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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 38, Number 2, June 1973 

THE WORD PROBLEM FOR FREE FIELDS 

P. M. COHN 

?1. Introduction. It has long been known that every free associative algebra can 
be embedded in a skew field [11]; in fact there are many different embeddings, all 
obtainable by specialization from the' universal field of fractions' of the free algebra 
(cf. [5, Chapter 7]). This makes it reasonable to call the latter the free field; see ?2 
for precise definitions. The existence of this free field was first established by Amit- 
sur [1], but his proof is rather indirect and does not provide anything like a normal 
form for the elements of the field. Actually one cannot expect to find such a normal 
form, since it does not even exist in the field of fractions of a commutative integral 
domain, but at least one can raise the word problem for free fields: Does there exist 
an algorithm for deciding whether a given expression for an element of the free 
field represents zero? 

Now some recent work has revealed a more direct way of constructing free fields 
([4], [5], [6]), and it is the object of this note to show how this method can be used 
to solve the word problem for free fields over infinite ground fields. In this con- 
nexion it is of interest to note that A. Macintyre [9] has shown that the word prob- 
lem for skew fields is recursively unsolvable. Of course, every finitely generated 
commutative field has a solvable word problem (see e.g. [12]). 

The construction of universal fields of fractions in terms of full matrices is briefly 
recalled in ?2, and it is shown quite generally for a ring R with a field of fractions 
inverting all full matrices, that if the set of full matrices over R is recursive, then the 
universal field has a solvable word problem. This holds more generally if the 
precise set of matrices over R inverted over the field is recursive, but it seems 
difficult to exploit this more general statement. To complete the solution of the 
word problem for free fields we show in ?3 that the full matrices over a free asso- 
ciative algebra form a recursive set. 

?2. Universal fields of fractions. This section outlines the construction of the 
universal field of fractions given in [4], [6]; see also [5, Chapter 7]. Throughout, all 
rings have a unit-elemenit which is preserved by homomorphisms and inherited by 
subrings. By a field we mean a not necessarily commutative division ring. 

Let R be any ring. An epic R-fielcl is a field K with a homomorphismf: R -- K 
such that K is the field generated by imrf. Iff is injective, K is called a fienl of 
fractions of R. When R is a commutative integral domain-or more generally, a 
right Ore domain-there exists a field of fractions, unique up to isomorphism, but 
for general integral domains, there may be no field of fractions, or several [10], [3]. 
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Given two epic R-fields K, L, a specialization K -- L is a homomorphism a: 

Ko -- L from a subring Ko of K containing the image of R, such that the triangle 
shown commutes and, for any x E K0, xa # 0 implies x-1 e K0. Two specializations 
are equal if they agree on a subring Ko and the common restriction is a specializa- 
tion. 

R 

K - L 

If R has a field of fractions U from which there is a unique specialization to each 
epic R-field, then U is called a universal field offractions of R. 

Any epic R-field K can be described as the residue class field of a local ring R?, 
where E is the set of all square matrices over R which becomes invertible over K, and 

R, is the ring obtained from R by adjoining formal matrix inverses to all the ele- 
ments of E; thus Ry is the "universalE-inverting ring"; cf. [5] [6]. In particular, if it 
is possible to choose the set E greatest, i.e., so as to contain all other possible 
choices, we obtain a universal field of fractions. 

There is one case of importance to us, in which the above construction simplifies 
a little; to describe it we need the notion of a full matrix. A square matrix A over a 

ring R is called full if it cannot be written in the form A = PQ, where P is n x r, Q 
is r x n and r < n. E.g., over a field (even skew), a matrix is full if and only if it is 
invertible. We also recall that a ring is called a free ideal ring (fir for short) if every 
left or right ideal is free, of uniquely determined rank, as a module over the ring. 
More generally, a senmifir is a ring over which every finitely generated left (or 
equivalently right) ideal is free of unique rank. The main examples of firs are free 
associative algebras and free products of fields. The following result was proved for 
firs in [4], [6] and, more generally, for semifirs in [5]: 

THEOREM 1. Let R be a semifir, and U the ring obtained from R by formally 
adjoining matrix inverses for all full matrices over R. Then U is a universal field of 
fractions for R. 

It is clear that in any field of fractions K of R, the elements may be expressed as 
words in the elements of R. By this we mean that any element of K has an expres- 
sion which is built up from elements of R by repeated addition, subtraction, 
multiplication and inversion. However, not every such expression will correspond 
to an element of K; e.g. (a - abb- 1)-I does not represent a field element, and two 
quite different expressions may represent the same field element. Now the word 
problem for K is the problem of finding a recursive procedure allowing us to decide 
(i) when a given expression represents a field element, and (ii) when two given 
expressions represent the same field element. In fact (ii) call be reduced to (i); for 
clearly, two words u, v will represent the same field element if and only if (u - )-I 
does not represent a field element. Thus the word problem requires a procedure for 
deciding when a given field word represents a field element. 

