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Abstract 

This the second part of a three-part investigation of the behavior of certain analytical invariants 
of manifolds that can be split into the union of two submanifolds. In Part I we studied a splicing 
construction for low eigenvalues of self-adjoint elliptic operators over such a manifold. Here we go 
on to study parameter families of such operators and use the previous “static” results in obtaining 
results on the decomposition of spectral flows. Some of these “dynamic” results are expressed in 
terms of Maslov indices of Lagrangians. The present treatment is sufficiently general to encompass the 
difficulties of zero-modes at the ends of the parameter families as well as that of “jumping Lagrangians.” 
In Part 111, we will compare infinite- and finite-dimensional Lagrangians and determinant line bundles 
and then introduce “canonical perturbations” of Lagrangian subvarieties of symplectic varieties. We 
shall then use this information to study invariants of 3-manifolds, including Casson’s invariant. 0 1996 
John Wiley & Sons, Inc. 
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1. Introduction and Statements of Main Theorems 

This is the second part of a three-part investigation of spectral flow, finite- 
and infinite-dimensional settings for Lagrangians, canonical perturbations of La- 
grangian subvarieties, and applications to invariants of 3-manifolds, including Cas- 
son’s invariant. In the present, primarily analytic part, we will use “static” results, 
recalled below, from Part I on the decomposition of the eigenspaces of low eigen- 
values of a fixed operator. Here the focus will be the “dynamic” situation of a 
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family of operators and the new analytic issues this entails. Some of our dynamic 
results are expressed here and in Part I11 in terms of Maslov indices of families 
of Lagrangians. The present treatment is sufficiently general to encompass the 
difficulties of zero-modes at the ends of the parameter families as well as those 
difficulties coming from the phenomena of “jumping Lagrangians.” In Part 111 we 
shall compare infinite- and finite-dimensional Lagrangians and determinant line 
bundles and then introduce “canonical perturbations” of Lagrangian subvarieties 
of symplectic varieties; we shall then apply this information to the study of in- 
variants of 3-manifolds, including Casson’s invariant. A basic reference for the 
needed definitions and results with a list of numerous earlier sources on Maslov 
indices is [7]; these are reviewed in Section 4 below. 

Below we prove decomposition theorems for the spectral flow of a smooth 
parameter family {D(u): 0 I u I l} of first-order, self-adjoint elliptic operators 
D(u) over a closed, smooth manifold M that is split into two pieces M I  and M2 
by a smooth codimension-1 submanifold C: 

(1.1) M = M~ u M ~ ,  c = M~ n M~ = a ~ ,  = m2. 
This treatment includes the general case when the family D(u) has zero-modes at 
the ends. 

As in Part I, we assume that D(u) is of “Atiyah-Patodi-Singer type.” That is, 
on a collar neighborhood C X [ - 1, + 11 of C = C X 0 in M, the operator D(u) is 
of the special form 

Here s is the coordinate [-I, + 11, 7r is the projection of C X [-1, +1] onto C, 
ou is a bundle automorphism over C, and &) is a self-adjoint elliptic operator 
over C. More explicitly, 

D(u) : T(E)  - T(E) ,  E over M 
6 ( u )  : r(E) - r(& E over c { nu : i? - i? over C. 

(1.3) 

for bundles E and 
r.2. T(E)  denotes the smooth sections of E, and similarly for r(i?). 
must be determined by its restriction to C; that is, the map 

( 1.4) 

must be injective. This uniqueness property is is satisfied by the Dirac operator 
and the other natural geometric operators as in our applications [l]. The basic 
approach is to replace M by a stretched version M ( r )  of the same manifold 

M ( r )  = MI U C x [ - r ,  r] u M:! 

with inner products and with E I C X [- 1, + 11 identified with 

In addition, we assume throughout that the kernel of D on M j ( r ) ,  j = 1,2, 

kerD - L2(E 1 C), 4 + 4 1 C 
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obtained by first cutting M open along C and then regluing the pieces back to 
C x [-r, r] with E x (-r) and dMI identified and with X X ( r )  and dM2 identified. 
Defining E(r) - M(r) by E(r) I M, = E I M, and E(r) 1 C X [-r,r] = x * E ,  the 
operator D(u) on E over M naturally extends to define 

h 

D(u) = D(u)(M(r)): T(E(r)) - T(E(r)) over M(r) 

by setting D(u)(M(r)) on M, as before and on C x [-r,r] by (1.2) again. 
Similarly, we get operators D(u)( j )  = D ( u ) ( M j ( m ) )  : T(Ej(m)) - T(E,(m)) 

and bundles E j ( m )  - M j ( m )  for the manifolds with infinite cylindrical ends 
 MI(^) and M 2 ( m ) ,  

obtained by attaching C x [O, m) to M I  along C x 0 =  MI and attaching C x 
(-m,O] to M2 along C x 0 = dM2. Here E j ( m )  over C x (t,rn) equals x * E ,  and 
D(Mj(m)) is given by (1.2) over C X (e,rn) again. 

As proven in Part I, for r sufficiently large, all the eigenvalues A of D(u)(M(r)) in 
the range [ -( l/r*), +( l/r2)] are exponentially small ( 1  X I  < exp( -(6/4)r)). Hence, 
we may fix Ro > 0 such that: 

(1.6) 
For all r 2 Ro, +(l/r2) is not an { eigenvalue of D(O)(M(r)) or of D(l)(M(r)). 

Since +( l/r2) is not an eigenvalue of D(O)(M(r)), D(l)(M(r)) for r 2 Ro, there 
is a well-defined (+ l/r2)-spectral flow of D(u)(M(r)) : 0 I u I 1. This counts 
with signs and multiplicities the number of eigenvalues of D(u)(M(r)) : 0 5 u I 1 
crossing A = +(l/r2). (See Section 3 for a more explicit definition of spectral 
flow.) The main results of this paper give formulas for this (+ l/r2)-spectral flow 
( r  2 Ro) in terms of spectral flows of self-adjoint operators associated with the 
restrictions D(u) I M I ,  D(u) I M2, and a Maslov index term. 

We now formulate these results in several different settings. The simplest 
setting is when the tangential operator 6 ( u )  on C has no zero-modes, and so we 
begin with this case: 

(1.7) kerD(u) = (0) for 0 I u I 1 .  

By the continuity of the spectrum of 6 ( u )  (see [4], 17.1), we may choose 6 > 0 
such that the spectrum of 6 ( u )  lies in (--m, -6) u(6, 00) for all u (0 I u 5 1). 

In this situation, by the work of Muller [13] and Douglas and Wojciechowski 
[9], the self-adjoint extensions D(u)( j )  of D(u) acting on the smooth L2-sections of 
E,(m) - Mj(m) has pure point spectrum of finite multiplicities and no essential 
spectrum in the range of eigenvalues A with 

(1.8) 

h 

4 2  5 x 5 6/2. 
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In particular, assuming (1.7) and taking 6 as above, we may choose E > 0 so 
that E < 6/2 and D(O)(j), D(l)(j), j = 1,2, have at most the eigenvalue A = 0 for 
A in the range [-&, +&I. Thus by the continuity of the eigenvalues of D(u)( j )  in 
the range [-6/2, +6/2] we have a well-defined 

(+&)-spectral flow of D(u)(j): 0 5 u s 1 . 

This spectral flow is defined despite the essential spectrum outside the band 
[-6/2, +6/2] and is independent of the choice of E > 0 above. 

THEOREM A. I f  kerfi(u) = Ofor 0 I u I 1, andfor Ro, 6, and E chosen as 
above, and r 2 Ro, then 

[ (+ I/r2)-spectral flow of ~ ( u ) ( ~ ( r ) ) :  o I u I 1 on ~ ( r ) ]  

equals the sum C:=, [(+&)-spectral flow of D(u)(j):  0 5 u zs 1 on M j ( m ) ]  . 

Under assumption (1.7), the subspace P+(u),  given by the L2-closure of the 
span of the eigensections 4 of f i (u)4 = a4 with a > 0 varies continuously with 
respect to u. Hence, we may introduce the continuous family of operators over 
Mi induced from D(u) on M: 

(1.9) D(u)(Mj):L:(E I M j ,  P+(u))  - L2(E I M j ) .  

As in Part I, L2(E I M,) are the L2-sections of E I M, and L:(E I M,,P+(u) )  is the 
Sobolev L:-completion of the space of smooth sections $ of E I Mj - M, such 
that IF, I dMj  lies in P+(u) C L2(k)  = L2(E I 13Mj). 

As explained by Atiyah, Patodi, and Singer [2], these operators D(u)(Mj) are 
Fredholm. By assumption kerfi(u) = 0, so they are self-adjoint. By continuity 
of eigenvalues [4, 17.11, we can and do take 6 > 0, E > 0, as above and so that 
E > 0 satisfies the additional constraint 

D(0)(Mj). D(l)(M,) ,  j = 1,2, have at most c A = 0 as an eigenvalue in the range [-&, + & I .  (1.10) 

With this choice of E > 0, the 

is well-defined and independent of E.  It counts the number (with signs and mul- 
tiplicity) of eigenvalues of D(u) I M j  crossing A = + E .  

Our second theorem relates the spectral flows of D(u)( j )  over M,(m) and of 
D(u)(Mj) over M j  under the assumption (1.7). 
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THEOREM B. Ifker D(w) = 0 for 0 I u I 1, then with Ro, 6,  and E chosen as 
above and for all r 2 RO the following equality holds: 

[ (+c)-spectral flow of ~ ( u ) ( j ) : o  5 u I I on ~ j ( 0 3 ) ]  

= [(+l/r’)-spectral flow of ~ ( u ) ( ~ , ) ( r ) :  o 5 u I I on ~ , ( r ) ]  . 

By combining Theorems A and B we have, under assumption (1.7), a sum 
formula for the spectral flow of D(u)(M(r)) on M ( r )  in terms of the spectral flows 
from two sides of the splitting. However, in general, the dimension of kerb(u), 
0 5 u S 1, may not be trivial and in fact may have discontinuous jumps as u 
varies. To treat this situation, we partition the parameter space {u : 0 I u 5 1) 
into subintervals 0 I < a l  < ... < a, = 1 such that over [a;,a;+~] there are 
gaps in the spectra of D(u) : a1 I u I a;+]. That is, there is a number K; 2 0 
and 6 > 0 such that no eigenvalue A of S ( u )  for any u with a; 5 u I a;+l lies 
in the range (K; ,Ki  + S), (-K; - 6, -Ki). Let X ( u ; K i )  denote the vector space 
spanned by the eigensections +, of b(u)+, = p j 4 ,  with Ip,l 5 K;. By the spectral 
decomposition theorem, X ( u ; K ; )  varies smoothly for ai I u I a;+l. 

