An algorithm for computing the Seifert matrix of a link from a
braid representation

Julia Collins*

5 November 2007 (Corrections added 30 July 2013)

Abstract

A Seifert surface of a knot or link in S is an oriented surface in 52 whose boundary coincides
with that of the link. A corresponding Seifert matrix has as its entries the linking numbers of a
set of homology generators of the surface. Thus a Seifert matrix encodes essential information
about the structure of a link and, unsurprisingly, can be used to define powerful invariants,
such as the Alexander polynomial. The program SeifertView has been designed to visualise
Seifert surfaces given by braid representations, but it does not give the user any technical
information about the knot or link. This article describes an algorithm which could work
alongside SeifertView and compute a Seifert matrix from the same braids and surfaces. It also
calculates the genus of the surface, the Alexander polynomial of the knot and the signature of
the knot.

1 Introduction

For every link L C S3 there exists a compact orientable surface ¥ C S® with L as its boundary.
This result is due to Frankl and Pontrjagin, who proved it in 1930 ([4]), but the most well-known
proof is due to Herbert Seifert in 1934 ([9]). He constructed an explicit algorithm for finding such a
surface from a knot diagram, and subsequently any such surface became known as a Seifert surface.

Given a link L and a connected Seifert surface 3, we can find a set of generators for the first
homology group of 3 and work out the pairwise linking numbers for these. This defines an integer
matrix which is called a Seifert matriz. Being in such a convenient algebraic format makes it easy
to define powerful invariants from it, such as the Alexander polynomial, and it is also easily gener-
alisable to higher dimensional knots.

The program SeifertView, created by Jarke J. van Wijk and Arjeh M. Cohen ([11]), was de-
signed to help people visualise Seifert surfaces of knots and links. Every link has a representation

*University of Edinburgh, School of Mathematics, Edinburgh EH9 3JZ, UK (J.Collins-3@sms.ed.ac.uk)

as a closed braid, and the braid notation is a very convenient format in which to put the link as
an input to the computer. SeifertView takes a braid as an input and applies Seifert’s algorithm
to it to obtain a Seifert surface for each knot and link. But although this is an excellent program
for visualising these 3D surfaces, the user is not provided with any technical information about the
surface they are looking at.

This paper describes an algorithm called Seifert for finding the Seifert matrix of the Seifert
surface and homology generators determined algorithmically from a braid representation of a knot
or link. From this we can find simple invariants such as the determinant of the knot or the genus
of the surface, as well as more complicated invariants like the Alexander polynomial. As with
SeifertView, an extended program which can cope with pretzel notation is developed, as this is a
more concise way of encoding a link in a braid-like representation and produces surfaces of lower
genus than that produced by the original program. This notation allows for Seifert matrices which
contain any integer value, whereas the original Seifert program produces matrices containing only
+1s and zeros.

Section 2 provides the necessary background on Seifert matrices and braids. Section 3 describes
the main idea behind the program and the details of how to find a Seifert matrix for a braid.
Finally, in Section 4 we discuss extensions which could be made to the program and directions for
further research.

A website accompanying this algorithm can be found at http://www.maths.ed.ac.uk/~s0681349/
SeifertMatrix.
Program Summary

This algorithm has been implemented in Matlab, C++ and Javascript.
Input: The user has two equivalent choices of how to input a braid representation. (See Section
2.2 to find out what the notation means.)

1. As a numerical vector, e.g., [1 1 1] for the trefoil and [1 -2 1 -2] for the figure eight knot.
2. As an alphabetical string, e.g. ‘AAA’ for the trefoil and ‘AbAb’ for the figure eight knot.
Output: The Seifert program outputs the following information:

1. A Seifert matrix M for the canonical Seifert surface associated with the braid.

The genus of the associated surface.

The number of disconnected surfaces produced by Seifert’s algorithm on the braid.

A declaration of whether the braid is a knot, and if not, how many components it has.

BAREE -

The coefficients of the Alexander polynomial of the braid.

2 Background information

We start off by reminding the reader of the relevant knot theory definitions. A knot is an embedding
of S into S2, and a link is an embedding of a disjoint union of circles into S3.

2.1 Seifert Surfaces and Matrices

Definition 2.1. A Seifert surface of an oriented link L C S? is a compact orientable surface whose
boundary coincides with that of the link.

