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RINGS WITH A WEAK ALGORITHM()

BY
P. M. COHN

1. Introduction. Commutative principal ideal domains form a somewhat
special class of rings, which, however, possess many pleasant properties. Often
we can make the task of deriving these properties even easier by limiting our-
selves to Euclidean domains. If we have a valuated (commutative) ring and ask
that it shall be a Euclidean domain with respect to this valuation, the ring is
almost uniquely determined: it must be a polynomial ring F[x] in a single in-
determinate over a field F.

All these ideas can be generalized in a straightforward manner to the non-
commutative case: the principal ideal domains again form a well-behaved though
rather narrow class (cf. Jacobson [9, Chapter 3]), and the valuated rings with
a Euclidean algorithm are just the skew polynomial rings k[x;S,D] over a skew
field k with an automorphism S and an S-derivation D (?). One obtains a slightly
larger class by taking, instead of principal ideal domains, Bezout rings, i.e.,
integral domains in which any finitely generated (left or right) ideal is principal
but this probably amounts to not much more than allowing locally principal
ideal domains. A significantly wider class of rings is obtained by taking all integral
domains in which any two principal right ideals with a nonzero intersection
have a sum and intersection which are again principal. These are the weak Bezout
rings introduced in [6], where it is shown that a weak Bezout ring in which
prime factorizations exist, is a unique factorization domain, and other decompo-
sition theorems hold (corresponding to the primary decomposition of an ideal
in a Noetherian ring). Further it is shown there that the weak Bezout rings include
free associative algebras in any number of free generators over a field.

It is possible to weaken the definition of the Euclidean algorithm in a similar
way so as to obtain rings with a weak algorithm (cf. §2 for the definition). This
was first introduced in [4] where it was applied to prove (in effect) that in any
ring R with a weak algorithm, all right ideals were free R-modules. We now con-
tinue the study of rings with a weak algorithm and in particular show that they
are weak Bezout rings, so that the results of [6] become applicable (§4). This
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(2) More generally, if S is allowed to be an endomorphism, all rings with a right-Euclidean
algorithm are obtained. Cf. Jacobson [8], and independently, Cohn [4].
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RINGS WITH A WEAK ALGORITHM 333

is done by means of the usual Euclidean algorithm, which is developed rather
fully, using noncommutative continuants (§3). In §2 we recall some facts about
the weak algorithm which were proved in [4] and show that for any bimodule
M over a skew field k, the tensor k-ring on M has a weak algorithm. If we re-
quire k to lie in the centre of the ring, we just obtain the free associative algebras.
In this special case some further applications of the weak algorithm can be made
(§5); in particular it is shown that two elements of a free associative algebra
which commute, must be algebraically dependent over the ground field.

In conclusion (§6) we establish a form of the weak algorithm for the free pro-
duct of (any number of) skew fields over a given skew field k. This does not
fall under the heading of §2, because the algorithm is not with respect to a true
valuation; nevertheless we are able to use it to prove that (i) free products of
skew fields are weak Bezout rings, and (ii) all right ideals are free modules. This
generalizes some results obtained in [3].

2. Definition of the weak algorithm. Throughout this paper ‘ring’ means
‘associative ring with a unit-element 1 which is different from 0°, the subrings
of R are understood to contain the 1 of R and the images of homomorphisms
are understood to be subrings (so that 1 maps to 1 in any homomorphism). The
term ‘field” will be used in the sense of ‘skew field’, i.e., ‘not necessarily commu-
tative division ring’. Further, in any integral domain R, i.e., a ring without proper
zero-divisors, the set of nonzero elements is denoted by R*.

Let R be a filtered ring, more precisely, a ring with a positive increasing filtration

0 =Ry =R - (R, =R, RR; € Ry)),
and define, for any x € R, its value v(x) by the equation
v(x) =min{n | xeR,},

where formally, v(0) = — o0; as is easily verified, v is a pseudovaluation on R
(cf. [4]). We now have the following basic definitions(3):

(i) A subset X of R is right R-dependent, if X = {0} or if X = {x,--,x,}
and there exist a,,---,a,€ R such that

v(xy) + v(ay) = -+ = v(x,) + v(a,) > vo( Lxa).

(ii) A subset X of R is right R-independent if it contains no right R-dependent
subset.

(iii) Given a subset X of R, an element y e R is right R-dependent on X if
y =0 or if there exist x,---,x,€X and a;,---,a,€R such that

oy — Lxa) <v(y),  o(x)+ova) o) (i=1,-,7).

(3) The definitions given here reduce to those given in [4] for the case where v is a valuation.
This will always be so under the special conditions imposed later on.
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The notion of left R-dependence is defined analogously; we shall be mostly
concerned with right R-dependence and we shall usually omit the word ‘right’,
It should be noted that an R-dependent set is necessarily finite, and that a sub-
set of R may be neither R-dependent nor R-independent. To say that the subset
X of R is R-independent is to say that for any sum Xxa, (x € X, a, € R) we have

2.1 v( Xxa,) = max {v(x) + v(a,)|x € X}.

For the left-hand side can at most equal the right-hand side, and if it were less,
the terms for which v(x) + v(a,) attains its maximum would give a right R-de-
pendence.

DEerFINITION 1. A filtered ring R is said to possess a right algorithm, if the
function v is a valuation, i.e., if

(2.2) v(ab) = v(a) + v(b),

and if of any two nonzero elements of R, any one of maximal value is right
R-dependent on the other.

DErFINITION 2. A filtered ring R is said to possess a weak right algorithm, if in
any right R-dependent set, any element of maximal value is right R-dependent
on the rest.

We note that in a ring with a weak right algorithm, the function v necessarily
satisfies (2.2). For if not, then for some a,beR,

(2.3) v(ab) < v(a) + v(b).

This means that the set {a} is R-dependent, and hence a must be R-dependent
on the empty set, i.e., a =0. But for a =0, (2.3) is clearly false if we interpret
operations with — co in the conventional way. Hence v is a valuation on R; in
particular it follows that R is an integral domain.

The preceding remark shows that a ring with a right algorithm is necessarily
a ring with a weak right algorithm. Conversely, a filtered ring with a weak right
algorithm is a ring with a right algorithm (relative to the given filtration) if and
only if it satisfies Ore’s right multiple condition

24 aRNbR#0  (a,beR¥

(cf. Cohn [4, Theorem 3.17]).

It is clear how a ring with a (weak) left algorithm would be defined. Now we
recall Theorem 3.2 of [4] which states that a ring has a weak left algorithm if
and only if it has a weak right algorithm. We can therefore omit the attribute
‘right’ and simply speak of rings with a weak algorithm. Of course the right
algorithm by no means implies the left algorithm (cf. the examples in [4]), al-
though it does imply the weak left algorithm, by what has been said.
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We recall the description of rings with a right algorithm given in [4, Theorem
2.11(%):

Let R be a filtered ring with a right algorithm. Then the elements of non-
positive value form a field k and R is either k or the ring of skew polynomials
k[x;S,D], where S is an endomorphism of k and D an S-derivation. Thus R
consists of all polynomials in x with right coefficients in k, subject to the com-
mutation rule

2.5) ax=xd’ +a? (xek).

