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Abstract. We define families of invariants for elements of the mapping class group of Σ, a compact ori-

entable surface. Fix any characteristic subgroup H C π1(Σ) and restrict to J(H), any subgroup of mapping

classes that induce the identity on π1(Σ)/H. To any unitary representation ψ of π1(Σ)/H we associate a
higher-order ρψ-invariant and a signature 2-cocycle σψ . These signature cocycles are shown to be general-

izations of the Meyer cocycle. In particular each ρψ is a quasimorphism and each σψ is a bounded 2-cocycle

on J(H). In one of the simplest non-trivial cases, by varying ψ, we exhibit infinite families of linearly
independent quasimorphisms and signature cocycles. We show that the ρψ restrict to homomorphisms on

certain interesting subgroups. Many of these invariants extend naturally to the full mapping class group
and some extend to the monoid of homology cylinders based on Σ.

1. Introduction

Suppose Σ is a compact oriented surface andM =M(Σ) is its mapping class group, i.e. the group of iso-
topy classes of orientation preserving diffeomorphisms of Σ that restrict to the identity on ∂Σ. This includes
the (framed) pure braid groups as one example. The mapping class group is important for several reasons.
First, the classifying space BM is essentially homotopy equivalent to the moduli space of Riemann surfaces
of topological type Σ. Furthermore, homeomorphisms of surfaces are very important in low-dimensional
topology, since manifolds are often understood by decomposing them into simpler pieces. For example, any
3-manifold can be expressed as the union of two handlebodies identified along their common boundary sur-
face via a homeomorphism. Similarly, recent attempts at a systematic structure for the study of 4-manifolds
view such manifolds as singular surface bundles over surfaces, called Lefshetz fibrations (and broken Lefshetz
fibrations). Monodromies associated to these fibrations are homeomorphisms of surfaces. These decomposi-
tions reduce the study of these complicated manifolds to the study of surface homeomorphisms. Our broad
goal is to to describe and investigate many families of invariants for important subgroups of the mapping
class groups using 3- and 4-dimensional manifolds. Many of our results also apply to subgroups of the monoid
of homology cylinders, a recent generalization of M.

Our invariants are generalizations of the classical Meyer signature cocycle [72](see also Atiyah [3]), which
we now briefly review. The Meyer signature cocycle has been defined only in the cases that the number of
components of ∂Σ is 0 or 1. Recall that there is an exact sequence

1→ I i−→M rM−→ Sp(2g,Z) ∼= Isom (H1(Σ;Z))→ 1(1.1)

where rM (f) is the induced action of f on a fixed symplectic basis of H1(Σ), Isom (H1(Σ)) is the group of
isometries of the intersection form on H1(Σ), and I is the Torelli group. The latter is the subgroup of M
consisting of homeomorphisms that induce the identity on H1(Σ). Meyer defined a canonical 2-cocycle

τM : Sp(2g,Z)× Sp(2g,Z)→ Z

that induces a 2-cocycle on M which we call the Meyer signature cocycle

σM :M×M (rM ,rM )−−−−−→ Sp(2g,Z)× Sp(2g,Z)
τM−→ Z.(1.2)

Moreover there is a (unique) corresponding 1-chain, called the Meyer function,

ρM :M→ Q,
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such that δρM = σM in group cohomology with Q-coefficients (but not with Z-coefficents) [72, 76, 74]. The
pair {ρM , σM} satisfies the following additional properties that we call the Meyer properties:

1. ρM is a class function (i.e. it is constant on conjugacy classes);
2. ρM is a quasimorphism (defined below);
3. σM is a bounded 2-cocycle (i.e. its range is bounded);
4. σM (f, g) is the signature of the total space of the Σ-bundle over the twice punctured disk whose

monodromy around the punctures is f and g respectively;
5. [σM ] ∈ ker(H2(M;Z)→ H2(M;Q));
6. σM vanishes as a 2-cocycle on I;
7. the restriction of ρM to I is a homomorphism.

The mathematics associated to Meyer’s signature cocycle is extraordinarily rich [77, 79, 34, 64, 63, 75, 74, 76].
For example, Morita showed that ρM is essentially equivalent to a Casson’s celebrated invariant for homology
3-spheres (when defined from the point of view of the mapping class group of a Heegaard surface). It is also
related to Rochlin’s invariant [60]. Meyer used the signature cocycle to give formulae for the signature of
surface bundles over surfaces. Subsequent authors have extended these formulae to Lefshetz fibrations of
4-manifolds [32, 34, 82]. The cocycle is also related to the first Morita-Mumford class. Explicit formulae
were given for τ and ρM in the genus one case by Meyer [72], Kirby-Melvin [60] and Szech [90]. Atiyah
related Meyer’s function to Hirzebruch’s signature defects, the Atiyah-Patodi-Singer η invariants and the
logarithm of the Dedekind η function [3]. As another example, Gambaudo-Ghys [42] study the case of
the braid group and equate the resulting signature defect with the Meyer cocycle of the Burau-Squier
representation. They use their result to study the global geometry of the Gordian metric space of knots.
Their calculations reveal a deep complexity in the behavior of these invariants. Moreover they use these
invariants to produce quasimorphisms on the group of compactly supported area-preserving diffeomorphisms
of an open two-dimensional disc [41](see also [9]), and more generally to study the dynamics of surfaces [45].

Quasimorphisms have been shown, in recent years, to be quite useful. Recall that a quasimorphism on
a group J is a function ρ : J → R whose deviation from being a homomorphism is universally bounded by
a constant Dρ, that is, for all f, g

| ρ(fg)− ρ(f)− ρ(g) | ≤ Dρ.

Two such are considered equivalent if they differ by a bounded function. Quasimorphisms are related to
bounded cohomology (defined in Section 4), bounded generation [5, 6, 39, 47] and stable commutator length

[4, 11, 13, 12, 14, 61, 62, 33, 32]. For example, if Q̂(J) denotes the vector space of quasimorphisms of J then
there is an exact sequence

0→ H1(J ;R)→ Q̂(J)
δ−→ H2

b (J ;R)→ H2(J ;R).

An excellent place to learn about these subjects is [13].
We assume throughout that Σ is a surface with at least one boundary component, on one of which we

choose a basepoint, ∗. We often denote π1(Σ, ∗), by F , a free group, whose rank will be suppressed (but is
of course determined by the genus and the number of boundary components). Suppose H is a characteristic
subgroup of F . Then we let J = J(H) denote the subgroup of M consisting entirely of homeomorphisms
that induce the identity on π1(Σ, ∗)/H. (Warning: this definition is only accurate if ∂Σ has 1 boundary
component. See Section 2 for the correct definition of J(H) in the cases that Σ has more than one boundary
component). For example J(F ) = M, and J([F, F ]) = I. Another important example is H = Fk, the
kth term of the lower central series of π1(Σ), k ≥ 2. In this case J(H) is J (k), the kth term of the
generalized Johnson subgroup, which is the subgroup of homeomorphisms that induce the identity on F/Fk.
Specifically, in our notation J (2) is the Torelli group and J (3) is called the Johnson subgroup (normally
denoted K). The kth term of the lower central series of I is another important subgroup. Yet another
important class of examples are the mod L versions of these subgroups. In particular, if L ∈ Z+ and
H = {[F, F ]xL | x ∈ F}, then J(H) is the level L subgroup of M, sometimes denoted Mod(L), which is
the subgroup of homomorphisms that induce the identity on H1(Σ;Z/LZ) [85, 84]. Other examples involve
mixtures of the lower central and derived subgroups of F .

Now fix a unitary representations ψ : F/H → U(H) on a separable Hilbert space H (one possibility is
just a U(n)-representation). In Section 2 we give natural examples of such representations for some of the
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most important examples. To H and ψ we associate a higher-order ρ-invariant

ρψ : J(H)→ R.
In Section 3 we define the higher-order signature 2-cocycle

σψ : J(H)× J(H)→ G,

where G = Z if dim(H) <∞ and G = R if dim(H) =∞. In brief, the higher-order ρ-invariants are defined
as follows: Given f ∈ J(H), form the mapping torus Mf and perform longitudinal Dehn-filling to arrive at
the closed 3-manifold Nf . We show that, under the hypothesis on f , there is a canonical surjection

φf : π1(Nf )→ F/H.

Given the pair (Nf , φ) and a fixed auxiliary finite unitary representation ψ, we let ρψ(f) = ρ(Nf , ψ ◦ φf )
where the latter is the real-valued ρ-invariant of Atiyah-Patodi-Singer [2]. In the infinite-dimensional case,
we restrict to representations of the form

ψ : F/H → Γ
`r→ U(`(2)(Γ)),

for a countable discrete Γ where `r is the left-regular representation of Γ on the Hilbert space `(2)(Γ). In
this case we set ρψ(f) = ρ(Nf , ψ ◦ φf ), the Cheeger-Gromov von Neumann ρ-invariant associated to

(Nf , ψ ◦ φf ) [17] (this is also called the `(2) − ρ-invariant associated to ψ ◦ φf ). These have the advantage
that they are canonically associated to H and hence enjoy better properties.

We establish that each of the ρψ and σψ possess all of the Meyer properties

Theorem 1.1. For any H and ψ as above,

0. With real coefficients, δρψ = σψ (Proposition 3.4);
1. ρψ is a class function on any subgroup of J(H) (Corollary 2.3);
2. ρψ is a quasimorphism on any subgroup of J(H) (Proposition 4.8);
3. σψ is a bounded 2-cocycle on any subgroup of J(H) (Theorem 4.6, Corollary 4.7);
4. If Σ has one boundary component then σψ(f, g) is the difference between a twisted signature and the

ordinary signature of the total space of the Σ-bundle over the twice punctured disk whose monodromy
around the punctures is f and g respectively (Corollary 3.8);

5. If ψ is finite-dimensional then [σψ] ∈ ker(H2(J(H);Z)→ H2(J(H);R)) (Proposition 4.5);
6. σψ vanishes identically as a 2-cocycle on C(H) ∩ I (Corollary 4.11); where C(H) C J(H) is the

subgroup consisting of those classes that induce the identity map

id = f∗ :
H

[H,H]
→ H

[H,H]
.

(see Definition 4.9 for the defintion of C(H) when ∂Σ is disconnected).
7. the restriction of ρψ to any subgroup of C(H) ∩ I is a homomorphism (Corollary 4.12),

Moreover, in analogy to the exact sequence 1.1:

Theorem 4.13. If Σ has one boundary component then there is an exact sequence

1→ C(H)
i−→ J(H)

rψ−→ Isomr (H1(Σ;Z[F/H]))→ 1,(1.3)

and a 2-cocycle τψ on the group Isomr (H1(Σ;Z[F/H])) such that

σψ = r∗ψ(τψ)− nσM ;

where n = dim(H) (n = 1 if dim(H) = ∞) and Isomr (H1(Σ;Z[F/H])) is the group of realizable automor-
phisms of H1(Σ;Z[F/H]) (as a Z[F/H]-module) that preserve the (twisted) intersection form.

The higher-order ρ-invariants and signature 2-cocycles give a vast supply of invariants for subgroups of
the mapping class group. In fact they yield maps

ρ : Rep(F/H,U(n))→ Q̂(J(H)),

and
σ : Rep(F/H,U(n))→ H2

b (J(H);R).

In certain cases, there is an interesting interpretation of ρψ as a twisted signature defect of a Lefshetz
fibration [40](or more generally of singular Σ-bundles over the 2-disk):
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Proposition 5.2. Suppose that D1, . . . , Dn are positive Dehn twists along null-homologous circles in Σ.
Then, for any unitary representation ψ of F/[F, F ] ≡ H1(Σ;Z),

ρψ(Dn ◦ · · · ◦D1) = σ(Y, ψ)− σ(Y )

where Y is the Lefshetz fibration over the 2-disk with generic fiber Σ and with n singular fibers whose
monodromies are D1, . . . , Dn.

Calculation of these invariants is, in general, difficult, as can be seen in [42, 60]. However we include, in
Section 5, calculations in one of the simplest non-classical cases. Set H = [F, F ], choose a symplectic basis
for H1(Σ;Z) and define

ψω : F/H ∼= H1(Σ;Z) ∼= Z2g π−→ S1 ≡ U(1),

where, for each i = 1, ...2g, π(xi) = ω. Then, for each such ω, we have the higher-order ρ-invariant ρω = ρψω
defined on any subgroup of the Torelli group, I = J([F, F ]). Specifically, let J (3) = Kg ⊂ I be the Johnson
subgroup.

Theorem 5.4. For g ≥ 2, {ρω} spans an infinitely generated subspace of Q̂(Kg).

Previous constructions of quasimorphisms have used pure group theory, Seiberg-Witten theory, and quan-
tum cohomology. Our construction is of a quite different flavor.

In addition,

Theorem 5.5. For g ≥ 2, {σω = δ(ρω)} spans an infinitely generated subspace of H2
b (Kg;R), the second

bounded cohomology of Kg.

It was recently shown in [5] that almost every subgroup of the mapping class group has infinite dimensional
H2
b (−;R). However, the proof is non-constructive. By contrast all the bounded cohomology groups of any

amenable group vanish.
The subgroups on which the higher-order ρ-invariants are homomorphisms promise to be very interesting.

In particular, if H = Fk, then the groups {C([Fk, Fk])}, homeomorphisms that induce the identity on
Fk/[Fk, Fk] (and F/Fk), constitute a new and interesting filtration of the Torelli group. It was not known
until recently whether or not C([F2, F2]) was non-empty, but it is now known that its intersection with each
Johnson subgroup is non-zero, so C([F2, F2]) is highly non-trivial [95][94][93][18].

We indicate a possible method of calculation that relies on our previous work in link theory. There
are various ways to map a punctured disk into Σ and corresponding to these are ways to map the pure
braid group into the Torelli group of Σ [44] [67] [68]. Let Θ be such a map. Then with some restrictions
(see Proposition 7.1) the higher-order ρ-invariants of Θ(β) can be calculated in terms of the higher-order
ρ-invariants of the zero framed surgery on the link obtained as the closure of the braid β. Such ρ-invariants
of links have been studied extensively by the authors and others, although only a few calculations have been
made for closures of pure braids [16, 26, 25, 20, 24, 23, 21, 29, 27, 28, 49, 52, 56, 57, 59, 58, 37, 36, 38, 54,
53, 52]. The recent thesis of M. Bohn may provide some tools for calculations in the general case [7].

In Section 8, we generalize our work to the monoid of homology cylinders based on Σ, denoted C. This
enlargement of M has been widely considered recently [43, 48, 46, 67, 80, 89, 88, 87]. We also consider
a quotient of C, the group, H, of homology cobordism classes of homology cylinders. There is a natural
monomorphism of groups

I → C → H.
Specifically suppose that ∂Σ is connected, H = Fn is the nth term of the lower central series of F = π1(Σ)
and ψn is the left regular representation of F/Fn on `(2)(F/Fn). Let ρn denote the higher-order ρψn defined
on J (n) as above. Let H(Fn) the subgroup of H consisting of homology cylinders that induce the identity
modulo Fn. Then each ρn extends to C and descends to H (Theorem 8.4); and is a quasi-morphism on C(Fn)
and H(Fn) (Proposition 8.9). Similarly the higher-order signature cocycles corresponding to ψn extend
(Corollary 8.8). These invariants are quite rich, as indicated by the following theorems.

