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Homeomorphisms between Homotopy Manifolds 
and Their Resolutions 

MARSHALL M. COHEN* (Ithaca) 

w 1. Introduction 

A homotopy n-manifold without boundary is a polyhedron M (i. e., a 
topological space along with a family of compatible triangulations by 
locally finite simplicial complexes) such that, for any triangulation in the 
piecewise linear (p. I.) structure of M, the link of each/-simplex (0 < i < n) 
has the homotopy type of the sphere S"-i-1. More generally, a homotopy 
n-manifold is a polyhedron such that the link of each /-simplex in any 
triangulation is homotopically an (n - i -  1) sphere or ball, and in which 
0M - the union of all simplexes with links which are homotopically 
balls - is itself a homotopy ( n -  1)-manifold without boundary. We note 
that i fM is a homotopy manifold then 0M is a well-defined subpolyhedron 
of M. Also, the question of whether a polyhedron M is a homotopy 
manifold is completely determined by a single triangulation of M (by 
Lemma LK 5 of [8]). 

Our main purpose is to prove 

Theorem 1. Assume that M 1 and M 2 are connected homotopy n-mani- 
folds where n > 6  or where n = 5  and t~M1 =OM2= ~. Let f :  M I ~ M  2 be 
a proper p.I. mapping such that all point-inverses of  f and of  (f[OM 0 are 
contractible. Let d be a f i xed  metric on M 2 and e: MI--*R 1 a positive 
continuous function. 7hen there is a homeomorphism h: M 1 --, M 2 such that 
d(h(x), f (x ) )  < e(x) for all x in M 1. 

The statement that f is proper means that f - I ( X )  is compact, for 
every compact subset X of M 2. The hypothesis of Theorem 1 auto- 
matically implies (see the proof of (3.1)) that f is onto. 

Theorem 1 can be used to add to our understanding of the rela- 
tionships between homotopy manifolds, topological manifolds and p.l. 
manifolds which have recently come to light. These relationships are 
two-fold: 

First, every homotopy n-manifold M is a topological manifold, 
provided that n4=4 or, if n=5 ,  provided that OM is known to be a 
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topological manifold. This is demonstrated by Siebenmann in [10]. He 
omits the proof in the case where 0M :~0, but this is supplied by Glaser 1,4] 
in his recent work on homotopy manifolds. (It is unknown at present - 
March, 1970 - whether every triangulated topological manifold is, in 
fact, a homotopy manifold.) 

Second, Sullivan [13] has constructed an elegant and essentially 
elementary obstruction theory connecting homotopy manifolds to p.l. 
manifolds. I fM is a homotopy manifold whose boundary is a p. 1. manifold 
then a resolution of M is defined 1 to be a pair (V,f) where V is a p.1. 
manifold and f :  (V, OV)--,(M, OM) is a p.1. surjection with compact 
point-inverses such that each f - l ( x )  is contractible and each (flO V)- l(x) 
is collapsible. Given such an M, Sullivan proves that there is an element 
zeH4(M,  OM; 03) (where O 3 is the Kervaire-Milnor group I'6] in the 
p.1. category) such that: z---0 if and only if M has a resolution. 

Theorem 1 and its proof show that Sullivan's obstruction is really 
the obstruction to building a p.1. manifold structure for the homotopy 
manifold M in a simple finite sequence of steps. In fact, since resolutions 
clearly satisfy the hypothesis of Theorem 1 on each component of M, 
we have 

Theorem 2. Suppose that M is a homotopy n-manifold where n > 6 or 
where n - 5  and a M = 0 .  Let d be a metric on M. Then, if (V , f )  is any 
resolution of M and ~: V---,R 1 is a positive mapping, there is a homeo- 
morphism h: V ~ M such that d (h (x), f (x))  < ~ (x) for all x. 

