cl and c2 be the Cayley transforms as in (15). Then, as �9 is a Jordan  algebra 
homomorphism,  c2 o ~ -- ~ o el where defined. As �9 maps Tal into T~ 2 r m a p s / ) 1  
into :D2. 
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Going back to general notation, the automorphy kernel for Z~ satisfies the relation 

(34) K(z ,  w) = P(e  - z ) - l  P (  l (c(z) - c(w) )) P(e  - w) -~ 

for z, w e 7) (cf. [FK], Lemma X.4.4). Observe that  for z C 7), e - z is invertible. 
Taking the image under the character X and using again (17) gives 

(35) k(z,  w) = det(e - z) -2 l(c(z), c(w)) det(e - w) -2. 

These remarks are valid for both I71 and V2. Using again (31), we get from (33) the 
desired relation (32). [] 

T h e o r e m  6.3. Under the same assumptions as above, ~ maps $1 into $2, preserves 
transversality, and the following relation is satisfied: 

(36) ~2(~(~1), ~(~2), ~(~3)) = r• ~1(~1, ~:, ~3) 
rl 

for all al , ~2, a3 mutually transverse in $1. 

Using the characterization of the Shilov boundary (iv) in Proposition 2.1, it is easy 
to see that  �9 maps $1 into $2. The fact that  ~ is a Jordan algebra homomorphism 
implies that  transversality is preserved. Finally (36) is obtained from (32) by taking 
the limit as the points ~j tend to aj, 1 ~ j ~ 3. 

A p p e n d i x :  Lis t  of  t u b e  t y p e  d o m a i n s  a n d  t h e i r  Shi lov b o u n d a r i e s  
(cf. [F-K], Sec t ion  X) 

V 

Sym (r, [~) 
Herm(r, C) 
Herin(r, [~) 

Herm(3, O) 

V 

Sym(r, C) 

Mat(r,C) 
Skew(2r, C) 

C x C q  -1  

Mat(3, e) 

79 ~_ G / U  

Sp(2r, ~) /U(r )  

SU(r, r)/S(U(r) • U(r)) 
SO*(4r)/U(2r) 

so0(2, q)/SO(2) x so(q) 
E7(-25)/U(1).E6 

S 

U(r)/O(r) 
C(~) 

U(2r)/SU(r,~) 
(U(1) x sq-1)/Z2 

U(1).E6/F4 
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