Conversely, the ring k[x;S,D] with any (non-negative) valuation for which
v(x) > 0, has a right algorithm.

Similarly, the rings with a weak algorithm were described as follows [4, Theo-
rems 3.4-3.5]:

Let R be a filtered ring with a weak algorithm. Then the elements of non-
positive value form a field k, and if X = {x;}, is a right R-independent gene-
rating set for a right ideal complementing k in R (which always exists), then
every element of R can be expressed in just one way as a sum

(2.6) Yxo;  (arek, almost all ay are 0),

where I = (iy,--+,i,) runs over all ordered finite subsets of A and

Xp= X+ X .
Conversely, a filtered ring R containing a field k and a set X such that every
element of R is unique of the form (2.6) has a weak algorithm, provided that

(1) v(x) Z£0 implies x €k,

(ii) X is right R-independent.

In any filtered ring R the set R, of elements of nonpositive value forms a sub-
ring, provided that 1€ R,. In that case we shall refer to R as a filtered R,-ring,
or if R, is contained in the centre of R, as a filtered Ry-algebra. Thus the above
description shows that rings with a weak algorithm are filtered k-rings for some
field k. Further, as was noted in [4, Theorem 3.6], the free associative algebra
on a set X over a commutative field F may be characterized as a filtered F-al-
gebra with a weak algorithm. As a more general example we have the tensor
ring on a k-bimodule, where k is any skew field. To define this concept, we recall
that in a k-ring the elements of k are regarded as unary operators, so that a
k-ring homomorphism is a homomorphism between k-rings leaving the ele-
ments of k fixed.

(4 In [4] R was explicitly assumed to be valuated, whereas here the assumption that (2.2)
holds is absorbed in the definition of the algorithm. Clearly this does not affect the truth of the
result.
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PROPOSITION 2.1. Let k be a field and M a k-bimodule. Then there exists
a k-ring Ty and a k-bimodule homomorphism

A:M > Ty,

such that for any k-bimodule homomorphism ¢ : M — A, where A is a k-ring,
there is a unique k-ring homomorphism ¢’ : Tyy— A such that A¢p’' = ¢. Further,
T); is unique up to isomorphism.

The existence and uniqueness of T, follow as a particular case of the universal
mapping property. T,, may be constructed explicitly by putting

Ty=2X® T, T"=M®M® - ® M, i factors

where all the tensor products are taken over k, and the module T, is made into
a ring by defining a mapping

Ti® T.I__) Ti +f: (x1 ® - ®xi)(yl ® - ®y}) =X, ®--- ®xi® V1 ® - ®yj’

and extending these mappings by linearity to a mapping of T x T into T. The
resulting ring T, is called the tensor ring on M, the above construction shows
that the canonical mapping A:M — T, is 1-1 and we may therefore identify M
with the subspace T' of T),.

The ring T,, may be filtered by putting (Ty), = Zi<n T . with this definition
T,, becomes a k-ring with a weak algorithm. To show this we need only choose
a basis X of M as right k-space. Then it is clear that every element of Ty, is unique
of the form (2.6); further, (i) holds by definition and (ii) follows since

o( Lxpoy) = max {v(xp)|e; # 0}.

Consider now a general filtered k-ring R with a weak algorithm. Let X be an
R-independent generating set for a right ideal complementary to k. Then by the
R-independence of X,

o( Zxop) = max {v(xap)},
and since v is a valuation,
o(x;, % 0) = v(x;) + o+ v(x;).

Thus v is completely determined by its values on X. Further, the multiplication
in R is determined by k, X and equations analogous to (2.5) for ax, (x, € X).
These must have the form

2.7 ax; = Lxpp(%) (pr(0) = 0 for v(xp) > v(x,)).

This allows rather more general rings than tensor rings on k-bimodules. In
the first place, we may take the bimodule M itself to have a filtration,

MocsM s (UM,=M, M,k+kM,<sM,),
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where we shall further assume for simplicity that M, =~ k. Then we may con-
struct a tensor ring for this bimodule by applying the universal mapping property
for mappings compatible with the filtration. This tensor ring has a natural fil-
tration and relative to this filtration it has a weak algorithm, but even this is not
the most general ring in this class, for if e.g. v(x;) =2, v(x,) = v(x3) = 1, then
we may have an equation of the form

axl = xla + xZX3,

which cannot occur in a tensor ring T, Thus there remains the problem of
completely determining the structure of rings with a weak algorithm, or from
another point of view, the problem of giving an intrinsic characterization of
tensor rings on a bimodule.

An important property of rings with a weak algorithm is that all right (or
left) ideals are free as modules over the ring. If we can show that any two bases
of a free right module have the same cardinal, or even that in a free module
on two free generators every basis consists of two elements, then it will follow
(from [6], Theorem 6.2 and the remark following it) that the ring is a weak
Bezout ring. We shall not take this route but verify directly (in §4 below) that
every ring with a weak algorithm is a weak Bezout ring.

3. The continuant polynomials. Let t,,¢,, --- be a set of noncommuting
indeterminates. We define a sequence of polynomialsin the #’s (with integer
coefficients) by induction on n as follows:

fo =1 filt)=ty,

fn(tl’ ) tn) = fn—l(tl’ "',tn—l) t, +fn—2(t19 "ty tn—z)-

(3.1)

If the variables are allowed to commute, the expression for f, reduces to the con-
tinuant (cf. Aitken [1, p. 126])

t, 1 0
_“1 t2 1
_1 t3 1

-1t |,

and we shall therefore refer to f, as the nth continuant polynomials. The follow-
ing lemma generalizes the well-known relations between successive convergents
to a continued fraction (cf., e.g., Hardy and Wright [7, Chapter X]; also Wed-
derburn [10]).
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LemMMA 3.1. The continuant polynomials f, satisfy the identities:

@) faltss - stdfu-1(tu—1s5t1) =fam1(trs s tu Dfa(tns 5 105

() fur1(tis o stue Dfmiltus s 12) = fultss st fultpi 15 s t2) = (=11,

The proof is immediate by induction on n, using the recursion formulae (3.1).
As in the commutative case, (ii) shows that if we substitute any elements of an
arbitrary ring for t,---,¢,.1, two successive f’s can have no common (left or
right) factor apart from units.

