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1 Introduction

The theory of spectral flows developed in the series [10, 11, 12], and the present
paper has a wide range of applications to important geometric operators on com-
pact manifolds. To present our results on spectral flow and manifold decomposi-
tion, the present paper develops a theory of determinant line bundles and infinite-
dimensional Lagrangians associated to self-adjoint elliptic operators on compact
manifolds. The trace-class properties of these infinite Lagrangians established here
and the precise uniform estimates relating them to finite Lagrangians are crucial for
such a determinant line bundle approach to analytical questions. As an application,
we elucidate the Walker’s and other generalizations of Casson’s SU(2) representa-
tion theoretic invariant of 3-manifolds in terms of the �-invariant of certain Dirac
operators. This is carried out by introducing the technique of “canonical perturba-
tions” of singular Lagrangian subvarieties in symplectic geometry.

At the end of Part II of this series, we obtained a formulation of the spectral
flow of a family of self-adjoint elliptic operators D(u) : L2(E)! L2(E) in terms
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of infinite-dimensional restricted Lagrangians. (These restricted Lagrangians are
constructed as the sum of Lagrangian subspaces in a finite eigenband together with
a standard complement outside the eigenband.) More precisely, in the situation
when the underlying manifold is decomposed into two pieces M = M1 [ M2,
there are two natural choices of infinite Lagrangians with, as we will show, trace-
class properties:

Lj(u) = the L2-closure of � j @Mj where � is a C1-solution of D(u) = 0

in the L2-completion, L2(Ê), of the space of sections of the bundle Ê, where Ê
is the restriction of E to the common boundary, @M1 = @M2. After specifying a
K-eigenband H(u;K), there are two other restricted Lagrangians

Lj(u;K)� P�(u;�K) ; j = 1; 2;

defined in an analogous manner. In the present treatment, using the results of
R. Seeley [19], we investigate conditions under which these (potentially jumping)
Lagrangians Lj(u;K) can vary continuously and also approximate uniformly the
infinite ones. In addition, we prove quite generally that these infinite, restricted La-
grangians can be constructed from the graphs of trace-class operators and that they
give rise to sections of the determinant line bundle associated to the family of op-
erators. In our applications to 3-manifold invariants, these analytically constructed
determinant sections will be compared with Walker’s geometrical treatment.

This passage from geometry (e.g., counting intersection numbers and twistings
of framings) to analysis (e.g., �-invariants) is achieved by appealing to the Atiyah-
Patodi-Singer index theorem and the interpretation of spectral flows geometrically
as Maslov indices. Our geometric setting demands the full strength of our analysis
in [11, 12] (as well as our earlier survey paper on the Maslov index [10], which
was written to conveniently address the Maslov aspects of our problem).

The theory of the Casson invariant has been of considerable interest, in part
because it is related to the Euler characteristic of the Floer homology groups of
3-manifolds. Casson originally defined his integer-valued invariant for integral ho-
mology spheres by roughly counting (with signs) the irreducible SU(2)-represen-
tations of the fundamental groups [1]. Subsequently, several different extensions
of SU(2)-invariants to more general 3-manifolds have been proposed and stud-
ied. We consider those by K. Walker [24], which takes on fractional values, and
a different integer-valued generalization developed for a special class of rational
homology spheres by C. Boyer and A. Nicas [7]. The Walker generalization has
a transformation formula for rational surgeries of M that generalizes the presently
known combinatorial properties of the Casson invariant. In this paper we will give
a general definition of a pair of integer-valued invariants that agree with the Boyer-
Nicas invariant whenever the latter is defined; these invariants are quite natural in
view of its relation with Fukaya-Floer homology (see [18] and Section 8 for de-
tails). In particular, the present study will yield computations and comparisons of
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all these invariants in terms of analytically defined data such as the �-invariants and
the dimension of the 0-modes of elliptic operators.

To give a more precise description of the aforementioned results, let us recall
the general framework for such representation theoretic invariants. Let M be a
closed, oriented 3-manifold, and let M =W1 [W2 be a Heegaard decomposition
of M into the union of two handles, W1 and W2, along a separating surface �.
Then in the space R = Hom(�1(�);SU(2))=SU(2) of SU(2)-representations of
the fundamental group �1(�) up to conjugacy, there are two subspaces Q1 and Q2

defined, by those representations extendible to �1(W1) and �1(W2), respectively.
These Q1 and Q2 are singular (Lagrangian) real algebraic varieties, and if we re-
strict our attention to the irreducible representations, we obtain the nonsingular
smooth strata:

R� S = Hom(�(�);SU(2))irred=SU(2) ;

Q�j = Hom(�1(Wj);SU(2))irred=SU(2) ; j = 1; 2;
(1.1)

of these varieties R and Qj . In the case when M is an integral homology sphere,
Casson defined his invariant

�(M) =
1

2
�P2Q�

1
\Q�

2
sign(P )(1.2)

as one-half of the intersection number of Q�1 and Q�2 . More precisely, under his
assumption on M ,Q1\Q2 consists of irreducible points inQ�1 \Q�2 together with
the isolated intersection point given by the trivial representation. By perturbing Qj

into transverse position by a motion compactly supported in R � S, we obtain a
finite number of intersection points in Q�1 \Q�2 in R� S, which are then counted
with signs as in (1.2).

In [7], Boyer and Nicas generalized Casson’s invariant to 3-manifolds M for
which the fundamental group �1(M) of M is cyclically finite. Under this assump-
tion, the subspaces Q1 and Q2 may have nontrivial intersection points along the
singular strata of R, corresponding to the U(1)-representations � of �1(M); how-
ever, the Zariski tangent spaces at �,

(TQj)� = H1(Wj ;Ad �)(1.3)

of the Qj (j = 1; 2), are transverse to each other. In particular, these singular
intersection points are isolated from Q�1 \ Q�2 , and so, after perturbing the Qj as
before, the formula

�B:N:(M) = �P2Q�
1
\Q�

2
sign(P )(1.4)

gives a well-defined invariant with no contributions from the reducible representa-
tions. (It is now conventional to drop the 1

2 in the above original formula (1.2) of
Casson.)

In [24], Walker provided a different generalization that takes values in the ra-
tionals. For M a rational homology 3-sphere, the Walker invariant �W(M) counts
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not only the intersection number �P2Q�
1
\Q�

2
sign(P ) after a perturbation of these

subspaces Q1 and Q2 but also an additional fractional correction term I(�) (see
Section 7 for details) for each reducible representation � of �1(M)

�W (M) = �P2Q�1 \Q�2 sign(P ) + ��I(�)(1.5)

where the second sum is over the reducible representations � of �1(M) into SU(2)
up to conjugacy.

The two invariants �B:N:(M) and �W(M) are apparently different because of
these correction terms I(�), and our theory provides an explanation and calculation
of this discrepancy. (To simplify our discussion, we have taken out the normaliza-
tion factor, whereas the definition of Walker’s invariant in [24] is the above sum
(1.5) divided by the order jH1(M;Z)j of the first homology group of M .)

THEOREM A Let M be a rational homology 3-sphere with cyclically finite funda-
mental group. Let �B:N:(M), �W(M), and I(�) be defined as above. Then the dif-
ference �B:N:(M)��W(M) equals�1

2 times the signature defect Def(Mab !M)
where Mab !M is the abelian covering of M associated to the homomorphism

�1(M)! H1(M;Z)! H1(M;Z)=modulo order-2 elements.

THEOREM B Let M be as in Theorem A and let �B:N:(M), �W(M), and I(�) be
defined as above. Let � be the sum ����1 of a U(1)-representation � : �1(M)!
U(1) and its complex conjugate ��1. Then

I(�) = ��(M;�2)

2
;(1.6)

where �(M;�2) stands for the �-invariant of M associated to the representation
�2.

The first theorem follows from the second as will be explained in Section 7.
Note that Walker’s corrections I(�) in general depend on the perturbation that ren-
ders Q�1 and Q�2 transverse at �, but in the cyclically finite case there is no need
for any perturbation since the appropriate Lagrangians are already transverse. The-
orem B identifies this canonical I(�) as a reduced �-invariant.

In Section 8, using our method of canonical perturbations in symplectic ge-
ometry, we will introduce and study two other integer-valued invariants, �(M)R
and �(M)L, which are extensions of Casson’s invariant to all rational homology
spheres. Both of them coincide with the Boyer-Nicas invariant �B:N:(M) for the
class of rational homology spheres satisfying the cyclically finite condition. We
then extend our two main theorems, Theorems A and B, to the general (non-
cyclically finite) case, thus elucidating the relationships between these different
extensions of Casson’s invariant to all rational homology spheres.

More precisely, we construct the “canonical” right-handed (R) and, alterna-
tively, left-handed (L) symplectic deformations to render Q�1 and Q�2 transverse
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at any reducible representation �. After making these perturbations, the formu-
lae

P
P2Q�

1
\Q�

2
sign(P ) yield, respectively, our pair of integer-valued invariants

�(M)R and �(M)L. As it turns out, not only is the Walker correction I(�) for
these perturbed Lagrangians well-defined, but it can be calculated explicitly. Our
treatment of Theorems A and B in this general case includes a study of the aver-
age left- and right-handed invariants, which takes on half-integer values and occurs
naturally in certain formulae.

Elsewhere [8, 9] we have introduced an SU(n)-invariant of all oriented 3-
manifolds that takes on fractional values, generalizing Casson’s and Walker’s in-
variant for n = 2. The present results raise the question of formulating analogues
of Theorems A and B in more general settings.

For the geometrically arising analytical problems considered here, the patholo-
gies of “jumping Lagrangians” and “jumping boundary conditions” are inevitable,
and their treatment requires the delicate analysis and the corresponding geomet-
ric reasoning of the present paper. For this reason, in Section 2 we give a general
study of these infinite Lagrangians associated to a self-adjoint elliptic operator over
a compact manifold with boundary using the results of our papers [11, 12]. Our
concern is to define the determinant line bundle and its section (coming from these
Lagrangians). The main technical point is the trace-class property of the associated
Lagrangians (see Proposition 2.4) and the uniform estimates (see Proposition 2.5).
Their proofs are carried out in Section 3. In Section 4 we extend the Maslov index
into a Hermitian setting, using the complex determinant line bundle of Quillen. In
Section 5, explicit formulae are given for the operator Bev, which has been the
main tool in studying the gauge theory of 3-manifolds. With this preparation, we
turn in Section 6 to the application to the Casson invariant and its generalization by
Walker, which requires the Maslov index in the Hermitian setting. The analysis of
the Walker correction of a reducible connection, I(�), is carried out in Section 7.
In Section 8 we present our extension of the Boyer-Nicas invariant to all ratio-
nal homology spheres and our general formula for the difference from the Walker
invariant and the analogues of Theorems A and B in this general setting.

2 Determinants and Infinite-Dimensional Lagrangians

Let fD(u) : 0 � u � 1g be a smooth, one-parameter family of first-order,
self-adjoint elliptic operators D(u) over a closed, smooth, oriented manifold M
that is split into two pieces, M1 and M2, by a codimension-1 submanifold �:

M =M1 [M2 ; � =M1 \M2 = @M1 = @M2 :(2.1)

As in Parts I and II, we assume that D(u) is of “Atiyah-Patodi-Singer type.”
That is, on a collar neighborhood � � [�1; 1] of � = � � 0 in M , the operator
D(u) is of the special form

D(u) = ���u
�
@

@s
+ ��D̂(u)

�
on �� [�1; 1] :(2.2)
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Here s is the coordinate [�1; 1], � is the projection of �� [�1; 1] onto �; �u is
a bundle automorphism over �, and D̂(u) is a self-adjoint operator over �. More
explicitly,

D(u) : �(E ) �! �(E ) ; E over M;

D̂(u) : �(Ê ) �! �(Ê ) ; Ê over �;

�u : Ê �! Ê ; Ê over �;

(2.3)

for bundles E and Ê with inner products, with E j �� [�1; 1] identified with ��Ê ,
and �(E ) denoting the smooth sections of the bundle E , and similarly for �(Ê ).

In Part II we established a method for computing the spectral flow SFfD(u) :
0 � u � 1g of the family of operators D(u) via the spectral flow decomposi-
tion theorems. The object of this section and the next is to reformulate these re-
sults in terms of determinant line bundles using some natural, infinite-dimensional
Lagrangians provided by our setting. Improving upon the method of Part II in
choosing arbitrary Lagrangians inside a finite eigenband, this new approach leads
directly to our applications in later sections.

BecauseD(u) and D̂(u) are self-adjoint, by proposition 2A of Part I, the bundle
automorphisms �u and operator D̂(u) satisfy the formulae

��u = ��u ; �uD̂(u) = �D̂(u)�u :(2.4)

To simplify our discussion, we will assume in addition that

(�u)
2 = �Id ; 0 � u � 1:(2.5)

Note (2.5) is the same as requiring �u to be orthogonal, �u��u = Id, and is sat-
isfied by a large number of geometric operators, e.g., the Dirac operator coupled
to connections. In view of (2.5), the bundle automorphism Ju = ��u can be
interpreted as defining a complex structure on Ê . Associated to this complex struc-
ture, there is a unique Hermitian inner product h�; �iu on each fiber of Ê such that
Reh�; �iu = (�; �). In a similar manner, �(E ) becomes a complex vector space under
Ju with Hermitian inner product h�; �iu. Following the conventions of [11, 12], we
have

Rehf; giu = (f; g)u ; � Imhf; giu = (f; �ug)u := ff; ggu ;(2.6)

where f�; � gu is a symplectic pairing on �(Ê).

2.1 Definition of the Determinant Line Bundle (à la Quillen)

Our first chore is to review the determinant and Lagrangian aspects of our set-
ting.

In view of (2.4), the real, first-order, elliptic operator D̂(E) may be regarded as
a complex operator D̂J(u) = D̂(u)

D̂J(u) : (�(Ê);�Ju)! (�(Ê); Ju)(2.7)
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where the complex structure on the range is given by Ju as above but on the do-
main by �Ju. Following [14, 21], we form the complex determinant line bundle
det(D̂J) over [0; 1] for this family of complex operators D̂J(u). More explicitly,
a local coordinate chart of det(D̂J ) is obtained as follows: Fix K > 0 and define
H(u;K) by

H(u;K) = spanf�j : D̂(u)�j = �j�j; j�j j � Kg :(2.8)

By elliptic regularity, H(u;K) is a finite-dimensional subspace in �(Ê). Let
V (K) denote the set of u such that D̂(u) does not have �K as its eigenvalues.
The spectral decomposition theorem assures us that V (K) is an open set in [0; 1]
and that H(u;K) varies smoothly for u in V (K). Indeed, this theorem also pro-
vides a smooth family of projections �[K] from the L2-sections, L2(Ê) of Ê onto
H(u;K). Since D̂(u) skew-commutes with Ju = ��u, the subspace H(u;K) is
invariant under Ju and hence can be viewed as complex subspaces with respect to
the two complex structures (�(Ê);�Ju). For u in V (K) we introduce the tensor
product  

max̂

[H(u;K);�Ju]
!�



 
max̂

[H(u;K);+Ju]

!
(2.9)

where
V
[�]� is the top exterior power of the complex vector space [�]. As u varies

over V (K), these tensor products form a smoothly varying, complex, one-dimen-
sional space and hence a complex line bundle det(D̂J ) with fiber

det(D̂J)(u) =

 
max̂

[H(u;K);�Ju]
!�



 
max̂

[H(u;K);+Ju]

!
:(2.10)

The tensor product (2.9) depends on the choice of K , and so for u in V (K) \
V (K 0),K < K 0, we must identify the two corresponding tensor products together.
Note that H(u;K 0) has an orthogonal sum decomposition

H(u;K 0) = H(u;K)� [H(u;K)? \H(u;K 0)] :(2.11)

Let f�1; : : : ; �Ng be an orthogonal basis of eigensections of D̂(u) such that

D̂(u)�j = �j�j with K < �j < K 0 ;

then these vectors form a basis for the complex space H(u;K)? \H(u;K 0). In
particular, as

max̂

[H(u;K 0);�Ju] =
max̂

[H(u;K);�Ju]



max̂

[H(u;K)? \H(u;K 0);�Ju]
(2.12)
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we can identify 
max̂

[H(u;K);�Ju]
!�



 
max̂

[H(u;K);+Ju]

!
with (

Vmax[H(u;K 0);�Ju])� 
 (
Vmax[H(u;K 0);+Ju]) via the mapping

a
 b!
24a ^

0@ N̂

j=1

(�j)
�
1A35


24b ^
0@ N̂

j=1

(�j)

1A35 :
This last mapping does not depend on the choices of the f�jg: Changing f�jg by
an orthogonal matrix A results in the multiplication by

(detA)(detAT) = det(A � AT) = 1 :

Thus we can identify det(D̂J) j V (K) with det(D̂J) j V (K 0) over the overlap
V (K) \ V (K 0) in a canonical manner and obtain the definition of Quillen’s deter-
minant line bundle det(D̂J ) over the interval [0; 1].

Note that given a complex linear map

R : (H(u;K);�Ju) �! (H(u;K); Ju) ;

there is a well-defined element

det(R) =

 
N̂

�j

!�


 
N̂

R(�j)

!
(2.13)

in (
Vmax[H(u;K);�Ju])�


Vmax[H(u;K); Ju]). In addition, if fR(u) j V (K)g
is a smooth family of such mappings, then detR(u) gives rise to a smooth section
of det(D̂J j V (K)).

2.2 Lagrangians and Determinants

Let L be a Lagrangian subspace of the Hermitian vector space

(H(u;K); Ju; h; iu) :
From the definition of Lagrangian, there exists an orthonormal complex basis ffj :
1 � j � ng of H(u;K) such that hfj; fkiu = Æjk and L is the real vector space
spanned by the fj’s, i.e., L = spanRffjg. In particular,

H(u;K) = L� �uL(2.14)

is a real orthogonal decomposition into the sum of L and

�uL = spanf�ufj : 1 � j � ng :
Define the reflection R(L) by the formula

R(L) = f if f 2 L ;
R(L) = �g if g 2 �uL :(2.15)
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Since the decomposition (2.11) is an orthogonal decomposition, R(L) is an or-
thogonal transformation. On the other hand, from the relations (�u)2 = �Id and
Ju = ��u, it follows that

R(L)(�Jufj) = R(L)(�ufj) = ��ufj = Jufj ;

R(L)(�Ju(�ufj)) = R(L)(�fj) = �fj = Ju(��ufj) = JuR(L)(�ufj) :

Consequently, R(L)(�Ju) = JuR(L). Since a real, orthogonal, complex linear
map such as R(L) is also unitary, this proves the following:

PROPOSITION 2.1 Let L be a Lagrangian subspace of H(u;K) and R(L) be de-
fined as in (2.15). Then

(a) the reflection R(L) is a complex linear map

R(L) : (H(u;K);�Ju) �! (H(u;K); Ju)

with respect to the specified complex structures �Ju on H(u;K), and
(b) R(L) is a unitary transformation with respect to the Hermitian structure

h�; �iu on (H(u;K);�Ju) and h�; �iu on (H(u;K); Ju).

We find this approach most natural and effective for our purpose in this paper.
Of course, we will explain next how the other points of view are equivalent.

Combining Proposition 2.1 with (2.13), we can assign to a Lagrangian L in
H(u;K) an element

s(L) = detR(L)(2.16)

which is of unit length in the complex line 
max̂

[H(u;K);�Ju]
!�



 
max̂

[H(u;K); Ju]

!
= (det D̂J)(u) :

Given a smoothly varying family of Lagrangians L(u) in the symplectic vector
bundle fH(u;K) : u 2 V (K)g, this assignment u 7! s(L(u)) yields a smooth
section of (det D̂J) over V (K). Furthermore, for K � K 0, u 2 V (K) \ V (K 0),
and f�j : 1 � j � mg chosen to span H(u;K)? \H(u;K 0) as in (2.12), then
both L � spanRf�j : 1 � j � ng and L � spanRf�u�j : 1 � j � mg are
Lagrangians in H(u;K 0). Under the above identification of (det D̂J ) : V (K)

with (det D̂J) : V (K
0) on the overlapping coordinate charts V (K) \ V (K 0), we

have
s(L� SpanRf�j : 1 � j � mg) = s(L) ;

s(L� SpanRf�u�j : 1 � j � mg) = (�1)ms(L) :(2.17)

For definiteness, let us fix an orthonormal basis f�j : 1 � j � ng for the Her-
mitian vector space (H(u;K); Ju; h�; �iu) and compare some approaches to deter-
minant sections.

