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Abstract. In 1997, T. Cochran, K. Orr, and P. Teichner [12] defined a filtration of
the classical knot concordance group C,

· · · ⊆ Fn ⊆ · · · ⊆ F1 ⊆ F0.5 ⊆ F0 ⊆ C.
The filtration is important because of its strong connection to the classification of topo-
logical 4-manifolds. Here we introduce new techniques for studying C and use them to
prove that, for each n ∈ N0, the group Fn/Fn.5 has infinite rank. We establish the same
result for the corresponding filtration of the smooth concordance group. We also resolve
a long-standing question as to whether certain natural families of knots, first considered
by Casson-Gordon, and Gilmer, contain slice knots.

1. Introduction

A (classical) knot J is the image of a tame embedding of an oriented circle in S3.
A slice knot is a knot that bounds an embedding of a 2-disk in B4. We wish to
consider both the smooth category and the topological category (in the latter case all
embeddings are required to be flat). The question of which knots are slice knots was first
considered by Kervaire and Milnor in the early 60′s in their study of isolated singularities
of 2-spheres in 4-manifolds in the context of a surgery-theoretic scheme for classifying 4-
dimensional manifolds. Indeed, certain concordance problems are known to be equivalent
to whether the surgery techniques that were so successful in higher-dimensions, “work”
for topological 4-manifolds [3]. Thus the question of which knots are slice knots lies at the
heart of the topological classification of 4-dimensional manifolds. Moreover the question
of which knots are topologically slice but not smoothly slice may be viewed as “atomic”
for the question of which topological 4-manifolds admit distinct smooth structures.

There is an equivalence relation on knots wherein slice knots are equivalent to the
trivial knot. Two knots, J0 ↪→ S3 × {0} and J1 ↪→ S3 × {1}, are concordant if there
exists a proper embedding of an annulus into S3 × [0, 1] that restricts to the knots on
S3 × {0, 1}. A knot is concordant to a trivial knot if and only if it is a slice knot. The
connected sum operation endows the set of all concordance classes of knots with the
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structure of an abelian group, called the topological knot concordance group, C,
which is a quotient of its smooth analogue Cs. For excellent surveys see [22] and [39].

In this paper we introduce new techniques for showing knots are not topologically
slice (and hence also not smoothly slice). As one application we resolve a long-standing
question about whether certain natural families of knots contain non-slice knots (some
of these results were announced in [10]). As another major application we establish that
each quotient, Fn/Fn.5, in the Cochran-Orr-Teichner filtration {Fn} of C, has infinite
rank (the same result is shown for the filtration of Cs). This was previously known only
for n = 0, 1, and 2. Our proof of the latter avoids two ad hoc technical tools employed
by Cochran-Teichner, one of which was a deep analytical bound of Cheeger-Gromov for
their von Neumann ρ invariants.

In the late 60’s Levine [31] (see also [43]) defined an epimorphism from C to Z∞⊕Z∞2 ⊕
Z∞4 , given by the Arf invariant, certain discriminants and twisted signatures associated
to the infinite cyclic cover of the knot complement. A knot for which these invariants
vanish is called an algebraically slice knot. Thus the question at that time was “Is
every algebraically slice knot actually a slice knot?” A simple way to create potential
counterexamples is to begin with a known slice knot, R, such as the 946 knot shown
on the left-hand side of Figure 1.1, and “tie the bands into some knot J0”, as shown
schematically on the right-hand side of Figure 1.1. An example of a band tied into a
trefoil knot is shown in Figure 1.2. All of these genus one knots are algebraically slice
since they have the same Seifert matrix as the slice knot R. Similar knots have appeared
in the majority of papers on this subject (for example [39][38][35][36][19]).

J0 J0J1 ≡R ≡

Figure 1.1. Algebraically Slice Knots J1 Patterned on the Slice Knot R

In the early 70’s Casson and Gordon defined new knot concordance invariants via
dihedral covers [1] [2]. These “higher-order signature invariants” were used to show that
some of the knots J1 of Figure 1.1 are not slice knots. P. Gilmer showed that these
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Figure 1.2. Tying a band into a trefoil knot

higher-order signature invariants for J1 are equal to certain combinations of classical
signatures of J0 and thus the latter constituted higher-order obstructions to J1 being
a slice knot [21][20] (see [37] for 2-torsion invariants). These invariants were also used
to show that the subgroup of algebraically slice knots has infinite rank [25]. Hence
the question arose:“What if J0 itself were algebraically slice?” Thus shortly after the
work of Casson and Gordon the self-referencing family of knots shown in Figure 1.3 was
considered by Casson, Gordon, Gilmer and others [18]. An example with n = 3 and
J0 = U , the unknot, is shown in Figure 1.4.

Jn+1 =
Jn Jn

Figure 1.3. The recursive family Jn+1, n ≥ 0

All of the invariants above vanish for Jn if n ≥ 2 and it is not difficult to see that if J0

is itself a slice knot then each Jn is a slice knot. It was asked whether or not Jn is always
a slice knot. In fact, Gilmer proved (unpublished) that J2, for certain J0, is not a ribbon
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Figure 1.4. The Ribbon Knot J3 for J0 = the unknot

knot [18]. However the status of the knots Jn has remained open for 25 years. Much
more recently, Cochran, Orr and Teichner, Friedl, and Kim used higher-order signatures
associated to solvable covers of the knot complement to find non-slice knots that could
not be detected by the invariants of Levine or Casson-Gordon [12][13][26][15]. In fact the
techniques of [12], [13], [14] and [11] were limited to knots of genus at least 2 (note each
Jn has genus 1) because of their use of localization techniques.

Recall that to each knot K and each point on the unit circle in C, Levine associated a
signature. This endows each knot with an integral-valued signature function defined on
the circle. Let ρ0(K) denote the integral of this function over the unit circle, normalized
to have length 1. This should be viewed as the average of the Levine signatures for K.

We prove:

Theorem 9.1. There is a constant C such that if |ρ0(J0)| > C, then for each n ≥ 0, Jn
is of infinite order in the topological and smooth knot concordance groups. Furthermore,
there is constant D such that if J2 is a slice knot then ρ0(J0) ∈ {0, D} (Theorem 4.1).

This was classically known only for n = 0, 1, using the Levine signatures and Casson-
Gordon invariants respectively. The constant D is a specific real number associated to
the 946 knot that may in fact be 0.
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In 1997, T. Cochran, K. Orr, and P. Teichner [12] defined an important filtration of
the classical knot concordance group C,

· · · ⊆ Fn ⊆ · · · ⊆ F1 ⊆ F0.5 ⊆ F0 ⊆ C.
The elements of Fn are called the (n)-solvable knots. This filtration is geometrically
significant because it measures the successive failure of the Whitney trick for 2-disks in
4-manifolds and hence is closely related to Freedman’s topological classification scheme
for 4-dimensional manifolds. The filtration is also natural because it exhibits all of
the previously known concordance invariants in its associated graded quotients of low
degree: F0 is precisely the set of knots with Arf invariant zero, F0.5 is precisely Levine’s
subgroup of algebraically slice knots, and F1.5 contains all knots with vanishing Casson-
Gordon invariants. The filtration was also shown to be non-trivial: [13] established that
the abelian group F2/F2.5 has infinite rank; Cochran-Teichner showed in [14] that each
of the groups Fn/Fn.5 has rank at least 1.

Our second major result (known previously for n = 0, 1, 2) is:

Theorem 1.1. For each n ∈ N0, the group Fn/Fn.5 has infinite rank.

We note that the construction of our examples is done completely in the smooth
category so that we also establish the corresponding statements about the Cochran-Orr-
Teichner filtration of the smooth knot concordance group (In fact it can be shown that the
natural map induces an isomorphisms F smoothn /F smoothn.5

∼= Fn/Fn.5!). Our technique also
recovers the result of Cochran-Teichner, while eliminating two highly technical steps from
their proof. In particular our proof does not rely on the analytical bound of Cheeger-
Gromov. Moreover we use the knots Jn (for suitably chosen J0) to prove this. This
family is simpler than the examples of Cochran and Teichner. In fact the families Jn
are distinct even up to concordance from the examples of Cochran and Teichner (this
result will appear in another paper). We employ the Cheeger-Gromov von Neumann
ρ-invariants and higher-order Alexander modules that were introduced in [12]. Our new
technique is to expand upon previous results of Leidy concerning higher-order Blanchfield
linking forms without localizing the coefficient system [29] [28]. This is used to show that
certain elements of π1 of a slice knot exterior cannot lie in the kernel of the map into any
slice disk(s) exterior. Another new feature is the essential use of equivalence relations
that are much weaker than concordance and (n)-solvability.

These techniques provide other new information about the order of knots in the con-
cordance group. For example, consider the family of knots below where Jn−1, n ≥ 2, is
one of the the algebraically slice knots above. For any such Kn, Kn#Kn is algebraically
slice and has vanishing Casson-Gordon invariants. Therefore Kn cannot be distinguished
from an order 2 knot by these invariants. However we show:

Corollary 9.7. For any n there is a constant D such that if |ρ0(J0)| > D then Kn is of
infinite order in the smooth and topological concordance groups.
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Kn =
Jn−1 Jn−1

Figure 1.5. Knots potentially of order 2 in the concordance group

The specific families of knots of Figure 1.3 are important because of their simplicity and
their history. However, they are merely particular instances of a more general ‘doubling’
phenomenon to which our techniques may be applied. In order to state these results,
we review a method we will use to construct examples. Let R be a knot in S3 and
{η1, η2, . . . , ηm} be an oriented trivial link in S3, that misses R, bounding a collection of
disks that meet R transversely as shown on the left-hand side of Figure 1.6. Suppose
{K1, K2, . . . , Km} is an m-tuple of auxiliary knots. Let R(η1, . . . , ηmK1, . . . , Km) denote
the result of the operation pictured in Figure 1.6, that is, for each ηj, take the embedded
disk in S3 bounded by ηj; cut off R along the disk; grab the cut strands, tie them into
the knot Kj (with no twisting) and reglue as shown in Figure 1.6.

η1 ηm. . . . . .K1 Km

R(η1, . . . , ηm, K1, . . . , Km)R R

Figure 1.6. R(η1, . . . , ηm, K1, . . . , Km): Infection of R by Kj along ηj

We will call this the result of infection performed on the knot R using the in-
fection knots Kj along the curves ηj. This construction can also be described in
the following way. For each ηj, remove a tubular neighborhood of ηj in S3 and glue in
the exterior of a tubular neighborhood of Kj along their common boundary, which is a
torus, in such a way that the longitude of ηj is identified with the meridian of Kj and the
meridian of ηj with the reverse of the longitude of Kj. The resulting space can be seen to
be homeomorphic to S3 and the image of R is the new knot. In the case that m = 1 this
is the same as the classical satellite construction. In general it can be considered to be a
“generalized satellite construction”, widely utilized in the study of knot concordance. In
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the case that m = 1 and lk(η,R) = 0 it is precisely the same as forming a satellite of J
with winding number zero. This yields an operator

Rη : C → C.
that has been studied (e.g. [34]). For general m with lk(ηj, R) = 0, it can be considered
as a generalized doubling operator, Rηj , parameterized by (R, {ηj})

Rηj : C × · · · × C → C.
If, for simplicity, we assume that all “input knots” are identical then such an operator is
a function

Rηj : C → C.
A primary example is the “R-doubling” operation of going from the left-hand side of
Figure 1.1 to the right-hand side. Here R is the 946 knot and {η1, η2} = {α, β} are as
shown on the left-hand side of Figure 1.7. The image of a knot K under the operator
Rα,β is denoted by R(K) and is shown on the right-hand side of Figure 1.7. Note that
our previously defined knot J1 is the same as R(J0) and that Kn of Figure 1.5 is R̄(Jn−1)
where R̄ is the figure-eight knot.

α β

K KR(K) ≡Rα,β ≡

Figure 1.7. R-doubling

Most of the results of this paper concern to what extent these functions are injective.
Because of the condition on “winding numbers”, lk(ηj, R) = 0, if R is a slice knot,
the images of such operators R contain only knots for which the classical invariants
vanish. Thus iterations of these operators, iterated generalized doubling, produce
increasingly subtle knots. This claim is quantified by the following.

Theorem 7.1 (see also [13, proof of Proposition 3.1]). If Ri, 1 ≤ i ≤ n, are slice knots
and ηij ∈ π1(S3 −Ri)

(1) then

Rn ◦ · · · ◦R2 ◦R1(F0) ⊂ Fn,
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where we abbreviate (Ri)ηij by Ri.

For example the knot Jn is the result of n iterations of the Rα,β operator shown above

C R−→ C → · · · → C R→ C
applied to some initial knot J0 = K. More generally let us define an n-times iterated
generalized doubling to be such a composition of operators using possibly different
slice knots Ri, and different curves ηi1, . . . , ηimi .

Then our main proof establishes:

Theorem 9.5. Suppose Ri, 1 ≤ i ≤ n, is a set of (not necessarily distinct) slice knots.
Suppose that, for each fixed i, {ηi1, ..., ηimi} is a trivial link of circles in π1(S3 − Ri)

(1)

such that for some ij and ik (possibly equal) B`i0(ηij, ηik) 6= 0, where B`i0 is the classical
Blanchfield form of Ri. Then there exists a constant C such that if K is any knot
with Arf(K) = 0 and |ρ0(K)| > C, the result, Rn ◦ · · · ◦ R1(K), of n-times iterated
generalized doubling, is of infinite order in the smooth and topological concordance groups,
and moreover represents an element of infinite order in Fn/Fn.5.

Note that any set {ηi1, . . . , ηimi} that generates a submodule of the Alexander module
of Ri of more than half rank necessarily satisfies the condition of Theorem 9.5, because
of the non-singularity of the Blanchfield form.

2. Higher-Order Signatures and How to Calculate Them

In this section we review the von Neumann ρ-invariants and explain to what extent
they are concordance invariants. We also show how to calculate them for knots or links
that are obtained from the infections defined in Section 1.

The use of variations of Hirzebruch-Atiyah-Singer signature defects associated to cov-
ering spaces is a theme common to most of the work in the field of knot and link con-
cordance since the 1970’s. In particular, Casson and Gordon initiated their use in cyclic
covers [1] [2]; Farber, Levine and Letsche initiated the use of signature defects associated
to general (finite) unitary representations [32] [30]; and Cochran-Orr-Teichner initiated
the use of signatures associated to the left regular representations [12]. See [15] for a
beautiful comparison of these approaches in the metabelian case.

Given a compact, oriented 3-manifold M , a discrete group Γ, and a representation
φ : π1(M) → Γ, the von Neumann ρ-invariant was defined by Cheeger and Gromov
by choosing a Riemannian metric and using η-invariants associated to M and its covering
space induced by φ. It can be thought of as an oriented homeomorphism invariant
associated to an arbitrary regular covering space of M [6]. If (M,φ) = ∂(W,ψ) for
some compact, oriented 4-manifold W and ψ : π1(W ) → Γ, then it is known that

ρ(M,φ) = σ
(2)
Γ (W,ψ) − σ(W ) where σ

(2)
Γ (W,ψ) is the L(2)-signature (von Neumann

signature) of the intersection form defined on H2(W ; ZΓ) twisted by ψ and σ(W ) is the
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ordinary signature of W [40]. In the case that Γ is a poly-(torsion-free-abelian) group
(abbreviated PTFA group throughout), it follows that ZΓ is a right Ore domain that
embeds into its (skew) quotient field of fractions KΓ [41, pp.591-592, Lemma 3.6ii p.611].

In this case σ
(2)
Γ is a function of the Witt class of the equivariant intersection form on

H2(W ;KΓ) [12, Section 5]. In the special case that this form is non-singular (such as
β1(M) = 1), it can be thought of as a homomorphism from L0(KΓ) to R.

All of the coefficient systems Γ in this paper will be of the form π/π
(n)
r where π is

the fundamental group of a space (usually a 4-manifold) and π
(n)
r is the nth-term of the

rational derived series. The latter was first considered systematically by Harvey. It
is defined by

π(0)
r ≡ π, π(n+1)

r ≡ {x ∈ π(n)
r |∃k 6= 0, xk ∈ [π(n)

r , π(n)
r ]}.

Note that nth-term of the usual derived series π(n) is contained in the nth-term of the
rational derived series. For free groups and knot groups, they coincide. It was shown

in [24, Section 3] that π/π
(n)
r is a PTFA group.

The utility of the von Neumann signatures lies in the fact that they obstruct knots
from being slice knots. It was shown in [12, Theorem 4.2] that, under certain situations,
higher-order von Neumann signatures vanish for slice knots, generalizing the classical
result of Murasugi and the results of Casson-Gordon. Here we state their result for slice
knots.

First,

Theorem 2.1 (Cochran-Orr-Teichner [12, Theorem 4.2]). If a knot K is topologically
slice in a rational homology 4-ball, MK is the zero surgery on K and φ : π1(MK)→ Γ is
a PTFA coefficient system that extends to the fundamental group of the exterior of the
slicing disk, then ρ(MK , φ) = 0.

