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Abstract. Let D be a bounded symmetric domain of tube-type, S its Shilov boundary, and
G the neutral component of its group of biholomorphic transforms. We classify the orbits of
G in the set S × S × S.

Introduction

Let D be a bounded symmetric domain, realized as a circular domain in a (finite-
dimensional ) complex vector space V . Let G := Aut(D)0 be the identity component of
its group of biholomorphic transforms of D and let S be the Shilov boundary of D. The
action of any element of G extends to a neighbourhood of D, and hence G acts on S.
It is well known that this action is transitive. The main result of the present paper is a
classification of the G-orbits in the set S×S×S of triples in S, when D is of tube-type.

The action of G on S × S can be easily studied as an application of Bruhat theory,
and the description of the orbits is the same, whether D is of tube-type or not. But
for triples, there is a drastic difference between tube-type domains and nontube-type
domains. In the first case, there is a finite number of orbits in S×S×S, whereas there
are an infinite number of orbits for a nontube-type domain.

Let r be the rank of D. The notion of r-polydisk (and its corresponding Shilov
boundary called r-torus) plays an important role in the analysis of the orbits. On one
hand, they are the “complexifications” of the maximal flats of D (in the sense of the
geometry of Riemannian symmetric spaces). On the other hand, an r-polydisk in the
usual sense is a set of the form

∆r =
{ r∑

j=1

ζjxj | |ζj | < 1, 1 6 j 6 r
}
,
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where the xj are linearly independent elements in V . The space V has a natural
structure of a positive Hermitian Jordan triple system and, in particular, it has a natural
(Banach) norm, called the spectral norm, for which the domain D is realized as the open
unit ball. One of the results we prove is that such a polydisk, constructed on vectors
xj of norm 1 lies in D if and only if the (xj)16j6r form a Jordan frame for V .

Fix an r-torus T ⊆ S arising as the Shilov boundary of an r-polydisk associated to a
Jordan frame. The main step towards the classification of the orbits of G in S × S × S
is the result that any triple in S can be sent by an element of G to a triple in T .
This requires that D is of tube-type, and this property really distinguishes tube-type
domains from nontube-type domains. Once this result is obtained, the classification
becomes easy, because the problem is reduced to the case of a polydisk, and further,
using the product structure, to the case of the unit disk in C, where the situation is easy
to analyze. The generalized Maslov index (see [CO01], [Cl04b]) comes in as a subtle
invariant for triples.

A special case of this theorem was known before. If D is the Siegel domain (the unit
ball in the space of complex symmetric matrices Symr(C)), then the group G is the
projective symplectic group PSp2r(R) := Sp2r(R)/{±1}, and the Shilov boundary of D
can be identified with the Lagrangian manifold (the set of Lagrangian subspaces of R2r).
Then the orbits of triples of Lagrangians have been described (see [KS90, p. 492]), using
linear symplectic algebra techniques. Related results can be found in [FMS04], and in
particular their Proposition 4.3 (which they deduce from [KS90]) is, for this specific
example, equivalent to our Theorem 3.1. The main point of [FMS04] is a description of
the orbits of the action of the maximal compact subgroup group Un(C) of Sp2n(R) on
triples of Lagrangians, but this is a different problem.

As explained in the appendix, the bounded symmetric domains of tube-type can be
described in terms of Euclidean Jordan algebras. More precisely, the irreducible ones
are in one-to-one correspondence with simple Euclidean Jordan algebras. From the
table in [FK94, p. 213] (see also [Be00]) it is easy to give the following table, where for
each simple Euclidean Jordan algebra E, we list the group L of linear transforms of
E preserving the cone Ω, the group G of holomorphic diffeomorphisms of the bounded
symmetric domain D, and the Shilov boundary S as compact Riemannian symmetric
space. There are four infinite series and one exceptional case. From the point of view of
flag manifold (see below), S is realized as G/P , where the (maximal) parabolic subgroup
P is the semidirect product of L (Levi component) and E (unipotent radical).

Table 1.

E Symn(R) Hermn(C) Hermn(H ) R1,n−1 Herm3(O)
L GLn(R) GLn(C) GLn(H) SO0(1, n− 1)× R∗ E6(−26) × R∗

G PSp2n(R) PUn,n(C) PSO∗(4n) SO2,n(R)0 E7(−25)

S Un(C)/On(R) Un(C) U2n(C)/SU(n,H) S1 × Sn−1/Z2 U(1)E6/F4

The Shilov boundary S of a bounded domain is in particular a generalized flag mani-
fold of G, i.e., of the form G/P , where P is a parabolic subgroup of G. A nice description
of P is obtained after performing a Cayley transform. The domain D is transformed to
an unbounded domain DC which is a Siegel domain of type II and the group P is the
group of all affine transformations preserving DC (see Section 1 for details). The group
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P has some specific properties: it is a maximal parabolic subgroup of G, conjugate to
its opposite. Moreover, one can show that the domain D is of tube-type if and only
if the unipotent radical U of P is abelian. A natural question arises to which extent
results similar to the ones obtained in this paper could be valid for other generalized
flag manifolds. The natural background for this problem is the following. If P1, . . . , Pk

are parabolic subgroups of a connected semisimple group G′, then the product manifold

M := G′/P1 × · · · ×G′/Pk

is called a multiple flag manifold of finite type if the diagonal action of G′ on M has
only finitely many orbits. For k = 1 we always have only one orbit, and for k = 2
the finiteness of the set of orbits follows from the Bruhat decomposition of G′. For
G′ = GLn(K ) orG′ = Sp2n(K) and K an algebraically closed field of characteristic zero,
it has been shown in [MWZ99], [MWZ00] that finite type implies k 6 3, and for k = 3
the triples of parabolics leading to multiple flag manifolds of finite type are described
and the G′-orbits in these manifolds classified. The main technique to achieve these
classifications was the representation theory of quivers. In [Li94], Littelmann considers
general simple algebraic groups over K and describes all multiple flag manifolds of finite
type for k = 3 under the assumption that P1 is a Borel subgroup and P2, P3 are maximal
parabolics. Actually, Littelmann considers the condition that B = P1 has a dense orbit
in G′/P2 × G′/P3, but the results in [Br86], [Vi86] (see also [Po86, p. 314]) show that
this implies the finiteness of the number of B-orbits and hence the finiteness of the
number of G′-orbits in G′/B × G′/P2 × G′/P3. From Littelmann’s classification one
can easily read off that for a maximal parabolic P in G′ the triple product (G′/P )3

is of finite type if and only if the unipotent radical U of P is abelian and in two
exceptional situations. If U is abelian, then P is the maximal parabolic defined by a
3-grading of g′ = L(G′), so that G′/P is the conformal completion of a Jordan triple
(see [BN05] for a discussion of such completions in an abstract setting). This case was
also studied in [RRS92]. The first exceptional case, where U is not abelian, corresponds
to G′ = Sp2n(K), where G′/P = P2n−1(K) is the projective space of K

2n, U is the
(2n− 1)-dimensional Heisenberg group, and the Levi complement is Sp2n−2(K)×K

×.
In the other exceptional case, G′ = SO2n(K) and G′/P is the highest weight orbit in the

2n-dimensional spin representation of the covering group G̃′ = Spin2n(K) of G′. Here
U ∼= Λ2(Kn) ⊕ K

n is also a 2-step nilpotent group and the Levi complement acts like
GLn(K) on this group. It seems that the positive finiteness results have a good chance
to carry over to the split forms of groups over more general fields and in particular to
K = R, but for real groups not much seems to be known about multiple flag manifolds
of finite type.

If M = (G′/P )3 is a multiple flag manifold of finite type, P is conjugate to its
opposite, and P = U o L is a Levi decomposition of P , then L is the simultaneous
stabilizer of a pair in (G′/P )2 with an open orbit, and this implies that the conjugation
action of L on U has only finitely many orbits. A closely related but different problem is
the question when the conjugation action of P on U has finitely many orbits. According
to a result of Richardson, every parabolic P has a dense orbit in its unipotent radical
U , but this does not imply finiteness. For more specific results on this question we refer
to [RRS92], [PR97], and [HR99].

It is perhaps worthwhile to stress that the proofs we give are one more occurrence



390 JEAN-LOUIS CLERC AND KARL-HERMANN NEEB

of the interaction between complex analysis of bounded symmetric domains and the
geometry of convex sets in the normed space V . The notions of extremal points or faces
of a convex set do play an important role in our study.

The contents of the paper is as follows. In Section 1 we first recall several facts
on bounded symmetric domains. Our main sources are Loos’ lecture notes [Lo77] and
Satake’s book [Sa80]. For results concerning Euclidean Jordan algebras we use [FK94].
The main result of Section 1 is a classification of the G-orbits in the set of quasi-invertible
(= transversal) pairs in D (Theorem 1.7). For this classification, there would be no gain
in assuming that D is of tube-type, so that the theorem is proved in full generality.
However, for the analysis of G-orbits in S ×S ×S (assuming D to be of tube-type), we
only need the classification result for transversal pairs (x, y), where x ∈ S and y ∈ D.
For this case we give a more direct shorter proof (see Lemma I.20), but we think that
the general case might also be useful in other situations.

The main tool for the classification of G-orbits in S × S × S is the characterization
of the transversality relation on D in terms of faces of the compact convex set D: Two
elements x, y ∈ D are transversal if and only if they are not contained in a proper face
of D (Theorem 2.6). This characterization is also valid for nontube-type domains. A
key concept for the classification is the notion of the rank of a face F of D. For an
irreducible domain D of rank r it takes values in the set {0, 1, . . . , r} and classifies the
G-orbits in the set of faces of D. It is normalized in such a way that the rank of D as a
face is zero and that the extreme points, i.e., the elements in the Shilov boundary, are
faces of rank r. If Face(x1, . . . , xn) denotes the face generated by the subset {x1, . . . , xn}
of D, then the function

Dn −→ {0, 1, . . . , r}, (x1, . . . , xn) 7→ rankFace(x1, . . . , xn),

is an invariant for the G-action on Dn
.

In these terms, two elements x, y ∈ D are transversal if and only if rankFace(x, y) = 0.
In Section 3 we use this fact to show that for a domain D of tube-type every triple in S
is conjugate to a triple in the Shilov boundary T of a maximal polydisk ∆r defined by a
Jordan frame. This reduces the classification of G-orbits in S×S×S to the description
of intersections of these orbits with T 3. This is fully achieved in Section 5 by assigning
a 5-tuple of integer invariants to each orbit and by showing that triples with the same
invariant lie in the same orbit. The first four components of this 5-tuple are

(rankFace(x1, x2, x3), rankFace(x1, x2), rankFace(x2, x3), rankFace(x1, x3)).

The fifth component is defined as the Maslov index ι(x1, x2, x3) which is discussed in
some detail in Section 4. Note that if (x1, x2, x3) is transversal in the sense that all
pairs (x1, x2), (x2, x3), (x3, x1) are transversal, then the first four components of the
invariant vanish, which implies that the G-orbits in the set of transversal triples are
classified by the Maslov index.

We conclude the paper (Section 6) with a brief discussion of how the classification of
the G-orbits in S×S can be interpreted in terms of the Bruhat decomposition ofG. Note
that, although S is always a generalized flag manifold of the real group G, the unipotent
radical of the corresponding parabolic is abelian if and only if the domain D is of tube-
type. If this is the case, then [Li94] and [RRS92] imply that the complexification GC
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acts with finitely many orbits on (GC/PC)3. For each GC-orbit M ⊆ (GC/PC)3 meeting
the totally real submanifold (G/P )3, the intersection M ∩ (G/P )3 is totally real in M ,
hence a real form of M , and [BS64, Cor. 6.4] implies that G has only finitely many orbits
in M ∩ (G/P )3. Alternatively, one can argue with Whitney’s theorem [Wh57] that the
set of real points of a complex variety has only finitely many connected components
which coincide with the G-orbits in our case. In view of this argument, it’s not the
finiteness of the G-orbits but their classification and the relation to the Maslov index
that is the main point of the present paper.

In [RRS92, Theorem 1.2(b)] one also finds a classification of theGC-orbits in (GC/PC)2

which turns out to be the same as in the real case (see Theorem 6.1).
A final Appendix gives a short presentation of the relation between positive Hermitian

Jordan triple systems and bounded symmetric domains on the one hand, and between
Euclidean Jordan algebras and tube-type domains on the other. This Appendix is
designed for readers not familiar with the language of Jordan algebra and/or the Jordan
triple system.

We thank L. Kramer and H. Rubenthaler for comments and references concerning
multiple flag manifolds of finite type. We also thank several anonymous editors of this
journal for numerous remarks and for pointing out reference [RRS92].

1. Classification of orbits of transversal pairs in the boundary

Let D be an irreducible circular bounded symmetric domain, so that D is the open
unit ball for a norm on a complex vector space V ([Lo77, Theorem 4.1]). In this section
we describe the G-orbits in the set of quasi-invertible pairs of elements in the closure of
D (see Theorem 1.7 below). Here we do not have to assume that D is of tube-type.