Any Lagrangian L in H(u;K) can be written in the form

L = A � L0
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whereA is a unitary transformation ofH(u;K) and L0 is the reference Lagrangian
L0 = spanf�j : 1 � j � ng. If we identify this last group of unitary transforma-
tions with U(n) via the basis �j ,

' : U(n)! U [H(u;K); Ju; h�; �iu] ;(2.18)

then the above element A is well-defined in U(n) modulo the right multiplica-
tion by elements in O(n), the real orthogonal group. In other words, we have an
isomorphism

LagfH(u; k)g �! U(n)=O(n) ;

L �! A=O(n) ;
(2.19)

between LagfHg, the space of Lagrangians, and U(n)=O(n), the homogeneous
space. The latter can in turn be embedded into U(n) via the mapping

U(n)=O(n) �! U(n) ; A=O(n)! A �AT :(2.20)

Combining (2.18), (2.19), and (2.20), we send L = A � L0 to

A �AT = A � ( �A)�1 = '(A)R(L0)'(A)
�1R(L0)�1 = R(L) �R(L0)�1 :

Here the second identity follows because complex conjugation is given by conju-
gation with R(L0). Thus we have the standard embedding

LagfH(u;K)g ,! U [H(u;K); Ju; h�; �iu](2.21)

given by sending L to R(L) � R(L0)�1. In particular, if we compose the last
mapping with the determinant map

det(R(L) �R(L0)�1) = [detA]2 ;

we recover the standard mapping

[det]2 : LagfH(u;K)g �! S1

in the geometric definition of Maslov index in [10, section 5].
Another approach in [12, section 5] is to assign to a Lagrangian L in H(u;K)

the element �(L) = (
VN
j=1 gj)


2 in
Vmax[H(u;K); Ju]


2. Here fgjg is an or-
thonormal basis of H(u;K) such that L = spanfgjg. Note we can identify the
dual, (H(u;K);�Ju)�, with [H(u;K); Ju] and so

max̂

[H(u;K);�Ju]� 

max̂

[H(u;K); Ju]

is isomorphic to
Vmax[H(u;K); Ju]


2. Under this last isomorphism, �(L) be-
comes the above s(L) of (2.16). Hence, our present approach also coincides with
the treatment in [12].
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2.3 Infinite-Dimensional Lagrangians and Determinants

Let (H; J; h�; �i) be a complex Hilbert space with complex structure J and Her-
mitian inner product h�; �i. In this infinite-dimensional setting, a Lagrangian L
is by definition a closed subspace of H such that L is the L2-closure of spanffjg
where ffjg is a complete orthonormal basis of the Hilbert space (H; J; h�; �i). Here
spanf�g stands for the span of the vectors listed. It is easy to see that our definition
agrees with the more conventional one: A Lagrangian L is a closed subspace in H
such that the symplectic form

ff; gg = � Imhf; gi = (f;�Jg)
vanishes on L and L is maximal with respect to this property. As in the finite-
dimensional case, we may fix a reference Lagrangian L0 in H; then any other
Lagrangian can be written in the form

L = A � L0
where A is a unitary transformation of the Hilbert space H, A 2 U(H). It follows
that we have an isomorphism

U(H)=O(L0) �! Lag(H) ;

A 7�! A � L0 ;(2.22)

from the quotient of the unitary group U(H) modulo the orthogonal group O(H)
onto the Grassmannian Lag(H) of Lagrangians in H.

As explained in [22, p. 206], the determinant detA of a linear transformation
A : H ! H is well-defined if A is the sum of the identity and a trace-class
operator. Therefore, it is natural to restrict our attention to the subspace Lag(H)res
in Lag(H) defined by

Lag(H)res = fA � L0 : A� Id is trace-classg :(2.23)

A Lagrangian as in (2.23) is referred to as a restricted Lagrangian; Lag(H)res
can be identified with a subspace of the infinite-dimensional Grassmannian Gr(H)
of A. Pressley and G. Segal [20]. Over this last space, there exists a well-defined
determinant line bundle that can be compared with Quillen’s line bundle over the
space of Fredholm operators [20, p. 116].

In our application, the underlying Hilbert space is (L2(Ê ); Ju; h�; �iu) where
L2(Ê ) is the L2-completion of the space of smooth sections with Ju; h�; �iu the
extensions of the corresponding structures on �(Ê ). Following R. Seeley [19], we
consider the subspace Lj(u)1 in the smooth sections �(Ê ) defined by

Lj(u)1 = (� j @Mj) such that � is a smooth section of E jMj

satisfying D(u)� = 0
(2.24)

and its closure Lj(u) in L2(Ê ). Our first general result in the infinite setting is:
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PROPOSITION 2.2 (a) There is an orthogonal decomposition of �(Ê) onto the
sum

�(Ê) = Lj(u)1 � �uLj(u)1
for j = 1; 2 and any u 2 [0; 1].

(b) There exists a complete orthonormal basis ffjg for (L2(Ê); Ju; h�; �iu) with
fj in Lj(u)1 such that Lj(u) is the L2-closure of spanffjg. In particular,
Lj(u) is a Lagrangian subspace in L2(Ê).

The proof is given in Section 3. It follows from combining the results of [19]
with a result of Booss and Wojciechowski [6].

We denote by P+(u;K) and P�(u;K) the L2-closure of the space of eigensec-
tions �l with D̂�l = �l�l; �l > K and �l < K , respectively (cf. (2.5) of Part II).
When K is included as a possible eigenvalue (i.e., �l � K or �l � K), we will use
the notation P+(u;K] and P�(u;K], respectively. Recall from section 2 of Part II
that for any K � 0

L1(u) \ P+(u;�K] = L1(u)1 \ P+(u;�K] ;

L2(u) \ P�(u;K] = L2(u)1 \ P�(u;K] ;
(2.25)

are both finite-dimensional subspaces in L2(Ê) whose orthogonal projections into
H(u;K),

H(u;K) := span�l with �l in [�K;K] ;

namely,

L1(u;K) := �[K](L1(u) \ P+(u;�K]) ;

L2(u;K) := �[K](L2(u) \ P�(u;K]) ;
(2.26)

are Lagrangian subspaces in H(u;K). As in (2.8) of Part II, the symbol �[K]

stands for the projection of L2(Ê) onto H(u;K).
Now there are two pairs of infinite-dimensional Lagrangians:

L1(u) and L1(u;K)� P�(u;K) ;

L2(u) and L2(u;K)� P+(u;K) ;
(2.27)

which are in an explicit sense close to each other. We will make this last statement
precise and use this knowledge to construct sections sj(u) of the determinant line
bundle det(D̂J ), encoding the relative position of the Lj(u) in L2(Ê). Towards
this goal, the first step is to prove the following:

PROPOSITION 2.3 With the notation as above, there exists a K� such that the La-
grangian subspaces Lj(u;K) in H(u;K) vary smoothly with u 2 V (K) when-
ever K > K�. In particular, the section s(Lj(u;K)) varies smoothly in bundle
det(D̂J ) j V (K) whenever K > K�.
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The second step is to relate the pairs of Lagrangians in (2.27). Analogous to
(2.21) in the case of finite-dimensional Lagrangians, we have embeddings

Lag(L2(Ê )) ,! U(L2(Ê ); Ju; h�; �iu)) ;
L 7! R(L) � R(L0)�1 ;

(2.28)

of the space Lag(L2(Ê )) of Lagrangians in L2(Ê ) to the unitary group of L2(Ê ).
Here again L0 is a reference Lagrangian. By choosing L0 to the given by

L0 := Lj(u;K)� P�(u;�K) ;

its relation with Lj(u;K) can be examined via the unitary map R(L) �R(L0)�1 as
in the following:

PROPOSITION 2.4 (a) For K > 0 and u 2 [0; 1], the unitary transformations

A1(u;K) := R[L1(u)] � fR[L1(u;K)� P�(u;�K)]g�1
A2(u;K) := R[L2(u)] � fR[L2(u;K)� P+(u; +K)]g�1(2.29)

have the property that [Aj(u;K)� Id] is trace-class, j = 1; 2. In particular,
detAj(u;K) is defined.

(b) There exists a K� > 0 such that for K > K� the determinant detAj(u;K)
above varies smoothly as a function of u in V (K) to S1.

(c) For any " > 0, there exists K(") > K� such that

kdetAJ(u;K)� 1k < " for all K > K(") and u 2 V (K) :

In view of Proposition 2.4(a), we have elements sj(u) in det(D̂J)(u) defined
by

s1(u) = [detA1(u;K)]s(L1(u : k)) ;

s2(u) = (�1)dimCH(u;K)[detA2(u;K)]s(L2(u;K)) :
(2.30)

By the remarks in (2.17), it follows that the sj(u) in det(D̂J ) are well-defined
independently of the choice of K . For K > K� and K� as given by Proposi-
tions 2.3 and 2.4, both detAj(u;K) and s(Lj(u;K)) vary smoothly over V (K).
As the collection of these V (K)’s cover [0; 1], we see that the sj form a smooth
section of det(D̂J). In fact, Proposition 2.4 gives a uniform approximation of sj by
(�1)s(Lj(u;K)) over V (K). To sum up these conclusions from Propositions 2.3
and 2.4, we have the following:

PROPOSITION 2.5 Let sj be the sections of det(D̂J ) j V (K) over V (K) for K >
K� defined by (2.30). Then
(a) these sections are smooth and compatible over V (K) \ V (K) for K > K�,
K 0 > K�;
(b) for any " > 0, there exists K(") such that for all u 2 [0; 1], we have

ks1(u)� s(L1(u;K))k < " ;

ks2(u)� (�1)dimCH(u;K)s(L2(u;K))k < " ;
(2.31)
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for all K and u with K > K("); u 2 V (K). That is, the sections sj(u) can be
uniformly approximated by the sections coming from the finite Lagrangians.

There remains one more issue: the behavior of the infinite Lagrangians Lj(u)
as we stretch M1 and M2, that is, as we replace M1 and M2 by M1(r) = M1 [
(� � [0; r]) and M2(r) = M2 [ (� � [�r; 0]), respectively. (Here the boundary
� = @M1 of M1 is glued to �� 0 in �� [0; r]; similarly, the boundary � = @M2

is glued to ��0 in �� [�r; 0].) Let Lj(u;Mj(r)) denote the infinite-dimensional
Lagrangian in L2(Ê) obtained in the same way as Lj(u) except for replacing Mj

by Mj(r) and @Mj by the boundary @Mj(r) = �� (�r). As we stretch r to 1,
we have an open manifold denoted by Mj(1). All these Mj(r)’s have a unique
operator D(u) of Atiyah-Parodi-Singer type (2.1), which restricted to Mj gives
back our operator D(u) on Mj .

PROPOSITION 2.6 Let the space of L2-solutions of the equation D(u)� = 0 on
the manifold Mj(1) be denoted by �j(u). Suppose that �1(u) = �2(u) = 0; then

lim
r!1L1(u;M1(r)) = L1(u; 0) � P�(u; 0) ;

lim
r!1L2(u;M1(r)) = L2(u; 0) � P+(u; 0) :

(2.32)

The proofs of Propositions 2.2 through 2.6 will be given in the next section.

3 Proofs of Propositions 2.2 Through 2.6

According to Seeley [19], suppose we are given a self-adjoint elliptic operator
D(u) : �(E ) ! �(E ) over a closed manifold M = M1 [M2 as in our setting.
Suppose, in addition, that

D(u) is invertible (i.e., kerD(u) = 0):(3.1)

Then Seeley proves that �(Ê ) is the direct sum

�(Ê ) = L1(u)1 � L2(u)1(3.2)

and similarly for the L2-completions

L2(Ê ) = L1(u)� L2(u) :(3.3)

Furthermore, in [19], Seeley gives an explicit formula for the projection

�(L1(u)) : L
2(Ê ) �! L1(u)(3.4)

onto L1(u) associated to the decomposition. That is, �(L1(u))(a + b) = a for
a 2 L1(u); b 2 L2(u).

Now given Mj , we can form the double fMj of Mj by gluing two copies of
Mj [ (� � [�1;+1]) along this collar neighborhood of its boundary. Here the
point (x; s) in the first collar is glued to the point (x;�s) in the second collar.
In a similar manner but using the bundle automorphism ��(�u) in addition to the
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reflection above, we construct a bundle eEj ! Mj . As in [6], from the Atiyah-
Patodi-Singer condition (2.2) on D(u) and from the restriction Dj(u) = D(u) j
Mj : �(E j Mj) �! �(E j Mj), we may construct an operator of Atiyah-Patodi-
Singer type eDj(u) : �( eEj) �! �( eEj)(3.5)

over the double fMj . This construction of Booss and Wojciechowski [6] has the
following properties (j is fixed):

The smooth sections of eEj ! fMj are in one-to-one correspon-
dence with pairs of sections (f1; f2) of E j [Mj [ (� � [�1; 1])]
such that f2(x; s) = �uf1(x;�s) over �� [�1; 1]:

(3.6a)

eDj(u)(f1; f2) = (Dj(u)f1;Dj(u)f2),(3.6b)

ker eDj(u) = 0:(3.6c)

In particular, the hypothesis of Seeley’s theorem is satisfied. Since the Lagrangians
in question are, respectively, Lj(u)1 and �uLj(u)1, this proves that �(Ê ) is the
direct sumLj(u)1��uLj(u)1, and itsL2-completion is the sumLj(u)��uLj(u)
as in Proposition 2.2(a).

Recall from Part I the formula

(Dj(u)f; g)Mj
� (f;Dj(u))Mj

= �ff j �; g j �gu
for two smooth sections f and g of E jMj . In particular,

fv1; v2gu � Rehv1;��v2iu � Imhv1; v2iu = 0

for v1 and v2 in Lj(u)1. Thus the above decompositions are real orthogonal.
Furthermore, if f�lg is a complete orthonormal basis for Lj(u) with respect to the
real part of the Hermitian inner product, then 0 = f�k; �lg = � Imh�k; �liu and
Reh�k; �liu = Æk;l. Since by Seeley’s result applied to fMj , �(Ê ) = Lj(u)1 �
�uLj(u)1, it also follows that these f�lg form a complete orthonormal basis of
the complex Hilbert space (L2(Ê ); Ju; h�; �iu). Thus Lj(u) is indeed a Lagrangian
as claimed in Proposition 2.2.

As a corollary of the above discussion, the projection

�(Lj(u)) : L
2(Ê )! Lj(u) ,! L2(Ê )

is an orthogonal projection. Thus �(�uLj(u)) = Id � �(Lj) and the reflection
R(Lj(u)) about Lj(u) satisfies the formula

R(Lj(U)) = �Id + 2�(Lj(u))(3.7)

To prove Propositions 2.3 through 2.6, we need Seeley’s explicit description of
the projection �(Lj(u)) in terms of eDj(u) over the double fMj . Since the case
j = 2 is similar, we concentrate on the j = 1 situation. In the double fM1, we have
the submanifold �� [�1;+1], which contains �� [�1; 0] already in M1. (Recall
that M1 has boundary �� 0 in our convention.)
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For s0 2 [�1; 1], we denote by Rs0 : � = � � s0 ,! fM1 the inclusion of the
slice �� s0 into fM1. As is well-known, Rs0 induces a restriction map

Rs0 : L
2
k(
eE) �! L2k�1=2(Ê ) for k >

1

2
(3.8)

from the Sobolev space L2k(
eE) with kth-order derivative to L2k�1=2(Ê ) where the

order is dropped by 1
2 . Since these are Hilbert spaces, there is also the dual map

R�s0 : L
2
k(Ê ) �! L2k+1=2(

eE) :(3.9)

For smooth sections 	 of eE, we haveR�s0(	) = ��(	)�Æ(s�s0)where Æ(s�s0) is
the delta function distribution supported on the slice �� s0 and � is the projection
of �� [�1; 0] onto �.

Since eD1(u) is invertible on fM1, we consider, following Seeley [19], the com-
posite

S(U)	 = � [ eD1(u)]
�1R�0(Ju	)

where � is the restriction map from fM1 to M1 and 	 is a smooth section of eE. In
[19] it is shown that S(u) extends to a continuous linear operator

S(u) : L2(Ê ) �! L21=2(
eE jM1)(3.10)

which maps the subspace �(Ê ) of smooth sections of Ê bijectively onto the space
ker(D(u) j �( eE j M1)) (i.e., smooth sections � of eE j M1 with D(u)� = 0).
Moreover, the limit

T (u) = lim
s!0;s<0

RsS(u)

exists and gives the desired projection

�(L1(u)) : L
2(u) �! L2(u)

mentioned before.
This last assertion can be seen as follows: Given  in �(Ê ), by (3.3) we write  

as the sum f + �ug where f = F j �� 0, g = G j �� 0, D(u)F = D(u)G = 0,
and F and G are, respectively, smooth sections of eE over the first copy M1 ,! fM1

and of eE over the second copy of M1 ,! fM1. Then

S(u) = �(D̂1(u))
�1��(��u(f + �g))Æ(s � 0) = �(F;�G) = F

where (F;G) is the section over eE defined by these sections over the first and
second copies of M1 in fM1. Hence, T (u)( ) = f .

Now suppose we are given  in P�(u;K). We may write  in the form

 =
X
�l>K

al�u�l(3.11)
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where the �l’s comprise a complete orthonormal basis of eigenvectors of D̂(u),
D̂(u)�l = �l�l, and

P jalj2 <1. (Note that D̂(u)�u�l = ��l�l here.) Then on
�� [�1; 0] in M1, there is the well-defined L2-section

 # =
X
�l>K

ale
�ls��(�u�l)(3.12)

with the property D(u) # = 0. Let � : M1 ! [0;1) be the smooth cutoff
function defined by

� jM1 � �� (�3
4 ; 0] � 0 ; � j �� [�1

4 ; 0] � 1 ;

�(x; s) = h(s) for (x; s) 2 �� [�1; 0] ;
where h(s) � 0 on [0; 1], h j [�1;�3

4 ] � 0, h j [�1
4 ; 0] � 1, and jh0(s)j � 4.

Using this cutoff function, we can define a section  ## on fM1 by the formula

 ## =

(
� �  # on �� [�1; 0];
0 on fM1 � �� [�3

4 ; 0]:
(3.13)

Clearly,  ## has a jump discontinuity at s = 0, and in the sense of distributions

(D̂1(u))( 
##) = ��(��u )Æ(s � 0) + (dh=ds)��(�u )

with the second term a smooth section m := (dh=ds)��(�u ) supported on ��
[�3

4 ;�1
4 ]. Consequently,

D̂1(u)
h
 ## � (D̂1(u))

�1(m)
i
= ��(Ju )Æ(s � 0)

= R�0(Ju ) :
(3.14)

That is, for  in P�(u;K), we have

S(u) = � ## � �((D̂1(u))
�1(m) ;

and so we have

T (u) �  = �R0�(D̂1(u))
�1(m) :

Since D̂1(u) is invertible and continuous, we have, by the continuity of spectra,

a constant � > 0 such that D̂1(u) has no eigenvalue in the band (��;�), or in

other words jj(D̂1(u))
�1jj � 1=�. Hence, we have

kT (u) �  k2 � kR0k2k�k2
�
1

�

�2
kmk2

� kR0k2(1=�)2(4)2k #j�� [�3
4 ;�1

4 ]k2 :
On the other hand, by the exponential decay of  # in (3.13),

k #j�� [�3
4 ;�1

4 ]k2 �
1

2
k #j�� (�1

4)k2



560 S. E. CAPPELL, R. LEE, AND E. Y. MILLER

=
1

2

X
�l>K

jale�
1
4
�l j2

� e�
K
2

X
jalj2 :

This yields the following basic estimate:

PROPOSITION 3.1 Let � be chosen (as is possible) so that the family fD̂1(u) :

0 � u � 1g of operators on fM1 does not have eigenvalues in the range [��;�].
Then

(a) k�(L1(u)) �  k � 4kR0k
�
1
�

�
e�

K
4 k kfor  in P�(u;�K) and

(b) k�(L1(u)) k � 4kR0k
�
1
�

�
e�

K
4 k kfor  in P+(u;K).

In (b) we use the fact that �(�u(u)) = Id��(L1(u)), and so

k�(L1(u)) k = k(Id��(L1(u)) �  k � 4kR0k
�
1

�

�
e�K=4k k

for  in P+(u;K).

PROPOSITION 3.2 LetK > 0 be chosen so that 4kR0k(1=�)e�K=4 � 1
2 . Then for

u 2 [0; 1], the orthogonal projection �[K] : L2(Ê) ! P�(u;K) is an injection
when it is restricted to L1(u).

The proof follows immediately from Proposition 3.1(b) because if  2 L1(u)
and �[�1;K] = 0, then  2 P+(u;K) and so k k � 1

2k k, which shows
 = 0.

PROPOSITION 3.3 Let K > 0 be chosen so that 4kR0k(1=�)e�K=4 � 1
2 . Let

�(L1(u;K)) denote the orthogonal projection of H(u;K) onto the finite La-
grangian subspace L1(u;K). Then, for  2 H(u;K), we have

k�(L1(u)) ��(L1(u;K)) k � 2k k

PROOF: Note there is an orthogonal decomposition

H(u;K) = L1(u;K)� �uL1(u;K) :

Hence, we can write  2 H(u;K) as a sum f+�ug where f and g are in L1(u;K)
and �(L1(u;K)) = f . By the definition of L1(u;K) in (2.25), there exist f#

and g# in P+(u;K) such that both f + f# and g + g# are in L1(u).
A straightforward computation shows

kf#k2 = �ff + f#; (Id��(L1(u))�uf
#g ;

and by Proposition 3.1(b)

k(Id��(L1(u))�uf
#k � 4kR0k(1=�)e�K=4kf#k :
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Hence, kf#k � 4kR0k(1=�)e�K=4kf + f#k. Also, by the Schwarz inequality
and the assumption on K , the right-hand side is less than

4kR0k 1
�
e�K=4kfk+ 1

2
kf#k :

Hence we get an estimate for kf#k in terms of kfk. Similarly, we get the estimate
kg#k � 8kR0k(1=�)e�K=4kgk. On the other hand,

�(L1(u)) ��(L1(u;K)) 

= �(L1(u))(f + f# + �(g + g#))��(L1(u))(f
# + �g#)� f

= (f + f#)��(L1(u))f
# ��(L1(u))(�g

#)� f ;

and so

k�(L1(u)) ��(L1(u;K) k � kf#k+ k�(L1(u)f#k+ k�(L1(u))(�g#)k

� 2(kf#k+ kg#k)

� 16kR0k 1
�
e�

K
4 (kfk+ kgk)

= 16kR0k 1
�
e�

K
4 k k

as claimed.

We are now in a position to compare the projections �(L1(u)) and �(L1(u;K)
� P�(u;K)).

PROPOSITION 3.4 Let K > 0 be chosen so that kR0k(1=�)e�K=4 < 1
2 . Then for

 2 H(u;K) we have

(a) k�(L1(u)) ��(L1(u;K)� P�(u;�K)) k � 2k k and
(b) kR(L1(u)) � [R(L1(u;K)� P�(u;�K))]�1 �  k � 12k k.