Moreover, Cochran-Orr-Teichner showed that this same result holds if Γ(n+1) = {1} and
K ∈ F(n.5). This filtration will be defined in Section 5 where we also greatly generalize
their signature theorem.

Some other useful properties of von Neumann ρ-invariants are given below. One can
find detailed explanations of most of these in [12, Section 5].

Proposition 2.2. Let M be a closed, oriented 3-manifold and φ : π1(M)→ Γ be a PTFA
coefficient system.

(1) If (M,φ) = ∂(W,ψ) for some compact oriented 4-manifold W such that the
equivariant intersection form on H2(W ;KΓ)/j∗(H2(∂W ;KΓ)) admits a half-rank

summand on which the form vanishes, then σ
(2)
Γ (W,ψ) = 0 (see [23, Lemma 3.1

and Remark 3.2] for a proper explanation of this for manifolds with β1 > 1). Thus
if σ(W ) = 0 then ρ(M,φ) = 0.
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(2) If φ factors through φ′ : π1(M)→ Γ′ where Γ′ is a subgroup of Γ, then ρ(M,φ′) =
ρ(M,φ).

(3) If φ is trivial (the zero map), then ρ(M,φ) = 0.
(4) If M = MK is zero surgery on a knot K and φ : π1(M) → Z is the abelianiza-

tion, then ρ(M,φ) is equal to the integral over the circle of the Levine (classical)
signature function of K, normalized so that the length of the circle is 1 [13, Prop.
5.1]. This real number will be denoted ρ0(K).

We will establish an elementary lemma that reveals the additivity of the ρ-invariant
under infection. It is slightly more general than [13, Proposition 3.2]. The use of a Mayer-
Vietoris sequence to analyze the effect of a satellite construction on signature defects is
common to essentially all of the previous work in this field (see for example [33]).

Suppose L = R(ηi, Ki) is obtained by infection as described in Section 1. Let the zero
surgeries on R, L, and Ki be denoted MR, ML, Mi respectively. Suppose φ : π1(ML)→ Γ
is a map to an arbitrary PTFA group Γ such that, for each i, `i, the longitude of Ki,
lies in the kernel of φ. Since S3 − Ki is a submanifold of ML, φ induces a map on
π1(S3 −Ki). Since li lies in the kernel of φ this map extends uniquely to a map that we
call φi on π1(Mi). Similarly, φ induces a map on π1(MR −

∐
ηi). Since MR is obtained

from (MR −
∐
ηi) by adding m 2-cells along the meridians of the ηi, µηi and m 3−cells,

and since µηi = l−1
i and φi(li) = 1, φ extends uniquely to φR. Thus φ induces unique

maps φi and φR on π1(Mi) and π1(MR) (characterized by the fact that they agree with
φ on π1(S3 −Ki) and π1(MR −

∐
ηi) respectively).

There is a very important case when the hypothesis above that φ(`i) = 1 is always
satisfied. Namely suppose Γ(n+1) = 1 and ηi ∈ π1(MR)(n). Since a longitudinal push-off
of ηi, called `ηi or η+

i , is isotopic to ηi in the solid torus ηi ×D2 ⊂ MR, `ηi ∈ π1(MR)(n)

as well. By [7, Theorem 8.1] or [28] it follows that `ηi ∈ π1(ML)(n). Since µi, the
meridian of Ki, is identified to `ηi , µi ∈ π1(ML)(n) so φ(µi) ∈ Γ(n) for each i. Thus
φi(π1(S3 − Ki)

(1)) ⊂ Γ(n+1) = 1 and in particular the longitude of each Ki lies in the
kernel of φ.

Lemma 2.3. In the notation of the two previous paragraphs (assuming φ(`i) = 1 for all
i),

ρ(ML, φ)− ρ(MR, φR) =
m∑
i=1

ρ(Mi, φi).

Moreover if π1(S3−Ki)
(1) ⊂ kernel(φi) then either ρ(Mi, φi) = ρ0(Ki), or ρ(Mi, φi) = 0,

according as φR(ηi) 6= 1 or φR(ηi) = 1. Specifically, if Γ(n+1) = 1 and ηi ∈ π1(MR)(n)

then this is the case.

Proof. Let E be the 4-manifold obtained from MR × [0, 1]
∐
−Mi × [0, 1] by identifying,

for each i, the copy of ηi × D2 in MR × {1} with the tubular neighborhood of Ki in
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Mi×{0} as in Figure 2.1. The dashed arcs in the figure represent the solid tori ηi×D2.

MR × [0, 1]

M1 × [0, 1] Mm × [0, 1]. . .

Figure 2.1. The cobordism E

Observe that the ‘outer’ boundary component of E is ML. Note that E deformation
retracts to E = ML ∪ (

∐
i(ηi ×D2)), where each solid torus is attached to ML along its

boundary. Hence E is obtained from ML by adding m 2-cells along the loops µηi = li,

and m 3-cells. Thus, by our assumption, φ extends uniquely to φ : π1(E)→ Γ and hence
φ : π1(E) → Γ. Clearly the restrictions of φ to π1(Mi) and π1(MR × {0}) agree with φi
and φR respectively. It follows that that

ρ(ML, φ)− ρ(MR, φR) =
m∑
i=1

ρ(Mi, φi) + σ
(2)
Γ (E, φ)− σ(E).

Now we claim that both the ordinary signature of E, σ(E), as well as the L2-signature

σ
(2)
Γ (E), vanish. The first part of the proposition will follow immediately.

Lemma 2.4. With respect to any coefficient system, φ : π1(E)→ Γ, the signature of the
equivariant intersection form on H2(E; ZΓ) is zero.

Proof of Lemma 2.4. We show that all of the (twisted) second homology of E comes from
its boundary. This immediately implies the claimed result.

Consider the Mayer-Vietoris sequence with coefficients twisted by φ:

H2(MR× I)⊕iH2(Mi× I) −→ H2(E) −→ H1(qηi×D2) −→ H1(MR×I)⊕iH1(Mi×I).

We claim that each of the inclusion-induced maps

H1(ηi ×D2) −→ H1(Mi)

is injective. If φ(ηi) = 1 then, since ηi is equated to the meridian of Ki, φ(µKi) = 1.
Since µKi normally generates π1(Mi), it follows that the coefficient systems on ηi×D2 and
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Mi are trivial and hence the injectivity follows from the injectivity with Z-coefficients,
which is obvious since µKi generates H1(Mi). Suppose now that φ(ηi) 6= 1. Since ηi×D2

is homotopy equivalent to a circle, it suffices to consider the cell structure on S1 with
one 1-cell. Then the boundary map in the Z[π1(S1)] cellular chain complex for S1 is
multiplication by t− 1 so the boundary map in the equivariant chain complex

C1 ⊗ ZΓ
∂⊗id−→ C0 ⊗ ZΓ

is easily seen to be left multiplication by φ(ηi)− 1. Since φ(ηi) 6= 1 and ZΓ is a domain,
this map is injective. Thus H1(ηi ×D2; ZΓ) = 0 so injectivity holds.

Now using the Mayer-Vietoris sequence, any element of H2(E) comes from H2(MR ×
{0})⊕i H2(Mi × {0}), in particular from H2(∂E). Thus the intersection form on H2(E)
is identically zero and any signature vanishes. �

This completes the proof of the first part of Lemma 2.3.
If π1(S3−Ki)

(1) ⊂ kernel(φi) then φi factors through the abelianization of H1(S3\Ki)
and so by parts 2, 3 and 4 of Proposition 2.2, we are done. In particular if Γ(n+1) = 1
and ηi ∈ π1(MR)(n), then φi(µi) ∈ Γ(n) for each i as we have shown in the paragraph
above the lemma, so φi(π1(S3\Ki)

(1)) ⊂ Γ(n+1) = 1. Thus each φi factors through the
abelianization. �

We want to collect, in the form of a lemma, the technical properties of the cobordism
E that we have established in the proofs above. These will be used often in later sections.

Lemma 2.5. With regard to E as above, the inclusion maps induce

(1) an epimorphism π1(ML) → π1(E) whose kernel is the normal closure of the lon-
gitudes of the infecting knots Ki viewed as curves `i ⊂ S3 −Ki ⊂ML;

(2) isomorphisms H1(ML)→ H1(E) and H1(MR)→ H1(E);
(3) and isomorphisms H2(E) ∼= H2(ML)⊕i H2(MKi)

∼= H2(MR)⊕i H2(MKi).
(4) The longitudinal push-off of ηi, `ηi ⊂ ML is isotopic in E to ηi ⊂ MR and to the

meridian of Ki, µi ⊂MKi.
(5) The longitude of Ki, `i ⊂ MKi is isotopic in E to the reverse of the meridian of

ηi, (µηi)
−1 ⊂ML and to the longitude of Ki in S3 −Ki ⊂ML and to the reverse

of the meridian of ηi, (µηi)
−1 ⊂MR (the latter bounds a disk in MR).

Proof. We saw above that E ∼ E is obtained from ML by adding m 2-cells along the
loops µηi = `i, and then adding m 3-cells that go algebraically zero over these 2-cells.
Property (1) and the first part of properties (2) and (3) follow. The second parts of
properties (2) and (3) follow from a Mayer-Vietoris argument as in the proof just above.
Properties (4) and (5) are obvious from the definitions of infection and of E. �
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3. First-order L(2)-signatures

For a knot K the ρ-invariant, ρ0(K), associated to the abelianization of π1(MK), has
played a central role in knot concordance since it is the average of classical signatures.
Call this a zero-order signature. In this section we define first-order signatures for a
knot K and make some elementary observations. These signatures are essentially the L(2)

analogues of Casson-Gordon invariants, though not necessarily associated to characters
corresponding to metabolizers. They will play a small but central role in our proofs.

Suppose K is a knot in S3, G = π1(MK) and A0 = A0(K) is its classical rational
Alexander module. Note that since the longitudes of K lie in π1(S3 −K)(2),

A0 ≡ G(1)/G(2) ⊗Z[t,t−1] Q[t, t−1]

Each submodule P ⊂ A0 corresponds to a unique metabelian quotient of G,

φP : G→ G/P̃ ,

by setting
P̃ ≡ {x |x ∈ kernel(G(1) → G(1)/G(2) → A0/P )}.

Note that G(2) ⊂ P̃ so G/P̃ is metabelian. In summary, to any such submodule P there
corresponds a real number, the Cheeger-Gromov invariant, ρ(MK , φP : G→ G/P̃ ).

Definition 3.1. The first-order L(2)-signatures of a knot K are the real numbers
ρ(MK , φP ) where P ⊂ A0(K) satisfies P ⊂ P⊥ with respect to the classical Blanchfield
form B`0 on K (i.e. B`0(p, p′) = 0 for all p, p′ ∈ P ). Slightly more generally, in light of
property 2 of Proposition 2.2, we say that ρ(MK , φ) for φ : π1(MK)→ Γ is a first-order
signature of K if

1. φ factors through G/G(2), where G = π1(MK);
2. kernel(φ) = kernel(G(1) → G(1)/G(2) → A0/P ) for some submodule P ⊂ A0(K)

such that P ⊂ P⊥ with respect to the classical Blanchfield form on K.

The first-order signatures that correspond to metabolizers, that is submodules P for
which P = P⊥, have been previously studied and are closely related to Casson-Gordon-
Gilmer invariants [30] [15] [16] [26]. Since P = 0 always satisfies P ⊂ P⊥, we give a
special name to the signature corresponding to this case.

Definition 3.2. ρ1(K) of a knot K is the first-order L(2)-signature given by the Cheeger-
Gromov invariant ρ(MK , φ : G→ G/G(2)).

Similar to Casson-Gordon invariants, if K is topologically slice in a rational homology
4-ball, then one of the first-order signatures of K must be zero. We will prove a more
general statement in Proposition 5.8. However none of the first-order signatures is itself
a concordance invariant. In particular there exist ribbon knots with ρ1 6= 0 as we shall
see below.
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A genus one algebraically slice knot has precisely two metabolizers, P1, P2 for the
Seifert form and so has precisely 3 first-order signatures, two corresponding to P1 and P2

and the third corresponding to P3 = 0.

Example 3.3. Consider the knot K in Figure 3.1. This knot is obtained from a ribbon
knot R by two infections on the band meridians α, β (as in the left-hand side of Fig-
ure 1.7). Thus {α, β} is a basis of A0(K) = A0(R). There are 3 submodules P for which

K =

Kα Kβ

Figure 3.1. A genus 1 algebraically slice knot K

P ⊂ P⊥, namely P0 = 0, Pα = 〈α〉 and Pβ = 〈β〉. We may apply Lemma 2.3 to show

ρ(MK , φP ) = ρ(MR, φP ) + εαPρ0(Kα) + εβPρ0(Kβ)

where εαP is 0 or 1 according as φP (α) = 1 or not (similarly for εβP ). For our example
φPα(α) = 1 and φPα(β) 6= 1. Similarly φPβ(β) = 1 and φPβ(α) 6= 1. By contrast

φP0(α) 6= 1 and φP0(β) 6= 1. Moreover Pα corresponds to the kernel P̃α, of π1(S3−R)→
π1(B4 − ∆α)/π1(B4 − ∆α)(2) for the ribbon disk ∆α for R obtained by “cutting the α-
band”. (Similarly for Pβ.) Thus in both cases the maps φP on MR1 extend over ribbon
disk exteriors. Consequently ρ(MR, φP ) = 0 for P = Pα and P = Pβ, by Theorem 2.1.
Of course ρ(MR, φP0) = ρ1(R) by definition. Putting this all together we see that the
first-order signatures of the knot K are {ρ0(Kα), ρ0(Kβ), ρ1(R)+ρ0(Kα)+ρ0(Kβ)}. Note
that if we choose Kα to be the unknot and choose Kβ so that ρ0(Kβ) 6= −ρ1(R) then K
is a ribbon knot with ρ1 6= 0.

We remark that ρ1 vanishes for a (±)-amphichiral knot by Proposition 3.4 but it is not
true that all the first-order signatures vanish for an amphichiral knot.

Proposition 3.4. If a 3-manifold M admits an orientation-reversing homeomorphism,
then ρ(M,φ) = 0 for any φ whose kernel is a characteristic subgroup of π1(M).
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Proof of Proposition 3.4. Suppose h : −M →M is an orientation preserving homeomor-
phism. Then for any φ,

ρ(M,φ) = ρ(−M,φ ◦ h∗) = −ρ(M,φ ◦ h∗).

Since the ρ invariant depends only on the kernel of φ, which, being characteristic, is the
same as the kernel of φ ◦ h∗, the last term equals −ρ(M,φ). Since the ρ invariant is
real-valued, it is zero. �

A genus one knot that is not zero in the rational algebraic concordance group (that
is there is no metabolizer for the rational Blanchfield form) has precisely one first-order
signature, namely ρ1(K) since any proper submodule P of the rational Alexander module
satisfying P ⊂ P⊥ would have to be a (rational) metabolizer.

Example 3.5. The knot K in Figure 3.2 is of order two in the rational algebraic con-
cordance group and therefore ρ1 is the only first-order signature. Using Lemma 2.3, we
see that ρ1(K) = ρ1(figure-eight) + 2ρ0(K ′) = 2ρ0(K ′). Therefore if K ′ is chosen so that
ρ0(K ′) 6= 0 then K is not slice in a rational homology ball.

K ′ K ′

Figure 3.2.

The definition of the first-order signatures is not quite the same as that implicit in
the work of Casson-Gordon-Gilmer and in more generality in [12, Theorem 4.6]. One
would hope that one need only consider those P such that P = P⊥. However this is
false in the context of rational concordance. The knots in Figure 3.2 are in general not
slice in a rational homology ball, but this fact is not detected by signatures associated to
metabolizers of the classical rational Blanchfield form. But this is detected by ρ1. Note
that the figure-eight knot is slice in a rational homology 4-ball in such a way that the

Alexander module of the figure-eight knot injects into π/π
(2)
r where π is the fundamental

group of the complement of the slicing disk!
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4. J2(K)

Recall that, for J2(K), as in Figure 1.3, all classical invariants as well as those of
Casson-Gordon vanish. In this section, as a warm-up for more general results, we prove
that higher-order signatures yield further obstructions to J2(K) being a slice knot. We
set J0 = K and let J2 = J2(K) = R ◦R(K) where R is the 946 knot.

Theorem 4.1. If J2(K) is a slice knot then ρ0(K) ∈ {0,−1
2
ρ1(R)} where ρ1(R) is the

real number from Definition 3.2.

We obtain this as a corollary of the following more general result. Consider a knot
J as shown in Figure 4.1. Note that if J̄ is algebraically slice then J has vanishing
Casson-Gordon invariants, so is indistinguishable from a slice knot by all previously
known techniques.

Theorem 4.2. If the knot J of Figure 4.1 is a slice knot (or even (2.5)-solvable) then
one of the first-order signatures of J̄ vanishes.

J =

J̄ J̄

Figure 4.1.

