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1. Introduction 

Localization is a most useful tool in commutative algebra: With every 
prime ideal p of a commutative ring R one associates a local ring R, whose 
residue class field is Q ( R / p ) ,  the field of fractions of the integral domain Rlp, 
together with a homomorphism 1: R -+ R, such that the accompanying dia- 
gram commutes. The kernel of 3, is the C-component of 0, where C is the 

complement of p in R, as is well known and easily verified. When R is Noe- 
therian, ker 1 may also be characterized as the intersection of all the primary 
components of 0 associated with prime ideals contained in p (cf. [IZ],  Chapter 

Now the process of forming fractions has been generalized to non-commu- 
tative rings in a number of ways. The simplest is Ore’s method (see e.g. [ Z ] ) ,  
but this is of limited applicability. Another method, much studied lately, de- 
pends on forming injective hulls; it is usually expressed within the framework 
of torsion theories (cf. [6], [7], [l I]). It  leads to a generalized quotient ring which 
reduces to Ore’s construction whenever the latter is applicable, and like the 
latter it is not left-right symmetric. We shall call this the injective method. A 
second way of generalizing Ore’s method is to invert matrices rather than ele- 
ments. This allows one to obtain an explicit form for the quotient ring pro- 
duced; unlike the injective method it leads to actual inverses and is left-right 
symmetric, but in general it is more difficult to determine the kernel of the 
canonical mapping. This may be called the inversive method; it is described 
in [3]. If instead of inverting matrices, we merely make them right invertible, 
we obtain an intermediate method, which may be called semi-inversive. 

I t  is natural to try to apply these methods to obtain a non-commutative 
localization process. For a Noetherian (semi)prime ring, Ore’s method can 
always be applied to yield a (semi)simple Artinian quotient ring (Goldie’s 
theorem), but this is no longer so when we try to localize a t  a prime ideal of a 
Noetherian ring. A number of ways of performing such a localization have 
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been proposed; in particular, Goldie [4] has given a construction for prime 
ideals in Noetherian rings which exploits the p-adic topology, giving rise to a 
“topological localization”, while Lambek and Michler in [8], [9] construct a 
quotient ring by means of a torsion theory. This “injective localization” has 
the advantage that the kernel of the canonical mapping can be more easily 
determined, but the resulting ring need not be a local ring. 

The object of this note is to show how the inversive method may be applied 
to obtain a localization at  a semiprime ideal tt of a Noetherian ring R. The 
ring thus obtained is always a semilocal ring whose residue class ring is the 
classical quotient ring of R/n (Section 4). This is followed by some illustrative 
examples in Section 5 .  We begin with a general discussion of the torsion theory 
(generally non-hereditary) that can be associated with a multiplicative set of 
matrices (Section 2) ,  and in Section 3 obtain a general theorem on the relation 
between localizing and forming factor rings, from which our main results follow 
almost immediately. 

T am indebted to G. M. Bergman for a number of suggestions, leading in 
particular to the general development of Section 3, and to J. Lambek for point- 
ing out an  unsupported assertion made in an earlier draft. 

2. Multiplicative Matrix Sets and Their Torsion Theories 

Throughout, all rings are associative with a unit element which is preserved 
by homomorphisms, inherited by subrings, and acts unitally on modules. 

Let R be a ring, then a set C of square matrices over R is said to be 
multiplicative if 1 E C and, for any A,  B E C and any matrix C of the right 

A C  
size, (o B )  E C. Thus E contains square matrices of all orders; we write 

C, for the set of n x tz matrices in C. If C is multiplicative and moreover 
admits all elementary (row and column) transformations, it is called admissible. 
A homomorphism f : R -+ S is said to be C-inverting if each matrix of C is 
mapped to an invertible matrix by f. I t  is easily seen (cf. [3]) that for 
any set C of square matrices over R there exists a ring R, and a C-inverting 
homomorphism 

A: R - R ,  

which is universal in the sense that every C-inverting homomorphism ,f : R -+ S 
can be factored uniquely by A, i.e., there exists a unique homomorphism 

A 
R -+ R ,  
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f I :  R, --+ S such that the accompanying triangle commutes. We observe that 
2 is always an epimorphism in the category of rings. 