Remark 2.2. We will not assume that the Seifert surface must be connected, although this is
sometimes part of the definition in other texts (e.g. [6] and [8]).

Theorem 2.3. Every oriented link has a Seifert surface.

Proof. (Seifert, 1934) (The following method is known as Seifert’s algorithm.) Fix an oriented
projection of the link. At each crossing of the projection there are two incoming strands and
two outgoing strands. Eliminate the crossings by swapping which incoming strand is connected
to which outgoing strand (see diagram below). The result is a set of non-intersecting oriented
topological circles called Seifert circles, which, if they are nested, we imagine being at different
heights perpendicular to the plane with the z-coordinate changing linearly with the nesting. Fill
in these circles, giving discs, and connect the discs together by attaching twisted bands where the
crossings used to be. The direction of the twist corresponds to the direction of the crossing in the

SN

= = ===

/ TN

This procedure forms a surface which has the link as its boundary, and it is not hard to see that it is
orientable. If we colour the Seifert circles according to their orientation, e.g. the upward face blue
for clockwise and the upward face red for anticlockwise, then the twists will consistently continue
the colouring to the whole surface. [|

Of course, the Seifert surface of a link is not unique in any way, and even Seifert’s algorithm
applied to different link projections will result in different surfaces. Since the surface itself cannot
be an invariant of the link, we need to look for other information given in the Seifert surface. The
first of these is the genus.

Definition 2.4. The genus of a connected orientable surface with boundary is the genus of the
corresponding surface without boundary obtained by capping off each boundary component with a
disc. The genus of a disconnected surface ¥ made up of k connnected components ¥ = ¢ U --- LI
-+ U Xy is the sum g(X1) + - - - 4+ g(Xk) of the individual genera.

Definition 2.5. The genus of a link is the minimal genus of all the Seifert surfaces of the link.

In practice this is a very difficult invariant to calculate, especially since, in some cases, there is
no projection of the knot for which Seifert’s algorithm produces a surface of minimal genus ([7]).
However, it has some useful properties, the main one being that it is additive, i.e. g(K; + K») =
g(K1) + g(K2). (See [6], pg 17, for a proof.) Also, for alternating knots (i.e. a knot whose oriented
diagram alternates between over and under crossings as you follow it around), Seifert’s algorithm
does indeed provide a minimal genus surface ([5]).

The genus of a connected Seifert surface produced using Seifert’s algorithm is easily calculable
using the following formula.

Lemma 2.6. If a connected Seifert surface is produced from the projection of a link with s Seifert
circles, ¢ crossings and n components then it will have genus

s—c+n

5 M

g=1
Proof. Suppose we have a connected Seifert surface with s and ¢ given as above. We can contract
the surface down to a graph which has s vertices (each Seifert circle contracts to a point) and ¢
edges. The Euler characteristic yg of this surface is

Xs = #vertices — #edges + #faces = s — ¢+ 0.

The Euler characteristic x¢ of the corresponding closed surface (without boundary) is s — ¢ + n.
Finally, the genus is calculated from g = %(2 — Xc¢), which gives us the result. Putting n = 1 gives
us the result in the case of a knot. [|

Corollary 2.7. A Seifert surface ¥ = ¥ LU Yo LI+ - LU X, with £ connected components, produced
using Seifert’s algorithm, has genus

s—c+n

5 2)

g=k—

with s, ¢ and n as in Lemma 2.6.

Remark 2.8. If Seifert’s algorithm gives us a disconnected surface which is a union of connected
surfaces X1, ..., X then the genus of this is the same as the genus of the connected sum:

g(Zl -y Ek) = 9(21) + - —i—g(Zk) = g(El#. . #Ek)

Although a Seifert surface is not an invariant of a link, it can still provide us with a lot of
information about the structure of the link. One object which encapsulates this information is
called a Seifert matrix.

Definition 2.9. Suppose that D is a regular oriented projection of a two-component link with
components J and K (so that whenever two strands meet in the projection they do so transversally).

Assign each crossing a sign:

+1 (right-handed) —1 (left-handed)

The linking number 1k(J, K) € Z of J and K is half the sum of the signs of the crossings at which
one strand is from J and the other is from K. Equivalently we may take the sum of the signs of
the crossings in the diagram at which K crosses J, as the linking number is symmetric.