To prove Theorem 1, we shall use the results of 1-10] and [4] (basically 
the fact that the double suspension of a homotopy-manifold 3-cell or 
4-cell is a ball) locally - i.e., to prove (3.1). We build the global picture 
from the Simplicial Factorization Lemma proved in w 2. This lemma, 
which sharpens a result of H o m m a  (1,5]; 2.2) and which depends heavily 
on [1], gives a very precise view of how a simplicial map is built. It 
leads (w 3) to a home0morphism in Theorem 1 which is constructed as 
the composite of a discrete sequence of moves - a "move"  being a 
homeomorphism supported on a topological cone. Finally, in w 4, we 
explain the relationship between Sullivan's obstruction and the Sim- 
plicial Factorization Lemma. 

I would like to thank Robert  Connelly for several very enlightening 
comments during the evolution of this paper, and Dennis Sullivan for 
introducing me to the theory of resolutions. 

Added in Proof L.C. Siebenmann has announced [15] a generalization of Theorem 1 
to cellular maps of topological manifolds. 

I The definition here is equivalent to Sullivan's, though slightly different in form. 
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w 2. The Simplicial Factorization Lemma 

For the reader's convenience we reproduce here some of the definitions 
and concepts which are discussed (in greater detail) in [1]. We shall use 
these to prove two general lemmas about simplicial maps. 

By a complex we mean a locally finite simplicial complex in some 
Euclidean space R e. We write K o < K, or Ko<K, to indicate that K o is 
a subcomplex, or a full subcomplex, of K. We let N(Ko, K) denote the 
stellar neighborhood of K o in K - i.e., the complex consisting of all 
simplexes which meet Ko, plus their faces. C(K o, K) consists of all sim- 
plexes which do not intersect Ko, and 1V(K o, K)=-N(Ko, K)c~ C (K o, K). 
If K o <  K then every simplex of N(K o, K) is uniquely expressible as the 
join of a simplex in K o and a simplex in/V(Ko, K). Finally K' denotes 
a first derived of K. 

Small Greek letters represent (closed) simplexes. & denotes the bary- 
center of the simplex cc If ct, fl < K then ct-fl represents the smallest 
simplex of K containing both 0t and fl or, if there is none, ~. fl is the 
empty simplex. If ~t < K, then D (~, K) is the well-known dual cell to ~ in K. 
Thus D ( ~ , K ) < K '  and D(~, K)=&. D(~, K), where " . "  denotes the 
simplicial join. 

Suppose that f :  K ~ L  is a simplicial map. We may always (and do 
always) assume that K and L are joinable in some R e and that first 
deriveds have been chosen so that f :  K'~E  is simplicial. Then, if ~ < L ,  
we set 

D(a, f )  = f -  1 D(~, L) = {bo ... ~'~ [a o < . . .  < aa; ~ < f(O'o) } < K', 

D(o~, f ) = f - t  D(a, L)= {~ -.. balao < " "  < a,~; ~x ~ f(ao) } , 

Cf= {~o ... ~q ~ ..- ~rplao < . . .  <aq < f ( aq + 0 ;  

a~+~ < ... <av<K } < (K' ,  E). 

C: is the simplicial mapping cylinder. It is the complex we called C .  on 
p. 233 of [1]. 

Suppose now that {Ji}~Es is a family of non-empty full subcomplexes 
of J such that Jic~N(Jj, J)=O if i#j. Let the 0-dimensional complex 
{x~}~ s be joinable with J. Then the simplicial map 

g: c(U J,, J) L) (x,, N(J,, J)) 
i i 

which is defined by the conditions that 

glC(UJ,,S)=l, 
i 

is called a simplicial squeeze of the family {Jr}. 
17 lnventiones math, Vol. 10 
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If f :  K ~ L is simplicial and if a < L, then, by (5.4) of [1], D(a, f ) =  
N ( f - l ~ t , D ( a , f ) )  where f - l ~  is full and D ( a , f ) = N ( f - l & , D ( ~ t , f ) ) .  
Thus a simple example of a simplicial squeeze is given by 

F: [&'* O (~, f ) ]  ~ [&'* ~ * b (~, f ) ]  = [~' ,  b (~, f ) ]  

where F] [~ ' ,b (a ,  f ) ]  = 1 and F ( f  -1 &)=& We prove that every simpli- 
cial map is the composition of squeeze maps built from examples of 
this type. 

