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RINGS OF FRACTIONS
P. M. COHN, Bedford College, London

Introduction. A well-known (and easily proved) theorem states that each
integral domain can be embedded in a field [37]. This was generalized to certain
noncommutative rings in a brilliant paper by Ore [33] in 1930; his results are
essentially as simple as in the commutative case, and the proofs, though longer,
are no harder. Beyond this, very little is known, so little that it can be set down
in quite a brief article. I thought this was worth doing because some interesting
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problems on the embedding of rings in skew fields remain, and because it gives
me the chance to mention some recent work which makes it seem that these em-
bedding problems are not quite as hard as they appear at first sight.

The central problem, finding fields of fractions, is really part of the problem
of constructing rings of fractions (i.e., inverting certain elements), which also
has other important applications. We shall therefore arrange the discussion so
as to include this more general case.

Conventions. Every ring has a unit-element, denoted by 1, which is preserved
by homomorphisms, inherited by subrings and acts as the identity operator on
modules. The same conventions apply to semigroups. Of course a ring may very
well consist of 0 alone; this is the case precisely when 1=0. We use 0 to denote
both the zero element and the set consisting of the zero element; the context
will always make clear which is intended.

In any ring R the set of nonzero elements is denoted by R*. A ring R, not
necessarily commutative, such that R* is a group under multiplication will be
called a field. In the current literature this is often called a skew field or division
ring; we shall occasionally use the prefix ‘skew’ for emphasis. A ring R such that
R* is a semigroup under multiplication is said to be entire, and a commutative
entire ring is called an 4ntegral domain. Note that in a field 150; the same is
true in entire rings, by our convention about semigroups.

An element « in a ring is snvertible or a unit if it has an inverse u~! satisfying
uu~l=u"lu=1; of course the inverse is unique if it exists at all. In an entire
ring, if uv=1, then #(vu—1) = (uv—1)u=0, hence vu=1 and v is the inverse of
u. Thus all one-sided inverses are two-sided in this case. An element # is called
a gero-divisor if u£0 and if for some v50, either uv=0 or vu=0. A nonzero-
divisor is a nonzero element which is not a zero-divisor. Thus by our convention
0 is neither a zero-divisor nor a nonzero-divisor.

If Ris any ring, a field of fractions of R is a field containing R as a subring and
generated, as a field, by R.

Outline. In Section 1 we review the commutative case; Section 2 introduces
the obvious but rather useful notion of a ‘universal S-inverting ring’ and also
gives Malcev’s example of an entire ring not embeddable in a field. The Ore
construction occupies Section 3, with applications in Section 4, including the
theorems of Goldie and Posner. The remaining sections describe methods of
constructing fields of fractions which go beyond Ore’s theorem. In Section 5 we
examine generalized inverses, and the relation to the Johnson-Utumi ‘ring of
quotients’; this turns out to be not very close in the case of chief interest to us,
that of entire rings. The topological methods in Section 6 essentially generalize
the notion of a decimal fraction. The final Section 7 reports briefly on the
author’s recent method of embedding rings in fields by inverting matrices rather
than elements.

1. The commutative case. Let R be a commutative ring. The need for
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fractions arises when we try to enlarge R so as to ensure that equations of the
form

(1) xb = ¢

can be solved. At this stage our instinct should tell us to beware of the case »=0,
but we shall leave this question aside for the moment. If we denote the solution
of (1) by ab™! or a/b, we see immediately that a/b=ac/bc, or more generally,

2) a/b = d' /b if and only if @b’ = ba’,

under suitable restrictions to exclude division by 0. Further, if the solutions are
to form a ring containing R, they must add and multiply according to the
rules

a
3 —_ —_ _—_— ———— e —— .
3 + ;

We learn at an early stage of our algebra course that if R is an integral domain,
then we can find a field containing R as subring by taking all fractions a/b with
b0 and combining them according to the rules (3), bearing in mind the cancel-
lation rule (2).

To generalize this construction we observe that to form the new denom-
inators in (3), we need only multiply the denominators b and &’ together, not add
them; this suggests taking a subsemigroup .S of R as our stock of denominators.
Now we shall in general no longer obtain a field; we may not even get a ring con-
taining R as subring, but by following essentially the same construction we get
a ring Rg say, with a homomorphism

AMR—Rg

which maps the elements of S to invertible elements, and it will be a simple mat-
ter to find out when A is injective.

Thus we are given a subsemigroup S of a commutative ring R and we define
a relation on the product set R X.S by the rule:

(4) (a, s)~(a’, s") if and only if as’t=a’st for some tE.S.

This reduces to (2) when S consists of nonzero-divisors; in general the form (4) is
necessary to make sure that ‘~’ is really an equivalence relation. Let us only
check transitivity (reflexivity and symmetry are obvious): If (a, s)~(a’, s’) and
(@', s"Yy~(a", s""), then as’t =a'st and a’s"'t' =a’’s't for some ¢, t'E.S; hence

as” s’ = d'ss'"t = a''s'stt = o''s-s'tt.
Since s'tt’ &.S, this shows that (a, s)~(a’’, s’’) and the transitivity is proved.
We denote the equivalence class containing (@, s) by a/s and define addition

and multiplication by the formulae (3); of course we must verify that the defini-
tions really only depend on the classes of a/s, @’/s’ and not on the representatives
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of these classes used in the formulae. This is a routine verification, as is the proof
that the set of classes a/s with these operations forms a ring, denoted by Rg
say, with zero 0/1 and unit-element 1/1. The mapping

(%) Aia—a/l

of R into Ry is clearly a homomorphism; it maps each element of S to an invert-
ible element of Rg, because (s/1)(1/s)=s/s=1/1.

