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1. Introduction

A homeomorphism % of E, or S, onto itself is stable if 3 homeomor-
phisms &, h,, -+, h,, and non-void open sets U,, U,, - -+, U, such that
h=hPpy--hand h;| U;=1fori=1,2, --.-,m. All orientation pre-
serving homeomorphisms on E, or S, are stable provided n = 1, 2, or 3.
There is no example known in any dimension of an orientation preserving
homeomorphism which is not stable. In fact, the conjecture that all
orientation preserving homeomorphisms are stable is equivalent to the
annulus conjecture (see [3]).

It is known that any homeomorphism of E; onto itself can be approxi-
mated by a piecewise linear one (see [2] or [6]). The purpose of this paper
is to show that, if % is an orientation preserving homeomorphism of E,
onto E, (n = 7), then h is stable if and only if 2 can be approximated by
a piecewise linear homeomorphism (Theorem 8 and Theorem 5). Also, &
is stable if and only if ~ can be approximated by a diffeomorphism (Theo-
rem 4 and Theorem 5). In addition, it is shown that a stable homeomor-
phism on S, can be approximated by a piecewise linear one (Theorem 2).
The author thanks John Stallings for counsel.

Notation

FE, is eulidean n-space, S,_, is the unit sphere in E,, and O, is the open
unit ball in E,. Thus O, U S,_, = O,. For a given integer n, O, and S,_,
will usually be denoted by O and S respectively. If Uc E, and a > 0,
aU={recE,:3yec Uwithx = ay}. Furthermore, Ua will denote C(aU),
the complement of a U. Thus for a given n, aO will be the canonical open
ball in E, of radius a, and Oa will be its complement. If z,y e E,, |z — y |
will be the usual distance from x toy. The distance from « to the origin
is [[@||. If ois the origin and x # o # vy, then 6{z, y} will represent the
angle in radians between the two line intervals, one joining o to x and
the other joining o to y. Thus 0 < 6{z, y} < =. A piecewise linear struc-
ture (p.w.l. structure) or combinatorial structure on an open subset of
E, or S, is a triangulation such that the star of each vertex is a combi-

natorial cell (see [10, § 3]). The identity function will be denoted by I.
326
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2. Lemmas

LeEMMA 0. Hypothesis: K, is an m + 1 dimensional finite complex,
and K, x [0, 1] has a triangulation V such that if S is a subcomplex of
K, x [0, 1], then m(S) x [0, 1] is @ subcomplex of K, x [0, 1], where n(S)
18 the projection of S on K, x 0. E, has a p.w.l. structure T,, and
[ K, x [0, 1] — E, is a map; for each simplex A of V there is a simplex
o of T, such that f(A) C o and f is linear on A with respect to the linear
structures of A and o. Also f|K, x 0 is a homeomorphism, and
S C K, x [0, 1] denotes the singularities of fand dimS <m — 1. UCE,
1s open, U D f(K, x 1) U f(L x [0, 1]) where L is the m — 1 skeleton of
K, x 0. Thus U D f(w(S) x [0, 1]) also. Finally, the interiors of the m
dimensional simplexes of K, x 0 are s,, S,, +*- 8,.

Concluston: There exist disjoint closed sets B, B, ---, B, B,C
SfIs: < 10, 1)] € E, such that, if O,, O,, - - -, 0, are disjoint open sets in E,,
0; D B;, then 1 p.w.l. homeomorphisms h,, h,, -+-, h, with h;: E,— E,,
h;|C(O;) = I and the composition g, = h,h, ., --- h, satisfying g,(U) D
SF(L, < [0,1])) U f(K, x 1) where L, is the m-skeleton of K, x 0.

OUTLINE OF PROOF. Let B;,,©=1,2, ---, v, be combinatorial m + 1
cells, B, C f[s; x [0, 1)]. Let C; = B; N f[s; x 0] and D; = boundary B,
minus interior C;. Clearly the B, may bz chosen so that the C; and D,
are combinatorial m-cells. Each B; collapses onto C; (see [12, Th. 6] and
[10, 3.4]). It now follows from the proof of [15, Lemma 1] that if
0, 0,, ---,0, are disjoint open sets, B, © O, C E,, there exist p.w.l.
homeomorphisms #,;: E, — E, such that &,|C(O,)=ITand h,h, ,--- h(U)D
f(Ly x [0, 1]) U f(K, x 1).