Theorem 8.10. For any n ≥ 2

1. The image of ρn : H(Fn)→ R is dense.
2. The image of ρn : H(Fn)→ R is infinitely generated.
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Theorem 8.11. For any m ≥ 2, {ρn}∞n=2 is a linearly independent subset of the vector space of all functions
{f : H(Fm) → R} modulo the subspace of bounded functions. In particular, {ρ1, . . . , ρm} is linearly

independent in Q̂ (H(Fm)).

2. Definition of the Higher-order ρ-invariants

In this section we will define the higher-order ρ-invariant

ρψ : J(H)→ R,

associated to H and ψ. Of course this serves to define such a function on any subgroup of J(H). Basic
properties of these invariants will be addressed in later sections.

2.1. The subgroups J(H) ⊂ M. Suppose that Σ is a connected oriented, compact surface with m + 1
boundary components where m ≥ 0. Choose a basepoint, ∗, on one of the boundary components, and
basepoints z1, . . . , zm, on the other boundary components. Also choose directed arcs, δi, in Σ from ∗ to
zi. Recall that we are given H, a characteristic subgroup of π1(Σ, ∗), and ψ : π1(Σ)/H → U(H), a unitary
representation on a separable Hilbert space H.

Definition 2.1. Let J = J(H) be the normal subgroup of M of mapping classes [f ] that satisfy

1. f induces the identity map on π1(Σ)/H;
2. The homotopy classes [f(δi)δi] lie in H for 1 ≤ i ≤ m.

If m = 0 then the second condition is vacuous. It is easy to check that the definition of J(H) is independent
of the choices of ∗, zi and δi. For example, if H = [F, F ] then J(H) is the Torelli group. The presence of
condition [2.] may be unfamiliar to the reader since much of the literature deals with the case of a surface
with a single boundary component (m = 0). However, this is the “right” definition, even for the Torelli
group (i.e. agrees with the definition of the Torelli group in [55, p.114]).

2.2. The associated 3-manifolds. To define the ρ-invariants we first associate (in a standard fashion) to
any f ∈ J(H) a closed oriented 3-manifold, Nf , and a canonical epimorphism φf : π1(Nf )→ π1(Σ)/H.

We begin by recalling some notation. For any f ∈ M, we can form the mapping torus of f , Mf =
Σ× [0, 1]/(x, 0) ∼ (f(x), 1), a compact oriented 3-manifold (possibly with boundary). The formation of Mf

is shown schematically by the first two pictures on the left side of Figure 2.1. In the schematic representation
the vertical interval represents Σ and the horizontal “interval” represents [0, 1]. The oriented homeomorphism

Σ× [0, 1] Mf Nf

Figure 2.1. Mf and Nf

type of Mf depends only on the conjugacy class of f . More precisely, if g and f are conjugate then Mg

and Mf are orientation-preserving homeomorphic relative to (Σ× {0}) ∪ ∂Mf . It follows that for any f, g,
Mfg

∼= Mgf . Each of the boundary components of Mf has a canonical identification with S1 × S1, where
S1 × {1} is one of the components of ∂Σ, t = {∗} × S1 is the circle {∗} × [0, 1]/ ∼ and ti = {zi} × S1 is
the circle {zi} × [0, 1]/ ∼. Note that Mf−1 = −Mf via an orientation-preserving homeomorphism fixing
(Σ × {0}) and inducing (x, t) → (x,−t) on each of the boundary tori. Figure 2.1 is a representation of the
case that Σ has one circle boundary component (which appears as an S0 in our schematic). Thus the top
and bottom circles in the middle part of Figure 2.1 represent the single boundary torus. If we attach solid
tori to each of the boundary components of Mf in such that 2disks are attached to the circles {∗} × S1
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and each {zi} × S1, we denote this closed manifold by Nf . It is shown schematically on the right-hand side
of Figure 2.1, where the solid torus is shaded. This is the same as forming the quotient space Mf � Nf
wherein, for each x ∈ ∂Σ, {x} × S1 is identified to a single point. Given f , the 3-manifolds Mf and Nf
are unique up to orientation-preserving homeomorphisms (relative ∂Mf in the first case) that induce the
identity on π1.

Moreover, we have:

π1(Mf , ∗) ∼= 〈π1(Σ), t | txt−1 = f∗(x), x ∈ π1(Σ)〉,
with respect to the canonical map j∗ : π1(Σ× {0})→ π1(Mf ). The subgroup H is normal in π1(Mf ) and

(2.1) π1(Mf )/H ∼= 〈π1(Σ), t | txt−1 = x, H〉 ∼= Z× π1(Σ)/H

since f induces the identity moduloH. SinceNf is obtained fromMf by adding two cells along {t, t1, . . . , tm},
and then adding 3-cells,

(2.2) π1(Nf ) ∼= 〈π1(Σ), t | t = 1, δitiδi = 1, 1 ≤ i ≤ m, x = f∗(x), x ∈ π1(Σ) 〉.

The image of the rectangle δi × [0, 1] ↪→ Σ × [0, 1]/ ∼ = Mf shows that t is based homotopic to δitif(δi).

Then, using part 2 of Definition 2.1, we have f(δi)δi = hi so

δitiδi = δitif(δi)f(δi)δi ∼ thi.

Thus, modulo H, the relations the relations x = f∗(x) are trivial, and the relations δitiδi are a consequence
of the relation t = 1. Hence,

(2.3) π1(Nf )/H ∼= 〈π1(Σ) | H〉 ∼= π1(Σ)/H.

Thus we see that there is a unique homomorphism

φf : π1(Nf )→ π1(Σ)/H

such that the composition

π1(Σ)
j∗→ π1(Mf )→ π1(Nf )

φf→ π1(Σ)/H,

is the canonical quotient map.

2.3. The invariants. Now, given any fixed unitary representation ψ : π1(Σ)/H → U(n), we get a canonical
representation

ψf : π1(Nf )→ π1(Σ)/H
ψ→ U(n).

To any such pair (Nf , ψf ) Atiyah-Patodi-Singer associated a real-valued invariant ρ(Nf , ψf ), defined as a
difference between the η invariant of Nf and a twisted η-invariant [2]. These η invariants are Riemannian
spectral invariants associated to the signature operator, but the difference, ρ(Nf , ψf ), was shown to be an
invariant of the oriented homeomorphism type of (Nf , ψf ). We call this the higher-order ρ-invariant of f
corresponding to ψ, denoted ρψ(f). The Atiyah-Patodi-Singer ρ-invariants for arbitrary 3-manifolds were
investigated by J. Levine and M. Farber [65] [66] [35].

Similarly, given any auxiliary φ : π1(Σ)/H → Γ (for any countable discrete group Γ) one can compose
with the left-regular representation of Γ on the Hilbert space `(2)(Γ), giving the representation

ψf : π1(Nf )→ π1(Σ)/H
φ→ Γ→ U(`(2)(Γ)).

To any such a pair (Nf , ψf ), Cheeger-Gromov associated a real number, ρ(Nf , ψf ), called the von Neumann
ρ-invariant [17]. Once again this was defined as the difference between the η invariant of Nf and the von
Neumann η-invariant associated to the Γ-cover of Nf . A summary of the basic properties of the ρ-invariants
is given in Section 9. The von Neumann ρ-invariants have recently been extremely influential in the study
of knots and links [16, 26, 25, 20, 24, 23, 21, 29, 27, 28, 49, 52, 56, 57, 59, 58, 37, 36, 38].

In summary,

Definition 2.2. The higher-order ρ-invariant of f ∈ J(H) corresponding to ψ, denoted ρψ(f), is
ρ(Nf , ψf ) as above. Sometimes this will be abbreviated as ρ(f) if ψ is clear from the context.

Corollary 2.3. For any H and ψ, ρψ : J(H)→ R is a class function on J(H). Moreover, if f ∈ J(H) and
g ∈M, then ρψ(g−1fg) = ρψ(f).
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Proof. Since J(H) is a normal subgroup of M, g−1fg ∈ J(H). Then, as observed in Subsection 2.2,
Mf
∼= Mg−1fg, so ρψ(g−1fg) = ρψ(f). �

Example 2.4. If H is the commutator subgroup then π1(Σ)/H ∼= H1(Σ) ∼= Zβ1(Σ) and J(H) is the Torelli
group. Given complex numbers of norm 1, ωi, 1 ≤ i ≤ β1(Σ), we can define ψω : Zr → U(1) ≡ S1 by sending
(0, . . . , 1, . . . , 0) to ωi. Therefore, varying the ωi yields a function

ρ :
(
S1 × · · · × S1

)
× J(H)→ R,

where here the m-torus should be viewed as the representation space Rep
(
Zβ1(Σ), U(1)

)
. In addition the

left-regular representation:

`r : π1(Σ)/H = Zβ1(Σ) ↪→ U
(
`(2)(Zβ1(Σ))

)
gives a single function

ρ(2) : J(H)→ R.

It is known that this function is merely the integral over the n-torus of the function ρ above [27, Section 5].
Furthermore suppose Σ is the 2-disk, D2, with m open subdisks deleted. Then, for any f ∈ J(H), Mf is

homeomorphic to the exterior, D2×S1 \ β̂f of the closure of an m-component pure braid βf . The condition

f ∈ I translates into the condition that the pairwise linking numbers of the components of β̂f are zero. Upon

adding a solid torus to Mf that caps off the boundary torus ∂D2 × S1, one arrives at the exterior, S3 \ β̂f .
Nf is obtained from this by adding an additional m solid tori (so called Dehn fillings) in such a way that

the longitudes of the components of β̂f bound disks. The result is usually called the zero-framed surgery on

the link β̂f in S3, denoted here by S(β̂f ). The map ψω is equivalent to assigning a complex number of norm

1 to each (meridian) of the link β̂f . Therefore ρ above yields

ρ :
(
S1 × · · · × S1

)
× PB0

m → Z,

where PB0
m denotes the group of pure braids on m strings with zero linking numbers. This function was

(essentially) previously defined by Levine in [65] for all links (not just links that are the closures of pure
braids) where it was shown that ρ takes only integral values in this case (see also [19] [91]). For example, if
K is a fixed knot then the function

ρK : S1 → Z

is precisely the Levine-Tristram signature function of the knot K and is given by the ordinary signature of
the Hermitian matrix

(1− ω)V − (1− ω)V t

where V is a Seifert matrix for the knot. Therefore for knots and more generally for boundary links this
function is straightforward to compute. Even here however the values are interesting as can be evidenced
by [42] and recent papers addressing the values of this function for torus knots [60, 8, 30]. For general links,
including the closures of pure braids, there is also a formula for this function in terms of bounding surfaces
but there are almost no computations in the literature [19]. It is significant that the integral of this function
is often much simpler than the function itself, as evidenced for torus knots [8, 30].

Example 2.5. Suppose ∂Σ is connected and that H = π1(Σ)k, the kth term of the lower central series
of π1(Σ), k ≥ 2. Recall that J(H) = J (k) is the group of mapping classes that induce the identity on
π1(Σ)/π1(Σ)k, which we call the kth generalized Johnson subgroup. Let J be any subgroup of J (k), Aside
from J (k) itself, one interesting such subgroup is Ik−1 ⊂ J (k), the (k− 1)st term of the lower central series
of I. Consider also an auxiliary epimorphism π1(Σ)/π1(Σ)k → Γ (which may be the identity), and let ψ be
this projection to Γ followed by the left regular representation of Γ (that embeds Γ in the group of unitary
operators on `2(Γ)). Then ρψ is defined on J .

2.4. Extension of the von Neumann ρ-invariants to the entire mapping class group. In the most
common cases the von Neumann ρ-invariants defined above extend naturally to functions on the entire
mapping class group. For suppose that H C π1(Σ) arises as an instance of a subgroup functor G 7→ H(G),
such as is the case when H(G) is some term of the lower central or derived series of G. Then, without any
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assumptions on the homeomorphism f we can define ρH(f) as the von Neumann ρ-invariant associated to
the closed 3-manifold Nf and the unitary representation

π1(Nf )→ Γ ≡ π1(Nf )/H(π1(Nf ))
`r→ U

(
`(2)(Γ)

)
.

using the left-regular representation, `r. If f ∈ J(H) then one easily checks that

π1(Σ)/H ∼= π1(Nf )/H(π1(Nf ))

so the present definition extends Definition 2.2. However, these extensions will not generally be quasimor-
phisms.

3. Definition of the Higher-order Signature Cocycles

In this section we define the higher-order signature 2-cocycles

σψ : J(H)× J(H)→ G

where G = Z in the finite unitary case and G = R in the `(2) case. First we describe a 4-manifold V = V (f, g)
and a closely related 4-manifold W = W (f, g), whose boundary is the disjoint union Nf tNg t−Nfg. Then
we show that the unitary representations extend over π1(V ) and π1(W ). We define σ(f, g) to be a certain
twisted signature defect of W (f, g) corresponding to ψ. We later show that, in the important case that ∂Σ
is connected, the signature defects of W (f, g) and V (f, g) agree so that either may be used as the definition
of σψ.

Consider the 4-manifold Mf× [0, 1] as shown schematically on the left-hand side of Figure 3.1. Let V (f, g)
denote the union of Mf × [0, 1] and Mg × [0, 1] identified along copies of (Σ × A) × {1} in Mf × {1} and
Mg × {1} where A is a small interval about 1

2 in [0, 1]/ ∼, so that

Σ×A ↪→ Σ× [0, 1]�
Σ× [0, 1]

∼
≡Mf ,

(and we have a similar copy Σ×A ↪→Mg). This is shown on the right-hand side of Figure 3.1. Notice that

Mf × [0, 1] V (f, g)

Figure 3.1.

∂V (f, g) contains copies of Mf
∼= Mf × {0} and Mg

∼= Mg × {0} (on the “inside”), and also a copy of Mfg

(on the “outside”).
There is an important alternative description of V (f, g). Let D be the closed oriented 2-disk with 2 open

subdisks deleted. This may be seen as a horizontal slice of V (f, g) on the right-hand side of Figure 3.1. Given
f, g ∈ J(H), we have a unique homomorphism Φ : π1(D) = 〈t1, t2〉 → J such that Φ(t1) = f and Φ(t2) = g.
This induces a unique (isomorphism class of) Σ-bundle over D. Since the bundle may be assumed to be a
product over an arc A that bisects D, it decomposes as the union of Mf × [0, 1] and Mg × [0, 1], intersecting
along A × Σ. Hence one sees that the total space of this bundle is identifiable with V (f, g) defined above.
In these terms the boundary of V (f, g) is Mf tMg t −Mfg ∪ (∂Σ×D).

