Ni:l GROUPS IN K-THEORY
AND SURGERY THEORY

FRANK CONNOLLY AND TADEUSZ KOZNIEWSKI

Abstract: We study Cappell’s UN:l group, UNil}, (R;B;,B_;), for any ring
and pair of bimodules with involution (R;By,B_1). We show that, in the geo-
metrically significant cases, this group is isomorphic to the Wall-Ranicki L -group,
L.(A,[t]), for a certain additive polynomial extension category A,[t]. We then in-
troduce an Arf invariant for UN:l2 (R; R, R) when the involution is trivial. We use
this to compute UN:I% (R; R, R) when R is a Dedekind domain in which 2 is prime.
We also show that for a suitable choice of (A, a), the Nil group of (A, «) coincides
with the N:l group of Bass-Farrell and with the Nil group of Waldhausen.
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§ 1. Introduction

1.0 The primary goal of this paper is to analyze Cappell’s group UN:I(R; By, B_,),
n > 0 as defined in [C1], (See also [R1] Chapter 7). In particular, we calculate
UNil% (R; R, R) for any semisimple ring, and any Dedekind domain in which 2 is
prime. Our analysis inevitably also draws in the Nil groups defined by Waldhausen
[W1], [W2], [W3], (also see [C4] p.125), by Farrell [F1], and by Bass [B]. It leads to
interesting new interpretations of these as well. The main results are 2.11, 3.9, 4.9,
6.1, and 6.2. We summarize our results in 1.2 below. But first we want to explain

why a better understanding of UN:l seems so important to us.

1.1 Motivation.

Suppose f : M — X is a homotopy equivalence of compact closed manifolds,
and X is the union of two other manifolds, X = X; U X_q, with Xy = 0X, =
0X_1 = X{NX_,. Assume that X and X, are connected, and that the fundamental
groups of X;,X_;,X, and X, are denoted G1,G_1,T', and H respectively. We
want to know if f, or a map “close” to f, is split along X,, in the sense that

f is transverse to X, and the three maps, f~(X;) — X;,s = —1,0,1 are again
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homotopy equivalences. Therefore, as a preliminary assumption, we assume that
the Whitehead torsion of f is in the image of Wh(G1) ® Wh(G~-1) — Wh(T). Let
R =7ZH, B; = Z(G;~ H). There is then defined an obstruction in an abelian group
UNil"(R;B,,B_;), where n = dim(X) + 1. When n > 5 this obstruction vanishes
if and only if there is an h-cobordism of (M, f) to a second homotopy equivalence,
f M — X which is split along X,.

UNil*(R; By, B_1) is a direct summand of the surgery obstruction group LMT),
and acts freely on the structure set, S*(X). Similarly Waldhausen’s Nil group,
]V?l(R; B1,B-1) is a direct summand of Wh(T'). These Nil and UNil groups ob-
struct the exactness of Mayer-Vietoris type sequences in the corresponding K and
L groups. For, if we write L!(T) for the complementary summand in L%(T") , and
write Wh(T) for the complementary summand in Wh(T'), we get exact sequences:

- LNH)— L:G) @ LA (G-1) —» LA(T) - L”

n—1

(H)— ....

Wh(H)=Wh(G1)®Wh(G—1)— Wh(T)— Ko(ZH) -Ko(ZG1) b Ko(ZG_1)— . . ..

See [C1], [C2], [C4], [W1],[W2], for all of this (and more).

This should suffice to establish the importance of these Nil groups, but we want
to mention a second point of view which also attractively displays their significance.

A compact aspherical manifold has the form X /T = BT where X is a con-
tractible manifold and T’ acts on X with compact quotient, properly discontinu-
ously and freely. It is known that the structure set, S(BT') or $*(BT), for various
compact aspherical manifolds BT, consists of one element (see, inter alia, [FH2],
[FH3], [FJ]). When the action of T is no longer required to be free, but instead X ¥
is required to be a contractible submanifold for each finite subgroup H in I', we no
longer have a manifold as orbit space. But we still can discuss a structure set, S(T)
or S*(T) (see [CK3] for a definition), and there is evidence here too of rich rigidity
phenomena (see [CK1], [CK2]).

In this case too, when I' is an amalgamated product of subgroups G; and
G_1, Cappell’s Nil group, UNil"(R; By, B_1), forms a kind of obstruction to any
such rigidity results. To be precise in at least one case, suppose the manifolds
X, Xo,X_1,X;, mentioned in the first paragraph of 1.1 are all aspherical. Then, as
mentioned above, UN"(R; By, B_,) acts freely on S*(BT') Therefore rigidity. of T
requires the vanishing of the corresponding UN ! group. This phencﬁuenon persists

when the I' action on X is no longer free.
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But very little is known of UN:I*(R;B;,B_1). Even its definition is rather
involved (see[C1] and [R1]). It is known to be zero in the so called “square root
closed” case [C1l]. More generally, F.T. Farrell has proved that:

4-UNilk (ZH;Z(Gy ~ H),Z(G_; ~ H)) =0, [F2)].

Even when H, G1 \~ H, G_; ~ H consist of a single element (so that ' =
Z|2Z x7Z[2Z), a complete set of invariants for this group has never been previously
discovered. (Cappell in.[Cl] asserts it has exponent 2 in this case, and, when n is
odd, proves in [C3] that it is countably infinite). There is also evidence that Nil

groups, when they are nonzero, must be very large ([F2], [F3]).

1.2 Main Results. We concentrate on UNil%, (R; By, B_;).

a. We first express the UN:l groups in terms of the surgery obstruction groups,
L.(A[t}]), of an additive category A,[t] with involution. Here L.( ) denotes
the Wall - Ranicki surgery group, as defined in [R2], and A,[t] is a “twisted”
polynomial extension category, defined in 2.1 below, for an additive category
A and a suitable additive functor a. It turns out that, in purely categorical
terms, one can construct Nl groups and unitary Nil groups for such pairs
(A, «). We denote them Nil(A, o) and UNil. (A, «) where ¢ = £1. (See 2.3
and 3.2). We prove that for an appropriate choice of A and «, in terms of

(R; By1,B_1), one has isomorphisms:
Nil(A, ) & Nil(R; By, B_,),

UNil.(A,«) 2 UNiIE (R;By,B_1) , e = (—1)™.

See 2.6 and 3.4.b. Here ]V?l(R; Bi,B_1) is the Nil group constucted by
Waldhausen in [W1], [W2]. For Farrell’s group, ]/VTI(R, a) of [F1], one also

has, for a suitable choice of A and «a,
Nil(A,a) = Nil(R, a).

We next use a “quadratic” analogue of Higman'’s trick (see [B] or [BHS]

for the linear version) to construct exact sequences:
Nil(A,a) = K(Aqt])) = K1(A) =0

UNil (A, o) = L(A4ft]) = Le(A) —» 0, e =+1

3



(see 2.9 and 3.6.b). For this it is necessary that A,[t] be linearizable (see
2.8 for a definition). The polynomial extension defined by any (R; By,B-)

is linearizable (2.10).

The most geometrically significant case of these ideas is when H is a
subgroup of two groups G; and G_;. One sets R = kH where k is a subring
of Q. One sets B; = k(G; ~ H), an R bimodule with involution. For this

special case we obtain ( 2.11, 3.9) an exact sequence and an isomorphism:
0 — Nil(R; By, B_1) = K1(Aq[t]) = K1(A) — 0
UNil} (R;By,B_1) = L.(AL[t]), €= (-1)"

. We write UNil}, (R) for the group UNil% (R; R, R). The importance of this

“universal case” has been shown by Farrell [F2]. Using the categorical

n

descriptions above, we construct endomorphisms (natural in R) Fy and V,

of UN:lk (R) for each odd positive integer s. We prove (see 4.8):
VsVs’ = Vss’ ) FsF.g’ = Fss’ 3 Vvl = F] = identity. Also:

V& € UNil}, (R), there is an N > 0, so that F,(z) =0if s > N.

Then we specialize to the case of a perfect field F' of characteristic 2, and
trivial involution. We construct an Arf invariant for UN:I% (F), denoted A,

and establish an exact sequence:
UNilk (F) -2 coker(ihy — 1) — F/(3p2 — 1)F — 0.

Here 1, denotes the Frobenius monomorphism, 9 : F[t] — F[t] sending p

to p? for all p € F[t]. See 5.6, 5.7. The group coker(z; — 1) is huge ( 5.8.a).

. Finally, we completely calculate UNil}, (R) in two cases ( 6.1, 6.2):

- when R is a Dedekind domain with involution for which R/2R is a perfect

field.

-when R is a semi-simple algebra with involution over a perfect field F.
For the second case, the task boils down to computing U N2, (F) when

F is a perfect field of characteristic two, with trivial involution. For this

case the Arf invariant, and the operators F, mentioned above, combine to

provide an isomorphism:

o<

UNilt (F) =~ Z(F)
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The first case, that of a Dedekind domain R, is reduced to the second,
by showing that, when UNil% (R) is nonzero, the reduction map
UN:l% (R) — UNil? (R/2R) is an isomorphism.
We close with some unsolved problems raised by this paper.
1.3 Notation.

Throughout this paper Fg (resp. Pg) denotes the category of free (resp.
projective), finitely generated right R modules. Also, if A is a right R module and
B is a left R module we write AB for A ®g B. For any left R-module B, over a
ring with involution R, we write B* for the right R module structure on the abelian
group B, given by the rule: br = 7b, Vr € R, Vb € B.

If Ais aright R module, then A* denotes the right R-module (Hompg(A, R))*.
We always write < , > A x A* — R for the cannonical sesquilinear pairing:

< z,f >= f(z). When B is a bimodule with involution, we write S*(B) for
{reB:r=—er} and S.(B) for {r —ev :r € B}.

§2. Twisted Polynomial Extension Categories and Nil Groups

For any additive functor a : C' — C on an additive category and full subcat-
egory A C C, we construct A,[t], its twisted polynomial extension category. This
generalizes a construction of Ranicki, in [R1], when o = 1. These give rise to a Nil

group N:l(A,a) and an exact sequence Nul(A, ) — K;(A,[t]) — K (A) — 0.

