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Abstract 

This paper is the first of a three-part investigation into the behavior of analytical invariants of 
manifolds that can be split into the union of two submanifolds. In this article, we will show how the 
low eigensolutions of a self-adjoint elliptic operator over such a manifold can be studied by a splicing 
construction. This construction yields an approximated solution of the operator whenever we have 
two L2-solutions on both sides and a common limiting value of two extended L2-solutions. In Part 11, 
the present analytic “Mayer-Vietoris” results on low eigensolutions and further analytic work will be 
used to obtain a decomposition theorem for spectral flows in terms of Maslov indices of Lagrangians. 
In Part I11 after comparing infinite- and finite-dimensional Lagrangians and determinant line bundles 
and then introducing “canonical perturbations” of Lagrangian subvarieties of symplectic varieties, we 
will study invariants of 3-manifolds, including Casson’s invariant. 0 1996 John Wiley & Sons, Inc. 
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1. Introduction 

Let M be a closed, oriented, smooth manifold that is decomposed into the 
union of two submanifolds M I ,  M2 by a codimension-I, oriented submanifold C, 

(1.1) M = MI U M2, C = M I  n Mz = dM1 = dM;! .  
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The object of this paper is to study a decomposition of eigenspaces with small 
eigenvalues of a self-adjoint elliptic operator D on M into the contributions from 
M I  and M2 together with a resonance term created by the interaction of these 
eigenspaces along C (see Theorem A). A phenomenon well-known to topologists 
is the decomposition of cohomology of M by the Mayer-Vietoris sequence of 
( M ;  M 1, M2),  which is related to resonance terms in Appendix B. Another example 
of the resonance term is the background noise (low-frequency modes) created 
sometimes by a long corridor connecting two chambers. In our treatment, these 
resonance terms arise naturally as the intersection of two Lagrangian subspaces 
in a symplectic vector space. 

In this primarily analytical part, we will concentrate on first-order, self-udjoint, 
elliptic differential operators D on the space r ( E )  of smooth sections of a real 
vector bundle E - M ,  

(1.2) D : r(E) - r(E), 

which are of the Atiyuh-Putodi-Singer type [l] near C. More precisely, under an 
identification i : I; x [ - 1,1] - M of the cylinder C x [ - 1,1] with a neighborhood 
of C, i(C X 0) = C, and an identification of E I C X [- 1,1] with the pullback n*E 
of a vector bundle E over Z via the projection T : C X [-1,1] - C, we can write 
D over C X [-1,1] as a sum 

(1.3) D = (T*(T)  0 (E + r'b) . 

Here b is a self-adjoint, elliptic operator on the space r(&> of smooth sections of 
8, 
(1.4) D : r(B) - r(B), 
s is the coordinate of [ - 1,1], (T : l? - E is a bundle isomorphism, and K *  (T is the 
pullback of c to E I C X [-1,1]. In short, in the neighborhood of C, we are in the 
same setting as [l] . 

The basic approach is to replace M by a stretched version M ( r )  of the same 
manifold: 

(1.5) M ( r )  = M I  u c x [-r,r] UM2 

obtained by first cutting M open along C and then gluing the pieces back to 
X x [ - r , r ]  with the end C x (-I) and identified and with C x ( r )  and d M 2  
identified. As we stretch M ,  the above operator D can also be extended to produce 
an operator D = D(M(r)),  

(1.6) D : r(.qr)) - r(E(r)) 

over M(r) .  In fact, for manifolds 
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obtained by attaching the infinite cylinder C X [O, CQ) to MI  along aMI = C x O  and 
attaching C X (-m, 01 to M2 along dM2 = C x0, similar bundles E j ( m )  - Mj (  ca) 
and operators D : I'(E,(oo)) - T(E,(m)) exist (see Section 1). 

The key to this approach is to relate the L2-solutions of D : I' (Ej(oo))  - 
UE,(co))  to the low eigenspaces of the operator D = D(M(r) ) .  Let V;, j = 1,2, 
denote the space of L2-sections 4 of the bundle E,(m) satisfying D 4  = 0. Then a 
general technique called splicing allows us to put two such sections (41, 42), E 
V I ,  $2 E V2, together to form a section @(41,$2,0) in T(E(r)).  By making 
estimates of lower eigenspaces of T(E(r)),  we will show that these spliced sections 
@(+I, 42 ,O)  represent contributions to the low eigenmode problem on M from the 
two pieces MI,M2. To obtain the complete picture, we also have to consider the 
extended L2-solutions of D on I'(E;(oo)) that take on limiting values at infinity. 

Let JY denote the kernel of the operator b on I@). In Proposition 2.2 we 
will show that X' naturally inherits the structure of a symplectic vector space and 
that the limits of the extended L2-solutions in T(E;(m)) give rise to a Lagrangian 
subspace L; in 2Y. An element a lying in the intersection LI f l  L:! of these two 
Lagrangian subspaces can be regarded as a pair of sections on Ml(m), M2(03) that 
match at infinity. The general form of the splicing construction takes into consid- 
eration not only $2 but also the element a and produces a section @&I, 4 2 ,  a )  
in T(E(r) ) .  Thus we have 

and the subspace @,(O @ 0 8 L I  n L2) gives the resonance term at the beginning 
of our discussion. 

THEOREM A. 
vectors 
these eigenvectors 
the following: 
(1.8) 
( 1.9) 

Let N ( r ,  K )  denote the number of linearly independent eigen- 
of D+bI = XII+!I1 on M ( r )  with [ A i l  < K. Let sp(r, K )  denote the span of 

Given E > 0, there exists an R such that for r 2 R we have 

N(r,  r - ( '+ ' ) )  = dim V I  + dim V2 + dim L I  fl L2. 
Let 5 = min{ I u I : u f 0 is an eigenvahe of D over C}. Then the equality 
of numbers N(r ,  exp(- sr)) = N(r, r - - ( l fE ) )  and the equality of two sub- 
spaces sp(r, exp(- L)) 4 = sp(r, r-(I + F ) )  hold. 

(1.10) Denote the projection of T(E(r ) )  onto the subspace sp(r, exp(- 2)) by Pr. 
Then II*r(x) - Pr+r(n)II < exp(-$)IIxII. 

1, 

Roughly, the above theorem says that small eigenvalues (in the range r-"'")) 
of D on M(r)  are exponentially small (- exp(-$)) and the corresponding eigen- 
sections are exponentially close to a splicing construction. In particular, if V I  @ 

V2 8 (L, nL2) = 0, then for large r there exists no zero mode on M ( r ) ,  ker D = 0. 
A related result for manifolds with cylindrical ends is presented in Appendix A. 



828 s. E. CAPPELL, R. LEE, AND E. Y. MILLER 

In the special case that %' = ker D = 0, we present a much stronger result, The- 
orem B. By the work of Muller [19], chapter VI, and Douglas and Wojciechowski 
[14], section 6, if X = k e r b  = 0, then the self-adjoint extension D(j )  of D act- 
ing on smooth L2-sections of E j ( m )  over M j ( w )  ( M j  with the infinite cylinder 
attached, that is, 

D(j )  : {smooth L2-sections of Ej(00)) 
(1.11) - {smooth L2-sections of Ej(m)}) 

has pure point spectrum of finite multiplicity in the range of eigenvalues A with 

However, D(j )  has essential spectrum for Ihl 2 6. 
(1.13) Let 0 5 k < S / f i  and E > 0 be chosen such that neither D( 1) nor D(2) 

has any eigenvalues in the range (k, k + E]. Denote by { A j l ,  . . . , Ajjnc;,> 
the eigenvalues of D(j )  over M;(  00) counted with multiplicities in the 
range of eigenvalues A with 

and let V;(k) be the span of the associated eigenvectors. 
Define K, L in terms of the bundle automorphism CT as in (4.5) and choose k ,  E 

so that 

(1.14) 
SK 

k + & S - -  
2 

As before, there is a natural splicing construction 

(1.15) a,: Vl(k) @ V*(k) - T(E(r)  over M(r))  

THEOREM B. Suppose X = kerD = 0 and k, E are chosen as in (1.13) and 
(1.14). Let N(r, t),  sp(r, t )  be deJned as in Theorem A. Then there is an R > 0, 
depending only on k, E, K ,  L, S such that for all r 2 R we have 

(1.16) N(r,  k + ( ~ / 2 ) )  = dim[VI(k) @ V2(k)]. 