Let us say that a homomorphism f: R—R’ is S-inverting if each element of .S
is mapped by f to an invertible element of R’. For example the mapping (5)
is S-inverting, but we can say more than this. Let f: R—R’ be any S-inverting
homomorphism and define a mapping f1: R X.S—R’ by the rule

(a, )1 = a/(s'),

This makes sense because f is S-inverting, by hypothesis. We observe now that
1 takes the same value on pairs that are equivalent according to (4): If as’t=a’st,
then a/s”¥ =a’’s’t/ and hence a/(s”)~1=a’’/(s’")~1. This means that we obtain a
well-defined mapping f’ of Rginto R’ by putting (a/s)’ = (a, s)*. This mapping f’
has the property that forany a ER,

(6) (a/1)" = o,

an equation which may also be expressed by saying that the accompanying dia-
gram commutes, i.e., Af’ =f. Moreover, f’ is uniquely determined by (6), because

& R

A
fl
/
RI

that equation determines its value on the elements a/1, and its value on 1/s
must be the inverse of its value on s/1. Thus the mapping

O] AMR— Rg

R

is not just an S-inverting homomorphism, but the most general such homo-
morphism, in the sense that each S-inverting homomorphism can be obtained by
taking a uniquely determined homomorphism from Rg. This property is ex-
pressed by saying that (7) is the universal S-inverting homomorphism, and Rg
itself is called the umiversal S-inverting ring. This universal property in effect
determines Rg up to isomorphism.

We shall wish to know when A is injective; more generally, let us determine
the kernel of \. Clearly ¢*=0 if and only if ¢/1=0/1, and by definition this
means that a¢ =0 for some :&S. We can now sum up our results:

THEOREM 1.1. Let R be a commutative ring and S a subsemigroup of R. Then
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there is a universal S-inverting homomorphism N:R—Rg; the elements of Rg can
be written as fractions a/s (aER, sES), where a/s=a’/s" if and only if as't=a'st
for some tES. Further,

ker A\ = {a € R| at = 0 for some t € S}.

REMARKS. 1. Note that Rg is again commutative.

2. The ring Rg reduces to 0 precisely when 0E.S; it is to avoid this trivial
case that one usually assumes 0&S.

3. The mapping \ is injective if and only if S contains only nonzero-divisors.
In that case Ry is called a ring of fractions of R; the largest such ring is obtained
by taking S to be the set of all nonzero-divisors, a set which is always a sub-
semigroup. The ring obtained by inverting all nonzero-divisors is called the
total ring of fractions of R. In case R is an integral domain, this is the universal
R*-inverting ring of R, which is of course the field of fractions of R.

An important special case of the theorem is obtained by taking S to be the
complement of a prime ideal p in R (a prime ideal is an ideal of R whose comple-
ment is a semigroup under multiplication; note that this does not allow R as
prime ideal). In that case one often writes Ry instead of Rgs, somewhat incon-
sistently, but without risk of confusion, because S never contains 0, whereas
always does.

The problem of constructing fractions already arises in a semigroup, and
should really be considered in that setting. We have nevertheless treated the
case of rings first, on account of its importance; it also happens to coincide with
the historical order of its development [16]. In any case we can easily extract
the answer for semigroups from our conclusion:

TuEOREM 1.2. Let M be a commutative semigroup and S a subsemigroup of M.
Then there is a universal S-inverting homomorphism

NM—> Mg,

the elements of Mg can be written as fractions a/s (aEM, sES) as in the ring
case, and a, a’ have the same tmage under \ if and only if at=a’t for some tES.

2. Some observations on the general case. Let us return to our basic prob-
lem, which is to construct a field of fractions for a given ring, when possible.
If a ring R is to be embedded in a field, then whether commutative or not, R
must be entire. But this necessary condition, which in the commutative case was
sufficient, in general is no longer so. The first example of an entire ring not
embeddable in a field was given by Malcev [28]. He takes the ring R generated
by eight elements a, b, ¢, d, %, v, u, v, with defining relations

1) ax = by, cx = dy, cu = dv.

To show that this ring is entire, one uses a normal form for its elements. In
outline the argument goes as follows. Each element of R can, by use of (1), be
expressed as a noncommutative polynomial in the given generators, in which



1971] RINGS OF FRACTIONS 601

there are no occurrences of by, dy, dv (the right-hand sides of the equations (1)),
and such an expression is unique. The verification that the product of nonzero
elements is nonzero is fairly straightforward, though care is needed to ensure
that all possibilities are considered at each stage. The normal form also shows
that au #bv, but if R were embeddable in a field, or even in a ring in which a, ¢,
9, v have inverses, we could deduce from (1) that a~b=xy"1, xy~l=c"4,
¢ ld=wuv"!, hence a~ b =uv"!, and so

(2) au = b,

which is a contradiction.

Malcev obtained his example in the course of studying conditions under
which a semigroup is embeddable in a group [29]. In fact he was able to write
down an infinite series of ‘quasi-identities’, i.e., conditions of the form

A4y - -+, A, imply B,

(where Ay, - + -, Aa, B are equations in a semigroup) which he proved necessary
and sufficient for a semigroup to be embeddable in a group. The simplest of
these quasi-identities are left and right cancellation: ‘xy=x2z implies y=2’
and ‘xz=7yz implies x =7%.” The next condition is of the form ‘the equations (1)
imply (2)’, and the example just given shows it to be independent of cancella-
tion (more generally, the infinite set of quasi-identities cannot be replaced by
any finite subset). A detailed account of Malcev’s Theorem can be found in [11];
it seems likely that any corresponding criterion for the embeddability of rings
in skew fields is rather more complicated. But it follows from results in general
algebra that the embeddability of a nonzero ring in a field can be expressed by a
(possibly infinite) set of quasi-identities ([11], p. 235).

