XXVIIL

ON THE CANONICAL FORM AND DISSECTION
OF A RIEMANN'S SURFACE*

THE object of this Note is to assist students of the theory
of complex functions, by proving the chief propositions about
Riemann’s surfaces in a concise and elementary manner. To
this end I assume only certain results of Puiseux, which are put

together at the outset.

I.

Puiseur’'s Theory of an n-valued Function.

If two variables s and z are connected by an equation of the
form f (s, z),=(s,-1)" (¢, 1)", =0, each 1s said to be an algebraic
function of the other. Regarding z as a complex quantity « + 1y,
we represent its value by the point whose co-ordinates are z, v,
on a certain plane. To every point in this plane belongs one
value of z, and consequently, in general, n values of s, which are
the roots of the equation f=0. The points of the plane may
be divided into those at which the n values of s are distinct, and
those at which two or more of them are equal. The latter
points are finite in number, and correspond to the roots of the
equation which is got by equating to zero the discriminant of f
in regard to s. If the roots of this equation are distinct, there
are 2 (n—1)m such points, because the discriminant of the

* [From the Proceedings of the London Mathematical Socicty, Vol. v,
No. 122, pp. 292—301.]
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242 ON RIEMANN'S SURFACES.

equation of the nth order in s is of degree 2 (n—1) in the co-
efficients, and these coefficients are of the order m in z. But a
point at which 7 values of s become equal corresponds to an
(r —1)-fold root of the discriminant-equation.

Let us now consider an arbitrary point O of the plane
[fig. 31], corresponding to a value z, of z, which is not a root
of the discriminant-equation. Then the equation f (s, 2)=0
will give n different values for s, which we may call 5,, 8, ... 5,.
If we move along any path from the point O to another point
P of the plane, the value of z will change continuously, and
each of the quantities s,, s,...s, will also change continuously.
If therefore the path OP does not go through a point where
two values become equal, these n quantities will be distinct all
the way, and each of the n values of s at P will belong to a
definite one of the values of s at 0. But if the path goes
through such a point, two or more of the n quantities will
become equal and then diverge again, so that it will be impos-
sible after that to distinguish them so as to say which of these
belongs to a particular one of the values at the point 0. We
cannot always avoid this difficulty by going round the point,
for it is found that the values at P to which the values at O
correspond may depend upon the path OP, so that the corre-
spondence is different for a path which goes to the right of the
point and for a path which goes to the left of it. When this
is the case, the point is called a branch-point. Suppose that,
when we go from O to A, the two values p and ¢ of s at O
approach one another and become equal at 4 ; then it is found
that the value at P which represents p when we go along the
path OBP may rcpresent ¢ when we go along OCP, and vice
versd. So that, if we travel along OBPCO, round the point 4
and back to O, the values p and g will change continuously
into one another. If more than two values are equal at 4, the
corresponding values at O may be cyclically interchanged by a
path going round 4. We shall assume, however, that only two
values become equal at each branch-point; and, moreover, that
no branch-point is at an infinite distance*.

* Roots of the discriminant-equation which are not branch-points corre-
spond to double points on the curve f (s, z)=0. Such points behave, in regard to
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A path going along any line from O to very near A4, then
round 4 in a very small circle, and then back to O along the
same line, will be called a loop.

If we start from O and go round any closed curve not in-
cluding any branch-points, the n values of s at O will be restored
in the same order. For the path may be gradually shrunk into
a point without crossing any branch-points, so that no two of
the n values can become confused at any point of it. The same
thing is true if the closed path includes all the branch-points.
Suppose it a large circle through O; then it may be gradually
increased till it coincide with the tangent at O, then curved
over on the other side, and shrunk up into a point; and during
the whole process the n values will be distinct at every point of
the path.

We shall now go on to shew that this n-valued function,
which we have spread out upon a single plane, may be repre-
sented as a one-valued function on a surface consisting of n
infinite plane sheets, supposed to lie indefinitely near together,
and to cross into one another along certain lines. This surface
is called a RIEMANN’S surface; we shall demonstrate its exist-
ence at the same time that we shew how to construct it in the
most convenient form.