The latter problem can be reduced to the question of whether a certain matrix is 
invertible, as follows. If K is a field, generated as field over a central ground field k 
by elements x1, * *, xn, then every field word (possibly representing an element of 
K) is built up from xl, * * *, xn and the elements of k by the four operations of 
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arithmetic. As was shown in [5, Chapter 7], every such expression fis a component 
of the solution vector u of an equation 

(1) Au + a = O, 

where A is a matrix and a a column in the elements x1, , xn, and the elements of 
k. Moreover, f represents a field element precisely when A is nonsingular over K. 
The equation (1) is built up recursively according to the way in whichf was con- 
structed. Thus iff is xi or an element of k, it is a solution of 

1-f-a= 0 (a=xi or aek). 

Iff = u- v1, where u1, vl are the first components of the solutions of Au + a = 0, 
By + b = 0 respectively, then f is the first component of the solution of 

(2) Y + 0= 

where a1 is the first column of A, and u1 + v1 is defined similarly, while ulvl is the 
first component of the solution of 

( ) (O~~~~~~ B ) b 

Finally, uj1 is the first component of the solution of 

Alt + a, = 0, 

where A = (a,, ... , an), and A1 (a, a2, * * * , an) is the matrix obtained by ex- 
changing the first column of A against a. Only the last step can lead to a singular 
matrix, since the matrices in (2) and (3) are nonsingular whenever A and B are. 

Suppose now that R is a semifir and U its universal field of fractions. Then a 
matrix A over R is singular over U if and only if it is nonfull in R. Thus we obtain 
the following reduction for the word problem in U: 

THEOREM 2. Let R be a semifir and U the universalfield offractions of R. Then 
each element of U can be obtained in the form x = u1 where ul is the first component 
of the solution of a matrix equation (1), with a full matrix A. More generally, any 
expression (field word) is obtained as the first component of the solution of an equation 
(1), and it defines an element of U precisely if A is full. 

It is clear from this result that if the full matrices over R form a recursive set, then 
we have a solution of the word problem for U. We enumerate the full matrices A and 
all columns a; this will give us an enumeration of expressions for all the elements of 
U. In fact it is enough to assume that the set of full matrices is recursively enumer- 
able, because its complement, the set of nonfull matrices, is always recursively 
enumerable (in an enumerable ring). 

More generally, let K be an epic R-field and Z the precise set of matrices over R 
which become invertible over K. Suppose that E is recursive; then the word prob- 
lem for K is solvable. This follows as before, using the description of epic R-fields 
given earlier. 

?3. Full matrices over free algebras. The free associative algebra in X- 
{x1,.. , X} over a commutative field k is defined as the ring of k-linear com- 
binations of formal products of the x's (cf. [5]), and is written k<xl, * * *, Xd> or 
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k<X>. This differs from the polynomial ring k[x1, , Xj] in that the xi do not com- 
mute with each other, though they still commute with elements of k. It is a natural 
step to allow a noncommutative coefficient field which need not commute with the 
indeterminates. However, some elements will always lie in the centre, e.g. the 
prime subfield, and it is best to specify this in advance. For technical reasons which 
will become clear later, we must also exclude finite fields. 

Thus we consider a field K with an infinite central subfield C, and form the free 
product (cf. [2]) 

K*C<X>. 

This will be denoted by KC<X> and may be called the free K-ring on X over C. It is 
known that KC<X> satisfies the weak algorithm and hence is a fir (cf. [5, Chapter 
2]); of course, for K = C = k, it reduces to the free k-algebra considered earlier. 
By Theorem 1, KC<X> has a universal field of fractions U inverting all full matrices, 
and to complete the solution of the word problem for U we need only show that the 
full matrices over KC<X> form a recursive set. 

For the proof we need two remarks, of which the first concerns the relation of a 
free K-ring to its completion. The ring KCKX> may be graded in an obvious fashion 
by assigning degree 1 to each xi. We can form the completion with respect to this 
grading; this is essentially the ring of formal power series, written KC>X>), 
and it follows from Bergman's inertia theorem, in the form given in [5, Theorem 
2.8.12, p. 103], that every full matrix over KC<X> remains full, when considered 
over KC<<X>>; in other words, the embedding KC0X\ -? KcK<X>> is 'honest'. 

The second remark generalizes the well known fact that a nilpotent matrix A of 
order n over a field satisfies An = 0. 