The associated Jordan triple. On V we consider the Hermitian Jordan triple product
{· , · , ·}:V 3 → V that is uniquely determined by the property that, for each v ∈ V , the
vector field given by the function

ξv :V −→ V, z 7→ v − {z, v, z},

generates a one-parameter group of automorphisms of D ([Lo77, Lemma 4.3]). Note
that, for each v ∈ V , the map (z, w) 7→ {z, v, w} is symmetric and complex bilinear,
and that, for each a, b ∈ V , the map z 7→ {a, z, b} is antilinear. For x, y ∈ V we define
Q(x) and x�y ∈ End(V ) by

Q(x) · y := {x, y, x} and x�y · z := {x, y, z}.

The Jordan triple structure on V used by Loos is {x, y, z}′ = 2{x, y, z}, so that his
quadratic representation is given by Q′(x, y) = 2{x, y, z}, but since Loos defines Q′(x)
as 1

2Q
′(x, x), we obtain the same operators Q(x) = Q′(x).

Tripotents and Peirce decomposition. An element e ∈ V is called a tripotent if
e = {e, e, e}. For a tripotent e ∈ V let Vj := Vj(e) denote the j-eigenspace of the
operator 2e�e. Then we obtain the corresponding Peirce decomposition of V :

V = V0 ⊕ V1 ⊕ V2
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([Lo77, Theorem 3.13]). Since e�e is a Jordan triple derivation, we have the Peirce
rules

{Vi, Vj , Vk} ⊆ Vi−j+k , (1.1)

which imply in particular that each space Vj is a Jordan subtriple. In addition, we have

V0�V2 = V2�V0 = {0}. (1.2)

The Jordan triple V also carries a Jordan algebra structure, denoted V (e), given by

ab := L(a) · b := {a, e, b}.

Then e is an idempotent in V (e) because ee = {e, e, e} = e, and the Peirce decomposition
of V with respect to the tripotent e coincides with the Peirce decomposition of the
Jordan algebra V (e) with respect to the idempotent e.

The multiplication operators in V (e) are given by L(a) = a�e, so that L(e) |V2
= idV2

implies that (V2, e) is a unital Jordan subalgebra of V (e). For the quadratic representa-
tion in V (e) we have

P (e) = 2L(e)2 − L(e2) = 2L(e)2 − L(e) = (2L(e)− 1)L(e),

so that P (e) = Q(e)2 vanishes on V0⊕V1 and restricts to the identity on V2. It follows, in
particular, that (V2, e, Q(e)) is an involutive Jordan algebra (see [Lo77, Theorem 3.13]).

Orbits in D. Two tripotents e, f ∈ V are said to be orthogonal if f ∈ V0(e). In view
of the Peirce rules (1.2), this implies {f, f, e} = {e, f, f} = (e�f) · f = 0, so that we
also have e ∈ V0(f), i.e., orthogonality is a symmetric relation. If this is the case, then
e+ f is also a tripotent because the relations e�f = f�e = 0 lead to

{e+ f, e+ f, e+ f} = {e, e, e+ f}+ {f, f, e+ f} = {e, e, e}+ {f, f, f} = e+ f.

We call a nonzero tripotent e primitive if it cannot be written as a sum of two nonzero
orthogonal tripotents and e is said to be maximal if there is no nonzero tripotent or-
thogonal to e. A maximal tuple (c1, . . . , cr) of mutually orthogonal primitive tripotents
is called a Jordan frame in V and r = rank D is called the rank of D. We fix a Jordan
frame (c1, . . . , cr). For k = 0, 1, . . . , r we then obtain tripotents

ek := c1 + · · ·+ ck,

where it is understood that e0 = 0.
We recall that each bounded symmetric domain D can be decomposed in a unique

fashion as a direct product of indecomposable, also called irreducible, bounded symmet-
ric domains:

D = D1 × · · · × Dm. (1.3)

Then the connected group G := Aut(D)0 satisfies

G ∼= G1 × · · · ×Gm, where Gj := Aut(Dj)0. (1.4)
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If D is irreducible, then G has exactly r + 1 orbits in the closure D of D in V and
e0, . . . , er form a set of representatives (see [Sa80, Theorem III.8.7]). For k = 0 we have
G · e0 = D and for k = r we obtain the Shilov boundary G · er = S ([Sa80, Theorem
III.8.14]). We define the rank of x ∈ D by

rankx = k for x ∈ G · ek

and observe that the rank function is G-invariant and classifies the G-orbits in D.
If D is not irreducible, then (1.3/4) imply that the orbit of x = (x1, . . . , xm) ∈ D =∏m

j=1Dj is determined by the m-tuple

(rankx1, . . . , rankxm) ∈ N
m
0 .

Here (0, . . . , 0) corresponds to elements in D and (rk D1, . . . , rk Dm) to elements in the
product set S = S1 × · · · × Sm.

Spectral decomposition and spectral norm. Let K be the stabilizer of 0 ∈ D in G.
Then K acts as a group of automorphisms on the Jordan triple V and each element
z ∈ V is conjugate under K to an element in spanR{c1, . . . , cr}. For k · z =

∑r
j=1 λjcj

the number
|z| := max{|λ1|, . . . , |λr|}

is called the spectral norm of z. Then the elements c̃j := k−1·cj are orthogonal tripotents
with

z =
∑

j=1

λj c̃j ,

which is the spectral decomposition of z. The spectral norm | · | is indeed a norm on V
with

D = {z ∈ V | |z| < 1}. (1.5)

The following theorem relates the holomorphic arc-components in ∂D to the tripo-
tents in V .

Theorem 1.1. ([Lo77, Theorem 6.3]) For each holomorphic arc-component A of ∂D
there exists a tripotent e in A such that

A = Ae := e+De, where De := D ∩ V0(e),

is a bounded symmetric domain in V0(e). The map e 7→ Ae yields a bijection from the

set of nonzero tripotents of V onto the set of holomorphic arc-components of ∂D. The

Shilov boundary S coincides with the set of maximal tripotents.

An element x ∈ D is contained in Ae if and only if

e = lim
n→∞

Q(x)n · x. (1.6)

Conformal completion of V . Let GC denote the universal complexification of the
connected real Lie group G, and τ the antiholomorphic involution of GC for which G
is the identity component of the fixed point group Gτ

C
. Then the Lie algebra gC of GC



394 JEAN-LOUIS CLERC AND KARL-HERMANN NEEB

has a faithful realization by polynomial vector fields of degree 6 2 on V , which leads to
a 3-grading

gC = g+ ⊕ g0 ⊕ g−,

where V ∼= g+ is the space of constant vector fields, g0 consists of linear vector fields, and
g− is the set of quadratic vector fields corresponding to the maps z 7→ Q(z)·v = {z, v, z}
for v ∈ V . By construction of the triple product, the vector fields ξv correspond to
elements of the real Lie algebra g = L(G), which implies that τ maps the constant
vector field v to the quadratic vector field z 7→ −{z, v, z}. Hence τ reverses the grading
of gC , i.e., τ(gj) = g−j for j ∈ {+,−, 0}. The Jordan triple structure on V ∼= g+ then
satisfies

{x, y, z} =
1

2
[[x, τ · y], z]. (1.7)

The subgroups

G± := exp g± and G0 := {g ∈ GC | (∀j) Ad(g)gj = gj}
satisfy

G± ∩G0 = {1} and (G± oG0) ∩G∓ = {1}.
Therefore P± := G±G0 ∼= G± oG0 are subgroups of GC , and we obtain an embedding

V ↪→ X := GC/P
−, v 7→ exp v · P−,

called the conformal completion of V . The elements of G+ act on V ⊆ X by translations

tv :x 7→ x+ v (1.8)

because exp v expxP− = exp(v+x)P−. We further have τ(G±) = G∓ and τ(G0) = G0.
For w ∈ V , we write t̃w for the map X → X induced by the element exp(−τ(w)) =

(τ(expw))−1. For v ∈ V the condition t̃w · v ∈ V , where V is considered as a subset of
X , is then equivalent to the invertibility of

1+ad v ad(−τ ·w)+
1

4
(ad v)2(ad τ ·w)2 =1−ad v ad(τ ·w)+

1

4
(ad v)2◦τ ◦(ad τ)2◦τ (1.9)

([BN05, Cor. 1.10]). In view of (1.7), this is precisely the Bergman operator

B(v, w) = 1− 2v�w +Q(v)Q(w).

We further have in V the relation

t̃w · v = B(v, w)−1 · (v −Q(v) · w). (1.10)

Remark 1.1. (Quasi-invertibility and transversality) A pair (x, y) ∈ V is called quasi-

invertible if B(x, y) ∈ End(V ) is invertible. We write x>y if (x, y) is quasi-invertible
and say that x is transversal to y. We write x> := {y ∈ V | x>y} for the set of all
elements in V transversal to x.

In the Jordan algebra V (y) with the product ab := {a, y, b} we have L(a) = a�y and
P (a) = Q(a)Q(y) ([NO04, App. A]), so that

B(x, y) = idV −2L(x) + P (x),

and in the unital Jordan algebra V (y)×R with the identity element 1 := (0, 1) we have

1− 2L(x) + P (x) = P (1,1)− 2P (1, x) + P (x, x) = P (1− x),

i.e., the quasi-invertibility of (x, y) is equivalent to the quasi-invertibility of x in the
Jordan algebra V (y).
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Remark 1.2. (The sl2-triple associated to a tripotent) Let e ∈ V be a tripotent, f :=
τ(e), h := [e, f ] and ge := spanR{h, e, f}. Then

[h, e] = 2{e, e, e} = 2e and [h, f ] = τ [τh, e] = −τ [h, e] = −2τe = −2f,

so that ge
∼= sl2(R) is a three-dimensional subalgebra of g with gτ

e = R(e+ f).
(a) The operator adV h = 2e�e is diagonalizable with possible eigenvalues 0, 1, 2.

The corresponding eigenspace decomposition V = V0 ⊕ V1 ⊕ V2 is the Peirce decompo-
sition of the Jordan algebra V (e) with multiplication ab := {a, e, b} with respect to the
idempotent e, i.e., 2L(e) · vj = jvj for j = 0, 1, 2.

(b) We observe that P (e) = 2L(e)2−L(e2) = (2L(e)−1)L(e). For λ ∈ R we therefore
have for

B(e, (1− λ)e) = B((1− λ)e, e) = 1− (1− λ)2e�e+ (1− λ)2Q(e)2

= 1− (1− λ)2L(e) + (1− λ)2P (e) = 1− (1− λ)2L(e) + (1− λ)2(2L(e)− 1)L(e)

the relation
B(e, (1− λ)e)vj = λjvj , j = 0, 1, 2.

(c) From Q(e) = Q(Q(e)e) = Q(e)3 we conclude that the antilinear map Q(e) is diag-
onalizable over R with eigenvalues in {1, 0,−1}, so that Q(e)2 = P (e) =
(2L(e)− 1)L(e) implies that

kerQ(e) = kerP (e) = V0 ⊕ V1. (1.11)

From V0�V2 = V2�V0 = {0} we obtain, for x, y ∈ V0,

B(e+ x, e+ y) · e = e− 2(e+ x)�(e+ y) · e+Q(e+ x)Q(e+ y)e
= e− 2e− 2x�y · e+Q(e+ x)(Q(e) · e+Q(y) · e+ 2{e, e, y})
= −e− 2(e�y) · x+Q(e+ x) · e
= −e+ (Q(e) · e+Q(x) · e+ {e, e, x}) = 0.

Theorem 1.2. ([Lo77, Theorem 8.11]) Let e ∈ V be a tripotent and V (e) the cor-

responding Jordan algebra with product ab = {a, e, b}. Identifying e ∈ V with an

element of g+, the partial Cayley transform corresponding to e is defined by Ce :=
exp

(
π
4 (e− τ · e)

)
∈ GC , and in Jordan theoretic terms it is given as a partially defined

map on V by

Ce = te ·B(e, (1−
√

2)e) · t̃e.
In particular,

C−1
e (V ) ∩ V = {v ∈ V | B(e, v) ∈ GL(V )} = e>.

In [Lo77] Loos writes B(e,−e)
1
2 instead of B(e, (1−

√
2)e), which makes sense because

B(e, (1−
√

2)e)2 = B(e, (1− 2)e) = B(e,−e)

is diagonalizable and the eigenvalues 1,
√

2 and 2 of B(e, (1 −
√

2)e) are positive (Re-
mark 1.2).
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Remark 1.3. The preceding theorem implies in particular that the condition for an
element x ∈ V to lie in the domain of the Cayley transform is precisely the transversality
condition e>x. If x2 is the Peirce component of x in V2, then [Lo77, Prop. 10.3] says
that e>x is equivalent to the invertibility of e− x2 in the unital Jordan algebra (V2, e).

Definition 1.4. A Hermitian scalar product 〈· , ·〉 on V is said to be associative if for
x, y, z, w ∈ V we have

〈{x, y, z}, w〉 = 〈x, {y, z, w}〉,
which is equivalent to

(z�y)∗ = y�z for y, z ∈ V.
According to [Lo77, Cor. 3.16], a scalar product with this property is given by

〈x, y〉 := tr(x�y),

and for 0 6= x ∈ V the operator x�x is nonzero and positive semidefinite. In this sense
(V, {· , · , ·}) is a positive Hermitian Jordan triple. �

Lemma 1.3. Let e ∈ V be a tripotent, Vj := Vj(e) its Peirce spaces, and z ∈ V0 with

|z| 6 1. Further let f := limn→∞Q(z)n · z denote the unique tripotent contained in the

holomorphic arc-component of z. Then φ(z) := Q(z + e) |V1
:V1 → V1 is an antilinear

operator which is symmetric with respect to the real scalar product (z, w) := Re tr(z�w),
and for z ∈ V1 we have φ(z)v = 2{z, v, e}.