IT.
Construction of the Riemann's Surface— Liiroth’s Theorem.

Draw loops from O [fig. 32] to all the branch-points, and let
the first, 4, interchange the values p and ¢q. If we go round
all the loops successively, starting with the value p at O, we
must, as we have seen, come back to that value; but this may
happen before we have used all the loops. Let B be the first
branch-point after going round which the value p is restored.
Draw a line from 4 to B cutting all the loops which alter p,
but none of the others. Then, if we go round any of the

the function s, like two coincident branch-points belonging to the same pair of
values, and they have no influence on the connection of the different values of s.

16—2
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branch-points between 4 and B without crossing the line 4B
or going round any other branch-points, we shall not alter the
value p.

Suppose that A interchanges pg, B interchanges ps, and
that the branch-points between 4 and B are 1, 2, 3, 4, inter-
changing respectively ¢r, rs, hk, pl. The value ¢ must in fact
be changed into the value p through a longer or shorter series
of values; the loops interchanging A%k and pl are put in as
examples. Now if we go round 4 by the dotted loop passing
round outside 4, the effect is the same as going in succession
round 4,1, 2, 3,4, 3,2,1, 4. By the time we have gone round
4,1, 2, 3, we cannot have the value p, for that is first restored
by B; and we cannot have the value [, for then 4 would restore
the value p. Hence we have some value which is not altered
by the loop to 4; and consequently, when we retrace our path,
we shall come back to the value p.

Next, let us draw a loop to B which passes within the line
AB, but goes round all the included branch-points, as in the
figure. The effect of this loop will be to change ¢ into p; for
it is the same thing as going round 1, 2, 3, B, 3,2,1. Now the
effect of 1, 2, 3, B 1s to change ¢ into p, and this p is not altered
in coming back because all the branch-points which alter p are
outside the line 4B.

Suppose then that all the branch-points of this group which
alter p are connected with O by loops going round 4, so that
they no longer alter p; and that B is connected with O by the
loop just described, so that no branch-points are contained in
the triangle 4 0B.

Starting now from this new loop OB, with the value p, let
us ¢o round all the loops as before from left to right. We know
that when all the loops have been gone round, ending with 04,
the value p must be restored. If it is not restored before we
have gone round O, we must draw a line B4 cutting all the
loops which change the value p but none of the others. But if
the value p is restored befure we have gone round O, say after
going round OC; then we must draw a new loop to C, going
round all the branch-points between 4 and € except those
which change the value p. This new loop will, by our previous
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reasoning, change p into ¢. Hence, if the value p is restored
before we have gone round 04, we can make a new loop OC
which changes p into ¢; and this comes next to OB. To those
branch-points whose loops have been cut by this new loop we
must draw new loops going round to the right of C, so as not
to cut OC. The figure comes then into this form [fig. 33],
containing

(1) Loops to the left of OA4 which do not change the value
of p, like the dotted loop O4 in the previous figure;

(2) Three consecutive loops 04, OB, OC which change p
into ¢;

(3) Loops to the right of OC which may or may not
change p.

If now we start with the loop OC and proceed to the right,
the value p must be restored before we have gone round 04 ;
for, starting with OA and going all round, we must restore the
value p in the end. Let p then be restored by OD; and draw
a line 0D cutting all those loops which change p, but none of
the others. Replace the loops which change p by new ones
going round between B and C'; and replace OD by a new loop
going outside all the branch-points whose loops do not alter p.
The figure now consists of these elements:

(1) Two triangles A0B, COD, containing no branch-points,
and such that the loops 04, OB, OC, OD interchange p and ¢;

(2) Loops between OB and OC which do not change p;
(8) Unknown loops between OD and OA.

About these unknown loops we may make three supposi-
tions.

First, suppose that none of them change p. Then the value
p cannot be altered by any closed curve starting from O and
returning to it which does not cut either of the lines 4B, CD.

Secondly, suppose that some of these loops change p, but
that, when we start with the loop OD and go round to the right,
the value p is first restored by O4 or OC. (It is clear that it
cannot be first restored by OB, because the two loops OA, OB,
taken together, make no change in any value; nor by any loop
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between OB and OC, for none of them change p.) Then we
must join D with 4 by a line cutting all the loops which change
p, but no others; and B with C by a line cutting none of the
loops between OB and OC. In that case the value p cannot be
altered by any closed curve starting from O and returning to it
which does not cut either of the lines BC, DA.