The ring R, is called the universal I;-inverting ring. If I: is multiplicative, 
the elements of R may be obtained as the components of the solutions of the 
matrix equations 

(2) u A + a = O ,  

where a is a row over R and A EX. 
The advantage of inverting matrices rather than elements is that the solutions 

of the equations ( 2 )  actually form (and not merely generate) the inverting ring. 
As is well known, in the case of elements this is so only for the denominator sets 
(sets satisfying the Ore condition). We recall that a right denominator set in a 
ring R is a subset S which includes 1, is multiplicatively closed, and is 
such that 

(i) for all a E R, s E S, aS n sR # a, 
(ii) for all a E R, s E S, if sa = 0, then at  = 0 for some t E S. 

Let S be a right denominator set and let I; be the multiplicative set of matrices 
generated by S; thus I: consists of all upper triangular matrices with elements 
of S on the main diagonal. Then we can form the ring of fractions R, and 
the universal E-inverting ring RE ; we claim that these rings are isomorphic. 
More precisely, there is an  isomorphism w : R, --+ R, such that the triangle shown 

commutes, where 2, 2' are the canonical mappings. This follows easily from 
the universal properties of these mappings; thus 2': R -+ R, is Zinverting 
and 1: R -+ RE is S-inverting. 

We also recall that ker 2' is the left S-component of 0 (cf. [2]) : 

(3) ker 2' = { x  E R [ xs = 0 for some s E S} . 
Given any set I; of square matrices over R, let be the set of matrices of 

R that are inverted by the canonical mapping A :  R -+ R, . This set is called 
the saturation of I;, and if I; = x, we call I: saturated. From the universal 
properties one sees that, for any S ,  

(4) R, RE . 

I t  is clear that the set I; is admissible (see [3], p. 249 for the multiplicative 
case) ; hence the multiplicative closure of I; and the admissible closure of I; 
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both have the same saturation as C itself, and by (4) all have isomorphic uni- 
versal inverting rings. 

We now come to torsion theories. As is well known, with any right denomin- 
ator set a torsion theory may be associated (cf. [ l l ] ) .  Instead of a denominator 
set we can also start with a multiplicative matrix set, and obtain a torsion theory 
as before: 

PROPOSITION 2.1. Let R be a ring and C a multiplicative set of matrices over 
R. For any right R-module M denote by t ( M )  the set of elements of M occurring as 
component in a row u such that uA = 0 for some A E C. Then the correspondence 
M t--t t ( M )  is an idempotent radical. Further, both C and its admissible closure give rise 
to the same radical. 

The first assertion means that t ( M )  is a submodule of M and the 
assignment M H t ( M )  is an idempotent subfunctor of the identity such that 
t ( M / t ( M ) )  = 0 (cf. [ l l ] ) .  

Proof: Let x,y E t ( M ) ,  say x = u l ,  y = u l ,  where uA = 0, vB = 0 and 
A ,  B EX. Denote the first row of B by b, and write v‘ for the row v with 
its first element removed, then 

hence x - y  E t ( M ) ,  and a similar argument applies if x ,  y occur in places 
other than the first. Secondly, if UA = 0, then, for any c E R, 

and this shows that if u1 E t ( M ) ,  then ulc E t ( M ) ,  so that t ( M )  is a submodule. 
Clearly any homomorphism M - t  N maps t ( M )  into t ( N ) ,  and the corre- 
spondence M H t ( M )  is easily seen to be a functor. I t  is also clear that 

t ( t ( M ) )  = t ( M )  . 

