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ABSTRACT

Let f be any analytic function defined in a neighborhood of the non-
empty set E and let S(E) denote the set of all operator having spectrum
included in E . In this paper the closure and interior of the set f(S(E)) =
{ flA) : A € S(E) ) are characterized. In addition the sets clfint{ f(S(E))}] .,
int{ cll f(S(E)) ]} . cll int{ cl[ f(S(E)) 1} ], and int{ cl int{ {(S(E)) } ] } are

characterized. Several examples and applications are given.
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Fredholm index, non-abelian approximation.
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(iv)

INTRODUCTION

Given an operator A on a Hilbert space A and an analytic function f

defined in a neighborhood of o(A) , the spectrum of A , the operator f(4) is
defined via the Cauchy integral of the operator valued function f(z)(z - A)-1
around a suitably chosen system of contours enclosing c(A) . This mapping f
— f(A) is an algebraic homomorphism from the algebra of all analytic
functions defined in some neighborhood of o(A) into the double commutant
of A such that 1 is mapped to the identity operator and z is mapped to A .

Moreover this map has a certain continuity property which makes it unique.

For details, the reader can consult pages 203-210 of [12], where this is
worked out in the framework of Banach algebras.

This mapping f — f(A) is called the Riesz functional calculus or the
esz-Dunford functional calculus. The first appearance of these ideas is
{271, where only compact operators are considered and the only analytic
unction considered is the characteristic function of an isolated point of the
spectrum. Though the topic, with the near simultaneous appearance of [16],
24], and [30], all of which extended Riesz's ideas, takes on all the aspects of
one whose time had come, it is the work of Dunford [16] which is the most
mplete in its treatment. In particular, it was Dunford who first proved the
Spectral Mapping Theorem. For this reason it is the custom of many,
cluding the authors, to call this the Riesz-Dunford functional calculus.
Whereas in the discussion of the Riesz-Dunford functional calculus the
ea is to fix the operator A and let f vary through a collection of analytic

ctions, the attitude taken here is to fix the analytic function f and allow
€ operator A to vary through the collection of all operators for which it

akes sense to define f(A) . Specifically, for an arbitrary (not necessarily
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open) non-empty subset E of the complex plane C , let S(E) denote the
collection of all operators A defined on some separable Hilbert space with
o(A) c E . (Note that in the definition of S(E) neither the Hilbert space nor
the dimension of the Hilbert space is specified or restricted, save the
restriction that the space is separable. This is done to ensure that such
statements as " A @ B e S(E) if and only if A and B € S(E) " are valid without
modification or qualification.) If f is analytic in a neighborhood of E , what is
the characterization of the operators that belong to f(S(E)) = { fla) : Ae
S(E) } ? As discussed in [13] , which can be considered as the predecessor
of this paper, such a question seems beyond the present capabilities of
operator theory even for such nice functions as zP and the exponential. In
particular, such a description in terms of spectral properties alone is
impossible as two operators can be found with the same spectral picture,
only one of which has a square root.

Instead, the characterization of cl[ f(S(E)) ] , the closure of f(S(E)) . is
obtained. The methods used are those of non-abelian approximation as
presented in [20] and [3]. Some background material will be presented to
ease the reader's burden.

These results provide an important illustration of the Closure
Theorem [22] that states that a closed set of operators on Hilbert space that
is similarity invariant and has "sufficient structure” (in a certain technical
sense described in [22]) can be characterized in terms of spectral
properties alone. Indeed, if A € S(E) and R is an invertible operator, then
RAR-! ¢ S(E) and f(RAR'!) = Rf(A)JR"! . Thus cl[ f(S(E) ] is a closed
similarity invariant set and membership in this set is characterized solely in
terms of spectral properties (Theorem 2.1).

Some ruminations and reflections seem appropriate here as a caution
and encouragement for the reader. The results of this paper may strike our
audience as extremely complicated. This is, undoubtedly, a correct

perception. In order to achieve total generality, something must be
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sacrificed and in this case, as in many similar cases, it is simplicity. A
_comparison of Theorem 2.1 here with the clean characterization of cl { AP :
A e B(H)} from [13] (see Corollary 2.4 of this paper for the statement) will
certainly confirm this. It is not generally the case that these complications
arise from allowing analytic functions to be constant on some of the
components of their domain. To be sure, this extra generality does
introduce some complexity, but the principal source of the difficulty is the
lcomplex nature of an analytic function, especially if it is defined on a non-
connected open set whose components are not simply connected. But
complications may arise even if the function is a polynomial (see Example
.8).
In Theorem 2.2, the characterization of cl[ f(S(E)) ] for a completely
on-constant analytic function (one that is not constant on any component of
s domain) is stated, though the set E is not assumed to be open. The
statement may be simplified by requiring that E be open, since f(E) can then
ave no isolated points. This eliminates condition (e); conditions (a)
lfhrough (d) may not, however, be simplified.
In contrasting the results here with those from [13] for the functions
P and e” , two facts emerge. First, both zP and e have uniform valence.
_Second, and more important, is that a beautiful geometric condition may be
mposed on an open subset Q of C to ensure that there exists an analytic
verse g : Q — C for these functions. A necessary and sufficient condition
for this is that Q does not separate O from « . Nothing like this is is possible
_in general, even for an analytic function defined on a disk.
Because of the nature of this material, a leisurely style has been
adopted. We include several details that might be eliminated in another
, resentation. Many corollaries of special cases have been included. In
articular, we have included statements of these results for the special

unctions zP and e” defined on all of C as well as the function f(z) = z defined

in a neighborhood of an arbitrary set E . This last special case allows us to



§1 SPECTRAL PRELIMINARIES

In this section several results that will be used in the remainder of the
paper are presented. Some of these are new or at least do not seem to be
stated in the literature; some are here only for the reader's convenience.
Proofs are given where it is appropriate.

The convention will be adopted in this paper that elements and
subsets of the domain of a function will be denoted by Roman letters, while
elements and subsets of the range will be Greek. This convention will be
abandoned if the circumstances warrant it.

The reader is assumed to be familiar with spectral theory, including
the properties of the Fredholm index as contained in the last chapter of
(12]. A few concepts are recalled here.

For an operator T , o(T) , 6.(T) , 01(T) , and o,(T) denote the
spectrum, essential spectrum, left essential spectrum, and right essential
spectrum, respectively, of T . Let 0}.(T) = 01¢(T) N G(T) . For any operator
T, nulT = dim [ker T] and for A ¢ o(T) , ind (A - T) = nul -7 -
nul O -T)".

For an operator T , 64(T) denotes the isolated eigenvalues of T such
that the corresponding Riesz idempotent has finite rank. If n is an
extended integer, P (T) = {Ae C: A -Tis semi-Fredholm and ind (A - T)
=n);let P4(T) = U (P,(T) :n=0}and P, (T) = P_(T) v P,..(T .

For any subset F of Clet Fg=(ze C: dist (z, F)<d}.

The proof of the next theorem, a refinement of the Spectral Mapping

Theorem, is left to the reader.

1.1 Theorem Let A e B(%) and let f be an analytic function defined in a
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neighborhood of o(A). If T = f(A) , then the following statements are true.

(@ oM = flo(a)) .

(b) c.(T) = flc.(A) .

(©) 61T = fl o) 1L {fla) : a e P,.(A) and there exists a point b
in P_.(A) with f(b) = f(a) } .

(d) 04(T) = fl 61(A) 1 U 0 (T) .

(8) 0Le(T) = fl o,.(A) 1 U o (T) .

(0 IfLe Py(T), then F}(A) N o(A) is a finite subset { a;, . . ., a, } of
_ olA) \ o1(A) . Moreover, if {a;,..., ay}nZ(f) =9 , then

* @) nul(A-T) =), nul (g - A):

@ nul (& -T =, nul (@ - A

(iii) ind (A -T) =, ind (a - A) .