The continuant polynomials may be regarded as elements of the free associative
algebra (over the integers) on ty,¢,,---. This ring has an involution (anti-auto-
morphism of order two) which maps each ¢; to itself. We denote this involution
by J and call it the reversal operator. In the sequel we shall also require the fol-
lowing properties of f,:

LeMMA 3.2. () fu(ts, > )" = fults > t0),
(ii) if the variables ty,---,t, commute, then

fn(tls ) tn) = fn(tm ) tl)a
(iii) if R is any ring with a valuation v (assuming only non-negative values),
then for any elements a,,---,a, such that v(a;) >0 for all i except possibly
i=1ori=n,

U(f,,(al, ) an)) = ”(fn(am ) al))-

Proof. (i) amounts to showing that
fl(tls HE) tn) = tlfn—l(tb tt tn) +fn—2(tss ) tn),

and this follows by induction on n. Now (ii) follows because J reduces to the
identity when the variables commute. To prove (iii) we first take the case n =2,
v(a;) = v(a,) = 0. Then the value of a,a, + 1 can only be 0 or — o0, according
as the expression is different from or equal to zero, and correspondingly for
a,a; + 1. Moreover (%), if aa, + 1 =0, then a, = (—a,;)~' and so a,a, + 1 =0;
the converse also holds, so that v(a;a, + 1) = v(aa; + 1) in this case. If n =1,
the assertion holds trivially; so assume now that n > 2 or v(a;) + v(a,) > 0. Then
every term in f,(a,,---,a,) apart from a,a,---a, itself has lower value than
a,a,--a, Hence

v(fn(als"'3 an)) = U(al "'an) = v(al) + e+ v(a,,),
and the result follows by symmetry.
LeMMA 3.3. Let s be any noncommuting indeterminate(®) with inverse
s”!. Then

(5) Because in a valuated ring there are no proper zero-divisors, and hence one-sided in-

verses are necessarily two-sided.
(6) The polynomials in s, s—1, #1,t,,+-- may be considered purely formally or e.g., as cer-
ain elements in the group ring (over the integers) of the free group on s, t1,#2,+-.
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(i) if n is odd,

3.2) Fult18,5~ gy oeeys™ 1, 1,8) = fi(ty, 5 1,)s,

(3.3) Fulstistys= 1oty _gs™1,5t) = sfu(ts, > t)-
(i) If n is even,

(3.4) Jt18,57 tay ey by 18,87 1y) = folty, 1),

(3.5) Fu(stiytas= 1, e Sty 151,87 1) = sfy(ty, o5 t)s™ 1.
(iii) For any n,

(3.6) Sultisostn) = fara(t s taista — L D).

Proof. We prove (i) and (ii) by simultaneous induction on n. If n is odd
and greater than 1, we have

fn(tlss"':tns) = fn—l(tlss ""s—ltn—l)tns +.fn-2(tls9"'atn-zs)
= fn-l(tl’ ""tn—l) 1S +fn-2(t15 "'9tn—2)s
= fn(tla"’,tn)s,

where we have used the definition twice and the induction hypothesis once. This
establishes (3.2) and by symmetry (or by applying J) (3.3). Next, if n is even
and greater than O,

-1 - -1
fn(tls""9s tn) = fn—l(tls""otn—ls)s 1tn +fn—2(tlss"',s tn—z)
= fuei(t, s tus Dty +fum2(trs 5 ta=2)
= fn(tb"'stn);

in the same way we can establish (3.5). Now (i) and (ii) clearly hold for n=1
and 0, respectively, and therefore they hold generally.
To prove (iii) we have

Jar1(ty s ta=1,1) = filts, s ta= D + famy(ts 5t t)
= fro1(tys s tac D(ta=DHfoma(tr o tam2) Fum1(t1 o5 )
= fa-1(tes s ta Dty + fama(ts, s ta2)
= fultys -5 t).

This completes the proof.

We note that (i) and (ii) may also be proved by observing that f,(t;,-,t,)
is a sum of terms of which the first is ¢,¢, -+ t, and the others are obtained from
this by omitting one or more factors of the form t;_,t;, in all possible ways. Thus
eg, fr=tit, + 1, fi=tibaty+ 1t +1t3, fo=titatsta+ tits + b3ty + tits + 1.
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4. The Euclidean algorithm. Let R be a ring with a weak algorithm. We shall
now develop an analogue of the Euclidean algorithm in R, which will be used
to show that R is a weak Bezout ring.

Given two elements a,b € R with a nonzero common right multiple in R, say,

4.1) ab’ = ba' # 0,

we may regard this relation as a right R-dependence between a and b. We assert
that there exist q,, r; € R such that

4.2) a=bq,+ry, v(ry) <v(b).

For if g, is chosen so that v(a —bgq,) is minimal and we had
v(a — bq,) = v(b), then because (a — bq,)b’ = b(a’ — q,b’), the weak algorithm
in R shows that a — bq, is right R-dependent on b, i.e., there exists ¢ € R such
that

v(a = b(gy + ¢)) <v(a — bgy),
which contradicts the choice of g,. Writing r, = a — bq,, we thus obtain (4.2);

we note incidentally that g, and r, are uniquely determined in (4.2), for if we
also had a = bqg + r(v(r) < v(b)), then

(4.3) blg—q)=ri—r,
and if q # q,, then v(b) £ v(b(q — q,)) = v(r; — r) < v(b), which is a contra-

diction. Therefore g = g, and by (4.3), r=r,.
Substituting from (4.2) into (4.1) we obtain

rb’ = (a— bgq)b’' = b(a’ — q,b").
If we put rj =a’ — q,b’, this may be written
4.9 rb’ = bry.

By (4.4) and (4.2), v(b) + v(r{) = v(r,) + v(b") < v(b) + v(b’), hence v(r;) < v(b’),
so that there is complete left-right symmetry (as we know there must be, by
Theorem 3.3 of [4]). It may happen that r, = 0, but by (4.4) this is so only if
ri = 0. Excluding this case, we can apply the same reasoning to (4.4) and thus
obtain the chain of equations of the Euclidean algorithm. More precisely, we
obtain two such chains, one for left- and one for right-division:

a = bq, + 1, a’ = qb" + r; rb’ = bry,
4.5) b =r4q,+r, b = qri + 13 rary = Tyt

’ !’ ’ ’ ’
Fy = ryqs +r3 ry = q3ry + 13 r3ry = Taly,
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Note that whereas the remainders r;, r;’on the two sides are in general distinct,
the quotients g; are the same. The values of the remainders decrease strictly.

(4.6) o(b) >0(r) >y 0(b)>0(r])> o

Hence the remainders must vanish eventually. Let n be the least integer such
that r,,, = 0. Since r,, 7, =1y, it follows that 7., = 0; if we had r;=0
for some k < n, then by symmetry, r, = 0, which contradicts the definition of n.
Hence r, ., is the first vanishing remainder of the right-hand division and the
last two rows of (4.5) read

(45)/ rn—-2 = rn—lqn + ry 7"';—2 = anrlt—l + rn, rnr;t—l = rn—lr:w
Fne1 = Tyqn+1 Faet = Qn+1ln Tav1 = Tns1=0.