Next we show that t ( M )  is unchanged if we replace C by its ‘admissible 
closure’, i.e., the set of all matrices PAQ, where A E C and P, Q are products 
of elementary matrices. For, given c E R, the pair of elements u l ,  u2 + u1 c 
lies in t ( M )  if and only if u1 and u2 lie in t ( M )  ; thus u * A = 0 is equivalent 
to u P - l .  PA = 0, where P is an elementary matrix, and by induction this 
holds for a product of elementary matrices. Of course right multiplication of 
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A by Q presents no difficulty. Thus in what follows we may take C to be 
admissible. 

I t  remains to prove the radical property: t ( M / t ( M ) )  = 0. If 

uA = 0 (mod t ( M ) )  , 

where A E 2,  write uA = u’ and Iet u = (u’, u”)  be a row including all com- 
ponents of u‘ such that vB = 0 for some B E C. We can take u in this special 
form because C is admissible. Then 

and this shows that u 3 0 (mod t ( M ) ) .  Hence t ( M / t ( M ) )  = 0, and the proof 
is complete. 

When we take M = R, t ( R )  is just the ‘left Zcomponent of 0’, i.e., the 
set of elements of R occurring as component in some row u such that UA = 0 
for some A E C .  We have seen in Proposition 2.1 that this is a right ideal, and 
it is clearly also a left ideal, so we obtain the 

COROLLARY. The lejt Z-component of 0 i s  a two-sided ideal of R.  

By the symmetry of the construction the same holds for the right C-com- 
ponent of 0. 

The functor t ( M )  can now be used to define a torsion theory, as described 
e.g. in [I I] ; we refer to this as the C-torsion theory. In  general this need not 
be hereditary, i.e., a submodule of a C-torsion module need not be a C-torsion 
module. However, let us assume that X is such that the Ztorsion theory is 
hereditary. Then for any x E t ( M )  there exist u 2 ,  - - * , u, E R and A E C, 
such that (x ,  x u 2 ,  * * * , xu,)A = 0, since this expresses the fact that x R  is a C- 
torsion module containing x. More generally, let us define a mimodular row 
over R as a row u of elements of R such that for a suitable column u‘ over 
R we have uu‘ = 1. Then we have 

PROPOSITION 2.2. Let R be a ring and C a multiplicative matrix set such thai 
Then, for any right R-module M,  the C-torsion sub- the C-torsion theory is hereditary. 

module t ( M )  consists of all x E M such that 

(5)  xuA = 0 

for  some A E C and some mimodular row u ouer R. 
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Proof: Let x E t ( M ) ;  then xR is a C-torsion module containing x and 
this means that ( 5 )  holds for some A E Z and a row u one of whose com- 
ponents is I ;  thus it is certainly unimodular. Conversely, if ( 5 )  holds with a 
unimodular row u, then xui E t ( M )  and if UU’ = 1, then t ( M )  also contains 
XUU’ = x .  

The hereditary torsion theories so obtained form a special class; they are 
the theories obtainable by flat epimorphisms. Given a ring homomorphism 
f: K ---f S, we shall call a row u over R f-unimodular if its image under f is 
unimodular in S. A homomorphism f : R -+ S is a left flat epimorphism (i.e., f 
is a ring epimorphism such that RS is flat) if and only if for each a E ker f 
there exists an f-unimodular row u such that a * u = 0 and for each b E S 
there is an f-unimodular row u such that b * uf E im f (see [ll],  p. 78). 

Now consider a ring R and a family II of rows over R such that, for any 
right R-module M ,  the set t ( M )  of elements annihilated by some row of II 
forms a submodule and that t is an idempotent radical subfunctor of the identity. 
Such a t then defines a torsion theory, this time necessarily hereditary, and the 
quotient Q ( M )  of any module M may be constructed as follows: form 
M,  = M / t ( M )  and define Q ( M )  by the equation 

where I ( M )  is the injective hull of M (cf. 171). Regarded as R-module, 
Q ( M )  is closed; we recall that an R-module N is closed if t ( N )  = 0 and 
t ( Z ( N ) / N )  = 0 (such modules are called ‘torsion free divisible’ by Lambek). 