An analytic Cauchy domain is a bounded open set Q contained in C
whose boundary consists of a finite number of pairwise disjoint analytic
Jordan curves. An analytic Cauchy region is a connected analytic Cauchy
domain. Note that if K is a compact subset of an open set G contained in C ,
then there is an analytic Cauchy domain Q with Kc QccdQc G.
Moreover, if F is any countable set in C (for example, if, as will often be the
case in the paper, F is f(Z(f)) = the image under f of the zeros of the
derivative of f), then Q can be chosen such that dQ N F =@ . To see this
_ assume that Q is connected and let D be a circle domain (a region bounded
by a finite number of pairwise disjoint circles) and ¢ : D - Q a conformal
equivalence. For all small € > O let D¢ be a circle domain with cl Dg ¢ D and
so that D ¢ an e- neighborhood of D¢ . Then K ¢ ¢(Dg) < ¢(D) for small € .
Since there are uncountably many e's , one can be chosen with 9¢(Dg)
disjoint from F .

If f: G - Cis an analytic function and p is a natural number, say that {
is a strictly p-valent function if for every o in f(G), the equation f(z) = o has

p solutions in G counting multiplicities. Because the concept is frequently
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used in this paper, call an analytic function f completely non-constant if f is

not constant on any component of its domain.

1.2 Proposition Assume that f is analytic in a neighborhood of c(A) and
completely non-constant ; put T = f(A). If Q is an analytic Cauchy region
with cl Q c P(T) and 0Q n f(Z(f)) = @, then 1(Q) N P.(A) consists of a
finite non-zero number of components H, , ..., Hy and for each j , fH) =Q .
f(0H;) = 0Q , Hy is an analytic Cauchy region, and there is a natural number p;
such that f is a strictly p;-valent map of Hj onto Q .

Proof. Since Q is connected, there is an extended integer N such that ind
A-T)=Nforriincl Q. Let H=f1(Q) n o) ; by (1.1) , H S 6(A) \ 0y¢(A)

and H n P(A) # @ . Note that H is bounded.

Claim 1. If D is a component of H, then f(D) = Q .
Ifwe Q\ f(D) , then there is a path in Q from @ to a point { in f(D) . Look at
the first point {y on this curve that is not in fD). So {5 € @ N of(D) . Let
{z, ) c D such that flz;)) —» {, . Since {z, )} c olA), we may assume that z, —
2o in o(A) . Hence zy € Q) no@A)=H. ButDu {z5}is connected and
included in H . Since D is a component of H, zg e D . This implies {q =

f(zg) € f(D) N of(D), a contradiction.

Claim 2. H has only a finite number of components.
Indeed, if not, then there is an o in Q such that f(z) = ® has an infinite

number of solutions in the compact set o(A).

Claim 3. If D is a component of H, then f(dD) = 0Q .
By Claim 1, f(D) =Q . Itis clear that f(D) c cl Q. If © e 9Q = of(D) c cl f(D)
c flc1 D) , then @ = f(z) for some zinclD . Ifze D, ® € Q , a contradiction.
Hence 9Q c f(dD).

Now let oy = flzg) for some z; in dD. Ifage Q, then there isan e >0
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and a & > O such that f[Bl(z; : 8)] < Blwg ;€ Q. Hence D U Blzg:d)isa
connected subset of H that includes D . Since D is a component of H

Blzg : 8) € D, a contradiction to the fact that zg € dD . Hence f(dD) c 0Q .

Claim 4. If K is a compact subset of Q , then f 1(K) n H is compact.
If{zx Jc 1K) n H, then, by passing to a subsequence if necessary, it may
be assumed that zy — z5 in cl H. Hence f(z) — flzg) . Thus flzg) € K < Q
and so zj € 1K) no(A) cH. So Zg € f1(K) N H and this set is compact.
Claim 5. If D is a component of H and oy and @, € Q , then the
equations f(z) = 0y and f(z) = w; have the same number of solutions in D ,
counting multiplicities.

By Claim 4 these equations have only a finite number of solutions in D .
Indeed, f‘l(mj) N His a cohpact set and f is a non-constant analytic function.
Let p; = the number of solutions of f(z) = ®; in D (counting multiplicities).
Let v be a path in Q from wg to ©; . Again Claim 4 implies that f'1(y) n D is
compact. Thus there is a smooth Jordan system I' in D such that f'}(y) n D ¢

the inside of I’ . Hence

ut the winding number n(foI” ; {) is constant on components of C \foT
iand ®g and o, are both contained in y which is contained in the same

mponent of C \fol' . Hence p, = p; .

Claim 6 If D is a component of H , then there is a natural number p

such that f is a strictly p-valent map of D onto Q .

This is a direct consequence of combining claims 5 and 1.
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Claim 7 If D is a component of H , then D is an analytic Cauchy region.
In fact, this is clear since Q is an analytic Cauchy region and f' does not
vanish on dH .

This completes the proof of the proposition. ¢

Some remarks and examples relative to the preceding proposition
might be helpful for the reader. Let f and Q be as in Proposition 1.2 and let
D be one of the components of f-1(Q) N P4(A) such that f is a strictly p-valent
mapping of D onto Q . Suppose 9Q consists of m pairwise disjoint analytic
and oD consists of n pairwise disjoint analytic

Jordan curves v, . «+ Ym

Jordan curves g, , ..., g, - Then f maps the boundary curve g onto some

component curve of oQ in an r; -to-one fashion and, moreover, for 1 <i <m

Z{rjzﬂgj)=ﬁ]=p:

consequently,

n

er-:mp.

j=

The following examples will convince the reader that, except for these
equalities, everything else is possible.

If f(z) = z° and Q =D = D , then f maps 9D p-to-one onto 9Q . At the
other extreme, if D is an analytic Cauchy region whose boundary consists of
p pairwise disjoint analytic curves g; , . . ., gp . let f be the Ahlfors function
mapping D onto Q =D . (See [1].) Then f is a strictly p-valent function on Q
and f is a bijection of each g onto oD.

For a further example, let f be the monic polynomial with distinct
<+ dg =

zeros Ay . . ... Ag and let A; have multiplicity d; ; put p = d, +- -

degree of f . Let
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Q={A: A <1, IMl >¢,and IA-3el >¢},

where r >> 1 >> & > O are chosen so that dQ consists of three circles: y, of
gadius r and center O, y. of radius € and center O, and y' of radius € and
center 3¢ . Ifr is sufficiently large and ¢ is sufficiently small, then D = f1(Q)
s an analytic Cauchy regionand oD =g U ge ;U - U Bgg U B¢ U - U
8ep
urves, g is the boundary of the unbounded component of C \ D and fis a p-

, where these sets in the union are pairwise disjoint analytic Jordan

o-one map of g onto Y ; g¢ i is the boundary of some neighborhood of A
_and f is a dy -to-one map of g¢ \ onto y¢ (1 <k < s); and f is a bijection of
each g, ;' onto Ye(1<j<p)

By combining this polynomial with the Ahlfors function mapping Q

strictly 3 -to-one onto D , even more pathology can be obtained.

1.3 Proposition Iff: G — C is an analytic function that is completely non-
constant , A € S(G) , and T = f(A) , then the following statements are true.

(@) If Q is an analytic Cauchy region with 9Q N f(Z(f)) =@ and cl Q ¢
P, ..(T) , then there is an analytic Cauchy region H such that ¢l H ¢ P,_(A) |
) = Q, f(0H) = 9Q , and there is a natural number p such that f is a strictly
p-valent map of H onto Q .

(b) If Q is an analytic Cauchy region such that cl Q ¢ P4(T) \ P,_(T)
d 0Q N f(Z(f")) = @ , then there are analytic Cauchy regions H, , ..., Hy
uchthatfm'iSjsd,clHJ c

P (A) \ P, (&), fH) =Q, f(oH;) = 0Q and

there are positive integers p; . ..., pq such that if m; = ind (o - A) for o in

, then :

(i) fis a strictly pj-valent map of H; onto Q ;
@) ind O -T) = X, pymy for all 2 in Q ;

(iii) nul(x-T)zz{pjmj:mj>O]foralllinQ..
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Proof. (a) LetH; ,..., Hy be the components of f1(Q) n P4(A) . By
Proposition 1.2 , each H; is an analytic Cauchy region with cl H; c P A,
f(H;) = Q , floH;) = 0Q , and f is a strictly pj-valent map of H; onto Q for some
positive integer p; . Also Theorem 1.1 implies that for A in Q , fe =
ind A-T) = 2 {ind (a - A) : ae f1(Q) n P4(A) such that f(a) =1 }. Thus
for at least one j, 1 <j<d, there is a point a in Hj such that ind (a - A) =
* oo ; for this value of j . let H = Hj .