Proof of Theorem 4.1. Suppose J2(K) is slice. Since J1(K) is algebraically slice, we can
apply Theorem 4.2 with J = J2(K) and J̄ = J1(K) to conclude that one of the first
order signatures of J1(K) vanishes. In Example 3.3 we saw that these signatures are
{ρ0(K), ρ0(K), ρ1(R) + 2ρ0(K)}. Thus either ρ0(K) = 0 or ρ0(K) = −1

2
ρ1(R). �

Proof of Theorem 4.2. Suppose J is slice and let V denote the exterior of a slice disk.
Thus ∂V = MJ . Let π = π1(V ). Then H1(MJ) ∼= H1(V ) ∼= π/π(1) ∼= Z. Consider the
coefficient system π → π/π(1) ∼= Z and the inclusion-induced map:

(4.1) j∗ : H1(MJ ; Q[t, t−1])→ H1(V ; Q[t, t−1])
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which is merely the map on the classical rational Alexander modules. If V is a slice disk
exterior it is well known that the kernel P0 of j∗ is self-annihilating with respect to the
classical Blanchfield form on J , i.e. P0 = P⊥0 . The knot J has the same Blanchfield
form as the ribbon knot R = 946 so P0 is either the submodule generated by α or the
submodule generated by β. Because J is symmetric, without loss of generality we assume
P0 = 〈α〉. Furthermore, it is them known, by work of D. Cooper (unpublished) and [13,
Theorem 5.2] that the zeroth order signature of J̄ vanishes, i.e. ρ0(J̄) = 0. By definition

π(1)/π(2)
r = (π(1)/[π(1), π(1)])/(Z− torsion).

(Note that since π/π(1) ∼= Z, π
(1)
r = π(1).) Thus there is a monomorphism

i : π(1)/π(2)
r ↪→ π(1)/[π(1), π(1)])⊗Z Q.

The latter has a strictly homological interpretation as the first homology with Q coeffi-
cients of the covering space of V whose fundamental group is π(1). In other words

π(1)/[π(1), π(1)])⊗Z Q ∼= H1(V ; Q[π/π(1)]).

Therefore we have the following commutative diagram where i is injective.

π1(MJ)(1) ≡−−−→ π1(MJ)(1) j∗−−−→ π(1) −−−→ π(1)/π
(2)
ry y y yi

A0(J)
∼=−−−→ H1(MJ ; Q[t, t−1])

j∗−−−→ H1(V ; Q[t, t−1])
∼=−−−→ (π

(1)
r /[π

(1)
r , π

(1)
r ])⊗Z Q

Since the kernel of the bottom horizontal composition is 〈α〉, the kernel of the top hori-
zontal composition is 〈α〉, and therefore it follows that

(4.2) j∗(α) ∈ π(2)
r and j∗(β) 6= 1 ∈ π(1)/π(2)

r .

Since J is obtained from R by two infections along α and β, from Lemma 2.5 there is a
corresponding cobordism E with 4 boundary components MJ , MR and two copies of MJ̄ .
R has an obvious ribbon disk that corresponds to “cutting the α band”. Let R denote
the exterior in B4 of this ribbon disk. Then ∂R = MR.

Remark 4.3. The salient features of R are

1. π1(MR) → π1(R) is an epimorphism whose kernel is generated by the normal
closure of α;

2. H1(MR)→ H1(R) is an isomorphism;
3. H2(R) = 0.

Construct a 4-manifold called W by first identifying −E with V along MJ and then
capping off the boundary component MR using −R, as shown in Figure 4.2. The bound-

ary components of W will be called Mα
J̄

and Mβ

J̄
. Let π̃ = π1(W ) and Γ = π̃/π̃

(3)
r . Denote
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Mα
J̄Mβ

J̄
R

MR

MJ

V

E

Figure 4.2. The cobordism W

the projection π̃ → Γ by φ and its restriction to the boundary components by φα and
φβ. We have

ρ(Mα
J̄ , φα) + ρ(Mβ

J̄
, φβ) = σ

(2)
Γ (W )− σ(W ).

By the additivity of both types of signature, the signature defect on the right-hand side
is a sum of the signature defects of V , R, and E. But these vanish; the first two by
Theorem 2.1 and the last by Lemma 2.4. Thus

(4.3) ρ(Mα
J̄ , φα) + ρ(Mβ

J̄
, φβ) = 0.

It follows from (4.2) that j∗(α) ∈ π̃(2)
r . Note that π1(Mα

J̄
) is normally generated by the

meridian which is isotopic in E to a push-off of the curve α ⊂MJ (see property 4 of 2.5).

Therefore, j∗(π1(Mα
J̄

)) ⊂ π̃
(2)
r , and hence, j∗(π1(Mα

J̄
)(1)) ⊂ π̃

(3)
r . Thus φα factors through

the abelianization of π1(Mα
J̄

). Hence by properties (2)-(4) of Proposition 2.2, ρ(Mα
J̄
, φα)

is either zero or ρ0(J̄). However, as remarked earlier, ρ0(J̄) = 0. Thus ρ(Mα
J̄
, φα) = 0.

From (4.3), we now have ρ(Mβ

J̄
, φβ) = 0. This finishes the proof of Theorem 4.2 once

we establish that this is indeed a first order signature of J̄ . Specifically, from Definition
3.1 we must show that:

1. φβ factors through G/G(2), where G = π1(Mβ

J̄
);

2. kerφβ = ker (G(1) → G(1)/G(2) → A0/P ) for some submodule P of the Alexander
module A0(J̄) such that P ⊂ P⊥ with respect to the classical Blanchfield form
on J̄ .

Since j∗(β) ∈ π(1), it follows that j∗(β) ∈ π̃(1). Also π1(Mβ

J̄
) is normally generated by

the meridian which is isotopic in E to a push-off of the β ⊂ MJ (see property 4 of 2.5).
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Therefore,

(4.4) j∗(π1(Mβ

J̄
)) ⊂ π̃(1)

Hence, j∗(π1(Mβ

J̄
)(2)) ⊂ π̃

(3)
r . This establishes property 1 above.

To show property 2, we begin by showing that the inclusion V → W induces an
isomorphism

(4.5) π/π(2)
r → π̃/π̃(2)

r .

The map π1(V ) → π1(V ∪ E) is a surjection whose kernel is the normal closure of the
set of longitudes {`α, `β} of the copies of S3 − J̄ ⊂ MJ (property (1) of Lemma 2.5).
These longitudes lie in the second derived subgroups of their respective knot groups.
The groups π1(S3− J̄) are normally generated by the meridians of the respective copy of
S3 − J̄ . These meridians are identified to push-offs of the curves α and β respectively in

MJ and we saw in (4.2) that j∗(α) ∈ π(2)
r and j∗(β) ∈ π(1). Thus j∗(`α) and j∗(`β) lie in

π
(3)
r and so the inclusion map V → V ∪E induces an isomorphism on π1 modulo π1(−)

(3)
r .

Similarly the map π1(V ∪E)→ π1(V ∪E ∪R) is a surjection whose kernel is the normal
closure of the curve α ⊂MR (by property 1 of (4.3)). But this curve α is isotopic in E to

a push-off of the curve α ⊂MJ and j∗(α) ∈ π(2)
r . Thus the inclusion V ∪E → W induces

an isomorphism on π1 modulo π1(−)
(2)
r . Combining these two isomorphisms yields (4.5).

Combining (4.2) and (4.5), we have that j∗(β) 6= 1 ∈ π̃(1)/π̃
(2)
r . Since this group is

torsion-free abelian, j∗(β) generates an infinite cyclic subgroup of π̃(1)/π̃
(2)
r . Therefore

the inclusion of the meridian of Mβ

J̄
into W is an element of infinite order in π̃(1)/π̃

(2)
r .

We claim that the kernel of φβ : G → Γ = π̃/π̃
(3)
r is contained in G(1). For suppose

x ∈ kerφβ and x = µmy where µ is a meridian of Mβ

J̄
and y ∈ G(1). Since x ∈ kerφβ,

clearly x is in the kernel of the composition

ψβ : G
φβ→ π̃/π̃(3)

r → π̃/π̃(2)
r .

Moreover, by (4.4), φβ(G(1)) ⊂ π̃
(2)
r . Therefore µm is in the kernel of ψβ, but this

contradicts the fact that µ is an element of infinite order in π̃(1)/π̃
(2)
r . Thus the kernel

of φβ : G → Γ is contained in G(1). It remains to describe P and to show that P ⊂ P⊥

with respect to the Blanchfield form on J̄ .

We consider the coefficient system ψ : π̃ → π̃/π̃
(2)
r ≡ Λ. By (4.4), ψ restricted to

π1(Mβ

J̄
) factors through the abelianization. Thus (as we shall discuss in more detail in

Section 6)

H1(Mβ

J̄
; QΛ) ∼= H1(Mβ

J̄
; Q[t, t−1])⊗Q[t,t−1] QΛ.

Consider the composition:

(4.6) A0(J̄)
i
↪→ A0(J̄)⊗Q[t,t−1] QΛ

∼=→ H1(Mβ

J̄
; QΛ)

j∗→ H1(W ; QΛ),
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We claim that i = id ⊗ 1 is a map of Q[t, t−1]-modules. Recall that A0(J̄) ⊗Q[t,t−1] QΛ
is a right QΛ-module and hence can be considered as a right Q[t, t−1]-module using the
embedding Z ↪→ Λ where, let’s say, t→ µ. If x ∈ A0(J̄) and p(t) ∈ Q[t, t−1] then:

id⊗1(xp(t)) = xp(t)⊗1 = x⊗(p(µ)·1) = x⊗(1·p(µ))) = (x⊗1)∗p(t) = (id⊗1(x))∗p(t).

Thus id⊗1 is a right Q[t, t−1]-module map. Define P1 to be the kernel of the composition
in 4.6. We claim that P1 is the submodule P of the Alexander module referred to above.
Consider the following commutative diagram where i is injective.

π1(Mβ

J̄
)(1) ≡−−−→ π1(Mβ

J̄
)(1) j∗−−−→ π̃

(2)
r −−−→ π̃

(2)
r /π̃

(3)
ry y y yi

A0(J̄) −−−→ H1(Mβ

J̄
; QΛ)

j∗−−−→ H1(W ; QΛ)
∼=−−−→ (π̃

(2)
r /[π̃

(2)
r , π̃

(2)
r ])⊗Z Q

Given an element in P1, choose a representative of this element in G(1) = π1(Mβ

J̄
)(1). By

the diagram above, since i is injective, it follows that the representative of this element

must map into π̃
(3)
r . In other words, the representative is in the kernel of φβ. This

establishes that kerφβ = ker (G(1) → G(1)/G(2) → A0/P1). Thus P1 = P .
Recall the classical fact (used above) that if V is the slice disk complement for a slice

knot J , then the kernel P0 of j∗ : H1(MJ ; Q[t, t−1])→ H1(V ; Q[t, t−1]) is self-annihilating
with respect to the classical Blanchfield form on J , i.e. P0 = P⊥0 . We would like to
extend this to show that the kernel P1 satisfies P1 ⊂ P⊥1 with respect to the classical
Blanchfield form on J̄ .

But Mβ

J̄
→ W is quite different than the classical situation. First, Mβ

J̄
is not the only

boundary component of W . Secondly, the map Mβ

J̄
→ W is the zero map on H1(−)!

Thirdly, QΛ is not a PID. Nonetheless, after defining a new category of cobordisms in
Section 5 we are able to prove the required facts using higher-order Blanchfield linking
forms.

The desired result to finish the proof at hand is Theorem 6.6 with k = 2. The verifica-
tion that W is a (2)-bordism is straight-forward. We have not included all the details in
this proof because we have not yet covered all the results necessary to prove the theorem,
but thought it valuable to see the ideas and to provide motivation for the new category
of cobordisms we define in the next section.

�

5. n-Bordisms and Rational n-Bordisms

Our proof makes essential use of a much weaker notion than the (n)-solvability of
Cochran-Orr-Teichner. In this section we define this notion and establish its key proper-
ties.
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Recall that [12, Section 8] introduced a filtration of the concordance classes of knots C
· · · ⊆ Fn ⊆ · · · ⊆ F1 ⊆ F0.5 ⊆ F0 ⊆ C.

where the elements of Fn and Fn.5 are called (n)-solvable knots and (n.5)-solvable knots
respectively. This is a filtration by subgroups of the knot concordance group. A slice knot
K has the property that its zero surgery MK bounds a 4-manifold W (namely the exterior
of the slicing disk) such that H1(MK)→ H1(W ) is an isomorphism and H2(W ) = 0. An
(n)-solvable knot is, loosely speaking, one such that MK bounds a 4-manifold W such
that H1(MK)→ H1(W ) is an isomorphism and the intersection form on H2(W ) “looks”
hyperbolic modulo the nth-term of the derived series of π1(W ). The manifold W is called
an (n)-solution for ∂W . These notions are defined below in the context of our new notion.

We will define a weaker notion where the condition that H1(∂W ) → H1(W ) be an
isomorphism is dropped. Somewhat surprisingly the key results still hold for this much
weaker notion. Of lesser importance, we also drop the condition on the connectivity of
∂W , which had already been done in [11] in restricted cases.

For a compact connected oriented topological 4-manifold W , let W (n) denote the cov-
ering space of W corresponding to the n-th derived subgroup of π1(W ). The deck trans-
lation group of this cover is the solvable group π1(W )/π1(W )(n). Then H2(W (n); Q) can
be endowed with the structure of a right Q[π1(W )/π1(W )(n)]-module. This agrees with
the homology group with twisted coefficients H2(W ; Q[π1(W )/π1(W )(n)]). There is an
equivariant intersection form

λn : H2(W (n); Q)×H2(W (n); Q) −→ Q[π1(W )/π1(W )(n)]

[44, Chapter 5][12, Section 7]. The usual intersection form is the case n = 0. In general,
these intersection forms are singular. Let In ≡ image(j∗ : H2(∂W (n); Q)→ H2(W (n); Q)).
Then this intersection form factors through

λn : H2(W (n); Q)/In ×H2(W (n); Q)/In −→ Q[π1(W )/π1(W )(n)].

We define a rational (n)-Lagrangian, L, ofW to be a submodule ofH2(W ; Q[π1(W )/π1(W )(n)])
on which λn vanishes identically and which maps onto a 1

2
-rank subspace of H2(W ; Q)/I0

under the covering map. An (n)-surface is a based and immersed surface in W that
can be lifted to W (n). Observe that any class in H2(W (n)) can be represented by (the
lift of) an (n)-surface and that λn can be calculated by counting intersection points
in W among representative (n)-surfaces weighted appropriately by signs and by ele-
ments of π1(W )/π1(W )(n) (see [12, Section 7]). We say a rational (n)-Lagrangian L
admits rational (m)-duals (for m ≤ n) if L is generated by (lifts of) (n)-surfaces
`1, `2, . . . , `g and there exist (m)-surfaces d1, d2, . . . , dg such that H2(W ; Q)/I0 has rank
2g and λm(`i, dj) = δi,j.

If W is a spin manifold then we can replace all the occurrences of Q above by Z and
consider the equivariant intersection form λZ

n on H2(W (n); Z) as well as the equivariant
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self-intersection form µn. This leads to the definitions of an (n)-Lagrangian and (m)-
duals for W , where µn is required to vanish identically on an (n)-Lagrangian and we
also require that the (n)-Lagrangian maps onto a 1

2
-rank summand of H2(W ; Z)/I0. In

the presence of (n)-duals, this forces the usual intersection form on H2(W ; Z)/I0 to be
hyperbolic [12, Remark 7.6]. All of the above notions were first defined in [12]. In [11] this
was extended to the case that ∂W is disconnected but required each boundary component
Mi to satisfy H1(Mi) ∼= H1(W ) ∼= Z.

A crucial part of the definition is the “size” (cardinality) of a rational (n)-Lagrangian,
which is dictated by the rank of H2(W ; Q)/I0. Under the assumption that

H1(∂W ; Q)→ H1(W ; Q)

is an isomorphism, it follows that the dual map

H3(W,M ; Q)→ H2(∂W ; Q)

is an isomorphism and hence that I0 = 0. Thus in this special case (which was the case
treated in ( [12], [11]) and [23]), the size of rational (n)-solutions is dictated merely by
the rank of H2(W ; Q). This assumption will not hold in our applications. We need the
more general situation.

Definition 5.1. Let n be a nonnegative integer. A compact, connected oriented topo-
logical 4-manifold W with ∂W = M is a rational (n)-bordism for M if W admits
a rational (n)-Lagrangian with rational (n)-duals. Then we say that M is rationally
(n)-bordant via W and that W is a rational (n)-bordism for M . If W is spin then
we say that W is an (n)-bordism for M if W admits an (n)-Lagrangian with (n)-duals.
Then we say that M is (n)-bordant via W and that W is an (n)-bordism for M .

Definition 5.2. Let n be a nonnegative integer. A compact, connected oriented 4-
manifold W with ∂W = M is a rational (n.5)-bordism for M if W admits a rational
(n + 1)-Lagrangian with rational (n)-duals. Then we say that M is rationally (n.5)-
bordant via W . If W is spin then we say that W is an (n.5)-bordism for M if W
admits an (n+ 1)-Lagrangian with (n)-duals. Then we say that M is (n.5)-bordant via
W and that W is an (n.5)-bordism for M .