Thirdly, suppose that the value p is restored before we come
to 04, say at OE. Then we must proceed as before, finding a
new line ZF which shall have the properties of AB or CD. The
figure will then consist of three triangles AOB, COD, EOF,
containing no branch-points, and such that the loops 04, OB,
OC, 0D, OF, OF interchange p and ¢; loops between OB and
OC, and between 0D and OF, which do not change p; and
unknown loops between OF and 0A. '

It is clear that this process must ultimately stop, and then
we shall be left with a finite number of lines such that, if we
start from O, follow any continuous ﬁath, and come back again,
without crossing any of these lines, we shall not alter the value
p. The lines are either AB, CD, EF, &c., or else they are BC,
DE, &c.; in either case the loops O4,0B, ... interchange p and g.

It follows that, if we take an infinite plane sheet and cut it
through along these lines, we may consider a single value of the
function s to be attached to every point of the sheet in such a
way that this value varies continuously when we move about
continuously in the sheet; but there will be different values on
the two sides of any cut—namely, we must attach to every
point P of the sheet that value of s which changes continuously
into p when we go from P to O without crossing any of the
cuts. There 1s only one such value; for if two diffcrent paths
from O to P gave different values at P, it would be possible to
change the value p by means of a closed curve returning to O;
and this we have proved not to be the case.

When the lines cut through are AB, CD, ..., the triangles
AOB, COD, ... contain no branch-points; but when the lines
ae BC, DE, ..., the triangles BOC, DOE do in general contain
branch-points.  'We may, however, draw new loops to C, £, ...
so as to exclude these Lranch-points, and the new loops will
still change p into q.  For no closed curve going round B and C
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so as not to cut BC can change the value p, by what we have
already proved; but the loop OB changes p into g, therefore
OC must change ¢ into p.

We shall assume then that the cutsare AB, CD, ..., and that
the triangles 40B, COD, ... contain no branch-points.

Now let us deal with the value ¢ at O in the same way as
we have dealt with the value p. It is first to be observed that
a path going round one or more of the lines AB makes no
change in any value at O; so that, if we agree never to cross
these lines, we may leave the branch-points 4, B, ... entirely
out of consideration.

This being so, let us take a loop which changes ¢ into some
other value, say . There must be such a loop, if the function
is more than two-valued; for otherwise the values p, ¢ would
form a two-valued algebraic function of z, and the expression
f (s, 2) would have a factor of the second degree in s.

Starting then with this loop, we may proceed in exactly the
same way as before, and draw lines A'E, C"D)', ... such that a
closed curve, starting from O and coming back to it without
cutting any of these lines or any of the previously drawn lines,
will not alter the value q. Moreover, we shall have drawn loops
0A', OB, ..., each of which changes ¢ into », and such that the
triangles A'OB’, C'OD), ... contain no branch-points. And since
our previous triangles 40B, COD, ... contained no branch-
points, it will not have been necessary to cut through them in
drawing the new lines A'B’, C' D', ....

We shall now speak of the first set of lines 4B, CD,... as
the lines (pg), and of the second set as the lines (gr).

Let us take two infinite plane sheets, cut them both through
along the lines (pg), but only the second one along the lines
(qr). To every point of the first sheet we will suppose attached
that value of s which is arrived at by continuous change of the
value p at O; and to every point of the second, that value which
is arrived at by continuous change of the value ¢ at 0.

In each sheet there will be a finite difference in the values
on the two sides of each of the cuts (pq); but the value on one
side in the upper sheet will be cqual to the value on the other
side in the lower sheet. At the cut 4B, for example, the value
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continuous with p on the side nextto O is equal to the value
continuous with ¢ on the side remote from O; because a path
taken round 4 or B from O and back again changes the value p
continuously into the value gq.

