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Introduction

The correspondence between geometric spaces and commutative algebras is a familiar
and basic idea of algebraic geometry. The purpose of this book is to extend this
correspondence to the noncommutative case in the framework of real analysis. The
theory, called noncommutative geometry, rests on two essential points:

1. The existence of many natural spaces for which the classical set-theoretic tools
of analysis, such as measure theory, topology, calculus, and metric ideas lose their
pertinence, but which correspond very naturally to a noncommutative algebra. Such
spaces arise both in mathematics and in quantum physics and we shall discuss them
in more detail below; examples include:

a) The space of Penrose tilings

b) The space of leaves of a foliation

c) The space of irreducible unitary representations of a discrete group

d) The phase space in quantum mechanics

e) The Brillouin zone in the quantum Hall effect

f) Space-time.

Moreover, even for classical spaces, which correspond to commutative algebras, the
new point of view will give new tools and results, for instance for the Julia sets of
iteration theory.

2. The extension of the classical tools, such as measure theory, topology, differential
calculus and Riemannian geometry, to the noncommutative situation. This extension
involves, of course, an algebraic reformulation of the above tools, but passing from the
commutative to the noncommutative case is never straightforward. On the one hand,
completely new phenomena arise in the noncommutative case, such as the existence of a
canonical time evolution for a noncommutative measure space. On the other hand, the
constraint of developing the theory in the noncommutative framework leads to a new
point of view and new tools even in the commutative case, such as cyclic cohomology
and the quantized differential calculus which, unlike the theory of distributions, is
perfectly adapted to products and gives meaning and uses expressions like

∫
f(Z)|dZ|p

where Z is not differentiable (and p not necessarily an integer).

7



1. MEASURE THEORY (CHAPTERS I AND V) 8

Let us now discuss in more detail the extension of the classical tools of analysis to the
noncommutative case.

1. Measure theory (Chapters I and V)

It has long been known to operator algebraists that the theory of von Neumann algebras
and weights constitutes a far reaching generalization of classical measure theory. Given
a countably generated measure space X, the linear space of square-integrable (classes
of) measurable functions on X forms a Hilbert space. It is one of the great virtues of
the Lebesgue theory that every element of the latter Hilbert space is represented by
a measurable function, a fact which easily implies the Radon-Nikodým theorem, for
instance. There is, up to isomorphism, only one Hilbert space with a countable basis,
and in the above construction the original measure space is encoded by the represen-
tation (by multiplication operators) of its algebra of bounded measurable functions.
This algebra turns out to be the prototype of a commutative von Neumann algebra,
which is dual to an (essentially unique) measure space X.

In general a construction of a Hilbert space with a countable basis provides one with
specific automorphisms (unitary operators) of that space. The algebra of operators
in the Hilbert space which commute with these particular automorphisms is a von
Neumann algebra, and all von Neumann algebras are obtained in that manner. The
theory of not necessarily commutative von Neumann algebras was initiated by Murray
and von Neumann and is considerably more difficult than the commutative case.

The center of a von Neumann algebra is a commutative von Neumann algebra, and, as
such, dual to an essentially unique measure space. The general case thus decomposes
over the center as a direct integral of so-called factors, i.e. von Neumann algebras with
trivial center.

In increasing degree of complexity the factors were initially classified by Murray and
von Neumann into three types, I, II, and III.

The type I factors and more generally the type I von Neumann algebras, (i.e. direct
integrals of type I factors) are isomorphic to commutants of commutative von Neumann
algebras. Thus, up to the notion of multiplicity they correspond to classical measure
theory.

The type II factors exhibit a completely new phenomenon, that of continuous dimen-
sion. Thus, whereas a type I factor corresponds to the geometry of lines, planes, . . .,
k-dimensional complex subspaces of a given Hilbert space, the subspaces that belong
to a type II factor are no longer classified by a dimension which is an integer but by
a dimension which is a positive real number and will span a continuum of values (an
interval). Moreover, crucial properties such as the equality

dim(E∧F ) + dim(E ∨ F ) = dim(E) + dim(F )
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remain true in this continuous geometry (E∧F is the intersection of the subspaces and
E ∨ F the closure of the linear span of E and F ).

The type III factors are those which remain after the type I and type II cases have
been considered. They appear at first sight to be singular and intractable. Relying on
Tomita’s theory of modular Hilbert algebras and on the earlier work of Powers, Araki,
Woods and Krieger, I showed in my thesis that type III is subdivided into types IIIλ,
λ ∈ [0, 1] and that a factor of type IIIλ, λ 6= 1, can be reconstructed uniquely as a
crossed product of a type II von Neumann algebra by an automorphism contracting
the trace. This result was then extended by M. Takesaki to cover the III1 case as well,
using a one-parameter group of automorphisms instead of a single automorphism.

These results thus reduce the understanding of type III factors to that of type II
factors and their automorphisms, a task which was completed in the hyperfinite case
and culminates in the complete classification of hyperfinite von Neumann algebras
presented briefly in Chapter I Section 3 and in great detail in Chapter V.

The reduction from type III to type II has some resemblance to the reduction of arbi-
trary locally compact groups to unimodular ones by a semidirect product construction.
There is one essential difference, however, which is that the range of the module, which
is a closed subgroup of R∗+ in the locally compact group case, has to be replaced for
type III0 factors by an ergodic action of R∗+: the flow of weights of the type III fac-
tor. This flow is an invariant of the factor and can, by Krieger’s theorem (Chapter V)
be any ergodic flow, thus exhibiting an intrinsic relation between type III factors and
ergodic theory and lending support to the ideas of G. Mackey on virtual subgroups.
Indeed, in Mackey’s terminology, a virtual subgroup of R∗+ corresponds exactly to an
ergodic action of R∗+.

Since general von Neumann algebras have such an unexpected and powerful structure
theory it is natural to look for them in more common parts of mathematics and to
start using them as tools. After some earlier work by Singer, Coburn, Douglas, and
Schaeffer, and by Shubin (whose work is the first application of type II techniques to
the spectral theory of operators), a decisive step in this direction was taken up by M.F.
Atiyah and I. M. Singer. They showed that the type II von Neumann algebra generated
by the regular representation of a discrete group (already considered by Murray and
von Neumann) provides, thanks to the continuous dimension, the necessary tool to
measure the multiplicity of the kernel of an invariant elliptic differential operator on a
Galois covering space. Moreover, they showed that the type II index on the covering
equals the ordinary (type I) index on the quotient manifold. Atiyah then went on, with
W. Schmid, to show the power of this result in the geometric construction of discrete
series representations of semisimple Lie groups.

Motivated by this result and by the second construction of factors by Murray and von
Neumann, namely the group-measure-space construction, I then showed that a foliated
manifold gives rise in a canonical manner to a von Neumann algebra (Chapter I Section
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4). A general element of this algebra is just a random operator in the L2 space of the
generic leaf of the foliation and can thus be seen as an operator-valued function on
the badly behaved leaf space X of the foliation. As in the case of covering spaces
the generic leaf is in general not compact even if the ambient manifold is compact. A
notable first difference from the case of discrete groups and covering spaces is that in
general the von Neumann algebra of a foliation is not of type II. In fact every type
can occur and, for instance, very standard foliations such as the Anosov foliation of
the unit sphere bundle of a compact Riemann surface of genus > 1 give a factor of
type III1. This allows one to illustrate by concrete geometric examples the meaning
of type I, type II, type IIIλ . . . and we shall do that as early as Section 4 of Chapter
I. Geometrically the reduction from type III to type II amounts to the replacement of
the initial noncommutative space by the total space of an R∗+ principal bundle over it.

We shall see much later (Chapter III Section 6) the deep relation between the flow of
weights and the Godbillon-Vey class for codimension-one foliations.

The second notable difference is in the formulation of the index theorem, which, as in
Atiyah’s case, uses the type II continuous dimensions as the key tool. For foliations one
needs first to realize that the type II Radon measures, i.e. the traces on the C∗-algebra
of the foliation (cf. below) correspond exactly to the holonomy invariant measures.
Such measures are characterized (cf. Chapter I Section 5) by a de Rham current, the
Ruelle-Sullivan current, and the index formula for the type II index of a longitudinal
elliptic differential operator now involves the homology class of the Ruelle -Sullivan
current. In contrast to the case of covering spaces this homology class is in general
not even rational; the continuous dimensions involved can now assume arbitrary real
values, and the index is not related to an integer-valued index.

In the case of measured foliations the continuous dimensions acquire a very clear geo-
metric meaning. First, a general projection belonging to the von Neumann algebra of
the foliation yields a random Hilbert space, i.e. a measurable bundle of Hilbert spaces
over the badly behaved space X of leaves of the foliation. Next, any such random
Hilbert space is isomorphic to one associated to a transversal as follows: the transver-
sal intersected with a generic leaf yields a countable set; the fiber over the leaf is then
the Hilbert space with basis this countable set. Finally, in the above isomorphism,
the transverse measure of the transversal is independent of any choices and gives the
continuous dimension of the original projection. One can then formulate the index the-
orem independently of von Neumann algebras, which we do in Section 5 of Chapter I.
In simple cases where the ergodic theorem applies, one recovers the transverse measure
of a transversal as the density of the corresponding discrete subset of the generic leaf,
i.e. as the limit of the number of points of this subset over increasingly large volumes.
Thus the Murray and von Neumann continuous dimensions bear the same relation to
ordinary dimensions as (continuous) densities bear to the counting of finite sets.
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Figure 1. A dart and a kite

Figure 2. A star patch in a tiling ([246])

In order to get some intuitive idea of what the generic leaf of a foliation can be like, as
well as its space X of leaves (at this level of measure theory) one can consider the space
of Penrose tilings of the plane (or Penrose universes). After the discovery of aperiodic
tilings of the plane, the number of required tiles was gradually reduced to two.

Given the two basic tiles: the Penrose kites and darts of Figure 1, one can tile the
plane with these two tiles (with a matching condition on the colors of the vertices)
but no such tiling is periodic. Two tilings are called identical if they are carried into
each other by an isometry of the plane. Examples of non-identical tilings are given
by the star tiling of Figure 2 and the cartwheel tiling of Figure 3. The set X of all
nonidentical tilings of the plane by the above two tiles is a very strange set because of
the following:

“Every finite patch of tiles in a tiling by kites and darts does occur, and infinitely many
times, in any other tiling by the same tiles”.
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Figure 3. A cartwheel patch in a tiling ([246])

This means that it is impossible to decide locally with which tiling one is dealing.
Any pair of tilings, such as those of Figures 2 and 3, can be matched on arbitrarily
large patches. When analyzed with classical tools the space X appears pathological,
and the usual tools of measure theory or topology give poor results: the only natural
topology on the set X is the coarse topology with ∅ and X as the only open sets, and
a similar result holds in measure theory. In fact one can go even further and show
that the effective cardinality of the set X is strictly larger than the continuum (cf.
Appendix C of Chapter I). The natural first reaction to such a space X is to dismiss
it as pathological. Our thesis in this book is that X only looks pathological because
one tries to understand it with classical tools whereas, even as a set, X is inherently
of quantum mechanical nature.

What we mean by this, and we shall fully justify it in Chapters I and II, is that all
the pathological properties of X disappear if we analyse it using, instead of the usual
complex-valued functions, q-number or operator-valued functions. Equivalently one
can write (in many ways) the space X as a quotient of an ordinary well behaved space
by an equivalence relation. For instance the space Y of pairs (tiling, tile belonging to
the tiling), is well behaved and possesses an obvious equivalence relation with quotient
X. One could also use in a similar manner the group of isometries of the plane. All
these constructions yield equivalence relations, or better, groupoids or pre-equivalence
relations in the sense of Grothendieck. The noncommutative algebra is then the con-
volution algebra of the groupoid.
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It is fashionable among mathematicians to despise groupoids and to consider that only
groups have an authentic mathematical status, probably because of the pejorative suf-
fix oid. To remove this prejudice we start Chapter I with Heisenberg’s discovery of
quantum mechanics. The reader will, we hope, realise there how the experimental re-
sults of spectroscopy forced Heisenberg to replace the classical frequency group of the
system by the groupoid of quantum transitions. Imitating for this groupoid the con-
struction of a group convolution algebra, Heisenberg rediscovered matrix multiplication
and invented quantum mechanics.

In the case of the space X of Penrose tilings the noncommutative C∗-algebra which
replaces the commutative C∗-algebra of continuous functions on X has trivial center
and a unique trace. The corresponding factor of type II which describes X from the
measure theoretic point of view has a natural subfactor of Jones index (2 cos π/5)2 (cf.
Chapter V Section 10).

Before we pass to the natural extension of topology to noncommutative spaces we
need to describe its role in noncommutative measure theory. One crucial use of the
(local) compactness of an ordinary space X is the Riesz representation theorem. It
extends the construction of the Lebesgue integral, starting from an arbitrary positive
linear form on the algebra of continuous functions over the space X. This theorem
extends as follows to the noncommutative case. First, the involutive algebras (over
C) of complex-valued functions over compact spaces are, by Gel’fand’s fundamental
result, exactly the commutative C∗-algebras with unit. Moreover, this establishes a
perfect duality between the category of compact (resp. locally compact) spaces and
continuous (resp. proper and continuous) maps and the category of unital C∗-algebras
and ∗-homomorphisms (resp. not necessarily unital).

The algebraic definition of a C∗-algebra turns out to be remarkably simple and to make
no use of commutativity. One is used to introducing C∗-algebras as involutive Banach
algebras for which the following equality holds:

‖x∗x‖ = ‖x‖2

for any element x. But this hides an absolutely crucial feature by letting one believe
that, as in a Banach algebra, there is freedom in the choice of the norm. In fact if an
involutive algebra is a C∗-algebra it is so for a unique norm, given for any x by

‖x‖ = (Spectral radius of x∗x)1/2 .

The general tools of functional analysis show that C∗-algebras constitute the natural
framework for noncommutative Radon measure theory. Thus, for instance, the ele-
ments of a C∗-algebra which are of the form x∗x constitute a closed convex cone, the
cone of positive elements of the C∗-algebra. Any element of the dual cone, i.e. any
positive linear form, yields by the Gel’fand-Naimark-Segal construction a Hilbert space
representation of the C∗-algebra. This bridges the gap with noncommutative measure
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theory, i.e. von Neumann algebras. Indeed, the positive linear form extends by conti-
nuity to the von Neumann algebra generated in the above Hilbert space representation.
Moreover, the remarkable up-down theorem of G. Pedersen asserts that any selfadjoint
element of the von Neumann algebra is obtained by monotone limits (iterated twice)
of “continuous functions” i.e. of elements of the C∗-algebra.

This construction of measures from positive linear forms on C∗-algebras plays an im-
portant role in the case of foliated manifolds where, as we already mentioned, the
traces on the C∗-algebra of the foliation correspond exactly to the holonomy invariant
transverse measures. It also plays a crucial role in quantum statistical mechanics in
formulating what a state of the system is in the thermodynamic limit: exactly a posi-
tive normalized linear form on the C∗-algebra of observables. The equilibrium or Gibbs
states are then characterized by the Kubo-Martin-Schwinger condition as revealed by
Haag, Hugenholtz, and Winnink (cf. Chapter I Section 2). The relation between this
“KMS” condition and the modular operator of Tomita’s Hilbert algebras, discovered
by M. Takesaki and M. Winnink, remains one of the deepest points of contact between
physics and pure mathematics.

2. Topology and K-theory (Chapter II)

In the above use of C∗-algebras as a tool to construct measures (in the commuta-
tive or the noncommutative case) the fine topological features of the spaces under
consideration are not relevant and do not show up. But, by Gel’fand’s theorem any
homeomorphism invariant of a compact space X is an algebraic invariant of the C∗-
algebra C(X) of continuous functions on X so that one should be able to recover it
purely algebraically.

The first invariant for which this was done is the Atiyah-Hirzebruch topological K-
theory. Indeed, the abelian group K(X) generated by stable isomorphism classes of
complex vector bundles over the compact topological space X has a very simple and
natural description in terms of the C∗-algebra C(X). By a result of Serre and Swan,
it is the abelian group generated by stable isomorphism classes of finite projective
modules over C(X), a purely algebraic notion, which moreover makes no use of the
commutativity of C(X). The key result of topological K-theory is the periodicity
theorem of R. Bott. The original proof of Bott relied on Morse theory applied to
loop spaces of Lie groups. Thanks to the work of Atiyah and Bott, the result, once
formulated in the algebraic context, has a very simple proof and holds for any (not
necessarily commutative) Banach algebra and in particular for C∗-algebras.

The second invariant which was naturally extended to the noncommutative and alge-
braic framework is K-homology, which appeared as a result of the influence of the work
of Atiyah and Singer on the index theorem for elliptic operators on a compact manifold
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and was developed by Atiyah, Kasparov, Brown, Douglas, and Fillmore. The pseudo-
differential calculus on a compact manifold, as used in the proof of the index theorem,
gives rise to a short exact sequence of C∗-algebras which encodes in an algebraic way
the information given by the index map. The last term of the exact sequence is the
commutative algebra of continuous functions on the unit sphere of the cotangent space
of the manifold, and its K-theory group is the natural receptacle for the symbol of the
elliptic operator. The first term of the exact sequence is a noncommutative C∗-algebra,
independent of the context: the algebra of compact operators in a Hilbert space with
a countable basis. This unique C∗-algebra is called the elementary C∗-algebra and is
the only separable infinite-dimensional C∗-algebra which admits (up to unitary equiv-
alence) only one irreducible unitary representation. Its K-theory group is equal to the
additive group of relative integers and is the natural receptacle for indices of Fredholm
operators. The connecting map of the exact sequence of pseudodifferential calculus is
the index map of Atiyah and Singer.

In their work on extension theory, L. Brown, R. Douglas, and P. Fillmore showed how to
associate to any compact space X an abelian group classifying short exact sequences of
the above type, called extensions of C(X) by the elementary C∗-algebra. They proved
that the invariant obtained is K-homology, i.e. the homology theory associated by
duality to K-theory in the odd case. The even case of that theory was treated by M.F.
Atiyah and G. G. Kasparov.

The resulting theory was then extended to the noncommutative case, i.e. with C(X)
replaced by a noncommutative C∗-algebra, thanks to the remarkable generalisation by
D. Voiculescu of the Weyl-von Neumann perturbation theorem. This allowed the proof
that classes of extensions (by the elementary C∗-algebra) form a group, provided the
original C∗-algebra is nuclear. The class of nuclear C∗-algebras was introduced by M.
Takesaki in his work on tensor products of C∗-algebras. A C∗-algebra is nuclear if and
only if its associated von Neumann algebra is hyperfinite, in any unitary representation.
This class of C∗-algebras covers many, though not all, interesting examples.

In the meantime considerable progress had been made by topologists concerning the
use, in surgery theory of non-simply-connected manifolds M , of algebraic invariants of
the group ring of the fundamental group. In 1965, S. Novikov conjectured the homotopy
invariance of numbers of the form 〈Lx, [M ]〉 where L is the characteristic class of
the Hirzebruch signature theorem, and x a product of one-dimensional cohomology
classes. His conjecture was proved independently by Farrell-Hsiang and Kasparov
using geometric methods.

The higher signatures of manifolds M with fundamental group Γ are the numbers
of the form 〈L ψ∗(y), [M ]〉, where y is a cohomology class on BΓ and ψ : M→BΓ
the classifying map. The original conjecture of Novikov is the special case Γ abelian.
In 1970 Mishchenko constructed the equivariant signature of non-simply-connected
manifolds as an element of the Wall group of the group ring. He proved that this
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signature is a homotopy invariant of the manifold. Lusztig gave a new proof of the result
of Farrell-Hsiang and Kasparov based on families of elliptic operators and extended it
to the symplectic groups. Following this line, and by a crucial use of C∗-algebras,
Mishchenko was able to prove the homotopy invariance of higher signatures under the
assumption that the classifying space BΓ of the fundamental group Γ is a compact
manifold with a Riemannian metric of non-positive curvature.

The reason why C∗-algebras play a key role at this point is the following: The Wall
group of an involutive algebra (such as a group ring) classifies Hermitian quadratic
forms over that algebra, and is in general far more difficult to compute than the K-
group which classifies finite projective modules. However, as shown by Gel’fand and
Mishchenko, the two groups coincide when the involutive algebra is a C∗-algebra. This
equality does not hold for general Banach involutive algebras. As the group ring of
a discrete group can be completed canonically to a C∗-algebra one thus obtains the
equivariant signature of a non-simply-connected manifold as an element of the K-group
of this C∗-algebra.

Mishchenko went on and used the dual theory, namely K-homology, in the guise of
Fredholm representations of the fundamental group, to obtain numerical invariants by
pairing with K-theory.

Thus the K-theory of the highly noncommutative C∗-algebra of the fundamental group
played a key role in the solution of a classical problem in the theory of non-simply-
connected manifolds.

The K-theory of C∗-algebras, the extension theory of Brown, Douglas, and Fillmore,
the L-theory of Atiyah, and the Fredholm representations of Mishchenko are all spe-
cial cases of the bivariant KK-theory of Kasparov. With his theory, whose main tool
is the intersection product, Kasparov proved the homotopy invariance of the exten-
sion theory and solved the Novikov conjecture for discrete subgroups of arbitrary Lie
groups. Together with the breakthrough of Pimsner and Voiculescu in the computa-
tion of K-groups of crossed products the Kasparov theory played a decisive role in the
understanding of K-groups of noncommutative C∗-algebras.

In Chapter II we shall use a variant of Kasparov’s theory, the deformation theory
(Chapter II Appendix B) due to N. Higson and myself, which succeeds in defining
the intersection product in full generality for extensions. It also has the advantage of
having an easily defined product (cf. Appendix B) and of being exact in full generality.
Nevertheless we shall need KK-theory later and have gathered its main results in
Appendix A of Chapter IV.

The importance of the K-group as an invariant of noncommutative C∗-algebras was
already clear from the work of Bratteli and Elliott on the classification of C∗-algebras
which are inductive limits of finite-dimensional algebras. They showed that the pointed
K-group, with its natural order, is a complete invariant in the above class of algebras,
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and Effros, Chen, and Handelman completely characterized the pointed ordered groups
thus obtained. As a simple example where this applies consider (as above) the space X
of Penrose tilings and the noncommutative C∗-algebra which replaces, in this singular
example, the algebra C(X). This C∗-algebra turns out to be an inductive limit of
finite-dimensional algebras and the computation of its K-group (Chapter II Section 3)
gives the abelian group Z2 ordered by the half-plane determined by the golden ratio.
The space X is thus well understood as a “0-dimensional” noncommutative space.

In order to be able to apply the above tools of noncommutative topology to spaces
such as the space of leaves of a foliation we need to describe more carefully how the
topology of such spaces give rise to a noncommutative C∗-algebra.

This is done in great detail in Chapter II with a lot of examples. The general principle
is, instead of taking the quotient of a space by an equivalence relation, to retain this
equivalence relation as the basic information. An important intermediate notion which
emerges is that of smooth groupoid. It plays the same role as the pre-equivalence
relations of Grothendieck. The same noncommutative space can be presented by sev-
eral equivalent smooth groupoids. The corresponding C∗-algebras are then strongly
Morita equivalent in the sense of M. Rieffel and have consequently the same K-theory
invariants (cf. Chapter II Appendix A).

Even in the context of ordinary manifolds smooth groupoids are quite pertinent. To
illustrate this point we give in Chapter II Section 5 a proof of the Atiyah-Singer index
theorem. It follows directly from the construction of the tangent groupoid of an arbi-
trary manifold, a geometric construction which encodes the naive interpretation of a
tangent vector as a pair of points whose distance is comparable to a given infinitesimal
number ε.

Smooth groupoids contain manifolds, Lie groups, and discrete groups as special cases.
The smooth groupoid which corresponds to the space of leaves of a foliation is the
holonomy groupoid or graph of the foliation, first considered by R. Thom. The smooth
groupoid which corresponds to the quotient of a manifold by a group of diffeomorphisms
is the semidirect product of the manifold by the action of the group.

Smooth groupoids are special cases of locally compact groupoids and J. Renault has
shown how to associate a C∗-algebra to the latter. The advantage of smoothness,
however, is that, as in the original case of foliations, the use of 1/2-densities removes
any artificial choices in the construction.

We define the K-theory of spaces, such as the space of leaves of a foliation, as the K-
theory of the associated C∗-algebra, i.e. here the convolution algebra of the holonomy
groupoid. In the special case of fibrations the leaf space is a manifold and the above
definition of its K-theory coincides with the usual one. The first role of the K-group
is as an invariant of the leaf space, unaffected by modifications of the foliation such
as leafwise surgery, which do not modify the space of leaves. Thus, for instance, for
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the Kronecker foliations dy = θdx of the two-torus one gets back the class of θ modulo
PSL(2,Z) from the K-theory of the leaf space. But the main role of the K-group is
as a receptacle for the index of families.

Given a space X such as the leaf space of a foliation, an example of a family (D`)`∈X

of elliptic operators parametrized by X is given by a longitudinal elliptic differential
operator D on the ambient manifold: it restricts to each leaf ` as an elliptic operator
D`. In terms of the holonomy groupoid of the foliation this provides us with a functor
to the category of manifolds and elliptic operators. The general notion of family is
defined in these terms. It is a general principle of great relevance that the analytical
index of such families (Dx)x∈X makes sense as an element of the K-group of the pa-
rameter space (defined as above through the associated C∗-algebra). Thus the index
of a longitudinal elliptic operator now makes sense, irrespective of the existence of a
transverse measure, as an element of the K-group of the leaf space. Similarly, the
index of an invariant elliptic operator on a Galois covering of a manifold makes sense
as an element of the K-group of the C∗-algebra of the covering group. Moreover, the
invariance properties, such as the homotopy invariance of the equivariant signature
(due to Mishchenko and Kasparov) or the vanishing of the Dirac index in the presence
of positive scalar curvature (due to Gromov, Lawson, and Rosenberg) do hold at the
level of the K-group.

The obvious problem then is to compute these K-groups in geometric terms for the
above spaces. Motivated by the case of foliations where closed transversals give idempo-
tents of the C∗-algebra, I was led with P. Baum and G. Skandalis to the construction, in
the above generality of smooth groupoids G, of a geometrically defined group K∗

top(G)
and of an additive map µ from this group to the K-group of the C∗-algebra. So far each
new computation of K-groups confirms the validity of the general conjecture according
to which the map µ is an isomorphism.

Roughly speaking, the injectivity of µ is a generalized form of the Novikov higher sig-
nature conjecture, while the surjectivity of µ is a general form of the Selberg principle
on the vanishing of orbital integrals of non-elliptic elements in the theory of semi-
simple Lie groups. It also has deep connections with the zero divisor conjecture of
discrete group theory. Chapter II contains a detailed account of the construction of
the geometric group, of the map µ and their properties. Besides the cases of discrete
groups, quotients of manifolds by group actions, and foliations, we also treat carefully
the case of Lie groups where the conjecture, intimately related to the work of Atiyah
and Schmid, has been proved, in the semisimple case, by A. Wassermann.

The general problem of injectivity of the analytic assembly map µ is an important
reason for developing the analogue of de Rham homology for the above spaces, which
is done in Chapter III.
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3. Cyclic cohomology (Chapter III)

In 1981 I discovered cyclic cohomology and the spectral sequence relating it to Hochschild
cohomology ([100]). My original motivation came from the trace formulas of Helton-
Howe and Carey-Pincus for operators with trace-class commutators. These formulae
together with the operator theoretic definition of K-homology discussed above, lead
naturally to cyclic cohomology as the natural receptacle for the Chern character (not
the usual one but the Chern character in K-homology). Motivated by my work, J.-
L. Loday, C. Kassel and D. Quillen developed the dual theory, cyclic homology, and
related it to the homology of the Lie algebra of matrices. This result was obtained inde-
pendently by B.Tsygan who, not having access to my work, discovered cyclic homology
from a completely different motivation, that of additive K-theory.

We shall come back in Chapter IV to cyclic cohomology as the natural receptacle for
the Chern character of K-homology classes and to the quantized differential calculus.
In Chapter III we develop both the algebraic and analytic properties of cyclic coho-
mology with as motivation the construction of K -theory invariants, generalizing to
the noncommutative case the Chern-Weil theory.

It is worthwhile to consider the most elementary example of that theory, namely the
Gauss-Bonnet theorem. Thus, let Σ⊂R3 be a smooth closed surface embedded in
three-space. Let us recall the notion of curvature.
Through a point P of the surface, one can draw the normal to the surface and, to
reduce dimension by 1, cut the surface by a plane containing the normal. One obtains
in this way a curve which, at the point P , has a curvature: the inverse of the radius of
the circle, with center on the normal, which best fits the curve at the point P . Clearly
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the curvature of the above curve depends upon the plane containing the normal, and
an old result of Euler asserts that there are two extreme values K1 and K2 for this
curvature, attained for two perpendicular planes. Moreover, given any plane containing
the normal, and making an angle θ with the plane corresponding to K1, the curvature
of its intersection with the surface is

Kθ = K1 cos2 θ + K2 sin2 θ.

The Gauss-Bonnet theorem then asserts that, provided Σ is oriented, the integral over
Σ of the product K1K2 of the principal curvatures is equal to 2π(2 − 2g), where g is
an integer depending only upon the topology of Σ, and called the genus.
One remarkable feature of this result is that the above integral has an extraordinary
property of stability. One has indeed at one’s disposal an infinite number of parameters
to modify the embedding of Σ in R3, say by making an arbitrary small bump on the
surface. The theorem nevertheless asserts that, in doing so, one will introduce equal
amounts of positive and negative curvature (here on the top of the bump and the sides
of it, respectively).

One can of course give a rather straightforward proof of the above theorem by invoking
the concept of degree of a map in differential topology, but we claim that, once con-
sidered from the algebraic point of view, the above idea of stability has considerable
potential, as we shall now see. By the algebraic point of view I mean that we let A
be the algebra of all smooth functions on Σ, i.e. A = C∞(Σ), and we consider on A
the following trilinear form: τ(f 0, f 1, f 2) =

∫
Σ

f 0df 1∧df 2. In more geometric terms
this trilinear form associates to every map f : Σ→R3 given by the three functions
f 0, f 1, f 2 on Σ, the oriented volume bounded by the image. This trilinear form pos-
sesses the following compatibility, reminiscent of the properties of a trace, with the
algebra structure of A:

1) τ(f 1, f 2, f 0) = τ(f 0, f 1, f 2) ∀f j ∈ A

2) τ(f 0f 1, f 2, f 3)− τ(f 0, f 1f 2, f 3) + τ(f 0, f 1, f 2f 3)− τ(f 3f 0, f 1, f 2) , ∀f j ∈ A

We can now see the remarkable stability of the integral formula of the Gauss-Bonnet
theorem as a special case of a general algebraic lemma, valid for noncommutative
algebras. It simply asserts that if A is an algebra (over R or C) and τ a trilinear form
on A with properties 1) and 2), then for each idempotent E = E2 ∈ A the scalar
τ(E, E, E) remains constant when E is deformed among the idempotents of A.

The proof of this statement is simple; the idea is that since the deformation of E is
isospectral (all idempotents have spectrum ⊂{0, 1}) one can find X ∈ A with Ė =
[X,E] (where Ė is the time derivative of E) and algebraic manipulations using 1) and
2) then show that the time derivative of τ(E,E, E) is zero.
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It is quite important that this lemma does not make use of commutativity, even when
we apply it in the above case. Indeed, if we apply it to A = C∞(Σ) we get nothing
of interest since as Σ is connected there are no nontrivial (i.e. different from 0 and
1) idempotents in A. We may however, use M2(A) = A⊗M2(C), the algebra of 2×2
matrices with entries in A. We need first to extend the functional τ to M2(A) and this
is done canonically as follows:

τ̃(f 0⊗µ0, f 1⊗µ1, f 2⊗µ2) = τ(f 0, f 1, f 2) Tr(µ0µ1µ2)

where f j ∈ A, µj ∈ M2(C) and Tr is the ordinary trace on M2(C). One then checks
easily that properties 1) and 2) still hold for the extended τ̃ . (Note however, at this
point, that the original τ did fulfill a stronger property, namely τ(fσ(0), fσ(1), fσ(2)) =
ε(σ) τ(f 0, f 1, f 2) for any permutation σ, but that due to the cyclicity of the trace only
the property 1) survives after passing to τ̃ .) The next step is to find an interesting
idempotent E ∈ M2(A). For this one uses the fundamental but straightforward fact:
An idempotent of M2(C

∞(Σ)) is exactly a smooth map from Σ to the Grassmannian of
idempotents of M2(C). Since the latter Grassmannian is, using selfadjoint idempotents
to simplify, exactly the two sphere S2, we see that the normal map of the embedding of
Σ in R3 provides us with a specific idempotent E ∈ M2(A) to which the above stability
lemma applies.

In fact the above lemma shows that, given a trilinear form τ with properties 1) and 2)
on an algebra A, the formula

E→τ(E, E,E)

defines an invariant of K-theory, i.e. an additive map of K0(A) to the complex numbers.
This follows because any finite projective module over an algebra A is the image of
an idempotent E belonging to a matrix algebra over A. The homotopy invariance
provided by the lemma allows one to eliminate the ambiguity of the choice of E in the
stable isomorphism class of finite projective modules x ∈ K0(A).

The above simple algebraic manipulations extend easily to higher dimensions, where
conditions 1) and 2) have obvious analogues. The analogue of 1) in dimension n is

τ(f 1, f 2, . . . , fn, f 0) = (−1)n τ(f 0, . . . , fn) ∀f j ∈ A
where the − sign for n odd accounts for the oddness of the cyclic permutation in that
case.

The analogue of 2) is just the vanishing of bτ , where

bτ(f 0, . . . , fn+1) =
n∑

j=0

(−1)j τ(f 0, . . . , f jf j+1, . . . , fn+1)+(−1)n+1 τ(fn+1f 0, f 1, . . . , fn)

One checks that for n = 0 this vanishing characterizes the traces on A. An (n + 1)-
linear form on an algebra A satisfying 1) and 2) is called a cyclic cocycle of dimension n.
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The above lemma and its proof easily extend to the general case: an even-dimensional
cyclic cocycle τ gives an invariant of K-theory by the formula

E→τ(E, E, . . . , E).

This immediately implies the construction of the usual Chern character of vector bun-
dles for manifolds. Indeed, any homology class is represented by a closed de Rham
current, i.e. by a continuous linear form C on differential forms, which vanishes on
coboundaries. One checks as above that the following formula then defines a cyclic
cocycle (of the same dimension as the current) on the algebra A of smooth functions
on the manifold:

τ(f 0, . . . , fn) = 〈C, f 0 df1∧ · · · ∧dfn〉 ∀f j ∈ A.

Up to a normalization factor the above pairing of τ with the K-group of A gives the
usual Chern character for a vector bundle E, the scalar 〈Ch(E), C〉.
So far we have just reformulated algebraically the Chern-Weil construction, dispensing
completely with any commutativity assumption. The remarkable fact is that the highly
noncommutative group rings, i.e. the convolution algebras CΓ of discrete groups Γ,
possess very nontrivial cyclic cocycles associated to the ordinary group cocycles on Γ.
The group cohomology H∗(Γ,C) is the cohomology of the classifying space BΓ of Γ,
the (unique up to homotopy) quotient of a contractible topological space on which Γ
acts freely and properly. It may be described purely algebraically in terms of group
cocycles on Γ: Given an integer n, an n-group cocycle on Γ (with complex coefficients)
is a function of n variables gi ∈ Γ which fulfills the condition

n+1∑
j=0

(−1)j c(g1, . . . , gj gj+1, . . . , gn+1) = 0

where for j = 0 one takes c(g2, g3, . . . , gn+1) and for j = n+1 one takes (−1)n+1 c(g1, . . . , gn)
as the corresponding terms in the sum. Moreover, such cocycles can be normalized so
as to vanish if any of the gi’s or their product g1 . . . gn is the unit element of Γ.

Now the key observation is that such a normalized group cocycle uniquely defines a
corresponding cyclic cocycle of the same dimension n, on the group ring CΓ. Since the
latter is obtained by linearizing Γ it is enough to give the value of the cyclic cocycle
on (n + 1)-tuples (g0, g1, . . . , gn) ∈ Γn+1. The rule is the following:

τ(g0, g1, . . . , gn) = 0 if g0g1 · · · gn 6= 1

τ(g0, g1, . . . , gn) = c(g1, . . . , gn) if g0g1 · · · gn = 1.

Observe that the conditions on the right are invariant under cyclic permutations, since
these do not alter the conjugacy class of the product g0 · · · gn.
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This formula was initially found in [102] and later extended by M. Karoubi and D.
Burghelea, who computed the cyclic cohomology of group rings (cf. Chapter III Section
2).

We have used in a crucial manner the above cyclic cocycles on group rings, in collabo-
ration with H. Moscovici, to prove the Novikov conjecture for the class of all hyperbolic
groups in the sense of Gromov (cf. Chapter III Section 5). They play, in the noncom-
mutative case, the role that de Rham currents play in the commutative case on the
Pontryagin dual of the discrete group Γ.

More precisely, when Γ is abelian, Lusztig, in his proof of the Novikov conjecture, has
shown how to obtain it from the Atiyah-Singer index theorem for families of elliptic
operators, with parameter space X the Pontryagin dual of Γ. The idea is that each
element χ ∈ X, being a character of the group Γ, determines a flat line bundle on
any manifold M with fundamental group Γ. Twisting the signature operator of the
compact oriented manifold M by such flat bundles, one obtains a family (Dχ)χ∈X of
elliptic operators, whose Atiyah-Singer index (an element of K(X)) is a homotopy
invariant of M .

Next, the Atiyah-Singer index theorem for families, as formulated in terms of the coho-
mology of X rather than K-theory, gives the homotopy invariance of Novikov’s higher
signatures. Note that it is crucial here to use the Chern character, Ch : K(X)→H∗(X),
to express the index formula in cohomology. In fact, even when X is a single point,
the K-theory formulation of the Atiyah-Singer index theorem only becomes easy to
use after translation, using the Chern character, into cohomological terms.

The role of cyclic cohomology in the context of the Novikov conjecture is exactly the
same. The space X, the Pontryagin dual of Γ, no longer exists when Γ is noncommuta-
tive, but the commutative C∗-algebra C(X) is replaced by the group C∗-algebra C∗(Γ)
which makes perfectly good sense. This C∗-algebra contains, as a dense subalgebra of
fairly smooth elements, the group ring CΓ. The index of the above family of elliptic
operators still makes perfectly good sense and is the element of the K-group of C∗(Γ)
given by the Mishchenko-Kasparov signature of the covering space of M . In fact it can
even be obtained as an element of the K-group of the group ring RΓ of Γ over the
ground ring R of infinite matrices of rapid decay.

Moreover, when paired with the above cyclic cocycle on CΓ (extended toRΓ) associated
to a given group cocycle, the index of the signature family gives exactly the Novikov
higher signature associated to the group cohomology class of the cocycle. This follows
from a general index theorem due to Moscovici and myself (Section 4 of Chapter III)
for elliptic operators on covering spaces. With such a result it would appear at first
sight that one has proved the Novikov conjecture in full generality. The difficulty is
that the homotopy invariance of the signature index is only known at the level of the
K-group of the C∗-algebra C∗(Γ) but not for the K-group of the ring RΓ.
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One way to overcome this is to construct an intermediate algebra playing the role of
the algebra of smooth functions on X, which on the one hand is large enough to have
the same K-theory as C∗(Γ) and on the other small enough so that the cyclic cocycle
still makes sense. This is achieved, by the analogue of the Harish-Chandra-Schwartz
space, for hyperbolic groups (Section 5 of Chapter III).

We shall give in Section 6 of Chapter III another striking application of cyclic coho-
mology and K-theory invariants to the Godbillon-Vey class, along the lines of earlier
work of S. Hurder. Using cyclic cohomology as a key tool, we shall show that the
Godbillon-Vey class (the simplest instance of Gel’fand-Fuchs cohomology class) of a
codimension-one foliation yields a pairing with complex values between the K-group
of the leaf space (defined as above using the C∗-algebra of the foliation) and the flow
of weights mod(M) of the von Neumann algebra of the foliation.

Together with the construction of the analytic assembly map of Chapter II this result
immediately implies that if the Godbillon-Vey class of the foliation does not vanish
then the flow of weights mod(M) admits a finite invariant probability measure. In
other words the (virtual) modular spectrum is a (virtual) subgroup of finite covolume
in R∗+ and one is in particular in the type III situation, the previous result of Hurder.

This shows that in the noncommutative framework there is a very intricate relation be-
tween differential geometry and measure theory, where the nonvanishing of differential
geometric quantities implies the type III behaviour at the measure theoretic level. In
fact, as we shall see, one can, thanks to cyclic cohomology, give the following formula
for the Godbillon-Vey class as a 2-dimensional closed current GV on the leaf space
(i.e. in our algebraic terms as a 2-dimensional cyclic cocycle on the noncommutative
algebra of the foliation)

GV = iH [Ẋ].

It comes from the interplay between the transverse fundamental class [X] of the leaf
space X and the canonical time evolution σt of the von Neumann algebra of the fo-
liation. The transverse fundamental class [X] of the leaf space X is given by a one-
dimensional cyclic cocycle which corresponds to integration of transverse 1-forms. The
time evolution σt of the von Neumann algebra of the foliation is the algebraic coun-
terpart of its noncommutativity and is one of the great surprises of noncommutative
measure theory (cf. Chapter I).

Now these two pieces of data, [X] and σt, are in general slightly incompatible in that
[X] is not in general static, i.e. invariant under σt. This is not too bad, however, since
one has

d2

dt2
σt[X] = 0.
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It follows then, as in ordinary differential geometry, that if one contracts the closed
current

[Ẋ] =
d

dt
σt[X]

with the derivation H generating the one-parameter group σt, then one obtains a 2-
dimensional closed current. The fundamental equation is then

GV = iH [Ẋ].

It gives a simple example of a general fact: that the leaf space of a foliation can have
higher cohomological dimension than the naive value, the codimension of the foliation.

Using a lot more analysis all this is extended to higher Gelfand-Fuchs cohomology, and
many geometric applications are given. They all show that provided one uses the tools
of noncommutative geometry one can indeed think of a foliated manifold as a bundle of

leaves over the noncommutative leaf space. For instance, we show that if the Â-genus
of a manifold V does not vanish, then V does not admit a foliation with leaves of
strictly positive scalar curvature, a result which is easy for fibrations by a Fubini-type
argument and a well known result of A. Lichnerowicz.

4. The quantized calculus (Chapter IV)

The basic new idea of noncommutative differential geometry is a new calculus which
replaces the usual differential and integral calculus.

This new calculus can be succinctly described by the following dictionary. We fix
a pair (H, F ), where H is an infinite-dimensional separable Hilbert space and F is a
selfadjoint operator of square 1 in H. Giving F is the same as giving the decomposition
of H as the direct sum of the two orthogonal closed subspaces

{ξ ∈ H ; Fξ = ±ξ}.

Assuming, as we shall, that both subspaces are infinite-dimensional, we see that all
such pairs (H, F ) are unitarily equivalent. The dictionary is then the following:
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CLASSICAL QUANTUM

Complex variable Operator in H

Real variable Selfadjoint operator in H

Infinitesimal Compact operator in H

Infinitesimal Compact operator in H whose characteristic
of order α values µn satisfy µn = O(n−α), n→∞

Differential of real
or complex variable df = [F, f ] = Ff − fF

Integral of infinitesimal Dixmier trace
of order 1 Trω(T )

Let us comment in some detail on each entry of the dictionary.

The range of a complex variable corresponds to the spectrum Spec(T ) of an operator.
The holomorphic functional calculus for operators in Hilbert space gives meaning to
f(T ) for any holomorphic function f defined on Spec(T ) and only holomorphic func-
tions act in that generality. This reflects the need for holomorphy in the theory of
complex variables. For real variables the situation is quite different. Indeed, when the
operator T is selfadjoint, f(T ) makes sense for any Borel function f on the line.

The role of infinitesimal variables is played by the compact operators T in H. First
K = {T ∈ L(H) ; T compact} is a two-sided ideal in the algebra L(H) of bounded
operators in H, and it is the largest nontrivial ideal. An operator T in H is compact
iff for any ε > 0 the size of T is smaller than ε except for a finite-dimensional subspace
of H. More precisely, one lets, for n ∈ N,

µn(T ) = Inf{‖T −R‖ ; R operator of rank ≤ n}
where the rank of an operator is the dimension of its range. Then T is compact iff
µn(T )→0 when n→∞. Moreover, the µn(T ) are the eigenvalues, ordered by decreasing
size, of the absolute value |T | = (T ∗T )1/2 of T . The rate of decay of the µn(T ) as
n→∞ is a precise measure of the size of the infinitesimal T .

In particular, for each positive real α the condition

µn(T ) = O(n−α) n→∞
(i.e. there exists C < ∞ such that µn(T ) ≤ Cn−α ∀n ≥ 1) defines the infinitesimals
of order α. They form a two-sided ideal, as is easily checked using the above formula
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for µn(T ). Moreover, if T1 is of order α1 and T2 of order α2, then T1T2 is of order
α1 + α2.

The differential df of a real or complex variable, usually given by the differential geo-
metric expression

df =
∑

∂f/∂xi dxi

is replaced in the new calculus by the commutator

df = [F, f ].

The passage from the classical formula to the above operator-theoretic one is analogous
to the quantization of the Poisson brackets {f, g} of classical mechanics as commutators
[f, g]. This is at the origin of the name “quantized calculus”. The Leibniz rule d(fg) =
(df)g + f dg still holds. The equality F 2 = 1 is used to show that the differential df
has vanishing anticommutator with F .

The next key ingredient of our calculus is the analogue of integration; it is given by
the Dixmier trace. The Dixmier trace is a general tool designed to treat in a classical
manner data of quantum mechanical nature. It is given as a positive linear form Trω

on the ideal of infinitesimals of order 1, and is a trace:

Trω(ST ) = Trω(TS) ∀T of order 1, S bounded.

In the classical differential calculus it is an important fact that one can neglect all
infinitesimals of order > 1. Similarly, the Dixmier trace does neglect (i.e. vanishes on)
any infinitesimal of order > 1, i.e.

Trω(T ) = 0 if µn(T ) = o(n−1)

where the little o means, as usual, that nµn→0 as n→∞. This vanishing allows con-
siderable simplification to occur, as in the symbolic calculus, for expressions to which
the Dixmier trace is applied.

The value of Trω(T ) is given for T ≥ 0 by a suitable limit of the bounded sequence

1/ log N

N∑
n=0

µn(T ).

It is then extended by linearity to all compact operators of order 1.

In general the above sequence does not converge, so that Trω a priori depends on a
limiting procedure ω. As we shall see, however, in all the applications one can prove
the independence of Trω(T ) on ω. Such operators T will be called measurable. For
instance, when T is a pseudodifferential operator on a manifold it is measurable and
its Dixmier trace coincides with the Manin-Wodzicki-Guillemin residue computed by
a local formula. In general the term residue(T ) for the common value of Trω(T ), T
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measurable, would be appropriate since for T > 0 it coincides with the residue at s = 1
of the Dirichlet series ζ(s) = Tr(T s), s ∈ C, Re(s) > 1.

We have now completed our description of the framework of the quantized calculus. To
use it for a given noncommutative space X we need a representation of the algebra A
of functions on X in the Hilbert space H. The compatibility of this representation with
the operator F is simply that all operators f in H coming from A have infinitesimal
differential

[F, f ] ∈ K ∀f ∈ A.

Such a representation is called a Fredholm module, and these are the basic cycles for
the K-homology of A when A is a C∗-algebra.

To see how the new calculus works and allows operations not possible in distribution
theory we shall start with a simple example. There is a unique way to quantize, in
the above sense, the calculus of functions of one real variable, i.e. for X = R, in a
translation and scale invariant manner. It is given by the representation of functions
as multiplication operators in L2(R), while F is the Hilbert transform. Similarly, for
X = S1 one lets L∞(S1) act on L2(S1) by multiplication, while F is again the Hilbert
transform, given by the multiplication by the sign of n in the Fourier basis (en)n∈Z of
L2(S1), with en(θ) = exp(inθ) ∀θ ∈ S1.

The first virtue of the new calculus is that df continues to make sense, as an operator
in L2(S1), for an arbitrary measurable f ∈ L∞(S1). This of course would also hold if we
were to define df using distribution theory, but the essential difference is the following.
A distribution is defined as an element of the topological dual of the locally convex
vector space of smooth functions, here C∞(S1). Thus only the linear structure on
C∞(S1) is used, not the algebra structure of C∞(S1). It is consequently not surprising
that distributions are incompatible with pointwise product or absolute value. Thus
while, with f nondifferentiable, df makes sense as a distribution, we cannot make any
sense of |df | or powers |df |p as distributions on S1.

Let us give a concrete example where one would like to use such an expression for
nondifferentiable f . Let c be a complex number and let J be the Julia set given by the
complex dynamical system z→z2 + c = ϕ(z). More specifically J is here the boundary
of the set B = {z ∈ C; supn∈N |ϕn(z)| < ∞}. For small values of c like the one chosen
in Figure 5, the Julia set J is a Jordan curve and B is the bounded component of
its complement. Now the Riemann mapping theorem provides us with a conformal
equivalence Z of the unit disk, D = {z ∈ C; |z| < 1} with the inside of B, and by a
result of Carathéodory, the conformal mapping Z extends continuously to the boundary
S1 of D as a homeomorphism, which we still denote by Z, from S1 to J . By a known
result of D. Sullivan, the Hausdorff dimension p of the Julia set is strictly bigger than
1, 1 < p < 2, and is close to 2, for instance, in the example of Figure 5. This shows
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Figure 5. A Julia set

that the function Z is nowhere of bounded variation on S1 and forbids a distribution
interpretation of the naive expression

∫
f(Z)|dZ|p ∀f ∈ C(J)

that would be the natural candidate for the Hausdorff measure on J .
We shall show that the above expression makes sense in the quantized calculus and that
it does give the Hausdorff measure on the Julia set J . The first essential fact is that as
dZ = [F, Z] is now an operator in Hilbert space one can, irrespective of the regularity
of Z, talk about |dZ|: it is the absolute value |T | = (T ∗T )1/2 of the operator T = [F, Z].
This gives meaning to any function h(|dZ|) where h is a bounded measurable function
on R+ and in particular to |dZ|p. The next essential step is to give meaning to the
integral of f(Z)|dZ|p. The latter expression is an operator in L2(S1), and we shall use a
result of hard analysis due to V.V. Peller, together with the homogeneity properties of
the Julia set, to show that the operator f(Z)|dZ|p belongs to the domain of definition
of the Dixmier trace Trω, i.e. is an infinitesimal of order 1. Moreover, if one works
modulo infinitesimals of order > 1 the rules of the usual differential calculus such as

|dϕ(Z)|p = |ϕ′(Z)|p |dZ|p
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are valid and show that the measure

f→Trω(f(Z)|dZ|p) ∀f ∈ C(J)

has the right conformal weight and is a non-zero multiple of the Hausdorff measure.
The corresponding constant governs the asymptotic expansion for the distance, in the
sup norm on S1, between the function Z and restrictions to S1 of rational functions
with at most n poles outside the unit disk.

This example of quantized calculus will be explained in Section 3 of Chapter IV. The
first two sections of this chapter deal with the properties of the usual trace (Section 1)
and the Dixmier trace Trω (Section 2).

In Section 1 we shall use the ordinary trace to evaluate differential expressions such as
f 0 df 1 . . . dfn, where f j ∈ A and (H, F ) is a Fredholm module over A.

The dimension of such modules is measured by the size of the differentials df = [F, f ]
for f ∈ A, i.e. by the growth of the characteristic values of these operators. More
specifically, a Fredholm module (H, F ) over an algebra A (commutative or not) is
called p-summable iff the operators df , f ∈ A, all belong to the Schatten ideal Lp of
operators: T ∈ Lp iff

∑
µn(T )p < ∞. We shall show in Section 1 that the Chern

character of a p-summable Fredholm module over an algebra A can be defined by a
trace formula (in line with earlier works of Helton-Howe and Carey-Pincus) and gives
a cyclic cocycle of dimension n for any given integer n larger than p − 1 and of the
same parity as the Fredholm module. (For a module to be even one requires that the
Hilbert space be Z/2-graded, with F anticommuting with the grading, as required by
general K-homology definitions.) Moreover, the various cyclic cocycles thus obtained
are all images of a single one by the periodicity operator S of cyclic cohomology.
The cyclic cohomology class Ch∗(H, F ) thus obtained has a remarkable property of
integrality, displaying the quantum nature of our calculus. Thus, when pairing this
class Ch∗(H, F ), the Chern character of a Fredholm module over an algebra A, with
the K-group of A one only gets integers:

〈Ch∗(H, F ), K(A)〉⊂Z.

This follows from a simple formula computing the value of the pairing as the index of
a Fredholm operator (Section 1).

In Section 2 we introduce the Dixmier trace and give a general formula, in terms of
the Dixmier trace, for the Hochschild class of the character Ch∗(H, F ) defined above.

The relevance of this class is that, although it is not the whole cohomological informa-
tion contained in the character, it is exactly the obstruction to writing the latter as
the image, by the periodicity operator S of cyclic cohomology, of a lower-dimensional
cyclic cocycle (as follows from general results of Chapter III Section 1.)
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The formula obtained for the Hochschild cocycle uses an unbounded selfadjoint opera-
tor D whose sign is equal to F and which controls uniformly the size of the da = [F, a],
a ∈ A by the conditions

α) [D, a] bounded ∀a ∈ A , β) |D|−n of order 1.

The formula obtained gives a Hochschild n-cocycle as the Dixmier trace applied to
the product a0[D, a1] . . . [D, an] |D|−n, where [D, aj] is the commutator of D with the
element aj of A. The proof that this Hochschild cocycle is cohomologous, in Hochschild
cohomology, to the character of (H, D) is very involved because it relates the original
cyclic cocycle, computed in terms of the ordinary trace, to an expression involving the
logarithmic or Dixmier trace. It implies in particular that if the obstruction to lowering
the dimension does not vanish then the Dixmier trace of D−n cannot vanish and the
eigenvalues of D−1 cannot be o(k−1/n).

At the end of Section 2 we show, using results of D. Voiculescu, that the existence
of such a D controls the size of abelian subalgebras of A, i.e. that the number of
independent commuting quantities in the algebra A is bounded above by n. This is
another justification of the depth of the relation between the degree of summability
and dimension.

While Section 3 is devoted to the quantized calculus in one real variable we show in
Section 4 that on a conformal manifold the calculus can be canonically quantized. This
is related to the work of Donaldson and Sullivan on quasiconformal 4-manifolds. We
show that the Polyakov action of two-dimensional conformal field theory is given, in
terms of the components Xµ of a map X : Σ→Rd of a Riemann surface to d-dimensional
space, by the formula

I(X) = Trω(ηµν dXµ dXν) , dXµ = [F, Xµ].

The remarkable fact is that the right-hand side continues to make sense when Σ is a
4-dimensional conformal manifold. This is due to the discovery by M. Wodzicki of the
residue of pseudodifferential operators, a unique tracial extension of the Dixmier trace.
We compute this new 4-dimensional action at the end of Section 4 and relate it to the
Paneitz Laplacian. In Section 5 we move to highly noncommutative examples coming
from group rings and return to the origin of the quantized calculus as a substitute of
differential topology in the noncommutative context. We exploit the integrality of the
Chern character Ch∗(H, F ).

We show the power of this method by giving an elegant proof, in the spirit of differential
topology, of the Pimsner-Voiculescu theorem solving the Kadison conjecture for the
C∗-algebras of free groups. As another remarkable application of this integrality result
we describe in detail in Section 6 of Chapter IV the work of J. Bellissard on the
quantum Hall effect. Experimental results, of von Klitzing, Pepper, and Dorda, in 1980,
showed the existence of plateaux for the transverse conductivity as a function of the
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natural parameters of the experiment. This unexpected finding gave a precise meaning
to the numerical value of the conductivity on these plateaux and yielded precision
measurements of the fine structure constant which were independent of quantum field
theory. The numbers obtained have the same unexpected stability property as the
integral occurring above in the Gauss-Bonnet theorem.

Bellissard constructed a natural cyclic 2-cocycle on the noncommutative algebra of
“functions on the Brillouin zone” and expressed the Hall conductivity as the pairing
between this cyclic 2-cocycle and an idempotent of the algebra, the spectral projection
of the Hamiltonian. This accounts for the stability part. He then went on and showed
that his 2-cocycle is in fact the Chern character of a Fredholm module, from which the
remarkable integrality of the conductivity in units e2/h does follow. In doing so he de-
fined the analogue of the Brillouin zone as a noncommutative space and the framework
to apply the above quantized calculus to this example. All this is explained in great
detail in Section 6. We also show there how the ordinary pseudodifferential calculus
adapts to the noncommutative torus, the simplest and probably the first example of a
smooth noncommutative space. We then apply it to prove an index theorem for finite
difference-differential equations on the real line.

The rest of this Chapter IV is devoted to the infinite-dimensional case, i.e. to the
construction of the Chern character for Fredholm modules which are not finitely sum-
mable. This is motivated by the following two classes of infinite-dimensional noncom-
mutative spaces: the dual spaces of non-amenable discrete groups and the phase space
in quantum field theory (cf. Section 9 of Chapter IV). The first step in order to adapt
the above tools to the infinite-dimensional case is to develop entire cyclic cohomology,
which has the same relation to ordinary cyclic cohomology as entire functions have to
polynomials.

From the very beginning of cyclic cohomology, the possibility of defining it by means
of cocycles with finite support in the (b, B) fundamental bicomplex did suggest the
existence of infinite-dimensional cocycles, not reducible to finite-dimensional ones, by
considering cocycles with arbitrary support in the (b, B) bicomplex. However, a key
algebraic result, the vanishing of the E1 term of the first spectral sequence of the
bicomplex (cf. Chapter III Section 1) shows that the cohomology of cochains with
arbitrary supports is always trivial. It is thus necessary to impose a nontrivial limitation
on the growth of the components (ϕn) of a cochain with infinite support, in order to
obtain a nontrivial cohomology. This growth condition eluded me for a long time but
turned out to be dictated by the pairing with K-theory.

In Section 7 of Chapter IV we shall adapt it to arbitrary locally convex algebras,
which shows in particular that entire cyclic cohomology applies to any algebra over
C (endowing it with the fine locally convex topology). We give in that section the
equivalence between three points of view on entire cyclic cocycles, which can be viewed
as (normalized) cocycles in the (b, B) bicomplex, characters of infinite-dimensional
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cycles, or traces on the Cuntz algebra of A, i.e. the free product of A with the
group with 2 elements. The growth condition for entire cocycles then means that
they extend to a suitable completion of the universal differential algebra ΩA (resp.
of the Cuntz algebra), whose quasi-nilpotency is analyzed. We end this section with
the computation of the entire cyclic cohomology of the algebra of Laurent polynomials
and its relation with a remarkable deformation of the Cuntz algebra in that case (also
noticed independently by Cuntz and Quillen).

In Section 8 of Chapter IV we extend the previous finite-dimensional construction of
the Chern character in K-homology to the infinite-dimensional case. For a Fredholm
module (H, F ) over an algebra A the infinite-dimensional summability condition is
now that the commutators da = [F, a] for a ∈ A all belong to the two-sided ideal of
compact operators T such that µn(T ), the n-th characteristic value of T , is of the order
of (log n)−1/2 when n goes to ∞.

We first show that given such a Fredholm module over A one can find a selfadjoint un-
bounded operator D whose sign is equal to F (i.e. D = F |D| is the polar decomposition
of D) and which satisfies the following two conditions:

1) The commutator [D, a] is bounded for any a ∈ A
2) Tr(e−D2

) < ∞.

Such θ-summable modules (H, D) over an algebra will turn out, as we shall see in
Chapter VI, to be an excellent point of departure for the metric aspect in noncommu-
tative geometry, i.e. the analogue of Riemannian geometry in our framework. This
fact is already visible in the proof of the existence of the operator D, given F . The
heuristic formula for D−2 is indeed

D−2 =
∑

(dxµ)∗ gµν (dxν)

where the xµ are generators of the algebra A, the gµν are the entries of a positive
matrix, and the operator dx for x ∈ A is the quantum differential [F, x].

Such modules (H, D) will be called (θ-summable) K-cycles for short. We showed
how to construct the Chern character of such a K-homology class as an entire cyclic
cocycle. Our formula for this character was quite complicated and Jaffe, Lesniewski,
and Osterwalder, motivated by supersymmetric quantum field theory, then obtained a
much simpler formula for the same cohomology class.

All this is explained in detail in Section 8, where the role of the quasinilpotent algebra
of convolution of distributions with support in R+ is put into evidence.

In Section 9 we describe the two basic examples of θ-summable K-cycles not reducible
to finitely summable ones. The first example combines the construction of Mishchenko
and Kasparov of Fredholm representations of discrete subgroups of semisimple Lie
groups with the twisted de Rham operator of Witten in Morse theory. We leave open
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the problem of completing the computation of the character of this K-cycle for discrete
subgroups of higher rank Lie groups. The second example is the supersymmetric Wess-
Zumino model of quantum field theory. We prove there the new unexpected result that,
even for the free theory, the K-theory of the algebra A(O) of observables localized in
an open subset O of space-time is very nontrivial, of infinite rank as an abelian group,
and pairs nontrivially with the K-homology class given by the supercharge operator Q
of the theory.

We have already explained that Chapter V is a detailed account of the theory of von
Neumann algebras. In its last section we explain our joint work with J.-B. Bost,
motivated by earlier work of B. Julia, on a natural system of quantum statistical
mechanics related to the arithmetic of Z and the Riemann zeta function. We show
that our system, formulated as a C∗-dynamical system, undergoes a phase transition
with spontaneous symmetry breaking with symmetry group the Galois group of the
field of roots of unity.

5. The metric aspect of noncommutative geometry

In the last chapter of this book we shall develop operator theoretic ideas about the
metric aspect of geometry and then apply these ideas to a fundamental example: space-
time.

Given a (not necessarily commutative) ∗-algebra A corresponding to the functions on
a “space X”, our basic data in order to develop geometry on X is simply a K-cycle
(H, D) over A in the above sense (cf. D). A first example is provided by ordinary
Riemannian geometry. Given a Riemannian manifold (K-oriented for convenience) we
let its algebra A of functions act by multiplication in the Hilbert space H of L2 spinors
on X, and we let D be the Dirac operator in H. One thus obtains a K-cycle over A
which represents the fundamental class of X in K-homology. We shall give (Section 1
of Chapter VI) four simple formulas showing how to recover, from the K-cycle (H, D)
the following classical geometric notions on X:

1) The geodesic distance d on X

2) The integration against the volume form det(gµν)
1/2 dx1∧ . . .∧dxn

3) The affine space of gauge potentials

4) The Yang-Mills action functional.

The essential fact is that all these notions will continue to make sense in our general
framework, and in particular will apply nontrivially even to the case of finite spaces X.

The operator theoretic formula 1) for the geodesic distance is in essence the dual of
the usual formula in terms of the length of paths γ in X. Recall that given two points
p and q in a Riemannian manifold X, their geodesic distance d(p, q) is given as the
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infimum of the lengths of paths γ from p to q. The latter length is computed by means
of an integral along γ of the square root of gµν dxµ dxν . Our formula for the same
quantity d(p, q) is different in nature in that it is a supremum (instead of an infimum)
and it invokes as a variable a function f on X instead of a path γ in X. It is the
following:

d(p, q) = Sup {|f(p)− f(q)| ; f ∈ A , ‖[D, f ]‖ ≤ 1} .

The norm involved in the right-hand side is the norm of operators in Hilbert space.
Note also that the points p and q of X are used to convert the element f of A into a
scalar, namely they are used, in conformity with Gelfand’s theorem, as characters of
the algebra A.

There are two important features of this formula. The first is that since it does not
invoke paths but functions it continues to be meaningful and gives a finite nonzero
result when the space X is no longer arcwise connected. Indeed, one can take a space
X with two points a 6= b: the algebra A of functions on X is then simply A = C⊕C,
the direct sum of two copies of C, and a natural K-cycle is given by the diagonal action
of A in `2(X) with operator

D =

[
0 µ
µ 0

]

One then checks that with our formula the distance between a and b is given by ` = µ−1.

An equally important feature of our formula is that, since it uses functions instead
of paths, it is directly compatible with the formalism of quantum mechanics in which
particles are described by wave functions rather than by any classical path.

The next step is to recover the tools of Riemannian geometry which go beyond the mere
“metric space” attributes of such spaces such as 3) and 4). First, the volume form and
the corresponding integral are recovered by the Dixmier trace, already mentioned in
the discussion of Chapter IV. In fact the case already covered in Chapter IV of the
Hausdorff measure on Julia sets in terms of the Dixmier trace was far more difficult.
In Section 1 we shall develop the formalism of gauge theory (commutative or not, of
course) and the Yang-Mills action functional from our operator theoretic data. The
main mathematical result of Section 2 is the analogue of the basic inequality between
the second Chern number of a Hermitian vector bundle and the minimum of the Yang-
Mills functional on compatible connections on this bundle. This is proved in Section
2 using the main theorem of Chapter IV Section 2. In Section 3 we determine the
Yang-Mills connections on the noncommutative torus, a joint result of M. Rieffel and
myself, after defining the metric structure of that simple noncommutative space in
great detail. As it turns out, even though the space we start with is non commutative,
the moduli space of Yang-Mills connections is nicely behaved and finite-dimensional.

The end of the chapter (and the book) is occupied by the analysis, with the above new
geometric tool, of the structure of space-time. The idea can be simply stated as follows:
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It was originally through the Maxwell equations that, by the well-known steps due to
Lorentz, Michelson, Morley, Poincaré and Einstein, the model of Minkowski’s space-
time was elaborated. In more modern terms the Maxwell-Dirac Lagrangian accounts
perfectly for all phenomena involving only the electromagnetic interaction. However,
a century has passed since then and essential discoveries, both experimental and the-
oretical, have shown that in order to account for weak and strong forces a number of
modifications in the above Lagrangian were necessary. (See the small chronological
table below for the early development of weak forces.)

Chronological table

• 1896 H. Becquerel discovers radioactivity

• 1898 M. Curie shows that radioactivity is an intrinsically atomic property

• 1901 E. Rutherford shows the inhomogeneity of uranic rays and isolates the β
rays (i.e. the weak interaction part)

• 1902 W. Kaufman shows that the β rays are formed of electrons

• 1907-14 J. Chadwick shows that the spectrum of β rays is continuous

• 1930 W. Pauli introduces the neutrino to account for the above continuous
spectrum

• 1932 W. Heisenberg introduces the concept of isospin (in the other context of
strong forces)

• 1934 E. Fermi gives a phenomenological theory of weak interactions

• 1935 H. Yukawa introduces the idea of heavy bosons mediating short range
forces.

Among the next steps which led finally to the Glashow-Weinberg-Salam Lagrangian of
the standard model let us mention the discovery of the vector-axial form of the weak
currents, and the intermediate boson hypothesis which replaces the 4-fermion interac-
tion of the Fermi theory by a renormalizable interaction. This requires a considerable
mass for the intermediate-boson in order to get a possible unification of the weak and
electromagnetic forces using the ideas of nonabelian gauge theory of Yang and Mills.
There was a major difficulty at this point since a nonabelian pure Yang-Mills field is
necessarily massless. This difficulty was resolved by the theoretical discovery of the
Higgs mechanism, allowing for the generation, by spontaneous symmetry breaking, of
nontrivial masses for fermions and intermediate bosons. The Higgs field thus intro-
duced appears in three of the five natural terms of the Lagrangian and completely
spoils their geometric significance.

Now our idea is quite simple. We have at our disposal a more flexible notion of
geometric space in which the continuum (i.e. manifolds say) and the discrete (cf. the
two-point space example above) are treated on the same footing, and in which the
Maxwell-Dirac Lagrangian does make sense: its bosonic part is the already treated
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Yang-Mills action and the fermionic part is easy to get since we are given the Dirac
operator to start with. Thus we can keep track of the above modifications of the
Lagrangian as modifications of the geometry of space-time. In other words, we look
for a geometry in our sense, i.e. a triple (A,H, D) as above, such that the associated
Maxwell-Dirac action functional produces the standard model of electroweak and strong
interactions with all its refinements dictated by experimental results.

The result that we obtain is canonically derived from the standard model considered
as a phenomenological model. What we find is a geometric space which is neither a
continuum nor a discrete space but a mixture of both. This space is the product of
the ordinary continuum by a discrete space with only two points, which, for reasons
which will become clear later, we shall call L and R. The geometry, in our sense, of the
finite space {L, R} is given by a finite-dimensional Hilbert space representation H and
a selfadjoint operator D in H. These have direct physical meaning since the operator
D is given by the Yukawa coupling matrix which encodes the masses of the elementary
fermions as well as their mixing, i.e. the Kobayashi-Maskawa mixing parameters.
Computing the distance between the two points L and R thus gives a number of the
order of 10−16cm, i.e. the inverse mass of the heaviest fermion.

The naive picture that emerges is that of a double space-time, i.e. the product of
ordinary space-time by a very tiny discrete two-point space. By construction, purely
left-handed particles such as neutrinos live on the left-handed copy XL while electrons
involve both XL and XR in X = XL ∪XR. Note that each point p of XL is extremely
close to a corresponding point p′ of XR, and when computing the differential of a
function f on X = XL ∪ XR we shall find that it invokes not only the ordinary
differential of f on XL or on XR but also the finite difference f(p)− f(p′) of the values
of f on corresponding points of XL and XR. It is this finite difference, occurring as
a new “transverse” component of the gauge potential, which yields the famous Higgs
fields which appear in the three non-geometric terms of the standard model Lagrangian
(cf. Chapter VI) L = LG + Lf + Lϕ + LY + LV .

Note that there is no symmetry whatsoever between the points L and R, and in fact
the natural vector bundle used over that space has fiber C2 over L and C over R. All
this works very well for the electroweak sector of the standard model, but in order to
account for the (already essentially geometric) strong structure much more work was
necessary. It has been done in collaboration with J. Lott and is described in the last
two Sections 4 and 5. It hinges on the fundamental problem of defining correctly what
is a “manifold” in the setup of noncommutative geometry. Our proposed answer, which
is essentially dictated by the SU(2)×SU(3) structure of up-down quark iso-doublets, is
given by Poincaré duality discussed in Section 4. It fits remarkably well with the work
of Sullivan on the fundamental role of Poincaré duality in K-homology for ordinary
manifolds (cf. Section 4).
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In Section 5 we discuss the full standard model, and also account for the hypercharge
assignment of particles from a general unimodularity condition. One should under-
stand this work as pure phenomenology, at the classical level, interpreting the detailed
structure of the best phenomenological model, as the fine structure of space-time rather
than as a long list of new particles. Applications of this point of view in quantum field
theory, say as a model building device, are still ahead of us.



CHAPTER 1

Noncommutative Spaces and Measure Theory

My first goal in this chapter is to show the extent to which Heisenberg’s discovery of
matrix mechanics, or quantum mechanics, was guided by the experimental results of
spectroscopy. The resulting replacement of the phase space by a “noncommutative
space”, more precisely the replacement of the algebra of functions on the phase space
by the algebra of matrices, is one of the most important conceptual steps, on which it
is important to dwell. I will then attempt to place into evidence, thanks to quantum
statistical mechanics, the interaction between theoretical physics and pure mathematics
in the realm of operator algebras, and to show how this interaction was at the origin
of the classification of factors summarized below. Next I will show how the theory of
operator algebras replaces ordinary measure theory for the “noncommutative spaces”
that one encounters in mathematics, such as the space of leaves of a foliation. This
will first of all give a detailed illustration of the classification of factors by geometric
examples. It will also allow us to extend the Atiyah-Singer index theorem to the non-
compact leaves of a measured foliation, using the full force of the Murray and von
Neumann theory of continuous dimensions.

The content of this chapter is organized as follows:

1. Heisenberg and the noncommutative algebra of physical quantities associated to a
microscopic system.

2. Statistical state of a microscopic system and quantum statistical mechanics.

3. Modular theory and the classification of factors.

4. Geometric examples of von Neumann algebras: Measure theory of noncommutative
spaces.

5. The index theorem for measured foliations.

Appendix A. Transverse measures and averaging sequences.

Appendix B. Abstract transverse measure theory.

Appendix C. Non commutative spaces and set theory.

39
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Figure 1. Hydrogen Spectrum

1. Heisenberg and the Noncommutative Algebra of Physical Quantities

The classification of the simple chemical elements into Mendeleev’s periodic table is
without doubt the most striking result in chemistry in the 19th century. The theoret-
ical explanation of this classification, by Schrödinger’s equation and Pauli’s exclusion
principle, is an equivalent success of physics in the 20th century, and, more precisely,
of quantum mechanics. One can look at this theory from very diverse points of view.
With Planck, it has its origins in thermodynamics and manifests itself in the discretiza-
tion of the energy levels of oscillators. With Bohr, it is the discretization of angular
momentum. For de Broglie and Schrödinger, it is the wave nature of matter. These
diverse points of view are all corollaries of that of Heisenberg: physical quantities are
governed by noncommutative algebra. My first goal will be to show how close the latter
point of view is to experimental reality. Towards the end of the 19th century, numerous
experiments permitted determining with precision the lines of the emission spectra of
the atoms that make up the elements. One considers a Geissler tube filled with a gas
such as hydrogen. The light emitted by the tube is analyzed with a spectrometer, the
simplest being a prism, and one obtains a certain number of lines, indexed by their
wavelengths. The configuration thus obtained is the most direct source of information
on the atomic structure and constitutes, as it were, the signature of the element under
consideration. It depends only on the element considered, and characterizes it. It is
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Figure 2. The vertical arrows represent the transitions. They are
indexed by a pair of indices (i, j) .

thus essential to find the regularities that appear in these configurations or atomic
spectra. It is hydrogen that, in conformity with Mendeleev’s table, has the simplest
spectrum.
The numerical expression of the regularity of the lines Hα, Hβ, Hγ, . . . was obtained by
Balmer in 1885 in the form

Hα =
9

5
L, Hβ =

16

12
L, Hγ =

25

21
L, Hδ =

36

32
L,

where the value of the length L is approximately 3645.6 × 10−8 cm. In other words,
the wavelengths of the lines in Figure 1 are of the form

λ =
n2

n2 − 4
L , where n is an integer equal to 3, 4, 5 or 6.

Around 1890, Rydberg showed that for a complex atom the lines of the spectrum can
be classified into series, each of them being of the form

1/λ = R/m2 −R/n2 with n and m integers, m fixed.

Here R = 4/L is Rydberg’s constant. From this experimental discovery one deduces
that, on the one hand, the frequency ν = c/λ is a more natural parameter than
the wavelength λ for indexing the lines of the spectrum and, on the other hand, the



1. ALGEBRA OF PHYSICAL QUANTITIES 42

spectrum is a set of differences of frequencies, that is, there exists a set I of frequencies
such that the spectrum is the set of differences νij = νi − νj of arbitrary pairs of
elements of I. This property shows that one can combine two frequencies νij and
νjk to obtain a third, νik = νij + νjk. This important corollary is the Ritz-Rydberg
combination principle: the spectrum is naturally endowed with a partially defined law
of composition; the sum of certain frequencies of the spectrum is again a frequency of
the spectrum (Figure 2).
Now, these experimental results could not be explained in the framework of the theoret-
ical physics of the 19th century, based as it was on Newton’s mechanics and Maxwell’s
electromagnetism. If one applies the classical conception of mechanics to the micro-
scopic level, then an atom is described mathematically by the phase space and the
Hamiltonian, and its interaction with radiation is described by Maxwell’s theory. As
we shall see, this theory predicts that the set of frequencies forms a subgroup Γ of R .

Let us begin with the phase space. In the model of classical mechanics, to determine
the later trajectory of a particle it is necessary to know both its initial position and
its velocity. The initial data thus forms a set with six parameters, which are the three
coordinates of position and the three coordinates of velocity, or rather of the momentum
p = mv . If one is interested in a number n of particles, it is necessary to know the
position and momentum of each of them. One is thus dealing with a set with 6n
parameters, called the phase space of the mechanical system under consideration.

Starting with a function on this space which is called the Hamiltonian and which mea-
sures energy, classical mechanics prescribes the differential equations that determine
the trajectory from the initial data. The natural structure of the phase space is that of
a symplectic manifold X whose points are the “states” of the system. The Hamilton-
ian H is a function on X that intervenes to specify the evolution of every observable
physical quantity, that is, of every function f on X , by the equation

ḟ = {H, f} ,

where { , } denotes the Poisson bracket and ḟ = df/dt .

In the good cases such as, for example, the planetary model of the hydrogen atom, the
dynamical system obtained is totally integrable. This means that there are sufficiently
many “constants of motion” so that, on specifying them, the system is reduced to an
almost periodic motion. The description of such a system is very simple. For, on the
one hand, the algebra of observable quantities is the commutative algebra of almost
periodic series

q(t) =
∑

qn1...nk
exp(2πi〈n, ν〉t) ,

where the ni are integers, the νi are positive real numbers called the fundamental
frequencies, and 〈n, ν〉 =

∑
niνi . On the other hand, the evolution in time is given

by translation of the variable t .
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The interaction between a classical atom and the electromagnetic field is described by
Maxwell’s theory. Such an atom emits an electromagnetic wave whose radiative part
is calculated by superposing the plane waves Wn , n = (n1, . . . , nk), with frequencies
〈n, ν〉 =

∑
niνi , and whose amplitude and polarization are calculated simply from the

fundamental observable that is the dipole moment. The dipole moment Q has three
components Qx, Qy and Qz , each of which is an observable quantity,

Qx(t) =
∑

qx,n exp(2πi〈n, ν〉t) ,

and which give the intensity of the emitted radiation of frequency 〈n, ν〉 by the equa-
tion

I =
dE

dt
=

2

3c3
(2π〈n, ν〉)4(|qx,n|2 + |qy,n|2 + |qz,n|2) ,

where c denotes the speed of light. It follows, in particular, that the set of frequencies
of the emitted radiations is an additive subgroup, Γ ⊂ R , of the real numbers. Thus,
to each frequency emitted there are associated all of its integral multiples or harmonics.

In fact, spectroscopy and its numerous experimental results show that this last theo-
retical result is contradicted by experiment. The set of frequencies emitted by an atom
does not form a group, and it is false that the sum of two frequencies of the spectrum
is again one. What experiment dictates is the Ritz-Rydberg combination principle,
which permits indexing the spectral lines by the set ∆ of all pairs (i, j) of elements
of a set I of indices. The frequencies νij and νk` only combine when j = k to yield
νi` = νij + νj`. The theory of Bohr, by artificially discretizing the angular momentum
of the electron, succeeds in predicting the frequencies of the radiations emitted by the
hydrogen atom, but it is unable to predict their intensities and polarizations.

It is by a fundamental calling into question of classical mechanics that Heisenberg ar-
rived at this goal and went well beyond his predecessors. This questioning of classical
mechanics runs approximately as follows: in the classical model, the algebra of observ-
able physical quantities can be directly read from the group Γ of emitted frequencies;
it is the convolution algebra of this group of frequencies. Since Γ is a commutative
group, the convolution algebra is commutative. Now, in reality one is not dealing with a
group of frequencies but rather, due to the Ritz-Rydberg combination principle, with a
groupoid ∆ = {(i, j); i, j ∈ I } having the composition rule (i, j)·(j, k) = (i, k) . The
convolution algebra still has meaning when one passes from a group to a groupoid, and
the convolution algebra of the groupoid ∆ is none other than the algebra of matrices
since the convolution product may be written

(ab)(i,k) =
∑

j
a(i,j)b(j,k) ,

which is identical with the product rule for matrices. On replacing the commutative

convolution algebra of the group Γ by the noncommutative convolution algebra of the
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groupoid ∆ dictated by experimental results, Heisenberg replaced classical mechanics,
in which the observable quantities commute pairwise, by matrix mechanics , in which
observable quantities as important as position and momentum no longer commute.
Heisenberg’s rules of algebraic calculation were imposed on him by the experimental
results of spectroscopy. However, Heisenberg did not understand right away that the
algebra he was working with was already known to mathematicians and was called
the algebra of matrices. It was Jordan and Born who noticed this. In fact, Jordan
had remarked that the conditions which, in Heisenberg’s formalism, correspond to
the Bohr-Sommerfeld quantization rules, signified that the diagonal elements of the
matrix [p, q] were equal to −i~. In Heisenberg’s matrix mechanics, an observable
physical quantity is given by its coefficients q(i,j), indexed by elements (i, j) ∈ ∆ of
the groupoid ∆ . The time evolution of an observable is given by the homomorphism
(i, j) ∈ ∆ 7→ νij ∈ R of ∆ into R which associates with each spectral line its
frequency. One has

q(i,j)(t) = q(i,j) exp(2πiνijt) . (1)

This formula is the analogue of the classical formula

qn1...nk
(t) = qn1...nk

exp(2πi〈n, ν〉t) .

To obtain the analogue of Hamilton’s law of evolution

dq

dt
= {H, q} ,

one defines a particular physical quantity H that plays the role of the classical energy
and is given by its coefficients H(i,j) , with

H(i,j) = 0 if i 6= j , H(i,i) = hνi , where νi − νj = νij ∀ i, j ∈ I,

where h is Planck’s constant, a factor that converts frequencies into energies. One
sees that H is defined uniquely, up to the addition of a multiple of the identity matrix.
Moreover, the above formula (1) is equivalent to

dq

dt
=

2πi

h
(Hq − qH) . (2)

This equation is similar to the one of Hamilton that uses the Poisson brackets. It is
in fact simpler, since it only uses the product of the observables, and more precisely
the commutator [A,B] = AB − BA, which plays the role that the Poisson bracket
plays in Hamiltonian mechanics. By analogy with classical mechanics, one requires
the observables q of position and p of momentum to satisfy [p, q] = −i~, where
~ = h/2π . The simple algebraic form of the classical energy as a function of p and
q then gives the equation of Schrödinger for determining the set {νi; i ∈ I } , or the
spectrum of H .
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The quantum system thus described is much simpler and more rigid than its classical
analogue. One thus obtains a nonnegligible payoff for abandoning the commutativity
of classical mechanics. Though less intuitive, quantum mechanics is more directly
accessible by virtue of its simplicity and its contact with spectroscopy.

In fact, the results of the theory of ∗-products show that a symplectic structure on a
manifold such as the phase space is none other than the indication of the existence
of a deformation with one parameter ( h here) of the algebra of functions into a non-
commutative algebra. I refer the reader to the literature ([13], [37], [38], [169], [182],
[220], [368], [474], [570]) for a description of the results of this theory.

2. Statistical State of a Macroscopic System and Quantum Statistical
Mechanics

A cubic centimeter of water contains on the order of N = 3×1022 molecules of water
agitated by an incessant movement. The detailed description of the motion of each
molecule is not necessary, any more than is the precise knowledge of the microscopic
state of the system, to determine the results of macroscopic observations. In classical
statistical mechanics, a microscopic state of the system is represented by a point of the
phase space, which is of dimension 6N for N point molecules. A statistical state
is described not by a point of the phase space but by a measure µ on that space,
a measure that associates with each observable f its mean value

∫
f dµ .

For a system that is maintained at fixed temperature by means of a thermostat, the
measure µ is called the Gibbs canonical ensemble; it is given by a formula that
involves the Hamiltonian H of the system and the Liouville measure that arises from
the symplectic structure of the phase space. One sets

dµ =
1

Z
e−βH · Liouville measure , (3)

where β = 1/kT , T being the absolute temperature and k the Boltzmann constant,
whose value is approximately 1.38× 10−23 joules per degree Kelvin, and where Z is a
normalization factor.

The thermodynamic quantities, such as the entropy or the free energy, are calculated
as functions of β and a small number of macroscopic parameters introduced in the
formula that gives the Hamiltonian H . For a finite system, the free energy is an
analytic function of these parameters. For an infinite system, some discontinuities
appear that correspond to the phenomenon of phase transition. The rigorous proof,
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starting with the mathematical formula that specifies H, of the absence or existence
of these discontinuities is a difficult branch of mathematical analysis ([488]).

However, as we have seen, the microscopic description of matter cannot be carried out
without quantum mechanics. Let us consider, to fix our ideas, a solid having an atom
at each vertex of a crystal lattice Z3 . The algebra of observable physical quantities
associated with each atom x = (x1, x2, x3) is a matrix algebra Qx , and if we assume
for simplicity that these atoms are of the same nature and can only occupy a finite
number n of quantum states, then Qx = Mn(C) for every x . Now let Λ be a finite
subset of the lattice. The algebra QΛ of observable physical quantities for the system
formed by the atoms contained in Λ is given by the tensor product QΛ =

⊗
x∈Λ Qx .

The Hamiltonian HΛ of this finite system is a self-adjoint matrix that is typically of
the form

HΛ =
∑
x∈Λ

Hx + λHint ,

where the first term corresponds to the absence of interactions between distinct atoms,
and where λ is a coupling constant that governs the intensity of the interaction. A
statistical state of the finite system Λ is given by a linear form ϕ that associates
with each observable A ∈ QΛ its mean value ϕ(A) and which has the same positivity
and normalization properties as a probability measure µ , namely,

a) Positivity: ϕ(A∗A) ≥ 0 ∀A ∈ QΛ ;

b) Normalization: ϕ(1) = 1 .

If the system is maintained at fixed temperature T, the equilibrium state is given by
the quantum analogue of the above formula (3)

ϕ(A) =
1

Z
trace(e−βHΛA) ∀A ∈ QΛ, (4)

where the unique trace on the algebra QΛ replaces the Liouville measure.

As in classical statistical mechanics, the interesting phenomena appear when one passes
to the thermodynamic limit, that is, when Λ → Z3 . A state of the infinite system
being given by the family (ϕΛ) of its restrictions to the finite systems indexed by Λ ,
one obtains in this way all the families such that

a) for every Λ, ϕΛ is a state on QΛ;

b) if Λ1 ⊂ Λ2 then the restriction of ϕΛ2 to QΛ1 is equal to ϕΛ1 .

In general, the family ϕΛ defined above by means of exp(−βHΛ) does not satisfy the
condition b) and it is necessary to understand better the concept of state of an infinite
system. This is where C∗-algebras make their appearance. In fact, if one takes the
inductive limit Q of the finite-dimensional C∗-algebras QΛ , one obtains a C∗-algebra
that has the following property:
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FHt + i Ñ ΒL=jHΑtHBLAL

FHtL=jHA ΑtHBLL

Figure 3. The KMS condition

An arbitrary state ϕ on Q is given by a family (ϕΛ) satisfying the conditions a)
and b).

Thus, the families (ϕΛ) satisfying a) and b), that is the states of the infinite system,
are in natural bijective correspondence with the states of the C∗-algebra Q . Moreover,
the family (HΛ) uniquely determines a one-parameter group (αt) of automorphisms
of the C∗-algebra Q by the equation

dαt(A)

dt
= LimΛ→Z3

2πi

h
[HΛ, A] .

This one-parameter group gives the time evolution of the observables of the infinite
system that are given by the elements A of Q , and is calculated by passing to the
limit, starting from Heisenberg’s formula. For a finite system, maintained at tempera-
ture T , the formula (4) gives the equilibrium state in a unique manner as a function
of HΛ , but in the thermodynamic limit one cannot have a simple correspondence be-
tween the Hamiltonian of the system, or, if one prefers, the group of time evolution,
and the equilibrium state of the system. Indeed, during phase transitions, distinct
states can coexist, which precludes uniqueness of the equilibrium state as a function of
the group (αt) . It is impossible to give a simple formula that would define in a unique
manner the equilibrium state as a function of the one-parameter group (αt) . In com-
pensation, there does exist a relation between a state ϕ on Q and the one-parameter
group (αt) , that does not always uniquely specify ϕ from the knowledge of αt , but
which is the analogue of the formula (4). This relation is the Kubo-Martin-Schwinger
condition ([361], [389]) as formulated by R. Haag, N. Hugenholtz and M. Winnink
[250]:
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The function F is holomorphic in the unshaded strip and connects ϕ(Aαt(B)) and
ϕ(αt(B)A) .

Given T , a state ϕ on Q , and the one-parameter group (αt) of automorphisms
of Q satisfy the KMS-condition if and only if for every pair A,B of elements of Q
there exists a function F (z) holomorphic in the strip {z ∈ C; Im z ∈ [0, ~β] } such
that (Figure 3)

F (t) = ϕ(Aαt(B)) , F (t + i~β) = ϕ(αt(B)A) (∀ t ∈ R) .

Here t is a time parameter, as is ~β = ~/kT which, for T = 1◦ K, has value
approximately 10−11s.
This condition allows us to formulate mathematically, in quantum statistical mechanics,
the problem of the coexistence of distinct phases at given temperature T , that is, the
problem of the uniqueness of ϕ , given (αt) and β . We shall give, in Chapter
V Section 11, an explicit example of a phase transition with spontaneous symmetry
breaking coming from the statistical theory of prime numbers.

This same condition has played an essential role in the modular theory of operator
algebras. It has thus become an indisputable point of interaction between theoretical
physics and pure mathematics.

3. Modular Theory and the Classification of Factors

Between 1957 and 1967, a Japanese mathematician, Minoru Tomita, who was moti-
vated in particular by the harmonic analysis of nonunimodular locally compact groups,
proved a theorem of considerable importance for the theory of von Neumann algebras.
His original manuscript was very hard to decipher, and his results would have remained
unknown without the lecture notes of M. Takesaki [549], who also contributed greatly
to the theory.

Before giving the technical definition of a von Neumann algebra, it must be explained
that the theory of commutative von Neumann algebras is equivalent to Lebesgue’s
measure theory and to the spectral theorem for self-adjoint operators. The noncom-
mutative theory was elaborated at the outset by Murray and von Neumann, quantum
mechanics being one of their motivations. The theory of noncommutative von Neu-
mann algebras only achieved its maturity with the modular theory; it now constitutes
an indispensable tool in the analysis of noncommutative spaces.

A von Neumann algebra is an involutive subalgebra M of the algebra of operators on
a Hilbert space H that has the property of being the commutant of its commutant:
(M ′)′ = M .
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This property is equivalent to saying that M is an involutive algebra of operators
that is closed under weak limits. To see intuitively what the equality (M ′)′ = M
means, it suffices to say that it characterizes the algebras of operators on Hilbert
space that are invariant under a group of unitary operators: The commutant of any
subgroup of the unitary group of the Hilbert space is a von Neumann algebra, and
they are all of that form (given M take as a subgroup, the unitary group of M ′).
In the general noncommutative case, the classical notion of probability measure is
replaced by the notion of state. A typical state on the algebra M is given by a
linear form ϕ(A) = 〈Aξ, ξ〉 , where ξ is a vector of length 1 in the Hilbert space.
Tomita’s theory, which has as an ancestor the notion of quasi-Hilbert algebra ([172]),
consists in analyzing, given a von Neumann algebra M on the Hilbert space H and
a vector ξ ∈ H such that Mξ and M ′ξ are dense in H , the following unbounded
operator S :

Sxξ = x∗ξ ∀x ∈ M.

This is an operator with dense domain in H that is conjugate-linear; the results of
the theory are as follows:

1) S is closable and equal to its inverse.

2) The phase J = S|S|−1 of S satisfies JMJ = M ′ .
3) The modulus squared ∆ = |S|2 = S∗S of S satisfies ∆itM∆−it = M for

every t ∈ R .

Thus, to every state ϕ on M one associates a one-parameter group (σϕ
t ) of auto-

morphisms of M , given by σϕ
t (x) = ∆itx∆−it (∀x ∈ M) (∀t ∈ R), the group of

modular automorphisms of ϕ . It is precisely at this point that the interaction between
theoretical physics and pure mathematics takes place. Indeed, Takesaki and Winnink
showed simultaneously [549][586] that the connection between the state ϕ and the
one-parameter group (σϕ

−t) of Tomita’s theorem is exactly the KMS condition for
~β = 1 .

These results, as well as the work of R. Powers [453], and of H. Araki and E. J. Woods
[12] on factors that are infinite tensor products, proved to be of considerable importance
in setting in motion the classification of factors.

The point of departure of my work on the classification of factors was the discovery of
the relation between the Araki-Woods invariants and Tomita’s theory. For this it had
to be shown that the evolution group associated with a state by that theory harbored
properties of the algebra M independent of the particular choice of the state ϕ .

A von Neumann algebra is far from having just one state ϕ , which has as consequence
that only the properties of σϕ

t that do not depend on the choice of ϕ have real
significance for M . The crucial result that allowed me to get the classification of
factors going is the following analogue of the Radon–Nikodým theorem [89]:
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For every pair ϕ, ψ of states on M , there exists a canonical 1-cocycle

t→ut, ut1+t2 = ut1σ
ϕ
t1(ut2) ∀t1, t2 ∈ R

with values in the unitary group of M , such that

σψ
t (x) = utσ

ϕ
t (x)u∗t ∀x ∈ M, ∀ t ∈ R.

Moreover,
√−1 (dut/dt)t=0 coincides

1) in the commutative case, with the logarithm of the Radon–Nikodým derivative
(dψ/dϕ) ;

2) in the case of statistical mechanics, with the difference of the Hamiltonians
corresponding to two equilibrium states, or the relative Hamiltonian of Araki
[9].

It follows that, given a von Neumann algebra M , there exists a canonical homomor-
phism δ of R into the group OutM = AutM/InnM (the quotient of the automor-
phism group by the normal subgroup of inner automorphisms), given by the class of
σϕ

t , independently of the choice of ϕ . Thus, Kerδ = T (M) is an invariant of M , as
is Spec δ = S(M) =

⋂
ϕ Spec ∆ϕ .

Thus von Neumann algebras are dynamical objects. Such an algebra possesses a group
of automorphism classes parametrized by R . This group, which is completely canoni-
cal, is a manifestation of the noncommutativity of the algebra M . It has no counter-
part in the commutative case and attests to the originality of noncommutative measure
theory with respect to the usual theory.

Twenty years after Tomita’s theorem, and after considerable work (for more details see
Chapter V), we now have at our disposal a complete classification of all the hyperfinite
von Neumann algebras. Rather than give a definition of this class, let us simply note
that:

1) If G is a connected Lie group and π ∈ RepG is a unitary representation
of G , then its commutant π(G)′ is hyperfinite.

2) If Γ is an amenable discrete group and π ∈ RepΓ , then π(Γ)′ is hyperfinite.

3) If a C∗-algebra A is an inductive limit of finite-dimensional algebras and if
π ∈ RepA , then π(A)′′ is hyperfinite.

Moreover, the classification of hyperfinite von Neumann algebras reduces to that of the
hyperfinite factors on writing M =

∫
Mtdµ(t) , where each Mt is a factor, that is,

has center equal to C . Finally, the list of hyperfinite factors is as follows:

• In M = Mn(C) .

• I∞ M = L(H) , the algebra of all operators on an infinite-dimensional Hilbert
space.
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• II1 R = CliffC(E) , the Clifford algebra of an infinite-dimensional Euclidean
space E .

• II∞ R0,1 = R⊗ I∞ .

• IIIλ Rλ = the Powers factors (λ ∈ ]0, 1[).

• III1 R∞ = Rλ1 ⊗Rλ2 ( ∀λ1, λ2, λ1/λ2 /∈ Q ) , the Araki–Woods factor.

• III0 RW , the Krieger factor associated with an ergodic flow W .

After my own work, case III1 was the only one that remained to be elucidated.
U. Haagerup has since shown that all the hyperfinite factors of type III1 are isomorphic.
All these results are explained in great detail in Chapter V.

4. Geometric Examples of von Neumann Algebras : Measure Theory of
Noncommutative Spaces

My aim in this section is to show by means of examples that the theory of von Neumann
algebras replaces ordinary measure theory when one has to deal with noncommutative
spaces. It will allow us to analyse such spaces even though they appear singular when
considered from the classical point of view, i.e. when investigated using measurable
real-valued functions.

We shall first briefly review the classical Lebesgue measure theory and explain in par-
ticular its intimate relation with commutative von Neumann algebras. We then give
the general construction of the von Neumann algebras of the noncommutative spaces X
which arise naturally in differential geometry, namely the spaces of leaves of foliations.
Our first use of this construction will be to illustrate the classification expounded above
by numerous geometric examples.

4.α Classical Lebesgue measure theory. H. Lebesgue was the first to succeed

in defining the integral
∫ b

a
f(x)dx of a bounded function of a real variable x without

imposing any serious restrictions on f . At a technical level, for the definition to make
sense it is necessary to require that the function f be measurable. However, this
measurability condition is so little restrictive that one has to use the uncountable axiom
of choice to prove the existence of nonmeasurable functions. In fact, a very instructive
debate took place in 1905 between Borel, Baire, and Lebesgue on the one hand, and
Hadamard (and Zermelo) on the other, as to the “existence” of a well ordering on
the real line (see Lebesgue’s letter in Appendix C). A result of the logician Solovay
shows that (modulo the existence of strongly inaccessible cardinals) a nonmeasurable
function cannot be constructed using only the axiom of conditional choice.
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Figure 4. The Lady in Blue by Gainsborough

This result on measurability still holds if the interval [a, b] is replaced by a standard
Borel space X. It shows, in particular, that among the classical structures on a set X
obtained by specifying a class of functions, f : X→R, such as continuous or smooth
functions, the measure space structure, obtained by specifying the measurable func-
tions, is the coarsest possible.

In particular, a measure space X is not modified by a transformation T such as the one
indicated in Figure 4, which consists in making the picture explode like a jigsaw puzzle
whose pieces are scattered. This transformation has the effect of destroying all shape;
nevertheless, a particular subset A of X does not change in measure even though it
may be scattered into several pieces.

This wealth of possible transformations of X is bound up with the existence, up to iso-
morphism, of only one interesting measure space: an interval equipped with Lebesgue
measure. Even spaces as complex in appearance as a functional space of distributions
equipped with a functional measure are in fact isomorphic to it as measure spaces.
In particular, the notion of dimension has no intrinsic meaning in measure theory.
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Figure 5. The Permuted Lady in Blue

The key tools of this theory are positivity and the completeness of the Hilbert space
L2(X, µ) of square-integrable functions f , with

∫ |f |2dµ < ∞ on X. A crucial result
is the Radon-Nikodým theorem, by which the derivative dµ/dν of one measure with
respect to another may be defined as a function on X.

The topology of compact metrizable spaces X has a remarkable compatibility with
measure theory. In fact, the finite Borel measures on X correspond exactly to the
continuous linear forms on the Banach space C(X) of continuous functions on X,
equipped with the norm ||f || = supx∈X |f(x)|. The positive measures correspond to
the positive linear forms, i.e. the linear forms ϕ such that ϕ

(
f̄f

) ≥ 0 for all f ∈ C(X).

To go into matters more deeply, it is necessary to understand how this theory arises
naturally from the spectral analysis of selfadjoint operators in Hilbert space, and thus
becomes a special commutative case of the theory of von Neumann algebras (Chapter
5), which is itself the natural extension of linear algebra to infinite dimensions.

Thus, let H be a (separable) Hilbert space and T a bounded selfadjoint operator on
H, i.e. 〈Tξ, η〉 = 〈ξ, Tη〉 ∀ξ, η ∈ H. Then if p(u) is a polynomial of the real variable
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u, p(u) = a0u
n + · · ·+ an, one can define the operator p(T ) as

p(T ) =
n∑

k=0

ak T n−k.

It is rather amazing that this definition of p(T ) extends by continuity to all bounded
Borel functions f of a real variable u. This extension is uniquely given by the condition

〈fn(T )ξ, η〉→ 〈f(T )ξ, η〉 ∀ξ, η ∈ H,

if the sequence fn converges simply to f , i.e. fn(u)→f(u) for all u ∈ R . There exists

then a unique measure class µ on R, carried by the compact interval I = [−||T ||, ||T ||],
such that

f(T ) = 0⇐⇒
∫
|f |dµ = 0.

Moreover, the algebra M of operators on H of the form f(T ) for some bounded Borel
function f is a von Neumann algebra, and is the von Neumann algebra generated by
T . In other words if S is a bounded operator on H which has the same symmetries as
T (i.e. which commutes with all unitary operators U , U∗U = UU∗ = 1 on H which fix
T , so UTU∗ = T ), then there exists a bounded Borel function f with S = f(T ). This
commutative von Neumann algebra is naturally isomorphic to L∞(I, µ), the algebra of
classes modulo equality almost everywhere, of bounded measurable functions on the
interval I.

4.β Foliations. We shall now describe a large class of noncommutative spaces
arising from differential geometry, see why the Lebesgue theory is not able to analyse
such spaces, and replace it by the theory of noncommutative von Neumann algebras.

The spaces X considered are spaces of manifolds which are solutions of a differential
equation, i.e. spaces of leaves of a foliation.

Let V be a smooth manifold and TV its tangent bundle, so that for each x ∈ V , TxV
is the tangent space of V at x. A smooth subbundle F of TV is called integrable iff
one of the following equivalent conditions is satisfied:
a) Every x ∈ V is contained in a submanifold W of V such that

Ty(W ) = Fy ∀y ∈ W.

b) Every x ∈ V is in the domain U⊂V of a submersion p : U→Rq (q = codimF ) with
Fy = Ker(p∗)y ∀y ∈ U.

c) C∞(V, F ) = {X ∈ C∞(V, TV ); Xx ∈ Fx ∀x ∈ V } is a Lie subalgebra of the Lie al-
gebra of vector fields on V .

d) The ideal J(F ) of smooth differential forms which vanish on F is stable under
differentiation: dJ⊂J .
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Figure 6. Foliation

Any 1-dimensional subbundle F of TV is integrable, but for dim F ≥ 2 the condition
is nontrivial; for instance, if P−→pB is a principal H-bundle, with compact structure
group H, the bundle of horizontal vectors for a given connection is integrable iff this
connection is flat.

A foliation of V is given by an integrable subbundle F of TV . The leaves of the foliation
(V, F ) are the maximal connected submanifolds L of V with Tx(L) = Fx ∀x ∈ L,
and the partition of V into leaves V =

⋃
Lα, α ∈ A, is characterized geometrically

by its “local triviality”: every point x ∈ V has a neighborhood U and a system of
local coordinates (xj)j=1,...,dim V , which is called a foliation chart, so that the partition
of U into connected components of leaves, called plaques (they are the leaves of the
restriction of the foliation to the open set U), corresponds to the partition of Rdim V =
Rdim F×RcodimF into the parallel affine subspaces Rdim F×pt (cf. Figure 5).
The manifolds L which are the leaves of the foliation are defined in a fairly implicit
manner, and the simplest examples show that:

1) Even though the ambient manifold V is compact, the leaves L can fail to be compact.

2) The space X of leaves can fail to be Hausdorff for the quotient topology.

For instance, let V be the two-dimensional torus V = R2/Z2, with the Kronecker
foliation associated to a real number θ, i.e. given by the differential equation

dy = θdx.

Then if θ is an irrational number, the leaves L are diffeomorphic to R, while the quotient
topology on the space X of leaves is the same as the quotient topology of S1 = R/Z
divided by the partition into orbits of the rotation given by α ∈ S1 7→Rθα + θ, and is
thus the coarse topology. Thus there are no open sets in X except ∅ and X. Similarly,
the ergodicity of the rotation Rθ on S1 shows that if we endow X with the quotient
measure class of the Lebesgue measure class on V we get the following “pathological”
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Figure 7. Kronecker foliation dy =
√

2 dx

behaviour: any measurable function f : X→R is almost everywhere equal to a constant.
This implies that classical measure theory does not distinguish between X and a one-
point space, and, in particular, the Lp-spaces of analysis, Lp(X), are one-dimensional,
Lp(X) = C, and essentially useless.

4.γ The von Neumann algebra of a foliation. Let (V, F ) be a foliated manifold.
We shall now construct a von Neumann algebra W (V, F ) canonically associated to
(V, F ) and depending only on the Lebesgue measure class on the space X of leaves of
the foliation. The classical point of view, L∞(X), will only give the center Z(W ) of
W .

The basic idea of the construction is that while in general we cannot find on X interest-
ing scalar-valued functions, there are always, as we shall see, plenty of operator-valued
functions on X. In other words we just replace c-numbers by q-numbers. To be more
precise, let us denote, for each leaf ` of (V, F ), by L2(`) the canonical Hilbert space of
square-integrable half-densities ([248]) on `.

We assume here to simplify the discussion that the set of leaves with nontrivial holo-
nomy is Lebesgue negligible. In general (cf. Chapter II) one just replaces ` by ˜̀, its
holonomy covering.

Definition 1. A random operator q = (q`)`∈X is a measurable map `→q` which asso-
ciates to each leaf ` ∈ X a bounded operator q` in the Hilbert space L2(`).

To define the measurability of random operators we note the following simple facts:

a) Let λ : V→X be the canonical projection which to each x ∈ V assigns the unique
leaf ` = λ(x) passing through x. Then the bundle (L2(λ(x)))x∈V of Hilbert spaces over
V is measurable. More specifically, consider the Borel subset of V×V, G = {(x, y) ∈
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V×V ; y ∈ λ(x)}. Then, modulo the irrelevant choice of a 1/2-density |dy|1/2 along
the leaves, the sections (ξx)x∈V of the bundle (L2(λ(x)))x∈V are just scalar functions
on G and measurability has its ordinary meaning.

b) A map `→q` as in Definition 1 defines by composition with λ an endomorphism
(qλ(x))x∈V of the bundle (L2(λ(x)))x∈V . We shall then say that q = (q`)`∈X is measurable
iff the corresponding endomorphism (qλ(x))x∈V is measurable in the usual sense, i.e. iff
for any pair of measurable sections (ξx)x∈V , (ηx)x∈V of (L2(λ(x)))x∈V the following
function on V is Lebesgue measurable:

x ∈ V→〈qλ(x) ξx , ηx〉 ∈ C.

There are many equivalent ways of defining measurability of random operators. As we
already noted in Section α), any natural construction of families (q`)`∈X will automat-
ically satisfy the above measurability condition.

Let us give some examples of random operators.

1) Let f be a bounded Borel function on V . Then for each leaf ` ∈ X let f̃` be the
multiplication operator

(f̃` ξ)(x) = f(x) ξ(x) ∀x ∈ ` , ∀ξ ∈ L2(`).

This defines a random operator f̃ = (f̃`)`∈X .

2) Let X ∈ C∞(V, F ) be a real vector field on V tangent to the leaves of the foliation.
Then let ψt = exp(tX) be the associated group of diffeomorphisms of V . (Assume for
instance that V is compact to ensure the existence of ψt.) By construction, ψt(x) ∈ λ(x)
for any x ∈ V so that it defines for each ` a diffeomorphism of `. Let (U`)`∈X be the
corresponding family of unitaries (the map `→L2(`) is functorial). It is a random
operator U = (U`)`∈X .

Let q = (q`)`∈X be a random operator. The operator norm ‖q`‖ of q` in L2(`) defines a
measurable function on V by composition with λ : V→X which gives meaning to the
norm

(∗) ‖q‖ = Essential Supremum of ‖q`‖ , ` ∈ X.

We say that q is zero almost everywhere iff q ◦ λ is so.

The von Neumann algebra W (V, F ) of a foliation is obtained as follows:

Proposition 2. The classes of bounded random operators (q`)`∈X modulo equality
almost everywhere, endowed with the following algebraic rules, form a von Neumann
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algebra W (V, F ):
(p + q)` = p` + q` ∀` ∈ X
(p q)` = p` q` ∀` ∈ X
(p∗)` = (p`)

∗ ∀` ∈ X.

The norm, uniquely defined by the involutive algebra structure, is given by (∗). We

have used here the possibility of defining a von Neumann algebra without a specific
representation in Hilbert space, cf. Chapter V. If one wishes to realise W (V, F ) con-
cretely as operators on a Hilbert space, one can, for instance, let random operators act
by

(qξ)s = qλ(s)ξs ∀s ∈ V

in the Hilbert spaceH of square-integrable sections (ξs)s∈V of the bundle λ∗L2 of Hilbert
spaces on V . One can also use the restriction of λ∗L2 to a sufficiently large transverse
submanifold T of V . The invariants of von Neumann algebras are independent of the
choice of a specific representation in Hilbert space and depend only upon the algebraic
structure.

The von Neumann algebra W (V, F ) only depends upon the space X of leaves with its
Lebesgue measure class; one has

Proposition 3. Two foliations (Vi, Fi) with the same leaf space have isomorphic von
Neumann algebras: W (V1, F1) ∼ W (V2, F2).

To be more precise one has to require in Proposition 3 that dim Fi > 0 and that
the assumed isomorphism V1/F1∼V2/F2 be given by a bijection ψ : V1/F1→V2/F2

which preserves the Lebesgue measure class and is Borel in the sense that {(x, y) ∈
V1×V2 ; ψ(λ1(x)) = λ2(y)} is a Borel subset of V1×V2, with λi : Vi→Vi/Fi the quotient
map.

For any von Neumann algebra M , its center

Z(M) = {x ∈ M ; xy = yx ∀y ∈ M}
is a commutative von Neumann subalgebra of M .

In the above context one has the easily proved

Proposition 4. Let (V, F ) be a foliated manifold; then the construction 1) of random
operators yields an isomorphism

L∞(X)∼Z(W (V, F ))

of the algebra of bounded measurable (classes of) functions on X = V/F with the center
of W (V, F ).

In particular W (V, F ) is a factor iff the foliation is ergodic.
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We shall now illustrate the type classification of von Neumann algebras by geometric
examples given by foliations. This will allow a non-algebraically minded reader to form
a mental picture of these notions.

Type I von Neumann algebras

By definition a von Neumann algebra M is of type I iff it is algebraically isomorphic to
the commutant of a commutative von Neumann algebra. Thus type I is the stable form
of the hypothesis of commutativity. We refer to Chapter V for the easy classification
of type I von Neumann algebras (with separable preduals) as direct integrals of matrix
algebras Mn(C), n ∈ {1, 2, . . . ,∞}.
A simple criterion ensuring a von Neumann algebra M be of type I is that it contains
an abelian projection e with central support equal to 1. A projection e = e∗ = e2 ∈ M
is called abelian iff the reduced von Neumann algebra

Me = {x ∈ M ; xe = ex = x}
is commutative. The central support of e is equal to 1 iff one has ex 6= 0 for any
x ∈ Z(M) , x 6= 0.

Using this criterion one easily gets that the von Neumann algebra of a foliation (V, F )
is of type I iff the leaf space X is an ordinary measure space. More precisely:

Proposition 5. Let (V, F ) be a foliated manifold. Then the associated von Neumann
algebra is of type I iff one of the following equivalent conditions is satisfied.

α) The quotient map λ : V→X admits a Lebesgue measurable section.

β) The space of leaves X, with its quotient structure, is, up to a null set, a standard
Borel space.

A measurable section α of λ is a measurable map from V to V constant along the
leaves and such that

α(x) ∈ λ(x) ∀x ∈ V.

In general, an abelian projection e ∈ W (V, F ) is given by a measurable section `→ξ` ∈
L2(`) of the bundle (L2(`))`∈X such that ‖ξ`‖ ∈ {0, 1} ∀` ∈ X. The formula for the
random operator e = (e`)`∈X is then

e` η = 〈η, ξ`〉ξ` ∀η ∈ L2(`) , ∀` ∈ X.

The central support of e is equal to 1 iff ‖ξ`‖ = 1 a.e. The above type I property
rarely holds for a foliation. It does, of course, for fibrations or if all leaves are compact;
but it also holds for some foliations whose leaves are not compact, such as the Reeb
foliations (Figure 7). In this last example the map α, which assigns to each leaf ` the
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Figure 8. Example of type I foliation

point α(`) ∈ ` where the extrinsic curvature is maximal, yields a measurable section of
λ : V→X.

Type II von Neumann algebras

A finite trace τ on an algebra is a linear form τ such that τ(xy) = τ(yx) for any pair
x, y of elements of that algebra. Let H be an infinite-dimensional Hilbert space and
M∞(C) = L(H) be the von Neumann algebra of all bounded operators on H. It is
the only factor of type I∞. This factor does not possess any finite trace, but the usual
trace of operators, extended with the value +∞ to positive operators which are not in
L1(H), is a positive semi-finite faithful normal trace on M∞(C). We refer to Chapter
V Section 3 for the technical definitions.

By definition, a von Neumann algebra M is semi-finite iff it has a positive semi-finite
faithful normal trace. Any type I von Neumann algebra is semi-finite. Any semi-finite
von Neumann algebra M is uniquely decomposable as the direct sum M = MI⊕MII of
a type I von Neumann algebra MI and a semi-finite von Neumann algebra MII with no
nonzero abelian projection. One says that MII is of type II.

Let (V, F ) be a foliated manifold and M = W (V, F ) the associated von Neumann
algebra. We shall see now that the positive faithful semi-finite normal traces τ on M
correspond exactly to the geometric notion of positive invariant transverse densities on
V , which we first describe.

Given a smooth manifold Y , a positive density ρ on Y is given by a section of the
following canonical principal bundle P on Y . At each point y ∈ Y the fiber Py is the
space of nonzero homogeneous maps ρ : ∧d Ty→R∗+, ρ(λv) = |λ| ρ(v) ∀λ ∈ R, ∀v ∈
∧d Ty, where Ty = Ty(Y ) is the tangent space of Y at y ∈ Y , and d is the dimension
of Y .
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x

y

U

Figure 9. x and y belong to the same leaf, U is a domain of foliation
chart containing x, y and x, y belong to the same plaque.

By construction P is a principal R∗+-bundle over Y . The choice of a measurable density
determines a measure in the Lebesgue class, and all measures in that class are obtained
in this manner.

Let us now pass to the case of foliations (V, F ). We want to define the notion of a
density on the leaf space X. Given a leaf ` ∈ X, the tangent space T`(X) can be
naively thought of as the q-dimensional real vector space, where q = dim V − dim F,
obtained as follows. For each x ∈ V the quotient Nx = Tx(V )/Fx is a good candidate
for T`(X); it remains to identify canonically the vector spaces Nx and Ny for x, y ∈ `.

Let U⊂V be the domain of a foliation chart so that x and y belong to the same plaque
of U , i.e. to the same leaf p of the restriction of F to U (Figure 8). The leaves
of (U, F ) are the fibres of a submersion π : U→Rq whose tangent map at x, y gives
the desired identification: Nx∼Ny. This identification is independent of any choices
when the leaf ` has no holonomy and is transitive. Since we assume that the set of
leaves with nontrivial holonomy is Lebesgue negligible we thus get a well defined real
measurable bundle T (X) over X, with fiber T`(X)∼Nx for any x ∈ `. As above in the
case of manifolds we let P be the associated principal R∗+-bundle of positive densities.
The fiber P` of P at ` ∈ X is the space of nonzero homogeneous maps ρ : ∧qT`→R∗+,
ρ(λv) = |λ| ρ(v) ∀λ ∈ R, ∀v ∈ ∧qT`. Here q = dim T` is the codimension of F .

We shall now see that the positive densities on X, i.e. the measurable sections ρ of P
on X, correspond exactly to the positive semi-finite faithful normal traces on the von
Neumann algebra W (V, F ):

Proposition 6. Let (V, F ) be a foliated manifold, X its leaf space.

1) Let ρ be a measurable section of P on X, and T = (T`)`∈X be a positive random
operator. Let U = (Uα)α∈I be a locally finite open covering of V by domains of foliation



4. GEOMETRIC EXAMPLES OF VON NEUMANN ALGEBRAS 62

charts, and (ξα)α∈I a smooth partition of unity associated to this covering. For each

plaque p of Uα, let Tr((ξαT )|p) be the trace of the operator ξ
1/2
α T` ξ

1/2
α in L2(p)⊂L2(`),

where ` is the leaf of p. Then the following number τρ(T ) ∈ [0, +∞] is independent of
the choices of Uα, ξα:

τρ(T ) =
∑
α∈I

∫
Tr((ξαT )|p) ρ(p).

2) The functional τρ : M+→[0, +∞] thus obtained is a positive faithful semi-finite

normal trace on M , and all such traces on M are obtained in this way.

In particular we get a simple criterion for W (V, F ) to be semi-finite:

Corollary 7. W (V, F ) is semi-finite iff the principal R∗+-bundle P over X admits
some measurable section.

For θ /∈ Q the Kronecker foliation dy = θdx of the 2-torus fulfills this condition; its
von Neumann algebra W (T2, Fθ) is the unique hyperfinite factor of type II∞, namely
R0,1 (cf. Section 3). Similarly, any flow which is ergodic for an invariant measure in
the Lebesgue measure class gives the same hyperfinite factor of type II∞. Any product
(V1×V2, F1×F2) of the above examples will also yield this factor R0,1.

Let us now describe a type II foliation giving rise to a non-hyperfinite factor. Let
Γ = π1(S) be the fundamental group of a compact Riemann surface S of genus > 1
and α : Γ→SO(N) be an orthogonal faithful representation of Γ. Let V be the total
space of the flat principal SO(N)-bundle over S associated to α. Then the horizontal
foliation of V is a two-dimensional foliation F whose associated von Neumann algebra
is a type II∞ non-hyperfinite factor.

Type III von Neumann algebras

Any von Neumann algebra M is canonically the direct sum M = MI⊕MII⊕MIII of
von Neumann algebras of the respective types. A type III von Neumann algebra M
is such that the reduced algebra Me, for any e = e2 = e∗, e 6= 0 is never semi-finite.
Of course this is a negative statement, but the modular theory (cf. Section 3) yields a
fundamental invariant, the flow of weights mod(M), which is an action of the group R∗+
by automorphisms of a Lebesgue measure space, as well as the canonical continuous
decomposition of M as the crossed product of a type II von Neumann algebra by an
action of R∗+. We refer to Chapter V Section 8 for the technical definitions, but we shall
now spell out for the case of the von Neumann algebra M of a foliation (V, F ) what
these invariants are. Let (V, F ) be a foliated manifold. We first need to come back to
the construction of the principal R∗+-bundle P over the leaf space X and interpret the
total space of P as the leaf space of a new foliation (V ′, F ′). Let N , Nx = Tx(V )/Fx,
be the transverse bundle of the foliation (V, F ). It is a real vector bundle, of dimension
q = codimF , over the manifold V . We let Q be the associated principal R∗+-bundle
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of positive densities. Thus the fiber of Q at x ∈ V is the R∗+ homogeneous space of
nonzero maps:

ρ : ∧qNx→R+ , ρ(λv) = |λ| ρ(v) ∀λ ∈ R , ∀v ∈ ∧qNx.

By construction, Q is a smooth principal bundle, and we denote by V ′ its total space.
The restriction of Q to any leaf ` of the foliation has a canonical flat connection ∇.
This follows from the above canonical identification of the transverse spaces Nx, x ∈ `.
Since it is a local statement it does not use any holonomy hypothesis. Using the flat
connection ∇ we define a foliation F ′ of V ′, dim F ′ = dim F , as the horizontal lifts of
F . Thus for y ∈ V ′ = Q sitting over x ∈ V , the space F ′

y⊂Ty(V
′) is the horizontal lift

of Fx. The flatness of ∇ ensures the integrability of F ′. One then checks that:

Proposition 8. 1) (V ′, F ′) is a foliated manifold canonically associated to (V, F ).

2) The group R∗+ acts by automorphisms of the foliation (V ′, F ′).
3) With the above holonomy hypothesis the leaf space of (V ′, F ′) is the total space of
the principal R∗+-bundle P over the leaf space X of (V, F ).

In 2) the action is of course that of the R∗+-bundle Q = V ′, we shall denote it by
(θλ)λ∈R∗+ , θλ ∈ Aut(V ′, F ′). With the above notation we now have

Proposition 9. a) The von Neumann algebra W (V ′, F ′) is always semi-finite.

b) W (V, F ) is of type III iff W (V ′, F ′) is of type II.

c) The flow of weights of W (V, F ) is given by the action θ of R∗+ on the commutative
von Neumann algebra

L∞(P ) = Z(W (V ′, F ′)).
d) The continuous decomposition of W (V, F ) is given by the crossed product of W (V ′, F ′)
by the action θ of R∗+.

With this result we can now illustrate the classification of Section 3 by geometric
examples.

All invariants discussed in Section 3, S(M), T (M) . . . are computed in terms of the
flow of weights mod(M), thus, for instance, (for factors)

S(M) = {λ ∈ R∗+ ; θλ = id}
T (M) = Point spectrum of θ = {t ∈ R; ∃u 6= 0 , θλ(u) = λitu ∀λ ∈ R∗+}.
In particular M is of type III1 iff mod(M) is the constant flow. Thus an ergodic
foliation W (V, F ) is of type III1 iff (V ′, F ′) is ergodic.

A simple example of this situation is given by the Anosov foliation F of the unit sphere
bundle V of a compact Riemann surface S of genus g > 1 endowed with its Riemannian
metric of constant curvature −1. Thus (cf. for instance [394]) the manifold V is
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the quotient V = G/Γ of the semisimple Lie group G = PSL(2,R) by the discrete
cocompact subgroup Γ = π1(S), and the foliation F of V is given by the orbits of the
action by left multiplication on V = G/Γ of the subgroup B⊂G of upper triangular
matrices.

The von Neumann algebra M = W (V, F ) of this foliation is the (unique) hyperfinite
factor of type III1 : R∞. One can indeed check that the associated type II foliation
(V ′, F ′) is ergodic. It has the same space of leaves as the horocycle flow given by the

action on V = G/Γ of the group of upper triangular matrices of the form

[
1 t
0 1

]
,

t ∈ R.

Let us give an example of a foliation whose associated von Neumann algebra is the
hyperfinite factor Rλ of type IIIλ, λ ∈ ]0, 1[. Let G = PSL(2,R), Γ⊂G as above, and

B be the subgroup of G of upper triangular matrices

[
a t
0 a−1

]
, t ∈ R, a ∈ R∗+. Let

V be the manifold V = G/Γ×T where T is the one-dimensional torus, T = R∗+/λZ.
The group B acts on G/Γ by left translations and on T by multiplication by a. The
product action of B on V gives a two-dimensional foliation (V, F ) and

W (V, F )∼Rλ.

The same construction with T and the action of R∗+ on T replaced by an arbitrary
ergodic smooth flow Y yields a foliation (V, F ) whose associated von Neumann algebra
is the unique hyperfinite factor algebra of type III0 with Y as flow of weights, namely
the Krieger factor RY (cf. Chapter V). In fact the hyperfinite factors of type IIIλ,
λ ∈ ]0, 1] and a large class of hyperfinite factors of type III0 already arise from smooth
foliations of the 2-dimensional torus ([346]).

We cannot end this section without mentioning the deep relation between the Godbillon-
Vey class and the flow of weights which will be discussed in Chapter III Section 6.

5. The Index Theorem for Measured Foliations

In the previous section we used the geometric examples of noncommutative spaces
coming from the spaces of leaves of foliations to illustrate the classification of factors.
In this section we shall show how the theory of type II von Neumann algebras is used as
an essential tool in measuring the continuous dimension of the random Hilbert spaces
of L2-solutions of a leafwise elliptic differential equation. An extraordinary property
of factors of type II1, such as the hyperfinite factor R, is the complete classification of
the equivalence classes of projections e ∈ R by a real number dim(e) ∈ [0, 1] that can
take on any value between 0 and 1. The Grassmannian of the projections e ∈ R thus
no longer describes the lines, planes, etc. of ordinary geometry but instead “spaces of
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dimension α ∈ [0, 1]”, in other words a continuous geometry. The force of this discovery
comes across very clearly as one reads the original texts of Murray and von Neumann
([407]). As in the usual case, one can speak of the intersection of “subspaces”; the
corresponding projection e∧f is the largest projection majorized by e and f . One can
likewise speak of the subspace generated by e and f ; the corresponding projection is
denoted e ∨ f . The fundamental equation is then

dim(e∧f) + dim(e ∨ f) = dim(e) + dim(f) ∀e, f.

These properties make it possible to extend the notion of continuous dimension to the
representations of a type II1 factor N in Hilbert space, so to speak to N -modules, so
that these modules are classified exactly by their dimension dimN(H), which can be
any real number in [0, +∞] (cf. Chapter V, Section 10). We first explain in detail the
notion of transverse measure for foliations and the Ruelle-Sullivan current associated
to such a measure. We insist on this notion because it is the geometric counterpart of
the notion of a trace on a C∗-algebra, and is at the heart of noncommutative measure
theory. We then discuss the special case of the leafwise de Rham complex and show how
the continuous dimensions of Murray and von Neumann allow one to define the real-
valued Betti numbers. We finally describe the index theorem which replaces, for the
noncompact leaves L of a measured foliation (V, F ), the Atiyah-Singer index theorem
for compact manifolds, and is directly along the lines of the index theorem for covering
spaces due to Atiyah [21] and Singer [523].

5.α Transverse measures for foliations. To get acquainted with the notion
of transverse measure for a foliation, we shall first describe it in the simplest case:
dim F = 1, i.e. when the leaves are one-dimensional. The foliation is then given by
an arbitrary smooth one-dimensional subbundle F of TV , the integrability condition
being automatically satisfied. To simplify even further, we assume that F is oriented,
so that the complement of the zero section has two components F+ and F− = −F+.
Then using partitions of unity, one gets the existence of smooth sections of F+, and
any two such vector fields X and X ′ ∈ C∞(V, F+) are related by X ′ = φX where
φ ∈ C∞(V,R∗+). The leaves are the orbits of the flow exp tX. The flows Ht = exp tX
and H ′

t = exp tX ′ have the same orbits and differ by a time change:

H ′
t(p) = HT (t,p)(p) ∀t ∈ R , p ∈ V.

The dependence in p of this time change T (t, p) makes it clear that a measure µ on V
which is invariant under the flow H (i.e. Htµ = µ, ∀t ∈ R) is not in general invariant
under H ′ (take the simplest case X = ∂/∂θ on S1). To be more precise let us first
translate the invariance Htµ = µ by a condition involving the vector field X rather
than the flow Ht = exp tX. Recall that a de Rham current C of dimension q on V
is a continuous linear form on the complex topological vector space C∞(V,

∧q T ∗
C) of
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smooth complex-valued differential forms on V of degree q. In particular a measure µ
on V defines a 0-dimensional current by the equality 〈µ, ω〉 =

∫
ω dµ, ∀ω ∈ C∞(V ). All

the usual operations, the Lie derivative ∂X with respect to a vector field, the boundary
d, and the contraction iX with a vector field, are extended to currents by duality, and
the equality ∂X = diX + iXd remains, of course, true. Now the condition Htµ = µ,
∀t ∈ R is equivalent to ∂Xµ = 0, and since, as µ is 0-dimensional its boundary dµ is 0,
it is equivalent to d(iXµ) = 0. This condition is obviously not invariant if one changes
X into X ′ = φX, φ ∈ C∞(V,R∗+). However, if we replace X by X ′ = φX and µ by
µ′ = φ−1µ, the current iX′µ′ is equal to iXµ and hence is closed, so that µ′ is now
invariant under H ′

t = exp(tX ′).

So, while we do not have a single measure µ on V invariant under all possible flows
defining the foliation, we can keep track of the invariant measures for each of these
flows using the 1-dimensional current iXµ = C. To reconstruct µ from the current C
and the vector field X, define

〈µ, f〉 = 〈C, ω〉 , ∀ω ∈ C∞(V,∧1T ∗
C) , ω(X) = f.

Given a 1-dimensional current C on V and a vector field X ∈ C∞(V, F+), the above
formula will define a positive invariant measure for Ht = exp tX iff C satisfies the
following conditions:

1) C is closed, i.e. dC = 0

2) C is positive in the leaf direction, i.e. if ω is a smooth 1-form whose restriction to
leaves is positive then 〈C, ω〉 ≥ 0.

We could also replace condition 1) by any of the following:

1′ ) There exists a vector field X ∈ C∞(V, F+) such that exp tX leaves C invariant.

1′′ ) Same as 1′ ), but for all X ∈ C∞(V, F+).

In fact if C satisfies 2) then 〈C, ω〉 = 0 for any ω whose restriction to F is 0, thus
iXC = 0, ∀X ∈ C∞(V, F+), and ∂XC = diXC + iXdC = iXdC is zero iff dC = 0.

From the above discussion we get two equivalent points of view on what the notion of
an invariant measure should be for the one-dimensional foliation F :

a) An equivalence class of pairs (X,µ), where X ∈ C∞(V, F+), µ is an exp tX invariant
measure on V , and (X,µ) ∼ (X ′, µ′) when X ′ = φX, µ = φµ′ for φ ∈ C∞(V,R∗+).

b) A one-dimensional current C, positive in the leaf direction (cf. 2) and invariant
under all, or equivalently some, flows exp tX, X ∈ C∞(V, F+).

Before we proceed to describe a) and b) for arbitrary foliations we relate them to a
third point of view c), that of holonomy invariant transverse measures. A submanifold
N of V is called a transversal if, at each p ∈ N , Tp(V ) splits as the direct sum of the
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subspaces Tp(N) and Fp. Thus the dimension of N is equal to the codimension of F .
Let p ∈ N , and let U , p ∈ U , be the domain of a foliation chart. One can choose U
small enough so that the plaques of U correspond bijectively to points of N ∩ U , each
plaque of U meeting N in one and only one point.

Starting from a pair (X,µ) as in a), one defines on each transversal N a positive
measure as follows: the conditional measures of µ (restricted to U) on the plaques, are,
since µ is invariant by Ht = exp tX, proportional to the obvious Lebesgue measures
determined by X, so the formula Λ(B) = Limε→0 1/ε µ(Bε), Bε =

⋃
t∈[0,ε] Ht(B) makes

sense for any Borel subset B of N .

If one replaces (X, µ) by an equivalent pair (X ′, µ′) it is obvious that Λ does not change,
since µ′ = φ−1µ while X ′ = φX. By construction, Λ is invariant under any of the flows
Ht = exp tX, i.e. Λ(HtB) = Λ(B), ∀t ∈ R, and any Borel subset B of a transversal.
In fact much more is true:

Lemma 1. Let N1 and N2 be two transversals, Bi a Borel subset of Ni, i = 1, 2, and
ψ : B1→B2, a Borel bijection such that, for each x ∈ B1, ψ(x) is on the leaf of x; then
we have Λ(B1) = Λ(B2).

To prove this, note that if p1 ∈ N1 and Ht(p1) = p2 ∈ N2 for some t ∈ R, then there
exists a smooth function φ defined in a neighborhood of p1 and such that φ(p1) = t,
Hφ(p)(p) ∈ N2. Thus there exists a sequence φn of smooth functions defined on open
sets of N1 and such that

{(p, t) ∈ N1×R ; Ht(p) ∈ N2} =
⋃

Graph φn.

Let then (Pn) be a Borel partition of B1 such that for p ∈ Pn one has ψ(p) = Hφn(p)(p).
It is enough to show that Λ (ψ(Pn)) = Λ(Pn) for all n. But since on Pn, ψ coincides
with p7→Hφn(p)(p) the result follows from the invariance of Λ under all flows exp tY ,
Y ∈ C∞(V, F+).

Thus the transverse measure Λ(B) depends in a certain sense only on the intersection
number of the leaves L of the foliation, with the Borel set B. For instance, if the current
C is carried by a single closed leaf L the transverse measure Λ(B) only depends on the
number of points of intersection of L and B and hence is proportional to B 7→(B∩L)#.

By a Borel transversal B to (V, F ) we mean a Borel subset B of V such that B ∩ L
is countable for any leaf L. If there exists a Borel injection ψ of B into a transversal
N with ψ(x) ∈ Leaf (x) ∀x ∈ B, define Λ(B) as Λ (ψ(B)) (which by Lemma 1, is
independent of the choices of N and ψ). Then extend Λ to arbitrary Borel transversals
by σ-additivity, after remarking that any Borel transversal is a countable union of the
previous ones.

We thus obtain a transverse measure Λ for (V, F ) in the following sense:
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Definition 2. A transverse measure Λ for the foliation (V, F ) is a σ-additive map
B→Λ(B) from Borel transversals ( i.e. Borel sets in V with V ∩ L countable for any
leaf L) to [0, +∞] such that

1) If ψ : B1→B2 is a Borel bijection and ψ(x) is on the leaf of x for any x ∈ B1, then
Λ(B1) = Λ(B2).

2) Λ(K) < ∞ if K is a compact subset of a smooth transversal.

We have seen that the points of view a) and b) are equivalent and how to pass from
a) to c). Given a transverse measure Λ as in Definition 2, we get for any distinguished
open set U (where U is the domain of a foliation chart), a measure µU on the set of
plaques π of U , such that for any transversal B⊂U one has

Λ(B) =

∫
Card (B ∩ π) dµU(π).

Put 〈CU , ω〉 =
∫ (∫

π
ω
)
dµU(π), where ω is a differential form on U and

∫
π
ω is its

integral over the plaque π of U . Then on U ∩U ′ the currents CU and CU ′ agree so that
one gets a current C on V which obviously satisfies the conditions b), 1), and 2). One
thus gets the equivalence between the three points of view a), b), and c).

Let us now pass to the general notion of transverse measure for foliations. We first state
how to modify a) and b) for arbitrary foliations (dim F 6= 1). To simplify we assume
that the bundle F is oriented. For a) we considered, in the case dim F = 1, pairs
(X,µ) up to the very simple equivalence relation saying that only X⊗C∞(V )µ matters.

In the general case, since F is oriented we can talk of the positive part (
∧dim F F+) of∧dim F F , and, using partitions of unity, construct sections v of this bundle. These will

play the role of the vector field X. Given a smooth section v ∈ C∞(V,
∧dim F F )+, we

have on each leaf L of the foliation a corresponding volume element. For k = dim F , it
corresponds to the unique k-form ω on L such that ω(v) = 1. In the case dim F = 1,
the measure µ had to be invariant under the flow Ht = exp(tX). This occurs iff in
each domain of a foliation chart U , the conditional measures of µ on the plaques of U
are proportional to the measures determined by the volume element v. Thus we shall
define the invariance of the pair (v, µ) in general by this condition. So a) becomes
classes of invariant pairs (v, µ) where v ∈ C∞(V,∧dim F F )+, while (v, µ) ∼ (v′, µ′) iff
v′ = φv and µ = φµ′ for some φ ∈ C∞(V,R∗+). The condition of invariance of µ
is of course local. If it is satisfied and Y ∈ C∞(V, F ) is a vector field leaving the
volume element invariant, i.e. ∂Y (v) = 0, then Y also leaves µ invariant. Moreover,
since Lebesgue measure in Rk is characterized by its invariance under translation, one
checks that if ∂Y µ = 0 ∀Y ∈ C∞(V, F ) with ∂Y (v) = 0, then (v, µ) is invariant. To
see this one can choose local coordinates in U transforming v into the k-vector field
v = ∂/∂x1∧ · · · ∧∂/∂xk ∈ C∞(V,∧F ). With the above trivialization of v it is clear
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that the current ivµ one gets by contracting v with the 0-dimensional current µ is a
closed current, which is locally of the form

〈C, ω〉 =

∫ (∫

π

ω

)
dµU(π)

where ω is a k-form with support in U ,
∫

π
ω is its integral over a plaque π of U , and

µU is the measure on the set of plaques coming from the disintegration of µ restricted
to U with respect to the conditional measures associated to v.

Clearly C satisfies conditions 1) and 2) of b) and we may also check that ∂Y C = 0,
∀Y ∈ C∞(V, F ). Thus for b) in general we take the same object as in the case k = 1,
namely a closed current positive in the leaf direction, the condition “closed” being
equivalent to

∂Y C = 0 ∀Y ∈ C∞(V, F ).

To recover µ, given C and v, one considers an arbitrary k-form ω on V such that
ω(v) = 1 and puts 〈f, µ〉 = 〈C, fω〉 ∀f ∈ C∞(V ). One checks in this way that a) and
b) are equivalent points of view. For c) one takes exactly the same definition as for
k = 1. Given a transverse measure Λ as in Definition 2 one constructs a current exactly
as for k = 1. Conversely, given a current C satisfying b), one gets for each domain U
of a foliation chart a measure µU on the set of plaques of U , such that the restriction
of C to U is given by

〈C, ω〉 =

∫ (∫

π

ω

)
dµU(π).

Thus one can define Λ(B) for each Borel transversal B: if B is contained in U then

Λ(B) =

∫
Card (B ∩ π)dµU(π).

One easily checks, as in the case of flows, that Λ satisfies Definition 2.

5.β The Ruelle-Sullivan cycle and the Euler number of a measured foli-
ation. By a measured foliation we mean a foliation (V, F ) equipped with a transverse
measure Λ. We assume that F is oriented and we let C be the current defining Λ in the
point of view b). As C is closed, dC = 0, it defines a cycle [C] ∈ Hk(V,R), by looking
at its de Rham homology class. The distinction here between cycles and cocycles is
only a question of orientability. If one assumes that F is transversally oriented then
the current becomes even and it defines a cohomology class (cf. [489]).

Now let e(F ) ∈ Hk(V,R) be the Euler class of the oriented bundle F on V (cf. [394]).
Using the pairing which makes Hk(V,R) the dual of the finite-dimensional vector space
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Figure 10. Vector field on the generic leaf of a foliation.

Hk(V,R), we get a scalar χ(F, Λ) = 〈e(F ), [C]〉 ∈ R which we shall first interpret in
two ways as the average Euler characteristic of the leaves of the measured foliation.
First recall that for an oriented compact manifold M the Euler characteristic χ(M) is
given by the well known theorem of H. Poincaré and H. Hopf:

χ(M) =
∑

p∈ Zero X

ω(X, p)

where X is a smooth vector field on M with only finitely many zeros, while ω(X, p) is
the local degree of X around p. Given generically, p is a nondegenerate zero, i.e. in
local coordinates, X =

∑
ai ∂/∂xi, the matrix ∂ai/∂xj(p) is nondegenerate and the

local degree is the sign of its determinant.

Also, choosing arbitrarily on M a Riemannian metric, one has the generalized Gauss-
Bonnet theorem which expresses the Euler characteristic as the integral over M of
a form Ω on M , equal to the Pfaffian of (2π)−1K where K is the curvature form.
These two interpretations of the Euler characteristic extend immediately to the case
of measured foliations (V, F, Λ).

First, if X ∈ C∞(V, F ) is a generic vector field tangent to the foliation, its set of zeros,
T = {p ∈ V ; X(p) = 0}, defines a submanifold of V which is not in general everywhere
transverse to the foliation F but is so Λ-almost everywhere. Thus Λ-almost everywhere
the local degree ω(X, p) = ±1 of the restriction of X to the leaf of p is well defined, and
using the transverse measure we can thus form

∫
p∈ Zero X

ω(X, p) dΛ(p). This scalar is

again independent of the choice of X and equals χ(F, Λ) = 〈e(F ), [C]〉, as is easily seen
from the geometric definition of the Euler class by taking the odd cycle associated to
the zeros of a generic section.
Second, let || || be a Euclidean structure on the bundle F . Then each leaf L is equipped
with a Euclidean structure on its tangent bundle, i.e. with a Riemannian metric. So
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the curvature form of each leaf L allows us to define a form ΩL, of maximal degree, on
L, by taking as above the Pfaffian of (2π)−1 times the curvature form. Now ΩL is only
defined on L, but one can easily define its integral, using the transverse measure Λ; it
is formally

∫ (∫

L

ΩL

)
dΛ(L).

(In point of view a), this integral is µ(φ), where φ(p) = Ωp(vp); in b) it is 〈Ω′, C〉 where
Ω′ is any k-form on V whose restriction to each leaf L is ΩL; and in c) it is the above
integral computed using a covering by domains Ui of foliation charts and a partition of
unity φi, the value of

∫ (∫
L

φiΩ
)
dΛ(L) being given by

∫ (∫
π
φiΩ

)
dΛ(π) where π varies

over the set of plaques of Ui).

To show that the above integral is equal to χ(F, Λ), choose a connection ∇ for the
bundle F on V compatible with the metric, and using its curvature form K, take
Ω′ = Pf(K/2π). This gives a closed k-form on V , and by [394] p.311, the Euler
class of F is represented by Ω′ in Hk(V,R). Now the restriction of ∇ to leaves is not
necessarily equal to the Riemannian connection. However, both are compatible with
the metric. It follows then that on each leaf L there is a canonical (k − 1)-form ωL

with ΩL − Ω′
L = dωL, where Ω′

L is the restriction of Ω′ to L. Since ωL is canonical, it
is the restriction to L of a (k − 1)-form ω on V and hence

∫ (∫

L

ΩL

)
dΛ(L) = 〈Ω′ + dω,C〉 = 〈e(F ), [C]〉.

So in fact both interpretations of χ(F, Λ) follow from the general theory of characteristic
classes. One is, however, missing the third interpretation of the Euler number χ(M)
of a compact manifold

χ(M) =
∑

(−1)iβi,

where the βi are the Betti numbers

βi = dim
(
H i(M,R)

)
.

The first approach to defining the βi in the foliation case is to consider the transverse
measure Λ as a way of defining the density of discrete subsets of the generic leaf, and
then to take βi as the density of holes of dimension i. However the simplest examples
show that one may very well have a foliation with all leaves diffeomorphic to R2 while
χ(F, Λ) < 0, so that β1 > 0 cannot be defined in the above naive sense. Specifically,
let ρ be a faithful orthogonal representation of the fundamental group Γ of a Riemann
surface S of genus 2. Then the corresponding principal bundle V on S has a natural

foliation: V is the quotient of S̃×SO(n) by the action of Γ, and the foliation with

leaves S̃× points is globally invariant under Γ and hence drops down as a foliation
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on V . S̃ is the universal covering of S. The bundle F is the bundle of horizontal
vectors for a flat connection on V , and each fiber p−1{x} is a closed transversal which
intersects each leaf in exactly one orbit of Γ. So the Haar measure of SO(n) defines
a transverse measure Λ. Since the transverse measure of each fiber is one it is clear
that χ(F, Λ) = −2. Moreover, since the representation ρ of Γ in SO(n) is faithful,

each leaf L of the foliation is equal to the covering space S̃, i.e. is conformal to
the unit disk in C. So each leaf is simply-connected while “β0 − β1 + β2”< 0. This
clearly shows that one cannot obtain β1 by counting in a naive way the handles of
this surface. However, though the Poincaré disk (i.e. the unit disk of C considered
as a complex curve) is simply connected it has plenty of nonzero harmonic 1-forms.
For instance if f is a bounded holomorphic function in the disk D, then the form
ω = f(z)dz is harmonic, and its L2 norm

∫
ω∧ ∗ ω is finite. Thus the space H1(D,C)

of square-integrable harmonic 1-forms is infinite-dimensional and β1 will be obtained
by evaluating its “density of dimension”, following the original idea of Atiyah [21], for
covering spaces.

Given a compact foliated manifold we can, in many ways, choose a Euclidean metric
|| || on F . However, since V is compact, two such metrics || ||, || ||′ always satisfy
an inequality of the form C−1|| ||′ ≤ || || ≤ C|| ||′. So for each leaf L the two
Riemannian structures defined by || || and || ||′ will be well related, the identity map
from (L) to (L)′ being a quasi-isometry. Letting then H be the Hilbert space of
square-integrable 1-forms on L with respect to || || (resp. H′ with respect to || ||′)
the above quasi-isometry determines a bounded invertible operator T from H to H′.
We let P (resp. P ′) be the orthogonal projection of H (resp. H′) on the subspace of
harmonic 1-forms. Then P ′T (resp. PT−1) is a bounded operator from H1(L,C) to
H1(L′,C) (resp. from H1(L′,C) to H1(L,C)). These operators are inverses of each
other, since, for instance, the form PT−1P ′Tω − ω is harmonic on L, is in the closure
of the range of the boundary operator, and hence is 0. (At this point, of course, one
has to know precisely the domains of the unbounded operators used; the compactness
of the ambient manifold V shows that each leaf with its quasi-isometric structure is
complete; in particular, there is no boundary condition needed to define the Laplacian,
since its minimal and maximal domains coincide as in [21]).

From the above discussion we get that the Hilbert space Hj(L,C) of square integrable
harmonic j-forms on the leaf L is well defined up to a quasi-isometry. Of course this
fixes only its dimension, dim Hj(L,C) ∈ {0, 1, . . . , +∞}. In the above example all
leaves were equal to the Poincaré disk D so that for each L: dim H1(L,C) = +∞.
However, in this example χ(F, Λ) = −2 was finite, which is not compatible with a
definition of β1 as the constant value +∞ of dim(H1(L,C)). One can easily see that
H0(L,C) = 0 and H2(L,C) = 0, thus we should have β1 = 2.

Now note the quasi-isometry defined above from Hj(L,C) to Hj(L′,C) (j = 1) is
canonical. This means that, on the space of leaves V/F of (V, F ), the two “bundles”
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of Hilbert spaces are isomorphic as “bundles” and not only fiberwise. The point that
there is more information in the “bundle” than in the individual fibers is well-known.
However, it is also well-known that in classical measure theory all bundles are trivial.
If (X,µ) is a Lebesgue measure space and (Hx)x∈X , (H ′

x)x∈X are two measurable fields
of Hilbert spaces (cf. [172]) with isomorphic fibers (i.e. dim Hx = dim H ′

x a.e.) then
they are isomorphic as bundles.

Since in our example dim H1(L,C) = +∞ ∀L ∈ V/F , one could think that this bundle
of Hilbert spaces is measurably trivial. In fact it admits no measurable cross-section
of norm one. This follows as in the examples of Section 4 Type I, using the ergodicity
of the transverse measure Λ.

Thus we see that the measurable bundle H1(L,C) is not trivial. It is however, iso-
morphic to a much simpler measurable bundle, which we now describe. Let B be a
Borel transversal; then to each leaf L of the foliation we associate the Hilbert space
HL = `2(L ∩ B) with orthonormal basis (ey) canonically parametrized by the discrete
countable subset B∩L of the leaf L. To define the measurable structure of this bundle,
note that its pull-back to V assigns to each x ∈ V the space `2(Lx ∩ B) where Lx is
the leaf through x, so given a section (s(x))x∈V of this pull-back, we shall say that it
is measurable iff the function (x, y) ∈ V×B 7→〈s(x), ey〉 is measurable.

Lemma 3. Let B and B′ be Borel transversals. Then if the two bundles of Hilbert
spaces (HL)L∈V/F with HL = `2(L ∩ B), and (H ′

L)L∈V/F with H ′
L = `2(L ∩ B′), are

measurably isomorphic, one has Λ(B) = Λ(B′).

Proof. Let (UL)L∈V/F be a measurable family of unitaries from HL to H ′
L. For each

x ∈ B let λx be the probability measure on B′ given by λx({y}) = |〈U`(x)ex, ey〉|2.
By construction, λx is carried by the intersection of the leaf of x with B′. From
the existence of this map x 7→λx, which is obviously measurable, one concludes that
Λ(B) ≤ Λ(B′). Q.E.D.

From this lemma we get an unambiguous definition of the dimension for measurable
bundles of Hilbert spaces of the form HL = `2(L ∩B) by taking

dimΛ(H) = Λ(B).

We can now state the main result of this section. We shall assume that the set of leaves
of (V, F ) with nontrivial holonomy is Λ-negligible. This is not always true and we shall
explain in Remark 1 how the statement has to be modified for the general case.

Theorem 4. a) For each j = 0, 1, 2, . . . , dim F , there exists a Borel transversal Bj

such that the bundle (Hj(L,C))L∈V/F of the square-integrable harmonic forms on L is
measurably isomorphic to (`2(L ∩Bj))L∈V/F .

b) The scalar βj = Λ(Bj) is finite, independent of the choice of Bj and of the choice
of the Euclidean structure on F .
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c) One has
∑

(−1)jβj = χ(F, Λ).

Of course if F = TV so that there is only one leaf, a Borel transversal B is a finite subset
of V and Λ(B) is its cardinality, so one recovers the usual relationship between Euler
characteristic and Betti numbers. Let us specialise now to two-dimensional leaves,
i.e. dim F = 2. Then we get β0 − β1 + β2 = 1/2π

∫
KdΛ where K is the intrinsic

Gaussian curvature of the leaves. Now β0 is the dimension of the measurable bundle
HL = {square-integrable harmonic 0-forms on L}. Thus, as harmonic 0-forms are
constant, there are two cases:

If L is not compact, one has HL = {0}.
If L is compact, one has HL = C.

Using the ∗-operation as an isomorphism of H0(L,C) with H2(L,C) one gets the same
result for H2(L,C), and hence

Corollary 5. If the set of compact leaves of (V, F ) is Λ-negligible, then the integral∫
KdΛ of the intrinsic Gaussian curvature of the leaves is ≤ 0.

Proof.

1/2π

∫
KdΛ = β0 − β1 + β2 = −β1 ≤ 0. Q.E.D.

Remark 6. 1) The above theorem was proven under the hypothesis: “The set of
leaves with non-trivial holonomy is negligible”. To state it in general, one has to

replace the generic leaf L, wherever it appears, by its holonomy covering L̃. Thus

for instance the measurable bundle Hj(L,C) is replaced by Hj(L̃,C), and `2(L ∩ B)
is replaced by `2(L∩̃B), where L∩̃B is a shorthand notation for the inverse image of

L∩B in the covering space L̃. One has to be careful at one point, since the holonomy

group of L acts naturally on both Hj(L̃,C) and `2(L∩̃B), and the unitary equivalence

UL : Hj(L̃,C)7→`2(B∩̃L) is supposed to commute with the action of the holonomy
group. Then with these precautions the above theorem holds in full generality. Now

unless L̃ is compact one has H0(L̃,C) = 0. Thus, unless L is compact with finite
holonomy (which by the Reeb stability theorem implies that nearby leaves are also
compact) one has β0 = β2 = 0. This of course strengthens the above corollary: to get∫

KdΛ ≤ 0 it is enough that the set of leaves isomorphic to S2 be Λ-negligible. Of
course, one may have

∫
KdΛ > 0, as occurs for foliations with S2-leaves.

2) Using the analytical proof of the Morse inequalities for manifolds ([587]) one can
prove their analogues for foliations ([118]). The main point here is a result of Igusa
[295] which shows that given a foliation (V, F ), one can always find a smooth function
φ ∈ C∞(V ) such that the singularities associated to the critical points of the restriction
of φ to the leaves are at most of degree 3. (As above, for vector fields X(x) ∈ Fx ∀x ∈ V ,
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it is not possible in general to assume that the restriction of φ to the leaves will be a
Morse function, since this would yield a closed transversal to the foliation.)

3) If T⊂V is a closed transversal to a foliation F , then one can perform surgery along
the leaves at the points of T∩L. This will not affect the space of leaves or the transverse
measure, but will, in general, modify the real Betti numbers βi. By using this operation
on products of Kronecker foliations (T2, Fθj

), one gets examples where the real Betti
numbers βi, i = 1, . . . , k/2, k = dim F have given (irrational) preassigned values.

4) The homotopy invariance of the real Betti numbers βi has been proved by J. Heitsch
and C. Lazarov [272].

5.γ The index theorem for measured foliations. The above formula∑
(−1)jβj = χ(F, Λ)

which relates the real Betti numbers of a measured foliation to the Euler characteristic
of F evaluated on the Ruelle-Sullivan cycle, is a special case of a general theorem which
extends to measured foliations the Atiyah-Singer index theorems for compact manifolds
[26] and for covering spaces [21] [523]. As we have already seen above, a typical feature
of the leaves of foliations is that they fail to be compact even if the ambient manifold
V is compact. However, the continuous dimensions due to Murray and von Neumann
allow us to measure with a finite positive real number, dimΛ(KerD), the dimension of
the random Hilbert space (KerDL)L∈X of L2 solutions of a leafwise elliptic differential
equation DLξ = 0. This continuous dimension vanishes iff the solution space KerDL

vanishes for Λ-almost all leaves.

More specifically, one starts with a pair of smooth vector bundles E1, E2 on V together
with a differential operator D on V from sections of E1 to sections of E2 such that:

1) D restricts to leaves, i.e. (Dξ)x only depends upon the restriction of ξ to a neighbor-
hood of x in the leaf of x (i.e. D only uses partial differentiation in the leaf direction).

2) D is elliptic when restricted to any leaf, i.e. the principal symbol given by σD(x, ξ) ∈
Hom(E1,x, E2,x) is invertible for any ξ ∈ F ∗

x , ξ 6= 0.

For each leaf L, let DL be the restriction of D to L (replace L by the holonomy covering

L̃ if L has holonomy). Then DL is an ordinary elliptic operator on this manifold, and
its L2-kernel {ξ ∈ L2(L, E1); DL(ξ) = 0} is formed of smooth sections of E1 on L. As in
[21], one does not have problems of domains for the definition of DL as an unbounded
operator in L2 since its minimal and maximal domains coincide. In this discussion we
fix, once and for all, a 1-density α on the leaves. This choice determines L2(L,Ei),
i = 1, 2, as well as the formal adjoint D∗

L of DL, which coincides with its Hilbert space
adjoint.

The principal symbol σD of D gives, as in [27], an element [σD] of the K-theory with
compact supports, K∗(F ∗), of the total space F ∗ of the real vector bundle F ∗ over V .
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Using the Thom isomorphism in cohomology, as in [27], yields the Chern character (for
simplicity, F is assumed oriented) Ch(σD) ∈ H∗(V,Q) as an element of the rational
cohomology of the manifold V . We can now state the general result ([95]).

Theorem 7. Let (V, F ) be a compact foliated manifold (1), D a longitudinal elliptic
operator on V , and X = V/F the space of leaves.

a) There exists a Borel transversal B to F such that the bundle (KerDL)L∈X is mea-
surably isomorphic to (`2(L ∩ B))L∈X , and the scalar Λ(B) is finite and independent
of the choice of B.

b) dimΛ(Ker(D))− dimΛ(Ker(D∗)) = ε〈Ch (σD) Td(FC), [C]〉,
ε = (−1)k(k+1)/2, and k = dim F .

In this formula [C] is the Ruelle-Sullivan cycle, Td(FC) is the Todd genus of the com-
plexified bundle F . Using the flatness of F in the leaf direction together with the or-
thogonality of C to the ideal of forms vanishing on the leaves, one can replace Td(FC)
by the Todd genus of TCV .

Let us note that in b) the two sides of the formula are of very different natures. The
left-hand side gives global information about the leaves by measuring the dimension
of the space of global L2 solutions. It obviously depends on the transverse measure
Λ. The right-hand side only depends upon the homology class [C] ∈ Hk(V,R) (a
finite-dimensional vector space) of the Ruelle-Sullivan cycle, on the subbundle F of
TV which defined the foliation, and on the symbol of D which is also a local datum. In
particular, to compute the right-hand side it is not necessary to integrate the bundle
F . This makes sense since the conditions on a current C to have it correspond to
a transverse measure on (V, F ) are meaningful without integrating the foliation (C
should be closed and positive on k-forms ω whose restriction to F is positive).

For a more thorough discussion of this theorem and several applications we refer to the
book [400] of C. Moore and C. Schochet. We shall just illustrate it by the following
simple example, which shows how the usual Riemann-Roch theorem extends to the
non-compact case.

Let (V, F ) be a compact foliated manifold with two-dimensional leaves. Let us assume
that F is oriented. Then every Euclidean structure on F determines canonically a
complex structure on the leaves of (V, F ). This is analogous to the canonical complex
structure of an oriented Riemann surface. Next, let us assume that the foliation (V, F )
has some leaf of subexponential growth (Appendix A) and let Lj be an associated
averaging sequence, assumed to be regular ([400]), and Λ the associated transverse
measure. Then the index theorem for measured foliations, applied to the longitudinal
∂ operator with coefficients in a complex line bundle E, takes the following form ([400]):

dimΛ

(
Ker∂E

)− dimΛ

(
Ker(∂E)∗

)
= Limj→∞Number of zeros of E in Lj/Vol(Lj)

−Limj→∞Number of poles of E in Lj/Vol(Lj) + 1/2 Average Euler Characteristic



APPENDIX A : TRANSVERSE MEASURES AND AVERAGING SEQUENCES 77

where the zeros and poles of the line bundle E are defined using a classifying map
([400]), but take on the usual concrete meaning when E is associated to a divisor.
More explicitly, consider the case of a foliation of a 3-manifold V by surfaces. Let
{γ1, . . . , γd} be a collection of d embedded closed curves in V which are transverse
to F , and {n1, . . . , nd} non-zero relative integers. These data define a complex line
bundle E on V whose restriction to each leaf is the complex line bundle with divisor∑d

i=1 ni(γi ∩ L). Then the above formula becomes ([400])

dimΛ

(
Ker∂E

)− dimΛ

(
Ker(∂E)∗

)
=

d∑
i=1

niΛ(γi) +
1

2
〈C, e(F )〉

in perfect analogy with the usual Riemann-Roch theorem, with the counting of poles
and zeros replaced by the counting of their densities.

Problem. Use the above “Riemann-Roch” theorem in conjunction with the method
of construction of measures used in the proof of Szemerédi’s theorem [216] to obtain
results on noncompact manifolds of subexponential growth independent of any foliation
with transverse measure. Important results in this direction have been obtained by J.
Roe (cf. [479]).

Appendix A : Transverse Measures and Averaging Sequences

Let (V, F ) be a compact foliated manifold. Let us fix a Euclidean structure || || on
the bundle F , tangent to the leaves, and endow the leaves with the corresponding
Riemannian metric. Let L be a leaf and, for x ∈ L and r > 0, let B(x, r) be the ball
of radius r and center x in the leaf L.

Definition 1. A leaf L has non-exponential growth if

lim inf
r→∞

1/r log (Vol(B(x, r))) = 0.

This condition is independent of the choice of x ∈ L and of the Euclidean structure.

For each leaf of non-exponential growth there is a sequence rj→∞ for which the com-
pact subsets Lj = B(x, rj) satisfy Vol(∂Lj)/Vol(Lj)→0. Such a sequence of compact
submanifolds with boundary is called an averaging sequence ([236]).

Proposition 2. [236] Given an averaging sequence Lj the following equality defines a
transverse measure C for (V, F )

〈C, ω〉 = Limj→∞1/Vol(Lj)

∫

Lj

ω

for any differential form ω on V of degree equal to the dimension of F .
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This construction of transverse measures is rather general, but it is not true that
all transverse measures can be obtained this way, as one can see using, for instance,
the two-dimensional foliation discussed in Section 5.β). It shows, however, that any
foliation of a compact manifold with some leaf of nonexponential growth does admit a
nontrivial transverse measure.

Appendix B : Abstract Transverse Measure Theory

Let X be a standard Borel space. Then given a standard Borel space Y and a Borel
map Y→pX with countable fibers (p−1{x} countable for any x ∈ X), there exists a
Borel bijection ψ of Y on the subgraph {(x, n); 0 ≤ n < F (x)} of the integer-valued
function F defined by F (x) = card(p−1{x}) on X. In particular if (Y1, p1) and (Y2, p2)
are as above, then the two integer-valued functions Fi(x) = Card(p−1

i {x}) coincide iff
there exists a Borel bijection ψ : Y1→Y2 with p2 ◦ ψ = p1. Let X be a set, and Y1

and Y2 be standard Borel spaces with maps pi : Yi→X with countable fibers and such
that {(yi, yj) ∈ Yi×Yj; pi(yi) = pj(yj)} is Borel in Yi×Yj, i, j = 1, 2. Then we say that
the “functions” from X to the integers defined by (Y1, p1) and (Y2, p2) are the same iff
there exists a Borel bijection ψ : Y1→Y2 with p2 ◦ ψ = p1. By the above, if ∀x ∈ X,
Card

(
p−1

1 {x}) = Card
(
p−1

2 {x}), and if the quotient Borel structure on X is standard,
then the two “functions” are the same. However, in general we obtain a more refined
notion of integer-valued function and of measure space. Let (V, F ) be a foliation with
transverse measure Λ. We shall now define, using Λ, such a generalized measure on the
set X of leaves of (V, F ). Each Borel transversal B is a standard Borel space endowed
with a projection p : x ∈ B 7→ (leaf of x) ∈ X with countable fiber. Clearly, for any two
transversals we check the compatibility condition that in B1×B2, the set {(b1, b2); b1

on the leaf of b2} is Borel.

Definition 1. Let p be a map with countable fibers from a standard Borel space Y to
the space X of leaves. We say that p is Borel iff {(y, x); y ∈ Y , x ∈ leaf p(y)} is Borel
in Y×V .

Equivalently, one could say that the pair (Y, p) is compatible with the pairs associated
to Borel transversals. Given a Borel pair (Y, p) we shall define its transverse measure
Λ(Y, p) by observing that if (B, q) is a Borel transversal with q(B) = X, we can define
on B ∪ Y the equivalence relation coming from the projection to X, and then find a
Borel partition Y =

⋃∞
n=1 Yn and Borel maps ψn : Yn→B with q ◦ψn = p, ψn injective.

Thus
∑∞

1 Λ(ψn(Yn)) is an unambiguous definition of Λ(Y, p).

We then obtain probably the most interesting example of the following abstract measure
theory:
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A measure space (X,B) is a set X together with a collection B of pairs (Y, p), where
Y is a standard Borel space and p a map with countable fibers from Y to X, with the
only axiom:

A pair (Y, p) belongs to B iff it is compatible with all other pairs of B (i.e. iff for any
(Z, q) in B one has {(y, z); p(y) = q(z)} is a Borel subset in Y×Z).

A measure Λ on (X,B) is a map which assigns a real number, Λ(Y, p) ∈ [0, +∞], to
any pair (Y, p) in B with the following axioms:

σ-additivity : Λ (
∑

(Yn, pn)) =
∑

Λ(Yn, pn) where
∑

(Yn, pn) is the disjoint union Y
of the Yn with the obvious projection p.

Invariance. If ψ : Y1→Y2 is a Borel bijection with p2 ◦ ψ = p1, then

Λ(Y1, p1) = Λ(Y2, p2).

Of course the measure theory obtained contains as a special case the usual measure
theory on standard Borel spaces. It is however much more suitable for spaces like the
space of leaves of a foliation, since giving a transverse measure for the foliation (V, F )
is the same as giving a measure (in the above sense) on the space of leaves, which
satisfies the following finiteness condition: Λ(K, p) < ∞ for any compact subset K of
a smooth transversal.

The role of the abstract theory of transverse measures ([95]) thus obtained is made
clear by its functorial property: if h is a Borel map of the leaf space of (V1, F1) to the
leaf space of (V2, F2) then h∗(Λ) is a “measure” on V2/F2 for any “measure” Λ on V1/F1

(V/F is the space of leaves of (V, F )).

Appendix C : Noncommutative Spaces and Set Theory

We have seen in Appendix B that it is possible to formulate what is a transverse
measure for a foliation using only the space X of its leaves, provided we take into
account in a crucial manner the following principle: one only uses measurable maps
between spaces. Thus, using this principle we saw that the notion of an integer-valued
function on X automatically becomes more refined, and leads directly to transverse
measures. In fact, the space X, viewed as a set, has, if one applies the above principle,
an effective cardinality which is strictly larger than the cardinality of the continuum.
Indeed, it is easy to construct a Borel injection of [0, 1] into X, but in the ergodic case
it is impossible to inject X into [0, 1] by a measurable map since such maps are almost
everywhere constant.

The impossibility of constructing effectively an injection of X into [0, 1] is equivalent
to the impossibility of distinguishing the elements of X from each other by means of a
denumerable family of properties Pn each of which defines a measurable subset of X.
The noncommutative sets are thus characterized by the effective indiscernability of their
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elements. In connection with the above “measurability” principle, let us reproduce the
following letter of H. Lebesgue to E. Borel. (Taken from Oeuvres de Jacques Hadamard,
c© Publications CNRS, Paris, 1968. Authorized reproduction.)

“You ask me my opinion on the Note of Mr. Zermelo (Math. Ann., v. 59), on the objections
that you have made to him (Math. Ann., v. 60) and on the letter of J. Hadamard that you
communicated to me; here it is. Forgive me for being so lengthy, for I have tried to be clear.