(1.17) Let P ,  be the orthogonal projection of T(E(r))  onto the span of the eigen- 
vectors of D on E(r )  with eigenvalues h satisfying 

for some j ,  a, 1 5 a 5 n( j ) .  Then the equality of two subspaces sp(r, k + 
( 4 2 ) )  = P, sp(r, k + ( ~ / 2 ) )  holds. 
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with N depending only on k ,  E ,  K ,  L, 6. 
PrQir is an isomorphism onto sp(r, k + (~ /2) ) .  (1.19) 

Roughly, the above theorem says that the eigenvalues of D on M ( r )  for r h R 
to an exponentially small error in r in the range 1-(k + ~ / 2 ) ,  +(k  + ~ / 2 ) ]  consists 
of the eigenvalues 

{hjl,. . . h j n ( j ) )  j = 1,2, 

coming from D ( j )  on M,(co)  for j = 1 or j = 2. Moreover, the multiplicities 
correspond, and this correspondence holds uniformly in r depending only on k,  E ,  

K, L, 6-not on any other properties of D(1) or D(2). 
In the sequel, Theorems A and B together with the general techniques of con- 

trolling low eigensections will be used in proving a similar decomposition of spec- 
tral flow. Let { D ( U ) } ~ ~ , , ~ ~  be a smooth family of operators of the Atiyah-Patodi- 
Singer type. That is, over C X [- 1,1], the operator D(u) can be written as a sum 
7r*n 0 ($ + 7r*D(u)) where b ( u )  is a smooth family over ,X and o is independent 
of u. Then, after stretching Z X [ - I ,  I] C M sufficiently long, we will show in 
Part I1 [5] under suitable hypotheses that the spectral flow of {D(u)}oaus~ is a 
sum of two spectral flows from M I ,  M2 and a Maslov index term from C. (Our 
paper [7] develops the Maslov index and needed results from it; these are briefly 
reviewed in Part 11.) Crucial to such results on spectral flow will be further analytic 
work in Part I1 comparing low eigenvalues of operators on a manifold and on its 
pieces by achieving estimates that are uniform in the u parameter. Our treatment 
is sufficiently general to encompass the difficulties of zero modes at the ends of 
the parameter families as well as that of “jumping” Lagrangians. 

While investigating the above topics, we benefited from the paper of Yoshida 
[26], who wrote of a decomposition of spectral flow for the particular operators in 
dimension 3 relevant to Floer homology. The statements of some analytic lemmas 
(viz. Propositions 5.3, 5.4, 6.1, and 6.2) in the present paper have been adapted 
from that paper, but both statements and proofs should be compared. 

Theorem B was suggested by the results of Douglas and Wojciechowski. The 
uniform estimates of Theorem B will be crucial to us in Part 11. 

In Part 111 we will compare finite- and infinite-dimensional Lagrangian set- 
tings and the uniform estimates involved in relating them. By viewing infinite 
Lagrangians constructed from the graphs of Hilbert-Schmidt operators, we will 
relate them to sections of determinant line bundles. Our methods will be used 
there to introduce the technique of “canonical perturbations” of Lagrangian sub- 
varieties of symplectic varieties to achieve transversality in a controlled fashion. 
We apply our methods there to the study of invariants of 3-manifolds, including 
Casson’s invariant [6]. 
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It is worth pointing out the relation between our study of small eigenvalues 
under stretching of manifolds and several well-known, important results on the 
elliptic operators of pinched manifolds, stretched manifolds, and adiabatic lim- 
its. As explained before, we have heavily employed the context and methods of 
[l]  on manifolds with boundaries. Several results of Cheeger, in particular his 
studies of elliptic operators on manifolds with conical singularities, incorporated 
the idea on how limits arise under pinching. He studied the role that the choices 
of Lagrangians in the solution space of Dirac operators play on these limiting 
processes and applied them in 7-invariant problems (cf. [91, [lo], and [ 111). In 
addition, there are the deep studies of adiabatic limits of 7-invariants of fibrations 

Mrowka [ 181 in his important thesis considered Mayer-Vietoris-type decom- 
positions in the context of gauge theory. His work includes some hard, nonlinear 
generalizations analogous to results of the present paper. 

in 131, 141, [lo], [121, [131, 1171, and B31. 

2. Symplectic Structures, Self-Adjoint Operators, and Splicing 

Throughout this paper, our setting is as follows: M is a closed, oriented man- 
ifold, and 

(2.1) i : Z x [-1,1] - M 
a smooth embedding with X = i(C x 0) a codimension- 1, closed, oriented subman- 
ifold of M. This submanifold C splits M into two compact submanifolds M I . M ~  
with 

(2.2) M = M I  u M 2 ,  M I  n M 2  = d ~ ,  = diw2 = i(C x 0) , 
c x [-LO] = i(C x [ -LO])  c M ,  , 
c x [O, 11 = i(C x [O, 11) c M2. 

Defined over M and C are six more objects D, E, D, 8,0,+. 
First, 

(2.3) D : T(E)  - T(E)  

is a first-order, elliptic operator on the space T ( E )  of smooth sections of a real 
vector bundle E - M. This operator D is self-adjoint with respect to an inner 
product (., -),+, on T(E)  induced from a metric on E. 

Second, 

is a first-order, elliptic operator on the space T(k> of smooth sections of a real 
vector bundle k - C. Again this is self-adjoint with respect to the induced inner 
product (., on r(k). 
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Third, 

(2.5) o : B - B  

is a bundle isomorphism of I!? over C. Let n : C x [ - 1, l l  - C denote the projection 
and n*E the pullback of B via n. Then 

(2.6) 

is a bundle isometry preserving the obvious metrics on these bundles. (Here 
E 1 C x [-1,1] is understood as the pullback of E via (2.1)). 

4 :  n*B - E I C x  [-1,1] 

Finally, 

D I C X [-1,1] equals (n*o) 0 - + w*b 

where w : C x [-1,1] - C is the projection, x* is the pullback of operators via 
w, and the symbol s is the coordinate of [- 1,1]  in C X [- 1,1]. We also use the 
identifications in (2.1) and (2.6) in the above formula. 

(2.7) K S  ) 

The self-adjointness of D and D implies the following: 

PROPOSITION 2.1. Let D, E, 8, E,  0 ,4  be dejned as above. Then 
(i) o* = -O and oD = -Do. 

(ii) There exists a nondegenerate symplectic pairing on r(E) defined by 

{f, g )  = (f7 u g h .  

(iii) Let 2 = ker 8. Then the restriction of the pairing in (ii) to % is a 
nondegenerate, symplectic pairing. 

For operators of Dirac type, for example, the natural geometrical operators, one 
has the simplification that o2 = -1; this characteristic, however, is not assumed 
in our treatment. 

Next, we will construct two Lagrangian subspaces LI , L.2 in the symplectic 
space X arising from the limiting values of extended L2-solutions on M l ( c o ) ,  
Mz(cm).  Here the noncompact manifolds 

are defined as in (1.7). To begin, we recall some basic constructions in [l]. Let 
{&I be a complete orthonormal basis of eigensolutions of D with D4k = / I k + k .  

Let 

P ,  = L’-closure of {4k I pk > 0) in L’(E),  
P -  = L2-closure of { 4 k  I pk < 0) in L’(E).  (2.9) 
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Then, from the spectral decomposition theorem, there exists a decomposition of 
L 2 ( 8 )  into an orthogonal sum 

P(8) = X 8 P +  8 P-  . 

In a natural manner, the vector bundle E gives rise to vector bundle E(r )  over M(r) .  
The procedure is to consider over M j  the bundle E 1 M j  and over C x [ - r ,  I] the 
bundle n * 8  and glue these two pieces together by the same gluing data as in E. 
Similarly, there are bundles El(co) and E2(co) over Ml(co) and M2(co)  with the 
property that Ej(oo)  I M, is the same as E I M j  and 

EI(c0) I c x [ O , c o )  = 'IT*& E 2 ( m )  I x x (-co,O] = 7 r * J 9 .  

The operator D : T ( E )  - T(E) can also be extended to produce operators 

D = ~ ( r )  : r(E(r)) - r(E(r)), 
D = D j ( o o )  : r (Ej (oo) )  - r(Ej(m)), j = 1,2, 

(2.10) 

over E(r )  and E ~ ( o o ) ;  over the submanifolds M l , M 2 ,  they are the same as D I 
M 1 ,  D 1 M2, and over the cylinders c x [ - r ,  r ] ,  2 x [O, oo), X X (-w, 01, they are 
defined by the formula 7r* B 0 (5 + 7r"b). Note that the manifold M ( r )  of (1.5) is 
decomposed by Z X 0 - M ( r )  into two pieces as follows: 

and likewise the bundle E(r)  as the union of bundles El( r )  - M l ( r )  and - 
Mzb-). Let L2(Ej(r ) )  denote the space of L2-sections of Ej(r) ,  and let L:(Ej(r))  de- 
note the Sobolev space of L:-sections. Given a subspace V in L2(& let L;(Ej(r);  V )  
denote the Sobolev L: completion of the smooth sections 4 such that 4 I d M j ( r )  = 
4 I C lies in V .  In particular, by letting V = P + ,  P - ,  P +  8 X ,  P -  8 X ,  we 
have four Sobolev spaces L;(El(r ) ,P+) ,  L?(.El(r), P +  8 X ) ,  L2(Ez(r), P - ) ,  and 
L2(E2(r),P- CB X). Moreover, as shown in [I], the closures of the operator D 
induce Fredholm operators on these spaces: 

D I  : G ( E l ( r ) ; P + )  - ~'(~l(r)); 
bl : L ; ( E ~ ( ~ ) ; P +  CEI X )  - L ' ( E I ( ~ ) )  over ~ I ( r - 1 .  

b z  : L:(Ez(r);P-  8 X) - ~ ~ ( ~ 2 ( r ) )  over M2(r ) .  

