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Abstract

This thesis develops some general calculational techniques for finding the orders of knots
in the topological concordance group C . The techniques currently available in the literature
are either too theoretical, applying to only a small number of knots, or are designed to only
deal with a specific knot. The thesis builds on the results of Herald, Kirk and Livingston
[HKL10] and Tamulis [Tam02] to give a series of criteria, using twisted Alexander polynomials,
for determining whether a knot is of infinite order in C.

There are two immediate applications of these theorems. The first is to give the structure
of the subgroups of the concordance group C and the algebraic concordance group G generated
by the prime knots of 9 or fewer crossings. This should be of practical value to the knot-
theoretic community, but more importantly it provides interesting examples of phenomena
both in the algebraic and geometric concordance groups. The second application is to find
the concordance orders of all prime knots with up to 12 crossings. At the time of writing of
this thesis, there are 325 such knots listed as having unknown concordance order. The thesis
includes the computation of the orders of all except two of these.

In addition to using twisted Alexander polynomials to determine the concordance order
of a knot, a theorem of Cochran, Orr and Teichner [COT03] is applied to prove that the n-
twisted doubles of the unknot are not slice for n 6= 0, 2. This technique involves analysing the
‘second-order’ invariants of a knot; that is, slice invariants (in this case, signatures) of a set of
metabolising curves on a Seifert surface for the knot. The thesis extends the result to provide
a set of criteria for the n-twisted double of a general knot K to be slice; that is, of order 0 in C.

The structure of the knot concordance group continues to remain a mystery, but the thesis
provides a new angle for attacking problems in this field and it provides new evidence for
long-standing conjectures.
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Chapter 1

Introduction

In this chapter we give an overview of the subject of knot concordance: what it is, why it is

interesting, and how mathematicians have gone about studying it. We highlight the difficulties

of working in this field and how the results of this thesis fit into the general picture we have of

the structure of the knot concordance group.

Other good surveys of knot concordance may be found in Livingston [Liv05] and in the

unpublished lecture notes of Peter Teichner [Tei01]. Surveys of smooth knot concordance can

be found in the introduction to the thesis of Adam Levine [Lev10] and in Jabuka [Jab07].

1.1 What is knot concordance?

Every knot S1 ↪→ S3 bounds a surface in S3, but only the unknot bounds a disc; that is, a

surface without any holes in (see Figure 1.1). Is it possible that knots could bound discs if the

discs were allowed to sit in the 4th dimension? This is the motivation behind the definition of

a slice knot.

A slice knot is a knot which bounds a locally flat disc D2 in the 4-ball D4. Such a disc is

called a slice disc. Locally flat means that every point of the disc has a neighbourhood around

it which looks like the standard embedding of a disc D2 into D4. This restriction is necessary

in order to make the definition non-trivial. For without the requirement that the disc be locally

flat, every knot would bound a disc in D4.

To see this, simply take the cone over the knot, as in Figure 1.2. The cone over the knot

is homeomorphic to a disc D2 and, because of the embedding into 4 dimensions, there are no

intersections of the surface with itself (as are visible in the 3-dimensional picture). However,

Figure 1.1: The unknot and figure-8 knot bounding surfaces

1



Chapter 1. Introduction

Figure 1.2: Every knot bounds a non-locally flat disc: the cone over the knot

the vertex of the cone is not locally flat, and this is where the knot gets ‘squashed’ to a point.

Slice knots are special kinds of knots where it is possible to find discs that they bound which

avoid these kinds of singularities.

The definition of a slice knot was first made by Fox [Fox62], who used the word ‘slice’

because he thought of slice knots as being those which were the cross-sections of locally flat

2-spheres in R4, sliced by 3-dimensional hyperplanes. Indeed, the original purpose of slice knots

was to help study knotted 2-spheres in 4-space, non-trivial examples of which had been found

by Artin in 1925 [Art25]. Slice knots remain important in the study of embeddings of surfaces

in 4 dimensions and in the classification of 4-manifolds.

Another reason why slice knots are interesting is that we can use them to make the set of

knots into a group. The problem with doing this usually is that, under the operation # of

connected sum, a knot has no inverse. Two knots can never be tied into a single piece of string

so that the first cancels out the second. To remedy this fact, we change our definition of a

‘trivial’ knot. Instead of the unknot being the only trivial knot, we consider all slice knots to be

trivial. Formally, we say that two knots K1 and K2 are concordant if K1#−K2 is slice, where

−K is the mirror image of K with reversed orientation. Then we make a group, called the

concordance group and denoted by C, which is defined to be the set of knots under connected

sum, modulo the equivalence class of slice knots. One of the reasons this works is because

K#−K is always slice, so knots do now have inverses.

Now that we have a group, the natural question to ask is “What is the structure of this

group?”. Is it trivial: is every knot slice? Is any knot slice other than the unknot? Are

there elements of finite order? Is it infinitely generated? Slowly we are coming to understand

the answers to these questions but the structure of C remains a mystery to the mathematical

community.

1.2 An algebraic approach to slicing

If a knot is slice then we can show this by simply exhibiting a slice disc for the knot. But if it

isn’t slice then we need a topological obstruction to prove it.

An idea proposed by Michel Kervaire [Ker65] was that instead of looking for a slice disc

straightaway, we should first find an arbitrary surface that the knot bounds (such surfaces

are called Seifert surfaces and there is an algorithm for constructing them) and then perform

surgery to reduce the genus of that surface so that it becomes a disc in the 4th dimension. To

2



1.2. An algebraic approach to slicing

be able to perform surgery to reduce the genus of a surface F , one needs to be able to find

n = 1
2 dimH1(F ) closed curves on the surface which represent different elements in H1(F ),

which do not link with each other and which are each slice. If such a set of curves exists, we can

remove an annulus around each curve (i.e. remove S1 ×D1) and glue in a double set of slice

discs (a D2 × S0) to remove the homology class represented by that curve. (See Figure 1.3.)

KNOT

SEIFERT SURFACE

KNOT

SEIFERT SURFACE

Figure 1.3: Doing surgery to reduce the genus of a surface

To implement this programme, Jerome Levine [Lev69b] defined an object called the algebraic

concordance group G. The elements of this group are square integral matrices A with the

property that det(A + εAT ) = ±1 where ε = ±1. A matrix is zero, or null cobordant, in this

group if it is congruent to a matrix of the form(
0 B

C D

)

where B, C and D are square matrices of the same size. Addition in the group is by block

sum, and two matrices A1, A2 are considered equivalent, or cobordant, if A1 ⊕ (−A2) is null-

cobordant. By analysing this group with the theory of quadratic forms, Levine [Lev69a] proved

that

G ∼= (Z)∞ ⊕ (Z2)∞ ⊕ (Z4)∞ .

Every knot has an associated matrix in G, called a Seifert matrix, and it can be proved (see

Chapter 2, Theorem 2.2.9) that slice knots have null-cobordant Seifert matrices. This means

there is a group epimorphism from C to G. A knot whose image in G is zero is called algebraically

slice.

1.2.1 Problems with the algebraic method

Is the information contained in the algebraic concordance group enough to classify knots in C?
In other words, if a knot is algebraically slice, does that mean it is geometrically slice? The

evidence points towards a negative answer:

• The zeros in a Seifert matrix of an algebraically slice knot correspond to curves with zero

linking number. However, two knots with zero linking number may still be non-trivially

linked (for example, the Whitehead link).

• Even if the zeros in the matrix do correspond to knots which are unlinked, there is no

guarantee that the knots in question are slice knots. This means that surgery along these

curves may not reduce the genus of the surface.

On the other hand, for slice knots in higher dimensions (i.e. (Sn, Sn+2) = (∂Dn+1, ∂Dn+3),

where n ≥ 2) Levine and Kervaire proved that the algebra was equivalent to the geometry

3



Chapter 1. Introduction

n full twists

Figure 1.4: The n-twisted double of the unknot

(see Section 2.3). Their surgery-theoretic techniques worked perfectly in dimensions of 5 and

above, but somehow there was always a problem when people tried applying it to 4 dimensions.

This problem was called the Whitney trick, which in high dimensions allows cancellation of

opposite pairs of singularities (meaning that manifolds with ‘linking number’ zero really have

no intersections), but which fails to work in 4 dimensions. Could there be a way of making it

work for slice knots?

In the 1970s the first example was found of a knot which was algebraically slice but not

geometrically slice. Andrew Casson and Cameron Gordon [CG86] devised a concordance

invariant which looked at intersection forms on 4-manifolds whose boundaries were appropriate

3-manifolds associated to the knot. It sounds complicated, and it is: their invariant is almost

incalculable for knots of genus higher than 1, but it sufficed to prove that the map C → G has

a non-trivial kernel. The knots which were the first elements to be found in this kernel were

the n-twisted doubles of the unknot (otherwise known simply as the twist knots), shown in

Figure 1.4.

A natural question following this discovery was: how much of the structure of the algebraic

concordance group is present in the geometric concordance group? For example, there are knots

of algebraic order 2 and algebraic order 4; does this mean there are knots of geometric order 2

and geometric order 4?

The existence of order 2 knots turned out to be easy to prove: any non-slice negative

amphicheiral knot (that is, a knot K where K = −K) is of order 2, because K#−K is always

slice. For example, the Figure-8 knot 41 is not slice but is of order 2 because it is negative

amphicheiral. The orientation of the knot is important: positive amphicheiral knots (where

K = −Kr) are not necessarily of order 2, as Charles Livingston found [Liv01].

A further question concerning 2-torsion in C is whether all of it is generated by amphicheiral

knots. It was an interesting discovery that not all knots of order 2 are themselves amphicheiral

(and there are examples of this in Chapter 8), but all of these examples have been found to be

concordant to (negative) amphicheiral knots.

The question of whether there is 4-torsion in C continues to elude mathematicians. The

prevailing conjecture, put forward by Livingston and Naik [LN01], is that all knots of algebraic

order 4 have infinite order in C. This conjecture has been proven for infinite families of algebraic

order 4 knots, but a general proof for all knots is yet to appear. Interestingly, the techniques for

proving that such knots are of infinite order have usually hinged on number-theoretic arguments

that make use of primes which are equivalent to 3 modulo 4. The number fields Fp of such

primes have the property that −1 is not a square; it is fascinating that such a simple and

esoteric fact can have such far-reaching consequences in the theory of knot concordance.

4



1.3. The structure of C

1.3 The structure of C

As a group, we know little more than that C ⊃ Z∞ ⊕ (Z2)∞. Rather than analysing the

structure of C, a more interesting project is to analyse the structure of the kernel of the map

C → G to the algebraic concordance group. This group also has a factor Z∞ ⊕ (Z2)∞ because

there are algebraically slice knots of infinite order [Jia81] and algebraically slice knots of order 2

in C [Liv99]. But are all the knots in this kernel detected by Casson-Gordon invariants? Could

there be knots which are non-trivial in C, but which are algebraically slice and have vanishing

Casson-Gordon invariants?

The answer to this latter question is ‘yes’, and indeed, there are infinitely many of them.

What about the invariant that detects such knots? Could that be zero and yet the knot

still not be slice? Again, ‘yes’. Three mathematicians, Tim Cochran, Kent Orr and Peter

Teichner [COT03], constructed an infinite tower of such invariants, creating what is known as

the filtration of the knot concordance group:

· · · ⊂ Fn.5 ⊂ Fn ⊂ · · · ⊂ F0.5 ⊂ F0 ⊂ C

The first few stages of the filtration are relatively well understood: F0 consists of those knots

with vanishing Arf invariant; F0.5 contains those knots which are algebraically slice; F1.5 consists

(roughly) of those knots with vanishing Casson-Gordon invariants. The higher levels of the

filtration are poorly understood by all except a few people. Let us discuss some geometric

intuition for what this filtration is measuring.

The idea behind algebraic sliceness is to say “We don’t know how to find a slice disc for

a knot, so let’s start with a higher genus surface and try to perform surgery to turn it into a

disc.” To be able to perform successful surgery on a genus g surface, we have to find g curves

representing different homology classes on the surface, and each of those curves needs to be

slice and unlinked with the other curves. The algebraic concordance group measures the ability

to find these g unlinked curves; a better invariant might also try to measure whether the curves

are slice.

But deciding whether these curves are slice is the same problem as we had with the initial

knot! We have simply pushed the problem down a level, as it were, in the hopes that these new

curves might be simpler to deal with than the first knot.

So here is an iterative procedure for deciding if a knot K is slice: find a genus g surface F

that K bounds, find g unlinked curves of different homology classes on F (if you can’t, K is

not slice, so stop), then for each of these g curves, repeat the procedure as for K. The resulting

‘surface’ is (amusingly) known as a grope since it appears to have ‘multitudinous fingers’ (see

Figure 1.5 and [Tei04]).

If the procedure stops after n iterations, then the knot should intuitively be in level n − 1

of the filtration, i.e. Fn−1 (although the Cochran-Orr-Teichner filtration is more complicated

than this). If a knot is slice, it should intuitively be in

∞⋂
i=0

Fi because eventually the curves in

some level will be slice and bound genus 0 surfaces, which makes finding the requisite g curves

a triviality. However, one of the open questions with the filtration is whether

∞⋂
i=0

Fi consists

exactly of the slice knots. That is, is it possible that there should be knots which are not slice,

and yet for which this procedure never terminates?

Cochran, Orr and Teichner have proved that the number of knots in each level of the

5
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Figure 1.5: A grope

filtration does not decrease, as one might hope/expect. Indeed, each quotient Fn/Fn.5 is not

only infinite but is infinitely generated [CT07, CHL09]. There are very few examples of knots

which occur high up in the filtration (i.e. above the Casson-Gordon 1.5 level), and those which

we know of have been constructed artificially rather than found naturally in a table of knots.

This is because proving that a knot lies in a particular level of the filtration is conceptually

and computationally very difficult. One would have to analyse all possible metabolising curves

(i.e. sets of g unlinked curves) on a surface at every level and show that every one of them was

obstructed from being slice. At the moment this is only possible for genus 1 knots at the first

level of curves [COT04].

1.4 Smooth vs topological?

So far we have discussed knot concordance in the context of the topological locally flat category.

We could instead work in the smooth category, where slice discs and embeddings are smooth

(i.e. C∞). It is one of the interesting things about 1-dimensional slice knots (with slice discs

embedded in 4 dimensions) that the two categories are not equivalent.

One of the cornerstone theorems of algebraic topology is the h-cobordism theorem. Given

a compact cobordism W between two n-dimensional manifolds M and N where the inclusion

maps M ↪→ W and N ↪→ W are homotopy equivalences, the h-cobordism theorem states that

if M and N are simply connected then W is diffeomorphic to M × [0, 1]. The Generalized

Poincaré conjecture turned out to be a special case of the h-cobordism theorem; it said that

objects which are homotopy equivalent to Sn are homeomorphic to Sn.

Of course, given that the proof of the Poincaré Conjecture was worth $1 million in 2003

and the h-cobordism theorem was proved by Smale in 1961 [Sma61], there has to be a caveat.

The caveat is that n must be greater than or equal to 5. The proof relies on the Whitney

trick (mentioned in Section 1.2.1 and further explained in Section 2.3), and the Whitney trick

fails in dimension 4. Despite this, in 1982 Michael Freedman was able to prove that the h-

cobordism theorem is true topologically when n = 4 [FQ90]. Donaldson’s work in 1987 [Don87]

then showed that the theorem was not true smoothly; a result which has implications for knot

concordance.

A consequence of Freedman’s work was that any knot whose Alexander polynomial ∆(t) (an

algebraic invariant derived from the Seifert matrix - see Definition 2.2.8) is equal to 1 is slice.

For example, the Whitehead double of any knot must be topologically slice (see Figure 1.6).

However, using invariants derived from Donaldson’s work, Akbulut [unpublished] proved

6
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Figure 1.6: The Whitehead double of the Figure-8 knot

that the Whitehead double of the right-handed trefoil was not smoothly slice, thus providing

the first example of a difference between the two categories of knot concordance. This was

followed by Rudolph [Rud93] who showed that any strongly quasipositive knot could not be

smoothly slice. This provided examples of topologically slice knots that are of infinite order in

the smooth concordance category.

Since then there have been many invariants developed to detect the non-triviality of

knots in the smooth knot concordance group. Ozsváth and Szabó developed Heegaard-Floer

homology [OS04], which is a 3-manifold invariant and a powerful knot invariant which in some

sense categorifies the Alexander polynomial. Two integer-valued concordance invariants derived

from it are the Oszváth-Szabó τ invariant [OS03] and the Manolescu-Owens δ invariant [MO07].

There is also Khovanov homology, which categorifies the Jones polynomial, and from it we

obtain the integer-valued Rasmussen s-invariant [Ras04]. Each of these invariants will vanish on

torsion elements in the smooth concordance group, so their non-triviality will detect elements of

infinite order. However, it means that they are not powerful enough to distinguish, for example,

between knots which are slice and knots which are of order 2.

Yet Heegaard-Floer homology is strong enough to detect elements of finite order. By using

correction terms coming from Heegaard-Floer homology, Jabuka and Naik [JN07] were able to

find elements of (smooth) finite order. Their argument was somewhat similar to the Casson-

Gordon one, in the sense that both were trying to obstruct intersection forms of 4-manifolds

which are bounded by cyclic branched covers of the knot. The Casson-Gordon invariants

themselves were developed for the smooth category of knot concordance, but with Freedman’s

work were shown to also obstruct sliceness in the topological category.

The relationship between finite order elements in the topological concordance group Ctop
and the smooth concordance group Cdiff remains unknown. For example, what is the kernel of

the map Cdiff → Ctop? All that is currently known is that it contains a subgroup isomorphic to

Z3, via the three maps τ , δ and s above. It is possible that there could exist examples of knots

which have different finite orders in the different categories, but none have yet been found.

1.5 Outline and main results of the thesis

In this thesis we set out to probe the structure of the knot concordance group by developing

computational techniques to decide whether a knot is of infinite order in C. The obstructions

– twisted Alexander polynomials – are special cases of Casson-Gordon invariants, which means

they find knots in level 1.5 of the Cochran-Orr-Teichner concordance filtration. It also means

that they are both smooth and topological obstructions. Out of 325 prime knots of unknown

concordance order, these techniques are powerful enough to find the slice status of all but two
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of them.

All calculations for this thesis were done in Maple 13 and in Sage; copies of the programs

are available on request from the University of Edinburgh library or from the author. In all

the theorems and results given here, we need to assume that Maple’s polynomial factorisation

algorithm (over Q(ζq)[t, t
−1]) is accurate.

Theorem. (Chapter 8) Of the prime knots of 12 or fewer crossings listed as having unknown

concordance order, they are all of infinite order with the exception of the following:

• 11n34 is slice because it has Alexander polynomial equal to 1.

• 12a1288 is of order 2 because it is fully amphicheiral.

• 11a5, 11a104, 11a112, 11a168, 11n85, 11n100, 12a309, 12a310, 12a387, 12a388, 12n286 and

12n388 are all of order 2, concordant to the Figure Eight knot 41.

• 11a44, 11a47 and 11a109 are all of order 2, concordant to the knot 63.

• 12a631 remains of unknown order, but is suspected to be finite order and possibly slice.

• 12n846 remains of unknown order, and there are no suspicions as to whether it is of finite

or infinite order.

The remaining two knots look to be strong candidates for examples of knots lying in the

higher levels of the Cochran-Orr-Teichner concordance filtration, and as such will be interesting

objects of further study.

1.5.1 How to prove that a knot has infinite order in C

What are the techniques that we developed to determine the concordance orders of these 325

prime knots? We summarise here the main results from Chapter 5, which give a series of

criteria for deciding if a knot has infinite order in the concordance group C. The idea is to look

at metabolisers of the first homology of the p-fold branched cover Σp of a knot, for a prime p,

and to show that under certain circumstances there is always a twisted Alexander polynomial

∆χ which obstructs the knot from being slice. In what follows ζq is always a complex qth root of

unity, a norm is an element of Q(ζq)[t, t
−1] of the form g(t)g(t−1) and

.
= means ‘up to norms’.

In the first case we concentrate on the 2-fold branched cover.

Theorem 5.3.6. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zq ⊕ T for some prime

q ≡ 1 mod 4, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z) → Zq be the trivial

map and χi : H1(Σ2;Z)→ Zq be lk(−, i). Then K is of infinite order if it satisfies the following

conditions:

1. ∆χ0(t) is not a norm in Q(ζq)[t, t
−1].

2. There is a non-trivial irreducible factor f(t) of ∆χ0
(t) for which f(t−1) is not a factor of

∆χi(t) for any i.

3. ∆χa(t) 6 .= ∆χ1
(t), where 1 + a2 ≡ 0 (mod q).

This theorem is extended to give criteria for a sum of knots to be of infinite order. This is

necessary for proving that knots are independent within C.
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Theorem 5.3.10. Let K = K1+ · · ·+Kn with Ki1 , . . . ,Kin′ having H1(Σ2(Kij );Z) ∼= Zq⊕Tj
with the order of the Tj coprime to q, and the remainder of the Ki having H1(Σ2(Ki);Z) ∼= Ti

with the order of the Ti coprime to q. Then K has infinite order in C if the twisted Alexander

polynomials (as defined in Theorem 5.3.6) satisfy:

1. ∆
Kij
χ0 (t) does not factorise over Q(ζq)[t, t

−1] as a norm for any j = 1, . . . , n′.

2. There is a non-trivial irreducible factor fj(t) of ∆
Kij
χ0 (t) for which fj(t−1) is not a factor

of ∆
Kik
χα (t) for all j, k = 1, . . . , n′ and all α 6= 0.

3. ∆
Kij
χ1 (t) 6 .= ∆

Kik
χγ (t) where γ =

√
−αβ−1 with α = lkKij (1, 1) and β = lkKik (1, 1), for all

j, k where γ is defined. This means that if q ≡ 1 mod 4 then α and β must be the same

modulo squares and if q ≡ 3 mod 4 then α and β must be different modulo squares.

Next we look at criteria for finding infinite order knots using branched covers whose

homology has a more complicated structure.

Theorem 5.4.2. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zqn ⊕ T for some prime

q, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z) → Zq be the trivial map and

χi : H1(Σ2;Z)→ Zq be lk(−, i) (mod q). Then K is of infinite order if it satisfies the following

conditions:

1. If n > 1, ∆χ0
(t)∆χ1

(t) is not a norm.

2. ∆χ0(t) is not a norm.

3. ∆χ0
(t) is coprime, up to norms in Q(ζq)[t, t

−1], to ∆χi(t) for all i 6= 0.

4. If q ≡ 1 (mod 4) then ∆χa(t) 6 .= ∆χ1
(t), where 1 + a2 ≡ 0 (mod q).

Next we look at twisted Alexander polynomials associated to branched covers Σp of a knot

K with p > 2.

Theorem 5.5.1. Suppose H1(Σp;Z) ∼= Zq⊕Zq ∼= Ea⊕Eb where Ea and Eb are the eigenspaces

of the deck transformation T . Let ea be an a-eigenvector (i.e. aea = Tea) and eb be a

b-eigenvector. Now define χa : H1(Σp) → Zq by χa(ea) = 0 and χa(eb) = 1. Similarly,

χb : H1(Σp)→ Zq is defined by χb(ea) = 1 and χb(eb) = 0. The knot K is of infinite order in C
if the following conditions on the twisted Alexander polynomial of K are satisfied:

1. ∆χ0
is coprime, up to norms, to both ∆χa and ∆χb , and ∆χ0

is not a norm.

2. ∆χa+χb 6
.
= ∆dχa−d−1χb for any d ∈ Zq.

An extension of this theorem gives a procedure to decide whether a knot is concordant to

its reverse – a very subtle and difficult problem in knot theory which has previously been solved

for only a few special cases of knots by Kirk, Livingston and Naik [Liv83], [Nai96], [KL99b]. In

this next theorem we give criteria not only to tell if a knot is distinct (in C) from its reverse,

but whether the difference is of infinite order in C. The notation σd means the map taking ζq

to ζdq in the coefficients of ∆χ.

Theorem 5.5.2. The knot K −Kr is of infinite order in C if the following conditions on the

twisted Alexander polynomial of K are satisfied:
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1. ∆χ0
is coprime, up to norms, to both ∆χa and ∆χb , and none of these polynomials are

themselves norms.

2. ∆χa 6
.
= σd(∆χb) for any d ∈ Zq

3. ∆χa+χb 6
.
= ∆dχa−d−1χb for any d ∈ Zq.

Finally, we have a theorem which gives criteria for a connected sum of knots to be of infinite

order, using higher-order branched covers. The set-up is again the same as in Theorem 5.5.1.

Theorem 5.5.3. The knot K = K1+· · ·+Kn is of infinite order in C if the following conditions

on the twisted Alexander polynomial of the Ki are satisfied:

1. ∆Ki
χ0

(s) is not a norm for any i = 1, . . . , n.

2. ∆Ki
χ0

is coprime, up to norms, to ∆
Kj
χa and ∆

Kj
χb for every i and j.

3. ∆Ki
χa 6

.
= σd(∆

Kj
χa ) (or ∆Ki

χb
6 .= σd(∆

Kj
χb )) for any d ∈ Zq and any i 6= j.

4. ∆Ki
χa+χb

6 .= ∆Ki
dχa−d−1χb

for any d ∈ Zq and any i = 1, . . . , n.

The combination of all these theorems allows us to attempt a full classification of all the

prime knots with 9 or fewer crossings, which we will describe in the next section.

1.5.2 A concordance classification of 9-crossing prime knots

We wish to find the structure of the subgroups of C and G generated by all prime knots with

9 or fewer crossings. Such a result would allow us, given any linear combination of 9-crossing

prime knots, to instantly be able to decide the algebraic and geometric concordance orders of

that knot. The reason that 9-crossing knots were chosen is that there are sufficiently many to

throw up interesting challenges and phenomena, whilst being a small enough set to allow us to

perform many of the calculations by hand. Now that the groundwork and algorithms have been

laid out, it should not be too difficult, in future work, to automate the process and produce a

classification for 10-, 11- and even 12-crossing knots.

Let E = {31, 41, 51, 52, 61, 62, 63, 71, . . . , 77, 81, . . . , 821, 91, . . . , 949}, where |E| = 87 since the

list includes the distinct reverses 8r17, 9r32 and 9r33.

Notation. Let CE denote the subgroup of C generated by E. Denote by FE the free abelian

group generated by E.

There are natural maps FE
ψ−→ CE

φ−→ G. We use the term ‘concordance classification’

of E to mean finding the kernel of both ψ and φ ◦ ψ, since knowing these kernels would

enable us to identify whether any linear combination of knots in E were slice (algebraically and

geometrically).

The following result, which is labelled as a conjecture because part of it remains unproved,

writes FE in terms of a basis from which it is possible to read off the orders of any linear

combination of knots. It is an amalgamation of the results of Chapters 4 and 6.

Conjecture 1.5.1. A basis of FE consists of the union of the following independent sets. In the

notation, the superscript gives the order of the elements in the A=‘algebraic’ or T=‘topological’

concordance groups. For example, C2A means knots which represent elements of order 2 in G.
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• C∞ = {31, 51, 52, 62, 71, . . . , 76, 82, 84, . . . 87, 814, 816, 819, 91, 93, . . . , 97, 99, 910, 911, 913,
915, 917, 918, 920, 921, 922, 925, 926, 931, 932, 935, 936, 938, 943, 945, 947, 948, 949}

• C4A = {77, 934}

• C2A = {81, 813, (815 − 72 − 31), (92 − 74), (912 − 52), 914, (916 − 73 − 31), 919,

(928 − 31), 930, 933, (942 + 85 − 31), (944 − 41)}

• C1A = {(821 − 818 − 31), (98 − 814), (923 − 92 − 31), (929 − 928 + 2(31)),

(932 − 9r32), (933 − 9r33), (939 + 72 − 41), (940 − 818 − 41 − 31)}

• C1′A = {(817 − 8r17)}

• C2T = {41, 63, 83, 812, 817, 818}

• C1T = {61, 88, 89, (810 + 31), (811 − 31), 820, (924 − 41), 927, (937 − 41), 941, 946}

A basis for the kernel AE of φ ◦ ψ : FE → G is the union of 4C4A, 2C2A, 2C2T , C1A, C1′A and C1T .

A basis for the kernel of ψ : FE → CE is the union of 2C1′A , 2C2T and C1T .

Corollary 1.5.2. The image of FE in the algebraic concordance group G is GE ∼= Z46⊕Z19
2 ⊕Z2

4.

The image of AE (the kernel of ψ ◦ φ) in the geometric concordance group C is Z23 ⊕Z2.

The only part of this conjecture which remains unproven is whether the knots (92 − 74),

(821 − 818 − 31), (923 − 92 − 31), (940 − 818 − 41 − 31) and (932 − 9r32) are linearly independent

in C. That is, could there be some linear combination of these knots which is slice? We have

not yet been able to extend the theorems of Chapter 5 to deal with this case, which is where

the homology of the 2-fold branched cover of the knot is isomorphic to aZq ⊕ bZq2 ⊕ T , with

the order of T coprime to q. (Alternatively, where the homology of the p-fold branched cover,

for p > 2, is isomorphic to Zq ⊕Zq ⊕Zq ⊕Zq.)
Although algebraic concordance is well-understood, and a complete set of invariants exists

to classify knots in G, this investigation of 9-crossings knots has raised more subtle questions

about the structure of G and these invariants. For example, is knowledge of the image of a knot

in W (Q2) necessary for the classification of the knot in G, and can we find a prime knot which

represents an element of order 2 in G but which is twice another prime knot of order 4?

The nature of the invariants which are developed in this investigation also provide more

evidence that knots which are of algebraic order 4 will be of infinite order in C.

1.5.3 Second-order slice obstructions

We end the thesis with a look at the computationally feasible second-order invariants provided

by Cochran, Orr and Teichner. The metabolising curves for the twist knots have been shown to

be torus knots, so by calculating signatures for the torus knots we provide another proof that

the twist knots are not slice.

Theorem 9.3.3. Let p and q be coprime positive integers. Then the integral of the ω-signatures

of the (p, q) torus knot is ∫
S1

σω = − (p− 1)(p+ 1)(q − 1)(q + 1)

3pq
.

Corollary 9.4.3. The twist knots Kn are not slice unless n = 0 or n = 2.
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n full twists

-3 full twists

Figure 1.7: The n-twisted double of the right-handed trefoil.

This result was already known to Casson and Gordon in the 1970s but the new proof given

in this thesis is much shorter and generalises to larger classes of knots, such as the n-twisted

doubles of an arbitrary knot K.

Corollary 9.4.4. Let K be a knot and Dn(K) the n-twisted double (n 6= 0) of K as shown in

Figure 1.7.

(a) Dn(K) cannot be slice unless n = m(m+1) for some m ∈ Z and
∫
S1 σω(K) = (m−1)(m+2)

3 .

In particular, D2(K) can only be slice if
∫
S1 σω(K) = 0.

(b) For any given K with
∫
S1 σω(K) 6= 0, there is at most one Dn(K) which can be slice.

1.5.4 Outline

The structure of this thesis is summarised below:

• Chapter 2: A rigorous introduction to the required background knowledge for the thesis;

including a definition of the knot concordance group, how to prove when a knot is slice,

details of the algebraic concordance group, a discussion of results in higher-dimensional

knot concordance, and a description of Casson-Gordon invariants.

• Chapter 3: A full and detailed description of the algebraic concordance group, focusing

on the work of Levine and the invariants needed to find the image of a knot in G.

• Chapter 4: The classification of the prime 9-crossing knots in G, using the results from

Chapter 3.

• Chapter 5: A detailed description of twisted Alexander polynomials as slicing obstruc-

tions, followed by the main results which use these polynomials to provide criteria for a

knot to be of infinite order in C.

• Chapter 6: The classification of the prime 9-crossing knots in C, using the results from

Chapters 4 and 5.

• Chapter 7: Detailed examples of how to use the classifications provided in Chapters

4 and 6 to find the concordance order of any linear combination of 9-crossing knots.

Discussion of how this procedure might fail when dealing with larger classes of knots.
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• Chapter 8: A description of how the theorems in Chapter 5 have been applied to the

prime knots of 12 or fewer crossings of unknown concordance order, along with slice

diagrams for those knots which have been shown to be of finite order.

• Chapter 9: How solving an elementary but difficult number-theoretic problem is found

to be equivalent to looking at signatures of torus knots, and how these signatures are

successful in obstructing the twist knots from being slice. Extensions of this result to

obstructing the n-twisted doubles of an arbitrary knot from being slice.