Thus, if we take p, ¢ to denote values at the cut continuous
with p, ¢ at O, they will be situated as in the figure [fig. 34],
which represents a section across .AB perpendicular to the two
sheets. If then we make the two sheets cross one another
along the lines p, g, as here represented [fig. 35], then these two
values will be continuously distributed on the double-sheeted
surface so formed.

We may now continue the process with the value . We
must first find a loop which changes r into some other value,
say t,and then proceed as before, taking care not to cross the lines
gr. (We may cross the lines pq as often as we please, provided
that we have not previously crossed the lines ¢r ; for these lines
can have no effect upon 7 unless it has been previously changed
into ¢.) Thus we shall draw lines ¢ such that the value =
cannot be altered by a closed curve not cutting the lines gr or
rt, and having their extremities joined to O by loops which
change r into ¢. If we take, then, a third sheet, cut 1t through
along the lines ¢r and »¢, and then join it crosswise to our
second sheet along the lines gr; the three values pgr may be
continuously distributed on this three-sheeted surface.

By proceeding in this way it is clear that we shall construct
an n-sheeted surface, the sheets of which are connected chain-
wise by cross lines, so that the first is connected only with the
second, the second with the third, and so on; but there is no
direct connection except between consecutive sheets. And the
n values of the function may now be attached to the points
of this surface, so that one value only belongs to each point, and
that in moving this point about on the surface the value belong-
ing to it always changes continuously. Thus, if we start from
a given point of the surface (on a given sheet), and travel
by any path so as to come back to the same point (on the
same sheet), we shall in all cases return to the former value
of the function s.

The theorem that the Riemann’s surfacc may be so con-
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structed that the sheets are ouly connected chainwise—i. e., so
that there are no cross-lines except between consecutive sheets
—is due to Dr. Liiroth,

I11.
Clebscl’s Theorem.

All the links between successive sheets except the lust may be
made to consist of one cross-line only.

First, we shall prove that, if there are two or more lines
(pq), one of them may be converted into a line (gr).

The original position of the two lines (pg) and the line
(gr) is drawn in fig. [36]. If we move the line ¢r, keeping,
of course, its ends fixed, the effect is to interchange the
sheets QR in the area over which it moves; so that, by passing
it over the line (pg) on the right, we change this into a line
(pr). The position is then as in fig. [37]. If now we pass the
remaining line (pg) over this line (pr), we change it into a
line (¢r); thus we are left with two lines (g7) and one line
(pg). [Fig. 38]

In this way we may convert all but one of the lines (pg)
into lines (¢r). Then we may convert all but one of the
lines (gr) into lines (rs); and so on. Then the first n—1
sheets will be connected chainwise by one cross-line each, and
the last two by all the remaining cross-lines.

The Riemann's surface is now said to be in its canonical
form.

The process of transformation may be made clearer by look-
ing at a section of the three sheets by a plane perpendicular to
them cutting the lines pg, qr, pg [figs. 39, 40, 41].

IV.
Transformation of the Riemann’s Surfuce.

The Riemann’s surface now consists of n infinite plane
sheets, such that the sheet 1 is connected with 2 by a single
cross-line, 2 with 3 by another cross-line, and so on; but (n—1)
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with (n) by a number of cross-lines which we shall call p + 1.
Thusthe whole number of cross-linesisn -2+ p+1=n+p-1.
If w is the number of branch-points, this is twice the number of
cross-lines, or w=2(n+p—1). Hence p=fw-n+1.

Let now this n-fold plane be inverted in regard to any point
outside it, so that it becomes an n-fold sphere passing through
the point. Any two successive sheets of the sphere will be con-
nected by one cross-line, except the two outside sheets, which
are connected by p + 1 cross-lines.

To every point of this n-sheeted spherical surface will cor-
respond one value of the function s, namely, that which belongs
to the corresponding point upon the n-fold plane. As for
the centre of inversion, 1t is to be regarded as n distinet points
upon the several sheets, corresponding to the n values of s when
z=o.

We shall now prove that this n-fold spherical surface can be
transformed without tearing into the surface of a body with p
holes in it.

First, suppose we have only two sheets, connected by a
single cross-line which joins the branch-points AB. Let the
ficure [42] represent a section by the plane which bisects AB
at right angles.