Lemma 2.1. (The factorization lemma) : I f  f: K ~ L is a simplicial map 
(where K, L are joinable complexes and f :  K'---, E is also simplicial) and if 

eo = K ', 

Pi=U{(~ i ) '*D(~i , f ) [cd<L}<Ci ,  l < - i < n = d i m L ,  

e.+l =/2 

then f = f .  ... f l  fo where fi: Pi "-' Pi+l is a well-defined simplicial map given 
by the conditions that 

f~[[&'*/)(a, f ) ]  = 1, 

for each i-simplex ~ < L. 

Remark. If ~ is an i-simplex of L - f  (K) then f - 1  &=D(~, f ) = O  and 
fi: [&'* D(a, f ) ]  -o [ . ' . / ) ( . ,  f ) ]  is just the inclusion &'c ~'. 

Proof. First note, for each i-simplex ~ < L ,  that (f-~&)<P~. For 
f - ~  8 < K '  (since the pullback of a vertex is always full) and K ' <  C I. 
Thus f - ~  &< C s and, ~ fortiori, f - 1  &<Pi. 

Now observe that N ( f  - 1 &, Pi) = [&' * D (., f ) ]  and 

( f  - i  [~)c~N(f - l  &,Pi)= 0 if f l=fl i4: , .  

This is because 

[&', D(ct, f ) ]  = N ( T  -1 ~, &' ,D(~ ,T ) )<N(T  -1 f, Pi) 
and 

[a ' ,  O (0c, f ) ]  r [/~', O(fl, f ) ]  = [(~' r O (~. fl, f ) ]  < &', b (~, f ) .  

The abo,ve paragraphs show that f~ is a well-defined squeeze map 
for each i, and it is clear, if one looks at the vertices of an image simplex, 
that fi(Pi)=Pi+l. Finally f . . . . f i f o :  K'- , /2  is a simplicial map which 
takes f -  1 ~ onto ~ for every vertex ~ of f (K') .  Since a simplicial map 
is determined by what it does to vertices, this composition is pre- 
cisely f. q.e.d. 
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Remark 1. In the topological category a map f :  K ~ L can be realized 
by "sliding down"  the rays of the topological mapping cylinder. The 
lemma above essentially says that a simplicial map can be realized in 
a finite sequence of steps down through, the simplicial mapping cylinder. 
In fact this sequence corresponds to a simplicial collapse C:'gE since 

C:= U {~'* D(~, f)Ia <L} 
and 

[~' ,  D (a, f ) ]  = [& * &'* D (~, f ) ]  "g [&* &', b (~, f ) ] .  

Remark 2. From the proofs of (3.3) and (5.5) of [1.] one can see that 
each point inverse of the squeeze map D(~, f ) ~  &, D(a, f) ,  other than 
f - 1  &, is a convex cell. Thus point inverses of the map [&',D(a,f)] 
[h',D(ct, f ) , & ]  are either p.l. balls or are p.l. equivalent to f - 1  ~. 

Lemma 2.2. Suppose that f:  K ~ L is a simplicial mapping and assume 
that ~ is an i-simplex of L and fl is an (i-1)-face of ~ ( l < i < n ) .  Then 
D(c~, f )  is a regular neighborhood a of f -l(&) in D(fl, f )  with boundary 
b (~, f).  

Proof. It is shown in (5.4) of [ l ]  that 

D(~t, f )  = N ( f  - x ~, D(fl, f)),  

D(~, f ) =  lV(f -1 ~t, D(fl, f)).  

From the Stellar Neighborhood Theorem (6.1 of [2]) it suffices to show 
that b(~, f )  is p.l. collared in D(a, f )  and in C ( f  -1 ~, D(fl, f)). This will 
be done (by 4.2 of [2]) once we show that, for each simplex A </)(0q f) ,  
its links in D(~t, f )  and in C ( f  -1 ~, D(fl, f)) are each p.1. equivalent (rel 
base) to the cone on Lk(A, D(ct, f)). 

Suppose A = bo... b~ < b (a, f ) .  Thus u ~ f(ao). Denote 

P =  [D (ao, 6-l).... �9 b(aq_ x, (rq).D(aq, K)] < b(a,  f ) .  