The Nil groups of Farrell [F1] and Waldhausen [W1], [W2], are then described
in these terms. The maps from these to their associated Whitehead groups both

factor through the I - group of the relevant (twisted) polynomial extension. See

2.3, 2.6, 2.9, 2.10.

2.1 Construction: Let o : ¢ — C be an additive functor on an additive category
(or even on an Ab-category, in the sense of MacLane [M]). We define the twisted
polynomial extension category C,[t] as follows.

Objects of Cy[t] : |Cy[t]| = |C| (here | | means “objects of”).

Maps of C,[t] :  Let u,v € |C|. The group of morphisms between these is:

Colt)(u,v) = Z C(u,a'v),

a graded group. Here C(u,v) means the group of C-maps from u to v.



If o; € C(u,a'v) we write ts,i)n,oi (or just tg;) for the corresimnding degree
i morphism in Cu[t)(u,v). When ¢; = 1 : aiv — a‘v we write ¢ instead of
tg,i)(la.-,,). Each element ¢ of Cy[t](u,v) has a unique expression: ¢ = 350 ts,i)cpi
where ¢; € C(u,a'v), and almost all of these are zero. The morphisms of degree i
from u to v form a subgroup denoted P;(u,v) for brevity.
Composition Law : Given u, v, w, in |C| and maps
o =320 190 € Caltl(u,v), 9 = 52, 20, € Culti(v, w),
we define Y € Cyft](u, w) by:

o0
bp= 3t where xi= 3 aiCis)en

k=0 itj=k

Note ¢, = t{/t{ "

if k> 1. We write t for t(.

Subcategories : Let A be a full subcategory of C. We define the (twisted)
polynomial extension category A,[t], as the full subcategory of C,[t] for which
|A.[t]] = |A|. We do not require « to send A to A. When A and C are additive

categories, so is A, [t].

Augmentation and Inclusion : There is an additive functor  : A,[t] — A
which is a right inverse of the inclusion ¢ : A — A,[t]. 7 sends a morphism ¢ =
S0t to n(p) = @o. The functor ¢ sends a morphism ¢ : u — v to o) = ts,o)cp.

Both 1 and ¢ send each object to itself.

2.2.a. Example : Let ¢ : R — R be an endomorphism of a ring with unit. R
is the morphism set of an Ab- category with one object; write Cr for the opposite
of this category. a specifies an additive covariant functor a : Cg — Cpg. The

twisted polynomial ring R,[t] is the free left R module on {¢°,¢!,#2 ...} with the

multiplication:
oo o0 o0
(Zﬁtl)(z-?]‘t]) = Z( Z riat(s;)tk.
i=0 j=0 k=0 i+j=k

One therefore concludes : (Cr)a[t] = Cg,[q-

2.2.b. Example: Again let a : R — R be an endomorphism of a ring with unit.
Let Mpg be the category of all right R modules. Now the endomorphism a : R — R
induces an additive functor a : Mp — Mp: one defines a(M) as a*M for any

module M. One then gets an additive functor:

l: (MR)a[t] — MRa[t]
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sending an R module M to M @g R,[t]. One defines ! on morphisms as the following

composite map :

(MR)altl(M,N)=>" Homp(M,(a')*N) ~ Z Homg(M,N ®g Rt')

C Homgr(M, N ®pr R.[t]) = Homp,[q(I(M),I(N)) .

When M is finitely generated this composite is an isomorphism.

But now, let g be the full subcategory of Mg consisting of finitely generated
free right R modules. Then [ : (Fg)a[t] — Fr,[q is a weak equivalence of cate-
gories (i.e. it is a bijection on the set of isomorphism classes of objects and is an

isomorphism on each morphism set).

Note 1 : For F € |FRr|, a'(F) is usually neither free nor finitely generated, unless
the map a : R — R is bijective. Hence « does not stabilize Fg, yet we can still

form the twisted polynomial extension category, (Fgr)q[t].

Note 2 : [ would be an equivalence of categories if we defined Fr so that |Fg|

were a set.

2.3 Definition of N(A, «) : Let A be a full additive subcategory of the additive
category C with additive functor o : C' — C. Nil (A, a) is the category consisting
of those objects (u, v ), u € |A|, for which tv is a nilpotent element of degree
one in the ring Ay[t](w,u). This implies that v is in C(u,a(u)). The morphisms
in Ni(A, o) from (u,v) to (u',v') are {¢ € C(u,u')| ¢tv = tv'¢}. (The functor
(u,v) — (u,tv) embeds Nil(A, «), as a full subcategory, into End(A.[t])).

Nil(A, «) is an exact category; a sequence:
0— (u', V) — (u,v) — (", V") =0

is declared to be short exact if the underlying sequence in C is split exact. The
obvious functor A — Nil(A,«) sending an object u € |A| to (u,0) induces a
homomorphism j : K¢(A) — Ko(Ni(A, «)).

N:l(A, «) is defined to be coker(y).
» There is a homomorphism o : Nil(A, a) — K;(A,[t]) sending the class [u, v
in Nil(A, «) to the class [u, 1 —tv] in K;(A4ft]). For the augmentation 5 : A[t] — A,

it is clear that 1, o o = 0.

Example : The twisted N:l group of Farrell (see [F1]), defined for any ring R with
endomorphism a : R — R, is just Nil(Fg, «) where a : Mg — My is the functor
M +— a*M. We will write this Nl group W(R, a).
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2.4 The Fundamental Example : Let R be a ring with unit. Let By,B_; be
R bimodules which are free as left R modules. We construct a twisted polynomial
extension category whose Nzl group is Waldhausen’s Nil group ml(R, By,B_y) .
Let C = Mrp x Mg, A =Fr x Fr. Let a: C — C be the functor defined by:

Cl(P],P_l) = (P_lBl,PlB_]) for objects

a(fi, f-1)=(f-1® 1,f1 ® 1) for morphisms.

(A, a) is called the additive category and functor defined by (R; By,B_1); Aylt] is
called the polynomial extension defined by (R;B1,B_1).

2.4.a Let k deﬁote a commutative ring with unit now, and suppose H is a
group which is a subgroup of fwo other groups, Gy, G_;. Form I"' = G, g G_;.
The group ring kT will be written A. This data yields a ring R with two bimodules
By, B_, as follows.

Let R = kH and, for ¢ = £1, let B, = k(G. ~ H), the k-submodule of kG,
generated by G, ~ H. The left and right 111111tipli¢ations of H on G, make each
B. into an R bimodule. The R bimodule A can then be expressed a sum of R

bimodules:

A=R&®(B1+B_1)®(B_1Br+B1B_1)® (B1B_1B, + B_{BB_)&...

=A@ Y (Ai+A) =D A
=1 —oo

where Ay = R and A; (resp A_;) denotes the i-letter alternating word in B;

and B_; which terminates in By (resp. B_;). (compare Stallings [S] or Cappell

[C4] p.84). The triple (R;By,B_1) then defines the twisted polynomial extension

category A,[t] as in 2.4.

There is an additive functor :
r:Aqft] — Fa

sending an object (P, P_;)to r(P;,P_y) = (Pi®P_1)®pA; fu = (P;,P_), v=
(@1,Q—1) are objects of Ag[t], the map r : Ay[t](u,v) — Fa(u,v) is the following

composite homomorpliism:



Ayt (u,v) = ZHomR(Pl,Q(_I).'Ai) x Homp(P_1,Q_(~1):A_;)

1=0

— ZHOTHR(H b Py, Q—1)yiAi & Q_(—1ys A_;)

=0

— Homp(Py & P_1,(Q1 8 Q-1)( z Ai))

1=—00

~ Homp((Py @ Po1)A,(Q1 ® Q-1)A)
= Fa(ru,rv).

We will only lightly sketch the routine details of the proof that r()r(e) =
r(1p) for morphisms ¢ : u — v, 1 : v — w. One may as well assume ¢ has degree
k, 1 has degree j, so that ¢ = t®Fpp € Pp(u,v), ¢ = tWy; € Pj(v,w). Then
Vi = (91,9-1), ¢x = (f1, f-1) where g., f. are morphisms in Mg for e = +£1. We
compute o = tUFO(hy h_;) where h, = (g5 ® 1)f., § = (—1)*e, and where 1 is
the identity on Ag.. One must verify that, in (P; & P_1)A,

r(ve)le. = (r(¥))l@s A © (7(9))] A,

This means one must establish that : (g5 @ 1)f. = ((r(¥))|g,.A,. ) fe- In turn this
amounts to proving : (r(¥))|g,4; = ¢gs @ 14;; but this is clear.

We will return to this example 2.4 and 2.4.a frequently.

2.5 Waldhausen, in [W1] (see also [W2], p.166, or [C4 ], p.125) defines a group
Nil (R; By,B_;) for any ring R with two bimodules By, B_;, which are both
left and right free over R. In the special case discussed in 2.4.a above, when
R = kH, B. = k(G. ~ H) he provides a homomorphism s : ]WI(R, B,,B_;) —
Ki(A), A = k(G *xy G3) , which we will review below. We will then construct
an isomorphism & : mZ(R;Bl,B_l) — Nil(A, o) where A,[t] is the polynomial
extension defined by (R;B,,B_1) in 2.4 .