LEMMA. Let P be an n x nn matrix, Q a matrix with n rows and R a natirix with n 
columns over a skew field. If 

(4) RPVQ=0 Jor v = 01, * , n- 1, 

then RPVQ = O for all v > 0. 
PROOF. Denote the field by K and let V be the right K-space of column vectors 

with n components. The columns of Q span a subspace V0 of V, while the columns 
annihilated by the rows of R form a subspace W of V, and since RQ = 0 by (4), we 
have V0 C W. Regarding P as an endomorphism of V, we may define a subspace 
V, of V for v > 0 inductively by the equation 

VV V-v 1 + PVv-1- 

Thus Vv = V0 + PV0 + + PVT0, and it follows that 

(5) Vo C V1 C ... C Vn-1 

Moreover, by (4), Vv ' W for v = 0, -*, n- 1. Now if Q = 0 or R = 0, there is 
nothing to prove. Otherwise V0 :A 0, W y V, and we must have equality at some 
point in (5), since dim V_1 < n - 1. Suppose that Vk, = 1kh (k < n). Then 

PVkj C Vk-,1; hence PJVk = PVklj C V&; therefore V,,+, = VF + PV, = Vk-; 
and so the sequence is stationary from that point on. Since the sequence has become 
stationary by the (n - 1)th stage at the latest, we conclude that V_ C- W for all l', 

i.e., RPVQ = 0 for all v, as we wished to show. 
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THEOREM 3. Let K be afield i'ith asn infinite central subfield C, thesn the set of all 
full matrices orer KC<X>, the free K-ring ov er C on X, is recursihe. 

PROOF. Let A be any square matrix over KC<X,; we shall prove the theorem by 
describing an algorithm for deciding whether A is full. We first observe that the 
fullness of A is unaffected by elementary transformations, and by bordering A with 
a row and column of zeros meeting in 1. This allows us to reduce A to a matrix 
linear in the xi, the process of "linearization by enlargement" (sometimes called 
Higman's trick, cf. [8]). To describe a typical case of this process, suppose that the 
(n, n)-entry of an ni x in matrix has the form f + ab; on enlarging the matrix we can 
replace the term ab by terms a, b by applying elementary transformations, as follows. 
We give the series of moves, showing only the nth and (n + I)th row and column: 

(f + 0 f+ab a) (f a) 

By repeated applications we can therefore reduce A to the form 

(6) A' = A0 + A1, 

where AO is homogeneous of degree 0 and A1 of degree 1 in the x's.1 Moreover, A' 
is full if and only if A is. Suppose that A' is not full; then it will remain nonfUll 
when the xi are replaced by 0; i.e. Ao must then be singular over K. Hence if AO is 
nonsingular, then A' is necessarily full. 

We may therefore suppose that AO is singular, of rank r < sn say, where n is the 
order of A'. By diagonal reduction over K (which leaves the fullness of A' Lin- 
affected) we can reduce AO to the form (' 8) (cf. [5, Chapter 8]; clearly this is 
effective). Let us partition A1 accordingly. 

At I {-P Qj 
R So 

where P, Q, R, S are homogeneous of degree 1. Now pass to the completion 
Kc<<X>>; by the remark made earlier, A' is full over KC<X> if and only if it is full 
over KC<<X?>. The matrix I - P is invertible over KC<<X?, and by elementary 
transformations we obtain 

(7) {I -P Q, {I (I_- P)-Qj {I Y I P)-lQ 
\ R SX aR S 0 SO S-R(I- P)-'Q 

To find whether 

(8) S-R(I - P)-1Q = O, 

we have to check that, for each d = 0 1, , the homogeneous terms of degree d 
are 0. Now S - R(I - P)- Q = S - ERPVQ, and equating terms of degree 1, 
we find that (8) is equivalent to 

(9) S = O. RPvQ = 0 (v =_- O. 1,-*) 

These are equations of matrices over KC<X>, and since the latter is embeddable in a 
field, we can apply the Lemma and conclude that (9) holds whenever the first 

1 An element is homogeneous of degree d if it is a linear combination of products of degree d 
in the x's. Thus 0 is homogeneous of degree di for every d. 
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r + 1 equations hold, where r is the order of P. This then provides us with an algo- 
rithm for determining whether (8) holds. If this equation holds, then the matrix on 
the right of (7) has at least one row of zeros and hence A' is then nonfull. If (8) does 
not hold, then since C is infinite, we can specialize the xi within C to values ai such 
that I - P remains nonsingular and S - JR(I - P)-1Q remains nonzero (cf. [7]). 
Translating back to A', we find that by specializing xi to aci we obtain a matrix of 
rank greater than r. We now replace xi by xi + ai and start again from (6). This 
time we have a matrix AO over K of rank greater than r. By repeating this process a 
finite number of times (at most n times, where n is the order of A'), we can thus 
decide whether or not A' is full, and this completes the proof. 
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