• Chapter 10: A look at the open problems related to work in this thesis and suggestions

on how these might be attacked.
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Chapter 2

Background

In this chapter we give rigorous definitions of what it means for a knot to be (geometrically) slice

and algebraically slice. We discuss the map from the geometric to the algebraic concordance

group, and see that this is an isomorphism in higher dimensions. It is the failure of the Whitney

trick in dimension 4 which causes the map C1 → G to have a non-trivial kernel, and we look at

the work of Casson and Gordon who first exhibited non-trivial elements in this kernel.

2.1 The knot concordance group

Definition 2.1.1. A knot is a locally flat embedding of a circle S1 into the 3-sphere S3, under

the equivalence relation of ambient isotopy. That is, two knots K1 and K2 are considered

equivalent if there is a homotopy of (orientation-preserving) homeomorphisms ft : S
3 → S3

such that f0 is the identity and f1 carries K1 to K2.

We will abuse the terminology in the standard way, with the word ‘knot’ sometimes referring

to the embedding and sometimes to the image of the embedding.

Definition 2.1.2. An embedding of manifolds Mm q
↪→ Nn is called locally flat if for each point

x ∈ M there is a neighbourhood U of x and a neighbourhood V of q(x) such that the pair

(V, qU) can be mapped homeomorphically onto (Dn, Dm).

Definition 2.1.3. A knot K is topologically (smoothly) slice if it is the boundary of a locally

flat (smooth) disc D2 embedded into the 4-ball D4.

Definition 2.1.4. Two knots K1 and K2 are called concordant if K1# − K2 is slice, where

−K2 means the mirror image of K2 with reversed orientation. An alternative and equivalent

definition is that two knots are concordant if K1 and K2 cobound a locally flat annulus S1×[0, 1]

embedded in S3 × [0, 1].

Remark 2.1.5. To see that the two different definitions in 2.1.4 are equivalent, suppose that

K1 and K2 cobound an annulus A = S1×I ⊂ S3×I. Remove (D3×I,D1×I) from (S3×I, A).

This turns the annulus into a slice disc in D4, bounded by the connected sum K1#−K2 – see

Figure 2.1.

Proposition 2.1.6. Concordance is an equivalence relation on the set of all knots.
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Figure 2.1: Turning an annulus into a slice disc

Proof. A knot is concordant to itself; to see the slice disc, construct the connected sum of the

knot and its reversed mirror image, then join with lines the points which would be identified

across a mirror. These lines together trace out a smoothly immersed disc in S3, which can be

turned into an embedded disc by pushing the interior into D4.

Example 2.1.7. Here is the connected sum of the trefoil and its mirror image, followed by the

corresponding slice disc.

If K1 is concordant to K2, then K1#−K2 bounds a slice disc. By reversing the orientation

of the slice disc we get a slice disc for −K1#K2, so K2 is concordant to K1.

Finally, if K1 is concordant to K2 and K2 is concordant to K3, then K1 and K2 cobound

an annulus A1 whilst K2 and K3 bound another annulus A2. We may glue the annuli A1 and

A2 together to create one large annulus with boundary K1 t K3. Thus K1 is concordant to

K3. �

Definition 2.1.8. The knot concordance group C is the set of knots with the operation of

connected sum modulo the equivalence relation of concordance. The identity of the group is

the set of all slice knots, and the inverse of a knot K is −K.

2.1.1 How to tell if a knot is slice

If a knot is smoothly slice, then its slice disc may be put into general position so that concentric

3-spheres move through and intersect it to produce knots and links, together with a finite

number of singularities. These singularities correspond to

1. a simple maximum or minimum

2. a saddle point

Maximum Minimum Saddle Point
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To implement a move through a saddle point on the diagram of a knot, one must perform

a surgery: remove S0 × D1 and glue in D1 × S0. Find two arcs of the knot with opposite

orientation, remove them and re-glue as shown in the following figure:

Example 2.1.9. Stevedore’s knot, otherwise known as 61, is the simplest slice knot (other

than the unknot). The following ‘movie’ shows how 3-spheres move through the slice disc:

Isotopy Saddle
Isotopy

The slice disc is shown schematically below:

saddle point

minima

Example 2.1.10. Another example of a slice knot is the 8-crossing knot 88. Here is the

corresponding slice movie:

Isotopy Saddle
Isotopy

The important thing to notice in these examples is that after the saddle move has been

made, the resulting knots are unknotted and unlinked. If the knots after the saddle move were

linked (which is what always happens when you try making a slice movie with a trefoil, for

example) then we would not be able to cap them off with discs to finish making the slice disc.

It is, in general, quite difficult to find a slice movie for a knot, even when one knows that

the knot is slice. The problem is not one which can be algorithmically implemented, since there
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are infinitely many places to try doing a surgery, including adding in more crossings to the knot

and even tying in other slice knots. (For an example of this latter phenomenon see Example

10.1 in [HKL10], where the authors prove that 12a990 is slice by first tying in the connected

sum of the trefoil with its reverse mirror image.)

Remark 2.1.11. A ribbon knot is a knot which bounds a smooth disc D2 in D4 such that the

singularities of the ribbon disc are either minima or saddle points. Clearly every ribbon knot

is (smoothly) slice, but it is an open conjecture whether all smoothly slice knots are ribbon. If

it were so, this would make the process of looking for slice discs easier because we would not

have to worry about introducing maxima into the slice movie.

To prove that a knot is not slice is often much easier. In the next section we will look at

obstructions that are derived from Seifert matrices.

2.2 Algebraic concordance

Although only the unknot can bound a disc in S3, all knots can bound some higher-genus

surfaces in 3 dimensions. One approach to deciding whether a knot is slice is to take these

surfaces and see if we can do surgery on them to reduce them to discs embedded in the 4th

dimension.

2.2.1 Seifert surfaces and Seifert matrices

Definition 2.2.1. A Seifert surface of an oriented knot K is a compact connected oriented

surface whose boundary is K.

Theorem 2.2.2. Every oriented link has a Seifert surface.

Proof. (Seifert, 1934) (The following method is known as Seifert’s algorithm.) Fix an oriented

projection of the link. At each crossing of the projection there are two incoming strands and

two outgoing strands. Eliminate the crossings by swapping which incoming strand is connected

to which outgoing strand (see diagram below). The result is a set of non-intersecting oriented

topological circles called Seifert circles, which, if they are nested, we imagine being at different

heights perpendicular to the plane with the z-coordinate changing linearly with the nesting.

Fill in these circles, giving discs, and connect the discs together by attaching twisted bands

where the crossings used to be. The direction of the twist corresponds to the direction of the

crossing in the link.

This procedure forms a surface which has the link as its boundary, and it is not hard to see that it

is orientable. If we colour the Seifert circles according to their orientation, e.g. the upward face

blue for clockwise and the upward face red for anticlockwise, then the twists will consistently

continue the colouring to the whole surface. According to the convention in Rolfsen [Rol03] we

consider the red face as the ‘positive’ side. �
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2.2. Algebraic concordance

Remark 2.2.3. An excellent program called Seifertview [vWC06] constructs a 3-dimensional

visualisation of a Seifert surface for any given knot. The surfaces are constructed using exactly

the algorithm described above. The Seifert surfaces shown in Figure 1.1 are courtesy of

Seifertview.

Given a Seifert surface for a knot, we want to analyse the ‘holes’ in this surface. This means

looking at generators of the first homology group of the surface and seeing how they interact

with each other. This interaction will be captured by the linking form.

Definition 2.2.4. Suppose that D is a regular oriented projection of a two-component link

with components J and K. Assign each crossing a sign:

The linking number lk(J,K) ∈ Z of J and K is half the sum of the signs of the crossings at

which one strand is from J and the other is from K.

Definition 2.2.5. Let F be a Seifert surface for an oriented knot K. We define the linking

pairing (also known as the linking form or Seifert form)

lk : H1(F )×H1(F )→ Z

by lk(a, b) := lk(a, b+) where b+ denotes the translation of b in the positive normal direction

into S3. A Seifert matrix for K is a matrix representing lk in some basis of H1(F ).

Since the Seifert matrix depends on the choice of Seifert surface and on the choice of a

homology basis, it is not an invariant for the knot. However, we can say how two different

Seifert matrices for the same knot must be related. Two Seifert surfaces for a knot are related

by a sequence of ambient isotopies and by handle additions/removals (see [Lic97, Theorem 8.2]

for a proof). If F2 is obtained from F1 by a handle addition, and if the respective Seifert

matrices are M1 and M2 then we have

M2 =

 M1 v 0

0 0 1

0 0 0

 or

 M1 0 0

wT 0 0

0 1 0


for some vectors v or w. M2 is called an elementary enlargement of M1 and M1 is called an

elementary reduction of M2.

Definition 2.2.6. Two matrices A and B are called S-equivalent if they are related by a finite

sequence of elementary enlargements, reductions and by unimodular congruences (i.e. relations

of the form B = PTAP with detP = ±1). Two knots are called S-equivalent if they have

S-equivalent Seifert matrices.

Lemma 2.2.7. [Lic97, Theorem 8.4] Two Seifert matrices for a knot are S-equivalent.

Two inequivalent knots may be S-equivalent, and thus all of the invariants derived from

their Seifert matrices will be identical. This is the first clue that algebraic invariants will not
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Chapter 2. Background

be sufficient to tell us the whole story of which knots are slice. Some of the invariants which

will be important are contained in the following definition.

Definition 2.2.8. The Alexander polynomial of a knot K with Seifert matrix V is

∆K(t) := det(V − tV T )

(defined up to multiples of ±tn). The signature σ is the number of positive eigenvalues minus

the number of negative eigenvalues in V + V T . The ω-signature σω(K) for a unit complex

number ω is the signature of the hermitian matrix

(1− ω)V + (1− ω)V T .

2.2.2 Seifert matrices for slice knots

To be able to use these invariants as slicing obstructions, we need to know what the Seifert

matrix of a slice knot looks like. This was determined in 1969 by Levine [Lev69b, Lemma 2].

Theorem 2.2.9. If K is slice, then for any Seifert surface F of K there exists a half-rank direct

summand L in H1(F ) such that V |L = 0 for V a Seifert form for F .

The proof of this theorem is long, but it reveals a lot about the topology of the slice disc so

we have included it in full.

Proof. Step 1: For a slice knot K with Seifert surface F and slice disc ∆ there exists an

oriented submanifold M3 ⊂ D4 with boundary F ∪∆.

Proof of Step 1. [This section of the proof is taken from [Lic97, Lemma 8.14].] Let X be

the exterior of K. We want to define a map φ : X → S1 so that φ∗ : H1(X) → H1(S1) is an

isomorphism and φ−1(pt) = F . On a product neighbourhood of F in X, define φ to be the

projection F × [−1, 1]→ [−1, 1] followed by the map t 7→ eiπt ∈ S1. Let φ map the remainder

of X to −1 ∈ S1.

Let N = ∆× I2, a neighbourhood of ∆. We extend φ to the rest of ∂(D4 −N) so that the

inverse image of 1 ∈ S1 is F ∪ (∆×{∗}) for some point ∗ ∈ ∂I2 (note: ∂∆×{∗} is a longitude

of K). We now need to extend the map over all of D4 −N .

Consider the simplices of some triangulation of D4 −N . Let T be a tree in the 1-

skeleton containing all the vertices of this triangulation, that contains a similar maximal tree

of ∂(D4 −N). Extend φ over all of T in an arbitrary way. Then on a 1-simplex σ not in T ,

define φ so that if c is a 1-cycle consisting of σ summed with a 1-chain in T (joining up the

ends of σ), then [φc] ∈ H1(S1) is the image of [c] under the isomorphism

H1(D4 −N)
∼=←− H1(X)

φ∗−→ H1(S1).

Trivially, the boundary of a 2-simplex τ of D4 −N represents zero in H1(D4 −N), so

[φ(∂τ)] = 0 ∈ H1(S1). Hence φ is null-homotopic on ∂τ and so extends over τ . Finally, φ

extends over the 3 & 4-simplices, as any map from the boundary of an n-simplex to S1 is

null-homotopic when n ≥ 3.

Now regard φ : D4 −N → S1 as a simplicial map to some triangulation of S1 in which 1 is

not a vertex. Then φ−1(1) is a 3-manifold M3, and φ was constructed so that ∂M3 = F∪(∆×∗).
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2.2. Algebraic concordance

Step 2: P := ker[H1(∂M ;Q)→ H1(M,Q)] is a Lagrangian subspace of dimension g (where

∂M has genus g).

Definition 2.2.10. A Lagrangian subspace or metaboliser of H1(F ) with respect to the linking

form lk is a vector subspace P ∈ H1(F ) which satisfies P = P⊥, where

P⊥ :=
{
x ∈ H1(F ) | lk(x, y+) = 0 ∀ y ∈ P

}
This implies that P has half the rank of H1(F ).

Proof of Step 2. [Taken from the unpublished lecture notes of a course given by Peter

Teichner [Tei01].] Look at the homology exact sequence of (M,∂M) (over Q):

0 // H3(M,∂M) // H2(∂M) // H2(M) // H2(M,∂M) //

H1(∂M) // H1(M) // H1(M,∂M) // H0(∂M) // H0(M) // 0

Lefschetz duality says Hk(M,∂M) ∼= H3−k(M) (since Hk(M,∂M) ∼= H3−k(M) and

Hk(M,∂M) ∼= Hk(M,∂M) by the Universal Coefficient Theorem, as we are working over a

field). Poincaré duality says Hk(∂M) ∼= H2−k(∂M), which again implies dim(Hk(∂M)) =

dim(H2−k(∂M)).

So let

a = dim(H3(M,∂M)) = dim(H0(M)),

b = dim(H2(∂M)) = dim(H0(∂M)),

c = dim(H2(M)) = dim(H1(M,∂M)),

d = dim(H2(M,∂M)) = dim(H1(M)),

e = dim(H1(∂M)).

Then the exactness of the sequence implies that

a− b+ c− d+ e− d+ c− b+ a = 0⇒ 2(a− b+ c− d) + e = 0

We also have the exact sequence

0→ P → H1(∂M)→ H1(M)→ H1(M,∂M)→ H0(∂M)→ H0(M)→ 0

so dimP = e− d+ c− b+ a = e+ (a− b+ c− d).

Therefore 2(dimP − e) + e = 0, so 2 dimP = e and thus dimP = 1
2 dim(H1(∂M)).

Now note that H1(∂M) = H1(F ) (recall ∂M = F ∪ ∆). Suppose we have α, β ∈
ker[H1(∂M) → H1(M)]. There exist surfaces A,B ⊂ M with ∂A = α, ∂B = β. When α

is moved to α+, the surface A can also be moved off M to M × {1} (so ∂A+ = α+), and then

the intersection of A+ and B is empty. Thus lk(α+, β) = A+ · B = 0.

Moving from Q to Z coefficients is not a problem, although the Z-kernel of H1(F )→ H1(M)

might not be a direct summand. We use instead L = {a ∈ H1(F ) : ∃n ∈ Z\ {0} s.t. na ∈ P}.
The rank of L is the same as that of the kernel and it is a direct summand because H1(F )/L

is torsion-free. Note also that V (na, b) = 0 implies V (a, b) = 0 by linearity, so V |L = 0, as

required. �

21



Chapter 2. Background

Definition 2.2.11. A square matrix congruent to one of the form(
0 A

B C

)

for square matrices A, B and C of the same size is called metabolic or Witt trivial.

Thus our above proof has shown that any Seifert matrix for a slice knot must be unimodular

congruent to a metabolic matrix. What do the signatures and Alexander polynomials of a

metabolic form look like?

Corollary 2.2.12. For a slice knot K we have

(i) the signature σω(K) is zero for every unit complex number ω except those which are roots

of the Alexander polynomial ∆K(t). (Notice that the regular signature is σ−1 so the same

corollary holds for it too.)

(ii) the Alexander polynomial ∆K(t) is of the form f(t)f(t−1).

Proof. Let V be a Seifert matrix for K. By Theorem 2.2.9 we may assume

V =

(
0 A

B C

)

for square matrices A, B and C of equal size (g×g where g is the genus of the associated Seifert

surface) with entries in Z.

(i) Let ω be a unit complex number such that ∆K(ω) 6= 0 and let M = (1−ω)V + (1−ω)V T .

Notice that ω−1 = ω and that ∆(ω) = ∆(ω−1) up to a power of ω. Now

M = (1− ω)

(
0 A

B C

)
+ (1− ω)

(
0 BT

AT CT

)

=

(
0 (1− ω)A+ (1− ω)BT

(1− ω)B + (1− ω)AT (1− ω)C + (1− ω)CT

)

=:

(
0 L

L
T

N

)

We can rewrite M as (1−ω)(V −ω−1V T ) so detM = (1−ω)2g∆K(ω−1). Since ∆K(ω) 6=
0 we know that M is non-singular. This implies that L is non-singular and therefore

invertible over Q. Define

P =

(
L−1 0

(1− ω)CL−1 −I

)
.

Then PMP
T

=

(
0 −I
−I 0

)
, so σω(K) = σ(M) = σ(PMP

T
) = 0.
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2.2. Algebraic concordance

(ii) We have

∆K(t) = det(V − tV T )

= det

(
0 A− tBT

B − tAT C − tCT

)
= det(A− tBT ) det(B − tAT )

= f(t)f(t−1)

up to units in Z[t, t−1].

�

Example 2.2.13.

• The trefoil knot 31 has Seifert matrix V =

(
−1 1

0 −1

)
, so V + V T =

(
−2 1

1 −2

)
.

Eigenvalues are both negative, so σ = −2. Thus the trefoil is our first example of a knot

which is not slice.

• The Figure-8 knot 41 has Seifert matrix V =

(
1 0

1 −1

)
so V + V T =

(
2 1

1 −2

)
.

Eigenvalues are ±
√

5 so σ = 0. However, the Alexander polynomial of 41 is t2 − 3t + 1,

which does not factorise as f(t)f(t−1). This is clear because ∆41(−1) = 5 which is not a

square. Thus 41 is also not a slice knot.

Why is the signature of the Figure-8 knot zero even though the knot isn’t slice? If we

examine the knot a little more closely, we find that it is negative amphicheiral : it is its own

mirror image reverse. This means that in the concordance group 2(41) = 41#− 41 = 0 and 41

is an element of order 2. The signature is an integer-valued additive invariant, so if 2σ = 0 then

σ = 0. Similarly, the non-vanishing of the trefoil signature proves that the trefoil is an element

of infinite order in C.

2.2.3 The algebraic concordance group

In the same way that we can make the set of knots into a group by quotienting out the slice

knots, we can make the set of Seifert forms into a group by quotienting out the metabolic forms.

First we need a definition of the “set of Seifert forms” which is independent of knots.

We have the following property that characterises Seifert matrices.

Lemma 2.2.14. If V is a Seifert matrix for a knot K then V − V T is unimodular; that is,

det(V − V T ) = ±1.

Proof. Suppose that V is a Seifert matrix obtained from a genus g Seifert surface F and a set

of curves {a1, . . . , a2g} ∈ H1(F ). Without loss of generality, we may assume that the curves are

arranged as in Figure 2.2, i.e. as a disc with bands attached, although the bands themselves

may be twisted and knotted around each other. The (i, j)th entry of V − V T is

lk(ai, a
+
j )− lk(aj , a

+
i ) = lk(ai, a

+
j )− lk(ai, a

−
j ) = lk(ai, a

+
j − a

−
j ) .

We have that a+j − a
−
j bounds an annulus normal to F , which meets F in aj . The linking

number of a+j − a
−
j with ai is then the algebraic intersection of this annulus with ai, i.e. the
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Figure 2.2: Every Seifert surface can be drawn as a disc with bands attached

algebraic intersection of ai with aj . We thus have that V − V T consists of(
0 1

−1 0

)

on the diagonal and zeros elsewhere. It follows that this matrix is unimodular. �

The converse is a result of Seifert [Sei35]; a proof may also be found in [BZ02, 8.7].

Lemma 2.2.15. Every square matrix V of even order satisfying det(V −V T ) = ±1 is a Seifert

matrix of a knot.

Remark 2.2.16. The proof given for Lemma 2.2.14 actually proves that det(V − V T ) = 1,

and indeed, in Lemma 2.2.15 the det(V − V T ) = −1 case does not appear. This is because

V − V T is skew-symmetric and every even order invertible integral skew-symmetric matrix is

congruent to a block sum of the matrix

(
0 1

−1 0

)
. The reason we include the −1 case is that

it streamlines theorems and arguments in higher dimensions, where the −1 case does exist.

Given two square matrices V1 and V2 we can form their block sum V1 ⊕ V2 =

(
V1 0

0 V2

)
.

Definition 2.2.17. Two square matrices V1 and V2 are called cobordant (or Witt equivalent)

if V1 ⊕ (−V2) is Witt trivial (metabolic).

If we restrict our attention to the set of matrices which are Seifert matrices, then

Levine [Lev69b, Lemma 1] shows that this is an equivalence relation.

Definition 2.2.18. The algebraic concordance group G is defined to be the set of square integral

matrices V satisfying det(V − V T ) = ±1 under the operation of block sum and modulo the

relation of cobordism (Witt equivalence).

Theorem 2.2.19. The map φ : C → G which maps a knot to one of its Seifert matrices is an

epimorphism of groups.

Proof. If two knots K1 and K2 have Seifert matrices V1 and V2 respectively, then a Seifert

matrix for K1#K2 is V1 ⊕ V2, while a Seifert matrix for −K1 is −V1. These facts, together

with Theorem 2.2.9 show that the map is a homomorphism, while Lemma 2.2.15 shows that it

is surjective. �
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2.3. Higher dimensions

Definition 2.2.20. A knot whose image in G under the map φ is zero is called algebraically

slice.

The big question of knot concordance in the 1970s was: is φ an isomorphism? That is, are

‘slice’ and ‘algebraically slice’ equivalent notions? We will find the answer to this in Section

2.4; for now, let us look more closely at the structure of G.

Theorem 2.2.21 ([Lev69a]). G ∼= (Z)∞ ⊕ (Z2)∞ ⊕ (Z4)∞ .

Levine proved this theorem by finding a complete set of invariants for G coming from

signatures and Witt groups. We will analyse these in detail in Chapter 3.

2.3 Higher dimensions

There is an analogous notion of knot concordance in higher dimensions. The surprising result,

which we will explore in this section, is that the structures of the high-dimensional concordance

groups are very well understood, in stark contrast to the concordance group of 1-dimensional

knots.

Definition 2.3.1. An n-knot is a locally flat (or smooth) embedding of Sn into Sn+2, defined

up to ambient isotopy. An n-knot K is called slice if it bounds a locally flat (smooth) disc

Dn+1 ⊂ Dn+3. Two n-knots K1 and K2 are concordant if K1#−K2 is slice, where −K2 is the

image of K2 with reversed orientation under a reflection of Sn+2.

Definition 2.3.2. The n-dimensional concordance group Cn is the set of concordance classes

of n-knots.

As in the 1-dimensional case, we will need Seifert surfaces as a starting point for proving

that knots have slice discs. Luckily we have the following theorem:

Theorem 2.3.3. Every n-knot bounds some (n+ 1)-dimensional surface in Sn+2.

Proof. (Sketch proof from [Rol03, 5B1]) Suppose n ≥ 2 (for the n = 1 case see Section 2.2).

Let K be an n-knot and T ∼= K × D2 be a tubular neighbourhood of K. Define a map

f : T\K → S1, corresponding to the map K × (D2\{0}) → S1 given by (x, y) 7→ y/|y|. We

would like to extend f to a map of the knot exterior F : X → S1, where X = Sn+2\ int(T )

and ∂X = ∂T . Obstruction theory says that such an extension is possible if and only if

certain elements of the cohomology groups Hk+1(X, ∂X), with coefficients in πk(S1), vanish.

If k > 1 then the coefficient group is trivial, and if k = 1 then we have integer coefficients and

H2(X, ∂X) ∼= Hn(X) = 0 by Lefschetz and Alexander dualities. So all the obstructions vanish

and there is a map F : X → S1 extending f . Choose a regular point x ∈ S1 (we may assume

that we are either in the PL or smooth category); then F−1(x) is the required orientable surface

of codimension 1. �

The first thing that was proven about the higher dimensional concordance groups was that

the even dimensional groups were zero.

Theorem 2.3.4 ([Ker65]). C2k = 0 for k ≥ 0.

Proof. Let K be an 2k-knot and let F be a Seifert surface for K. Perform ambient surgeries

on F below the middle dimension to turn F into a slice disc D2k+1 ⊂ D2k+3. �
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M N M N

–

q

+

p

Figure 2.3: Removing intersection points using the Whitney trick

For odd dimensions, the Seifert surfaces are even-dimensional so we have to worry about

what happens in the middle dimension. In the middle dimension is the linking form and it

turns out that if this linking form has a Lagrangian then the knot is slice. So the algebraic

concordance group tells us about the geometry of slice knots.

The reason this works in dimensions above 1 is the existence of the Whitney trick. When

the ambient dimension is above 4, the Whitney trick allows intersection points of opposite sign

to be cancelled with each other. If two n-knots have linking number zero then this means we

can arrange for them to be actually disjoint.

Theorem 2.3.5 (Whitney trick). Let Xd be an oriented manifold of dimension d ≥ 5, and let

Mk and Nd−k be oriented submanifolds of codimension at least two. Suppose that either

• k ≥ 3, d− k ≥ 3, π1(X) = 0, or

• k = 2, d− k ≥ 3, π1(X\N) = 0

Then pairs of intersections of M and N of opposite sign may be removed by isotopies of M and

N .

Proof. (Sketch proof from [Sco05]) By a general position argument, we may assume that

intersections of M and N are transverse. Since M and N have complementary dimensions,

they intersect in a collection of isolated points. Each of these points has a sign coming from

the orientations of M and N . Pick a pair of points p and q of opposite sign. Draw a path

linking p and q that lies inside M , and another path linking p and q that lies inside N .

Together, these two curves form a circle. By the simple-connectedness of X\(M ∪ N), this

circle is homotopically trivial and therefore bounds an immersed disc in X\(M ∪N). The weak

Whitney embedding theorem tells us that immersions of discs in manifolds of dimension at least

5 can be approximated by embeddings. Thus we have an embedded disc (called the Whitney

disc) with boundary in M ∪ N (Figure 2.3, left). Use this disc to construct an isotopy which

pushes M past N until the intersections disappear (Figure 2.3, right); this is possible without

introducing new intersection points because of the opposite signs of p and q. �

It is Whitney’s embedding theorem which fails in dimension 4; we cannot guarantee that

the Whitney disc is an embedding rather than an immersion.

The group structure of the odd-dimensional concordance groups is (Z)∞⊕ (Z2)∞⊕ (Z4)∞,

just as for the one-dimensional algebraic concordance group. However, the isomorphism is not

to G, as defined in Section 2.2.3, but to a slight refinement of it.

Definition 2.3.6. G± is defined to be the set of matrices V for which V ± V T is unimodular,

under the operation of block sum and modulo the equivalence relation of cobordism of matrices.
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The group G0+ is the subgroup of G+ of index 2, defined by matrices with property + and

signature V + V T a multiple of 16.

Theorem 2.3.7 ([Lev69b]).

• C4k+1
∼= G− for k ≥ 1

• C4k+3
∼= G+ for k ≥ 1

• C3 ∼= G0+.

2.4 Casson-Gordon invariants

In the 1970s Casson and Gordon devised a new invariant for the knot concordance group. It

is derived from the Atiyah-Singer index theorem and looks at the difference of two intersection

forms, one of which has coefficients twisted by a representation of the knot group. By calculating

their new invariant for a family of knots known as the ‘n-twisted doubles of the unknot’ (see

Definition 9.4.1) they proved the following theorem (which had been suspected to be true for

some time).

Theorem 2.4.1. The kernel of the homomorphism C → G is non-trivial.

In other words, Casson and Gordon were able to use their invariant to prove that some

algebraically slice knots were not geometrically slice.

Here is how their invariant was constructed. We give the construction first for a general 3-

manifold and then describe the particular manifold that will be used for obstructing the sliceness

of knots. In what follows, W (C(t), I) is the Witt group of C(t) consisting of (equivalence classes

of) pairs (V, β) where V is a finite-dimensional vector space over C(t) and β is a hermitian

inner product (i.e. complex-valued bilinear form) satisfying β(av, bw) = aI(b)β(v, w) and

β(v, w) = I(β(w, v)). Here I is the involution that sends
∑
ait

i to
∑
ait
−i with ai being

complex conjugation. (For more detail on Witt groups, see Section 3.1.)

Let (M,ρ) be a 3-manifold together with a homomorphism ρ : π1(M)→ Zd⊕Z, where d is

an odd prime power. The 3-dimensional bordism group Ω3(Zd ⊕Z) is finite; in fact, d-torsion

(we will see more details in the next section). Thus d(M,ρ) = ∂(W,ρ) for some 4-manifold W

and map ρ : π1(W )→ Zd ⊕Z. The manifold W has a non-singular hermitian C(t)-intersection

form I(W,ρ) ∈ W (C(t), I), where the local coefficients are twisted using the map ρ. The

Z-action is multiplication by t and the Zd-action is multiplication by e2πi/d.

The manifold W also has an ordinary (untwisted) intersection form I(W ) ∈ Image {W (Q) ∈
W (C(t), I)}. (If this is singular, take the quotient of this form by its kernel.) The Casson-

Gordon invariant is defined to be

τ(M,ρ) =
1

d
(I(W,ρ)− I(W )) ∈W (C(t), I)⊗Q

and is independent of W . Since d is odd, τ actually lives in W (C(t), I)⊗Z(2), where Z(2) is Z

localised at 2, i.e. the set of rational numbers with odd denominator.

Let X be the complement S3\K of a knot K. Let M0 be the 3-manifold constructed by

0-surgery on X and Mk be the k-fold cyclic cover of M0, where k is a power of a prime pr.

There is a natural surjection ε : π1(Mk) → Z via the covering projection of Mk to X and the

map of H1(X) to Z determined by the orientation of K. Given a surjective homomorphism
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χ : H1(Σk;Z) → Zd (where Σk is the k-fold branched cover of S3 over K) we can define a

representation

ρχ : π1(Mk)→ H1(Mk;Z)→ H1(Σk;Z)
χ−→ Zd

where the first map is the Hurewicz map.

The Casson-Gordon invariant which is then a slicing obstruction for K is τ(Mk, ε × ρχ).

This may also be denoted τ(K, pr, χ).

2.4.1 Casson-Gordon signatures

For each class I ∈ W (C(t), I) and for each unit complex number ω ∈ S1, a signature σω(I)

is defined by evaluating a representative of that class at ω and computing the signature of

the resulting Hermitian matrix. If the representative is singular at ω then the signature is the

average of the one-sided limits, i.e. lim
x→ω+

σx(I) and lim
x→ω−

σx(I).

Each σω is a homomorphism that can be extended to

σω : W (C(t), I)⊗Z(2) → Z(2)

in the obvious way.

Definition 2.4.2. The Casson-Gordon signature of a knot K together with a map

χ : H1(Σk;Z)→ Zd (where d and k are odd prime powers) is defined to be

σ1(τ(K, k, χ)).

We shall abbreviate this to σ(K, k, χ).

(What follows is taken from [LN99], Section 4.) The Casson-Gordon signature can be viewed

as a map from the bordism group Ω3(Zd ⊕ Z) to Z(2). If two elements (M1, ρ1) and (M2, ρ2)

represent the same element in Ω3(Zd ⊕ Z) then τ(M1, ρ1) and τ(M2, ρ2) differ by an element

of W (C(t), I). Thus the difference σ(M1, ρ1) − σ(M2, ρ2) is an integer, and we can see σ as

a homomorphism from Ω3(Zd ⊕ Z) → Q/Z. Indeed, by the definition of the Casson-Gordon

invariant, σ(K, k, χ) takes values in ( 1
d )Z/Z ∼= Zd. Casson and Gordon [CG86] show that

σ : Ω3(Zd ⊕Z)→ Zd is actually an isomorphism.

We have further isomorphisms:

Ω3(Zd ⊕Z) ∼= Ω3(Zd) ∼= Zd

where the first is given by the projection and inclusion maps, whilst the second is as follows. For

a pair (M,ρ) with a character ρ : H1(M) → Zd, we can always find some x ∈ torsion(H1(M))

so that ρ(y) = lk(x, y) for all y ∈ torsion(H1(M)). The image of (M,ρ) in Zd is then lk(x, x).

Putting these isomorphisms together, we obtain a straightforward generalisation of Theorem

2.5 of [LN01]:

Theorem 2.4.3. If χ : H1(Σpr ) → Zqs is a character obtained by linking with the element

x ∈ H1(Σpr ), then σ(K, pr, χ) ≡ lk(x, x) mod Z.

So although it is difficult to calculate Casson-Gordon signatures precisely, we can at least

use this theorem to decide if the signature cannot be zero, and thus to decide if a knot cannot

be slice.
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2.4.2 Casson-Gordon discriminants

We would like to turn the determinant of a class of W (C(t), I) into an invariant of that class,

but to do so we will need to work modulo whatever the determinant is of the zero class. What

is the determinant of a metabolic (Witt trivial) form?