Now recall that

Nf = Mf

⋃
∂Σ×S1

∂Σ×D2

8



where ∂Σ×D2 is a disjoint union of b solid tori where b is the number of boundary components of Σ. Choose
a small collar of ∂Σ in Σ, [0, ε]× ∂Σ ↪→ Σ. This induces

Af = [0, ε]× ∂Σ× S1 ↪→Mf ,

a collar of ∂Mf . Now form the 4-manifold

(3.1) W (f, g) ≡ V (f, g)
⋃

Af×{0}

[0, ε]× ∂Σ×D2
⋃

Ag×{0}

[0, ε]× ∂Σ×D2,

as shown schematically in Figure 3.2. Then ∂(W (f, g)) = Nf tNg t −Nfg where the first two components
are on the “inside”, and the third is on the “outside” of the schematic representation. One can see a
decomposition of W (f, g) by bisecting the figure using a vertical plane, so that

W (f, g) ∼= (N(f)× [0, 1]) ∪Σ×A (Ng × [0, 1]) .

Figure 3.2. W (f, g)

Using either point of view, the fundamental group of V (f, g) has a presentation:

〈π1(Σ), t, s | txt−1 = f∗(x), sxs−1 = g∗(x), x ∈ π1(Σ)〉,
with respect to the canonical map j∗ : π1(Σ) → π1(V (f, g)). The subgroup H is normal in π1(V (f, g)) and
π1(V (f, g))/H has a presentation

〈π1(Σ), t , s | txt−1 = x, sxs−1 = x, H, x ∈ π1(Σ)〉
since f and g induce the identity modulo H. But the addition of (3.1) to V (f, g) has the effect on π1 of
killing the t, s as well as ti, si (as in Subsection 2.2). If we kill these elements then we see that j induces an
isomorphism

j∗ : π1(Σ)/H → π1(V (f, g))/〈H, t, tis, si〉 ∼= π1(W (f, g)),

where we need the same analysis as was used for equation 2.3. Therefore, ψf and ψg extend uniquely to

ψ̃ : π1(V (f, g))� π1(W (f, g))→ U(H).

In summary, for any f, g ∈ J(H), ∂W (f, g) = Nf t Ng t −Nfg in such a way that for any unitary

representation ψ : π1(Σ)/H → U(H), there is a coefficient system, ψ̃, on π1(W (f, g)) whose restriction to
the boundary components is ψf , ψg and ψfg respectively. Similar statements hold for V (f, g) ⊂ W (f, g)
whose boundary is Mf tMg t −Mfg ∪ (∂Σ×D).

Recall that given ψ̃ : π1(W ) → U(n), where W is a compact, connected orientable 4-manifold W , one

defines the twisted homology of W as follows. Let W̃ denote the universal cover of W and consider a free

left Z[π1(W )] chain complex, C∗(W̃ ), for W̃ . Note

ψ̃ : π1(W )→ U(n) ⊂ AutCn

endows Cn with the structure of a right Z[π1(W )]-module. Then set

C∗(W ; ψ̃) ≡ Cn ⊗ψ̃ C∗(W̃ ).

9



and

H∗(W ; ψ̃) ≡ H∗(C∗(W ; ψ̃)).

The usual intersection form on H2(W ;C) extends to a hermitian form on H2(W ; ψ̃), induced by a pairing
on the chain level:

〈~v1 ⊗ c1, ~v2 ⊗ c2〉 = ~v1 ψ̃(〈c1, c2〉)(~vn)∗,

where ~vi ∈ Cn (thought of as a row vector), ∗ is conjugate-transposition, and 〈c1, c2〉 is the equivariant

Z[π1(W )]-valued intersection form on W̃ . The twisted signature σ(W ; ψ̃) is defined to be the ordinary
signature of this hermitian form over C. This signature takes values in Z.

Similarly, given ψ̃ : π1(W ) → Γ
`r→ U(`(2)(Γ)), the `(2)-homology and the von Neumann signature,

σ2
Γ(W ; ψ̃), are defined (first defined by Atiyah in the case that W is closed [1], see [71][27, Section 5]). This

signature takes values in R. In Section 9 we will assemble, for the reader’s convenience, the definition and
basic properties of the von Neumann signature.

Definition 3.1. Given H and a unitary representation ψ : F/H → U(H) as above we define, in case H has
dimension n,

σψ : J(H)× J(H)→ Z,
by

σψ(f, g) = σ(W (f, g); ψ̃)− nσ(W (f, g))

and, in case H has dimension ∞, we define

σψ : J(H)× J(H)→ R,

by

σψ(f, g) = σ
(2)
Γ (W (f, g); ψ̃)− σ(W (f, g))

where W (f, g) is as defined in equation 3.1 and σ(W (f, g)) is the signature of the ordinary intersection form
on H2(W (f, g);C).

Remark 3.2. In the first case, it might be more natural use the definition

σψ(f, g) =
σ(W ; ψ̃)

n
− σ(W )

since then it is parallel to the `(2) case, being an “average twisted signature” minus an ordinary signature.
But this leads to rational values of the signature, rather than integer values, so this explains our preference.

Proposition 3.3. The following hold for σψ.

(1) σψ(f, g) = σψ(g, f)
(2) σψ(f−1, g−1) = −σψ(f, g)
(3) σψ(f, g) = 0 if f = 1 or g = 1 or fg = 1.

Proof. By Definition 3.1, σψ(f, g) is the twisted signature defect of the 4-manifold W (f, g) which has bound-
ary Nf t Ng t (−Nfg) and σψ(g, f) is the twisted signature defect of the 4-manifold W (g, f) which has
boundary Nf tNg t (−Ngf ). But, as previously observed, Nfg = Ngf . Thus ∂W (f, g) = ∂W (g, f). Form

the closed 4-manifold W (f, g) = W (f, g) ∪ −W (g, f). Since both the twisted signature and the ordinary
signature are additive for manifolds glued along entire components of their boundaries, and since both
signatures change sign upon changing orientation, the signature defect of W is

σψ(f, g)− σψ(g, f).

But Atiyah’s L(2)-signature theorem [1] and [2], the signature defect for a closed 4-manifold is zero. It follows
that σψ(f, g) = σψ(g, f). The second property follows similarly by noting that

∂(−W (f, g)) = −Nf t −Ng t Nfg = Nf−1 tNg−1 t −Ng−1f−1 = ∂W (f−1, g−1),

sinceNg−1f−1 = Nf−1g−1 . The third property follows similarly upon noting that since id−1 = id, −Nid ∼= Nid,
so

∂(−W (f, id)) = −Nf t −Nid tNf = Nf tNid t −Nf ∼= ∂(W (f, id).

Thus 2σψ(f, id) = 0. The other results follow similarly. �
10



We postpone the proof that σψ satisfies the cocyle condition until Section 4, although it can be established
using the ideas of the proof of Proposition 3.3

We now observe that these signature cochains are intimately related to the higher-order ρ-invariants.

Proposition 3.4. For each ψ
σψ(f, g) = −ρψ(fg) + ρψ(f) + ρψ(g).

where ρψ(f) is the higher-order ρ-invariant of f corresponding to ψ as in Definition 2.2.

Proof. Since

∂
(
W (f, g), ψ̃

)
= (Nf , ψf ) t (Ng, ψg) t (−Nfg, ψfg),

the proof follows immediately from our definition and the following results of Atiyah-Patodi-Singer (in the
finite unitary case) and Ramachandran (in the `(2) case)(see also [71]).

Theorem 3.5. [2][86] Given a compact, smooth, orientable 4-manifold W and an extension ψ̃ : π1(W ) →
U(n) of ψ then

ρ(∂W,ψ) = σ(W, ψ̃)− nσ(W ),

where ψ is the restriction of ψ̃, σ(W, ψ̃) is the signature of the twisted intersection form on H2(W ; ψ̃) and

σ(W ) is the signature of the ordinary intersection form on H2(W ;C). Similarly given φ̃ : π1(W )→ Γ

ρ(∂W, `r ◦ φ) = σ
(2)
Γ (W, `r ◦ φ̃)− σ(W ).

�

One elementary observation is:

Proposition 3.6. ρψ(id) = 0.

Proof. We are given a unitary representation ψ of π1(Σ)/H. Let W = Σ ×D2 and extend ψ to a unitary

representation ψ̃ of π1(W ). By Theorem 3.5, ρ(∂W,ψ) is equal to a signature defect. Since W deformation
retracts onto Σ× {1}, which is a subspace of its boundary, the second homology of W with any coefficient
system is supported by ∂W . Therefore the intersection form on H2(W ) with any coefficient system is
identically zero. Thus the (twisted or untwisted) signature of such a form is zero. Hence

ρ(∂W,ψ) = 0.

But note that
∂W = Σ× S1 ∪ ∂Σ×D2 = Mid ∪ ∂Σ×D2 ≡ Nid.

Hence ρ(∂W,ψ) = ρψ(id) = 0. �

The following result is useful.

Proposition 3.7. If ∂Σ is connected, for any H, ψ, f and g, the twisted and untwisted signatures of V (f, g)
and W (f, g) are equal.

Corollary 3.8. If ∂Σ is connected then σψ(f, g) is the difference between the twisted signature and the
ordinary signature of V (f, g), which is the total space of the Σ-bundle over the twice punctured disk whose
monodromy around the punctures is f and g respectively.

Proof of Proposition 3.7. Recall that W = W (f, g) is obtained from V = V (f, g) by adjoining a disjoint
union of two thickened solid tori along a disjoint union of two thickened tori (one for ∂Mf and one for ∂Mg).
Since a solid torus is obtained from its boundary by adjoining a single 2-handle and then a 3-handle, the
passage from V to W may be accomplished by adding two 2-handles and then two 3-handles. Let W denote
the union of V and these 2-cells. We will show that H2(V ) ∼= H2(W ) with either twisted or untwisted
coefficients. It suffices to show that

(3.2) H1(S1 t S1)
i∗−→ H1(V )

is injective where S1 t S1 are the attaching circles s and t of the 2-cells. Since V
π∗→ D is a fibration, where

D is the 2-disk with two open subdisks deleted, D → S1 ∨ S1 is a deformation retraction and the map

H1(S1 t S1)
i∗−→ H1(V )

π∗−→ H1(D)→ H1(S1 ∨ S1)
11



is the identity map. Note that the coefficient system ψ is trivial on S1 t S1, so

H1(S1 t S1) ∼= H1(S1 ∨ S1) ∼= Z× Z,
with twisted or untwisted coefficients. Thus i∗ is injective. The addition of 3-cells will not change the
signature. This shows that the twisted and untwisted signatures of W and V agree. �

4. Higher-order signature cocycles and group cohomology

In this section we observe that each σψ is a bounded 2-cocycle in the group cohomology of J(H), and,
with R-coefficients, σψ is the coboundary of ρψ.

We review the definition of group cohomology with coefficents in a trivial module. If G is a group and A
is an abelian group (viewed as a trivial G-module), set Gp = G× · · · ×G and define the group of A-valued
p-cochains to be

Cp(G;A) = {ρ : Gp → A}.
Define δ : Cp(G;A)→ Cp+1(G;A) by

(4.1) δρ(f0, ..., fp) = ρ(f1, ..., fp) +

p∑
i=1

(−1)iρ(f0, ..., fi−1fi, ..., fp) + (−1)p+1ρ(f0, ..., fp−1).

Then, Hp(G;A), the cohomology of G with coefficients in A is defined to be the homology of the
complex {C∗(G;A), δ} [10]. A cochain with values in A ⊂ R is called a bounded cochain if its range is
bounded as a subset of R. The bounded cochains form a subcomplex C∗b (G;R) ⊂ C∗(G;R). The homology
of this (co)-chain complex is called the bounded cohomology of G.

Proposition 4.1. The function σψ = σ : J × J → image(σψ) ⊂ R given by (f, g) → σψ(f, g) (see
Definition 3.1) is a 2-cocycle of J with values in the trivial module R (or in any group A such that
image(σψ) ⊂ A ⊂ R).

Proof. By Equation 4.1 we need to show that (δσ)(f, g, h) = σ(g, h) +−σ(fg, h) + σ(f, gh)− σ(f, g) = 0 for
all f, g, h ∈ J . By Proposition 3.4 we have:

−σ(f, g) = −ρ(f)− ρ(g) + ρ(fg)

−σ(fg, h) = −ρ(fg)− ρ(h) + ρ(fgh)

σ(f, gh) = ρ(f) + ρ(gh)− ρ(fgh)

σ(g, h) = ρ(g) + ρ(h)− ρ(gh).

The terms of the sum clearly cancel. This can also be proved independently of Proposition 3.4 by observing
that (δσ)(f, g, h) is the sum of the signature defects of W (g, h), −W (fg, h), W (f, gh), and −W (f, g). Since
the boundaries of these manifolds piece together to form a closed manifold, and since the signature defects
vanish for a closed manifold, the sum of signature defects vanishes. �

Proposition 4.2. When σψ is viewed as a 2-cochain with values in R
δρψ = σψ

so σ is a 2-coboundary with real coefficients.

Proof. By equation 4.1,

(δρψ)(f, g) = ρψ(g)− ρψ(fg) + ρψ(f).

The latter equals σψ(f, g) by Proposition 3.4. �

Remark 4.3. Proposition 4.2 gives an alternative proof of Proposition 4.1 but only with real coefficients.
In general, if image σψ = A is a proper subgroup of R then σψ represents a potentially non-zero element in
the kernel of

H2(J ;A)→ H2(J ;R).

Since, if ψ is a finite unitary representation then, by definition, σψ is integral-valued, we have:

Corollary 4.4. If ψ is a finite unitary representation then the signature cocycle σψ an is integer-valued
cocycle.
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Proposition 4.5. If ψ is a finite unitary representation then the signature cocycle σψ represents an element
in the kernel of

H2(J ;Z)→ H2(J ;R).

Proof. By Proposition 4.1, σψ is a cocycle with values in image(σψ). If ψ is a finite unitary representation
then, by definition, σψ is integral-valued. But by Proposition 4.2 σ is a 2-coboundary with real coefficients.

�

Theorem 4.6. For any n-dimensional representation ψ ,

|σψ(f, g)| ≤ 2nβ1(Σ).

In the infinite-dimensional case,

|σψ(f, g)| ≤ 2β1(Σ).

Corollary 4.7. For any ψ, σψ is a bounded 2-cocycle and hence represents an element in the kernel of

H2
b (J ;R)→ H2(J ;R).

Proof of Corollary 4.7. By Proposition 4.1 and Theorem 4.6, σψ is a bounded 2-cocycle. By Remark 4.3, it
vanishes in H2(J ;R). �

Proof of Theorem 4.6. Recall the description of W = W (f, g) of Figure 3.2. By contracting along the
thickenings, we see that, up to homotopy equivalence, W ' Nf ∪Σ Ng. Thus we have the Mayer-Vietoris
sequence below, which we consider with various coefficients.

(4.2) H2(Nf )⊕H2(Ng)
(i∗+j∗)−→ H2(W )

∂∗−→ H1(Σ)
(i∗,j∗)−→ H1(Nf )⊕H1(Ng).

