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The purpose of this paper is to study and compute E. Brown's generalized 
Kervaire invariant [5] 

K: a~--~ Z/8 

where f2. G is an appropriate cobordism theory of immersed submanifolds of 
Euclidean space. By generalizing techniques of Browder [2] we shall give 
necessary and sufficient Adams spectral sequence conditions for an element in 
t2. G to have nonzero Kervaire invariant. Also we will prove that for every j > 1 
there exists a closed, differentiable manifold of dimension 2 ) §  together 
with an immersion in R2s§ which has nonzero Kervaire invariant. Before we 
state our results more precisely, we first recall some preliminaries about the 
Kervaire invariant. 

The classical Kervaire invariant of stably framed corbodism, K:  
f24kf" + 2---'Z/2, is the obstruction to a framed cobordism class containing a 
framed homotopy  sphere. The question of the existence of smooth, stably 
framed, closed manifolds with nonzero Kervaire invariant has intrigued topo- 
logists since the early 1960's. 

By using the Thom-Pontr jagin construction which equates framed cobor- 
dism, f2 fr, with the stable homotopy  groups of spheres, n,(S~ W. Browder 
gave necessary and sufficient conditions on the mod 2 Adams spectral sequence 

f r  s 0 for there to exist elements in f 2 . - r c . ( S  ) which have Kervaire invariant one. 
In [2] he proved the following. 

fr Z /2  is zero unless n is o f  the form 2 j Theorem. The Kervaire invariant K: f22,--~ 
1. Furthermore, an element fr _ ~ o - -  O j ~  2 . . . .  2--7~2j+t_2(S ) h a s  Kervaire invariant 

one if  and only if it is represented by h jhFExtA(Z/2 ,7~/2  ) in the g 2 term of  the 
Adams spectral sequence. 
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In this theorem, A is the mod 2 Steenrod algebra and hjsExtA(Z/2,Z/2) is 
the generator in bidegree (1, 2J). By work of Mahowald and Tangora and of 
Barratt, Jones, and Mahowald (see [21, 1]) an element 0~rc~2~+12(S ~ with the 
required properties is known to exist for j < 5. 

As observed by Browder [2], the essential ingredient contained in a framed 
2n-dimensional manifold (M2",f) that allows one to define its Kervaire in- 
variant, is a trivialization of the (n+ 1) St Wu class, v,+ 1, of the stable normal 
bundle. This idea was carried further by Brown in [4, 5] when he described 
how to define a Z/8-valued Kerviare invariant 

K:  ~ . - - ,  Z/8 

where f2~. is any cobordism theory with vanishing (n+ 1) St Wu class, v,+ ~(~). 
Now let G be one of the Lie groups O(1) or U(1)=SO(2), and let ~G. denote 

the cobordism group of manifolds together with a reduction of the structure 
group of their stable normal bundles from the infinite orthogonal group O to G. 
By work of M. Hirsch [13] t2~ m can be thought of as cobordism classes of 
manifolds immersed in codimension one Euclidean space. Similarly 0 s~ 
=cobordism classes of oriented manifolds immersed in codimension 2 Euc- 
lidean space. 

Notice that f2~ can also be thought of as an immersion-theoretic cobordism 
theory since SO(1)=the trivial group, f2fr=QS~ cobordism group of 
oriented manifolds immersed in codimension one Euclidean space. 

An easy calculation shows that 

O=v,+,eH,+I(BG;Z/2 ) if{~:~2k--2 if G=O(1) 
~2k--3 if G=SO(2) 

and therefore we have a Brown-Kervaire invariant 

for n as above. Our first result is a generalization of Browder's theorem, both 
in its statement and its proof. 

Theorem. Unless n = l  or 3 and G=O(1), the Kervaire invariant of a class 
x e ~ , =  ~ , ( M G )  is nonzero if and only if x is represented in the Adams spectral 
sequence by a class in Ext2(H*(MG), 7//2) in the image of multiplication by h~h~ 
under the Yoneda pairing 

Ext~ Z/2) |  Ext](Z2, Z2)-~ ExtE(H*(MG);Z2). 

Here MG is the Thom spectrum of the universal G-vector bundle over BG. 
We will actually significantly cut down the list of classes in 

Ext2(H*(MG),Z/2) that can represent cobordism classes with nonzero Kervaire 
invariant by showing that many of the classes occurring in this theorem carry 
nonzero differentials in the Adams spectral sequence. A more precise, stronger 
version of this theorem is stated in Sect. 1 (Theorems (1.6) and (1.8)). 

Our second main result is the construction of classes in 0 s~ having 
nonzero Kervaire invariant. These are constructed using techniques of Ma- 
howald [19-1. More specifically we will prove the following. 
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Theorem. Let u, :  ExtA(7Z2, ~Z2)--~ Exta(H*(MSO(2)), 7Z/2) be the homomorphism 
induced by the Thorn class, u: SO-* MSO(2). Then for every j >  1 there exists an 
element S O ( 2 )  , . ~  s O jSO(2))Ef22j+ 2_ 2 = 7"t'2 . . . .  2(MS0(2)) which is represented by u,  (hj hi) in 
the Adams spectral sequence. In particular 0~(S0(2)) has nonzero Kervaire in- 
variant. 

We remark that this result can be viewed as in some sense the second best 
possible solution to the Kervaire invariant problem in the oriented immersion 
setting, since f2 rr = 0 s~ , - - ,  �9 

As we shall see, a direct corollary of this theorem is a recent result of R. 
Bruner [8] stating that h 2 h}eExt3(Z/2, TZ/2) is an infinite cycle in the Adams 
spectral sequence for the homotopy groups of spheres. Also, our techniques 
will yield a simplified proof  of Mahowald 's  theorem [19] that h~hjeExt A 
�9 (Z/2, Z/2) is an infinite cycle�9 

This paper is organized as follows�9 In Sect. 1 we describe a generalization of 
Brown's Kervaire invariant and state our results. In Sect. 2 we use Browder's 
techniques to describe a secondary cohomology operation that detects the 
Kervaire invariant. In Sect. 3 we apply this operation in the case of f2, G and 
prove Theorems (1.6) and (1�9 The construction of the classes 0~(S0(2)) having 
nonzero Kervaire invariant is done in Sect�9 4. Certain Witt group calculations 
referred to in Sect. 1 are done in the appendix. 

We remark that the results of this paper solve problems described by 
Browder in [3]. 

Throughout  the rest of this paper all (co)-homology will be taken with 2U2 
coefficients, unless otherwise indicated. 

w 1. Brown's Kervaire invariant and the statement of results 

Let B be a space and i: B-*  BO represent a stable vector bundle over B. Let 
T(i)  be the associated Thom spectrum, normalized so that the inclusion of the 
fibre determines an element of rc~(T(i)). Let M be a manifold with stable 
normal bundle v(M). 

(1.1) Definition. A l-orientation for M is a map q0: M--~B so that the pull- 
back bundle, ~*(i),  is isomorphic to v(M). 

Let f2~.(-) denote the bordism theory of i-oriented manifolds. Thus for any 
space X f2~,(X) consists of bordism classes of triples ( M , ~ ; f ) ,  where M is a 
closed n-manifold, q~ is a i-orientation of M, and f :  M - *  X is a map. Write 
[M, dp;f] for the associated bordism class. Recall that the Thom-Pontryagin  
construction gives isomorphisms 

f2 r s (X A T(i)) 

and 

if2 ~ r  "~ ~z S t X  A T ( ~ ) ) .  

In the first isomorphism X+ denotes X with a disjoint basepoint. 
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Let K,  be an Eilenberg-MacLane space of type (Z/2,n), and let (M, ~) be a 
~-oriented 2 n-dimensional manifold. In [5] Brown studies the function 

q: H"(M2")--, f2r ) 

defined as follows: Regard ~EH"(M 2") as a map ~: M--~K,,, then 

q(a)= [M, O; =] - [M, ~]e(-22.(K,). 

Brown studied the group (2~z.(K,) by considering the function 

P: ~2.(K.)----~ H.B 

defined by P[M,q~; c~]=q~.([M] ~ ) .  Here ~ H " ( M ) ,  [M]EH2.(M ) is the fun- 
damental class, and " n "  denotes the cap product operation. In I-5] Brown 
proved the following: 

(1.2) Theorem. a) Suppose the (n+l)-s t  Vcit characteristic class, v.+l( 0 is 
nonzero. Then the map P: ~.(K,)---,H,(B) is an isomorphism, and the map q: 
H"(M)--~ ~2r is a group homomorphism. 

b) I f  v.+ 1(0=0 .  then there is an exact sequence 

0--~Z/2 ' (2~2. (K. )  e , , H . B - - - ~ O .  

In this case q: H"M--~(2~,(K,) is quadratic; that is, q(a+fl)=q(a)+q(fl) 
+ i(e-fl), where a. fleZ/2 is the mod 2 intersection number of a and ft. Further- 
more, this exact sequence is split if and only if v . (O=0.  

In the case when v,+x(O=0, the Kervaire invariant of a ~-oriented ma- 
nifold (M z", ~) is defined to be the Witt group classification of the quadratic 
form q. Recall that this classification works as follows: 

Let A be an abelian group and suppose i: Z/2~---~A is an injection. Let V be 
a finite dimensional Z/2 vector space equipped with a nonsingular bilinear 
pairing 

( , ): Vx  V-oZ/2. 

A function q: V--oA is said to be quadratic if it satisfies q(v+w)=q(v)+q(w) 
+i(v ,w) .  The form (V,q) is said to be Witt equivalent to zero if there is a 
subspace Q of V with 2 rank Q = r a n k  V and q(v)=0 for all v~Q. Two forms 
(Vl,ql) and (V2,qz) are said to be Witt equivalent if the form (V1@ Vz,ql-q2)  is 
Witt equivalent to zero. The Witt group of A, W(A) is defined to be the set of 
Witt equivalence classes of such forms. Addition is induced by direct sum. If 
(V,q) is a form, let IV, q] be its Witt class in W(A). 

From here on we restrict to the case when r is a stable vector bundle with 
v.+l(0=0. 

Let Wz* . denote the Witt group W(f2~z,(K,)). We define the Kervaire in- 
variant homomorphism 

K: e l .  
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by the rule K[M2",~]=[H"(M),q]sW2~,, where q is the quadratic form de- 
scribed above. 