Let P+(u;K; )  and P - ( u ; K ; )  denote the L*-closure of the span of the eigensec- 
tions 4, with b(u)+, = pj+, where p, > K; and p, < -K;, respectively. Hence, 
there is a direct-sum decomposition 

(1.1 1) 

By choosing RO large we may ensure that for each of the operators D(a;)(M(r)), 
i = 0,1,. . . , n, there are no eigenvalues +l/r2 for all r 2 Ro. With r 2 Ro, the 
(+l/r2)-spectral flow of D(u)(M(r)):O 5 u s 1 is then the sum 

h 

L2(f?) = P-(u;K;)  8 X ( u ; K ; )  @ P + ( u ; K ; ) .  

n- 1 

C(+l/r’)-spectral flow of [D(u)(M(r)): ai I u I u;+ I  I .  
i=O 

Hence, it suffices to concentrate on a fixed subinterval a; I u I a;+l in which the 
following property holds: 

For all ai I u 5 a;+ I ,  D(u) has no eigenvalues in the { range (Ki ,Ki  + 61, (-Ki - 6, -K;) with 6 > 0, K ;  2 0 .  
(1.12) 

Let Ll(u) and &(u) be Lagrangian subspaces in ker b ( u )  as defined in (2.15) of 
Part 1. In a similar fashion, the subspaces Ll(u) 8 [P+(u)  n X(u;K;)l  and k ( u )  8 
[P-(u)  n X ( u ; K i ) ]  are Lagrangians in X ( u ; K ; )  for ai 5 u 5 Our general 
spectral flow theorem can be stated with reference to any choice of smoothly 
varying Lagrangian pairs TI(u),22(u),  a; I u 5 a;+l, that satisfy the endpoint 
condition: 

21 (u)  = LI (u)  8 [P+(u) n X(u; K i ) ]  if u = ai, u = a;+ I 

2 2 ( u )  = k ( u )  8 [P-(u)  n X ( u ; K ; ) ]  if u = ai,u = 
(1.13) 

h 

. 
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For these choices of Lagrangians we may introduce the self-adjoint Fredholm 
operators (see Section 2) 

by applying D(u) to the Lf-closure of the smooth sections +b of E I M j ,  j = 1,2, 
whose restrictions +b I dMj lie in the specified subspaces T~(u) o P+(u;Ki) and 
T ~ ( u )  o P-(u;Ki ) ,  respectively. 

h 

THEOREM C. For the interval ai I u I ai+l with D(u) satisfying condition 
(1.12), for Ki and Ro as above and any choice of smoothly varying Lagrangians 
T , ( u )  in X ( u ; K i )  satisfying the endpoint conditions (1.13), for all r 2 Ro the 
[(+l/r2)-spectraZJow ofD(u)(M(r)):ai 5 u I ai+l] equals 

Here E' is chosen so that the eigenvalues of D,(u;T,(u)) at u = ai and ai+l and 
in the band [ -E' ,  E ' ]  contains at most the zero eigenvalue. 

One may derive many variants of Theorem C by using different choices of 
T j (u ) ,  the properties of the Maslov indices (see Section 3), and the following 
theorem relating the Maslov index directly to spectral flow. 

We fix an operator D of Atiyah-Patodi-Singer type. Suppose K 2 0 is chosen 
so that D enjoys the following property: 

Any L2-solution of D+b = 0 on M,(co),  j = 1,2, that decays 
faster than exp(-KlsI) on C x [O, 00) and I: X ( -co,O],  

respectively, vanishes identically on M j ( c o )  . 
(1.15) 

By assumption (1.4), such a K 2 0 can always be found. Take D(u) = D for 
0 u I 1 ,  the constant family, and consider any smooth choice of Lagrangians 
2 1 ( u )  and T 2 ( u )  in the symplectic space X(u;K) .  

In this way we get a family D j ( u ; T j ( u ) )  of self-adjoint operators (defined by 
(1.14)) on M j ,  taking D(u) = D for 0 5 u I 1 with j = 1,2. As explained 
in Section 2, there are Lagrangians Ll (u ,K)  and L&K) in X ( u ; K )  such that 
ker Dj(u, Tj(u)) = T j ( u )  n Lj(u, K ) .  

THEOREM D. For the constant family of operators D(u) = D, 0 S u Z 1, we 
choose K as in (1.15) and T j ( u ) ,  0 5 u 5 1, varying smoothly in X ( u ; K ) ,  and 
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choose E > 0 so that A = 0 is the only eigenvalue in the range 
and Di( l ) ,  j = 1,2. Then 

{(+&)-spectral flow of D j ( u ; T j ( u ) )  : 0 5 u 5 1 

equals Mas{(L,(u;K),Tl(u));O 5 u 5 1) for j = 1 and equals Mas{(T*(u), 
L*(u;K)) : 0 S u 5 I }  for j = 2. 

In Section 2 we study the behavior of the Lagrangians Ll(u) and L~(u), which 
may have jumps in X(u), and we also study their generalizations Ll(u;K)  and 
L2(u;K). In Section 3, we give an explicit definition of the &-spectral flow and 
then obtain direct proofs of Theorems A and B. In Section 4, we review the 
needed properties of a mild generalization of the classical Maslov index for a 
path of Lagrangian pairs. These were derived in our paper on the Maslov index 
[7]. In Section 5 the results of Section 3 are used to prove Theorem D and then 
Theorem C in the special case when kerb(u) = 0, 0 5 u 5 1. The general case 
of Theorem C is settled in Section 6. 

The results in th s  paper have been announced in [8], and a general introduction 
with references and acknowledgments is given in Part I [6]. An earlier effort in 
this direction appeared in a paper of Yoshida [16], which presented some state- 
ments on spectral flow and manifold decomposition. Our work was motivated by 
applications of the present results to the Casson invariant of three-dimensional 
manifolds, some of which are treated in Part 111. During the final stage of prepar- 
ing the manuscript, we received the preprints of L. Nicolaescu [14] and B. Boos 
and K. Wojciechowski [5], in which related, though different, results in the set- 
ting of Dirac operators are discussed. From a technical viewpoint, their methods 
are quite different from ours. One of the reasons is that they have used special 
features of Dirac operators to overcome several technical difficulties, for example, 
by using the Kato selection criterion, whereas we address these issues differently. 
They have used an infinite-dimensional Lagrangian formulation, while we employ 
in Part I1 a finite-dimensional one. Moreover, we treat the difficult case of zero- 
modes at the ends. We reformulate our results in an infinite-dimensional setting 
in Section 8 below. ' Various finite- and infinite-dimensional perspectives will be 
compared in the context of determinant line bundles in Part 111. 

2. Jumping Lagrangians Ll(u) and Lt(u) in X(u) via Symplectic Reduction 

For a smooth parameter family D(u), a 5 u I b, of first-order, self-adjoint 
elliptic operators on M of Atiyah-Patodi-Singer type (i.e., (1.2) holds), we have a 
pair of Lagrangians L l ( d  and h ( u )  in X(u) = kerS(u). As described in Part I, 
Lj(u)  has the following description: Consider the kernels of the operators defined 

I We first heard of such a formulation from T. Mrowka. 
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by the restrictions D(u) I Mj 

By [2] these are Fredholm operators, and the kernel of D ( U ) ~  is the restriction 
of L2-solutions of D(~)~lc,  = 0 on Mj(co), while the kernel of the &), is the 
restriction of extended L2-solutions of D(u),lc, = 0 on Mj(co). The extended 
L2-solutions are those solutions of D(u)lc, = 0 on M j ( c o )  that are of the form 

with fi(u)~$l = on C X [0, co) and 2 x (- 00, 01, respectively. Let T[O]  denote 
the orthogonal projection of L2(8)  = L2(E I C) onto X(u)  = ker&). In view of 
(2.2) we have 

as a subspace of X(u)  = ker&) (identifying dMj with C). 
In particular, we have a short exact sequence 

def 0 - vj(u)=kerD(u)j - kerfi(u)jxLj(u) - 0 

with p($ )  = n[O](lc,/dMj). Here vj(u) consists of the restrictions to Mj of the 
L2-solutions of D(u)lc, = 0 on Mj(co). Moreover, Lj(u) is a Lagrangian subspace 
of X(u)  under the symplectic pairing {a, p}  = (x ,  a(u)y)z. Finally, recall from 
Part I that for any Lagrangian subspace W C X(u)  = ker&), by imposing the 
boundary conditions on lc, I dMj given by P+(u)  d W (respectively, P-(u)  d W ) ,  
we get self-adjoint Fredholm operators: 

by applying D(u) to the domain. 
These definitions and results have a natural generalization. Fix K 2 0. Because 

a(u)6(u) = -S(u)o(u) and a(u)* = -a(u) from the fact that D(u) and &) are 
self-adjoint and from (1.2), the subspace 
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is a symplectic vector space under {a, PI = (a, a(u)P)z. Here {4j) is an ~rthonor- 
ma1 basis of eigensections of D(u) with 

h 

(2.4) $uMj = p j 4 j .  

There is an orthogonal decomposition 

(2.5) L2(i) = L2(E I C) = P + ( u ; K )  f€J X ( u ; K )  f€J P - ( u ; K )  

with P+(u;K)  and P-(u;  K )  constituting the L2-completions of the span of 41 with 
pl > K and p/ < -K, respectively. For K = 0 we regain X(u), P+(u) ,  and P-(u) .  
The symplectic vector spaces x(u; K) also have subspaces L,(u; K) generalizing 

From D(u) I M I  and D(u) 1 M2,  we have the following operators with the 
Lj(u)* 

prescribed boundary conditions: 

Note that for K = 0, we regain h), and D(u)j, j = 1,2. Since D(u)j, j = 1,2, 
is Fredholm and the domains of the operators in (2.6) differ from the domain of 
D(u); by finite-dimensional vector spaces, it follows that all the operators in (2.6) 
are Fredholm. By K 2 0 and the description of kerD(u)l, kerD(u;K)I consists 
of the restrictions of L2-so1utions (I of &)(I = 0 on M l ( c o )  such that 

(2.7) ( 1 1  C X [ O , ~ ~ ) =  C a / e - u l S a * 4 , ,  S Z O ,  
u,>K 

and kerD(u;K)Z consists of the restrictions of L2-solutions (I' of D(u)#' = 0 on 
M2(00) such that 

(2.7') (I' I c x (-co,01 = C e - p ' s m * 4 /  , S 5 0 ,  
! 4 < - K  

We set v l (u ;K)  = kerD(u;K)I and v ~ ( u ; K )  = kerD(u;K)2, generalizing q(u) and 
v2(u). These are the restrictions of L2-solutions that decay faster than exp(-K\s\) 
as Is1 - +m. 

Let a[K] denote the orthogonal projection of I@) onto X ( u ; K ) .  Define the 
subspaces LI (u; K )  and L2(u; K )  in X(u, K )  by the formula 

(2.8) 
Ll(u;K)  = {s[KI(# I O M , )  I # in ker&;K)I} 

Lz(u;K) = {~T[K] ( ( I  I OM2) I JI in ker&u;K)d. 
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By definition there are short exact sequences 

0 - zq(u;K) - ker&;K)IEL,(u;K) - 0 
(2.9) 

0 - ~2(u;K)  - ker&;K)~EL2(u;K) - 0 

with pj(+)  = 7r[K](+ I 8 M j )  (C = dM1 = 8M2). Corresponding to the known 
properties of Ll(u) and L2(u) in X(u)  (the K = 0 case), we have the following: 

PROPOSITION 2.1. For K 2 0 
(a) b ( u ; K ) j  and D(u;K)j  with j = 1,2 are Fredholm mappings with kernels 
consisting of smooth sections. 
(b) The subspaces L,(u; K) are Lagrangian subspaces of the symplectic vector 
space X ( u ; K )  under {u,p} = (a,o(u)p)d. 

Granting Proposition 2.1, it is natural to inquire about the relationship between 
the Lagrangians Lj(u,K) in X ( u ; K )  and Lj(u) in X(u)  = X(u;O). This is best 
expressed in terms of two symplectic reduction mappings 

(2.10) P I ,  p2: LagWu;  K ) )  - Lag(X(u)), 

which carry Lagrangians in X ( u ; K )  to Lagrangians in X(u).  
Let Al(u;K) and Az(u;K)  denote the span of the + j  with 0 < p, I K and 

-K 5 pj < 0, respectively. These two subspaces are isotropic subspaces under 
{.,.}. We define p1 and p2 using the isotropic subspace Al(u;K) and A2(u;K). 
respectively. In view of the isomorphisms 

X ( u ; K )  = Al(u;K) O X ( U )  O A~(u ;K)  

the reduction mapping pi sends Lagrangians in X ( u ; K )  to Lagrangians in X(u).  
Here [annihilator of Aj] = {x I {x,Aj} = 0). 