Since the intersection form on W with C-coefficients is identically zero on i∗(H2(∂W ;C)), it descends to a
form on the quotient

H2(W ;C)/i∗(H2(∂W ;C))

and σ(W ) is equal to the signature of this induced form. Since Nf ×{0} and Ng ×{0} are contained in ∂W
this ensures that

|σ(W )| ≤ dimC (H2(W ;C)/image (i∗ + j∗)) .

Considering (4.2) with C-coefficients, we see that

dimC (H2(W ;C)/image (i∗ + j∗)) = dimC(image ∂∗) ≤ dimCH1(Σ;C) = β1(Σ).

It follows that

|σ(W (f, g))| ≤ β1(Σ).

Now consider to the case that ψ is an n-dimensional representation. By definition

σψ(f, g) = σ
(
W (f, g); ψ̃

)
− n σ(W (f, g)).

As above, σ
(
W ; ψ̃

)
is equal to the signature of the induced form on

H2

(
W ; ψ̃

)/
i∗

(
H2

(
∂W ; ψ̃

))
.

Thus ∣∣∣σ (W ; ψ̃
)∣∣∣ ≤ rankC

(
H2

(
W ; ψ̃

)/
i∗

(
H2

(
∂W ; ψ̃

)))
.

Considering (4.2) with Cn-coefficients twisted by ψ̃, we see that

rankC

(
H2

(
W ; ψ̃

)/
i∗

(
H2

(
∂W ; ψ̃

)))
≤ rankC(image ∂∗) ≤ rankCH1

(
Σ; ψ̃

)
.

Since Σ has a cell decomposition with one zero cell and β1(Σ) one cells

rankCH1

(
Σ; ψ̃

)
≤ rankC C1

(
Σ; ψ̃

)
= rankC

(
Cn ⊗ψ̃

(
Z[π1(W )]β1(Σ)

))
= nβ1(Σ).

Hence we have shown that

|σψ(f, g)| ≤ 2nβ1(Σ).
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Now consider the case that ψ is an infinite-dimensional representation. Thus ψ̃ : π1(W ) → F/H ≡ Γ
`r→

U(`(2)(Γ)) and by definition

σψ(f, g) = σ
(2)
Γ

(
W ; ψ̃

)
− σ(W ).

Since the intersection form with UΓ-coefficients is identically zero on i∗(H2(∂W ;UΓ)), it descends to a form
on the quotient

H2(W ;UΓ)/i∗(H2(∂W ;UΓ))

and σ
(2)
Γ (W ) is equal to the von Neumann signature of this induced form. Since the von Neumann dimension is

additive on short exact sequences (see this and other properties in [70, Lemma 8.27, Assumption 6.2,Theorem
6.7]),

|σ(2)
Γ (W )| ≤ dim

(2)
Γ

(
H2(W ;UΓ)/i∗(H2(∂W ;UΓ))

)
.

Considering the sequence (4.2) with UΓ-coefficients, we see that

dim
(2)
Γ

(
H2(W ;UΓ)/i∗(H2(∂W ;UΓ))

)
≤ dim

(2)
Γ (image ∂∗) ≤ dim

(2)
Γ H1(Σ;UΓ).

Furthermore

dim
(2)
Γ H1(Σ;UΓ) ≤ dim

(2)
Γ C1(Σ;UΓ) = dim

(2)
Γ (UΓ)β1(Σ) = β1(Σ).

Hence we have shown that

|σψ(f, g)| ≤ 2β1(Σ).

�

4.1. Higher-order ρ-invariants as quasimorphisms.
We show that each of the higher-order ρ-invariants is a quasimorphism. We then show that even the very

simplest family of such higher-order ρ-invariants spans an infinite-dimensional subspace of the the vector

space, Q̂(J (3)), of all quasimorphisms of J (3) (recall J (3) is the Johnson subgroup K). Moreover, the
set of their coboundaries, {δ(ρω)} spans an infinitely generated subspace of H2

b (K;R), the second bounded
cohomology of K.

Proposition 4.8. Each of the higher-order ρ-invariants, ρψ : J(H)→ R is a quasimorphism.

Proof. Suppose ρ = ρψ : J(H)→ R is a higher-order ρ-invariant. Then, by Proposition 3.4, for each f, g

| ρ(fg)− ρ(f)− ρ(g) | = |σψ(f, g) |.

where σ is the signature cocycle from Section 3. By Theorem 4.6, the latter is bounded independent of f
and g. �

Even the simplest family of such higher-order ρ-invariants gives, as ψ varies, an infinite linearly indepen-

dent set in the the vector space, Q̂(J), of all quasimorphisms of J . Let J be an subgroup of the Torelli
group. For any norm 1 complex number ω, we can define a higher-order ρ-invariant ρω = ρψω on J as follows.
Choose H = [F, F ] and define ψω : F/H → U(1) as the composition

F/H ∼= H1(Σ;Z) ∼= Z2g π−→ S1 ≡ U(1),

where, for each i = 1, ...2g, π(xi) = ω (using a fixed symplectic basis for H1(Σ)). Specifically, let K ⊂ I be
the Johnson subgroup. In Section 5, we carry out calculations and prove the following that show that the

set of such ρω spans an infinitely generated subspace of Q̂(K).

Theorem 5.4. For g ≥ 2, {ρω} spans an infinitely generated subspace of Q̂(Kg).

Moreover, we show:

Theorem 5.5. For g ≥ 2, {σω = δ(ρω)} spans an infinitely generated subspace of H2
b (Kg;R), the second

bounded cohomology of Kg.

The proofs indicate that the same will hold for any subgroup of Kg containing two Dehn twists on
sufficiently different bounding curves.
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4.2. Subgroups on which the Higher-Order Signature Cocycles Vanish.

By examining the proof of Theorem 4.6 we can draw more precise conclusions in certain cases.

Definition 4.9. Let C(H)C J(H) denote the subgroup consisting of those classes [f ] such that

1. f induces the identity map on H/[H,H]; and
2. the homotopy classes [f(δi)δi] lie in [H,H] for 1 ≤ i ≤ m (compare Subsection 2.1).

Theorem 4.10.

1. If either of f or g lies in C(H) then the twisted signature of W (f, g) vanishes, i.e. in the finite case

σ(W (f, g); ψ̃) = 0; and in the infinite case σ
(2)
Γ (W (f, g), ψ) = 0.

2. If either of f or g lies in I then the ordinary signature of W (f, g) vanishes.

Before proving Theorem 4.10, we point out some of its interesting corollaries.

Corollary 4.11. The signature defect σψ vanishes identically as a 2-cocycle on C(H) ∩ I.

Proof of Corollary 4.11. Recall that if dim(H) = n, then

σψ(f, g) = σ(W (f, g); ψ̃)− nσ(W (f, g))

and, in case dim(H) =∞
σψ(f, g) = σ

(2)
Γ (W (f, g); ψ̃)− σ(W (f, g)).

If f ∈ C(H) then, by Theorem 4.10, the twisted signature σ(W (f, g); ψ̃) = 0 or σ
(2)
Γ (W (f, g); ψ̃) = 0 as

the case may be. If f ∈ I then by Theorem 4.10, σ(W (f, g)) = 0 (Meyer’s cocycle vanishes). Thus, if
f ∈ C(H) ∩ I then σψ(f, g) = 0. �

Then, as an immediate consequence of Corollary 4.11, and Proposition 3.4,

Corollary 4.12. The restriction of ρψ to any subgroup of C(H) ∩ I is a homomorphism.

Proof of Theorem 4.10. First note that part 2 of Theorem 4.10 is actually a special case of part 1. For taking
H = F , note that C(F ) = I so it will follow from part 1 that the signature twisted by ψ is zero. But in this
case F/H = 0 so the representation ψ is necessarily trivial so the twisted signature is equal to the ordinary
signature. Thus we need only show part 1.

First we show that the condition that f induces the identity map on H/[H,H] is identical to the condition
that it induces the identity on H1(Σ;Z[F/H]). Recall that, whenever an epimorphism φ : π1(Σ)→ π1(Σ)/H
induces a coefficient system, the homology module H1(Σ;Z[F/H]) can be identified with the equivariant
homology, that is the homology of the regular F/H-covering space of Σ corresponding to the kernel of φ,
viewed as a module over Z[F/H]. Since this covering space has π1 equal to H, we have an identification

H1(Σ;Z[F/H]) ∼=
kerφ

[kerφ, kerφ]
=

H

[H,H]
.

Hence f induces the identity map on H1(Σ;Z[F/H]) if and only if it induces the identity map on H/[H,H].
We now consider the proof of part 1 of the theorem in the finite unitary case. The proof of part 1 in the

`(2) case is identical, with UΓ-coefficients replacing Cnψ-coefficients.

We show that if f induces the identity map on H1(Σ;Z[F/H]) then it induces the identity on H1(Σ;ψ).

Let Σ̃ denote the universal cover of Σ. Then, by definition,

H1(Σ;ψ) = H1(Cn ⊗ZF C∗(Σ̃)).

But since the coefficient system factors through F/H we have

H1(Σ;ψ) ∼= H1

(
Cn ⊗C[F/H]

(
C[F/H]⊗ZF C∗(Σ̃)

))
= H1

(
D∗ ⊗C[F/H] Cn

)
,

where D∗ = C[F/H]⊗ZF C∗(Σ̃). Note that, by definition,

H1(D∗) = H1(Σ;C[F/H]).
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Now consider the commutative diagram below. We claim that the map (id⊗i)∗ in the upper row is surjective.

Cn ⊗H1 (D∗) H1(Cn ⊗D∗) H1(Σ;ψ)

Cn ⊗H1 (D∗) H1(Cn ⊗D∗) H1(Σ;ψ)
?

id⊗f∗

-(id⊗i)∗ -
∼=

?

f∗

-(id⊗i)∗ -
∼=

Once having shown this claim, our hypothesis that f∗ induces the identity on H1(D∗) implies that the left-
hand vertical map, id⊗ f∗, in the diagram is the identity, and hence that the right-hand vertical map, f∗, is
the identity on H1(Σ;ψ). To show that (id⊗ i)∗ is surjective, we may assume that Σ is a complex with one

zero cell and a number of 1-cells. Lift this to an equivariant cell structure for Σ̃. Thus D2 = 0. Consider
∂1 : D1 → D0. Then there is an exact sequence

0→ H1(D∗) = ker ∂1
i−→ D1

∂1−→ image ∂1 → 0.

Since tensoring with Cn over C[F/H] is right exact, we have an exact sequence

Cn ⊗H1(D∗)
i⊗id−→ Cn ⊗D1

id⊗∂1−→ im ∂1 ⊗ Cn.
Since D2 = 0, H1(Cn ⊗D∗) = ker(id⊗ ∂1). Thus

Cn ⊗H1(D∗)
(id⊗i)∗−→ H1(Cn ⊗D∗)

is surjective. This completes the proof that f induces the identity on H1(Σ;ψ).
Next we show that if f induces the identity on H1(Σ;ψ) then the twisted signature σ(W (f, g), ψ) vanishes.

Following the proof of Theorem 4.6, we see that, in order to show that σ(W (f, g), ψ) vanishes, it suffices to
show that

rankC(image ∂∗) = 0

where ∂∗ is from the Mayer-Vietoris sequence 4.2 using Cn-coefficients. Therefore it is sufficient to show
that the composition

(4.3) H1(Σ;ψ)
i∗−→ H1(Mf ;ψ)

j∗−→ H1(Nf ;ψ)

is injective. There exists a Wang exact sequence for twisted homology (arising from the Serre spectral
sequence for the twisted homology of the fibration Mf → S1)

H1(Σ;ψ)
f∗−id−→ H1(Σ;ψ)

i∗−→ H1(Mf ;ψ),

which, since f induces the identity on H1(Σ;ψ), shows that i∗ is a monomorphism.
Recall that Nf is obtained from Mf by adjoining a disjoint union of solid tori, ∂Σ×D2, along a disjoint

union of tori, ∂Σ× S1. Since a solid torus is obtained from its boundary by adjoining a single 2-handle and
then a 3-handle, Nf is obtained from Mf by adding a number of 2-handles and then a number of 3-handles.

Let Nf denote the union of Mf and these 2-cells. We will show that the kernel of

H1(Mf ;ψ)
j∗−→ H1(Nf ;ψ)

is H1(S1;ψ) where S1 = t = ∗ × S1. Consider the exact sequence:

(4.4) H1(tS1;ψ)
k∗−→ H1(Mf ;ψ)

j∗−→ H1(Nf ;ψ).

Since Nf is obtained from Mf by adding two-cells along {t, t1, . . . , tm}, these circles constitute the tS1 in
the exact sequence. Note that the coefficient system is trivial on this subspace. Therefore the loops (based
at ∗) {t, δitiδi} represent the images of the generators of H1(tS1;ψ) under k∗. Recall from Subsection 2.2
that there are based homotopies

t ∼ δitif(δi) ∼ (δitiδi)δif(δi) ∼ (δitiδi)hi.

where, by the second hypothesis of Definition 4.9, (f(δi)δi)
−1 = hi for some hi ∈ [H,H]. Further note that

any element of [H,H] represents the zero element in H1(Mf ;Z[F/H]). Thus the image of k∗ (hence the
kernel of j∗) is generated by the image of t. Now, to finish the proof that j∗ of sequence 4.3 is injective,
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we need only show that the image of i∗ from sequence 4.3 has trivial intersection with the image of k∗
(H1(S1;ψ) =< t >). Suppose that α is a class in the intersection. If π : Mf → S1 is the fibration then

H1(S1;ψ)
k∗−→ H1(Mf ;ψ)

π∗−→ H1(S1;ψ)

is the identity. Hence π∗(α) = α. But clearly the map

H1(Σ;ψ)
i∗−→ H1(Mf ;ψ)

π∗−→ H1(S1;ψ)

is the zero map. Thus α = π∗(α) = 0 as claimed. This concludes the proof of Theorem 4.10.
�

As a further consequence of Theorem 4.10, we derive an exact sequence that generalizes the exact se-
quence 1.1. Since H is characteristic, any f ∈M induces a group automorphism

f∗ :
H

[H,H]
→ H

[H,H]
.

But the abelian group H/[H,H] may be endowed with the structure of a right (or left) Z[F/H]-module via
the action of F on H by conjugation. This module, as we observed in the first paragraph of the proof of
Theorem 4.10, may be identified with the twisted homology module H1(Σ;Z[F/H]). If f ∈ J(H) then f∗ is
a module automorphism since, for any w ∈ F and any h ∈ H, there exists some k ∈ H such that f(w) = wk.
Hence

f(w∗h) = f(w−1hw) = f(w)−1f(h)f(w) = k−1w−1f(h)wk ≡ w−1f(h)w = w∗f(h),

where the ≡ means modulo [H,H]. Moreover, since f is an orientation-preserving homeomorphism, f∗ is
not an arbitrary automorphism. There exists an Z[F/H]-valued intersection form

λH : H1(Σ;Z[F/H])×H1(Σ;Z[F/H])→ Z[F/H]

which f∗ preserves [73]. Let Isomr (H1(Σ;Z[F/H])) denote the group of realizable module automorphisms
of H1(Σ;Z[F/H]) that preserve λH .