On the other hand, when  l is an eigensolution of D̂(u), D̂(u) l = �l l with
�l > K or �l < �K , we have

(c) k�(L1(u)) l��(L1(u;K)�P�(u;�K)) lk � 4kR0k(1=�)e�j�l j=4k lk
and

(d) kR(L1(u)) � [R(L1(u;K)� P�(u;�K))]�1 l �  lk �
24kR0k(1=�)e�j�l j=4k lk:

PROOF: (a) is a reformulation of Proposition 3.3, while (c) is a reformulation of
Proposition 3.1 with K being replaced by j�lj. As in (3.7), given two Lagrangians
L+ and L�, we have R(L�) = �Id + 2�(L�) where �(L�) are the orthogonal
projections onto L�, respectively. Then

R(L+)R(L�) = (�Id + 2�(L+))(�Id + 2�(L�))
= Id� 2�(L+)� 2�(L�) + 4�(L+)�(L�)
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= Id + 2(�(L+)��(L(�)) + 4�(L+)(�(L�)��(L+)) :

Hence,
kR(L+)R(L�)�1 �  k � 6k�(L+)��(L�)k :

By letting L+ = L1(u) and L� = L1(u;K)�P�(u;�K), we obtain (b) and (d).
As is well-known [13], the number N(�) of eigenmodes with j�lj � N has an

asymptotic of the form co�
(n�1)=2 + O(�(n�2)=2). On the other hand, when we

apply [R(L1(u)) R(L1(u;K)�P�(u;�K))�1� Id] to  l, by the above it decays
at an exponential rate e�j�lj=4. Comparing these two asymptotics, it follows that
[R(L1(u))R(L1(u;K)� P�(u;�K))�1 � Id] is trace-class for all K with

kR0k 1
�
e�

j�lj

4 � 1

2
:

Since a change inK only changes �(L1(u;K)�P�(u;�K)) by a finite operator,
this trace-class property holds for all K . This proves Proposition 2.4(a).

Note that the above argument is independent of u. In particular, the determinant
det[R(L1(u))(R(L1(u;K)�P�(u;�K))�1] is well-defined and approximates 1 Remaining unmatched

left paren in 2nd line

above Prop. 3.5. Please

fix.

in a uniform manner.

PROPOSITION 3.5 (a) The projection �(�1; 0) : L2(Ê) ! P�(u; 0) maps
L1(u) onto the subspace f� 2 P�(u; 0) : f�; �1(u)g = 0g in P�(u; 0)
(i.e., elements annihilated under the symplectic pairing f�; �g by �1(u) =
L1(u) \ P+(u; 0)).

(b) Suppose K > 0 is chosen so that 4kR0k(1=�)e�K=4 � 1
2 . Then the projec-

tion �(�1;�K) : L2(Ê)! P�(u;�K) maps L1(u) onto P�(u;�K).

PROOF: Since L1(u) is isotropic, it is easy to see that �(�1; 0)L1(u) is
contained in � 2 P�(u; 0) with f�; �1(u)g = 0. On the other hand, L1(u) \
P+(u;�K] is finite-dimensional and consists of smooth sections, and its image
under �(�1; 0) is the subspace f� : � lies in H(u;K) and f�; �1(u)g = 0g by
lemma 2.5 of Part II. As we vary K , the last subspace forms a dense subspace in
f� 2 P�(u; 0) : f�; �1(u)g = 0g. This proves (a) and the fact that the smooth
sections in fL1(u) \ P+(u;�K) : K > 0g are dense in L1(u). As for (b), we
consider the linear map

�1(u) �! R ;

 7�! f�u�l;  g ;
where �l is a fixed eigensection of D̂(u), D̂(u)�l = �l�l with �l > K (i.e.,
�u�l 2 P�(u;�K)). By Proposition 3.2, L1(u) maps injectively into P�(u;K)
and so does �1(u) into H(u;K) \ P+(u; 0). Hence there exists a unique element
� 2 H(u;K) such that

f�u�l;  g = f�; g for all  2 �1(u):
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It follows that f�u�l��; �1(u)g = 0, and we can choose � in L1(u)\P+(u;�K)
so that �u�l � � � � = 
 where 
 lies in P+(u;K). In particular, �u�u =
�(�1;�K)�, which proves (b).

In view of Proposition 3.5, the composite

L2(Ê)
S(u)��! L2(Ê)

�(�1;�K)�������! P�(u;�K)

is onto when 4kR0k(1=�)eK=4 � 1
2 . For u 2 V (K), both S(u) and the projection

�(�1;�K) vary smoothly with respect to u, and so does their composition. The
kernel of this composition can be identified with the finite-dimensional Lagrangian
L1(u;K) under the projection �[�K;K] : L2(Ê) ! H(u;K). Thus L1(u;K)
over V (K) represents a smooth family of Lagrangians in the smooth symplectic
vector bundle fH(u;K) : u 2 V (K)g if K satisfies the above inequality. Con-
sequently, there exists K�; for K > K�, we have 4kR0k(1=�)eK=4 � 1

2 , and the
determinant det(L1(u;K)�P�(u;�K)) is a smooth section of det(D̂J j V (K)).
By the uniform approximation results of Proposition 3.4, the sections s1(u) and
s2(u) are also smooth. Putting these results together, we obtain the proof of Propo-
sitions 2.3 and 2.4.

We now turn to the proof of Proposition 2.6. Since by assumption �1(u) = 0

and since L1(u)\�uL1(u) = 0, we can apply the results of Part I to conclude that

for r sufficiently large, the operator D̂1(u) on fM1(r) does not have any eigenvalue
in the range [�1=r2; 1=r2].

Let j�0j be the lowest nonzero eigenvalue of D̂(u) on �. In the argument prov-
ing Proposition 3.4, we constructed a cutoff function h(s) on the interval [�1; 0]
and used it to define sections over � � [�1; 1] in fM1. For the case of fM1(r) we
have the product �� [�1; r] embedded into the double fM1(r). In this case we may
replace the cutoff function h(s) by h�(s) defined by h�(s) = h(s) for s 2 [�1; 0]
and h�(s) = 1 for s 2 [0; r]. Since the eigensections of D(u) on M1(r) decay
exponentially, we have a simple improvement of the estimates of Proposition 3.4.
Rerunning that analysis gives the following result: For  2 P�(u;M1(r)), then

k�(L1(u;M1(r)) �  k � 4kR0k eM1(r)

1

�(r)
e�j�0j

r+1
4 k k :

Since

kR0k eM1(r)
� kR0k eM1

and �(r) � 1=r2 for r sufficiently large, we can make sure that the right-hand side
of the inequality is less that e�j�0jr=8 and, in particular, that

lim
r!1 k�(L1(u;M1(r)) �  k = 0 :

Repeating the same argument for M̂2(r), the proof of Proposition 2.6 is complete.
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4 Maslov Index in a Hermitian Setting

Let X be a compact, smooth, oriented manifold with boundary �. Let � �
[�1; 0] be a collar neighborhood of � in W with the coordinates t of [�1; 0] point-
ing outward. In particular, � � 0 is identified with � = @X . Over X , there
is a smooth complex vector bundle E that is endowed with a Hermitian structure
h�; �iE. That is, smoothly varying over each fiber Ex, x 2 W , we have a Hermit-
ian pairing h�; �iEx : Ex 
 E�x ! C whose real part (�; �)E = Reh�; �iE gives us
a Riemannian metric structure. This Hermitian structure induces a corresponding
product structure h�; �i on the space �(E) of C1-sections on E.

Similar to the real setting, we consider a first-order elliptic operatorD : �(E)!
�(E) that is complex linear and self-adjoint D = D� with respect to the Hermit-
ian structure h�; �iE. In addition, this Hermitian self-adjoint operator D satisfies the
Atiyah-Patodi-Singer condition on �� [�1; 0],

D = ��� Æ
�
@

@t
+ ��D̂

�
where Ê = E j �, � : Ê ! Ê is a bundle automorphism, D̂ : �(Ê) ! �(Ê) is
a self-adjoint operator, and �� stands for the pullback induced by the projection
� : �� [�1; 0]! �.

Now the complex linearity condition on D implies that both � and D̂ are com-
plex linear, and in addition,

(i) �� = �; i.e., � is Hermitian skew-adjoint;

(ii) D̂ is a first-order, elliptic, Hermitian, self-adjoint operator on �(Ê ); and

(iii) �D̂ = �D̂� :

(4.1)

Note that, from (2.4) and (2.5), ��2 = ��� is in general a positive self-adjoint
operator. With our applications in mind, we will assume throughout that

�2 = �Id :(4.2)

The above condition, (4.2), can be viewed as introducing a new complex struc-
ture (E; J) on E with J = �� as the multiplication by the imaginary elementp�1. Denote the original complex structure on E by (E; i). Then since the two
complex multiplications commute with each other, Ji = iJ , there is a decomposi-
tion of �(Ê) into (�1)-eigenspaces �(Ê)� of Ji:

�(Ê) = �(Ê)+ � �(Ê)� where �(Ê)� = fs : Jis = �sg = fs : �s = �isg:
Note that Ji is self-adjoint, (Ji)� = Ji, and so the above decomposition is also an
orthogonal decomposition.

Let �� : �(E) ! �(E)� denote the orthogonal projection onto �(E)�. Then
��v = 1=

p
2(v�Jv) and anticommutes with D̂, D̂ Æ�� = ��D̂. It follows that
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D̂ induces two complex operators

D̂� = (D̂ j �(E)�) : �(E)� ! �(E)�
on these eigensubspaces and can be expressed as the sum of these two operators.
In matrix form, we have

D̂ =

 
0 D̂�
D̂+ 0

!
:
�(E)+ �(E)+
� �! �

�(E)� �(E)�
(4.3)

Both operators D̂� are first-order elliptic over �, and the formal adjoint of one is
equal to the other, (D̂�)� = D̂�.

In the situation of a smooth family of operators fD̂(u) : u 2 Bg over a param-
eter space B, the above decomposition leads to two continuous families fD̂�(u) :
u 2 Bg of operators. Following Quillen [21], we consider the determinant line
bundle detfD̂�(u) j u 2 Bg over B whose fiber at u 2 B can be identified with
det(kerD�(u))
det(cokerD�(u))�. Since kerD�(u) = cokerD�(u), the two
complex line bundles detfD̂+(u) j u 2 Bg and detfD̂�(u) j u 2 Bg are dual to
each other, and therefore we can concentrate on just one, say, detfD̂�(u) j u 2
Bg. To justify this claim, we consider a small K-band of eigenmodes

H(u;K) = spanf� : D̂(u)� = ��; j�j � Kg:
This last complex vector space is finite-dimensional and invariant under �. Hence,
as before, there is an orthogonal decomposition

H(u;K) = H(u;K)+ �H(u;K)�
where H(u;K)� can be identified with the corresponding band of eigenmodes
for the operators D̂(u)�. Around a neighborhood of u, the fiber det D̂�(u) of
the determinant line bundle is

Vmax
H�(u;K)� 
 Vmax

H�(u;K) for some K .
From this, it is easy to see that the line bundles det D̂� are locally isomorphic, and
by the usual partition-of-unity argument, we can patch up the local isomorphisms
together to obtain a global isomorphism det D̂+ ' det D̂�.

The space H(u;K) is a symplectic vector space with respect to the pairing
f�; �g = (�; �(u)�). In Part II, we considered various Lagrangian subspaces
L(u;K), L(u) � [P�(u) \ H(u;K)] of this symplectic space. For instance,
L(u;K) is constructed by first considering the solutions D( ) = 0 of D and
then projecting these solutions  onto �[K]( j �) in H(u;K) via the orthog-
onal projection �[K] : �(E) ! H(u;K). In the present setting, H(u;K) has a
Hermitian structure (H(u;K); i; h�; �iJ ) defined by

h�; �iJ = (�; �)� +
p�1(�; J�)� :(4.4)

With respect to this new structure, L(u;K) and L(u) � [P�(u) \ H(u;K)] are
“complex” Lagrangian subspaces. To avoid repetition, we will explain this prop-
erty only for L(u;K) as in the following:
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PROPOSITION 4.1 (i) L(u;K) is a complex subspace of (H(u;K); i).
(ii) L(u;K) is a totally real subspace with respect to the Hermitian pairing

h�; �iJ , i.e., h�; �iJ 2 R for all �; � 2 L(u;K).
(iii) dimC L(u;K) = 1

2 dimC H(u;K).
(iv) L(u;K) \H(u;K)+ = 0.
(v) There exists a unique unitary isomorphism ' : H(u;K)+ ! H(u;K)� such

that L(u;K) coincides with the graph �' of ',

�' = fv � '(v) 2 H(u;K)+ �H(u;K)�g :
PROOF: Assertion (i) follows from the definition of L(u;K) and the fact that

D and D̂ have complex eigensections for a given eigenvalue. As for (ii), the imag-
inary component Imh�; �iJ of h�; �iJ is related to the symplectic pairing f�; �g by the
formula

f�; �g = (�; �(u)�) = �Reh�; J�iJ = � Imh�; �iJ :
Thus the vanishing of Imh�; �iJ is a reformulation of the isotropy property of
L(u;K). In the same manner, (iii) is a reformulation of the real dimension count,
dimC L(u;K) = 1

2 dimRH(u;K).
To prove (iv), we write an element v = H(u;K) as the sum v1 � v2 of its two

orthogonal components v1 2 H(u;K)+ and v2 2 H(u;K)�. Suppose v = v1�v2
is an element in L(u;K); then from (i) the multiple iv = iv1 � iv2 is also in
L(u;K). On the other hand, from the isotropy property of L(u;K), we have

0 = fv; ivg = (v1 � v2; �(iv1 � iv2))

= (v1 � v2; �v1 � v2)

= �kv1k2 + kv2k2

and so kv1k2 = kv2k2 = 1
2 kvk2. Hence, neither of the components v1 or v2 can

be zero unless v = 0. This proves L(u;K) \H(u;K)+ = 0.
Let �� denote the composite

L(u;K) ,! H(u;K)
����! H(u;K)�

of the inclusion with the projection �� = (1=
p
2)(1 � J). From (iv), these map-

pings �� are one-to-one. On the other hand, from the formula

dimC H(u;K) = dimC H(u;K)+ + dimH(u;K)�
and from (iii), we have

dimC L(u;K) = dimC H(u;K)� ;

and hence �� are isomorphisms by dimension count. Let

' : H(u;K)+ ! H(u;K)�
denote the composite isomorphism �� Æ ��1+ . Then

L(u;K) = f�+(v) � ��(v) : v 2 L(u;K)g
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= fv � '(v) : v 2 H(u;K)+g
= �' :

Before showing that ' is unitary, let us clarify the Hermitian structures on
H(u;K)�. First, whenever a complex or Hermitian structure is not explicitly
mentioned, the convention is to take the structure inherited from (�(E); i; h�; �i).
Now there are new complex structures (H�(u;K); J) specified by J . From the
definition of H�(u;K) as eigenspaces, we have

(H(u;K)�; J) = (H(u;K)�; i) = H(u;K)�

(H(u;K)+; J) = (H(u;K)+;�i) = H(u;K)+

(H(u;K); J) = H(u;K)� �H(u;K)+

(4.5)

whereH(u;K)+ stands for the conjugate complex structure. As for the Hermitian
pairings on these spaces, we have

h�; �iJ j H(u;K)+ �H(u;K)+ = h�; �i ;
h�; �iJ j H(u;K)� �H(u;K)� = h�; �i:(4.6)

Returning to the proof of (v), we observe that

0 = f� � '(�); � � '(�)g = Reh�� '(�); �(� � '(�))i
= Reh�� '(�); i� ��i'(�)i = Re [h�; i�i + h'(�);�i'(�)i]
= Re [�ih�; �i + ih'(�); '(�)i]

and so Imh'(�); '(�)i = Imh�; �i. Replacing � by i�, the last identity yields
Reh'(�); '(�)i = Reh�; �i. Thus, h'(�); '(�)i = h(�; �)i and completes the
proof of (v).

REMARK 4.2 In the literature, a complex subspace L in a Hermitian vector space
(V; i; h�; �i) is known as a complex Lagrangian if L is totally real and is maximal
with respect to this property. Thus, in Proposition 4.1(i)–(iii), we have shown that
L(u;K) is a complex Lagrangian in (H(u;K); i; h�; �i). Furthermore, denote by
LagC (V ) the space of all complex Lagrangians in V . Then, as in [24, p. 14],
LagC (V ) is isomorphic to the group of unitary transformations U(V+; V�) where
V� is the (�1)-eigenspace of the operator J : V ! V and J is given by the formula
Imh�; �i = Reh�; J�i. In Proposition 4.1(v), we establish this relation explicitly
for the complex Lagrangian subspaceL(u;K) in LagC (u;K). All these arguments
remain valid for the Lagrangians L(u)� [P�(u;K) \H(u;K)].

In Theorem C and D of Part II, we studied the spectral flow of a family of
operators fD(u) : a � u � bg on either a closed manifold X with a splitting
X = X1[X2,X1\X2 = �, or on a compact manifoldX with boundary @X = �.
There the method is to choose some smooth families of Lagrangians fL(u) : a �
u � bg in H(u;K) that connects up the subspace L(a) � [P�(a) \ H(a;K)]
and L(b) � [P�(b) \H(b;K)] at the endpoints u = a; b. Then the spectral flow
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can be expressed in terms of the sum of Maslov indices and other relevant terms.
In the present Hermitian setting, since L(a) � [P�(a) \ H(a;K)] and L(b) �
[P�(b) \H(b;K)] are complex Lagrangians, we can connect them up by a family
of smoothly varying complex Lagrangians L(u) inH(u;K). By Remark 4.2, these
Lagrangians in turn give rise to a smooth family of unitary transformations

'(u) : H(u;K)+ ! H(u;K)� :

Taking the highest exterior power, we have

det'(u) =
max̂

'(u) :
max̂

H(u;K)+ !
max̂

H(u;K)� ;

or in other words, an element

detf'(u)g in

"
max̂

H(u;K)+

#�


"
max̂

H(u;K)�

#
:

Since the latter is the fiber of the determinant line bundle detfD̂+(u)g, we obtain
by the above procedure a smooth section detf'(u)g of this line bundle. In fact,
because '(u) is unitary, kdet'(u)k = 1 and so detf'(u)g lies in the unit circle
bundle of detfD̂+(u)g, denoted by det1fD̂+(u)g.

The above definition of det'(u) can be compared with another construction:
GivenL(u) in LagC [H(u;K)], we choose a real orthonormal basis e1; : : : ; en with
the orientation

Vn
j=1 ej induced from the complex structure (L(u); i). Since L(u)

is totally real, a real, oriented basis fe1; : : : ; eng is also a J-complex basis of
H(u;K). Thus,

Vn
j=1 ej gives an element in

Vmax[H(u;K)J ] and is of norm
1 because fe1; : : : ; eng is an orthonormal basis.

PROPOSITION 4.3 There exists a natural isomorphism between

max̂

[H(u;K); J ] and

"
max̂

H(u;K)+

#�


"
max̂

H(u;K)�

#
;

and under this isomorphism the element (i)n
Vn
j=1 ej is sent to det'(u).

PROOF: As is well-known, the adjoint Adh�; �i of a nonsingular Hermitian pair-
ing h�; �i gives rise to an isomorphism

H(u;K) ' Hom(H(u;K); C ) = H(u;K)�

� 7�! (v 7! hv; �i)
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between the complex conjugateH(u;K) ofH(u;K) and its dualH(u;K)�. Com-
bining this isomorphism with (4.5), we have

max̂

[H(u;K)+]
� 


max̂

H(u;K)�

�=
max̂

H(u;K)+ 

max̂

H(u;K)�

�=
max̂

[H(u;K)+; J ]

max̂

[H(u;K)�; J ]

�=
max̂

[H(u;K); J ]:

(4.7)

Note that H(u;K) can be thought of as a complex vector space (H(u;K); i)
with a representation of the cyclic group Z=4h�i of order 4 and �2 = �Id. From
representation theory it follows that (H(u;K); (�; �)) has a real orthonormal basis
f�j ; ��j ; i�j ; i��j : j = 1; : : : ; ng and as complex vector spaces

H(u;K) = spanC f�j ; ��j : j = 1; : : : ; ng ;

H(u;K)+ = spanC

��
1� i�p

2

�
�j : j = 1; : : : ; n

�
;

H(u;K)� = spanC

��
1 + i�p

2

�
�j : j = 1; : : : ; n

�
:

In particular, ��
1� i�p

2

�
�j ;

�
1 + i�p

2

�
�j : j = 1; : : : ; n

�
can be regarded as a basis system forH(u;K). On the other hand, as a J-complex
vector space, H(u;K) is spanned by f�j ; i�j : j = 1; : : : ; ng. The above two
basis systems are related by

p
2�j =

�
1� i�p

2

�
�j +

�
1 + i�p

2

�
�j

and
p
2 i�j = i

�
1� i�p

2

�
�j + i

�
1 + i�p

2

�
�j ;

and so

�j ^ i�j =
�
1� i�p

2

�
�j ^ i

�
1 + i�p

2

�
�j :

In particular, under the identification in (2.8), the exterior power
n̂

j=1

�
1� i�p

2

�
�j ^

�
1 + i�p

2

�
�j

is sent to (i)n �Vn
j=1(�j ^ i�j).
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LetL(u) be a complex Lagrangian given by the graph �' of a unitary transform
' : H(u;K)+ ! H(u;K)�. By choosing the above basis �j suitably, we may
assume without loss of generality that ' is of diagonal form, i.e.,

'

��
1� i�p

2

�
�j

�
= ei�j

�
1 + i�p

2

�
�j :

In addition, because the determinant has obvious multiplicative property, we may
work one diagonal block at a time and assume that n = 1. Then

det' =

�
1� i�p

2

�
�1 ^ '

��
1� i�p

2

�
�1

�
(4.8)

= ei�1
�
1� i�p

2

�
�1 ^

�
1 + i�p

2

�
�1

in H(u;K)�+ 
H(u;K)�.
As for L(u), it has the following real, oriented basis:

e1 =

�
1� i�p

2

�
�1 + ei�1

�
1 + i�p

2

�
�1 ;

ie1 = i

�
1� i�p

2

�
�1 + ei�1i

�
1 + i�p

2

�
�1 :

A straightforward calculation shows that

e1 ^ ie1 = (cos � + J sin �)�1 ^ i�1 :(4.9)

The proof of the proposition follows by comparing (4.8) and (4.9).