Using (5.6) of [1] and its proof  we see that 

Lk(a,  D(a, f ) ) =  O(~, f lbo)*  P, 

Lk(A, [(~, f ) ) =  b(~, f lbo)* P 

where D(ct, flbo) is a p.l. ball with boundary b(~, f [bo) .  Because 
b(a,  f lbo) = D(u, f [bo) n b (~, f ) ,  it follows that there is a p. 1. homeo- 
morphism of pairs 

[L k(A, D(~, f)), L k(A, D(a, f ) ) ]  = [v ,  b(a,  f l(ro)* P, D(a, f lbo)* P ] 

= [v,  Lk(A, /)(c~, f)), Lk(A, /)(a, f ) ) ] .  

z We mean here a regular neighborhood in the sense of [2]; there is a triangulation 
of the polyhedron in which this is a first derived neighborhood. 
17" 
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To see that the link of A in the complement behaves the same way, 
notice that 

Lk(A,  C ( f  - '  &, D(fl, f))) 

= {'~l".'~t, lzv< ao, fl~:f(zl), ('~l'"'~v) n f - 1  ~ = 0 } ,  p 

= C((flbo) -~ (&), D(fi, f l (ro)) ,P.  

Let's denote the first factor in this join by C. Since (still using 5.6 of [1]), 
/)(fl, f l ao )  is a p.1. sphere and since the stellar neighborhood of 
(fltio) -1 (8) in this sphere is a p.l. ball, we see that C is the complement 
of a p.l. ball in a p.l. sphere - hence a p.1. ball. Its boundary is 

N ( ( f  [6"o)- 1 (&), D(fl, f i f o )  ) = C ~ b(~, f ) .  

As in the previous case we deduce that C*P is piecewise linearly the 
cone on ( C , P)c~ b(ct, f ) .  

w 3. Proof of Theorem 1 

Lemma 3.1. Assume that M i and M 2 a r e  connected homotopy n-mani- 
folds where n > 6 or where n = 5 and ~M 1 = t ~ M  2 = ~). Let f:  (M 1, 8M1)-~ 
(M2, aM2) be a proper p.I. map such that all point-inverses of f and of 
( f  JAM1) are contractible, and assume that M1 and M 2 have been triangulated 
so that f is simplicial. Let ~t be a simplex of M 2 . Then there is a homeo- 

morphism h: [&'* D (a, f ) ]  ~ [v * dr' �9  (a, f ) ]  

such that hiE&' */)(~t, f ) ]  = 1. 

Proof. We point out first of all t h a t f  is onto. To see this when 8M 4 ~ ~) 
consider the map F: 2M I - . 2 M  2, where 2M i is the double of M i (i.e. 
2 M i = M  , x {0, 1} with (x, 0 ) - (x ,  1) for all xe~Mi) and F(x , j )=( f (x) , j ) ,  
j = 0, 1. One easily checks that F is also a proper p. 1. map with contract- 
ible point inverses. Let A = F(2M1). Let H"( ) denote Alexander cohomo- 
logy with compact supports and Z 2 coefficients. Since M 1 is connected, 
H" (2M1) ~ H o (2M 0 ~ Z 2. Hence, by the Vietoris-Begle mapping theorem 
([12], p. 346) H " ( A ) ~ Z  2 . So, by duality, ([12], p. 342) H0 (2M2,2M 2 - A )  
,~ H"(;,I) ~ Z 2 . Since M 2 is connected this implies that 2M 2 = A = F(2M 0. 
Clearly then, M 2 = f ( M  0. The proof  when gM = 0  is left to the reader. 