Definition 2.10. Let L be an oriented link of n components and X a Seifert surface for L. Take a
basis {[fi]} for H1(X3;Z). The orientation of ¥ determines a normal direction, which we will think
of as being the ‘top’ of the surface. Now, given any simple oriented curve f on 3, we can form
the positive push off of f, denoted fT, which runs parallel to f and lies just above . The Seifert
matriz of L is the integer matrix M with (i,)" entry

mij = 1k(fi, f}").

The Seifert matrix of a knot or link is not an invariant, as it is not unique. We may get different
matrices by choosing different basis curves on our surface, or by using a different surface altogether.
However, the effect of these changes on the Seifert matrix are well-known ([6], pg 81) and, as with
the Seifert surface, we can therefore construct very good invariants from it.

Definition 2.11. The Alexander polynomial of a link L with Seifert matrix M coming from a
connected Seifert surface is given by the formula

Ap(t) = det(M —tMT)

where M7 denotes the transpose of M. For a link which has a disconnected Seifert surface we
define the Alexander polynomial to be zero.

Remark 2.12. Because of the non-uniqueness of the Seifert matrix, the Alexander polynomial
is only well-defined up to multiplication by £t*". However, up to this ambiguity the Alexander
polynomial is an invariant of the knot ([6], pg 82 - this proof is easily adapted from the Conway
polynomial to the Alexander polynomial).

Definition 2.13. The determinant of a knot K is |Ag(—1)|.

Definition 2.14. For a unit modulus complex number w # 1, we define the w-signature o, (L) of
a link L to be the signature of the Hermitian matrix (1 —w)M + (1 —w)M7T. The signature of a
matrix is the number of positive eigenvalues minus the number of negative eigenvalues. If w = —1
we call 0_1(L) the signature of L.

2.2 Braid Representations

Definition 2.15. A braid consists of m strings travelling directly from left to right, from one
vertical bar to another, with the proviso that they must not loop back on themselves during the
journey. If the strings on the right-hand bar are then joined back to the strings on the left-hand
bar without making any further crossings, then the resulting object is called a closed braid. A braid
is described by by enumerating the crossings: we write j if strand j crosses over j + 1, and write
—j if strand j goes under j + 1.

Remark 2.16. 1. The convention of whether j stands for a positive or negative crossing varies
exceedingly, so when looking at tables of braid representations it is imperative that the user
knows which notation is being used. Sometimes [1 1 1] will be a left-handed trefoil, and
sometimes it will be taken to mean a right-handed trefoil. We have chosen our notation
because it is consistent with the definition of the linking number, which uses +1 as a positive
crossing.

2. An alternative notation is to use letters of the alphabet to denote crossings instead of numbers.
Uppercase letters denote positive crossings and lowercase letters denote negative crossings.
For example, [1 -2 1 2] = ‘AbAb’, [112-1-3 2 -3] = ‘AABacBc¢’.

Definition 2.17. The braid index m is the number of strands in the braid. The braid length [is
the number of crossings in the braid representation; equivalently, the length of the vector (or word)
used to describe it.

Remark 2.18. A braid also defines a permutation o € S, as follows: ¢ () is the position of the
i'" string when it reaches the right-hand vertical bar. The number of cycles in o give the number
of components n of the link that is defined by the closed braid.

Example 2.19. The knot 52 has the braid representation [1 1 1 2 -1 2], as shown in Figure 1. In
this case we have m = 3, [= 6 and o = (123).

The following theorem gives us a justification for only concentrating on braids.
Theorem 2.20 (Alexander, 1923). Every knot (and link) has a closed braid representation.

Proof. A proof will not be given here, but the reader is invited to look at the original paper of
Alexander ([1]) or the book of Burde & Zieschang ([3], page 24).]

Figure 1: The braid representation of the knot 5,.

The braid representation of a link is by no means unique, but we can try to find representations
which minimise the braid index or the braid length. Alexander’s original method of producing
braids was far from optimal in this respect but a lot of work has been done since then, most
notably by Vogel ([10]) who described an algorithm for finding braid representations from knot
diagrams which was more efficient than before and also easily programmed into computers. (An
implementation may be found in the Braid Programme by Andrew Bartholomew [2].)