(b) Now assume that ¢l Q ¢ P4(T) \ P,(T) . Adopt the notation of the
preceding paragraph. By Proposition 1.2 all the properties from part (b)
hold, with the possible exception of (i) and (ii) . Let n =ind (& - T) for A
in Q and m; = ind (a - A) for a in Hj . Since f(Z(f')) is a countable set, there
is a A in Q such that A ¢ f(Z(f)). Thus part (f) of Theorem 1.1 implies n =
ZJ. m; p; .

It remains to establish (iii). For this, it may be assumed that A e
f(Z(f") since such points are dense in Q and so the general result will follow
from this case by results of spectral theory (see Theorem 1.13 (iii) in [20]).
Let { ay 1 <i<pj} be the distinct points in H; such that f(aij) =X . Note

that my = nul (a; - A) - nul (ay - A)" for each j . By Theorem 1.1(f) .

nul (A -T)

zij nul (alXj - A)
*
Zj m;pj + 21_] nul (ay - A)

E{mjpj:mj>0} + zij{nul(aij-A)*:mj>0}

+ 2 [[mjpj+zinul (a].j —A)*] :mj<0}
But each of these last two summands is positive. Hence (iii) holds. ¢

1.4 Proposition If f is an analytic function (not assumed to be completely

non-constant) defined in a neighborhood of E and N is a normal operator,
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_ then N e f(S(E)) if and only if there is a bounded set E; ¢ E such that o(N) ¢
f(E,) . If f is analytic and completely non-constant on the open set G , then a
normal operator N belongs to f(S(G)) if and only if 6(N) ¢ f(G) .
_Proof. If N = f(A) for some A in f(S(E)) then the Spectral Mapping
':\Theorem implies that the set E; may be taken to be c(A) . Conversely, if
‘ such a bounded set E; exists, then there is a Borel function g: 6(N) — E,
such that gA) e E; n f1(A) for all A in o(N) . (This last statement follows by
‘ any of many measurable selection theorems, or, using the analyticity of f, the
reader can give a direct proof.) So g is bounded and if A = g(N) , then N =
fla) .
In the second statement of the proposition, one implication is, again,
wan immediate consequence of the Spectral Mapping Theorem. If 6(N) ¢

(G) , then the assumptions about f imply that there is a compact set K

' contained in G such that f(K) = o(N) . To see this note that G = U K},
_ where each K, is compact and K, ¢ int K, ,, . Since f is completely non-
_constant on G , f(int K)) is open for each n . Thus { f(int K;)) } is an open
cover of 6(N) and there is an integer n such that o(N) c f(K,,) . The result

. now follows by the first part of the proposition. +

The stated condition on f and E in the preceding proposition is not
always satisfied. For example, let E = {0} U {n'! + 2rni : n € N } and let f(z)
e®. Sof(E) ={1,el/2 el/3 . .}). If Nis the diagonal operator with
_entries 1, el/2 | el/3 ... then N ¢ f(S(E)) . It is not too difficult to see that
N e cll f(S(E)) ] . See Corollary 2.7 for a characterization of the normal

operators belonging to cll f(S(E)) ] .

1.5 Proposition (a) If X and Y are operators such that there is no non-zero

operator S with XS = SY , then for any operator Q the spectrum of T = [gg

s o(X) U o(Y) . Moreover, if T € f(S(E)) , then X and Y belong to f(S(E)) .
(b) If X and Y are operators with 6/(X) N o (Y) =@ and X ® Y belongs
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to int [ f(S(E)) ] . then X and Y e int f(S(E) .

Proof. (a) The stated condition on X and Y implies that the commutant of T
consists of lower triangular operator- valued matrices. Thus if A - T is in-
vertible, (A - T)-! is lower triangular and the diagonal entries must be n-x)!
and (A - Y)'! . Conversely, if A - X and A - Y are both invertible, the lower
triangular matrix with (A - X)"! and ( - ¥)! on the diagonal and - (A - X)"! Q
(A - Y)'! in the lower left corner is the inverse of A - T .

M) Lete > Osuchthat || X®Y -T 1l < ¢ implies T € f(S(E)) . By a
result of [14], there is a ¢ > 0 such that | XS -SY Il 2c 1Sl for all Sin
B(H) . Let 8 < ¢ be sufficiently small that 11 X3S - SY 11 2 (c/2) 1 1S!1 when-
ever | 1X-X;11<8. Then || X®Y-X; ®Y Il < e whenever X -X11<3
and so X, ® Ye fSE) . But X;T =TY implies T = O . Hence X, € f(S(E) .
That is, |1 X - X; Il <3 implies X, € f(S(E)) . Thus X e int[ f(SE) | .

Similarly, Y € int f(S(E)) .
For an analytic Cauchy domain A define the following operators.

A(A) = M, on H2@A) c() = AnY".

1.6 Proposition Let A} and Ag be analytic Cauchy domains. If X is a bounded
operator, n and m are extended positive integers, and A(Al)m)X = XC(AZ)(m) ,
then X =0 .

Proof. In fact, A(A;) is a subnormal operator and C(Ap) is a cosubnormal
operator. The result now follows by a standard result of subnormal operator

theory [25] (also see [11], p. 199). ¢

1.7 Proposition Let A be an open subset of C.
(a) A(A) e f(S(E) if and only if there is an open set G with cl G

included in E such that f is one-to-one on G and f(G) = A . Moreover, if A(A)
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= f(R) and g is the inverse of the restriction of f to G, then R = multiplication
by g on H2(0A) .

(b) C(A) e f(S(E)) if and only if there is an open set G with cl G
_included in E such that f is one-to-one on G and f(G) = A . Moreover, if C(A)
f(R) and g is the inverse of the restriction of f to G, then R" is
multiplication by g @) on H2(dA") .

Proof. (a) If there is an open set G with cl G included in E such that f is
one-to-one on G , g is the inverse of the restriction of f to G, and R is
multiplication by g , then R € S(E) and f(R) = A(A) . Conversely, if A(A) =
f(R) for some R in S(E) . then R must commute with A(A) . Hence (see, for
example, [31] or page 147 of [11]) there is a g in H”(A) such that R =
multiplication by g on H2(dA) . It is routine to check that f(g({)) = ¢ for all {
in A . If G =g(A), then f is one-to-one on G . The Spectral Mapping
Theorem implies cl G = o(R) c E .

(b) This follows from part (a) and the definition of C(A) . ¢

Before stating the next result, two additional pieces of notation are
needed. For any operator T, let min ind T = min{ nul T, nul T*} . Also, if &
is a closed and relatively open subset of o(T) , let H(T; o) denote the range of
the Riesz idempotent, E(T; o) , associated with ¢ . If o consists of a single
isolated point A , let E(T; A) = E(T; (A} ) and #(T: ) = H(T; (A}) .

The next result is a special case of the Similarity Orbit Theorem from

5]. Also see [3], page 5.

1.8 Theorem (Special case of the Similarity Orbit Theorem) Assume the
perator X has the property that if A is an isolated point of 6.(X) , kk,x(z) is
efined to be A - z on a neighborhood of » and 0 on a neighborhood of 6.(X) \
{X}, and X is the image of X in the Calkin algebra, then [kx‘x()N() ™ = O for all
m 21 . If the operator Y satisfies the conditions:

(@ oY) < 0p(X) and each component of o).(Y) meets o.(X)
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(b) P(Y) ¢ PX) and ind (A -Y) = ind (A - X) and min ind (A - Y)¥ >
min ind (A - X)¥ for all A in P(Y) and all k > 1 ;
(¢) dim H(Y; A) = dim H(Y: A) for all A in 64(Y) ; then Y is in the

closure of the similarity orbit of X,

S(X) = (WXW! : W is invertible in B(H)) .