To see that K is well defined, observe that if there exists a (2n+ l ) -  
dimensional i-oriented manifold (W,~) with 0(W, 7 ' )=(M,~) ,  then q: 
H"(M)--~(]~2,(K,) vanishes on Q=Image(H"  W---~H"M). A standard Poincare 
duality argument shows that 2 rank Q = r a n k  H"M. Therefore the Witt class 
[H" M, q] is zero. 

We now briefly discuss some algebraic properties of certain Witt groups 
W(A). Proofs will be supplied in the appendix. Observe first that if A = I)~2,(K.), 
then by (1.2b) 4A=0 .  In what follows we shall assume that A is an abelian 
group with 4 A --- 0. 

Let (V,q) be an A-valued quadratic form, and let h: A ~ 7 l / 4  be a homo- 
morphism with the property that the composition hi: Z/2-*A---,Z/4 is in- 
jective. Then the composite qh=hq: V ~ Z / 4  is also quadratic. In [-4, 5] Brown 
constructed an isomorphism a: W(Z/4)---~Z/8. Define ah(V , q) = a(V, h q). 

(1.3) Lemma. Let (~]E/8 be a direct sum of copies of Z/8 indexed by all 
h 

homomorphisms h: A--~ 7./4 with i h:Z/2--~ 7~/4 injective. Then the homomorphism 
a= •ah: W(A)---~(~7~/8 is injective. 

h 

Now suppose hi,h2:A--~7~/4 are two homomorphisms such that ih 1 and 
ih 2 are both injective. Then h l q - h 2 q :  V--~TZ/4 is a homomorphism so it is 
given by x--~j(d,x) for some d~V, where here, and for the rest of the paper we 
let j: Z / n c Z / 2 n  be the obvious inclusion. An elementary argument using 
Brown's invariant a proves the following: 

(1.4) Lemma. o 'h , (V , q) --O'hE(V , q) =Jqh,(d)eZ/8. 

In the case when A=~E,(K,) ,  we write Kh(M;~  ) for the Z/8-valued in- 
variant determined by h: A---~Z/4. If hi and h 2 a r e  two such homomorphisms, 
then in view of (1.2) part b we have that h I - h 2 = f P  where f~H"B. In view of 
(1.4) we may conclude the following: 

(1.5) Lemma. Kh,(M,~)--Kh2(M;~)=jqh,(~*f). 

Recall that W(Z/2)=Z/2  and the Arf invariant of a quadratic form de- 
termines its Witt class. In cobordism theory this reappears as the case B 
=point ,  ~ is therefore trivial, and O~, is framed cobordism ~)fr. Then ~2 fr K,  
__TZ2nK n _  ~s = ~ / 2  and we recover the classical Kervaire invariant K: Y2~.--*Z/2 
[17]. 

We now come to the main results of the paper. The prototype for our 
theorems is Browder's result [2] in which he reduces the calculation of K: ~ .  
~ . ( S ~  to an Adams spectral sequence question. In order to state our 
results we first adopt some notation. If X is a spectrum, let Ext(X) denote the 
group Exta(H*(X),Z/2), where A is the m o d 2  Steenrod algebra. Recall that 
Ext(X) is the E 2 term of the Adams spectral sequence converging to the 2- 
primary part of ~,(X). Recall also that Ext(X) is a module over the algebra 
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Ext(S~ and that 

Ext la(S~ {Z0/2 otherwise.generated by a class h i if t=2 i 

Our first result concerns the case B=BO(1)=RP ~176 and r the universal 
line bundle. Then ~2r ~ is the cobordism group of codimension one 
immersions, as observed in the introduction. An easy calculation gives that the 
Wu classes vq(7)--0 if and only if q:~2k--1, and we therefore get a Kervaire 
invariant for 2n-dimensional manifolds for 2 n ~ 2  k+l - 4 .  From 1.2 we read off 
the bordism groups 

[Z/2 if n = 2 k -  2 
f)~ (K,) = ~ 7Z./4 /f n=2k--1  

(Z/2 O 7I/2 /f n 4 = 2 k -- 1, 2 k -  2. 

From now on we exclude the cases n = 2 k -  2, since the Kervaire invariant is 
not defined in these dimensions. From the appendix we can read off the Witt 
groups 

Wot~)=~Z/ZOZ/2 if n=t=zk--a 
[ Z/8 if n=2k--1.  

(1.6) Theorem. a) K: t2~ W2~ 1) is zero if 2n4=2 k+ 1 + 2 " - 4 .  
b) K: t2~ is an isomorphism. 
c) K: f2~ is surjective. 
d) I f  2n4=2,6, then 2K(x)=O for allxefa~ 1). 
e) I f  2 n = 2  k+x + 2 " - 4  but 2n4=2,6, then xef2~ has nonzero 

Kervaire invariant if and only if x is represented by a class of the form 
e2,. 2hkh k for m<3 or k<__2, ezk_zhkhk, or ezk+, ehkhkeExtz(MO(1)) in the 
Adams spectral sequence. 

Here %~Hq(MO(1))=Hq+ I(RP ~176 is the generator. It determines an element 
in Ext~ if and only if q = T - 2 .  

Remarks. 1. The qualitative statement of this theorem is the same as that of 
( ~ o ( 1 ) , h a t  Browder's [2]. Namely, unless n = l , 3 ,  the only elements in o.2. o_ have 

nonzero Kervaire invariant are those elements in n~z.(MO(1)) detected by 
classes in Ext2(MO(1)) in the image of multiplication by h~hi under the pairing 

Ext ~ (MO(1)) | Ext 2 (S ~ --+ Ext 2 (MO (1)). 

v ~  (~O( 1 ) 2. Let . . . .  2. be in the image of the natural map from framed cobordism, 
f r  ~ O ( 1 )  ~2,--, K2, . Then by Browder's theorem [2] x has nonzero Kervaire invariant 

if and only if x is represented by eohjhj~Ext2(MO(1)) in the Adams spectral 
sequence. 

Recall that in [-12] Cohen and Mahowald showed that there exist elements 

s oo __ $ rl~ZczARV ) - n v _  1(MO(1)) 

detected by ev_2hl~Extl(MO(1)).  Under the Kahn-Priddy map 2: R P ~ 1 7 6 1 7 6  
it was shown that ~ maps to r/j~n~j(S~ the class constructed by Mahowald in 
[19] that is detected by hi h~Ext2(S~ 
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Define ps~nSz,(MO(l)) to be the class 

pj=~]j/k?]: S 2~ 1 / k S  I__~ MO(1)  A S O = M O ( 1 )  

where qen](S~ is the generator. Since F/ is detected by hl~Ext~(S~ pj is 
detected by e2,_ 2 ha h~Ext2(MO(1)) �9 By (1.6) we then have the following. 

(1.7) Corollary. For each j > 2  the class pj~n2,(mo(1))=~~ 1) has nonzero 
Kervaire invariant. 

Remark. The classes ,~ =c5oo) ~ , i ~ 2 ,  are of only limited interest since as observed 
above they are not in the image of framed cobordism. 

We now turn to the case B=BSO(2)=BU(1)=ffgP% and 4=7,  the canoni- 
cal complex line bundle. Thus ~2~=Os. ~ is cobordism classes of oriented 
manifolds immersed in codimension 2 Euclidean space. In this case the Wu 
class vq(7)=0 if and only if q#=2k-2 and we therefore get a Kervaire invariant 
in dimensions 2 n so long as n is not of the form 2 k -  3. Again, we read off the 
cobordism groups from (1.2) and the Witt groups from the appendix: 

~so~2) = 11 2 @ 7/12, 2n 

w~~ =~ = ~z /2 | z /2. 

(1.8) Theorem. a) K" rSs~ is zero if 2n4=2 k+l + 2 = - 6 .  

b) I f  2 n = 2 k + l + 2 = - - 6 ,  ,.=~5S0~2)_,,.~ MSO(2) has nonzero Kervaire in- ~ 2 n  -- ~2n 
variant if and only if x is represented by a class of the form eel_ 4 hk hk for m 
=2,  3 or k < 2 ,  ez~_4h k hk, or e2k-,_4hk hk~EXt2(MSO(2)) in the Adams spectral 
sequence. 

Here e2q~H2~MSO(2)=Hzq+2(CP ~) is the generator; it determines an ele- 
ment of Ext~ if and only if q=2"  - 2 .  

Remark. Let ~-~2,"=c5s~ be in the image of the natural map from framed cobor- 
dism, ~f~=~s~176 Then by Browder's theorem x has nonzero Kervaire :~ * * �9 

invariant if and only if x is represented by e o h~ h y E x t  z* MSO(2)) in the Adams 
spectral sequence. The main positive result of this paper is that these classes 
are in fact infinite cycles. That is, we shall prove the following. 

(1.9) Theorem. For every j >  1 there exists an element O~(SO(2))~f2s2~ 2 which 
is represented by eohih~ExtZ(MSO(2)) in the Adams spectral sequence. Hence 
0~(S0(2)) represents a 2 ~+~-  2 dimensional, SO(2)-oriented manifold having non- 
zero Kervaire invariant. 

w 2. Detecting the Kervaire invariant 

In this section we use techniques of Browder to detect the Kervaire invariant. 
As in the last section let (M, cO) be a i-oriented 2n-dimensional manifold. 

Choose a homomorphism h: t]~z,(K,)--*Z/4. Let v ,=v , (M)EH"M be the nth 
Wu class. The following result is an easy consequence of the results in the 

appendix on the invariant ~rh: W } , ~  W(Z/4)-~-~Z/8 (cf. [4]). 
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(2.1) Lemma. a) Kh(M; ~)=rank  H"(M)=<v~; [M]> mod2. 

b) Kh(M; q>)=qh(v.)mod4, 

Notice that v.(M)= q~* v,(~) and in view of Lemma (1.5) it becomes interesting 
to compute qh(cI)*(x)) or better yet q(rI)*(x))E~,(K.). 

(2,2) Lemma. I f  xeH"B, then Pq(q~*(x))=~,[M]c~xeH. B, where P: 
0r ~ H. B is the homomorphism of Theorem (1.2). 

Proof This is an easy exercise with the definitions and we leave it to the 
reader. 