The reduction mappings pj  are defined by 

(2.1 1) pi(;) = [E  n (annihilator of Aj(u;K))] /; fl A j ( u ; K ) .  

As explained in Guillemin and Sternberg's book [ 111, p, carries Lagrangians to La- 
grangians and is discontinuous only where dim(;nAj) jumps. From this definition 
of p j ,  it is not difficult to verify the following: 

PROPOSITION 2.2. p j :  Lag(%"(; K ) )  - Lag(X(u)) sends the Lagrangian 
Lj(u; K )  to Lj(U). 

Our Theorem C serves to avoid these difficulties. However, we may ex- 
pect jump phenomena in L,(u) even when dimX(u) is constant and X(u)  varies 
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smoothly. This is because for K = 0, the space vj(u) may be nontrivial. At these 
places a jump of L,(u) occurs by the theory of symplectic reduction. 

2.1. Proof of Proposition 2.1 

The four operators of (a) have domains differing by finite-dimensional sub- 
spaces from the domain of D(u)l and D(u)2, respectively. Since these are Fred- 
holm and defined by D(u), the four operators are Fredholm. The smoothness of 
the kernel solutions now follows from standard elliptic methods. This proves (a). 

As for (b), we use the self-adjointness of D = D(u) over M to get the basic 
relation 

(2.12) 
(D4,4/)M, - ( 4 m f ) M ,  = 4 4  I aM1, &4’ I dMI) 

= 44 I dMI, 4‘ IdM1) 

for I) and I)’ sections over M As explained in Part I, this follows from integration 
since the symbol of D I C x [ - r , r ]  = r e g ( $  + .rr*D(u)) in the $ direction is 
&). (Here C x [-1,0] C M I  with  MI = C X 0.) The basic relation over M2 is 

h 

(2.13) 

for sections Ic, and 4’ over M2. 

we have (by 4 I dMI and qbf I aM1 being elements of P + ( u ; K )  @ X ( u ; K ) ) ,  

(D$,rlr’)M* - (4,D1CIf)M* = +{4 I dM23 4’ I dM2) 

Applying (2.13) for I,$ and I,$‘ in ker&;K)I with 9 = r[Kl+ and 4~~ = 7r[K]4’, 

0 = ( W , + ’ ) M ,  - (4,D4‘)MI = 4 4  I dMI,*’ I dM2h 
(2.14) = -{.rr[Kl(4 I aMI), T[Kl(4’ laM2)h 

= -{4,4’h ’ 

Thus LI  (u; K )  is an isotropic subspace in X ( u ;  K ) .  In particular, 

1 
2 
1 
2 

dimLI(u;K) I - dimX(u;K) 

= -[dim Xlu)] + dim A I (u; K )  . 

Hence, in order to complete the proof that L , ( u ; K )  is Lagrangian, it will suffice 
to show that 

(2.15) 
1 
2 

dimLI(u;K) 2 - dimX(u) + dimAl(u;K). 

LEMMA 2.3. The image of &)I = &;O)I in L2(E 1 M I )  is precisely the 
orthogonal complement V I  (u) of ker D I ( U ) .  

This lemma is an immediate consequence of the assertion in [2] that D(u)I is 
exactly the adjoint of &)I. 



880 S. E. CAPPELL, R. LEE, AND E. Y. MILLER 

Let {+j}15,5a, with &)+, = be an orthonormal basis of Al(u;K). Then 
{o(u)+j}~~,~~ is a basis for A*(u;K). Choose smooth sections $ j  of E I M I  with 

Here .rr(O,K] is the orthogonal projection on Al(u;K). (n[-K,O) is defined simi- 

In particular, (v l (u) ,D(  xy=l ~ j $ , ) ) ~  = 0 imposes precisely [dimvl(u) - 
dim vl(u,K)]  conditions on the number {cj\. Thus by Lemma 2.3, we may find at 
least a - [dim vl(u) - dim vl (u; K)] linearly independent combinations {c j }  with 

larly). 

for some $ I dM1 E P+(u)  + X(u) .  Note that 

(C cj$j - $) E ker (u; K )  

and r [ - K ,  O)(c c,+, -6 I  MI) = C c,o+j. This argument proves that the image 
of Ll (u;K)  in o(u)Al(u;K) = A2(u;K) under 

has dimension 2 {dim[A~(u;K)] - [dimvl(u) - dimvl(u;K)]). 

provide 
(via i+b y 7r[K](+ I  MI)), which project to 0 under + - 7r[-K,O]+. 

On the other hand, the extended L2-solutions (by Ll(u) Lagrangian in X(u))  
dimX(u) + [dimvl(u) - dimvl(u,K)] independent elements in Ll(u,K) 

By combining these two lower estimates we have proved 

1 
2 

dimLl(u;K) 5 - dimX(u) + dimA+(u;K), 
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and so Ll (u;K)  is indeed Lagrangian and the inequalities are equalities. 
As a conclusion we have also proven that 

(2.17) + K , O ) L I ( u , K )  = {w E A2(u;K)  such that {w, VI(U) I ~ M I ) z  = 0 )  

The case of L2(u) is similar: 

(2.18) 

with n(0, K ]  the orthogonal projection onto Al(u;K)  in L2(,$). 

n(O,K]Z&,K) = {w E Al(u ,K)  such that {w, 4 u )  I a M 2 ) ~  = O }  

3. Definition of (€1, &Spectral Flow and Proofs of Theorems A and B 

For the proofs of Theorems A and B, it will be convenient to have an explicit, 
rigorous, and yet flexible definition of spectral flow. Let D(t) : a 5 r 5 b be 
a one-parameter family of real, self-adjoint operators such that for some fixed 
6 > 0 the total spectrum of D(t) in the range of eigenvalues A with 1x1 < 6 is 
finite-dimensional and has no essential spectrum. Furthermore, after taking into 
consideration multiplicities, these eigenvalues A with I XI < 6 vary continuously 
with respect to t. Let E I  and ~2 be real numbers with I E I  I < 6 and 1 ~ 2 1  < 6 such 
that E I  is not an eigenvalue of D(a) and ~2 is not an eigenvalue of D(b). Intuitively, 
the (el, &z)-spectral flow of D(t) : a 4 r 4 b is the number, counted with sign and 
multiplicity, of eigenvalues A of D(t)  in the range 1x1 < 6 that cross the line 1 
joining (a, q) to (b, ~ 2 ) .  As in [2], the eigenvalues A of D(t)  can be displayed as 
spectral curves {(t,A,) I a 5 t 4 b} in [a,b] X (-6,s) and the spectral flow is 
the sum of intersection numbers of these curves with 1. If E L  = e2 = E > 0 as in 
Theorems A through D, then the line 1 is obtained by moving the x-axis upward to 
a horizontal line an &-distance away. We simply refer to this (+E,  +&)-spectral as 
the (+&)-spectral flow. From the definition, it is easy to see that the (+&)-spectral 
flow is additive with respect to path addition of operators. In contrast, this is no 
longer the case in the ( + E ,  -&)-spectral flow that occurs in Floer’s application of 
index theory [lo]. Furthermore, in our application, E > 0 is chosen so that at the 
endpoints the operators D(a) and D(b) have no eigenvalues in [-&, E ]  - (0). 

To give a precise definition of (el,  spectral flow, we need the following: 

DEFINITION 3.1. 
(a) For any t o  in [a,b], a value X, is called an excluded value of D(t0) if X, is 

not an eigenvalue of D(to). 
(b) Given two excluded values E I  and ~2 for D(a) and D(b), a system of excluded 

values of D(t) ( t p ,  &) from (a, E I )  to (b, t2)  consists of a partition a = to < f l  < 
. . . < t ,  = b of [a, b] together with values X I , .  . . , A,, in (-6,s) such that Xi is an 
excluded value of D(t) for all t in [ti- l ,  ti], i = 1,.  . . , II. 

By the continuity of eigenvalues of D(t) (see (17.1) in [4]), the excluded value X, 
of D(t0) is also an excluded value of D(t) for all t in a small-interval neighborhood 
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[to - 6, cg + S ]  of to. From the compactness of [a, b] ,  it is easy to see that a system 
of excluded values (ti, Xi) always exists connecting two given values (a, E I )  and 
(b, ~ 2 ) .  

DEFINITION 3.2. Given a system of excluded values ( t p ,  At), e = 1,. . . , n, of 
D(t), a 5 t 5 b, from E I  to ~ 2 ,  we define at to be +1, 0, or -1 depending on 
whether A p +  I < Ap, A ~ + I  = A t ,  or & + I  > At, e = 1,. . . , n, respectively. We also 
define N ( t )  to be the number (counted with multiplicities) of eigenvalues A of 
D(ae) between X p  and At+ I .  Then 

h 
3 

Figure 3.1 

Observation I (Independence from Subdivision): Subdividing an interval [tt,  
tc+ ] by inserting a point t * , tt < t * < t p +  I ,  and using the same excluded value A 
on [ t p , t * ]  and [ t * , t e + l ]  yields a new system with the sum xcwtN(e )  unchanged. 

Observation I1 (Independence from Excluded Values): Taking a given interval 
(te, t p + l ) ,  e f 0 or n - 1, and replacing the given excluded value Xe+l of Nt) ,  t p  5 
t S t p + l ,  by another excluded value p of D(t)  yields a different system. By the 
continuity of eigenvalues, 

{number of eigenvalues of D(tp) between p and Xe+ I 1 
= {number of eigenvalues of D(tp+ 1 ) between p and he+ I } . (3.2) 

Hence the new system has the same sum Catlv(4) as the old because their dif- 
ference is (51) times the difference between the two sides of (3.2). 

The (~,,~2)-spectral flow of DO), a S t 5 b, is independent of the system 
{(it, Xu)} chosen. This fact follows from repeating the above two arguments and 



SPECTRAL FLOW AND MASLOV INDEX 883 

because any two systems are related to a cofinal one by inserting new points and 
changing the excluded values. 

Observation I11 (Additivity): Let < ~2 < ~3 be excluded values of D(t)  
for t = a, b, c, a < b < c. Then 

[(q,~+spectral flow of D(t) : a 5 t S cl 

(3.3) = [(el, &&spectral flow of D(t)  : a 5 t 5 bl 
+ [(c2, q)-spectral flow of D(t) : b 5 t 5 c] 

To verify the above, we only have to choose a system of excluded values of 
D(t) on [a, c] with t y  = b and Ap = E:! for some e .  The restriction of this system to 
[a, b] and [b, c] give excluded values on these intervals for which (3.3) is evident. 

Observation IV (Homotopy Invariance): Let D(t,s)  : a 5 t 5 b, 0 S 5 5 1, 
be a two-parameter family of real self-adjoint operators with finite-dimensional 
total spectra in the range of eigenvalues A, I XI < 6, and with no essential spectrum 
in this range. Suppose the spectra of D(t, s) in the range 1x1 < 15 vary continuously 
with respect to (s, t). Further suppose that q(s )  and ~ ( s )  are continuous functions 
of s, 0 S s Z 1, with values in (-6,b) such that q ( s )  and 4 s )  are excluded values 
of D(a, s) and D(b, s), respectively, for all s. Then 

[ ( & I  (O), cz(O))-spectral flow of D(t, 0) : a 5 t 5 b] 
= [(~~(1),~2(1))-spectral flow of D(t, 1) : a s t s b ] .  

Note that given so, 0 5 so 5 1, there exists a system of excluded values 
(ti, hi), i = 1,. . . , n, of D(t, so) from E I ( S O )  to c2(sO). From the continuity of eigen- 
values of D(s, t ) ,  this system can also serve as a system for D(t, s) when Is  - SO I 
is sufficiently small. Furthermore, we can make sure that the multiplicities N ( 8 ,  s) 
are unchanged. Hence the (&,(s),&2(s))-spectral flow of D(t,s) : a 5 t 5 b is 
locally constant as a function of s. The proof of (3.4) follows immediately. 