The next proposition is a variation on a result of [6] (also see page 136
of [20]). Essentially it is a special case of that result that will be needed in

this paper.

1.9 Proposition If T e B(#) and € > O , then there is an operator S such
that 1S - TI| < and S is similar to a direct sum S; ® - - - ® S, ® F , where
these direct summands satisfy the following properties:

(a) F is a finite rank operator with o(F) < 6g(T) and for A in o(F),
F| H(F; \) similar to T| #(T; ) ;

(b) for eachj, (S is connected;

© oF) nolS) =D =c(S) no(S)fori#jand 1 <ijs<n;:

(d) for each j ., o},(S;) is the closure of an analytic Cauchy domain and
o(S) \ OjrelSy) is an analytic Cauchy domain;

(e) P(S) c P(T) , P4(S) has only a finite number of components, and
for each A in P(S), nul (A - §) = nul (& - T) and nul (- )" =nul (b - T .

() 6(T) € 64(S) . Opell) S 01(S)

and each component of c,(S)
contains at least one component of c(T) .

Proof. Let & > 0 and let A be an analytic Cauchy domain with 6p(T) ¢ A ¢
[01ee(T) 15 and 9A M o(T) = D. Let N be a normal operator with o(N) = cl A .
By Proposition 1.4 of [6] (also see Chapter 3 in [20]) there is an operator S
with || T - SIl < 25 such that S is similar to T ® N . (This could be
obtained as a consequence of the Similarity Orbit Theorem, but this would

be putting the cart before the horse.) Consequently
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o(S) = ofuclA,
01elS) = clA,
05(8) = oM\ A.

Note that this implies that o,(S) is finite and o(S) has only a finite number of
H(S; A) = H(T; A) and
s|#(T; ) = T| #4T; ) for A in 6o(S) . Letoy, ..., 6, be the components of

components. Moreover S can be chosen so that

o(S) \ 6p(S) . Using the Riesz-Dunford functional calculus, S is similar to S,

®---S, ®F . where each S; = S| #(S; o)) and F = S| H(T: 6¢(S) . Itis
routine to check that the properties listed in the statement of the

proposition are verified. +



§2 THE CLOSURE OF f(S(E))

In this section we will prove the main result of this paper and its
corollaries. Note that the function in this theorem is not assumed to be
completely non-constant. After the statement we will give the explicit
statement for the completely non-constant case (Theorem 2.2), the case
where f is constant on each component of its domain of definition (Theorem
2.3), as well as show how to obtain the results of [13] for the functions zP (p
> 2) and e* (Corollaries 2.4 and 2.5), and the function f(z) = z (Corollary
2.8), thus recapturing a result of [6] characterizing cl S(E) .

2.1 Theorem Let f be an analytic function defined on an open set D that
includes the non-empty set E. Put Dy = int f(Z(f)), E =E N Dy, and A =
the derived set of f(Ey) . An operator T belongs to the closure of f(S(E)) if
and only if the following conditions are satisfied.

(a) Every component of 64(T) U 6(T) meets cllf(E)] . Furthermore, if
o is a component of 6.(T) that is not a singleton, then ¢ meets cl f(E \ Eg) |
UA.

(b) P4(T) c f(E \ Ep) .

(c) If Q is a connected analytic Cauchy region such that cl Q ¢ P, (T)
and 3Q N f(Z(f")) = @ . then there is a component G of f1(Q) with G c E and
a natural number p such that f is a strictly p-valent map of G onto Q .

(d) If Q is a connected analytic Cauchy region such that cl Q c P4(T) \
P, (T) and 9Q  f(Z(f)) = @ , then there are a finite number of components
Gy....,Ggpof f-1(Q) that are contained in E , natural numbers p; . . . ., Pr-
and non-zero integers m, , ..., my such that for 1 <j <r, f is a strictly p;-

valent map of Gj onto € and for all A in Q ,

18
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(i) ind (A -T)

Zj pjmj ’

(ii) nul(A-T) = z(pjmj:mj>01.

vV

(e) If A € 6y(T) and A is an isolated point of f(E \ Ey) such that A ¢
clf f(Ey) ] and f1(\) c Z(f) , then for every positive integer m ,

nul (A - )™ 2 min [ mkg , dim HT: A) ],

where

k0=min{k:thereisazinEwithf(z)=k,f'(z)=-~-=
5z =0, and f¥2) 2 0} .

(H If A is an isolated point of o(T) as well as f(Eg) . but A e cl f(E \ Eg),
then H(T; A) =ker A - T) .
(g) If A is an isolated point of o.(T) as well as f(Ey) , but A does not
vbelong to cl[ f(E \ Eg) 1, and if k, 1 (2) is defined to be A - z on some
neighborhood of A and O on a neighborhood of c.(T) \ {A}, then k; 1 M=o,

where T denotes the image of T in the Calkin algebra.

Some comments on the conditions of the previous theorem may aid
: the reader's digestion. Conditions (a) through (d) arise from the nature of
the problem and are not connected with the fact that f is allowed to be
defined on a non-connected open set in C and constant on some com-
ponents of its domain. Moreover, condition (b) is a consequence of (c) and
d) and is stated for the purpose of emphasis rather than substance.

Also note that if E is an open set and f is completely non-constant,
then f(E) is open and thus can have no isolated points. Thus conditions (e).
f), and (g) are vacuously satisfied. (In this case, condition (a) can also be

implified since A =@ .) So in this case, only conditions (a). (c). and (d) are
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required.

If f is a constant function, f(z) = A on D, then f(S(E)) = the single oper-
ator Al . So, for a general f , the operators in f(§(Eg)) tend to be uncompli-
cated. Operators in cl[ f(S(E \ Ep)) ] are more complicated. If cl[ flE \ Eg) ]
meets f(Eg) . then the simplicity that accrues from cl f(S(Ey)) ] is eliminat-
ed by the complications of cl f(S(E \ Eg)) 1 . The statements of conditions
(f) and (g) reflect this phenomenon.

In addition there are equivalent formulations of (f) and (g) that are
useful. In fact, it is these equivalent formulations that will be shown to be
necessary for membership in cl[ f(S(E)) ] . Specifically, condition (f) is
equivalent to the requirement that TE(T; A) = AE(T: A), where E(T; 1) is the
Riesz idempotent associated with the closed and relatively open set {A} of
o(T) . Condition (g) is equivalent to the condition that TE(T: A) = AE(T; A) .
where E(T: A) is the Riesz idempotent associated with the closed and
relatively open set {A} of o(T) .

Even though f is completely non-constant, f(E) may still have isolated
points since E is not assumed to be open. Condition (e) is present because
E may not be open and, as is clear from its statement, is divorced from the
fact that f is allowed to be constant on some components of its domain. Also
note that the integer kg in part (e) must be at least 2 .

The proof of Theorem 2.1 will be accomplished by combining the

analogous result for the special (extreme) cases where f is completely non-
constant and where f is constant on each component of its domain. We now
state these special cases.
2.2 Theorem If f is a completely non-constant analytic function on a
neighborhood of the set E , then an operator T belongs to the closure of
f(S(E)) if and only if the following conditions are satisfied.

(a) Every component of 64(T) U ¢.(T) meets cll f(E) ] .