An element representing zero in W (C(t), I) has the form(
0 A

I(AT ) B

)

and if A has dimension n then the determinant of this is

(−1)n det(A) det(I(AT )) = (−1)n det(A)I(det(A)) .

Definition 2.4.4. A polynomial of the form fI(f) will be called a norm.

Let N ⊂ C(t)∗ denote the multiplicative subgroup generated by norms.

Definition 2.4.5. The discriminant of a class I ∈ W (C(t), I) is the determinant of a

representative A of I, considered modulo norms:

Disc(I) := det(A) ∈ C(t)∗/N .

We would like to extend this to a map from W (C(t), I)⊗Z(2). Notice that, since matrices

representing classes in W (C(t), I) are Hermitian, every discriminant has the property that

det(A) = I(det(A)). This means that Disc(cI) is Disc(I) if c is odd and is 0 if c is even. This

allows us to extend our definition of the discriminant to a function from W (C(t), I) ⊗ Z(2) as

follows:

Disc

(
I ⊗ p

q

)
= Disc(I)p = Disc(pI) .

The Casson-Gordon discriminant of a knot, Disc(τ(K, pr, χ)) will be the main tool of this

thesis. This is because it is equivalent to the twisted Alexander polynomial, which we will define

in Chapter 5 and which requires no 4-manifold constructions. This makes it relatively easy to

compute compared with the Casson-Gordon signature and with the Casson-Gordon invariant

itself.
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Chapter 3

Finding the algebraic

concordance class of a knot

In this chapter we delve more deeply into the algebraic concordance group G of Levine [Lev69a,

Lev69b] and find out what invariants are needed to find the image of a knot in G. The structure

of this chapter owes much to the excellent survey article on algebraic concordance by Charles

Livingston [Liv08].

3.1 Symmetric bilinear forms and Witt groups

We start with defining everything in full generality, so let R be a commutative ring with identity.

The following definitions may be found in [MH73] and [Sch85].

Definition 3.1.1. A symmetric bilinear form on an R-module M is a function

b : M ×M → R

so that b(∗, y) and b(x, ∗) are linear as functions of fixed y and x respectively, and so that

b(x, y) = b(y, x) for all x, y ∈M .

Remark 3.1.2. It is worth mentioning the cousin of the symmetric bilinear form: the quadratic

form. A quadratic form on M is a function q : M → R such that q(αx) = α2x for all α ∈ R and

such that bq(x, y) := q(x+ y)− q(x)− q(y) is a symmetric bilinear form. Notice that, given any

symmetric bilinear form b, we can define the quadratic form qb(x) := b(x, x). Conversely, given

a quadratic form q we can define a symmetric bilinear form bq(x, y) := 1
2 (q(x+y)− q(x)− q(y))

so long as 2 is not a zero-divisor in R. Thus the theory of quadratic forms is equivalent to the

theory of symmetric bilinear forms over rings in which 2 is a unit.

If M is a finitely generated free R-module with basis e1, . . . , en, then any bilinear form b on

M can be written as a matrix B, where

Bij = b(ei, ej).

The integer n is called the dimension of M , and b is called nonsingular if det(B) 6= 0.
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Definition 3.1.3. Let M be a finitely generated free module over R and b a non-singular

symmetric bilinear form on M . We say that (M, b) is Witt trivial if M ∼= P ⊕N with

P = P⊥ := {x ∈M | b(x, y) = 0 ∀y ∈ P}.

In particular, this means that M has dimension 2g for some g, and P has dimension g.1 P is

called a metaboliser for (M, b). The forms (M1, b1) and (M2, b2) are called Witt equivalent if

(M1 ⊕M2, b1 ⊕−b2)⊕ (M ′, b′) is Witt trivial, where (M ′, b′) is some Witt trivial form.

Definition 3.1.4. The Witt group W (R) consists of pairs (M, b) under the operation of direct

sum and under the equivalence relation of Witt equivalence defined above. We may also make

W (R) into a commutative ring by defining multiplication as tensor product.

Theorem 3.1.5. [Sch85, 6.4] If R is a ring in which 2 is a unit then any symmetric bilinear

form (M, b) can be diagonalised over M . In other words, there is a basis e1, . . . , en of M so that

b(ei, ej) = 0 for i 6= j. We write b in the matrix form [d1, . . . , dn] where the di are the diagonal

entries.

Remark 3.1.6. Notice that if ei is replaced with αei, α ∈ R, then the new diagonal form is

[d1, . . . , α
2di, . . . , dn].

3.2 The algebraic concordance group

The algebraic knot concordance group G, as described in Chapter 2, was developed by

Levine [Lev69b] to classify knots within the higher-dimensional geometric concordance groups

Cn and to investigate the structure of C1. We recap some of the definitions using our new

terminology.

Definition 3.2.1. The algebraic concordance group G (or GZ) consists of the set of integral

square matrices A satisfying det(A−AT ) = ±1 up to Witt equivalence.

Definition 3.2.2. The Alexander polynomial of A ∈ G is ∆A(t) := det(A − tAT ), defined up

to multiples of ±t.

Life becomes easier if we work with rational matrices rather than integral ones, so let us

consider the group GQ: square matrices A with entries in Q satisfying (A − AT )(A + AT ) is

non-singular, with the same equivalence relation as in G. The inclusion G → GQ is injective

[Lev69a, Section 3] and so we can try to find invariants in GQ rather than in G.

Henceforth M will be a finite dimensional vector space over Q.

Definition 3.2.3. An isometric structure is a triple (M,Q, T ) where Q is a nonsingular

symmetric bilinear form on M and T is an isometry of M . This means that Q(Tx, Ty) = Q(x, y)

for every x, y ∈M .

Definition 3.2.4. An isometric structure (M,Q, T ) is null-cobordant if (M,Q) has a

metaboliser P which is invariant under T . Two isometric structures (M1, Q1, T1), (M2, Q2, T2)

are cobordant if (M1 ⊕M2, Q1 ⊕−Q2, T1 ⊕ T2) is null-cobordant.

1This follows from the exact sequence

0 → P⊥ →M → Hom(P,R) → 0,

which tells us that dim(M) = dim(P⊥) + dim(Hom(P,R)) = 2 dim(P ).
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We define GQ to be the group of cobordism classes of isometric structures (M,Q, T ) satisfying

∆T (1)∆T (−1) 6= 0, where ∆T is the characteristic polynomial of T .

Theorem 3.2.5. [Lev69a] There is an isomorphism GQ ∼= GQ given by A 7→ (A+AT , A−1AT ).

Proof. Let A ∈ GQ with A non-singular. (Levine [Lev69a, Lemma 8] proves that every matrix

in GQ is equivalent to a non-singular one.) Define P := A−1AT and Q := A+AT . It is easy to

check that PTQP = Q and that the congruence class of A determines the congruence class of

Q and the similarity class of P . Thus (Q,P ) is an isometric structure, which is null cobordant

whenever A is Witt trivial. We need to check that ∆P (1)∆P (−1) 6= 0, but we know that

∆P (t) = det(P − tI)

= det(A−1AT − tI)

= det(A−1) det(AT − tA)

= det(A−1) det(A− tAT )

= c ·∆A(t)

where c ∈ Q, and since A ∈ GQ we know that (A − AT )(A + AT ) is non-singular, so

∆A(1)∆A(−1) 6= 0.

We now need an inverse function from GQ to GQ. Suppose we have computed the map above

A 7→ (Q,P ). Then Q = A(I +A−1AT ) = A(I + P ) so we can recover A from Q(I + P )−1. We

have

AT = Q(I + P−1)−1 = Q(I + P )−1P

so

A−AT = Q(I + P )−1(I − P ).

Since ∆P (1)∆P (−1) 6= 0 we have that A−AT is non-singular. �

We can also define cobordism classes of isometric structures over different fields. For a field

F we will use the notation GF. The idea now is to break down the problem of finding the image

of a class in GQ into the problem of finding the image of a class in GF where F is ‘simpler’. And

even these GF groups can be broken down further by restricting to isometric structures with a

particular characteristic polynomial. This is what motivates the next definition.

Definition 3.2.6. For a polynomial f ∈ F[t], let GfF denote the Witt group of isometric

structures (M,Q, T ) where M is a finite-dimensional vector space over F, ∆T is a power of f ,

and ∆T (1)∆T (−1) 6= 0.

We will need the next lemma in order to see how to factorise characteristic polynomials.

Lemma 3.2.7. For any isometric structure (M,Q, T ) ∈ GF, the characteristic polynomial

∆T (t) is symmetric, i.e. it satisfies ∆T (t) = atd∆T (t−1) where d is the degree of the polynomial

and a ∈ F.

Proof. Let P be a matrix representative of T . By definition, Q = PTQP . We have

∆T (t) := det(P − tI) = det(PT − tI) = det(QP−1Q−1 − tI)

= det(P−1 − tI) = det(−tP−1(P − t−1I))

= td det(−P−1)∆T (t−1).
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�

In fact, it is easy to see that if ∆T (1) 6= 0 then a must be equal to 1 and if furthermore

∆T (−1) 6= 0 then d must be even.

Lemma 3.2.7 tells us that if ∆T factorises then it must do so as
∏
i δ
ki
i

∏
j g

lj
j , where the

δi are distinct irreducible symmetric polynomials and the gj are non-symmetric irreducible

factors that appear in pairs gj(t) and gj(t
−1). The next lemma, proved by Milnor [Mil69] and

Levine [Lev69a], tells us that we need only worry about the symmetric factors.

Theorem 3.2.8. GF ∼= ⊕δGδF where the sum is over all irreducible symmetric polynomials.

Sketch proof. Suppose (M,Q, T ) is an isometric structure over F. Consider the vector space on

which (M,Q) and T are defined as F[t, t−1]-modules, defining the action of t by T . For each

irreducible factor λ(t) of ∆T (t) define Vλ to be

Vλ := ker(λ(t)N ), for N large.

(More specifically, we need N to be at least the multiplicity of λ as a factor of ∆T .) Then our

vector space V is the direct sum of the {Vλ}.
We want to show that if λ and µ are irreducible factors of ∆T with λ(t) and µ(t−1) relatively

coprime, then Vλ and Vµ are orthogonal. We start with the identity

〈m,µ(t−1)Nv〉 = 〈µ(t)Nm, v〉 = 〈0, v〉

for m ∈ Vµ. This shows that Vµ is orthogonal to µ(t−1)NV .

If λ(t) and µ(t−1) are coprime then the map φ : V → V defined by φ(v) = µ(t−1)Nv maps the

subspace Vλ isomorphically onto itself. This completes the proof that Vλ and Vµ are orthogonal.

We have already seen that ∆T factorises as
∏
i δ
ki
i

∏
j g

lj
j , where the δi are distinct irreducible

symmetric polynomials and the gj are non-symmetric irreducible factors that appear in pairs

gj(t) and gj(t) := gj(t
−1). We have

V =
⊕
i

Vδi ⊕
⊕
j

(Vgj ⊕ Vgj )

and the restriction of (M,Q, T ) to each of these summands gives an isometric structure. What

we have shown in the earlier part of the proof is that the factors Vgj ⊕ Vgj are null-cobordant.

It follows that (M,Q, T ) is null-cobordant if and only if its restriction to each Vδi is null-

cobordant. �

We said earlier that we would like to break down the study of a class in GQ into the study

of classes in GF where F is simpler. The following result of Levine [Lev69a, 17] shows us which

fields to consider.

Theorem 3.2.9. An isometric structure over a global field F is null-cobordant if and only if

the extension over every completion of F is null-cobordant.

What are the completions of the global field Q? It turns out that these are the real numbers

R and the p-adic rationals Qp. We will learn more about these in the next section, but first we

shall bring together the theorems in this section, together with another result of Levine [Lev69a,

16], for a definitive guide as to when an isometric structure in GQ is trivial.
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Theorem 3.2.10.

• A class (M,Q, T ) ∈ GQ is trivial if and only if it is trivial in GδF for every δ an irreducible

symmetric factor of ∆T and for F = R and F = Qp for every prime p.

• A class (M,Q, T ) ∈ GδF, where F = R or F = Qp and δ is irreducible symmetric, is trivial

if and only if ∆T (t) is δe with e even and (M,Q) is trivial in the Witt group of F, W (F).

The next section will focus on understanding these Witt groups.

3.3 The Witt groups W (R) and W (Qp)

We begin this section with a short discussion of the p-adic numbers. Given a prime p, any

integer n may be written as n = a0 + a1p + a2p
2 + · · · + akp

k for some k ∈ N and ai ∈ Fp,
where Fp denotes the finite field of p elements. The p-adic integers, denoted Z̃p, are defined to

be numbers of the form
∞∑
i=0

aip
i, ai ∈ Fp

and the p-adic rationals, denoted Qp, are the field of fractions of this ring. A p-adic rational

may be written as
∞∑

i=−k

aip
i, ai ∈ Fp

for some k ∈ N.

Example 3.3.1. Let us look at some elements of Q5. We have

1

2
= 3 +

∞∑
i=1

2(5i) =: (3, 2, 2, 2, . . . )

because multiplying both sides by 2 gives (1, 0, 0, . . . ) on each side. Thus 1
2 is a 5-adic integer.

The number −1 is written in Q5 as (4, 4, 4, . . . ) since this is the unique number which, when

added to 1, makes zero. This is also a 5-adic integer.

Notice that any element of Z̃p with a0 = 0 cannot have a multiplicative inverse in Z̃p. The

group of units of Z̃p, denoted Z̃∗p, are those elements with a0 6= 0. Every element of Qp can be

written as pnu with u ∈ Z̃∗p and n ∈ Z.

Remark 3.3.2. In the ring of integers Z there are many maximal ideals - one for each prime

number p. In the p-adic integers Z̃p there is precisely one non-zero maximal ideal, meaning that

Z̃p is a discrete valuation ring (and therefore a local ring). By putting together the information

about all the local rings we hope to reconstruct the behaviour of the global ring. This is the

rationale behind studying Q by looking at Qp (for all primes p) and R (which we can think of

as Q∞).

Given any element in W (Q), we get elements in W (R) and W (Qp) by extension of scalars,

i.e. by tensoring over Q with R and Qp respectively. For this mapping to be informative, we

need to know the structure of W (R) and W (Qp). Let us start with the easy one.

Lemma 3.3.3. W (R) ∼= Z.
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Proof. Every real number is either a square or the negative of a square; thus every quadratic

form can be diagonalised as [1, . . . , 1,−1, . . . ,−1]. In W (R) we have [1,−1] = 0, so every class

in W (R) is determined by the sum of the signs of its diagonalisation. This value is called the

signature, denoted by σ, and is an isomorphism between W (R) and Z. �

To start our investigation of W (Qp), we need to understand what the squares in Qp look

like.

Lemma 3.3.4. If p is odd, the quotient Q∗p/(Q
∗
p)

2 is isomorphic to Z2⊕Z2. The four distinct

elements are {1, u, p, pu} where 0 < u < p is not a square modulo p.

Proof. We first prove that a unit u = a0 + a1p + a2p
2 + . . . in Z̃p is a square if and only if

a0 is a square in Zp. This is due to Hensel’s Lemma (see, for example, [Eis95, Theorem 3.7]

) which states that if rk is a solution to the congruence f(x) ≡ 0 mod pk for k ≥ 1, and if

f ′(rk) 6≡ 0 mod p, then there exists a number rk+1 which is a solution to f(x) ≡ 0 mod pk+1

and rk ≡ rk−1 mod pk. If a0 = b20 in Zp we can let f(x) = x2 − u, so f ′(x) = 2x and 2(b0) 6= 0

in Zp. Hensel’s Lemma lets us construct the coefficients b1, b2 . . . in the p-adic integer which is

the square root of u.

Up to a factor of an even power of p, every element of Q∗p can be written as u or pu where

u is a unit in Z̃p. From the first half of this proof, u is a square if and only if a0 is a square in

Zp, and Z∗p/(Z
∗
p)

2 ∼= Z2. Since p is not a square, the result follows. �

The result for p = 2 is more complicated and a proof may be found in [Sch85].

Lemma 3.3.5. The quotient Q∗2/(Q
∗
2)2 is isomorphic to Z2 ⊕ Z2 ⊕ Z2. The eight distinct

elements are the set {±1,±2,±5,±10}.

Now that we understand the squares of Qp, we have a way to map W (Qp) into yet simpler

Witt groups – at least, in the case when p is odd.

Theorem 3.3.6. For p odd, W (Qp) ∼= W (Fp)×W (Fp).

Proof. By Theorem 3.1.5, Remark 3.1.6 and Lemma 3.3.4, any form in W (Qp) can be

diagonalised as [u1, . . . , uk, pv1, . . . , pvj ] where the ui and vi are units in Z̃p. For a unit

u = a0 + a1p+ a2p
2 + . . . write u = a0 ∈ F∗p. Then the map

[u1, . . . , uk, pv1, . . . , pvj ] 7→ ([u1, . . . , uk], [v1, . . . , vj ])

is the desired isomorphism. For future reference, we will denote this isomorphism by ψp⊕∂p. �

Theorem 3.3.7. W (Q2) ∼= Z8 ⊕Z2 ⊕Z2.

Proof. The generators are [1], [−1, 5] and [−1, 2]. For a proof, see [Sch85, Chapter 5, Theorem

6.6]. �

To fully understand W (Qp) when p is odd, it thus suffices to understand W (Fp). The

following theorem deals with this question, including the case of W (F2) for completeness.

Theorem 3.3.8.

W (Fp) =


Z2 if p = 2

Z2 ⊕Z2 if p ≡ 1 mod 4

Z4 if p ≡ 3 mod 4.
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Proof. For p = 2 every form can be represented by a sum of the forms [1] and

(
0 1

1 1

)
. The

first of these has order 2 in W (F2) and the second is Witt trivial.

For p odd, the group of units F∗p is cyclic of even order p − 1, so F∗p/(F
∗
p)

2 = Z2. Modulo

squares then, every number is equivalent to 1 or to a where a is not a square. Thus every form

in W (Fp) is equivalent to [1, . . . , 1, a, . . . , a]. If p = 1 mod 4 then −1 is a square, so any form

[b, b] = [b,−b], which is Witt trivial. Hence any non-trivial form is equivalent to [1], [a] or [1, a]

and each of these is of order 2.

If p = 3 mod 4, then −1 is not a square so we can let a = −1. Since [1,−1] is trivial, every

form is equivalent to a multiple of [1] or a multiple of [−1]. The form [b, b] is nontrivial but

[b, b, b, b] is trivial, with metaboliser< (1, 0, a, c), (0, 1,−c, a) > where (a, c) satisfy 1+a2+c2 = 0.

The pair (a, c) exist by the Pigeonhole Principle: there are (p + 1)/2 values for x2 in Fp and

also (p+ 1)/2 values for −1− y2. There are only p values in Fp so the equation x2 = −1− y2

must have a solution. �

We now understand all that we need to know about the Witt groups of the completions of

Q. There is one remaining remark, which concerns the isomorphism in the proof of Theorem

3.3.6. We denoted this isomorphism by ψp ⊕ ∂p, and it turns out that we may safely ignore

ψp and just use the map ∂p. The rest of this section gives a proof of this fact and further

illuminates how we can understand the group W (Q) by looking at all the local Witt groups

W (Qp) and W (R).

Recall that the homomorphism ∂p : W (Q)→ W (Fp) (which factors through W (Qp)) maps

an element [α] (where α = pn xy with x and y coprime to p) to
[
x
y

]
if n is odd and 0 if n is even.

A quick example illustrates this.

Example 3.3.9. Let p = 5.

∂p

([
13

50
,

15

2

])
= ∂p

([
5−2

(
13

2

)
, 5

(
3

2

)])
=

[
3

2

]
=

[
22

3

2

]
= [6] = [1] .

Notice that for any α ∈ Q, ∂p(α) = 0 for almost all p. We may thus take the direct sum of

all these homomorphisms to get one giant homomorphism ∂ : W (Q)→ ⊕pW (Fp).

Theorem 3.3.10. The sequence

0→ Z
i−→W (Q)

∂−→ ⊕W (Fp)→ 0

is split exact, where ∂ = ⊕∂p and i maps 1 ∈ Z to [1] ∈W (Q).

Sketch proof. For each k ∈ N, let Lk be the subring of W (Q) generated by [1], [2], . . . , [k]. Then

L1 ⊂ L2 ⊂ L3 ⊂ . . .

and ∪iLi = W (Q). Note that L1
∼= Z and Lk = Lk−1 unless k is prime. Each of the

homomorphisms ∂p induce an isomorphism Lp/Lp−1 →W (Fp). Using these isomorphisms and
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an argument by induction, one can show that the homomorphisms

Lk → ⊕p≤kW (Fp)

are surjective with kernel equal to L1. Passing to the direct limit as k →∞ we get that

0→ Z→W (Q)→ ⊕W (Fp)→ 0

is exact. Using the signature homomorphism W (Q)→W (R)→ Z (defined in Lemma 3.3.3) it

follows that the sequence is actually split exact. �

3.4 Invariants of algebraic knot concordance

In the final section of this chapter we will investigate the set of algebraic concordance invariants

given by Levine in [Lev69a]. In Section 3.2 we saw that, in order to find the algebraic

concordance order of a knot with image (M,Q, T ) ∈ GQ, we would have to look at the image of

(M,Q, T ) in W (Qp) for every prime p. Since we wish to classify our knots in a finite amount

of time, we need to find a way to reduce the list of primes that we have to check.

Definition 3.4.1. Let (M,Q, T ) ∈ GQ be an isometric structure, λ(t) be an irreducible

symmetric factor of ∆T (t) and p be a prime.

• ελ(M,Q, T ) is the exponent, modulo 2, of λ(t) in ∆T (t).

• σλ(M,Q, T ) is the signature of (M,Q) ∈W (R) restricted to the λ(t)-primary component.

• µpλ(M,Q, T ) is µ(M ′, Q′) where (M ′, Q′) is the image of (M,Q) in W (Qp) restricted to

the λ(t)-primary component, where µ is defined by

µ(α) = (−1,−1)
r(r+3)

2 (det(α),−1)rS(α)

and where (−,−) is the Hilbert symbol for Qp, S(−) is the Hasse invariant and α has

rank 2r.

This last definition of µ needs some more explanation. We will give the definitions of Hilbert

symbol and Hasse invariant, followed by a formula for the Hilbert symbol in the case of the

field being Qp.

Definition 3.4.2. The Hilbert symbol of a local field K is the function (−,−) : K∗ × K∗ →
{−1, 1} defined by

(a, b) =

1 if z2 = ax2 + by2 has a non-zero solution (x, y, z) ∈ K3

−1 otherwise.

Definition 3.4.3. The Hasse invariant, or Hasse symbol, of a quadratic form α diagonalised

as [d1, . . . , dn] over a local field K is

S(α) =
∏
i<j

(di, dj) ∈ {−1, 1}

where (−,−) is the Hilbert symbol.
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3.4. Invariants of algebraic knot concordance

Proposition 3.4.4. ([Ser73, Chapter 3, 1.2]) If K = Qp and if we write a = pαu, b = pβv for

units u, v ∈ Z̃∗p, then we have

(a, b)p = (−1)αβε(p)
(
u

p

)β (
v

p

)α
for p 6= 2

(a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u) for p = 2

where ε(n) = n−1
2 , ω(n) = n2−1

8 and
(
n
p

)
is the Legendre symbol (see [Ser73] for more details

about this).

Theorem 3.4.5. ([Lev69a, 21]) The functions {ελ, σλ, µpλ} are a complete set of cobordism

invariants for an isometric structure (M,Q, T ) in GQ, when taken over every possible λ and

every prime p.

Of these three invariants, σ is the only one which takes values in a non-finite group, so is

the only one which can detect elements of infinite order. The invariant ε is of order 2 and µ is

of order 4 (as we shall see), so this proves that 1, 2 and 4 are the only finite orders that a knot

may have in the algebraic concordance group.

We will now look at practical ways to detect knots of order 2, 4 and ∞. Knots of order 1,

i.e. algebraically slice knots, are those for which all invariants {ελ, σλ, µpλ} vanish, where λ runs

over all the irreducible symmetric factors of the Alexander polynomial ∆K(t) and p runs over

every prime.

3.4.1 Detecting infinite order elements in G

If a knot has infinite order in G then it must have signature σλ 6= 0 for some symmetric

irreducible factor λ of ∆T . Over the real numbers, such irreducible symmetric polynomials are

of the form t2 + 2at+ 1, up to a unit. The roots are

t = −a±
√
a2 − 1

and because the polynomial is irreducible we must have a2 < 1. Writing a = cos θ gives the

roots as − cos θ ± i sin θ, which we can write as eiφ for φ = ±(π − θ).
We need to know a formula for computing σλ at these irreducible polynomials.

Definition 3.4.6. For a knot K with Seifert matrix V , and for a unit modulus complex number

ω, the ω-signature σω is the signature of the Hermitian matrix

(1− ω)V + (1− ω)V T .

The ω-signature of V , as a map S1 → Z, is continuous with jumps only at the unit roots

of the Alexander polynomial of K. More details about the ω-signature and these jumps are

provided in Section 9.2; for now we need only the following theorem.

Theorem 3.4.7. ([Mat77]) If a knot K with Seifert matrix V has δa = t2 + 2at + 1 as a

factor of its Alexander polynomial ∆K(t), then σδa(V + V T ) equals, up to sign, the jump in

the ω-signature function at eiφ where cosφ = −a.

If the ω-signature of a knot has no jumps, i.e. is zero at every ω, then the knot must be of

finite order in the knot concordance group.
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Chapter 3. Finding the algebraic concordance class of a knot

3.4.2 Detecting order 4 elements in G

From our previous analysis of Witt groups we know there is a chance that a knot may have

algebraic order 4, since W (Fp) ∼= Z4 for p ≡ 3 mod 4 and there is a factor Z8 ⊂ W (Q2). The

following theorem was essentially worked out by Levine [Lev69a, 22] and gives exact criteria for

a knot to have algebraic order 4. Interestingly, there are no elements in G with image of order

4 in W (Q2). The proof given here uses elements from Levine’s paper as well as Livingston’s

paper [Liv08, 3.1].

Theorem 3.4.8. A class (M,Q, T ) ∈ GQ which is the image of an element of G is of order 4 if

and only if

• σλ(M,Q, T ) = 0 for every λ,

• There exists an irreducible symmetric factor λ(t) of ∆T (t) with ελ(M,Q, T ) = 1 and with

λ(1)λ(−1) = pnq for a prime p ≡ 3 mod 4, n odd and q relatively prime to p.

Proof. The signature function σ is additive with values in Z, so if it is not zero then (M,Q, T )

must have infinite order.

Levine [Lev69a, 19] proves that, for α ∈ GQ and 2d = degree λ(t),

µpλ(2α) = ((−1)dλ(1)λ(−1),−1)ελ(α).

In particular, if ελ(α) = 0 then this equals 1 and α has order at most 2. So suppose there is

some factor λ(t) of ∆T (t) with odd exponent in ∆T (t).

For α to have order 4, we need that µpλ(2α) = −1 for some prime p. We need to consider

two cases: p odd and p = 2.

p is odd: From Proposition 3.4.4 we have

(a,−1)p =

(
−1

p

)n
=
(

(−1)
p−1
2

)n
where a = pnu for a unit u ∈ Z̃∗p. Immediately we see that if p ≡ 1 mod 4 then µpλ(2α) = 1

and α would be of order 2. So assume p ≡ 3 mod 4. For α to be of order 4 we also need the

exponent n to be odd. In our case

a = (−1)dλ(1)λ(−1)

so this means we need p to divide λ(1)λ(−1) with odd exponent.

p = 2: We want to show that µ2
λ(2α) = 1 for any class α. This would mean that the prime

p = 2 cannot detect elements of order 4. We have

(a,−1)2 = (−1)ε(u)

where a = 2nu for u coprime to 2. As before, we have a = (−1)dλ(1)λ(−1) with degree(λ) = 2d.

We will show that this is always congruent to 1 modulo 4, meaning that ε(u) = 0 and µ2
λ(2α)

is always equal to 1.

Write

λ(t) = a0 + a1t+ · · ·+ ad−1t
d−1 + adt

d + ad−1t
d+1 + · · ·+ a0t

2d
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3.4. Invariants of algebraic knot concordance

Since α is the image of an element of G, we have that ∆T (1) is odd. Thus l := λ(1) is odd. We

have

l = 2(a0 + · · ·+ ad−1) + ad = 2aeven + 2aodd + ad

where aeven and aodd are the sums of the coefficients with even or odd subscripts, respectively.

We also have

λ(−1) = 2aeven − 2aodd + (−1)dad = 2aeven − 2aodd + (−1)d(l − 2aeven − 2aodd).

If d is even then λ(−1) = l−4aodd ≡ l mod 4. If d is odd then λ(−1) = −l+4aeven ≡ −l mod 4.

In both cases we have (−1)dλ(1)λ(−1) ≡ l2 mod 4, and since l is odd this is 1 modulo 4. �

We rewrite the result of Theorem 3.4.8 in a way that will be useful to us in Chapter 4.

Corollary 3.4.9. If a knot K is of order 4 in the algebraic concordance group G then for some

prime p ≡ 3 mod 4 and some symmetric irreducible factor g(t) of ∆K(t), p divides g(−1) and

g has odd exponent in ∆K .

3.4.3 Detecting order 2 elements in G

Order 2 via the exponent map

If a knot has all its signatures σλ equal to zero and is known not to be of order 4 by Corollary

3.4.9 but has ελ = 1 for some irreducible symmetric λ, then such a knot must be an element of

algebraic order 2.

Order 2 in W (Fp) for p ≡ 1 and p ≡ 3 mod 4

We now suppose that we have a knot whose signatures σλ are all zero, which is known not to

be of order 4 and which has ελ = 0 for all λ. We wish to compute the image of this knot in

W (Fp) for primes p ≡ 1 modulo 4, and seek some way to eliminate the majority of such primes

from consideration. The hope is that, as with Corollary 3.4.9, we only need to consider those

primes which divide ∆K(−1). Unfortunately the situation is somewhat more complicated.

The following is Theorem 4.1 from [Liv08], where the notation ∆V is equivalent to ∆K and

is the Alexander polynomial associated to the matrix V .

Theorem 3.4.10. Let V be a non-singular Seifert matrix and suppose that each irreducible

symmetric factor of ∆V (t) has even exponent. Then for any prime p that does not divide

2 det(V ) Disc(∆V (t)) we have that V represents zero in GQp , where ∆V (t) denotes the product

of all the distinct irreducible factors of ∆V .

The discriminant of the Alexander polynomial is closely related to the determinant of

the knot. The determinant of a knot K, denoted det(K), is defined to be det(V + V T ) =

∆V (1)∆V (−1). Notice that the primes dividing det(K) are exactly those dividing ∆V (−1), so

we will assume for now that the Alexander polynomial has no repeated irreducible factors.

Write the Alexander polynomial as

∆V (t) = det(V )(t2n + a1t
2n−1 + · · ·+ a1t+ 1).
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Chapter 3. Finding the algebraic concordance class of a knot

Then the discriminant of ∆V (t) is the product of the squares of the differences of the roots

Disc(∆V (t)) = det(V )4n−2
∏
i<j

(αi − αj)2

where the roots αi lie in some algebraic closure of Q. The Alexander polynomial is symmetric

so the roots come in inverse pairs: write αi = 1
αn+i

for i = 1, . . . , n. Since ±1 is not a root,

α 6= 1
α and we can re-write the discriminant as

Disc(∆V (t)) = det(V )4n−2
n∏
i=1

(αi −
1

αi
)2

∏
αj 6= 1

αi
i<j

(αi − αj)2.

Let us re-write the first product as follows:

n∏
i=1

(αi −
1

αi
)2 =

1∏n
i=1 α

2
i

n∏
i=1

(α2
i − 1)2 =

1∏n
i=1 α

2
i

n∏
i=1

(αi − 1)2(αi + 1)2.

Now let us find a formula for the determinant. We have

∆V (t) = det(V )

n∏
i=1

(t− αi)(t−
1

αi
)

by definition of the αi. The determinant is therefore

∆V (1)∆V (−1) = det(V )2
n∏
i=1

(1− αi)(1−
1

αi
)(1 + αi)(1 +

1

αi
)

= (−1)n det(V )2
1∏n

i=1 α
2
i

n∏
i=1

(αi − 1)2(αi + 1)2.

The result of these manipulations is the formula in the next Lemma.

Lemma 3.4.11. If the Alexander polynomial ∆V (t) of a knot K has no repeated irreducible

factors, then the discriminant of ∆V (t) is related to the determinant of K by the following

formula.