A braid has a very naturally-induced Seifert surface. If we apply Seifert’s algorithm to the
braid diagram we have drawn, we see that each strand turns into a Seifert circle. Thus we can
calculate the genus of the Seifert surface induced by the braid representation using Equation (2),
which translates as:

induced genus = k — m—TZ—i—n (3)
where k is the number of connected components of the surface, [is the braid length, m is the braid
index and n is the number of components of the braid.

However, this induced braid genus is sometimes higher than the actual genus of the knot, even
when the braid representation is as ‘small’ as is possible. For which knots does this happen and why?

Since a braid has a canonical Seifert surface associated with it and this surface has canonical
homology generators, it is a natural next step to calculate the Seifert matrix. A method for this is
described in the next section.

3 Calculating the Seifert matrix from a braid representation

Our program will be called Seifert. The user will input a braid representation into the program, in
the form of a numerical vector x = [z x2,...,2;]. They may also input an alphabetical version of

the braid representation (see Remark 2.16) which the program will translate into the appropriate
numerical notation.

To find the Seifert matrix of a braid we first we need to tell the computer how to find a set
of homology generators of the corresponding surface (found from Seifert’s algorithm). Then we
need to find all the ways in which the generators could interact with each other, and what the
corresponding linking numbers are for these situations.

3.1 Finding the homology generators

To be able to find a Seifert matrix for our surface we need to pick a set of homology generators
with which to work. There is a fairly obvious choice to make.

Lemma 3.1. Given a braid representation [z1,z2,...,z;], there is a homology generator for the
corresponding Seifert surface > between each two adjacent crossings on the same strands, i.e.
between each z; and x; where |2;| = |z;| and || # |z;| for all ¢ < k < j. These constitute a basis
for H1(3;Z).

Proof. Suppose first that 3 is connected. To find a basis for the first homology group of 3, we must
first know the rank of H;(X;Z). We know that rk Hy(X¢;Z) = 2¢g, where ¥¢ is the corresponding
closed surface obtained by capping off the boundary components of ¥ with discs, and g the genus of
this surface. We also know that rk Hy(X;Z) = rk H1(X¢;Z) +n — 1, where n > 1 is the number of
boundary components of ¥. Combining these pieces of information with Formula (3) (using k£ = 1)

gives us
tk H1(X;Z) =29g+n—1=2—-m+l—-n)+n—-1=1-m+1

When ¥ = ¥ U--- U X, with the 3; connected, then we have

k
rk Hy($;2) = Y tkHy(Si3Z) =k —m+1. (4)
=1

It is clear that the homology generators given in the lemma are all linearly independent, so it
remains to show that they are a maximal such set.

Suppose that between strands ¢ and ¢ + 1 there are I; crossings. Lemma 3.1 then gives us
l; — 1 homology generators between those strands. Notice that /; = 0 means that a new connected
component of ¥ is starting, so there are k — 1 instances of I; = 0. In total, therefore, there are

m—1 m—1

-1 =(k-1)+> (Li—1)= (k=D + @1+ +ln1)—(m—1) = k+l—m =k H (3; Z)
i=1,1;7#0 i=1

generators. These generators are therefore a basis for rk Hq(3;Z). |

Our convention will be to number the generators in ascending order according to the order in
which the first crossing of the generator appears in the braid representation.

Example 3.2. In Figure 2 we can see the homology generators of the braid representative of the
knot 59. On the left they are shown on the braid diagram of 59, and on the right they are drawn

onto SeifertView’s image of the surface of 5.

\
A
A~

Figure 2: A set of homology generators for the knot 5,.

The first part of the Seifert program implements this idea and puts the information in a vector
h. For each i = 1,...1 — 1, the computer checks for the next vector entry with the same absolute
value as |x;|, say x;, and then assigns h(i) = j. If there is no such entry to be found then A(:) = 0.

The vector h captures all the information about the homology generators we need to be able to
calculate their linking numbers.

3.2 Diagonal Entries

The first task in the Seifert matrix to calculate is how the homology generators interact with
themselves. Fach generator goes through two crossings. If these crossings are of opposite sign,
then the linking number m;; is zero. If the crossings are both right handed (i.e. z(i) and h(z(7))

are both positive) then the m; = —1. Similarly, if the crossings are both left handed (so x(i) and

h(z(i)) are both negative) then m;; = 1.