(2.12) 
D2 : L:(Ez(r); P - )  - L2(Ez(r)) ; 

The kernels of these operators also have their counterparts in L2(Ej(co)). 
Define V ,  to be the space of L2-solutions of D = 0 over M,(oo), 

(2.13) V j  = 14 E L:(Ej(oo)) I D+ = 01, 
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and v, to be the space of extended L2-solutions. More precisely, the latter 3, is 
the space of pairs (4,& with the following properties: 

(1) 
(2) 6 is a section of .!? with 64 = 0. 
(3) I#J I Mj is square integrable. 
(4) I#J 1 C X (+m,O] - T * $  is square integrable (-00 for j = 2, +m for 

The above spaces V j  and v j  are finite-dimensional and can be compared with 
the kernels of the Fredholm operators in (2.12) because of the following theorem 
of Atiyah-Patodi-Singer [ 11: 

is a section of Ej(co) with 04 = 0. 

j = 1). 

where 4 - T*I$ over C X [O, co) is  square integrable and 4, I$ are C". 
Similarly, an element ($, 4) of 42 takes the form $ 1 C X (-m, 01 = 
IT* 4 + cke-pksn* c$k here. Moreovel; $, 4 are C". 

l l k  <o 
(ii) The restriction maps 

From the above theorem, there are natural homomorphisms 

P I  : vl  - X = k e r b  
PZ : 8 2  - X = k e r b  

(+,I& - f 
($,$) c 4 (2.14) 

of vj  into 2. Denote by Lj the image of P i .  Then elements in L, represent the 
limiting values of the extended L2-solutions of D on Mj(co). 

PROFQSITION 2.3. Let L,, j = 1,2, be defined as above. Then L, is a La- 
grangian subspace in the symplectic vector space x. 
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The operators in (2.12) are not seli-adjoint, and the remedy is to introduce the 
boundary conditions P I  8 ~ L I  and P+ 8 aL2, respectively, in LT(E2(r),P- 8 ~ L I )  
and L?(El(r),P+ 8 aL2) (see 1241, [25], and [26]). The closure of D provides us 
with Fredholm operators 

91 : L?(El(r),P+ 8 ah) - L2(El(r)) 
9 2  : L:(E~(~),P- 8 a ~ 2 )  - ~ ~ ( ~ 2 ( r ) )  

PROPOSITION 2.4. Let Bj, j = 1,2, be dejned as above. Then they are sev- 
adjoint Fredholm operators with ker 9, = V j .  

We conclude this section with the splicing construction. Let W denote the 
space of pairs of “matching” extended L2-space. That is, W is the Hilbert space 
of pairs (4, $1, ($, $1 such that 
(2.15) The pairs (4,& and ($,& are extended L2-solutions of D(.) = 0 over 

M l ( o o )  and M2(oo) and as smooth sections 4 = $ over Z. 
Choose a smooth, nondecreasin.2 function p(t), 0 5 t 5 1 such that 

(2.16) 

and I % I 5 4. For a matching pair of solutions (+,c$), ($,$) in W, we define 
h = 

(2.17) 

&), ($, 4)) as a section of E(r)  by the formula 

h I MI = 4,  
(h I Z X [-r,  -II)(x,s) = 4(x,s + r ) ,  
(h I Z X [-I, OI)(x, S) 

(h I Z x LO, ll)(x,d 

(h I Z x 11, rl)(x, s) = $(x, s - 4 .  

h I M2 = $, 

= [p(-s) (4 - n* f ) < x ,  s + r)] + (n* &(x, s + r )  , 

= [ p ( s ) . ( ~ - n * $ ) ( x , s - r ) ] + n * $ ( x , s - r ) ,  

It is not difficult to see that there exists an exact sequence 

o - v1 8 v2 ~ w ~ L ~  n b  - o 
where the map (Y : W - L1 nb is defined by sending a matching pair [(4, &), ($, $11 
to f = I$ in L1 f l  b, and the map p : V1 8 V2 - W is defined by sending 4 8 $ 
to K4, O), ( $ 9  0)l. 
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always exists, and the assignment @ I , & )  x 42 - ( 4 1 , 4 2 ) ~ , ( 4  gives 
a bilinear pairing on v, X V1. Furthermore, when restricted to the 
subspace V I  X Vl ,  this pairing becomes a symmetric, positive definite 
pairing. 

(ii) Similarly, the limit 

gives rise to a bilinear pairing on v 2  X V2 that is symmetric and positive 
definite over V:! X V2. 

An immediate consequence of Proposition 2.5 is that for each element x in 
L1 f l  L2 there exists a unique matching pair [@I&) ,  x ) ,  (42(x),  x ) ]  in ?V such that 
4,(x) is perpendicular to the subspace V j  with respect to the pairing ( 0 ,  - ) M ~ ( ~ ) .  In 
other words, "w is decomposed into a sum V1 d V2 d (LI fl h). 

(2.18) 

Finally, the required splicing construction 

ar : V I  CB V2 8 LI n L2 - T(E(r)) 

is defined by the formula 

@r(+,  $9 X )  = *A(+, O), ( 0 , O ) )  + Qr((O7 01, ($9 0)) + *r[(+l  ( x ) ,  x) ,  ( 4 2 ( ~ ) ,  X I ] .  

Remark 2.6. In Part II, we will generalize the decomposition of L2(@ studied 
in this paper to a decomposition, for k 2 0, 

L2(@ = X(k)  8 P+(k)  d P - ( k ) ,  

where the summands are the spans of the eigenspaces with eigenvalues in [ -k ,  
+k], (+k ,  OO), and (-m, -k), respectively. We will also produce corresponding 
Lagrangian subspaces in X(k)  generalizing L1 and Lz, given above for k = 0. 
These generalized Lagrangians yield by a symplectic reduction process the above 
L1 and L2. 

3. Results on L2-Solutions and Lagrangians 

3.1. Proof of Proposition 2.1 

By the self-adjoint property of the operators D and b, we have 

over X x [-1,1]. Comparing the coefficients of 2 on both sides of the above 
equation, it follows that (T = -(T*, and hence from the rest of this equation 
0 o b = -b 0 (T. This proves Proposition 2.1(i). 
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Now from the first equality u = -o*, we have 

( f ,  ag)z = (a*f ,g)z = ( -uf ,g)z = -(g, 0 f ) z  ; 

in other words, if we define {f, g }  to be ( f ,  ag)z, we obtain a skew-symmetric 
pairing in Ilk). Since the original pairing (., .) in I@) is nonsingular and CT is 
an isomorphism, the skew-symmetric pairing {., .} is also nonsingular or, in other 
words, a symplectic pairing as asserted in Proposition 2.l(ii). 

From the second equality u 0 D = -D o u, it is clear that u preserves the sub- 
space 2Y = kerb .  Since (., -) is positive definite, its restriction to H is nonsingular, 
and the proof of Proposition 2.l(iii) follows from the same argument as before. 

3.2. Proof of Proposition 2.3 

In order to prove Proposition 2.3, we need the following: 

LEMMA 3.1. Let f and g be two smooth sections in T(E I Mj). Then 

(3.2) ( o f , g ) ~ ,  - (f,Dg)M, = {f I aMj, g I aMj}Ej 

with sj = 1 for j = 2 a n d ~ j  = - 1 f o r j  = 1 

Since the proof is identical for j = 1 or j = 2, we will concentrate on the case 
j = 2. In this case Lemma 3.1 is but a restatement of a theorem in the Palais 
treatment of the Atiyah-Singer index theorem [20]. It is immediately proved by 
using D, b self-adjoint and then integrating by parts. 

We will concentrate on M j  for j = 2, since the case for j = 1 is similar. For 
extended L2-solutions (41, $I), (42, $2) over M ~ ( c o ) ,  we may apply (3.2) to the 
submanifold M2(r)  = Z x [ - r ,  01 U M2, 

0 = (041 3 4 2 ) M * ( r )  - (41 9 D 4 2 ) M * ( r )  
= 141 I 3M2(r), 42 1 dM2k)) 

= { $ 1  + c C k ( l ) 4 k ,  4 2  + c ce(2Mu I (3.3) 

Pk<o pr<O 

In the last equation we use Theorem 2.2 to obtain the eigenexpansion of bj 1 
dMz(r) ;  that is, 

(3.4) 
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and so 
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whenever pk < 0 and pt 5 0 or pk 5 0 and pt < 0. In particular, in the above 
expansion (3.3) 

This proves that L2 is an isotropic subspace in H. 
dim X), 

we recall the following assertion in [l]. Let D : T(E)  - T(F)  be an operator 
of Atiyah-Patodi-Singer type near dM2, and let D* denote its formal adjoint. 
Then, by imposing the nonlocal boundary condition P -  CB X as in Theorem 2.2, 
corresponding to D* there is defined the operator 

To prove that L2 is the maximal isotropy subspace (i.e., dim L:! = 

D; : L:(F,P- @ 2) - L2(E). 