We recover Cochran-Orr-Teichner’s notion of solvability by imposing the following
additional restrictions.

Definition 5.3. [12, Section 8] A 4-manifold W is an (n)-solution (respectively an
(n.5)-solution) for ∂W = M and M is called (n)-solvable (respectively (n.5)-solvable)
if

1. W is an (n)-bordism (respectively an (n.5)-bordism),
2. ∂W is connected and non-empty, and
3. H1(∂W ; Z)→ H1(W ; Z) is an isomorphism.
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There is an analogous definition for rationally (n)-solvable (respectively rationally
(n.5)-solvable).

Definition 5.4. For h a non-negative integer or half-integer, a knot or link is called (h)-
bordant (respectively rationally (h)-bordant, (h)-solvable, rationally (h)-solvable)
if its zero surgery manifold MK admits an (h)-bordism (respectively a rational (h)-bordism,
an (h)-solution, a rational (h)-solution).

Remark 5.5. (1) Any (h)-bordism is a rational (h)-bordism.
(2) Any (h)-solution is a rational (h)-solution.
(3) Any (h)-solution is an (h)-bordism.
(4) Any rational (h)-solution is a rational (h)-bordism.
(5) Any (n)-bordism (respectively rational (n)-bordism) is an (m)-bordism (respec-

tively rational (m)-bordism) for any m < n.
(6) If L is slice in a topological (rational) homology 4-ball then the complement of a

set of slice disks is a (rational) (n)-solution for any integer or half-integer n. This
follows since H2(W ; Z) = 0, and therefore the Lagrangian may be taken to be the
zero submodule.

Remark 5.6. One can see that any knot is is rationally 0-solvable as follows. Since
Ω3(S1) = 0, MK is the boundary of some smooth 4-manifold W with π1(W ) ∼= Z generated
by the meridian (after surgery). The signature of W can be assumed to be zero by connect-
summing with copies of ±CP (2). One can see that any Arf invariant zero knot is 0-

solvable in the topological category by the same argument, using the fact that ΩSpin
3 (S1) ∼=

Z2 as detected by the Arf invariant and connect-summing with copies of Freedman’s ±E8

manifold. For the argument in the smooth category see the explicit construction in [13,
Section 5].

Certain ρ-invariants obstruct solvability.

Theorem 5.7. (Cochran-Orr-Teichner [12, Theorem 4.2]) If a knot K is rationally (n.5)-
solvable via W and φ : π1(MK)→ Γ is a PTFA coefficient system that extends to π1(W )
and such that Γ(n+1) = 1, then ρ(MK , φ) = 0.

Proposition 5.8. If K is topologically slice in a rational homology 4-ball (or more gen-
erally if K is rationally (1.5)-solvable) then one of the first-order signatures of K is zero.

Proof of Proposition 5.8. Let V be a rational (1.5)-solution for MK , G = π1(MK), π =

π1(V ) and φ : π → π/π
(2)
r . By [12, Theorem 4.2] ρ(MK , φ) = 0. Clearly the restriction of

φ to G factors through G/G(2). Now, by [12, Theorem 4.4] (see also our Theorem 6.6),
if P denotes the kernel of the map

A0(K)
i∗→ H1(MK ; Q[π/π(1)

r ])
j∗→ H1(V ; Q[π/π(1)

r ]),
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then P ⊂ P⊥ with respect to the classical Blanchfield form of K. If V is the exterior of a
slice disk in a homology 4-ball, this is merely the classical result that P = P⊥. It follows
that ρ(MK , φ) is one of the first-order signatures of K. The details in verifying this final
claim are entirely similar to those in the proof of Theorem 4.2. �

There is an extension of Theorem 5.7 to the much broader category of (n.5)-null bor-
disms, but we shall not need it in this paper. However, a slightly weaker result will follow
readily from results that we will need.

Theorem 5.9. Suppose W is a rational (n+ 1)-bordism and φ : π1(W ) −→ Γ is a non-
trivial coefficient system where Γ is a PTFA group with Γ(n+1) = 1. Suppose for each com-
ponent Mi of ∂W for which φ restricted to π1(Mi) is nontrivial, that rankZΛH1(Mi; ZΓ) =
β1(Mi)− 1. Then

ρ(∂W, φ) = 0.

For the proof we need the following technical result that will also be crucial in Section
6. Recall our notation KΛ for the (skew) quotient field of fractions of ZΛ. An Ore
localization of an Ore domain ZΛ is R = ZΛ[S−1] for some right-Ore set S [42].

Lemma 5.10. Suppose W is a rational (k)-bordism and φ : π1(W ) −→ Λ is a non-trivial
coefficient system where Λ is a PTFA group with Λ(k) = 1. Let R be an Ore localization
of ZΛ so ZΛ ⊂ R ⊂ KΛ. Suppose for each component Mi of ∂W for which φ restricted
to π1(Mi) is nontrivial, that rankZΛH1(Mi; ZΛ) = β1(Mi)− 1. Then

1. The Q-rank of (H2(W )/j∗(H2(∂W )) is equal to the KΛ-rank of H2(W ;R)/I where

I = image(j∗(H2(∂W ;R)→ H2(W ;R))).

and
2.

TH2(W,∂W ;R)
∂−→ TH1(∂W ;R)

j∗−→ TH1(W ;R)

is exact, where TM denotes the R-torsion submodule of the R-module M.

We should point out that the rank hypothesis on H1(Mi; ZΛ) is always satisfied if
β1(M) = 1 (by [12, Proposition 2.11]), which will always be the case in this paper. The
more general result is needed to study links.

Proof of Lemma 5.10. First we establish the rank claim. We can assume that ∂W is not
empty. Let βi denote the ith-Betti number. By duality

β3(W ) = β1(W,∂W ) and β2(W ) = β2(W,∂W )

Using these facts, by examining the long exact sequence of the pair for reduced homology
with Q-coefficients

H2(∂W )
j2∗→ H2(W )→ H2(W,∂W )

∂∗−→ H1(∂W )
j∗→ H1(W )→ H1(W,∂W )→ H̃0(∂W )→ 0
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and setting alternating sums of ranks equal to zero, we see that

−rankQimj2
∗ = −β1(∂W ) + β1(W )− β3(W ) + β0(∂W )− 1.

Now let 2m = rankQ(H2(W )/j2
∗(H2(∂W )). Then from the above we have

2m = β2(W )− rankQimj2
∗ = β2(W )− β1(∂W ) + β1(W )− β3(W ) + β0(∂W )− 1,

or

2m = χ(W ) + 2β1(W )− 2− β1(∂W ) + β0(∂W )

where χ is the Euler characteristic.
We claim that 2m is also the KΛ-rank of H2(W ;R)/I. First we show that this rank

is at most 2m. To see this let

bi(W ) = rankKΛHi(W ;KΛ) ≡ rankZΛHi(W ; ZΛ).

Again, by duality

b3(W ) = b1(W,∂W ) and b2(W ) = b2(W,∂W )

Since W is connected and the coefficient system on W is non-trivial, b0(W ) = b4(W ) = 0
by [12, Proposition 2.9]. Using these facts, by examining the long exact sequence of the
pair for homology with KΛ-coefficients

H2(∂W )
j2∗→ H2(W )→ H2(W,∂W )

∂∗−→ H1(∂W )
j∗→ H1(W )→ H1(W,∂W )→ H0(∂W )→ 0,

we see as above that

−rankKΛimj2
∗ = −b1(∂W ) + b1(W )− b3(W ) + b0(∂W ).

so the rank of H2(W ;R)/I is

b2(W )− rankKΛimj2
∗ = b2(W )− b1(∂W ) + b1(W )− b3(W ) + b0(∂W ).

Since the Euler characteristic can be calculated with KΛ-coefficients this can be written
as

rankKΛ(H2(W ;R)/I) = χ(W ) + 2b1(W )− b1(∂W ) + b0(∂W ).

Combining this with our previous computation

rankKΛ(H2(W ;R)/I)−2m = 2(b1(W )−β1(W )+1)+β1(∂W )−b1(∂W )−β0(∂W )+b0(∂W ).

We claim that the quantity on the right-hand side of this equality is at most zero. By [12,
Proposition 2.11]

b1(W ) ≤ β1(W )− 1

so the quantity in parentheses is non-positive. Thus it will suffice to show that

(β1(Mi)− b1(Mi))− (β0(Mi)− b0(Mi)) = 0
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for each component Mi of ∂W . If Mi is a boundary component on which φ restricts to
be trivial, then this is clear since then the Q-ranks agree with the KΛ-ranks. Otherwise
β0(Mi) = 1, b0(Mi) = 0 by [12, Proposition 2.9] and

b1(Mi) = β1(Mi)− 1

by our hypothesis. Thus we have established that

rankKΛ(H2(W ;R)/I) ≤ 2m.

We shall soon see that this rank is at least 2m, hence equals 2m.

Remark 5.11. Note that we have actually shown more. Even with no rank assumptions
on the boundary, we have shown that

rankKΛ(H2(W ;R)/I) ≤ 2m+
∑
φi 6=0

(β1(Mi)− 1− b1(Mi)).

This remark will be used in a later paper.

Recall that the cardinality of a rational (k)-Lagrangian for W is, by definition, m. Let
{`1, `2, . . . , `m} generate a rational (k)-Lagrangian forW and {d1, d2, . . . , dm} its (k)-duals
inH2(W ; Q[π1(W )/π1(W )(k)]). Since Λ(k) = 1, φ factors through φ′ : π1(W )/π1(W )(k) −→
Λ. We denote by `′i and d′i the images of `i and di in H2(W ;R). By naturality of in-
tersection forms, the intersection form λ defined on H2(W ;R) vanishes on the module
generated by {`′1, `′2, . . . , `′m} and the d′i are still duals. Recall that the intersection form
factors through

λ : H2(W ;R)/I ×H2(W ;R)/I −→ R.
Let Rm ⊕ Rm be the free module on {`′i, d′i} and let (−)∗ denote HomR(−,R). The
following composition

Rm ⊕Rm j∗−→ (H2(W ;R)/I)
λ−→ (H2(W ;R)/I)∗

j∗−→ (Rm ⊕Rm)∗

is then the definition of λ (restricted to this free module) and so is represented by a block
matrix (

0 I
I X

)
,

for some X. This matrix has an inverse which is(
−X I
I 0

)
.

Thus the composition is an isomorphism. This implies that both j∗ and j∗ ◦ λ are
epimorphisms. It follows immediately that

rankKΛ(H2(W ;R)/I) ≥ 2m

and hence equality must hold. This concludes the proof of the first claim of the lemma.
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Continuing, the rank of (H2(W ;R)/I)∗ must also be 2m, and hence the kernel of the
epimorphism j∗ is the torsion submodule of (H2(W ;R)/I)∗. But the latter is torsion-free
since R is a domain. Hence j∗ is an isomorphism and (H2(W ;R)/I)∗ is free of rank
2m. It follows that λ is surjective. Now consider the commutative diagram below with
R-coefficients.

H2(W )/I H2(W,∂W ) H1(∂W ) H1(W )

H2(W ) H2(∂W )

(H2(W )/I)∗ (H2(W ))∗ (H2(∂W ))∗

-
π∗

@
@
@
@
@
@R

λ

?

λ

-
∂∗

?
P.D.

-
j∗

?
P.D.

?
κ

?
κ

-
q∗ -

j∗

Given p ∈ TH1(∂W ;R) such that j∗(p) = 0, choose x such that ∂∗x = p. Since p is
torsion, κ ◦ P.D.(p) = 0 and so κ ◦ P.D.(x) = q∗(z) for some z ∈ (H2(W )/I)∗. Since λ
is surjective, we can choose y such that element λ(y) = z. Then ∂∗(x − π∗(y)) = p and
x− π∗(y) lies in the kernel of κ ◦P.D.., hence is torsion. Thus we have shown that every
torsion element of kerj∗ is in the image of an element of TH2(W,∂W ;R). This concludes
the proof of the Lemma 5.10.

�

Proof of Theorem 5.9. Note that the ordinary signature of any (n+ 1)-bordism vanishes
since the (n+ 1)-Lagrangian projects to a Lagrangian of the ordinary intersection form.
Let Ĩ denote the image of the map

H2(∂W ;KΓ)
j∗−→ H2(W ;KΓ).

By property (1) of Proposition 2.2, it suffices to show that there is a one-half rank

submodule, L of H2(W ;KΓ)/Ĩ on which λ̃ vanishes. By the first part of Lemma 5.10,
applied with Λ = Γ, k = n + 1 and R = KΓ, we see that we need to find an L whose
rank is one half of

rankQ(H2(W ; Q)/I0)

where I0 is the image of H2(∂W ; Q). Let {`1, `2, . . . , `m} generate a rational (n + 1)-
Lagrangian for W and {d1, d2, . . . , dm} its (n+1)-duals in H2(W ; Q[π1(W )/π1(W )(n+1)]).
Recall that the cardinality of m of a generating set for a Lagrangian is such that

m = 1/2rankQ(H2(W ; Q)/I0).

Since Γ(n+1) = 1, φ factors through φ′ : π1(W )/π1(W )(n+1) −→ Γ. We denote by ˜̀
i

and d̃i the images of `i and di in H2(W ;KΓ)/Ĩ. By naturality of intersection forms, the
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(nonsingular) intersection form λ̃ induced on H2(W ;KΓ)/Ĩ vanishes on the submodule,

L, generated by {˜̀1, ˜̀
2, . . . , ˜̀

m}. Moreover the d̃i are still duals. Since duals exist,

rankKΓL = m

as required. �

6. Higher-Order Blanchfield forms and n-Bordisms

We have seen in Lemma 2.3 that an infection will have an effect on a ρ-invariant
only if the infection circle η survives under the map defining the coefficient system. For
example if one creates a knot J by infecting a slice knot R along a curve η that dies in
π1(B4 − ∆) for some slice disk ∆ for R, then this infection will have no effect on the
ρ-invariants associated to any coefficient system that extends over B4 − ∆. Indeed the
resulting knot is known to be topologically slice [8]. Therefore it is important to prove
injectivity theorems concerning π1(S3 − R)→ π1(B4 −∆), that is to locate elements of
π1(S3 − R) that survive under such inclusions. Moreover the curve η must usually lie
in π1(S3 − R)(n). For then it is known that J will be rationally n-solvable and we seek
to show that it is not (n.5)-solvable. Therefore, loosely speaking, we need to be able to
prove that η survives under the map

j∗ : π1(S3 −R)(n)/π1(S3 −R)(n+1) → π1(B4 −∆)(n)/π1(B4 −∆)(n+1).

For n = 1 this is a question about ordinary Alexander modules and was solved by
Casson-Gordon and Gilmer using linking forms on finite branched covers. In general this
seems a daunting task. (Note that this is impossible if π1(B4 − ∆) is solvable, which
occurs, for example, for the standard slice disk for the ribbon knot R of Figure 1.1(e.g.
see [17])). To see that higher-order Alexander modules are relevant to this task, observe
that the latter quotient is the abelianization of π1(B4−∆)(n) and thus can be interpreted
as H1(Wn) where Wn is the (solvable) covering space of B4 − ∆ corresponding to the
subgroup π1(B4 − ∆)(n). Such modules were named higher-order Alexander modules
in [12] [7] [24]. We will employ higher-order Blanchfield linking forms on higher-order
Alexander modules to find restrictions on the kernels of such maps. The logic of the
technique is entirely analogous to the classical case (n = 1): Any two curves η0, η1, say,
that lie in the kernel of j∗ must satisfy B`(η0, η0) = B`(η0, η1) = B`(η1, η1) = 0 with
respect to a higher order linking form B`. Our new insight is that, if the curves lie in a
submanifold S3 −K ↪→ S3 − J , a situation that arises whenever J is formed from R by
infection using a knot K, then the values (above) of the higher-order Blanchfield form of
J can be expressed in terms of the values of the classical Blanchfield form of K!

Higher-order Alexander modules and higher-order linking forms for classical knot ex-
teriors and for closed 3-manifolds with β1(M) = 1 were introduced in [12, Theorem 2.13]
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and further developed in [7] and [29]. These were defined on the so called higher-order
Alexander modules TH1(M ;R), where TH1(M ;R) denotes the R-torsion submodule.

Theorem 6.1. [12, Theorem 2.13] Suppose M is a closed, connected, oriented 3-manifold
with β1(M) = 1 and φ : π1(M) → Λ is a PTFA coefficient system. Suppose R is a
classical Ore localization of the Ore domain ZΛ (so ZΛ ⊂ R ⊂ KΛ). Then there is a
linking form:

BlMR : TH1(M ;R)→ (TH1(M ;R))# ≡ HomR(TH1(M ;R),KΛ/R).