REMARK 4.4 By [10, section 5], the Maslov index MasRfL1(u);L2(u)g for a
pair of (real) Lagrangian paths (L1(u);L2(u)) in LagRfH(u;K)g can be com-
puted by choosing smoothly varying basis systems fe1(u); : : : ; en(u)g and fe01(u);
: : : ; e0n(u)g of L1(u) and L2(u). Since for real Lagrangians there is no preferred
choice of orientation, we form the determinant square “det2” L1(u) and “det2”
L2(u) as two continuous sections of the line bundle

S1

24 n̂

C

H(u;K)

!
235 :
The Maslov index Mas[(L1(u);L2(u) : a � u � b] is then the intersection number
of these two sections in the cylinder [a; b] � S1[(

Vn
C H(u;K))
2].

In the present Hermitian setting, both L1(u) and L2(u) are complex Lagran-
gians in LagC fH(u;K)g; for the definition of the Maslov index MasC fL1(u),
L2(u)g, we consider the sections det'1(u) and det'2(u) in the determinant line
bundle det D̂+(u) and count the intersection number

MasC fL1(u);L2(u)g = #det1 '1 \ det'2 :

Note that if we forget about the complex structures on L1(u) and L2(u), then
MasC fL1(u), L2(u)g is one half of MasRfL1(u);L2(u)g, the real Maslov index
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defined before. This agrees with the intuitive notion that when we count the com-
plex dimension dimC L1(u) \ L2(u) , it is one half of the real dimension.

In the same manner, the spectral flow of a family of self-adjoint, Hermitian
operators equals one half of its counterpart. Since in the real setting we have
demonstrated in [10] various formulae relating spectral flows with Maslov indices,
dividing them by 1

2 we have the corresponding formulae for Hermitian operators.
In short, these formulae remain valid when we replace MasfL1(u);L2(u)g by
MasC fL1(u);L2(u)g.

5 Bev-Operator, de Rham Operator, and the Cauchy-Riemann
Operator

From now on we will focus on the situation whereX is an oriented, Riemannian
3-manifold with boundary a Riemann surface, @X = �, and D is the Bev-operator
coupled with an SU(2) (or U(1)) connection. First introduced by Atiyah-Singer-
Patodi in [2, p. 63], the Bev-operator is the tangential component of the Sign+
operator; it has more recently played an important role in the theory of Floer ho-
mology (e.g., [14, 23, 25]). In a product neighborhood �� [�1; 0] of � = �� 0,
the Bev-operator is of Atiyah-Patodi-Singer type and its tangent component, as we
will see, is related to the Cauchy-Riemann operators and also the de Rham opera-
tors.

Let E denote a Hermitian vector bundle on X , and A a unitary connection on
E . Then, associated to A there is the differential operator

dA : 
�(X; E ) ! 
�+1(X; E )

obtained by taking the exterior derivatives on forms with coefficients in E . Com-
bining dA with the star operator � : 
�(X; E ) ! 
3��(X; E ) on X , � = �X , we
have

Bev = (�1)p(�dA � dA�) : 
ev(X; E ) ! 
ev(X; E )

where 
ev(X; E ) = 
2(X; E ) � 
0(X; E ) and p = 1 or 0 depending on whether
we are operating on 2- or 0-forms.

Over a collar neighborhood �� [�1; 0] of � = �� 0, we assume that A is the
pullbackA = ��Â of a unitary connection Â on Ê = E j �. Here � : ��[�1; 0]!
� is the projection onto the first factor. With a product metric on � � [�1; 0], the
operator Bev restricted to the subspace 
ev (�� [�1; 0]) takes the form ��� Æ
(@=@t + ��D̂Â) (cf. [25, p. 282] and [17, section 3]). To write down explicit
formulae for � and D̂Â, we represent an E -valued, even-degree form ! j ��[�1; 0]
as a sum

! j �� [�1; 0] = (dt ^ (�P ) +R;Q)(5.1)

where P , Q, and R are, respectively, 1-, 0-, and 2-forms on � with values in E ,
and � = �� is the star operator on �. (Note the � in this formulation differs
from the conventions of [25, p. 282] and [17, section 3].) By viewing (P;Q;R) 2
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(
1�
0�
2)(�; E ) as a column vector, the operator � and D̂Â has the following
block matrix representation:

� =

24 � 0 0
0 0 ��
0 � 0

35 ; D̂Â =

24 0 �dÂ dÂ�� � dÂ 0 0
�dÂ� 0 0

35 :(5.2)

It is not difficult to check that

Bev(dt ^ �P +Q+R)

=

�
� �

�
@R

@t

�
� dt ^ dÂ(�R)

�
+

�
�(dÂ(�P )) � dt ^ @P

@t
� dÂP

�
+

�
�@Q
@t

� dt ^ �(dÂQ)
�

= dt ^ �
�
(�dÂ�)R + �@P

@t
� dÂQ

�
+

�
� � @R

@t
+ (�dÂ � P )

�
+

�
�dÂP + �@Q

@t

�
:

In matrix form, this last formula1 reads

Bev =

264� @
@t �dÂ �dÂ�
�dÂ� 0 � � @

@t
�dÂ � @

@t 0

375
and explains (5.2). Furthermore, we have the following:

PROPOSITION 5.1 Let Bev, D̂Â, and � be defined as above. Then

(i) Bev is a complex linear, first-order, elliptic, and self-adjoint operator on
(
0 � 
2)(X; E );

(ii) Bev j �� [�1; 0] = �� Æ
�
@
@t + ��D̂Â

�
;

(iii) � is Hermitian skew-adjoint, � = ��, �2 = �Id;
(iv) D̂Â is a first-order, elliptic, Hermitian, self-adjoint operator on (
1 � 
0 �


2)(�; Ê ) Ê = E j � .

In short, the operator Bev and its decomposition ��� Æ (@=@t + ��D̂Â) fits
into the framework discussed in Section 4. In particular, we can decompose the
operator D̂Â into a sum of two operators:

D̂Â =

 
0 D̂�
D̂+ 0

!
; D̂Â :

�

�(�; Ê )

�
� !

�

�(�; Ê )

�
� :(5.3)

1In [6, 17, 25] different authors use different conventions in presenting the Bev operator. For
instance, Booss and Wojciechowski [6] present the operator in the form �

�
@
@t
� �

�
D̂
�

and also use

(
1
� 
0

� 
0)(�; Ê ), both of which agree with the presentation of Yoshida in [25]. On the other
hand, Kirk and Klassen [17] use (as here) ��� Æ

�
@
@t

+ �
�
D̂Â

�
because of the application of the

index theorem with @
@t

as the outward-pointing normal.



SELF-ADJOINT ELLIPTIC OPERATORS III 573

Here 
�(�; Ê )� denotes the subspace of Ê -valued forms (P;Q;R) in (
1�
0�

2)(�; Ê ) satisfying

�

0@PQ
R

1A = �i
0@PQ
R

1A or � P = �iP ; �Q = �iR :(5.4)

The above operators D̂� can be compared with the Cauchy-Riemann operator
�@. First of all, the Hodge star operator � can be thought of as an automorphism of
the cotangent bundle T �� with �2 = �Id, or in other words, an almost complex
structure on T ��. Let

(T ��)

R

C

denote the complexification of the cotangent bundle. Then the (�i)-eigenbundles
of � provide us with an orthogonal decomposition

(T ��)

R

C = T 0;1�� T 1;0�(5.5)

where

T 0;1� = f(v; p) : p 2 � ; v 2 T �p�
 C ; �v = +ivg ;
T 1;0� = f(v; p) : p 2 � ; v 2 T �p�
 C ; �v = �ivg :

As is well-known, the Riemannian structure on � specifies a unique holomor-
phic structure within the same conformal class. With respect to this complex an-
alytic structure, T 0;1� and T 1;0� are, respectively, the holomorphic and antiholo-
morphic cotangent bundle. This justifies the notation T 0;1� and T 1;0� and the
Cauchy-Riemann operator �@.

Analogous to (5.5), there is an orthogonal decomposition of the vector bundle

T ��

R

Ê =

�
T 0;1�


C

E

�
�
�
T 1;0�


C

E

�
and a corresponding splitting on the space of C1-sections


1(�; Ê ) = �

�
T ��


R

Ê

�
= �

�
T 0;1�


C

Ê

�
� �

�
T 1;0�


C

Ê

�
= 
0;1(�; Ê )� 
1;0(�; Ê )

where


0;1(�; Ê ) = fP 2 
1(�; Ê ) : ��P = iPg

1;0(�; Ê ) = fP 2 
1(�; Ê ) : ��P = �iPg :
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Comparing the above formula with (5.4), it is clear that 
0;1(�; Ê ) and 
1;0(�; Ê )

are the (�i)-eigenspace of � on 
1(�; Ê ), 
0;1(�; Ê ) = 
1(�; Ê )+ and 
1;0(�;

Ê ) = 
1(�; Ê )�, respectively. In the literature (e.g., [15, p. 25], the Cauchy-
Riemann operators @ and �@ are defined by the formulae

�@ =

�
1� i�p

2

�
dA : 
0(�; Ê )! 
0;1(�; Ê ) ;

@ =

�
1 + i�p

2

�
dA : 


0(�; Ê )! 
1;0(�; Ê ) ;

i.e., the composite of dA with the orthogonal projection�
1� i�p

2

�
: 
1(�; Ê )! 
(�; Ê )� :

In fact, in view of the following proposition, it will be more convenient to multiply
these operators by a factor of (�i):
PROPOSITION 5.2 (i) Let P� denote the operator

(�i)
�
1� i�p

2

�
dA : 


0(�; Ê )! 
1(�; Ê )� :

Then its adjoint is equal to �p2 � dÂ : 
1(�; Ê )� ! 
0(�; Ê ).
(ii) There exist natural isomorphisms betweenh


1(�; Ê )�
2(�; Ê )� 
0 (�; Ê )
i
�

and 
1(�; Ê )� � 
0(�; Ê ). Under these isomorphisms, the operators D̂�
coincide with�

0 P�
P�� 0

�
:

1(�; Ê )� 
1(�; Ê )�

� �! �

0(�; Ê ) 
0(�; Ê ) :

PROOF: Note the adjoint of (�i)(1�i�p
2
)dA is the operator

(�i)(dÂ)�
�
1� i��p

2

�
acting on 
1(�; Ê )�. Since � acts as �i on 
1(�; Ê )�, we have

�i(��dÂ�)(1 � i�) 1p
2
= �i(��dÂ�)(2)

1p
2
= �i(��dÂ)(�i)

p
2

= �
p
2 � dÂ

as claimed.
From (5.4), it is easy to see that the [
1(�; Ê )�
0(�; Ê )�
2(�; Ê )]� consist

of elements of the form (P;Q;�i � Q) where P 2 
1(�; Ê )�, Q 2 
0(�; Ê ).
In particular, the assignment (P;Q) 7! (P; (1=

p
2)Q; (1=

p
2)(�i) � Q) gives
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rise to an isomorphism of 
1(�; Ê )� � 
0(�; Ê ) onto [
1(�; Ê ) � 
0(�; Ê ) �

2(�; Ê )]�. On the other hand, we have

D̂

0@ P
Q

�i �� Q

1A =

0@�i(1� i��)(dÂQ)� �� dÂP
(�i��)(� �� dÂP )

1A
and so, under the above isomorphisms, D̂ sends (P;Q) to ( 1p

2
(�i)(1� i��)dÂQ;

�p2(��dÂP )) = (P�Q;P��P ). This proves (3.2).

From (5.2) we see that detD+ and detD� are the same as the determinant line
bundles associated to the Cauchy-Riemann operators (P�;P��). In particular, this
identification can be used to study the spectral flow of operators fDA(u) : a � u �
bg induced by a smoothly varying family of connections A(u). For our application
it is more convenient to use the de Rham operator

dÂ + ÆÂ : 

1(�; Ê )! 
0(�; Ê )� 
2(�; Ê )

where ÆÂ = ���dÂ��. When Â is a flat connection, it is well-known by Hodge
theory that ker(dÂ + ÆÂ) is isomorphic to the cohomology H1(�; Ê ) of � as-
sociated to the flat coefficient system (Ê; Â), while coker(dÂ + ÆÂ) is the sum
(H0 � H1)(�; Ê). Moreover, if Â can be extended to a flat connection A on X ,
then there are Lagrangian subspaces in ker(dÂ + ÆÂ) and coker(dÂ + ÆÂ) defined
by

L = Im(H1(X;E)! H1(�; Ê ))

� Im((H0 �H2)(X;E)! (H0 �H2)(�; Ê )) ;
(5.6)

the image of the natural induced homomorphism.
The operator (dA + ÆA) is clearly complex linear with respect to the complex

structure induced from E . However, the relevant complex structures are given by
the star operator � (= �J) on the domain 
1(�; Ê ) and

�
0 �

�� 0

�
(= J) on the range

(
0 � 
2)(�; Ê ). It is not difficult to check that (dA + ÆA) is also complex linear
with respect to these structures (cf. [24, p. 16]).

The complex structure � (= �J) on 
1(�; Ê ) is no stranger to us, since we have
already discussed the splitting of 
1(�; Ê ) into the sum 
1(�; Ê )+ � 
1(�; Ê )�
of its (�i)-eigenspaces 
1(�; Ê)�. As for the complex structure

�
0 �

�� 0

�
on

(
0�
2)(�; Ê ), it coincides with the J-complex structure discussed in Section 4.
Accordingly, there is a splitting of (
0 � 
2)(�; Ê ) into (�i)-eigenspaces:

(
0 � 
2)�(�; Ê ) =
��

Qp
2
;�i � Qp

2

�
: Q 2 
0(�; Ê )

�
:



576 S. E. CAPPELL, R. LEE, AND E. Y. MILLER

As in (5.2), these subspaces are naturally isomorphic to 
0(�; Ê )


0(�; Ê ) ' (
0 � 
2)(�; Ê )� ;

Q 7�!
�
Qp
2
;� i �Qp

2

�

which in turn are the images of P�+ and P��.

With respect to the above (�i)-eigenspaces, the operator (dÂ + ÆÂ) can be

written as a sum of two operators (dÂ + ÆÂ)� : 

1(�; Ê )� ! (
0 �
2)(�; Ê )�.

Comparing with the Cauchy-Riemann operators P��, we have the following:

PROPOSITION 5.3 (dÂ + ÆÂ)� = (�i)P��.

The proof of Proposition 5.3 follows from the well-known relation between de
Rham and Cauchy-Riemann operators. Explicitly, for a 1-form P with �P = �iP ,
we have

(dÂ + ÆÂ)P = (dA � �dÂ�)P
= dAP � i � dÂP
= (�i � dÂP;�i � (�i � dÂP )) :

Hence (dÂ + ÆÂ)� : 

1(�; Ê )� ! 
0(�; Ê ) sends P to

p
2(�i) � dÂP under the

above identification. Comparing this with P�� = (�p2 �� dÂ), we see the factor
of (�i) between these two operators in (5.3).

For a smooth family of connections fÂ(u) : u 2 Bg, we have a correspond-
ing smooth family of first-order, elliptic operators dÂ(u) + ÆÂ(u), u 2 B. Using
the method of Quillen discussed in Section 2, we can construct the determinant
line bundle detfdÂ(u) + ÆÂ(u) : u 2 Bg over B. More precisely, let H(u;K) =

H1(u;K) � H0(u;K) � H2(u;K) be the subspace in (
1 � 
0 � 
2)(�; Ê )
of eigenforms with respect to the Laplace operator Æ�

Â(u)
dÂ(u) + dÂ(u)Æ

�
Â(u)

with

eigenvalues in the band [0;K]. Choose K to be an excluded value in the neigh-
borhood of u; then these subspaces, H1(u;K), H0(u;K), and H2(u;K), vary
smoothly and we can form the exterior product

max̂

[H1(u;K)]� 

max̂

[(H0 �H2)(u;K)] ;

which serves as the fiber of the determinant line bundle in the neighborhood. Here,
as before, H1(u;K) and (H0�H2)(u;K) are Hermitian vector spaces with com-

plex structures defined, respectively, by � and
�

0 �
�� 0

�
.
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By comparing these complex structures, it follows that
max̂

[H1(u;K); �]� 

max̂ h

(H0 �H2)(u;K); ( 0 �� 0 )
i

�=
max̂

[H1(u;K);��] 

max̂

[(H0 �H2)(u;K); J ]

�=
max̂

[(H1 �H0 �H2)(u;K); J ]

�=
max̂

[H(u;K); J ] :

(5.7)

In conclusion, for the one-parameter family fBev 
 A(u) : 0 � u � 1g of
Bev-operators, we can compute its spectral flow by choosing, as in theorem C
of Part II, families of complex Lagrangians in (H(u;K); J). In view of (5.7),
these complex Lagrangians give rise to sections of the determinant line bundles
det fdA(u) + ÆA(u) : 0 � u � 1g. Finally, as in Remark 4.4, the above spectral
flows are related to the complex Maslov index of these Lagrangians, which in turn
are related to the intersection number of the determinant sections.

6 Geometry of the Representation Spaces

Let M3 be a closed, connected, oriented, Riemannian 3-manifold with cycli-
cally finite fundamental groups �1(M). As explained in Section 1, there are two
different generalizations of Casson’s invariant in this situation: one by Boyer-Nicas
�BN(M) and the other by Walker �W(M) (cf. [7, 24].

PROPOSITION 6.1 The difference �W(M) � �BN(M) of these two extensions of
Casson’s invariant is equal to

P
[�] I(�), where I(�) is the correction term I(�)

of Walker—one I(�) for each equivalence class [�] of reducible SU(2) representa-
tions � of �1(M).

PROOF: Consider a Heegaard decomposition of M into a union of two handle
bodies W1 and W2 along a splitting surface � of genus g, M = W1 [W2, W2 \
W2 = @W1 = @W2 = �. Following the notation in [24], we let

R = Hom(�1(�);SU(2))=SU(2)(6.1)

denote the space of equivalence classes [�] of SU(2)-representations of �1(�). Let
Qj , j = 1; 2, denote the subspace in R consisting of representations that can be
factored through �1(Wj). From van Kampen’s theorem,

Qj = Hom(�1(Wj);SU(2))=SU(2)

and the intersection Q1 \Q2 coincides with the space

Hom(�1(M);SU(2))=SU(2)

of SU(2)-representations of �1(M).
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As is well-known, the above representation spaces R, Q1, and Q2 are singular
algebraic varieties with singular strata given by reducible representations. Note
that a reducible SU(2)-representation � : �1(�) ! SU(2) is equal to the sum
� � ��1 of a U(1)-representation � : �1(�) ! U(1) and its conjugate ��1.
(From now on, we will also use � to denote any U(1)-representation of �1(�).
This unfortunately conflicts with the notation � used before, but from the context
it will not result in any confusion.) Let eS = Hom(�1(�); U(1)) denote the space
of U(1)-representations of �1(�). Then the Weyl group of U(1) induces a Z=2-
action � : eS ! eS on eS by sending � to ��1. The quotient space S = eS=(Z=2) can
be identified with the subspace of reducible SU(2)-representations in R. Similarly,
let eTj = Hom(�1(Wj); U(1)), j = 1; 2, and let Tj denote the quotient spaceeTj=(Z=2) of eTj under the induced Weyl group action. Then Tj = Qj \ S, j =
1; 2, coincides with the space of reducible SU(2)-representations of �1(�) that
can be factored through �1(Wj), and their intersection T1 \ T2 is the subspace of
reducible SU(2)-representations of �1(M). Since M , by definition, is a rational
homology sphere, there are at most finitely many U(1)-representations of �1(M)
and so jT1 \ T2j < 1. In addition, the condition of cyclic finiteness implies that
at each of these finite intersection points � 2 T1 \ T2, the subspaces Q1 and Q2

intersect each other transversely in the Zariski tangent cone of �. Thus, keeping
a neighborhood of S fixed, we can perturb the subspaces Q�j = Qj � Qj \ S
of Qj into a transverse position with respect to each other by a motion compactly
supported in R� S. By definition,

�BN(M) =
X

[�]2Q�
1
\Q�

2

Sign(�) ;

�W(M) =
X
[�]

I(�) +
X

[�]2Q�
1
\Q�

2

Sign(�) ;

and so
�W(M)� �BN(M) =

X
[�]

I(�) :

In view of (6.1), Theorem A of Section 1 is a consequence of the following:

THEOREM 6.2 Let � be the sum � � ��1 of a U(1)-representation � : �1(M) !
U(1) and its complex conjugate ��1. Then

I(�) = ��(M;�2)

2

where �(M;�2) stands for the rho-invariant of M associated to the representation
�2.

To see this implication, consider the abelian covering f :Mab !M associated
to the homomorphism �1(M)! H1(M;Z)! H1(M;Z)=felements of order 2g.
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We fix a metric on M and use the induced metric on Mab. Now, following Atiyah-
Patodi-Singer [3], the rho-invariant of the covering f

�(f :Mab !M) = (��(Mab) + jAj � �(M))

can be computed as minus the sum over the nontrivial characters � of

A = H1(M;Z)=felements of order 2g

of the twisted rho-invariants �(M;�) of M . This is the same as the sum over the
squares of the characters of �1(M) since such a square factors throughA. Since the
rho-invariant for �2 is the same as for ��2 and since it vanishes for trivial characters,
this sum is minus twice the sum over the the equivalence classes under � � �� of
the nontrivial squares of characters of �1(M). But by Theorem 6.2 this last is the
sum

P
[�] I(�), which by Theorem 6.2 equals the difference �W(M) � �BN(M).