If |z| < 1, then φ(z) + 1 is injective (1 stands for idV1
), and for |z| = 1 its kernel is

Fix(−Q(e+ f)) ∩ V1(f) ∩ V1(e).

Proof. For v ∈ V1 we have

φ(z)v = {z + e, v, z + e} = Q(z)v +Q(e)v + 2Q(z, e)v,

and Q(e)v ∈ V4−1 = V3 = {0} as well as Q(z)v ∈ V0−1 = V−1 = {0} by the Peirce
relations (1.1), so that φ(z)v = 2{z, v, e}.

According to [Lo77, Lemma 6.7], the operator φ(z) on V1 is symmetric with respect
to the real scalar product (· , ·) on V1, hence diagonalizable over R with real eigenvalues.

Let v ∈ V1 be an eigenvector for φ(z) corresponding to the eigenvalue λ ∈ R, i.e.,
Q(z + e) · v = λv. Inductively, we get

Q(Q(z + e)n · (z + e)) · v = λ2n+1 · v

for all n ∈ N0 from

Q(Q(z + e)n · (z + e)) · v = Q(Q(z + e)Q(z + e)n−1 · (z + e)) · v
= Q(z + e)Q(Q(z + e)n−1 · (z + e))Q(z + e) · v
= Q(z + e)Q(Q(z + e)n−1 · (z + e)) · λv
= λQ(z + e) · (λ2n−1 · v) = λ2n+1v.

Since the inclusion V0 ↪→ V is isometric with respect to the spectral norm ([Lo77,
Theorem 3.17]), we have

e+ z ∈ e+De = Ae ⊆ D,
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and the limit f = limn→∞Q(z)n · z is a tripotent in V0(e) (Theorem 1.1).
As a consequence of the Peirce relations (1.2), we obtain

Q(e+ z).(e+ z) = Q(e)e+Q(z)z = e+Q(z)z,

and, inductively,

Q(e+ z)n · (e+ z) = e+Q(z)n · z −→ e+ f.

Therefore

lim
n→∞

λ2n+1v = lim
n→∞

Q(Q(z + e)n · (z + e)) · v = Q(e+ f) · v,

and the existence of the limit implies that |λ| 6 1. If |λ| < 1, then Q(e+ f) · v = 0 and,
otherwise, Q(e+ f) · v = λv. It follows in particular that each eigenvector for Q(e+ z)
on V1 is also an eigenvector of Q(e+ f).

Suppose that |λ| = 1. As a consequence of the Peirce rules, the sum e+f is a Jordan
tripotent (1.3), and from Q(e + f).v = λv and kerQ(e + f) = V0(e + f) ⊕ V1(e + f)
(Remark 1.2), we derive v ∈ V2(e + f), so that (e + f)�(e+ f) = e�e + f�f implies
that v ∈ V1(f).

On the other hand, Q(e+ f) is an antilinear involution of V2(e+ f) ⊇ V1(e)∩ V1(f).
We conclude that

ker(φ(z) + 1) = ker(φ(f) + 1) = Fix(−Q(e+ f)) ∩ V1(f) ∩ V1(e). �

To classify the G-orbits of transversal pairs in D, we need a more explicit description
of the image

DC := Ce(D)

of D under the partial Cayley transform Ce in terms of the Peirce decomposition of V .
To this end, we introduce the following notation.

Definition 1.5. Let e ∈ V be a tripotent.

(1) (V2, e, Q(e)) is a unital involutive Jordan algebra. We write v∗ := Q(e)v for the
involution on V2 and observe that V2 = E ⊕ iE for E := {v ∈ V | v∗ = v}. In
this sense,

Re v = 1
2 (v + v∗) = 1

2 (v +Q(e)v)

is the component of v in the real form E of V2. The real Jordan algebra E is
Euclidean and we write E+ := {a2 | a ∈ E} for its closed positive cone. For
v, w ∈ E we write v > w for v − w ∈ int(E+) and v > w for v − w ∈ E+.

(2) For z ∈ V0 we define the antilinear map

φ(z):V1 −→ V1, v 7→ 2{e, v, z} = Q(e+ z) · v.

(Due to the different normalization, the factor 2 is not present in [Lo77].)
(3) We also define a Hermitian map

F :V1 × V1 −→ V2, (z, w) 7→ {z, w, e},
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with
F (z, w)∗ = F (w, z) and F (z, z) > 0 for 0 6= z ∈ V1.

For u ∈ V0 with |u| < 1 we further define a real bilinear map

Fu(z, w) = F (z, (1 + φ(u))−1 · w),

where we recall from Lemma 1.3 that 1 + φ(u) is invertible.

In the following proposition the missing factor 1
2 in front of F , compared to [Lo77],

is due to our different normalization of the triple product.

Proposition 1.4. ([Lo77, Theorem 10.8]) We have

DC = Ce(D) = {v = v2 + v1 + v0 ∈ V2 ⊕ V1 ⊕ V0 | |v0| < 1,Re(v2 − Fv0
(v1, v1)) > 0}.

To determine the closure of DC , we need the following lemma, because there might
be elements x0 ∈ ∂D ∩ V0 for which the operator φ(x0) + 1 is not invertible.

Lemma 1.5. Let F be a finite-dimensional Euclidean vector space, (An)n∈N a sequence

of positive definite operators on F converging to A, and (vn)n∈N a sequence of elements

of F converging to v. If the sequence A
−1/2
n vn is bounded, then v ∈ im(A).

Proof. Since A is symmetric, we have im(A) = ker(A)⊥. Let w ∈ ker(A). We have to

show that 〈v, w〉 = 0. Since the sequence A
−1/2
n vn is bounded, it contains a convergent

subsequence, and we may thus assume that it converges to some u ∈ F . Then we get

〈v, w〉 = lim
n→∞

〈vn, w〉 = lim
n→∞

〈A1/2
n A−1/2

n vn, w〉

= lim
n→∞

〈A−1/2
n vn, A

1/2
n w〉 = 〈u,A1/2w〉 = 〈u, 0〉 = 0.

This completes the proof. �

Lemma 1.6. For each element v = v2 + v1 + v0 ∈ DC we have v1 ∈ im(1 + φ(v0)).

Proof. Let (vn)n∈N be a sequence in DC converging to v and write vn
j , j = 0, 1, 2, for

its Peirce components.
We pick a linear functional f ∈ E∗ in the interior of the dual cone of E+, so that

f(x) > 0 holds for 0 6= x ∈ E+, and observe that this implies that

(v, w) := f(ReF (v, w))

defines a real scalar product on V1. The argument in [Lo77, p. 10.6] shows that for each
z ∈ V0 the operator φ(z) is symmetric with respect to this scalar product. According
to Lemma 1.3, all its eigenvalues λ satisfy |λ| 6 1 and even |λ| < 1 for |z| < 1, so
that 1+φ(z) is a positive semidefinite symmetric operator which is positive definite for
|z| < 1.

From vn ∈ DC we get

|vn
0 | < 1 and ReFvn

0
(vn

1 , v
n
1 ) 6 Re vn

2 ,
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which implies that

f(vn
2 ) > f(ReFvn

0
(vn

1 , v
n
1 )) = f(ReF (vn

1 , (1 + φ(vn
0 ))−1vn

1 ))

= (vn
1 , (1 + φ(vn

0 ))−1vn
1 ) = ((1 + φ(vn

0 ))−1/2vn
1 , (1 + φ(vn

0 ))−1/2vn
1 ).

Therefore the sequence (1+φ(vn
0 ))−1/2vn

1 in V1 is bounded, and Lemma 1.5 implies that

v1 = lim
n→∞

vn
1 ∈ im(1 + φ(v0)). �

From the preceding lemma one easily derives an explicit description of the closure of
DC because the operator (1 + φ(v0))

−1 is well defined on im(1 + φ(v0)). This leads to

DC =
{
v ∈ V | |v0| 6 1, v1 ∈ im(φ(v0) + 1),Re

(
v2 − F (v1, (1 + φ(x0))

−1v1)
)

> 0
}
.

Since we do not need this description in the following, we leave the details of its verifi-
cation to the reader.

Theorem 1.7. (Orbits of transversal pairs) Let D be an irreducible bounded symmetric

domain, not necessarily of tube-type. If (x, y) ∈ D is a transversal pair with rkx = k,
then there exists a g ∈ G with g.(x, y) = (ek, z) with ek = c1 + · · ·+ ck and

z = −(cj+1 + · · ·+ ck) +

r∑

l=k+1

λlcl, −1 6 λk+1 6 · · · 6 λr 6 1.

Proof. Since D is irreducible, G acts transitively on the set of elements of rank k, so
that we may without loss of generality assume that x = e := ek. We then have to show
that each Ge-orbit in e> ∩ D contains an element of the form

−(cj+1 + · · ·+ ck) +

r∑

l=k+1

λlcl, −1 6 λk+1 6 · · · 6 λr 6 1.

We recall the notation from Definition 1.5. For y > 0 in E we then find, with Remark 1.2,

B(e− y, e) = idV −2L(e− y) + P (e− y) = P (e− (e− y)) = P (y). (1.12)

Let Q := GAe
denote the stabilizer of the holomorphic arc-component Ae of e in ∂D

(which is a maximal parabolic subgroup of G). Then the group QC := Ce ◦ Q ◦ C−1
e

acts naturally on DC = Ce(D) and we also put

QC
e := Ce ◦Ge ◦ C−1

e ⊆ QC ,

where Ge is the stabilizer of e in G.
From [Lo77, Lemma 10.7] we now obtain

QC = {tb ◦ tv+F (v,v) exp(2e�v)P (y) exp(ξw) · k |
b ∈ iE, v ∈ V1, 0 < y ∈ E,w ∈ V0, k ∈ Ke},
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whereKe := {g ∈ G | g ·0 = 0, g ·e = e} ⊆ Aut(V )e is the set of all automorphisms of the
Jordan triple V fixing e, and P (y) is the quadratic representation of the Jordan algebra
V (e) (Remark 1.1). From the proof of [Lo77, Theorem 9.15] and the description of the
Lie algebra L(QC) in [Lo77, Prop. 10.6] it follows that, for b ∈ iE, v ∈ V1, 0 < y ∈ E
and k ∈ Ke, we have

tb ◦ tv+F (v,v) exp(2e�v)P (y)k ∈ QC
e .

Moreover, the explicit calculations in the proof of [Lo77, Theorem 10.8] further imply
that the map

V0 −→ Ae = e+ (D ∩ V0), w 7→ exp(ξw) · e,
is bijective and that the Cayley transform fixes each ξw . This implies that

QC
e = {tb ◦ tv+F (v,v) exp(2e�v)P (y) · k | b ∈ iE, v ∈ V1, 0 < y ∈ E, k ∈ Ke}.

We observe that for v ∈ V1 the Peirce rules imply that e�v is a nilpotent operator
on V mapping Vj → Vj+1. For x = x2 + x1 + x0 ∈ DC the V1-component of

tv+F (v,v) exp(2e�v) · x

is given by
x1 + v + φ(x0) · v,

and since −x1 ∈ im(1+φ(x0)) by Lemma 1.6, there is a unique v ∈ im(1+φ(x0)) with

tv+F (v,v) exp(2e�v).x ∈ V2 ⊕ V0.

From that we conclude that eachQC
e -orbit in V through an element y = y2+y1+y0 ∈ DC

contains an element of the form

x2 + x0 with |x0| 6 1 and Rex2 > 0.

Applying elements of the form tv , v ∈ iE, we may further assume that x2 ∈ E, so that
we have an element in E+×De. From the explicit description of QC

e we derive that the
intersection of the orbit of x2 + x0 ∈ E + V0 with E + V0 contains the orbit of x2 + x0

under the group Q′′ := P (E+)Ke.
The orbits of Q′′ on the set E+×De are products of orbits of the automorphism group

G(E+) of the symmetric cone E+ in E, and orbits of the identity component of the group
Ke on De. Since the action of the group Ke preserves the Peirce decomposition, it acts
on De ⊆ V0 as a subgroup of Aut(V0). The identity component of the latter group is
obtained by exponentiating elements of the Lie subalgebra V0 + τ(V0)+ [V0, τ(V0)] ⊆ gC

(here we use that De = D ∩ V0 is an irreducible bounded symmetric domain; see Theo-
rem 1.1), and all the elements of this subalgebra commute with the element e ∈ V2 by the
Peirce rules (1.2). Hence the image of Ke in Aut(V0) contains the identity component
of Aut(V0).