We will have considerable use for functional cohomology operations de- 
fined using the operation 

Sq"+ l-i: (~Hi+k(x)---~ Hn+ ' +k(x) 
i = 0  i 

and a map f :  Y---,X. The functional operation is defined on those classes 
n 

(Xo .... , x . ) e @  Hi+k(x) such that ~Sq"+~-i(xi)=O, and f*(xi)=O for all i. The 
i = 0  

value of the functional operation is denoted by Sq "+~-~ x o .... ,x,) and 
i = 0  

lies in H"+k(y)/Im(f*). 
For any stable vector bundle ~ over X let q~: Hq(X+)-,Hq(T(~)) be the 

Thorn isomorphism given by cup product with the Thorn class. Finally, let c~ 
=a[M,q~]en~,(T(~)) be the homotopy class corresponding to the cobordism 
class [M; ~]. 

We come now to the two main technical results of this section. 

(2.3) Theorem. a ) I f  xeH"B then 

S q"+ l-i(~r vi(~))) =0. 
i = 0  

b) Suppose q~,[M]~H2,B is zero. Then, for all x~H"(B), q(~*(x)) is in the 
image of i: 7./2-* (2~2,(K,), where i is as in (1.2). Moreover, q(@*(x)) is nonzero if 
and only if 

( ~ Sq '+' - i )  (Xo . . . .  ,Xn)EH2nS  2n 
i =  0 /~t 

is nonzero, where x i = qJ(x. vi(~))ZHn+i(T(~)).  

To state our next result we need some more notation. Let H.  denote the 
Eilenberg-MacLane spectrum H . =  Z" K Z  2. That is, 

n , H  ={Z0/2 if q=n 
otherwise. 

Let /~o denote the cofiber of the nontrivial map ~: S ~  . Notice that 
H * / ] o = ~  , the augmentation ideal of the Steenrod algebra A. Also observe 
that H*(H o ̂  T(~)) = A | H*(T(~)). 
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Finally if 7err, X is a stable homotopy class, where X is a spectrum, we 
write AF(7)=s to mean that y is represented in filtration s in the Adams 
spectral sequence. In particular AF(7)>I means that ~ has zero Hurewicz 
image in H ,  X, and AFt7)> 2 means that all functional cohomology operations 
defined using ~ vanish. 

(2.4) Theorem. a) In H*(I4 o/x T(O), 

~ Sq ,+ l - i (  s+~t., \ q !(t+q]x(Sqt+q)| ) = 0  
i = 0  =" 

p + q = n +  1 

where Z: A-* A is the canonical antiautomorphism. 

b) If  c~err~,(T(0) and AF(o 0 > 2, then c~ has nonzero Kervaire invariant if and 
only if there is ane element fleTr~2,+ 1(_0o/x T(~)) such that c~,fl=7 and 

n 

p + q - - n +  l 

Here c3,: 7rk+l(/~o/X T(~))--orck(T(~)) is the boundary homomorphism in the ho- 
motopy long exact sequence induced by the cofibration sequence 

T ( 0 = S  ~ T ( ~ ) ~  H o ̂  T(0--~/4o ^ T(~). 

Our procedure for detecting the Kervaire invariant is contained in (2.1)- 
(2.4). First we use characteristic numbers to determine the congruence of 
Kh(M;~)mod2 .  Characteristic numbers also give some information on 
Kh(M; ~ ) m o d 4  and how Kh(M;eb ) depends on the choice of homomorphism 
h. Next we assume that ~ , [ M ] = 0 ,  or equivalently, that AF(e)>I .  We then 
use (2.3b) to determine Kh(M;~)mod4 and to determine how Kh(M,~ ) de- 
pends on h. Finally we assume that AF(e)>2 so that Kh(M;eb)E{O,4}cTZ./8 
and is independent of h. We then use (2.4b) to compute Kh(M; rb). 

We remark that our procedure has gaps in the most general setting. In 
particular it is possible that cb,[M]4=0 but charcteristic numbers give no 
information concerning the Kervaire invariant. We will not pursue this possi- 
bility because as we shall see, this cannot happen in the cases in which we are 
most interested ,__,to ~ and f2,s~ 

We begin with the proofs of Theorems (2.3) and (2.4). First, we need an 
algebraic lemma, whose proof is contained in Papastavridis' paper [23]. Let P 
and Q be A-modules. Let P |  Q have the diagonal A-module structure. 

(2.5) Lemma. I f  x~P and y~Q then 

x | S q" + 1 (y) = ~ S q"+l - '(x(S q~)(x) | y). 
i = 0  

The proof of this formula is given in [23]. It is a rather straightforward 
k 

exercise using the defining relation for the antiautomorphism ;~: ~ Sq ~)~(Sq k-~) 
~ 0 .  i = 0  
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We next need a lemma from [2]. Define the spectrum E, to be the fiber of 
the map 

u~| T(~)AH,--~ Hzn+I. 

where u~eH~ is the Thorn class. The obvious map T(OAK,--~ T(~)A H, 
lifts to E, since Sq "+~ acts trivially on the fundamental class a,eH"(K,). We 
therefore have a homotopy commutative diagram 

E n 

T(O A K, --* T(~)/x H,. 

(2.6) Lemma. f , :  r~(T(~)A K,)-+ rci E . is an isomorphism for i ~ 2n. 

The proof of this is a direct cohomology calculation and is clone in [2]. 
Before we proceed with the proof of Theorem(2.3) we need one more 

formula. By abuse of notation let a, denote both the nontrivial element in 
H" K,  and in H" H,.  Recall that a Z/2-vector space basis for H* T(~)|  a, is in 
turn a basis for the free A-module H*(T(OAH,). Using (2.5) we can express 
the k-invariant, ue| "+ 1, of E, in terms of this basis: 

n + l  

u~@Sq n+ 1(an)= ~ Sq "+ 1-i(z(Sqi)(u~)@an) 
i = 0  

(2.7) 

= ~ Sq "+ 1-1(0r174 
i = 0  

The last equality holds because by definition of the Wu classes, )~(Sq~)u~ 
= 0~(vi(O) , and because v,+ 1 (0  = 0. 

Proof of Theorem(2.3). Let xeH" B, then since Sq"+ a x=O, O=u~| a x in 
H"(T(O ^ B+). Using formula (2.7) we get that 

0 =  ~ Sq "+'-'(~O~(v,(~))| 
i = 0  

Now let A: T(O--,T(OAB+ be the map of Thorn spectra induced by the 
diagonal B--~B x B. Using the fact that A*(Or174 we can apply A* 
to the above formula and get that 

S q "+ 1-1(~r Vi(~)))=0. 
i = 0  

This is the statement of (2.3a). 
To prove (2.3b) assume that 4 ~ , [ M ] = 0 ;  i.e. that AF(a)>I .  Let 0 be the 

composition 

, T(O A B+ , T(~) A K. .  0: S 2" �9 ,T(~) ~ l^x 

By definition the homotopy class of 0 is just q(~* x)~(~,(K,)= ~2n(T(~) A K,). 
Now since 0 induces the zero homomorphism in homology the projection of 0 
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to n2.(T(r )/x H.) is trivial. Thus by Lemma (2.6) and formula (2.7) we see that 0 
=q(~*(x))  is nontrivial if and only if the functional operation 

Sq "+1-i (~,~(Vo(~))|162174 ... . . .  ~pr174 
i 

is nonzero. Theorem(2.3b) is now immediate. 

Proof of Theorem (2.4) The strategy for our proof of (2.4) is the same as what 
we used for our proof of (2.3), but considerably more complicated. First, we 
need to recall a result of Mahowald [19]. 

Let L be the double loop space of S a, f22S 3. Let t/: L--~BO be the unique 
(up to homotopy) double loop map that induces an isomorphism on Ha(_ ; Z/2). 

(2.8) Lemma [19]. The Thorn spectrum T(~I) is equivalent to the Eilenberg- 
MacLane spectrum H o. 

Now let X = B  x L and let 7 be the stable vector bundle ~ x q. Note that 
v.+ 1(7)4=0 so there is no Kervaire invariant in 7-cobordism theorem. Following 
the idea of Browder [2] we get around this as follows. Let X(v.+a) be the 
homotopy fiber of the map 

v.+ 1(7): X-- 'K.+I 

determined by (n+ 1)st Wu class, and let 7@.+1)  be the pull back of 7 over 
X (v.+ 1). Notice that the map 

f = l x v . + l :  X - + X x K . +  1 

determines, up to homotopy, a map of pairs 

(X, X (v.+ 1))--' (X x K.+ 1, X x *) 

where , e K . +  1 is the basepoint. By letting T ( 7 , v ( n + l ) )  denote the Thorn 
spectrum quotient T(v)/T7 (n + 1) we get an induced map 

F: T(7, y (v.+ 1))--+ T(X x K.+ 1 ) / T X  = T7/x K.+ 1. 

Let A be the cohomology class z(Sq"+l)u| in 
H"+*(TyAK.+I). It is easy to check that F ' A = 0  and we therefore get a 
commutative diagram 

v. 

T(7 '7 (v"+l ) )  F 'T(7) AK"+I a )H2n+2  

where Y. is the homotopy fiber of A. Let 6: T ( 7 , ~ ; ( v n + I ) ) - - - ~ S T ( T ( V n + I ) )  be 
the connecting map for the cofibration sequence 

r (7  (v.+ 1))---* T7 ~ r(7, 7 (v.+ 1))" 

The following was a key technical lemma from Browder's work [2]. 
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(2.9) L e m m a  I-2-]. a) h,:  n~(T(v,V <vn+ i>)) --~ n)Y. is an isomorphism for j ~ 2 n  
+1. 

b) I f  xen~2. T(v<vn+l>), and A F ( x ) ~ 2 ,  then x has nonzero Kervaire in- 
variant if  and only if there is an element y6Tr~2,+l(T(v,V(v,+l>) with 6 , ( y ) = x  
and such that h , (y) is the nontrivial class in the kernel of i , : 
~P2k+ ,(Y,,)--~ 7r~2,,+ , T(?) A Kn+ 1" 

Using Lemma (2.5) we can rewrite the k-invariant of yn. 