From (4.5), (4.5)" and the inequalities (4.6) we see that

4.7 v(g)>0 (i=2,3,---,n+1),

while v(g,) > 0 if and only if v(b) < v(a).
Using the continuant polynomials f,, we may express the equations (4.5) and
(4.5)" as follows:

(48) a = rnfn+1(qn+1,""q1)a b = rnfn(qn+1$"'aq2)’
(49) a = fn+1(q1,"'5qn+1)rn,’ b" = fn(qZ"",qn+1)r;r

It is now an easy matter to prove that R is a weak Bezout ring:

THEOREM 4.1. A ring with a weak algorithm is a weak Bezout ring, i.e.,
any two principal right ideals with nonzero intersection have an intersection
and sum which are again principal.

Proof. Let aRNbR # 0, then by the above reasoning there exist r,

oy 41592, **»qn+1 € R, all different from zero except possibly q,, such that (4.8)
and (4.9) hold. We assert that

aRN bR = mR, aR + bR = dR,
where m = af, (45, **,qn+1), 4 = r,. For by Lemma 3.1 (i),

m= afn(¢12,"', qn+1) = bfn+1(q1, '“,qn+1)a

which shows that m € aR N bR. Conversely, if m; e aR N bR, say m, = ab; = ba,,
then by applying the algorithm to this equation, we find analogously to (4.9),

by =£fd2 -, qn+1) 7':‘,

with the same quotients g;, since these were determined by a,b alone. Hence
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m, is a right multiple of m, which shows that aR N bR = mR. Next, r, clearly
is a left factor of g and b, by (4.8), while the equation

afn—l(QZ’ "'9q;;) - bfn(ql’ ""Qn) = (—l)nrm

which follows from Lemma 3.1 (ii), shows that r,€aR + bR. This means that
aR + bR =r,R, as asserted, and the theorem follows.

COROLLARY 1. Any ring with a right algorithm is a right Bezout ring.

For the hypothesis means that R satisfies the Ore condition (2.4), and the
conclusion therefore follows from Theorem 5.2 of [6].

In a ring with a weak algorithm, any element which is neither zero nor a unit
may be expressed as a product of primes. For in any factorization of a, the num-
ber of nonunit factors is bounded by v(a), and to obtain a prime factorization
we need only take a factorization into nonunits with a maximal number of fac-
tors. Applying [6, Theorem 5.5, Corollary 1], we therefore obtain(7)

COROLLARY 2. A ring with a weak algorithm is a unique factorization
domain(8).

It follows that the other decomposition theorems established in [6, Theorems
5.7-5.8], giving complete decompositions of an element into indecomposable
and right indecomposable elements, respectively, also hold for rings with a weak
algorithm. The proof of Theorem 4.1 actually gives more information than this;
we recall that a commutative UFD is characterized by the fact that this multi-
plicative semigroup, taken modulo the group of units, is free commutative. In
the same way we can give a description of the defining relations in a ring with a
weak algorithm.

COROLLARY 3. Let R be a ring with a weak algorithm. Then the multipli-
cative semigroup of R is generated (modulo the group of units) by its prime
elements and a set of defining relations is given by the equations

(410) fn+1(a1’ s Any l)fn(am “"al) =fn(a1’ '“9an)fn+ l(an+ 1s "'9a1)9

where n=1,2,--- and a,,---,a,,, run over all elements of R.

Of course these relations are redundant, i.e., the f, do not necessarily represent
primes in R, and not all of the relations (4.10) are needed. As an example of
(4.10), we note the simplest case, n = 1, which is of the form

(xy + Dx = x(yx + 1).
As an application of the Euclidean algorithm we shall now describe the general
(7) For noncommutative Euclidean domains this was obtained by Wedderburn [10]. Cf.

Jacobson [9] and the references given there.
(8) This term is used here in the sense defined in [6].
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solution of a linear equation in two unknowns with coprime coefficients. Here
two elements are said to be left coprime if they have a common nonzero right
multiple but no common left factor apart from units. Thus in a ring R with a
weak algorithm, the elements a, b are left coprime if and only if neither is zero
and aR + bR = R. The definition of right coprime elements is analogous.

THEOREM 4.2. Let R be a filtered k-ring with a weak algorithm and let a,b
be two elements of R not both in k, which are left coprime. Then there exist
elements a’, b’, ¢’, d’ € R such that

4.11) ab’—ba'=0, wv(a)=v(a), v(b")=uv(b),
and
(4.12) ad' — bc' =1, v(c") < v(a), v(d") < v(b).

The elements c', d' are uniquely determined by a,b while a’,b’ are deter-
mined up to a common right factor from k*. Further, the equation

(4.13) ak—bn=g
has a solution for any geR, the general solution being
(4.14) ¢E=4dg+ b'h, n=cg+ ah,

where h is an arbitrary element of R.

Proof. By the Euclidean algorithm we have

a="1pfpr1(@ns 155 491)5 b =1 f@n+1>"592)s

where r, € k*, because a and b are left coprime. If we put

a’ = n+1(q1,""qn+1)a b’ =fn(q2,"'9qn+1)’
¢ = (_1)"_1fn(qla"',qn)rn_1, d = (_l)n_l n—1(42,"'s‘1n)";1 s

then the equations in (4.11) and (4.12) hold, as well as the value conditions, be-
cause v(q,4+,) >0 (cf. Lemma 3.2 (iii)). Further ab’= ba’ is a least common
right multiple of @ and b and so the solution of (4.11) is unique up to right
multiplication by units, i.e., elements of k*. Now the solution (4.12) is also
unique, for otherwise we should by subtraction obtain a common right multiple
aby = ba, which is of lower value than ab’, clearly an impossibility. Next con-
sider any solution of (4.13); we have

a((—d'g)=bn—c'g),

hence ¢ —d'g=b'h, n —c’'g=a’'h for some he R, which shows the solution
to be of the form (4.14). Conversely, every pair &, n of the form (4.14) satisfies
(4.13) as is easily seen, and so the proof is complete.
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To apply the theorem we may use the

PRrOPOSITION 4.3. Two elements a,b of a ring R with a weak algorithm
are left coprime if they are different from zero and there exist Ae k*, u,ve R
such that

av — bu = A

Proof. If u=0, then avA™'=1, so a is a unit and the result holds trivially.
If u+#0, then

bul™'a=(av— DA ta=a@wi a—-1),

thus aRN bR # 0 and hence aR + bR = dR for some de R. Since d must be
a left factor of A, it is a unit and aR 4+ bR = R, as we had to show.

Let R be any ring with a weak algorithm. Two elements a, a’ of R are said to
be related, in symbols a A a’, if there exist elements z,,---,z,€ R such that

a=fz1,2), @' =fulzp s 21)
If we put
b = fu_1(z1,524-1), b" = fu-1(za-15-+521),
¢ = (=D%i(zp22), A = (=1)fuoa(Zyo1,,22)s

then we have

ab’ = ba’, ad’ —bc’ =1,

and it follows that a and a’ are similar (cf. [(6, Propositions 2.1 and 5.3]). The
converse does not quite hold: any two associated elements are similar, but not
necessarily related. However, if two elements are similar, one of them is related
to an associate of the other. For the proof we need a lemma on related elements.