We prove the following easy result, which is the paradigm on which our “qua-

dratic” results are modeled:

2.6 Proposition. «) The map & : ]ﬁ(R; By,B_1) — Nil(A,«) (constructed in
the proof below) is an isomorphism for any ring R and pair of bimodules By, B_1,

which are left and right R-free.



b) In case R = kH, B. = k(G- ~H), A = k(G1*y G>) asin 2.4.a, the diagram

below commutes:

Nil(A,0) —7— Ki(Ad[t])

= Jo |~

Nil(R;B1B_;) —>— K;(A)

2.7 Proof of Proposition 2.6.

a) We begin with the definition of ]V?I(R; By, B_y) and ®. Waldhausen studies
pairs (u,v) where u = (Py,P_y) € Fgr x Fg,and v : (Py,P_) — (P_B,, P,B_,)
is a pair of R maps, (p1,p-1), iIn C = Mpr x Mpg. He says (u,r) has an assailable
filtration if there are submodules: Py =M, DM, 1D+ D My=0; P.y =N, D
Np—1 D+ D Ny =0, so that p;(M;) C N;_1By, p_1(N;) C M;_1B_; Vi. Letting
A=FrxFr,and a: C — C be as in 2.4, we see that tv is a nilpotent element of
degree one in the ring A,[t](u, ) when (u,) has an assailable filtration. Conversely
suppose v € C(u, ou) and tv is nilpotent of exponent n in A, [t](u, v). Then, because
each A; (as defined in 2.4.a) is left R-free, o' : C — C is an exact functor on the
abelian category C, and o'(Ker v) = ker o'(v). If we set ker v = (M, Ny), then v
induces a nilpotent map tv' : (u/ker(v)) — (u/ker(v)) in Cy[t], of exponent n—1.
By induction we argue that (u/ker v, ') has a finite assailable filtration (of length
n — 1). Since u/ker v = (P1/My, P_1/Ny), we conclude (u, v) has an assailable
filtration (of length n). Therefore, we conclude that for any u € |A|, v € C(u, a(u)),
the pair (u,r) has an assailable filtration if and only if tv is nilpotent.

Waldhausen considers the category Nil(A, a) as defined in 2.3 when A, C, «:
C — C are as in 2.4. In effect, using the discussion above, we see his definition
of W(R; Bi,B_;) amounts to Nil(A, ), and that will be our approach: @ is the
identity map.

b) The map s : ]/\m(R; Bi,B_1) = K;(A) of Waldhausen (see [W1]) sends the
element [(u,v)] of ]FVTI(R, By B_y), when u = (P;,P_;), and v = (py,p_1), to the

element

[(PiA @ P_;A), (_L, —11’_1 )]

1
where p, : P.A — P__A is the unique A map extending p.. To prove 2.6 b), we

note:

1 !
7'*0'[“’ V] = 7'*[(P17P—1)7 1- tu(pl’pl )] = [(PIA(‘B P—lA)7 (_pl 11__1 )] by 24.a
1

= s[u, v], as required. This completes the proof of 2.6.
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2.8 Higman’s trick on linearization of nonsingular matrices over polynomial rings
fits into our setting to yield the exact sequence of 2.9 below, when suitable con-
ditions hold on the category. The argument will be similar to that in Bass [B] p.
643-645, or [BHS). ‘

Consider a twisted polynomial extension A,[t], when A is an additive full
subcategory of C and «a : ¢ — C is an additive functor. A,[t] is said to be
linearizable if, for each u € A one can find v € A such that A,[t](u @ v,u P v) is

generated as a graded ring, by elements of degree 0 and degree 1.

2.9 Proposition. Suppose the twisted polynomial extension category A[t] is lin-

earizable. Then the following sequence is exact:

Nil(A o) 5 Ki(ALft]) 2 K (A) — 0.

Proof. : The functor n admits a right inverse, so 7, is obviously a split epimorphism.
It is also clear that 1,0 = 0 since n.ofu,v] = [u, (1 — tv)] = [u,1] = 0.

Now we prove ker n, C Im 0. Let = [u, ¢] € ker 1. Since ot = idy, we can
assume that the isomorphism ¢ = 3 0 tgf)c,oi satisfies : n(@) = o = 1,. If n = 0,
then £ = 0 so we may assume n > 1. Stablizing, if necessary we can also assume
©n € C(u,a™u) is expressible in the form Z;zl afc;)d; where d; € C(u,aqu), c; €
C(u,a™ 'u). This is where we use that A,[t] is linearizable. Replace (u,¢) now by

the equivalent representatives :

w0 ~ @ (=1, > ~ (cp—t(")a(c yd H{n=1) )
(u@u’(OI)) (U@U,(O ) 1 ) (u@u’ tdll 1 ) 1 )

The map ¢ — ™ a(ec; )d; is of degree n still; its degree n summand is 2;22 a(c;)d;.
Repeat this process r — 1 more times and one gets : z = [u’, '] for some ¢’ whose
degree‘is max (1,n — 1). By induction we can get : z = [v,)] when ¥ = 1 — 1.
Since 1 is invertible in the graded ring A4[t](v, v) it follows that 1, is nilpotent so

z = ofv,1]. Hence ker n, C Im o. This proves 2.9.

We will use 2.9 for the Nil groups given by the Fundamental Example. So we

need:

2.10 Lemma. Let A,[t] be the polynomial extension defined by a ring with two
bimodules, (R; By, B_1). Then A,[t] is linearizable.

Proof. Let v € |A|. We have A C C, a : C — C. We only have to show that if

n 2> 1, then the composition law induces an epimorphism:
- - K
Clu, o™ ') @ Clu, au) — C(u, a™u)
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Here K is defined by K(¢ ® ) = a(p) 0. _
But since A = Frp x Fgr, C = Mg x Mg this amounts to showing that the

map:
Hompg(P',P"A) ® Hompg(P, P'B) X, Homp(P,P"AB), (¢ &9 — (p @ 15))

is an epimorphism, when P, P', P" are in |Fg| and A, B are R bimodules and
P' £ 0. By distributivity it is enough to show this when P, P', P are all free of

rank 1. But in this case the result is clear.
We can now conclude:

2.11 Theorem. Let H be a subgroup of two groups G, and G_y. Let k be a
subring of Q. Let R = kH, B; = k(G; ~ H). Let (A, «) be the additive category
and functor defined by (R; By, B_1). Then the following sequence is split exact:

0 — Nil(R;By,B_1) -5 Ki(Aqa[t]) — K1(A) — 0

Proof. Waldhausen’s map s : ]WI(R, By,B_1) — K, (k[G1 *x G_1]) (explained in
2.7.b above) is a split monomorphism (see [W1], Ch. 5). By 2.6.b) then, o is also
a split monomorphism. Since A,[t] is linearizable by 2.10, the result follows from

2.9.

Note : If a : R — R is a ring endomorphism and a : Mg — Mp is as in 2.2, then
(FRr)alt] is linearizable. The argument is simpler than, and similar to the argument

above. So from 2.9 one gets the exact sequence:
Nil(R,a) -5 Ky (R,[t]) = K1(R) — 0

first established by Farrell and Hsiang [FH] when a is an automorphism. In their
case 0 was shown to be injective. (Even when a is only an endomorphism we can
show o is injective, but we will not prove or use this fact). In general twisted

polynomial extension categories, o does not seem to be a monomorphism.
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§3. UN:l groups of polynomial categories with involution.

In this chapter we show that Cappell’s UN:l groups are isomorphic to the L
groups of a polynomial extension category, at least in the geometrically significant
cases. For any polynomial extension category A,[t], with involution, we define an
abelian group UNil.(A,«). Cappell’s group UN:lk (R;By,B_,) is shown to be a
special case of this construction. In the case when (R;B;,B_;) come from group

rings as in 2.4.a, we show:
UNilk (R;B1,B_1) = L.(A4[t]),e = (=1)",

where A, [t] is the category defined in 2.4. We relate this isomorphism to Cappell’s

map p: UNil (R; By, B_1) — L%, (k(G1 5 G2)). See 3.2, 3.5., 3.6.b, 3.9.

3.1 We briefly recall Ranicki’s notion (in [R2], and also [R3]) of the surgery groups
of an additive category.

Let A be an additive category and let x : A — A be an involution. This means
that * 1s a contravariant functor, together with a natural equivalence e : 1d — *x*
which satisfies e(u)*e(u*) = id,~ for all v in |A|. For every u one then has an
“involution T on the abelian group A(u,u*) given by ¢ — T = ¢* 0 e(u). For
e =(=1)"let N, =id+eT. An e-quadratic form in A is a pair (u,v) where 1) €
coker(N_. : A(u,u*) — A(u,u*)). (u,v)is nonsingular if N.(v) is an isomorphism.
A morphism ¢ € A(y,u) is a Lagrangian for (u,) if i*1)1 = 0 €cokerN_,, and the

i *(Pt+eyT)
sequence 0 — y Uy —>

y* — 0 1s split exact. The Wall - Ranick: surgery
group, L.(A), is defined as the Witt group of nonsingular, e-quadratic forms in A,
modulo those admitting Lagrangians. If A = Fg (resp.Pg) then L.(A) = L% (R)

(vesp. L], (R)).
3.2 Definition of UN:l.(A,«) and o, : UNil.(A,«a) — L(Aq[t]).

Let Aq[t] be a polynomial extension category and let * be an involution on
A, [t] which satisfies the following properties for all objects u,v of A:

(1) *: Aq[t](u,v) = Ayft](v*,u*) is a degree preserving map;

(i1) The isomorphism e(u) € Ay[t](u,u**) has degree 0 .

This implies that the maps T : A, [t](u,u*) — A,[t](u,u*) and N, = id + T
are degree-preserving. A is then also a category with involution, and the functor

1 : Agt] = A induces a homomorphism 7, : L.(A,[t]) — L.(A).
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For any object u of A write Q.(u) = coker(N_. : A[t](u,v*) — A[t](u,u*)).
Q:(u) is'a graded group.

An €-UN1l form in A,[t] is a nonsingular e-quadratic form (u,1)) in Ay[t] such
that:

(a) ¥ € Q(u) has filtration < 1;that is to say, ¥ = 1o + ti);

- (b) The e-quadratic form(u, ) in A has a Lagrangian in A.

A UN:l Lagrangian for an e-UN+l form (u, ) is a Lagrangian 7 € A,[t](y, ) for
the e-quadratic form (u, ) in A4[t] , with the additional property that i has degree
0. Two e-UN:l forms (u,), (u',9") are isomorphic if there exists an isomorphism
f € A(u,u') such that f*'f =4 € Q.(u).

We now define UNil.(A, o) as the abelian group with one generator for each

isomorphism class of e-UN:l forms in A4[t] and relations:
(1) (u, ) + (u',9") = (u b u' b @ '),
(2) (w,%) = 0 if (u,) has a UNil Lagrangian.