(b) P4(T) c f(E).
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(c) IfQ is a connected analytic Cauchy region such that cl Q ¢ P, _(T)
and 0Q N f(Z(f) = T , then there is a component G of f1(Q) with G c E and
_a natural number p such that f is a strictly p-valent map of G onto Q .

l (d) If Qis a connected analytic Cauchy region such that cl Q ¢ P4(T) \
P,(T) and 0Q n f(Z(f')) = @ , then there are a finite number of components
Gy.....Gy of £1(Q) that are contained in E , natural numbers Py.---+Pr.
and non-zero integers m,; , . .., m; such that for 1 <j <r, fis a strictly p;-

alent map of G; onto Q; and forallA in Q,

(i) ind A - T)

Zj I B

(ii) nul A - T) Z[pjmj:mj>0}.

v

(e) IfA e op(T) and A is an isolated point of f(E) such that 1) ¢

Z(f") . then for every positive integer m ,

nul (A - T)™ > min [ mkg , dim HT; \) ],

where

k0=min(k:thereisazinEwithf(z)=7L,f'(z) ==

f(k'l)(z) =0,and f¥z) =0}.

Observe that conditions (a) through (e) are (essentially) identical in

oth theorems.

2.3 Theorem Let f be an analytic function on a domain D and assume that f
constant on each component of D . If E is a non-empty subset of D and T
B(H) , then the following statements are equivalent.

(@ Te cl fSE)] .

(b) T is the limit of a sequence of operators each of which is similar to
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a normal operator with spectrum contained in f(E) .
(c) T satisfies the following conditions:

(i)  Every component of 6y(T) U c,(T) meets cl f(E) ;

(i) P =9:

(iii) Every component of 6.(T) that is not a singleton meets A ;

(iv) If A is an isolated point of o(T) as well as f(E) , then H(T; A) =

ker (A - T) .

(v) If A is an isolated point of o,(T) as well as f(E) , and if k) 1(z)
is defined to be A - z on some neighborhood of A and O on a

neighborhood of c.(T) \ A} , then kx_'r(:f) = 0, where T denotes the
image of T in the Calkin algebra.

The proof of these three theorems will be postponed until later in this

section. In fact, they will be proved in reverse order, with Theorem 2.1
being derived as a consequence of Theorems 2.2 and 2.3. Let us first
consider some of the corollaries. First, the special case when f(z) = zP or e”

and E = C can be recaptured.
2.4 Corollary [13] If R, = {AP:Ae B(#)},thenTe cl R, if and only if
(e C:A-TisFredholmandind A -T)e p Z}

does not separate O from oo .
Proof. Here E = C and f(z) = zP , so that conditions (a) and (b) of Theorem

2.2 are trivially satisfied by every operator. Let Q be any analytic Cauchy
region with O ¢ 9Q . Either 0 € Q , the polynomially convex hull of Q, or 0

¢ Q. If0e Q, then f-1(Q) has p pairwise disjoint components and f is a

one-to-one map of each of these components onto Q . Thusif T e B(H) and

Q is such an analytic Cauchy region with 0 ¢ Q , then conditions (c) and (d)

are seen to hold.
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Now suppose O e 22 . Hence there is a Jordan curve y in Q that sur-
rounds O . It follows that G = f-1(Q) is connected and f is a strictly p-valent
mapping of G onto Q . Thus condition (c) of Theorem 2.2 is always satisfied
for every operator in B(H). If c1Q ¢ PL(T) \ P, (T) ,n=1ind (A - T), and O
e Q , then it is seen that condition (d) (i) of Theorem 2.2 is satisfied if and
only if n is a multiple of p . Since, in this case, condition (d) (ii) is an easy

consequence of (d) (i), this proves the corollary. «
The proof of the next corollary is similar to that of the preceding one.

2.5 Corollary [13] If £ = { exp(A) : A e B(H)), then T € cl £ if and only if

P.(T) does not separate O from c .

Recall from [4] (also see [15]) that an operator T is biquasitriangular if
and only if P4(T) =@ . Thus, if T is biquasitriangular, conditions (b), (c), and
(d) of Theorem 2.1 are vacuously satisfied. Necessary and sufficient
conditions for a biquasitriangular operator to belong to cl[ f(S(E)) | can thus
be formulated. If f is completely non-constant, this can be phrased in a way

that is worth making explicit.

2.6 Corollary If T is a biquasitriangular operator on # and f is a completely
non- constant analytic function defined in a neighborhood of E , then T €
cll f(S(E)) ] if and only if every component of 64(T) U 6,(T) meets cl| f(E) |
and condition (e) of Theorem 2.2 holds.

If T is a normal operator and A is any point of o,(T), then H(T: A) =
ker (A - T) and for every positive integer m , nul A -T)™ = nul A -T) =
dim H(T; A) . Thus conditions (e), (f), and (g) of Theorem 2.2 are always

_satisfied by every normal operator, irrespective of the set E and the function
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f . Since normal operators are biquasitriangular, we get the following

pleasant corollary.

2.7 Corollary If T is a normal operator and f is an analytic function defined
in a neighborhood of the non- empty set E , then T e cl[ f(SE)) 1 if and only
if every component of o(T) meets cl[ f(E) ] and if ¢ is a component of o(T)

that is not a singleton, then ¢ meets [ A U cl f(E \ Eg) ].

It is also possible to recapture one of the results of [6] from Theorem

2.2, since f(z) = z is completely non-constant.

2.8 Corollary [6] If E is a non-empty subset of C, then T e cll S(E) ] if and
only if :
(a) every component of 64(T) U o.(T) meets cl E :

(b) PiT) CE.

2.9 Corollary If A® B e cl f(S(E)) ] and 6(A) N o(B) = @ , then A and B
belong to cl f(S(E)) ] .

We begin the process of proof of the three theorems by proving
Theorem 2.3. For any non-empty subset T of C , let AfY) be defined by

A(X) = (Te B(H) : Tis the limit of a sequence of operators each of
which is similar to a normal operator with spectrum
contained in ¥ } .

So condition (b) in Theorem 2.3 is that T e N(f(E)) .

2.10 Lemma If f, D, and E are as in Theorem 2.3 , then Af(E)) is
included in cl[ f(S(E)) | .
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_Proof. If N is a normal operator with finite spectrum contained f(E) . then N
e f(S(E)) by Proposition 1.4. If N is any normal operator with o(N) ¢ f(E) .
then the Spectral Theorem implies that N can be approximated by normal
operators with finite spectrum contained in o(N) ; hence, N e cll f(S(E)) ] .

From here the lemma is immediate. ¢

Recall that a set is called perfect if it is closed and each point in the

set is a limit point of the set.

2.11 Lemma Letf, D, and E be as in Theorem 2.3 and let A be the derived
_set of f(E) . If S is an operator with o(S) = 01.(S) = a connected set that is
_not a singleton and o(S) N A =@ . then S e AUf(E)) .

Proof. Let M be a normal operator with ¢(M) = 6(S) . By The Similarity
_ Orbit Theorem (Theorem 1.8), S belongs to the similarity orbit of M . Thus

it suffices to show that M e A(f(E)) .

» Let Ag € 6(M) N A and fixe >0 . By definition there are distinct points
A, }in f(E) such that A, = Ag and A, - Aol <e for all n . Let Ng be a
_normal operator with 6(Ng) = 6.(Ng) = {Ag.A; Ao, ...} :clearly Nge
A(f(E)) . If Q is any nilpotent operator, Lemma 5.3 of [20] implies that N¢ ®
Ao + Q) € ANIf(E) . But Theorem 5.1 of [20] implies there is a sequence
_(Qx } of nilpotents such that || Qx - M Il - 0. Hence Ng ® M e N(f(E)) .
But || Ng - Ay || <& and, since & was arbitrary, Ao ® M € AN(f(E)) . But Aye
o(M) and o(M) is a perfect set, so an elementary argument using the

Spectral Theorem shows that M e N[f(E)) and completes the proof. e

2.12 Lemma Suppose f, D, and E are as in Theorem 2.3, T e cl[ f(S(E) ],
and A is an isolated point of f(E) .

(a) If A is also an isolated point of o(T) , then T is similar to A ® Ty .
where Ty e cll f(S(E)) ] and A ¢ o(Tp) .

(b) If A is also an isolated point of 6.(T) and k; 1(z) is defined as in
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Theorem 2.3, then kx'T(ﬁ =0.