(2.10) A=z(Sqn+ l)u(~in+ l +U(~Sq  n+ l ~ Sq n+ l in+ 1 = - i (~(vi(~))@ in+ 1). 
i=O 

Now the inclusion B - * L x B = X  yields a map of pairs (L 
x B, B ) - * ( X , X ( v n + I >  ) because v,+l(~)=0. Therefore by passing to Thorn 

spectra and using the fact that 7 = t / x  4 and that T t / = H  o we get a map of 
relative Thorn spectra 

R: T(?, 4)=/-)o ^ T(4)--~ T(?, ? <vn+ l>). 

Now given ae=~n(T)(4)) with A(F)>2 then there exists an element 
f l en~ ,+ l ( / to^  T(4)) such that ~ , f l=cc  Then by combining (2.9) and (2.10) we 
see that ~ has nonzero Kervaire invariant if and only if the functional oper- 
ation 

n 

where O = F,  R , (fl). 
Recall that ~= t /x  4. We will need the following lemma whose proof we 

postpone. 

(2.12) L e m m a .  Vt(t~)Vq(YI)-~-(tqq)Vt+qO'l). 

The proof of Theorem (2.4a) comes from the fact that 

0 = R* F* A = ~, S qn+ i - J R ,  F* (~(vi(v)) | i.+ 1) 
i = 0  

and thus, by (2.12) we have that 

0 = ~ S qn + 1 - i R *  F *  (tp~ (vi(Y)) | i n + 1) 
i = 0  

= ~, Sq n+ i-i(~/(,,o(vi(y) vn+ 1(?)) 
i=O 

i = 0  s + t = i  q 
p + q = n +  l 

i = 0  s+ t= i  q 
p + q = n +  1 
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In the above calculation the notation ff(r,r stands for the relative Thom 
isomorphism 

r r H* (X, B) ~ H* (T(T, ~)). 

The proof of Theorem(2.4b) uses this same calculation. Namely, by (2.11) 
and the naturality of functional cohomology operations, ~z~ , (T(~) )  with 
AF(e )>2  has nonzero Kervaire invariant if and only if there is a class 
fl~rt~.+ 1(/-}o/x T(~)) with 

O* Sq "+~-' (R*F*O=(v,(?))| 
i = O  fl 

which, by the above calculation occurs if and only if 

n 
O=#(i~=oSqn+l-i)13( s+~t=i 

p+q=n+ I 
(t ; q) x(S qt+q)| ~b r vp({))). 

We are therefore reduced to proving Lemma(2.12). To do this, consider the 
Milnor basis, Z/2[{1,~ 2 .. . .  ], for the dual of the Steenrod algebra, A , = H , H  
= H ,  T(~/). Recall that the evaluation (Sqi,~ I> is nonzero if and only if ~i={{. 
Thus if we define the class ti=Z(~i)eH, H=H,(T(rl)), we have that the evalua- 
tion (x(Sq~),t z> is nonzero if and only if d=t]. Now let xI~H,(O2S 3) be the 
Thom isomorphic image of tiE H,(T(~)). Thus H, (O 2 $3)=7.2 [x 1,x 2 .. . .  ], and 
since 7 : 0 2  $3--+ BO is an H-map, the multiplication in this algebra is induced 
by the loop addition in 0 2 S 3. Moreover we have that the evaluation 

(2.13) (vi(rl), x z) = 1 

if and only if z i x = x  1. To prove (2.12) it is therefore sufficient to prove that 

<Vt(~l) l)q(1,l),xl>: ~[(t-~q)q i f  xl=Xtl+q 

[ 0 if x '  is any other monomial. 

To check this, let A : 0 2 S 3 --+ 0 2 S 3 • 0 2 S 3 be the diagonal map. Then 

<v,(,7) vq(,7), x'> = <a*(v,(~)| vq(~)), x'> 
= <v,(~) | vq(~); a ,  x'> 

which, by (2.13) is nonzero if and only if A,x  z has as a summand x'l| 1. 
Lemma (2.12) now clearly follows. 

w 3. Proofs of Theorems (1.6) and (1.8) 

In this section we evaluate the Kervaire invariant in the cobordism theories 
OOtl) and 0 s~ and prove Theorems (1.6) and (1.8). To do this we interpret the 
relations in (2.3) and (2.4) as elements in certain Tor groups, and the existence 
conditions in (2.3) and (2.4) as statements that certain elements in Ext groups 
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are infinite cycles in the Adams spectral sequence. The most convenient vehicle 
for this step is the bar resolution, so we begin by recalling some basic facts 
about this resolution. 

Let M be an A module and give M |  the diagonal A-action. Let M~_A 
denote the free A-module which, as a Z/2-vector space is M |  and has A- 
action given by the formula a ( m | 1 7 4  There is a well known A- 
module isomorphism F: M | A---> M~-3A induced by formula (2.5). 

(3.1) F (m | a) = ~,, Z (a'i) (m) | a' i' 
i 

where a--~ ~ a' i | a'i' is the Cartan coproduct of the element a~A. 

Thus M | A is a free A-module and as is well known, the following chain 
complex, the reduced bar resolution, has as its homology the groups 
Tor~(M; 7.2). 

m~ m |  m | 1 7 4  ...~ M |  
dl d2 dl 

where ~i in the /-fold tenor product of the augmentation ideal A with itself, 
and the differentials d i are given by the formula 

di(mQal  | ... @al)=al(m)Qa2 @ ... @a i 
i --1 

+ y' m | 1 7 4 1 7 4  i-1. 
j=a 

Now let M = H * ( T ( O )  as in Sect.2, then the relations in Theorem (2.3 a) 
determine cycles/t 2, (x) ~ [H* (T( 0)]  @ A as follows: 

(3.2) P 2, (x) = ~ ~, (x. vl) | S q" + 1 - i. 
i = 0  

Here xeH"(B), ~ = ~br and v i= ~(0.~The relations in Theorem (2.4a) similarly 
determine cycles x : , e H *  T ( 0  | A | A = A | A | H* T(~) as follows: 

p + q = n +  1 

or, applying formula (3.1) for F: M |  we have 

,33,  2n-- Sqn+X i| J O qJ , sv p, 
i = 0  s + t = i  

p + q = n +  1 
O~ j~_ t+q  

e~|174 

~Torl '2"+ I~H * T(O, Z2) and These cycles determine classes ~2n A [ 
/~2neTor2'En+E(H* T(~),Z2) respectively. The following is an immediate trans- 
lation of Theorems (2.3) and (2.4) into Adams spectral sequence language. 
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(3.4) Theorem. I f  x~H"(B), then there is a ~-oriented manifold (M;4 )  with 
~ , [ M ] = 0  and q(~*(x))4:0 if and only if ot(M; ~)en,(T(~)) is represented in 
the mod 2 Adams spectral sequence by a class ~Ex t~ ' 2 "+ l (H  * T(~),71a) such 
that the evaluation, ( ( ,p2 , (x) )  is nonzero. 

(3.5) Theorem. Let (M, eP) be a ~-manifold with AF(~(M,~))>2. Then the 
Kervaire invariant K(M, q~) is nonzero if and only if ~(M, ~)~n,(T(~)) is repre- 
sented in the mod 2 Adams spectral sequence by a class 
0~Ext~' 2,+ 2(H,  T(~), Z2) such that the evaluation (0, ~c2, ) is nonzero. 

We now apply Theorems (3.4) and (3.5) to the cobordism theories f2 ~ and 
f2 s~ We first pursue the case B=BO(1) and prove Theorem(1.6). We begin , 
by recalling the calculation of Ext~it(H*(MO(1)),712)=Ext~t+l(H*(RP~);71z) 
from [12]. 

[Z/2  if t = 2 ' - - 2  

(3.6) Theorem. a) Ext~163 * MO(1):71/2)=~generated by a class e2,_ 2 

tO if t 4:2~-2. 

b) Ext~'*(H*MO(1);71/2) is the 71/2 vector space generated by class e2,_ a hj 
represented by the classes e2,_2| ' in the cobar resolution, subject to the 
relations ea,+ ,_ 2 h~=0. 

c) Ext~'*(H*(MO(1));7~2) is the 71/2 vector space generated by classes 
e2,-2 hihk and by classes ?~ represented by 

if2 '+2 2i+2 jr_ 2 ~+z 2~+1 
e 3 . 2 , -  2~ )  ~1 (~)~1 ez . . . .  2 ~ ) ( ~ 1  ~ ) f f l  ~2'  

2i+1 3 .2  ~ 
+ ~  | +~')+~3 ~'| .... 

in the cobar resolution. These classes are subject to the following relations: 

(1) e2, - 2 hi hj = e2, - 2 hj h i 

(2) e2. xhihi+l=O for all r 

(3) e2r lh ,_ lhk=O fora l l  k 

(4) e 2 . . . .  lh~=ez,+, lh~+1. 

(5)  e 2 . . . .  lh i+zhi -=O.  

We remark that the cobar resolution is the dual of the bar resolution 
and the ~'s are the Milnor ring generators of A,  [22]. 

We now follow our procedure for detecting the Kervaire invariant. 
Recall the Kahn-Priddy map 2: RP~-- ,S  ~ It is well known that on the 

Adams spectral sequence level 2 raises filtration by one, and induces the homo- 
morphism Ext~ * M O(1), 71/2) = Ext ~ + ~ (H* RP oo; 7l/2) --+ Ex t~ ''+ 1 (71/2, 71/2) 
given by ez, z---~h i. Thus by the Hopf  invariant one results of [0], e 2 ,  2 is an 
Adams spectral sequence permanent cycle if and only if 1 < i < 3 .  Thus by 
Lemma(2.1), the Kervaire invariant Kh(x)=Omod2 for all , .=oom . . . . .  z, for n>3.  
Moreover, recall that vmO(1)) is nonzero if and only if m is of the form 2 k -1 .  
Thus v2(O(1)) and v~(O(1)) are nonzero and hence by (2.1) 

Kh: g2a.(O(1))--~ Z/8 
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is surjective for n =  1, 3 and is congruent  to 0 m o d  4 for all o ther  n. Using the 
fact that  f2~ n~3(F,.P~176 T h e o r e m  (1.6) par ts  b - d  are proved.  

By Theorem(2 .4b)  we are now reduced to comput ing  the evaluat ions 
( x ;  ~:2,) for xeExt~ '  2n+ 2 (H* MO(1); Z2). Our  first result is the following: 

(3.7) L e m m a .  (C',.; /s = 0  for all r. 

Proof. We calculate this evaluat ion directly f rom the ba r  and cobar  resolut ion 
descriptions of ~c2n and ~,. given in (3.3) and  (3.6) respectively. 