Disc(∆V (t)) = (−1)n det(V )4n−4 det(K)
∏

αj 6= 1
αi

i<j

(αi − αj)2.

Remark 3.4.12. The discriminant of a polynomial p(t) may be expressed as an integer

polynomial in the coefficients of p (see, for example, Proposition 7.5 in [Gri07]). Since the

Alexander polynomial has integer coefficients, the discriminant will therefore be an integer.

The determinant of K is also an integer. It therefore does not matter which algebraic closure

we use to find the roots αi, in terms of deciding which primes divide the discriminant but not

the determinant.

Remark 3.4.13. In fact, it is fairly rare for a prime other than 2 to divide the discriminant

but not the determinant of K. Of the 41 knots forming a basis for the kernel of the signature

function (see Section 4.1) there are 12 knots with this property. This goes down to only one

knot out of the 11 knots in B4 (see Section 4.4), which is the set of knots that are trivial in

W (Fp) for all primes p dividing the determinant.
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3.4. Invariants of algebraic knot concordance

Order 2 in W (Fp) for p ≡ 3 mod 4

It may happen that a knot is detected to be of order 2 in W (Fp) for p ≡ 3 mod 4. These Witt

groups are isomorphic to Z4, so it is possible that an element representing 2 ∈ Z4 arises as

twice an element of order 4. If this is the case, then all other Z2-valued invariants will vanish.

(Such examples will occur at the end of Section 4.2.) The following theorem will help us to

eliminate such a possibility.

Theorem 3.4.14. Suppose the symmetric factors of the Alexander polynomial ∆K(t) of a

knot K factor (over C) as atk
∏

(t − ωi) with all ωi distinct unit complex numbers. Then the

jump jω(K) in the ω-signature function of K is 1 or 0 modulo 2 depending on whether ω = ωi

for some i or not.

Proof. (Taken from Appendix A of [HKLar].) Let V be a Seifert matrix for the knot K. Write

A(t) = (1− t)V + (1− t−1)V T = (1− t)(V − t−1V T ) ∈W (C(t), I)

so the determinant of A(t) is (1− t)2n∆K(t−1). For a unit complex number ω, the ω-signature

σω(K) is simply the signature of A(ω), taking the average of the one-sided limits when A(ω) is

singular. Since σω : S1 → Z is continuous except at these singularities, it is a constant function

with jumps. Define the jump function jK(ω) : S1 → Z by

jK(eiθ) =
1

2

(
lim
x→θ+

σeix(K)− lim
x→θ−

σeix(K)

)
.

(Despite the factor of 1
2 , the jump function is actually integer-valued, as will be seen shortly.)

Since we are considering A(t) as an element of W (C(t), I), we consider its determinant as

an element of C(t)∗/N , where (as in Chapter 2) N is the subgroup of C(t)∗ generated by norms.

Thus we may write

det(A(t)) = atk
2n∏
i=1

(t− ωi)

where the ωi are distinct unit complex numbers. This is because det(A(t)) = I(det(A(t))) so

if (t− ω) is a factor then (t− ω−1) is also a factor, and if ω is not a unit complex number then

these two factors form a norm and can be removed from the product. If ω is a unit complex

number then any factors of (1−ω)2 can also be removed. Furthermore, the symmetry of det(A)

allows us to conclude that k = −n and a2 =
∏
ωi
−1.

Now, we may diagonalise any class in W (C(t), I), and the diagonal entries are also of the

form at−k
∏2k
i=1(t − ωi) for some distinct set of ωi ∈ S1 and for a2 =

∏
ωi
−1. Some clever

manipulation gives us the following lemma.

Lemma 3.4.15. If d = at−k
∏2k
j=1(t− ωj), if t = eiθ and if ωj = eiθj then

d = ±22k
2k∏
i=1

sin((θ − θj)/2).
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Chapter 3. Finding the algebraic concordance class of a knot

Proof. Write

sin((θ − θj)/2) =
1

2i

(
ei(θ−θj)/2 − e−i(θ−θj)/2

)
=

1

2i

(
ei(θ−θj)/2 − e−i(θ−θj)/2

)(
ei(θ+θj)/2/ei(θ+θj)/2

)
=

1

2i

(
eiθ − eiθj

)
/(ei(θ+θj)/2)

=
1

2i
(t− ωj)/(tωj)1/2

So
2k∏
j=1

sin((θ − θj)/2) = (−1)k2−2kat−k
2k∏
j=1

(t− ωj).

�

If I ∈ W (C(t), I) is a 1-dimensional form with representative d as given in Lemma 3.4.15

then it is clear that

• σω(I) = 0 or ±1 depending on whether ω = ωj or not.

• jI(ω) = ±1 or 0 depending on whether ω = ωj or not.

where the second point is seen from the sin form of d, since this changes sign as θ goes from

θj + ε to θj − ε.
Since the signature and jump functions are additive, this gives us the result that the jump

jK(ω) is 1 mod 2 if (t − ω) is a factor of det(A(t)) (and therefore of the symmetric part of

∆K(t)) and 0 mod 2 otherwise. This completes the proof. �

In particular, this means that if an Alexander polynomial of a knot has any distinct complex

roots of unit modulus, then the signature function will jump at those roots, meaning that the

knot must be of infinite order.
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Chapter 4

Algebraic concordance

classification of 9-crossing knots

In this chapter we use the theorems from Chapter 3 to identify the subgroup of the algebraic

concordance group G generated by the prime knots of 9 or fewer crossings. From this

‘classification’ we can easily decide what order a linear combination of 9-crossing knots has

in G and, in particular, which linear combinations are algebraically slice.

To begin, let us recap the definitions made in Section 1.5.2.

Let E = {31, 41, 51, 52, 61, 62, 63, 71, . . . , 77, 81, . . . , 821, 91, . . . , 949}, where |E| = 87 since the

list includes the distinct reverses 8r17, 9r32 and 9r33.

Notation. Let CE denote the subgroup of C generated by E. Denote by FE the free abelian

group generated by E.

There are natural maps FE
ψ−→ CE

φ−→ G, and in this chapter we wish to analyse the kernel

and image of φ ◦ ψ. (A summary of the result may be found in Section 4.5.) We will be using

the invariants described in Definition 3.4.1:

• ελ(M,Q, T ): the exponent, modulo 2, of λ(t) in ∆K(t),

• σλ(M,Q, T ): the signature of (M,Q) ∈W (R) restricted to the λ(t)-primary component,

• µpλ(M,Q, T ): µ(M ′, Q′) where (M ′, Q′) is the image of (M,Q) in W (Qp) restricted to the

λ(t)-primary component,

where λ runs over the irreducible symmetric factors of the Alexander polynomial ∆K(t) and

p is a prime. For a Seifert matrix V , recall that Q = V + V T and T = V −1V T . However,

instead of using µpλ directly we will simply look at the image of knots in the Witt groups W (Qp)

restricted to each λ(t)-primary component.

If a knot has no irreducible symmetric factors, it must be algebraically slice. Similarly, if

the image of the knot under all of these maps is zero, then it must be algebraically slice. That

is, if the ω-signature σω(V ) is zero for every unit complex number ω which is not a root of the

Alexander polynomial ∆K(t); if the exponent of every irreducible symmetric factor of ∆K(t) is

even; and if the image of K in W (Qp) is zero for every prime p, then K = 0 ∈ G.
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Chapter 4. Algebraic concordance classification of 9-crossing knots

4.1 Analysing the signature function

We begin by finding a basis for the knots of infinite order in G by analysing the signature

function of each knot. Given a Seifert matrix V for a knot K, the signature function S1 → Z

is defined for each unit complex number ω as follows

σω(V ) := sign((1− ω)V + (1− ω)V T )

and is continuous except at unit roots of the Alexander polynomial ∆K(t) := det(V − tV T ). If

ω is a unit root of ∆K , we define σω(V ) to be the average of the limit on either side.

By the analysis of Section 3.4.1 we know that if this function is non-zero for any value of

ω ∈ S1, then the knot K is of infinite order in G. Conversely, by Theorem 3.4.5 if σω(V ) = 0

for every ω ∈ S1 then K is of finite order in G.

Since the signature function of a knot K is continuous except at the unit roots of ∆K(t),

and is integer-valued, this means that σω(V ) is constant between unit roots of ∆K(t). This

simplifies our computations because it means that, to determine the full signature function of

any knot, we need only take a sample of the signature values in between each pair of the unit

roots of ∆K(t). Furthermore, we need only do this for the unit roots with positive imaginary

part, because the signature function is symmetric: σω(V ) = σω(V ).

The set of unit roots, with positive imaginary part, of Alexander polynomials of knots in E

consists of 70 values, which we shall call eiθ1 , . . . , eiθ70 ordered by argument. We shall choose

the midpoint of each consecutive pair of values:

δ1 := 1; δi := exp

(
i
(θi−1 + θi)

2

)
for 1 < i ≤ 70.

Evaluating the signature function of each knot at each of the δi gives us a complete picture of

the signature function of each knot. We put the values into an 84×70 matrix and then perform

column operations to get it in reduced echelon form. (See Appendix A for this reduced-form

matrix.) From this we can read off a basis for the kernel of the signature function as well as a

basis for the knots which are of infinite order.

The following is a linearly independent set of 46 knots which form a basis in FE for the

knots of infinite algebraic concordance order:

C∞ = {31, 51, 52, 62, 71, . . . , 76, 82, 84, . . . 87, 814, 816, 819, 91, 93, . . . , 97, 99, 910, 911, 913, 915,

917, 918, 920, 921, 922, 925, 926, 931, 932, 935, 936, 938, 943, 945, 947, 948, 949}

The following 41 knots are a basis for the kernel of the signature function:

Bσ = {41, 61, 63, 77, 81, 83, 88, 89, (810 + 31), (811 − 31), 812, 813, (815 − 72 − 31), 817, 818, 820,

(821 − 31), (92 − 74), (98 − 814), (912 − 52), 914, (916 − 73 − 31), 919, (923 − 74 − 31),

924, 927, (928 − 31), (929 + 31), 930, 933, 934, 937, (939 + 72), (940 − 31), 941,

(942 + 85 − 31), 944, 946}

∪ {(817 − 8r17), (932 − 9r32), (933 − 9r33)}

These knots must all have finite order in G, and we will now analyse them further to determine

what order they have in G.
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4.2. Elements of algebraic order 4

4.2 Elements of algebraic order 4

In this section we begin our first analysis of the Witt groups W (Fp). Recall Corollary 3.4.9,

which states that

Corollary 3.4.9. If a knot K is of order 4 in the algebraic concordance group G then for some

prime p ≡ 3 mod 4 and some symmetric irreducible factor g(t) ∈ Z[t, t−1] of ∆K(t), p divides

g(−1) and g has odd exponent in ∆K .

We can see immediately that if det(K) = ∆K(−1) factors into primes that are all congruent

to 1 mod 4 then K cannot be of order 4. In this section we will thus consider the knots in

Bσ whose determinant contains a prime divisor that is congruent to 3 modulo 4. For each

of these knots and for each prime congruent to 3 mod 4 that divides λ(−1) for λ a factor of

∆K (including the factors of even exponent), we will calculate the image of V + V T in W (Fp)

restricted to the λ(t)-primary component, via the map ∂p (see Theorem 3.3.6 and Example

3.3.9). This image is found by diagonalising V +V T to consist of square-free integers, removing

the entries that are coprime to p and dividing the rest by p.

The knots that we have to deal with are:

77, (810 + 31), (811 − 31), (815 − 72 − 31), 818, 820, (821 − 31), (92 − 74), (98 − 814),

(912 − 52), (916 − 73 − 31), (923 − 74 − 31), 924, (928 − 31), (929 + 31), 934, (939 + 72),

(940 − 31), (942 + 85 − 31), (932 − 9r32).

The last knot will clearly be zero in any Witt group W (Fp).

The results of the Witt group calculations can be found in Appendix C. From performing

column operations on this matrix we can deduce the following:

• That C4A := {77, 934} are independent generators of Z4 summands in G.

• That C21 := {(815 − 72 − 31), 818, (92 − 74), (912 − 52), (942 + 85 − 31)} are independent

generators of Z2 summands in G.

• That B1 := {(821− 818− 31), (916− 818− 73− 31), (923− 92− 31), (928− 818− 31), (929−
818 + 31), (940− 818− 31), (810 + 31), (811− 31), 820, (98− 814), 924, (939 + 72), (932− 9r32)}
cannot be detected in the Witt groups W (Fp) for p ≡ 3 mod 4.

Remark 4.2.1. Notice that since 77 and 934 are detected at different primes (i.e. 77 is non-

trivial in W (F7) while 934 is not) it is clear that no linear combination a77 + b934, a, b 6= 0

mod 4, is algebraically slice. Similarly, we know that the elements of C21 are linearly independent

since they are detected using different polynomials (even though some are detected using the

same prime).

It is worth further analysing the knots which have been detected as elements of order 2.

Since they have been detected using a Z4-valued function, a natural question is whether these

elements of order 2 could be twice elements of algebraic order 4. Suppose that K = 2L for

some knot L of order 4. Then the order of K could not be detected by any Z2 invariants (for

example, by the Witt groups W (Fp) with p ≡ 1 mod 4). Let us calculate the other Witt groups

for the knots with a “1 mod 4” prime in their determinant and see what they tell us.
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Polynomial t2 − 3t+ 1 4t2 − 7t+ 4

Prime 5 5

818 (1, 0) 0

(92 − 74) 0 (1, 1)

(912 − 52) (1, 0) 0

Since these knots are all nontrivial in W (F5), they cannot be twice another knot.

The knots K1 := (815−72−31) and K2 := (942+85−31) do not have any factors congruent to

1 mod 4 in their determinants and so we must try different tactics. If K1 = 2L1 and K2 = 2L2

then

∆L1(t) = (1− t+ t2)(3− 5t+ 3t2)

∆L2(t) = (1− t+ t2)(1− 2t+ t2 − 2t3 + t4).

Both polynomials contain four distinct roots on the unit circle in C. This means that the

signatures of L1 and L2 are non zero (by Theorem 3.4.14), and so the knots cannot be of

algebraic order 4.

4.3 The exponent map

For the next section of the algebraic classification, we consider the map ελ which looks at the

exponent of each of the symmetric irreducible factors λ of ∆K(t) and evaluates them mod 2.

The knots now of concern are those in B1 along with those in Bσ whose determinants did not

contain a 3 mod 4 prime factor.

At this point (although we could have done this at the beginning) we may isolate those

knots whose Alexander polynomial does not contain any symmetric irreducible factors. These

are:

B2 := {61, 88, 89, 927, 941, 946}

and they are all algebraically slice.

The following knots have a unique (i.e. not found in any other knot) irreducible factor with

odd exponent in their Alexander polynomial:

C22 := {63, 81, 83, 812, 813, 817, 914, 919, 930, 933}.

The following knots’ Alexander polynomials contain the factor (1 − 3t + t2) with odd

exponent:

41, (916 − 818 − 73 − 31), 924, (928 − 818 − 31), (929 − 818 + 31), 937, (939 + 72), (940 − 818 − 31)

whilst those in the next list contain the factor (1− 4t+ 7t2 − 4t3 + t4):

(928 − 818 − 31), (929 − 818 + 31), 944.

We take the first knot in each list (i.e. the one with smallest crossing number) as a generator,

and differences of the others to be in the kernel of the exponent map. Thus a basis of the kernel
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of the exponent map is

B3 = {(810 + 31), (811 − 31), 820, (821 − 818 − 31), (98 − 814), (916 − 818 − 73 − 41 − 31),

(923 − 92 − 31), (924 − 41), (929 − 928 + 2(31)), (937 − 41), (939 + 72 − 41),

(940 − 818 − 41 − 31), (944 − 928 + 818 − 41 + 31),

(817 − 8r17), (932 − 9r32), (933 − 9r33)}.

4.4 More Witt group analysis

By Theorem 3.4.10, any elements of order 2 in B3 are detected only at primes that divide the

determinant of the Seifert form (i.e. the leading coefficient of the Alexander polynomial), the

discriminant of the (reduced) Alexander polynomial and in W (Q2). We need to examine the

knots in B3 in each of the relevant Witt groups.

The knots {(817 − 8r17), (932 − 9r32), (933 − 9r33)} are clearly zero in any Witt group and are

thus algebraically slice.

The only knot in B3 which has an odd prime (namely, 3) as the leading coefficient of its

Alexander polynomial is 939 + 72 − 41. However, this knot is trivial in W (F3). The only

knot in B3 whose discriminant contains an odd prime (namely, 17) that is not a factor of the

determinant is 916 − 818 − 73 − 41 − 31, and this knot is also trivial in W (F17).

Conjecture 4.4.1. Every knot is trivial in W (Fp) for any odd prime p which does not divide

the determinant of the knot.

A full analysis of the remaining knots and primes is to be found in Appendix D. From the

table we see that

• C23 := {(916 − 818 − 73 − 41 − 31), (944 − 928 + 818 − 41 + 31)} are independent generators

of a Z2 summand.

• B4 := {(821 − 818 − 31), (923 − 92 − 31), (924 − 41), (929 − 928 + 2(31)), (937 − 41),

(939 + 72 − 41), (940 − 818 − 41 − 31)} ∪ {(810 + 31), (811 − 31), 820, (98 − 814)} cannot be

detected in the Witt groups W (Fp) for p ≡ 1 mod 4.

To prove that the knots in B4 are algebraically slice, we must also check their image in the

Witt group W (Q2). These all turn out to be trivial.

The knots {(810 + 31), (811 − 31), 820, (98 − 814)} do not have any 1 mod 4 primes in their

determinants, but we must check their image in W (Q2). These are all trivial.

Conjecture 4.4.2. If a knot has trivial image in each W (Fp) for p an odd prime, then it also

has trivial image in W (Q2).

4.5 Summary

Putting the last four sections of analysis together, we have the following theorem.

Theorem 4.5.1. A basis for the knots in FE of infinite algebraic concordance order is

• C∞ = {31, 51, 52, 62, 71, . . . , 76, 82, 84, . . . 87, 814, 816, 819, 91, 93, . . . , 97, 99, 910, 911, 913,
915, 917, 918, 920, 921, 922, 925, 926, 931, 932, 935, 936, 938, 943, 945, 947, 948, 949}
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while a basis for the kernel AE of the map ψ ◦ φ, FE
ψ−→ CE

φ−→ G, consists of the union of the

independent sets 4C4A, 2C2A and C1A where

• C4A = {77, 934}

• C2A = C21 ∪ C2
2 ∪ C23 ∪ {41, (928 − 818 − 31)}

= {41, 63, 81, 83, 812, 813, (815 − 72 − 31), 817, 818, (92 − 74), (912 − 52), 914,

(916 − 818 − 73 − 41 − 31), 919, (928 − 818 − 31), 930, 933, (942 + 85 − 31),

(944 − 928 + 818 − 41 + 31)}

• C1A = B2 ∪B4 ∪ {(817 − 8r17), (932 − 9r32), (933 − 9r33)}
= {61, 88, 89, (810 + 31), (811 − 31), (817 − 8r17), 820, (821 − 818 − 31), (98 − 814),

(923− 92− 31), (924− 41), 927, (929− 928 + 2(31)), (932− 9r32), (933− 9r33), (937− 41),

(939 + 72 − 41), (940 − 818 − 41 − 31), 941, 946}.

Remark 4.5.2. We may change basis in C2A to make things look nicer:

C2A = {41, 63, 81, 83, 812, 813, (815 − 72 − 31), 817, 818, (92 − 74), (912 − 52), 914,

(916 − 73 − 31), 919, (928 − 31), 930, 933, (942 + 85 − 31), (944 − 41)}

Remark 4.5.3. The image of FE in the algebraic concordance group G is GE ∼= Z46⊕Z19
2 ⊕Z2

4.
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Topological techniques

Our ultimate aim in Chapter 6 will be to calculate the image of the algebraically slice 9-

crossing knots AE ⊂ FE in the concordance group C. There are few methods which are

powerful enough to determine whether or not an algebraically slice knot is topologically slice.

One of these methods is due to Casson and Gordon [CG86] (and was described in Section 2.4),

but calculations of their invariant are possible for only a small number of knots. However, a

determinant of the Casson-Gordon invariant turns out to be the twisted Alexander polynomial

[KL99a] which has been developed by a number of people and which is relatively easy to

compute. We will concentrate on developing the use of the twisted Alexander polynomial to

finish our classification of 9-crossing knots in C.
To understand twisted Alexander polynomials, the following basic definition will be key.

Definition 5.0.4. Any finitely generated module M over a principal ideal domain R is the

direct sum of cyclic modules

F ⊕R/〈a1〉 ⊕ · · · ⊕R/〈ak〉

where F is a free R-module and the ai 6= 1 are defined modulo units in R with ai dividing

ai+1 for all i < k. (See, for example, [Gri07, Theorem 6.3].) The order (of the torsion) of M is

defined to be the product of all the ideals 〈ai〉.

Notation. In this section K will be an oriented knot, Σn(K) will denote the n-fold cover of S3

branched over K and Xn will denote the n-fold cyclic cover of the knot complement X := S3\K.

We write ζq for a complex number which is a qth root of unity and an overline, e.g. z, to mean

complex conjugation.

5.1 Twisted Alexander polynomials

The original Alexander polynomial [Ale28] of a knot K can be viewed as a description of the

homology of the infinite cyclic cover X∞ of the knot complement X = S3\K. More precisely,

∆(t) is the order of the Z[t, t−1]-module H1(X∞;Z) (this is well-defined for knots, as the order

ideal is principal). This concept can be generalised by looking at representations of the knot

group π1(X) and using them to twist the coefficients of H1(X∞;Z). A detailed description of

what follows may be found in [KL99a].

We will first work in greater generality than we need, so let Y be a finite CW-complex

with fundamental group π := π1(Y ). Let ε : π → Z be an epimorphism and ρ : π → GL(V )
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be a homomorphism, where V is a finite-dimensional vector space over a field F. The map ρ

determines a right Z[π]-action on V , so we may construct the (F[t±1],Z[π])-bimodule

M := F[t±1]⊗F V

with right Z[π]-action given by

(f(t)⊗ v) · γ = tε(γ)f(t)⊗ vρ(γ) for γ ∈ π .

If Ỹ is the universal cover of Y then π acts on the left of the cellular chain complex C∗(Ỹ ) by

deck transformations. We define the twisted chain complex

C∗(Y ;M) := M ⊗Z[π] C∗(Ỹ )

Definition 5.1.1. The twisted Alexander polynomial associated to Y , ε and ρ, denoted ∆Y,ε,ρ,

is the order of H1(Y ;M) := H1(C∗(Y ;M)) as a left F[t±1]-module. This is well-defined up to

multiplication by units in F[t±1].

5.2 Twisted polynomials as slicing obstructions

To use twisted Alexander polynomials in a knot-slicing context, we will let Y be Xp, the p-fold

cyclic cover of the knot complement X for a prime p, whilst F = V = Q(ζqr ) for a prime q 6= 2.

This means that M is Q(ζqr )[t
±1].

A surjection ε′ : π1(Xp) → pZ is obtained through composing the map on fundamental

groups π1(Xp) → π1(X), induced by the covering map, with the Hurewicz homomorphism

π1(X)→ H1(X) ∼= Z (which is uniquely defined since our knot is oriented). Let ε : π1(Xp)→ Z

be 1
pε
′. We construct the representation ρ in the following way, which is consistent with the

representation used in the construction of Casson-Gordon invariants (see Section 2.4).

Choose a character (group homomorphism) χ : H1(Σp;Z) → Zd where d is a prime power

qr. Precompose this map with the map on homology arising from the inclusion Xp ↪→ Σp and

then with the Hurewicz homomorphism to get a map π1(Xp) → Zd. We then have that Zd

maps into Q(ζd) by i 7→ ζid, and hence into Q(ζd)
∗ = Q(ζd)\ {0}. All these operations give us

the following composition of maps:

π1(Xp)→ H1(Xp)→ H1(Σp)
χ−→ Zd → Q(ζd)

∗.

We shall denote the specific twisted Alexander polynomial obtained in this way by ∆K,χ, or

simply ∆χ where there is no confusion.

Remark 5.2.1. Milnor in [Mil62] interpreted the Alexander polynomial of a knot as the

Reidemeister torsion of an associated chain complex. This allowed him to recover the result

that the Alexander polynomial of a knot is symmetric, i.e. ∆K(t) = ∆K(t−1) (up to a power

of t). In [Kit96], Kitano was able to show that twisted Alexander polynomials could also be

interpreted as Reidemeister torsion. Kirk and Livingston [KL99a] developed these ideas in

the context above to show that, up to a factor of rtn with r ∈ Q(ζd), the twisted Alexander
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polynomial ∆χ was the Reidemeister torsion of the complex

C∗(Xp, V (t)) := (F(t)⊗F V )⊗ρ C∗(X̃p)

where F = V = Q(ζd) as before. This interpretation allowed Kirk and Livingston to conclude

[KL99a, Corollary 5.2] that twisted Alexander polynomials are symmetric in the sense that

∆χ(t) = ∆χ(t−1).

The twisted Alexander polynomial defined above turns out to be equivalent to the Casson-

Gordon determinant. Recall from Chapter 2 (Definition 2.4.4) the following notation.

Notation. A norm in Q(ζd)[t, t
−1] is a polynomial of the form f(t)f(t−1), where f means

complex conjugation of the coefficients of f .

Theorem 5.2.2. [KL99a, Theorem 6.5] Suppose that p and q are odd primes with d = qr and

let χ be a character χ : H1(Σp;Z)→ Zd. Then

Disc(τ(K, p, χ)) = ∆K,χ(t− 1)s modulo norms

with s = 0 or s = 1 if χ is trivial or non-trivial respectively.

The work of Casson and Gordon in [CG86, Lemma 4 & corollary] implies that if K is a

slice knot and if the character χ extends to the p-fold branched cover of the slice disc, then

the Casson-Gordon invariant τ(K, p, χ) vanishes. A particular set of characters which extend

over the branched cover of the slice disc are those which vanish on a metaboliser of the linking

form on Σp (see [Gil83] and [CG86, Theorem 2]). This linking form is analogous to Definition

2.2.5 except that it is defined on the homology of the cyclic branched cover rather than on the

homology of a Seifert surface for the knot.

Definition 5.2.3. The linking form

lk : H1(Σp)×H1(Σp)→ Q/Z

is a non-singular form defined as follows. Let x and y be 1-cycles in Σp. Suppose that qx

bounds a 2-chain c for some q ∈ Z. Then

lk([x], [y]) =
c · y
q
∈ Q/Z,

where c · y is the intersection number of c and y. If H1(Σp) ∼= Zq, then lk takes values in Zq.

There are various presentation matrices of H1(Σp) which we may use to calculate the linking

form.

Proposition 5.2.4. [Rol03, 8D.5] Let V be a Seifert matrix for K. If V is invertible,

(V TV −1)n − I is a presentation matrix for H1(Σn) as an abelian group.

Proposition 5.2.5. [Gil93] In the case that the Seifert matrix V may not be invertible, let

G := (V − V T )−1V . Then Gn − (G − I)n is a presentation matrix for H1(Σn) as an abelian

group.

Proposition 5.2.6. [Lic97, Theorem 9.1] In the case of the two-fold branched cover, V + V T

is a presentation matrix for H1(Σ2) as an abelian group.
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Definition 5.2.7. An (invariant) metaboliser for lk is a subgroup M ⊂ H1(Σp) (invariant

under the action of the covering transformation) for which M = M⊥, where

M⊥ := {x ∈ H1(Σp) | lk(x, y) = 0 ∀ y ∈M}

It follows that order(M)2 = order(H1(Σp)).

We now state the main theorem that will be used in the rest of this thesis. This theorem is

a generalisation of the fact, proved by Fox and Milnor [FM66] (and also in Corollary 2.2.12),

that Alexander polynomials for slice knots factor as f(t)f(t−1).

Theorem 5.2.8. [KL99a, Theorem 6.2] If K is slice and p, q are distinct primes with q 6= 2,

then there is an (invariant) metaboliser of the linking form M ⊂ H1(Σp;Z) with the following

property. For all characters χ : H1(Σp;Z)→ Zqr with χ(M) = 0, ∆K,χ(t) factors as

atn · f(t) · f(t−1) · (t− 1)s, (5.1)

where a ∈ Q(ζq), f ∈ Q(ζq)[t
±1] and s = 0 or s = 1 if χ is trivial or non-trivial, respectively.

It will often be easier to work with maps to Zq rather than to Zqr . The following corollary

shows us how to do this.

Corollary 5.2.9. [HKL10, Corollary 8.3] If K is slice and p, q are distinct primes with q 6= 2,

then there is a subspace of the linking form M̃ ⊂ H1(Σp;Zq) with the following property. For

all characters χ : H1(Σp;Zq)→ Zq with χ(M̃) = 0, ∆K,χ(t) factors as

a · f(t) · f(t−1) · (t− 1)s

where a ∈ Q(ζq), f ∈ Q(ζq)[t
±1] and s = 0 or s = 1 if χ is trivial or non-trivial, respectively.

The subspace M̃ is a reduction modulo q of a metaboliser for lk.

To prove that a knot is not slice, it therefore suffices to show that every metaboliser M of

H1(Σp) (for some prime p) has a non-trivial map χ : H1(Σp) → Zqr (for some prime q) such

that χ(M) = 0 and such that ∆χ/(t− 1) is not a norm.

In order to use twisted polynomials to detect torsion in C, we need to know how they

behave under connected sums of knots. The following result was proved by Gilmer [Gil83]

in the context of Casson-Gordon invariants, and by Kirk and Livingston [KL99b] for twisted

Alexander polynomials.

Proposition 5.2.10. Suppose K = K1#K2 and that χ restricts to χi on the factors (i.e.

χ = χ1 ⊕ χ2). Then

∆K,χ(t) = ∆K1,χ1(t)∆K2,χ2(t) or ∆K1,χ1(t)∆K2,χ2(t)(1− t)

with the second case occurring if and only if χ1 and χ2 are non-trivial.

5.3 Detecting infinite order

Twisted Alexander polynomials are a powerful tool in proving non-sliceness of algebraically

slice knots (see, e.g. [KL99b], [HKL10]). They were used in [KL01] to prove that a specific
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collection of knots had infinite order and were linearly independent in C. In this section we

develop techniques and theorems which will enable us to decide whether any collection of

arbitrary knots is linearly independent in C. For the rest of the chapter we abuse notation and

write ∆χ when we mean ∆χ/(t− 1).

5.3.1 From metabolisers to polynomials

Our strategy for showing that a knot has infinite order in C is to analyse metabolisers of

H1(Σp(nK)) for an arbitrary n ∈ N and to show that for each metaboliser there is a character

χ vanishing on it for which ∆χ is not a norm. For most of what follows, p will be equal to 2

and q will be an odd prime.

What does a metaboliser for H := H1(Σ2(nK);Z) look like? Suppose first that

H1(Σ2(K);Z) ∼= Zq. Then H ∼= (Zq)
n. In order for a metaboliser to exist, we need n to

be even, say n = 2m. Let M be a metaboliser. It is spanned by m vectors v1, . . . , vm ∈ (Zq)
2m

where vi · vj ≡ 0 (mod q) for every i and j. (Here we are using the standard inner product on

(Zq)
2m.) This is because, if we write vi = (vi,1, . . . , vi,2m) we have

0 = lk2mK(vi, vj) = lkK(vi,1, vj,1) + · · ·+ lkK(vi,2m, vj,2m)

= lkK(1, 1)(vi,1vj,1 + · · ·+ vi,2mvj,2m)

= lkK(1, 1)vi · vj

and since lkK(1, 1) 6= 0 we have vi · vj ≡ 0.

Example 5.3.1. For example, let m = 3 and q = 5. Then the following set of vectors could

be a spanning set for a metaboliser:

v1 = (1, 0, 0, 1, 2, 2)

v2 = (0, 1, 0, 2, 1,−2)

v3 = (0, 0, 1, 2,−2, 1).

Next, what characters vanish on M? Let χi : H1(Σ2(K);Z)→ Zq be the map lk(−, i). Then

if w ∈M we can write w = (w1, . . . , w2m) and we have that the map

χw := χw1
⊕ · · · ⊕ χw2m

will vanish on all of M . By Proposition 5.2.10 we have that

∆χw = ∆χw1
. . .∆χw2m

(5.2)

and this should be a norm if K is slice. The following observation will help us to simplify this

polynomial.

A twisted Alexander polynomial p(t) has the symmetry p(t) = p(t−1) (see 5.2.1). In

particular, this means that p(t)2 is a norm. Thus if a vector w ∈M contains a repeated entry,

say wi = wj , then we can simplify equation (5.2) by removing ∆χwi
(t) and ∆χwj

(t) from the

right-hand side. So it is only if an entry in a metabolising vector occurs an odd number of times

that it contributes to the twisted Alexander polynomial.