Recently, in [41], A. A. Klein has found an infinite set of quasi-identities
which are necessary for embeddability in a field and which he conjectures to be
sufficient.* They express that R is entire and for all #, each nilpotent nX#
matrix C satisfies C»=0.

Malcev has asked whether rings exist whose nonzero elements are embed-
dable in groups, but which are not embeddable in fields. Such rings were found
simultaneously and independently by three people in 1966 [4, 5, 24].

Let us now take the general situation and see whether anything found in the
commutative case can be used here. If R is a ring and S any subset (not neces-
sarily a subsemigroup), we can define an S-inverting homomorphism as before.
Given an S-inverting homomorphism f: R—R’, let S be the subset of R whose
elements are mapped into invertible elements of R’. Clearly SDS, but equality
need not hold; in particular S contains all invertible elements of R, and if
u,vES, then uv €S, because (uv)! =47, and the latter is invertible when «/, v/
are. This shows that S is always a subsemigroup, so nothing is lost by taking the
set to be inverted as a semigroup.

* Added in proof (March 29, 1971): A counterexample to this Conjecture has just been found
by G. M. Bergman.
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We can again construct a universal S-inverting ring Rg: simply take a
presentation of R (by generators and defining relations) and for each s&S
adjoin a new generator s’ and extra relations

©) ss' =s's = 1.

The ring Rs so obtained may no longer contain R as subring, e.g., if we apply
this construction to Malcev’s example, with S= { a, ¢, Y, v}, we get a collapse
because then az=bv. But we always have a natural homomorphism R—Rjg
which is S-inverting, and in fact this is the universal S-inverting homomorphism,
because the relations holding in Rg, namely (3) together with the relations of R
itself, must hold in any image of R under an S-inverting homomorphism. (This
is essentially an application of Dyck’s Theorem, see, e.g., [11], p. 183.) In this
way we obtain the following result:

THEOREM 2.1. Let R be any ring and S any subset of R. Then there is a uni-
versal S-inverting homomorphism N: R— Ry, where Ry is unique up to isomorphism.
Moreover, \ is injective if and only if R can be embedded in a ring in which all
elements of S have inverses.

The assertion is quite general and, because of its very generality, rather easy
to prove. It is also not hard to see that the correspondence (R, S)—Rs is a
functor (from the category of pairs R, S to the category of rings). This means that
to each homomorphism of rings f: R—R’ such that S/C.S’ for subsets S, S’ of
R, R’ respectively, there corresponds a homomorphism f:Rs—Rj such that
fg=Fz and the identity mapping on R corresponds to the identity on Rg:1=1.
Moreover, the natural mappings A: R—Rgand N’ : R"—R’s have the property of
making the following diagram commute:

f
R & R’
A A\
7
Rs -/

Rg»

This is expressed by saying that X is a natural transformation (for details cf.
e.g., [27]).

At first sight Th.2.1 looks deceptively like Th.1.1, but it has the serious draw-
back that no normal form for the elements of Rg is given. This makes it hard to
decide when M\ is injective; also we cannot be sure, even when R is embeddable in
a field, that Rg+ will be the whole field of fractions. The trouble is that after
adjoining inverses of all the nonzero elements to R, there may still be elements
without inverses, e.g., elements of the form ab—lc+de~f. So the process of ad-
joining inverses may have to be repeated, perhaps infinitely often. The following
observation is sometimes useful:

THEOREM 2.2. Let R be any ring. If there is an R*-inverting homomorphism
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of R into a field K, then R is embeddable in a field.
For by hypothesis, we have a homomorphism
4) fiR—K,

and since any nonzero element of R maps to an invertible element of K, it can-
not map to 0, i.e., (4) is injective.

The necessity of having to repeat the process of adjoining inverses does not
arise for semigroups: If a semigroup M is embeddable in a group G, then the
subsemigroup of G generated by the elements of M and their inverses already
forms a group. Neither does the problem arise in the special case treated by Ore,
to which we now turn.

3. Ore’s Construction. In an attempt to carry over the results of Section 1
to the noncommutative case, let us examine the situation where every element
of the universal S-inverting ring Rgs can be written in the form of a fraction a/s.
If this is to be possible, we must be able to express (1/s)(a/1) in this form, say

6] (1/8)(a/1) = a'/s'.
Multiplying both sides by s/1 on the left and by s’/1 on the right, we get
2 as’/1 = sa’/1.

This gives us a clue to the extra condition required now.

THEOREM 3.1. Let R be any ring, S a subsemigroup, and assume further that
(i) for any aER and s&S, aSNsR#=
(ii) for any a ER and sES, if sa=0, then at=0 for some tES.
Then the elements of the universal S-inverting ring Rs can be constructed as frac-
tions a/s (@ER, sES), where

3) a/s = d'/s' = au = d'w, su = s'u’' €S for some u, ' € R.
The kernel of the natural mapping is then
ker A = {a € R| at = 0 for some ¢ € S}.

Of course here we must distinguish carefully between as—! and s~'a; the ex-
pression a/s corresponds to the former.

A subsemigroup S of R satisfying the conditions (i), (ii) of this theorem will
be called a right denominator set in R. The proof of this result is largely an exer-
cise in patience, and the reader is recommended to verify at least some of the
steps. The basic observation is that any two fractions can be brought to a com-
mon denominator in .S, using (i), and they represent the same element of Ry if
and only if, over a suitable common denominator, their numerators are equal
(cf. (2)). Addition of fractions over the same denominator is straightforward,
and the multiplication of fractions is based on the rule (1).