Proof. (a) Let Ty=T|#T: o(T) \ A} ) . Since ) is isolated in both o(T) and
f(E) , there are open sets A and Q such that c1Q N cdA = 3, Al=ANn
sM=ANIfE),K= Qno@=QnfE) . LetT, = flay) . o(Ay) < E , such
that T, - T. We can assume that o(Ty)) cAuQforalln. By an application

of the Riesz- Dunford functional calculus, for ® = A or Q,
T,E(T, : ® — TE(T:®).

It is easy to see that T E(T, : ®) e f(S(E)) . In fact, the conditions on A and
Q imply that for ® = A and Q , £1(d) consists of the union of some collection
of components of E . Thus f1(®) N o(A,) is a closed and relatively open
subset of o(A,) . It is straightforward to see that E(T, : @) = E(Ay : £ 1(®))
and T E(T, : ®) = f(B,) . where B, = A lHA, ; £1(@) . In particular, Tg €
clf f(S(E) 1.

Because A N f(E) = (\) , T, € f(S(E)) , and o(T,) € A v Q , it follows
that 6(Ty) M A = (A} . Thus TE(T, : A) = TRE(T, : M) = fl Ayl (A, £1HA) .
But f is constantly equal to A on f-1(A) and so TLE(T,, : A) = AE(Ty ; A) and
this sequence converges to AE(T; A) = TE(T ; A). That is, T| H(T; M) =2 .
Part (a) is now immediate from standard elementary results.

The proof of part (b) is similar and is left to the reader. ¢

Proof of Theorem 2.3. From Lemma 2.10 we already know that (b) implies
(a .

(a) implies (c). By standard arguments using the semicontinuity of the
parts of the spectrum, (i) holds. Also, the continuity of the index and the
fact that each operator in f(S(E)) has countable spectrum imply that P4(T) is
empty; that is, (i) holds. Conditions (iv) and (v) follow from Lemma 2.12
above. It remains to establish (iii).

Suppose C is a component of 6(T) that is disjoint from A , the derived
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set of f(E) . By a standard topological argument (for example, see 16.15 of
[19]), there is an open neighborhood U of C such that dU N o.(T) = @ and
UNnA = @. Thus U n cl f(E) is a finite set that is non-empty by (i) . Let
UnclfE)=(A;..... Am } . Define k(z) in a neighborhood of 6.(T) by
letting k(z) = [ ;-2) onUand kiz) =0 on C\ cU. If Ty c f(S(E))
and || Tp-T || — 0, we may assume that 6.(T)) NnoU =@ for alln . Asin
the proof of Lemma 2.12, k(DE(T; U) is the limit of { k(T )E(T, ; U)} and
k(T )E(, ; U) = 0 for all n . Hence k(DE(T: U) = 0 and condition (iii) holds.
{c) implies (b). Suppose T satisfies the conditions of (c) and fix e > 0. We
_first eliminate int Py(T) . In fact, by [2] (also see [20], Proposition 8.42)
there is a compact operator K with |1Kgll <& and such that T; =T - Kg

satisfies the conditions of(c) as well as the following:

o(T,) = 6(T}) L op(T) ;

if A is an isolated point of ¢(T;) , then H(T, ; A) = ker A - T;) .

LetK={Xe o(T)): e C, where Cis a component of o(T,) andCnA=D}.
Note that if A € o(T;) \ K, then (iii) implies {A} is a component of o(T,) and,
by definition, A ¢ A , though A e f(E) by The Spectral Mapping Theorem. We
claim that K is closed. In fact, suppose {A,}c K, A, —»1,and X e K. Since
' A ¢ K, there is an open neighborhood U of A such that dU n o(T) = @ and
UnfE)={}).

So A, € U for large n . But if Cj, is the component of o(T,)

that contains A, , the fact that 0U n o(T,) = @ implies C,, c U . Since C,
meets A , this contradicts the condition that U n f(E) = A} . Therefore K is
closed. Let N be a normal operator with 6(N) = K¢ . As in the proof of
Proposition 1.9, there exists an operator S that is similar to T; ® N and
also satisfies | | S - T; || <2e . However (as in Proposition 19)S=S5,®- -

®S_ @ F, where F = T, | #(T, : 6(T;) \ K¢) and for each j . o(S;) is a
component of Kg . From (2.13 i), F e A(f(E)) . By construction, for 1 <j <

» 0(S)) meets A . Therefore by Lemma 2.11, each S; e A(f(E)) . Hence S €
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A(f(E)) . Since £ was arbitrary, we get that T € AN(f(E)) . completing the

proof. ¢

We now begin the proof of Theorem 2.2. Only one additional lemma is

needed.

2.14 Lemma Let f be a completely non-constant analytic function defined
on the open set D containing E . If e > 0 and T satisfies conditions (a)
through (e) of Theorem 2.2, then there is an operator S such that |11S - Tl |
< ¢ and S satisfies the following strengthened form of conditions (a) through
(e).
(a) (@) ocp(S)is a finite subset of f(E) .

(i) ©e(S) = cl A where A is an analytic Cauchy domain, each

component of A meets f(E) , and dA N f(z(f) =@ .

(b) cll PL(S) ] c f(E) , P4(S) has only a finite number of components

Q... Qq . and each Qy is an analytic Cauchy region with 9Qj N f(Z(f"))

(¢) If Q c P,(S) . then there is a component Gy of f1(Qy) and a
natural number p such that f is a strictly p-valent map of Gy onto Qy .
d) fQx N P, (S) =, then there are components G(lkl. R G(rk) of

(k) (k)

£1(Q;) ., there are natural numbers p; . . . ., py and there are non-zero

integers m(lk) ..... m(rk) such that f is a strictly p(ik) -valent map of G(ik) onto

Q) and for all A in Q ,
r(k)

ind & -5) = Y. pyd m

i=1

nul A -S) 2 Z{p[ik) m(ik) 11 <i <r(k) andm(ik)>0} .

(e) X e cp(S) and A is an isolated point of f(E) such that () <

COMPLETING THE FUNCTIONAL CALCULUS 29

Z(f) ., then for every positive integer m ,

nul (A - S)™ > min [ mkg , dim HS: M) |,

where

kg = min { k : there is a z in E with f(z):l.f'(z):--~=t{k'”(z)
=0,and f¥2 20 ).

_Proof. This is a routine application of Proposition 1.9 ¢

_Proof of Theorem 2.2. Let X be the set of all operators satisfying conditions
(a) through (e) in Theorem 2.2. If 11 T-f(Ag) Il - O for some sequence
{Ag} in S(E) and if A € o4(T) that is an isolated point of cl[ f(E) ] with 10 <
Z(f"), then for sufficiently large k, Ay is the algebraic direct sum of operators
: Fx and By , where Fy acts on a space of the same finite dimension as H(T: N,
(o(Fi)) = A}, and A ¢ flo(By)) . Thus o(Fy) ={a; ;... .. ay .} < Z(f) and

'f(ak.j) =Afor 1 <jsr. If kg is as in the statement of (e), it is

_ straightforward to check that
nul [A - f(Fy) I™ = min [ mkg . dim H(T: }) ]

for allm 2 1. That is, T satisfies (e).

This is the first step in showing that the set X is closed in the norm
_ topology. The remaining steps in establishing this fact can be accomplished
by using standard stability properties of the Fredholm index and the various
_ parts of the spectrum. The details are left to the reader. By using
Proposition 1.3 and Theorem 1.1, it can also be deduced that f(S(E)) c X .
Hence cl[ f(SE) ] c X .

Now for the converse. By the preceding lemma it suffices to show

that if S is an operator satisfying conditions (a) through (e) there, then S e
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cll f(S(E)) 1 . Adopt the notation of Lemma 2.14. By (a) (i) og(S) is a finite
subset {A;, ...,
= 4, and either f'(a) # 0 or f'(a) = - - - = {%")(a) = 0 and () # 0 ;

A, } of f(E). For eachj, 1<j<m,leta;e E such that f(a)

moreover, choose a; so that kj is the minimum possible integer arising in
this way in the set f'l(Kj). Let Jn(j) be the nilpotent Jordan cell on a space
of finite dimension equal to n(j) = dim #(S; A .