Theorem 4.13. If Σ has one boundary component then there is an exact sequence

1→ C(H)
i−→ J(H)

rψ−→ Isomr (H1(Σ;Z[F/H]))→ 1,(4.5)

and a 2-cocycle τψ on the group Isomr (H1(Σ;Z[F/H])) such that

σψ = r∗ψ(τψ)− nσM ,

if dim(H) = n, and if dim(H) =∞,

σψ = r∗ψ(τψ)− σM ,
where σM is Meyer’s cocycle restricted to J(H).

Remark 4.14. Note that if H = F then the exact sequence 4.5 reduces precisely to the exact sequence 1.1.

Proof. The sequence is exact almost by definition. Let σtψ denote the twisted signature 2-cochain on J(H)
given by

σtψ(f, g) = σ(V (f, g); ψ̃) = σψ(f, g) + nσ(V (f, g))

if dim(H) = n, and, in case dim(H) =∞

σtψ(f, g) = σ
(2)
Γ (V (f, g); ψ̃) = σψ(f, g) + σ(V (f, g)).

Here we have used that ∂Σ is connected to apply Proposition 3.8 and Corollary 3.8 to employ V (f, g) instead
of W (f, g). This 2-cochain is a 2-cocycle on J(H) since it is the sum of two 2-cocycles. We claim that σtψ
descends to give a well-defined 2-cocycle

σ̃tψ :
J(H)

C(H)
× J(H)

C(H)
→ G,

(where G = Z or G = R according as the representation is finite or infinite-dimensional). For suppose
f, g ∈ J(H) and h ∈ C(H). Since σtψ is a cocyle,

δ(σtψ)(f, g, h) = σtψ(g, h) +−σtψ(fg, h) + σtψ(f, gh)− σtψ(f, g) = 0.
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By Theorem 4.10, σtψ(g, h) = 0 = σtψ(fg, h). Thus

σtψ(f, gh) = σtψ(f, g).

Hence the value of σtψ is independent of the coset representative of g in J(H)/C(H). The same holds for

the other variable f . Thus σtψ descends to a well-defined 2-cocycle on J(H)/C(H). Since

rψ : J(H)/C(H)→ Isomr (H1(Σ;Z[F/H]))

is an isomorphism (essentially by definition), this gives a 2-cocycle, denoted τψ, on the latter group such that
r∗ψ(τψ) = σtψ. Moreover, using Proposition 3.7, σ(V (f, g)) = σ(W (f, g)) = σM (f, g) (the Meyer cocycle),

r∗ψ(τψ)− nσM = σtψ − nσM = σψ

if dim(H) = n, whereas, if dim(H) =∞, then

r∗ψ(τψ)− σM = σψ.

�

5. Examples and Calculations

In this section we perform calculations in one of the simplest non-classical cases in order to exhibit the
complexity of the higher-order signature cocycles and ρ-invariants. In particular we prove the previously
mentioned Theorems 5.4 and 5.5.

Specifically, let Σ = Σg,1 where g ≥ 2 and H = [F, F ] so J(H) = I. For any norm 1 complex number ω,
we can define a higher-order ρ-invariant ρω = ρψω as follows. Choose ψω : F/H → U(1) as the composition

F/H ∼= H1(Σ;Z) ∼= Z2g π−→ S1 ≡ U(1),

where, for each π sends every element of a fixed basis to ω. To be more precise, let xi and yi be the curves
on the surface Σg,1 as indicated in Figure 5.1. These generate π1(Σg,1, ?).

x1

y1

xg

yg

?
↑

Figure 5.1. The curves xi and yi generate the fundamental group of the punctured surface Σg,1.

For each ω ∈ C such that ||ω|| = 1, let ψω : H1(Σg,1) → U(1) be the representation that sends each xj
and yj to ω. Define ρω(f) := ρ(f, ψω ◦ π) for any f ∈ I(Σg,1).

We introduce some examples in Kg on which we can calculate ρω. For each m ≥ 1 and n ≥ 0, let α and
β(m,n) be the curves on Σg,1 as indicated in Figure 5.2 where 2m and 2n are the number of times β(m,n)
passes over the “first 1-handle” and “third 1-handle” respectively. (In the figure, if you ignore the ellipses,
n = m = 3.) Even though figure shows a genus 2 surface, the reader should imagine that the other 2g − 4-
handles of Σ are adjoined, say, on the left-hand side of the figure. They will play no role in the computations
to come, since the homeomorphisms we consider will be supported in the genus two subsurface pictured
in Figure 5.2. Thus, although the following computations suffice for any g ≥ 2. In Proposition 7.1, this
paradigm (about the equality of the ρ-invariants computed from a subsurface with those computed from the
super-surface) is formalized. For our convenience, we will often write drop the m and n from the notation and
write β instead of β(m,n). Let x = x1, y = y1, z = x2, and w = y2. Then, up to conjugation and a choice of
orientation, α and β represent the homotopy classes [z, w] and [znw−1, x−my−1][x−1, y] respectively. Since
α and β are bounding curves, we have that Dα, Dβ ∈ J (3) = Kg where Dα and Dβ are the Dehn twists
about α and β respectively. For each m ≥ 1, n ≥ 0 and N ∈ Z, define f(m,n,N) := (Dα ◦Dβ(m,n))

N+1 ∈ Kg.
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...

... ...

...

... ...

α
β

Figure 5.2. The curves α and β.

Lemma 5.1. Let m ≥ 1, n,N ≥ 0, G(m,n)(t) = (t(n−1) − 1)(t−(m+1) − 1) and ω ∈ C have norm 1 with
ω 6= 1. Then ρω(f(m,n,N)) + 2(N + 1) is equal to the signature of the 2N × 2N hermitian matrix

(5.1) C(m,n,N)(ω) :=

(
A G(m,n)(ω)BT

G(m,n)(ω)B A

)
where

(5.2) A =



2 −1 0 · · · 0 0
−1 2 −1
0 −1 2
...

. . .

0 2 −1
0 −1 2


,

is the N ×N matrix with a 2 in all the diagonal entries and a −1 in all the super- and sub-diagonal entries,
and

(5.3) B =



−1 0 0 · · · 0 0
1 −1 0
0 1 −1
...

. . .

0 −1 0
0 1 −1


,

is the N ×N matrix with a −1 in all the diagonal entries and a 1 in all the sub-diagonal entries.

Proof. First, we claim that Nid
∼= #2gS

1×S2 where id : Σg,1 → Σg,1 and that the inclusion map Σg,1×{0} →
Nid induces an isomorphism on π1(−, ?). One way to see this is to observe, as we did in the proof of
Proposition 3.6, that Nid = ∂(Σ×D2) and to note that Σ×D2 is homeomorphic to \2gS

1×B3. To see this
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Σg,1 × { 1
2}

Σg,1 × {0}

a1
b1

a2 b2 a2g b2g

a2g−1
b2g−1

Figure 5.3. Heegaard diagram for Nid.

another way, we note that for any f , Nf has a special Heegaard decomposition of genus 2g (as described in
the beginning of the proof Theorem 1.1 on p. 442 of [51]). The Heegaard diagram for f = id is illustrated
in Figure 5.3 where the two surfaces are identified along their respective boundaries by the identity and
the attaching curves are {a1, . . . , a2g} and {b1, . . . , b2g}. This Heegaard diagram is a connected sum of 2g
copies of the standard Heegaard diagram of genus 1 for S1 × S2. This is illustrated in Figure 5.4; we are
decomposing along the dotted circles. In particular, we see that π1(Nid, ?) is a free group of rank 2g and is
generated by the curves x1 ×{0}, . . . , xg ×{0}, y1 ×{ 1

2}, . . . , yg ×{
1
2}. Since yi ×{1

2} is isotopic to yi ×{0}
for i = 1, . . . , g, this completes the proof of our first claim.

Fix the integers N,n, m, let f = f(m,n,N) and consider the following set of 2N+2 curves in Σ×[0, 1] ⊂ Nid

S = {β × {2i/(2N + 2)}, α× {(2i+ 1)/(2N + 2)} | 0 ≤ i ≤ N}.

Let X be the 4-manifold obtained by attaching 2N + 2 2-handles to Nid × I along the curves in S × {1} ⊂
Nid × {1}, each with +1 framing. Then ∂X = N id tNf . This statement is well-known [69]. For the reader
who in unfamiliar with it, note that it suffices to show that adding a single 2-handle with +1-framing yields
a new “top” boundary component that still fibers over the circle but whose monodromy is altered by a Dehn
twist along the attaching circle of the handle. In turn, to prove this latter fact, it suffices to prove it for the
product fibration of an annulus over S1 (since the handles are added along a thickened annulus).

We note that the inclusion map i1 : Nf → X induces an isomorphism on H1(−;Z), hence we can extend
ψω ◦ π : Nf → U(1) to Φ : π1(X) → U(1) in the obvious way so that Φ|Nid

= ψω ◦ π. We note that Nid

is the boundary of a 4-manifold, E, for which the inclusion map induces an isomorphism on π1(−), namely
the boundary connected sum of 2g copies of S1 × B3. Let W = X ∪ E. Since the inclusion map Nid → E
induces an isomorphism on π1(−), we can extend Φ : π1(X)→ U(1) to Φ : π1(W )→ U(1). Thus,

(5.4) ρω(f) = σ(W,CΦ)− σ0(W )

where σ(W,CΦ) is the twisted signature of W (twisted by Φ) and σ0(W ) is the ordinary signature of W .
We interrupt our proof to point out an interesting connection to signatures of Lefshetz fibrations:

Proposition 5.2. Given Σg,m, suppose that D1, . . . , Dn are positive Dehn twists along null-homologous
circles. Then, for any unitary representation ψ of F/[F, F ] ≡ H1(Σ;Z),

ρψ(Dn ◦ · · · ◦D1) = σ(Y, ψ)− σ(Y )
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Σg,1 × { 1
2}

Σg,1 × {0}

a1
b1

a2 b2 a2g b2g

a2g−1
b2g−1

Figure 5.4. Nid
∼= #2gS

1 × S2.

where Y is the Lefshetz fibration over the 2-disk with generic fiber Σ and with n singular fibers whose
monodromies are D1, . . . , Dn.

Proof of Proposition 5.2. Note that the construction of the 4-manifold W in the preceding two paragraphs
will produce, in this greater generality, a null-bordism for NDn◦···◦D1 . Thus by Theorem 3.5,

ρψ(Dn ◦ · · · ◦D1) = σ(W,ψ)− σ(W ).

Then it is only necessary to identify W with Y . This fairly well-known. For W is obtained from E ∼= Σ×D2,
by adding two handles along separating curves. For details see, for example, [40]. �

Returning to the proof of Lemma 5.1, we first consider H2(W ). Since each curve, α and β, bounds a
punctured torus in Σ, H2(W ) ∼= Z2N+2; it is generated by the tori obtained by capping off these punctured
tori by disks that are the cores of the attached 2-handles. Note that the tori are all disjointly embedded and
they have self-intersection +1. Thus σ0(W ) = 2N + 2.

Next we consider H2(W ;CΦ). Let Y1 be the 4-manifold obtained attaching two 2-handles to E along
β × {0} and α × {1/(2N)} ⊂ Nid = ∂E. We claim that H2(Y1;CΦ) = 0. This involves a calculation using
Fox calculus. Since H2(E;CΦ) = 0, H2(Y1;CΦ) = 0 if and only if β × {0} and α × {1/(2N)} are linearly
independent in H1(E;CΦ). Since H1(E;CΦ) ⊂ H1(E, ?;CΦ), it suffices to consider β×{0} and α×{1/(2N)}
in H1(E, ?;CΦ). We denote x1, y1, x2, y2 by x, y, z, w respectively and view these as the generators of π1(E).
Let ?̃ be a lift of ? to the universal cover of E and x̃, ỹ, z̃, w̃ be lifts of x, y, z, w starting at ?̃ respectively.
Then H1(E, ?;CΦ) ∼= C4 is generated by {x = x̃⊗ 1,y = ỹ ⊗ 1, z = z̃ ⊗ 1,w = w̃ ⊗ 1}.

Let γ be a path on Σ that goes “straight” from ? to the “top” intersection of α and β. We will use γ
along with “straight line” paths in the [0, 1] direction of Σ × [0, 1] ⊂ Nid to base the curves in S. Orient α
and β so that the arrows on their rightmost vertical segments are pointing upward. With these conventions,
α = z−1[z, w]z and β = [y, x−1][(yxm)−1, znw−1] in π1(E). We calculate the Fox derivatives of α and β with
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respect to x, y, z, w.

∂α

∂x
=
∂α

∂y
= 0

∂α

∂z
= wz−1(w−1 − 1)

∂α

∂w
= 1− wz−1w−1

∂β

∂x
= yx−1(y−1 − 1) + [y, x−1]x−m(y−1znw−1y − 1)(1 + · · ·+ xm−1)

∂β

∂y
= 1− yx−1y−1 + [y, x−1]x−my−1(znw−1 − 1)

∂β

∂z
= [y, x−1]x−my−1(1− znw−1yxmwz−n)(1 + z + · · ·+ zn−1)

∂β

∂w
= [y, x−1]x−my−1znw−1(yxm − 1)

Setting x = y = z = w = ω, we can write α and β as elements of H1(E, ?;CΦ).

α =(ω−1 − 1)z + (1− ω−1)w

β =
(
(ω−1 − 1) + ω−m(ωn−1 − 1)(1 + ω + · · ·+ ωm−1)

)
x +

(
1− ω−1 + ω−(m+1)(ωn−1 − 1)

)
y+

+
(
(ω−m−1 − 1)(1 + ω + · · ·+ ωn−1)

)
z +

(
ωn−m−2(ωm+1 − 1)

)
w

Since ω 6= 1, α 6= 0. We now show that β is not a multiple of α which will complete the proof that
H2(Y1;CΦ) = 0. Suppose β = λα then we have the following system of equations.

(1− ω)(ω−1 − 1) = (ωn−1 − 1)(ω−m − 1)(5.5)

ω−1 − 1 = ω−(m+1)(ωn−1 − 1)(5.6)

(ω−(m+1) − 1)(ωn − 1) = λ(ω−1 − 1)(ω − 1)(5.7)

ωn−m−2(ωm+1 − 1) = λ(1− ω−1)(5.8)

Taking the norm of both sides of (6), we see that ||ω−1 − 1|| = ||ωn−1 − 1||. Since ω−1 and ωn−1 are on the
unit circle, this implies that ωn−1 = ω−1 or ωn−1 = ω.