There is a further simplification we can make when doing calculations, which is that the
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polynomials related to the various χi, i ∈ Zq, are all related by a particular symmetry.

Lemma 5.3.2. Suppose that χ : H → Zq and χ′ : H → Zq are two characters such that

χ′ = nχ for some n ∈ Zq. Then ∆χ′ = σn(∆χ), where σn : Q(ζq) → Q(ζq) is the map that

takes ζq to ζnq . We say that ∆χ and ∆χ′ are Galois conjugates of each other. Notice that if ∆χ

factorises as a norm then so does ∆χ′ .

So in order to stop Equation (5.2) from factorising as a norm we need to find a vector w ∈M
which contains at least one entry an odd number of times. We then need to show that none of

other polynomials on the right-hand side of (5.2) are the same as the polynomial corresponding

to that ‘odd’ entry. One way to show this would be to show that none of the Galois conjugates

of ∆χ1
are equal to each other, but this is slightly overkill and we will see that we can get away

with a lesser condition. All these ideas will be made more precise in the next section.

Finally, we also need to be able to deal with the trivial twisted polynomial, ∆χ0
. This

polynomial is related to the standard Alexander polynomial, but does not always behave in the

same way.

Lemma 5.3.3. If K is algebraically slice then the trivial twisted Alexander polynomial

∆χ0
(t) := order(H1(Xp,Q[t±1])) is a norm. However the converse is not true: it may happen

that ∆χ0
(t) is a norm whilst the standard Alexander polynomial ∆K(t) does not factorise as

f(t)f(t−1).

Proof. The trivial twisted polynomial is related to the standard Alexander polynomial by the

following formula:

∆χ0(t) =

p−1∏
i=0

∆K(ζipt
1
p ).

If K is algebraically slice then ∆K(t) = f(t)f(t−1) for some f in Q[t±1]. It follows trivially

that ∆χ0
is a norm.

Conversely, let p = 2 and ∆K(t) = 2 − 3t2 + 2t4 (which is irreducible). Then ∆χ0
(t) =

(2− 3t+ 2t2)2, which is a norm. �

5.3.2 Odd vectors and the main theorem

We will use the following lemma from [KL01] to find metabolising vectors whose entries occur

an odd number of times.

Lemma 5.3.4. Let E be a non-singular m×m matrix over Zq for a prime q > 2. Suppose that

every vector in the subspace of (Zq)
2m spanned by the rows of the m × 2m matrix (I E) has

an even number of non-zero entries. Then E is obtained from a diagonal matrix by permuting

the columns.

We adapt this result to our own situation.

Lemma 5.3.5. Let K = K1 + · · ·+K2m be a knot, where H1(Σ2(Ki);Z) ∼= Zq ⊕ Ti for each

i = 1, . . . , 2m, with the order of the Ti coprime to q. Let v1, . . . , vm be vectors in (Zq)
2m which

are a basis for a metaboliser M ⊂ H1(Σ2(K);Zq) on which the linking form vanishes. If the

linking forms of K1, . . . ,K2m are the same (i.e. lkKi(1, 1) = lkKj (1, 1) for all i, j) then

• If q ≡ 1 (mod 4) then either there is a linear combination of the vi which contains

an odd number of zero entries or there is a linear combination of the vi of the form

(1, 0, . . . , 0,±a, 0, . . . , 0) for an a such that 1 + a2 ≡ 0 (mod q).
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• If q ≡ 3 (mod 4) then m is even and there must be a linear combination of the vi which

contains an odd number of zero entries.

Proof. Given any basis v1, . . . , vm ∈ (Zq)
2m for a metaboliser we can perform row and column

operations to put the basis into the m× 2m matrix form (I E) required by Lemma 5.3.4. We

need to show that E is non-singular.

Different columns of (I E) correspond to elements in the homology of the branched cover

of different knots, and these different knots may have different linking forms. Let D be the

diagonal matrix with diagonal entries lkK1(1, 1), . . . , lkK2m(1, 1) (noting that these may be in a

different order because of the aforementioned column operations). Since the rows are part of a

metaboliser, we have

(
I E

)
D

(
I

ET

)
=
(
I E

)( D1 0

0 D2

)(
I

ET

)
= D1 + ED2E

T ≡ 0 (mod q).

Rearranging and taking the determinant of both sides gives us

det(E)2 det(D2) ≡ det(−D1) (mod q).

Since det(D1) and det(D2) are nonzero, E is nonsingular too, as required.

We can conclude from Lemma 5.3.4 that either there is a vector in the span of the vi with an

odd number of non-zero entries, or that E is obtained from a diagonal matrix by permuting the

columns. However, if the linking forms of the Ki are identical we may deduce more. We have

D = αI so EET ≡ −I (mod q) and det(E)2 ≡ (−1)m (mod q). If E is obtained from a diagonal

matrix by permuting the columns then the diagonal entries must be ±a, where −1 ≡ a2 (mod

q). Such an element does not exist if q ≡ 3 (mod 4) since −1 is not a square. For the same

reason, if q ≡ 3 (mod 4) then m must be even. �

By a theorem of Livingston and Naik [LN99, Theorem 1.2] we know that if H1(Σ2(K);Z) ∼=
Zqn for any prime q ≡ 3 (mod 4) and n odd, then K is of infinite order in C. In this next

theorem we give conditions for a knot to be of infinite order when q ≡ 1 (mod 4) and n = 1.

We will then generalise this to deal with connected sums of knots, and in the next section look

at what happens when H1(Σ2(K);Z) ∼= Zqn for any value of n.

Notation. We use the symbol
.
= to denote ‘modulo norms’.

Theorem 5.3.6. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zq ⊕ T for some prime

q ≡ 1 mod 4, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z)→ Zq be the trivial map

and χi : H1(Σ2;Z)→ Zq be lk(−, i). Construct ∆χi(t) as in Section 5.2. Then K is of infinite

order if it satisfies the following conditions:

1. ∆χ0
(t) does not factorise over Q(ζq)[t, t

−1] as g(t)g(t−1).

2. There is a non-trivial irreducible factor f(t) of ∆χ0
(t) for which f(t−1) is not a factor of

∆χi(t) for any i.

3. ∆χa(t) 6 .= ∆χ1
(t), where 1 + a2 ≡ 0 (mod q).

Proof. Suppose that K satisfies conditions (1-3), and suppose that (2m)K is slice (for some

m ∈ N), and try to obtain a contradiction. Since 2mK is slice, there is a metaboliser M of

rank m.
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For each element w = (w1, . . . , w2m) of M we have a character

χw = χw1 ⊕ · · · ⊕ χw2m

which vanishes on M , and a twisted Alexander polynomial

∆χw(t) = ∆χw1
(t) . . .∆χw2m

(t). (5.3)

By the sliceness of 2mK, ∆χ(t) must factorise as a norm for every such χ, up to a factor of

an element of Q(ζq) and a possible factor of (t− 1) (Theorem 5.2.8). Before embarking on the

rest of the argument, we notice the trivial but important point that Q(ζq)[t, t
−1] is a unique

factorisation domain.

Recall that any twisted Alexander polynomial x(t) has the property that x(t) = x(t−1).

Thus if ∆χi occurs with an even exponent on the RHS of (5.3) then we can ignore it because it

factorises as a norm. By assumption 1 and 3 (notice that assumption 3 implies that ∆χi , i 6= 0,

is not a norm) , the converse is also true: if a polynomial occurs with an odd exponent on the

RHS of (5.3) then it cannot factorise (by itself, at least) as a norm. We now use the result of

Lemma 5.3.5, and find ourselves with two cases to consider.

In the first case there is a vector w ∈M which contains an odd number of zero entries. So

∆χ0
(t) occurs with an odd exponent on the RHS of (5.3) (i.e. non-trivially). By assumption 2,

we know that ∆χ0
(t) contains at least one non-trivial irreducible factor which cannot combine

with any other twisted Alexander polynomial to factorise as a norm. Thus ∆χ(t) cannot

factorise as a norm, which is a contradiction.

In the second case there is a vector w ∈M which looks like (1, 0, . . . , 0,±a, 0, . . . , 0) for an

a such that 1 + a2 ≡ 0 (mod q). In this case we can simplify the right-hand side of (5.3) to get

∆χ(t)
.
= ∆χ1

(t)∆χ±a(t).

From assumption 3 we know that ∆χ1
(t) 6 .= ∆χ±a(t), so this polynomial cannot factorise as a

norm, completing the contradiction. �

Remark 5.3.7. For any i ∈ Zq, the twisted polynomials ∆χi and ∆χ−i are equal because of

the action of the 2-fold deck transformation on Σ2.

This theorem is quite powerful; we will see in Chapter 8 that it applies to 84% of the

knots of unknown concordance order with up to 12 crossings. However, one obvious situation

when it cannot be applied is when the knot is algebraically slice, since the first condition is

automatically not satisfied (see Lemma 5.3.3). Thankfully, there is an alternative method of

checking if a knot has infinite order in C which does not rely on assuming that ∆χ0
is not a

norm.

Theorem 5.3.8. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zq ⊕ T for some prime

q ≡ 1 mod 4, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z)→ Zq be the trivial map

and χi : H1(Σ2;Z)→ Zq be lk(−, i). Suppose that ∆χ0 is a norm. Then K is of infinite order

if it satisfies the following condition:

• ∆χi(t) is coprime, up to norms in Q(ζq)[t, t
−1], to ∆χj (t) for all i 6= j, i, j > 0.

Proof. The proof is identical to that of Theorem 5.3.6 except for the case where the metaboliser

contains a vector with an odd number of zeros. We now know that ∆χ0
is a norm, so we need
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a different argument. A vector with an odd number of zeros also contains an odd number of

non-zero entries. This means that at least one entry, say i, occurs an odd number of times

and so its corresponding twisted Alexander polynomial ∆χi occurs with odd exponent in the

polynomial for that vector. By the condition of our theorem we know that ∆χi is coprime to

all other twisted polynomials, so there is no other factor in the product of polynomials which

can combine with ∆χi to form a norm. We also know that ∆χi is not a norm, because if it

were then all of its Galois conjugates would be norms as well, and the condition would not be

satisfied. Thus the twisted Alexander polynomial corresponding to this ‘odd vector’ is not a

norm.

As in the previous proof, we also require that ∆χ1
(t)∆χa(t) is not a norm, for 1 + a2 ≡ 0

(mod q). This fact is taken care of by our condition too. �

We may generalise Theorem 5.3.6 to concern sums of knots, though a little care must be

taken to ensure that each individual knot satisfies the set-up of the theorem. Notice that, whilst

each individual knot in the sum must not be algebraically slice, there is no restriction on the

algebraic sliceness of the sum.

Remark 5.3.9. The following theorem has an alternative version, corresponding to Theorem

5.3.8, where we don’t need to assume that the component knots of the sum are not algebraically

slice. However, the following theorem suffices to prove our 9-crossing classification, so we do

not write out this alternative theorem and instead leave it as an exercise for the reader.

Theorem 5.3.10. Let K = K1+ · · ·+Kn with Ki1 , . . . ,Kin′ having H1(Σ2(Kij );Z) ∼= Zq⊕Tj
with the order of the Tj coprime to q, and the remainder of the Ki having H1(Σ2(Ki);Z) ∼= Ti

with the order of the Ti coprime to q. Then K has infinite order in C if the twisted Alexander

polynomials (as defined in Theorem 5.3.6) satisfy:

1. ∆
Kij
χ0 (t) does not factorise over Q(ζq)[t, t

−1] as a norm for any j = 1, . . . , n′.

2. There is a non-trivial irreducible factor fj(t) of ∆
Kij
χ0 (t) for which fj(t−1) is not a factor

of ∆
Kik
χα (t) for all j, k = 1, . . . , n′ and all α 6= 0.

3. ∆
Kij
χ1 (t) 6 .= ∆

Kik
χγ (t) where γ =

√
−αβ−1 with α = lkKij (1, 1) and β = lkKik (1, 1), for all

j, k where γ is defined. This means that if q ≡ 1 mod 4 then α and β must be the same

modulo squares and if q ≡ 3 mod 4 then α and β must be different modulo squares.

Proof. Suppose that (2m)K is slice and that a basis of a metaboliser in H1(Σ2(2mK);Zq) is

v1 = (a1,1, . . . , a1,2m, b1,1, . . . , b1,2m, . . . , 0, . . . , 0)

v2 = (a2,1, . . . , a2,2m, b2,1, . . . , b2,2m, . . . , 0, . . . , 0)

...

vmn′ = (amn′,1, . . . , amn′,2m, bmn′,1, . . . , bmn′,2m, . . . , 0, . . . , 0)

Since we are considering an even multiple of K, the number of zeros at the end of each vector

is even and can be ignored. Taking the mn′ × 2mn′ matrix V whose rows are the entries of

the vi from the n′ non-trivial knots, we perform row and column operations on V to turn it

into V ′ = (I E). The proof of Lemma 5.3.5 adapts to this situation so we know that E is

non-singular and we can therefore invoke the conclusions of Lemma 5.3.5. There are two cases.

(For what follows, remember that each column of V ′ corresponds to one of the Kij .)
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Firstly, we may be able to find a linear combination of the rows of V ′ which contains an odd

number of zeros. An odd number of zeros must therefore come from a particular knot Ki. This

means that p(t) := ∆Ki
χ0

(t) occurs with odd exponent in the twisted Alexander polynomial ∆χ

corresponding to that vector. From condition (1) we know that p(t) is not a norm, and from

condition (2) we know that it cannot factorise as a norm as a result of being combined with

non-trivial twisted polynomials from any of the other knots. The only way that it could become

a norm is to be combined with one of the other trivial twisted polynomials, say q(t). Since q(t)

is not a norm it must also occur with odd exponent. But this pairing up of non-trivial twisted

polynomials cannot continue indefinitely, since we know there are an odd number of zeros in

our vector. There must therefore be a factor of ∆χ which is not a norm and which occurs with

odd exponent, meaning that ∆χ is itself not a norm.

If there is no combination of the rows of V ′ which contains an odd number of zeros, Lemma

5.3.4 says that E is obtained by permuting the columns of a diagonal matrix. Let the diagonal

matrix have entries a1, . . . , amn′ . Every row in V ′ then looks like

(0, . . . , 0, 1, 0, . . . , 0, ai, 0, . . . , 0).

In any particular row, suppose the knot corresponding to the column containing the 1 has the

linking form α and the knot corresponding to the column with the ai has the linking form β.

Then we would have α+βa2i ≡ 0 (mod q), which means a2i ≡ −αβ−1 (mod q). If q ≡ 1 (mod 4)

then we need α and β to be either both squares or both non-squares for there to be a solution.

If q ≡ 3 (mod 4) then we need α and β to be different modulo squares. Assuming that there is

a solution ai = γ, this row then gives us the twisted polynomial

∆χ
.
= ∆

Kij
χ1 ∆

Kik
χγ

which by condition (3) is designed not to be a norm. �

5.4 Prime powers

Suppose H1(Σ2(K);Z) ∼= Zqn for a knot K, a prime q 6= 2 and a natural number n. We want a

criterion for deciding if K is of infinite order. Livingston and Naik have the following theorem

in the case when q ≡ 3 (mod 4) and when n is odd.

Theorem 5.4.1 (1.2, [LN99]). If H1(Σ2(K)) = Zqn⊕G with q a prime congruent to 3 modulo

4, n odd and q not dividing the order of G, then K is of infinite order in C.

But what happens when q ≡ 1 (mod 4) or if n is even? The proof of Theorem 5.4.1 made

use of Casson-Gordon signatures, which are not powerful enough to provide an obstruction in

these cases. However, we shall see that twisted Alexander polynomials do provide computable

obstructions, much as in the n = 1 case.

Theorem 5.4.2. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zqn ⊕ T for some prime

q, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z) → Zq be the trivial map and

χi : H1(Σ2;Z) → Zq be lk(−, i) (mod q). Construct ∆χi(t) as in Section 5.2. Then K is of

infinite order if it satisfies the following conditions:

1. If n > 1, ∆χ0(t)∆χ1(t) is not a norm.
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5.4. Prime powers

2. ∆χ0
(t) is not a norm.

3. ∆χ0
(t) is coprime, up to norms in Q(ζq)[t, t

−1], to ∆χi(t) for all i 6= 0.

4. If q ≡ 1 (mod 4) then ∆χa(t) 6 .= ∆χ1
(t), where 1 + a2 ≡ 0 (mod q).

Remark 5.4.3. Conditions (2)-(4) may be replaced by the condition that ∆χi should be

coprime (modulo norms) to ∆χj for any i 6= j, i, j > 0. The proof below is easily adjusted to

this other case using the same proof as for Theorem 5.3.8.

Proof. We will discuss the proof of the case when H1(Σ2;Z) ∼= Zqn ; the case of H1(Σ2;Z) ∼=
Zqn⊕T is identical except that everywhere we would need to consider the q-primary component

of the homology.

Suppose that 2mK is slice. Then H := H1(Σ2(2mK);Z) ∼= (Zqn)2m, so any metaboliser

has order qnm. Let M denote the matrix whose rows are the spanning set of a metaboliser.

Following the proof of [LN99, 1.2], we let ki denote the number of rows in M divisible by qi.

Since the metaboliser M has the property that H/M ∼= M , we have that ki = kn−i for i > 0.

Example 5.4.4. Let n = 4 and m = 5, so H = (Zq4)10. A metaboliser needs to have order

q20. Here is one possibility:

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 q 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 q 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 q ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 q2 0 ∗ ∗ ∗ ∗
0 0 0 0 0 q2 ∗ ∗ ∗ ∗
0 0 0 0 0 0 q3 0 0 ∗
0 0 0 0 0 0 0 q3 0 ∗
0 0 0 0 0 0 0 0 q3 ∗


Here k0 = 1, k1 = k3 = 3 and k2 = 2.

As per Corollary 5.2.9 we need to find a map χ : H1(Σ2)→ Zq which vanishes on the image

modulo q of a metaboliser, and for which the corresponding twisted Alexander polynomial does

not factorise as a norm. The image modulo q of M is clearly just the first k0 rows.

Case 1: k0 = 0

If all the rows are divisible by q, then any character from H1(Σ2) to Zq will vanish on M .

In particular we can take χ1

⊕
2m−1 χ0, giving us the condition that ∆χ1

∆χ0
is a norm if 2mK

is slice. This is obstructed by condition (1) of the theorem.

Case 2: k0 = m

In this case, all other ki are zero and every row has order qn. The image of M under the

map which reduces every entry modulo q has rank m and the form M ′ := (I E) for a square

matrix E. Since the dot product of any two rows in M is zero modulo qn, the dot product of

any two rows of M ′ is zero modulo q. By Lemma 5.3.5 we then know that E is non-singular

and that either (a) there is a vector in the span of the rows of M ′ with an odd number of zero

entries, or (b) E is obtained from a diagonal matrix by permuting the columns. In case (a) the

corresponding twisted polynomial is obstructed from being a norm by conditions (2) and (3) of

the theorem. In case (b) the rows in E have the form (1, 0, . . . , 0,±a, 0, . . . , 0) and 1 + a2 ≡ 0
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modulo q since the row has dot product zero with itself. The corresponding twisted Alexander

polynomial is obstructed from being a norm by condition (4).

Case 3: 0 < k0 < m

The span of the rows must create a subspace of order qnm. The ki rows which are a multiple

of qi each have order qn−i, telling us that

nk0 + (n− 1)k1 + · · ·+ 2kn−2 + kn−1 = nm.

Let r := n−1
2 if n is odd and r := n−2

2 if n is even. Using the fact that ki = kn−i for i > 0

we get 2
∑r
i=0 ki + kn

2
= 2m (where the summand kn

2
does not exist in the odd case). The

number of rows is
n−1∑
i=0

ki = k0 + 2

r∑
i=1

ki + kn
2
.

These calculations tell us that the number of rows is 2m− k0.

Create a new matrix M ′ by dividing the ki rows of M by qi for each i = 1, . . . , n− 1. Then

perform row operations until M ′ has the form (I |F ) where there is a (2m − k0) × (2m − k0)

identity matrix on the left of the vertical line, and F is a (2m− k0)× k0 matrix. Since k0 < m,

we have 2m− k0 > k0 and F has more rows than columns.

Notice that each row of M ′ has dot product zero modulo q with the original k0 rows of M ,

since the rows of M have dot product zero modulo qn with the first k0 rows. Therefore the

rows of M ′, denoted v1, . . . , vα, can be thought of as maps χv1 , . . . , χvα to Zq vanishing on the

image modulo q of the metaboliser. We need to find a linear combination of them to give us a

non-trivial twisted Alexander polynomial; we will do this by finding a row with an odd number

of non-zero (and thus zero) entries in the span of the vi. Conditions (2) and (3) of the theorem

then obstruct the twisted Alexander polynomial from being slice.

If there are an even number of non-zero entries in any row of F , then the row in M ′ has an

odd number of non-zero entries and we are done. So suppose that every row of F has an odd

number of non-zero entries. Since F has more rows than columns, there is a linear combination

of the rows which is zero. Say
∑
i sirowi(F ) ≡ 0 (mod q). If an odd number of the si are

non-zero, then
∑
i sirowi(M

′) is an odd vector.

So assume that an even number of the si are non-zero. Choose sj 6= 0, and then a non-zero

x 6= sj ∈ Zq. Then ∑
i

sirowi(M
′)− x · rowj(M

′)

is a vector with an odd number of non-zero entries. (This is because there is an even number

of non-zero values among the first 2m − k0 entries, and an odd number of non-zero entries

coming from the last k0 entries because we assumed that the rows of F all had an odd number

of non-zero entries.)

�

5.5 Higher order covers

In this section we analyse metabolisers of higher order branched covers of knots in order to

find further criteria which indicate when a knot has infinite order in C. This is a very different

situation to that of the double branched cover which we have studied up until now, because

62



5.5. Higher order covers

the homology of Σp for a prime p > 2 is always a direct double. That is, H1(Σp;Z) ∼= Zn⊕Zn
for some n ∈ N. (For a proof, see [Rol03, Theorem 8, Section 8D].) This means that we need

different kinds of characters (i.e. not just the linking form) and a more involved analysis of the

metabolisers. The arguments here owe their existence to the work of Kirk and Livingston in

[KL01]; particularly their work in Chapter 5.

Let K be a knot with H1(Σp;Z) ∼= Zq⊕Zq ∼= Ea⊕Eb where Ea and Eb are the eigenspaces of

the deck transformation T . Let ea be an a-eigenvector (i.e. aea = Tea) and eb be a b-eigenvector.

Now define χa : H1(Σp) → Zq by χa(ea) = 0 and χa(eb) = 1. Similarly, χb : H1(Σp) → Zq is

defined by χb(ea) = 1 and χb(eb) = 0.

Theorem 5.5.1. The knot K is of infinite order in C if the following conditions on the twisted

Alexander polynomial of K are satisfied:

1. ∆χ0
is coprime, up to norms, to both ∆χa and ∆χb , and ∆χ0

is not a norm.

2. ∆χa+χb 6
.
= ∆dχa−d−1χb for any d ∈ Zq.

Proof. We want to show that nK is not slice for any n, and without loss of generality we

let n = 2m. For every metaboliser we need to find a character for which the corresponding

twisted Alexander polynomial does not factorise. Any invariant metaboliser will be spanned

by eigenvectors. Let Ma be a k × 2m matrix which represents the contribution from the

a-eigenspaces, and Mb be a (2m − k) × 2m matrix representing the contribution from the

b-eigenspaces.

Case 1: k > m

In this case we will prove that in every metaboliser there will be a vector which has an

odd number of zero entries. By Condition (1) the corresponding twisted Alexander polynomial

cannot factorise.

We can write Ma = (I E) where E is a k × (2m− k) matrix. If there are an even number

of non-zero entries in any row of E, then the row in Ma has an odd number of non-zero entries

and we are done. So suppose that every row of E has an odd number of non-zero entries. Now,

E has more rows than columns, so there is a linear combination of the rows which is zero. Say∑
i sirowi(E) ≡ 0 (mod q). If an odd number of the si are non-zero, then

∑
i sirowi(Ma) is an

odd vector.

So assume that an even number of the si are non-zero. Choose sj 6= 0, and then a non-zero

x 6= sj ∈ Zq. Then ∑
i

sirowi(Ma)− x · rowj(Ma)

is a vector with an odd number of non-zero entries. (This is because there is an even number

of non-zero values among the first k entries, and an odd number of non-zero entries coming

from the last 2m− k entries because we assumed that the rows of E all had an odd number of

non-zero entries.)

Case 2: k = m

In this case both Ma and Mb are m × 2m matrices. Write Ma = F (I Ba)P where F

is a change of basis matrix (i.e. row operations) and P is a permutation matrix (i.e. column

interchanges). Without loss of generality, we may assume that F is the identity matrix. We may

also assume that Ba is non-singular, since if it weren’t, we would be able to use the argument

detailed in the first case to obtain an odd vector.
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Now, whatever permutations we do to the matrix Ma, we must also do to the matrix Mb.

Write Mb = (X Y )P .

Notice that lk(ea, ea) = lk(Tea, T ea) = lk(aea, aea) = a2 lk(ea, ea) so lk(ea, ea) = 0, and

similarly for lk(eb, eb). The linking form relating Ea to Eb is therefore(
0 1

1 0

)

and because Ma and Mb represent elements of a metaboliser we have Ma ·MT
b ≡ 0 (mod q).

This means that

0 ≡ (I Ba)PPT

(
XT

Y T

)
= (I Ba)

(
XT

Y T

)
= XT +BaY

T .

Rearranging gives us that Y = −X(B−1a )T . So Mb = (X −X(B−1a )T )P = X(I − (B−1a )T )P .

We may assume that X is non-singular, since if it weren’t, we would again be in the previous

case and able to find an odd vector in Mb. The matrix X represents a change of basis, so once

again we may assume that it is the identity.

To summarise, we are in the situation where Ma = (I Ba)P and Mb = (I − (B−1a )T )P .

This means we can apply Lemma 5.3.4 to conclude that Ba is obtained from a diagonal matrix

D by permuting the columns. So write Ba = DQ where Q is a permutation matrix, and

R =

(
I 0

0 Q

)
P . Then

• Ma = (I DQ)P = (I D)R

• (B−1a )T = (Q−1D−1)T = (QTD−1)T = D−1Q

• P =

(
I 0

0 Q−1

)
R

• Mb = (I −D−1Q)P = (I −D−1)R

Since the permutation matrix R is common to both Ma and Mb, we may assume R = I. So

Ma = (I D) and Mb = (I −D−1).

Consider the top rows of Ma and Mb:

ma = (1, 0, . . . , 0, d, 0, . . . , 0)

mb = (1, 0, . . . , 0,−d−1, 0, . . . , 0)

We subtract these vectors, and notice that the character χa + χb vanishes on ea − eb, whilst

dχa − d−1χb vanishes on dea + d−1eb. The twisted Alexander polynomial corresponding to

ma −mb is thus

∆K
χa+χb

·∆K
dχa−d−1χb

.

By condition (2) of the theorem, this is assumed not to be a norm, completing the proof. �

To complete our classification of 9-crossing knots, we will need an extension of this theorem

to decide when a connected sum of knots is not slice. A special case of this, which we shall

look at first, is deciding when a knot minus its reverse is not slice. There do not currently
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exist any general methods in the literature for proving that a knot is not concordant to its

reverse, let alone that the difference is of infinite order in C. Specific examples have been dealt

with by Kirk, Livingston and Naik [Liv83], [Nai96], [KL99b] using Casson-Gordon invariants

and twisted Alexander polynomials, and this theorem can be seen as a generalisation of their

methods.

The proof is almost identical to that of Theorem 5.5.1 except than an extra condition is

needed at the end.

Theorem 5.5.2. The knot K −Kr is of infinite order in C if the following conditions on the

twisted Alexander polynomial of K are satisfied:

1. ∆χ0
is coprime, up to norms, to both ∆χa and ∆χb , and none of these polynomials are

themselves norms.

2. ∆χa 6
.
= σd(∆χb) for any d ∈ Zq

3. ∆χa+χb 6
.
= ∆dχa−d−1χb for any d ∈ Zq.

Proof. We want to show that m(K − Kr) is not slice for any m. This means that for

every metaboliser, we need to find a character for which the corresponding twisted Alexander

polynomial does not factorise. Any invariant metaboliser will be spanned by eigenvectors. Let

Ma be a k × 2m matrix which represents the contribution from the a-eigenspaces, and Mb be

a (2m− k)× 2m matrix representing the contribution from the b-eigenspaces.

The first part of the proof of this theorem is identical in every way to that of Theorem 5.5.1,

up until the following line, where it begins to differ.

We have Ma = (I D) and Mb = (I −D−1) where D is a diagonal matrix.

Consider the top rows of Ma and Mb:

ma = (1, 0, . . . , 0, d, 0, . . . , 0)

mb = (1, 0, . . . , 0,−d−1, 0, . . . , 0)

We have two cases to consider.

In the first case, the columns corresponding to the non-zero entries are from different knots;

i.e. one is from K and the other is from −Kr. In this case, the twisted polynomial corresponding

to ma is

∆K
χa · σd(∆

−Kr

χa ) = ∆K
χa · σd(∆

K
χb

).

By condition (2) of the theorem, this is assumed not to be a norm.

In the second case, the two non-zero columns represent different copies of the same knot.

In this case we subtract the two vectors, and the twisted Alexander polynomial corresponding

to ma −mb is (as explained in the previous proof)

∆K
χa+χb

·∆K
dχa−d−1χb

.

By condition (3) of the theorem, this is also assumed not to be a norm, completing the proof. �

Let K now be a connected sum of knots, each of which has the same condition on the

p-fold branched cover for some prime p; that is, let K = K1 + · · ·+Kn with H1(Σp(Ki);Z) ∼=
Zq ⊕ Zq ∼= Ea ⊕ Eb for some prime p, some prime q and for every i = 1, . . . , n, where Ea and
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Eb are eigenspaces of the deck transformation. For each knot we have the maps χa and χb as

described earlier.

Theorem 5.5.3. The knot K = K1+· · ·+Kn is of infinite order in C if the following conditions

on the twisted Alexander polynomial of the Ki are satisfied:

1. ∆Ki
χ0

(t) is not a norm in Q(ζq)[t, t
−1] for any i = 1, . . . , n.

2. ∆Ki
χ0

is coprime, up to norms, to ∆
Kj
χa and ∆

Kj
χb for every i and j.

3. ∆Ki
χa 6

.
= σd(∆

Kj
χa ) (or ∆Ki

χb
6 .= σd(∆

Kj
χb )) for any d ∈ Zq and any i 6= j.

4. ∆Ki
χa+χb

6 .= ∆Ki
dχa−d−1χb

for any d ∈ Zq and any i = 1, . . . , n.

Proof. We want to show that 2mK cannot be slice for any m. This means that for every

metaboliser, we need to find a character for which the corresponding twisted Alexander

polynomial does not factorise as a norm. Any invariant metaboliser will be spanned by

eigenvectors. Let Ma be a k × 2mn matrix which represents the contribution from the a-

eigenspaces, and Mb be a (2mn − k) × 2mn matrix representing the contribution from the

b-eigenspaces.

Case 1: k > nm

In this case we can follow the same proof as in Theorem 5.5.1 to show that in every

metaboliser there will be a vector which has an odd number of zero entries. By Conditions (1)

and (2) the corresponding twisted Alexander polynomial corresponding to this vector cannot

be a norm.

Case 2: k = nm

We again follow the proof of Theorem 5.5.1 until the following line:

We have Ma = (I D) and Mb = (I −D−1) where D is a diagonal matrix. Consider the top

rows of Ma and Mb:

ma = (1, 0, . . . , 0, d, 0, . . . , 0)

mb = (1, 0, . . . , 0,−d−1, 0, . . . , 0)

We have two cases to consider.

In the first case, the columns corresponding to the non-zero entries are from different knots;

say one is from Ki and the other is from Kj . By condition (3) the twisted Alexander polynomial

corresponding to either ma or mb is assumed not to be a norm.

In the second case, the two non-zero columns represent different copies of the same knot Ki.

In this case we subtract the two vectors and the corresponding twisted Alexander polynomial

is (as explained in the proof of Theorem 5.5.1)

∆Ki
χa+χb

·∆Ki
dχa−d−1χb

.