LeMMA. Let a, a’ be related elements in a ring R with a weak algorithm,
and let u be a unit in R. Then (i) auA a'u, (ii) ua A ua’, (iii) v *au A a'.

Proof. Let
(4.15) a=fz,z,), @' =fzp-20),
and suppose first that n is odd. Then by Lemma 3.3,
fuziuu™ 2y, zu) = au,
fulzgu, it 2 gy ziu) = a'u,
hence au A a’u in this case. If n is even, we may rewrite a,a’ as
a=fur1(z1,2,— L1, a'=f (L, z,—1,-,2y)

and apply the same argument. This proves (i) and now (ii) follows by symmetry.
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To prove (iii) we first assume that n is even in (4.15). Then we have again by
Lemma 3.3,

fuu™tzy, zou, s u" 2z, g, za0) = u”tau,

fn(znuau—lzn—l’""22u9u—lzl) = a,;
if n is odd we can again change its parity and so establish (iii) in all cases.

PropoSITION 4.4. In a ring with a weak algorithm, two elements a,a’ are
similar if and only if a is related to an associate of a’.

Proof. We have seen that related elements are similar; hence an element is
also similar to any associate of a related element. Conversely, if a and a’ are
similar, then there is a coprime relation(®)

(4.16) ab’ = ba’.

By the Euclidean algorithm we can determine q,,--*,q,+1, s 's € R such that
(4.8) and (4.9) hold. Since (4.16) is coprime, r, and r, must be units and
rila & a’r,” ! By the lemma it follows that a A r,a’r, ~} as we wished to show.

It is clear that the notion of relatedness is reflexive and symmetric. Whether
it is also transitive is not known, but in practice it plays a subordinate role tc
the notion of similarity, which of course is reflexive, symmetric and transitive.
A more interesting question is the following: it may happen that an element is
related to infinitely many distinct elements of R. E.g., if k is the ground field, then
a A~ 2" tal for all 1ek*, and if k is not contained in the centre of R, these ele-
ments may include infinitely many distinct ones. However, the elements 1-'al
are also associated to a and this raises the following question:

In a ring with a weak algorithm, or more generally, in a weak Bezout ring,
can a similarity class of elements consist of infinitely many classes of associated
elements?

5. Free associative algebras. All the results obtained for rings with a weak
algorithm naturally apply to free associative algebras. In this section we obtain
some further results for these algebras, which depend on their special nature.
The main result is

THEOREM 5.1. Let A be a free associative algebra over a commutative
field F. If a,b,b’ € A, where a # 0 and (1°) v(b) > 0, and

5.1 ab’ = ba,

then there is a polynomial ¢(t)e F[t] in one variable and an element ce A,
such that

(5.2 ¢(b) = ac, ¢(b’) = ca.

(9) Le., a relation (4.16) in which a, b are left coprime and a', b right coprime (cf. [6]).
(10) By v(b) we mean the degree of b in the free generators of 4.
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If ¢ is taken to be the monic polynomial of least degree satisfying (5.2),
then ¢ is uniquely determined and if ¢ splits over F,

(53) 40 = IT (-,

then for any A€ F, the following three conditions are equivalent:
(i) a and b — A have a nontrivial common left factor,
(ii) a and b’'—41 have a nontrivial common right factor,
(iii) A equals one of the «;.

Proof. From (5.1) we have, by induction on n,
ab™ = b"a,
and hence by linearity,
(5.4) af(b’) = f(ba,
for any polynomial f(¢) e F[{]. By the weak algorithm in A4,
(5.5 fb)=aq;+ry, where v(r;) < v(a).

Now a, b, b’ belong to a subalgebra of 4 which is free on a finite generating set.
We need only restrict attention to those free generators which occur in a,b and
b’. We may therefore assume from the outset that A is finitely generated. In
particular, the space of elements of value < v(a) is then finite-dimensional.
Since v(b) > 0, the subalgebra F[b] generated by b is infinite-dimensional over
F, and by (5.5) the mapping f— r, is linear. It is therefore not 1-1, and taking
any nonzero element f(b) in the kernel, we have

f(b) = aq.
Inserting this in (5.4), we obtain af(b’) = aga, whence
f(b) =qa.

This proves the first part. Let ¢ be monic and of least degree, subject to the con-
ditions ¢(b) = ac, ¢(b’) = ca (for some ce A). If also Y(b) = ad, Y(b') = da,
where ¥ has the same degree as ¢ and is also monic, then ¢ —  is a polynomial
of lower degree satisfying (5.2), and hence vanishes identically. Now assume
(5.3) holds and suppose that a and b—a,; have no common left factor. Since

(b —aoy)a = ab’ — o),
it follows that a and b — «; are left coprime, so there exist u,ve A such that

(5.6) av—(b—oa)u = 1.



1963] RINGS WITH A WEAK ALGORITHM 347

Put(*!) ¢4(t) = [[iz1(t — @), then by (5.6),
$1(b) = ¢y(b)av — $1(b)(b —a)u
= a¢gy(b) — ¢(bu
= a(¢(b")v — cu),

where we have used (5.4), (5.3) and then (5.2). Since ¢, has lower degree than ¢,
this contradicts the definition of ¢. Thus a and b — a; have a common left factor,
and similarly with o, replaced by «; (i =2, ---,7). Conversely, if a and b — 4 have
a common factor, so have ¢(b)=ac and b — A(12); it follows that 1 = «; for
some i. This proves that (i)<>(iii) and by symmetry we find that (ii)<>(iii).

CoROLLARY 1. If F is algebraically closed and a,b,b’€ A are such that a
is prime and
ab’ = ba,
then there exist ce A and A€ F such that
b=ac+ 4, b'=ca+ A

If v(b) =0, this holds trivially; otherwise, by the theorem, for some AeF,
a and b — A have a common left factor, which must be a itself, because a is prime.
Thus b — A = ac and hence also b’ — A = ca.

COROLLARY 2. If F is algebraically closed and a,b,b’e A are such that
ab’ = ba, 0 < v(b) < v(a),
then a is not prime.

For if a were prime, then by Corollary 1, b = ac + A, which is impossible by
the condition on the degrees.
As an illustration of Theorem 5.1, consider the relation

(5.7) ad — be = A

in a free associative algebra 4 over F, where A€ F, and we further assume that
a#0, c¢F, to exclude trivialities. Multiplying (5.7) by ¢ on the left and a on
the right, we obtain ca-da — cb-ca = Aca, or

ca(da — 2) = cb-ca,

which is of the form (5.1), with a, b, b’ replaced by ca, cb, da — A, respectively.
It is easily seen that the polynomial ¢ is in this case ¢(¢ + A), unless A = 0 and
beaR, in which case ¢ =1t.

(11) Note that the a; need not be distinct.
(12) The factors b — a; all commute with one another, so their order is immaterial.
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The information provided by Theorem 5.1 is not as explicit as one might wish.
Thus, if a,b,b’ satisfying (5.1) are homogeneous in the free generators of A,
then it can be shown that there exist u,v€ 4 and an integer r such that(13)

a = (uv)'u, b =uv, b’ =vu.