From the above homotopy property of spectral flows, it is easy to see that our 
definition agrees with many others in the literature, for example, [2] and [4], which 
were defined in more restrictive settings. 

(3.4) 

3.1. Proof of Theorem A 

By the continuity of eigenvalues and by the assumption kerb(u) = 0 for 
0 5 u 5 1, we may choose 6 > 0 such that b ( u )  has no eigenvalue in the 
range (-6, +S) for 0 5 u 5 1. From the work of Muller [13] and also Douglas- 
Wojciechowski [9], the self-adjoint extension D(u)( j )  of D(u) lMj (m) ,  j = 1,2, 
has total spectrum of finite dimension and no essential spectrum in the range 
of eigenvalues in (-S/2,6/2). Since the eigenvalues vary continuously, we may 
choose E > 0 and Ro satisfying the condition on Theorem A of Part I with 
] E l  < 6/2, l / R o  < E .  
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Since E is an excluded value of D(O)(j) and D(l)(j), the (+&)-spectral flow of 
D(u)( j )  : 0 5 u 5 1 is well-defined for j = 1,2. Choosing a partition 0 = a0 < 
a1 < ... < a, = 1 of [0,1] and lAtI < 6/2 such that (at,Ae) are systems of 
excluded values for D(u)( j )  : 0 5 u 5 1, j = 1,2, we compute the (+&)-spectral 
flow of D(u)( j )  by formula (3.1). The answer is C:If a t N ( t , j ) ,  where at = +1,0, 
or - 1 and N ( 4 ,  j )  equals the number of eigenvalues of D(at)( j )  between A t  and & + I .  
Again by continuity of eigenvalues, we may choose 6‘ > 0 with I ( 1  A t  1 )  - 6’ I < S / 2  
so that whenever A is in the band A t  - 6’ 5 A 5 A t  + 8, it is an excluded value of 
D(u)( j )  for all u, at-l 5 u 5 at (4  = 1,. . . , n - 1, j = 1,2). 

Appealing to Theorem B of Part I and especially to the uniform estimate for R, 
we may choose R I  2 R” such that for all r 2 R I ,  all eigenvalues A of D(u)(M(r)) 
with IAl < 6K/2 are within k of an eigenvalue of D(u)( j )  I  MI(^) or D(u) I 
M * ( m )  for all u, 0 5 u 5 1. This value k may be taken as small as required-in 
particular, smaller than b‘-by increasing R I  . 

Thus for r 2 R I ,  A t  will not be an eigenvalue of D(u)(M(r)) for any u with 
at-1 5 u 5 at. In particular, the (+&)-spectral flow of D(u)(M(r)),  0 5 u 5 1, is 
well-defined and may be computed from the system of excluded values (at, Xu). 
By Definition 3.2, this is given by C%iI a t N ’ ( t ) ,  where at is as above and ”(4)  
is the number of eigenvalues of D(at)(M(r)) between A t  and A t +  1 .  

Once again appealing to Theorem B of Part I, we may choose R2 2 R I  so that 
for each of the operators D(at)(M(r)),  the eigenvalues of D(ac)(M(r)), r 2 R2, 
in the range XU, Av+l  are exponentially close to those of D(at)(l) I M l ( o o )  and 
D(at)(2) I M 2 ( m )  in the range [At ,  A t + l ]  - [At  - S’, A t  + 6’1 - [&+I - S’, Ae+l + 6’1. 
By taking R2 large, we can make sure that those exponentially close eigenvalues 
do indeed lie in the band (At ,  A t + l ) .  Applying Theorem B of Part I one more time, 
we have N ’ ( t )  = N ( t ,  1) + N(t,2) for r 2 R2. Thus z a t N ’ ( t )  = CatN(t,  1) + 

Finally, by Observation IV, the $-spectral flow of D(u)(M(r)) : 0 5 u 5 1 for 
r 2 R? equals the (+&)-spectral flow once R3 2 R2 is chosen so that there are 
no eigenvalues of D(a)(M(r)) and D(b)(M(r)) between E and f .  This holds for R3 
sufficiently large by Theorem B of Part I. Thus xa tN’ (e )  is the $-spectral flow 
of D(u)(M(r) )  for r 2 R3. The proof of Theorem A is complete. 

C atN(4 ,  2). 

3.2. Proof of Theorem B 
Since the eigenvalues of the operators D(u)( j )  : 0 5 u 5 1 vary continuously, 

we may, as before, form a system of excluded values {at,  At}. By using the uniform 
estimates of Theorem 9.2 in Part I, which relates the eigenvalues of D(u)( j )  on 
M,(u) to D,(u) I M,(r ) ,  j = 1,2, we may repeat the above argument to conclude 
Theorem B. 

4. The Maslov Index 

To proceed further, we need some of the basic properties of a mild general- 
ization of the classical Maslov index. Because their proofs can be found in [7] 
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together with references to numerous earlier sources and comparisons with other 
invariants, we simply cite them here. Let V be a finite-dimensional vector space 
with a nondegenerate, skew-symmetric, bilinear pairing 

(4.1) {.;}: v x v - R .  

That is, {., .} is a symplectic pairing. Given such a symplectic structure, we may 
choose a complex structure J and a Hermitian pairing (., .) : V x V - C on V with 
{a,B} = Re(Ja,P) = -Im(a,P). A Lagrangian L C V is a real subspace with 
dimRh = n = dimwV such that {., .} vanishes on L x L. Equivalently, L is the 
real span L = R{ei ,..., e,} of an orthonormal basis {el ,..., e , }  of the Her- 
mitian vector space {V,J,(.,.)}. In particular, we obtain an action of the uni- 
tary group U ( n )  on the space Lag(V) of Lagrangians by letting L - u . L = 
[W{uel,. . . , ue,}, u E U(n). This action is transitive, and the isotropy subgroup 
with respect to a fixed Lagrangian Lu is O(n), and so Lag(V) = U(n)/O(n). Define 

(4.2) @ : LagV - S' 

by = (detu)2. It is well-known that @ induces an isomorphism of fun- 
damental groups. When we have a loop of Lagrangians, this isomorphism @* : 
.rrl(LagV) - Z provides us with the definition of Maslov index. 

More generally, let f ( t )  = ( L l ( t ) , L ~ ( t ) ) ,  a 5 t 5 b, be a continuous family 
of pairs of Lagrangians Ll(t)  and L2(t) in V. As in [7], the Maslov index pv(f) is 
defined to be an integer with the following properties: 

Property I (Affine Scale Invariance): 
t - kt + e, k > 0, yields p d f )  = pv(f .+I. 

Composing f ( t )  with an affine map + : 

Property I1 (Deformation Relative to the Endpoints): If f ( s ) ( t )  = (Ll(s, t ) ,  
L2(s, t ) ) ,  0 5 s 5 1, a 4 t 4 b, gives a continuous deformation of one family f ( 0 )  
of Lagrangian pairs to the other f(1) so that (Ll(s, a), L& a)) and (LI (s, b), Lz(s, b)) 
are independent of s, then pv(f(0)) = p"(f(1)). 

Property I11 (Path Additivity): If a 5 x 5 b, then pv(f) = pv( f l [a ,x l )  + 
pv(f I [x, bl). 

Property IV (Symplectic Additivity): If f : [a, b] - (Lag VI2 and g : [a, b] - 
(Lag WI2 are continuous and f o g : [a, b] - (Lag(V CB W))2  is their direct sum, 
then pvtew(f a3 g) = p d f )  @ pww.  

Property V (Symplectic Invariance): If : V - V is a continuous family of 
symplectic automorphisms of V ,  then pv[+, . f ( t )  : a 5 t 5 b] = p d f ) .  

Property VI (Normalization): Let V be the complex plane C with (z, w) = z3 
and let 

f ( t )  = (R{1}, R{e"}), 

g(t) = (R{1}, R{ePi'}), 
- ~ / 4  s t 5 7r/4 
- ~ / 4  s t 4 7r/4. 
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Property VII (Nullity): If Ll( t )  n L2(t) varies smoothly with respect to t and 
has constant dimension, then pv(f) = 0. 

Property VIII (Reparametrization Invariance): If + : [c, d] - [a, b] is a home- 
omorphism with +(c) = a, +@) = b, c < d, and a < b, then p ~ ( f .  +) = pv(f). 

Property IX (Symmetry and Reversal): Given f(t) = (Ll(t) ,L*(t))  : a d t S b, 
we let g ( t )  = ( L ~ ( t ) , L l ( t ) )  : a S t 5 b and h : [-b, -a] - (LagV)2 be defined 
by h(t)  = b ( - t ) , L 2 ( - t ) ) .  Then p d g )  = -pv(f) + [ h d a )  - h12(b)l and pv(g) = 
-pv(f)  where h12(t) = dimR(Ll(t) n L2(t)). 

Given three Lagrangians L I ,  L2, and L3 in V, the triple Maslov index 41, L2, L3) 
is defined to be the signature of the quadratic forms 

Property X (Triple Maslov Index): Let Ll(t) ,  L2(t), and L&), a 5 t 5 b be 
three continuous families of Lagrangians in V, and let 

Then 

where hjk(t) = dimLj(t) n Lk(t). 

Note: In [7] the Maslov index is defined only for smooth paths (LI (t), Lz(t)). The 
extension to continuous paths as above is standard ( eg ,  smooth approximation). 

5. Proofs of Theorem D and of Theorem C for the Case ker&) = 0 

Before proceeding with the proof of Theorem D, let us first clear up some 
notational matters. The operator D(u) 1 M j  is constant under the assumption of 
Theorem D; therefore the symplectic vector X(u; K )  and the Lagrangians Pt(u; K )  
are independent of u. Nonetheless, we use the same notation and regard them as 
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the fibers at u of corresponding vector bundles over [0,1]. In addition, as the 
situations for j = 1 or 2 are more or less identical, we concentrate on j = 1 first. 

Let 2 1 ( u )  : 0 5 u 5 1 be a smooth one-parameter family of Lagrangians in 
X(u, K). The kernel of D I  (u; 21 (u)) consists of smooth solutions @ to D@ = 0 
for which \k I Z lies in 21 (u) @ P+(u;  K). Therefore, kerD1 (u; 21 (u))  is contained 
in the kernel of the Fredholm operator 

B(u;K)1 : L2(E 1 MI, P + ( u ; K )  @ X ( u ; K ) )  - L2(E I M I ) .  

By (2.9) and the choice of K in (1.13, it is clear, given our assumption (1.4), 
that under the restriction to C, ker D I  (u; 21 (u)) is mapped isomorphically onto 
L ~ ( u ; K )  n =w,K), 

Now, any smooth path of Lagrangians 21 (u), 0 5 u S 1, in V = X ( u ; K )  can 
be smoothly deformed relatively to endpoints 21 (a) and 21 (b) to a composite of 
smooth paths on smaller intervals with one of the following properties: 

(5.2a) 2’l(u) : a S u S b with L l ( u , K )  n2’1(u) = (0) for all u. 

(5.2b) 2’1(u) : a 5 u 5 b = Ll(u ,K)  f l  2 1 ( u )  of fixed dimension, say k, and 
varying smoothly with respect to u. 