~,. has bigrading (2, 1 1 . 2 " - 2 )  so that  we mus t  have 2 n + 2 =  1 1 . 2 ' - 2 ;  i.e. n 
= 11 .2"-  1 _ 2. Recall  tha t  

~ = e 3 . 2 , _ 2 |  (2r+2 | (2r+~+ e2 . . . .  2| 

where P,~A*| is given by 

pr=/~2r+2 ?-2~+ I 1 '~1 (~) "~ 1 ~ 2~ 2r+1 3"2r 2~ 2~ 2~+ +r | +r | �9 

We will prove  this l e m m a  in two steps, that  is, we will show that  b o t h  

( e 3 . 2 ~ _ 2 | 1 7 4  /s 4 )  and ( e  2 .... 2 |  K l l . 2 ~ - 4 )  

are zero. 
N o w  recall tha t  

K;2n= E 
O<i<n 
s + t = i  

p + q = n +  l 
O~j<=t+q 

( t + q~ S qJ O(VsVp)| Z(S qt+q_ j)| S q,,+ l_ i 
q / 

Thus  after observing that  Vk(O(1))=O if and only  if k - - -2m-1  we note that in 
evaluat ing y2 r+2 y2 r+2 

( e 3 . 2 r - 2 |  ~1 |  ; K l l . 2 r - 4 )  

we need only consider the summands  of  K 11.2r_ 4 where (S qJ ~k(v s vp), e 3. 2r_ 2) 
= 1 where s and p are bo th  of the form 2 " -  1. This  occurs  in three  cases 

1. j = 2 " ,  s = p = 2 " - l ;  2. j - - 0 ,  s = T + l - 1 ,  p - - T - l ;  

3. j = 0 ,  s = 2 ' - l ,  p = 2 " + 1 - 1 .  

We study case 1 first. To  get nonzero  in the eva lua t ion  of this summand ,  we 
need that  both  

~1 ; x(Sq '+q-2r) and \~1 , S 

are nonzero.  In par t icular  we need tha t  t + q - 2 ' = 2  ''+2 and 1 1 . 2 ' - 1 - 1 - i  
= 2r+ 2. But  using the restr ict ion that  p + q = n + 1, i.e. tha t  2 r - 1 + q = 11.2  r -  1 

- 1" q =  9 .2"-1 ,  we have that  the b inomia l  coefficient (t +q] (2 "+2 + 2 ' ]  
, \ q / = \ 9 . 2 , , _ 1  ] = 0 .  
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Thus the s u m m a n d s  of ~c x x. 2,-  4 when j = 2", and  s = p = 2' - 1 evaluate  t r ivial ly 
on e3.2r 2 | 1 7 4  2r+2 ~x . The  fact that  we get zero eva lua t ions  in the o ther  
two cases as well is verified in the same manner .  This then shows that  

( e 3 . 2 r _ 2 | 1 7 4  2~+2, / ~ 1 1 . 2 r _ 4 ) = 0 .  

N o w  in evalua t ing  (ez  . . . .  2 |  x~1.2~_4) we need on ly  consider  the 
s u m m a n d s  of  K x 1.2~- 4 where ( S  qJ @(v s vp); e 2 . . . .  2) = 1 where s and p are  bo th  
of  the form 2 " -  1. This occurs  only when j = 0, s = p = 2 " -  1. The  fact that  we 
get zero eva lua t ions  even on these summands  is verified in a s t ra igh t forward  
manner  as above. In  this case Mi lnor ' s  result  [22]  that  if ~i is a m o n o m i a l  in 
the ~,'s in A*, then (~I;  Sq k) = 1 if and only if (~=  ~ is helpful. Deta i l s  are  left 
to the reader.  This comple tes  the p roof  of  L e m m a  (3.7). 

We now comple te  the ca lcula t ion  of (x ,  ~:2.) for 
x~Ext2 '2"+2(H * MO(1);  71/2) by proving  the fol lowing:  

(3.8) L e m m a .  (ez~_zhkh,,;K2n)=l if and only if k=m~r-1,  and n = 2 "  
+ 2  ' - 1 - 2 .  

2 K 2 m Proof. In eva lua t ing  ( e 2 , _ 2 |  1 |  ; x 2 . )  we need only  consider  s u m m a n d s  
of ~c2, ( n = 2 ' -  1 + 2  k-  1 + 2 " -  1 - 2 )  where (SqJ~O(vsvp); e2r_2) = 1 where s and  p 
are  bo th  of  the fo rm 2 u - 1. This  occurs  only when  j = 0 and  s = p = 2 ' -  ~ - 1. To  
get nonzero  in the eva lua t ion  of this  s u m m a n d  we need that  b o t h  

(2~ (tqq) ) 2- (1 ; z (Sq  t+q) and ( ~ 1  ; Sq  2r-t+2k-l+2 . . . .  1- i )  

are  nonzero .  In par t icu la r ,  we need that  t + q = 2 ~ and 2 ' - 1 +  2 k-  ~+ 2 " - ~ - 1 -  i 

=2"" N~ the bin~ c~ (t+q~= (2~) which is zerO (m~ q ! 

q = 0 or 2 k. We  are therefore reduced  to two cases. 

a) j = 0 ,  s=p=2 '-~-1, q = 0 ,  t=2 k, and  

b) j = 0 ,  s=p=T-~- l ,  q=2 k, and t = 0 .  

N o w  in case  a), the  two requi rements  tha t  2 - x +  2 k- ~+  2 . -  ~ 1 -  i =  2" and s 
+ t =  i (2 ' -  1+  2 k _  1 = i) yield a cont rad ic t ion .  W e  are thereby reduced  to case 
b. 

In  this case the two requ i rements  2"-  1 + 2 k-  x + 2 m- ~ _ 1 - i--- 2" and  s + t = i 
( 2 ' - 1  1 = i) yield tha t  k = m. A n d  indeed in this case bo th  

(1 ; z(Sqt+q) = ( ( 2 ~ ;  2 . . . .  i )  1 
q 

--2 k --2 m 
so that  (e2~_2|  |  , KE~+Ek+,--4)--1 if and  on ly  if k=m, which com- 
pletes  the p roo f  of  L e m m a  (3.8). 

We 've  therefore  comple ted  o u r  calculat ions  of  the eva lua t ions  (x;/s for 
xeExt2'2"+2(H*(MO(1));712). In fact we've shown that  this eva lua t ion  is non-  
zero if and  only if x = e 2 , ,  2 hkhk and n = 2 k +  2 " - 1 _ 2 .  Thus to comple te  the 
p r o o f  of T h e o r e m  (1.6) it suffices to prove the following. 



112 R.L. Cohen et al.: 

(3.9) Lemma. e2~_2hkhkeExtZA(H*(MO(1)):Z/2) can be an infinite cycle in the 
mod 2 Adams spectral sequence for n,(MO(1)) only in the cases m= k, m= k - 1 ,  
m _<.. 3 and k arbitrary, or k _<__ 2 and m arbitrary. 

Proof. Consider the Kahn-Priddy map 2, :  Ext] 'q(H * M O ( 1 ) : z 2 ) = E x t  2'q+1 
(H* RP| 7.2)---~ Ext3'q(Z2,712). Then 2,(e2m_ 2hkhk)=hmhkhk, so if e2~_2hkhk 

s S O is an infinite cycle, so it hmhkh k (in the Adams spectral sequence for n , (  ).) 
Now as proved by Adams in [0] for m ~ 4 

d2 hm =h0 hm- l hm_ 1. 

Moreover, since d2(h k hk)= 0 we have that 

d2 (hm hk hk) = ho h,n_ 1 h~_ 1 hk hk 

in Ext~'*(Z/2,7l/2). Now except for the cases of m and k described in the 
statement of the lemma these classes were shown to be nonzero by W.H. Lin 
in [18]. Thus except for these cases h m h k h k carries a nonzero differential in the 
Adams spectral sequence, and hence so does e2m_ 2 hkh k. This completes the 
proof of (3.9) and thus of Theorem (1.6). 

The proof of Theorem(1.8) is completely analogous to the proof of (1.6) 
after observing that Z2MSO(2)~-tEP~ In this argument the calculation of 
ExtA(H*MSO(2);Z/2)~EXtA(H*(II~P~~ of [12] are used instead of (3.6). 
(For example, Ext 2'*(H* MSO(2); Z/2) is generated by classes e2.~_4| h k h, and 
?i represented by 

2 i + 2  y 2 i + 2  - f f2~+l  2 i y 2  i + I  . 2 t _ ~  
e3.2,-4|  | +e2,+,-4@((~'+~@~1 (2+~2 @(~'t s ~2,) 

Taking the place of the Kahn-Priddy map we use the stable map 2: Z 3 MSO(2) 
=Ir.P~176 ~ defined as follows. 

Let i,: II~P"~OU(n) be the usual inclusion map defined as follows. Fix a 
point x e ~ P  ~ By considering x as a complex line through the origin in ~", 
every vector vE~2" can be written uniquely as v=t+v ' ,  where rex  and t. v'=0. 
Let i,(x)eg2U(n) be defined by the requirement that if zeS  1, then i,(x)(z) is the 
complex linear transformation which maps v = t + v' to z t + v'. 

Let a(i.): Z~P"---, U(n) be the adjoint of i,. These maps fit together to yield 
a map 

a(i): S O P  ~--~ U. 

Let 2: Z~P~176 ~ be the stable map defined to be the adjoint of the 
composition 

2: ZIIJP ~176 .(i) )U(n)- - -J  -~Qs~  

Here QS ~  lim f2" S"  S ~ A standard and easy calculation shows that, like 
a l ~ o o  

the Kahn-Priddy map, 2 raises Adams filtration by one and the homomor- 
phism 

2 , :  E x t ~  * MSO(2); ~/2)--+ ExtXa(Z/2, 7/./2) 

is given by e2,._ 4 --+ h,,. 
We leave the details of the proof of Theorem (1.8) to the interested reader. 
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w 4. The Proof of  Theorem (1.9) and some related results 

In order to construct elements Oj(SO(2))EQ2J+12(SO(2)) ~=n2j+~ I(CP ~ neces- 
sary to prove Theorem (1.9), we shall need to recall some techniques Mahowald 
used in his construction of elements rlyn~zj(S ~ represented by hlh J 
eExtA(Z/2,Z/2 ) in the Adams spectral sequence. We first fix some notation. 