This last operator D; has a finite-dimensional kernel consisting of all extended 
L2-solutions $, 0; $ = 0, and also gives rise to a subspace L2# in ker D consisting 
of the limits 4 of extended L2-solutions of D*. Then, from [I], we recall the 
following result: 

THEOREM 3.2. Let L2 and L2# be dejined as above. Then dim L2 + dim L2# = 
dim ker D. 

In our application, we set D = D*, D: = b2(M2), L2# = L2, and so 2 dim L2 = 
dim 2 as claimed. Applying a similar analysis to M I ,  the proof of Proposition 
2.3 follows. 

Because the proof of Proposition 2.4 is a more straightforward application of 
[ 11, we will omit the details here. Related discussions on these operators can be 
found in [24] and [251. 

3.3. Proof of Proposition 2.5 

Let ($I,$I) be an element in v 2 ,  and let $2 be an element in V2. Consider 
their eigenexpansions over E x (- cm, 01, 
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For j = 2, the section $j is square integrable and so $2 = 0. In general, the 
section $j 1 C x (- o o , O ]  - 7r* $ j  is square integrable, and we have 

By the Schwarz inequality, 

and so the first sum in (3.8) converges. Also, 

5 - e-26rJ&'&, 

where 6 (as in Theorem A) is the smallest I pk I as p k  goes through nonzero eigen- 
values. Consequently, the second sum in (3.8) approaches 0 as r tends to 00. 

From a comparison of the expression in (3.8) with the corresponding inner prod- 
uct ($1, $ 2 ) ~ ? ( ~ ) ,  it follows immediately that 

($1 3 $2)M,(os) 

= lim{($l I M29*2 I M2) + ($1  I c x [-r,OI, $2 I x [-r,OI)l r-o3 

exists. Moreover, if $1 = 0, then ( $ I , $ ~ ) M ? ( ~ )  = lim($1,$2)M~(~) is the standard 

inner product on the space of L2-sections on E2(00). This proves Proposition 2.5. 
r-iy) 
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4. Producing Eigensolutions by Splicing 

In this section, we prove statement (1.10) and part of (1.9) in Theorem A. 

LEMMA 4.1. 

For r 2 R 2 2 and R suflciently large, the composite 

Let 6 denote the minimum of IuI for nonzero eigenvalues u of D, 
and let Pr denote the projection of T(E(r))  onto the subspace sp(r;exp(-$)). 

(4.1) 

is an injection. 

P ,  0 ar : V I  @ V2 @ ( L  f l  L2) - T(E(r))  - sp r,exp -- ( ( “4’) 
For an element (a, 0, y )  in V1 @ V2 @ (LI f l  L2). the inequality 

holds. 

To prove (4. I), we need the following: 

LEMMA 4.2. For an element (a, p, y )  in V I  @V2 @ (LI  fl L2) and for  r 2 R B 2, 
and R suficiently large, the inequality 

(4.3) 

holds. 

The bundle automorphism T = o * o : I? - I? induces on each fiber Ex, x E C, a 
self-adjoint isomorphism T, : E, - E,. Since T = o*o, the linear automorphisms 
T ,  = s;a, are positive definite with respect to the inner product on Ex. Let k, 
and 4, denote, respectively, the smallest and largest eigenvalue of T ~ ;  that is, 

(4.4) 
k,  = min{(v,T,(v)) I IIvll = 1, v E E x )  
4, = md(v,T,(v)) I IIvII = 1, v E Ex)  

Clearly the assignments x - k,, x - e, define two continuous positive functions 
k : C - R+, t‘ : C - R+ on C and hence positive extremum values. Define 
positive numbers K > 0 and L > 0 to be the square roots of these extremum 
values 
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To prove Lemma 4.2, first of all, given an element y in LI  n L2. there exist 
unique elements ( y l , ? ~ )  E v1 and (y2,92)  E v2 such that = 72 = y and 
( Y I , V I ) M , ( ~ )  = ( Y ~ , V ~ ) M ~ ( ~ )  = 0. Using (r1,~2) we can construct from (a,@) a 
matching pair (a + 71, y), (0 + 7 2 ,  y )  of extended L2-solutions in W. Applying the 
formula (2.17) to this matching pair (a + y ~ ,  y) ,  (p  + 7 2 ,  y),  we obtain the explicit 
description of @,.(a, P,y).  

Note from (2.17) the section D@,.(a, P, y )  over M ( r )  vanishes everywhere except 
on C x [-LO] and C X [0,1]. Over the first piece, we have 

(4.7) 

Here we are identifying C X [- 1,0] in I: X [ - r ,  01 from M l ( r )  and from M ( r )  
with Z x [ r  - 1, rl in Ml(co) .  The identification is: (x, s) - (x,  s + r )  of C x [ - r ,  01 
in M l ( r )  with Z x [0, r] in Ml(co) .  

Let [ = a + y1 - 7r* y I C x (0, co) have eigenexpansion 

Thus 

and by (4.7) we have 

Since < 1 C X s in P + ,  and y in X ,  we have 
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There are similar inequalities for llD@, 1 M2(r)1I2, liar I M2(v)1I2. Adding 
these yields the inequality 

II@r(a,rC, y)IIL(r). 2 -26(r-I) . IImr(a,P, Y)IIL(~) 5 16L e 

If r 2 R with R 2 1 and 4 L .  e-(6/2)R . e* 5 1, then we obtain 
-Sr 

llD@r(a~pty)ll~(r) 5 exp (7) l l ~ r ( a ~ p ~  r)llw(r) 

for r 2 R as desired. 
We are now in a position to prove Lemma 4.1. Let Qr(a, p, y )  = Ed,&, 

be the eigenexpansion of ar(a, p, y )  in terms of an orthonormal basis {&} of 
eigensolutions of DI$, = p i ,  over M ( r ) .  Then we have 

(4.8) llD@r = (D@r, D@r) = (zdp$fi, z M p 6 p )  = 7 

and so 

Note that under the projection P : I'(E(r)) - sp(r,exp(-$)) projects on the low 
eigenmodes, and so IIPr@r(a, p, y )  - @,.(a, p, y)1I2 is precisely the expression 

(dJ2.  
ptexp(-  $1 

Using the estimate of (4.3), we have 
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and therefore (4.2). 
Furthermore, if P@,(a, p, y )  = 0, then the inequality (4.3) gives us 

This is impossible for r 2 R > 0 unless @,(a, p, y )  = 0 or, in other words, P, 0 a, 
is injective. This completes the proof of Lemma 4.1. 

5. Estimates of Low Eigenmodes of a Stretched Manifold 

In this section, we establish estimates concerning the behavior of low eigen- 
modes of M(r)  over its cylindrical submanifold C X [-r, r]. These estimates will 
be used in the next section to show that there are no eigenmodes in the range 
r--('+&) other than those lying in the image of P, o @,, already discussed in (4.1). 

Recall that we have the inclusion i : C x [-1,1] - M, and after stretching M 
to M ( r )  we have the inclusion C x [-r - 1, r + 11 into M(r) with 

(5.1) 
XI = C x [-r - 1, -rl in M I ,  
X 2  = C x [r, r + 11 in M 2 ,  

8MI = C x ( - r )  in M ( r ) ,  
dM2 = C x (+r) in M(r) .  

To understand the low eigenmodes over C X [-r - 1, r + 11, we need explicit 
description of eigensections of D over C. Define 

to be the subspace of eigensections of D with eigenvalue p. Since (T o b = - D o  (T, 

the automorphism (T switches X p  to %-p and maps Zo to X O .  Denote by T the 
composite automorphism 7 = (T *O = -u2. Then r commutes with D and keeps 
all eigenspaces X w  invariant. 

PROPOSITION 5.1. There exists a complete orthonormal basis of C" -eigen- 
sections {+k  1 k = 1,2,. . . } of Ij with b4k = pk4k. In addition, they satisfy the 
following conditions: 
(5.4) For each integer k ,  there is a real positive number hk > 0 with T 4 k  = 

(5.5) For each eigenvalue p of D, let N ( p )  denote the set of integers k with 
pk = p. Then {& I k E N ( p ) }  forms an orthonormal basis of theJinite- 
dimensional vector space Xp. 