First of all, I am in agreement with you in this: Mr. Zermelo has very ingeniously proved
that one knows how to solve Problem A:

A. Put a set M into well-ordered form,

whenever one knows how to solve Problem B:

B. Make correspond to each set M′ formed of elements of M a particular element m′ of M′.

Unfortunately, Problem B is not easy to solve, it seems, except for the sets one knows how
to well-order; consequently, one does not have a general solution of Problem A.

I strongly doubt that a general solution of this problem can be given, at least if one accepts,
along with Mr. Cantor, that to define a set M is to name a property P belonging to certain
elements of a previously defined set N and characterizing, by definition, the elements of M. In
effect, with this definition, nothing is known about the elements of M other than this: they
possess all of the unknown properties of the elements of N and they are the only ones that
have the unknown property P. Nothing in this permits distinguishing between two elements
of M, still less classifying them as one would have to do in order to solve A.

This objection, made a priori to every attempt at solving A, obviously falls if one specializes
N or P; the objection falls, for example, if N is the set of numbers. All that one can hope to
do in general is to indicate problems, such as B, whose solution would imply that of A and
which are possible in certain special but frequently encountered cases. Whence the interest,
in my opinion, of Mr. Zermelo’s reasoning.

I believe that Mr. Hadamard is more faithful than you to Mr. Zermelo’s thinking, in inter-
preting that author’s Note as an attempt, not at the effective solution of A, but at proving
the existence of a solution. The question comes down to this, which is hardly new: can one
prove the existence of a mathematical entity without defining it?

This is obviously a matter of convention; however, I believe that one can build solidly only by
accepting that one can prove the existence of an entity only by defining it . From this point of
view, close to that of Kronecker and of Mr. Drach, there is no distinction to be made between
A and the problem C:

C. Can every set be well-ordered?

I would have nothing more to say if the convention I indicated were universally accepted; how-
ever, I must confess that one often uses, and that I myself have often used, the word existence
in other senses. For example, when one interprets a well-known argument of Mr. Cantor by
saying that there exists a nondenumerable infinity of numbers, one nevertheless does not give
the means of naming such an infinity. One merely shows, as you have said before me, that
whenever one has a denumerable infinity of numbers, one can define a number not belonging
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to this infinity. (The word define always has the meaning of naming a characteristic property
of what is defined .) An existence of this nature may be used in an argument, and in the
following way: a property is true if its denial leads to admitting that one can arrange all of
the numbers into a denumerable sequence. I believe that it can only intervene in this way.

Mr. Zermelo makes use of the existence of a correspondence between the subsets of M and
certain of their elements. You see, even if the existence of such correspondences were not
in doubt, because of the manner in which this existence had been proved, it would not be
evident that one had the right to use this existence in the way that Mr. Zermelo does.

I now come to the argument that you state as follows: “It is possible, in a particular set M′,
to choose ad libitum the distinguished element m′; it being possible to make this choice for
each of the sets M′, it is possible to make it for the set of these sets”; and from which the
existence of the correspondences appears to result.

First of all, M′ being given, is it obvious that one can choose m′? This would be obvious if
M′ existed in the nearly Kroneckerian sense I mentioned, since to say that M′ exists would
then be to affirm that one knows how to name certain of its elements. But let us extend the
meaning of the word exists. The set Γ of correspondences between the subsets M′ and the
distinguished elements m′ certainly exists for Messrs. Hadamard and Zermelo; the latter even
represents the number of its elements by a transfinite product. Nevertheless, does one know
how to choose an element of Γ? Obviously not, since this would yield a definite solution of
B for M.

It is true that I use the word choose in the sense of naming and that it would perhaps
suffice for Mr. Zermelo’s argument that to choose mean to think of . But it would still be
necessary to observe that it is not indicated which one is being thought of, and that it is
nevertheless necessary to Mr. Zermelo’s argument that one think of a definite correspondence
that is always the same. Mr. Hadamard believes, it seems to me, that it is not necessary to
prove that one can determine an element (and one only); this is, in my opinion, the source
of the differences in appreciation.

To give you a better feeling for the difficulty that I see, I remind you that in my thesis I
proved the existence (in the non-Kroneckerian sense and perhaps difficult to make precise) of
measurable sets that are not measurable B, but it remains doubtful to me that anyone can
ever name one. Under these circumstances, would I have had the right to base an argument
on this hypothesis: suppose chosen a measurable set that is not measurable B, when I doubted
that anyone could ever name one?

Thus, I already see a difficulty in this “in a definite M′, I can choose a definite m′ ”, since
there exist sets (the set C for example, which one could regard as a set M′ coming from a
more general set) in which it is perhaps impossible to choose an element. There is then the
difficulty that you note relative to the infinity of choices, the result of which is that, if one
wants to regard the argument of Mr. Zermelo as entirely general, it must be admitted that
one speaks of an infinity of choices, perhaps an infinity of very large power; moreover, one
gives neither the law of this infinity, nor the law of one of the choices; one does not know if
it is possible to name a law defining a set of choices having the power of the set of the M′;
one does not know whether it is possible, given an M′, to name an m′.
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In summary, when I examine closely the argument of Mr. Zermelo, as indeed with several
general arguments on sets, I find it insufficiently Kroneckerian to attribute a meaning to it
(only as an existence theorem for C, of course).

You refer to the argument: “To well-order a set, it suffices to choose an element of it, then
another, etc.” It is certain that this argument presents enormous difficulties, even greater
than, at least in appearance, that of Mr. Zermelo; and I am tempted to believe, along
with Mr. Hadamard, that there is progress in having replaced an infinity of successive and
mutually dependent choices by an infinity, unordered, of independent choices. Perhaps this is
nothing more than an illusion and the apparent simplification comes only from the fact that
one must replace an ordered infinity of choices by an unordered infinity, but of much larger
power. So that the fact that one can reduce to a single difficulty, placed at the beginning
of Mr. Zermelo’s argument, all of the difficulties of the simplistic argument that you cite,
perhaps proves simply that this single difficulty is very great. In any case, it does not seem to
me to disappear because it involves an unordered set of independent choices. For example, if
I believe in the existence of functions y(x) such that, given any x, y is never bound to x by an
algebraic equation with integer coefficients, it is because I believe, along with Mr. Hadamard,
that it is possible to construct one; but, for me, it is not the immediate consequence of the
existence, given any x, of numbers y that are not bound to x by any equation with integer
coefficients.1

I am fully in agreement with Mr. Hadamard when he declares that the difficulty in speaking
of an infinity of choices without giving the law for them is equally grave whether it is a matter
of a denumerable infinity or not. When one says, as in the argument that you criticize, “it
being possible to make this choice for each of the sets M′, it is possible to make it for the
set of these sets”, one hasn’t said anything if one does not explain the terms employed. To
make a choice could be the writing or the naming of the chosen element; to make an infinity
of choices cannot be the writing or naming of the chosen elements one by one: life is too
short. Thus one has to say what it means to do it. By this is meant, in general, giving the
law that defines the chosen elements, but this law is for me, as for Mr. Hadamard, equally
indispensable whether it is a matter of a denumerable infinity or not.

Perhaps, however, I am again in agreement with you on this point, because, if I do not
establish theoretical distinctions between the two infinities, from a practical point of view
I make a great distinction between them. When I hear someone speak of a law defining a
transfinite infinity of choices, I am very suspicious, because I have never yet seen any such
laws, whereas I do know of laws defining a denumerable infinity of choices. But perhaps this
is only a matter of habit and, on reflection, I sometimes see difficulties equally grave, in my
opinion, in arguments in which only a denumerable infinity of choices occur, as in arguments

1In correcting proofs, I add that in fact the argument, whereby one usually legitimizes the state-
ment A of Mr. Hadamard (p. 262), legitimizes at the same time the statement B. And, in my opinion,
it is because it legitimizes B that it legitimizes A. {Translator’s note: The footnote is Lebesgue’s.
Here A and B refer to the statements in Hadamard’s letter to Borel, reproduced on pp. 335-337 of the
previously cited Collected Works of Hadamard. Lebesgue’s letter is the third of Five letters on the
theory of sets (between Hadamard, Borel, Lebesgue and Baire), originally published together in the
“Correspondence” section of the Bulletin of the French Mathematical Society [Bull. Soc. Math. France
33 (1905), 261-273]}
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where there is a transfinity. For example, if I do not regard as established by the classical
argument that every set of power greater than the denumerable contains a set whose power is
that of the set of transfinite numbers of Mr. Cantor’s class II, I attribute no greater value to
the method by which one proves that a non-finite set contains a denumerable set. Although
I strongly doubt that one ever names a set that is neither finite nor infinite, the impossibility
of such a set does not seem to me to be proved. But I have already spoken to you of these
questions.”



CHAPTER 2

Topology and K-Theory

In this chapter we shall extend topology beyond its classical set theoretic framework in
order to understand, from the topological point of view, the following spaces which are
ill behaved as sets:

1) The space X of Penrose tilings of the plane.

2) The dual space Γ̂ of a discrete group Γ.

3) The orbit space of a group action on a manifold.

4) The leaf space of a foliation.

5) The dual space Ĝ of a Lie group G.

One could base this extension of topology on the notion of topos due to Grothendieck.
Our aim, however, is to establish contact with the powerful tools of functional analysis
such as positivity and Hilbert space techniques, and with K-theory. The first general
principle at work is that to any of the above spaces X there corresponds, in a natural
manner, a C∗-algebra which plays the role of the involutive algebra C(X) of continuous
functions on X. To the non-classical nature of such spaces corresponds the noncom-
mutativity of the associated C∗-algebra. When it happens that the space X is well
behaved classically then its associated C∗-algebra is equivalent (in the sense of strong
Morita equivalence, cf. Appendix A) to a commutative C∗-algebra C(X).

The second general principle is that for the above spaces the K-theory of the associated
C∗-algebra “C(X)” is the natural place for invariants of families of ordinary spaces
(Yx)x∈X parametrized by X. Thus, for instance, the signature Sign(L) of the generic
leaf of a foliated compact manifold (V, F ) is a specific element

Sign(L) ∈ K(X)

of the K-theory group of the C∗-algebra of the foliation. Moreover, this element is
an invariant of leafwise homotopy equivalence. This type of result extends the result
of Mishchenko on the homotopy invariance of the Γ-equivariant signature of covering
spaces ([396]) which corresponds to Example 2. There are several reasons, reviewed
in Section 1, which make the K-theory of C∗-algebras both relevant and tractable. In
fact, computing the K-groups of the C∗-algebra associated to one of the above spaces
(of Examples 1 to 5) amounts to classifying the stable isomorphism classes of virtual

84
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“vector bundles” over such spaces and, as such, is a natural prerequisite for using them
as geometric spaces.

The third principle at work in all the above examples is that one may construct a geo-
metric group, denoted K∗(BX), easily computable by standard techniques of algebraic
topology, and a map µ, the analytic assembly map, from the geometric group to the
K-group K(X) of the C∗-algebra associated to X

µ : K∗(BX)→K(X).

The general conjecture ([32]) that this map µ is an isomorphism is a guiding principle
of great relevance. The notations BX and K∗(BX) will be explained later, but, essen-
tially, BX stands for the homotopy type of an ordinary space which fibers over X with
contractible fibers. Thus, for instance, if (V, F ) is a compact foliated manifold with
contractible leaves, then BX is homotopy equivalent to V , since V fibers over the leaf
space X with contractible fibers, the leaves of the foliation. Also, in Example 2 if Γ is
torsion-free then BX is the usual classifying space BΓ of the discrete group Γ. In this
last example K∗ is K-homology and the map µ is the assembly map of Mishchenko
and Kasparov.

The bivariant KK-theory of Kasparov [329] plays a crucial role in the construction
of the map µ and in the computation of the K-theory of C∗-algebras. We shall use
a variant of that theory, the E-theory or deformation theory, which is both easier to
develop (Appendix B) and more appropriate for K-theory maps, since unlike KK it is
half-exact in its two arguments. However we shall come back to KK later in Chapter
IV and use explicitly the more precise geometric significance of the KK cycles. In
this chapter we shall construct our K-theory maps from deformations of C∗-algebras
(Section 6). In particular we shall get the Atiyah-Singer index theorem as a corollary
of the Thom isomorphism theorem (Section 5).
The content of this chapter, mainly based on examples, is the following:

1. C∗-algebras and their K-theory.

2. Elementary examples of quotient spaces.

3. The space of Penrose tilings.

4. The dual space of discrete groups.

5. The tangent groupoid of a manifold.

6. Wrong way functoriality as a deformation.

7. The orbit space of a group action.

8. The leaf space of a foliation.

9. The longitudinal index theorem.

10. The analytic assembly map and Lie groups.

Appendices.

A. C∗ modules and strong Morita equivalence of C∗ algebras.
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B. E theory and deformations.

C. Crossed products of C∗-algebras.

D. Penrose tilings.

1. C∗-algebras and their K-theory

Given an ordinary compact or locally compact space Y , Urysohn’s lemma [486] shows
that there exist sufficiently many continuous functions f ∈ C(Y ) on Y to determine
the topology of Y uniquely. This is true for real-valued functions and a fortiori for
complex-valued ones. Thus, the topology of Y determines, and is determined by, the
algebra A = C(Y ) of continuous complex-valued functions on Y , equipped with the

involution f→f ∗, where f ∗(y) = f(y) (∀y ∈ Y ). (The analogous statement would be
false if R or C were replaced by a totally disconnected local field.)

Moreover, the class of involutive C-algebras A obtained in this way can be characterized
very simply: they are the commutative C∗-algebras with units. General C∗-algebras
have a very simple axiomatic characterization that expresses exactly what we expect
from functions of class C0. The theory of C∗-algebras began in 1943 with a paper of
Gel’fand and Naimark [218]. (See also M.H. Stone [534].)

Definition 1. A C∗-algebra is a Banach algebra over C with a conjugate-linear invo-
lution x→x∗ such that

(xy)∗ = y∗x∗ and ‖x∗x‖ = ‖x‖2 for x, y ∈ A.

A C∗-algebra A is an involutive Banach algebra for the norm x→||x|| uniquely de-
termined from the involutive algebra structure by considering the spectral radius of
x∗x:

||x||2 = spectral radius (x∗x) = sup{|λ| ; x∗x− λ not invertible}.
For an involutive algebra A to be a C∗-algebra, it is necessary and sufficient that it
admit a ∗-representation π on a Hilbert space, such that

1) π(x) = 0⇒x = 0;
2) π(A) is norm closed.

A theorem of Gelfand, which is based on complex analysis and the structure of the
maximal ideals of A, shows that if A is a commutative C∗-algebra then there exists a
compact topological space Y = Sp(A) such that A = C(Y ).

Let A be a commutative C∗-algebra, and suppose that A has a unit. The set SpecA
of homomorphisms χ of A into C such that χ(1) = 1, equipped with the topology
of pointwise convergence on A, is compact; the compact space SpecA is called the
spectrum of A.
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Theorem 2. Let A be a commutative C∗-algebra with unit and let X = SpecA be its
spectrum. The Gel’fand transform

x ∈ A→the function x̂(χ) = χ(x) (χ ∈ SpecA)

is an isomorphism of A onto the C∗-algebra C(X) of continuous complex functions on
X.

Thus, the contravariant functor C, that associates to every compact space X the C∗-
algebra C(X), effects an equivalence between the category of compact spaces with
continuous mappings, and the opposite of the category of commutative unital C∗-
algebras with unit-preserving homomorphisms. To a continuous mapping f : X→Y
there corresponds the homomorphism C(f) : C(Y )→C(X) that sends h ∈ C(Y ) to
h ◦ f ∈ C(X). In particular, two commutative C∗-algebras are isomorphic if and only
if their spectra are homeomorphic.

The basis for noncommutative geometry is the possibility of adapting most of the
classical tools, such as Radon measures, K-theory, cohomology, etc., necessary for the
study of a compact space Y , to the case where the C∗-algebra A = C(Y ) is replaced by
a noncommutative C∗-algebra. In particular, the general theory is not limited to the
spaces X given in Examples 1) to 5) above. It is, however, important to note that to
a general C∗-algebra A there corresponds a space X, namely the space of equivalence
classes of irreducible representations π of A on Hilbert space. One can still prove the
existence of sufficiently many irreducible representations of A, and when A is simple,
i.e. has no nontrivial two-sided ideals, the natural topology of the space X has the
same triviality property as that of the set X of Penrose tilings encountered below
(Section 3). Moreover, exactly as one can find any finite portion of a given tiling in
any other tiling, two irreducible representations π1 and π2 of A can, by means of a
unitary transformation, be made as similar to each other as one likes. This follows
from [318] and [572].

The cohomology theory for compact spaces X which is the easiest to extend to the
noncommutative case is the K-theory K(X).

The group K0(X) associated to a compact space X has a very simple description in
terms of the locally trivial, finite-dimensional complex vector bundles E over X. To
such a bundle E there corresponds an element [E] of K0(X) that depends only on the
stable isomorphism class of E, where E1 and E2 are said to be stably isomorphic if
there exists a vector bundle F such that the direct sum E1⊕F is isomorphic to E2⊕F .
Moreover, the classes [E] generate the group K0(X) and the relations [E1⊕E2] =
[E1] + [E2] constitute a presentation of this group.

One obtains in this way a cohomology theory, topological K-theory, that is both simple
to define and to calculate, thanks to the Bott periodicity theorem (cf. below).
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More precisely, the functor K is a contravariant functor from the category of compact
topological spaces and continuous mappings to the category of Z/2-graded abelian
groups: K = K0⊕K1. The group K1(X) is obtained as the group π0(GL∞) of con-
nected components of the group GL∞ =

⋃
n≥1 GLn(A), the increasing union of the

groups GLn(A) of invertible elements of the algebras Mn(A) = Mn(C(X)) of n×n
matrices with elements in the algebra A = C(X). The inclusion mapping of GLn into

GLn+1 is given by g→
[

g 0
0 1

]
. It is because GLn(A) is an open set in Mn(A) (a general

property of Banach algebras A, commutative or not) that the group K1(X) = π0(GL∞)
is denumerable (if A is separable as a Banach space) and can be calculated by the meth-
ods of differential topology.

The fundamental tool of this theory is Bott’s periodicity theorem, which remains valid
for a not necessarily commutative Banach algebra A [19] [591] [324]. It can be stated
as the periodicity of period two, πk(GL∞)∼πk+2(GL∞), of the homotopy groups, but
this periodicity has as its most important corollary the existence of a short exact
sequence for the functor K, valid for every closed set Y⊂X:

K0(X\Y ) // K0(X) // K0(Y )

²²
K1(Y )

OO

K1(X)oo K1(X\Y )oo

One defines the group Ki for a locally compact space such as Z = X\Y as the kernel of
the restriction K i(Z̃)→Ki({∞}), where Z̃ = Z∪{∞} is the one-point compactification
of Z.

It follows from the Bott periodicity theorem that the group K0(X) is the fundamental
group π1(GL∞(A)), where A = C(X).

All of the features of the topology of compact spaces we have just described adapt
remarkably well to the noncommutative case, where the algebra C(X) of continuous
complex functions on X is replaced by a not necessarily commutative C∗-algebra A. As
for K-theory, the definitions of the groups Ki, in the form Ki(A) = π2k+i+1(GL∞(A)),
where k ∈ N is an arbitrary integer, and the Bott periodicity theorem are unchanged.
The exact sequence (∗) remains valid for every closed two-sided ideal J of A in the
form

K0(J) // K0(A) // K0(B)

²²
K1(B)

OO

K1(A)oo K1(J)oo

where B = A/J is the C∗-algebra quotient of A by J . Also, as above, if A is not unital
one defines Kj(A) as the kernel of the augmentation map ε : Kj(Ã)→Kj(C), where Ã
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is obtained from A by adjoining a unit, i.e.

Ã = {a + λ1 ; a ∈ A , λ ∈ C} , ε(a + λ1) = λ ∈ C.

Moreover, the description of K0 in terms of vector bundles is carried out in terms of
projective modules of finite type over the algebra A. Indeed, by a theorem of Serre
and Swan [512] [546] the locally trivial finite-dimensional complex vector bundles E
over a compact space X correspond canonically to the finite projective modules over
A = C(X). To the vector bundle E one associates the C(X)-module E = C(X,E) of
continuous sections of E. Conversely, if E is a finite projective module over A = C(X),
the fiber of the associated vector bundle E at a point p ∈ X is the tensor product

Ep = E⊗AC

where A acts on C by the character χ, χ(f) = f(p) ∀f ∈ C(X).

The direct sum of vector bundles corresponds to the direct sum of the associated
modules. Isomorphism and stable isomorphism thus have a meaning in general, and
for a unital C∗-algebra A the group K0(A) is the group of stable isomorphism classes
of finite projective modules over A (or, more pedantically, of formal differences of
such classes). If E is a finite projective module over A there exists a projection (or
idempotent) e = e2, e ∈ Mn(A), and an isomorphism of E with the right A-module
eAn = {(ξi)i=1,...,n; ξi ∈ A, eξ = ξ}. For non-unital C∗-algebras the group K0 is the

reduced group of the C∗-algebra Ã obtained by adjoining a unit.

One important feature of the K-theory groups K0, K1 of a C∗-algebra is that if A is
separable as a Banach space (which in the commutative case A = C(X) is equivalent to
X being metrisable), then these K-groups are countable abelian groups. This feature is
shared by the K-theory of Banach algebras, but not by K-theory of general algebras.
One can for instance show that the group K0 of the convolution algebra C∞

c (R) of
smooth compactly supported functions on R is an abelian group with the cardinality
of the continuum cf. Section 10.

There is one crucial feature of the K-theory of C∗-algebras which differs notably from
the case of general Banach algebras. It was discovered in connection with the Novikov
conjecture [397]. The point is that for C∗-algebras one has a canonical isomorphism

K0(A)∼ Witt(A)

where the Witt group Witt(A) classifies the quadratic forms Q on finite projective
modules over A. More precisely, let us first recall the definition of the Witt group of
an involutive algebra A over C. Given a finite projective (right) module E over A, a
Hermitian form Q on E is a sesquilinear form E×E→A such that

1) Q(ξa, ηb) = a∗Q(ξ, η)b ∀ξ, η ∈ E , ∀a, b ∈ A.

2) Q(η, ξ) = Q(ξ, η)∗ ∀ξ, η ∈ E .
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To a Hermitian form Q on E corresponds a linear map Q̃ of E into E∗ = HomA(E , A),
given by

(Q̃ξ)(η) = Q(ξ, η) ∀ξ, η ∈ E .

The Hermitian form is called invertible when Q̃ is invertible. There are obvious no-
tions of isomorphism and direct sum of Hermitian forms. The Witt group Witt(A)
is the group generated by isomorphism classes [Q] of invertible Hermitian forms Q on
arbitrary finite projective modules over A with the relations

α) [Q1⊕Q2] = [Q1] + [Q2]

β) [Q] + [−Q] = 0.

When A is a C∗-algebra with unit, there exists on any given finite projective module
E over A an invertible Hermitian form Q satisfying the following positivity condition:

3) Q(ξ, ξ) ≥ 0 ∀ξ ∈ E
(cf. Chapter V for the notion of positive elements in a C∗-algebra). Moreover, given E ,
all the positive invertible Hermitian forms on E are pairwise isomorphic ([397]) thus
yielding a well defined map ϕ : K0(A)→ Witt(A) such that ϕ(E) is the class of (E , Q)
with Q positive. This map is actually an isomorphism ([397]); this property uses in
an essential manner the fact that the involutive Banach algebra A is a C∗-algebra, and
in particular that

T = T ∗ , T ∈ A⇒ Spectrum(T )⊂R.

(In other words, if T is a selfadjoint element of A and λ ∈ C is not real then T − λ
is invertible in A.) This property, as well as the isomorphism K0(A)∼ Witt(A) fails
for general involutive Banach algebras, but one should expect that for any involutive
Banach algebra B one has

Witt(B) = Witt(C∗B)

where C∗B is the enveloping C∗-algebra of B, i.e. the completion of B for the seminorm
||x||C∗ = Sup{||π(x)|| ; π a unitary representation of B in a Hilbert space}.
This equality was proved by J.-B. Bost for arbitrary commutative involutive Banach
algebras [59].

2. Elementary Examples of Quotient Spaces

We shall formulate the algebraic counterpart of the geometric operation of forming the
quotient of a space by an equivalence relation, and show how to handle non-Hausdorff
quotients by using noncommutative C∗-algebras.

Let Y = {a, b} be a set consisting in two elements a and b, so that the algebra C(Y )
of (complex-valued) functions on Y is the commutative algebra C⊕C of 2×2 diagonal
matrices. There are two ways of declaring that the two points a and b of Y are identical,
i.e. of quotienting Y by the equivalence relation a ∼ b.
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1) The first is to consider the subalgebra A⊂C(Y ) of functions f on Y which take the
same values at a and b: f(a) = f(b).

2) The second is to consider the larger algebra B⊃C(Y ) of all 2×2 matrices:

f =

[
faa fab

fba fbb

]
.

The relation between the two algebras is the notion of strong Morita equivalence of
C∗-algebras, due to M. Rieffel [473] (cf. Appendix A). This relation preserves many
invariants of C∗-algebras, such as K-theory and the topology of the space of irreducible
representations. Thus, in our example the pure states ωa and ωb of B which come
directly from the points a and b of Y by the formula

ωa(f) = faa , ωb(f) = fbb ∀f ∈ B

yield equivalent irreducible representations of B = M2(C), which corresponds to the
identification a∼b in the spectrum of B. We shall now work out many examples
of the above algebraic operation of quotient, first (example α)) to give an alternate
description of existing spaces, but mainly to give precise topological meaning to non-
existent quotient spaces, for which the first method above yields a trivial result while
the second yields a nontrivial noncommutative C∗-algebra.

2.α Open covers of manifolds. Let X be a compact manifold obtained by past-
ing together some open pieces Ui⊂X of Euclidean space along their intersections Ui∩Uj.
To obtain X from the Euclidean open set V =

∐
Uj, disjoint union of the Uj’s, one

must identify the pairs (z, z′) of elements of V where the pasting takes place. To be
more precise, there is an equivalence relation R on V generated by such pairs, and for
z, z′ ∈ V one has z ∼ z′(R) iff p(z) = p(z′), where p : V→X is the obvious surjection.
Since X is compact we shall assume that the above covering is finite.
To this description of X we associate the following C∗-algebra:

Proposition 1. Let R be the graph, R = {(z, z′) ∈ V×V ; z ∼ z′}, of the equivalence
relation endowed with its locally compact topology. The following algebraic operations
turn the vector space C0(R) of continuous functions vanishing at infinity on R into a
C∗-algebra, C∗(R), which is strongly Morita equivalent to C(X):

(f ∗ g)(z, z′′) =
∑

z∼z′∼z′′ f(z, z′)g(z′, z′′)
(f ∗)(z, z′) = f(z′, z).

Indeed, by construction, C∗(R) is identical with the C∗-algebra of compact endomor-
phisms of the continuous field of Hilbert spaces (Hx)x∈X over X with Hx = `2(p−1(x))
∀x ∈ X (cf. Appendix A).

The locally compact space R is the disjoint union of the open sets Rij = {(z, z′) ∈
Ui×Uj; p(z) = p(z′)}∼Ui ∩ Uj. Thus a function f ∈ C0(R) can be viewed as a matrix
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Ui

Ui      Uj

Uj

p

z

z'

X

Figure 1. One identifies z with z′ using the algebra of matrices.

(fij) of functions where each fij belongs to C0(Ui ∩ Uj), while the algebraic rules are
just the matrix rules. Since (Ui) is an open covering of X one can easily construct an
idempotent e ∈ C∗(R), e = e∗ = e2, e = (eij) which at each point x ∈ X gives a matrix
(eij(x)) of rank one, thus exhibiting the strong Morita equivalence

C∗(R)∼C(X).

The C∗-algebra C∗(R) is not commutative but is strongly Morita equivalent to a com-
mutative C∗-algebra. The latter algebra is uniquely determined since strong Morita
equivalence between two commutative C∗-algebras is the same as isomorphism.

In trading C(X) for C∗(R) we lose the commutativity, but we keep the same spectrum,
i.e. the topological space of irreducible representations (canonically isomorphic to X),
and the same topological invariants such as K-theory: K(C∗(R)) = K(X). But the
main gain is that we use the topology of the quotient space X nowhere in the construc-
tion of C∗(R). The crucial ingredients were the topology of R and its composition law,
(z, z′)◦(z′, z′′) = (z, z′′).

As we shall see later, these ingredients still exist in situations where the quotient
topology of X is the coarse topology, and hence is useless.

2.β The dual of the infinite dihedral group Γ = ZoZ/2. Let us now describe
another example in which the above two algebraic operations of quotient 1) and 2) yield
obviously different (not strongly Morita equivalent) algebras. Thus, let Y = I1 ∪ I2

be the disjoint union of two copies I1 and I2 of the interval [0, 1] and on Y let R be
the equivalence relation which identifies (s, i) with (s, j) for any i, j ∈ {1, 2} provided
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: :

. .

. .

Figure 2. The dual of the infinite dihedral group. The points inside
the intervals are identified, but not the endpoints.

s ∈ ]0, 1[. In other words the quotient space X = Y/R is obtained by gluing the two
interiors of the intervals I1 and I2 but not the end points.

If we apply the operation 1) we get a subalgebra of C(I1∪I2) and since two continuous
functions f ∈ C[0, 1] which agree on a dense (open) set are equal, we see that this
subalgebra is C([0, 1]). In particular it is homotopic (Appendix A Definition 10) to C
and its K-theory group is K0 = Z.
Fig-3

If we apply the operation 2) we get the C∗-subalgebra of the C∗-algebra M2(C([0, 1])) =
M2(C)⊗C([0, 1]) given by

A =
{
(x(t))t∈[0,1] ∈ M2(C([0, 1])) ; x(0) and x(1) are diagonal matrices

}
.

(We view a generic element x ∈ M2(C([0, 1])) as a continuous map t7→x(t) ∈ M2(C),
t ∈ [0, 1].)

Obviously, the space of irreducible representations of A is the space X = Y/R with its
non-Hausdorff topology. The K-theory of this C∗-algebra A is much less trivial than
that of C[0, 1]. Indeed, from the exact sequence of C∗-algebras given by evaluation at
the end points

0→J→A→C4→0

where J = M2(C)⊗C0(]0, 1[), one derives by using the six-term exact sequence of
K-groups (Section 1) that K0(A) is isomorphic to Z3.

The above example shows clearly that the two operations 1) and 2) do not in general
yield equivalent results, and 2) is plainly much finer.
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Figure 3. Penrose tiling

3. The Space X of Penrose Tilings

I had the good fortune to attend a lecture by R. Penrose on quasiperiodic tilings of
the plane (Figure 3). Penrose has constructed such tilings using two simple tiles A and
B. The tiling T depends on successive choices made in the course of the construction.
More precisely, to construct such a tiling one must choose a sequence (zn)n=0,1,2,... of
0’s and 1’s that satisfies the following coherence rule:

zn = 1⇒zn+1 = 0. (1)

We use the value of zn as indicated in the construction of T in Appendix D. However,
it can happen that two different sequences z = (zn) and z′ = (z′n) lead to the same
tiling; in fact,

T is identical to T ′⇐⇒∃n such that zj = z′j ∀j ≥ n. (2)

Thus, the space X of tilings obtained is the quotient set K/R of a compact space K
by an equivalence relation R. The compact space K, homeomorphic to the Cantor
set, is the set of sequences z = (zn)n∈N of 0’s and 1’s that satisfy the rule (1); it is by



3. THE SPACE X OF PENROSE TILINGS 95

construction a closed subset of the product of an infinite number of two-element sets.
The equivalence relation R is given by

z ∼ z′⇐⇒∃n such that zj = z′j ∀j ≥ n. (3)

Thus X is the quotient space K/R. It is exactly in this form that Penrose presented
his set of tilings in his exposition. If one tries to understand the space X as an ordinary
space, one sees very quickly that the classical tools do not work, and do not distinguish
X from the space consisting of a single point. For example, given two tilings T1 and T2

and any finite portion P of T1, one can find exactly the same configuration P occurring
in T2; thus no finite portion enables one to distinguish T1 from T2 ([246]). Thus any
configuration which does occur in some tiling T , such as those of Figure 3, will occur
(and infinitely many times) in any other tiling T ′. This geometric property translates
into the triviality of the topology of X. The natural topology on X has for closed sets
F⊂X the closed sets of K that are saturated for R. But, every equivalence class for
R is dense in K, and it follows that the only closed sets F⊂X are F = ∅ and F = X.
Thus the topology of X is trivial and does not distinguish X from a point; it is, of
course, not Hausdorff and it contains no interesting information.

One possible attitude toward such an example would be to say that, up to fluctuations,
there is only one tiling T of the plane and not to be disturbed by the distinction between
X and a point. However, we shall see that X is a very interesting “noncommutative”
space or “quantum” space, and that one of its topological invariants, the dimension
group, is the subgroup of R generated by Z and the golden number 1 +

√
5/2. This

will show, in particular, why the density, or frequency of appearance, of a motif in the
tiling must, entirely on account of the topology of the set of all tilings, be an element
of the group Z+

(
1 +

√
5/2

)
Z.

Let us now give the construction of the C∗-algebra A of the space X = K/R of Penrose
tilings (see also [154]). A general element a ∈ A is given by a matrix (az,z′) of complex
numbers, indexed by the pairs (z, z′) ∈ R. The product of two elements of A is given by
the matrix product (ab)z,z′′ =

∑
z′ az,z′bz′,z′′ . To each element x of X there corresponds

an equivalence class for R, which is a denumerable subset of K. One can therefore
associate to x the Hilbert space `2

x having this denumerable set for an orthonormal
basis. Every element a of A defines an operator on `2

x by the equation

(a(x)ζ)z =
∑

z′
az,z′ζz′ ∀ζ ∈ `2

x.

For a ∈ A the norm ||a(x)|| of the operator a(x) is finite and does not depend on x ∈ X;
it is the C∗-algebra norm. Of course, to get more technical, one must give a precise
definition of the class of matrices a that we are considering. Let us do it. The relation
R⊂K×K is the increasing union of the relations Rn = {(z, z′); zj = z′j (∀j ≥ n)}, and
as such R inherits a natural locally compact topology (not equal to its topology as
a subset of K×K). Then A is by definition the norm closure of Cc(R) in the above



3. THE SPACE X OF PENROSE TILINGS 96

norm. One can show that every element a ∈ A of this norm closure comes from a
matrix (az,z′), (z, z′) ∈ R.

We can summarize the above construction by saying that, while the space X cannot
be described nontrivially by means of functions with values in C, there exists a very
rich class of operator-valued functions on X:

a(x) ∈ L(`2
x) ∀x ∈ X.

The algebraic structure of A is dictated by this point of view, because one has

(λa + µb)(x) = λa(x) + µb(x)

(ab)(x) = a(x)b(x)

for all a, b ∈ A, λ, µ ∈ C and x ∈ X.

To exhibit clearly the richness of the C∗-algebra A, I will now give an equivalent
description of this C∗-algebra, as an inductive limit of finite-dimensional algebras. The
Cantor set K is by construction the projective limit of the finite sets Kn, where Kn

is the set of sequences of n + 1 elements (zj)j=0,1,...,n of 0’s and 1’s, satisfying the rule
zj = 1⇒zj+1 = 0. There is an obvious projection Kn+1→Kn that consists in ‘forgetting’
the final zn+1. On the finite set Kn, consider the relation

Rn = {(z, z′) ∈ Kn×Kn ; zn = z′n}.
Every function a = az,z′ on Rn defines an element ã of the C∗-algebra A by the
equations

ãz,z′ = a(z0,...,zn),(z′0,...,z′n)if (z, z′) ∈ Rn

ãz,z′ = 0if (z, z′) /∈ Rn.

Moreover, the subalgebra of A obtained from the functions on Rn is easily calculated:
it is the direct sum An = Mkn(C)⊕Mk′n(C) of two matrix algebras, where kn (resp. k′n)
is the number of elements of Kn that end with 0 (resp. with 1). Finally, the inclusion
An→An+1 is uniquely determined by the equalities kn+1 = kn+k′n and k′n+1 = kn, which
permit embedding Mkn⊕Mk′n as block matrices into Mkn+1 and by the homomorphism
(a, a′)→a into Mk′n+1

.

The C∗-algebra A is then the inductive limit of the finite-dimensional algebras An, and
one can calculate its invariants for the classification of Bratteli, Elliott, Effros, Shen and
Handelman ([65], [193], [194], [191]) of these particular C∗-algebras. The invariant to
be calculated, due to G. Elliott, is an ordered group, namely the group K0(A), described
earlier, generated by the stable isomorphism classes of finite projective modules over
A. In an equivalent way, it is generated by the equivalence classes of projections, as in
the work of Murray and von Neumann on factors.

A projection e ∈ Mk(A) is an element of Mk(A) such that e2 = e and e = e∗. The
projections e and f are equivalent if there exists u ∈ Mk(A) such that u∗u = e and
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uu∗ = f . In order to be able to add equivalence classes of projections, one uses the
matrices Mn(A), with n arbitrary; this permits assigning a meaning to

e⊕f =

[
e 0
0 f

]

for two projections e, f ∈ Mk(A). The ordered group (K0(A), K0(A)+) is obtained
canonically from the semigroup of equivalence classes of projections e ∈ Mn(A) by
the usual symmetrization operation by which one passes from the semigroup N of
nonnegative integers to the ordered group (Z,Z+) of integers.

This ordered group is very easy to calculate for finite-dimensional algebras such as the
algebras An, and for the algebra A =

⋃
An encountered earlier. Since An is the direct

sum of two matrix algebras, we have

K0(An) = Z2 , K0(An)+ = Z+⊕Z+⊂Z⊕Z.

The ordered group (K0(A), K0(A)+) is then the inductive limit of the ordered groups
(Z⊕Z , Z+⊕Z+), the inclusion of the nth into the (n + 1)st being given by the matrix[

1 1
1 0

]

which corresponds to the inclusion An⊂An+1 described earlier.

Since this matrix defines a bijection (a, b)→(a+b, a) of Z2 onto Z2, the desired inductive
limit is the group K0(A) = Z2. However, this bijection is not a bijection of Z+⊕Z+

onto Z+⊕Z+, and in the limit the semigroup K0(A)+ becomes K0(A)+ = {(a, b) ∈ Z2;
(
1 +

√
5/2

)
a + b ≥ 0 }, as one sees on diagonalizing the matrix

[
0 1
1 1

]

It follows that, modulo the choice of basis of Z2, i.e. modulo PSL(2,Z), the golden
number appears as a topological invariant of the space X through the C∗-algebra A. In
another formulation, one shows that this C∗-algebra has a unique trace τ . Thus there
exists a unique linear form τ on A such that τ(xy) = τ(yx) for all x, y ∈ A, and τ(1) =
1. The values of τ on the projections form the intersection

(
Z+ 1 +

√
5/2 Z

) ∩ R+.
This trace τ is positive, i.e., satisfies

τ(a∗a) ≥ 0 (∀a ∈ A)

and it may be calculated for a = a(z,z′) directly as the integral of the diagonal entries
of the matrix a:

τ(a) =

∫

K

a(z,z)dµ(z),

where the probability measure µ on K is uniquely determined by the condition τ(ab) =
τ(ba) (∀a, b ∈ A). In classical measure theory, given a Radon measure ρ on a compact
space Y , the Hilbert space L2(Y, ρ) is obtained as the completion of C(Y ) for the
scalar product 〈f, g〉 =

∫
fg dρ, and L∞(Y, ρ) is the weak closure of the algebra C(Y )

acting by multiplication on L2(Y, ρ). In the case that we are interested in, the algebra
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Figure 4. K+
0 (A) =

{
(n,m) ∈ Z2 ; n 1+

√
5

2
+ m ≥ 0

}

A replaces C(Y ), the positive trace τ replaces the Radon measure ρ, and the weak
closure of the action of A by left multiplication on L2(A, τ) (the completion of A for
the scalar product 〈a, b〉 = τ(a∗b)) is the hyperfinite factor of type II1 of Murray and
von Neumann [407], [408], [409] which we shall denote by R.

Whereas the continuous dimension of Murray and von Neumann can take on all the
positive real values for the projections of R (or of the matrix rings Mn(R)) since
dim(e) = τ(e), for the projections that belong to A this dimension can only take values
in the subgroup Z +

(
1 +

√
5/2

)
Z, which accounts for the role of these numbers in

measuring the densities of tiles, or of patterns of a given type in a generic Penrose
tiling, in accordance with our interpretation in Chapter I of the continuous dimensions
as densities. To summarize, we have shown in this example that the “topology” of
X is far from being trivial, that it gives rise to the C∗-algebra A, which is a simple
C∗-algebra, uniquely characterized as a C∗-algebra (up to Morita equivalence) by the
properties

1) A is the inductive limit of finite-dimensional algebras; it is said to be approx-
imately finite (or AF ).

2) (K0(A), K0(A)+) =
(
Z2,

{
(a, b); 1+

√
5

2
a + b ≥ 0

})
.

Finally, we note that the C∗-algebra A is exactly the one that appears in the construc-
tion by Vaughan Jones [309] of subfactors of index less than 4, for index equal to the
golden ratio (Chapter V, Section 10). This can be exploited to describe explicitly the
factor in this geometric situation.
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4. Duals of Discrete Groups and the Novikov Conjecture

We have seen in the above example of the space X of Penrose tilings how the pathologies
that a non-Hausdorff space exhibits from the set theoretic point of view disappear
when it is considered from the algebraic and noncommutative point of view. To a
conservative mathematician this example might appear as rather special, and one could
be tempted to stay away from such spaces by dealing exclusively with more central
parts of mathematics. Since every finitely presented discrete group Γ appears as the
fundamental group, Γ = π1(M), of a smooth compact 4-manifold, it would hardly be
tenable to exclude discrete groups as well. As we shall see shortly, however, as soon as
a discrete group Γ fails to be of type I (a finitely generated discrete group Γ is of type I
only if it contains an abelian normal subgroup Γ0⊂Γ of finite index, which is of course

very rare), its dual space, i.e. the space X = Γ̂ of irreducible representations of Γ, is
of the same nature as the space of Penrose tilings. Fortunately, as in the example of
Penrose tilings all the unpleasant properties of this space from the set theoretic point
of view disappear when we treat it from the algebraic point of view.

When the group Γ is abelian, its dual space Γ̂ = X is a compact space, the Pontryagin
dual of Γ, whose topology is characterized by the commutative C∗-algebra C(X) of
continuous functions on X. This C∗-algebra has, thanks to the Fourier transform, an
equivalent description as the norm closure C∗(Γ) of the group ring CΓ of Γ in the
regular representation of Γ in `2(Γ). More precisely, every element a = (ag)g∈Γ of
CΓ is a function with finite support on Γ, and it acts in the Hilbert space `2(Γ) as a
convolution operator:

(a ∗ ξ)g =
∑

g1g2=g

ag1 ξg2 ∀ξ ∈ `2(Γ).

The C∗-algebra C∗(Γ) is the norm closure of this algebra of operators. Let us now
give a simple example of a non-type-I discrete group and investigate its dual from a
set theoretic point of view. Let Γ be the semidirect product of the abelian group Z2

by the group Z, acting on Z2 by the powers of the automorphism α ∈ Aut(Z2), given

by the two-by-two matrix α =

[
1 1
1 2

]
. By construction, Γ is a finitely generated

solvable group. Let Y be the 2-torus which is the dual of the normal subgroup Z2⊂Γ.

The theory of induced representations [382] shows immediately that the dual space Γ̂
of Γ contains the space Y/Z of orbits of the transformation α̂ of Y , since each such
orbit defines an irreducible representation of Γ, and different orbits yield inequivalent
representations. The quotient space Y/Z is of course not Hausdorff and is of the same

nature as the space X of Penrose tilings, thus a fortiori the dual space Γ̂ of Γ has, if one
tries to understand it with the classical set theoretic tools, a pathological aspect. This

aspect disappears if, as we did for the space of Penrose tilings, we analyse Γ̂ by means
of the associated noncommutative algebra. Thus for instance the measure theory of
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Γ̂ for the Plancherel measure class is described by the von Neumann algebra λ(Γ)′′,
the weak closure of the left regular representation of Γ in `2(Γ) (cf. Chapter V). This
remains true for arbitrary discrete groups. In our example λ(Γ)′′ is the hyperfinite
factor R of type II1. For an arbitrary discrete group one always has a finite trace τ , the
Plancherel measure, on the von Neumann algebra λ(Γ)′′, and moreover the following
equivalence holds:

Γ is amenable ⇐⇒ λ(Γ)′′ is hyperfinite

(cf. Chapter V).

The topology of Γ̂ is of course described by the convolution C∗-algebra of Γ, but this
requires some elaboration when the group Γ is not amenable. The point is that in this

case there is a natural closed subset Γ̂r of the dual Γ̂, the support of the Plancherel
measure, called the reduced dual of Γ, so that one has two natural convolution C∗-
algebras of Γ, namely:

C∗(Γ) = “C(Γ̂)” , C∗
r (Γ) = “C(Γ̂r)”.

By definition C∗(Γ) is the completion of the group ring CΓ for the norm

||a||max = Sup{||π(a)||, π unitary representation of Γ}.
It is a C∗-algebra whose representations are exactly the unitary representations of Γ.

The reduced dual Γ̂r of Γ is the space of irreducible representations of Γ which are
weakly contained in the regular representation ([173]). It is the space of irreducible
representations of the C∗-algebra C∗

r (Γ) which is the norm closure of CΓ in `2(Γ).

To the inclusion Γ̂r⊂Γ̂ corresponds a surjection of C∗-algebras

C∗(Γ)→rC∗
r (Γ).

The K-theory of the C∗-algebra of a discrete group Γ plays a crucial role in the work
of Mishchenko and Kasparov on the conjecture of Novikov on homotopy invariance
of the higher signatures for non-simply-connected manifolds. Let us first recall the
statement of this conjecture. Let Γ be a discrete group and x ∈ H∗(BΓ,R) = H∗(Γ,R)
a group cocycle; then the pair (Γ, x) satisfies the Novikov conjecture iff the following
number is a homotopy invariant for maps (M, Ψ) of compact oriented manifolds M to
the classifying space BΓ:

Signx(M, Ψ) = 〈L(M) ∪Ψ∗(x), [M ]〉.
In other words what is asserted is that if (M ′, Ψ′) is another pair consisting in a compact
oriented manifold M ′ and a map Ψ′ : M ′→BΓ, which is homotopic to the pair (M, Ψ),
then

Signx(M, Ψ) = Signx(M
′, Ψ′).

As a corollary it follows that one has a homotopy invariant for compact oriented man-
ifolds M with fundamental group Γ; the map Ψ is then automatically given as the
classifying map of the universal cover M̃ of M .
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The cohomology class L(M) is the Hirzebruch L-genus which enters in the Hirzebruch
signature theorem. The latter asserts that for a 4k-manifold the signature of the inter-
section form on H2k is given by a universal polynomial Lk(p1, . . . , pk) in the rational
Pontryagin classes of the manifold:

Sign(M) = 〈Lk(p1, . . . , pk), [M ]〉.
The Hirzebruch formula only involves the top-dimensional component of the L-genus
but the above higher signature formula uses all its components (cf. [394]):

L(M) =
∑

k

Lk(p1, . . . , pk)

L1(p1) =
1

3
p1 , L2(p1, p2) =

1

45
(7p2 − p2

1), . . . .

One says that a discrete group Γ satisfies the Novikov conjecture if the above assertion
holds for any group cocycle x ∈ H∗(Γ,R). The natural generalization of the signature
Sign(M) of an oriented compact 4k-manifold to the non-simply-connected situation
yields (cf. [396]) an element SignΓ(M), where Γ = π1(M), in the Wall group L4k(Q[Γ]).
This follows from the theory of algebraic Poincaré complexes due to Mishchenko [396].
Here Q[Γ] is the group ring of Γ with rational coefficients, and the Wall group L4k of
a ring with involution is equal to the Witt group which classifies symmetric bilinear
forms modulo the hyperbolic ones. The crucial reason for the role of the K-theory of
the C∗-algebra of the group Γ is the isomorphism ρ

Witt(A)∼K0(A)

valid for any C∗-algebra (but false for involutive Banach algebras in general), which
allows one to extract from the homotopy invariant SignΓ(M) ∈ L4k(Q[Γ]), a homotopy
invariant belonging to a K-theory group, namely the image

ρ SignΓ(M) ∈ K0(C
∗(Γ)).

Simple examples, such as the case of commutative Γ (cf.[377]) show that in such cases
the relevant information is not lost in retaining only the K-theory signature, and that

the latter, being in the topological K-theory of the Pontryagin dual Γ̂ of Γ which is
a torus, is much easier to use than the L-theory signature. This point is an essential
motivation to study the K-theory of the C∗-algebras of discrete groups.

In L-theory there is a natural spectrum, the L-theory spectrum and a map, called
the assembly map, α : h∗(Γ, L)→L∗(Q(Γ)), whose range contains all the elements
SignΓ(M) and whose rational injectivity implies the Novikov conjecture. Kasparov
and Mishchenko have constructed an analytic assembly map from the K-homology
K∗(BΓ) = h∗(BΓ,BU) (where BU is the K-theory spectrum) of the classifying space
BΓ of Γ to the K-theory of the C∗-algebra of Γ

K∗(BΓ)→µK∗(C∗(Γ))
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which makes the following diagram commute:

h∗(BΓ,L)

²²

α // L∗(C(Γ))

ρ

²²
K∗(BΓ)

µ // K∗(C∗(Γ))

where the horizontal arrows are the assembly maps, the left vertical arrow comes from
the natural map from the L-theory spectrum to the BU -spectrum, and the right vertical
arrow comes from the equality for C∗-algebras of L-theory with K-theory.

The simplest description of the map µ : K∗(BΓ)→K∗(C∗(Γ)) is based on the existence
for every compact subset K of BΓ of a canonical “Mishchenko line bundle”

`K ∈ K0(C(K)⊗C∗(Γ))

which is described as a finite projective C∗-module over C(K)⊗C∗(Γ) by the following
proposition:

Proposition 1. Let K be a compact space, ϕ : K→BΓ a continuous map and K̃→pK
the principal Γ-bundle over K, the pull-back of EΓ→BΓ. Let E be the completion of

Cc(K̃) for the norm ||ξ|| = ||〈ξ, ξ〉||1/2, where for ξ, η ∈ Cc(K̃) the element 〈ξ, η〉 of
C(K)⊗C∗(Γ) is defined by

〈ξ, η〉 =
∑
g∈Γ

〈ξ, η〉g⊗g

〈ξ, η〉g(x) =
∑

p(x̃)=x

ξ(x̃)η(g−1x̃) ∀x ∈ K.

Then E is a right C∗-module, finite and projective, over C(K)⊗C∗(Γ), for the right
action uniquely defined by the equality

(ξ · (f⊗g)) (x̃) = f(p(x̃))ξ(gx̃)

∀ξ ∈ Cc(K̃), f ∈ C(K), g ∈ Γ, x̃ ∈ X̃.

The proof is straightforward. The local triviality of the principal Γ-bundle X̃ over
X yields in fact an explicit idempotent e ∈ Mn(C(K)⊗C∗(Γ)) whose associated right
module is E .

The construction of `K is naturally compatible with the inductive system of compact
subsets of BΓ. By definition the K-homology of BΓ is the inductive limit

h∗(BΓ,BU) = π∗(BΓ∧BU) = π∗(K∧BU)

where K runs through finite subcomplexes of BΓ. To construct µ one uses the following
formula which holds both in the Kasparov KK-theory and in E-theory:

(∗∗) µ(z) = (z⊗1) ◦ `K ∈ E(C, C∗(Γ)) = K(C∗(Γ))

∀z ∈ h∗(K,BU) = E(C(K),C).
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One has z⊗1 ∈ E(C(K)⊗C∗(Γ), C∗(Γ)) and `K ∈ E(C, C(K)⊗C∗(Γ)) so that µ(z) ∈
E(C, C∗(Γ)) = K(C∗(Γ)).

One then has the following index theorem of Kasparov and Mishchenko ([335] [334]
[397] [399])

Theorem 2. The analytic assembly map, µ : K∗(BΓ)→K∗(C∗(Γ)) defined by (∗∗)
makes the diagram (∗) commute.

In particular, let M be a compact oriented manifold of even dimension n and ϕ :
M→BΓ a continuous map. Then there is a corresponding element z ∈ K∗(BΓ) whose
image µ(z) ∈ K∗(C∗(Γ)) is the Γ-equivariant signature of M , i.e. the image ρ(z′)
of the Mishchenko L-theory class z′ = SignΓ(M). One has z = ϕ∗(σ(M)), where
σ(M) ∈ K∗(M) is the K-homology class of the signature operator on M . What
matters here is that the Chern character of σ(M), Ch∗(σ(M)) ∈ H∗(M,Q), is given by

Ch∗(σ(M)) = 2n/2L(M) ∩ [M ],

where Lk(M) = 2−2k Lk(M) for all k. Thus the Novikov conjecture for a discrete group
Γ is equivalent to the homotopy invariance of the image ϕ∗(σ(M)) in the rational K-
homology of BΓ. Since the Mishchenko L-theory class z′ ∈ Ln(CΓ) is homotopy
invariant, one gets as a corollary of Theorem 2,

Corollary 3. (loc. cit) The Novikov conjecture for Γ is implied by the rational injec-
tivity of the analytic assembly map

µ : K∗(BΓ)→K∗(C∗(Γ)).

This so-called strong Novikov conjecture has been proved by Mishchenko for funda-
mental groups of negatively curved compact Riemannian manifolds ([395]) and by
Kasparov for discrete subgroups of Lie groups ([333]).

Thanks to the work of Pimsner and Voiculescu [448], of Cuntz [145] for free groups,
and of Kasparov [332], Fox and Haskell [211] and Kasparov and Julg [314] for discrete
subgroups of SO(n, 1) and SU(n, 1), one knows for many torsion-free discrete groups
Γ that the analytic assembly map µ is an isomorphism. However, there is no discrete
group Γ, infinite and with Kazhdan’s property T , for which K(C∗

r (Γ)) or K(C∗(Γ))
has actually been computed. One difficulty is that due to property T the natural
homomorphism

C∗(Γ)→rC∗
r (Γ)

fails to be a K-theory isomorphism. Indeed, the idempotent corresponding by property
T to the trivial representation of Γ defines a non-zero K-theory class [e] ∈ K0(C

∗(Γ))
whose image r(e) is zero. Thus there are indeed two K-theories to compute. The
map µ does not contain [e] in its range and thus cannot yield an isomorphism with
K(C∗(Γ)). The possibility that r ◦ µ = µr is an isomorphism is still open, but by a
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counterexample of G. Skandalis ([527]) it cannot be proved by a KK-theory or E-
theory equivalence. When the group Γ has torsion the above map µ is too crude to be
expected to yield the K-theory of C∗(Γ). Indeed, even with Γ finite, say Γ = Z/2Z,
one has K0(C

∗(Γ)) = K0(C⊕C) = Z2 while K0(BΓ)Q = Q. We shall see later how to
modify K∗(BΓ) and µ when Γ has torsion.

5. The Tangent Groupoid of a Manifold

Let M be a compact smooth manifold. The pseudodifferential calculus on M allows
one to show that an elliptic pseudodifferential operator D on M is a Fredholm operator
and hence has an index, Ind(D) ∈ Z. The Fredholm theory then shows that this index
only depends upon the K-theory class of the symbol of D. One thus obtains ([26]) an
additive map, the analytic index map

Inda : K0(T
∗M)→Z

from the K-theory of the locally compact space T ∗M to Z.

In this section we shall show how the same map Inda arises naturally from a geometric
construction, that of the tangent groupoid of the manifold M . This groupoid encodes
the deformation of T ∗M to a single point, using the equivalence relation on M×[0, 1]
which identifies any pairs (x, ε) and (y, ε) provided ε > 0.

In the above section, as well as in Chapter I, we have met implicitly the notion of
groupoid. All our algebra structures could be written in the following form:

(a ∗ b)(γ) =
∑

γ1◦γ2=γ

a(γ1)b(γ2)

where the γ’s vary in a groupoid G, i.e. in a small category with inverses, or more
explicitly:

Definition 1. A groupoid consists of a set G, a distinguished subset G(0)⊂G, two maps
r, s : G→G(0) and a law of composition

◦ : G(2) = {(γ1, γ2) ∈ G×G ; s(γ1) = r(γ2)}→G

such that

(1) s(γ1◦γ2) = s(γ2) , r(γ1◦γ2) = r(γ1) ∀(γ1, γ2) ∈ G(2)

(2) s(x) = r(x) = x ∀x ∈ G(0)

(3) γ◦s(γ) = γ , r(γ)◦γ = γ ∀γ ∈ G

(4) (γ1◦γ2)◦γ3 = γ1◦(γ2◦γ3)

(5) Each γ has a two-sided inverse γ−1, with γγ−1 = r(γ) , γ−1γ = s(γ).

The maps r, s are called the range and source maps.
Here are a few important examples of groupoids.
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Γ'' =Γ o Γ'

Γ

r HΓL sHΓL
Γ'

Figure 5. Groupoid.

Equivalence relations.

Given an equivalence relationR⊂X×X on a set X, one gets a groupoid in the following
obvious way: G = R, G(0) = diagonal of X×X⊂R, r(x, y) = x, s(x, y) = y for any
γ = (x, y) ∈ R⊂X×X and

(x, y)◦(y, z) = (x, z) , (x, y)−1 = (y, x).

Groups.

Given a group Γ one takes G = Γ, G(0) = {e}, and the law of composition is the group
law.

Group actions. (Section 7).

Given an action X×Γ→αX of a group Γ on a set X, α(x, g) = xg, so that x(g1g2) =
(xg1)g2 ∀x ∈ X, gi ∈ Γ, one takes G = X×Γ, G(0) = X×{e}, and

r(x, g) = x , s(x, g) = xg ∀(x, g) ∈ X×Γ

(x, g1)(y, g2) = (x, g1g2) if xg1 = y

(x, g)−1 = (xg, g−1) ∀(x, g) ∈ X×Γ.

This groupoid G = XoΓ is called the semi-direct product of X by Γ.

In all the examples we have met so far, the groupoid G has a natural locally compact
topology and the fibers Gx = r−1{x}, x ∈ G(0), of the map r, are discrete. This is what
allows us to define the convolution algebra very simply by

(a ∗ b)(γ) =
∑

γ1◦γ2=γ

a(γ1)b(γ2).

We refer to [470] [68] for the general case of locally compact groupoids. Our next
example of the tangent groupoid of a manifold will be easier to handle than the general
case; though no longer discrete, it will be smooth in the following sense:
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Definition 2. A smooth groupoid G is a groupoid together with a differentiable struc-
ture on G and G(0) such that the maps r and s are subimmersions, and the object
inclusion map G(0)→G is smooth, as is the composition map G(2)→G.

The general notion is due to Ehresmann [187] and the specific definition here to
Pradines ([458], [459], [460], [461]) who proved that in a smooth groupoid G, all
the maps s : Gx→G(0) are subimmersions, where Gx = {γ ∈ G; r(γ) = x}.
The notion of a 1/2-density on a smooth manifold allows one to define in a canonical
manner the convolution algebra of a smooth groupoid G. More specifically, given G,

we let Ω1/2 be the line bundle over G whose fiber Ω
1/2
γ at γ ∈ G, r(γ) = x, s(γ) = y, is

the linear space of maps
ρ : ∧kTγ(G

x)⊗∧kTγ(Gy)→C
such that ρ(λv) = |λ|1/2ρ(v) ∀λ ∈ R. Here Gy = {γ ∈ G; s(γ) = y} and k =
dim Tγ(G

x) = dim Tγ(Gy) is the dimension of the fibers of the submersions r : G→G(0)

and s : G→G(0).

Then we endow the linear space C∞
c (G, Ω1/2) of smooth compactly supported sections

of Ω1/2 with the convolution product

(a ∗ b)(γ) =

∫

γ1◦γ2=γ

a(γ1)b(γ2) ∀a, b ∈ C∞
c (G, Ω1/2)

where the integral on the right-hand side makes sense since it is the integral of a
1-density, namely a(γ1)b(γ

−1
1 γ), on the manifold Gx, x = r(γ).

As two easy examples of this construction one can take:

α) The groupoid G = M×M where M is a compact manifold, r and s are the two
projections G→M = G(0) = {(x, x); x ∈ M} and the composition is (x, y)◦(y, z) =
(x, z) ∀x, y, z ∈ M .

The convolution algebra is then the algebra of smoothing kernels on the manifold M .

β) A Lie group G is, in a trivial way, a groupoid with G(0) = {e}. One then gets the
convolution algebra C∞

c (G, Ω1/2) of smooth 1-densities on G.

Coming back to the general case, one has:

Proposition 3. Let G be a smooth groupoid, and let C∞
c (G, Ω1/2) be the convolution

algebra of smooth compactly supported 1/2-densities, with involution ∗, f ∗(γ) = f(γ−1).

Then for each x ∈ G(0) the following defines an involutive representation πx of C∞
c (G, Ω1/2)

in the Hilbert space L2(Gx):

(πx(f)ξ) (γ) =

∫
f(γ1)ξ(γ

−1
1 γ) ∀γ ∈ Gx , ξ ∈ L2(Gx).

The completion of C∞
c (G, Ω1/2) for the norm ||f || = Supx∈G(0) ||πx(f)|| is a C∗-algebra,

denoted C∗
r (G).
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We refer to [95][470] for the proof. As in the case of discrete groups (Section 4) one
defines the C∗-algebra C∗(G) as the completion of the involutive algebra C∞

c (G, Ω1/2)
for the norm

‖f‖max = sup{‖π(f)‖}
π involutive Hilbert space representation of C∞

c (G, Ω1/2)

We let r : C∗(G)→C∗
r (G) be the canonical surjection. We refer to [470] for a discussion

of the corresponding notion of amenability of G.

Let us now pass to an interesting example of smooth groupoid, namely we construct
the tangent groupoid of a manifold M . Let us first describe G at the groupoid level;
we shall then describe its smooth structure.

We let G = (M×M× ]0, 1])∪(TM), where TM is the total space of the tangent bundle
of M .

We let G(0)⊂G be M×[0, 1] with inclusion given by

(x, ε)→(x, x, ε) ∈ M×M× ]0, 1] for x ∈ M, ε > 0.

(x, 0)→x ∈ M⊂TM as the 0-section, for ε = 0.

The range and source maps are given respectively by

r(x, y, ε) = (x, ε) for x ∈ M, ε > 0

r(x,X) = (x, 0) for x ∈ M,X ∈ Tx(M)

s(x, y, ε) = (y, ε) for y ∈ M, ε > 0

s(x,X) = (x, 0) for y ∈ M,X ∈ Tx(M)

The composition is given by

(x, y, ε)◦(y, z, ε) = (x, z, ε) for ε > 0 and x, y, z ∈ M

(x,X)◦(x, Y ) = (x,X + Y ) for x ∈ M and X,Y ∈ Tx(M)

Putting this in other words, the groupoid G is the union (a union of groupoids is again
a groupoid) of the product G1 of the groupoid M×M of example α) by ]0, 1] (a set is a
groupoid where all the elements belong to G(0)) and of the groupoid G2 = TM which
is a union of groups: the tangent spaces Tx(M). This decomposition G = G1 ∪ G2 of
G as a disjoint union is true set theoretically but not at the manifold level. Indeed, we
shall now endow G with the manifold structure that it inherits from its identification
with the space obtained by blowing up the diagonal ∆ = M⊂M×M in the cartesian
square M×M . More explicitly, the topology of G is such that G1 is an open subset of
G and a sequence (xn, yn, εn) of elements of G1 = M×M× ]0, 1] with εn→0 converges
to a tangent vector (x,X); X ∈ Tx(M) iff the following holds:

xn→x , yn→x ,
xn − yn

εn

→X.

The tangent groupoid of M
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X

x
y

Figure 6. The tangent groupoid of M

The last equality makes sense in any local chart around x independently of any choice.
One obtains in this way a manifold with boundary, and a local chart around a boundary
point (x,X) ∈ TM is provided, for instance, by a choice of Riemannian metric on M
and the following map of an open set of TM×[0, 1] to G:

ψ(x,X, ε) = (x, expx(−εX), ε) ∈ M×M× ]0, 1] , for ε > 0

ψ(x,X, 0) = (x,X) ∈ TM

Proposition 4. With the above structure G is a smooth groupoid.

We shall call it the tangent groupoid of the manifold M and denote it by GM . The
structure of the C∗-algebra of this groupoid GM is given by the following immedi-
ate translation of the inclusion of G2 = TM as a closed subgroupoid of GM , with
complement G1.

Proposition 5. 1)To the decomposition GM = G1 ∪G2 of GM as a union of an open
and a closed subgroupoid corresponds the exact sequence of C∗-algebras

0→C∗(G1)→C∗(G)→σC∗(G2)→0.

2) The C∗-algebra C∗(G1) is isomorphic to C0(]0, 1])⊗K, where K is the elementary
C∗-algebra (all compact operators on Hilbert space).

3) The C∗-algebra C∗(G2) is isomorphic to C0(T
∗M), the isomorphism being given by

the Fourier transform: C∗(TxM)∼C0(T
∗
xM), for each x ∈ M .

It follows from 2) that the C∗-algebra C∗(G1) is contractible: it admits a pointwise
norm continuous family θλ of endomorphisms, λ ∈ [0, 1], such that θ0 = id and θ1 = 0.
(This is easy to check for C0(]0, 1]).) In particular, from the long exact sequence in
K-theory we thus get isomorphisms

σ∗ : Ki(C
∗(G))∼Ki(C

∗(G2)) = K i(T ∗M).
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On the right-hand side K i(T ∗M) is the K-theory with compact supports of the total
space of the cotangent bundle. We now have the following geometric reformulation of
the analytic index map Inda of Atiyah and Singer.

Lemma 6. Let ρ : C∗(G)→K = C∗(M×M) be the transpose of the inclusion M×M→G:
(x, y)→(x, y, 1) ∀x, y ∈ M . Then the Atiyah-Singer analytic index is given by

Inda = ρ∗◦(σ∗)−1 : K0(T ∗M)→Z = K0(K).

The proof is straightforward. The map σ : C∗(G)→C∗(G2)∼C0(T
∗M) is the sym-

bol map of the pseudodifferential calculus for asymptotic pseudodifferential operators
([248]).

We shall end this Section by giving a proof of the index theorem, closely related to the
proof of Atiyah and Singer ([26]) but which can be adapted to many other situations.
Lemma 6 above shows that the analytic index Inda has a simple interpretation in terms
of the tangent groupoid GM = G. If the smooth groupoids G, G1, and G2 involved in
this interpretation were equivalent (in the sense of the equivalence of small categories)

to ordinary spaces Xj (viewed as groupoids in a trivial way, i.e. Xj = X
(0)
j ), then we

would already have a geometric interpretation of Inda, i.e. an index formula. Now the
groupoid G1 = M×M× ]0, 1] is equivalent to the space ]0, 1] since M×M is equivalent
to a single point. Thus the problem comes from G2 which involves the groups TxM
and is not equivalent to a space. Given any smooth groupoid G and a (smooth)
homomorphism h from G to the additive group RN one can form the following smooth
groupoid Gh:

Gh = G×RN , G
(0)
h = G(0)×RN

with r(γ,X) = (r(γ), X), s(γ,X) = (s(γ), X + h(γ)) ∀γ ∈ G, X ∈ RN , and

(γ1, X1)◦(γ2, X2) = (γ1◦γ2, X1)

for any composable pair.

Heuristically, if G corresponds to a space X, then the homomorphism h fixes a principal
RN -bundle over X and Gh corresponds to the total space of this principal bundle. At
the level of the associated C∗-algebras one has the following:

Proposition 7. Let G be a smooth groupoid, h : G→RN a homomorphism.

1) For each character χ ∈ RN of the group RN the following formula defines an auto-
morphism αχ of C∗(G):

(αχ(f))(γ) = χ(h(γ))f(γ) ∀f ∈ C∞
c (G, Ω1/2).

2) The crossed product C∗(G)oαRN of C∗(G) by the above action α of RN = (RN)∧ is
the C∗-algebra C∗(Gh).
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Thus we see in particular that if N is even, the Thom isomorphism for C∗-algebras
(Appendix C) gives us a natural isomorphism:

K0(C
∗(G))∼K0(C

∗(Gh)).

In the case where G corresponds to a space X, the above isomorphism is of course
the usual Bott periodicity isomorphism. We shall now see that for a suitable choice of
homomorphism G→hRN , where G = GM is the tangent groupoid of M , the smooth
groupoids Gh, G1,h, and G2,h will be equivalent to spaces, thus yielding a geometric
computation of Inda and the index theorem.

Let M→jRN be an immersion of M in a Euclidean space RN . Then to j corresponds
the following homomorphism h of the tangent groupoid G of M into the group RN :

h(x, y, ε) =
j(x)− j(y)

ε
ε > 0

h(x,X) = j∗(X) ∀X ∈ Tx(M)

One checks immediately that j(γ1◦γ2) = j(γ1) + j(γ2) whenever (γ1, γ2) ∈ G(2).

This homomorphism h defines a free and proper action of G, by translations, on the
contractible space RN . This follows because j is an immersion, so that j∗ is injective.
The smooth groupoid Gh is thus equivalent to the classifying space BG, which is the
quotient of G(0)×RN by the equivalence relation

(x,X) ∼ (y, Y ) iff ∃γ ∈ G r(γ) = x , s(γ) = y , X = Y + h(γ).

Since the action is free and proper the quotient makes good sense. Similar statements
hold for G1 and G2. A straightforward computation yields

BG =
(
]0, 1]×RN

) ∪ ν(M)

where ν(M) is the total space of the normal bundle of M in RN .

In this decomposition, BG = BG1∪BG2, one identifies BG2, the quotient of G
(0)
2 ×RN =

M×RN by the action of G2 = TM , with the total space of ν, νx = RN/Tx(M). The

isomorphism α of (]0, 1]×RN) with the quotient BG1 of G
(0)
1 ×RN = (]0, 1]×M)×RN

by the action of G1 depends upon the choice of a base point x0 ∈ M , and to simplify
the formulae we take j(x0) = 0 ∈ RN . One then has

α(ε, X) = ((x0, ε), X) ∀ε > 0 , X ∈ RN .

With this notation the locally compact topology of BG is obtained by gluing ]0, 1]×RN

to ν(M) by the following rule:

(εn, Xn)→(x, Y ) for εn→0 , x ∈ M, Y ∈ νx(M)

iff Xn→j(x) ∈ RN and Xn − j(x)/εn→Y in νx(M).
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Using the Euclidean structure of RN we can view νx(M) as the subspace orthogonal
to j∗Tx(M)⊂RN and use the following local chart around (x, Y ) ∈ ν(M):

ϕ(x, Y, ε) = (ε, j(x) + εY ) ∈ ]0, 1]×RN for ε > 0.

To the decomposition of Gh as a union of the open groupoid G1,h and the closed
groupoid G2,h corresponds the decomposition BG = BG1 ∪BG2. As in Proposition 5,
BG1 is properly contractible and thus we get a well-defined K-theory map

ψ : K0(BG2)∼K0(BG)→K0(RN)

which corresponds to the analytic index Inda = ρ∗◦(σ∗)−1 under the Thom isomor-
phisms K0(C

∗(Gi))∼K0(C
∗(Gh,i)) = K0(BGi). Now, from the definition of the topol-

ogy of BG it follows that ψ is the natural excision map

K0(ν(M))→K0(RN)

of the normal bundle of M , viewed as an open set in RN . Moreover, the Thom isomor-
phism

K0(RN)∼βZ
is the Bott periodicity, while the Thom isomorphism

K0(T ∗M)∼K0(C
∗(G2))∼K0(C

∗(G2,h))∼K0(BG2)

is the usual Thom isomorphism τ : K0(T ∗M)∼K0(ν(M)). Thus we have obtained the
following formula:

Inda = β◦ψ◦τ

which is the Atiyah-Singer index theorem ([26]), the right-hand side being the topo-
logical index Indt.

We used this proof to illustrate the general principle of first reformulating, as in Lemma
6, the analytical index problems in terms of smooth groupoids and their K-theory
(through the associated C∗-algebras), and then of making use of free and proper actions
of groupoids on contractible spaces to replace the groupoids involved by spaces, for
which the computations become automatically geometric.

6. Wrong-way Functoriality in K-theory as a Deformation

Let X and Y be manifolds, and f : X→Y a K-oriented smooth map. Then the Gysin
or wrong-way functoriality map

f ! : K(X)→K(Y )

can be described ([136]) as an element of the Kasparov group KK(X, Y ). We shall
give here the description of f ! as an element of E(X, Y ), i.e. as a deformation. The
construction is a minor elaboration of the construction of the tangent groupoid of
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Section 5. The advantage of this construction is that, given a smooth map: f : X→Y ,
it yields a canonical element of

E(T ∗X⊕f ∗TY, Y ).

Thus it adapts to the equivariant and to the noncommutative cases.

6.α The index groupoid of a linear map. Let E and F be finite-dimensional
real vector spaces and L : E→F a linear map. Then the group E acts by translations
on the space F , and we can thus form the groupoid FoLE = Ind(L) which is the
semidirect product of F by the action of E. More specifically, with G = Ind(L) we
have: G = F×E, G(0) = F×{0}, and for (η, ξ) ∈ F×E, r(η, ξ) = η, s(η, ξ) = η +L(ξ),
while

(η, ξ)◦(η′, ξ′) = (η, ξ + ξ′) if η + L(ξ) = η′.

By construction, G = Ind(L) is a smooth groupoid and is equivalent to the prod-
uct of the quotient space F/Im(L) by the group KerL. Thus, using the Fourier
transform, the C∗-algebra of IndL is strongly Morita equivalent to the C∗-algebra
C0((F/=L)×(KerL)∗), which justifies the notation IndL.

Proposition 1. a) Let L : E→F be a linear map. Then the family Ind(εL), ε ∈ [0, 1],
gives a canonical deformation

δL ∈ E(C0(F×E∗), C∗(IndL)).

b) Let L : E→E ′ and L′ : E ′→E ′′ be linear maps. Then the family

[
L εidE′

0 L′

]
of

linear maps from E⊕E ′ to E ′⊕E ′′ gives a canonical deformation of (IndL)×(IndL′) to
Ind(L′ ◦ L).

Statement a) follows because Ind(0) = Fo0E has C0(F×E∗) as its associated C∗-
algebra, while for ε > 0, FoεLE is canonically isomorphic to FoLE = IndL.

To get part b) one uses the equivalence of Ind

[
L idE′

0 L′

]
with the smooth groupoid

Ind(L′ ◦ L).

All of the above discussion goes over for families of vector spaces and linear maps,
i.e. for vector bundles E and F over a smooth base B and vector bundle maps
L : E→F . We shall still denote by IndL =

⋃
x∈B IndLx the corresponding smooth

groupoid. Proposition 1 then applies without any change, where in a) F×E∗ denotes
the total space of the vector bundle F×E∗.
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6.β Construction of f ! ∈ E(T ∗M⊕f ∗TN,N). Let M and N be smooth man-
ifolds and f : M→N a smooth map. The tangent map f∗ of f is a vector bundle
map

f∗ : TM→f ∗(TN)

and thus by α) it yields a smooth groupoid,

Ind(f∗) =
⋃

x∈M

Ind(f∗,x).

As a manifold Ind(f∗) is the total space of the vector bundle TM⊕f ∗(TN) over
M , while its groupoid structure is as a union of the groupoids Ind(f∗,x), with f∗,x :
TxM→Tf(x)N . We shall construct a canonical deformation of the groupoid Ind(f∗) to

the product of the space N (viewed in a trivial way as a groupoid, with N = N (0))
by the trivial groupoid (equivalent to a point) M×M . Thus, let G1 = Indf∗, G2 =
N×(M×M)× ]0, 1] and let us endow the groupoid G = G1 ∪ G2 with the relevant
smooth structure. The topology of G is uniquely specified by the closedness of G1 and
the following convergence condition for sequences of elements of G2: for εn > 0 with
εn→0, a sequence (tn, (xn, yn), εn) of elements of G2 = N×(M×M)× ]0, 1] converges
to (x, η, ξ) ∈ G1, with x ∈ M , η ∈ Tf(x)(N) and ξ ∈ Tx(M), iff one has

xn→x , yn→x , tn→f(x)

xn − yn/εn→ξ , tn − f(xn)/εn→η.

One checks that this topology is compatible with the groupoid structure of G, which
becomes a smooth groupoid with the following local diffeomorphism ϕ : G1×[0, 1]→G2

around any point of G1×{0}:
ϕ((x, η, ξ), ε) = (expf(x)(εη), (x, expx(−εξ), ε)) ∈ G2

where the exponential maps are relative to arbitrary Riemannian metrics on M and
N .

Thus C∗(G) gives a canonical deformation of C∗(Ind(f∗)) to the C∗-algebra of N×(M×M),
and, combining it with the element δ of Proposition 1 a) and the strong Morita equiv-
alence C∗(N×(M×M)) = C(N)⊗K∼C(N), we get a canonical element

f ! ∈ E(T ∗M⊕f ∗(TN), N).

In order to convert f ! to an element of E(M, N) we need a K-orientation of f as an
element of

E(M, T ∗M⊕f ∗(TN)).
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6.γ K-orientations of vector bundles and maps. Let M be a compact space
and F a real finite-dimensional vector bundle over M , with p : F→M the corresponding
projection of the total space of the bundle to the base M .

Let n be the fiber dimension of F and define Spinc(n) as the Lie group Spin(n)×Z/2ZU(1),
the quotient of the product group by the element (−1,−1) (cf. [366] p.390). Then
a Spinc structure on the bundle F is a reduction of its structure group GLn(R) to
Spinc(n) (cf. loc. cit, p.391 for more detail).

Definition 2. The vector bundle F is K-oriented if it is endowed with a Spinc structure.

In particular this implies a line bundle ` and a reduction of the structure group of
F to SO(n), i.e. an orientation and a Euclidean structure on F . The latter is in
general not invariant in the Γ-equivariant case, in which case the Definition 2 has been
adapted by P. Baum (cf. [277]), replacing the group Spinc(n) by the group MLc

n =
MLn(R)×Z/2U(1), where MLn(R) is the nontrivial two-fold covering of GL+

n (R). The
following proposition then still holds in the equivariant case ([277]).

Proposition 3. a)A complex vector bundle has a canonical K-orientation given by the
homomorphism SU(n)→Spinc(2n).

b) The dual F ∗ of a K-oriented bundle inherits a canonical K-orientation.

c) For any bundle F , F⊕F ∗ has a canonical K-orientation.

d) Let 0→F→F ′→F ′′→0 be an exact sequence of vector bundles. If two of these bundles
are K-oriented the third inherits a canonical K-orientation.

e) Let M→fN be a continuous map, and F a K-oriented bundle over N . Then f ∗(F )
is a K-oriented bundle over M .

The group H2(M,Z) of complex line bundles on M acts transitively and freely on the
set of K-orientations of F .

Definition 4. Let M and N be smooth manifolds, f : M→N a smooth map. Then
we define a K-orientation of f as a K-orientation of the real vector bundle F =
T ∗M⊕f ∗(TN).

As an immediate corollary of Proposition 3 one gets

Proposition 5. a) If the tangent bundles of M and N are K-oriented then any f :
M→N inherits a K-orientation.

b) The identity map IdM : M→M has a canonical K-orientation.

c) The composition of K-oriented maps is K-oriented.

d) A K-orientation of f : M→pt is a Spinc structure on M .
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We assume for simplicity that the fibers of F are even-dimensional, the odd case being
treated similarly (with K1 instead of K0). There is a natural map σ→σ̃ from K0(F )
to E(C(M), C0(F )), which we now describe. First let p̃ : F→F×M be the proper
continuous map given by p̃(ξ) = (ξ, p(ξ)), and p̃∗ ∈ Hom(C0(F )⊗C(M), C0(F )) be the
corresponding morphism of C∗-algebras. Then for σ ∈ K0(F ) = E(C, C0(F )), let σ̃ be
given by

σ̃ = p̃∗ ◦ (σ⊗idM) ∈ E(C(M), C0(F ))

(one has σ⊗idM ∈ E(C(M), C0(F )⊗C(M)) and p̃∗ ∈ E(C0(F )⊗C(M), C0(F )) so that
σ̃ is well defined).

Any given K-orientation on the bundle F yields canonically ([26]) an element σ of
K0(F ) given by the spinor bundle S+ ⊕ S− with its natural Z/2 grading, and the
morphism of p∗S+ to p∗S− (over F ) given by Clifford multiplication γ(ξ), ξ ∈ F .
The latter morphism is an isomorphism outside the 0-section M⊂F and thus defines
an element of K0(F ) ([26]). Moreover, the Thom isomorphism in K-theory ([26])
then shows that the corresponding element σ̃ ∈ E(C(M), C0(F )) is invertible. In
particular, σ is a generator of K(F ) as a K(M)-module. We shall denote by σf and
σ̃f the corresponding elements of K(F ) and E(C(M), C0(F )).

Remark 6. a) The above discussion of K-orientations of vector bundles and the
construction of σ̃ ∈ E(C0(M), C0(F )) extends (cf. [136]) to the case of non-compact
manifolds. The element σ, which we shall not use, is, however, no longer an element
of K(F ).

b) The Todd genus Td(F ) of a Spinc vector bundle is defined (cf. [36] p.136 and [366])

by the formula Td(F ) = ec/2 Â(F ), where c is the first Chern class of the line bundle
` associated to the Spinc structure.

6.δ Wrong-way functoriality for K-oriented maps. Let M and N be smooth
manifolds and let f : M→N be a smooth map. We have constructed above (in β)
a deformation f ! ∈ E(T ∗M⊕f ∗(TN), N) canonically associated to f . Let us now
assume that f is K-oriented and let σf ∈ E(M, T ∗M⊕f ∗(TN)) be the corresponding
invertible element. With a slight abuse of language we shall still denote by f ! the
following element

f ! = f ! ◦ σf ∈ E(M,N).

We can then formulate as follows the results of Section 2 of [136]:

Theorem 7. α) The element f ! ∈ E(M, N) only depends upon the K-oriented
homotopy class of f .

β) One has (IdM)! = 1 ∈ E(M, M).
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γ) For any composable smooth maps f1 : M1→M2, and f2 : M2→M3 one has, with the
corresponding K-orientations,

(f2 ◦ f1)! = f2! ◦ f1! ∈ E(M1,M3).

This result can be deduced from [136] and the natural functor from the KK-category to
the E-category (Appendix B). However, the direct proof is easier due to the canonical
construction of Section β) and we invite the reader to do it as an exercise.

As in [136], one gets the following strengthening of Bott periodicity.

Corollary 8. Let M,N be (not necessarily compact) smooth manifolds and f : M→N
a (not necessarily proper) homotopy equivalence. Then f ! is invertible.

In particular f ! yields natural isomorphisms, for arbitrary C∗-algebras A and B, be-
tween the groups

E(A,B⊗C0(N))∼E(A,B⊗C0(M))

E(A⊗C0(M), B)∼E(A⊗C0(N), B).

The Bott periodicity is the special case with M = R2n and N =pt; it also applies to
any (non-compact) contractible manifold.

Remark 9. Let f : M→N be a K-oriented map and f ! the associated map from
K0(M) = K0(C0(M)) to K0(N) = K0(C0(N)). The compatibility of f ! with the
Chern character is the equality

Ch(f !(x)) = f !(ChxTd(f))

where Td(f) is the Todd genus, defined in Remark 6 b), of the difference bundle
TM ª f ∗(TN), defined as the ratio

Td(f) = Td(TCM)/Td(TM⊕f ∗(TN)).

7. The Orbit Space of a Group Action

In this section, as a preparation for the case of leaf spaces of foliations, we shall consider
spaces of the same nature as the space of Penrose tilings, namely the spaces of orbits
for an action of a discrete group Γ on a manifold V . We assume that Γ acts on V by
diffeomorphisms and use the notation of a right action (x, g) ∈ V×Γ→xg ∈ V with

x(g1g2) = (xg1)g2 ∀g1, g2 ∈ Γ , ∀x ∈ V.

Such an action is called free if each g ∈ Γ, g 6= 1, has no fixed point, and proper when
the map (x, g)→(x, xg) is a proper map from V×Γ to V×V .

When the action of Γ is free and proper the quotient space X = V/Γ is Hausdorff and
is a manifold of the same dimension as V . The next proposition shows that the space
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X is equivalently described, as a topological space, by the C∗-algebra crossed product
C0(V )oΓ (Appendix C).

Proposition 1. [473] Let Γ act freely and properly on V and let X = V/Γ. Then
the C∗-algebra C0(X) is strongly Morita equivalent to the crossed product C∗-algebra
C0(V )oΓ.

It is important to mention that in this case, and for any Γ amenable or not, there is no
distinction between the reduced and unreduced crossed products. Also, the equivalence
C∗-bimodule E is easy to describe; it is given by the bundle of Hilbert spaces (Hx)x∈X

over X, whose fiber at x ∈ X = V/Γ is the `2-space of the orbit x ∈ X. This yields
the required (C0(V )oΓ, C0(X)) C∗-bimodule.

When the action of Γ is free but not proper, for instance when V is compact and Γ
infinite, the quotient space X = V/Γ is no longer Hausdorff and its topology is of little
use, so also is the algebra C0(X) of continuous functions on X. But then Proposition
1 no longer holds and the topology of the orbit space is much better encoded by the
crossed product C∗-algebra C0(V )oΓ. Our aim in this section is to construct K-theory
classes in this C∗-algebra from geometric data. For that purpose we shall not need the
hypothesis of the freeness of the action of Γ. In fact, the case of Γ acting on the space
V reduced to a single point, already treated in Section 4, will also guide us. We shall
assume that Γ is torsion-free and treat the general case later in Section 10.

The motivation for the construction of K-theory classes, due to P. Baum and myself
([32]) is the following. While there are in general very few continuous maps f : X→W
from a noncommutative space such as V/Γ to an ordinary manifold, there are always
plenty of smooth maps from ordinary manifolds W to such a space as X = V/Γ. Thus,
since we have at our disposal, by Section 6, the wrong-way functoriality map f ! in
K-theory, we should expect to construct elements of K-theory of the form

f !(z) ∈ K(C0(V )oΓ) ∀z ∈ K(C0(W ))

for any smooth K-oriented map f : W→V/Γ from an ordinary manifold to our space
X = V/Γ.

Given a smooth map ρ : W→V , one obtains by composition with p : V→V/Γ = X a
“smooth” map to X. But, clearly, there are other natural “smooth” maps to X which
do not factor through V . Indeed, if we are given an open cover (Wi)i∈I of W and
smooth maps ρi : Wi→V , such that on any non-empty intersection Wi ∩Wj one has
p ◦ ρi = p ◦ ρj, then p ◦ ρ : W→V/Γ still makes sense. Since we do not want to assume
that the action of Γ on V is free, we strengthen the equality p ◦ ρi = p ◦ ρj on Wi ∩Wj

by specifying a Čech 1-cocycle

ρij : Wi ∩Wj→Γ

such that
ρj(x) ρij(x) = ρi(x) ∀x ∈ Wi ∩Wj.
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To the Čech 1-cocycle (Wi, ρij) with values in Γ there corresponds a principal Γ-bundle

W̃→qW

and local sections si : Wi→W̃ such that

sj(x) ρij(x) = si(x) ∀x ∈ Wi ∩Wj.

There exists then a unique Γ-equivariant smooth map from W̃ to V such that

ρ(si(x)) = ρi(x) ∀x ∈ Wi.

To summarize, we obtain the following notion:

Definition 2. Let Γ be a discrete group acting by diffeomorphisms on a manifold V .
Then a smooth map W→V/Γ from a manifold W to the orbit space, is given by a
principal Γ-bundle W̃→qW and a Γ-equivariant smooth map ρ : W̃→V .

The reason for the existence of sufficiently many such maps is that homotopy classes
of smooth maps W 7→V/Γ correspond exactly to homotopy classes of continuous maps

W→V×ΓEΓ = VΓ

where EΓ→ΓBΓ is the universal principal Γ-bundle over the classifying space BΓ of Γ.

First, given W̃→qW and ρ : W̃→V as in Definition 2, we get a Γ-equivariant continuous
map

W̃→(ρ,ϕ)V×EΓ

where ϕ is a classifying map W̃→EΓ for the bundle W̃ . The map (ρ, ϕ) then yields a
continuous map ψ : W→V×ΓEΓ. Second, given a continuous map ψ : W→V×ΓEΓ,
one can pull back to W the principal Γ-bundle over V×ΓEΓ given by

V×EΓ→pV×ΓEΓ.

One then has a principal Γ-bundle W̃→qW over W and a continuous Γ-equivariant map

ψ̃ : W̃→V×EΓ. The composition of ψ̃ with the projection prV : V×EΓ→V gives us a
Γ-equivariant continuous map W̃→ρV . Since V×ΓEΓ is a locally finite CW -complex,
there is a natural notion of a smooth map W 7→V×ΓEΓ and every continuous map from
W to V×ΓEΓ can be smoothed, thus yielding smooth maps W 7→ρV/Γ in the sense of
Definition 2. Thus:

Proposition 3. Let Γ be a discrete group acting by diffeomorphisms on the manifold
V , and let W be a manifold. Then homotopy classes of continuous maps W 7→VΓ =
V×ΓEΓ correspond bijectively to homotopy classes of smooth maps W→V/Γ in the
sense of Definition 2.

Any Γ-equivariant bundle F on V is still Γ-equivariant on V×EΓ, and hence drops
down to a bundle on VΓ. This applies in particular to the tangent bundle TV of V ,
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yielding a bundle τ on VΓ. At a formal level the geometric group K∗,τ (VΓ) is defined
as follows:

Definition 4. K∗,τ (VΓ) is the K-homology of the pair (Bτ, Sτ) consisting in the unit-
ball and unit-sphere bundles of τ over VΓ.

Since VΓ = V×ΓEΓ is not in general a finite simplicial complex we have to be precise
regarding the definition of K-homology for arbitrary simplicial complexes X. We take
K∗(X) = K∗(Y ) where Y runs through compact subsets of X. In other words we
choose K-homology with compact supports in the sense of [529] Axiom 11 p. 203.

Let Hτ
∗ (VΓ,Q) be the ordinary singular homology of the pair (Bτ, Sτ) over VΓ, with

coefficients in Q. Since this is also a theory with compact supports, the Chern character

Ch : K∗,τ (VΓ)→Hτ
∗ (VΓ,Q)

is a rational isomorphism.

Since we are interested mainly in the case of orientation preserving diffeomorphisms,
let us assume that V is oriented and that Γ preserves this orientation. Then the bundle
τ over VΓ = V×ΓEΓ is still oriented, and letting U be the orientation class of τ on VΓ,
we can use the Thom isomorphism ([394] Theorem 10, p. 259)

φ : Hτ
q+n(VΓ,Q)→Hq(VΓ,Q) (n = dim τ = dim V )

where φ(z) = p∗(U ∩ z) ∀z ∈ Hq+n((Bτ, Sτ,Q), and where p is the projection from Bτ
to the base VΓ.

Thus φ◦ch is a rational isomorphism:

φ◦Ch : K∗,τ (VΓ)→H∗(VΓ,Q).

To construct the analytic assembly map µ : K∗,τ (VΓ)→K∗(C0(V )oΓ) requires a better
understanding of the K-homology of an arbitrary pair (here the pair is (Bτ, Sτ) over
VΓ). This follows from:

Proposition 5. a) Let M be a Spinc-manifold with boundary, and assume that M is
compact. Then one has a Poincaré duality isomorphism

K∗(M) ∼= K∗(M, ∂M).

b) Let (X,A) be a topological pair of simplicial complexes and let x ∈ K∗(X, A). Then
there exists a compact Spinc-manifold with boundary (M,∂M), a continuous map f :
(M,∂M)→(X, A) and an element y of K∗(M, ∂M) with f∗(y) = x.

The Chern character is then uniquely characterized by the properties:

1) f∗Ch(y) = Ch(f∗(y)).
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2) If M is a compact Spinc-manifold with boundary, and z ∈ K∗(M,∂M) is the image
of y ∈ K∗(M) under Poincaré duality, one has

Ch(z) = (Ch(y) · Td(M)) ∩ [M, ∂M ],

where Td(M) is the characteristic class associated to the Spinc structure of M as in

[36] p.136 and [366] p.399, Td(M) = ec/2 Â(M) where c is the first Chern class of the
line bundle ` associated to the Spinc structure.

Now let (N, F, g) be a triple where N is a compact manifold without boundary, F ∈
K∗(N), and g is a continuous map from N to VΓ = V×ΓEΓ, which is K-oriented, i.e.
such that the bundle TN⊕g∗τ is endowed with a Spinc structure. To such a triple
corresponds an element of K∗(Bτ, Sτ) as follows. Let B and S be the unit-ball and
unit-sphere bundles of g∗τ on N . Then B is a Spinc-manifold with boundary so that
the Poincaré duality isomorphism assigns a class y ∈ K∗(B, S) to the pull-back of F
to B. Then put [(N, F, g)] = g∗(y) ∈ K∗(Bτ, Sτ). For convenience any triple (N, F, g)
as above will be called a geometric cycle.

Proposition 6. a) Any element of K∗,τ (VΓ) = K∗(Bτ, Sτ) is of the form [(N, F, g)]
for some geometric cycle (N, F, g).

b) Let (N, F, g) be a geometric cycle , N ′ be a compact manifold and assume f :
N ′→N a continuous map which is K-oriented, i.e. TN ′⊕f ∗TN is endowed with a
Spinc structure. Then, for any F ′ ∈ K∗(N ′) with f !(F ′) = F one has

[(N ′, F ′, g ◦ f)] = [(N, F, g)] in K∗(Bτ, Sτ).

Here f ! : K∗(N ′)→K∗(N) is the push-forward map in K-theory (cf. [36]).

Proof. a) By Proposition 5 b) there exists a compact Spinc-manifold with boundary
(M,∂M), an element y of K∗(M,∂M), and a continuous map f : (M, ∂M)→(Bτ, Sτ)
with x = f∗(y). By transversality one may assume that the inverse image in M of the
0-section of τ is a submanifold N of M whose normal bundle ν is the restriction of
f ∗(τ) to N . Since the boundary of M maps to Sτ , the manifold N is closed without
boundary. Let g be the restriction of f to N . Then g is a continuous map from N to VΓ,
and the bundle TN⊕g∗τ = TN⊕ν has a Spinc structure. Let B be the unit-ball bundle
B→pN of the bundle ν = g∗τ . Then, since p∗ : K∗(N)→K∗(B) is an isomorphism,
the assertion follows from Proposition 5 a).

b) Let (B, S) and (B′, S ′) be the unit-ball and unit-sphere bundles of g∗τ and f ∗g∗τ
over N and N ′, and f̃ : (B′, S ′)→(B,S) be the natural extension of f . One has

f̃ !(p
′∗(F ′)) = p∗(F ). Thus the conclusion follows since f̃ ! is Poincaré dual to f̃∗ :

K∗(B′, S ′)→K∗(B,S).

If we translate the Chern character φ ◦ Ch in terms of geometric cycles we get:
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Proposition 7. Let (N, F, g) be a geometric cycle. Then

φ ◦ Ch[(N, F, g)] = g∗(Ch(F ) · Td(TN⊕g∗τ) ∩ [N ]) ∈ H∗(VΓ,Q).

Note that we assumed that τ was oriented, so that N is oriented since the bundle
TN⊕g∗τ is Spinc, and hence oriented.

So far we have just described the general elements of the group K∗,τ (VΓ) and computed
their Chern characters. We shall now construct the analytic assembly map

µ : K∗,τ (VΓ)→K∗(C0(V )oΓ).

Given a geometric cycle (N, F, g), by Proposition 3 we have Ñ the corresponding
principal Γ-bundle over N and g̃ : Ñ→V the corresponding Γ-equivariant K-oriented
map. By Proposition 3 we can assume that g̃ is smooth. Then by Section 6 we get a
well-defined element g̃! ∈ E(C0(Ñ), C0(V )), and, since the construction of g̃! is natural,
the corresponding deformation passes to the crossed products by Γ using Proposition
2 b) of Appendix C, hence yielding

g̃!Γ ∈ E(C0(Ñ)oΓ , C0(V )oΓ).

As the action of Γ on Ñ is free and proper, the crossed product C0(Ñ)oΓ is strongly
Morita equivalent to C0(Ñ/Γ) = C0(N) so that we can view g̃!Γ as an element of

E(C0(N), C0(V )oΓ).

Now define µ(N, F, g) as the image g̃!Γ(F ) of the K-theory class F ∈ K∗(C0(N)) under
the element g̃!Γ.

Theorem 8. There exists an additive map µ of K∗,τ (VΓ) to K∗(C0(V )oΓ) such that
for any geometric cycle (N, F, g) as above µ(N, F, g) = g̃!Γ(F ), where F ∈ K∗(C0(N))
is viewed as an element of K(C0(ÑoΓ)) through the Morita equivalence, and g̃!Γ as an
element of E(C0(Ñ)oΓ, C0(V )oΓ).

We shall now apply this theorem to give examples of crossed products A = C(V )oΓ,
with V a compact manifold, where the K-theory class of the unit 1 of A is trivial. We
first need to find a geometric cycle (N,F, g) whose image µ(N, F, g) is the unit of A.

Lemma 9. Let F ∈ K∗(C0(V )), and consider the geometric cycle (V, F, p), where
p : V→V/Γ is the quotient map with its tautological K-orientation. Then µ(V, F, p)
is equal to j∗(F ), where j : C0(V )→A = C0(V )oΓ is the canonical homomorphism of
C0(V ) into the crossed product by Γ.

The proof is straightforward ([99]).

With this we are ready to prove
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Theorem 10. Let V be a compact oriented manifold on which Γ acts by orientation
preserving diffeomorphisms. Assume that in the induced fibration over BΓ with fiber
V , V×ΓEΓ→BΓ, the fundamental class [V ] of the fiber becomes 0 in Hn(V×ΓEΓ,Q).
Then the unit of the C∗-algebra A = C(V )oΓ is a torsion element of K0(A).

Proof. By Theorem 8 we know that the map µ : K∗(V, Γ)→K∗(C(V )oΓ) is well-
defined. Thus it is enough to find x ∈ K∗

τ (VΓ) with µ(x) = 1A and Ch(x) = 0 (since
the Chern character is a rational isomorphism (see above)). Now Lemma 9 shows that
µ(x) = 1A, where x is the K-cycle (V, 1V , g) and 1V stands for the trivial line bundle on
V , g is the map from V to VΓ given by g(s) = (s×t0)/Γ for some t0 ∈ EΓ, and where
the K-orientation of the bundle TV⊕TV comes from its natural complex structure.
By Proposition 7 the Chern character of this K-cycle is equal to Td(τC) g∗([V ]) = 0.
Thus x is a torsion element in K∗,τ (VΓ) and also µ(x) = 1A in K0(A).

As a nice example where this theorem applies let us mention:

Corollary 11. Let Γ⊂ PSL(2,R) be a torsion-free cocompact discrete subgroup. Let Γ
act on V = P1(R) in the obvious way. Then in the C∗-algebra A = C(V )oΓ the unit
1A is a torsion element of K0(A).

Proof. Let H = {z ∈ C;=z > 0} be the Poincaré space, and M = H/Γ be the
quotient Riemann surface. Let us identify H with EΓ since it is a contractible space
on which Γ acts freely and properly. Then, as in [394] p.313, we can identify the
induced bundle VΓ = P1(R)×ΓEΓ = P1(R)×ΓH over BΓ = M with the unit-sphere
bundle of M , denoted by η. It follows that the Euler class e(η) of η is equal to 2− 2g
times the generator of H2(M,Z). Applying this and the Gysin sequence of the tangent
vector bundle TM , (cf. [394] p.143),

H0(M,Z)→∪eH2(M,Z)→π∗H2(η,Z)→· · ·
shows that π∗([M ]∗) is a torsion element of H2(η,Z), where π : η→M is the projection
and [M ]∗ is the generator of H2(M,Z). But η is an oriented manifold, and the homology
class of the fiber, [P1(R)], is Poincaré dual to π∗([M ]); hence it is also a torsion element,
so that Ch(x) = 0.

Remark 12. Let X be a simplicial complex and τ a real vector bundle over X. The
Chern character Ch : K∗,τ (X)→Hτ

∗ (X,Q) is a rational isomorphism. It is convenient
for computations to introduce the rational isomorphism Chτ given by:

Chτ (x) = Td(τC)
−1 Ch(x) ∈ Hτ

∗ (X,Q) ∀x ∈ K∗,τ (X).
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8. The Leaf Space of a Foliation

9.α Construction of C∗
r (V, F ). Let (V, F ) be a foliated manifold of codimension

q. Given any x ∈ V and a small enough open set W⊂V containing x, the restriction
of the foliation F to W has, as its leaf space, an open set of Rq, which we shall call for
short a transverse neighborhood of x. In other words this open set W/F is the set of
plaques around x. Now, given a leaf L of (V, F ) and two points x, y ∈ L of this leaf,
any simple path γ from x to y on the leaf L uniquely determines a germ h(γ) of a
diffeomorphism from a transverse neighborhood of x to a transverse neighborhood of
y. One can obtain h(γ), for instance, by restricting the foliation F to a neighborhood
N of γ in V sufficiently small to be a transverse neighborhood of both x and y as
well as of any γ(t). The germ of diffeomorphism h(γ) thus obtained only depends
upon the homotopy class of γ in the fundamental groupoid of the leaf L, and is called
the holonomy of the path γ. The holonomy groupoid of a leaf L is the quotient of its
fundamental groupoid by the equivalence relation which identifies two paths γ and γ′

from x to y (both in L) iff h(γ) = h(γ′). The holonomy covering L̃ of a leaf is the
covering of L associated to the normal subgroup of its fundamental group π1(L) given
by paths with trivial holonomy. The holonomy groupoid of the foliation is the union
G of the holonomy groupoids of its leaves. Given an element γ of G, we denote by
x = s(γ) the origin of the path γ, by y = r(γ) its end point, and r and s are called the
range and source maps.

An element γ of G is thus given by two points x = s(γ) and y = r(γ) of V together
with an equivalence class of smooth paths: the γ(t), t ∈ [0, 1] with γ(0) = x and
γ(1) = y, tangent to the bundle F (i.e. with γ•(t) ∈ Fγ(t), ∀t ∈ R) identifying γ1 and
γ2 as equivalent iff the holonomy of the path γ2 · γ−1

1 at the point x is the identity.
The graph G has an obvious composition law. For γ and γ′ ∈ G, the composition
γ◦γ′ makes sense if s(γ) = r(γ′). The groupoid G is by construction a (not necessarily
Hausdorff) manifold of dimension dim G = dim V + dim F (cf. [190] for the original
construction, and also [462], [585]).

If the leaf L which contains both x and y has no holonomy (this is generic in the
topological sense of truth on a dense Gδ) then the class in G of the path γ(t) depends
only on the pair (y, x). In general, if one fixes x = s(γ), the map from Gx = {γ; s(γ) =
x} to the leaf L through x, given by γ ∈ Gx 7→y = r(γ), is the holonomy covering of L.

Both maps r and s from the manifold G to V are smooth submersions, and G is a
smooth groupoid in the sense of Definition 5.1. The map (r, s) to V×V is an immersion
whose image in V×V is the (often singular) subset {(y, x) ∈ V×V ; y and x are on the
same leaf}. The topology of G is not in general the same as its topology as a subset of
V×V , and the map G→V×V is not a proper map. By construction, the C∗-algebra of
the foliation is the C∗-algebra C∗

r (G) of the smooth groupoid G constructed according
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to Proposition 5.3, but we shall describe it in detail. We shall assume for notational
convenience that the manifold G is Hausdorff, but as this fails to be the case in very
interesting examples we shall refer to [96] for the removal of this hypothesis.

The basic elements of C∗
r (V, F ) are smooth half-densities with compact supports on G,

f ∈ C∞
c (G, Ω1/2), where Ω

1/2
γ for γ ∈ G is the one-dimensional complex vector space

Ω
1/2
x ⊗Ω

1/2
y , where s(γ) = x, r(γ) = y, and Ω

1/2
x is the one-dimensional complex vector

space of maps from the exterior power ∧kFx, k = dim F , to C such that

ρ(λv) = |λ|1/2ρ(v) ∀v ∈ ∧kFx , ∀λ ∈ R.

Of course the bundle (Ω
1/2
x )x∈V is trivial, and we could choose once and for all a

trivialization ν making elements of C∞
c (G, Ω1/2) into functions, but we want to have

canonical algebraic operations.

For f, g ∈ C∞
c (G, Ω1/2), the convolution product f ∗ g is given by the equality

(f ∗ g)(γ) =

∫

γ1◦γ2=γ

f(γ1)g(γ2).

This makes sense because for fixed γ : x→y, and with vx ∈ ∧kFx and vy ∈ ∧kFy,
the product f(γ1)g(γ−1

1 γ) defines a 1-density on Gy = {γ1 ∈ G; r(γ1) = y}, which
is smooth with compact support (it vanishes if γ1 /∈ support f), and hence can be
integrated over Gy to give a scalar, (f ∗ g)(γ) evaluated on vx ⊗ vy. One has to check
that f ∗ g is still smooth with compact support, which is trivial here, and remains true
in the non-Hausdorff case.

The ∗-operation is given by f ∗(γ) = f(γ−1), i.e. if γ : x→y and vx ∈ ∧kFx, vy ∈ ∧kFy,

then f ∗(γ) evaluated on vx⊗ vy is equal to f(γ−1) evaluated on vy ⊗ vx. We thus get a
∗-algebra C∞

c (G, Ω1/2). For each leaf L of (V, F ) one has a natural representation πL

of this ∗-algebra on the L2-space of the holonomy covering L̃ of L. Fixing a base point
x ∈ L, one identifies L̃ with Gx = {γ; s(γ) = x} and defines

(πx(f)ξ) (γ) =

∫

γ1◦γ2=γ

f(γ1)ξ(γ2) ∀ξ ∈ L2(Gx)

where ξ is a square-integrable half-density on Gx. Given γ : x→y one has a natural
isometry of L2(Gx) onto L2(Gy) which transforms the representation πx to πy. Applying
Proposition 5.3 we thus get

Definition 1. C∗
r (V, F ) is the C∗-algebra completion of C∞

c (G, Ω1/2) with the norm
||f || = Supx∈V ||πx(f)||.
If the leaf L has trivial holonomy, then the representation πx, x ∈ L, is irreducible. In
general its commutant is generated by the action of the discrete holonomy group Gx

x

in L2(Gx). If the foliation comes from a submersion p : V→B, then its graph G is
{(x, y) ∈ V×V ; p(x) = p(y)}, which is a submanifold of V×V , and C∗

r (V, F ) is identical
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with the algebra of the continuous field of Hilbert spaces L2 (p−1{x})x∈B. Thus, unless
dim F = 0, it is isomorphic to the tensor product of C0(B) with the elementary C∗-
algebra of compact operators. It is always strongly Morita equivalent to C0(B). If
the foliation comes from an action of a Lie group H in such a way that the graph is
identical with V×H, then C∗

r (V, F ) is identical with the reduced crossed product of
C0(V ) by H (cf. Appendix C). Moreover, the construction of C∗

r (V, F ) is local in the
following sense:

Lemma 2. If V ′⊂V is an open set and F ′ is the restriction of F to V ′, then the graph
G′ of (V ′, F ′) is an open set in the graph G of (V, F ), and the inclusion

C∞
c (G′, Ω1/2)⊂C∞

c (G, Ω1/2)

extends to an isometric ∗-homomorphism of C∗
r (V ′, F ′) into C∗

r (V, F ).

This lemma, which is still valid in the non-Hausdorff case ([96]), allows one to reflect
algebraically the local triviality of the foliation. Thus one can cover the manifold V by
open sets Wi such that F restricted to Wi has a Hausdorff space of leaves, Bi = Wi/F ,
and hence such that the C∗-algebras C∗

r (Wi, F ) are strongly Morita equivalent to the
commutative C∗-algebras C0(Bi). These subalgebras C∗

r (Wi, F ) generate C∗
r (V, F ),

but of course they fit together in a very complicated way which is related to the global
properties of the foliation.

By construction, C∗
r (V, F ) = C∗

r (G) where the smooth groupoid G is the graph of
(V, F ). Similarly, we let C∗(V, F ) be the maximal C∗-algebra C∗(G), (Proposition 5.3)
and r be the canonical surjection

r : C∗(V, F )→C∗
r (V, F ).

9.β Closed transversals and idempotents of C∗
r (V, F ). Let (V, F ) be a foli-

ated manifold, and N⊂V a compact submanifold with dim N = CodimF , everywhere
transverse to the foliation. Then the restriction F ′ of F to a small enough tubular
neighborhood V ′ of N defines on V ′ a fibration with compact base N . In other words,
there exists a fibration V ′−→pN with fibers Rk, k = dim F , such that for any x ∈ V
one has Fx = Ker(p∗)x. The C∗-algebra C∗

r (V ′, F ′) of the restriction of F to V ′ is
thus strongly Morita equivalent to C(N), and in fact isomorphic to C(N)⊗K where
K is the C∗-algebra of compact operators. In particular it contains an idempotent
e = e2 = e∗, e = 1N⊗f ∈ C(N)⊗K, where f is a minimal projection in K. Using the
inclusion C∗

r (V ′, F ′)⊂C∗
r (V, F ) given by the above Lemma 2, we thus get an idempo-

tent of C∗
r (V, F ), which we shall now describe more concretely. The transversality of

N to the foliation ensures the existence of a neighborhood V of G(0) in G such that

γ ∈ V◦V−1 , s(γ) ∈ N , r(γ) ∈ N⇒γ ∈ G(0),
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where G(0) = {(x, x); x ∈ V } is the set of units of G. Let then ξ be a smooth
section on the submanifold r−1(N)⊂G of the bundle s∗(Ω1/2) of half-densities, ξ ∈
C∞

c

(
r−1(N), s∗(Ω1/2)

)
, such that

α) Support ξ⊂V
β)

∫
r(γ)=y

|ξ(γ)|2 = 1 ∀y ∈ N .

The equality e(γ) =
∑

s(γ′)=s(γ)

r(γ′)∈N

ξ(γ′γ−1)ξ(γ′) defines an idempotent

e ∈ C∞
c (G, Ω1/2)⊂C∗

r (V, F )

Indeed, for each x ∈ V the operator πx(e) in L2(Gx) is the orthogonal projection on
the closed subspace of L2(Gx) spanned by a set of orthogonal vectors labelled by the
countable set I = r−1(N) ∩Gx, namely (ηγ)γ∈I , where

ηγ(γ
′) = ξ

(
γ(γ′)−1

) ∀γ′ ∈ Gx.

A more canonical way to define the (equivalence class of the) above idempotent e ∈
C∗

r (V, F ) is to show that the C∗-module eA, A = C∗
r (V, F ), is the same as the comple-

tion of C∞
c

(
r−1(N), s∗(Ω1/2)

)
with the right action of C∞

c (G, Ω1/2) given by convolu-

tion, for f ∈ C∞
c (G, Ω1/2),

(ξ ∗ f)(γ) =

∫

γ1◦γ2=γ

ξ(γ1)f(γ2) ∀ξ ∈ C∞
c

(
r−1(N), s∗(Ω1/2)

)

and with the C∞
c (G, Ω1/2)-valued inner product given by

〈ξ, η〉(γ) =
∑

s(γ′)=s(γ)

r(γ′)∈N

ξ(γ′γ−1)η(γ′) , ∀ξ, η ∈ C∞
c

(
r−1(N), s∗(Ω1/2)

)
.

The construction of this C∗-module EN over C∗
r (V, F ) makes sense whether N is com-

pact or not, but in the former case the identity is a compact endomorphism of EN and
EN = eC∗

r (V, F ) for a suitable idempotent e ∈ C∗
r (V, F ) (the identity being of rank

one).
If N is compact and meets every leaf of (V, F ), then EN gives a strong Morita equiva-
lence between C∗

r (V, F ) and the C∗-algebra of compact endomorphisms of EN which, if
we assume that N is compact, is unital. This C∗-algebra is the convolution C∗-algebra
of the reduced groupoid GN :

GN = {γ ∈ G; r(γ) ∈ N, s(γ) ∈ N} .

The groupoid GN is a manifold of dimension q = CodimF , and the convolution product
in C∞

c (GN) is given by

(f ∗ g)(γ) =
∑

γ1◦γ2=γ

f(γ1)g(γ2)

f ∗(γ) = f(γ−1).
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Figure 7. Transversal

The C∗-algebra norm on C∞
c (GN) is given by the supremum of the norm ||πx(f)|| where

for each x ∈ N = G
(0)
N , πx is the representation of C∞

c (GN) in `2(GN,x) given by

(πx(f)ξ) (γ) =
∑

γ1◦γ2=γ

f(γ1)ξ(γ2) ∀γ ∈ GN , s(γ) = x.

We shall denote this C∗-algebra by C∗
r,N(V, F ), and compute it for a simple example.

Thus, let (V, F ) be the Kronecker foliation dy = θdx of the 2-torus V = T2 = R2/Z2

with natural coordinates (x, y) ∈ R2. Here θ ∈ ]0, 1[ is an irrational number.

The graph G of this foliation is the manifold G = T2×R with range and source maps
G→T2 given by

r((x, y), t) = (x + t, y + θt)

s((x, y), t) = (x, y)

and with composition given by ((x, y), t)((x′, y′), t′) = ((x′, y′), t + t′) for any pair of
composable elements.
Every closed geodesic of the flat torus T2 yields a compact transversal. More precisely,
for each pair (p, q) of relatively prime integers we let Np,q be the submanifold of T2

given by

Np,q = {(ps, qs) ; s ∈ R/Z} .

The graph G reduced by N = Np,q, i.e. GN = {γ ∈ G; r(γ) ∈ N, s(γ) ∈ N}, is then
the manifold GN = T×Z with range and source maps given by:

r(u, n) = u + nθ′ , s(u, n) = u
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T T

Figure 8. The Kronecker foliation with a closed transversal T

where θ′ ∈ R/Z is determined uniquely by any pair (p′, q′) of integers such that pq′ −
p′q = 1, θ′ = p′θ − q′/pθ − q.

The C∗-algebra C∗
r,N(V, F ) is the crossed product of C(T) by the rotation of angle θ′,

i.e. it is the irrational rotation C∗-algebra ([472]) Aθ′ , generated by two unitaries U
and V such that:

V U = exp(2πiθ′)UV.

Since N = Np,q meets every leaf of the foliation, it follows that C∗
r (V, F ) is strongly

Morita equivalent to Aθ′ for any relatively prime pair (p, q). In particular for p = 0,
q = 1 we get Aθ, and, by transitivity of strong Morita equivalence, we see that if θ
and θ′ are on the same orbit of the action of PSL(2,Z) then Aθ is strongly Morita
equivalent to Aθ′ , this gives another proof of this result of [472]. All the results of this
section, including the construction of the finite projective C∗-module E = Ep,q over Aθ

which achieves the strong Morita equivalence with Aθ′ (i.e. Aθ′∼EndAθ
(E)) are due to

the author of this book [98], [96] and were later extended to higher dimensional tori
by Rieffel. One first determines the manifold

Ep,q = {γ ∈ G ; r(γ) ∈ Np,q , s(γ) ∈ N0,1} .

Let us assume that p > 0 to avoid the trivial case p = 0. One finds then that
Ep,q = {((0, y), t) ; t ∈ R, py = t(q − pθ) modulo 1}. It is thus the disjoint union of
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p copies of the manifold R, since the value of y ∈ R/Z is not uniquely determined by
the equality

py = t(q − pθ) modulo 1.

Working out the Aθ-valued inner product on C∞
c (Ep,q), one finds the following descrip-

tion of the C∗-module Ep,q.

One lets ε = q/p − θ, and lets W1 and W2 be unitary operators in Cp = K such that
W p

1 = W p
2 = 1 and W1W2 = exp (2πiq/p) W2W1. Let V1 and V2 be the operators on

C∞
c (R) given by

(V1ξ)(s) = ξ(s− ε) , (V2ξ)(s) = exp(2πis)ξ(s) ∀s ∈ R.

Then the action of Aθ on Ep,q is determined using the identification C∞
c (Ep,q) =

C∞
c (R)⊗K by the equalities

ξU = (V1⊗W1)ξ , ξV = (V2⊗W2)ξ ∀ξ ∈ C∞
c (Ep,q)

where U, V are the above generators of Aθ.

The Aθ-valued inner product which allows one to complete C∞
c (Ep,q) and get Ep,q is

given by the value of the components of 〈ξ, η〉 =
∑
Z2 〈ξ, η〉m,n UmV n

〈ξ, η〉m,n =

∫ ∞

−∞
〈W n

2 Wm
1 ξ(s−mε), η(s)〉 exp(−2πins)ds.

We shall come back to these modules in later chapters.

Of course foliations can fail to have such a closed transversal N , and we shall show in
an example that even C∗

r (V, F ) can fail to have any non-zero idempotent. We let Γ be
a discrete cocompact subgroup of SL(2,R). Then V = SL(2,R)/Γ has a natural flow
Ht, the horocycle flow, defined by the action by left translations of the subgroup

{[
1 0
t 1

]
; t ∈ R

}
of SL(2,R).

We let F be the foliation of V into orbits of the horocycle flow. First, the flow is
minimal, so, C∗

r (V, F ) is a simple C∗-algebra ([213][278]). Then, letting µ be the
measure on V associated to the Haar measure of SL(2,R), we can associate to µ
(which is Ht-invariant for all t ∈ R) a transverse measure Λ for (V, F ), and hence a
trace τ on C∗

r (V, F ). By simplicity of C∗
r (V, F ) this trace τ is faithful. Thus for any

idempotent e ∈ C∗
r (V, F ) one has

0 < τ(e) < ∞ if e 6= 0.

Now let Gs, s ∈ R, be the geodesic flow on V , defined by the action by left translation

of the subgroup

{[
es 0
0 e−s

]
; s ∈ R

}
. For every s, Gs is an automorphism of (V, F ),
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since the equality GsHtG
−1
s = He−2st shows that for y = Gs(x), Fy = (Gs)∗Fx. This

follows from [
1 0

te−2s 1

]
=

[
es 0
0 e−s

] [
1 0
t 1

] [
e−s 0
0 es

]
.

Let θs be the corresponding automorphism of C∗
r (V, F ). For every x ∈ C∗

r (V, F ) the
map s 7→θs(x) from R to C∗

r (V, F ) is norm continuous, which shows that if e is a self-
adjoint idempotent, then θs(e) is equivalent to e for all s ∈ R, and hence τ(θs(e)) =
τ(e), ∀s ∈ R.

But though µ is obviously invariant under the geodesic flow, the transverse measure Λ
is not invariant under Gs; indeed the equality GsHtG

−1
s = He−2st shows that Gs(Λ) =

e−2sΛ for all s ∈ R. Thus τ ◦θs = e−2sτ , and so τ(e) = 0 for any self-adjoint idempotent
e. So C∗

r (V, F ) does not have any non-zero idempotent though it is simple (cf. [52]
for the first example of such a C∗-algebra). We shall describe in Section 9 another
example with a unital C∗-algebra.

8.γ The analytic assembly map µ : K∗,τ (BG)→K(C∗(V, F )). In this section
we shall show how the construction of K-theory classes for the orbit space of a group
action, discussed in Section 7, adapts to the leaf spaces of foliations. We shall thus
get a very general construction of elements of K(C∗(V, F )) from geometric cycles, i.e.
K-oriented maps from compact manifolds to the leaf space. Our first task will thus be
to define carefully what we mean by a smooth map

f : W→V/F

where W is a manifold.

Any smooth map W→ρV gives, by composition with the canonical projection p :
V→V/F , a smooth map f = p◦ρ from W to V/F . But, as in the case of orbit spaces
(Section 7), a general smooth map f : W→V/F does not factorize through V , and is
given by a Čech cocycle (Ωi, γij) on W with values in the graph G of (V, F ). More
precisely, (Ωi)i∈I is an open cover of W and there is a collection of smooth maps
γij : Ωi ∩ Ωj→G such that

γij(x)◦γjk(x) = γik(x) ∀x ∈ Ωi ∩ Ωj ∩ Ωk.

Thus the smooth maps γii : Ωi→V patch together as maps p◦γii from Ωi to V/F .

Given such a Čech cocycle (Ωi, γij) one constructs as follows a principal right G-bundle
over W which captures all the relevant information about the map f . Let Gf be the
manifold obtained by gluing together the open sets

Ω̃i = {(x, γ) ∈ Ωi×G ; γii(x) = r(γ)}
with the maps (x, γ)→(x, γji(x)◦γ). Then let rf and sf be the smooth maps given by

rf : Gf→W , rf (x, γ) = x ∀(x, γ) ∈ Ω̃i
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sf : Gf→V , sf (x, γ) = s(γ) ∀(x, γ) ∈ Ω̃i.

The groupoid G acts on the right on Gf ; for α ∈ Gf and γ′ ∈ G such that sf (α) = r(γ′)
the composition α◦γ′ ∈ Gf is given by

(x, γ)◦γ′ = (x, γ◦γ′) ∀(x, γ) ∈ Ω̃i.

Given α1, α2 ∈ Gf such that rf (α1) = rf (α2) there exists a unique γ′ ∈ G such that
α2 = α1◦γ′. Thus Gf is a principal right G-bundle over W in an obvious sense.

Definition 3. α) A smooth map f : W→V/F is given by its graph, which is a principal
right G-bundle Gf over W .

β) The map f is called a submersion if the map sf is a submersion: Gf→V .

As in the case of orbit spaces, the reason for the existence of sufficiently many smooth
maps f : W→V/F is that homotopy classes of such maps correspond exactly to homo-
topy classes of continuous maps:

W→BG

where BG is the classifying space of the topological groupoid G. The space BG is only
defined up to homotopy, as the quotient of a free and proper action of G on contractible
spaces. More precisely, a right action of G on topological spaces is given by a topological
space Y , a continuous map sY : Y→G(0) and a continuous map Y×sG→◦Y , where
Y×sG = {(y, γ) ∈ Y×G ; sY (y) = r(γ)} such that (y◦γ1)◦γ2 = y◦(γ1γ2) for any y ∈ Y ,
γ1 ∈ G, γ2 ∈ G with r(γ1) = sY (y), s(γ1) = r(γ2).

In other words the map which to each t ∈ G(0) assigns the topological space Yt = s−1
Y {t}

and to each γ ∈ G, γ : t→t′, assigns the homeomorphism y→y◦γ from Yt′ to Yt,
is a contravariant functor from the small category G to the category of topological
spaces. We shall say that such an action of G on Y is free iff for any y ∈ Y the map
γ ∈ GsY (y)→y◦γ ∈ Y is injective, and that it is proper iff the map (y, γ)→(y, y◦γ) is
proper. A free and proper action of G on Y is the same thing as a principal G-bundle
on the quotient space Z = Y/G, quotient of Y by the equivalence relation

y1 ∼ y2 iff ∃γ ∈ G , y1◦γ = y2.

We shall say that the action of G on Y has contractible fibers iff the fibers of sY :
Y→G(0) are contractible. Then exactly as for groups (and with the usual paracom-
pactness conditions) the classifying space BG is the quotient EG/G of a principal
G-bundle Y = EG with contractible fibers. It is unique up to homotopy, and it classi-
fies, when G is the graph of a foliation (V, F ), the homotopy classes of smooth maps to
V/F . In fact we have already seen in Sections 5 and 7 two other examples of classifying
spaces for smooth groupoids. In Section 5 we computed BG, where G is the tangent
groupoid of a manifold M , by using the action of G on Y = G(0)×RN coming from an
immersion j : M→RN . In Section 7 the homotopy quotient V×ΓEΓ is the classifying
space of the semidirect product G = VoΓ, which is a smooth groupoid.
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For the case of foliations one can, assuming that the holonomy groups Gx
x are torsion-

free, construct ([96]) EG as the space of measures with finite support on the leaves
of (V, F ). What matters is that BG is an ordinary space which maps to V/F with
contractible fibers. More precisely any foliation (V ′, F ′) with the same leaf space as
(V, F ) determines a principal G-bundle, and if the holonomy coverings of the leaves of
(V ′, F ′) are contractible then the total space V ′ is the classifying space BG.

We shall now, under the above assumption that Gx
x is torsion-free for all x ∈ V ,

construct the geometric group K∗,τ (BG) and the analytic assembly map ([32] [136])

K∗,τ (BG)→µK(C∗(V, F )).

First, the transverse bundle τx = Tx(V )/Fx of the foliation is a G-equivariant bundle,
the action of G on τ being given by the differential of the holonomy, h(γ)∗ : τx→τy

∀γ : x→y. To τ corresponds an induced real vector bundle, which we “abusively”
still denote by τ , on BG = EG/G. Thus the group K∗,τ (BG) is well-defined, exactly
as in Definition 7.4, as the twisted K-homology, with compact supports, of the space
BG. (The twisting by τ is defined as in 7.4 from the pair (Bτ, Sτ) of the unit-ball
and unit-sphere bundles of τ .) We, moreover, have the exact analogue of Proposition
7.6: By a geometric cycle we mean a triple (W, y, g) where W is a compact manifold,
y ∈ K∗(W ) a K-theory class, and g a smooth map W→V/F (Definition 3) which is
K-oriented by a choice of a Spinc structure on the real vector bundle TW⊕g∗τ .

Proposition 4. a) Any element of K∗,τ (BG) is represented by a geometric cycle
(W, y, g).

b) Let (W, y, g) be a geometric cycle and f : W ′→W a K-oriented smooth map. Then
for any x ∈ K∗(W ′), the following geometric cycles represent the same element of
K∗,τ (BG):

(W ′, x, g ◦ f) ∼ (W, f !(x), g).

For any smooth K-oriented map W→hV/F one can factorize h as g ◦ f , where f :
W→W1 is K-oriented and smooth, while g : W1→V/F is a submersion in the sense of
Definition 3. β) ([96]). Thus using Proposition 4.b we see that in order to define the
analytic assembly map µ : K∗,τ (BG)→K(C∗(V, F )) we just need to define µ(W, y, g) =
g!(y) in the case where g : W→V/F is a smooth K-oriented submersion. Using FW , the
pull-back by g of the foliation F , which is a foliation of W because g is a submersion
(cf. [136]) one can then easily reduce the task to the construction of the wrong-way
functoriality map

p! : K∗(F ∗)→K(C∗(V, F ))

where F ∗ means the total space of the vector bundle F on V . (We refer to [136]
for the reduction to this case, which invokes the construction of a homomorphism of
C∗(W,FW ) to the C∗-algebra of compact endomorphisms of a C∗-module over C∗(V, F ),
thus yielding an element εg ∈ E(C∗(W,FW ), C∗(V, F )).)
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We shall construct p! ∈ E(C0(F
∗), C∗(V, F )) as a deformation of the convolution C∗-

algebra of the vector bundle F to that of the smooth groupoid, G, of the foliation.
In order to do so, we just need to deform the groupoid F (i.e. F (0) = V⊂F is the
0-section and F is the union of the groups Fx, x ∈ V ) to the groupoid G. In fact we
just need the relevant topology on the union

G′ = F ∪ (G× ]0, 1])

where both terms are groupoids, ]0, 1] being, as in Section 5, viewed as a space. Here F
is a closed subset of G′, and a sequence (γn, εn), γn ∈ G, εn > 0, of elements of G× ]0, 1]
converges to (x,X) ∈ Fx⊂F iff εn→0, xn = s(γn)→x, yn = r(γn)→x, yn − xn/εn→X
and length(γn)→0. The condition length(γ) < ε defines a basis of neighborhoods of
the diagonal G(0) in G. In fact, using a Euclidean structure on F , we can give the local
diffeomorphism F×[0, 1]→ϕG′ near ((x,X), 0) by

ϕ((y, Y ), ε) = ((y, expy(−εY )), ε) ∈ G× ]0, 1] for ε > 0

where the latter pair of points y and expy(−εY ) ∈ (Leaf of y) define the end points of
the path γ(t) = expy(−εtY ), γ ∈ G.

As in Section 5 one checks that with the above structure G′ is a smooth groupoid, and
this suffices, using the associated C∗-algebra, to get the required deformation

p! ∈ E(C0(F
∗), C∗(V, F ))

where we identified C∗(F ) with C0(F
∗) using the Fourier transform. Thus, given a

smooth K-oriented submersion g : W→V/F we obtain an element g! ∈ E(C(W ), C∗(V, F ))
as the composition of εg ◦ (pW )! ∈ E(C0(F

∗
W ), C∗(V, F )) with the Thom isomorphism

β ∈ E(C(W ), C0(F
∗
W )) given by the K-orientation of g. We can then state the main

result of [136] as

Theorem 5.a) Let W be a compact manifold and let g : W→V/F be a smooth K-
oriented map. Then the composition f ! ◦ j! = g! ∈ E(C(W ), C∗(V, F )) is independent
of the factorization of g = f ◦ j through a K-oriented submersion f : W ′→V/F .

b) The element g! only depends upon the K-oriented homotopy class of g and one has
(g ◦ h)! = g! ◦ h! for any K-oriented smooth map h : X→W .

The construction of the analytic assembly map µ follows immediately from this theo-
rem.

Corollary 6. Let x ∈ K∗,τ (BG) and (W, y, g) be a geometric cycle representing x. The
element g!(y) ∈ K(C∗(V, F )) only depends upon x, and µ is an additive map:

µ : K∗,τ (BG)→K(C∗(V, F )).

By composition with the canonical surjection r : C∗(V, F )→C∗
r (V, F ) one obtains a

corresponding map µr : K∗,τ (BG)→K(C∗
r (V, F )).
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Let us also note that this construction of K-theory classes of C∗(V, F ) contains, of
course, the construction of the classes of idempotents eT ∈ C∗

r (V, F ) associated to closed
transversals T of (V, F ). More precisely, the composition of the inclusion T⊂V with
the projection p : V→V/F yields a smooth map f : T→V/F which is by construction
étale and hence K-oriented. One then has a geometric cycle (T, 1T , f), where 1T is
the class in K0(T ) of the trivial one-dimensional vector bundle. One checks easily that
µr(T, 1T , f) = [eT ].

The construction of g! for a smooth map g : W→V/F has been extended by M. Hilsum
and G. Skandalis ([277]) to smooth maps of leaf spaces, after solving the very difficult
case of the submersion V/F→ pt. We shall come back to this point in Chapter III.

Remarks 7. a) We have only defined the geometric group as K∗,τ (BG) when the
holonomy groups Gx

x, x ∈ V , are torsion-free. As in the case of discrete groups, the
general case requires more care and will be treated in Section 10 (cf. also [35]).

b) Exactly as in Section 7, the Chern character Ch∗ is a rational isomorphism of
K∗,τ (BG) with H∗(BG,Q), (if we assume to simplify that τ is oriented, i.e. that the
foliation is transversally oriented). Thus, as in Section 7, any element z ∈ K(C∗(V, F ))
of the form µ(x), where x ∈ K∗,τ (BG) and Ch∗(x) = 0, is a torsion element.

9. The Longitudinal Index Theorem for Foliations

Let (V, F ) be a compact foliated manifold. Let E1 and E2 be smooth complex vector
bundles over V , and let D : C∞(V, E1)→C∞(V, E2) be a differential operator on V
from sections of E1 to sections of E2. Let us make the following hypotheses:

1) D restricts to leaves, i.e. (Dξ)x depends only upon the restriction of ξ to a neigh-
borhood of x in the leaf of x.

2) D is elliptic when restricted to leaves, so that, for any η ∈ F ∗
x , η 6= 0, the principal

symbol σD(x, η) ∈ Hom(E1,x, E2,x) is invertible.

In any domain of a foliation chart U = T×P the operator D appears as a fam-
ily, indexed by t ∈ T , of elliptic operators on the plaques Pt. One can then use
the local construction of a parametrix for families of elliptic operators and patch
the resulting operators by using a partition of unity in V subordinate to a cov-
ering (Uj) by domains of foliation charts. What one obtains is an inverse Q for
D modulo the algebra C∞

c (G, Ω1/2) = J of the foliation (Section 8). To be more
precise let us fix for convenience a smooth nonvanishing 1-density along the leaves
and drop the Ω’s from the notation. Then to D corresponds a distribution section
D ∈ C−∞

c (G, s∗(E∗
1)⊗r∗(E2)) with support on G(0). To the quasi-inverse Q of D corre-

sponds a section Q ∈ C−∞
c (G, s∗(E∗

2)⊗r∗(E1)). The quasi-inverse property is then the
following

QD − 1E1 ∈ C∞
c (G, s∗(E∗

1)⊗r∗(E1))
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DQ− 1E2 ∈ C∞
c (G, s∗(E∗

2)⊗r∗(E2))

where 1Ei
corresponds to the identity operator C∞(V,Ei)→C∞(V,Ei).

Now the algebra J = C∞
c (G) is a two-sided ideal in the larger A, the algebra under

convolution of distributions T ∈ C−∞
c (G) which are multipliers of C∞

c (G), i.e. satisfy
T ∗ f ∈ C∞

c (G) and f ∗ T ∈ C∞
c (G), for any f ∈ C∞

c (G). Thus, neglecting the bundles
Ei for a while, the existence of Q means that D yields an invertible element of A/J .
It is, however, not always possible to find a representative D′ ∈ A of the same class,
i.e. D′ ∈ D + J , which is invertible in A. The obstruction to doing so is an element of
the K-theory group K0(J), as follows from elementary algebraic K-theory ([391]). We
shall, however, recall in detail the construction of this obstruction Ind(D) ∈ K0(J),
since this allows us to take the bundles Ei into account and will also be useful in
Chapter III.

9.α Construction of Ind(D) ∈ K0(J). Let J be a non-unital algebra over C, and
define K0(J) as the kernel of the map

K0(J̃)→ε∗K0(C) = Z

where J̃ is the algebra obtained by adjoining a unit to J , that is,

J̃ = {(a, λ); a ∈ J, λ ∈ C}, and ε(a, λ) = λ ∀(a, λ) ∈ J̃ .

(For a unital algebra K0 is the group associated to stable isomorphism classes of finite
projective modules viewed as a semigroup under direct sum.)

Let A be a unital algebra (over C) containing J as a two-sided ideal, and let j :
A→A/J = Λ be the quotient map. Recall that finite projective modules push forward
under morphisms of algebras.

Definition 1. Given J⊂A as above, a quasi-isomorphism is given by a triple (E1, E2, h),
where E1 and E2 are finite projective modules over A and h is an isomorphism

h : j∗E1→j∗E2.

Any element D of A which is invertible modulo J determines the quasi-isomorphism
(A,A, j(D)). A quasi-isomorphism is called degenerate when h comes from an isomor-
phism T : E1→E2. There is an obvious notion of direct sum of quasi-isomorphisms, and
a simple but crucial lemma ([391]) shows that the direct sum (E1, E2, h)⊕(E2, E1, h

−1)
is always degenerate.

More explicitly, let D ∈ HomA(E1, E2) and Q ∈ HomA(E2, E1) be such that j(D) = h
and j(Q) = h−1. Then the matrix

T =

[
D + (1−DQ)D DQ− 1

1−QD Q

]
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defines an isomorphism of E1⊕E2 with E2⊕E1 such that j(T ) =

[
h 0
0 h−1

]
.

It follows that quasi-isomorphisms modulo degenerate ones form a group which, as we
shall see now, is canonically isomorphic to K0(J) independently of the choice of A.

Let us first consider the special case A = J̃ . Then the exact sequence 0→J→J̃→εC→0
has a natural section r : C→J̃ , ε ◦ r = id. Thus for any finite projective module E over
J̃ the triple (E , (r ◦ ε)∗E , id) is a quasi-isomorphism, which we denote ρ(E).

Now, let A be arbitrary, and let α be the homomorphism α : J̃→A, α(a, λ) = a + λ1
∀a ∈ J , λ ∈ C.

Proposition 2. Given J⊂A as above, the map α∗ ◦ ρ is an isomorphism from K0(J)
to the group of classes of quasi-isomorphisms modulo degenerate ones.

The proof follows from the computation ([391]) of the K-theory of the fibered product
algebra

{(a1, a2) ∈ A×A; j(a1) = j(a2)}.
Given a quasi-isomorphism (E1, E2, h) we shall let Ind(h) ∈ K0(J) be the associated
element of K0(J) (Proposition 2). For instance, if D is an element of A which is
invertible modulo J then Ind(D) is the element of K0(J) given by [e]− [e0], where the

idempotents e, e0 ∈ M2(J̃) are e0 =

[
1 0
0 0

]
and e = Te0T

−1 with, as above,

T =

[
D + (1−DQ)D DQ− 1

1−QD Q

]
.

Thus, with S0 = 1−QD, S1 = 1−DQ one gets

e =

[
1− S2

1 (S1 + S2
1)D

S0Q S2
0

]
∈ M2(J̃).

One has Ind(h2◦h1) = Ind(h1) + Ind(h2) for any pair ((E1, E2, h1), (E2, E3, h2)) of quasi-
isomorphisms.

Let (V, F ) be a compact foliated manifold and let D be, as above, a longitudinal elliptic
operator from the bundle E1 to E2. Then the inclusion C∞(V )⊂A of multiplication
operators on V , as longitudinal differential operators of order 0 allows us to induce the
vector bundles Ei to finite projective modules Ei over A. The above existence of an
inverse for D modulo C∞

c (G) is then precisely encoded in

Proposition 3. The triple (E1, E2, D) defines a quasi-isomorphism over the algebra
J = C∞

c (G)⊂A.

We shall let Ind(D) ∈ K0(C
∞
c (G)) be the index associated to (E1, E2, D) by Proposition

2.
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9.β Significance of the C∗-algebra index. By the construction of C∗(V, F ) as
a completion of the algebra C∞

c (G), one has a natural homomorphism

C∞
c (G)→jC∗(V, F )

and we shall denote by Inda(D) the image j∗Ind(D). In general we do not expect the
map

j∗ : K0(C
∞
c (G))→K0(C

∗(V, F ))

to be an isomorphism, and thus we lose information in replacing Ind(D) by Inda(D) =
j∗(Ind(D)). It is, however, only for the latter index that one has vanishing or homotopy
invariance results of the following type:

Proposition 4. [99]Let (V, F ) be a compact foliated manifold. Assume that the real
vector bundle F is endowed with a Spin structure and a Euclidean structure whose
leafwise scalar curvature is strictly positive. Let D be the leafwise Dirac operator.
Then D is a longitudinal elliptic operator and Inda(D) = 0.

In other words, with F of even dimension and oriented by its Spin structure, one lets
S± be the bundle of spinors and D : C∞(V, S+)→C∞(V, S−) be the partial differential
operator on V which restricts to leaves as the leafwise Dirac operator.

The proof of the vanishing of Inda(D) is the same as the proof of J. Rosenberg for
covering spaces (cf. [242]); using the Lichnerowicz formula for D∗D and DD∗ one
shows that these two operators are bounded from below by a strictly positive scalar.
This shows the vanishing of Inda(D) ∈ K0(C

∗(V, F )) because operator inequalities
imply spectral properties in C∗-algebras. It is, however, not sufficient to prove the
vanishing of Ind(D) ∈ K0(C

∞
c (G)). As another example, let us consider the leafwise

homotopy invariance of the longitudinal signature, i.e. of Inda(D), where D is the
longitudinal signature operator. This question is the exact analogue of the question
of the homotopy invariance of the Γ-invariant signature for covering spaces, which was
proved by Mishchenko and Kasparov. One gets ([33] [279]):

Proposition 5. Let (V, F ) be a compact foliated manifold with F even-dimensional and
oriented. Let D be the leafwise signature operator. Then its analytic index Inda(D) ∈
K0(C

∗(V, F )) is preserved under leafwise oriented homotopy equivalences.

9.γ The longitudinal index theorem. Let V→pB be a fibration, where V and
B are smooth compact manifolds, and let F be the vertical foliation, so that the leaves
of (V, F ) are the fibers of the fibration and the base B is the space V/F of leaves of the
foliation. Then a longitudinal elliptic operator is the same thing as a family (Dy)y∈B

of elliptic operators on the fibers in the sense of [27]. Moreover, the C∗-algebra of
the foliation (V, F ) is strongly Morita equivalent to C(B), and one has a canonical
isomorphism

K(C∗(V, F ))∼K(C(B)) = K(B).



9. THE LONGITUDINAL INDEX THEOREM FOR FOLIATIONS 138

Under this isomorphism our analytic index, Inda(D) ∈ K(C∗(V, F )) is the same as the
Atiyah-Singer index for the family D = (Dy)y∈B, Inda(D) ∈ K(B) (cf. [27]). In this
situation the Atiyah-Singer index theorem for families (loc. cit) gives a topological
formula for Inda(D) as an equality

Inda(D) = Indt(D)

where the topological index Indt(D) only involves the K-theory class σD ∈ K(F ∗) of
the principal symbol of D, and uses in its construction an auxiliary embedding of V in
the Euclidean space RN . (cf. loc. cit).

We shall now explain the index theorem for foliations ([136]) which extends the above
result to the case of arbitrary foliations of compact manifolds and immediately implies
the index theorem for measured foliations of Chapter I.

As in the Atiyah-Singer theorem we shall use an auxiliary embedding of V in Rn in
order to define the topological index, Indt(D), and the theorem will be the equality
Inda = Indt. This equality holds in K(C∗(V, F )) and thus we need an easy way to land
in this group. Now, given a foliation (V ′, F ′) of a not necessarily compact manifold,
and a not necessarily compact submanifold N of V ′ which is everywhere transverse
to F ′, then Lemma 8.2 provides us with an easy map from K(N) = K(C0(N)) to
K(C∗(V ′, F ′)). Indeed, for a suitable open neighborhood V ′′ of N in V ′ one has

C0(N) ∼ C∗(V ′′, F ′)⊂C∗(V ′, F ′)

(where the first equivalence is a strong Morita equivalence). Of course, the resulting
map K(N)→K(C∗(V ′, F ′)) coincides with the map e!, where e : N→V ′/F ′ is the
obvious étale map, but we do not need this equality (except as notation) to define e!.
The main point in the construction of the topological index Indt is that an embedding
i : V→Rn allows one to consider the normal bundle ν = i∗(F )⊥ of i∗(F ) in Rn as
a manifold N , transversal to the foliation of V ′ = V×Rn by the integrable bundle
F ′ = F×{0}⊂TV ′. First note that the bundle ν over V has a total space of dimension
d = dim V +n−dim F , which is the same as the codimension of F ′ in V ′. Next consider
the map ϕ from the total space ν to V ′ = V×Rn given by

ϕ(x, ξ) = (x, i(x) + ξ) ∀x ∈ V , ξ ∈ νx = (i∗(Fx))
⊥,

and check that on a small enough neighborhood N of the 0-section in ν the map
ϕ : N→V ′ is transverse to F ′. It is enough to check this transversality on the 0-section
V⊂ν where it is obvious, and only uses the injectivity of i∗ on F⊂TV .

Theorem 6. [136] Let (V, F ) be a compact foliated manifold, D a longitudinal el-
liptic differential operator. Let i : V→Rn be an embedding, let ν = (i∗(F ))⊥ be the
normal bundle of i∗F in Rn, and let N ∼ ν be the corresponding transversal to the
foliation of V×Rn = V ′ by F ′ = F×{0}. Then the analytic index, Inda(D) is equal to
Indt(σ(D)), where σ(D) ∈ K(F ∗) is the K-theory class of the principal symbol of D,
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while Indt(σ(D)) is the image of σ(D) ∈ K(F ∗)∼K(N) (through the Thom isomor-
phism) by the map

K(N)→e!K(C∗(V ′, F ′))∼K(C∗(V, F ))

Through the Bott periodicity isomorphism since

C∗(V ′, F ′) = SnC∗(V, F ) = C∗(V, F )⊗C0(Rn)

The proof easily follows from Theorem 8.3 and the following analogue of Lemma 5.6:

Lemma 7. With the notation of Theorem 6, let x = (F, σ(D), p◦π) be the geometric
cycle given by the total space of the bundle F , the K-theory class σ(D) ∈ K∗(F ) of the
symbol of D, and the K-oriented map F→V→V/F . Then

Inda(D) = µ(x) ∈ K(C∗(V, F )).

Note that a direct proof of Theorem 6 is possible using the Thom isomorphism as in
Section 5.

Of course, the above theorem does not require the existence of a transverse measure
for the foliation, and it implies the index theorem for measured foliations of Chapter
I. A transverse measure Λ on (V, F ) determines a positive semi-continuous semi-finite
trace, traceΛ, on C∗(V, F ) and hence an additive map

traceΛ : K(C∗(V, F ))→R.

The reason why traceΛ ◦ Indt is much easier to compute than traceΛ ◦ Inda is that the
former computation localizes on the restriction of the foliation F ′ to a neighborhood
V ′′ of N in V ′ on which the space of leaves V ′′/F ′ is an ordinary space N , so that all
difficulties disappear.

Let us apply these results in the simplest example of a one-dimensional oriented folia-
tion (with no stable compact leaves) and compute

dimΛ K(C∗(V, F ))⊂R.

For such foliations the graph G is V×R and the classifying space BG is thus homotopic
to V . Thus, up to a shift of parity, the geometric group K∗,τ (BG) is the K-theory group
K∗+1(V ). The projection

p : V→V/F

is naturally K-oriented and the following maps from K∗(V ) to K(C∗(V, F )) coincide:

1) p! (cf. Theorem 8.3) which, up to the Thom isomorphism, K∗(F )∼K∗+1(V ) is equal
by Lemma 7 to Inda = Indt.

2) The Thom isomorphism (Appendix C)

φ : K∗(V ) = K(C(V ))→K(C(V )oR) = K(C∗(V, F ))
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where we used an arbitrary flow defining the foliation. In particular, by Appendix C,
φ is an isomorphism and so are the map p! and the index Inda : K∗(F )→K(C∗(V, F )).

Taking for instance the horocycle foliation of V = SL(2,R)/Γ, where Γ is a discrete
cocompact subgroup of SL(2,R), by the left action of the subgroup of lower triangular

matrices of the form

[
1 0
t 1

]
, t ∈ R, one sees that the analytic index gives a (degree-1)

isomorphism of K∗(V ) onto K(C∗(V, F )), while for the only transverse measure Λ for
(V, F ) (the horocycle flow being strongly ergodic), the composition of the above analytic
index with dimΛ : K∗(C∗(V, F ))7→R is equal to 0, so in particular dimΛ is identically
0. This example shows that even when the foliation (V, F ) does have a non-trivial
transverse measure, the K-theoretic formulation of the index theorem (Theorem 6)
gives much more information than the index theorem for the measured foliation (F, Λ).
As a corollary of the above we get:

Corollary 8. Let (V, F ) be one-dimensional as above, and let Λ be a transverse measure
for (V, F ). Then the image dimΛ(K(C∗(V, F ))) is equal to

{〈Ch(E), [C]〉; [E] ∈ K∗(V )}.

Here Ch is the usual Chern character, mapping K∗(V ) to H∗(V,Q), and [C] is the
Ruelle-Sullivan cycle of Chapter I.

Corollary 9. Let V be a compact smooth manifold, and let ϕ be a minimal diffeomor-
phism of V . Assume that the first cohomology group H1(V,Z) is equal to 0. Then the
crossed product A = C(V )oϕZ is a simple unital C∗-algebra without any non-trivial
idempotents.

As a very nice example where this corollary applies one can take the diffeomorphism

ϕ given by left translation by

[
1 0
1 1

]
∈ SL(2,R) of the manifold V = SL(2,R)/Γ,

where the group Γ is chosen discrete and cocompact in such a way that V is a homology
3-sphere. For instance, one can take in the Poincaré disk a regular triangle T with its
three angles equal to π/4 and as Γ the group formed by products of an even number
of hyperbolic reflections along the sides of T .

In order to exploit the results on vanishing or homotopy invariance of the analytic
index Inda we shall construct in Chapter III higher-dimensional generalizations of the
above maps

dimΛ : K(C∗(V, F ))→R
associated to higher-dimensional “currents” on the space of leaves V/F , whose differ-
ential geometry, i.e. the transverse geometry of the foliation, will then be fully used.
We refer to Section 3.7 for the general index formula.
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10. The Analytic Assembly Map and Lie Groups

In this section we shall construct for general smooth groupoids G a group K∗
top(G)

which is computable from the standard tools of equivariant K-theory, KH , where H is
a compact group, and a map

µ : K∗
top(G)→K(C∗(G))

which will extend to the general case the constructions of the analytic assembly map
of Sections 4, 5, 7, and 8 above.

The new ingredient needed to reach the general case is to understand the case when
G has torsion, i.e. when the groups Gx

x = {γ ∈ G; r(γ) = s(γ) = x} contain elements
of finite order. We have carefully avoided this case in the examples of Sections 4, 7,
and 8 by requiring in Sections 4 and 7 that the discrete group Γ be torsion-free, and
in Section 8 that the holonomy groups be torsion-free.

After formulating the analytic assembly map µ in general, we shall then deal in detail
with the case of Lie groups.

10.α Geometric cycles for smooth groupoids. In the examples of Sections 4,
5, 7, and 8 we constructed an additive map

µ : K∗,τ (BG)→K(C∗(G))

where BG is the classifying space of the topological groupoid G and K∗,τ is K-homology,
twisted by a suitable real vector bundle on BG. As we said above, this is only ap-
propriate in the case when G is torsion-free, and obviously µ is not a surjection onto
K(C∗(G)) when G is, say, a finite group. Elements of K∗,τ (BG) were described as
geometric cycles (cf. Proposition 7.6 and Proposition 8.4)

W→fBG

or equivalently, since BG classifies G-principal bundles, as free and proper G-spaces.

But since G was assumed to be torsion-free, the hypothesis of freeness did follow auto-
matically from the properness of the action. We shall now give the general definition
of a geometric cycle, and then explain how it specializes to the previous one.

Definition 1. Let G be a smooth groupoid. Then a G-manifold is given by:

a) A manifold P with a submersion α : P→G(0).

b) A right action of G on P : P×αG→P , (p, γ)→p◦γ such that (p◦γ1)◦γ2 = p◦(γ1γ2)
∀(γ1, γ2) ∈ G(2), where P×αG = {(p, γ) ∈ P×G ; α(p) = r(γ)}.

Such a G-manifold provides us with a contravariant functor from the small category
G to the category of smooth manifolds, because, since α is a submersion, its fibers
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α−1{x}, x ∈ G(0), are manifolds Px, while p→p◦γ is, for γ ∈ G with γ : x→y, a
diffeomorphism from Py to Px.

We shall say that a G-manifold P is proper when the following map is proper:

P×αG→P×P , (p, γ)→(p, p◦γ).

Let us put a groupoid structure on P×αG, by letting (P×αG)(0) = P with range,
source maps and composition given by

r(p, γ) = p , s(p, γ) = p◦γ

(p, γ)◦(p′, γ′) = (p, γ◦γ′).

We thus get a smooth groupoid, which if the G-manifold P is proper satisfies the
following definition:

Definition 2. A smooth groupoid G is proper if the map G→G(0)×G(0) given by
γ→(r(γ), s(γ)) is a proper map.

The computation of K(C∗(G)) for smooth proper groupoids is perfectly doable with
the usual tools of equivariant K-theory, KH of spaces, where H is a compact group.
Indeed, if we look at the space of objects G(0) of G, modulo isomorphism, i.e. at the
quotient of G(0) by the equivalence relation R = (r, s)(G), we get a locally compact
space X = G(0)/R because of the properness hypothesis. Next, given x ∈ G(0), its
automorphism group Gx

x = {γ ∈ G; r(γ) = s(γ) = x} is compact, so that we are
essentially dealing with a family (Hz)z∈X of compact groups indexed by X. For a
compact group H the K-theory of the C∗-algebra C∗(H) is naturally isomorphic to
the representation ring R(H) which is the free abelian group generated by classes of
irreducible representations of H. The general case of K(C∗(G)) for G a smooth proper
groupoid, though more complicated, is part of standard geometry.

We now complete the definition of geometric cycles for smooth groupoids. Given a
G-manifold P we get another G-manifold TGP by replacing each Px, x ∈ G(0), with its
tangent bundle TPx. Thus the total space P ′ = TGP is the space of vectors tangent to
P which belong to the kernel of the map α∗ tangent to α. Note that TG(P ) is a proper
G-manifold whenever P is a proper G-manifold.

Definition 3. Let G be a smooth groupoid. Then a geometric cycle for G is given by
a proper G-manifold P and an element y ∈ K∗(C∗(TGPoG)).

Note that TGP is a proper G-manifold, so that, as we explained above, the K-theory of
C∗(TGPoG) is computable by standard geometric tools; thus the qualifier “geometric”
in Definition 3 is appropriate. Note also that the properness of the action of G on P
yields the existence of a G-invariant Euclidean metric on the real vector bundle TG(P )
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over P , so that there is no real distinction between TG and T ∗
G. Now, let P1 and P2 be

two proper G-manifolds and let

f : P1→P2

be a smooth G-equivariant map. This means, with obvious notation, that we have
α2(f(p1)) = α1(p1) ∀p1 ∈ P1, and that

f(p1◦γ) = f(p1)◦γ ∀p1 ∈ P1 , γ ∈ G , α(p1) = r(γ).

It implies that f defines a morphism from the functor x→P1,x to the functor x→P2,x

and, because of the properness of both Pj’s, we can put together the deformations

(Tfx)! ∈ E(TP1,x, TP2,x)

defined in Section 6. Note that the tangent maps Tfx are G-equivariantly K-oriented.
This thus yields

(Tf)! ∈ E(C∗(TGP1oG), C∗(TGP2oG))

and hence a corresponding map of K-theories

K(C∗(TGP1oG))→K(C∗(TGP2oG)).

Proposition 4. Let G be a smooth groupoid. The following relation is an equivalence
relation among geometric cycles: (P1, y1) ∼ (P2, y2) iff there exists a proper G-manifold
P and G-equivariant smooth maps fj : Pj→P such that

(Tf1)!(y1) = (Tf2)!(y2).

In order to show the transitivity of the above relation, one shows that given the diagram
of proper G-manifolds and G-equivariant smooth maps

P

P ′′

h
==||||||||

h′ !!B
BB

BB
BB

B

P ′

there are a proper G-manifold P ′′′ and G-equivariant smooth maps f : P→P ′′′ and
f ′ : P ′→P ′′′ such that f ◦h is G-equivariantly homotopic to f ′◦h′.

Under the above equivalence relation any finite number of geometric cycles (Pj, yj) are
equivalent to geometric cycles (P, zj) with the same P , using say P =

⋃
Pj and the

obvious maps fj : Pj→P . Moreover, the group law on equivalence classes given by

(P, z1) + (P, z2) = (P, z1 + z2)



10. THE ANALYTIC ASSEMBLY MAP AND LIE GROUPS 144

is independent of the choice of P and coincides with the disjoint sum. We shall denote
by K∗

top(G) the additive group of equivalence classes of geometric cycles and call it the
group of topological G-indices.

Proposition 5. In the examples of Sections 4, 5, 7, and 8 one has

K∗
top(G) = K∗,τ (BG).

Proof. Let us treat the case (Section 7) of a torsion-free discrete group Γ acting on a
manifold V . Thus G = VoΓ is the semidirect product of V by Γ.

Let (P, y) be a geometric cycle for the smooth groupoid G. Then the action of G on P
yields an action of Γ on P , which is proper by hypothesis, and is thus free since Γ has
no torsion. The map α : P→V = G(0) is a smooth submersion and is Γ-equivariant
since

zg = z◦(α(z), g) ∀z ∈ P , g ∈ Γ

so that α(zg) = s(α(z), g) = α(z)g.

We thus get, according to Definition 7.2, a smooth map from the manifold W = P/Γ
to V/Γ, and a corresponding map

α′ : W→V×ΓEΓ.

Next, since the action of Γ on P is free and proper, the crossed product C∗-algebra
C0(TGP )oΓ is strongly Morita equivalent, by Proposition 7.1, to the C∗-algebra C0(TGP/Γ) =
C0(E), where E is the total space of a real vector bundle E over W = P/Γ such that

E⊕α′∗(τ) = TW.

One has y ∈ K(C0(TGP )oΓ) = K(C0(E)) = K∗(E) = K∗,α′∗(τ)(W ) by Poincaré
duality on W .

Thus α′(y) ∈ K∗,τ (V×ΓEΓ) is well-defined. One thus obtains a natural map j :
K∗

top(G)→K∗,τ (BG). It passes to equivalence classes as in Proposition 7.6. To check
that this map j is surjective one uses Proposition 7.6 a), and remarks that in that
statement we may assume that the map g̃ : Ñ→V is a submersion. Indeed, one can
factor g̃ as pr2◦h̃ where pr2 : Ñ×V→V is the second projection while h̃ : Ñ→Ñ×V is
given by

h̃(z, v) = (z, g̃(v)) ∀z ∈ Ñ , v ∈ V.

The injectivity of j follows from the definition of the equivalence of geometric cycles.

This proves the proposition for the examples of Sections 4 and 7. The case of foliations
follows from [277]. The case of the tangent groupoid of a manifold follows from the
following proposition, which allows one to compute K∗

top(G) in many cases.
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Proposition 6. Let G be a smooth groupoid, and let CG be the category of proper
G-manifolds and homotopy classes of smooth G-equivariant maps. Then if P is a final
object for CG one has

K∗
top(G) = K∗(C∗(TGPoαG)).

This is easy to check.

This proposition will apply in particular to compute K∗
top(G) when G is a Lie group

(cf. β) below).

We can now construct the analytic assembly map in general. Let (P, y) be a geometric
cycle for the smooth groupoid G. Then, for each x ∈ G(0), let Px = α−1{x} be
the corresponding manifold, and GPx be its tangent groupoid. Let G′ be the smooth
groupoid obtained by putting together the GPx , x ∈ G(0), and let G′′ = G′oG be the
semidirect product of G′ by the natural action of G (which follows from the naturality of
the construction of the tangent groupoid). Then C∗(G′′) gives us a natural deformation
of C∗(T ∗

GPoG) to a C∗-algebra which is strongly Morita equivalent to C∗(G). We shall
let µ(P, y) ∈ K∗(C∗(G)) be the image of y ∈ K∗(C∗(TGP ∗oG)) by this deformation.

Theorem 7. The above construction yields an additive map µ : K∗
top(G)→K(C∗(G))

which extends to the general case the previously constructed analytic assembly maps of
Section 4, 5, 7, and 8.

Composing µ with the canonical surjection r : C∗(G)→C∗
r (G) one obtains the map

µr : K∗
top(G)→K(C∗

r (G)).

We shall now investigate in more detail the case of Lie groups, where torsion plays an
important role.

10.β Lie groups and deformations. Let G be a connected Lie group, and let us
compute the geometric group K∗

top(G) and the analytic assembly map µ in this special
case.

Proposition 8. Let H be a maximal compact subgroup of G and V = Te(H\G) the
tangent space at the origin e to the homogeneous space H\G. Then one has a canonical
isomorphism

KH(V )∼K∗
top(G).

Here KH is equivariant K-theory, and the vector space V is an H-space for the isotropy
representation of H.
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Proof. First, by a result of H. Abels and A. Borel ([1]), the category CG of proper
G-manifolds and homotopy classes of smooth G-equivariant maps admits the homoge-
neous space P = H\G as a final object. Thus (Proposition 6) one has

K∗
top(G) = K∗(C∗(TPoG)).

The smooth groupoid TPoG is equivalent to VoH, so that C∗(TPoG) is strongly
Morita equivalent to C∗(VoH) = C0(V )oH. Now by results in [313] the K-theory of
C0(V )oH is the same as the H-equivariant K-theory of V,KH(V ).

Note that the latter group is easy to compute. If the dimension of V is even and the
isotropy representation of H in V lifts to the covering Spin(V ) of SO(V ), one has a
natural isomorphism τ : R(H)→KH(V ), the Thom isomorphism of [26], where R(H) is
the representation ring of H. We shall come back later to the general case (Proposition
14).

Let us now compute the analytic assembly map µ. We let G0 be the Lie group VoH,
semi-direct product of the vector group V by the compact group H. As pointed out
quite early in the theoretical physics literature ([404][405] [379] [506]), there is a close
resemblance between the representation theories of G and of G0, which is tied up with
a natural deformation from G0 to G which we now describe. To that end we just need
to describe the relevant topology on the groupoid G1 = G0 ∪ (G× ]0, 1]). Here G0

is a closed subset, and a sequence (gn, εn), gn ∈ G, εn→0, converges to an element
g = (ξ, k) ∈ G0 = VoH of G0 iff there holds

gn→k ∈ H , k − gn/εn→ξ ∈ Te(H\G) = V.

We thus obtain a deformation δ ∈ E(C∗(G0), C
∗(G)), and since

C∗(G0) = C∗(VoH)∼C0(V )oH

we get a natural map from KH(V ) = K∗(C0(V )oH) to K(C∗(G)).

Proposition 9. The above map is exactly the same as the analytic assembly map
µ : K∗

top(G)→K(C∗(G)).

Proof. By definition (cf. Theorem 7), the map µ is obtained from the semi-direct
product of the tangent groupoid GP by the Lie group G. Thus, let G2 = GPoG. Then

P×[0, 1] is the space G
(0)
2 of units of G2, and G2 is equivalent to the smooth groupoid

G2,Z = {γ ∈ G2 ; r(γ) ∈ Z , s(γ) ∈ Z} where Z = e×[0, 1]⊂G
(0)
2 . One then checks

that G2,Z is the smooth groupoid G1 of the deformation from G0 to G discussed above.

Thus the deformation from G0 to G gives, in all cases where µr is shown to be an
isomorphism (cf. Theorem 20 below), an isomorphism of the K-theories of the group
C∗-algebras C∗

r (G), which gives a precise meaning to the observations of [379].
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10.γ The G-equivariant index of elliptic operators on homogeneous spaces
of Lie groups. As above, let G be a connected Lie group and H a compact subgroup,
with P = H\G the corresponding homogeneous space. Every G-equivariant (Hermit-
ian) complex vector bundle E on P is obtained from a corresponding (unitary) complex
representation ε of the isotropy group H in the fiber Ee. We shall still denote by εE

the natural extension of this representation to the convolution algebra C−∞(H) of dis-
tributions on H. Since distributions push forward, the latter algebra C−∞(H) is, in a
natural manner, a subalgebra of the convolution algebra C−∞

c (G) of distributions with
compact support on G. When E is finite-dimensional the module εE over C−∞(H)
is finite and projective, and, using the inclusion C−∞(H)⊂C−∞

c (G), we can consider
the corresponding induced module ε̃E which is finite and projective over C−∞

c (G).
It is given through the action by convolution of C−∞

c (G) in the space C−∞
c (P,E) of

distributional sections of E with compact support on P .

Proposition 10. 1) The convolution algebra J = C∞
c (G) is a two-sided ideal in the

algebra A = C−∞
c (G).

2) Let D be a G-invariant elliptic differential operator on P from a G-equivariant bundle
E1 to a G-equivariant bundle E2. Then it follows that the triple (C−∞

c (P,Ei), D) defines
a quasi-isomorphism for the pair J,A.

Proof. 1) is standard ([132]). 2) follows from the existence of a quasi-inverse for D
modulo C∞

c (G), as proven in [132] Proposition 1.3.

Definition 11. We let Ind(D) ∈ K0(C
∞
c (G)) be the index of the quasi-isomorphism of

Proposition 10 2) (cf. Section 9 α)).

We shall now show in a simple example that this index is not in general invariant under
homotopy of elliptic operators, unlike the C∗-algebra index Inda(D) obtained from the
natural map

K0(C
∞
c (G))→jK0(C

∗(G))

coming from the inclusion C∞
c (G)⊂C∗(G). This will, in particular, show that the map

j is far from injective in general.