Suppose each hemisphere of the inner sheet to be moved
across the plane of the great circle containing A B (indicated by
the dotted line in the figure), so that the points m, n change
places. In this process the two hemispheres will have to pene-
trate and cross each other; but this may be supposed to take
place without altering the continuity of either. Each point may
be supposed to move on a straight line perpendicnlar to the
dotted plane, till it coincides with what was its reflexion in re-
gard to that plane. The effect on the cross-line will be to change
it from the form drawn in fig. [42] to that drawn in fig. [43];:
instead of the two sheets crossing along the line, each of them
will be doubled under it. The result is that, if we now look
down on-the double sphere from a point vertically over the line
A B, we shall see a spherical shell with a hole in it, in the form
of a slit along the line A B [fig. 44]. Conceive the spherical
shell to be made of india-rubber or some more elastic substance ;
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then by mere stretching, without tearmg, the slit may be
opened out until the shell takes the form of a flat plate; that
1s, of a body with no holes in it.

Next, consider a two-sheeted spherical surface with p +1
cross-lines, and suppose them all arranged along the same great
circle; which may obviously be done by stretching, without
tearing, the surface. Let this great circle be the one repre-
sented by the dotted line in figs. [42] and [43]. Then we may
apply to the inner sheet the same process as before; viz, we
may interchange the two hemispleres into which the sheet is
divided by the dotted plane. The effect is to convert all the
cross-lines into slits or holes in a spherical shell ; and we have
supposed that there are p +1 of these. One of the slits may
be stretched out in the same way as AB was before, so as to
convert the spherical shell into a flat plate; butin this flat plate
there will remain p holes. A double sphere with p + 1 crossing
lines is thus converted, without tearing, into the surface of a
body with p holes in it.

Lastly, suppose that the inner sheet of this two-sheeted
sphere is connected by one cross-line with a third inside sheet,
the third sheet by one cross-line with a fourth inside it, and so
on, until there are n sheets. Let the inner sheet of all be
reflected in regard to the plane of the great circle through its
crossing line, so that it makes with the sheet next to it a spheri-
cal shell with one hole in 1it. Then, without tearing, the inner
sheet may be shrunk up until it merely covers over this hole.
The same process may now be applied to shrink up the second
sheet into the third, and so on, until we are left with ouly the
two outside sheets connected by p+1 cross-lines. These, how-
ever, as we have seen, may be converted, without tearing, into
the surface of a body with p holes in it. Hence the proposition
follows, that an n-sheeted Riemann’s surface with w branch-points
may be transformed, without tearing, into the surface of a body
with p, = Jw —n + 1, holes an 1.
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V.
The Number of Irreducible Circuits.

A closed curve drawn on a surface is called a ctrcudt. If it
is possible to move a circuit continuously on the surface until 1t
shrinks up into a point, the circuit is called reducible; .otherwise
it is erreducible. In general there is a finite number of irre-
ducible circuits on a closed surface which are tndependent, that
is, no one of which can be made by continuous motion to coincide
with a path made out of the others. All other irreducible cir-
cuits can then be expressed as compounds of these independent
ones. For example, on the surface of a ring (i.e., of a body with
one hole through it) there are two independent irreducible cir-
cuits; one round the hole, as abc [fig. 45], and one through the hole,
as ade. If a circuit goes neither round the hole nor through the
hole, it can be shrunk up into a point. Ifit cannot be so shrunk
up, it must go a certain number of times round or through the
hole or both, that is, it may be made up of circuits like abc
and ade.

In the same way we may see that, on the surface of a body
having p holes through it, there are 2p independent irre-
ducible circuits; one round each hole, and one through each
hole. For simplicity consider the case p = 3. We suppose
the body in the form to which we reduced the Riemann’s surface,
namely, that of a flat plate, represented by figs. [46] and [47],
in which 4, B, C are the holes. The circuits through each hole
are so drawn as to connect the hole directly with the outer
rim, like the circuit which is drawn through the hole 4. A
circuit passing through two holes, as B, C [fig. 46], may be
moved continuously till it consists of two circuits going through
the two holes separately. Similarly, a circuit round two or
more holes, as B, C [fig. 47], may be pinched at various points
until it is made up of circuits round the separate holes. Such
a circuit as abed [fig. 4G] may be moved into the form abed [fig.
47], in which it consists of two circuits going through the hole
A, but in opposite directions. On this account it may be called
a nugatory circuit.
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VI

The Canonical Duissection.