In  particular, Q(R)  is the ring obtained by first dividing out by t (R) ,  so 
as to get R, = R/t(R), and then taking the set of those elements of I(R,) that 
are mapped to a row over R,  by right multiplication by a row of II. 

If we apply this method to a non-hereditary torsion theory, we can again 
define Q ( M )  by (6), but there will be no guarantee now that Q ( M )  is closed 
(clearly this will be so provided that every essential extension of a torsion free 
module is torsion free). I t  is not known whether the torsion theory associated 
with every multiplicative matrix set has this property, but even if it does not, 
we can form the module M @  R, . Before comparing this with Q ( M )  (when 
this is closed), we introduce an intermediate notion, the semi-inversive theory. 

For any set 2 of matrices over R we can form the right Zinverting ring 
R,, , with canonical homomorphism p :  R --+ R,, . This is the universal ring 
over R in which every matrix of Z has a right inverse; it is obtained by taking 
a presentation of R and for every matrix A of order n adjoining n2 indeter- 
minates a:$,  written as an n x n matrix A’ = (a:#) with defining relations 
(in matrix form) AA‘ = I. Since every matrix of Z has a unique inverse in 
R, , the canonical mapping A: R -+ R, can be factored uniquely by p. The 
passage from M to M @  R,, , for some set C of matrices, is a form of locali- 
zation which we shall call the semi-inversive method. 
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Here we have confined ourselves to square matrices throughout, but the 
semi-inversive method can more generally be applied to sets of rectangular 
matrices; indeed Proposition 2.1 can be generalized to such sets, but we shall 
not pursue the matter here. 

Let us compare the ring R,) with the ring Q(R) obtained by the injective 
method (in case this has closed quotients). Any right R,,-module P may be 
regarded as a right R-module, by pullback along p. We claim that this module 
P ,  is closed in the C-torsion theory: if u is a row in P such that uA = 0 
for some A E X ,  then u = uAA’ = 0; hence P ,  is torsion free. Now let u 
be a row in I(P,) such that u = uA is a row in P, for some A E Z. Then 
u = uAA’ = vA’ is a row in P ;  hence t ( I ( P ) / P )  = 0, and P is indeed closed. 
In  particular, this applies to any module of the form M @  R,) , where M is a 
right R-module. By the universal property of Q ( M ) ,  this leads to the com- 
mutative triangle shown: \ 

M 

In  particular, for M = R we obtain a canonical homomorphism 

By interpreting the elements of Q(R) and R,) as left multiplications we see 
that (7) is in fact a ring homomorphism. If we combine the above triangle with 
the canonical homomorphism from M @  Q(R) to Q(M) (see [ll],  p. 72), we 
obtain the commutative diagram shown: 

When (7 )  is an  isomorphism, the bottom arrow is an  isomorphism for all 
R-modules M.  Conversely, if this arrow is an  isomorphism for all M ,  then by 
taking M = R we see that the mapping (7) is  an isomorphism. 

3. Inverse Localization at a Factor Ring 

Let R be a ring and a an ideal in R; our object in this section is to lift a 
localization of Rla to one of R. We begin with some general properties of 
multiplicative matrix sets. We recall that the set of all matrices inverted under 
a homomorphism is a saturated, hence admissible, set. To ensure that only 
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square matrices occur we shall assume our rings to be weakly finite; by defini- 
tion, a ring is weakly Jinite if every invertible matrix over it is square. 