We define the homomorphism o, : UNiI.(A, a) — L.(A,[t]) by mapping [u, )]
to [u,]. Clearly im(o.) C ker(n,).

3.3 Construction:. Let R be a ring with involution. Let B;, B_; be R bimodules
with involution andlet A = FrxFr, «(Py,P_y)=(P_1B,,PiB_{)asin2.4. We
will show that the involutions on R, By, B_; induce an involution on the polynomial
extension category A,[t].

The involution on R induces an involution * on Fg (see [R2] p.168). This
makes A = Fg X Fpg into a category with involution by: (P, P_1)* = (P, P})
and (fr, f-1)* = (£, £5). Foru= (P, Py, e(u) is (e(P), e(Pr).

We now extend this involution on A to one on A,[t], satisfying 3.2(i) and (ii).

Suppose M, N, P are free right R modules of finite rank, and let A be an
R bimodule which is a “word” in By and B_; : A = B; Bj,...B;.. Set A' =
B;, ...Bthl. So, for example, for Ay of 2.4.a, one has: A} = A(_j)s+14. One has
sesquilinear pairings:

<, > N"xNA— A : <)Ana>=\n)a
(,): MMAAXxM — A: (A®a,m) = a\(m),

where, if a = b;, ...bj,b;,, then a =b;,b;,...b;.. <, >and (, ) are right and left

nonsingulér respectively. They allow one to define an isomorphism:
Homp(M,NA) — Hompg(N*,M*A"): f— f'
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by the rule: (f!(/\),rﬁ) =< A, f(m)>VAe N* meM,fe Hom(M,NA).

For this isomorphism, the following diagram commutes:

Hom(M,NA;) x Hom(N,PA;)  — Hom(M,PAyA): (f,9) —(g® 1) o f
1l x ! N
Hom(N*,M"A}) x Hom(P*,N*A}) — Hom(P*,M*A{A)) :(f,g9) —(f®1)og

We next define a homomorphism, * : Aq[t](u,v) — Ay[t](v*, u*) for any objects
u = (P1,P_y),v = (Q1,Q-1). Suppose ¢ =t (fr, f_1) € Pr(u,v), for k > 0. Let
6§ = (—=1)F. Then fr € Hom(P;,QsAi) , so fi € Hom(Q5, PFA_si). Similarly,
f' . € Hom(Q* 5, P*, Asi).

Define ¢* = t(k)(fék,fl_ék) € Pr(v*,u*). For k = 0, this is the involution on
A. The commutativity of the above square shows that * is a contravariant functor.
Moreover it is easy to see that ¢**e(u) = e(v)¢. It is obvious that 3.2(i) and (ii)
hold. This completes the construction of the involution on A,[t].

The above involution on A,[t] allows us to define the group UNil.(A, «). In

fact this is Cappell’s UN:l group, as we show below.

3.4 Cappell’s UN:[ group. .

We briefly review Cappell’s definition.

Let R be a ring with involution. For a free, finitely generated right R module
P and an R bimodule with involution B one has the involution T on the abelian
group Homp(P, P*B) given by T(¢) = ¢' o e(P) where e¢(P) : P — P** is
the natural isomorphism. It is well known ([Wal] p.260, [Wa2] p.246) that an
e-Hermitian form (P, A, i) over B specifies and is specified by a form i € coker
{N_.: Homg(P,P*B) —» Hompg(P,P*B)} where N, = id + ¢T.

Let By, B-1 be R bimodules with involution which are free as right R modules
and let ¢ = (—1)". Cappell in [C1] defines an e-UN:l form over (By,B_;) as
a sextuple z = (Py, Ay, 1, P—y, A_1, pi—1) where,(P;, A;, ;) are e-Hermitian forms
over B; and:

(i) P-; = Py, with natural sesquilinear pairing < ,>: P; x P_y — R . This
pairing defines R maps p; : P, — P_;B;, p; = Ad)\;, for: = +£1.

(i) f w = (P, P-1), v = (p1,p-1), the pair (u, 1/) is in W(R; By,B_1)
(defined in 2.5). A Lagrangian for the ¢-UN4l form z over (By,B-;) is defined to
be a pair V;,V_; of free submodules of Py, P_;, respectively, so that V_; = V-
under < ,>, and P;/V; is free, p;(V;) C V_;B;, p;(V;) = 0 for j = 4+1. For
e = (=1)", Cappell then defines UN:I% (R;B1,B_;) as the Witt group of e-UNil

forms over (B, B_1) modulo those admitting Lagrangians.
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Let A, [t] be the polynomial extension category defined by (R; By, B—;), with in-
volution constructed in 3.3. By the above remarks, if z = (Py, Ay, g1, P—1, A1, i—1)
is a sextuple which satisfies (1), and if w = (Py, P-1), then z specifies a quadratic
form ¢, € Q.(u) of filtration one; namely, ¢, = [H|+tfi, where ji = (ji1, fi—1), and
[H] is the class of (0,idp, ) € A(u,u*). Notice N.H = (ee(Py),idp_,) € A(u,u*) is
an isomorphism. The map (P;,0) — (P;, P-1) is a Lagrangian for [H] in A.

3.5. Theorem. Let R,B,B_1 be a ring and two bimodules with involution.
Assume By,B_; are free as right R modules. Let A,« be the additive category
and functor defined by (R,By,B_1) (in 2.4), equipped with the involution on A,[t]

defined in 3.3. Let ¢ = (—1)". Then the rule, z — (u, ) defines an isomorphism

U : UNil2 (R; By, B_y) — UNil.(A, «).

Proof. Let z = (Py, Ay, p1, P—1,A_1,1—1) be a sextuple which satisfies (i). Let
v = (p1,p-1) € A(u,au), where p; = AdX;. Then 1 +tv = (N.H) ! (N.p.).
Therefore:
z 1s an e-UN:l form over (By,B_1) & (u,v)is in Nil(R; By,B_,) & tv is nilpotent
in Aqft](u,u) (see 2.7) & 14 tv is an isomorphism & N.g, is an isomorphism
& (u,p,) is an e-UNil form in A,[t]. So each e-UNil form in A,[t] specifies an
e-UNzl form over (By,B_;1) (in Cappell’s sense) and vice versa.

Let v = (V1,V_1) be a pair of submodules of (P, P_;). The inclusions V; C P;
define a degree zero map, 1 : v — u, and it is surely clear that the pair (V;,V_;)
is a Lagrangian for z, in Cappell’s sense, if and only if ¢ is a UN«l Lagrangian for

(u, ). This proves 3.5.

Let A,[t] be a polynomial extension category with an 'involution, asin 3.2. We
now show that if the category A,[t] is linearizable in the sense of 2.8, then there
is an exact sequence relating the UN:l group and the surgery groups, analogous to
the sequence 2.9.

We will write (u, @) ~ (v,%) if the nonsingular, e-quadratic forms (u, ), (v, )

are equivalent, i.e. they represent the same element of L.(A,[t]).

3.6.a Lemma. Let (w,¢) be a nonsingular e-quadratic form in A,[t] and ¢ =
Yoo t ;. Assume that m > 2. Suppose that
(i) The e-quadratic form (w, o) in A represents 0 in L.(A),
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(i1) tm, . = B*~y where B € Pi(w,w) and v € Py (w,w*).
Then (w, ¢) is equivalent to a form (u,v) with ¢ = Z:';Bl (e,

Proof. Let (u,0) = (w,p) & (w,90) B (w & w*, H), where H = (g i'f)‘“') Since
(w, o) ~ 0 and (w @ w*, H) ~ 0 we have (w, ) ~ (u,8). Now let z € Ay[t](u,u)
000

be the nilpotent morphism given by the matrix of maps: | 0 o0 | where X : w —
X 00

w @ w* is (8, —7).
Let ¢ = idy + = € Ayft](u, u). The isomorphism ¢ provides an isomorphism of

forms (u, 8) = (u,v) where ¢ = ¢*0c. Also, ¢ = EZ';? t 14, as required.

3.6.b Proposition. Suppose that A,[t] is linearizable. Then the following se-

quence is exact:

UNil.(A, o) 25 L.(A4[t]) 2 L.(A) — 0.

Proof. We only need to show that ker n. C wm o.. Let x € ker 1, be represented
by a form (u,®), ¥ = Y iy t(1;. We have to show that z € im(o.). The proof
will be by induction on m. If m < 1 we are done. Suppose m > 2. We will show
that (u,1) is equivalent to a form of degree < m — 1. Since u* is A isomorphic to
u and A,[t] is linearizable we can (after stabilizing, if necessary) write t(™),, =
Soizi Bfvi where f; € Pi(u,u) and v; € Py_y(u,u*)  for all 4. (u,pg) ~ 0
because = € ker n,. Let (w,¢) = (u,%) & (u, ) & --- & (u, 1)) (r summands in
all). Clearly (u,) ~ (w,¢). Note that ¢ = > o= t()o; where ™ ¢, = f*y for

ﬂl 0 Y1 0
B = ( o ) € Pi{(w,w) and v = ( ) € Pp_1(w,w*).
0

,3.1' Yr 0
The e-UN:l form (w, ) satifies the condition of 3.6.a, so (u,p) ~ (z,8) with

0= 27;31 t(16;. This ends the inductive step and completes the proof.

3.7 Let H be a subgroup of two groups G; and G_; and let k be a commutative
ring with unit. Set I' = Gy *y G-y, R =kH, B; = k(G ~ H) and A = kT, as in
2.4. In [C1] Cappell constructs a map p : UNlE, (R; By, B_;) — L% (A) as follows.
For ¢ = (—1)" the class of an e-UN:l form (Py, Ay, g1, P—1,i—1) is mapped to the
class of the special e-Hermitian form (P, A, 1) where: P = (P & P_1) ®g A, and
Au,v) = Ai(u,v)  for u,v € Py, i = £1, Mu,v)=<u,v> forué€ P;,v e P_,,
p(u) = pi(u)  foru e Py, ¢ = +1.
For A = Fr x Fr with o(Py,P_y) = (P_1B;,PiB_1) as in 2.4, let

Ty LE(AQ[t]) - Lgn(A)
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be the homomorphism induced by the functor r : A,[t] — Fa defined in 2.4.a.