REMARKS: 1. Again Rg=0 if and only if 0&.S; one usually excludes this case.
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2. There is a left-right analogue of the theorem, obtained by switching sides;
it shows how to form left fractions, starting from a left denominator set.

3. There is a corresponding theorém for constructing fractions in a semi-
group. More generally, the construction can be performed in any category (cf.
[20], p. 28).

4. Any subsemigroup S consisting of invertible elements of R is a right (and
left) denominator set, and the universal S-inverting homomorphism is then an
isomorphism.

5. Any central subsemigroup S (i.e., satisfying as=sa for all aER, sES) isa
right (and left) denominator set.

6. The universal S-inverting mapping is injective if and only if .S contains
only nonzero-divisors. In that case condition (ii) becomes superfluous. This case
is sufficiently important to be stated separately.

COROLLARY 1. Let R be a ring and S a subsemigroup of R consisting of non-
zerodivisors, such that aSNsR= J for any a ER, s&S. Then the universal S-
tnverting homomorphism is injective.

When S is as in Corollary 1, Rg is again called a ring of fractions, total in case
S consists of all nonzero-divisors. But this time we cannot be sure that there is a
total ring of fractions, because the set of all nonzero-divisors need not satisfy
the hypothesis of Corollary 1.

If R is entire and R* is a right denominator set, we get the case originally
treated by Ore (cf. [33]; the generalizations were given by Asano [3] and
others).

COROLLARY 2. Let R be an entire ring such that

4) aRNBR =0  for any a, b & R*.

Then R can be embedded in a skew field K, whose elements have the form of fractions
a/b (aER, bER¥*).

Condition (4) is called the right Ore condition, and an entire ring satisfying
(4) is called a right Ore ring. We observe that (4) is necessary as well as sufficient
for the conclusion to hold. For if an entire ring R can be embedded in a field K
in such a way that each element of K has the form @b (¢, b&R), then in par-
ticular, for any a, 5&ER* we can find a’, ¥’ €R* such that b—'a =a'b’"!; hence
ab’ =ba’#0.

4. Applications of Ore’s Construction. An important class of Ore rings (which
Ore himself had studied and clearly had in mind when making his construction,
cf. [34]) is formed by the skew polynomial rings. Given any field K, passing to
the polynomial ring K [x] in an indeterminate x is a familiar construction, which
still works even when K is skew. In that case it is usual to require x to be
central, i.e., to commute with the field elements. But we often need a more
general case: we still assume that each element of our ring can be written as a
polynomial in just one way:
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1) f=a+za+ -+ (€ K);

we no longer assume that x is central, but instead that for each a €K there
exist @, '’ €K satisfying

2) ax = xad+ d'.

It is not too hard to show that the mapping a:a@—d is an endomorphism of K,
and that d:a—a’ is an additive mapping satisfying

(3) (ab)’ = a’b + ab'.

Any additive mapping 6 of a field into itself, satisfying (3) (for some endomor-
phism a::a—a) is called an a-derivation. E.g., on the field of rational functions F(f)
over some commutative field F, the usual derivative f’ =df/d: defines a 1-deriva-
tion (associated with the identity automorphism of F(f)).

Conversely, given any endomorphism « of a field K and any a-derivation §,
we can define a multiplication on the set of polynomials (1) by using the com-
mutation rule (2). This leads to a ring denoted by K [x; «, 8] and called a skew
polynomial ring. This ring is entire and is in fact a right Ore ring; for the proof
we can use the Euclidean algorithm, as in ordinary polynomial rings, but we
must take care here to perform all divisions on the right. It follows that we can
form the field of fractions, denoted by K(x; «, 8). Of course for a=1, §=0 the
skew polynomial ring reduces to the ordinary polynomial ring K[x] with a
central indeterminate and its field of fractions K(x).

It is important to note that the construction just given is unsymmetric, and
K [x; a, 8] will not in general be a left Ore ring. The condition for it to be one is
that « should be an automorphism, for this is the condition which enables us to
rewrite (2) as a commutator formula in the other direction:

4) xa = 1% + a,.

Explicitly, if ax=xa*-+a® and 1=, then afx=xa-+a?? hence (4) holds with
a1=ab, a;= —af® Conversely, if « is not an automorphism, take ¢ in K but not
in the image under «. Then it is easily checked that x and xe have no common
left multiple other than 0; so K [x; @, 8] is a left Ore ring precisely when « is an
automorphism.

We observe that the class of right Ore rings is closed under forming poly-
nomial rings [15].

THEOREM 4.1. If R is a right Ore ring, then so is the ring R[x] of polynomials
in a central indeterminate.

Proof. Since R is right Ore, it has a field of fractions, K say, and R[x] can be
embedded in the field K (x) of rational functions in x. Each element of K [x] has
the form fa—!, where fER[x] and ¢ €ER* is a common denominator for the coeffi-
cients. Hence each element w of K(x) can be written w=fa~1(gb—1)~1=fa"1bg™!,
where f, gER[x] and @, bER*. Since R is right Ore, it contains a’, b’ such that
ab’ =ba’#0; hence a~b=0>'a’"}, so w=fb'a’"1g~1=fb’'(ga’)~1. This shows that
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each element of K(x) is a fraction of elements of R[x]; therefore the latter is
a right Ore ring, as asserted.