An analogous assertion for nonhomogeneous elements would be

(5.9) a = f(uv)u, b=uv, b’ = vu,
for some polynomial f, or weaker still,
(5.8)’ a =f(uv)u, b = g(uv), b’ = g(vu),

for certain polynomials f and g. But such a representation need not exist, as the
following example shows: A is free associative on x and y, and

a=xy’x+xy+yx+x*+1, b=xy*+x+y, b =y*x+x+y.

Clearly ab’ = ba, but no representation of the form (5.8) or (5.8)" exists. To
see this we need only consider the more general form (5.8)’. If either u or v were
a unit, it would belong to F and so b and b’ would be equal, which is not the case.
Hence both u and v have positive degree and since v(b)=3, g must be of degree 1;
but the explicit form of b and b’ shows this to be impossible.

We note incidentally, that in this example a is not prime if F is algebraically
closed. This is not a priori obvious, but it follows easily from Corollary 2. By
going through the proof, we find that

b2 +1=a(y*+ 1),

and hence

(5.9 a=@xy+ix+1D(x—ix+1) = (xy —ix + )(yx + ix + 1),
b+i=((xy+ix+ 1Dy Fi,

(5.10) (xy Yy Fi)

’

Ti=0F)Oxtix+1),

where i = ./ —1. Clearly the two factorizations (5.9) of a are into prime factors,
and in fact xy + ix + 1 =f,(x, y + i) is related to yx + ix + 1. It may be veri-
fied that a is prime over the rational (or real) numbers.

Finally we ask when two elements of A commute. A plausible guess is that
two elements of a free associative algebra commute if and only if they are poly-
nomials in a suitably chosen element of 4. We are not quite able to prove this,
but as a partial result in this direction we have

THEOREM 5.2. Let A be a free associative algebra over F and let a,be A
be such that ab = ba. Then a and b are algebraically dependent over F, i.e.,
there is a nonzero polynomial f(x,y) with coefficients in F such that
(5.11) f(a,b)=0.

(13) This follows e.g. from [5, Theorem 4.1, Corollary 2].
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Proof. The result is clearly true if a or b is in F, so assume a, b ¢ F. Adjoin
an indeterminate ¢ to F, then
(a—1t)b = b(t— a),

hence by Theorem 5.1, there is a polynomial ¢ over F(f), not identically zero
and such that

é(b) = (a — 1),
where ¢ has coefficients rational in . Clearing of fractions in ¢, we may write this as
(5.12) f@,b) = (a—1)(co +tey + - + 1),

where f has coefficients in F and c; € A. Since ab = ba, we may put ¢ = a in (5.12);
then the right-hand side becomes zero and (5.11) follows.
The following result is also of interest in this comext.

THEOREM 5.3. Let A be a free associative algebra over F and let a be any
element of A which is not in F. Then the centralizer of a in A is a commutative
algebra.

Proof. Denote by X a free generating set of A4, then 4 may be embedded
in the power series ring A in the elements of X over F. Now the centralizer C
of a in 4 is a power series ring in a single indeterminate over F (cf. [5, Theorem
4.47]) and hence is commutative. The centralizer of a in A4 is clearly C N 4; this
is again commutative and the result is established.

CoOROLLARY. If A is a free associative algebra over F, then any element of A
not in F belongs to a unique maximal commutative subalgebra, namely, its
centralizer, and any two distinct maximal commutative subalgebras of A meet
in F.

For by Theorem 5.3, the centralizer of an element not in F is commutative
and it is clearly maximal commutative. Conversely, any maximal commutative
subalgebra contains elements not in F and is therefore the centralizer of any one
of these elements. It follows that the centralizer of an element not in F is the
unique maximal commutative subalgebra containing it, i.e., the first assertion
of the corollary, and the second assertion follows immediately from this.

6. The algorithm in free products of fields. Let (R,);., be any family of
k-rings, where k is a given (skew) field. We denote the free product of this family
over k (which always exists, by [2, Theorem 4.7, Corollary]), by P. In the case
of two factors which are fields, we have previously shown [3, Lemma 3.4] that
there is an analogue of the weak algorithm and have used this to prove that in
this case all finitely generated (left or right) ideals are free modules [3, Theorem
3.5]. We shall now extend this algorithm to the free product of any family of
fields; this more general situation actually allows some simplifications to be made
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in the proof. We then apply the result to show that all right (or left) ideals of P
are free P-modules and that P is a weak Bezout ring with prime factorization,
from which it follows that P is a UFD.
We begin by introducing some notation(14). As usual we regard each factor
R, as a subring of P. If we put H= XR,, we have the filtration
k=H°cH' < H? < -

An element ae P is said to have the height n, h(a)=n, if acH" a¢ H* L.
Such an element can be expressed in the form

’
a= Ealllale”'an}.n +a,

where a;;,€R;,, a’e H"™', and where A; # A, # -+ # A,. If we write R, = R,/k,
as k-bimodule, we have the direct sum

(6.1) H/H" '~ Y®R, @ QR (nz1),
where the summation is over all n-tuples (4,,--+,4,) such that
MFEAFE - F L,

If we combine the isomorphism (6.1) with the natural mapping of H"” onto H /H" !,
we obtain a homomorphism of H" onto the right-hand side of (6.1), with kernel
H"™', We denote this homomorphism by #,. Now consider the partial sum on
the right of (6.1), taken over those terms for which 4, = v, for some fixed v. The
inverse image of this sum under 7, is denoted by H}, and any element of height
n in Hj is said to be half pure, more precisely right pure of type (-,v). Similarly
the inverse image under #, of the terms in (6.1) for which A; = u is denoted by
xH" and the elements of height n in ,H" are called half pure or left pure of type
(#,°). Finally we put ,Hy = ,H"NH; and call the elements of height n in ,H}
pure of type (u,v). In the special case where P has only two factors, the direct
sum in (6.1) has only two terms and any half pure element is automatically pure
(cf. [3]).

To take account of purity, we now refine the notion of height. For any element
a e P, we define the left height h(a) and the right height h,(a) as follows:

h _ [ ha)—%  ifaisleft pure of positive height,
(@) = h(a) otherwise.

h(a) =

We recall that an element of P is said to be (left, right) reducible if it is (left,
right) associated to an element of lower height,lotherwise (left, right) irreducible.
Then the result of Theorem 2.4 of [3] may be stated thus (15):

h(a) — %  ifaisright pure of positive height,
h(a) otherwise.

(14) This differs in some minor respects from that used in [3].
(15) The proof in [3] is only stated for the case of two factors, but it is easily seen to carry
over to any number of factors. )
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Let P be the free product of k-rings without proper zero-divisors, then for
any a,beP such that either a is right irreducible or b is left irreducible,

(6.2) h(ab) = h(a) + hy(b) + &(a, D),
where

1 if a,b are right and left pure, respectively, of different types,
e(a,b) = < % if a is right pure or b left pure but not both,
0 otherwise.