2 
-0 4 k  = (kJ24k. 
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(5.6) 

(5.7) 

For each eigenvalue p of D, the set {? I k E N ( p ) }  forms an orthonormal 
basis of X-p.  For p > 0, this basis coincides with { 4 k  I k E N ( - p ) } .  
Denote by 2N the dimension of the symplectic vector space XO.  The jirst 
2N elements {4k I 1 5 k S 2 N )  of our system form an orthonormal basis 
of Xo. Moreover; 

gd'k 
$ k + N  = - 

Ak 
for k = 1,. . . , N ,  and the set {41,. . . , ~ N , ( - ~ N + I / A I ) ,  . . . , ( - ~ ~ N / A N ) )  
forms a symplectic basis for XO. 

The proof of the above proposition follows directly from the fact that 7 com- 
mutes with D, and so these operators can be simultaneously diagonalized. The 
eigenvectors 4 k  can be chosen to be C" because of the known regularity theorem 
for elliptic, self-adjoint operators. As for (5.7), we first choose a Lagrangian sub- 
space L C XO invariant under the operator 7 = --a2. Then we choose {41, . . . , $ N }  

to be an orthonormal basis of eigenvectors of T on L. 

PROPOSITION 5.2. Let K > 0 be defined as in (4.5). Then, for the Ak 's in (5.4), 
the inequality I Ak I B K is satisfied. 

The proof of Proposition 5.2  is immediate in view of the following: 

= K2(4k, 4 k ) Z  
= K2.  

Let I) be a smooth section of the pullback 7r*E over C X [-r  - 1, r + 11. Then, 
using the orthonormal basis { 4 k }  of Proposition 5.1, we can expand i,b uniquely 
as 

(5.9) I) = xAk(s)r * 4 k  

where Ak(s )  = (I) I C X s, 4 k ) X : x . y  are smooth functions. We will denote by I)o the 
sum 

of the terms Ak(s)7r*&, 1 5 k 5 2N,  in the expansion and refer to this sum as 
the 0-mode part of I). 

Recall from (5.7) that the sections { $ k  I 1 5 k S 2N) form an orthonormal 
basis of XO. Since the subspace Xp,  p f 0, is orthogonal to X", we have 

(5.10) ( 4 h 4 k ) Z  = 0,  
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for k E N ( p )  and 1 5 t' 5 2N when p f 0. In particular, given two sections $ 
and 4 of x * k ,  we can express their inner product 

(5.1 1) 

as the sum of the inner product ($0~40) of the 0-mode components and the inner 
product (I) - qO, 4 - 4 0 )  of their orthogonal complements. 

In terms of expansion (5.9), the solutions of the differential equation 
D$ = ~ * a  0 (2 + T*&!I = A$ can be written explicitly. Our main concern 
is the situation where an eigenvalue A lies within the bound of SK, 1x1 < SK, 
where S and K are defined as before (see (1.9) and (4.5)). The method of separa- 
tion of variables yields the following: 

(9.4)z = ( *0,40)z + (9 - $07 4 - 4O)B 

PROPOSITION 5.3. For 1x1 < SK, a solution of the diflerential equation Dtc, = 
A$ can be written as a sum $0 + $R + $L. Thejirst term is of the form 

with Ak and Bk constants, and 4 k  and &+N as in (5.7). The second and third 
terms $R and $L are given by 

(5.13) 

which decreases exponentially to the right, and 

(5.14) 

which decreases exponentially to the left. In these formulas, the terms p(k) and 
$: stand for 

(5.15) 

(5.16) $k+ = [ ( p k  f p(k))+k (A/A?)(a4k)11 
(5.17) 

P(k)  = J(pk)* - ( h / h ) 2  > 0 ,  

$; = A 4 k  + (pk + p(k))o+k - 
Conversely, all sections of the form 

(5.18) IC, = $0 + $ R  + $ L ,  

where $0, $R,  and $L are given as in (5.121, (5.13), and (5.14), respectively, 
constitute solutions to the equation D$ = A$. For A = 0, $k+ = 2pk4k and 
$k = 2pka4k. 
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The expressions in (5.121, (5.131, and (5.14) indicate that $0 corresponds to the 
0-mode part of 4, the term $R decreases exponentially to the right, and $L to the 
left. More precisely, we have the following: 

PROPOSITION 5.4. Let J/ be a smooth section of ~ * 8  satisfying the equation 
D$ = A$ with 1x1 < 6K. Let $ = $0 + $R + $L be the decomposition of $ as in 
Proposition 5.3. Then, for r d m ~  2 1 and 0 5 t S 2r, we have 

ll$R I x ( - r  + t)ll 
(5.19) 

5 exp(-J62-02t) l l$R I z x (-r)ll 

5 exp( - Jb2-02 t ) l l $L  I z x (r)ll 

Il$L I z x ( r  - t)ll 
(5.20) 

We also have the following estimates on the 0-mode part $0 of $: 

PROPOSITION 5.5. Let $ be a smooth section of T*.? satisfying the equation 
D$ = A$ with 1x1 < 6K, and let $0 denote the 0-mode part of 4. Then for 
(A((r  + 1) 5 (;)K and -r  - 1 5 s, s‘ d r + 1, we have 

(5.23) II($o I C ~ S ) - ( $ O  I Cxs’) l l  S (Ihl/K)-Is-s’Imin(ll$ I X111,11$ I &I[) .  

Here we regard $0 I C X s and $0 1 C X s’ as sections of 8. 

For the proof of (5.20), we observe that Jb2 - (A/K)2 is positive and denote it 
by a. Then from the definition p ( k )  2 a, and 

(5.24) (J /L  1 c x ( r  - t ) )  = C e(p(k)(r-r))T*(Bk$i). 
Pk >o 

Since by (5.3), (5.14), and (5.17) the inner product ($;,+by) = 0 for k f e, with 
pk > 0, pe > 0, we have 

(5.25) 
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The proof of (5.19) follows from a similar argument. 
As for (5.22), we have 

(see (5.11)) and hence 

From (5.13) and (5.14) and the formula with pk > 0, pe > 0: 

it follows that for -r  - 1 5 s 5 r + 1 

(5.27) 

By setting t = 2r and a = ,/-, the last inequality is a consequence of 
(5.19). On the other hand, if we repeat this last stage of the argument using (5.20), 
we obtain the inequality 

and similarly 
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Adding the two inequalities (5.29) and (5.30) and using the inequality 2AB S 
A2 + B2 for A = l l $ ~  I C X rll, B = l l $ ~  I C x (-r)ll,  we have 

The condition (YT 2 1 implies that 

1 
1 - 2exp(-2ar) z - 

2 ’  

and so inequality (5.31) yields both (5.21) and (5.22). This completes the proof 
of Proposition 5.4. 

We now turn to the proof of Proposition 5.5.  Identifying C x s and C x s‘ with 
C, and using the eigenexpansion of (5.12), we have 

For - r  - 1 S s, s’ 5 r + 1, the term I(X/2hk)(s - s‘)I is smaller than 7r/2 because 

Therefore the corresponding sine term 1 sin(h/2hk)(s - s‘)I can be estimated: 

This gives us 

On the other hand, by (5.12) and the orthonormality of {&I, the sum C((Ak(* + 
IBkI2) is smaller than 111) I X21I2: 
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The proof of Proposition 5.5 follows. 
Let $ be an eigensection of E(r) satisfying D$ = A$ with 1x1 < y .  Then the 

above can be used to estimate II+ I C X [a,b](l for -r 5 a < b 5 r. By (5.19) 
and (5.201, we have for -r 5 s S r, 

(5.33) 

for any pair of (a, b) between -r and r. This last estimate will play a crucial role 
in Section 6. 

6. Convergence Results 

To prove Theorem A, we will draw a contradiction from the assumption that 
there are more eigensections $ on M(r)  than those predicted by (1 3) .  This step will 
be accomplished by establishing certain convergence results (see Propositions 6.1 
and 6.2) on a sequence of eigensections of D : r(E2(r)) - T(E2(r)) over M2(r). In 
a sense, these results can be regarded as refinements of analogous results appearing 
in [26]. 

PROPOSITION 6.1. Regard M*(r) as the submanifold Z X [-r, OIUM2 imbedded 
in M2(00) = C x (-00,0] U M2 in the obvious mannei Let { $ ( j )  I 1 5 j < a} 
be a sequence of Co3-sections of the bundle Ez(r) with the properties that 

the set { I I $ j  I M2(r)II I 1 5 J 5 00) is bounded, and lim A, = A. 
If we denote by $ ( j )  the restriction of $ ( j )  to M2(r - l), then there exists a 

subsequence {I&’)} of { $ ( j ) }  that converges to a P-sec t ion  $(a) of the bundle 
E2(r - 1) with DG(o3) = A$(m). 