It is a remarkable fact, first observed by Goldie [18], that every right
Noetherian entire ring is a right Ore ring. (A ring is 7ight Noetherian if all its
right ideals are finitely generated.) For if R is entire and right Noetherian, take
%,y 70, and consider the right ideal generated by the elementsx*y (n=0,1, - - - ).
This must be finitely generated, say x"y=yao+xya1+ - - - +x"ya,_;. If
ao=0, we can cancel a power of x from the left, so we may assume that a,0,
and then

x(x.n..ly — Y@y — - - - — x"—zyan—l) = Yao # 0.

The result is sometimes called the “little Goldie theorem?”:
THEOREM 4.2. Every right Noetherian entire ring is a right Ore ring.

Similarly the total ring of fractions introduced earlier plays a role in the “big
Goldie theorem.” To state it we recall that a ring R is said to be prime if the
product of nonzero ideals in R is nonzero and semiprime if the square of each
nonzero ideal is nonzero. A ring is right Artinian if its right ideals satisfy the
descending chain condition; this is a very much stronger condition than being
right Noetherian, and much more is known about the Artinian rings (cf. e.g.,
[26]). Goldie’s theorem provides a connection between the two; in one form it
states:

If a right Noetherian ring R is prime (respectively semiprime), then R has a total
ring of fractions which is right Artinian and simple (respectively semisimple).

For a brief proof see [19].

Let us return to Th.4.2 and consider an entire ring R which is not right Ore.
For simplicity we take R to be an algebra over a commutative field F. By hy-
pothesis we can find x, yER* such that xRNyR=0. It follows that there is no
polynomial in x and y (treated as noncommuting variables) which is zero, except
the one whose coefficients are all 0. For each such polynomial is of the form
f=a+xfi+yfs, where « € F and fi, f: are polynomials of lower degree than f.
Suppose that f is the polynomial of least degree in two noncommuting indeter-
minates that vanishes for x and y. If @50, then fi, f» cannot both vanish; say
fe#0, hence ax-+xfix+yfex=0, ie., x(fix+a)=—9yfx#0, a contradiction.
Hence =0, so xfi= —yf2; by the choice of x and y this implies fi=f,=0, which
contradicts the choice of f. So we have proved that there is no polynomial f other
than the zero polynomial such that f(x, y) =0. In other words, the subalgebra
generated by x and y is the free associative algebra on these generators. The
restriction on the coefficients is easily lifted; so one has the following result

([23]1 [12]1 [25]):

THEOREM 4.3. An entire ring is either a left and right Ore ring, or it contains
a free algebra on two generators.



1971] RINGS OF FRACTIONS 607

By definition a polynomaial identity is an identical relation not holding in all
rings, in particular not in free rings. Thus Th.4.3 has the following immediate
consequence [1]:

COROLLARY 1. An entire ring with a polynomial identity is a (left and right)
Ore ring.

In analogy with Goldie’s theorem, Posner [35] has generalized this result to
show that any prime ring with a polynomial identity has a total ring of frac-
tions which is a central simple algebra of finite dimension over its centre.

Jategaonkar who first proved Th.4.3 has also shown how to use it to embed
the free algebra in a field [23]. Take a ring R which is a right but not left Ore
ring. (E.g., K[x; «, 0] with a non-surjective endomorphism a, say K = F(f)
with a:f(#)f(¢?).) By Th.4.3 R contains a free algebra and by Th.3.1, Cor.2
it has a field of (right) fractions. So the free algebra is embedded in a field. This
is of interest because the free algebra is very far from being an Ore ring. How-
ever, this embedding is rather artificial; indeed most automorphisms of the free
algebra cannot be extended to the field of fractions just constructed. Later, in
Section 7, we shall meet fields of fractions which do not suffer from this defect.

The process of forming fractions can be applied to modules as well as to
rings. If R is a ring with a subsemigroup S, and A\: R—Rg is the universal S-
inverting homomorphism, then to each right R-module M there corresponds a
right Rg-module Mg with an R-module homomorphism u: M—Mg (where Mg
is regarded as R-module by means of A:x-a=xa" for xE Mg, a ER), and u is the
universal mapping with this property, i.e., given any R-module homomorphism
of M into an Rg-module N, there exists a unique Rg-module homomorphism of
Mg into N such that the accompanying diagram commutes:

M ' £

J

N

This much is general theory, proved in the same way as Th.2.1. There is
even a formula for M if we are willing to use tensor products (cf. e.g., [27]):

Ms =M @ Rs,

but this formula makes it no easier to study Mg in detail. Now let us assume that
S is a right denominator set in R; then the elements of Mg can be written as
fractions m/s, where m & M, s&.S, and two fractions represent the same element
of Mg if and only if, over a suitable common denominator, they have the same
numerator. The kernel of the natural mapping u:M—Ms is a submodule M
of M, called the S-torsion submodule of M. It consists of all m&E M such that
ms=0 for some s&S. If tM =0, the module M is said to be S-torsionfree; e.g.,
the quotient M/tM is always S-torsionfree.
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When R is the ring Z of integers and S=Z* the set of all nonzero integers,
tM reduces to the usual torsion subgroup of an abelian group.

5. Strongly regular rings. There have been many attempts to generalize the
notion of ‘inverse’ of an element, to take account of zero-divisors, usually in the
form of a ‘relative inverse’ a’, satisfying ea’a =a. We shall present the part of
this theory that is relevant to the embedding problem.