If X is a space, let QX= lim O"s" X, and let QkS~ denote the donnected 
n~oo 

component of QS ~ consisting of maps of degree k. Recall that QI S~ a space 
often denoted by F or G in the literature, is an H-space, and in fact an infinite 
loop space, under the composition pairing of self maps of spheres. 

Let r/: S a ~ Q I  S o generate n~ Q~S~176 Since Q1 S~ is an infinite 
loop space q extends to a two-fold loop map 

?l; 02  S 3 ~ - 0 2  X2 S1- -~Q1S~ 

If 0 2 S 3 denotes ~r'22 S 3 with a disjoint basepoint, then we have a basepoint 
preserving map 

2 3 ___+QS 0. 0+: O S+ 

Let g: O 2 S 3 ~ S  ~ be the stable map (i.e., map of the associated suspension 
spectra) given by the adjoint of 0+. By construction, g is a map of ring spectra. 
In particular we may conclude the following. 

Consider the stable splitting of 2 3 O S+ due to Snaith [24]. (See [10] for a 
simple spectrum level proof.) 

2 3 0 S+ ~, V Dk. 
k>=O 

Here D0=S  ~ and for k>  1 Dk=F(RZ, k)+/x~S l~k), where F(RE, k) is the con- 
figuration space of k-tuples of distinct points in ~2. We then have corn- 
mutative diagrams 

(4.0) 

Dk gk ̂  gs so  SO A D s , A 

I~k, s 

Dk+s gk+s ~ S~ 

Here gi: Df--~S ~ is the restriction of q to Dj, and the pairings Pk, s are induced 
by the H-space structure of 0 2 S a. 

The following two results were proven by Mahowald in [19]. 

(4.1) Lemma. H*(Dak ) is isomorphic to the cyclic A-module 

Mk=A/A{z(Sqi): i>k}, generated by a class U2kEH2k(D2k). 

For ease of notation let f~---g2,: D2'---~ S~ Consider the functional cohomol- 
2i+ l  ogy operation Sqs, 

(4.2) Lemma.  I f  ao~H~ ~ is the generator, then ~qf, tao) is defined, has 
zero indeterminacy, and equals 

SqZ,_ 1(u2,) = z(SqZ,-, Sq 2, 2... Sq21Sql)(UE,)~H,(Dz,). 
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We wish to reinterpret (4.2) as a statement about the representative of f~ in 
the mod2 Adams spectral sequence converging to the stable cohomotopy of 
D2,. To do this, first notice Hq(D2,)=0 for q>2  I+1-  1, and H 2 . . . .  I(D2,)=Z/2 
generated by Sq 2'- 1(u21). This implies that when localized at 2, D 2, is 2 i+ 1_ 1 
dimensional, with only one cell in dimension 2 i+ 1_ 1. 

Let p: D2,--~S 2i§ be the projection onto the top cell. p induces a 
homomorphism 

p, :  Ext~i'(Z/2, Z/2)--* Ext~i'- 2,+ 2+ 1(i/2, H* (D2,)). 

(4.3) Corollary. f/~z~ is represented by p,(hi+O~Ext~'l(7~/2, H*(O2i)) in 
the mod 2 Adams spectral sequence converging to the stable cohomotopy of D2,, 
~*(D2,). 

Proof The translation of (4.2) to (4.3) is standard after noticing that for 
dimensional reasons (see (4.1)) i f j  ~ei+ 1, S q~(ao)=O. 

Now consider the stable map 

fit2-)x : D~22)- I=  D2'-2 A D 2 ' - I  f . . . .  f ,  -1' S~ A S ~ 1 7 6  

The following is then immediate. 

(4.4) Corollary. f~)~~ is represented by 

pt.2)(h i hi) e Ext 2' 2 (Z/2, H * (Dr22)-2)), 

where 

p~,2): Ext~ i,(z/2, Z/2) --~ Ext~i'- 2,+2+ 2 ((~/2, H* (D~22)- 2)) 

is induced by the projection 

pt2) :  D~22) 2=D2,_l  A D 2 , _ I  pap , S2 ,_ I  A S 2 , _ I  = S  2 . . . .  2 

Now let b 2, be the 2 i+1-2  skeleton of D2,. (All spaces and spectra are 
assumed to be localized at 2.) So 

/52i c..., O 2 ,  P ~. 82 ,+  2_ 1 

is a cofibration sequence. Notice that by (4.1), H 2 ' §  2(/~2,)=i/2 ' generated by 
Sq2'-Z(u2,)=x(Sq2'-lSq2'-2...Sq2')(u2,). Let p: /52 ,~S z'§ be the projec- 
tion onto the top cell. 

(4.5) Corollary. Let J~Tt~ be the class represented by the restriction o f f  i to 
/52,. Then ~ is represented by p, (h i hi)~ Ext 2' 2 ((Z/2, H* (/52,)). 

Proof First notice that the complex /)(2) is 2(2 i -  1)=2i+1--2 dimensional, so ~ 2  i - 1 

we may assume the pairing #=/~2,-1 21-1:D~22,\,--*D21 has its image in /52,. 
Furthermore, an easy exercise with 4.1 and the Cartan formula shows that the 
map 

#: D~2 2\2-*/52, 
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induces an injective map in cohomology. (This was verified in [7].) Thus the 
diagram 

O ~ \ ~  ~ O 2, ,u \ /  
s 2 i + 1 - 2  

homotopy commutes (up to sign). 
Now let 

' Si ' Si 1 ' . - .  ' $2 ' $1 ' S~ 

Ki K i _ l  K1 Ko 

be a minimal Adams resolution of S ~ That is, it is an Adams resolution based 
on the minimal free resolution of Z/2 as a module over the Steenrod algebra. 
So the sequences Si--* S i_ 1---" K i -1  are fibrations of spectra, with Ki being a 
product of Eilenberg-MacLane spectra satisfying 

nq g i ~ gxt~i q+ i(Z/2, Z/2). 

Now consider the following diagram. 

8 2 ~ + t - 2  

? $2  02 ~ K 2  

1 iii I P2 

\ / /  S 1  m ' K1 

\ / 1  
D z, , S O , K o D ~ \  I . f, oo 

The map fi: DE '--~SO lifts to a map gi: OEi--+S2 since j~ is zero in cohomol- 
2 k ogy, and since all functional operations S q i , ( a  o) are zero. The map hihi: 

2 i + 1 2 v S - ---' ~2 represents the element of the same name in Ext 2' 2t + l (Z /2 ,  7,/2). 
Now by the commutativity of diagram (4.0), f o / ~ -  ~c(2) ~0 / ' / ' ) (2 )  ~ and so - -  J_i- 1 ~ *~s ~,~2 i -  11, 

by (4.4), 0-(2) hihi v =p2ogio~=l.t*(p2ogi), where p2ogiE:-[D2,,K2]. But p(2)=pop 
so we conclude that 

/.t* (p2  o gl)  = I I * ( h  i hi~ 

But since p* is injective, this implies that p2oqi=hihiof i  which, by definition 
determines the class 

/~, (h~ hi) ~ Exta Z/2, H* (/5 2,), 

which proves (4.5). 
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The suspension spectrum D 2, is a finite spectrum so it has a Spanier- 
s ~ *  2i+l-q(Dzi), etc. Whitehead 2/+ t-dual, D*,. That is, rCqU2,=Tz 2 

Let Oi~Tr~2,+,(D~,) be the dual of f/~u~ and let t6rcl(D~, ) be the dual of 
p~z~ 2 . . . .  1(D2, ). The map t: $1-~ D*, induces a map 

, , :  Ext~it(Z/2 , 7r/2)--~ ExtOl '+ t (H* (O*,), 7./2). 

(4.6) Corollary. cbi~uv+,(D*, ) is represented by l , (hi+l)EExt] '2 '+ '+l(H*(D*) ' 
Z/2) in the Adams spectral sequence. 

Proof. This follows from (4.3) and S-duality. 
Now let D*i be the stable cofibre of i: S I ~ D * , .  Since z is the dual of p: 

2 i + , - -  2 i + D2___~S -1, D*, is the t-dual of / )2 , .  
Let " ~ - ,  - 2 ,  + 1 _  J ~ z ( O 2 , )  be the dual of p ~ n  s 2 ( / ) 2 i ) ,  and let - s -* 4h~n2,+,(D2,) be the 

dual of J~Tr~ (Note q~ is the composite S 2'+1 , D * ~ b * , . )  

(4.7) C o r o l l a r y . -  s - ,  (~iE~Z2,+I(D2,) is represented by  j , ( h i h i ) E E x t  2'2 . . . .  2 ( H , ( / ~ , )  ' 
Z/2) in the Adams spectral sequence, where j ,  is the homomorphism induced by j: 
S2 ~ f i , , .  

Proof This follows from (4.5) and S-duality. 
The results described above are slight variations of the results obtained by 

Mahowald in [19]. Since the writing of that paper, however, more results 
about the stable homotopy type of the spaces D k (and thereby O 2 S 3) have been 
obtained by Brown and Peterson [7] and by Cohen [9, 11]. The essential 
outcome of these results is that when localized at any prime, D k has the 
homotopy type of an appropriate Brown-Gitler spectrum [6, 11]. In particular 
at the prime 2 Brown and Peterson proved the following. (Again all spaces and 
spectra are assumed to be localized at 2.) 

(4.8) Proposition [7]. D k satisfies the following properties : 

(a) Let Uk: Dk-~ H k be the generator of H*(Dk) as a module over the Steenrod 
algebra. Then if X is any C.W complex, the induced homomorphism. 

(uk),: ~q+k(Dk /X X)--~ Hq(X) 

is surjective for q <= fc, where 

~ = { k  k i f k i s o d d  
+ 1 if k is even. 

(b) Let M be a closed manifold of dimension n <= k, and let T(vM) be the Thorn 
spectrum of the stable normal bundle v M of M. (Again the Thorn class 
UM~H,(T(vM) ) lies in dimension zero.) Then there is a stable map 

a M : Z k T(vM)--~ D k 

that makes the following diagram commute. 
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S k T(VM )_ a~ --* Dk 

< /  
Hk 

Remark. (b) follows from (a) by the S-duality relation between M and T(vM). 