We take G = R and specialize to scalar operators so that the two bundles Ej over
P = R are trivial.

Proposition 12. The map D→Ind(D) ∈ K0(C
∞
c (R)) is an injection of the projective

space of non-zero polynomials D = P (∂/∂x) into K0(C
∞
c (R)).

Proof. Consider the exact sequence of algebras

0→C∞
c (R)→A0→σK→0

where A0 is the convolution algebra of distributions on R with compact support and
singular support {0}. Then the quotient K = A0/C

∞
c (R) is a commutative field. Any
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invariant elliptic differential operator D on R defines an element of A0 and σ(D) ∈ K,
σ(D) 6= 0. By construction, the index, Ind(D) ∈ K0(C

∞
c (R)), is the image of σ(D) by

the connecting map ∂ : K1(K)→K0(C
∞
c (R)) of algebraic K-theory ([391]). Moreover,

since A0 is a commutative ring, one has a natural map

det : K1(A0)→A∗
0

given by the determinant. It follows that for any α ∈ K, α 6= 0, ∂(α) = 0, there exists
an element β of A∗

0 such that σ(β) = α. Thus to show that ∂ is injective on K∗/C∗ it is
enough to show that given any α ∈ K, α 6= 0, it is impossible to find β invertible in A0

with σ(β) = α. This follows from the Paley-Wiener theorem, which shows that scalar
multiples λδ0, λ ∈ C, of the Dirac mass at 0 are the only invertible elements of A0. (If
α ∈ A∗

0, then its Fourier transform α̂ must vanish somewhere in C or be constant.)

The C∗-algebra index, namely Inda(D) = j∗Ind(D), where

j : C∞
c (G)→C∗(G),

is homotopy invariant and ranges over a countable abelian group. It thus depends only
upon the K-theory class of the principal symbol σD of D, and is given in general by
the following analogue of Lemma 5.6:

Proposition 13. Let G be a connected Lie group, P = H\G a proper G-homogeneous
space, and D a G-invariant elliptic differential operator on P . Then Inda(D) =
j∗(IndD) ∈ K(C∗(G)) is given by

Inda(D) = µ([σD])

where the principal symbol σD of D defines a K-theory class

[σD] ∈ KH(Te(P ))∼K(C∗(TPoG)).

We have used the strong Morita equivalence of the algebras C∗(TPoG) and C∗(TePoH)
and the isomorphism K(C∗(TePoH))∼KH(TeP ). A convenient description of the H-
equivariant K-theory of the vector space TeP = V which fits with symbols of differential
operators is the following: The basic objects to start with are smooth H-equivariant
maps α : S→Iso(E1, E2), where S is the unit sphere in V with respect to an H-invariant
metric, and E1 and E2 are finite-dimensional unitary H-modules. Two such maps

α0 ∈ (C∞(S, Iso(E0, F0))
H , α1 ∈ (C∞(S, Iso(E1, F1))

H

are called isomorphic, and we shall write α0∼α1, if there exist ϕ ∈ isoH(E0, E1) and
ψ ∈ IsoH(F0, F1), where IsoH denotes the H-equivariant isomorphisms, such that

ψα0(ξ) = α1(ξ)ϕ, for any ξ ∈ S.

Further, α0 and α1 are said to be homotopic if there can be found an

α ∈ (C∞(S×I, Iso(E, F )))H
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where I = [0, 1] with the trivial action of H, such that α|S×{0}∼α0 and α|S×{1}∼α1.
The set of all homotopy classes of such maps will be denoted by C. This is an abelian
semigroup, under the obvious direct sum operation. Let C0 denote the subsemigroup
of all classes which can be represented by a constant map α, α(ξ) = ϕ, ξ ∈ S, with
ϕ ∈ IsoH(E1, E2). Then C/C0 is not only a semigroup but actually a group, which is
isomorphic to KH(V ).

The elementary properties of the K-theory of C∗-algebras and of the G-invariant
pseudo-differential calculus ([132]) show a priori that the index Inda(D) ∈ K(C∗(G))
only depends upon the K-theory class [σD] ∈ KH(TeP ) of the principal symbol of
D (see [132] for more details). The proof of Proposition 13 then follows from the
asymptotic pseudo-differential calculus ([583]).

Let us assume that the isotropy group H is connected. Then, if the homogeneous
space P = H\G is odd-dimensional, the Bott periodicity theorem implies that the
equivariant K-theory K0

H(V ) is zero, so that Proposition 13 has no content in this
case. Let us thus assume that P = H\G is even-dimensional and relax the condition of
connectedness of H by requiring only that H preserves the orientation of V = Te(P ).
We shall then determine KH(V ) and show that all its elements are obtained as symbols
[σD], where D is a G-invariant order-one elliptic differential operator on P .

Let π : H→SO(V ) be the representation of H in V , and ρ : Spin(V )→SO(V ) be the
Spin covering. In general π does not lift to Spin(V ), and so we form the double covering
of H given by:

H̃ = {(h, s) ∈ H×Spin(V ) ; π(h) = ρ(s)}.
Let u ∈ Spin(V ), u2 = 1, be the generator of the kernel of ρ, so that, viewed as the
element (1, u) ∈ H̃, it is central in H̃ and yields the central extension

0→Z/2→H̃→H→1.

In particular, the representation ring R(H̃) inherits from u a Z/2 grading and

R(H̃) = R(H̃)+⊕R(H̃)−

where R(H̃)± is generated by the equivalence classes of irreducible representations ε

of H̃ such that ε(u) = ±1. Clearly one has

R(H̃)+∼R(H)

and R(H̃)− is by construction an R(H)-module.

Let ε ∈ R(H̃)−. We shall now construct a Dirac-type operator ∂/ε on P . Let S±

be the half-spin representation of Spin(V ). Since u ∈ H̃ acts by −1 on both ε and
S± it follows that ε± = ε⊗S± are unitary H-modules. We let E± be the associated
G-equivariant Hermitian vector bundles over P . Let

∇±
ε : C∞(P, E±)→C∞(P, T ∗

CP⊗E±)
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be G-invariant connections, compatible with the Hermitian structure of E±. We define
the (±) Dirac operators with coefficients in ε as being the compositions

∂/±ε : C∞
c (P,E±)→∇±ε C∞

c (P, T ∗
CP⊗E±)→γC∞

c (P, E∓)

where γ is the bundle homomorphism induced by the Clifford multiplication. Clearly
∂/±ε are G-invariant first-order elliptic differential operators.

Proposition 14. The following map from R(H̃)− to KH(V ), V = Te(P ), is an iso-
morphism: ε ∈ R(H̃)−→σ(∂/+

ε ) = symbol of ∂/+
ε .

We refer to [132] for details. It thus follows that, when the dimension of P is even, for
H⊂G a maximal compact subgroup (with H\G equivariantly oriented) the analytic
assembly map µ : K∗

top(G)→K(C∗(G)) is the same as the Dirac induction map

ε ∈ R(H̃)−→Inda(∂/
+
ε ) ∈ K(C∗(G)).

Dirac induction was introduced by Schmid and Parthasarathy in [497] [433] in order
to solve the problem of geometric realization of the discrete series of representations of
semi-simple Lie groups. They proved the following result:

Theorem 15. [497] [433] Let G be a semisimple Lie group with finite center, H a
maximal compact subgroup. For each discrete-series representation π of G there is a
unique H-module ε such that

π = Kernel ∂/+
ε , Kernel ∂/−ε = {0}.

The relation between their use of Dirac induction and the map

ε ∈ R(H̃)−→Inda(∂/
+
ε ) ∈ K(C∗(G))

is provided by the following lemma:

Lemma 16. Let D be a G-invariant elliptic differential operator on a proper G-
homogeneous space P . Assume that the corresponding Hilbert space operator

D : L2(P, E1)→L2(P,E2)

is surjective. Then KerD, viewed as a C∗
r (G)-module, is finite and projective and in

K0(C
∗
r (G)),

[KerD] = Inda(D).

Of course, in general one does not have vanishing theorems for the twisted Dirac
operators ∂/+

ε ; moreover, there are examples of operators D with non-zero analytical
indices Inda(D) in situations where both KerD and KerD∗ are reduced to {0}.
In order to prove, in the context of semi-simple Lie groups G, that the L2-kernel of a
Dirac-type operator was not {0}, Atiyah and Schmid relied on the index theorem for
covering spaces [21] [523], using the existence of discrete cocompact subgroups Γ⊂G.
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This theorem was then extended in [132] to cover the general case of homogeneous
spaces of unimodular Lie groups. We shall now explain this result in detail ([132]).
We assume, as above, that P = H\G is even-dimensional and oriented. Let D :
C∞

c (P, E1)→C∞
c (P,E2) be a G-invariant elliptic differential operator. There is no

ambiguity in extending D as a Hilbert space operator. One specifies an H-invariant
volume form ω ∈ ∧mV , V = Te(P ), m = dim V , which fixes the orientation of P as
well as a G-invariant 1-density on P . The Hilbert spaces L2(P, Ej) of L2-sections of
the G-equivariant bundles Ej are then well-defined, and ([132] Lemma 3.1) the closure
(in the Hilbert space sense) of the densely defined operator

D : C∞
c (P,E1)→C∞

c (P, E2)

is equal to the distributional extension of D whose domain is

{ξ ∈ L2(P, E1) ; Dξ ∈ L2(P,E2) in the distributional sense}.
Next, since G is unimodular, a choice of Haar measure dg on G uniquely specifies the
Plancherel trace trG on the von Neumann algebra of the (left) regular representation
λ of G in L2(G). It is a semifinite faithful normal trace such that for any f ∈ L2(G)
with λ(f) bounded one has

trG(λ(f)∗λ(f)) =

∫
|f(g)|2 dg.

The restriction of this trace to C∗
r (G) is semifinite and semicontinuous. This trace trG

gives a unique dimension, dimG(π) (with positive real values), to any representation π
of G which is quasi-contained in the regular representation of G. The existence of a
quasi-inverse for D immediately yields

Lemma 17. Let D be a G-invariant elliptic differential operator on P , and let KerD
be its L2-kernel. Then

dimG(KerD) < ∞.

The index theorem for homogeneous spaces permits one to compute

IndG(D) = dimG(KerD)− dimG(KerD∗)

in terms of the K-theory class of the principal symbol of D

[σD] ∈ KH(V ) , V = Te(P ).

By Proposition 14 we just need to treat the case of a Dirac-type operator ∂/+
ε , where

ε ∈ R(H̃).

The first ingredient we need is the Chern character

Ch : R(H̃)→H∗(g, H,R).
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Here H∗(g, H,R) denotes the relative Lie algebra cohomology with trivial coefficients,
i.e. the cohomology of the complex (C(g, H,R), d), where

Cq(g, H,R) = {α ∈ ∧qg∗ ; ιXα = 0 for X ∈ h , Ad∗(h)α = α for h ∈ H}
and d : Cq(g, H,R)→Cq+1(g, H,R) is given by

dα(x1, . . . , xq+1) =

1

q + 1

∑
1≤i<j≤q+1

(−1)i+j+1 α([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xq+1).

Let us fix, for the moment, an Ad(H)-invariant splitting of g, g = h⊕m. This specifies
a G-invariant connection on the principal bundle H→G→M , whose connection form is
given by the projection θ : g→h parallel to m, and whose curvature form is prescribed
by

T(X, Y ) = 1/2 θ([X, Y ]) , X, Y ∈ m.

Now let ε be a unitary representation of H̃ on E. We denote by the same letter its
differential, ε : h→g`(E), and we then define Tε ∈ ∧2m∗⊗g`C(E) by the formula

Tε(X, Y ) = 1/2iπ ε(T(X, Y )) , X, Y ∈ m.

Further, let us consider the form tr exp Tε ∈ ∧m∗⊗C. Actually, because ε is unitary,
tr exp Tε ∈ ∧m∗. In addition, since for h̃ ∈ H̃ with image h ∈ H one has

Tε(Ad(h)X, Ad(h)Y ) = ε(h̃)Tε(X,Y )ε(h̃)−1 , X, Y ∈ m,

one can see that tr exp Tε is H-invariant. This shows that its pull-back to ∧g, via the
projection I − θ : g→m, defines a cochain in

∑⊕
q Cq(g, H,R), which we will continue

to denote by the same symbol. Standard arguments in the Chern-Weil approach to
characteristic classes imply first that tr exp Tε is closed, and next that the cohomology
class in H∗(g, H,R) it defines, and which will be denoted Chε, does not depend on the
choice of the Ad(H)-invariant splitting of g. Finally, it is clear that Chε1 = Chε2 if
ε1 and ε2 are equivalent unitary representations, so that we can define unambiguously
Ch : R(H̃)→H∗(g, H,R).

The last ingredient we need is the analogue of the Â-polynomial of Hirzebruch. To
define it, we start from the (real) H-module V (which can also be viewed as an H̃-
module) and form, as above, TV ∈ ∧2m∗⊗g`C(V ). Then we construct the element in
∧m∗

(det)1/2 TV / exp (1/2 TV )− exp (−1/2 TV ),

pull it back to an element in ∧g∗, and, after noting that it is in fact a cocycle, we define

Â(g, H) ∈ H∗(g, H,R) as being its cohomology class.

Remark now that dim Hm(g, H,R) = 1, since G and H are unimodular; in fact,
Hm(g, H,R) = Cm(g, H,R) ∼∧mV . If Ω =

∑
Ω(q) ∈ H∗(g, H,R), we define the

scalar Ω[V ] by the relation Ω(m) = (Ω[V ])ω.
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We can now define a natural map Indt : KH(V )→R uniquely, using Proposition 14, by

Indt(σ(∂/+
ε )) = (Ch(ε) Â(g, H))[V ]

for any element ε of R(H̃)−.

The index theorem for homogeneous spaces is then ([132]):

Theorem 18. Let D be a G-invariant elliptic differential operator on the proper ori-
ented homogeneous space P = H\G, and let [σD] ∈ KH(V ), V = Te(P ), be the K-
theory class of its principal symbol. Then dimG(KerD) and dimG(KerD∗) are finite,
and

dimG(KerD)− dimG(KerD∗) = Indt([σD]).

We refer to [132] for the detailed proof of this theorem. It is important to note
that for large classes of unimodular Lie groups the L2-kernels KerD of G-invariant
elliptic operators on proper homogeneous spaces are automatically finite direct sums
of irreducible discrete-series representations. Thus, for instance ([132]):

Theorem 19. Let G be a connected semisimple Lie group with finite center, and
let P = H\G be a proper homogeneous space over G. Then for any G-invariant
(pseudo) differential elliptic operator D on P the unitary representation of G on the
space of L2-solutions of the equation Du = 0 is a finite sum of irreducible discrete-series
representations.

10.δ The K-theory K(C∗
r (G)) for Lie groups. Let G be a connected Lie group,

and H a maximal compact subgroup. If P = H\G is even-dimensional then, by
Propositions 13 and 14, the Dirac induction map

ε ∈ R(H̃)−→Inda(∂/
+
ε ) ∈ K(C∗(G))

coincides with the analytic assembly map

µ : K0
top(G)→K0(C

∗(G)).

When P is odd-dimensional the relevant part of the analytic assembly map

µ : K∗
top(G)→K∗(C∗(G))

concerns K1
top instead of K0

top. Replacing G by G×R and using Bott periodicity, one
gets a similar interpretation of µ in operator-theoretic terms (cf. [132]).

When G is a connected solvable Lie group, then ([132] [329]) the Thom isomorphism
(Appendix C) shows that the analytic assembly map is an isomorphism

K∗
top(G)→µK∗(C∗(G)).



10. THE ANALYTIC ASSEMBLY MAP AND LIE GROUPS 154

For semisimple Lie groups the results of [497], [433], [24] and [25] on the geometric
realisation of all discrete-series representations by Dirac induction, together with [334]
and [132] Section 7.5, suggested that µr should be an isomorphism

µr : K∗
top(G)→K∗(C∗

r (G)).

It is crucial here to have composed µ with the natural morphism

C∗(G)→rC∗
r (G)

of restriction to the reduced C∗-algebra, i.e. to the support of the Plancherel measure.
The point is that µ itself fails to be surjective (Proposition 21) as soon as G satisfies
Kazhdan’s property T .

After several important partial results ([564] [332] [443]), the bijectivity of µr was
proven for general connected linear reductive groups by A. Wassermann [575].

Theorem 20. [575] Let G be a connected linear reductive group. Then the analytic
assembly map is an isomorphism

µr : K∗
top(G)→K∗(C∗

r (G)).

The proof ([575]) relies on fundamental results of Arthur and Harish-Chandra on the
Plancherel theorem for the Schwartz space of G, which yield a complete description
of the reduced C∗-algebra C∗

r (G) as a finite direct sum of C∗-algebras associated to
each generalized principal series. The latter C∗-algebras, though not strongly Morita
equivalent to commutative ones, are of the same nature as the C∗-algebra of Example
2 β).

It is of course desirable to obtain a direct proof of Theorem 20 not relying on the
explicit knowledge of C∗

r (G) provided by the work of Harish-Chandra. Such a direct
proof for the injectivity of µ follows from Kasparov’s proof of the Novikov conjecture
for discrete subgroups of Lie groups. It implies, in particular:

Theorem 21. [333] Let G be a connected Lie group. Then the analytic assembly map
µr : K∗

top(G)→K∗(C∗
r (G)) is injective.

Let us now explain why µ fails to be surjective on K∗(C∗(G)) as soon as G has property
T of Kazhdan, which is the case for any semisimple Lie group of real rank ≥ 2.

First one has the following characterization of property T :

Proposition 22. [6] Let G be a locally compact group. The following properties are
equivalent:

1) G has property T of Kazhdan ([347]).

2) There exists an orthogonal projection e ∈ C∗(G), e 6= 0, such that π(e) = 0 for any
unitary representation π of G disjoint from the trivial representation.
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We refer to [565] for the simple proof.

Let then G be a Lie group with property T and let [e] ∈ K0(C
∗(G)) be the class of the

projection given by Pr 22 2). Since π0(e) = 1, where π0 is the trivial representation, the
class [e] gives a non-torsion element of K0(C

∗(G)) whose image in K0(C
∗
r (G)) vanishes

by Proposition 22 2). In particular [e] does not belong to the range of µ, say, by
Theorem 21.

The surjectivity of µr : K∗
top(G)→K(C∗

r (G)) is tied up with the completeness of the
description of the discrete series by Dirac induction, as well as with a strong form of
the Selberg principle on non vanishing of non-elliptic orbital integrals of discrete series
coefficients

g ∈ G→〈π(g)ξ, η〉 ξ, η ∈ Hπ.

The point is that the coefficient

pξ(g) = dπ〈ξ, π(g)ξ〉
where ξ is a unit vector in Hπ, and dπ the formal degree of the square-integrable
representation π, is an idempotent, p2 = p = p∗, in the convolution algebra C∗

r (G)
of G. This follows immediately from the orthogonality relations ([173]) for locally
compact unimodular groups. The regularity of p depends on the integrability of the
representation π; p ∈ L1(G) if π is integrable ([173]). Now the orbital integral defines
a trace τ on the convolution algebra of G, and the value τ(p) depends only upon the
K-theory class of p in that algebra. By construction the Dirac induction, or more
generally the index map for G-invariant differential operators on P = H\G, has the
following property of localisation near H:

Let W⊃H be any open neighborhood of H. Then the K-theory class Ind(D) ∈
K0(C

∞
c (G)) is represented by an idempotent p ∈ Mk(C

∞
c (G)∼), with p = (pij)i,j=1,...,k

and

Support pij⊂W.

In particular, it follows that τ̃(p) = 0, where τ̃ is the trace associated to the orbital
integral of a g ∈ G whose conjugacy class does not meet W . We refer to [316] [317]
for the relations between Dirac induction, cyclic cohomology and the Selberg principle
which we originally suggested.

It is, of course, desirable to find direct proofs of surjectivity in Theorem 20. In that
respect the ideas developed by Mackey in [379], or in the theoretical physics literature,
on deformation theory should be relevant.
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10.ε The general conjecture for smooth groupoids. The case of Lie groups
discussed above (δ), though much simpler than the general case of smooth groupoids
(which includes discrete groups, foliations etc. for which C∗

r (G) fails, as a rule, to be
of type I) gives a very clear indication that the analytic assembly map

µrK
∗
top(G)→K(C∗

r (G))

should be an isomorphism in general. Besides the case of discrete groups (Section 4),
this general conjecture is supported by numerous explicit computations for foliations
([96] [410] [562] [531] [442]). It has many interesting consequences; the injectivity of
µr has as consequences the homotopy invariance of higher signatures (Section 4), the
Gromov-Lawson-Rosenberg positive scalar curvature conjecture [242], the homotopy
invariance of relative η-invariants ([580]). The surjectivity of µr has implications such
as the absence of nontrivial idempotents, e2 = e 6= 0 in the reduced C∗-algebra C∗

r (Γ)
of torsion-free discrete groups.

In essence the general conjecture is a form of G-equivariant Bott periodicity. Indeed,
when the category CG of Proposition 6 has a final object P which is a contractible
proper G-manifold (i.e. each Px is contractible for x ∈ G(0)) then the bijectivity of
µ asserts that, G-equivariantly, the tangent groupoid deformation (Section 5) T ∗Px ∼
point is a K-theory isomorphism, as in Bott’s theorem.

We shall refer the reader to [35] for a detailed discussion of the implications of the
above conjecture, and for its formulation for locally compact groups, in particular for
p-adic groups ([450]).

One of the interests of the general formulation is to put many particular results in a
common framework. Thus, for instance, the following three theorems:

1) The Atiyah [21]-Singer [523] index theorem for covering spaces

2) The index theorem for measured foliations (Chapter I)

3) The index theorem for homogeneous spaces (Theorem 18)

are all special the same index theorem for G-invariant elliptic operators D on proper
G-manifolds (Definition 1), where G is a smooth groupoid with a transverse measure
Λ in the sense of [95]. While it is desirable to prove such results in full generality,
most of the work goes into explicit computations of relevant examples which motivated
our presentation in this chapter. In Chapter III we shall construct higher invariants of
K-theory based on cyclic cohomology, and use them, in particular, as a tool to control
the rational injectivity of µr.

Appendix A : C∗-modules and Strong Morita Equivalence

In this appendix we expound the notions, due to M. Rieffel and W. Paschke ([476][473][434])
of C∗-module over a C∗-algebra and of strong Morita equivalence of C∗-algebras. Let
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B be a C∗-algebra; by a B-valued inner product on a right B-module E we mean a
B-valued sesquilinear form 〈 , 〉, conjugate linear in the first variable, and such that

α) 〈ξ, ξ〉 is a positive element of B for any ξ ∈ E .

β) 〈ξ, η〉∗ = 〈η, ξ〉 ∀ξ, η ∈ E .

γ) 〈ξ, ηb〉 = 〈ξ, η〉b ∀b ∈ B , ξ, η ∈ E .

By a pre-C∗-module over B we mean a right B-module E endowed with a B-valued
inner product. A semi-norm on E is defined by

||ξ|| = ||〈ξ, ξ〉||1/2 ∀ξ ∈ E
where ||〈ξ, ξ〉|| is the C∗-algebra norm of 〈ξ, ξ〉 ∈ B.

Definition 1. A C∗-module E over B is a pre-C∗-module E for which || || is a complete
norm.

By completion, any pre-C∗-module yields an associated C∗-module. Given a C∗-module
E over B, an endomorphism T of E is by definition a continuous endomorphism of the
right B-module E which admits an adjoint T ∗, that is, an endomorphism of the right
B-module E such that

〈ξ, Tη〉 = 〈T ∗ξ, η〉 ∀ξ, η ∈ E .

One checks that T ∗ is uniquely determined by T and that, endowed with this involution,
the algebra EndB(E) of endomorphisms of E is a C∗-algebra. One has

〈Tξ, Tξ〉 ≤ ||T ||2 〈ξ, ξ〉 ∀ξ ∈ E , T ∈ EndB(E)

where ||T || is the C∗-algebra norm of T .

Of particular importance are the compact endomorphisms obtained from the norm
closure of endomorphisms of finite rank.

Proposition 2. [476] Let E be a C∗-module over B.

a) For any ξ, η ∈ E an endomorphism |ξ〉〈η| ∈ EndB(E) is defined by

(|ξ〉〈η|) (α) = ξ〈η, α〉 ∀α ∈ E .

b) The linear span of the above endomorphisms is a self-adjoint two-sided ideal of
EndB(E).

The usual properties of the bra-ket notation of Dirac hold in this setup, so that, for
instance:

(|ξ〉〈η|)∗ = |η〉〈ξ| ∀ξ, η ∈ E
(|ξ〉〈η|) (|ξ′〉〈η′|) = |ξ〈η, ξ′〉〉〈η′| = |ξ〉〈(|η〉〈ξ′|)η′| ∀ξ, ξ′, η, η′ ∈ E .

We let End0
B(E) be the norm closure in EndB(E) of the above two-sided ideal (Propo-

sition 2b). An element of End0
B(E) is called a compact endomorphism of E . Obvious
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corresponding notions and notations are HomB(E1, E2) and Hom0
B(E1, E2) for pairs of

C∗-modules over B.

To get familiar with these notions, let us consider the special case when B is a commu-
tative C∗-algebra, so that B is the ∗-algebra C0(X) of continuous functions vanishing
at ∞ on the locally compact space X. Then a complex Hermitian vector bundle E on
X gives rise to a C∗-module: E = C0(X,E) is the C0(X)-module of continuous sections
of E vanishing at ∞, and the C0(X)-valued inner product is given by

〈ξ, η〉(p) = 〈ξ(p), η(p)〉Ep
∀ξ, η ∈ E , p ∈ X.

It is not true that every C∗-module over C0(X) arises in this way; they correspond
to bundles of Hilbert spaces but the finite-dimensionality of the fibers and the local
triviality are no longer required. Instead one requires that one has a continuous field
of Hilbert spaces in the following sense (cf. [173]).

Definition 3. Let X be a topological space. A continuous field E of Banach spaces
over X is a family (E(t))t∈X of Banach spaces, with a set Γ ⊂ ∏

t∈X E(t) of sections
such that:

(i) Γ is a complex linear subspace of
∏

t∈X E(t);

(ii) for every t ∈ X, the set of x(t) for x ∈ Γ is dense in E(t);

(iii) for every x ∈ Γ the function t→||x(t)|| is continuous;

(iv) let x ∈ ∏
t∈X E(t) be a section; if, for every t ∈ X and every ε > 0, there exists

an x′ ∈ Γ such that ||x(t)− x′(t)|| ≤ ε throughout some neighborhood of t, then x ∈ Γ.

The elements of Γ are called the continuous sections of E. When each E(t) is a Hilbert
space (i.e. ||ξ|| = (〈ξ, ξ〉)1/2) it follows that for any ξ, η ∈ Γ the function t→〈ξ(t), η(t)〉
is continuous. Every continuous field of Hilbert spaces E over X yields a C∗-module
over C0(X), namely the space C0(X, E) of continuous sections of E which vanish at
∞, i.e. such that ||ξ(t)||→0 when t→∞. Moreover, now every C∗-module E over
C0(X) arises from a continuous field E of Hilbert spaces (canonically associated to
E). We shall see later (Proposition 4) how, when X is compact, the finite-dimensional
Hermitian vector bundles are characterized among general continuous fields of Hilbert
spaces. The latter notion implies the following semicontinuity of t→ dim(Et):

{t ∈ X; dim(Et) ≥ n} is an open subset of X.

Given an open subset V of X and a continuous field E of Hilbert spaces on V there is
a canonical extension Ẽ of E to X, where the fibers of Ẽ on the complement of V are
{0}. This operation is particularly convenient for problems of excision.

Let X be a locally compact space and E a finite-dimensional Hermitian complex vector
bundle over X, with E = C0(X,E) the corresponding C∗-module. Then EndC0(X)(E)
is the algebra Cb(X, End(E)) of bounded continuous sections of the bundle EndE =
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E∗⊗E of endomorphisms of E. Moreover, End0
C0(X)(E) is the subalgebra C0(X, End(E))

of sections vanishing at ∞.

Let us go back to the general case of noncommutative C∗-algebras and characterize
finite projective modules among general C∗-modules.

Proposition 4. Let B be a unital C∗-algebra.
1) Let E be a C∗-module over B such that 1E ∈ End0

B(E). Then the underlying right
B-module is finite and projective.

2) Let E0 be a finite projective module over B. Then there exist B-valued inner products
〈 , 〉 on E0 for which E0 is a C∗-module over B, and one has 1E ∈ End0

B(E).

3) Let 〈 , 〉 and 〈 , 〉′ be two B-valued inner products on E0 as in 2). Then there exists
an invertible endomorphism T of E0 such that

〈ξ, η〉′ = 〈Tξ, Tη〉 ∀ξ, η ∈ E0.

For the proof see [476] [397].

Recall that, by definition, a finite projective module E0 over an algebra B is a direct
summand of a free module E1 = BN , N finite. For arbitrary C∗-modules one has the
following stabilization theorem due to Kasparov ([330]):

Theorem 5. [330] Let B be a C∗-algebra, and let E be a C∗-module over B with a
countable subset S⊂E such that SB is total in E. Let `2⊗B be the C∗-module over B
which is a sum of countably many copies of B. Then

E⊕(`2⊗B) is isomorphic to `2⊗B.

We have used the notation `2⊗B as a special case of the following general notion of
tensor product of C∗-modules:

Proposition 6. [476] Let B and C be C∗-algebras, E ′ (resp. E ′′) be a C∗-module over B
(resp. C) and ρ a ∗-homomorphism B→EndC(E ′′). Then the following equality yields
the structure of a pre-C∗-module over C on the algebraic tensor product E = E ′⊗BE ′′:

〈ξ1⊗η1, ξ2⊗η2〉 = 〈ρ(〈ξ2, ξ1〉)η1, η2〉 ∈ C

∀ξj ∈ E ′, ηj ∈ E ′′.

We shall still denote by E ′⊗BE ′′ the associated C∗-module over C. Given T ∈ EndB(E ′),
an endomorphism T⊗1 ∈ EndC(E ′⊗BE ′′) is defined by

(T⊗1)(ξ⊗η) = Tξ⊗η ∀ξ ∈ E ′ , η ∈ E ′′.
By a (B-C) C∗-bimodule we shall mean a C∗-module E over C together with a ∗-
homomorphism from B to EndC(E). In particular, given a C∗-algebra B, we denote
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by 1B the B-B C∗ bimodule given by E = B, the actions of B by left and right
multiplications, and the B-valued inner product 〈b1, b2〉 = b∗1b2 ∀b1, b2 ∈ B.

Definition 7. Let B and C be C∗-algebras. A strong Morita equivalence B∼C is given
by a pair (E1, E2) of C∗-bimodules such that

E1⊗CE2 = 1B , E2⊗BE1 = 1C .

One can then show that the linear span in C of the set of inner products {〈ξ, η〉;
ξ, η ∈ E1}, is a dense two-sided ideal, and that the left action ρ : B→EndC(E1) is an
isomorphism of B with End0

C(E1). It follows thus that E1, the complex conjugate of
the vector space E1, which is in a natural way a C-B-bimodule:

c · ξ · b =def (b∗ξc∗)− ∀ξ ∈ E1

is also endowed with a B-valued inner product

〈ξ, η〉 = ρ−1 (|η〉〈ξ|) ∈ B.

With this inner product, E1 is a C-B C∗-bimodule. The bimodule E1 is then a B-C-
equivalence bimodule in the sense of [473] and one checks that the above Definition
7 is equivalent to the existence of a B-C equivalence bimodule. One can then take
E2 = E1.

Let K be the C∗-algebra of compact operators on an infinite-dimensional separable
Hilbert space.

Theorem 8. [69] [71] Let B and C be two separable C∗-algebras (more generally, two
C∗-algebras with countable approximate units). Then B is strongly Morita equivalent
to C iff B⊗K is isomorphic to C⊗K.

Of particular importance is the strong Morita equivalence of a given C∗-algebra B with
its full hereditary sub-C∗-algebras C. Here C⊂B is

α) hereditary iff 0 ≤ c ≤ b and b ∈ C implies c ∈ C.

β) full iff the two-sided ideal generated by C is dense in B.

Hereditary sub-C∗-algebras C of B correspond bijectively to closed left ideals L of B
by C = L ∩ L∗, and, for instance, any self-adjoint idempotent e ∈ B gives rise to such
a hereditary C∗-subalgebra, the reduced C∗-algebra

Be = {x ∈ B ; ex = xe = x}.
The reduced subalgebra Be is full iff the two-sided ideal generated by e is dense in B.

Let us now illustrate the general notion of strong Morita equivalence by a simple
example:
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Example. Let E be a real finite-dimensional Euclidean space and CliffC(E) the com-
plexified Clifford algebra of E, i.e. the quotient of the complex tensor algebra of E by
the relation

γ(ξ)2 = ||ξ||21 ∀ξ ∈ E,

where γ is the natural linear map of E to its tensor algebra. When E is even-
dimensional, the C∗-algebra CliffC(E) is isomorphic, but not canonically, to a matrix
algebra.

Let X be a compact space and E a real even-dimensional oriented Euclidean vector
bundle over X. Then the algebra A = C(X, CliffC(E)) of continuous sections of the
bundle of Clifford algebras CliffC(Ex), x ∈ X, is a C∗-algebra which in general fails to be
strongly Morita equivalent to a commutative C∗-algebra. Recall that a Spinc structure
on the vector bundle E is a lifting of its structure group SO(2n) to its covering group
Spinc(2n). Any such structure gives rise, using the spin representation of Spinc(2n) in
C2n

, to an associated Hermitian complex vector bundle S on X, which is a module over
the complexified Clifford algebra CliffC(E). One thus obtains in this way an A-C(X)
C∗-bimodule which gives a strong Morita equivalence of A = C(X, CliffC(E)) with a
commutative C∗-algebra (cf. [449]).

Proposition 9. The above construction yields a one-to-one correspondence between
Spinc structures on E and strong Morita equivalences of a commutative C∗-algebra
with A = C(X, CliffC(E)) .

Let B and C be C∗-algebras and E1 an equivalence B-C C∗-bimodule. One obtains a
functor from the category of unitary representations of C to that of B by

H ∈ RepC→E1⊗CH ∈ RepB,

and using E2 = E1 as the inverse of E1 one gets a natural equivalence between the two
categories of representations.

It follows in particular that two strongly Morita equivalent C∗-algebras have the same
space of classes of irreducible representations. In particular, if a C∗-algebra B is
strongly Morita equivalent to some commutative C∗-algebra then the latter is unique,
and is the C∗-algebra of continuous functions vanishing at∞ on the space of irreducible
representations of B.

Strong Morita equivalence preserves many other properties. An equivalence B-C C∗-
bimodule determines an isomorphism between the lattices of two-sided ideals of B and
C, and hence a homeomorphism between the primitive ideal spaces of B and C. It
does also give a canonical isomorphism of the K-theory groups K∗(B)∼K∗(C). One
should, however, not conclude too hastily that nothing will change when we replace C∗-
algebras by strongly Morita equivalent ones. We shall illustrate this by the following
example:
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Example π3(S
1).

By Gel’fand’s theorem the category of commutative C∗-algebras and ∗-homomorphisms
is dual to the category of locally compact spaces and continuous proper maps. To the
notion of homotopy between continuous proper maps corresponds the following notion
of homotopy of ∗-homomorphisms (morphisms for short) of C∗-algebras:

Definition 10. Let A and B be C∗-algebras, and let ρ0 and ρ1 be two morphisms
ρj : A→B. Then a homotopy between ρ0 and ρ1 is a morphism from A to B⊗C[0, 1]
whose composition with evaluation at j ∈ {0, 1} gives ρj.

In topology one usually deals with pointed spaces (X, ∗) and base-point-preserving
continuous maps. When dealing with compact spaces X, this is equivalent to locally
compact spaces X\{∗} and proper maps. In particular, the homotopy groups πn(X, ∗)
are obtained from homotopy classes of morphisms

C0(X\{∗})→ρC0(Rn).

The group law on πn(X, ∗) comes from the natural morphism

C0(Rn)⊕C0(Rn)→δC0(Rn)

obtained from the n = 1 case and the usual map from a circle to a bouquet of two
circles. All this is of course just a transposition of the usual notions of topology.

All these notions continue to make sense if we replace C0(Rn) by the strongly Morita
equivalent C∗-algebra Mk(C)⊗C0(Rn) = Mk(C0(Rn)) of k×k matrices over C0(Rn).
We may in particular define new homotopy groups πn,k(X, ∗) for a compact pointed
space (X, ∗) as the group (using δ) of homotopy classes of morphisms

C0(X\∗)→ρMk(C0(Rn)).

Let us now show, by exhibiting a specific ρ, that π3,2(S
1) is very different from the

trivial π3(S
1). For this we need to construct a non-trivial morphism of C0(S

1\{∗}) to
M2(C0(R3)), or, equivalently, a nontrivial morphism ρ of C(S1) to M2(C(S3)) whose
range over the base point ∗ of S3 is formed of scalar multiples of the identity matrix
1 ∈ M2(C). To that effect, let us identify S3 with the unit quaternions S3 = {(α, β) ∈
C2; |α|2 + |β|2 = 1} represented as 2×2 matrices,

[
α β
−β α

]
∈ M2(C). This yields

a canonical unitary element U ∈ M2(C(S3)), whose value at q = α + βj is given by

U(q) =

[
α β
−β α

]
∈ M2(C).

Let us choose the base point ∗ of S3 to be q = 1, so that U(∗) = 1 is the identity
matrix. Then the morphism ρ from C(S1) to M2(C(S3)) uniquely determined by

ρ(eiθ) = U

yields an element of π3,2(S
1).
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We leave it to the reader to check his understanding of K-theory by showing that the
class of ρ in π3,2(S

1) is not trivial. We shall see later (Chapter 3) that this morphism
is of degree 1 in cyclic cohomology.

At an intuitive level, i.e. trying to think of the above morphism ρ at the set theoretic
level as a generalized map from S3 to S1, one finds that to a point q = α + βj,
|α|2 + |β|2 = 1, of S3 it associates the two solutions z, z′ ∈ S1 = {z ∈ C; |z| = 1} of the
equation

det

[
α− z β
−β α− z

]
= 0

or, equivalently, of z2 − (α− α)z + 1 = 0.

Appendix B : E-theory and Deformations of Algebras

A functor F from the category of C∗-algebras and ∗-homomorphisms to the category
of abelian groups is called half-exact iff for any short exact sequence of C∗-algebras

0→J→A→B→0

the corresponding sequence of abelian groups is exact at F (A). The functor K, which
assigns to A its K-theory group K(A), is half-exact. G. Skandalis has shown ([527])
that the bivariant functor KK of Kasparov, which plays a crucial role in the construc-
tion of K-theory maps, in general, fails to be half-exact. It follows in particular that
in general the connecting map of K-theory

Ki(B)→∂Ki+1(J)

associated to an exact sequence of C∗-algebras, does not necessarily come from a bivari-
ant element (belonging to KK1(B, J)). The natural place for such bivariant elements
is the extension theory ([329]) but the intersection product as constructed in [329] is
limited to KK. In this appendix we shall expound the main features of the bivariant
E-theory which solves the above difficulties. Its abstract existence as a bivariant semi-
exact theory extending KK-theory was first proved by N. Higson [280]. In our joint
work with N. Higson [123], it was shown that, using the theory of deformations and the
notion of asymptotic morphisms, originating in [129], one can define the intersection
product of extensions. The resulting theory has a number of technical advantages; in
particular, the complete proofs of the main properties of the intersection product are
quite short, and will be given in this appendix.
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B. α Deformations of C∗-algebras and asymptotic morphisms. Let A and
B be two C∗-algebras. By a strong deformation from A to B we mean a continuous
field (A(t), Γ) of C∗-algebras over [0, 1] (cf. [173] Definition 10.3.1) whose fiber at 0
is A(0) = A, and whose restriction to the half-open interval ]0, 1] is the constant field
with fiber A(t) = B for t > 0.

We shall now associate to such a deformation an asymptotic morphism from A to B.
From the definition ([173]) of a continuous field of C∗-algebras it follows that for any
a ∈ A = A(0) there exists a continuous section α ∈ Γ of the above field such that
α(0) = a. Let us choose such an α = αa for each a ∈ A and set

ϕt(a) = αa (1/t) ∈ B ∀t ∈ [1,∞[.

Using the continuity of ||α(t)|| as a function of t ∈ [0, 1] for any continuous section
α ∈ Γ, one checks that the family ϕt of maps from A to B fulfills the following
conditions:

(I) For any a ∈ A, the map t→ϕt(a) is norm continuous.

(II) For any a, b ∈ A, λ ∈ C, the following norm limits vanish:

Limt→∞ (ϕt(a) + λϕt(b)− ϕt(a + λb)) = 0

Limt→∞ (ϕt(ab)− ϕt(a) ϕt(b)) = 0

Limt→∞ (ϕt(a
∗)− ϕt(a)∗) = 0.

We have thus associated to the given deformation an asymptotic morphism in the
following sense:

Definition 1. Let A and B be C∗-algebras. An asymptotic morphism from A to B is
given by a family (ϕt)t∈[1,∞[ of maps from A to B fulfilling conditions (I) and (II).

Roughly speaking these conditions mean that given a finite subset F of A and an ε > 0,
there exists a t0 such that for t > t0, ϕt behaves on F as a true homomorphism, up to
the precision ε.

The notion of deformation of algebras already plays a critical role in algebraic geome-
try ([215]), quantization ([368] [38]), and the construction of quantum groups ([182]
[201]). We have given in this chapter many concrete examples of deformations of
noncommutative spaces (Sections 5, 6, 7, 8, and 10). To get some feeling for asymp-
totic morphisms versus ordinary morphisms one can consider the following very simple
example.
A compact space with π1(X) = {0}
We let X be the compact space shown in Figure 9. One can easily show that π1(X) =
{0}, i.e. there are no interesting continuous maps f : S1→X, or equivalently no
interesting morphisms of C(X) to C(S1). However, for each ε > 0, the ε-neighborhood
of X,

Xε = {z ∈ C ; dist(z, X) ≤ ε}
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Figure 9. A compact space X with π1(X) = {0}.

obviously has π1(Xε) = Z. With a little work, one can get a family fε of degree-one
continuous maps fε : S1→Xε, ε > 0 such that fε(x) is for fixed x ∈ S1 a continuous
function of ε > 0. Of course, for ε→0 these maps fε do not converge to a continuous
map of S1 to X. One obtains a corresponding asymptotic morphism ϕt : C(X)→C(S1)
by setting:

ϕt(a) = ã ◦ f1/t ∀a ∈ C(X) , t ∈ [1,∞[

where for each a ∈ C(X), ã is a continuous extension of a to C. This easy example
shows that the notion of asymptotic morphism is relevant even in the topology of ordi-
nary compact spaces. Thus, in extending the generalized homology theory associated
to a spectrum Σ

Hn(X, Σ) = πn(X∧Σ)

beyond spaces X which are simplicial complexes, so as to include arbitrary compact
(metrisable) X, [320], one should replace the continuous maps Sn→Y involved in the
definition of πn(Y ) by asymptotic maps (i.e. the transposes of asymptotic morphisms).

Coming back to the general discussion, we shall say that two asymptotic morphisms
(ϕt) and (ϕ′t) from A to B are equivalent iff

Limt→∞(ϕ′t(a)− ϕt(a)) = 0 ∀a ∈ A.

In other words, if we let B∞ be the quotient C∗-algebra

B∞ = Cb ([1,∞[, B) /C0 ([1,∞[, B)

where Cb means bounded continuous functions, then the equivalence classes of asymp-
totic morphisms from A to B correspond exactly to the morphisms ϕ̃ : A→B∞ by the
formula

ϕ̃(a)t = ϕt(a) ∀a ∈ A , t ∈ [1,∞[.

Since ϕ̃ is a morphism of C∗-algebras it is always a contraction.

Giving a strong deformation from A to B is equivalent to giving the associated class of
asymptotic morphism ϕt : A→B constructed above. The convergence ||ϕt(a)||→||a|| ∀a ∈
A characterizes the classes of asymptotic morphisms thus obtained. Any injective
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morphism ψ : A→B∞ gives rise canonically to a deformation from A to B in the
following sense (cf. [374]): one has a C∗-subalgebra C of Cb(]0, 1], B) containing
B(]0, 1]) = C0(]0, 1], B) and an isomorphism A∼C/B(]0, 1]). Given ψ, one just lets
C = {(ψ1/t(a) + b(t))t∈]0,1]; a ∈ A, b ∈ B(]0, 1])}.
We can now define homotopy between asymptotic morphisms.

Definition 2. Two asymptotic morphisms (ϕi
t) : A→B, i = 0, 1, are homotopic iff there

exists an asymptotic morphism (ϕt) from A to B[0, 1] = C([0, 1])⊗B whose evaluation
at i = 0, 1 gives (ϕi

t).

This is an equivalence relation between asymptotic morphisms. Given two C∗-algebras
A and B, we shall let [[A,B]] denote the set of homotopy classes of asymptotic mor-
phisms from A to B. A change of parameter r(t)→∞, i.e. the replacement of (ϕt) by
(ϕr(t)) = (ψt) does not affect the homotopy class of ϕ.

B. β Composition of asymptotic morphisms. In this section we shall describe
the composition of asymptotic morphisms, i.e. the analogue in E-theory of the main
tool of the KK-theory, which is the intersection product. The idea for defining the
composition ψ ◦ ϕ of asymptotic morphisms (ϕt) : A→B and (ψt) : B→C is quite
simple. In general the plain composition ψt ◦ ϕt does not satisfy the conditions of
Definition 1 because of lack of uniformity of the hypothesis on ψt; but one may easily
compensate by a change of parameter, i.e. the replacement of ψt by ψr(t), where r(t)
is determined by a diagonal process. The resulting composition is then well defined at
the level of homotopy classes of asymptotic morphisms. Let us now give the details.

Let (ϕt)t∈[1,∞[, ϕt : A→B, be an asymptotic morphism and let K⊂A be a subset of A.
We shall say that (ϕt) is uniform on K iff

α) (t, a)→ϕt(a) is a continuous map from [1,∞[×K to B

β) For any ε > 0, ∃T < ∞ such that for any t ≥ T one has:

||ϕt(a) + λϕt(a
′)− ϕt(a + λa′)|| < ε , ∀a, a′ ∈ K , ∀λ, |λ| ≤ 1

||ϕt(a)ϕt(a
′)− ϕt(aa′)|| < ε , ∀a, a′ ∈ K

||ϕt(a)∗ − ϕt(a
∗)|| < ε , ∀a ∈ K

||ϕt(a)|| < ||a||+ ε , ∀a ∈ K.

The Bartle-Graves selection theorem applied to the quotient map

Cb([1,∞[, B)→B∞

shows that each asymptotic morphism (ϕt) is equivalent to an asymptotic morphism
(ϕ′t) which is uniform on every (norm) compact subset K of A.

Let A⊂A be a dense involutive subalgebra of A, and let us assume that A is a countable
union A =

⋃
Kn of compact subsets Kn of A. One can choose the Kn’s so that
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Kn + Kn⊂Kn+1, KnKn⊂Kn+1, and λKn⊂Kn ∀λ ∈ C, |λ| ≤ 1. It follows that if K is
a compact convex subset of A and K⊂A then one has K⊂Kn for some n.

Any asymptotic morphism (ϕt) from A to B which is uniform on compact convex
subsets of A defines a homomorphism from A to B∞, and hence an equivalence class of
asymptotic morphisms from A to B. The composition is given by the following lemma:

Lemma 3. Let (ϕt) : A→B, and (ψt) : B→C be asymptotic morphisms of C∗-algebras.
Let A be a dense σ-compact involutive subalgebra of A. Assume that (ϕt) is uniform
on every compact convex subset of A, while (ψt) is uniform on every compact subset
of B. Then there exists a continuous increasing function r : [1,∞[ →[1,∞[ such that
for any increasing continuous function s(t) ≥ r(t), the composition θt = ψs(t) ◦ϕt is an
asymptotic morphism from A to C, uniform on compact convex subsets.

The proof is quite simple; with A =
⋃

Kn as above, let tn ∈ [1,∞[ be such that ϕt

satisfies conditions β) above on Kn for ε = 1/n, t ≥ tn. Then let K ′
n⊂B be the compact

subset
K ′

n = {ϕt(a) ; a ∈ Kn+3 , t ≤ tn+1},
and let rn ∈ [1,∞[ be such that ψt satisfies β) on K ′

n for ε = 1/n and t ≥ rn. Then one
checks that any continuous increasing function r : [1,∞[ →[1,∞[ such that r(tn) ≥ rn

does the job.

Let (ϕt) : A→B, (ψt) : B→C be asymptotic morphisms of C∗-algebras which are
uniform on compact subsets, and let A⊂A be a dense σ-compact involutive subalgebra
of A. For s : [1,∞[ →[1,∞[ as in Lemma 3, we let θt : A→C be the extension to A
of the composition ψs(t) ◦ ϕt = θt. It is an asymptotic morphism (well-defined up to
equivalence) from A to C.

Proposition 4. 1) The homotopy class [θ] ∈ [[A,C]] is independent of the choices
of A and of s(t), and only depends upon the homotopy classes [ϕ] ∈ [[A,B]] and
[ψ] ∈ [[B,C]].

2) The composition [ψ] ◦ [ϕ] of homotopy classes is associative.

To prove the first statement note that the involutive subalgebra of A generated by two
σ-compact subalgebras is still σ-compact, whence the independence in the choice of
A. To prove the second statement, use the involutive subalgebra B⊂B of B generated
by the ϕt(A) where (ϕt) is uniform on compact convex subsets of A. Since B is still
σ-compact the conclusion follows.

One can define the external tensor product ϕ⊗ψ of asymptotic morphisms (ϕt) : A→C
and (ψt) : B→D as an asymptotic morphism, unique up to equivalence

(ϕ⊗ψ) : A⊗maxB→C⊗maxD

using the maximal tensor product of C∗-algebras ([T1]). This follows from the following
useful lemma whose proof is immediate using the C∗-algebra C∞.
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Lemma 5. Let A, B and C be C∗-algebras and let (ϕt) : A→C, and (ψt) : B→C
be asymptotic morphisms such that, for any a ∈ A and b ∈ B, the commutator
[ϕt(a), ψt(b)] converges to 0 in norm when t→∞. Then there exists an asymptotic
morphism (θt) : A⊗maxB→C, unique up to equivalence, such that

θt(a⊗b)− ϕt(a) ψt(b)→0 ∀a ∈ A , b ∈ B.

The external tensor product ϕ⊗ψ of asymptotic morphisms passes to homotopy classes.

B. γ Asymptotic morphisms and exact sequences of C∗-algebras. Let
0→J→A→pB→0 be an exact sequence of separable C∗-algebras. By [572] there exists,
in the ideal J , a quasi-central continuous approximate unit ut ∈ J , 0 ≤ ut ≤ 1, t ∈
[1,∞[. This means that the following holds:

a) ||xut − x||→0, ||utx− x||→0 when t→∞, ∀x ∈ J

b) ||[ut, y]||→0 when t→∞, ∀y ∈ A

c) t→ut is norm continuous.

Let us use the shorthand notation, for any C∗-algebra A

SA = C0(]0, 1[)⊗A

which is consistent with the topological notation for the suspension of a space.

Lemma 6. Let 0→J→A→pB→0 be an exact sequence of separable C∗-algebras.

1) For any continuous quasi-central approximate unit (ut), 0 ≤ ut ≤ 1, and any section
b ∈ B→b′ ∈ A of p, the following equality defines an asymptotic morphism (ϕt) :
SB→J

ϕt(f⊗b) = f(ut)b
′ ∀f ∈ C0(]0, 1[) , b ∈ B.

2) The homotopy class [ϕ] = εp of (ϕt) depends only upon the morphism p : A→B.

The first statement is a direct application of Lemma 5. The second follows from the
convexity of the set of quasi-central approximate units.

This Lemma 6 is a key result which allows one to associate to any extension of C∗-
algebras a class of asymptotic morphisms, while to get a KK-class some further hy-
pothesis, such as the existence of a completely positive lifting of p, is required.

It is obvious that an asymptotic morphism of C∗-algebras yields a corresponding map
of K-theories, since in a C∗-algebra the equations e = e∗ = e2 are stable: if such an
equation is fulfilled by x ∈ A, up to ε in norm, then x is close to a solution (for ε
small enough). Thus if (ϕt) : A→B is an asymptotic morphism and e ∈ Proj(A) is a
projection (e = e∗ = e2), then ϕt(e) is close, for t large, to a projection f ∈ Proj(B)
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whose K-theory class is well defined. We urge the reader to check directly at this point
that the K-theory map thus associated to εp

(εp)∗ : K(SB)→K(J)

does coincide with the connecting map of the six-term exact sequence of K-groups
associated to an exact sequence of C∗-algebras.

To end this section, let us note that the above construction of εp is coherent with the
construction of the asymptotic morphism (ϕt) : A→B associated to a deformation of
C∗-algebras. Indeed, given such a deformation one gets an exact sequence:

0→SB→C→πA→0

where C is the C∗-algebra of the restriction of the continuous field (A(t), Γ) to the half-
open interval [0, 1[ and where π is the evaluation at 0. One then checks the following
equality:

επ = 1⊗ϕ in [[SA, SB]].

B. δ The cone of a map and half-exactness. Before giving the precise definition
of E-theory we shall, in this section, give the main ingredient of the proof of its half-
exactness. The point is that we shall then get a byproduct of this proof even for
ordinary compact spaces.

Let 0→J→jA→pB→0 be an exact sequence of C∗-algebras. The cone Cp of the mor-
phism p : A→B is, by definition, the C∗-algebra fibered product of CB = C0(]0, 1])⊗B
and A using the following morphisms to B:

ρ : CB→B , ρ(b) = b(1) ∀b = (b(s))s∈]0,1] ∈ CB

p : A→B.

In other words, an element x of Cp is a pair ((b(s))s∈]0,1], a) with b(1) = p(a) ∈ B. One
has a natural morphism i : J→Cp given by

i(y) = (0, y) ∀y ∈ J

and its composition with the evaluation map, ev : Cp→A,

ev((bs)s∈]0,1], a) = a ∈ A

is the morphism j

ev ◦ i = j : J→A.

The main point in proving half-exactness is to invert the morphism i. That this is
likely to be possible comes from the contractibility of the third term (the cone CB of
B) in the exact sequence

0→J→iCp→CB→0.
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The inverse of i will be given by the asymptotic morphism εσ associated to the following
exact sequence of C∗-algebras:

0→SJ→CA→σCp→0

where CA = C0(]0, 1])⊗A is the cone of A and σ is given by

σ((a(s))s∈]0,1]) = ((p(a(s)))s∈]0,1], a(1)) ∈ Cp

It is clear that the kernel of σ is C0(]0, 1[)⊗ J = SJ . Let (Lemma 6) εσ ∈ [[SCp, SJ ]]
be the corresponding asymptotic morphism.

Lemma 7. Let Sj = id⊗j : SJ→SA. Then the composition Sj ◦ εσ : SCp→SA is ho-
motopic to Sev = id⊗ev, where ev : Cp→A is the evaluation morphism ev((bs)s∈]0,1], a) =
a ∈ A.

For the proof, let (ut)t∈[1,∞[ (resp. (ht)t∈[1,∞[) be a quasi-central approximate unit for
the ideal J of A (resp. for C0(]0, 1[)⊂C([0, 1])). Thus 0 ≤ ht(s) ≤ 1 ∀s ∈ [0, 1],
ht(0) = ht(1) = 0, and ht(s)→1 when t→∞, for any s ∈]0, 1[. By construction, the
asymptotic morphism εσ : SCp→SJ is given by

ϕt(f⊗x) = f(ht⊗ut)x̃ ∀f ∈ C0(]0, 1[) , x ∈ Cp

where x̃ ∈ CA is such that σ(x̃) = x. Here x̃ = (x̃s)s∈]0,1] and f(ht⊗ut)x̃ ∈ SJ is given
by the function

s ∈ ]0, 1[ →f(ht(s)ut)x̃s ∈ J.

The composition Sj ◦ εσ is given by the same formula, but now f(ht(s)ut)x̃s is viewed
as an element of A. It is thus clear that it is homotopic through asymptotic morphisms
to the following asymptotic morphism: (ψt)t∈[1,∞[, from SCp to SA given by

ψt(f⊗x) = (f(ht(s))x̃s)s∈]0,1[ ∀f ∈ C0(]0, 1[) , x ∈ Cp.

As above, the class of (ψt) is independent of the choices x→x̃, and one checks directly
that (ψt) is homotopic to the morphism ρ

ρ(f⊗x) = (f(1− s) x̃1)s∈]0,1[.

An easy corollary of this lemma and of the technique of the Puppe exact sequence
([159]) is the following:

Proposition 8. Let 0→J→jA→pB→0 be an exact sequence of separable C∗-algebras
and D a C∗-algebra.
1) Let h ∈ [[A,D]] be such that h ◦ j is homotopic to 0. Then there exists k ∈
[[S2B, S2D]] such that S2h is homotopic to k ◦ S2p ∈ [[S2A, S2D]].

2) Let h ∈ [[D, A]] be such that p◦h is homotopic to 0. Then there exists k ∈ [[SD, SJ ]]
such that Sh = Sj ◦ k.

Let us briefly sketch the proof of 1). With the notation of Lemma 7 one has Sev =
Sj ◦ εσ; thus the hypothesis: h ◦ j ∼ 0 implies that Sh ◦ Sev = (Sh ◦ Sj) ◦ εσ =
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S(h ◦ j) ◦ εσ ∼ 0. Thus, provided one applies S once, one may assume that h ◦ ev ∼ 0.
But such a homotopy yields by restriction to SB⊂Cp an asymptotic morphism, k, from
SB to SD with k ◦ Sp ∼ Sh, thus the conclusion.

Similarly, for 2) a homotopy p ◦ h ∼ 0 determines precisely an element k1 of [[D,Cp]]
such that h = ev ◦ k1. Then by Lemma 7 one gets Sh = Sev ◦ Sk1 = Sj ◦ (εσ ◦ Sk1),
so that k = εσ ◦ Sk1 gives the desired factorisation.

The proposition implies the half-exactness of the E-theory to be defined below, but
it also applies to the topology of ordinary compact spaces. Let us first recall a few
definitions from topology. We work in the category of pointed topological spaces and
use the standard notations: X ∨ Y = (X×∗)∪ (∗×Y ) is called the wedge of X and Y ;
X∧Y is the space obtained from X×Y by smashing the subspace X∨Y to a point and
is called the reduced join, or smash product, of X and Y . In particular X∧S1 = SX
is called the suspension of X.

Definition 9. [4] A spectrum Σ is a sequence of spaces Σn and maps σn : SΣn→Σn+1

such that each Σn is a CW -complex and the maps σn are embeddings of CW -complexes.

The generalized homology theory h∗ associated to a spectrum Σ is defined by the
equality

(∗) hn(X, Σ) = πn+k(X∧Σk).

This definition works well for spaces X such as CW -complexes, and Kahn, Kaminker
and Schochet [320] have shown, using duality, how to extend such a theory to the cate-
gory of pointed (metrisable) compact spaces so that the axioms of Steenrod generalized
homology are satisfied:

Definition 10. A Steenrod homology theory h∗ on the category of pointed (metrisable)
compact spaces is a sequence of covariant, homotopy invariant functors hn from this
category to that of abelian groups which fulfills the following axioms for all n and X:

Exactness. If A is a closed subset of X then the sequence

hn(A)→hn(X)→hn(X/A)

is exact.

Suspension. There is a natural equivalence hn(X)→σhn+1(SX).

Strong Wedge. Suppose Xj is a compact pointed metrisable space, j = 1, 2, . . . ,. Then
the natural map

hn

(
lim←−

k

(X1 ∨ · · · ∨Xk)

)
→

∏
j

hn(Xj)

is an isomorphism.

We shall now show that equality (∗) gives a Steenrod homology theory provided one
modifies the usual definition of homotopy groups πn(X) of a pointed topological space
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X to take care of spaces such as the compact space of Figure 9. The new homotopy
groups πn(X) coincide with the usual ones for simplicial complexes but do not agree
with the usual ones for arbitrary compact spaces.

Let first K be a compact space with a base point ∗ ∈ K. The usual homotopy group
πn(K) involves homotopy classes of (base point preserving) maps of the n-sphere to
K, or equivalently of morphisms

C0(K\{∗})→C0(Rn).

It is straightforward to see that the same construction can be done if we use homotopy
classes of asymptotic morphisms, i.e.

πn(K) =def [[C0(K\{∗}), C0(Rn)]].

In particular the group structure of πn(K) comes from the natural morphism

C0(R)⊕C0(R)→δC0(R)

corresponding to the usual map: S1→S1 ∨ S1.

When K is a finite simplicial complex, one can embed it in Euclidean space as a
deformation retract of an open neighborhood, and one checks in this way that the new
definition of πn agrees with the old one for such spaces. However, for the compact
space of Figure 9 one has

π1(K) = {0} , π1(K) = Z.

For arbitrary pointed topological spaces (X, ∗) we extend the above definition as fol-
lows:

πn(X, ∗) = πn(K, ∗)
where K varies over compact subsets of X containing ∗.
Then Proposition 8 yields easily:

Theorem 11. Let Σ be a spectrum. The following equality defines a Steenrod homology
theory h∗(·, Σ) on the category of pointed metrisable compact spaces, which agrees with
the homology theory defined by (∗) on simplicial complexes

hn(X, Σ) = πn+k(X∧Σk).

Let us now return to noncommutative C∗-algebras.
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B. ε E-theory. Let K be the elementary C∗-algebra of all compact operators on
a separable ∞-dimensional Hilbert space. Since such a Hilbert space H is isomorphic
to H⊕H, one has a natural isomorphism

ρ : M2(K)∼K
where M2(K) = K⊗M2(C) is the C∗-algebra of 2×2 matrices over K. We let E be the
category whose objects are separable C∗-algebras, while the set E(A,B) of morphisms
from A to B is

E(A,B) = [[SA⊗K, SB⊗K]]

i.e. the set of homotopy classes of asymptotic morphisms from SA⊗K = A⊗C0(R)⊗K
to SB⊗K. The composition E(A,B)×E(B,C)→E(A,C) is given by the composition
of homotopy classes of asymptotic morphisms.

Using the above isomorphism ρ : M2(K)∼K one defines the sum ϕ + ψ of elements ϕ
and ψ of E(A,B) as the asymptotic morphism SA⊗K→SB⊗M2(K) = M2(SB⊗K)
given by

θt(a) =

[
ϕt(a) 0

0 ψt(a)

]
∀a ∈ SA⊗K

with obvious notation.

One checks that with this operation E becomes an additive category. The opposite−[ϕ]
of a given element of E(A,B) is obtained using the reflexion s→−s as an automorphism
of C0(R). Let C∗-Alg be the category of separable C∗-algebras and ∗-homomorphisms.
Then, let j : C∗-Alg→E be the functor which associates to ϕ : A→B the asymptotic
morphism ϕt = ϕ⊗id from SA⊗K to SB⊗K.

Theorem 12. [123] (I)The bifunctor E(A,B) from the category C∗-Alg to the category
of abelian groups is half-exact in each of its arguments.

(II) Any functor F from the category C∗-Alg to that of abelian groups which is un-
changed by A→A⊗K, homotopy invariant, and half-exact, factorizes through the cate-
gory E.

The proof of (I) follows from Proposition 8. See [123] for the proof of (II). As the
functor j verifies the hypothesis of the next corollary, the latter gives a characterization
of the category E.

Corollary 13. Let F : C∗-Alg→Z be a functor to an additive category Z which is
unchanged by A→A⊗K, homotopy invariant, and half exact, as a bifunctor to abelian
groups. Then F factorises uniquely through the category E.

The E-theory is thus a concrete realisation of the category whose existence was proven
by N. Higson in [280].
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To get other corollaries of Theorem 12 one specialises to the functors E(A, ·) and
E(·, B) the following general properties of functors F from C∗-Alg to abelian groups,
due to G. Kasparov [329] and J. Cuntz [147].

Lemma 14. [329] Let F be a covariant, homotopy invariant, half-exact functor from
the category C∗-Alg to abelian groups. Then there corresponds to any exact sequence:
0→J→A→pB→0 of separable C∗-algebras a long exact sequence of abelian groups

↪→F−n(J)→F−n(A)→F−n(B) . . .

. . . ↪→F (J)→F (A)→F (B)

where F−n(A) = F (SnA).

There is a similar dual statement for contravariant functors.

Of course, this lemma applies, in particular, to the functor E(·, D) and E(D, ·) for a
fixed C∗-algebra D and yields corresponding long exact sequences involving the functors
E(Sn·, D) and E(D,Sn·). But in fact the situation is very much simplified by the
built-in stability of E under the replacement of a C∗-algebra by its tensor product
with K. Indeed, one has natural isomorphisms in the E-category between C0(R2) and
C. Moreover, the suspension map S : E(A,B)→E(SA, SB) is an isomorphism of
abelian groups for any C∗-algebras A and B. Thus E(SkA, S`B) =∼ E(A, B) for k + `
even and is equal to E(A, SB)∼E(SA, B) for k + ` odd. We shall denote the latter
group by E1(A,B). All these are variants of Bott periodicity, about which the cleanest
statement is given by the following result of J. Cuntz, whose direct proof is simple
([147]).

Lemma 15. [147] Let F be a functor from the category C∗-Alg to the category of
abelian groups which is homotopy invariant, half-exact and unchanged by A→A⊗K.
Then there is a natural equivalence between F (·) and the double suspension F (S2·).

The proof uses the Toeplitz C∗-algebra, i.e. the C∗-algebra τ generated by an isometry
U , with U∗U = 1 and UU∗ 6= 1. All such C∗-algebras are canonically isomorphic, and
one has an exact sequence

0→K→τ→C(S1)→0

where C(S1) is obtained as a quotient of τ by adding the relation UU∗ = 1. Taking
the kernel of the evaluation C(S1)→C at some point ∗ ∈ S1 yields an exact sequence

0→K→τ0→pC0(R)→0.

Cuntz’s proof consists in showing that F (τ0) = {0}. In fact the corresponding asymp-
totic morphism εp: C0(R2)→K is the Heisenberg deformation, and the proof shows
that εp yields an E-theory isomorphism

C0(R2)→∼C.
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Finally, we note that for any C∗-algebra A one has a natural map from K1(A) to
E(C0(R), A⊗K), which to a unitary U ∈ (A⊗K)∼, with ε(U) = 1, associates the
corresponding ordinary morphism from C0(R) to A⊗K. One then easily checks

Proposition 16. The above map is a canonical isomorphism

E1(C, A)∼K1(A) , E0(C, A)∼K0(A).

In particular, any E-theory class y ∈ E(A,B) yields by composition a corresponding
K-theory map

x ∈ K(A) = E(C, A)→y◦x ∈ E(C, B) = K(B).

For further developments of E-theory see [160], [161], [162], [163],[374], [375].

Appendix C : Crossed Products of C∗-algebras and the Thom Isomorphism

Let A be a C∗-algebra, G a locally compact group, and α : G→Aut(A) a continuous
action of G on A. Thus, for each g ∈ G, αg ∈ Aut(A) is a ∗-automorphism of A, and
for each x ∈ A the map g 7→αg(x) is norm continuous.

Definition 1. A covariant representation π of (A,α) is given by unitary representations
πA of A, and πG of G on a Hilbert space H such that

πG(g)πA(x)πG(g)−1 = πA(αg(x))

∀g ∈ G, x ∈ A.

Of course, the unitary representation of G is assumed to be strongly continuous ([436]).
The above definition would continue to make sense if G were just a topological group,
but in the locally compact case there exists a natural C∗-algebra, the crossed product
B = AoαG, whose unitary representations correspond exactly to the covariant repre-
sentations of (A,α). Indeed, let dg be a left Haar measure on G and let us endow the
linear space Cc(G,A) of continuous compactly supported maps from G to A with the
following involutive algebra structure:

(f1 ∗ f2)(g) =

∫
f1(g1) αg1(f2(g

−1
1 g))dg1 ∀fj ∈ Cc(G,A), g ∈ G

(f ∗)(g) = δ(g)−1αg(f(g−1)∗) ∀f ∈ Cc(G,A), g ∈ G

where δ : G→R∗+ is the modular function of the not necessarily unimodular group G,
i.e. the homomorphism from G to R∗+ defined by the equality

d(g−1) = δ(g)−1dg.
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These algebraic operations on Cc(G,A) are uniquely prescribed in order to get an
involutive representation π̃ of Cc(G,A) from a covariant representation π of (A,α) by
the following formula

π̃(f) =

∫
πA(f(g))πG(g)dg ∀f ∈ Cc(G,A).

It is not difficult to check then ([436]) that the completion B = AoαG of Cc(G,A) for
the following norm is a C∗-algebra whose unitary representations correspond exactly
to the covariant representations of (A,α):

(∗) ||f || = Sup {||π̃(f)||; π a covariant representation of (A,α)} .

Proposition 2. a) The map π→π̃ is a natural equivalence between the category of
covariant representations of (A,α) and the category of representations of the C∗-algebra
crossed product AoαG.

b) Let 0→J→A→B→0 be a G-equivariant exact sequence of C∗-algebras; then the
crossed product sequence is exact:

0→JoG→AoG→BoG→0.

To prove b) one just notices that the covariant representations of A vanishing on JoG
are exactly the covariant representations of B.

In order to define the reduced crossed product, Aoα,rG, which differs from the above
only when G fails to be amenable (in fact when the action of G fails to be amenable),
let us consider the (right) C∗-module over A given by

E = L2(G, dg)⊗A.

We can view E as the completion, for the norm ||ξ|| = ||〈ξ, ξ〉||1/2 of Cc(G,A) with
A-valued inner product given by

〈ξ, η〉 =

∫
ξ(g)∗η(g)dg ∈ A ∀ξ, η ∈ Cc(G,A)

while the right action of A is given by

(ξa)(g) = ξ(g)a ∀ξ ∈ Cc(G,A), a ∈ A, g ∈ G.

We then define the following left-regular representation of (A,α) as endomorphisms of
E

(π(a)ξ)(g) = αg−1(a)ξ(g) ∀ξ ∈ Cc(G,A), a ∈ A, g ∈ G

(π(g)ξ)(k) = ξ(g−1k) ∀ξ ∈ Cc(G,A), g, k ∈ G.

One checks that these formulae define elements of EndA(E), and one thus gets a natural
representation

λ : AoαG→EndA(E).
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The image of λ is a C∗-algebra, called the reduced crossed product of A by α and
denoted

Aoα,rG.

When A = C the reduced crossed product CorG is, of course, the reduced C∗-algebra
of G, C∗

r (G), i.e. the C∗-algebra generated in the left regular representation of G by
the left action of the convolution algebra Cc(G) or equivalently by L1(G, dg). Simi-
larly, CoG is the C∗-algebra C∗(G) of G. The nuance between these two C∗-algebras
exists only in the non-amenable case. For instance, when G is a semisimple Lie group
the unitary representations of G which come from representations of C∗

r (G) form the
support of the Plancherel measure and are called tempered representations.

Proposition 3. [436] When G is amenable the representation λ of AoαG in EndA(E)
is injective.

We shall now specialise to the case when G is abelian and describe the Takesaki-Takai
duality theorem for crossed products [547]. Since abelian groups are amenable, the

distinction between the two crossed products disappears. Let Ĝ be the Pontryagin
dual of G, and let 〈g, g′〉, for g ∈ G and g′ ∈ Ĝ, be the canonical pairing with values
in T = {z ∈ C; |z| = 1}.

Proposition 4. [547] Let G be an abelian locally compact group, α an action of G on
a C∗-algebra A. The following equality defines a canonical action α̂ of the Pontryagin
dual Ĝ of G on the crossed product AoαG:

(α̂g′(f))(g) = 〈g, g′〉f(g) ∀f ∈ Cc(G, A)⊂AoαG , g ∈ G, g′ ∈ Ĝ.

Indeed, one easily checks that the norm (∗) is preserved by the α̂g′ , which are obviously
automorphisms of the involutive algebra Cc(G,A). Also one can implement the auto-
morphisms α̂g′ in the representation λ of AoαG as endomorphisms of E = L2(G, dg)⊗A.

One defines a representation ρ of Ĝ as automorphisms of E by the equality

(ρ(g′)ξ)(g) = 〈g, g′〉ξ(g) ∀ξ ∈ Cc(G,A) ; g ∈ G, g′ ∈ Ĝ.

One then checks that the pair (λ, ρ) is a covariant representation of (AoαG, α̂) as
endomorphisms of the C∗-module E . We thus obtain a homomorphism

λ̂ : ((AoαG)oα̂Ĝ→EndA(E)

and one easily checks that the range of λ̂ consists of compact endomorphisms (cf.

Appendix A). The main content of the Takesaki-Takai duality theorem is that λ̂ is
actually an isomorphism

λ̂ : (AoαG)oα̂Ĝ∼End0
A(E) = A⊗K
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where K is the elementary C∗-algebra of compact operators in L2(G, dg). To state
this duality with the required precision we need the following definition (compare with
Chapter V).

Definition 5. Let A be a C∗-algebra, G a locally compact group, and α, α′ two actions
of G on A. Then α and α′ are outer equivalent iff there exists a map g→ug from G to
the group U of unitary automorphisms of the C∗-module A over A such that:

1) g→ugξ is norm continuous for any ξ ∈ A.

2) ug1g2 = ug1αg1(ug2) ∀g1, g2 ∈ G.

3) α′g(a) = ugαg(a)u∗g ∀a ∈ A, g ∈ G.

The endomorphisms EndA(A) of the C∗-module A over A are called the multipliers
of A (cf. [436]) and denoted M(A). The continuity invoked in 1) is called strong
continuity. An automorphism β ∈ Aut(A) of the form β(a) = uau∗, where u is a
unitary element of M(A), is called an inner automorphism. We thus see that if α
and α′ are outer equivalent then α′gα

−1
g is inner for any g ∈ G, but the converse does

not hold in general. The crossed product AoαG of the C∗-algebra A by the action α
of G is unaffected if one replaces α by an outer equivalent action α′. The canonical
isomorphism

AoαG∼θAoα′G

is given by the formula

(θ(f))(g) = ugf(g) ∀f ∈ Cc(G,A).

Theorem 6. [547] Let G be an abelian locally compact group, and let α be an action

of G on a C∗-algebra A. There is a canonical isomorphism λ̂ of the double crossed
product (AoαG)oα̂Ĝ with A⊗K which transforms the double dual action ˆ̂α of G into
an action outer equivalent to the action α⊗1 of G on A⊗K.

Note that this theorem could not even be formulated had we decided to only consider
commutative C∗-algebras. Indeed, even for A = C it expresses the fact that the
C∗-algebra C∗(G)oĜ is isomorphic to the noncommutative elementary C∗-algebra of
compact operators. We shall see in particular how it immediately implies a far-reaching
analogue of the Bott periodicity theorem [105] (motivated by [446]). We specialise to
the case G = R, the additive group of real numbers, and our first task is to construct
a natural map

φα : Ki(A)→Ki+1(AoαR)

for any C∗-algebra A with one-parameter automorphism group α. When the action
α of R on A is trivial, αs = id ∀s ∈ R, the crossed product AoαR is canonically
isomorphic to SA = A⊗C0(R̂) and the map φα is the natural suspension isomorphism

Ki(A)∼Ki+1(SA).
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To define φα one reduces the general situation to the particular case of the trivial action
using the following lemma, whose geometric meaning is the absence of curvature in the
one-dimensional situation.

Lemma 7. [105] Let A be a C∗-algebra, α a one-parameter group of automorphisms
of A, e = e∗ = e2 a self-adjoint projection, e ∈ A, of A. There exists an equivalent
projection f ∼ e, f ∈ A, and an outer equivalent action α′ of R on A such that
α′t(f) = f ∀t ∈ R.

One first replaces e by an equivalent projection f such that the map t→αt(f) ∈ A is of
class C∞, and then one replaces the derivation δ = (d/dtαt)t=0 which generates α by the
new derivation δ′ = δ +ad(h) where ad(h)x = hx−xh ∀x ∈ A, and h = fδ(f)−δ(f)f .

From Lemma 7 and the canonical isomorphism AoαR∼Aoα′R for outer equivalent
actions one gets the construction of

φ0
α : K0(A)→K1(AoαR).

Replacing A by SA, one gets similarly

φ1
α : K1(A)→K0(AoαR).

Theorem 8. [105]Let A be a C∗-algebra, and let α be a one-parameter group of
automorphisms of A. Then φα : Ki(A)→Ki+1(AoαR) is an isomorphism of abelian
groups for i = 0, 1. The composition φα̂ ◦ φα is the canonical isomorphism of Ki(A)
with Ki(A⊗K), where the double crossed product is identified with A⊗K by Theorem
6.

The proof is simple since it is clearly enough to prove the second statement, and to
prove it only for i = 0. One then uses Lemma 7 to reduce to the case A = C, where it
is easy to check ([105]).

The above theorem immediately extends to arbitrary simply connected solvable Lie
groups H in place of R.

Appendix D : Penrose Tilings

In this section, I review for the reader’s convenience the classical results ([246]) on R.
Robinson and R. Penrose’s quasiperiodic tilings of the plane.

One first considers two types, LA and SA, of triangular tiles as represented in Figure
10. The vertices are colored white or black, and the edge between two vertices of the
same color is oriented. The tile LA has two black vertices and one white, whereas the
tile SA has two whites and a black.
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A tiling of type A of the plane is defined to be a triangulation of the plane by triangles
isometric to LA or SA, in such a way that the colors of common vertices, and the
orientations of common edges, are the same.

The reader is referred to [246] for the proof of the existence of such tilings of the plane
(see Figure 3 in Section 3 of this chapter). We shall say that two tilings T and T ′

are identical if they can be obtained from each other by an isometry of the Euclidean
plane.

Let X be the set of all type A tilings (up to isometry) of the plane. The essential result
we shall use is the possibility of parametrizing X by the set K of infinite sequences
(an)n∈N, an ∈ {0, 1}, of zeros and ones, satisfying

an = 1 ⇒ an+1 = 0

in such a way that every tiling T of type A arises from a sequence, T = T (a), and
two sequences a and b yield the same tiling if and only if there exists an index N
such that an = bn for all n ≥ N . As this is an important point, I shall describe the
correspondence a 7→ T (a) explicitly ([246], p. 568).
If T is a tiling of type A, and if we delete from the triangulation T all the short edges
that join two vertices of different colors and separate an LA-tile
from an SA-tile (Figure 11), we obtain a new triangulation T1 of the plane whose
triangles are isometric to one of the two triangles LB, SB of Figure 10. We obtain
in this way a tiling of the plane of type B, that is, a triangulation of the plane by
triangles isometric to LB or SB, such that the colors of common vertices, and the
orientations of common edges, are the same. If, in the triangulation T1, we delete all
the edges that join two vertices of the same color and separate a LB-tile from a SB-tile,
we obtain a new triangulation T2 whose triangles are isometric to one of the triangles
LτA′ , SτA′ of Figure 10. Iterating the procedure, we obtain in this way a sequence Tn

of triangulations of the plane. To each of them there correspond triangles Ln and Sn.
Given a tiling T of type A and a triangle α of the triangulation T (Figure 11), we
associate with the latter the sequence (an)n∈N, where an is 0 or 1 according as the
triangle of Tn that contains α is large (i.e., isometric to Ln) or small. We denote by
i(T, α) the sequence obtained in this way.

We then denote by K the set of sequences (an)n∈N, an ∈ {0, 1}, such that an = 1 ⇒
an+1 = 0. It is clear that every sequence of the form i(T, α) belongs to K, because the
triangle Sn is not used for constructing Sn+1 = Ln. Conversely ([246], p. 568), one
shows that every element a of K is of the form i(T, α) for a suitable tiling of type A
and a suitable α.
Two triangles α, β of a tiling T occur, for n sufficiently large, in the same triangle of
Tn. It follows that the sequences a = i(T, α) and b = i(T, β) satisfy the condition

am = bm ∀m ≥ n. (∗)
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Figure 10. Elementary tiles (see [246])

Conversely ([246], p.568), one shows that if a = i(T, α) and b ∈ K satisfy (∗), then
there exists a triangle β of T such that b = i(T, β).

One obtains in this way a bijection between the set X of Penrose tilings and the
quotient K/R of the set K by the equivalence relation R defined by the relation (∗)
([246], p.568).
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12

34

Figure 11. A sequence of triangulation patches (see [246])



CHAPTER 3

Cyclic Cohomology and Differential Geometry

In this chapter we shall extend de Rham homology beyond its usual commutative frame-
work to obtain numerical invariants of K-theory classes on noncommutative spaces.

In the commutative case, A = C(X) for X a compact space, we have at our disposal
in K-theory a tool of capital importance, the Chern character

Ch : K∗(X)→H∗(X,Q)

which relates the K-theory of X to the cohomology of X. When X is a smooth
manifold the Chern character may be calculated explicitly by the differential calculus
of forms, currents, connections and curvature ([394]). More precisely, we have first the
isomorphism

K0(A)∼K0(A)

where A = C∞(X) is the algebra of smooth functions on X, a dense subalgebra of the
C∗-algebra C(X) = A. Then, given a smooth vector bundle E over X, or equivalently
the finite projective module, E = C∞(X,E) over A = C∞(X) of smooth sections of
E, the Chern character of E

Ch(E) ∈ H∗(X,R)

is represented by a closed differential form:

Ch(E) = trace (exp(∇2/2πi))

for any connection ∇ on the vector bundle E. Any closed de Rham current C on the
manifold X determines a map ϕC from K∗(X) to C by the equality

ϕC(E) = 〈C, Ch(E)〉
where the pairing between currents and differential forms is the usual one.

One obtains in this way numerical invariants of K-theory classes whose knowledge for
arbitrary closed currents C is equivalent to that of Ch(E).

In this chapter we shall adapt the above classical construction to the noncommutative
case. This requires defining the analogue of the de Rham homology, which was in-
troduced in [102] under the name of cyclic cohomology, for arbitrary noncommutative
algebras. This first step is purely algebraic: One starts with an algebra A over C, which
plays the role that C∞(X) had in the commutative case, and one develops the analogue
of the de Rham homology of X, the pairing with the algebraic K-groups K0(A) and
K1(A), and tools, such as connections and curvature, to perform the computations.

183
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The resulting theory is a contravariant functor HC∗ from noncommutative algebras
to graded modules over the polynomial ring C[σ] with one generator σ of degree 2.
Being contravariant for algebras means that the above functor is covariant for the
corresponding “space”, whence its homological nature. In the definition of this functor
the finite cyclic groups play a crucial role and this is why HC∗(A) is called the cyclic
cohomology of the algebra A.

We shall expound the theory below in a way suitable for the applications we have in
mind, but we refer the reader to several books [340] [325] [371] for more information.

The second step, crucial in order to apply the above construction to the K-theory of
C∗-algebras of noncommutative spaces, involves analysis.

Thus, the noncommutative algebra A is now a dense subalgebra of a C∗-algebra A and
the problem is, given a cyclic cocycle C on A as above, satisfying a suitable condition
relative to A, to extend the K-theory invariant

ϕC : K0(A)→C
to a map from K0(A) to C.

In the simplest situation the algebra A⊂A is stable under holomorphic functional
calculus (cf. Appendix C; this means, essentially, that if a ∈ A is invertible in A its
inverse is in A). The inclusion A⊂A is then an isomorphism in K-theory and the above
problem of extension of ϕC is trivially solved.

This method still applies when A is not stable under holomorphic functional calculus
but when the cocycle C extends to the closure A of A under this calculus. This will
apply to the cyclic cocycles associated to bounded group cocycles on Gromov’s word
hyperbolic groups.

However, a new step is required to treat the transverse fundamental class for the
leaf space X = V/F of a transversely oriented foliation, or for the orbit space X =
W/Γ, where Γ is a discrete group acting by orientation-preserving diffeomorphisms of
a manifold W .

The main difficulty to be overcome is that, in general, the transverse bundle of a
foliation admits no holonomy-invariant metric. Similarly, an action by diffeomorphisms
on a manifold does not preserve any Riemannian metric (if so it would then factorize
through the Lie group of isometries).

It follows then that the cyclic cocycle, which is the transverse fundamental class, is
very hard to control with respect to the C∗-algebra norm.

However, we have already met a similar situation in Chapter I, in the measure theory
discussion, where the type III situation was precisely characterized by the absence of a
holonomy-invariant volume element on the transverse bundle. We saw, moreover, that
one could reduce type III to type II by replacing the noncommutative space X with the
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total space Y of a principal R∗+-bundle over X, whose fiber YL over each point L ∈ X
is the space of transverse volume elements at this point.

We adapted this method to overcome the above difficulty, through the following steps:

α) To the problem of finding a holonomy-invariant metric on the transverse bun-
dle τ (dim τ = q) corresponds a principal GL(q,R)-bundle over the noncom-
mutative space X. We let Y be the total space of the bundle over X associated
to the action of GL(q,R) on GL(q,R)/O(q,R). Then the transverse structure
group of Y reduces to a group of triangular matrices with orthogonal diagonal
blocks.

β) Using the above reduction of the transverse structure group of Y we control
the cyclic cocycle associated to the transverse fundamental class of Y .

γ) We use the fact that the symmetric space H = GL(q,R)/ O(q,R), which is
the fiber of the projection

p : Y −→ X

has non-positive curvature and the Kasparov bivariant theory to construct
a map K(C∗(X)) −→ K(C∗(Y )) of K-theories, whose composition with the
map

ϕC : K(C∗(Y )) −→ C
given by the fundamental class of Y will yield that of X.

In the context of foliations we shall thus construct K-theory invariants

K(C∗
r (V, F ))

ϕC−→ C

making the following diagram commutative:

K∗,τ (BG)

ch∗
²²

µ // K(C∗
r (V, F ))

ϕC(ω)

²²
H∗(BG,R)

ω // C

where µ is the analytic assembly map of Chapter II, and ω ∈ H∗(BG,R) is any
cohomology class on the classifying space BG of the holonomy groupoid G of (V, F )
belonging to the subring R⊂H∗(BG,R) generated by the Pontryagin classes of the
transverse bundle, the Chern classes of any holonomy equivariant vector bundle on V
and the pull-back of the Gel’fand-Fuchs characteristic classes γ ∈ H∗(WOq).

As applications of the above construction we shall get geometric corollaries which no
longer involve C∗-algebras in their formulation, namely:

1) The Novikov conjecture is true for Gromov’s word hyperbolic groups ([129]).
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2) The Gel’fand-Fuchs cocycles on Diff(M) satisfy the Novikov conjecture ([99]
[121], [122]).

3) Let M be a compact oriented manifold and assume that the rational number

Â(M) is non-zero (since M is not assumed to be a spin manifold, Â(M) need
not be an integer). Let F be an integrable spin subbundle of TM . There exists
no metric on F for which the scalar curvature (of the leaves) is strictly positive
(≥ ε > 0) on M .

Moreover, we shall see, in Section 6 of this chapter, how the Godbillon-Vey class appears
naturally in our setup from the lack of invariance of the transverse fundamental class
[V/F ] of a codimension-1 foliation under the modular automorphism group σt of the
von Neumann algebra of V/F (Chapter I). In particular, we shall obtain the following
corollary showing, in the noncommutative case, the depth of the interplay between
characteristic classes and measure theory:

4) Let M be the von Neumann algebra of the foliation (V, F ) of codimension one.
If the Godbillon-Vey class GV ∈ H3(V,R) is nonzero, then the flow of weights
Mod(M) admits a finite invariant measure.

This implies in particular the remarkable result of S. Hurder [292] that, under the
hypothesis of the theorem, the von Neumann algebra M is not semifinite and is of type
III if the foliation is ergodic.

The content of this chapter is organized as follows:

1. Cyclic cohomology.

2. Examples of computation of HC∗(A); manifolds, group rings and crossed products.

3. Pairing of cyclic cohomology with K-theory.

4. The higher index theorem for covering spaces.

5. The Novikov conjecture for hyperbolic groups.

6. The Godbillon-Vey invariant.

7. The transverse fundamental class for foliations and geometric corollaries.

Appendix A. The cyclic category Λ.

Appendix B. Locally convex algebras.

Appendix C. Stability under holomorphic functional calculus.
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1. Cyclic Cohomology

Given any (possibly noncommutative) algebra A over C, HC∗(A) is the cohomology
of the complex (Cn

λ , b), where Cn
λ is the space of (n+1)-linear functionals ϕ on A such

that
ϕ(a1, . . . , an, a0) = (−1)n ϕ(a0, . . . , an) ∀ai ∈ A

and where b is the Hochschild coboundary map given by

(bϕ) (a0, . . . , an+1) =
n∑

j=0

(−1)j ϕ(a0, . . . , aj aj+1, . . . , an+1)

+ (−1)n+1 ϕ(an+1 a0, . . . , an).

We shall develop the main properties of this cohomology theory for algebras in the
following sections.

1.α Characters of cycles and the cup product in HC∗. In order to clarify the
geometric significance of the basic operations, such as B and the cup product ϕ # ψ of
cyclic cohomology, we shall base our discussion on the following notion:

Definition 1.

a) A cycle of dimension n is a triple
(
Ω, d,

∫ )
where Ω =

⊕n
j=0 Ωj is a graded

algebra over C, d is a graded derivation of degree 1 such that d2 = 0, and∫
: Ωn→C is a closed graded trace on Ω.

b) Let A be an algebra over C. Then a cycle over A is given by a cycle
(
Ω, d,

∫ )
and a homomorphism ρ : A→Ω0.

As we shall see below, a cycle of dimension n over A is, essentially, determined by its
character, the (n + 1)-linear function τ ,

τ(a0, . . . , an) =

∫
ρ(a0) d(ρ(a1)) d(ρ(a2)) · · · d(ρ(an)) ∀aj ∈ A

and the functionals thus obtained are exactly the elements of Kerb ∩ Cn
λ .

Given two cycles Ω and Ω′ of dimension n, their sum Ω⊕Ω′ is defined as the direct sum
of the two differential graded algebras, with

∫
(ω, ω′) =

∫
ω +

∫
ω′. Given cycles Ω and

Ω′ of dimensions n and n′, their tensor product Ω′′ = Ω⊗Ω′ is the cycle of dimension
n+n′, which, as a differential graded algebra, is the tensor product of (Ω, d) by (Ω′, d′),
and where ∫

(ω⊗ω′) = (−1)nn′
∫

ω

∫
ω′ ∀ω ∈ Ω , ω′ ∈ Ω′.

One defines in the corresponding ways the notions of direct sum and tensor product of
cycles over A.



1. CYCLIC COHOMOLOGY 188

Example 2. a) Let V be a smooth compact manifold, and let C be a closed de Rham
current of dimension q (≤ dim V ) on V . Let Ωi, i ∈ {0, . . . , q}, be the space C∞(V,∧iT ∗V )
of smooth differential forms of degree i. With the usual product structure and differ-
entiation, Ω =

⊕q
i=0 Ωi is a differential algebra, on which the equality

∫
ω = 〈C, ω〉,

for ω ∈ Ωq, defines a closed graded trace.

b) Let V be a smooth oriented manifold, and (x, g) ∈ V×Γ→xg ∈ V an action, by
orientation preserving diffeomorphisms, of the discrete group Γ on V . Let A∗(V ) be the
graded differential algebra C∞

c (V,∧∗T ∗
C) of smooth differential forms on V with compact

support. The group Γ acts by automorphisms of this differential graded algebra. For
any g ∈ Γ, let ψg be the associated diffeomorphism ψg(x) = xg ∀x ∈ V ; then

gω = ψ∗gω ∀ω ∈ A∗(V ).

It follows that the algebraic crossed product

Ω∗ = A∗(V )oΓ

is also a graded differential algebra. Let us describe it in more detail. As a linear
space, Ωp is the space C∞

c (V×Γ,∧pT ∗
C) of smooth forms with compact support on the

(disconnected) manifold V×Γ. Algebraically, it is convenient to write such a form as
a finite sum

ω =
∑
g∈Γ

ωgUg , ωg ∈ A∗(V )

where the Ug’s are symbols. The algebraic rules are then:

(∑
ωgUg

) (∑
ω′kUk

)
=

∑
ωg∧g(ω′k)Ugk

d
(∑

ωgUg

)
=

∑
(dωg)Ug

∫ ∑
ωgUg =

∫

V

ωe (e the unit of Γ).

The invariance under diffeomorphisms (preserving the orientation) of the integral of
top-dimensional forms then shows that the triple (Ω, d,

∫
) defines a cycle of dimension

n = dim V over the algebra C∞
c (V )oΓ.

c) Let Γ be a discrete group, A = CΓ the group ring of Γ over C. Let Ω∗(Γ) be the
graded differential algebra of finite linear combinations of symbols

g0dg1dg2 · · · dgn , gi ∈ Γ
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with product and differential given by

(g0dg1 · · · dgn)(gn+1dgn+2 · · · dgm)

=
n∑

j=1

(−1)n−jg0dg1 · · · d(gjgj+1) · · · dgn dgn+1 · · · dgm

+ (−1)ng0g1dg2 · · · dgm, d(g0dg1 · · · dgn) = dg0dg1 · · · dgn.

Then any normalized group cocycle c ∈ Zk(Γ,C) determines a k-dimensional cycle
through the following closed graded trace on Ω∗(Γ):∫

g0dg1 · · · dgn = 0 unless n = k and g0g1 · · · gn = 1,

∫
g0dg1 · · · dgk = c(g1, . . . , gk) if g0 · · · gk = 1.

We recall that group cohomology H∗(Γ,C) is by definition the cohomology of the
classifying space BΓ, or equivalently of the complex (C∗, b), where Cp is the space of
all functions γ : Γp+1→C such that

γ(gg0, . . . , ggp) = γ(g0, . . . , gp) ∀g, gj ∈ Γ

(bγ)(g0, . . . , gp+1) =

p+1∑
i=0

(−1)i γ(g0, . . . , gi−1, gi+1, . . . , gp+1).

The group cocycle associated to γ ∈ Ck, bγ = 0, is given by

c(g1, . . . , gk) = γ(1, g1, g1g2, . . . , g1g2 . . . gk).

The normalization required above is the following:

c = 0 if any gi = 1 or if g1 · · · gk = 1.

Any group cocycle can be normalized, without changing its cohomology class, because
the above complex can be replaced, without altering its cohomology, by the subcomplex
of skew-symmetric cochains for which, for all gi ∈ Γ and σ ∈ Sp+1,

γσ(g0, . . . , gn) = γ(gσ(0), . . . , gσ(p)) = Sign(σ) γ(g0, . . . , gp).

In this last example c) the differential algebra Ω∗(Γ) is independent of the choice of the
cocycle c. The construction of Ω∗(Γ) from the group ring A = CΓ is a special case of
the universal differential algebra Ω∗(A) associated to an algebra A ([16] [325]), which
we briefly recall.
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Proposition 3. Let A be a not necessarily unital algebra over C.

1) Let Ω1(A) be the linear space Ã⊗CA, where Ã = A⊕C1 is the algebra obtained
by adjoining a unit to A. Then the following equalities define the structure of
an A-bimodule on Ω1(A) and a derivation d : A→Ω1(A): for any a, b, x, y ∈
A, λ ∈ C

x((a + λ1)⊗b)y = (xa + λx)⊗by − (xab + λxb)⊗y

da = 1⊗a ∈ Ω1(A) ∀a ∈ A.

2) Let E be an A-bimodule and δ : A→E a derivation; then there exists a bimodule
morphism ρ : Ω1(A)→E such that δ = ρ ◦ d.

Thus, (Ω1(A), d) is the universal derivation of A in an A-bimodule.

The universal graded differential algebra Ω∗(A) is then obtained by letting Ωn(A) =
Ω1(A)⊗AΩ1(A) · · · ⊗AΩ1(A) be the n-fold tensor product of the bimodule Ω1(A), while
the differential d : A→Ω1(A) extends uniquely to a square-zero graded derivation of
that tensor algebra. Remark that one has a natural isomorphism of linear spaces

j : Ã⊗A⊗n→Ωn(A)

with j((a0 + λ1)⊗a1⊗ · · ·⊗an) = a0da1 · · · dan + λda1da2 · · · dan ∀aj ∈ A , λ ∈ C.

(Note that the cohomology of the complex (Ω∗(A), d) is 0 in all dimensions, including
0 if we set Ω0(A) = A.) The product in Ω∗(A) is given in a way analogous to that in

Ω∗(Γ) above; thus

(a0da1 · · · dan)(an+1dan+2 · · · dam)

=
n∑

j=1

(−1)n−ja0da1 · · · d(ajaj+1) · · · dandan+1 · · · dam

+ (−1)na0a1da2 · · · dam.

This product can be seen as ensuing from the requirements that Ω∗(A) be a right
A-module and the derivation property.

We can now characterize cyclic cocycles as the characters of cycles over an algebra A.

Proposition 4. Let τ be an (n + 1)-linear functional on A. Then the following
conditions are equivalent:

1) There is an n-dimensional cycle (Ω, d,
∫

) and a homomorphism ρ : A→Ω0

such that

τ(a0, . . . , an) =

∫
ρ(a0) d(ρ(a1)) · · · d(ρ(an)) ∀a0, . . . , an ∈ A.
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2) There exists a closed graded trace τ̂ of dimension n on Ω∗(A) such that

τ(a0, . . . , an) = τ̂(a0da1 · · · dan) ∀a0, . . . , an ∈ A.

3) One has τ(a1, . . . , an, a0) = (−1)n τ(a0, . . . , an) and
n∑

i=0

(−1)i τ(a0, . . . , aiai+1, . . . , an+1) + (−1)n+1 τ(an+1a0, . . . , an) = 0

for any a0, . . . , an+1 ∈ A.

Proof. The universality of Ω∗(A) shows that 1) and 2) are equivalent. Let us show
that 3)⇒ 2). Given any (n+1)-linear functional ϕ on A, define ϕ̂ as a linear functional
on Ωn(A) by

ϕ̂ ◦ j((a0 + λ01)⊗a1⊗ · · ·⊗an) = ϕ(a0, a1, . . . , an).

By construction, one has ϕ̂(dω) = 0 for all ω ∈ Ωn−1(A). Now, with τ satisfying 3) let
us show that τ̂ is a graded trace. We have to show that

τ̂((a0da1 · · · dak)(ak+1dak+2 · · · dan+1))

= (−1)k(n−k) τ̂((ak+1dak+2 · · · dan+1)(a0da1 · · · dak)).

Using the definition of the product in Ω∗(A) the left-hand side gives

k∑
j=0

(−1)k−j τ(a0, . . . , ajaj+1, . . . , an+1),

and the right-hand side gives

n−k∑
j=0

(−1)k(n−k)+n−k−j τ(ak+1, . . . , ak+1+jak+1+j+1, . . . , a0, a1, . . . , ak),

where we let an+2 = a0. The cyclic permutation λ such that λ(`) = k + 1 + ` has a
signature ε(λ) equal to (−1)n(k+1) sothat, as τλ = ε(λ)τ by hypothesis, the right-hand
side gives

−
n∑

j=k+1

(−1)k−j τ(a0, . . . , ajaj+1, . . . , an+1) + (−1)k−nτ(an+1a0, a1, . . . , an).

Hence the equality follows from the second hypothesis on τ .

Let us show that 1) ⇒ 3). We can assume that A = Ω0. One has

τ(a0, a1, . . . , an) =

∫
(a0da1)(da2 · · · dan) = (−1)n−1

∫
(da2 · · · dan)(a0da1)

= (−1)n

∫
(da2 · · · danda0)a1 = (−1)n τ(a1, . . . , an, a0).
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To prove the second property we shall only use the equality
∫

aω =

∫
ωa for ω ∈ Ωn , a ∈ A.

From the equality d(ab) = (da)b + adb it follows that

(da1 · · · dan)an+1 =
n∑

j=1

(−1)n−j da1 · · · d(ajaj+1) · · · dan+1

+ (−1)n a1da2 · · · dan+1,

thus the second property follows from
∫

an+1 (a0da1 · · · dan) =

∫
(a0da1 · · · dan)an+1.

Let us now recall the definition of the Hochschild cohomology groups Hn(A,M) of A
with coefficients in a bimodule M ([80]). Let Ae = A⊗Ao be the tensor product of
A by the opposite algebra. Then any bimodule M over A becomes a left Ae-module
and, by definition, Hn(A,M) = Extn

Ae(A,M), where A is viewed as a bimodule over
A via a(b)c = abc, ∀a, b, c ∈ A. As in [80], one can reformulate the definition of
Hn(A,M) using the standard resolution of the bimodule A. One forms the complex
(Cn(A,M), b), where

a) Cn(A,M) is the space of n-linear maps from A to M;

b) for T ∈ Cn(A,M), bT is given by

(bT )(a1, . . . , an+1) = a1T (a2, . . . , an+1)

+
n∑

i=1

(−1)i T (a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1 T (a1, . . . , an)an+1.

Definition 5. The Hochschild cohomology of A with coefficients in M is the cohomol-
ogy Hn(A,M) of the complex (Cn(A,M), b).

The space A∗ of all linear functionals on A is a bimodule over A by the equality
(aϕb)(c) = ϕ(bca), for a, b, c ∈ A. We consider any T ∈ Cn(A,A∗) as an (n + 1)-linear
functional τ on A by the equality

τ(a0, a1, . . . , an) = T (a1, . . . , an)(a0) ∀ai ∈ A.
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To the boundary bT corresponds the (n + 2)-linear functional bτ , given by

(bτ)(a0, . . . , an+1) = τ(a0a1, a2, . . . , an+1)

+
n∑

i=1

(−1)i τ(a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1 τ(an+1a0, . . . , an).

Thus, with this notation, the condition 3) of Proposition 4 becomes

a) τ γ = ε(γ)τ for any cyclic permutation γ of {0, 1, . . . , n};

b) bτ = 0.

Now, though the Hochschild coboundary b does not commute with cyclic permutations,
it maps cochains satisfying a) to cochains satisfying a). More precisely, let A be the
linear map of Cn(A,A∗) to Cn(A,A∗) defined by

(Aϕ) =
∑
γ∈Γ

ε(γ) ϕγ,

where Γ is the group of cyclic permutations of {0, 1, . . . n}. Obviously the range of A
is the subspace Cn

λ (A) of Cn(A,A∗) of cochains which satisfy a). One has

Lemma 6. b ◦A = A ◦ b′ where b′ : Cn(A,A∗)→Cn+1(A,A∗) is defined by the equality

(b′ϕ)(x0, . . . , xn+1) =
n∑

j=0

(−1)j ϕ(x0, . . . , xjxj+1, . . . , xn+1).

Proof. One has, dropping the composition sign ◦ for notational simplicity,

((Ab′)ϕ)(x0, . . . , xn+1) =
n+1∑

k=0

n∑
i=0

(−1)i+(n+1)k ϕ(xk, . . . , xk+ixk+i+1, . . . , xk−1)

where we adopt the convention that the indices cycle back to 0 after n + 1. Then also

((bA)ϕ)(x0, . . . , xn+1)

=
n∑

j=0

(−1)j (Aϕ)(x0, . . . , xjxj+1, . . . , xn+1) + (−1)n+1 (Aϕ)(xn+1x0, . . . , xn).
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For j ∈ {0, . . . n} one has

(Aϕ)(x0, . . . , xjxj+1, . . . , xn+1)

=

j∑

k=0

(−1)nk ϕ(xk, . . . , xjxj+1, . . . , xk−1)

+
n+1∑

k=j+2

(−1)n(k−1) ϕ(xk, . . . , xn+1, x0, . . . , xjxj+1, . . . , xk−1).

Also,

(Aϕ)(xn+1x0, . . . , xn) = ϕ(xn+1x0, . . . , xn)

+
n∑

j=1

(−1)jn ϕ(xj, . . . , xn, xn+1x0, . . . , xj−1).

In all these terms, the xj’s remain in cyclic order, with only two consecutive xj’s
replaced by their product. There are (n + 1)(n + 2) such terms, which all appear in
both bAϕ and Ab′ϕ. Thus, we just have to check the signs in front of Tk,j (k 6= j + 1),
where Tk,j = ϕ(xk, . . . , xjxj+1, . . . , xk−1). For Ab′ we get (−1)i+(n+1)k where i ≡ j − k
(Modn + 2) and 0 ≤ i ≤ n. For bA we get (−1)j+nk if j ≥ k and (−1)j+n(k−1) if
j < k. When j ≥ k one has i = j − k; thus the two signs agree. When j < k one has
i = n + 2− k + j. Then as

n + 2− k + j + (n + 1)k ≡ j + n(k − 1) modulo 2

the two signs still agree.

Corollary 7. (Cn
λ (A), b) is a subcomplex of the Hochschild complex.

We let HCn(A) be the n-th cohomology group of the complex (Cn
λ , b) and we call it

the cyclic cohomology of the algebra A. For n = 0, HC0(A) = Z0
λ(A) is exactly the

linear space of traces on A.

For A = C, one has HCn = 0 for n odd but HCn = C for any even n. This example
shows that the subcomplex Cn

λ is not a retraction of the complex Cn, which for A = C
has a trivial cohomology for all n > 0.

To each homomorphism ρ : A→B corresponds a morphism of complexes ρ∗ : Cn
λ (B)→Cn

λ (A)
defined by

(ρ∗ϕ)(a0, . . . , an) = ϕ(ρ(a0), . . . , ρ(an))

and hence an induced map ρ∗ : HCn(B)→HCn(A).

The map ρ∗ only depends upon the class of ρ modulo inner automorphisms, as follows
from:
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Proposition 8. Let u be an invertible element of A and θ, defined by θ(x) =
uxu−1 for x ∈ A, the corresponding inner automorphism. Then the induced map
θ∗ : HC∗(A)→HC∗(A) is the identity.

Proof. Let a ∈ A and let δ be the corresponding inner derivation of A given by
δ(x) = ax− xa. Given ϕ ∈ Zn

λ (A) let us check that ψ, given by

ψ(a0, . . . , an) =
n∑

i=0

ϕ(a0, . . . , δ(ai), . . . , an),

is a coboundary, i.e. that ψ ∈ Bn
λ(A). Let ψ0(a

0, . . . , an−1) = ϕ(a0, . . . , an−1, a) with a
as above. Let us compute bAψ0 = Ab′ψ0. One has

(b′ψ0)(a
0, . . . , an) =

n−1∑
i=0

(−1)i ϕ(a0, . . . , aiai+1, . . . , an, a)

= (bϕ)(a0, . . . , an, a)− (−1)n ϕ(a0, . . . , an−1, ana)

+ (−1)n ϕ(aa0, . . . , an−1, an).

Since bϕ = 0 by hypothesis, only the last two terms remain and one gets Ab′ψ0 =
(−1)n ψ. Thus, ψ = (−1)n Ab′ψ0 = b((−1)n Aψ0) ∈ Bn

λ(A).

Now let u be an invertible element of A, let ϕ ∈ Zn
λ (A) and define θ(x) = uxu−1 for

x ∈ A. To prove that ϕ and ϕ ◦ θ are in the same cohomology class, one can replace

A by M2(A), u by v =

[
u 0
0 u−1

]
, and ϕ by ϕ2 where, for ai ∈ A and bi ∈ M2(C),

ϕ2(a
0⊗b0, a1⊗b1, . . . , an⊗bn) = ϕ(a0, . . . , an) Trace (b0 · · · bn).

Now v = v1v2 with v1 =

[
u 0
0 1

] [
0 −1
1 0

] [
u−1 0
0 1

]
, v2 =

[
0 1
−1 0

]
. One has vi = exp ai,

ai = π
2

vi, thus the result follows from the above discussion (cf. [371] for a purely
algebraic proof).

We shall now characterize the coboundaries as the cyclic cocycles which extend to cyclic
cocycles on arbitrary algebras containing A. In fact, extendibility to a certain tensor
product C⊗CA algebra will suffice.

Let, as in [326] [327], C be the algebra of infinite matrices (aij)i,j∈N with aij ∈ C, such
that

α) the set of complex number entries {aij} is finite,

β) the number of nonzero aij’s per line or column is bounded.

Then for any algebra A the algebra CA = C⊗CA is algebraically contractible, in that it
verifies the hypothesis of the following lemma, and hence has trivial cyclic cohomology.



1. CYCLIC COHOMOLOGY 196

Lemma 9. Let A be a unital algebra. Assume that there exists a homomorphism ρ :

A→A and an invertible element X of M2(A) such that X

[
a 0
0 ρ(a)

]
X−1 =

[
0 0
0 ρ(a)

]

for a ∈ A. Then HCn(A) = 0 for all n.

Proof. Let ϕ ∈ Zn
λ (A) and ϕ2 be the cocycle on M2(A) defined in the proof of

Proposition 8. For a ∈ A, let α(a) =

[
a 0
0 ρ(a)

]
and β(a) =

[
0 0
0 ρ(a)

]
. By hypothesis

α and β are homomorphisms of A into M2(A) and, by Proposition 8, ϕ2 ◦α and ϕ2 ◦β
are in the same cohomology class. From the definition of ϕ2 one has

ϕ2(α(a0), . . . , α(an)) = ϕ(a0, . . . , an) + ϕ(ρ(a0), . . . , ρ(an)),

ϕ2(β(a0), . . . , β(an)) = ϕ(ρ(a0), . . . , ρ(an)).

Definition 10. We shall say that a cycle vanishes when the algebra Ω0 satisfies the
condition of Lemma 9.

Given an n-dimensional cycle (Ω, d,
∫

) and a homomorphism ρ : A→Ω0, recall that its
character is given by

τ(a0, . . . , an) =

∫
ρ(a0) d(ρ(a1)) · · · d(ρ(an)).

Proposition 11. Let τ be an (n + 1)-linear functional on A; then

α) τ ∈ Zn
λ (A) if and only if τ is the character of a cycle;

β) τ ∈ Bn
λ(A) if and only if τ is the character of a vanishing cycle.

Proof. α) is just a restatement of Proposition 4.

β) For (Ω, d,
∫

) a vanishing cycle, one has HCn(Ω0) = 0, thus the character is a
coboundary. Conversely, if τ ∈ Bn

λ(A), τ = bψ for some ψ ∈ Cn−1
λ (A), one can extend

ψ to CA = C⊗A as an n-linear functional ψ̃ such that

ψ̃(1⊗a0, . . . , 1⊗an−1) = ψ(a0, . . . , an−1) for all ai ∈ A,

and such that ψ̃λ = ε(λ)ψ̃ for any cyclic permutation λ of {0, . . . , n−1}. Let ρ : A→CA
be the obvious homomorphism ρ(a) = 1⊗a. Then τ ′ = bψ̃ is an n-cocycle on CA and
τ = ρ∗τ ′, so that by the implication 3) ⇒ 2) of Proposition 4, τ is the character of a
cycle Ω with Ω0 = CA.

Let us now pass to the definition of the cup product

HC∗(A)⊗HC∗(B)→HC∗(A⊗B).
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In general one does not have Ω∗(A⊗B) = Ω∗(A)⊗Ω∗(B) (where the right-hand side
is the graded tensor product of differential graded algebras) but, from the universal
property of Ω∗(A⊗B), we get a natural homomorphism π : Ω∗(A⊗B)→Ω∗(A)⊗Ω∗(B).

Thus, for arbitrary cochains ϕ ∈ Cn(A,A∗) and ψ ∈ Cm(B,B∗), one can define the
cup product ϕ # ψ by the equality

(ϕ # ψ)̂ = (ϕ̂⊗ψ̂)◦π.

Theorem 12. [102]

1) The cup product ϕ⊗ψ 7→ϕ # ψ defines a homomorphism

HCn(A)⊗HCm(B)−→HCn+m(A⊗B).

2) The character of the tensor product of two cycles is the cup product of their
characters.

Proof. First, let ϕ ∈ Zn
λ (A) and ψ ∈ Zm

λ (B); then ϕ̂ is a closed graded trace on Ω∗(A)

and similarly for ψ̂ on Ω∗(B), and thus ϕ̂⊗ψ̂ is a closed graded trace on Ω∗(A)⊗Ω∗(B)
and ϕ#ψ ∈ Zn+m

λ (A⊗B) by Proposition 4.

Next, given cycles Ω and Ω′ and homomorphisms ρ : A→Ω and ρ′ : B→Ω′, one has a
commutative triangle

Ω∗(A)⊗Ω∗(B)

eρ⊗eρ′
²²

Ω∗(A⊗B)

π
66nnnnnnnnnnnn

(ρ̃⊗ρ′) ((QQQQQQQQQQQQ

Ω⊗ Ω′

Thus, 2) follows.

It remains to show that if ϕ ∈ Bn
λ(A) then ϕ # ψ is a coboundary:

ϕ # ψ ∈ Bn+m
λ (A⊗B).

This follows from Proposition 11 and the trivial fact that the tensor product of any
cycle with a vanishing cycle is vanishing.

Corollary 13.

1) HC∗(C) is a polynomial ring with one generator σ of degree 2.

2) Each HC∗(A) is a module over the ring HC∗(C).
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Proof. 1) It is obvious that HCn(C) = 0 for n odd and HCn(C) = C for n even.
Let e be the unit of C; then any ϕ ∈ Zn

λ (C) is characterized by ϕ(e, . . . , e). Let us
compute ϕ # ψ, where ϕ ∈ Z2m

λ (C) and ψ ∈ Z2m′
λ (C). Since e is an idempotent, one

has in Ω∗(C) the equalities

de = ede + (de)e , e(de)e = 0 , e(de)2 = (de)2e.

Similar identities hold for e⊗e and π(e⊗e) ∈ Ω∗(C)⊗Ω∗(C) and one has

π((e⊗e)d(e⊗e)d(e⊗e)) = edede⊗e + e⊗edede.

Thus, one gets (ϕ # ψ)(e, . . . , e) = (m+m′)!
m!m′! ϕ(e, . . . , e) ψ(e, . . . , e).

2) Let ϕ ∈ Zn
λ (A). Let us choose as a generator of HC2(C) the 2-cocycle σ(e, e, e) = 1.

Let us then check that σ # ϕ = ϕ # σ, and at the same time write an explicit formula
for the corresponding map S : HCn(A)→HCn+2(A).

With the notation of 1) one has

(ϕ # σ)(a0, . . . , an+2) = (ϕ̂⊗σ̂)((a0⊗e)d(a1⊗e) · · · d(an+2⊗e))

= ϕ̂(a0a1a2da3 · · · dan+2)

+ ϕ̂(a0da1(a2a3)da4 · · · dan+2) + · · ·
+ ϕ̂(a0da1 · · · dai−1(aiai+1)dai+2 · · · dan+2) + · · ·
+ ϕ̂(a0da1 · · · dan(an+1an+2)).

The computation of σ # ϕ gives the same result.

For ϕ ∈ Zn
λ (A), let Sϕ = σ # ϕ = ϕ # σ ∈ Zn+2

λ (A). By Theorem 12 we know that
SBn

λ(A)⊂Bn+2
λ (A) but we do not have a definition of S as a morphism of cochain

complexes. We shall now explicitly construct such a morphism.

Recall that ϕ # ψ is already defined at the cochain level by

(ϕ # ψ)̂ = (ϕ̂⊗ψ̂) ◦ π.

Lemma 14. For any cochain ϕ ∈ Cn
λ (A) let Sϕ ∈ Cn+2

λ (A) be defined by Sϕ =
1

n+3
A(σ # ϕ); then

a) 1
n+3

A(σ # ϕ) = σ # ϕ for ϕ ∈ Zn
λ (A), so S extends the previously defined

map.

b) bSϕ = n+1
n+3

Sbϕ for ϕ ∈ Cn
λ (A).

Proof. a) If ϕ ∈ Zn
λ (A) then (σ # ϕ)λ = ε(λ)σ # ϕ for any cyclic permutation λ of

{0, 1, . . . , n + 2}.
b) We shall leave to the reader the tedious check in the special case ψ = σ of the
equality (bAϕ) # ψ = bA(ϕ # ψ) for ϕ ∈ Cm(A,A∗). It is based on the following
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explicit formula for A(ϕ # σ). For any subset with two elements s = {i, j}, i < j, of
{0, 1, . . . , n + 2} = Z/(n + 3) one defines

α(s) = ϕ(a0, . . . , ai−1, aiai+1, . . . , ajaj+1, . . . , an+2).

in the special case j = n + 2 one takes

α(s) = ϕ(an+2a0, . . . , aiai+1, . . . , an+1) if i < n + 1,

α(s) = ϕ(an+1an+2a0, . . . , an) if i = n + 1.

Then one gets A(σ # ϕ) =
∑1+[n/2]

i=1 (−1)i+1 (n + 3− 2i)ψi where, for n even, one has

ψi = α({0, i}) + α({1, i + 1}) + · · ·+ α({n + 2, i− 1}),
and for n odd

ψi = α({0, i}) + · · ·+ α({n + 2− i, n + 2})−α({n + 2− i + 1, 0}) · · · −α{n + 2, i− 1}.

We shall end this section with the following proposition. One can show in general
that, if ϕ ∈ Zn(A,A∗) and ψ ∈ Zm(B,B∗) are Hochschild cocycles, then ϕ # ψ is
still a Hochschild cocycle ϕ # ψ ∈ Zn+m(A⊗B,A∗⊗B∗) and that the corresponding
product of cohomology classes is related to the product ∨ of [80], p.216, by [ϕ # ψ] =
(n+m)!

n!m!
[ϕ] ∨ [ψ]. Since σ ∈ Z2(C,C) is a Hochschild coboundary one has:

Proposition 15. For any cocycle ϕ ∈ Zn
λ (A), Sϕ is a Hochschild coboundary: Sϕ =

bψ, where

ψ(a0, . . . , an+1) =
n+1∑
j=1

(−1)j−1 ϕ̂(a0(da1 · · · daj−1) aj(daj+1 · · · dan+1)).

Proof. One checks that the coboundary of the j-th term in the sum defining ψ gives

ϕ̂(a0(da1 · · · daj−1) ajaj+1(daj+2 · · · dan+2)).

1.β Cobordisms of cycles and the operator B. By a chain of dimension n+1
we shall mean a quadruple (Ω, ∂Ω, d,

∫
) where Ω and ∂Ω are differential graded algebras

of dimensions n + 1 and n with a given surjective morphism r : Ω→∂Ω of degree 0,
and where

∫
: Ωn+1→C is a graded trace such that

∫
dω = 0, ∀ω ∈ Ωn such that r(ω) = 0.

By the boundary of such a chain we mean the cycle (∂Ω, d,
∫ ′

) where for ω′ ∈ (∂Ω)n

one takes
∫ ′

ω′ =
∫

dω for any ω ∈ Ωn with r(ω) = ω′. One easily checks, using the

surjectivity of r, that
∫ ′

is a graded trace on ∂Ω which is closed by construction.
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Definition 16. Let A be an algebra, and let A→ρΩ and A→ρ′Ω′ be two cycles over
A. We shall say that these cycles are cobordant over A if there exists a chain Ω′′

with boundary Ω⊕Ω̃′ (where Ω̃′ is obtained from Ω′ by changing the sign of
∫
) and a

homomorphism ρ′′ : A→Ω′′ such that r ◦ ρ′′ = (ρ, ρ′).

Using a fiber product of algebras one checks that the relation of cobordism is transitive.
It is obviously symmetric. Let us check that any cycle over A is cobordant to itself.
Let Ω0 = C∞([0, 1]), Ω1 be the space of C∞ 1-forms on [0, 1], and d be the usual
differential. Set ∂Ω = C⊕C and take

∫
to be the usual integral. Then taking for r the

restriction of functions to the boundary, one gets a chain of dimension 1 with boundary
(C⊕C, d, ϕ), by defining ϕ(a, b) = a−b. Tensoring a given cycle over A with the above
chain gives the desired cobordism. Equivalently, one could replace smooth functions in
the above chain by polynomials.

Thus, cobordism is an equivalence relation. The main result of this section is a precise
description of its meaning for the characters of the cycles. We shall assume throughout
that the algebra A is unital.

Lemma 17. Let τ1, τ2 be the characters of two cobordant cycles over A. Then there
exists a Hochschild cocycle ϕ ∈ Zn+1(A,A∗) such that τ1 − τ2 = B0ϕ, where

(B0ϕ)(a0, . . . , an) = ϕ(1, a0, . . . , an)− (−1)n+1 ϕ(a0, . . . , an, 1).

Proof. With the notation of Definition 16, let

ϕ(a0, . . . , an+1) =

∫
ρ′′(a0) dρ′′(a1) · · · dρ′′(an+1) , ∀ai ∈ A.

Let
ω = ρ′′(a0) dρ′′(a1) · · · dρ′′(an) ∈ (Ω′′)n.

Then by hypothesis one has

(τ1 − τ2)(a
0, a1, . . . , an) =

∫
dω.

Since ρ′′(a0) = ρ′′(1) ρ′′(a0) one has

dω = (dρ′′(1)) ρ′′(a0) dρ′′(a1) · · · dρ′′(an) + ρ′′(1) dρ′′(a0) · · · dρ′′(an).

Using the tracial property of
∫

one gets
∫

dω = (−1)n ϕ(a0, a1, . . . , an, 1) + ϕ(1, a0, . . . , an).

Using again the tracial property of
∫

one checks that ϕ is a Hochschild cocycle.

Lemma 18. Let τ1, τ2 ∈ Zn
λ (A) and assume that τ1 − τ2 = B0ϕ for some ϕ ∈

Zn+1(A,A∗). Then any two cycles over A with characters τ1 and τ2 are cobordant.
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Proof. Let A→ρΩ be a cycle over A with character τ . Let us first show that it is
cobordant with (Ω∗(A), τ̂). In the above cobordism of Ω with itself, with restriction
maps r0 and r1, we can consider the subalgebra {ω; r1(ω) ∈ Ω′}, where Ω′ is the graded
differential subalgebra of Ω generated by ρ(A). This defines a cobordism of Ω with Ω′.
Now the homomorphism ρ̃ : Ω∗(A)→Ω′ is surjective, and satisfies ρ̃∗

∫
= τ̂ . Thus, one

can modify the restriction map in the canonical cobordism of (Ω∗(A), τ̂) with itself to
get a cobordism of (Ω∗(A), τ̂) with Ω′.

Let us show that (Ω∗(A), τ̂1) and (Ω∗(A), τ̂2) are cobordant. Let µ be the linear func-
tional on Ωn+1(A) defined by

1) µ(a0da1 · · · dan+1) = ϕ(a0, . . . , an+1),

2) µ(da1 · · · dan+1) = (B0ϕ)(a1, . . . , an+1).

Let us check that µ is a graded trace on Ω∗(A). We already know by the Hochschild
cocycle property of ϕ that

µ(a(bω)) = µ((bω)a) , ∀a, b ∈ A , ω ∈ Ωn+1.

Let us check that µ(aω) = µ(ωa) for ω = da1 · · · dan+1. The right side, µ(ωa), gives

µ
( n∑

j=1

(−1)n+1−j da1 · · · d(ajaj+1) · · · dan+1 da

+ da1da2 · · · dand(an+1a)
)

+ (−1)n+1 µ(a1da2 · · · dan+1da)

=
n∑

j=1

(−1)n+1−j (B0ϕ)(a1, . . . , ajaj+1, . . . , an+1, a)

+ (B0ϕ)(a1, a2, . . . , an+1a) + (−1)n+1 ϕ(a1, a2, . . . , an+1, a)

= (−1)n ((b′B0ϕ)− ϕ)(a1, a2, . . . , an+1, a).

Now one checks that for an arbitrary cochain ϕ ∈ Cn+1(A,A∗) one has

B0bϕ + b′B0ϕ = ϕ− (−1)n+1 ϕλ,

where λ is the cyclic permutation λ(i) = i − 1. Here ϕ is a cocycle, bϕ = 0 and
b′B0ϕ− ϕ = (−1)n ϕλ so that µ(ωa) = ϕ(a, a1, . . . , an+1) = µ(aω).

It remains to check that for any a ∈ A and ω ∈ Ωn one has

µ((da)ω) = (−1)n µ(ωda).

For ω ∈ dΩn−1 this follows from the fact that B0ϕ ∈ Cn
λ (recall that B0ϕ = τ1 − τ2).

For ω = a0da1 · · · dan it is a consequence of the cocycle property of B0ϕ. Indeed, one
has bB0ϕ = 0, hence b′B0ϕ(a0, a1, . . . , an, a) = (−1)n B0ϕ(aa0, a1, . . . , an) and since
b′B0ϕ = ϕ− (−1)n+1 ϕλ we get

ϕ(a0, . . . , an, a)− (−1)n+1 ϕ(a, a0, . . . , an) = (−1)n (B0ϕ)(aa0, a1, . . . , an),

i.e. that µ((da)a0da1 · · · dan) = (−1)n µ(a0da1 · · · danda).
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To end the proof of Lemma 18 one modifies the natural cobordism between (Ω∗(A), τ̂1)
and itself, given by the tensor product of Ω∗(A) with the algebra of differential forms
on [0, 1], by adding to the integral the term µ ◦ r1, where r1 is the restriction map to
{1}⊂[0, 1].

Putting together Lemmas 17 and 18 we see that two cocycles τ1, τ2 ∈ Zn
λ (A) cor-

respond to cobordant cycles if and only if τ1 − τ2 belongs to the subspace Zn
λ (A) ∩

B0(Z
n+1(A,A∗)).

We shall now work out a better description of this subspace. Since Aτ = (n + 1)τ
for any τ ∈ Cn

λ (A), where A is the operator of cyclic antisymmetrisation, the above
subspace is clearly contained in B(Zn+1(A,A∗)), where B = AB0 : Cn+1→Cn.

Lemma 19.

a) One has bB = −Bb.

b) One has Zn
λ (A) ∩B0(Z

n+1(A,A∗)) = BZn+1(A,A∗).

Proof. a) For any cochain ϕ ∈ Cn+1(A,A∗), one has

B0bϕ + b′B0ϕ = ϕ− (−1)n+1 ϕλ,

where λ is the cyclic permutation, λ(i) = i−1 modulo n+2. Applying A to both sides
gives AB0bϕ + Ab′B0ϕ = 0. Thus, the result follows from Lemma 6.

b) By a) one has BZn+1(A,A∗)⊂Zn
λ (A). Let us show that

BZn+1(A,A∗)⊂B0Z
n+1(A,A∗).

Let β ∈ BZn+1(A,A∗), so that β = Bϕ, ϕ ∈ Zn+1(A,A∗).

We shall construct in a canonical way a cochain ψ ∈ Cn(A,A∗) such that 1
n+1

β =

B0(ϕ−bψ). Let θ = B0ϕ− 1
n+1

β; this implies Aθ = 0. Thus, there exists a canonical ψ

such that ψ− ε(λ)ψλ = θ, where λ is the generator of the group of cyclic permutations
of {0, 1, . . . , n}, λ(i) = i− 1. We just have to check the equality

B0bψ = θ.

Using the equality B0bψ + b′B0ψ = ψ − ε(λ)ψλ, we just have to show that b′B0ψ = 0.
One has

B0ψ(a0, . . . , an−1) = ψ(1, a0, . . . , an−1)− (−1)n ψ(a0, . . . , an−1, 1)

= (−1)n−1 (ψ − ε(λ)ψλ)(a0, . . . , an−1, 1) = (−1)n−1 θ(a0, . . . , an−1, 1)

= (−1)n−1 (ϕ(1, a0, . . . , an−1, 1)− (−1)n+1 ϕ(a0, . . . , an−1, 1, 1))

+ 1
n+1

(−1)n β(a0, . . . , an−1, 1).
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The contribution of the first two terms to b′B0ψ(a0, . . . , an) is, since bϕ = 0,

(−1)n−1

n−1∑
j=0

(−1)j
(
ϕ(1, a0, . . . , ajaj+1, . . . , an, 1)

+ (−1)n ϕ(a0, . . . , ajaj+1, . . . , an, 1, 1)
)

= (−1)n (bϕ(1, a0, . . . , an, 1)− ϕ(a0, . . . , an, 1))

− (bϕ(a0, . . . , an, 1, 1)− (−1)n ϕ(a0, . . . , an, 1)) = 0.

The contribution of the second term is proportional to

n−1∑
j=0

(−1)j β(a0, . . . , ajaj+1, . . . , an, 1) = bβ(a0, . . . , an, 1) = 0.

Corollary 20.

1) The image of B : Cn+1→Cn is exactly Cn
λ .

2) Bn
λ(A)⊂B0Z

n+1(A,A∗).

Proof. 1) ⇒ 2) since, assuming 1), any bϕ, ϕ ∈ Cn+1
λ , is of the form bBψ = −Bbψ

and hence belongs to BZn+1(A,A∗), so that the conclusion follows from Lemma 19b).
To prove 1) let ϕ ∈ Cn

λ . Choose a linear functional ϕ0 on A with ϕ0(1) = 1, and then
let

ψ(a0, . . . , an+1) = ϕ0(a
0) ϕ(a1, . . . , an+1)

+ (−1)n ϕ((a0 − ϕ0(a
0)1), a1, . . . , an) ϕ0(a

n+1).

One has ψ(1, a0, . . . , an) = ϕ(a0, . . . , an) and

ψ(a0, . . . , an, 1) = ϕ0(a
0) ϕ(a1, . . . , an, 1) + (−1)n ϕ(a0, a1, . . . , an)

+ (−1)n+1 ϕ0(a
0) ϕ(1, a1, . . . , an) = (−1)n ϕ(a0, . . . , an).

Thus, B0ψ = 2ϕ and ϕ ∈ ImB.

We are now ready to state the main result of this section. By Lemma 19 a) one has a
well-defined map B from the Hochschild cohomology group Hn+1(A,A∗) to HCn(A).

Theorem 21. [102] Two cycles over A are cobordant if and only if their characters
τ1, τ2 ∈ HCn(A) differ by an element of the image of B, where

B : Hn+1(A,A∗)→HCn(A).

It is clear that the direct sum of two cycles over A is still a cycle over A and that
cobordism classes of cycles over A form a group M∗(A). The tensor product of cycles
gives a natural map: M∗(A)×M∗(B)→M∗(A⊗B). Since M∗(C) is equal to HC∗(C) =
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C[σ] as a ring, each of the groups M∗(A) is a C[σ]-module and, in particular, a vector
space. By Theorem 21 this vector space is HC∗(A)/ImB.

The same group M∗(A) has a closely related interpretation in terms of graded traces
on the differential algebra Ω∗(A) defined following Proposition 3. Recall that, by
Proposition 4, the map τ 7→τ̂ is an isomorphism of Zn

λ (A) with the space of closed
graded traces of degree n on Ω∗(A).

Theorem 22. [102] The map τ 7→τ̂ gives an isomorphism of HCn(A)/ImB with the
quotient of the space of closed graded traces of degree n on Ω∗(A) by those of the form
dtµ, µ a graded trace on Ω∗(A) of degree n + 1.

Here dt denotes the natural differential induced on the graded traces.

Proof. We have to show that, given τ ∈ Zn
λ (A), one has τ̂ = dtµ for some graded

trace µ if and only if τ ∈ ImB ⊃ Bn
λ . Assume first that τ̂ = dtµ. Then as in Lemma

17, one gets τ = B0ϕ where ϕ ∈ Zn+1(A,A∗) is the Hochschild cocycle

ϕ(a0, a1, . . . , an+1) = µ(a0da1 · · · dan+1) , ∀ai ∈ A.

Thus, τ = 1
n+1

AB0ϕ ∈ ImB.

Conversely, if τ ∈ ImB, then by Lemma 19 b) one has τ = B0ϕ for some ϕ ∈
Zn+1(A,A∗). Defining the linear functional µ on Ωn+1(A) as in Lemma 18 we get
a graded trace such that

µ(da0da1 · · · dan) = τ(a0, . . . , an) ∀ai ∈ A
i.e.

µ(dω) = τ̂(ω) , ∀ω ∈ Ωn(A).

Thus, M∗(A) is the homology of the complex of graded traces on Ω∗(A) with the
differential dt. This theory is dual to the theory obtained as the cohomology of the
quotient of the complex (Ω∗(A), d) by the subcomplex of commutators. The latter
appears independently in the work of M. Karoubi [323] as a natural range for the
higher Chern character defined on all the Quillen algebraic K-theory groups Ki(A).
Thus, Theorem 22 (and the analogous dual statement) allows one

1) to apply Karoubi’s results [323] to extend the pairing of Section 3 (below) to
all Ki(A);

2) to apply the results of section γ) (below) to compute the cohomology of the
complex (Ω∗(A)/[ , ], d).
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1.γ The exact couple relating HC∗(A) to Hochschild cohomology. By con-
struction, the complex (Cn

λ (A), b) is a subcomplex of the Hochschild complex (Cn(A,A∗), b),
i.e. the identity map I is a morphism of complexes and gives an exact sequence

0→Cn
λ

I→Cn→Cn/Cn
λ→0.

To this there corresponds a long exact sequence of cohomology groups.

We shall prove in this section that the cohomology of the complex C/Cλ is Hn(C/Cλ) =
Hn−1(Cλ).

Thus, the long exact sequence of the above triple will take the form

0→HC0(A)
I→ H0(A,A∗)→HC−1(A)→HC1(A)

I→H1(A,A∗)

→ HC0(A)→HC2(A)
I→· · ·

→ HCn(A)
I→Hn(A,A∗)→HCn−1(A)

→ HCn+1(A)
I→Hn+1(A,A∗)→· · · .

On the other hand we have already constructed morphisms of cochain complexes S
and B which have precisely the right degrees:

S : HCn−1(A)→HCn+1(A),

B : Hn(A,A∗)→HCn−1(A).

We shall prove that these are exactly the maps involved in the above long exact se-
quence, which now takes the form

· · ·HCn(A)
I→Hn(A,A∗) B→HCn−1(A)

S→HCn+1(A)
I→· · · .

Finally, to the pair b, B corresponds a double complex as follows: Cn,m = Cn−m(A,A∗)
(i.e. Cn,m is 0 above the main diagonal) where the first differential Cn,m→Cn+1,m is
given by the Hochschild coboundary b and the second differential Cn,m→Cn,m+1 is
given by the operator B.

By Lemma 19 one has the graded commutation of b and B. In addition, one checks
that B2 = 0. By construction, the cohomology of this double complex depends only
upon the parity of n, and we shall prove that the sum of the even and odd groups is
canonically isomorphic to

HC∗(A)⊗HC∗(C)C = H∗(A)

where HC∗(C) acts on C by evaluation at σ = 1.

The second filtration of this double complex
(
F q =

∑
m≥q Cn,m

)
yields the same filtra-

tion of H∗(A) as the filtration by dimensions of cycles. The associated spectral sequence
is convergent and coincides with the spectral sequence coming from the above exact
couple. All these results are based on the next two lemmas.
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Figure 1. The (b, B) bicomplex

Lemma 23. Let ψ ∈ Cn(A,A∗) be such that bψ ∈ Cn+1
λ (A). Then Bψ ∈ Zn−1

λ (A)
and SBψ = n(n + 1)bψ in HC∗(A).

Proof. One has Bψ ∈ Cn−1
λ by construction, and bBψ = −Bbψ = 0 since bψ ∈ Cn+1

λ .
Thus, Bψ ∈ Zn−1

λ . In the same way bψ ∈ Zn+1
λ .

Let ϕ = Bψ; by Proposition 15 one has Sϕ = bψ′ where

ψ′(a0, . . . , an) =
n∑

j=1

(−1)j−1 ϕ̂(a0(da1 · · · daj−1) aj(daj+1 · · · dan)).

It remains to find ψ′′ such that ψ′′ − ψ ∈ Bn and such that

ψ′ − ε(λ) ψ′λ = n(n + 1)(ψ′′ − ε(λ) ψ′′λ)
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where λ(i) = i− 1 for i ∈ {1, . . . , n} and λ(0) = n. Let us first check that

(ψ′ − ε(λ) ψ′λ)(a0, . . . , an) = (−1)n−1 (n + 1) ϕ(ana0, a1, . . . , an−1).

One has

ψ′λ(a0, . . . , an) =
n−1∑
j=0

(−1)j ϕ̂((da0 · · · daj−1) aj(daj+1 · · · dan−1)an).

Let
ωj = a0(da1 · · · daj−1) aj(daj+1 · · · dan−1)an.

Then

dωj = (da0 · · · daj−1) aj(daj+1 · · · dan−1)an

+ (−1)j−1 a0(da1 · · · daj · · · dan−1)an

+ (−1)n a0(da1 · · · daj−1) aj(daj+1 · · · dan).

Thus, for j ∈ {1, . . . , n− 1} one has

(−1)j−1 ϕ̂(a0(da1 · · · daj−1) aj(daj+1 · · · dan))

− ε(λ)(−1)j ϕ̂(da0 · · · daj−1) aj(daj+1 · · · dan−1)an)

= (−1)n−1 ϕ(ana0, a1, . . . , an−1).

Taking into account the cases j = 0 and j = n gives the desired result.

Let us now determine ψ′′, ψ′′ − ψ ∈ Bn(A,A∗) such that

(ψ′′ − ε(λ) ψ′′λ)(a0, . . . , an) = (−1)n−1

n
ϕ(ana0, . . . , an−1).

Let θ = B0ψ and write θ = θ1 + θ2 with Aθ1 = 0, θ2 ∈ Cn−1
λ (A) so that θ2 = 1

n
ϕ.

Since Aθ1 = 0 there exists ψ1 ∈ Cn−1 such that θ1 = Dψ1 where Dψ1 = ψ1 − ε(λ) ψλ
1 .

Parallel to Lemma 6 one checks that D ◦ b = b′ ◦ D and hence D(bψ1) = b′θ1. Let
ψ′′ = ψ − bψ1. As D = B0b + b′B0 we get Dψ = b′B0ψ = b′θ1 + b′θ2 hence Dψ′′ =
b′θ2 = 1

n
b′ϕ. Finally since bϕ = 0 one has

b′ϕ = (−1)n−1 ϕ(ana0, a1, . . . , an−1).

As an immediate application of this lemma we get:

Corollary 24. The image of S : HCn−1(A)→HCn+1(A) is the kernel of the map
I : HCn+1(A)→Hn+1(A,A∗).

This is a really useful criterion for deciding when a given cocycle is a cup product by
HC2(C), a question which arises naturally in determining the dimension of a given
class in H∗(A). In particular, it shows that if V is a compact manifold of dimension m,
and if we take A = C∞(V ), any cocycle τ in HCn(A) (satisfying the obvious continuity
requirements (cf. Section 2)) is in the image of S for n > m = dim V .

Let us now prove the second important lemma:
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Lemma 25. The natural map

(ImB ∩Kerb)/b(ImB)→(KerB ∩Kerb)/b(KerB)

is bijective.

Proof. Let us show the injectivity. Let ϕ ∈ ImB∩Kerb, say ϕ ∈ Zn+1
λ (A), and assume

ϕ ∈ b(KerB). Then Lemma 23 shows that ϕ and S(0) = 0 are in the same class in
HCn+1(A), and hence ϕ ∈ b(ImB).

Let us show the surjectivity. Let ϕ ∈ Zn+1(A,A∗), Bϕ = 0 and ψ ∈ Cn(A,A∗), with
ψ − ε(λ)ψλ = B0ϕ. As above one gets B0bψ = B0ϕ. This shows that ϕ′ = ϕ − bψ ∈
Zn+1

λ (A) since Dϕ′ = B0bϕ
′ + b′B0ϕ

′ = 0. Let us show that Bψ ∈ bCn−2
λ . Since

ψ − ε(λ) ψλ = B0bψ one has b′B0ψ = 0. One checks easily that b
′2 = 0 and that the

b′ cohomology on Cn(A,A∗) is trivial (if b′ϕ1 = 0 one has b′ϕ1(a
0, . . . , an, 1) = 0, i.e.

ϕ1 = b′ϕ2, where

ϕ2(a
0, . . . , an−1) = (−1)n−1 ϕ1(a

0, . . . , an−1, 1)).

Thus, B0ψ = b′θ for some θ ∈ Cn−2, and Bψ = Ab′θ = bAθ ∈ bCn−2
λ .

Thus, since Cn−2
λ = ImB one has Bψ = bBθ1 for some θ1 ∈ Cn−1, i.e. ψ + bθ1 ∈ KerB

and bψ ∈ b(KerB). As ϕ− bψ ∈ Zn+1
λ this ends the proof of the surjectivity.

Putting together the above Lemmas 23 and 25 we arrive at an expression for S :
HCn−1(A)→HCn+1(A) involving b and B:

S = n(n + 1)bB−1.

More explicitly, given ϕ ∈ Zn−1
λ (A) one has ϕ ∈ ImB, thus ϕ = Bψ for some ψ, and

this uniquely determines bψ ∈ (Kerb ∩ KerB)/b(KerB) = HCn+1(A). To check that
bψ is equal to 1

n(n+1)
Sϕ one chooses ψ as in Proposition 15

ψ(a0, . . . , an) = 1
n(n+1)

n∑
j=1

(−1)j−1 ϕ̂(a0(da1 · · · daj−1) aj(daj+1 · · · dan)).

As an immediate corollary we get

Theorem 26. [102] The following triangle is exact:

H∗(A,A∗)
B

xxppppppppppp

HC∗(A)
S // HC∗(A)

I
ffNNNNNNNNNNN
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Proof. We have already seen that ImS = KerI. By the above description of S one has
KerS = ImB. Next B ◦ I = 0 since B is equal to 0 on Cλ. Finally, if ϕ ∈ Zn(A,A∗)
and Bϕ ∈ Bn−1

λ , Bϕ = bBθ for some θ ∈ Cn−1, so that

ϕ + bθ ∈ KerB ∩Kerb⊂ImI + b(KerB)

by Lemma 25. Thus, KerB = ImI.

We shall now identify the long exact sequence given by Theorem 26 with the one
derived from the exact sequence of complexes

0→Cλ→C→C/Cλ→0.

Corollary 27. The morphism of complexes B : C/Cλ→C induces an isomorphism of
Hn(C/Cλ) with HCn−1(A) and identifies the above triangle with the long exact sequence
derived from the exact sequence of complexes 0→Cλ→C→C/Cλ→0.

Proof. This follows from the five lemma applied to

Hn(Cλ) // Hn(C) // Hn(C/Cλ) //

B
²²

Hn+1(Cλ) // Hn+1(C)

HCn(A)
I // Hn(A,A∗) B // HCn−1(A)

S // HCn+1(A) // Hn+1(A,A∗)

Together with Theorem 21 we get:

Corollary 28. [102]

a) Two cycles with characters τ1 and τ2 are cobordant if and only if Sτ1 = Sτ2 in
HC∗(A).

b) One has a canonical isomorphism

M∗(A)⊗M∗(C)C = H∗(A).

c) Under that isomorphism the canonical filtration F nH∗(A) corresponds to the
filtration of the left side by the dimension of the cycles.

Proof of 28 b). Both sides are identical with the inductive limit of the system
(HCn(A), S).

Let us now carefully normalize the two differentials d1 and d2 of the double complex
C∗ so that the map S is given simply by d1d

−1
2 . This is done as follows:

a) Cn,m = Cn−m(A,A∗), ∀n,m ∈ Z;

b) for ϕ ∈ Cn,m, d1ϕ = (n−m + 1) bϕ ∈ Cn+1,m;

c) for ϕ ∈ Cn,m, d2ϕ = 1
n−m

Bϕ ∈ Cn,m+1 (if n = m, the latter is 0).
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Note that d1d2 = −d2d1 follows from Bb = −bB.

Theorem 29. [102]

a) The initial term E2 of the spectral sequence associated to the first filtration
FpC =

∑
n≥p Cn,m is equal to 0.

b) Let F qC =
∑

m≥q Cn,m be the second filtration; then Hp(F qC) = HCn(A) for
n = p− 2q.

c) The cohomology of the double complex C is given by

Hn(C) = Hev(A) if n is even

and
Hn(C) = Hodd(A) if n is odd.

d) The spectral sequence associated to the second filtration is convergent: it con-
verges to the associated graded

∑
F qH∗(A)/F q+1H∗(A) and it coincides with

the spectral sequence associated with the exact couple. In particular, its initial
term E2 is

Ker(I ◦B)/Im(I ◦B).

Proof. a) Let us consider the exact sequence of complexes of cochains

0→ImB→KerB→KerB/ImB→0,

where the coboundary is b. By Lemma 25 the first map, ImB→KerB, becomes an
isomorphism in cohomology, thus the b cohomology of the complex KerB/ImB is 0.

b) Let ϕ ∈ (F qC)p =
∑

m≥q,n+m=p Cn,m, satisfy dϕ = 0, where d = d1 + d2. By a) it is

cohomologous in F qC to an element ψ of Cp−q,q. Then dψ = 0 means ψ ∈ Kerb∩KerB,
and ψ ∈ Imd means ψ ∈ b(KerB). Thus, using the isomorphism from Lemma 25,

(Kerb ∩KerB)/b(KerB) = HCp−2q(A)

one gets the result.

c) By the computation in Lemma 23 of S as d1d
−1
2 we see that the map from Hp(F qC)

to Hp(F q−1C) is the map (−S) from HCp−2q(A) to HCp−2q+2(A); thus the result is
immediate.

d) The convergence of the spectral sequence is obvious, since Cn,m = 0 for m > n.
Since the filtration of Hn(C) given by Hn(F qC) coincides with the natural filtration of
H∗(A) (cf. the proof of c)), the limit of the spectral sequence is the associated graded

∑
q

F q Hev(A)/F q+1 Hev(A) for n even,

∑
q

F q Hodd(A)/F q+1 Hodd(A) for n odd.
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It is clear that the initial term E2 is KerI◦B/ImI◦B. One then checks that it coincides
with the spectral sequence of the exact couple.

Remarks 30. a) We shall throughout this book identify the cyclic cohomology
HCn(A) with Hp(F qC), n = p − 2q, in the (d1, d2) bicomplex using the following
sign convention dictated by the − sign appearing in the proof of Theorem 29 c)

ϕ ∈ Zn
λ (A)→(−1)[n/2] ϕ ∈ Cp−q,q.

This sign is important in comparing the various expressions for the pairing of cyclic
cohomology with K-theory.

b) Action of H∗(A,A). Using the product ∨ of [80]

Hn(A,M1)⊗Hm(A,M2)→Hn+m(A,M1⊗AM2)

one sees that H∗(A,A) becomes a graded commutative algebra (making use of the
equality A⊗AA = A, as A-bimodules) which acts on H∗(A,A∗) (since A⊗AA∗ = A∗).
In particular any derivation δ of A defines an element [δ] of H1(A,A). The explicit
formula of [80] for the product ∨ would give, at the cochain level

(ϕ ∨ δ)(a0, a1, . . . , an+1) = ϕ(δ(an+1)a0, a1, . . . , an) , ∀ϕ ∈ Zn(A,A∗).

One checks that at the level of cohomology classes it coincides with

(δ # ϕ)(a0, a1, . . . , an+1)

= 1
n+1

n+1∑
j=1

(−1)j ϕ̂(a0(da1 · · · daj−1) δ(aj)(daj+1 · · · dan+1)) .

With the latter formula one checks the equality

δ∗ϕ = (I ◦B)(δ#ϕ) + δ#((I ◦B)ϕ) in Hn+1(A,A∗)

where δ∗ϕ(a0, . . . , an) =
∑n

i=1 ϕ(a0, . . . , δ(ai), . . . , an) for all ai ∈ A. This is the natural
extension of the basic formula of differential geometry ∂X = diX + iXd, expressing the
Lie derivative with respect to a vector field X on a manifold.

c) Homotopy invariance of H∗(A). Let A be an algebra (with unit), B a locally convex
topological algebra and ϕ ∈ Zn

λ (B) a continuous cocycle (cf. Appendix B). Let ρt,
t ∈ [0, 1], be a family of homomorphisms ρt : A→B such that

for all a ∈ A , the map t ∈ [0, 1]→ρt(a) ∈ B is of class C1.

Then the images by S of the cocycles ρ∗0ϕ and ρ∗1ϕ coincide. To prove this one extends
the Hochschild cocycle ϕ # ψ on B⊗C1([0, 1]) giving the cobordism of ϕ with itself

(i.e. ψ(f 0, f 1) =
∫ 1

0
f 0df 1 , ∀f i ∈ C1([0, 1])) to a Hochschild cocycle on the algebra

C1([0, 1],B) of C1-maps from [0, 1] to B. Then the map ρ : A→C1([0, 1],B), (ρ(a))t =
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ρt(a), defines a chain over A and is a cobordism of ρ∗0ϕ with ρ∗1ϕ. This shows that if
one restricts to continuous cocycles, one has

ρ∗0 = ρ∗1 : H∗(B)→H∗(A).

d) Excision. Since the cohomology theory HC∗(A) is defined from the cohomology of
a complex (Cn

λ , b), a relative theory HC∗(A,B) can be developed for pairs A→πB of
algebras, where π is a surjective homomorphism. To the exact sequence of complexes

0→Cn
λ (B)→π∗Cn

λ (A)→Cn
λ (A,B) = Cn

λ (A)/Cn
λ (B)→0

corresponds a long exact sequence of cohomology groups. Using the five lemma, the
results of this section on the absolute groups extend easily to the relative groups,
provided that one also extends Hochschild theory H∗(A,A∗) to the relative case.

M. Wodzicki ([588]) has characterized the non-unital algebras which satisfy excision
in Hochschild and cyclic homology by the very simple property of H-unitality: An
algebra A (over C) is H-unital iff the b′ complex is acyclic.

In [158] J. Cuntz and D. Quillen have shown that excision holds in full generality in
periodic cyclic cohomology.

2. Examples

The results of Section 1.γ), such as Theorem 26, provide very powerful tools to compute
the cyclic cohomology of a given algebra A by tying it up with the standard tools
of homological algebra available to compute Hochschild cohomology from projective
resolutions of A viewed as an A-bimodule. We shall illustrate this by two examples α)
and β). In example γ) we describe the result of D. Burghelea for the cyclic cohomology
of the group ring A = CΓ of a discrete group Γ.

2.α A = C∞(V ), V a compact smooth manifold. We endow this algebra
A = C∞(V ) with its natural Fréchet space topology and only consider continuous
multilinear forms on A (cf. Appendix B). Thus, the topology of A is given by the
seminorms pn(f) = sup|α|≤n |∂αf |, using local charts in V . As a locally convex vector

space, C∞(V ) is then nuclear, so that topological tensor products are uniquely defined,
and for any integer n the n-fold topological tensor product

C∞(V )⊗̂ · · · ⊗̂C∞(V ) = C∞(V )
b⊗n

is canonically isomorphic to C∞(V n).

In particular the algebra B = A⊗̂Ao is canonically isomorphic to the algebra C∞(V×V ).
Thus, A, viewed as an A-bimodule, corresponds to the B-module given by the diagonal
inclusion

∆ : V→V×V , ∆(p) = (p, p) ∀p ∈ V.



2. EXAMPLES 213

Using a projective resolution of the diagonal in V×V one gets

Proposition 1. [102] Let V be a smooth compact manifold and A the locally convex
topological algebra C∞(V ). Then

a) The following map ϕ→Cϕ is a canonical isomorphism of the continuous Hochschild
cohomology group Hk(A,A∗) with the space Dk of k-dimensional de Rham cur-
rents on V :

〈Cϕ, f 0df 1∧ · · · ∧dfk〉 =
1

k!

∑
σ∈Sk

ε(σ) ϕ(f 0, fσ(1), . . . fσ(k))

∀f 0, . . . , fk ∈ C∞(V ).

b) Under the isomorphism C the operator I◦B : Hk(A,A∗)→Hk−1(A,A∗) is ( k
times) the de Rham boundary dt for currents.

We refer to [102] for the proof. The analogous statement for the algebra of polynomials
on an affine variety is due to Hochschild-Kostant-Rosenberg [283].

In particular, we recover from this proposition the de Rham complex of the manifold
V without any appeal to the commutativity of the algebra A, which is used in a
crucial manner in the construction of the exterior algebra. Thus, for instance, if we
replace the algebra A in Proposition 1 by the algebra Mq(A) = Mq(C)⊗A of matrices
over A we lose the commutativity and the exterior algebra but the cohomology groups
Hk(A,A∗), the operators I, B . . . still make sense and yield, using the Morita invariance
of Hochschild cohomology ([80]) the same result as for k = 1. The formula (a) is no
longer valid and the Hochschild cocycle (class) associated to a current C ∈ Dk is now
given by the formula:

ϕC(f 0⊗µ0, f 1⊗µ1, . . . , fk⊗µk) = 〈C, f 0df1∧ · · · ∧dfk〉 Trace(µ0 · · ·µk)

∀f j ∈ C∞(V ) , µj ∈ Mq(C).

Let us now compute the cyclic cohomology HC∗(C∞(V )).

Theorem 2. [102] Let A be the locally convex topological algebra C∞(V ). Then

1) For each k, HCk(A) is canonically isomorphic to the direct sum

Kerb(⊂Dk)⊕Hk−2(V,C)⊕Hk−4(V,C)⊕ · · ·
where Hq(V,C) is the usual de Rham homology of V and b the de Rham bound-
ary.

2) H∗(A) is canonically isomorphic to the de Rham homology H∗(V,C), with
filtration by dimension.
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Proof. 1) Let us explicitly describe the isomorphism. Let ϕ ∈ HCk(A). Then the
current C associated to I(ϕ) is given by

〈C, f 0df 1∧ · · · ∧dfk〉 =
1

k!

∑
σ∈Sk

ϕ(f 0, fσ(1), . . . , fσ(k)).

It is closed since B(I(ϕ)) = 0, so that the cochain

ϕ(f 0, f 1, . . . , fk) = 〈C, f 0df 1∧ · · · ∧dfk〉
belongs to Zk

λ(A). The class of ϕ − ϕ in HCk(A) is well determined, and is by con-
struction in the kernel of I. Thus, by Theorem 26 there exists ψ ∈ HCk−2(A) with
Sψ = ϕ−ϕ, and ψ is unique modulo the image of B. Thus, the homology class of the
closed current C(I(ψ)) is well determined. Moreover, the class of ψ − ψ in HCk−2(A)
is well determined. Repeating this process one gets the desired sequence of homol-
ogy classes ωj ∈ Hk−2j(V,C). By construction, ϕ is in the same class in HCk(A) as

C̃ +
∑∞

j=1 Sjω̃j, where for any closed current ωj in the class one takes

ω̃j(f
0, f 1, . . . , fk−2j) = 〈ωj, f

0df 1∧ · · · ∧dfk−2j〉.
This shows that the map that we just constructed is an injection of HCk(A) to
Kerb⊕Hk−2(V,C)⊕ · · ·⊕Hk−2i(V,C)⊕ · · · .
The surjectivity is obvious.

2) In 1) we see, by the construction of the isomorphism, that S : HCk(A)→HCk+2(A)
is the map which associates to each C ∈ Kerb its homology class. The inclusion follows.
Note that in this example the spectral sequence of Theorem 26 is degenerate, so that
its E2 term is already the de Rham homology of V .

Theorem 2 shows, in particular, that the periodic cyclic cohomology of C∞(V ), with
its natural filtration, is the de Rham homology of the manifold V . One should not
however conclude too hastily that cyclic cohomology gives nothing new in this case of
smooth manifolds. We shall now see indeed from the example of the fundamental class
[S1] of the circle S1 that its image under the periodicity operator

Sk[S1] ∈ HC2k+1(C∞(S1))

extends to the much larger algebra Cα(S1) of Hölder continuous functions of exponent
α > 1

2k+1
, i.e. of functions f such that

|f(x)− f(y)| ≤ C d(x, y)α

where d is the usual metric on S1.

To get a nice formula for a cyclic cocycle τk ∼ Sk[S1] which extends to Cα we shall
write it as a cocycle on Cα

c (R), but a similar formula works for S1.
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Proposition 3.

a) The following defines a cyclic cocycle τk ∈ HC2k+1(Cα
c (R)):

τk(f
0, f 1, . . . , f 2k+1) =

∫
f 0(x0)

f 1(x1)− f 1(x0)

x1 − x0

f 2(x2)− f 2(x1)

x2 − x1
· · ·

· · · f 2k(x2k)− f 2k(x2k−1)

x2k − x2k−1

f 2k+1(x0)− f 2k+1(x2k)

x0 − x2k

2k∏
i=0

dxi.

b) The restriction of τk to C∞
c (R) is equal in HC2k+1 to ckS

kτ0, where τ0 is the
homology fundamental class of R

τ0(f
0, f 1) =

∫
f 0df 1

and

ck =
(2πi)2k

2k(2k + 1)(2k − 1) · · · 3.1.

The multiple integral makes sense since each of the terms

f j(xj)− f j(xj−1)

xj − xj−1

is O(|xj − xj−1|α−1). One then checks that τk is a cyclic cocycle and that b) holds.

Thus, using a similar formula for Sk[S1] ∈ HC2k+1(Cα(S1)) we see that we get an
explicit formula for the push-forward ψ∗[S1] without perturbing the map ψ : S1→V ,
Hölder continuous of exponent α > 1

2k+1

ψ∗[S1](f 0, . . . , f 2k+1) = τk(ψ
∗f 0, ψ∗f 1, . . . , ψ∗f 2k+1)

∀f 0, . . . , f 2k+1 ∈ C∞(V ), with ψ∗f = f ◦ ψ.

This gives a cyclic cocycle ψ∗[S1] ∈ HC2k+1(C∞(V )) whose formula does not use any
smoothing of the Hölder continuous map ψ.

The naive formula ∫

S1
ψ∗f 0d(ψ∗f 1)

does not make sense unless the functions gj = ψ∗f j on S1 belong to the Sobolev space
W

1
2 governed by the finiteness of ∑

n|ĝ(n)|2

where ĝ is the Fourier transform of g. Thus, it does not make sense for ψ∗f , f ∈ C∞(V ),
when f is only Hölder of exponent α < 1

2
.

Of course in the periodic cyclic cohomology of C∞(V ), the above cocycle coincides
with Skψ′∗[S1] where ψ′ is smooth and homotopic to ψ.
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Remarks 4. a) Let, as above, A = C∞(V ) and assume, to simplify, that the Euler
characteristic of V vanishes. Then let X be a nonvanishing section of the vector
bundle on V×V which is the pull-back by the second projection pr2 : V×V→V of the
complexified tangent bundle TC(V ), and which satisfies:

For (a, b) ∈ V×V close enough to the diagonal, X(a, b) coincides with the real tangent
vector exp−1

b (a), where expb : Tb(V )→V is the exponential map associated to a given
Riemannian metric on V .

Let Ek be the complex vector bundle on V×V which is the pull-back by the second
projection pr2 of the exterior power ∧kT ∗

C(V ). The contraction iX by the section X
gives a well-defined complex of C∞(V×V ) modules, i.e. of C∞(V ) bimodules

C∞(V )
∆∗←C∞(V×V )

iX←C∞(V×V, E1)←· · ·←C∞(V×V,En)←0

where n = dim V and ∆ is the diagonal V→V×V . This gives an explicit projective
resolution M′ of the A-bimodule A, and a proof of Proposition 1 ([102]).

Now let Mk = (A⊗̂Ao)⊗̂Ab⊗k be the standard resolution of the bimodule A, with the
boundary

bk : Mk→Mk−1

given by the equality

bk(1⊗a1⊗ · · ·⊗ak) = (a1⊗1)⊗(a2⊗ · · ·⊗ak)

+
k−1∑
j=1

(−1)j (1⊗1)⊗a1⊗ · · ·⊗ajaj+1⊗ · · ·⊗ak

+ (−1)k (1⊗a0
k)⊗(a1⊗ · · ·⊗ak−1).

Then an explicit homotopy of the resolutions is given by

F : M′→M
(Fω)(a, b, x1, . . . , xk) = 〈X(x1, b)∧ · · · ∧X(xk, b) , ω(a, b)〉

∀ω ∈M′
k = C∞(V 2, Ek) , ∀a, b, x1, . . . , xk ∈ V.

Working out the homotopy formulas explicitly yields for any given cyclic cocycle ϕ ∈
HCq(C∞(V )) explicit closed currents ωj of dimension q − 2j such that

ϕ = ω0 +
∑

Sj ωj in HCq(C∞(V )).

b) Let W⊂V be a submanifold of V , i∗ : C∞(V )→C∞(W ) the restriction map, and
0→Keri∗→C∞(V )→C∞(W )→0 the corresponding exact sequence of algebras. For the
ordinary homology groups one has a long exact sequence

· · ·→Hq(W )→Hq(V )→Hq(V, W )→Hq−1(W )→· · ·
where the connecting map is of degree −1.
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Since HCn is defined as a cohomology theory, i.e. from a cochain complex, the long
exact sequence

· · ·→HCq(C∞(W )) → HCq(C∞(V ))

→ HCq(C∞(V ), C∞(W ))→∂HCq+1(C∞(W ))→· · ·
has a connecting map of degree +1. So one may wonder how this is compatible with
Theorem 2. The point is that the connecting map for the long exact sequence of
Hochschild cohomology groups is 0 (any current on W whose image in V is zero does
itself vanish), thus Im(∂)⊂HCq−1(C∞(W )).

c) Only very trivial cyclic cocycles on C∞(V ) do extend continuously to the C∗-algebra
C(V ) of continuous functions on a compact manifold. In fact, for any compact space X
the continuous Hochschild cohomology of A = C(X) with coefficients in the bimodule
A∗ is trivial in dimension n ≥ 1. Thus, by Theorem 26 the cyclic cohomology of A is
given by HC2n(A) = HC0(A) and HC2n+1(A) = 0. This remark extends to arbitrary
nuclear C∗-algebras.

2.β The cyclic cohomology of the noncommutative torus A = Aθ, θ ∈ R/Z.
Let λ = exp 2πiθ. Denote by S(Z2) the space of sequences (an,m)n,m∈Z2 of rapid decay
(i.e. (|n|+ |m|)q|an,m| is bounded for any q ∈ N).

Let Aθ be the algebra of which the generic element is a formal sum,
∑

an,mUn
1 Um

2 ,
where (an,m) ∈ S(Z2) and the product is specified by the equality U2U1 = λU1U2.

We let τ be the canonical trace on Aθ given by

τ(
∑

aν U ν) = a(0,0)

where we let U ν = Un1
1 Un2

2 for ν = (n1, n2) ∈ Z2. For θ ∈ Q this algebra is Morita
equivalent to the commutative algebra of smooth functions on the 2-torus. Thus in the
case θ ∈ Q, the computation of H∗(Aθ) follows from Theorem 2.

We shall now do the computation for arbitrary θ. The first step is to compute the
Hochschild cohomology H(Aθ,A∗

θ), where, of course, Aθ is considered as a locally
convex topological algebra (using the seminorms pq(a) = sup(1+ |n|+ |m|)q|an,m|). We
say that θ satisfies a Diophantine condition if the sequence |1−λn|−1 is O(nk) for some
k.

Proposition 5. [102]

a) Let θ /∈ Q. One has H0(Aθ,A∗
θ) = C.

b) If θ /∈ Q satisfies a Diophantine condition, then Hj(Aθ,A∗
θ) is of dimension 2

for j = 1, and of dimension 1 for j = 2.

c) If θ /∈ Q does not satisfy a Diophantine condition, then H1 and H2 are infinite-
dimensional non-Hausdorff spaces.
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Recall that by Theorem 2, Hj(Aθ,A∗
θ) is infinite-dimensional for j ≤ 2 when θ ∈ Q.

At this point, it might seem hopeless to compute the periodic cyclic cohomology
H∗(Aθ) when θ is an irrational number not satisfying a Diophantine condition, since the
Hochschild cohomology is already quite complicated. We shall see however, that even
in that case, where H∗(Aθ,A∗

θ) is infinite-dimensional non-Hausdorff, the homology of
the complex (Hn(Aθ,A∗

θ), I◦B) is still finite-dimensional.