For e = ek = c1 + · · · + ck, the orbits of G(E+)0, which coincide with the orbits of
the full group G(E+), are represented by the elements

e0 = 0, e1 = c1, . . . , ej = c1 + · · ·+ cj , . . . , ek = e
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([FK94, Prop. IV.3.2]). Since (ck+1, . . . , cr) is a Jordan frame in V0, each orbit of
Aut(V0)0 in V0 contains an element of the form

r∑

l=k+1

λlcl, λk+1 6 · · · 6 λr

(see [FK94, Prop. X.3.2]).
Next we transfer this information back to the bounded picture, i.e., to Ge-orbits in

D. According to [Lo77, Prop. 10.3], we have

Ce(x2 + x0) = Ce(x2) + x0 = (e+ x2)(e− x2)
−1 + x0 for x2 ∈ V2, x0 ∈ V0. (1.13)

For ej = c1 + · · · + cj , j 6 k, the element e + ej is invertible in V2, and we obtain
for ẽj := (ej − e)(ej + e)−1 = −Ce(−ej) = C−1

e (ej) that Ce(ẽj) = ej . An explicit
calculation in the associative Jordan algebra generated by c1, . . . , ck quickly shows that

ẽj = −(e− ej) = −e+ ej = −cj+1 − · · · − ck.

This completes the proof. �

For the special case k = r, i.e., e ∈ S, we have V0 = {0}, so that DC is the Siegel
domain

DC = {v = v2 + v1 ∈ V2 ⊕ V1 = V | Re(v2 − F (v1, v1)) > 0}
of type II. In this case the orbits of Q′′e are represented by elements of the form −e+ ej ,
j = 0, . . . , r, so that we obtain only finitely many orbits. Observe that rk(−e+ej) = r−j,
so that, even if Q′′ is not connected, it cannot have less orbits in e> than its identity
component.

There would be no substantial gain in the proof of Theorem 1.7 by assuming that D
is of tube-type. However, in the sequel we will need only a special case of the theorem,
for which an easy direct proof (independent of the proof of Theorem 1.7) can be offered.

Lemma 1.8. Suppose that D is irreducible and of tube-type, let x ∈ S and z ∈ D, and

assume that x>z. There exists g ∈ G and an integer k, 0 6 k 6 r, such that

g(x) = er and g(z) = −
r∑

j=k+1

cj = ek − er.

(If k = r, use the convention that
∑r

j=r+1 cj = 0.)

Proof. As G is transitive on S, there is no restriction in assuming that x = e := er.
Now the transversality condition is equivalent to z belonging to the domain V × + e of
the Cayley transform C(z) := Ce(z) := (e + z)(e − z)−1 (see (1.13)). Set ζ = C(z)
(Theorem 1.2). Then ζ ∈ E+ + iE. The point e is sent by the Cayley transform “to
infinity”, in such a way that the stabilizer of e in G corresponds via conjugation by the
Cayley transform to a subgroup of the affine group of EC , denoted by QC

e , namely, the
semidirect product of the translations by an element of iE and the group G(E+) (after
complexification to EC of its action on E). By using a translation, we see that in the
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QC
e -orbit of ζ, there is an element of the form η ∈ E+. Since D is irreducible, the G(E+)-

orbits in E+ are known to be exactly the r + 1 orbits of the elements ek =
∑k

j=1 cj ,
with k = 0, 1, . . . , r (see [FK94, Prop. IV.3.2]). But now the inverse Cayley transform

of the element
k∑

j=1

cj is the element ek − e = −
r∑

j=k+1

cj . Hence the result. �

2. Transversality and faces

In this section we keep the notation from Section 1. In particular, D is a circular
irreducible bounded symmetric domain of rank r in V . The main result of this section
is that transversality of two elements x, y ∈ D is equivalent to the geometric property
that x and y do not lie in a proper face of the compact convex set D (Theorem 2.6).

Definition 2.1. (a) We call a nonempty convex subset F of a convex set C a face if
for 0 < t < 1 and c, d ∈ C the relation tc + (1 − t)d ∈ F implies c, d ∈ F . We write
F(C) for the set of nonempty faces of C. A face F is called exposed if there exists a
linear functional f :V → R with

F = f−1(max f(C)).

An extreme point e ∈ C is a point for which {e} is a face, i.e., tc + (1 − t)d = e for
c, d ∈ C and 0 < t < 1 implies c = d = e. We write Ext(C) for the set of extreme points
of C.

The set of all faces of C has a natural order structure given by set inclusion whose
maximal element is C itself. All extreme points of C are minimal elements of this set,
but C need not have any extreme points.

Obviously, the intersection of any family of faces is a face. We thus define for a subset
M ⊆ C the face generated by M by

Face(M) :=
⋂
{F ⊆ C | F ∈ F(C),M ⊆ F}.

(b) For a convex set C in the vector space V we write

algint(C) := {x ∈ C | (∀v ∈ C − C)(∃ε > 0) x+ [0, ε]v ⊆ C}
for its algebraic interior. If V is finite-dimensional , then algint(C) is the interior of C
in the affine subspace it generates.

Remark 2.2. (a) Suppose that C is a convex subset of a finite-dimensional vector space
having nonempty interior. Then all proper faces of C are contained in the boundary
∂C and, conversely, the Hahn–Banach Separation Theorem implies that each boundary
point is contained in a proper exposed face.

(b) For any nonempty convex subset of a finite-dimensional real vector space the
algebraic interior is nonempty. Hence, if x belongs to the algebraic interior of a face F ,
then F is generated by {x}.

(c) Since every face E of a face F of C is also a face of C, faces of exposed faces of
C are faces of C. On the other hand, every proper face is contained in an exposed face
(see (a)), so that we obtain inductively that, for each face F , there exists a sequence of
faces

F0 = F ⊆ F1 ⊆ · · · ⊆ Fn = C

for which Fi is an exposed face of Fi+1 for i = 0, . . . , n− 1.
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Proposition 2.1. The proper faces of the convex set D are the closures of the holo-

morphic arc-components in ∂D and the Shilov boundary is the set of extreme points of

D.

In particular, the group G acts on the set F(D) of faces of D.

Proof. For the fact that S is the set of extreme points of D we refer to [Lo77, Theo-
rem 6.5].

Next we use [Sa80, Lemma III.8.11, Theorem III.8.13] to see that the proper exposed
faces F of D are the closures of the holomorphic arc-components in ∂D. Since the action
of the group G on D permutes the holomorphic arc-components in ∂D, it also permutes
the exposed faces of D.

We now claim that each face of D is exposed. Since every face F of D is generated
by a suitable element x ∈ F (Remark 2.2), it suffices to show that the face generated
by any element x ∈ ∂D is exposed. Let Ax be the holomorphic arc-component of ∂D
containing x. Then Ax is an exposed face of D with algint(Ax) = Ax (Theorem 1.1).
Therefore the face generated by x coincides with Ax, showing that every face of D is
exposed. �

Remark 2.3. From the preceding proposition we know that the map F 7→ algint(F ) is
a G-equivariant bijection between the set F(D) of faces of D and the set of holomorphic
arc-components in D.

If D is irreducible, we define the rank of a face by rkF := k if algint(F ) consists of
elements of rank k. Since two holomorphic arc-components are conjugate under G if
and only if their elements have the same rank (see Theorem 1.1), the rank function

rk:F(D) −→ {0, . . . , r}

classifies the G-orbits in F(D). The stabilizer of a proper face (resp., a holomorphic
arc-component in ∂D) is a maximal parabolic subgroup of G ([Sa80, Cor. III.8.6]).

If D = D1 × · · · × Dm is a direct product of the irreducible domains Dj , then each
face F of D is a product F1 × · · · × Fm of faces Fj ∈ F(Dj), so that the G-orbits in

F(D) ∼= F(D1)× · · · × F(Dm)

are classified by the m-tuple (rkF1, . . . , rkFm).

In the following we shall prove that for two elements x, y ∈ D transversality is
equivalent to the geometric transversality relation Face(x, y) = D. We start with the
easy implication.

Proposition 2.2. If x, y ∈ D are transversal, then they are not contained in a proper

face, i.e., Face(x, y) = D.
Proof. If x and y are not geometrically transversal, then F := Face(x, y) is a proper
face of D, hence of the form

F = Fe = e+ (D ∩ V0(e)) = (e+ V0(e)) ∩ D

for some tripotent e ∈ V (Theorem 1.1, Proposition 2.1, and [Sa80, Lemma III.8.10] for
the second equality). Then x, y ∈ F implies that x, y ∈ e + V0(e), so that Remark 1.2
leads to B(x, y).e = 0. Thus x and y are not transveral. This proves the assertion. �
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Example 2.4. We consider the r-dimensional polydisk

D := ∆r := {z ∈ C
r | max

j
|zj | < 1} ⊆ V = C

r.

Let (c1, . . . , cr) denote the canonical basis of C
r. The corresponding Jordan triple

structure is given by

{x, y, z} = (x1y1z1, . . . , xryrzr).

An element z ∈ C
r is a tripotent if |zj |2zj = zj holds for each j, which means that

either zj = 0 or |zj | = 1. We have

rk z = |{j | |zj | = 1}|,

and the tripotents of maximal rank form the n-dimensional torus S = Tn, the Shilov
boundary of ∆r.

Since the faces of D = ∆r are Cartesian products of faces of the closed unit disk

∆ = {z ∈ C | |z| 6 1},

each face F ∈ F(∆r) is a product F1 × · · · × Fr of closed unit disks and points in
the boundary of ∆. For a subset M ⊆ ∆r, it follows that the face generated by M is
given by

Face(M) = F1 × · · · × Fr, Fj =
{{s} if mj = s ∈ ∂∆ for all m ∈M ,

∆ otherwise.

It follows, in particular, that x, y ∈ D are contained in a proper face if and only if
xj = yj ∈ ∂∆ holds for some j.

For k 6 r we consider the tripotent ek := c1 + . . .+ ck. Then

V2 = C
k × {0}r−k and V0 = {0}k × C

r−k.

An element x ∈ ∆r is transversal to ek if and only if ek−(x1, . . . , xk , 0, . . . , 0) is invertible
in the unital Jordan algebra (V2, ek), which means that the first k components of x are
different from 1 (Remark 1.3). That this is not the case means that one component xj ,
j 6 k, equals 1, and therefore Face(ek, x) 6= D. If, conversely, Face(ek, x) 6= D, then
ek, x are contained in a proper face of ∆r which implies that xj = 1 for some j 6 k.

Proposition 2.3. Let e ∈ V be a tripotent, V =
∑2

j=0 Vj the corresponding Peirce

decomposition, and pj :V → Vj the projection along the other Peirce components. Then

each Vj is a positive Hermitian Jordan triple and we have

Dj = Vj ∩ D = pj(D).

In particular, each map pj :V → Vj is a contraction with respect to the spectral norms

determined by the domains D and Dj .



ORBITS OF TRIPLES 405

Proof. Let 〈·, ·〉 be an associative Hermitian scalar product on V (Definition 1.4). Then
the Peirce decomposition is orthogonal with respect to 〈·, ·〉, so that it provides an
orthogonal decomposition of V into three Jordan subtriples ([Lo77, Theorem 3.13]).

Clearly the restriction of the scalar product to each Vj provides an associative scalar
product on Vj and for each v ∈ Vj the operator v�v is positive semidefinite on V, which
implies, in particular, that its restriction to Vj is positive semidefinite. Hence each Vj

is a positive Hermitian Jordan triple.
According to [Lo77, Theorem 3.17], the inclusion maps Vj ↪→ V are isometric with

respect to the spectral norm, which means that

Dj = Vj ∩ D = {z ∈ Vj | |z| < 1}

holds for the corresponding bounded symmetric domains.
To see that the projections pj are contractive with respect to the spectral norm, let

v ∈ V and vj = pj(v) its component in Vj . For each unit vector w ∈ Vj the orthogonality
of the Peirce decomposition implies that

〈v�v · w,w〉 =

2∑

k,l=0

〈vk�vl · w,w〉 =

2∑

k=0

〈vk�vk · w,w〉 > 〈vj�vj · w,w〉,

which leads for the spectral norm |vj | to

|vj |2 = ‖vj�vj‖Vj
= sup{〈vj�vj .w, w〉 | w ∈ Vj , 〈w,w〉 = 1}
6 sup{〈v�v.w, w〉 | w ∈ Vj , 〈w,w〉 = 1}
6 sup{〈v�v.w, w〉 | w ∈ V, 〈w,w〉 = 1} = |v|2.

Since the inclusion Vj ↪→ V is isometric, pj is a contraction with respect to the spectral
norm and, therefore, Dj ⊆ pj(D) ⊆ Dj proves equality. �

Corollary 2.4. If F is a proper face of Dj , then p−1
j (F ) is a proper face of D.

Definition 2.5. Suppose that e ∈ V is a tripotent with V2(e) = V , so that Q(e) is an
antilinear involution on V turning (V, e,Q(e)) into an involutive unital Jordan algebra.
As in Section 1, we endow V with the spectral norm |z| whose open unit ball is D.

A state of the unital involutive Jordan algebra V is a linear functional f :V → C with

1 = f(e) = ‖f‖ := sup |f(D)|.

Remark 2.6. If f is a state on V and y ∈ D with f(y) = 1, then e and y lie in the
proper face {z ∈ D | Re f(z) = 1}.
Proposition 2.5. If y ∈ D and e − y is not invertible in the unital Jordan algebra

(V, e), there exists a state f of V with f(y) = 1.