This proves Theorem A of Section 1.

The proof of Theorem 6.2 will occupy the rest of this section and Section 7.

Let us first recall the definition of I(�) in [24, (2.1)]. For definiteness, we
concentrate at a single point [�0] in T1\T2 where �0 = �0���10 and �0 2 eT1\ eT2.
Since eTj is pathwise connected, we can choose a path �j = f�j(t) : 0 � t �
1g in eTj starting from the trivial representation �j(0) = Id and terminating at
�j(1) = �0. Under the above involution � , such a path �j is sent to a similar path
�j = f�j(t) : 0 � t � 1g where �j(t) = �j(t)

�1, which goes from Id to the point
��10 . Note the composite paths ��12 � �1 and ��12 � �1 form two loops in eS with
the same base point Id. Therefore, composing ��12 � �1 with ��12 � �1, we obtain
a figure-8 loop ��12 � �1 � ��12 � �1 in eS.

It is not difficult to see that the homomorphism � : H1( eS;Z) ! H1( eS;Z)
induced by the Z=2-action is the same as multiplication by �1. Since the figure-
8 loop consists of two subloops ��12 � �1 and ��12 � �1 that are interchanged by
the involution, it is homologous to zero in H1( eS;Z) and hence is the boundary
of a (possibly singular) surface E in eS, E � eS, @E = ��12 � �1 � ��12 � �1.
Associated to a point � in Hom(�1(�);SU(2)), there is the adjoint representation
Ad� : �1(�) ! Aut(su(2)) of �1(�) on the Lie algebra su(2) of SU(2). In the
case of a reducible representation � = � � ��1, this adjoint representation Ad �
decomposition into the sum of h � h? where h is the trivial representation given
by action on the Lie algebra of U(1) = f(ei�; e�i�)g and h?, the orthogonal com-
plement of h in su(2). In fact, the latter is a real two-dimensional representation
that can be identified with �2 (or ��2) after forgetting the complex structure.

Following [24, (1.13)], we have, for each � 2 eS, the de Rham operator of �
with coefficients in h?� :

D 
 h? = (d+ d�)
 h? : 
1(h?)! 
0(h?)�
2(h?) :(6.2)



580 S. E. CAPPELL, R. LEE, AND E. Y. MILLER

Using the star operator, � = ��, as the complex multiplication, we obtain a family
of Hermitian operators and hence a determinant line bundle det(D
h?) (cf. Sec-
tion 5). Associated to this complex line bundle there is a natural connection and a
first Chern form ! = c1(det(D
 h?)), and integration

R
E ! of ! over the surface

provides us with one of the terms in the following formula for I(�0):

I(�0) =

(
1
2(c1(det(D 
 h?) j E; �)� RE !) ; �20 6= Id ;
1
4(c1(det(D 
 h?) j E; �)� RE !) ; �20 = Id :

(6.3)

Walker shows that for the natural connection, the first Chern form ! equals �8
times the symplectic form on eS. The notation c1(det(D 
 h?) j E; �) stands for
the relative first Chern class of det(D 
 h?) on E with respect to a trivialization
� on @E to be specified.

First of all, over a point � = ����1 in eS, the fiber of the line bundle det(D

h?) is given by

max̂

H1(�; �2)

max̂

H0(�; �2)� 

max̂

H2(�; �2)�(6.4)

[24, (1.14)]. In the case �2 6= Id, the terms H0(�; �2) and H2(�; �2) are equal to
zero and formula (6.4) reduces to

VmaxH1(�; �2). Suppose this point � lies in eTj .
Then, as it factors through �1(Wj), we have cohomology H1(Wj; �

2) of Wj with
coefficients in �2. The image of H1(Wj; �

2) under the induced homomorphism

H1(Wj ; �
2) �! H1(�; �2)

gives us a complex Lagrangian subspace �j;� in H1(�; �2), the Hermitian vector
space. As we vary � along the arcs �1, ��12 , �1, and ��12 of @E, these complex
Lagrangians give rise to smooth sections

det1(�1)
��
�1
; det1(�2)

��
��12

; det1(�1)
��
�1
; det1(�2)

��
��12

;

over the corresponding arcs �1, ��12 , �1, and ��12 .
At the points where �2 = Id, there are jumps in the dimension of H1(�; �2),

because H0(�; �2) and H2(�; �2) are nontrivial. In [24, (1.13)] it has been shown
that the above four sections have continuous limits and therefore can be extended to
@E as if there were no jumps. We will give a more detailed discussion in Section 7.
It is quite similar to the case � = Id, where again there are jumps and zero- and
two-dimensional cohomologies H0(�; C ) = C and H2(�; C ) = C .

At the corner points [Id], [�0], and [��10 ], the above sections of det(D 
 h?)
from different handle bodies do not necessarily agree. Indeed, because of the cycli-
cally finite assumption, fH1(W1; �

2);H1(W2; �
2)g, the pairs of Lagrangians, are

transverse to each other at these points. Now, given an ordered pair of transverse
complex Lagrangians L1 and L2 in a symplectic space V , there exist two well-
defined deformations P�(L1; L2) bringing L1 to L2 through complex Lagrangians
P�(L1; L2)t, 0 � t � 1. More precisely, choose an oriented basis e1; : : : ; en of
L1 and f1; : : : ; fn of L2 such that hei; fji = Æij . Define P�(L1; L2)t to be the
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(oriented) span of (1� t)ei � tfi. As t varies, we obtain two paths of Lagrangians
P�(L0; L1) connecting L0 and L1. Applying this construction to �1;� (= L0) and
�2;� (= L1) at [Id] and [�0 � ��10 ], we can “round off” the sections det1(�1) and
det1(�2) to produce a nonzero section

det1(�1)
��
�1
� det1 (P�(�1;�0 ; �2;�0)) � �det1(�2)

��
��12

� det1 P�(�1;Id; �2;Id)
(6.5)

of det(D
h?)��
�1���12

. Repeating the same procedure for �1���12 and combining

with the above, we obtain a trivialization �� of det(D
h?) over @E. With respect
to these trivializations ��, the relative Chern numbers c1(det(D 
 h?) j E;�+)
and c1(det(D 
 h?) j E;��) are defined, and the term c1(det(D 
 h?) j E;�)
is the average of these two numbers

(6.6) c1(det(D 
 h?) j E;�) =
1

2
fc1(det(D 
 h?) j E;�+) + c1(det(D 
 h?) j E;��)g

This completes the definition of I(�0).

As the first step in computing I(�0), we will reformulate I(�0) so that it be-
comes more symmetrical and also reduce our computation to one over E=(Z=2) in
S instead of E in ~S.

First of all, in identifying the representation h? with �20 , we have made a choice
between �20 and ��20 . It will be convenient to consider the complexification h? 

C = �20 � ��20 where both �20 and ��20 have equal footing. Second, in the above
definition of I(�0), we have been using the de Rham operator D
h?: 
1(h?)!

0(h?) � 
2(h?) with the complex structure given by the star operation. It will
be convenient to replace D 
 h? by the Cauchy-Riemann operator @ 
 h? 
 C

@ 
 h? 
 C : 
1;0(�; h? 
 C ) ! 
1;1(�; h? 
 C )(6.7)

with coefficients in h? 
 C .

From Section 5 the determinant line bundle det(@ 
 h? 
 C ) is the same as
det(D
h?) and so are the relative Chern classes and Chern forms, i.e., c1(det(@

h?
C );�) = c1(det(D
h?);�) and c1(det(@
h?
C )) = !. Also under these
identifications the rotations over Id, �, and �� connecting the paths of Lagrangians
are the same. In other words, if we define I(�0; h? 
 C ) by

I(�0; h
? 
 C ) =

(
1
2 [c1(det(@ 
 h? 
 C ) j E;�)� RE !] ; �20 6= Id ;
1
4 [c1(det(@ 
 h? 
 C ) j E;�)� RE !] ; �20 = Id ;

(6.8)

then I(�0; h? 
 C ) = I(�0).
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c�3 �1��2

2

�1
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FIGURE 6.1. � � Hom(�1�;R)

Next we give an explicit description of the singular chain E in eS. Note eS and
its subspace eTj can be interpreted as cohomology with U(1)-coefficientseS = Hom(�1(�); U(1)) = H1(�; U(1)) ;eTj = Hom(�1(Tj); U(1)) = H1(Tj ; U(1)) :
(6.9)

From the exact sequence 0 ! Z ! R
exp��! U(1) ! 0, we have a commutative

diagram with exact rows:

0 ���! H1(�;Z) ���! H1(�;R)
exp���! H1(�; U(1)) ���! 0x?? x?? x??

0 ���! H1(Wj;Z) ���! H1(Wj ;R)
exp���! H1(Wj; U(1)) ���! 0 :

(6.10)

Hence, if we let Ŝ = H1(�;R) and T̂j = H1(Wj ;R), then (6.10) gives us univer-

sal covering spaces Ŝ
exp��! eS and T̂j

exp��! eTj with H1(�;Z) and H1(Wj ;Z) as
the covering transformation groups.

Given �0 2 eT1\ eT2, we choose two points �1 2 T̂1 and �2 2 T̂2 in its preimage,
exp(�1) = exp(�2) = �0, and form the triangle � spanned by the three vertices
0, �1, and �2 in Ŝ

� = ft1�1 + t2(�1 � �2) : 0 � t1 + t2 � 1; t1 � 0; t2 � 0g :(6.11)

Let F 0 = exp(�) denote the projection of � in eS, let F 00 denote the surface ineS obtained by applying the involution � to F 0, and let �F denote the quotient of
F 0 [ F 00 in S.

Since exp(�1) = exp(�2) = [�0], the difference �1 � �2 is an element in
H1(�;Z). Hence, under the projection exp : Ŝ ! eS, the two vertices 0 and
�1 � �2 of � are sent to the trivial representation Id and the third vertex �1 is sent
to �0. The three edges of � are given by

�̂1(t) = t�1 ; 0 � t � 1 ;

�̂2(t) = t�1 + (1� t)(�1 � �2) ; 0 � t � 1 ;

�̂3(t) = (1� t)(�1 � �2) ; 0 � t � 1 ;

(6.12)
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[ F 00

� eS
..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

...

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

.........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

.

..........

..........

..........

..........

....

..
...
....
..
....
....
....
......
.....
.......
......
..........

..
..
...
..
....
..
...
...
...
.
.
.
..
.
.
.
..
..
.
..
.
.
.
..
..
.
..
.
.
...
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
..
..
.
.
...
.
...
.
...
...
..
....
.......
................................................................................................................................

....
.....
....
....
....
....
....
....
....
....
...
..
..
..
..
...
.
..
..
.
.
..
.
.
...
.
.
..
.
.
...
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
..
...
..
...
.
..
...
.
...
.
..
...
..
...
...
...
...
..
...
...
..
...
...
..
...
...
..
...
....
..
....
....
..
...
...
.....
....
.....
...
...
....
...
...
.

[�0]

[Id]

�F
[�1 � �2=2]

FIGURE 6.3. �F � S

respectively (see Figure 6.1). Under the projection the first edge �̂1(t) is sent to
�1 = fexp �̂1(t) : 0 � t � 1g in eT1 connecting Id to �0, while the second
edge �̂2(t) is sent to �2 = fexp(�̂2(t)) : 0 � t � 1g in eT2 connecting Id
to �0. Thus, combining �1 and �2, we obtain the loop ��12 � �1, which forms
part of the boundary of F 0 in eS. As for the third edge �̂3, it is mapped onto a
loop �3 = fexp �̂3(t) : 0 � t � 1g from Id to Id in eS (see Figure 6.2). Since
��̂3(t) = �̂3(1�t) moduloH1(�;Z), this loop is invariant under � and is mapped
onto the intersection of the boundary of F 0 and F 00. Thus, F 0 [ F 00 has boundary
�(��12 ��1)� (��12 ��1) = ��12 ��1 ���12 ��1 and can serve as the singular chain
E in (6.8).

Let � 0 denote the rotation through 90Æ in Ŝ about the midpoint (�1 � �2)=2.
That is, � 0((�1 � �2)=2 + v) = (�1 � �2)=2 � v. This covers the mapping � on
~S. Over Ŝ � � we have the natural “tautological” line bundle L. Moreover, there
is a natural unitary connection on L that descends to ~S. Here L over � � � is the
flat, complex, unitary line bundle with holonomy given by �. More explicitly, the
connection and bundle is as in [24] (recalled below) or generally, as in [5]. The
involution � of ~S lifts to the conjugate linear mapping of L to itself. The pieces F 0
and F 00 are the images of � and � 0(�), respectively. It is natural to introduce the
sum of complex line bundles with unitary connection E = L� (� 0)�(L). Since � 0
is of order 2, this complex plane bundle has a natural involution � 00 interchanging
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the two summands that covers the map � 0. Note that � 00 is complex linear and
has square the identity. Over the midpoint m = (�1 � �2)=2, the map � 00 is the
permutation (v; w)! (v; w).

Let � denote the union of � and � 0(�). Thus � 0 acts on � in Ŝ with a single
fixed point at m = (�1 � �2)=2. Choose a small positive number Æ such that the
closed ball B(Æ;m) of radius Æ about the midpoint m = (�1 � �2)=2 of � is in
the interior of �. Note that � 0 preserves such balls. Choose a smooth mapping
f : � ! � such that f(B(Æ=2;m)) = m and f maps the region � � B(Æ=2;m)
diffeomorphically onto � � fmg. Here the ball is of radius Æ=2. This f is chosen
to commute with the action of � 0. We may and will arrange that f maps the region
� �B(Æ;m) by the identity. Note that �F is the image of � in S.

Observe that the midpoint m = (�1 � �2)=2 of the edge �̂3 is a “half” lattice
point in 1

2H
1(�;Z), and so it is mapped to the point exp[(�1 � �2)=2 � 2�] = �Id

in eS. Since this last point and also the base point Id of the loop �3 are fixed under
the involution � , under the quotient map �3 is folded into a single edge ��3 in S.
After folding up the edge ��3, the cell F 0 becomes a two-dimensional singular disk
�F in S. Because of the singularities, �F is far from an embedding and should be
regarded as the image of a continuous map � : I � I ! S with the following
properties (see Figure 6.3 for a picture of �F ):

(i) � is a degree-1 mapping from the square I � I = f(s; t) : 0 � s � 1; 0 �
t � 1 onto �F .

(ii) �(0; t) = [�1(t)��1(t)�1], �(1; t) = [�2(t)��2(t)�1], �(s; 0) = [Id], and
�(s; 1) = [�0].

(iii) � maps the line segment 1
2 � [0; 12 ] onto ��3.

(iv) � restricted to (I � I � 1
2 � [0; 12 ]) factors through F 0 ! S.

The smooth mapping f : � ! � is equivariant and so covers a continuous mapping
�f : �F ! �F . This (under the identification �) becomes a continuous mapping
f 0 : I � I ! I � I that preserves the distance from the point m. This map is the
identity off of a Æ-neighborhood of the midpoint [m], maps I � I minus a closed
Æ=2-neighborhood homeomorphically to I�I� [m], and maps this closed Æ=2 ball
neighborhood to the point [m].

Recall that the projective unitary group PSU(2) is the quotient of the unitary
group U(2) by its center. Equivalently, PSU(2) is the quotient of the special uni-
tary group SU(2) by its center �Id. The adjoint action U(2)! Aut(u(2)) factors
through the action of PSU(2) since the center of U(2) acts trivially. A princi-
pal PSU(2)-bundle is called reducible if its structure group can be reduced to the
image of the normalizer N = (Z=2 . U(1)� U(1)) of U(1)� U(1) in U(2).

PROPOSITION 6.3 Over the product manifold � � I � I there exists a principal
PSU(2)-bundle E together with a reducible PSU(2)-connection C such that, re-
stricted to the subspace �� s� t, the connection C(s; t) = C j �� s� t is flat
and the holonomy representation in PSU(2) associated to C(s; t) is �(f 0(s; t)).
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PROOF: We construct a special unitary 2-plane bundle E 0 with unitary con-
nection over the subset � � B(38Æ;m) of Ŝ together with a connection-preserving
bundle map covering � 0 that over the fixed point m lies in the center of SU(2).
The associated principal SU(2) bundle then passes down to give the desired prin-
cipal PSU(2)-bundle E and connection over I� I�B(38Æ; [m]). Then the missing
closed ball B(38Æ;m) is filled in.

As is well-known, there is a one-to-one correspondence between U(1)-connec-
tions on the trivial line bundle � � C ! � and Lie-algebra-valued 1-forms in

1(�;R), R = LieU(1). Under this identification the subspace H 1 (�;R) of
harmonic 1-forms in 
1(�;R) consists of flat U(1)-connections on �. As � is em-
bedded in H 1(�;R) (= H1(�;R)), this procedure leads us to a U(1)-connection
B on L := f����C ! ���g such that the restriction of (L;B) to the subspace
�� p, p 2 �, is flat and has holonomy the representation p in ~S.

Now consider the direct sum E = L � (� 0)�(L) over �. The natural invo-
lution � 00 covering � 0 that interchanges the two summands is a free action off of
the midpoint m and, moreover, preserves the connection B � (� 0)�(B). Hence,
the pullback E0 = f�(E) has over � the structure of a SU(2)-bundle with con-
nection and the pullback f�(� 00) acts as a bundle and connection-preserving in-
volution. Over the region � � B(14Æ;m) the action of f�(� 0) is free; we define
E 0 j (� � B(38Æ;m))=(Z=2)) as the quotient of this free Z=2-action and C the as-
sociated SU(2)-connection. We take E over this piece to be the associated PSU(2)
bundle with connection.

By definition, the bundle E0 j B(Æ=2;m) is the trivial product

L0 � L0 �B(Æ=2;m)! ��B(�=2;m)

as a bundle with connection. Here L0 denotes the complex line bundle with flat
connection given by L j fmg. Also, the induced map f�(� 00) maps a point
(v; w;m + p) to (w; v;m � p). That is, the first two are merely interchanged
while the point m+ p of the disk is rotated by 180Æ around m.

We parameterize the quotient B(Æ=2;m)=(Z=2) by the radius r and the angle
� which ranges 0 � � � � with 0 and � identified. (Recall that � 0 is the 180Æ
rotation about the midpoint m.) Choose a smooth, decreasing, real function g(r)
for 0 � r � Æ=2 such that g equals 1 for 0 � r � Æ=8 and g equals 0 for
Æ=4 � r � Æ=2. Then we may introduce the product bundle with connection over
the product: [0; Æ=2]� [0; �]�� given by [0; Æ=2]� [0; �]�L0�L0. We may make
the following identifications along ([0; Æ]���L0�L0) and ([0; Æ]� 0�L0�L0)
by (r; �; (v; v)) ! (r; 0; i � exp(12�g(r)) � (v; v)) and (r; �; (v;�v)) ! (r; 0; i �
exp(�1

2�g(r)) � (v;�v).
Again, these are bundle-preserving maps over r � � � � for r > 0. We

may modify the connection in a neighborhood of the “edge” [Æ=8; Æ=4] � [0; �]
so that they become connection-preserving. Moreover, over the piece Æ=4 � r �
Æ=2 the identifications are via (r; �; (v; v)) ! (r; 0; (v; v)) and (r; �; (v;�v)) !
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(r; 0; (�v; v)); that is, (v; w) ! (w; v). Thus, as bundles with connections we
have a natural identification of the pullback of this constructed 2-plane bundle over
B(3Æ=8; [m]) �B(Æ=2; [m]) with the restriction of E 0 to the corresponding piece.

We define the identifications over 0 � [0; �] � L0 � L0 by (0; �; (z; w)) !
(0; 0; (z; w)) for any � and (z; w). The corresponding identifications of [0; Æ=2] �
[0; �=2] gives back the diskB(Æ=2; [m]). The induced identifications over the point
[m] are by (v; w) ! i � (v; w), so on the fibers we must identify by multiplication
by i. Hence, we only get a principal PSU(2)-bundle after this identification. We
define E j B(Æ=2;m) � � as this quotient. It matches the previous definition over
(B(Æ;m) �B(Æ=2;m)) � �.

The statement in Proposition 6.3 about the connection C(s; t) and holonomy of
E is true by definition.

Pulled back to �, we can unwind the transformation in B(Æ=2;m) that makes
the identification multiplication by i instead of the permutation of the two factors.
This is done by rotating the first factor (v; v) to match the second (v;�v). Since
the exponentials cancel and the two i’s give �1, this deformation reproduces the
bundle E. That is, we have a parameter family Cu of unitary connections on E
such that C0 is the original connection on E, and the principal PSU(2) associated
to (E;C1) is the pullback of the PSU(2)-bundle with connection E ; moreover, the
connections are constant (independently of u) off the disk B(Æ=2;m) about the
midpoint m = (�1 � �2)=2.

In particular, the integral
R
! of the first Chern class ! of the determinant bundle

associated to the adjoint bundle Ad(E ) coupled to the �@ operator over the singu-
lar disk will be equal to 1

2 times the integral
R
! of the first Chern class of the

determinant line bundle of the natural bundle Ad(L � (� 0)�(L)) with connection
coupled to the �@ over the union F 0 [ F 00. That is, so far as the integral terms in
Walker’s correction is concerned, we may pass down to the quotient space �F and
use the bundle and connection Ad(P; C) instead. Similarly, the obstructions to ex-
tending the determinant sections are the same since the bundles with connection
are all identical in a neighborhood of the boundary of �. The point is that under the
involution (v; w)! (w; v) over the boundary of �, the Lagrangians are preserved.