By condition (4) of the theorem, this is assumed not to be a norm, completing the proof. �

Remark 5.5.4. Using Corollary 5.2.9 we can extend Theorem 5.5.3 to include knots Ki in the

connected sum for which H1(Σp(Ki);Z) ∼= Zq ⊕ Zq ⊕ Ti (or simply H1(Σp(Ki);Z) ∼= Ti) with

the order of the Ti coprime to q.
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Chapter 6

Geometric concordance

classification of 9-crossing knots

In Chapter 4 we took the free abelian group FE generated by the 9-crossing prime knots

E = {31, 41, 51, 52, 61, 62, 63, 71, . . . , 77, 81, . . . , 821, 91, . . . , 949} (including the distinct reverses

8r17, 9r32 and 9r33) and in Theorem 4.5.1 found a basis for the kernelAE of the map FE → CE → G,

where CE is the subgroup of C generated by E.

We would now like to complete our investigation into the structure of CE by identifying a

basis for the kernel of the map φ : AE → CE .

Let us first pick out those knots which have been shown to be slice or order 2 by other

people (see Knotinfo [CL10]). The notation CnT will stand for the set of elements of geometric

(T = Topological) order n.

C2T = {41, 63, 83, 812, 817, 818}

C1T = {61, 88, 89, (810 + 31), (811 − 31), 820, (924 − 41), 927, (937 − 41), 941, 946}

It remains to look at the image under φ of the following set of knots:

S = {4(77), 4(934), 2(81), 2(813), 2(815 − 72 − 31), 2(92 − 74), 2(912 − 52), 2(914),

2(916 − 73 − 31), 2(919), 2(928 − 31), 2(930), 2(933), 2(942 + 85 − 31), 2(944 − 41),

(817 − 8r17), (821 − 818 − 31), (98 − 814), (923 − 92 − 31), (929 − 928 + 2(31)),

(932 − 9r32), (933 − 9r33), (939 + 72 − 41), (940 − 818 − 41 − 31)}

Conjecture 6.0.5. The image of AE in CE is isomorphic to Z23 ⊕Z2 generated by the image

under φ of the set S.

The Z2 summand is generated by (817 − 8r17), since 817 is itself of order 2. For now we

will remove (817 − 8r17) from S, since if we can prove that no linear combination of the other

knots in S is slice then (817 − 8r17) is independent of those knots. To prove the rest of the

conjecture we need to show that all the remaining knots are of infinite order in C and that they

are independent of one another.
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6.1 Knots of infinite order

The knots in S are all algebraically slice, so we will need Casson-Gordon invariants to prove

that they are not geometrically slice. In particular, we will use twisted Alexander polynomials

and the theorems developed in Chapter 5.

The knots 4(77), 4(934) and 2(81) are known to be of infinite order from KnotInfo [CL10].

The other singleton knots 2(813), 2(914), 2(919), 2(930), 2(933) and 2(944−41) = 2(944) are shown

to be of infinite order via Theorem 5.3.6.

Theorem 5.3.10 applies to the following knots to show that they are of infinite order:

2(815 − 72 − 31), 2(92 − 74), 2(912 − 52), 2(916 − 73 − 31), 2(928 − 31), 2(942 + 85 − 31),

(98 − 814), (929 − 928 + 2(31)), (940 − 818 − 41 − 31), (821 − 818 − 31), (939 + 72 − 41).

The twisted Alexander polynomial calculations, performed using Maple 13, can be found in

Appendix E. We work through a couple of examples to illustrate how the theorem works.

Example 6.1.1. Using Theorem 5.3.10 we show that 815− 72− 31 is of infinite order in C. We

have H1(Σ2(815);Z) ∼= Z33, H1(Σ2(72);Z) ∼= Z11 and H1(Σ2(31);Z) ∼= Z3, so we choose to use

the prime q = 11. This means we do not have to compute any polynomials related to 31.

Condition (1) of Theorem 5.3.10 asks us to check whether any of the trivial twisted

polynomials are norms. We have

∆815
χ0

= (9t2 − 7t+ 9)(t2 + t+ 1)

and

∆72
χ0

= (9t2 − 7t+ 9)

where

9t2− 7t+ 9 =
1

9
(9t− 1 + 5w+ 5w3 + 5w4 + 5w5 + 5w9)(9t− 1 + 5w2 + 5w6 + 5w7 + 5w8 + 5w10)

for w an 11th root of unity. Is this a norm? Write the first factor as 9t+f(w). Then the inverse

conjugate of this is

9t−1 + f(w) = 9f(w)−1 + t =
1

9
(81f(w)−1 + 9t)

and we are reduced to deciding whether 81f(w)−1 = g(w) where g(w) is the constant term in

the second factor. Calculating using a program such as Maple, we find that

81f(w)−1 = −1 + 5w + 5w3 + 5w4 + 5w5 + 5w9 = f(w) 6= g(w).

Thus we have shown that the trivial twisted polynomials are not norms.

Condition (2) asks us to check whether any factors of ∆χ0
for either 815 or 72 are contained

in any of the non-trivial polynomials. This is clearly not the case, since ∆72
χ1

= 1 and

∆815
χ1

= 1 + t(w3 − w4 + w8 − w7 + 3w5 + 3w6 − 5) + t2

which is irreducible over Q(w)[t, t−1].
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Finally, condition (3) asks us to look at the linking forms of 815 and 72. These are

lk815(3, 3) = −5 ∈ Z11 (which is not a square) and lk−72(1, 1) = −1 ∈ Z11 (also not a square).

Since the linking forms are the same modulo squares, and since q = 11 ≡ 3 modulo 4, there is

no further work to be done.

Example 6.1.2. As a further example to illustrate when condition (3) of Theorem 5.3.10 is

necessary, consider the knot 98−814. For this knot we use the prime q = 31, which is 3 modulo

4, and we find that 98 and −814 have different linking forms modulo squares. This means we

have to check whether certain Galois conjugates of ∆98
χ1

and ∆814
χ1

are the same. The polynomials

we are dealing with are of the form (1 + tf(w) + t2) for 98 and (1 + tg(w) + t2) for 814, where

f(w) =− w − 3w2 − 5w3 − 7w4 − 10w5 − 11w6 − 12w7 − 13w8 − 14w9 − 16w10 − 18w11

− 20w12 − 22w13 − 24w14 − 24w15 − 24w16 − 24w17 − 22w18 − 20w19 − 18w20

− 16w21 − 14w22 − 13w23 − 12w24 − 11w25 − 10w26 − 7w27 − 5w28 − 3w29 − w30

and

g(w) =32w + 11w2 + 20w3 + 26w4 + 6w5 + 36w6 + 5w7 + 28w8 + 17w9 + 13w10 + 30w11

+ 3w12 + 34w13 + 9w14 + 23w15 + 23w16 + 9w17 + 34w18 + 3w19 + 30w20 + 13w21

+ 17w22 + 28w23 + 5w24 + 36w25 + 6w26 + 26w27 + 20w28 + 11w29 + 32w30.

Since Galois conjugation does not change the frequency of the coefficients in f or g, it is easy

to see that no Galois conjugate of f can ever equal g.

The knot (923−92−31) is problematic because the twisted polynomial ∆χ1
for 92 is trivial, 1

and so condition (3) of Theorem 5.3.10 fails to hold. The homology of the two-fold branched

cover of this knot is

H1(Σ2;Z) ∼= (Z9 ⊕Z5)⊕ (Z5 ⊕Z3)⊕Z3 .

Using the prime q = 5, we must follow the proof of Theorem 5.3.10 more carefully and identify

whether the conclusions still hold.

Proposition 6.1.3. The knot K = (923 − 92 − 31) is of infinite order in C.

Proof. Suppose mK is slice and that a basis of a metaboliser in H1(Σ2(mK);Z5) is

v1 = (a1,1, . . . , a1,m, b1,1, . . . , b1,m, 01, . . . , 0m)

v2 = (a2,1, . . . , a2,m, b2,1, . . . , b2,m, 01, . . . , 0m)

...

vm = (am,1, . . . , am,m, bm,1, . . . , bm,m, 01, . . . , 0m)

where ai ∈ H1(Σ2(923);Z5) and bi ∈ H1(Σ2(92);Z5).

Consider the truncated (m× 2m) matrix V whose rows are the vi but without the final m

zeros. If a linear combination of these rows is found which contains an odd number of zeros

then the polynomial (16t2 − 17t+ 16) will occur with odd degree as part of the corresponding

1The twisted Alexander polynomial of any genus 1 knot is an element of Q(ζd), which is considered trivial.
This is because the degree of the twisted Alexander polynomial is a lower bound for the Thurston norm [FK08],
which is 1 for a genus 1 knot.
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twisted Alexander polynomial of that vector, since this polynomial is a factor of both ∆χ0
(923)

and ∆χ0
(92) (but not ∆χ0

(31)). The twisted polynomial can therefore not factorise and mK

is not slice. If such a linear combination cannot be found, then by Lemmas 5.3.4 and 5.3.5 we

can perform row and column operations on V to transform it into (I E), where E is obtained

from a diagonal matrix whose entries are ±2 (since the linking forms of −92 and 923 are the

same) by permuting the columns. Each row of this new matrix (which we will call V ′) gives us

a twisted Alexander polynomial of the form

∆χ
.
= ∆Ki

χ1
∆Kj
χ2

.

If Ki 6= Kj or if Ki = Kj = 923 then this polynomial is not a norm; the difficulty comes

if Ki = Kj = 92 because then this polynomial is equal to 1. However, it is impossible that

Ki = Kj = 92 for every row of V ′ because that would imply that every column corresponded

to the knot 92, when we know that only half the columns do. We can thus deduce that there

is a row which corresponds to a twisted polynomial that is not a norm, finishing the proof that

mK cannot be slice. �

Remark 6.1.4. This proof can be adapted to work for any knot K = K1 + · · · + Kn which

satisfies all the conditions of Theorem 5.3.10 except that one constituent knot has a ∆χ1 which

is a norm. In fact, a more careful analysis should reveal how many of the constituent knots

need not satisfy condition (3) before the theorem fails.

Finally, the knots 932 − 9r32 and 933 − 9r33 cannot be shown to be of infinite order by the

2-fold branched cover, so we must look to higher covers and use Theorem 5.5.2. This applies

to our two knots when p = 5 (i.e. looking at H1(Σ5;Z)). For 932 − 9r32 we work at the prime

q = 11 and for 933 − 9r33 we use the prime q = 101. What are a and b in these cases, and why

are there only two relevant eigenvalues when in principle there could be four? The following

theorem, proved by Fox [Fox70, Theorem 1] and also restated by Hartley [Har83, 1.7], answers

these questions.

Theorem 6.1.5. Let K be a knot and suppose that p divides q − 1 and that α ∈ Zq is an

element of order p in Zq. Suppose also that H1(Σp(K);Z) ∼=
⊕

iEi with the Ei being different

eigenspaces of the deck transformation. Then Eα is one of the eigenspaces in this sum if and

only if q divides ∆K(α).

In particular, if Ea is an eigenspace of the deck transformation then so is Ea−1 since ∆(a) =

∆(a−1) (up to a factor of t). Thus b = a−1 in Zq.

For 932 − 9r32 there are four 5th roots of unity in Z11: 3, 4, 5, 9. However, only 3 and 4 are

roots of the Alexander polynomial modulo 11. (And indeed they are inverses of each other

modulo 11.) For 933 − 9r33 there are also four 5th roots of unity in Z101: 36, 84, 87, 95. Only 36

and 87 are roots of the Alexander polynomial modulo 101.

The prime 101 is a rather large one: for condition (3) of Theorem 5.5.2 there are potentially

101 twisted polynomials that need to be checked. Thankfully, many of them turn out to be the

same via the action of the deck transformation T .

Lemma 6.1.6. Let (x, y) ∈ Z2
q denote the twisted Alexander polynomial ∆xχa+yχb , where χa

and χb are explained at the beginning of Section 5.5. Then the polynomial (x, y) is equal to

(bnx, any) for each n = 0, . . . , p− 1.
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6.1. Knots of infinite order

Proof. For any map χ : H1(Σp;Z) → Zq, the twisted Alexander polynomial ∆χ is equivalent

to ∆χ◦T , where T : H1(Σp)→ H1(Σp) is the deck transformation of Σp.

An element in H1(Σp(K)) may be written as αea + βeb for some α, β ∈ Zq, where ea and

eb are a- and b- eigenvectors respectively. This means that

(xχa + yχb) ◦ T (αea + βeb) = (xχa + yχb)(aαea + bβeb)

= xχa(aαea + bβeb) + χb(aαea + bβeb)

= xχa(bβeb) + yχb(aαea)

= bxχa(βeb) + ayχb(αea)

= (bxχa + ayχb)(αea + βeb)

because Tea = aea and Teb = beb by the definition of ea and eb being eigenvectors. Applying

the deck transformation repeatedly gives the result. �

Continuing with the same notation as in Lemma 6.1.6, we may consider the polynomials

(x, y) as living in the projective space of Zq⊕Zq. This is because i(x, y) is the same polynomial

as (x, y) up to Galois conjugation, for any i ∈ Zq. This means there are q + 1 different

polynomials in our space, a priori : (1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, q − 1). However, we also

have an action on this group, namely, multiplication of the first entry by b and multiplication

of the second entry by a. (Notice that since a = b−1 we have (b, a) = (1, a2), and the action

of the group is equivalent to multiplying the second entry by a2.) Orbits of this action, which

are of order p since ap = 1 = bp (mod q), give us the same polynomial. This means there are

only q−1
p potential different polynomials to be checked for condition (3) of Theorem 5.5.2. In

fact, we can cut this down by a further factor of two, since we are only interested in checking

whether (1, 1) 6= (d,−d−1) = (1,−d−2), so we only have to check the polynomials where the

second factor is a (negative) square. (The action of the group preserves squares in the second

factor.)

In the case of 932 − 9r32 we have p = 5 and q = 11, so for condition (3) there is only one

polynomial to be checked against (1, 1) (up to Galois conjugates), namely (1,−1). We must

also check that (1, 0) 6= (0, 1) up to Galois conjugates. These conditions are satisfied, and we

give the relevant polynomials in Appendix E. For 933 − 9r33 we have p = 5 and q = 101, so

there are 101−1
2×5 = 10 polynomials to check for condition (3). Since 101 ≡ 1 (mod 4), one

of these polynomials is actually (1, 1) (when d = 10), so we must remember to check that

∆χa+χb 6= σ10∆χa+χb . (They aren’t equal!) It would be impractical to write out all of these

polynomials (each coefficient of a power of t has 100 terms!) so instead we look at the coefficient

of s only. This coefficient is a polynomial in w, where w is a 101th root of unity. In Appendix

E we give the frequency of the coefficients of the wi; for example, in the polynomial (1, 6) we

see that −2 occurs as a coefficient of the wi 20 times. Since Galois conjugation does not change

these frequencies, it is possible to see that all the required polynomials are different from (1, 1).
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6.2 Linear independence

Consider the knot

K = 4a1(77) + 4a2(934) + 2a3(81) + 2a4(813) + 2a5(815 − 72 − 31) + 2a6(92 − 74) +

2a7(912 − 52) + 2a8(914) + 2a9(916 − 73 − 31) + 2a10(919) + 2a11(928 − 31) +

2a12(930) + 2a13(933) + 2a14(942 + 85 − 31) + 2a15(944 − 41) + a16(821 − 818 − 31) +

a17(98 − 814) + a18(923 − 92 − 31) + a19(929 − 928 + 2(31)) + a20(932 − 9r32) +

a21(933 − 9r33) + a22(939 + 72 − 41) + a23(940 − 818 − 41 − 31).

Conjecture 6.2.1. K is slice if and only if ai = 0 for all i = 1, . . . , 23.

The method of proof will involve identifying primes in H1(Σ2(K);Z) which only occur in

the homology of the branched covers of very few of the constituent knots. The problem will

then be reduced to a series of independence proofs involving only two or three knots at a time.

Notation. Let Ki denote the knot whose coefficient is ai in the sum of knots making up K.

We start by identifying primes which only occur in H1(Σ2(Ki)) for a single i. Since we know

that all the Ki are of infinite order, the coefficients of these ‘singleton’ knots must be zero.

Prime Coefficient which is zero

23 a2

29 a4

37 a8

41 a10

53 a12

31 a17

(59) (a20)

The last coefficient is in brackets because it is for the knot 932−9r32, which cannot be shown

to be of infinite order using the 2-fold cover. We shall ignore this knot for now, but keep it in

mind to deal with later.

Here follows a table of the other coefficients with the primes we will use to attack them.

Prime Coefficients

13 a3, a9

11 a5, a22

(61) (a13, a21)

7 a1, a7, a14

17 a11, a15, a19

Again, the prime which is bracketed refers to the knot 933 − 9r33 which we know cannot be

dealt with using the 2-fold cover, so we will put it to one side for the moment. For q = 13 there

is a problem with ∆81
χ1

being trivial, but a combination of Theorem 5.3.10 and the techniques of

Proposition 6.1.3 serve to deal with it and prove that a3 = a9 = 0. For q = 11, 7, 17, Theorem

5.3.10 suffices to prove that the corresponding coefficients are all zero.

The remaining coefficients are a6, a16, a18 and a23, each of them appearing non-trivially at

the primes 3 and 5. When q = 5 there is a problem with a23 because H1(Σ2(940);Z5) ∼= Z5⊕Z5.
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When q = 3 there is also a problem because in H1(Σ2) there are summands of Z3 and Z9.

Since we cannot make further progress with the 2-fold branched cover, we shall instead study

the higher covers and attempt to make use of Theorem 5.5.3.

Let

K ′ = 2a6(92 − 74) + a16(821 − 818 − 31) + a18(923 − 92 − 31) + a23(940 − 818 − 41 − 31)

+a20(932 − 9r32) + 2a13(933) + a21(933 − 9r33)

and let us look at H1(Σp(K
′);Z) for various p. Recall that in order to apply Theorem 5.5.3 we

need to find primes q dividing the order of H1(Σp) such that p divides q − 1.

When p = 3, the primes q = 2, 5, 11 and 23 divide the order of H1(Σ3(K ′)), but none of

these have the property that 3 divides q − 1.

When p = 5 we have more luck, since the primes dividing H1(Σ5(K ′)) are 11, 61 and 101.

But H1(Σ5(940);Z) ∼= Z11⊕Z11⊕Z11⊕Z11 and this situation is not covered by Theorem 5.5.3,

while at the prime 61 the twisted Alexander polynomials of K ′ do not satisfy the theorem’s

requirements. In particular, the twisted polynomials for 74 and 92 are trivial and ∆923
χa+χb

.
=

∆923
χa−χb . However, the prime 101 is a success. The twisted polynomials for 933 satisfy the

conditions of Theorem 5.5.3 and so we may conclude that if K ′ is slice then a13 = a21 = 0.

Moving on to p = 7, the primes dividing H1(Σ7(K ′)) are q = 251, 29 and 743. Unfortunately

7 does not divide 250, and again we have the problem that H1(Σ7(940);Z) ∼= Z29⊕Z29⊕Z29⊕
Z29 so the prime 29 is out of the question. The prime 743 is a good one because 7 divides 742, but

the difficulty here is in the sheer amount of computation involved in checking the conditions of

Theorem 5.5.3. Using the analysis from Section 6.1 we see that there are 742
2×7 = 53 polynomials

to be checked for condition (4) of the theorem.

In fact, 940 appears to always have a four-fold summand in the homology of its branched

covers, whilst the homology of the covers of 923 never splits into the requisite eigenspaces. It

seems that we are once again stuck, so we shall go back to studying H1(Σ2(K ′);Z) and see if

we can find a way to use twisted Alexander polynomials when there are different powers of a

prime involved.

6.3 Combining prime powers

How can we combine the theorems in Chapter 5 to determine the sliceness of a composite

knot where different powers of a prime occur in the homologies of Σ2 of different component

knots? For example, how can we tell if the knot K = aK1 + bK2, where H1(Σ2(K1)) ∼= Z9

and H1(Σ2(K2)) ∼= Z3, is slice? Let us take this very simple example and investigate what a

metaboliser of K would look like.

Suppose that 2mK is slice. Then

H1(Σ2(2mK);Z) ∼=
⊕
2ma

Z9 ⊕
⊕
2mb

Z3

so a matrix M representing a metaboliser will have 2m(a+ b) columns. The first 2ma columns

will have entries in Z9 and the last 2mb columns will have entries in Z3. Some number of

the rows, say β, will be of order 9, with the rest, γ, of order 3. The order of the homology is

73



Chapter 6. Geometric concordance classification of 9-crossing knots

32m(2a+b), so the order of the metaboliser is 3m(2a+b). We must therefore have the relation

2β + γ = m(2a+ b).

So far, we have a picture of M which looks like this:

(There are β rows above the first horizontal line and γ rows beneath it; the entries to the left

of the vertical double line are in Z9 whilst those to the right are in Z3.)

1 0

. . .

0 1

A1 A2 B1

0

3 0

. . .

0 3

A3 B2

0 0 0 B3


By the definition of a metaboliser, the linking pairing between any pair of rows must be

zero in Q/Z. Let x = (a1, . . . , a2ma, b1, . . . , b2mb) ∈M . Then

lk(x, x) = lkK1
(1, 1)

∑
i

a2i + lkK2
(1, 1)

∑
i

b2i .

Let us assume (currently without loss of generality) that lkK1(1, 1) = 1
9 and lkK2

(1, 1) = 1
3 . For

lk(x, x) to be an integer we must have that∑
i

a2i + 3
∑
i

b2i ≡ 0 mod 9. (6.1)

It follows that
∑
i a

2
i must be zero modulo 3. A corresponding condition holds for the dot

product of any two rows of M .

In the γ rows of order 3, the dot product of the Z9-part of the rows is zero modulo 9. For

these rows, it follows that
∑
i b

2
i must be zero modulo 3 (and similarly for the dot product

between any two of the order 3 rows).

What about the dot product between an order 9 row and an order 3 row? Let us split

the γ rows of order 3 into the γ1 rows that have a non-trivial Z9 part and the γ2 rows that

have a trivial Z9 part. The bottom γ2 rows clearly need to have dot product zero (modulo 3)

with the top β rows. In the middle γ1 rows, the Z9-entries are all multiples of 3. If we divide

these entries by 3, Equation 6.1 tells us that the resulting dot product between a β row and a

modified γ1 row is zero modulo 3.

Here is a picture of our metaboliser M where the middle γ1 rows have had their Z9 entries

divided by 3:  Iβ A1 A2 0 B′1

0 Iγ1 A′3 0 B′2

0 0 0 Iγ2 B′3


To summarise the relations between rows, we have

1. The top left block of β rows have dot product zero modulo 3 amongst themselves.
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2. The bottom right block of γ2 rows have dot product zero modulo 3 between themselves

and any other row in the matrix. I.e. B′3 ·B′1 ≡ 0 and B′3 ·B′2 ≡ 0 modulo 3.

3. The middle block of γ1 rows have dot product zero modulo 3 with any other row in the

matrix (but not necessarily themselves).

where “left” and “right” refer to Z9 and Z3 entries respectively.

Example 6.3.1. An example matrix which satisfies all these conditions is (before division by

3) 
1 1 1 0 0 1 0 −1

0 3 0 0 0 1 1 −1

0 0 3 0 0 1 1 −1

0 0 0 3 0 0 0 0

0 0 0 0 1 1 0 1


Here m = 2, a = b = 1, β = 1, γ1 = 3, γ2 = 1.

Now let us try to find some ‘odd’ vectors in M so that we get a slice obstruction from the

twisted Alexander polynomials. In what follows, all entries of M have been mapped into Z3.

If β = 0 then the vector (1, 0, . . . , 0) has zero dot product with any row of M , giving us the

twisted Alexander polynomial condition ∆K1
χ1

∆K1
χ0

.
= 1.

If β ≥ ma, then condition (1) means that we can use Lemma 5.3.5 to find a linear

combination of rows which contains an odd number of zeros (on the ‘left’ of M). If ∆K1
χ1

∆K1
χ0
6 .= 1

then this again obstructs K from being slice.

If γ2 ≥ mb then condition (3) means that we can use Lemma 5.3.5 to find a linear

combination of rows which contains an odd number of zeros (on the ‘right’ of M). If

∆K2
χ1

∆K2
χ0
6 .= 1 then this obstructs K from being slice.

Finally, we are in the situation where 0 < β < ma and γ2 < mb. Since 2β + γ1 + γ2 =

m(2a+ b), we have γ1 > 0. If we can find an odd row in the middle γ1 rows, then we are done

since these rows have zero dot product with any other row. The problem is that we do not have

a dot product condition between any of the γ1 rows, so we cannot use any variant of Lemma

5.3.5.

At this point we are stuck and cannot complete the proof of the conjecture. In future work,

perhaps Casson-Gordon signatures could be combined with twisted Alexander polynomials to

eliminate the final case from consideration.

6.4 Summary

The analysis of this chapter leaves us still with the conjecture that we had at the start; namely:

Conjecture 6.4.1. A basis for the kernel of the map φ : AE → CE is the union of the

independent sets 2C1′A , 2C2T and C1T , where

• C1′A = {(817 − 8r17)}

• C2T = {41, 63, 83, 812, 817, 818}

• C1T = {61, 88, 89, (810 + 31), (811 − 31), 820, (924 − 41), 927, (937 − 41), 941, 946}
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Chapter 6. Geometric concordance classification of 9-crossing knots

In order to prove this conjecture, it remains to show that the knots (92−74), (821−818−31),

(923 − 92 − 31), (940 − 818 − 41 − 31) and (932 − 9r32) are linearly independent in C.

Remark 6.4.2. If this conjecture holds, then the image of AE in CE is isomorphic to Z23⊕Z2.
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Examples

In Chapters 4 and 6 we analysed the concordance relations of the knots in E, that is, the prime

knots with up to 9 crossings. Given that Conjecture 6.4.1 is correct, we know where all the

algebraic and geometrical torsion in CE comes from and we know which knots are independent

of each other in C. But what can we do with all this information?

There are two questions that our classification is designed to answer:

1. Given a knot K which is a linear combination of knots in E, what are its algebraic and

topological concordance orders?

2. Suppose that there is a mystery knot K which we are told is a linear combination of knots

in E. How do we determine what this linear combination is (up to concordance)?

In the first case, the final classification itself is sufficient to answer this question for any knot

K. For the second question, we will need not only the classification but all the calculations of

invariants which were done along the way. To illustrate the methods that one would need to

answer these questions, we shall work with a specific test knot

K = 2(31) + 5(72)− 3(812)− 98 + 916 + 934 + 946.

7.1 Question 1: Finding the concordance order of K

To find the concordance order of K, we first re-write the knot in terms of our basis.

K = 3(31) + 5(72) + 73 − 3(812)− 814 − (98 − 814) + (916 − 73 − 31) + 934 + 946.

These knots are independent (in the sense described in previous chapters) and so the

concordance order of K is the maximum of the concordance orders of these knots. (Strictly

speaking it is the least common multiple, but since the only possible orders are 1, 2, 4 or∞ this

corresponds to the maximum.) Since 31 has infinite order, both in A and C, then so does K.

As a further example, let us take K ′ = −3(812)+(934). We know that 812 has both algebraic

and topological order 2 (so −3(812) = 812) whilst 934 is algebraically of order 4 and topologically

of infinite order. Thus K ′ is algebraically of order 4 and topologically of infinite order.

We have made a website which implements this method, which can be found at
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http://www.maths.ed.ac.uk/~s0681349/Classification/bigmatrix.html.

It will output the algebraic and geometric concordance orders of any linear combination of

prime 9-crossing knots, as well as giving a breakdown of the knot in terms of the basis knots

from Chapter 6.

7.2 Question 2: Finding a decomposition of K in terms of

elements of E

Henceforth we will assume that we do not know what K is (for example, we have only some

unrecognisable knot diagram). All that we can do is ask for the values of certain invariants.

We will first try to identify the knots in the decomposition which are non-trivial in A, and then

to find component knots which are non-trivial in C. Notice that, in the eyes of the concordance

group C, our knot K is equivalent to

2(31) + 5(72) + 812 − 98 + 916 + 934

because 812 is amphicheiral and 946 is slice. We will use this version of the knot for all invariants

which follow.

7.2.1 Signatures

To identify the components of K which have infinite order we will use the ω-signatures as

detailed in Section 4.1. The ω-signatures of every knot were originally evaluated at 70 different

values, but only 46 of these values are needed to identify the infinite order knots.

If we evaluate the ω-signature of K at each of the relevant 46 values of ω, we find that

it is non-zero at δ36, δ24, δ15, δ35, which correspond to the knots 31, 72, 73 and 814 respectively.

(See Appendix A.) A closer analysis of the signature tells us the coefficients of these knots:

for example, 72 has signature −2 at δ24, but when we evaluate K at δ24 we get −10, so the

coefficient of 72 must be 5. After this analysis we know that

K = 3(31) + 5(72) + 73 − 814 +K1

where K1 is a knot of finite order in A.

7.2.2 The Alexander Polynomial

The Alexander polynomial of K is

(1− t+ t2)3(3− 5t+ 3t2)5(1− 7t+ 13t2 − 7t3 + t4)(2− 8t+ 11t2 − 8t3 + 2t4)

(2− 3t+ 3t2 − 3t3 + 2t4)(1− 6t+ 16t2 − 23t3 + 16t4 − 6t5 + t6).

We will denote the (unique) factors of this polynomial by the letters A, . . . , F , starting with

A = (1− t+ t2).
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There are two polynomials here which are not accounted for by the knot K −K1: namely

C and F . Out of the knots in C2A and C4A, there is exactly one knot corresponding to each

polynomial. The knot with Alexander polynomial C is 812 and the knot with Alexander

polynomial F is 934. We now know that

K = 3(31) + 5(72) + 73 + 812 − 814 ± (4a+ 1)(934) +K2

for some a ∈ Z, where K2 is a finite-order knot whose Alexander polynomial factorises as

f(t)f(t−1).

7.2.3 Witt groups for primes p ≡ 3 mod 4

We will examine the image of K in W (Fp) for primes congruent to 3 mod 4 which divide

∆K(−1). These primes correspond to the polynomials A,B,D and F . The results are given in

the following table.

Polynomial A B D F F

Prime p 3 11 31 3 23

Image in W (Fp) 1 1 1 3 1

We now apply a similar analysis to the knot K −K2.

Polynomial A B D F F

Prime p 3 11 31 3 23

Image in W (Fp) 3 1 1 ±3 ±1

It is easy to see that polynomial A is not giving us the right invariant. The knot K2

must therefore contain a component which has the image 2 ∈ W (F3) and zero in the Witt

groups corresponding to the other primes. The knots in C2A and C4A which satisfy this condition

and whose Alexander polynomial contains a factor (1 − t + t2) are 818, (916 − 73 − 31) and

(928 − 31). However, 818 and (928 − 31) both contain factors with odd exponent in their

Alexander polynomials which do not divide ∆K(t), so this rules them out.

Comparing images in W (Fp) for the polynomial F gives us the information that we should

take 934 and not −934. Our updated knowledge of K is thus

K = 3(31) + 5(72) + 73 + 812 − 814 + (2b+ 1)(916 − 73 − 31) + (4a+ 1)(934) +K3

for some a, b ∈ Z.

7.2.4 Witt groups for primes p ≡ 1 mod 4

We will examine the image of K in W (Fp) for primes congruent to 1 mod 4 which divide

∆K(−1). These primes correspond to the polynomials C and E. The results are given in the

following table.

Polynomial C E

Prime p 29 13

Image in W (Fp) (0,1) (0,1)

The image of K −K3 is
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Polynomial C E

Prime p 29 13

Image in W (Fp) (0,1) (0,1)

Thus our current knowledge of K is the best that we can do from looking at the algebraic

concordance group. It means that K3 must be algebraically slice.

7.2.5 Twisted Alexander polynomials

The final tool at our disposal for finding out what knot K3 is, up to concordance, is the twisted

Alexander polynomial. Let us take a quick recap of what we know about our knot so far.

Our original knot K = 2(31) + 5(72) + 3(812)− 98 + 916 + 934 + 946 has

H1(Σ2(K);Z) ∼= (Z3)2 ⊕ (Z11)5 ⊕ (Z29)3 ⊕Z31 ⊕ (Z3 ⊕Z13)⊕ (Z3 ⊕Z23)⊕

⊕(Z3 ⊕Z3)

∼= (Z3)6 ⊕ (Z11)5 ⊕Z13 ⊕Z23 ⊕ (Z29)3 ⊕Z31

Our current estimate of K is

K ′ = 3(31) + 5(72) + 73 + 812 − 814 + (2b+ 1)(916 − 73 − 31) + (4a+ 1)(934)

whose homology is

H1(Σ2(K ′);Z) ∼= (Z3)3 ⊕ (Z11)5 ⊕Z13 ⊕Z29 ⊕Z31 ⊕ ((Z3)2 ⊕ (Z13)2)2b+1 ⊕

(Z3 ⊕Z23)4a+1

∼= (Z3)6+4b+4a ⊕ (Z11)5 ⊕ (Z13)3+4b ⊕ (Z23)4a+1 ⊕Z29 ⊕Z31

Any algebraically slice knots forming K3 must be detectable at the primes 3, 11, 13, 23, 29

and 31.