The results of this paper are based primarily upon Lemma 1 below, a
modification of the engulfing lemma (see [10, 3.4]). The modification
consists of adding to the conclusion the requirement 6{h(x), x} < e. If
E, is given the usual p.w.l. structure, it is possible to expand radially in
a p.w.l. manner. For instance, define f(x) = 2x. According to Lemma 1,
and its consequence Lemma 3, regardless of the p.w.l. structure on E,,
it is possible to expand almost radially in a p.w.l. manner.

LemmA 1. Suppose E,(n = 4) has an arbitrary p.w.l. structure T, K
18 a finite subcomplex of T, dimK < n — 4, a, b, and ¢ are numbers
with 0 < a <b, ¢ >0, and K< bO = b0O,. Then 1 a homeomorphism
h: E, — E, such that h is p.w.l. relative to T, h|(a —e)O =1, h|0b =
I, h(a0O) D K and 6{h(x), x} < ¢ for x e E,.

Proor. Let n be fixed, n = 4. The proof will be by induction on dim K.
The lemma is immediate for dim K = 0. Assume the lemma is true for
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dim K < m where m <n—5. Nowlet K, T, a, b, and ¢ be given, dim K =
m+1,0<a<b, e>0,andlet e < a. (Note: For simplicity in defining
fi below, assume K does not contain the origin o. If K30, in a fine
enough subdivision of T, the open star w of o will be in (¢ — €)O. Thus
obtaining the conclusion for K — w would obtain the conclusion for K.)

Let T, be a subdivision of T such that each closed simplex » of T, which
intersects bO has diameter <¢/5 and whenever r also intersects O(a — ¢€)
and x,y €r, then 6{x, y} < ¢/5. Let K, be K under the new triangula-
tion T,. Let K, x [0, 1] be the cross product complex, and identify K, x 0
with K,. Define f;: K; x [0,1]— b0 C E, as follows: fi(k, 0) =k, fi(k,1) =
{(@ — ¢/2)/|| k |I}k and fi(k, 1) = tfi(k, 1) + (1 — t)fi(k, 0).

Let f: K, x [0,1] — E, be a p.w.l. approximation to f, such that f is
in general position in some triangulation V, (see[10, 3.4D]), and f(k,0) =
filk,0)=1Fk for k€ K,. Let the approximation be so close that f has the
following properties:

(1) If risa closed simplex of K, (in 7)) and (%, t) € r x [0, 1] < K, x |0, 1]
and (y, w)er x [0,1] € K, x [0, 1] then 6{f (x, t), f(y, u)} < &/5.

(2) f(K, x[0,1]) € b0 and f(K, x 1) < (@ — 2¢/5)0 N O(a — 3¢/5).

(3) If r is a closed simplex of K, (in T,), » < (@ — ¢/5)O, then
f(r x[0,1]) < (a — ¢/5)0.

(4) If r is a closed simplex of K, (in T), r < O(a — 3¢/5), then
fr x [0,1]) < O(a — 3¢/5).

(5) If r is a closed simplex of K, (in T)), r < O(a —¢), then
F(r x[0,1]) < O(a — ¢).

This is possible because f, satisfies these five conditions with some room
to spare.

Let V be a subdivision of V, such that:

(a) If S is a subcomplex of V, and =(S) is its projection on K, x 0,
then 7(S) x [0, 1] is a subcomplex of V.

(b) For each simplex A of V, there is a simplex o of T, such that
f(A) C o and f is linear on A with respect to the linear structures of A
and o.

(¢) The set of singularities of f is contained in a subcomplex of V.

To obtain V, one triangulates the projection 7: K, x [0, 1] — K, by a
triangulation V which is fine enough to satisfy (b) and (c).

Denote by S the set of singularities of f. S c K, x [0,1] will
be a subcomplex of V. Since f is in general position, dim S =<
2dim (K; x[0,1) —n=2m+2)—n<2(m+2)— (m +5)=m — 1.
Let L be the m — 1 skeleton of K, x 0 in the triangulation V. Then
L x [0,1] © =(S) x [0, 1].
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Since dim f(L x [0, 1]) < m, by induction 3 a p.w.l. homeomorphism
g: E, — E, such that:

(A) gl(@a—¢/5)0O =Tand g|0Ob =1

(B) ¢(@0) o f(L x [0, 1])

(C) 0{g(z), 2} < ¢/5 for z€ E,.

Now the procedure stated in Lemma 0 will be used to finish the proof.
Let U of Lemma 0 be g(a0). Now U = g(aO) D g(Ja — ¢/5]0) which by
(A)is =[a — ¢/5]0. By (2), f(K, x 1) C[a— 2¢/5]0 and thus U D f(K, x 1)
and the hypothesis of Lemma 0 is satisfied.