We now relate Cappell’s map p to our map o, : UNl. (A, ) — L.(A4[t]).

3.8 Proposition. The following diagram commutes:

UNile(A,.a) —2 & L.(A4[t])

= Tu |

UNilgn(R;Bl’B—l) L) Lgn(A) »
where VU is the map defined in 3.5.

Proof. : Let z = (P1, A1, pt1,P-1,A_1,u—1) as before. Then we compute:

re0eU([2]) = reoefu,0.] = [P,A, 1] , where P = (P; + P_1)A, and (P, A, p) is
specified by a quadratic form [z]. In turn, [i] is computed (using 2.4.a). It is the
unique A map P — Homa (P, A) whose restrictions to Py and P_; are the following

composite homomorphisms :

j Homp(Py,B1) = Homp(PiébP-1,B1) — Homp(PibP-1,A) = Homa (P, A)

P_, (i) Homp(Py,R)xHomp(P-1,B-1) = Homp(P1hP-1,A) = Homy(P,A)

(the unmarked maps are obvious induced maps). But this is exactly Cappell’s form

p((Pyy A, p1, P—y, A1, ji—1) as defined in 3.7. Therefore r,o.¥ = p as required.

3.9. Theorem. Let (A, «) be the additive category and functor defined by some
ring R and bimodules By,B_; with involution. Then the map o. provides an
epimorphism:

oe : UN1l.(A, &) — L (AL[t]).

Let H be a fini tély presented subgroup of two finitely presented groups G and
G_y. Assume Gy and G_; have orientation characters which agree on H, and let
k be a subring of Q. Suppose R = kH, B; = k(G ~ H) . Then the map o. o ¥

provides an isomorphism:

o. oW : UNilE (R; By, B_1) = L.(A4t]).

Proof:. The polynomial extension category, A,[t], defined by (R; By, B_1), is shown
in 2.10 to be linearizable. Also in this case L.(A) = 0. Indeed: if (u, ) is a
nonsingular e-quadratic form in A and v = (P, P_;) then the inclusion (P;,0) —

(Py, P_y) is a Lagrangian for (u, ). Therefore o, and o, o ¥ are epimorphisms by
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3.5. and 3.6.b. On the other hand, Cappell proves that the map p in 3.7 is a split
monomorphism (see [C1]). So the commutativity of the square in 3.8 implies that

0. o ¥ is also a monomorphism. This completes the proof.

3.10 Remarks on a projective version of UNil.
Let Pr denote the category of finitely generated projective right modules over
a ring with involution K. For bimodules By, B_; with involution which are right

R-free, (or projective) we define:
UNilL, (R;By,B_,) = UNil.(A, )

where A = Pr x Pp; « and * are exactly as in 2.4 and 3.3, and ¢ = (—1)".
For a direct product of two triples (R; By, B_;) and (R'; By, B’_,), each consist-
ing of a ring and two bimodules with involution, one easily obtains:

UNilL, (RxR'; By x B}, B_y xB'_,) = UNilL (R; B, B_,)@UNill (R' B! B.))

2n
But this projective version is only a technical convenience; one has:

3.11 Proposition. The change-of-decoration map gives an isomorphism:

UNil} (R;By,B_1) =~ UNill (R;B1,B_,)

Proof. The Rothenberg-Ranicki exact sequence relating these two groups has, as
its third term H*(Z/2Z; Ko(R) x Ko(R)) where Z/27Z acts by transposition. But

this Tate cohomology group is zero.

4. Operations in UN:/ Groups

Our goal here is to analyze the groups UN:I% (R; R, R) for any ring with involution
R. Following Farrell, [F2], we denote this group UNil% (R) . We show it admits a
monoid of “restriction” endomorphisms {Fyr41;k = 0,1,2... }., and (at least when
R is a group ring), a second monoid of “induction” endomorphims {Vory1;k =
0,1,2...}. These are natural in R. We will use the restriction operators Fyr,; in
Chapter 6 to make calculations. The reader may wish to compare the constructions
here with analogbus constructions for Nil groups in [CD]. _
The group UN:l%,(R) merits special attention because it has the following
universal property noticed by Farrell. Let H be a subgroup of groups Gy, G_1, and

A = k(Gy #*n G_4) for some commutative ring k. Set R = kH, B. = k(G. ~ H).
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The map p : UNil}, (R; By,B_;) — L% (A) of Cappell [C1] factors through a map
o UNGll,(A) — L, (A).

4.1 Notation, and standing assumptions for this chapter:

A : an additive category with involution *. »

a: A — A; an additive covariant functor satisfying a*x = *a , and o? = 1.

oe : UNil.(A,a) — L.(A4[t]): the map constructed in Chapter 3.

(The example to think of is A = Fr x Fg, when R is a ring with involution,
a(P,Q) = (Q,P), and (P,Q)* = (Q*, P*) where P* = Homg(P,R),. By 3.5.,
UNil.(A,«) = UNilk,(R)), if e = (=1)" ).

There is exactly one involution on A,[t] (also denoted *) and one covariant
functor a : A,ft] — A,t] extending * and « on A and satisfying : a(ty) = ta(.) for

all v in |A|. For any morphism in A,[t] we then have:

n n 7 o b
900 =3 19000t oY1) = 3 t0ai(py).
i=0 i=0 i=0 i=0

4.2 Construction of Fygyy : UNi (A, ) = UN (A, «).

Let £ > 0 be an integer. Let (u,¢) be any ¢ — UNil form for (A, «). So
¢ = @o + te1. The morphism tv(p) = N.(¢o) ' N.(tp;) is nilpotent in the ring
Ay [t)(u,u). Write v = v(p) € A(u, au). Now, for any map f € A(u, cu) we shall
write f(x) for «*71(f)a* 2(f)...a(f)f; fo = lu. We get therefore: (tf)F = t* fony.-
We then define:

Fory1(u,0) = (u, ), where ¢ = o + tpy and tp) = (1/(k))*ak(t<,91)1/(k).

4.3 Lemma. (u,%) is an e-UN:l formn for (A, «)

Proof: Let D = N.(gg). Set tv(p) = D™' N (t1)). We only have to prove that
1 is nonsingular. This amounts to showing that 1 — tv (1)) is an isomorphism. So
we need to show tr (1) is nilpotent. In fact we will show:

(44) () = ((P)ereni EEHDU() = ()
The second equation proves ¢(2¥+1 (1)) is nilpotent and therefore tv(1) is nilpotent
(since #? is a central non-zero-divisor in the ring Aq[t](u,u) ). The second equation
is immediate from the first one (cf. 4.2), so We prove only the ﬁrsf equatibn of (4.4).

Write v = (). We first note that:

ta(D)v = Dtv = N.(tp,) = (N.(te1))T = (Dtv)T = (tv)*DT = tc?(u*)D.
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Comparing first and last term, we see: ao(D Na(v*) = vD™!; D~ lv* =
a(v)a(D™"). Therefore D™ (v(1))* = a*(v(yD ') and we compute: tv(h)=

DNy (te1)vr)) =D () ) o (Ne (1)) vry = D7 (vay)* o (Dtv)vry =

D_l(z/(k))*ak(D)tz/(k+1) = ak(V(k)D“lD)tl/(,H_l) = t”(2k+1)'

We conclude that (1)) = 1/(3x41) as required. This proves 4.4 and therefore 4.3 .
It is easy to see that:
4.5 a) Fory1((u, 0) L (v, ¢") = Fakpr(u, 0) L Foppa (', ')
b) If (y,¢) is a Lagrangian for the e- UNil form (u, ), then (y,2) is also

a Lagrangian for For4q(u, ¢).

It follows that the rule (u, ) — Fary1(u, @) defines a homomorphism

F2k+1 : UNZle(A,O() —_— UNZlg(A,O{)

4.6 Lemma. : For any © € UNu.(A,«), there is an integer N > 0 such that
F,z =0 for every a > N.

Proof. : If x = [u, ] , then tv(yp) is nilpotent of exponent n, for some n. Therefore

vy = 0if k > n. Therefore Fyz =0if a > 2n + 1.
4.7 Lemma. : F,F, = F,; for all odd integers a,b > 0; F; = identity .

Proof. Let a =2i+1,b=2j+1,ab=2k+1,k = bi+j. Take an e-UNil form (u, ¢);
abbreviate v(y) to v. We get F,Fy(u,p) = Fu(u,)
where 1 = @g + tb; and, t; = (v;))*e? (tp1)v; and v(y) = viy (by 4.4). So
FoFy(u, ) = (u, 00 + ty) where
tx = ((vwy)a) o {(v))* e (ko) (V) H (v @) = (v ) (ter vxy-
Therefore, Forpy1(u, ) = (u, 00 +tx). So F Fy = F;.

The second statement of 4.7 is obvious. This completes the proof.

4.8 Construction of the operators Vagyq : UN:IE (EG) — UNilk (kG):
Let a > 1 be an odd integer. Define a covariant additive functor V, : A,[t] —

A, [t], sending each object to itself by the rule:

Va(i: ;) = i: AR
1=0 1=0

This is a functor because o?

= land @ = 1 mod 2. V, clearly commutes

with * and therefore yields an endomorphism of L.(A,[t]), also written V,. It
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is clear that V,V, = Vg and Vi = identity. Now suppose G is a finitely pre-
sented group with orientation character, and k is a subring of Q. The isomorphism
0.V : UNil% (kG) — L.(A,[t]) of 3.9 allows one to transport this monoid of endo-

morphisms to a monoid of endomorphisms {V4,V;,Vs,...} on UN:l}, (kG).

4.9 Summary Theorem. For each ring with involution, R, and each positve
odd integer a, we have defined an endomorphism F, of UNil% (R). Moreover
Fy = identity ; F,Fy = F,;. These endomorphisms are natural for maps of rings
with involution. Moreover, if x € UNil? (R), then Fu(x) = 0 for all but finitely
many integers a. In case k is a subring of Q, and G is a finitely presented group
with orientation character, then we have also constructed endomorphisms V, of
UNil% (kG) for each odd integer « > 0 . Moreover Vy = identity; V,V, = V.