L e t / = d i m  ~. We claim that D(a , f )  is a homotopy (n-0-mani fo ld  
with boundary/)(ct ,  f ) •  O(a, flaMx). For if A =a0.. .Sq.is a simplex of 
D (~, f )  then L k (A, D (ct, f ) )  is a complex of the form K �9 D (oq, M l) where 
K is a combinatorial ball or sphere according to whether A is in D(~, f )  
or not; and where /J(trq,M~) - which is simplically isomorphic to 
Lk(%,  M1)' - has the homotopy type of a ball or sphere according to 
whether A is in aM~ or not. The computations which justify these asser- 
tions are explicitly made in the proof  of (5.6) of [1]. 
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In fact D ( o ~ , f ) = f - l D ( ~ , M 2 )  is contractible and t~D(~,f)= 
f - 1  [b(~, M2)uD(~, 8M2)] is a homotopy sphere. This follows from 
[11] because point inverses are contractible, f is onto, and M2 being a 
homotopy manifold, [b(~, M2)u D(~, 8M2) ] is homotopically a sphere. 

For the rest of this proof we shall call a compact, contractible homo- 
topy k-manifold whose boundary is homotopically a sphere a homotopy 
k-cell. We proceed to consider the various cases. 

Case I. n = 5. 

If i > 3 then D (~, f )  is a homotopy (5 -/)-cell with boundary b (~, f) .  
By elementary results this is a ball. So &'*D(~,f)  is just a ball with 
boundary &'. b (0t, f) .  Under these circumstances the lemma is trivial. 

If i= 2, ~t'. D(~, f )  is just the double suspension of a homotopy 3-cell. 
Siebenmann has proved 1-10] that such an object is a 5-bail. 

If i = 1, we are asking whether the suspension of the homotopy 4-cell 
D(~, f )  (which is not known to be a p.1. manifold) is homeomorphic to 
v*(k')./)(at, f).  By thinking of suspension as 2-point compactification, 
we will get an affirmative answer to this question once we prove the 

Claim. D (~t, f )  • R 1 is homeomorphic to Iv * b (ct, f ) ]  x R 1 by a homeo- 
morphism which is 1 on /)(ct, f ) •  R 1 and which is bounded in the R 1 
direction. 

But notice that by Lemma 2.2, D(at, f )  is a regular neighborhood of 
f-l(&). Moreover (Int D(~,f))  • R 1 is an open homotopy 5-manifold, 
hence by [10] a topological 5-manifold. Thus D(0t, f )  has the following 
properties: 

A) D(ct, f )  is a mapping cylinder neighborhood of f - l &  and 
[D(~, f ) _ f - l ( ~ ) ]  is p.l. homeomorphic to/)(~, f ) x  [0, 1). 

B) /)(ct, f )  is a p.1. manifold homotopy equivalent to S 3 and D(~t, f )  
is contractible. 

C) (Int D(~t, f))  x R 1 is homeomorphic to R s (by [7]) and so can be 
given a (new) p.l. structure under which it is p.1. equivalent to R s. 

Now Glaser has proved our claim (see [3]; 3.1 and 3.2) verbatim, 
except that wherever we use the symbol D(~t, f )  he puts in a p.l. 4-mani- 
fold, say F r However his proof only uses the fact that F r satisfies A) - C) 
above. Thus the claim follows by his argument. 

Finally, i f /=  0, we consider the 5-dimensional homotopy cell D(0t, f) ,  
~=~o. By Lemma 2.2, D(~, f )  is a mapping cylinder neighborhood of 
f -  1 (&). Hence [D (~, f ) / f -  1 (~)] _ the topological quotient space whose 
only non-degenerate element is f-l(&) _ is homeomorphic rel/)(0t, f )  
to v .b(~,  f).  On the other hand Int(O(~, f))  is an open 5-dimensional 
homotopy manifold simply connected at infinity; so by [10] and [7] 



246 M . M .  C o h e n :  

it is topologically R s. Sincef-l(~) has arbitrarily small mapping cylinder 
neighborhoods in D(a, f),  each homeomorphic to R 5, f - i  (~) is cellular 
in D (a, f).  Thus [D (a, f ) / f -  1 (~)] is homeomorphic to D (ct, j), rel b (~, f).  
So D(~, f ) i s  homeomorphic to v,f(ot, f), rel b(~, f).  

Case II. n > 6 and a ~ dM 2. 
In this case &', D(a, f )  is a homotopy cell with boundary ~' ,  b(ct, f).  

By [10] and [4] this is a topological manifold and by the topological 
Poincar6 conjecture [9] it is a ball. 