N

N\
A
\

+

@

-
>
c+

/N
XK

3.3 Non-diagonal Entries

5

N——A"

R

V@

=

4

\
/

The most important part of Seifert is a long ‘if’ loop which tells the computer how to work out the
non-diagonal entries of the matrix. There are five cases to consider. Let x; and z; be two elements
of z, with ¢ < j and h(i) # 0 (so that there is a homology generator at 7).

1. If h(i) > h(j) then m;; = 0 = mj;. This corresponds to the following situation:

@

)

<

)

K

@

Note that this also will include the case where A(j) = 0 and j has no homology generator, so
there is no reason to treat that case specially.

2. If h(i) < j then clearly m;; = 0 = mj; as the two generators cannot interact.

3. If h(i) = j then there are two cases to consider. The first (top picture) is when z; is a right
handed crossing (so z; > 0) and the second (bottom picture) is when x; is a left handed

crossing (so z; < 0).

10

@
N

-

@

N

e

5
4

A K N/
\:> éé\f /

To calculate m;; we must push j slightly off the surface and see how it interacts with ¢. In
the first case we get two disjoint circles, so m;; = 0, and in the second case we have m;; = —1

Jj+
from the diagram 1@ . If instead we push ¢ off the first surface we get mj; = 1 from

J
i+@ and mj; = 0 in the second surface.

After these three cases, we are in the situation where i < j < h(i) < h(j).

4. If the crossings are separated by more than one strand, then there will clearly be no linking
(e.g. if one crossing is between strands 1 and 2, and another is between strands 3 and 4). For
the algorithm, we write that if ‘]m(z)| - |l’(])|‘ > 1 then m;; = 0 = my;.

5. The last situation is where ‘\m(z)\ — Jx(j)’) = 1, which again splits into two cases:

(K

A d N

N7 N\ >< ></ N0/
ALK ALK

< <
= -4

@ ®

In the first case (left-hand picture) we have |z(i)| — |z(j)| = —1. We find that m;; = 1, from

the diagram @ , and mj; = 0.

11

In the second case (right-hand picture) we have |z(i)| — |z(j)| = 1. We find that m;; = 0,

and mj; = —1 from ,+@

These are all the possible cases which could occur in a braid representation of a link, so the
algorithm is essentially complete. If h(7) should equal zero, we tell the program to put a row and
column of zeros at position 3.

3.4 Tidying up

After the computer has executed this part of the program we will have a matrix of dimension one
less than the braid length. This is clearly not what we want: we need to delete the rows and
columns which have occurred as a result of h(7) being zero.

4 Extra things we can make the program do

There are some immediate things we can calculate from the information we have gathered. First of
all we can find the genus of the surface from which the Seifert matrix is calculated, using formula
(3). It is interesting to see how much higher this is than the actual genus of the knot (which is the
minimum genus over all possible Seifert surfaces).

Secondly, we can calculate the Alexander polynomial of the knot, as described in Definition
2.11. This is a good way of checking that the program is working correctly - it is difficult to check
whether the matrix is correct as there are many Seifert matrices of the same knot, but the Alexan-
der polynomial is a true invariant and can be looked up in any book. (Seifert computes the correct
Alexander polynomials for all prime knots up to and including those with 12 crossings.)

We can also calculate the signature of the knot, as described in Definition 2.14. This is an
invariant which is able to detect the chirality of the knot (i.e. whether it is its own reflection), a
property which the previous two invariants do not have. It is also useful for studying slice knots.

5 Old questions and new

A question that was asked in the first section was “Why does the braid representation of a knot
sometimes provide us with a non-minimal genus surface?”. A tentative answer may be raised to
this. It is clear that this algorithm of finding a Seifert matrix from a braid representation will result
in a matrix containing only 0’s, 1’s and -1’s. However, if we look at a surface of minimal genus
associated with such a ‘degenerate’ knot, then its Seifert matrix will contain higher numbers on
the leading diagonal. For example, the knot 61 is of genus 1 and has Seifert matrix

12

(1 %)

whereas the matrix produced by the program from the braid representation [1 1 2 -1 -3 2 -3] is

-1 0
1

— -0 O

1
0
0 -1
0 O

o O O

which corresponds to a surface of genus 2. Notice that the sum of the elements on the leading
diagonal is the same in both cases - a 4 x 4 matrix is the smallest possible (even-dimensional)
matrix consisting of only +1’s and 0’s with this property.