Suppose now that it is desired to cut through the Riemann’s
surface in such a way that it shall still hang together, but that
1t shall no longer be possible to draw an irreducible circuit
upon it. This we may doif we successively prevent the differcnt
kinds of irreducible circuits considered in the last section. To
prevent the possibility of going round any hole, we must cut the
surface along a circuit which goes through the hole. To prevent
the passage through a hole, we must cut through a circuit which
goes round a hole.

Let us make sections a,, a,, a, [figs. 48, 49] round the holes,
and b, &,, b, through the holes. Then we shall have prevented
the drawing of any irreducible circuits except nugatory ones, like
abed in the previous figures. To prevent these also, we may
cut the surface along the line ¢, which goes from p to ¢, that is,
from a point on b, to a point on &, and along the line ¢, which
goes from ¢ to 7, that is, from a point on b, to a point on . We
must not cut from r to p also, for then we should divide the
surface into two separate parts. We may now open out the
upper and under portions of the surface in fig. [48], until it
assumes the form of fig. [49]. It then becomes obvious that all
our cuts form a continuous line, which is now the boundary of
the surface, and is made up of the pieces (beginning at p and
going round to the right) ¢ b,a,0,¢,0, 0,0 a b c,b,a,b,c,.
Moreover, it is a matter of intuition that no irreducible contour
can now be drawn on the surface.

This system of cuts is called a canonical dissection of the
surface. In the general case it consists of p cuts «¢ going round
the holes, p cuts b going through them, and p — 1 cuts ¢ joining
b, to b,, b, t0 b,, ............ b, to &,, but not b, to &, The cuts ¢
may, if we like, join the a-cuts together, or generally they may
Join the systems (ab) together, a system mcaning an a-cut and
‘a b-cut belonging to the same hole. In fact, the c-cuts arc only
of importance as completing the single boundary of the surface,



254 ON RIEMANN'S SURFACES.

and so enabling us to see that no irreducible circuit is any longer
possible.

It only remains to translate this result so that it may be
applicable to the original form of the Riemann’s surface, viz.,
an n-fold plane. We shall do this in the case p = 2, which will
sufficiently explain the general case. We have now two sheets
connected by three cross-lines mn, pg, rs [fig. 50]. One of these
must be chosen to represent the outer rim of our flat plate;
the other two will then correspond to the holes in it. Let mn,
pq represent the holes, and rs the outer rim; lines in the upper
sheet shall be drawn in full, and linesin the lower sheet shall be
dotted. Then we must first make cuts a,, a, which go round
the holes mn, pg; these may lie entirely in the upper sheet.
Next we must make cuts &,b, which connect the holes re-
spectively with the outer rim rs. These cuts lie partly in the
upper sheet, where they intersect the cuts a, and partly in the
under sheet. Lastly, we must connect the system @, 4 with the
system a, b, by the cut ¢; this isdrawn in the figure from 5, to b,
in the under sheet. It is impossible to draw an irreducible
circuit on the two-fold plane when it is thus dissected*.

In general, we have proved that in the n-sheeted Riemann’s
surface which represents the function s determined by the
equation f(s,z) = 0, there are p + 1 cross-lines such that if one
be taken to represent the rim, and the rest holes, of a flat
plate, the surface may be dissected into one on which no irre-
ducible contour is possible by the following process :—Cut the
surface along curves a each of which goes round one of the
cross-lines taken to represent holes, on one of the sheets of the
surface which cross at that line. Connect each of these lines
with the one taken to represent the rim by a cut balong a closed
curve which crosses each of the two cross-lines once. Then
connect the systems (ab) chainwise by p —1 cuts c.

* It is to be understood that a circuit is reducible when all parts of it can be
continuously moved away to infinity without erossing any branch-point; be-
cause in this theory infinity counts as a single point.