(5 .2~)  With respect to a symplectic basis {el,.  . .,e,,ael,. . . ,ae,} of V, the 
fixed Lagrangian Ll(u, K )  = R{e/ : 1 5 1 5 n )  and 21 (u)k = eVuU R{el : 1 5 
1 5 k }  @ aR{e/ : k < 1 d n}, where k is fixed and u varies in the interval 

(5.2d) The same as in (5 .2~)  except that we let u vary between -7r/4 and 0. 
By the additivity of (+&)-spectral flow and the Maslov index, it suffices to prove 

Theorem D in each of the four cases of (5.2). In view of (5.1) and Properties 11, 
111, and VI, both the (+&)-spectral flow and the Maslov index vanish in cases 
(5.2a) and (5.2b). Hence Theorem D is proven in these cases. By splitting off 
the component e - u u R { e ~ )  in 21 (u)k, first for 1 = 1 and then for 1 = 2,. . . , k, we 
can deform paths (5 .2~)  and (5.2d) into a composite of paths of the following two 
forms: 

[o, T/41. 

(5.3a) T 1 ( u ) ;  : o s u 5 7r/4 

where 
(5.3b) 21(~)ft : - ~ / 4  5 u 5 0 

Therefore, it will suffice to verify Theorem D for these special paths (5.3a) and 
(5.3b). 

of 
E I M I  such that D@[ = 0 and the restriction @I I C in X(u;  K )  @ P + ( u ; K )  projects 

Given the symplectic basis el as above, we may choose smooth sections 
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onto el in R ( u ; K ) .  After taking appropriate normalization of el, we may assume 
that (Q/ ,Q/ )M,  = 1. Because 

where m(u) = 0 for 0 < IuI 5 7r/4 and m(0) = R{ek}, by (5.1) the kernel of 
DI(U;~?I(U):) for all u > 0 is spanned by *I ,  1 5 1 < k. At u = 0, this kernel 
has a jump in dimension and is spanned by the sections !J!l ,  1 5 15 k. 

By the continuity of eigenvalues of D ~ ( u ; . Y ~ ( u ) f t ) ,  we can choose E > 0 and 
Au > 0 so that A = 0 is the only eigenvalue of D1(0;2’(0)ft) for eigenvalue X 
with 1x1 5 E ,  and A = +E are excluded values of Dl(u;=Y~(u)f t )  for all u with 
IuI d Au. Hence the sum of multiplicities of eigenvalues of Dl(u;2’,(u)ft) in the 
range [--E, + E ]  is k. By standard spectral decomposition, the projection n(u) onto 
the space spanned by the eigenvectors with eigenvalues in [--E, + E ]  is smooth with 
respect to u. On the other hand, by construction we have 

(5.4) R{Q/; 1 d 1 < k} c Image of n(u), 
where the dimension on the right-hand side equals k. Hence, the orthogonal com- 
plement of R{Q/ : 1 d 1 < k }  in Image of n(u) is one-dimensional and varies 
smoothly with respect to u. By (5.1) and by the orthogonality of eigenvectors of 
different eigenvalues, this one-dimensional subspace is spanned by a unit eigen- 
vector Qk(u) with 

for 0 5 IuI 5 r/4. In this manner, we have exhibited a smoothly varying 
eigensolution Qk(u), IuI d Au, with the property 

(5.6) 

and Image of n(u) = Span{*, : 1 5 1 < k }  8 R{Qk(u)}. 

Remark 5.1. Splitting off such a smoothly varying eigensection is crucial to 
our argument, given the known difficulty with multiplicity in general. We have 
employed this device of splitting off the eigenvectors one at a time to avoid these 
problems. 

Recall from Part I the following result: 
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where f and g are sections of E 1 M I .  In particular, taking f = 9k and g = 9k(u),  
we obtain by (5.6) 

Differentiating and setting u to 0 yields 

By the Lagrangian property of the solution space and the fact that {ek,e,} = 
(ek, eel) = 0, we can express $k(u) I C as the sum C al(u)e/ + b(u)CUuek, where 
a,(u) and b(u) are smooth and ar(0) = 0, b(0) = 1. Thus we have 

and so X’(0) = (oek,oek) > 0. This argument proves the (+&)-spectral flow of 
DI (u; 2’1(u)ft) is + 1 for the interval [0, Au] and 0 for [-Au, 01. On the other hand, 
since e-uuR{ek} rotates the subspace R{ek} in R{ek, aek} in the positive direction, 
the Maslov index of ( L l ( u , K ) , Y ~ ( u ) f t )  is +1 on [0, Au] and 0 on [-Au,O]. This 
proves Theorem D for the case j = 1 .  

If we replace M 1 by M2 in the above argument, we must replace LI (u; K )  by 
L2(u;K) and DI by D2, which uses X ( u ; K )  @ P - ( u ; K )  as the boundary condition. 
For sections f and g of E I M2, we obtain in place of (5.6) the equality 

(Df ,g)M* - (f,Dg)M* = { f  I c, g I c> 
= ( f  I L a I Z) 

because of the change in orientation. It follows that the (+&)-spectral flow of 
&(u;2’2(u)ft) is 0 on [O,Au] and -1 on [-Au,O]. From Section 4, we have 

Mas[(eiuR, W) : a 5 u S b1 
= Mas[(W, e?”) : a 5 u 5 b] 

where R is the Lagrangian subspace represented by the x-axis in R2 = @. Applying 
this formula to evaluate Mas(YZ(u)ft,b(u;K)), we obtain -1 on [-Au,O] and 0 
on [0, nu]. This completes the proof of Theorem D. 

5.1. Proof of Theorem C When kers&)=O 

Let the constants Ki, E, and R ,  and subintervals [ai ,a i+~]  be given as in the 
statement of Theorem C. Since we work on one interval at a time, we may assume 
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h 

that [a ,b]  = [ai,ai+l] and K = Ki. In the case where kerD(u) = 0, we have the 
subspace Lj(u) = 0 by definition, and so the Lagrangians T j ( u )  are the same as 
[P?(u)  n X(u; K ) ]  at the endpoints as j = 1 or j = 2. In fact, we may deform the 
path .Yj(u) in X ( u ; K )  relative to the ends to a composite of three smooth paths 
(with -t for j = 1, j = 2, respectively): 

(5.8) Tj(u)l in Lag(X(u;K)) connecting P,(a) n %(a;K) to P,(a) n X(u;K) ,  
(5.9) the path P?(u) n X ( u ; K ) ,  a 4 u s b, and 
(5.10) Yj(u)2 in Lag(%(b;K)) connecting P,(b)  r l  X ( b ; K )  to P,(b)  f l  X(b;K).  

In other words, in the middle segment 2’j(u) = P,(u) = P z ( u )  fl X ( u ; K ) ,  and at 
the two end segments the T j ( u )  connect up with the given boundary condition. 

By the additivity properties of the Maslov index and spectral flow, we can break 
down our calculation along the three paths described in (5.8) through (5.10). Since 
by Property VII Mas{P+(u) f l  X ( u ; K ) ,  P-(u) fl X ( u ; K ) }  = 0, we have 

On the other hand, by Theorem D, 

Here al = a, a2 = b. Therefore, calculating on M I  and M2, we have 

2 

;= 1 
{(+&)-spectral flow of Dj(U;‘2j(u)) + Mas(2’I(u), 22(u))} 

(5.1 1) 
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By definition, we have for r 2 RO 

1 
--spectral flow of D,(u)(Mj(r))  
r2 

1 
r2 

= --spectral flow of Dj(u,P,(u) n X ( u ; K ) ) ( M j ( r ) )  

= (+&)-spectral flow of Dj(u,P,(u) n X ( u ; K ) ) ( M j ) .  

The last equation holds because kerD,(u,P&) fl X(u; K ) ) ( M j ( r ) )  is indepen- 
dent of r ,  and these operators on M j ( r )  vary continuously with r .  Thus, we may 
replace 3 and Mi(') by E and M j ,  respectively. Hence, the sum of spectral flows 
in (5.11) is the same as 

which by Theorems A and B equals (l/r2)-spectral flow of D(u) on M ( r )  for 
r 2 Ro. This proves Theorem C when kerD(u) = 0. 

h 

6. Proof of Theorem C in the General Case (kerbb) Varying) 

The proof of the general case of Theorem C is carried out by a reduction to the 
situation treated above where ker b ( u )  = 0. We employ an explicit deformation of 
pseudodifferential operators that takes D to an operator with a vanishing kernel. 

Let the operators D and b be fixed and given as in (1.2), and let K 2 0 be 
a constant chosen as before. Let L be a Lagrangian subspace in X(K),  X ( K )  = 

Span{+ I b+ = p+, Ipl < K } ,  and let {+I,. . . ,4[} be an orthonormal basis of 
L, 2 t  = dimX(K). Then the orthogonal projection T L  of r(E) onto L is given by 
the kernel 

Y 

~ I ( x , Y )  = C+j~r) 8 +j(y)  
j =  1 

or, in other words, 

P 

rL( f ) (x )  = C +j(x) .  ( + j ( y ) , f ( y ) ) z  . 
j =  I 
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Similarly, the orthogonal projection of r(k) onto JL has the kernel 

This is because J = 0 is an isometry and TJ.L  = J . TL  . J - ’  . 
Associated with L is a deformation b(L ,  s, E )  of the operator D defined by 

Note that if + is an eigenvector of 6, &I = p+ with eigenvalue p, (pl 2 K, then 
+ continues to be an eigenvector of b ( L ,  s, E) ,  b(L ,  s, .s)+ = p+, with the same 
eigenvalue. In other words, restricted to the subspace Span {+ I b+ = p+, lpl 2 
K}, we have b(L , s , e )  = b. On the other hand, if 4, is a linear combination 
c;=I ae+je of eigenvectors + j e ,  D+je = p&je with eigenvalues pe in the range 
Ipel < K ,  then 

&L s, ~ ) + j  = C ae(pe + Es)+je 
e= I 

n 

M ,  s, E ) J + ~  = C ae(pe - E s ) J + j t  
e= I 

In particular, ker b(L ,  1, K )  = 0, and so b ( L ,  s, K) gives a deformation from b 
to b ( L ,  1, K )  with zero kernel. Note that b(L,  1, K) is an elliptic, pseudodifferential 
operator with the same symbol as b. 

In a similar manner, we define a deformation D(L, s, E )  of D. To simplify the 
discussion, we may assume that the imbedding Z x [ - 1,1] ++ M extends to X x 
[-2,2] -MandXX[-r-l,  r + l ]  -M(r)extendstoZX[-r-2, r+2]  - M ( r ) .  
Let h : M ( r )  - R be a smooth cutoff function such that 

n 

h I M ( r )  - Z x  [ - r -  1, r + 11 = 0 
for (x , t )  in Z x [ - r  - 1, r + 11 
for (x , t )  in Z x [ - r  - 2, -r - 11 

f(1 - [ t  - r - 11) for (x, t )  in Z x [ r  + 1, r + 21, 

(6.2) 

where f : [0,1] - R is a smooth, increasing function with f ’ ( t )  2 0, If’(t)l 5 
3, f I [0, :I = 0, f I [3/4,11 = 1. Let X denote the finite kernel on M ( r )  given 
by 

X I M(r)-ZX [-r- 1, r +  11 = 0 
.x I Z x [ - r -  1, r +  11 = h.T*(X’ -X2)  (6.3) 

Then the deformation D(L, s, E )  is defined on L2(M(r),E) by the formula 

(6.4) D(L, s, E )  = D + S E X .  
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It is apparent that D(L, s, t )  is a self-adjoint, elliptic, pseudodifferential operator of 
first order and so enjoys all the standard properties of elliptic analysis. In addition, 
over the cylinder X X [ - r ,  r ]  

(6.5) 
d 
as 

D(L,s , t )  I X x [ - r , r ]  = 0 (- + 7 T *  .&L,S,&))  

and so it is a deformation of D to D(L, 1, K )  with ker b(L, 1, K )  = 0 via operators 
of Atiyah-Patodi-Singer type. 

