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The cobordism ring was first defined by R. Thom [15], and is sometimes
known as the Thom algebra. Consider the set of closed oriented manifolds
of dimension % (here, and throughout this paper, all manifolds are sup-
posed differentiable, of what class it does not matter), and if V is an
oriented manifold, denote by — V the same manifold with the opposite
orientation. Introduce the relation V~ W (pronounced: V is cobordant
with W)if there is a compact oriented manifold M with oriented boundary
0(M) =V + (— W), where + denotes disjoint union. It is easy to see
that ~ is an equivalence relation, compatible with + and —, so that the
equivalence classes form an abelian group, Q,, the cobordism group in
dimension k. Since, if V is closed, 9,(M x V) = 8,M x V, topological
product is compatible with ~, and induces a product Q, x Q, — Q,.,,
with respect to which the direct sum Q = ), Q, becomes an associative
and skew-commutative ring. In an informal way we can consider the
boundary operator 4, as a nilpotent endomorphism of the set of all compact
oriented manifolds and define O = Ker 8,/Im 8,; hence the name ‘intrinsic
homology’ adopted by Rohlin for cobordism.

If orientation is not required in the above, we obtain an equivalence
relation V ~, W (pronounced: V is cobordant with W mod 2) for non-
oriented manifolds, and a new cobordism ring M = }:k N,.. We will denote
by r : O — N the natural map obtained by ignoring orientation. Q, % are
rings in the ordinary algebraic sense, and 7 is a homomorphism between
them, and the problem with which we are concerned is to give a purely
algebraic description of them.

Now the structure of 9N was already completely determined in [15]: N
is a ring of polynomials mod 2, with one generator ; in each dimension
7 not of the form 2’ — 1. A necessary and sufficient condition that two
manifolds be cobordant mod 2 is that they have the same Stiefel numbers,
which are defined as follows. Let w* be the ¢ Stiefel class mod 2 of the
manifold M,, so wte HY(M,, Z,). (For a definition of the Stiefel classes
of a manifold see [5] or [13].) Form any homogeneous polynomial of
degree k in the w', f(w', .-, w*)e H¥M,, Z,) and evaluate it on the
fundamental cycle (mod 2) of M,. It is frequently convenient to regard

the w' as the elementary symmetric functions of k¥ (or even more) inde-
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COBORDISM RING 293

terminates ¢,; then let s (w', ---, w*) be that polynomial in them equal
identically to > ,ti. The corresponding Stiefel number has the property
that M, can be chosen as a k-dimensional generator of N if and only if
sy[M.] = 1. In particular, Thom showed that real projective spaces P,,(R)
can be taken as generators in even dimensions, and Dold in [2] gave
generators for the odd dimensions which I shall define and use in § 3.

Much work has been dene on the structure of Q. An early theorem
[9], [14] asserts that Stiefel numbers and Pontrjagin numbers are in-
variants of cobordism class. Pontrjagin numbers are defined as Stiefel
numbers, but using Pontrjagin classes p' € H*(M,, Z), (as defined in [4]),
evaluated with integral coefficients, and only definable if & = 0 (mod 4).
The main results on Q are also contained in [15], viz.,

(i) The Q, are finitely generated abelian groups.

(ii) 2 ® Q (Q denotes the field of rational numbers) is a polynomial
algebra, whose generators may be taken as the complex projective spaces
P 2n(C)'

(iii) Two manifolds determine the same element of Q mod torsion if
and only if they have the same Pontrjagin numbers.

These results have been extended by Milnor [7], [16] who has shown,
using a spectral sequence due to Adams [1],

(iv) Q has no odd torsion.

(v) The torsion free part of Q is a polynomial ring, and a manifold M,,
qualifies as generator if and only if the Pontrjagin number

$i(DY <o, PO Myl = + ¢ if 2k 4 1 is a power of the prime ¢
=+1 if 2k + 1 is not a prime power.

Thus all that remains to be evaluated is the 2-torsion of Q. The most
notable worker on this is Rohlin, whose work is based on a study of
r: Q — %, in particular he finds in [10] the exact sequence

o-2,0-",9q

(where 2 denotes the homomorphism x — 2x) for which an alternative
proof has since been given by Dold [8]. Unfortunately, Rohlin’s papers
contain a mere outline of proofs, and his evaluation of the 2-torsion of Q
in [11] is incorrect, as this paper will show.

The object of this paper is to prove the following results:

(vi) Q contains no elements of order 4.

(vii) Two manifolds are cobordant if and only if they have the same
Stiefel and Pontrjagin numbers.
These were conjectured by Thom. The proof will occupy the greater part



294 C. T. C. WALL

of this paper; the last two paragraphs make various deductions, as my
* proof shows rather more than these results, and in particular yields a
complete algebraie description of Q. In fact, all properties of Q are as
simple as they could possibly be (if my results should strike the reader
as complicated, let him try and work out cobordism theory for the spinor
group). The main ideas of this paper were announced in [17].

I should like to express my gratitude to J. F. Adams for suggesting
this problem to me, and for simplifying several of my proofs, and to
E. C. Zeeman for unfailing encouragement of my work.

1. The main construction

Let M, be a closed manifold, whose first Stiefel class w* is the restric-
tion mod 2 of a class with (simple) integer coefficients, which must cor-
respond to a map f: M, — K(Z, 1) = S* (for definition and properties of
Eilenberg-MacLane spaces K(w, n) see [12]). Let u generate H(S?, Z,),
then f*(w)=w". But there is a (1-1) correspondence between Z,-bundles
over a space X and H'(X, Z,), each corresponding to homotopy classes of
maps of X into K(Z,, 1). Hence the bundle corresponding to w!, with
group Z,, and which I may describe as the orientation bundle, is induced
by f from the double covering of S'.