To conclude this section, we explain how the above singular chain  : I � I !
E � S can be used to evaluate I(�0; h? 
 C ). From the above proof of (6.3), it is
not difficult to see that thePSU(2)-connection C over ��I�I is reducible. Hence,
the adjoint bundle Ad P and the associated connection are decomposed into the
sum H � H? of a real 1-dimensional bundle H and its orthogonal complement
H
?, endowed with connections. After forming the complexification of H?, we

obtain an SU(2)-bundle, E = H?
 C , with connection A such that the restriction
A(s; t) of A to �� s� t, (s; t) 2 I � I , is flat and has (h? � C ) Æ �(f 0(s; t)) as
its holonomy representation.

By coupling the Cauchy-Riemann operator @ with the connection A(s; t), we
obtain a family of operators f@ 
 A(s; t) : 0 � s � 1; 0 � t � 1g and hence
a determinant line bundle det(@ � h? � C ) with a Bismut-Freed connection [5]
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and Chern form ! = c1[det(@ 
 h? 
 C )]. Using these data, we can, as before,
form the relative Chern number c1(det(@ 
 h? 
 C ) j �E;��) and the integralR
�E !. Here, because of a lack of good notation, we use the symbol �E to denote the

domain of the singular chain � : I � I ! S. As explained, above this integral is 1
2

times the integral in Walker’s correction.
Since ��3 is a contractible subspace in �E, we can extend the trivialization ��

from @ �E = ��12 � �1 to ��3. Lifting this last trivialization from ��3 to �3, we have
trivializations �0� and �00� along @E0 and @E00 and hence well-defined relative
Chern numbers c1(det(@
h?
C ) j E0;�0�) and c1(det(@
h?
C ) j E00;�00�).
By additivity and functorial properties of the first Chern class, it is easy to see

c1(det(@ 
 h? 
 C ) j E0 [E00;�0� [ �00�) = 2c1(det(@ 
 h? 
 C ) j E0;��)
= 2c1(det(@ 
 h? 
 C ) j �E;��) :

Thus, as we replace E by �E, the formula in (6.8) reads as

I(�0; h
? 
 C ) =

(
c1(det(@ � h? 
 C ) j �E;�)� R �E ! ; �20 6= Id ;
1
2fc1(det(@ 
 h? 
 C ) j �E;�)� R �E !g ; �20 = Id :

(6.13)

7 Walker’s Correction Term and Spectral Flow

At the end of Section 6, we constructed over � � I � I an SU(2)-bundle E
with connection A whose restriction A(s; t) to � � s � t is flat with holonomy
(h?
C )Æ�(f(s; t)) = �(f(s; t))2��(f(s; t))�2. Along ��0�I and ��1�I ,
the representations �(0; t) (= �1(t)) and �(1; t) (= �2(t)) can be extended to
representations of �1(W1) and �1(W2), respectively. It follows that the SU(2)-
bundles E j � � 0 � I and E : �� 1� I and connections fA(0; t) : 0 � t � 1g
and fA(1; t) : 0 � t � 1g can be extended to corresponding bundles E 1 and E 2
and connections A1 and A2 over W1 � I and W2 � I .

Consider the 4-manifold M�I as obtained fromW1�I , ��I�I , andW2�I
by gluing the relevant boundary components together, i.e., @W1 � I = �� 0� I
and @W2 � I = � � 1 � I . Then over M � I there is the SU(2)-bundle E 0
with connection A0 given by gluing (E 1 ; A1), (E 2 ; A2), and (E ; A) along these
boundary components.

As in [2, p. 63], the signature operator Sign : 
! 
 of a 4-manifold is a sum
Sign+�Sign� of two operators

Sign+ : 
ev
+ ! 
ev

� ; Sign� : 
odd
+ ! 
odd

� :

Coupling Sign+ with the above bundle E0 and connection A0 data, we obtain a
first-order, elliptic operator

Sign+
E0 : 
ev
+ (M � I; E 0)! 
ev

� (M � I; E 0)
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over M � I . By adding collars to �� I � 0 and �� I � 1, we may assume that
the bundle E and connection A are productlike in these collar neighborhoods. It
follows that the bundle E 0 , the connection A0, and the operator Sign
E 0 are also
productlike. By imposing the L2-boundary condition as in [2, (3.22)], we have a
well-defined index Ind(M � I) of Sign+
E0 , which can in turn be computed by
the formula

Ind(M � I) =

Z
�(Sign+
E0)�

�(M � @I;Bev 
 E0 ) + h

2
(7.1)

where �(M � @I;Bev 
 E0 ) is the eta-invariant, h is the zero-mode correction,
and �(Sign+
E0 ) is a Chern form given by the symbol of the operator.

Along each slice M � t, the tangential component of Sign+
E0 gives us the
operator Bev 
 (E 0 jM � t):

(
2 � 
0)(M � t; E0 jM � t)! (
2 � 
0)(M � t; E 0 jM � t) ;

(a; b) 7�! (dA0�jM�ta+ �dA0jM�tb; ��d�A0jM�tb) :

Denote by D(t) these operators Bev 
 (E 0 j M � t); then as t varies we obtain
a family fD(t) : 0 � t � 1g of self-adjoint elliptic operators and hence a well-
defined (�"=+")-spectral flow. As explained in section 8 of [12], this last spectral
flow can be identified with Ind(M � I), and so

(�"=+ ")� spectral 
owfD(t) : 0 � t � 1g =Z
�(Sign+
E 0)�

�(M � @I;Bev 
 E0 ) + h

2
:

Here " > 0 is chosen so that both D(0) and D(1) have at most zero eigenvalues
in the range [�";+"]. The �"=+"–spectral flow measures the number (with signs
and multiplicities) of eigenvalues of fD(t) : 0 � t � 1g that cross the line in
R� [0; 1] from [�"; 0] to [+"; 1].

In a similar fashion, we may take the (+"=+")–spectral flow utilizing the line
from [+"; 0] to [+"; 1], and the (�"=�")–spectral flow utilizing the line from
[�"; 0] to [�"; 1].

On the other hand, there is also the average spectral flow,

A� spectral 
owfD(t) : 0 � t � 1g ;
given by taking the average of (+")- and (�")-spectral flows. Using that, we have
(as explained in section 8 of [12],

(7.2) A� spectral 
owfD(t) : 0 � t � 1g =Z
�(Sign+
E0 )�

�(M � @I;Bev 
 E 0)
2

:

This averaging procedure cancels out the zero-mode terms in the previous formula.
The idea underlying our proof of Theorem 6.2 is to compare term by term the

above formula (7.2) with (6.13).
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PROPOSITION 7.1 The integral
R
M�I �(Sign+
E0 ) in (7.2) equals 2

R
�E ! in

(6.13), and the eta-invariant �(M � @I;Bev 
 E 0)=2 equals the rho-invariant
�(M;�20).

PROOF: By [2, (4.19)], the integral in (7.2) is given by
1

2

Z
M�I

[L(M � I) ch(E 0)� e]

whereL(M�I) stands for the unstable L-polynomial and e the Euler characteristic
form. In the present setting,

R
e equals zero since M � I is a metric product. On

the other hand, since c1(E ; C) vanishes by E an SU(2) bundle,

L(M � I) =
Y�

xi
tanh(xi=2)

�
= 4[1 + � � � ] ;

ch(E 0 ) = [2 + ch(2)(E 0) + � � � ] ;
and so Z

M�I
[L(M � I) ch(E 0)� e] = 4

Z
M�I

ch(2)(E 0 ) :

Since M � I is the union of W1 � I , W2 � I , and � � I � I , we can calculateR
M�I ch(2)(E 0 ) by performing the integral over these regions separately and then

sum up the answers.
Over each slice Wj� t, j = 1; 2, we have a flat connection Aj(t) for the bundle

E j j Wj � t. In particular, the curvature 2-form is the product of dt with a Lie-
algebra-valued 1-form. Thus its square has trace zero. It follows that the Chern
form ch(2)(E 0) jWj � I is zero and soZ

M�I
�(Sign+
E0 ) = 2

Z
��I�I

ch(2)(E ):

On the other hand, the integral
R
�E ! has the integrand c1(det @ 
 E0 ), which by

the family index theorem is
R
� ch(E 0)td(�). Because td(�) = (1 + � � � ) and E is

a SU(2)-bundle, we haveZ
�E
! =

Z
I�I

Z
�

ch(E 0)td(�) =

Z
��I�I

ch(2)(E 0) :(7.3)

From the definition, the rho-invariant �(M;�20) equals the difference of two
eta-invariants, �(M;�20)� �(M; C ), i.e., the reduced eta-invariant. Hence,

�(M � @I;Bev 
 E 0)
2

=
�(M � 1; �20 � ��20 )� �(M � 0; C � C )

2

=
�(M;�20) + �(M;��20 )

2

= �(M;�20) :
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This proves (7.1).

As a consequence of (7.1), to prove Theorem 6.2, it suffices to prove that

A� spectral 
owfD(t) : 0 � t � 1g = 2c1(det(@ 
 h? 
 C ) j �E;�) :(7.4)

Once this is established, we will have

��(M;�20) = ��(M � @I;Bev 
 E0 )
2

= A� spectral 
owfD(t) : 0 � t � 1g �
Z

M�I
�(Sign+
E0 )

= 2c1(det @ 
 h? 
 C j �E;�)� 2

Z
�E

!

= 2I(�0):

If �20 = Id, the last equality is to be replaced by I(�o). Since �(M;�20) = 0 in this
case, we again get I(�0) = 0 = �1

2�(M;�20).
To prove (7.4), we use the method in [12] to compute the average spectral flow.

Without loss of generality, we may assume in a collar neighborhood of 0�I in I�I
the map � : I � I ! S is constant along the s-directions, i.e., �(s; t) = �(s0; t).
It follows that the connection A(s; t) = A j � � s � t is also constant along
the s-directions, A(s; t) = A(s0; t), and the operator D(t) can be written in the
form D(t) = �(@=@s + D̂(s; t)). Here � and D̂(s; t) are given as in (5.2) by the
following:

For (a; b; c) in 
1 � 
0 � 
2:

�(a; b; c) = (�a;� � c; �b) ;
D̂(s; t)(a; b; c) = (�dA(s;t)b+ �dA(s;t) � c;� � dA(s;t)a;� � dA(s;t)a) :

From the above formula, the tangential component D̂(s; t) of the operator D(t) is
constant along the s-directions in a neighborhood of �� 0� I . Hence, as we split
M�I into two pieces W1�I and ��I�I[W2�I , the family fD(t) : 0 � t � 1g
satisfies the Atiyah-Patodi-Singer condition in [12]. In particular, we can apply
theorem C of [12] after a family of restricted Lagrangian pairs have been chosen
along ��0�I meeting special restraints at the endpoints such that they in addition
are “specially complementary.”

If D̂ is a self-adjoint operator with pure point spectrum extending from �1 to
+1 acting on a complex Hilbert space H , we use the symplectic form given by
fv; wg = �=hv; wi. A Lagrangian subspace is then by definition the closure of
a complete orthonormal basis of this complex Hilbert space with Hermitian inner
product. We say that two Lagrangians (L1; L2) are a special complementary pair
if conditions A and B below hold:
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A. L1 intersects the span of the positive eigenvectors ofD in a subspace of finite
codimension.

B. L2 intersects the span of the negative eigenvectors ofD in a subspace of finite
codimension.

These are very strong conditions.
For a continuous-parameter family of specially complementary pair

f(L1(t); L2(t)) : 0 � t � 1g
of continuously varying self-adjoint operators D̂(t) obtained by partitioning the
interval into a finite number of pieces, we can reduce the spectral decomposition
results to that treated in our paper [12]. That is, it is a mild restatement of the
results of [12] to consider such families with the appropriate boundary condition
specified there. In particular, we have no ambiguity about the definition of Maslov
indices of such simple families. (The work of [10] on the finite-dimensional case
is sufficient for this purpose.)

These chosen Lagrangians in our problem serve a dual role. They impose
boundary conditions so that we can define for the manifolds with boundary W1�I
and ��I�I[W2�I a family of self-adjoint elliptic operators forBev coupled to
the connection. Also, the Maslov index of these varying Lagrangians appears in the
formula for the spectral flow. The condition of special complementarity translates
into the fact that the associated boundary value problem is of Atiyah-Patodi-Singer
type up to an operator of finite rank. In particular, we see that these operators are
Fredholm.

The spectral flow decomposition theorem was formulated in [12] in great gen-
erality, so it could be applied to many situations (for example, Dirac operators
coupled to bundles). As such, the spectral flows appearing in the theorems of [12]
are those that arise only after the manifold is stretched along the product neighbor-
hood of the separating manifold (here �). After a tube of length r with r large is
inserted, we may by [11] be assured that the resultant manifold M(r) and operators
at the ends D(M(r); 0) and D((M(r); 1) have no eigenvalues equal to �(1=r2).
(The rough idea is that all “small” eigenvalues are proved in Part 1 to be exponen-
tially small for r large.) Consequently, for r large the (+r�2=+r�2)–spectral flow
of D(M(r); t) is well-defined. It is this spectral flow that [12] computes.

In the special case considered here, the operators at the ends t = 0 and t = 1
are completely topological. Their zero modes are identifiable with certain ele-
ments of the cohomology of M with trivial (at t = 0) or twisted (by �2 at t = 1)
coefficients. In particular, the space of zero modes of the operators D(M(r); 0)
and D(M(r); 1) is of constant dimension and varies smoothly with r as r varies.
Therefore, stretching r gives a smooth-parameter family of self-adjoint elliptic op-
erators with the same dimensional, smoothly varying subspaces of zero modes at
the ends. Consequently, the (+r�2;+r�2)–spectral flow for r large appearing in
the theorems of [12] are in our special case the same as the (+"=+")–spectral flow
computed without stretching. In the same way we may use the averaged spectral
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flow of the unstretched operators. This will be done without further comment in
what follows.

Before choosing these Lagrangians, we observe that, becauseA(s; t) is flat with
holonomy �(s; t)2��(s; t)�2, the operator D̂(s; t) admits the following cohomo-
logical interpretation:

The null space ker D̂(s; t) of D̂(s; t) is canonically isomorphic
to the total sum H� ��; �(s; t)2 � �(s; t)�2

�
of cohomologies of

� with twisted coefficients �(s; t)2� �(s; t)�2. The Hermitian
structure on ker D̂(s; t) is induced by the cup product.

(7.5)

Along the two boundary components � � 0 � I and � � 1 � I ,

the connections A(0; t) and A(1; t) extend to flat connections on

W1 � t and W2 � t, respectively. Let L1(0; t) and L2(1; t) denote
subspaces in ker D̂(0; t) and ker D̂(1; t) given by the extended L2-

solutions fromW1�t andW2�t. Then, under the isomorphism in
(7.5) above, L1(0; t) and L2(1; t) coincide, respectively, with the

images of the induced homomorphisms

(7.6)

H�(W1 � t; �(0; t)2 � �(0; t)�2)! H�(�� 0� t; �(0; t)2 � �(0; t)�2) ;

H�(W2 � t; �(1; t)2 � �(1; t)�2)! H�(�� 1� t; �(1; t)2 � �(1; t)�2) :

The L2-solution spaces of the operators D(t) j W1 � t and

D(t) j W2 � t are isomorphic to the images of the natural ho-

momorphisms:

(7.7)

H�
comp(W1 � t; �(0; t)2 � �(0; t)�2)! H�(W1 � t; �(0; t)2 � �(0; t)�2) ;

Hcomp(W2 � t; �(1; t)2 � �(1; t)�2)! H�(W2 � t; �(1; t)2 � �(1; t)2) ;

from cohomology with compact support to singular cohomology.

The image of the cohomology with compact support is the im-

age of the relative cohomology in the absolute cohomology [2].
Since the Wj are handle bodies, we have H1(Wj ; @Wj ; �) =
H2(Wj; �) = 0, H0(Wj ; @Wj ; �) = H3(Wj ; �) = 0, and
H2(Wj ; �) = 0 for any local coefficient system � on Wj . In view
of these vanishing results, we see that the L2-solution spaces of

the operators on these pieces Wj � t vanish.

In particular, if we impose on a subinterval, say I 0 = [t0; t1], of [0; 1] the bound-
ary conditions L(D(t) jW1� I 0;+)�L1(0; t), L(D(t) j W2� I 0;�)�L2(1; t),
where L(D(t);�) denotes the L2-closure of the space of eigensolutions to D(t) j
@W1;W2 with eigenvalues positive, respectively, negative, then these families of
self-adjoint operators have no L2-solutions; moreover, their zero-mode spaces are
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isomorphic to L1(0; t) and L2(1; t), respectively. In particular, for subintervals
where these vary smoothly and are of constant dimension, we have vanishing spec-
tral flow.

Let R denote the subspace in I � I consisting of points (s; t) where �(s; t)2 6=
Id. Given a point (s; t) in R, we have, by item (1) above,

H(s; t) = ker D̂(s; t) = H1(�� s� t; �(s; t)2 � �(s; t)�2) ;

because in this case

H0(�� s� t; �(s; t)2 � �(s; t)�2) = H2(�� s� t; �(s; t)2 � �(s; t)�2) = 0 :

Since H(s; t) is of constant dimension 2(2g � 2), it is not difficult to see that
fH(s; t) : (s; t) 2 Rg forms a Hermitian vector bundle over R. In a similar
manner, the subspaces P�(s; t) in the spectral decomposition L2(E 0 j ��s�t) =
P�(s; t) � H(s; t) � P�(s; t) also form smoothly varying, infinite-dimensional
vector bundles overR. Along the the boundary line f(0; t) : (0; t) 2 Rg, where we
split M � I , the above Hermitian vector bundle has, by (7.6) above, a Lagrangian
subbundle:Supply closing right

braces in (7.8). B1(t) = ImfH1(W1 � 0� t; �(0; t)2 � �(0; t)�2)

! H1(�� 0� t; �(0; t)2 � �(0; t)�2)g
B2(t) = ImfH1(W2 � 1� t; �(1; t)2 � �(1; t)�2)

! H1(�� 1� t; �(1; t)2 � �(1; t)�2)g :

(7.8)

Thus the sum B1(t) � P+(0; t) and B1(t) � P�(1; t) form two restricted La-
grangians that can be used as smoothly varying boundary conditions for our op-
erators over the subintervals of f(0; t) : (0; t) 2 Rg. Here M is decomposed into
W1 and �� I [W2. Unfortunately, the endpoint (0; 0) is outside this good region,
so we must explicitly address this problem to make progress.

We have the corresponding restricted Lagrangian sum B2(t) � P+(1; t) and
B2(t)�P�(1; t) forming two restricted Lagrangians that can be used as smoothly
varying boundary conditions for our operators over the subintervals of f(1; t) :
(1; t) 2 Rg. Here M is cut open along @W to get pieces, W1 [�� I and W2.

On the other hand, for a point (s; t) outside of R, i.e., �(s; t)2 = Id, the Her-
mitian vector space ker D̂(s; t), by (7.5), is isomorphic to H0(�� s� t; C � C )�
H1(� � s � t; C � C ) �H2(� � s � t; C � C ). Since the latter has dimension
2(2g+2), it presents a jump from fH(s; t) : (s; t) 2 Rg. For example, this occurs
along a neighborhood of the bottom line I � 0 = f(s; 0) : 0 � s � 1g. Along the
two edges 0 � I and 1 � I and away from the neighborhoods of (0; 0) and (1; 0),
there may also be isolated points (0; t�) and (1; t�) outside of R. They correspond
to the half-lattice points in 1

2 � H1(�;Z), which happen to lie on the lines �̂1 and
�̂2. In the case when the genus of � is bigger than 1, we can remove these isolated
jumps because the dimension of H1(Wj ;R) is at least 2. By a general position
argument, we can perturb �̂1(t) and �̂2(t), keeping the endpoints fixed so that they
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stay inside H1(W1;R) and �1 +H1(W2;R) but avoid points in 1
2H

1(�;Z). Be-
cause �̂3(t) is unchanged, the construction of the region S and the singular chain
� : I� I ! S remains the same. Since �W and �BN are independent of the choice
of Heegaard decomposition, we can always assume that the genus of the splitting
surface � is at least 2.

We will assume for the moment that the point �0 is not of order 2. This means
that our problems with jumping Lagrangians only occurs at the point Id. We will
treat the remaining order 2 cases later.

Because of the jump phenomenon near (0; 0), the above family will not meet
the conditions necessary to apply theorem C of Part II. We will have to modify the
Lagrangian subspaces B1(t) in (7.8).

We may arrange that there exists "1 > 0 such that

1. � j I � [0; "1] is the constant trivial representation and the bundle with con-
nection over this piece (��) is the trivial bundle with connection,

2. � j I � [1 � "1] is the constant representation �0 and the bundle with con-
nection over this piece (��) is the pullback from �0 � � as a bundle with
connection,

3. � j [0; "1]� I is the pullback by the projection to � j 0� I and similarly for
connections, and

4. � j [1� "1; 1]� I is the pullback by the projection to � j 1� I and similarly
for connections.

We may and do arrange that at the times t = "1, 1 � "1, the representations
move quickly away from the constant representations. Of course, we have only
a piecewise-smooth-parameter family, constant on [0; "1] and on [1 � "1; 1] while
smooth on ["1; 1� "1], having nonzero right and left first derivatives at t = "1; 1�
"1, along all of M � "1 and M � (1� "1), respectively.