PROPOSITION 6.2. Let rl 5 r2 5 . . . 5 rj + . be a monotonically increasing 
sequence of numbers with lim rj = 00. 
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(6.2) Suppose {$ ( j ) )  is a sequence of nontrivial eigensections ofE(r;)  such that 
D$( j )  = A;$, with lA;l < 6 K .  Then 

1144) I M11I2 + II$(j) I M2Il2 f 0. 

II$(j) I MI 1 1 2  + II$(j) I M2112 = 1 

(6.3) Suppose the sequence in (6.2) is normalized so that 

and lim A; = X and IAl < 6K.  Then there exists a subsequence { $ ( j ' ) }  
such that {$ ( j ' )  I M I )  and {$ ( j ' )  I M2) converge, respectively, to C"- 
eigensections $I(OO) and $ 2 ( 0 0 )  of 04 = A4 over M I  and M2. 

Suppose the limit A in (6.3) equals 0. Then $I(OO) and $2(00)  are, re- 
spectively, the restrictions of extended L2-solutions $ 1  (00)' and $ 2 ( 0 0 ) #  

of D4 = 0 over Ml(m)  and M2(00). In particulal; this means that 
[$l(m) I i3Mll is a section in P +  @ LI and [ $ 2 ( 0 0 )  1 dM21 in P -  @ L2. 
Suppose in (6.4) the limit 1imjdm IA,j(r; = 0. Then the O-mode part 
[$I(co) I i3MIl0, [ $ 2 ( 0 0 )  I aM210 of the limiting sections [t,h,(oo) I aM,], 
[ $ 2 ( 0 0 )  1 8M21 are equal in X O  = kerD. That is, they lie in LI f l  L2. 

(6.4) 

(6.5) 

An immediate consequence of (6.5) is that the sequence of bounded eigensec- 
tions { $ ( j ) )  in (6.3) has a convergent subsequence {$(j')} whose limiting sections 
$I(w) = lim,, $( j ' )  I M I  and $ 2 ( 0 0 )  = limy $( j ' )  I MZ represent matching pairs 
in W (see (2.15)). 

For the proof of Proposition 6.1, we pick a C"-function p on M2(r) such that 
0 5 P 5 1, P = 1, on a neighborhood of M2(r - 1) in M2(r) and p = 0 on a 
neighborhood of dM2(r). By considering M2(r) as a submanifold in M(r),  we have 
for each j a Cw-section q( j )  of E ( r )  that equals p . $ ( j )  over M2(r) and becomes 
0 over M(r)  - M2(r). 

For k, l  integers with 1 2 k 2 0, denote by ak the norm of (t - k)-fold com- 
mutator [D[D,  . . . [D, PI]]; that is, 

This ak is finite as D is a first-order operator. Then, it follows from standard 
interior elliptic estimates (see [2], theorem 5, p. 236) that 

In particular, for t fixed, the sequence { I l q ( j ) l l ~ )  is bounded. 
Next, we recall the Sobolev lemma: 

L;; ,+ I +Y(E(r)) G CY(Hr))  
(6.7) 
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where n stands for the dimension of M ( r ) ,  and L;;l+,+r(E(r)) is the Hilbert space 
of sections of E(r )  with respect to the Sobolev ([;I + 1 + [)-norm, and Ce(E(r))  is 
the space of [-fold differentiable sections of E(r) .  

In addition, we also have the Rellich lemma: For t’ < t ,  the inclusion 

is compact. That is, any sequence bounded in the Sobolev norm 1 1  . I l e  contains a 
strongly convergent subsequence in Lil (E(r)) .  

We apply these standard facts to q ( j )  with l = e’ + 1 and e’ e [;I + 1 + 
a. Then { ~ ( j ) }  is bounded in the Sobolev norm 1 1  . (It and therefore contains a 
strongly convergent subsequence {q( j ’ ) }  in the Sobolev norm 11 . l l p  to q(m) in 
Lf;l+,+a(E(r)). This limit q(m) belongs to the Ca-class, a 2 1, and with the limit 
of L2-norm lim 11q(j’) - q(m)11 = 0. 

Let $(m) denote the restriction of q(m) to M&- l), $(m) = q(m) I M2(r- 1). 
Then $( 00) belongs to C”-class and 

j‘-w 

On the right-hand side of (6.8), the first term [ ~ ~ D $ ( ~ ) - $ ( j ’ ) ~ ~ ~ ~ ( r - ~ ~ ] ~  approaches 
0 as j ’  - 00 because 

As for the second term of (6.8), we have 

Since lim AJ = A, the third term also converges to 0, and so by (6.5) we have 

IID$(w) - A$(m)II,w2(,-i) = 0 .  

To begin with, the section $(00) is of C1-class, but by the equation D$(m) = 
A$(m), it must be of C2-class, and therefore inductively of Ccc-class. In addi- 
tion, the convergence of q( j ’ )  to ~ ( m )  for all Sobolev norms 1 1  . IIy implies the 
convergence of $(j ’)  to $(m) in L$(E(r - 1)). This proves Proposition 6.1. 

We now turn to the proof of (6.2). Suppose the section +(j)  is nontrivial 
but its restriction to M2 has trivial norm II+(j) I M211 = 0. Then by the C”- 
property of +(j), it is identically 0 over the open set C X (r ,  r + 1) in M(r) ;  that is, 
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$ ( j )  I C x ( r ,  r + 1) = 0. Since the eigenvalues A j  are bounded by 6K,  /A;( < SK, 
we can apply (5.12) to the cylinder X x [r, r + 11 and conclude that the coefficients 
Ak and Bk in the expansion of $ ( j )  are equal to 0 for all k, Ak = Bk = 0. Over the 
whole cylinder Z x [-r, r], the vanishing of these coefficients Ak and Bk implies 
the vanishing of the section t,bj 1 C X [ - r ,  r] = 0. Thus 

(6.9) IMj) I M I  1 1 2  + IMj) I ~ 2 1 1 ~  = II$(j)I12 + 0 

as claimed. If II$(j) I M211 f 0, then (6.2) is immediate. 

inequality 

(6.10) II$(j) I MI U C X [-rJ, -r, + 11112 + II$(j) I C X [ rJ - 1 ,  rJI UM2112 S 19 

holds. That is, II$(j) I M1(l)112 + II$(j) 1 M2(1)1I2 9 19. Therefore, by (6.1), 
we may choose a subsequence {$ ( j ' ) }  from {$(;)I such that {$ ( j ' )  I M I }  and 
{$( j ' )  I M2} converge strongly in the Sobolev norm 11 . I I Y  to, respectively, C"- 
section $l(m) and +/Q('x)) with D$ = AI#J over M I  and M2.  This proves the 
assertion in (6.3). 

From (5.34) it follows that under the normalization condition in (6.3), the 

The estimates of (5.19) and (5.20) provide us with the inequalities 

11+(j)8 I c x r, 112 5 2 exp (-4J-r,) 

I I$(~)L I c x (-rJ)llz s 2exp ( - 4 d q r , )  

By taking the limit of convergent subsequences $( j ' )  I M I  and @(j ' )  1 M2 as 
j - M, we obtain +bI(m) and $2(m) defined over M I  and M2, respectively. The 
above inequalities imply ll$2(m)~ I aM2(I = l l$~(m)~ I dM111 = 0, and so 

(6.1 1) 

To prove (6.4), it remains to show that $l(co)~ is contained in the subspace 
P, and $~(w)L in P-. By (5.14) and (5.16), each eigensection $ ( j ) ~  over C X 
[-r,, -r; + 11 has the following expansion: 

1 [$ ( ; )R  1 C X [-rjt -rj + 111 = C Ake-P(k)"(pk + pk)& { Pk 

} 
(6.12) 

+ { go AkepP(k) s (A) /Ak  )( 1 / h b I # J k  

Let $ ( J R , +  denote the first sum in (6.12) and $(J8,- denote the second sum. Then 
$(j)8.+ is contained in P, and $ ( j ) ~ , -  in P-. Note that from the definition I#J~ and 
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i O + k  are both of length 1, while pk + p(k )  is approximately 2pk and I A ~ / A ~ I  is 
small for IAil small. Comparing the two terms $R,+ and $R,-, we have 

(6.13) 

because IXSI/IAkpk( 5 IAil/KS. Recall from (5.21) that I l$ ( j )~ ,+  I Z X (-rj))( 
is bounded by 4. The conclusion from this inequality is clear: As j tends to 
00, we have IASl - 0 and so in the limit the term $ 1 ( ~ ) ~ , -  becomes 0, or, in 
other words, the term +I(CO)R I dM1 is contained in P + .  Since the situation for 
$ ( j ) ,  over M2 is analogous to $ ( j ) R  over M I ,  we conclude that 3/2(00) 1 dM2 is 
contained in X O  + P -  by a similar argument. 

By the above boundary conditions together with DJll(00) = D$2(00) = 0, 
the work of Atiyah-Patodi-Singer (see Theorem 2.2) shows that $1(00) 1 dM1 is 
contained in LI d P+ and $2(00) I dM2 in L2 d P-. This proves (6.4). 