Proposition 6. [102] For θ /∈ Q one has HC0(Aθ) = C and the map

I : HC1(Aθ)→H1(Aθ,A∗
θ)

is an isomorphism.

Thus, in particular, any 1-dimensional current is closed.

Theorem 7. [102]

a) For all values of θ, Hev(Aθ)∼C2 and Hodd(Aθ)∼C2.

b) Let τ be the canonical trace on Aθ. A basis of

Hodd(Aθ) = H1(Aθ,A∗
θ)/Im(I◦B)

is provided by the cyclic cocycles ϕ1 and ϕ2 with ϕj(x
0, x1) = τ(x0δj(x

1))
∀xi ∈ Aθ.

c) One has Hev(Aθ) = H2(Aθ); it is a vector space of dimension 2 with basis Sτ
(τ the canonical trace) and the functional ϕ given by

ϕ(x0, x1, x2) = (2πi)−1 τ(x0(δ1(x
1)δ2(x

2)− δ2(x
1)δ1(x

2))) ∀xi ∈ Aθ.

In these formulas, δ1, δ2 are the basic derivations of Aθ : δ1(U
ν) = 2πin1U

ν , δ2(U
ν) =

2πin2U
ν .

2.γ The cyclic cohomology of the group ring CΓ for Γ a discrete group.
First let G be a compact group and X a topological space with a continuous action of
G on it. Then the equivariant cohomology H∗

G of X is defined as the cohomology of
the homotopy quotient XG = X×GEG, where EG is the total space of the universal
principal G-bundle over the classifying space BG. In particular H∗

G(X) is, in a natural
manner, a module over H∗

G(pt) = H∗(BG).

For G = S1, the one-dimensional torus, BS1 = P∞(C) and H∗
S1(pt) is a polynomial ring

in one generator of degree 2.

The formal analogy between cyclic cohomology and S1-equivariant cohomology is well
understood from the equality ([111])

BΛ = BS1
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where Λ is the small category introduced in [111] which governs cyclic cohomology (cf.
Appendix A) through the equality

HC∗(A) = Ext∗Λ(A\,C\)

where the functor A→A\ from algebras to Λ-modules (Appendix A) gives the appro-
priate linearization of the nonabelian category of algebras. For group rings, i.e. for
algebras over C of the form

A = CΓ

where Γ is a discrete (countable) group, the following theorem of D. Burghelea ([76])
yields a natural S1-space whose S1-equivariant cohomology (with complex coefficients)

is the cyclic cohomology of A. Recall that the free loop space Y S1 of a given topological
space Y is the space Map(S1, Y ) of continuous maps from S1 to Y with the compact-
open topology. This space is naturally an S1-space, using the action of S1 on S1 by
rotations.

Theorem 8. [76] Let Γ be a discrete group, A = CΓ its group ring.

a) The Hochschild cohomology H∗(A,A∗) is canonically isomorphic to the coho-

mology H∗((BΓ)S
1
,C) of the free loop space of the classifying space of Γ.

b) The cyclic cohomology HC∗(A) is canonically isomorphic to the S1-equivariant

cohomology H∗
S1((BΓ)S

1
,C).

Moreover, the isomorphism b) is compatible with the module structure over H∗(BΛ) =
H∗(BS1), and under the isomorphisms a) and b) the long exact sequence of Theorem
26 becomes the Gysin exact sequence relating H∗ to H∗

S1 .

As a corollary of this theorem we get the computation of the cyclic cohomology of CΓ
in terms of the cohomology of the subgroups of Γ defined as follows:

1) For any g ∈ Γ let Cg = {h ∈ Γ; gh = hg} be the centralizer of g.

2) For any g ∈ Γ let Ng = Cg/g
Z be the quotient of Cg by the (central) subgroup

generated by g.

Then let 〈Γ〉 be the set of conjugacy classes of Γ, let 〈Γ〉′⊂〈Γ〉 be the subset of classes
of elements g ∈ Γ of finite order and 〈Γ〉′′ its complement.

By construction, the groups Cg and Ng only depend upon the class ĝ ∈ 〈Γ〉 of g.

Corollary 9. [76]

1) H∗(CΓ, (CΓ)∗) =
∏bg∈〈Γ〉 H∗(Cg,C)

2) HC∗(CΓ) =
∏bg∈〈Γ〉′(H∗(Ng,C)⊗HC∗(C))×∏bg∈〈Γ〉′′ H∗(Ng,C).
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Moreover, the structure of an HC∗(C)-module on HC∗(CΓ), i.e. the operator S,
decomposes over the conjugacy classes and is the obvious one for the finite classes
ĝ ∈ 〈Γ〉′. For the infinite classes the operator S is the product by the 2-cocycle
ωg ∈ H2(Ng,C) of the central extension:

0→Z→Cg→Ng→1

where we used the inclusion Z⊂C, and the map H2(Ng,Z)→H2(Ng,C). In particular,
the infinite conjugacy classes ĝ ∈ 〈Γ〉′′ may contribute nontrivially to the periodic cyclic
cohomology H∗(CΓ) (cf. [76]). We shall now give the details of the proof of Theorem 8
(cf. [76]). First, with A = CΓ, the associated cyclic vector space C(A) (cf. Appendix
A) is the linear span of the following cyclic set (Yn, di

n, sj
n, tn):

Yn = Γn+1 = {(g0, g1, . . . , gn); gi ∈ Γ}
di

n(g0, g1, . . . , gn) = (g0, . . . , gigi+1, . . . , gn) ∈ Yn−1 , for 0 ≤ i ≤ n− 1

dn
n(g0, g1, . . . , gn) = (gng0, g1, . . . , gn−1) ∈ Yn−1,

si
n(g0, . . . , gn) = (g0, . . . , gi, 1, gi+1, . . . , gn) ∈ Yn+1

tn(g0, . . . , gn) = (gn, g0, . . . , gn−1) ∈ Yn.

Thus, it follows that the Hochschild (resp. cyclic) cohomology H∗(A,A∗) (resp. HC∗(A))
is the cohomology (resp. S1-equivariant cohomology) of the geometric realization |Y |
of Y

H∗(A,A∗) = H∗(|Y |,C)

HC∗(A) = H∗
S1(|Y |)

where the cyclic structure of Y endows |Y | with a canonical action of S1 (cf. Appendix
A).

As we shall now show, the S1-space |Y | turns out to be S1-equivariantly homeomorphic
to the space of Γ-valued configurations of the oriented circle. By definition a Γ-valued
configuration on S1 is a map α : S1→Γ such that α(θ) = 1Γ except on a finite subset
of S1, called the support: supp(α). The topology of the configuration space CS1(Γ) is
generated by the open sets

U(I1, . . . , Ik, g1, . . . , gk) =
{

α; Supp(α)⊂⋃
Ij ,

∏
Ij

α(θ) = gj

}

where the Ij are open intervals in S1, the gj belong to Γ, and the product
∏

Ij
α(θ) is the

time-ordered product α(θ1) · · ·α(θk) of the values of α at the times θ1 < θ2 < · · · < θk

where Supp(α) ∩ Ij = {θ1, . . . , θk}. The natural homeomorphism h : |Y |→CS1(Γ) is
defined as follows. At the set theoretic level one has the decomposition

|Y | =
∞⋃

n=0

(Yn\Deg Yn)× Int(∆n)

where the degeneracy Deg Yn is the union of the images of the maps si
n−1 : Yn−1→Yn

and Int(∆n) is the interior of the n-simplex ∆n = {(λi)i=0,...,n ; λi ≥ 0 ,
∑

λi = 1}.
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Then the image under h of ((gi), (λi)) ∈ (Yn\Deg Yn)× Int ∆n is the configuration with
support contained in the set {0, λ0, λ0 + λ1, . . . , λ0 + · · ·+ λn−1} and such that

α(0) = g0 , α(λ0) = g1, . . . , α

(
i−1∑

k=0

λk

)
= gi , for i ≤ n.

Note that since (gi) ∈ Yn\Deg Yn one has gi 6= 1Γ for i 6= 0, but one may have g0 = 1Γ,
in which case the cardinality of the support of the configuration α is equal to n.

It is then not difficult to check that h is an S1-equivariant homeomorphism

h : |Y |→CS1(Γ).

Thus, Theorem 8 follows from the following proposition due to J. Milnor and G. Segal:

Proposition 10. The configuration space CS1(Γ) is S1-equivariantly weakly homotopy

equivalent to the free loop space (BΓ)S
1
.

More explicitly, let I⊂S1 be the open interval S1\{0}, so that then CI(Γ) is canoni-
cally homeomorphic to BΓ, and the above weak homotopy equivalence associates to a
configuration α ∈ CS1(Γ) the loop β = j(α),

β(θ) = restriction to I of α◦Rθ ∈ CI(Γ)∼BΓ , ∀θ ∈ S1

where Rθ is the rotation Rθ(t) = t + θ ∀t ∈ S1.

The classifying space BΓ is the geometric realization |X| of the simplicial set X given
by

Xn = Γn = {(g1, . . . , gn); gi ∈ Γ}
d0

n(g1, . . . , gn) = (g2, . . . , gn)

di
n(g1, . . . , gn) = (g1, . . . , gigi+1, . . . , gn)

dn
n(g1, . . . , gn) = (g1, . . . , gn−1)

si
n(g1, . . . , gn) = (g1, . . . , gi, 1Γ, gi+1, . . . , gn).

The natural homeomorphism CI(Γ)∼|X| associates to a configuration α on I = ]0, 1[,
with supp α = {t1, t2, . . . , tn}, ti < ti+1, α(ti) = gi, the following element of (Xn\Deg Xn)× Int ∆n:

(g1, . . . , gn)×(t1, t2 − t1, t3 − t2, . . . , tn − tn−1, 1− tn).

To prove Proposition 10 one compares the two fibrations in

Γ

²²

// CS1(Γ)

²²

res // CI(Γ)

²²
ΩBΓ // (BΓ)S

1 ev // BΓ
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where for α ∈ CS1(Γ) its restriction res(α) to I determines α up to the value α(0) ∈ Γ.
In the second fibration ΩBΓ is the loop space of BΓ. The vertical arrows CI(Γ)→BΓ
and Γ→ΩBΓ are weak homotopy equivalences and thus so is

j : CS1(Γ)→(BΓ)S
1

.

2.δ Cyclic cohomology of C∞
c (VoΓ). Let V be a smooth manifold and Γ a

discrete group acting on V by diffeomorphisms. In this section we shall describe the
cyclic cohomology of the crossed product algebra A = C∞

c (V )oΓ. The analogues
of the above results of D. Burghelea are due to Feigin and Tsygan [206], V. Nistor
[414], and J.L. Brylinski [74] [75]. We shall describe an earlier result [99], namely
that the periodic cyclic cohomology H∗(A) contains as a direct factor the twisted
cohomology groups H∗

τ (VΓ,C). We adopt here the notation of Section II.7. Thus, VΓ is
the homotopy quotient V×ΓEΓ and τ is the real vector bundle on VΓ associated to the
(Γ-equivariant) tangent bundle TV of V . The algebra A is the convolution algebra of
smooth functions with compact support on V×Γ and the convolution product is given
by

(3.1) (f1f2)(x, g) =
∑

g1g2=g

f1(x, g1) f2(xg1, g2).

We let Ug be the element of A given, when V is compact, by Ug(x, k) = 0 if g 6= k,
Ug(x, k) = 1 if g = k. When V is not compact this does not define an element of A
but a multiplier of A. In both cases, any element f of A can be uniquely written as a
finite sum

(3.2) f =
∑

fg Ug , fg ∈ C∞
c (V )

and one has the algebraic rule

(3.3) (Ug h U−1
g )(x) = h(xg) ∀x ∈ V , g ∈ Γ , h ∈ C∞

c (V ).

Since the homotopy quotient VΓ is the geometric realization of a simplicial manifold
(cf. Appendix A) we can describe the twisted cohomology H∗

τ (VΓ) as the cohomology
of a double complex ([61] Theorem 4.5). More explicitly, we can view the space EΓ as
the geometric realization of the simplicial set eΓ where (eΓ)n = Γn+1 and

di(g0, . . . , gn) = (g0, . . . , gi
∨, . . . , gn) ∀i = 0, 1, . . . , n ; gj ∈ Γ,

(3.4)

sj(g0, . . . , gn) = (g0, . . . , gj, gj, . . . , gn) ∀j = 0, 1, . . . , n ; gi ∈ Γ,

where the superscript ∨ denotes omission. The group Γ acts on the right on both V and
eΓ and by [61] Theorem 4.5 the τ -twisted cohomology H∗

τ (VΓ,C) is the cohomology
of the bicomplex of Γ-invariant simplicial τ -twisted forms on V×eΓ. Now a twisted
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form on V is the same thing as a smooth de Rham current: to the twisted form ω one
associates the smooth current C with values

(3.5) C(α) =

∫

V

α∧ω

for any differential form α with compact support such that deg(α) + deg(ω) = dim V .

It will be more convenient to describe the double complex (C∗, d1, d2) used in computing
H∗

τ (VΓ,C) in terms of currents on V rather than twisted forms.

We let Cn,m = {0} unless n ≥ 0 and − dim V ≤ m ≤ 0. Otherwise we let Cn,m be
the space of totally antisymmetric maps γ : Γn+1→Ω−m(V ), from Γn+1 to the space
Ω−m(V ) of de Rham currents of dimension −m on V , which satisfy

(3.6) γ(g0g, g1g, . . . , gng) = γ(g0, . . . , gn)g ∀gi ∈ Γ , g ∈ Γ.

We have used the right action of Γ on V to act on currents. The coboundary d1 :
Cn,m→Cn+1,m is given by

(3.7) (d1γ)(g0, . . . , gn+1) = (−1)m

n+1∑
j=0

(−1)j γ(g0, . . . , gj
∨, . . . , gn+1) ∀gi ∈ Γ.

The coboundary d2 : Cn,m→Cn,m+1 is the de Rham boundary

(3.8) (d2γ)(g0, . . . , gn) = dt(γ(g0, . . . , gn)).

We can summarize the above discussion by:

Proposition 11. The twisted cohomology H∗
τ (VΓ,C) is naturally isomorphic, with a

shift in dimension of dim V , to the cohomology of the above bicomplex (C∗, d1, d2).

This holds without regard to the regularity imposed on the currents and we shall
perform our constructions with arbitrary currents. It is important, though, to note
that the filtration of the cohomology of the bicomplex, given by the maximal value of
n−m on the support of cocycles (γn,m), does depend on the regularity. Let us illustrate
this by an example. We let V = S1, Γ = Z and the action of Γ on V be given by a
diffeomorphism ϕ ∈ Diff+(S1). We choose ϕ with a Liouville rotation number, and not
C∞-conjugate to a rotation (cf. [276]). The homotopy quotient VΓ is the mapping
torus, the quotient of V×R by the diffeomorphism ϕ̃ given by

(3.9) ϕ̃(x, s) = (ϕ(x), s + 1) ∀x ∈ V = S1 , ∀s ∈ R.

It is, by construction, a 2-torus which fibers over BΓ = R/Z. Its cohomotopy group
π1(VΓ) has another generator given by a continuous map VΓ→V = S1. We want to
compute the corresponding cocycle in the bicomplex (C∗, d1, d2). (Here the group Γ
preserves the orientation so that we can ignore the twisting by τ . Thus, one has a
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canonical map π1(VΓ)→H1
τ (VΓ,C)). If we use arbitrary currents the corresponding

cocycle is easy to describe; it is given by the following element of C0,0:

(3.10) γ0 ∈ Ω0 is the unique Γ-invariant probability measure on V = S1.

Of course this measure is a 0-dimensional current, and one has d1γ = d2γ = 0.

Since ϕ is not C∞-conjugate to a rotation the current γ0 is not smooth, and we now
have to describe a smooth cocycle γ′ in the above bicomplex belonging to the same
cohomology class. For this we let γ′0 ∈ Ω0 be any smooth 0-dimensional current such
that 〈1, γ′0〉 = 1. It is not ϕ-invariant, but the equation ϕγ′0 − γ′0 = dtγ′1 can easily
be solved with γ′1 a smooth 1-dimensional current on V = S1. This yields the desired
smooth cocycle γ′. As we shall see, while γ0 gives rise to a trace on the crossed product
algebra A = C∞

c (V )oΓ, the cocycle γ′ gives rise to a cyclic 2-cocycle on A, with the
same class in periodic cyclic cohomology.

We shall now describe in full generality a morphism Φ of bicomplexes from (C∗, d1, d2)
to the (b, B) bicomplex of the algebra A. This will give the desired map from H∗

τ (VΓ,C)
to the periodic cyclic cohomology of A and will make full use of the (b, B) description of
the latter (Section 1). Our construction of the morphism Φ works for smooth groupoids
for which the maps r and s are étale but the case G = VoΓ has interesting special
features due to the total antisymmetry of the cochains γ(g0, . . . , gn), gi ∈ Γ. To exploit
this, let us introduce an auxiliary graded differential algebra C. As an algebra, C is the
crossed product C = BoαΓ, where B is the graded tensor product:

(3.11) B = A∗(V )⊗∧∗(CΓ′)

of the graded algebra A∗(V ) of smooth compactly supported differential forms on V
by the exterior algebra ∧∗(CΓ′) of the linear space CΓ′ with basis the δg, g ∈ Γ, with
δe = 0, where e is the unit of Γ. The action α of Γ on B by automorphisms is defined
as the tensor product, αg = α1,g⊗α2,g ∀g ∈ Γ. Here α1 is the natural action of Γ on
A∗(V ) commuting with the differential and satisfying

(3.12) α1,g(f)(x) = f(xg) ∀f ∈ C∞
c (V ) , x ∈ V , g ∈ Γ.

The action α2 of Γ on ∧∗(CΓ′) preserves the subspace CΓ′ = ∧1CΓ′ and is given by
the equality

(3.13) α2,g δk = δkg−1 − δg−1 ∀g, k ∈ Γ.

Since the action α of Γ on B preserves the (bi)grading of B the crossed product C = BoΓ
has a canonical bigrading. We shall write the generic element of C as a finite sum

c =
∑

Γ

bg Ug , bg ∈ B.

We endow the algebra B with the differential

(3.14) d(ω⊗ε) = dω⊗ε ∀ω ∈ A∗(V ) , ε ∈ ∧∗
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where dω is the usual differential of forms. Thus, we have endowed ∧∗ with the 0-
differential.

Finally we define the differential d in the algebra C by

(3.15) d(b Ug) = (db) Ug + (−1)∂b b Ug δg ∀b ∈ B , g ∈ Γ.

Lemma 12. (C, d) is a graded differential algebra.

Proof. By construction, C is a bigraded algebra; thus it is enough to show that the
two components d′ and d′′ of d given by

(3.16) d′(b Ug) = (−1)∂b b Ug δg , d′′(b Ug) = (db) Ug ∀b ∈ B , g ∈ Γ

are derivations of C such that d′2 = d′′2 = d′d′′ + d′′d′ = 0.

It is clear that d′′ is a derivation and that d′′2 = 0. To check that d′ is a derivation one
has to show that for g1, g2 ∈ Γ,

d′(Ug1g2) = (d′ Ug1)Ug2 + Ug1(d
′Ug2).

This follows from Ug1 δg1 Ug2 = Ug1g2 αg−1
2

(δg1) = Ug1g2(δg1g2−δg2) by (13). Since δ2
g = 0

one has d′2 = 0. Finally d′d′′ = −d′′d′ from (16).

Now let γ ∈ Cn,m be a cochain in the bicomplex (C∗, d1, d2). We associate to γ a linear
form γ̃ on C defined by

(3.17) γ̃(ω⊗δg1 . . . δgn) = 〈ω, γ(1, g1, . . . , gn)〉 ∀gi ∈ Γ , ω ∈ A−m(V )

(3.18) γ̃(b Ug) = 0 unless g = 1Γ and b ∈ A−m(V )⊗∧n.

The relation between the coboundaries d1 and d2 of C∗ (see (7) (8)) and the derivations
d′ and d′′ of C is given by:

Lemma 13. Let γ ∈ Cn,m.

a) γ̃(a1a2 − (−1)∂a1∂a2 a2a1) = (−1)∂a1 (d̃1γ)(a1 d′a2) ∀aj ∈ C
b) γ̃(da) = γ̃(d′′a) = (d̃2γ)(a) ∀a ∈ C.

Proof. a) We can assume that aj = bj Ugj
with bj ∈ B, and that g1g2 = 1. Then

a1a2 = b1 αg1(b2) and (−1)∂a1∂a2 a2a1 = (−1)∂a1∂a2 b2 αg2(b1) = αg2(b1 αg1(b2)) using
the graded commutativity of B. In addition, we have a1 d′a2 = (−1)∂a2 b1 αg1(b2)δg2 .
Thus, (with b = b1 αg1(b2)) it is enough to show that for any g ∈ Γ,

(3.19) γ̃(b− αg(b)) = (−1)n+m (d̃1γ)(b δg) ∀b ∈ B.



2. EXAMPLES 226

One can assume that b = ω⊗δg1 · · · δgn with gi ∈ Γ , ω ∈ A−m(V ). One has αg(b) =
α1,g(ω)⊗α2,g(δg1 · · · δgn) and

α2,g(δg1 · · · δgn) = (δg1g−1 − δg−1) · · · (δgng−1 − δg−1)

= δg1g−1 δg2g−1 · · · δgng−1 − δg−1 δg2g−1 · · · δgng−1

− δg1g−1δg−1 · · ·δgng−1 −· · ·− δg1g−1δg2g−1 · · ·δgn−1g−1δg−1 .

Thus, using (6) and the definition of d1 (7) we get (19).

b) follows from (17) and the definition of d2 (8).

Note that since d = d′′ on B the equality b) still holds for d instead of d′′. We can now
give a general construction of cyclic cocycles on A = C∞

c (V )oΓ ([99]):

Theorem 14.

a) The following map Φ is a morphism of the bicomplex (C∗, d1, d2) to the (b, B)
bicomplex of A: For γ ∈ Cn,m, Φ(γ) is the (n−m+1)-linear form on A given,
with ` = n−m + 1, by

Φ(γ)(x0, . . . , x`) = λn,m

∑̀
j=0

(−1)j(`−j) γ̃(dxj+1 · · · dx` x0 dx1 · · · dxj)

∀xj ∈ A , where λn,m = n!
(`+1)!

.

b) The corresponding map of cohomology groups gives a canonical inclusion Φ∗ :
H∗

τ (VΓ,C)→H∗(A) of H∗
τ (VΓ,C) as a direct factor of the periodic cyclic coho-

mology of A = C∞
c (V )oΓ.

Proof. a) Let us first compute b(Φ(γ))(x0, . . . x`+1). The Hochschild coboundary of
the functional (xi)→γ̃(dxj+1 · · · dx` x0 dx1 · · · dxj) gives the result (−1)j γ̃(aj xj+1 −
xj+1 aj), where aj = dxj+2 · · · dx`+1 x0 dx1 · · · dxj. Thus, by Lemma 13 a) we get

(3.20) b Φ(γ)(x0, . . . , x`+1) = (−1)` λn,m

∑̀
j=0

(−1)j(`−j+1) (̃d1γ) (aj d′ xj+1).

Since d2
1 = 0, (̃d1γ) is a graded trace on C by Lemma 13, and we can rewrite (20) as

(3.21) b Φ(γ)(x0, . . . , x`+1) = λn,m

∑̀
j=0

(̃d1γ)(x0 dx1 · · · dxj d′xj+1 dxj+2 · · · dx`+1).

Using dxk = d′xk + d′′xk and considering the terms in which d′ appears n + 1 times in
the product

x0(d′x1 + d′′x1) · · · (d′x`+1 + d′′x`+1)

we get

(3.22) b Φ(γ)(x0, . . . , x`+1) = (n + 1) λn,m (̃d1γ) (x0 dx1 · · · dx`+1).
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Since (̃d1γ) is a graded trace on C one has

Φ(d1γ)(x0, . . . , x`+1) = λn+1,m (` + 2) (̃d1γ) (x0 dx1 · · · dx`+1)

so that using (22) we get Φ(d1γ) = b Φ(γ).

Let us now compute B Φ(γ). One has

B0 Φ(γ) (x0, . . . , x`−1) = λn,m

∑̀
j=0

(−1)j(`−j) γ̃(dxj · · · dx`−1 dx0 · · · dxj−1).

(For instance, for ` = 2 one gets three terms: γ̃(dx0 dx1)− γ̃(dx1 dx0) + γ̃(dx0 dx1).)
Thus one has

BΦ(γ)(x0, . . . , x`−1)=(` + 1) λn,m

`−1∑
j=0

(−1)j(`−1)γ̃(dxj · · ·dx`−1 dx0 · · ·dxj−1).

By Lemma 13 b) we have

B Φ(γ) (x0, . . . , x`−1)(3.23)

= (` + 1) λn,m

`−1∑
j=0

(−1)(j−1)(`−j) (̃d2γ) (dxj · · · dx`−1 x0 dx1 · · · dxj−1).

Thus, BΦ(γ) = Φ(d2γ).

b) We shall describe in Section 7 γ), in the context of foliations, a natural retraction
λ : H∗(A)→H∗

τ (VΓ,C) using localization. The conclusion follows from the equality
λ ◦ Φ∗ = id.

Remark 15. a) In the special case V = {pt} the above construction gives a cycle
(C, d, γ̃) on the algebra A = CΓ, for any group cocycle γ ∈ Zn(Γ,C) represented by a
totally antisymmetric right invariant cochain γ : Γn+1→C with d1γ = 0. The algebra
C = (∧∗CΓ′)oΓ is a nontrivial quotient of the universal differential algebra ΩCΓ used
in Section 1.

b) Let us explain the analogue of the above construction (Theorem 14) in the general
case of smooth groupoids G such that r and s are étale maps. The bicomplex (C∗, d1, d2)
of Proposition 11 is now the bicomplex of twisted differential forms on the simplicial
manifold Mr(G) (Appendix A) which is the nerve of the small category G. We describe
it in terms of currents, so that Cn,m is the space of de Rham currents of dimension −m
on the manifold

(3.24) G(n) = {(γ1, . . . , γn) ∈ Gn ; s(γi) = r(γi+1) ∀i = 1, . . . , n− 1}.
The first coboundary d1 is the simplicial one,

(3.25) d1 = (−1)m
∑

(−1)j d∗j
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where d0(γ1, . . . , γn) = (γ2, . . . , γn), dj(γ1, . . . , γn) = (γ1, . . . , γjγj+1, . . . , γn),
dn(γ1, . . . , γn) = (γ1, . . . , γn−1).

Note that we pull back currents in Formula 25, which is possible since we are only using
étale maps.

The second coboundary d2 is the de Rham dt, as in formula (8). We restrict to the
normalized subcomplex of currents which vanish if any γj is a unit or if γ1 · · · γn is a
unit.

Let us describe the analogue of the bigraded differential algebra (C, d′, d′′) of Lemma
12.

As a linear space, the space Cn,m of elements of C of bidegree (n,m) is the quotient of
the space of smooth compactly supported differential forms of degree m on G(n+1) by
the subspace of forms with support in {(γ0, . . . , γn); γj is a unit for some j 6= 0}. The
differential d′′ is the ordinary differential of forms. The product and the differential d′

are given as follows:

(ω1ω2)(γ0, . . . , γn1 , . . . , γn1+n2)(3.26)

=
∑

γγ′=γn1

ω1(γ0, . . . , γn1−1, γ)∧ω2(γ
′, γn1+1, . . . , γn1+n2)

+

n1−2∑
j=0

(−1)n1−j−1
∑

γγ′=γj

ω1(γ0, . . . , γj−1, γ, γ′, . . . , γn1−1)

∧ω2(γn1 , . . . , γn1+n2)

where we have used the étale maps r, s : G→G(0) to identify the corresponding cotan-
gent spaces and perform the wedge product

(d′ω)(γ0, . . . , γn+1) = 0 unless γ0 is a unit,(3.27)

and

(d′ω)(γ0, . . . , γn+1) = ω(γ1, . . . , γn+1) if γ0 is a unit.

Let c ∈ Cn,m be a cochain in the bicomplex (C∗, d1, d2). We associate to c the linear
map c̃ on Cn,m obtained from the push-forward of the current c by the map

(γ1, . . . , γn) ∈ G(n)→((γ1 · · · γn)−1, γ1, . . . , γn) ∈ G(n+1).

Then Lemma 13 holds, but with the important difference that part a) only holds for
a2 ∈ C(0,0) = C∞

c (G). This is the price to pay for the loss of the total antisymmetry of
cochains. The map Φ is defined as in Theorem 14, and this theorem still holds because
its proof only used the above weaker form of Lemma 13. We shall see in Section 6
many concrete examples of cyclic cocycles on C∞

c (G) constructed using Φ.

To conclude this section we refer the reader to [206] [414] [415] [75] and [225] for the
complete description of the cyclic cohomology of crossed products.
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3. Pairing of Cyclic Cohomology with K-Theory

Let A be a unital noncommutative algebra and K0(A) and K1(A) its algebraic K-
theory groups (cf. [391]). By definition, K0(A) is the group associated to the semigroup
of stable isomorphism classes of finite projective modules over A. Furthermore K1(A)
is the quotient of the group GL∞(A) by its commutator subgroup, where GL∞(A) is
the inductive limit of the groups GLn(A) of invertible elements of Mn(A), with the

embedding maps x→
[
x 0
0 1

]
.

In this section we shall define, by straightforward formulae, a pairing between HCev(A)
and K0(A) and between HCodd(A) and K1(A). For an equivalent approach see [325].

The pairing satisfies 〈Sϕ, e〉 = 〈ϕ, e〉, for ϕ ∈ HC∗(A), e ∈ K(A), and hence is in
fact defined on H∗(A) = HC∗(A)⊗HC∗(C)C. As a computational device we shall also
formulate the pairing in terms of connections and curvature as one does for the usual
Chern character for smooth manifolds.

This will show the Morita invariance of HC∗(A), and will give in the case A abelian
an action of the ring K0(A) on HC∗(A).

Lemma 1. Assume ϕ ∈ Zn
λ (A) and let p, q ∈ Proj Mk(A) be two idempotents of

the form p = uv, q = vu for some u, v ∈ Mk(A). Then the following cocycles on
B = {x ∈ Mk(A); xp = px = x} differ by a coboundary:

ψ1(a
0, . . . , an) = (ϕ # Tr)(a0, . . . , an),

ψ2(a
0, . . . , an) = (ϕ # Tr)(va0u, . . . , vanu).

Proof. First, replacing A by Mk(A), one may assume that k = 1. Then one can

replace p, q, u, v by

[
p 0
0 0

]
,

[
0 0
0 q

]
,

[
0 u
0 0

]
,

[
0 0
v 0

]
and hence assume the existence of

an invertible element w such that wpw−1 = q, u = pw−1 = w−1q, v = qw = wp; it

suffices to take w =

[
1− p u

v 1− q

]
. Then the result follows from Proposition 1.8.

Recall that an equivalent description of K0(A) is as the abelian group associated to
the semigroup of stable equivalence classes of idempotents e ∈ Proj Mk(A).

Proposition 2. [102]

a) The following equality defines a bilinear pairing between K0(A) and HCev(A) :
〈[e], [ϕ]〉 = (m!)−1(ϕ # Tr)(e, . . . , e) for e ∈ Proj Mk(A) and ϕ ∈ Z2m

λ (A).

b) One has 〈[e], [Sϕ]〉 = 〈[e], [ϕ]〉.
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c) Let ϕ (resp. ψ) be an even cyclic cocycle on an algebra A (resp. B); then for
any e ∈ K0(A) and f ∈ K0(B) one has

〈e⊗f , ϕ#ψ〉 = 〈e, ϕ〉 〈f, ψ〉.

Proof. First, if ϕ ∈ B2m
λ (A), ϕ # Tr is also a coboundary, ϕ # Tr = bψ and hence

(ϕ # Tr)(e, . . . , e) = bψ(e, . . . , e) =
∑2m

i=0(−1)i ψ(e, . . . , e) = ψ(e, . . . , e) = 0, since
ψλ = −ψ. This, together with Lemma 1, shows that (ϕ # Tr)(e, . . . , e) only depends

on the equivalence class of e. Since replacing e by

[
e 0
0 0

]
does not change the result,

one gets the additivity and hence a).

b) One has Sϕ(e, . . . , e) =
∑2m

j=1 ϕ̂(e(de)j−1 e(de)n−j+1) and, since e2 = e, one has

ede e = 0, e(de)2 = (de)2e, so that

Sϕ(e, . . . , e) = (m + 1)ϕ(e, . . . , e).

c) Follows from b).

We shall now describe the odd case.

Proposition 3. [102]

a) The following equality defines a bilinear pairing between K1(A) and HCodd(A)

〈[u], [ϕ]〉 = 1√
2i

2−n Γ
(

n
2

+ 1
)−1

(ϕ # Tr)(u−1 − 1, u− 1, u−1 − 1, . . . , u− 1)

where ϕ ∈ Zn
λ (A) and u ∈ GLk(A).

b) One has 〈[u], [Sϕ]〉 = 〈[u], [ϕ]〉.
c) Let ϕ (resp. ψ) be an even (resp. odd) cyclic cocycle on an algebra A (resp.
B); then for any e ∈ K0(A), u ∈ K1(B) one has

〈[e⊗u + (1− e)⊗1] , ϕ#ψ〉 = 〈e, ϕ〉 〈u, ψ〉.

Proof. a) Let Ã be the algebra obtained fromA by adjoining a unit. SinceA is already

unital, Ã is isomorphic to the product of A by C, by means of the homomorphism

ρ : (a, λ)→(a + λ1, λ) of Ã to A×C. Let ϕ̃ ∈ Zn
λ (Ã) be defined by the equality

ϕ̃((a0, λ0), . . . , (an, λn)) = ϕ(a0, . . . , an) ∀(ai, λi) ∈ Ã.

Let us check that bϕ̃ = 0. For (a0, λ0), . . . , (an+1, λn+1) ∈ Ã one has

ϕ̃((a0, λ0), . . . , (ai, λi)(ai+1, λi+1), . . . , (an+1, λn+1))

= ϕ(a0, . . . , aiai+1, . . . , an+1)

+ λiϕ(a0, . . . , ai−1, ai+1, . . . , an+1)

+ λi+1ϕ(a0, . . . , ai, ai+2, . . . , an+1).
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Thus

bϕ̃((a0, λ0), . . . , (an+1, λn+1))

= λ0ϕ(a1, . . . , an+1) + (−1)n−1λ0ϕ(an+1, a1, . . . , an) = 0.

Now for u ∈ GL1(A) one has

ϕ(u−1 − 1, u− 1, . . . , u−1 − 1, u− 1) = (ϕ̃◦ρ−1)(u−1, u, . . . , u−1, u)

where u = (u, 1) ∈ A× C. Thus, to show that this function χ(u) satisfies

χ(uv) = χ(u) + χ(v) for u, v ∈ GL1(A),

one can assume that ϕ(1, a0, . . . , an−1) = 0 for ai ∈ A, and replace χ by

χ(u) = ϕ(u−1, u, . . . , u−1, u).

Now one has with U =

[
uv 0
0 1

]
and V =

[
u 0
0 v

]

χ(uv) = (ϕ # Tr)(U−1, U, . . . , U−1, U),

χ(u) + χ(v) = (ϕ # Tr)(V −1, V, . . . , V −1, V ).

Since U is connected to V by the smooth path

Ut =

[
u 0
0 1

] [
sin t − cos t
cos t sin t

] [
1 0
0 v

] [
sin t cos t
− cos t sin t

]

it is enough to check that

d

dt
(ϕ # Tr)(U−1

t , Ut, . . . , Ut) = 0.

Using (U−1
t )′ = −U−1

t U ′
tU

−1
t the desired equality follows easily. We have shown that

the right-hand side of 3 a) defines a homomorphism of GLk(A) to C. The compatibility
with the inclusion GLk⊂GLk′ is obvious.

In order to show that the result is 0 if ϕ is a coboundary, one may assume that k = 1,
and, using the above argument, that ϕ = bψ where ψ ∈ Cn−1

λ and ψ(1, a0, . . . , an−2) = 0
for ai ∈ A. (One has bϕ̃ = (bψ)e for ψ ∈ Cn−1

λ .) Then one gets bψ(u−1, . . . , u−1, u) = 0.

b) The proof is left to the reader.

Remark. The normalization 2 a) of the pairing between K0 and HCev is uniquely
specified by conditions 2 b) c). The normalization of the pairing between K1 and
HCodd is only specified up to an overall multiplicative constant λ, independent of n,
by conditions 3 b) c). Our choice (3 a)) is, up to the choice of the square root of 2i,
the only one for which the following formula holds:

〈u∧v , ϕ#ψ〉 = 〈u, ϕ〉 〈v, ψ〉
where the product ∧ : K1(A)×K1(B)→K0(A⊗̂B) is defined in the context of pre-C∗-
algebras (cf. Chapter IV Section 9). To check the above formula one just needs to
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know that if e ∈ C∞(T2, P1(C)) is a degree-1 map of the 2-torus to P1(C)⊂M2(C) then
τ(e, e, e) = 2πi, where τ is the cyclic 2-cocycle on C∞(T2) given by τ(f 0, f 1, f 2) =∫
T2 f 0 df1∧df 2, ∀f j ∈ C∞(T2). Note that the Bott generator b of the K-theory of

P1(C) corresponds to the class of [1− e]− 1 (cf. [19] p.61) while the definition of the
product ϕ#ψ (Section 1 α)) introduces a − sign in the odd case.

Let H∗(A) = HC∗(A)⊗HC∗(C)C be the periodic cyclic cohomology of A. Here HC∗(C),
which by Corollary 1.13 is identified with a polynomial ring C[σ], acts on C by
P (σ)7→P (1). This homomorphism of HC∗(C) to C is the pairing given by Propo-
sition 2 with the generator of K0(C) = Z.

By construction, H∗(A) is the inductive limit of the groups HCn(A) under the map
S : HCn(A)→HCn+2(A), or equivalently the quotient of HC∗(A) by the equivalence
relation ϕ ∼ Sϕ. As such, it inherits a natural Z/2 grading and a filtration

F nH∗(A) = Im HCn(A).

Propositions 2 and 3 define a canonical pairing 〈 , 〉 between Hev(A) and K0(A), and
between Hodd(A) and K1(A).

Corollary 4. Let A be a locally convex algebra and τ a continuous even (resp. odd)
cyclic cocycle on A (Appendix B); then the pairing of τ with e ∈ K0(A) (resp. u ∈
K1(A)) only depends upon the homotopy class of e (resp. u).

This follows from Remark 1.30 c).

The following notion will be important both in explicit computations of the above
pairing (this is already clear in the case A = C∞(V ), V a smooth manifold) and in the
discussion of Morita equivalences.

Definition 5. Let A ρ→Ω be a cycle over A, and E a finite projective module over A.
Then a connection ∇ on E is a linear map ∇ : E→E⊗AΩ1 such that

∇(ξx) = (∇ξ)x + ξ⊗dρ(x) , ∀ξ ∈ E , x ∈ A.

Here E is a right module over A and Ω1 is considered as a bimodule over A using the
homomorphism ρ : A→Ω0 and the ring structure of Ω∗. Let us list a number of obvious
properties:

Proposition 6.

a) Let e ∈ EndA(E) be an idempotent and ∇ a connection on E; then ξ 7→
(e⊗1)∇ξ is a connection on eE.

b) Any finite projective module E admits a connection.
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c) The space of connections is an affine space over the vector space

HomA(E , E⊗AΩ1).

d) Any connection ∇ extends uniquely to a linear map of Ẽ = E⊗AΩ into itself
such that

∇(ξ⊗ω) = (∇ξ)ω + ξ⊗dω , ∀ξ ∈ E , ω ∈ Ω.

Proof. a) One multiplies the equality of Definition 5 by e⊗1 (on the left).

b) By a) one can assume that E = Ck⊗A for some k. Then, with (ξi)i=1,...,k the
canonical basis of E , put

∇
(∑

ξiai

)
=

∑
ξi⊗dρ(ai) ∈ E⊗AΩ1.

Note that, if k = 1, for instance, then A⊗AΩ1 = ρ(1)Ω1 and ∇a = ρ(1)dρ(a) for any
a ∈ A since A is unital. This differs in general from d, even when ρ(1) is the unit of
Ω0.

c) Immediate.

d) By construction, Ẽ is the projective module over Ω induced by the homomorphism
ρ. The uniqueness statement is obvious since ∇ξ is already defined for ξ ∈ E . The
existence follows from the equality

∇(ξa)ω + ξa⊗dω = (∇ξ)aω + ξ⊗d(aω)

for any ξ ∈ E , a ∈ A and ω ∈ Ω.

We shall now construct a cycle over EndA(E). We start with the graded algebra

EndΩ(Ẽ), where T is of degree k if T Ẽ j⊂ Ẽ j+k for all j. For any T ∈ EndΩ(Ẽ) of degree
k we let δ(T ) = ∇T − (−1)kT∇. By the equality d) one gets

∇(ξω) = (∇ξ)ω + (−1)degξ ξdω for ξ ∈ Ẽ , ω ∈ Ω,

and hence that δ(T ) ∈ EndΩ(Ẽ), and is of degree k + 1. By construction, δ is a graded

derivation of EndΩ(Ẽ). Next, since Ẽ is a finite projective module, the graded trace∫
: Ωn→C defines a trace, which we shall still denote by

∫
, on the graded algebra

EndΩ(Ẽ).

Lemma 7. One has
∫

δ(T ) = 0 for any T ∈ EndΩ(Ẽ) of degree n− 1.

Proof. First, replacing the connection ∇ by ∇′ = ∇ + Γ, in which we have Γ ∈
HomA(E , E⊗AΩ1), the extension corresponding to Ẽ is ∇′ = ∇+Γ̃, where Γ̃ ∈ EndΩ(Ẽ)

and Γ̃ is of degree 1. Thus, it is enough to prove the lemma for some connection on
E . Hence we can assume that E = eAk for some e ∈ Proj Mk(A) and that ∇ is given
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by 6 a) from a connection ∇0 on Ak. Then using the equality δ(T ) = eδ0(T )e for

T ∈ End Ẽ⊂End Ẽ0 (E0 = Ak), as well as

δ0(T ) = δ0(eTe) = δ0(e)T + δ(T ) + (−1)deg T Tδ0(e),

one is reduced to the case E = Ak, with ∇ given by 6 b). Let us end the computation,

say with k = 1. Let e = ρ(1). One has Ẽ = eΩ, EndΩ(Ẽ) = eΩe and δ(a) = e(da)e.
Thus,

∫
δ(a) =

∫
(d(eae)− (de)a− (−1)∂a ade) = 0.

Now we do not yet have a cycle over EndA(E) by taking the obvious homomorphism of

EndA(E) in EndΩ(Ẽ), the differential δ and the integral
∫

. In fact the crucial property
δ2 = 0 is not satisfied:

Proposition 8.

a) The map θ = ∇2 of Ẽ to Ẽ is an endomorphism: θ ∈ EndΩ(Ẽ) and δ2(T ) =

θT − Tθ for all T ∈ EndΩ(Ẽ).

b) One has 〈[E ], [τ ]〉 = 1
m!

∫
θm when n is even, n = 2m, where [E ] ∈ K0(A) is

the class of E, and τ is the character of Ω.

Proof. a) One uses the rules ∇(ηω) = (∇η)ω +(−1)degη ηdω and d2 = 0 to check that
∇2(ηω) = ∇2(η)ω.

b) Let us show that
∫

θm is independent of the connection ∇. The result is then easily
checked by taking on E = eAk the connection of Proposition 6. Thus, let ∇′ = ∇+ Γ

where Γ is an endomorphism of degree 1 of Ẽ . It is enough to check that the derivative
of

∫
θm

t is 0, where θt corresponds to ∇t = ∇+ tΓ. In fact it suffices to do it for t = 0;
we obtain

d

dt

∫
θm

t =
m−1∑

k=0

∫
θk

t

(
d

dt
θt

)
θm−k−1

t .

As
(

d
dt

θt

)
t=0

= Γ∇+∇Γ = δ(Γ) one has
(

d

dt

∫
θm

t

)

t=0

= m

∫
δ(θm−1 Γ) = 0.

By a), while δ2 6= 0, there exists θ ∈ Ω′ = EndΩ(Ẽ) such that

δ2(T ) = θT − Tθ ∀T ∈ Ω′.

We shall now construct a cycle from the quadruple (Ω′, δ, θ,
∫

).

Lemma 9. Let (Ω′, δ, θ,
∫

) be a quadruple such that Ω′ is a graded algebra, δ a graded
derivation of degree 1 of Ω′ and θ ∈ Ω′ 2 satisfies

δ(θ) = 0 and δ2(ω) = θω − ωθ for ω ∈ Ω′.
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Then one constructs canonically a cycle by adjoining to Ω′ an element X of degree 1
with dX = 0, such that X2 = θ, ω1Xω2 = 0, ∀ωi ∈ Ω′.

Proof. Let Ω′′ be the graded algebra obtained by adjoining X. Any element of Ω′′

has the form ω = ω11 + ω12X + Xω21 + Xω22X, ωij ∈ Ω′. Thus, as a vector space, Ω′′

coincides with M2(Ω
′); the product is such that

ωω′ =
[
ω11 ω12

ω21 ω22

] [
1 0
0 θ

] [
ω′11 ω′12

ω′21 ω′22

]

and the grading is obtained by considering X as an element of degree 1; thus [ωij] is of
degree k when ω11 is of degree k, ω12 and ω21 of degree k − 1 and ω22 of degree k − 2.
One checks easily that Ω′′ is a graded algebra containing Ω′. The differential d is given
by the conditions dω = δ(ω) + Xω + (−1)degω ωX for ω ∈ Ω′⊂Ω′′, and dX = 0. One
gets

d

[
ω11 ω12

ω21 ω22

]
=

[
δ(ω11) δ(ω12)
−δ(ω21) −δ(ω22)

]
+

[
0 −θ
1 0

] [
ω11 ω12

ω21 ω22

]

+ (−1)degω

[
ω11 ω12

ω21 ω22

] [
0 1
−θ 0

]

and checks that the two terms on the right define graded derivations of Ω′′ and that
d2 = 0. Finally one checks that the equality∫

(ω11 + ω12X + Xω21 + Xω22X) =

∫
ω11 − (−1)degω

∫
ω22θ

defines a closed graded trace.

Putting together Proposition 8 a) and Lemma 9 we have

Corollary 10. Let A ρ→Ω be a cycle over A, E a finite projective module over A and

A′ = EndA(E). To each connection ∇ on E corresponds canonically a cycle A′ ρ′→Ω′

over A′.

One can show that the character τ ′ ∈ Zn
λ (A′) of this new cycle has a class [τ ′] ∈

HCn(A′) independent of the choice of the connection ∇, which coincides with the
class given by Lemma 1. One can easily check a reciprocity formula which takes care
of the Morita equivalence.

Corollary 11. Let A and B be unital algebras and E an (A,B)-bimodule, finite projec-
tive on both sides, with A = EndB(E) and B = EndA(E). Then HC∗(A) is canonically
isomorphic to HC∗(B).

Finally, when A is abelian, and one is given a finite projective module E over A, then
one has an obvious homomorphism of A to A′ = EndA(E). Thus, in this case, by
restriction to A of the cycle of Corollary 10 one obtains
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Corollary 12. When A is abelian, HC∗(A) is in a natural manner a module over the
ring K0(A).

To give some meaning to this statement we shall compute an example. We let V be a
compact oriented smooth manifold. Let A = C∞(V ) and Ω be the cycle over A given
by the ordinary de Rham complex and integration of forms of degree n. Let E be a
complex vector bundle over V and E = C∞(V, E) the corresponding finite projective
module overA = C∞(V ). Then the notion of connection given by Definition 5 coincides
with the usual notion. Thus, Corollary 12 yields a new cocycle τ ∈ Zn

λ (A) canonically
associated to ∇. We shall leave as an exercise the following proposition.

Proposition 13. Let ωk be the differential form of degree 2k on V which gives the
component of degree 2k of the Chern character of the bundle E with connection ∇ :
ωk = (1/k!)Tr(θk), where θ is the curvature form. Then one has the equality

τ =
∑

Sk ω̃k,

where ω̃k ∈ Zn−2k
λ (A) is given by

ω̃k(f
0, . . . , fn−2k) =

∫
f 0df 1∧ · · · ∧dfn−2k∧ωk , ∀f i ∈ A = C∞(V ),

and where τ is the restriction to A = C∞(V ) of the character of the cycle associated
to the bundle E, the connection ∇, and the de Rham cycle of A by Corollary 10.

Of course in this example of A = C∞(V ) the pairing between cyclic cohomology and
K0(A) gives back the ordinary Chern character of vector bundles.

As a more sophisticated example let us consider Example 2, β), i.e. the irrational ro-
tation algebra. The smooth subalgebra Aθ⊂Aθ is stable under holomorphic functional
calculus (Appendix C) and thus by a result of Pimsner and Voiculescu ([447]) one has
K0(Aθ) = Z2. An explicit description of finite projective modules over Aθ was given
in [98] and was later shown by M. Rieffel [475] to classify up to isomorphism all the
finite projective modules over Aθ. We have already seen it in a slightly different guise
in Section II.8β).

Let (p, q) ∈ Z2, q > 0, be a pair of relatively prime integers (p = 0 being allowed). Let
us construct a finite projective module E = Ep,q over Aθ as follows.

We let S(R) be the usual Schwartz space of complex-valued functions on the real line
and let two operators V1 and V2 on S(R) be defined by

(V1ξ)(s) = ξ(s− ε) , (V2ξ)(s) = e(s)ξ(s) , s ∈ R , ξ ∈ S(R)

where ε = p
q
− θ and e(s) = exp(2πis) ∀s ∈ R.

One has, of course,
V2V1 = e(ε)V1V2.
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Next, let K be a finite-dimensional Hilbert space and w1 and w2 be unitary operators
on K such that

w2w1 = e(p/q)w1w2 , wq
1 = wq

2 = 1.

In other words, K is a (finite-dimensional) representation of the Heisenberg commuta-
tion relations for the finite cyclic group Z/qZ, and thus it is a direct sum of d equivalent
irreducible representations.

It is clear now that in the tensor product E = S(R)⊗K one has

(V2⊗w2)(V1⊗w1) = λ(V1⊗w1)(V2⊗w2), λ = e(θ).

We turn E into a right Aθ-module as follows:

ξU1 = (V1⊗w1)ξ

ξU2 = (V2⊗w2)ξ ∀ξ ∈ S(R)⊗K = E .

The above equality shows that this is compatible with the presentation of Aθ. It is
easy to check that for any a ∈ Aθ, the element ξa still belongs to E using, for instance,
the general properties of nuclear spaces.

By results in [98] the right module over Aθ obtained is finite and projective. In fact:

Theorem 14. [475] Let E be a finite projective module over Aθ; then either E is
free, E = Ap for some p > 0, or E is isomorphic to S(R)⊗K with the above module
structure.

Let us now recall (Theorem 7 Section 2) that Hev(Aθ) is a vector space of dimension 2
with basis Sτ and ϕ, where τ is the canonical trace of Aθ and where the cyclic 2-cocycle
ϕ is

ϕ(x0, x1, x2) = (2πi)−1 τ(x0(δ1(x
1)δ2(x

2)− δ2(x
1)δ1(x

2))) ∀xi ∈ Aθ

where δ1, δ2 are the natural commuting derivations of Aθ. The pairing of K0 with Sτ
is the same as with the trace τ , and given by the Murray and von Neumann dimension

〈τ, Ep,q〉 = p− θq.

To compute the pairing of K0 with ϕ let us use the following 2-dimensional cycle with
character ϕ.

As a graded algebra Ω∗ is the tensor product of Aθ by the exterior algebra ∧∗C2 of the
two-dimensional vector space C2 = Ce1 + Ce2. The differential d is uniquely specified
by the equality

d(a⊗α) = δ1(a)⊗(e1∧α) + δ2(a)⊗(e2∧α)

for any a ∈ Aθ, α ∈ ∧∗C2.

Finally the graded trace, Ω2→C, is

a⊗(e1∧e2)→(2πi)−1 τ(a) ∈ C.
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A connection (Definition 5) on a finite projective module E over Aθ is thus given by a
pair ∇1,∇2 of covariant differentials, satisfying

∇j(ξa) = (∇jξ)a + ξδj(a) ∀ξ ∈ E , a ∈ Aθ

and the curvature T is easily identified as

(∇1∇2 −∇2∇1)⊗(e1∧e2).

Proposition 15. [98] Let Ep,q = S(R, K) be as above; then the following formulae
define a connection ∇ on E:

(∇1ξ)(s) = 2πi
s

ε
ξ(s) , (∇2ξ)(s) =

dξ

ds
(s)

where ε = p
q
− θ.

The curvature of this connection is constant, equal to −2πi
ε
⊗(e1∧e2) and by Proposition

8 b) the value of the pairing is

〈Ep,q, ϕ〉 =
1

2πi

(−2πi

ε

)
τ(idε) = −1

ε
(p− θq) = q.

Corollary 16. Let ϕ ∈ HC2(Aθ) be the above cyclic 2-cocycle; then

〈K0(Aθ), ϕ〉⊂Z.

This integrality result will be fully understood and exploited in Chapter IV Section 6.

Finally we remark that (for θ /∈ Q) the filtration of Hev(Aθ) by dimensions is not
compatible with the lattice dual to K0(Aθ), since the 0-dimensional class of τ does not
pair integrally with K0. In the next section we shall compute the pairing of K-theory
with cyclic cohomology in the case of group rings.

4. The Higher Index Theorem for Covering Spaces

Let Γ be a discrete group acting properly and freely on a smooth manifold M̃ with

compact quotient M = M̃/Γ. Any Γ-invariant elliptic differential operator D on M̃
yields by the parametrix construction detailed below a K-theory class

Ind(D) = K0(RΓ)

where RΓ is the group ring of Γ with coefficients in the algebra R of matrices (aij)i,j∈N
with rapid decay

sup
i,j∈N

ik j` |aij| < ∞ ∀k, ` ∈ N.

In this section we shall extend the Atiyah-Singer index theorem for covering spaces
[21] [523], which computes the pairing of Ind(D) with the natural trace of RΓ, to the
case of arbitrary group cocycles ([129]). More specifically, given a normalized group
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cocycle c ∈ Zk(Γ,C) we have seen (Section 1 α)) that there is a corresponding cyclic
cocycle τc on the group ring CΓ given by the equality

τc(g0, . . . , gk) = 0 if g0g1 · · · gk 6= 1

τc(g0, . . . , gk) = c(g1, . . . , gk) if g0g1 · · · gk = 1.

Since we have as a trace on R
Trace(a) =

∑
ajj

the cup product τc # Trace is a k-dimensional cyclic cocycle on RΓ and, for k even, it
makes sense to pair it with IndΓD. Let us carefully define the latter index.

4.α The smooth groupoid of a covering space. As above, let Γ act freely

and properly on the smooth manifold M̃ . Let us give the manifold G, the quotient of

M̃×M̃ by the diagonal action of Γ, the groupoid structure

G(0) = M̃/Γ = M

r(x̃, ỹ) = x ∈ M , s(x̃, ỹ) = y ∈ M ∀x̃, ỹ ∈ M̃

(x̃, ỹ)◦(ỹ, z̃) = (x̃, z̃) ∀x̃, ỹ, z̃ ∈ M̃.

Since (x̃, ỹ) = (x̃g, ỹg) ∀x̃, ỹ ∈ M̃ , g ∈ Γ, the last equality above is sufficient to define
the composition of composable elements. One checks that G is a smooth groupoid.

When Γ = π1(M) acts on the universal cover M̃ of M then G is the fundamental
groupoid ([529]) of M , i.e. the groupoid of homotopy classes of paths in M . Note that,
while G(0) = M is compact, the groupoid G is not compact if Γ is infinite.

Let J = C∞
c (G) be the convolution algebra of the smooth groupoid G (cf. Chapter II)

and let us, by fixing the volume form on M associated to a fixed Riemannian metric,
ignore the 1

2
-density bundle.

Let A be the convolution algebra of distributions T ∈ C−∞
c (G) which are multipliers

of J , i.e. satisfy

T ∗ f ∈ C∞
c (G) , f ∗ T ∈ C∞

c (G) ∀f ∈ C∞
c (G).

Any such T ∈ A is characterized by the corresponding Γ-invariant operator on C∞
c (M̃),

with the distribution T as Schwartz kernel. In particular, we have a canonical inclusion

C∞(M)⊂A
of the algebra of smooth functions on M as Γ-invariant multiplication operators on

C∞
c (M̃), and thus as a subalgebra of A. Now let D be a Γ-invariant elliptic differential

operator

D : C∞
c (M̃, Ẽ1)→C∞

c (M̃, Ẽ2)

where the Ẽj are the Γ-equivariant vector bundles on M̃ corresponding to the vector
bundles Ej on M . The above inclusion, C∞(M)⊂A, allows their induction to finite
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projective modules Ej on A. Moreover, the existence of a parametrix for D modulo
the ideal J = C∞

c (G) yields (cf. Section II.9):

Proposition 1. The triple (E1, E2, D) defines a quasi-isomorphism over the algebras
J = C∞

c (G) and A ⊃ J .

We refer to [129] for the detailed proof.

We shall then let Ind(D) ∈ K0(C
∞
c (G)) be the index associated to the quasi-isomorphism

(E1, E2, D) by Proposition II.9.2.

The groupoid G has two important properties. The first is that as a small category it
is equivalent to the discrete group Γ. This will allow us in β) to relate C∞

c (G) to the
group ring RΓ. The second is that, as a smooth groupoid, it is locally isomorphic to
the trivial groupoid M×M (cf. Chapter II); this allows us to compute the pairing of
Ind(D) with cyclic cocycles (γ).

4.β The group ring RΓ. Let R be, as above, the ring of infinite matrices with
rapid decay. Let us construct a canonical map

K0(C
∞
c (G))→K0(RΓ)

playing at this algebraic level the same role as the K-theory isomorphism

K(C∗(G))∼K(C∗(Γ))

coming from the strong Morita equivalence C∗(G)∼C∗(Γ) associated to the equivalence
of groupoids G∼Γ.

The following lemma is the algebraic counterpart of Proposition II.4.1.

Lemma 2. Let the algebra C∞(M)⊗CΓ act on the right on the vector space C∞
c (M̃)

by

(ξ(fUg))(x̃) = f(x) ξ(gx̃) ∀ξ ∈ C∞
c (M̃), f ∈ C∞(M), g ∈ Γ, x̃ ∈ M̃

with x ∈ M the class of x̃. Then C∞
c (M̃) is a finite projective module over C∞(M)⊗CΓ.

In fact, it is useful to describe explicitly a corresponding idempotent E ∈ Mn(C∞(M)⊗CΓ)
and an isomorphism of right modules U ∈ HomB(E , EBn), where we let B = C∞(M)⊗CΓ

and E = C∞
c (M̃) be the above module. Thus, let (Vi)i=1,...,n be a finite open cover of

M , βi : Vi→M̃ be local continuous sections of the projection

π : M̃→M

and (χi)i=1,...,n be a smooth partition of unity in M subordinate to the covering

(Vi)i=1,...,n. We may assume that the χ
1/2
j are smooth functions as well.
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Then one defines the module homomorphisms U ∈ HomB(E ,Bn) and U∗ ∈ HomB(Bn, E),
given by

(Uξ)(x, g, j) = ξ(g−1 βj(x)) χ
1/2
j (x) ∀x∈M, g ∈ Γ, j ∈ {1, . . . , n}, ξ ∈ E

and

(U∗η)(x̃) =
n∑

j=1

χ
1/2
j (x) η(x, g(βj(x), x̃), j) ∀x̃∈ M̃, π(x̃) = x, η ∈Bn,

and where g(βj(x), x̃) is the unique g ∈ Γ such that

gx̃ = βj(x) , x = π(x̃).

One checks directly that both U and U∗ are B-module morphisms and that U∗U = idE .

Thus, the product
E = UU∗ ∈ Mn(B)

is an idempotent and U gives an isomorphism

E∼EBn.

The components Ejk of the matrix E ∈ Mn(B) are easily computed and are given by

Ejk = χ
1/2
j χ

1/2
k ⊗βj β−1

k

where βj β−1
k is a short-hand notation for the 1-cocycle with values in Γ associated to

the covering Vj and sections βj.

The above isomorphism, U : E∼EBn, is an isomorphism of B-modules and thus, a
fortiori, of CΓ-modules, where CΓ is the subalgebra 1⊗CΓ of C∞(M)⊗CΓ.

Thus, the homomorphism θ, given by θ(T ) = UTU∗, can transform Γ-invariant lin-

ear operators on C∞
c (M̃) into CΓ-endomorphisms of EBn. Since we have that B =

C∞(M)⊗CΓ, an arbitrary CΓ-endomorphism S of Bn is given by a matrix (Sij)i,j=1,...,n,
where Sij ∈ EndC(C

∞(M))⊗CΓ.

Now let RM be the algebra of smoothing operators on C∞(M).

Proposition 3. The homomorphism θ maps the algebra C∞
c (G) to Mn(RM⊗CΓ).

Indeed, the map is given explicitly by the equality

θ(k)ij(x, y, g) = χi(x)1/2 χj(y)1/2 k(βj(x), gβj(y))

∀k ∈ C∞
c (M̃×ΓM̃), x, y ∈ M, g ∈ Γ

which shows that each θ(k)ij(g) is a smoothing operator.

Proposition 4. The induced map

K0(C
∞
c (G))→K0(RM⊗CΓ)

is independent of the choice of (Uj, βj, χj)j=1,...,n.
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Indeed, though the choice of the B-module morphism U ∈ HomB(E ,Bn) involved in
the construction of θ, is not unique, we know that two such choices U and U ′ are
equivalent. In fact, at the expense of replacing n by 2n we may even assume that there
exists W ∈ Mn(B), invertible, such that

U ′ = W ◦U.

Then θ′(T ) = Wθ(T )W−1 ∀T ∈ C∞
c (G), where W is a multiplier of the algebra

Mn(RM⊗CΓ); thus the equality of θ∗ and θ′∗ : K0(C
∞
c (G))→K0(RM⊗CΓ). Finally the

manifold M has disappeared since one has:

Lemma 5. Let M be a compact manifold, dim M > 0. Then there is a canonical class
of isomorphisms

ρ : RM→R
unique modulo inner automorphisms of R.

Indeed, the algebra RM depends functorially on the pair, L2(M) ⊃ C∞(M), of a
Hilbert space and a dense (nuclear) subspace. Moreover, it is easy to check, using ,
for instance, an orthonormal basis of L2(M) of eigenvectors for a Laplacian, that the
above pair is isomorphic to the pair `2(N) ⊃ S(N), where S(N) is the subspace of `2 of
sequences of rapid decay

Sup nk|an| < ∞ ∀k ∈ N.

Putting together Proposition 4 and Lemma 5 we get a well defined K-theory map

j : K0(C
∞
c (G))→K0(RΓ).

Definition 6. The equivariant index of a Γ-invariant elliptic differential operator,

D : C∞
c (M̃, E1)→C∞

c (M̃, E2), is defined as IndΓ(D) = j(Ind(D)) ∈ K0(RΓ).

Note that it is not possible to define IndΓ(D) as an element of K0(CΓ) since the latter
group is too small in general, and in particular for torsion-free groups.

4.γ The index theorem. Let c ∈ Zq(Γ,C) be a group cocycle, with q = 2k an
even integer. The cup product τc # Trace = ϕc is a well defined cyclic cocycle on the
algebra RΓ, and thus we can pair it with the group K0(RΓ) as described in detail in
Section 3. The following result computes the pairing ϕcInd(D) in terms of the principal
symbol σD of D, the classifying map

ψ : M→BΓ

of the principal Γ-bundle M̃ over M and the usual ingredients of the Atiyah-Singer
index theorem, namely the Todd genus Td(TCM) of the complexified tangent bundle
of M .



4. THE HIGHER INDEX THEOREM FOR COVERING SPACES 243

Theorem 7. [129] Let Γ be a (countable) discrete group acting properly and freely on

a manifold M̃ and D a Γ-invariant elliptic differential operator on M̃ . For any group
cocycle c ∈ Z2k(Γ,C) one has

〈τc # Trace, Ind(D)〉 =
(−1)dim M

(2πi)k

1

(2k)!
〈Ch(σD) Td(TCM)ψ∗(c) , [T ∗M ]〉

where M = M̃/Γ, ψ : M→BΓ is the classifying map, and ψ∗(c) is the pull-back of the
class of c in H2k(BΓ,C).

We refer to [129] for the proof, which relies on the local isomorphism of the groupoid
G of the covering space with the groupoid M×M , thus reducing the statement to an
index theorem for germs of cocycles near the diagonal on the groupoid M×M , i.e. to
Alexander-Spanier cohomology. Note that we use the pairing as defined in Proposition
3.2 which eliminates the term k! of [129]. The sign (−1)dim M can be eliminated by a
suitable choice of orientation of [T ∗M ].

As a special case of Theorem 7 one gets that the equivariant index of the signature

operator Dsign on M̃ , paired with τc # Trace, gives (up to a numerical factor) the
Novikov higher signature

Signc(M, ψ) = 〈L(M) ∪ ψ∗(c), [M ]〉.
Thus, if we knew that the equivariant index

IndΓ(Dsign) ∈ K0(RΓ)

is a homotopy invariant of the pair (M, ψ), then the Novikov conjecture would follow.

But the only thing we know, thanks to the index theorem of Mishchenko and Kasparov
(cf. Section II.4), is that:

Lemma 8. The image of IndΓ(Dsign) in K0(C
∗Γ) under the morphism RΓ→K⊗C∗(Γ)

is the Mishchenko-Kasparov C∗Γ-signature, and is homotopy invariant.

We refer to [129] for the details of the proof. We are thus confronted with the crucial
problem of extending the K-theory invariant

ϕ : K0(RΓ)→C
given by ϕc(x) = 〈τc # Trace, x〉, to the larger C∗-algebra K⊗C∗(Γ).

We can formulate the following corollary of Theorem 7 and Lemma 8:

Corollary 9. Let Γ be a discrete group and c ∈ Z2k(Γ,C) a group cocycle. Then if the
pairing ϕc with the cyclic cocycle τc extends from K0(RΓ) to K0(K⊗C∗(Γ)), the pair
(Γ, c) satisfies the Novikov conjecture.
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Figure 2. Hyperbolic metric space

As we mentioned already in the introduction this extension problem will occupy the
second part of this chapter. We shall first describe what can be done directly for
discrete groups.

5. The Novikov Conjecture for Hyperbolic Groups

We shall see in this section that the extension problem for K-theory invariants given
by group cocycles (Corollary 4.9) can be solved for Gromov’s word hyperbolic groups,
thus proving the Novikov conjecture for this large class of groups ([129]).

5.α Word hyperbolic groups. There are (cf. [241]) several equivalent defin-
itions of word hyperbolic groups Γ. We shall use the definition in terms of the hy-
perbolicity of the (discrete) metric space (Γ, d), where d is the left invariant distance
d(g1, g2) = `(g−1

1 g2), ∀g1, g2 ∈ Γ and ` is the word length. This is relative to a finite
system F⊂Γ of generators of Γ, with F = F−1, and is defined as the length of the
shortest word in the generators representing g

`(g) = Inf{n ; g ∈ F n}.

Definition 1. [241] Let (X, d) be a metric space. It is hyperbolic if for some x0 ∈ X,
there exists δ0 > 0 such that the inequality

δ(x, z) ≥ Inf(δ(x, y), δ(y, z))− δ0 ∀x, y, z ∈ X

where δ(x, y) = 1
2
(d(x, x0) + d(y, x0)− d(x, y)), is satisfied.



5. THE NOVIKOV CONJECTURE FOR HYPERBOLIC GROUPS 245

It then follows that the same holds for any x0 ∈ X (with the constant 2δ0) so that the
choice of x0 is irrelevant. The simplest example of hyperbolic metric spaces, besides
the line and trees, is given by complete simply connected Riemannian manifolds with
sectional curvature everywhere bounded above by −ε < 0.

Definition 2. [241] Let Γ be a finitely generated discrete group. Then Γ is hyperbolic
if the metric space (Γ, d) (associated to a finite set of generators F of Γ) is hyperbolic.

This definition does not depend upon the set of generators, at least in the case we are
interested in, namely that of finitely presented groups. Any finitely presented group Γ
is the fundamental group π1(P ) of a 2-dimensional cell complex associated naturally
to the presentation of Γ. Then Γ is hyperbolic if and only if the following isoperimetric
inequality is satisfied by a smooth connected neighborhood V of P⊂Rn, n ≥ 5.

There exists C < ∞ such that every smooth simple curve S in V which is contractible
in V bounds a smooth embedded disk D⊂V such that

Area D ≤ C Length S.

Finally, the third equivalent formulation of hyperbolicity is that the metric space (Γ, d)
looks treelike when seen from very far ([241]). Nevertheless one should not conclude
too hastily that hyperbolic groups are one-dimensional objects, and for instance:

Proposition 3. [241] For every finite polyhedron V0 one can find an aspherical poly-
hedron V with word hyperbolic fundamental group Γ = π1(V ) such that dim V = n =
dim V0 and V admits a continuous map f : V→V0 which is injective on the cohomology
H∗(V0). Furthermore, if V0 is a manifold, then one also can choose V to be a manifold,
such that f ∗ : H∗(V0,Q)→H∗(V,Q) sends the Pontryagin classes of V0 to those of V .

In order to get familiar with Definition 2 of hyperbolic groups let us use it to estimate
the number of decompositions g = g1g2 of a given g ∈ Γ such that `(g1) + `(g2) ≤
`(g) + const. We fix a system of generators F of Γ; let ` be the corresponding length
function on Γ and δ0 the constant, provided by Definition 1, such that

δ(g1, g3) ≥ Inf(δ(g1, g2), δ(g2, g3))− δ0 ∀g1, g2, g3 ∈ Γ

where δ(g1, g2) = 1
2
(`(g1) + `(g2)− `(g−1

1 g2)) ∀gi ∈ Γ.

Lemma 4.

a) Let g1, g2 ∈ Γ, ni = `(gi), and let ` be such that `(g1g2) = `(g1) + `(g2) − 2`.
Then there exist g′1, g

′
2 ∈ Γ such that g′1g

′
2 = g1g2, `(g′i) = `(gi)−`, and g1 = g′1k

with
`(g′1) + `(k) ≤ `(g1) + 2δ0.

b) Let δ < ∞. There exists C < ∞ such that the number of decompositions
g = g1g2 of any g ∈ Γ, with `(g1) fixed and `(g1)+ `(g2) ≤ `(g)+ δ, is bounded
above by C.
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Proof. a) Note first that ` ≤ inf(n1, n2) with the above notation, so that ni − ` ≥ 0.
Writing g = g1g2 as a product of `(g) elements of F , we can define g′1 as the product
of the first n1 − ` elements and g′2 as the product of the last n2 − ` elements. One has

2δ(g′1, g) = `(g′1) + `(g)− `(g′2) = 2n1 − 2`

2δ(g1, g) = `(g1) + `(g)− `(g2) = 2n1 − 2`.

Thus, the hyperbolicity of Γ yields

δ(g1, g
′
1) ≥ (n1 − `)− δ0.

Hence `(g1)+`(g′1)−d(g1, g
′
1) ≥ 2(n1−`)−2δ0 and d(g1, g

′
1) ≤ `+2δ0. Thus, k = (g′1)

−1g1

has length less than ` + 2δ0.

b) Let g = g1g2 with `(g1) = n1 and `(g) = `(g1) + `(g2)− 2` as above. By hypothesis,
2` ≤ δ; thus with g′1 and g′2 as in a) one has d(g1, g

′
1) ≤ δ + 2δ0, and the result follows

with C the cardinality of the ball of radius δ + 2δ0.

5.β The Haagerup inequality. In work on the approximation property for C∗-
algebras ([257]), U. Haagerup proved an important estimate for the norm of the con-
volution operator λ(x), x ∈ CΓ, acting in the Hilbert space `2(Γ), where Γ is a free
group. This estimate was then extended to word hyperbolic groups in [304] [268]. We
shall give its proof below using Lemma 4 above.

Theorem 5. [304] [268] Let Γ be a word hyperbolic group and g→`(g) the word length.
Then for some k < ∞ and C < ∞ one has, for any x ∈ CΓ

||λ(x)|| = ||x||C∗r ≤ C νk(x)

where νk(x) = (
∑

g∈Γ(1 + `(g))2k |xg|2)1/2, x =
∑

xgg.

Here λ(x) is the operator on `2(Γ) of left convolution by x

(λ(x)ξ)(g) =
∑

g1g2=g

xg1 ξ(g2).

Writing x =
∑

x(n) where x
(n)
g = 0 unless `(g) = n we just need to find an inequality

of the form

(∗) ||λ(x(n))|| ≤ P (n) ||x(n)||2
where P is a polynomial in n and ||y||2 is the `2 norm. One then has ||λ(x)|| ≤∑ ||λ(x(n))|| ≤ ∑

P (n)||x(n)||2 ≤ const
(∑

(nP (n))2 ||x(n)||22
)1/2

.

We can thus fix n ∈ N and assume that xg = 0 ∀g ∈ Γ, `(g) 6= n. Let us then consider
the orthogonal decomposition

`2(Γ) = H =
⊕
m

Hm
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where, with εg, g ∈ Γ, the canonical orthonormal basis of `2(Γ), the subspace Hm is
the closed linear span of the εg with `(g) = m. Let λ(x) = (Tm1,m2)mj∈N be the matrix
of operators

Tm1,m2 : Hm2→Hm1

corresponding to λ(x). The triangle inequality shows that Tm1,m2 = 0 unless |m1 −
m2| ≤ n, since kh2 = h1, `(k) = n, `(hi) = mi implies |m1 −m2| ≤ n. Thus, in order
to prove (∗) it is enough to find a polynomial P (n) such that

||Tm1,m2|| ≤ P (n)||x||2 ∀m1,m2.

Let us fix m, q ≥ 0. Let ξ be such that ξ(g) = 0 unless `(g) = m. One has

||Tm+n−2q,mξ||2 =
∑

`(g)=m+n−2q

|(x ∗ ξ)(g)|2

(x ∗ ξ)(g) =
∑

`(g1)=n,`(g2)=m,g1g2=g

x(g1) ξ(g2).

For g ∈ Γ, `(g) = m + n − 2q, let g′1, g
′
2 ∈ Γ be such that g′1g

′
2 = g, `(g′1) = n − q,

`(g′2) = m − q. Then by Lemma 4 we can, for any decomposition g = g1g2, with
`(g1) = n and `(g2) = m, find k ∈ Γ with g1 = g′1k and `(k) ≤ q + 2δ0. Then
g2 = k−1g′2. Thus, the Schwarz inequality gives

|(x ∗ ξ)(g)|2 ≤




∑
`(g′1k1)=n

`(k1)≤q+2δ0

|x(g′1k1)|2







∑

`(k−1
2 g′2)=m

`(k2)≤q+2δ0

|ξ(k−1
2 g′2)|2


 .

Adding up these inequalities we get

||(Tm+n−2q,m)ξ||2 ≤ C2
(∑

|x(g1)|2
) (∑

|ξ(g2)|2
)

where C is the constant of Lemma 4 b) for δ = 2δ0.

Remark 6. The above estimate of the convolution norm ||λ(x)||, x ∈ CΓ, in terms of
the word length norms νk(x) fails in general, and in particular for any solvable group
with exponential growth. Indeed, for any amenable group the trivial representation is
weakly contained in the regular representation and it follows that for x ∈ CΓ, with
xg ≥ 0 ∀g ∈ Γ, one has ∑

xg ≤ ||λ(x)||.
But the inequality

∑
xg ≤ C νk(x) is easily violated for any C and k when Γ has

exponential growth. We refer to [304] for a general study of groups for which Theorem
5 is valid.
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5.γ Extension to C∗
r (Γ) of K-theory invariants. Let Γ be a word hyperbolic

group and [c] ∈ Hp(Γ,C) a group cohomology class (assume p even > 0). By [241] we
may let c ∈ Zp(Γ,C) be a bounded group cocycle in that class, i.e. |c(g1, . . . , gk)| ≤
C ∀gi ∈ Γ. Let τc ∈ Zp

λ(CΓ⊗R) be the corresponding cyclic cocycle on the group
ring CΓ⊗R = RΓ of Γ with coefficients in the ring R of matrices of rapid decay (cf.
Section 4).

Theorem 7. [129] The K-theory invariant τc : K0(RΓ)→C extends to the K-theory
of the C∗-algebra C∗

r (Γ)⊗K ⊃ RΓ.

To prove this theorem we shall show that the cyclic cocycle τc extends by continuity
to a cyclic cocycle on the closure C of RΓ under holomorphic functional calculus in
C∗

r (Γ)⊗K. Any element x of C∗
r (Γ)⊗K yields a matrix (xij) of elements of C∗

r (Γ) and
we can thus define

Nk(x) =

(∑
i,j

(νk(xij))
2

)1/2

.

For x ∈ C∗
r (Γ) the components xg ∈ C are well defined, xg = 〈xεg, εg〉, so that νk(x) =(∑

(1 + `(g)2k)|xg|2
)1/2

is unambiguous.

Let us show that for any element x of the holomorphic closure C of RΓ in C∗
r (Γ)⊗K

one has
Nk(x) < ∞ ∀k ∈ N.

We shall construct a subalgebra B of C∗
r (Γ)⊗K which contains CΓ⊗R, is closed under

holomorphic functional calculus (Appendix C) and such that Nk(x) < ∞ for any x ∈ B
and k ∈ N.

To this end, we let ∆ (resp. D) be the (unbounded) operator on `2(N) (resp. `2(Γ))
defined by

∆δj = jδj (j ∈ N) (resp. Dδg = |g|δg (g ∈ Γ)).

Next, we consider the unbounded derivations ∂ = ad D of L(`2(Γ)) and ∂̃ = ad (D⊗1)
of L(`2(Γ)⊗`2(N)), and set

B = {x ∈ C∗
r (Γ)⊗K; ∂̃k(x)◦(1⊗∆) is bounded ∀k ∈ N}.

First we claim that B contains CΓ⊗R. Indeed, if x = λ(g)⊗S, with g ∈ Γ, λ the

left regular representation and S ∈ R, then ∂̃k(x)◦(1⊗∆) = ∂k(λ(g))⊗S∆; but both
∂k(λ(g)) and S∆ are bounded.

Secondly, since {x ∈ C∗
r (Γ)⊗K; x◦(1⊗∆) bounded} is evidently a left ideal, B is a

subalgebra, in fact a left ideal in

B∞ =
⋂

k≥0

Domain ∂̃k.

Now B∞ is stable under holomorphic functional calculus and, therefore, so is B.
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Finally, let us check that Nk(x) < ∞, ∀x ∈ B and k ∈ N. As Dδe = 0, one has

(∂̃k(x)◦1⊗∆)(δe⊗δj) = j
∑

i∈N
Dk (xij δe)⊗δi

= j
∑

(g,i)∈Γ×N
|g|k xij(g) δg⊗δi.

Thus, there exists C < ∞ such that
∑

(g,i)∈Γ×N
|g|2k |xij(g)|2 < Cj−2;

therefore, ∑

i,j∈N

∑
g∈Γ

|g|2k |xij(g)|2 < ∞ , ∀k ∈ N,

which implies Nk(x) < ∞, ∀k ∈ N.

To conclude the proof of Theorem 7 we just need to show that the cyclic cocycle
τc # Trace on CΓ⊗R is continuous for the norm Nk, k large enough, and thus extends
by continuity to C. It is clear from the definition of Nk that τc # Trace is continuous
with respect to Nk if τc is continuous with respect to νk. The continuity of τc with
respect to νk, for k large enough, follows from Theorem 5 and the boundedness of the
group cocycle c (its polynomial growth is sufficient) ([304]). Indeed, one has

τc(x
0, x1, . . . , xp) =

∑
g0···gk=1

x0(g0) · · ·xp(gp) c(g1, . . . , gp)

|τc(x
0, x1, . . . , xp)| ≤ ||c||

∑
g0···gk=1

y0(g0) · · · yp(gp)

where yj(g) = |xj(g)| ∈ C ∀g ∈ Γ. Thus

|τc(x
0, x1, . . . , xp)| ≤ ||c||(y0 ∗ y1 ∗ · · · ∗ yp)(1)

≤ ||c||Cp

(
p∏
1

νk(y
j)

)
ν0(y

0) = ||c||Cp

(
p∏
1

νk(x
j)

)
ν0(x

0).

As a corollary of Theorem 7 and Section 4 Corollary 9, this results in

Theorem 8. [129] Let Γ be a word hyperbolic group. Then Γ satisfies the Novikov
conjecture.

Remark 9. 1) For another subsequent proof of this result cf. [122].

2) The proof of the above theorem has been extended by C. Ogle to show that even
in the presence of torsion for Γ the analytic assembly map (Chapter II Section 10) is
rationally injective ( [422]).
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6. Factors of Type III, Cyclic Cohomology and the Godbillon-Vey
Invariant

Let (V, F ) be a transversely oriented codimension-1 foliation. The Godbill-
on-Vey class GV ∈ H3(V,R) is a 3-dimensional cohomology class, the simplest non-
trivial example of a Gel’fand-Fuchs cohomology class. It is defined as follows: Since
(V, F ) is transversely oriented there exists a nowhere vanishing smooth 1-form ω on V
which defines the foliation by the equality

Fx = {X ∈ Tx(V ) ; ωx(X) = 0} ∀x ∈ V.

The condition of integrability of the bundle F⊂TV is equivalent to the existence of a
1-form α on V such that

dω = α∧ω.

One then checks the following:

Lemma 1. [231] The 3-form α∧dα is closed and its cohomology class GV ∈ H3(V,R)
is independent of the choices of ω and α once (V, F ) is given.

Indeed, fixing ω first and changing α to α′, the equality (α′ − α)∧ω = 0 shows that
α′ = α + ρω for some ρ ∈ C∞(V ); it results that

α′∧dα′ = α∧dα + d(ρω∧α).

This shows that the class of α∧dα is independent of the choice of α. If one replaces ω
by ω′ = fω with f ∈ C∞(V,R∗) then one has

dω = α∧ω⇒dω′ = (f−1df + α)∧ω′.

Thus, the class of α∧dα is independent of the choice of ω, and is hence closed.

The cohomology class GV ∈ H3(V,R) is not rational in general; in fact when V is a
compact oriented 3-manifold, the Godbillon-Vey invariant

〈GV, [V ]〉 ∈ R
can assume any real value ([560]).

With a little more work one can define GV as a 3-dimensional cohomology class

GV ∈ H3(BG,R)

where BG is the classifying space of the holonomy groupoid G of (V, F ) (cf. [259],
[260], [261] and γ) below).

In this section we shall prove that the Godbillon-Vey class yields K-theory invariants

ϕz : K0(C
∗
r (V, F ))→R
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for the C∗-algebra of the foliation, parametrized by elements z ∈ Mod(M) of the
flow of weights of the von Neumann algebra M of (V, F ). These invariants enjoy two
properties:

1) ϕθλ(z) = ϕz ∀λ ∈ R∗+ , z ∈ Mod(M), where θλ ∈ AutMod(M) is the flow of
weights (Chapter V Section 8).

2) ϕ1 is related to GV ∈ H3(BG,R) by the equality

ϕ1(µ(x)) = 〈Ch∗(x), GV 〉 ∀x ∈ K∗,τ (BG)

where µ is the analytic assembly map (Chapter II Section 8).

As an immediate corollary of the existence of such K-theory invariants it follows that
if GV 6= 0 as an element of H3(BG,R), then the flow of weights Mod(M) admits a
normal invariant probability measure (Theorem 21) [99] and the von Neumann algebra
M has a nontrivial type III component ([292]).

The existence of ϕz follows from the interplay between the transverse fundamental class
of (V, F ), which is a certain canonical cyclic cohomology class [V/F ] ∈ HC1(C∞

c (G))
encoding the 1-dimensional oriented transverse structure, and the canonical dynamics
δ(t) ∈ Out M = Aut M/Inn M of the von Neumann algebra M of the foliation, given
by the modular automorphism group of M (cf. Chapter I Section γ).

The point is that, in general, [V/F ] fails to be invariant under the evolution δ(t), but

its second time derivative d2

dt2
[V/F ] does vanish and the first time derivative d

dt
[V/F ]

yields by contraction iδ
d
dt

[V/F ], a cyclic 2-cohomology class

iδ
d

dt
[V/F ] ∈ HC2(C∞

c (G))

whose associated K-theory invariant, once extended to C∗
r (V, F ), yields ϕ1.

The relation, for any x ∈ K∗,τ (BG),

〈iδ d

dt
[V/F ], µ(x)〉 = 〈GV, Ch∗(x)〉

expresses the deep interplay between noncommutative measure theory and Gel’fand-
Fuchs cohomology.

Let us now enter into more detail, beginning with a technique to extend K-theory
invariants

ϕ : K(A)→C
from a subalgebra A⊂A of a C∗-algebra to

ϕ̃ : K(A)→C.
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6.α Extension of densely defined cyclic cocycles on Banach algebras. Let
A be a unital C∗-algebra; then the traces τ on A are the only interesting continuous
cyclic cocycles on A ([102]). As a rule the relevant cocycles are only defined on a dense
subalgebra

A⊂A

and are not continuous for the C∗-algebra norm of A.

In this section we shall give a relative continuity condition on cyclic cocycles on A
which will ensure that the K-theory invariant

ϕ : K(A)→C
associated to the cyclic cocycle, extends to K(A).

Let us begin by giving a simple condition implying that two (continuous) traces τ0, τ1

yield the same map
τj : K0(A)→C.

If we were to consider τ0 and τ1 as elements of HC0(A) then a sufficient condition
would be τ0− τ1 ∈ B(Kerb) (cf. Section 3), i.e. the existence of a Hochschild 1-cocycle
ψ ∈ H1(A,A∗) such that Bψ = τ0 − τ1, or, in other words, with τ = τ0 − τ1,

ψ(1, a)− ψ(a, 1) = τ(a) ∀a ∈ A.

Since the Hochschild cohomology H1(A,A∗) always vanishes ([254]) the above condi-
tion is of no use and only yields trivial homologies between traces.

As we shall see this is no longer the case if we allow ψ to be unbounded. A Hochschild
1-cocycle ψ ∈ Z1(A,A∗) is a derivation from the algebra A to the bimodule A∗ of
continuous linear forms on A and the notion of unbounded derivation from A to A∗

makes perfect sense. Let us recall the standard terminology:

Given two Banach spaces B1, B2 an unbounded operator T from B1 to B2 is given by
a linear subspace DomT⊂B1 and a linear map T : DomT→B2.

One says that T is densely defined when DomT is dense in B1, and that it is closable
when the closure of its graph

graph(T ) = {(ξ, T ξ) ∈ B1×B2 ; ξ ∈ DomT}
is the graph of an unbounded operator T , the closure of T . The adjoint T ∗ of a densely
defined operator T is the unbounded operator from B∗

2 , the dual Banach space of B2,
to B∗

1 defined by

DomT ∗ = {η ∈ B∗
2 ; ∃c < ∞ with |〈Tξ, η〉| ≤ c||ξ|| for any ξ ∈ DomT}

〈T ∗η, ξ〉 = 〈η, T ξ〉 ∀η ∈ DomT ∗ , ξ ∈ DomT.

The adjoint T ∗ is densely defined provided T is closable.

Let B1 be a Banach algebra and B2 a Banach B1-bimodule such that

||b1ξb
′
1|| ≤ ||b1|| ||ξ|| ||b′1|| ∀b1, b

′
1 ∈ B1 , ξ ∈ B2
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Then an unbounded operator from B1 to B2 is called a derivation if Domδ is a subalgebra
of B1 and

δ(ab) = δ(a)b + aδ(b) ∀a, b ∈ Domδ.

One then has the following standard result:

Lemma 2. Let δ be a densely defined and closable derivation from B1 to B2; then its
closure δ is still a derivation, and its domain Domδ is a subalgebra of B1 stable under
holomorphic functional calculus.

Proof. One has a ∈ Domδ iff there exists an ∈ B1, with an→a, δ(an) convergent.
Then δ(a) = Limδ(an). It follows easily that Domδ is an algebra and δ a derivation.
To prove the stability under holomorphic functional calculus of Domδ, let us first show
that if a ∈ Domδ is invertible in B1 then a−1 ∈ Domδ.

As Domδ = A is dense in B1, there exists b ∈ A with ||1−ab|| < 1, ||1−ba|| < 1, hence
it is enough to show that if a ∈ A, ||a|| < 1 then (1 − a)−1 ∈ A. This is clear since
n∑
0

ak→(1− a)−1, and δ(
n∑

k=0

ak) is norm convergent, because ||δ(ak)|| ≤ k||a||k−1 ||δ(a)||
for any k ∈ N.

Applying this to the resolvent (a − λ)−1, λ /∈ SpectrumB1
(a) one sees that Domδ is

stable under holomorphic functional calculus.

Let us now return to homology between traces and prove the following ([99]).

Proposition 3. Let B be a unital Banach algebra, δ a densely defined derivation of
B with values in the dual space B∗ ( viewed as a bimodule over B with 〈aϕb, x〉 =
〈ϕ, bxa〉 ∀a, x, b ∈ B , ϕ ∈ B∗) and assume that the unit 1B belongs to the domain of
the adjoint δ∗ of δ. Then

a) τ = δ∗(1) is a trace on B.

b) The map of K0(B) to C given by τ is equal to 0.

Proof. a) One has τ(xy) = 〈xy, δ∗(1)〉 = 〈δ(xy), 1〉 = 〈δ(x), y〉+〈δ(y), x〉 = τ(yx) ∀x, y ∈
Domδ.

b) The equality 〈δ(x), y〉+〈δ(y), x〉 = τ(xy) for x, y ∈ Domδ shows that Domδ⊂Domδ∗,
with δ∗(x) = −δ(x) + xτ for any x ∈ Domδ. This shows that δ is a closable operator
from the Banach space B to the dual Banach space B∗. Let δ be the closure of δ, so
it follows that the domain of δ,A = Domδ, is a subalgebra of B and δ is a derivation
from A to B∗. Moreover, by Lemma 2, the inclusion A⊂B gives an isomorphism

K0(A)→K0(B)
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(cf. Appendix C). Thus, it is enough to show that the map from K0(A) to C given by
τ is equal to 0, which follows from the equality τ = Bψ, where ψ ∈ Z1(A,A∗) is given
by

ψ(a0, a1) = 〈a0, δ(a1)〉 ∀a0, a1 ∈ A.

Let us illustrate Proposition 3 by a very simple example.

Assume µ to be a Radon measure of 0 total mass on a connected compact manifold V .
Let us express the homology between the current µ and the current 0 in C∗-algebra
terms:

Example 4. If µ(V ) = 0 there exists a densely defined derivation δ from the C∗-
algebra A = C(V ) to its dual A∗ such that 1A belongs to the domain of the adjoint δ∗

and δ∗(1) = µ.

Proof. Choose a Riemannian metric on V and assign in a Borel manner a geodesic
path πp,q : [0, 1]→V to each pair (p, q) of elements of V . Assuming for simplicity that
µ is real, let µ = µ+ − µ− be its Jordan decomposition, and put, for f, g ∈ C∞(V ),

τ(f, g) =

∫ (∫ 1

0

π∗p,q(f dg)

)
dµ+(p) dµ−(q).

Then the equality 〈δ(g), f〉 = τ(f, g) gives a densely defined derivation δ from A to A∗

(considered as a bimodule over A) and δ∗(1) = µ+(V )µ since

τ(1, g) =

∫
(g(p)− g(q)) dµ+(p) dµ−(q) = µ+(V )

∫
gdµ.

Let B be a Banach algebra. We shall now show how to construct maps from K1(B)
to C using instead of a trace a homology (in the sense of Proposition 3) between the
trace τ = 0 and itself.

Definition 4. Let B be a Banach algebra. By a 1-trace on B we mean a densely
defined derivation δ from B to B∗ such that

〈δ(x), y〉 = −〈δ(y), x〉 ∀x, y ∈ Dom δ.

Proposition 5. Let δ be a 1-trace on B; then:

a) δ is closable.

b) There exists a unique map of K1(B) to C such that, for u ∈ GLn(Domδ),

ϕ(u) = 〈u−1, δ(u)〉.
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Proof. We can assume that B is unital with δ(1) = 0.

a) Any skew-symmetric operator from B to B∗ is closable.

b) We can assume that δ is closed; let A be its domain. By Lemma 2, any element of
A which is invertible in B is invertible in A, and the same holds for Mn(A)⊂Mn(B).
Thus, since the open set Mn(B)−1 of invertible elements in Mn(B) is locally convex, two
elements u and v of GLn(A) which are in the same connected component of GLn(B)
are connected by a piecewise affine path in GLn(A).

On such a path t→ut the function f(t) = 〈u−1
t , δ(ut)〉 is constant, since its deriva-

tive is −〈u−1
t u̇t u−1

t , δ(ut)〉 + 〈u−1
t , δ(u̇t))〉 = 0 since 〈u−1

t , δ(u̇t)〉 = −〈δ(u−1
t ), u̇t〉 =

〈u−1
t δ(ut)u

−1
t , u̇t〉. The result then follows.

We shall now give non-trivial examples of 1-traces on C∗-algebras. The simplest ex-
ample is to take a one-parameter group αt of automorphisms of A, and an α-invariant
trace τ on A. Let D be the generator of (αt), i.e. the closed derivation

D(x) = Limt→0
1

t
(αt(x)− x).

The equality x ∈ DomD→δ(x) = D(x)τ ∈ A∗ defines a 1-trace on A, and the map
of K1(A) to C given by this 1-trace coincides with the one defined in [105]. We
shall now give other examples of 1-traces, not of the above form (the algebra A will
have no nonzero traces in some examples) and use them to prove the non-triviality of
K1(A) for crossed products A = C(S1)oΓ of S1 by a group of orientation-preserving
homeomorphisms. Note that we shall use the reduced crossed product so that the result
we obtain is stronger than for the maximal crossed product.

Theorem 6. Let Γ be a countable group of orientation-preserving homeomorphisms of
S1 and A = C(S1)orΓ be the reduced crossed product C∗-algebra. Then the canonical
homomorphism i : C(S1)→A is an injection of K1(C(S1)) = Z in K1(A).

Proof. On B = C(S1), we have a natural 1-trace obtained as the weak closure of the
derivation δ, with domain C∞(S1), which assigns to each f ∈ C∞(S1) the differential
df viewed as an element of B∗. (This uses the orientation.) This weak closure of δ
is easily identified, using distribution theory, as the derivation (also denoted δ) with
domain BV (S1), the space of functions f ∈ C(S1) of bounded variation, i.e. such
that df is a measure, δ(f) = df . A function f is of bounded variation iff the sums∑ |f(xi+1) − f(xi)| are bounded when the finite subset (xi)i=0,...,n of S1 varies with
xi in the same order on S1 as i, (i.e. xj+1 between xj and xj+2 for j = 0, · · · , n − 2
and xn between xn−1 and x0). It is then clear that if ϕ is any orientation preserving
homeomorphism of S1, ϕ∗ : C(S1)→C(S1) leaves Domδ = BV (S1) invariant, and that
δ(f ◦ϕ) = ϕ(δ(f)). Using this Γ-equivariant 1-trace on C(S1) we shall now construct
a 1-trace on A. Let A = {a ∈ A ; a =

∑
Γ ag Ug with ag 6= 0 only for finitely many
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g ∈ Γ and ag ∈ BV (S1) ∀g ∈ Γ}. For any a ∈ A, let δ(a) ∈ A∗ be the linear functional
given by

〈x, δ(a)〉 =

∫ ∑
Γ

xg g(dag−1) ∀x ∈ A.

Here, for any g ∈ Γ, dag−1 is a measure on S1 and g(dag−1) is its image under the action
of g ∈ Γ on S1. For any x ∈ A, x =

∑
xg Ug, xg is (in a faithful representation) a

matrix element of x so that one has ||xg|| ≤ ||x|| where the latter is the norm in the
reduced crossed product. Thus δ(a) ∈ A∗. Let us check that δ is a 1-trace. For a, b ∈ A
one has

〈b, δ(a)〉 =

∫ ∑
bg g(dag−1)

= −
∫ ∑

dbg−1 g∗ ag

= −
∫ ∑

ag g(dbg−1) = −〈a, δ(b)〉.

For a, b, c ∈ A one has

〈ab, δ(c)〉 − 〈a, δ(bc)〉+ 〈ca, δ(b)〉
=

∫ ∑
g0g1g2=1

ag0((g
−1
0 )∗bg1)(g0g1)dcg2

−
∫ ∑

g0g1g2=1

ag0g0(d(bg1(g
−1
1 )∗cg2))

+

∫ ∑
g0g1g2=1

cg0(g
−1
0 )∗ag1(g0g1)dbg2

= −
∑

g0g1g2=1

∫
ag0g0(dbg1)(g0g1)

−1∗cg2

+
∑

h0h1h2=1

∫
ch0(h

−1
0 )∗ah1(h0h1)dbh2 = 0.

Thus, δ is a 1-trace on A, and for any unitary u ∈ BV (S1) with winding number equal
to 1 one has

〈u−1, δ(u)〉 =

∫
u−1 du = 2iπ.

This shows that un is a nontrivial element of K1(A) for any n ∈ Z, n 6= 0.

In a similar manner, we shall now construct a 1-trace τ on the C∗-algebra C∗
r (V, F )

of a transversely oriented codimension-1 foliation and detect nontrivial elements of
K1(C

∗
r (V, F )).
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Let (V, F ) be such a foliation and G its holonomy groupoid. Let T⊂V be a submanifold
of V of dimension one which is everywhere transverse to F and intersects every leaf of
(V, F ). We do not assume that T is compact or connected, so that such a T always
exists. We shall work with the reduced groupoid

GT = {γ ∈ G ; r(γ) ∈ T , s(γ) ∈ T}
which is equivalent to G and is a one-dimensional manifold (we assume that it is

Hausdorff and refer to [96] for the general case). One has by construction G
(0)
T = T

and the maps r, s from GT to G
(0)
T are étale maps. We shall now construct a 1-trace on

the C∗-algebra A = C∗
r (GT ), which is strongly Morita equivalent to C∗

r (V, F ) = C∗
r (G)

and hence has the same K-theory.

Proposition 7. Let G be a 1-dimensional smooth groupoid such that G(0) is one-
dimensional and that G and G(0) are oriented with r and s both orientation-preserving.
Then the following equality defines a cyclic 1-cocycle on C∞

c (G) which is a 1-trace on
C∗

r (G):

τ(f 0, f 1) =

∫

G

f 0(γ−1) (df 1) (γ).

Proof. Let us first check that τ is a cyclic cocycle on C∞
c (G). The map γ→γ−1 is an

orientation-preserving diffeomorphism of G, so

τ(f 0, f 1) = −τ(f 1, f 0) ∀f j ∈ C∞
c (G).

The product in C∞
c (G) is given by

(f ∗ f ′)(γ) =
∑

γ1◦γ2=γ

f(γ1) f ′(γ2).

Since the source and range maps are étale we can use them to identify the bundles
T ∗G, s∗(T ∗(T )), and r∗(T ∗(T )) over G. We then have

d(f1 ∗ f2) = (df1) ∗ f2 + f1 ∗ df2

in the space of 1-forms on G. To prove this one may assume that the supports of fj

are so small that both r and s are diffeomorphisms of neighborhoods of Support fj

with open sets in T . The required equality is then just the Leibniz rule for d. The
equality bτ = 0 follows from the above and the equivalence, for γ1, γ2, γ3 ∈ G, between
γ1γ2γ3 ∈ G(0) and γ2γ3γ1 ∈ G(0). Finally, to show that τ is a 1-trace on C∗

r (G) one just
needs to show that for any f1 ∈ C∞

c (G) the linear functional

f ∈ C∞
c (G)→

∫

G

f(γ) df1(γ
−1) = L(f)

is continuous in the C∗-algebra norm of C∗
r (G), which is straightforward using the left

regular representation of C∗
r (G) in L2(G).
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As an immediate corollary we get a way to detect the fundamental class of V/F in K-
theory. The latter class makes sense for any transversely oriented foliation, and yields
[V/F ]∗ ∈ K∗(C∗(V, F )) with the same parity as the codimension q of F . To define
[V/F ]∗ choose an orientation-preserving transversal embedding ψ : Dq→V where Dq is
the q-dimensional open disk, and consider ψ!(βq) ∈ K∗(C∗(V, F )), where βq ∈ K∗(Dq)
is the canonical Bott generator of K∗(Dq) = Z. One then checks (Chapter II Section
8):

Lemma 8. The class ψ!(βq) ∈ K∗(C∗(V, F )) is independent of the choice of ψ.

We shall denote this class by [V/F ]∗ ∈ K∗(C∗(V, F )). Using Propositions 5 and 7 we
get:

Theorem 9. Let (V, F ) be a transversely oriented foliation of codimension 1; then
[V/F ]∗ is a non-torsion element of K1(C

∗
r (V, F )).

Proof. Let, as above, T⊂V be a transverse one-dimensional manifold such that the
holonomy groupoid G of (V, F ) is equivalent to GT . Then C∗

r (G) is strongly Morita
equivalent to C∗

r (GT ), and under this equivalence the element [V/F ]∗ ∈ K1(C
∗
r (V, F ))

becomes j∗(α) where j : C0(T )⊂C∗
r (GT ) is the canonical inclusion of C0(T ) in C∗

r (GT )
and α is any element of K1(C0(T )) associated to the Bott generator of one of the
oriented connected components of T . As the restriction of the 1-trace τ of Proposition
7 to C0(T ) is the fundamental class of this oriented manifold, the result follows from
Proposition 5.

Note that we used C∗
r (V, F ) instead of C∗(V, F ) in the statement of Theorem 9 and

hence prove a stronger result.

Remarks 10. 1) We shall see in Section 7 that Theorem 9 is true in any codimension
but that the transverse fundamental class in cyclic cohomology, i.e. τ , is much easier
to analyze in codimension 1.

2) If B is a non-unital Banach algebra, Proposition 3 still holds if one replaces the
equality τ = δ∗(1) by

τ(xy) = 〈δ(x), y〉+ 〈δ(y), x〉 ∀x, y ∈ Domδ.

3) Let A be a non-unital C∗-algebra, and τ a densely defined semi-continuous weight
which is a trace: τ(x∗x) = τ(xx∗) ∀x ∈ A. Then, using 2) above, one can show that
if δ is a densely defined derivation from A to A∗ such that

a) Domδ ∩Dom1/2(τ) is dense in A, where Dom1/2(τ) = {x ∈ A; τ(x∗x) < ∞},
b) 〈δ(x), y〉+ 〈δ(y), x〉 = τ(xy) ∀x, y ∈ Domδ ∩Dom1/2(τ),
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then τ defines the 0-map from K0(A) to C.

This happens if there exists a one-parameter group of automorphisms θt of A such that
τ ◦θt = etτ ∀t ∈ R. Thus, if ϕ ∈ A∗ is a KMS state for a one-parameter group θt then

the associated trace τ on the crossed product Â = AoαR (cf. Chapter V) is always
homologous to 0.

4) The conclusion of Theorem 6 does not hold when Γ fails to preserve the orientation
of S1; in fact if [u] ∈ K1(D1) is the generator, then 2i∗[u] = 0 in K1(A).

We shall now extend Proposition 5 to higher dimensional densely defined cyclic cocycles
on Banach algebras. Let B be a, not necessarily unital, Banach algebra. Recall (Section
1) that to any (n + 1)-linear functional τ on an algebra A we associate the linear form
τ̂ on Ωn(A) given by

τ̂(a0 da1 da2 · · · dan) = τ(a0, a1, . . . , an) ∀ai ∈ A.

This gives a meaning to τ̂((x1 da1)(x2 da2)(x3 da3) · · · (xn dan)) for ai, xi ∈ A,
but of course one could also define it directly by a formula. Thus, for n = 2,
τ̂((x1 da1)(x2 da2)) = τ(x1, a1x2, a2) − τ(x1a1, x2, a2). The crucial definition of this
section is the following:

Definition 11. Let B be a Banach algebra. By an n-trace on B we mean an (n + 1)-
linear functional τ on a dense subalgebra A of B such that

a) τ is a cyclic cocycle on A.

b) For any ai ∈ A, i = 1, . . . , n, there exists C = Ca1,...,an < ∞ such that

|τ̂((x1 da1)(x2 da2) · · · (xn dan))| ≤ C||x1|| · · · ||xn|| ∀xi ∈ Ã.

Note that the conditions a) and b) are still satisfied if we replace A by any subalgebra
which is still dense in B.

Example 12. a) Let V be a smooth manifold (not necessarily compact). Let A =
C0(V ) be the C∗-algebra of continuous functions vanishing at∞. Recall that a de Rham
current C on V of dimension p is a linear functional on the space C∞

c (V,∧p T ∗
CV ) of

differential forms of degree p on V , which is continuous in the following sense: for
any compact K⊂V and family ωα ∈ C∞

c (V,∧p T ∗
C(V )), with Support ωα⊂K for all

α, converging to 0 in the Ck-topology on the coefficients of the forms ωα, one has
C(ωα)→0. In other words, C is of order k when for any ω ∈ C∞

c (V,∧p T ∗
C(V )) the

linear functional f ∈ C∞(V )→C(fω) is continuous in the Ck-topology.

Assume C to be a closed current of dimension p and order 0 on V , and put

τ(f 0, . . . , f p) = C(f 0 df1∧ · · · ∧dfp) ∀f 0, . . . , f p ∈ C∞
c (V ).
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Let us check that this defines a p-trace on the C∗-algebra C0(V ). Its domain C∞
c (V )

is a dense subalgebra of C0(V ), and one easily checks the cyclic cocycle property of τ
using the closedness of C. One has

τ̂(x1da1 · · · xpdap) = C((x1da1)∧ · · · ∧(xpdap)) = C(x1 · · · xpda1∧ · · · ∧dap).

Thus, since da1∧ · · · ∧dap = ω belongs to C∞
c (V,∧p T ∗

C(V )) there exists, as C is of
order 0, a Ca1···ap < ∞ such that

|τ̂(x1da1 · · · xpdap)| ≤ Ca1···ap

p∏
j=1

||xj||.

One checks that the map ϕ of Theorem 13 below from Ki(C0(V )) = K i(V ) to C is
given, up to normalization, by

ϕ([e]) = 〈Ch e, [C]〉,
where Ch : K∗

c (V )→H∗
c (V,R) is the usual Chern character and [C] ∈ H∗(V,C) is the

homology class of the closed current C. Since there are always enough closed currents
of order 0 to yield all of H∗(V,C) we have not lost any information on the Chern
character Che ∈ H∗

c (V,R) in this presentation.

b) Let ∆ be a locally finite simplicial complex, and X = |∆| the associated locally
compact space. Let us construct enough p-traces on the C∗-algebra A = C0(|∆|) to
recover the usual Chern character, as in a). Let γ =

∑
λi si be a locally finite cycle

of dimension p (i.e., the si are all oriented p-simplices of ∆ and the λi’s are complex
numbers, with bγ =

∑
λi bsi = 0). Put

τ(f 0, . . . , f p) =
∑

λi

∫

si

f 0 df 1∧ · · · ∧dfp

where the f j ∈ Cc(X) have the following property (cf. [542]): On each simplex s of ∆
the restriction of f is equal to the restriction of a C∞ function on the affine space of
s. This space C∞

c (∆)⊂C0(X) is a dense subalgebra and one checks as in a) that τ is
a p-trace on C0(X). Again the map ϕ of Theorem 13 below from Ki

c(V ) to C is given
up to normalization by

ϕ(x) = 〈Chx, [γ]〉
where Ch is the usual Chern character and [γ] is the homology class of γ in the homology
of locally finite chains on X, dual to the cohomology with compact supports H∗

c (X).

c) Let (A,G, α) be a C∗-dynamical system, i.e. A is a C∗-algebra on which the locally
compact group G acts by automorphisms αg ∈ Aut A ∀g ∈ G. Assume that G is a Lie
group and let τ be an α-invariant trace on A. Let Ω be the graded differential algebra
of right-invariant differential forms (with complex coefficients) on G. By construction
Ω is, as a graded algebra, identical with ∧C T ∗

e (G), the exterior algebra on the dual of
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the Lie algebra of G. Let t ∈ Hp(Ω
∗) be a p-homology class in the dual chain complex.

Considering t as a closed linear form on Ωp, put

σ(x0, . . . , xp) = (τ⊗t)(x0dx1 · · · dxp) xj ∈ A∞.

Here, A∞ is the dense subalgebra of A formed of elements x ∈ A for which g→αg(x) is
a smooth function from G to the Banach space A. The differentials dx belong to the
tensor product algebra, A∞⊗Ω, and are defined as follows. Let Xi ∈ Lie G be a basis
of the Lie algebra of G, ωi ∈ (Lie G)∗ the dual basis, and δi ∈ Der (A) the unbounded
derivations of A given by (∂Xi

αg)g=1. One takes

dx =
∑

δi(x)⊗ωi ∈ A∞⊗Ω1 ∀x ∈ A∞.

One checks that τ⊗t is a closed graded trace on the differential algebra A∞⊗Ω and it
follows that σ is a cyclic cocycle on the algebra A∞. Let us show that it is a p-trace. For
fixed a1, . . . , ap ∈ A∞, the expression σ̂(x1da1 · · · xpdap) is a finite linear combination
of terms of the form

τ(x1y1x2y2 · · · xpyp)

where yj ∈ A∞ is of the form δk(a
j). Since, by hypothesis, τ ∈ A∗ one has |τ(x1y1 · · ·xpyp| ≤

C||x1y1 · · · xpyp|| ≤ C ′||x1|| · · · ||xp||; thus the conclusion.

Applying Theorem 13 below one recovers the Chern character introduced in [98], from
K(A) to H∗(Ω) (which is dual to H∗(Ω)).

The above examples are easy instances of the following general construction of K-theory
invariants which will be used extensively in β) and in Section 7.

Theorem 13. Let τ be an n-trace on a Banach algebra B. Then there exists a
canonically associated map ϕ of Ki(B), i ≡ n(Mod2), to C such that:

a) If n is even and e ∈ Proj Mq (Domτ) then

ϕ([e]) = (τ # Tr)(e, . . . , e).

b) If n is odd and u ∈ GLq ( Domτ) then

ϕ([u]) = (τ # Tr)(u−1, u, u−1u, . . . , u−1, u).

We refer to [99] for the proof. Note that by [99], τ extends uniquely to an n-trace with
domain the closure of Domτ under holomorphic functional calculus in B. In particular,
if τ and τ ′ agree on a common dense domain they define the same K-theory invariants:
ϕ = ϕ′.

Remark 14. Combining the construction of n-traces in Example b) with the known
results on the Chern character, we see that if X is a locally compact space coming from
a locally finite simplicial complex all maps from K(C0(X)) to C which are additive
come from n-traces on A = C0(X).
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At this point it would be tempting to define, for arbitrary n, a homology relation be-
tween n-traces on an arbitrary Banach algebra extending that given by Proposition 3
and to work out an analogue of homology in this context. We shall see, however, that
this would be premature, because it would overlook a purely noncommutative phenom-
enon which prevents some very natural densely defined n-cocycles on C∗-algebras from
being n-traces, for n ≥ 2.

As a simple example take A = C∗
r (Γ), the reduced C∗-algebra of the following solvable

discrete group Γ. We let Z act by automorphisms on the group Z2 using the unimodular

matrix α =

[
1 1
1 2

]
, and let Γ = Z2oαZ be the semi-direct product. Now consider the

group cocycle c ∈ Z2(Γ,R) given by the equality

c(g1, g2) = v1∧αn1 (v2) ∀gj = (vj, nj) ∈ Γ.

We represent an element of Γ as a pair (v, n) where v ∈ Z2⊂R2 and n ∈ Z, the ∧ is
the usual exterior product, and the cocycle takes values in ∧2R2 = R.

Given any discrete group and group cocycle c which is normalized so that c(g1, . . . , gn) =
0 if any gi = 1 or g1 · · · gn = 1 one gets (Section 1) a cyclic n-cocycle on the group ring
A = CΓ by the equality

τ(f 0, . . . , fn) =
∑

g0g1···gn=1

f 0(g0) · · · fn(gn) c(g1, . . . , gn).

Thus, here we have a cyclic 2-cocycle on A = CΓ, and thus a densely defined cyclic
cocycle on A = C∗

r (Γ). One has

τ̂(x1da1x2da2) = τ(x1, a1x2, a2)− τ(x1a1, x2, a2)

=
∑

g0g1g2g3=1

x1(g0) a1(g1) x2(g2) a2(g3) (c(g1g2, g3)− c(g2, g3)).

Let a1, a2 ∈ CΓ. If, for fixed g1 and g3, the function of g2 defined by g2 7→ c(g1g2, g3)−
c(g2, g3) were bounded one would easily get the desired estimate

|τ̂(x1da1x2da2)| ≤ Ca1,a2 ||x1|| ||x2||.
However, this fails precisely in our example, since with g1 = (v1, 0) and g3 = (v2, 0) we
get, for g2 = (0, n),

c(g1g2, g3)− c(g2, g3) = v1∧αn(v2).

Moreover, fixing such a choice of v1 and v2 and identifying Γ with a subgroup of the
unitary group of CΓ⊂C∗

r (Γ) we get

τ̂(x1da1x2da2) = v1∧αn(v2)

for x1 = g−1
2 h−ng−1

1 , a1 = (v1, 0), x2 = hn, a2 = (v2, 0) with h = (0, 1) ∈ Γ. This shows
that τ is not a 2-trace.



6. TYPE III, CYCLIC COHOMOLOGY AND THE GODBILLON-VEY INVARIANT 263

Since, as one easily checks, there is for each pair a1, a2 in CΓ a constant Ca1,a2 such
that

|τ̂(xda1da2)| ≤ Ca1,a2 ||x|| ∀x ∈ C(Γ)

the obstruction to τ being a 2-trace comes from the noncommutativity da1x2 6= x2da1.
The analysis of this lack of commutativity will occupy us in Section 7 in the special
case of the cyclic cocycle on C0(V )oΓ coming from the Γ-equivariant fundamental
class of a manifold V on which the discrete group Γ acts by orientation-preserving
diffeomorphisms. The above 2-cocycle on C(Z2oαZ) is a special case of this more
general problem, since it is exactly the equivariant fundamental class of the 2-torus
dual to Z2 on which Z acts by α.

6.β The Bott-Thurston cocycle and the equality GV = iδ
d
dt

[V/F ]. Let, as
above, (V, F ) be a transversely oriented codimension-one foliation and GT the reduction
of its holonomy groupoid by a transversal T . Since GT is equivalent to G we shall start
with an arbitrary one-dimensional smooth groupoid G as in Proposition 7 above, and
leave the translation into foliation language to the reader.

To a choice of a smooth nowhere vanishing 1-density ρ on the one-dimensional manifold
G(0) corresponds a faithful normal weight on the von Neumann algebra of the regular
representation of G; i.e. in foliation language, on the von Neumann algebra of the
foliation (Chapter I). This weight ϕρ is given on C∞

c (G) by

ϕρ(f) =

∫

G(0)

fρ.

The modular automorphism group σt of ϕρ leaves the subalgebra C∞
c (G) globally in-

variant and is given by the following formula which one can check, for instance, by
verifying the KMS1 condition for the pair ϕρ, σ−t (cf. Chapter V)

σt(f)(γ) = δ(γ)it f(γ) ∀γ ∈ G , f ∈ C∞
c (G)

where the modular homomorphism δ : G→R∗+ is given by the ratio of the 1-densities
on G

δ = r∗ρ/s∗ρ.

We shall let ` = log δ be the corresponding homomorphism from G to R.

Now let τ be the cyclic 1-cocycle on C∞
c (G), corresponding to the transverse funda-

mental class [V/F ] in the foliation case (Proposition 7).

Proposition 15.

a) The following equality defines a 1-trace on C∗
r (G) with domain C∞

c (G):

τ̇(f 0, f 1) = Limt→0

1

t

(
τ(σt(f

0), σt(f
1))− τ(f 0, f 1)

)

b) The 1-trace τ̇ is invariant under the automorphisms σt of C∗
r (G).
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Proof. a) Let D be the derivation of C∞
c (G) given by Limt→0

1
t
(σt − 1). Then

τ̇(f 0, f 1) = τ(Df 0, f 1) + τ(f 0, Df 1)

=

∫

G

`(γ−1) f 0(γ−1) df 1(γ) +

∫

G

f 0(γ−1) d(`(γ)f 1(γ))

=

∫

G

f 0(γ−1) f 1(γ) d`(γ)

where d` is the 1-form on G which is the differential of the real-valued function `. One
checks that for fixed f 1 ∈ C∞

c (G), the linear form L, L(f 0) = τ̇(f 0, f 1), is continuous
on C∗

r (G), so that a) follows.

b) Since δ(γ) = δ(γ−1)−1 the above formula

τ̇(f 0, f 1) =

∫

G

f 0(γ−1) f 1(γ) d`(γ)

is obviously invariant under σt.

We shall now define in general the contraction of a cyclic n-cocycle by the generator
D of a one-parameter group of automorphisms fixing the cocycle and check that the
n-trace property is preserved.

Lemma 16. Let ϕ be an n-trace on a C∗-algebra A, invariant under the one-parameter
group of automorphisms (σt)t∈R with generator D. Assume that Domϕ∩DomD is dense
in A. Then the following formula defines an (n + 1)-trace on A,ψ = iDϕ,

ψ(x0, . . . , xn+1) =
n+1∑
j=1

(−1)jϕ̂
(
x0(dx1 · · · dxj−1)D(xj)(dxj+1 · · · dxn+1)

)
.

We already saw this formula in Section 1 Remark 30 b). It clearly gives a Hochschild
cocycle. The invariance of ϕ under σt implies that ψ is cyclic. The (n + 1)-trace
property is straightforward using Dom ϕ ∩Dom D as a domain (cf. [99] for details).

When ϕ is a 1-cocycle the formula for ψ = iDϕ can be written as

ψ(x0, x1, x2) = ϕ(D(x2)x0, x1)− ϕ(x0D(x1), x2).

Now let ϕ = τ̇ be the time derivative of the transverse fundamental class (Proposition
15), and let us compute iDϕ. One has

ϕ(f 0, f 1) =

∫

G

f 0(γ−1) f 1(γ) d`(γ)

and (Df)(γ) = `(γ)f(γ). Thus, the computation is straightforward and gives

ψ(f 0, f 1, f 2) =

∫

γ0γ1γ2∈G(0)

f 0(γ0) f 1(γ1) f 2(γ2) c(γ1, γ2)
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where c(γ1, γ2) = `(γ2) d`(γ1)−`(γ1) d`(γ2) is the Bott-Thurston 2-cocycle, a 2-cocycle
on local diffeomorphisms of a 1-manifold with values in 1-forms on that manifold. The
latter cocycle is the Godbillon-Vey 3-dimensional cohomology class in another guise
and this is reflected in the following:

Theorem 17. Let µr : K∗,τ (BG)→K(C∗
r (G)) be the analytic assembly map, where

G = GT is the reduced holonomy groupoid of the transversely oriented codimension-1
foliation (V, F ). Let ψ = iDτ̇ be the 2-trace on C∗

r (G) given by Proposition 15 and
Lemma 16. Then for any x ∈ K∗,τ (BG) one has

〈µr(x), iDτ̇〉 = 〈Ch∗(x), GV 〉.

Here GV is viewed as a cohomology class GV ∈ H3(BG,R) and the twisting K∗,τ in
the K-homology introduces a shift of parity, so that it is K0

∗,τ (BG) which is mapped

to Hodd
∗ (BG) by the Chern character Ch∗. The proof of this result is a special case of

the general index theorem of Section 7 below. We refer to [99] for a direct proof. We
shall now localise the above K-theory invariant to the flow of weights Mod(M) of the
von Neumann algebra M of the foliation.

6.γ Invariant measures on the flow of weights. As above, let (V, F ) be a
codimension-one transversely oriented foliation and let GT = G be the reduced holo-
nomy groupoid. The von Neumann algebra of the foliation (Chapter I) is the same,
up to tensoring by a factor of type I∞, as the von Neumann algebra M of the left
regular representation of C∞

c (G) in L2(G). The flow of weights of the von Neumann
algebra of the foliation (cf. Chapter V) is the same as the flow of weights Mod(M).
It is thus given by the dual action θ of the Pontryagin dual Rb= R∗+ restricted to the
center Z(MoσR) of the von Neumann algebra crossed product of M by the modular
automorphism group σt = σ

ϕρ

t of Subsection β). Since the latter group σt leaves the
subalgebra C∞

c (G)⊂M (and its norm closure C∗
r (G)) globally invariant, we can use the

C∗-algebra crossed product
B = C∗

r (G)oσ R
in order to investigate the center of MoσR. By construction, the C∗-algebra B is
weakly dense in MoσR = N , and the center Z(N) will appear in the following defini-
tion.

Definition 18. Let B be a C∗-algebra, τ a 1-trace on B and δ : B→B∗ the corre-
sponding unbounded derivation, so that τ(x0, x1) = 〈x0, δ(x1)〉 ∀xj ∈ Domτ . Then τ
is anabelian if the domain of the adjoint δ∗ : B∗∗→B∗ contains the center Z(B∗∗) and
δ∗(z) = 0 ∀z ∈ Z(B∗∗).

Recall that the bidual B∗∗ of a C∗-algebra is a von Neumann algebra so that its center
makes good sense. The term anabelian is motivated by the following trivial point:
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If B is commutative, any anabelian 1-trace is 0.

In other words, such 1-traces can exist only in the noncommutative context.

Proposition 19.

1) Let τ be an anabelian 1-trace on the C∗-algebra B; then for any z ∈ Z(B∗∗)
the following equality defines a 1-trace on B:

τz(x
0, x1) = 〈x0, zδ(x1)〉 ∀xj ∈ Domτ.

2) For any u ∈ K1(B), the map z ∈ Z(B∗∗)→〈τz, u〉 is a normal linear form on
Z(B∗∗).

Proof. 1) As B∗∗ acts by multiplication on its predual B∗ the element zδ(x1) ∈ B∗

makes sense and zδ(x1) = δ(x1)z since z ∈ Z(B∗∗). It is clear that τz is a Hochschild
cocycle; let us check that τz(x

0, x1) = −τz(x
1, x0) ∀xj ∈ Domτ . One has

τz(x
1, x0) = 〈x1, zδ(x0)〉 = 〈x1z, δ(x0)〉 = 〈z, δ(x0)x1〉 = −〈z, x0δ(x1)〉

where the last equality follows from the hypothesis on τ

〈z, δ(y)〉 = 0 ∀y ∈ Domτ.

Finally 〈z, x0δ(x1)〉 = 〈zx0, δ(x1)〉 = 〈x0, zδ(x1)〉 = τz(x
0, x1).

2) By construction, 〈u−1, zδ(u)〉 is a normal linear form in the variable z ∈ B∗∗.

Next, let us take B = C∗
r (G)oσR and let

φσ : K0(C
∗
r (G))→K1(B)

be the Thom isomorphism in K-theory (Chapter II Appendix C). Let ψ be the 2-trace
on C∗

r (G) related to the Godbillon-Vey class by Theorem 17.

Theorem 20. There exists an anabelian 1-trace τ on B = C∗
r (G)oσR such that:

1) τ is invariant under the dual action (θλ)λ∈R∗+
2) τ corresponds to ψ by the Thom isomorphism, i.e.

〈τ, φσ(y)〉 = 〈ψ, y〉 ∀y ∈ K0(C
∗
r (G)).

Before we explain the proof of this theorem, let us deduce from it the following corollary.

Theorem 21. [99] Let (V, F ) be a codimension-1 transversely oriented foliation, M
its von Neumann algebra, (W (M), θλ) its flow of weights.

a) If the Godbillon-Vey class GV ∈ H3(BG,R) is not zero (which holds if GV ∈
H3(V,R) is nonzero) there exists a θλ-invariant probability measure in the
normal measure class on W (M).
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b) The conclusion of a) holds if the Bott-Thurston 2-cocycle ψ of Theorem 17
pairs nontrivially with K0(C

∗(V, F )).

Corollary 22. [292] If GV 6= 0 then the von Neumann algebra M has a nontrivial
type III component.

The corollary is immediate since if M is semifinite its flow of weights is given, up to
multiplicity, by the action of R∗+ by translations on L∞(R∗+, ds/s) which admits no
invariant probability measure in the Lebesgue measure class.

Assuming Theorem 20, the proof of Theorem 21 is the following. First it is enough to
prove b) since, by Theorem 17, if GV 6= 0 in H3(BG,R) then there exists an element
x ∈ K0(C

∗(V, F )), in the image of the analytic assembly map, such that 〈x, ψ〉 6= 0.
Next, by Theorem 20 2) and the Thom isomorphism (Chapter II Appendix C) one gets
an element u ∈ K1(B) such that

〈τ, u〉 6= 0.

Let us then consider the normal linear functional L on the center Z(MoσR) given by

L(z) = 〈τz, u〉 ∀z ∈ Z(MoσR).

It makes sense because MoσR is the von Neumann algebra B∗∗
E , that is B∗∗ reduced

by a suitable central projection, so that Z(MoσR)⊂Z(B∗∗). It is a normal linear
functional on Z(MoσR) by Proposition 19 2), and it is not zero since L(1) = 〈τ, u〉 6= 0.
We shall show that it is invariant under the dual action (θλ)λ∈R∗+ . By Theorem 20 1),
the 1-trace τ is θλ invariant so that

〈τθλ(z), u〉 = 〈τz, θλ(u)〉.
But since the action θλ is pointwise norm-continuous in the parameter λ, it follows
that it acts trivially on K1(B) and we see that 〈τθλ(z), u〉 = 〈τz, u〉, i.e. that

L ◦ θλ = L ∀λ ∈ R∗+.

It now remains to construct a 1-trace on B fulfilling the conditions 1) and 2) of Theorem
20. By Chapter II Proposition 5.7, one has B = C∗

r (G1) where the smooth groupoid
G1 is associated to G and to the homomorphism δ : G→R∗+ as follows:

G1 = G×R∗+ , G
(0)
1 = G(0)×R∗+

r(γ, λ) = (r(γ), λ) , s(γ, λ) = (s(γ), λδ(γ)) ; ∀γ ∈ G , λ ∈ R∗+
(γ1, λ1)(γ2, λ2) = (γ1 ◦ γ2, λ1) for any composable pair.

In the foliation context, this means replacing the foliation (V, F ) by a foliation of
codimension 2 on the total space of the principal R∗+-bundle over V of transverse
densities (Chapter I Section 4). The dual action (θλ)λ∈R∗+ , θλ ∈ AutC∗

r (G1), is given
by the obvious automorphisms of G1

θλ(γ, y) = (γ, λy) ∀λ ∈ R∗+ , (γ, y) ∈ G1.
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The anabelian 1-trace τ on B = C∗
r (G1) is given by the formula

τ(f 0, f 1) =

∫

G1

f 0(γ−1) f 1(γ) ω(γ) ∀f j ∈ C∞
c (G1)

where ω is the 2-form on the 2-manifold G1 given by

ω = d`∧dλ

λ
where ` = log δ as above and λ is the variable λ ∈ R∗+. Since ω is invariant under
θλ one checks Theorem 20 1). Since `(γ−1) = −`(γ) one checks that τ(f 1, f 0) =
−τ(f 0, f 1) ∀f j ∈ C∞

c (G1). The cocycle property `(γ1 ◦ γ2) = `(γ1) + `(γ2) implies the
cocycle property for ω, so that τ is a Hochschild 1-cocycle. To show that the 1-trace τ
is anabelian one proves that any element z of the center of the von Neumann algebra
generated by B in L2(G1) is given by a function f(γ), which is in L∞(G1) and such
that

fω is zero almost everywhere.

We refer to [99] for the detailed proof, which can be taken as an exercise. Finally,
Statement 2 of Theorem 20 is a special case of the following general fact (applied to τ
and θλ).

Proposition 23.

a) Let (B, θ) be a C∗-dynamical system and τ a θ-invariant 1-trace on B. The

following equality defines a 1-trace τ̂ on B̂ = BoθR, invariant under the dual
action

τ̂(f 0, f 1) =

∫
τ

(
f 0(t), θt(f

1(−t))
)
dt

for f j ∈ C∞
c (R, Domτ)⊂BoθR.

b) Let ϕθ : K1(B)→K0(BoθR) be the Thom isomorphism, and D = d
dt

σt be the
generator of the dual action. Then for any y ∈ K1(B) one has

〈τ, y〉 = 〈iDτ̂ , ϕθ(y)〉
where iDτ̂ is the contraction of τ̂ by D ( Lemma 16).

We refer to [99] for the simple proof.
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7. The Transverse Fundamental Class for Foliations and Geometric
Corollaries

7.α The transverse fundamental class. Let (V, F ) be a foliated manifold and
τ = TV/F the transverse bundle of the foliation. The holonomy groupoid G of (V, F )
acts in a natural way on τ by the differential of the holonomy. Thus, every γ : x→y,
γ ∈ G, determines a linear map

h(γ) : τx→τy.

It is not in general possible to find a Euclidean metric on τ which is invariant under
the above action of G. In fact, we have already seen in Chapter I that in the type III
situation there does not even exist a measurable volume element,

vx ∈ ∧qτx , q = codim F

which is invariant under the action of G. The nonexistence of a holonomy invariant
measurable volume element is equivalent to the outer property for some t ∈ R of the
modular automorphism group of the von Neumann algebra of the foliation.

Here we have to take account of the full information on h(γ) (not only its determinant
and not only in the measurable category). To that end we shall construct the analogue
of Tomita’s modular operator ∆ and modular morphism ∆ · ∆−1 of conjugation by the
modular operator. Let g be an arbitrary smooth Euclidean metric on the real vector
bundle τ . Thus, for ξ ∈ τx we let ||ξ||g = (〈ξ, ξ〉g)1/2 be the corresponding norms and
inner products and drop the subscript g if no ambiguity can arise.

Using g we define a C∗-module E = Eg on the C∗-algebra C∗
r (V, F ) of the foliation.

Recall that C∗
r (V, F ) is the completion of the convolution algebra C∞

c (G, Ω1/2) defined
in Section II.8. The algebra C∞

c (G, Ω1/2) acts by right convolution on the linear space
C∞

c (G, Ω1/2⊗r∗(τC))

(3.28) (ξf)(γ) =

∫

Gy

ξ(γ1) f(γ−1
1 γ) where y = r(γ).

Endowing the complexified bundle τC with the inner product associated to g and an-
tilinear in the first variable, the following formula defines a C∞

c (G, Ω1/2)-valued inner
product

(3.29) 〈ξ, η〉(γ) =

∫

Gy

〈ξ(γ−1
1 ), η(γ−1

1 γ)〉

for any ξ, η ∈ C∞
c (G, Ω1/2⊗r∗(τC)).

One then checks that the completion E = Eg of the space C∞
c (G, Ω1/2⊗r∗(τC)) for the

norm

||ξ|| =
(
||〈ξ, ξ〉||C∗r (V,F )

)1/2
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becomes, using formulas (1) and (2), a C∗-module over C∗
r (V, F ). The above construc-

tion did not involve the action of G on τ . We shall now use this action h to define a
left action of C∞

c (G, Ω1/2) on E by the equality

(3.30) (fξ)(γ) =

∫

Gy

f(γ1) h(γ1) ξ(γ−1
1 γ) ∀f ∈ C∞

c (G, Ω1/2) , ξ ∈ E .

The analogue of the modular operator ∆ then appears in the following:

Proposition 1. For any f ∈ C∞
c (G, Ω1/2) the formula (3) defines an endomorphism

λ(f) of the C∗-module E whose adjoint λ(f)∗ is given by the equality

(λ(f)∗ξ)(γ) =

∫

Gy

f#(γ1) h(γ1) ξ(γ−1
1 γ)

where f#(γ) = f(γ−1) ∆(γ), and ∆(γ) ∈ End(τC(r(γ))),

∆(γ) = (h(γ)−1)t h(γ)−1.

The proof is the same as [99] Lemma 3.1.

This proposition shows that, unless the metric on τ is G-invariant, the representation
λ is not a ∗-representation, the nuance between λ(f)∗ and λ(f ∗) being measured by ∆.
In particular λ is not in general bounded for the C∗-algebra norms on both EndC∗r (V,F )E
and C∗

r (V, F ) ⊃ C∞
c (G, Ω1/2). However:

Lemma 2. The densely defined homomorphism λ is a closable homomorphism of
C∗-algebras.

(cf. [99]) In other words the closure of the graph of λ is the graph of a densely defined
homomorphism. Then with the graph norm ||x||λ = ||x|| + ||λ(x)|| the domain B of

the closure λ of λ is a Banach algebra, which is dense in the C∗-algebra A = C∗
r (V, F ).

The C∗-module E is then a B-A-bimodule.

The information contained in this structure is easy to formulate when the bundle τ
is trivial over V , with, say, a basis (ξi)i=1,...,q of orthonormal sections. Then E is the
C∗-module Aq over A, and the closable homomorphism λ : A→Mq(A) = EndA(E)
corresponds to the coaction of GL(q,R) on A associated to the homomorphism

h : G→GL(q,R).

It is only for q = 1 that such a coaction can be simply described as an action by
automorphisms of the Pontryagin dual group.

To complete the description of the transverse structure of the foliation we shall define
transverse differentiation. First note that the above construction of E as a bimodule
applies equally well to any G-equivariant vector bundle E over V endowed with a (not
invariant) Euclidean structure. The domain B of the left action of A on E depends, of
course, upon the choice of E. At the formal level the tensor calculus is still available,
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but one has to be careful about domain problems. Thus, if we let Ωj be the bimodule
associated to transverse differential forms of degree j, it is the C∗-module completion
of

Ωj
c,∞ = C∞

c (G, Ω1/2⊗r∗(∧jτ ∗))

and one has a densely defined product, compatible with the bimodule structure

Ωj×Ωk→∧Ωj+k

(ω∧ω′)(γ) =

∫

Gy

ω(γ1)∧γ1ω
′(γ−1

1 γ) ∀ω, ω′ ∈ Ωc,∞.

One still has ωf∧ω′ = ω∧fω′ ∀f ∈ C∞
c (G, Ω1/2), but it is no longer true that ω∧ω′ =

±ω′∧ω since this does not even hold for j = k = 0, the algebra C∞
c (G, Ω1/2) being

noncommutative.

Transverse differentiation is not quite canonical and requires the harmless choice of a
horizontal distribution H, i.e. of a vector bundle H⊂TV such that for each x ∈ V ,
Hx is a complement of the integrable bundle Fx. Of course we do not require the
integrability of H and one can, for instance, take H = F⊥ for a fixed Riemannian
metric on V . We refrain from using the word connection to describe H (even though it

will be used as a connection on the bundle L2(L̃) over V/F ) in order to avoid confusion
with connections on the bundle τ over V/F .

Elements of the algebra C∞
c (G, Ω1/2) are 1

2
-densities, i.e. sections over G of the bundle

r∗(Ω1/2
F )⊗s∗(Ω1/2

F ) where Ω
1/2
F is the line bundle over V whose fiber at x is the space of

maps

ρ : ∧kFx→C , ρ(λv) = |λ|1/2ρ(v) ∀λ ∈ R
with k = dim F .

Thus, to differentiate elements of C∞
c (G, Ω1/2) we first need to know how to differentiate

a 1
2
-density ρ ∈ C∞(V, Ω

1/2
F ). Let us start by defining transverse differentiation for

sections of the bundle ∧rF ∗⊗∧sτ ∗ over V , so that

dH : C∞(V,∧rF ∗⊗∧sτ ∗)→C∞(V,∧rF ∗⊗∧s+1τ ∗).

Using the decomposition T = F +H we get an isomorphism jx of the exterior algebras:

jx : ∧F ∗
x⊗∧τ ∗x→∧T ∗

x ∀x ∈ V.

Letting j : C∞(V,∧F ∗⊗∧τ ∗)→∼C∞(V,∧T ∗) be the corresponding isomorphism, we
define dHω for ω ∈ C∞(V,∧rF ∗⊗∧sτ ∗) as the component of type (r, s+1) of j−1d(j(ω)),
where d(j(ω)) is the differential of j(ω) ∈ C∞(V,∧(r+s)T ∗) on V . Note that unlike dHω,
which depends upon the choice of H, the component of type (r + 1, s) of j−1d(j(ω)),
i.e. the longitudinal differential of ω, is canonical, once (V, F ) is given.
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Next, as any 1
2
-density ρ ∈ C∞(V, Ω

1/2
F ) can be written, at least locally, in the form

ρ = f |ω|1/2, where f ∈ C∞(V ) and ω ∈ C∞(V, (∧kF )∗), k = dim F , we can define its
transverse differential dHρ unambiguously by the formula

(α) dH(f |ω|1/2) = (dHf)|ω|1/2 + f |ω|1/2 1

2
(dHω/ω).

More explicitly, if we work in local coordinates around x ∈ V , we can take a domain
of foliation chart of the form Rk×Rq. Then the 1

2
-density ρ is of the form

ρ(t, u) = r(t, u) |du1∧ · · · ∧duk|1/2.

Given a vector field X(t) =
∑

i X
i(t) ∂

∂ti
on the transversal Rq, let then X̃ be its unique

horizontal lift

X̃(t, u) =
∑

i

X i(t)
∂

∂ti
+

∑
j

Xj(t, u)
∂

∂uj
.

Then (dHρ)/ρ evaluated at (t, u) on the vector X(t) ∈ τx is

X̃(t, u)r(t, u) +

(∑
j

∂

∂uj
Xj(t, u)

)
r(t, u).)

Let us now consider the smooth groupoid G. The map π = (r, s) : G→πV×V is an
immersion (with, in general, a fairly complicated range: the equivalence relation that
x and y belong to the same leaf). Given γ ∈ G, γ : x→y and X ∈ τy = r∗(τ)γ,

let X̃ ∈ Hy be the horizontal lift of X and let X̃ ′ ∈ Hx be the horizontal lift of
h(γ)−1X ∈ τx, i.e. the transverse vector at x corresponding to X by holonomy. Then

the vector (X̃, X̃ ′) ∈ Tπ(γ)(V×V ) belongs to π∗(Tγ(G)) and is the image by π∗ of
a unique tangent vector Y ∈ Tγ(G). We can thus define dHf ∈ C∞

c (G, r∗(τ)) for
f ∈ C∞

c (G) by

(β) (dHf)(X) = df(Y ).

Let us now state the main properties of transverse differentiation:

Proposition 3. Let (V, F ) be a foliated manifold, H a horizontal distribution.

1) The following equality uniquely defines a derivation dH from C∞
c (G, Ω1/2) to

the bimodule C∞
c (G, Ω1/2⊗r∗(τ ∗))

dH(r∗(ρ)fs∗(ρ)) = r∗(dHρ)fs∗(ρ) + r∗(ρ)(dHf)s∗(ρ) + r∗(ρ)fs∗(dHρ)

for ρ ∈ C∞(V, Ω
1/2
F ), f ∈ C∞

c (G).

2) The derivation dH extends uniquely to a derivation of the graded algebra
C∞

c (G, Ω1/2⊗r∗(∧τ ∗)) such that for any ω ∈ C∞(V,∧τ ∗) and f ∈ C∞
c (G, Ω1/2)

one has
dH(f r∗(ω)) = (dH f) r∗(ω) + f r∗(dH ω).
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In 1) and 2) the algebra structures are of course given by convolution on the groupoid
G and the exterior product in ∧τ ∗.

Due to the lack of integrability of the subbundle H of TV , it is not true in general that
d2

H = 0. We shall however, easily overcome this difficulty using Lemma 9 of Section 3
and that d2

H is an inner derivation of C∞
c (G, Ω1/2⊗r∗(∧τ ∗)). Let us first consider d2

H

acting on differential forms on V

d2
H : C∞(V,∧rF ∗⊗∧sτ ∗)→C∞(V,∧rF ∗⊗∧s+2τ ∗).

The full differential dω of a form of type (1, 0), ω ∈ C∞(V, F ∗), has 3 components:
the longitudinal differential dLω ∈ C∞(V,∧2F ∗), the transverse differential dHω ∈
C∞(V, F ∗⊗τ ∗) and also a component of type (0, 2). It is given by the contraction θω
of ω with the section θ ∈ C∞(V, F⊗∧2τ ∗):

θ(pτ (X), pτ (Y )) = pF ([X, Y ])

for any pair of horizontal vector fields X,Y ∈ C∞(V, H), where (pF , pτ ) is the isomor-
phism T→F⊕τ given by H. The following equality then holds for arbitrary forms:

dω = dLω + dHω + θω

where the last term stands for contraction with θ. Then, computing the component of
type (r, s + 2) of d2ω for ω of type (r, s), one gets

d2
Hω = (dLθ + θdL)ω ∀ω.

The operator dLθ + θdL just involves longitudinal Lie derivatives, and thus there exists
a (unique) element

T ∈ C−∞
c (G, Ω1/2⊗r∗(∧2τ ∗))

with support contained in G(0) and whose action on C∞(V, Ω
1/2
F ) is the Lie derivative

dLθ + θdL.

Lemma 4. For any ω ∈ C∞
c (G, Ω1/2⊗r∗(∧τ ∗)) one has d2

Hω = T∧ω−ω∧T. Moreover,
dHT = 0.

Indeed, one knows a priori that d2
H is a derivation and the equality is easy to check

using Proposition 3.

By Lemma 9 of Section 3 we thus get a differential graded algebra Ω̃c,∞ whose elements
are two-by-two matrices with entries

ωij ∈ C∞
c (G, Ω1/2⊗r∗(∧τ ∗)).

The product is given by

ω · ω′ =
[
ω11 ω12

ω21 ω22

] [
1 0
0 T

] [
ω′11 ω′12

ω′21 ω′22

]
,
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and the differential d by

dω =

[
dHω11 dHω12

−dHω21 −dHω22

]
+

[
0 −T
1 0

]
ω + (−1)∂ω ω

[
0 1
−T 0

]
.

We have thus achieved the equality d2 = 0 while retaining the previous properties of
C∞

c and dH .

Let us now define, with q = codim F , the integral of forms

ω ∈ C∞
c (G, Ω1/2⊗∧qτ ∗)

as an immediate adaptation of the measure theoretic Proposition I.4.6.

Lemma 5. Let (V, F ) be a transversely oriented foliated manifold. The following
equality defines a closed graded trace on (C∞

c (G, Ω1/2⊗r∗(∧τ ∗)), dH):

τ(ω) =

∫

G(0)

ω (τ(ω) = 0 if deg ω 6= q).

Here the restriction of ω ∈ C∞
c (G, Ω1/2⊗r∗(∧qτ ∗)) to the subspace G(0)⊂G yields a

section of ΩF⊗∧qτ ∗ on V and has a canonical integral over V using the transverse
orientation. Thus, one has τ(ω2∧ω1) = (−1)∂1∂2 τ(ω1∧ω2) and τ(dHω) = 0.

Let τ̃ be the extension of τ to Ω̃c,∞ given by

τ̃

[
ω11 ω12

ω21 ω22

]
= τ(ω11)− (−1)q τ(ω22 T).

Proposition 6. The triple (Ω̃, d, τ̃) is a cycle over the algebra C∞
c (G, Ω1/2).

We shall call this cycle the fundamental cycle of the transversely oriented foliation
(V, F ). In particular it yields a cyclic cocycle ϕH of dimension q on C∞

c (G, Ω1/2), which
depends on the auxiliary choice of the horizontal distribution H but whose cohomology
class is independent of this choice.

Definition 7. Let (V, F ) be a transversely oriented foliation of codimension q. Then its
transverse fundamental class is the cyclic cohomology class [V/F ] ∈ HCq

(
C∞

c (G, Ω1/2)
)

of the above cycle.
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7.β Geometric corollaries. The above construction of the transverse fundamen-
tal class [V/F ] of a transversely oriented foliation yields a cyclic cohomology class on
the dense subalgebra A = C∞

c (G, Ω1/2) of the C∗-algebra C∗
r (V, F ) of the foliation and

hence a corresponding map of K-theory

K(A) →ϕ C.

We have solved in [99] the problem of topological invariance of this map, i.e. of
extension of ϕ to a map

K (C∗
r (V, F )) →eϕ C.

Let us now state several corollaries of the solution of this problem ([99]).

Theorem 8. Let (V, F ) be a not necessarily compact foliated manifold which is trans-
versely oriented. Let G = Graph(V, F ) be its holonomy groupoid and let π : BG→BΓq

be the map classifying the natural Haefliger structure (q = codim V ),and let τ the bun-
dle over BG given by the transverse bundle of (V, F ). Let R⊂H∗(BG,C) be the ring
generated by the Pontryagin classes of τ , the Chern classes of holonomy equivariant
bundles on V and π∗ (H∗(WOq)).

For any P ∈ R there exists an additive map ϕ of K∗ (C∗
r (V, F )) to C such that:

ϕ(µr(x)) = 〈φ ◦ Ch(x), P 〉 ∀x ∈ K∗,τ (BG).

Here K∗,τ (BG) is the geometric group as defined in Chapter II Proposition 8-4, Ch
is the Chern character: K∗,τ (BG)→H∗(Bτ, Sτ), where τ is the bundle on BG corre-
sponding to the transverse bundle of (V, F ), and φ : H∗(Bτ, Sτ)→H∗(BG) is the Thom
isomorphism.

An important step in the proof of this theorem is the longitudinal index theorem for
foliations (Chapter II, Theorem 9-6).

Let (V, F ) be a transversely oriented foliation of codimension q of a connected manifold
V . Let W be the 0-dimensional manifold consisting of one point, and f : W→V/F the
map from W to V/F associated to a leaf and K-oriented by the transverse orientation
of (V, F ). Then the triple (W, y, f), where y is the class of the trivial bundle on W ,
is a geometric cycle for (V, F ) (cf. Chapter II), and the corresponding K-theory class
f !(y) ∈ Kq(C

∗
r (V, F )) is independent of the choice of the leaf. We shall denote this

class by [V/F ]∗ and call it the orientation class in K-theory.

Corollary 9. Let (V, F ) be a transversely oriented foliation of codimension q; then the
class [V/F ]∗ is a non-torsion element of Kq(C

∗
r (V, F )).

Note that V need not be compact. When (V, F ) is not transversely orientable with V
connected, [V/F ]∗ is a 2-torsion element (see [562] for relevant computations). We now
pass to two other corollaries which are purely geometric, i.e. the C∗-algebra C∗

r (V, F )
does not appear in the statement. Its role is to allow one to integrate in K-theory
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in two steps: 1) along the leaves of the foliation, which provides under a suitable K-
orientation hypothesis a map from K∗(V ) to K∗(C∗

r (V, F )); 2) over the space of leaves,
which provides a map from K∗(C∗

r (V, F )) to C.

That the composition of these two steps is the same as integration in K-theory over V
is a corollary of Theorem 8.

It follows from [368] and [480] that if the bundle F is a Spin bundle which can be
endowed with a Euclidean metric with strictly positive (bounded below by ε > 0) scalar
curvature (this makes sense since F is integrable) then the longitudinal integral of the
trivial bundle does vanish, i.e. the K-theory index of the longitudinal Dirac operator is
equal to 0. Thus, the integral over V of the trivial bundle vanishes, or, in other words,

Â(V ) = 0. Note that here only F is assumed to be Spin so that Â(V ) is not a priori
an integer. More precisely:

Corollary 10. Let V be a compact foliated oriented manifold. Assume that the inte-
grable bundle F⊂TV is a Spin bundle and is endowed with a metric of strictly positive
(≥ ε > 0) scalar curvature. Let R be the subring of H∗(V,C) generated by the Pon-
tryagin classes of τ = TV/F , the Chern classes of holonomy equivariant bundles and

the range of the natural map H∗(WOq)→H∗(V,C). Then 〈Â(F )ω, [V ]〉 = 0 ∀ω ∈ R,

where Â(F ) is the Â-genus of this Spin bundle.

When F = TV , i.e. when the foliation has just one leaf, this is exactly the content of
the well-known vanishing theorem of A. Lichnerowicz ([368]).

As an immediate application we see that no spin foliation of a compact manifold V ,

with non-zero Â-genus, Â(V ) 6= 0, admits a metric of strictly positive scalar curvature.

Proof. The projection V→V/F is K-oriented by the Spin structure on F and hence
defines a geometric cycle x ∈ K∗,τ (BG). The argument of [480] shows that the analyt-
ical index of the Dirac operator along the leaves of (V, F ) is equal to 0 in K∗(C∗

r (V, F )),
so that one has µr(x) = 0 with µr the analytic assembly map (Chapter II Section 8).

Let f : V→BG be the map associated to the projection V→V/F . There exists a
polynomial P in the Pontryagin classes of τ , with leading coefficient 1, such that

φ ◦ Ch(x) = f∗(Â(F ) ∩ [V ]) ∩ P ∈ H∗(BG).

Thus, since µr(x) = 0, the result follows from Theorem 8.

Corollary 11. [33] Let (V, F ) and (V ′, F ′) be oriented and transversely oriented com-
pact foliated manifolds. Let f : V→V ′ be a smooth, orientation preserving, leafwise
homotopy equivalence. Then for any element P of the ring R⊂H∗(V,C) of Corollary
10 one has

〈(f ∗L(V ′)− L(V )) , P ∩ [V ]〉 = 0

where L(V ) (resp. (V ′)) is the L-class of V (resp. V ′).
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7.γ Index formula for longitudinal elliptic operators. The main difficulty in
the proof of Theorem 8 is to show the topological invariance of the cyclic cohomology
map ϕ : K(A)→C, A = C∞

c (G, Ω1/2). We refer to [99] for the proof. Here we shall
explain how to compute the pairing

(3.31) 〈Φ(c), Ind(D)〉 ∈ C
of the cyclic cohomology of A with the index Ind(D) ∈ K0(A) of an arbitrary longi-
tudinal elliptic operator D, as defined in Section II.9 α). The result is stated quite
generally in the theorem on p.888 of [108], but we shall make it more specific, using
the natural map

(3.32) Φ∗ : H∗
τ (BG)→H∗(A)

constructed in Section 2 δ) Theorem 14 and Remark b).

It is worthwhile to formulate the general result in terms of invariant elliptic operators
on G-manifolds, where G is a smooth groupoid (cf. Section II.10 α)). We shall assume
that G is étale, i.e. that the maps r and s are étale. This suffices to cover the case
of foliations since the holonomy groupoid G of a foliation is equivalent to the reduced
groupoid GT , for T a suitable transversal, and the latter is étale. We let Φ be the
morphism of bicomplexes constructed in Section 2 δ) from the bicomplex of twisted
simplicial forms on the nerve of G to the (b, B) bicomplex of the algebra A = C∞

c (G).

When formulated in terms of the (b, B) bicomplex, the pairing between cyclic coho-
mology and K-theory of Proposition 3.2 is given by the formula

(3.33) 〈(ϕ2n), [e]〉 =
∞∑

n=0

(−1)n (2n)!

n!
ϕ2n

(
e− 1

2
, e, . . . , e

)

where (ϕ2n) is a (b, B)-cocycle, i.e. bϕ2n + Bϕ2n+2 = 0 ∀n, and e is an idempotent.

Equivalently, if (ψ2n) is a cocycle in the (d1, d2) bicomplex of Theorem I.29 the pairing
reads

(3.34) 〈(ψ2n), [e]〉 =
∞∑

n=0

(−1)n 1

n!
ψ2n

(
e− 1

2
, e, . . . , e

)
.

We shall come back to this point in great detail in Section IV.7; the replacement of e
by e− 1

2
, due to [226], improves the original formula. We refer to Remark I-30 a) for

the sign (−1)n.

Now, let P be a proper G-manifold (Definition 1 of Section II.10). Thus, to P corre-
sponds a contravariant functor from the small category G to the category of manifolds
and diffeomorphisms. To each x ∈ V = G(0) it assigns the fiber α−1({x}) of the sub-
mersion α : P→G(0). The right action p→p ◦ γ gives a diffeomorphism from Py to
Px for γ ∈ G, r(γ) = y, s(γ) = x. To keep things simple we shall assume that the
discrete groups Gx

x = {γ ∈ G ; r(γ) = s(γ)} are torsion-free for any x ∈ G(0). Then
the properness of P implies that Gx

x acts freely on Px.
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Let D be a G-invariant elliptic differential operator on the G-manifold P , i.e. a family
Dx of elliptic differential operators on Px which is smooth on the total space P and is
invariant under the action of G.

When the quotient manifold P/G of P by the action of G, is compact, the constructions
of Section II.9 α), or of Section 4 α) of this chapter, yield a well defined K-theory class

(3.35) Ind(D) ∈ K0(C
∞
c (G)⊗R).

Finally, the K-theory class of the principal symbol σD of D yields, as in Section II.10
α), a well defined element [σD] of the geometric group K∗

top(G). Since G is étale and
torsion-free the latter group is equal to the τ -twisted K-homology group K∗,τ (BG).
We can now state:

Theorem 12. Let G be a smooth étale groupoid without torsion. Let D be a G-
invariant elliptic differential operator on a proper G-manifold P with P/G compact.
Let c be a cocycle of total degree 2q in the bicomplex of simplicial currents on the
nerve of G and Φ(c) the associated cyclic cohomology class in the (b, B) bicomplex of
A = C∞

c (G)⊗R. Then

〈Φ(c), Ind(D)〉 = (2πi)−q 〈c, Chτ ([σD])〉.

Here Chτ ([σD]) ∈ H∗,τ (BG) is the twisted Chern character which was defined in Section
II.7 Remark 12 by the equality Chτ (x) = Td(τC)

−1 Ch(x).

Note that c ∈ H∗
τ (BG) pairs with Chτ ([σD]) ∈ H∗,τ (BG).

We recall from Section 2 γ) that in the bicomplex (C∗, d1, d2) of simplicial currents one
had Cn,m = 0 unless n ≥ 0, − dim G(0) ≤ m ≤ 0. In particular the total degree n + m
can vary from − dim G(0) to +∞.

Let us explain briefly why Theorem 12 reduces to Theorem 4.7 in the case of discrete
groups G = Γ. Let c be a group cocycle, c ∈ Z2q(Γ,C). Then by Section 2 γ) one has

(3.36) Φ(c) = τc.

But the cyclic cocycle τc of Theorem 4.7 is here viewed as a cocycle in the (b, B)
bicomplex. The point then is that the formula (3) for the pairing of (b, B) cocycles
with K-theory accounts for the strange numerical factor 1/(2q)! of Theorem 4.7 (cf.
[129] for a discussion of this numerical factor).

Let us now specialize Theorem 12 to the case of foliations. We let (V, F ) be a foliated
compact manifold. In Section α) we have carefully described the cyclic cohomology
class on the algebra A = C∞

c (G, Ω1/2) corresponding under the natural Morita equiv-
alence to the fundamental class of reduced groupoids, GT , with T a transversal. The
same procedure applies to map the periodic cyclic cohomology H∗(C∞

c (GT )) to H∗(A).
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Combined with the construction of the morphism Φ of Section 2 α), we thus obtain a
canonical map

(3.37) Φ∗ : H∗
τ (BG)→H∗(A),

where we have used the equivalence of smooth groupoids G∼GT to replace BGT by
BG.

Applying Theorem 12 to the GT manifold P = {γ ∈ G ; s(γ) ∈ T} one obtains:

Corollary 13. [108] Let (V, F ) be a compact foliated manifold, D a longitudinal
elliptic operator, and Ind(D) ∈ K0(A), A = C∞

c (G, Ω1/2) its analytical index (cf. II.9
α)). Then for any cohomology class ω ∈ H2q+dim τ

τ (BG), one has

〈Φ∗(ω), Ind(D)〉 = (2πi)−q 〈ω, Chτ (σD)〉.

To end this section we shall explain, in this context of foliations, how to construct a
left inverse λ of the map Φ∗ ([114])

(3.38) λ : H∗(A)→H∗
τ (BG).

In fact, we shall only describe the composition of this map with the pull-back H∗
τ (BG)→H∗

τ (V ).
When one varies V without varying V/F one gets the desired information. The idea
of the construction of

(3.39) λV : H∗(A)→H∗
τ (V )

is to exploit the local triviality of the foliation as follows: For each open set U⊂V one
lets A(U) be the algebra associated by the functor C∞

c (·, Ω1/2) to the restriction of the
foliation to U . If U1⊂U2 one has an obvious inclusion

(3.40) A(U1)⊂A(U2).

Thus, one obtains for each n a presheaf Γn on V by setting

(3.41) Γn(U) = Cn(A(U)∼,A(U)∼∗),

the space of continuous (n+1)-linear forms onA(U)∼, the algebra obtained by adjoining
a unit to A(U).

Because the construction of the (b, B) bicomplex is functorial it yields a presheaf of
bicomplexes: (Γ(n,m), b, B). Choosing a covering U = (Uα) of V sufficiently fine so that
the multiple intersections are domains of foliation charts, we get a triple complex

(3.42) (Γn,m,p =
⊕
Ui∈U

Γ(n,m) (U0 ∩ U1 ∩ . . . ∩ Up) , b, B, δ)

where δ is the Čech coboundary.

Moreover, there is an obvious forgetful map φ from the periodic cyclic cohomology
H∗(A), A = A(V ), to the cohomology of the triple complex (12). So far we have just
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localized the periodic cyclic cohomology of A in a straightforward manner. The inter-
esting point is that the cohomology of the triple complex (12) is easy to compute, and is
directly related to the resolution of the orientation sheaf of the transverse bundle τ by
transverse currents. More precisely, one defines another triple complex (Γ′, d1, d2, d3)
as follows: For each k ∈ 0, 1, . . . , codim F , let Ωk be the sheaf of holonomy invariant
transverse currents. Thus, for any open set U , Ωk(U) is the kernel of the longitudinal
differential in the space C−∞(U,∧codim F−k τ ∗) of generalized sections of the exterior
power of the dual of the transverse bundle. If U is a domain of foliation chart we are
just dealing with currents on the space of plaques U/F . We let

(3.43) Γ′n,m,p =
⊕
Ui∈U

Ωn−m (U0 ∩ . . . ∩ Up)

and the coboundaries are d1 = 0, d2 = de Rham coboundary, and d3 = Čech cobound-
ary.

The construction of subsection α), involving the additional choice of the subbundle
H⊂TV transverse to F , applies with minor modifications to yield a morphism of triple
complexes

(3.44) (Γ′, d1, d2, d3) →θ (Γ, b, B, δ)

which defines an isomorphism in cohomology independent of the choice of H. One thus
obtains the desired construction of λV as

(3.45) λV = θ−1
∗ ◦ φ,

since the cohomology of (Γ′, d1, d2, d3) is, almost by construction, equal to H∗
τ (V ).

Indeed, the sheaves Ωk provide a resolution of the orientation sheaf of τ . One can in
particular reformulate the index formula (Corollary 13) in terms of λV ([108]). One
can also compare the natural filtration of H∗(A) by the dimensions of cyclic cocycles
with the filtration of H∗

τ (V ) given by the above resolution of the orientation sheaf of
τ .

Appendix A. The Cyclic Category Λ

The definition (Section 1) of the cyclic cohomology functors HCn from the category
of algebras to vector spaces is simple and direct. It is however, important from a
conceptual point of view to obtain these functors as derived functors from the simplest
of them, HC0, which to an algebra A assigns the linear space of traces on A, i.e. of
linear forms τ such that

τ(xy) = τ(yx) ∀x, y ∈ A.

This is done in this Appendix (cf. [111] [371]) using a natural functor from the non-
abelian category of algebras to the abelian category of Λ-modules described below. In
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some sense this appendix analyzes the machinery underlying the algebraic manipula-
tions of Section 1.

A.α The simplicial category ∆. We first review some standard notions ([371]).

Let ∆ be the small category whose objects are the totally ordered finite sets

[n] = {0 < 1 < 2 < . . . < n} , n ∈ N,

and whose morphisms are the increasing maps (where increasing means not decreasing).

Definition 1. Let C be a category. A simplicial object in C is a contravariant functor
from ∆ to C.

Such a functor X is uniquely specified by the objects Xn corresponding to [n] and
by the morphisms di : Xn→Xn−1, 0 ≤ i ≤ n, and sj : Xn→Xn+1, 0 ≤ j ≤ n which
correspond to the following morphisms δi and σj of ∆. For each n and i ∈ {0, 1, . . . , n},
δn
i : [n− 1]→[n] is the injection which misses i while σn

j : [n + 1]→[n] is the surjection
such that σj(j) = σj(j + 1) = j.

The conditions fulfilled by the morphisms di and sj of C in a simplicial object are
obtained by transposing the following standard presentation of ∆.

Proposition 2. The morphisms σn
i and δn

j generate ∆, which admits the following
presentation:

δjδi = δiδj−1 for i < j

σjσi = σiσj+1 for i ≤ j

σjδi =





δiσj−1 if i < j,

1n if i = j or i = j + 1,

δi−1σj for i > j + 1.

Let us now describe the geometric realization |X| of a simplicial set X. One lets ∆ be
the following functor from the small category ∆ to the category of topological spaces.
For each n, ∆(n) is the standard n-simplex: {(ti) ∈ Rn+1 ; 0 ≤ ti ≤ 1 , Σ ti = 1}. To
δi corresponds the face map

δi((t0, . . . , tn−1)) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

and to σj the degeneracy map

σj((t0, . . . , tn+1)) = (t0, . . . , tj−1, tj + tj+1, tj+2, . . . , tn+1).

The geometric realization |X| of a simplicial set X is then the quotient of the topological
space X×∆∆ =

⋃
n≥0 Xn×∆n by the equivalence relation which identifies (x, α∗(y))
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with (α∗(x), y) for any morphism α of ∆. This continues to make sense when X is a
simplicial topological space (cf. [371]).

With these notations we can give a formal definition of the classifying space BC of a
small category C. By definition the nerve of C is a simplicial set Mr(C). The elements
of Mrn(C) are the composable n-uples of morphisms belonging to C, while the faces di

(resp. degeneracies sj) are obtained using composition of adjacent morphisms (resp.
the identity morphism). More precisely, with f1, . . . , fn composable morphisms one
lets

d0(f1, . . . , fn) = (f2, . . . , fn)

di(f1, . . . , fn) = (f1, . . . , fifi+1, . . . , fn) for 1 ≤ i ≤ n− 1

dn(f1, . . . , fn) = (f1, . . . , fn−1)

and

si(f1, . . . , fn) = (f1, . . . , fi, 1, fi+1, . . . , fn).

Definition 3. The classifying space BC of a small category C is the geometric realiza-
tion of the simplicial set Mr(C).

This applies, for instance, to discrete groups Γ viewed as small categories with a single
object. Taking account of topological categories (cf. [371]) it also applies to smooth
groupoids as described in Chapter II.

A.β The cyclic category Λ. For n ∈ N we let Z/n + 1 be the cyclic group, the
quotient of Z by the subgroup (n+1)Z. We identify Z/n+1 with the group of (n+1)-st
roots of unity by the homomorphism

en : Z/n + 1→S1 = {λ ∈ C ; |λ| = 1},
en(k) = exp(2πik/(n + 1)).

We endow S1 with its usual trigonometric orientation and for λ, µ ∈ S1 let [λ, µ] be the
closed interval from λ to µ. We say that a map ψ : Z/n + 1→Z/m + 1 is increasing if
for any λ, µ ∈ Z/n + 1 the image by ψ of the interval

[λ, µ] ∩ Z/n + 1 = {λ, λ + 1, λ + 2, . . . , µ}⊂Z/n + 1

is contained in the interval [ψ(λ), ψ(µ)] ∩ Z/m + 1.