We can now formulate the notion of P-dependence in analogy with the de-
finitions of §2. In what follows P denotes the free product of the family (R)),.
of k-rings without proper zero-divisors; however, we shall use the definition
here only in the case where all the factors are fields.

(i) A subset X of P is right P-dependent if X = {0} or if X = {x;,---,x,}
and there exist aq,--,a,€P such that

h(x1a;) = - = h(x,a,) > h( Lx;a)).

(ii) A subset X of P is right P-independent if it contains no right P-dependent
subset.

(iii) Given a subset X of P, an element y € P is right P-dependent on X, if
y is right reducible or O or if there exist x,,:-+,x,€ X, ay,--,a,€P and a unit
u € P such that

hr yu — leai) < hr(y)s hr(xiai) < hr(y) (l = 1’ Tt r)°

Left P-dependence is defined similarly. With these definitions the main result
may now be stated:

THEOREM 6.1. Let P be the free product of a family (K;); of fields over
a given field k. Then in any right P-dependent set of right irreducible elements
of P, any element of maximal right height is right P-dependent on the rest.

A corresponding assertion holds with ‘right’ replaced by ‘left’ throughout.

The proof which we shall give of this result is modelled on that given in [3,
Lemma 3.4] for the case of two factors. At the same time we correct an inaccuracy
in [3]. First we restate the independence property of the tensor product and a
decomposition formula for the elements of P which was obtained in [3]. To
avoid confusion with the notion of P-dependence introduced above we shall
refer to dependence in a space over k as k-dependence.

Given ay,-+,a,€ Hy and by,---,b,e H" (u#v), if the a’s are right k-inde-
pendent (mod H™!) and

(6.3) Yab, =0 (modH™"Y),
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then b,e H"™' (i =1,---,r). This is merely a restatement of the independence
property; it depends on k being a field, but the K, may be arbitrary k-rings. If
we are again given a,,---,a,€ H,, where the a’s are right k-independent
(mod H"™ '), but only know that by,---,b,e H" and (6.3) holds, then b;e H"
(i=1,-,r). For if we write b,= Xb,,, where b;,e H" then the preceding
argument shows that b,,e H" ! for v # u; hence b, = b, + b}, where bje H"™!;
thus b;e ,H".

We also require the extension to any number of factors of Lemma 3.2 of [3].
This is the following

LemMA 6.2. Let P be the free product of a family (R,) of k-rings. Given
an element a € P, of positive height n, an integer r in the range 1 < r < n and
elements a,e H" which are right k-independent (mod H"™"), then there is an
expression
(6.4) a= Xax,+ X ay,x;, (mod H™™Y),

u#v
where a;, € Hy, x;,€ H"™', x,€ H"™". Moreover, the a,, a;, are right k-indepen-
dent (mod H"™") and the x;, of given height s (£ n — 1) are left k-independent
(mod H*™Y); in particular all the X;, are left k-independent.

The proof is precisely as for [3, Lemma 3.2] and is therefore omitted.

We now come to the proof of Theorem 6.1. Clearly the assertion is left-right
symmetric; we shall assume ay,--,a,, by,--+,b, € P to be given nonzero elements
such that b, is left irreducible, hy(b,) = h(b,), h(a,b,) = N for p=1,---,r and

(6.5) Xab,=0 (modH""Y),
We have to find elements c,e P (p = 2,--,r) and a unit u such that
(6.6) hy(uby — Xe,b,) < hy(by),  hfc,b,) < hy(by).

If a, e k, we can satisfy (6.6) with u = a,, ¢, = — a,. We may therefore assume
that h(a,) > 0. In particular, in view of the left irreducibility of b, this implies
that N > 0. For if N =0, then a,b, €k, i.e., b, is a unit and h(a,) > 0, hence
h(b,) > 0, which contradicts the fact that b, is left irreducible. We now put
h(a;) = m, h(b;) =n, h(a,) =m,, h(b,)=n, (p=2,---,r) and distinguish two
cases.

() N#m+n.By(62), N=m+n—1and a,, b, are half pure, of types
(*,1) and (1,-), say. By Lemma 6.2 we have a decomposition for a, :

6.7) a; = Xa}x; + a¥,

where aje H" %, afe H™ % x;e K, and further, the a, are right pure of type
# (,1) and right k-independent (mod H™?) and x; ¢ k.
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Nowm+n—1=N§m,,+npandnp§n,hence
m—1=m,+n,—n=m, (p=2,-,7).
So we may apply Lemma 6.2 to a4, -+, a, in turn, and obtain the decompositions
(6.8) a,= Xay,+ Xujz;,+ay,

where the u; are right pure of height m — 1 =N —n and such that a;; u; are
right k-independent (mod H¥™""'), a*e H"™""! and the y,,z;, have height
m,—N + n. Further, if a, is right pure, of type (-,4), say, then y;,,z;, may also
be taken to be right pure of type (-, 4).

It follows that the elements y;,b,, z;,b, have height at most m,— N +n+n,
when m,+n,=N and at most m,— N +n+n,—1 when m,+n,—1=N,
hence in either case,

6.9) Vigbp, = zjyb, =0 (mod H").

Now h(afb)Sm—2+n,<m—2+n=N —1, so substituting in (6.5), we
find

(6.10) Ya(x;by + Lyi,b,) + Luyz,b,=0 (mod H'™Y)

By hypothesis each aj is right pure of type # (:,1); let a; be of type (-,2) say,
then by the independence property we obtain from (6.10)

(6.11) xlbl + EylpprO (modzﬂn).

Here the term x, b, is of type (1,-), while the other terms can each be expressed
as a sum of left pure terms of the same form. When y,, has positive height, this
is clear; otherwise we must have m,=m—1 and since n,<n, m,+n,=<
<m+n—1=N. Since m,+ n,= N—1, we have either n,=n or n,=n—1.
If n, = n, then b, is left pure, by the maximality of hy(b,); if n,=n — 1, then
m,+ n,= N—1 and again b, is left pure. If we now equate the terms of height n
and type (1,) in (6.11), we obtain

(6.12) x1by + 2y,b,=0 (mod H™™ 1),

and we can now satisfy (6.6) by putting u = x;, ¢, = — y,.
(i) N=m+n. Since m,+n,=ZN=m+n and n,<n, we have m,=m.
Lemma 6.2 again gives a decomposition

6.7) a, = Xaj,
where aj is right pure of height m, and similarly for p = 2,---,r,
(6.8)' a, = Zay, + Xuz;,+ap

where u; is right pure of height m = N — n and such that the a;, u; are right
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k-independent (mod H™™ 1), ayeH m=1 Vip» Zjp € H™ ™™ Further, if a, is right
pure of type (', 4), then y,,, z;, are right pure of type (:,4).

As before we see that (6.9) holds and h(a:b,,)g N — 1, so substituting into
(6.5), we find

(6.10) Xaib, + Xy,b,) + Xuz;,b, =0  (mod HY™Y).