We first consider the case when ωn−1 = ω−1. In this case, ωn = 1 so using equation (7), we see that
λ(ω−1 − 1)(ω − 1) = 0. Since ω 6= 1, we have that λ = 0. By equation (8), ωm+1 = 1. However, this cannot
happen since substituting ωn = 1 and ωm+1 = 1 in equation (5) gives −(ω−1)(ω−1−1) = (ω−1−1)(ω−1).

We now consider the case when ωn−1 = ω. Substituting this into equation (6) and multiplying both sides
by ω gives (1 − ω) = ω−m(ω − 1). Since ω 6= 1, we must have that ω−m = −1. With the substitutions
ωn−1 = ω and ω−m = −1, equation (5) becomes (1− ω)(ω−1 − 1) = −2(ω − 1). However, this would imply
that ω−1 = 3 which cannot happen since ω is on the unit circle. This completes the proof that α and β are
linearly independent and hence H2(Y1;CΦ) = 0.

Now we return to our calculation of H2(W ;CΦ). Let U be the region in Figure 5.5 enclosed by the dashed
lines. A picture of the attaching curves (when N = 3) in U × I is shown in Figure 5.6. The attaching curves
outside of U × I are “parallel” to the original α or β.

Slide the handle attached along

α× {(2N + 1)/(2N + 2)}
over the handle attached along α × {(2N − 1)/(2N + 2)} and call the resulting attaching curve α∗N . Then
slide the handle attached along β×{(2N)/(2N + 2)} over the handle attached along β×{(2N − 2)/(2N + 2)}
and call the resulting attaching curve β∗N . Continue this; for i from 1 to N − 1, slide the handle attached
along α×{(2N − 2i+ 1)/(2N + 2)} (respectively β×{(2N − 2i)/(2N + 2)}) over the handle attached along
α× {(2N − 2i− 1)/(2N + 2)} (respectively β × {(2N − 2i− 2)/(2N + 2)}) and call the resulting attaching
curve α∗N−i (respectively β∗N−i). A local picture of the new attaching curves is shown in Figure 5.7.
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U

...

... ...

...

... ...

Figure 5.5. The region U in Σ

U

β × {0/8}...
β × {6/8}

α× {1/8} · · · α× {7/8}

Figure 5.6. Attaching curves when N = 3

Note that each α∗i (respectively β∗i ), oriented as described, bounds an obvious oriented embedded disk
Dα,i (respectively Dβ,i) in Y1 for 1 ≤ i ≤ N . For each 1 ≤ i ≤ N , let Fα,i (respectively Fβ,i) be the oriented
embedded 2-sphere obtained by gluing the core of the 2-handle attached along α∗i (respectively β∗i ) to Dα,i

(respectively Dβ,i) so that the orientation of Fα,i (respectively Fβ,i) agrees with the orientation on Dα,i

(respectively Dβ,i). Therefore H2(W ;CΦ) ∼= C2N and has as an ordered basis Fα,1, . . . , Fα,N , Fβ,1, . . . , Fβ,N .
Using this basis, it is straightforward to check that the intersection form on H2(W ;CΦ) is given by the
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U

β∗3

β∗2

β∗1

α∗3α∗2α∗1

Figure 5.7. Attaching curves after handle slides when N = 3

matrix in Equation (5.1). For example, consider Fα,1 · Fβ,1. After making the surfaces transverse, there are
4 intersection points (2 positive and 2 negative). Taking into account the weightings from π1(W ), we see
that the equivariant intersection number is −1 + znw−1 − znw−1x−my−1 + znw−1x−my−1wzn ∈ Z[π1(W )].
Therefore Fα,1 · Fβ,1 = −1 + ωn−1 − ω(n−1)−(m+1) + ω−(m+1) = −G(m,n)(ω). �

Lemma 5.3. Let r ≥ 2 and N0 ≥ 0 be integers. Then

signature(C(r−1,r+1,2N0)(ω)) =

{
4N0 if ωr = 1

0 if ωr = ±i

Proof. Let m = r − 1 and n = r + 1 and N = 2N0. Since ||ω|| = 1, we have G(m,n)(ω) = ||ωr − 1||2. So
when ωr = 1, G(m,n)(ω) = 0 so C(r−1,r+1,2N0)(ω)) is a block sum of 2 copies of A. It is well known that A
has signature N = 2N0 so signature(C(r−1,r+1,2N0)(ω)) = 2N = 4N0.

We now consider the case when ωr = ±i. In this case, G(m,n)(ω) = 2. By adding rows/columns 1 through
N to rows/columns N + 1 through 2N respectively, we see that C(m,n,N)(ω) is congruent to the following
matrix

(5.9)

(
A A+ 2BT

A+ 2B 2A+ 2BT + 2B

)
=

(
A A+ 2BT

A+ 2B 0

)
.

Let C ′ be the matrix in Equation (5.9). We will show that C ′ is non-singular whenever N is even. Since C ′

has a half block of zeros in the lower right corner, it follows that it has signature 0 which will complete the
proof.
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First note that det(C ′) = −det(A + 2B)2 so it suffices to show that det(A + 2B) 6= 0. We will prove
det(A+ 2B) = 1 by induction on even N .

A+ 2B =



0 1 0 · · · 0 0
−1 0 1
0 −1 0
...

. . .

0 0 1
0 −1 0


N×N

When N = 2, det(A + 2B) = 1. Suppose det(A + 2BN×N ) = 1 for some even N . We expand the
determinant twice (first along the first column and then along the first row) to get the inductive formula:
det(A+ 2B(N+2)×(N+2)) = det(A+ 2BN×N ). Hence det(A+ 2B(N+2)×(N+2)) = 1.

�

For k ≥ 1, let ωk := e2πi/4k and set ρk := ρωk . We will show that the set of ρk generates an infinitely

generated subset of Q̂(J (3)).

Theorem 5.4. For g ≥ 2, {ρk} is a linearly independent subset of Q̂(J (3)).

Proof. To prove this, we must show that no non-trivial linear combination of the ρk is a bounded function.
Let k1, . . . , kl be an increasing sequence of l positive integers. Suppose that

l∑
i=1

aiρki = δ

where ai 6= 0, |δ(g)| ≤ M for all g ∈ J (3) where M is a constant. Consider f(m,n,N) = (Dα ◦Dβ(m,n))
N+1

be as defined in the paragraph directly preceding Lemma 5.1. Since

ω4j

k =

{
i if j = k − 1
1 if j ≥ k ,

by Lemmas 5.1 and 5.3,

ρk(f(4j−1,4j+1,2N0)) =

{
−2(2N0 + 1) if j = k − 1

−2 if j ≥ k .

Therefore, when j = k1 − 1, we have

M ≥
∣∣δ(f(4k1−1−1,4k1−1+1,2N0))

∣∣
=

∣∣∣∣∣
l∑
i=1

aiρki(f(4k1−1−1,4k1−1+1,2N0)

∣∣∣∣∣
=

∣∣∣∣∣a12(2N0 + 1) +

l∑
i=2

2ai

∣∣∣∣∣
Dividing by 2 |a1| we see that

∣∣∣∣∣(2N0 + 1) +

l∑
i=2

2ai

∣∣∣∣∣ ≤M/(2 |a1|). However, since all the ai and M are fixed

and N0 can be chosen to be arbitrarily large, this is a contradiction.
�

Note that we have actually shown that no non-trivial linear combination of the ρk is a bounded function
on the cyclic subgroup generated by Dα ◦Dβ .

Theorem 5.5. For g ≥ 2, {δ(ρk)} is a linearly independent subset of H2
b (J (3);R), the second bounded

cohomology of J (3).
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Proof. Recall the key exact sequence:

0→ H1(J (3);R)→ Q̂(J (3))
δ−→ H2

b (J (3);R)→ H2(J (3);R).

From this we deduce that we must show that no non-trivial linear combination of the ρk is equal to a
homomorphism plus a bounded function. As above, suppose that

l∑
i=1

aiρki = φ+ δ

where ai 6= 0, φ is a homomorphism and δ is a bounded function.

Lemma 5.6. Let D denote Dα or Dβ as above. For each k, the set {ρk(DM ) | M ∈ Z} is a bounded set.

First we will show that Lemma 5.6 implies Theorem 5.5. It follows directly from the lemma that

l∑
i=1

aiρki(D
M )

is a bounded set (only M is varying here). On the other hand

φ(DM ) + δ(DM ) = Mφ(D) + δ(DM )

is an unbounded set unless φ(D) = 0. Therefore we may assume that φ(Dα) = 0 and φ(Dβ) = 0 and hence,
since φ is a homomorphism, that φ vanishes on the subgroup generated by Dα and Dβ . It would follow that,
on the subgroup generated by Dα and Dβ ,

l∑
i=1

aiρki = δ,

which is a bounded function. In particular it is a bounded function on the cyclic subgroup generated by
Dα ◦Dβ . This contradicts what we showed in the proof of Theorem 5.4.

Proof of Lemma 5.6. In brief, we can follow the proof of Lemma 5.1 and just ignore the β curves (respectively
the α curves). Specifically let f = DN+1

α . Consider the set of N + 1 curves in Σ× [0, 1] ⊂ Nid

Sα = {α× {(2i+ 1)/(2N + 2)} | 0 ≤ i ≤ N}.
Let X be the 4-manifold obtained by attaching N + 1 2-handles to Nid × I along the curves in Sα × {1} ⊂
Nid×{1}, each with +1 framing. Then ∂X = N idtNf . Let W = X ∪E where E is the boundary connected
sum of 2g copies of S1 ×B3. Just as in the proof of Lemma 5.1, the coefficient system extends to W so

(5.10) ρω(f) = σ(W,CΦ)− σ0(W ).

As above σ0(W ) = N + 1. Now we consider H2(W ;CΦ). Since, in the proof of Lemma 5.1, we only slid α
curves over other α curves, we see that a matrix for the twisted intersection form on W is given by ignoring,
in the matrix of 5.1, the rows and columns corresponding to the β curves. Thus the intersection form on W
is given by the matrix A. Since this is an integral matrix its twisted signature is just its ordinary signature
which is N . Hence

ρω(DN+1
α ) = N − (N + 1) = −1,

for any ω of norm 1 (ω 6= 1). The proof for the Dβ is the same. This completes the proof of Lemma 5.6. �

�

6. More on the ρ and σ-invariants as elements of group cohomology

The question arises as to whether or not, for a fixed H C F ≡ π1(Σ), the higher-order ρ-invariants (as
ψ varies) yield non-zero classes in H1(J(H);R); and whether or not the higher-order signature 2-cocycles
yield non-zero classes in H2(J(H);Z). At this time we are only able to comment on these questions in the
cases where the unitary representation is finite-dimensional. So, for the remainder of this section we assume
that ψ : F/H → U(n) is a finite-dimensional unitary representation. In this case [σψ] ∈ H2(J(H);Z) by
Corollary 4.4. The first question we address is: For which H and ψ are these classes non-zero? We abbreviate
J(H) by J . Note that, in this case, by Proposition 3.4:
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Lemma 6.1. If ψ is a finite-dimensional representation then the reduction of ρψ mod Z is a homomorphism
ρψ : J → R/Z and hence represents a class, denoted [ρ] in H1(J ;R/Z).

Therefore the second question we address is: For which H and ψ are these classes non-zero, and when do
they lift to H1(J ;R)? It is enlightening to consider the following subgroup:

Definition 6.2. Let B(H) C J(H) denote the normal subgroup consisting of those classes f ∈ J(H) for

which the pair (Nf , φf : π1(Nf ) → F/H) is the boundary of some (W, φ̃f : π1(W ) → F/H), where W is a
compact oriented 4-manifold.

The important observation is that ρψ is integer-valued when restricted to B(H), by Theorem 3.5. Hence
ρ : J → R/Z is zero when restricted to B(H) and so ρ descends to a well-defined homomorphism on J/B

(we abbreviate B(H) by B) denoted ρ̃. Consider the following commutative diagram. The rows are pieces
of Bockstein exact sequences.

H1(J/B;R) H1(J/B;R/Z) H2(J/B;Z) H2(J/B;R)

H1(J ;R) H1(J ;R/Z) H2(J ;Z) H2(J ;R)

-p̃

?
π1

?
π2

-β̃

?
π3

-j̃

-p -β -j∗

We have [ρ] = π2([ρ̃]) as observed above. It is not difficult to check that β([ρ]) = [δ(ρ)] = [σ] as expected.
Now, using the diagram, we come to our first useful observation.

Lemma 6.3. The torsion classes [σψ] lie in the image of the map:

π3 : H2(J/B;Z)→ H2(J ;Z).

Now let K(F/H, 1) denote an Eilenberg-Maclane space of type (F/H, 1) and let Ω3(K(F/H, 1)) denote
the oriented bordism group of pairs (M3, g : M → K(F/H, 1)) [31, p.216]. Furthermore, observe that there
is a well-defined map:

ηH : J(H)→ Ω3(K(F/H, 1)) ∼= H3(F/H;Z),

given by ηH(f) = (φf )∗([Nf ]), the image of the fundamental class of Nf under the map induced by φf . This
was considered by Morita and Heap in the case that H is a term of the lower central series [78, 50]. Note
that B(H) is (by definition) the kernel of ηH so

ηH : J/B ↪→ H3(F/H;Z)

is a monomorphism.

Proposition 6.4. If H3(F/H;Z) is torsion-free (for example if H is a term of the lower central series of F )
and ψ is a finite-dimensional representation then the signature cocycles are null-homologous, i.e. [σψ] = 0.

Proof. If H3(F/H;Z) is torsion-free then J/B is a torsion-free abelian group. Thus H2(J/B;Z) is torsion-

free, so j̃ is injective. It follows that β̃ is the zero map. Thus

σ = β ◦ π2([ρ̃]) = π3 ◦ β̃([ρ̃]) = 0.

�

Proposition 6.5. If H3(F/H;Z) is finitely-generated and free abelian (for example if H is a term of the
lower central series of F ) and ψ is a finite-dimensional representation then the classes [ρ] ∈ H1(J ;R/Z) lift
to H1(J ;R) and form a (finitely-generated) subgroup of the image of

π1 : H1(J/B;R)→ H1(J ;R).

Proof. By the proof of Proposition 6.4, β̃ = 0 and β([ρ]) = 0 so any [ρ] lifts to H1(J ;R) and lies in the image
of π1. If H3(F/H;Z) is finitely-generated then so are J/B and H1(J/B;R). �

Remark 6.6. If H = [F, F ] and J = I, then B = K and

ηH : J/B ↪→ H3(Z2g) ∼=
3∧

(Z2g)
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is identifiable with the Johnson homomorphism (see, for example, [50]). It is also known that the map π1

above is an isomorphism. Hence

H1(I;R/Z) ⊂
3∧(

(R/Z)2g
)

with known image (corresponding to the known image of ηH). It would be interesting to know if our ρψ in

this case span the entire group H1(I;R/Z).