(4�9 Corollary. Let M be a closed 2~-dimensional manifold with Stiefel-Whitney 
class co2, ~(VM) nonzero in H 2'- I(M), then there is a stable map 

YM: D*,---~ M 

which is nonzero in Hi (_  ). 

Proof  Let YM be the S-dual of the map aM: _r 2' T(v~)--~D v described in (4.8b). 
Now H I(D~,)_~H 2 . . . .  I(Dz,)~Z/2 generated by S q2 ' - l (uv) .  So YM is nonzero 
on Hi(_  ) if and only if ~t(SqE'-~(uz,))  is nonzero. 

But by (4.8b), 

ff~(S q2,-1 (u2,)) = S q2'-i O~(U2, ) 
= S q2'- 1 (uM) ' 

which is nonzero since co2, t(v~)4:0. 

(4.10) Corollary. For every i>1  there exists an element ql+len~2,+,(RP v) 
represented by j ,(hi+ 1)eExt,~ '2'~ '+ I(H* RP2' ,Z /2)  j ,  is the homomorphism in- 
duced by the inclusion of  the bottom cell j: S ~ ___, [ (p2  . 

Proof  Let qi+~ be the stable composition S 2`+. ' D * , ~  R P  2' where qSi is as 
q~t t 

in 26  an ,'1 . . . . . .  is as in (4.9). (Recall co 2, I(VRv2,)+O.) 
�9 ~ , ) , i - - Y R p z  I 

The corollary follows from (4.6) and the fact that by (4.9) the following 
diagram homotopy commutes. 

D~,- , R P  2' 

// 
S i 

qi+ l e T r,(RP2') is nontrivial since j , (hi+ 1)~Ext~(H*RP~176 is nonzero, and 
cannot be hit by a differential in the Adams spectral sequence�9 

An interesting outcome of the above analysis is that we can recover 
Mahowald's theorem that h~hjeEx tA(Z /2 ,Z /2  ) is a permanent cycle in the 
Adams spectral sequence�9 That is, if we let tljert~zj(S ~ be the composition 

R p  v -  ~ ~ R p  ~176 ~ S O tlj: S 2J- q~ 

where 2 is the map studied in the Kahn-Priddy theorem [16], then we have the 
follo wing: 
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(4.11) Corollary. r/j~n~j(S ~ is represented by h l hi~Ext2"2j+2(Tz/2,z/2) in the 
Adams spectral sequence. 

Proof. This follows from (4.10) and the well known fact that 2, when restricted 
so S ~ c RP ~, is the generator of n~ (S~ which is represented by h~. 

We now have all the necessary preliminary results to complete the proof of 
Theorem 2. 

Let Oi(SO(2))~.ns2~+,(~P~)= n~,. ~_ 2(MS0(2)) = f22,+,_ 2(SO(2)) be given by 
the following stable composition. 

R p  ~176 " 0~(S0(2)): S 2'+' ~,§ , R P ~  ~ff~poo, 

where RP2 ~ is the mapping cone of the inclusion j :  S 1 c R P  ~ and p is the 
projection, and co: RP2 ~---~ff~P~176 generates H2(RP2~; Z ) ~ Z .  We need to show 
that Oi(SO(2)) is represented by u,(hihi)~Ext2"2'+l + Z(CP~176 where u: $2 ~ CP ~ 
is the inclusion of the bottom cell. 

Now since the map Yi: b* i - - 'RP~ induces an isomorphism on Hi(_ ) and 
hence on n~(_), it induces a map 

.vi: D*,---' RP2 ~, 

which we claim is an isomorphism on H2(_). This is true since H2(b~, ) 
~H2 '§  generated by Sq2~-2(u2,). So by S-duality Yi induces an 
isomorphism on H2(_ ) iff the Stiefel-Whitney class ~02,_ 2(VRp2,) is nonzero. But 
this is standard. 

Now since co,: H2(RP2~ ~ is an isomorphism, we may conclude 
that the following diagram homotopy commutes 

S 2i+' RP2 ~ S 2 

C p  ~ 

where j and q5 i are in the Corollary (4.7). Theorem (1.9) now follows from the 
commutativity of this diagram and (4.7). 

We conclude this section with a proof of the following theorem, originally 
observed by R. Bruner I-8]. 

(4.12) Theorem. For every j >  5 h2h2~Ext3(TZ/2,Z/2) is an infinite cycle in the 
Adams spectral sequence. 

Proof. Let 2: Z f f A P ~ 1 7 6  be the stable map described at the end of Sect. 2. 
Define (j to be the composition 

(j: S 2J+~+1 ,ZaMSO(2)=XII2poo , S  ~ 
oj(so(2)) 
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T h e  f a c t  t h a t  (~ is  d e t e c t e d  b y  h 2 h jh j  is  i m m e d i a t e  f r o m  t h e  f a c t  t h a t  0~(S0(2)) 

is  d e t e c t e d  b y  u . ( h i h ) = e o |  a n d  f r o m  t h e  f a c t  

t h a t ,  a s  o b s e r v e d  a t  t h e  e n d  o f  S ec t .  2, ) t . ( e o ) = h 2 ~ E x t ~ ( Z / 2 , Z / 2 ) .  

w 5. Appendix: Algebra of quadratic forms 

In this appendix we do the Witt  group calculations described in Sect. 1. The set up for these 
calculations is the following. 

V is a Z/2 vector space. 
(x. y) denotes the value of a nonsingular,  symmetric pairing V x V-~ Z/2, 
A is an abelian group equipped with an embedding i: Z/2--o A, and 
q: V---~ A is a quadratic form; that is it satisfies q(x + y)= q(x)+ q(y)+ i(x. y). 
Notice that 2q(x)=i(x.x) and that 4q(x)=0.  We therefore assume without loss of generality 

that 2Aci(~/2)  and 4 A = 0 .  We write A 2 c A  for the subgroup of elements of order <2.  
Recall that (V,q) was defined to be Witt equivalent to zero if there is a subspace K c V  such 

that 2 rank  K = r a n k  V and q(K)=0 .  (Vl,ql) is Witt equivalent (V2,q2) if (1/1 ~ V2,ql-q2) is Witt 
equivalent to zero. 

N.B. i) If rank(V) is odd Vis never Witt  equivalent to zero. 
ii) It is easy to check that if K c  V and q (K)=0 ,  then 2 rank K < r a n k  V. 
Our aim is to compute the Witt group, W(A); the set of equivalence classes IV, q] under 

addition given by [1/1, ql] + [ V2, qz] = IV1 (~ V2, qa + q2]. 
We begin by classifying nonsingular  bilinear forms. The function V-,Z~2 given by x ~ x.  x is 

a homomorphism,  hence by the nonsingularity of the pairing there exists a unique ve V such that 
x.  x = x.  v for all x e  V. We call v the Wu-elass of V. We then divide nonsingular  bilinear forms on V 
into the following three types: 

I. v = 0  II. v4=O, v.v=O III. v4=O, v . v=l  

We will classify these bilinear forms as direct sums of the following three basic ones. 
1. Let E=Tr/2@Z/2 with basis x, y and bilinear form given by x .x=y .y=O,  x . y = l .  Here 

v=0 .  
2. Let F=Tg/2@Tt/2 with basis x, y and bilinear form x.x=O, x . y = y . y = l .  Here v=x. 
3. Let G = Z/2 with basis x and bilinear form x.  x = 1. Here v = x. 

(5.1) Lemma.  Let V be a vector space with nonsingular bilinear form x. y. 
n 

a) V is of type 1 iff V ~ @  E i. 
i = 1  

n 

b) V is of type I1 iff V~- @ E~@F. 
i = l  

n 

c) V is of type 111 iff V_~ @ E~@G. 
i = l  

In all cases, isomorphism means bilinear form preserving isomorphism. 
Before we prove this lemma we adopt the following notation. 
1. I fXl , . . . ,xk~Vlet  (Xl,.. . ,Xk) denote the span o f x  I . . . .  ,x k in V. 
2. If W ~  V is a subspace, let W • {x~V: x. w=O for all wsW}. Note that in general W n  W • 

4:0. 

Proof. a) If x~V then by nonsingularity there is an element y~V such that x . y=  1. Since V is of 
type I this means x and y are linearly independent. Thus  V~-(x ,y ) (~(x ,y )  l and an obvious 
induction completes the proof. 

b) Choose a w such that v. w = 1. By assumption v and w are independent. Clearly V= (v,w) 
~3(v,w) • If x~(v,w) 1, then x . x = v . x = O  so that (v,w) • is of type I. By assumption v.v=O and 
v. w = 1. Now by the definition of v, w. w = v. w = 1 so (v, w)-~ F and (b) now follows from (a). 

c) Since v .  v =  1, then clearly V~-(v)@ (v) • Moreover one can check that (v)  • is of type I 
and it is obvious that ( v ) = G .  Part (1) therefore completes the proof. 

This completes the classification of nonsingular  bilinear forms. 
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(5.2) Lemma. Let veV be the Wu class and let q: V--~A be a quadratic form. Then q(v)=0 iff(V,,q) 
is Witt equivalent to an A2-valued quadratic form. 

Proof There are three cases according to the type of the bilinear form. 

Case1. Vis of type I: Since v=0 ,  x .x=O for all xEV. So O=x.x=2q(x) and thus q is A 2 valued. 

Case2. V is of type II: Pick w such that v . w = l  and set F=(v,w) ,  P=(v ,w)  l, qF=qlF, and qv 
=qlv. Then V=(F, qr)(~(P, qv). If we assume q(v)=0 then (F, q r ) ~ 0  so (V,q)~(P, qe ). But P is of 
type I, so as in case 1, qe is A 2 valued. 

We now assume that q(v)4:0 and will show that q is not  equivalent to an A 2 valued form. We 
compute qF: 

qe(v) 4: O, by assumption, qr(v + w) = qv(v) + qF(w) + i(v. w). Now 2 qF(v) = 0 since v. v = 0. More- 
over 2 i(v. w)= 0, but  2qv(w)~e 0 since w. w = v. w = 1. Therefore 

04:2 qv(w) = 2 qF(v + w). 