Case III. n > 6 and ~ < ~ M  2 . 

As in the previous paragraph, &'* D(~, f )  is a topological ball, this 
time with boundary 

~' �9 dD (ct, f )  = ~' ,  [D (~, f )  u D (or, f tOM 1)]. 

Similarly the homotopy cell v , ~ ' ,  b(a, f )  is a ball and its boundary is 

&' ,t3(v,D(~t, f))=&' ,[D(a,f)wv,aD(~, f)] 
=&' *[b(c~,f) wv*b(~,flOM1)]. 

(We have used: 0b(0~, f ) =  b(e, f[dM O. Compare 5.6 of [1].) 
Using Cases I and II, there is a homeomorphism 

hi: [i' *D(e,f[OMI)] ~[~' *v*D(e, flOMO] 

which is 1 on &' ,b(~ , f l0M 0. This extends to 

h2: O(&' ,D(~t,f))~O(&' ,v,D(ct, f)) 

by simply setting h21[d(,b(~,f) ] = 1. Finally we extend h 2 "conewise" 
to a homeomorphism h of one ball onto the other such that 
hi[d(,/)(a, f ) ]  = 1, q.e.d. 

Proof of Theorem 1. It suffices (by elementary arguments) to prove 
Theorem 1 when M~ and M 2 are joinable Euclidean polyhedra. We are 
given the p.l. map f:  M~ ~ M  2. Choose simplicial subdivisions, also 
called M 1 and M2, so thatf is  simplicial and choose first deriveds so that 
f :  M~ ~M~ is also simplicial. Recall from the proof of Lemma 3.1 that 
f is onto. 

By the Simplicial Factorization Lemma and the fact that f is onto, 
we may write f=f,...fo where fi: P/-~P/+I (same notation as (2.1)) and 
where for each simplex ~ <  M2, f~ satisfies 

f~ [(d~i)' * D(a i, f ) ]  = (ai)', b(~ i, f ) ,  

f~[ [(dti)'* D(a i, f ) ]  = 1. 
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Using Lemma (3.1) we may construct mappings hi: Pi~P~+I such that 

hi [(&i),, D(o~i, f ) ]  = (ai),,/) (ai, f ) ,  

hil[(dti)',D(~ i, f ) ]  -~ 1. 
and 

hil[(&i)', D(~ i, f ) ]  is a homeomorphism. 

Note that h i is onto because every simplex in P~+x lies in some 
( f f+ t ) ' *D( f f+ l , f ) .  So for some ~ti<fl i+I this simplex lies in 

[(~i),, D (if+ 1, f ) ]  < [(~i),, b (~i, f ) ]  < [image hi]. 

Also h/-t: P i+ I~P / i s  a well defined mapping because h i is a homeo- 
morphism on each complex of the form (~i),, D(ct~, f )  and the image of 
this - (~i)',D(~i, f )  - meets any other such image only in (&i)',b(ai, f ) ,  
where h i is the identity. Setting h =h, . . .ho:  M a ~ M  2 we arrive at the 
desired homeomorphism. 

It remains to be shown that h can be made an e-approximation to 
f by choosing the triangulations fine enough. In fact, it suffices to choose 
simplicial subdivisions of M 1 and M 2 under which f is simplicial and 
which have the following property: 

For every x E M  1 and for any chain of (n+2)n-simplices A I, Ao, 
A x . . . . .  A ,  of  M 2 such that f ( x ) ~ A _  1 and such that A i c~ A i+ 14: (~ ( -  1 < 
i < n - 1 ) ,  the diameter o f U A  i is less than e(x). 

To see that such a choice of subdivisions is possible, start with 
arbitrary simplicial subdivisions such that f is simplicial. Order the 
simplices of M 1 as 171, t~ 2 . . . . .  Let K i = N(f(ai ) ,  Mz). Note that {Ki} is a 
locally finite cover of M E by finite complexes, s incef  is proper and onto. 
Subdivide the complex K i to Ki, where Ki, has mesh less than 

and where no chain of length less than n + 3  meets both [f(tri)l and 
[/~(f(tri))[. Now let M2 be a subdivision of M 2 which contains a sub- 
division of each Ki, as subcomplex (this is possible by simple modifica- 
tions of the results for compact polyhedra in Chapter 1 of [14]). Finally, 
since f :  M 1 -~ M 2 is a proper p.1. map, choose subdivisions MI, and M2, 
such that f :  M1, ~ M 2 ,  is simplicial. One easily checks that these sub- 
divisions have the desired property. From now on we shall refer to these 
complexes Mr, , M2, simply as M x, M 2 . 