A ring R is said to be regular if to each ¢ ER there corresponds xR such
that axe =a; if R is such that for each a ER there exists x ©R satisfying a%x =a,
it is called strongly regular. In the commutative case this is the same as requiring
R to be regular, but in general it is stronger. This is not apparent at first sight,
but it will follow from the structure theorems given below. We shall need some
of the standard theory of the Jacobson radical; this can be found in [22], to
which we refer when necessary. Let us recall that from any family Ry of rings
we can form a direct product P= ][] R\ by taking the Cartesian (set-theoretical)
product and performing all the operations componentwise. (In the older books
this is also called the direct sum.) A subring R of the direct product P is said to
be a subdirect product if the canonical projections e, on the factors R\, when
restricted to R, are still surjective. E.g., Z can be expressed as subdirect product
of fields Z,, where p ranges over all primes. The projection of Z on Z, maps each
integer # to its residue class (mod p).

As an example of a strongly regular ring we have any field, or more generally,
any direct product of fields. However, a subdirect product of fields need not be
strongly regular, as the example of the integers shows. Nevertheless, these two
notions are closely related:

THEOREM 5.1. Every strongly regular ring is a subdirect product of fields.

Proof. Let R be strongly regular. Then its Jacobson radical J is 0. For an
element a &R lies in J precisely when 1—ax is invertible for all x&R. By hy-
pothesis we can find x &R such that a(1 —ax) =a—a2x=0 and 1—ax is invert-
ible; hence a =0. It follows ([22], p. 14, [26], p. 58) that R is a subdirect product
of primitive rings, each a homomorphic image of R and therefore again strongly
regular, so it only remains to show that a strongly regular ring which is also
primitive is a field. Now any primitive ring is a dense ring of linear transforma-
tions in a vector space V over a field ([22], p. 28, [26], p. 54), and we shall be
done if we show that V is 1-dimensional. Assume that V contains two linearly
independent elements v, 2. By density there exists a &R such that va =1,
20=0, and by strong regularity we can find x &R such that a2x=a; hence
va=v0 =102k =006 =0, a contradiction. This completes the proof.

COROLLARY. 4 ring is strongly regular if and only if it is regular and has no
nilpotent elements other than 0.

Proof. Let R be strongly regular; then it is a subdirect product of fields and
therefore cannot have any nonzero nilpotent elements. Further, if a?2x=a, then
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for each projection e\ of R on a factor K, of the product, either ae, =0 or ae, - xe
=1=uxe-ae. In all cases, ae, - xe,-aey =ae; hence axa =a and R is regular.

Conversely, let R be regular without nonzero nilpotent elements, and take
% &R to satisfy axa=a. Then

(e’ — a)® = a’xa’x — a®va — a®x + a® = a® — a® — a®x + a2 = 0,

hence a2x —a =0 and R is strongly regular.
The connection with fields of fractions is provided by the following result

[7]:
THEOREM 5.2. A subring of a strongly regular ring is embeddable in a field if
and only if it 1s entire.

Proof. The condition is clearly necessary; so assume that R is entire and is a
subring of a strongly regular ring. The latter is a subdirect product of fields, so
R is itself a subring of a direct product of fields, say

RCP=1]]xk.
Let ex: P—K\ be the canonical projection and define for each x &P,

L={\N&€A|lxa =0}, I.=T1]K.

AET:

Each I is an ideal in P. Let I be the ideal generated by all the I, such that
x&ER*. Then RNI=0; for if «&RNI, then x&EI,,+ - - - +1,,, where y;&ER¥,
and hence xy1ys - - + ¥,=0. Therefore x=0.

Let f: P—P/I be the natural homomorphism. Then by the construction of
I, f is R*-inverting. Since P/I, like P, is strongly regular, there is a homomor-
phism g of P/I into a field; now fg is an R*-inverting homomorphism of P into a
field, and (by Th.2.2) this provides an embedding of R in a field.

The following consequence was first proved using ultraproducts [36]:

COROLLARY. An entire subring of a direct product of fields is embeddable in a
field.

Th.5.2 shows that an entire ring can be embedded in a strongly regular ring
if and only if it can be embedded in a field. By contrast, any entire ring can be
embedded in a regular ring; for there is a construction which associates with any
ring R its ‘total (right) quotient ring’ Q(R), and when R is entire (more gener-
ally, for any ring with ‘zero singular ideal’) Q(R) is regular (cf. [17, 26]).
Moreover, this total quotient ring agrees with the total ring of fractions when
the latter exists, i.e., by Th.3.1, when the nonzero-divisors of R form a right
denominator set. But in general the total quotient ring of R gives no clue about
the embeddability of R in a field. E.g., though for an entire ring Q(R) is always
regular, it is not strongly regular unless R is a right Ore ring.

For a very thorough survey of quotient rings, see [40].
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6. Topological embedding methods. Besides the time-honoured way of
forming fractions there is another method of embedding rings in fields, which is
also taught at school and goes back to the 16th century [38]. This is the method
of decimal fractions; it consists of taking all expressions of the form

(1) Z a’t,v
where ¢,=0, 1, - - -, 9 and t=1/10, and adding and multiplying in the usual

way. Division is possible because if in (1), ¢a_,5%0 say, the series (1) can be
written as t"a_,(1— D1 b,#?), where each factor is invertible. Of course all the
series are convergent, as Laurent series, because |#| <1. This method can be
generalized; the general form is even simpler in some respects, because the usual
absolute value is replaced by a non-Archimedean valuation.