Proof. We endow V with the associative scalar product 〈z, w〉 := tr(z�w) (see Defini-
tion 1.4).

By assumption, e − y is not invertible, which implies that the left multiplication
L(e−y) = (e−y)�e is not invertible. Pick v ∈ kerL(e−y) with 〈v, v〉 = 1. We consider
the linear functional

f :V −→ C, f(z) := 〈L(z) · v, v〉,
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satisfying f(e) = 〈v, v〉 = 1 and

f(y) = 〈L(y) · v, v〉 = 〈L(e) · v, v〉 = f(e) = 1.

It remains to show that f is a state. Let E := {z ∈ V | z∗ = Q(e)z = z} denote the
Euclidean Jordan algebra with V ∼= E ⊗R C and unit element e. We write E+ for the
closed positive cone in E. This is the set of all those elements z for which there exists
a system c1, . . . , ck of orthogonal idempotents with e = c1 + · · · + ck and nonnegative
real numbers λj with

z =
k∑

j=1

λjcj .

For such elements z ∈ E+ we then have

f(z) =

k∑

j=1

λj〈L(cj) · v, v〉 =

k∑

j=1

λj〈cj�cj · v, v〉 > 0

because L(cj) = cj�e = cj�cj follows from cj�(e − cj) = 0 (1.2) and the operators
cj�cj are positive semidefinite on V ([Lo77, Cor. 3.16]). We conclude that f(E) ⊆ R,

so that f(z∗) = f(z) for all z ∈ V .

From Q(e)−1 = Q(e) we derive Q(Q(e).z) = Q(e)Q(z)Q(e) = Q(e)Q(z)Q(e)−1,
so that Q(e): z 7→ z∗ is a Jordan triple automorphism of V , hence an isometry for
the spectral norm | · | on V . This implies that Q(e)D = D and, therefore, that for
z = x+ iy ∈ D, x, y ∈ E, we have

|x| = 1
2 |z + z∗| 6 1

2 (|z|+ |z∗|) = |z|.

For the map Re:V → E, z 7→ 1
2 (z + z∗) this means that DE := D ∩ E = Re(D).

For the functional f we thus obtain

‖f‖ = sup |f(D)| = sup Re f(D) = sup f(ReD) = sup f(DE).

In view of the Spectral Theorem for Euclidean Jordan algebras ([FK94]), we have

DE = (e−E+) ∩ (−e+E+) ⊆ e−E+,

so that f(z) > 0 for z ∈ E+ leads to ‖f‖ = sup f(DE) = f(e) = 1. This means that f
is a state. �

Theorem 2.6. Two elements x, y ∈ D are transversal if and only if they are not con-

tained in a proper face, i.e.,

x>y ⇐⇒ Face(x, y) = D.
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Proof. In view of Proposition 2.1, geometric transversality is also invariant under the
action of the group G. On the other hand, transversality is invariant under G ([CO01]),
so that it suffices to assume that x = e is a Jordan tripotent. In view of Proposition 2.2,
it suffices to show that if e is not transversal to y ∈ D, then both e and y lie in a proper
face of D.

For e = 0 we have Face(x, e) = D because e ∈ D = algint(D) and also e>x for all
x ∈ D because B(x, e) = idV .

We may therefore assume that e 6= 0. We have to show that if e and y are not
transversal, then they are contained in a proper face of D. That y is not transversal to
e is equivalent to the element e − y2 being not invertible in the unital Jordan algebra
V2(e) (Remark 1.3). In view of Proposition 2.5, combined with Remark 2.6, e and y2

are contained in a proper face F of the convex set D2. Hence e and y are contained in
the proper face p−1

2 (F ) of D (Corollary 2.4). �

Example 2.7. Let p, q ∈ N, r := min(p, q), and ‖ · ‖ denote the Euclidean norm on C
p

(resp., C
q). On the matrix space V := Mp,q(C) ∼= Hom(Cq ,Cp) we write |X | for the

corresponding operator norm. Then

D := {X ∈ Mp,q(C) | |X | < 1}

is a bounded symmetric domain. The pseudo-unitary group Up,q(C) acts transitively
on D by (

a b
c d

)
.z := (az + b)(cz + d)−1,

the effectivity kernel of this action is T1, so that G = Aut(D)0 ∼= PUp,q(C). The
3-grading of gC is induced by the 3-grading of glp+q(C) given by

glp+q(C)+ =

(
0 Mp,q(C)
0 0

)
, glp+q(C)0 =

(
glp(C) 0

0 glq(C)

)
,

and

glp+q(C)− =

(
0 0

Mq,p(C) 0

)
.

We further have

up,q(C) =
{ (

a b
b∗ d

)
| a∗ = −a, d∗ = −d

}
.

The vector field associated to the one-parameter group given by exp
(
t

(
a b
c d

) )
is

given by z 7→ b − az − zd − zcz, so that the Jordan triple structure on V = Mp,q(C)
satisfies Q(z)(w) = zw∗z, which leads to

{a, b, c} = 1
2 (ab∗c+ cb∗a).

In particular, the Bergman operator satisfies

B(v, w)z = z − 2v�w.z +Q(v)Q(w)z = z − (vw∗z + zw∗v) + v(wz∗w)∗v

= (1− vw∗)z(1− w∗v).
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From that it follows that v>w is equivalent to the invertibility of 1−w∗v in the algebra
Mq(C).

An element e ∈ Mp,q(C) is a tripotent if and only if ee∗e = e, which implies that ee∗

and e∗e are orthogonal projections, and that e defines a partial isometry C
q → C

p. If
K := ker(e) and R := im(e), then the face Fe of D consists of all matrices z ∈ D with
z · v = e · v for v ∈ ker(e)⊥. For k = rank(e) and an orthonormal basis v1, . . . , vk of
ker(e)⊥ and wi := e · vi, we have

Fe = {z ∈ D | (∀i) 〈zvi, wi〉 = 1}.
From this description of the faces of D it follows that an element z ∈ D is contained
in a proper face if and only if its restriction to some one-dimensional subspace of C

q is
isometric, i.e., if and only if |z| = 1. Two elements z, w generate a proper face if and
only if there exists a unit vector v ∈ C

q for which z · v = w · v is a unit vector in C
p.

A Jordan frame is given by the matrices cj := Ejj , j = 1, . . . , r, with a single nonzero
entry 1 in position (j, j). The rank of D is r and er := c1+· · ·+cr is a maximal tripotent
with

S = G.er =

{
{z ∈ Mp,q(C) | z∗z = 1} if q 6 p,
{z ∈ Mp,q(C) | zz∗ = 1} if p 6 q.

For q 6 p this is the set of isometries C
q ↪→ C

p and for p 6 q this is the set of all
adjoints of isometries C

p → C
q .

Let ek := c1 + · · · + ck be the canonical tripotent of rank k. Writing an element
z ∈ Mp,q(C) as a block matrix

z =

(
z11 z12
z21 z22

)

with z11 ∈ Mk(C), z12 ∈ Mk,q−k(C), z21 ∈ Mp−k,k(C), z22 ∈ Mp−k,q−k(C), we have

2{e, e, z} = ee∗z + ze∗e =

(
1 0
0 0

) (
z11 z12
z21 z22

)
+

(
z11 z12
z21 z22

) (
1 0
0 0

)

=

(
2z11 z12
z21 0

)
.

This shows that

V2(ek) ∼= Mk(C), V1(ek) ∼= Mk,q−k(C)⊕Mp−k,k(C), and V0(ek) ∼= Mp−k,q−k(C),

and therefore

Fe =
{ (

1 0
0 z

)
| z ∈ Mp−k,q−k(C), |z| 6 1

}
.

For k = r we see, in particular, that V0(er) = 0.

3. Orbits of triples in the Shilov boundary

In this section we obtain the key result for our classification of triples in S in the
tube-type case. We show that if (c1, . . . , cr) is a Jordan frame in E, then each G-orbit
in S × S × S meets the Shilov boundary T ∼= Tr of the corresponding polydisk. We
further show that the polydisks arising in this result can also be characterized directly as
the intersections of D with r-dimensional subspaces of V , or, equivalently, as isometric
images of polydisks under affine maps C

r → V , mapping ∆r isometrically into D. In
particular, we show that any such affine map is linear.
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3.1. The conjugacy theorem

Theorem 3.1. Suppose that D ⊆ V is of tube-type, (c1, . . . , cr) is a Jordan frame in

V , and

T := S ∩ span{c1, . . . , cr} =
{ r∑

j=1

λjcj | (∀j) |λj | = 1
}

is the corresponding r-torus in S. Then, for each triple (e, f, g) ∈ S, there exists a

g ∈ G with g · e, g · f, g · h ∈ T .

Proof. Since Jordan frames and G decompose according to the decomposition of D
into products of irreducible domains, it suffices to prove the assertion for irreducible
domains. We prove the assertion by induction on the rank r of D. Observe that the
algebraic interior of any face F of D is a bounded symmetric space of tube-type. In
fact, let E be a Euclidean Jordan algebra which has V as its complexification. Let F
be a face of rank k. Then F contains a tripotent c of rank k and there exists a Jordan
frame (c1, . . . , cr) in E such that c =

∑k
j=1 λjcj with |λj | = 1 for 1 6 j 6 k. Then

V0(c) is the complexification of the Euclidean Jordan algebra E0(c) = E0(c1 + · · ·+ ck).
For z ∈ V0(c), the spectral norm relative to V0(c) coincides with the spectral norm in
V , and so V0(c)∩D = D0 is the bounded symmetric domain of tube-type associated to
the Euclidean Jordan algebra E0(c). As

algint(F ) = algint(Fc) = c+ (D ∩ V0(c)) = c+D0,

we see that algint(F ) is a bounded symmetric domain of tube-type.

Case 1: If Face(e, f, h) is proper, then its algebraic interior is a bounded symmet-
ric domain of tube-type D′ of smaller rank and (e, f, h) are contained in its Shilov
boundary. In fact, according to Theorem 1.1 and Proposition 2.1, for each face F of D
corresponding to the holomorphic arc-component A = algint(F ), the Shilov boundary
of A is given by

SA = Ext(A) = Ext(F ) = Ext(D) ∩ F = S ∩ F.

Since every element of Aut(D′)0 is the restriction of an element of Aut(D) [Sa80,
Lemma III.8.1], in this case the result follows from the induction hypothesis if r > 1.
If r = 1, then each proper face of D is an extreme point, so that the assumption that
e, f, h lie in a proper face implies e = f = h. In this case we further have c1 ∈ S, so
that the assertion follows from the transitivity of the action of G on S.

Case 2: We assume that some pair (e, f), (f, h) or (e, h) is transversal. We may with-
out loss of generality assume that (e, f) is transversal. Then Face(e, f, h) ⊇ F (e, f) = D
by Theorem 2.6, and G.(e, f) contains (e,−e) because rk f = rk e = r (Lemma 1.8).
Therefore the orbit of (e, f, h) contains an element of the form (e,−e, h). Now the
assertion follows from the Spectral Theorem for unitary elements in V (see [FK94,
Prop. X.2.3]) and (A.4) in the Appendix.

Case 3: Face(e, f, h) = D, but neither (e, f), nor (f, h) or (e, h) is transversal. Since
G acts transitively on S, we may without loss of generality assume that e = er =
c1 + · · ·+ cr. Consider the proper face F := Face(f, h) of D. Then we have

D = Face(e, f, h) = Face({e} ∪ F ),



410 JEAN-LOUIS CLERC AND KARL-HERMANN NEEB

and for any x ∈ algint(F ) we obtain

D = Face({e} ∪ F ) = Face(e, x),

which means that e and x are transversal (Theorem 2.6).
Now we need the classification of G-orbits in the set of transversal pairs, which shows

that the pair (e, x) is conjugate to an element of the form (e,−e + ej) (Lemma 1.8).
The face

F ′ = Face(−e+ ej) = −Face(e− ej) = −(e− ej) + (V0(e− ej) ∩ D)
= (ej − e) + (V2(ej) ∩ D)

is a bounded symmetric domain of tube-type of rank j, and (e, f, h) is conjugate to a
triple of the form (e, f ′, h′) where f ′, h′ are two elements in the Shilov boundary of F ′,
where they are transversal because they generate F ′ as a face (Theorem 2.6). Next we
observe that the Peirce rules imply that by exponentiating elements of the centralizer
of e− ej in g we generate the identity component G0 of the group Aut(D ∩ V0(e− ej))
and its elements g act on ej − e+ z by

g · (ej − e+ z) = (ej − e) + g · z

because they commute with the translation tej−e. Now we conclude the proof by ap-
plying the special case of transversal elements which has already been taken care of, to
see that the G0-orbit of (e, f ′, h′) intersects T . �

Remark 3.1. If D is not of tube-type, then the Cayley transform C = Ce leads to a
realization of D as a Siegel domain DC of type II, and since Ce(−e) = 0, the stabilizer
Ge,−e of ±e in G corresponds to the stabilizer QC

e,−e := Ce(Ge,−e) of 0 in the affine

group QC
e , and the identity component of this group is G(E+)0Ke (see the proof of

Theorem 1.7). The Shilov boundary of DC is the set

{(v2, v1) ∈ V = V2 ⊕ V1 | Re v2 = F (v1, v1)},

and from this description it is clear that no element v2 + v1 with v1 6= 0 is conjugate
under QC

e,−e to an element in spanR{c1, . . . , cr} ⊆ V2. Therefore the condition that D
is of tube-type is necessary for the conclusion of Theorem 3.1.