Let s, s,, ---,s, be the open m simplexes of K, x 0 in V and let
B,B,---,B,0,0, ---,0,,and h, h,, ---, h,be asin Lemma 0. Because
V is a subdivision of the cross product triangulation of K, x [0, 1],
properties (1), (2), (8), (4) and (5) above apply to the V simplexes of
K, x [0, 1] as well as the T, simplexes.

REMARK (1). According to (1), the “d diameter” of f(s; x [0, 1]) is <¢/5.
Thus each O; can be chosen so that 6{h,(2), 2} < ¢/5 for z¢ E,.

REMARK (2). Each O; can be chosen so that O, C bO. This follows
from (2).

REMARK (8). If §; < (& — ¢/5)0, then by (3), k; can be chosen as the
identity.

REMARK (4). If §; & (¢ — ¢/5)0, then by (4), O, can be chosen so that
0; c O(a — 3¢/5).

The conclusion is that g, = k,h,_, - - - h, satisfies 6{g(2), 2} < ¢/5, g,|0b =
I, 9. (@ — 3¢/5)0 = I and g,(U) = 9,9(a0) D f(L, % [0, 1]) where L, is the
m skeleton of K, x 0in V.

Now the same procedure will be applied again, with U = ¢,(U) and
8, 8y -+, S, the open m + 1 simplexes of K, x 0 in V. When 5; C
(a — 8¢/5)0, h; can be chosen as the identity, since g,9(a0) D §;. Other-
wise, when §; ¢ (a — 3¢/5)0, it follows from (5) that O, can be chosen so
that O; = O,(@ — ¢). The conclusion is 3 g,: E, — E,, a p.w.l. homeo-
morphism with 6{g,(z), 2z} < ¢/5, 9,|Ob = 1, g, |(a — ¢)O = I, and ¢,9.(U) =
9:9.9(@0) D K, x 0 = K,. Seth = g,9,9, and note that 8{h(z), 2} < 3¢/5 e,
h|Ob =1 h|(a — €0 = I, and (aO) D K. This completes the proof.

LEMMA 2. Suppose E,(n = 4) has an arbitrary p.w.l. structure T, K
18 a finite subcomplex of T, dim K < n — 4, a, b, and € are numbers with
0<a<be>0, and K< Oa. Then 1 a homeomorphism h: E, — E,
such that h is p.w.l. relative to T, h |O(b + ¢) = I, h|aO = I, h(0b) D K
and 0{h(x), x} < ¢ for x e E,.

Proor. This lemma is the same as Lemma 1 except that the expansion
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is in toward the origin instead of away from the origin. The proof is
essentially identical to the proof of Lemma 1.

The only purpose of Lemma 1 and Lemma 2 is to prove Lemma 3 below,
which can be used to approximate stable homeomorphisms by p.w.l. ones.

LemMmA 3. Suppose E,(n = 7) has an arbitrary p.w.l. structure T,
and a, b, and € are numbers with 0 < a < b ande > 0. Then 3a homeo-
morphism h: E, — E, such that h is p.w.l. relative to T, h|(a — €)O =
I, | O + &) = I, h(aO) D b0, and 6{h(x), x} < € for xc E,.

Proor. The proof is a trivial modification of [10, § 4] and [11, § 8.1].
Suppose 0 < ¢ < a. Let T, be a subdivision of T such that if v is a simplex
of T, which intersects (b + €)O and z,yev C E,, then |z — y| < ¢/3 and
6{x, y} < ¢/3. Let J be the star (in T}) of [O(a — 2¢/3)] N [(b + 2¢/3)0]
and K its 3-skeleton.

Now n — dim K = 7 — 8 = 4, and thus by Lemma 1, 3 a p.w.l. homeo-
morphism #&,: E, — E, such that &, |(a — ¢/3)0 = I, h,|O(b + ¢) = I,
h(a0) D K, and 6{h,(x), x} < ¢/3 for all x c E,.

Let L be the subcomplex of the barycentric subdivision of J which is
maximal with respect to the property of not intersecting K, L = J +~ K.
Now dimL =n — (dim K + 1) = n — 4 and, by Lemma 2, 3 a p.w.l
homeomorphism g: E, — E, such that g| (¢ — )0 =1, g | O(b + ¢/3) = I,
g(0b) D L, and 6{g(x), x} < ¢/3 for all x ¢ E,.