Let R be a ring with a waluation, i.e., a function v(x) taking the integers
or + « as values, such that

V.1. v(x) = « if and only if x=0,

V.2, v(xy) =v(x)+v(y),

V.3. v(x—y) Zmin{o(x), v(y)}.
Such a valuation may be thought of as defining a topology on R;since our aim is
to embed R in a field (if possible), we shall specify the topology by its neighbour-
hoods of 1. We shall limit ourselves to the case where the set

(2) P={ab"'| a € R, b € R*}

is dense in the field to be constructed, so we must say when a¢b~!is close to 1. The
natural condition for this is to require v(ab~!—1) to be large. Of course v is only
defined on R in the first instance, but if we assume that it can be extended to the
field of fractions in such a way as to satisfy V.1-3, we have

v(a — 8) = v([ab~! — 1]5) = v(ab~! — 1) + v(d);

hence ab~1is close to 1 precisely when v(a —b) —v(d) is large.

We now have a topology (in fact a uniformity, cf. [6]) on the set P of frac-
tions ¢b~1. What is still needed to make it into a ring? We shall not make P
itself into a ring, but its completion in the given topology. To enable us to add
and multiply we need an “asymptotic Ore condition”:

A. For any a, b in R* the function

f(x, 9) = v(ax — by) — v(by)

is unbounded above.

This enables us to embed R in a field, by defining the ring operations in the
completion of P, much in the same way as the usual Ore condition was used
before. The details are somewhat technical, so we omit them (cf. [8]), but there
is a simple way of restating the result in terms of graded rings.

Let us define

R, = {xER[v(x) 2 n}.
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Then the R, form a descending series of additive subgroups of R such that
NR,.=0, UR,=R and R;R;C Ri,;. In other words, we have a filtered ring. With
each such filtered ring R one associates another ring, its graded ring gr R, as
follows: the additive group of gr R is the direct sum of the terms

3) gr.R = R./Rny1.

To define multiplication it is enough, by the distributive law, to specify the
product of an element of gr;R and one of gr;R. Let a&gr:R, BEgr;R; according
to (3), these are cosets, say a=a-+Riy1, B=0-+Rj;1. We define af=ab+ Ripj41;
it is easily verified that this definition does not depend on the choice of a, b
within their cosets. Associativity is clear, so gr R becomes a ring in this way.
Loosely speaking, it is the ring formed by taking ‘leading terms’ in R.

We shall get a graded ring even if the function v satisfies, instead of V.2,
only v(xy) 2v(x)+v(y). The stronger condition V.2 merely ensures that gr R is
entire; further the asymptotic Ore condition can be shown to be equivalent to
the Ore condition for gr R. The result may be summed up as follows [8]:

THEOREM 6.1. Let R be a filtered ring whose associated graded ring is a right
Ore ring. Then R can be embedded in a field K. In fact K can be taken as a complete
topological field, with P given by (2) as a dense subset.

The result can be used to embed the universal associative envelope of a Lie
algebra (even infinite-dimensional) in a field. In particular it provides another
embedding of the free algebra, because this can be regarded as the universal
associative envelope of the free Lie algebra. (Cf. [8] and for other applications
[9].) For a further generalization see [42].

Another ‘topological’ method of constructing fields of fractions consists of
taking an ordered group and forming ‘Laurent series’: Given a totally ordered
group G and a commutative field F, consider the direct power F¢ of F indexed
by G. With each fE F¢ we associate a subset D(f) of G, its support, defined as

D(f) = {s € G| f(s) = 0}.

E.g., the group algebra FG of G may be identified with the set of elements of
finite support. In general it will not be possible to define the multiplication of
F%in such a way as to extend the operation on FG, for this requires that

@ s = 900 = [ 7660 |1
% st=u

and here the inner sum on the right will generally contain infinitely many non-
zero terms to be added. However, if both f and g have a well-ordered support,
then the equation st=u has, for a given &G, only finitely many solutions
(s, t) in D(f) XD(g). Moreover, the sum (4) itself will then have well-ordered
support. We can therefore define a ring structure on the set A of all elements of
F¢ whose support is well-ordered, in such a way that the group algebra FG be-
comes a subalgebra of 4.
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Finally it can be shown that 4 is in fact a field, so that the group algebra of
G has been embedded in a field. This result was obtained simultaneously and
independently by Malcev [30] and Neumann [32]. Later Higman [21] proved
a general result on ordered algebraic systems which includes the Malcev-Neu-
mann construction as a special case. For a simplified presentation of Higman'’s
result see [11], p. 123.

We now have another way of embedding free algebras in fields: Let G be the
free group on a set X. Then G can be totally ordered (by writing elements as
products of basic commutators and taking the lexicographic ordering of the ex-
ponents, cf. [31]). Hence its group algebra FG is embeddable in a field. Since FG
clearly contains the free algebra F(X) as subalgebra, this provides an embedding
of the latter in a field.

7. The matrix method. In Section 2 we observed that to embed a non-
commutative ring R in a field it may not be enough to produce inverses of all
nonzero elements of R. We can try to overcome this difficulty by adjoining in-
verses of suitable matrices. Given a set 2 of square matrices over R, we can for-
mally adjoin inverses of these matrices as follows. For each # X7 matrix 4 = (a+;)
in 2, take a set of n2symbols A’ = (a},) and adjoin the aj, to R as extra generators
with defining relations, in matrix form,

AA' = 4’4 = I.

The resulting ring is denoted by Rz, and we have a natural homomorphism
N:R—R3. This ring has properties entirely analogous to the ring Rgs described
in Th.2.1, to which it reduces when all the matrices in 2 are 1X1. So we again
call Rz and \ the universal Z-inverting ring and homomorphism, respectively.

It is of interest to note that under suitable conditions on Z, each element of
Ry is some al;; thus the generating set of Rz described above is then the whole
ring. To state the result, let us say that the set 2 of matrices is admsssible if
(i) 1EZ, (ii) the result of applying elementary row (or column) transformations
to any matrix of 2 again liesin 2, and (iii) if 4, BEZ, then (4%) €= for any matrix
C and zero matrix 0 of the appropriate size.