The cyclic category Λ is the small category with one object Λn for each n ∈ N and
with as morphisms f ∈ Hom(Λn, Λm) the homotopy classes of continuous increasing
maps from S1 to S1, of degree 1 and such that

ϕ(Z/n + 1)⊂Z/m + 1.
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Figure 3. f ∈ Hom(Λ5, Λ3), f̃(j) = 1 ∀j ∈ Z/6Z, f is constant on
[4, 3] and equal to 1; it makes a complete turn on [3, 4]

For λ ∈ Z/n + 1 the value of ϕ(λ) ∈ Z/m + 1 is independent of the choice of ϕ in the

homotopy class f and gives a well defined increasing map f̃ : Z/n + 1→Z/m + 1. One

thus obtains a functor f→f̃ from Λ to the category of sets.

Proposition 4.

a) Let n,m ∈ N and ψ : Z/n + 1→Z/m + 1 be a non-constant increasing map.

Then there exists a unique f ∈ Hom(Λn, Λm) such that f̃ = ψ.

b) Let ψk ∈ Hom(Λn, Λm) be the constant map with range {k}. There are n + 1

elements f ∈ Hom(Λn, Λm) such that f̃ = ψk.

Proof. Composing ψ with a rotation we may assume (in additive notation) that
ψ(0) = 0. Then for any j1 < j2 ∈ {0, 1, . . . , n} one has ψ(j1) ∈ [0, ψ(j2)]⊂{0, 1, . . . , m}
so that ψ is a non-decreasing map of {0 < 1 < . . . < n} to {0 < 1 < . . . < m}. When
ψ is not equal to 0 it determines uniquely the homotopy class of ϕ, ϕ̃ = ψ. When ψ is
constant, equal to 0, one has the choice of the interval [en(j), en(j + 1)] mapped onto
S1 by ϕ, ϕ̃ = ψ.
We see in particular that Λ0 is not a final object in the small category Λ and Hom(Λn, Λ0)
has cardinality n + 1. Any element f ∈ Hom(Λn, Λm) is characterized by the (possibly
empty) following intervals of S1:

f−1(j) =
⋂

ϕ∈f

ϕ−1 {j} , j ∈ Z/m + 1.
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This follows from Proposition 4 a) if f̃ is not constant, and from 4 b) if f̃ is constant.

A collection (Ij)j∈Z/m+1 of (possibly empty) intervals comes from an f ∈ Hom(Λn, Λm)
iff they satisfy:

1) If Ij 6= ∅ then Ij = [λ, µ] for some λ, µ ∈ Z/n + 1.

2) The Ij ∩ Z/n + 1 form a partition of Z/n + 1.

3) If Ij = [λ, µ] 6= ∅, Ij+1 = . . . = I`−1 = ∅, I` = [λ′, µ′] 6= ∅ then λ′ = µ + 1 in
Z/n + 1.

This follows directly from Proposition 4. One has

Ij ∩ Z/n + 1 = f̃−1 {j} ∀j ∈ Z/m + 1,

and if f̃ is not constant, f̃−1 {j} determines f−1(j). We shall identify the category ∆
of Subsection α) with a subcategory of Λ as follows. To each h ∈ Hom∆([n], [m]) we
associate the corresponding increasing map j→h(j) from Z/n + 1 = {0, 1, . . . , n} to
Z/m + 1 = {0, 1, . . . ,m}. This specifies uniquely an element h∗ ∈ Hom(Λn, Λm) such

that h̃∗ = h provided that h is not constant. To handle the constant map, h(i) = k ∀ i,
we just need to specify the interval h−1

∗ (k) = [0, n].

Proposition 5. [111]

a) The functor ∗ : ∆→Λ identifies ∆ with a subcategory of Λ.

b) Any f ∈ Hom(Λn, Λm) can be uniquely written as the product h∗k where h ∈ ∆
and k is an automorphism.

In other words Λ = ∆C, where C is the subcategory of Λ with the same objects and
with as morphisms the invertible morphisms of Λ. By Proposition 4, C is a groupoid
which is the union of the cyclic groups Aut(Λn)∼Z/n + 1.

Proof. a) For each n let θn ∈ ]n/(n + 1), 1[ and αn = exp(2πiθn). By imposing the
condition

ϕ(αn) = αm

on the continuous increasing degree-1 maps involved in the above definition of Hom(Λn, Λm),
we obtain a subcategory of Λ. One easily verifies that this subcategory is the image of

∆ by ∗ and that the functor f→f̃ composed with ∗ is the identity on ∆.

b) Let f ∈ Hom(Λn, Λm) and ϕ be a representative of f . There exists a unique interval
I = [en(j), en(j + 1)] of S1 such that αm ∈ ϕ(I). Moreover, I does not depend on
the choice of ϕ ∈ f . Thus, there exists a unique k ∈ Aut(Λn) such that the interval
associated to f ◦ k−1 is [en(n), 1]. By a) one then has f ◦ k−1 ∈ ∆. This proves the
existence and uniqueness of the decomposition.

For each n let τn ∈ Aut(Λn) be the generator of the cyclic group such that τ̃n(j) =
j − 1 ∀j. With a slight abuse of notation, we let δj, σi (instead of δj∗, σi∗) be the
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canonical generators of ∆ (cf. Proposition 2) viewed as elements of Λ. By Propositions
2 and 5 the δn

j , σn
i and τn generate Λ.

Proposition 6. [371] The relations of Proposition 2 together with the following rela-
tions give a presentation of Λ:

τn δi = δi−1 τn−1 for 1 ≤ i ≤ n , τn δ0 = δn

τn σi = σi−1 τn+1 for 1 ≤ i ≤ n , τn σ0 = σn τ 2
n+1

τn+1
n = 1n.

We refer to [371] for the proof. In [371] J.-L. Loday takes the above presentation as
the definition of Λ. This leads him to many interesting generalizations of the cyclic
category involving dihedral, symmetric and braid groups ([210]). Transposing the
relations of Proposition 6 one obtains a description of cyclic objects in a category in
terms of the morphisms di

n, s
j
n, and tn corresponding to the above generators of Λ.

Definition 7. Let C be a category. A cyclic object in C is a contravariant functor X
from Λ to C.
This definition differs only superficially from the one given in [111] which used covariant
functors. We shall indeed describe a canonical contravariant functor f→f ∗ from Λ to
Λ which gives an isomorphism Λop∼Λ. The composition of any covariant functor X
with ∗ is then a cyclic object. Given f ∈ Hom(Λn, Λm) we define f ∗ ∈ Hom(Λm, Λn)

by the intervals Jk = (f ∗)−1(k), k ∈ Z/n+1 constructed as follows: If f̃(k−1) 6= f̃(k),

we let Jk = [f̃(k− 1) + 1, f̃(k)] (i.e. the interval [em(f̃(k− 1) + 1), em(f̃(k))] in S1). If

f̃(k− 1) = f̃(k) we let Jk = ∅ if the representatives ϕ of f are constant in the interval

[k − 1, k] and Jk = [f̃(k − 1) + 1, f̃(k)] otherwise (cf. Figure 4).

Proposition 8.

a) The intervals (Jk)k∈Z/n+1 satisfy conditions 1), 2), and 3) and uniquely define
the element f ∗ ∈ Hom(Λm, Λn) such that f ∗−1(k) = Jk.

b) The map f→f ∗ is an isomorphism of the opposite category Λop with the cate-
gory Λ.

The proof of a) is straightforward. To understand b) without any tedious checking
one compares, for an arbitrary monoid Γ, the following covariant and contravariant
functors from Λ to the category of sets:

Covariant

Xn = Γn+1 ∀n ∈ N , X(f) : Γn+1→Γm+1,

X(f)(a0, . . . , an) = (b0, . . . , bm) with bj =
∏

f−1(j) a`.
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Figure 4. An f ∈ Hom(Λ11, Λ7) with f constant and equal to j on the
interval Ij. The adjoint f ∗ ∈ Hom(Λ7, Λ11) is constant and equal to ` on
the interval J`.

When f−1(j) = ∅ we let bj = 1 ∈ Γ, otherwise f−1(j) is a well specified interval,
f−1(j) ∩ Z/m + 1 = {r, r + 1, . . . , s}, and the product arar+1 . . . as is well defined.
(Note that when f−1(j) contains Z/m + 1 we need more than f−1(j) ∩ Z/m + 1 to
specify the endpoints.)

Contravariant

Yn = Γn+1 ∀n ∈ N , Y (f) : Γm+1→Γn+1,

Y (f)(a0, . . . , am) = (b0, . . . , bn) with bj =
∏

f(j−1)<`≤f(j) a`.

Again there is a small ambiguity in the notation and we mean bj =
∏

Jj
a`, where the

Jj are the intervals used in Proposition 8.

The covariance and contravariance of the above functors shows that f→f ∗ is a con-
travariant functor and that Y (f) = X(f ∗) ∀f . That ∗ is bijective is obvious since we
described two equivalent ways of labeling all collections of intervals satisfying conditions
1), 2), and 3) above.

A.γ The Λ-module A\ associated to an algebra A. Let A be a unital algebra
over a field k. Let us define a covariant functor from Λ to k-vector spaces as follows.
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For each n ∈ N we let

A\
n = A⊗n+1 = A⊗A⊗ · · ·⊗A (n + 1 terms).

For each f ∈ Hom(Λn, Λm) the action f\ of f is given by

f\(x
0⊗ · · ·⊗xn) = y0⊗ · · ·⊗ym ∀xj ∈ A,

where yj =
∏

f−1(j) x`. (We use the same conventions as in β).)

This covariant functor A\ defines a k(Λ)-module whose underlying vector space is⊕∞
n=0 A⊗(n+1), and which we still denote by A\.

By composition with the contravariant functor ∗ : Λ→Λ of Proposition 8, one obtains
a cyclic vector space C(A), whose faces, degeneracies, and permutations are given by

di(x0⊗x1⊗ · · ·⊗xn) = (x0⊗ · · ·⊗xixi+1⊗ · · ·⊗xn) 0 ≤ i ≤ n− 1

dn(x0⊗x1⊗ · · ·⊗xn) = (xnx0⊗x1⊗ · · ·⊗xn−1)

sj(x0⊗ · · ·⊗xn) = (x0⊗ · · ·⊗xi⊗1⊗xi+1⊗ · · ·⊗xn)

tn(x0⊗ · · ·⊗xn) = (xn⊗x0⊗ · · ·⊗xn−1) ∀ xj ∈ A.

Depending on the context it may be more convenient to use the k(Λ)-module A\ or
the cyclic vector space C(A).

We let k\ be the trivial k(Λ)-module.

Proposition 9.

1) Let τ be a trace on A; then the equality

τ ′(x0⊗ · · ·⊗xn) = τ(x0x1 · · · xn)

defines an element τ ′ of Homk(Λ)(A\, k\).

2) The map τ→τ ′ is an isomorphism of the linear space of traces on A with
Homk(Λ)(A\, k\).

The proof is straightforward.

The above discussion of k-algebras works with minor changes for rings and so we let
A\ be the Z(Λ)-module associated to a ring A. The categories of k(Λ)-modules (or
Z(Λ)-modules) are abelian categories, and we use the standard notation Extn for the
derived functors of the functor Hom (cf. [80]). By Proposition 9 the functor

AlgebraA→HC0(A) = {traces on A}
is the composition of Homk(Λ)(·, k\) = Ext0

k(Λ)(·, k\) with \.

The higher cyclic cohomology groups HCn are just the derived functors Extn as follows:

Theorem 10. [111] For any k-algebra A the cyclic cohomology group HCn(A) is
canonically isomorphic to

Extn
k(Λ)(A\, k\).
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This theorem yields, in particular, obvious definitions of the cyclic cohomology functors
for rings, Extn

Z(Λ)(A\,Z\), and of the bivariant theory for algebras, as Extn
k(Λ)(A\,B\).

A simple nontrivial example of an element of Endk(Λ)(A\,A\) is provided, for A = CΓ
a group ring, by the projection on a given conjugacy class (cf. [371]).

For the proof of Theorem 10 (cf. [111]) one constructs a projective resolution of the
trivial Z(Λ)-module Z\.

Theorem 11. [111]

a) The ring Ext∗Λ(Z\,Z\) is the polynomial ring Z[σ], where the generator σ is of
degree 2.

b) The classifying space BΛ of the small category Λ is BS1 = P∞(C).

The Yoneda product with the generator σ ∈ Ext2(Z\,Z\) defines the S operation of
cyclic cohomology (Section 1) in full generality and justifies the normalization of S in
Section 1.

The equality BΛ = BS1 brings out the analogy between cyclic cohomology and S1-
equivariant cohomology.

A.δ Cyclic spaces and S1 spaces. The inclusion of ∆ as a subcategory of Λ
(Proposition 5) shows that any cyclic object in a category C is, in particular, a simplicial
object in C. Let us apply this to cyclic sets X (or more generally to cyclic topological
spaces, called cyclic spaces for short) and denote by |X| the geometric realization of
the underlying simplicial set (resp. space). One has

Proposition 12. [77] [237] [371] Let X be a cyclic space. Then |X|, the geometric
realization of the underlying simplicial space, admits a canonical action of S1. One
obtains in this way a functor from the category of cyclic spaces to the category of S1-
spaces.

We refer to [371] for a detailed proof. We shall briefly describe the S1 action. First,
the forgetful functor, which to a cyclic space assigns the underlying simplicial space,
has a left adjoint: the induction functor F from simplicial spaces to cyclic spaces. For
any simplicial space Y (viewed as a right ∆-space) the cyclic space F (Y ) (viewed as a
right Λ-space) is

F (Y ) = Y×∆Λ

where Λ is viewed as a left ∆-space and a right Λ-space. Using the equality Λ = ∆C
of Proposition 5 one describes more concretely the cyclic space F (Y ) as follows:

Fn(Y ) = Yn×Cn ∀n ∈ N,

the right action of f ∈ Hom(Λn, Λm) being given by

(y, c)f = (yh, c′) ∀y ∈ Ym , c ∈ Cm
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where h ∈ ∆, c′ ∈ Cn and hc′ = cf (using Proposition 5). The geometric realiza-
tion |F (Y )| of the underlying simplicial space is homeomorphic to |Y |×S1 using the
canonical maps p : |F (Y )|→|Y | and q : |F (Y )|→S1. Recall (cf. α)) that |F (Y )|
is a quotient of

⋃
n≥0 Fn(Y )×∆n and use the obvious action of Cn on ∆n to map

Fn(Y )×∆n = Yn×Cn×∆n to Yn×∆n. One then checks (cf. [371]) that this map p
is compatible with the equivalence relations yielding p : |F (Y )|→|Y |. Next, q is just
obtained by functoriality of F using the constant map from Y to the trivial simplicial
set {pt} and the equality |F (pt)| = S1.

All of this holds for any simplicial space Y and we shall simply write |F (Y )| ' |Y |×S1.

When X is a cyclic space its cyclic structure yields a morphism ρ of cyclic spaces from
F (X) to X given by the right action of Λ on X

ρ : X×∆Λ→X , (y, f)→yf.

With the above identifications this yields the desired action of S1 on |X|
|ρ| : |F (X)| = |X|×S1→|X|.

We refer to [371] for a clear and detailed proof.

Let X be a simplicial set and Z(X) the corresponding simplicial abelian group. It is
then straightforward that, letting Z = Z(pt) be the trivial simplicial abelian group,

one has Extn
Z(∆)(Z(X),Z)∼Hn(|X|,Z) (resp. TorZ(∆)

n (Z,Z(X))∼Hn(|X|,Z)) where |X|
is the geometric realization of X (cf., for instance, [371] Theorem 6.2.2). Let us
now assume that X is a cyclic set and let us endow |X| with the S1-action given by
Proposition 12. The following theorem is a natural generalization of Theorem 11:

Theorem 13. [77] One has canonical isomorphisms:

Extn
Z(Λ)(Z(X),Z)∼Hn

S1(|X|,Z)

TorZ(Λ)
n (Z,Z(X))∼HS1

n (|X|,Z)

where Z(X) is the cyclic abelian group associated to the cyclic space X.

A similar statement holds for an arbitrary ring of coefficients, and the Gysin sequence
relating the equivariant S1-cohomology H∗

S1 corresponds to the Gysin sequence relating
the Ext functors for Z(Λ)- and Z(∆)-modules, of which Theorem 1.26 is a special case
([111]).

Problem 14. While the resolution used in the proof of Theorem 10 gives a concrete
way of formulating Extn

Z(Λ)(·,Z) for arbitrary cyclic abelian groups, one is missing a

similar description for the bivariant theory and, in particular, for Extn
k(Λ)(A\,B\) where

A and B are k-algebras, for k a field.
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Appendix B. Locally Convex Algebras

We shall briefly indicate how Section 1 adapts to a topological situation. Thus, we shall
assume now that the algebra A is endowed with a locally convex topology, for which
the product A×A→A is continuous. In other words, for any continuous seminorm p
on A there exists a continuous seminorm p′ such that p(ab) ≤ p′(a) p′(b), ∀a, b ∈ A.
Then we replace the algebraic dual A∗ of A by the topological dual, and the space
Cn(A,A∗) of (n + 1)-linear functionals on A by the space of continuous (n + 1)-linear
functionals: ϕ ∈ Cn if and only if for some continuous seminorm p on A one has

|ϕ(a0, . . . , an)| ≤ p(a0) · · · p(an) , ∀ai ∈ A.

Since the product is continuous one has bϕ ∈ Cn+1, ∀ϕ ∈ Cn. Since the formulae for
the cup product of cochains involve only the product in A they still make sense for
continuous multilinear functions and all the results of Section 1 apply with no change.

There is however, an important point which we wish to discuss: the use of resolutions in
the computation of the Hochschild cohomology. Note first that we may as well assume
that A is complete, since Cn is unaffected if one replaces A by its completion, which
is still a locally convex topological algebra.

Let B be a complete locally convex topological algebra. By a topological module over
B we mean a locally convex vector space M, which is a B-module, and is such that
the map (b, ξ) 7→ bξ is continuous from B×M to M. We say that M is topologically
projective if it is a direct summand of a topological module of the form M′ = B⊗̂πE,
where E is a complete locally convex vector space and ⊗̂π means the projective tensor
product ([243]). In particular, M is complete, as a closed subspace of the complete
locally convex vector space M′.

It is then clear that if M1 and M2 are topological B-modules which are complete (as
locally convex vector spaces) and p : M1→M2 is a continuous B-linear map with a
continuous C-linear cross-section s, one can complete the triangle of continuous B-linear
maps

M1

p

²²
M

ef ==zzzzzzzz f // M2

for any continuous B-linear map f : M→M2.

Definition 1. LetM be a topological B-module. By a (topological) projective resolution
of M we mean an exact sequence of projective B-modules and continuous B-linear maps

M ε←M0
b1←M1

b2←M2←· · ·
which admits a C-linear continuous homotopy si : Mi→Mi+1 such that

bi+1 si + si−1 bi = id , ∀i.
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As in [80] the module A over B = A⊗̂πAo (tensor product of the algebra A by the
opposite algebra Ao) given by

(a⊗bo) c = acb , a, b, c ∈ A
admits the following canonical projective resolution:

1) Mn = B⊗̂πEn (as a B-module), with En = A⊗̂π · · · ⊗̂πA (n factors);

2) ε : M0→A is given by ε(a⊗bo) = ab, a, b ∈ A;

3) bn(1⊗a1⊗ · · ·⊗an) = (a1⊗1)⊗a2⊗ · · ·⊗an +
∑n−1

j=1 (−1)j(1⊗1)⊗a1⊗ · · ·⊗ajaj+1

⊗ · · ·⊗an +(−1)n (1⊗ao
n)⊗(a1⊗ · · ·⊗an−1).

The usual section is obviously continuous:

sn((a⊗b0)⊗(a1⊗ · · ·⊗an)) = (1⊗bo)⊗(a⊗a1⊗ · · ·⊗an)).

Comparing this resolution with an arbitrary topological projective resolution of the
module A over B yields:

Lemma 2. For every topological projective resolution (Mn, bn) of the module A over
B = A⊗̂πAo, the Hochschild cohomology Hn(A,A∗) coincides with the cohomology of
the complex

HomB(M0,A∗)→b∗1HomB(M1,A∗)→· · ·
(where HomB means continuous B-linear maps).

Of course, this lemma extends to any complete topological bimodule over A.

We refer to [275] for more refined tools in this topological context.

Appendix C. Stability under Holomorphic Functional Calculus

Let A be a Banach algebra over C and A a subalgebra of A, and let Ã and Ã be
obtained by adjoining a unit.

Definition 1. A is stable under holomorphic functional calculus if for any a ∈ Ã
and any function f holomorphic in a neighborhood of the spectrum of a in Ã one has

f(a) ∈ Ã.

The first important result is that if A is dense in A the above property is inherited by
the subalgebra Mn(A) of Mn(A) for any n.

Proposition 2. If the dense subalgebra A of the Banach algebra A is stable under
holomorphic functional calculus then so is Mn(A) in Mn(A) for any n ∈ N.
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We refer to [497] for a detailed proof. One can use (cf. [58]) the following identity in
M2(A) as a substitute for the determinant of matrices

[
a11 a12

a21 a22

]−1

=

(
a−1

11 0
0 (a22 − a21a

−1
11 a12)

−1

)

(
1 −a12(a22 − a21a

−1
11 a12)

−1

0 1

)(
1 0

−a21a
−1
11 1

)
,

in a suitable neighborhood of the identity

[
1 0
0 1

]
in M2(A).

Let A⊂A be stable under holomorphic functional calculus. In particular, one has

GLn(Ã) = GLn(Ã)∩Mn(Ã); hence if we endow GLn(Ã) with the induced topology we
get a topological group which is locally contractible as a topological space. We recall
the density theorem (cf. [19], [324]).

Proposition 3. Let A be a dense subalgebra of A, stable under holomorphic functional
calculus.

a) The inclusion i : A→A is an isomorphism of K0-groups

i∗ : K0(A)→K0(A).

b) Let GL∞(Ã) be the inductive limit of the topological groups GLn(Ã). Then i∗
yields an isomorphism,

πk(GL∞(Ã))→πk(GL∞(Ã)) = Kk+1(A).



CHAPTER 4

Quantized Calculus

The basic idea of this chapter, and of noncommutative differential geometry ([102]),
is to quantize the differential calculus using the following operator theoretic notion for
the differential

df = [F, f ].

Here f is an element of an involutive algebra A of operators in a Hilbert space H, while
F is a selfadjoint operator of square one (F 2 = 1) in H. At first one should think of f
as a function on a manifold, i.e. of A as an algebra of functions, but one virtue of our
construction is that it will apply in the noncommutative case as well.

Since the word quantization is often overused we feel the need to justify its use in our
context.

First, in the case of manifolds the above formula replaces the differential df by an op-
erator theoretic expression involving a commutator, which is similar to the replacement
of the Poisson brackets of classical mechanics by commutators (cf. Chapter I Section
1).

Second, the integrality aspect of quantization (such as the integrality of the energy
levels of the harmonic oscillators ([170] and Chapter V Section 11)) will have as a
counterpart the integrality of the index of a Fredholm operator, which will play a
crucial role in our context (Sections 5, 6 and Proposition 2 below).

We shall also see (Appendix D) how the deformation aspect of quantization fits with
our context.

Before we begin to develop a calculus based on the above formula, we need to specify
the required properties of the triple (A,H, F ), or equivalently of the representation of
A in the pair (H, F ). The following notion of Fredholm representation, or equivalently
of Fredholm module, is due to Atiyah [18], Mishchenko [395], Brown, Douglas and
Fillmore [70], and Kasparov [335].

Definition 1. Let A be an involutive algebra (over C). Then a Fredholm module over
A is given by:

1) an involutive representation π of A in a Hilbert space H;

293
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2) an operator F = F ∗, F 2 = 1, on H such that

[F, π(a)] is a compact operator for any a ∈ A.

Such a Fredholm module will be called odd. An even Fredholm module is given by an
odd Fredholm module (H, F ) as above together with a Z/2 grading γ, γ = γ∗, γ2 = 1
of the Hilbert space H such that:

a) γπ(a) = π(a)γ ∀a ∈ A
b) γF = −Fγ.

(In the context of Z/2-graded algebras a) becomes γπ(a) = (−1)deg(a) π(a)γ (cf.
[329]).)

When no confusion can arise we systematically omit the representation π and write aξ
instead of π(a)ξ, for a ∈ A, ξ ∈ H.

The above Definition 1 is, up to trivial changes, the same as Atiyah’s definition of
abstract elliptic operators, and the same as Kasparov’s definition for the cycles in
K-homology, KK(A,C), when A is a C∗-algebra.

These trivial changes address the conditions F = F ∗ and F 2 = 1, which can be replaced
by π(a)(F −F ∗) ∈ K and π(a)(F 2− 1) ∈ K, where K is the ideal of compact operators
(cf. Appendix A). But the condition F 2 = 1 is important in our calculus.

Atiyah’s motivation for the definition of abstract elliptic operators comes from the
following example of an even Fredholm module over the C∗-algebra C(V ) of continuous
functions on a smooth compact manifold V ([18]). Let E± be smooth Hermitian
complex vector bundles over V and P : C∞(V,E+)→C∞(V,E−) an elliptic pseudo-
differential operator of order 0. Then, being of order 0, it extends to a bounded
operator

P : L2(V,E+)→L2(V,E−),

and the existence of a parametrix Q for P (such that both PQ − 1 and QP − 1 are
compact) shows that P is a Fredholm operator which almost intertwines the natural
representations of C(V ) by multiplication operators in L2(V, E±)

π±(f)ξ = fξ ∀ξ ∈ L2(V,E±) , f ∈ C(V ).

Indeed, one has ([At2])

Pπ+(f)− π−(f)P ∈ K ∀f ∈ C(V ).

Let us then consider the Hilbert space H = L2(V,E+)⊕L2(V, E−) = H+⊕H− with its

natural Z/2-grading γ =

[
1 0
0 −1

]
. Let π be the representation of C(V ) in H given by

π(f) =

[
π+(f) 0

0 π−(f)

]
∀f ∈ C(V )
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and let F =

[
0 Q
P 0

]
.

One has [F, π(f)] ∈ K, ∀f ∈ C(V ), and F 2−1 ∈ K, so that, up to an easy modification
(Appendix A), we get an even Fredholm module over C(V ). The role of such modules
in index theory is provided by the following proposition, which in the manifold context
yields the index of P with coefficients in an auxiliary vector bundle (cf. [18]).

Proposition 2. [18] [335] Let A be an involutive algebra, (H, F ) a Fredholm module
over A, and for q ∈ N let (Hq, Fq) be the Fredholm module over Mq(A) = A⊗Mq(C)
given by

Hq = H⊗Cq , Fq = F⊗1 , πq = π⊗id.

We extend the action of A on H to a unital action of Ã.

a) Let (H, F ) be even, with Z/2 grading γ, and let e ∈ Proj(Mq(Ã)). Then the
operator π−q (e)Fqπ

+
q (e) from π+

q (e)H+
q to π−q (e)H−

q is a Fredholm operator. An
additive map ϕ of K0(A) to Z is determined by

ϕ([e]) = Index
(
π−q (e)Fqπ

+
q (e)

)
.

b) Let (H, F ) be odd and let E =
(

1+F
2

)
. Let u ∈ GLq(Ã). Then the operator

Eqπq(u)Eq from EqHq to itself is a Fredholm operator. An additive map of
K1(A) to Z is determined by

ϕ([u]) = Index(Eqπq(u)Eq).

When A = A is a C∗-algebra, the group K1(A) of b) can be replaced by Ktop
1 (A), and

in both even and odd cases the index map ϕ only depends upon the K-homology class

[(H, F )] ∈ KK(A,C)

of the Fredholm module, in the Kasparov KK group. This is an easy special instance
of the Kasparov intersection product ([329]). Given a C∗-algebra A, its K-homology
K∗(A) = KK(A,C), as defined by Kasparov, is the abelian group of stable homotopy
classes of Fredholm modules over A ([335]) (cf. Appendix A).

When A = C(X) is a commutative C∗-algebra (say with unit), then the K-homology
K∗(A) = K∗(C(X)) coincides with the Steenrod K-homology of the compact space
X = Spec(A) (cf. [70] [335] [322]), as gradually emerged from the work of Brown,
Douglas and Fillmore on extension theory for the odd case. The Chern character in
K-homology (cf. [36]), dual to the usual Chern character, then gives a map

Ch∗ : K∗(C(X))→H∗(X,Q)

which allows one to compute the index pairing of Proposition 2 by the formula:

ϕ(x) = 〈Ch∗(H, F ), Ch∗(x)〉 ∀x ∈ K∗(C(X))
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where ϕ is the K-theory map given by the Fredholm module (Proposition 2) (H, F )
over A = C(X) and Ch∗(H, F ) is the Chern character of the corresponding Steenrod
K-homology class. Note that here in order to compute Ch∗(H, F ) one first needs to
know the element of Steenrod K-homology of X corresponding to (H, F ), which is not
obvious.

When A is a noncommutative C∗-algebra its K-homology K∗(A)=KK(A,C) makes
good sense, and in looking for an analogue of the above Chern character

Ch∗ : K∗(C(X))→H∗(X,Q)

we were led to invent cyclic cohomology in [102]. The idea is to use, given a Fredholm
module (H, F ) over A, the following formula to evaluate quantized differential forms
ω =

∑
f 0[F, f 1] · · · [F, fn]:

Trsω = Tr(ω) (odd case)

Trsω = Tr(γω) (even case).

The functional
τ(f 0, . . . , fn) = Trs(f

0[F, f 1] · · · [F, fn])

is indeed, when it makes good sense, the prototype of a cyclic cocycle. For these
formulae to make sense one needs the following refinement of Definition 1.

Definition 3. Let A be an involutive algebra and (H, F ) a Fredholm module over A.
Let p ∈ [1,∞[. We shall say that (H, F ) is p-summable if

[F, a] ∈ Lp(H) ∀a ∈ A.

Here Lp(H) = {T ∈ K;
∑∞

n=0 µn(T )p < ∞} is the Schatten-von Neumann ideal of
compact operators such that Tr(|T |p) < ∞. We shall use these ideals of compact
operators to measure the size of the differential [F, f ]. The Hölder inequality and its
corollary

Lp1Lp2 · · · Lpk⊂Lp for
1

p
=

k∑
j=1

1

pj

show that for a p-summable Fredholm module, the quantized differential forms of high
enough order belong to L1 and hence can be integrated according to the above formulas.

The above idea is directly in line with the earlier works of Helton and Howe [273]
[274], Carey and Pincus [79] and Douglas and Voiculescu [181] in the case when A is
commutative. But even in that case it improves on earlier work since the above cyclic
cocycle determines all the lower-dimensional homology classes of an extension, and not
just the top-dimensional one.

In Section 1 we shall develop our calculus, define the Chern character

Ch∗(H, F ) ∈ HC∗(A)
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of finitely summable Fredholm modules, exhibit the role of the periodicity operator
S : HCn→HCn+2 of cyclic cohomology, and give the computation of the index map of
Proposition 2 using the Chern character Ch∗(H, F ).

In Section 2 we shall define the Dixmier trace which plays the role of the classical
integral in our calculus. We refer to the general introduction of the book for the detailed
dictionary between the classical differential calculus and the quantized calculus. To
avoid any confusion, we shall not, however, use the dictionary in this chapter.

The main result of Section 2, which justifies the introduction of the Dixmier trace, is
Theorem 2.8. It gives the Hochschild class of the character Ch∗(H, F ) in terms of the
Dixmier trace.

In Sections 3, 4, 5, and 6 we shall give concrete examples of this calculus, including
highly nonabelian cases (5), spaces of non-integral Hausdorff dimension (3) and the
quantum Hall effect as analysed by J. Bellissard (6).

In the remaining sections we shall show that this calculus also applies to spaces of
infinite dimension, such as the configuration space of constructive quantum field theory
(Section 9) or the dual space of higher rank discrete groups (Section 9). The finite
summability condition of Definition 3 is then relaxed to the following:

Definition 4. Let (H, F ) be a Fredholm module over an algebra A. Then (H, F ) is
θ-summable if

[F, a] ∈ J1/2 ∀a ∈ A
where J1/2 is the (two-sided) ideal of compact operators T on H such that

µn(T ) = O((log n)−1/2).

Exactly as the finitely summable Fredholm modules served as motivation to develop
cyclic cohomology, the θ-summable ones (in their unbounded presentation as K-cycles
(cf. Section 8 below)) motivate the introduction of entire cyclic cohomology ([109])
which we shall discuss in Section 7.

The Chern character Ch∗(H, F ) of θ-summable Fredholm modules was first constructed
in [109] and then, in a cohomologous ([115]) but much simpler form in [298]. This
will be discussed in Section 8. Finally, Section 9 will be devoted to examples.

Thus, the content of this Chapter Is:

1. Quantized differential calculus and cyclic cohomology

2. The Dixmier trace and the Hochschild class of the character

3. Quantized calculus in one variable and fractals

4. Conformal manifolds

5. Rank one discrete groups
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6. The quantum Hall effect and elliptic theory on the noncommutative torus

7. Entire cyclic cohomology

8. The Chern character of θ-summable Fredholm modules

9. θ-summable K-cycles, discrete groups and quantum field theory

Appendix A. Kasparov’s bivariant theory

Appendix B. Real and complex interpolation of Banach spaces

Appendix C. Normed ideals of operators

Appendix D. Deformations of algebras and cyclic cohomology

1. Quantized Differential Calculus and Cyclic Cohomology

Let A be an involutive algebra and (H, F ) be a Fredholm module over A (Definition
1). Let n be an integer, n ≥ 0, and assume that (H, F ) is even if n is even, and is
(n + 1)-summable, that is,

[F, a] ∈ Ln+1(H) ∀a ∈ A.

We shall now construct an n-dimensional cycle (Ω, d,
∫

) overA in the sense of Definition
1 of Chapter III.1.

1.α The cycle associated to a Fredholm module. The graded algebra Ω∗ =⊕
Ωk is obtained as follows. For k = 0, Ω0 = A. For k > 0 one lets Ωk be the linear

span of the operators

ω = a0[F, a1] · · · [F, ak] aj ∈ A.

The Hölder inequality shows that Ωk⊂Ln+1
k (H). The product in Ω∗ is the product of

operators; one has

ωω′ ∈ Ωk+k′ for any ω ∈ Ωk , ω′ ∈ Ωk′ ,

as one checks using the equality

(
a0[F, a1] · · · [F, ak]

)
ak+1 =

k∑
j=1

(−1)k−j a0[F, a1] · · · [F, ajaj+1] · · · [F, ak+1]

+ (−1)k a0a1[F, a2] · · · [F, ak+1] ∀aj ∈ A.

The differential d : Ω∗→Ω∗ is defined as follows:

dω = Fω − (−1)k ωF ∀ω ∈ Ωk.
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Again one checks that dω belongs to Ωk+1 using the equality

F (a0[F, a1] · · · [F, ak])− (−1)k(a0[F, a1] · · · [F, ak])F

= [F, a0][F, a1] · · · [F, ak] ∀aj ∈ A.

(Since F 2 = 1, F anticommutes with [F, a] for any a ∈ A and hence

[F, a1] · · · [F, ak]F = (−1)k F [F, a1] · · · [F, ak].)

By construction, d is a graded derivation, i.e.

d(ω1ω2) = (dω1)ω2 + (−1)k1 ω1 dω2 ∀ωj ∈ Ωkj .

Moreover, it is straightforward that d2 = 0 since, for ω ∈ Ωk,

F (Fω − (−1)k ωF ) + (−1)k (Fω − (−1)k ωF )F = 0.

We thus have a graded differential algebra (Ω∗, d), and it remains to define a closed
graded trace of degree n

Trs : Ωn→C.

For this we introduce the following notation. Given an operator T on H such that
FT + TF ∈ L1(H) we set

Tr′(T ) =
1

2
Tr (F (FT + TF )).

Note that if T ∈ L1(H) then Tr′(T ) = Tr(T ).

We then define Trsω for ω ∈ Ωn by the formulas

Trsω = Tr′(ω) if n is odd

Trsω = Tr′(γω) if n iseven.

In the last formula γ is the Z/2 grading operator provided by the evenness of the
Fredholm module (H, F ) (cf. Definition 1).

These formulae do make sense; indeed, for n odd and ω ∈ Ωn, one has Fω + ωF =
dω ∈ Ωn+1⊂L(n+1)/(n+1) = L1, while for n even one has Fγω + γωF = γdω ∈ L1 by
the same argument.

Proposition 1. [102] (Ω, d, Trs) is a cycle of dimension n over A.

Proof. We just need to check that Trs is a closed graded trace. Since Trsω only
involves dω and since d2 = 0, it is clearly closed

Trsdω = 0 ∀ω ∈ Ωn.

Then let ω ∈ Ωk, ω′ ∈ Ωk′ with k + k′ = n. One has, for n odd

Trs ωω′ =
1

2
Tr(Fd(ωω′)) =

1

2
Tr(F (dω)ω′ + (−1)k Fω dω′)

=
1

2
Trace((−1)k+1 dω Fω′ + (−1)k (Fω)dω′).
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As Tr(Fω dω′) = Tr(dω′ Fω), using the equality

Tr(T1T2) = Tr(T2T1) , Tj ∈ Lpj ,
1

p1

+
1

p2

= 1,

we get Trs ωω′ = (−1)kk′Trs ω′ω.

For n even the computation is similar.

The character of the above n-dimensional cycle is the cyclic cocycle τn

τn(a0, . . . , an) = Tr′
(
a0[F, a1] · · · [F, an]

) ∀aj ∈ A
with γa0 instead of a0 when n is even.

We shall see below many examples (Sections 4, 5, and 6) of explicit computations of
these cyclic cocycles, but first we shall show how to eliminate the ambiguity in the
choice of the integer n. Given a Fredholm module (H, F ) over A, the parity of n is
fixed but the precise value of n is only subject to a lower bound:

[F, a] ∈ Ln+1 ∀a ∈ A.

Indeed, since Lp1⊂Lp2 if p1 ≤ p2, this shows that we can always replace n by n + 2q
for any integer q ≥ 0. In particular, we get a sequence of cyclic cocycles of the same
parity

τn+2q, q ∈ N
(where n is the smallest integer compatible with (n + 1)-summability).

1.β The periodicity operator S and the Chern character. It is the compar-
ison between these cyclic cocycles which was the reason for the introduction ([102]) of
the periodicity operator in cyclic cohomology (Section III.1)

S : HCn(A)→HCn+2(A).

Proposition 2. [102] Let (H, F ) be an (n + 1)-summable Fredholm module over A of
the same parity as n. The characters τn+2q satisfy

τm+2 = − 2

m + 2
Sτm in HCm+2(A), m = n + 2q, q ≥ 0.

Proof. Let n be even. By construction, τn is the character of the cycle (Ω, d, Trs)
associated to (H, F ) by Proposition 1. Thus (Chapter III Lemma 1.14) Sτn is given
by

Sτn(a0, . . . , an+2) =
n+1∑
j=0

Trs((a
0da1 · · · daj−1)aj aj+1(daj+2 · · · dan+2))
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By definition, τn+2 is given by

τn+2(a
0, . . . , an+2) = Trs(a

0da1 · · · dan+2).

We just have to find ϕ0 ∈ Cn+1
λ (A) such that bϕ0 = Sτn + n+2

2
τn+2. We shall construct

ϕ ∈ Cn+1
λ (A) such that

bϕ(a0, . . . , an+2) = 2
n+1∑
j=0

Trs((a
0da1 · · · daj−1)aj aj+1(daj+2 · · · dan+2))

+ (n + 2)Trs(a
0da1 · · · dan+2).

We take ϕ =
∑n+1

j=0 (−1)j−1ϕj, where

ϕj(a0, . . . , an+1) = Trs(Fajdaj+1 · · · dan+1da0 · · · daj−1).

One has ajdaj+1 · · · dan+1da0 · · · daj−1 ∈ Ωn+1⊂L1(H) so that the trace makes sense;
moreover, by construction, one has ϕ ∈ Cn+1

λ (A).

To end the proof we shall now show that

(−1)j−1bϕj(a0, . . . , an+2) = Trs(a
0da1 · · · dan+2)

+ 2Trs((a
0da1 · · · daj−1)aj aj+1(daj+2 · · · dan+2)).

Using the equality d(ab) = (da)b + adb, with a, b ∈ A, we get

bϕj(a0, . . . , an+2) = Trs(F (aj+1daj+2 · · · dan+2)a0(da1 · · · daj))

+ (−1)j−1 Trs(Faj+1(daj+2 · · · da0 · · · daj−1)aj)

+ Trs(Faj(daj+1 · · · dan+2)a0(da1 · · · daj−1)).

Let β = (daj+2 · · · dan+2)a0(da1 · · · daj−1) ∈ Ωn. Using the equality

Trs(αdβ) = Trs((Fα + αF )β) ∀α ∈ L(H),

we get, with α = ajFaj+1

Trs((Fα + αF )β) = (−1)j−1 Trs(Faj+1(daj+2 · · · da0 · · · daj−1)aj).

Thus

(bϕj)(a0, . . . , an+2) = −Trs(dajFaj+1β)+Trs((Fα+αF )β)+Trs(Faj(daj+1)β)

= Trs((Fd(ajaj+1)+(Fα + αF ))β).

As Fd(ajaj+1) + (Fα + αF ) = dajdaj+1 + 2ajaj+1, we get the desired equality.

The odd case is treated similarly.

Now let, as in Chapter III.1, H∗(A) = lim−→(HCn(A), S) be the periodic cyclic coho-
mology of A. Proposition 2 shows that the class in H∗(A) of

(−1)n/2Γ
(n

2
+ 1

)
τn ∈ HCn(A),
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with n large and of the same parity as the Fredholm module (H, F ), is well defined
independently of n. At this point we still have the freedom to modify these formulae
by a multiplicative constant λ+ (resp. λ−) for the even (resp. odd) case. This might
seem desirable in order to eliminate Γ

(
1
2

)
=
√

π in the odd case. It turns out, however,
that there is a unique choice of these normalization constants which is compatible with
the Kasparov product

KK(A,C)×KK(B,C)→KK(A⊗B,C)

so that this product becomes the product # of Chapter III.1. This choice is λ+ = 1
and λ− =

√
2i, and it does not eliminate the term

√
π for the Chern character in the

odd case.

Definition 3. Let (H, F ) be a finitely summable Fredholm module over the involutive
algebra A. The Chern character, Ch∗(H, F ) ∈ H∗(A) is the periodic cyclic cohomology
class of the following cyclic cocycles, for n large enough

Even case λn Tr′(γa0[F, a1] · · · [F, an]) ∀aj ∈ A , λn = (−1)n(n−1)/2 Γ
(n

2
+ 1

)

Odd case λn Tr′(a0[F, a1] · · · [F, an]) ∀aj ∈ A , λn =
√

2i(−1)n(n−1)/2 Γ
(n

2
+ 1

)
.

Note that the normalization factors above are dependent on our choice of normalization
for the operation S in cyclic cohomology. If we had chosen as generator of HC2(C)
the cocycle

σ′(1, 1, 1) = λ

this would introduce an additional λn/2 in Definition 3. In [102] we took λ = 2πi,
which has the effect of eliminating the half-integral powers of π in the odd case, in
which case for n = 2m + 1 the normalization then yields

(−1)m (2πi)m

(
m− 1

2

)
· · · 1

2
Tr′(a0[F, a1] · · · [F, an]) ∀aj ∈ A.

However, since cyclic cohomology is important for arbitrary rings, the normalization
σ(1, 1, 1) = 1 of Chapter III is more general. Finally, the coefficient (−1)n/2 can be
absorbed through replacing F by iF , so that da = i[F, a] is now selfadjoint for a
selfadjoint. With our normalization the Chern character in K-homology, Ch∗(H, F ),
of the fundamental class of Rn is given by the class of the n-cocycle

τ(f 0, . . . , fn) = (2πi)−n/2(−1)n(n−1)/2

∫
f 0df 1∧df 2∧ · · · ∧dfn, f j ∈ C∞

c (Rn),

which gives the correct normalization for Fourier calculus ([248] p.271).
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1.γ Pairing with K-theory and index formula. Let A be an involutive algebra
and (H, F ) a finitely summable Fredholm module over A. We have seen (Proposition
0.2) that it determines an index map

ϕ : Kj(A)→Z
where j = 0 or 1 according to the parity of (H, F ).

We shall now give a simple index formula for the map ϕ and compute it in terms of
the Chern character Ch∗(H, F ) ∈ H∗(A) of Definition 3.

Proposition 4. [102] Let (H, F ) be a finitely summable Fredholm module over A.
Then for any x ∈ Kj(A), one has

ϕ(x) = 〈x, Ch∗(H, F )〉
where ϕ is the Fredholm index map of Proposition 0.2.

Proof. Let us treat the even case. Replacing A by Ã, i.e. adjoining a unit to A, and

then by Mq(Ã) where the class x is represented by an idempotent e ∈ Mq(Ã), we may
assume that A is unital and that q = 1. The matrix of F , in the Z/2 decomposition

H = H+⊕H− such that γ =

[
1 0
0 −1

]
, is of the form F =

[
0 Q
P 0

]
with PQ = 1 in H−

and QP = 1 in H+. Let H1 = eH+, H2 = eH− and P ′ = eP |H1, Q′ = eQ|H2. Then
P ′ is a Fredholm operator from H1 to H2, and Q′ is a quasi-inverse of P ′ such that
P ′Q′ − 1 and Q′P ′ − 1 are both in Ln+1

2 if (H, F ) is (n + 1)-summable. Indeed, these
operators are restrictions of

e− eFeFe = −e[F, e]2e ∈ Ln+1
2 .

It then follows that

IndP ′ = Tr(1−Q′P ′)k − Tr(1− P ′Q′)k

for any integer k ≥ n+1
2

. Thus, we get for any m ≥ n+1
2

IndP ′ = Tr(γ(e− eFeFe)m).

Now the pairing of [e] ∈ K0(A) with the representative τ2m of the Chern character is
given by Proposition 2 of Chapter III.3: (for m > n+1

2
so that Tr′ = Tr),

(−1)m Tr(γe[F, e]2m)

which is precisely the same formula.

Corollary 5. Any representative τ ∈ HC∗(A) of the Chern character of a finitely
summable Fredholm module pairs integrally with K-theory, i.e.

τ(K)⊂Z.
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We refer to Sections 5 and 6 for applications of this integrality result, in particular, to
the integrality of the Hall conductivity (Section 6).

We shall now investigate the extension problem (cf. Chapter III) for the cyclic cocycles
τn associated as above to a finitely summable Fredholm module.

Lemma 6. Let A be an involutive algebra, (H, F ) an (n + 1)-summable Fredholm
module over A with the parity of n. Let A be the C∗-algebra norm closure of A (in its
action on H) and A the smallest involutive subalgebra of A containing A and stable
under holomorphic functional calculus. Then (H, F ) is an (n + 1)-summable Fredholm
module over A.

Proof. It is clearly enough to show that given (H, F ), the algebra of operators T on
H which satisfy

[F, T ] ∈ Ln+1(H)

is stable under holomorphic functional calculus, which is straightforward using the
equality

[F, (T − λ)−1] = −(T − λ)−1 [F, T ](T − λ)−1 ∀λ /∈ Spectrum(T ).

This lemma shows that we can restrict our attention to those involutive algebras which
satisfy the following condition:

A is isomorphic to a ∗-subalgebra stable under holomorphic calculus in a C∗-algebra.

The latter C∗-algebra A is then unique (with A dense in A) since the restriction of the
C∗-norm to A is then given by the formula

||a|| = (Spectral radius(a∗a))1/2

where the spectral radius is taken inside A (or Ã if A is not unital). For such pre-C∗-
algebras A (called local C∗-algebras in [51]) the following holds:

Proposition 7. Let A be a pre-C∗-algebra; then:

1) Any Fredholm module (H, F ) over A extends by continuity to a Fredholm mod-
ule over the associated C∗-algebra A.

2) The inclusion A⊂A is an isomorphism in K-theory.

Indeed, any involutive representation π of a pre-C∗-algebra is automatically norm de-
creasing for the norm given by

||a|| = (Spectral radius(a∗a))1/2.

The second statement follows from Chapter III Appendix C.

Now a Fredholm module over a C∗-algebra A yields a K-homology class, i.e. an element
of the Kasparov group

KK(A,C) = K∗(A).
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Both the K-homology of A and the cyclic cohomology HC∗(A) (or rather the periodic
cyclic cohomology H∗(A)) pair with the K-theory K(A)∼K(A), and Proposition 4
thus shows that the following diagram is commutative for any pre-C∗-algebra A

{Fredholm modules over A}

²²

ch∗ // H∗(A)

²²
K∗(A) = KK(A,C) // Hom(K∗(A),C)

where the lower horizontal arrow is the pairing we have between K-theory and K-
homology given by the Fredholm index, and the right vertical arrow is the pairing of
cyclic cohomology with K-theory.

If we want to deal only with C∗-algebras, then the appropriate notion of finite summa-
bility for a Fredholm module is the following:

Definition 8. Let (H, F ) be a Fredholm module over a C∗-algebra A. We shall say
that it is densely p-summable if the subalgebra : A = {a ∈ A; [F, a] ∈ Lp(H)}is dense
in A.

We refer to [102] for the homotopy invariance of the Chern character Ch∗ of Fredholm
modules in the above context.

2. The Dixmier Trace and the Hochschild Class of the Character

In this section we shall describe the operator theoretic tools which replace, in noncom-
mutative geometry, the differential geometric tools having to do with symbolic calculus
and integration in dimension n. These replacements also work in the case of noninte-
gral dimension. They involve natural ideals of operators in Hilbert space, parametrized
by a real number p ∈ [1,∞].

We shall begin with a review of the relevant properties of eigenvalues of compact
operators on a Hilbert space H, and of the interpolation ideals.

2.α General properties of interpolation ideals L(p,q). Let T be a compact
operator on H and let |T | = (T ∗T )1/2 be its absolute value. Let µ0 = µ0(T ), µ1 = µ1(T )
, . . . be the sequence of eigenvalues of |T | arranged in decreasing order and repeated as
many times as their multiplicity. Thus,

(4.1) µ0(T ) ≥ µ1(T ) ≥ · · · and µn(T ) → 0 as n →∞.

By the minimax principle, the value of µn(T ) is the minimum of the norms of the
restrictions of T to the orthogonal complement of an n-dimensional subspace E of H,

(4.2) µn(T ) = min{‖T |E⊥‖; dim E = n},
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and this minimum is attained by taking for E the eigenspace corresponding to the first
n eigenvalues µ0, . . . , µn−1 of |T |. One can also express µn(T ) as the distance (for the
metric on L(H) given by the operator norm) from T to the subset Rn of operators of
rank less than or equal to n:

(4.3) µn(T ) = d(T, Rn) = inf{‖T −X‖; X ∈ Rn}.
Since the distance function to any set is Lipschitz with constant 1, we have

(4.4) |µn(T1)− µn(T2)| ≤ ‖T1 − T2‖
for any pair T1 and T2 of compact operators.

The inclusion Rn + Rm ⊂ Rn+m also gives

(4.5) µn+m(T1 + T2) ≤ µn(T1) + µm(T2)

for any integers n and m and any pair T1, T2 of compact operators. Similarly, we have
the submultiplicative property

(4.6) µn+m(T1T2) ≤ µn(T1)µm(T2);

since µ0(T ) = ‖T‖, it follows , in particular, that

(4.7) µn(T1T2) ≤ µn(T1)‖T2‖, µn(T1T2) ≤ ‖T1‖µn(T2).

The next important property of the eigenvalues µn involves the partial sums

σN(T ) =
N−1∑
n=0

µn(T ).

Every operator A of finite rank is of trace class; we denote by ‖A‖1 its trace norm.
The relevant formula for σN(T ) is the following:

(4.8) σN(T ) = sup{‖TE‖1; dim E = N},
where we have used the same notation for the subspace E and the corresponding
orthogonal projection. Again, the supremum is attained if we take for E the eigenspace
corresponding to the first N eigenvalues of |T |.
As an immediate corollary of (8) it follows that the σN are norms:

(4.9) σN(T1 + T2) ≤ σN(T1) + σN(T2)

for any N and any pair T1, T2 of operators on H.

The final two inequalities are trickier in that they make use of the exterior algebra
∧

H
(cf. [?]). If (λk) is the list of eigenvalues of the compact operator T with |λk| ≥ |λk+1|
for all k, then

(4.10)
N−1∑

k=0

|λk| ≤
N−1∑

k=0

µk(T ) for every N ∈ N.
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Finally, we have the following compatibility of σN with the product T1T2 of compact
operators:

(4.11)
N−1∑

k=0

µk(T1T2) ≤
N−1∑

k=0

µk(T1)µk(T2).

This inequality contains as a special case the inequality of decreasing rearrangement
of sequences.

Let us now describe the ideals L(p,q)(H), p, q ∈ [1,∞], which play a central role in our
analysis of the concept of dimension, based on the results of D. Voiculescu [571]. These
are obtained canonically from the pair of ideals L1(H) ⊂ K, where K is the ideal of
compact operators and is the largest normed ideal, while the ideal L1(H) of trace-class
operators is the smallest. They are obtained by real interpolation theory (Appendix
B), which is the most useful method for proving inequalities. We shall thus start from
this point of view and proceed to a more concrete description.

Given a pair B0, B1 of Banach spaces that are continuously embedded in a Hausdorff
topological vector space, one defines the real interpolation spaces B(α,β) (0 < α < 1,
0 ≤ β ≤ 1) as follows: for x ∈ B0 + B1 and λ ∈]0, +∞[, define

K(λ, x) = inf{‖x0‖B0 + λ−1‖x1‖B1 ; x0 + x1 = x};
then the norm ‖x‖(α,β) is the norm in Lq(R∗+, dλ

λ
), q = 1/β, of the function λ → f(λ) =

λαK(λ, x):

‖x‖(α,β) =

(∫

R∗+
|f(λ)|q dλ

λ

)1/q

(with the appropriate formula for p = ∞).

In our case, we have B0 = K, B1 = L1(H), and the inequality ‖x‖ ≤ ‖x‖1 shows that
they embed continuously in B0. Let us now estimate the function K(λ, x), given a
compact operator x ∈ B0. By construction, K is a decreasing function of λ and, since
B1 ⊂ B0, it is bounded by ‖x‖B0 .

Let N be an integer; if x = x0 + x1, it follows from (4) that

1

N
σN(x) ≤ ‖x0‖+

1

N
σN(x1),

thus 1
N

σN(x) ≤ K(N, x). Conversely, let EN be the spectral projection on the first N
eigenvalues of |x| and write x = x0 + x1 where, with x = u|x|,

x0 = uµN EN + x(1− EN)

x1 = (x− uµN)EN .

One has ‖x0‖ = µN , ‖x1‖1 = σN(x)−NµN . Thus,

K(N, x) ≤ µN +
1

N
(σN(x)−NµN) =

1

N
σN(x).
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This proves that K(N, x) = 1
N

σN(x). With a little more work one can show that
the function λK(λ, x) is affine in the intervals [N, N + 1] with the values σN(x) and
σN+1(x) at the endpoints.

Thus, K(λ, x) is of the same order as 1
N

σN(x), where N is the least integer greater
than λ.

With α = 1/p and β = 1/q, let L(p,q)(H) be the interpolation space obtained as above
from B0 = K and B1 = L1(H). Thus, for q < ∞, a compact operator x belongs to
L(p,q)(H) if and only if

∞∑
N=1

N (α−1)q−1σN(x)q < ∞,

whereas for q = ∞, x belongs to L(p,∞)(H) if and only if N (α−1)σN(x) is a bounded
sequence.

Proposition 1. Each L(p,q)(H) (1 < p < ∞, 1 ≤ q ≤ ∞) is a two-sided ideal in L(H),
and the inclusion

L(p1,q1) ⊂ L(p2,q2)

holds if p1 < p2, or if p1 = p2 and q1 ≤ q2.

This follows from (7) and the general theory of interpolation. In the corresponding
interpolation square (see Figure 1), we shall be concerned primarily with the diagonal
α = β and the two horizontal lines β = 0 and β = 1.

As we saw above, for 1 < p < ∞ we have

x ∈ L(p,∞) ⇐⇒ σN(x) = O(N1−α) (α = 1/p),

which in turn is equivalent to µn(x) = O(n−α), as one checks trivially. The natural
norm on L(p,∞) is

‖x‖p,∞ = sup
N≥1

1

N1−α
σN(x).

The ideals L(p,∞) correspond to the notion of weak Lp-spaces in classical analysis, so
they could be denoted Lp

weak. A more compact notation is Lp+.

A diagonal L(p,p)(H) is a standard Schatten ideal, and one can check, using Hardy’s
inequality, that the interpolation norm ‖x‖p,p given above is equivalent (for 1 < p < ∞)
to the Schatten p-norm

‖x‖p =
(
Tr(|x|p))1/p

=

( ∞∑
n=0

µn(x)p

)1/p

.

The ideals L(p,1)(H) play a crucial role in the work of D. Voiculescu on perturbation
of the Lebesgue spectrum and quasi-central approximate units, on which we shall rely
later on.
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(p, 1)

(p, p)

(p, q)

(p, ∞)

1

α = 1/p, β = 1/q

Figure 1. Interpolation square

We have x ∈ L(p,1)(H) if and only if
∑∞

N=1 Nα−2σN(x) < ∞, or, equivalently, if and
only if

∞∑
n=1

nα−1µn−1(x) < ∞.

Moreover, it is not difficult to see that this expression defines a norm on L(p,1) equivalent
to the interpolation norm. It is sometimes convenient to replace the notation L(p,1)

by Lp−. We then have

L(p,1) = Lp− ⊂ Lp ⊂ Lp+ = L(p,∞).

To conclude these generalities about the ideals L(p,q)(H), we note that the inequality
(6) makes it possible to determine easily the class of a product T1T2 from those of T1

and T2. The pairing 〈T1, T2〉 = Tr(T1T2) makes sense when T1T2 ∈ L1(H) and shows,
according to general interpolation theory, that duality of the Banach spaces L(p,q) is
just the symmetry

(p, q) → (p′, q′),
1

p
+

1

p′
= 1,

1

q
+

1

q′
= 1
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about the middle point (α, β) = (1
2
, 1

2
) in the interpolation square, except for the

following important nuance on the boundary:

L(p,∞) is the dual of L(p′,1) (1 < p < ∞,
1

p
+

1

p′
= 1).

However, L(p′,1) is not the dual of L(p,∞) but rather of the norm-closed ideal L(p,∞)
0 , the

norm-closure of the finite rank operators in L(p,∞). For a compact operator x, we have

x ∈ L(p,∞)
0 ⇔ µn(x) = o(n−α) (α = 1/p).

Thus, this situation is just a repetition of the dualities

(K)∗ = L1, (L1)∗ = L(H)

(cf. Chapter V).

2.β The Dixmier trace. In the above interpolation square, the spaces L(p,q) were
defined only for 1 < p < ∞ (and 1 ≤ q ≤ ∞). Let us extend this definition to the two
boundary points p = 1, q = ∞ and p = ∞, q = 1. First,

L(1,∞)(H) = {T ∈ K; σN(T ) = O(log N)},
and the natural norm on L(1,∞) is given by

‖T‖1,∞ = sup
N≥2

1

log N
σN(T );

as above, this is a two-sided ideal, and if Ti ∈ L(pi,∞)(H) (i = 1, . . . , n) and
∑

(1/pi) = 1
then T = T1 · · ·Tn ∈ L(1,∞)(H). In fact, the eigenvalues of T are of order µn = O(1/n)
(for pi > 1), by (6) and the definition of L(pi,∞). L(1,∞) is the dual of the Macaev ideal
L(∞,1)(H):

T ∈ L(∞,1)(H) ⇔
∑
n≥1

1

n
µn(T ) < ∞.

Also, as above, the predual of L(∞,1), under the pairing given by (A,B) = Tr(AB), is
the ideal

L(1,∞)
0 (H) = {T ∈ K; σN(T ) = o(log N)}.

In 1966, J. Dixmier [174] settled in the negative the question of the uniqueness of
the trace on the type I∞ von Neumann algebra L(H). In doing so, he proved the
existence of traces on L(H) that vanish on the trace-class operators. By specializing
his construction to the case of the sequence an = log n, we shall get traces on the ideal
L(1,∞)(H) which will enable us to compute the Hochschild class of the character of a
Fredholm module (Theorem 8 below).
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Let T be a positive operator, T ∈ L(1,∞)(H); we would like to define a functional by

LimN→∞
1

log N

N−1∑
n=0

µn(T ).

Since the eigenvalues µn(T ) are unitarily invariant (i.e., µn(UTU∗) = µn(T ) for U

unitary), so is the sequence (1/ log N)
∑N−1

n=0 µn(T ). There are two problems with the
above formula: its linearity and its convergence.

To handle linearity, for Ti ≥ 0, Ti ∈ L(1,∞)(H), one has to compare

1

log N

N−1∑
n=0

µn(T1 + T2) = γN

and

1

log N

N−1∑
n=0

µn(T1) +
1

log N

N−1∑
n=0

µn(T2) = αN + βN .

The inequality (9) shows that γN ≤ αN + βN . Next, by (8) we have, for T ≥ 0,

σN(T ) = sup{Tr(TE); dim E = N},
and it follows ([Di4]) that

σN(T1) + σN(T2) ≤ σ2N(T1 + T2),

as one sees by taking the linear span E = E1 ∨E2 of two N -dimensional subspaces E1,
E2 of H. We thus have

αN + βN ≤
(

log 2N

log N

)
γ2N , γN ≤ αN + βN .

Since log 2N
log N

→ 1 as N → ∞, we see that linearity would follow easily if we had

convergence. Now, from the hypothesis Ti ∈ L(1,∞)(H), the sequences αN , βN ,and
γN are bounded and thus, even without the convergence, we get a unitarily invariant
positive trace on L(1,∞)(H) for each linear form Limω = ` on the space `∞(N) of bounded
sequences that satisfies the following conditions:

(α) Limω(αn) ≥ 0 if αn ≥ 0,

(β) Limω(αn) = Lim(αn) if αn is convergent,

(γ) Limω(α1, α1, α2, α2, α3, α3, . . .) = Limω(αn).

Condition (γ) is a crucial condition of scale invariance; to see how to handle it, notice
first that the parameter N in sequences such as αN is a special case of the continuous
parameter λ ∈ R∗+ in the construction of the interpolation spaces. To any bounded
sequence (αN)N∈N we thus assign the bounded function fα(λ) given by

fα(λ) = αN for λ ∈ ]N − 1, N ].
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We can now replace f by its Cesàro mean with respect to the multiplicative group R∗+,
with Haar measure dλ/λ,

M(f)(λ) =
1

log λ

∫ λ

1

f(u)
du

u
.

By construction, the Cesàro mean satisfies the following scale invariance, for bounded
functions f ,

|M(θµ(f))(λ)−M(f)(λ)| → 0 as λ →∞,

where µ > 0 and θµ(f)(λ) = f(λµ) ∀λ ∈ R∗+.

If α̃ = (α1, α1, α2, α2, . . .) then

fα̃ = θ1/2 (fα);

it follows that for any linear form L on Cb(R∗+) satisfying α) and β), the composition

α → L
(
M(fα)

)
= `(α)

satisfies the above conditions α), β) and γ).

We thus take a positive linear form L on the vector space of bounded continuous
functions on R∗+, such that L(1) = 1, and which is zero on the subspace C0(R∗+) of
functions vanishing at ∞.

Let us postpone the discussion of the choice of L, and state the properties of Trω that
are true for any such choice. Thus, we denote `(α) = L

(
M(fα)

)
by Limω(α), and make

the following definition:

Definition 2. For T ≥ 0, T ∈ L(1,∞)(H), we set

Trω(T ) = Limω
1

log N

N−1∑
n=0

µn(T ).

The above inequalities show that Trω is additive:

Trω(T1 + T2) = Trω(T1) + Trω(T2) ∀Ti ≥ 0, Ti ∈ L(1,∞)(H).

Thus, Trω extends uniquely by linearity to the entire ideal L(1,∞)(H) and has the
following properties:

Proposition 3.

(a) If T ≥ 0 then Trω(T ) ≥ 0.

(b) If S is any bounded operator and T ∈ L(1,∞)(H), then Trω(ST ) = Trω(TS).

(c) Trω(T ) is independent of the choice of the inner product on H, i.e., it depends
only on the Hilbert space H as a topological vector space.

(d) Trω vanishes on the ideal L(1,∞)
0 (H), which is the closure, for the ‖ ‖1,∞-norm,

of the ideal of finite-rank operators .
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Property (c) follows from (b) since, for S bounded and invertible,

Trω(STS−1) = Trω(T ) ∀T ∈ L(1,∞)(H).

Property (d) has an obvious corollary:

Trω(T ) = 0 ∀T ∈ L1(H).

It is this vanishing property of the Dixmier trace that makes it possible to transform
equalities of operators modulo the ideal L1 into actual numerical identities. We shall
now discuss the problem of convergence of the sequence 1

log N

∑N−1
n=0 µn(T ).

For a positive operator T ∈ L(1,∞)(H), the complex powers T s (s ∈ C, Re(s) > 1) make
sense and are of trace class, so that the equality

ζ(s) = Tr(T s) =
∞∑

n=0

µn(T )s

defines a holomorphic function in the half-plane Re(s) > 1. Now, the Tauberian
theorem of Hardy and Littlewood [Har] can be stated as follows:

Proposition 4. For T ≥ 0, T ∈ L(1,∞)(H), the following two conditions are equivalent :

(1) (s− 1)ζ(s) → L as s → 1+;

(2) (1/ log N)
∑N−1

n=0 µn → L as N →∞.

Under these conditions, the value of Trω(T ) is, of course, independent of ω, and if ζ(s)
has a simple pole at s = 1, this value is just the residue of ζ at s = 1.

As an example of a rather general situation in which the above type of convergence
holds, let us make the connection between the Dixmier trace Trω and the notion of
residue for pseudo-differential operators, introduced by Manin [386], Wodzicki [589]
and Guillemin [247].

Proposition 5. Let M be an n-dimensional compact manifold and let T ∈ OP−n(M, E)
be a pseudo-differential operator of order −n acting on sections of a complex vector
bundle E on M . Then:

(1) The corresponding operator T on H = L2(M,E) belongs to the ideal L(1,∞)(H).

(2) The Dixmier trace Trω(T ) is independent of ω and is equal to the residue
Res(T ).

Let us recall that the Wodzicki residue Res(T ) is given by a completely explicit formula
involving the principal symbol σ−n(T ) = σ(T ). The latter is a homogeneous function
of degree −n on the cotangent bundle T ∗M of M ; consequently the following integral
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is independent of the choice (using a metric on M) of the unit-sphere bundle S∗(M) ⊂
T ∗(M) with its induced volume element:

Res(T ) =
1

n(2π)n

∫

S∗M
traceE(σ)ds.

The equality of Proposition 5 can be proved using Proposition 4, or using the general
properties of the Dixmier trace ([101]).

It is important for our later purposes that the Wodzicki residue continues to make sense
for pseudo-differential operators of arbitrary order [589]. It is the unique trace on the
algebra of pseudo-differential operators which extends the Dixmier trace on operators
of order ≤ −n. It is given by the same formula applied to the (coordinate dependent)
symbol of order −n of T . It is a quite remarkable result, due to Wodzicki [589], that
the integral over S∗M of this coordinate dependent symbol is independent of any choice
and defines a trace. We shall use this in Section 4.

In general the value of Trω(T ) for T ∈ L(1,∞) does depend on the choice of the limiting
procedure ω. This feature of the Dixmier trace is tied up with its non-normality (cf.
[174]). As we shall see in Section 3, this non-normality is in fact a positive feature of Trω

since it allows one, in the context of Julia sets, to pass, using Trω, from the harmonic
measure to the Hausdorff measure, which does not belong to the same measure class.

The dependence of Trω(T ) on the choice of ω is governed by the following straightfor-
ward:

Proposition 6.

a) Let T ≥ 0, T ∈ L(1,∞). Then Trω(T ) is independent of ω iff the Cesàro means

M(λ) of the sequence 1
log N

∑N−1
n=0 µn(T ) are convergent for λ→∞.

b) Let M = {T ∈ L(1,∞); Trω(T ) independent of ω}. Then M is a linear space
invariant under conjugation by invertible operators on H.

c) M contains L(1,∞)
0 and is closed in the (1,∞)-norm.

In a) the Cesàro means are defined as above by

M(λ) =
1

log λ

∫ λ

1

f(u)
du

u

where f is constant, equal to 1
log N

∑N−1
n=0 µn(T ), on ]N − 1, N ]. Of course, if a) holds

then the common value of Trω(T ) is the limit of M(λ) when λ→∞.

Definition 7. Let T ∈ L(1,∞). We shall say that T is measurable if Trω(T ) is inde-
pendent of ω.

By 6b), measurability is additive, independent of the choice of inner product in Hilbert
space, and invariant under conjugation by invertible elements. We shall prove in many
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examples below the measurability of all operators aT , a ∈ A, where A is a C∗-algebra
and T ≥ 0, T ∈ L(1,∞), by studying the positive linear functionals on A given for any
ω by

ϕω(a) = Trω(aT ) ∀a ∈ A

and showing that ϕω is independent of ω.

2.γ The residue formula for the Hochschild class of the character of
Fredholm modules. The Dixmier trace Trω constructed above measures, for T ≥ 0,
the logarithmic divergence of the trace of T . Other divergences such as (log N)α would
yield corresponding traces. We shall see in this section that, among them, the Dixmier
trace is singled out by its cohomological significance. It computes the Hochschild
class I(τn) ∈ Hn(A,A∗) of the n-dimensional character τn ∈ HCn(A) of a Fredholm
module over an algebra A (cf. Definition 1.3). We shall need a stronger hypothesis on
(H, F ) than just its (n + 1)-summability. Our formula will assume the existence of an
unbounded selfadjoint operator D such that FD > 0, that [D, a] is bounded for any
a ∈ A, and that D−1 ∈ L(n,∞). Choosing D is equivalent to choosing ρ = |D|. Such
a choice is similar to the choice of a metric in Riemannian geometry, and will play a
central role in Chapter VI. We fix an integer n ≥ 1, and the constant λn as in Section
1 Definition 3.

Theorem 8. Let (H, F ) be a Fredholm module over an involutive algebra A. Let D
be an unbounded selfadjoint operator in H such that D−1 ∈ L(n,∞), Sign D = F , and
such that for any a ∈ A the operators a and [D, a] are in the domain of all powers of
the derivation δ, given by δ(x) = [|D|, x].

1) A Hochschild n-cocycle ϕω on A is defined by

ϕω(a0, a1, . . . , an) = λn Trω

(
a0[D, a1] · · · [D, an]|D|−n

) ∀aj ∈ A
( with γa0 instead of a0 in the even case).

2) For every n-dimensional Hochschild cycle c ∈ Zn(A,A), 〈ϕω, c〉 = 〈τn, c〉,
where τn ∈ HCn(A) is the Chern character of (H, F ) (Definition 1.3).

By construction, the formula for ϕω is scale invariant, i.e. it remains unchanged if we
replace D by λD for λ ∈ R∗+. The explicit cocycle ϕω depends, in general, on the
choice of the limiting procedure ω involved in the definition of the Dixmier trace, but
the equality 2) shows that its pairing with Hochschild cycles c is independent of ω. We
thus obtain operators Tc of the form

Tc =
∑

a0[D, a1] · · · [D, an]|D|−n

which are measurable in the sense of section β).
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When the Hochschild cohomology is Hausdorff it can then be viewed as the dual of
Hochschild homology. In that case, Condition 2) just means that ϕω has the same
Hochschild class as τn. Now by Proposition 1.2 the cyclic cocycle characters of (H, F )
are related by the periodicity operator S. Thus, the following corollary of the long
exact sequence of cyclic cohomology (Section III.1) shows that the Hochschild class
I(τn) is the obstruction to a better summability of (H, F ):

Proposition 9. Let A be an algebra, τ ∈ HCn(A) a cyclic cohomology class. Then
τ belongs to the image S(HCn−2(A)) if and only if the Hochschild cohomology class
I(τ) ∈ Hn(A,A∗) is equal to 0.

In particular, Theorem 8 implies nonvanishing of residues when the cohomological
dimension of Ch∗(H, F ) is not lower than n:

Corollary 10. With the hypothesis of Theorem 8 and if the Hochschild class of
Ch∗(H, F ) pairs nontrivially with Hn(A,A) one has

Trω(|D|−n) 6= 0.

In other words the residue of the function ζ(s) = Trace(|D|−s) at s = n cannot vanish.

With the hypothesis of the corollary on the cohomological dimension of Ch∗(H, F )
we see that it is not possible to find an operator D as in Theorem 8 and such that

D−1 ∈ L(n,∞)
0 . In particular, Theorem 8 has no analogue for the smaller ideals L(n,q),

q < ∞.

It is important, in general, to remove the hypothesis of invertibility of the operator D.
Let us recall that the resolvent (D−λ)−1 is bounded for any λ /∈ Spec(D), in particular
λ /∈ R, and that for any two-sided ideal J of operators the condition

(D − λ)−1 ∈ J

is independent of the choice of λ /∈ Spec D.

Definition 11. A K-cycle (H, D) over an involutive algebra A is given by a ∗-
representation of A in a Hilbert space H together with an unbounded selfadjoint operator
D with compact resolvent, such that [D, a] is bounded for any a ∈ A.

Given a K-cycle (H, D), the kernel of D is finite dimensional and Theorem 8 continues
to hold if we define |D|−n as 0 on KerD. We associate, canonically, a Fredholm module
(H′, F ) to the K-cycle (H, D) in the following way:

α) H′ = H⊕KerD

β) a(ξ, η) = (aξ, 0) ∀a ∈ A , ξ ∈ H , η ∈ KerD.

γ) F = (Sign D)⊕F1
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where Sign D is the partial isometry of the polar decomposition of D, and where F1

is the partial isometry which exchanges the two copies of KerD. In the even case, i.e.
when H is Z/2-graded by γ commuting with A and anticommuting with D, one uses
in α) the opposite Z/2-grading on KerD.

We shall refer to (H′, F ) as the Fredholm module associated to the K-cycle (H, D).

Theorem 8 will play a decisive role in Chapter VI. As an easy example where it ap-
plies, consider the K-cycle given by the Dirac operator on a smooth compact Spin
manifold (cf. Chapter VI.1) and compute ϕω using Proposition 2.5. A straightforward
calculation gives, for all f j ∈ C∞

ϕω(f 0, . . . , fn) = (2πi)−n/2(−1)n(n−1)/2

∫
f 0 df1∧df 2∧ · · · ∧dfn.

2.δ Growth of algebras and degree of summability of K-cycles. In this
section we shall show, using results of D. Voiculescu [571], how the existence of a
finitely summable K-cycle (H, D) over an algebra A implies, through the condition of
boundedness of the commutators

‖[D, a]‖ < ∞ ∀a ∈ A,

restrictions on the growth of A.

In noncommutative algebraic geometry [387], one does impose polynomial growth con-
ditions, where the degree of the polynomial is related to dimension, in order to get
tractable classification problems. What we show here is that the very existence of a
(d,∞)-summable K-cycle is a similar hypothesis, the d being related to dimension.

In his work on norm ideal perturbations of Hilbert space operators ([571]), D. Voiculescu
introduced, for any normed ideal J in L(H) with symmetric norm ‖ ‖J , the following
quantity that measures, for a finite subset X ⊂ L(H), the obstruction to finding an
approximate unit quasi-central relative to X:

kJ(X) = lim inf
A∈R+

1 ; A→1
‖[A,X]‖J ,

where R+
1 is the unit interval 0 ≤ A ≤ 1 in the space of finite-rank operators, and

‖[A,X]‖J = sup
T∈X

‖[A, T ]‖J .

Moreover, Voiculescu showed that the interpolation ideals L(p,1), with their norms

‖T‖(p,1) =
∞∑

n=1

n( 1
p
−1)µn(T ),

are singled out as measuring the absolutely continuous part of the spectrum, by the
following remarkable result:
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Theorem 12. [571] Let T1, . . . , Tn be n commuting selfadjoint operators in the Hilbert
space H. Let Eac ⊂ Rn be the absolutely continuous part of their spectral measure and
let n(x), x ∈ Eac, be the multiplicity function. Then∫

Eac

n(x)dnx = αn

(
kJ({Ti})

)n
,

where J is the normed ideal L(n,1) and where αn is an absolute constant , αn ∈ ]0,∞[.

This result shows that the correct ideals for dealing with the absolutely continuous
spectrum are the ideals L(p,1), but our concept of dimension discussed above involved
the Dixmier trace and the other ideals L(p,∞). Even though there is a duality between
L(p,1) and L(q,∞), this involves p and q with 1

p
+ 1

q
= 1 so that it is a priori unclear how

to relate our hypothesis |D|−1 ∈ L(p,∞) with the above result of Voiculescu. This is
accomplished by the next lemma.

Lemma 13. Let f ∈ C∞
c (R) be a smooth even function on R with compact support ,

and let D be a selfadjoint , invertible, unbounded operator on a Hilbert space H. Let
p ∈]1,∞[. Then there exists a constant C < ∞ depending only on p and f such that ,
for ε > 0,

‖[f(εD), a]‖(p,1) ≤ C‖[D, a]‖ ‖D−1‖(p,∞)

for every bounded a ∈ L(H) such that [D, a] is bounded .

We shall sketch the proof of this lemma, just to see how one passes from the (p,∞)-
norm to the (p, 1)-norm.

First, it is standard that the operator norm of the commutator [f(D), a] can be esti-
mated, using the L1-norm of the Fourier transform of f ′ and the equality

[eiλD, a] =

∫ 1

0

eiλsD[λD, a]eiλ(1−s)Dds,

so that

‖[eiλD, a]‖ ≤ λ‖[D, a]‖, ‖[f(D), a]‖ ≤ ‖f̂ ′‖1‖[D, a]‖.
Next, the L1-norm of [f(εD), a] can also be bounded, since one controls the rank of
f(εD), as follows: if supp(f) ⊂ [−k, k], then the rank of f(εD) is bounded above by the
number of eigenvalues of |D|−1 larger than εk−1; but, by definition, these eigenvalues
µn satisfy

N∑
n=0

µn ≤ ‖D−1‖(p,∞)

N∑
n=1

n−1/p,

so that µN ≤ 1
N

∑N
n=0 µn ≤ CpN

−1/p, and µN ≥ εk−1 ⇒ N ≤ (Cp)
pkpε−p. Thus, we

get the inequality

‖[f(εD), a]‖1 ≤ 2(Cp)
pkpε−p‖[f(εD), a]‖.
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We could conclude directly using the definition of the norm (p, 1), but we prefer to use
the general interpolation inequality

‖T‖(p,1) ≤ C ′
p‖T‖1/p

1 ‖T‖1−1/p
∞ ,

which gives us

‖[f(εD), a]‖(p,1) ≤ C ′
p2

1/pCpkε−1‖[f(εD), a]‖
≤ 21/pC ′′

p k‖f̂ ′‖1‖[D, a]‖ ≤ Cf,p‖[D, a]‖.
As an immediate corollary of the proof and of the definition of the Dixmier trace, for
each p ∈]1,∞[ and f ∈ C∞

c (R) we get a constant C < ∞ such that

lim inf
ε→0

‖[f(εD), a]‖(p,1) ≤ C‖[D, a]‖(Trω(|D|−p)
)1/p

.

If f(1) = 1 and 0 ≤ f ≤ 1, then f(εD) ∈ R+
1 for all ε > 0 and f(εD) → 1 weakly as

ε → 0; thus:

Proposition 14. Let p ∈]1,∞[. There exists a constant Cp < ∞ such that for every
subset X of L(H), we have, for J = L(p,1),

kJ(X) ≤ Cp

(
sup
T∈X

‖[D, T ]‖
) (

Trω(|D|−p)
)1/p

.

If we combine this estimate with Voiculescu’s theorem (Theorem 12), we get a handle
on the absolutely continuous joint spectrum of elements in any abelian ∗-subalgebra of
the algebra

AD = {T ∈ L(H); [D, T ] is bounded}.
Thus, for instance, we can state

Proposition 15. Let p ∈]1,∞[ and let (H, D) be a (p,∞)-summable K-cycle over the
∗-algebra A.

(a) The equality τ(a) = Trω(a|D|−p) defines a positive trace on the algebra A;
moreover , this trace is nonzero if

kJ(A) 6= 0, J = L(p,1)(H).

(b) Let p be an integer and let a1, . . . , ap ∈ A be commuting selfadjoint elements
of A. Then, the absolutely continuous part of their spectral measure, i.e., their
Lebesgue spectrum

µac(f) =

∫

Eac

f(x)n(x)dpx,

is absolutely continuous with respect to the measure τ :

τ(f) = τ
(
f(a1, . . . , ap)

)
= Trω(f |D|−p) ∀f ∈ C∞

c (Rp).
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The case of non-integral p and the relation between the Dixmier trace and the Hausdorff
measure will be discussed now, in Section 3.

3. Quantized Calculus in One Variable and Fractal Sets

The theory of distributions works well for a number of problems involving non-smooth
functions, such as those generated by the variational calculus. It is, however, noto-
riously incompatible with products, i.e. products of distributions only make sense in
rare cases. The reason for this is simple, since the notion of distribution on a manifold
V is invariant under any continuous linear transformation of C∞(V ) while such linear
transformations affect arbitrarily the algebra structure of C∞(V ). In the quantized
calculus which we propose, the differential of a function f is an operator in Hilbert
space, namely

df = [F, f ].

In particular, this operator can undergo all the operations of the functional calculus
such as, for instance,

T→|T |p
where |T | is the absolute value of the operator T and p a positive real number which
is not an integer.

This gives meaning to an expression such as |df |p even when f is a nondifferentiable
function. We shall show the power of this method by giving the formula for the
Hausdorff measure Λp on the fractals which appear in the theory of uniformization of
pairs of Riemann surfaces with the same genus:

∫
f dΛp = Trω(f(Z)|dZ|p),

for any continuous function f on C, and with Z : S1→C the boundary value of a
conformal equivalence.

3.α Quantized calculus in one variable. Let us first quantize the calculus in
one real variable, in a translation and scale invariant manner.

Our algebra A is the algebra of functions f(s) of one real variable s ∈ R; we do not
specify their regularity at the moment. To quantize the calculus we need a Fredholm
module over A, i.e. a representation of A in a Hilbert space H and an operator F
as in Definition 0.1. The representation of A is given by a measure class on R and
a multiplicity function. Since we want the calculus to be translation invariant, the
measure class is necessarily the Lebesgue class and the multiplicity is a constant. We
shall take it equal to one; the more general case does not lead to anything new. Thus,
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so far, we have functions on R acting by multiplication operators on the Hilbert space
L2(R):

(4.12) H = L2(R) , (fξ)(s) = f(s) ξ(s) ∀s ∈ R , ξ ∈ L2(R).

Any measurable bounded function f ∈ L∞(R) defines a bounded operator in H by the
equality (1).

Since we want the calculus to be translation invariant, the operator F must commute
with translations, and hence must be given by a convolution operator. We shall also
require that it commute with dilatations, s→λs with λ > 0, and it then follows easily
(cf., for instance, [532]) that the only nontrivial choice of F , with F 2 = 1, is the Hilbert
transform, given by

(4.13) (Fξ)(s) =
1

πi

∫
ξ(t)

s− t
dt

where the integral is taken for |s− t| > ε and then one lets ε→0.

The quantum differential df = [F, f ] of f ∈ L∞(R) has a very simple expression; it is
the operator on L2(R) associated by the equality

(4.14) Tξ(s) =

∫
k(s, t) ξ(t) dt

to the following kernel k(s, t) defined for s, t ∈ R

(4.15) k(s, t) =
f(s)− f(t)

s− t

(up to the factor 1
πi

which we ignore).

Note that the group SL(2,R) acts by automorphisms of the Fredholm module (H, F ),
generalising the above invariance by translations and homotheties. Indeed, given g =[
a b
c d

]
∈ SL(2,R) (so that a, b, c, d ∈ R, ad− bc = 1), we let g−1 act on L2(R) as the

unitary operator for which

(4.16) (g−1 ξ)(s) = ξ

(
as + b

cs + d

)
(cs + d)−1 ∀ξ ∈ L2(R) , s ∈ R.

One checks that this representation of SL(2,R) commutes with F . Its restriction to
{ξ; Fξ = ±ξ} are the two mock discrete series. The corresponding automorphisms of
the algebra of functions on R are given by

(4.17) (g−1 f)(s) = f

(
as + b

cs + d

)
∀f ∈ L∞(R) , s ∈ R.
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Using an arbitrary fractional linear transformation from the line R to the unit circle
S1 = {z ∈ C; |z| = 1}, such as

(4.18) s ∈ R→s− i

s + i
∈ S1

we can transport the above Fredholm module to functions on the circle S1. It is
described as follows:

H = L2(S1, dθ) with functions on S1 acting by multiplication (as in (1))

F = 2P − 1 where P is the orthogonal projection on

(4.19) H2(S1) = {ξ ∈ L2 ; ξ̂(n) = 0 ∀n < 0}
where ξ̂ is the Fourier transform of ξ.

The two situations, with R or S1, are unitarily equivalent provided we take in both
cases the von Neumann algebras of all measurable bounded functions. We shall keep
both. Our first and easy task will be to quote a number of well known results of
analysis (cf. [532] [457] [437] [438] [439] [440]) allowing one to control the order of
df = [F, f ] in terms of the regularity of the function f ∈ L∞.

The strongest condition we can impose on df is to belong to the smallest nontrivial
ideal of operators, namely the ideal R of finite-rank operators. The necessary and
sufficient condition for this to hold is a result of Kronecker (cf. [457]):

Proposition 1. Let f ∈ L∞, then df ∈ R⇐⇒f is a rational fraction.

This result holds for both R and S1; in both cases the rational fraction P (s)
Q(s)

is equal

a.e. to f and has no pole on R (resp. S1).

The weakest condition we can impose on df is to be a compact operator. In fact, we
should restrict to the subalgebra of L∞ determined by this condition if we want to
comply with condition 2 of Definition 0.1.

What this means is known (cf. [457]) and easy to formulate for S1. It involves the
mean oscillation of the function f . Let us recall that, given any interval I of S1, one
lets I(f) be the mean 1

|I|
∫

I
f dx of f on I and one defines for a > 0 the mean oscillation

of f by

Ma(f) = sup
|I|≤a

1

|I|
∫

I

|f − I(f)|.

A function is said to have bounded mean oscillation (BMO) if the Ma(f) are bounded
independently of a. This is, of course, true if f ∈ L∞(S1). A function f is said to have
vanishing mean oscillation (VMO) if Ma(f)→0 when a→0. Let us then state a result
of Fefferman and Sarason (cf. [457]).

Proposition 2. If f ∈ L∞(S1), then [F, f ] ∈ K⇐⇒f ∈ VMO.
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Every continuous function f ∈ C(S1) belongs to VMO but the algebra VMO ∩ L∞

is strictly larger than C(S1). Its elements are called quasi-continuous functions. For
instance, the boundary values of any bounded univalent holomorphic function f ∈
H∞(S1) belong to VMO but not necessarily to C(S1).

The next question is how to characterize the functions f ∈ L∞ for which

[F, f ] ∈ Lp

for a given real number p ∈ [1,∞[.

This question has a remarkably nice answer, due to V.V. Peller [437], in terms of the

Besov spaces B
1/p
p of measurable functions.

Definition 3. Let p ∈ [1,∞[. Then the Besov space B
1/p
p is the space of measurable

functions f on S1 such that∫ ∫
|f(x + t)− 2f(x) + f(x− t)|p t−2 dx dt < ∞.

For p > 1 this condition is equivalent to∫ ∫
|f(x + t)− f(x)|p t−2 dx dt < ∞

and the corresponding norms are equivalent. For p = 2 one recovers the Sobolev space
of Fourier series,

f(t) =
∑

n∈Z
an exp(2πint) ,

∑
|n| |an|2 < ∞.

The result of V.V. Peller is then the following:

Theorem 4. [437] Let f ∈ L∞(S1) , p ∈ [1,∞[; then [F, f ] ∈ Lp ⇐⇒ f ∈ B
1/p
p .

There is a similar result for p < 1 due independently to Semmes and to Peller.

For f ∈ L∞(S1), the operator df = [F, f ] anticommutes with F by construction, and is
hence given by an off-diagonal 2×2 matrix in the decomposition of L2(S1) as a direct
sum of eigenspaces of F . This 2×2 matrix is lower triangular, i.e. (1−P )fP = 0 with
P = 1+F

2
, if f ∈ H∞(S1), i.e. f is the boundary value of a holomorphic function in the

disk.

(4.20) If f ∈ L∞(S1) , then f ∈ H∞(S1) ⇐⇒ (1− P )fP = 0.

In particular, df1 df2 = 0 for any f1, f2 ∈ H∞(S1).

We shall end this section by giving known reformulations of the Besov spaces A
1/p
p =

{f ∈ B
1/p
p ; f̂(n) = 0 for n < 0}. Given f ∈ A

1/p
p we also denote by f the holomorphic

function inside the unit disk D with f as boundary values.
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Proposition 5. [532]

a) For 1 ≤ p < ∞ one has f ∈ A
1/p
p iff∫

D

|f ′′|p (1− |z|)2p−2 dz dz < ∞.

b) For 1 < p < ∞ one has f ∈ A
1/p
p iff∫

D

|f ′|p (1− |z|)p−2 dz dz < ∞.

One can also reformulate the condition f ∈ A
1/p
p using the Lp norm of the truncations

of the Fourier series of f ,
∑

f̂(k) eikθ, between k = 2n and k = 2n+1. More precisely
([457]) one lets, for each n ∈ N, wn be the trigonometric polynomial

wn =
2n+1∑

2n−1

ck eikθ

where ck = (k−2n−1)/2n−1 for 2n−1 ≤ k ≤ 2n and ck = (2n+1−k)/2n for 2n ≤ k ≤ 2n+1.

Then the operator f 7→ f∗wn of convolution by wn is the same as the multiplication

of the Fourier coefficients f̂(k) by ck. These operators add up to the identity, and one
has:

Proposition 6. The space A
1/p
p is the space of boundary values of holomorphic func-

tions inside D such that ∑
2n ||wn ∗ f ||pp < ∞.

Using w−n = wn for n < 0 one can then check that the following conditions on f ∈
L∞(S1) are equivalent, for any p ∈ [1,∞[:

[F, f ] ∈ Lp ,
∑

n∈Z
2|n| ||wn ∗ f ||pp < ∞.

3.β The class of df in Lp,∞/Lp,∞
0 . The quantity

∫
D
|f ′|p(1 − |z|)p−2 dz dz of

Proposition 5b) can easily be controlled when the function f is univalent in the disk,
in terms of the domain Ω = f(Disk). Indeed, by the Koebe 1

4
-theorem (cf. [486]) one

has, for f univalent

(4.21)
1

4

(
1− |z|2) |f ′(z)| ≤ dist (f(z), ∂Ω) ≤ (

1− |z|2) |f ′(z)|.
It is thus straightforward to estimate the size of the quantum differential df = [F, f ]
of a univalent map f in terms of the geometry of the domain f(Disk) = Ω.
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Z

Figure 2. Riemann mapping

Proposition 7. [139] For any p0 > 1, there exist finite constants bounding the ratio
of the two quantities, which we write

Trace (|[F, f ]|p) ³
∫

Ω

dist(z, ∂Ω)p−2 dz dz

for any univalent function f and any p ≥ p0.

(We use the symbol α ³ β to mean that α
β

and β
α

are bounded.)

The interval of p’s such that the right-hand side is finite has a lower bound, known
as the Minkowski dimension of the boundary ∂Ω (cf. [202]). It is easy to construct
domains with a given Minkowski dimension p ∈ ]1, 2[ for ∂Ω. We want to go further
and relate, when ∂Ω is a fractal, the p-dimensional Hausdorff measure Λp with the
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formula

(4.22) Trω (f(Z) |dZ|p) ∀f ∈ C(∂Ω)

where Trω is the Dixmier trace and dZ = [F,Z] the quantum differential. Here Z is
the boundary value, Z ∈ H∞(S1), of a univalent map Z : Disk→Ω. The formula (11)
defines a Radon measure provided

(4.23) dZ ∈ L(p,∞)

which ensures that |dZ|p ∈ L(1,∞) is in the domain of the Dixmier trace.

Of course Z is, in general, not of bounded variation, and had we taken dZ as a distri-
bution the symbols |dZ| and |dZ|p would be meaningless.

To show that, in the presence of symmetries of the domain Ω, the above Radon measure
(11) has conformal weight p we shall show that, provided we work modulo the ideal

L(p,∞)
0 ⊂L(p,∞), the usual rules of calculus are valid.

We let Lp,∞
0 ⊂Lp,∞ be the closure in the Banach space Lp,∞ of the ideal R of finite-rank

operators. One has

T ∈ Lp,∞
0 ⇐⇒ σN(T ) = o

(
N∑

n=1

n−1/p

)
.

For p > 1 this is equivalent to µn(T ) = o(n−1/p), but for p = 1 the condition µn(T ) =
o
(

1
n

)
is stronger than T ∈ L1,∞

0 . Then let p > 1 and f ∈ C(S1) be such that its
quantum differential df = [F, f ] belongs to Lp,∞. The main result of this section is
that if we work modulo Lp,∞

0 then the following rules of calculus are valid:

a) (df)g = g df ∀g ∈ C(S1)

b) d(ϕ(f)) = ϕ′(f)df ∀ϕ ∈ C∞(Spectrum(f))

c) |d(ϕ(f))|p = |ϕ′(f)|p |df |p.
In a) and b) the equalities mean that the following operators belong to the ideal Lp,∞

0 :

[F, f ]g − g[F, f ] , [F, ϕ(f)]− ϕ′(f)[F, f ].

In c) the equality holds modulo L1,∞
0 :

|[F, ϕ(f)]|p − |ϕ′(f)|p |[F, f ]|p ∈ L1,∞
0 .

In fact, we shall prove that the characteristic values of the latter operator are o
(

1
n

)
,

which is a stronger result.

The above rules a) b) and c) are classical rules of calculus, but they can now be
applied to a nondifferentiable function f , for which the distributional derivative f ′

cannot undergo the operation x→|x|p as the quantum differential can.

We shall thus prove, (with p ∈ [1,∞[ for a) and b) ):
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Theorem 8.

a) Let f ∈ L∞(S1) be such that [F, f ] ∈ Lp,∞ and let g ∈ C(S1). Then [F, f ]g −
g[F, f ] ∈ Lp,∞

0 .

b) Let X1, . . . , Xn ∈ C(S1), Xj = X∗
j , be such that [F, Xj] ∈ Lp,∞, and let

ϕ ∈ C∞(K) be a smooth function on the joint spectrum K⊂Rn of the Xj’s
(i.e. K = X(S1)) where X = (X1, . . . , Xn). Then

[F, ϕ(X1, . . . , Xn)]−
n∑

j=1

∂j ϕ(X1, . . . , Xn)[F, Xj] ∈ Lp,∞
0 .

c) Let p > 1, Z ∈ C(S1) be such that [F, Z] ∈ Lp,∞, and let ϕ be a holomorphic
function on K = Spectrum Z = Z(S1). Then

|[F, ϕ(Z)]|p − |ϕ′(Z)|p |[F,Z]|p ∈ Lp,∞
0 .

In fact, as we already mentioned, we shall prove the stronger result that µn(T ) = o
(

1
n

)
for the operator T appearing in c).

Proof of a) and b)

a) The map from C(S1) to Lp,∞ given by

g 7→[F, f ]g − g[F, f ] = T (g)

is norm continuous. Thus, it is enough to show that for g ∈ C∞(S1) the image T (g)
belongs to Lp,∞

0 . In fact, one has T (g) ∈ L1 since g commutes with f while [F, g] ∈ L1.

b) The map from C∞(K) to Lp,∞ given by

ϕ7→[F, ϕ(X1, . . . , Xn)]

is continuous. Thus, it is enough to check that the statement is true for polynomials,
which follows easily from a).

The proof of c) involves general estimates on the map A→|A|p with respect to the
norms σN . We first recall that by [164] and [356] the map A→|A| is a Lipschitz map
from Lp,∞ to itself provided that p > 1.

We shall need the following lemma (cf. [50]):

Lemma 9. Let α ∈ ]0, 1[. There exists Cα < ∞ such that for any compact operators
A and B on H one has

1

N
σN (|A|α − |B|α) ≤ Cα

(
1

N
σN(A−B)

)α

.

As an immediate corollary of this lemma we get:
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Proposition 10. Let p > 1.

1) Let A,B be bounded operators such that A − B ∈ Lp,∞
0 . Then |A|α − |B|α ∈

Lp/α,∞
0 for any α < 1.

2) If A,B ∈ Lp,∞ and A− B ∈ Lp,∞
0 , then for any α ≤ p one has |A|α − |B|α ∈

Lp/α,∞
0 .

3) For A,B as in 2) and α = p one has µN(|A|p − |B|p) = o
(

1
N

)
.

Proof. 1) With pN = 1
N

σN , one has pN(A − B) = o(N−1/p) by hypothesis. It then

follows from Lemma 9 that pN

(|A|α − |B|α) = o(N−α/p
)
.

2) Let α < 1 be such that p/α is an integer k (k > 1). Then by 1) one has |A|α−|B|α ∈
Lk,∞

0 , while |A|α, |B|α ∈ Lk,∞.

Let S = |A|α and T = |B|α. One has µN(S) = O(N−1/k), µN(T ) = O(N−1/k), and
µN(S − T ) = o(N−1/k). Thus, using the inequality

µn1+n2+n3(XY Z) ≤ µn1(X) µn2(Y ) µn3(Z)

(cf. Section 2) as well as the equality

Sk − T k =
∑

Sj(S − T )T k−j−1

we derive µN(Sk − T k) = o( 1
N

).

The proof of 2) is the same.

Let us apply this proposition in the proof of Theorem 8 c). First, as in b) we have

[F, ϕ(Z)]− ϕ′(Z)[F,Z] ∈ Lp,∞
0 ,

so that by Proposition 10.2 we get

|[F, ϕ(Z)]|p − |ϕ′(Z)[F, Z]|p ∈ L1,∞
0 .

Thus, we just need to show that

|ϕ′(Z)[F, Z]|p − |ϕ′(Z)|p |[F,Z]|p ∈ Lp,∞
0 .

One can replace ϕ′(Z) by f = |ϕ′(Z)| and replace [F,Z] by T = | [F, Z] | since f [F,Z]−
[F,Z]f ∈ Lp,∞

0 . Thus, it is enough to use the following lemma:

Lemma 11. Let p > 1, T ∈ Lp,∞, T ≥ 0, and let f be bounded, f ≥ 0, such that
fT − Tf ∈ Lp,∞

0 . Then

fp/2 T p f p/2 − (
f 1/2 T f 1/2

)p ∈ L1,∞
0 .
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3.γ The Dixmier trace of f(Z)|dZ|p. We shall now compare the Hausdorff mea-
sure and the Dixmier trace (Formula 11) in an example dealing with quasi-Fuchsian
circles. We first recall how such quasi-circles are obtained from a pair of points in
the Teichmüller space Mg of Riemann surfaces of genus g > 1. Let there be given
Σ+ and Σ−, a pair of Riemann surfaces of genus g, together with an isomorphism
π1(Σ+) = Γ = π1(Σ−) of their fundamental groups corresponding to an orientation
reversing homeomorphism Σ+→Σ−. We recall the joint uniformization theorem of L.
Bers:

Theorem 12. [47] With the above notation there exists an isomorphism h : Γ→PSL(2,C)
of Γ with a discrete subgroup of PSL(2,C) whose action on P1(C) = S2 has a Jordan
curve C as limit set and is proper with quotient Σ± on the connected components U±
of the complement of C.

The discrete subgroup h(Γ) is a quasi-Fuchsian group and its limit set C is a quasi-
circle. It is a Jordan curve whose Hausdorff dimension is strictly bigger than one ([64]).
Let us choose a coordinate in P1(C) = C ∪ {∞} in such a way that ∞ ∈ Σ− and use
the Riemann mapping theorem to provide a conformal equivalence

Z : D→Σ+⊂C
where D = {z ∈ C; |z| < 1} is the unit disk. By the Carathéodory theorem the holo-
morphic function Z extends continuously to D = D ∪ S1 and yields a homeomorphism

Z : S1→C;

the non-differentiability of Z on S1 is of course a consequence of the lack of smoothness
of the Jordan curve C.

Since the range of the function Z on S1 is equal to C, we see that the spectrum of the
operator of multiplication by Z in L2(S1) is also equal to C, so that, for p > 0, the
operator

f(Z)|dZ|p
where f is a function on C, and dZ = [F,Z] as above, involves only the restriction of
f to the subset C of C, and depends, of course, linearly on f .

By construction, there is an isomorphism g→g+ of Γ with a Fuchsian subgroup Γ+ of
PSL(2,R) such that

(∗) g ◦ Z = Z ◦ g+ ∀g ∈ Γ,

where we consider PSL(2,R) = PSU(1, 1) as the group of automorphisms of D.

Let us first use the equality (∗) to reexpress the condition

[F,Z] ∈ Lq

in simpler terms.
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Lemma 13. Let q > 1. Then [F,Z] ∈ Lq iff the following Poincaré series is convergent
for some point, and equivalently for all z ∈ Σ+:

σ(q) =
∑
g∈Γ

|g′(z)|q < ∞.

Moreover, there are constants cq, Cq bounded away from 0 and ∞ for q ≥ q0 > 1 such
that

cq σ(q) ≤ Tr| [F, Z] |q ≤ Cq σ(q).

Proof. By construction, the function Z ∈ C(S1) extends to a holomorphic function
in D, so that we can apply the criterion given by Proposition 5 b), which also gives an
estimate on the Lq norm of [F,Z] in terms of∫

D

|Z ′(z)|q (1− |z|)q−2 dz dz.

For z in D, 1 − |z| and 1 − |z|2 are comparable, so that we may as well consider the
expression ∫

D

|Z ′(z)|q (1− |z|2)q (1− |z|2)−2 dz dz.

If we endow D with its canonical hyperbolic Riemannian metric of curvature −1, the
last expression is equivalent to ∫

D

||∇Z||q dv

where ∇Z is the gradient of the function Z whose norm is evaluated with respect to
the Riemannian metric, and where dv is the volume form on the Riemannian manifold
D. Then let g ∈ PSL(2,R) = PSU(1, 1). Since it acts as an isometry on D, one has

||∇(Z ◦ g)||(p) = ||∇(Z)||(gp) ∀p ∈ D.

For g+ ∈ Γ+ one has Z ◦ g+ = g ◦ Z, so that

||∇(g ◦ Z)||(p) = ||∇(Z)||(g+p) ∀p ∈ D.

The left-hand side is equal to |g′(Z(p))| ||∇Z||(p), so that

||∇(Z)||(g+p) = |g′(Z(p))| ||∇Z||(p) ∀p ∈ D , g ∈ Γ+.

Then let D1⊂D be a compact fundamental domain for the Fuchsian group Γ+. We
have the equality∫

D

||∇Z||q dv =

∫

D1

∑
g∈Γ

|g′(Z(p))|q (||∇Z||(p))q dv.

The compactness of D1 then gives the required uniformity in p ∈ D1, so that the
conclusion follows.
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Now let p be the Hausdorff dimension of the limit set C. One has p > 1 ([64]), and by
[538] it follows that the Poincaré series σ(q) is convergent for any q > p, and diverges
for q = p. Thus, we get so far:

Proposition 14. One has [F,Z] ∈ Lq iff q > p = Hausdorff dimension of C.

But we need to know that [F, Z] ∈ Lp,∞ and that Trω(|[F, Z]|p) > 0.

Lemma 15. One has [F,Z] ∈ Lp,∞.

Proof. From real interpolation theory (Appendix B) and the above criterion, ||∇Z|| ∈
Lq(D, dv) ⇔ [F, Z] ∈ Lq, we just need to show that

||∇Z|| ∈ Lp,∞(D, dv)

where the Lorentz space Lp,∞ = Lp
weak is the space of functions h on D such that for

some constant c < ∞
v ({z ∈ D ; |h(z)| > α}) ≤ c α−p.

Thus, the proof of Lemma 13 shows that all we need to prove is that (uniformly for
a ∈ D1) the sequences (|g′(Z(a))|; g ∈ Γ) belong to `p,∞(Γ), i.e.

Card{g ∈ Γ ; |g′(Z(a))| > α} = O(α−p).

This follows from Corollary 10 in [538].

Next, the pole-like behaviour of
∫

D
||∇Z||s dv for s→p+, which follows from [538],

and the fact that the residue at s = p is not zero ([538]) imply a similar behaviour for
Tr(|[F,Z]|s), so that the characteristic values

µn = µn([F, Z])

satisfy the following conditions:

α) µn = O(n−1/p) (by Lemma 15)

β) (s− p)
∑∞

n=0 µs
n ≥ c > 0 for s ∈ ]p, p + ε].

One can then use the following Tauberian lemma:

Lemma 16. [265] Let µn be a decreasing sequence of positive real numbers satisfying
α) and β). Then

lim inf
1

log N

N∑
n=0

µp
n ≥ c.

We are now ready to prove the following theorem. In the statement we fix a Dixmier
trace Trω once and for all.

Theorem 17. [139] Let Γ⊂PSL(2,C) be a quasi-Fuchsian group, C⊂P1(C) its limit
set, and Z ∈ C(S1) the boundary values of a conformal equivalence of the disk D with
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the bounded component of the complement of C. Then let p be the lower bound of the
set {q; [F, Z] ∈ Lq}. One has p = Hausdorff dim C and [F,Z] ∈ Lp,∞. Moreover, there
exists a nonzero finite real number λ such that, with Λp the p-dimensional Hausdorff
measure on C, ∫

C

f dΛp = λ Trω(f(Z)|[F, Z]|p) ∀f ∈ C0(C).

Proof. The first part follows from Proposition 14, Lemma 15 and Lemma 16. It also
follows from Lemma 16 that Trω(|[F,Z]|p) > 0, so that we can consider the measure µ
on C determined by the equality

µ(f) = Trω(f(Z) |[F, Z]|p) ∀f ∈ C(C).

We claim that this measure has conformal weight p, i.e. that for any g ∈ Γ one has
the equality ∫

f ◦ g−1 dµ =

∫
|g′|p f dµ.

To prove this, let g+ ∈ SL(2,R) = SU(1, 1) be the corresponding element of Γ+. Its

action on L2(S1) is given, for g−1
+ =

[
α
β

β
α

]
, by

(g+ ξ)(z) = ξ
(
(αz + β)(βz + α)−1

)
(βz + α)−1 ∀z ∈ ∂D.

This equality defines a unitary operator W which commutes with the Hilbert transform
F , and the corresponding representations of SL(2,R) are the mock discrete series.
Moreover

WZW ∗ = Z ◦ g+ = g ◦ Z.

Thus, we arrive at the equality

W [F,Z]W ∗ = [F, g ◦ Z].

It implies that W |[F,Z]|p W ∗ = |[F, g ◦ Z]|p; thus

W (f ◦ g−1(Z)) |[F,Z]|pW ∗ = f(Z) |[F, g ◦ Z]|p.
Since the Dixmier trace Trω is a trace, we get

Trω(f ◦ g−1(Z) |[F, Z]|p) = Trω(f(Z) |[F, g ◦ Z]|p),
and by Theorem 8 c) we have

Trω(f(Z) |[F, g ◦ Z]|p) = Trω(f(Z)|g′(Z)|p |[F,Z]|p),
so that ∫

f ◦ g−1 dµ =

∫
f |g′|p dµ.

It then follows by [538] that µ is proportional to the p-dimensional Hausdorff measure
on C.
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The constant λ in Theorem 17 should be independent of the choice of ω. We shall
prove this in a simpler case in Section ε) where we also relate the value of Trω(|dZ|p)
to a normalized eigenfunction of the Laplacian in hyperbolic space (Theorem 25).

The value of the constant λ is related to the best rational approximation of the function
Z using the following result.

Theorem 18. [3] Let Z ∈ C(S1) ∩H∞. Let µn be the distance, in the Sup norm on
S1, between Z and the set Rn of rational fractions with at most n poles outside the unit
disk. Then µn is the n-th characteristic value of the operator [F, Z] in L2(S1).

Remark 19. Let C⊂C be a Jordan curve whose 2-dimensional area is positive,
Λ2(C) > 0. (The existence of such curves is an old result of analysis.) Let Ω be a
bounded simply connected domain with boundary ∂Ω = C and let Z : Disk→Ω be the
Riemann mapping. Then the finiteness of the area of Ω shows that

dZ ∈ L2 (i.e. Trace((dZ)∗ dZ) < ∞).

This provides us with a very interesting example of a space C (or equivalently S1 with
the metric dZ dZ) which has nonzero 2-dimensional Lebesgue measure, but whose
dimension in our sense is not 2 but rather 2−, inasmuch as Trace((dZ)∗ dZ) is finite
rather than logarithmically divergent.

3.δ The harmonic measure and non-normality of the Dixmier trace. Let
Ω⊂C be a Jordan domain and X = ∂Ω its boundary. Using the boundary value
Z : S1→X of a conformal equivalence with the unit disk, D∼Ω, we can compose the
Fredholm module (L2(S1), F ) over S1 given by the Hilbert transform in L2(S1) with
the isomorphism Z∗ : C(X)→C(S1). We thus obtain a Fredholm module over C(X)
which we can describe directly with no specific reference to Z, as follows. We first need
to recall that each point z0 ∈ Ω defines a unique probability measure νz0 on X = ∂Ω
by the equality ∫

f dνz0 = f̃(z0) ∀f ∈ C(X)

where f̃ is the unique continuous harmonic function on Ω which agrees with f on
X = ∂Ω. The measure νz0 is called the harmonic measure, and its class is independent
of the choice of z0 ∈ Ω. We thus let H0 = L2(X, νz0) be the corresponding Hilbert
space in which C(X) is represented by multiplication operators. The constant function
1 is a vector ξ0 ∈ H0 such that

〈fξ0, ξ0〉 =

∫
f dνz0 ∀f ∈ C(X).

Then let P0 be the orthogonal projection of H0 on the subspace

P0 H0 = {fξ0 ; f̃ holomorphic in Ω}−.
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Proposition 20. If F0 = 2P0 − 1, then (H0, F0) is a Fredholm module over C(X)
whose isomorphism class is independent of the choice of z0 and equal to Z∗(L2(S1), F )
where Z : S1→X is the boundary value of a conformal equivalence with the unit disk,
D→Ω.

The proof is obvious but this presentation will adapt to Cantor subsets of P1(R) (cf.
Section ε)).

As soon as the Hausdorff dimension p of X is > 1, the Hausdorff measure Λp (if it
makes sense) is singular with respect to the harmonic measure ν (cf. [384]). In fact, ν
is carried by a countable union of sets of finite linear measure ([384]) while Λp is really
p-dimensional.

With the Fredholm module of Proposition 20, and specializing to the quasi-circles of
Theorem 17, we have ∫

f dΛp = λ Trω(f(z)|dz|p)
where z is the identity map X→C. We now claim that this formula would contradict
the mutual singularity of Λp and ν if the Dixmier trace Trω happened to be normal (cf.
Chapter V). Indeed, for any normal weight ψ on L(H0), any T ≥ 0, T ∈ Domain ψ,
the linear form

f ∈ C(X)→ψ(T 1/2 f T 1/2)

is a measure on C(X) which is absolutely continuous with respect to the harmonic
measure. It is thus a great virtue of the Dixmier trace that it allows us, by its non-
normality, to go beyond the harmonic measure class. An even simpler illustration of
this fact is given in Subsection ε) below.

3.ε Cantor sets, Dixmier trace and Minkowski measure. In order to under-
stand the constant λ of Theorem 17 we shall work out in more detail the simpler but
analogous Fuchsian case.

Let K⊂R be a compact subset of R and assume for simplicity that K is totally dis-
connected without isolated points. We shall first describe a natural Fredholm module
(H, F ) over C(K) (compare with Proposition 20). Let Ω = Kc be the complement
of K. We may assume for definiteness that K⊂[0, 1] with 0, 1 ∈ K. Then except for
] − ∞, 0[ ∪ ]1,∞[ the open set Ω is the disjoint union of a sequence Ij of bounded
intervals. We let D⊂K be the countable set of endpoints of the intervals Ij. Each
such interval determines two elements b+

j and b−j of D with b−j < b+
j , Ij =]b−j , b+

j [. This
gives a partition D = D− ∪ D+ of D into two disjoint subsets. A harmonic function
h on the bounded components of Ω is piecewise affine on the intervals Ij, and is hence
uniquely specified by its value on D. This shows that the harmonic measure class on
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K is just the counting measure on D, an obviously 0-dimensional measure. By analogy
with Proposition 20 we shall thus take

H = `2(D) , (fξ)(b) = f(b) ξ(b) ∀b ∈ D , ∀f ∈ C(K) , ∀ξ ∈ `2(D).

The analogue of the algebra of holomorphic functions of Proposition 20 is the algebra
of piecewise constant functions h on Ω. This determines the closed subspace of H given
by

PH = {ξ ∈ H ; ξ(b−j ) = ξ(b+
j ) ∀b±j ∈ D}.

We then let P be the orthogonal projection on this subspace, and let F = 2P − 1.

Proposition 21.

a) The pair (H, F ) is a Fredholm module over C(K).

b) The characteristic values of the operator dx = [F, x] (where x ∈ C(K) is the
embedding of K in R) are the lengths `j = |Ij| of the intervals Ij, each with
multiplicity 2.

Indeed, for each interval Ij the projection Pj is given by the matrix Pj =

[
1/2 1/2
1/2 1/2

]
,

so that Fj = 2Pj − 1 =

[
0 1
1 0

]
. This shows that for any f ∈ C(K), the operator

df = [F, f ] is the direct sum of the

[Fj, f ] =

[[
0 1
1 0

]
,

[
f(b−j ) 0

0 f(b+
j )

]]
= (f(b+

j )− f(b−j ))

[
0 1
−1 0

]
.

One then easily gets a) and b) as well as:

Proposition 22. Let K be Minkowski measurable and of Minkowski dimension p ∈
[0, 1]. Then |dx|p ∈ L(1,∞) and

Trω(|dx|p) = 2p(1− p) Mp(K)

where Mp(K) is the Minkowski content of K.

Indeed, by [364], and with the `j in decreasing order, one has a constant L such that

`j ∼ L j−1/p when j→∞ ; Mp(K) = 21−p(1− p)−1 Lp.

Now the Minkowski measurability of K is a much stronger condition than the measura-
bility of the operator |dx|p. In particular, for the simplest self-similar Cantor sets K we
shall see that, while K is not Minkowski measurable, the operator |dx|p is measurable,
and the measure f ∈ C(K)7→Trω(f(x)|dx|p) is a nonzero multiple, independent of ω,
of the Hausdorff measure.

Example 23. Let q ∈ N, λ > 0 with λq < 1. Let K⊂[0, 1] be obtained by removing
q intervals of length λ so that the q + 1 remaining intervals in [0, 1] have equal length,
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and iterating this procedure. After n steps we have (q + 1)n remaining intervals of
length ρn, ρ = (1− λq)/(q + 1) and we remove q(q + 1)n intervals of length λρn. Thus
we have

Trace(|dx|s) = 2
∞∑

n=0

q(q + 1)n (λρn)s = 2qλs(1− (q + 1)ρs)−1.

This shows that for p = − log(q+1)
log ρ

∈ ]0, 1[ the operator |dx|p is measurable and

Trω(|dx|p) =
1

p
Ress=p(Trace|dx|s) = −1

p
2qλp(log ρ)−1 =

2qλp

log(q + 1)
.

One checks that K is not Minkowski measurable, that its Hausdorff dimension is p and
that, with Λp the p-dimensional Hausdorff measure, one has

Trω(f(x)|dx|p) = c

∫
f dΛp ∀f ∈ C(K)

where c = 2qλp

log(q+1)
= 2q

log(q+1)
(1− (q + 1)1−1/p)p.

This example clearly shows that c, while independent of ω, is not just a function of p,
owing to the failure of Minkowski measurability of K.

Example 24. Fuchsian groups of the second kind.

Let K be a perfect subset of the circle S1 (i.e. K is closed, totally disconnected and
without isolated points). The above construction of the Fredholm module (H, F ) over
K works without change. We identify S1 with the boundary S1 = {z ∈ C ; |z| = 1}
of the open unit disk U in C and we endow U with the Poincaré metric of constant
curvature −1. The hyperbolic distance is given by the equality

d(z1, z2) = log

(
1 + r

1− r

)
,

1

1− r2
=

|1− z1z2|2
(1− |z1|2)(1− |z2|2) ∀zj ∈ U.

We let dσ be the hyperbolic area.

Let Y = Conv(K) be the geodesic convex hull of K in U . It is obtained by removing
from U a half space (Figure 3) for each interval Ij component of S1\K.

Let G = SU(1, 1) act by isometries on U and, for each α ∈ U , let dα be the unique
Riemannian metric on S1 invariant under the isotropy group Gα and normalized so
that S1 has length 2π.

For α = 0 this is simply the round metric |dz|2 on S1 while for arbitrary α it is |dzα|2,
where zα(u) = u−α

1−αu
∀u ∈ S1.

Lemma 25. Let α ∈ U , K and Y = Conv(K) be as above. Assume that K is Lebesgue
negligible. Let `j be the length of the component Ij of Kc in S1 for the metric dα and
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Figure 3. Convex hull of a perfect set

consider the two Dirichlet integrals

ζ1(s) =
∑

`s
j , ζ2(s) =

∫

Y

e−sd(z,α) dσ(z).

Then ζ1 and ζ2 have the same abscissa of convergence p ∈ [0, 1], the same behaviour at
p, and in the divergent case one has

ζ1(p + ε) ∼ c(p) ζ2(p + ε) when ε→0+

where c(p) = −4p Γ
(

p
2

+ 1
)

Γ
(

3
2

)
/ Γ

(
p−1
2

)
.

The proof is a simple computation of the behaviour near ` = 0 of the integral
∫ 1

0
(` −

θ(`, 1 − ε)) εp−2 dε = ϕp(`), where θ(`, r) is equal to 0 if 1+r2

2r
cos ` ≥ 1 and to

arccos
(

1+r2

2r
cos `

)
otherwise. One has (Figure 4) ζ2(s) = 2

∑
ψs( 1

2
`j), where ψs(`) =

∫ 1

0
(`− θ(`, 1− ε)) εs−2 4(1− ε)(2− ε)−s−2 dε behaves like 2−sϕs(`) for `→0. One then

shows that ϕs(`) ∼ 1
2

4s c(s)−1 `s as `→0.
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r
Θ

l

Figure 4. cos θ = 1+r2

2r
cos `

Now let Γ⊂G be a Fuchsian group of the second kind. Its limit set K⊂S1 is then a
perfect set and, by [431], the abscissa of convergence of the Poincaré series

∑
g∈Γ

e−sd(gz,α)

is equal to the Hausdorff dimension p ∈ ]0, 1[ of K.

Combining Proposition 21, Lemma 25, and the results of [431] [432] and [537] [538]
we get the following simpler but more precise analogue of Theorem 17.

Theorem 26. Let Γ be a Fuchsian group of the second kind without parabolic element,
K⊂S1 its limit set, Y = Conv(K) its geodesic convex hull and p = Hausdorff dim(K).
Assume p > 1

2
, and let h be the unique square integrable p(1 − p) harmonic function

on U/Γ such that
∫

U/Γ
h2 dσ =

∫
Y/Γ

h dσ.

Let (H, F ) be the above Fredholm module over C(K). Then for any α ∈ U the measure
f ∈ C(K)→Trω(f |dzα|p) is independent of ω, proportional to the Hausdorff measure
Λp for the restriction to K of the metric dα, and its total mass is

Trω(|dzα|p) = (1− p) 2p−1
√

π
Γ

(
p− 1

2

)

Γ
(

p+1
2

)2 h(α).
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4. Conformal Manifolds

Let V be an even-dimensional oriented compact manifold endowed with a conformal
structure. We shall now show how to quantize in a canonical manner the calculus on
V by constructing a natural even Fredholm module (H, F, γ) over the algebra C∞(V )
of smooth functions on V ([176] [140]).

4.α Quantized calculus on conformal manifolds. For the construction we
shall just need the Z/2-grading of the vector bundle ∧nT ∗, n = 1

2
dim V , given by the

∗ operation. Recall that given a Euclidean oriented vector space E of dimension m,
the ∗ operation, ∗ : ∧∗E→∧∗E, is given by the equality

∗(e1∧ · · · ∧ek) = ek+1∧ · · · ∧em

for any orthonormal basis e1, . . . , em of E compatible with the orientation. When m is
even, m = 2n, the restriction of ∗ to ∧nE is unaffected if one replaces the Euclidean
metric of E by its scalar multiples. Moreover, one gets a Z/2 grading on ∧n

CE given

by the operator γ = (−1)
n(n−1)

2 in∗, which is of square 1.

Let H0 be the Hilbert space L2(V,∧n
CT

∗) of square integrable sections of the complex
vector bundle ∧n

CT
∗, with the inner product given by the complexification of the real

inner product

〈ω1, ω2〉 =

∫

V

ω1∧ ∗ ω2 ∀ω1, ω2 ∈ L2(V,∧nT ∗).

By construction, H0 is a module over C∞(V ) (and also L∞(V )) with

(fω)(p) = f(p) ω(p) ∀f ∈ C∞(V ) , ω ∈ H0 , p ∈ V.

It is Z/2-graded by the above operator γ of square 1,

(γω)(p) = γ(ω(p)) ∀p ∈ V , ω ∈ H0.

To construct the operator F we need the following:

Lemma 1. Let B⊂H0 be the closure of the image of d : C∞(V,∧n−1
C T ∗)→C∞(V,∧n

CT
∗).

Then B is the graph of a partial isometry S : H−
0 →H+

0 (resp. S∗ : H+
0 →H−

0 ) and
1−(SS∗+S∗S) is the orthogonal projection on the finite-dimensional space of harmonic
forms.

Proof. This follows in a straightforward manner from the Hodge decomposition
([227]) of H0 as the direct sum of the kernel of d + d∗, i.e. harmonic forms, and the
image of d + d∗. Thus any ω ∈ H+

0 , orthogonal to harmonic forms, can be written as
ω = 1+γ

2
dα, α ∈ L2(V,∧n−1

C T ∗), using the formula d∗ = − ∗ d∗ for the adjoint of d.

Moreover, the equality ω = 1+γ
2

dα determines dα uniquely since
∥∥1+γ

2
dα

∥∥
2

=
∥∥1−γ

2
dα

∥∥
2

∀α ∈ L2(V,∧n−1
C T ∗).
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We can now define the Fredholm module (H, F, γ) over C∞(V ). We letH = H0⊕Hn(V,C)
be the direct sum of H0 with the finite-dimensional Hilbert space of harmonic n-forms
on V , which we identify with the n-dimensional cohomology group Hn(V,C). We
endow Hn with the opposite Z/2-grading −γ and with the 0-module structure over
C∞(V ). The direct sum H = H0⊕Hn is thus a Z/2-graded C∞(V )-module. We let

F be the operator on H given as the direct sum of

[
0 S
S∗ 0

]
acting in H0 ª Hn and

[
0 1
1 0

]
acting in Hn⊕Hn. Note that

[
0 S
S∗ 0

]
acting in H0 ª Hn is equal to 2P − 1,

where P is the orthogonal projection on B⊂H0 ªHn.

Theorem 2.

a) The triple (H, F, γ) is a Fredholm module over C∞(V ), canonically associated
to the oriented conformal structure of V . It is p-summable for any p > 2n.

b) The character Ch∗(H, F, γ) is 2n times the Atiyah-Hirzebruch L-genus multi-
plied by the fundamental class [V ].

c) The Fredholm module (H, F, γ) uniquely determines the oriented conformal
structure of V .

Proof. a) It is clear that F = F ∗ and F 2 = 1. Thus we just have to prove that
[F, u] ∈ Lp(H) for any p > 2n, u ∈ C∞(V ). We can assume that u is unitary and we
have to show that uFu∗ − F ∈ Lp(H). Since Hn is finite-dimensional, we just need to
evaluate uSu∗ − S. But the graph of uSu∗ is given by the (closure of the) image of
udu∗ = d + α, where α is the operator of exterior multiplication by the 1-form ud(u∗).
Since the latter is bounded, the Sobolev inequalities ([Gi1]) show that uSu∗−S belongs
to Lp for any p > 2n (as does any pseudo-differential operator of order −1 on V ). In
fact, the growth of the characteristic values µk([F, u]) is controlled by the growth of
the characteristic values of (1 + ∆)−1/2, where ∆ is a Laplacian on V , and thus

µk([F, u]) = O(k−1/2n) ∀u ∈ Lip(V )

where Lip(V ) is the algebra of Lipschitz functions on V .

b) We shall check the equality using our knowledge of the cyclic cohomology of C∞(V )
(Chapter III, Theorem 2.2), together with the index Proposition 4 of Section 1 of this
chapter, combined with the Atiyah-Singer index formula. It thus suffices, using the
surjectivity of Ch∗ : K(V )→H∗(V,C), to check that the index map ϕ : K(V )→Z
associated to (H, F, γ) is the same as the index map of the signature operator. Thus,
it is enough to show that the K-theory class of the symbol of F , [σ(F )] ∈ K0(T ∗V ), is
the same as the K-theory class of the symbol of the signature operator. The latter is
given by the odd endomorphism s(x, ξ) = eξ + iξ, ξ ∈ T ∗

x (V ), of the pull-back of ∧∗T ∗
C

(oriented by γ = (−1)
p(p−1)

2 in∗ on p-forms) to T ∗V . (Here eξ and iξ are respectively
exterior and interior multiplication by ξ.) The symbol σ(F ) of F is the same as the
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symbol of 2P−1, where P is the orthogonal projection on the image of d. Its restriction
to the unit sphere {ξ ∈ T ∗V ; ‖ξ‖ = 1} is thus given by

σ(x, ξ) = eξ iξ − iξ eξ acting on ∧nT ∗
C.

Let u(x, ξ) = 1√
2

(1− eξ + iξ). Then for ‖ξ‖ = 1, it is an invertible operator in ∧∗T ∗
C

with inverse u−1(x, ξ) = 1√
2

(1 + eξ − iξ). One has

(usu−1)(x, ξ) = eξ iξ − iξ eξ acting on ∧∗T ∗
C.

By construction, u commutes with γ. This shows that the class [s] − [σ] of K-theory
is given by the symbol

ρ(x, ξ) = eξ iξ − iξ eξ acting on ∧∗T ∗
C ª ∧nT ∗

C,

with the Z/2-grading γ. But using the canonical isomorphism, for p 6= n,

∧pT ∗
C∼

(∧pT ∗
C⊕∧2n−pT ∗

C
)±

; ω 7→ 1

2
(ω ± γω)

one checks that the class of ρ is equal to 0.

The precise statement of b) is then that Ch∗(H, F, γ) is in the same cohomology class
as the following cocycle (ϕ2m) in the (d1, d2) bicomplex of the algebra C∞(V )

ϕ2n−4k(f
0, . . . , f 2n−4k)

= 2n(2πi)−n+2k

∫

V

Lk(V )∧f 0 df 1∧ · · · ∧df 2n−4k ∀f j ∈ C∞(V )

where Lk = 2−2k Lk is the component of degree 4k of the Atiyah-Hirzebruch L-genus.

c) We shall use the Dixmier trace. By Proposition 5 of Section 2 we have for pseudo-
differential operators T of order −2n

Trω(T ) =
1

2n(2π)2n

∫

S∗V
Tr(σ(x, ξ)) dx dξS∗

where the trace of the principal symbol σ−2n(T ) = σ(x, ξ) is taken in the fiber at x of
the vector bundle in which T acts.

Now let fi, gi ∈ C∞(V ) and consider the quantized 1-form

T =
∑

fi[F, gi].

The operators T , T ∗T and |T |2n = (T ∗T )n are all pseudo-differential operators on V ,
acting on sections of the vector bundle E = ∧nT ∗

C, and of orders respectively −1, −2
and −2n. The principal symbol of T is given by

σ(T ) =
∑

fi{σ(F ), gi}
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where { , } is the Poisson bracket. As gi is independent of the vector ξ, and σ(F )(x, ξ) =
‖ξ‖−2(eξ iξ − iξ eξ), one gets that σ(T )(x, ξ) depends only upon the value at x of the
ordinary differential form α =

∑
fi dgi, and is given by

σ(T )(x, ξ) = −2
〈α, ξ〉
‖ξ‖4

(eξ iξ − iξ eξ) + ‖ξ‖−2(eα iξ + eξ iα − iα eξ − iξ eα),

where we let eξ (resp. iξ) be exterior (resp. interior) multiplication by ξ.

Thus, for ‖ξ‖ = 1 we get σ(T )(x, ξ) = 2(eα iξ + eξ iα)−4〈α, ξ〉 eξ iξ = 2(eα′ iξ + eξ iα′),
where α′ = α − 〈α, ξ〉ξ. The computation of |σ(T )|2 and of the trace of σ(T )2n (x, ξ),
for ‖ξ‖ = 1, then gives

trace(|σ(T )|2n)(x, ξ) = ‖α′‖2n 22n+1×(2(n− 1))!

((n− 1)!)2
.

Thus, we get the equality

Trω

(∣∣∣
∑

fi[F, gi]
∣∣∣
2n

)

= cn

∫

V

∥∥∥
∑

fi dgi

∥∥∥
2n

, cn = π−n n−1((n− 1)!)−2
∏n−2

k=0

(
n + 1

2
+ k

)
.

The right-hand side thus determines uniquely the L2n-norm of 1-forms on V , and hence
its conformal structure.

Let us work out in more detail the simplest example of the construction of the Fredholm
module (H, F, γ) associated by Theorem 2 to an oriented conformal manifold. Thus,
let V = P1(C) be the Riemann sphere. The Hilbert space H is the space of square
integrable 1-forms, i.e. the direct sum H = H+⊕H− of the spaces of square integrable
forms of type (1, 0) and (0, 1). Using the complex coordinate z in P1(C) = C∪{∞} we
can write any element ξ ∈ H± as ξ(z)dz (resp. ξ(z)dz) where ξ is a square integrable
function on C. With this notation the unitary operator S: H−→H+ such that F =[

0 S
S∗ 0

]
, is the complex Hilbert transform, given by

(Sξ)(z′) =
1

2πi

∫

C

ξ(z)

(z − z′)2
dz dz

where the integral is defined as a Cauchy principal value, i.e. as the limit for ε→0 of
the integral over |z − z′| ≥ ε.

The operator S is canonically associated to the conformal structure of P1(C). Thus,
the differential form (z − z′)−2 dz dz′ on P1(C)×P1(C) is SL(2,C) invariant. As an
immediate corollary of Theorem 2 and of Proposition 2 of Section 1 we get:

Corollary 3. [140] For every integer n ≥ 1, the following formula defines a 2n-
dimensional cyclic cocycle on the algebra Cα(P1(C)) of Holder continuous functions of
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exponent α >
(
n + 1

2

)−1

τ2n(f 0, f 1, . . . , f 2n) =

∫
f 0(z0)(f

1(z1)− f 1(z0))(f
2(z2)− f 2(z1))

· · · (f 2n(z0)− f 2n(z2n−1)) ω(z0, z1, . . . , z2n−1) ∀f j ∈ Cα(P1(C))

where ω is the differential form

(2π)−2n im(((z0 − z1)(z1 − z2)(z2 − z3) · · · (z0 − z2n−1))
−2)

dz0 dz0 dz1 dz1 · · · dz2n−1dz2n−1.

The restriction of τ2n to C∞(P1(C)) is cohomologous to (−1)n−1(n!)−1 Sn−1τ2 where
τ2(f

0, f 1, f 2) = (πi)−1
∫

f 0 df 1∧df2 for all f j ∈ C∞(P1(C)).

One needs to know that (H, F ) is (2n + 1)-summable on Cα, but this follows from

Russo’s theorem [521] applied to the kernel f(z)−f(z′)
(z−z′)2 which corresponds to the com-

mutator [S, f ]. We refer to [485] for finer estimates involving Besov spaces.

Remark 4. The construction of Theorem 2 applies to arbitrary quasiconformal topo-
logical manifolds ([140]) and yields local formulas for rational Pontryagin classes.

4.β Perturbation of Fredholm modules by the commutant von Neumann
algebra. Let M be a von Neumann algebra and M2(M) = M2(C)⊗M . Let

G =
{[

a b
b a

]
∈ M2(M);

[
a∗ −b∗

−b∗ a∗

][
a b
b a

]
=

[
a b
b a

][
a∗ −b∗

−b∗ a∗

]
= 1

}
.

In other words a and b are elements of M which fulfill the conditions

a∗a− b∗b = 1 , a∗b = b∗a , aa∗ − bb∗ = 1 , ba∗ = ab∗.

Proposition 5.

a) G is a subgroup of GL2(M) and is isomorphic to GL1(M).

b) Let µ = µ∗ ∈ M , ‖µ‖ < 1. Then g(µ) ∈ G, where

g(µ) =

[
a b
b a

]
, a = (1− µ2)−1/2 , b = µ(1− µ2)−1/2.

c) Let U =

{[
u 0
0 u

]
; u ∈ M , u∗u = uu∗ = 1

}
be the unitary group of M

viewed as a subgroup of G. Then every element g ∈ G is uniquely decom-
posable as g = u g(µ) for some u ∈ U , µ ∈ M , µ = µ∗, ‖µ‖ < 1.
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Proof. a) Let g1, g2 ∈ G, with gj =

[
aj bj

bj aj

]
. Then one has

g1g2 =

[
a1a2 + b1b2a1b2 + b1a2

a1b2 + b1a2a1a2 + b1b2

]

g−1
2 g−1

1 =

[
a∗2 − b∗2
−b∗2a

∗
2

][
a∗1 −b∗1
−b∗1 a∗1

]
=

[
a∗2a

∗
1 + b∗2b

∗
1 −b∗2a

∗
1 − a∗2b

∗
1

−b∗2a
∗
1 − a∗2b

∗
1 a∗2a

∗
1 + b∗2b

∗
1

]
.

These equalities show that g1g2 ∈ G. They also show that the map

[
a b
b a

]
→a + b is

an isomorphism: G ' GL1(M).

b) Since ‖µ‖ < 1, (1 − µ2)−1/2 makes sense. By construction, a = a∗ and b = b∗ all
commute with each other and a2 − b2 = 1. Thus, g(µ) ∈ G.

c) Let g =

[
a b
b a

]
∈ G. One has a∗a = 1 + b∗b ≥ 1, aa∗ = 1 + bb∗ ≥ 1. Thus a

is invertible, and we let u be the unitary of its polar decomposition: a = u(a∗a)1/2.

Replacing g by

[
u−1 0
0 u−1

]
g, one can assume that a is positive. It follows then, using

the equalities b∗b = a∗a − 1 = aa∗ − 1 = bb∗, that b is normal, and |b| = (a2 − 1)1/2.
Let b = v|b| be the polar decomposition of b. Then v commutes with |b|, so that b
commutes with a. The equality ba = ab∗ then shows that b = b∗, and it follows that
g = g(µ) where µ = ba−1. One has ‖µ‖ < 1 since |b| = (a2 − 1)1/2 and a is bounded.

Definition 6. Let M be a von Neumann algebra. We let µ(M) be the above subgroup
of GL2(M). If M is Z/2-graded we let µev(M) be the subgroup of µ(M) determined by
the conditions:

g =

[
a b
b a

]
∈ µev iff a is even and b is odd.

Now let (H, F ) be a Fredholm module over a C∗-algebra A, and let M be the commu-
tant of A in H. By construction, M is a von Neumann algebra, and it is Z/2-graded
when the Fredholm module is even. We shall describe a natural action of the group
µ(M) (resp. µev(M) in the even case) on the space of F ’s yielding a Fredholm module
over A.

Proposition 7. Let g =

[
a b
b a

]
∈ µ(M) (resp. µev(M) in the even case). Then with

F ′ = g(F ) = (aF + b)(bF + a)−1, the pair (H, F ′) is a Fredholm module over A. It is
even if g ∈ µev(M). Moreover, for any x ∈ A, the commutator [F ′, x] belongs to the
two-sided ideal generated by [F, x].
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Proof. The equality g(F ) = (aF + b)F (aF + b)−1 shows that g(F )2 = 1. To show
that g(F )∗ = g(F ) one has to check that

(aF + b)∗(bF + a) = (bF + a)∗(aF + b).

But this equality follows from the relations a∗b = b∗a and a∗a− b∗b = 1. To conclude,
we just need to compute [F ′, x] in terms of [F, x]. One finds

[(aF + b)(bF + a)−1, x]

= a[F, x](bF + a)−1 − (aF + b)(bF + a)−1b[F, x](bF + a)−1

= (a− F ′b)[F, x](bF + a)−1 = (bF + a)∗−1[F, x](bF + a)−1.

We have used the equality (a− F ′b)−1 = (bF + a)∗.

Example 8. Let (H, F, γ) be the even Fredholm module on the C∗-algebra C(P1(C))
associated by Theorem 2 to the Riemann sphere, V = P1(C). The commutant M = A′

of A = C(P1(C)) in H is the von Neumann algebra of 2×2 matrices

a =

[
f u
v g

]

where f and g are measurable bounded functions on V = P1(C), and u and v are mea-
surable bounded Beltrami differentials: u(z, z)dz/dz, v(z, z)dz/dz [46]. In particular,
an odd element µ ∈ M , µ = µ∗ with ‖µ‖ < 1, corresponds exactly to a single Beltrami
differential v(z, z)dz/dz, with ‖v‖∞ < 1 and v measurable, by the equality

µ =

[
0 v∗

v 0

]
.

Now by Proposition 5 c) all the relevant perturbations of a Fredholm module by the
action of µev(M) are obtained using the elements g(µ), µ odd, of Proposition 5 c).
(The action of U just conjugates the Fredholm module to an equivalent one.) One
checks by a direct calculation that for any g(µ) ∈ µev(M) the perturbed Fredholm
module (H, g(µ)(F )) over A = C(P1(C)) is canonically isomorphic to the Fredholm
module over A associated to the perturbed conformal structure on P1(C) associated to
the measurable Beltrami differential v(z, z)dz/dz.

The same interpretation of the construction of Proposition 7 holds for arbitrary Rie-
mann surfaces. But the above case of P1(C) is particularly significant, since the mea-
surable Riemann mapping theorem ([46]) is equivalent in that case to the stability of
(H, F ) under perturbations, i.e. the existence for any g ∈ µev(M) of a unitary operator
U(g) in H such that:

α) U(g) A U(g)∗ = A

β) U(g) F U(g)∗ = g(F ).
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Such a unitary is uniquely determined modulo the automorphism group U(1)×PSL(2,C)
of the module (H, F ).

We refer to [46] for a proof of the measurable Riemann mapping theorem based on the
2-dimensional Hilbert transform, i.e. on the above operator F .

4.γ The 4-dimensional analogue of the Polyakov action. In this section we
shall use the quantized calculus to find the analogue in dimension 4 of the 2-dimensional
Polyakov action, namely

(4.24) I =
1

2π

∫

Σ

ηij dX i∧ ∗ dXj

for a Riemann surface Σ and a map X from Σ to a q-dimensional space (Rq, η).

Our first task will be to write the Polyakov action (1) as the Dixmier trace of the
operator

(4.25)
∑

ηij dX i dXj

where now dX = [F, X] is the quantum differential of X taken using the canonical
Fredholm module (H, F ) of the Riemann surface Σ.

The same expression will then continue to make sense in dimension 4, i.e. with Σ
replaced by a 4-dimensional conformal manifold. The action we shall get will be con-
formally invariant, by construction, and intimately related to the Einstein action of
gravity.

In general, given an even-dimensional conformal manifold Σ, dim Σ = n = 2m, we let
H = L2 (Σ,∧m

C T ∗) be, as above, the Hilbert space of square integrable forms of middle
dimension, on which functions on Σ act as multiplication operators.

We let F = 2P − 1 be the operator on H obtained from the orthogonal projection P
on the image of d. It is clear that both H and F only depend upon the conformal
structure of Σ, which we assume to be compact.

In terms of an arbitrary Riemannian metric compatible with the conformal structure
of Σ one has the formula

(4.26) F = (dd∗ − d∗d)(dd∗ + d∗d)−1 on L2(Σ,∧m T ∗)

which ignores the finite-dimensional subspace of harmonic forms, irrelevant in our later
computations (cf. above for a definition of F taking this into account).

By construction, F is a pseudo-differential operator of order 0, whose principal symbol
is given, as we saw above, by

σ0(x, ξ) = (eξ iξ − iξ eξ) ‖ξ‖−2 , ∀(x, ξ) ∈ T ∗(Σ).
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When n = dim Σ = 2, one has ∧m
C T ∗ = T ∗

C and σ0 associates to any ξ 6= 0, ξ ∈ T ∗
x (Σ),

the symmetry with axis ξ. For any function f ∈ C∞(Σ), the operator [F, f ] is pseudo-
differential of order −1. Its principal symbol is the Poisson bracket {σ0, f},
(4.27) {σ0, f}(x, ξ) = 2

(
edf iξ + eξ idf − 2eξ iξ 〈ξ, df〉 ‖ξ‖−2

) ‖ξ‖−2.

For ‖ξ‖ = 1, decompose df as 〈df, ξ〉ξ + η where η ⊥ ξ. Then {σ0, f}(x, ξ) = 2(eη iξ +
eξ iη), and its Hilbert-Schmidt norm, for n = 2, is given by

trace ({σ0, f}(x, ξ)∗ {σ0, f}(x, ξ)) = 8‖η‖2 , η = df − 〈df, ξ〉ξ.
The Dixmier trace Trω (f0[F, f1]

∗ [F, f2]) is thus easy to compute for n = 2, as the
integral, on the unit sphere S∗Σ of the cotangent bundle of Σ, of the function

trace (f0 {σ0, f1}∗ {σ0, f2}) = 8 f0(x) 〈df⊥1 , df⊥2 〉
where df⊥ = df − 〈df, ξ〉ξ by convention. One thus gets:

Proposition 9. Let Σ be a compact Riemann surface (n = 2); then for any smooth
map X = (X i) from Σ to Rd and metric ηij(x) on Rd one has

1

2π

∫

Σ

ηij dX i∧ ∗ dXj = −1
2

Trω

(
ηij [F, X i][F,Xj]

)
.

Both sides of the equality have obvious meanings when the ηij are constants. In general
one just views them as functions on Σ, namely ηij ◦X.

Let us now pass to the more involved 4-dimensional case. We want to compute the
following action defined on smooth maps X : Σ→Rd of a 4-dimensional compact con-
formal manifold Σ to Rd, endowed with the metric ηij dxi dxj:

(4.28) I = Trω

(
ηij [F,X i][F, Xj]

)
.

Here we are beyond the natural domain of the Dixmier trace Trω, but we can use the
remarkable fact, due to Wodzicki, that it extends uniquely to a trace on the algebra of
pseudo-differential operators (cf. [589]). After a lengthy computation (cf. [116]) one
obtains the following result:

Theorem 10. Let Σ be a 4-dimensional conformal manifold, X :Σ→Rd a smooth map,
η = ηµν dxµ dxν a smooth metric on Rd. One has

Trω(ηµν [F, Xµ] [F, Xν ]) = (16π2)−1

∫

Σ

ηµν

{1

3
r 〈dXµ, dXν〉 −∆ 〈dXµ, dXν〉

+ 〈∇ dXµ,∇ dXν〉 − 1

2
(∆Xµ)(∆Xν)

}
dv

where r is the curvature scalar of Σ, dv its volume form, ∇ its covariant derivative,
and ∆ its Laplacian for an arbitrary Riemannian metric compatible with the given
conformal structure.
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Of course, the various terms of the formula, such as 1
3

r 〈dXµ, dXν〉, are not themselves
conformally invariant; only their sum is. It is also important to check that the right-
hand side of the formula is, as the left-hand side obviously is, a Hochschild 2-cocycle.
This allows one to double-check the constants in front of the various terms, except for
the first one.

Theorem 10 gives a natural 4-dimensional analogue of the Polyakov action, and, in
particular, in the special case when the ηµν are constant, a natural conformally invariant
action for scalar fields X : Σ→R,

(4.29) I(X) = Trω

(
[F, X]2

)

which by Theorem 10, can be expressed in local terms, and defines an elliptic differential
operator P of order 4 on Σ such that

(4.30) I(X) =

∫

Σ

P (X) X dv.

This operator P is (up to normalization) equal to the Paneitz operator P (cf. [72])
already known to be the analogue of the scalar Laplacian in 4-dimensional conformal
geometry.

Equation 7 uses the volume element dv so that P itself is not conformally invariant.
Its principal symbol is

(4.31) σ4(P ) (x, ξ) =
1

2
‖ξ‖4

which is positive.

The conformal anomaly of the functional integral∫
e−I(X)

∏
dX(x)

is that of (det P )−1/2 and can be computed (cf. [72]). The above discussion gives a
very clear indication that the gravity theory induced from the above scalar field theory
in dimension 4 should be of great interest, by analogy with the 2-dimensional case.

5. Fredholm Modules and Rank-One Discrete Groups

As a rule, the construction of Fredholm modules over noncommutative spaces is a
generalization of the theory of elliptic operators on a manifold. Let Γ be a discrete
group and A = CΓ the group ring of Γ. Then the corresponding noncommutative

space is the “dual” Γ̂ of Γ, and elliptic operators on Γ̂ correspond to “multiplication”
operators when described in the Fourier space `2(Γ). In this section we shall construct
examples of Fredholm modules over CΓ, or equivalently of Fredholm representations
of Γ.
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Figure 5. Tree

As an application we shall give a new proof of the beautiful result of M. Pimsner and
D. Voiculescu that the reduced C∗-algebra of the free group on two generators does
not contain any nontrivial idempotent [448]. This settled a long-standing conjecture
of R.V. Kadison. We shall use a specific Fredholm module (H, F ) over the reduced
C∗-algebra of the free group which already appears in [448] and in the simplified proof
of J. Cuntz [145], and whose geometric meaning in terms of trees was clarified by P.
Julg and A. Valette in [315], [316], [317].

Now let Γ be an arbitrary free group, and T a tree on which Γ acts freely and tran-
sitively. By definition T is a 1-dimensional simplicial complex which is connected and
simply connected. For j = 0, 1 let T j be the set of j-simplices in T . Let p ∈ T 0 and
ϕ : T 0\{p}→T 1 be the bijection which associates to any q ∈ T 0, q 6= p, the only 1-
simplex containing q and belonging to the interval [p, q] (Figure 5). One readily checks
that the bijection ϕ is almost equivariant in the following sense: for all g ∈ Γ one has
ϕ(gq) = gϕ(q) except for finitely many q’s. Next, let H+ = `2(T 0), H− = `2(T 1)⊕C.
The action of Γ on T 0 and T 1 yields a C∗

r (Γ)-module structure on `2(T j), j = 0, 1, and
hence on H± if we put

a(ξ, λ) = (aξ, 0) ∀ξ ∈ `2(T 1) , λ ∈ C , a ∈ C∗
r (Γ).
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Let P be the unitary operator P : H+→H− given by

Pεp = (0, 1) , Pεq = εϕ(q) ∀q 6= p

where for any set X, (εx)x∈X is the natural basis of `2(X). The almost equivariance of
ϕ shows that:

Lemma 1.

a) The pair (H, F ), where H = H+⊕H−, F =

[
0 P−1

P 0

]
, is an even Fredholm

module over A = C∗
r (Γ), and A = {a; [F, a] ∈ L1(H)} is a dense subalgebra of

A.

b) The 0-dimensional character of (H, F ) is the canonical trace τ on C∗
r (Γ),

τ(
∑

agg) = ae, e the unit of Γ.

Proof. a) For any g ∈ Γ the operator gP − Pg is of finite rank, hence the group
ring CΓ is contained in A = {a ∈ C∗

r (Γ); [F, a] ∈ L1(H)}. As CΓ is dense in C∗
r (Γ) the

conclusion follows.

b) Let us compute the character of (H, F ). Let a ∈ A. Then a − P−1aP ∈ L1(H+),
and

1

2
Trace(γF [F, a]) = Trace(a− P−1aP ).

Let τ be the unique positive trace on A such that τ(
∑

agg) = ae for any element
a =

∑
agg of CΓ, where e ∈ Γ is the unit. Then for any a ∈ A = C∗

r (Γ), a − τ(a)e
belongs to the norm closure of the linear span of the elements g ∈ Γ, g 6= e.

Since the action of Γ on T j is free, it follows that the diagonal entries in the matrix of
a− τ(a)e in `2(T j) are all equal to 0. This shows that for any a ∈ A one has,

Trace(a− P−1aP ) = τ(a) Trace(e− P−1eP ) = τ(a).

Thus, the character of (H, F ) is the restriction of τ to A, and since τ is faithful and
positive on C∗

r (Γ) we get:

Corollary 2. [448] Let Γ be a free group. Then the reduced C∗-algebra C∗
r (Γ) contains

no nontrivial idempotent.

Proof. By Corollary 1.5 one has τ(K0(A))⊂Z, which shows that if E is an idem-
potent, which can be assumed selfadjoint, then τ(E) ∈ Z ∩ [0, 1] = {0, 1}. Thus,
E ∈ {0, 1} since τ is faithful.

Remark 3. The proof of Lemma 1 shows that for any a ∈ CΓ the quantum differential
da is a finite-rank operator. Then let (CΓ)∼ be the smallest subalgebra B of C∗

r (Γ)
containing CΓ and having the property for any n ∈ N

x ∈ Mn(B) ∩Mn(C∗
r (Γ))−1⇒x ∈ Mn(B)−1.
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One easily checks that for any a ∈ (CΓ)∼, the operator da is of finite rank. It is
natural to conjecture that the converse holds. This can be proved when the free group
Γ is equal to Z. In this case the algebra A is the algebra of rational fractions with
no pole on S1⊂P1(C) and the conjecture follows from a classical result of Kronecker
(Proposition 1 of Section 3).

We shall now pass to Fredholm representations due to Mishchenko [395] for discrete
subgroups Γ of semisimple Lie groups G.

Therefore, let G be a semisimple Lie group, H⊂G a maximal compact subgroup, and let
X = G/H be the corresponding homogeneous space over G endowed with a G-invariant
Riemannian metric of non-positive curvature. Let q = dim G/H and ρ : H→Spinc(q)
be a lifting of the isotropy representation to the Spinc covering of SO(q). Then let S be
the associated G-equivariant Hermitian vector bundle of complex spinors on X = G/H.
It is Z/2-graded when q is even.

Given two points x, y ∈ X, x 6= y, we let u(x, y) ∈ Tx(X) be the unit tangent vector
at x tangent to the geodesic segment from x to y.

Proposition 4. [395] Let Γ be a discrete subgroup of G and let α ∈ Γ\X be an
orbit of Γ in X. Let a ∈ X with a /∈ α. Let Γ act by translations on the Hilbert
space H = `2(α, S) of `2 sections of the restriction of the complex spinor bundle S to
the orbit α. Then (H, F ) is a Fredholm module over C∗

r (Γ), where F is the following
operator:

(Fξ)(x) = u/(x, a)ξ(x) ∀x ∈ α

where u/ means Clifford xmultiplication by the vector u.

Note that (H, F ) has the same parity as q = dim G/H. One has F 2 = 1 since each
u(x, a) is a unit vector. To check that [F, b] is compact for any b ∈ C∗

r (Γ) it is enough
to do it for elements g ∈ Γ, i.e. to check that gFg−1 − F is compact. But gFg−1 is
given by the same formula as F with the point a ∈ X replaced by ga. As the orbit α
is a discrete subset of X and as X has non-positive curvature, one has

||u(x, a)− u(x, ga)||→0 when x→∞ , x ∈ α,

and the compactness of gFg−1 − F follows.

The above proof shows that, with A = CΓ⊂C∗
r (Γ), the above Fredholm module over

A is p-summable iff there holds

∀g ∈ Γ ,
∑
x∈α

||u(x, a)− u(x, ga)||p < ∞.

When G is of real rank one, the symmetric space X = G/H has strictly negative
sectional curvature: k ≤ −ε < 0. Thus, the comparison theorem shows that ||u(x, a)−
u(x, b)|| decreases, for fixed a, b ∈ X, like exp(−εd(x, a)) where d is the geodesic
distance in X. Since the number of elements of the orbit α in the ball B(a,R) =
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{x ∈ X; d(x, a) ≤ R} is bounded by a constant times the volume of B(a,R), i.e. by
C exp(λR), we get:

Proposition 5. Let Γ be a discrete subgroup of a semisimple Lie group G of real
rank one. Then the Fredholm module (H, F ) of Proposition 4 is finitely summable over
A = CΓ.

Let us assume that Γ is torsion-free, so that it acts freely on X. Then the above
construction of (H, F ) can be reformulated using only the following map λ from Γ to
the unit sphere Sq−1 of Rq:

λ(g) = u(x0, g
−1a) ∈ Tx0(X) = Rq

where x0 ∈ α is a base point in the orbit α.

Indeed, given a map λ from Γ to Sq−1 we can let Γ act by left translations in the
Hilbert space H = `2(Γ)⊗S(Rq), where S(Rq) is the Spin representation of Spin(q),
and we can define an operator F by the equality

(∗) (Fξ)(g) = λ/(g)ξ(g) ∀g ∈ Γ , ξ ∈ H.

The only condition required for (H, F ) to be a Fredholm module is then the following:

(∗∗) ∀g ∈ Γ ||λ(gk)− λ(k)||→0 when k→∞ in Γ.

Proposition 6. Let Γ be a discrete group and λ : Γ→Sq−1 a map from Γ to the unit
sphere of Rq satisfying (∗∗). Then let H = `2(Γ)⊗S(Rq) be the tensor product of the
left regular representation of Γ by the trivial representation in S(Rq). Let F be given
by (∗). Then (H, F ) is a Fredholm module over C∗

r (Γ). It is p-summable over CΓ iff
the following holds: ∑

g∈Γ

||λ(hg)− λ(g)||p < ∞ ∀h ∈ Γ.

For g0, . . . , gn ∈ Γ let us compute the operator

g0[F, g1] · · · [F, gn].

Since gFg−1 is given by Clifford multiplication by λ(g−1·), we get the following formula:

(g0[F, g1] · · · [F, gn])ξ(g) = ω/(g)ξ((g0 · · · gn)−1 g) ∀g ∈ Γ

where ω is the map from Γ to CliffC(Rq) given

ω(g) = (λ(k−1
0 g)− λ(k−1

1 g)) · · · (λ(k−1
n−1g)− λ(k−1

n g)) ∀g ∈ Γ

where kj = g0 · · · gj ∈ Γ.

We thus get:
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Lemma 7. With the notation of Proposition 6 and with n of the same parity as q, let
(H, F ) be (n + 1)-summable. Then its n-dimensional character is given on CΓ by

τ(g0, . . . , gn) =

{
0 if g0 · · · gn 6= 1

λn

∑
g∈Γ trace(γω(g)) if g0 · · · gn = 1

( with λn as in Definition 1.3).

Here the trace is the trace on CliffC(Rq) coming from the representation in S(Rq) and
the Z/2-grading γ is used only in the even case. The computation of τ is particularly
easy when n = q with, say, q even. Let us then introduce the function from Γn+1 to C
given by

σ(k0, k1, . . . , kn) = trace(γ(λ(k−1
0 )− λ(k−1

1 )) · · · (λ(k−1
n−1)− λ(k−1

n ))).

Since n = q one gets

σ(k0, . . . , kn) = 2q/2 iq/2(λ(k−1
0 )− λ(k−1

1 ))∧ · · · ∧(λ(k−1
n−1)− λ(k−1

n ))

where we identify ∧qRq with R using the orientation given by γ. In other words, up to
a numerical factor, σ is the oriented volume in Rq of the simplex with vertices at the
λ(k−1

j ), j = 0, 1, . . . , q. Thus, one has bσ = 0 where

(bσ)(k0, . . . , kn+1) =
n+1∑
j=0

(−1)j σ(k0, . . . , kj
∨, . . . , kn+1).

The same equality holds for every translate of σ,

(gσ)(k0, . . . , kn) = σ(g−1k0, . . . , g
−1kn) ∀ki ∈ Γ , g ∈ Γ,

and hence for the sum

σ̃ =
∑
g∈Γ

gσ.

By construction, σ̃ is thus a cocycle in the complex (C∗, b) of Chapter III Section 1
which defines group cohomology, so that the following equality defines a group cocycle
c:

c(g1, . . . , gn) = σ̃(1, g1, g1g2, . . . , g1 . . . gn) ∀gi ∈ Γ.

As σ̃ is invariant under left translations, one has

c(g1, . . . , gn) = σ̃(g0, g0g1, . . . , g0g1 . . . gn) =
∑
g∈Γ

trace(γω(g)).

Thus, for g0 . . . gn = 1 one gets

τ(g0, . . . , gn) = λn c(g1, . . . , gn).
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Lemma 8. Let q be even and (H, F ) be (q + 1)-summable. Then on CΓ the character
of (H, F ) is the cyclic cocycle τc associated by Chapter III.1, Example 2, c) to the
group cocycle c obtained from the sum σ̃ =

∑
g∈Γ gσ, with

σ(k0, . . . , kq) = oriented volume of the simplex in Rq with the vertices λ(k−1
j ).

We have been a bit careless in the above proof in using

Tr(γg0[F, g1] · · · [F, gn])

instead of Tr′(γg0[F, g1] · · · [F, gn]) = 1
2

Trace(γF [F, g0] · · · [F, gn]). This nicety, how-
ever, does not arise in the examples to follow, where (H, F ) will be q-summable.

In general, given a proper Lipschitz map α : Γ→Rq from a finitely generated discrete
group Γ with word metric to the Euclidean space Rq, one has a natural pull-back map
([122])

α∗ : H∗
comp(Rq)→H∗(Γ)

from the cohomology with compact supports in Rq to the group cohomology with real
coefficients. Indeed, let ω be a (closed) differential form of degree q,

ω ∈ C∞
c (Rq,∧q), with

∫

Rq

ω = 1

and let

a(g0, . . . , gq) =

∫

s(α(gi))

ω ∀g0, . . . , gq ∈ Γ

where s(α(gi)) is the q-simplex spanned by the α(gi) ∈ Rq. Then the following sum
defines a Γ-invariant element of Cq, with bã = 0 (cf. Chapter III Section 1):

ã(g0, . . . , gq) =
∑
g∈Γ

a(g−1g0, . . . , g
−1gq) ∀gi ∈ Γ.

Note that the sum over Γ makes good sense since, for fixed gi ∈ Γ, it involves only
finitely many nonzero terms. The class of ã in Hq(Γ,R) will be denoted

α∗([Rq]).

Next, given a discrete subgroup Γ⊂G of a semisimple Lie group, we can apply the
above procedure to any of the maps

αp : Γ→Tp(G/K) , αp(g) = exp−1
p (g−1(p))

where K is a maximal compact subgroup of G, X = G/K is endowed with a G-
invariant Riemannian metric of non-positive curvature, and expp is the corresponding
exponential map.

The non-positivity of the curvature ensures that αp is a contraction, and it is proper
by construction. The resulting element α∗p[Rq], q = dim(G/K), is independent of the
choice of p, and we shall call it the volume cocycle on Γ.
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Theorem 9. Let Hq be the q-dimensional hyperbolic space, and Γ⊂SO(q, 1) be a
discrete group of isometries of Hq. Let (H, F ) be the Fredholm module over C∗

r (Γ)
given by Proposition 4.

a) (H, F ) is p-summable over CΓ iff the Poincaré series is convergent at p:
∑
g∈Γ

e−p d(gx0,a) < ∞

where d is the hyperbolic distance.

b) (H, F ) is always q-summable over CΓ, and its q-dimensional character is given
by the cyclic cocycle τc, where c is the volume cocycle on Γ.

Proof. a) The law of cosines for hyperbolic triangles

cosh a = cosh b cosh c− sinh b sinh c cos α

shows that ||u(gx0, a)−u(gx0, g0a)|| is of the order of exp(−d(gx0, a)) when g varies in
Γ with g0 ∈ Γ fixed. Thus, [F, g0] ∈ Lp ∀g0 ∈ Γ iff

∑
e−p d(gx0,a) < ∞, and a) follows.

b) The Poincaré series is always convergent for p > q − 1 (cf. [538]) since the volume
of the ball of radius R in Hq grows like exp((q − 1)R). By Lemma 8 the computation
of the character follows from the equality σ = [Rq], where σ is the (Alexander-Spanier)
q-cocycle on Rq given by

σ(ξ0, . . . , ξq) = q– dim . volume of s

(
ξi

||ξi||
)

where s
(

ξi

||ξi||

)
is the simplex spanned by the vertices ξi

||ξi|| ∈ Sq−1. We refer to [102]

for a similar computation.

By Chapter III Section 5 Theorem 7, we know that for any bounded group cocycle
c on a word hyperbolic group Γ, the cocycle τc extends by continuity to the pre-C∗-
algebra A which is the closure of CΓ in C∗

r (Γ) under holomorphic functional calculus.
By construction, the character τ of the q-summable Fredholm module (H, F ) is well
defined on A. It is thus natural to ask if the equality of Theorem 9 b) still holds in
HCq(A).

For complex hyperbolic or quaternionic hyperbolic spaces the degree of summability
of (H, F ) is, in general, strictly larger than q, and so one should expect that 9 b) is
replaced by the same equality in periodic cyclic cohomology.

The degree of summability given by Theorem 9 a) is not always an integer. The
quasi-Fuchsian groups (cf. [64] and Section 3) are subgroups Γ⊂PSL(2,C) for which
the infimum of {p; (H, F ) is p-summable} is a real number 1 < p < 2 which is the
Hausdorff dimension of the limit set of Γ in P1(C).
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6. Elliptic Theory on the Noncommutative Torus T2
θ and the Quantum

Hall Effect

As a rule, the construction of Fredholm modules over a noncommutative space is a
generalization of the theory of elliptic differential operators on a manifold. In this
section we shall first show that for the noncommutative space T2

θ given by the two-
dimensional noncommutative torus, the elliptic theory adapts perfectly and yields, in
particular, an index theorem for difference-differential operators on the real line. We
shall then show, by means of an example, the role of topological invariants arising
from noncommutative geometry in understanding stable numerical quantities, that is,
quantities invariant under small variations of the natural parameters, which appear in
the quantum physics of solids. The first examples of topological invariants associated
with Schrödinger’s equation are due independently to a mathematician, S. Novikov
[418], and a physicist, D. Thouless [557]. The use of noncommutative geometry,
which makes it possible to eliminate the rationality hypothesis of [418], is due to J.
Bellissard [44]. We shall follow his work in sections β) and γ) below.

6.α Elliptic theory on T2
θ. We have already met the noncommutative torus T2

θ

in Chapter II arising from the Kronecker foliation (Section 8 β)) and in Chapter III
where we computed its cyclic cohomology (Section 2 β)).

Let us recall that the topology of T2
θ is given by the C∗-algebra Aθ generated by two

unitaries U1 and U2 such that

U2U1 = λU1U2 λ = exp(2πiθ),

while the smooth structure of T2
θ is given by the subalgebra Aθ of Aθ;

Aθ = {
∑

anmUn
1 Um

2 ; a ∈ S(Z2)}
where S(Z2) is the linear space of sequences of rapid decay on Z2:

(|n|k + |m|k)|an,m| bounded for all k > 0.

It is easy to check that Aθ is a pre-C∗-algebra since it is stable under holomorphic
functional calculus in Aθ.