Now by the maximality of hy(b,), either every b, of height n is left pure, or
b, is not left pure. Assume the former holds, and that b, is of type (1,°),say.
Since N = m + n and b, is left pure of type (1,), a, cannot be right pure of
type (-, 1) (by (6.2)), hence in (6.7)" there occurs an a; of type # (v, 1). Taking such
an a/, of type (:,2),say, and equating its coefficient in (6.10)’ to zero, we obtain

(6.11) by+ Xyi,b,=0  (mod,H".

Each term y,,b, may be expressed as a sum of terms of the same form which
are left pure; for if m, = m, then n, = n and b, is then left pure by hypothesis.
Thus we may again equate the terms of height n and type (1,)in (6.11)" and obtain

(6.12)' by + Xy,b,=0  (mod H*™Y),

from which (6.6), with u =1 and ¢, = — y, follows without difficulty.
Next suppose that b, is not left pure; we still obtain (6.11)’, where now (- , 2)
is any type occurring in a,. This may be written as

bl = Z—yipbp'l' bT’

where by (6.11)’, hy(bT) < hy(b,); thus (6.6) again follows and the theorem is
completely proved.
As a first application we show that right ideals in P are free P-modules.

" THEOREM 6.3. Let P be the free product of a family (K,), ., of fields over
a field k. Then any right ideal of Pis a free P-module, with a right P-independent
free generating set.

Proof (16). Let I be a right ideal of P; we put B_,,, = and for any half integer
n 20 define B, inductively as a right P-independent subset of I consisting of B,_,,
and right irreducible elements of right height n, and maximal subject to these
conditions. The union B =LJB,l is still P-independent and it follows that the
right ideal I’ of P generated by B is free on B, as a right P-module. Since B = I,
we have I' =1 and the theorem follows if we show that I' =I. Assume that
I'#1I and let ael, a¢ I’ be such that h(a) is minimal, say h.(a) = n. Then a
is right irreducible and since a ¢ B, B, U {a} contains a right P-dependent sub-
set, which must involve a. By Theorem 6.1, a is right P-dependent on B,, i.e.,
there exist b; € B,, ¢;€ P and a unit u € P such that

(16) This is modelled on the proof of Theorem 3.3 of [4].
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(6.13) au = Xbic;+a’, where h(a’) < h(a).
Now a’ =au — Xb,c;el, and by the minimality of h,(a), a’ €I’, hence (6.13)
shows that au elI’, and so a eI’. This contradiction proves the theorem.

Next we develop the Euclidean algorithm in P. The result is as in §4, but a

little more care is required in the proof, since the units do not all lie in the ground
field.

LEMMA 6.4. Let P be the free product of the family (K,); . of fields over
a field k, and let a,b,a’,b’ € P be such that

(6.14) ab’'=ba' #0.

Then there exist elements d,d’,q,,q5,**sqn+1 € P such that (possibly after inter-
changing a with b and a' with b"),

a = dfn+1(‘1n+1""’q1)s b = dfn(‘]n+1,""QZ)s
a'= for1(@1s s que 4’ b' = f(42, s qn+ 1A',

where the f,s are the continuant polynomials.

Proof. For any element c e P we define the reduced right height h,(c) of ¢
as h,(co), where ¢, is a right irreducible element right associated with c¢. This
defines A4,(c) uniquely as a non-negative half integer (or — co) which vanishes
if and only if ¢ is a unit. Without loss of generality we may assume that %,(a)
= h,(b) (by interchanging a with b and a’ with b’, if necessary). Now choose
q, € P such that h(a — bq,) has its least value and put

ry=a—bqy, ry=a’ —q,b".
Then we clearly have
rlbl = brl"

We assert that h,(r,) < h,(b); for if not, let b = byu, r; = ryov, wWhere u, v are
units and by, ry right irreducible. Then h,(by) < h,(r,,) and
rlovbl = bouri.

Hence, by Theorem 6.1, riow = bop + s, where w is a unit and h,(s) < h,(710).
A fortiori, h,(s) < h(r,,) (= h(r,)), and

a=bq1+r1

Il

bgy + (bop + s)w=1v
= b(g; +u"pw o) + sw™n,

but h,(sw™'v) = h(s) < h(r,), in contradiction with the choice of g,. Thus we
have the equations

a=bq,+ry, a =qb'+ry, rd =br],



356 P. M. COHN

where A,(ry) < h/(b). If r, # 0, we can continue the process and thus obtain a
chain of equations as in (4.5), (4.5), such that

kr(a) = hr(b) > hr(rl) > hr(rl) > > ;lr(rn)'

After a finite number of steps this chain breaks off, since 4,(c) = 0 for ¢ # 0. Let
n be the least integer such that r,,; =0, then as in §4 we have r,,.; =0, r. # 0,
and the lemma follows if we put d =r,, d’ =r,.

We note that the quotients and remainders are no longer uniquely determined;
in particular, if we had started by determining g, and r; from a’ and b’ we might
well have obtained different values. But this is immaterial for our purpose.

. CoROLLARY 1. The free product of a family of fields over a field k is a weak
Bezout ring.

This follows in the same way as Theorem 4.1.

In [3, Theorem 3.1], it was shown that in a free product of two fields, the num-
ber of nonunits in any factorization of an element a (of positive height) cannot
exceed the height of a. This theorem extends without any difficulty to the case
of an arbitrary number of factors, and we therefore obtain

COROLLARY 2. The free product of any family of fields over a field k is a unique
factorization domain.

In a similar way the other results of §4 (Theorem 4.1, Corollary 3, Theorem
4.2 and Propositions 4.3-4.4) may be established for the free product of fields.

REFERENCES
1. A. C. Aitken, Determinants and matrices, 3rd ed., Oliver and Boyd, Edinburgh, 1944.

2. P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1959), 380-398.

3. ———, On the free product of associative rings. 11, Math. Z. 73 (1960), 433-456.

4. ———, On a generalization of the Euclidean algorithm, Proc. Cambridge Philos. Soc.
57 (1961), 18-30.

S. , Factorization in non-commutative power series rings, Proc. Cambridge Philos.

Soc. 58 (1962), 452-464.

6. » Noncommutative unique factorization domains, Trans. Amer. Math. Soc. 109 (1963),
313-331.

7. G. H. Hardy and E. M. Wright, 4n introduction to the theory of numbers, 2nd ed.,
Clarendon, Oxford, 1945.

8. N. Jacobson, A4 note on non-commutative polynomials, Ann. of Math. (2) 35 (1934), 209-210.

9. ———, Theory of rings, Amer. Math. Soc., Providence, R. I., 1943.

10. J. M. H. Wedderburn, Non-commutative domains of integrity, J. Reine Angew. Math.
167 (1932), 129-141.

YALE UNIVERSITY,
NEw HAVEN, CONNECTICUT

UNIVERSITY OF MANCHESTER,
MANCHESTER, ENGLAND

QUEEN MARY COLLEGE, UNIVERSITY OF LONDON,
LoNDON, ENGLAND