Let f: R ---f S be any homomorphism and let E, be the set of all square 
matrices over R mapped to invertible matrices by J: We shall write K ,  in- 
stead of RZ, and call this the localization associated with the homomorphism J: Thus 
with every homomorphism f : ---f S there is associated a ring R, and a com- 
mutative triangle as shown: 

THEOREM 3.1. Let f : R --+ S be a homomorphism, and R, the associated localiza- 
tion; then any square matrix over R, map$ed to an invertible matrix over S is already 
invertible over R, . 

Proof: Any x E R, occurs as a component x = u1 , say, in an equation 

where A E C and a is a column over R. Write 

then x 3  is invertible in S if and only if A, f  is invertible over S (by Cramer’s 
rule; see [3], Proposition 7.1.3),  and this is so if and only if A ,  E C; but then 
x is invertible in R, . This proves the result for 1 x 1 matrices. In  the general 
case, of an n x n matrix, consider the corresponding triangle of matrix rings: 
Any matrix over R, that becomes invertible over S,  lies in C and so becomes 
invertible over (K,),,; hence any element of (Rf), whose image is invertible 
in Sn is already invertible in ( R j ) n .  

We recall that the rational closure of R in S (under the mapping j )  is the 
set of all solutions of equations (8) with A E C,; in particular, if this is the whole 
of S, the latter is said to be matrix-rational over R. Below we denote the 
Jacobson radical of a ring R by J (R) .  

COROLLARY. Let f: R -P S be a homomorphism such that S is matrix-rational 
over R;  then f: R, -+ S is surjective and J(R,) =f-l(J(S)). 

Proof The surjectivity is clear, and it implies that J(R,) s f - l ( J ( S ) ) .  
Conversely, let u f ~ J ( s ) ;  then, for any x E R, , 1 - ax has an invertible 
image in S and so is invertible in R, , and hence a E J(R,). 



INVERSIVE LOCALIZATION IN NOETHERIAN RINGS 687 

As a further consequence we note 

(9) Rf /J (R f )  S/J(S) . 
To describe the form of the localization we recall the definition of a ‘local 

ring’: Let R be a ring and J = J ( R )  its Jacobson radical. If R/J is a (skew) 
field, R is called a local ring; if RIJ is simple Artinian (and hence, by Wedder- 
burn’s theorem, a total matrix ring over a field), R is called a matrix local ring. 
The previous case is the special case of 1 x 1 matrices, also called a scalar 
local ring for emphasis. If RIJ is Artinian (and hence a direct product of a 
finite number of total matrix rings over fields), R is called a semilocal ring. In  
each case RIJ is called the residue class ring. 

In  particular, if S is a field, a simple or semisimple Artinian ring, then 
R, is a local, matrix local or semilocal ring, respectively, with residue class 
ring S. 

The next result shows that localizing and going to factor rings are com- 
mutative operations. 

THEOREM 3.2. Let R be a ring, a an ideal and C a set of  square matrices over 
Rla. Write S = (Ria)= , let f : R -+ S be the canonical mapping and f : R, -+ S the 
induced mapping from the localization. Then ker f = (an), the ideal of R, generated 
by al, and 

S = (R/a)Z R,/(aA) . 
Proof: Since f : Rf -+ S annihilates an, it induces a mapping g ; Rf/ (aL)  -+ S. 

1 
R+R, 

Rlh + R f / ( a l )  

\$  
On the other hand, denote by C’ the inverse image of C in R. Over S the 
elements of X are invertible; hence C’ becomes invertible over R,. Thus 
Rfl(aA) is an R-ring in which a is mapped to 0, and regarding it as an (R/a)- 
ring we see that the elements of C become invertible over it. Therefore there 
is a mapping h : S + Rf/(aA), and it is easily verified that g,  h are inverse to 
each other. 

4. Application to Noetherian Rings 

In  a Noetherian ring, the results of the last section lead to a rather explicit 
form of localization if we use Goldie’s theorem. We recall that an element c 
of a ring R is called left regular if cx = 0 implies x = 0;  right regular elements 
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are defined similarly and a regular element is one which is left and right 
regular. A matrix set X is called (left, right) regular if for all n each matrix 
A E X n  is (left, right) regular in the total matrix ring R, . 