We may now approximate to f by a differentiable map, and then apply
Theorem 1.5 of [15]; we find a map ¢ : M, — S*, homotopic to f, and
t-regular at 0 (we regard S' as the interval [0, 1] with 0, 1 identified).
The map g is t-regular at 0, and so in some neighbourhood. We choose &
so that (—3, 8) is contained in the interior of some such neighbourhood.

Since g is t-regular at 0, ¢ '(0) = V,_, is a differentiable submanifold
of M,. Its normal bundle is induced from that of 0 in S, so is trivial.
The orientation bundle of M— V is induced from a bundle over (0, 1) so is
trivial. Hence the manifold g—'[0, §) with boundary V is orientable, and
its orientation induces one of V. We may note that if we do the same
for (1 — &, 1] we induce the same orientation of V.

Finally, since g induces w'(M), and V = g~(0), the homology class of
Vin M is dual (in M) to w'(M), working mod 2.

LEMMA 1. An oriented manifold V,., can be obtained by the above
construction from some M, if and only if 2V ~ 0.

Proor. If V can be so obtained, cut M along V to obtain a manifold
M' with boundary. M— V is orientable, so M’ is. Since the normal bundle
of Vin M was trivial, the boundary of M’ consists of two disjoint copies
of V. The orientation of M— V induces orientations of M’ and of V, and
by a remark above, 8,M' = 2V. Hence 2V ~ 0.
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Conversely, suppose 2V ~ 0, and let M’ be an oriented manifold with
boundary 0,M’ = 2V. Let M be obtained by identifying the two copies
of V in M’; clearly we ean give M a differentiable structure using that
on M'. Let p be a differentiable metric on M, inducting o’ on M’, nor-
malised so that the distance apart of the two copies of Vin M’, say V,,
V,, is = 1. Define f': M’ — [0, 1] by

If p'(x, V) < 1/2,  f'(x) = p'(x, V).

If o'(x, V) < 1/2, fllx)y=1—p'(z, V).

Otherwise, fl(z) = 1/2.

Let £’ induce f: M — S* on identifying V), V,and 0, 1. Then f is differ-
entiable in a neighbourhood of V, and f~(0) = V. The double covering
of S! induces the orientation bundle of M, since the corresponding state-
ment is true for f’, both bundles being trivial, and remains so for f, as
the local orientation of M induced from M’ changes across V. Thus
w' (M) = f*(u). Since u is the restriction of an integer class, so is w'.
We now see that the above construction leads from M to V.

2. Definition and first properties of I3 and 9,

Let M,, V,_, be as above, let 7 : V— M be the inclusion map, and let
&, 1, ¢ be the tangent bundles of M and V and the normal bundle of V in
M. Then t*¢ = 7P ¢ and so, by the Whitney product theorem for the
total Whitney classes, +*w(§) = w(n)w(¢). But ¢ is trivial, so w(¢) = 1,
and 7*w(€) = w(n), or t*w(M) = w(V).

If X is a topological space, xe€ H(X, Z,) and ye H'(X, Z,), let |y, x|
denote their Kronecker product.

Let w=(a,b, ---, ¢) be a partition of n—1, and write w*=ww? - - w°;
thus [w*(V), V] denotes a typical Stiefel number of V.

LEMMA 2. |we(V), V| = |w*(M)w'(M), M| .
PROOF. |lwe(V), V| = [i*w(M), V]
= w(M), i, V]
= [w(M), w(M)~M],
where ~ denotes the cap product of cohomology and homology, and 7, V =
w'(M)~M since the class 7,.(V) is dual to w'(M); and
[we(M), w(M)~M] = [w(M)w' (M), M] .
It follows from the lemma that since Stiefel numbers determine cobord-
ism class mod 2, the class, {M}, of M determines {V}. We shall write

{V} =0,{M}. We also define T as the subset of N formed by classes
containing a manifold such as M. Then r(Q) c W N, and the image of
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0, : W — N is contained in r(Q), since V is orientable, so 8, induces maps
*from 2 to 7(2) and W, which we may also denote by 3,. We note that
clearly 0,7 : Q — 9t s zero.
We shall prove later (in § 8) that {M} determines the class in Q of V,
which will enable us to define 9, : T — Q.

LEMMA 3. 2 is a subalgebra of N, and 0, is a derivation of L.

PROOF. The set of manifolds with first Stiefel class w'(M) the restric-
tion of an integer class u is closed under addition. To prove the first part
of the lemma, we remark that it is also closed under multiplication. For
the tangent bundle of the product M x M’ is the direct sum of the bundles
induced from the tangent bundles of M, M’ by the projections on these
factors. By the Whitney product theorem,

wWMx M)y=wM)KL+1RQ w (M),
the restriction of the integer class u @1+ 1Q '

Now let 3B be the polynomial algebra on generators w’, and A : B—BRB
the homomorphism defined by A(w')=3_ . _ w'Q@w*. If Xe B, and M, is
a manifold, X(4) denotes the appropriate polynomial in the Stiefel classes
of M, and X[M] denotes [ X*(M), M], where X" is the k-dimensional part
of X. Since H*(M x M', Z,) = H*(M, Z,) @ H*(M', Z,) we may define

XRYM, M) =XM)Q YM",
XQY[M,M'|=X[M]-Y[M'].
Since, by Whitney’s product theorem,
wM x M) = (wM) Q1)1 Q@ wM")) = wd) Q wM’) ,
for any element X of 9B,
(1) XM x My = AX)M, M) .
In our present notation, lemma 2 can be written as
(2) X[o.M] = wX[M],
and using (1) and (2) we can compute as follows
X[0(M x M")] = wX[M x M']
= A(w'X)[M, M']
=W QNDAX[M, M'] + A1 RQ wHAX[M, M']
=AX[oM, M'] + AX[M, 0,.M']
= X[0,M x M'l + X[M x o,M'] .
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Thus all Stiefel numbers X agree on 8,(M x M') and o.M x M'+ M xo,M’,
whenge these two manifolds are cobordant mod 2. Hence 4, is a derivation.
(For this streamlined version of my proof I am indebted to J. F. Adams.)