Let A, ....A, be the components of A and for for 1 < /<n let by be
any point in E such that flb;) e A;. Let Q be a universal quasinilpotent
operator. That is, Q is a quasinilpotent operator such that Q™M is not

compact for any positive integer m . (See [20], page 193.)
If Qx ¢ P, (S) | let G(1k’= the component Gy of f1(Qy) as described in

(k)

part (c) of Lemma 2.14 ; also let m| = ind (A - S) for A in Qy , r(k) =1, and

p(lk)= p - Define the operator A by

m n

A=@ @+dng & D (b +Q)

j=1 i=1

e ®

(k)
@ { C(Gﬁ())(mh ) t1<i<rk), mg{)> 0] }}

k=1
°T (k)(-mg())
o @ @{A(Gh) :15isr(k),m§d<0} .
k=1L
Hence
q r(k)
K]
o) ={ayj,..., amJui{bi,..., bntu U Ucl[Gl()]gE.
k=1 i=1

Also op(A) ={a;,....a,}and

COMPLETING THE FUNCTIONAL CALCULUS 31

q r(k)
k]
oire @A) = (b1,..., b} U U UG .
k=1 i=1

k|
hus if a € 6(A) \ [0}(A) UoH(A) ], thena € G(i ) for some k and 1 <i <

(k) . Moreover, ind (a - A) = mgk)

and min ind (a - A) = 0. Put R = f(A) .
It follows that

R=@ (y+F) @ D f(bi+Qi)

j=1 i=1
a -~ (k)
o @®| @ {fcay )t ):1Sisr(k)-mﬁ()>o}j|
k=1"
°r w - mp?)
@(.D @{f(A(Gh )) h :1SiSr(k).mg)<0}
k=1L
here
n(j)-1 f”
r(a‘) r
= 2, — g
r=1

s nilpotent for 1 <j <m and

oo

) (b
Qi = Z %Qr

r=1

Is a universal quasinilpotent operator for 1 <i < n. Indeed, since f' does not
ish identically on a neighborhood of any point of E , for eachi, 1 <i<n,

there is a first derivative, say f{r(i))(bi) , different from O ; thus we have
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oo

1) (by)
a- X o
r = r(i)

r(i)!
for some invertible operator L, commuting with Q Hence Q; is
quasinilpotent and for each m > 1, Q™ is the product of an invertible

operator and a non-compact operator and so is not compact.

By Theorem 1.1

q
oR) = { M., Am . fb1) . ..., fibor) } U U clQl ¢ E,
k=1
q
owe R = {f(b1)..... fbn) } v U 9.
k=1
and
q q
k
Ge® = {f(1)..... flbn) } v U % v U {Qk:m(l)=ioo}.
k=1 k=1
By the choices that have been made,
(@ oo(S) = 6gR) = {A;.....Ay )} and each component of 6}.(S) =

cl[A] meets G (R) :
(b) PS)=C \ cl[A] c P(R) and for each A in Qy and each integer p 2
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r(k)
ind (.-R) = > mp = indh-9),

i=1

nul(k-R)p= pZ{m‘ik)p(ik):m(ik)>O} < nul(k-S)p s

nul (A -R)T

k) (K k S |
p-s-{_m(l)p(i):m(i)<0}<_rl111(7\" ) ’
_so that

min ind (A - R < min ind (A - S)P

for all A in Q, U---UQq and for all positive integers p . Also (see [20],

orollary 2.2)

nul (i - RP = nul FP < nul - S)P
forallpand 1 <j<m. Since, by construction,

() dim H(R; k]) = dim #H(S; )‘J) forl1 <j<m,

e infer that

min ind (A - R)? < min ind (A - S)P
or all A in P(S) and allp21.

By the Similarity Orbit Theorem, S belongs to the closure of the
milarity orbit of R. Hence Se cl[ f(S(E)) ].
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Proof of Theorem 2.1. We will only sketch a proof.

Let E, = {ze E: f(z) € cll f(E\EO)]] and Eo = E \ E; . Itis not
difficult to see that even though E; may be larger than E \ Eq , cll f(S(E,)) ]
= cl[ f(S(E \ Eg)) | . But cll f(S(E \ Eo)) ] is characterized by Theorem 2.2 and
cl[ f(S(Eg)) | is characterized by Theorem 2.3. Let D; (i = 1, 2) be the union
of the components of D that meet E; . From the definition of E;, D; N Dy =
@ . SoifA e S(E) , then the Riesz-Dunford functional calculus implies that A
is similar to A; ® Ay , where o(A) c E; . Hence each T in f(S(E)) is similar
to T; ® Ty , where T, € f(S(E)) . From here the necessity of the conditions
can be deduced using elementary properties of the parts of the spectrum
and the index.

For the proof of sufficiency, let E; and E5 be as in the preceding
paragraph, assume that T satisfies the conditions of Theorem 2.1, and fix € >
0 . By Proposition 3.47 of [20] , there is a compact operator Kwith I K11
<e such that if R =T - K, then c(R) is a finite subset of oo(T . R | HR: M) =
T| #4T; M) for all A in op(R) , the only singular points (as defined on page 10
of [20]) in the semi- Fredholm domain of R belong to 6,(R) , and, moreover,
min ind (A - R) = min ind (A - T) for every A in P(T) that is not a singular
point in the semi- Fredholm domain of T .

Let Isol (R) = (A : A is an isolated point of c¢(R) and f(Eq) } . Let Q be

an analytic Cauchy domain with
ope®) \ Is0l(R) € Q@ < | O1reR) \ Isol (R) 1 ¢

and each component of Q meets 61(R) \ Isol.(R) . As in the proof of
Proposition 1.9, there is an operator S with 11 S - R Il <2, 01S)=clQu
{ll...,Km}.where{xl...,l
S| #(S: 1) = T| #H(T; ) for all A in 64(S) . P,(S) ¢ Py(R) = Py(T) for every

m) € Isol,(R) . 6o(S) = 6oR) \ cl Q,
non-zero extended integer n , and min ind (\ - S) = min ind (A - R) for all A

in P(S). Let{p;....,H g} be the points of 6g(S) that are isolated points of
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. f(E5) and let 6o(S) = (v, , - . -

s Vpra My, ... Hgt. It follows that

S=X® (('Bj}‘jlﬂg) ® (@, v+dy) @ (@kuklxk)

where each # is an infinite dimensional space, each %y is a finite dimen-
sional space, and each J; is a nilpotent operator on a finite dimensional

space. Put

S;=X© @, (v;+J)).

S2 = (@D N1s) © (D bucla) -

It is left to the reader to check that Theorem 2.2 implies that S; belongs to
cll fl S(E N\ Eg) )] = cll f( S(E;)) ] and Theorem 2.3 implies that Sy e
cll f(S(E5)) 1. Since € was arbitrary, T € cl[ f(S(E)) ] . ¢

The next result answers a question put to the authors by Raul E Curto.
The question is "When is cl[ f(S(E)) | = cl[ SE(E)) ] ?* Since f(S(E)) < S((E)),
cll f(S(E)) 1 < cll S(f(E)) ] . In general this inclusion is proper.

It turns out that to answer this question, it suffices to only consider
the case that f is completely non-constant. For example, if A is an isolated
point of f(E) and T is any operator with o(T) = {A} , then T e cl[ S(f(E)) ] .
ut, by (2.1 (), the only way that T can belong to cl[ f(S(E)) | is for T to be a
multiple of the identity.

k From the result of Apostol and Morrel (see Corollary 2.6 above), to say
that T satisfies conditions (a) and (b) of Theorem 2.1 is equivalent to saying
that T € cl[ S(f(E)) 1 . Thus cl[ f(S(E)) | = cl[ SE(E)) ] if and only if the set E
and the function f are such that conditions (c) through (g) can be deduced

from (a) and (b) or they do not apply.
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2.15 Theorem Iff, E, and E; are as in Theorem 2.1, then the following
statements are equivalent.