Remark 6.2. It is crucial to our techniques that we work with such Blanchfield forms
without localizing the coefficient systems. When we speak of the unlocalized Blanchfield
form we mean that R = ZΛ or R = QΛ. It is in this aspect that our work deviates from
that of [12] [13] [11]. This was investigated in [29] [28]. In this generality, TH1(M ;R)
need not have homological dimension one nor even be finitely-generated, and these linking
forms are singular. A non-localized Blanchfield form for knots also played the crucial role
in [17].

There is another key result of [12] concerning solvability whose generalization to null-
bordism will be a crucial new ingredient in our proofs. Once again, the rank hypothesis
is automatically satisfied if β1(Mi) = 1.

Theorem 6.3. Suppose W is a rational (k)-null-bordism and φ : π1(W ) −→ Λ is a
non-trivial coefficient system where Λ is a PTFA group with Λ(k) = 1. Let R be an Ore
localization of ZΛ so ZΛ ⊂ R ⊂ KΛ. Suppose that, for each component Mi of ∂W for
which φ restricted to π1(Mi) is nontrivial, that rankZΛH1(Mi; ZΛ) = β1(Mi)− 1. Then if
P is the kernel of the inclusion-induced map

TH1(∂W ;R)
j∗−→ TH1(W ;R),

then P ⊂ P⊥ with respect to the Blanchfield form on TH1(∂W ;R).

Proof of Theorem 6.3. We need the following which was asserted in the proof of [12,
Theorem 4.4]. A careful proof in more generality is given in [9] (See also [4, Lemmas 3.2,
3.3]).

Lemma 6.4. There is a Blanchfield form, Blrel,

BlrelR : TH2(W,∂W ;R)→ TH1(W )#
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such that the following diagram, with coefficients in R unless specified otherwise, is com-
mutative up to sign:

(6.1)

TH2(W,∂W ;R) TH1(∂W ;R)

TH1(W ;R)# TH1(∂W ;R)#

-
∂∗

?
BlrelR

?
Bl∂WR

-
j̃∗

Now suppose P = kernelj∗ ⊂ TH1(∂W ;R). Suppose x ∈ P and y ∈ P . According to
Lemma 5.10, we have x = ∂∗(x̃) for some x̃ ∈ TH2(W,∂W ). Thus by Diagram 6.1,

Bl∂WR (x)(y) = Bl∂WR (∂∗x̃)(y) = j̃∗(BlrelR (x̃)(y) = BlrelR (∂∗x̃)(j∗(y)) = 0

since j∗(y) = 0. Hence P ⊂ P⊥ with respect to the Blanchfield form on TH1(∂W ;R).
This concludes the proof of Theorem 6.3. �

In many important situations the induced coefficient system φ : π1(MK) → Λ factors
through, Z, the abelianization. In this case the higher-order Alexander module of MK

and the higher-order Blanchfield form BlKΛ are merely the classical Blanchfield form on
the classical Alexander module, “tensored up”. What is meant by this is the following.
Supposing that φ is both nontrivial and factors through the abelianization, the induced
map image(φ) ≡ Z ↪→ Λ is an embedding so it induces embeddings

φ : Q[t, t−1] ↪→ QΛ, and φ : Q(t) ↪→ KΛ.

Moreover there is an isomorphism

H1(MK ; QΛ) ∼= H1(MK ; Q[t, t−1])⊗Q[t,t−1] QΛ ∼= A0(K)⊗Q[t,t−1] QΛ,

where A0(K) is the classical (rational) Alexander module of K and where QΛ is a
Q[t, t−1]-module via the map t→ φ(α) [7, Theorem 8.2]. We further claim:

Lemma 6.5. φ induces an embedding

φ : Q(t)/Q[t, t−1] ↪→ KΛ/QΛ.

Proof of Lemma 6.5. Consider the monomorphism of groups Z
φ
↪→ Λ, where we will abuse

notation by setting t ≡ φ(t). In other words we will consider that Z ⊂ Λ. Then the
Lemma is equivalent to

Q(t) ∩QΛ ⊂ Q[t, t−1].

Suppose
p(t)/r(t) = x ∈ QΛ,

where r(t) 6= 0. We seek to show that x ∈ Q[t, t−1]. Consider the equation

(6.2) p(t) = xr(t)
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in QΛ. The key point is that since Z ⊂ Λ, QΛ is free as a right Q[t, t−1]-module on the
left cosets of Z in Λ, i.e.

QΛ ∼= ⊕ cosetsQ[t, t−1].

Thus for each coset representative γ we can speak of the γ coordinate of x, xγ, which is
the polynomial in Q[t, t−1] occurring in the above decomposition of x. We can decompose
x as

x = Σγγxγ;⇒ xr(t) = Σγγ(xγr(t)).

Equation 6.2 is equivalent to a system of equations, one for each coset representative.
For each γ 6= e this equation is:

0 = xγ(t)r(t)

implying that xγ(t) = 0. Thus x ∈ Q[t, t−1]. �

Continuing, then we also have

(6.3) BlKΛ (x⊗ 1, y ⊗ 1) = φ(BlK0 (x, y))

for any x, y ∈ A0(K), where BlK0 is the classical Blanchfield form on the rational Alexan-
der module of K [28, Proposition 3.6] [29, Theorem 4.7] (see also [5, Section 5.2.2]).

The following is perhaps the key technical tool of the paper, that we use to establish
certain “injectivity” as discussed in the first paragraph of this section. For the reader who
is just concerned with proving that knots and links are not slice, replace the hypothesis
below that “W is a rational (k)-solution for ML” with the hypothesis that “L is a slice
link and W is the exterior in B4 of a set of slice disks for L”. Such an exterior is a
rational (k)-solution for any k.

Theorem 6.6. Suppose W is a rational (k)-bordism one of whose boundary components
is MK, Λ is a PTFA group such that Λ(k) = 1, and ψ : π1(W )→ Λ is a coefficient system
whose restriction to π1(MK) is denoted φ. Suppose that φ factors non-trivially through
Z. Let P be the kernel of the composition

A0(K)
id⊗1−→ A0(K)⊗Q[t,t−1] QΛ

i∗→ H1(MK ; QΛ)
j∗→ H1(W ; QΛ).

Then P ⊂ P⊥ with respect to Bl0, the classical Blanchfield linking form on the rational
Alexander module, A0(K), of K.

Proof of Theorem 6.6. Suppose x, y ∈ P as in the statement. Let R = QΛ, M = MK

and let P be the submodule of H1(M ; QΛ) generated by {i∗(x ⊗ 1), i∗(y ⊗ 1)}. Then
P ⊂ kernel j∗. Apply Theorem 6.3 to conclude that

BlKΛ (i∗(x⊗ 1)), (i∗(y ⊗ 1)) = 0.

By 6.3,

φ(BlK0 (x, y)) = 0.
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Since φ is a monomorphism by hypothesis, it follows that BlK0 (x, y) = 0. Thus P ⊂
P⊥ with respect to the classical Blanchfield form on K. This concludes the proof of
Theorem 6.6. �

7. Constructions of (n)-solvable knots

In preparation for our proof that Fn/Fn.5 has infinite rank, we will exhibit large classes
of knots that are (n)-solvable, including the knots Jn(K), for any J0 = K of Figure 1.3.
Specifically we show that any knot obtained by starting with an Arf invariant zero knot
and applying n successive operators R

ηij
i , where R is a slice knot and the ηij are in the

commutator subgroup, is (n)-solvable. In the proof of our main theorem we will need an
(n)-solution with some special features, which we produce here.

Theorem 7.1. If Ri, 1 ≤ i ≤ n, are slice knots and ηij ∈ π1(S3 − Ri)
(1) (where

{ηi1, ..., ηimi} is a trivial link in S3) then , abbreviating the operator R
ηij
i by Ri.

Rn ◦ · · · ◦R2 ◦R1(F0) ⊂ Fn.
More precisely, for any Arf invariant zero knot K, if we abbreviate Rn◦· · ·◦R2◦R1(K) by
Jn then the zero surgery on Jn, denoted Mn, bounds an (n)-solution Zn with the following
additional properties:

1. π1(∂Zn)→ π1(Zn) is surjective;
2. for any PTFA coefficient system φ : π1(Zn)→ Γ where Γ(n+1) = 1

ρ(Mn, φ) = σ
(2)
Γ (Zn)− σ(Zn) = cφρ0(K)

where cφ is a non-negative integer bounded above by the product m1m2...mn.

Corollary 7.2. For any Arf invariant zero knot K = J0, each Jn as in Figure 1.3 is (n)-
solvable. Moreover the zero surgery on Jn bounds an (n)-solution Zn with the following
additional properties:

1. π1(∂Zn)→ π1(Zn) is surjective;
2. for any PTFA coefficient system φ : π1(Zn)→ Γ where Γ(n+1) = 1

ρ(Mn(K), φ) = σ
(2)
Γ (Zn)− σ(Zn) = cφρ0(K)

where cφ is an integer such that 0 ≤ cφ ≤ 2n.

Proof of Theorem 7.1. The proof is by induction on n. Suppose n = 0 so Jn = K and
Mn = MK . Any Arf invariant zero knot K admits a (0)-solution Z0 such that π1

∼= Z so
property 1 holds (see Remark 5.6 or [13, Section 5]). Then, since Γ is abelian if n = 0,
φ factors through Z and so ρ(MK , φ) is either zero or equal to ρ0(K) (see part 4 of
Proposition 2.2). Thus the Theorem holds for n = 0.

Now suppose that Zn−1 exists satisfying the properties 1 and 2. We construct Zn as
follows. Recall that, by definition, Jn = Rn(Jn−1) is obtained from Rn by mn infections
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along the circles {ηn1, ..., ηnmn} using the knot Jn−1 as the infecting knot in each case.
Recall also from Lemma 2.5 that there was a corresponding cobordism E with mn + 2
boundary components: Mn, MRn and mn copies of Mn−1 as shown in Figure 2.1. Begin-
ning with E, cap off the mn boundary components with mn copies of Zn−1 and cap off
MRn with R = B4−∆, the exterior of any ribbon disk ∆ for Rn as shown schematically
in Figure 7.1. The resulting manifold has a single copy of Mn as boundary and is denoted
Zn.

Zn−1 Zn−1

R

Mn−1

. . . . . .
� -

Mn
�

Figure 7.1. Zn

Property 1 of Theorem 7.1 follows from property 1 for Zn−1(K) together with property
1 of Lemma 2.5.
Zn(K) is an (n)-solution:
This will follow from a simple analysis of H2(Zn; Z). We will drop the Z from the

notation here for simplicity.
Recall from Lemma 2.5 that

H2(E) ∼= H2(MR)⊕mnj=1 H2(Mn−1).

Since Zn−1 is an (n − 1)-solution, H1(Mn−1) → H1(Zn−1) is an isomorphism. It follows
from duality that H2(Mn−1)→ H2(Zn−1) is the zero map (a capped-off Seifert surface for
Jn−1 is a generator of the former and arises as the inverse image of a regular value under
a map to a circle. Extend this map to Zn−1 and pull back to get a bounding 3-manifold).
Therefore the Mayer-Vietoris sequence implies that

H2(E ∪mnj=1 Zn−1) ∼= H2(MR)⊕mnj=1 H2(Zn−1).
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The same facts apply to MR = ∂R by Remark 4.3 so

H2(Zn) = H2(E ∪mnj=1 Zn−1 ∪R) ∼= ⊕mnj=1H2(Zn−1),

since H2(R) = 0.
Now, let {`j1, . . . , `jg} be a collection of (n−1)-surfaces generating an (n−1)-Lagrangian

for the jth copy, Zj
n−1, of the (n−1)-solution Zn−1 and {dj1, . . . , djg} a collection of (n−1)-

surfaces that are (n − 1)-duals. By our analysis of H2, these collections, taken together
for 1 ≤ j ≤ mn, represent a basis for H2(Zn) and so have the required cardinality to
generate an n-Lagrangian with (n)-duals for Zn. By property (1) of Theorem 7.1 π1(Zj

n−1)
is normally generated by the meridian of the jth copy of Jn−1. By definition of infection
this meridian is equated to ηnj in E. Since the ηnj lie in the commutator subgroup

of π1(Mn−1) we see that π1(Zj
n−1) maps into π1(Zn)(1). Thus π1(Zj

n−1)(n−1) maps into

π1(Zn)(n). Therefore the above (n − 1)-surfaces for Zj
n−1 are actually (n)-surfaces are

for Zn. By functoriality of the intersection form with twisted coefficients the union of
these surfaces, over all j, also has the required intersection properties to generate an
n-Lagrangian with (n)-duals for Zn. Hence Zn is in fact an (n)-solution as was claimed.

Property 2 of Theorem 7.1 for Zn:

Assume that φ : π1(Z)→ Γ where Γ(n+1) = 1. Recall that both σ and σ
(2)
Γ are additive.

By Lemma 2.4, both signatures vanish for E. By Theorem 2.1 both signatures vanish
for R. Therefore

σ
(2)
Γ (Zn)− σ(Zn) =

mn∑
j=1

(σ
(2)
Γ (Zn−1, φj)− σ(Zn−1))

where φj is the induced coefficient system on the jth copy of Zn−1. Let Γj be the image

of φj. By property 2 of Proposition 2.2 to compute σ
(2)
Γ (Zn−1, φj) we may consider φj as

a map into Γj. We observed above that each π1(Zj
n−1) maps into π1(Zn)(1). These Γj are

subgroups of a PTFA group and hence are PTFA, and since Γj ⊂ Γ(1), Γ
(n)
j = 1. Thus

property 2 of Theorem 7.1 for Zn−1 may be applied to Zn−1 and φj : π1(Zj
n−1) → Γj.

Thus

σ
(2)
Γ (Zn)− σ(Zn) =

mn∑
j=1

cφjρ0(K) = ρ0(K)
mn∑
j=1

cφj

where 0 ≤ cφj ≤ m1m2...mn−1. Property 2 for Zn is thus established.
This concludes the proof of Theorem 7.1. �

8. Fn/Fn.5 has infinite rank

In this section we prove one of our main theorems.

Theorem 8.1. For any n ≥ 0, Fn/Fn.5 has infinite rank.
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Proof of Theorem 8.1. We give a procedure to construct an infinite set of knots in Fn
that is linearly independent in Fn/Fn.5.

Step 1. Find a genus one ribbon knot, R, such that ρ1(R) 6= 0.
Let R be the genus one ribbon knot shown in Figure 8.1. There are two cases:

T ∗

α β

Figure 8.1. The ribbon knot R

Case I ρ1(946) 6= 0.
In this case we define T∗ to be the unknot, so R = RI = 946. Thus in this case
ρ1(R) = ρ1(946) 6= 0 and Step 1 is complete.

Case II ρ1(946) = 0.
In this case we define T ∗ to be the right-handed trefoil knot, T . In this case we sometimes
refer to R as RII , to distinguish the case. As in Example 3.3, we may apply Lemma 2.3
to calculate

ρ1(RII) = ρ1(946) + ρ0(T ) = ρ0(T ).

It is an easy calculation that ρ0(T ) is non-zero. Thus ρ1(R) 6= 0 and so Step 1 holds in
each case.

For the rest of the proof, we refer to the ribbon knot R whenever the argument applies
to both cases. We split the argument into the two cases only when necessary.

Step 2. Find an infinite set K of Arf invariant zero knots Kj such that no nontrivial
rational linear combination of {ρ0(Kj)} is a rational multiple of ρ1(R).

This requirement is stronger than linear independence but is easily accomplished by
the following elementary linear algebra. It was shown in [13, Proposition 2.6] that there
exists an infinite set, K̄ = {Kj}, of Arf invariant zero knots such that {ρ0(Kj)} is Q-
linearly independent. Let V be the Q-vector subspace of R with {vj = ρ0(Kj)} as basis.
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If ρ1(R) is not in V then set K = K̄ and we are done. If ρ1(R) ∈ V then ρ1(R) has
a unique expression as a nontrivial linear combination of the vj. Let K be the subset
of K̄ obtained by omitting one of the knots Kj for which vj occurs nontrivially in this
expression. Then d is not in the span of K and we are done.

Step 3. For each fixed n define a family of knots {J jn |1 ≤ j ≤ ∞} ⊂ Fn.

The families are defined recursively. Fix j and set J j0 ≡ Kj and let J jn+1 be the knot
obtained from the ribbon knot R of Figure 8.1 by infection along the two band meridians
{α, β} using the knot J jn in each case, as shown in Figure 8.2.

T ∗

J jn J jn

J jn+1 =

Figure 8.2. The family of (n)-solvable knots J jn

For any n and j, J jn is (n)-solvable by Theorem 7.1, so J jn ∈ Fn. This completes Step
3.

Step 4. No nontrivial linear combination of the knots {J jn | 1 ≤ j ≤ ∞} is
rationally (n.5)-solvable.

The proof occupies the remainder of this section. Here n is fixed. We proceed by
contradiction. Suppose that J̃ ≡ #∞j=1mjJ

j
n (a finite sum) were rationally (n.5)-solvable.

By re-indexing, without loss of generality we may assume that m1 > 0. Under this
assumption we shall construct a family of 4-manifolds Wi and reach a quick contradiction.
Throughout we abbreviate the zero-framed surgery MJjn

by M j
n.