There is only one algebraically slice knot which is nontrivial at the prime 23: this is 4(934).

Since there is only one summand of Z23 in H1(Σ2(K)), this means that the coefficient of 934

in K ′ is 1, so a = 0.

For the prime 31 there is only a single summand in H1(Σ2(K)), so there can only be a single

knot to cause it. We may calculate a non-trivial twisted Alexander polynomial corresponding to

this knot and this prime. If we do this, we will find that it gives a different, non-Galois-conjugate,

polynomial to ∆K′

χ1
. The component −814 in K ′ is therefore incorrect. The only algebraically

slice knot which is non-trivial at the prime 31 is 98− 814. If we let K ′′ := K ′− (98− 814), then

we find that we indeed get the correct twisted Alexander polynomial.

Continuing this method, there is only one Z13 summand in H1(Σ2(K)) so it must be

generated by only one knot. The possible Z13 algebraically slice knots are 2(63), 2(81) and

2(916−73−31). There is no combination of these which would produce a single Z13 summand,

from which we conclude that b = 0.

There are three Z29 summands, only one of which is accounted for by K ′′. The algebraically

slice knots which may account for this are 2(812) and ±2(813). The knot 813 is of infinite order

and this is detected by the twisted Alexander polynomial, whilst 812 is amphicheiral and has

twisted Alexander polynomials which are Galois conjugates of each other. In principle it should

be possible to compute the twisted Alexander polynomials for K and decide which case we are
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in, though in practice our current Maple program gets stuck because the homology has the

wrong form. That is, the homology of H1(Σ2(2J)) will always be a direct double for any knot

J , precluding the use of the 2-fold cover, whilst higher covers will have a quadruple summand.

At the prime q = 11 there are two possible algebraically slice knots which could be part of

K3. These are 2(815 − 72 − 31) and 939 + 72 − 41. However, the second of these two knots has

non-trivial twisted Alexander polynomials at the prime 5, and this prime does not divide the

homology of Σ2(K). Both 2(815−72−31) and 4(815−72−31) are possibilities since they preserve

the (Z11)5 summand. It should be possible to detect the presence (or, in this case, absence) of

an 815 component using twisted Alexander polynomials, since the 815 twisted polynomials are

(Galois-) distinct from the 72 twisted polynomials. Unfortunately, as we have already lamented,

the program which currently exists cannot compute twisted polynomials for composite knots

where two or more constituent knots have the same primes dividing the homology of their

branched covers.

Up to this point, we have determined that

K ′′ = 3(31) + 5(72) + 73 + 3(812)− 98 + (916 − 73 − 31) + 934

= 2(31) + 5(72) + 3(812)− 98 + 916 + 934

The only part of the homology of K not accounted for is a factor (Z3)2. The algebraically

slice knots whose H1(Σ2) has order a power of 3 are 61, 810 + 31, 811 − 31, 820 and 946. These

knots all happen to be slice, so up to concordance is it impossible to distinguish them. However,

we can say a little more than that. The knots 61 and 820 would introduce a Z9 summand to

the homology, whilst 810 + 31 and 811 − 31 would both introduce a Z27 summand. Since the

factor we are looking for is Z3 ⊕Z3, it must therefore come from the knot 946.

Thus we have recovered the fact that

K = 2(31) + 5(72) + 3(812)− 98 + 916 + 934 + 946 .

7.2.6 Limitations

Aside from the problem of computing twisted Alexander polynomials for composite knots, there

are also limitations of this algorithm if we stop restricting ourselves to just the 9-crossings knots.

For example, if a generic knot were given which claimed to be concordant to a linear combination

of 9-crossing prime knots, there is no guarantee that we could find this linear combination. For

example, suppose that a knot in the sum were concordant to 98, but the homology of its 2-fold

branched cover were Z31 ⊕ Z312 . The twisted Alexander polynomial theorems in Chapter 5

cannot deal with this sort of homology, so we would be stuck.
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Unknown concordance orders

The website KnotInfo (http://www.indiana.edu/~knotinfo/) tabulates all known knot

invariants for prime knots of up to 12 crossings. The algebraic concordance order is known for

every such knot, but there are many unknown values for the smooth and topological concordance

orders. The smallest knot with unknown (topological) concordance order is 813, whilst 12a631

is the only knot which has neither been proven to be slice or not slice. The most recent list of

unknown values, as of the writing of this thesis, may be found in [CL09].

In this chapter we apply the theorems from Chapter 5 to each of the 325 knots of unknown

concordance order. If the conditions of the theorems hold then these knots are of infinite order

(smoothly and topologically). If the conditions do not hold, we have investigated whether the

knots have finite order and for some knots have found that this is indeed the case. There

remain only two knots for which the concordance order is unknown. The main difficulty in this

exercise is showing when a knot is of finite order, since the only method of doing this is to

find a slice movie for the knot (see Section 2.1.1). When the knots involved have 11 or more

crossings, showing that they are of order 2 means manipulating a knot diagram which has over

22 crossings. The only shortcut available is when a knot happens to be concordant to a smaller

knot of order 2 (such as the Figure Eight knot 41), but even proving this concordance is not

always easy.

8.1 Finding the concordance orders of prime knots up to

12 crossings

There are 325 knots listed as having unknown topological concordance order in Knotinfo. (247

of these also have unknown smooth concordance order.) Of these, we can immediately find the

concordance orders of nine of them because of previously existing theorems. The knot 11n34 is

slice because it has Alexander polynomial ∆K(t) = 1 [FQ90, 11.7B]. The knots 12a48, 12a60,

12a130, 12a291, 12a303, 12a699, 12a1100 and 12a1770 each have a determinant which factors into

primes that are congruent to 3 modulo 4 (with odd powers), so by Theorem 5.4.1 they are of

infinite order. The knot 12a1288 is known to be fully amphicheiral, so is therefore of order 2.

To do our first real batch of analysis we will use Theorem 5.3.6, which we will restate here.

Theorem 5.3.6. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zq ⊕ T for some prime

q ≡ 1 mod 4, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z)→ Zq be the trivial map
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and χi : H1(Σ2;Z)→ Zq be lk(−, i). Construct ∆χ1
(t) as in Section 5.2. Then K is of infinite

order if it satisfies the following conditions:

1. ∆χ0
(t) is not a norm.

2. There is a non-trivial irreducible factor f(t) of ∆χ0
(t) for which f(t−1) is not a factor of

∆χi(t) for any i.

3. ∆χa(t) 6 .= ∆χ1(t), where 1 + a2 ≡ 0 (mod q).

This theorem applies to all the remaining 316 knots of unknown concordance order with the

exception of the following:

• Condition (1) not satisfied: 12a912, 12n488, 12n499, 12n587, 12n690.

• Condition (3) not satisfied: 11a44, 11a47, 11a109.

• Conditions (1), (2) and (3) not satisfied: 10158, 11n85, 11n100, 12a309, 12a310,

12a387, 12a388, 12n286, 12n388.

• H1(Σ2) is not of the form Zq ⊕ T : 11a5, 11a67, 11a104, 11a112, 11a168, 11n45, 11n145,

12a169, 12a360, 12a596, 12a631, 12a836, 12n31, 12n132, 12n210, 12n221, 12n224, 12n264,

12n367, 12n480, 12n532, 12n536, 12n579, 12n631, 12n681, 12n731, 12n745, 12n760, 12n812,

12n813, 12n841, 12n846, 12n884.

This is a total of 51 knots, meaning that the theorem has an 84% success rate.

We will first address those knots for which condition (1) was not satisfied; namely those

knots for which ∆χ0
was a norm. This is exactly the case that Theorem 5.3.8 was designed for.

Theorem 5.3.8. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zq ⊕ T for some prime

q ≡ 1 mod 4, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z)→ Zq be the trivial map

and χi : H1(Σ2;Z)→ Zq be lk(−, i). Suppose that ∆χ0
is a norm. Then K is of infinite order

if it satisfies the following condition:

• ∆χi(t) is coprime, up to norms in Q(ζq)[t, t
−1], to ∆χj (t) for all i 6= j, i, j > 0.

The knots 12a912, 12n488, 12n499, 12n587 and 12n690 do satisfy the conditions of this theorem

and are therefore all of infinite order. This brings us down to 46 knots of unknown concordance

order.

To attack the knots which have the ‘wrong’ kind of homology, we need Theorem 5.4.2.

Theorem 5.4.2. Suppose that we have a knot K where H1(Σ2;Z) ∼= Zqn ⊕ T for some prime

q, where the order of T is coprime to q. Let χ0 : H1(Σ2;Z) → Zq be the trivial map and

χi : H1(Σ2;Z) → Zq be lk(−, i) (mod q). Construct ∆χ1
(t) as in Section 5.2. Then K is of

infinite order if it satisfies the following conditions:

1. If n > 1, ∆χ0
(t)∆χ1

(t) is not a norm.

2. ∆χ0
(t) is not a norm.

3. ∆χ0
(t) is coprime, up to norms, to ∆χi(t) for all i 6= 0.

4. If q ≡ 1 (mod 4) then ∆χa(t) 6 .= ∆χ1
(t), where 1 + a2 ≡ 0 (mod q).

Alternatively, if ∆χ0 is a norm, conditions (2)-(4) may be replaced by
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2′. ∆χi is coprime, up to norms, to ∆χj for any i 6= j, i, j > 0.

This theorem applies to the following 19 knots to show that they are of infinite order: 10158,

11n45, 11n145, 12a169, 12a360, 12n31, 12n132, 12n221, 12n224, 12n264, 12n532, 12n536, 12n579,

12n631, 12n681, 12n731, 12n812, 12n841 and 12n884.

Of the remaining 27 knots, the following problems with the theorem arise:

• Condition (1) not satisfied, so ∆χ0
∆χ1

.
= 1: 11n85, 11n100, 12a309, 12a310, 12a387,

12a388, 12n286.

• Condition (4) not satisfied, so ∆χ1∆χa
.
= 1: 11a44, 11a47, 12a836.

• Both ∆χ0
and ∆χ1

are norms: 11a5, 11a67, 11a104, 11a109 11a112, 11a168, 12a596,

12a631, 12n367, 12n388.

• H1(Σ2) is not of the form Zqn ⊕ T : 12n210, 12n480, 12n745, 12n760, 12n813, 12n846.

The first bullet point is interesting because here we have examples where neither ∆χ0
nor

∆χ1
are norms, but their product is a norm. At this point it seemed worth investigating

these knots to see if any of them were of finite order in C. It turned out that 11n85, 11n100

and 12n286 were all of order 2, meaning that condition (1) of Theorem 5.4.2 is a necessary one.

Upon further investigation, we also found that 11a5 and 12n388 are elements of order 2; likewise

the knots 11a104, 11a112 and 11a168 have been proved to be of order 2 by Kate Kearney (in

unpublished work). None of these knots are either positive or negative amphicheiral, but they

are concordant to the Figure-8 knot 41.

We now have 19 knots of unknown concordance order. Clearly no further progress (using

the existing theorems) can be made using the 2-fold branched cover of the knots, so it is time

to move on to information contained within the higher branched covers.

The setup for Theorem 5.5.1 is as follows. Take a knot K with H1(Σp;Z) ∼= Zq ⊕ Zq ∼=
Ea ⊕ Eb, where Ea and Eb are the eigenspaces of the deck transformation. Let ea be an a-

eigenvector (i.e. aea = ea) and eb be a b-eigenvector. Define χa : H1(Σp) → Zq by χa(ea) = 0

and χa(eb) = 1. Similarly, χb : H1(Σp)→ Zq is defined by χb(ea) = 1 and χb(eb) = 0.

Theorem 5.5.1. The knot K is of infinite order in C if the following conditions on the twisted

Alexander polynomial of K are satisfied:

1. ∆χ0
is coprime, up to norms, to both ∆χa and ∆χb , and ∆χ0

is not a norm.

2. ∆χa+χb 6
.
= ∆dχa−d−1χb for any d ∈ Zq.

Let us investigate whether we can apply this theorem to any of our remaining 19 knots.

First we will look at the information contained in the 3-fold branched cover. The conditions

in the theorem turn out to apply to only two of the remaining knots: 11a67 and 12n367. However,

there are another three knots whose only problem is that ∆χ0 is a norm: 12a596, 12n210 and

12n813. In the same way that Theorems 5.3.6 and 5.4.2 had an alternative version in the case

of ∆χ0 being a norm, so does Theorem 5.5.1. The proof still holds if we replace assumption (1)

with

1′. ∆χa and ∆χb are not norms and are coprime over Q(ζq)[t, t
−1] (up to norms) to ∆χ0 .

85



Chapter 8. Unknown concordance orders

This assumption ensures that if there is an ‘odd’ vector in Ma or Mb (see the proof of Theorem

5.5.1 for details) then the corresponding twisted Alexander polynomial is not a norm. The

three knots 12a596, 12n210 and 12n813 do satisfy this condition, so we know they are of infinite

order.

Of the remaining 14 knots there are examples of both condition (1) (and (1′)) failing (12a309,

12a310, 12a387, 12a388 and 12a631) and condition (2) failing (11a44, 11a47, 11a109 and 12n745)

as well as knots whose homology does not split into two eigenspaces (12a836, 12n480, 12n760

and 12n846).

Moving on to yet higher order covers, the infinite order of 12n480, 12n745 and 12n760 is

detected by the 7-fold cover, whilst 12a836 is proved to be of infinite order via the 13-fold cover.

Unfortunately the knot 12n846 has incredibly large primes in the homology of its covers: 701 for

the 5-fold cover, 8681 for the 7-fold cover and 1385341 for the 11-fold cover. It is not possible to

compute the corresponding twisted Alexander polynomials using the computing resources that

we have had access to during this thesis. It is therefore difficult to conjecture whether 12n846

will turn out to be of infinite order or finite order.

The knots 11a44, 11a47 and 11a109 all turn out to be of order 2, concordant to the

amphicheiral knot 63. The knots 12a309, 12a310, 12a387 and 12a388 are also of order 2,

concordant to the amphicheiral knot 41.

The remaining knot 12a631 seems likely to be of finite order, since it fails to satisfy the

conditions of each of the relevant theorems in some way. It is still unknown whether or not

12a631 is slice.

8.2 Summary

Of the 316 prime knots of unknown concordance order (i.e. ignoring the knots listed at the

beginning of the chapter which can be dealt with using existing theorems), they can all be

proven to be of infinite order in C by using twisted Alexander polynomials computed from the

2-fold branched cover, with the exception of the following:

• 11a67, 12a596, 12n210, 12n367 and 12n813 are shown to be of infinite order via their 3-fold

covers.

• 12n480, 12n745 and 12n760 are shown to be of infinite order via their 7-fold covers.

• 12a836 is shown to be of infinite order via its 13-fold cover.

• 11a5, 11a104, 11a112, 11a168, 11n85, 11n100, 12a309, 12a310, 12a387, 12a388, 12n286 and

12n388 are all of order 2, concordant to the Figure Eight knot 41.

• 11a44, 11a47 and 11a109 are all of order 2, concordant to the knot 63.

• 12a631 remains of unknown order, but is suspected to be finite order and possibly slice.

• 12n846 remains of unknown order, and there are no suspicions as to whether it is of finite

or infinite order in C.

In summary, the theorems given in Chapter 5 have a 99% success rate in detecting knots of

infinite order.

Slice movies of the finite order knots can be found in Appendix F.
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Chapter 9

Torus signatures

9.1 Introduction

In this chapter we find a formula for the L2 signature of a (p, q) torus knot, which is the integral

of the ω-signatures over the unit circle. We then apply this to a theorem of Cochran, Orr and

Teichner to prove that the n-twisted doubles of the unknot, n 6= 0, 2, are not slice. This is a

new proof of the result first proved by Casson and Gordon.

Note. It has been drawn to our attention that the main theorem of this chapter, Theorem 9.3.3,

was first proved in 1993 by Robion Kirby and Paul Melvin [KM94] using essentially the same

method presented here. The theorem has also recently been reproved using different techniques

by Maciej Borodzik [Bor09].

Before we recall the definition of ω-signatures, let us first motivate the subject with an

elementary but difficult problem in number theory. Suppose we have two coprime integers, p

and q, together with another (positive) integer n which is neither a multiple of p nor of q. Write

n = ap+ bq, a, b ∈ Z, 0 < a < q.

Now we ask the question:

“Is b positive or negative?”

Clearly, given any particular p and q, the answer is easy to work out, so the question is

whether there is an (explicit) formula which could anticipate the answer. Let us define

j(n) =

 1 if b > 0,

−1 if b < 0

and let us study the sum

s(n) =

n∑
i=1

j(i)

as n varies between 1 and pq − 1. It would not be an unreasonable first guess to suggest that

j(n) is −1 for the first bpq2 c values of n, and +1 for the other half of the values. Indeed, this is

true when p = 2 (see the nice ‘V’ shape in Figure 9.1(a)). But if we investigate other values of

p and q then strange ‘wiggles’ in the graph of s start appearing (see Figures 9.1(b), 9.1(c) and
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9.1(d)). The pattern of wiggles seems different for every p and q: could there be an underlying

principle to explain them?

(a) p = 2, q = 19 (b) p = 3, q = 10

(c) p = 5, q = 24 (d) p = 7, q = 16

Figure 9.1: Graphs of 2s for various values of p and q.

It turns out that the clue to finding the pattern is to realise that the function j is the jump

function of the ω-signature of a (p, q) torus knot. What does this mean? A torus knot Tp,q is

a knot which lives on the boundary of a torus, wrapping p times around the meridian and q

times around the longitude. (If p and q are not coprime then Tp,q is a link rather than a knot.)

Given a non-singular Seifert matrix V for Tp,q and a unit complex number ω, the ω-signature

σω is the sum of the signs of the eigenvalues of the hermitian matrix

(1− ω)V + (1− ω)V T .

This is independent of the choice of Seifert matrix. The ω-signature is an integer-valued function

that is continuous (and therefore constant) everywhere except at the unit roots of the Alexander

polynomial ∆p,q(t) = det(V − tV T ). At these points, the signature ‘jumps’, with the value of

the jump at ω = e2πin/pq being given by 2j(n).

The ω-signature has proved to be useful in a variety of areas of mathematics; see Stoimenow’s

paper [Sto05] to get a comprehensive list, including applications to unknotting numbers of

knots, Vassiliev invariants and algebraic functions on projective spaces. The jump function in

particular appears to be related to the Jones polynomial [Gar03]. But the most important use
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for signatures is in the study of knot concordance.

Cochran, Orr and Teichner [COT03] have recently been probing the secrets of the

concordance group C using the difficult techniques of L2 signatures. Amazingly, it turns out

that a special case of these L2 signatures is the integral of the ω-signatures over the unit circle.

Even more amazingly, we find that despite the ω-signatures being fairly unpredictable for a

torus knot, the integral of the ω-signatures has the following beautiful formula.

Theorem 9.3.3. Let p and q be coprime positive integers. Then the integral of the ω-signatures

of the (p, q) torus knot is ∫
S1

σω = − (p− 1)(p+ 1)(q − 1)(q + 1)

3pq
.

In this chapter we prove Theorem 9.3.3, the reason for which is that the result can be

combined with a theorem in [COT03] to recover the old Casson-Gordon theorem that the twist

knots are not slice. The hope is that the techniques here may prove useful in investigating

signatures of other families of knots and in proving more general theorems about the structure

of the concordance group.

9.2 Signatures and jump functions

Let K be a knot, V be a Seifert matrix for K of size 2g×2g and ω be a unit complex number. We

would like to define the ω-signature to be the signature of P := (1−ω)V +(1−ω)V T . However,

notice that P = (1−ω)(V −ωV T ) and detP = (1−ω)2g∆K(ω) where ∆K(t) := det(V − tV T )

is the Alexander polynomial of K. This means that P becomes degenerate at the unit roots of

the Alexander polynomial and we will need an alternative definition of the signature at these

points.

Definition 9.2.1. For a unit complex number ω which is not a root of the Alexander polynomial

∆K , the ω-signature σω(K) is the signature (i.e. the sum of the signs of the eigenvalues) of the

hermitian matrix

P := (1− ω)V + (1− ω)V T .

If ω is a unit root of ∆K , we define σω(K) to be the average of the limit on either side.

This concept was formulated independently by Levine [Lev69b] and Tristram [Tri69]; hence

the ω-signature is sometimes called the Levine-Tristram signature. It is a generalisation of the

usual definition of a knot signature, i.e. the signature of V + V T , which was developed by

Trotter and Murasugi [Tro62, Mur65].

For any knot K, the function σω(K) is continuous as a function of ω except at roots of the

Alexander polynomial. Since σω is integer-valued, this means that it is a step function with

jumps at the roots of ∆K .

Definition 9.2.2. The jump function jK : [0, 1)→ Z of a knot K is defined by

jK(x) =
1

2
lim
ε→0

(σξ+(K)− σξ−(K))

where ξ+ = e2πi(x+ε) and ξ− = e2πi(x−ε) for ε > 0.

Lemma 9.2.3. The jump function jK and the ω-signature σω(K) have the following properties.
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1. jK(x) = 0 if e2πix is not a unit root of the Alexander polynomial of K.

2. In particular, jK(0) = 0 and σ1(K) = 0.

3. σω(K) = σω(K) so jK(x) = −jK(1− x).

4. σe2πix(K) = 2
∑

y∈[0,x]

jK(y) if e2πix is not a root of the Alexander polynomial of K. (Notice

that this is a finite sum because only finitely many of the jumps are non-zero.)

We saw in Section 2.2.2 (specifically, Corollary 2.2.12) that the ω-signatures (excepting the

jump points) vanish for slice knots, meaning they are concordance invariants. In fact, it turns

out that the integral of the ω-signatures, for ω ∈ S1, is a special case of a more powerful

invariant.

Definition 9.2.4. An L2-signature (or ρ-invariant) of a knot K is a number ρ(M,φ) ∈ R
associated to a representation φ : π1(M)→ Γ, where M is the zero-framed surgery on S3 along

K and Γ is a group.

The precise definition is complicated and may be found in [COT03, Section 5]. L2 signatures

are, in general, very difficult to compute. However, if we pick a nice group for Γ then magic

happens and we get an explicit formula:

Lemma 9.2.5. [COT03, Lemma 5.4] When Γ = Z and φ is the canonical abelianisation

epimorphism, we have that ρ(M,φ) =
∫
ω∈S1 σω(K), normalised so that the circle has total

length 1.

Henceforth we shall refer to the integral of the ω-signatures as the L2 signature of the knot.

We end the section with a formula relating the L2 signature of a knot to its jump function.

Lemma 9.2.6. Suppose that the unit roots of the Alexander polynomial of a knot K are

ωk = e2πixk for k = 1, . . . , n and x1 < · · · < xn. Then the L2 signature of K is

∫
ω∈S1

σω(K) = 2

n−1∑
i=1

(xi+1 − xi)
i∑

k=1

jK(xk)

Proof. Let ξk be any unit complex number between ωk and ωk+1 for k = 1, . . . , n− 1. Then we

have that ∫
ω∈S1

σω(K) =

n−1∑
i=1

(xi+1 − xi)σξi

where we multiply by (xi+1 − xi) because that is the proportion of the unit circle which has

signature σξi . We now use (1) and (4) of Lemma 9.2.3 to rewrite σξi in terms of the jump

function:

σξi = 2
∑

y∈[0,xi]

jK(y) = 2

i∑
k=1

jK(xk)

�

Example 9.2.7. To illustrate the notation in Lemma 9.2.6 we shall calculate the L2 signature

of the knot K := 51, otherwise known as the cinquefoil knot or the (2, 5) torus knot. The

Alexander polynomial of K is

1− t+ t2 − t3 + t4 =
(1− t10)(1− t)
(1− t2)(1− t5)
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whose roots are the 10th roots of unity that are neither 5th roots of unity nor −1. This means

that the roots are ωk = e2πixk where x1 = 1
10 , x2 = 3

10 , x3 = 7
10 and x4 = 9

10 .

Let ξ1 = e
4
5πi, ξ2 = eπi and ξ3 = e

8
5πi. Computing the ω-signature at these points gives us

σξ1 = −2, σξ2 = −4 and σξ3 = −2. We can thus draw the signature for every value on the unit

circle:

ω1

ω2

ω3

ω4

σω = 0

σω = −2

σω = −4

σω = −2

ξ1

ξ2

ξ3

We can now compute the L2 signature to be∫
ω∈S1

σω = (x2 − x1)σξ1 + (x3 − x2)σξ2 + (x4 − x3)σξ3

=
2

10
(−2) +

4

10
(−4) +

2

10
(−2)

= −12

5
.

9.3 Torus knot signatures

For coprime integers p and q, the (p, q) torus knot Tp,q is the knot lying on the surface of a

torus which winds p times around the meridian and q times around the longitude. If p and q

are not coprime, then Tp,q is a link of more than one component. The Alexander polynomial

of Tp,q is

∆p,q(t) =
(1− tpq)(1− t)
(1− tp)(1− tq)

.

(A proof can be found in, for example, Lickorish [Lic97, pg 119].) The roots of this polynomial

are the pqth roots of unity that are neither pth nor qth roots of unity. This gives us pq−p−q+1

places at which the signature function could jump, namely e2πin/pq for n ∈ Z with 0 < n < pq

such that n is not divisible by p or q.

The jump functions of torus knots have been investigated by Litherland [Lit79]. His result

is that

jp,q

(
n

pq

)
= |L(n)| − |L(pq + n)|

where pq > n ∈ N and

L(n) = {(i, j) | iq + jp = n, 0 ≤ i ≤ p, 0 ≤ j ≤ q} .

Notice that if n is not a multiple of p or q then L(n) and L(pq+n) cannot both be non-empty.
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To see this, suppose that (i1, j1) ∈ L(n) and (i2, j2) ∈ L(pq+n). Then (i2−i1)q+(j2−j1)p = pq,

and since p and q are coprime we must have i2 = i1 (mod p) and j2 = j1 (mod q). But this

forces i1 = i2 and j1 = j2, which is a contradiction. A similar argument shows that neither

L(n) nor L(pq+n) can contain more than one element. However, at least one of the two sets is

non-empty. For, we can write n = iq+ jp with 0 < i < p, and if j > 0 then (i, j) ∈ L(n) whilst

if j < 0 we have (i, j + q) ∈ L(pq + n).

If n is a multiple of p or q then |L(n)| = 1 = |L(pq + n)|. Putting these results together

gives us the following.

Proposition 9.3.1. The jump function of the (p, q) torus knot is

jp,q

(
n

pq

)
=


+1 if |L(n)| = 1

−1 if |L(n)| = 0

0 if n is a multiple of p or q

We need one more lemma before we are ready to find a formula for the L2 signature.

Lemma 9.3.2. If p and q are coprime and 1 ≤ n ≤ pq− 1 with n not a multiple of p or q, then

exactly one of n and pq − n can be written as iq + jp for i, j > 0.

Proof. See, for example, [BR07, Lemma 1.6]. �

Theorem 9.3.3. Let p and q be coprime positive integers. Then the L2 signature of the (p, q)

torus knot is ∫
S1

σω = − (p− 1)(p+ 1)(q − 1)(q + 1)

3pq
.

Proof. Denote the jump function of the (p, q) torus knot by jp,q. The signature function at ω

can be defined as the sum of the jump functions up to that point (Lemma 9.2.3). If ωn := e2πix

with x ∈ ( npq ,
n+1
pq ) then

σωn(Tp,q) = 2

n∑
i=1

jp,q

(
i

pq

)
We can now use Lemma 9.2.6 to find a formula for the L2 signature in terms of the jump

function.

∫
S1

σω =

pq−1∑
n=1

1

pq
(σωn) (9.1)

=
2

pq

pq−1∑
n=1

n∑
i=1

jp,q

(
i

pq

)
(9.2)

=
2

pq

(
jp,q

(
1

pq

)
+

(
jp,q

(
1

pq

)
+ jp,q

(
2

pq

))
+ · · ·+

pq−1∑
i=1

jp,q

(
i

pq

))
(9.3)

=
2

pq

pq−1∑
n=1

(pq − n) jp,q

(
n

pq

)
(9.4)

Let S be the set defined by{
n ∈ {1, . . . , pq − 1} | n = qx+ py, 0 < x < p, 0 < y < q

}
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Given an integer n ∈ {1, . . . , pq−1} which is not a multiple of p or q, we can write n = qx+py

with 0 < x < p. By Lemma 9.3.2, either n ∈ S or pq− n ∈ S. Proposition 9.3.1 tells us that in

the first case we have jp,q(n/pq) = 1, whilst in the second case we have jp,q(n/pq) = −1. If n

is a multiple of p or q then the jump function will be zero and so it will not contribute to the

sum.

We may rewrite equation (9.4) as

∫
S1

σω =
2

pq

(∑
n∈S

(pq − n)−
∑
n∈S

n

)
=

2

pq

∑
n∈S

(pq − 2n) .

There are 1
2 (p − 1)(q − 1) points in S, and in the paper by Mordell [Mor51] we find the

following formula

∑
n∈S

n =
1

3
pq(p− 1)(q − 1) +

1

12
(p− 1)(q − 1)(p+ q + 1) .

Putting these together gives us

∫
S1

σω =
2

pq

(∑
n∈S

pq − 2
∑
n∈S

n

)

=
2

pq

(
1

2
(p− 1)(q − 1)pq − 2

(
1

3
pq(p− 1)(q − 1) +

1

12
(p− 1)(q − 1)(p+ q + 1)

))
=

1

pq
(p− 1)(q − 1)

(
pq − 4

3
pq − 1

3
(p+ q + 1)

)
= − 1

3pq
(p− 1)(q − 1)(pq + p+ q + 1)

= − 1

3pq
(p− 1)(q − 1)(p+ 1)(q + 1).

�

Remark 9.3.4. That there is such a neat formula for the L2 signature of a torus knot is all

the more surprising considering the absence of an explicit formula for the usual signature σ−1

of a torus knot. We have the following formula due to Hirzebruch [Hir95] for p and q odd and

coprime:

σ−1(Tp,q) = −
(

(p− 1)(q − 1)

2
+ 2(Np,q +Nq,p)

)
where

Np,q = #

{
(x, y) | 1 ≤ x ≤ p− 1

2
, 1 ≤ y ≤ q − 1

2
, −p

2
< qx− py < 0

}
.

Further work was done by Brieskorn [Bri66] and Gordon/Litherland/Murasugi [GLM81],

without success, and in 2010 Borodzik and Oleszkiewicz published a proof [BO10] that in

fact there can never be a rational function R(p, q) such that R(p, q) = σ−1(Tp,q) for all odd

coprime integers p and q.

9.4 Twist knots

As an important corollary, we show that the twist knots Kn are not slice. This was proved

in the 1970s by Casson and Gordon [CG86] but the following proof, which uses a result of
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Cochran, Orr and Teichner, is much shorter and simpler1.

Definition 9.4.1. The twist knots Kn are the following family of knots:

n full twists

For example, K−1 is the trefoil, K1 is the figure-eight knot and K2 is Stevedore’s knot 61. The

knot Kn is sometimes called the n-twisted double of the unknot.

A Seifert matrix for Kn is

V =

(
−1 1

0 n

)
which gives the Alexander polynomial as −nt2 + (2n+ 1)t− n. There is a class of twist knots

(those for which n = m(m + 1) for some m) which are algebraically slice. This means that

there is a simple closed curve γ on the Seifert surface F such that γ is nontrivial in H1(F ) and

such that γ+, which is the curve pushed off the Seifert surface, has zero linking with γ. The

consequence of this is that all signatures and other known slice invariants vanish. The question

is then: are these knots really slice?

The following theorem shows us that one way of finding the answer is to consider the slice

properties of the curve γ rather than those of the original knot. For those readers unfamiliar

with the work of Cochran, Orr and Teichner, read “(1.5)-solvable” as “having vanishing Casson-

Gordon invariant”.

Theorem 9.4.2 ([COT03]). Suppose K is a (1.5)-solvable knot with a genus 1 Seifert surface

F . Suppose that the classical Alexander polynomial of K is non-trivial. Then there exists a

homologically essential simple closed curve J on F , with self-linking zero, such that the integral

over the circle of the ω-signature function of J (viewed as a knot) vanishes.

Thus if the L2-signature is non-zero for any closed curve on F with self-linking zero, then

the knot cannot be (1.5)-solvable and therefore cannot be slice.

Corollary 9.4.3. The twist knots Kn are not slice unless n = 0 or n = 2.