Remark 6.7. The above 3 results hold in greater generality. It suffices that H3(image(ψ);Z) is torsion-free
where ψ : F/H → U(n). For if we let Bψ = Bψ(H) C J(H) denote those classes f ∈ J(H) for which the
pair (Nf , ψ ◦ φf : π1(Nf )→ image(ψ)) is zero in

Ω3(K(image(ψ), 1)) ∼= H3(image(ψ);Z),

then ρψ is integer-valued when restricted to Bψ, so the entire analysis proceeds as above with Bψ in place
of B. This greater generality applies to the ρω as discussed above Theorem 5.4. In this case, H = [F, F ], so
H3(F/H) 6= 0, but image(ψ)∼= Z, so H3(image(ψ)) = 0. It follows that Bψ = J , so all ρψ are integer-valued,
and so [ρψ] = 0 = [σψ].

7. Further Methods of Calculation and Relations with Links

Suppose ∂Σ is connected and Σ′ ⊂ Σ is a connected compact sub-surface with possibly multiple boundary
components. Then the inclusion i induces a homomorphism θ :M(Σ′)→M(Σ), extending by the identity.
We assume that one boundary component of Σ′ intersects ∂Σ at the base point. Suppose H ′ is a characteristic
subgroup of F ′ = π1(Σ′) and H is a characteristic subgroup of F = π1(Σ) such that i∗(H

′) ⊂ H. Fix a
unitary representation ψ : F/H → U(H) as always. Then there is an induced unitary representation

ψ′ : π1(Σ′)/H ′
i∗→ F/H → U(H).

If g ∈ J(H ′) then one can check that θ(g) ∈ J(H) (this is not trivial). Therefore there are induced
representations on π1(Nθ(g)) and π1(Ng) that factor through ψ and ψ′. Hence both ρψ(θ(g)) and ρψ′(g) are
defined. The following is then not surprising.

Proposition 7.1. Given ψ, Σ′ and g as above, if i∗ : H1(Σ′;Z)→ H1(Σ;Z) is injective then

ρψ(θ(g)) = ρψ′(g).

Proof. The proof is very similar to the proof of Theorem 4.10. In analogy to the proof of Theorem 4.6, define
a 4-manifold W as the union of Nid × [0, 1] and Ng × [0, 1] along a copy of

Σ′ × [−ε, ε] ↪→ Σ× [−ε, ε] ↪→ Σ× S1 ≡Mid ↪→ Nid × {1}

in the former and a copy of

Σ′ × [−ε, ε] ↪→ (Σ′ × [0, 1]/ ∼) ≡Mg ↪→ Ng × {1}

in the latter. Observe that

∂W = Nid × {0} tNg × {0} t −Nθ(g).
The representations on Nid and Ng extend to π1(W ). Hence by Theorem 3.5

ρψ(id) + ρψ′(g)− ρψ(θ(g))

is the twisted signature defect of W . But consider the Mayer-Vietoris sequence as in the proofs of Theo-
rems 4.10 and 4.6:

H2(Nid × [0, 1])⊕H2(Ng × [0, 1])
(i2∗+j

2
∗)−→ H2(W )

∂∗−→ H1(Σ′)
(i1∗,j

1
∗)−→ H1(Nid)⊕H1(Ng).

We claim that i1∗ is injective with any coefficients. Since π1(Nid) ∼= π1(Σ), H1(Nid) ∼= H1(π1(Σ)) with any
coefficients. Thus it suffices to consider the map on first homology induced by i : Σ′ ↪→ Σ. The hypothesis
that this map induces a monomorphism on H1(−;Z) is equivalent to saying that, up to homotopy equivalence,
(Σ,Σ′) is a 1-dimensional relative CW-complex. It follows that H2(Σ; Σ′) is zero with any coefficients and so
i∗ is injective on H1 with any coefficients. Hence H2(W ) is supported by ∂W so the twisted and untwisted
signatures vanish for W . Since, by Proposition 3.6, ρψ(id) = 0 the desired result follows. �
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We show how to use Proposition 7.1 and Example 2.4 to calculate some ρ-invariants in terms of certain
invariants of links of circles in S3. In particular let Σ′ = Dn be the closed oriented 3-disk with n open
subdisks deleted. LetM(Dn) denote the group of isotopy classes of orientation-preserving homeomorphisms
of Dn that are the identity on ∂Dn. It is known that M(Dn) is isomorphic to the group of n-string framed
pure braids, PF (n) ∼= Zn ⊕ P (n) [83, 81]. Here P (n) is the usual group of n-string pure braids. Any
embedding of Dn into Σ defines a homomorphism θ :M(Dn)→M(Σ). Suppose i∗ : H1(Dn;Z)→ H1(Σ;Z)
is injective. (A nice example is the case where Σ is the double of Dn along its boundary, yielding an
embedding θ attributed to Oda and studied in [67, 68, 44]). Suppose i∗(H

′) ⊂ H and ψ : F/H → U(H) as
above. Then, by Proposition 7.1, for any pure braid β corresponding to fβ ∈ J(H ′) ⊂M(Dn),

ρψ(θ(fβ)) = ρψ′(fβ).

But, just as in Example 2.4, Nfβ may be identified with the zero framed surgery, S(β̂, 0)), on S3 along the

link β̂, obtained as the closure of the braid β. Thus ρψ(θ(fβ)) is equal to the ρ-invariant associated to β̂ and

the given representation, ψ of π1(S(β̂, 0))). Such ρ-invariants have been studied extensively by the authors
and others, although only a few calculations have been made for closures of pure braids [16, 26, 25, 20, 24,
23, 21, 29, 27, 28, 49, 52, 56, 57, 59, 58, 37, 36, 38]. In this way we can define families of quasimorphisms on
subgroups of the pure braid group, but also calculate certain ρ-invariants of other surfaces.

8. Extension of the ρ-invariants to homology cylinders

The monoid of homology cylinders may be considered to be an enlargement of the mapping class group of
Σ. In many cases the higher-order ρ-invariants and signature co-cycles extend to this monoid. We will focus
attention of the case that ∂Σ is connected and H is one of the terms of the lower central series of π1(Σ).

We recall the definition, following Levine [67].

Definition 8.1. A homology cylinder over Σ, denoted C, is a compact oriented 3-manifold C equipped
with two embeddings i+, i− : Σ→ ∂C satisfying that

(1) i+ is orientation-preserving and i− is orientation-reversing,
(2) ∂C = i+(Σ) ∪ i−(Σ) and i+(Σ) ∩ i−(Σ) = i+(∂Σ) = i−(∂Σ),
(3) i+

∣∣
∂Σ

= i−
∣∣
∂Σ

,

(4) i+, i− : H∗Σ→ H∗C are isomorphisms.

Example 8.2. For any mapping class f , (C, i+, i−) = (Σ× I, Id× 1, f × 0)/ ∼ gives a homology cylinder,
where ∼ means that we identify (x, t) to (x, 0) for each t ∈ [0, 1] and x ∈ ∂Σ.

The set C of orientation-preserving diffeomorphism classes of homology cylinders over Σ is a monoid (by
concatenation), denoted C, with the identity element 1C := (Σ× I, Id× 1, Id× 0). Example 8.2 shows how
to define a map I → C that is an injective map of monoids.

For any C ∈ C then there is an associated closed oriented manifold NC obtained by identifying the two
copies of Σ. If C is the homology cylinder obtained by reversing the roles of + and − then NC = −NC . If
C lies in the image of f ∈ I as in Example 8.2 then NC ∼= Nf . Given H C π1(Σ), we say that C induces
the identity modulo H if, for all x ∈ π1(Σ), i+∗ (x) = i−∗ (xh) in for some h ∈ H. We then say C ∈ C(H).
Thus, for example, C(F2) is the analogue of the Torelli group. Then we have

π1(NC) = π1(C)/〈i+∗ (x) = i−∗ (x) for all x ∈ π1(Σ)〉

For example, if H = F2 and C ∈ C(H), then H1(NC) ∼= Z2g coming from H1(Σ).
Consider the case H = Fn, where F = π1(Σ) and assume C ∈ J(Fn). By Stallings’ Theorem [92], i±

induce isomorphisms

F/Fn
i+n−→ π1(C)/(π1(C))n

i−n←− F/Fn.
Moreover, since C ∈ C(H), i+n ◦ (i−n )−1 is the identity on F/Fn. Then we have

π1(NC)/(π1(NC))n ∼= π1(C)/〈i+∗ (x) = i−∗ (x),∀x ∈ F, (π1(C))n〉
∼= π1(C)/〈i−∗ (x)i−∗ (hx) = i−∗ (x),∀x ∈ F, (π1(C))n〉
∼= π1(C)/〈i−∗ (h) = 1, hx ∈ Fn, (π1(C))n〉
∼= π1(C)/(π1(C))n
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Thus, for C ∈ J(Fn), there is a unique epimorphism

φC : NC → F/Fn

that is the composition of

(8.1) π1(NC)� π1(NC)/(π1(NC))n
∼=−→ π1(C)/(π1(C))n

(i+n )−1

−−−−→ F/Fn

Therefore, given a fixed unitary representation ψ : F/Fn → U , we can define ρψ(C) = ρ(NC , ψ ◦ φC). In
the infinite-dimensional case, we will denote this invariant ρn(C). Moreover, the restriction to C(Fn) is not
necessary, since we can extend ρn to all of C by

Definition 8.3. If C ∈ C then ρn(C) is ρ(NC , ψC) where ψC is the composition

π1(NC)� π1(NC)/(π1(NC))rn
`r−→ U

(
`(2)(π1(NC)/(π1(NC))n

)
,

and Grn denotes the nth term of the rational lower central series [92].

We also consider a quotient of C, the group, H, of homology cobordism classes of homology
cylinders , wherein C is homology cobordant to D if there is a compact oriented 4-manifold V whose
boundary is NC◦D such that the natural inclusions C ↪→ V and D ↪→ V induce isomorphisms on homology
(for the details of this definition we refer the reader to [67][68]). The composition

I → C → H

is a monomorphism of groups. We will denote the group of homology cobordism classes of homology cylinders
that induce the identity modulo Fn by H(Fn).

For certain H, in particular when H = Fn, the corresponding ρ-invariants are homology cobordism
invariants and hence descend to H.

Theorem 8.4. The invariant ρn : C(F2)→ R descends to a well-defined function

ρn : H(F2)→ R

Proof. Let C and D be homology cylinders that induce the identity modulo Fn and assume C and D are
homology cobordant.

Lemma 8.5. Let (C, i+, i−) and (D, j+, j−) be homology cylinders such that i+ ◦ (i−)−1 and j+ ◦ (j−)−1

induce the identity on H1(Σ). If the homology cylinders C and D are homology cobordant, then the closed
manifolds NC and ND are homology cobordant.

Proof of Lemma 8.5. By the assumption on i+ ◦ (i−)−1, the map i+∗ : H1(Σ)→ H1(NC) is an isomorphism.
Let W denote the 4-manifold obtained by identifying NC×[0, 1] and ND×[0, 1] along a product neighborhood
of Σ in NC × {1} and ND × {1}. The boundary of W decomposes as ∂W = NC tND t −NC◦D. As in the
proof of Theorem 4.6, W is homotopy equivalent to NC ∪Σ ND, hence

χ(W ) = χ(NC) + χ(ND)− χ(Σ) = 2g − 1,

since NC and ND are closed oriented 3-manifolds. Since C and D are homology cobordant, there is a 4-
manifold V with ∂V = NC◦D so that the inclusions of C and D into V induce isomorphisms on all homology
groups. In particular, H∗(V ) ∼= H∗(Σ), and consequently χ(V ) = 1− 2g.

Now let E = W
⋃

−NC◦D

−V and observe ∂E = −NC t ND. We claim that E is a homology cobordism

between NC and ND. By the long exact sequence for the pair (E,NC),

χ(E,NC) = χ(E)− χ(NC) = χ(E) = χ(W ) + χ(V )− χ(NC◦D) = 0.

It is clear that H0(E,NC) = H4(E,NC) = 0. We claim

(1) H1(E,NC) = 0, and
(2) H3(E,NC) = 0
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from which it will follow that H2(E,NC) = 0.

To see that H1(E,NC) = 0, we first recall that H1(NC)
∼=−→ H1(W ) where all of the first homology comes

from Σ. Similarly, H1(NC◦D)
∼=−→ H1(W ). Furthermore, the composition H1(C) → H1(NC◦D) → H1(V ) is

an isomorphism by the definition of homology cobordism of homology cylinders. Thus, the inclusion-induced
map H1(NC) → H1(E) is an isomorphism. By the exact sequence H1(NC) → H1(E) → H1(E,NC) → 0,
we have verified claim (1).

By duality and the universal coefficient theorem, we have

H3(E,NC) ∼= H1(E,ND) ∼= Hom(H1(E,ND),Z).

By symmetry, H1(E,ND) = 0, and claim (2) follows.
Since H∗(E,NC) = 0, the long exact sequence of the pair implies that the inclusion-induced maps

H∗(NC)→ H∗(E) are isomorphisms. By symmetry ND ↪→ E induces isomorphisms on homology as well. �

Now, continuing with the proof of Theorem 8.4, assume that NC and ND are homology cobordant via
the 4-manifold E from Lemma 8.5. Let Γ = π1(NC), ∆ = π1(ND), G = π1(E), and γ : NC → E and
δ : ND → E denote the inclusion maps. We have the following commutative diagram, where the maps on
the bottom row are isomorphisms by Stallings’ Theorem [92, Theorem 7.3]:

π1(NC) π1(E) π1(ND)

π1(NC)

π1(NC)rn

π1(E)

π1(E)rn

π1(ND)

π1(ND)rn

U(H)

-i∗

?
π

?
π

?
π

�i∗

Q
QQs`r

-
jn∗
∼=

?
`r �
��+ `r

�
in∗
∼=

Therefore, by Theorem 3.5,

ρn(D)− ρn(C) = σ(2)(E,ψ)− σ(E).

Since H∗(E,NC ;Z) = 0,

H2(E;Z)→ H2(E, ∂E;Z)

is the zero map so σ(E) = 0. Additionally, letting Γ = π1(E)/π1(E)rn, since H2(E,NC ;Z) = 0 and Γ is a
poly-(torsion-free-abelian group), it follows from [22, Corollary 2.8] that H2(E,NC ;Z[Γ]) is a Z[Γ]-torsion
module, implying that H2(E,NC ;KΓ) = 0. Thus

H2(E;KΓ)
∂∗→ H2(E, ∂E;KΓ)

is the zero map. Hence

H2(∂E;KΓ)→ H2(E;KΓ)

is surjective. By property 1. of Proposition 9.1, σ(2)(E,ψ) = 0. Thus ρn(C) = ρn(D). �

The discussion of Section 3 extends to homology cylinders so that we can define signature cocycles for
homology cylinders. Namely, given C and D ∈ C(Fn) we can form a 4-manifold W (C,D) (analogous to
W (f, g)) defined as

W (C,D) = NC × [0, 1] ∪A×Σ ND × [0, 1]

where A is the arc A with added collars on its boundary. Then

∂W (C,D) = NC tND t −NCD.
Moreover, the fundamental group of a homology cylinder is a product modulo any term of the lower central
series. With this in mind we can define a signature 2-cocycle on H(Fn) that extends that which we already
defined on J(Fn) in the second part of Definition 3.1.