Proposition 8.2. Under the assumption that J̃ is rationally (n.5)-solvable, for each
0 ≤ i ≤ n there exists a 4-manifold Wi with the following properties. Letting π = π1(Wi),

(1) Wi is a rational (n)-bordism where, for i < n, ∂Wi = M1
n−i and ∂Wn = M1

0

∐
M1

0

∐
MR;
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(2) Under the inclusion(s) j : M1
n−i ⊂ ∂Wi → Wi,

j∗(π1(M1
n−i)) ⊂ π(i);

and for each i (at least one of the copies of) M1
n−i ⊂ ∂Wi

j∗(π1(M1
n−i))

∼= Z ⊂ π(i)/π(i+1)
r ;

and under the inclusion j : MR ⊂ ∂Wn → Wn

j∗(π1(MR)) ∼= Z ⊂ π(n−1)/π(n)
r ;

(3) For any PTFA coefficient system φ : π1(Wi)→ Γ with Γ
(n+1)
r = 1

ρ(∂Wi, φ) ≡ σ
(2)
Γ (Wi, φ)− σ(Wi) = −

∑
j

Cjρ0(Kj)

for some integers Cj (depending on φ) where C1 ≥ 0.

Before proving Proposition 8.2, we use it to finish the proof of Step 4 and complete the
proof of Theorem 8.1. Consider Wn from Proposition 8.2 with boundary M1

0

∐
M1

0

∐
MR.

Recall that M1
0 = MJ1

0
= MK1 . Let π = π1(Wn) and consider φ : π → π/π

(n+1)
r . Then

by property (3) of Proposition 8.2 for i = n

(8.1) ρ(MK1 , φα) + ρ(MK1 , φβ) + ρ(MR, φR) = ρ(∂Wn, φ) = −
∑
j

Cjρ0(Kj)

where C1 ≥ 0. By property (2) of Proposition 8.2

j∗(π1(MK1) ⊂ π(n),

implying that the restrictions φα and φβ factor through the respective abelianizations.
Additionally by property (2), at least one of these coefficient systems is non-trivial. Hence
by (2)− (4) of Proposition 2.2

ρ(MK1 , φα) + ρ(MK1 , φβ) = ερ0(K1)

where ε equals either 1 or 2. Thus we can simplify 8.1 to yield

(8.2) (ε+ C1)ρ0(K1) +
∑
j>1

Cjρ0(Kj) = −ρ(MR, φR)

where ε+ C1 ≥ 1. Also by property (2) of Proposition 8.2,

(8.3) j∗(π1(MR)) ⊂ π(n−1),

so φR factors through G/G(2) where G = π1(MR). We claim that kernel(φR) ⊂ G(1). For
suppose that x ∈ kernel(φR) and x = µmy where µ is a meridian of R and y ∈ G(1). Then
certainly x is in the kernel of the composition

ψ : G
φR−→ π(n−1)/π(n+1)

r → π(n−1)/π(n)
r .
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Moreover, by 8.3, φR(G(1)) ⊂ π
(n)
r so G(1) is in the kernel of ψ. Therefore µm ∈ kerψ and

the image of ψ has order at most m. If m 6= 0 this contradicts the last clause of property
2 of Proposition 8.2. Thus m = 0 and kernel(φR) ⊂ G(1). Therefore ψ is determined by
the kernel, P , of

φ̄R : G(1)/G(2) ∼= A0(R)→ image(φR).

Since P is normal in G/G(2), it is preserved under conjugation by a meridional element,
implying that P is a submodule of A0(R). Since the Alexander polynomial of R is
(2t− 1)(t− 2), the product of two irreducible coprime factors, A0(R) admits precisely 4
submodules: P1 = A0(R), P0 = 0, Pα =< α > and Pβ =< β >. In the first case φ̄R is the
zero map so φR factors through Z and ρ(MR, φ) = ρ0(R) = 0. Otherwise ρ(MR, φR) is
what we have called a first order signature of R. To analyze the remaining 3 possibilities
for ρ(MR, φR) it is simplest to take the viewpoint that R is obtained from 946 by one
infection along α using the knot T ∗. We can then analyze the 3 possible first-order
signatures as in Example 3.3,

ρ(MR, Pα) = ρ(946, Pα) = 0,

ρ(MR, Pβ) = ρ(946, Pβ) + ρ0(T∗) = ρ0(T ∗)

ρ(MR, P0) = ρ1(R).

In Case I, ρ0(T ∗) = 0. Thus in Case I

ρ(MR, φR) ∈ {0, 0, 0, ρ1(R)}

according to the 4 possibilities for P . In the Case II, ρ1(946) = 0 so

ρ1(R) = ρ1(RII) = ρ1(946) + ρ0(T ∗).

Thus in all cases we can say that

ρ(MR, φR) ∈ {0, ρ1(R)}.

Combining this with 8.2 we have

(ε+ C1)ρ0(K1) +
∑
j>1

Cjρ0(Kj) = C0ρ
1(R)

where C0 ∈ {0, 1}. Since ε + C1 > 0 we have expressed a non-trivial linear combination
of {ρ0(Kj)} as a multiple of ρ1(R) contradicting our choice of {Kj}.

This contradiction finishes the proof of Theorem 8.1 modulo the proof of Proposi-
tion 8.2. �

Proof of Proposition 8.2. We give a recursive definition of Wi.
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First we define W0. Let V be a rational (n.5)-solution for J̃ . Let C be the standard
cobordism from MJ̃ to the disjoint union of mj copies of M j

n. Specifically

∂C = −MJ̃

∐
j

mjM
j
n,

where if mj < 0 we mean |mj| copies of −M j
n. This cobordism is discussed in detail

in [13, p.113-116]. Alternatively, note that J̃ may be constructed by starting from J1
n

and infecting along different meridians a total of ((m1 − 1) +
∑

j=2 |mj|) times using the

knot sign(mj)J
j
n a total of |mj| times (m1 − 1 times if j = 1). Thus C can be viewed

as an example of the cobordism E defined in Figure 2.1. Identify C with V along MJ̃ .
Then cap off all of its boundary components except one copy of M1

n using copies of the
special (n)-solutions ±Zj

n as provided by Theorem 7.1. The latter shall be called Z-caps.
Here there is a technical point concerning orientations: if mj > 0 then to the boundary
component M j

n we must glue a copy of −Zj
n (and vice-versa). It was important in the

proof that we remember that since m1 > 0, all the occurrences of j = 1 Z-caps are
copies of −Z1

n rather than Z1
n. Let the result be denoted W0 as shown schematically in

Figure 8.3.

...

...

C

V

Zjk
nZj1

n

MJ̃
-

M1
n
-

Figure 8.3. W0

We will now show that W0 is a rational (n)-solution for M1
n (hence a rational (n)-

bordism). Since V is a rational (n.5)-solution for MJ̃ , the inclusion-induced map

j∗ : H1(MJ̃ ; Q)→ H1(V ; Q)

is an isomorphism. It follows from duality that

j∗ : H2(MJ̃ ; Q)→ H2(V ; Q)

is the zero map. Therefore if we examine the Mayer-Vietoris sequence with Q-coefficients,

H2(MJ̃)
i∗−→ H2(C)⊕H2(V )

π∗−→ H2(C ∪ V )→ H1(MJ̃)
(i∗,j∗)−→ H1(C)⊕H1(V ),

we see that π∗ induces an isomorphism

(H2(C)/i∗(H2(MJ̃)))⊕H2(V ) ∼= H2(C ∪ V ).
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The integral homology of C was analyzed in [13, p. 113-114] and also in Lemma 2.5.
From the latter we know that H1(C; Q) ∼= Q, generated by any one of the meridians of
any of the knots, and that H2(C; Q) is ⊕jH2(M j

n; Q)|mj |. In particular H2(C) arises from
its “top” boundary. Also the generator of i∗(H2(MJ̃)) is merely the sum of the generators
of the H2(M j

n; Q) summands. Thus

H2(C ∪ V ; Q) ∼= (Qm/ < 1, ..., 1 >)⊕H2(V ; Q)

where m =
∑

j |mj| and the generators of the Qm come from the “top” boundary com-

ponents of C. Moreover H1(C ∪ V ; Q) ∼= Q generated by any one of the meridians.
Since the Zj

n are (n)-solutions, H1(M j
n) → H1(Zj

n) is an isomorphism and by duality
H2(M j

n)→ H2(Zj
n) is the zero map. Thus adding a Z-cap to C ∪ V has no effect on H1;

while the effect on H2 of adding a Z-cap to C∪V is to kill the class carried by ∂Zj
n = M j

n

and to add H2(Zj
n). Thus combining these facts we have that

H2(W0; Q)/j∗(H2(∂W0; Q)) ∼= H2(W0; Q) ∼= H2(V ; Q)⊕Z−caps H2(Zj
n).

and
H1(W0; Q) ∼= H1(M1

n; Q) ∼= Q.
Now, continuing with the verification that W0 is a rational (n)-solution, recall that V
is a rational (n.5)-solution hence a rational (n)-solution. Let {`1, . . . , `g} be a collection
of n-surfaces generating a rational n-Lagrangian for V and {d1, . . . , dg} be a collection
of (n)-surfaces that are the rational (n + 1)-duals. Since π1(V )(n) maps into π1(W0)(n),
these surfaces are also (n)-surfaces for W0. Each Z-cap Zj

n is a rational (n)-solution, so
let {`′1, . . . , `′g′} and {d′1, . . . , d′g′} denote collections of (n)-surfaces generating a rational

(n)-Lagrangian and rational (n)-duals for Zj
n. These surfaces are also (n)-surfaces for

W0. By our analysis of H2(W0) above, the unions of these collections, for V and for each
Z-cap, have the required cardinality to generate a rational (n)-Lagrangian with rational
(n)-duals for W0. By naturality of the intersection form with twisted coefficients these
surfaces also have the required intersection properties to generate a rational n-Lagrangian
with rational (n)-duals for W0. Hence W0 is in fact a rational (n)-solution for M1

n as was
claimed. This establishes property 1 of Proposition 8.2 for W0.

In the case i = 0 , property 2 is merely the statement that the inclusion H1(M1
n; Q)→

H1(W0; Q) is injective, which we have already observed is true.
The proof of Proposition 8.2 is easier if we inductively prove a more robust version of

property 3.

Property 3′: W0 ⊂ Wi and for any PTFA coefficient system φ : π1(Wi) → Γ with
Γ(n+1) = 1

ρ(∂Wi, φ) = σ(2)(Wi, φ)−σ(Wi) = −
∑
Z−caps

sign(|mj|)(σ(2)(Zj
n, φj)−σ(Zj

n)) = −
∑
j

Cjρ0(Kj)
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for some integers Cj (depending on φ) where C1 ≥ 0.

Theorem 7.1 establishes the last equality in property 3′ since m1 > 0. Since W0 =
V ∪C ∪Z-caps, by additivity of signatures, property 3′ will hold for W0 if the difference
of signatures vanishes for V and for C. Since V is an (n.5)-solution, the vanishing for
V follows directly from Theorem 5.7. The vanishing of the signatures for C follows from
Lemma 2.4 (see also [13, Lemma 4.2]). Thus we have constructed W0 and Proposition 8.2
holds for i = 0.

Now assume that Wi, i ≤ n− 1, has been constructed satisfying the properties above.
Before defining Wi+1 we derive some important facts about Wi. By property (1), ∂Wi =
M1

n−i and Wi is a rational (n)-bordism and hence a rational (i+1)-bordism since i+1 ≤ n.

Let π = π1(Wi), Λ = π/π
(i+1)
r and let φ : π → Λ be the canonical surjection. We will

apply Theorem 6.3 to Wi with k = i+ 1. Property 2 for Wi ensures that φ restricted to
M1

n−i is non-trivial. We conclude that the kernel, P̄ of the composition

H1(M1
n−i; QΛ)

j∗→ H1(Wi; QΛ),

satisfies P̄ ⊂ P̄⊥ with respect to the Blanchfield form B`Λ on M1
n−i. But property 2

also ensures that φ restricted to π1(M1
n−i) factors through the abelianization. Hence by

Theorem 6.6 the kernel P of the composition

A0(J1
n−i)

i
↪→ A0(J1

n−i)⊗QΛ
∼=→ H1(M1

n−i; QΛ)
j∗→ H1(Wi; QΛ),

satisfies P ⊂ P⊥ with respect to the classical Blanchfield form on J1
n−i. Recall that, by

definition, J1
n−i is obtained from R by two infections along the circles labelled α and β

as in Figure 8.1. These two circles form a generating set {[α], [β]} for A0(J jn−i) (which is
isomorphic toA0(R) and hence nontrivial). From this we can conclude that at least one of
these generators is not in P since the classical Blanchfield form of any knot is nonsingular.
Now consider the commutative diagram below. Recall that H1(Wi; QΛ) is identifiable as
the ordinary rational homology of the covering space of W whose fundamental group is

the kernel of φ : π → Λ. Since this kernel is precisely π
(i+1)
r , we have that

H1(Wi; QΛ) ∼= (π(i+1)
r /[π(i+1)

r , π(i+1)
r ])⊗Z Q

as indicated in the diagram below. The vertical map j is injective as shown in Section 4.
Furthermore, since {α, β} ⊂ π1(M1

n−i)
(1), by property 2

π1(M1
n−i)

(1) ⊂ π(i+1).
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Since the composition in the bottom row sends one of {[α], [β]} to non-zero, the compo-
sition in the top row sends at least one of {α, β} to non-zero.

π1(M1
n−i)

(1)
∼=−−−→ π1(M1

n−i)
(1) j∗−−−→ π(i+1) −−−→ π

(i+1)
r /π

(i+2)
ry y y yj

A0(J1
n−i)

i−−−→ H1(M1
n−i; QΛ)

j∗−−−→ H1(Wi; QΛ)
∼=−−−→ (π

(i+1)
r /[π

(i+1)
r , π

(i+1)
r ])⊗Z Q

Therefore we have established these crucial facts about Wi:

Fact 1: Each of {α, β} maps into π1(Wi)
(i+1)

Fact 2: The kernel, P̃ , of the the composition (top row of the diagram above)

π1(M1
n−i)

(1) → π1(Wi)
(i+1)
r /π1(Wi)

(i+2)
r

is of the form π−1(P ) for some submodule P ⊂ A0(J1
n−i) such that P ⊂ P⊥

with respect to the classical Blanchfield form and at least one of {α, β} maps
non-trivially under this map.

Now we claim further that

Fact 3: If i ≤ n− 2, precisely one of {α, β} maps non-trivially under the map in Fact 2.
Fact 4: If i ≤ n− 2, without loss of generality we may assume that β maps non-trivially

and α maps trivially under the above map.

To establish Facts 3 and 4 assume i ≤ n− 2 and consider the coefficient system

φ : π1(M1
n−i)→ Γ = π1(Wi)/π1(Wi)

(i+2)
r .

Note that Γ(n+1) = 1 since i+ 2 ≤ n+ 1. By property 3′ for Wi,

ρ(M1
n−i, φ) = σ(2)(Wi, φ)− σ(Wi) =

∑
Z−caps

±(σ(2)(Zj
n, φj)− σ(Zj

n)).

But the Zj
n are (n)-solutions and thus are (i+ 1.5)-solutions since i+ 1.5 ≤ n. Hence, by

Theorem 5.7, all these signature defects are zero. Thus

ρ(M1
n−i, φ) = 0.

Moreover by property (2) for Wi, φ(π1(M1
n−i)) ⊂ π1(Wi)

(i). Therefore φ restricted to

π1(M1
n−i) factors through π1(M1

n−1)/π1(M1
n−1)(2). In other words (using Fact 2 above)

one of the first-order signatures of J1
n−i is zero. Assume that both α and β mapped

nontrivially. Since the Alexander module of J1
n−i is isomorphic to that of the 946 knot, by

Example 3.3, this first-order signature would necessarily be what we have called ρ1(J1
n−1).

Since J1
n−1 is obtained from R by two infections using J1

n−i−1 as the infecting knot, as in
Example 3.3,

0 = ρ(M1
n−i, φ) = ρ1(J1

n−1) = ρ1(R) + ρ0(J1
n−i−1) + ρ0(J1

n−i−1).
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However, by choice ρ1(R) 6= 0 and, since n − i − 1 ≥ 1, J1
n−i−1 is (0.5)-solvable by

Theorem 7.1 and so ρ0(J1
n−i−1) = 0 by Theorem 5.7. This contradiction implies Fact 3.

To show Fact 4, suppose R = RII , α maps nontrivially and β maps trivially. Viewing J1
n−1

as obtained from 946 by two infections using J1
n−i−1 as one infecting knot and T# J1

n−i−1

as the other, then by Example 3.3

0 = ρ(M1
n−i, φ) = ρ0(J1

n−i−1) + ρ0(T# J1
n−i−1) = ρ0(T ) 6= 0.