These are natural in k and in G.

4.10 Remark on Morita Theory.

Our goal here is to establish the isomorphism:
UNily,(R) = UN:ly, (Mi(R))

for any ring with involution R and any n and any k.

For a ring R, write A for M (R), and V, for the projective right A-module of
1 X k row vectors from R. Set Vi = Homy(V,,A), a projective left A-module. V,
and V; are left and right R-modules respéctively. We can, and shall, identify V; with
the space of k¥ x 1 column vectors from R, thereby obtaining an obvious isomor-
phism, V! 2V, of (A, R) modules (namely, the isomorphism sends (11,75, ... %)
to (71,72,...7%)7). Morita theory (see Reiner [Re]) provides an equivalence of
categories:

Pr-—>Pr (P—PA,=PorA, ;frfol)

Now if R has an involution, then A inherits that involution ((a;;) — (a;;)) and
the duality functors g and *4 on Pr and P, (see 1.3) respect the equivalence m,

in the sense that there is a natural equivalence of functors
N:MO*xR — %5 0mM

More precisely, for P in |[Pg|, n, : P*V, — (PV,)* is the composite of the follow-
ing three obvious isomorphisms: = P*V, ~ (ViHompg(P,R))! ~ Homg(P,V|)! =
(Homp(P,Homs(V,,A))) = Homp(PV,,A)t = (PV,)* .
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Let Ar = Pr xPr,Apr = Pp X Pp and let ag (resp. «p ) be the automorphism
of Ar (resp. A,) that sends a morphism (f,g) to (g, f), as discussed in 4.1. Set
p=mxm:Agr — Ap. Clearly parp = app so u extends to an equivalence of

categories:

i (AR)aglt] = (An)an 2]

If * stands for the involution on either of these polynomial categories, then we

get a natural equivalence of functors:
1/:#0*2)*0#. '
For any object u = (P, Q) of |Agr|, v, is the isomorphism
(nq@,np) : (Q7Ve, P*Ve) — ((QV:)", (PV:)")

If (u,[1]) is an e-quadratic form in (Agr)ag[t] then (v, ¢') = (u(u), [vu(9)]) is
an e-quadratic form in (Ay )4, [t] and this process gives an isomorphism of graded

groups (see 3.2):

It follows easily that this rule (u, ) — (u', ') yields an isomorphism:
UNill, (R) ~ UNil],(M(R))

for any n, R, k.

85. An Arf Invariant for UN:l

We specialize now to the case of a field F' of characteristic two, with trivial

involution. Our goal is to construct a kind of Arf invariant:
A UNIE(F) — coker(ypy — 1)

where 1)y : F[t] — F[t] is the Frobenius homomorphism. In Chapter 6; we use A to
give a complete set of invariants for UNi#(F). A will be defined as the composite
of three homomorphisms: UN:l%(F) - L2(P) 2, LY(F[t]) = coker(ihy — 1).
5.1 Notation and standing assumptions for Chapter 5.

F: a field of characteristic two with trivial involution;

Ft]: its polynomial ring, also with trivial involution;

¥y : Flt] = F[t]: the Frobenius homomorphism: ,(p) = p?,Vp € F[t];
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coker(g — 1) := F[t]/(y2 — 1)F[t]

a:F x F — F: the automorphism, a(z,y) = (y, z).

P := (F x F),[t], the twisted polynomial ring, as defined in 2.2.a; its involution
is: ((z,y)t")” = t'(y,z) = a'(y, =)t for all (x,y) € F x F and all : > 0;

j : F[t] = P: the monomorphism given by j(zt') = (z,z)t!, Vo € F, Vi > 0;

b: P — F[t]: the additive map given by b((z,y)t') = (x + y)tt, V(z,y) €
Fx F¥i>0.

We note:

5.2 Lemma.

a. The map j makes P into an F[t] biinodule; it is free of rank 2 as a left or
right module.

b. The map P x P — F[t] sending (u,v) to b(uv) is a nonsingular, symmetric,
F[t]-bilinear form on P.

c. blu+u)=0,Vue P.

5.3 Definition of v : UNil}(F) — L5(P).
If (P, P_1)is an object of Fp x Fp then (Py X P_1) Qpxp (F x F),[t]
is a projective P-module. This defines a functor (FF X Fr)aft] — Pp and a

homomorphism
Le((]:F X fF)a{t]) _:YL\' Lgn(P)7 &= (_1)71'

We define v = v, 0o, 0 ¥, where ¥ : UNilt (F) 5 UNil.(Fr x Fr,a) and
oc : UNU(Fp X Fr,a) » L ((Fr x Fr)a[t]) are as constructed in 3.5 and 3.2.
5.4 Definition of § : LI(P) — Lt (Ft]). ’

Let (H, A, pt) be a quadratic form representing an element [H, A, u] of LE(P).
Define a quadratic form (H', N, ') over F[t] as follows:
H' = j*H. H'is finitely generated and free over F[t] since H is finitely generated
projective over P, and F[t] is a principal ideal domain. Here we use 5.2.a.
N=bol:H xH' — F[t]. N is nonsingular, symmetric and F[t] bilinear, by
5.2.b. '
p=bopu:H — F[t]. 1 is a well defined function because of 5.2.c.

A projective Lagrangian for (H, A, 1) is also a free Lagrangian for (H', X', u').
Moreover the correspondence (H, A, ) — (H', X', p') preserves orthogonal direct

sums. Hence we obtain a homomorphism, L{(P) £, LY(F[t]), sending [H, A, ] to

(H', N, '] as defiried above.
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The definition of o : LE(F[t]) — coker(sh, — 1) will require a lemma:
Let F(t) be the field of fractions of F[t]. Let

Arf - Lg(F(t) - F(t)/(¢2 — D)F(t)
denote the classical Arf invariant (see [Mh]). Let k : F[t] — F(t) be the inclusion;
k induces a map & : F[t]/(vo — 1)F[t] —» F(t)/(2 — 1)F(t).

5.5 Lemma.

(1) & is a monomorphism

(2) Arf ok (LE(F[t])) C Im(k).

Proof of 1. Since F[t] is a principal ideal domain, it is integrally closed. Therefore,
for z € F(t),(yp, — 1)z = 22 — x is in F[t] if and only if = € FJt].

This proves k is a monomorphism.

Proof of 2. Let [H,\,u] € LY(F[t]). Since submodules of H are all free, it is
routine to see that the symplectic form (H,\) over F[t], has a symplectic basis

{e1...€r, f1... fr} over F[t]. Therefore Arf k,[H,\, p] can be computed as:

> ulei)u(fiymod(py — 1)F(t).

Hence but p(e;)p(fi) is in F[t]. Hence Arf k[ H, A, p] € Im(r).
5.6 Definition of «. We define « : L{(F[t]) — coker(ipy — 1) as:
a=r"ToArfok,
The augmentation map, ¢x : F[t] — F sending a polynomial ¥ a;t* to ay,

induces an epimorphism, ¢ : coker(yp — 1) — F/(¢p — 1)F.

5.7 Proposition. Let F be a perfect field of characteristic 2. Then
UNlM(F) A, coker(py — 1) — F/(1py — 1)F — 0

is exact.

5.8 Remark: a) When F' is perfect, it is easy to see that the inclusion
E;io Ft?3+1 — F[t] induces a short exact sequence:
0— Z]to Ft¥+1 — coker(ihy — 1) — F/(p — 1)F — 0.

b) We conjecture that A is a monomorphism.
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Proof of 5.7. First we prove that e 0 A = 0.

Let o : LMF) — F/(z/)gv — 1)F denote the classical Arf invariant (see e.g.
Milnor’s book, [Mh]). Let ' : LY(F x F,—) —» LE(F) denote the transfer. (Here
— denotes the involution on F' x F'). ' is defined exactly as 8 was defined in 5.4,

above. The following diagram obviously commutes:

LP(F x F),[t])) —=— LXF x F,-)

T |

Ly(Flt)  ——  Ly(F)

L |
Flt)/(2 = V)F[t] —— F/(sh = 1)F
But UNily(F) - L}((F x F)4[t]) = LI(F x F,—) is the zero map by 3.6.b.
Therefore €A = ca3y = 0.
Next we must prove ker ¢ C ImA. Now im(A) = aff(image(y)). We note

im(y) = im(y1) D tm(y'), where v’ is the “change-of-decoration” map:
Lg(P) = Lo((Frxr)alt]) = Lo((Pp)) = L§(P).

So it is enough to show af(im(v')) D Ker(e). In light of Remark 5.8.a, it is
enough to exhibit an element y, ; € LY(P) for each a € F,and each j > 0, such
that afy'(ya,;) = [at?T] € F[t]/(1p2 — 1)F[t]. We now construct y, ;.

| Let H be the free right P module on one generator e. Define A : H x H — P by
the rule: A(ep, ep') = pp', for all p, p’ in P. Define S(P) := {p+p, p € P}, and define
p: H — P/S(P) by the rule: u(ep) = p((0,1) + (a,a)t?’*1)p for all p in P. One
checks that (H, A, pt) is a nonsingular quadratic form. Set y, ; = [H, A, u] € L¥(P).
One computes 3v'(ya,;) = [H', N, '] where H' = j*H is a free F[t] module on a
basis: e; = e(1,0), f1 = e(0,1). u' satisfies p'(e1) = at¥*! = 1/'(f1). Moreover A
has a symplectic base given by {e;, f1}. So «[H', \', '] = [((Lt2j+1)2]77zé(l Im(apy —
1), which gives: a3y (ya,;) = [at?’ T1mod Im(3py — 1), as required. This completes

the proof of 5.7.

5.9 Let R be a ring with involution with the property that FF = R/2R is a
perfect field with trivial involution. The natural epimorphism R — F induces
a homomorphism r, : UN:lt (R) — UNilk (F). Proposition 5.7 together with
Remark 5.8.a provide an epimorphism: A : UNilk (F) — Z;O:O Ft2+1 Let

Po - Z;io Ft2+1 — F be the map sending 3 a;t2%! to ag. We will write

Ag :UNil? (R) — F
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Tor the composition pgAry.We will use Ar 1n the next chapter.