Definition 8.6. Given Σ and n, we define a function σ
(2)
n : H(Fn)×H(Fn)→ R by

σ(2)
n (C,D) = σ(2)

(
W (C,D), ψ̃n

)
− σ(W (C,D)).

Then it follows immediately from Theorem 3.5 that
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Proposition 8.7. For each n and C,D ∈ H(Fn),

σ(2)
n (C,D) = ρn(C) + ρn(D)− ρn(CD).

where ρn is as in Definition 8.3.

Our main result, Theorem 4.6, continues to hold and so

Corollary 8.8. For any n, σ
(2)
n is a bounded 2-cocycle on H(Fn).

Proposition 8.9. For any n ≥ 2, ρn is a real-valued quasimorphism on C(Fn) and H(Fn).

Note that one can define quasimorphism and a cocyle for the monoid C(Fn).
We claim that these invariants are quite rich, as indicated by the following theorems. We should clarify

that, while ρn can be defined on all of H(F2), it is only a quasimorphism when restricted to H(Fm) for
m ≥ n.

Theorem 8.10. Suppose Σ has genus g ≥ 1 and non-empty boundary. Then, for any n ≥ 2

1. The image of ρn : H(Fn)→ R is dense.
2. The image of ρn : H(Fn)→ R is infinitely generated.

Theorem 8.11. Suppose Σ has genus g ≥ 1 and non-empty boundary. Then, for any m ≥ 2, {ρn}∞n=2 is a
linearly independent subset of the real vector space of all functions {f : H(Fm) → R} modulo the subspace
of bounded functions.

These results parallel [49, Section 5] where essentially the same results were proved for von Neumann
ρ-invariants associated to the torsion-free derived series, rather than the lower central series. Before proving
these theorems, we need to introduce a technique for modifying a homology cylinder in such a way that the
value of ρn changes in a predictable manner.

8.1. Altering homology cylinders by infection. Suppose C is a homology cylinder, η is a null-homologous
oriented simple closed curve in the interior of C, and K is an oriented knot in S3. We describe a procedure
for altering C to a new homology cylinder, C(η,K), called infecting C along η using K [49, p.406][28,
Section 3]. Let N(η) and N(K) denote tubular neighborhoods of η in C and K in S3 respectively, and let
µK , `K , µη, `η denote the meridians and longitudes of K and η. Define

(8.2) C(η,K) = (C −N(η)) ∪f (S3 −N(K))

where f : ∂(S3 −N(K)) → ∂(C −N(η) is defined by f(µK) = `−1
η and f(`K) = µη. Since we have formed

C(η,K) by excising N(η) and replacing it with S3 − N(K), both of which have the homology of a circle,
C(η,K) remains a homology cylinder. Indeed, we may think of the solid torus N(η) as the exterior of the
trivial knot, U , in S3. Then, since there is a degree one map relative boundary from S3 − K to S3 − U ,
there is a degree one map relative boundary C(η,K) → C. Thus we leave it to the reader to check that if
C ∈ C(Fn) then C(η,K) ∈ C(Fn).

The process of infecting a homology cylinder using a knot K alters its ρ-invariants by an additive factor
equal to the average of the classical Levine-Tristram signatures of K. Recall that if K ↪→ S3 and V is a
Seifert matrix for K then, for any complex number ω of norm 1, (1−ω)V + (1−ω)V T is a hermitian matrix
whose signature is called the Levine-Tristram ω-signature of K. The average of these integers, which is the
integral over the circle, is denoted ρ0(K) ∈ R. The following proof closely follows [49, Theorem 5.8] where
the same theorem is proved for von Neumann ρ-invariants associated to the torsion-free derived series.

Proposition 8.12. Let C(η,K) be as defined above and let G = π1(NC). If, for some n ≥ 1, η ∈ Gn−1 but
no power of η lies in Gn, then

ρi(C(η,K))− ρi(C) =

{
0 2 ≤ i ≤ n− 1;
ρ0(K) i ≥ n.

where ρ0(K) is the integral of the classical Levine-Tristram signature function of K.

Proof of Proposition 8.12. We construct a cobordism, W , relating NC(η,K) to NC as follows. Let MK denote

the zero framed Dehn surgery on S3 along the knot K. Recall that this is defined as

MK = S3 −N(K) ∪g (S1 ×D2)
32



where g is an orientation-reversing diffeomorphism of the torus that identifies {1} × ∂D2 with `K . The we
define

(8.3) W = (NC × [0, 1]) ∪hMK × [0, 1],

where h identifies the solid torus N(η)× {1} with the solid torus S1 ×D2 × {0} ⊂MK × {0}, as indicated
schematically in Figure 8.1 (N(η)× {1} is dashed).

NC × {0}

NC(η,K)

N(η)× {1}

MK × {1}

Figure 8.1. The 4-manifold W with ∂W = NC t −NC(η,K) tMK

It follows that
∂W = NC t −NC(η,K) tMK .

Let E = π1(W ), and Γi = E/Ei and consider the coefficient system

ψ : E
φ→ Γi

`r→ U(`(2)(Γ)i)

where φ is the canonical projection and `r is the left-regular representation. Then, by Theorem 3.5,

(8.4) ρ(NC , ψ)− ρ(NC(η,K), ψ) + ρ(MK , ψ) = σ(2)(W,ψ)− σ(W ).

We claim that the right-hand side of (8.4) is zero. In fact this is a direct consequence of [25, Lemma 2.4]
(also proved in [49, p.411-412]), so we will not repeat the proof. The basic idea is to show, using the Mayer-
Vietoris sequence with KΓi-coefficients associated to (8.3), that H2(∂W ;KΓi) → H2(W ;KΓi) is surjective
and then apply property 1. of Proposition 9.1.

Let P = π1(NC(η,K)) and recall G = π1(NC). We claim that the inclusion maps NC(η,K) ↪→ W and
NC × {0} ↪→W induce isomorphisms

(8.5) P/Pi ∼= E/Ei = Γi and G/Gi ∼= E/Ei = Γi

for each i. To see the first, note that W deformation retracts to W = NC × {0} ∪ NC(η,K). Moreover

W = NC(η,K) ∪ N(η) × {1}. Therefore W can be obtained from NC(η,K) by adding a single 2-cell and
then a single 3-cell. The 2-cell is added along `K . But recall that, for a knot exterior, the lower central
series stabilizes at the commutator subgroup. Thus `K ∈ π1(S3 −N(K))i for all i and so `K ∈ Pi for all i.
This implies the first isomorphism of (8.5). For the second inclusion, note that by the Seifert-Van Kampen
theorem,

E = π1(W ) ∼= G ∗Z π1(MK),

where η is identified with µK . The abelianization map π1(MK)→ Z induces a retraction r

G→ E ∼= G ∗Z π1(MK)
r→ G ∗Z Z ∼= G

whose kernel is the normal closure of the commutator subgroup π1(S3 −K)2
∼= π1(S3 −K)i. Thus E/Ei ∼=

G/Gi establishing the second isomorphism of (8.5).
Therefore, by (8.1) and property 2. of Proposition 9.1,

ρ(NC , ψ) = ρi(C) and ρ(NC(η,K), ψ) = ρi(C(η,K)).

Hence (8.4) becomes

(8.6) ρi(C(η,K))− ρi(C) = ρ(MK , ψ).

It remains only to analyze ρ(MK , ψ). Recall that π1(MK) is normally generated by the meridian µK ,
which is identified with η under the infection process. Since, by hypothesis, η ∈ Gn−1, µK ∈ En−1 and so
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ψ(π1(MK)) = 0 if i ≤ n− 1. Thus, by property 3. of Proposition 9.1, ρ(MK , ψ) = 0. Thus (8.6) establishes
Proposition 8.12 in the case i ≤ n− 1.

Now suppose i ≥ n and i ≥ 2. Since π1(S3 −K)2
∼= π1(S3 −K)i, we have ψ(π1(S3 −K)2) = 0. Thus

the restriction of ψ to π1(MK) factors through its abelianization, Z = 〈µk〉. Hence it suffices to show that
ψ(µK) = ψ(η) is of infinite order in Γi. Since i ≥ n, there is a surjection Γi → Γn = E/En ∼= G/Gn (using
(8.5)). So it suffices to show that no proper power of η lies in Gn. But this was our hypothesis. Therefore,
by property 4. of Proposition 9.1, ρ(MK , ψ) = ρ0(MK), the integral over the circle of the Levine-Tristram
signatures of K.

This completes the proof of Proposition 8.12.
�

Now that we can create homology cylinders with varied ρn, we can easily prove Theorems 8.10 and 8.11.

Proof of Theorem 8.10. For fixed n ≥ 2, let C ∈ C(Fn) be the identity homology cylinder. Then

π1(C)/π1(C)i ∼= π1(NC)/π1(NC)i ∼= F/Fi

for every i where F = π1(Σ) is a non-abelian free group. Since Fn−1/Fn is known to be a non-trivial free
abelian group, there exists some null-homologous simple closed curve η ∈ C which lies in π1(NC)n−1 but no
power of which lies in π1(NC)n. Therefore, by Proposition 8.12, for any knot K,

ρn(C(η,K)) = ρ0(K).

hence it suffices to show that

{ρ0(K) | K ↪→ S3}
is dense in R and is an infinitely generated group. Both of these were shown explicitly in [49, Thm. 5.11]
using [15, Section 2][28, Prop.2.6]. �

Proof of Theorem 8.11. Suppose that r1ρi1 + · · · + rkρik is a function bounded by D > 0, where ri are
non-zero real numbers and the ij are increasing with j. We shall reach a contradiction. Let C ∈ C(Fm)
be the identity homology cylinder and let F = π1(NC). Let n = ik ≥ 2. As in the proof of Theorem 8.10
above, there is a curve η ∈ C such that η ∈ Fn−1 but no power of which lies in Fn. Consider C(η,K) for
any K with |ρ0(K)| > D (for example, let K be the connected sum of a large number of right-handed trefoil
knots). For any i ≤ n − 1, η ∈ π1(NC)i so, by Proposition 8.12, ρi(C(η,K)) = 0 and |ρn(C(η,K))| > D.
This is a contradiction. �

In [89], Sakasai defined an exact sequence analogous to our 4.5:

1→ Sn
i−→ H(Fn)

rn−→ Isomr (H1(Σ;Z[F/Fn])) ,(8.7)

It follows from Theorem 4.10 that

Proposition 8.13. The restriction of ρn : H(F2)→ R to Sn is a homomorphism.

9. Appendix: Definition and basic properties of the von Neuman signature and von
Neumann ρ-invariants

Given a closed, oriented 3-manifold M , a discrete group Γ, and a representation φ : π1(M)→ Γ, the von
Neumann ρ-invariant, ρ(M,φ) ∈ R, was defined by Cheeger and Gromov [17]. It is defined by choosing
a Riemannian metric on M and taking the difference between the η-invariant of M and the von Neumann
η invariant of the Γ-covering space associated to φ. However, we prefer an equivalent definition of ρ, as a
signature defect. Suppose (M,φ) = ∂(W,ψ) for some compact, oriented 4-manifold W and ψ : π1(W )→ Γ,

then it is known that ρ(M,φ) = σ
(2)
Γ (W,ψ) − σ(W ) where σ

(2)
Γ (W,ψ) is the L(2)-signature (von Neumann

signature) of the Γ-covering space of W associated to ψ. We recall below the definition of the L2-signature
of a 4-dimensional manifold. For more information on L2-signature and ρ-invariants see [29, Section 2], [27,
Section 5][71][49, Section 3].

Let Γ be a countable discrete group. Let NΓ be the group von Neumann algebra of Γ, a subalgebra
of the bounded linear operators on `(2)(Γ), and let UΓ be the algebra of unbounded operators affiliated to
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NΓ. Let hW,Γ be the equivariant intersection form on H2(W ) with UΓ-coefficients, which is defined as the
composition

(9.1) H2(W ;UΓ)→ H2(W,∂W ;UΓ)
PD−−→ H2(W ;UΓ)

κ−→ H2(W ;UΓ)∗

where H2(W ;UΓ)∗ = HomUΓ(H2(W ;UΓ),UΓ). Since UΓ is a von Neumann regular ring, the modules

H2(W ;UΓ) are finitely generated projective right UΓ-modules. Thus hW,Γ ∈ Hermn(UΓ). Then σ
(2)
Γ :

Hermn(UΓ)→ R is defined by

σ
(2)
Γ (h) = trΓ(p+(h))− trΓ(p−(h))

for any h ∈ Hermn(UΓ) where trΓ is the von Neumann trace and p± are the characteristic functions on the

positive and negative reals. Thus we define σ(2)(W,Γ) = σ
(2)
Γ (hW,Γ). It is known that σ

(2)
Γ descends to the

Witt group of Hermitian forms on finitely generated projective UΓ-modules (see for example Corollary 5.7
of [27]).

Suppose that Γ is a poly-(torsion-free-abelian) group. In particular Γ is torsion-free and amenable. In
this case the von Neumann signature can be defined without the use of UΓ. For it is then known that ZΓ is
an Ore domain and embeds in its classical right ring of quotients KΓ, which is a division ring. Moreover, the
map from ZΓ to UΓ factors as ZΓ → KΓ → UΓ making UΓ into a KΓ − UΓ-bi-module. Since any module
over a skew field is free, UΓ is a flat KΓ-module. Hence, H2(W ;UΓ) ∼= H2(W ;KΓ) ⊗KΓ UΓ. In particular,

H2(W ;KΓ) = 0 if and only if H2(W ;UΓ)=0. In this case σ
(2)
Γ can be thought of as a homomorphism from

L0(K(Γ)) to R. Aside from the definition, the properties that we use in this paper are:

Proposition 9.1.

1. If (M,φ) = ∂(W,ψ) for some compact, 4-manifold W and

H2(W ;UΓ)/Image(H2(∂W ;UΓ))

has a summand if half dimension on which the equivariant intersection form vanishes, then σ
(2)
Γ (W,ψ) =

0. If Γ is poly-torsion-free abelian then the same holds with KΓ-coefficients.
2. If φ factors through φ′ : π1(M)→ Γ′ where Γ′ is a subgroup of Γ, then ρ(M,φ′) = ρ(M,φ).
3. If φ is trivial (the zero map), then ρ(M,φ) = 0.
4. If M = MK is the zero-surgery on a knot K and φ : π1(M)→ Z is the abelianization, then ρ(M,φ) is

denoted ρ0(K) and is equal to the integral over the circle of the Levine-Tristram signature function
of K [28, Prop. 5.1]. Thus ρ0(K) is the average of the classical signatures of K.

5. The von Neumann signature satisfies Novikov additivity, i.e. if W1 and W2 intersect along a common

boundary component then σ
(2)
Γ (W1 ∪W2) = σ

(2)
Γ (W1) + σ

(2)
Γ (W2) [27, Lemma 5.9].
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