If A is an n-simplex of J, A is the join of AN K and AN L, and
AN Kchy(aO)and AN Lc g(0Ob). By a trivial extension of [11, Lemma
8.1], 3 a p.w.l. homeomorphism g¢,: E, — E, such that g,|(a — €)O = I,
9,10 + ¢) = I, for each n-simplex u of J (in T,), h,(a0) U ¢,9(0b) D u,
and for each simplex v of E, (in T)), ¢,(v) = v. The triangulation 7T, was
chosen fine enough so that ¢,(v) = v implies #{g(x), x} < ¢/8 forallx ¢ E,.

Let h, = g,9, and show k,(aO) U h,(0Ob) D E,. Now g, was chosen so that
hi(a0) U hy(Ob) D J and, since hk,|(a — ¢/8)O = I, it clearly contains
(@ —¢/8)0 UJ Db+ 2/3)0. It remains to show that g¢,9(0b) D
C[(b + 2¢/3)0]. Let v be a simplex of T, which intersects C[(b + 2¢/3)O0].
Then v< O(b + ¢/3) and thus g |v = I. Since ¢,(v) = v, g,9(v) = v and
therefore g,9(Ob) > v. This shows that £,(a0) U h,(0b) = E,.

This gives h,(¢0) D h,(C[Ob]) which gives h;'h,(a0) D C[Ob] = bO. Let
h = h;*h,, and note that 2 |(a — €)O = I, h|O(b + €) = I and 6{h(x), 2} <,
and that % is a p.w.l. homeomorphism. Thus /4 satisfies the conclusion of
the lemma.

DEFINITION. A homeomorphism %: S, — S, is said to have property P
if for any p.w.l. structure T on S, and any ¢ > 0, 3 a homeomorphism
f: S, — S, such that f is p.w.l. relative to T, any |k(x) — f(x)| < ¢ for
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xesS,.

The set of all homeomorphisms on S, forms a group under composition.
Let G, be the set of homeomorphisms on S, which possess property P.

Observation Q. G, is a normal subgroup of the group of all homeo-
morphisms.

Proor. The proof that it is a subgroup is immediate. It will be shown
that G, is normal. Suppose & € G,, and g: S, — S, is any homeomorphism.
Show that g*hg € G,. Let T and ¢ be given.

3a0 > 0suchthatif [x —y| < 0, then |g7'(x) — g7'(y)| <e. Let T,
be the p.w.l. structure of S, which is the g image of T, T, = 9(T'). Thus
if v is a simplex of S, in the triangulation 7T, g(v) is a simplex of S, in
the triangulation T,. Since k€ G,, 3 a homeomorphism f: S, — S, which
is p.w.l. relative to T,, and with |k(x) — f(x) | < 0 for € S,. Thus
|97 hg(x) — gfg(x)] < € for x € S,. Note that g~fg is p.w.l. relative to
T because g is p.w.l. from T to T, f is p.w.l. from T, to T,, and g~ is
p.w.l. from T, to T. This completes Observation Q.

3. The main theorems

THEOREM 1. Let T be an arbitrary p.w.l. structure of S,(n = 7), and
let h: S, — S, be stable homeomorphism. If ¢ > 0, 3 a homeomorphism
f: S, — S, such that f is p.w.l. relative to T and |h(x) — f(x)]| < ¢ for
xeS,.

ProoF. The set of all stable homeomorphisms of S, is a simple, normal
subgroup of the group of all homeomorphisms. The fact that it is a
normal subgroup is immediate and the fact that it is simple follows from
[1] and is even stated explicity in [4, Th. 14]. Therefore, using Observa-
tion Q, it will follow that G, contains the stable group if G, contains
some stable homeomorphism distinet from the identity. This will now be
shown.

Let & be a symmetric radial expansion, i.e., let #: E, — E, be a homeo-
morphism such that a(x) = z for ||z || = 1, k(o) = o, 0{h(x), x} = 0 for all
x, and if 0 < r < 1, 3a number u(r), » < u(r) < 1 such that A[r(O — 0)] =
w(r)(O — 0). Let T be any p.w.l. structure on E, and ¢ > 0. It will be
shown that 3 f: E, — E, which is a p.w.l. homeomorphism relative to T,
and with f(x) = « for ||z || = 1 and |(x) — f(x)| < € for x € E,. Since
h determines a homeomorphism from S, to itself by defining A(w) = o,
this will show that G, is non-trivial and will complete the proof of Theo-
rem 1.

Let 0 =r,<r, <7, <7, =1 be numbers such that (u(r;,,) — u(r;)) <
¢2fort1=20,1,2, .-+, (m — 1). By Lemma 3, 3 p.w.l. homeomorphisms
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Si far =+, F such that f; | 7,0 = I, f;|Ou(r;y) = 1, 6{fi(»), x} < ¢/4 for
xe E,, and £i(r;0) D w(r;)O fort=1,2,---,m. Let f = fi.f;** fu Now
f is a homeomorphism of E, onto E, that is p.w.l. relative to T, and
f1CO) = 1. It will be shown that |f(zx) — k(x)| < e for x€O. Let
2er, ., 0NO0Or,=7r,.,0—7r.0,0=<k=<m. Then f(x) =f1f, "+ fri be-
cause f,|7,,0 =1 for t >k + 1. In fact, f(x) = fi.fi(x) because
frfra(@) € Ou(r,) and f, | Ou(r,) = I for t < k. (In the special case k = 0,
f(x) = fi(x).) Now since f(x) and h(x) € u(r,,.)0 N Ou(r,), ||f(x)| and
[| h(x) || differ by <e/2. Since 6{h(x), f(x)} < /2 is measured in radians
and any radius under consideration is <1, it follows that |a(x) — f(x) ]| <e.
This completes the proof.

The following theorem is a restatement of Lemma 3. It could be called
a “controlled expanding theorem.”

THEOREM 2. Suppose E,(n = 7) has an arbitrary p.w.l. structure T,
and a, b, and ¢ are numbers with 0 < a <b and € > 0. If f is any
homeomorphism from E, onto E,, then 1 a homeomorphism g: E, — E,
such that g is p.w.l. relative to T, g|f[(a — e)0] = I, g | f[O® + &)] =1,
9Lf (@0)] D f(b0), and 6{f[g)], f (W)} < e for all y e E,.

ProoF. Let T, be the p.w.l. structure of E, which is the image of T
under /7, T, = f(T). By Lemma 3, 1 a homeomorphism k: E, — E,
such that & is p.w.l. relative to T, h|(a —&)O =1, h|O(b + ¢) = I,
Ma0) D b0, and 6{h(x), x} < ¢ for xe E,. Now g = fhf ' is a homeo-
morphism of E, which is p.w.l. relative to T and satisfies the conclusion
of the theorem.

Theorem 2 will be used to approximate stable homeomorphisms of £,
in somewhat the same manner that Lemma 3 was used to approximate
stable homeomorphisms of S,. The heart of the matter of approximating
stable homeomorphisms of E, is contained in Lemma 4 below.

LEMMA 4. Let T be an arbitrary p.w.l. structure on E,(n = 7). Let
0 = 0, as before, and h: O — E, be a homeomorphism such that h(o) =
0, 0{h(x), x} = 0 for x€ O, and 1f 0 < r <1, 3 @ number u(r) > r such
that h[r(0 — 0)] = w(r)(O — 0). Then if e(x): O — (0, =) is continuous,
3 a homeomorphism f: O — E, which is p.w.l. relative to T, and such
that | f(x) — h(z) ]| < e(x) for x € 0.

Proor. The proof calls for a p.w.l. expansion of O onto E, which is
nearly radial. This expansion will be obtained through a sequence of
steps, each step using Theorem 2. A difficulty appears here that did not
appear in the proof of Theorem 1. This difficulty is that, after a sequence
of expansions, the “angle error” may accumulate. This is overcome in



APPROXIMATING STABLE HOMEOMORPHISMS 333

parts D, E, and F.

Let o(w): E, — (0, ) be a continuous function such that if v, w e E,,
—o(w) < |[v]|—||w]| < é(w), and 8{v, w} < 6(w), then | v — w | < e(h~w]).
Let 0 = r, <7, < 7,--- be an increasing sequence of numbers such that
r,— 1 as n— o, and u(r;,,) — u(r;) < max d(w) for w e u(r;,,)0, and
denote this max by d,.

It follows from Lemma 3 that 3 a homeomorphism f.: E, — E, such
that f, is p.w.l. relative to T, f.(0) = o, fi(r.0) D u(r)0, f,| Ou(r,) = I,
and 6{f,(x), x} < 6,/2. Now applying Theorem 2, 3 a p.w.l. homeomorphism
fot B,—E, such that £, fi(r,0) =1, f,| f(Ou[r.]) = I, f.[ f1(r,0)] D fi(ulr.]O),
and {7 [/.(¥)], [ (¥)} < 0./2.

In general, suppose fi, fs, -+, fi—. have been defined. Let the “f” of
Theorem 2 be f;,_,fi—, -+ - f;. Then 3 a p.w.l. homeomorphism f,: E,— E,
such that

(1) fk ‘flc*lfkﬂﬂ tte fl(/rk—lO) =1,

2) filfirfie oo filOUlrss]) = 1,

) filfierSis =+ [i(rO) D firfie - - - fiu[7:]O),

@) H(ferfie s L) SuR), (fiorfies -+ - F)7H(R)} < 04/2 for ze E,.
From (2) follows

@) fifia - filOw(ryy) = 1.

Suppose (2') is true for k — 1, i.e., suppose fi_, --- f1|Ou(r,) = I. Then
since Ou(r,.,) C Ou(ry), firfi—z -+ filOu(r,y,) = I, and thus by (2),
SiSi—1 oo f1]Owlr,.,) = I. Therefore (2') follows from (2) by induction.

Define f: O— E, by f=--- f,f.f.]0. This f will satisfy the conclusion
of the lemma. First it will be shown that f is well defined. Let x € O.
Then 3 an integer k such that x € ,0. From (1), f,|f,—1 - - fi(r,_.0) = I
for s =1,2, ---, and since x€r,0 when s >k, f(x) = f, - -- fi(x) and
thus f is well defined. Since each f; is p.w.l. relative to T and, on any
compact subset of O, f is defined by a finite number of the f;, it is clear
that f is a p.w.l. homeomorphism. It remains to be shown that
| f(®) — h(x) | < e(x) for x € O.

Observation A. f(r.0)Du(r,)0 for k =1,2,---. To see this, note
that f(r.0) = fifi. -+ fi(r.0) which, by (8), Dfi_.fi -+ filu(r)0),
and it follows from (2') that this is equal to u(r,)O.

Observation B. f(r,.,0) Cu(a,.,)0 for k=10,1,2, ---. To see this,
note that f(7,,0) = fiifi - fi(1:0) C frsrfi -+ fi(u[r,:,]O) and this
is equal to u[r,,]O because f,,.f. - - - f1 is the identity on Oulr,.,].

Observation C. If xer,,,0 — r,0, then —d, < || f(x) || — || k() || < 0.
It follows from A and B that f(x) € Ou(r,) N u(r,.,)0, and thus u(r,) <
Nf@) || < u(res). Alsou(r,) < |lh(x)]| < w(r,.,). Thus the absolute value
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of || f(@) || — || M=) || is < u(rys,) — w(r,) which is <d,, and the result
follows.

Observation D. If y € Or, then 6{f,f._.-- - fu(¥), ¥} < 9,/2. According
to A, fifi-r - [1¥) € Ou(r,). By (2), (feer - )| Ou(r,) = I. Therefore

ﬁ{fk fl(y)v y} = H{(fk ‘1 fl) 'llfk fl(y)]’ y}
= ‘9{(ka1 e f) 'll‘fk e fl(y)lv
(fuer = L) N Sfumr - - L@

which is <0,/2 by (4), setting z of (4) to be f,_, - - - fi(y). This shows D.

Observation E. (fy -+ f1) '(fe. -+ f1)(Or) € Or,. This will be true
if (forr - f)Or) € (fy -+ - f)(Or,) which follows easily from (1),
Sena| (fe - - f)(r0) = L.

Observation F. If x € r,.,0 — r,0, then 6{f(x), 2} < d,. Let y =
(fe + f) (Sisr + - - filx)). By E, y € Or,. Substitute y in the inequality
of D and obtain 6{f (%), ¥y} = 0{fi+: - - [1(®), ¥} < 6,/2. Now 0{y, x} =
H{(fe -+ D) Fenlfe - - @), (fi -+ )7 -+ - fu@)]} which is <04./2
by (4). Now by the triangle inequality, 6{f(x), } < 0,/2 4+ 0,+:/2 < 0,,
and F follows.

Conclusion. If x € O, then 3 an integer & such that x e r,.,,0 — r,0.
By C, —d, <[[f(@)|| — ||M(=) || < 0, and by F, 6{f (x), x} = 6{f (%), (%)} < 0.
In the definition of d(x) at the beginning of the proof, let v = f(x) and
w = h(x), and note that o(h(x)) < 9, because || k(%) || < u(7;+.). Thus from
the definition of d(w), [v — w| < e(h~'(w)) or | f(x) — h(x)| < e(h'[h(x)]) =
e(x). This completes the proof.

THEOREM 3. Let T be an arbitrary p.w.l. structure on E, (n = 7). Lf
g9: E,— E, is a stable homeomorphism and &(x): E, — (0, ) is a con-
tinuous function, then 3 a homeomorphism f: E, — K, which is p.w.l.
relative to T, and such that | f(x) — g(x) | < e(x) for x € E,.

Proor. Since g is stable, 3 homeomorphisms g, ¢, - -+, ¢, and non-void
open sets Uy, U,, ---, U, suchthatg,|U;=Ifori=1,2,---,mand g =
Imm—1 * * - 91. If each g; can be approximated by a p.w.l. homeomorphism,
then clearly g can also. Thus it may be assumed that 3 a non-void open
set Usuch g| U = I. For convenience, suppose U D O, = O.

Let 0(2): E, — (0, ) be a continuous function such that, if 2,b,c € FE,,
b — 2| <0(2), |c — 2| < (), then | g(b) — g(c) | < &(c).

Let h: O — E, be a homeomorphism as in the statement of Lemma 4,
hx) = u(||x [)x. Then 3 a homeomorphism f;: O — E, which is p.w.l.
relative to T and such that | fi(y) — h(y) | < d[h(y)] for y € O.

Let T, be the p.w.l. structure on E, which is the image of T under g,
T, =g (T). Sinceg|0O =1, T, and T agree on O. Thus f7™": E,— O is
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p.w.l. from T to T,. Now using Lemma 4 again, 3 a homeomorphism
fo: O — E, which is p.w.l. from T, to T, and such that |f.,(y) — h(y) | <
olh(y)].

The homeomorphism g f,f;*: E, — E, will satisfy the conclusion of the
theorem. Since f, /7" is p.w.l. from T to T, and ¢ is p.w.l. from T, to T,
9f./rtis p.w.l. from T to T.

It remains to show that |gf,/i'(x) — g(x)| < e(x) for x € K,. In the
definition of d(z), let z = A[ f(x)], b = f.f (%), and ¢ = . Then |b —z| =
[fof'(®) — hf7(@)| which is <o(R[fi'(®)]) = 0(2). Also |¢ — z| =
|z — Al @) | = [ A7 (@) — hLf'®)] | < o(R[fi'(w)]) = 6(2). The con-
clusion is that | g(b) — g(c) | < &(¢), which is to say | gf..fi (@) — g(x) | <
e(x). This proves the theorem.

THEOREM 4. Suppose D is any C* differentiable structure on K, (n="7).
If g: E,— E, is a stable homeomorphism and &(x): E,— (0, ©) is a
continuous function, then 1 a homeomorphism f. E, — E, which is a C*
diffeomorphism relative to D and such that |f(x) — g(x)| < e(x) for
rxek,.

Proor. Let T be a C? triangulation of E, which is compatible with D
(see [5] or [138]). By THEOREM 3, g may be approximated by a homeo-
morphism f, which is p.w.l. relative to T. Now by [7, Theorems 5.7 and
6.2], f. may be approximated by a diffeomorphism f. This completes the
proof. The theorem also holds if C*is replaced by C=.

LEMMA 5. Bounded homeomorphisms on euclidean space are stable,
ie., if f+ E,— E, (n = 1) is a homeomorphism and 3 an M > 0 such
that | f(x) — x| < M for x € E,, then f is stable.

PrRoOOF. Let 0 < a < b < ¢ be numbers such that f(aO) Cb0. Let
h: ¢O — E, be a homeomorphism with % |bO = I and 6{h(x), x} = 0 for
xecO. Then hfh: ¢cO— cO can be extended to a homeomorphism
g: E,— E, by defining g(x) = « for € Oc. The lemma now follows from
the fact that f = g~'gf where g7 |O¢c = I and ¢gf|aO = I.

THEOREM 5. Suppose g and h are homeomorphisms from E, onto E,
n=1),and 3 an M > 0 such that |g(x) — Mx)| < M for xc E,. Then
if g 1s stable, h is also stable.

ProoF. Let f = hg™. By hypothesis | — f(x)| < M for x € E,, and
thus by Lemma 5, f is stable. Since & = fg, h is the product of stable
homeomorphisms and is thus stable.

4, Two auxiliary theorems

THEOREM 6. Let g. E,— E, (n = 7) be a stable homeomorphism, O =
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0,, and &(x): O — (0, =) be continuous. ILf T is an arbitrary p.w.l. struc-
ture on E,, 3 a homeomorphism f: E,— E, such that f|C(0) = g | C(0),
f10 is p.w.l. relative to T, and |f(x) — g(x)| < e(x) for x€O. If Dis
an arbitary C* differentiable structure on E,, 3 a homeomorphism
[+ E,— E, such that f| C(0) = g| C(0), f|0 is a diffeomorphism relative
to D, and |f(x) — g(x)| < &(x) for x e O.

OUTLINE OF PROOF. Let h: E, — O be a p.w.l. homeomorphism which
is the identity on some non-void open set in O. Let h,: g(0O) — E, be a
p.w.l. homeomorphism which is the identity on some non-void open set
in g(0). Such homeomorphisms &, and h, can be constructed by using
Theorem 2 in the same manner as it was used in the proof of Lemma 4.
Now h,gh,: E,— E, is stable (see [3]) and, according to Theorem 3, can
be approximated by an h: E, — E, which is p.w.l. relative to 7. Now
define f: O — g(0) by f = h;*hhi'. This f will be a p.w.l. approximation
to g | O and may be extended to all of E, by letting £ | C(0) = g | C(0).

The second part of the theorem, the differentiable case, follows from
the first part of the theorem in the same manner that Theorem 4 follows
from Theorem 3.

THEOREM 7. (A) Let D be an arbitrary C* differentiable structure on
E,(m =17 and T an arbitrary p.w.l. structure on E,. Thus T may or
may not be compatible with D. If g: E,— E, is an orientation preserv-
ing C* diffeomorphism relative to D and e(x): E, — (0, o) 1s continuous,
then 3 a homeomorphism f: E, — E, such that f is p.w.l. relative to T,
and | g(x) — f(x) | < e(x) for x e E,.

(B) Let T, and T, be two arbitrary p.w.l. structures on E, (n = 7).
If g: E,— E, is an orientation preserving homeomorphism p.w.l. rela-
twe to T, and &(x): E, — (0, =) is continuous, then 3 a homeomorphism
[+ E,— E, such that f is p.w.l. relative to T,, and |g(x) — f(x) | < &(x)
forxe K,

(C) The same as (A) with E, replaced by S,.

(D) The same as (B) with E, replaced by S,.

(E) Let D, and D, be two arbitray C* differentiable structures on E,
n="T). If g: E,— E, is an orientation preserving diffeomorphism
relative to D, and e(x): E, — (0, ) is continuous, then 3 a homeo-
morphism f: E, — E, such that f is a diffeomorphism relative to D,
and | g(x) — f(2)| < e(@) for x € E,.

OUTLINE OF PROOF. Since orientation preserving diffeomorphisms and
p.w.l. homeomorphisms are stable, each of (A) and (B) is a corollary to
Theorem 3, and each of (C) and (D) is a corollary to Theorem 1. Part (E)
follows from (A) in the same manner that Theorem 4 follows from Theo-
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rem 3. Theorem 6 is true if C?is replaced by C=.

5. Remarks

The engulfing lemma holds for codimension 3 (see [10]). Lemma 1 of
this paper, a modification of the engulfing lemma, is stated for codimen-
sion 4, i.e., the dimension of K is 4 less than the dimension of E,. It is
certainly possible that Lemma 1 also holds for codimension 3. If this is
true, the results of this paper hold for » = 5 instead of merely for n = 7.
However, this is of limited interest since dimension 4 would still remain
unsolved.

Let M be a topological manifold with or without boundary. A homeo-
morphism g: M — M is said to have property Q if 3 closed n-cells A and
B with A c Interior B < M such that g |C(A) = I. Define G°(M) to be
all homeomorphisms #: M — M which can be expressed as & = hh,_,+ - h,
where each &, has property Q. The group G°(M) is studied in [4]. If M
has a p.w.l. structure, then any k€ G°(M) can be approximated by a
p.w.l. homeomorphism. This may be proved by modifying Theorem 1 or
Theorem 3.

Suppose T, and T, are two arbitrary p.w.l. structures on E,. It is
known (except for » = 4) that 3 a homeomorphism h: E, — E, which is
p.w.l. from T, to T, (see [10] and [6]). If & could be chosen as a bounded
homeomorphism, then by Lemma 5, h would be stable, and it would fol-
low immediately that all orientation preserving homeomorphisms are
stable. Thus the annulus conjecture in dimension » would be true (see
[3]). Conversely, if the annulus conjecture were true in all dimensions,
it would follow from the procedures of this paper that (for n = 7) h
could be chosen as bounded. Thus the annulus conjecture is roughly
equivalent to this strong form of the Hauptvermutung for euclidean
space where & is to be chosen as bounded.
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