Now choose K > 0 so that the only eigenvalues for the operator D̂(0; 0) inside
the band [�K;K] are the zero eigenvalue. Since D̂(s; t) = D̂(0; 0) for 0 � s � 1,
0 � t � "1, the same holds for the operator D̂(s; t) over the collar neighborhood
of 0� I . By upper semicontinuity there exists ", 1 > " > "1, such that in addition
K is not an eigenvalue of D̂(s; t) for 0 � s � ", 0 � t � 1. Let H(s; t;K)

denote the span of the eigensections  , D̂(s; t) = � with j�j < K . Then by
the spectral projection theorem, the family of vector spaces fH(s; t;K) : 0 � s �
1; 0 � t � "g form a smooth Hermitian vector bundle over [0; 1] � [0; "]. By
the choice of K , over [0; 1] � [0; "1] the fiber H(s; t;K) can be identified with
ker D̂(0; 0) = �H�(�; C � C ). On the other hand, over [0; 1] � ("1; "] the fiber
H(s; t;K) contains ker D̂(s; t) = H�(�; �(s; t)2 � �(s; t)�2) as a subspace of
codimension 8 (= 2[(2g + 2)� (2g � 2)]). That is, we have bifurcation at t = "1.
We will be more explicit below.

Let P+(s; t;K) and P�(s; t;K) denote, respectively, the subspaces in P+(s; t)
and P�(s; t) spanned by (�)-eigensections of D̂(s; t) with eigenvalues lying out-
side of the band [�K;K]. Then, again by the spectral projection theorem, these
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Hilbert spaces P�(s; t;K) vary smoothly over the region f(s; t) : 0 � s � 1; 0 �
t � "; g. Moreover, P�(s; t;K) = P�(0; 0;K), for (s; t) in [0; 1] � [0; "1].

Furthermore, there are the following decompositions over (s; t) in M � [0; "]:

P�(s; t) = P�(s; t;K)�H�(s; t;K) ;

H(s; t;K) = H+(s; t;K)�H(s; t)�H�(s; t;K) ;
(7.9)

where H�(s; t;K) = H(s; t)\ P�(s; t;K). These last spaces H�(s; t;K) are of
dimension 4 and vary smoothly over the region 0 � s � 1, "1 < t � ". (Recall
that � skew-commutes with D̂ so to each eigenvector � of eigenvalue � we have
�� of eigenvalue ��).

Recall that in the symplectic spaces H(j � 1; t;K), j = 1; 2; "1 < t � ";
there are the Lagrangian subspaces Bj(t) given by the extended L2-solutions of
D(t) j Wj � t. Their sum withH�(j� 1; t;K) give us the Lagrangian subspaces:

B
0
1(t) = B1(t)�H+(0; t;K) ;

B
0
2(t) = B2(t)�H�(1; t;K) :

(7.10)

in H(j � 1; t;K), j = 1; 2. In (1.13) of [24], Walker proves that as t ! "1, the
subspaces Bj(t),H�(j�1; t;K), and B0j(t) converge to the following subspaces:

Bj("1 + 0) = lim
t!"1

Bj(t) ;(7.11a)

H�(j � 1; "1 + 0;K) = lim
t!"1

H�(j � 1; t;K) ;(7.11b)

B
0
j("1 + 0) = lim

t!"1
B
0
j(t) ;(7.11c)

in H(j � 1; "1;K). We now give an explicit description of these subspaces, using
some standard facts from perturbation theory. As we will soon see, there is a jump
of Lagrangian subspaces Bj(t) at t = "1 and so Bj("1 + 0) 6= Bj("1).

First, over ["1; "] our operators depend analytically on t. Hence, by the curve
selection lemma of Kato [16, theorem 2.6], there exist two sets of 2(2g + 2) real
analytic functions f�j(k; t) : k = 1; : : : 2(2g+2); "1 � t � "g such that they form
the sets of eigenvalues of D̂(j � 1; t) in the band [�K;K]. At t = "1, all these
eigenvalues vanish, and so we have to analyze the phenomenon of bifurcation at
t = "1. By perturbation theory, the rate of bifurcation, i.e., the set of the derivatives
�0j(t; "1 + 0) = d

dt �j(k; t)jt="1+0, coincides with the set of eigenvalues of the
operator

Tj = � Æ
�
d

dt
D̂(j � 1; t)

���
t="1+0

�
(7.12)

where � is the orthogonal projection of the Hilbert space onto H(j � 1; "1) =

ker D̂(j� 1; "1). For all practical purposes, we can regard Tj as an operator acting
on the finite-dimensional vector space H(j � 1; "1), which can be identified with
the sum of harmonic 1-forms, 0-forms, and 2-forms on � with coefficients in C �
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C . Note that in the present setting the operator D̂(j � 1; 0) and its derivatives
commute. Hence we can apply the treatment of [16, theorem 2.6] to deduce that
the eigenvalues have a linear rate of decay.

Let!j denote the tangent vector !j = d
dt�j(t)jt="j+0 of the path �j(t) � R(�)

at t = "j . We have arranged in advance that !j 6= 0 along all of [0; 1] � "1. Then,
as in Section 6, !j can be regarded as a cohomology class in H1(�; h?), which
can in turn be identified with a harmonic 1-form 
1(�; h?). In the same manner,
the complexification !j 
 C gives rise to a harmonic 1-form vj = !j 
 C in

1(�; h? 
 C ) = 
1(�; C � C ). We have prearranged that vj 6= 0. Recall that

D̂(s; t)(a; b; c) =
�
dA(s;t)b� �dA(s;t)c;�d�A(s;t)a;� � dA(s;t)a

�
where along (j � 1) � ["1; "] the operator dA(j�1;t) is given by d + t(vj^). Here
vj^ stands for the endomorphism on �
�(�; h?
C ) given by the wedge product
with vj .

Putting the above information into (7.12), we can view Tj as the block matrix

Tj =

24 0 �(vj^) (vj^)�
� � (vj^) 0 0
�(vj^)� 0 0

35(7.13)

acting on the space of column vectors with entries in harmonic 1-forms, 0-forms,
and 2-forms. From (7.13) it is not difficult to deduce that the eigenvalues of Tj
are 0, +1, and �1. The 0-eigenspace is generated as a (h? 
 C )–module by the
column vectors 24x0

0

35(7.14)

where x is a harmonic 1-form in 
1(�; h? 
 C ) with the property x ^ vj = x ^
�vj = 0. Hence, it has dimension 2(2g � 2) and coincides with the limit space
limt!"1+H(j�1; t) of the nearby zero modes. In particular, it contains Bj("1+0)
in (7.11a) as a Lagrangian subspace. On the other hand, there are the column
vectors

aj =

24 vj
0

�i � 1

35 ; bj =

24�vj�i1
0

35 ; cj =

24�vji1
0

35 ; dj =

24 �vj
0

�i � 1

35 ;
(7.15)

where aj and bj are the generators of the (+1)-eigenspace, and cj and dj are
the generators of the (�1)-eigenspace. In view of the bifurcation, these (�1)-
eigenspaces of Tj are the respective limit spaces H�(j � 1; "j + 0;K) of the
nearby (�)-eigenmodes.

The extended L2-solution space Bj("1) can also be described in terms of the
eigenvectors in (7.14) and (7.15). First of all, it contains all the column vectors in
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(7.14) with x in the image of the induced homomorphism H1(Wj � "1; C � C ) !
H1(� � "1; C � C ). Since this homomorphism is the limit of the nearby maps
H1(Wj�"1; h?
C ) ! H1(��"1; h?
C ), its image coincides withBj("1+0).
A dimension count shows that the rest of Bj("1) is generated by the following:24vj0

0

35 =
1

2
(aj � dj) ;

2401
0

35 =
1

2i
(�bj + cj) :(7.16)

Comparing the two Lagrangians Bj("1) and B0j("1 + 0) in H(j � 1; t;K), we
see that both of them contain Bj("1 + 0) and become different on its orthogonal
complements:

B
0
j("1) =

(
Bj("1 + 0)� (C � C )[aj ]� (C � C )[bj ] for j = 1 ;

Bj("1 + 0)� (C � C )[cj ]� (C � C )[dj ] for j = 2 ;

Bj("1) = Bj("1 + 0)� (C � C )[aj � dj ]� (C � C )[bj � cj ] :

To define a continuous Lagrangian boundary condition suitable for applying theo-
rem C of [12], we have to connect the following two orthogonal complements:

U 0j(t) = (C � C )[aj ]� (C � C )[bj ] ; 0 � t � "1 ;

Uj(t) = (C � C )[aj � dj ]� (C � C )[bj � cj ] ; 0 � t � "1 ;

by families of Lagrangians inH(j�1; t), 0 < t � "1. (Here, as before, we identify
H(j� 1; t) withH(j� 1; "1), and so U 0j(t) and Uj(t) are Lagrangians in the same
symplectic space.) As in Section 5, there is the complex structure on H(j � 1; t)
given by

J =

24�� 0 0
0 0 �
0 �� 0

35 :
Note cj = �Jaj and dj = Jbj , and so Uj(t) is generated by (aj + Jbj) and (bj +
Jaj) while U 0j(t) is generated by xj = (aj + bj) and yj = (aj � bj). With respect
to the generators fxj ; yj ; Jxj ; Jyjg, there is the unitary transformation uj(t) on
H(j � 1; t) given by8>>>>><>>>>>:

xj 7�! cos
�
"1�t
2"1

�
xj + sin

�
"1�t
2"1

�
Jxj

yj 7�! cos
�
"1�t
2"1

�
yj � sin

�
"1�t
2"1

�
Jyj

z 7�! z for z 2 B(j � 1; "1 + 0):

(7.17)

Note at t = "1 the map u("1) is the identity while at t = "1=2,

uj("1=2)xj =
1p
2
(1 + J)xj =

1p
2
f(aj + Jbj) + (bj + Jaj)g ;

uj("1=2)yj =
1p
2
(1� J)yj =

1p
2
f(aj + Jbj)� (bj + Jaj)g :
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Applying uj(t) on B0j(t), we obtain a smooth family fuj(t) � B0j(t) : "1=2 � t �
"1g connecting up B0j("1) at t = "1 to Bj("1) at t = "1=2.

PROPOSITION 7.2 Let Bj(t), P�(j � 1; t), and uj(t) �B0j(t) be defined as above.
Then the formulae

Cj(t) =

8>><>>:
Bj(t)� P�(j � 1; t) for "1 � t � 1 ;

uj(t) �B0j(t)� P�(j � 1; t) for "1=2 � t � "1 ;

Bj(t)� P�(j � 1; t) for 0 � t � "1=2 ,

(7.18)

j = 1; 2, define two continuous families of restricted Lagrangians in (L2(E j
��(j�1))�t). Using them as boundary conditions for the operators D j Wj�t,
j = 1; 2, we obtain two continuous families of self-adjoint elliptic operators

D(t;Cj(t)) : L
2
1(E j jWj � t;Cj(t))! L2(E j jWj � t) :

Moreover, this family satisfies the endpoint conditions necessary to apply theorem
C of [12].

From the definition, the isotropic subspaces Bj(t), P�(j � 1; t), and uj(t) �
B0j(t) vary smoothly over their domains of definition; it is enough to check that the
various terms in (7.17) match up at t = "1 and t = "1=2. Since Bj(t) � P�(j �
1; t) = Bj(t)�H�(j�1; t;K)�P�(j�1; t;K) = B0j(t)�P�(j�1; t;K), we
have the sum B0j("1) � P�(j � 1; "1;K) at t = "1. This last sum coincides with
uj("1) � B0j("1)� P�(j � 1; "1) because uj("1) = Id. Similarly, the Lagrangians
agree at t = "1=2 because uj("1=2) � B0j("1=2) = Bj("1=2).

Note the signs in P�(j� 1; t) are + for j = 1 and � for j = 2. Since the Cj(t)
coincide with P�(j�1; t) except for some finite-dimensional subspaces, it follows
that they are restricted Lagrangians and the operators D(t;Cj(t)) are self-adjoint.

We now define two continuous families of special complementary pairs of
Lagrangians C1(s; t) and C2(s; t) over I � I in each of the symplectic spaces
L2(E j �� (s; t)) as follows: Cj(s; t) over I� ([0; "1][ [1�"1; 1]) is the pullback
of C(j�1; t) over (j�1)� ([0; "1][ [1�"1]) for j = 1; 2. C1(s; t) over [0; "1]�I
is the pullback of C(0; t) over 0 � I . C1(s; t) over [1 � "1] � I is the pullback of
C(1; t) over I � I . The rest of the restricted Lagrangians are chosen as any smooth
extension of these given Lagrangians Cj(s; t) that enjoy the special complemen-
tarity property: The Cj(s; t) intersect the closure of the span of the positive and
negative eigenspaces of D̂(s; t) in a subspace of finite codimension for j = 1; 2;
respectively. This is easily done.

These Lagrangians can be utilized as appropriate boundary conditions. They
differ only by finite rank operators from the Atiyah-Patodi-Singer boundary condi-
tions [3], and thus the operators with boundary conditions (D(t) j (W1� t)[ (��
[0; s])� t;C1(s; t)), (D(t) j ((�� [s; 1]) [W2)� t);C2(s; t)) are self-adjoint el-
liptic operators with well-defined spectrum and excellent properties. For example,
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the associated spaces of extended L2-solutions by Section 3 vary continuously and
are Lagrangians in the Hilbert spaces L2(E j �� (s; t)).

From (7.17) it is clear that Cj(t), j = 1; 2, satisfy the endpoint condition of
[12], and so they can be used as the Lagrangian families in the calculation of the
average spectral flow of f(D(t) j (W1 � t);C1(t)) : 0 � t � 1g and f(D(t) j
(W2 � t);C2(t)) : 0 � t � 1g.

We seek to apply our spectral flow decomposition theorem to the family D(t)
over M when we split M along the surface � = �� 0. This splits M into W1 and
I [W2. An ingredient in these calculations is the following:

PROPOSITION 7.3 (a) The average spectral flow of fD(t)j(Wj � t);Cj(t)) : 0 �
t � 1g equals zero.

(b) The average spectral flow of fD(t)j([0; 1] [W2) � t;C2(t) : 0 � t � 1g
equals zero.

PROOF: By the additivity of spectral flows, we can break up the calculation of
A–spectral 
owfD(t) j Wj � t;Cj(t) : 0 � t � 1g into calculations over the
intervals [0; "1=2], ["1=2; "1], and ["1; 1]. By (7.7) there are no L2-solutions for
D(t) j Wj � t, and so the extended L2-solution spaces are mapped isomorphically
onto Bj(t). Since over [0; "1=2] and ["1; 1] the boundary condition is Bj(t) �
P+(t), it follows that kerDj(t)(Wj � t;Cj(t)) has the same dimension as Bj(t).
Since these spaces have constant dimensions over the intervals [0; "1=2] and ["1; 1]
and vary smoothly, the corresponding average spectral flows equal zero for j =
1; 2.

It remains to calculate the A–spectral flow of fDj(t)(Wj � t;Cj(t)) : "1=2 �
t � "1g. Since over ["1=2; "1] the operators Dj(t) j Wj � t are constant, by
theorem D of [12], these spectral flows are equal to the following averaged Maslov
indices:

A�Masf(u1(t) � B01(t);B1(t)) : "1=2 � t � "1g for j = 1;(7.19a)

A�Masf(B2(t); u2(t) �B02(t)) : "1=2 � t � "1g for j = 2:(7.19b)

Recall that over the subspace B(j� 1; "1+0) the transformation uj(t) is the iden-
tity, and so the corresponding average Maslov indices are equal to zero. Thus,
by the symplectic additivity of the Maslov index, the terms in (7.19a) and (7.19b)
are, respectively, A � Masf(u1(t) � U 01(t); U1(t)) : "1=2 � t � "1g and A �
Masf(U2(t); u2(t) � U 02(t)) : "1=2 � t � "1g. From (7.17) the Lagrangians U 0j(t)
are the sum of two components of the same dimension; moreover, the transfor-
mation uj(t) is a clockwise rotation on one and counterclockwise on the other. It
follows that the average Maslov indices are equal to zero. This proves the first
assertion of Proposition 7.3.

As for the second statement, by the homotopy invariance of spectral flow for
fixed endpoints, we may conclude that the families f(D(t)j(� � [s; 1] [W2) �
t;C2(s; t)) : "1 � t � 1g have the same spectral flow for all s since the endpoint
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operators are independent of s. As for the region 0 � t � "1, the operators
(D(t) j (�� [s; 1] [W2)� t;C2(s; t)) are again independent of s so the spectral
flow is the same as for s = 1. Hence, this case follows from the above.

With the family of restricted Lagrangians given as above, we consider the
Sobolev spaces of sections of H ? 
 C over �� [s; 1] � t [W2 � t with C2(s; t)
as the boundary condition. Over these spaces there are the continuous family
of self-adjoint elliptic operators D(s; t;C2(s; t)) induced by D(t). In particu-
lar, along � � 0 � I we have the family of restricted Lagrangians C2(0; t) =
C(0; t) and operators D(0; t;C(0; t)), which can be compared with C1(0; t) and
D(t)(W1 � t;C1(0; t)) defined before over W1.

PROPOSITION 7.4 The average spectral flow of fD(t) : 0 � t � 1g over M
equals the average Maslov index f(C2(0; t);C1(0; t)) : 0 � t � 1g.

PROOF: We split M � I along �� 0� I into two pieces W1� I and �� I �
I [W2� I . On L2(E j ��0�I), there are two families of restricted Lagrangians
f(C1(t);C02(t))g. As explained above, the average spectral flow is independent of
the stretching of the manifold M along �. Hence, by section 7 of [12], the average
spectral flow of fD(t) : 0 � t � 1g equals

A– spectral 
owfD(t) jW1;C1(0; t) : 0 � t � 1g
+A– spectral 
owfD2(t) j (((I � I) [W2);C2(0; t)) : 0 � t � 1g
+A–Masf(C1(0; t);C2(0; t)) : 0 � t � 1g :

As explained above, averaged spectral flow is independent of r in our case.

PROPOSITION 7.5 The average Maslov index of f(C1(0; t);C2(0; t)) : 0 � t � 1g
equals 2c1(det(@ 
 h? 
 C ) j E;�).

Recall that by our choice, our restricted Lagrangians have the special feature
that C1(s; t) intersects the closure of the span of the positive eigenvectors of D̂(s; t)
in a subspace of finite codimension, while C2(s; t) intersects the closure of the span
of the negative eigenvectors of D̂(s; t) in a subspace of finite codimension. Thus,
the consideration of Maslov index for these Lagrangians is almost the same as that
for finite-dimensional Lagrangians considered in [10].

As in (2.28), associated to the restricted Lagrangians fC(s; t) : 0 � s � 1; 0 �
t � 1g and fC1(t) : 0 � t � 1g, there are the corresponding sections fdetC(s; t) :
0 � s � 1; 0 � t � 1g, fdetC1(t; 0) : 0 � t � 1g, and fdetC2(t; 1) : 0 � t � 1g
of the determinant line bundles fdet D̂(s; t) : 0 � s � 1; 0 � t � 1g and
fdet D̂(j � 1; t) : 0 � t � 1g. The average Maslov index of f(C1(t; 0);C2(t; 0)) :
0 � t � 1g can be expressed in terms of these sections.
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More precisely, at the two endpoints t = 1; 0, we can connect the Lagrangians
(C2(0; 1);C1(0; 1)) and (C1(0; 0);C2(0; 0)) by clockwise- and counterclockwise-
rotating Lagrangians v++(1); v��(1), and v++(2); v��(2), respectively, on the
transversal parts of these Lagrangians (cf. (6.5) or section 13 of [10]). Accordingly,
the sections fdetC2(0; t) : 0 � t � 1g and fdetC1(0; 1 � t) : 0 � t � 1g can
be connected to form two loops of sections f++ and f�� in det D̂ (following the
notation of [10] composing from left to right),

f�� = [C2(0; t)] � v��(1) � [C1(0; 1 � t)] � v��(0) :(7.20)

Let �̂ : �1(LagC ) ! Z be defined as in [10]. Then, by (13.1) of [10], the
average (�̂(f++) + �̂(f��))=2 is the same as the averaged Maslov index,

A–Masf(C1(0; t);C2(0; t)) : 0 � t � 1g :
(Note the reversal in the order of 1 and 2 in (7.20)).

Since everything is constant in a neighborhood of the segments I�0 and I�1,
we can view these Lagrangians v��(0) and v��(1) as defined over the corner
points (0; 1), (0; 0), and [0; s] � I . Combining them with fC2(s; t) : 0 � t � 1g
and fC1(0; 1 � t) : 0 � t � 1g, we have two loops of Lagrangians around the
boundary of the square [0; s]� I:

f 0(s)�� = [C2(s
0; 0) : 0 � s0 � s] � [C2(s; t)] � [C2(s� s0; 1) : 0 � s0 � s]

� v��(1) � [C1(0; 1 � t)] � v��(0) :

(7.21)

Here the parameters s and t run from 0 to 1 in an increasing direction.
By the deformation invariance of the mapping �, the obstruction to extending

the section f 0�� of the determinant bundle across the disk [0; s] � I is equal to the
obstruction for f��. Thus the averaged obstruction for f 0(s)�� is independent of
s and equals that for f 0(0)��, which is f��.

The determinant sections 	� associated to these two loops of Lagrangians give
two trivializations of the determinant line bundle det D̂ over the boundary of I�I .
From this it is not difficult to see in view of the above that

�̂(f 0(1)��) = c1[det D̂ j I � I;	�]

and

�̂(f++) + �̂(f��)
2

= c1[det D̂ j I � I;	] :

Here c1[det D̂ j I � I;	] is the average of c1[det D̂ j I � I;	�], the two relative
Chern numbers, as in (6.6).