Example 3.2. The simplest example of a bounded symmetric domain not of tube-type
is the matrix ball D ⊆ C

n for n > 1. Its rank is r = 1 and in this case G ∼= PSUn,1(C)
(see Example 2.7).

To z ∈ D we assign the one-dimensional subspace Lz := C

(
z
1

)
∈ C

n+1. Endowing

C
n+1 with the indefinite Hermitian form h given by

h(z, w) := z1w1 + · · ·+ znwn − zn+1wn+1,

we see that D corresponds to the set of lines on which h is negative definite, and its
Shilov boundary, the sphere S ∼= S

2n−1, corresponds to the set of isotropic lines. In this
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picture the action of SUn,1(C) on D comes from the natural action of this group on the
one-dimensional subspaces of C

n+1.
Fixing a unit vector e ∈ S, the pair (e,−e) corresponds to two different isotropic lines

Le and L−e in C
n+1, and the stabilizer of this pair in Un,1(C) fixes the nondegenerate

subspace Le+L−e, and also its orthogonal complement of dimension n−1. We conclude
that Un,1(C)e,−e

∼= R× × Un−1(C), and that no line Lz 6⊆ Le + L−e can be moved by
Un,1(C) into the plane Le + L−e. On the other hand, the set of isotropic lines in
the plane Le + L−e corresponds to the circle in S obtained by intersecting S with the
boundary of a one-dimensional disk ∆ ⊆ D of size 1 which, in particular is a polydisk
of maximal rank. This shows quite directly that there are triples in S that cannot be
moved into the one-dimensional space Ce, so that Theorem 3.1 does not hold.

That Theorem 3.1 fails in this context, can be expressed quantitatively by the obser-
vation that

F (Cv1,Cv2,Cv3) :=
h(v1, v2)h(v2, v3)h(v3, v1)

h(v2, v1)h(v3, v2)h(v1, v3)

is a well defined function on the set of triples of pairwise different isotropic lines in C
n+1

which is invariant under the pseudo-unitary group Un,1(C). The function F is related
to the Cartan invariant (for a presentation and a generalization of this invariant we
refer to [Cl05]).

Example 3.3. The matrix ball D ⊆ Mn(C) is a symmetric domain of tube-type with
Shilov boundary S = Un(C), the unitary group. The maximal polydisks in D are
obtained by intersecting D with the set of all matrices that are diagonal with respect
to some fixed orthonormal basis of C

n with respect to the standard scalar product. A
particular Jordan frame consists of the matrix units cj := Ejj , j = 1, . . . , n, whose span
is the set of diagonal matrices. Therefore Theorem 3.1 states that each triple (s1, s2, s3)
of unitary matrices can be diagonalized by an element g ∈ Un,n(C), acting on Un(C) by

(
a b
c d

)
.z = (az + b)(cz + d)−1.

The compact subgroup Un(C)×Un(C) acts linearly by (a, d).z = azd−1, and under this
group each pair (s1, s2) is conjugate to a pair of the form (1, s′2), where the stabilizer of
1 is the diagonal subgroup, acting on the second component by (a, a−1) · s2 = as2a

−1,
so that s′2 can be diagonalized by conjugating with a suitable element a ∈ Un(C).
This means that the diagonalizability of pairs reduces to classical linear algebra, but
diagonalizability of triples requires the nonlinear action of Un,n(C) and Theorem 3.1.

A classification of the conjugation orbits of Un(C) in Un(C)2 is given in [FMS04], but
since Un(C) is much smaller than Un,n(C), this classification leads to infinitely many
orbits.

3.2. Polydisk in bounded symmetric domains

Let D ⊆ V be a bounded symmetric domain of rank r and ∆r ⊆ C
r the r-dimensional

unit polydisk. We endow C
r with the metric defined by the sup-norm

|z| := max{|z1|, . . . , |zr|}

and V by the metric defined by the spectral norm, also denotes |z|.
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Theorem 3.2. Any affine isometric map f : Cr → V mapping ∆r into D is linear and

preserves the rank, i.e., for each x ∈ ∆r we have

rk f(x) = rkx.

Moreover, it is a morphism of Jordan triples and f(e1, . . . , er) is a Jordan frame.

Proof. Let x0 := f(0). Then `(x) := f(x)− x0 defines an isometric linear map `: ∆
r →

V . Since ` is linear and isometric, it maps the open unit ball ∆r in C
r into the open

unit ball D of (V, | · |), so that it also maps ∆r isometrically into D.
Let f1, . . . , fr denote the images of the canonical basis in C

r under `. Then the
coordinate projections

χj :L := span{f1, . . . , fr} = im(`) −→ C,
∑

j

λjfj 7→ λj ,

are linear maps with ‖χj‖ = 1 because `: Cr → L is an isometric inclusion. Using the
Hahn–Banach theorem, we find extensions χj :V → C with the same norm. Then the
map

χ := (χ1, . . . , χr):V −→ C
r

satisfies ‖χ‖ = 1 and χ ◦ ` = id. It follows in particular that χ(D) ⊆ ∆r.
Since χ maps D into ∆r, we have an order-preserving map

χ∗:F(∆r) −→ F(D), F 7→ χ−1(F ),

and the corresponding map

`∗:F(D) −→ F(∆r), F 7→ `−1(F ),

satisfies
`∗ ◦ χ∗ = (χ ◦ `)∗ = id .

We conclude that χ∗ is an order-preserving injection. This entails, in particular, that
for each strictly increasing chain

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr

of faces of ∆r, the images under χ∗ form a strictly increasing chain of faces of D. Since
r is the rank of D, the maximal chains in F(D) are of length r, which implies that χ∗

preserves the rank of faces. Since the rank of an element x ∈ D coincides with the rank
of the face it generates, we further see that for z ∈ ∆r we have

rk `(z) = rk Face(`(z)) = rk `∗(Face(z)) = rk(Face(z)) = rk z.

Therefore ` preserves the rank.
Moreover, ` maps the Shilov boundary Tr, consisting of the elements of maximal

rank, into the Shilov boundary S of D. The relation

f(∆r) = x0 + `(∆r) ⊆ D
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implies
−x0 + `(∆r) = −(x0 + `(∆r)) ⊆ D,

so that for each z ∈ Tr we have

`(z) = 1
2 ((`(z) + x0) + (`(z)− x0)) ∈ S,

so that S = Ext(D) implies x0 = 0, and hence f = ` is linear.
For i ∈ {1, . . . , r} we consider the corresponding face

F := {z ∈ ∆r | zi = 1} ∈ F(∆r).

Then F is the closure of an (r − 1)-dimensional affine polydisk, and f |F :F → D is an
affine isometry into a face Fc ∈ F(D), where c is a primitive tripotent (Theorem 1.1,
Proposition 2.1). Applying the first part of the proof with D replaced by algint(F ′) to
the corresponding map

∆
r−1 −→ Fc − c, z 7→ f(z1, . . . , zi−1, 1, zi, . . . , zr)− c,

we see that this map is linear, hence maps 0 to 0, which leads to f(ei) = c. For i 6= j
the element ei + ej ∈ ∆r is contained in the face generated by ei, which implies that
f(ei +ej) = f(ei)+f(ej) is contained in the face generated by f(ei). From Theorem 1.1
we now derive

f(ej) = f(ei + ej)− f(ei) ∈ V0(f(ei)),

so that the primitive tripotents f(ei), i = 1, . . . , r, are mutually orthogonal. Hence the
linear map f : Cr → V is a morphism of Lie triples systems. �

Corollary 3.3. Suppose that D1 ⊆ V1 and D2 ⊆ V2 are circular bounded symmetric

domains of the same rank. Then any affine isometric map f :V1 → V2 mapping D1 into

D2 is linear and rank-preserving.

Proof. Let r := rkD1 = rkD2 and fix a polycylinder D0 := ∆r ⊆ D1 defined by a
Jordan frame (c1, . . . , cr). For V0 := span{c1, . . . , cr} we then obtain by restriction an
isometric map f0:V0 → V2 mapping D0 → D2. In view of Theorem 3.2, this map is
linear, which implies f(0) = f0(0) = 0, and thus f is linear.

Moreover, f0 is rank-preserving by Theorem 3.2, which implies that f is also rank-
preserving. �

Corollary 3.4. If r = rankD, then any isometric linear embedding f : ∆r ↪→ D is

equivariant in the sense that there exists a subgroup G1 ⊆ Aut(D0) and a surjective

homomorphism G1 → Aut(∆r)0 ∼= PSU1,1(C)r such that f is equivariant with respect

to the action of G1 on ∆r and D.

Proof. If (e1, . . . , er) is the canonical basis in C
r, then (c1, . . . , cr) := (f(e1), . . . , f(er))

is a Jordan frame, so that

g1 :=
r∑

j=1

gcj
⊆ g

is isomorphic to su1,1(C)r ∼= sl2(R)r (see Remark 1.2), the Lie algebra of the group
Aut(∆r)0 ∼= PSU1,1(C). We may now put G1 := 〈exp g1〉 ⊆ G, and the assertion
follows. �
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4. The Maslov index

To define the integers classifying the G-orbits in S × S × S, we need in particular
the Maslov index, a certain G-invariant function ι:S × S × S → Z. In this section
we explain how the Maslov index can be defined for bounded symmetric domains of
tube-type which are not necessarily irreducible, hence extending the definition given in
[CO01], [CO03], [Cl04b]. Using Theorem 3.1, we further derive a list of properties of
the Maslov index and show that it can be characterized in an axiomatic fashion by these
properties. Actually, this was our original motivation to prove Theorem 3.1.

Let us first consider the case of the unit disk ∆. Then the group G is PSU1,1(C)
acting by homographies on ∆, and its Shilov boundary is the unit circle T. The Maslov

index

ι = ιT : T× T× T −→ Z

is defined by

• ι(x, y, z) = 0 if two of the elements of the triplet coincide.
• ι(x, y, z) = ±1 if (x, y, z) is conjugate under G to (1,−1,∓i).
If ∆r denotes the r-polydisk, then the identity component of the group Aut(∆r) is

G = PSU1,1(C)r and the Shilov boundary of ∆r is Tr. The Maslov index
ι = ιTr : Tr −→ R is defined by

ι((x1, . . . , xr), (y1, . . . , yr), (z1, . . . , zr)) := ι(x1, y1, z1) + · · ·+ ι(xr , yr, zr).

Now consider an irreducible bounded symmetric domain D of tube-type with Shilov
boundary S. The Maslov index ι = ιS : S × S × S −→ Z is defined in [CO01], [CO03],
[Cl04b]. As the definition is involved, we won’t repeat it here, but it has the following
property, which, in the light of Theorem 3.1 and because of the invariance of this index
under G, is characteristic: For any Jordan frame (c1, . . . , cr), let

T =
{ r∑

j=1

tjcj | |tj | = 1, 1 6 j 6 r
}

be the r-torus which is the Shilov boundary of the associated r-polydisk. Then, for any
three points x, y, z in T , one has

ιS(x, y, z) = ιT (x, y, z). (4.1)

Last, we extend now the definition of the Maslov index to any bounded symmetric
domain D in the following way. Assume that D = D1 × · · · × Dm is the decomposition
of D as a product of irreducible domains. Then the identity component of the group of
biholomorphic automorphisms of D is the product

G = Aut(D1)0 × · · · ×Aut(Dm)0,

and the Shilov boundary S of D is the product S = S1 × · · · × Sm of the corresponding
Shilov boundaries. Then the Maslov index ι = ιS is defined by

ι(x, y, z) := ιS1
(x1, y1, z1) + · · ·+ ιSr

(xl, yl, zl).
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Theorem 4.1. The Maslov index has the following properties:

(M1) It is invariant under the group G.

(M2) It is an alternating function with respect to any permutation of the three argu-

ments.

(M3) It satisfies the cocycle property ι(x, y, z) = ι(x, y, w) − ι(x, z, w) + ι(y, z, w).
(M4) It is additive in the sense that if D = D1 ×D2, so that S = S1 × S2, then

ιS(x, y, z) = ιS((x1, x2), (y1, y2), (z1, z2)) = ιS1
(x1, y1, z1) + ιS2

(x2, y2, z2).

(M5) If Φ : D1 −→ D2 is an equivariant holomorphic embedding of bounded symmetric

domains of tube-type of equal rank, then ιS2
◦ Φ = ιS1

.

(M6) It is normalized by ιT(1,−1,−i) = 1 for the Shilov boundary T of the unit disk ∆.

Proof. Properties (M1)–(M3) are known for irreducible domains ([CO01], [Cl04b]), and
the extension of these properties to products of irreducible domains is obvious. Property
(M4) obviously holds by the way we have defined the Maslov index.