To see that such a choice of subdivision yields an e-approximation 
consider the simplicial mapping p: C s ~ M~ (where C s is the simplicial 
mapping cylinder defined in w 2) defined by 

P(Oto'"&k &k + l ""~  q) = &O'"~k f (&k + l ) ' " f  (8,)" 
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Notice that plM'~ = f  and plM' 2 = 1. Notice also that 

p [(de/)' �9 D (ct i, f ) ]  = (&i),. D (cd, M2) = (ai) ' � 9  (ct ~, M2) 

= p [(0d)' * b (0t i, f ) ]  = p h i [(~ti) ' * O (ct i, f ) ] .  

Thus, if ye(&~)'*D(ai, f) ,  both p(y) and phi(y) are in (hi)'.D(~i, M2)= 
A i  t t N(~, M2). So there are n-simplexes Ai_l and A i of M 2 which contain 

p(y) and phi@ ) respectively and have non-empty intersection. In fact, 
if hi(y)g:y then p(y) and phi(y) do not lie in (hi)'.D(ct i, M2)= N(& i, M~), 
so any two n-simplices containing p(y) and phi(y), respectively, must 
have ~i in their intersection. Now, if xeM,  and we apply the above 
observation inductively to the points y=x,  y=ho(x ), y= h 1 ho(x ), etc., 
we obtain a chain of simplexes A 1, Ao . . . . .  A, such t ha t f (x )=  p(x)e A i 
and h(x)=h,.. .hlho(x)eA .. Since, by the choice of our subdivision, 
U At has diameter less than e(x), this proves that h(x) is an e(x) approxi- 
mation to f(x). 

w 4. Simplicial Factorization and the Resolution of Singularities 
One means (long known to Sullivan but  different from his treatment 

in [13]) of viewing SuUivan's resolution of singularities of a homotopy 
manifold is as follows. Suppose that M is a homotopy manifold (without 
boundary for convenience) for which we wish to build a resolution. 
Assume that M is triangulated and that M' is a first derived. Let Mo be 
the dual cell complex, {D(a,M)[a<M}. I f  there were a resolution 
f: V--*M with V a combinatorial manifold and f simplicial then 
{D(ct, f ) l a  < M} would be a cell complex formally isomorphic to M0 and 
each "cell" D(ct, f )  would be a compact, contractible combinatorial 
manifold with homotopy sphere boundary (see [1], w 5, w 11). Moreover, 
by the Simplicial Factorization Lemma, f could be effected by succes- 
sively squeezing (in order of increasing i) the spines f - i  &i of the "cells" 
D(a i, f )  to points and joining this map with the identity on &'. 

Let us try to build a resolution by reversing this process - i.e., by 
successively "blowing up"  (in order of decreasing i) the cone points of 
the dual cells D(~d, M) in order to make the dual cells into contractible 
combinatorial manifolds. 

The dual cells of dimension < 3 are already contractible combina- 
torial manifolds (indeed balls) so they need not be touched. So set 
M = M o = M 1 = M 2 = M 3. A 4-dimensional dual cell D (a, M) = ~*/)(~t, M), 
0t = 0t"-4, is'the cone on a homotopy 3-sphere which is itself a homotopy 
3-manifold - hence a p.l. 3-manifold. Set b(0t, M ) =  Z~. Let us assume 
that Z~ bounds a compact, contractible, combinatorial 4-manifold, Q~. 
(We shall come back to this point later.) We change M 3 by cutting out 
D(a, M) and sewing in Q~. (This amounts to "blowing & up" to the spine 
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of Q~.) More precisely, we build the new space 

( M - I n t  [D(~, M)* &']) w(Q,', ~)" 

where the trivial identifications are made along ,Y~, ~'. Having done this 
for all 4-dimensional dual cells independently (which is possible since 
Int (N(~"- 4, M')) n Int (N(/~ n - ", M')) = 0 if ~" - 4 ~ fin - 4) we arrive at a new 
cell complex M 4. 