6. Computations of UN:l groups

The goal of this chapter is to prove the following two results.

6.1. Theorem. Let R be a division ring with involution.

(1) If the characteristic of R is # 2, then UNil} (R) = 0.
(2) If char (R) = 2, the involution is nontrivial, R has finite dimension over its
center, and its center is a perfect field, then UN:l? (R) = 0.

(3) If R is a perfect field of characteristic 2, with trivial involution, then

Y Aro Foryr : UNil},(R) — > R
k=0

k=0

is an isomorphism.

Here Fyi4q is the operation defined in 4.2 and Ag : UNil? (R) — R is the
part of the generalized Arf invariant defined in 5.8.

The reader might profitably compare this result with the methods of Cappell
in [C3] where he uses a sequence of Arf invariants to show that UN:I%(Z) must be
infinitely generated. It is gratifying to see that, by 6.1 and 6.2, the Arf invariant

Ap tells the whole story in this, and other cases.

6.2 Theorem. Let R be a Dedekind domain of characteristic # 2 with involution.

Assume R/2R is a perfect ring (that is to say, 1, is an isomorphism).

(1) If the involution is nontrivial, or n is even, then UNil! (R) = 0.

(2) If the involution is trivial, and R/2R is a field, then the map
ro : UNil}(R) — UNil}(R/2R)
is an isomorphism.

Remark: It is easy to see that the calculation of UN3I* (R) for any se1i1isimple
ring R , reduces to the calculation of UNil% (D) where D is a division ring. To
prove this, use 3.10, 3.11, and 6.10 (when R = S x S°P) to reduce the calculation to

that of a simple ring. Then use 4.10, to reduce from M (D) to D. Here one must
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use the well known fact that all involutions on My (L) come, up to conjugacy, from

involutions on D. (For a proof of t'hisv see [A], Th. 12 p.156, and Th.11, p.154).

6.3 Notation and conventions for Chapter 6.

a. Throughout, R denotes a ring with involution. Set H.(R) = S*(R)/S:(R);
we view it as a right R module, where the right action is given by the rule:
[z]r = [Fzr],Vz € S°(R),Vr € R.

b. We denote an e-UN:l form over R as z = (P, P_1,p1,p—1, ft1,4-1) . Here
we write ps : Ps — P_s in place of the Hermitian form \s : Ps x Ps —» R in
view of the fact that P_; = Py. Therefore: ’

M(z,y) =< z,p1(y) > Vz,y € Pr; A_i(z,y) =< p_yz,y > Vz,y € P_;.

 ¢. For any word w in letters p;, 1 = £1, we write w! for the same word written
backwards. For k > 0, let wy, (resp. w_g) denote the alternating k—letter
word in p; and p_;, beginning in p_; (resp. p;). wo will be understood
to mean an identity map. In this formalism, Fy4q[z] is represented by

(Py, P_y,p,p"1, ), 1t"y) where, for § = (—1)%,
r__ .t ) ;o ot ,
pl - w&kp6w5ka p_l = w_ékp_gw_gk,

! o
[y = {45 O Wek;  M_q = fh—§ O W_gk.

d. The length of z is defined by declaring length(z) < & iff both w; and w_y
are the zero maps. The length of the zero form (0,0,0,0,0,0) is —1. It is
the only form whose length is negative.

e. Assume Char(R) = 2. Suppose z has length k; we say z is reduced if the
two maps p [image(wy,) and pu_;limage(w_g) are injective. These maps
are then R—niaps to H.(R) since the Hermitian forms Ay, vanish on the
modules tmage(wiy).

f. A sub-Lagrangian for z is a pair (V1,V_y) of submodules V; C P; for
which < V},V_; >= 0, PF;/V; is free, p;(V;) C V_;, and pui(V;) = 0
for : = £1. The “sub-Lagrangian construction” is a second UNil form 2' =
S(z;Vi,V_1) = (P, P_1,p1,P—1, fi1, fie1) for which [z] = [#]. It is defined
as follows: P, =V_+ / Vl The pairing <,>: P; X P_1 — R induces a non-
singular sesquilinear pairing <, >: P, x 13_1 — R ; the functions p;, u; on
P; induce corresponding functions p;, fi; on P;. One easily sees (as usual)

that 2’ — z has a Lagrangian isomorphic to (V4,V,1).
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‘We make heavy use ot the tollowing lemma.

6.4 Lemma:. Let R be a division ring with involution. Every ¢-UNil form z over

R is equivalent to a reduced form, z', for which length(z') <length(z).

Proof. : Let z = (PI,P_I;pl,p_l, K1, fi—1) have length £ > 0. The modules V| =

ker (uy[image(wy)),V_y = ker (u_1|image(w_g)), form a sub-Lagrangian for z .

The form #' = S(33 Vi, V1) = (P}, PLy, bbby, s i) has length < k. In 2/, the
!

maps p}limage(wg), p_;|tmage(w_;) are injective. So either z' is reduced or its

length is < k. The result follows at once.

6.5 Proof of 6.1(1) and 6.1(2). : We show that every reduced form is zero. Then
Lemma 6.4 completes the proof. Let z = (P, P_y,p1,p—1, f1,/-1) have length
k > 0. It is enough to show that z cannot be a reduced form.

Proof of 6.1(1): The homomorphisms p [¢mnage(w), p—1]image(w-) take values
in H.(R) which is 0, since 2 is a unit in R. If z were reduced, this would imply
that both w; and w_j; were zero, contradicting the length hypothesis.

Proof of 6.1(2): Let F' denote the center of R, and let F; denote the subfield of the
center of F' which is fixed under the involution. Then [F : Fy] < 2. Let d = [R : Fp).
The Frobenius map 1, : Fy — Fp is an isomorphism since F is perfect. Therefore
dimp,(He(R)) = dimp, (5 ') He(R) = dimp,(S*(R))—dimp,(S:(R)) < d—2 since
the involution on R is nontrivial. But one, at least, of the R modules image(w4y)
is nonzero and therefore has Fy-dimension > d. Therefore either u;|image(wy) or

p—1ltmage(w_g) is not injective. We again conclude that z is not reduced. This
proves 6.1(2).

We begin to prove 6.1.(3) by constructing reduced UN:l forms of length 2k +1

for each nonegative integer k, provided that R is suitable.

6.6 Construction. Let ¢ = (—1)". Suppose R is a ring with involution. For any
element a € H.(R) and any k > 0, we construct an e-UNil form 294 , over R with

the following properties:

(1) length(zak,.) = 2k. If R has characteristic 2, and the involution is trivial,
and a is a unit in R = H.(R), then 24 4 is reduced.

(2) In UNil3,(R), Fars1([220,0]) = [20,)-

(3) In UN:lt (R), Faji1([228,4)) =0 if j > k.

(4) For any map of rings, f : R = R', fi(22k,4) = (22k,f(a))-

(5) If R is a perfect field of characteristic 2, with trivial involution, then

Agro F2k+1([22k,a]) = a.
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Ilere 1s the construction ot z9x o = (1, P—1,p1,P-1, M1, —1):

P, has base e1,...,ex+1; P-1, its dual, has the dual base fi,..., fok41

pi(ezi) = faic1;  pile2ic1) = efsi for 1< l <k; pi(er+1)=0
p-1(fai) = €e2it1;  po1(fait1) = e2i f07‘_ _1 <:<k; poa(f1)=0

pi(ei) =0for @ <2k pi(e2r41) = a
p-1(fi) =0fori>2;  pa(fi)=a
Note that image(wzr) =< er41 >; tmage(w_gx) =< f1 >. Property (1)
above follows at once. To prove (2), note that Fpgt1(22k,4) = (P1, P-1,0,0, u}, ')
where pi(ei) = 0 = p' (fi) Vi # k+ 1 and pj(ex+1) = p'1(fk+1) = a. The
submodules |

Vi=<er...ep >,V =< fk+2...f2k+1 >

form a sub-Lagrangian for which S(Fyxt1(22k,e), Vi, V-1) = 20,4. This proves (2).

To prove(3), note that for j > k, a Lagrangian for Fy11(22k,4) is (V1,V_1) =

(< €1...€41 >, < fj+2 .. .f2k+1 >)OI‘ (< €542 ... €2k41 >,< _f] .. .fj+1 >)

depending on the parity of k.

Property (4) is obvious.

Now we prove (5). Let ¥ be the map defined in 5.3. For any form z, of
6.6 one has v[z0,4] = [P, A, i) where P = (R X R)4[t], A(p,p’) = pp’ and pu(p) =
p((0,1) + (a,a)t)p. So fovy[zga) = [P, N, '] where P' = j*P. (P',)\') has a R]t]
symplectic base e, f : € = (1,0), f = (0,1), and p'(e) = at, p'(f) = at. Therefore

A([z0,0]) = [a®t?], and AR([20,a]) = a. This completes the construction.

6.7 Lemma. Let F be a perfect field of characteristic 2 with trivial involution.
Suppose z # 0 is a reduced UNil form over F. Then z has length 2k > 0, for some
k, and Fyr41([2]) = [20,q] for some a # 0 in F. In particular, For41([2]) # 0

Proof. Let z = (P1,P_1,p1,p-1, 41, ft—1) . Let ¢ = length(z). First assume that
q is odd. Then wy, = w:ttq, and the bilinear forms A defined by AdA = wy,
are symplectic. Therefore wy,w_, have even rank, and at least one of them
is nonzero. Hence the v semi—linea‘r‘homomorphisms pt1 :image(wsy) — F
can be injective only if dimp(image(ws,)) = 0. So ¢ cannot be odd. Therefore

length(z) = 2k > Ofor some k. Now w_y; = wh,, and py; : image(wygr) — F are

 both monomorphisms. Hence wyr and w_s; both have rank one. Let § = (—1)’“ .