For property (M5), let r be the common rank of the two domains. We may assume
that D1 and D2 are given in a circular realization as unit balls in spaces V1 (resp., V2).
Then φ(0) ∈ D2, and there is some g2 ∈ G2 := Aut(D2)0 with g2.φ(0) = 0. Then
ψ(z) := g2.φ(z) defines an equivariant embedding D1 → D2 which is linear because
ψ(0) = 0.

Let (x, y, z) ∈ S1 and pick g1 ∈ G1 := Aut(D1)0 such that g1.(x, y, z) is contained
in the span of a Jordan frame (c1, . . . , cr) (Theorem 3.1), hence in the Shilov boundary
T1 of the corresponding polydisk ∆r in D1. From the equivariance of φ we derive the
existence of some g̃1 ∈ G2 with φ ◦ g1 = g̃1 ◦ φ. Then ψ(∆r) is a maximal polydisk in
D2 with Shilov boundary T2 := ψ(T1), so that (4.2) implies that

ιS1
(x, y, z) = ιS1

(g1 · x, g1 · y, g1 · z) = ιT1
(g1 · x, g1 · y, g1 · z)

= ιT2
(ψ(g1 · x), ψ(g1 · y), ψ(g1 · z)) = ιS2

(ψ(g1 · x), ψ(g1 · y), ψ(g1 · z))
= ιS2

(g2φ(g1 · x), g2φ(g1 · y), g2φ(g1 · z)) = ιS2
(φ(g1 · x), φ(g1 · y), φ(g1 · z))

= ιS2
(g̃1φ(x), g̃1φ(y), g̃1φ(z)) = ιS2

(φ(x), φ(y), φ(z)).

Property (M6) is a consequence of the definition. �

Remark 4.1. Note that (M2) and (M3) mean that ιS is a Z-valued Alexander–Spanier
2-cocycle on S.

Before we turn to the general case in the following section, we recall the classification
of triples in the circle, the Shilov boundary of the unit disk.

Example 4.2. We consider the case ∆ := {z ∈ C | |z| < 1}. Then G = PSU1,1(C)
acts by [ (

a b
c d

) ]
· z = (az + b)(cz + d)−1.

The Shilov boundary is S = T = {z ∈ C | |z| = 1}. Identifying S with the projective
line P1(R) and G with PSL2(R), we immediately see that there are exactly two G-orbits
in S × S, represented by

(1, 1) and (1,−1),



416 JEAN-LOUIS CLERC AND KARL-HERMANN NEEB

i.e., the diagonal in S × S and the set (S × S)> of transversal pairs. Since the action
of G on S preserves the orientation of a triple, it follows that we have six orbits in
S × S × S, represented by

(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1), (1,−1,−i), and (1,−1, i).

Remark 4.3. As a function assigning to any triple in the Shilov boundary of any
bounded symmetric domain D an integer, the Maslov index is uniquely determined by
the properties (M1), (M2) and (M4)–(M6).

In view of Example 4.2, the Maslov index for D = ∆ is uniquely determined by (M1),
(M2) and (M6). By (M4) it is also determined for polydisks.

If D is any bounded symmetric domain of rank r and (s1, s2, s3) ∈ S × S × S, then
Theorem 3.1 implies that it can be conjugate by some g ∈ G to a triple in the Shilov
boundary T ∼= Tr of a maximal polydisk, so that Corollary 3.4, (M1) and (M5) lead to

ιS(s1, s2, s3) = ιS(g · s1, g · s2, g · s3) = ιT (g · s1, g · s2, g · s3).

We conclude that ιS is determined uniquely by (M1), (M2), together with (M3)–(M6).

4.1. A classical case: The Lagrangian manifold

Let E be a real vector space of dimension 2r and let ω be a symplectic form on E.
The symplectic group Sp(E,ω) is the group of linear automorphisms which preserve
ω. A Lagrangian is a maximal totally isotropic subspace of E, hence of dimension r.
The set Λr of all Lagrangians is a compact submanifold of the Grassmannian Grr(E) of
r-dimensional subspaces of E. Then the group G := PSp(E,ω) := Sp(E,ω)/{±1} acts
transitively and effectively on Λr. Choosing a symplectic basis in E, we may identify E
with Rr × Rr, the symplectic form being the standard one, namely,

ω((ξ, η), (ξ′, η′)) = ξ>η′ − η>ξ′. (4.2)

Let us consider the complex vector space V = Symr(C) of complex r × r symmetric
matrices, and let D be the unit ball with respect to the operator norm. The space V is an
involutive unital Jordan algebra with real form Symr(R), involution z∗ = z and Jordan
product x ∗ y := 1

2 (xy + yx). The spectral norm on V coincides with the operator
norm, and the unit ball is then a bounded symmetric domain. To make connection
with symplectic geometry, observe that the graph of a symmetric matrix is a complex
isotropic subspace in C

r × C
r for the symplectic structure (4.2). Let, moreover, h be

the Hermitian form on C
r × C

r given by

h((ξ, η), (ξ′, η′)) = ξ>ξ′ − η>η′ = (ξ′)∗ξ − (η′)∗η.

The Hermitian form h has signature (r, r). Now to any x ∈ V , associate its graph

`x = {(ξ, x.ξ) | ξ ∈ C
r}.

The condition that x is in the unit ball is equivalent to the fact that 1 − xx∗ is pos-
itive definite, which in turn implies that the restriction of h to `x is positive definite.
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Conversely, any (complex) Lagrangian in C
r × C

r on which the restriction of h is pos-
itive definite is the graph of some complex symmetric matrix in the unit ball. The
Shilov boundary of D is the manifold of unitary symmetric matrices, and the corre-
sponding graphs are the (complex) Lagrangians on which the restriction of the form h
is identically 0. Let C be the map from Rr × Rr to C

r × C
r given by

C(ξ, η) =
(ξ + iη√

2
,
ξ − iη√

2

)
.

Then an elementary computation shows that the complexification of the image under
C of a (real) Lagrangian is a (complex) Lagrangian on which the restriction of h is
identically 0, and vice versa. This gives a one-to-one correspondence between Λr and
S. Moreover, the natural action of G on Λr is transferred to an action on S and realizes
an isomorphism of the real symplectic group and the group Sp2r(C) ∩ Ur,r(C), which
generalizes the isomorphism of SL2(R) and SU1,1(C).

The matrices E11, . . . , Err form a Jordan frame in Symr(C). The corresponding
r-torus is

T :=
{




eiθ1 0 . . . 0
0 eiθ2 . . . 0
...

...
. . .

...
0 0 . . . eiθr


 | θj ∈ R, 1 6 j 6 r

}
.

The graph of an element of T is the r-space generated by

(e1, e
iθ1e1), . . . , (er, e

iθrer),

or, equivalently, by

(e−i
θ1

2 e1, e
i

θ1

2 e1), . . . , (e
−i θr

2 er, e
i θr

2 er).

Observe that (e−i
θj
2 ej , e

i
θj
2 ej) = C(cos

θj

2 ej , sin
θj

2 ej) to get that the corresponding
Lagrangian `(θ1, θ2, . . . , θr) in Λr is generated by

(
cos

θ1
2
e1,− sin

θ1
2
e1

)
, . . . ,

(
cos

θr

2
er,− sin

θr

2
er

)
.

In this case, one can then reformulate Theorem 3.1 as follows.

Theorem 4.2. Let `1, `2, `3 be three arbitrary Lagrangians in a symplectic vector space

E of dimension 2r. Then there exists a symplectic basis e1, . . . , er, f1, . . . , fr such that

each of the three Lagrangians is generated by

cos θ1e1 + sin θ1f1, . . . , cos θrer + sin θrfr

for appropriate choices of the (θj)16j6r.

The classification result (Theorem 5.2 below) for the case S = Λr can also be found
in [KS90, p. 492].
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5. The classification of triples

In this section we complete the classification of G-orbits in the set S × S × S of
triples in S by first assigning to each triple an increasing 5-tuple of integers N =
(n1, n2, n3, n4, n5) ∈ {0, . . . , r}5 depending only on its orbit. Then we exhibit for each
such 5-tuple a standard triple with this invariant and, finally we show that two different
standard triples belong to different orbits.

Definition 5.1. To any triple (x1, x2, x3) in S ×S ×S, we may associate five integers:

(1) the ranks of the three faces (see Remark 2.3):

n12 = rankFace(x1, x2), n2,3 = rankFace(x2, x3), n3,1 = rankFace(x3, x1);

(2) the rank of the face generated by the triple

n1,2,3 = rankFace(x1, x2, x3);

(3) the Maslov index ι(x1, x2, x3).

Clearly the action of G preserves these integers.

When x1, x2, x3 are contained in the boundary of a polydisk (see Section III), then
these integral invariants are easy to compute (see Example 2.4).

Lemma 5.1. Let e =
∑r

j+1 cj be a Peirce decomposition of the unit and, for κ = 1, 2, 3,
let

xκ =
r∑

j=1

ξ
(κ)
j cj , where |ξ(κ)

j | = 1 for all j ∈ {1, . . . , r}.

Then

nκ,κ′ = |{j | ξ(κ)
j = ξ

(κ′)
j }|, n1,2,3 = |{j | ξ(1)j = ξ

(2)
j = ξ

(3)
j }|,

and

ι(x1, x2, x3) =
r∑

j=1

ι(ξ
(1)
j , ξ

(2)
j , ξ

(3)
j ).

Definition 5.2. We now describe the standard triples associated to a (fixed) Jordan
frame (c1, . . . , cr). Let N = (n1, n2, n3, n4, n5) be a 5-tuple of integers such that

0 6 n1 6 n2 6 n3 6 n4 6 n5 6 r .

Then the standard triple of type N is the triple (xN
1 , x

N
2 , x

N
3 ) defined by

xN
1 = er = c1 + · · ·+ cr, xN

2 = c1 + c2 + · · ·+ cn2
− cn2+1 − · · · − cr,

xN
3 = c1 + · · ·+ cn1

− cn1+1 − · · · − cn3
+ cn3+1 + · · ·+ cn4

− icn4+1 − · · · − icn5
+ icn5+1 + · · ·+ icr.

For this triple, one has

n1,2,3 = n1, n1,2 = n2, n1,3 = n1 + n4 − n3, n2,3 = n1 + n3 − n2,

and
ι(xN

1 , x
N
2 , x

N
3 ) = n5 − n4 − (r − n5) = 2n5 − n4 − r.
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Theorem 5.2. If D is an irreducible bounded symmetric domain of tube-type, then any

triple in S is conjugate to one and only one of the standard triples.

Proof. For the standard triples we have

n1 = n1,2,3, n2 = n1,2, n3 = n2,3 + n2 − n1 = n2,3 + n1,2 − n1,2,3, (5.1)

n4 = n1,3 + n3 − n1 = n1,3 + n2,3 + n1,2 − 2n1,2,3, (5.2)

and

n5 = 1
2 (ι(xN

1 , x
N
2 , x

N
3 )+n4+r) = 1

2 (ι(xN
1 , x

N
2 , x

N
3 )+r+n1,3+n2,3+n1,2−2n1,2,3). (5.3)

Since the numbers n1,2,3, n1,2, n2,3, n3,1 and the Maslov index are G-invariant, it follows
that, for different values of N , the corresponding standard triples are not conjugate
under G.

To show, conversely, that each triple (e, f, h) ∈ S ×S × S is conjugate to a standard
triple, we first use Theorem 3.1 to see that we may without loss of generality assume
that (e, f, h) is contained in the torus

T :=
{ r∑

j=1

λjcj | (∀j) |λj | = 1
}

defined by the Jordan frame (c1, . . . , cr). It is the Shilov boundary of the polydisk

∆r :=
{ r∑

j=1

λjcj | (∀j) |λj | < 1
}
.

We write

e =

r∑

j=1

ξe
j cj , f =

r∑

j=1

ξf
j cj , and h =

r∑

j=1

ξh
j cj .

From Remark 1.2 it follows that every element of Aut(∆r)0 ∼= PSU1,1(C)r is the re-
striction of an element of Aut(D)0, because

gc1
+ · · ·+ gcr

∼= su1,1(C)r = L(Aut(∆r))

is a subalgebra of g = L(G). We may therefore assume that ξe
j = 1 for each j. Let

n2 := |{j | ξe
j = ξf

j }| = |{j | ξf
j = 1}|.

Since each permutation of the set {c1, . . . , cr} is induced by an element of K, which acts
transitively on the set of Jordan frames, we may without loss of generality assume that

f = c1 + · · ·+ cn2
− cn2+1 − . . .− cr

because the Aut(∆)0-orbits in T×T are represented by (1, 1) and (1,−1) (Example 4.2).
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Let n1 := |{j | ξe
j = ξf

j = ξh
j }| and write

n4 := |{j | ξe
j = ξf

j or ξe
j = ξh

j or ξf
j = ξh

j }|

for the number of components in which at least two elements of {e, f, h} have the same
entries. Then h has precisely n1 entries 1 among the first n2, and we may without loss
of generality assume that they arise in position j = 1, . . . , n1. We may likewise assume
that the components of e, f and h are mutually different for j > n4. Then the entries of
h in positions n1 +1, . . . , n2 can be moved by elements of the group Aut(∆)n2−n1

0 acting
on these components to −1. For j ∈ {n2 + 1, . . . , n4} the jth component of h equals
either 1 or −1. Moving the 1-entries with some element of Ke permuting {c1, . . . , cr} to
the rightmost positions, we get entries −1 for j = n1 + 1, . . . , n3 for some n3 satisfying
n2 6 n3 6 n4. For j > n4 we then have Im ξh

j 6= 0 and, after permuting the Jordan

frame, we may assume that for some n5 > n4 we have Im ξh
j < 0 for j = n4 + 1, . . . , n5

and Im ξh
j > 0 for j > n5. We finally use elements of Aut(∆)0 fixing 1 and −1 to move

each entry with negative imaginary part to −i and the others to i (see Example 4.2).
This proves that each triple is conjugate to a standard triple. �

Remark 5.3. In Theorem 5.2 we have classified the G-orbits in the space of triples in S
by the set of all 5-tuples N = (n1, n2, n3, n4, n5) ∈ {0, . . . , r} satisfying the monotonicity
condition

n1 6 n2 6 n3 6 n4 6 n5.