3. The Dold manifolds P(m, n) and Q(m, n)

In this paragraph we introduce the study of the manifolds P(m, n)
(first used by Dold [2]) and Q(m, n). Our main aim is Lemma 6 in the
next section, affirming indecomposability in 9 of certain elements of B,
and we refer the reader to the next section for motivation.

Let S™ denote the subset > "« = 1 of R"*', and P,(C) the complex
projective space with homogeneous coordinates (z,, *- -, 2,). The Dold
manifold P(m, n) is the orbit space of the action (2, z) — (—=, ) of Z, on
S™ x P,(C), where Z denotes complex conjugates. The projection (x, z) —
x induces a fibre map a: P(m, n) — P,(R) with fibre P,(C). Let T reflect
S™in the plane z,, = 0. Then (z, z) — (T%, z) is compatible with the above
action of Z,, and induces an autohomeomorphism A of the orbit space. In
the case when m is odd and n even, P(m, n) is orientable, and A reverses
the orientation. All these remarks are due to Dold [2].

We define Q(m, n) as the manifold formed from P(m, n) x [0, 1] by
identifying (p, 0) to (Ap, 1) for each p € P(m, n). The projection (x, z, t) —t
induces a fibre map 8: Q(m, n) — S', with fibre P(m, n). The projection
(%, 2, t) — (, t) induces another fibre map 7v: Q(m, n) — Q(m, 0) with fibre
P,(C), and group Z,. Finally a classifying map Q(m, 0) — P,,..(R) for v
is covered by a bundle map 6: Q(m, n) — P(m + 1, n), which may be de-
fined by

(@, 2, t) — (X, +++, Xy, T, COS 7L, &, SIN 7L, 2) ,
from which it follows that 6 has degree 1.

LEMMA 4. H*(Q(m, n), Z,) has three generators «, ¢, d in dimensions
1, 1, 2 respectively, which are bound by the sole relations

=0, c""'=cw, d""'=0.

Proor. The mod 2 cohomology of P(m,n) was determined by Dold,
who showed that it was the ring with two generators ¢, d and relations
¢t =d""' = 0. A acts trivially on this, so the fibre map 3 gives rise to
a spectral sequence in which for reasons of dimension, all differentials
are zero. Thus if « is induced by 8 from the generator u of H'(SY), and
¢, d induce the classes of the same names in H*(P(m, n)), H *(Q(m, n))
has the additive base {¢'dt:0<r<m,0<s=<n,0=<e=<1}. (The
spectral sequence argument could be circumvented by finding an explicit
cell decomposition.) Also, we have #* = B*(u?) = 0.
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We define d to be induced by 6 from the class d in H*(P(m + 1, n));
. this class does indeed induce d on the submanifold P(m, »). Then since
d** = 0 in P(m + 1, n), the same holds in Q(m, n).

It remains only to define ¢ and compute ¢™*'. In the case n = 0, we de-
fine ¢ as induced by @ from the class ¢ in P,,,,(E). Now 6 has degree 1,
and so maps the top dimensional class ¢™** of P, .,(R) onto that, c"x, of
Q(m, 0). But as 0%(c) = ¢, 0*(c"*") = ¢™*, so ¢™™ = ¢™x in Q(m, 0). The
result in the general case now follows by defining ¢ to be induced by 7,
and since z also is, the equation ¢™*! = ¢™x is preserved.

We note finally that these relations define an algebra with the correct
additive base, which would thus be disturbed if more relations were re-
quired to hold.

LEMMA 5. The Stiefel class of Q(m, n) for m > 0 is
A+ec+2)@+e)™'A+c+d)y .

ProOF. We use the results and methods of [2] and will proceed by in-
duction on n.

Induction Basis: n = 0. Q(m, 0) has a submanifold P,,_,(R) x S* of co-
dimension 1. This has unit intersection numbers with the cycles P,(R) x 0
and Py(R) x S*, so its dual cohomology class is ¢ + . Hence by Thom’s
definition, the Whitney class of the normal bundle is 1 + ¢ + . But

W(Ppy(R) x 8) =1 + o).
Let j be the inclusion map of P,,_,(R) x S'in Q(m, 0). Then
7 (w(Qm, 0))) = A + ¢ + x)(1 + o)™,
so that if we define
D = w(Q(m,0) — 1 + ¢+ 2)1 + o)™,
we have 7D = 0, so D is a multiple of ¢™.
Q(m, 0) also has a submanifold P(m, 0) = P,(R) of codimension 1, and

with trivial normal bundle. Since w(P,(R)) = (1 4+ ¢)™*', if i denotes
the inclusion of P,(R) in Q(m, 0),

*(w(@(m, 0))) = A + o) = *((1 + ¢ + x)(1 + o)™

so ©*D = 0, so D is also a multiple of x, thus of ¢™x. Hence we know all
the Stiefel classes except that in the top dimension, which is given by
the Euler class; now using Lemma 4, we see that the Euler number of
Q(m, 0) is 0, so w™** = 0, as stated.