In the following, we will fix the cutoff function h throughout, and so b(L,  s, E )  

and D(L, s, t )  depend solely on L. They will be referred to as the deformation 
associated with L. If L(u) varies smoothly in X(u, K ) ,  then we obtain accordingly 
a two-parameter family of operators b(L(u), s, E), D(L(u), s, E) .  As an application of 
these deformations, we give a proof of Theorem C under the following assumption: 

(6.6a) Suppose, in addition to K being an excluded value for b(u) ,  a; 5 u 4 
u;+1, we have an excluded value K’ for &), a; S u S ai+l, with K‘ 2 2Ki. 
(6.6b) ker &u;) = ker B(ai+ 1 ) = 0. 
In this case, by the continuity of eigenvalues of b(u) ,  we may choose 6 > 0 

such that 
kerb(u) = 0 for a; 5 u 5 a; + 6 

kerb(u) = 0 for a;+l - S d u d u;+I .  

Now choose a smooth function C : [a;,a;+l] - R such that C(u) 2 0, C I 
[ui, a; + 6/21 = C I [a;+[ - 6 / 2 ,  a ;+!]  = 0, C I [a; + 6, a;+l - 61 = 1. Define a 
two-parameter family of operators on X by 

&u, S) = B(u) + C(u)sK(X1 - X2).  

At s = 0 we have the original family of operators &), and at s = 1 a new family 
b(u, 1) with zero kernel. Similarly, we have 

D(u, S) = D(u) + C ( U ) .  s K { h ~ * ( X l  - Xz)}, 
A &  i 

which interpolates between D(u) at s = 0 and the family D(u, 1) at s = 1 with 
kerB(u, 1) = 0. Furthermore, throughout the deformation 

Dbi, s) Nail 7 D(ai+ I 9 s) Nai+ I )  

&a;, s) = &a;), B(@+ 1,s) = &a;+ I ) . 
and 

In Theorem C, all the spectral flows and Maslov indices remain unchanged 
when we replace the constant K by K’ and the Lagrangian .=Yj(u) by 2 , ( u )  0 
[ X ( u ; K ’ )  f l  P?(u;K)].  Thus it suffices to treat this case. The advantage of using 
K’ is that we have a well-defined elliptic boundary problem for D(u, s) throughout 
the deformation. First, the spectra of b ( u )  with eigenvalues p, 1p1 B K‘ ,  is 
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unchanged by b ( u ,  s) and so K’ is an excluded value of b ( u ,  s), 0 5 s 5 1. Second, 
let X(u,  s, K ’ )  denote the symplectic vector space spanned by all the eigenvectors + of b ( u ,  s) with eigenvalues ,u in the range lpl 5 K’, 

X ( u , s , K ’ )  = Span{+ I b(u , s )+  = p+, l,ul 5 K ’ } .  

Then, even though the operator b ( u , s )  varies and along with it the eigenvalue 
p for + E H(u,s ) ,  it keeps the symplectic space X ( u , s , K ’ )  invariant. In par- 
ticular, we can use the family of Lagrangians 3 j ( u )  o [X(u ;K’ )  f l  P?(u;K’)] in 
X(u,s ,K’)  to define the operators Dj(u , s ,T j (u ) )  as in (1.14). Since these defor- 
mations Dj(u, s, 3, (u ) )  and D(u, s ) (M(r) )  do not change the operators at u = a; or 
a;+ I ,  the spectral flows and Maslov indices are unchanged. In particular, in the 
proof of Theorem C, we can replace the families D(u)(M(r)),  D,(u, 3 , ( u ) )  by their 
counterpart D(u, l ) (M(r ) ) ,  D,(u, 1; Lj(u)) at s = 1. 

The advantage of using the family D(u, 1) is that kerb(u, 1) = 0 for all u E 
[ U ; , U ; + ~ ] .  To be sure, D(u, 1) are not differential operators but belong to the larger 
class of pseudodifferential operators to which the analysis of Atiyah-Patodi-Singer 
extends easily. Therefore the argument of Part I remains valid, and the proof of 
the special case of Theorem C in Section 5 can be applied to D(u, 1) word for 
word. This proves Theorem C under the assumption (6.6). 

Next we eliminate the first part of the assumption (6.6), thus proving Theorem 
C with only the assumption (6.6b). For each point uo E [a;,ai+l] we may choose 
a number K’(u0) that is an excluded value of b(ug)  with K’(u0) > 2K. By the 
continuity of eigenvalues of b ( u ) ,  this number K’(u0) is also an excluded value 
of b ( u )  for u lying in a small neighborhood of ug. Since the interval [a;,a;+l] is 
compact, there exists a subdivision a; = bo < bl < b2 < ... < b, = U ; + I  of 
[a i ,a ;+l ]  and numbers K ’ ( j )  > 2K such that K ’ ( j )  is an excluded value of b ( u )  for 
u in [bj ,  bj+ I ] .  In other words, condition (6.6a) is satisfied for all the subintervals 

Keeping everything fixed at ai, a;+ 1 ,  we may smoothly deform the path of 
Lagrangians 3 1 ( u )  and 3 2 ( u )  to a new path that satisfies the n + 1 constraint 
conditions 

[bi,b;+il. 

T I  (u) = L~ (4 o [P+ (4 n X(U;  ~ 1 1  
T2(u) = L ~ ( u )  o [P- (u )  n X ( U ; K ) ]  

at each endpoint u = bo, . . . , b,. Since this deformation leaves unchanged the 
quantities in the desired equation of Theorem C, we can replace the old path by 
the new one satisfying these additional constraints. Suppose we have ker b ( u )  = 0 
for u = bo, . . . , b,. Then by the previous argument Theorem C holds for each of 
the families D(u) 1 [b,, bj+i] ,  j = 0, . . . , n - 1, and by the additivity of the spectral 
flows and Maslov indices the assertion holds over the entire interval [a;, ai+l]. 

Because of the assumption (6.6b), the failure of ker b ( u )  = 0 can occur only at 
some of the interior points bj; then we subdivide the intervals [bj-l,  bj], [bj, bj+l] 
into four pieces [b j - I ,  bj - E ] ,  [bj - E ,  bj], [bj, bj + E ] ,  and [bj + E, bj+i]. There are 
rescaling diffeomorphisms p : [bj- I ,  bj - E ]  - [bj- I ,  b,] and p : [b, + E ,  bj+l] - 
[bj ,  b j + l ]  between the intervals, and via these diffeomorphisms we can introduce 
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families of operators D(p(u))  over the intervals [b;-l,b; - E ] ,  [b; + ~ , b j ] ,  which 
are basically the same operators as before. Now choose a Lagrangian L in the 
symplectic vector space X(b,; K( j ) ' ) .  Then, as discussed before, there is a one- 
parameter family of operators D(L, s) that brings D(L, 0) = D(b;) to the operator 
D(L, 1) with kerb& 1) = 0. By letting s = (u - b; + E ) / E ,  b, - E d u d b;, we 
obtain the deformation D(L, (u - b; + E ) / E )  as defined over [bj - E ,  b;]. On the other 
hand, over [b;, b, + E ]  we reverse the deformation by considering D(L, (-u + b; + 
E ) / & ) ,  b, 5 u 5 bj + E ,  which brings D(L, 1) back to D(L, 0) = D(b;). Repeating 
this process at all the interior points b;, j = 1,. . . , n, we obtain a new family of 
operators connecting D(a;) to D(ai+ I ) .  Since the deformations over [b; - E ,  b;] and 
[b;,b; + E ]  are the reverse of each other, the spectral flows and Maslov indices 
introduced by them cancel out. As a result, all the quantities in the equation of 
Theorem C are the same for the new family. However, by introducing D(L, 1) at 
b; we have made sure that the condition (6.6b) is valid at these points. Hence, by 
the argument in the previous paragraph, Theorem C holds whenever we have the 
vanishing condition (6.6b) at the endpoints a;, a;+ I. 

To complete the proof of Theorem C, it remains only to address the situation 
when either ker b(a ; )  or ker &a;+ 1 )  is not zero. In fact, by subdividing [ai, a;, I 1 
and using the additivity property of both spectral flow and the Maslov index as 
before, it is enough to treat the situation in which only one of them is nonzero. 
Again by the reversal property of spectral flow and the Maslov index, we might 
as well assume that kerD(ai) f 0 and kerb(ai+I) = 0. 

In addition to the above observations, the homotopy invariance and additivity 
properties of the spectral flows and Maslov indices allow us to deform the family 
of operators D(u) and Lagrangian pairs ( 2 1 ( u ) ,  &(u)) into any prescribed position. 
In other words, it suffices to show that, given fixed operators (D, b) as in (1.2) with 
ker D f 0, there exists a single family (D(u), &u)) of operators and Lagrangians 
(21(u) ,22(u))  such that Theorem C holds. To describe this family we choose 
K > 0 so that A = 0 is the only eigenvalue A of D with I A l  5 K .  With respect 
to the symplectic space X = k e r b  and Lagrangian subspaces L1 and L2, we may 
choose a symplectic basis {+j,o+, I 1 5 j 5 n = dimX/2} of 2' such that 

(a) {+, I 1 5 j 5 a = dim(L1 r l  L2)} is a basis of LI n L2 

(c) L2 = eR{+, : 1 5 j 5 a}  @ R{e?"'J+, : a + 1 5 j 5 n} 
(6.7) (b) Ll = @R{+, 1 5 j 5 n} 

(see [7]). Here ePual+, stands for a counterclockwise rotation of +J by an angle 
a,, 0 < a, < T ,  and -v gives the complex structure. Take new angles p, with 
0 < pJ < a;, a + 1 9 j S n, and consider the Lagrangian 

L = e ~ { + ,  : + I  5 j 5 a}  @ R{e-'41+, : a  + 1 5 j s n) 

in X, which satisfies 

(6.8) (a) L,  n L = L2 n L = LI  n L2 
(b) L,  n o~ = L~ n OL = (0). 
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As before, we have a one-parameter family of operators (D(L, u), b(L ,  u)), 0 5 
u 5 1, associated with L. Define the operators D(u)* and b ( u ) *  by 

D(L, u) for 0 d u 5 E 

D(L,E) for E 5 u S 1 
D(u)* = { 

and 
for 0 5 u 5 E 

D(L,E) for E 5 u 5 1. 

PROPOSITION 6.1. There exists E, 0 < E < 1, and a continuous family of 
Lagrangian pairs (81(u),92(u)) : 0 S u 5 1 in X ( u ; K )  satisfying (1.13) so 
that Theorem C holds for  the family of operators D(u)* and Lagrangian pairs 
(3, (u), 3 2 b ) ) .  

We first take E < 1/2 so that &u)* has no eigenvalue +K. Indeed, the re- 
striction b ( L , u )  I L = Ku(Zd) and b(L ,u)  1 aL = -Ku(Zd). Hence b ( L , u )  has 
eigenvalues +Ku in the band [-K,K] and X ( u ; K )  = @R{+j I 1 5 j 5 n}. 

Given a section 9 of E - M ( r )  such that D9 = 0 on M I  u C x [ - r , r ] ,  we 
have the eigenexpansion: 

(6.9) \k I E x [ - r  - 2,r + 21 = 7r* ( x a j + j  + bja+j) + @.  