However, this vein of reasoning does not fully answer the question, as the case of 75 shows. Its
Seifert matrix has genus 1 and is
-1 1
0 -3

so we may conjecture that our algorithm will produce a matrix of dimension 4 with all —1’s on the
leading diagonal. However, applying the program gives us

-1 1 0 0 0 O
0 -1 1 0 0 O
0 0 0 1 0 O
0 0 0 -1 1 0
0 0 0 0 0 1
0 0 0 0 0 -1

which has dimension 6. Why is this? If we could identify a pattern in the matrices of ‘degenerate’
knots then we might be able to apply our knowledge to knots of higher crossing numbers for which
the genus and Seifert matrix are unknown, and give a good upper bound (or even exact bound!)
on the genus.

A second question would be to devise a program that could tell when two Seifert matrices cor-
responded to the same knot. We would need to know the effect of Markov moves on the matrix, or

to be able to identify when matrices are S-equivalent.

A third question to ask is whether the Seifert matrices generated by Seifert uniquely determine
the knot, and if not, whether there is a class of links for which this is true.

13

Appendix: A review of other programs

e SeifertView by Jarke van Wijk and Arjeh Cohen (http://www.win.tue.nl/~vanwijk/seifertview)
is a program designed to visualise Seifert surfaces in 3 dimensions. It is an excellent way of see-
ing how Seifert’s algorithm creates a Seifert surface from a braid, but gives no mathematical
information about the surface or the braid.

e The Braid Programme by Andrew Bartholomew (http://www.layer8.co.uk/maths/braids)
is a C++ program designed to calculate invariants, including the Alexander polynomial, for
braids and virtual braids. This is a very powerful tool but it does not compute Seifert matrices
of braids.

e seifert by Morwen Thistlethwaite (http://www.math.utk.edu/~morwen/seifert) is a C++
program designed to calculate Seifert matrices of knots, where the knot must be given in its
Dowker notation. A fully functional program which makes use of Seifert’s algorithm, but has
not yet been extended to deal with links. The code is more complicated than the one given
in this paper because of the limitations of the Dowker notation, so that the program has to
always keep track of what is happening at each crossing of the knot.

o Seifert’s Algorithm, Chatelet Bases and the Alexander Ideals of Classical Knots by Killian
O’Brien (http://www.maths.ed.ac.uk/~s0681349/killian.pdf) describes an algorithm to
compute Seifert matrices of knots from the Dowker notation. This was implemented in Maple,
but once again the code is quite complicated due to the limitations of the notation.

References

[1] J.W. Alexander, ‘A Lemma on Systems of Knotted Curves’
Proc. Nat. Acad. Sci. USA. 9 (1923), 93 -95.

[2] A. Bartholomew, Braid Programme
http://www.layer8.co.uk/maths/braids/

[3] Burde & Zieschang, ‘Knots’
De Gruyter studies in mathematics 5 (W. de Gruyter, 2003)

[4] F. Frankl, L. Pontrjagin,'Ein Knotensatz mit Anwendung auf die Dimensionstheorie’
Math. Ann. 102, 785-789, 1930

[5] D. Gabai, ‘Genera of the alternating links’
Duke Mathematical Journal, vol 53, No. 3, 1986

[6] W.B.Raymond Lickorish, ‘An Introduction to Knot Theory’
Springer Graduate Texts in Mathematics, 1997

14

[7] Y. Moriah, ‘On the free genus of knots’
Proc. Amr. Math. Soc., 99 (1987), 373 - 379.
http://www.math.technion.ac.il/~ymoriah/papers/Free_genus_Pub.pdf

[8] D. Rolfsen, 'Knots and Links’
Publish or Perish Inc, 1976.

[9] H. Seifert, ‘Uber das Geschlecht von Knoten’
Math. Ann. 110, 571-592, 1934.

[10] P. Vogel, ‘Representation of links by braids, a new algorithm’
Comment. Math. Helvetici 65 (1990), 104-113.

[11] Jarke J. van Wijk, Arjeh M. Cohen, ‘Visualization of Seifert Surfaces’
IEEE Trans. on Visualization and Computer Graphics, vol. 12, no. 4, p. 485-496, 2006.
http://www.win.tue.nl/~vanwijk/knot_tvcg.pdf

15