Induction Step: assume the result for n — 1. This is quite similar to
the above: we prove the difference
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D = w(Q(m, n)) — (L + ¢ + )1 + )" + ¢ + d)"*

divisible by x, by considering the submanifold P(m, n) x 0; by ¢”, by
considering the submanifold P(m — 1, n) x S, and by d”, by considering
the submanifold @(m, » — 1) and finally check the top class in exactly
the same way. The only steps needing comment are the computations of
the Whitney classes of the normal bundles. In fact, the first is trivial,
and the second is not essentially different from the case n = 0. The nor-
mal bundle of Q(m, n — 1) in Q(m, n) is induced by 6 from the normal
bundle of P(m + 1, n — 1) in P(m + 1, n), and the Whitney class of the
latter was shown by Dold to be 1 + ¢ + d.

4. The polynomial algebra &

In the case when m is odd and n even, as already remarked, P(m, n)
is orientable, and A reverses the orientation. Also, w(Q(m, n)) = z,
which is induced (by 3) from the class w on S*. It is now clear that in
this case the passage from Q(m, n) to P(m, n) is precisely the construc-
tion of Lemma 1.

Dold defined odd dimensional generators of 9 as follows. Let 2k — 1
be an odd number with k& not a power of 2. We write &k = 2"(2s + 1)
with s # 0. Then X,,_, is the class in N of

Vs = P27 —1,25) .
We now define, under the same conditions, X, as the class in ) of
M, = Q2 —1,2%).

LEMMA 6. X,, is an indecomposable element of N.

Proor. It is sufficient, by a result of Thom mentioned in the introdue-
tion to this paper, to prove s, [M,,] = 1.

Write formally 1 + ¢ + d = (1 + ¢#)(1 + v). Then since

w(@m, ) = (I + ¢ + &)L + ™ (L + (1 + vy,

the indeterminates t;, of which the w' are elementary symmetric func-
tions, may be taken asc + x, c(m — 1 times), ¢, v (n + 1 times each).
Recall that m is odd, n even and 0 < %, and 2k = m + 2n + 1.

5(QUm, W) = (¢ + @™ 4 (m — Dem - (4 D)y

i #m+2n+1 + pm+2n+1 .

Now by induction on 7, using the inductive definition of binomial co-
efficients and the relation

Sp1 = (u + ’l))S,. + (uv)sr-—l (mOd 2) ’
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where s, = 4™ 4+ v", we find

8 = D ocserp 18 7 — 28 — 1} (u + v)"*(uv)* (mod 2),
So i
$(@(m, m)) = 37, {s, m + 2n — 2s}cm B
= {n, m}c™'d",
Sl Myl = {mn,m} = {2s,2" — 1} =1 (mod 2) .

Let X, denote the class in % of P (R). We note that since we have
defined one X, in each dimension not of the form 2’ — 1, and they are all
indecomposable, by Thom’s result, N is the polynomial algebra with them
as generators.

LEMMA 7. P,(C) ~, (P.(R))* .

ProoF. The cohomology and characteristic classes (mod 2) of P,(C) are
isomorphic to those of P,(R) on doubling all dimensions. Hence the non-
zero Stiefel numbers of P,(C) are obtainable from those of P,(R) by
doubling all dimensions. Now for any manifold M, the Stiefel numbers
of M? can be computed in terms of those of M by the methods of Lemma
3. We remark that

wH M) =32, wi(M) Q w(M)

and that in computing Stiefel numbers all terms with ¢ # j cancel out by
symmetry. Thus we see that the nonzero Stiefel numbers of M* are
obtainable from those of M by doubling all dimensions. The lemma now
follows. It was first announced by Rohlin [11]. The author feels that it
ought to be proved by constructing a manifold with appropriate boundary,
but has been unable to find one.

Now X,._, (since it represents an orientable class) and X,, (by construc-
tion) belong to BW. Also, by Lemma 7, X} belongs to T. Hence 8 contains
the whole polynomial algebra " generated by these elements. On this
algebra, the derivation 9, is determined by its values on the generators:

alek—l =0
0,.X;, = X, r(k not a power of 2)
0.X3;=0

The next two paragraphs will apply Thom theory to prove that " =2,
and when this is known we shall be able to assemble our results and prove
the main theorems. We define I8’ as the set of classes in N such that all
Stiefel numbers with (w')* as a factor vanish on them. Since if w'is
induced from an integer class, (w')* = 0, we have " c T c W'. How-
ever Thom’s theory will enable-us to prove that there are no more elements
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in B than in BW”. (Note: Since the first draft of this paper was written,
a simpler proof that W’ = W has been found by M. F. Atiyah.)

-5. Thom theory

We must now go rather more deeply into the methods of [15]. Thom’s
work depends on the following construction: consider the classifying space
B(0,) of the orthogonal group in % variables, O, (for definition see [5] or
[13]). Over it there is a canonical O,-bundle. Let A(O,) be the associated
bundle with fibre B” (the n-ball in R" defined by Y _'«! < 1), and M(O,)
be the space obtained from A(O,) by identifying the boundary to a point.
If a manifold M, is contained in S*'*, we find the map f: M, — B(O,)
inducing the normal bundle of M, in S*'*, extend to a map f, : N—A(O,)
of a small tubular neighbourhood of M, (we regard B(O,) as embedded in
A(0O,) by the zero cross-section) sending the boundary of N to that of
A(O,) and thus to a point in M(0,), and finally define f, : S*** — M(O,)
by mapping the rest of S*** to that point. Thom showed that this set up
a (1-1) correspondence between cobordism classes of manifolds M, and
homotopy classes of maps f,, provided k < n, i.e., set up an isomorphism
N, = 7,..(M(0,))(k < n). By an analogous procedure with the group of
rotations, he also defined M(SO,) and proved Q, = 7rn+k(M(SOn)) if k<m.