Now suppose (Q, qo) is an A2-valued form with (V,q)(~(Q, qQ)~O. Then there is a subspace 
K c  V~Q with 2 r a n k K = r a n k  V + r a n k Q  and such that q+qQ vanishes on K. But by the above 
calculation of qv we have that Kc~F=O so that K c P @ Q .  But by the remark at the beginning of 
this Sect. 2 rank K < rank P + rank Q < rank V + rank Q. This contradiction shows that (V,, q) is not 
equivalent to an Az-valued form. 

Case3. V is of type III. By Lemma(5.1) we know that rank V is odd. If (Q, qQ) is any A2-valued 
form then Q has type I since O=2qQ(x)=i(x.x)=x.v for all x. Again by (5.1) this implies that 
(Q, qQ) has even rank. Therefore V(~Q has odd rank and hence cannot be Witt equivalent to zero. 
Thus  (V, q) cannot be Witt  equivalent to any such (Q, qQ). 

Now define a homomorph i sm qS: W ( A ) ~ A  by ~[V,,q]=q(v). Lemma(5.2) implies that this is 
well defined since if (V,,q)~0 then q(v)=0. Clearly q5 is a homomorphism.  

(5.3) Lemma. Suppose 2A4:0,  then there is a short exact sequence 

O--, W(A2)--~ W(A ) ~' , A--~O. 

This sequence is never split. 

Proof From (5.2) it is clear that this sequence is exact at W(A). Moreover it is also clear that 
W(A2)--~ W(A) is injective. We now show that ~b is surjective. 

Suppose first that aEA is such that 2a4:0.  Define i: Z/2---~A by i(1)=a. Take the bilinear form 
G and define q(x)=a. Clearly 4)[G,q]=a. 

Now assume a6A is such that 2 a = 0 .  Take the bilinear form F and define q by q(x)=a, q(y) 
= b  where b is an arbitrary element of A of order 4. ( N . B . y . y 4 : 0  so 2q(y)4:0). Clearly (o[F,q]=a. 
This shows that  q~ is onto. 

To show that the sequence is not  split we exhibit an element of W(A) of order 8. 
Let aEA be an element of order 4. Define the form (G,q) as above; namely, q(x)=a. Recall 

that 4(G,q) is the direct sum (G,q)G(G,q)(~(G,q)~(G,q). Thus  it has basis xl ,x2,x3,x 4 and the 
quadratic form q4 = q (~ q (~ q (~ q is given by the formulae: 

q4(x~)=a for all i, q4(xi + xj)=2a for i ~j, 

q~(xi+xj+xk)=3a for i+-j+k, and q4(x1Wx2+x3q-x4)=O. 

Hence q4 vanishes on only two elements (0 and x 1 +xz+x3+x4) and so it never vanishes on a 
rank two subspace. This shows that 4 [G, q] 4:0, and completes the proof of Lemma (5.3). 

Notice that (5.3) allows us to easily reduce the calculation of W(A) to the calculation of 
W(A2). We therefore assume until further notice that 2A = 0. 

Let h: A--~Z/2 be any homomorph i sm such that  hi: Z/2-~A---~Tg/2 is the identity. Then  the 
function q~: V--~Z/2 given by hoq is quadratic and it therefore has an Arf invariant 

Arf(qh) = Arfh(q)EZ/2. 

Recall that Arf: W ( Z / 2 ) ~  Z/2 is an isomorphism. This gives a homomorph i sm 

Arf: W(A)--,(~)Z/2 
h 

given by (V,q)--*ZArfh(q). Here h varies over those homomorph i sms  h: V~7~/2 such that h i =  1. 
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(5.4) Lemma.  Arf: W(A)--~@Z/2=(Z/2) 2"-' is injective. Here d= rank A. 
h 

Proof. We use induction on d. The case d = l  is the assertion that Arf: W(7/2)--,Z/2 is an 
isomorphism. 

Assume the result is true for A and  set B = A ~ Z / 2  where i: Z/2-~B is given by Z/2---~A,--oB. 
Let q: V-~ B be any quadratic form, then we can write 

q=qa~t~ 

where qa: V-~A is quadratic and ~b: V--*Z/2 is a homomorphism.  Similarly, if h: B--*Z/2 is a 
homomorph i sm such that h oi= 1, then h = h a (D q~, where ha: A ~ Z/2 is a homomorph i sm with h a i 
= 1, and qS: Z/2---~ Z/2 is any homomorphism.  Then  we have 

qh (x) = qhA (X) + 4) q/(X). 

Now since q~0:V--*Z/2 is linear, q~O(x)=x.z for some unique zeV, and 

qh(x) = qha (x) + x .  z. 

By a standard result on the Arf invariant 

Arf(qh) = Arf(qha ) + qh(z) 

(N.B.d.  d = 0  since 2A =0,  so that qhA(z)=qh(z))" 
We now show that Arf: W(B)--~07~/2 is injective. So suppose Arf(qh)=0 for all choices of h. 

h 
By choosing ~b=0 so that z=0 ,  we therefore have that Arfqh = 0  for all suitable ha, and so 
Arf(qa)=0.  Thus by our inductive assumption;  we have [V, qA]=0 in W(A). 

This also shows that for all suitable choices of h 

0 = Arf(qh) = qh(d). 

By the definition of d we have that d must  be zero and hence ~0=0. Therefore q is the composite 

V ~  A'-*B. However IV, qA] = 0  in W(A) so there is a half rank subspace K c V with qa(K)=0.  

But then q(K)= 0 so IV,, q] = 0 in W(B). This completes the inductive step in our proof of (5.4). 
We are now reduced to computing the rank of the image of Aft: W(A)--~@TI/2. 

h 

We adopt the notation (a,b) for a,b~A, for the quadratic form defined on the module E by 
the formula x ~ a ,  y ~ b .  It is clear that every quadratic form over A (where 2A =0) is a direct sum 
of such forms. Write [a ,b]eW(A)  for the Witt  class of (a ,b ) .  Thus  W(A) is generated by the 
elements [a,b]. There are certain obvious relations. 

(5.5) Lemma.  In W(A), (i) [a, b] = [b, a], (ii) [0, b] = 0, (iii) [a, b + c] = [a, b] + [a, c]. 

Proof The only nontrivial part is (iii). To prove this we compute Arf invariants. Let h: A---~7~/2 be 
any homomorph i sm with h i = 1. Then by definition, 

Arfh (a,b + e) =%(x) qh(y) 

= h(a) h(b + c) 

= h(a) h(b) + h(a) h(c) 

= Arf h (a, b)  + Arfh (a, c). 

Thus by 5.4 [a, b + c] = [a, b] + [a, c]. 
We now set up some more  notation. Pick a basis for A, {a I . . . .  ,ad} where a a = i ( l  ). Let 

{h I . . . . .  ha} be the dual basis for A* = Horn(A; Z/2). Let H ~_ A* be the subspace consisting of those 
homomorphisms  that vanish on a~. So H=(h  2 ..... h2}. Thus if h: A ~ Z / 2  is such that hi= 1, then 
h~hl + H. 

Now from Lemma (5.5) we see that W(A) is spanned by [al,as] such that 1 <i<_j<=d. We need 
to extract a basis from this set. 

(5.6) Lemma.  [al,ak] =[ak ,a , ]  for each k. 

Proof We compute Arf invariants. If heh I +H, then h (a l )=  1, so Ar fh (a l , a , }  =h(at)=h(aOh(ak) 
= Arf  h (a  t, at}. 
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(5.7) Lemma. The set {[al,al]}u{[ai,aj]: l <i<j<d} is a basis for W(A). 

Proof By Lemmas (5.5) and (5.6) the above set spans W(A). To show it is linearly independent 
order the elements [a~,aj] in this set lexicographically. Now order the elements of hl+H as 
follows. Let (o,~keh~+H. Define l(~b) to be the number of hi's in the expression of q~ as a linear 
combination of the h{s. Then 

(i) If l(~b)<l(~O) then ~b<~, 
(ii) If l(~b) = l(~) then order q~ and ~ lexiocographically. 
We introduce the following notation for elements ~beh~ + H  with l(~b)<3. 
Let h~.l=hl; hl,k=h~+h k for 2<k;  and let hk. =hl+hk+h.  Observe that there are the same 

number of elements ~peh~+H with I(qb)<3 as there are elements [a~,aj] in the above set. 
Moreover observe that 

Arfh,,, [ai, aj] = 1 

and Arfhk., [al, a./] = 0 if (k, l) < (i,j). 
The linear independence of the set {[a l ,a l ]  } w{[ai,aj]:  1 <i<j<d} now follows easily from 

Lemma (5.4). 
In conclusion we get the following general calculation of W(A) for A such that 4A =0. 

(5.8) Theorem. (i) if 2A =0 then W(A)=(71/2) (~)+1 where d=rank  A. 
(ii) Suppose 2A 4:0, then there is a short exact sequence 

O~(Z/2) ~2~ ~W(A)  ~ ,A-~O 

that is not split. Here d = rankz/2 A 2. 

Before the final theorem we need some preliminaries. First observe that by the above theorem 
W(Z/4)~-Tt/8. Let B: W(2s be the invariant in Brown's paper [5]. We need also to know 
that the inclusion j: Z/2 ~--*Z/4 induces a commutative diagram 

J. 
W(Z/2) ) W(Z/4) 

Z/2 , Z/8. 

Finally, if h: A---~Z/4 is any map such that h i: ~/2---~Z/4 is injective, define Bh: W(A)--~Z/8 by 
Bh(V,q)= B(V, hq). Define 

B: W(A)--)(~Z/8 
h 

to be the sum of the Bh's. 

(5.9) Theorem. B: W ( A ) - - ~ Z / 8  is injective. 
h 

Proof First note that A---,OZ/4 is injective so that if (V,, q) is an A-valued form with Wu class vEV 
h 

then qk(v)=0 for all suitable h implies that q(v)=0. Thus if B[V,,q] =0  then by Lemma(5.2) (V,q) is 
Witt equivalent to an A2-valued form. So without loss of generality assume (V,q) is A2-valued. 
Now as h: A---~Z/4 runs over all allowable choices, then h2=h[A2:A2---~Tg/4 runs over the 
allowable choices A z ---~Z/2, followed by the inclusion Z/2~--~Z/4. But by the above remarks about 
the relation between B and Arf  we see that Arfh2(V,,q)=0 for all h2: A2--*7~/2. But by (5.4) we 
conclude that [ E q ]  =0. 
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