Now M 4 contains the simplicial complex (M n- 5), and it is still true 
that each barycenter &.-5 has a stellar neighborhood of the form 
N(&,M4)=~'.2~ ~. Only now 27~ is not b(ct, M) but is the homotopy 
4-sphere which resulted from excising the 4-dimensional cells of the cell 
complex b(~, M) and sewing in 4-dimensional combinatorial manifolds. 
While it might seem ludicrous to think that , ~  is a combinatorial manifold 
just because its cells are such, this turns out to be true. {The 4-skeleton 
of Mg is easily seen to have a p.l. manifold neighborhood. This allows 
one to find an open set in Int(~',X~), very close to 2, 4, which is a p.l. 
manifold and is p.l. homeomorphic to X~ x R "-4. This implies that X~ 
is a p. 1. manifold.} 3 Then, since 0 4 =0, there is a contractible, combina- 
torial 5-manifold Q~ with 4_  5 7,, -OQ,. So for each ( n -  5)-simplex ~ we cut 
out (ct',2~) and sew in (~t', Q~) to form M 5 . 

We proceed in this fashion, inductively building Mj such that the 
j-skeleton in the "cell" structure of Mj has a p. 1. manifold neighborhood. 
For j > 5 no trouble occurs because the homotopy spheres ~ are real 
p.l. spheres by the Poincar6 conjecture. In fact the construction gives 
M s = M 6 . . . . .  M, and M n -  V is a p. 1. manifold because its n-skeleton 
has a p.l. manifold neighborhood. Clearly the process gives a p.l. sur- 
jection fk: Mk+l~Mk with compact, contractible point inverses, and 
f=f,....fo: V~M is a resolution of M. 

The only hole in the preceding sketch is that the spheres 2, 3 might 
not bound contractible combinatorial manifolds. This leads to an 
obstruction theory as follows. Orient all the dual cells arbitrarily. This 
then gives a block dissection of Ma=M and a chain complex C(M) 
generated by the dual cells. Let c: C4(M ) ~ O 3 be given by 

where X~ a is the homotopy 3-sphere b(~, M) with induced orientation 
and [~3] is the h-cobordism class of,~3 in 0 3 . If c is the 0-cochain, each 
X 3 bounds a contractible combinatorial manifold and we are done. In 
general, c is conceivably not 0. But c is always a cocycle and this is a 
typical obstruction theory. If ( c ) =  0eH4(M; O3)then the 3-dimensional 
cells in M (which are balls and were previously left untouched) may be 

3 This is not the simplest proof for 2;~, but it is simplest for ,~ (i~4), later in the 
induction. 
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rep laced  by  new c o m p a c t  con t rac t ib l e  c o m b i n a t o r i a l  manifolds ,  so tha t  
in the new complex  M~,  the  cocha in  occur r ing  is indeed  0. 

F ina l ly ,  suppose  tha t  f :  V ~  M is a reso lu t ion  a n d  that  f :  V ~  M 
and  f :  V ' -~  M '  a re  s implicial .  Then  the cocha in  ~: C4(M) - ,  O 3 given by 
c(D(~t n-4,  M))= [D(g n-4, f ) ]  is the  0 cocha in  since /5(~t "-4 ,  f )  b o u n d s  
the  con t rac t ib l e  c o m b i n a t o r i a l  man i fo ld  D(g "-4 ,  f ) .  One  can show tha t  
c - ~ is a c o b o u n d a r y  because  b (ct"- 4, M)  a n d / )  ( ~  - 4, f )  have essent ia l ly  
the  same 2-skele ton.  Hence,  if there  is a resolu t ion ,  ( c ) = 0 .  Thus  the  
vanish ing  of  this  cocycle  is necessary  a n d  sufficient for the existence of  a 
resolut ion.  
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