Finally, by Proposition 5.5, we have 

Under the hypothesis in (6.5), we can let j - 00 and obtain 

This completes the proof of Proposition 6.2. 

7. Proof of Theorem A: Splitting Low Eigenspaces into Three Summands 

Let q denote the sum dimV1 + dimV2 + dimL1 n L2. By Lemma 4.1, when r 
is large there are at least q nonvanishing orthogonal eigensolutions to 

D+ = A+ onM(r) 

with 1x1 < exp(-Sr/4). Moreover, the mapping P, 0 Qr of the sum V1 + V2 + 
(LI n L2) into sp(r, exp(-Sr/4)) is a monomorphism. 

In order to complete the proof of Theorem A, we need but show that for r 
large there are at most q orthogonal eigensolutions to D(+) = A .  4 on M(r) with 
1x1 < ( l / r l + E ) .  This fact will be shown in this section. 

Let 9 : C"(E(r)) - L2(E(r) I M I )  @ L2(E(r) I M2) denote the restriction of 
the space C"(E(r)) of smooth sections of E(r) over the closed manifold M(r) to 
the L2-sections on the two sides Ml(r),M2(r) of C, and let &) denote the image 
of N( r ,  r-('+')) under 9. Then Proposition 6.2 implies that 
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approaches 0 as r tends to 00. In terms of Kato's gap S (see p. 197 of [16] for the 
definition) this means 

lim s(A(r), W )  = 0.  
r-m 

As is well-known (Corollary 2.6 of [ 16]), if U and V are two finite-dimensional 
subspaces of a Hilbert space and if 6(U,V) < 1, then dimU 5 dimV. Thus for 
sufficiently large r we have dim&) 5 dim9Wr(V))  = dimW. Since the 
restriction 92 is injective, we conclude that 

dim X(r-('+") 5 dim W. 

This proves our claim. 

8. Proof of Theorem B: The Case kerD = X = 0 

The proof of Theorem B is parallel to that of Theorem A. Here we may use 
results (see (1.12)) of Muller [19] and Douglas and Wojciechowski [14]. 

Let 4 be a smooth L2-solution of D4 = A4 on M ~ ( c o )  = M I  U C x [0,03) 
with l l + l l ~ , ( ~ )  = 1 and IAl  < 6K/2. Since 4 is L2, in the decomposition of 
Proposition 5.3 we have 

(8.1) 4 1 C x [O,OO) = 4~ = CAkChk)'7r*($k+) 

as in (5.13). Consequently, the estimates of Proposition 5.4 are easy to apply for 
such 4 in V l ( k ) .  

For example, for s 2 0 (assuming r 2 2) we obtain by (5.19) and (5.21) (with 
[ - r ,  +r ]  replaced by [0,2r] and [-I, +1] with r = 0, respectively) 

and also 

The splicing map 

is defined for (+,$) E Vl(k) @ V*(k)  by the familiar formula (2.16) with the 
convention that f = 4 = 0. 
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The map ar makes for but a small change in norms. For example, if again 

(8.5) 4 E V I ( ~ ) ,  D 4  = A4 on  MI(^), 11411 = 1, 

with a similar result for unit eigenvectors in V2(k) .  
In order to verify inequality (1.18) of Theorem B, we start with an eigenvector 

4 of D on M , ( m )  satisfying (8.5). Let PA be the projection onto the span of the 
eigenvectors of D on M ( r )  with eigenvalues in the range 

expand 0) in terms of the eigensolutions dU of D on 

@r(4,0) = C d u i u  

But (D - A)@,(+, 0) vanishes off of C X [- 1,O) in M ( r ) ,  and on C X [- 1,0] it equals 
o y ~ $ ( x , s  + r) .  Hence, by (8.2) and (4.5) 

with N I  = 4Lexp(S/2) since the orthogonal projection PA has image in Pr. 
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Let {$,k}, 1 5 k 5 n( j ) ,  denote orthonormal eigenvectors of D with +jk being 
L2 and smooth, 

D4j.k = Ajk4j .k  On M j ( m ) ,  

and IA,kl d k so that (4,k) is an orthonormal basis for Vj(k). Then (8.7) holds 
for each of 4,,k. If 

then 

(8.8) 

proving inequality (1.18). 
In a similar manner, the inequality (8.6) holds for each $, ,A and in toto yields 

If we choose R I  2 2, with (4/S)exp(-S(RI - 1)) 5 5/9 and 

that is, IJPr@,.(x,y)ll* 2 ( 1 / 3 ) ~ ~ ~ , y ~ ~ ~ .  In particular, for r 2 R1, Pr@, is a 
monomorphism. This is half of statement (1.19). 

In order to complete the proof of Theorem B, we must show that any eigen- 
vector of D on M ( r )  ( r  large) with eigenvalue A satisfying 

is in the image of Vl(k) @ V2(k) under P,@,. This is to be proved for all r 2 R 
for some R. We argue by contradiction, taking r 2 R and assuming that the 
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orthogonal complement of PrQr(VI (k) 8 V2(k)) in sp(r, k + (~ /2 ) )  is not empty. 
That is, we may choose 4 E T(E(r)) with 

11411 = 17 (4,Pr@r(4I,j,O)) = ($,Pr+r(O,+2,/c)) = 0 ,  

for all 1 5 j 5 n(l), 1 5 k 5 n/2; moreover, 4 has an expansion 

(8.1 1) 
5 exp ( - j ( r  6 - 1 ) )  
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Again i,hr does not change the norm much on the span of the 4 ~ ' s .  For example, 
we use (8.1 1) to obtain the inequality 

For e f m, ( + Y , + ~ ) M ( ~ )  = 0 also, while 

5 16exp(-S(r - 1)) . 

Similarly, 

with estimates 

for j = 1 and j = 2. 
Taking r 2 R I  and t .f m (whence ( + Y , + ~ ) M ( ~ )  = O), we obtain 

With (8.13) and (8.14) in hand, we can deduce from (8.9) the desired inequality: 
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Now since 4 is orthogonal to @r(41, j ,  42,k), we get by assumption 

Therefore, Qr(4) is orthogonal to the subspace V l ( k )  @ V2(k)  spanned by the 
eigenspaces of value A with I X I 5 k, and hence 1 X I S k + E  by the choice of E .  Con- 
sequently, by the results of Muller [ 191 and of Douglas and Wojciechowski [ 141: 

(8.16) 

We may now estimate DQr(4) easily: 

C2 has a similar expression for the interval [0,1]. By (8.11), 

and similarly for a. Hence, 

By comparing (8.17) and (8.15) we obtain 

IID*r(4)I12 ( k  + ~ / 2 ) ~  + 128(T,)2(k + ~ / 2  + K)2exp(-b(r - 1)) 
5 

I I Q r ( 4 )  II 1 - [32 + 64(T,I2] exp(-6(r - 1)) 
(8.18) 

if r E R2. This inequality almost contradicts (8.16). However, it is conceivable 
that Tr  = N ( r ,  k + ~ / 2 )  grows so rapidly with r that no contradiction arises. We 
will now preclude this possibility. 
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Define a > 0 by [(k + 2&/3)*/(k + &)*I = 1 - 2a. Choose R3 2 R2 with the 
properties that 

(k  + .5/2)* + 1 2 8 ~ - '  . (n(1) + n(2))(k + 4 2  + K2)exp(-6(R3 - 1 ) )  5 (k + (2&/3))' 

and 
(k  + $ ) 2  

1 - [32 + 64. a - ' ( n ( l )  + n(2))*]exp(-s(R, - 1)) L ~ 

( k  + E ) ~  

By these inequalities, for any r L R3, if in addition T ,  = N(r,k + ~ / 2 )  5 
a - ' ( n ( l )  + n(2)), then by (8.18) we get 

This last inequality contradicts (8.16). In view of this, we arrive at a contradiction 
unless for r 2 R3 we have 

(8.19) T,. = N(r,  k + ~ / 2 )  2 a-'(n( 1) + 4 2 ) ) .  

In order to complete the argument we will use the following lemma with V = 
sp{&} = sp(r, k + 4 2 )  and W = ar(Vi (r )  @ V2(r)). 

LEMMA 8.1. Let { & } l = ( e s ~  be an orthonormal basis of a real vector space V 
with inner product, of dimension T.  Let W be a subspace of dimension n. Then 
there is a basis element & with 

where P is the orthogonal projection of +( onto W .  

Proof: Let { f m :  1 5 m 5 n} be an orthonormal basis of W .  Then expanding 
f m  gives 

Moreover, 

= c IIP4C ( I 2  
Y 

since P& = C , ( ~ $ ~ , f ~ ) f ~ .  For the T nonnegative numbers ( IPc$Y~(Ic (~T to add 
up to n, at least one must be 5 (n/T) .  