Thom computed %, by showing that H*(M(0,)) was, up to dimension
2n, a free module over the Steenrod algebra .4, (see [6]). (Note that all
cohomology is here supposed to have coefficient group Z,.) Choose a free
A,-basis {a;}, and for each element of it a characteristic map g, : M(0,)—
K(Z,, dim a;) (see [12]); then the product map g : M(0,) — ], K(Z., dima,)
induces an isomorphism of cohomology up to dimension 2%, hence also of
integer homology, since for these spaces and in these dimensions this
consists only of torsion of order 2. The two spaces are both simply-con-
nected if 1 < %, and so by a result of J. H. C. Whitehead [19], g induces
an isomorphism of homotopy up to dimension 2n — 1. Thus the known
homotopy of the latter space gives that of M(0O,).

We wish to extend these results, so must investigate more precisely.
Let 7 denote the inclusion map of B(0,) into M(0,); then i* can be described
as follows. H*(B(O,)) is the polynomial algebra in w', ---, w". * is
monomorphic and its image is the ideal generated by w". We follow the
practice of Thom in regarding the w* as the elementary symmetrie fune-
tions of ¢,, « -+, t,. Then H*(B(0,)) is the algebra of symmetric functions
of the t,. Let now

S=1tu...n



302 C. T. C. WALL

by any monomial, and consider the set of all distinct monomials formed
- by permuting the variables in S; let s(a,, - - -, a,) be their sum. Clearly
the s(a,, -+, a,) with @, = - -+ = a, form an additive base for H*(B(0,)).
In writing such expressions out in the future we shall omit any a; which
happen to be zero.

We now introduce a partial ordering on monomials S. We say that ¢,
is dyadic for S if-a; has the form 2/ — 1, and call the submonomial of S
made up with all other ¢, its nondyadic factor. Denote by %(S) the number
of these variables, and by v(S) the degree of this factor. Then we define
S < Tif w(S) < u(T) or if u(S) = u(T) and v(S) > v(T). Forany h<n
we form the classes

S:=s(@+1,---,a,+1,1,---,1) = ws(a, ---, a,)
where w = (a,, ---, a,) runs through all partitions of % into integers not
of the form 2’ — 1. Then for any m < m, the classes Sq’S? for h < m, S
varying as above, and Sq’ running through a base of (_%,),,—, are linearly
independent. For the highest terms in

Sqi(tptt eee tir i,y o0 ty,)
are formed by
ot ool ¢4 NS I(E,,, o0 e ty,)

since if ¢, is dyadic for S, it is so also for Sq’S. But Thom shows that
for m < n, the Sq'(t,,, - - - t,) are linearly independent. The result now
follows from the further remark (easily verified) that there are the correct
number of elements Sq’S;, for a base of H™"(M(0O,)).

From this proof we may draw the following conclusion. If each S” is
replaced by T2, where all terms 7" — S? are less than S, then Sq'T"
has the same top terms as Sq’S”, and so the T also form a free base of
the A,-module H *(M(On)) up to dimension 2n, by the same argument.

6. Proof of Theorem 1

Note that w"S — w"*'S induces an isomorphism of H "”"(M(O,,)) onto
H™m™(M(0,.,)) for m < n, compatible with the operation of <4,. Thus
w"S — S induces an isomorphism of H "”‘"(M(On)) onto B,,, (B still denot-
ing the algebra of all w’) which we can (and do) use to introduce operations
of 4, on B independent of n. The above result may now be paraphrased
by the statement: B is a free .4,-module (and we know a free base of it).

Let w = (a,, ---, a,) be a partition; we write s(w) = s(a,, ---, @,), and
recall that these form a base for B. Let € be the graded dual of B, and
let the dual base to {s(w)} be {g(w)}. Define products in € by a(®)a(yr)=
a(®yr), where @y is obtained by the juxtaposition of the partitions ¢ and
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Y. We may verify that this is dual to the diagonal homomorphism A in
B of-Lemma 3. € is clearly a polynomial algebra, with generators the ¢(3).
Denote multiplication by (w')*=s(2) in B by §,, and the dual homomor-
phism in € by a,.
LEMMA 8. 9, is the derivation of € with
0,01) =0, 002 =1, 0,00) =00 —2) (for 2 <1).

PROOF. An analogous argument to that of Lemma 3, using the primi-
tivity of (w')’ for A, could be used to prove 4, a derivation. We shall
proceed otherwise. Let @ be the partition in which 7 occurs A, times as
a part, and write

W= (1M2* ... X)) |

Then
3. 8(IN2% « v v M) = (N, + 1)s(1M2M* « v e ph)

+ E@l N 4 1)s(IM oo v PM7(g 4 1)Nesi( 4 2)Patett oo M)
and so, taking the dual,

0,0(1M2%2 « oo 7r) = Ao (1M2%21 oo v hy)
+ T Mas0 (1N e P DN 2P ),

and recalling the definition of the product in €, we see that this shows 4,

to be as stated.
We may now determine Ker 8, by means of the following lemma.