(@) clf f(SE) ] = cll SEE) ] .

(b) f(Ey) < cll f(E \ Eg) |, for each analytic Cauchy region Q with ¢l Q
c int [ f(E \ Eg) ] and 0Q n f(Z()) = & . there is an analytic Cauchy region G
with ¢l G c int E such that f is a one-to-one map of G onto Q and for each
isolated point A of f(E) , f1(A) N E is not contained in Z(f') .

Proof. First assume that (a) holds. The proof that f(Eg) < cll f(E \ Eg) ] is
left to the reader. Note that this says that cllf(S(E))] = cl[ f(S(E \ Eg)) ] .
Thus it suffices to assume that f is completely non-constant.

Let Q be an analytic Cauchy region such that cl Q ¢ int [ {(E) ] and Q n
f(z(f)) = @ . Let Q; be a second analytic Cauchy region such that cl Q c Q,
ccl Q) cint f(E) . Since A(Q,) e S(f(E)) . the assumption of (a) implies that
A(Q,) e cl[ f(S(E) ] . By Theorem 2.1 and the fact that ind (A - A(Q,)) =-1
and nul (A - A(Q,;)) = 0 for all A in cl Q , there is an analytic Cauchy region G
with ¢l G ¢ int E such that f is a one-to-one map of G onto Q .

Suppose that A is an isolated point of f(E) and f'(a) = O for all a in E
with f(a) = A . Then, again using Theorem 2.1 (and, in particular, part (e)) it

01

00] ¢ cll f(S(E)) 1 . But clearly T € S(f(E)) . This

follows that T = A + [

implies (b) .

Now assume that (b) is true. Once again, there is no loss of generality
in assuming that f is completely non-constant. Since it is always true that
f(S(E)) c S(f(E)) , it remains to show that S((E)) < cll f(S(E)) ] . Condition
(b) implies that for an analytic Cauchy region Q with cl Q ¢ int [ f(E) ] and
9Q A f(Z(f)) = @ . the operators A(Q) and C(Q) belong to f(S(E)) . Now
assume that T is an operator with o(T) = A} and A e f(E) : let a € E such that
fla) = A . IfA e f(Z(f)) , then there is a neighborhood G of a such that f is

one-to-one on G . Let g be the inverse of the restriction of f to G ;| so g is

defined in a neighborhood of A . If A = g(T) , then A e S(E) and T = f(A) . If &
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e f(Z(f)) but not an isolated point of f(E), there is a X, in f(E) with A,
arbitrarily close to A and A, ¢ f(Z(f)) . Thus T+ (A, -1) € f(S(E)) and so T ¢
cll f(S(E)) ] . If A is isolated, then the second part of condition (b) implies
that a can be chosen with f'(a) # O . Thus the preceding argument can be
used to show that T e f(S(E)) .

Now if T is any operator in S(f(E)) , the Similarity Orbit Theorem or
the approximation theorem of Apostol and Morrel ([6]; also see Corollary 6.2
_ of [20]) implies that T can be approximated by an operator that is similar to
the finite direct sum of operators of the form A(Q)) (ny) | C(d)j)(mj) , Dy ,
where Q; and @; are analytic Cauchy regions with boundaries missing f(Z(f"))
and whose closures are pairwise disjoint subsets of int [ f(E) ] , n; and m; are
extended positive integers, and each Dy has spectrum equal to a single point
of f(E) . From the preceding paragraph, each such direct sum belongs to

cl] f(S(E)) ] and hence T € cl[ f(S(E)) ]. +

2.16 Corollary If f and E are as in Theorem 2.1 and, in addition, f(E) has
neither interior nor isolated points, then cl[ f(S(E)) ] = cl[ S(f(E)) ] .

Let f(z) = z2 and E = [0, 1]. By Corollary 2.16, cl[ f(S(E)) ] = cl[ S(f(E)) 1.
It is not true, however, that f(S(E)) = S(f(E)) . In fact, if T is a non-trivial
nilpotent acting on a 2 dimensional space, then T e S(f(E)) but T ¢ f(S(E)) .
It is somewhat surprising that for an open set E and a completely non-

constant analytic function the two statements are equivalent.

2.17 Corollary If E is open and f is completely non-constant, then the
following statements are equivalent.

(@) fSE) = SH(E).

(b) cll f(SE) | = cl[ S(HE)) 1.

(c) for each analytic Cauchy region Q with cl Q ¢ f(E), there is an

analytic Cauchy region G with cl G ¢ E such that f is a one-to-one map of G
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onto Q.

Proof. It is trivial that (a) implies (b) and (b) implies (c) by Theorem 2.15.
To see that (c) implies (a) it suffices to show that f(S(E)) o S(f(E)). So let T
€ S(f(E)) and construct an analytic Cauchy domain Q with 6(T) cQ ccl Q¢
fE) . LetQ,,...,Q, be the components of Q . Since f(S(E)) and S(f(E))
are similarity invariant, it may be assumed that T = T} ® - - - ® T, where
o(Ty) < . By (c) there is an analytic Cauchy region G; with ¢l Gy ¢ E such
that f is a one-to-one map of G; onto Q; . Let g : Q; — Gy be the inverse of
the restriction of f to G and put Ay = g(Ty) . It is immediate that A=A; @ - -
- ® A e S(E) and T = f(A). ¢

In the case that E is assumed to be open but f is allowed to be constant
on some components, in contrast to Corollary 2.17, the equivalence of the
equalities cl[ f(S(E)) | = cll S(f(E)) ] and f(S(E)) = S(f(E)) does not hold. The
reader is invited to manufacture an example.

When is cl[ f(S(E)) ] = B(H) ? In [9] Arlen Brown gave a necessary and
sufficient condition on an analytic function f such that f(B(#)) = B(H). 1t
turns out that this is also equivalent to the answer to the question just
posed.

Clearly a necessary condition for cll f(S(E)) ] = B(%#) is that f(E) be at
least dense in C (actually it must be that f(E) = C) and a trivial sufficient
condition is that E = C and f(z) = az + b for some a = 0 . However this is not
the complete story as the theorem below demonstrates. Also see Examples

3.1, 3.2, 3.3, and 3.4 in the next section.

2.18 Theorem If f is analytic in a neighborhood of E , then the following
statements are equivalent.

(@) f(SE) = BH) .

(b) cll f(SE) | = B(H) .

(c) There are simply connected regions G, , Gy , . . . in E such that f is
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one-to-one on each G , f(G,) c f(Gy,,) for all n, and C is the union of the
sets f(G).

_ Proof. It will be assumed throughout this proof that f is completely non-
constant. The fact that (c) implies (a) is an easy application of the Riesz
functional calculus while it is trivially true that (a) implies (b).

Assume that (b) holds. If S is the unilateral shift of multiplicity 1 and
n is any natural number, then (b) implies that nS e f(S(E)). It follows (for
__example, by Proposition 1.7) that there is an analytic Cauchy region G, such
that f is a univalent mapping of G, onto {z : Izl <n}. Condition (c) is now

immediate. ¢

Although initially the question of when f(S(E)) is closed is only
accidentally related to the question of when f(S(E)) = B(#) . the next result

shows that the two questions are almost equivalent.

2.19 Theorem If f is an analytic function defined in a neighborhood of the
non-empty set E, then f(S(E)) is closed if and only if either

(a) E c int Z(f') and f(E) has no limit points in C, or

(b) f(S(E)) = B(H) .

Proof. Suppose that either (a) or (b) hold. If (b) is true, then clearly f(S(E))
is closed. So assume that (a) is true. Note that f(S(E)) is closed if and only if
fSE) N (T e B(H): r(T) <p}is closed for every p>0. PutE, ={ze
E: If(z)l <p}:by(a), fEy) is a finite set for every p . Since E ¢ int Z(f) ,

it is easy to see that

f(S(Ep)) fSE) N {Te B(H): r(T) <p}

{ T :Tis similar to a normal operator with spectrum

included in f(Ep) }.

ince f(Ey) is finite, a simple argument using the Riesz-Dunford functional
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