We have seen (Theorem 14 of Section III.3) the classification of smooth vector bundles
on T2

θ, and in order to avoid unrevealing notational complications we shall choose one of
them and expound the theory of elliptic operators acting on sections of this particular
vector bundle. This space of sections is (cf. loc. cit.) the Schwartz space

E = S(R)

of smooth functions ξ on R whose derivatives are of rapid decay. The right action of
Aθ on E is given (cf. loc. cit.) by

(ξ · U1)(s) = ξ(s + θ) ∀ξ ∈ S(R) , s ∈ R
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(ξ · U2)(s) = exp(2πis)ξ(s) ∀ξ ∈ S(R) , s ∈ R.

Note that while the presentation of Aθ only uses λ = exp 2πiθ, i.e. the class of θ in
R/Z, the action of Aθ on S(R) now involves an explicit choice for θ, which we take in
the interval ]0, 1].

By Proposition 15 of Section III.3, the vector fields on T2
θ given by the derivations δj,

j = 1, 2, such that
δj(Uk) = 0 if k 6= j , δj(Uj) = 2πi Uj

lift to the smooth sections ξ ∈ E as the covariant derivatives

(∇1ξ)(s) = −2πi
s

θ
ξ(s) , (∇2ξ)s =

dξ

ds
∀ξ ∈ S(R).

The exact form of these operators ∇1 and ∇2 is not relevant here since we shall be
interested, in general, in operators D on E = S(R) of the form

D =
∑

Cα,β ∇α
1 ∇β

2

where the sum is a finite sum, while the coefficients Cα,β are operators of order 0 on E ,
i.e. are elements of EndAθ

(E):

Cα,β ∈ EndAθ
(E) ∀α, β.

In the commutative case θ = 1, say, the above operators D give exactly all the ordinary
differential operators on the sections of the bundle (for θ = 1 the corresponding bundle
is a nontrivial line bundle). We shall now see that in the general case these operators
D can still be treated in the same way as in the commutative case, and that the elliptic
theory is available for them. Before we proceed let us note that an operator D as above
is an arbitrary element of the algebra of operators on S(R)⊂L2(R) generated by the
following operators:

1) The operator of multiplication by s,

(Tξ)(s) = s ξ(s) ∀s ∈ R
2) The operator d/ds of differentiation

3) The operator of multiplication by eθ(s) = exp (2πi s/θ)

4) The operator ∆ of finite difference

(∆ξ)(s) = ξ(s + 1)− ξ(s).

In fact, more precisely, the algebra EndAθ
(E) of endomorphisms of E is naturally iso-

morphic to Aθ′ , θ′ = 1/θ, with generators V1 and V2 such that

V2V1 = exp 2πiθ′V1V2

given by the formulae
(V1ξ)(s) = ξ(s + 1)

(V2ξ)(s) = exp
−2πis

θ
ξ(s).
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Thus, one is also allowed infinite sums like
∑

an,mV n
1 V m

2 for a ∈ S(Z2). They include
, in particular, arbitrary smooth functions f , with period θ, acting by multiplication
on S(R).

By analogy with the commutative case we make the following definition:

Definition 1.

a) For n ∈ N, we say that D is of order ≤ n if

D =
∑

α+β≤n

Cα,β ∇α
1∇β

2 ; Cα,β ∈ Aθ′ = EndAθ
(E).

b) The symbol of order n, σn(D), is defined as the map from S1 to Aθ′ given by

σ(η1, η2) =
∑

α+β=n Cα,βηα
1 ηβ

2 , for all η1, η2 ∈ R with η2
1 + η2

2 = 1.

c) We say that D is elliptic if σ(η1, η2) is an invertible element of Aθ′ for any
(η1, η2) ∈ S1.

Note that since Aθ′ is stable under holomorphic functional calculus in the C∗-algebra
Aθ′ , which is its norm closure in the operators in L2(R), one could equivalently replace
c) by the condition

c′) σ(η1, η2) is an invertible operator in L2(R) for any (η1, η2) ∈ S1.

We can now state the analogue in our case of the main results of the classical theory
of elliptic differential operators.

Theorem 2. [98] Let D =
∑

Cα,β ∇α
1∇β

2 be elliptic in the above sense. Then:

a) The space KerD = {ξ ∈ L2(R); Dξ = 0} is finite-dimensional.

b) Any ξ ∈ L2(R) such that Dξ = 0 belongs to S(R).

Our next result is an index formula, that is, an explicit formula for the Fredholm index
of D:

IndD = dim KerD − dim KerD∗.

Here D∗ is the Hilbert space adjoint of D in L2(R). One could equivalently consider
the codimension of the image of D instead of dim KerD∗.

Our index formula will involve a specific cyclic cocycle on the algebra C∞(S1,Aθ′) of
symbols. We have already computed in Chapter III the cyclic cohomology of Aθ′ and
found as generators of HCeven the cyclic cocycles τ0 and τ2:

1)

τ0

(∑
an,mV n

1 V m
2

)
= a0,0 ∀a ∈ S(Z2),

so that τ0 is the canonical trace onAθ′ . Equivalently τ0 is the Murray and von Neumann
trace on the (hyperfinite) type II1 factor generated by the operators V1 and V2 in L2(R).



6. ELLIPTIC THEORY . . . 359

2) τ2 is the character of the following cycle on Aθ′ (cf. Chapter III Section 3 Proposition
15). One takes Ω∗ = Aθ′⊗∧∗C2, the tensor product of Aθ′ by the graded algebra which
is the exterior algebra of C2. The differential d is given by

d(a⊗α) = δ′1(a)e1∧α + δ′2(a)e2∧α ∀a ∈ Aθ′ , α ∈ ∧∗C2

where ej, j = 1, 2, is the canonical basis of C2 and where, as for Aθ,

δ′j(Vk) = 0 if j 6= k , δ′j(Vj) = 2πiVj ; j = 1, 2.

Finally the closed graded trace
∫

: Ω2→C is given by∫
a⊗(e1∧e2) = τ0(a) ∀a ∈ Aθ′ .

Thus, the formula for τ2 is

τ2(a
0, a1, a2) = τ0(a

0(δ′1(a
1)δ′2(a

2)− δ′2(a
1)δ′1(a

2))).

By Corollary 16 of Chapter III Section 3 one has for any element E of K0(Aθ′) that

1

2πi
τ2(E, E,E) = q

where q ∈ Z is uniquely determined by the equality

τ0(E) = p + qθ′′, p, q ∈ Z and θ′′ = θ′ − [θ′].

Let ρ = [S1] be the fundamental class of S1, i.e. the cyclic 1-cocycle on C∞(S1) given
by

ρ(f 0, f 1) =

∫

S1
f 0 df1,

or equivalently the de Rham differential algebra and integral. We then obtain two
natural cyclic cocycles τ1 and τ3 on the algebra of symbols

B = C∞(S1,Aθ′) = C∞(S1)⊗̂Aθ′ .

We thus let τ1 = ρ#τ0 and τ3 = ρ#τ2. They are defined on the algebraic tensor
product C∞(S1)⊗Aθ′ , which is all we need for our symbols

∑
Cα,βξα

1 ξβ
2 . They extend,

however, by continuity to C∞(S1,Aθ′) = C∞(S1)⊗̂Aθ′ . A straightforward calculation
shows that:

a) τ1(σ0, σ1) =
∫
S1 τ0(σ0(t)

d
dt

σ1(t))dt

b) τ3(σ0, σ1, σ2, σ3) =
∫
S1 τ0(σ0 dσ1∧dσ2∧dσ3)dt

where we define dσ1∧dσ2∧dσ3 as the element of C∞(S1,Aθ′) given by the map

t 7→
∑
π∈S3

ε(π) ∂π(1) σ1(t) ∂π(2) σ2(t) ∂π(3) σ3(t)

where ε(π) is the signature of the permutation π of {1, 2, 3}, while the three derivations
∂1, ∂2, ∂3 are given respectively by

(∂1σ)(t) = δ′1(σ(t)) , (∂2σ)(t) = δ′2(σ(t))
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and

(∂3σ)(t) =
d

dt
σ(t) , for any t ∈ S1 , σ ∈ C∞(S1,Aθ′).

In order to make these formulas more explicit, let us write any element a of Aθ′ as a
Laurent series in V1;

a =
∑

n∈Z
fn V n

1

where fn ∈ C∞(R/θZ) is for each n a periodic function of period θ, fn =
∑

anmV m
2 .

Of course the algebraic rule is that of the crossed product

ab =
∑

fn αn(gn) V n+m
1

with obvious notation and α(g)(s) = g(s + 1) ∀s ∈ R, ∀g ∈ C∞(R/θZ).

With this notation, the normalized trace τ0 is the integral of f0 over one period, i.e.

τ0

(∑
fn V n

1

)
=

1

θ

∫ θ

0

f0(s) ds.

Similarly, we can write an arbitrary element σ ∈ C∞(S1,Aθ′) as a Laurent series

σ =
∑

n∈Z
σn V n

1

where each σn is a doubly periodic function σn(t, s); t ∈ S1, s ∈ R/θZ. Then the
derivations ∂1, ∂2, ∂3 are given by

∂1σ =
∑

n∈Z
2πinσn V n

1

(∂2σ)n(t, s) = −θ
∂

∂s
σn(t, s)

(∂3σ)n(t, s) =
∂

∂t
σn(t, s).

One infers the formulas:

a′) τ1(σ
0, σ1) = 1

θ

∫ θ

0

∫
S1(σ

0∂3σ
1)0(t, s) dt ds

b′) τ3(σ
0, σ1, σ2, σ3) = 1

θ

∫ θ

0

∫
S1(σ

0dσ1∧dσ2∧dσ3)0(t, s) dt ds.

We can now state the analogue of the Atiyah-Singer index theorem for the elliptic
operators D:

Theorem 3. [98] Let D =
∑

α+β≤n Cα,β∇α
1∇β

2 be elliptic, and let its principal symbol

be σ(t) =
∑

α+β=n Cα,β(cos t)α(sin t)β. Then

dim KerD − dim KerD∗ =
1

θ

1

(2πi)2

1

6
τ3(σ

−1, σ, σ−1, σ)− 1

2πi
τ1(σ

−1, σ).
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Figure 6. Powers-Rieffel Idempotent

We have thus obtained an index theorem for the highly nonlocal operators D =∑
Cαβ ∇α

1∇β
2 on the real line. As in the classical case of differential operators on

manifolds, this index theorem has two important corollaries:

Corollary 4.

a) If IndD > 0 there exist nontrivial solutions f ∈ S(R) of the equation Df = 0.

b) For any invertible σ ∈ C∞(S1,Aθ′) the following quantity is an integer:

1

θ

1

(2πi)2

1

6
τ3(σ

−1, σ, σ−1, σ)− 1

2πi
τ1(σ

−1, σ).

One obtains, in particular, an explanation for the integrality of (2πi)−1τ2, meaning
that 〈τ2, K0(Aθ′)〉⊂2πiZ. But we shall come back to this point in detail at the end of
this section.

We shall now give nontrivial examples of elliptic operators D of the above form. Our
first class of examples will only require qualitative information about the periodic func-
tions gi ∈ C∞(R/θZ) involved in the formula for it, which is

(Df)(s) = s f(s)−
1∑

k=−1

gk(s) f ′(s + k) ∀f ∈ S(R).

The condition on the gk is simply that for some fk ∈ C(R/θZ), as in Figure 6, one has

1∑

k=−1

|fk(s)− gk(s)| < 1 ∀s ∈ R/θZ.

This is easy to fulfill even with trigonometric polynomials.
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Corollary 5. Let gi ∈ C∞(R/θZ) be functions satisfying the above conditions. Then
the operator D,

(Df)(s) = s f(s)−
1∑

k=−1

gk(s) f ′(s + k) ∀f ∈ S(R),

is elliptic in the sense of Definition 1. Its index is equal to

IndD = 1 + 2[1/θ]

where [1/θ] is the integral part of 1/θ. The equation Df = 0 admits at least 1 + 2[1/θ]
linearly independent real solutions f ∈ S(R).

We thus get an existence theorem as well as a regularity result (Theorem 2). The
function [1/θ] is discontinuous when θ ∈ N−1⊂ ]0, 1]. The reason why this does not
entail a contradiction is that when θ−1 gets close to an integer it becomes more and
more difficult to find an interval I in R/θZ such that I and I + 1 are disjoint, this
being of course impossible for θ−1 ∈ N. The proof of Corollary 5 is a straightforward
application of Theorem 3 or equivalently of the computation of τ2 on the Powers-Rieffel
idempotent eθ′ ∈ Aθ′ (cf. [472] [98]).

One can construct many examples of elliptic operators with nontrivial indices simply
by using the formula

(Df)(s) = s f(s)− (Tf ′)(s)
where the operator T ∈ Aθ′ is selfadjoint and invertible. This implies that D =
− θ

2πi
∇1 − T∇2 is elliptic with principal symbol in the same class as

σ(t) = cos t + iT sin t.

The index formula of Theorem 3 reduces in that case to

IndD =
1

2πi

2

θ
τ2(E, E, E)− τ0((2E − 1))

where E is the spectral projection of T belonging to the interval [0, +∞[,

E = 1[0,∞[ (T ).

One has E ∈ Aθ′ since this algebra is stable under holomorphic functional calculus.

For q = 1
2πi

τ2(E, E,E) > 0 one can rewrite the above formula as

IndD = 1 + 2[q/θ].

The use of the Chern character τ2 in order to label the gaps of selfadjoint operators has
been very successful in the hands of J. Bellissard, and we shall deal in detail with this
in Subsection γ). Perhaps the simplest nontrivial example of a selfadjoint invertible
T ∈ Aθ′ as above is the Peierls operator

(Tf)(s) = f(s + 1) + f(s− 1) + 2 cos

(
2πs

θ

)
f(s) + λ f(s)
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Figure 7. Hall current

which, when θ is a Liouville number, is invertible for any λ outside a nowhere dense
Cantor set K [45] on which the index changes discontinuously. We refer to [402] [83]
[45] for more information on the operator T and gap labelling. In [83] the following
q-analogue of the binomial formula is successfully used to show that the spectrum of
T is a Cantor set when θ is a Liouville number:

(U + V )n =
n∑

k=0

(n

k

)
λ

Un−k V k

whenever V U = λUV with λ a scalar (here λ = exp(2πiθ′)), and where the Gaussian
polynomial

(
n
k

)
λ

is given by

(n

k

)
λ

=
(1− λn)(1− λn−1) · · · (1− λ)

(1− λk) · · · (1− λ)(1− λn−k) · · · (1− λ)
.

As a corollary of the gap labelling of the Peierls operator and of Theorem 3 one gets
the following result.

Corollary 6. Let θ be a Liouville number, and N an integer. Then there exists
λ ∈ ]−2, 2[ such that the following difference-differential equation on R admits at least
N linearly independent solutions f ∈ S(R):

s f(s) = f ′(s + 1) + f ′(s− 1) +

(
2 cos

2πs

θ
+ λ

)
f ′(s).

We shall now pass to the application of the integrality of the cyclic cocycle τ2 to the
quantum Hall effect, due to J. Bellissard.
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6.β The quantum Hall effect. Let us describe the experimental facts pertaining
to the quantum Hall effect, starting with the classical Hall effect which goes back to
1880 ([263]). One considers (Figure 7) a very thin strip S of pure metal and a strong
magnetic field B, uniform and perpendicular to the strip. Under these conditions
elementary classical electrodynamics shows that particles of mass m and charge e in
the plane S must move in circular orbits with angular frequency given by the “cyclotron
frequency”

ωc = e |B|/m.

Let us view the charge carriers in S as a two-dimensional gas of classical charged parti-
cles with density N and charge e. Then if an additional electric field E is applied in the
plane S (cf. Figure 7) there is a drift of the above circular orbits with velocity |E|/|B|
in the direction perpendicular to E. The resulting current density j perpendicular to
both E and B is such that, in the stationary state the resulting force vanishes, i.e.

NeE + j∧B = 0.

In practice the charge carriers are scattered in a time which is short with respect to the
cyclotron period, so that the observed current is mostly in the direction of the electric
field E. It does, however, have a small component in the perpendicular direction, which
is the Hall current given using the above formula by

j = NeB∧E/|B|2,
which shows that |j| = |Ne||E|/|B|. In other words, the Hall conductivity σH , i.e. the
ratio of the Hall current to the electric potential is equal in first approximation to a
linear function of N

σH = Ne/|B|.
As early as 1880 ([263]) Hall observed the above drift current j and showed that the
sign of the charge e may be negative or positive depending on the metal considered.
This was the first evidence of what is now understood as electron or hole conduction.

In the regime of very low temperatures, T ∼ 1◦K, the effects of quantum mechanics
become predominant, and can, with a gross oversimplification, be described as follows.
First the two-dimensional gas of charge carriers, say of electrons, has a one-particle
Hamiltonian given by the Landau formula

H = (p− eA)2/2m

where p is the quantum mechanical momentum operator and A is a (classical) vector
potential solution of curl A = B. Also, m is the effective mass of the charge carrier.
It is immediate that the operators Kj = pj − eAj, j = 1, 2, satisfy the commutation
relation

[K1, K2] = i~ eB
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while H = K2/2m. Thus, the energy levels of the charge carrier have discrete values
which (up to a common additive constant) are all integer multiples of Planck’s constant
times the cyclotron frequency

En = n~ ωc.

Each of these “Landau levels” is highly degenerate, due to the translation invariance
of the system, and can be filled by ∼ eB/h charge carriers per unit area.

A naive argument combining the filling of Landau levels with the drift velocity |E|/|B|
thus leads one to expect in the quantum regime a Hall current density given by

|j| = n(e2/h)|E|
where n is the number of filled Landau levels and j is in a direction perpendicular to
the electric field. In particular, this implies that the Hall conductivity σH is an integer
multiple σH = n e2/h of e2/h, provided the Fermi level is just in between two Landau
levels. This argument, however, does not, in any way, account for the existence of the
plateaus of conductivity which were discovered experimentally by K. von Klitzing, G.
Dorda and M. Pepper ([353]). In their paper entitled “New Method for High-Accuracy
Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,”
the above three authors exhibited the quantization of the Hall conductivity, thus in-
troducing the possibility of determining the fine structure constant α = e2

~c with an
accuracy comparable to the best available methods.

We cannot end the above account of the experimental results without mentioning the
fractional Hall effect found by D.C. Tsui, H. Størmer and A.C. Gossard. They observed
in heterojunction devices with high electron mobility that, besides the plateaus corre-
sponding to integral multiples of e2/h there are other flat regions for the Hall voltage
which correspond to rational values of h/e2 σH with mostly odd denominators.

6.γ The work of J. Bellissard on the integrality of σH. A first explanation
for the integrality of σH on the plateaus of vanishing direct conductivity (cf. Figure
8) was given by Laughlin in 1981 [363] using the gauge invariance of the one-electron
Hamiltonian together with a special topology of the sample. Then Avron and Seiler put
the argument of [363] in rigorous mathematical form assuming that, on the plateau, the
Fermi level (cf. below) belongs to a gap in the spectrum of the one-particle Hamiltonian.
This approach is, however, unsatisfactory inasmuch as it uses a special sample topology
and also does not account for the role of localised electron states, tied up with disorder,
which imply that the plateaus cannot correspond to gaps in the spectrum of the one-
particle Hamiltonian. To explain this more carefully we need to introduce a parameter
other than the charge carrier density N . It is called the Fermi level µ, and plays the
role of a chemical potential. In the approximation of a free Fermi gas, the thermal
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Figure 8. Plateaus of conductivity

average of any observable quantity A at inverse temperature β = 1/kT and chemical
potential µ is given by

〈A〉β,µ = LimV→∞
1

|V | TraceV (f(H)A)

where TraceV denotes the local trace of the operators in the finite volume V⊂S and
where f is the Fermi weight function

f(H) =
(
1 + eβ(H−µ)

)−1
.

In general, the Fermi level µ is adjusted so as to give the correct value to the charge
carrier density

N = LimV→∞
1

|V | TraceV (f(H)).
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Note that the right-hand side N(β, µ) of this formula, in the limit of 0 temperature,
i.e. β→+∞, depends only on the spectral projection Eµ of H on the interval ]−∞, µ],
and is thus insensitive to the variation of µ in a spectral gap.

We shall now explain the results of J. Bellissard on the integrality of σH . They are
directly in the line of the argument of Thouless, Kohmoto, Den Nijs and Nightingale
[558], who investigated the case of a perfectly periodic crystal with the hypothesis that
the magnetic flux in units h/e is rational, an obviously unwarranted assumption. Their
argument shows clearly that the origin of the integrality of σH is not the shape of the
sample, but rather the topology of the so-called Brillouin zone in momentum space.
When the magnetic flux is irrational this Brillouin zone becomes a noncommutative
torus T2

θ, and the integrality of σH is the integrality of the cyclic 2-cocycle τ2 of section
α) on the projection Eµ.

We shall first explain why this is true and then why, taking impurities into account, the
integrality will persist. This will in particular eliminate the unwanted assumption that
µ belong to a gap of the one-particle Hamiltonian, using the full force of the integrality
result in Corollary 5 of Section 1 of this chapter.

The case of a periodic crystal.

Let us take as a model of metallic strip S the plane R2 with atoms at each vertex of
a periodic lattice Γ⊂R2. The interaction of these atoms with the charge carrier, let us
say the electron, thus modifies the one-particle Hamiltonian to

H = H0 + V , H0 = (p− eA)2/2m

where the potential V is a Γ-periodic function on R2. The whole set-up is invari-
ant under the group of plane translations belonging to Γ, so that we should get a
corresponding projective representation of Γ on the one-particle quantum mechanical
Hilbert space H. We should normally write H as the space of L2 sections of a complex
line bundle L on R2 with constant curvature, but this just means that, viewing H as
L2(R2), the correct action of the translation group is given by the unitaries, called
magnetic translations

U(s) = exp
( i

~
)
(p + eA) · s ∀s ∈ R2.

For s ∈ Γ this unitary commutes with H, but, due to the curvature, the U(s) do not
commute with each other. For the generators e1 and e2 of Γ we have the commutation
relation

U2U1 = λU1U2 ; λ = exp 2πiθ

where Uj = U(ej) and where θ is the flux of the magnetic field B through a fundamental
domain for the lattice Γ, in dimensionless units. The role of the rationality of θ in the
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paper of Thouless et al. thus appears clearly, since we know that when θ is irrational
the von Neumann algebra W of operators which have the symmetries U`, ` ∈ Γ,

W = {T ∈ L(H) ; U`TU−1
` = T ∀` ∈ Γ}

is the hyperfinite factor of type II∞, namely R0,1.

In other words, if we investigate the operators which obey the natural invariance of the
problem, we are not in a type I but in a type II∞ situation. From the measure theory
point of view the Brillouin zone is of type II. Moreover, the canonical trace τ on the
factor W is given, using an averaging sequence Vj of compact subsets of R2, by

(4.32) τ(T ) = LimV→∞
1

|V | TraceV (T ),

so that this part of the thermodynamic limit has a clear interpretation.

Since we need to understand the topology of the noncommutative Brillouin zone, we
need a C∗-algebra A⊂W of observables for our system. By construction, any bounded
function f(H) belongs to W , and in view of the formula giving the statistical average
of observables, it is natural to require that A contain f(H) for any f ∈ C0(R). The
algebra obtained so far is commutative and is too small to allow the computation of the
Hall conductivity. For that purpose we need another observable, which is the current j
associated to the motion of the charge carrier. This current is a vector, given classically
by

j = eẊ

where X is the position of the charge carrier. Thus, in quantum mechanics we have

(4.33) J = e
i

~
[H, X],

where it is understood that both sides are pairs of operators, i.e. given by their com-
ponents in a basis of R2

Jk = e
i

~
[H,Xk]

with Xk the multiplication operator by the coordinate.

To understand clearly why J is invariant under the symmetries U`, ` ∈ Γ, we can
rewrite the formula (2) as

(4.34) J =
e

~
(∂ αs(H))s=0

where the group (R2)∧ dual of R2 acts by automorphisms αs, s ∈ (R2)∧, on the von
Neumann algebra W by

αs(T ) = eis·X T e−is·X ∀T ∈ W.

We thus can take J as an observable (except for the trivial fact that since J is un-
bounded, just as for H we need to use f(J), f ∈ C0(R2)).
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But in order to compute the Hall conductivity we also need to turn on an electric field
E and see how our quantum statistical system reacts. This means that we replace the
time evolution given by H, σt(a) = ei t

~H a e−i t
~H , by the time evolution associated to

the perturbed Hamiltonian
H ′ = H + eE ·X,

or equivalently by the differential equation at t = 0

d

dt
σ′t(a) =

i

~
[H, a] +

e

~
d

dt
αtE(a).

This makes it clear that the smallest C∗-algebra of observables appropriate for the
computation of the Hall conductivity, besides containing f(H), f ∈ C0(R) and f(J),
f ∈ C0(R2), should be invariant under the automorphism group αs of W . In fact (cf.
[43]), it is not difficult to see that the C∗-algebra A generated by the αs(f(H)) does
contain the functions of the current, and is thus the natural algebra of observables for
our problem. On A⊂W we have the semifinite semicontinuous trace τ coming from
the von Neumann algebra W (formula (1)) and the automorphism group (αs) with as
generators the derivations

δj = (∂j αs)s=0.

We thus get a densely defined cyclic 2-cocycle on A given by the formula

(4.35) τ2(a0, a1, a2) = τ(a0(δ1a1δ2a2 − δ2a1δ1a2)).

By construction, τ2 is a 2-trace (cf. Chapter III Section 6 Definition 11) so that it
pairs with K0(A). Now the crucial fact is the following formula, known as the Kubo
formula, for the Hall conductivity σH in the limit of 0 temperature, and assuming that
the Fermi level µ is in a gap of the Hamiltonian H.

Lemma 7. [44] If µ /∈ SpecH then the Hall conductivity σH is given by

σH =
e2

h
〈τ2, Eµ〉 =

e2

h

1

2πi
τ2(Eµ, Eµ, Eµ)

where Eµ is the spectral projection of H corresponding to energies smaller than the
Fermi level µ.

Thus, we see that the integrality of σH (in units of e2/h) is implied by the integrality
of the cyclic cocycle τ2 on the C∗-algebra A. In the example at hand one can show that
τ2 is integral, as a corollary of Chapter III Section 3 Corollary 16. But we still want
a conceptual reason for this integrality which survives in more difficult circumstances.
This will be obtained from Corollary 5 of Section 1 by the construction of a Fredholm
module over A whose Chern character is equal to τ2.

Let us describe this even Fredholm module. The Hilbert space representation of A is
just given by two copies of H,

H′ = H⊗C2 = H+⊕H−
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with the Z/2-grading given by γ =

[
1 0
0 −1

]
.

The representation of A is thus a ∈ A 7→ a⊗1 =

[
a 0
0 a

]
. The operator F , F = F ∗,

F 2 = 1 in H′ is given by

F =

[
0 U

U∗ 0

]

where U is the operator in L2(R2) of multiplication by the function u(x1, x2) = x1+ix2

|x1+ix2| .
It uses a Euclidean metric and orientation on R2.

Theorem 8. [98] [44] The above triple (H′, F, γ) is a (2,∞)-summable Fredholm
module over the C∗-algebra A, and its 2-dimensional character is equal to τ2.

The proof is the same as that of Proposition 5 and Lemma 7 of Section 5. It is
interesting to relate more precisely the above construction with the construction of
Section 5 and of Chapter III Section 4 (i.e. the index theorem for covering spaces).
We shall briefly mention how this is done. First, with the notations of Section III.4,

we take M̃ = R2 while the lattice Γ acts by translations on M̃ with quotient the
two-dimensional torus M = R2/Γ. Then let G be the fundamental groupoid of this
covering (cf. III.4). Then the C∗-algebra A above is contained in (and coincides with,
in the generic case) the C∗-algebra C∗(G,ω) of the smooth groupoid G twisted by
the 2-cocycle ω on G associated to the line bundle L on R2. (One has a canonical
homomorphism ρ : G→R2 with ρ(x̃, ỹ) = x̃− ỹ, and ω = ρ∗c, where c ∈ Z2(R2, U(1))
corresponds to the Heisenberg central extension of R2 given by the magnetic field B.)

The strong Morita equivalence of C∗(G) with C∗(Γ) of Section III.4 adapts here to
yield the strong Morita equivalence

C∗(G,ω)∼Aθ

where θ comes from the 2-cocycle ω|Γ ∈ H2(Z2, U(1))∼U(1). Under this equivalence
and as in Section III.4, the cocycle τ2 corresponds to the 2-cocycle ϕ on Aθ of Corollary
16 in Section III.3, which proves its integrality.

Next, the construction of the Fredholm module of Theorem 8 is a special case of
the following variant of Proposition 3 of Section 5. Let M be a compact Riemannian
manifold with non-positive curvature and β a closed 2-form on M . Then let Γ = π1(M)

be its fundamental group, M̃ the universal cover of M with the lifted metric, so that

Γ acts by isometries on M̃ . Let L be a Hermitian line bundle on M̃ with compatible

connection ∇ and curvature equal to the lifted form β̃. This defines a 2-cocycle ω on

the fundamental groupoid G of the covering M̃ . The value of ω on a pair (x̃, ỹ), (ỹ, z̃)
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of composable elements of G is given equivalently by the parallel transport in L around
the geodesic triangle T with vertices x̃, ỹ, z̃, or as

ω(x̃, ỹ, z̃) = exp(2πi

∫

T

β̃).

By construction, the C∗-algebra A = C∗(G,ω) acts in the Hilbert space H = L2(M̃, L)
of square integrable sections of the line bundle L, by the formula

(kξ)(x̃) =

∫
k(γ) U(γ) ξ(ỹ)

where for γ = (x̃, ỹ)/Γ ∈ G, U(γ) is the parallel transport in L along the geodesic

from ỹ to x̃ in M̃ . Then let a ∈ M̃ be a base point and S the Spin representation of

Spin(TaM̃). The following equality defines, as in 5.3, a Fredholm module over A:

a) H′ = H⊗S

b) For any f ∈ A = C∗(G,ω) one has k(ξ⊗s) = kξ⊗s, ∀ξ ∈ H, s ∈ S

c) F is the Clifford multiplication by the vector-valued function u(x̃, a) which to

x̃ ∈ M̃ associates the unit vector at a pointing towards x̃.

The degree of summability and the computation of the character are handled in the
same way as in Section 5. We shall now close this digression and go back to the
quantum Hall effect.

Real samples and localized states.

When the Fermi level µ lies in a gap I of the spectrum of H the (0-temperature limit
of the) charge carrier density N as given by the formula above, is insensitive to the
variation of µ. In real samples, due to the presence of a small amount of impurities, the
dependence of N on µ is never of this kind, and the parameters µ and N are equivalent
parameters for real samples. However, it introduces an essential new difficulty: since
the spectrum of the energy H is now connected, say equal to [0, +∞[, it is no longer
true on the plateaus of conductivity that the spectral projection Eµ belongs to the
C∗-algebra of continuous functions f(H), f ∈ C0(R), since the characteristic function
of ]−∞, µ] is not continuous on SpecH.

The solution of this difficulty is quite remarkable (cf. [43], [44]) and deserves the
attention of the reader. The qualitative idea from physics is that while the impurities
eliminate the gaps in the spectrum of H, they in fact fill these gaps mostly by electron
states which are localized and do not contribute to the conductivity. This is why one
observes experimentally the plateaus of the conductivity as a function of the Fermi
level. This qualitative idea is put on a rigorous mathematical basis by [39] using [213]
and [212] for realistic models. Now the meaning of the localization of the electron
states with energies in a small interval ]µ − ε, µ + ε[ around the Fermi level µ is the
following:
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Lemma 9. If µ lies in a gap of extended states of H then the characteristic function
Eµ(λ) = (1 if λ ≤ µ ; 0 if λ > µ) is quasicontinuous on SpecH.

We are using here terminology from function theory which we already met in Section
3 when we developed our calculus on S1. Thanks to Proposition 2 of that section we
can adopt the following general notion of quantum calculus.

Definition 10. Let A be a C∗-algebra and (H, F ) a Fredholm module over A. Let
W be the von Neumann algebra weak closure of A. Then an element f ∈ W is called
quasicontinuous if

[F, f ] ∈ K
(i.e. is a compact operator).

It goes without saying that elements of A are called continuous, this referring to the
case when A is commutative so that A = C0(X), with X = SpecA. In the case of
Lemma 9 the C∗-algebra A is the algebra of functions f(H), f ∈ C0(R), in the Hilbert
space L2(R2), and the Fredholm module is the same as in Theorem 8 above. Thus, we
have

H′ = L2(R2)⊗C2 = H+⊕H−.

The representation of f(H) is by f(H)⊗1 =

[
f(H) 0

0 f(H)

]
, and the operator F is

F =

[
0 U

U∗ 0

]
as above.

We shall see that, exactly as above, the Hall conductivity for µ in a gap of extended
states is given by the pairing between the K-homology class of (H′, F, γ) and the
spectral projection Eµ, and is hence an integer : the Fredholm index of the operator
EµUEµ (cf. Proposition 2 of the introduction to this chapter). As above this equality
relies on Proposition 4 of Section 1, i.e. the computation of the character of (H′, F, γ).

Let us now describe how this is done, taking into account the random parameter ω.
This parameter ω belongs to a probability space (Ω, P ), which is the configuration
space for impurities. To the translation invariance of the system corresponds an action
T of the translation group R2 by automorphisms of the probability space (Ω, P ), such
that the magnetic translations U(X) satisfy

U(X) Hω U(X)∗ = HT (X)ω ∀ω ∈ Ω , X ∈ R2.

There is a natural topology on Ω given by the weak topology on L(L2(R2)) pulled back
by the map

ω 7→Vω = (Hω + i)−1 : Ω→L(H).
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Moreover, it is harmless to take the weak closure V (Ω), and hence to assume that Ω is
a compact space. Then the analogue of the C∗-algebra C∗(G,ω) of the periodic case
is the twisted crossed product C∗-algebra

A = C(Ω)oT,c R2.

Recall (cf. Chapter II Appendix C) that any f ∈ Cc(R2, C(Ω)) defines an element of
A which we denote by ∫

fX uX dX,

with the following algebraic rules

uX f u∗X = f ◦ T−1
X ∀X ∈ R2 , ∀f ∈ C(Ω)

uX uY = c(X, Y ) uX+Y ∀X, Y ∈ R2

where c ∈ Z2(R2, U(1)) is the Heisenberg 2-cocycle.

By construction, every p ∈ Ω yields a unitary representation πp of A in L2(R2) given
by

πp

(∫
fX uX dX

)
=

∫
πp(fX) U(X) dX

where U(X) is the magnetic translation operator (1), while πp(f) for f ∈ C(Ω) is the
operator in L2(R2) of multiplication by the restriction of f to the orbit of p

(πp(f)ξ) (Y ) = f (T−Y (p)) ξ(Y ) ∀Y ∈ R2 , ξ ∈ L2(R2).

The C∗-algebra norm on A is given by

‖f‖ = sup
p∈Ω

‖πp(f)‖,

and Cc(R2, C(Ω)) is a dense involutive subalgebra of A (cf. Chapter II Appendix C).

Let τ be the trace on A dual to the probability measure P . It is semifinite and
semicontinuous, and for any element f =

∫
fX uX dX, f ∈ Cc(R2, C(Ω)), one has

τ(f ∗f) =

∫

X

∫

Ω

|f(X, p)|2 dX dp.

If we assume ergodicity of the action T of R2 on (Ω, P ), this trace τ coincides, using
the ergodic theorem, with the trace per unit volume in almost all the representations
πp

τ(f) = LimV→∞
1

|V | TraceV (πp(f)).

Next, the dual action (Chapter II Appendix C Proposition 4) of R2 = R̂2 on A is given
by

αs

(∫
fX uX dX

)
=

∫
fX eis·X uX dX

∀f ∈ Cc(R2, C(Ω)), ∀s ∈ R2.
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As in the periodic case, we get a densely defined cyclic 2-cocycle on A by the formula

τ2(f0, f1, f2) = τ(f0(δ1f1 δ2f2 − δ2f1 δ1f2))

where δj is the derivation δj = (∂jαs)s=0.

This formula continues to make sense when the fj are replaced by elements f (in the
domains of the δi) of the von Neumann algebra W , the weak closure of A in the (type
II) representation associated to the trace τ , such that

τ(δj(f)∗ δj(f)) < ∞.

The analogue of Lemma 7 above is now:

Lemma 11. [43] If µ is in a gap of extended states, then the Hall conductivity σH is
given by

σH =
e2

h

1

2πi
τ2(Eµ, Eµ, Eµ)

where Eµ is the spectral projection of H corresponding to energies smaller than the
Fermi level.

Moreover, the integrality of τ2 on Eµ follows exactly as above using the Fredholm
modules over A given, for any p ∈ Ω, by the representation πp⊗1 of A in H′ =

L2(R2)⊗C2, the same operator F =

[
0 U

U∗ 0

]
, and the Z/2-grading γ =

[
1 0
0 −1

]
. The

only new ingredient is that one computes the integral over Ω of the characters of these
Fredholm modules over A to obtain τ2. The remarkable fact is that the resulting index
formula (which implies the integrality)

1

2πi
τ2(Eµ, Eµ, Eµ) = Index(EµUEµ)p a.e. on Ω

continues to hold for the quasicontinuous projections involved in Lemma 11 (cf. [43],
[44]).

Clearly, all the above discussion of the quantum Hall effect is done in the approxima-
tion which neglects the mutual interaction of the electrons which is supposed to be
responsible for the fractional Hall effect (cf. section β)). There are tentative explana-
tions of the latter effect (cf. [214] and the literature there) based on conformal field
theory, which in particular yield the odd denominators 2k + 1. In order to adapt the
above discussion to the interacting case it is necessary to extend the finite-dimensional
tools used above (cyclic cohomology and finitely summable Fredholm modules) to the
infinite-dimensional situation of an indefinite number of particles, i.e. of quantum field
theory. This extension will be done in the next sections.

We should insist, however, on the infrared nature of the quantum Hall effect or of the
determination of the fine structure constant, as opposed to the ultraviolet nature of the
Fredholm modules associated to supersymmetric quantum field theories in Section 9.
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In the quantum Hall effect it is the differentiable structure of the Brillouin zone, i.e.
of momentum space, which is playing a role.

Remark 12. It ought to be clear to the reader how the construction of the C∗-algebra
A and of the Fredholm modules (H′, F, γ) fits with the example of Penrose tilings in
Chapter II or of foliations, also in Chapter II. The construction of the Fredholm modules
adapts to foliations of compact manifolds with a leaf L of non-positive curvature. The

Hilbert space H is then the tensor product of L2(L̃) by the Spin representation of

Spin(k), k the dimension of the leaves. The C∗-algebra of the foliation acts in L2(L̃)

by the unitary representation πx of Section II.8 α), where x is a chosen origin, x ∈ L̃.

The operator F in L2(L̃)⊗S is given by Clifford multiplication

(Fξ)(y) = u/ (y, x) ξ(y)

where u(y, x) ∈ Tx(L̃) is the unit tangent vector to the geodesic from x to y in L̃.

7. Entire Cyclic Cohomology

The results of Section 1 on the characters of Fredholm modules are limited to the finite-
dimensional case by the hypothesis of finite summability of the modules (Definition 3
of the introduction). This hypothesis does not hold in examples coming from higher
rank Lie groups (Section 5) or quantum field theory, but is replaced by the weaker θ-
summability condition (Definition 4 of the introduction). Exactly as cyclic cohomology
was dictated as the natural receptacle for the characters of finitely summable Fredholm
modules ([102]), the θ-summability condition (in its unbounded form, cf. Section 8)
dictates, as a receptacle for the character, the entire cyclic cohomology ([109]). We
shall first explain this theory and its pairing with K-theory. The construction of the
character ([109] [298]) will be done in Section 8.

7.α Entire cyclic cohomology of Banach algebras. Let A be a unital Banach
algebra over C. Let us recall the construction (Chapter III Section 1) of the fundamen-
tal (b, B) bicomplex of cyclic cohomology. For any integer n ∈ N, one lets Cn(A,A∗)
be the space of continuous (n + 1)-linear forms φ on A. For n < 0 one sets Cn = {0}.
One defines two differentials b, B as follows:

1) b : Cn→Cn+1,

(bφ)(a0, . . . , an+1)

=
n∑

j=0

(−1)j φ(a0, . . . , ajaj+1, . . . , an+1) + (−1)n+1 φ(an+1a0, . . . , an),
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2) B : Cn→Cn−1, Bφ = AB0φ, where

(B0φ)(a0, . . . , an−1)

= φ(1, a0, . . . , an−1)− (−1)n φ(a0, . . . , an−1, 1) ∀φ ∈ Cn,

(Aψ)(a0, . . . , an−1)

=
n−1∑

0

(−1)(n−1)j ψ(aj, aj+1, . . . , aj−1) ∀ψ ∈ Cn−1.

By Lemma 19 of Section III.1 one has b2 = B2 = 0 and bB = −Bb, so that one obtains
a bicomplex (Cn,m; d1, d2), where Cn,m = Cn−m for any n,m ∈ Z,

d1 = (n−m + 1)b : Cn,m→Cn+1,m ; d2 =
B

n−m
: Cn,m→Cn,m+1.

The main lemma (Section III.1 Lemma 25) asserts that the b cohomology of the complex
KerB/=B is zero, so that the spectral sequence associated to the first filtration has
the E2 term equal to 0. Since the bicomplex Cn,m has support in {(n,m); (n+m) ≥ 0}
this spectral sequence does not converge, in general, when we take cochains with finite
support, and by Section III.1 Theorem 29, the cohomology of the bicomplex, when
taken with finite supports, is exactly the periodic cyclic cohomology H∗(A). If we take
cochains with arbitrary supports, without any control of their growth, then by the
above Lemma 25 we get a trivial cohomology. It turns out, however, that provided
we control the growth of ‖φm‖ in a cochain (φ2n) or (φ2n+1) of the (b, B) bicomplex,
we then get the relevant cohomology to analyze infinite-dimensional spaces and cycles.
Because of the periodicity Cn,m→Cn+1,m+1 in the bicomplex (b, B), it is convenient
just to work with

Cev = {(φ2n)n∈N ; φ2n ∈ C2n ∀n ∈ N}
and

Codd = {(φ2n+1)n∈N ; φ2n+1 ∈ C2n+1 ∀n ∈ N}
and the boundary operator ∂ = d1 + d2 which maps Cev to Codd and Codd to Cev. We
shall enforce the following growth condition:

Definition 1. An even ( resp. odd ) cochain (φ2n)n∈N ∈ Cev ( resp. (φ2n+1)n∈N ∈ Codd)
is called entire if the radius of convergence of

∑ ‖φ2n‖zn/n! ( resp.
∑ ‖φ2n+1‖ zn/n!)

is infinity.

Here, for any m and φ ∈ Cm, the norm ‖φ‖ is the Banach space norm

‖φ‖ = sup{|φ(a0, . . . , am)| ; ‖aj‖ ≤ 1}.
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Figure 9. Bicomplex

It follows, in particular, that any entire even cochain (φ2n) ∈ Cev defines an entire
function fφ on the Banach space A by

fφ(x) =
∞∑

n=0

(−1)n φ2n(x, . . . , x)/n!.

Lemma 2. If φ is an even (resp. odd) entire cochain, then so is (d1 + d2)φ = ∂φ.

Proof. For φm ∈ Cm one has ‖bφm‖ ≤ (m + 2)‖φm‖ and ‖B0φm‖ ≤ 2‖φm‖,
‖AB0φm‖ ≤ 2m‖φm‖; thus the conclusion.
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Definition 3. Let A be a Banach algebra. Then the entire cyclic cohomology of A is
the cohomology of the short complex

Cev
ε (A) ←−−→

∂
∂
Codd

ε (A)

of entire cochains in A.

We thus have two groups Hev
ε (A) and Hodd

ε (A). There is an obvious map from H(A)
to Hε(A), where H(A) (Section III.1) is the periodic cyclic cohomology of A. We also
have a natural filtration of Hε by the dimensions of the cochains, where (φ2n) is said
to be of dimension ≤ k if 2n > k implies φ2n = 0. However, unlike what happens for
H, this filtration does not, in general, exhaust all of Hε. In fact, it exhausts exactly
the image of H(A) in Hε(A).

Let us now compute Hε for the simplest case, i.e. when A = C is the trivial Banach
algebra. An element of Cev

ε is given by an infinite sequence (λ2n)n∈N, λ2n ∈ C such
that

∑ |λ2n|(zn/n!) < ∞ for any z and, similarly for Codd
ε . The boundary ∂ = d1 + d2

of (λ2n) is 0, since both b and B are 0 on even cochains. For m odd and φ ∈ C,
φ(a0, . . . , am) = λa0 · · · am one has

(bφ)(a0, . . . , am+1) = λa0 · · · am+1, (Bφ)(a0, . . . , am−1) = 2mλa0 · · · am−1,

thus

(d1φ)(a0, . . . , am+1) = (m + 1)λa0 · · · am+1,

(d2φ)(a0, . . . , am−1) = 2λa0 · · · am−1.

So the boundary ∂(λ) of an odd cochain (λ2n+1) is given by ∂(λ)2n = 2nλ2n−1 +2λ2n+1.
Thus, ∂(λ) = 0 means that λ2n+1 = (−1)nn!λ1, and hence is possible only if λ = 0,
for λ ∈ Codd

ε . Moreover, for any (λ2n) ∈ Cev
ε , the series σ(λ) =

∑∞
0 (−1)n(λ2n/n!) is

convergent and σ(λ) = 0 iff λ ∈ ∂Codd
ε . Thus, we have

Proposition 4. One has Hodd
ε (C) = {0}, and Hev

ε (C) = C with isomorphism given by

σ((φ2n)) =
∞∑

n=0

(−1)n

n!
φ2n(1, . . . , 1).

In order to relate entire cyclic cocycles with an infinite-dimensional version of the cycles
of Section III.1 we need the following normalization condition:

Definition 5. We shall say that a cocycle (φ2n) (resp. (φ2n+1)) is normalized if for
any m one has

(∗) B0φm =
1

m
AB0φm.
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In other words, the cochain B0φm is already cyclic: B0φm ∈ Cm−1
λ , so that (1/m)A(B0φm) =

B0φm. Only the normalized cocycles have a natural interpretation in terms of the uni-
versal differential algebra ΩA.

Lemma 6. For every entire cocycle there is a normalized cohomologous entire cocycle.

We refer to [109] for the original proof, and also to [156].

Remark 7. a) The above definition of entire cyclic cohomology and its pairing with
K-theory (cf. Subsection δ) below) adapt to arbitrary locally convex algebras A over
C as follows: A cochain (φ2n) (resp. (φ2n+1)) is called entire iff for any bounded subset
Σ⊂A there exists C = CΣ < ∞ with

∣∣φ2n(a0, . . . , a2n)
∣∣ ≤ CΣ n! ∀aj ∈ Σ ∀n ∈ N.

Replacing Σ by λ−1Σ for λ > 0, we see that for any bounded subset Σ of A and λ > 0
there exists C = CΣ,λ such that

∣∣φ(a0, . . . , a2n)
∣∣ ≤ C λ2n n! ∀aj ∈ Σ , ∀n ∈ N.

b) Let A be an algebra over C. Then, with the finest locally convex topology, A is a

locally convex algebra, so that its entire cyclic cohomology is well-defined by a). The
bounded subsets of A are convex hulls of finite subsets Σ. Thus, a cochain φ is entire
iff for any finite subset Σ of A there exists C = CΣ < ∞ such that

∣∣φ(a0, . . . , a2n)
∣∣ ≤ C n! ∀aj ∈ Σ , ∀n ∈ N.

c) We have used the (d1, d2) bicomplex of Section III.1 Theorem 29 so that S = d1d
−1
2 ,

and the pairing of K0 with Hev
ε is given by the function fφ whose existence fixes the

growth condition. The trivial change to the (b, B) bicomplex is summarized in the
following table.
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(b, B) bicomplex (d1, d2) bicomplex

b : Cn→Cn+1 (d1, d2) bicomplex

B : Cn→Cn−1 d2 = 1
n
B

S = n(n + 1)bB−1 S = d1d
−1
2

(φ2n) ψ2n = (2n)! φ2n

(φ2n+1) ψ2n+1 = (2n + 1)! φ2n+1

‖φ2n‖ ≤ Cλ λ2n/n! ‖ψ2n‖ ≤ Cλ λ2n n!

‖φ2n+1‖ ≤ Cλ λ2n/n! ‖ψ2n+1‖ ≤ Cλ λ2n n!

∑
(−1)n (2n)!

n!
φ2n (x, . . . , x)

∑ (−1)n

n!
ψ2n(x, . . . , x)

7.β Infinite-dimensional cycles. In Chapter III we took as a starting point for
cyclic cohomology the notion of a cycle of dimension n, given by a graded differential
algebra (Ω, d) and a homogeneous linear form

∫
of degree n such that

1)
∫

ω1ω2 = (−1)k1k2
∫

ω2ω1 ∀ωj ∈ Ωkj , j = 1, 2

2)
∫

dω = 0 ∀ω ∈ Ωn−1.

In this section we shall show that in order to handle the infinite-dimensional case one
just needs to replace the homogeneous conditions 1) and 2) by the inhomogeneous
condition

∫
(ω1ω2 − (−1)k1k2 ω2ω1) = (−1)k1

∫
dω1 dω2 ∀ωj ∈ Ωkj .

We shall first work purely algebraically, and then formulate the growth condition of
entire cocycles in terms of Ω.

We shall say that a linear form µ on a differential graded algebra (Ω, d) is even (resp.
odd) iff µ(ω) = 0 ∀ω ∈ Ωk, k odd (resp. k even).

The following is the infinite-dimensional analogue of Proposition 4 in Chapter III Sec-
tion 1.
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Proposition 8. [109]

a) Let A be an algebra over C, (Ω, d) a graded differential algebra such that Ω0 =
A and µ an even (resp. odd) linear form on Ω satisfying

(4.36) µ(ω1ω2 − (−1)k1k2 ω2ω1) = (−1)k1 µ(dω1 dω2) ∀ωj ∈ Ωkj ,

and µ(da) = 0 ∀a ∈ A.

Then the equality

(4.37) ϕ2n(a0, . . . , a2n) = tn µ(a0da1 · · · da2n) ∀aj ∈ A
where tn = (−1)n (2n− 1) . . . 3.1, defines a normalized cocycle (ϕ2n) in the
(d1, d2) bicomplex (resp. ϕ2n+1 (a0, a1, . . . , a2n+1) = t′n µ(a0da1 · · · da2n+1),
with t′n = (−1)n 2n(2n− 2) · · · 4 · 2).

b) Let (ϕ2n) (resp. (ϕ2n+1)) be a normalized cocycle in the (d1, d2) bicomplex.
Then the following equalities define linear forms µ on the universal differential
algebra Ω∗A that satisfy (3), (4), and (5)

µ
(
(a0 + λ1)da1 · · · da2n

)

= t−1
n

(
ϕ2n(a0, . . . , a2n) + λ(B0 ϕ2n)(a1, . . . , a2n)

)

µ
(
(a0 + λ1)da1 · · · da2n+1

)

= t′n
−1 (

ϕ2n+1(a
0, . . . , a2n+1) + λ(B0ϕ2n+1)(a

1, . . . , a2n+1)
)

respectively, ∀aj ∈ A, λ ∈ C.

Proof. b) Let us check the even case. We let ψ2n = t−1
n ϕ2n so that B0 ψ2n is cyclic

(use Definition 5) and one has

B0 ψ2n = b ψ2n−2 ∀n.

We shall first show that for any a ∈ A, da belongs to the centralizer of the functional
µ defined by (5). The equality

µ(da(da1 · · · da2n−1)) = (−1)2n−1 µ((da1 · · · da2n−1)da)

follows from the cyclicity of B0ψ2n. One has B0ψ2n = bψ2n−2 so that bB0ψ2n = 0, and
also B0bψ2n = 0, since bψ2n is cyclic. Thus, the equality B0b+ b′B0 = D (Section III.1)
entails that

ψ2n(a0, . . . , a2n−1, a) − (−1)2n ψ2n(a, a0, . . . , a2n−1)

+ (−1)2n B0ψ2n(aa0, a1, . . . , a2n−1) = 0,

i.e. that
µ(da(a0da1 · · · da2n−1)) = (−1)2n−1 µ((a0da1 · · · da2n−1)da).

Thus, it follows that any dω belongs to the centralizer of µ. Let us now show that

(4.38) µ(aω − ωa) = µ(da dω) ∀a ∈ A.
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With ω = a0da1 · · · da2n one has

µ(ωa) = µ(a0(da1 · · · da2n)a) = ψ2n(a0, a1, . . . , a2n−1, a2na)

− ψ2n(a0, a1, . . . , a2n−1a2n, a) + · · ·+
+ (−1)j ψ2n(a0, . . . , a2n−ja2n−j+1, . . . , a) + · · ·+
+ (−1)2n ψ2n(a0a1, . . . , a).

Thus

µ(ωa− aω) = bψ2n(a0, a1, . . . , a2n, a) = B0 ψ2n+2(a
0, . . . , a2n, a)

= µ(dω da) = −µ(da dω).

Finally, we just need to check that if ω1 = a dω is of degree k1 with a ∈ A, and ω2 is
of degree k2, one has (3). Since dω is in the centralizer of µ we have

µ(ω1ω2 − (−1)k1k2 ω2ω1) = µ(a dω ω2 − (−1)k1k2 ω2 a dω)

= µ(a dω ω2 − dω(ω2 a)).

Using (6) we get

µ(ω1ω2 − (−1)k1k2 ω2ω1) = µ(da d(dωω2)) = (−1)k1 µ(dω1 dω2).

The above proof shows that, conversely, any functional µ on Ω∗A which is even (resp.
odd) and satisfies (3) defines an even (resp. odd) normalized cochain (ψ2n) (resp.
(ψ2n+1)) such that bψm = B0ψm+2 for any m, by the equality

ψm(a0, . . . , am) = µ(a0 da1 · · · dam).

Thus, since Ω∗A is the universal differential graded algebra over A, we get a).

Let us now assume that A is a Banach algebra, and endow the universal differential
algebra Ω∗A with the norms ([Arv3])

‖
∞∑
0

ωk‖r =
∞∑
0

rk‖ωk‖π

where ‖ ‖π is the projective tensor product norm on

Ωk = Ã⊗A⊗ . . .⊗A.

Theorem 9. The equalities (4) and (5) of Proposition 8 establish a canonical bijection
between normalized entire cocycles on A and linear forms on Ω∗A satisfying (3) and
continuous for all the norms ‖ ‖r.

Using Proposition 8 the proof is immediate.



7. ENTIRE CYCLIC COHOMOLOGY 383

The natural topology on Ω∗A provided by Theorem 9 is not the projective limit of the
normed spaces ‖ ‖r, r→∞ as in [16]. It is the inductive limit, for r→0,

lim−→ (Ω∗A, ‖ ‖r) .

For each r > 0 the completion of Ω∗A for the norm ‖ ‖r is a Banach algebra Ωr, and
for r′ < r the natural homomorphism Ωr→Ωr′ , which is the identity on Ω∗A, is norm
decreasing. Let

Ωε(A) = lim−→ Ωr(A) , r > 0.

By construction, Ωε(A) is a locally convex algebra and the homomorphism

ε : Ωε(A)→Ã

given on each Ωr by the augmentation
∑∞

0 ωn→ω0 of Ω∗A, is continuous.

Proposition 10.

1) A linear form µ on Ω∗A is continuous for all the norms ‖ ‖r, r > 0 iff it is
continuous on Ωε(A).

2) Let J = Kerε, ε : Ωε(A)→Ã. Then any element ω ∈ J is quasinilpotent, i.e.
λ1− ω is invertible in Ωε(A) for any λ 6= 0.

Proof. 1) is clear.

2) One has ω ∈ Ωr for some r > 0 and ω =
∑∞

1 ωn, ωn ∈ ΩnA with
∑

rn ‖ωn‖π < ∞.
Replacing r by r′ ¿ r, one can assume that ‖λ−1ω‖′r < 1, and the result follows since
Ωr′ is a Banach algebra.

Finally Ωε(A) is, by construction, a Z/2-graded differential algebra, since the differen-
tial d of Ω∗A is continuous for all the norms ‖ ‖r. The range of d is contained in the
ideal J of Proposition 10.

7.γ Traces on QA and EA. In this section we shall reformulate Theorem 8 of
Subsection β) in terms of a deformed algebra structure on Ω∗A which yields the Cuntz
algebra QA ([146]). This procedure is similar to the one used by Fedosov [Fed] in the
context of manifolds. The general deformation procedure is:

Lemma 11. [117] Let (Ω, d) be a differential Z/2-graded algebra and λ ∈ C. The
following equalities define an associative bilinear product on Ω = Ωev + Ωodd:

ω1 ·λ ω2 = ω1ω2 + λ ω1 dω2 if ω1 ∈ Ωodd , ω2 ∈ Ω

ω1 ·λ ω2 = ω1ω2 if ω1 ∈ Ωev , ω2 ∈ Ω.

It is easy to check directly (cf. [117]). The corresponding algebra is equal to Ω for
λ = 0 and is independent of λ for λ 6= 0.
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The Z/2-grading of Ω, i.e. the involutive automorphism

σ0(ω) = (−1)deg ω ω,

extends to a Z/2-grading of the deformed algebra by the equality

σλ(ω) = (−1)deg ω (ω − λ dω).

One checks directly that σλ is an involutive automorphism of the deformed product.
We then have the following natural interpretation of condition (3) of Subsection β)
above, in terms of the deformed product:

Lemma 12. [109] Let (Ω, d, ·λ) be as in Lemma 11 and σλ be the Z/2-grading of the
algebra (Ω, ·λ). For any odd linear form τ on (Ω, ·λ, σλ) let τ̃ be its restriction to Ωodd

extended as 0 on Ωev. Then the map τ→τ̃ is a canonical bijection between odd traces
on (Ω, ·λ, σλ) and odd linear forms on (Ω, d) such that

(4.39) τ̃(ω1ω2 − (−1)k1k2 ω2ω1) =
1

2
λ2 (−1)k1 τ̃(dω1 dω2) ∀ωj ∈ Ωkj .

Proof. First, let τ be an odd trace on (Ω, ·λ) and τ̃ the corresponding linear form on
Ω. To check (3′) one can assume that ω1 ∈ Ωodd, ω2 ∈ Ωev. Then the equalities

τ(ω1 ·λ ω2) = τ(ω2 ·λ ω1)

τ(ω) =
1

2
τ(ω − σλ(ω))

for ω = ω1 dω2, imply that

τ(ω1 ·λ ω2 − λω)− τ(ω2 ·λ ω1) = −λ2

2
τ(dω1 dω2)

which gives the equality (3′).

Conversely, let µ be an odd linear form on Ω satisfying (3′). Then define the linear
form τ on (Ω, ·λ) by

τ(ω) = µ(ω) ∀ω ∈ Ωodd , τ(ω) =
λ

2
µ(dω) ∀ω ∈ Ωev.

By construction, µ vanishes on Ωev and is the restriction of τ to Ωodd, thus µ = τ̃ . Let
us check that τ ◦ σλ = −τ . One has for ω ∈ Ωev,

σλ(ω) = ω − λ dω ,

τ(σλ(ω)) = τ(ω − λ dω) =
λ

2
µ(dω)− λ µ(dω) = −λ

2
µ(dω) = −τ(ω).

For ω ∈ Ωodd one has σλ(ω) = −ω + λ dω, τ(σλ(ω)) = −τ(ω) + λ τ(dω) = −τ(ω) since
d2 = 0.

Using (3′) one checks in a similar way that τ is a trace.
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The above Lemma 12 has an analogue in the even case. One introduces for that purpose
the algebra Eλ which is the crossed product of (Ω, ·λ) by its Z/2-grading automorphism
σλ

Eλ = (Ω, ·λ)oσλ
Z/2.

We endow Eλ with the dual Z/2-grading σ̂λ. One has σ̂λ(F ) = −F , σ̂λ(ω) = ω ∀ω ∈ Ω,
where F , with F 2 = 1, is the element of the crossed product associated to the generator
of Z/2.

The direct analogue of Lemma 12 is then ([109]):

Lemma 13. Let Eλ, σ̂λ, and F be as above. For any odd linear form τ on Eλ let
τ̃ be the restriction of ω→τ(Fω) to Ωev extended by 0 on Ωodd. The map τ→τ̃ is a
canonical bijection between odd traces on Eλ and even linear forms on (Ω, d) satisfying
condition (3′) of Lemma 12.

The proof is similar to that of Lemma 12.

Notice that the above lemmas have been proved in the case of arbitrary Z/2-graded
differential algebras, so that we can now apply them to the differential algebra Ωε(A) of
Subsection β) and Theorem 9. To match conditions (3) and (3′) we shall take λ =

√
2,

and for reasons which will soon become clear we shall denote by Qε(A) the Z/2-graded

algebra obtained from (Ωε(A), d) by Lemma 11. Similarly, we let Q̂ε(A) be obtained
as above as the crossed product of Qε(A) by its Z/2-grading σ, σ2 = 1.

Both Qε and Q̂ε are locally convex algebras, and Theorem 9 together with Lemma 12
(resp. 13) yields a canonical bijection between continuous odd traces τ on Qε (resp.

Q̂ε) and normalized odd (resp. even) entire cocycles on the Banach algebra A.

It remains now to identify the universal algebras Qε(A), Q̂ε(A), and their topologies.

Let us first proceed purely algebraically and denote by QA the Z/2-graded algebra
obtained from (ΩA, d) using the deformation of Lemma 11 for λ =

√
2. Also we let

Q̂A be the crossed product of QA by its Z/2-grading σ.

Proposition 14. [117] Let A be an algebra over C.

a) The following pair of homomorphisms from Ã to QA give an isomorphism of

the free product Ã ∗C Ã with QA
ρ1(a) = a ∈ Ω0A ∀a ∈ Ã ; ρ2(a) = a−

√
2 da ∀a ∈ Ã.

The Z/2-grading σ of QA is the automorphism which exchanges ρ1(a) with
ρ2(a) for any a ∈ A.
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b) The following pair of homomorphisms from Ã and Z/2 to Q̂A give an isomor-

phism ρ′ : Ã ∗C C(Z/2)→Q̂A
ρ′1(a) = a ∈ Ω0A ∀a ∈ Ã ; ρ′2(n) = F n ∀n ∈ Z/2.

The Z/2-grading σ′ of Q̂A satisfies σ′ ◦ ρ′1 = ρ′1, σ′(F ) = −F .

We shall first use the above isomorphisms to translate the equality (4) of Proposition

8 in terms of QA and Q̂A. As in [146] one lets, for a ∈ Ã, qa be the difference

qa = ρ1(a)− ρ2(a) ∈ QA.

We shall also omit ρ1 when no confusion can arise, i.e. identify Ã as the subalgebra

ρ1(Ã) of QA.

Using Lemmas 12 and 13 we translate Proposition 8 as follows:

Proposition 15.

a) Let τ be an odd trace on QA such that τ(qa) = 0 ∀a ∈ A. Then the following
equality defines a normalized cocycle (ϕ2n+1) in the (d1, d2) bicomplex:

ϕ2n+1(a
0, . . . , a2n+1) = (−1)n n! τ(a0qa1 · · · qa2n+1) ∀aj ∈ A.

b) Let τ be an odd trace on Q̂A. Then the following equality defines a normalized
cocycle (ϕ2n) in the (d1, d2) bicomplex:

ϕ2n(a0, . . . , a2n) = Γ

(
n +

1

2

)
τ

(
F a0[F, a1] · · · [F, a2n]

) ∀aj ∈ A

Let us also mention a variant of a). The algebra
̂̂
QA = Q̂Aoσ′ Z/2 which is the crossed

product of Q̂A by its Z/2-grading σ′, is isomorphic to M2(QA). It has a very simple

presentation, as in 14b). Indeed it is generated by a copy of Ã and a pair of elements

F , and γ of square 1 such that c) γa = aγ ∀a ∈ Ã , γF = −Fγ and γ2 = F 2 = 1.

These relations constitute a presentation of
̂̂
QA.

Then 15a) can be written as follows.

Corollary 16. Let τ be a trace on
̂̂
QA such that τ(γa) = 0 ∀a ∈ A. Then the

following equality defines a normalized cocycle in the (d1, d2) bicomplex:

ϕ2n+1(a
0, . . . , a2n+1) = n! τ

(
γF a0[F, a1] · · · [F, a2n+1]

) ∀aj ∈ A.

In [117] J. Cuntz and the author give the general form of odd traces on both QA and

Q̂A, so it might appear at first sight that such traces are easy to construct and are not
interesting from a cohomological point of view. It turns out, however, that the explicit
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construction in [117] is the translation of the triviality of the first spectral sequence
of the (b, B) bicomplex (Chapter III). Thus, when A is a Banach algebra, this explicit
construction becomes incompatible with continuity and does not exclude the existence
of nontrivial traces.

Let A be a Banach algebra. We endow the algebra QA with the locally convex topology
inherited from the inductive limit topology of ΩA (Theorem 9) by the deformation
isomorphism (Lemma 11). We let QεA correspond in the same way to ΩεA. Thus,
QA⊂QεA is a subalgebra of QεA and its topology is the restriction of the topology of
QεA. Continuous (odd) traces on both algebras correspond bijectively to each other
by restriction and extension by continuity.

The crossed products Q̂A,
̂̂
QA, Q̂εA, and

̂̂
QεA inherit their topologies in a canonical

way since they are crossed products by finite groups. Theorem 9 now reads as follows:

Theorem 17. Let A be a Banach algebra. The equalities of Proposition 15 and

Corollary 16 establish a canonical bijection between continuous odd traces on Q̂εA (resp.

on
̂̂
QεA vanishing on γA) and entire normalized even (resp. odd) cocycles on A.

In the statement one can use either QA or QεA. The structure of the locally convex
algebra QεA is very similar to that of ΩεA as described in Proposition 10. For a start,
one also has the augmentation morphism

ε : QεA→Ã.

It is given by the same formula as ε : ΩεA→Ã, and the fact that it is a homomorphism
is insensitive to the deformation of the product (Lemma 11). In terms of the difference
map q on QεA one has ε ◦ q = 0.

Proposition 18. Let J = Kerε, ε : QεA→Ã. Any element x ∈ J is quasinilpotent,
i.e. λ1− x is invertible in QεA for any λ 6= 0.

Thus, QεA is a quasinilpotent extension of A. This fact plays a decisive role in the
construction of the character in Section 8 below.

7.δ Pairing with K0(A). The computation (Proposition 4) of the entire cyclic
cohomology of C yields a natural pairing of Hev

ε (A) with K0(A) for any Banach algebra
A. We developed it in [109] for the normalized cocycles (Definition 5) which by Lemma
6 is not a restriction on the pairing.

Lemma 19. Let (φ2n)n∈N be a normalized entire cocycle on A. Then if φ ∈ =∂⊂Cev
ε ,

one has ∞∑
0

(−1)n

n!
φ2n (e, . . . , e) = 0
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for any idempotent e ∈ A.

Proof. Let (ψ2n+1) ∈ Codd
ε be such that ∂ψ = φ. Thus, for each n,

φ2n = 2n bψ2n−1 +
1

2n + 1
Bψ2n+1.

Now, since φ is normalized, B0φ2n ∈ C2n
λ is cyclic so that

B0bψ2n−1 =
1

2n
B0φ2n

is cyclic for any n. Let

αn = (B0ψ2n+1)(e, . . . , e) =
1

2n + 1
Bψ2n+1(e, . . . , e).

One has, since e2 = e, that

αn = (b′B0ψ2n+1)(e, . . . , e) = ((D −B0b)ψ2n+1)(e, . . . , e)

= (Dψ2n+1)(e, . . . , e) = 2ψ2n+1(e, . . . , e).

Also

(bψ2n+1)(e, . . . , e) = ψ2n+1(e, . . . , e) =
1

2
αn.

Thus

φ2n(e, . . . , e) = 2n
1

2
αn−1 + αn,

so that
∞∑
0

(−1)n

n!
φ2n(e, . . . , e) =

∞∑
0

(−1)n

n!
(nαn−1 + αn) = 0.

Next, let q ∈ N and Aq = Mq⊗A = Mq(A) be the Banach algebra of q×q matrices
over A. For any φ ∈ Cm, let φq be the natural extension φq = Tr#φ of φ to Mq(A) (cf.
Section III.1), i.e. by definition

φq(µ0⊗a0, . . . , µm⊗am) = Trace(µ0 · · ·µm) φ(a0, . . . , am),

where µj ∈ Mq(C) and aj ∈ A.

Lemma 20.

1) For any entire even (resp. odd) cochain (φ2n) (resp. (φ2n+1)) on A the cochain
(φq

2n) (resp. (φq
2n+1)) on Mq(A) is also entire.

2) The map φ→φq is a morphism of the complexes of entire cochains.
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Proof. 1) One has an inequality of the form ‖φq‖ ≤ qm‖φ‖ for φ ∈ Cm, hence the
result.

2) cf. Section III.1.

Theorem 21. Let φ = (φ2n)n∈N be an entire normalized cocycle on A, and fφ,

fφ(x) =
∞∑

n=0

(−1)n 1

n!
φq

2n(x, . . . , x)

the corresponding entire function on M∞(A). Then the restriction of fφ to the idem-
potents e = e2, e ∈ M∞(A), defines an additive map K0(A)→C. The value 〈φ, [e]〉 of
fφ(e) only depends upon the class of φ in Hev

ε (A).

Proof. Replacing A by Ã and φ2n by φ̃2n leads to

φ̃2n(x0 + λ01, . . . , x2n + λ2n1) = φ2n(x0, . . . , x2n) + λ0B0φ2n(x1, . . . , x2n),

so that one can assume that each φ2n vanishes if some xi, i > 0, is equal to 1. We
just need to show that the value of fφ on e ∈ Proj Mq(A) only depends upon the
connected component of e in Proj Mq(A). Since the map φ→φq is a morphism of
complexes, we can assume that q = 1. Let t→e(t) be a C1 map of [0, 1] to Proj A.
We want to show that (d/dt)fφ(e(t)) = 0. One has (d/dt)(e(t)) = [a(t), e(t)], where
a(t) = (1 − 2e(t))(d/dt)e(t). We just need to compute (d/dt)fφ(e(t)) for t = 0, and
therefore we let e = e(0) and a = a(0). We have

(
d

dt
φ2n (e(t), . . . , e(t))

)

t=0

=
2n+1∑

0

φ2n(e, . . . , [a, e], . . . e).

Thus, by Lemma 19, in order to show that the above derivative vanishes, it is enough
to prove that the cocycle (φ′2n)n∈N is a coboundary, with

φ′2n(x0, . . . , x2n) =
2n+1∑
j=0

φ2n(x0, . . . , [a, xj], . . . , x2n).

Let

ψ2n−1(x
0, . . . , x2n−1) =

1

2n

2n−1∑
j=0

(−1)j+1 ψ2n(x0, . . . , xj, a, xj+1, . . . , x2n−1).

Using the equality Bψ2n−1 = Aθ2n−2, where

θ2n−2(x
0, . . . , x2n−2) = (B0φ2n)(a, x0, . . . , x2n−2),

one checks that for any n one has

d1 ψ2n−1 + d2 ψ2n+1 = φ′2n.
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In terms of the topological algebra Q̂εA (cf. Proposition 10), this pairing has a re-
markable expression.

Theorem 22. [109] Let τ be a continuous odd trace on Q̂εA. Then the map of K0(A)
to C given by Theorem 21 and the entire even cocycle associated to τ is obtained by the
formula

e ∈ Proj A 7→ τ

(
F

e√
1− (qe)2

)
.

Proof. Up to an overall normalization constant, the entire cocycle φ associated to τ
has components φ2n given by

φ2n(a0, . . . , a2n) = (−1)n 2−n(2n− 1) · · · 3 · 1 τ(Fa0q(a1) · · · q(a2n)).

Thus, the result follows from the formula giving fφ.

Remark 23. 1) The normalization condition for the cocycle φ in Lemma 19 and
Theorem 21 can be removed (cf. [226]) by the following minor modification of the
formula of Lemma 19

∞∑
n=0

(−1)n

n!
φ2n

(
e− 1

2
, e, e, . . . , e

)
.

2) When A is a C∗-algebra then EA has a natural (but not complete) C∗-algebra

norm which defines a stronger topology than the one used in Theorem 14. There are,
however, interesting continuous traces on EA for the C∗-norm, which are used in [129].

3) The above pairing and Theorem 21 apply without change to the case of arbitrary
algebras over C, using Remark 7b to define entire cyclic cohomology in that generality.

7.ε Entire cyclic cohomology of S1. By Theorem 26 of Section III.1 the peri-
odic cyclic cohomology H∗(A) of an algebra A with finite Hochschild dimension n is
exhausted by the image in H∗(A) of the cyclic cohomology groups HCq(A), q ≤ n.
In order to obtain a similar result for entire cyclic cohomology (either using Remark
7b or assuming that A is a Banach algebra), one needs to construct a homotopy σk,
k > n, of the bar resolution, with good control on the size of σk for large k. This has
been done in full generality in ([348]. We shall do this here for the algebra A of Lau-
rent polynomials, and compute its entire cyclic cohomology (as defined in Remark 7b).
This will, in particular, give the analogue of Theorem 21 for the odd case. We shall
then explicitly compute the map from entire cyclic cohomology of function algebras A
over S1 to the de Rham homology of S1 and interpret the formulas as deformations of

the algebra Q̂εA. We obtained these results by direct calculations but they also follow
from general results on quasifree algebras ([155] [157]).
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Let us first recall that given an algebra A, the standard bar resolution of the bimodule
A over B = A⊗Ao is given by the acyclic chain complex (Mk, b)

Mk = (A⊗Ao)⊗A⊗k

bk((1⊗1)⊗a1⊗ . . .⊗ak) = (a1⊗1)⊗(a2⊗ . . .⊗ak)

+
k−1∑
j=1

(−1)j (1⊗1)⊗a1⊗ . . .⊗ajaj+1⊗ . . .⊗ak

+ (−1)k (1⊗ao
k)⊗(a1⊗ . . .⊗ak−1) ∀aj ∈ A,

which suffices to define bk as a B-module map from Mk to Mk−1 (cf. Chapter III).

In the topological context (cf. Chapter III Appendix B) the above tensor products are
π-tensor products of locally convex vector spaces.

Let us take for A an algebra of functions in one complex variable z. Since A is
commutative, we can ignore, except for notational convenience, the distinction between
A and Ao, and consider any element f ∈ Mk = A⊗Ao⊗A⊗k as a function of k + 2
variables

f(z, z0, z1, . . . , zk) ∈ C.

We do not yet specify the domain of the complex variables nor the regularity of f , but
one can have in mind the case of Laurent polynomials A = C[z, z−1].

Let us define a B-module map σn : Mn→Mn+1, n ≥ 1 by

(σn f)(z, z0, z1, . . . , zn+1) = (−1)n+1 f(z, z0, z1, . . . , zn)

+ (−1)n zn+1 − z0

zn − z0

(
f(z, z0, z1, . . . , zn−1, zn)− f(z, z0, z1, . . . , zn−1, z

0)
)
.

Lemma 24. For n > 1 one has bn+1 σn + σn−1 bn = idn.

For g ∈Mn one has

(bn g)(z, z0, z1, . . . , zn−1) = g(z, z0, z, z1, . . . , zn−1)

+
n−1∑
j=1

(−1)j g(z, z0, z1, . . . , zj, zj, . . . , zn−1)

+ (−1)n g(z, z0, z1, . . . , zn−1, z
0).

Using this equality one computes (bn+1 σn + σn−1 bn)f and gets the desired equality.

Theorem 25. Let A = C[z, z−1] be the algebra of Laurent polynomials. Then its
(algebraic) entire cyclic cohomology is given by

Hev
ε (A) = C , Hodd

ε (A) = C
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with generators given by the cyclic cocycles

τ0(f) =

∫
f(z) dz , τ1(f

0, f 1) =

∫
f 0 df 1.

We shall sketch the proof and at the same time introduce useful notation for the general
case. We first specialize the general homotopy σ of Lemma 24 to the bimodule A∗ over
A, which yields linear maps

αn : Cn+1(A,A∗)→Cn(A,A∗)

such that αn b + b αn−1 = id ∀n > 1.

The transposed map αt
n : A⊗n→A⊗(n+1) is given by

(αt
nf)(z0, . . . , zn+1) = (−1)n+1 f(z0, . . . , zn)

+ (−1)n zn+1 − z0

zn − z0

(f(z0, . . . , zn−1, zn)− f(z0, . . . , zn−1, z0)) .

Given a cocycle (we take it odd for definiteness) (ϕ2k+1)k∈N in the (b, B) bicomplex
(Chapter III Section 1) one produces a cohomologous cocycle (ϕ′2k+1)k∈N with ϕ′2k+1 =
0 ∀k > 0 by adding to ϕ the coboundary of the cochain (ψ2k)k∈N whose components
are given using the homotopy α by

ψ2 = α ϕ3 + αBα ϕ5 + . . .

ψ2k =
∞∑

m=0

α(Bα)m ϕ2m+2k+1.

These formulae are standard homotopy formulae for cocycles with finite support in
any bicomplex, and the only difficulty we have is to show that they continue to make
sense for entire cocycles which have arbitrary supports. Since we are dealing with the
algebraic form of entire cohomology (Remark 7b) and use the (b, B) bicomplex instead
of the equivalent (d1, d2) bicomplex, the growth condition on our cochains is:

“For any finite subset Σ⊂A there exists C = CΣ such that∣∣ϕ2k+1(a
0, . . . , a2k+1)

∣∣ ≤ C (k!)−1 ∀aj ∈ Σ.”

Given a finite subset Σ of the algebra A of Laurent polynomials, we let d(Σ) be the

maximal degree of elements of Σ, so that any f ∈ Σ can be written as
∑d

j=−d fj zj.

The estimate on the homotopy α which allows one to complete the proof of Theorem
25 is the following:

Lemma 26.

a) Let f ∈ A⊗(n+1) be a Laurent polynomial of degree at most d in each variable
zj; then αt

n Bt f ∈ A⊗(n+1) has the same property.
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b) Let ‖ ‖1 be the `1 norm on A⊗n for any n so that∥∥∥
∑

λi0...in zi0
0 · · · zin

n

∥∥∥ =
∑

|λi0...in|.
Then if the degree of f is less than d, one has∥∥αt

n Bt
0 f

∥∥
1
≤ (2d + 2)‖f‖1.

Proof. Since the cyclic permutations do not change the degree, it is enough to prove
a) for αt

n Bt
0 f . One has

(Bt
0 f)(z0, . . . , zn+1) = f(z1, . . . , zn+1)− (−1)n f(z0, . . . , zn)

so that

(αt
n+1 Bt

0 f)(z0, . . . , zn+1, zn+2) = (−1)n+2 (Bt
0 f)(z0, . . . , zn+1)

+ (−1)n+1 zn+2 − z0

zn+1 − z0

(f(z1, . . . , zn+1)− f(z1, . . . , zn, z0)) .

The conclusion is clearly true for (Bt
0 f)(z0, . . . , zn+1), and we just need to deal with

the other term. Also we may assume that f is of the form

f(z0, . . . , zn) = h(z0, . . . , zn−1) zq
n with |q| ≤ d.

We then only have to evaluate the Laurent polynomial

zn+2 − z0

zn+1 − z0

(zq
n+1 − zq

0).

For q > 0 we get
(zn+2 − z0)

(
zq−1

n+1 + zq−2
n+1 z0 + . . . + zq−1

0

)
.

For q < 0, q = −p, we get

(zn+2 − z0)
(
zq

n+1 z−1
0 + zq+1

n+1 z−2
0 + . . . + z−1

n+1 zq
0

)
.

In both cases we check that the degree is less than d, which proves a). We also check
that the `1 norm of the right hand side satisfies the inequality b).

We can now complete the proof of Theorem 25. First, the formula

ψ2k =
∞∑

m=0

α(Bα)m ϕ2m+2k+1

is convergent. Indeed, given a finite subset Σ of A, there exists by hypothesis C = CΣ

such that ∣∣ϕ2n+1 (a0, . . . , a2n+1)
∣∣ ≤ C (n!)−1 ∀aj ∈ Σ.

Thus, taking for Σ the monomials λ−1 zq, |q| ≤ d, it follows that for any Laurent
polynomials fj of degree less than d one has

|ϕ2n+1(f0, . . . , f2n+1)| ≤ Cλ,d
λ2n+2

n!

2n+1∏
j=0

‖fj‖1.
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Using Lemma 26 and the equality B = AB0, we thus get

|(Bα)mϕ2m+2k+1 (f0, . . . , f2k+1)|

≤ Cλ,d
λ2m+2k+2

(m + k)!
(2d + 2)m

m∏
j=1

(2k + 2j)
2k+1∏
j=0

‖fj‖1

for any fj ∈ A of degree less than d.

Taking λ small enough thus gives a constant Cd such that

|((Bα)m ϕ2m+2k+1) (f0, . . . , f2k+1)| ≤ Cd 2−m(k!)−1

2k+1∏
j=0

‖fj‖1

for any fj ∈ A of degree less than d.

This shows the desired convergence and that (ψ2k) is an entire cochain.

As an easy corollary of Theorem 25 we get for any locally convex algebra A a pairing
between K1(A) and Hodd

ε (A). Indeed, any invertible element u ∈ GLn(A) determines
a homomorphism of the algebra A of Laurent polynomials

ρu : A→Mn(A),

and the pull-back ρ∗u ϕ of any odd entire cocycle ϕ on A is cohomologous to a multiple
λ τ1 of τ1. One sets

〈u, ϕ〉 = λ.

The explicit formula for λ follows from the above proof, but was first obtained in [155]
(cf. also [223]).

Corollary 27. Let A be a locally convex algebra. The following equality defines a
pairing between K1(A) and Hodd

ε (A)

〈u, ϕ〉 = (2πi)−1/2

∞∑
0

(−1)m m! ϕq
2m+1(u

−1, u, . . . , u−1, u)

∀u ∈ GLq(Ã)⊂Mq(Ã) and any normalized cocycle ϕ in the (b, B) bicomplex.

The notation ϕq was introduced above in Lemma 20. The above pairing agrees with
the pairing defined in Proposition 3.3 of Chapter III using the natural inclusion of
HCodd(A) in Hodd

ε (A) (cf. Remark 30 a in Section III.1 for the signs).

We shall now go much further and compute explicitly, given an entire cocycle (ϕ2n+1)
on A = CZ as in Theorem 25, the entire cochain ψ = (ψ2n) such that

ϕ2n+1 = b ψ2n + B ψ2n+2 ∀n ≥ 1.

The initial formula for ψ2k which we have to simplify is

ψ2k = α ϕ2k+1 + α(Bα) ϕ2k+3 + · · · .



7. ENTIRE CYCLIC COHOMOLOGY 395

In order to simplify the computation we shall assume that

(∗) ϕ2n+1(f
0, . . . , f 2n+1) = 0 if some f j = 1 for j 6= 0.

This is a weak normalization condition. At the level of chains, i.e. of A⊗(n+1), it means
that we can ignore any function f(z0, . . . , zn) which is independent of some zj, j 6= 0.
This simplifies the formula for the map αt

n Bt
0 of Lemma 26, which now gives

(
αt

n Bt
0

)
f(z0, . . . , zn+1) = (−1)n zn+1

f(z1, . . . , zn)− f(z1, . . . , zn−1, z0)

zn − z0

for any f ∈ A⊗(n+1).

Thus, αt
n Bt

0 is , essentially, a divided difference, and the iterates (αt Bt)n will invoke
iterated divided differences which are known to satisfy remarkable identities.

The computation is now straightforward, and the result is best formulated in terms of

the algebra
̂̂
QA of Subsection γ). We recall that the latter algebra is generated by Ã

and two elements F, γ with F 2 = γ2 = 1, γa = aγ ∀a ∈ A, and γF = −Fγ.

Because of the weak normalization condition (∗) above, the distinction between A and

Ã is unnecessary, so that the unit of
̂̂
QA is now the unit of A.

One then lets τ be a trace on
̂̂
QεA vanishing on γA, and (ϕ2n+1) the cocycle in the

(b, B) bicomplex given by

ϕ2n+1(a
0, . . . , a2n+1) = tn τ

(
γF a0[F, a1] · · · [F, a2n+1]

) ∀aj ∈ A
where t−1

n = 2n(2n + 1)(2n− 1) · · · 3 · 1. One gets, with u as the generator of A:

Lemma 28. With ϕ = (ϕ2n+1) associated to the trace τ on
̂̂
QA as above, the

cochain ψ = (ψ2n) such that ϕ2n+1 = b ψ2n + B ψ2n+2 ∀n > 1 is given by ψ2n =
α (ϕ2n+1 − A θ2n+1) where

θ2n+1(f
0, . . . , f 2n+1) =

∫ 1/2

0

τ

(
F

∂

∂λ
f 0

(
u + λ[F, u]

) [
γF, f 1 (u + λ[F, u])

]

· · · [γF, f 2n+1 (u + λ[F, u])
] )

dµn(λ)

where dµn(λ) = tn(1− 4λ2)n+ 1
2 dλ.

Note that one has used the possibility of applying the Laurent polynomials f j ∈ A to
any invertible element of an algebra, and, in particular, to u+λ[F, u] which is invertible

in
̂̂
QεA.

This formula fits with our quantized calculus where the quantum differential (cf. In-
troduction) is given by the graded commutator with F , or equivalently γ times the
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commutator with γF . Thus, f(u + λ[F, u]) plays the role of f(u + λ “du”). The
following formula is the only one needed in the proof of Lemma 28:

γ [γF, f(u + λ[F, u])] = (2λ)−1 (f(u + λ[F, u])− f(u− λ[F, u])) .

It relates the quantum differential of f(u + λ “du”) to the difference quotient

f(u + λ “du”)− f(u− λ “du”)

2λ
.

The proof of this formula is straightforward for Laurent polynomials, or more generally
for f(u) = (u− z)−1, for which both sides are easy to compute.

We shall now interpret the formula of Lemma 28 using a natural deformation of the

algebra
̂̂
QεA to an exterior algebra over A.

Let us define for λ ∈ [
0, 1

2

[
an endomorphism σλ of

̂̂
QεA by giving its value on operators

as follows:

a) σλ(u) = u + λ[F, u]

b) σλ(F ) = F

c) σλ(γ) = (1− 4λ2)−1/2 γ(1− 2λF ).

One checks easily that σλ(γ)2 = 1 and that σλ(γ) commutes with σλ(u) and anticom-
mutes with F .

Moreover, one checks that the σλ’s form a semigroup

σλ ◦ σλ′ = σλ′′ with 2λ′′ =
2λ + 2λ′

1 + 4λλ′
.

With these endomorphisms we can write, for any f ∈ A,

[γF, f(u + λ[F, u])] = (1− 4λ2)−1/2 σλ (γ[F, f(u)]) ,

so that the formula for θ2n+1 (Lemma 28) simplifies to

θ2n+1(f
0, . . . , f 2n+1)

= tn

∫ 1/2

0

τ

(
∂

∂λ
σλ(f

0) σλ

(
[F, f 1] · · · [F, f 2n+1] γF

))
dλ.

Since τ is a trace one can replace the endomorphisms σλ by the inner conjugate ones,
αs, given, for s ∈ R by

αs(u) =
1

2
(u + FuF ) + e−s 1

2
(u− FuF )

αs(γ) = γ , αs(F ) = F.

One checks indeed that with s = −1
2
log(1− 4λ2) one has

αs(x) = Z−1
s σλ(x) Zs ∀x ∈ ̂̂

QεA
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with Zs = cosh t
2

+ F sinh t
2

, 2λ = tanh t.

Thus, the above formula can be written

θ2n+1(f
0, . . . , f 2n+1)

= tn

∫ ∞

0

ds τ

((
∂

∂s
αs(f0)

)
αs

(
[F, f 1] · · · [F, f 2n+1] γF

))
.

(One has to check that the terms in ∂
∂s

Zs do not contribute, but this is easy.)

We thus get the following reformulation of Lemma 28.

Lemma 29. Let (αs)s∈R be the one-parameter group of automorphisms of
̂̂
Qε(A) given

by αs(u) = 1
2
(u + FuF ) + e−s 1

2
(u − FuF ); αs(γ) = γ, αs(F ) = F ∀s ∈ R. Let

ϕ = (ϕ2n+1) be the entire cocycle on A associated to a trace τ on
̂̂
QεA vanishing on

γA, and ψ = (ψ2n) be the entire cochain given by Theorem 25

ψ2n =
∞∑

m=0

α(Bα)m ϕ2m+2n+1.

Then one has ψ2n = α ψ′2n+1, where

ψ′2n+1(f
0, . . . , f 2n+1) = 2tn

∫ ∞

0

ds

2n+1∑
j=1

(−1)j

(τ ◦ αs)
(
γf 0[F, f 1] · · · [F, f j−1] δ(f j) [F, f j+1] · · · [F, f 2n+1]

)

where δ =
(

d
ds

αs

)
s=0

is the derivation associated to αs.

Given the above formula for θ2n+1 and the equality

ψ2n = α (ϕ2n+1 − Aθ2n+1)

of Lemma 28, the proof of Lemma 29 follows using

ϕ2n+1(f
0, . . . , f 2n+1) =

2n+1∑
0

∫ ∞

0

ds(τ ◦ αs)

(
γF f 0[F, f 1] · · ·

[F, f j−1][F, δ(f j)] [F, f j+1] · · · [F, f 2n+1]

)
∀f j ∈ A,

which is a consequence of the vanishing of Lims→∞ αs ([F, f ]) ∀f ∈ A. The next step
is to compute α ψ′2n+1. One uses for this the identity

αt(f 0⊗f 1⊗ · · ·⊗f 2k−1⊗fz) = fz f 0⊗f 1⊗ · · ·⊗f 2k−1⊗fz⊗u
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where u is the canonical generator of A and fz = (z − u)−1, where z is a formal
parameter. Moreover, using the equality

δ(u) =
1

2
[F, u]F

it follows that

[F, fz] [F, u] fz = 2δ(fz)− [F, fz]F

−δ(fz)[F, u]fz + [F, fz]δ(u)fz = Fδ(fz) + δ(fz)F.

These identities let one write the value of ψ′2n+1 on αt(f 0⊗ · · ·⊗f 2n−1⊗fz) as a linear
function of fz, so that one can then replace fz by an arbitrary function f 2n and obtain
the formula for ψ2n, with ψ2n = ψ1

2n + ψ2
2n

ψ1
2n(f 0, . . . , f 2n) = tn

∫ ∞

0

ds(τ ◦ αs)

( 2n∑
j=1

(−1)j γF f 0[F, f 1] · · ·

[F, f j−1] δ(f j) [F, f j+1] · · · [F, f 2n]− γ f 0[F, f 1] · · · [F, f 2n−1] F δ(f 2n)

)

ψ2
2n(f 0, . . . , f 2n) = tn

∫ ∞

0

ds τ ◦ αs

(
2n−1∑
j=1

γ f 0[F, f 1] · · ·

[F, f j−1] δ(f j) [F, f j+1] · · · [F, f 2n−1] δ(f 2n)

)
.

We are now ready to conclude that the homotopy formula of Theorem 25 is a special
case of the following general proposition now involving an arbitrary algebra A (which
is no longer an algebra of functions in one variable).

Proposition 30. Let A be an algebra, τ a trace on
̂̂
QA vanishing on γA, and δ a

derivation of
̂̂
QA such that δ(γ) = 0.

a) Let ϕ2n+1(f
0, . . . , f 2n+1) = tn τ (γF f 0[F, f 1] · · · [F, f 2n+1]) ∀f j ∈ A and

ψ1
2n(f 0, . . . , f 2n)

= tn

(
2n∑
1

(−1)j τ
(
γF f 0[F, f 1] · · · [F, f j−1] δ(f j) [F, f j] · · · [F, f 2n]

)

− τ
(
γ f 0[F, f 1] · · · [F, f 2n−1] F δ(f 2n)

)
)

.
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Then, for any n, one has, using the shorthand notation

(δ ϕ2n+1)(f
0, . . . , f 2n+1) =

2n+1∑
0

ϕ2n+1

(
f 0, . . . , δ(f j), f j+1, . . . , f 2n+1

)
,

b ψ1
2n + B ψ1

2n+2 =
1

2
δ ϕ2n+1.

b) Let

ψ2
2n(f 0, . . . , f 2n)

=
2n−1∑

1

(−1)jτ
(
γf 0[F, f 1] · · · [F, f j−1]δ(f j)[F, f j+1] · · · [F, f 2n−1]δ(f 2n)

)

∀f j ∈ A. Then b ψ2
2n = B ψ2

2n = 0 ∀n.

The proof of this proposition is straightforward. We can now conclude this long com-
putation by the following:

Theorem 31. Let A = C(Z) be the algebra of Laurent polynomials, ϕ = (ϕ2n+1) an

entire normalized cocycle on A, and τ the corresponding trace on
̂̂
QA. Let (ψ2n) be the

entire cochain

ψ2n =
∞∑

m=0

α(Bα)m ϕ2n+2m+1.

Then

ψ2n =

∫ ∞

0

ds
(
ψ1

2n(s) + ψ2
2n(s)

)
,

where ψj
2n(s) is given by Proposition 30 applied to the trace τ ◦ αs on

̂̂
QA and the

derivation δ =
(

d
ds

αs

)
s=0

.

We assume that ϕ satisfies the weak normalization condition requiring that ϕ2n+1(f
0, . . . ,

f 2n+1) = 0 if some f j = 1 for j 6= 0.

8. The Chern Character of θ-summable Fredholm Modules

In this section we shall extend the construction (of Section 1 of this chapter) of
the Chern character in K-homology to cover the infinite-dimensional situation of θ-
summable Fredholm modules. Recall that a Fredholm module (H, F ) over an algebra
A is θ-summable iff, for any a ∈ A, one has

[F, a] ∈ J1/2
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where J1/2 is the two-sided ideal of compact operators T in H such that µn(T ) =
O

(
(log n)−1/2

)
for n→∞.

This is the content of Definition 4 of the introduction.

We shall first establish (Theorem 4) the existence of an unbounded selfadjoint operator
D on H such that,

1) SignD = F

2) [D, a] is bounded for any a ∈ A
3) Trace

(
e−D2

)
< ∞.

Condition 2) means that the pair (H, D) defines a K-cycle over A (Section 2 Definition
11).

Definition 1. A K-cycle (H, D) is θ-summable if Trace(e−D2
) < ∞.

In this section we shall construct the Chern character of θ-summable K-cycles as an
entire cyclic cohomology class

Ch(H, D) ∈ H∗
ε (A)

with the same parity as (H, D), i.e., even iff we are given a Z/2-grading γ commuting
with any a ∈ A and anticommuting with D.

The first construction was done in [109] using the algebras QA and Q̂A of Section 7
and an auxiliary quasinilpotent algebra of operator-valued distributions with support
in [0, +∞[. Another construction, but of the same cohomology class, was then done
by [298], whose formula for the entire cyclic cocycle is simpler and easier to use than
our formula ([115]). There are, however, important features of the construction which
are apparent only in the original approach, such as normalization of the cocycles and
the use of the supergroup R1,1. We shall thus expound both approaches (Subsections β
and γ below). In Section 9 we shall concentrate on examples of θ-summable K-cycles
coming from discrete groups and supersymmetric quantum field theory.

8.α Fredholm modules and K-cycles. Let H be a Hilbert space, and let

J1/2 =
{
T ∈ K ; µn(T ) = O(log n)−1/2 as n→∞}

J =
{
T ∈ K ; µn(T ) = O(log n)−1 as n→∞}

.

By construction, one has T ∈ J1/2⇐⇒|T |2 ∈ J .

Lemma 2. Both J and J1/2 are two-sided ideals of operators, and J1/2J1/2 = J .
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Proof. The inequalities µn(T1T2) ≤ ‖T1‖ µn(T2), µn(T1T2) ≤ µn(T1) ‖T2‖ for any
n ∈ N, and

µn+m(T1 + T2) ≤ µn(T1) + µm(T2) ∀n, m ∈ N
(Section 2) show that both J and J1/2 are two-sided ideals. The inequality

µn+m(T1T2) ≤ µn(T1) µm(T2) ∀n,m ∈ N
shows that J1/2J1/2⊂J and the conclusion follows.

The natural norm on the ideal J is given by

‖T‖J = sup
N

(
N∑

n=2

(log n)−1

)−1 N∑
n=0

µn(T ).

The sum
∑N

n=2(log n)−1 is equivalent to the logarithmic integral

Li(x) =

∫ x

0

du

log u
,

and it is better to define

‖T‖J = sup
N

Li(N)−1

N∑
n=0

µn(T ).

This yields the following natural notation

J = Li(H) , J1/2 = Li1/2(H).

As for any normed ideal, one has:

Lemma 3. Let A be a C∗-algebra and (H, F ) a Fredholm module over A. Let A =

{a ∈ A ; [F, a] ∈ Li1/2(H)}. Then A is stable under holomorphic functional calculus.

It follows that when (H, F ) is θ-summable over A, i.e. when A is norm dense in A,
then A and A have the same K-theory.

We shall now prove the following existence theorem.

Theorem 4. Let A be a C∗-algebra, (H, F ) a Fredholm module over A, and A⊂A a
countably generated subalgebra such that

[F, a] ∈ Li1/2(H) ∀a ∈ A.

Then there exists a selfadjoint unbounded operator D in H such that:

1) SignD = F

2) [D, a] is bounded for any a ∈ A
3) Trace

(
e−D2

)
< ∞.
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Proof. Since B =
{

T ∈ L(H) ; [F, T ] ∈ Li1/2(H)
}

is selfadjoint and stable under

holomorphic functional calculus, we can enlarge A and assume that it is generated by
a countable group Γ of unitaries, u ∈ Γ, which contains F . (One has [F, F ] = 0 so that
F ∈ B.) Using Γ we shall define an averaging operation of the form

M(T ) =
∑
u∈Γ

ρ(u) u T u−1 ∀T ∈ L(H)

where the weight function ρ is such that:

a) ρ(u) > 0 ∀u ∈ Γ

b) sup {ρ(v)−1 ρ(uv) ; v ∈ Γ} < ∞ ∀u ∈ Γ

c)
∑

u∈Γ ρ(u) < ∞.

The existence of such a weight function ρ on a group Γ is inherited by any quotient
group Γ′ = h(Γ) using

ρ′(u) =
∑

h(v)=u

ρ(v) ∀u ∈ Γ′.

It is also inherited by any subgroup Γ′′⊂Γ.

This existence is easy for the free group on 2 generators, taking ρ(g) = e−β`(g), where
`(g) is the word length of g ∈ Γ and β is large enough to ensure condition c). Thus, it
follows for the free group on countably many generators, which is a subgroup of the free
group on 2 generators. Using quotients it then follows for arbitrary countable groups.

We shall thus fix a weight function ρ on Γ satisfying a) b) and c). The operation M
from L(H) to L(H) is linear, positive (i.e. M(T ) ≥ 0 if T ≥ 0) and quasi-invariant
under Γ:

u M(T ) u−1 ≤ λu M(T ) ∀T ≥ 0

where λu ∈ R∗+ depends only upon u ∈ Γ. We shall normalize ρ by requiring∑
u∈Γ ρ(u) = 1, so that M(1) = 1. Also, since F ∈ Γ, we can assume that M(T )

commutes with F for any T (replace M by 1
2
(M+ FMF ) if necessary).

We shall now conjugate the linear operation M by the nonlinear transformation f
defined for T positive and bounded by

f(T ) = exp(−T−1).

(We take, of course, f(0) = 0.) The inverse transformation f−1 is defined for 0 ≤ T ≤
λ < 1 by

f−1(T ) = −(log T )−1.

This nonlinear transformation is operator monotone (cf. [177]), i.e.

0 ≤ T1 ≤ T2 ≤ 1⇒f−1(T1) ≤ f−1(T2),

since it is a composition of the operator monotone functions log and −1/x.
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For any T ∈ L(H) , T ≥ 0, we let

T(T ) = f−1(M(f(T ))).

It is, by construction, a positive bounded operator.

Next, let us consider the quantum analogue of a Riemannian metric, written gµν dxµ dxν ,
for our algebra A as being given by a positive operator in H of the form

G =
∑

[F, xµ]∗ gµν [F, xν ]

where the xµ, µ ∈ N, generate A and gµν is a positive matrix of elements of A. For
our purpose we shall choose the xµ to be unitaries uµ generating the group Γ, and take
positive scalar coefficients gµµ > 0 such that

G =
∑

[F, uµ]∗ gµµ[F, uµ]

is a convergent series in Li(H), which is easy to achieve (e.g. by taking gµµ =

2−µ ‖[F, uµ]∗ [F, uµ]‖−1
Li ).

The operator G will play the role of the Green’s function, so that our choice of operator
D will be specified by the equality, using the map T defined above,

D−2 = T(G).

We shall now prove that D = F (T(G))−1/2 has the required properties. We have to be
careful to ensure that KerT(G) = 0. For this let us consider the subspace of H

H0 =
⋂

u,v∈Γ

Ker([F, u]v).

By construction, H0 is Γ-invariant (and hence F -invariant since F ∈ Γ). On H0 one
has [F, u] = 0 ∀u ∈ Γ. Thus, the Fredholm module (H, F ) decomposes as a direct
sum of the trivial part (H0, F0), with F0 = F |H0 commuting with any a ∈ A, and of
a Fredholm module (H′, F ′) for which H0 = {0}. We can thus assume that H0 = {0}
and proceed to show that Ker T(G) = {0}. By construction, Kerf(T ) = KerT for any
T , so that with T = G one has Kerf(G)⊂ ⋂

µ Ker[F, uµ]. Next,

KerM(f(G))⊂
⋂
v,µ

Ker([F, uµ]v) =
⋂

u,v∈Γ

Ker([F, u]v)

since the uµ generate Γ. Thus, we get KerT(G) = KerM(f(G)) = {0}.
Next, we shall show that for any u ∈ Γ the operator

u T(G)−1 u−1 − T(G)−1

is bounded. One has u T(G) u−1 = f−1(u M(T ) u−1). Thus

u T(G)−1 u−1 = − log(u M(T ) u−1).
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So the assertion follows from the general inequality, valid for any T ≥ 0,

λ−1
u−1 M(T ) ≤ u M(T ) u−1 ≤ λu M(T )

and the operator monotony of the logarithm

log(M(T ))− log(λu−1) ≤ log(u M(T ) u−1) ≤ log(M(T )) + log(λu).

It follows immediately that

u T(G)−1/2 u−1 − T(G)−1/2

is bounded for any u ∈ Γ, and hence that, since Γ generates A linearly,
∥∥[T(G)−1/2, a]

∥∥ < ∞ ∀a ∈ A.

Thus, F [T(G)−1/2, a] is bounded for any a ∈ A.

Since D = F T(G)−1/2, in order to prove 2), i.e. that [D, a] is bounded for any a ∈ A,
it remains to show that

[F, x] T(G)−1/2

is bounded for any of the generators uµ of Γ appearing in the formula for G.

For this it is enough to check that T(G) ≥ λG for some λ > 0. But

f−1 M(f(G)) ≥ f−1(ρ(1) f(G)) = (G−1 − log ρ(1))−1 ≥ λG

for λ−1 = 1− ‖G‖ log ρ(1).

Finally we need to prove 3). Since we can replace D by an arbitrary scalar multiple of
D without altering 1) and 2), it is enough to show that with the above construction
one gets

e−D2 ∈ Lp for some finite p.

Since e−D2
= M(f(G)), it is enough to show that

f(G) ∈ Lp for some finite p.

But G ∈ Li(H) so that µn(G) = O((log n)−1) ≤ c(log n)−1 for some finite c, which
shows that µn(f(G)) ≤ n−1/c.

On H0 the same construction applies and is much easier, starting with G0, a strictly
positive element of Li(H0).

Remark 5. a) The above proof in fact also yields the condition 4): [D2, a] is bounded
for any a ∈ A. This condition implies that [|D|, a] is bounded for any a ∈ A.

b) Let (H, D) be a θ-summable K-cycle over A so that [|D|, a] is bounded for any

a ∈ A. Let F = Sign D. Then [F, a] ∈ Li1/2(H) for any a ∈ A.
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c) The above proof does not yield a K-cycle such that Trace (e−βD2
) < ∞ for all β > 0.

In fact, by Lemma 6 of Appendix C, there exists a constant C < ∞ such that for any
unitaries ui,

k∞{ui} ≤ C sup
i
‖[D2, ui]‖

where one assumes Trace(e−D2
) < ∞. Here k∞ is the obstruction ([571]) to the

existence of quasicentral units relative to the Macaev ideal L(∞,1), for which

T ∈ L∞,1 iff
∞∑

n=1

1

n
µn(T ) < ∞.

In general, given an arbitrary normed ideal J of compact operators (cf. Appendix C),
the obstruction kJ to the existence of quasicentral approximate units is defined [571],
for any finite subset X of L(H), by

kJ(X) = Lim infh↑1 ‖[X, h]‖J

where h runs through finite-rank operators 0 ≤ h ≤ 1, while the norm is ‖[X, h]‖J =
supx∈X‖[x, h]‖J .

The results of D. Voiculescu [571] on quasicentral approximate units relative to the
Macaev ideal show that, in general, one has

k∞{ui} > 0.

This gives a lower bound to the values of β such that Trace (e−βD2
) < ∞.

8.β The supergroup R1,1 and the convolution algebra L̃ of operator-valued

distributions on [0, +∞[ . In this section we shall construct a convolution algebra L̃
of operator-valued distributions and a trace τ on L̃ which will be the natural receptacle

for representations of the quasinilpotent extensions Qε and Q̂ε of Section 7 Theorem
17.

We let H be a Hilbert space. By an operator-valued distribution we mean a continuous
linear map T from the Schwartz space S(R) (with its usual nuclear topology) to the
Banach space L(H) of bounded operators in H. Thus, there exists by hypothesis a
continuous seminorm p on S(R) such that ‖T (f)‖ ≤ p(f) ∀f ∈ S(R). We let L be the
space of operator-valued distributions T which satisfy the following properties:

1) Support T⊂R+ = [0, +∞[ .

2) There exists r > 0 and an analytic operator-valued function t(z) for z ∈ C =⋃
s>0 sU , where U is the disk with center at 1 and radius r, such that

a) t(s) = T (s) on ]0, +∞[ , (i.e. T (f)=
∫

f(s) t(s) ds ∀f ∈ C∞
c (]0,∞[))
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b) the function defined for p ∈ ]1,∞[ by

h(p) = sup
z∈(1/p)U

‖t(z)‖p

is bounded above by a polynomial in p as p→∞.

In b), the norm ‖t(z)‖p is the Banach space norm of the Schatten ideal Lp(H). In
particular, we see that t(1) ∈ L1(H) is a trace class operator. The operator-valued
analytic function t(z) is, of course, uniquely determined by the distribution T , and we
shall use the abuse of notation T (z) instead of t(z). Two distributions T1, T2 ∈ L, such
that T1(z) = T2(z) ∀z ∈ ]0, +∞[, differ by a distribution with support the origin, of

the form
∑

ak δ
(k)
0 , where ak ∈ L(H), and δ

(k)
0 is the k-th derivative of the Dirac mass

δ0 at the origin.

The condition 2) essentially means that T takes its values in operators of a suitable
Schatten class so that the quantity Trace T (1) is well defined.

All operator-valued distributions on R with support {0} belong to L; in particular, the
products δ0×id and δ′0×id of the Dirac mass at 0, or of its derivative, by the identity
operator in L(H), both do. To lighten the notation we shall simply write δ0 and δ′0.

Lemma 6.

a) Let T ∈ L. Then the derivative T ′ = (d/ds)T also belongs to L.

b) Let T ∈ L. There exist an integer q and S ∈ L such that T − S(q) has support
{0}, where S(q) is the q-th derivative of S, and that

sup
p

sup
z∈(1/p)U

‖S(z)‖p < ∞,

where U = {z ∈ C; |z − 1| ≤ r}.

Proof. a) By definition, T ′(f) = −T (f ′) ∀f ∈ S(R), so that T ′ is an operator-valued
distribution satisfying property 1). Let r and U be as in 2) for T , and let r′ = r/2. Then
by Cauchy’s theorem the operator T ′(z) for z ∈ (1/p) U ′, U ′ = {z ∈ C; |z − 1| ≤ r′},
is of the form

∫
u∈(1/p)U

T (u) dµ(u), where µ has total mass less than 2p/r. Thus

sup
z∈(1/p)U ′

‖T ′(z)‖p ≤ 2p

r
sup

z∈(1/p)U

‖T (z)‖p,

which proves that T ′ satisfies property 2).

b) By hypothesis, there exist C < ∞ and q ∈ N such that, with the notation of 2),
h(p) ≤ Cpq. Let Tk be, for k = 0, 1, . . ., the operator-valued analytic function in
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C =
⋃

s>0 sU , defined inductively by T0(z) = T (z) and Tk+1(z) =
∫ z

1
Tk(u)du. For

z ∈ (1/p)U one has

‖Tk+1(z)‖p ≤ 2

∫ 1

0

hk

((
(1− t) +

t

p

)−1
)

dt

where

hk(p) = sup
z∈(1/p)U

‖Tk(z)‖p

(since ‖Tk(u)‖p ≤ ‖Tk(u)‖p′ for p′ ≤ p).

Thus, we see that hk is of the order of pq−k for k < q, and that hq is of the order of
log p, while hq+1 is bounded. Let S be the operator-valued distribution given by

S(f) =

∫
f(s) Tq+1 (s) ds ∀f ∈ S(R).

It is well defined, since ‖Tq+1(s)‖ is bounded on [0, 1] and by a polynomial for large s.
By construction, the (q + 1)-st derivative of S agrees with T outside the origin, thus
the conclusion.

We can now show that L is an algebra under the convolution product, which at the
formal level can be written

(T1 ∗ T2)(s) =

∫ s

0

T1(u) T2(s− u) du.

More precisely, given f ∈ S(R), one can find an, bn ∈ S(R) such that the restriction to
]− 1,∞[ × ]− 1,∞[ of the function (s, u)→f(s + u) is given by the convergent series∑

an⊗bn. Then (T1 ∗ T2)(f) =
∑

T1(an) T2(bn) ∈ L(H).

Lemma 7. If T1, T2 ∈ L then T1 ∗ T2 ∈ L.

Proof. By Lemma 6 one can assume that Ti is given by

Ti(f) =

∫ ∞

0

f(s) Ti(s) ds,

where Ti(s) is an analytic operator-valued function in C =
⋃

t>0(tU), with U = {z ∈
C; |z − 1| < r}, and where

Ci = sup
p

sup
(1/p)U

‖Ti(z)‖p < ∞.

Then let T (z) =
∫ 1

0
T1(λz) T2((1−λ)z)z dλ. It is, by construction, an analytic operator-

valued function defined in C. One has, for z ∈ (1/p)U , that

λz ∈ 1

p1

U , (1− λ)z ∈ 1

p2

U



8. THE CHERN CHARACTER OF θ-SUMMABLE FREDHOLM MODULES 408

where
1

p
=

1

p1

+
1

p2

so that by Holder’s inequality

‖T1(λz) T2((1− λ)z)‖p ≤ ‖T1(λz)‖p1 ‖T2((1− λ)z)‖p2 ≤ C1 C2.

Thus, we get, for any z ∈ (1/p)U

‖T (z)‖p ≤
∫ 1

0

‖T1(λz) T2((1− λ)z)‖p |z| dλ ≤ |z| C1 C2.

It follows that T (z) defines an element of L, and that it coincides with the convolution
product T1 ∗ T2.

Let λ = δ′0 be the derivative of the Dirac mass at 0. One has λ ∈ L, and as an
operator-valued distribution λ has a natural square root (for the convolution product)
given by the derivative T ′ of the distribution

T (s) =
1√
πs

.

But this square root does not define an element of the algebra L, since (when dimH =
∞) it fails to satisfy condition 2) above, because the identity operator does not belong
to any Lp. We thus need to adjoin a formal square root λ1/2 of λ to L. For this we

consider the algebra L̃ of pairs (T0, T1) of elements of L with product given by

(T0, T1) ∗ (S0, S1) = (T0S0 + λT1S1, T0S1 + T1S0),

where we write T0S0 for T0 ∗ S0, etc. Since λ belongs to the center of L, one checks

that the above product turns L̃ into an algebra. This algebra L̃ contains L (by the
homomorphism T→(T, 0)) and the central element λ1/2 = (0, δ0), so that every element

of L̃ is of the form A + Bλ1/2 with A,B ∈ L.

Lemma 8. The equality τ(T0, T1) = trace T1(1) defines a trace τ on the algebra L̃.

Proof. By condition 2) we know that T1(1) belongs to L1 so that the trace is well
defined. Since

(T0, T1) ∗ (S0, S1) = (T0S0 + λT1S1, T0S1 + T1S0),

it is enough to check that T 7→ trace T (1) is a trace on the algebra L. The proof of
Lemma 7 shows that for Ti ∈ L of the form Ti(f) =

∫
f(s) Ti(s) ds, with

sup
p

sup
z∈(1/p)U

‖Ti(z)‖p < ∞,

one has

trace (T1 ∗ T2)(s) = trace (T2 ∗ T1)(s) ∀s ∈ U.
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Thus, for any power of λ one has

trace ((λk T1 ∗ T2)(1)) = trace ((λk T2 ∗ T1)(1)).

Now, by Lemma 6, to show that trace(S1 ∗ S2)(1) = trace (S2 ∗ S1)(1), we can assume
that Sj = λkjTj + Uj, where Tj is as above and Uj has support the origin. Thus, we
just need to check, say, that trace(λk1T1U2)(1) = trace (U2 λk1T1)(1), which follows
from trace (ab) = trace (ba), a ∈ L(H), b ∈ L1(H).

Let us recall that the Hopf algebra H of smooth functions on the supergroup R1,1 is
given as follows: as an algebra one has

H = C∞(R1,1) = C∞(R)⊗∧(R),

the tensor product of the algebra of smooth functions on R by the exterior algebra ∧(R)
of a one-dimensional vector space. Thus, every element of H is given by a sum f + gξ,
where f, g ∈ C∞(R), ξ2 = 0. The interesting structure comes from the coproduct ∆ :
H→H⊗H which corresponds to the supergroup structure; being an algebra morphism
it is fully specified by its values on C∞(R)⊂H and by ∆(ξ) = ξ⊗1 + 1⊗ξ; one has
(∆f) = ∆0(f) + ∆0(f

′) ξ⊗ξ, where f ′ = ∂
∂s

f(s) and

∆0 : C∞(R)→C∞(R)⊗C∞(R)

is the usual coproduct,

(4.40) ∆0(f)(s, t) = f(s + t).

Equivalently, the (topological) dual H∗ of H is endowed with a product which we can
now describe. Every element of H∗ is uniquely of the form (T0, T1), where T0, T1 ∈
C−∞

c (R) are distributions with compact support on R, and

(4.41) 〈f + gξ, (T0, T1)〉 = T0(f) + T1(g).

The product ∗ on H∗ dual to the coproduct ∆ is defined by

(4.42) 〈f + gξ, (T0, T1) ∗ (S0, S1)〉 = 〈∆(f + gξ), (T0, T1)⊗(S0, S1)〉.

Lemma 9. The product ∗ on H∗ is given by

(T0, T1) ∗ (S0, S1) = (T0 ∗ S0 + δ′0 ∗ T1 ∗ S1, T0 ∗ S1 + T1 ∗ S0).

Using ξ2 = 0, this follows from formula (4). This shows that the algebra L̃ is really
a convolution algebra of operator-valued distributions on the supergroup R1,1, thus
clarifying the relations between our formulas and supersymmetry.
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8.γ The Chern character of K-cycles. Let A be a locally convex algebra, and
let (H, D) be a θ-summable K-cycle over A (cf. Definition 1 before section α)). In this
section we shall construct the Chern character

Ch∗(H, D) ∈ H∗
ε (A)

as an entire cyclic cohomology class for A.

For this purpose we may as well replace A by the Banach algebra A of bounded
operators

A = {a ∈ L(H) ; [D, a] is bounded}
which we can endow with the norm p(a) = ‖a‖ + ‖[D, a]‖. By Theorem 17 of Section
7, the normalized entire even (resp. odd) cocycles on A correspond to odd traces on

the algebra Q̂ε(A) (resp. on
̂̂
Qε vanishing on γA). By Proposition 18 of Section 7,

QεA is a quasinilpotent extension of A. Thus, to construct Ch∗(H, D) as a normalized
cocycle requires a trace on a suitable quasinilpotent extension of the algebra A. We

shall use, for that purpose, the convolution algebra L̃ of Subsection β and the trace τ
given by Lemma 8. The representation of A in H, i.e. the inclusion A⊂L(H), yields a

natural homomorphism from A to L̃, given by

ρ(a) = a δ0 ∀a ∈ A.

We shall now extend, using D, the homomorphism ρ to a homomorphism of Q̂εA to

L̃, when the K-cycle is even. In the odd case we shall get a homomorphism

ρ′ : ̂̂
QεA→M2(L̃).

At the formal level, if, as above, we denote the formal square root of λ = δ′0 by λ1/2,
the formulae for ρ and ρ′ are

ρ(F ) = (D + γ λ1/2)(D2 + λ)−1/2 (even case)

ρ′(F ) =

[
0 U

U∗ 0

]
, U = (D + i λ1/2)(D2 + λ)−1 (odd case)

ρ′(γ) =

[
1 0
0 −1

]
.

The next two lemmas are useful for both even and odd cases.

Lemma 10. One has, with s = Re z > 0, p ∈ [1,∞[ ,

‖e−zD2‖p = (trace(e−spD2

))1/p ,

‖D e−zD2‖p ≤ s−1/2 ‖e−(s/2)D2‖p.

Proof. One has
‖e−zD2‖p = ‖e−sD2‖p = (trace(e−psD2

))1/p.
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To prove the second inequality it is enough to show that the operator norm of ‖De−(s/2)D2‖
is bounded by 1/

√
s. But this follows from the inequality x e−(s/2)x2 ≤ 1/

√
s for x real

and positive.

Lemma 10 shows that we can define an element N of L by the equality

N(f) =
1√
π

∫
f(s)

1√
s

e−sD2

ds , f ∈ S(R).

The integral makes sense since the operator norm of 1√
s
e−sD2

is integrable near the

origin. We shall, however, also need to define the distribution DN , which is formally
given by

(DN)(f) =
1√
π

∫
f(s)

1√
s

D e−sD2

ds.

By Lemma 10, one has an analytic operator-valued function,

(DN)(z) =
1√
π

1√
z

D e−zD2

,

defined for Re z > 0, and such that sup(1/p)U ‖(DN)(z)‖p is of the order of p, p→∞.

However, since the operator norm of (DN)(s) is of the order of 1/s, as s→0, and is
not integrable, we have to be careful in the definition of the distribution DN .

Lemma 11.

a) The Laplace transform of the distribution N is given by
∫ ∞

0

N(s) e−sλ ds = (D2 + λ)−1/2.

b) There exists a unique element of L, denoted DN , whose Laplace transform is
equal to D(D2 + λ)−1/2. One has (DN)(s) = DN(s) for any s > 0.

Proof. a) Follows from the equality
∫ ∞

0

1√
πs

e−sα2

e−sλ ds = (α2 + λ)−1/2.

b) The uniqueness is clear. Let us prove the existence. One has

D(D2 + λ)−1/2 −D(D2 + 1)−1/2

=
1

π

∫ ∞

0

D((D2 + λ + ρ)−1 − (D2 + 1 + ρ)−1)ρ−1/2 dρ

=
1

π
(1− λ)

∫ ∞

0

D(D2 + λ + ρ)−1 (D2 + 1 + ρ)−1 ρ−1/2 dρ.
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Now D(D2 + 1)−1/2 is the Laplace transform of the element of L given by

D(D2 + 1)−1/2 δ0.

Thus, we just have to show, using Lemma 10, that∫ ∞

0

D(D2 + λ + ρ)−1(D2 + 1 + ρ)−1 ρ−1/2 dρ

is the Laplace transform of an element of L. But

D(D2 + 1 + ρ)−1 (D2 + λ + ρ)−1

is the Laplace transform of

D(D2 + 1 + ρ)−1e−s(D2+ρ),

and it is enough to check that the operator norm of

T (s) =

∫ ∞

0

D(D2 + 1 + ρ)−1 e−s(D2+ρ) ρ−1/2 dρ

is integrable near s = 0. One has

‖T (s)‖ ≤
∫ ∞

0

(1 + ρ)−1/2 e−sρ ρ−1/2 dρ,

since ‖D(D2 + 1 + ρ)−1‖ ≤ (1 + ρ)−1/2. Thus, since
∫ ∞

0

(1 + ρ)−1/2 e−sρ ρ−1/2 dρ ≤ (3− log s) = O(| log s|)

when s→0, we see that the operator norm of T (s) is integrable near 0. The same
estimate works for the Lp norm ‖T (z)‖p for z ∈ (1/p)U , and shows that T ∈ L.

Let us now treat the even case.

Lemma 12. The equality F = (DN, γN) defines an element of L̃ of square δ0.

Proof. By Lemma 11, the element DN ∈ L is well defined. Since γ anticommutes
with D, DN anticommutes with γN , so that the square is given by F 2 = ((DN)2 +
λN2, 0). Now the Laplace transform of (DN)2 is (Lemma 11) equal to D2(D2 + λ)−1,
and that of λN2 is λ(D2 +λ)−1. Thus, the Laplace transform of (DN)2 +λN2 is equal
to 1 and we get F 2 = (δ0, 0).

We can now state the main technical result of this section:

Theorem 13. [109] There exists a unique continuous homomorphism ρ of Q̂ε(A) to

L̃ such that:

ρ(a) = a δ0 ∀a ∈ A , ρ(F ) = (DN, γN).
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We refer to [109] Section 5 for the proof of the continuity of the homomorphism ρ.
The convolution algebra L was defined so as to make these estimates straightforward.

Let τ be the trace on L̃ given by Lemma 8.

Corollary 14. [109] Let (H, D, γ) be an even θ-summable K-cycle on a locally convex
algebra A. Then the following equality defines a normalized even entire cocycle (ϕ2n)n∈N
on A:

ϕ2n(a0, . . . , a2n) = Γ
(
n + 1

2

)
τ

(
ρ

(
F a0[F, a1] · · · [F, a2n]

)) ∀aj ∈ A.

Note that here ϕ is a cocycle in the (d1, d2) bicomplex. The corollary follows from
Theorem 13 and Theorem 17 of Section 7.

The odd case is treated in the same way. One defines ρ(F ) as the 2×2 matrix[
0 U

U∗ 0

]
∈ M2(L̃), where

U = (DN, iN)

with the above notation. Also γ =

[
1 0
0 −1

]
∈ M2(L̃).

Theorem 15. [109] There exists a unique continuous homomorphism ρ′ of
̂̂
Qε(A) to

M2(L̃) such that

ρ′(a) = a δ0 ∀a ∈ A , ρ′(F ) =

[
0 U

U∗ 0

]
, ρ′(γ) =

[
1 0
0 −1

]
.

One has τ(ρ′(γa)) = 0 ∀a ∈ A, thus, as above, one gets the following corollary.

Corollary 16. [109] Let (H, D) be an odd θ-summable K-cycle on a locally convex al-
gebra A. Then the following equality defines a normalized odd entire cocycle (ϕ2n+1)n∈N
on A:

ϕ2n+1(a
0, . . . , a2n+1) =

−1√
2i

n! τ ′ ρ′
(
γ F a0[F, a1] · · · [F, a2n+1]

) ∀aj ∈ A

where τ ′ = τ⊗ Trace on M2(L̃) = L̃⊗M2(C).

We can now adopt the following definition:

Definition 17. Let (H, D) be a θ-summable K-cycle on the locally convex algebra A.
Then its Chern character Ch∗(H, D) is the class of the cocycle ϕ of Corollaries 14 and
16 in H∗

ε (A).
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8.δ The index formula. Let A be an involutive algebra and (H, D, γ) an even
K-cycle over A. Then, as in Proposition 2 of the introduction of this chapter, the
K-homology class of (H, D, γ) determines an index map

K0(A)→Z,

which can be defined as follows.

Let e ∈ Proj Mq(Ã) be an idempotent, e ∈ Mq(Ã), and let (Hq, Dq, γq) be the K-cycle

on Mq(Ã) given by

Hq = H⊗Cq , Dq = D⊗1 , γq = γ⊗1

with the obvious action of Ã⊗Mq(C) in Hq.

Proposition 18.

a) The operator e D+
q e from e H+

q to e H−
q has finite-dimensional kernel and

cokernel.

b) An additive map ϕ from K0(A) to Z is determined by the equality

ϕ([e]) = Ind(e D+
q e).

The proof and the index map are the same as in Proposition 2 of the Introduction.
The operator F = Sign(D) in H determines a (pre-)Fredholm module on A with the
same index map as D.

We shall now show that, when the K-cycle (H, D, γ) is θ-summable, the index map ϕ
is given by a formula in terms of the Chern character Ch∗(H, D, γ) (Definition 17).

Theorem 19. [109] Let A be a locally convex algebra and (H, D, γ) an even θ-
summable K-cycle over A. Then for any x ∈ K0(A) one has

ϕ(x) = 〈x, Ch∗(H, D, γ)〉.

We use here the pairing between K-theory and entire cyclic cohomology found in
Theorem 21 of Section 7.

Theorem 19 is the infinite-dimensional analogue of Proposition 4 of Section 1. To prove
it one uses the invariance of the index and of the Chern character under a homotopy
of the operator D. This allows one to reduce to the situation where D commutes with
the idempotent e, in which case the assertion of the theorem is the McKean-Singer
formula

Ind(D+) = Trace(γ e−D2

).

Indeed, the component ϕ0 of the entire cocycle (ϕ2n) of Corollary 14 is given by

ϕ0(a) = Trace(γ a e−D2

).
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The explicit homotopy between D and an operator D1 which commutes with D is given
by

Dt = D + tδ , δ = −e[D, e] + [D, e]e.

Finally, the homotopy invariance of the character follows from the next proposition

applied to the algebra B = L̃ with trace τ of Subsection β), to the homomorphism

ρ of Theorem 13, and to the elements Ft of L̃ corresponding to Dt (cf. [109] for the
technical details).

Proposition 20. Let ρ : A→B be a homomorphism of algebras, with B unital, and let
τ be a trace on B. Let Ft ∈ B, t ∈ [0, 1], be a C1 family of elements of B with F 2

t = 1
∀t ∈ [0, 1].

a) For every t ∈ [0, 1], a cocycle in the (d1, d2) bicomplex of A is defined for
aj ∈ A by

ϕt
2n(a0, . . . , a2n) = Γ

(
n + 1

2

)
τ

(
Ft ρ(a0)

[
Ft, ρ(a1)

] · · · [Ft, ρ(a2n)
])

.

b) For n ≥ 0 and t ∈ [0, 1], ∀ai ∈ A, let

ψt
2n+1(a

0, . . . , a2n+1) = Γ
(
n + 1

2

)
(2n)−1

2n∑
j=1

(−1)j τ(Ft ρ(a0)
[
Ft, ρ(a1)

] · · ·

[
Ft, ρ(aj−1)

]
(
d

dt
Ft)

[
Ft, ρ(aj)

] · · · [Ft, ρ(a2n+1)
]
) .

Then
d

dt
ϕt = (d1 + d2)ψ

t

for all t ∈ [0, 1].

Proof. a) follows from Proposition 15 b) of Section 7 and b) from a straightforward
computation.

8.ε The JLO cocycle. We have defined above the Chern character

Ch∗(H, D) ∈ H∗
ε (A)

of K-cycles over locally convex algebras (Definition 17), and proved the index formula
(Theorem 19). However, except for the component of dimension 0

ϕ0(a) = Trace(γ a e−D2

),

the higher components of the normalized entire cocycles given by Corollaries 14 and
16 are given by complicated formulae.
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Motivated by examples of θ-summable K-cycles arising in supersymmetric quantum
field theory, Jaffe, Lesniewski and Osterwalter ([298]) obtained a much simpler cocy-
cle, which was then shown ([115]) to be cohomologous to the normalized cocycle of
Corollaries 14 and 16.

Theorem 21. [298] Let (H, D) be a θ-summable K-cycle over a locally convex algebra
A. Then the following formulae define an entire cocycle in the (b, B) bicomplex.

a) Even case: ∀aj ∈ A

ϕ2n(a0, . . . , a2n) =

∫
P

si=1,si≥0

ds0 · · · ds2n−1 ×

Tr (γ a0 e−s0D2

[D, a1] e−s1D2 · · ·
[D, a2n−1] e−s2n−1D2

[D, a2n] e−s2nD2

) .

b) Odd case:

ϕ2n+1(a
0, . . . , a2n+1) =

√
2i

∫
P

si=1,si≥0

ds0 · · · ds2n ×

Tr (a0 e−s0D2

[D, a1] e−s1D2 · · ·
[D, a2n] e−s2nD2

[D, a2n+1] e−s2n+1D2

).

To prove this we use the algebra L of Subsection β) and the trace τ0 on L given by

τ0(T ) = Trace (T (1)) ∀T ∈ L.

Let us treat the odd case. The JLO formula is, up to normalization

ϕ2n+1(a
0, . . . , a2n+1) = τ0

(
a0 1

D2 + λ
[D, a1]

1

D2 + λ
· · · [D, a2n+1]

1

D2 + λ

)
.

In this formula λ is the element δ′0 of L, but it is convenient to think of it as the free
variable of Laplace transforms, which converts the convolution product of L into the
ordinary pointwise product of operator-valued functions of the real positive variable λ.
One cannot, however, permute the Laplace transform with the trace, since an operator
like a0 1

D2+λ
[D, a1] · · · [D, a2n+1] 1

D2+λ
is, in general, not of trace class for λ a scalar

when D is only θ-summable.

The cocycle property of ϕ, bϕ2n−1 + Bϕ2n+1 = 0, can be checked directly using the
following straightforward equalities:

(bϕ2n−1)(a
0, . . . , a2n)

= −τ0

(
[D, a0]

1

D2 + λ
[D, a1] · · · 1

D2 + λ
[D, a2n]

1

D2 + λ

)
,
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(B0 ϕ2n−1)(a
0, . . . , a2n)

= τ0

(
1

(D2 + λ)2
[D, a0]

1

D2 + λ
[D, a1] · · · 1

D2 + λ
[D, a2n]

)
.

One gets indeed that

(Bϕ2n−1)(a
0, . . . , a2n) = τ0

(
∂

∂λ
T

)
, bϕ2n−1 = τ0(T )

for the element T = −[D, a0] 1
D2+λ

· · · [D, a2n] 1
D2+λ

of the algebra L, so that the cocycle
property follows from

τ0

(
∂

∂λ
T

)
= −τ0(T ) ∀T ∈ L.

Finally, it is straightforward to check that the JLO cocycle is an entire cocycle, the
point being that it involves the commutators [D, aj] in a very simple manner (cf. [298]).

Theorem 22. [115] Let (H, D) be a θ-summable K-cycle over an algebra A. Then
the JLO cocycle is cohomologous, as an entire cocycle on A, with the Chern character
of Definition 17

ϕJLO ∈ Ch∗(H, D) ∈ H∗
ε (A).

The proof of this theorem is less straightforward than it looks, and is done in detail in
[115].

We have now at our disposal two equivalent cocycles for the Chern character. One is

normalized and comes from a natural homomorphism ρ of Q̂εA to L̃ (Theorem 13).
The other one, i.e. the JLO cocycle, is given by a beautifully simple formula. The
first formula involves the supergroup R1,1 (cf. some of Section β)). The second (JLO)
formula was found in a supersymmetric context, in which the operator H = D2 is the
generator of time translation while D is a “supercharge” operator. In the next section
we shall treat two main examples of θ-summable K cycles coming from 1) discrete
subgroups of higher rank Lie groups, and 2) supersymmetric quantum field theory.

9. θ-summable K-cycles, Discrete Groups and Quantum Field Theory

The examples in Sections 3, 4, 5, and 6 of Fredholm modules were limited to the finite-
dimensional, i.e. finitely summable, situation. Thus, for instance, in Section 5 the rank
of the Lie group G had to be equal to one, to ensure the finite summability condition.
In this section we shall give two families of examples of θ-summable Fredholm modules
(in the form of θ-summable K-cycles) arising from discrete subgroups of Lie groups of
arbitrary rank, and from quantum field theory.
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9.α Discrete subgroups of Lie groups. Before we proceed and discuss the
natural θ-summable K-cycles associated to discrete subgroups of Lie groups, we prove,
in order to show the need for the infinite-dimensional theory, a general result showing
that the C∗-algebra C∗

r (Γ) of a discrete non-amenable group Γ does not possess any
finitely summable K-cycle.

Theorem 1. [110] Let Γ be a non-amenable discrete group, and C∗
r (Γ) be the re-

duced C∗-algebra of Γ. Let (H, D) be a Hilbert space representation of C∗
r (Γ) with an

unbounded selfadjoint operator D with compact resolvent in H such that

{a ∈ C∗
r (Γ) ; [D, a] bounded} is dense in C∗

r (Γ).

Then for any p < ∞ one has Trace((1 + D2)−p) = +∞.

Proof. Let k be an integer, and assume that Trace((1+D2)−k) < ∞. Then for ε > 0
let T (ε) = (1 + ε D2)−k (Trace(1 + ε D2)−k)−1.

One has T (ε) ∈ L1(H), T (ε) > 0, Trace T (ε) = 1. Moreover, the L1 norm of commu-
tators tends to 0 with ε→0,

‖[T (ε), a]‖1 →ε→0 0 ∀a ∈ C∗
r (Γ).

Indeed, to prove this one can assume that [D, a] is bounded, in which case the proof
follows from the Hölder inequality and the simple estimate

‖[a, T (ε)1/k]‖k = O(ε1/2) for ε→0,

which is straightforward using the equality

[a, (1 + εD2)−1] = (1 + ε D2)−1 ε D[D, a] (1 + ε D2)−1

+ (1 + ε D2)−1 [D, a] ε D(1 + ε D2)−1

and the bound ‖ε1/2 D(1 + ε D2)−1‖ ≤ 1/2.

Then let L2 be the Hilbert space H⊗̂H of Hilbert-Schmidt operators in H, and let
ξ(ε) = T (ε)1/2 ∈ L2 for ε > 0. The Powers-Størmer inequality [Pow-S] shows that as
ε→0,

‖a ξ(ε)− ξ(ε) a‖2→0 ∀a ∈ C∗
r (Γ).

Let π be the representation of Γ in L2 given by

π(g) ξ = g ξ g−1 ∀g ∈ Γ , ∀ξ ∈ L2.

One has ‖ξ(ε)‖ = 1 ∀ε > 0 and ‖π(g) ξ(ε) − ξ(ε)‖→0 for ε→0 and any g ∈ Γ. This
shows that the representation π of Γ in L2 weakly contains the trivial representation
of Γ, which contradicts the non-amenability of Γ since π, as a representation of the
reduced C∗-algebra of Γ, is weakly contained in the regular representation of Γ.

Let us now pass to a general construction of θ-summable K-cycles.
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Proposition 2. Let Γ⊂G be a countable subgroup of a semisimple Lie group G, and
let X = G/K be the quotient of G by a maximal compact subgroup K, endowed with its
canonical G-invariant Riemannian metric. Let H be the Hilbert space of L2 differential
forms on X, on which Γ acts by left translations. Then the pair (H, D) is a θ-summable
K-cycle over A = CΓ, where D = dτ + (dτ )

∗, dτ = e−τϕ d eτϕ, and 2ϕ is the Morse
function on X given by the square of the geodesic distance to the point K ∈ X. (One
assumes τ 6= 0.)

The proof is simple and works in general ([110]), but in order to get a very explicit
formula for the operator H = D2, making clear that e−βH is of trace class for any β > 0
and allowing further computations, we shall make the further hypothesis that G is an
analytic subgroup of SL(n,R). One can then choose the faithful matrix representation
of G so that Gt = G and K = G ∩ O(n,R). Then X imbeds as a totally geodesic
subspace of the Riemannian space P (n,R) of positive invertible matrices, by the map
µ

µ(gK) = g gt ∀gK ∈ X = G/K.

The metric on P = P (n,R) is given by

‖dp/dt‖2 = Trace((p−1ṗ)2)

for any differentiable path p(t) in P .

Given p ∈ X⊂P , the geodesic distance d(p, 1) of p from 1 ∈ X is the same in X or in
P , and is equal to the Hilbert-Schmidt norm of log p:

2ϕ(p) = d(p, 1)2 = Trace ((log p)2).

The geodesic from 1 to p, parameterized by arc length, is t 7→ pαt, where α = d(p, 1)−1.
The gradient of ϕ is the tangent vector at t = 0 to the path t 7→ p(1+t) or equivalently
t 7→ p + t p log p ∈ P .

For any differential form ω on X, we let a∗(ω) be the operator (in H) of exterior
multiplication by ω

a∗(ω) ξ(p) = ω(p)∧ξ(p) ∀p ∈ X , ∀ξ ∈ H.

Its adjoint a(ω) is given by contraction iω by ω.

One has, obviously, with ω = dϕ

dτ = d + τ a∗(ω)

D = dτ + d∗τ = (d + d∗) + τ(a(ω) + a∗(ω)).

Let us first compute the commutator of D with a group element g acting on X as an
isometry, and check that it is bounded. One has

[D, g] = g((g−1 Dg)−D),

g−1 Dg −D = τ(a(αg) + a∗(αg))

where the differential form αg is equal to g∗ω − ω.
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Thus ‖[D, g]‖ = supp∈X ‖αg(p)‖, and we just have to check that this is finite. Now
g∗ω = d(g∗ϕ) and

g∗ϕ(p) = ϕ(gp) =
1

2
d(gp, 1)2 =

1

2
d(p, g−1(1))2.

Hence the tangent vector at p ∈ X corresponding to αg(p) ∈ T ∗
p (X) is

exp−1
p (1)− exp−1

p (g−1(1))

where expp : Tp(X)→X denotes the exponential map of the Riemannian manifold X.

Since exp−1
p is a contraction one has

‖αg(p)‖ ≤ d(1, g−1(1)) ∀p ∈ X.

It follows that if Γ is any subgroup of G, then [D, a] is bounded for any element a of
CΓ.

We shall now compute H = D2. By [Wit] it is the sum of three terms

D2 = (d + d∗)2 + τ T + τ 2 ‖dϕ‖2

where (d + d∗)2 is the Laplacian ∆ on X, ‖dϕ‖ is the operator of multiplication by the
scalar function ‖(dϕ)(p)‖2 = 2ϕ(p) = trace((log p)2), and where the operator T is the
following operator of order 0

T =
∑
µν

(∇dϕ)µν [a∗µ, aν ]

where ∇dϕ is the covariant differential of dϕ, viewed as an endomorphism of Tp(X)
and a∗µ (resp. aν) is exterior (resp. interior) multiplication by elements of a basis.

Let us compute ∇dϕ and check that its norm is of the order of d(p, 1) when p tends
to ∞ in X. Since X is a totally geodesic submanifold of P = P (n,R), we just need
to do the computation in P . Given p ∈ P we can identify Tp(P ) with the linear space
S(n,R) of symmetric matrices, using the isometry p−1/2 ·p−1/2. Then a straightforward
computation gives

(∇dϕ)p =
δ

tanh(δ)
, δ =

1

2
ad(log p).

The eigenvalues of δ in S(n,R) are the differences 1
2
(λi − λj), j = 1, . . . , n, where

the λi are the eigenvalues of log p. Thus, the eigenvalues of (∇dϕ)p are the h(
λi−λj

2
),

i, j = 1, . . . , n, where h(x) = x
tanh x

. Since tanh(x)→1 as x→∞ there is an inequality
of the form h(x) ≤ |x|+ c and hence

‖(∇dϕ)p‖ = O(d(p, 1)) as p→∞ in P.
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The operators in H given by ∆ = (d + d∗)2 and τ T + τ 2 ‖dϕ‖2 = τ T + 2τ 2 ϕ are
bounded below since ϕ(p) = d(p, 1)2. Thus, the Golden-Thompson inequality of ([Ar3])
applies and gives for any β > 0

Trace(e−βD2

) ≤ Trace
(
e−β∆ e−β(τT+2τ2ϕ)

)
< ∞.

The operator e−β(τT+2τ2ϕ) (τ 6= 0) is of order 0, and its norm behaves like e−λϕ(p) as
p→∞ for some λ > 0.

By construction, the K-cycle (H, D) is even, with the Z/2-grading given by the degree
of differential forms

γω = (−1)k ω ∀ω ∈ L2(X,∧k T ∗).
Let us now assume that Γ is a discrete subgroup of G. Then H is in a natural manner
an A-B-bimodule, where, A = CΓ, as above, is the group ring of Γ while the algebra B
is the algebra of Γ-periodic Lipschitz bounded functions on X

B = {f ∈ Cb(Γ\X) ; ‖∇f‖ bounded}.
It acts by multiplication operators in H = L2(X,∧∗)

(fω)(p) = f(p) ω(p) ∀f ∈ B , ω ∈ H , p ∈ X

and this action commutes, by construction, with the action of Γ.

Proposition 3. Let Γ be a discrete subgroup of G.

a) (H, D, γ) is a θ-summable K-cycle over the closure C under holomorphic func-
tional calculus of A⊗B in the C∗-algebra Cb(Γ\X, C∗

r (Γ)), where C∗
r (Γ) is the

reduced C∗-algebra of Γ.

b) For any a ∈ A and b ∈ B one has

[[D, a], b] = 0.

Proof. For any f ∈ B the commutator [dτ , f ] is equal to [d, f ], and is hence bounded
since f is a Lipschitz function. Thus, [D, f ] is bounded for any f ∈ B. Moreover, both
[dτ , f ] and [d∗τ , f ] are Γ-invariant operators, so that [D, f ] commutes with Γ for any
f ∈ B.

As the algebras A and B commute with each other this proves b).

Next, since Γ is discrete in G, its representation in L2(X,∧∗) is a direct integral of
representations which are quasi-equivalent to the regular representation of Γ (they are
equivalent when Γ is torsion-free). Thus, the representation of A⊗B in H extends to
a representation of the C∗-algebra

Cb(Γ\X,C∗
r (Γ)).

Since the algebra {T ∈ L(H); [D,T ] bounded} is stable under the holomorphic func-
tional calculus in L(H) we get a).
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By construction, C is a pre-C∗-algebra. It contains the closure under the holomorphic
functional calculus of CΓ in C∗

r (Γ). Similarly, it contains B, which is, by construction,
closed under the holomorphic functional calculus (but not dense) in Cb(Γ\X).

The index map of the K-cycle (H, D, γ) (Proposition 8.18) thus yields a bilinear map

K(C∗
r (Γ))×K(B)→IndDZ.

This map is easy to compute for elements of K(C∗
r (Γ)) which are in the range of the

analytic assembly map (Chapter II)

µr : K∗(BΓ)→K(C∗
r (Γ)).

Theorem 4. For any x ∈ K∗(BΓ) and y ∈ K(B) the index of (D, γ) evaluated on
µr(x)⊗y ∈ K(C) is given by

IndD(µr(x)⊗y) = 〈Ch∗(x), Ch∗(y)〉
where Ch∗(x) ∈ H∗(BΓ)∼H∗(Γ\X) is the Chern character of the K-homology class x,
and Ch∗(y) ∈ H∗(Γ\X) is the Chern character of the K-theory class y.

Note that Ch∗(x) is a homology class with compact support in Γ\X, so that it pairs
with the cohomology class (with no support restriction) Ch∗(y).

The proof of Theorem 4 follows in a straightforward manner from the results of Kas-
parov [333] in his proof of the Novikov conjecture for discrete subgroups of Lie groups
(cf. Appendix A Theorem 19). It follows from Proposition 3 that every Γ-equivariant
Hermitian vector bundle E on X with Γ-invariant compatible connection ∇ determines
canonically a K-cycle (HE, DE, γE) over C∗

r (Γ) which can be concretely described as
follows:

HE = L2(X,∧∗⊗E)

is the Hilbert space of L2-forms on X with coefficients in E, in which Γ acts by left
translations

DE = ∇τ + (∇τ )
∗

is given by the same formula as D = dτ + d∗τ , but with the covariant differentiation ∇
of sections of E instead of the differential d,

γE ω = (−1)k ω ∀ω ∈ L2(X,∧k⊗E).

We can now state the following corollaries of Propositions 2 and 3, and Theorem 4.

Corollary 5. Let Γ⊂G be a discrete subgroup of a semisimple Lie group, and A the
pre-C∗-algebra closure under the holomorphic functional calculus of CΓ in C∗

r (Γ).

a) The K-cycle (HE, DE, γE) over A is θ-summable.
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b) Let ϕE ∈ Hev
ε (A) be the Chern character of (HE, DE, γE). Then for any

x ∈ K∗(BΓ) one has

〈ϕE, µr(x)〉 = 〈Ch∗(x), Ch∗(E)〉.

The proof of Proposition 2 is easily modified to give a).

By Theorem 4 the index map IndDE determined by the K-cycle (HE, DE, γE) satisfies

IndDE(µr(x)) = 〈Ch∗(x), Ch∗(E)〉 ∀x ∈ K∗(BΓ).

Thus, the answer follows from Theorem 19 of Section 8.

Let us now combine Corollary 5 with the higher index theorem of Chapter III Section
4.

Proposition 6. Let G, Γ and (HE, DE, γE) be as above. There exists a unique element
β ∈ Hev(BΓ,C) such that the associated cyclic cohomology class τβ ∈ HCev(CΓ), has
the same pairing with µ(K0(BΓ))⊂K0(RΓ) as the entire cyclic cocycle ϕE. One has
moreover

β = Ch E.

In particular, if we take for E the trivial one-dimensional vector bundle, i.e. for DE =
D, we get that, on the image of µr, the entire cyclic cocycle ϕ = Ch∗(H, D, γ) pairs in
the same way as the normalized trace τ

τ : C∗
r (Γ)→C

τ

(∑
g∈Γ

ag g

)
= ae ∀a =

∑
ag g ∈ CΓ.

The equality of τ with ϕ on µr(K∗(BΓ)) is not sufficient to conclude that τ(K0(C
∗
r (Γ)))⊂Z

for Γ torsion-free, since we do not know that µr is surjective.

The conclusion τ(K0(C
∗
r (Γ)))⊂Z would follow if we could show that the entire cyclic

cocycles ϕ and τ on A are cohomologous. We shall take a first step in this direction by
proving that ϕ is cohomologous to a simpler entire cyclic cocycle ψ whose component
of degree 0, ψ0, is equal to τ when Γ is torsion-free. In fact, this simplification will be
obtained for any of the entire cocycles ϕE, which will all be in the range of a natural
map Φ from closed differential forms on M = Γ\X to entire cyclic cocycles on A.

We shall assume, to simplify the discussion, that Γ is cocompact and torsion-free, so
that M is a compact manifold. The general case is not more difficult but requires
heavier notation.



9. θ-SUMMABLE K-CYCLES, DISCRETE GROUPS AND QUANTUM FIELD THEORY 424

Let S be the spinor bundle on X with its natural G-equivariant structure, and let ∇s

be the spin connection. Let Σ be the Hilbert bundle over M whose fiber at each p ∈ M
is the Hilbert space

Σp = `2(π−1(p), S)

of `2 sections of the restriction of the bundle S to the Γ-orbit π−1(p)⊂X above p. (We
denote by π : X→M the quotient map.)

To the connection ∇s corresponds a natural connection ∇ on the Hilbert bundle Σ
over M , uniquely determined by the natural isomorphism

L2(M, Σ)∼L2(X,S).

More precisely, for any smooth section ξ of Σ on M , one lets ξs be the corresponding
section of S over X, and one has

(∇Y ξ)(p) = (∇seY ξs)(q)π(q)=p ∈ Σp

for any tangent vector Y ∈ Tp(M) lifted as Ỹq ∈ Tq(X) for any q ∈ X, π(q) = p.

Next, let T be the unbounded endomorphism of the Hilbert bundle Σ over M given by

(Tp ξ)(q) = c(q, 0) ξ

where 0 denotes a fixed origin in X and, for any q ∈ X, c(q, 0) denotes the operator
in Sq of Clifford multiplication by the unique tangent vector at q whose image by the
exponential map expq in X is this fixed origin 0.

We shall assume that X is even-dimensional and use the superconnection Z = γ∇ +
iT , where γ is the Z/2-grading of the Hilbert bundle Σ (cf. [464] and Appendix A,
Definition 16 for the notion of superconnection on a Hilbert bundle on a manifold).

The algebra C∗
r (Γ) acts by endomorphisms of the bundle Σ since Γ acts by translations

on each of the fibers π−1(p).

One then checks that the hypothesis of the following proposition is fulfilled by the
action of the pre-C∗-algebra A⊂C∗

r (Γ).

Proposition 7. [114] Let M be a compact manifold, (Σ, γ) a Z/2-graded Hilbert
bundle on M equipped with a superconnection Z = γ∇+ iT , and let A be a subalgebra
of the algebra of endomorphisms of the bundle (Σ, γ) such that:

a) For every a ∈ A, the commutator δ(a) = [Z, a] is a bounded endomorphism of
the bundle Σ.

b) The operator-valued differential form exp(β Z2) is of trace class for any β > 0.
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Then the following formula defines, for any closed even smooth form ω on M , an entire
cocycle in the (b, B) bicomplex of A:

ϕω
2n(a0, . . . , a2n) =

∫

M

∫
P

si=1,si≥0

ω∧ Trace
(
γ a0 es0Z2

δ(a1)

· · · es2n−1Z2

δ(a2n) es2nZ2
) 2n∏

1

dsi.

Let us apply this proposition in the above context with A⊂C∗
r (Γ) as above, and denote

by Φ the corresponding map, Φ(ω) = ϕω, from H∗(M) to H∗
ε (A). The computation of

the character Ch∗(HE, DE, γE) = ϕE is partially achieved by the following result.

Theorem 8. With the above notation one has

Ch∗(HE, DE, γE) = Φ(ω)

where ω = Â(M)ChE, and Â(M) is the Â-genus of M ([394]).

Let Γ be an arbitrary countable discrete group and, as above, let A be the pre-C∗-
algebra closure of the group ring CΓ under the holomorphic functional calculus in
C∗

r (Γ).

We have seen in Chapter III (Section 2.γ Theorem 8) that the cyclic cohomology of
the group ring CΓ⊂A is canonically isomorphic to the S1-equivariant cohomology of
the free loop space (BΓ)S

1
of BΓ. In a similar manner the entire cyclic cohomology of

A, H∗
ε (A), ought to have a related geometric interpretation. Theorem 7.21 shows that

any element x ∈ Hev
ε (A) yields a homotopy invariant higher signature by the formula

Signx(M, ψ) = 〈IndΓ(DSign), x〉
with the notations of Lemma III.4.8, where M is a compact oriented manifold and ψ
a continuous map from M to BΓ.

9.β Supersymmetric quantum field theory. The apparent incompatibility of
quantum mechanics and special relativity (cf., for instance, [209]) is resolved only by
the theory of quantum fields, i.e. by the quantization of a mechanical system with
infinitely many degrees of freedom.

As we shall see by working out in full detail a concrete example, this infinity of the
number of degrees of freedom implies, at least in supersymmetric theories, that the
cohomological dimension of the algebras of local observables is infinite. One expects in
general that, provided an infrared cutoff is given, i.e. space is assumed to be compact,
the following holds:
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(1) The supercharge operator Q in the vacuum representation Hilbert space H, Z/2-
graded by Γ = (−1)Nf (where Nf is the fermion number operator) defines a θ-summable
K-cycle over the algebras U(O) of local observables.

(2) The index map given by Q, i.e. the map from K0(UL(O)) to Z, where UL(O) =
{A ∈ U(O); [Q,A] bounded}, given by the index of Q with coefficients in a K-theory
class, fails to be polynomial, in the following sense:

Definition 9. Let A be an algebra (over C), and ψ : K0(A)→C an additive map.
Then ψ is polynomial if there exists a cyclic cocycle τ ∈ HC∗(A) such that:

ψ(e) = 〈τ, e〉 ∀e ∈ K0(A).

We shall only prove (1) and (2) in an explicit and non-interacting example, the N = 2
Wess-Zumino model on a 2-dimensional cylinder space-time. The results of [299] on
constructive quantum field theory prove (1) in the interacting case. They should allow
one to prove (2) in the interacting case as well.

Before we embark on the description of the model, we shall work out a toy example
with finitely many degrees of freedom.

This example is a slight variation of the construction of Proposition 2. We let E be
a finite-dimensional Euclidean vector space over R, and ϕ a nondegenerate quadratic
form on E. Then let H = L2(E,∧∗EC) be the Hilbert space of complex, square
integrable differential forms on E. We let D = dϕ +(dϕ)∗ where dϕ = e−ϕ d eϕ, d being
the exterior differentiation.

Writing ϕ(x) =
∑n

i=1
1
2

λi x2
i , λi 6= 0, in a suitable orthonormal basis of E, with

xi = 〈x, ei〉, it is immediate to compute the spectrum of D and check that it is (2n,∞)-
summable, n = dim E. Moreover, the index of D, relative to the Z/2-grading γ of H
given by (−1)k on ∧k E∗

C, is equal to (−1)n− , where n− is the number of negative
eigenvalues λi < 0 of ϕ.

Let k ≤ n, ξ1, . . . , ξk ∈ E, η1, . . . , ηk ∈ E∗, be such that

〈ξi, ηj〉 ∈ 2π Z ∀i, j = 1, . . . , k.

To each ξi we associate the unitary Ui in H given by translation by ξi ∈ E. To each ηj

we associate the unitary Vj in H given by multiplication by the periodic function

Vj(ξ) = exp i〈ξ, ηj〉 ∀ξ ∈ E.

The above condition shows that these 2n unitaries commute pairwise. As in Proposition
3, they all have bounded commutators with D, i.e. belong to the algebra AD = {T ∈
L(H); Tγ = γT, [D,T ] bounded}.
We let [U1∧U2∧ · · · ∧Uk∧V1∧ · · · ∧Vk] ∈ K0(AD) be the K-theory class obtained as
a cup product of the above commuting unitaries. There are two equivalent ways of
describing it.
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The first is to consider the compact manifold M = T2k, which is a torus of dimension
2k, and the homomorphism ρ from C∞(M) to AD given with obvious notation by

ρ(ui) = Ui , ρ(vj) = Vj

where (u1, . . . , uk, v1, . . . , vk) are the natural S1-valued coordinates on M . Using the
orientation given by this ordering of the coordinates, one gets a well defined class
β ∈ K0(M) = K0(C

∞(M)), that of the Bott element (cf. [19]).

One then defines

[U1∧ · · · ∧Uk∧V1∧ · · · ∧Vk] = ρ∗(β) ∈ K0(AD).

The second description uses the cup product in algebraic theory, which yields an ele-
ment of Kalg

2k (AD) whose image by Bott periodicity is the above element. Note that
AD, since it is stable under holomorphic functional calculus, satisfies Bott periodicity.

The computation of the index of D with coefficients in the K-theory class

[U1∧ · · · ∧Uk∧V1∧ · · · ∧Vk]

is given by:

Lemma 10. The index of D relative to the Z/2-grading γ and the K-theory class
[U1∧ · · · ∧Uk∧V1∧ · · · ∧Vk] is equal to

(−1)n− (2π)−k det(〈ξi, ηj〉) ∈ Z.

The proof is a straightforward application of the Riemann-Roch theorem, but we shall
give the details of the identification of D with a ∂ operator, since it throws light on
the previous example of Proposition 3.

Let us assume, to simplify the discussion, that the matrix (〈ξi, ηj〉)i,j is not degenerate.
Then the dimension of the linear span F of the ξi’s (resp. F ′ of the ηj’s) is equal to k,
and E is the linear span of F and (F ′)⊥ = {ξ ∈ E; 〈ξ, ηj〉 = 0 ∀j = 1, . . . , k}.
Thus, there exists a lattice Γ⊂E, i.e. a discrete cocompact subgroup of E, such that

ξi ∈ Γ , ∀i = 1, . . . , k ; ηj ∈ Γ⊥ ∀j = 1, . . . , k

where the dual lattice Γ⊥ is {η ∈ E∗; 〈η, Γ〉⊂2πZ}.
As in Proposition 3, we let the group ring CΓ act on H by translations, and C(E/Γ)
act onH by multiplication operators. These two commutative and commuting algebras
generate a C∗-algebra A in H, whose spectrum S is naturally the torus

S = Γ̂×E/Γ = E∗/Γ⊥×E/Γ.

One has ‖[D, f ]‖ < ∞ for any f ∈ C∞(S), and moreover the image of the map ρ :
C∞(M)→AD is contained in C∞(S). This shows that e = [U1∧ · · · ∧Uk∧V1∧ · · · ∧Vk] =
ρ∗(β) can be viewed as an element of K0(S), namely the pull-back of β by the projection
p : S→M which is the transpose of ρ.
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We shall now endow S with a complex Kähler structure and a holomorphic line bundle
L, so that the K-cycle on C∞(S) given by (H, D, γ) is isomorphic to the ∂ operator with
coefficients in L. First, given an element (X,Y ) of E×E∗, one gets a corresponding
vector field on S, i.e. a derivation δ(X,Y ) of A

δ(X,Y )(Ug f) = i〈Y, g〉 Ug f + Ug ∂X f

for any function f on E/Γ and any g ∈ Γ.

The Schwartz space S(E) is a finite projective right module over C∞(S) for the action
of C∞(S) given by

(ξ · (Ug f))(p) = f(p) ξ(p− g) ∀g ∈ Γ , f ∈ C∞(E/Γ) , ξ ∈ S(E) , p ∈ E.

A connection∇ on the corresponding complex line bundle L on S (so that S(E)∼C∞(M, L)
as finite projective modules) is now given by

(∇(X,Y ) ξ)(p) = (∂X ξ)(p) + i〈Y, p〉 ξ(p) ∀(X,Y ) ∈ E×E∗.

One checks that ∇(X,Y ) satisfies the Leibniz rule with respect to the derivation δ(X,Y ),
and also that it is compatible with the metric on L given by the following C∞(S)-valued
inner product on S(E):

(〈ξ, η〉)∧ (g, g′) = 〈ξ Ug Vg′ , η〉L2(E) ∀g ∈ Γ , g′ ∈ Γ⊥.

The curvature of the line bundle L is given by the formula

θ(α1, α2) = i ω(α1, α2) ∀αj = (Xj, Yj) ∈ E×E∗

where ω(α1, α2) = 〈Y1, X2〉 − 〈Y2, X1〉 is the canonical symplectic form on the tangent
space E×E∗ of S.

Next, let the quadratic form ϕ on E be expressed, as above, as ϕ(p) =
∑

1
2

λj(〈p, ej〉E)2

where (ej)j=1,...,n is an orthonormal basis of the Euclidean space E. We let ej be the
dual basis of E∗, so that 〈p, ej〉E = 〈p, ej〉 ∀p ∈ E. Then the operator dϕ is given by

dϕ =
n∑

j=1

a∗j(∂ej
+ λj〈·, ej〉)

where the a∗j are the operators of exterior multiplication by ej in ∧EC, so that their
representation is characterized by the commutation relations

aj a∗k + a∗k aj = δjk.

Let us consider the R-linear isomorphism of E×E∗ with Cn given by zj = 1
2
(xj +

(i/λj) yj).

Then ∂
∂zj

= δ(ej ,iλjej) as a derivation of A, and using the connection ∇ on the complex

line bundle L we get

dϕ =
∑

a∗j ∂L,j.
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We endow the manifold S with the complex Kähler structure given by the above isomor-
phism of its real tangent bundle with the trivial bundle with fiber Cn and standard inner
product. We then have a natural isomorphism of H = L2(E,∧∗EC) with L2(S,∧0,∗⊗L)
where ∧0,∗ is the exterior algebra bundle over the complex manifold S. This isomor-
phism U is the tensor product Ub⊗Uf of the isomorphisms Ub : L2(E)∼L2(S, L) and
Uf : ∧0,∗∼∧∗EC. Here Uf comes from the identification of EC with Cn given by the ba-
sis ej, while Ub extends the canonical isomorphism S(E)→C∞(S, L). The next lemma
is now clear:

Lemma 11. Under the isomorphism U : H→L2(S,∧0,∗⊗L) the action of A = C(S)
becomes the action by multiplication operators, the operator dϕ becomes the ∂L operator
and the Z/2-grading γ becomes (−1)q on ∧0,q⊗L. The K-cycle (H, D, γ) is isomorphic
to the K-cycle ∂L + (∂L)∗ on S.

Let us, as a first application of this lemma, compute the index of D with coefficients in
[U1∧U2∧ · · · ∧Uk∧V1∧ · · · ∧Vk] = e, i.e. let us prove Lemma 10. Since e = p∗(β), where
p : S→M is the transpose of the homomorphism ρ defined above, and β is the Bott
K-theory class, β ∈ K0(M), we can apply the Riemann-Roch theorem (cf. [227]) and
get

Index(De) = 〈Td(S)Ch(L)Ch(e), [S]〉
where the Todd genus of the complex manifold S is the cohomology class 1 ∈ H0(S),
the Chern character of L is equal to exp(c1) and its first Chern class c1 is 1

2π
ω where ω is

the canonical symplectic form. Also, the Chern character Ch(e) is p∗Ch(β) = p∗([M ])
where [M ] ∈ H2k(M) is its fundamental class. We thus get

Ind(De) =

〈
exp

(
1

2π
ω

)
p∗([M ]), [S]

〉
.

The class [M ] is represented by the differential form

(2πi)−2k U−1
1 dU1∧ · · · ∧U−1

k dUk∧V −1
1 dV1∧ · · · ∧V −1

k dVk,

so that its pull-back on S is translation invariant, and the computation of the right-
hand side of the above takes place in the exterior algebra ∧(E⊕E∗). Lemma 10 follows
easily.

We shall now explain in some detail the set-up of quantum field theory in a very simple
case, and show that the supercharge operator Q in supersymmetric theories yields a θ-
summable K-cycle. Thanks to the work of constructive quantum field theory (cf. [299])
these results are valid in the interacting case, but for the sake of simplicity we shall
limit ourselves to the free theory. We shall show that even in the free case, the infinite
number of degrees of freedom of the theory in every (non-empty) local region O implies
that the K-theory K(UL(O)) of the local observable algebra is infinite-dimensional.
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Let us first consider the simplest field theory, namely the free massive scalar field ϕ on
the space-time

X = S1×R
with the Lorentzian metric.

The scalar field ϕ is a real-valued function on X governed by the Lagrangian

L(ϕ) =
1

2

(
(∂0ϕ)2 − (∂1ϕ)2

)− m2

2
ϕ2

where ∂0 = ∂
∂t

is the time derivative (t ∈ R) and ∂1 = ∂
∂x

is the spatial derivative,
where the space is here compact and one-dimensional. The action functional is given
by

I(ϕ) =

∫
L(ϕ) dx dt =

∫
L(t) dt

L(t) =

∫

S1

(
1

2
(ϕ̇)2 − 1

2
(∂ ϕ)2 − m2

2
ϕ2

)
dx.

Thus, at the classical level, one is dealing with a mechanical system with infinitely many
degrees of freedom, whose configuration space C is the space of real-valued functions
on S1.

The Hamiltonian of this classical mechanical system is the functional on the cotangent
space T ∗C given by

H(ϕ, π) =
1

2

∫

S1

(
π(x)2 + (∂ ϕ(x))2 + m2 ϕ2(x)

)
dx

where one uses the linear structure of C to identify T ∗C with C×C∗, and where one
views the field π as an element of C∗

ϕ→
∫

S1
ϕ(x) π(x) dx ∈ C

As a classical mechanical system that above is the same as a countable collection of
uncoupled harmonic oscillators. Indeed, one can take as coordinates in C (resp. C∗)
the Fourier components ϕk =

∫
S1 ϕ(x) e−ikx dx (resp. πk), which are subject only to

the reality condition

ϕ−k = ϕk ∀k ∈ Z (resp. π−k = πk).