LEMMA 9. Ker 8, contains an element 7, of each degree 1 mot a power
of 2, which is a sum of a(i) and decomposable elements of €.
Proor. We may take
Ty = 0(20 + 1) + 0(2)0(2t — 1) + - -+ + a(20)o(1)
even if 1 =0. For even degrees 2¢, we write v = ¢(27 — 2k)o(4k —21—2).
Then 8%(v) = 0, and so
0,(0%(2i — 2k)o(4k — 27)) = o(2t — 2k
= 0,(0(2¢ — 2k + 2)v + (20 — 2k + 4)0Y + - -+ + 0(29)05 W)
giving an equation of the form 8,Y=0, where the coefficient of ¢(27) in X is
05w = 05 0(20 — 2k)o(4k — 21 — 2)) = {i — k, 2k — 1 — 1}
by Leibniz’ theorem. If ¢ = 27(2s + 1), where » = 0, s = 1, we choose
k = 27*'s; then the coefficient is 1, and we define 7,, to be the correspond-

ing X. (For more about this method of proof see [18].)
Now 8,, as multiplication by (w')* in the polynomial ring B, is a mono-
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morphism, thus 0, is an epimorphism. Ker 8, contains the 7, for 7 not a
‘power of 2, also (1) and ¢*(2’) for 0 < j, and hence, being itself a sub-
algebra, contains the polynomial subalgebra that they generate, which
has one generator in each dimension except 2. If V is a graded vector
space, let V, denote its component of degree n, and d,(V) = dim V,,.
Since 8, is onto, d,(Ker 8,) = d,(C) — d, ,(C) = d,(Q), where Q is a poly-
nomial algebra with one generator in each dimension except 2. Hence
the above is the whole of Ker 9,.

Let the o(w) be ordered in the same way as the s(w). Since the product
in € is defined by juxtaposition, the ordering is compatible with the prod-
uct. Now 7, = 0(z) + greater terms, for this is clear for odd 7, and holds
for even 7 since 7,, is a polynomial in the ¢(2k). Hence the monomials in
the above generators for Ker 8, are equal to the corresponding monomials
in the g(7) for ¢ not a power of 2, and ¢(1) and ¢*2’) for 0 < j; added to
greater terms. I restate this as

LEMMA 10. Let m be a monomial in the a(i) in which each a(2’) for
J=1occurs to an even power. Then there is an element of Ker 8,, which
consists of m, plus other monomials greater than m.

LEMMA 11. Let x be an element of Im §,, and s(w) one of the greatest
terms in it. Then some 2’ with 7 = 1 occurs an odd number of times as
a part in w.

Proor. We shall obtain Lemma 11 from Lemma 10 by dualising. Proceed
by assuming that each 2’/ with 7 = 1 occurs an even number of times as
a part in w; we shall establish a contradiction. By Lemma 10, there is an
element X, say, of Ker 8,, which consists of g(w), plus other greater terms.
Then since the s(w) and a(w) form dual bases, the inner product [z, X]=1.
But z = 8,y, say, and

[x’ X] = [82yy XI = lyy az%] = 0 y
giving the required contradiction.

LEMMA 12. Let w be a partition in which some 2’ with j = 1 occurs
an odd nmumber of times as a part. Then there is an element of Im o,
equal to s(w), plus smaller terms.

Proor. This follows from the previous lemma by a dimensional argu-
ment. For dimensional reasons, d,(Im §,) is the same as the number of
partitions of n of the above form. If we now consider the associated
graded algebra G(B) to B, d,(G(Im §,)) = d,(Im 8,). But G,(Im §,) is con-
tained in the vector space spanned by the images of the s(w) with @ of
the type in question, which has the same dimension as its own. Hence
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it is the whole space, from which the result follows.
Now 8,8 = (w')"8 is an _J,-submodule of B, for in H*(B(0,)),

Sq(wl)2 — (w1)2 + (w1)4
Sqi(x(wl)z) — (w1)2sqix + (w1)4sqi-zx
so the ideal generated by (w')? in this is a submodule, as is H *(M(O,,,)),
hence so is their interseetion 8,H*(M(0,)), as required.

THEOREM 1. (w')*B is a free direct summand of the free A,-module B.

ProOF. We know an A,-base of B, and that each element may be
modified by smaller terms. Lemma 12 may be interpreted as saying that
many elements of this base, suitably modified, fall in (w")*8, and so gen-
erate a free A,-submodule of it, a direct summand of B. We prove the
theorem by showing the submodule to be the whole of (w')*8B, by a simple
computation of dimensions, which may safely be left to the reader.

With the proof of this theorem, the hard toiling in this paper is finished,
and we can proceed in a more relaxed mood.

7. Determination of 28 and of Ker 4,/Im 6,

Let (A, denote the set of elements of positive dimension in .4,. Then by
Thom’s result, 3t may be regarded as the dual vector space to B/ A, B. We
defined T as the annihilator of (w')*B, and thus as dual to B/ A, B+ (w')*B,
so with the same number of linearly independent elements in each dimen-
sion as a free A,-base for B/(w')*B, since, by Theorem 1, this is a free
A,;module. Now such a base is determined by nondyadic partitions, in
which a power of 2 occurs an even number of times as a part, and these
again are in (1-1) correspondence with monomials in symbols z,, one in
each dimension ¢ not of the form 2’ — 1, and not 2; i.e., with a vector
space base for L8"”. Hence as promised, since " c W c W, we can
deduce T = W = TW'. Moreover, we have in § 4 a complete algebraic
description of the action of 9,.

LEMMA 13.

(i) Kera,/Ima, is the polynomial algebra on the X3,.

(ii) Ewvery element of it is uniquely representable as a polynomial
mod 2 in the P,,(C).

(iii) The dual vector space is the space of Pontrjagin numbers, reduced
mod 2.

Proor. The ,-module T8 is the tensor product of algebras

(a) polynomial on X,,, X,,_, with 6.X,, = X,,_,, 0, X,,_, = 0, for k not a
power of 2, and
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(b) polynomial on X}, with 8,X} = 0.