This contradiction implies Fact 4 in this case. In the case that R = RI then J1
n−1 is

symmetric with respect to α and β so we may assume Fact 4 by relabelling if necessary.
Finally we can give the construction ofWi+1. Refer to Figure 8.4. Since J1

n−1 is obtained
from R by two infections using J1

n−i−1 as the infecting knot, there is a corresponding
cobordism E with 4 boundary components Mn−i, MR and two copies of M1

n−i−1. Glue
this to Wi along M1

n−i, as in the top-most portion of Figure 8.4. If i = n − 1 then we
set Wn = Wn−1 ∪ E and we are done. Note that ∂Wn consists of two copies of M1

0 and
one copy of MR as required by property 1. Now consider the case that i ≤ n − 2 (in
which case Fact 4 holds). Notice that R is a ribbon knot and admits a ribbon disk ∆
that is obtained by “cutting the α band”. Let R denote the exterior in B4 of this ribbon
disk. Cap off the MR boundary component of Wi ∪ E using R. This will be called an

...

...

...

V

C

E Zj1
n Zjk

n

N0 R

RNi

MJ̃
-

M1
n
-

M1
n−1
-

M1
n−i−1
-

M1
n−i
-

E

Figure 8.4. Wi+1
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R-cap. Recall that M1
n−i−1 is the boundary of a special (n − i − 1)-solution Z1

n−i−1 as
in Theorem 7.1. Use this to cap off the M1

n−i−1 boundary component of Wi ∪ E ∪ R
that corresponds to the infection along α. Call this a null-cap and denote it by Ni.
The resulting manifold is Wi+1. Note that ∂Wi+1 = M1

n−i−1 as required by property 1 of
Proposition 8.2. This completes the definition of Wi+1.

Now we set about verifying the properties (1)− (3′) for Wi+1.
Property (1): Wi+1 is a rational (n)-bordism.
This will follow from an inductive analysis of H2(Wi+1; Q). For the following argument

we assume Q coefficients unless specified. We establish that H2(Wi+1; Q)/I0 comes from
the second homology of V , the Z − caps and the null caps.

Lemma 8.3. For each i ≤ n− 1

H2(Wi+1) ∼= H2(V )⊕Z−caps H2(Zj
n)⊕ij=0 H2(Nj)⊕H2(∂Wi+1).

Proof of Lemma 8.3. The proof is by induction. Recall that we have already established
this for W0. Assume it is true for Wi:

H2(Wi) ∼= H2(V )⊕Z−caps H2(Zj
n)⊕i−1

j=0 H2(Nj)⊕H2(M1
n−i).

In the passage from Wi to Wi+1 the first step was to adjoin E along M1
n−i. Consider the

sequence

H2(M1
n−i)→ H2(E)⊕H2(Wi)

π∗→ H2(E ∪Wi)→ H1(M1
n−i)

(i∗,j∗)−→ H1(E)⊕H1(Wi).

Recall that we have analyzed the homology of E in Lemma 2.5 and found that i∗ is an
isomorphism on H1 (so π∗ above is onto); and that H2(E) ∼= Q3, with basis consisting of
generators for the two copies of H2(M1

n−i−1) and one from either H2(MR) or H2(M1
n−i)

(suitable generators for the latter become equated in H2(E)). Thus
(8.4)
H2(Wi∪E) ∼= H2(V )⊕Z−capsH2(Zj

n)⊕i−1
j=0H2(Nj)⊕H2(MR)⊕H2(M1

n−i−1)⊕H2(M1
n−i−1).

If i = n− 1, then Wi ∪ E ∼= Wi+1 so 8.4 implies Lemma 8.3. Thus we may suppose that
i ≤ n−2. Recalling Remark 4.3, note that both R and the null-cap Ni have the property
that the inclusion map from their boundary induces an isomorphism on H1 and induces
the zero map on H2. Thus, as we saw in the analysis of the homology of W0, the effect
on H2 of adding these is to kill the generators corresponding to their boundaries and to
add H2(Ni) and H2(R). Combining these facts we have established the Lemma for i+ 1,
finishing the inductive proof of Lemma 8.3. �

We continue with the verification that Wi+1 is a rational (n)-bordism. Recall that V
and the Z-caps Zj

n are rational (n)-solutions and that the null caps {N0, ..,Ni} are copies
of {Z1

n−1, ..., Z
1
n−i−1} which are, respectively, (n− 1), ..., (n− i− 1)-solutions. Taking the

union of their respective Lagrangians and duals gives collections that have the required
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cardinality, by Lemma 8.3 above, to generate a rational n-Lagrangian with rational (n)-
duals for Wi+1. We must first verify that all these surfaces are indeed n-surfaces for Wi+1.
This is immediate for those arising from the rational (n)-solutions but we must check the
case of the null caps. By induction the null caps at level less than i+ 1 were already part
of Wi and their Lagrangians and duals were already checked to be (n)-surfaces for Wi

and hence they will be for Wi+1. Thus we need only consider the (n− i− 1) Lagrangian
and duals for the (n− i− 1)-solution Ni. A null-cap Ni exists only in case i ≤ n− 2 (by
construction). Recall that

π1(M1
n−i−1)→ π1(Ni)

is surjective, by Theorem 7.1, and π1(M1
n−i−1) is normally generated by its meridian. This

meridian is isotopic in E to a push-off of α in M1
n−i (by property 4 of Lemma 2.5). But by

Fact 1 above, α maps into π1(Wi)
(i+1). Thus any element of π1(Ni) lies in π1(Wi+1)(i+1)

so
π1(Ni)(n−i−1) ⊂ π1(Wi+1)(n).

Therefore the (n− i− 1) Lagrangian and duals for Ni are actually (n)-surfaces for Wi+1.

Moreover by Fact 4 above, α maps into π1(Wi)
(i+2)
r . Thus

Fact 5: π1(Ni)(n−i−1) ⊂ π1(Wi+1)
(n+1)
r ,

a fact that we record for later use. Again, by naturality of the intersection form, the
union of the surfaces generating the Lagrangians and duals for V and all the caps have
the required intersection properties to generate a rational n-Lagrangian with rational
(n)-duals for Wi+1. Thus Wi+1 is a rational (n)-bordism as claimed.

This completes the verification of the property (1) of Proposition 8.2 for Wi+1.
Property (2) for Wi+1:
Consider a component M1

n−i−1 of ∂Wi+1. Recall that π1(M1
n−i−1) is normally generated

by the meridian and this meridian is isotopic in E to a push-off β (if i = n− 1 it could
be either β or α) in M1

n−i = ∂Wi. Since β (and α) lies in the commutator subgroup of
π1(M1

n−i),

j∗(β) ∈ π1(Wi)
(i+1)

by property (2) for Wi (similarly for α). Thus

j∗(π1(M1
n−i−1)) ⊂ π1(Wi+1)(i+1)

establishing the first part of property (2) for Wi+1. To prove the second part we need to

show that j∗(β) (for i = n−1 one of j∗(β) or j∗(α)) is non-zero in π1(Wi+1)(i+1)/π1(Wi+1)
(i+2)
r .

Fact 4 (if i = n − 1 use Fact 2) provides precisely this except for π1(Wi) instead of
π1(Wi+1). Thus it suffices to show that inclusion induces an isomorphism

(8.5) π1(Wi)/π1(Wi)
(i+2)
r

∼= π1(Wi+1)/π1(Wi+1)(i+2)
r .
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The map π1(Wi)) → π1(Wi ∪ E) is a surjection whose kernel is the normal closure of
the longitude ` of the copy of S3 − J1

n−i−1 ⊂ M1
n−i (property (1) of Lemma 2.5). The

group π1(S3− J1
n−i−1) is normally generated by the meridian of this copy of S3− J1

n−i−1.
This meridian is identified to a push-off of the curve α and we have seen that j∗(α) ∈
π1(Wi)

(i+2). Thus j∗(`) ∈ π1(Wi)
(i+2)
r and so the inclusion map Wi → Wi ∪E induces an

isomorphism on π1 modulo π1(−)
(i+2)
r . If i = n − 1 this establishes 8.5. Now suppose

i ≤ n− 2. Similarly the map π1(Wi))→ π1(Wi ∪ E ∪ R) is a surjection whose kernel is
the normal closure of the curve α ⊂ MR (by property (1) above for R). But this curve
α is isotopic in E to the curve α ⊂M1

n−i (by Lemma 2.5) and j∗(α) ∈ π1(Wi)
(i+2). Thus

inclusion Wi → Wi∪E∪R induces an isomorphism on π1 modulo π1(−)
(i+2)
r . Finally, the

same type of argument applies to Ni using property (1) of Theorem 7.1, that π1(M1
n−i−1)

is normally generated by its meridian and that his meridian is isotopic in E to a push-off
of α in M1

n−i. This completes the verification of property (2) for Wi+1.
Property (3′) for Wi+1:
Since, for i 6= n − 1, Wi+1 = Wi ∪ E ∪ R ∪ Ni, and Wn = Wn−1 ∪ E, and property

3′ holds for Wi (using the induced coefficient system), it will suffice to prove that the
signature defect is zero on E, R and Ni. The first is given by Lemma 2.4 and the second
holds since R is a slice disk complement hence an (n.5)-solution. Finally, we established
above in Fact 5 that

j∗(π1(Ni)) ⊂ π1(Wi+1)(i+2)
r

so the coefficient system induced on Ni by φ : π1(Wi+1) → Γ is trivial since Γ
(n+2)
r = 1.

This concludes the verification of property (3′) for Wi+1.
This concludes the inductive proof of Proposition 8.2. �

Example 8.4. The families of Figure 8.2 have the disadvantage that we are unable to
specify T ∗ due to our inability to calculate ρ1(946). The family of knots, J jn of Figure 8.5
(ignore the dotted arc) overcomes this problem, giving a specific infinite family of (n)-
solvable knots that is linearly independent modulo Fn.5. Here T is the right-hand trefoil
knot and J j0 = Kj is the family of knots used in Step 2 of the above proof. Each J jn
(n > 0) is obtained by two infections on the 89 knot, which is itself a ribbon knot (a
ribbon move is shown by the dotted arc) [27].

The proof that no linear combination is rationally (n.5)-solvable is the same as that
above, but for this family there are several major simplifications. Let R be the knot
obtained in Figure 8.5 by setting J jn−1 = U . Then R is a ribbon knot (a ribbon move
is again shown by the dotted arc). For any j, J jn obtained from R by an infection using
J jn−1 so inductively is (n)-solvable by Theorem 7.1. Hence J jn ∈ Fn. Moreover ρ1(R) =
ρ0(T ) 6= 0 by the calculations of [9, Examples 4.4, 4.6], and so R satisfies Step 1 of
the above proof. Moreover J jn is obtained from R by a single infection on a curve, α,
that generates the cyclic module A0(R), so α does not lie in any submodule P where
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.....

T

J jn−1
J jn =

Figure 8.5. A family of (n)-solvable knots J jn

P ⊂ P⊥. This eliminates the various dichotomies between α and β in Step 4 of the above
proof. These observations simplify the flow of Step 4 of the above proof.

9. The family Jn

In this section we prove our second main theorem which shows that the family of knots
Jn of Figure 1.3 contains many non-slice knots, even though, for each n > 1, all classical
invariants as well as those of Casson-Gordon vanish for Jn. Recall that J0 = K and
Jn = Jn(K) is obtained from J0 by applying the “operator” R n yielding the inductive
definition of Figure 1.3. The proof that we give actually applies to large classes of knots
obtained by n-times iterated generalized doubling, which we record in the form of a more
general theorem at the end of the section.

The main theorem of this section is:

Theorem 9.1.

1. There is a constant C such that, if |ρ0(K)| > C, then for each n ≥ 0, Jn(K) is
of infinite order in the topological concordance group. Moreover if, additionally,
Arf(K) = 0, then Jn(K) is of infinite order in Fn/Fn.5.

2. If ρ1(946) 6= 0 and some Jn(K) is a slice knot (or even rationally (n.5)-solvable)
then ρ0(K) ∈ {0, ρ1(946)}.

Remark 9.2. We would conjecture that: If Jn(K) is a slice knot then K is algebraically
slice. This is unknown even for n = 1. Part 2 of the theorem is evidence for this
conjecture. We have not been able to calculate the real number ρ1(946). Recall that for J2

we were able to prove a much stronger theorem, Theorem 4.1.
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Corollary 9.3. For any n ≥ 1 there exist knots J ∈ F(n−1) for which the knot R(J),
shown in Figure 9.1, is not a slice knot nor even in Fn.5.

R(J) =

J J

Figure 9.1.

Proof of Corollary 9.3. Let J = Jn−1(K) for some K with |ρ0(K)| > Cn (for example
a connected sum of a suitably large even number of trefoil knots). Then the knot on
the right-hand side of Figure 1.1 is merely Jn(K) which, by Theorem 9.1, is (n)-solvable
hence in F(n), but is not slice nor even rationally (n.5)-solvable; hence not in F(n.5).
Since J ∈ F(n−1), if n ≥ 2 then J is algebraically slice and if n ≥ 3 then J has vanishing
Casson-Gordon invariants [12, Theorem 9.11]. �

Proof of Theorem 9.1. The proof follows closely the lines of the proof of Theorem 8.1.
Let R be the ribbon knot 946 and recall that J0 = J0(K) = K and that Jn = Jn(K) is
obtained from R by infecting twice, along the curves α and β (as shown in Figure 1.7),
using the knot Jn−1 as the infecting knot in each case, as shown in Figure 1.3. By
Theorem 7.1, Jn(K) is (n)-solvable for any Arf invariant zero knot K. Let C be the
Cheeger-Gromov constant for MR. We shall show that if a non-zero multiple of Jn is
rationally (n.5)-solvable then |ρ0(K)| ≤ C. In particular this will demonstrate that if K
is chosen so that |ρ0(K)| > C then Jn(K) is of infinite order in Fn/Fn.5 and consequently
of infinite order in the smooth and topological concordance groups. We will also show
that if ρ1(946) 6= 0 and Jn is rationally (n.5)-solvable then ρ0(K) ∈ {0, ρ1(946)} (a much
stronger result).

Suppose that, for some positive integer m, J̃ ≡ #m
i=1Jn is rationally (n.5)-solvable.

Under this assumption we shall construct a family of 4-manifolds Wi, as in the proof of
Theorem 8.1, and reach the desired results. Again, let Mi abbreviate MJi .
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Proposition 9.4. Under the assumption that J̃ is rationally (n.5)-solvable, for each
0 ≤ i ≤ n there exists a 4-manifold Wi with the following properties. Letting π = π1(Wi),

(1) Wi is a rational (n)-bordism whose boundary is a disjoint union of r(i) copies of
MR and r(i) + 1 copies of Mn−i ;

(2) Each inclusion j : Mn−i ⊂ ∂Wi → Wi satisfies

j∗(π1(Mn−i)) ⊂ π(i);

and

j∗(π1(Mn−i)) ∼= Z ⊂ π(i)/π(i+1)
r ;

(3) For any PTFA coefficient system φ : π1(Wi)→ Γ with Γ
(n+1)
r = 1

ρ(∂Wi, φ) ≡ σ
(2)
Γ (Wi, φ)− σ(Wi) = −Dρ0(K)

for some non-negative integer D (depending on φ). If m = 1 then D = 0.
(4) If ρ1(946) 6= 0 then, for i < n, r(i) = 0 whereas r(n) = 0 or 1, and if r(n) = 1

then ρ(MR, π1(MR)→ π1(Wn)→ π1(Wn)/π1(Wn)
(n+1)
r ) = ρ1(946).

Before proving Proposition 9.4, we assume it and finish the proof of Theorem 9.1.
Consider Wn from Proposition 9.4 with boundary (r(n) + 1)M0

∐
r(n)MR. Recall that

M0 = MJ0 = MK . Let π = π1(Wn) and consider φ : π → π/π
(n+1)
r . Let φRj , 1 ≤ j ≤ r(n),

and φKj , 1 ≤ j ≤ r(n)+1 denote the restrictions of φ to the various boundary components
of Wn. Then by property (3) of Proposition 9.4 for i = n

(9.1)

r(n)+1∑
j=1

ρ(MK , φ
K
j ) +

r(n)∑
j=1

ρ(MR, φ
R
j ) = −Dρ0(K)

where D ≥ 0. By property (2) of Proposition 9.4, for each boundary component MK ,

j∗(π1(MK) ⊂ π(n),

implying that each φKj factors through the abelianization. Additionally by property (2),
each of these coefficient systems is non-trivial. Hence by (2)− (4) of Proposition 2.2

ρ(MK , φ
K
j ) = ρ0(K)

for each j. Thus we can simplify 9.1 yielding

(9.2) (r(n) + 1 +D)ρ0(K) = −
r(n)∑
j=1

ρ0(MR, φ
R
j ).

Since C is the Cheeger-Gromov constant of MR, for each j

|ρ0(MR, φ
R
j )| ≤ C.
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Hence

(9.3) |ρ0(K)| ≤ r(n)

r(n) + 1 +D
C ≤ C.