Thus, both spaces C and T ∗C are infinite products of finite-dimensional spaces and
the Hamiltonian H is an infinite sum

H =
∑

k∈Z

1

2

(
πk πk + (k2 + m2) ϕk ϕk

)
.

The quantization of a single harmonic oscillator, say a system with configuration
space R and Hamiltonian 1

2
(p2 + ω2q2), quantizes the values of the energy in replacing
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1
2
(p2 +ω2q2) by the operator 1

2

((
−i~ ∂

∂q

)2

+ ω2q2

)
on the Hilbert space L2(R), whose

spectrum is (up to a shift) the set {n ~ω ; n ∈ N}. The algebra of observables of the
quantum system is generated by a single operator a∗ and its adjoint a which obey the
commutation relation

[a, a∗] = 1

and the Hamiltonian is H = ~ω a∗a. These two equations completely describe the
quantum system. Its representation in L2(R), given by the equality

a =
1√
2

(
∂

∂q
+ q

)

is, up to unitary equivalence, its only irreducible representation. The (unique up to
phase) normalized vector Ω such that aΩ = 0 is called the vacuum vector.

The reality condition ϕ−k = ϕk shows that for k > 0, the pair {−k, k} yields a pair
of harmonic oscillators, whose quantization yields a pair of creation operators a∗k, a∗−k.
The observable algebra of the quantized field has the following presentation. It is
generated by a∗k and ak, k ∈ Z, with relations

[ak, a
∗
k] = 1 ∀k ∈ Z

[ak, a`] = 0 , [ak, a
∗
` ] = 0 ∀k 6= `.

The Hamiltonian is given by the derivation corresponding to the formal sum

Hb =
∑

k∈Z
~ ωk a∗k ak ; ωk =

√
k2 + m2.

The “vacuum representation” which corresponds to the vacuum state, which is the
infinite tensor product of the vacuum states, is given by the Hilbert space

Hb =
⊗

k∈Z
(Hk, Ωk)

and the tensor product representation of the algebra.

Equivalently one can describe this infinite tensor product as the Hilbert space L2(C, dµ)
where µ is a Gaussian measure on C. All this is straightforward (cf. [230]).

The spectrum of the quantum field Hamiltonian Hb acting in Hb is now

Spectrum Hb =
{∑

nk ~ωk ; nk ∈ N
}

.

Quantum field theory reconciles positivity of energy (i.e. Hb is a positive operator in
Hb) with causality, which means that we have commutation at space-like separation
for functions of the quantum field ϕ(x, t) = eit·Hb ϕ(x, 0) e−itHb , with

ϕ(x, 0) =
∑

k∈Z

(
ak eikx + a∗k e−ikx

)
(2ωk)

−1/2.
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This commutation of ϕ(x, t) with ϕ(y, s) for (x, t) and (y, s) space-like in the space-time
X = S1×R is easy to check directly. First, the operators ϕ(f) =

∫
f(x) ϕ(x, 0) dx,

f ∈ C∞, commute with each other, using ωk = ω−k. Next, with σt the automorphisms
given by time evolution

σt = eitHb · e−itHb ,

one computes [σt ϕ(f), ϕ(g)], for f, g ∈ C∞(S1), and finds a scalar multiple of the
identity, where the scalar is ∫

k(x, y, t) f(x) g(y) dx dy,

k(x, y, t) =
∑

k

e−ik(x−y)
(
e−iωkt − eiωkt

)
ω−1

k = k(x− y, t)

where k satisfies the Klein-Gordon equation(
∂2

0 − ∂2
1 + m2

)
k = 0

and the initial conditions k(x, 0) = 0, ∂
∂t

k(x, 0) = δ0.

It then follows from elementary properties of the wave equation that k(x, t) vanishes if
(x, t) is space-like separated from (0, 0), and hence that the quantum field ϕ satisfies
causality. All this is well known and we refer to [57], for instance, for more details.
For our purposes we shall retain two easy, and well known, corollaries.

Proposition 12. [57]

a) Let Hb be the vacuum representation. The quantum field ϕ is an operator-
valued distribution.

b) Let O be a local region (i.e. a bounded open set) in X and U(O) be the von
Neumann algebra in Hb generated by the ϕ(f) with Support f⊂O. Then when
O1 and O2 are space-like separated, one has

U(O1)⊂U(O2)
′.

The von Neumann algebras U(O) of local observables are an essential part of the
algebraic formulation of quantum field theory ([343]). From our point of view in
this book, the passage to a von Neumann algebra only captures the measure theoretic
aspect, and we shall now show that in the case of supersymmetric theories we can refine
the algebras U(O) to capture the finer topological and even metric aspects. We shall
only treat an example but the

strategy works in general. The example we take is the free Wess-Zumino model in 2
dimensions, with one complex scalar field ϕ of mass m and one spinor field ψ, also of
mass m. Thus, the Lagrangian is now

L = Lb + Lf ; Lb =
1

2

(|∂0 ϕ|2 − |∂1 ϕ|2 −m2|ϕ|2)
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O 1 O 2

Figure 10. Space like regions O1 and O2 in space-time cylinder

Lf = i ψ
∑

µ

γµ ∂µ ψ −m ψ ψ , ψ = ψ∗ γ0

where the Dirac matrices γµ are, say, γ0 =

[
0 1
1 0

]
, γ1 =

[
0 −1
1 0

]
, and the spinor field

ψ is given by a column matrix

ψ =

[
ψ1

ψ2

]
, ψ∗ = [ψ∗1, ψ

∗
2] .

The bosonic part is quantized exactly as above, except that the field ϕ is now complex,
so that the reality condition no longer holds and one needs twice as many creation
operators, which are now denoted by a∗±(k), k ∈ Z. They satisfy the commutation
relations

[a±(k), a±(`)] = [a±(k), a∓(`)] = [a±(k), a∗∓(`)] = 0

and [a±(k), a∗±(`)] = δk`.

The time-zero field ϕ(x) is given by

ϕ(x) = (4π)−1/2
∑

k∈Z
ω(k)−1/2 (a∗+(k) + a−(−k)) e−ikx

where ω(k) = (k2 + m2)1/2. The conjugate momentum is given by

π(x) = i(4π)−1/2
∑

k∈Z
ω(k)1/2 (a∗−(k)− a+(−k)) e−ikx,
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and one has the canonical commutation relations

[ϕ(x), ϕ(y)] = [π(x), π(y)] = [π∗(x), ϕ(y)] = 0

[π(x), ϕ(y)] = −i δ(x− y).

The quantum fields ϕ and π are operator-valued distributions in the bosonic Hilbert
space Hb of the vacuum representation of the creation operators a∗±(k), k ∈ Z. In this
representation the Hamiltonian Hb is given by

Hb =

∫
: |π(x)|2 + |∂1ϕ(x)|2 + m2|ϕ(x)|2 : dx

where the Wick ordering, : : , (cf. [57]) takes care of an irrelevant additive constant.
Equivalently, Hb is the Hilbert space L2(C−∞(S1), dµ) where dµ is the Gaussian mea-
sure, on the configuration space C−∞(S1) of complex-valued distributions on S1, with
covariance G

G = −(
d2

dx2
+ m2)−1/2.

With this identification the field ϕ is represented by multiplication operators and π(x)
becomes −i δ/δϕ(x) (cf. [230] or [299]). Next let us describe the fermionic part of
the model. It is worthwhile first to describe the C∗-algebra generated by the fermionic
fields together with its natural dynamics generated by a derivation, and then to find
the ground state and use this vacuum state to construct the fermionic Fock space.

The C∗-algebra generated by the fermionic field ψ =
[

ψ1

ψ2

]
is generated by its Fourier

components ψj(k), j = 1, 2; k ∈ Z, which satisfy the following relations

{ψi(k), ψj(`)} = 0 ∀i, j, k, `

{ψi(k), ψj(`)
∗} = δij δk` ∀i, j, k, `

where {a, b} = ab + ba.

In other words, we deal with the C∗-algebra A associated to the canonical anticommu-
tation relations in the Hilbert space of L2 spinors on S1.

The quantum fields ψ1 and ψ2 are then given by

ψj(x) =
∑

ψj(k) e−ikx ∀x ∈ S1

and they are A-valued distributions on S1.

This specifies ψ =
[

ψ1

ψ2

]
at time 0. Its time evolution is specified by the Hamiltonian

which is given by the derivation of A

δ(a) = [Hf , a]
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where Hf is the formal expression, with ψ = ψ∗γ0

Hf =

∫

S1

(
ψ iγ1 ∂ψ −m ψψ

)
dx

=
∑

k

k (ψ1(k)∗ ψ1(k)− ψ2(k)∗ ψ2(k))

−m (ψ∗1(k) ψ2(k) + ψ∗2(k) ψ1(k)) .

The above derivation makes perfectly good sense, and defines a one-parameter group
of automorphisms σt of A = CAR(L2(S1, S)). One has σt = CAR(Ut) where Ut is the
one-parameter group generated by the operator

H1 =

[
i∂ −m
−m −i∂

]
.

It is straightforward to check that the quantum field

ψ(x, t) =

[
ψ1(x, t)

ψ2(x, t)

]

does satisfy causality, so that ψ(x, s) and ψ(y, t) anticommute at space-like separated
points.

The only difficulty in the quantization of the spinor field is the positivity of energy,
since the first-order operator H1 does have both negative and positive eigenvalues. The
answer is well known, and quite clearly stated in C∗-algebraic terms:

Lemma 13. For any β ∈ [0,∞] there exists a unique KMSβ state ϕβ on (A, σt). It is
a quasi-free state. For β = +∞ the covariance of ϕ∞ is given by the sign F = H1|H1|−1

of H1.

The representation of A associated to the ground state ϕ∞ is the “Dirac sea” represen-
tation which can be described as follows. The Hilbert space Hf is the antisymmetric
Fock space over L2(S1, S) = L2(S1)⊕L2(S1). One lets b∗±(k) be the corresponding cre-
ation operators for k ∈ Z, the label of the natural orthonormal basis of L2(S1, S). The
operators b∗±(k) satisfy the canonical anticommutation relations, and are related to the
ψi(k) by the equalities which define the representation of A in Hf , namely

ψ1(k) = (4πω(k))−1/2 (ν(−k) b∗−(k) + ν(k) b+(−k))

ψ2(k) = (4πω(k))−1/2 (ν(k) b∗−(k)− ν(−k) b+(−k))

where ω(k) = (k2 + m2)1/2 as above, and where

ν(k) = (ω(k) + k)1/2.
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In this representation the one-parameter group σt of automorphisms of A has a positive
generator, the fermionic Hamiltonian

Hf =

∫

S1
: ψ i γ1 ∂ψ −m ψψ : dx.

The Hilbert space of the full model is H = Hb⊗Hf , the tensor product of the bosonic
and fermionic Hilbert spaces. The quantum fields are given by the operator-valued
distributions ϕ(x)⊗1 and 1⊗ψj(x), where ϕ is the (complex) bosonic field and ψj are
the two components of the fermionic field.

As above (Proposition 12) we let U(O) be the von Neumann algebra of bosonic observ-
ables associated to any local region O⊂X. The full Hamiltonian of the non-interacting
theory is given by

H = Hb⊗1 + 1⊗Hf ,

and since the Wick ordering constants of the bosonic and fermionic parts cancel iden-
tically, one can write it as

H =

∫

S1
dx

(|π(x)|2 + |∂ϕ(x)|2 + m2|ϕ(x)|2 + ψ(x)(iγ1∂ −m) ψ(x)
)
.

It is a positive operator in H, and admits a natural selfadjoint square root, the super-
charge operator Q given by ([299])

Q =
1√
2

∫

S1
ψ1(x) (π(x)− ∂ϕ∗(x)− im ϕ(x)) + ψ2(x) ×

(π∗(x)− ∂ϕ(x)− im ϕ∗(x)) dx + h.c.

where h.c. means the adjoint operator.

On H = Hb⊗Hf we let Γ be the Z/2-grading given by 1⊗(−1)Nf , where Nf is the
fermion number operator.

With the above notation it is straightforward to prove:

Proposition 14.

a) The operator Q in H is selfadjoint, anticommutes with the Z/2-grading Γ, and

Trace(e−βQ2
) < ∞ for any β > 0.

b) For any local region O⊂X the subalgebra

UL(O) = {T ∈ U(O) ; [Q, T ] is bounded}
is weakly dense in the von Neumann algebra UL(O).

We refer to [299] for the proof of a). In fact, by construction, the pair (H, Q) is
obtained as an infinite tensor product

⊗
k∈N (Hk, Qk), where each Hk is a Z/2-graded

Hilbert space with Z/2-grading Γk, and where the infinite tensor product is relative to
the unique (up to a phase) normalized vector Ωk for which Qk Ωk = 0 and Γk Ωk = Ωk.
It is then an easy exercise to show that Q =

∑
Qk is selfadjoint in the Z/2-graded
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infinite tensor product, provided each Qk is. Here each operator Qk, k ∈ N, is of the
form

Qk = dϕk
+ (dϕk

)∗ in L2(Ek,∧∗C Ek)

where, for k > 0, Ek is the real Euclidean vector space Ek = C2 equipped with the
nondegenerate real quadratic form

ϕk(z, u) = (2ωk)
−1 (k zz − k uu + m(zu + z u)) ∀(z, u) ∈ C2.

Also Q2 = H = Hb⊗1 + 1⊗Hf , where the spectrum of Hb (resp. Hf ) is the set of all
finite sums

E =
∑

nk ωk nk ∈ N (resp. nk ∈ {0, 1})
so that exp(−βH) is of trace class for any β > 0, and the number of eigenvalues of H

below a given E > 0 grows like exp
(
λ
√

E
)

for E→∞, with λ a fixed constant.

b) To prove this it is enough to show that for f ∈ C∞
c (O) the following operators in

H belong to UL(O):

exp i(ϕ(f) + ϕ(f)∗) , exp i(π(f) + π(f)∗),

and similarly for the fermionic fields.

This follows from the boundedness of the commutators

[Q,ϕ(f)] , [Q, π(f)].

One has [Q,ϕ(f)] = −i√
2

∫
ψ1(x) f(x) dx + i√

2

(∫
ψ2(x) f(x) dx

)∗
, which is bounded if

f ∈ L2. Similarly, [Q, π(f)] is bounded provided f and ∂f belong to L2, so the result
follows.

Corollary 15. Let O⊂X be a local region and A(O) be the pre-C∗-algebra in U(O)
generated by the operators exp i(ϕ(f)+ϕ(f)∗) and exp i(π(f)+π(f)∗) for f ∈ C∞

c (O).
Then (H, Q, Γ) is a θ-summable K-cycle over A(O) for any local region O.

In fact, A(O)⊂UL(O), as follows from the proof of Proposition 14 b). We can now
state the main result of this section, which shows that even though we are in a free
theory, and however small a nonempty local region O may be, the K-theory of the
local algebra A(O) is nontrivial, pairs nontrivially with the supercharge operator Q,
and attests to the presence of infinitely many bosonic degrees of freedom localized in
O.

Theorem 16. Let O⊂X be a nonempty local region. Then the index map

IndQ : K0(A(O))→Z
is not polynomial, and K0(A(O)) is of infinite rank.
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To prove this we shall use Lemma 10 and the construction of K-theory classes given in
that lemma. To prove the result we can assume that O intersects S1×{0}⊂X. Then
let n ∈ N and fj, j = 1, . . . , n, be real-valued smooth functions on S1 with support in
O ∩ (S1×{0}) and such that ∫

S1
fi(x) fj(x) dx = δij.

Let ϕr be the real quantum field ϕr(x) = ϕ(x) + ϕ∗(x), and let πr be the conjugate
momentum. Then the following unitary operators belong to the algebra A(O):

Uj = exp 2πiϕr(fj)

Vk = exp iπr(fk).

The canonical commutation relations

[ϕr(fj), πr(fk)] = δjk

show that the operators Uj and Vk generate a commutative subalgebra of A(O), and
we can consider the element of K0(A(O)) given, as in Lemma 10, by

x = [U1∧U2∧ · · · ∧Un∧V1∧ · · · ∧Vn].

By Lemma 10, x is a nontrivial element of K0(A(O)), since it pairs nontrivially with
the K-cycle (H, Q, Γ) and

Index Qx = 1.

We are applying Lemma 10 in the case when E is infinite-dimensional, but the same
proof works. Here E = C is the configuration space of the complex scalar field ϕ, and
the quadratic form Φ is given by

Φ(ϕ) =
1

2
Re

∫

S1

(
i(∂ϕ)ϕ + m ϕ2

)
dx.

By construction, the above x ∈ K0(A(O)) pairs trivially with any cyclic cocycle on
A(O) of dimension < 2n, and pairs nontrivially with Q, which is enough to show that
the index map is non-polynomial.

Note that the non-polynomial index map of Q is given, using Theorem 19 of Section 8,
by an entire cocycle on A(O), namely the character Ch∗(H, Q, Γ) of the θ-summable
K-cycle (H, Q, Γ) (Corollary 15).

By the results of [J-L-W] on constructive quantum field theory, Proposition 14 still
holds for the interacting Wess-Zumino model in 2 dimensions.

We shall end this section by formulating two problems.

Problem 1. Prove Theorem 16 for the interacting Wess-Zumino model.

Problem 2. Compute the entire cyclic cocycle Ch∗(H, Q, Γ).
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Appendix A. Kasparov’s Bivariant Theory

In this appendix we shall give without proof the basic results of Kasparov’s bivari-
ant theory, which is an indispensable tool in constructing K-homology classes of C∗-
algebras. We shall follow [329] and [524].

Let us first recall some notation from Chapter II Appendix A.

Given two C∗-algebras A and B, an A-B C∗-bimodule is defined as a C∗-module E over
B together with a ∗-homomorphism from A to EndB(E). We say that a C∗-algebra A is
Z/2-graded if it is endowed with a grading automorphism γ ∈ AutA with γ2 = id. Any
element x of A then has a unique decomposition as a sum x = x0 +x1 with γ(x0) = x0

and γ(x1) = −x1. The C∗-subalgebra Aγ = {x ∈ A ; γ(x) = x} is called the even part
of A, and the odd part is {x ∈ A ; γ(x) = −x}. The Z/2-grading is called trivial if
Aγ = A, i.e. if γ = id. Similarly, a C∗-module E over a Z/2-graded C∗-algebra B is
called Z/2-graded if it is endowed with a linear grading operator γ : E→E such that

〈γξ, γη〉 = 〈ξ, η〉 ∈ B ∀ξ, η ∈ E
γ(ξb) = γ(ξ) γ(b) ∀ξ ∈ E , b ∈ B.

When B is trivially graded one has γ ∈ EndB(E), and γ is an involutive unitary element
of that C∗-algebra. Consideration of the general case is quite useful since it allows one
to treat the even and odd cases in a unified manner.

Given a Z/2-graded C∗-module E over a Z/2-graded C∗-algebra B, the C∗-algebra
EndB(E) is naturally Z/2-graded by the rule

γ(T ) γ(ξ) = γ(Tξ) ∀T ∈ EndB(E) , ξ ∈ E .

For A, B a pair of Z/2-graded C∗-algebras, an A-B graded C∗-bimodule is given by
a Z/2-graded C∗-module E over B and a Z/2-graded ∗-homomorphism from A to
EndB(E).

In the Z/2-graded context, all commutators are graded commutators:

[x, y] = xy − (−1)deg x deg y yx,

and, more generally, one uses the rule that a transposition of two elements x and y
introduces the sign (−1)deg x deg y (cf. [394]). As in Appendix A of Chapter II we shall
denote by End0

B(E) the two-sided ideal of compact endomorphisms of a C∗ B-module
E . All the C∗-modules will be assumed to be countably generated (cf. Chapter II
Appendix A).

Definition 1. [329] Let A,B be Z/2-graded C∗-algebras. A Kasparov A-B-bimodule is
a pair (E , F ), where E is an A-B graded C∗-bimodule, and F ∈ EndB(E), γ(F ) = −F ,
is such that for any a ∈ A one has [F, a] ∈ End0

B(E), a(F 2 − 1) ∈ End0
B(E), and

a(F − F ∗) ∈ End0
B(E).
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One says that a Kasparov A-B-bimodule is degenerate if the above three operators
vanish for any a ∈ A, i.e.

[F, a] = a(F 2 − 1) = a(F − F ∗) = 0 ∀a ∈ A.

The direct sum of Kasparov A-B-bimodules is defined in a straightforward manner by

(E1, F1)⊕(E2, F2) = (E1⊕E2 , F1⊕F2).

Let B[0, 1] = B⊗C[0, 1]. Then a Kasparov A-B[0, 1]-bimodule can be equivalently
described as a continuous field (Et, Ft), t ∈ [0, 1], of Kasparov A-B-bimodules, and
it is called a homotopy between (E0, F0) and (E1, F1). More specifically (Et, Ft), for
t ∈ [0, 1], is the Kasparov A-B-bimodule obtained from (E , F ) by composition with the
evaluation morphism

ρt : B[0, 1]→B.

In general, given two C∗-algebras B1 and B2 and a ∗-homomorphism ρ : B1→B2, one
can associate to any Kasparov A-B1-bimodule the induced A-B2 Kasparov bimodule
given by

(E⊗B1B2 , F⊗1) = ρ∗(E , F ).

Similarly, given a ∗-homomorphism σ : A1→A2, there is an obvious notion of restriction
of any Kasparov A2-B-bimodule to A1-B.

Proposition 2. [329] Let A and B be two C∗-algebras. The set KK(A,B) of homo-
topy classes of Kasparov A-B-bimodules endowed with the operation of direct sum is
an abelian group.

Any degenerate Kasparov A-B-bimodule is homotopic to the bimodule E = {0} and
represents 0 ∈ KK(A,B).

The bifunctor KK(A,B) is, by construction, homotopy invariant in both A and B.

Kasparov proved (cf. [329]) that the equivalence relation of homotopy is in fact the
same, modulo the degenerate bimodules, as the apparently much more restrictive oper-
atorial homotopy : given a (Z/2-graded) A-B C∗-bimodule E , a homotopy (E , Ft)t∈[0,1]

of Kasparov A-B-bimodules is called operatorial if the map t→Ft is norm continuous.

Theorem 3. [329] Let A and B be two C∗-algebras, with A separable. Two Kasparov
A-B-bimodules (Ej, Fj) are homotopic iff, up to addition of degenerate bimodules, they
are operator homotopic.

The key tool of KK-theory is the Kasparov product ([329])

KK(A,B)×KK(B,C)→KK(A,C)

which we shall now describe using the convenient notion of connection introduced in
[136].
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Definition 4. Let E2 be a B-C C∗-bimodule, let E1 be a C∗-module over B, and let
E = E1⊗BE2, F2 ∈ EndC(E2). An element F ∈ EndC(E) is called an F2 connection on
E1 if for any ξ ∈ E1 the following endomorphism is compact:

[
T̃ξ, F2⊕F

]
∈ End0

C(E2⊕E)

where T̃ξ =

[
0 T ∗

ξ

Tξ 0

]
∈ EndC(E2⊕E), Tξ ∈ HomC(E2, E) being given by Tξ(η) = ξ⊗η ∈

E , ∀η ∈ E2.

One should view F as a lift of F2, but the terminology connection is appropriate as can
be seen from examples coming from pseudodifferential operators of order 0 on smooth
manifolds and involving lifts of these operators to sections of vector bundles.

The straightforward properties of connections are listed as follows [136].

Proposition 5.

a) If [F2, b] = 0 ∀b ∈ B, then 1⊗F2 makes sense and is an F2 connection.
Moreover, [T⊗1, 1⊗F2] = 0 for any T ∈ EndB(E1).

b) If [F2, b] ∈ End0
C(E2) ∀b ∈ B, then there exists an F2 connection for any

(countably generated) C∗-module E1 over B.

c) The space of F2 connections is an affine space with associated vector space
V = {T ∈ EndC(E) ; Tx and xT ∈ End0

C(E) for any x ∈ End0
B(E1)⊗1}.

d) If F is an F2 connection then [F, x] ∈ End0
C(E) for any x ∈ End0

B(E1)⊗1.

e) If F is an F2 connection and F ′ is an F ′
2 connection, then F + F ′, FF ′, F ∗

are respectively F2 + F ′
2, F2F

′
2, and F ∗

2 connections.

We can now give an implicit definition of the Kasparov product.

Definition 6. Let A,B and C be Z/2-graded C∗-algebras, (E1, F1) a Kasparov A-
B-bimodule, and (E2, F2) a Kasparov B-C-bimodule. Let E = E1⊗BE2 be their graded
tensor product viewed as an A-C C∗-bimodule. The pair (E , F ), F ∈ EndC(E), is called
a Kasparov product of F1 and F2 (and one writes F ∈ F1#F2) if:

a) (E , F ) is a Kasparov A-C-bimodule (Definition 1).

b) F is an F2 connection.

c) For any a ∈ A, a[F1⊗1, F ]a∗ ≥ 0 modulo End0
C(E).

The motivation for a) and b) is clear. The reason for c) is the construction of the
product [Kas1] using the following formula

F = M(F1⊗1) + N(1⊗F2)
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which makes sense when E1 is stabilized and M and N are positive operators. The
original construction of Kasparov ([329]) is slightly improved (cf. [136]) as follows:

Theorem 7. Assume that A is separable. Let (E1, F1) be a Kasparov A-B-bimodule
and let (E2, F2) be a Kasparov B-C-bimodule.

a) There exists a Kasparov product (E , F ), F ∈ F1#F2, and it is unique up to
operatorial homotopy.

b) The map (E1, F1)×(E2, F2)→(E , F ) passes to homotopy classes, and defines a
bilinear product denoted

⊗B : KK(A,B)×KK(B, C)→KK(A, C).

The uniqueness of F is easy. Its existence is a corollary of the technical theorem:

Theorem 8. [329] Let B be a graded C∗-algebra and E a countably generated, graded
C∗-module over B. Let E1 and E2 be graded subalgebras of EndB(E), and f⊂EndB(E)
a graded vector subspace. Assume that:

1) E1 has a countable approximate unit and contains End0
B(E).

2) f and E2 are separable.

3) E1 · E2⊂End0
B(E), [f, E1]⊂E1.

Then there exist M,N ∈ EndB(E) such that

M ≥ 0 , N ≥ 0 , M + N = 1

ME1⊂End0
B(E) , NE2⊂End0

B(E) , [f,M ]⊂End0
B(E).

The Kasparov product ⊗B enjoys the same general functorial properties as the com-
position of morphisms. Each morphism ρ : A→B of C∗-algebras defines in an obvious
way an element ρ ∈ KK(A,B) (given by the A-B C∗-module E = B with left action
of A given by ρ, and operator F = 0).

There is a small notational difficulty since the composition of morphisms is written

Hom(A,B)×Hom(B, C)→Hom(A,C)

(ρ1, ρ2) 7→ ρ2 ◦ ρ1,

while the natural notation for the Kasparov product is that of tensor products of
bimodules, namely

KK(A,B)×KK(B,C)→KK(A,C)

(x1, x2) 7→ x1⊗Bx2,

which is also analogous to the contraction of tensors.

In particular, (cf. [329]) it is convenient to extend the Kasparov product to the fol-
lowing relative case:
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For any C∗-algebra A with countable approximate unit we denote by τA the operation
of minimal tensor product by A, i.e.

τA : KK(B, C)→KK(B⊗A,C⊗A),

where the tensor products of C∗-algebras are minimal (or spatial ones) (cf. [436]).
Given a Kasparov B-C-bimodule (E , F ), its image under τA is given by (E⊗A,F⊗1),
which is a Kasparov (B⊗A)-(C⊗A)-bimodule.

Then let A1, A2, B1, B2 and D be C∗-algebras, with A1 and A2 separable, and B1 with
countable approximate unit.

Definition 9. [329] Let x1 ∈ KK(A1, B1⊗D) and x2 ∈ KK(D⊗A2, B2). Then
x1⊗Dx2 ∈ KK(A1⊗A2, B1⊗B2) is defined as

x1⊗Dx2 = τA2(x1)⊗B1⊗D⊗A2 τB1(x2).

Then the associativity of the Kasparov product, i.e. the equality: ([329])

(x1⊗Bx2)⊗Cx3 = x1⊗B(x2⊗Cx3)

for x1 ∈ KK(A,B), x2 ∈ KK(B, C), x3 ∈ KK(C,D) implies the stronger:

Theorem 10. [329] Let A1, A2, A3 and D1 be separable, x1 ∈ KK(A1, B1⊗D1),
x2 ∈ KK(D1⊗A2, B2⊗D2), x3 ∈ KK(D2⊗A3, B3); then

(x1⊗D1x2)⊗D2x3 = x1⊗D1(x2⊗D2x3).

The associativity implies, in particular, that KK(B,B) is naturally a ring with unit
for any separable C∗-algebra B. In the form given in Theorem 10 it is particularly
convenient for the formulation of Poincaré duality ([333] [334] and [136]). We shall
come back to this point in Chapter VI.

Before we specialize KK to cases when A or B = C, we state two equivalent formula-
tions of its cycles.

Definition 11. A Kasparov A-B-bimodule (E , F ) is normalized if F = F ∗ and F 2 = 1.

One then has the following simple

Proposition 12. Let (E , F ) be a Kasparov A-B bimodule. Then after addition of a
degenerate bimodule (E0, 0), it is operator homotopic to a normalized Kasparov A-B-
bimodule.

Moreover, since the construction is canonical, it shows that one really does obtain the
same KK-theory if one restricts to normalized Kasparov bimodules and homotopies.

When B = C and A is unital, and acts in a unital way on E = H which is a Z/2-graded
Hilbert space, one can normalize (H, F ) by simply adding to H the finite-dimensional
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space KerF with opposite Z/2-grading and 0-module structure over A. This removes
the index obstruction to making F invertible.

Let C1 = {λ + µα ; λ, µ ∈ C} be the Z/2-graded Clifford algebra over C, with α2 = 1
and Z/2-grading given by λ + µα 7→ λ− µα.

Proposition 13. Let A be a trivially graded C∗-algebra.

a) A normalized Kasparov A-C-bimodule is exactly an even Fredholm module over
A.

b) Let K = C2 with Z/2-grading γ =

[
1 0
0 −1

]
and action of C1 given by λ+µα 7→

[
λ µ
µ λ

]
∀λ, µ ∈ C. Then every normalized Kasparov A⊗C1-C-bimodule is of

the form

(
H⊗K , F⊗

[
0 −i
i 0

])
for a unique odd Fredholm module (H, F )

over A.

The proof is straightforward. The next result due to [30] gives a useful construction
of Kasparov bimodules from unbounded operators in C∗-modules as well as a useful
notion:

Definition 14. Let B be a C∗-algebra and E a C∗-module over B; then an unbounded
endomorphism T of E is given by a pair of closed densely defined operators T and T ∗

on E commuting with the right action of B such that

1) 〈Tξ, η〉 = 〈ξ, T ∗η〉 ∀ξ ∈ DomT , η ∈ DomT ∗

2) 1 + T ∗T is surjective.

We refer to the thesis of S. Baaj [29] for this notion introduced in [30].

Theorem 15. (cf. [30])

a) Let E be an A-B C∗-bimodule with Z/2-grading γ and D an unbounded self-
adjoint endomorphism of E anticommuting with γ and such that

α) {a ∈ A ; [D, a] bounded} is norm dense in A

β) a(1 + D∗D)−1 ∈ End0
B(E) ∀a ∈ A.

Then the following equality defines a Kasparov A-B-bimodule:

F = D(1 + D∗D)−1/2.

b) Every Kasparov A-B-bimodule (E , F ) is operator homotopic to one obtained
from the construction a).
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The proof follows by using the equality

(1 + D∗D)−1/2 = λ

∫ ∞

0

1

D∗D + 1 + µ
µ−1/2 dµ

to prove that [F, a] is compact for any a ∈ A.

One reason why the unbounded formulation of Kasparov bimodules is convenient is
that it makes the external product straightforward, and given simply by the formula

(E1, D1)⊗(E2, D2) = (E1⊗E2 , D1⊗1 + 1⊗D2)

where the tensor product is a graded tensor product. In the odd (ungraded) case this
yields

D =

[
0 D1⊗1− i⊗D2

D1⊗1 + i⊗D2 0

]
.

The internal Kasparov product, KK(A,B)×KK(B,C)→KK(A,C), is more difficult
to treat by this method.

At this point it is important to discuss the closely related notion of superconnection
due to D. Quillen [464]. Let M be a smooth manifold and Ω(M) =

⊕
Ωp(M) be the

algebra of smooth differential forms on M . Let E be a Z/2-graded complex vector
bundle over M and consider the right Ω(M)-module Ω(M,E) of E-valued differential
forms on M , endowed with the total Z/2-grading.

Definition 16. [464] A superconnection on E is an operator Z of odd degree in
Ω(M,E) such that

Z(ξω) = Z(ξ)ω + (−1)∂ξ ξ dω

for any ξ ∈ Ω(M, E), ω ∈ Ω(M).

(This differs slightly from [464] because we use right modules instead of left modules.)

This notion plays an important role in the computation of the Chern character of K-
theory classes on M given by a pair (E , D) as in Theorem 15 with A = C, B = C0(M).
With E = C0(M,E) and ∇ an ordinary connection on the Hilbert bundle E, the
equality

Z = γ∇+ iD,

where γ is the Z/2-grading of E, defines a superconnection. The Chern character of

(E , D) is then given ([464]) as trace (eZ2
). All of this extends with minor changes

to the context of cycles of Chapter III Section 3, and Proposition 8 continues to hold
provided one deals with pre-C∗-algebras and pre-C∗-modules. It provides one with a
very useful tool for computation of the pairing of cyclic cohomology with explicit K-
theory classes. Finally, by adapting Proposition 9.7 to this context, one can explicitly
compute the action of a bivariant KK-class on cyclic cohomology (cf. [416] [417] for
a general construction of the bivariant Chern character in the finitely summable case).
For our purpose it was crucial, in order to define the character of θ-summable Fredholm
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modules, to make them unbounded, and Theorem 4 of Section 8 achieves this goal in
a quantitative manner. By Theorem 12 Appendix B of Chapter II (cf. [123]) there
exists a natural map

KK(A,B)→E(A,B)

for any C∗-algebras A and B. Moreover, by [526] this map is an isomorphism if A is
a nuclear (or even K-nuclear) C∗-algebra. The deformation associated to a KK-class
can be described very explicitly in terms of an unbounded representative (E , D) (cf.
Theorem 15) of that class (cf. [123] [129]).

For general C∗-algebras the two theories do not coincide in general ([527]). Let us now
briefly discuss the G-equivariant case [333].

Let G be a locally compact σ-compact group. Then by a G-C∗-algebra one means
a C∗-algebra A together with a continuous action of G on A by ∗-automorphisms,
i.e. a group morphism G→AutA such that for any a ∈ A the map g→g(a) is norm
continuous. When A is also Z/2-graded the action of G is supposed to commute with
the Z/2-grading.

Definition 17. Let G be a locally compact group, and let A and B be Z/2-graded G-C∗-
algebras. Then a G-equivariant Kasparov A-B-bimodule is a Kasparov A-B-bimodule
together with an action of G on E, (g, ξ) ∈ G×E→gξ ∈ E , preserving the Z/2-grading,
and such that

a) g(aξb) = g(a) g(ξ) g(b) ∀a ∈ A , ξ ∈ E , b ∈ B , g ∈ G

b) 〈gξ, gη〉 = g (〈ξ, η〉) ∀ξ, η ∈ E
c) a(gFg−1 − F ) ∈ End0

B(E) ∀a ∈ A , g ∈ G.

As above, the homotopy classes of G-equivariant Kasparov A-B-bimodules form a
group, the G-equivariant KK-group

KKG(A,B).

All the above results on the Kasparov product extend to the G-equivariant case ([333]),
and the G-equivariant theory is related to the crossed product C∗-algebras AorG and
AoG (reduced and maximal crossed products) by a natural map both in the reduced
and maximal cases.

Theorem 18. [333] Both crossed product constructions extend to G-equivariant Kas-
parov bimodules and yield natural maps, compatible with the Kasparov product:

KKG(A,B)→KK(Aor G,B or G)

KKG(A,B)→KK(AoG,B oG).

Finally we shall end this appendix with the fundamental equality of G-equivariant KK-
theory when G is a semisimple Lie group ([333]). Let H⊂G be a maximal compact
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subgroup, and assume to simplify that the isotropy representation of H in Te(X),
X = G/H, lifts to Spin (or Spinc) (cf. [333] for the general case). Then let S be the
G-equivariant spinor bundle on X. One then has two natural G-equivariant Kasparov
bimodules for the G-C∗-algebras C0(X) and C (with obvious G actions).

The Dirac element δ ∈ KKG(C0(X),C) is given by the (Z/2-graded) Hilbert space
L2(X, S) of spinors, the action of C0(X) by multiplication, and of G by left translations.
In unbounded form (cf. Theorem 15) the operator is D = ∂/X , the Dirac operator on
X.

The dual Dirac element δ̂ ∈ KKG(C, C0(X)) is given by the (Z/2-graded) C∗-module
E over C0(X) corresponding to the Hermitian vector bundle S with the obvious G-
equivariant structure. In unbounded form the operator, which depends upon the choice
of a base point a ∈ X, is given by

(D̂ξ)(p) = c(p, a) ξ(p) ∀ξ ∈ E , p ∈ X,

where c(p, a) is the Clifford multiplication by the unique vector (−−−→p, a ) ∈ Tp(X) whose
image under the exponential map of X at p is a:

Theorem 19. [333] One has δ⊗Cδ̂ = id ∈ KKG(C0(X), C0(X)).

This result implies Theorem 4 of Section 9.

It is not true, in general, that δ̂⊗C0(X)δ = id ∈ KKG(C,C) (cf. [526]) but this holds
for SO(n, 1) ([332]) and SU(n, 1) [314]).

Appendix B. Real and Complex Interpolation of Banach Spaces

A very useful method of proving inequalities is given by functorial constructions of
interpolation spaces F (B0, B1) from a pair (B0, B1) of Banach spaces that are contin-
uously embedded in a locally convex vector space.

The first functorial construction is complex interpolation [78]. For any θ ∈ [0, 1] one
defines a Banach space

B = [B0, B1]θ

as the space of values f(θ), where f is a holomorphic function in the strip D = {z ∈
C;<z ∈ [0, 1]}, with values in B0 + B1 (viewed as a Banach space with the norm
‖x‖B0+B1 = Inf{‖x0‖B0 + ‖x1‖B1 ; x0 + x1 = x}. The function f is assumed continuous
and bounded in the closed strip, with boundary values such that

f(it) ∈ B0 , f(1 + it) ∈ B1 ∀t ∈ R.

The norm on B is given by

‖x‖θ = inf{‖f‖0,1 ; f(θ) = x}
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where

‖f‖0,1 = sup{‖f(it)‖B0 , ‖f(1 + it)‖B1 ; t ∈ R}.
This construction is clearly functorial in the interpolation couple (B0, B1), which im-
plies:

Theorem 1. [78] Let (B0, B1) and (B′
0, B

′
1) be two interpolation couples, and let

T : B0 + B1→B′
0 + B′

1 be a linear operator such that TBj⊂B′
j and ‖Tx‖B′j ≤ Cj‖x‖Bj

,

∀x ∈ Bj, j = 0, 1. Then, for any θ ∈ [0, 1], T defines a continuous linear map from

[B0, B1]θ to [B′
0, B

′
1]θ of norm less than C

(1−θ)
0 Cθ

1 .

One also has an iteration theorem showing that, with Bθ = [B0, B1]θ and assuming
that B0 ∩B1 is dense in Bθ0 ∩Bθ1 , one has

[Bθ0 , Bθ1 ]θ′ = [B0, B1]θ for θ = (1− θ′)θ0 + θ′θ1.

The simplest examples of complex interpolation spaces are:

α) If (X, µ) is a measure space, then:

[L1, L∞]θ = Lp for 1− θ = 1/p , p ∈ [1,∞].

β) If H is a Hilbert space, then:

[L1(H),K]θ = Lp(H) , 1− θ = 1/p , p ∈ [1,∞]

where Lp(H) is the Schatten ideal of compact operators T in H such that
Trace(|T |p) < ∞, or, equivalently, such that

∑
µn(T )p < ∞

where µn(T ) is the n-th eigenvalue of |T | = (T ∗T )1/2.

In fact, these examples α) and β) are special cases of interpolation between M∗ =
L1(M, τ) and M , where M is a semifinite von Neumann algebra with semifinite faithful
normal trace τ (cf. Chapter V).

Let us now pass to real interpolation theory ([370]). As above, let (B0, B1) be an
interpolation couple. For x ∈ B0 + B1 and t ∈ R∗+, define

K(t, x) = inf{‖x0‖B0 + t−1‖x1‖B1 ; x = x0 + x1}.
It is a continuous function of t ∈ R∗+, and by definition the real interpolation space
[B0, B1]θ,p for θ ∈ ]0, 1[ , p ∈ [1,∞], is the subspace of X0 + X1 determined by the
finiteness of (∫ ∞

0

(tθ K(t, x))p dt

t

)1/p

= ‖x‖p,θ.

For p = ∞ the above integral is replaced by the L∞ norm of t 7→tθ K(t, x).
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Using 1/p in place of p, we thus get an interpolation square. As above it is functorial
in (B0, B1), and one has:

Theorem 2. [370] Let (B0, B1) and (B′
0, B

′
1) be two interpolation couples, and let

T : B0 + B1→B′
0 + B′

1 be a linear operator such that TBj⊂B′
j and ‖Tx‖B′j ≤ Cj‖x‖Bj

,

∀x ∈ Bj, j = 0, 1. Then for any θ ∈ ]0, 1[ , p ∈ [1,∞], T defines a continuous linear

map from [B0, B1]θ,p to [B′
0, B

′
1]θ,p of norm less than C

(1−θ)
0 Cθ

1 .

What is quite remarkable in real interpolation theory is that the iteration theorem
applied to Bθ0,p0 and Bθ1,p1 gives a result independent of p0 and p1, thus strengthening
for intermediate values of θ the inequalities proven for θ0 and θ1.

Let B be a Banach space such that:

B0 ∩B1⊂B⊂B0 + B1.

Then the inclusion [B0, B1]θ,1⊂B holds iff for some C < ∞,

‖x‖B ≤ C‖x‖1−θ
B0

‖x‖θ
B1

∀x ∈ B0 ∩B1.

The inclusion B⊂[B0, B1]θ,∞ holds iff for some C < ∞,

tθ K(t, x) ≤ C‖x‖B ∀x ∈ B.

If both inclusions hold, one says that B is of class Kθ(B0, B1).

Theorem 3. [370] Let θ0 < θ1, let B′
0 be of class Kθ0(B0, B1), and let B′

1 be of class
Kθ1(B0, B1). Then for any θ′ ∈ ]0, 1[ , p ∈ [1,∞],

[B′
0, B

′
1]θ′,p = [B0, B1]θ,p , θ = (1− θ′)θ0 + θ′θ1.

The combination of Theorems 2 and 3 is a remarkably powerful tool with which to
prove inequalities.

Let (X, µ) be a measure space. Then the real interpolation spaces:

L(p,q)(X,µ) = [L∞, L1]θ,q , p = 1/θ ∈ ]1,∞[

are the Lorentz spaces, which are defined for any p, q ∈ [1,∞] as follows. For any
function f on X one lets

µf (s) = µ{u ∈ X ; |f(u)| > s} ∀s ∈ R+

f ∗(t) = inf{s > 0 ; µf (s) ≤ t} ∀t ∈ R∗+.

Then f ∈ L(p,q) iff
(∫ |t1/p f ∗(t)|q dt

t

)1/q
< ∞.

For q = ∞ this means that t1/p f ∗(t) is bounded, or in other words that for some
constant C < ∞

µ{u ∈ X ; |f(u)| > s} ≤ C s−p.
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The Banach space norm on L(p,q) is obtained as

‖f‖(p,q) =

(∫
|t1/p f ∗∗(t)|q dt

t

)1/q

where f ∗∗(t) = 1
t

∫ t

0
f ∗(s) ds ∀t ∈ R∗+.

Similarly, let H be a Hilbert space and for p ∈ ]1,∞[ and q ∈ [1,∞] let

L(p,q) = [K,L1]θ,q , p = 1/θ.

These define normed ideals of compact operators in H, and

T ∈ L(p,q) iff

( ∞∑
n=1

(n1/p µn(T ))q n−1

)1/q

< ∞

where µn(T ), for n ∈ N, is the n-th eigenvalue of |T | = (T ∗T )1/2.

Appendix C. Normed Ideals of Compact Operators

In this appendix we recall the standard properties of symmetrically normed ideals of
compact operators ([232]), and explain the relation between the Macaev ideal and the
ideal Li (H) of Section 8.

Let H be a Hilbert space with countable basis and T ∈ K a compact operator on H.
The characteristic values µn(T ) are the eigenvalues of |T | arranged in decreasing order
and repeated according to their multiplicities. One has:

Lemma 1. (cf. [232])

a) For any n ∈ N and T ∈ K,

µn(T ) = inf{‖T |E⊥‖ ; E an n-dimensional subspace of H}.
b) µn(T ) = dist(T,Rn) where Rn is the set of operators of rank less than n and

dist is the distance in the operator norm.

Assertion a) is the minimax principle. For b) see [232] Theorem 2.1. This lemma has
many corollaries, for instance:

|µn(T1)− µn(T2)| ≤ ‖T1 − T2‖ ∀T1, T2 ∈ K ∀n ∈ N
µn+m(T1 + T2) ≤ µn(T1) + µm(T2) ∀T1, T2 ∈ K ∀n,m ∈ N

µn+m(T1T2) ≤ µn(T1) µm(T2) ∀T1, T2 ∈ K ∀n,m ∈ N.

However, the µn for n 6= 0 are not subadditive. The natural seminorms on K associated
to the µn are given by

σN(T ) =
N−1∑
n=0

µn(T ) ∀N ∈ N , T ∈ K.
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Lemma 2. (cf. [232]

a) For any T ∈ K, n ∈ N one has

σn(T ) = sup{‖TE‖1 ; E an n-dimensional subspace of H}
where ‖ ‖1 is the L1 norm: ‖S‖1 = Trace(|S|) ∀S ∈ L1.

b) σN(T1 + T2) ≤ σN(T1) + σN(T2) ∀T1, T2 ∈ K ∀N ∈ N.

(cf. [232] Lemma 4.2)

Definition 3. A symmetrically normed ideal is a two-sided ideal J of L(H) and a
norm ‖ ‖J on J such that:

a) ‖ATB‖J ≤ ‖A‖ ‖T‖J ‖B‖ ∀A,B ∈ L(H) , T ∈ J .

b) J is a Banach space for the norm ‖ ‖J .

Note that the inclusion J⊂K is automatic. Also, two symmetric norms on the same
ideal J are necessarily equivalent norms.

One usually requires the normalization

‖T‖J = ‖T‖ for any T of rank one.

It follows from the definition that for any T ∈ J

‖T‖J = ‖ |T | ‖J with |T | = (T ∗T )1/2.

Moreover, by unitary invariance of ‖ ‖J , the value of ‖T‖J only depends upon the list
of characteristic values

µ0(T ) ≥ µ1(T ) ≥ · · · ≥ µn(T ) ≥ · · ·
The restriction of ‖ ‖J to the ideal R of finite-rank operators is thus determined by
a functional Φ defined on the cone ∆ of decreasing sequences (ξn)n∈N of positive real
numbers such that ξn = 0 for n large enough.

The corresponding functionals are called symmetrically norming functions and are
characterized by the following properties: ([232])

α) Φ(ξ) > 0 for ξ ∈ ∆, ξ 6= 0.

β) Φ(λξ) = λΦ(ξ) ∀ξ ∈ ∆, λ > 0.

γ) Φ(ξ + η) ≤ Φ(ξ) + Φ(η) ∀ξ, η ∈ ∆.

δ) Let ξ, η ∈ ∆ be such that
∑n

j=0 ξj ≤
∑n

j=0 ηj ∀n ∈ N. Then Φ(ξ) ≤ Φ(η).
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One can also require the normalization:

Φ(1, 0, . . . , 0) = 1.

Theorem 4. [232] Let Φ be a functional on ∆ satisfying α) β) γ) and δ). Then
JΦ = {T ∈ K ; supN Φ(µN(T )) < ∞} is a symmetrically normed ideal, where µN(T ) =
(µ0(T ), µ1(T ), . . . , µN(T ), 0, 0, . . .) ∈ ∆ for any T ∈ K. Moreover

‖T‖Φ = supN Φ(µN(T )).

Note that the sequence Φ(µN(T )) is nondecreasing. Conversely, for any symmetrically
normed ideal J there exists a unique symmetrically norming function Φ such that the
restriction of ‖ ‖J to the ideal of finite-rank operators is ‖ ‖Φ:

‖T‖J = ‖T‖Φ ∀T of finite rank.

This, however, does not imply that J = JΦ, and this nuance played a crucial role in
Section 3 of this chapter. For any symmetrically norming function Φ, let J0

Φ be the
closure in JΦ of the ideal of finite-rank operators. Then one can assert that

J0
Φ⊂J

for any symmetrically normed ideal J .

It is, however, not true, in general, that J0
Φ = JΦ. In Section 3 we saw, for instance,

that:
L(p,∞)

0 6=L(p,∞) ∀p ∈ [1,∞[.

In fact, one can show (cf. [232] Corollary 6.1) that JΦ = J0
Φ iff JΦ is a separable

Banach space.

Theorem 5. [232] Any separable symmetrically normed ideal J is of the form J0
Φ for

a symmetrically norming function Φ, uniquely determined by the equality ‖ ‖J = ‖ ‖Φ.

For a given symmetrically norming function Φ one defines the dual norm Φ′ by

Φ′(ξ) = sup

{ ∞∑
i=1

ξi ηi ; η ∈ ∆ , Φ(η) ≤ 1

}
.

Then, provided JΦ 6= K, one has the duality

(J0
Φ)∗ = JΦ′ .

This duality is given by the pairing

〈A,B〉 = Trace(AB) ∈ C,

and uses as an essential ingredient the inequality (cf. [232])

N∑
n=0

µn(AB) ≤
N∑

n=0

µn(A) µn(B) ∀A,B ∈ K.
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As an example, let (πn) be a decreasing sequence of positive real numbers, πn→0 when
n→∞, and let

Φπ(ξ) = supn (
n∑

j=1

ξj)
/

(
n∑

j=1

πj) ∀ξ ∈ ∆.

Then Φπ is a symmetrically norming function whose dual is

Φ′
π(ξ) =

∞∑
n=1

ξn πn ∀ξ ∈ ∆.

Let us now list a number of symmetrically normed ideals with the corresponding norms.

L(p,q) , ‖T‖(p,q) =

( ∞∑
N=1

N (1/p−1)q−1 σN(T )q

)1/q

.

We assume here p ∈ ]1,∞[ and q ∈ [1,∞]. For q < ∞ one has L(p,q) = L(p,q)
0 , i.e. the

finite-rank operators are dense in L(p,q), but for q = ∞ this is no longer the case, and
one has the dualities (

L(p,∞)
0

)∗
= L(p′,1), 1/p + 1/p′ = 1

(
L(p′,1)

)∗
= L(p,∞).

For p, q ∈ ]1,∞[ one has the duality
(L(p,q)

)∗
= L(p′,q′), 1/p + 1/p′ = 1 , 1/q + 1/q′ = 1.

For p = 1 and q = ∞ one lets

‖T‖(1,∞) = supN≥2

σN(T )

log N
,

and we denote the corresponding normed ideals by L(1,∞) and L(1,∞)
0 :

L(1,∞) = {T ∈ K ; σN(T ) = O(log N)}
L(1,∞)

0 = {T ∈ K ; σN(T ) = o(log N)}.
The dual space of L(1,∞)

0 is the Macaev ideal

L(∞,1) = {T ∈ K ;
∞∑

n=1

n−1 µn(T ) < ∞}.

The dual space of L(∞,1) is L(1,∞).

The natural norm on L(∞,1) is given by
∑∞

N=1 N−2 σN(T ), but it is clearly equivalent
to the other norm given by

∑∞
n=1 n−1 µn(T ).

Finally we let, as in Section 8, Li (H) be the symmetrically normed ideal

Li (H) = {T ∈ K ; µn(T ) = O((log n)−1)}
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with the symmetric norm

‖T‖Li = supN>1 Li (N)−1 σN(T ).

One checks that Li0(H) = {T ∈ K ; µn(T ) = o(log n)−1}. We shall show that the ideal
Li (H) plays with respect to the Macaev ideal L(∞,1) the same role as the ideal L(p,∞)

plays with respect to L(p,1) for p < ∞ (cf. Section 2). One has:

Lemma 6. Let f ∈ C∞
c (R) be a smooth even function on R with compact support and

let D be a selfadjoint invertible unbounded operator in a Hilbert space H. There exists
a finite constant c = cf such that, for any ε > 0,

‖[f(εD), a]‖(∞,1) ≤ c‖[D, a]‖ ‖D−1‖Li

for any a ∈ L(H) such that [D, a] is bounded.

The proof is the same as that of Lemma 2.13. As in that lemma one easily gets for
any operator a,

‖[f(εD), a]‖ ≤ ε‖f̂ ′‖1 ‖[D, a]‖.
Moreover, if Supp f⊂[−k, k], the rank of f(εD) is bounded above by the number of
eigenvalues of |D|−1 larger than εk−1. There exists a universal constant λ < ∞ such
that

µn(D−1) ≤ λ(log n)−1 ‖D−1‖Li for n > 1,

and it follows that
log(rank(f(εD))) ≤ ε−1 kλ‖D−1‖Li.

The operator [f(εD), a] = T has rank N ≤ 2 rank(f(εD)) and it is of norm ≤
ε‖f̂ ′‖1 ‖[D, a]‖. Thus, its Macaev norm

∞∑
n=1

n−1 µn(T )

is at most (log N) ε‖f̂ ′‖1 ‖[D, a]‖, which by the above estimate concludes the proof.

Appendix D. The Chern Character of Deformations of Algebras

The main theme of this chapter was the construction of the Chern character in K-
homology:

Ch∗ : K∗(A)→HC∗(A)

where we used Fredholm modules (H, F ) as the basic cycles for K-homology. We have
seen in Chapter II Appendix B a variant of the Kasparov bivariant theory based on
deformations of algebras. If we specialize E-theory to E-homology, E(A,C), we obtain
as our basic cycles the deformations of an algebra A to the algebra K of compact
operators in Hilbert space. (To be more careful one would have to stabilise both A and
K and replace them by SA and SK but we shall ignore this point.) It is thus natural
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to extend the construction of the Chern character Ch∗, done up to now in K-homology
terms, to the case of deformations.

This has been done in [119] for closed ∗-products, i.e. for deformations of the algebra of
functions on symplectic manifolds. We shall describe this construction in this appendix.
It is thus restricted to the special case A commutative, but should extend to the general
case using the results of [220].

We let W be a symplectic smooth manifold. We let ω be the closed symplectic 2-form
on W , and let ω̃ ∈ C∞(W,∧2T ) be the 2-vector field on W dual to ω. The Poisson
bracket on C∞(W ) is given by:

P (f, g) = {f, g} = i(ω̃)(df∧dg) ∀f, g ∈ C∞(W ).

By construction, P is a Hochschild 2-cocycle:

P ∈ Z2(A,A)

where A = C∞
c (W ) and A is viewed as a bimodule over A. For each n we let Cn(A,A)

and Cn(A,A∗) be the spaces of cochains continuous in the C∞ topology.

Definition 1. A ∗-product is an associative bilinear product on the space A[[ν]] of
formal power series over A, of the form

f ∗ g =
∞∑

r,k,j=0

νr+k+j Cr(fk, gj)

for any

f =
∑

νk fk , g =
∑

νj gj in A[[ν]]

where Cr ∈ C2(A,A) for all r, and C0(f, g) = fg, C1 = P .

Such ∗-products exist on arbitrary symplectic manifolds ([584]). We shall now con-
sider a more restricted class of deformations, the idea being that if the above formal
deformation corresponds to a deformation of A to an algebra of compact operators in
Hilbert space, the canonical trace on K should yield a trace on the deformed algebra
given by

τ(f) =

∫
f ω`, ` =

1

2
dim(W).

By construction, τ(f) takes its values in C[[ν]], and we shall in fact only need the first
` terms of its expansion:

Definition 2. [119] A ∗-product is closed if
∫

Cr(f, g)ω` =

∫
Cr(g, f)ω` ∀r ≤ ` ; f, g ∈ C∞

c (W ).
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This is equivalent to the requirement that

τ`(f) = Coefficient of ν` in

∫
f ω`

defines a trace on the algebra A[[ν]].

If the condition of Definition 2 holds for any value of r, we shall say that the ∗-product
is strongly closed.

Theorem 3. [426] On every symplectic manifold W there exists at least one closed
∗-product.

The Moyal ∗-product on W = R2` is defined by

Cr = (r!)−1 P r,

using the r-th powers of the bidifferential operator P . It corresponds to the Weyl
pseudodifferential calculus and is strongly closed.

Similarly, for W = T ∗M , the cotangent space of a Riemannian manifold, the ∗-product
given by the pseudodifferential calculus with an asymptotic parameter (cf. [583]) is
strongly closed.

Finally, note that it is easy to give examples of star products which are not closed.
Indeed, using the symplectic measure

∫ · ω` we get a natural A-bimodule map from A
to A∗:

f ∈ A→f̃ ∈ A∗ , 〈f̃ , g〉 =

∫
fg ω`,

and a corresponding map:

C ∈ Cn(A,A) 7→ C̃ ∈ Cn(A,A∗) ,

C̃(f 0, f 1, . . . , fn) =

∫

W

C(f 1, . . . , fn)f 0 ω` ∀f j ∈ C∞
c (W ).

Lemma 4. For a closed ∗-product one has BC̃2 = 0.

Here B : C2(A,A∗)→C1(A,A∗) is the B operator of cyclic cohomology (Chapter III
Section 1).

Proof. One has (B0C̃2)(f, g) =
∫

C2(f, g)ω`, and AB0C̃2 = 0 if and only if
∫

C2(f, g)ω` =∫
C2(g, f)ω` ∀f, g ∈ A. In fact, one can see that, proceeding step by step from the

knowledge of the Ck, k ≤ t, defining a star product closed up to order t, the obstruction
to the existence of Ct+1 yielding a ∗-product closed to order t + 1 is given by

(Kerb ∩KerB)/b(KerB) = HC3(A).

We refer to [119] for this point, as well as for the discussion of equivalence classes of
closed ∗-products.
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Let us now pass to the construction of the Chern character of the closed ∗-products,
as an element of the cyclic cohomology:

Ch∗((C`)) ∈ HC∗(A).

Theorem 5. [119] Let W be a symplectic manifold of dimension 2`, and let ∗ =∑
νr Cr be a closed ∗-product. Then the following equality defines the components of

a 2`-dimensional cyclic cocycle in the (b, B) bicomplex on A = C∞
c (W ):

ϕ2k(f
0, . . . , f 2k) = τ`(f

0 ∗ θ(f 1, f 2) ∗ · · · ∗ θ(f 2k−1, f 2k))

∀f j ∈ A , k = 0, 1, . . . , `, where θ(f, g) = f ∗ g − fg for any f, g ∈ A, and τ` is, as
above, the coefficient of ν` in

∫
f ω` ∈ C[[ν]] for f ∈ A[[ν]].

Thus, the ϕ2k satisfy bϕ2k + Bϕ2k+2 = 0 ∀k = 0, . . . , `. They vanish, by construction,
for k > `. They also vanish for 0 ≤ 2k < `, so that the relevant components are the
ϕ2k for ` ≤ 2k ≤ 2`.

The component ϕ2` is always given by

ϕ2`(f
0, . . . , f 2`) =

∫
f 0 df 1∧df 2∧ · · · ∧df 2` ∀f j ∈ A.

A simple computation in the 4-dimensional case, dim W = 4, i.e. ` = 2, shows that ϕ2

does not vanish in general, and is given by:

ϕ2(f
0, f 1, f 2) =

∫
f 0 C2(f

1, f 2)ω2 ∀f 0, f 1, f 2 ∈ A,

i.e. ϕ2 = C̃2.

This example shows that a closed ∗-product does not, in general, come from a quan-
tization, i.e. from a deformation of A to the algebra of compact operators in Hilbert
space. Indeed, a necessary condition for that to hold is the integrality of the character:

〈ϕ,K0(A)〉⊂Z.

Since in the above example one can add to C̃2 an arbitrary cyclic 2-cocycle, the above
integrality condition does not hold in general.

As another example let M be a compact Riemannian manifold, W = T ∗M its cotangent
space, and ∗ the ∗-product associated to the pseudodifferential calculus ([582], [583]).
It is a closed ∗-product coming from the deformation of C∞

c (W ) to the algebra of
compact operators given by the tangent groupoid of M (Chapter II). In particular, it
is integral, computes the Atiyah-Singer index map (Chapter II Section 5), and using
invariant theory ([22], [227]) one computes its character:

Ch∗(C∞
c (T ∗M), ∗) = Td(T ∗M)

as the Todd genus of the symplectic manifold T ∗M ([119]) viewed as a de Rham current
on T ∗M .



CHAPTER 5

Operator algebras

The theory of operator algebras, or von Neumann algebras (according to the terminol-
ogy of J. Dieudonné), is the noncommutative analogue of measure theory. By the same
token, this theory is an essential ingredient in the analysis of noncommutative spaces,
which we have already described above. It is remarkable that one can describe for such
spaces the associated von Neumann algebra, as well as the most general states and
normal weights on that algebra, in terms of random operators. This gives the general
theory presented below an inexhaustible source of concrete and explicit examples, in
which the general theorems can display their full force.

In contrast with the commutative case, where the only interesting measure space, up
to isomorphism, is the Lebesgue space, the noncommutative case is far more complex.
Nevertheless, we now have a complete classification of the amenable von Neumann
algebras, a class that is described by numerous equivalent properties (cf. Sections 7
and 9).

In a certain sense, the theory of von Neumann algebras is a chapter of linear algebra in
infinite dimensions, i.e. in infinite-dimensional separable Hilbert space. It is therefore
necessary at the outset to have some familiarity with the general methods of functional
analysis. Perhaps the first step consists in understanding the distinction between a
von Neumann algebra, which is a ∗-subalgebra of the algebra L(H) of operators on a
Hilbert space H that is closed for the weak topology , and a C∗-algebra, or stellar algebra,
which is a norm-closed ∗-subalgebra of L(H). Of course every von Neumann algebra
is, in particular, a C∗-algebra, but it is not a very interesting C∗-algebra since it is not
separable for the norm. (For X compact, C(X) is separable ⇐⇒ X is metrizable.)

The Chapter is divided into eleven sections.

1. The papers of Murray and von Neumann.

2. Representations of C∗-algebras.

3. The algebraic framework for noncommutative integration and the theory of weights.

4. The factors of Powers, Araki and Woods, and of Krieger.

5. The Radon-Nikodým theorem and factors of type IIIλ.

6. Noncommutative ergodic theory.

7. Amenable von Neumann algebras.

458
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8. The flow of weights: Mod(M).

9. The classification of amenable factors.

10. Subfactors of type II1 factors.

11. Hecke algebras, type III factors and statistical theory of prime numbers.

Appendix A. Crossed products of von Neumann algebras.

Appendix B. Correspondences.

1. The Papers of Murray and von Neumann

Let H be a complex Hilbert space and let L(H) be the C∗-algebra of bounded operators
from H into H. This is a Banach algebra equipped with the norm

‖T‖ = sup
‖ξ‖≤1

‖Tξ‖

and with the involution T 7→ T ∗ defined by

〈T ∗ξ, η〉 = 〈ξ, Tη〉 ∀ξ, η ∈ H.

Even if H has countable dimension, the Banach space L(H) is not separable. There
exists a unique closed linear subspace of the dual L(H)∗ whose dual is L(H); this is the
space of linear forms on L(H) that may be written

L(T ) = Tr(ρT ) ∀T ∈ L(H),

where ρ is a trace-class operator, which means that |ρ| = (ρ∗ρ)1/2 satisfies
∑

〈|ρ|ξi, ξi〉 = Tr|ρ| < ∞
for every orthonormal basis (ξi) of H. The norm of the linear form L is equal to Tr|ρ|,
and, equipped with this norm, the space

L(H)∗ = {ρ ∈ L(H); Trace|ρ| < ∞}
is a Banach space, called the predual of the Banach space L(H).

When H has countable dimension, the Banach space L(H)∗ is separable; the duality
between L(H)∗ and L(H) is exactly analogous to the duality between `1(A) and `∞(A),
where A is a set. In particular, whenever H is infinite-dimensional, the space L(H)∗ is
not reflexive and the topology σ(L(H),L(H)∗), called the ultraweak topology on L(H)
[Di2], is not the same as the norm topology of L(H). Thus, it is much more restrictive
for a subspace of L(H) to be closed for σ(L(H),L(H)∗) than for the norm topology.

This distinction between the two topologies is essential for the sequel. Let M be a
∗-subalgebra of L(H) containing the identity operator 1. The following conditions are
equivalent:
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1) Topological condition: M is σ(L(H),L(H)∗)-closed.

2) Algebraic condition: M is equal to the commutant (M ′)′ of its commutant
M ′. (The commutant of a subset S of L(H) is defined by the equality S ′ =
{T ∈ L(H); TA = AT ∀A ∈ S}.)

The equivalence between these two properties is von Neumann’s double commutant
theorem.

Definition 1. A von Neumann algebra on H is a ∗-subalgebra of L(H) containing the
identity operator and satisfying the above equivalent conditions.

We cite some immediate consequences of the definition.

Let S ⊂ L(H) be a subset such that S = S∗ = {T ∗; T ∈ S}; then the commutant S ′
of S is a von Neumann algebra.

Let M be a von Neumann algebra on H and let M1 = {T ∈ M ; ‖T‖ ≤ 1} be the unit
ball of M ; then, since M1 is σ(L(H),L(H)∗)-closed in the unit ball of the dual of L(H)∗,
it is compact in the topology σ(M1,L(H)∗). In particular, M is the dual of a Banach
space M∗, which is in fact the unique (closed) linear subspace of M∗ whose dual is M
([492]).

One introduces, often with the name of weak topology, the topology on L(H) arising
from the duality with the subspace of L(H)∗ formed by the operators of finite rank, i.e.
the topology characterized by

Tα → T ⇐⇒ 〈Tαξ, η〉 → 〈Tξ, η〉 ∀ξ, η ∈ H.

This topology is coarser than σ(L(H),L(H)∗), and, since the space of operators of finite
rank is norm-dense in L(H)∗, it coincides with σ(L(H),L(H)∗) on the bounded subsets
of L(H). However, the term “weak topology” is not a good one; what we have in fact
is the topology of pointwise weak convergence.

The von Neumann algebras are the ∗-subalgebras of L(H) containing 1 that are closed
for the topology of pointwise weak convergence, since every commutant S ′, S ⊂ L(H),
has this property.

1.α Examples of von Neumann algebras.

1. Abelian von Neumann algebras. The description of this simple example will
allow us to give the abstract form of the spectral theorem and the Borel functional cal-
culus. Let (X,B, µ) be a standard Borel space equipped with a probability measure µ,
and let π(L∞(X, µ)) be the algebra of operators from L2(X,µ) to L2(X, µ) defined by

π(f)g = fg (f ∈ L∞, g ∈ L2).



1. THE PAPERS OF MURRAY AND VON NEUMANN 461

Then M = π(L∞) is a commutative von Neumann algebra, and in fact M = M ′. The
predual of M is the space L1(X, µ). Let x 7→ n(x) be a Borel function from X into
{1, 2, . . . ,∞} and let (X̃, p) be the Borel covering of X defined by

X̃ = {(x, j) ∈ X × N; 1 ≤ j ≤ n(x)}, p(x, j) = x.

The “multiplicity” function n is associated with the representation πn of L∞(X, µ) on
L2(X̃, µ̃), where µ̃ is given by

∫
f(x, j)dµ̃ =

∫ ∑
j f(x, j)dµ, defined by

πn(f)g = (f ◦ p)g.

The image M = πn(L∞(X,µ)) is a commutative von Neumann algebra on the space
H = L2(X̃, µ̃), and if n 6≡ 1 then M ′ 6⊂ M .

Definition 2. Let Mi be a von Neumann algebra on Hi (i = 1, 2); we say that M1 is
spatially isomorphic to M2 if there exists a unitary U : H1 → H2 such that UM1U

∗ =
M2.

If H is separable then every commutative von Neumann algebra on H is spatially
isomorphic to πn(L∞(X, µ)) for a suitable space (X, µ) and function n.

Suppose then that T ∈ L(H) is a normal operator (TT ∗ = T ∗T ); let M be the von Neu-
mann algebra generated by T . One can take (X,B) to be the spectrum K ⊂ C of T , and
the measure class µ given by the spectral measure of T . The mapping that associates,
to the restriction of a polynomial function

∑
aijz

iz̄j to K, the operator
∑

aijT
iT ∗j,

may be extended to an isomorphism π of L∞(K,µ) onto M with π(z) = T . Thus, for
every bounded Borel function f on SpecT , f(T ) has meaning and we have

(λ1f1 + λ2f2)(T ) = λ1f1(T ) + λ2f2(T ),

(f1f2)(T ) = f1(T )f2(T ),

(f ◦ g)(T ) = f(g(T )).

The function x → n(x) of K into {1, . . . ,∞} is unique modulo µ. It expresses the
multiplicity of the point x in the spectrum K. The theorem on the bicommutant
shows that every operator that doubly commutes with T is a bounded Borel function
of T . Finally, let N be a von Neumann algebra, not necessarily commutative, and let
T ∈ N ; then T = T1 + iT2, Tj = T ∗

j ; since Tj is normal and every f(Tj), for f a Borel
function, is also in N , we see that N is generated by the projections that it contains.

2. The commutant of a unitary representation. Let G be a group and let π be
a unitary representation of G on a Hilbert space Hπ (or, more generally, let A be a
∗-algebra and let π be a nondegenerate ∗-representation of A). The commutant

R(π) = {T ∈ L(Hπ); Tπ(g) = π(g)T ∀g ∈ G}
is, by construction, a von Neumann algebra.

The interest in R(π) comes from the following proposition:
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Proposition 3.

a) Let E ⊂ H be a closed subspace and P the corresponding projection; then

E reduces π ⇐⇒ P ∈ R(π).

b) Let E1 and E2 be two closed subspaces reducing π; then the reduced represen-
tations πEj are equivalent if and only if

P1 ∼ P2 in R(π),

i.e. there is a U ∈ R(π) such that U∗U = P1, UU∗ = P2.

c) πE1 is disjoint from πE2 if and only if there exists a projection P in the center
of R(π) such that PP1 = P1 and (1− P )P2 = P2.

It is natural to say that the representation π is isotypic if it does not have two disjoint
subrepresentations. This is equivalent to saying that R(π) is a factor in the following
sense:

Definition 4. A factor M is a von Neumann algebra whose center reduces to the
scalars C.

Another immediate corollary of the proposition and of the Borel functional calculus is
the following:

For π to be irreducible, it is necessary and sufficient that R(π) = C.

3. Finite-dimensional von Neumann algebras. Let M be a finite-dimensional
von Neumann algebra. Forgetting the Hilbert space on which it is represented, regard
it as a semisimple algebra over the algebraically closed field C. It is then the direct
sum of a finite number of matrix algebras:

M =

q⊕

k=1

Mnk
(C).

Here the sign “=” corresponds to the following definition:

Definition 5. Let Mi be a von Neumann algebra on the space Hi (i = 1, 2). We say
that M1 is algebraically isomorphic to M2 if there exists an algebra isomorphism θ of
M1 onto M2 such that θ(x∗) = θ(x)∗ (∀x ∈ M1).

Let G be a group and let π be a unitary representation of G on a finite-dimensional
Hilbert space Hπ. Then R(π) is finite-dimensional and to the decomposition M =⊕q

k=1 Mnk
(C) there corresponds the decomposition of π into isotypic components πk

of multiplicity nk.
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4. The action of a discrete group on a manifold. Let V be a manifold and
let Γ be a discrete group acting on V by diffeomorphisms. We make the following
hypothesis:

(∗) For every g ∈ Γ, g 6= 1, the set {x ∈ V ; gx = x} is negligible.

Let X be the set V/Γ and let p : V → X be the quotient mapping. Let vα = `2(p−1(α))
for all α ∈ X. By construction, Hα has for orthonormal basis the ex, for x ∈ V such
that p(x) = α.

Definition 6. A random operator A = (Aα)α∈X is a family of bounded operators
Aα ∈ L(Hα) such that the function

a(x, y) = 〈Ap(x)ex, ey〉 ∀x, y ∈ V, p(x) = p(y)

is measurable on V × V .

We write ‖A‖ = ess sup ‖Aα‖ and call A bounded if ‖A‖ < +∞.

Proposition 7. Let M be the ∗-algebra of equivalence classes (modulo equality almost
everywhere) of bounded random operators , equipped with the operations

(A + B)α = Aα + Bα, (A∗)α = (Aα)∗, (AB)α = AαBα.

Then M is a von Neumann algebra (that is , a ∗-algebra algebraically isomorphic to a
von Neumann algebra on a Hilbert space).

Moreover , the center of M may be identified with the commutative algebra L∞(X),
where X is equipped with the image of the Lebesgue class .

Note that Γ acts ergodically on V iff L∞(X) = C.

1.β Reduction theory. This theory was developed by von Neumann in 1939, but
first published in 1949 [413].

Let H be a separable Hilbert space and let F be the set of all factors in L(H).
There exists a Borel structure on F that makes it a standard Borel space. Let (X,B)
be a standard Borel space, µ a probability measure on (X,B), and t 7→ M(t) a Borel
mapping of X into F. Let M be the C∗-algebra whose elements x ∈ M are the bounded
Borel sections t 7→ x(t) ∈ M(t), identified if they are equal µ-almost everywhere,
equipped with the obvious operations and the norm

‖x‖ = ess sup ‖x(t)‖.
One shows that the C∗-algebra M is a von Neumann algebra (i.e. is algebraically
isomorphic to a von Neumann algebra on a suitable space), for example by considering
the action of M on the space

L2(X, µ)⊗ H = L2(X,µ, H)
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defined by
(π(x)ξ)(t) = x(t)ξ(t) (∀ξ ∈ L2(X, µ, H)).

The construction of M is summarized by writing

M =

∫

X

M(t)dµ(t),

and M is said to be the direct integral of the family (M(t))t∈X with respect to the
measure µ.

Theorem 8. Let M be a von Neumann algebra on a separable Hilbert space. Then M
is algebraically isomorphic to a direct integral of factors∫

X

M(t)dµ(t).

This theorem of von Neumann shows that the factors already contain what is original
in all of the von Neumann algebras: they suffice to reconstruct every von Neumann
algebra as a “generalized direct sum” of factors.

Let G be a group and let π be a unitary representation of G on a separable Hilbert
space. To the decomposition of R(π) as a direct integral of factors, there corresponds
the decomposition of π as a direct integral of isotypic representations.

1.γ Comparison of subrepresentations, comparison of projections and the
relative dimension function. Let G be a group and let π be a unitary representation
of G on the Hilbert space H. Suppose π is isotypic; it is then natural to expect, as
in finite dimensions, that π is a multiple of an irreducible representation πE that is
a subrepresentation of π. In the correspondence between subrepresentations of π and
projections P ∈ R(π), it is easy to see that the irreducible representations correspond
to the minimal projections of R(π):

π has an irreducible subrepresentation ⇔ the factor R(π) has a minimal projection ⇔
there exist a Hilbert space H1 and an isomorphism of L(H1) onto R(π).

Every isotypic representation with an irreducible subrepresentation is a multiple of this
subrepresentation. For every factor M on H having a minimal projection, H can be
factored as a tensor product, H = H1 ⊗ H2, in such a way that

M = {T ⊗ 1; T operating on H1}.
However, there exist groups G having an isotypic representation π with no irreducible
subrepresentation. This phenomenon does not occur if G is a real semisimple Lie group
and π is continuous, or more simply if G is compact and π is continuous. However,
it does occur for the regular representation of numerous discrete groups: Let Γ be a
denumerable discrete group and let ∆ be the union of the finite conjugacy classes of Γ.
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Then ∆ is a normal subgroup of Γ; suppose ∆ = {1}. Let λ′ be the right regular
representation of Γ; then Hλ′ = `2(Γ) is the Hilbert space with (εg)g∈Γ as orthonormal
basis, and one sets

λ(g)εk = εgk, λ′(g)εk = εkg−1 .

One shows that the von Neumann algebra R(λ′) is generated by the operators λ(g) (g ∈
Γ), and that the vector ε1 is cyclic and separating for R(λ′): R(λ′)ε1 and R(λ′)′ε1 are
dense in H. The coordinates of Tε1, where T ∈ R(λ′) ∩ R(λ′)′, are constant on the
conjugacy classes of Γ; since ∆ = {1}, it follows that Tε1 ∈ Cε1 and, since ε1 is
separating, T ∈ C.

Thus, R(λ′) is a factor and λ′ is isotypic. To see that R(λ′) is not isomorphic to a
factor L(H), one makes use of the following concept:

Definition 9. A trace τ on a factor M is a positive linear form such that τ(AB) =
τ(BA) for all A,B ∈ M .

There exists a nonzero trace on L(H) only if H is finite-dimensional, as one sees by
verifying that if H is infinite-dimensional then every element of L(H) is a sum of
commutators. Now, one can define τ on R(λ′) by

τ(A) = 〈Aε1, ε1〉 (∀A ∈ R(λ′)).

The property τ(AB) = τ(BA) may be verified for A and B of the form λ(g) (g ∈ Γ) and
may be deduced, in general, by bilinearity and continuity. Since τ(1) = 1, a nonzero
trace on the infinite-dimensional factor R(λ′) has been constructed.

Thus, there exist infinite-dimensional factors that have no minimal projection.

Let M be a factor. As in Proposition 3, translation of the concepts of equivalent
representations and the direct sum of representations into the language of projections
yields the following concepts:

1) For a projection P , P ∈ M , one denotes by [P ] the equivalence class of P
for the relation P1 ∼ P2, which holds if and only if there exists U ∈ M with
U∗U = P1, UU∗ = P2.

2) For P1 and P2 such that P1P2 = 0, one denotes by [P1] + [P2] the class of
P1 + P2; it depends only on the classes of P1 and P2.

The hypothesis that M is a factor implies that the set of classes of projections is totally
ordered for the relation [P1] ≤ [P2] defined by the condition that P ′

1 ≤ P ′
2 for suitable

representatives. This totally ordered set has a partially defined law of composition
making it possible to give meaning to an equality such as [P ] = n

m
[Q] with n and m

positive integers.

Definition 10. A projection P ∈ M is said to be finite if Q ∼ P and Q ≤ P imply
Q = P .
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This property depends only on the class of P . In the language of representations, one
would adopt the following definition: a representation π is finite if every subrepresen-
tation πE equivalent to π is equal to π. If π is not finite, then it contains an infinite
number of subrepresentations equivalent to π, and conversely.

Theorem 11. (Murray and von Neumann) Let M be a factor with separable predual .
There exists a mapping D of the set of projections of M into R+ = [0, +∞], unique up
to a scalar factor λ > 0, such that :

a) P1 ∼ P2 ⇔ D(P1) = D(P2).

b) P1P2 = 0 =⇒ D(P1 + P2) = D(P1) + D(P2).

c) P finite ⇔ D(P ) < +∞.

Moreover , up to a normalization, the range of D is one of the following subsets of R+:

{1, . . . , n}, in which case M is said to be of type In

{1, . . . ,∞} I∞
[0, 1] II1

[0, +∞] II∞
{0, +∞} III.

One sees that, for M to have a minimal projection, it is necessary and sufficient that
it be of type I. If M is of type In, n < ∞, then it is Mn(C) and D(P ) is the usual
dimension of the subspace of Cn onto which the projection P ∈ Mn(C) projects. If
n = ∞ then M = L(H) with H infinite-dimensional and separable, and D(P ) =
dimension of the range of P .

What is remarkable in the II1 case is the appearance of dimensions with arbitrary
values in [0, 1].

A factor M is said to be finite if it contains no subfactor of type I∞. This is equivalent
to saying that M is in one of the cases In (n < ∞) or II1. In particular, if M is infinite
(not finite) then there exists no trace τ on M such that τ(1) = 1.

One of the remarkable results of the first papers of Murray and von Neumann is the
converse:

Theorem 12. (Murray and von Neumann) If M is a factor of type II1, then there
exists a unique trace τ on M such that τ(1) = 1.

Moreover, τ ∈ M∗. One proof, due to F. J. Yeadon [594], reduces this theorem to
a powerful result of Ryll–Nardzewski: in every σ(X, X∗)-compact convex subset of
a Banach space X, there exists a point that is left fixed by every affine isometry of
the convex set. One applies this result by showing that if ϕ ∈ M∗ satisfies ‖ϕ‖ =
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ϕ(1) = 1, then the closed convex hull K of the orbit of ϕ under the action of the inner
automorphisms of M (transported to M∗) is σ(M∗,M)-compact.

One then obtains the existence of τ ∈ M∗, τ(1) = 1, such that τ(uxu∗) = τ(x) for u
unitary in M and x ∈ M .

1.δ Algebraic isomorphism and spatial isomorphism. Let M1 and M2 be two
von Neumann algebras, and let θ be a ∗-algebra isomorphism of M1 onto M2. Then θ
is isometric (because M1 and M2 are C∗-algebras and ‖T‖2 = ‖T ∗T‖ = spectral radius
of T ∗T ) and, since the predual is unique, θ is σ(Mi,Mi∗)-continuous. If Mi acts on the
Hilbert space Hi (i = 1, 2), the isomorphism θ need not be spatial, for, even though
they are isomorphic, M1 and M2 may have non-isomorphic commutants. Let us fix M :
suppose M has a separable predual and let us try to describe all of the isomorphisms
π of M onto a von Neumann subalgebra of L(H), where H is a separable Hilbert space.
Making use of the reduction theory, we may further simplify matters by restricting
attention to the case that M is a factor.

We are thus led to study, up to equivalence, the representations π of M on a Hilbert
space Hπ that are continuous when M has the topology σ(M,M∗) and L(Hπ) has the
topology of the duality with L(Hπ)∗. Since M is a factor, the commutant R(π) = π(M)′

is also a factor and π is isotypic. It follows, by forming π1⊕π2, that two representations
π1 and π2 are never disjoint and that every representation π of M is a subrepresentation
of an infinite representation ρ that is fixed once and for all. Thus, by Proposition 3 the
representations of M are classified by equivalence classes of projections P ∈ R(ρ), i.e.
using Theorem 11, by the dimension function D of R(ρ). This result may be extended
to the case that M is no longer a factor. Every representation π of M (continuous
for σ(M, M∗) and σ(L(Hπ),L(Hπ)∗)) is a subrepresentation of a representation ρ that
is properly infinite (in the sense that the commutant R(ρ) contains a subfactor of
type I∞) and faithful1 and which is chosen arbitrarily, for example by starting with
an isomorphism α of M onto a von Neumann subalgebra of L(H) and forming ρ =
α⊕ α⊕ · · · .
Thus, once M is known algebraically, there is no serious problem in determining all
of the isomorphisms of M onto a von Neumann subalgebra of L(H) (see Section 10).
The real problem is that of classifying the von Neumann algebras up to algebraic
isomorphism.

1The term “faithful representation” is often used instead of “a representation π whose kernel
reduces to 0” (π(x) = 0 ⇒ x = 0).
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1.ε The first two examples of type II1 factors, the hyperfinite factor and
the property Γ. Recall that if Γ is a countable discrete group all of whose conjugacy
classes are infinite and if λ′ is its right regular representation, then the von Neumann
algebra R(λ′) is a factor of type II1, denoted R(Γ).

In On rings of operators. IV [409], Murray and von Neumann showed that all of the
factors R(Γ) are isomorphic for Γ locally finite (i.e. the union of an increasing directed
family of finite subgroups), and that if Γ is the free group with two generators then
one obtains a factor not isomorphic to any of these. Let N be a factor of type II1 and
τ the unique trace (τ(1) = 1) of N ; one defines the Hilbert-Schmidt norm on N by

‖x‖2 = τ(x∗x)1/2.

This is the analogue of the norm
( ∑ |aij|2

)1/2
of a matrix (aij). It is a pre-Hilbert

space norm on N and the corresponding metric is denoted d2.

The result of Murray and von Neumann is then as follows:

Theorem 13. (Murray and von Neumann [409]) There exists , up to isomorphism, one
and only one factor N of type II1 having separable predual and such that (∀x1, . . . , xn ∈
N, ∀ε > 0) ∃ finite-dimensional ∗-subalgebra K such that d2(xj, K) ≤ ε (∀j).

We denote this unique factor by R, called, for obvious reasons, the hyperfinite factor.

In their paper, Murray and von Neumann showed that every infinite-dimensional factor
contains a copy of R. For Γ a locally finite, denumerable discrete group, one sees
easily that R(Γ) satisfies the condition of the theorem, hence is isomorphic to R.
Choosing Γ suitably, one sees moreover that R satisfies the following condition, called
the property Γ:

(∀x1, . . . , xn ∈ R, ∀ε > 0) ∃ a unitary u of R such that

τ(u) = 0, ‖xju− uxj‖2 ≤ ε (j = 1, . . . , n).

Murray and von Neumann then proved that if Γ = Z ∗ Z is the free group with two
generators, then the factor R(Γ) does not satisfy Γ. We shall return later on to this
property, which was for Murray and von Neumann only a technical tool. We quote
these authors: “Certain algebraic invariants of factors in the case II1 are formed, 1) and
2) in §4.6 and the property Γ, of which the first two are probably of greater general
significance, but the last one so far has been put to greater practical use.” In fact, the
invariants 1) and 2) that they mention are:

1) knowing whether N is anti-isomorphic to N (i.e. isomorphic to the opposite
algebra No, x · y = yx for x, y ∈ No);
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2) the subgroup F (N) of R∗+ constructed as follows: let Ñ = N ⊗K, where K

is a factor of type I∞. Then, on Ñ , the relative dimension function D has
range R+, and if θ ∈ AutÑ then there exists a unique positive real number
λ = Mod θ with D(θ(P )) = λD(P ) (∀ projections P ). The group F (N) =
{Modθ; θ ∈ AutÑ} is obviously an algebraic invariant of N .

In fact, an example of a type II1 factor not anti-isomorphic to itself was not obtained
until long after ([87]), nor was the existence ([94]) of a type II1 factor whose group F
is distinct from R∗+ (the only calculable examples always gave F = R∗+).

Finally, to conclude this review of the results of Murray and von Neumann, we mention
that they had succeeded in exhibiting a factor in the case III but they noted: “The
purely infinite case, i.e. the case III, is the most refractory of all and we have, at least for
the time being, scarcely any tools to investigate it.” (With the notations of Example 4,
one can take V = P1(R) and Γ = PSL(2,Z) acting by homographic transformations.
Then M is a factor of type III.)

2. Representations of C∗-algebras

One of the key theorems in measure theory is the Riesz representation theorem. We
state it only for X compact and metrizable (X metrizable ⇔ C(X) separable).

Theorem 1. Let X be a compact metrizable space and let L be a positive linear form
on C(X), i.e.

f ∈ C(X), f(x) ≥ 0 ∀x ∈ X ⇒ L(f) ≥ 0.

Then there exists a unique positive measure µ on the σ-algebra B of Borel sets of X
(i.e., the σ-algebra generated by the closed sets of X) such that

L(f) =

∫
fdµ ∀f ∈ C(X).

In particular, one can construct the Hilbert space L2(X,B, µ) and the representation
π of C(X) on L2 by multiplication. One knows in addition the von Neumann algebra
generated by π(C(X)): it is precisely the algebra of multiplication by the elements of
L∞(X,B, µ). The σ-additivity property of µ translates to the equality

ϕ

(∑
α∈I

eα

)
=

∑
α∈I

ϕ(eα),

where ϕ denotes the natural extension of L to L∞(X,B, µ) and where (eα)α∈I is any
countable family of pairwise orthogonal projections eα ∈ L∞(X,B, µ).

Now suppose that A is a noncommutative C∗-algebra with unit. The above concepts of
positive element, positive linear form and σ-additivity have exact analogues, and this
is the point of departure for noncommutative integration theory.
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Positive elements in a C∗-algebra

Let H be a Hilbert space and let T ∈ L(H). The following conditions are equivalent:

a) T = T ∗ and Spectrum T ⊂ [0, +∞).

b) 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H.

For a C∗-algebra A with unit and for x ∈ A, the following properties are equivalent:

1) x = x∗ and Spectrum x ⊂ [0, +∞).

2) ∃a ∈ A such that x = a∗a.

3) ∃a ∈ A such that a∗ = a and x = a2.

4) ∃λ ≥ 0 such that ‖x− λ1‖ ≤ λ.

We then say that x is positive and we write x ≥ 0. The condition 4) shows that the set
of positive elements is a closed convex cone in A, which is denoted by A+. If A = C(X)
then A+ = {f ; f(x) ≥ 0 ∀x ∈ X}.
Positive linear forms on a C∗-algebra

Let A be as above and let A∗ be its Banach space dual. We say that L ∈ A∗ is positive
if L(x) ≥ 0 ∀x ≥ 0. We denote by A∗

+ the σ(A∗, A)-closed convex cone of positive
linear forms on A. The analogue of the Riesz representation theorem consists in the
following construction (Gel’fand, Naimark, Segal).

Since L is positive, Condition 2) shows that

L(x∗x) ≥ 0 ∀x ∈ A.

It follows that the sesquilinear form 〈x, y〉L = L(y∗x) defines a pre-Hilbert space struc-
ture on A. Let HL be the Hilbert space completion and, for x ∈ A, let πL(x) be the
left-multiplication operator defined by

πL(x)y = xy for all y ∈ A.

The inequality L(y∗x∗xy) ≤ ‖x‖2L(y∗y) (∀y ∈ A), which results from ‖x‖2 − x∗x ≥ 0,
shows that πL defines a representation of A on the Hilbert space HL.

Just as, in the commutative case, the linear form L can be extended to the Borel
functions f ∈ L∞(X,B, µ), here the linear form L can be extended to a linear form
on the von Neumann algebra πL(A)′′ generated by πL(A), and the extension, denoted
by L, has the following σ-additivity property:

Definition 2. Let M be a von Neumann algebra on the Hilbert space H and let ψ be
a positive linear form on M . We say that ψ is normal if

ψ

(∑
α∈I

eα

)
=

∑
α∈I

ψ(eα)
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for every family (eα)α∈I of pairwise orthogonal projections.

Here
∑

eα denotes the smallest projection that majorizes all of the finite sums
∑n

i=1 eαi
;

it is an element of M . One proves that, for ψ to be normal, it is necessary and sufficient
that it come from the predual M∗ of M .

Let us return to C∗-algebras. Let A be such an algebra, with unity. The Hahn-Banach
theorem, applied to the convex cone A+ with nonempty interior, shows that the set

S = {ϕ ∈ A∗
+; ϕ(1) = 1}

of states of A is a nonempty convex set that separates the points of A. One is therefore
assured of the existence of “positive measures” and, by the Gel’fand–Naimark–Segal
construction, of the existence of an isometric representation of A as a C∗-subalgebra
of L(H), with H a Hilbert space.

Moreover, S is σ(A∗, A)-compact, hence is the closed convex hull of its set of extremal
points, the pure states , which are characterized as follows:

ϕ is a pure state ⇔ the representation πϕ is irreducible.

In fact, more generally, there is a bijective correspondence between the face of ϕ in the
cone A∗

+ and the set of positive elements of the von Neumann algebra R(πϕ), given by

ψ ∈ A∗
+ is associated with y ∈ R(πϕ)+ when ψ(a) = 〈πϕ(a)1, y1〉, ∀a ∈ A,

where 1 ∈ Hϕ is the vector corresponding to the unit element of A.

Thus, every C∗-algebra A has sufficiently many irreducible representations. In the com-
mutative case, the irreducible representations of A coincide with the homomorphisms
of A into C. In the noncommutative case, the nature of the relation of equivalence be-
tween irreducible representations of A on a fixed Hilbert space determines a privileged
class of C∗-algebras; the following theorem of J. Glimm is fundamental:

Theorem 3. (cf. [173]) Let A be a separable C∗-algebra. The following conditions on
A are equivalent :

1) Every isotypic representation π of A on a Hilbert space Hπ is a multiple of an
irreducible representation.

2) For any irreducible representation π of A, the image π(A) contains the ideal
k(Hπ) of compact operators on Hπ.

3) Let H be a separable Hilbert space and let Rep(A,H) be the Borel space of ir-
reducible representations of A on H; then its quotient by the relation of equiv-
alence of representations is countably separated .

4) If π1 and π2 are two irreducible representations of A having the same kernel ,
then they are equivalent .

A C∗-algebra satisfying the above equivalent conditions is said to be postliminal .
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3. The Algebraic Framework for Noncommutative Integration and the
Theory of Weights

To be able to take into account positive measures that are not necessarily finite, it is
necessary to introduce the noncommutative analogue of infinite positive measures.

The initial data for noncommutative integration is thus a pair (M, ϕ) consisting of a
von Neumann algebra M and a weight ϕ on M in the following sense ([85], [435],
[252]):

Definition 1. A weight on a von Neumann algebra M is an additive, positively ho-
mogeneous mapping ϕ of M+ into R+ = [0, +∞]. We say that:

a) ϕ is semifinite if {x ∈ M+; ϕ(x) < ∞} is σ(M, M∗)-total.
b) ϕ is normal if ϕ(sup xα) = sup ϕ(xα) for every bounded, increasingly directed

family of elements of M+.

The simplest example of an infinite weight is that of the usual trace for the bounded
operators on a Hilbert space H. Setting M = L(H), for every T ∈ M+ and every
orthonormal basis (ξα)α∈I of H one has

TrT =
∑

〈Tξα, ξα〉 = sup
0≤A≤T

{TrA; A of finite rank}.

In fact, the first infinite weights studied were the traces in the following sense:

Definition 2. A weight on a von Neumann algebra M is called a trace if it is invariant
under the inner automorphisms of M .

Thus, every weight on M which is canonically defined is a trace. The analogues of
the concepts of convergence almost everywhere and of the Lp-spaces, p ∈ [1,∞], of the
classical theory were obtained mainly by Dixmier [171] and Segal [502] for semifinite
normal traces .

If ϕ is a trace, the set
Cp = {x ∈ M ; ϕ(|x|p) < ∞}

is a two-sided ideal of M , and ‖x‖p = ϕ(|x|p)1/p defines a seminorm on Cp. The
completion spaces Lp(M, ϕ) have numerous properties that generalize the commutative
case and the classical case of pth-power summable operators on a Hilbert space. In
particular, if x ≥ 0 and ϕ(x) = 0 imply x = 0 (in which case ϕ is said to be faithful), the
predual M∗ of M may be identified with the space L1(M,ϕ). Moreover, the intersection
L2(M, ϕ) ∩ L∞(M,ϕ) is a Hilbert algebra:

Definition 3. A Hilbert algebra is a ∗-algebra A equipped with a positive definite
pre-Hilbert space inner product such that:
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1) 〈x, y〉 = 〈y∗, x∗〉 (∀x, y ∈ A).

2) The representation of A on A by left multiplications is bounded, involutive and
nondegenerate.

The condition 1) defines a conjugate-linear isometry J of the Hilbert space completion
H of A onto itself. Condition 2) makes it possible to speak of the left regular represen-
tation λ of A on H and therefore to associate with it a von Neumann algebra λ(A)′′

on H. Then:

a) The commutant of λ(A) is generated by the algebra of right multiplications
λ′(A) = Jλ(A)J .

b) The von Neumann algebra associated with the Hilbert algebra L2(M,ϕ) ∩
L∞(M, ϕ) may be identified with M .

c) For every Hilbert algebra A, there exists a faithful semifinite normal trace τ
on the von Neumann algebra λ(A)′′ such that

τ(λ(y∗)λ(x)) = 〈x, y〉 ∀x, y ∈ A,

and A is equivalent to the Hilbert algebra associated with τ .

In general, a von Neumann algebra M does not have a faithful semifinite normal trace.
For example, if M is a factor, it has a faithful semifinite normal trace if and only if it
is not of type III. A von Neumann algebra M is said to be semifinite if it has a faithful
semifinite normal trace (when M acts on a separable space, this is equivalent to saying
that M is a direct integral of factors none of which is of type III).

For M semifinite, the supplementary tools that come out of the theory of Hilbert
algebras make it possible to prove results that are inaccessible in the general case, such
as:

Theorem 4. Let Mi be a von Neumann algebra on Hi (i = 1, 2). Then the commutant
(M1 ⊗M2)

′ is generated by M ′
1 ⊗M ′

2.

For semifinite von Neumann algebras M1 and M2, this result is a consequence of the
commutation property a) for Hilbert algebras. Similarly, if G is a unimodular locally
compact group and dg is a Haar measure on G, then the convolution algebra of contin-
uous functions with compact support is a Hilbert algebra, and the commutation result
a) implies:

Theorem 5. The commutant R(λ′) of the right regular representation λ′ of G on
L2(G, dg) is generated by the left regular representation.

This theorem was proved, for not necessarily unimodular locally compact groups, by
J. Dixmier, who introduced the concept of quasi-Hilbert algebra. Theorem 4 was
proved, for not necessarily semifinite von Neumann algebras, by M. Tomita in 1967.



3. NONCOMMUTATIVE INTEGRATION AND THE THEORY OF WEIGHTS 474

As a matter of fact, his theory of generalized Hilbert algebras is the foundation for all
of the noncommutative integration theory for weights that are not necessarily traces.
The Tomita theory owes much to M. Takesaki, who transformed the original, very
difficult to decipher article into an accessible text [549].

The essentials of the Tomita–Takesaki theory can be summarized by the following
definition and theorem:

Definition 6. A left Hilbert algebra is a ∗-algebra A, equipped with a positive definite
pre-Hilbert space inner product, such that:

1) The operator x 7→ x∗ is closable.

2) The representation of A on A by left multiplication is bounded, involutive and
nondegenerate.

Thus, the only difference from a Hilbert algebra is that the closure S of the operator
x 7→ x∗ can have absolute value |S| 6= 1. Let

∆ = (adjoint of S) ◦ S

be the square of the absolute value of S. Then S = J∆1/2, where J is an isometric
involution, and the fundamental result is as follows [549]:

Theorem 7. Let A be a left Hilbert algebra and let M be the von Neumann algebra
generated by the left regular representation of A. Then JMJ = M ′ and

∆itM∆−it = M

for all t ∈ R.

Moreover, just as the Hilbert algebras are associated with traces, the left Hilbert alge-
bras are associated with weights ([85]):

Let A be a left Hilbert algebra and let M be the associated von Neumann algebra.
Then there exists a faithful semifinite normal weight ϕ on M such that

ϕ(λ(y∗)λ(x)) = 〈x, y〉 (∀x, y ∈ A).

Conversely, let M be a von Neumann algebra and let ϕ be a faithful semifinite normal
weight on M . Then

Aϕ = {x ∈ M ; ϕ(x∗x) < ∞, ϕ(xx∗) < ∞},
equipped with the multiplication of M and the inner product 〈x, y〉 = ϕ(y∗x), is a left
Hilbert algebra. The associated von Neumann algebra may be identified with M and
the corresponding weight with ϕ.

Since every von Neumann algebra has a faithful semifinite normal weight (if M acts on
a separable space then in fact it has a faithful normal state), it follows, in particular,
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that every von Neumann algebra is isomorphic to the von Neumann algebra generated
by the left regular representation of a left Hilbert algebra.

It is here that a remarkable discovery of Takesaki and Winnink relates Tomita’s
theory— more precisely, the one-parameter group of automorphisms of the von Neu-
mann algebra M defined by σt(x) = ∆itx∆−it—to the fundamental Kubo-Martin-
Schwinger condition of quantum statistical mechanics which we already described in
Section I.2. Of course the automorphism group σt is not unique; it depends on the
Hilbert algebra A, that is, on the faithful semifinite normal weight ϕ on M .

Definition 8. Let ϕ be a faithful semifinite normal weight on a von Neumann alge-
bra M . The group of modular automorphisms is the one-parameter group (σϕ

t )t∈R of
automorphisms of M associated with the left Hilbert algebra Aϕ.

One then has the following characterization.

Theorem 9. [549] [586] Let M be a von Neumann algebra and let ϕ be a faithful
normal state on M . Then the group (σϕ

t )t∈R of modular automorphisms is the unique
one-parameter group of automorphisms of M that satisfies the Kubo–Martin–Schwinger
condition for β = −1. ( Equivalently (σϕ

−t)t∈R is KMS for β = 1.)

This characterization of (σϕ
t ) holds for faithful semifinite normal weights, with the

proper reformulation of the KMS condition taking care of domain problems.

4. The Factors of Powers, Araki and Woods, and of Krieger

The noncommutative analogue of a probability space is a pair (M, ϕ), where M is a
von Neumann algebra and ϕ is a faithful normal state on M . The simplest example
corresponds to M = Mn(C). Every state ϕ on M may be written ϕ = Tr(ρ·), where ρ
is a positive matrix the sum of whose eigenvalues is 1:

ϕ(x) = Tr(ρx) ∀x ∈ Mn(C).

One can therefore suppose that ρ is diagonal, with eigenvalue λi > 0 in the ith row,
and with λ1 ≥ λ2 ≥ · · · ≥ λn > 0. The list of eigenvalues of ρ is an invariant of ϕ
called its eigenvalue list. The group of modular automorphisms of ϕ is given by

σϕ
t (x) = eitHxe−itH , where H = Log ρ.

In particular, if eij denotes the canonical matrix unit, then

σϕ
t (ekl) =

(
λk

λl

)it

ekl.

The system (M, ϕ) is analogous to a probability space having a finite number of points.
To obtain examples that are more interesting, the simplest procedure consists in car-
rying out the analogue of the construction of infinite products of measures.
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Thus, let (Mν , ϕν)ν∈N be a sequence of pairs (matrix algebra, faithful state); let A be
the inductive limit of the C∗-algebras

Aν = M1 ⊗M2 ⊗ · · · ⊗Mν ,

where the embedding Aν ⊂ Aν+1 is by means of the mapping x 7→ x⊗ 1. On A, which
is a C∗-algebra with unit, one defines a state ϕ =

⊗∞
ν=1 ϕν by the equality

ϕ(x1 ⊗ x2 ⊗ · · · ⊗ xν ⊗ 1⊗ · · · ) = ϕ1(x1)ϕ2(x2) · · ·ϕν(xν).

One then considers the pair (M,ϕ) = (von Neumann algebra, normal state) associated
with the pair (A, ϕ) as in Section 3 of this chapter. If every ϕν is faithful then so is ϕ,
and the group of modular automorphisms of (M,ϕ) is given by

σϕ
t (x1 ⊗ · · · ⊗ xν ⊗ 1⊗ · · · ) = σϕ1

t (x1)⊗ · · · ⊗ σϕν
t (xν)⊗ 1⊗ · · · .

In fact, this construction of von Neumann algebras is due to von Neumann himself;
however, one had to wait until 1967 for it to reveal itself to be fundamental. For
the thirty years that followed the birth of von Neumann algebras, only three pairwise
nonisomorphic factors of type III were known. In 1967 R. T. Powers, who was trained
as a physicist, succeeded in showing that if all of the pairs (Mν , ϕν) are taken to be
equal to the pair (M2(C), ϕ), where ϕ((aij)) = αa11 + (1 − α)a22, then one obtains
a family, with continuous parameter α ∈ ]0, 1

2
[, of pairwise nonisomorphic factors of

type III: Rλ, λ = α/(1− α) ∈ ]0, 1[ ([453]).

In terms of the eigenvalue list (λν,j)j=1,...,nν one has the following criteria:

1) M is type I if and only if
∑

ν

|1− λν,1| < ∞.

2) M is type II1 if and only if
∑
ν,i

|(nν)
−1/2 − (λν,i)

1/2|2 < ∞.

3) If λν,1 ≥ δ for some δ > 0 and all ν, then M is type III if and only if
∑
ν,i

λν,i inf{|(λν,1/λν,i)− 1|2, C} = ∞

for some (and hence all) positive C.

After Powers’ discovery, H. Araki and E. J. Woods undertook a classification, up to
isomorphism, of the factors that are infinite tensor products of matrix algebras [12].
They showed, in particular, that, from the eigenvalue list of the ϕν , (λν,j)j=1,...,nν , one
can calculate the following two invariants:

r∞(M) = {λ ∈]0, 1[; M ⊗Rλ isomorphic to M},
ρ(M) = {λ ∈]0, 1[; M ⊗Rλ isomorphic to Rλ}.
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The computation of the asymptotic ratio set r∞(M) is done as follows. For each finite
subset I of the set of indices ν ∈ N one lets X(I) be the product

∏
ν∈I{1, . . . , nν} with

probability measure λ given by the product of the (λν,j).

The asymptotic ratio set of M is the set of all x ∈ [0,∞] such that there exists a
sequence of mutually disjoint finite index sets In⊂N, mutually disjoint subsets K1

n and
K2

n of X(In) for each n such that a ∈ K1
n implies λ(a) 6= 0, and a bijection φn from K1

n

to K2
n satisfying ∑

n

λ(K1
n) = ∞

and
Limn→∞ max

a∈K1
n

|x− λ(φn(a))/λ(a)| = 0.

They showed in addition that r∞(M) is a closed subgroup of R∗+ and that the equality
r∞(M) = λZ characterizes the Powers factor Rλ among the infinite tensor products of
matrix algebras. Moreover, by studying ρ(M), E. J. Woods succeeded in showing the
impossibility of classifying the factors by means of real-valued Borel invariants.

On the other hand, W. Krieger had undertaken a systematic study of the factors
associated with ergodic theory. I shall begin by explaining his construction of a von
Neumann algebra starting from an equivalence relation with denumerable orbits on
a standard Borel space (X,B) and a quasi-invariant measure µ. This construction
generalizes the first construction of Murray and von Neumann, which was itself inspired
by the crossed products of the theory of central simple algebras over a field. In its
definitive form, it is due to J. Feldman and C. Moore [208].

Thus, let (X,B, µ) be a standard Borel probability space and let R ⊂ X ×X be the
graph, assumed to be analytic, of an equivalence relation with denumerable orbits. One
assumes that µ is quasi-invariant in the sense that the saturation of a negligible Borel
set by R is again negligible. One then considers the left Hilbert algebra A of bounded
Borel functions from R into C such that, for some n < ∞, the set {j; f(i, j) 6= 0} has
cardinality ≤ n for all i. The inner product is that of L2(R, µ̃), where∫

f(i, j)dµ̃ =

∫ ∑
j

f(i, j)dµ(i).

The convolution product is given by

(f ∗ g)(γ) =
∑

γ1γ2=γ

f(γ1)g(γ2),

where, for γ1, γ2 ∈ R, one sets γ1γ2 = γ when γ1 = (i1, j1), γ2 = (i2, j2), j1 = i2 and
γ = (i1, j2).

The left Hilbert algebra A thus appears as a generalization of the algebra of square
matrices. Since it has a unit element (the function f such that f(i, j) = 0 if i 6=
j, and f(i, i) = 1 for all i), it yields a pair (M,ϕ), where M is a von Neumann



4. THE FACTORS OF POWERS, ARAKI AND WOODS, AND OF KRIEGER 478

algebra and ϕ is a faithful normal state on M . We shall write simply M = L∞(R, µ̃),
where R denotes the graph of the equivalence relation, equipped with the groupoid
law γ1γ2 = γ. It is interesting from a heuristic point of view to make R play (in
noncommutative integration) the role played (in classical integration) by the space X.
The noncommutativity is due to the existence of a nontrivial groupoid law on R (the
trivial law on the set X being x · x = x for all x ∈ X). Up to isomorphism, the von
Neumann algebra L∞(R, µ̃) depends only on the class of the measure µ. One then
makes the following definition:

Definition 1. Let (Xi,Bi, µi,Ri) (i = 1, 2) be equivalence relations with denumerable
orbits, as above; R1 is said to be isomorphic to R2 if there exists a Borel bijection θ of
X1 onto X2 such that θ(µ1) is equivalent to µ2 and, almost everywhere,

θ(class of x) = class of θ(x).

If T is a Borel transformation of the standard Borel space (X,B) and if µ is a measure
quasi-invariant under T , then the orbits of T in X define an equivalence relation RT ;
T1 is said to be weakly equivalent to T2 if RT1 is isomorphic to RT2 .

Theorem 2. [186] Any two ergodic transformations with invariant measure are weakly
equivalent .

Let T be such a transformation. The state ϕ (associated with the invariant measure)
on the von Neumann algebra L∞(RT , µ) is a trace, so that M = L∞(RT , µ), which is
a factor since RT is ergodic, is of type II1. H. Dye showed, moreover, that it is the
hyperfinite factor.

Around 1967, W. Krieger undertook a systematic study of the weak equivalence of the
transformations (X,B, µ, T ), where µ is quasi-invariant under T . He introduced two
invariants ([359]):

r(T ) =
{
λ ∈ [0, +∞[; ∀ε > 0, ∀A ⊂ X, µ(A) > 0,

∃B ⊂ A, µ(B) > 0, and n ∈ Z such that

T nB ⊂ A and

∣∣∣∣
dµ(T nx)

dµ(x)
− λ

∣∣∣∣ ≤ ε ∀x ∈ B
}
,

ρ(T ) =
{
λ ∈ R∗+; ∃ν ∼ µ with

dν(Tx)

dν(x)
∈ λZ ∀x ∈ X

}
,

and he showed that r and ρ are not only invariants under weak equivalence, but that
in fact r(T ) coincides with the Araki–Woods invariant

r∞(M) = {λ; M ⊗Rλ isomorphic to M},
where M = L∞(RT , µ), and similarly that ρ(T ) = ρ(M).
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This is actually a generalization of the results of Araki and Woods. For, let (Mν , ϕν)ν∈N
be a sequence of pairs (matrix algebra, faithful state), and let (λν,j)j=1,...,nν be the
corresponding eigenvalue lists. Then the infinite tensor product von Neumann algebra⊗∞

ν=1(Mν , ϕν) may also be obtained by Krieger’s construction, from the following space
and equivalence relation:

X =
∞∏

ν=1

Xν , where Xν = {1, . . . , nν} for each ν,

B is the σ-algebra generated by the product topology,

µ =
∞∏

ν=1

µν , where µν(j) = λν,j for j ∈ Xν ,

R is the relation x ∼ y ⇔ xi = yi for i sufficiently large.

The relation R is in fact equal to RT , where T is the transformation that generalizes
the operation of adding 1 in the p-adic integers: to calculate Tx, one looks at the first
coordinate xi of x that is not equal to the maximum possible ni, replaces it by xi + 1,
and then one replaces every preceding xj (j < i) by 1.

In fact, there exist Krieger factors, i.e. factors of the form L∞(RT , µ), that are not
infinite tensor products of matrix algebras. The culmination of Krieger’s theory is the
following theorem, proved around 1973 by means of the invariants of factors that we
shall discuss later on:

Theorem 3. [360] Let (Xi,Bi, µi, Ti) (i = 1, 2) be ergodic transformations , where
each µi is quasi-invariant and (Xi,Bi) is a standard Borel space. Then T1 is weakly
equivalent to T2 (i.e., RT1 is isomorphic to RT2) if and only if the factors L∞(RTi

, µi)
are isomorphic.

This result clearly shows the need for recognizing whether an equivalence relation
R with denumerable orbits is of the form RT for some Borel transformation T . In
particular, when R arises from the action of a discrete group Γ, Krieger and I showed
[127] that if Γ is solvable then R is of the form RT . The case that Γ is an amenable
group was treated by D. Ornstein and B. Weiss [427] and the definitive answer to the
problem was obtained in [120] by J. Feldman, B. Weiss and myself.

Theorem 4. [120] R is of the form RT if and only if R is amenable in the sense of
Zimmer [597].

R. Zimmer’s definition translates the amenability of the von Neumann algebra L∞(R, µ)
simply (cf. Section 7), so that the above two theorems imply ([120]):

Corollary 5. Any two Cartan subalgebras of an amenable factor M = L∞(R, µ) are
conjugate by an automorphism of M .
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Here, by Cartan subalgebra is meant a maximal abelian subalgebra A of M such that:

a) The normalizer of A, i.e. {u ∈ M ; u∗u = uu∗ = 1 , uAu∗ = A}, generates M
(A is then said to be regular).

b) There exists a normal conditional expectation E of M onto A.

Condition b) is automatic if M is of type II1, thus one sees that:

The hyperfinite factor R has , up to conjugation, only one regular maximal
abelian subalgebra.

We note, by a result of V. Jones and myself, for nonamenable equivalence relations R1

and R2, that it is false that the isomorphism L∞(R1, µ1) ≈ L∞(R2, µ2) implies the
isomorphism of the relations R1 and R2. Thus, one cannot hope to translate Zimmer’s
rigidity results (on equivalence relations arising from ergodic actions of semisimple Lie
groups [598]) directly into a rigidity theorem on the corresponding factors. The prob-
lem of adapting his proof to the case of factors is a key open problem. (cf. Appendix
B ε))

5. The Radon-Nikodým Theorem and Factors of Type IIIλ

5.α The Radon-Nikodým theorem. The Tomita–Takesaki theory associates,
to every faithful semifinite normal weight ϕ on a von Neumann algebra M , a one-
parameter group σϕ

t of automorphisms of M , the group of modular automorphisms,
defined by

σϕ
t (x) = ∆it

ϕx∆−it
ϕ ,

where ∆ϕ is the modular operator, the square of the absolute value of the involution
x → x∗ regarded as an unbounded operator in the space L2(M,ϕ), the completion of
{x ∈ M ; ϕ(x∗x) < ∞} for the inner product 〈x, y〉 = ϕ(y∗x).

On the other hand, the theory of Araki and Woods associates to every factor M the
two invariants r∞ and ρ,

r∞(M) = {λ; M ⊗Rλ ∼ M},
ρ(M) = {λ; M ⊗Rλ ∼ Rλ}.

Now, for the factors of Araki and Woods, a direct calculation based on their work
yields the following equalities:

(5.1) r∞(M) =
⋂
{Spectrum ∆ϕ; ϕ a faithful normal state on M}.

(5.2) ρ(M) = {exp(2π/T0); ∃ a faithful normal state ϕ on M such that σϕ
T0

= 1}.
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These two equalities of course suggest the following definitions for an arbitrary fac-
tor M :

S(M) =
⋂
{Spectrum ∆ϕ; ϕ a faithful normal state on M}.

T (M) = { possible periods of groups of modular automorphisms of M}.
Clearly, the first question this raises is whether the equalities r∞ = S and ρ =
exp(2π/T ), valid for the factors of Araki and Woods, remain true in general. A closely
related question is the problem of calculating the invariants S and T . The above def-
initions of these invariants show that in order to calculate S and T one must pass in
review all of the faithful normal states on M and calculate their groups of modular
automorphisms. Now in general, as is clear for the factors of Section 4 of this chapter,
a factor is presented with a privileged state or weight for which the calculation of ∆ϕ

and σϕ
t is easy. Thus, the problem that poses itself is to study the precise extent to

which the group σϕ depends on ϕ.

The complete answer to this problem in fact constitutes precisely the noncommutative
version of the Radon–Nikodým theorem, which allows to compute the above invariants
and started the classification of factors,

Theorem 1. [89] Let M be a von Neumann algebra, let ϕ be a faithful semifinite
normal weight on M , and let U be the unitary group of M equipped with the topology
σ(M,M∗).

a) For every faithful semifinite normal weight ψ on M there exists a unique con-
tinuous mapping u of R into U such that :

ut+t′ = utσ
ϕ
t (ut′) ∀t, t′ ∈ R,

σψ
t (x) = utσ

ϕ
t (x)u∗t ∀t ∈ R, x ∈ M,

ψ(x) = ϕ(u∗−i/2xu−i/2) ∀x ∈ M.

This is expressed by writing ut = (Dψ : Dϕ)t.

b) Conversely , let t 7→ ut be a continuous mapping of R into U such that

ut+t′ = utσ
ϕ
t (ut′) ∀t, t′ ∈ R.

Then there exists a unique faithful semifinite normal weight ψ on M such that
(Dψ : Dϕ) = u.

If M is commutative, M = L∞(X,µ), then ϕ and ψ are positive measures on X that
are equivalent to µ. Therefore there exists a Radon–Nikodým derivative h : X → R+.
The hit (t ∈ R) are in M = L∞(X, µ) and hit = (Dψ : Dϕ)t.

If M is semifinite and τ is a faithful semifinite normal trace on M , then there exist
positive operators affiliated with M such that ϕ = τ(ρϕ·), ψ = τ(ρψ·), and

(Dψ : Dϕ)t = ρit
ψρ−it

ϕ .
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The property σψ
t (x) = utσ

ϕ
t (x)u∗t (∀x ∈ M) shows that, although the group of modular

automorphisms in general varies with ϕ, its class modulo the inner automorphisms does
not vary. We may then ask if it is not altogether trivial. However, an easy argument
based on the above theorem shows that

T (M) = {T0; σϕ
T0

is an inner automorphism}.
Moreover, a theorem of J. Dixmier and M. Takesaki [549] shows that, assuming M∗
separable,

T (M) 6= R ⇔ M is not semifinite.

One then introduces the group OutM = AutM/InnM of classes of automorphisms of
M modulo the inner automorphisms and one associates to every von Neumann algebra
M a canonical homomorphism of R into OutM :

δ(t) = class of σϕ
t

(this is independent of the choice of ϕ). In particular, T (M) = Kerδ is a subgroup of R.
In fact, the range of δ is even contained in the center of the group OutM .

Moreover, one can calculate T (M) on the basis of a single faithful semifinite normal
weight ϕ on M , since it suffices to determine the t for which σϕ

t is an inner automor-
phism. For example, if M is an Araki–Woods factor M =

⊗∞
ν=1(Mν , ϕν), the group of

modular automorphisms for ϕ=
⊗∞

ν=1 ϕν is known: it is

σϕ
t =

∞⊗
ν=1

σϕν
t .

A simple calculation based on the eigenvalue list (λν,j)j=1,...,nν of ϕν then shows that

T0 ∈ T (M) ⇔
∞∑

ν=1

(
1−

∣∣ ∑
j

λ1+iT0
ν,j

∣∣
)

< ∞.

From this, one infers, for example, that T (Rλ) = {T0; λiT0 = 1}.
When M is a Krieger factor, or more generally when M = L∞(R, µ) for some equiv-
alence relation R (see Section 4; R is not necessarily assumed to be of the form RT ),
one also verifies by an easy calculation that

T (M) = 2π/Log ρ(R),

where ρ is Krieger’s invariant, i.e. ρ(R) is the set of all λ > 0 for which there exists a

ν ∼ µ such that the Radon–Nikodým derivatives dν(Sx)
dν(x)

belong to λZ for any Borel

transformation S that preserves the orbits of R. The latter calculation shows easily
that the equality ρ(M) = exp(2π/T (M)) does not hold, in general, with the Araki-
Woods definition of ρ.
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Finally, we emphasize that Theorem 1, the analogue of the Radon–Nikodým theorem,
makes it possible, for numerous von Neumann algebras, to describe explicitly all the
semifinite normal weights and their groups of modular automorphisms.

Thus, let us take up again Example 4 of Section 1 and let us show how to represent
every normal weight on the von Neumann M of random operators on X = V/Γ. Recall
that a quadratic form on a Hilbert space H is a mapping q of H into [0, +∞] such that:

a) q(ξ + η) + q(ξ − η) = 2q(ξ) + 2q(η) (∀ξ, η ∈ H).

b) q(λξ) = |λ|2q(ξ) (∀ξ ∈ H, λ ∈ C).

Assume moreover that Dom q = {ξ ∈ H; q(ξ) < ∞} is dense in H and that q is
lower semicontinuous. Then there is a unique unbounded positive operator T such
that q(ξ) = ‖T 1/2ξ‖2 (∀ξ ∈ H).

Let V be a manifold with n = dim V , and use the differential of the action of Γ on V
to trivialize the fiber T (V ) along each orbit of Γ.

Definition 2. A random form consists in quadratic forms qα,ν on Hα, for all α ∈ X
and ν ∈ ∧nTα(X), such that:

1) qα,λν = |λ|qα,ν ∀λ ∈ R.

2) The mapping x 7→ qp(x),ν(x)(ξx) of V into R is measurable for all measurable
sections ν and ξ.

Recall that p : V→X is the canonical projection. The expression qp(x)(ex) is by con-
struction a one density on V which can be integrated (the dependence on x in V is
that of a 1-density). One then sets

∫
q =

∫
V

qp(x)(ex). Theorem 1 makes it possible to
prove:

Theorem 3.

1) Let q be a random form and , for every pair (α, ν), let Tα,ν be the positive
unbounded operator in Hα associated with the quadratic form qα,ν .

If
∫

q = 1 then we may define a normal state ϕq on M by

ϕq(A) =

∫

V

〈Ap(x)T
1/2
p(x)ex, T

1/2
p(x)ex〉

for every random operator A = (Aα)α∈X .

2) The mapping q 7→ ϕq is a bijection between the random forms q, with
∫

q = 1,
and the normal states on M .

3) ϕq is faithful if and only if the operator Tα,ν is nonsingular for ν 6= 0 and
almost every α ∈ X.
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4) For every faithful normal state ϕ = ϕq on M , the group of modular automor-
phisms σϕ

t is given by

(σϕ
t (A))α = T it

α,νAαT−it
α,ν for all A = (Aα) ∈ M.

5.β The factors of type IIIλ. The Radon–Nikodým theorem makes it possible to
calculate the invariant S(M) from a single faithful semifinite normal weight ϕ on M .
The centralizer Mϕ of ϕ is defined by the equality

Mϕ = {x ∈ M ; σϕ
t (x) = x ∀t ∈ R}.

For every projection e 6= 0, e ∈ Mϕ, a faithful semifinite normal weight ϕe on the
reduced von Neumann algebra eMe = {x ∈ M ; ex = xe = x} is defined by the
equality

ϕe(x) = ϕ(x) ∀x ∈ eMe, x ≥ 0.

One then has the formula

S(M) =
⋂

e 6=0

Spectrum ∆ϕe ,

where e varies over the nonzero projections of Mϕ. Moreover, since e commutes with ϕ,
the calculation of σϕe

t , and hence of the spectrum of ∆ϕe , is immediate:

σϕe
t (x) = σϕ

t (x) ∀x ∈ eMe.

The above formula permits calculating, for example, S(M) for M = L∞(R, µ) (Section
4). One has the equality

S(M) = r(R),

where r is the invariant defined by Krieger as the set of essential values of the Radon–
Nikodým derivatives. Therefore, in general, S(M) 6= r∞(M). Moreover, there is a
much more satisfying interpretation of S(M) as the spectrum of the modular homo-
morphism δ.

Let us suppose that the predual M∗ is separable. Then a one-parameter group (αt)t∈R
of automorphisms of M is of the form σϕ

t for some faithful semifinite normal weight
ϕ on M if and only if the class ε(αt) of αt in OutM is equal to δ(t) for all t. To
put it another way, the set of all of the groups of modular automorphisms for faithful
semifinite normal weights on M is precisely the set of multiplicative Borel sections of δ.

For every faithful semifinite normal weight ϕ, the spectrum of ∆ϕ may be identified
with the spectrum of σϕ in the following sense:

Spectrum σϕ = {λ ∈ dual group of R; f̂(λ) = 0 for

all f ∈ L1(R) such that

∫
f(t)σϕ

t dt = 0}.
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The spectrum of σϕ can also be defined in terms of the supports of the distributions
(σϕ(x))∧ which are Fourier transforms of the functions t 7→ σϕ

t (x). One obtains in this
way distributions with values in M , and Spectrum σϕ is the closure of the union of the
supports of the (σϕ(x))∧).

We also note that in the above formula, R∗+ is identified with the dual group of R by
the equality 〈λ, t〉 = λit (λ ∈ R∗+, t ∈ R). The precise equality is then

Spec∆ϕ ∩ R∗+ = Spectrum σϕ.

Therefore
R∗+ ∩ S(M) =

⋂

ε◦α=δ

Spectrum α,

and this formula shows that when M is a factor, R∗+ ∩ S(M) is a subgroup of R∗+.
Moreover, 0 ∈ S(M) ⇔ M is of type III, and one has the following cases:

III0 S(M) = {0, 1},
IIIλ λ ∈ ]0, 1[: S(M) = λZ ∪ {0},
III1 S(M) = [0, +∞[.

In a certain sense, the above λ expresses the distance between M and the semifinite
factors; in fact, λ is related in a monotone and one-to-one fashion to a quantity that
measures the obstruction to the existence of a trace on M

d(M) = diameter(S/InnM),

where S denotes the metric space of normal states on M (with the metric d(ϕ1, ϕ2) =
‖ϕ1 − ϕ2‖) and where InnM acts on S by ϕ 7→ uϕu∗ for u unitary in M . For M
of type III1, d(M) = 0 ([137]); thus one cannot distinguish between two states of a
factor of type III1 by means of a property that is closed and invariant under inner
automorphisms.

Let us now give a heuristic interpretation of S(M). We first return to the origins of
the terminology “modular automorphisms”. The primary example of a left Hilbert
algebra is the convolution algebra of continuous functions with compact support on a
locally compact group G. Let dg be a left Haar measure on G. The modulus of the
group is then the homomorphism δG of G into R∗+ associated with the right action of
G on dg. Moreover, the modular operator of the left Hilbert algebra is the operator
of multiplication by the function δG in the space L2(G, dg), thus its spectrum is the
closure of the range of δG. One can then, from a heuristic point of view, always interpret
the invariant S(M) for a factor M as “the image of the modulus of M”.

The factors of type IIIλ, λ ∈ ]0, 1[, are characterized by the equality S(M) = λZ ∪{0};
now, it is easy to see that if G is a locally compact group and the image of the
modulus δG of G is λZ, then G is the semidirect product of the unimodular group
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H = Ker δG by an automorphism α ∈ AutH that multiplies every Haar measure on H
by λ. Conversely, every pair (H,α), where H is unimodular and α multiplies every Haar
measure on H by λ, yields by semidirect product a locally compact group G = H×αZ
with δG(G) = λZ. This analogy is confirmed by the following central result of my
thesis:

Theorem 4. [89] Let λ ∈ ]0, 1[.

a) Let M be a factor of type IIIλ. There exist a factor N of type II∞ and a
θ ∈ AutN multiplying every trace of N by λ (one then writes mod θ = λ) such
that M is isomorphic to the crossed product of N by θ.

b) Let N be a factor of type II∞ and let θ ∈ AutN with Mod θ = λ. Then the
crossed product of N by θ is a factor of type IIIλ.

c) Two pairs (Ni, θi) (i = 1, 2) yield isomorphic factors if and only if there exists
an isomorphism σ of N1onto N2 such that the classes of σθ1σ

−1 and θ2, modulo
the inner automorphisms of N2, are the same.

Before studying the implications of this theorem for the problem of classifying factors,
let us note some important information concerning the general theory of factors of type
IIIλ. The concept of trace is replaced by the following:

Definition 5. A generalized trace ϕ on a factor M of type IIIλ, λ ∈]0, 1[, is a faithful
semifinite normal weight ϕ such that Spec∆ϕ = S(M) and ϕ(1) = +∞.

One proves ([89]) the existence of generalized traces on M by studying the relations
between the invariants T (M) and S(M) and by showing that, except when S(M) =
{0, 1}, the invariant T (M) is determined by S(M); whereas, in the case III0, T (M) can
be any denumerable subgroup of R, not necessarily closed. Moreover, the following
uniqueness theorem holds: if ϕ1 and ϕ2 are two generalized traces on M , then there
exists an inner automorphism α such that ϕ2 is proportional to ϕ1 ◦ α.

The von Neumann algebra of type II∞, the N of the theorem, is none other than
the centralizer Mϕ of a generalized trace ϕ; its position in M is unique up to inner
automorphisms and it can be characterized as a maximal semifinite subalgebra [89].

Theorem 4 shows that the problem of classifying the factors of type IIIλ reduces to:

1) classifying the factors of type II∞;

2) given a factor N of type II∞, determining the conjugacy classes of θ in Out N =
Aut N/Inn N such that Modθ = λ.

These two problems are the principal motivations for Sections 6 and 7 below, Problem
2 being subsumed under noncommutative ergodic theory.



6. NONCOMMUTATIVE ERGODIC THEORY 487

6. Noncommutative Ergodic Theory

Let (X,B, µ) be a standard Borel space equipped with a probability measure µ, and let
T be a Borel transformation of (X,B) that leaves µ invariant. Let M = L∞(X,B, µ)
and let ϕ be the state associated with µ. Then T determines an automorphism of M
that preserves ϕ, by the equality

θ(f) = f ◦ T−1.

Conversely, every automorphism of M that preserves ϕ can be obtained in this way.
Thus, classical ergodic theory is, after translation, the same thing as the study, up to
conjugacy, of the automorphisms of M that fix ϕ. In fact, one of the justifications
for the theory is that all of the triples (X,B, µ) (hence all of the pairs (M,ϕ)) with
µ({x}) = 0 for all x ∈ X are isomorphic. Thus, to each different construction of such a
triple there will correspond a family of automorphisms of (X,B, µ) and the problem is
to compare them. Similarly, in the framework of noncommutative integration theory,
there exist numerous different constructions of the hyperfinite factor R, for example as
the regular representation of a locally finite discrete group (Section 1), as the infinite
tensor product of the pairs (Mn(C), τn) with τn the trace normalized by τn(1) = 1,
or again by the theorem of H. Dye (Section 4). To each of these constructions, there
correspond automorphisms of R. Indeed, R can also be constructed from the canoni-
cal anti-commutation relations on a real Hilbert space E, thus obtaining an injective
homomorphism of the orthogonal group of E into AutR. It follows that OutR in fact
contains every separable locally compact group.

Of course, one does not want to distinguish between two automorphisms of the form θ
and σθσ−1, where σ ∈ AutR. Let us adopt the following general definitions:

Definition 1. Let M be a von Neumann algebra and let θ1, θ2 ∈ AutM be two auto-
morphisms of M :

a) θ1 and θ2 are said to be conjugate if there exists a σ ∈ AutM such that
θ2 = σθ1σ

−1.

b) θ1 and θ2 are said to be outer conjugate if there exists a σ ∈ AutM such that
θ2 = σθ1σ

−1 modulo InnM .

When M is commutative, the two definitions coincide because InnM = {1}. In the
general case, we have two problems: conjugacy and outer conjugacy. I shall begin with
results that extend important results of classical ergodic theory to the noncommutative
case. I shall then discuss some specifically noncommutative phenomena; the reader
interested only in the automorphisms of R can pass directly to Theorem 14 below.
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6.α Rokhlin’s theorem. Let (X,B, µ) be a standard Borel probability space and
let T be a Borel transformation of (X,B) that preserves µ. Then there exists an
essentially unique partition of X, X =

⋃∞
i=1 Xi, where each Xi is invariant under T ,

and where:

1) For every i > 0, the restriction of T to Xi is periodic of period i and

card{T jx} = i ∀x ∈ Xi.

2) For i = 0, the restriction of T to X0 is aperiodic, i.e.

card{T jx} = ∞ ∀x ∈ X0.

Rokhlin’s theorem may be stated as follows. Let T be an aperiodic transformation
of (X,B, µ). For every ε > 0 and n > 0, there exists a Borel set E such that
E, T (E), . . . , T n−1(E) are pairwise disjoint and

µ
(
X\

n−1⋃
j=0

T j(E)
)

< ε.

Now let (N, τ) be a pair (von Neumann algebra, faithful normal trace normalized by
τ(1) = 1) and let θ be an automorphism of N that preserves τ . Then there exists a
partition of unity in N ,

∑∞
j=0 ej = 1, where each ej is a projection in the center of N

that is invariant under θ, and where:

a) For every j > 0, the restriction of θ to the reduced von Neumann algebra Nej

satisfies the condition that θj is inner and, for k < j and for every nonzero
projection e ≤ ej, there exists a nonzero projection f ≤ e such that

‖fθk(f)‖ ≤ ε.

b) For j = 0, the restriction of θ to the von Neumann algebra Ne0 is aperiodic:
for every k > 0, every nonzero projection e ≤ e0 and every ε > 0, there exists
a nonzero projection f ≤ e with

‖fθk(f)‖ ≤ ε.

As in the commutative case, this decomposition is unique. When e0 = 1, θ is
said to be aperiodic.

Theorem 2. [91] Let (N, τ) be a pair (von Neumann algebra, normalized faithful
normal trace) and let θ be an aperiodic automorphism of N that preserves τ . For every
integer n > 0 and every ε > 0, there exists a partition of unity

∑n−1
j=0 Ej = 1 in N ,

where the Ej are projections , such that

‖θ(Ej)− Ej+1‖2 ≤ ε (j = 0, 1, . . . , n− 1, En = E0).

Here, as in Section 1, we write ‖x‖2 = (τ(|x|2))1/2 for all x ∈ N .
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6.β Entropy. ([112], [138], [134])

Let (X,B, µ, T ) be as above and let P be a Borel partition of X. One uses the
term the entropy of P relative to T for the scalar h(T,P) that asymptotically counts
1/n times the logarithm of the number of elements of the partition generated by
P , TP , . . . , T n−1P :

h(T,P) = Limn→∞
1

n
h(P ∨ TP ∨ . . . ∨ T n−1P),

where, for a partition Q = (qj)j∈{1,...,k},

h(Q) =
k∑

j=1

η(µ(qj))

with η(t) = −t log t for t ∈]0, 1] and η(0) = 0.

The entropy of T is then defined to be the supremum of the h(T,P). It is an invariant,
calculable thanks to the Kolmogorov–Sinai theorem: h(T ) = h(T,P) for every partition
P for which the T jP generate the σ-algebra B. In particular, let us consider a Bernoulli
shift: the translation by 1 in

∏
ν∈Z(Xν , µν), where the Xν are all equal to {1, . . . , p}

and all of the µν are given by the same measure j ∈ {1, . . . , p} → λj. Then h(T ) =∑p
j=1 η(λj).

The Bernoulli shifts have an analogue in the noncommutative case; let us take the
simplest, associated with an integer p. One considers the infinite tensor product⊗

ν∈Z(Mν , ϕν), where, for all ν, Mν = Mp(C) is the algebra of all p×p matrices and ϕν

is the normalized trace. The shift Sp then yields an automorphism of the pair (R, τ),
where R is the hyperfinite factor and τ is its normalized trace. One can pose the fol-
lowing question: Are the Sp pairwise conjugate? This problem led me, together with
E. Størmer, to the following generalization of entropy and of the Kolmogorov–Sinai
theorem, which enabled us to distinguish the automorphisms Sp up to conjugacy.

These first results were limited to the unimodular case, where the measure space
(X,B, µ) is replaced by a von Neumann algebra M with a finite normal trace τ , and
where the automorphism θ ∈ AutM preserves τ . The role of the finite partitions
Q = (qj) of the space X is played by the finite-dimensional subalgebras K ⊂ M , but
at the very outset one encounters an entirely new difficulty: in the noncommutative
case it is, in general, false that the subalgebra of M generated by two finite-dimensional
subalgebras K1 and K2 is again finite-dimensional. (For example, the von Neumann
algebra R(Γ) of the group Γ = Z2 ∗ Z3 = PSL(2,Z) is generated by two subalgebras
K1 = C(Z2), K2 = C(Z3) of dimensions 2 and 3.) It is then impossible to make use of
the concept of a composite partition P1 ∨ P2 as in the commutative case. The key to
resolving this difficulty came from the noncommutative theory of information, and in
particular from the solution by E. Lieb [369] of the Wigner–Yanase–Dyson conjecture
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on the concavity in the variable ρ ∈ M+ of the functional

Ip(ρ, T ) = τ([ρp, T ]∗[ρ1−p, T ]), where p ∈ ]0, 1[, T ∈ M.

An immediate corollary of E. Lieb’s result is the convexity of the functional

S(ρ1, ρ2) = τ(ρ1(log ρ1 − log ρ2)) (ρj ∈ M+).

This enabled E. Størmer and me to define a function H(K1, . . . , Kn) ∈ [0,∞), where
the Kj are arbitrary finite-dimensional subalgebras of M , that plays the role of H(K1∨
K2 ∨ · · · ∨Kn), that is, it has the following properties:

a) H(N1, . . . , Nk) ≤ H(P1, . . . , Pk) if Nj ⊂ Pj for j = 1, . . . , k.

b) H(N1, . . . , Nk, Nk+1, . . . , Np) ≤ H(N1, . . . , Nk) + H(Nk+1, . . . , Np).

c) P1, . . . , Pn ⊂ P ⇒ H(P1, . . . , Pn, Pn+1, . . . , Pm) ≤ H(P, Pn+1, . . . , Pm).

d) For every family of minimal projections eα ∈ N such that
∑

eα = 1, one has
H(N) =

∑
η(τ(eα)).

e) If (N1 ∪ N2 ∪ · · · ∪ Nk)
′′ is generated by pairwise commuting von Neumann

subalgebras Pj ⊂ Nj, then H(N1, . . . , Nk) = H((N1 ∪ · · · ∪Nk)
′′).

The functional H is moreover continuous in the sense that it satisfies the inequality

f) H(N1, . . . , Nk) ≤ H(P1, . . . , Pk) +
∑

j H(Nj|Pj),

where the relative entropy functional H(N |P ) satisfies

∀ε > 0, n ∈ N, ∃δ > 0 such that

(dim N = n and (∀x ∈ N, ‖x‖ ≤ 1) ∃y ∈ P 3 ‖x− y‖2 ≤ δ ) ⇒ H(N |P ) < ε.

It is this stability of H(N1, . . . , Nk) under perturbation of the Nj that would not be
satisfied by the functional H((N1 ∪N2 ∪ · · · ∪Nk)

′′).

It is then easy to define, for every automorphism θ of the pair (M, τ), the quantities

H(N, θ) = Limk→∞
1

k
H(N, θ(N), . . . , θk(N))

H(θ) = sup
N

H(N, θ).

Moreover, if M is hyperfinite then we have the following analogue of the Kolmogorov-
Sinai theorem:

Theorem 3. Let Nk be an increasing sequence of finite-dimensional subalgebras of M ,
with

⋃
Nk weakly dense in M . Then

H(θ) = sup
k

H(Nk, θ)

for every automorphism θ of the pair (M, τ).

Using Properties d) and e), one easily obtains:
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Corollary 4. The shifts Sn of the hyperfinite factor R are pairwise non-conjugate and
H(Sn) = log n.

I refer the reader to [138] and [445] for other entropy calculations. As in the classical
case, the relative entropy H(N |P ) still has meaning for certain infinite-dimensional
pairs (N,P ) and plays an important role in [445].

I have deliberately omitted giving the explicit definition of the functional H ([138]),
since it only attains its conceptual form with the solution of the general case (non-
unimodular) given in [112] and developed in [134], which I shall now describe.

Let M be a not necessarily finite von Neumann algebra. The functional S(ρ1, ρ2)
defined above still has meaning ([8]). It is called the relative entropy. However, ρ1 and
ρ2 are no longer positive elements of M but are positive linear forms ϕ1, ϕ2 ∈ M∗. The
convexity of this functional S(ϕ1, ϕ2) remains true in full generality and has a simple
proof ([354], [463]).

The key concept that makes it possible to treat the general non-unimodular case is
that of the entropy defect of a completely positive mapping.

Definition 5. Let A and B be C∗-algebras. A linear mapping T : A → B is said to be
completely positive if, for every n, the mapping 1⊗ T : Mn(A) → Mn(B) is positive.

I refer the reader to [15] for further information. The principal interest of this concept
is that, although the category of C∗-algebras and ∗-homomorphisms has relatively
few morphisms, in any case not enough to connect the general C∗-algebras to the
commutative C∗-algebras, the category of C∗-algebras and completely positive mappings
is much more flexible, while not being too different from the former thanks to the
Stinespring–Kasparov theorem ([15], [330]). Thus, for example, if B is a commutative
unital C∗-algebra and X = Spec(B) is the spectrum (a compact space) of B, then
a completely positive mapping T , with T (1) = 1, of a C∗-algebra A into B is just a
weakly continuous mapping of X into the space S(A) of states of A, S(A) ⊂ A∗. If
A is a finite-dimensional C∗-algebra and ϕ is a state on A, there corresponds to ϕ a
list (λi) of positive real numbers, called the eigenvalue list of ϕ, obtained by setting
λi = ϕ(ei), where the ei are minimal projections of A with sum 1, belonging to the
centralizer Aϕ of ϕ in A. This list with multiplicity does not depend on the choice of
the ei, and

∑
λi = 1. One sets

S(ϕ) =
∑

η(λi).

Let A and B be finite-dimensional C∗-algebras, with B commutative, let µ be a state
on B, i.e. a probability measure on X = Spec(B), and let T be a completely positive
mapping of A into B such that T (1) = 1.



6. NONCOMMUTATIVE ERGODIC THEORY 492

Definition 6. The entropy defect of T is defined to be the scalar

sµ(T ) = S(µ)−
∫

X

S(T ∗µ, T ∗
x )dµ(x).

Here T ∗µ = µ ◦ T , T ∗
x is the image under T ∗ of the pure state on B associated with

x ∈ X = Spec(B) and S(·, ·) is as above the relative entropy.

One proves that sµ(T ) ≥ 0. This number measures the information loss due to the
translation T of the quantum system (A,ϕ), where ϕ = T ∗µ = µ ◦ T , into a classical
system (X, µ). The typical case in which this information loss sµ(T ) is zero is the one
in which T is the conditional expectation of A onto a maximal abelian subalgebra B
of the centralizer of ϕ.

Proposition 7.

a) Let T1, T2 : A → B be completely positive, with µ ◦ Ti = ϕ. Then, for every
λ ∈ [0, 1],

sµ(λT1 + (1− λ)T2) ≥ λsµ(T1) + (1− λ)sµ(T2).

b) If the state T ∗
x is pure for every x ∈ X = Spec(B), then

sµ(T ) = S(µ)− S(T ∗µ).

c) If T1 : A1 → A is completely positive and unital , then

sµ(T ◦ T1) ≥ sµ(T ).

d) For every subalgebra B1 ⊂ B, let E1 be the conditional expectation of B onto
B1 associated with µ, and let TB1 = E1 ◦ T . Then

sµ(TB1∨B2) ≤ sµ(TB1) + sµ(TB2)

for every pair B1, B2 of subalgebras of B, where B1∨B2 denotes the subalgebra
generated by B1 and B2.

It is property d) that plays a determining role. Let M be a von Neumann algebra and
let ϕ be a faithful normal state on M . Proposition 7 makes it possible to define the
functional H(N1, . . . , Nk) in full generality, where the Nk are finite-dimensional subal-
gebras of M . Since this functional depends on the choice of ϕ, it will be denoted Hϕ.
The formula that gives Hϕ(N1, . . . , Nk) is the same as that of [112] but is clarified
conceptually by the idea of entropy defect.

One defines Hϕ(N1, . . . , Nk) to be the supremum of the quantities

(∗) S(µ| ∨Bj)−
∑

j

sµ(Tj),
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where (X,µ) is a finite probability space, B = C(X), T is a completely positive
mapping of A into B such that T ∗µ = ϕ, the Bj are subalgebras of B, and sµ(Tj) is
the entropy defect of the mapping Tj = (Ej ◦ T )|Nj of Nj into Bj.

In other words, one optimizes a commutative translation of the situation (M,ϕ, (Nj))
that one compares with the commutative situation (B, µ, (Bj)). In the commutative
case, the natural quantity is the quantity of information or entropy S(µ|∨ Bj) of the
partition generated by the Bj. However, because of the loss of information in the
translation, one must subtract the quantity

∑
j sµ(Tj), which yields the formula (∗).

It is remarkable that in a great many cases one can effectively calculate the maximum
Hϕ(N1, . . . , Nk) of the quantity (∗) over all possible commutative translations. This
maximum Hϕ(N1, . . . , Nk) is finite and satisfies properties analogous to the properties
a), b), c), d) and e) listed above ([134]). Of course it coincides with the functional H
of [138] when ϕ is a trace.

In particular, if θ ∈ AutM is an automorphism that preserves ϕ, then the limit

Hϕ(N, θ) = Limk→∞
1

k
Hϕ(N, θ(N), . . . , θk(N))

exists and is finite for every finite-dimensional subalgebra N ⊂ M , and, with Hϕ(θ) =
supN Hϕ(N, θ), we have the following analogue of Theorem 3:

Theorem 8. Let M be a von Neumann algebra, ϕ a faithful normal state on M ,
and θ ∈ AutM such that ϕ ◦ θ = ϕ. Suppose that there exists an increasing sequence
Nk ⊂ Nk+1 of finite-dimensional subalgebras of M whose union is weakly dense in M
(M is then said to be hyperfinite) . Then

Hϕ(θ) = Limk→∞Hϕ(Nk, θ).

We thus have available, in the noncommutative case, the analogue of the Kolmogorov–
Sinai theory, and one of the most interesting open questions is to use it in quantum
statistical mechanics in the same way that the Kolmogorov–Sinai entropy is used in
the formalism of thermodynamics ([487]).

The theory of entropy of the automorphisms θ ∈ AutM of a von Neumann algebra that
preserve a state ϕ on M enables one to formulate the following variational problem.
Let A be a nuclear C∗-algebra and let θ ∈ AutA be an automorphism of A. For every
selfadjoint element V = V ∗ ∈ A, by analogy with the classical case [487] one defines,
for fixed β ∈ [0, +∞),

Pβ(V ) = sup
ϕ◦θ=ϕ

(
Hϕ(θ)− βϕ(V )

)
,

where the supremum is taken over the compact convex set of states ϕ on A that are
invariant under θ.
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Suppose that the automorphism θ is sufficiently asymptotically abelian for the following
equality to define a derivation δ generating a one-parameter group σt of automorphisms
of A:

δ(x) =
∑

n∈Z
[θn(V ), x].

The general problem is then as follows:

Problem. Compare the θ-invariant states on A such that Hϕ(θ) − βϕ(V ) = Pβ(V )
with the states that are β-KMS for σt.

Let us now take up the discussion of the simplifications brought about by noncommuta-
tivity; we shall see, for example, that all of the automorphisms Sp are outer conjugate.

6.γ Approximately inner automorphisms. Let M be a von Neumann algebra
and let M∗ be its predual. The action of AutM on M∗, equipped with the norm
topology, is equicontinuous; it follows that the topology of pointwise convergence in
norm in M∗ makes AutM a topological group.

In what follows, when I speak of AutM as a topological group, I shall always be referring
to this topology. To convince oneself that this is the right structure on AutM , it suffices
to observe that if M∗ is separable, then the topological group AutM is Polish.

In general, the group InnM ⊂ AutM is not closed; for example, for the hyperfinite
factor R, Inn R = AutR. More precisely, assuming M finite, in order that InnM be
closed in AutM it is necessary and sufficient that M not satisfy the property Γ of
Section 1 ([88], [491]).

When M is a factor of type II1, the approximately inner automorphisms of M are
characterized by the following equivalence:

Theorem 9. [90] Let N be a factor of type II1 with separable predual , acting on
the Hilbert space H = L2(N, τ), where τ denotes the normalized trace of N . For an
automorphism θ ∈ AutN , the following conditions are equivalent :

a) θ ∈ InnN , i.e., θ is approximately inner ;

b) ‖∑n
i=1 θ(ai)bi‖ = ‖∑n

i=1 aibi‖ for a1, . . . , an ∈ N and b1, . . . , bn ∈ N ′ (the
commutant of N).

Condition b) shows that there then exists an automorphism α of the C∗-algebra
C∗(N,N ′) generated by N and N ′, such that α(a) = θ(a) (∀a ∈ N) and α(b) = b
(∀b ∈ N ′).

Corollary 10. Let (Ni)i=1,2 be factors of type II1 with separable predual , and let
(θi)i=1,2 be automorphisms of the Ni. Then

θ1 ⊗ θ2 approximately inner ⇔ θ1 and θ2 approximately inner.
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6.δ Centrally trivial automorphisms. Let N be a factor of type II1 with sep-
arable predual, τ its normalized trace, and θ an approximately inner automorphism
of N , θ ∈ InnN . Then there exists a sequence (uk)k∈N of unitaries of N such that, for
every x ∈ N ,

θ(x) = Limk→∞ukxu∗k
for the topology of L2(N, τ): ‖x− y‖2 = (τ(|x− y|2))1/2.

This property is translated into an equality

θ(x) = uxu∗ ∀x ∈ N

by introducing a von Neumann algebra containing N in the following way:

Definition 11. For every ultrafilter ω ∈ βN\N let Nω be the ultraproduct, Nω =
the von Neumann algebra `∞(N, N) divided by the ideal of sequences (xn)n∈N such that
Limn→ω‖xn‖2 = 0.

One proves that this ultraproduct is a finite von Neumann algebra ([184], [569])
even though, in general, the above-mentioned ideal is not σ(`∞, `∞∗ )-closed. Moreover,
N may be canonically embedded in the ultraproduct Nω by associating to x ∈ N the
constant sequence (x)n∈N. The sequence of unitaries (uk)k∈N defines a unitary u ∈ Nω

and, of course, θ(x) = uxu∗ for all x ∈ N . This equality determines u uniquely, modulo
the unitary group of a von Neumann subalgebra of Nω that plays a crucial role in the
sequel:

Definition 12. Let N and ω be as above; the asymptotic centralizer of N for ω is
defined to be the commutant Nω of N in Nω:

Nω = {y ∈ Nω; yx = xy ∀x ∈ N}.

The construction of Nω (resp. Nω) is functorial, so that every automorphism θ of N
defines an automorphism θω (resp. θω) of Nω (resp. Nω). As above, let θ ∈ InnN and
u ∈ Nω unitary be such that

θ(x) = uxu∗ ∀x ∈ N.

The question that arises is then the following: Can u be chosen so that θω(u) = u?
One can multiply u by a unitary v of Nω without changing the equality θ(x) = uxu∗

(x ∈ N). Thus, setting w = u∗θω(u), the problem is to find v ∈ Nω with v∗θω(v) = w.
By construction, w is a unitary of Nω. Thus, the problem is to characterize the unitaries
of Nω of the form v∗θω(v), v ∈ Nω. Rokhlin’s theorem for noncommutative ergodic
theory yields a complete answer to this problem in the following form.

1) The partition of unity of the center of Nω associated with the automorphism
θω of Nω is formed by a single ej = 1, and θk

ω is outer for k < j and is equal
to 1 for k = j.
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2) For a unitary w ∈ Nω to be of the form v∗θω(v), v ∈ Nω, it is necessary and
sufficient that wθω(w) · · · θj−1

ω (w) = 1.

Moreover, the integer j depends only on θ and not on the choice of ω ∈ βN\N. It is
denoted by pa(θ) and called the asymptotic period of θ. This is the period of θ modulo
the normal subgroup Ct N of AutN consisting of the automorphisms of N that are
centrally trivial in the following sense:

θ ∈ Ct N if and only if θω = 1 for some ω ∈ βN\N, or equivalently for every
ω ∈ βN\N.

Given this definition, let us return to the above problem. The problem now is to know
whether wθω(w) · · · θj−1

ω (w) = 1 when j = pa(θ) and w = u∗θω(u). This reduces to
asking whether (θω)j(u) = u. Now, the period of θω is the same as that of θ, and the
problem is to compare it with pa(θ); one has

θpa = 1, θ ∈ InnN ⇒ ∃ unitaries (un)n∈N of N such that

θ(un)− un → 0 as n →∞, θ(x) = Limn→∞unxu∗n (∀x ∈ N).

In particular, if pa = 0 then the condition is satisfied. This is the main motivation for
trying to determine the group CtN in general. The following theorem may be deduced
from [?].

Theorem 13. Let N be a factor of type II1 with separable predual , acting on H =
L2(N, τ), and let θ ∈ AutN , U the unitary on L2(N, τ) associated with θ (the construc-
tion of L2 is functorial). Let p = pa(θ) be the asymptotic period of θ and let λ ∈ C,
|λ| = 1.

Then, in order that λp = 1, it is necessary and sufficient that there exist an automor-
phism αλ of the C∗-algebra generated by N, N ′ and U , such that

αλ(U) = λU, αλ(A) = A ∀A ∈ C∗(N, N ′).

The above theorem shows that θ1⊗θ2 ∈ Ct(N1⊗N2) if and only if θ1 and θ2 are centrally
trivial. Another interesting characterization of Ct N , for N a factor of type II1 such
that ε(InnN) is noncommutative, where ε is the quotient mapping AutN → OutN , is
as follows ([?]):

ε(Ct N) is the commutant of ε(InnN) in OutN.

It suffices to know ε(Ct N) in order to know Ct N , since InnN ⊂ Ct N always.

If N is the hyperfinite factor R, then Ct R = InnR.
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6.ε The obstruction γ(θ). Let M be a factor and let θ ∈ AutM . Let p0(θ) ∈ N
be the period of θ modulo inner automorphisms:

θj ∈ InnM ⇔ j ∈ p0Z.

This is an invariant of θ under outer conjugation. Suppose p0 6= 0 and let us try to find
a θ′ outer conjugate to θ such that θ′p0 = 1. We have a homomorphism of Z/p0Z into
OutM and the problem is to lift it into AutM . Since the center of the unitary group
U of M is equal to the torus T = {z ∈ C; |z| = 1}, the obstruction associated with
this problem is an element of H3(Z/p0Z,T), where the action of Z/p0Z on T is trivial.
This obstruction γ(θ) is in fact the p0th root of 1 in C characterized by the equality

u ∈ U , θp0(x) = uxu∗ (∀x ∈ M) ⇒ θ(u) = γu.

The important point is then the existence of automorphisms θ, of factors like the
hyperfinite factor, whose obstruction γ(θ) is 6= 1. One can easily convince oneself of
this existence by the following example. Let us start with (X,B, µ, (Ft)t∈R), where
(X,B, µ) is a standard Borel probability space and (Ft)t∈R is a (Borel) one-parameter
group of Borel transformations preserving the measure µ. Assume that each Ft, t 6= 0,
is ergodic (for example one could take a Bernoulli flow [496]). Then the crossed product
R of L∞(X,B, µ) by the automorphism associated with F1 is the hyperfinite factor.
The von Neumann algebra L∞(X,B, µ) is contained in R and the unitary U ∈ R
corresponding to F1 satisfies:

1) UfU∗ = f ◦ F1 ∀f ∈ L∞(X,B, µ).

2) L∞(X,B, µ) and U generate R.

Since Ft, t ∈ R, commutes with F1, it defines an automorphism θt of R such that

θt(U) = U and θt(f) = f ◦ Ft

(
f ∈ L∞(X,B, µ)

)
.

Moreover, for each complex number λ of absolute value 1, let σλ be the automorphism
of R such that

σλ(f) = f ∀f ∈ L∞(X,B, µ), and σλ(U) = λU.

By construction, θ and σ commute with each other and θ1(x) = UxU∗ (∀x ∈ R). Set
α = θ1/pσγ, where p ∈ N. Then αp = θ1σγp , so that if γp = 1 then αp(x) = UxU∗

(∀x ∈ R) and α(U) = γU . It follows that p0(α) = p and γ(α) = γ.

A striking feature of this invariant γ(θ) is that it is a complex number γ 6= γ in
general. In particular, if one lets θ act not on M but on M c, the complex conjugate
factor, obtained by replacing λx (λ ∈ C, x ∈ M) by λx, one gets γ(θc) = γ(θ). In
fact, this is the first invariant that is sensitive to the Galois automorphism z 7→ z of
C over R. This allowed me to construct a factor of type III or of type II1 ([87]) not
anti-isomorphic to itself (see Section 1; the algebra M c is always isomorphic to Mo via
the mapping x 7→ x∗).
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6.ζ The list of automorphisms of R up to outer conjugacy. For the hy-
perfinite factor R, InnR = AutR and Ct R = InnR. In particular, pa(θ) = p0(θ)
(∀θ ∈ AutR). We thus have at our disposal two invariants of outer conjugacy, the in-
teger p0(θ) and the p0th root of 1, γ(θ), equal to 1 if p0(θ) = 0. On the other hand, we
have observed the existence of an automorphism of R having a pair (p0, γ) of invariants
given a priori .

Theorem 14. [91] Let θ1 and θ2 be two automorphisms of R. Then θ1 and θ2 are
outer conjugate if and only if

p0(θ1) = p0(θ2), γ(θ1) = γ(θ2).

For p0 = p 6= 0 and γ ∈ C, γp = 1, there in fact exists an automorphism sγ
p of R,

unique up to conjugacy, having as invariants p0(s
γ
p) = p and γ(sγ

p) = γ, and whose
period is the smallest possible compatible with these conditions, that is, equal to p×
(order of γ). In particular, all the outer symmetries θ ∈ AutR of R, θ2 = 1, θ /∈ InnR,
are pairwise conjugate. The simplest realization of the symmetry s1

2 consists in taking
the automorphism of R ⊗ R that transforms x ⊗ y into y ⊗ x for all x, y ∈ R. For
p0 = 0, there exists, up to outer conjugacy, a unique aperiodic automorphism θ ∈ AutR
(i.e. with p0(θ) = 0). In particular, all the Bernoulli shifts Sp, although pairwise
distinguished up to conjugacy by the entropy, are outer conjugate.

Corollary 15. The group OutR is a simple group with a denumerable number of
conjugacy classes .

In fact, a result more general than the above theorem shows exactly the role played
by the equalities InnR = AutR and Ct R = InnR. One first shows, for every factor M
with separable predual M∗, the following equivalence:

InnM/InnM is nonabelian ⇔ M is isomorphic to M ⊗R.

In this case, let θ ∈ InnM . In order that θ be outer conjugate to the automorphism
1 ⊗ sγ

p of M ⊗ R for suitable p and γ, it is necessary and sufficient that p0(θ) =

pa(θ). Moreover, for θ ∈ AutM to be outer conjugate to θ ⊗ s1
q ∈ Aut(M ⊗ R), it

is necessary and sufficient that q divide the asymptotic period pa(θ). In particular,
every automorphism θ of M is outer conjugate to θ⊗ 1. These results demonstrate the
interest of the invariant

χ(M) =
(
Inn M ∩ Ct M

)
/Inn M,

which made it possible ([87]) to show the existence of a factor of type II1 not anti-
isomorphic to itself.

Among other developments on the subject, I mention the following. Jones [308] has
completely classified (up to conjugacy) the actions of arbitrary finite groups on the
factor R, by introducing invariants of a cohomological nature generalizing γ(θ) (more
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elaborate in the general case than in the cyclic case). Next, A. Ocneanu [423] succeeded
in classifying the outer actions of amenable discrete groups, up to outer conjugacy, by
using the techniques of tilings (of amenable groups) introduced by D. Ornstein and
B. Weiss [427]. A counterexample due to V. Jones shows that one cannot hope to
classify the actions of nonamenable groups. Finally, V. Jones and T. Giordano [229]
on the one hand, and E. Størmer [535] on the other, have shown that R possesses, up
to conjugacy, just one involutive anti-automorphism.

Let us now apply the above results to the Araki–Woods factor of type II∞.

6.η Automorphisms of the Araki–Woods factor R0,1 of type II∞. The tensor
product R0,1 of the hyperfinite factor R by a factor of type I∞ is the unique Araki–
Woods factor of type II∞ ([Ar-W]). Recall that, for every automorphism θ of a factor
N of type II∞, one writes mod θ for the unique λ ∈ R∗+ such that τ ◦ θ = λτ for every
trace τ on N . For N = R0,1,

InnR0,1 = Kernel of mod = {θ; Modθ = 1}.
Moreover, Ct R0,1 = InnR0,1. From this, one deduces:

Theorem 16. [91]

a) Let θ1 and θ2 be two automorphisms of R0,1. In order that θ1 be outer conjugate
to θ2, it is necessary and sufficient that

mod θ1 = mod θ2, p0(θ1) = p0(θ2), γ(θ1) = γ(θ2).

b) The following are the only relations between mod, p0 and γ:

mod θ 6= 1 ⇒ p0 = 0, γ = 1;

p0 = 0 ⇒ γ = 1.

Whereas the case mod θ = 1 reduces to the case treated above, for every λ 6= 1 it
follows from [141] and part a) of the above theorem that all of the automorphisms
θ ∈ AutR0,1 with mod θ = λ are conjugate (not just outer conjugate). This is a
remarkable phenomenon; in effect, for λ an integer , one can describe the nature of θ
precisely as a shift on an infinite tensor product of λ× λ matrix algebras. Thus, when
mod θ = λ, there exists a λ× λ matrix algebra K in R0,1 such that:

1) the θj(K) commute pairwise;

2) the θj(K) generate the von Neumann algebra R0,1, and this property remains
true whenever θ is multiplied by an automorphism of modulus 1.
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To summarize, we have arrived at the answer to Problem 2 of the section on factors of
type IIIλ, and we may conclude that for each λ ∈ ]0, 1[ there is one and only one factor
of type IIIλ whose associated factor of type II∞ is R0,1. One verifies directly that, for
the Powers factor Rλ, the associated factor of type II∞ is R0,1. This shows the interest
of the following subproblem of Problem 1) of the section on the IIIλ’s: characterize the
factor R0,1 among the factors of type II∞. One makes the following definition:

Definition 17. A von Neumann algebra M with separable predual is said to be hyper-
finite if it is generated by an increasing sequence of finite-dimensional subalgebras.

(Equivalently ([196]) one can require that every finite subset of M be approximable
by a finite-dimensional subalgebra.)

It is immediate that R0,1, and more generally every Araki–Woods, or even every Krieger
factor, is hyperfinite. The above problem can then be reformulated in the following
way:

Question 18. Is R0,1 the only hyperfinite factor of type II∞?

This problem amounts to knowing whether the commutant of a factor with this ap-
proximation property also has it. Around 1967, V. Ya. Golodets offered a proof of this;
unfortunately, it contained an irreparable error. However, in another article, the same
author used his result to infer that a crossed product by an abelian group does not
affect the above approximation property. Although based on an unproven hypothesis,
his arguments [234] nevertheless show that if a factor M of type IIIλ is hyperfinite,
then so is the associated factor of type II∞. This reinforced considerably the interest
of the above question, which will be answered in Section V.9.

To conclude this section, let us note that if the factor N of type II∞ is no longer
assumed to be isomorphic to R0,1, for λ ∈ ]0, 1[ there is, in general, an infinite number
of conjugacy classes in OutN of automorphisms θ of modulus λ ([88], [444]). To each
of these classes there will correspond a factor of type IIIλ, and the corresponding factors
will be pairwise nonisomorphic.

7. Amenable von Neumann Algebras

In this Section I shall review the properties having to do with the approximation of a
von Neumann algebra M by finite-dimensional algebras. I shall show that in fact they
all define the same class of von Neumann algebras.
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7.α Approximation by finite-dimensional algebras. By definition, a von Neu-
mann algebra M is hyperfinite if it is generated by an increasing sequence of finite-
dimensional subalgebras. An important reason for the interest in this class is the
following result, due to O. Maréchal and based on the proof of Glimm’s theorem.

Theorem 1. [388] Let A be a non-postliminal separable C∗-algebra. Then, for every
hyperfinite von Neumann algebra M having no nonzero finite trace, there exists a state
ϕ ∈ A∗ such that the von Neumann algebra generated by πϕ(A) (Section 2) is isomorphic
to M .

Thus, a noncommutative integration theory that does not restrict itself to postliminal
C∗-algebras, that is, to von Neumann algebras of type I, necessarily involves all the
hyperfinite von Neumann algebras. Conversely, for the C∗-algebra A that is the infinite
tensor product of 2 × 2 matrix algebras, it is immediate that all the von Neumann
algebras generated by A are hyperfinite.