The homology of (a) with respect to the differential operator 4, is the
polynomial algebra-on X2Z,; that of (b) is (b) itself. Since the coefficient
ring is a field, Z,, we take the tensor product of these for the total homol-
ogy. This proves (i).

Pontrjagin numbers reduced mod 2 are Stiefel numbers, so give linear
functions on Ker 8,. ‘An element of Im 8, is representable by an orientable
manifold whose class in Q has order 2, so Pontrjagin numbers vanish on
it. Hence they determine linear functionals on Ker ,/Im 8,. Products of
the P,,(C) are oriented, so determine elements of Ker d,/Ima,. Now it
follows from a computation in [5] that the determinant of values of a base
for the Pontrjagin numbers on the products of the P,,(C) is odd, so these
functionals on, and elements of Ker d,/Im 4, are linearly independent.
Since there are the right number of each, by (i), the lemma follows.

8. Proof of main theorems

First, we recall that the natural restriction 7 :Q — 9 lies in Rohlin’s
exact sequence

2
(1) o——ao-%n.
THEOREM 2. Q contains no elements of order 4.

ProOF. Let ¢ be an element of Q,, of maximal order 2*: suppose if
possible 1 < . Then as 8, = 0, rc is in Ker 8,. But, ¢ being a torsion
element of Q, all Pontrjagin numbers vanish on it, so by Lemma 13, rc
determines the zero element of Ker 4,/Imd,, and so is in Im d,. Hence,
by Lemma 1, there is a class ¢’ in Q, with 2¢/ = 0 and r¢’ = rc. Thus
since 1 < %, ¢ — ¢’ has order 2%, and r(c — ¢’) = 0. By (1), for some d,
¢ — ¢’ = 2d. But then d has order 2°*!, contrary to the maximality of x.

COROLLARY 1. Two manifolds are cobordant if and only if they have
the same Stiefel and Pontrjagin numbers.

PRrOOF. The necessity of the condition is known. Suppose it satisfied.
Since the manifolds have the same Pontrjagin numbers, their difference
gives a torsion element, ¢, of Q. Since they also have the same Stiefel
numbers, r¢ = 0, so by (1) there is an element d of Q such that 2d = c.
d is a torsion element of Q, which has no odd torsion by a result of Milnor,
hence by Theorem 2, 2d = 0, i.e., ¢ = 0, as asserted.

Now recall the construction of § 1, leading from a manifold M, to an
orientable manifold V,_, representing the first Stiefel class of M.

THEOREM 3. The class of M determines the class in Q of V. Write
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[V]=0,{M}. Then there is an exact triangle

2
Q — O

N/
N
Pt

PRrROOF. By Lemma 2, the Stiefel numbers of M determine those of V,
and since by Lemma 1, 2V ~ 0, all Pontrjagin numbers of V vanish.
From the corollary to Theorem 2, we deduce that the class of V in Q is
now determined. The exactness of (2, r) is (1) above, and of (3,, 2) is
Lemma 1. Also, 9,7 = 0, so it only remains to show Kerd, c Imr. We
shall give two alternative proofs of this.

Certainly, Im 9,  Im r, since Vin § 1 is orientable. Also each coset
of Ima, in Ker o, is represented (by Lemma 13) as a polynomial in the
P,,(C), hence as an orientable manifold. Hence Kerd, ¢ Im». But
Ker 6,=Ker 0, as since all Pontrjagin numbers of V vanish, it determines
the zero class in Q if and only if it does so in .

Alternatively, suppose M determines V ~ 0. Let M’ be obtained (as
in Lemma 1) by cutting M along V, and let N be the oriented manifold
with boundary V. Form N’ from M’ and two copies of N by identifying
the copies of V on the boundary of M’ to those on the boundaries of the
copies of N. Clearly, N’ is orientable, and we show M ~ ,N’. For define
W by identifying the two copies of N x 1 in N’ x I, and straightening
the corners at V x 1 (see [8]). Then we see 9, W =M x 1+ N’ x 0,
thus M ~, N'.

Combined with all we already know, Theorem 3 is essentially a struc-
ture theorem, determining the algebraic structure of Q; we shall exploit
this in the next paragraph.

Recent results of M. F. Atiyah already referred to in § 4 yield a fairly
simple direct proof of Theorem 3, and even extend it to the following,
where 8, is not unrelated to the derivation 8, of § 6:

2
apn 22 o

AN /
(35, 33\
%

9, Further results

We first give some all but trivial propositions, and then prove algebraic
descriptions of the algebra , and the .4,-module H*(M(SO,)) in stable
dimensions.
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PROPOSITION 1. Q is commutative.

ProoF. We know that Q is skew-commutative. This implies commuta-
tivity of a product in which at least one factor is either of order 2 or in
even dimension. But every element of Q is of one of these two forms.

PROPOSITION 2. The product of an orientable and a nonorientable class
in N is nonorientable. (The proof of this result given in [11] is incor-
rect.) :

ProoF. Let the classes be x, y respectively. It is clear that if y is not
in W, the product is not even in T, and if it is,

0x=0, oy=+0, so 0,(xy) = 20,y = 0.
Thus xy is not in Ker 8, = Im 7.

PRroOPOSITION 3. The square of any manifold is cobordant with an ori-
entable manifold.

Proor. Since we are working in 9, and so mod 2, the square of any
polynomial in the generators is equal to the same polynomial in the squares
of the generators. Now (P.m(R))"’ ~, P,,(C), which is orientable, and V,,_,
is already orientable, whence the result. (Although this proof is simple,
and uses only previously known results, we should much like to see a
direct geometrical proof.)

PROPOSITION 4. Any class in N, on which all Stiefel numbers with
w' as factor vanish, contains orientable manifolds.