Now we apply Lemma 8.1 to V = sp(r, k + ~ / 2 )  of dimension T,. = N(r, k + 
~ / 2 )  and W = Or(VI(r) 8 V,(r)) with r I R3. By the above, necessarily T ,  2 
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Since P is the orthogonal projection on all eigenvectors of D(1) Q D(2) with 
values in the range [-k, +k], we necessarily have 

(8.21) I I D x I I ~  = ttD*r(+e)It2 - Itp*r(+e)t12 
IID*r(+e)I12. 

This last expression was estimated in (8.17). The factor T ,  occurred since 
for a general unit vector + in sp(r,k + ~ / 2 )  one must use + = Cat& with 

lap1 S T ,  by c latI2 = 1. In our case, a special eigenvector +e is used. 
Hence, the inequality (8.17) is improved to read in this case 

(8.22) 

T, 

llD*,(~$e)11~ S (k + ~ / 2 ) ~  + 128(k + 4 2  + K12 exp(-S(r - 1 ) )  

with T ,  absent. By combining (8.18) and (8.19) we get 

(8.23) l lD~11~  5 ( k  + &/2l2 + 128(k + 4 2  + K)2 exp(-S(r - 1)) 

Choose R4 2 R3 with 

( k  + ~ / 2 ) ~  + 128/k + 4 2  + K)2 exp(-S(R4 - 1)) 5 k + - ( 23E)1 
and 

32 exp( -6(R4 - 1 ) )  s a .  

Then for r 2 R4 by (8.19) and (8.20) 

= ( k  + E ) ~  
l lD~11~  (k  + 2 ~ / 3 ) ~  

5 - 
llX1l2 1 - 2a 

by the definition of a. This last inequality contradicts (8.16), thus proving that 
for r E R4, we necessarily have P,@, : V , ( r )  Q Vz(r-1 - sp(r,k + ~ / 2 )  as an 
isomorphism. This completes the proof of Theorem B. 
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Appendix A Manifolds with Cylindrical Ends 

In this appendix, we consider the low eigensections of D(r) on 

with the identification dM1 = Z X 0 as r increases. Let L C kerb  = X be a 
choice of Lagrangian subspace. Recall that 

~1 : L:(E(r), P, CB L) - L2(El(r))  

is a self-adjoint operator on  MI(^) with kernel consisting of the subspace V(L) of 
extended L2-solutions of D(r) with limiting values in L. Analogous to Theorem A 
we have the following result for the manifold M l ( r ) :  

THEOREM A.l. Given an E > 0, there is an R > 0 such that, for all r 2 R, if 
Q is an eigensection for D1 with eigenvalue h satishing ( X I  < r-(ItE), then A = 0 
and 4 is an element in V(L) .  

The proof is similar to and, in fact, easier than that for Theorem A because 
the splicing construction already yields a zero eigensection. For these reasons, we 
omit the details. 

Correspondingly, there is an analogue of Theorem B in this setting. Let ker D = 
0 and 6, A, E be chosen as in (1.14). There is the natural restriction mapping 

The proof is again parallel to that of M ( r ) .  

then have the following result: 
Let N(r,  t), sp(r, t )  be as in Theorem A except for replacing M ( r )  by M I  (r) .  We 

THEOREM A.2. Suppose H = kerD = 0, and k and E are chosen as in Theo- 
rem A. Then there is an R > 0 depending only on k, E, K ,  6 such that for all r 2 R 
we have 

(A.1) N(r,  k + ( 4 2 ) )  = dim(Vl(k) @ V2(k)) 

(replacing M( r )  by M I  (r)) .  
(A.2) Let P, be the orthogonal projection o fT(EIMI(r ) )  onto the span of eigen- 

vectors of DI on EIMl(r) with eigenvalue X satisfying 

for some j and a, 1 5 a 5 n( 1). Then the equality of subspaces sp(r, k + 
~ / 2 )  = P,S,(r, k + ( ~ / 2 ) )  holds. 
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(A.3) For x in V l ( k ) ,  then 

with N depending only on k, E, K ,  L, and 6. 
P,(x)  is an isomorphism o f V l ( k )  onto sp(r,k + (~ /2) ) .  (A.4) 

Appendix B: The Mayer-Vietoris Sequence 

As is well-known, the Mayer-Vietoris sequence for the cohomology of the triad 
( M , M l , M z .  C = M I  f l  M2) takes the form 

Using the Riemannian metric on C, we can, by the usual method of Hodge theory, 
identify H * (Z) with the space of harmonic forms 

In particular, H * (X) has an inner product (., -> defined on harmonic forms by 

Using (B.l) and the inner product (., -), we can rewrite H * ( M )  as a sum 

where Y j  = image{H*(Mj,C) - H*(Mj)), Lj = image{H*(Mj) - H*(Z)} ,  and 
Lf = the orthogonal complement of Lj in H*(C).  Note that 

and also that 

is isomorphic to the image of p. 

By the Hodge theorem, 
The above decomposition is related to Theorem A for the operator D = d + 6. 

(B.6) H *  (M(r) )  = ker D on M ( r )  
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and by [l]  

03.7) 

Our theorem asserts that for r large 

(€3.8) H *  ( M ( r )  ) 2 Y I  8 Y2 Q (Yl n T2) 

where 2, is the Lagrangian subspace inside the symplectic vector space kerD. 
Here, under the identification 

03.9) A*(T(C x R1)) .rr*(A*TC) @ .rr*(A*TC) A d s ,  

the operator D becomes (*(d - 6), ?(d - 6)) on A*  (2)  8 A* (Z), two copies of the 
forms on C. Thus we have 

(B.10) ke rb  = H * ( C )  8 H * ( C ) .  

7 ,  = L2-solution space of D on M j ( m ) .  

LEMMA B. 1. With the notation as before, we have the following: 

(a) 2 j  = Lj 8 *L, in H * ( C )  Q H * ( C ) .  
(b) * L, coincides with the orthogonal complement Lf in H" (C). 
(c) {(a, p), ( x ,  y ) }  = A y - p A x). 

Granting this formula, our formula (B.8) becomes the same as the Mayer- 
Vietoris decomposition (B.4) for M ( r ) .  Again by Hodge theory, we have 

dim(Y1 8 .Y-2 Q 2'1 f l . 2 2 )  = dimH*(M(r)) 
= dim(ker D on M ( r ) )  

and so we get the following result: 

THEOREM B.2. There exists R 2 1 such that for r 2 R, any A-eigenvalue for 
d + 6 on M(r)  with 1x1 < r--('+&) is necessarily the 0-eigenvalue A = 0. 

The above theorem should be compared with a result of Cheeger: For the 
Laplacian operator A = (d + 6)2 on functions, the smallest nonzero eigenvalue 
can be estimated from below (see [8]). 

Proof of Lemma B.l(b): If dim C = 4n, it is well-known that the restriction 
H2"(M)  - H2"(Z)  has an image of rank equal to the dimension of H2"(C).  See, 
for example, Hirzebruch's book [15] (p. 85). This argument goes over equally 
well for the total restriction mapping 

H * ( M j )  - H * ( Z )  
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in general. Thus, 

(B.ll) dim LI = (1/2) dim H* (C) . 

Now (L,, * L,) = sz Lj A * ( *Lj) = 2 sz Lj A Lj = 0, since C = d M  and coho- 
mology classes in L, n Lj are the restrictions of classes in M. Thus * L, C Lj". 
By dim Lj = dim * L,, and dim Lf = dim H * (C) - dim L, = dim L, (by (B. 1 l)), it 
follows that dim * L, = dim Lf , and so 

Proof of Lemma B.l(a): If 4 is an extended L2-solution of D+ = 0 on 
M I  (m), then 

C$IcX[o,m)=r*40+ c c k e - P k ? i r * 4 k  
P,k >o 

with b+o = 0. Here 40 = (#,@') is a pair of forms on 4Z that pulls back to 

The equation b& = 0 means 4', 4" are harmonic forms. Now A 4  = (d + 6)24 = 
0, so by decomposition by type we have 

&$ = 64 = 0 (6 = + * d * ) .  

In particular, * 4  is another extended L*-solution with 

(j: = star operator for C), and similarly for * r * &  
Hence, the harmonic forms 

4/,  *4 / /  
represent cohomology classes in H * (X) that are the restrictions of classes in 
H*(M). That is, 

since (+', 4") = (+', 5 * ( *  4")). By (B.ll) 

LI @ (*LI) c 21 c H * ( C )  @ H * ( X )  

dimLI @ *LI = 2dimL1 = dimH*(C) 

while because 21 is Lagrangian, d i rnZ l  = 
* L I  = 21 as claimed, and similarly for 9 2 .  

dim(H*(C) @ H * ( C ) ) .  Hence LI @ 
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Finally, Lemma B.l(c) is a direct computation using that o(+’,+’’) = ( - + + I / ,  

54’) for +’,+” of pure type and using Proposition 2.1. 
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