In  a right Noetherian semiprime ring, any left regular element is right regular 
(because it generates a large right ideal, cf. e.g. [ 5 ] ,  p. 174), so there is no need 
to distinguish between left regular and regular in this case. This result carries 
over to matrices, because the matrix ring R, is semiprime right Noetherian 
whenever R itself is. 

Let R be a right Noetherian semiprime ring and n a semiprime ideal 
in R ;  then Rln is a right Noetherian semiprime ring. A matrix A over R 
is said to be left n-regular if for any column u over R (of the right length) 

Au = 0 (mod n) implies u = 0 (mod n) . 
Right n-regularity is defined similarly, and a matrix satisfying both is called 
n-regular. By what has been said, every left n-regular matrix over R is n- 
regular. We denote by I? = I?,, the set of all n-regular matrices over R. This 
set is admissible, for clearly 1 E I’ and if A ,  B E I?, and 

then Au + Cv = 0 and Bu E 0;  hence u E 0 and so Au E 0, i.e., u 0 
(mod n). Further, the elements of I’ admit elementary transformations, so 
is in fact admissible. 

We shall write Q,,(R) for the quotient ring of R by the set of all regular 
elements, whenever the latter form a (left or) right denominator set (this ring 
is often called the ‘classical’ quotient ring). We also recall Goldie’s theorem, 
in the following form: 

Let R be a right Noetherian (semi)prime ring; then the set S o f  regular elements 
in R i s  a right denominator set, and the quotient ring R, is right Artinian (semi)simple. 

If we now apply Theorem 3.2 to a right Noetherian ring R, taking a = n 
to be a semiprime ideal of R and X = I?, the set of all n-regular matrices, 
we find that S = Q C 1 ( R / n ) ,  while R, = Rr is the universal I?-inverting ring 
because I’ is the precise set of matrices inverted over R, . By Goldie’s theorem, 
S is Artinian semisimple, and by (9), S = S /J (S )  R,/J(R,). Hence R, is a 
semilocal ring and we obtain our main result: 

THEOREM 4.1. Let R be a right Noetherian ring and n a semiprime ideal in R. 
Denote by I? = I?, the set o f  all n-regular matrices ouer R. Then the universal I?,- 
inverting ring R, is a semilocal ring with residue class ring Q,,(R/tt) .  In particular, 
when n is prime, Rr is a matrix local ring. 
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The local rings constructed here are in general very much smaller than the 
quotient rings constructed by Lambek and Michler; as we saw in Section 2, 
their quotient ring has the universal right r-inverting ring R,, as a homo- 
morphic image, so that we always have a homomorphism Q ( R )  -+ R, . But there 
is an important case where the two constructions coincide: We first note the 
following result from [8] (Proposition 5.5) : 

LEMMA. Let R be a right Noetherian ring and p a prime ideal in R. Denote 
by C = C ( p )  the set of p-regular elements R, and by Q ( R )  the quotient ring with 
respect to the torsion theory dejined by C. Then the following assertions are equivalent: 

(a) the elements of C map to units o f  Q ( R ) ,  
(b) the elements o f  C map to right-invertible elements o f  Q ( R ) ,  
(c) C is a right denominator set in R. 

THEOREM 4.2. Let R be a right Noetherian ring and p a prime ideal o f  R, and 
denote by C = C ( p )  the set of p-regular elements in R. Further, let Q ( R )  be the ring 
o f  right quotients at p ,  as in [8], page 381, and let R, be the inversive localization at 
p constructed as in Theorem 4.1. Then there is a natural homomorphism 

and this is an isomorphism if and only if G is a right denominator set in R. 