Note Fapy1(z) = (P1,P-1,0,0, 4%, 1) since all 2k + 1 letter words vanish on z.
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Set Vi = wm(wg) N ker(wse), V—1 = (em(wg))~ = ker(wy) = ker(w—_sx). Evi-
dently (V;,V_1) is a sub-Lagrangian for Fi;41(z). We now show S(z;V1,V_1) =
(Py,P_4,0,0, ji1, fi—1) is reduced of length zero. For, fi; and fi—; are both compos-

ites of two isomorphisms as follows:

V5 Vi = im(wi)/(im(wi) N ker(wsg)) =25 im(wspwy) = im(way) 2 F

H-1

Vit Vo= Gmw_i)+ ker(w_si))/ker(w_sz) =" im(w_,gkw_k)_—:im(wb_zk) S F

Therefore S(z;V;,V_;) is reduced of length 0. Choose e; € Py so that fi;(e;) =
1. Let f; € P_, be the element such that< er,f >= 1. Then p_1(fi) =

a* for some a # 0. Set e = ea,f = fia”'. With this base one sees that

S(2;V1,V_1) = 29,42 . The fact that Fyri1([2]) # 0 is now immediate from 6.6(5).

This completes the proof of 6.7. | |

6.8 Proof of 6.1.(3). By 6.7 and 6.6(5), § AR o Fyr4q s injective. By 6.6. (2)

’ k=0
(3), (5), for each k > 0 and each a € F there is an element = € UNil? (R) for

which

)

Aro Fyrqi(z) = a, and Agpo Fajpq1(z)=0V5 > k.

w -
This proves that > Ag o Fyx4; is an epimorphism, and ends the proof of 6.1.(3).
k=0

To prove 6.2 (1), we need two lemmas:

6.9 Lemma. Let R be a Dedekind domain with involution. If char(R) = 2,
assume that R is a field. Assume further that R/2R is a perfect ring (i.e., 1, is an

isomorphism).

0 if the involution is nontrivial or if, in R, € # —1,

Then H.(R) =
en He(R) {R/zR if the involution is trivial and, in R, & = —1.

Proof. If the involution is trivial it is routine to calculate that S°(R) = R when
e = —1 in R, and is zero otherwise. One then obtains the calculation without
trouble in this case.

So suppose that the involution is nontrivial. Let Ry be the fixed subriﬁg. Then
rankr,(S°(R)) = 1 because the involution is nontrivial. Therefore for any prime
ideal Py of Ry containing 2Ry, dimpg, p,(S°(R)/PoS°(R)) = 1 also.-

Let Py, P;,... P, be the primes of Ry containing 2Ry; let F; = Ry /P;, H; =
H.(R)/H.(R)P;. Since 2H.(R) = 0, we gét H.(R) = H; x Hy x...H,. The proof

is achieved by establishing two claims:
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Claim 1: Suppose P; It 1s prime. Then O; = 0.

Claim 2: Suppose P; R is not prime. Then H; = 0.

Proof of Claim 1: Let F - R/P;R. Then [F : Fj] = 2, so dimp,H; =
2dimp(H;), an even integer. However H.(R) = ¢¥3(S°(R)/Se(R)), as an R/2R
module. Since F; is perfect, dimp, H; = dimpi(zb;)_lH,- =

dimp,(5°(R)/(S:(R) + PiS*(R))) < dimr,(S*(R)/P:S*(R)) = 1.

Therefore dimp, H; = 0 and H; = 0.

Proof of Claim 2: Since P;R is not prime, P;R = PN P = PP for some prime
P +7P.SoR/P;R=R/P x R/P. One can write the identity of R/P;Rasl=c¢+te
where e € P,e € P, ee =0 . For any h € H.(R),r € R, hr = h¥. Therefore:
H;=Hi(e+&) = Hi(e +¢) = Hi0) = 0. |

This completes the proof of 6.9. |

6.10 Lemma:. Suppose R is a hereditary ring with involution for which H.(R) =
0, where e = (—1)". Then UNil} (R) = 0.

Proof:. Let z = (Py, P_y,p1,p—1, pt1, fi—1) be any UNil? form for UN:l% (R). Since
R is hereditary, ker(p,) and ker'(p;l) are projective summands of P, and P_;.
Then (ker(p;),0) is a sub-Lagrangian, as is (0, ker(p_;)). Unless z = 0, then, a
sub-Lagrangian construction on one of these reduces the rank of Py and P_;. By

induction then, z is equivalent to the zero form.

6.11 Proof of 6.2 (1). : Since a Dedekind ring is hereditary, the proof is imme-
diate from 6.9, 3.11 and 6.10.

6.12. We now begin the job of proving 6.2 (2). So for the rest of this chapter
we will assume that R is a Dedekind ring of characteristic different from 2, with
trivial involution, ¢ = (—1), n is even, and R/2R is a perfect field.

Suppose K is a finitely generated projective over R, and pp: K — R/2R is a

- non-zero R map. Since R/2R is an irreducible R/2R module, and K is a sum of

rank-one projectives, (see [Mi]), it is easy to see that we can write K = X @Y,
where X has rank one, y(X) = R/2R, and p(Y) = 0. |

This being said, we shall agree that an e-UNil? form z over R will be calied
semi-reduced if, for § = £1, Ker(ps) contains no nonzero summand X, for which
tts(X5) = 0. The remarks of the last paragraph then imply that rank Ker(ps) <1
, and Ker(ps) = 0 iff pus(Ker(ps)) = 0.

The proof of 6.2(2) is mainly achieved by the folldwing catch-all lemma.
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6.13 Lemma. Let ii,e De as i 0.12. Let z = (1, P-1,p1,P-1, M1, }t—1) be an
e-UNIP form of length q over R.

( A). z is equivalent to a semi-reduced form of length < q.

(B). Suppose q is odd. Then z is equivalent to a form of length < q — 1.

(C). Suppose q is even. Then z is equivalent to a form
z' = (P{, PLy,p1,P 1,11, 1) of length ¢ for which Im (w}) = Ker (p})
and Ker (p}) = Ker (p1).

(D). Suppose q is even and I'm (wg) is a summand of Ker(p,) with rank 1.

Then either ry(z) is reduced of length ¢, or z is equivalent to a form of length

<g¢g-1

Proof of (A). If z is not semi-reduced one can find summands X5 C Ker ps, 6§ = £1
not both zero for which ps5(Xs) = 0and < X;,X_; >=0. Then 2’ = S(2; X;,X_1)
is an equivalent form of smaller rank with length < ¢. By an induction on the rank

of Py, this proves A.

Proof of (B). We may as well assume z is semi-reduced with length < q. We will
show that length z < ¢ — 1. Since ¢ is odd, w; = —wy; therefore rank wy is even.
Similarly, rank w_, is even. But Im ws C Ker ps, which has rank < 1. Therefore

Im ws =0 for 6§ = +1 and so z has length < ¢ — 1.

Proof of (C). Set q = 2k. Let Dy = Ker p;, asummand of P; containing Im(wag).
Let Do, Dy, ... Dag—1 be copies of Dag. Let ¢; : Dj_y — D; be the identity map,
for y = 1...2k — 1. Let ¢op : Dyr—y — P; be the identity inclusion onto D,y.

!

Construct the new UN:[P-form z' as follows:

k-1 k—1
P1'=P1€BZ(D§J‘+1@D2J') P, =P—1€9Z(D21+1@D§j)
1=0 7=0

Obviously, P!, = (P{)*. We define:

p1|lPr=p1 P11D3j41 = =435 P11D2j = t2j41
PLilP-1=p-1 — 4 PLq|D2j41 = wajt2  pLy|D3; = —i3;,for j > 0; p_;|D§=0
#1|Pr = i #11D3;41 =0 #1]D2; =0
p1lP-1 = po po1|Dajpr =0 N,—1|D;j =0.

The length of 2’ is 2k, and z = S(2'; V4, V_1) where
k—1 k—1

Vi=) Diiy, Vor =Y Dy
7=0 j=0
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Also, 1n z', Im wqpr = Dy = Ker p; = Ker p; as required. 1his proves C.
’ I 1 p q p

Proof of (D). Since q is éven, -w;

summand in P_;. If both yyw, and p_;w_, are nonzero in z, they are also nonzero

- in ry(2) , where Im(w44) has dimension 1 over R/2R. Since H.(R) ~ H.(R/2R) ~

R/2R, as an R module, this implies r3(z) is reduced. On the other hand, if either

= w_g. Therefore Im(w_,) is also a rank 1

© J1Wgq OF fi_1w_g is zero - say pywg = 0 - then (Im(wy), 0) is a sub-Lagrangian, and
z' = S(z; Im(wg), 0) is a form equivalent to z, of length < ¢ — 1. This proves (D)
and completes the proof of 6.13. '

6.14 Proof of 6.2(2). By 3.11 we can work in UNil}(R). Let [z] € UNi5(R) be a
non zero element, and let z be a form of shortest length in this equivalence class.
Let ¢ = length z. By 6.13 (B), ¢ is even. 6.13(A) and (C) show that we can choose
so'that Ker p; has rank 1 and is equal to Im(w,). Therefore Im(w,) is a summand
of P;. 6.13(D) then shows that r4(z) is reduced of length ¢ > 0. Then 6.7 shows
that [ry(z)] # 0. Therefore r; : UNilb(R) — UNil5(R/2R) is a monomorphism.
But UNil(R/2R) is generated by the elements z,x, where k > 0, a € R/2R.
These elements are in the image of r;, by 6.6(4), so ry is surjective as well. This

completes the proof of 6.2.

Some Unsolved Problems

The present paper leaves the following questions unsolved:

a. Let I' be a group of type VFP, with no elements of order 2, and any orien-

tation character. Does the inclusion Z — ZI' induce an isomorphism of U N3k ?

b. Is the epimorphism UN:l? (R; By, B_;) — L.(A.[t]), of chapter 3, always

a monomorphism?

c. Is the Arf invariant 4 : UNiI}(F) — Coker(i, — 1) an isomorphism?
How can one construct operators Fyx4, on Coker(i, —1) so that A commutes with

these?
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