Here aj and bj are constants, D@ = 0, and @ I C x t has an expansion only 
involving eigensections 4e of b, B+e = A&, with 1 X, I > K. Recall that 

D on M l ( r )  - Z x [ - r  - 2, r + 21 
a (g + a*b) + uKhr(s)(xL - K , L )  D(L’u) = on C X [ - r  - 2, r ]  { 

with hr(s) = 0 off C x [ - r  - 3/2, r + 3/21 , hr(s) = 1 on C X [ - r  - 1, r + 11 , 
Ih:(s)l 5 4, and hr(s) B 0. It is straightforward to verify that if we define 9 ( u )  
by 

on C x [ - r  - 2, r + 21 

9 onM1, 

$Nu) = 

thenit satisfiesD(u)*q(u) = OonMlUCx[-r-2, r+2].Inasimilarmanner, we 
can alter the section 9 on M 2  U C x [ - r  - 2, r + 21 so that it satisfies the equation 
D(u)*$(u) = 0 there. Thus we have an explicit description of the Lagrangians 
Ll(u,K) and k ( u , K )  : 

L1 (u, K )  = {exp[-uKA]aL @ exp[uKA]7r,&51 
(6.10) 

L*(u,K) = {exp[uKAl7r~ @ exp[-uKAl7r,~} Lr 
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where A = Jyf h,(t) dt = JZrr; h,(t) dt. 
Note that by (6.8a) we have 

(6.1 1) L~ n L~ (u, K )  = L2 n L 2 h ,  K )  = LI n L~ 

Since, at u = 0, LI (u, K )  = LI and b ( u ,  K )  = L2, we can choose E > 0 sufficiently 
small so that 

for 0 5 u 5 E. With E chosen in this manner, we define (21 (u), 22(u))  to be 

(6.13) 

and for E S u 5 1 we define (91(u),92(u)) to be any smooth Lagrangians in 
X interpolating between ( L ~ ( E , K ) , ~ Q ( E , K ) )  at u = E and ( L , X )  at u = 1. With 
respect to D(u)* , the above choice of Lagrangians (81(u), 92(u))  also satisfies the 
boundary condition (1.1 3), and so we are in a position to test Theorem C for this 
special example. 

First we concentrate on the right-hand side of the equation: 

I$ -spectral flow of D(u) * (M(r) )  : 0 s u 5 11 

(6.14) 

The spectral flows of the operators {D,(u, 2,(u)) : 0 S u 5 E on Mi(')} are clearly 
0 since the zero-eigenspaces of these operators are of constant dimension and vary 
smoothly: Outside the band I A I > K, they coincide with the old L2-soIutions while 
inside the band they belong to L,(u,K) and dimLj(u,K) = diml,. 

Now over the interval E 5 u S 1 we apply Theorem D to study the spectral 
flows of {Dj(u, 2j(u)) : E 5 u 5 1 on Mi(')}. Strictly speaking, a different choice 
of the constant K > 0 is required in order to satisfy (1.15). However, for the 
problem at hand we can always choose K' > K, enlarge the symplectic space from 
X ( u ; K )  to X ( u ; K ' )  and the Lagrangian 2j(u,K) to LZj(U, K ) @ P , ( u ; K ) n X ( u ; K ' ) .  
Since D(u,K)* = D for E 5 u 5 1, the isotropy subspaces P+(u ,K) f lX(u ,K ' )  are 
fixed subspaces and so do not enter into the corresponding calculation of Maslov 
indices. Thus, we have by Section 5 and Theorem C 

[(+&')-spectral flow of Dj(u12j(u)) : E 5 u I 11 
Mas[(LI(E,K),21(u)) : E 5 u 5 11 for j = 1 
Mas[(22(u), ~ Q ( E ,  K)) : E 5 u 4 11 for j = 2 
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by (6.13) the intersection 2 l ( u )  n 2 2 ( u )  is constant for 0 5 u 5 E, and so 

Mas[(2I(u),22(u)) : 0 5 u 5 E ]  = 0 .  

Thus by path additivity of the Maslov index, the total contribution to the right- 
hand side of (6.14) is given by 

Mas{(LI(E,K),2I(u)) : E 5 u 5 1) 
(6.15) + Mas{(22(u), L~(E,K))  : E 5 u 5 1) 

+ Mas ((2, (u), 22(u)) : E 5 u 5 1) - n 

To simplify our discussion, we may choose 2 j ( u ) ,  0 5 u 5 E, to be of the 
following form: 

Here fj(u) and gj(u) are smooth functions, chosen so that L1(1) = L I ,  22(1) = 
L2, 21 ( E )  = L I ~ ,  K), and 2 ' 2 ( ~ )  = L2(u, K).  Since L I ( E ,  K ) ,  M E ,  K), 21 (u), and 
2h.4 can be decomposed into compatible sums of Lagrangians, we can break 
down the calculation of (6.15) into cases where the Lagrangians lie inside the 
symplectic space R4; @ Re-'4;r j = 1,. . . , n, and then sum up the answers 
afterwards. In the case where 1 5 j 5 a, we take 2 l ( u )  = R4j  and &(u) = 

4;. Re-u(E ) r /2  

From the properties of the Maslov index described in Section 4, we get 

and so the contribution to (6.15) is 0 + 0 + 1 - 1 = 0. 
The situation for a + 1 5 j S n is more complicated and can be explained in 

terms of Figure 6.1 below: 
To begin with, we have the Lagrangian lines LI = R+, and L2 = Re-""j+, 

in the symplectic plane R4, @ R(a4,). Since L = Re-"fll+j with 0 < pj < aj, 
it can be represented by a line in the interior angle of L I , ~ ,  while (-a)L lies 
in the exterior. According to (6.10), L l ( & , K )  is obtained from LI by applying 
a symplectic automorphism that contracts in the L-direction and expands in the 
(-a)L-direction. Thus L1 ( E ,  K) lies between LI and aL, and similarly L~(E ,  K), 
obtained from the inverse symplectic automorphism, lies between L2 and L. As 
for 21h) and 2 ( u ) ,  they are represented by arrowed lines that can be thought of 
as two motions of Lagrangian lines from LI ( E ,  K )  to L and from L~(E ,  K )  to aL. 
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Figure 6.1 

From the above diagram, it is not difficult to see that 

and hence they again contribute to 0 + 1 + 0 - 1 = 0 in (6.15). As we go through 
j = 1,. . . n, the right-hand side of (6.14) equals 0. 

Next we examine the left-hand side of (6.14). As the operators D(u)* = D(L, E )  

stay constant for E 5 u 5 1, the corresponding spectral flow over the interval [ E ,  11 
is 0, and so 

1 = {-$-spectral flow of D(L, u)(M(r)) : 0 d u 5 E 

To complete the proof, we have to show this last spectral flow is 0. For this, we 
appeal to the analysis employed in the proof of Theorem A in Part 1. The key step 
is to reformulate the splicing construction 
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so that it works for the family of operators D(L, u), 0 d u 5 E, and satisfies the 
inequality of Lemma 4.1 of Part I with 6 = K and for all u E [O, E]. 

From the argument in Part I, it follows that for r 2 RO the zero-modes can be 
computed in terms of the image of Gr(u). Since VI @ V2 @ (L1 fl IQ) stays constant, 
we obtain the desired vanishing property for the corresponding spectral flow. 

Given an element ( c x , ~ ,  y )  E (Vl @ V2 o (L1 f l  L2)) we have by definition 
a matching pair (Ql,Q2) of solutions DQj = 0 on M j ( c o )  with common value 
$8 kerb. Over X x [0, 00) and over C x (-oo,O], respectively, we write Q, as the 
sum A*+ + Qj ,  j = 1,2, where $ j  is an L2-solution of 09, = 0 and & j  I Z X t 
has an eigenexpansion with eigenvalues A > K for j = 1 and A < K for j = 2. 
Now define a section Ql(u)  over M I  U C X [-r - 2, r + 21 by letting Ql(u) = ' 3 1  

on M I  and 

A , .  

It is easy to see that Ql(u) is a solution of D(u, K)Ql(u) = 0 on M I  U I; x [-r - 
2, r + 21. Note that if we let B,  = J:T:2 hr(t)  dt ,  then for r + 3/2 5 s 5 r + 2 

Since by assumption L fl LI = L, fl IQ, we have $ in LI r l  L2, and so 

Thus, we obtain a matching solution on C X [r + 3/2, r + 21 given by !P,(u), 
exp[-B,Ku]Qz, in the range -K to +K. As in Part I, we can splice these two 
sections together to define Gr(u)(a, p, y),  replacing $2 by exp[-BrKu]\i'2. It is not 
difficult to see that all the estimates in Part I work for this variant of the splicing 
construction as well. 

More explicitly, we may form a spliced solution *r,U(iPl9Q2) over M ( r )  as 
follows: 

where 
A = exp (-Ku J s  h,( t )dt)  A*$ 

-r-2 
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and B equals the result of splicing !%,(x,s) with exp(-BrKu)!%2(x,s) as in Part I 
(2.18). There we regard $1 as in Ml(m) = M I  U Z x [0, 00); here $1 is regarded 
as over Ml(r)  = MI U C x [ - r ,  +rl C M l ( m ) ,  and similarly for exp(-B,K~)!%;!. 

The essential point of this construction is that D(u, K)Qr ,u (Q~,  Q2) vanishes 
outside C x [ - 1, + 11; inside C x [ - 1, + 11 it equals a( $ + T *  s&B. B involves 
only the eigenvectors of D with value A satisfying 1x1 2 K; we immediately get 
(using 6 = K) the inequality 

for matching solutions (a, p). This becomes merely a restatement of Section 4 of 
Part I. 

Now the inequality (6.16) proves that in the range I A I 5 K / 2  and for some R 
(independent of u), there are at least a + L’ + R’ eigenvalues A of D(u, K) on M(r) 
with I A I 5 exp( - $) for all r 2 R. Indeed, the projections of the spliced solution 
provide these solutions. Here L’ and R’ are the numbers of L2-solutions of D on 
Ml(m) and M2(m), respectively. 

In order to complete the analysis, we must now reread all of the proof of 
Theorem A of Part I in t h s  new context. The arguments proceed with minor 
changes. As a result, we may conclude that there is an R (independent of u) such 
that the number of eigensolutions of D(u ,K)  on M(r)  for r 2 R in the range 
J A J  < l / r 2  is precisely a + L’ + R’. We leave this to the careful reader. 

The conclusion of t h s  analysis is that for r 2 R, the (l/r2)-spectral flow of 
D(u, K )  : 0 5 u S E is 0 as claimed. This completes the verification of Proposition 
6.1. 

7. Averaged Spectral Flow and Averaged Maslov Index 

In Theorem C, the (+ l/r2)-spectral flow of a family of operators {D(u) : a 5 
u 5 b} in the situation of a manifold decomposition M = M I  UM;! is expressed as 
a sum of two spectral flows Dj(u, 2Z,(u)) on M,, a Maslov index Mas((LI(4, I.&)) : 
a 5 u S b}, and a dimension correction term f [dim ker b(b)  - dim ker @a)]. In 
this section, we give a different formulation of Theorem C that has the advantage 
of eliminating the last correction term. To accomplish this, we introduce the 
averaged spectral $ow and the averaged Maslov index. 

As in Section 3, we consider a one-parameter family of real, self-adjoint oper- 
ators {D(u) : a 5 u 5 b} such that for some fixed 6 > 0 the spectrum of D(u) in 
the range of eigenvalues A with I A I < 6 is finite-dimensional and has no essential 
spectrum. Choose E > 0 so that E < 6 and, for the operators D(a) and D(b) at the 
two ends, there are no eigenvalues in the range I-&, E ]  except the zero eigenvalue. 
Define the averaged spectral flow by taking the average of the (+&)-spectral flow 
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and the (-&)-spectral flow; that is, 

Averaged spectral flow of {D(u) : a 5 u 5 b) 
1 

= - [(+&)-spectral flow of { ~ ( u )  : a 5 u s b} 
(7.1 ) 2 

+ (-&)-spectral flow of { ~ ( u )  : a 5 u 5 b}] 

From the above definition, it is easy to see that the averaged spectral flow of 
{D(u) : a 5 u S b} enjoys many of the properties of the ( & I ,  &*)-spectral flows in 
Section 3, such as additivity and homotopy invariance. Moreover, it is independent 
of the choice of E used in its definition. 