PROOF. We note that the corresponding result for (w')is that T'=T8.
If ¢ is a class of the type above, it is in W'=W, and by Lemma 2, §,c=0.
Hence by Theorem 3, ce Im 7.

We now proceed to the long-announced description of Q.

LEMMA 14. Generators h,, can be chosen for the torsion-free part of
Q, such that r(hy) = Xi.

Proor. If P,(C) is expressed in terms of generators of the torsion-
free part of Q (the quotient of Q by the ideal of torsion elements) the
generator of dimension 4k has an odd coefficient, by results of Milnor,
as in Lemma 13. Hence we may choose new generators H,, such that
r(Hy) = 7[Pw(C)] = {Py(R)}*. Now {P,(R)} equals X,,, plus decompos-
able elements of N. Hence {P,(R)}* equals X3, plus a sum of products
of squares of elements of N, which can all (Proposition 3) be represented
by orientable manifolds. Subtracting the resulting decomposable classes
from H,, (which, we note, leaves it a generator) we obtain the required
class hy,.

Note: When we speak of a generator for the torsion-free part of Q,
we refer throughout to classes in Q (not taken mod torsion).



COBORDISM RING 309

For each partition w = (a,, -« -, a,) with unequal parts a, none of which
is a power of 2, define an element of Q by

) g, = aS(X‘ml’ tty Xza,.) ’
and note that

,r(gw) = a1()(2a1 D Xza.,.) = EL- Xzal ce X2ai~1 e X2ar .

THEOREM 4. The g, and h,, form an irredundant set of generators for
Q.

PRrROOF. The torsion-free part of Q is a polynomial ring: the &, are
generators of it by definition and are irredundant. Let x be a torsion
element of Q. Then x € Ker 2 = Im 8,, say x = 8,5, y€ W. ¥ is a sum of
monomials ([T X3.)(IT Xu-1)Xa, « -+ Xog,, SO

re =0y = E (H Xga)(H Xzb»l)al(le te X2a,.)
= [ (IT Pua)(IT 90)9]

where a,, - - -, a, may be taken distinct (letting the first bracket contain
all the squared factors) and then none can be powers of 2, since y € g,
so they form a partition w of the type above; and where b denotes the
partition with b as sole part.

Since the torsion element  — Y~ (IT ~.)(IT 95)9. of @ restricts mod 2
to zero, it must already be zero. Hence we have indeed a set of generators.

If any g, is a redundant generator, let it be expressed in terms of the
other generators by a polynomial, which may clearly be supposed homo-
geneous, ¢, = P(g,, h,;). Now restrict the whole equation mod 2, and
express in terms of the generators X, of . Equate coefficients of the
leading term X;, _,X,, «-- X.a, of g,. Now each term in each g, has one
X, with odd suffix as a factor, so no term on the right hand side with two
g, as factors can equal the above term on the left. But, nor can any term
with an k,; as a factor, for these will have repeated factors. Hence the
corresponding term on the right is a single g,. But no other rg, except
rg, contains the above term, hence the above equation is impossible, as
required.

CoROLLARY. Orientable Dold manifolds will not suffice to generate the
torsiton of Q.

(There are not nearly enough of them to go round.)

By similar arguments we may deduce the relations between the gene-
rators. First, of course, we have

(1) 29, =0 .
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Consider the uniqueness of the expression in Theorem 4 of a torsion ele-
‘ment « in terms of the generators. The element y was indeterminate by
an element of Kerd, = Im 7, rz, say. Using the expression for z by the
generators, we find that the new expression for  is deducible from the
old one by relations of the following type (which express 9,79, = 0). Let
® = (a,, +++, a,) be a partition into unequal parts, none powers of 2, and
with more than two parts, and let w; be formed by omitting a,. Then

(2) > 9o, =0

Finally, every product of two generators can be put in the standard
form, and this leads to some new relations

(3) 9,9y = 2 (IT by T19 - 90)
such as
(3’) gz) = galzhdaz e h4a7. + eee + hml e hm,_lgir .

The proof of the independence of these relations is not difficult, and
we leave it to the reader.

We now investigate the A,-module H*(M(SO,)) in stable dimensions.
This is not free, but is the next simplest possibility. Let 0t be an
J,-module with one generator z and one relation Sq'z =0, this agrees
with the stable part of H*(Z, n, Z,).

THEOREM 5. In stable dimensions, H*(M(S0O,)) is a direct sum of a
free A,-module and modules of type M.

PROOF. As when we were considering the modules H *(M(On)) in stable
dimensions, we can restrict consideration to a single module, which in
the other case was 9B, and is seen here to be B/w"B.

N is dual to B/ A; B, and of finite type. By Proposition 4, r(Q) is the
annihilator of w'B, hence dual to B/ A; B + w'B. Let B’ be the algebra
Bjw'B; then r(Q) = Ker 4, = Ker 9, is dual to B’/ A,¥’, i.e., to a vector
space with base a minimal set of generators of the 4,-module %'.

Among these generators are the mod 2 restrictions of products of Pon-
trjagin classes (the linear independence of restrictions of Pontrjagin num-
bers, and so of products of Pontrjagin classes modulo decomposable ele-
ments, was shown in Lemma 13), dual to a base of Ker 9,/Im d,, and all
satisfying Sq'z = 0, as the restrictions of integral classes. ¥’ is thus a
quotient of a direct sum of a free module, with generators dual to a
base of Im 8,, and modules of type I, with generators dual to a base of
Ker 8,/Im8,. A further computation of dimensions shows B’ as big as
this module, hence isomorphic to it.
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It seems that a direct proof of this theorem would be extremely dif-
ficult.
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