The description the standard triples shows that each such tuples arises via (5.1)–(5.3).
We claim that for the 5-tuple

(r0, r1, r2, r3, d) :=
(
n1,2,3, n1,2, n2,3, n3,1, ι(x

N
1 , x

N
2 , x

N
3 )

)

of integers we then have

(P1) 0 6 r0 6 r1, r2, r3 6 r.
(P2) r1 + r2 + r3 6 r + 2r0.
(P3) |d| 6 r + 2r0 − (r1 + r2 + r3).
(P4) d ≡ r + r1 + r2 + r3 mod 2.

In fact, (P1) is clear,

r1 + r2 + r3 = n4 + 2r0 6 r + 2r0,

|d| = |n5 − n4 − (r − n5)| 6 n5 − n4 + r − n5 = r − n4 = r + 2r0 − r1 − r2 − r3,

and
d = n5 − n4 − (r − n5) ≡ n4 + r ≡ r + r1 + r2 + r3 mod 2.

Suppose, conversely, that (r0, r1, r2, r3, d) ∈ Z
5 satisfies (P1)–(P4). We then define

n1 := r0, n2 := r1, n3 := r2 + r1 − r0, n4 := r3 + r2 + r1 − 2r0,

and
n5 = 1

2 (d+ r3 + r2 + r1 + r) − r0.
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Then (P4) implies n5 ∈ Z. From (P1/2) we immediately get 0 6 n1 6 n2 6 n3 6 n4 6 r.
Further (P3) leads to |d| 6 r − n4, and n4 6 n5 follows from

2n5 = d+ r3 + r2 + r1 + r − 2r0 = d+ r + n4 > r + n4 − (r − n4) = 2n4.

This is turn implies n5 = 1
2 (r + d+ n4) 6 r.

Conditions (P1)–(P4) are well known conditions describing the classification of triples
of Lagrangian subspace of symplectic vector spaces ([KS90]).

6. Classification of orbits in S × S

In this section we describe how the classification of G-orbits in S ×S can be derived
from the Bruhat decomposition of G (resp., the description of the orbits of the maximal
parabolic subgroup Ge in G with G/Ge

∼= S).
Throughout this section we assume D to be irreducible. Let (c1, . . . , cr) be a Jordan

frame and put

εk = c1 + · · ·+ ck − ck+1 − · · · − cr for k = 0, . . . , r.

Moreover, let e = c1 + · · ·+ cr = εr, and observe that ε0 = −e. The vector space

a =

r⊕

j=1

Rcj

is a maximal flat in V in the sense of Loos [Lo77] and can be thought of as a Cartan
subspace in the tangent space of D at the origin. The corresponding vector fields form a
Cartan subspace of p. Denoting by γj the jth coordinate in a with respect to the basis
(c1, c2, . . . , cr), it is known that the (restricted) roots of (g, a) are

±γj ± γk,±2γj , 1 6 j 6= k 6 r,

and, in addition, ±γj , 1 6 j 6 r, in the nontube-type case. We choose as positive Weyl
chamber in a the one defined by the inequalities

γ1 > · · · > γr > 0,

so that the corresponding simple roots are

γ1 − γ2, . . . , γr−1 − γr, γr.

The Weyl group W is isomorphic to the semidirect product Sr n Z
r
2, where Sr acts by

permutation of the coordinates γj , and the jth factor Z2 acts by changing the sign of
the jth coordinate.

The stabilizer Ge of the point e ∈ S is known to be a maximal parabolic subgroup
(see Section I). It is the standard parabolic subgroup associated to the subset

Θ = {γ1 − γ2, . . . , γr−1 − γr}
of the set of simple roots. The subgroupWΘofW generated by the reflections associated
to the roots in Θ is just Sr, and double cosets in WΘ\W/WΘ correspond to orbits of
Sr in Zr

2, which are characterized by their number of sign changes. In particular, this
shows that the elements εj , 0 6 j 6 r, form a set of representatives of the WΘ-orbits
in W.e.
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Theorem 6.1. There are r + 1 orbits of G in S × S. A set of representatives of these

orbits is given by the pairs (e, εk), 0 6 k 6 r.

Proof. As G acts transitively on S, any orbit of G in S×S meets the subset {e}×S. So
the statement amounts to show that a Ge-orbit in S contains εk for some k, 0 6 k 6 r.
By Bruhat’s theory, the orbits of the parabolic subgroup Ge of G are in one-to-one
correspondence with the WΘ-double cosets in W . In view of the preceding discussion,
this shows the result. �

Remark 6.1. The open orbit in S under the Ge-action (the big Bruhat cell) corre-
sponds to the point −e and is nothing but the set of all points in S transversal to e.

Definition 6.2. For (x, y) ∈ S×S we define their transversality index µ(x, y) to be the
unique number k ∈ {0, . . . , r} such that (x, y) belongs to the G orbit of (e, εk). Clearly,
the transversality index is invariant by the action of G, and two pairs are conjugate if
and only if they have the same transversality index. Moreover, a pair (x, y) is transversal
if and only if its transversality index is 0.

Theorem 6.2. A pair (x, y) ∈ S × S has transversality index k if and only if the face

F (x, y) generated by x and y has rank k.

Proof. For 0 6 k 6 r let ek = c1 + . . .+ ck. Then the face generated by e and εk is

Face(e, εk) = (ek + V0(ek)) ∩ D,

which has rank k. As any pair in S × S is conjugate to one of the pairs (e, εk), the
theorem follows immediately. �

7. Appendix: Bounded symmetric domains and tube-type domains

In this Appendix we briefly review the relation between bounded symmetric domains

and positive Hermitian Jordan triple systems on one hand, and the relation between
bounded symmetric domains of tube-type and Euclidean Jordan algebras on the other
hand. Main references are [Lo77] for (Hermitian) Jordan triples and [FK94] for (Eu-
clidean) Jordan algebras.

A Hermitian Jordan triple system V is a finite-dimensional complex vector space,
together with a map {· , · , ·} : V × V × V −→ V , such that {x, y, z} is complex linear
in x and z, conjugate linear in y, and such that

{x, y, z} = {z, y, x} (JT1)

and

{a, b, {x, y, z}}= {{a, b, x}, y, z}− {x, {b, a, y}, z}+ {x, y, {a, b, z}} (JT2)

hold for all a, b, x, y, z ∈ V .

For x, y ∈ V denote by x�y the linear endomorphism of V defined by

(x�y) z = {x, y, z}
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and by Q(x) the conjugate linear endomorphism of V defined by Q(x)z = {x, z, x}.
Define the trace form B on V by B(x, y) = tr(x�y). The Jordan triple system V is said
to be nondegenerate if, as a sesquilinear form, B is nondegenerate. If this is the case,
then B is Hermitian (i.e., B(x, y) = B(y, x) for all x, y ∈ V ). If, moreover, B is positive

definite, then V is said to be a positive Hermitian Jordan triple system.
Let V be a positive Hermitian Jordan triple system. An element c ∈ V is said to be

a tripotent if {c, c, c} = c. For a tripotent e ∈ V let Vj := Vj(e) denote the j-eigenspace
of the operator 2e�e. Then we obtain the corresponding Peirce decomposition of V :

V = V0 ⊕ V1 ⊕ V2

([Lo77, Theorem 3.13]).
There is a (partial) order relation on tripotents. For two tripotents c, d ∈ V , we

define c ≺ d if there exists a tripotent c′, such that:

(i) c�c′ = 0 (orthogonality of c and c′);
(ii) d = c+ c′.

A nonzero tripotent is said to be primitive if it is minimal among nonzero tripotents
for this order. Any tripotent c can be written as a sum of pairwise orthogonal primitive
tripotents, say c = c1 + · · · + ck. The number k of primitive tripotents in such a
decomposition of c depends only on c and is called the rank of c.

A Jordan frame of V is a maximal family (c1, . . . , cr) of orthogonal primitive tripo-
tents. All Jordan frames have the same number of elements called the rank of V . For
any Jordan frame (c1, . . . , cr), the sum e =

∑r
j=1 cj is a maximal tripotent of V , and

all maximal tripotents are obtained this way.
One of the main results in the theory of positive Hermitian Jordan triple systems is

the spectral theorem.

Proposition 7.1. For any x ∈ V , there exists a Jordan frame (c1, . . . , cr) and positive

real numbers λj , 1 6 j 6 r, such that

x =

r∑

j=1

λjcj . (A.1)

The λj are unique up to a permutation.

The identity (A.1) is called a spectral decomposition of x. The λj are called the
eigenvalues of x. The largest eigenvalue is the spectral norm of x, denoted by |x|. As
notation suggests, the map x 7→ |x| is a complex Banach norm on V .

Theorem 7.2. The unit ball of (V, | · |) is a bounded symmmetric domain. Conversely,

any bounded symmetric domain is holomorphically equivalent to such a unit ball.

There is a subclass of symmetric bounded domains, the domains of tube-type. They
are associated to a subclass of positive Hermitian Jordan triple systems, obtained by
complexification from Euclidean Jordan algebras.

A Euclidean Jordan algebra E is a real finite-dimensional Euclidean vector space E
with an inner product 〈· , ·〉, a bilinear map E × E −→ E and an element e ∈ E such
that

xy = yx, ex = x, x2(xy) = x(x2y), and 〈xy, z〉 = 〈y, xz〉
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for all x, y, z ∈ E. Let V = EC be the complexification of E, and extend the Jordan
product from E in a C-bilinear way to V . Denote by z 7→ z the conjugation of V with
respect to E. For x, y, z ∈ V , let

{x, y, z} := (xy)z + x(yz)− y(xz). (A.2)

This endows V with a structure of positive Hermitian Jordan triple systems. The
element e is a tripotent of V . It satisfies e�e = idE , so that V0(e) = {0} (hence e is a
maximal tripotent), V1(e) = {0} and V = V2(e).

Among positive Hermitian Jordan triple systems, those coming from Euclidean Jor-
dan algebras are characterized by this last property. Let V be a positive Hermitian Jor-
dan triple system, and let e be a maximal tripotent. By maximality of e, V0(e) = {0}.
Assume further that V1(e) = {0}, so that V = V2(e). Now Q(e) is a conjugate linear
involution of V . Its fixed points set E = {x ∈ V | Q(x) = x} is a real vector space. For
x, y ∈ E, define

xy = {x, e, y}. (A.3)

With the product defined by (A.3) and the inner product induced by B, E is then a
Euclidean Jordan algebra, V is the complexification of E and the Jordan triple product
on V can be recovered by formula (A.2) from the Jordan algebra product on E.

An element c ∈ E is called an idempotent if c2 = c. A Jordan frame in E is a
maximal set of orthogonal minimal idempotents. The number of elements in a Jordan
frame is equal to r, the rank of the Jordan algebra E, and if (c1, . . . , cr) is a Jordan
frame, then e = c1 + . . . + cr. A tripotent c for the associated triple Jordan system
structure on V is of the form c =

∑r
j=1 λjcj , for a certain Jordan frame (c1, . . . , cr) of

E and for each j, 1 6 j 6 r, |λj | = 1 or λj = 0. A maximal tripotent z of V is of the
form with x =

∑r
j=1 λjcj , with |λj | = 1 for all j, 1 6 j 6 r, so that z as an element of

the complex Jordan algebra V is invertible, and satisfies z = z−1.
The corresponding bounded symmetric domain is described as before by

D = {z ∈ V | |z| < 1}.
The domain D can be shown to be holomorphically equivalent to a tube domain. If
E+ is the interior of the cone of squares of E, then, by the Cayley transform Ce, the
domain D is mapped to

DC = Ce(D) = {v ∈ V | Re(v) > 0} = E+ ⊕ iE.

The domain DC is a tube domain in V , which is the justification for calling D a bounded
symmetric domain of tube-type.

The description of maximal tripotents of V we gave supra shows that the Shilov
boundary can be described as

S = {z ∈ V | z = z−1}. (A.4)

Hence the Shilov boundary S is a totally real submanifold of V with dimR S = dimC V .
This last condition is another characterization of bounded symmetric domains of tube-
type inside the family of bounded symmetric domains. In fact if D is a bounded sym-
metric domain, then its Shilov boundary S is a real submanifold of V , and its dimension
satisfies

dimR S >
1

2
dimR V = dimC V.

Equality is obtained if and only if D is of tube-type.
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