Proof. The Alexander polynomial of Kn is −nt2 +(2n+1)t−n. If n < 0 then ∆Kn has distinct

roots on the unit circle and an easy computation shows that the signature is non-zero. If n > 0

then ∆Kn is reducible if and only if 4n + 1 is a square. Since the Alexander polynomial of a

slice knot has the form f(t)f(t−1) [FM66], it follows that Kn cannot be slice if 4n+ 1 is not a

square.

Suppose 4n+1 = l2 with l = 2m+1. Then n = m(m+1). Using the obvious genus 1 Seifert

surface F for Km(m+1) it can be seen that the only simple closed curve on F with self-linking

zero is the (m,m+1) torus knot (see, for example, Kauffman [Kau87, Chapter VIII]). Since the

L2 signature for any torus knot Tm,m+1 is non-zero (except for m = 0,−1, 1,−2) by Theorem

1It is also an interesting historical point that Milnor used an early version of the ω-signatures to show that
an infinite number of the Kn are independent in the concordance group C [Mil68].
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n full twists

-3 full twists

Figure 9.2: The n-twisted double of the right-handed trefoil.

9.3.3, this means that Km(m+1) cannot be (1.5)-solvable and therefore not slice unless n = 0 or

n = 2. �

We now apply Theorem 9.3.3 to the n-twisted doubles of knots, an example of which can

be seen in Figure 9.2.

Corollary 9.4.4. Let K be a knot and Dn(K) the n-twisted double (n 6= 0) of K.

(a) Dn(K) cannot be slice unless n = m(m+1) for some m ∈ Z and
∫
S1 σω(K) = (m−1)(m+2)

3 .

In particular, D2(K) can only be slice if
∫
S1 σω(K) = 0.

(b) For any given K with
∫
S1 σω(K) 6= 0, there is at most one Dn(K) which can be slice.

Proof. The Alexander polynomial of Dn(K) is once again −nt2 + (2n + 1)t − n and the same

argument as in the proof of Corollary 9.4.3 shows that Dn(K) is algebraically slice if and only

if n = m(m + 1) for some integer m. (Notice that if n = 0 then the Alexander polynomial is

trivial and D0(K) is slice by Freedman’s work [FQ90].) The zero-framed curve on the obvious

Seifert surface is the connected sum of K and the (m,m + 1) torus knot, K#T(m,m+1). If we

denote the L2 signature by s, we have

s(K#Tm(m+1)) = s(K) + s(T(m,m+1))

= s(K)− (m− 1)(m+ 1)m(m+ 2)

3m(m+ 1)

= s(K)− (m− 1)(m+ 2)

3

By Theorem 9.3.3, Dn(K) can only be slice if s(K) = (m−1)(m+2)
3 . In particular, if m = 1

or m = −2 then T(m,m+1) is the unknot and so s(K) must be zero for D2(K) to be slice.

This proves (a). For (b), suppose that 3s(K) = (m − 1)(m + 2) 6= 0. Rearranging, we get

m2 + m − 2 − 3s(K) = 0. Suppose that m1 and m2 are roots. Then m1 + m2 = −1, so

m1(m1 + 1) = −(m2 + 1)(−m2) = m2(m2 + 1), giving only one value for n. �

Se-Goo Kim [Kim05] proves that for any knot K, all but finitely many algebraically slice

twisted doubles of K are linearly independent in the concordance group C. Using our theorem

we can conjecture that there is a much stronger result about the independence of the twisted

doubles of K.

95



Chapter 9. Torus signatures

Conjecture 9.4.5. For a fixed knot K, the Dm(m+1)(K) are linearly independent in C for all

but one (or two, if
∫
S1 σω(K) = 0) values of m(m+ 1).

The proof of this conjecture will require Theorem 9.4.2 to be extended to connected sums

of genus 1 Seifert surfaces. The difficulty with this is analysing all the possible metabolising

curves (i.e. half-bases of homology curves with self-linking zero) on a higher genus surface.

The number of such curves would grow exponentially as the genus increased, and it is not

possible to deduce enough information about the metabolisers of a connected sum from looking

at metabolisers of the component knots.
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Chapter 10

Further work

In this thesis we have developed new techniques for studying knot concordance and have

determined many previously unknown concordance orders of knots. Our explorations have shed

more light on the big questions of concordance and have also revealed new questions hitherto

unasked. In this chapter we discuss the questions that remain open and give our thoughts on

how to go about attacking them.

10.1 The algebraic concordance group

In Chapter 4 we make various conjectures about the classification of knots in the algebraic

concordance group. To determine the order of a knot in G, the current literature says that we

need to look at the image of the knot in W (Fp) for primes p dividing the discriminant and

the leading coefficient of the Alexander polynomial. Together, Conjectures 4.4.1 and 4.4.2 say

that all the information required to determine the algebraic order of a knot is contained in the

groups W (Fp) for primes p dividing the determinant of the knot. More analysis should be done

on algebraic concordance orders of knots, for example by building on the work of the 9-crossing

analysis to analyse prime knots of 10 or 11 crossings, to see further whether these conjectures

hold.

Another interesting exercise would be to find a prime knot of algebraic order 2 which turns

out to be concordant to twice another prime knot of algebraic order 4. Such examples have not

yet been exhibited.

10.2 Developing twisted Alexander polynomials

Although the theorems of Chapter 5 go a long way in developing twisted Alexander polynomials

as slicing obstructions, there are still cases to be looked at in order to complete the theory. These

are

• where H1(Σ2(K);Z) ∼= Zq ⊕Zq for a prime knot K, or more generally...

• ... where H1(Σ2(K);Z) ∼= Zqm ⊕Zqn for a prime knot K and some m,n ∈ N;

• where H1(Σ2(Ki);Z) ∼=
⊕
Zqni for at least two distinct ni and K = K1 + · · ·+Kn;

• where H1(Σp(K);Z) ∼= Zq ⊕Zq ⊕Zq ⊕Zq for a prime knot K and p > 2;
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Chapter 10. Further work

• most generally, where H1(Σp(K);Z) ∼=
⊕

iZqni for any knot K, any prime power p and

any integers ni.

This last condition also includes the case where H1(Σp;Z) does not split into 1-dimensional

eigenspaces. For example, those cases where H1(Σp;Z) ∼= Zq ⊕ Zq where p does not divide

q − 1.

Some work in the direction of these generalisations has been done by Livingston and

Naik [LN09], where they show that knots with H1(Σ2) ∼= Z3 ⊕ Z32i for any i are not of

order 4 in C. The amount of algebra and number theory involved in even this simple case shows

how difficult such general theorems would be to prove.

In addition to these generalisations, it should be possible to get tighter conditions for some

of the existing theorems, particularly those relating to knots which are connected sums. The

proof of Proposition 6.1.3 shows that not all of the constituent knots of a connected sum need

to satisfy the conditions of Theorem 5.3.10, so a next step would be to work out exactly how

many of the conditions are required to prove the infinite order of a connected sum.

10.3 Signatures vs twisted polynomials

The proofs of the fact that knots with H1(Σ2) ∼= Zqn , n odd, have infinite order in C use

Casson-Gordon invariants, but in the form of signatures. The obstructions given in this thesis

to knots having finite order use Casson-Gordon invariants, but in the form of twisted Alexander

polynomials. Both of these simplifications are necessary for a computable obstruction theory,

since the Casson-Gordon invariants themselves are too complicated to compute except in a few

simple cases.

Twisted Alexander polynomials seem like a weaker obstruction, since they are of order 2 (i.e.

a twisted Alexander polynomial can only be an obstruction if it occurs with odd exponent). It

would be good to show that in some cases they are equally effective. For example, in Theorem

5.4.2, it would be good to show that for q ≡ 3 mod 4 and n odd, that the conditions given

always hold. We would then have a second proof of the Livingston-Naik theorem, which could

perhaps be generalised to other situations where the signatures are not effective.

In the paper [HKLar] Hedden, Kirk and Livingston use a combination of signatures and

twisted Alexander polynomials to show that a set of knots is linearly independent. Perhaps

these techniques could also be used to prove Conjecture 6.0.5, which does not appear to be

tractable by using twisted Alexander polynomials alone.

10.4 Structure of the concordance group C

The conjecture of the knot theoretic community is that C ∼= (Z)∞ ⊕ (Z2)∞. The main reasons

behind this conjecture are that no knots of order 4 have been found, and that there are no knots

of any finite order other than 2 and 4 in the higher-dimensional knot concordance groups.

A first step on the road to proving this conjecture would be to prove the conjecture made

by Livingston [LN01, 1.4] that knots of algebraic order 4 have infinite order in C. A knot is

of algebraic order 4 if and only if it has primes congruent to 3 mod 4 dividing its determinant

with odd exponent[Lev69a, 23(c)]. Livingston and Naik have proved various theorems about

the orders of knots with homology of this form: knots with H1(Σ2) ∼= Zqn for n odd are always

of infinite order in C [LN01], and knots with H1(Σ2) ∼= Z3⊕Z32i for any i are not of order 4 in
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C [LN09]. These results need to be generalised to knots whose H1(Σ2) is a direct sum of Zqni

where q ≡ 3 (mod 4) and at least one ni is odd. The difficulty seems to lie only in the linear

algebra and number theory, rather than in the knot theory.

A result of this form would be surprising because it would be an abelian invariant which

provides the obstruction. Why should the shape of the homology of the 2-fold branched cover

determine the order of the knot in the concordance group? This is certainly not true in general:

for any knot which is algebraically slice, there is a slice knot which has exactly the same

abelian invariants [Kea04]. It is therefore impossible to use abelian invariants to obstruct an

algebraically slice knot from being slice.

Furthermore, it is surprising to think that no more sophisticated tools than Casson-Gordon

invariants will be needed to prove this conjecture. Given the infinite filtration of the knot

concordance group, why should all algebraic order 4 knots lie in the same part of it? A

corresponding result is certainly not true for order 2 knots: Cochran, Harvey and Leidy [CHL11]

have shown that there are (infinitely many) order 2 knots in every level Fn/Fn.5 of the

concordance filtration.

It is fascinating that it should be some simple number theory which determines the

concordance order of a knot. The condition that the determinant of a knot has no primes

congruent to 3 mod 4 with odd exponents is equivalent to the condition that the determinant

is the sum of two squares. It is known that the determinant of an amphicheiral knot is of

this form [Goe33], but this is almost certainly a property of the concordance group, not of the

symmetry type of the knot. We conjecture that a result of the form of Hartley and Kawauchi

(that the Conway polynomial C(z) of an amphicheiral knot splits as f(z)f(−z))[HK79], or of

the form of Conant’s conjecture (that for an amphicheiral knot C(z)C(iz)C(z2) is a perfect

square inside the ring of power series with integer coefficients)[Con06], should be true for any

knot concordant to an amphicheiral knot.

10.5 Where do order 2 knots come from?

It is an open conjecture whether the Z2 summand in C is generated by amphicheiral knots. In

other words, is there a knot of concordance order 2 which is neither amphicheiral nor concordant

to an amphicheiral knot?

In Chapter 8 we found examples of knots of order 2 which are not negative amphicheiral

but which turn out to be concordant to amphicheiral knots (41 or 63). Part of the reason

why we have only found knots of this kind is that it is much easier to prove that a knot

is concordant to a smaller one than to prove it is of order 2 directly. If a knot K has 12

crossings then K#K has 24 crossings and it is virtually impossible to see where to make a slice

move. However, we have found two possible candidates for a finite order knot which is not

concordant to an amphicheiral knot: namely, 12a631 and 12n846. It seems worth investigating

these particular knots to see whether they are counterexamples to the conjecture; perhaps by

developing computer techniques (or manual techniques) for finding slice movies. Some work

has been done in this area by Ayumu Inoue [Ino10], who uses computer simulations to find slice

movies for the twist-spun trefoils.
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10.6 Second-order slice obstructions

In Chapter 9 we use ω-signatures as a second-order obstruction to provide another proof that

the twist knots are not slice. This appears to be a powerful, yet simple, technique which could

be used for other families of knots. As mentioned at the end of the chapter, the result should

also be able to prove the linear independence of families of knots, provided the Cochran-Orr-

Teichner theorem can be extended to connected sums of genus 1 knots. It is yet a more difficult

problem to extend the theorem to prime knots of higher genus, since it is then much more

difficult to analyse the metabolising curves on the surface.
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Appendix A

Signature calculations

Here we give the results of the analysis of signatures done in Section 4.1.

We find the set of unit roots, with positive imaginary part, of Alexander polynomials of

knots in E, of which there are 70. The midpoint of each consecutive pair of values is found;

these are the δi listed along the top of the table. Evaluating the signature function of each knot

at each of the δi gives us a complete picture of the signature function of each knot. The matrix

presented here is the result of these calculations put into reduced echelon form. It allows us to

read off a basis for the kernel of the signature function as well as a basis for the knots which

are of infinite order.

Non-zero values are highlighted to make reading the table easier.
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Appendix A. Signature calculations
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Appendix B

Factorised Alexander

polynomials for knots in E

Here we give a list of the Alexander polynomials for the knots in Bσ ⊂ FE ; that is, those which

are a basis for the kernel of the signature function. The polynomials are factorised over Z[t, t−1]

and the determinant of the knot, which is the Alexander polynomial evaluated at t = −1, is

given. These calculations are necessary for the analysis in Chapter 4; in particular, it is the

symmetric irreducible factors which are important in the algebraic concordance classification.
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Appendix B. Factorised Alexander polynomials for knots in E

Knot K ∆K(t) ∆K(−1)

41 1− 3t+ t2 5

61 (2− t)(−1 + 2t) 32

63 1− 3t+ 5t2 − 3t3 + t4 13

77 1− 5t+ 9t2 − 5t3 + t4 3 · 7
81 3− 7t+ 3t2 13

83 4− 9t+ 4t2 17

88 (1− 2t+ 2t2)(t2 − 2t+ 2) 52

89 (t3 − 2t2 + t− 1)(t3 − t2 + 2t− 1) 52

(810 + 31) (1− t+ t2)4 34

(811 − 31) (1− t+ t2)2(t− 2)(2t− 1) 34

812 1− 7t+ 13t2 − 7t3 + t4 29

813 2− 7t+ 11t2 − 7t3 + 2t4 29

(815 − 72 − 31) (1− t+ t2)2(3− 5t+ 3t2)2 32 · 112

817 1− 4t+ 8t2 − 11t3 + 8t4 − 4t5 + t6 37

818 (1− 3t+ t2)(1− t+ t2)2 32 · 5
820 (1− t+ t2)2 32

(821 − 31) (1− t+ t2)2(1− 3t+ t2) 32 · 5
(92 − 74) (4− 7t+ 4t2)2 32 · 52

(98 − 814) (2− 8t+ 11t2 − 8t3 + 2t4)2 312

(912 − 52) (2− 3t+ 2t2)2(1− 3t+ t2) 5 · 72

914 2− 9t+ 15t2 − 9t3 + 2t4 37

(916 − 73 − 31) (1− t+ t2)2(2− 3t+ 3t2 − 3t3 + 2t4)2 33 · 132

919 2− 10t+ 17t2 − 10t3 + 2t4 41

(923 − 74 − 31) (1− t+ t2)2(4− 7t+ 4t2)2 34 · 52

924 (1− t+ t2)2(1− 3t+ t2) 32 · 5
927 (t3 − 3t2 + 2t− 1)(t3 − 2t2 + 3t− 1) 72

(928 − 31) (1− t+ t2)2(1− 4t+ 7t2 − 4t3 + t4) 32 · 17

(929 + 31) (1− t+ t2)2(1− 4t+ 7t2 − 4t3 + t4) 32 · 17

930 1− 5t+ 12t2 − 17t3 + 12t4 − 5t5 + t6 53

933 1− 6t+ 14t2 − 19t3 + 14t4 − 6t5 + t6 61

934 1− 6t+ 16t2 − 23t3 + 16t4 − 6t5 + t6 3 · 23

937 (1− 3t+ t2)(t− 2)(2t− 1) 32 · 5
(939 + 72) (1− 3t+ t2)(3− 5t+ 3t2)2 5 · 112

(940 − 31) (1− t+ t2)2(1− 3t+ t2)2 32 · 52

941 (t2 − 3t+ 3)(3t2 − 3t+ 1) 72

(942 + 85 − 31) (1− t+ t2)2(1− 2t+ t2 − 2t3 + t4)2 32 · 72

944 1− 4t+ 7t2 − 4t3 + t4 17

946 (t− 2)(2t− 1) 32

(817 − 8r17) (1− 4t+ 8t2 − 11t3 + 8t4 − 4t5 + t6)2 372

(932 − 9r32) (1− 6t+ 14t2 − 17t3 + 14t4 − 6t5 + t6)2 592

(933 − 9r33) (1− 6t+ 14t2 − 19t3 + 14t4 − 6t5 + t6)2 612

106



Appendix C

Witt group calculations for p ≡ 3

mod 4

Here we analyse the image of the knots in Bσ in the Witt groups W (Fp) for p ≡ 3 mod 4. More

precisely, for each knot we compute a Seifert matrix V and the corresponding isometric structure

(V +V T , V −1V T ), then look at the image of this form in W (Fp), restricted to the λ(t)-primary

component for each λ(t) an irreducible symmetric factor of the Alexander polynomial ∆V (t).

The method of finding this image is detailed in Section 4.2. The entries of the following table

are elements in Z4.
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Appendix C. Witt group calculations for p ≡ 3 mod 4

Polynomial 1
−
t

+
t2

1
−

5
t

+
9
t2
−

5t
3

+
t4

1
−

5
t

+
9
t2
−

5t
3

+
t4

3
−

5t
+

3
t2

4
−

7
t

+
4
t2

2
−

8t
+

1
1
t2
−

8
t3

+
2
t4

2
−

3t
+

2
t2

1
−

6t
+

16
t2
−

23
t3

+
16
t4
−

6t
5

+
t6

1
−

6
t

+
1
6
t2
−

23
t3

+
16
t4
−

6
t5

+
t6

1
−

2t
+
t2
−

2t
3

+
t4

Prime 3 3 7 11 3 31 7 3 23 7

77 0 3 3 0 0 0 0 0 0 0

(810 + 31) 0 0 0 0 0 0 0 0 0 0

(811 − 31) 0 0 0 0 0 0 0 0 0 0

(815 − 72 − 31) 2 0 0 2 0 0 0 0 0 0

818 2 0 0 0 0 0 0 0 0 0

820 0 0 0 0 0 0 0 0 0 0

(821 − 31) 2 0 0 0 0 0 0 0 0 0

(92 − 74) 0 0 0 0 2 0 0 0 0 0

(98 − 814) 0 0 0 0 0 0 0 0 0 0

(912 − 52) 0 0 0 0 0 0 2 0 0 0

(916 − 73 − 31) 2 0 0 0 0 0 0 0 0 0

(923 − 74 − 31) 0 0 0 0 2 0 0 0 0 0

924 0 0 0 0 0 0 0 0 0 0

(928 − 31) 2 0 0 0 0 0 0 0 0 0

(929 + 31) 2 0 0 0 0 0 0 0 0 0

934 0 0 0 0 0 0 0 3 1 0

(939 + 72) 0 0 0 0 0 0 0 0 0 0

(940 − 31) 2 0 0 0 0 0 0 0 0 0

(942 + 85 − 31) 2 0 0 0 0 0 0 0 0 2
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Appendix D

Witt group calculations for p ≡ 1

mod 4

Here we analyse the image of the knots in B3 in the Witt groups W (Fp) for p ≡ 1 mod 4. As

in Appendix C, for each knot we compute a Seifert matrix V and the corresponding isometric

structure (V +V T , V −1V T ), then look at the image of this form in W (Fp), restricted to the λ(t)-

primary component for each λ(t) an irreducible symmetric factor of the Alexander polynomial

∆V (t). The entries of the following table are elements in Z2 ⊕Z2.

Polynomial 1
−

3
t

+
t2

2
−

3
t

+
3
t2
−

3t
3

+
2
t4

4
−

7t
+

4
t2

1
−

4
t

+
7
t2
−

4t
3

+
t4

Prime 5 13 5 17

(821 − 818 − 31) 0 0 0 0

(916 − 818 − 73 − 41 − 31) (1,1) (1,1) 0 0

(923 − 92 − 31) 0 0 0 0

(924 − 41) 0 0 0 0

(929 − 928 + 2(31)) 0 0 0 0

(937 − 41) 0 0 0 0

(939 + 72 − 41) 0 0 0 0

(940 − 818 − 41 − 31) 0 0 0 0

(944 − 928 + 818 − 41 + 31) (1,1) 0 0 (1,1)
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Appendix E

Twisted Alexander polynomial

calculations

Here we list the knots analysed in Section 6.1, giving the trivial (∆χ0
) and non-trivial (∆χ/(t−

1)) twisted Alexander polynomials factorised into irreducibles over Q(ζq)[t, t
−1] for each knot.

The prime q being used is given, and ζq is abbreviated to w in each case. Polynomials are

written modulo norms; thus, for example, in the first calculation the trivial twisted polynomial

corresponding to 72 is not a norm.

The program used for these computations (and for those in Chapter 8) was adapted from one

written by Herald, Kirk and Livingston, described fully in [HKL10] and run in Maple 13. This

algorithm is slightly different from the one described in Section 5.2 in that it takes advantage of

a relationship between twisted polynomials associated to representations of π1(Xp) and twisted

polynomials associated to representations of π1(X) in order to simplify calculations. Group

presentations of π1(Xp) become complicated very quickly as p increases, so this algorithm

makes computation much faster for the polynomials associated to the higher branched covers.

In addition to the twisted Alexander polynomials, we also give the relevant linking forms

for each knot (since these are necessary for the use of Theorem 5.3.10) and say whether each

one is a square in Zq. The linking form for Σ2 is found by calculating (V + V T )−1 for a Seifert

matrix V and taking one of the diagonal entries.

K = 815 − 72 − 31, H1(Σ2;Z) = Z33 ⊕Z11 ⊕Z3, q = 11, lk815(3, 3) = −5
11 (not square),

lk−72(1, 1) = −1
11 (not square);

815 ∆χ0
= (9t2 − 7t+ 9)(t2 + t+ 1)

∆χ1
= 1 + t(w3 − w4 + w8 − w7 + 3w5 + 3w6 − 5) + t2

72 ∆χ0
= 9t2 − 7t+ 9

∆χ1
= 1

31 ∆χ0
= t2 + t+ 1

where

9t2− 7t+ 9 =
1

9
(9t− 1 + 5w+ 5w3 + 5w4 + 5w5 + 5w9)(9t− 1 + 5w2 + 5w6 + 5w7 + 5w8 + 5w10)

K = 92 − 74, H1(Σ2;Z) = Z15 ⊕Z15, q = 3, lk92(5, 5) = −1
3 (not square), lk−74(5, 5) = −1

3

(not square);
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Appendix E. Twisted Alexander polynomial calculations

92 ∆χ0
= 16t2 − 17t+ 16

∆χ1
= 1

74 ∆χ0
= 16t2 − 17t+ 16

∆χ1
= 1

K = 912 − 52, H1(Σ2;Z) = Z35 ⊕Z7, q = 7, lk912(5, 5) = 2
7 (square), lk−52(1, 1) = 4

7

(square);

912 ∆χ0 = (4t2 − t+ 4)(t2 − 7t+ 1)

∆χ1 = t2 + t(w2 − w3 − w4 + w5) + 1

52 ∆χ0 = 4t2 − t+ 4

∆χ1 = 1

where

4t2 − t+ 4 =
1

4
(4t− 2− 3w − 3w2 − 3w4)(4t+ 1 + 3w + 3w2 + 3w4)

K = 916 − 73 − 31, H1(Σ2;Z) = Z39 ⊕Z13 ⊕Z3, q = 3, lk916(13, 13) = −1
3 (not square),

lk−31(1, 1) = −1
3 (not square);

916 ∆χ0 = (t− w)(t− w2)(4t4 + 3t3 − t2 + 3t+ 4)

∆χ1 = 4t4 − 3t3 + 2t2 − 3t+ 4

31 ∆χ0 = (t− w)(t− w2)

∆χ1 = 1

K = 928 − 31, H1(Σ2;Z) = Z51 ⊕Z3, q = 3, lk928(17, 17) = −1
3 (not square), lk−31(1, 1) =

−1
3 (not square);

928 ∆χ0 = (t− w)(t− w2)(t4 − 2t3 + 19t2 − 2t+ 1)

∆χ1 = t4 − 5t3 + 4t2 − 5t+ 1

31 ∆χ0 = (t− w)(t− w2)

∆χ1 = 1

K = 942 + 85 − 31, H1(Σ2;Z) = Z7 ⊕Z21 ⊕Z3, q = 3, lk85(7, 7) = −1
3 (not square),

lk−31(1, 1) = −1
3 (not square);

85 ∆χ0
= (t− w)(t− w2)(t4 − 2t3 − 5t2 − 2t+ 1)

∆χ1
= t4 − 5t3 + 4t2 − 5t+ 1

31 ∆χ0
= (t− w)(t− w2)

∆χ1
= 1

K = 929 − 928 + 2(31), H1(Σ2;Z) = Z51 ⊕Z51 ⊕Z3 ⊕Z3, q = 3, lk929(17, 17) = 1
3

(square), lk−928(17, 17) = 1
3 (square), lk31(1, 1) = 1

3 (square);

929 ∆χ0
= (t− w)(t− w2)(t4 − 2t3 + 19t2 − 2t+ 1)

∆χ1
= t4 + t3 + t2 + t+ 1

928 ∆χ0
= (t− w)(t− w2)(t4 − 2t3 + 19t2 − 2t+ 1)

∆χ1
= t4 − 5t3 + 4t2 − 5t+ 1

31 ∆χ0
= (t− w)(t− w2)

∆χ1
= 1
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K = 940 − 818 − 41 − 31 (but consider 2K = 2(940 − 31)),

H1(Σ2(2K);Z) = 2((Z5 ⊕Z5 ⊕Z3)⊕Z3), q = 3, lk940(25, 25) = −1
3 (not square), lk−31(1, 1) =

−1
3 (not square);

940 ∆χ0 = (t− w)(t− w2)(t4 − 2t3 − 5t2 − 2t+ 1)

∆χ1 = t4 − 5t3 + 4t2 − 5t+ 1

31 ∆χ0 = (t− w)(t− w2)

∆χ1 = 1

K = (821 − 818 − 31) (but consider 2K = 2(821 − 31)), H1(Σ2(2K);Z) = 2(Z15 ⊕Z3),

q = 5;

821 ∆χ0
= (t2 + t+ 1)

∆χ1
= t2 − 3t(w3 + w2 + 1) + 1

K = (939 + 72 − 41) (but consider 2K = 2(939 + 72)), H1(Σ2(2K);Z) = 2(Z55 ⊕Z11),

q = 5

939 ∆χ0
= (9t2 − 7t+ 9)

∆χ1
= t2 + t(5w2 + 5w3 − 3) + 1

K = (923 − 92 − 31), H1(Σ2;Z) = (Z9 ⊕Z5)⊕ (Z5 ⊕Z3)⊕Z3, q = 5, lk923(9, 9) = 1
5

(square), lk−92(3, 3) = −1
5 (square);

923 ∆χ0 = (t2 + t+ 1)(16t2 − 17t+ 16)

∆χ1 = t2 + t(9w2 + 9w3 − 7) + 1

92 ∆χ0 = 16t2 − 17t+ 16

∆χ1 = 1

K = (98 − 814), H1(Σ2;Z) = Z31 ⊕Z31, q = 31, lk98(1, 1) = 11
31 (not square), lk−814(1, 1) =

−12
31 (square);

98 ∆χ0
= 4t4 − 20t3 + t2 − 20t+ 4

∆χ1
= 1 + t2 + t(−w − 3w2 − 5w3 − 7w4 − 10w5 − 11w6 − 12w7 − 13w8

−14w9 − 16w10 − 18w11 − 20w12 − 22w13 − 24w14 − 24w15 − 24w16

−24w17 − 22w18 − 20w19 − 18w20 − 16w21 − 14w22 − 13w23 − 12w24

−11w25 − 10w26 − 7w27 − 5w28 − 3w29 − w30)

814 ∆χ0
= 4t4 − 20t3 + t2 − 20t+ 4

∆χ1
= 1 + t2 + t(32w + 11w2 + 20w3 + 26w4 + 6w5 + 36w6 + 5w7 + 28w8

+17w9 + 13w10 + 30w11 + 3w12 + 34w13 + 9w14 + 23w15 + 23w16

+9w17 + 34w18 + 3w19 + 30w20 + 13w21 + 17w22 + 28w23 + 5w24

+36w25 + 6w26 + 26w27 + 20w28 + 11w29 + 32w30)

K = (932 − 9r
32), H1(Σ5;Z) = Z11 ⊕Z11 = E3 ⊕ E4, q = 11
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Appendix E. Twisted Alexander polynomial calculations

∆χ0
= 1− 16t+ 5354t2 − 10557t3 + 5354t4 − 16t5 + t6

∆χ3
= 1 + t(7w + 10w2 + 7w3 + 7w4 + 7w5 + 10w6 + 10w7 + 10w8 + 7w9

+10w10) + 23t2 + t3(10w + 7w2 + 10w3 + 10w4 + 10w5 + 7w6 + 7w7

+7w8 + 10w9 + 7w10) + t4

∆χ4
= 1− t(15w + 12w2 + 15w3 + 15w4 + 15w5 + 12w6 + 12w7 + 12w8 + 15w9

+12w10) + 133t2 − t3(12w + 15w2 + 12w3 + 12w4 + 12w5 + 15w6+

15w7 + 15w8 + 12w9 + 15w10) + t4

∆χ3+χ4
= 1 + t(−4w + w2 + 2w3 − 3w4 − 2w5 − 4w6 − 2w7 − 3w8 + 7w9 + 5w10)

+t2(21w + 20w2 − 7w3 − 15w4 + 9w5 + 9w6 − 15w7 − 7w8 + 20w9

+21w10) + t3(5w + 7w2 − 3w3 − 2w4 − 4w5 − 2w6 − 3w7 + 2w8 + w9

−4w10) + t4

∆χ3−χ4
= 1 + t(−3w − 2w2 + 3w3 + 5w4 − 7w5 − w6 − 3w7 + 2w8 − 5w9 − 3w10)

+t2(36w + 10w2 + 13w3 + 23w4 + 25w5 + 25w6 + 32w7 + 13w8 + 10w9

+36w10) + t3(−3w − 5w2 + 2w3 − 3w4 − w5 − 7w6 + 5w7 + 3w8 − 2w9

−3w10) + t4

K = (933 − 9r
33), H1(Σ5;Z) = Z101 ⊕Z101 = E36 ⊕ E87, q = 101

∆χ0
= 1− 236t− 706t2 − 8319t3 − 706t4 − 236t5 + t6

Frequency of coefficients of wi in coefficient of t

Polynomial 4 3 2 1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

(1,0) 0 0 0 10 15 55 5 10 0 0 0 0 0 0

(0,1) 0 0 0 0 0 0 5 0 0 50 5 35 5 0

(1,1) 0 0 1 3 9 18 20 25 9 3 0 1 0 0

(1,4) 0 0 1 2 15 10 22 26 9 3 1 0 0 0

(1,5) 0 0 0 0 0 2 0 5 4 9 7 13 16 15

(1,6) 0 0 1 2 18 20 24 19 9 4 0 0 0 0

(1,9) 0 0 0 0 0 0 1 5 4 8 6 15 22 14

(1,13) 1 1 5 15 24 16 11 3 0 0 0 0 0 0

(1,19) 0 0 0 0 2 6 11 25 27 19 6 2 1 1

(1,22) 0 0 2 6 23 21 21 8 4 0 0 0 0 0

(1,24) 0 0 0 0 1 2 6 14 22 22 15 15 2 1

(1,25) 0 0 0 0 0 2 0 2 1 0 6 1 3 11
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Appendix F

Slice movies

Here we give details of the slice movies used in Chapter 8 to prove that certain knots were of

order 2. For each of the knot diagrams we show where to make a saddle move (see Section 2.1.1

for details on this procedure) in order to obtain two unlinked knots. In each case, one of the

unlinked knots is the unknot and the other is either 41 or 63. Since both 41 and 63 are of order

2 in C, this means that the original knot must also be of order 2.
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11a5

saddle

= 41 + unknot  = order 2
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11a44

saddle

= 63 + unknot = order 2
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11a47

saddle

= 63 + unknot = order 2
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11a109

saddle

= 63 + unknot = order 2
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11n85

saddle

= unknot + 41  = order 2
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11n100

saddle

= 41 + unknot = order 2
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12a309

saddle

= 41 + unknot = order 2
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12a310

saddle

= 41 + unknot = order 2
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12a387

saddle

= 41 + unknot = order 2
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12a388

saddle

= 41 + unknot = order 2

=
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12n286

saddle

= unknot + 41 = order 2

126



12n388

saddle

= 41 + unknot  = order 2
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