We can now compare c1[det D̂ j I � I;	] with c1[det @ 
 h? j E ;�]. In
the line bundle det D̂, we have been using the Bev-operator and in det @ 
 h? the
Cauchy-Riemann operator @. From the discussion in Section 5, there is a canonical
isomorphism det D̂ �= [det @ 
 h?]
2. Under this isomorphism we claim that the
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trivialization 	 becomes �
2. Recall in (6.3) the determinant section (det1 �j) is
defined by the complex Lagrangians Im[H1(Wj; �

2) ! H1(�; �2)]. Comparing
this withBj(t) = Im[H1(Wj ; �

2���2)! H1(�; �2���2)], it is easy to see that
(det1 �j)


2 is the same as [detCj(t)] for t outside of ["1=2; "1]. Inside ["1=2; "2]
the Lagrangian Cj(t) is obtained from Bj(0) by composing it with a unitary trans-
formation uj(t) in (7.18). Since the latter has determinant 1 (cf. (7.17)), this de-
formation does not affect the determinant section and so [detCj(t)] = (det1 �j)


2
for all t. This proves our claim and hence Proposition 7.5.

PROOF OF THEOREM 6.2: As explained before, the proof follows from the
formula (7.4). In the case with �20 not of order 2, this last formula follows from
combining Proposition 7.4 and 7.5.

In the case with �20 of order 2, we must confront the jump in zero modes at the
points (s; 1) in I � I where the representation is constantly �20 in addition to the
points (s; 0), where as before �20 is trivial. This is achieved in precisely the same
manner as we employed for the jumps at Id for the points (s; 0). We need but use
the method of choice of Lagrangian pairs at the end (s; 1) as we employed at the
end (s; 0). The result is again Theorem 6.2 in this special case.

8 Canonical Perturbations

We return to the setting discussed at the beginning of Section 6. M is a ra-
tional homology 3-sphere with a Heegaard decomposition M = W1 [W2, � =
W1 \W2 = @W1 = @W2. However, we drop the assumption of the fundamental
group �1(M) being cyclically finite. Therefore, near a reducible representation
� : �1(M) ! SU(2) of �1(M), the Lagrangian subspaces Q1 and Q2 need not
be in a transverse position. In this setting we will define two “canonical” pertur-
bations, Q2R and Q2L, of Q2 in the Zariski tangent cone of � that intersect Q1

transversely. Roughly speaking, there is a complex structure on such a neighbor-
hood of �, and with respect to this complex structure Q2R is the result of right-
handed rotation while Q2L is the result of a left-handed one. (The appropriate
complex structure is chosen so as to be compatible with the underlying symplectic
structure.)

After these perturbations, we will have subspaces (Q1 \Q2R) \ (R � S) and
(Q1\Q2L)\(R�S) compactly supported in the irreducibles (R�S). Therefore,
as in the cyclically finite case, we can perform further perturbations on Q2R and
Q2L away from a neighborhood of the reducibles S to get stratified Lagrangian
subspaces Q#

2R and Q#
2L such that their smooth strata �Q#

2R = Q#
2R�S and �Q#

2L =

Q#
2L�S intersect �Q1 = Q1�S transversely and compactly. Once this is achieved,

we define natural extensions �(M)R and �(M)L of the Boyer-Nicas invariant to
all rational homology spheres by the formulae

�(M)R =
X

P2 �Q1\ �Q#

2R

Sign(P ) ; �(M)L =
X

P2 �Q1\ �Q#

2L

Sign(P ) :(8.1)
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In the case when �1(M) is cyclically finite, the canonical perturbations Q2r

and Q2L are isotopic to Q2 through a family of Lagrangians always transverse to
Q1 near the reducibles. From this we have the following:

PROPOSITION 8.1 For a rational homology 3-sphere M whose fundamental group
�1(M) is cyclically finite,

�BN(M) = �(M)R = �(M)L

Another feature of these canonical perturbations Q2R and Q2L is that they are
complex Lagrangians at reducible representations � of �1(M) in the same sense as
discussed in Section 6. Note that this “Walker” complex structure is different from
the one compatible with the symplectic structure. It uses a choice of ordering of
the splitting of � as a direct sum � = �1��2 of one-dimensional representations. It
is well-defined only on the space of representations of the fundamental group into
U(1), not its image as reducible SU(2)-representations. In this quotient the order
is forgotten. Following the treatment there, we obtain two well-defined Walker
correction terms from these perturbations, I(�;Q1; Q2R) and I(�;Q1; Q2L).

PROPOSITION 8.2 For a rational homology 3-sphere M , we have

�W (M) = �(M)R +
X
�

I(�;Q1; Q2R)

= �(M)L +
X
�

I(�;Q1; Q2L)

where the terms in the above sum go through all the reducible SU(2)-represen-
tations � of �1(M).

As a generalization of Theorem B in the introduction, we can express the above
Walker corrections I(�;Q1; Q2R) and I(�;Q1; Q2L) in terms of known invariants
of M .

THEOREM 8.3 LetM be a rational homology 3-sphere and let [�] = [����1], � :
�1(M)! U(1), be a reducible SU(2)-representation of �1(M). Then the Walker
correction terms I(�;Q1; Q2R) and I(�;Q1; Q2L) associated to the right-handed
and left-handed perturbations at �, respectively, satisfy the following equalities:

(a) I(�;Q1; Q2R)� I(�;Q1; Q2L) = dimC H
1(M;�2),

(b) I(�;Q1; Q2R) + I(�;Q1; Q2L) = �(1=2)�(M;�2).

Here �(M;�2) stands for the rho-invariant of M associated to the representation
�2 and H1(M;�2) for the cohomology of M with coefficients in �2.

Putting the above in Proposition 8.2 results in the following generalization of
Theorem A of the introduction.

THEOREM 8.4 Let M be a rational homology 3-sphere. Then

(a) �(M)R � �(M)L =
P

�2 dimC H
1(M;�2) and
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(b) 1
2 [�(M)R + �(M)L] = �W (M) � 1

2 Def(Mab ! M) where the sum goes
over all squares [�2] of characters � : �1(M) ! U(1) and the signature
defect Def(Mab !M) is as in Theorem A.

We begin by defining canonical perturbations in the situation of a symplectic
vector space (V; f�; �g) and then go on to explain how this simple idea extends to
our setting.

Suppose in addition to a symplectic structure f�; �g the vector space V is en-
dowed with a metric, i.e., a real, symmetric, positive definite bilinear pairing (�; �) :
V � V ! R. Then by linear algebra there is a unique complex structure (V; J),

J : V ! V ; J2 = �Id ;
and Hermitian pairing

h�; �i : V � V ! C

such that the real and imaginary parts are

<h�; �i = (�; �) ; =h�; �i = �f�; �g :(8.2)

A typical example of the above is the space �(E ) of C1-sections of E with the
pairings hf; gi and ff; gg already mentioned in (1.6).

Let L be a Lagrangian subspace in V . Then a canonical right-handed perturba-
tion of L is given by

�t(L)R = fe�Jt � L : 0 � t < "g ;(8.3)

and a left-handed perturbation is given by

�t(L)L = fe+Jt � L : 0 � t < "g(8.4)

with " sufficiently small and positive. Our convention is that a “right” rotation
should rotate the second Lagrangian clockwise with respect to the first.

Note that eJt = I + Jt + (Jt)2=2! + � � � represents a family of unitary and
so symplectic automorphisms of V . Hence, as t varies, we obtain two families
f�t(L)Rg and f�t(L)Lg of Lagrangians in V connecting up L to, respectively,
e�J" � L and e+J" � L.

Let (L1; L2) be a pair of Lagrangian subspaces in V that need not be transverse
to each other. The following proposition, whose simple proof can be found in [10,
lemma 2.1], allows us to perturb L2 using either the right-handed or the left-handed
perturbation to a transverse position with respect to L1.

PROPOSITION 8.5 Let L1 and L2 be two Lagrangian subspaces in V . Then there
exists an " > 0 such that (L1 \ eJt � L2) = f0g for all t in the half-open intervals
0 < t � " and �" � t < 0.

REMARK 8.6 It is clear from the definition that both f�t(L)Rg and f�t(L)Lg de-
pend on the complex structure, which in turn depends on the choice of metric (�; �).
However, as is well-known, the space of metrics is convex, i.e., given two met-
rics (�; �)0 and (�; �)1 on V , there exists the smooth family of interpolating metrics
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f(�; �)s = (1 � s)(�; �)0 + s(�; �)1 : 0 � s � 1g connecting them. Accordingly,
there are associated smooth families of complex structures Js, right-handed per-
turbations �t;s(L)R, and left-handed perturbations �t;s(L)L connecting the corre-
sponding data. In all this the underlying symplectic structure f�; �g is regarded as
fixed. As is evident these various perturbations are isotopic as symplectic motions
of Lagrangians starting from the identity. Moreover, the result of any of these
motions is to render L1 and L2 transverse; i.e., f�t;s(L2)Rg and f�t;s(L2)Lg are
transverse with respect to L1 for all t and s with 0 < jtj � " and 0 � s � 1, for
" sufficiently small. In this strong symplectic sense, we may regard these families
of perturbations as equivalent “canonical” ways of making L1 and L2 transverse.
Thus, in our application of Proposition 8.5, we fix one complex structure and pro-
ceed with the discussion for this single case.

Another feature of the motion eJt : V ! V is that it is the result of the Hamil-
tonian flow associated to the functions

�r
2

2
: V ! V ; �! �1

2
(�; �) :(8.5)

This can easily be seen when V = C with the standard symplectic structure ! =
dx ^ dy and J = i. In this case, the rotational motion z ! eit � z is generated by
the vector field i(x+ iy) = (�y; x) = �y @

@x + x @
@y . Clearly,�

� y
@

@x
+ x

@

@y

�
! = �y dy � x dx = d

��r2
2

�
:

In general, the assertion follows from considering V �= C n as a direct sum of n
copies of the above example.

Next we extend the definition of the above perturbations to the setting of a
symplectic reduction. Let (G;V ) be a complex unitary representation of a Lie
group G on a Hermitian vector space (V; h�; �i; J). Associated to this situation,
there is a moment map � : V ! Lie(G)� from V to the dual of the Lie algebra.
More explicitly, for a in the Lie algebra of G, let exp(ta) denote the one parameter
group generated in G. By definition we have

(�(v))(a) = lim
t!0

�fv; exp(ta)vg
t

�
where v is any vector in V . This mapping is G-equivariant, where G acts by
the conjugation (i.e., adjoint action) on its Lie algebra Lie(G). By definition, the
symplectic reduction ��1(0)=G is obtained by taking the zero set ��1(0) of the
moment map and then forming the quotient space ��1(0)=G of ��1(0) modulo
the action of G.

Let L be a Lagrangian subspace of V that is invariant under the action of G.
Then, from the isotropy property (fv; wg = 0 for v; w in L) of Lagrangian sub-
spaces, L is contained in ��1(0) and, by passing to the quotient L=G, is a (strati-
fied) Lagrangian subspace in the symplectic reduction ��1(0)=G. To perturb L=G,
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we observe that the function �r2=2 : V ! R in (8.5) is invariant under G. Hence,
the associated Hamiltonian flow and symplectic automorphism � ! eJt� are G-
equivariant. As a result, throughout the deformation, f�t(L)Rg and f�t(L)Lg
remain G-invariant and descend to “canonical” right-handed and left-handed per-
turbations f�t(L=G)Rg and f�t(L=G)Lg of L=G in ��1(0)=G.

Now given a pair of G-invariant Lagrangians (L1; L2) in V , the perturbations
f�t(L2)Rg and f�t(L2)Lg in Proposition 8.5 allow us to deform L2 into lin-
ear transverse subspaces with respect to L1, i.e., L1 \ f�t(L2)Rg = f0g and
L1 \ f�t(L2)Lg = f0g for 0 < t � ". Here " is sufficiently small and pos-
itive. Passing to the quotient, we see that (L1=G) \ f�t(L2=G)Rg = f0g and
(L1=G)\ f�t(L2=G)Lg = f0g: In other words, f�t(L2=G)Rg and f�t(L2=G)Lg
for 0 < t � " have no intersection with L1=G except at the cone point f0g 2
��1(0)=G.

In fact, in our application, we have to make sure that the desired perturbations
take place only in a small prescribed Æ-neighborhood of f0g in ��1(0)=G and
remain at the original position outside a slightly larger Æ0-neighborhood, 0 < Æ <
Æ0; that is, the motion is the identity outside this larger neighborhood. For this, we
choose a smooth, nonnegative, decreasing function

g(r) : R+ ! R+

such that

g(r) = 1 for 0 � r � Æ ;(8.6a)

g(r) = 0 for Æ0 � r <1 ;(8.6b)

0 � g(r) � 1 for Æ � r � Æ0 :(8.6c)

Then we consider the Hamiltonian flow associated to the function

�! �g(r) � r2
2

with r2 = (�; �) and the symplectic automorphism 	t generated by this flow.
Clearly, this new automorphism is the same as �t for 0 � j�j � Æ and is the
identity outside Æ0 � j�j. Moreover, the above function is G-invariant and so
passes down to the symplectic quotient ��1(0)=G with the same properties.

Let � : �1(M)! SU(2) be a reducible SU(2)-representation of �1(M). Then
as in Section 6, we write � as a sum � = � � ��1 where � : �1(M) ! U(1).
This involves a choice of ordering. That is, following Walker and Section 6, we are
considering the twofold covering of the reducible SU(2)-representation consisting
of the representations � : �1(M)! U(1). A neighborhood of this reducible point
[�] can be explicitly evaluated in terms of a symplectic reduction ��1(0)=G. The
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symplectic space in question is the Zariski tangent space of R at [�]:

H1(�;Ad �) = H1
�@(�;Ad �
 C )

= H1
�@(�; �

2 � C � ��2)

= V �H1
�@(�; C ) � �V

with V � H1
�@
(�; �2) and �V � H1

�@
(�; ��2). Here the symplectic structure on

H1(�;Ad �) comes from the combination of the cup product pairing on cohomol-
ogy with the natural Ad-invariant inner product [�; �] on the coefficients Ad � =
su(2):

f�; �g : H1(�;Ad �)
H1(�;Ad �)
\�! H2(�;Ad �
Ad�)
[�;�]�! H2(�;R)

�=�! R :

Note that this is independent of the choice of �. However, the complex structure
and so the �@-operator come into the choice of �.

In the definition of the above �@-cohomology, we have fixed a Riemannian
(hence holomorphic) structure on �. With respect to this Riemannian metric and
complex structure, there is a unique Hermitian pairing h�; �i on H1(�;Ad �) that
is compatible with the skew-symmetric pairing as in (8.2). In terms of the identi-
fication (8), this Hermitian pairing is a sum of the natural Hermitian pairings on
the three summands given by

R
� ^ �� where the forms � and � with values in the

local systems are paired using the natural complex unitary metrics on these three
coefficient systems, �2, C , and ��2.

The stabilizer of the reducible representation [�] = [� � ��1] is the circle
subgroup

U(1) = fdiag[ei�; e�i�] : 0 � � � 2�g
of SU(2) if � is not of order 2. Here U(1) operates on Ad� as a subgroup of
SU(2) and hence on the Zariski tangent space H1(�;Ad �) preserving the Her-
mitian structure. With respect to this last action, the decomposition of (8) is an
eigenspace decomposition V � H1

�@
(�; C ) � �V with weights (2; 0;�2). Geomet-

rically the middle term H1
�@
(�; C ) represents the tangent space (TS)� of the re-

ducible stratum S at [�], while V � �V stands for the Zariski normal bundle to S
inside of R.

If � is a point of order 2, then Ad � is trivial and hence the stabilizer is all of
SU(2). In this case Q1 and Q2 are already transverse; see below.

For � not of order 2, from a straightforward computation the moment map

� : V �H1
�@(�; C ) � �V �! R

of the above U(1)-action is given by

�(a; b; c) = 2kak2 � 2kck2 ; a 2 V ; b 2 H1
�@(�; C ) ; c 2 �V :(8.7)
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Using (8.7) we have the following description of ��1(0)=U(1), the symplectic
reduction in this case:

��1(0)=U(1) = f(a; b; c) : a 2 V; b 2 H1
�@(�; C ); c 2 �V ; kak2 = kck2g=S1

= H1
�@(�; C ) � cone on f(a; c) : kak2 = kck2 = 1g=S1

= H1(�;R) � cone on (S(V )� S( �V )=S1) :

(8.8)

Here S(V ) and S( �V ) are the unit spheres of the Hermitian vector spaces V and �V .
Next we consider the situation when [�] = [����1] is a point in the intersection

Q1\Q2 ofQ1 andQ2. The Zariski tangent spaces (TQ1)� and (TQ2)� at this point
[�] are naturally isomorphic to the cohomology H1(W1;Ad �), H1(W2;Ad �),
which in turn are decomposed into the following orthogonal sums:

H1(W1;Ad �) = H1(W1;R) �H1(W1;Ad
? �) ;

H1(W2;Ad �) = H1(W2;R) �H1(W2;Ad
? �) ;

(8.9)

where Ad? = �2 � ��2. Using the Mayer-Vietoris sequence in cohomology and
the fact that M is a rational homology sphere, it is easy to deduce

H1(W1;R) �H1(W2;R) = H1(�;R) :(8.10)

Geometrically the summands H1(W1;R) and H1(W2;R) are the tangent spaces
T (Q1 \ S)� and T (Q2 \ S)� in the reducibles S at [�], and the equality (8.10)
indicates that the subspaces Q1 \ S and Q2 \ S intersect each other transversely
at [�] 2 S. The true neighborhood of Q1 and Q2 at [�] is the above Zariski tangent
bundle divided out by the action of the stabilizer U(1).

Let Lj = H1(Wj;Ad
? �); j = 1; 2; be the second component in the decom-

position (8.10). Then as explained in Section 6 (cf. [24, p. 15]), Lj is a com-
plex Lagrangian subspace of V � �V . In other words, there is a unitary mapping
�(Lj) : V ! �V between the Hermitian vector spaces V and �V , and Lj is the
graph of this map,

Lj = graph of �(Lj) = f(a; �(Lj)(a) : a 2 V g :(8.11)

Because the graph is always isomorphic to the domain space, we have Lj �= V
and, by passing to the quotient,

Lj=S
1 �= cone on S(V )=S1 :(8.12)

Thus a neighborhood of Qj at [�] is modeled on the inclusion of H1(Wj ;R) �
cone on S(V )=S1 into H1(�;R) � cone on (S(V )� S( �V )=S1).

In the present situation of a singular cone, two subspaces such as Q1 and Q2

are said to be transverse at [�] if they are transverse in the Zariski tangent space.
Geometrically this means that in a Æ-neighborhood of [�], Q1 and Q2 intersect only
at the cone point. As discussed before, Q1 \ S and Q2 \ S are transverse in the
tangent direction of the stratum S; we can therefore concentrate on their normal
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cones L1=S1 and L2=S1. Note that on applying the canonical Hamiltonian pertur-
bation 	t : V � �V ! V � �V , we deform an S1-invariant, complex Lagrangian L
to another via a family of such complex Lagrangians. In fact, the procedure can be
thought of as replacing the graph of the unitary map �(L) from V to �V ,

L = graph of �(L) = f(a; �(L)(a)) : a 2 V g ;
by the family of graphs of eit � �(L) on a Æ-ball neighborhood, BÆ(0) of 0.

�t(L) \BÆ(0) = f(a; eit�(L)(a)) : a 2 V g \BÆ(0) :(8.13)

Thus given Q1 and Q2, which may or may not be transverse at [�], we can perturb
Q2 to transverse position with respect to Q1 by either the canonical right-handed
perturbation Q2R = H1(W2;R) � �t(L2=S

1)R or the left-handed one Q2L =
H1(W2;R) � �t(L2=S

1)L.
In addition, given the result of two right-handed perturbations Q2R and Q02R (or

left-handed Q2L and Q02L), they can be deformed from one to another by Hamil-
tonian motions (Q2R)s in R that are the identity on R and are transverse to Q1

throughout the deformation at all reducibles in Q1 \ Q2 \ R. In other words,
(Q2R)s is an admissible family of deformations in the sense of Walker (cf. [24]).
As a consequence, �(M)R defined using such a Q2R and �(M)L defined using
such a Q2L are well-defined independently of the choices of handle bodies W1 and
W2 and Riemannian metrics on �.

In the case where the Lagrangians Q1 and Q2 are already transverse at the
reducibles, then the aforementioned Q2R and Q2L leave all the transverse data
unchanged. That is, the above symplectic isotopy from Q2 to Q2R or Q02R is then
always transverse to Q1. Hence, �(M)R and �(M)L agree with �BN(M) in the
cyclically finite case. This proves Propositions 8.1 and 8.2.

The proofs of Theorems 8.3 and 8.4 follow by the same argument used for their
counterparts of Theorems A and B. The average correction

1

2
(I(�;Q1; Q2L) + I(�;Q1; Q2R))

at a reductible [�] in Q1 \ Q2 \ R is computed without essential changes, as in
that discussion. This correction is by definition expressed as an integral term plus
an average Maslov index. The average Maslov index is then, using the results of
Part 2, re-expressed as an average spectral flow on M � [0; 1]. There are no zero-
mode correction terms in our formulae for this average. The integral plus average
spectral flow is then expressed as �1

2 times an �-invariant as in Section 7. This
proves one-half of our Theorem 8.3. Addition also gives one-half of Theorem 8.4.
It was an essential feature of our analysis in [12] that we dealt with the problems of
zero modes occurring at the ends of the families of self-adjoint elliptic operators.
There the formulae were given in terms of averaged spectral flows, and with this
one caveat all proceeds in the present proof as before.
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The other half of Theorem 8.3 and 8.4 concerns the difference of these invari-
ants. It is apparent that the positive rotation e+Jt, �" < t < +", with t in-
creasing effects (near each reducible) a rotation that carries the “right” Lagrangian
into the “left” Lagrangian. The result of this motion is to introduce preciselyP

�2 dimC H
1(M;�2) additional points (each with positive sign) into the inter-

section. This demonstrates part (b) of Theorem 8.4.
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