Hence if |ρ0(K)| > C then J̃ is not is rationally (n.5)-solvable, thereby completing the
proof of Part 1 of Theorem 9.1, modulo the proof of Proposition 9.4.

For Part 2, specialize to the case that m = 1 and assume that ρ1(946) 6= 0. Then, by
property 4, either r(n) = 0 or r(n) = 1. In the first case, by equation 9.3, ρ(K) = 0. If
r(n) = 1 then, using the last clause of property 4, equation 9.2 becomes

|ρ0(K)| = 1

2 +D
|ρ(MR, φ

R)| = 1

2 +D
|ρ1(R)|.

Moreover, since m = 1, D = 0 by property 3. This completes the proof Part 2 of
Theorem 9.1, modulo the proof of Proposition 9.4. �

Proof of Proposition 9.4. We give a recursive definition of Wi. First we define W0. This
will be identical to a special case of the W0 (where all mj = 0 except m1) constructed

in the proof of Theorem 8.1. Let V be a rational (n.5)-solution for J̃ . Let C be the
standard cobordism from MJ̃ to the disjoint union of m copies of Mn. Consider = C ∪V
and cap off m − 1 of its boundary components using copies of the special (n)-solutions
−Zn as provided by Theorem 7.1. These are called Z-caps. Let the result be denoted
W0 as shown schematically in Figure 9.2. Note that if m = 1 no Z-caps occur.

...

...

C

V

−Zn−Zn

MJ̃
-

Mn
-

Figure 9.2. W0

Properties 1 and 4 are satisfied with r(0) = 0. Property 2 was verified in the proof of
Proposition 8.2. Once again, the proof is easier if we inductively prove a more robust
version of property 3.
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Property 3′: W0 ⊂ Wi and for any PTFA coefficient system φ : π1(Wi) → Γ with
Γ(n+1) = 1

ρ(∂Wi, φ) = σ(2)(Wi, φ)− σ(Wi) = −
∑
Z−caps

(σ(2)(Zn, φ)− σ(Zn)) = −Dρ0(K)

for some non-negative integer D.

The last equality in property 3′ is a consequence of Theorem 7.1. If m = 1, it will be
clear from the construction that D = 0 simply because there will be no Z-caps. Property
3′ for W0 was verified in the proof of Proposition 8.2. Thus we have constructed W0 such
that Proposition 9.4 holds for i = 0.

Now assume that Wi, i ≤ n− 1, has been constructed satisfying the properties above.
Before defining Wi+1, we collect some crucial facts about Wi. Consider any boundary
component Mn−i of Wi. Recall that, by definition, Jn−i is obtained from R by two
infections along the circles labelled α and β. These two circles form a generating set
for A0(Jn−i). Even though the boundary of Wi consists of more than just this one copy
of Mn−i, the exact same proof as in Proposition 8.2 establishes the following (because
Theorem 6.6 applies to any boundary component for which the relevant coefficient system
is nontrivial).

Fact 1: Each of {α, β} maps into π1(Wi)
(i+1)

Fact 2: The kernel, P̃ , of the map

π1(Mn−i)
(1) → π1(Wi)

(i+1)
r /π1(Wi)

(i+2)
r

is of the form π−1(P ) for some submodule P such that P ⊂ P⊥ with respect to
the classical Blanchfield form and at least one of {α, β} maps non-trivially under
this map.

Moreover if i ≤ n− 2 we claim that

Fact 3: If ρ1(R) 6= 0 then precisely one of {α, β} maps non-trivially under the above map.

Under the assumptions that ρ1(946) 6= 0 and i ≤ n−2, the verification Fact 3 is almost
the same as the verification of Fact 3 from the proof of Proposition 8.2. Specifically, to
establish Fact 3 consider the coefficient system

φ : π1(Mn−i)→ Γ = π1(Wi)/π1(Wi)
(i+2)
r .

Note that Γ(n+1) = 1 since i+ 2 ≤ n+ 1. By property 3′ for Wi,

ρ(Mn−i, φ) = σ(2)(Wi, φ)− σ(Wi) =
∑
Z−caps

σ(2)(Zn, φj)− σ(Zn).
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But the Zn are (n)-solutions and so are (i + 1.5)-solutions since i + 1.5 ≤ n. Hence, by
Theorem 5.7, all these signature defects are zero. Thus

ρ(Mn−i, φ) = 0.

Moreover, by property 2 for Wi, φ(π1(Mn−i)) ⊂ π1(Wi)
(i). Therefore φ restricted to

π1(Mn−i) factors through π1(Mn−1)/π1(Mn−1)(2). Just as we argued in the proof of Fact
3 in the previous section, this implies that one of the first-order signatures of Jn−i is zero.
Now argue by contradiction. Assuming that both α and β mapped nontrivially, this
first-order signature would be ρ1(Jn−1). Since Jn−1 is obtained from R by two infections
using Jn−i−1 as the infecting knot, as in Example 3.3,

0 = ρ(Mn−i, φ) = ρ1(Jn−1) = ρ1(R) + ρ0(Jn−i−1) + ρ0(Jn−i−1).

However, by assumption, ρ1(R) = ρ1(946) 6= 0 and, since n − i − 1 ≥ 1, Jn−i−1 is (0.5)-
solvable by Theorem 7.1 and so ρ0(Jn−i−1) = 0 by Theorem 5.7. This contradiction
implies Fact 3.

We now give the construction of Wi+1. Recall that ∂Wi consists of copies of Mn−i and
(possibly) copies of MR. These old copies of MR will not be capped off. However, for
each copy of Mn−i there are two cases:

Case I: For the specified copy of Mn−i in ∂Wi, α maps to zero and β maps to non-zero
under the map

π1(Mn−i)
j∗−→ π1(Wi) −→ π/π(i+2)

r .

By symmetry this will also cover the case when the roles of α and β are reversed.
Case II: For the specified copy of Mn−i in ∂Wi, both of {α, β} map to non-zero under

the map above.
Since Jn−i is obtained from R by two infections using Jn−i−1 as the infecting knot, there
is a corresponding cobordism E with 4 boundary components: Mn−i, MR and two copies
of Mn−i−1. Wi+1 is obtained from Wi by first adjoining, along each copy of Mn−i, a copy
of E. The newly created copy of MR ⊂ ∂E will be called a new copy of MR. Such copies
of E lie in either Case I or Case II according to the boundary component Mn−i to which
they are glued. To an E of Case II nothing more will be added. To an E of Case I further
adjoin, to the copy of Mn−i−1 ⊂ ∂E whose meridian is equated to α, a copy of the special
(n− i−1)-solution Zn−i−1 as constructed in Theorem 7.1. The latter will again be called
a null-cap and the collection of all such be denoted by Ni. Also, for an E of Case I
, cap off the new copy of MR with the ribbon disk exterior R that corresponds to α.
Such is called an R-cap. This completes the definition of Wi+1 in all cases. This differs
from the proof of Proposition 8.2 in only two ways. First, if Case II ever occurs then
there will be exposed copies of MR that will never be capped off, whereas in the proof of
Proposition 8.2, Case II only occurred for i = n − 1, so only Wn had an MR boundary
component (this is because, in the proof of Proposition 8.2, R was chosen specifically so
that ρ1(R) 6= 0.) Thirdly, here we cap off the final new copies of MR (created in going
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from Wn−1 to Wn) if they arise from a Case I E, whereas in the proof of Proposition 8.2
we did not (although we could have).

Now we set out to verify properties 1 − 4 for Wi+1. Certainly ∂Wi+1 is a disjoint
union of some number, say j(i+ 1), of copies of Mn−i−1 and some number of copies, say
r(i + 1), of MR. We seek to show that j(i + 1) = r(i + 1) + 1. In this notation, by
induction j(i) = r(i) + 1. When we formed Wi+1, for each of the boundary components
Mn−i we adjoined a copy of E. This eliminated one boundary component but createsd
3 new boundary components. In net, before possibly capping off, j(i+ 1) = j(i) + 1 and
r(i + 1) = r(i) + 1. In Case II, nothing more was done. In Case I, one copy of MR and
one copy of Mn−i−1 was capped off. Thus in any case the difference j(i+ 1)− r(i+ 1) is
preserved by the addition of new R-caps and null caps. Thus j(i + 1) = r(i + 1) + 1 as
required by property 1.

Property (2) for Wi+1:
The proof is essentially identical to that in the proof of Proposition 8.2. Consider

a component Mn−i−1 ⊂ ∂Wi+1. Note that π1(Mn−i−1) is normally generated by the
meridian and this meridian is isotopic in E to a push-off of either α or β in Mn−i = ∂Wi.
Since both α and β lie in the commutator subgroup of π1(Mn−i),

j∗(α), j∗(β) ∈ π1(Wi)
(i+1)

by property (2) for Wi. Thus

j∗(π1(Mn−i−1)) ⊂ π1(Wi+1)(i+1)

establishing the first part of property (2) for Wi+1. To prove the second part we need
to show that j∗(β) (in Case I) or both j∗(α) and j∗(β) (in Case II) are non-zero in

π1(Wi+1)(i+1)/π1(Wi+1)
(i+2)
r . Fact 2 together with the definitions of Case I and II ensure

precisely this except for the group π1(Wi) instead of the group π1(Wi+1). Thus it suffices
to show that inclusion induces an isomorphism

(9.4) π1(Wi)/π1(Wi)
(i+2)
r

∼= π1(Wi+1)/π1(Wi+1)(i+2)
r .

This was already shown in the proof of Proposition 8.2. This completes the verification
of property (2) for Wi+1.

Property (3′) for Wi+1:
Since property 3′ holds for Wi and since Wi+1 is obtained from Wi by adjoining copies

of E and possibly some R-caps and null-caps, it suffices to prove that the signature
defect is zero on the extra pieces E, R and Ni. But this was established already in
Proposition 8.2. This concludes the verification of property (3′) for Wi+1.

Property (4) for Wi+1

Suppose ρ1(946) 6= 0 and i + 1 < n. Inductively we may suppose that r(i) = 0, that
is ∂Wi = Mn−i. Then i ≤ n − 2 so Fact 3 holds. Consequently in the passage from Wi

to Wi+1 the Case II never occurs. Thus the new copy of MR and one of the copies of
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Mn−i−1 are capped off, so that ∂Wi+1 = Mn−i−1. Hence r(i + 1) = 0. If i + 1 = n then
we still may assume inductively that r(n−1) = 0 and ∂Wn−1 = M1, but now Fact 3 may
not hold. Nonetheless, since then only one copy of E is adjoined in going from Wn−1 to
Wn, r(n) is either 0 or 1. In the latter case MR ⊂ ∂Wn and Case II must have occurred.
Then the induced coefficient system

φR : π1(MR)→ π1(Wn)→ π1(Wn)/π1(Wn)(n+1)
r

factors through π1(MR)/π1(MR)(2) since π1(MR) is normally generated by the meridian
of R, which is isotopic in its copy of E to the meridian of a copy of M1 ⊂ ∂Wn−1 and
by property 2 this meridian lies in π1(Wn−1)(n−1) and hence in π1(Wn)(n−1). We now
just need to establish that φR induces an embedding of π1(MR)/π1(MR)(2) since this will
identify ρ(MR, φR) as ρ1(R). Combining Fact 2 in the case i = n − 1 and the fact that
MR arose from an E of Case II, the kernel, P̃ , of the map

π1(M1)(1) → π1(Wn−1)(n)
r /π1(Wn−1)(n+1)

r

is zero. Thus π1(M1)/π1(M1)(2) embeds in π1(Wn−1)/π1(Wn−1)
(n+1)
r . By equation 9.4

with i = n − 1, π1(M1)/π1(M1)(2) embeds in π1(Wn)/π1(Wn)
(n+1)
r . But the Alexander

modules of M1 and MR are isomorphic, with the meridian and the curves α and β being
identified in E. This shows that φR induces an embedding of π1(MR)/π1(MR)(2).

This concludes the proof of Proposition 9.4. �

More generally, the proof above proves this more general result about iterated gener-
alized doublings of knots.

Theorem 9.5. Suppose Ri, 1 ≤ i ≤ n, is a set of (not necessarily distinct) slice knots
and, for each fixed i, {ηi1, ..., ηimi} is a trivial link of circles in π1(S3 − Ri)

(1) such that
for some ij and ik (possibly equal) B`i0(ηij, ηik) 6= 0, where B`i0 is the classical Blanchfield
form of Ri. Then there exists a constant C such that if K is any knot with Arf(K) = 0
and |ρ0(K)| > C, the result, Rn◦· · ·◦R1(K), of n-times iterated generalized doubling, is of
infinite order in the smooth and topological concordance groups, and moreover represents
an element of infinite order in Fn/Fn.5.

There are situations where the constant can be taken independent of n (as in Theo-
rem 9.1) but we shall not state it in generality.

Proof of Theorem 9.5. Recall that Arf(K) = 0 if and only K is (0)-solvable by Re-
mark 5.6. Since the infections are being done along curves that lie in the commutator
subgroup, any n-times iterated operator applied to such a knot K results in an (n)-
solvable knot by Theorem 7.1. Let Jn denote the result of such an operator. Choose
C ′ to be the maximum of the Cheeger-Gromov constants for the {MRi}. Let m be the
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maximum of the mj. Choose C such that(
mn − 1

m− 1

)
C ′ ≤ C.

The proof then proceeds exactly like that of part 1 of Theorem 9.1 above. Suppose that a
non-trivial multiple, J̃ , of Jn were rationally (n.5)-solvable. We show that |ρ0(K)| ≤ C.
We recursively construct 4-manifolds Wi as in Proposition 9.4. The primary difference
in the argument is that the various cobordisms, Ei, that arise have 2 + mi boundary
components. Letting Ji = Ri ◦ · · · ◦R1(K) and Mi = MJi one establishes recursively:

Proposition 9.6. Under the assumption that J̃ is rationally (n.5)-solvable, for each
0 ≤ j ≤ n there exists a 4-manifold Wj with the following properties. Letting π = π1(Wj),

(1) Wj is a rational (n)-bordism whose boundary is a disjoint union of copies of MRi

(the total number of copies being at most mi−1
m−1

), together with a positive number
of copies of Mn−j ;

(2) Each inclusion j : Mn−j ⊂ ∂Wj → Wj satisfies

j∗(π1(Mn−j)) ⊂ π(j);

and
j∗(π1(Mn−j)) ∼= Z ⊂ π(j)/π(j+1)

r ;

(3) For any PTFA coefficient system φ : π1(Wj)→ Γ with Γ
(n+1)
r = 1

ρ(∂Wj, φ) ≡ σ
(2)
Γ (Wj, φ)− σ(Wj) = −Dρ0(K)

for some non-negative integer D (depending on φ).

Assuming this and applying it in the case j = n one deduces:

(9.5) (k +D)ρ0(K) = −
r(i)∑
i=1

ρ0(MRi , φ
R
i ).

where k is the number of boundary components of Wn that are copies of MK and r(i) is
the number of boundary components of Wn that are copies of MRi . Thus

(9.6) |ρ0(K)| ≤ r(1) + ...+ r(n)

k +D
C ′ ≤

(
mn − 1

m− 1

)
C ′ ≤ C.

The crucial point is that k ≥ 1. Hence if |ρ0(K)| > C then J̃ is not is rationally
(n.5)-solvable, thereby completing the proof.

In the construction of the Wj, in this general case, there will be no R-caps. The MRi

boundary components that appear at each level are allowed to persist. The key point is
that the analogue of Fact 2 (proof of Proposition 9.4) applies. This fact, together with our
hypothesis on the ηij, ensures that the kernel P of Fact 2 cannot contain every ηij, so that
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there is always at least one ηij that maps nontrivially (as in Fact 2). This translates into
the fact that Wj always has at least one boundary component of the form Mn−j. Then it
is an easy combinatorial exercise to see that if one never has any null caps that the number
of copies of MK in ∂Wn is precisely 0+1+mn+mnmn−1+mnmn−1mn−2+...+mnmn−1...m2

which is at most 1+m+m2 + ...+mn−1. This is the maximum number of copies possible.
The number is not very important-just the fact that there is a bound independent of K.
The proof is completed just as in the proof of Proposition 9.4. �

A nice application of the more general theorem is the following which gives new infor-
mation about the concordance order of knots that previously could not be distinguished
from an order two knot.

Corollary 9.7. For any n > 0 there is a constant D such that if |ρ0(J0)| > D then
the knot Kn of Figure 1.5 is of infinite order in the topological and smooth concordance
groups.

Proof of Corollary 9.7. Any odd multiple of Kn has Arf invariant one and hence is not a
slice knot, nor even (0)-solvable. Let J = #2kKn. Let R̃ denote the ribbon knot obtained
as a connected sum of 2k copies of the figure eight knot. Then J is obtained from R̃ by
4k infections along a generating set for the Alexander module of R̃, using the knot Jn−1

in each case. Recall that Jn−1 = R ◦ ... ◦ R(J0) (n − 1 times) using the operator R{α,β}
of Figure 1.7. Thus

J = R̃ ◦R ◦ ... ◦R(J0)

and Theorem 9.5 applies to show that J is not slice. �
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