7.β The properties P of Schwartz, E of Hakeda and Tomiyama, and
injectivity. Until 1963, only two examples of nonisomorphic factors of type II were
known (of course with separable predual). Specifically, the property Γ distinguished the
hyperfinite factor R from the factor Z generated by the regular representation of the
free group on two generators. In 1963, J. T. Schwartz introduced a property enabling
him to distinguish R from Z ⊗R, both of which have property Γ. This property P of
R is based on the amenability of a locally finite group. In fact, Schwartz showed that
the following conditions on a discrete group Γ are equivalent:

1) Γ is amenable, i.e. there exists a state Φ on `∞(Γ) invariant under translations.

2) M = R(Γ) acting on H = `2(Γ) has the following property P : For every
T ∈ L(H), there exists an element of M in the σ(L(H),L(H)∗)-closed convex
hull of the uTu∗, u unitary in M ′.

Moreover, for every von Neumann algebra M on H satisfying 2), he constructed a
linear projection P of norm 1 from L(H) onto M , satisfying P (aTb) = aP (T )b for all
a, b ∈ M , T ∈ L(H).

It is straightforward to verify that every hyperfinite von Neumann algebra satisfies
Schwartz’s property P . A remarkable result of J. Tomiyama shows that, for every pro-
jection P of norm 1 of a von Neumann algebra N onto a von Neumann subalgebra M ,
the following condition holds automatically [561]:

P (aTb) = aP (T )b ∀a, b ∈ M, T ∈ N.

In [262], Hakeda and Tomiyama defined a property weaker in appearance than Schwartz’s
property P :
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Definition 2. A von Neumann algebra M on a Hilbert space H is said to have prop-
erty E if there exists a projection of norm 1 from the Banach space L(H) onto the
Banach space M ⊂ L(H).

Of course P ⇒ E; also, the above-mentioned theorem of Tomiyama shows that E plays
the same role as P in characterizing the amenability of discrete groups Γ by means of
a property of R(Γ). Moreover, the property E does not depend on the Hilbert space H
on which M acts, and, by a theorem of W. Arveson [15], it characterizes the injective
objects in the category (von Neumann algebras, completely positive mappings). For
this reason, the von Neumann algebras satisfying property E are also called injective.

Property E is not descriptive: it says, a priori, very little about the von Neumann
algebra M , but it does have remarkable stability properties:

1) If M is an injective von Neumann algebra acting on a Hilbert space H, then
the commutant M ′ of M is injective.

2) If (Mα)α∈I is a decreasing directed family of injective von Neumann algebras,
then

⋂
α∈I Mα is injective.

3) If (Mα)α∈I is an increasing directed family of injective von Neumann algebras,
then the closure of

⋃
α∈I Mα is also injective.

4) Let M be a von Neumann algebra with separable predual and let M =∫
X

M(t)dµ(t) be a disintegration of M into factors M(t); then M is injec-
tive ⇔ M(t) is injective for almost all t ∈ X.

5) Let M be a von Neumann algebra, N a von Neumann subalgebra, and G a
subgroup of the normalizer of N in M . Suppose that N and G generate M ,
N is injective and G is amenable as a discrete group; then M is injective.

6) Let M be an injective von Neumann algebra and Γ an amenable discrete group
acting on M by automorphisms; then

N = MΓ = {x ∈ M ; gx = x ∀g ∈ Γ}
is injective.

Properties 2 and 3 show that if H is a separable Hilbert space, then the monotone class
generated by the von Neumann algebras of type I contains only injective von Neumann
algebras. Property 4, essentially, reduces the problem of classifying these algebras to
the case of injective factors. Property 5 shows that every amenable group of unitaries
generates an injective von Neumann algebra. Finally, it is easy to see from Property 6
that, for a factor M of type IIIλ, λ ∈ ]0, 1[, to be injective, it is necessary and sufficient
that the associated factor of type II∞ be injective.

Among the most important injective von Neumann algebras, we cite:

a) The crossed product of an abelian von Neumann algebra by an amenable
locally compact group.
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b) The commutant von Neumann algebra of any continuous unitary representa-
tion of a connected locally compact group.

c) The von Neumann algebra generated by any representation of a nuclear C∗-
algebra (see below for the definition).

7.γ Semidiscrete von Neumann algebras. Let M be a factor of type I on a
Hilbert space H. It gives a decomposition of H as a tensor product H = H1⊗H2 in such
a way that M = L(H1)⊗ 1 and M ′ = 1⊗L(H2). One then recovers L(H) as the tensor
product of M and M ′. In one of Murray and von Neumann’s first articles, they showed
that for every factor M on H, the homomorphism η of the algebraic tensor product

M ¯M ′ =
{ n∑

i=1

ai ⊗ bi; ai ∈ M, bi ∈ M ′
}

into L(H), defined by

η(
n∑

i=1

ai ⊗ bi) =
n∑

i=1

aibi ∈ L(H),

is injective and has σ(L(H),L(H)∗)-dense range.

In [192], E. Effros and C. Lance succeeded in pushing the analysis much further by
studying η from a metric point of view. Let A (resp. B) be a unital C∗-algebra acting
on a Hilbert space HA (resp. HB). Consider the norm on the algebraic tensor product
A¯B that arises from its action on HA⊗HB. This norm on A¯B makes the completion
a C∗-algebra, is independent of the choice of the (faithful) representations of A on HA

and B on HB, and is characterized by a highly useful theorem of M. Takesaki as the
smallest norm on A¯B for which the completion is a C∗-algebra. It is denoted ‖ ‖min,
and one writes A ⊗min B for the completion C∗-algebra ([548]). The C∗-algebra A is
said to be nuclear if ‖ ‖min is the only pre-C∗ norm on A¯B, for every B.

Effros and Lance succeeded in characterizing the factors M for which the above map-
ping η is isometric, by means of a property that is a strengthening of the metric
approximation property for the predual M∗ of M . The predual M∗ is not only an or-
dered space (for the cone M+

∗ ) but is matricially ordered , in the sense that the tensor
product vector space M∗⊗Mn(C) is ordered for every n, as the predual of M⊗Mn(C).
A completely positive mapping T of M∗ into M∗ is by definition a linear mapping such
that T ⊗ 1Mn is positive for every n. The result of Effros and Lance [192] is then as
follows:

Theorem 3. Let M be a factor operating on a Hilbert space H. In order that η :
M⊗minM ′ → L(H) be isometric, it is necessary and sufficient that the identity mapping
on M∗ be the pointwise limit in norm of completely positive mappings of finite rank .
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One then defines a semi-discrete von Neumann algebra by the above approximation
property of its predual M∗. We note that when the factor M is such that neither M
nor M ′ is of type I∞ or II∞, and H is separable, a corollary of Takesaki’s theorem on
the min-norm enables one to prove:

Corollary 4. A factor M acting on a separable Hilbert space H, such that neither M
nor M ′ is of type I∞ or II∞, is semi-discrete if and only if the C∗-algebra C∗(M,M ′)
on H generated by M and M ′ is simple (i.e., has no nontrivial two-sided ideal).

This corollary is very important when it is combined with the following characterization
of the type II1 factors that do not have the property Γ:

Theorem 5. [90] Let M be a factor of type II1 with separable predual , acting on
L2(M, τ) = H, and let C∗(M,M ′) be the C∗-algebra generated by M and M ′. Then:

M does not have property Γ ⇔ C∗(M, M ′) contains the ideal

k(H) of compact operators .

An example of a type II1 factor for which C∗(M, M ′) contains the ideal k(H) was given
by C. Akemann and P. Ostrand in [5]. Thus, combined with the corollary, the theorem
shows that every semi-discrete factor of type II1 has the property Γ. In fact, Effros
and Lance proved in their paper [192] that every Araki–Woods factor is semi-discrete.
They also proved the implication

semi-discrete ⇒ injective.

The relations between the various properties pertaining to approximation by finite-
dimensional algebras can be summarized in the form of a diagram:

hyperfinite
‖⇓

Schwartz’s property P
‖⇓

Hakeda–Tomiyama property E ⇐= semi-discrete
= injectivity

Happily, the situation is in fact remarkably simple:

Theorem 6. [90] Let H be a separable Hilbert space. For a von Neumann algebra
acting on H, the above four properties are equivalent .

I defer to Section 9 the description of the corollaries of this theorem relative to the
classification problem. Let us begin with a problem of terminology: we surely have at
our disposal the right class of von Neumann algebras for the noncommutative theory
of integration. Indeed, by O. Maréchal’s theorem, this theory should cover at least the
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hyperfinite case, and, by the results of Effros and Lance, the case of “property E” suf-
fices to account for all the von Neumann algebras associated with nuclear C∗-algebras.
In [90], the term “injective von Neumann algebras” was adopted to denote the above
class. Among the advantages of this choice there is above all the simplicity of the de-
finition by means of the property E. However, this terminology has the disadvantage
that it is suggestive neither of the fact that it is concerned with an approximation
property, nor of the analogy with the amenability of discrete groups. The solution
therefore seems to be to choose the term “amenable von Neumann algebra”, which is
fortunately justified by the equivalence between the above four properties, and a fifth:

Definition 7. A von Neumann algebra M is said to be amenable if, for every normal
dual Banach bimodule X over M , the derivations of M with coefficients in X are all
inner.

I refer the reader to the papers of Johnson, Kadison and Ringrose, who established the
foundations of the cohomology of von Neumann algebras with coefficients in Banach
bimodules ([301], [302], [303]).

Having accepted the term amenable to denote our class of von Neumann algebras, we
then have the following corollary, an easy consequence of [192] and [90]:

Corollary 8. Let A be a separable C∗-algebra. Then A is nuclear if and only if for
every state ϕ on A the von Neumann algebra πϕ(A)′′ generated by πϕ(A) is amenable.

In [301], B. Johnson introduced the concept of amenable C∗-algebra by the analogue of
Definition 7 with the qualifier normal omitted. U. Haagerup, by virtue of his remark-
able proof of Grothendieck’s inequality for arbitrary C∗-algebras (which completes the
work of Grothendieck and Pisier), succeeded in showing that a C∗-algebra is amenable
if and only if it is nuclear ([93], [253], [254]).

8. The Flow of Weights: Mod(M)

In this section we shall describe in detail the main invariant of type III factors, the flow
of weights. This invariant was discovered for the first time in my thesis ([89]) and led
to the solution ([89]) of the problem of existence of hyperfinite factors not isomorphic
to infinite tensor products of type I factors. The invariant is an easy consequence of the
uniqueness of the discrete decomposition of factors of type III0 (Subsection α) below).
For its final form see [550] and [141].
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8.α The discrete decomposition of factors of type III0. We have seen above
(Section 5 Theorem 4) that any factor M of type IIIλ can be uniquely decomposed as the
crossed product M = NoθZ of a factor N of type II∞ by an automorphism θ ∈ AutN ,
Mod(θ) = λ. We shall now describe an analogous decomposition for arbitrary factors
of type III0 ([89]). There are two nuances with the IIIλ case. The first is that N will no
longer be a factor but a semifinite type II∞ von Neumann algebra. The second is that
in order to state the uniqueness part of the decomposition we need to introduce the
ergodic theoretic notion of induced automorphism θe, where θ ∈ AutN and e ∈ Z(N)
is an idempotent in the center of N .

Proposition 1. Let Z be a commutative von Neumann algebra with no minimal
projection, and θ ∈ AutZ be an ergodic automorphism. Then for any nonzero projection
e ∈ Z there exists a unique sequence of projections en ∈ Z such that

e =
∞∑

n=1

en , θn(en) ≤ e , eθk(en) = 0 for k = 1, . . . , n− 1.

Moreover, one has e =
∑∞

n=1 θn(en).

We refer, for instance, to [536] for the simple proof. For brevity a commutative von
Neumann algebra is called diffuse if it does not contain any nonzero minimal projection.

Definition 2. Let N be a von Neumann algebra with diffuse center Z(N) and θ ∈
AutN be ergodic on the center of N . Then for any projection e ∈ Z(N) we let θe be
the automorphism of the reduced von Neumann algebra Ne determined by

θe(x) =
∑∞

n=1 θn(xen) ∀x ∈ Ne

where (en) is the sequence of projections en ∈ Z(N) of Proposition 1.

We say that θe is the automorphism induced by θ on Ne. Next let (N, τ) be a von
Neumann algebra with semifinite faithful normal trace τ . We shall say that an auto-
morphism θ ∈ AutN is a contraction if there exists λ < 1 such that

(5.3) τ ◦ θ ≤ λ τ.

We can now state the existence and uniqueness of the discrete decomposition of arbi-
trary factors of type III0.

Theorem 3. [89] Let M be a factor of type III0.

1) There exist a type II∞ von Neumann algebra N and a contraction θ ∈ AutN
such that the following isomorphism holds:

M = Noθ Z
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2) Let (Nj, θj) be as in 1) with Njoθj
Z isomorphic to M ; then there exist nonzero

projections ej ∈ Z(Nj) such that the induced automorphisms θj,ej
of Nej

are
conjugate.

This theorem has, due to the discreteness of the group Z involved in the crossed
product, the same analytical power as the structure Theorem 5.4 for factors of type
IIIλ.

The uniqueness statement 2) was originally formulated in terms of outer conjugacy in
[89] but improved to conjugacy in [141].

8.β Continuous decomposition of type III factors. The above Theorem 3,
together with Section V.4, leaves untouched the understanding of the structure of
factors of type III1. This structure was elucidated by M. Takesaki [550] as a corollary
of the following general continuous decomposition of type III von Neumann algebras.

Theorem 4. [550] Let M be a type III von Neumann algebra.

1) There exists a type II∞ von Neumann algebra N with semifinite normal trace
τ and a one-parameter group of automorphisms (θλ)λ∈R∗+, so that θλ ∈ AutN
with τ ◦ θλ = λτ ∀λ ∈ R∗+, such that the following isomorphism holds:

M = Noθ R∗+.

2) The above decomposition is unique up to conjugacy.

The uniqueness part was originally formulated in terms of outer conjugacy, but im-
proved to conjugacy in [141]. The great virtue of this theorem is its generality and the
simplicity of its proof, which is a direct corollary of the biduality theorem for crossed
products (Theorem 4 of Appendix A) and of the Radon-Nikodým Theorem 5.1. The
von Neumann algebra N is the crossed product

(5.4) N = Moσϕ
t
R

of M by an arbitrary modular automorphism group σϕ and by Theorem 5.1 is inde-
pendent of the choice of ϕ. The action on N of the Pontryagin dual group R∗+ of R
yields the one-parameter group (θλ)λ∈R∗+ of automorphisms of N .

Definition 5. The flow of weights W (M) is the restriction of the action of (θλ)λ∈R∗+
to the center Z = Z(N).

Stated like this, it is not clear that the flow of weights is defined functorially. We shall
give below in Subsection γ) a functorial definition which will justify the name as well.
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The invariants S(M) and T (M) of a factor are easy to reformulate in terms of the flow
of weights; one has

(5.5) S(M) ∩ R∗+ = {λ ∈ R∗+ ; θλ = id}

(5.6) T (M) = {T ∈ R ; ∃u ∈ Z , u 6= 0 , θλ(u) = λiT u ∀λ ∈ R∗+}.
It is also straightforward that

(5.7) M is a factor ⇐⇒θλ is ergodic on Z.

Thus, one gets, in particular, the following analogue of Theorem 5.4 for factors of type
III1.

Corollary 6. [550] Let M be a factor of type III1.

1) There exists a factor N of type II∞, and a one-parameter group of automor-
phisms θλ ∈ AutN with Modθλ = λ ∀λ ∈ R∗+, such that M = NoθR∗+.

2) The above decomposition is unique up to conjugacy.

With more work one can also derive Theorem 5.4 and Theorem 3 above from the
general Theorem 4.

8.γ Functorial definition of the flow of weights. Let M be a von Neumann
algebra and ϕ a semifinite normal weight on M . The support e = s(ϕ) is the unique
projection e ∈ M such that: α) ϕ|Me is faithful; β) ϕ(x) = ϕ(exe) ∀x ∈ M+.

Definition 7. Two semifinite normal weights ϕ and ψ are equivalent if there exists a
partial isometry u, with u∗u = s(ϕ) and uu∗ = s(ψ) such that

ψ(x) = ϕ(u∗xu) ∀x ∈ M+.

For type III factors the equivalence of projections yields trivial results, and the equiv-
alence of weights is the correct substitute. We shall say that a weight ϕ on a properly
infinite von Neumann algebra M is of infinite multiplicity if ϕ is equivalent to the ten-
sor product ϕ ⊗Tr of the weight ϕ by the canonical semifinite faithful normal trace on
the type I∞ factor. There is a slight ambiguity in the definition since one has to give
an isomorphism M∼M⊗F where F is the type I∞ factor, but since AutF = InnF one
can just use any isomorphism F∼F⊗F .

We can now state the analogue of the comparison of projections of Murray and von
Neumann.

Theorem 8. [141] Let M be a properly infinite von Neumann algebra, for instance, a
type III factor.
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a) Let Σ be the set of equivalence classes of semifinite normal weights of infinite
multiplicity endowed with the operation

(Class ϕ) ∨ (Class ψ) = Class(ϕ⊕ψ)

where ϕ⊕ψ = ϕ+ψ if s(ϕ) s(ψ) = 0. Then Σ is the Boolean algebra of σ-finite
projections in a unique commutative von Neumann algebra Z.

b) The action of R∗+ by multiplication

λ(Class ϕ) = Class(λϕ) ∀λ ∈ R∗+
determines a one-parameter group of automorphisms of Z whose continuous
part is canonically isomorphic to the flow of weights of Definition 5.

To understand the theorem one has to remember that a commutative von Neumann
algebra Z is uniquely determined by the Boolean algebra σ(Z) of projections e ∈ Z
with the operation:

e, f 7→ e ∨ f = e + f − ef.

In 1) one obtains a very large commutative von Neumann algebra Z whose σ-finite
projections e ∈ Z exactly classify the semifinite normal weights of infinite multiplicity
on M . For each λ ∈ R∗+ the formula 2) defines an automorphism θλ of Z. The
continuous part of this action of R∗+ on Z is given by the following von Neumann
subalgebra:

(5.8) W = {x ∈ Z ; λ 7→ θλ(x) is strongly continuous}.
One has, moreover, a very simple characterization of exactly those ϕ for which (Class ϕ) ∈
W .

Proposition 9. [141] Let ϕ be a semifinite normal weight of infinite multiplicity.
Then Class ϕ ∈ W iff the modular automorphism group σϕ

t of ϕ is integrable, i.e. iff
{x ∈ M ;

∫∞
−∞ σϕ

t (x∗x)dt ∈ M} is weakly dense in M .

There exists moreover a largest integrable weight, the dominant weight, unique up to
equivalence, which was already used in my thesis [89] in the proof of the converse of
the Radon-Nikodým theorem. In the type III1 case this weight plays the same role as
the generalized trace of Section 5. It is characterized, among semifinite normal weights
of infinite multiplicity, by the invariance ϕ ∼ λϕ ∀λ ∈ R∗+.

The construction of the flow of weights given in Theorem 8 is obviously functorial. An
idempotent e ∈ W is just an equivalence class of weights, and the action of R∗+ is just
multiplication of ϕ by λ ∈ R∗+.

This allows one, in particular, to extend to the type III case the definition of the module
Mod(α) of automorphisms α ∈ Aut(M).
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Definition 10. Let M be a type III factor, then for α ∈ AutM the module Mod(α) is
the automorphism of the flow of weights determined by the equality

Mod(α) (Class ϕ) = Class(ϕ ◦ α−1).

This allows one to obtain the analogue in the type III case of the classification of
automorphisms of Section 6 ([141]) .

It also suggests the notation mod for the functor from von Neumann algebras to flows
given by Theorem 8 b).

8.δ Virtual groups and the flow of weights as modular spectrum. The
theory of induced representations of locally compact groups led G. Mackey ([381]) to a
natural generalization of the notion of closed subgroup which has great heuristic value
and was further developed by A. Ramsay [468] and R. Zimmer [597]. The nontransitive
imprimitivity systems suggest the following definition:

Definition 11. Let G be a locally compact abelian group. Then a virtual subgroup of
G is given by an ergodic action α of G on a commutative von Neumann algebra A.

Given an ordinary closed subgroup H of G one lets A = L∞(G/H) and α be the
action of G by left translations. The group H is then recovered as the isotropy group.
The virtue of this notion is that many concepts extend from the special case of closed
subgroups to arbitrary virtual subgroups.

For instance, if H1, H2 are two closed subgroups of G then the closure H = H1H2

of H1H2 is obtained as the isotropy group for the action α1⊗1 of G on the following
commutative von Neumann algebra:

(5.9) A = (A1⊗A2)
G = {z ∈ A1⊗A2 ; α1(g)⊗α2(g

−1)(z) = z ∀g ∈ G}
where Aj = L∞(G/Hj), on which G acts by left translations αj. Obviously the con-
struction (7) works for virtual subgroups as well, and the special case of closed sub-
groups gives its heuristic meaning.

Now the invariant S(M) for factors of type III is a closed subgroup of R∗+ (Section 5),
but there is no general formula for S(M1⊗M2) in terms of S(M1) and S(M2). Indeed,
one can construct factors of type III0 whose tensor product is of arbitrary type IIIλ.
This difficulty is completely removed if one uses the above idea of Mackey. Indeed, the
flow of weights Mod(M) of a type III factor is, by construction, an ergodic action of
R∗+ on a commutative von Neumann algebra and hence

(5.10) Mod(M) is a virtual subgroup of R∗+.

Moreover, the relation (3) between S(M) and Mod(M) shows that except in the III0
case, Mod(M) is an ordinary closed subgroup of R∗+ and is equal to S(M).



8. THE FLOW OF WEIGHTS: Mod(M) 511

Thanks to (7) we can define the closure of the product of two virtual subgroups and
one has

Theorem 12. [141] Let M1,M2 be two type III factors; then

Mod(M1⊗M2) = Mod(M1) Mod(M2).

In other words, the flow of weights of M1⊗M2 is obtained by formula (7) from the flow
of weights Mod(Mj).

Thus, unlike the invariant S, the invariant mod is compatible with tensor products.

As a further example of the suggestive power of the idea of virtual subgroups, let us
note that for general locally compact groups G with closed subgroup H one has:

H is of finite covolume in G⇐⇒

(5.11) the action of G on A = L∞(G/H) has a finite invariant measure.

(We mean, of course, in the measure class of the Haar measure.)

This suggests saying that a virtual subgroup has “finite covolume” when the corre-
sponding action has a finite invariant measure. This notion plays an important role in
R. Zimmer’s work ([598]).

In our context it allows us to restate the main result of Section III.6 as follows:

Let (V, F ) be a codimension 1-foliation with nonvanishing Godbillon-Vey class; then
the virtual subgroup Mod(M), M = W ∗(V, F ), is of finite covolume in R∗+.

As a final example let us mention the computation of the flow of weights Mod(M)
for factors associated to ergodic equivalence relations R with countable orbits (cf.
Section 4) on a measure space (X, µ). Let us, as in Section 4, endow R, the graph
of the equivalence relation, with the obvious groupoid law and with the measure µ̃
which plays the role of a left Haar measure on this groupoid. Let us then consider
the homomorphism δ : R→R∗+ given by the lack of right invariance of the left Haar
measure µ̃, i.e. by:

δ(x, y) =
dµ(y)

dµ(x)
∀(x, y) ∈ R.

This is well defined a.e. modulo µ.

The closure of the range δ(R) of this homomorphism is well defined as a virtual sub-
group of R∗+ (cf. [Ra]) and one has:

Proposition 13. [360] [495] Let R be an ergodic equivalence relation, M = L∞(R, µ̃)
be the associated factor (Definition 4.1). Then the flow of weights of M is given by

Mod(M) = δ(R).



9. THE CLASSIFICATION OF AMENABLE FACTORS 512

We have already seen this in a different guise when we described in Chapter I the flow
of weights, Mod(M), for the von Neumann algebra W (V, F ) of a foliation. The closure
of the range of a homomorphism δ from a measured groupoid R to an abelian locally
compact group G is defined in general from the action of G on the commutative von
Neumann algebra of functions f ∈ L∞(R×G) which are invariant under the action of
R on R×G given by

γ(γ′, h) = (γγ′, δ(γ)h).

9. The Classification of Amenable Factors

In this section we shall give the complete classification of amenable von Neumann
algebras. All von Neumann algebras here are assumed to have separable predual. By
the reduction theory, any amenable von Neumann algebra M can be written as a direct
integral, M =

∫
M(t) dµ(t), of amenable factors. We shall now give the complete list,

type by type, of amenable factors. (We ignore the trivial type I case.)

9.α Factors of type II1. As a corollary of Theorems 1.13 and 7.6 one has

Theorem 1. [90] Any amenable factor of type II1 is isomorphic to the Murray-von
Neumann hyperfinite factor R.

I refer to [90], [255] and [451] for simplifications of the original proof.

Now any von Neumann subalgebra M of R is automatically finite (it has a finite faithful
normal trace) and amenable (using the canonical normal conditional expectation E :
R→M given by the orthogonal projection on M⊂L2(R)). Thus, one gets:

Corollary 2. [90] Let M be a von Neumann subalgebra of R; then M is isomorphic to
a direct sum of tensor products of the form Mn(C)⊗Cn and R⊗C0, where the Cj are
commutative von Neumann algebras.

In particular, all subfactors of R are either finite dimensional or isomorphic to R.

It is straightforward that a discrete group Γ is amenable iff the von Neumann algebra
R(Γ) of the left regular representation of Γ is amenable. This is a necessary condition
for coherence of the terminology. One can then analyse R(Γ) as follows:

Corollary 3. [90] Let Γ be an amenable discrete group and R(Γ) the von Neumann
algebra generated by its left regular representation in `2(Γ). Then R(Γ) is a direct sum
of tensor products of the form Mn(C)⊗Cn and R⊗C0 where the Cj are commutative
von Neumann algebras.

When all nontrivial conjugacy classes of Γ are infinite one has R(Γ)∼R. As we shall
see in Appendix B the analogy between the notion of amenability for discrete groups
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and for type II1 factors goes quite far (cf. Theorem 21). We shall now describe the
analogue of the invariant means of discrete amenable groups.

Theorem 4. [90] Let N be a factor in a separable Hilbert space H. Then, unless N
is finite-dimensional,

N is isomorphic to R⇐⇒ there exists a state Φ on L(H) such that Φ(xT ) = Φ(Tx) ∀x ∈
N , T ∈ L(H).

Such a state cannot be normal. By definition a hypertrace is a state Φ on L(H)
satisfying the above condition. Even though such states are not normal they can be
obtained by nice formulas in some examples. For instance, if we let D be the analogue
of the Dirac operator on the noncommutative 2-torus T2

θ, θ /∈ Q (cf. Chapter VI.3.11)
and consider (H, D) as a K-cycle over the C∗-algebra Aθ, the following equality defines
a hypertrace Φω on the weak closure R = A′′

θ of Aθ in H:

(5.12) Φω(T ) = Trω(TD−2) ∀T ∈ L(H)

where Trω is the Dixmier trace for a given choice of ω (Chapter IV). One can also use
a result of G. Mokobodzki ([390]) to make Φω universally measurable and commuting
with integrals: Φω

(∫
Tαdµ(α)

)
=

∫
Φω(Tα) dµ(α).

In the case of discrete groups Γ, amenability is equivalent to a condition involving finite
subsets, the Følner condition:

∀g1, . . . , gn ∈ Γ , ∀ε > 0 , ∃ finite non-empty subset F of Γ such that

‖1F − gi 1F‖2 ≤ ε‖1F‖2 ∀i = 1, . . . , n

where 1F is the characteristic function of F and ‖ ‖2 is the norm in `2(Γ).
In a very similar way the existence of a hypertrace on a factor N in H is characterized
by the following condition:

∀x1, . . . , xn ∈ N , ∀ε > 0 , ∃ a finite dimensional projection P on H such that

(5.13) ‖xi P − P xi‖HS ≤ ε‖P‖HS

where ‖T‖HS = (Tr(T ∗T ))1/2 is the Hilbert-Schmidt norm of operators.

9.β Factors of type II∞. Any factor M of type II∞ is the tensor product N⊗F
of a factor of type II1 by the factor F of type I∞. Moreover, if M is amenable so is N ;
thus Theorem 1 implies:

Theorem 5. [90] There exists up to isomorphism only one amenable factor of type
II∞, namely R0,1 = R⊗F .

The notation R0,1 comes from the Araki-Woods notation for the only ITPFI of type
II∞. We thus obtain the answer to Question 6.18:
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Corollary 6. [90] Any hyperfinite factor of type II∞ is isomorphic to R0,1.

Note that the proof of this corollary is very indirect; hyperfiniteness is only used through
the apparently much weaker amenability which passes to the II1 factor N if M = N⊗F .
There is no direct proof of the hyperfiniteness of N .

We have already given, in Chapter I, examples of foliations (V, F ) such as the Kronecker
foliation, whose associated von Neumann algebra W (V, F ) is the hyperfinite factor of
type II∞.

As another large class of occurrences of this factor one has:

Corollary 7. [90] Let G be a connected separable locally compact group and let λ be
the left regular representation of G in L2(G). Then R(λG) is a direct integral of factors
which are either of type I or isomorphic to R0,1.

This result follows from Theorem 5 and a result of Dixmier and Pukanszky showing
that no factor of type III occurs in the decomposition of R(λG).

9.γ Factors of type IIIλ, λ ∈ ]0, 1[. Let M be a factor of type IIIλ, λ ∈ ]0, 1[,
and let M = NoθZ be the discrete decomposition of M (Theorem 5.4). Then if M
is amenable so is N , as one sees using the natural normal conditional expectation,
E(

∑
anU

n) = a0 ∈ N , from M to N . Thus, since N is a factor of type II∞, it is by
Theorem 5 isomorphic to R0,1 and θ ∈ Aut(R0,1) satisfies Mod(θ) = λ. By the results
of noncommutative ergodic theory (Theorem 6.16) one knows that θ is unique up to
outer conjugacy, which thus implies:

Theorem 8. [90] Let λ ∈ ]0, 1[. There exists up to isomorphism only one amenable
factor of type IIIλ, the Powers factor Rλ.

We refer to Section 4 for the description of Rλ as an ITPFI. As above the analogue
of Theorem 8 holds with amenable replaced by hyperfinite: Rλ is the only hyperfinite
factor of type IIIλ.

These factors Rλ describe the measure theory of the simplest fractals, namely the self-
similar Cantor sets of Chapter IV Section 3 Example 23. Let us first recall that given
a pair (A,ϕ) consisting of a C∗-algebra A and a state ϕ on A there is a canonically
associated von Neumann algebra: the weak closure A′′ of A in the GNS representation
(cf. Section 2). Let K⊂[0, 1] be the self-similar Cantor set of IV.3.23, and let C(K) act
by multiplication operators in `2(D) as in IV.3.21, where D⊂K is the denumerable set
of endpoints of K. A self-similarity σ of K is the restriction to Domain(σ) = K ∩ J ,
where J is a closed interval of an affine transformation x 7→ σ(x) = ax + b of R which
preserves K, i.e.

(5.14) σ(x) ∈ K ∀x ∈ Domain(σ).
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By construction, σ preserves D and thus can be represented in `2(D) as a partial
isometry uσ such that

uσ(εb) = 0 if b /∈ Domain(σ)

uσ(εb) = εσ(b) if b ∈ Domain(σ)(5.15)

where (εb)b∈D is the canonical orthonormal basis of `2(D).

We let A be the C∗-algebra in H = `2(D) generated by C(K) and the self-similarities
uσ. It can be described in many equivalent ways as in Section II.2. Then let p be the
Hausdorff dimension of K and let ϕ be the positive linear form on the C∗-algebra A
given by

(5.16) ϕ(a) = Trω(a|dx|p) ∀a ∈ A

with the notation of IV.3.23. Recall that the restriction of ϕ to C(K) is, up to a
constant, the Hausdorff measure Λp on K.

Proposition 9. The factor A′′ associated to the pair (A,ϕ) is the hyperfinite factor
Rρp, of type IIIρp , where ρ is the similarity ratio of K.

With the notation of IV.3.23 one has ρp = 1
q+1

.

The analogue of the construction of Section 11, with the global field Q replaced by
the field of rational fractions over a finite field Fq, yields the factors R(q−β) for any
β ∈ ]0, 1].

Finally, we have already given in Chapter I examples of foliations (V, F ) with W (V, F ) =
Rλ for arbitrary values of λ ∈ ]0, 1[.

9.δ Factors of type III0. The analysis of amenable factors of type III0 combines
the discrete decomposition (Theorem 8.3) with Krieger’s theorem (Theorem 4.3). Of
course, any Krieger factor is hyperfinite and amenable; conversely one has:

Theorem 10. [90] Any amenable (or hyperfinite) factor of type III0 is a Krieger
factor.

Moreover, such factors are in one-to-one correspondence with ergodic flows by the
remarkable result of W. Krieger:

Theorem 11. [360]

1) Two Krieger factors M1,M2 of type III0 are isomorphic iff their flows of
weights are isomorphic:

M1∼M2⇐⇒Mod(M1)∼Mod(M2).

2) For any ergodic intransitive flow there exists a unique Krieger factor M with
this flow as flow of weights.
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Thus, in other words, the natural extension of the invariant S as a virtual subgroup of
R∗+ is a complete invariant.

Previously to this last result the discrete decomposition was already used in my thesis
[89], together with an ergodic theory result of W. Krieger, to exhibit a factor M of type
III0 which is hyperfinite but is not isomorphic to any ITPFI (Araki-Woods factor). By
now we have the following characterization of ITPFI among hyperfinite factors:

Theorem 12. [142] Let M be a type III hyperfinite factor. Then M is isomorphic to
an ITPFI iff its flow of weights Mod(M) is approximately transitive.

We need to define approximate transitivity for an action α of a locally compact group
G on a commutative von Neumann algebra Z:

Definition 13. The action α of G on Z is approximately transitive if for any normal
states µ1, . . . , µn on Z and ε > 0 there exists a normal state µ on Z such that the
distance, in norm, of µj to the convex hull of Gµ is less than ε for any j = 1, . . . , n.

One can show ([142]) that any measure-preserving flow with nonzero entropy is not
approximately transitive. It follows that a factor of type III0, which is hyperfinite with
this flow as its flow of weights, cannot be an ITPFI.

Corollary 14. There exist type III0 hyperfinite non ITPFI factors.

Let us stress finally that Theorem 11 shows the equivalence of two classification prob-
lems, and this in a functorial manner. It had been shown by E.J. Woods, using the the-
ory of ITPFI, that the set of isomorphism classes of ITPFI is not countably separated,
and thus that such factors cannot be classified by a countable family of real-valued
invariants. We have seen in Chapter I how to construct foliations (V, F ) such that
W (V, F ) is hyperfinite of type III0.

9.ε Factors of type III1. Let M be a factor of type III1 and let M = NoθR∗+ be
its continuous decomposition (Theorem 8.6). Then N is a factor of type II∞ and if M
is amenable so is N , so that by Theorem 5, the factor N is isomorphic to R0,1. We do
not, however, have a direct proof of the analogue of the noncommutative ergodic theory
result (Theorem 6.16) for flows. The difficulty is that flows are incompatible with the
use of ultraproducts. Making use of discrete crossed products instead, to reduce from
III1 to IIIλ, λ ∈ ]0, 1[, I showed (cf. [106]) that the uniqueness (up to isomorphism) of
amenable factors of type III1 would follow provided one could prove the following:

“Let M be a factor of type III1. Then for any pair of normal states ϕ 6= ψ
on M there exists a bounded sequence (xn) in M such that ‖[ϕ, xn]‖→0 and
‖[ψ, xn]‖→/ 0 when n→∞.”
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This property is easy to prove for the Araki-Woods factor of type III1, R∞. In 1983
U. Haagerup was able to prove the above property for arbitrary amenable factors of
type III1, making use of the continuous decomposition and of the relative commutant
theorem ([141]). This result concludes the classification of amenable (or equivalently
hyperfinite) factors:

Theorem 15. [256] There exists up to isomorphism only one amenable factor of type
III1, the factor R∞ of Araki and Woods.

Here are some examples of occurrences of this factor.

1) We have already seen in Chapter I that the Anosov foliation (V, F ) of the unit-sphere
bundle V of a Riemann surface of genus > 1 gives the factor R∞ = W (V, F ).

2) The von Neumann algebra U(O) generated by bosonic quantum fields with support
in any local region O, as in Chapter IV Section 9 Proposition 12, is isomorphic to R∞.
This result, in the free field case, is due to H. Araki. The explicit computation of the
modular automorphism group for the vacuum state restricted to U(O) has been done
only in some very special cases and remains a challenging open question.

3) We have seen that the factors Rλ of type IIIλ describe the measure theory of the
self-similar Cantor sets. Similarly, the factor R∞ describes the measure theory of the
quasi-Fuchsian circles of Chapter IV Theorem 3.17. One lets A be the C∗-algebra
crossed product of the algebra of continuous functions on the quasi-circle by the action
of the quasi-Fuchsian group Γ. The positive linear form ϕ is given by the formula (with
Trω the Dixmier trace)

ϕ(a) = Trω(a|dZ|p) ∀a ∈ A.

The factor obtained is of type III1 and isomorphic to R∞.

4) We shall see in Section 11 that the notion of module in basic number theory [577]
is intimately related to our functor mod, and that the factor R∞ appears naturally in
the statistics of prime numbers.

10. Subfactors of Type II1 Factors

10.α Index of subfactors. V. Jones first extended the classification (Theorem
6.14) of actions of finite cyclic groups on the hyperfinite factor R to arbitrary finite
groups G [308]. There is in this situation a Galois-type correspondence between G and
the fixed point von Neumann algebra RG = {x ∈ R ; gx = x ∀g ∈ G}. Jones then
went on and investigated arbitrary subfactors N of R satisfying the following finiteness
condition:

Definition 1. Let N⊂M be a subfactor of a type II1 factor M ; then N is of finite
index if the commutant of N in L2(M) is finite (i.e. of type II1).
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Here L2(M) is the Hilbert space completion of M for the inner product 〈x, y〉 = τ(x∗y),
where τ = TrM is the unique tracial state on M . It is a bimodule over M with the
action by left and right multiplication (cf. Appendix B α) for the description of the
identity correspondence in general). By a result of Pimsner and Popa [445], N has
finite index in M iff M viewed as a left N -module is finite and projective.

The Murray and von Neumann dimension function (Theorem 1.11) yields for any II1
factor N and any normal representation π of N in a Hilbert space H, a real number
dimN(H, π) which satisfies the following conditions.

1) dimN(H, π) ∈ [0, +∞], dimN(L2(N)) = 1.

2) dimN(H, π) = dimN(H′, π′) if and only if the representations π and π′ are
equivalent.

3) dimN

( ⊕∞
n=1(Hn, πn)

)
=

∑∞
n=1 dim(Hn, πn).

4) If e ∈ π(N)′ is a projection and πe is the restriction of π to the space eH, then

dimN(eH, πe) = Trπ(N)′(e) · dimN(H, π).

5) dimN(H, π) · dimN ′(H) = 1, where N ′ denotes the commutant of π(N).

The index of a subfactor N is defined as follows:

Definition 2. Let N⊂M be a subfactor of a type II1 factor M ; then the index [M : N ]
of N in M is the multiplicity

dimN(L2(M)).

This index satisfies the following easy properties:

Proposition 3.

a) Let N be a subfactor of M of finite index . For every representation (H, π) of
M of finite multiplicity , the restriction πN of π to N has finite multiplicity ,
and

dimN(H, πN) = [M : N ] · dimM(H, π).

b) Let N and M be as in a) and let P be a subfactor of N of finite index . Then
P is a subfactor of M of finite index , and

[M : P ] = [M : N ][N : P ].

c) If N, M, H and π are as in a), then the commutant π(M)′ is a subfactor of
π(N)′ of finite index , and

[π(N)′ : π(M)′] = [M : N ].
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Property a) is immediate; b) follows from a), and c) follows from Property 5) of the
dimension function dimM .

The above example RG⊂R of fixed points of finite group actions, as well as the inclu-
sions

R(Γ1)⊂R(Γ2)

of the type II1 factors associated to discrete groups Γ1⊂Γ2 with infinite conjugacy
classes, yield only integral values for the index.

One obtains non-integral values for the index in a rather trivial manner as follows:

Let M be a factor of type II1 and e ∈ M a projection. We denote by Me the factor
Me = {x ∈ M ; xe = ex = x}. In order that Me be isomorphic to M1−e, it is necessary
and sufficient that the positive real number λ0/(1−λ0), where λ0 = TrM(e), belong to
the group F (M) (Section 1). Assuming this to be the case, let θ be an isomorphism
θ : Me → M1−e and let

N = {x + θ(x); x ∈ Me}.
By construction, N is a subfactor of M , and a straightforward calculation of dimN(L2(M))
shows that

[M : N ] =
1

λ0

+
1

1− λ0

.

The group F (R) of the hyperfinite factor R is equal to R∗+. Thus, the above construction
yields, for every real number α ≥ 4, the existence of a subfactor N of R with [R : N ] =
α.

All this shows that the set Σ⊂[1,∞[ of values of the index of subfactors satisfies

{1, 2, 3} ∪ [4, +∞[ ⊂Σ.

The first important result of V. Jones is the following:

Theorem 4. [309] Let Σ be the subset of R+ consisting of the values of the index [M :
N ], where M and N are factors of type II1, N ⊂ M . Then

Σ = {4 cos2 π

n
; n ∈ N, n ≥ 3} ∪ [4, +∞).

We shall briefly describe the basic construction due to V. Jones. It extends to this
situation the idea of iterated crossed products, which was already crucial in the original
construction of the automorphisms sγ

p of Theorem 6.14. Here we do not have a group
G but only the inclusion N⊂M of its fixed point algebra N in M . First, the analogue
of the inclusion of M in its crossed product by G is the inclusion of finite factors

(5.17) M⊂JN ′J , N ′ = commutant of N in L2(M)

where J is the canonical antilinear isometric involution in L2(M),

(5.18) Jx = x∗ ∀x ∈ L2(M).



10. SUBFACTORS OF TYPE II1 FACTORS 520

One has M ′ = JMJ (cf. Section 3) so that the inclusion in (1) holds. Moreover, since
the inclusion in (1) of type II1 factors is of the same type as the original inclusion
N⊂M (it also has the same index by 3 c), the operation

(5.19) N⊂M 7→ M⊂M1 = JN ′J

can be iterated. It yields an inductive system Mk of type II1 factors such that

(5.20) Mk⊂Mk+1, [Mk+1 : Mk] = [M : N ] ∀k
and one can endow the inductive limit M∞ with its unique tracial state, which we
denote by τ .

The crucial fact now is that in the inclusion in (1) one has a canonical projection
e1 ∈ JN ′J = M1 given by

(5.21) e1 is the orthogonal projection of L2(M) on the closure N = {x1 ; x ∈ N}.
By construction, Je1J = e1 because N∗ = N . Moreover, e1 is the probabilistic condi-
tional expectation of M on N and, in particular, is an N -bimodule map from M to N
so that ([561])

(5.22) e1 ∈ N ′ , e1 ∈ JN ′J.

Using the bicommutant theorem, one then checks (cf. [309]) that

(5.23) M1 is generated by M and e1.

Now when the construction (1) is iterated we get a sequence of projections en ∈ Mn

and (cf. [309]) they satisfy the following relations:

Lemma 5. Let τ be the unique tracial state on M∞. The (en) form a sequence of
projections em = e∗m = e2

m ∈ M∞ such that:

α) ei ej = ej ei ∀i, j ∈ N , |i− j| > 1.

β) em+1 em em+1 = [M : N ]−1 em+1 and em em+1 em = [M : N ]−1 em for all
m ≥ 1.

γ) τ(x em+1) = [M : N ]−1 τ(x) for any element x of the algebra generated by
e1, . . . , em.

The relations α) and β) imply that the algebra Am generated by e1, . . . , em is a finite-
dimensional C∗-algebra. The proof of Theorem 4 ([309]) is based on the analysis of the
C∗-algebra inductive limit of the Am’s. The resulting C∗-algebra A(t) depends only
upon t = [M : N ]−1 and is nontrivial only for t−1 ∈ Σ with Σ as in Theorem 4. The
first example of non-integral index corresponds to n = 5; the index is then the square

of the golden ratio 1+
√

5
2

= 2 cos π
5
, and the C∗-algebra generated by the projections

ei is canonically isomorphic to the C∗-algebra associated with the parameter space for
the Penrose tilings (cf. Chapter II).
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I refer the reader to [235] for more detailed information. By analyzing the relative
commutant of N in Mn, V. Jones also introduces an invariant, consisting of a Dynkin
diagram, which is finer than the index [M : N ], and is canonically associated with a
subfactor N ⊂ M .

The classification of the subfactors of index 4 cos2 π
n

of the hyperfinite factor was carried
out by A. Ocneanu and S. Popa ([424], [452]). Finally, V. Jones’ discovery of new
polynomial invariants for knots [310], based on his analysis of the subfactors, has had
a remarkable impact on low-dimensional topology. However, it lies beyond the scope
of this book, and we shall just explain below the relation with the Hecke algebras.

10.β Positive Markov traces on Hecke algebras. We shall explain in this
section the link between the relations 5 α) and β) and the Hecke algebras of bi-invariant
functions on SLn(Fq), where Fq is the finite field with q elements. We need a general
definition which will be used again in Section 11.

Definition 6. Let Γ0⊂Γ be a subgroup of a discrete group Γ such that the left action
of Γ on Γ/Γ0 has only finite orbits. Then the Hecke algebra H(Γ, Γ0) is the convolution
algebra of Γ0-bi-invariant functions on Γ with finite support in Γ0\Γ/Γ0.

More explicitly, the convolution f ∗ f ′ of two such functions is given by

(5.24) (f ∗ f ′)(γ) =
∑

Γ0\Γ
f(γγ−1

1 ) f ′(γ1) ∀γ ∈ Γ.

When Γ is finite one can view H(Γ, Γ0) as the subalgebra of Γ0-bi-invariant elements
in the group ring CΓ.

Let q be a power of a prime and Fq the finite field with q elements. Let Γ = SLn(Fq)
and Γ0⊂Γ be the Borel subgroup given by upper triangular matrices. The Bruhat
decomposition Γ =

⋃
w∈Sn

Γ0 w Γ0, where Sn is the permutation group, gives a
natural basis (tw)w∈Sn for Hn(q) = H(Γ, Γ0), where

(5.25) tw(g) = 1 if g ∈ Γ0 w Γ0, tw(g) = 0 if g /∈ Γ0 w Γ0.

Moreover, one checks, using ti = tσi
where σi is the transposition (i, i + 1):

Proposition 7. The algebra Hn(q) = H(Γ, Γ0) is generated by the ti, i = 1, . . . , n−1,
and admits the following presentation:

a) (ti + 1)(ti − q) = 0 , i = 1, . . . , n− 1

b) ti tj = tj ti ∀i, j , |i− j| > 1

c) ti+1 ti ti+1 = ti ti+1 ti ∀i = 1, . . . , n− 2.
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For any integer n ≥ 1 and complex number q ∈ C, let Hn(q) be the algebra over C
with generators ti, i = 1, . . . , n − 1 and the presentation a), b) and c). We also allow
the value n = ∞, and let H∞(q) be the inductive limit of the (Hn(q), ρnm), where
ρnm(tj,n) = tj,m with obvious notation.

For q = 1, Hn(q) is the group ring CSn of the symmetric group. For q 6= 0 and qn 6= 1,
Hn(q) is isomorphic to CSn; but, for qn = 1, q 6= 1, or q = 0 the algebra Hn(q) is not
semisimple.

For q 6= −1 let ej = 1
q+1

tj; then the ej, j ≥ 1, generate H∞(q) and the presentation a)

b) c) becomes, with t = (2 + q + q−1)−1

a′) e2
j = ej ∀j ≥ 1

b′) ei ej = ej ei if |i− j| > 1(5.26)

c′) ei+1 ei ei+1 − t ei+1 = ei ei+1 ei − t ei ∀i ≥ 1.

The relations α) and β) of Lemma 5 are stronger since, while a′) and b′) are unchanged
c′) is replaced by the stronger

(5.27) c′′) ei+1 ei ei+1 − t ei+1 = ei ei+1 ei − t ei = 0.

The Jones construction thus gives:

Theorem 8. [311] Assume q ∈ [1,∞[ ∪ {ei2π/m; m = 3, 4, . . .} and also set t =
(2 + q + q−1)−1. Let H∞(q) be the above algebra with the unique involution ∗ such that
e∗j = ej ∀j ≥ 1.

1) There exists a unique trace τ on H∞(q) such that τ(1) = 1 and such that for
any n, τ(x en+1) = t τ(x) ∀x ∈ Hn(q);

2) The trace τ is positive (τ(x∗x) ≥ 0 ∀x ∈ H∞(q)) and the weak closure of
H∞(q) in the GNS representation is the hyperfinite factor R.

3) The von Neumann subalgebra of H∞(q)′′ generated by the ej, j > 1, is a
subfactor N⊂R, [R : N ] = t−1.

There are two refinements, due to A. Ocneanu and H. Wenzl [581]. First consider for q+
q−1 ∈ R the involutive algebra (H∞(q), ∗) as defined in Theorem 8. Then this involutive
algebra admits nontrivial Hilbert space representations iff q ∈ [1,∞[ ∪ {e2πi/m ; m =
3, 4, . . .}. Next, with q as above and z ∈ C there exists a unique normalized trace φq,z

on H∞(q) satisfying the Markov property

(5.28) φ(x em+1) = z φ(x) ∀x ∈ Hn(q).
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Moreover, with q as in Theorem 8, the trace φq,z on the involutive algebra (H∞(q), ∗),
is positive iff z ∈ [0, 1] and the pair (q, z) satisfies one of the following conditions:

q ≥ 1 , (1 + q)−1 ≤ z ≤ q(1 + q)−1

q ≥ 1 and ∃k ∈ Z , k 6= 0 , z =
1− qk+1

(1 + q)(1− qk)

q = e2πi/m and ∃k ∈ Z , |k| < m− 1 , k 6= 0(5.29)

with z =
1− qk+1

(1 + q)(1− qk)
t = (2 + q + q−1)−1.

As in Theorem 8, one obtains for each allowed value of (q, z) a subfactor of the hyper-
finite factor R, whose index has been computed by H. Wenzl [581].

11. Hecke Algebras, Type III Factors and Statistical Theory of Prime
Numbers

In this section we shall discuss an example of a quantum statistical mechanical sys-
tem, arising from the theory of prime numbers, which exhibits a phase transition with
spontaneous symmetry breaking [60]. The original motivation for these results comes
from the work of B. Julia [312] (cf. also [530]).

11.α Description of the system and its phase transition. Let us first re-
call our discussion of quantum statistical mechanics of Chapter I Section 2. Thus, a
quantum statistical system is given by

α) The C∗-algebra of observables A.

β) The time evolution (σt)t∈R, which is a one-parameter group of automorphisms
of A.

An equilibrium or KMS state at inverse temperature β is a state ϕ on A which fulfills the
KMSβ condition, I.2 and V.3, i.e. for any x, y ∈ A, there exists a bounded holomorphic
function Fx,y(z), continuous on the closed strip 0 ≤ =z ≤ β, such that

Fx,y(t) = ϕ(x σt(y)) ∀t ∈ R

Fx,y(t + iβ) = ϕ(σt(y)x) ∀t ∈ R.

In the simplest case, where A = MN(C) is the algebra of N×N matrices, any one-
parameter group of automorphisms (σt)t∈R of A is of the form

σt(x) = eitH x e−itH ∀x ∈ A , t ∈ R
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for some selfadjoint element H = H∗ ∈ A. Then for any β ∈ [0,∞[, one has a unique
KMSβ state for σt, and it is given by the formula

ϕβ(x) =
Tr(e−βH x)

Trace(e−βH)
∀x ∈ A.

Note here that H is only defined up to an additive constant by σt, so that the normal-
ization factor, Tr(e−βH), cannot be recovered from σt. However, the following formula
holds:

Log Tr(e−βH) = Supϕ(S(ϕ)− βϕ(H))

where ϕ varies over all states on A and S(ϕ) is the entropy of the state,

S(ϕ) = −Trace(ρ Log ρ) for ϕ = Trace(ρ·).
In a slightly more involved situation, that of systems without interaction, it is still
true that for any β ∈ [0,∞[ there exists a unique KMSβ state. More precisely, one
immediately has the following:

Proposition 1. Let A =
⊗

ν∈I Aν be an infinite tensor product of matrix algebras
Aν = Mnν (C), and let σt =

⊗
ν∈I σν

t be a product time evolution. Then for any β ≥ 0,
there exists a unique KMSβ state ϕβ for (A, σt), and one has ϕβ =

⊗
ν ϕβ,ν, where ϕβ,ν

is the unique KMSβ state for (Aν , σ
ν
t ).

For interesting systems with interaction one expects, in general, that for large temper-
ature, i.e. small β, the disorder will be predominant so that there will exist only one
KMSβ state. For small enough temperature some order should set in and allow for
the existence of various thermodynamical phases, i.e. of various KMSβ states. It is
a very important general fact of the C∗-algebraic formulation of quantum statistical
mechanics that for a given β every KMSβ state decomposes uniquely as a statistical
superposition of extreme KMSβ states:

Proposition 2. [66] [249] Let (A, σt) be a C∗-dynamical system and β ∈ [0,∞[. Then
the space of KMSβ states is a compact convex Choquet simplex.

For a careful discussion of the link between extreme KMSβ states and thermodynamical
phases we refer the reader to [249].

As a simple (classical) example illustrating the coexistence of phases at small temper-
ature one can think of the phase diagram for water and vapor (Figure 1), or better
yet for the ferromagnet (Figure 2). In the latter example, when the temperature T is
larger than the critical temperature Tc of the order of 103K, the disorder dominates,
while for T < Tc the individual magnets tend to align with each other, which in the
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classical 3-dimensional set-up yields a set of thermodynamical homogeneous phases
parametrized by the 2-dimensional sphere of directions in 3-space.

This example serves to illustrate the phenomenon of spontaneous symmetry breaking:
The group SO(3) of rotations in R3 is a symmetry group of the dynamical system one
starts with, and for large T , T > Tc, the equilibrium state is unique and hence invariant
under rotation. For small T however, T < Tc, the group SO(3) acts nontrivially on
the set of thermodynamical phases and the choice of an equilibrium state breaks the
symmetry.

The C∗-algebraic formulation of this is straightforward. One has a compact group G
of automorphisms of the C∗-algebra A which commutes with the time evolution:

αg ∈ AutA , ∀g ∈ G , αgσt = σtαg ∀t ∈ R.

Such a group obviously acts on the compact convex space of KMSβ states, and hence
on its extreme points.

We shall now describe (the precise motivation will be explained below) a C∗-dynamical
system intimately related to the distribution of prime numbers and exhibiting the above
behaviour of spontaneous symmetry breaking.

The C∗-algebra A is a Hecke algebra, which contains the algebra of the usual Hecke
operators of number theory [510], i.e. those related to Hecke correspondences for
lattices in C [510]. The latter algebra is commutative and is, essentially, the algebra
of composition of double cosets

γ ∈ GL(2,Z)
∖

GL(2,Q)
/

GL(2,Z).

Recall that given a discrete group Γ and a subgroup Γ0 which is almost normal, so that

“The orbits of Γ0 acting on the left on Γ/Γ0 are finite”

one defines the Hecke algebra H(Γ, Γ0) as the convolution algebra of (C-valued for our
purposes) functions with finite support on Γ0\Γ/Γ0. More specifically, given two such
functions f, f ′ ∈ H(Γ, Γ0), their convolution is

(f ∗ f ′)(γ) =
∑

Γ0\Γ
f(γγ−1

1 ) f ′(γ1) ∀γ ∈ Γ.

In this formula f and f ′ are viewed as Γ0-bi-invariant functions on Γ with finite support
in Γ0\Γ/Γ0.

To complete H to a C∗-algebra we just close it in norm in the following regular repre-
sentation of H in `2(Γ0\Γ) (cf. [49]).
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Proposition 3. Let Γ0⊂Γ be an almost normal subgroup of the discrete group Γ. Then
the following defines an (involutive) representation λ of H(Γ, Γ0) in `2(Γ0\Γ):

(λ(f)ξ)(γ) =
∑

Γ0\Γ
f(γγ−1

1 ) ξ(γ1) ∀γ ∈ Γ0\Γ , ∀f ∈ H.

One checks that λ(f) is bounded for any f ∈ H. The involution on H such that

λ(f ∗) = λ(f)∗ ∀f ∈ H
is given by the equality

f ∗(γ) = f(γ−1) ∀γ ∈ Γ0\Γ/Γ0.

Thus, we let A be the C∗-algebra norm closure ofH(Γ, Γ0) in `2(Γ0\Γ). A good notation
for it, compatible with the discrete group case (Chapter II Section 4) is

H = C∗
r (Γ, Γ0).

Let us now define the one-parameter group of automorphisms σt ∈ AutA. We first
need to introduce notation. Since each Γ0 orbit on Γ/Γ0 is finite, we shall let, for γ ∈ Γ

L(γ) = cardinality of Γ0(γΓ0) in Γ/Γ0

R(γ) = cardinality of (Γ0γ)Γ0 in Γ0\Γ.

Thus, by construction, L(γ) ∈ N∗, R(γ) ∈ N∗, R(γ) = L(γ−1), and L and R are both
Γ0-bi-invariant functions.

Proposition 4. Let Γ0⊂Γ be an almost normal subgroup of the discrete group Γ. There
exists a unique one-parameter group of automorphisms σt ∈ Aut(C∗

r (Γ, Γ0)) such that

(σt(f))(γ) =

(
L(γ)

R(γ)

)−it

f(γ) ∀γ ∈ Γ0\Γ/Γ0.

In fact, σ−t is the restriction of the modular automorphism group σϕ
t for the state on

M = λ(H)′′ given by the unit vector corresponding to the coset Γ0 ∈ Γ0\Γ.

Let us now consider the Hecke algebra H for the groups

Γ = PQ , Γ0 = PZ

where P is the group of 2×2 matrices P =

{[
1 b
0 a

]
; a invertible

}
.

One checks that PZ is almost normal in PQ.

We shall now describe the phase transition with spontaneous symmetry breaking for
the dynamical system corresponding to Γ = PQ and Γ0 = PZ.
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Let us denote by ψβ the following function on the group Q/Z. Given n = a
b
∈ Q/Z,

with a, b ∈ Z, with a relatively prime to b > 0, one lets b =
∏

pkp be the prime factor
decomposition of b and one sets

ψβ(n) =
∏

p−kpβ(1− pβ−1)(1− p−1)−1.

Theorem 5. [60] Let (A, σt) be the C∗-dynamical system associated to the almost
normal subgroup PZ of PQ. Then:

a) For 0 < β ≤ 1 there exists a unique KMSβ state ϕβ. Its restriction to
C∗(Q/Z)⊂C∗

r (Γ, Γ0) (through the inclusion Q/Z⊂Γ0\Γ/Γ0 of the unipotent

subgroup

{[
1 n
0 1

]}
⊂P ) is given by the above function of positive type ψβ on

Q/Z. Each ϕβ is a factor state and the associated factor is the hyperfinite
factor of type III1, that is R∞.

b) For β > 1 the KMSβ states form a simplex whose extreme points ϕβ,χ are

parametrized by imbeddings χ : K→C of the field K = Q ab
(the field of roots

of unity) in C, and whose restrictions to C∗(Q/Z) are given by the formula

ϕβ,χ(γ) = ζ(β)−1

∞∑
n=1

n−β χ(γ)n.

These states are type I∞ factor states.

The normalization factor is the inverse of the Riemann ζ-function evaluated at β.

In other words the critical temperature here is Tc = 1, and at low temperature (β > 1)

the phases of the system are parametrized by all possible embeddings of K = Q ab
in

the field of complex numbers.

As we shall see below, the Galois group G = [K : Q] does act naturally as auto-
morphisms G⊂Aut(C∗

r (Γ, Γ0)) commuting with the time evolution, and spontaneous
symmetry breaking occurs for β > 1.

We shall now explain how the above C∗-dynamical system is related to the distribution
of prime numbers and to class field theory.
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11.β Bosonic second quantization and prime numbers as a subset of R.
It is a saying attributed to E. Nelson that first quantization is a mystery while second
quantization is a functor. In the bosonic case this functor S, from the category of
Hilbert spaces to itself, assigns to every Hilbert space H the new Hilbert space SH
given by:

SH =
∞⊕

n=0

SnH

where SnH is the nth symmetric power of H endowed with the inner product

〈ξ1 · · · ξn, η1 · · · ηn〉 =
∑

σ

n∏
i=1

〈ξi, ησ(i)〉 ∀ξj, ηj ∈ H.

Given an operator T on H (or more generally T : H1→H2), the operator ST on SH is
given by

(ST )(ξ1 · · · ξn) = (Tξ1)(Tξ2) · · · (Tξn) ∀ξi ∈ H.

Even if T is bounded, ST is not bounded in general but if T is selfadjoint so is ST .
Thus, we shall work with such operators. One has the formula

(∗) Tr(ST ) =
1

det(1− T )

which makes good sense if ||T || < 1 and T ∈ L1(H). The problem we shall now consider
is the following: Give a simple characterization of selfadjoint operators T in H whose
spectrum is the subset P⊂R formed of all prime numbers, each with multiplicity one:

P = {2, 3, 5, 7, 11, 13, 17, . . .}⊂R.

The corresponding problem for the set N = {0, 1, 2, 3, . . .} of natural numbers, or N∗ =
N\{0}, is easier, and was solved in Dirac’s paper [170] which inaugurated quantum
field theory. In that case the solution is simply that there exists an operator a such
that

aa∗ − a∗a = 1 , a∗a = T.

(For N∗ one requires that aa∗ be equal to T .)

Let us now state the result for the subset P⊂R:

Lemma 6. [60] Let T be a selfadjoint operator in a Hilbert space H; then, counting
multiplicities

Spectrum T = P⇐⇒Spectrum ST = N∗.

Proof. Let us first assume that Spectrum ST = N∗. Then, as quite generally
SpecT⊂SpecST , using the inclusion H⊂SH we see that Σ = SpecT⊂N∗. Let us
show that P⊂Σ. Indeed, let p ∈ P not be in Σ. Then because Σ⊂N∗ one has p /∈ Σn

for any n (with Σn = {k1k2 · · · kn; kj ∈ Σ}). This shows that p /∈ Spec(ST ) =
⋃

Σn,
whence a contradiction. Thus, P⊂Σ. If k ∈ Σ\P then as k ∈ Pn for some n > 1, this



11. HECKE ALGEBRAS, TYPE III FACTORS AND PRIME NUMBERS 530

would mean that k is not a simple eigenvalue for ST . Thus P = Σ. The converse is
obvious from Euclid’s unique factorization theorem, but we shall fix the corresponding
notation: we let H1 = `2(P) be the Hilbert space with basis (εp)p∈P , and we identify it
with the one-particle subspace of SH1 = `2(N∗), the Hilbert space of square integrable
sequences of complex numbers, with canonical basis the εn, n ∈ N∗. We shall denote
by T the operator

T : `2(P)→`2(P) ; Tεp = pεp ∀p ∈ P
and by ST the corresponding operator

ST : `2(N∗)→`2(N∗) ; (ST )εn = nεn ∀n ∈ N∗.
We shall let H = log(ST ). It is the generator of a one-parameter unitary group
Ut = exp(itH) = (ST it), whose role is made clear by the following special case of
formula (∗), which is the Euler product formula for the Riemann ζ function:

For<s > 1; ζ(s) = Tr(ST )s =
1

det(1− T s)
.

The meaning of Lemma 6 is that the subset P⊂R has a neat definition provided one is
ready to use the formalism of bosonic quantum field theory. That formalism includes the
algebra of creation and annihilation operators, respectively a∗(ξ) and a(η), for ξ, η ∈ H,
given by

a∗(ξ)ξ1 · · · ξn = ξξ1 · · · ξn ∀ξj ∈ H
a(η) = (a∗(η))∗.

It also includes the time evolution, in Heisenberg’s picture, given by

σt(x) = Ut x U∗
t = eitH x e−itH ∀t ∈ R.

In our case the corresponding C∗-algebra in SH = `2(N∗) and time evolution are given
by the following:

Proposition 7.

a) For each p ∈ P let µp be the isometry in `2(N∗) given by the polar decomposition
of the creation operator associated to the unit vector εp ∈ H. The C∗-algebra
C∗(N∗) generated by the µp’s is the same as that generated by the isometries
µn

µn εk = εkn ∀n ∈ N∗ k ∈ N∗.
b) This C∗-algebra is the infinite tensor product

C∗(N∗) =
⊗
p∈P

τp

where each τp is the C∗-algebra generated by µp, and is the Toeplitz C∗-algebra.
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c) The equality σt(x) = eitH x e−itH , ∀x ∈ C∗(N∗), t ∈ R, where H = log(ST ),
defines a one-parameter group of automorphisms of C∗(N∗) given as

σt =
⊗
p∈P

σt,p; σt,p(µp) = pit µp ∀t ∈ R.

We recall that the Toeplitz C∗-algebra τ is the C∗-algebra with generator u and presen-
tation relation u∗u = 1. If u is any non-unitary isometry in a (separable) Hilbert space
the smallest C∗-algebra containing u is isomorphic to τ . This C∗-algebra is nuclear so
that the finite tensor products

⊗
p≤n τp are unambiguously defined. Their inductive

limit
⊗

p∈P τp is the C∗-algebra C∗(N∗).

The C∗-dynamical system thus obtained is not very interesting because it is without
interaction (7 c). Nevertheless the corresponding unique KMSβ states will be useful
later and are given by the following corollary of Proposition 1 and of the Araki-Woods
classification of ITPFI (Section 4).

Proposition 8. [60]

a) For every β > 0, there exists a unique KMSβ state on (C∗(N∗), σt). It is the
infinite tensor product

ϕβ =
⊗
p∈P

ϕβ,p

where ϕβ,p is the unique KMSβ state on the Toeplitz algebra for σt,p. Its eigen-
value list is

{(1− p−β)p−nβ ; n ∈ N}.
b) For β > 1, the state ϕβ is of type I∞ and is given by

ϕβ(x) = ζ(β)−1 Trace(e−βH x) ∀x ∈ C∗(N∗).

c) For β = 1, the state ϕβ is a factor state of type III1 given by

ϕβ(x) = Trω(e−H x) ∀x ∈ C∗(N∗)

where Trω is the Dixmier trace.

d) For 0 < β ≤ 1, ϕβ is a factor state of type III1 and the associated factor is
the factor R∞ of Araki-Woods.

Statement d) for β = 1 is due to B. Blackadar [54]. We refer to Chapter IV for the
definition of the Dixmier trace, whose general properties make it clear that the equality
c) defines a KMS1 state.
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11.γ Products of trees and the noncommutative Hecke algebra. In this
section we shall relate the C∗-dynamical system (C∗(N∗), σt), of Section β) with basic
number theory notions ([577]) and get to the Hecke dynamical system of Theorem 5.

Let P be the ax+b group, i.e. the group of triangular 2×2 matrices of the form

[
1 b
0 a

]
,

with a invertible. We view it as an algebraic group, i.e. as a functor A 7→ PA from
abelian rings to groups. It plays an important role in the elementary classification of
locally compact (commutative and non discrete) fields (cf. [577]). Indeed, given such
a field K, the group G = PK is a locally compact group, and as such it has a module:
δ : G→R∗+, obtained from the lack of invariance of a left Haar measure dg on G under
right translations:

d(gk) = δ(k)dg ∀k ∈ G.

Or equivalently d(g−1) = δ(g)−1dg as measures on G.

This module δ : PK→R∗+ is 1 on the additive group, and its restriction to the mul-
tiplicative group (extended by 0 on K\K∗) yields a proper continuous multiplicative
map

ModK : K→R+

such that the open sets {k ∈ K; ModK(k) < ε} form a basis of neighborhoods of
0 (cf. [577]). The image of δ is a closed subgroup of R∗+ and, except for the case
of the Archimedean fields R or C, this closed subgroup is discrete and equal to λZ

for some λ ∈ ]0, 1[ whose inverse q = λ−1 is called the module of K. The function
ModK(x−y) = d(x, y) is then an ultrametric distance giving the topology of K ([577]).
Given x ∈ K, the integer v(x) such that ModK(x) = q−v(x) is called the valuation of x.

Proposition 9. (cf. [577]) Let K be a non-discrete commutative locally compact field,
K 6= R or C. Then there exists a prime p such that ModK(p) < 1. Call R, R× and P
the subsets of K respectively given by

R = {x ∈ K ; ModK(x) ≤ 1} , R× = {x ∈ K ; ModK(x) = 1},
J = {x ∈ K ; ModK(x) < 1}.

Then K is ultrametric; R is the unique maximal compact subring of K; R× is the
group of invertible elements of R; J is the unique maximal ideal of R, and there is
π ∈ J such that J = πR = Rπ. Moreover, the residue field k = R/J is a finite field
of characteristic p; if q is the number of its elements, the image of K× in R∗+ under
ModK is the subgroup of R∗+ generated by q; and ModK(π) = q−1.

As a basic example the field Qp of p-adic numbers is defined for any prime number p
as the completion of the field Q of rational numbers for the distance function

d(x, y) = |x− y|p
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where for x ∈ Q, x = pn a
b

(with n, a, b integers and a, b relatively prime to p) one sets

|x|p = p−n.

The maximal subring R of K = Qp is the ring Zp of p-adic integers, and the residue
field k = R/J is the finite field Fp.

One obtains in this way, together with the inclusion Q⊂R, every inclusion Q⊂K of
the field of rational numbers as a dense subfield of a local field K. Such inclusions,
(or rather in general, equivalence classes of completions) are called places and, to
distinguish the real place Q⊂R from the others, the latter are called finite places.

By putting together the inclusions of Q in its completions Qv = K parametrized by
the places of Q one gets a single inclusion of Q in the locally compact commutative ring
of adèles, which is the restricted product of the fields Qv. More specifically this ring is
the product R×A, where the ring A of finite adèles is obtained as follows:

a) Elements x of A are arbitrary families (xp), xp ∈ Qp such that xp ∈ Zp for all
but a finite number of p.

b) (x + y)p = xp + yp and (xy)p = xpyp define the addition and product in A.

c) Finally, A has a unique topology as a locally compact ring such that the sub-
ring R =

∏
Zp is open and closed and inherits its compact product topology.

We shall now relate the C∗-dynamical system (C∗(N∗), σt) of Subsection β) with the
locally compact ring A of finite adèles.

We just need to recall that given a non-unimodular locally compact group G one has
a natural one-parameter group of automorphisms σt of C∗(G) given by the formula,
valid say on L1(G),

(∗) (σt(f))(g) = δ(g)−it f(g) ∀g ∈ G , t ∈ R.

The group σ−t is the modular automorphism group of the Plancherel weight on C∗(G).

Proposition 10. Let A be the ring of finite adèles over Q, and R its maximal open
compact subring. Let G be the locally compact group G = PA, and e ∈ C∗(G) the
characteristic function of the open and compact subgroup PR⊂PA. Then:

1) One has e = e∗ = e2, and the reduced C∗-algebra C∗(G)e = {x ∈ C∗(G) ; ex =
xe = x} is canonically isomorphic to the C∗-algebra C∗(N∗) of Subsection β).

2) One has σt(e) = e ∀t ∈ R, and the restriction of σt to the reduced C∗-algebra
C∗(N∗) is the time evolution of Subsection β).

We think of the characteristic function of PR as an element of L1(G, dg)⊂C∗(G), with
dg the unique left Haar measure which gives measure 1 to PR. The group G is solvable
and hence amenable, so that there is no distinction between C∗(G) and the reduced
C∗-algebra C∗

r (G). The proof of Proposition 10 is not difficult because it reduces
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immediately to a local statement, namely: If K = Qp and R⊂K is the maximal
compact subring, the C∗-dynamical system (C∗(PK), σt) given by (∗), reduced by the
projection ep = characteristic function of PR, is isomorphic to the Toeplitz C∗-algebra
τp, with the time evolution σt,p of Proposition 7 c).

We then take for µp ∈ C∗(PQp)ep the isometry given by the L1 function

µp

([
1 b
0 a

])
= 1 if b ∈ R , |a|p = p1, and equal to 0 otherwise.

The C∗-dynamical system (C∗(PA), σt) of Proposition 10 is without interaction, exactly
as is (C∗(N∗), σt) (Proposition 8); there is an exact analogue of Proposition 8, which
states the existence and uniqueness (up to scale) of KMSβ weights on the above system.
One needs to use weights because one is dealing with non-unital C∗-algebras. On the
technical side, such weights have to be semicontinuous and semifinite (for the norm
topology) (cf. [85]). It is, however, instructive to work out the explicit formula for

those KMSβ weights. Using the natural isomorphism of the Pontryagin dual Â of the
additive group A with itself, one gets an isomorphism

C∗(PA) = C0(A)oA∗

where the multiplicative group A∗ acts by homotheties on the locally compact space
A. The KMSβ weight on (C∗(PA), σt) is then the weight dual to the measure µβ on A

µβ(f) = ζ(β)−1

∫

A∗
|j|β f(j)d∗j.

Here d∗j is the Haar measure on the multiplicative group A∗, j 7→ |j| is the module, and
the formula makes sense as such for β > 1, and by analytic continuation for 0 < β < 1
([577]).

It is clear that to obtain a C∗-dynamical system with interaction we need to use not
only the locally compact ring A but also the fundamental inclusion

Q⊂A.

We shall use the corresponding inclusion PQ⊂PA = G in the action of PA on the
C∗-module E = C∗(G)e over C∗(N∗) given by the isomorphism of Proposition 10:
C∗(G)e = C∗(N∗). Indeed, given any C∗-algebra B and selfadjoint projection e ∈ B,
the space E = Be = {x ∈ B ; xe = x} is in a natural way a right C∗-module over the
reduced C∗-algebra Be = {x ∈ B ; ex = xe = x}. One thus lets

〈ξ, η〉 = ξ∗η ∈ Be , ∀ξ, η ∈ E = Be

ξa ∈ E ∀ξ ∈ E , a ∈ Be.

This C∗-module has moreover a natural left B-module structure, which is given by
(b, ξ) 7→ bξ ∈ E , ∀b ∈ B, ξ ∈ E .
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In our case E = C∗(G)e is a space of functions on G which are invariant under right
multiplication by elements of PR⊂G or, in other words, it is a space of functions on
the homogeneous space

∆ = G/PR.

This space ∆ is, by construction, the restricted product of the spaces

∆p = PQp/PZp

relative to the base point given by PZp .

Proposition 11. The homogeneous space ∆p = PQp/PZp over the group PQp⊂GL(2,Qp)
is naturally isomorphic to the (set of vertices of the) tree of SL(2,Qp). The group PQp

acts by isometries of ∆p and preserves a point at ∞.

Let us recall (cf. [511]) that the tree of SL(2, K), where K is a local field, is defined
in terms of equivalence classes of lattices in a two-dimensional vector space V over K.
With the notation of Proposition 9, a lattice L⊂V is an R-submodule of V which is of
finite type and generates V as a vector space. The multiplicative group K∗ operates
on the set of lattices by (L, x) 7→ xL for x ∈ K∗, and one lets T be the set of orbits
of this action of K∗. Given a lattice L⊂V and a class Λ′ ∈ T there exists a unique
representative L′ ∈ Λ′ such that L′⊂L and L′ 6 ⊂πL, with π given by Proposition 9.
Then L/L′ = R/πnR and the integer n, which depends only upon the classes of L and
L′, defines a distance d on T , by

d(class of L, class of L′) = n.

Using the set of pairs with mutual distance equal to 1 to define a 1-dimensional simpli-
cial complex, one gets a tree, the tree of SL(2, K), and the above distance is the length
of the unique path joining two elements of this tree (cf. [511]). The group GL(V ) of
automorphisms of the vector space V acts on the set of lattices by

(L, g) 7→ gL ∀g ∈ GL(V ),

and, since this action commutes with that of K∗, it gives an action, by isometries, of
GL(V ) on the tree T . Let us identify V with K2, GL(V ) with GL(2, K), and consider

PK as a subgroup of GL(2, K) : PK =

{[
1 b
0 a

]
; a ∈ K∗ , b ∈ K

}
. Let L0 be the

lattice R2⊂K2. Then one checks that PK acts transitively on T and that the stabilizer
of the class of L0 is PR. We thus get a canonical identification T = PK/PR. Taking
K = Qp yields the conclusion.

Proposition 12.

1) The homogeneous space G/PR = ∆ is canonically isomorphic to the restricted
product of the trees Tp with base point ∗, and the action of G on ∆ is simplicial.

2) The subgroup PQ⊂PA = G acts transitively on ∆, and the isotropy subgroup
of the base point ∗ is PZ.
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We can thus identify ∆ with PQ/PZ, and we shall now get the Hecke algebra of Theorem
5 from the commutant of the action of PQ in the space of functions on ∆. We need for
that purpose first to obtain Hilbert spaces, and the construction will follow from the
following general lemma applied to the C∗-module E = C∗(G)e over C∗(N∗) and the
time evolution σt of C∗(N∗).

Lemma 13. Let C be a unital C∗-algebra, E a C∗-module over C, (σt)t∈R a one-
parameter group of automorphisms of C, β ∈ ]0,∞[, ϕβ a KMSβ state on C, and Hϕβ

the Hilbert space of the GNS construction for ϕβ.

a) Let Hβ be the completion of E for the inner product given by

〈ξ, η〉β = ϕβ(〈ξ, η〉) ∀ξ, η ∈ E .

Then the action of the endomorphisms, EndC(E), on E extends by continuity
to Hβ.

b) There exists a unique representation ρ of Co, the opposite algebra of C, in Hβ

such that for any ξ ∈ Hβ and a ∈ C in the domain of σiβ/2 one has

ρ(a)ξ = ξσiβ/2(a).

This representation commutes with the left action of EndC(E).

The Hilbert space Hβ is the tensor product:

Hβ = E⊗CHϕβ

so that the first assertion follows (Chapter II Appendix A). The second assertion also
follows, using Hϕβ

as a left Hilbert algebra.

We apply this lemma with C = C∗(N∗), E = C∗(G)e, and σt ∈ AutC given by the time
evolution (Proposition 7 c) of C∗(N∗). As E is a space of functions on ∆, so is each of
the Hβ, and for each α ∈ ∆ we let εα be the characteristic function of {α}⊂∆. The
vectors εα, α ∈ ∆, are of unit length in each Hβ and always span a dense subspace of
Hβ. For β = 1 they give an orthonormal basis, so that H1 = `2(∆). In general, the
inner product is uniquely determined by the following function of positive type on PQ,
with ∗ = base point of ∆,

ψβ(g) = 〈gε∗, ε∗〉β
and the computation of ψβ yields the following:

1) ψβ(g) = 0 if g /∈ N =

{[
1 n
0 1

]
; n ∈ Q

}

2) ψβ

([
1 n
0 1

])
=

∏
p−kpβ (1− pβ−1)(1− p−1)−1
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where b =
∏

pkp is the prime factor decomposition of the denominator b > 0 of the
irreducible fraction n = a

b
.

The commutant of PQ in Hβ is given by a right action ρβ of the Hecke algebra A =
C∗

r (PQ, PZ) of Theorem 5 as follows:

Proposition 14. Let β ∈ ]0,∞[.

1) The following equality defines a faithful unitary representation of Ao = C∗
r (PQ, PZ)

o

in Hβ:

ρβ(f)εα =
∑

α′∈α◦γ

(
L(γ)

R(γ)

)β/2

f(γ) εα′ ∀f ∈ H.

2) For each β, ρβ(Ao) generates the commutant of PQ in Hβ.

Thus, the Hecke algebra A = C∗
r (PQ, PZ) appears uniquely as the norm closure, in each

Hβ, of the algebra of operators in Hβ which commute with PQ and preserve the linear
span of the εα, α ∈ ∆. The latter algebra is normalized by any g ∈ PA = G, and it
follows that the group C = PA/PQ = A∗/Q∗ acts by automorphisms on A. This action
is independent of the real parameter β and will be denoted by

g ∈ C 7→ θg ∈ AutA.

The compact group C is the idèle class group [577]. By construction, the fixed point
algebra AC = {a ∈ A ; θg(a) = a ∀g ∈ C} is isomorphic to C∗(N∗). It is this action
of C on A which is the symmetry group of the dynamical system (A, σt) of Theorem
5, with spontaneous symmetry breaking for β = 1.

Appendix A. Crossed Products of von Neumann Algebras

Let M be a von Neumann algebra, G a locally compact group and α : G→AutM
a continuous action of G on M . The group AutM is endowed with the topology of
pointwise norm convergence in the predual M∗ of M . Thus, for each ϕ ∈ M∗ the map
g→αg(ϕ) is norm continuous. Let dg be a left Haar measure on G and λ be the left
regular representation of G in the Hilbert space L2(G),

(5.30) (λ(g)ξ)(h) = ξ(g−1 h) ∀g, h ∈ G , ξ ∈ L2(G).

The action α of G on M is encoded by the homomorphism α̃ : M→M⊗L∞(G) given
by

(5.31) α̃(x) = (α−1
g (x))g∈G ∈ L∞(G,M) = M⊗L∞(G)

which satisfies the equivariance condition

(5.32) α̃ ◦ αg(x) = λ(g) α̃(x) λ(g)−1 ∀g ∈ G , x ∈ M.
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Definition 1. The crossed product MoαG is the von Neumann subalgebra of M⊗L(L2(G))
generated by α̃(M) and 1⊗λ(G).

The equality (3) shows that the crossed product contains as a weakly dense subalgebra
the finite sums ∑

α̃(xg) λ(g) xg ∈ M.

When the group G is discrete any element of the crossed product can be uniquely
written as a formal sum ∑

α̃(xg) λ(g)

where the xg are uniquely determined as matrix elements in the natural basis of `2(G)
(cf. [Di2]). This is no longer the case when the group G is not discrete, and a good
description of the generic element of MoαG is lacking in general.

Definition 2. Let α and α′ be two actions of G on M . Then α and α′ are said to be
outer equivalent if there exists a strongly continuous map g 7→ ug from G to the unitary
group U(M) such that

1) ug1g2 = ug1 αg1(ug2) ∀g1, g2 ∈ G

2) α′g(x) = ug αg(x) u∗g ∀x ∈ M , g ∈ G.

The crossed products MoαG and Moα′G are then canonically isomorphic using the
unitary u ∈ M⊗L∞(G), u = (ug−1)g∈G. One has

u α̃(x) u∗ = α̃′(x) ∀x ∈ M

(5.33)

λ(g) u λ(g)−1 = u α̃(ug) ∀g ∈ G.

When G is abelian let Ĝ be the Pontryagin dual of G and let 〈g, g′〉 for g ∈ G, g′ ∈ Ĝ,
be the canonical pairing with values in T = {z ∈ C ; |z| = 1}.

Proposition 3. [550] Let G be an abelian locally compact group and α an action of
G on a von Neumann algebra M . The following equality defines a canonical action α̂

of the Pontryagin dual Ĝ of G on the crossed product MoαG:

α̂g′(y) = (1⊗vg′) y (1⊗v∗g′) ∀y ∈ M oα G , g′ ∈ Ĝ

where (vg′ ξ)(g) = 〈g, g′〉 ξ(g) ∀ξ ∈ L2(G).

By construction, α̂ fixes pointwise the von Neumann subalgebra M (= α̂(M)) of MoαG
and multiplies 1⊗λ(g) by 〈g, g′〉 ∈ T.

The central result of the theory of crossed products of von Neumann algebras is the
following:



APPENDIX B. CORRESPONDENCES 539

Theorem 4. [550] Let G be an abelian locally compact group and α an action of G
on a von Neumann algebra M . There exists a canonical isomorphism θ of the double

crossed product (MoαG)obα Ĝ with M⊗L(L2(G)) which transforms the double dual

action ̂̂α into an action outer equivalent to the action α⊗1 of G on M⊗L(L2(G)).

This theorem has since then been extended to nonabelian groups and Hopf-von Neu-
mann algebras (cf. [536] [198]).

Appendix B. Correspondences

We shall describe in this appendix a third natural notion of morphism between von
Neumann algebras. We have already met two notions:

1) ρ : M→N is a normal involutive algebra homomorphism.

2) T : M→N is a completely positive normal linear map.

While the first is the most obvious notion of morphism and basic concepts were intro-
duced for automorphisms (Section 6), the second notion plays a key role in Section 7
and in the entropy theory (Section 6). In the commutative case, M = L∞(X, µX) and
N = L∞(Y, µY ), notion 1 corresponds to a non-singular map ψ : Y→X, while notion
2 corresponds to a non-singular map y→py from Y to positive measures on X.

We shall introduce a third notion of morphism, intimately related to those above.

Definition 1. Let M and N be von Neumann algebras. A correspondence from M to
N is a Hilbert space H which is an N-M-bimodule.

Thus, more explicitly, we are given commuting normal ∗-representations πN of N and
πMo of Mo inH, where Mo is the opposite von Neumann algebra. To make the notation
lighter we shall write, whenever no confusion can arise,

(5.34) πN(y) πM0(x0) ξ = y ξ x ∀ξ ∈ H , y ∈ N , x ∈ M.

To justify the terminology (one could simply call H an N -M -bimodule) we shall first
consider the commutative case.

Let (X, µX) and (Y, µY ) be standard measure spaces, M = L∞(X, µX) and N =
L∞(Y, µY ). Then the most general correspondence H between M and N is given by a
measure class µ on X×Y with projections prX(µ), prY (µ) absolutely continuous with
respect to µX and µY , and an integer-valued µ-measurable function n(s, t) ((s, t) ∈
X×Y ). The Hilbert space H is equal to

∫
H(s,t) dµ(s, t) where H(s,t) is a Hilbert space

of dimension n(s, t) ∈ {0, 1, . . . ,∞} while the structure of bimodule is given by

(5.35) (g ξ f)(s, t) = g(t) f(s) ξ(s, t) ∀f ∈ M , g ∈ N , ξ ∈ H.
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In general the measure µ is not absolutely continuous with respect to µX×µY ; this
measure represents the graph of the correspondence, while the function n represents
the multiplicity of the correspondence.

If in the above example we take (X, µX) = (Y, µY ) and µ equal to the image of µX = µY

on the diagonal ∆ = {(x, x); x ∈ X}, while n(s, s) = 1 ∀s ∈ X, we get the identity
as a correspondence from M to N = M . The Hilbert space H is equal to L2(X,µX)
and the bimodule structure corresponds to the standard representation of M .

We shall now describe with special care the identity correspondence L2(M) for an
arbitrary von Neumann algebra M .

B.α Half densities and the identity correspondence. Let M be a von Neu-
mann algebra, M+

∗ the positive cone of the predual of M . Recall that any ϕ ∈ M+
∗

has a well defined support e = s(ϕ), e = e∗, e2 = e, e ∈ M , and that the modular
automorphism group σϕ

t is a one-parameter group of automorphisms of the reduced
von Neumann algebra Me = {x ∈ M ; ex = xe = x}. We shall introduce the notation

(5.36) σϕ
t (x) = ϕit x ϕ−it ∀x ∈ Me , ∀t ∈ R

and we shall continue to use it for imaginary values of t and elements of Me for which
σϕ

t (x) exists by analytic continuation. Consider now a monomial of the form

δ = a1 ϕz1
1 a2 ϕz2

2 · · · an ϕzn
n an+1

where ai ∈ M , ϕi ∈ M+
∗ and zi ∈ C, Re zi > 0.

We shall give to such a monomial the degree
∑

zi ∈ C. This degree plays the same
role as the degree of densities in differential geometry.

When the degree of δ is equal to 1 we define the integral or expectation value 〈δ〉 of δ
using the rules

(5.37) 〈a1 ψz1 a2 ψz2 · · · an ψzn an+1〉 = F (z1, . . . , zn)

for ψ faithful, aj ∈ M ,
∑

zi = 1, where the function F is the unique bounded
holomorphic function in the tube {(zi) ∈ Cn; Re zi > 0,

∑
zi = 1}, with boundary

values given for t1, t2, . . . , tn−1 ∈ R by

(5.38) F (it1, it2, . . . , itn−1, 1− i
∑

tj) = ψ(a1 σψ
t1 (a2) σψ

t1+t2(a3) · · · ).
In order to pass from δ to a monomial of the form (4) one uses the rule

(5.39) ϕz = (Dϕ : Dψ)−iz ψz

where (Dϕ : Dψ)z is the value at z of the Radon-Nikodým derivative (Section 5). Note
that this operator is bounded if ϕ ≤ ψ and <z ≤ 1

2
. It follows from [?] and [251]

that the above rules are consistent and that the expectation value 〈δ〉 is well defined,
independently of the choice of ψ, say with ψ ≥ ∑

ϕi, and Re zi ≤ 1
2
, which can always

be assumed. The outcome is that one can manipulate the above monomials, or linear
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combinations of such monomials of the same degree α, exactly like densities of degree
α in differential geometry. The commutation rules are given by (3) and (6).

The expectation value 〈δ〉 satisfies

(5.40) 〈aδ〉 = 〈δa〉 ∀a ∈ M.

In particular, a 1-density defines a normal linear form on M given by a ∈ M 7→ 〈aδ〉 ∈
C.

There is a natural involution δ 7→ δ∗:

(5.41) (a1 ϕz1
1 a2 ϕz2

2 · · · an ϕzn
n an+1)

∗ = a∗n+1 ϕzn
n a∗n · · ·ϕz1

1 a∗1
which replaces the degree α by α and is antilinear. Let us consider the sesquilinear
form on 1

2
-densities given by

(5.42) 〈δ1, δ2〉 = 〈δ1δ
∗
2〉.

One shows that this sesquilinear form is positive and moreover that

(5.43) 〈δ1δ2〉 = 〈δ2δ1〉 ∀δ1, δ2
1
2
-densities.

It follows immediately that the Hilbert space L2(M) thus obtained is a normal bimodule
for the action

(5.44) (x, δ, y) 7→ x δ y ∀x, y ∈ M , δ ∈ L2(M).

Moreover, one can show that any element of L2(M) admits a canonical left polar
decomposition of the form

(5.45) δ = uϕ1/2

where u is a partial isometry with initial support u∗u = s(ϕ), ϕ ∈ M+
∗ (cf. [86] [251]).

The canonical involution J of L2(M), given by

(5.46) Jδ = δ∗ ∀δ ∈ L2(M)

is isometric by (10), and it obviously exchanges the left and right actions of M on
L2(M).

Finally, L2(M) is endowed with a natural positive cone L2(M)+ whose elements are
the 1

2
-densities of the form ϕ1/2, ϕ ∈ M+

∗ (cf. [86] for a characterization of the self-dual
cones in Hilbert space obtained in this manner).

Definition 2. Let M be a von Neumann algebra. The identity correspondence between
M and M is the canonical bimodule L2(M) of 1

2
-densities on M .

To describe this bimodule, one may also use an auxiliary faithful (semifinite normal)
weight ν. Then the Hilbert space L2(M, ν), the completion of Dom1/2(ν) = {x ∈
M ; ν(x∗x) < ∞} with the obvious pre-Hilbert-space structure, is naturally equipped
with:
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A normal ∗-representation πν of M by left multiplication.

An isometric antilinear involution Jν such that

Jν πν(M) Jν = πν(M)′ (commutant of πν(M)).

Then the equality πν(x
o) = Jν πν(x)∗ Jν defines a normal ∗-representation of Mo in

L2(M, ν) which hence becomes an M -M -bimodule.

The Hilbert space L2(M, ν) comes equipped with a natural self-dual cone L2(M, ν)+,
whose elements are in bijection with the positive cone M+

∗ of the predual of M by

ξ ∈ L2(M, ν)+ 7→ ωξ,ξ ∈ M+
∗ ([251] Lemma 2.10)

where ωξ,ξ (x) = 〈πν(x) ξ, ξ〉 ∀x ∈ M.

It follows immediately that there exists a unique unitary equivalence U of the bimodule
L2(M, ν) with L2(M) such that

(5.47) Uξ = (ωξ,ξ)
1/2 ∀ξ ∈ L2(M, ν)+.

Since L2(M, ν) is the completion of Dom1/2(ν) = {x ∈ M ; ν(x∗x) < ∞}, we let ην be
the canonical map from Dom1/2(ν) to L2(M, ν). Then the isometry U allows one to

extend the notation ϕ1/2, ϕ ∈ M+
∗ , to weights as

(5.48) x ν1/2 = U ην(x) ∀x ∈ Dom1/2(ν).

B.β Correspondences and ∗-homomorphisms. Let M and N be von Neu-
mann algebras. Let ρ be a normal ∗-homomorphism of M in N . We do not assume
that ρ(1) = 1, so ρ(1) = e is a projection, and the Hilbert space L2(ρ) = {ξ ∈
L2(N) ; ξe = ξ} is an N -M -bimodule with

(5.49) πN(y) πMo(x0) ξ = y ξ ρ(x) ∀y ∈ N , x ∈ M.

To avoid useless complications we shall assume that both M and N have separable
preduals, and that H is separable.

Proposition 3. Assume that N is properly infinite.

a) Every correspondence H between M and N is equivalent to an L2(ρ).

b) The intertwining operators from L2(ρ1) to L2(ρ2) are the elements y of ρ2(1) N ρ1(1)
such that

ρ2(x) y = y ρ1(x) ∀x ∈ M.
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Proof. a) As N is properly infinite, the representation πN of N in H is subequivalent
to the standard representation of N in L2(N). Thus, we can assume that H = L2(N)e,
where e is a projection, e ∈ N , and that πN(y)ξ = yξ ∀y ∈ N , ξ ∈ L2(N)e. The
commutant of πN(N) is then the algebra of right multiplications in L2(N)e by elements
of eNe, so πM0 determines a normal ∗-homomorphism ρ, ρ(1) = e of M in Ne, such
that

πM0(xo) ξ = ξ ρ(x) ∀x ∈ M , ∀ξ ∈ L2(N)e.

b) With the obvious notation, the intertwining operators from π1
N to π2

N correspond
to the elements of ρ2(1) N ρ1(1), and the intertwining condition with respect to the
action of M is exactly

y ρ1(x) = ρ2(x) y ∀x ∈ M.

Corollary 4. Let θ1 and θ2 ∈ AutN ; then L2(θ1) is equivalent to L2(θ2) iff ε(θ1) =
ε(θ2) in OutN = AutN/InnN .

If N is not properly infinite, Proposition 3 does not hold (in general there need not
be any nonzero ∗-homomorphism of M into N while there is always the coarse cor-
respondence (Example 5 a) between M and N). This, however, will not create any
difficulty since, letting F be the factor of type I∞ of all bounded operators in `2(N),

the von Neumann algebra Ñ = N⊗F is properly infinite, and replacing N by Ñ does
not affect the correspondences from M to N . (Let H be a correspondence from M to

N , then H⊗`2 is in an obvious way a correspondence from M to Ñ . Conversely, let

e = 1⊗e11 ∈ Ñ , where (eij)i,j∈N is the canonical system of matrix units in F ; then if

H̃ is a correspondence from M to Ñ the space e H̃ is a correspondence from M to

Ñe = N .)

Let H be a correspondence from M to N , and let M1 and N1 be von Neumann subalge-
bras of M and N , respectively. It is clear that by restriction of the bimodule structure
of H we obtain a correspondence from M1 to N1. This operation of restriction does
not look so natural from the first point of view using normal involutive algebraic ho-
momorphisms, so even though it is equivalent to the correspondence point of view
(Proposition 3) it is important to keep both of them.

We shall now describe several examples of correspondences for which the associated
homomorphism ρ is less natural.

Examples 5. a) In the commutative case, M = L∞(X, µX), N = L∞(Y, µY ), we can
consider the coarse correspondence which associates to each x ∈ X an arbitrary point
of Y . This means that we take the measure µ = µX×µY and the multiplicity function
n(s, t) = 1 ∀(s, t) ∈ X×Y .
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This construction extends immediately to an arbitrary pair of von Neumann algebras
M and N . The coarse correspondence is then the obvious bimodule of Hilbert-Schmidt
operators from L2(M) to L2(N):

T ∈ L2(L2(M), L2(N))

(5.50)

πN(y)πMo(xo)T = y T x ∀y ∈ N , x ∈ M , T ∈ L2.

Equivalently, one can use L2(M)⊗L2(N) with

y(ξ⊗η)x = ξx⊗yη ∀x ∈ M , y ∈ N.

b) Let Γ be a countable group acting freely by nonsingular transformations of the
measure space (X, µX); then the restriction of the identity correspondence of M to
L∞(X, µX)⊂M = L∞(X, µX)oΓ (the crossed product by Γ) is the graph in X×X,
with its natural measure class, of the equivalence relation x ∼ y iff ∃g ∈ Γ, gx = y.

c) Let M = NoαG be the crossed product of a von Neumann algebra N by an action
α of the locally compact group G (cf. Appendix A). Then every unitary representation
π of G in a Hilbert space Hπ defines canonically a correspondence from M to M as
follows:

Hπ = L2(M)⊗Hπ ; the right action πMo(xo) , x ∈ M is

(5.51)

πMo(xo)(ξ⊗η) = ξx⊗η ∀ξ ∈ L2(M) , η ∈ Hπ,

the left action πM of M is given, using M = NoαG, by

πM(x)(ξ⊗η) = x ξ⊗η ∀x ∈ N , ξ ∈ L2(M) , η ∈ Hπ

πM(g)(ξ⊗η) = g ξ⊗π(g)η ∀g ∈ G , ξ ∈ L2(M) , η ∈ Hπ.

B.γ Coefficients of correspondences and completely positive maps. A
correspondence from the von Neumann algebra M to N is by definition a representation
π of the C∗-algebra N⊗maxM

o which is binormal, i.e. whose restrictions to both Mo

and N are normal representations. The coefficients of such representations, i.e. the
functionals

z ∈ N⊗maxM
o 7→ 〈π(z)ξ, ξ〉 ∈ C

are exactly the binormal states [192]. We refer to [192] for the definition of the C∗-
algebra N⊗binM

o corresponding to such states. We shall now relate these coefficients
to completely positive normal maps from M to N . We let ν be a faithful semifinite
normal weight on N and use the following:
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Proposition 6.

a) Let H be a normal left N-module. Then

D(H, ν) = {ξ ∈ H ; ∃c < ∞ , ‖yξ‖ ≤ c ν(y∗y)1/2 ∀y ∈ Dom1/2(ν)}
is dense in H.

b) The equality Iν(ϕ) = ν−1/2 ϕ ν−1/2 , ∀ϕ ∈ Face(ν) = {ϕ ∈ M+
∗ ; ϕ ≤

λν for some λ > 0} defines a completely positive linear map Iν from the face
of ν in N∗ to the domain of ν in M . Its inverse x 7→ ν1/2 x ν1/2 ∀x ∈ Dom(ν)
is also completely positive.

The proof is straightforward (cf. [107] [192]).

Definition 7. With N,H and ν as in Proposition 6 a, a vector ξ ∈ H is called
ν-bounded if ξ ∈ D(H, ν).

We can now state the precise relation between coefficients of correspondences and
completely positive normal maps.

Proposition 8. Let M and N be von Neumann algebras, and ν a faithful semifinite
normal weight on N .

a) Let H be a correspondence from M to N , and ξ a ν-bounded vector (Definition
7). Then there exists a unique completely positive map P from M to N such
that for any x ∈ M , y ∈ N , one has

〈y ξ x, ξ〉 = 〈y ν1/2 P (x) ν1/2〉.
b) Let P be a completely positive normal map from M to N such that also

ν(P (1)) < ∞. Then there exists a unique pair (H, ξ) where H is a corre-
spondence from M to N , ξ ∈ H and:

α) NξM is dense in H
β) ξ is a ν-bounded vector and for any x ∈ M and y ∈ N , ν(y∗y) < ∞ one has

〈y ξ x, ξ〉 = 〈y ν1/2 P (x) ν1/2〉.

Proof. Both statements are immediate from Proposition 7 and the GNS construction
for binormal states.

Corollary 9. If N is properly infinite and P : M→N is a completely positive normal
map, there exists a normal ∗-homomorphism ρ : M→N and a partial isometry v ∈ N ,
v∗v ≤ ρ(1), vv∗ = Support P (1) with P (x) = P (1)1/2 v ρ(x) v∗ P (1)1/2.

This follows from Proposition 3.

We shall introduce the following notation for the coefficients:
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Notation 10. Let M,N, ν and H be as in Proposition 8 a. Then for any ν-bounded
vectors ξ1, ξ2 ∈ H we let (ξ1, ξ2)ν be the unique normal map P from M to N such that

〈y ξ1 x, ξ2〉 = 〈y ν1/2 P (x) ν1/2〉 ∀x ∈ M , y ∈ N.

For a ∈ M we have (ξ1 a, ξ2)ν (x) = (ξ1, ξ2)ν(ax) and (ξ1, ξ2 a)ν (x) = (ξ1, ξ2)ν(xa∗) for
any x ∈ M .

Lemma 11.

a) Let b ∈ N be such that t 7→ σν
t (b) ∈ N extends analytically from t ∈ R to =t ∈[

0, 1
2

]
. Then for any ξ1 ∈ D(H, ν) one has b ξ1 ∈ D(H, ν) and (b ξ1, ξ2)ν(x) =

σν
i/2(b)(ξ1, ξ2)ν(x) ∀x ∈ M ( and also (ξ1, b ξ2)ν(x) = (ξ1, ξ2)ν(x) (σν

i/2(b))
∗

∀x ∈ M).

b) Let ν ′ be another weight on N , with ν ′ ≥ λν for some λ > 0; then D(H, ν)⊂
D(H, ν ′), the Radon-Nikodým derivative (Dν ′ : Dν)t ∈ R extends analytically
from t ∈ R to =t ∈ [−1

2
, 0

]
, and with b = (Dν ′ : Dν)−i/2 one has for any

ξ1, ξ2 ∈ D(H, ν), x ∈ M ,

(ξ1, ξ2)ν′(x) = b∗(ξ1, ξ2)ν(x) b.

B.δ Composition of correspondences. In the previous sections we related cor-
respondences with the two classical notions 1) and 2) of morphisms for von Neumann
algebras. While for 1) and 2) the composition of morphisms is the obvious one, defining
in a canonical manner the composition of correspondences requires more care and will
be dealt with in detail below to avoid any confusion.

Let M1, N and M2 be three von Neumann algebras, H1 a correspondence from M1 to
N and H2 a correspondence from N to M2. Thus, H1 is, in particular, a left N -module
and H2 a right N -module, and we shall construct canonically a tensor product

(5.52) H = H2⊗NH1

which will be naturally a correspondence from M1 to M2. The subtle point is that,
while H will be defined like any tensor product as the linear span of simple tensors
satisfying simple algebraic relations, the basic tensors generating H are not just of the
form ξ2⊗ξ1, ξj ∈ Hj but rather

(5.53) ξ2⊗ν−1/2 ξ1 , ξj ∈ Hj , ν ∈ N+
∗ , ν faithful.

In fact, it is quite useful also to allow ν to be a semifinite faithful normal weight; but
this will introduce no difficulty and will not change the tensor product.

Here we have three variables ξ1, ξ2 and ν, and thus besides the obvious bilinearity of
(20) in ξ1, ξ2, and the simplification by N

(5.54) ξ2 x⊗ν−1/2 ξ1 = ξ2⊗ν−1/2(ν1/2 x ν−1/2)ξ1 , ∀x ∈ N ∩Dom σν
−i/2
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(which uses, of course, our notation 3), we shall have the following relation which
eliminates the choice of ν:

(5.55) ξ2⊗(ν ′)−1/2 ξ1 = ξ2⊗ν−1/2(ν1/2 ν ′−1/2)ξ1,

whenever one has ν ≤ ν ′, so that ν1/2 ν ′−1/2 = (Dν : Dν ′)−i/2 ∈ N . It is clear that
relation (22) allows, using ν ′ = ν1 + ν2 for νj ∈ N+

∗ , comparison of simple tensors (20)
for different faithful νj ∈ N+

∗ . The case of weights will not be more difficult.

To proceed carefully we shall first of all fix ν and construct a Hilbert space generated
by the simple tensors (20) and satisfying the relation (21). We shall then use (22) to
eliminate the dependence on ν.

Let us define a sesquilinear form on the algebraic tensor product:

(5.56) H2 ¯D(H1, ν)

of H2 by the dense subspace of ν-bounded vectors in H1 (Definition 7) by the equality

(5.57) 〈ξ2⊗ν−1/2 ξ1 , η2⊗ν−1/2 η1〉 = ϕ2(ν
−1/2 ϕ1 ν−1/2)

where ϕj ∈ N∗ are given by

(5.58) ϕ1(y) = 〈y ξ1, η1〉 ∀y ∈ N

(5.59) ϕ2(y) = 〈ξ2 y, η2〉 ∀y ∈ N.

We have used, as a notation, ξ2⊗ν−1/2 ξ1 instead of ξ2⊗ξ1.

Proposition 12.

a) The equality (24) defines a positive sesquilinear form and the relation (21)
holds in the associated Hilbert space H2⊗νH1.

b) Let ν ≤ ν ′ be faithful semifinite normal weights on N ; then with b = (Dν :
Dν ′)−1/2 an isometry H2⊗ν′H1 →V H2⊗νH1 is defined by

V (ξ2⊗(ν ′)−1/2 ξ1) = ξ2⊗ν−1/2 b ξ1 ∀ξ2 ∈ H2 , ξ1 ∈ D(H, ν ′1).

Proof. a) The positivity follows from the complete positivity of the map Iν = ν−1/2 ·
ν−1/2 from N∗ to N (cf. Proposition 6). To prove (21) one checks using (24) that for
x ∈ Dom σν

−i/2 one has

〈ξ2 x⊗ν−1/2 ξ1 , η2⊗ν−1/2 η1〉 = 〈ξ2⊗ν−1/2(ν1/2 x ν−1/2)ξ1 , η2⊗ν−1/2 η1〉
for any ξ2, η2 ∈ H2, ξ1, η1 ∈ D(H1, ν).

b) follows from the equality Iν(ϕ) = b Iν′(ϕ)b∗ proven in Lemma 11 b) above. This
shows that V is an isometry, and the faithfulness of ν shows that it has dense range.
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Theorem 13.

1) Let N be a von Neumann algebra, H1 a normal left module and H2 a normal
right module over N . There is a canonical Hilbert space H = H2⊗NH1 gen-
erated by the ξ2⊗ν−1/2 ξ1; ξ2 ∈ H2, ν ∈ N+

∗ , faithful, and ξ1 ∈ D(H, ν1) and
satisfying the relations (21), (22) and (24).

2) LetH1 (resp. H2) be a correspondence from M1 to N (resp. from N to M2) and
H = H1⊗NH2 as in 1). Then the following equality defines a correspondence
between M1 and M2:

x2(ξ2⊗ν−1/2 ξ1)x1 = (x2 ξ2)⊗ν−1/2(ξ1 x1)

∀xj ∈ Mj , ∀ν ∈ N+
∗ , ∀ξ2 ∈ H2 , ∀ξ1 ∈ D(H1, ν).

Proof. 1) follows from Proposition 12.

2) It is enough to check that if both xj are unitaries the formula 2) defines an isometry
in H, which is easy using (24).

Remark 14. Using Proposition 12 we see that ξ2⊗ν−1/2 ξ1 is still well defined as an
element of H when ν is a faithful semifinite normal weight and ξ1 ∈ D(H, ν).

Definition 15. The correspondence H2⊗NH1 from M1 to M2 is the composition of
the correspondences H2 and H1.

We can easily compute the coefficients of the composition:

Proposition 16. Let H1,H2 and H = H2⊗NH1 be as above: Let ν be a faithful
semifinite normal weight on N and let ν2 be a faithful semifinite normal weight on M2.
Then for any ξ1, η1 ∈ D(H1, ν) and ξ2, η2 ∈ D(H2, ν2) one has

(ξ2⊗ν−1/2 ξ1 , η2⊗ν−1/2 η1)ν2 = (ξ2, η2)ν2 ◦ (ξ1, η1)ν .

In other words the coefficients of the composition are obtained by composing the coef-
ficients of the correspondences.

The proof of Proposition 16 is immediate using (24).

Let us now relate the composition of correspondences with the composition of ∗-
homomorphisms. Thus, we let ρ1 : M1→N and ρ2 : N→M2 be ∗-homomorphisms
and L2(ρi) the associated correspondences.

Proposition 17. The correspondence L2(ρ2)⊗NL2(ρ1) is canonically equivalent to
L2(ρ2 ◦ ρ1).
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This follows from a slightly more general fact: Let H2 be any correspondence from N
to M2. Then consider the following M2-M1-bimodule:

(5.60) H = H2 ρ1(1) , π(x2⊗x0
1)ξ = x2 ξ ρ1(x1) ∀xj ∈ Mj.

One then has:

Lemma 18. The bimodule H2 ρ1(1) is canonically equivalent to H2⊗NL2(ρ1).

Proof. One checks that the following formula gives the desired equivalence, recalling
the construction (Subsection α) of L2(N) as half-densities, so that ν−1/2 ξ ∈ N for any
ν-bounded element of L2(N) viewed as a left N -module.

V (ξ2⊗ν−1/2 ξ1) = ξ2(ν
−1/2 ξ1) ∀ξ2 ∈ H2 , ξ1 ∈ D(H1, ν).

Using the above Propositions 3 and 17 one checks that the composition of correspon-
dences is associative; but this can be done directly as in Theorem 13 with a specific
equivalence. We shall end this section with the basic notion of the contragredient of a
correspondence.

Definition 19. Let H be a correspondence from M to N ; then its contragredient H is
the correspondence from N to M given by

x ξ y = (y∗ ξ x∗) ∀ξ ∈ H , x ∈ M , y ∈ N

with H the conjugate Hilbert space of H.

We have used the canonical antilinear isometry ξ 7→ ξ from H to H.

Example. Let ρ : M→N be a ∗-isomorphism; then one checks that L2(ρ) = L2(ρ−1).

The meaning of L2(ρ) for a ∗-homomorphism is far less obvious.

Theorem 20. Let H1 be a correspondence from M1 to N and H2 a correspondence
from N to M2; then one has a canonical equivalence of correspondences from M2 to
M1:

(H2⊗NH1) = H1⊗NH2.

Proof. Let ν be a faithful normal semifinite weight on N . The meaning of the
theorem is that in the construction of H1⊗NH2 of Theorem 13 we could equally have
used expressions of the form ξ2 ν−1/2⊗ξ1, ξ2 ∈ D(H, ν), ξ1 ∈ H1 and defined the inner
product using the following analogue of (24):

(5.61) 〈ξ2 ν−1/2⊗ξ1 , η2 ν−1/2⊗η1〉 = ϕ1(ν
−1/2 ϕ2 ν−1/2)

with ϕj ∈ N∗ given by (25) (26).

One checks indeed that the following map defines the desired unitary equivalence:

V (ξ2 ν−1/2⊗ξ1) = ξ2⊗ν−1/2 ξ1 ∀ξj ∈ D(Hj, ν).
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B.ε Correspondences, hyperfiniteness and property T . In this section we
specialize to factors N of type II1 and exploit the following analogy between corre-
spondences from N to N and representations of discrete groups. First, since such
correspondences are exactly binormal representations of the C∗-algebra N⊗maxN

o all
classical notions of representation theory are available, such as unitary equivalence,
irreducibility, intertwining operators, etc.

We also have a natural topology on any set of equivalence classes of correspondences
from N to N using, as in representation theory (cf. [173]), the coefficients to define it.

Finally, by Subsection δ) we have the analogue of the tensor product of representations,
but, of course, there is a fundamental difference since the product H1⊗NH2 is no longer
commutative (and OutN is not commutative in general).

The identity correspondence is a unit for this product and is the analogue of the
trivial representation of discrete groups. The coarse correspondence from N to N
(cf. Example 5 a) has the same absorbing property for the product as the regular
representation of discrete groups and is the analogue of the latter in general. With this
small dictionary at hand we can now translate two key notions of the representation
theory of discrete groups: amenability and the property T of Kazhdan and see what
they give.

Recall that a (discrete) group Γ is said to be amenable if the trivial representation is
weakly contained in the regular representation. Here we have:

Theorem 21. Let N be a factor of type II1. Then the identity correspondence is weakly
contained in the coarse one iff N is hyperfinite.

Proof. First recall (Example 5 c) that if R(Γ) = N is the von Neumann algebra of
the left regular representation of a discrete group Γ we have a natural functor from
representations of Γ to correspondences from N to N . Since this functor is obviously
continuous, it is enough to write R = R(Γ) for some amenable discrete group Γ with
infinite conjugacy classes to check the property for the hyperfinite factor. Conversely, if
the identity correspondence of N is weakly contained in the coarse one it is immediate
that N is semidiscrete using Theorem 7.3. Thus, the conclusion follows from Theorem
7.6.

Next, recall that a (discrete) group Γ is said to have Kazhdan’s property T if the trivial
representation is isolated.

Theorem 22. [125] Let Γ be a discrete group with infinite conjugacy classes. Then Γ
has property T iff the identity correspondence of the II1 factor R(Γ) is isolated.

Using the above functor it is trivial that if Γ does not have property T then the identity
correspondence of R(Γ) is not isolated. Conversely, if Γ has property T one shows that
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the identity correspondence is isolated using the following functor from correspondences
(from R(Γ) to R(Γ)) to representations of Γ:

To the R(Γ)-bimodule H one assigns the unitary representation π of Γ in H given by

π(g) ξ = g ξ g−1 ∀g ∈ Γ , ξ ∈ H.

One checks easily that π contains the trivial representation of Γ iff H contains the
identity correspondence. This gives the desired result.

The great interest of a “property T” factor as in Theorem 22 is that its outer automor-
phism group OutN is countable as well as its fundamental group F (N) ([?]) leading
to the first example F (N) 6= R∗+.

The factors with property T enjoy remarkable rigidity properties. For example, there
does not exist a nontrivial sequence Nn⊂Nn+1 of subfactors with

⋃
Nn dense in N .

The main problem is as follows:

Problem 1. Show that if Γ1 and Γ2 are not isomorphic, then R(Γ1) and R(Γ2) are
not isomorphic.

Of course, here Γ1 and Γ2 are rigid in the sense defined above (for amenable groups,
the situation if radically opposite; see Section 9). The only results known are: 1) if
Γ1 is rigid, in the above sense, and if Γ2 is discrete in SL(2,R), then there does not
exist any homomorphism of R(Γ1) into R(Γ2); 2) one can distinguish countably many
discrete subgroups Γ of Sp(n,R) by their associated factors R(Γ) [84].

Problem 2. Determine the fundamental group of R(Γ) for Γ rigid.



CHAPTER 6

The metric aspect of noncommutative geometry

The geometric spaces of Gauss and Riemann are defined as manifolds in which the
metric is given by the formula

(6.1) δ(p, q) = infimum of length of paths γ from p to q

where the length of a path γ is computed as the integral of the square root of a quadratic
form in the differential of the path

(6.2) Length of γ =

∫ q

p

(gµν dxµ dxν)1/2

These geometric spaces form a relevant class of metric spaces, inasmuch as:

α) They are general enough to include numerous examples ranging from non-Euclidean
geometries through surfaces embedded in R3 to space like hypersurfaces in general
relativity.

β) They are special enough to deserve the name “geometry”, since, being determined
by local data, all the tools of differential and integral calculus are available to analyse
them.

We have developed in Chapter IV a differential and integral calculus of “infinitesimals”,
given a Fredholm module (H, F ) over the algebra A of coordinates on a possibly non-
commutative space X. The Fredholm module (H, F ) over A specifies the calculus on X
but not the metric structure. For instance, the construction of (H, F ) in the manifold

q

p

°

Figure 1. Geodesic
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case (Section IV.4) only used the conformal structure. In fact, in the example of Sec-
tion IV.3, where X = S1 and (H, F ) is the Hilbert transform, the quantum differential
expression

(6.3) dZ dZ = [F,Z][F, Z] , Z : S1→C
where Z is the boundary value of a univalent map, yields an infinitesimal unit of length
intimately tied up with the metric on Z(S1) induced by the usual Riemannian metric
dzdz of C. If we vary Z, even the dimension of S1 for the “metric” (3) will change (cf.
Section IV.3).

Let A be an involutive algebra and (H, F ) a Fredholm module over A. To define a
“unit of length” in the corresponding space X, we shall consider an operator of the
form

(6.4) G =

q∑
1

(dxµ)∗ gµν(dxν)

where dx = [F, x] for any x ∈ A, the xµ are elements of A and where g = (gµν)µ,ν=1,...,q

is a positive element of the matrix algebra Mq(A).

We want to think of G as the ds2 of Riemannian geometry. It is by construction a
positive “infinitesimal”, i.e. a positive compact operator on H. The unit of length is
its positive square root

(6.5) ds = G1/2.

To measure distances in the possibly noncommutative space X we first replace the
points p, q ∈ X by the corresponding pure states ϕ, ψ on the C∗-algebra closure of A
(6.6) ϕ(f) = f(p) , ψ(f) = f(q) ∀f ∈ A.

We then dualise the basic formula (1) as follows

(6.7) dist(p, q) = Sup {|f(p)− f(q)| ; f ∈ A , ‖df/ds‖ ≤ 1}
which only involves p, q through the associated pure states (6). Since we are in
the noncommutative set up we need to deal with the ambiguity in the order of the
terms in an expression such as df/ds which can be either df(ds)−1 or (ds)−1 df or
(ds)−α df(ds)−(1−α) for instance. Instead of handling this problem directly we shall
assume that G commutes with F , i.e. that dG = 0, a condition similar to the Kähler
condition, and introduce the following selfadjoint operator

(6.8) D = FG−1/2 = F ds−1,

whose existence assumes that G is nonsingular, i.e. ker G = 0. We shall then formulate
(7) as follows

(6.9) d(p, q) = Sup {|f(p)− f(q)| ; f ∈ A , ‖[D, f ]‖ ≤ 1} .
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Now the operator F is by construction the sign of D, while G is obtained from D by
the formula

(6.10) G = D−2.

Thus it is more economical to take as our basic data the triple (A,H, D) consisting
of a Hilbert space H, an involutive algebra A of operators on H and an unbounded
selfadjoint operator D on H. The conditions satisfied by such triples are

(6.11) [D, a]is bounded for anya ∈ A
(D − λ)−1is compact for anyλ /∈ R

and were already formalised in Chapter IV Definition 2.11. In the present chapter we
shall begin a systematic investigation of those geometric spaces. Besides Riemannian
manifolds (see below) and spaces of non integral Hausdorff dimension (Section IV.3)
the following are examples of geometric spaces described by our data:

a) Discrete spaces

b) Duals of discrete subgroups of Lie groups

c) Configuration space in supersymmetric quantum field theory.

We shall deal with Example a in Section 3 below. We have described already in great
detail the triples (A,H, D) corresponding to b) and c) in Section IV.9.

Our first task in this chapter will be to show that the Riemannian spaces are special
cases of the above notion of geometric spaces. This will be done using an elliptic dif-
ferential operator of order one, the Dirac operator (or the signature operator in the
non-spin case). We shall first see that formula (9) applied to the triple (algebra of func-
tions, Hilbert space of spinors, Dirac operator) readily gives back the geodesic distance
(1) on the Riemannian manifold. Our next task will be to develop the analogue of the
Lagrangian formulation of electrodynamics involving matter fields and gauge bosons
for our more general geometric spaces. This will be done using the tools of the quan-
tized calculus developed in Chapter IV Section 2. As mentioned above the commutator
[D, f ], f ∈ A will play the role of the differential quotient df/ds. As a central result
we shall prove the inequality between the second Chern number of a “vector bundle”
and the minimum of the Yang-Mills action on vector potentials. We shall see that
our new notion of geometric space treats on an equal footing the continuum and the
discrete, while the action for electrodynamics on the simplest mixture of continuum
and discrete–the product of 4-dimensional continuum by a discrete 2-point space–gives
the Glashow-Weinberg-Salam model for leptons. The notion of manifold in noncom-
mutative geometry will be reached only after an understanding of Poincaré duality,
i.e., that the K-homology cycle (H, D) yields the fundamental class of the space under
consideration. The notion of manifold obtained is directly inspired by the work of D.
Sullivan [543] who discovered the basic role played by the K-homology fundamental
class of a manifold.
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The main example of a space to which all these considerations will be applied is Euclid-
ean space-time in physics, i.e., space-time but with imaginary time. What we shall give
is a geometric interpretation of the now experimentally confirmed effective low-energy
model of particle physics, namely the Glashow–Weinberg–Salam standard model. This
model is a gauge theory model with gauge group U(1) × SU(2) × SU(3) and a pair
of complex Higgs fields providing masses by the symmetry-breaking mechanism. We
interpret this model geometrically as a pure gauge theory, i.e. electrodynamics, but on
a more elaborate space-time E ′ = E×F , the product of ordinary Euclidean space-time
by a finite space F . The geometry of this finite space is specified by a pair (H, D) as
above, where H is finite-dimensional and the selfadjoint operator D encodes the nine
fermion masses and the four Kobayashi–Maskawa mixing parameters of the standard
model.

The values of the hypercharges do not have to be fitted artificially to their experimental
values but come out right from a simple unimodularity condition on the space E ′.

Our analysis is limited to the classical context and does not at the moment address
the questions related to renormalization, such as the existence of relations between
coupling constants or the naturalness problem. Nevertheless, our more geometric and
conceptual interpretation of the standard model gives a clear indication that particle
physics is not so much a long list of elementary particles as the unveiling of the fine
geometric structure of space-time.

The content of this Chapter Is organized as follows:

1. Riemannian geometry and the Dirac operator.

2. Positivity in Hochschild cohomology and inequalities for the Yang Mills action.

3. Product of continuum by discrete and the symmetry breaking mechanism.

4. The commutant and Poincaré duality.

5. The standard U(1)×SU(2)×SU(3) model.

1. Riemannian Manifolds and the Dirac Operator

Let M be a compact Riemannian spin manifold, and let D = ∂M be the corresponding
Dirac operator (cf. [227]). Thus, D is an unbounded selfadjoint operator acting in the
Hilbert space H of L2-spinors on the manifold M .

We shall give four formulas below that show how to reconstruct the metric space
(M,d), where d is the geodesic distance, the volume measure dv on M , the space
of gauge potentials , and, finally, the Yang–Mills action functional, from the purely
operator-theoretic data

(A,H, D),
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where D is the Dirac operator on the Hilbert space H and where A is the abelian
von Neumann algebra of multiplication by bounded measurable functions on M .

Thus, A is an abelian von Neumann algebra on H, and knowing the pair (H,A) yields
essentially no information (cf. Chapter V) except for the multiplicity, which is here the
constant 2[d/2], where d = dim M . Similarly, the mere knowledge of the operator D on
H is equivalent to giving its list of eigenvalues (λn)n∈N, λn ∈ R, and is an impractical
point of departure for reconstructing M . The growth of these eigenvalues, i.e., the
behavior of |λn| as n → ∞, is again governed by the dimension d of M , namely,
|λn| ∼ Cn1/d as n →∞.

What is relevant is the triple (A, H, D). Elements of A other than the constants do
not commute with D, and the boundedness of the commutator [D, a] already implies
the following regularity condition on a measurable function a:

Lemma 1. If a is a bounded measurable function on M then the densely defined
operator [D, a] is bounded if and only if a is almost everywhere equal to a Lipschitz
function f , |f(p)− f(q)| ≤ Cd(p, q) (∀p, q ∈ M).

Here, d is the geodesic distance in M . The operator [D, a] should be viewed in effect
as a quadratic form

ξ, η 7→ 〈aξ, Dη〉 − 〈Dξ, a∗η〉,
which is well-defined for ξ and η in the domain of D; its boundedness means an in-
equality

|〈aξ,Dη〉 − 〈Dξ, a∗η〉| ≤ c‖ξ‖‖η‖ ∀ξ, η ∈ dom D.

The proof of the lemma follows immediately from results in [202].

Now, every Lipschitz function on M is continuous and the algebra of Lipschitz functions
is norm-dense in the algebra of continuous functions on M ; it follows that the C∗-
algebra C(M) of continuous functions on M is identical to the norm closure A in L(H)
of

By Gel’fand’s theorem (Chapter II), we recover the compact topological space M as
the spectrum of A. Thus, a point p of M is a ∗-homomorphism ρ : A → C,

ρ(ab) = ρ(a)ρ(b) ∀a, b ∈ A.

Any such homomorphism ρ is given by evaluation of a at p for some point p ∈ M ,

ρ(a) = a(p) ∈ C.

All of this is still qualitative; we now come to the first interesting formula, giving us a
natural distance function, which turns out in this case to be the geodesic distance

Formula 1. For any pair of points p, q ∈ M , their geodesic distance is given by the
formula

d(p, q) = sup{|a(p)− a(q)|; a ∈ A, ‖[D, a]‖ ≤ 1}.
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The proof is straightforward, but it is relevant to go through it to see what is involved.
The operator [D, a], which by Lemma 1 is bounded iff a is Lipschitz, is then given by
the Clifford multiplication i−1γ(da) by the gradient da of a. This gradient is ([202])
a bounded measurable section of the cotangent bundle T ∗M of M , and we have

‖[D, a]‖ = ess sup ‖da‖ = the Lipschitz norm of a.

It follows at once that the right-hand side of Formula 1 is less than or equal to the
geodesic distance d(p, q). However, fixing the point p and considering the function
a(q) = d(q, p), one checks that a is Lipschitz with constant 1, so that ‖[D, a]‖ ≤ 1,
which yields the desired equality. Note that Formula 1 is in essence dual to the original
formula

(∗) d(p, q) = infimum of the length of paths γ from p to q,

in the sense that, instead of involving arcs, namely copies of R inside the manifold M ,
it involves functions a, that is, maps from M to R (or to C).

This is an essential point for us since, in the case of discrete spaces or of noncom-
mutative spaces X, there are no interesting arcs in X but there are plenty of func-
tions , namely, the elements a ∈ A of the defining algebra. We note at once that the
right-hand side of Formula 1 is meaningful in that general context and it defines a
metric on the space of states of the C∗-algebra A, the norm closure of A = {a ∈
A; [D, a] is bounded}

d(ϕ, ψ) = sup{|ϕ(a)− ψ(a)|; ‖[D, a]‖ ≤ 1}.
Finally, we also note that, although both Formula 1 and the formula (∗) give the same
result for Riemannian manifolds, they are of quite different nature if we try to use them
in actual measurements of distances. The formula (∗) uses the idealized notion of a
path, and quantum mechanics teaches us that there is nothing like “the path followed
by a particle”. Thus, for measurements of very small distances, it is more natural to
use wave functions and Formula 1.

We have now recovered from our original data (A, H, D) the metric space (M, d), where
d is the geodesic distance. Let us now deal with the tools of differential and integral
calculus, the first obvious example being the measure given by the volume form

f 7→
∫

M

fdv,

where, in local coordinates xµ, gµν , we have

dv =
(
det(gµν)

)1/2|dx1 ∧ · · · ∧ dxn|.
This takes us to our second formula, which is nothing more than a restatement of
H. Weyl’s theorem about the asymptotic behavior of elliptic differential operators
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([247], [227]). It does, however, involve a new tool, the Dixmier trace Trω (cf. Chap-
ter IV.2), which, unlike asymptotic expansions, makes sense in full generality in our
context and is the correct operator-theoretic substitute for integration:

Formula 2. For every f ∈ A, we have
∫

M
fdv = c(d) Trω(f |D|−d), where d = dim M ,

c(d) = 2(d−[d/2]) πd/2 Γ
(

d
2

+ 1
)
.

By convention we let D−1 be equal to 0 on the finite-dimensional subspace KerD.

Let us refer to Section IV.2 for the detailed definition and properties of the Dixmier
trace Trω. We can interpret the right-hand side of the equality as the limit of the
sequence

1

log N

N∑
j=0

λj,

where the λj are the eigenvalues of the compact operator f |D|−d, or, equivalently, as
the residue, at the point s = 1, of the function

ζ(s) = Trace(f |D|−ds) (<s > 1).

The crucial fact for us is that the Dixmier trace makes sense independently of the
context of pseudodifferential operators and that all properties of the integral

∫
M

fdv,
such as positivity, finiteness, covariance, etc., become obvious corollaries of the general
properties of the Dixmier trace:

A) Positivity : Trω(T ) ≥ 0 if T is a positive operator.

B) Finiteness : Trω(T )<∞ if the eigenvalues of |T | satisfy
∑N

0 µn(T )=O(log N).

C) Covariance: Trω(UTU∗) = Trω(T ) for every unitary U .

D) Vanishing : Trω(T ) = 0 if T is of trace class.

Property D is the counterpart of locality in our framework; it shows that the Dixmier
trace of an operator is unaffected by a finite-rank perturbation, and allows many iden-
tities to hold, as we have seen in Chapter IV.

Now, setting up the integral of functions, i.e., the Riemannian volume form, is a good
indication but quite far from the full story. In particular, many distinct Riemannian
metrics yield the same volume form. Since our aim is to investigate physical space-
time at the scale of elementary particle physics, we shall now make a deliberate choice:
instead of focusing on the intrinsic Riemannian curvature, which would drive us to-
wards general relativity, we shall concentrate on the measurement (using (H, D)) of the
curvature of connections on vector bundles, and on the Yang–Mills functional, which
takes us to the theory of matter fields. This line is of course easier since it does not
involve derivatives of the gµν .

Let us state our aim clearly: to recover the Yang–Mills functional on connections on
vector bundles, making use of only the following data (IV.2.11):
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Definition 2. A K-cycle (H, D), over an algebra A with involution ∗, consists of
a ∗-representation of A on a Hilbert space H together with an unbounded selfadjoint
operator D with compact resolvent, such that [D, a] is bounded for every a ∈ A.

We shall assume that A is unital and that the unit 1 ∈ A acts as the identity on H (cf.
Remark 12 for the nonunital case).

If the eigenvalues λn of |D| are of the order of n1/d as n →∞, we say that the K-cycle
is (d,∞)-summable (cf. Section 2 of Chapter IV). On the algebra of functions on a
compact Riemannian spin manifold, the Dirac operator determines a K-cycle that is
(d,∞)-summable, where d = dim M . Finer regularity of functions, such as infinite
differentiability, is easily expressed using the domains of powers of the derivation δ,
δ(a) = [|D|, a].

We shall not be too specific about the choice of regularity; our discussion applies to
any degree of regularity higher than Lipschitz.

The value of the following construction is that it will also apply when the ∗-algebra A is
noncommutative, or when D is no longer the Dirac operator (cf. Section 3). The reader
can have in mind both the Riemannian case and the slightly more involved case where
the algebra A is the ∗-algebra of matrices of functions on a Riemannian manifold, just
to bear in mind that the notion of exterior product no longer makes sense over such
an algebra.

We shall begin with the notion of connection on the trivial bundle, i.e., the case of
“electrodynamics”, and define vector potentials and the Yang–Mills action in that case.
We shall then treat the general case of arbitrary Hermitian bundles, i.e., in algebraic
terms, of arbitrary Hermitian, finitely generated projective modules over A.

We wish to define k-forms over A as operators on H of the form

ω =
∑

aj
0[D, aj

1] · · · [D, aj
k],

where the aj
i are elements of A represented as operators on H. This idea arises because,

although the operator D fails to be invariant under the representation on H of the
unitary group U of A,

U = {u ∈ A; u∗u = uu∗ = 1},
the following equality shows that the failure of invariance is governed by a 1-form in
the above sense: by ωu = u[D, u∗], that is,

uDu∗ = D + ωu.

Note that ωu is selfadjoint as an operator on H. Thus, it is natural to adopt the
following definition:

Definition 3. A vector potential V is a selfadjoint element of the space of 1-forms∑
aj

0[D, aj
1], where aj

k ∈ A.
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One can immediately check that in the basic example of the Dirac operator on a spin
Riemannian manifold, a vector potential in the above sense is exactly a 1-form ω on
the manifold M and that this form is imaginary, the corresponding operator in the
space of spinors being given by the Clifford multiplication:

V = i−1γ(ω) (i =
√−1).

The action of the unitary group U on vector potentials is such that it replaces the
operator D + V by u(D + V )u∗; thus it is given by the algebraic formula

γu(V ) = u[D, u∗] + uV u∗ (u ∈ U).

We now need only define the curvature or field strength θ for a vector potential, and
use the analogue of the above Formula 2 to integrate the square of θ: the formula

YM (V ) = Trω(θ2|D|−d)

should give us the Yang–Mills action.

The formula for θ should be of the form θ = dV + V 2; the only difficulty is in defining
properly the “differential” dV of a vector potential, as an operator on H.

Let us examine what happens; the naive formulation is

If V =
∑

aj
0[D, aj

1] then dV =
∑

[D, aj
0][D, aj

1].

Before we point out what the difficulty is, let us check that if we replace V by γu(V ),
where

γu(V ) = u[D, u∗] +
∑

uaj
0[D, aj

1]u
∗,

then the curvature is transformed covariantly:

d(γu(V )) + γu(V )2 = u(dV + V 2)u∗.

As this computation is instructive, we shall carry it out in detail. First, in order to
write γu(V ) in the same form as V , we use the equality

[D, aj
1]u

∗ = [D, aj
1u
∗]− aj

1[D, u∗].

Thus, γu(V ) = u[D, u∗] +
∑

uaj
0[D, aj

1u
∗]−∑

uaj
0a

j
1[D, u∗], and we have

dγu(V ) = [D, u][D, u∗] +
∑

[D, uaj
0][D, aj

1u
∗]−

∑
[D, uaj

0a
j
1][D, u∗].

We now claim that the following operators on H are indeed equal:

dγu(V ) + γu(V )2 = u(dV + V 2)u∗.
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We start with the left-hand side; it is equal to

dγu(V ) + (u[D, u∗] + uV u∗)2

= dγu(V ) + u[D, u∗]u[D, u∗] + u[D, u∗]uV u∗

+ uV u∗u[D, u∗] + uV 2u∗

= dγu(V )− [D, u][D, u∗]− [D, u]V u∗ + uV [D, u∗] + uV 2u∗

=
∑

[D, uaj
0][D, aj

1u
∗]−

∑
[D, uaj

0a
j
1][D, u∗]

− [D, u]V u∗ + uV [D, u∗] + uV 2u∗

= udV u∗ + uV 2u∗,

where the last equality follows from∑
[D, u]aj

0[D, aj
1u
∗]−

∑
[D, u]aj

0a
j
1[D, u∗] = [D, u]V u∗,

∑
u[D, aj

0][D, aj
1u
∗]−

∑
u[D, aj

0]a
j
1[D, u∗] = udV u∗,

∑
uaj

0[D, aj
1][D, u∗] = uV [D, u∗].

The difficulty that we overlooked is the following: the same vector potential V might
be written in several ways as V =

∑
aj

0[D, aj
1], so that the definition of dV as

dV =
∑

[D, aj
0][D, aj

1]

is ambiguous.

To understand the nature of the problem, let us introduce some algebraic notation. We
let Ω∗A be the reduced universal differential graded algebra over A (Chapter III.1).
It is by definition equal to A in degree 0 and is generated by symbols da (a ∈ A) of
degree 1 with the following presentation:

α) d(ab) = (da)b + adb (∀a, b ∈ A),

β) d1 = 0.

One can check that Ω1A is isomorphic as an A-bimodule to the kernel ker(m) of the
multiplication mapping m : A⊗A → A, the isomorphism being given by the mapping∑

ai ⊗ bi ∈ ker(m) 7→
∑

aidbi ∈ Ω1A.

The involution ∗ of A extends uniquely to an involution on Ω∗ with the rule

(da)∗ = −da∗.

The differential d on Ω∗A is defined unambiguously by

d(a0da1 · · · dan) = da0da1 · · · dan ∀aj ∈ A,

and it satisfies the relations
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d2ω = 0 ∀ω ∈ Ω∗A,

d(ω1ω2) = (dω1)ω2 + (−1)∂ω1ω1dω2 ∀ωj ∈ Ω∗A.

Proposition 4.

1) The following equality defines a ∗-representation π of the reduced universal
algebra Ω∗(A) on H:

π(a0da1 · · · dan) = a0[D, a1] · · · [D, an] ∀aj ∈ A.

2) Let J0 = ker π ⊂ Ω∗ be the graded two-sided ideal of Ω∗ given by J
(k)
0 = {ω ∈

Ωk; π(ω) = 0}; then J = J0 + dJ0 is a graded differential two-sided ideal
of Ω∗(A).

The first statement is obvious; let us discuss the second. By construction, J0 is a two-
sided ideal but it is not, in general, a differential ideal, i.e., if ω ∈ Ωk(A) and π(ω) = 0,
one does not in general have π(dω) = 0. This is exactly the reason why the above
definition of

∑
[D, aj

0][D, aj
1] as the differential of

∑
aj

0[D, aj
1] was ambiguous.

Let us show, however, that J = J0 + dJ0 is still a two-sided ideal. Since d2 = 0 it
is obvious that J is then a differential ideal. Let ω ∈ J (k) be a homogeneous element
of J ; then ω is of the form ω = ω1 + dω2, where ω1 ∈ J0 ∩ Ωk, ω2 ∈ J0 ∩ Ωk−1. Let
ω′ ∈ Ωk′ , and let us show that ωω′ ∈ J (k+k′). We have

ωω′ = ω1ω
′ + (dω2)ω

′ = ω1ω
′ + d(ω2ω

′)− (−1)k−1ω2dω′

=
(
ω1ω

′ + (−1)kω2dω′
)

+ d(ω2ω
′).

But, the first term belongs to J0 ∩ Ωk+k′ and ω2ω
′ ∈ J0 ∩ Ωk+k′−1.

Using 2) of Proposition 4, we can now introduce the graded differential algebra

Ω∗
D = Ω∗(A)/J.

Let us first investigate Ω0
D, Ω1

D and Ω2
D.

We have J ∩ Ω0 = J0 ∩ Ω0 = {0} provided that we assume, as we shall, that A is a
subalgebra of L(H). Thus, Ω0

D = A.

Next, J ∩ Ω1 = J0 ∩ Ω1 + d(J0 ∩ Ω0) = J0 ∩ Ω1; thus Ω1
D is the quotient of Ω1 by the

kernel of π, and it is thus exactly the A-bimodule π(Ω1) of operators ω of the form

ω =
∑

a0
j [D, a1

j ] (ak
j ∈ A).

Finally, J ∩Ω2 = J0 ∩Ω2 + d(J0 ∩Ω1) and the representation π gives an isomorphism

(∗) Ω2
D
∼= π(Ω2)/π

(
d(J0 ∩ Ω1)

)
.

More precisely, this means that we can view an element ω of Ω2
D as a class of elements

ρ of the form

ρ =
∑

a0
j [D, a1

j ][D, a2
j ] (ak

j ∈ A)
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modulo the sub-bimodule of elements of the form

ρ0 =
∑

[D, b0
j ][D, b1

j ] ; bk
j ∈ A,

∑
b0
j [D, b1

j ] = 0.

It is now clear that since we work modulo this subspace π
(
d(J0 ∩Ω1)

)
, the question of

ambiguity in the definition of dω for ω ∈ π(Ω1) no longer arises.

The equality (∗) makes sense for all k,

(∗) Ωk
D
∼= π(Ωk)/π

(
d(J0 ∩ Ωk−1)

)
,

and allows us to define the following inner product on Ωk
D: for each k let Hk be the

Hilbert space completion of π(Ωk) with the inner product

〈T1, T2〉k = Trω(T ∗
2 T1|D|−d) ∀Tj ∈ π(Ωk).

Let P be the orthogonal projection of Hk onto the orthogonal complement of the
subspace π

(
d(J0 ∩Ωk−1)

)
. By construction, the inner product 〈Pω1, ω2〉 = 〈Pω1, Pω2〉

for ωj ∈ π(Ωk) depends only on their classes in Ωk
D. We denote by Λk the Hilbert space

completion of Ωk
D for this inner product; it is, of course, equal to PHk.

Proposition 5.

1) The actions of A on Λk by left and right multiplication define commuting
unitary representations of A on Λk.

2) The functional YM(V ) = 〈dV +V 2, dV +V 2〉 is positive, quartic and invariant
under gauge transformations ,

γu(V ) = udu∗ + uV u∗ ∀u ∈ U(A).

3) The functional I(α) = Trω(θ2|D|−d), with θ = π(dα + α2), is positive, quartic
and gauge invariant on {α ∈ Ω1(A); α = α∗}.

4) One has YM(V ) = inf{I(α); π(α) = V }.

Let us say a few words about the easy proof. First, the left and right actions of A
on Hk are unitary. The unitarity of the right action of A follows from the equality
Trω(Ta|D|−d) = Trω(aT |D|−d) ∀T ∈ L(H), a ∈ A. Since π

(
d(J0 ∩Ωk−1)

) ⊂ π(Ωk) is

a sub-bimodule of π(Ωk) it follows that P is a bimodule morphism:

P (aξb) = aP (ξ)b ∀a, b ∈ A, ξ ∈ Hk.

Thus 1) follows. As for 2), one merely notes that by the above calculation, with dV
now unambiguous, θ = dV + V 2 is covariant under gauge transformations, whence the
result. For 3), one again uses the above calculation to show that dα + α2 transforms
covariantly under gauge transformations.

Finally, 4) follows from the property of the orthogonal projection P : as an element
of Λ2, dV + V 2 is equal to P

(
π(dα + α2)

)
for any α with π(α) = V , and since the

ambiguity in π(dα) is exactly π
(
d(J0 ∩ Ω1)

)
one gets 4).
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Stated in simpler terms, the meaning of Proposition 5 is that the ambiguity that we
met above in the definition of the operator curvature θ = dV + V 2 can be ignored by
taking the infimum

YM(V ) = inf Trω(θ2|D|−d)

over all possibilities for θ = dV + V 2, dV =
∑

[D, a0
j ][D, a1

j ] being ambiguous. The
action obtained is nevertheless quartic by 2).

We shall now check that in the case of Riemannian manifolds with the Dirac K-cycle,
the graded differential algebra Ω∗

D is canonically isomorphic to the de Rham algebra of
ordinary forms on M with their canonical pre-Hilbert space structure. The whole point
is that Propositions 4 and 5 give us these concepts in far greater generality, and the
formula in 4) will allow extending to this generality, in the case d = 4, the inequality
between the topological action and the Yang–Mills action YM (cf. Section 2). We refer
the skeptical reader to the examples of Section 3.

We now specialize to the Riemannian case, where A is the algebra of functions (with
some regularity) on the compact spin manifold M , and D = ∂M is the Dirac operator
in the Hilbert space L2(M, S) of spinors. We let C be the bundle over M whose fiber at
each p ∈ M is the complexified Clifford algebra CliffC(T

∗
p (M)) of the cotangent space

at p ∈ M . Any bounded measurable section ρ of C defines a bounded operator γ(ρ)
on H = L2(M, S). For any f 0, . . . , fn ∈ A one has

π(f 0df 1 · · · dfn) = i−nγ(f 0dcf
1 · dcf

2 · · · dcf
n),

where the usual differential dcf is regarded as a section of C, and · denotes the product
in C.

For each p ∈ M , the Clifford algebra Cp has a Z/2 grading given by the parity of the

number of terms ξj, ξj ∈ T ∗
p (M) in a product ξ1 ·ξ2 · · · ξn, and a filtration, where C

(k)
p is

the subspace spanned by products of n ≤ k elements of T ∗
p (M). The associated graded

algebra is canonically isomorphic to the complexified exterior algebra ∧C
(
T ∗

p (M)
)

and

σk : C(k) → ∧k
C(T

∗
p ) is the quotient mapping.

Using the canonical inner product on C given by the trace in the spinor representation,
one can also identify

∧k
C with the orthogonal complement of C(k−1) in C(k); equivalently,

if we let Ck be the subspace of C(k)of elements of the same parity as k, then
∧k
C =

Ck ª Ck−2.

The differential algebra Ω∗
D is determined by the following lemma:

Lemma 6. Let (H, D) be the Dirac K-cycle on the algebra A of functions on M and
let k ∈ N. Then a pair T1, T2 of operators on H is of the form T1 = π(ω), T2 = π(dω)
for some ω ∈ Ωk(A) if and only if there exist sections ρ1 and ρ2 of Ck and Ck+1 such
that

Tj = γ(ρj) (j = 1, 2), dcσk(ρ1) = iσk+1(ρ2).
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Here σk(ρ1) is an ordinary k-form on M and dc is the classical differential. Note that
for k > dim M one has σk(ρ) = 0. The proof is straightforward.

We can now easily determine the graded differential algebra Ω∗
D. First, let us identify

π(Ωk) with the space of sections of Ck; Lemma 6 then shows that

π
(
d(J0 ∩ Ωk−1)

)
= Kerσk.

(If ρ is a section of Ck with σk(ρ) = 0 then the pair of sections ρ1 = 0, ρ2 = ρ of Ck−1

and Ck fulfills the condition of Lemma 6, so that ρ = π(dω) for some ω, π(ω) = 0.)

Thus, σk is an isomorphism, Ωk
D
∼= sections of

∧k
C(T

∗), which, again by Lemma 6,
commutes with the differential. We can then state:

Formula 3. The mapping a0da1 . . . dan 7→ a0dca
1 · · · dca

n for aj ∈ A extends to a
canonical isomorphism of the differential graded algebra Ω∗

D with the de Rham algebra
of differential forms on M . Under this isomorphism, the inner product on Ωk

D is c(d)−1

times the Riemannian inner product of k-forms

〈ω, ω′〉 =

∫

M

ω ∧ ∗ω′.

The last equality follows from the computation of the Dixmier trace for the operator
on H = L2(M, S) associated with a section ρ of the bundle C of Clifford algebras (cf.
Section IV.2):

Trω(ρ|D|−d) = 2−dΓ
(

d
2

+ 1
)−1

π−d/2

∫

M

trace
(
ρ(p)

)
dv(p).

As an immediate corollary of Formula 3, we have

YM(V ) = c(d)−1

∫
‖dV ‖2dv.

Let us now extend the definition of the action YM to connections on arbitrary Hermit-
ian vector bundles.

First of all, we need to express in algebraic terms — i.e., using only the involutive
algebra A — the notion of a Hermitian vector bundle over M . A vector bundle E is
entirely characterized by the right A-module E of sections of E with the same regularity
as the elements of A; the local triviality of E and the finite-dimensionality of its fibers
translate algebraically into the statement that E is a direct summand of a free module
AN for some finite N , or, in fancier terms, that E is a finitely generated projective
module over A.

The Hermitian structure on E, that is, the inner product 〈ξ, η〉p on each fiber Ep, yields
a sesquilinear map

〈 , 〉 : E × E → A,

given by 〈ξ, η〉(p) = 〈ξ(p), η(p)〉p. The mapping 〈 , 〉 satisfies the following conditions:



1. RIEMANNIAN MANIFOLDS AND THE DIRAC OPERATOR 566

1) 〈ξa, ηb〉 = a∗〈ξ, η〉b (∀ξ, η ∈ E , a, b ∈ A),

2) 〈ξ, ξ〉 ≥ 0 (∀ξ ∈ E),

3) E is self-dual for 〈 , 〉.
Thus, the Hermitian vector bundles over M correspond bijectively to the Hermitian,
finitely generated projective modules over A in the following sense:

Definition 7. Let A be a unital ∗-algebra and let E be a finitely generated projective
module over A. A Hermitian structure on E is given by a sesquilinear mapping 〈 , 〉 :
E × E → A satisfying the above conditions 1, 2 and 3.

We shall use this notion only in the case where A is a subalgebra stable under the
holomorphic functional calculus in a C∗-algebra, in which case all reasonable notions
of positivity coincide in A.

In this case, all Hermitian structures on a given finitely generated projective module
E over A are isomorphic to each other and are thus obtained as follows: one writes
E as a direct summand E = eAN of a free module E0 = AN , where the idempotent
e ∈ MN(A) is self-adjoint , and one then restricts to E the Hermitian structure on AN

given by

〈ξ, η〉 =
∑

ξ∗i ηi ∈ A ∀ξ = (ξi), η = (ηi) ∈ AN .

The algebra EndA(E) of endomorphisms of a Hermitian, finitely generated projective
module E has a natural involution, given by

〈T ∗ξ, η〉 = 〈ξ, Tη〉 ∀ξ, η ∈ E .

With this involution, EndA(E) is isomorphic to the reduced ∗-algebra eMN(A)e.

As above, we now let (H, D) be a K-cycle over A, and Ω1
D the A-bimodule of operators

in H of the form V =
∑

ai[D, bi], with ai, bi ∈ A.

Definition 8. Let E be a Hermitian, finitely generated projective module over A. A
connection on E is given by a linear mapping ∇ : E → E ⊗A Ω1

D such that

∇(ξa) = (∇ξ)a + ξ ⊗ da ∀ξ ∈ E , a ∈ A.

A connection ∇ is compatible (with the metric) if and only if

〈ξ,∇η〉 − 〈∇ξ, η〉 = d〈ξ, η〉 ∀ξ, η ∈ E .

The last equality has a clear meaning in Ω1
D. In the computations, one should remember

that (da)∗ = −da∗ (∀a ∈ A), and if ∇ξ =
∑

ξi ⊗ ωi, ωi ∈ Ω1
D, then 〈∇ξ, η〉 =∑

ω∗i 〈ξi, η〉.
Such connections always exist; for E expressed as eAN as above, one may take ∇ as
the “Grassmannian” connection

(∇0ξ) = eη, where ηj = dξj.
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Two compatible connections ∇ and ∇′ on E can only differ by an element Γ ∈
HomA(E , E ⊗A Ω1

D).

As in Proposition 5, we shall now give two equivalent definitions of the action functional
YM(∇) on the affine space C(E) of compatible connections.

The group U(E) of unitary automorphisms of E , U(E) = {u ∈ EndA(E); uu∗ = u∗u =
1}, acts by conjugation γu(∇) = u∇u∗ on the space C(E). To define the curvature

θ of a connection ∇, one first extends ∇ to a unique linear mapping ∇̃ from Ẽ to Ẽ ,

Ẽ = E ⊗A Ω∗
D, such that

∇̃(ξ ⊗ ω) = (∇ξ)ω + ξ ⊗ dω ∀ξ ∈ E , ω ∈ Ω∗
D,

and one checks that this mapping satisfies

∇̃(ηω) = (∇̃η)ω + (−1)∂ηηdω

for every homogeneous η ∈ Ẽ and ω ∈ Ω∗
D. It then follows that θ = ∇̃2 is an en-

domorphism of the right Ω∗
D-module Ẽ ; it is determined by its restriction to E , again

denoted θ,

θ ∈ HomA(E , E ⊗A Ω2
D).

Next, using the inner product on Ω2
D and the Hermitian structure on E , one has a

natural inner product on

HomA(E , E ⊗A Ω2
D).

Using this, we make the following definition.

Definition 9. YM(∇) = 〈θ, θ〉.

By construction, this action is gauge invariant, positive and quartic. It is moreover
obvious from the above Formula 3 in the case of the Dirac K-cycle on a Riemannian
spin manifold that one has:

Formula 4. Let M be a Riemannian spin manifold with its Dirac K-cycle (H, D).
Then, the notion of connection (Definition 8) is the usual one, and

YM(∇) = c(d)−1

∫

M

‖θ‖2
HSdv,

where θ is the usual curvature of ∇.

Thus, we recover in this case the usual Yang–Mills action. For computational purposes,
and also to see the curvature as an operator in H, we shall now mention the easy
adaptation of Proposition 5, 4) to the general case.

First of all, any compatible connection in the sense of Definition 8 is the composition
with π of a universal compatible connection,
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Definition 10. Let E be a Hermitian, finitely generated projective module over A.
Then a universal compatible connection on E is a linear mapping ∇ of E to E ⊗A Ω1

such that:

a) ∇(ξa) = (∇ξ)a + ξ ⊗ da (∀ξ ∈ E , a ∈ A),

b) 〈ξ,∇η〉 − 〈∇ξ, η〉 = d〈ξ, η〉 (∀ξ, η ∈ E).

To see the surjectivity of the mapping π : CC(E) → C(E), where CC(E) is the space of
universal compatible connections, it is enough to check that the special Grassmannian
connection ∇0 is of this form and that π is a surjection of Ω1 onto π(Ω1). Next (cf.
Chapter III Section 3), a universal compatible connection extends uniquely as a linear
mapping

∇̃ : E ⊗A Ω∗ → E ⊗A Ω∗

such that ∇̃ is equal to ∇ on E ⊗ 1 and such that

∇̃(ηω) = (∇̃η)ω + (−1)degηηdω

for every homogeneous η in E ⊗A Ω∗ and ω ∈ Ω∗.

The curvature θ = ∇̃2 is then an endomorphism of the induced module Ẽ = E ⊗A Ω∗

over Ω∗, and π(θ) makes sense as a bounded operator in the Hilbert space E ⊗A H, as
does the following operator D∇ (cf. Section 3):

D∇(ξ ⊗ η) = ξ ⊗Dη +
(
(1⊗ π)∇ξ

)
η ∀ξ ∈ E , η ∈ H;

the analogue of the action I of Proposition 5 3) is then given by

I(∇) = Trω

(
π(θ)2|D∇|−d

)
.

One then proves in the same way that

Proposition 11. For any compatible connection ∇ ∈ C(E), one has

YM(∇) = inf{I(∇1); π(∇1) = ∇}.

Remark 12. All the above considerations apply to noncompact spaces as well, i.e. the
∗-algebraA is no longer unital. The summability hypothesis (D−λ)−1 ∈ L(d,∞) ∀λ 6∈ R
is being replaced by a(D − λ)−1 ∈ L(d,∞) ∀λ 6∈ R, a ∈ A.
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2. Positivity in Hochschild Cohomology and Inequalities for the
Yang–Mills Action

The residue theorem of Section IV.2 is a basic result that allows one to express the
Hochschild cohomology class of an (n,∞)-summable K-cycle by means of the Dixmier
trace of suitable products of commutators. However, the Dixmier trace enjoys the
fundamental property of being positive:

Trω(T ) ≥ 0 ∀T ∈ L(1,∞)(H), T ≥ 0.

This shows that in the even case, the Hochschild class of an (n,∞)-summable K-cycle
(H, D, γ) in fact has a positive representative, given by the following positive Hochschild
cocycle:

(∗) ψω(a0, . . . , an)

= (−1)n/2Γ (fracn2+1) Trω

(
(1 + γ)a0[D, a1] · · · [D, an]D−n

) ∀a0, . . . , an ∈ A.

By definition (cf. [117]) a Hochschild cocycle ψ on a ∗-algebra A is positive if it has
even dimension n = 2m and the following equality defines a positive sesquilinear form
on the vector space A⊗(m+1):

〈a0 ⊗ a1 ⊗ · · · ⊗ am, b0 ⊗ b1 ⊗ · · · ⊗ bm〉 = ψ(b0∗a0, a1, . . . , am, bm∗, . . . , b1∗)

for any aj, bj ∈ A. In general the positive Hochschild cocycles form a convex cone

Zn
+(A,A∗) ⊂ Zn(A,A∗)

in the vector space Zn of Hochschild cocycles on A.

To familiarize ourselves with the notion of positivity, we shall consider the example
where A is the ∗-algebra of smooth functions on a compact manifold M (and of course
we only consider continuous multilinear forms on A).

For n = 0, the space Z0 = Z0(A,A∗) is the space of 0-dimensional currents on M , and
Z0

+ is the cone of positive measures in the usual sense.

For n = 2, a Hochschild cocycle class C is characterized by a 2-dimensional de Rham
current C which is obtained directly by antisymmetrization from any cocycle ϕ ∈ C:

〈C, f 0df 1 ∧ df 2〉 =
1

2

(
ϕ(f 0, f 1, f 2)− ϕ(f 0, f 2, f 1)

) ∀f j ∈ A.

In the class C there is a unique element ΦC that is skew-symmetric in the last two
variables; it is given by

ΦC(f 0, f 1, f 2) = 〈C, f 0df 1 ∧ df 2〉 ∀f j ∈ A.

The mapping C 7→ ΦC is the natural cross-section that one usually uses to identify
de Rham currents with Hochschild cocycles rather than Hochschild cohomology classes.
It does, however, have one bad feature: the cocycle λΦC , λ ∈ C, is never positive.
(Otherwise the equality Lf (g) = 〈C, gdf ∧ df〉 would define a positive measure; but
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since Lf = −Lf one has Lf = 0 and C = 0.) This shows that if one sticks to
this canonical representative, the notion of positivity remains hidden. Let M be a
2-dimensional oriented compact manifold, and take for the class C the class of the de
Rham current C

〈C, f 0 df 1∧df2〉 =
−1

2πi

∫

M

f 0 df 1∧df2 ∀f j ∈ C∞(M).

As we shall see, the positive representatives, ϕ ∈ Z2
+∩C, of this class will correspond to

conformal structures g on M . More precisely, since Z2
+∩C is convex , the correspondence

will be established between conformal structures on M and the extreme points of Z2
+∩C

(cf. Figure 2).

Thus, let g be a conformal structure on M or equivalently, since M is oriented, a com-
plex structure. Then, to the Lelong notion of positive current ([Le]) there corresponds
the positivity in our sense of the following Hochschild 2-cocycle:

ϕg(f
0, f 1, f 2) =

i

π

∫

M

f 0∂f 1 ∧ ∂f 2,

where ∂ and ∂ are inherited from the complex structure.

An immediate check shows that the antisymmetrization of ϕg is 1(2πi) [M ], where
i =

√−1,
1

2

(
ϕg(f

0, f 1, f 2)− ϕg(f
0, f 2, f 1)

)
=
−1

2πi

∫

M

f 0df 1 ∧ df 2.

The positivity of ϕg corresponds to the Dirichlet Hilbert space structure on the space
of forms of type (1, 0). It is also clear that the mapping g 7→ ϕg is an injection, since
one can read off from ϕg what it means for a function f to be holomorphic in a given
small open set U ⊂ M .

Indeed, from the positive inner product on A⊗A associated with ϕg one reconstructs
the A-bimodule of L2 forms of type (1, 0) as well as the complex differentiation ∂:

A ∂−→ L2
(
M,∧(1,0)

)
.

Each ϕg is an extreme point of the convex set Z2
+ ∩ C, and, conversely, the exposed

points of this convex set can be determined as follows: for any element of the dual cone
(Z2

+)∧ of Z2
+, of the form

G =
d∑

µ,ν=1

gµνdxµ(dxν)∗ ∈ Ω2(A),

where gµν is a positive element of Md(A), one can show, assuming a suitable condition
of nondegeneracy, that the linear form

〈G,ϕ〉 =
∑

ϕ
(
gµν , x

µ, (xν)∗
)



2. POSITIVITY IN HOCHSCHILD COHOMOLOGY AND YANG–MILLS ACTION 571

C

Z+
2

jg

Figure 2. Conformal structures and extreme points of Z2
+ ∩ C

attains its minimum at a unique point in Z2
+ ∩ C, and that this point is equal to ϕg,

where g is the conformal structure on M associated with the classical Riemannian
metric

g =
∑

gµνdxµ(dxν)∗.

This allows us to understand the complex structures on M as the solutions of a vari-
ational problem involving the fundamental class of M and positivity in Hochschild
cohomology. This problem is by no means restricted in its formulation to the commu-
tative case, but it requires the notion of fundamental class in cyclic cohomology. It can
be taken as a starting point for developing complex geometry in the noncommutative
case.
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Finally, let us note that the cocycle ϕg can be expressed in terms of the Dirac operator
D for g on M :

ϕg(f
0, f 1, f 2) = −Trω

(
(1 + γ)f 0[D, f 1][D, f 2]D−2

) ∀f j ∈ A,

where the Z/2 grading γ of the spinor bundle is provided by the orientation of M and
the choice of spin structure is irrelevant.

This shows that, for n = 2, the formula (∗) for a positive representative of the
Hochschild class of a (2,∞)-summable K-cycle is the relevant construction of posi-
tive Hochschild cocycles.

We shall now concentrate on the case n = 4. Let us first state an easy proposition for
the case of Riemannian spin manifolds of dimension 4:

Proposition 1. Let M be a 4-dimensional compact Riemannian spin manifold and
let D be the corresponding Dirac operator in the Hilbert space H = L2(M, S) with the
Z/2-grading γ. Then the Hochschild class of the following positive Hochschild 4-cocycle
on A = C∞(M) is (2πi)−2 times the fundamental class of M :

ψω(f 0, . . . , f 4) = 2Trω

(
(1 + γ)f 0[D, f 1] · · · [D, f 4]D−4

)
.

The cocycle ψω is independent of ω and of the spin structure on M ; it depends only on
the conformal structure of M and is equal to

1
16π2

∫

M

tr
(
(1 + γ)f 0df 1 · df 2 · df3 · df 4

)
dv = ϕg(f

0, . . . , f 4) ∀f j ∈ A.

In the last expression, the trace tr is the natural trace on the Clifford algebra Cx at
every point x ∈ M , the differentials df j are regarded as sections of the Clifford algebra
bundle, and dv is the Riemannian volume element on M .

We shall now consider the general case of a (4,∞)-summable K-cycle denoted (H, D, γ)
on a ∗-algebraA and show, using the positivity of ψω, how to extend the usual inequality
|c2(E)− 1

2
c1(E)2| ≤ YM (∇) between Chern classes of vector bundles E and the value

of the Yang–Mills action on arbitrary compatible connections ∇ on E.

The action functional YM (∇) of Section 1 Definition 9 has the following homogeneity
property

If D is replaced by λD , λ > 0, then YM (∇) is replaced by λ4−d YM (∇).

This shows that we can hope for an inequality relating it to topological invariants of
finite projective modules only if d = 4, which we shall assume from now on.

Let E be a Hermitian finite projective module over A and, as in Section 1, let π be the
natural surjection

π : CC(E)→C(E)

from the space of universal compatible connections CC(E) to the space C(E) of com-
patible connections.
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Of course, as in Section 1, the group U(E) of unitary endomorphisms of E acts by gauge
transformations γu(∇) = u∇u∗ on the space of universal compatible connections and
the curvature θ makes sense, as an element of HomA

(E , E ⊗A Ω2(A)
)
, and is covariant

under gauge transformations. The mapping ∇ 7→ π(∇) is covariant and the two
curvatures are related by θπ·∇ = π(θ∇).

We shall now assume that the K-cycle (H, D) is even (i.e., we are given a Z/2-grading γ)
and that it is (4,∞)-summable. We now describe two traces on Ω(A). The first is
positive and yields the action YM(∇) of Section 1; the second is closed and yields
topological invariants of finitely generated projective modules E .

Lemma 2. If (H, D, γ) is a (4,∞)-summable K-cycle over A, then the following
equalities define traces on Ωeven(A):

1) τ(a0da1 · · · da4) = Trω(a0[D, a1] · · · [D, a4]D−4) ∀aj ∈ A;

2) Φ(a0da1 · · · da4) = Trω(γa0[D, a1] · · · [D, a4]D−4) ∀aj ∈ A.

In fact, both are traces on Ω∗(A) but Φ is a Z/2-graded trace, i.e.,

Φ(ω2ω1) = (−1)∂ω1∂ω2Φ(ω1ω2) ∀ωj ∈ Ω∗(A).

Let E be a Hermitian, finitely generated projective module over A, and extend τ to a
unique trace τ̃ on the endomorphisms of the induced module E ⊗A Ω∗(A); then with
the notation of Proposition 1.11 one has

I(∇) = τ̃(θ2) ∀∇ ∈ CC(E).

Since the operator (1 ± γ) is positive and commutes with π
(
Ωeven(A)

)
, we get the

general inequality

τ̃(θ2) ