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ON CONNECTED SUMS OF MANIFOLDS

SYLvAIN E. CAPPELL*
(Received 13 August 1973)

IF W 1s homotopy equivalent to a non-trivial connected sum, is ¥ a non-trivial connected
sum? For any set of P.L. closed manifolds, a positive answer to such problems leads to a
homotopy-theoretic characterization of manifolds which are non-trivial connected sums [5].

Write P # Q to denote the connected sum of two closed manifolds, P and Q, of the
same dimension. We say that the closed manifold Y is a non-trivial connected sum if
Y=P# Q, with P and Q not homotopy spheres.

In dimension 3, the Kneser conjecture, proved in [14], implies that a P.L. manifold W,
homotopy equivalent to P # 0, is itself a connected sum of manifolds homotopy equivalent
to P and Q. The same situation exists in dimensions greater than 5 if P and Q are simply
connected [I] or even just P simply connected [15] or in odd dimensions greater than 5
if the fundamental groups of P and Q have no elements of order 2 [11]. In fact the same
situation exists in all dimensions greater than4if the fundamental groups of P and QO have
no elements of order 2 [4, 5]. This also extends to all orientable 4k + 3 dimensional
manifolds, and to all manifolds W2**! for which each element g of order 2 in n,(W)
satisfies [g] N w,(W) = 0 for k odd, 1 for k even, w,(W) the first Stiefel-Whitney class of
W and [g] the class in H,(W; Z,) represented by g {5, 7].

This leaves, in dimension not 4, only some cases when 7,(W) has elements of order 2.
However, in this remaining case this note constructs an oriented manifold in each dimension
4k + 1, k > 1, which is homotopy equivalent to, but is not itself a non-trivial connected sum.
Precisely, we prove the following result which was announced in [6] and which shows the
necessity of a restriction on fundamental groups in splitting theorems [7].

THEOREM 1. There is a closed differentiable 4k + 1 dimensional manifold W, simple
homotopy equivalent to RP**1 % RP**1 k> 1 which is not as a differentiable, piecewise-
linear or even as a topological manifold a non-trivial connected sum.

The construction of W shows that it is tangentially homotopy equivalent, and even
normally cobordant [2] [15] to RP**!  Rp4+1,

Remark. For orientable manifolds P and Q, the definition of P # Q usually requires a

* The author is an A. P. Sloan fellow and was partially supported by an N.S.F. grant.
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choice of orientations for P and Q [9]. However, as RP**! has an orientation reversing
diffeomorphism to itself, see Lemma 1, this is not needed to define RP**! # RP**1,

W will be constructed essentially by the following procedure. Let Y; = RP**! and
Y, = RP**! and let g; denote the non-trivial element of m,(Y) c 7, (Y, # Y,), i =1, 2.
By van Kampen’s theorem m,(Y; # Y,) = n,(Y;) x n,(Y,) = Z, * Z,. Construct 2k-dimen-
sional embedded spheres S; and S, in Y; # Y, with S; bounding an immersed disc D,
of dimension k + 1 with the double points of D; being a single circle C; representing g; and
with §; and §, having linking number 1. Now perform surgery on both S, and S, to
obtain W.

Y= ¥ - B!
Y, # Y= usYy

In the proof of Theorem 1, we will describe the linking and self-linking of S; and S,
and the construction of Win terms of a Hermitian form (M, 4,, u,) over the ring Z[Z, * Z,].
The stable indecomposability proved below of this Hermitian form into forms defined over
Z|Z,], will imply the corresponding indecomposability of W.

Set S" ={(xy, ..., Xp41) € R"* Y x2 +x,2 4+ -+ + x2,; = 1}; the antipodal map a,
of 8"is given by a,(x;, X5, ..., X,41) =(—X;, —X3, ..., —X,1,)- RP"isthe quotient of §" by
the Z, action given by «,,. Let §, denote the map defined on $” by B, (x;, x5, X3, ..., X,41) =
(—x(, X3, X3, ..., X,41). We start with two easy lemmas.

LEMMA 1. RP**1 has an orientation-reversing diffeomorphism.

Proof. Pu+, induces an orientation-reversing diffeomorphism on RP**! =
4k +1
A [ar+1-

LEMMA 2. Let V be a manifold homotopy equivalent to RP**! # RP¥*\ If V=P # Q,
Jor some closed manifolds P and Q, with P and Q not homotopy spheres, then P and Q are
homotopy equivalent to RP¥**1,

Proof. First observe that the universal cover of RP**1  RP**1is §% x R Thus, the
universal cover of Vis 4k — 1 connected, and hence P and Q are 4k — 1 connected. But as
ZyxZy, =mV =nPsmnQ, either ;P =Z, and 7,0 =Z, or one of these groups, say
7, P, is zero and the other is Z, x Z,[10]. Butif ;,P = 0, P = Pis4k — 1 connected and hence
is a homotopy sphere. As we assumed that P and Q were not homotopy spheres we get
mP =27, n,Q0=2,.

Since there groups are finite, P and § are closed manifolds, and hence are homotopy
spheres. Thus, P and Q are the quotients of free Z, actions on homotopy spheres of dimen-
sion 4k + 1, and are therefore by an easy argument [12] [15] homotopy equivalent to
RPAHL
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Let S as above denote the 4k-dimensional sphere joining Y; and Y,, so that ¥ =
Y\ # Y, = Y1'Us Y,

LEMMA 3. Every homotopy equivalence 7y : RP+1 4 RpHet1 _, RPATL g RPHHL s

homotopic to a map, which we continue to denote by y, with y transverse to S and with
—1
Py H(S) =S.

Proof. Let Aut denote the group under composition of homotopy classes of auto-
homotopy equivalences of RP*#*! # RP**!. Clearly it suffices to check Lemma 3 for a set
of generators of Aut.

Let 7, denote the orientation-preserving map of ¥ =Y, # Y, = RP#¥*+! 3 RPHH!
which switches both copies of RP***1; precisely, 7, is induced from the map 7, of the univer-
sal cover of RP**1 # RPH**1, 5, : 8% x R—> 8™ x R, J,(x, ) = (x, t+1). Let 7, be the
map induced on RP*#** # RP*¥1 by §, §% x R— S% x R, 7,(x, 1) = (By(x), 1). Lastly,
to define y,, let ©:S" = S04 4, denote the non-trivial element of m,(SOu 4 2),
S'={zeC| |z| =1} with t(1) the identity matrix. Let ys be be the map which is the
identity outside a neighborhood S x I, I = [0, 17, of S and which restricts to (ys|S x I):
S xI—8 %I, y3(x, 1) = (1(e¥™*)(x), 1), x€ S, te L Clearly y1, 7, and 7, satisfy the con-
clusion of Lemma 3, and the proof of Lemma 3 is completed by showing that they generate
Aut.

Every automorphism of n,(Y) =Z, * Z, is easily seen to be either an inner auto-
morphism, or the composite of an inner automorphism with 7,4, the automorphism of
Z, * Z, which switches both copies of Z, . Therefore, it suffices to showthat{y,,ys} generate
Aut,, the group of base-point preserving auto-homotopy equivalences y: ¥ — Y, satis-
fying yy = 1,,(Y) : 1 (Y) = 1y (Y), classified up to base-point preserving homotopy.

For a basepointed space X, let [X, Y] denote the set of basepoint preserving maps of X
to ¥ = RP**1 2 RP**1_ classified up to basepoint preserving homotopy. The cofibration
sequence o

o
i
o

Kg
%,
o
.

S4k RP4k v RP4k i RP4k+1 #RP4k+1 Zs4k R

gives an induced *“ exact sequence”

T

/ [RP* v RP*, Y] «Z— [V, Y] —— mars(Y).

" Here, ““exactness” means that the cosets of this action of 74, +,(Y) on [Y, Y] go injectively
into [RP* v RP*, Y]. It is easy to see that the orbit of the action of mu(Y) =
Tarr (S¥ x R)=Z, on 1ye[Y, Y]is {ly, y3}. Routine obstruction theory then shows that
i« (Auty) = {j, 7,j} and hence Aut, is easily seen to be generated by y, and y;.

We now precisely describe the construction of W and of a homotopy equivalence of
WtoY.Let H,=Z,,i=1,2, and let g; denote the non-trivial element of H;. Let u; be the

element of the Wall [15] surgery groupt Ly (H; * H), represented by the Hermitian.
form (M,, 4, py) Where

t In our notation for surgery groups, as we are always studying only orientable manifolds, we omit the
orientation homorphisms to Z.
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(i) M, is a free Z[H, » H,] module on two generators {ey, f1};
(11) /’{(6’1, el) = l(fi?.fl) = 0, l(el"fl) = 1;

(i) p(ey) = g1, u(f1) =92-
Realize [15] the element u, by a 4k + 2 dimensional normal cobordism (T, F)
F: T2, Y, 0T =Y U W, (F|Y)=1y,

f = (F| W) a simple homotopy equivalence.
Covering bundle maps, not recorded in our notation, are of course part of the structure of
this normal map [2].

LEMMaA 4. The simple homotopy equivalence f: W — Y is not homotopic to a map trans-
verse regular to S < Y with f ~1(8)~ S a homotopy equivalence.

We defer the proof of Lemma 4.

Proof of Theorem. If W =P # Q, P, Q not homotopy spheres, by Lemma 2 there are
homotopy equivalences g, : P — RP**! g, : Q— RP*¥*'. Clearly, g, and g, induce a
homotopy equivalence g: P #.Q— RP*+1 4 RP***1 with ¢~ !(S)—S a homeomor-
phism. But f'is, up to homotopy, ( fg~Y)g and fg~* is by Lemma 3 homotopic to a map y
withy~'(S) = S. Hence, varying / by a homotopy to get f = ygweget f T1(S) = g 'S =
g~ '(S), which is homotopy equivalent to S. This contradicts Lemma 4.

Proof of Lemma 4. Assume, contrary to the conclusion of Lemma 4, that f is homotopic
to a map with f ~'(S)—» S a homotopy eqgiuvalence. Keeping it fixed on 0T, make F trans-
verse to S < Y. Let ¥ = F~1(S), a normal cobordism of (S, 15) to (fFNS), f1f71(S))- As
Lai+1(0) = 0 the normal map ¥ - S is normally cobordant, relative to the boundary, to a
simple homotopy equivalence. Hence, by the normal cobordism extension lemma [2],
(T, F) is normally cobordant relative to the boundary to a normal cobordism (1", F') with
F'~%(S) - S a homotopy equivalence. Splitting T° along F "=1(S), the normal cobordism
(T’, F’) is seen to be produced by pasting together normal maps, restricting to homotopy
equivalences on the boundary, to manifolds with fundamental group H; and H,. But
then the surgery obstruction of (T, F') which equals wu,, the surgery obstruction of (T, F),
is in Image (Lag+ 2(H1) @ Lygs2(H3) — Lay+,(Hy * H,)). We complete the proof by showing

that in fact
uy ¢ Image(Lay+ A{H) D Lygs2(Hp) — Ly o(Hy * H,))

and hence f'is not homotopic to a map with £ ~!(S) — S a homotopy equivalence.

Recall [15] that Z; = Ly, 4+ ,(0) > Laeo(H), i=1,21s an isomorphism and hence it
suffices to show that u, ¢ Image(Lay+2(0) = Lays2(Hy ¥ H ,)). Under the obvious retraction
Lyyr(Hy H,) = Lays2(0), (My, 4y, py) goes to a Hermitian form with non-zero Arf
invariant and hence u, # 0. Thus it suffices to show u; # ug where u, is the non-trivial
element of Image(Lay+2(0) = Lax+2(Hy * H,)). Recall [9] [2] that u, is represented by
the Hermitian form (Mg, 4o, Ho) Where

(i) M, is the free Z[H, * H,] module on 2 generators {eo, fo}s

(i)  Aoleo, ) = Ao(fo,fo) =0, Aoleo, fo) =1;
(iii) pleo) =1, u(fo) = 1.
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To show u, # u,, we define a homomorphism which has value 0 on u,; but is non-zero
on u, . The definition of this homomorphism involves the transfer construction and transfer
homorphism for surgery theory [15; p. 242]. The following definition is convenient for the
purpose of explicit computation. Let G be a group, H a subgroup of finite index in G,

wg: G —»/Z\Z a homomorphism restricting to wy: H—>Z,. As a Z[H] bimodule, Z[G] =

N
Z[H] ® Z[G] where Z[G] is additively generated by g € {G — H}. Given a (— 1)* Hermitian
form (M, 4, p) defined over Z[G], corresponding to the decomposition of Z[G] we may write
A N\
A= @70y = yH @ u6). Now let the transfer of (M, 4, y) be the (—1)* Hermitian
over Z[H], tt(M, 4, ) = (M, 2%, u¥). This induces a homomorphism try : L, (G, @wg)—
Ly M(H, g).

We apply this to the case where G is the non-commutative group of order 6, H any
subgroup of order 2 in G, wg and hence also wy trivial. Let ¢ : H, * H, — G be a surjective
homomorphism i.e. let (g;) and ¢(g,) be different elements of order 2 in G. We complete
the argument by showing that try @,(u;) = 0 and try @) # 0 in LY, . ,(H) by explicitly
computing the Arf-ivariants of try @«(Mo, 4o, o) and of try @, (My, 4y, py)-

We continue to write 4; and y; for the Z[G] Hermitian form induced by A; and y; on
M) = Mi@Z[H,*H;]Z[G], i=0, 1. Clearly try @u«(M;, 4;, p) = (M, AH, ) for i=0
or i =1 where:

(i) Asa Z[H] module, M, is generated by the six elements {¢; ® V7, f; ® V,0<j<2
where V is a fixed choice of an element of order 3 in G.

(i) As 1(e; @ V7, e, @ V™) =0, 17(e; ® Vi, e;® V™) = 0. Similarly

liH(fi ® Vj,ﬁ ® V™) =0.
Moreover, as A(e, ® V/, i@ V™) = V" Jand for0 <m <2,0<j<2, y™=J is an element
of H only for m =, we get A (e, @ V/, i@ V™) =0, m+#j,0<j<2, 0<m<2, and
Aiﬂ(ei® Vj,fi@ VJ) = 1, 0 —<—] < 2.
(ili) Case i =0: First observe that po(eo ® Vi) =V uy(eo)V? = VIV and
Bolfo ® VI) =V Ipofo)V! = VIV = 1.
Hence for each j, 0 <j < 2, (o ® V1) =1 and uo"(fo® V') = L.

Case i = 1. First observe that (e, ® V7) = V™ u,(e,)V’ = V" igp(g,)V’ and similarly

w(fi ® V) = Vi (f)V? = V7i(g,)V’. But as ¢(gy) # ¢(g2) and

Vigp(g )V # V Ip(g)V
and as they both have order 2, V™ 7¢(g,)V’ and V ~Jo(g,)V’ cannot both be in H=Z,.
Hence for each j, 0 < j < 2, " (e, ® V¥) =0 or u,"(f; ® V7)) =0.

Letting P: Z[H] - Z, denote the unique ring homomorphism, from (ii) the Arf-
invariant of (M/, AX, p) is given by Y2, P(u(e; ® V)P (f; ® ¥9)) [9]. By (iii) for
i =0, this sum is 1 and for i = 1, this sum is 0. Thus, try (o) # try @(uy) and ug # 4.

Geometrically, the above proof could be interpreted as showing that u, is represented
by the normal cobordism T with the Kervaire invariant of T being 1 but with the Kervaire-
invariant of a 3-fold covering space of T being 0.
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The following result could be used to construct infinitely many different smooth mani-

folds, homotopy equivalent to RP**! # RP**! which are not non-trivial connected
sums.

THEOREM 2. ® Z, <« L,(Z, * Z,) and ® Z, < L,(Z % Z,).

Outline of Proof. Let u, € L,(Z, * Z,), p an odd prime, be the element represented by
(M,, 4,, u,) with M, generated by {e,, f,} and 4,(e,, e,) = A,(f,, ;) =0, i,(e,, fp) =1,
tplep) = g1, 1p(fp) = (9291)°9:(9291) 7. Define 6,:Z; x Z, - Z, x Z,/{(9,91)">, g an odd
prime, and let H, ={6,(1), 8,(g,)}. Then the Arf invariant of try_6,.(u,) is 0 if p # g and
1 if p = q. Hence {u,|p an odd prime} are linearly independent over Z,. Moreover, clearly

u, € Image(L,(Z, x Z) LI Ly(Z,*2Z,)), f:Z,*Z —Z, x Z, the obvious surjection.

Note that Theorem 2 provides counterexamples to a splitting theorem of Mis¢enko
{13, p. 676].

Further results on surgery groups of free products will be presented in [8].
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