THEOREM 7.1. Let R be a ring, T an admissible set of matrices over R, and
f:R—S any Z-inverting homomorphism. Then the set R consisting of all components
of inverses of matrices in =% is a subring of S.

When S is a field, this result applies in particular to the set Z; of all matrices
over R whose images are invertible in S, for then Z; can easily be shown to be
admissible. When = =2, the set R is also called the rational closure of R under
the homomorphism f.

The question now is: Which matrices do we have to invert to get a field? In
the commutative case the answer was easy: we had to invert all nonzero ele-
ments, and this ensured that all matrices that are nonzero-divisors also become
invertible. But in the general case there may well be matrices that are nonzero-
divisors and yet are not invertible in any larger ring. Thus let R be any entire
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ring that is neither a right nor a left Ore ring. Then there exist a, b, ¢, dER*
such that RaNMRb=0, cRNdR =0, and it follows easily that the matrix

G-

is a nonzero-divisor. But this matrix cannot be invertible in any field; more
generally, no homomorphism of R into a field can map (1) to an invertible
matrix. This example suggests the following definition:

A matrix 4 over a ring R is said to be full if it is square, say #X#, and it
cannot be written as a product 4 =PQ, where P is nXr, Q is 7 Xn, and r<m.
Clearly, the most we can hope for, in mapping a ring R into a field, is to invert
the full matrices. The next result goes some way towards saying when this can
be done [13].

THEOREM 7.2. Let R be a ring such that the set ® of all full matrices over R is
admissible. Then the universal ®-inverting ring Rs is etther 0 or a field; moreover,
when Rq is a field, the universal ®-inverting homomorphism N: R—Rg is injective.

This is proved by exhibiting each element of Rs as a component of the solu-
tion of a matrix equation with a full matrix of coefficients, and showing that the
inverse element satisfies a similar equation. The last part of the theorem follows
from Th.2.2, because any nonzero element of a ring is full.

The hypotheses of Th.7.2 are satisfied if Ry is a nonzero ring in which each
one-sided matrix inverse is two-sided (i.e., AB=1I implies BA =1, cf. [14]),
but it is more difficult to find conditions in terms of R itself. Here is one case
where this has been done.

A free ideal ring, or fir for short, is a ring R in which each right ideal (and
each left ideal) is free as an R-module, and all bases of a free module have the
same number of elements [10]. Examples of firs are: (i) free algebras over a
commutative field (on any free generating set), (ii) group algebras of free groups,
and (iii) free products of fields, over a common subfield, [10]. For a fir one can
show that the set ® of full matrices is admissible and that A: R—Rs is an embed-
ding. Hence using Th.7.2 we see that each fir can be embedded in a field. Since
the class of full matrices is preserved under automorphisms, each automorphism
of the fir can be extended (in just one way) to an automorphism of its field of
fractions.

A final point concerns the uniqueness. The field of fractions of an integral
domain or, more generally, of a right Ore ring is unique up to isomorphism. For
any ring isomorphism a—a’ extends to an isomorphism of the field of fractions
by the formula (a¢/s)’=a’/s’. In the general case this is no longer so: there may
be several nonisomorphic fields of fractions of a noncommutative ring. (E.g.,
for the free algebra, the field of fractions obtained from Th.7.2, using the fact
that the free algebra is a fir, can be shown to be different from the field obtained
by Jategaonkar's construction in Section 4.) Given two fields of fractions Kj,
K, of a ring R, we define a specialization from K, to K, as a homomorphism f
from a subring R; of K; to K, that reduces to the identity map on R and such
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that any nonunit of R, is mapped to 0 by f. Of course no unit can be mapped to
0, so ker f is the precise set of nonunits. This means that the nonunits of Ry
form an ideal, m say; a ring with this property is said to be local. Clearly R;/m
is a field, isomorphic to the image of R; under f. This image is a subfield of K,
containing R, but since K is generated (as a field) by R, the image is all of Ko,
i.e., f is surjective. This then shows each specialization to be surjective.

A field of fractions K of R is said to be universal if for each field of fractions
K’ of R there is a unique specialization from K to K’. This property determines
K up to isomorphism, and in looking for fields of fractions, we are naturally
interested in finding the universal one, if it exists. Any free algebra (over a
commutative field) has a universal field of fractions [2] and also has other non-
universal ones. More generally one can show [14]:

THEOREM 7.3. Let R be a ring such that the set ® of full matrices is admissible.
If R0 (so that R is a field, by Th.1.2), then Re is the universal field of frac-
tions of R.

In particular this shows that each fir has a universal field of fractions.

These notions will be useful when one tries to do noncommutative algebraic
geometry, which might be defined as the study of zero-sets of rational functions
in skew fields, just as the usual kind is the study of zero-sets of polynomials in
commutative fields. In the commutative case polynomial zero-sets and rational
zero-sets are the same, which is why we could confine ourselves to the former.
In general this may not be so (cf. the examples in [39]), and some thought is
needed -even to construct rational functions. In [2] Amitsur classified rational
function fields according to the (rational) identities they satisfy; this is taken up
by Bergman [39] from a more general view-point; he also shows that affine
space over a field with infinite center is irreducible and describes a universal field
of functions.

Clearly many problems remain; we end by listing a few:

1. Find criteria for the existence of a homomorphism of a ring into a field
(remember that the zero-mapping is not a homomorphism).

2. Which rings have fields of fractions?

3. Which rings have more than one field of fractions?

4. Which rings have a universal field of fractions?
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