Proof The homomorphism (10) is obtained by combining the mapping (7) 
with the natural mapping R,, -+ R, . If (10) is an isomorphism, then the 
elements of C are inverted in &(R),  so C is a right denominator set, by the 
lemma. Conversely, when this is the case, the elements of C are inverted in 
Q ( R ) ,  and (10) is then an isomorphism, by the universal property of R, . 

5. Examples 

An obvious shortcoming of the method of inversive localization is that the 
kernel of the natural mapping il : R -+ R, is not explicitly determined. Taking 
I' to be the set of p-regular matrices over R, for some prime ideal p ,  let us 
denote by l(r) and r(r) the left and right r-components of 0, respectively. 
By Corollary to Proposition 2.1, these sets are two-sided ideals, and it is clear 
that 

but it is not known when equality holds. All we can say is that (i) the relation 
(1 1) provides bounds for ker il, and (ii) ker il represents the smallest ideal 
mapped to 0 by any r-inverting mapping. 
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As an illustration consider the following ring (in symbolic matrix notation) 

Rl O M  
and semiprime ideal : 

R = ( o  R J  n = ( o  o ) ,  
where R,? R2 are Noetherian prime rings and M is an (R, R,)-bimodule. 
Here ker 1 = l(r) + r ( F ) ,  as is easily checked. If moreover, Z(r) + r(r) = M ,  
then Rr  = Q(R/n) = Q(R1) @ Q(R2). 

Our second example is taken from [8]: Let D be a commutative discrete 
valuation ring with maximal ideal m and field of fractions F. We put 

D m  m m  
R = (  D D  ), P = ( D  D ) .  

Clearly, (i :) E ; hence 6 i) E r(r), and the two-sided ideal generated 

is p itself, Thus r(r) = p ,  even though R is p-torsion free (cf. [8]). Of course, 
here R, = Q ( R / p )  = D/m. We observe that R is itself prime, with quotient 
ring Q(R) = F, . 

Thirdly we quote an exampIe from [I] of a Noetherian ring in which some 
non-zero elements are mapped to 0 by every inversive localization. We denote 
by C, the cyclic group of order n and consider the ring R = End (C4@C2). 
This ring is finite (it has 32 elements); hence it is Noetherian and moreover 
semilocal. In  matrix form we may represent it as 

where A = End (C4), B = End (C,), M is an (A ,  B)-bimodule and N a (B,  A ) -  
bimodule, both isomorphic to C, as additive groups. Further, 

M N s ~ A ,  N M = O .  

This ring has two prime ideals: 

2A M A M  

Let ri be the set of p,-regular matrices (i = 1, 2), then it is easily verified . -  

2A M that l i p i )  = r(ri) = pi; hence every element in p 1  r\ p2 = ( N  o) is 
mapped to 0 in the localization ( 10). 
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Thus although itself semilocal, R is not embedded in the localization con- 
structed in Theorem 4.1. 

Finally here is an example in which l(r) + r(r) # ker A. Let R be an 
algebra over a commutative field, on 8 generators aii , b i j ,  i, j = 1, 2, with 
defining relations (in matrix form) 

A = (a i j ) ,  B = ( b i j )  . 

This is essentially Malcev’s example of an integral domain not embeddable in 
a field (cf. [lo]). If I’ is the multiplicative set generated by a2, and b,, , then 
r consists of triangular matrices, and since R is an integral domain, it follows 
that l(r) = r(r) = 0, but it may be verified (as in [lo]) that c =allblz + 
a126,, E ker A. By adjoining another element t with the relation ta,, = 0, we 
obtain an example in which l(r) # r(r) = 0. Of course, R is not Noetherian 
in this example, but it is not even known whether, for a Noetherian ring R and 
a multiplicative set Z of matrices, the localization R, is necessarily Noetherian. 

To get a better idea of the size of ker A one may have to use something like 
Proposition 7.1.3 of [3] (Cramer’s rule), but it is far from clear whether this 
would provide a usable criterion. 
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