In the situation where {D(u) : a 5 u 5 b} is a smooth family of first-order 
elliptic operators on M, we have the operator 

defined over the product manifold M X [a, b]. By imposing the boundary condition 
as in [2], this operator becomes Fredholm and has a well-defined index, Indexb. 
Since points inward into M x [a, b] at u = a and outward at u = b, this index can 
be identified with the (-&, +&)-spectral flow of {D(u) : a 5 u 5 b}. (See [7] for 
an extensive discussion of this point.) Thus, in this case the Atiyah-Patodi-Singer 
index theorem [2] asserts the equality: 

( - E ,  &)-spectral flow{D(u) : a 5 u 5 b) 

1 
2 

- - [ +h(b) + h(a)] 

where v(D(- ) )  is the eta invariant of D(.) and h(.)  is the dimension dimkerD(.) of 
the zero-modes of D(.) (cf. [7], pp. 160-161). 

Note that the (+&)-spectral flow, (-&)-spectral flow, and (-&, &)-spectral flow 
differ from each other by the dimension counts h(a) and h(b) at the two ends. In 
particular, 

( -8 ,  +&)-spectral flow{D(u) : a 5 u 5 b} 
= -h(a) + [(+&)-spectral flow{D(u) : a 5 u 5 b}] (7.3) 

(-8, &)-spectral flow{D(u) : a 5 u 5 b} 
= -h(b) + [(-&)-spectral flow{D(u) : a 5 u 5 b}] (7.4) 
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and after taking the average of (7.3) and (7.4) we have 

(-&, &)-spectral flow{D(u) : a 5 u 5 b} 
1 
2 

= --[h(a) + h(b)] + [averaged spectral flow of {D(u) : a 5 u 5 b}] 
(7.5) 

In view of (7.5), the Atiyah-Patodi-Singer formula (7.2) can be expressed as: 

Averaged spectral flow of {D(u)  : a 5 u 5 b} 
(7.6) 

In other words, we can conveniently absorb the dimension correction term by using 
the averaged spectral flow. We can use these flows to reformulate Theorem C as 
follows: 

THEOREM F. Let K ; ,  Ro, 2, and X(u,  K ; )  be given as in Theorem C. Then for 
1 all r 2 Ro, the averaged 7-spec tra l jow of {D(u)(M(r) )  : a; 5 u 5 a ; ,~ }  equals 

2 

Averaged spectral flow of {D,(u; 2 ; ( u ) )  : a, 5 u 5 a,, I 1 
(7.7) j = I  

+ averaged Mas{(YI(u),32(u)) : a ;  5 u S a;+,>. 

The definition of averaged Maslov index (cf. A-Mas{.} in [7]) is an averaged 
spectral flow; see below. 

To simplify our notation in proving Theorem F, we consider the above data 
K ; ,  Ro, 2 ; ( u ) ,  and X(u, K ; )  as defined over a single interval [a, b]-that is, a; = 
a, ajt l  = &and drop the subscript i throughout the proof. 

Proof of Theorem F: According to formula (7.1) in [7], the Maslov index 
Mas{(LfI(u),22(u)) : a 5 u 5 6) has a description as the (+&)-spectral flow of a 
family of operators {D(Zl (u), 22 (u ) ) } .  Thus, it is more appropriate to refer to the 
Maslov index term in Theorem C as the (+&)-Maslov index; that is, we rewrite it 
as 

1 
r 

+ ,-spectral flow of {D(u)(M(r)) : a 5 u 5 b} 

(7.8) 
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By reversing the sign or by taking the average, we can define the (-&)-Maslov 
index and the averaged Maslov index: 

averaged Mas{(z,(u), .22(u))  : a 5 u 5 b} 
= averaged spectral flow of {D(.~I(u), 22(u)) : a 5 u 5 b} 

= -[(+&)-Mas{(.2l(u),.22(u)) : a  d u 5 b} 
(7.10) 1 

2 
- ( - & ) - M ~ s { ( . ~ I ( ( u ) , . ~ ~ ( u ) )  : a 5 u 5 b}] 

It is not difficult to see that the (?e)-Maslov indices are related to each other 
by the dimension of the intersections of Lagrangians, 91 (a) n 22(a) and 91 (b) n 
2?2(b), at the two ends: 

As we switch (+) to (-) there is, for each of the spectral flows of (7.8), a 
corresponding dimension correction term. Explicitly, for r large, 

(+;) -spectral flow of { ~ ( u ) ( ~ ( r ) )  : a 5 u I b} 

= (-$) -spectral flow of { ~ ( u ) ( ~ ( r ) )  : a 5 u 5 b)  

1 1  
eigenmodes in band [ - 7, ;i ] for D(a)(M(r))} 

(7.12) 

eigenmodes in band [ -;i,7] 1 1  for D(b)(M(r))}  

(7.13) 

(+&)-spectral flow of { D ( u ; Z j ( u ) )  : a 5 u 5 b} 
= (-&)-spectral flow of {D(u;L?,(u)) : a I u 5 b} 

+ dim {extended L2-solutions of D(a) I Mj} 
- dim {extended L2-solutions of D(b) I M,} 

Substituting (7.1 I), (7.121, and (7.13) into (7.8), we have for r large, 
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(7.14) 
L 

+ x[dim{extended L2-solutions of D(a) I M,} 
j =  I 

- dim{extended L2-solutions of D(b) 1 Mi}] 

- dim eigenmodes in band [ -+, 11 for D(a)(M(r))} { r r  

eigenmodes in band [ -5, f ] for D(b)(M(r))} 

By [6], we know that after stretching M to M ( r )  for r sufficiently large, r 2 Ro, 
the dimension of the low eigenmodes at u = a, b can be computed by 

eigenmodes in band [ - 1, '1 for D(a)(M(r))} 
r r  

L 

= dim of L2-solutions of D(a) I Mj + dim(ll(a) fl L2(a)) 
j =  1 

eigenmodes in band [ -+, :] for D(b)(M(r))} 
r r  

2 
= dim{12-solutions of D(b) 1 M i }  + dim(Ll(b) n b ( b ) )  

j =  I 

Substituting these into (7.13) we have 

(7.15) 
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The proof of Theorem F now follows by taking the average of (7.8) and (7.15). 

8. Formulation in Terms of Infinite Lagrangians 

In the above formulation of Theorem C, we first had to partition the interval 
[a, b] into a = a. < al < - .  . < a, = b, choose Ki so that over each subinterval 
[ai,ai+l] it was not an eigenvalue of b ( u )  for ai 5 u I ai+l, and then inside 
the smoothly varying symplectic vector space X(u,Ki)  : aj 5 u I ai+l, choose 
Lagrangians Lj(u;Ki) that satisfy additional conditions at each endpoint ai. It will 
be convenient in applications to have a formulation in which the reference to the 
partition and to the K i  does not appear. This formulation will be developed in this 
section. The main reformulation is Theorem G. 

For this purpose we consider infinite-dimensional Lagrangians 2’ j (u)  in L2(8)  
with the following properties: 

(8.1) For each u in [a, b] there is a neighborhood N(u)  and a constant K(u) such 
that K(u) is not an eigenvalue of &) for u in N(u) .  
(8.2) 2’j(v) = Lj (v ;K)  CB P*(u;K)  for v in N(u)  where K = K(u),  the L,(v ,K)  
are to be Lagrangian subspaces of Z(v, K ) ,  and P+(v ,  K) is defined as in (1.1 1) 
with the sign 2 the same as (- 1)’”. 
(8.3) The family of finite-dimensional Lagrangians {L,(v;K(u)) : v E N(u)} is 
a smoothly varying family. 
(8.4) For u = a, b we have 

2 j ( U )  = L j b )  CB P+(u)  

where the Lj(u) are given by the limiting values of the extended L*-solutions 
as in (1.13). 
We refer to infinite familes of Lagrangians that satisfy conditions (8.1), (8.2), 

and (8.3) asproper restricted injinite Lagrangians. Note that P,(u) can be regarded 
as a polarization of the Hilbert space L2(8) .  Then the proper restricted infinite 
Lagrangians differ from the appropriate P+ (u)  by finite-dimensional subspaces and 
can be compared with the much more general infinite-dimensional Lagrangians 
considered in [16]. 

In view of its definition, it is apparant that the notions of Maslov index and 
averaged Maslov index extend easily to proper families of restricted infinite La- 
grangians. Note again that the first Lagrangian differs by a finite subspace from 
P-(u),  while the second Lagrangian differs by a finite subspace from P+(u) .  

Using the proper restricted Lagrangians 2,(u),  a I u 5 b, as boundary con- 
ditions, we obtain self-adjoint elliptic operators 

D(u;L?j(u)) : L:(E I M j ; Y j ( u ) )  - L2(E I M j )  

as in (1.14). In addition, for the pair of proper restricted Lagrangians ( 2 l ( u ) ,  

2 2 ( u ) )  with complementary polarizations, the Maslov index Mas((2’1 (u), 2 l ( u ) )  : 
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a 5 u 5 b} and also the averaged Maslov index is well-defined. In fact, in view 
of (8.2), choosing finite intervals { [ a i , a i + ~ ] )  with a = a0 < a1 < ... < a,, = b 
subordinate to the covering of [a ,b]  by the open sets N(u) ,  we can break the 
calculation into those over the subintervals [ai, ai, 1 1  and so get the formula 

In terms of these we may state Theorem G as follows: 

THEOREM G. Let {T , (u )  : a 5 u 5 b )  be two smooth families of proper 
restricted Lagrangians satisfying (8.11, (8.2), (8.3), and (8.4). Then for r suflciently 
large the +$-spectral flow of {D(u)(M(r)) on M(r)  : a s u 5 b} equals 

2 

)J+e)-spectral flow of ~ ~ ( u ,  ~ j ( u ) )  
j =  I 

1 
2 

+ Mas{(.=YL(u), Y 2 ( u ) )  : a 5 u 5 b )  + -[dim kerb@) - dim kerb(a)] 

Here E is chosen so that there are no eigenvalues for b(a)  or for b(b )  in the 
interval [ - E ,  + E ]  except the zero eigenvalues. 

Of course, analogously to Theorem F, we could also formulate the above in 
terms of averaged spectral flow. For that theorem we would not have any zero- 
mode corrections. 

Proof of Theorem G: By compactness of the interval, we may choose a par- 
tition {[ai ,ai+l]}  subordinate to the open covering by the {N(u)}’s .  Each interval 
has a Ki for which the end points are not the eignevalues is not an eigenvalue of 
b(v) for v in that interval. Now we wish to use additivity over these intervals. 

The difficulty is that the Lagrangians y j ( u )  are not necessarily of the required 
form L,(ai) @ P2(a i )  at the endpoints u = ai,ai+] of these intervals. However, 
because 

we can easily deform the Lagrangians to the required form. Because both sides of 
the equation of Theorem G are invariant under continuous deformation, we might 
as well assume that the proper restricted infinite Lagrangians Y j ( u )  are already 
of the form Lj(ai)  @ P2(ai) at each u = ai. 

In a similar manner, we can choose E sufficiently small so that the only eigen- 
values of the finite set of operators { b ( a i ) }  in the range [ - E ,  + E ]  consist of the 
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zero-modes. Hence, for r sufficiently large, we have for each i, by Theorem C, 
that the (+$)-spectral flow of {D(u)(M(r))  over M ( r )  : ai 4 u 5 ai+l} equals 

L 

C(+e)-spectral flow of {Dj(u,Lj(u,Ki))  : ai 4 u 4 ai+l} 
j =  I 

(8.6) = Mas{(=YI(u),2~(u)) : a 5 u 5 b} 
1 
2 

+ - [dim ker &ai+ 1 ) - dim ker b(~i)]  

In view of equation (8.5), Theorem G follows by additivity. 
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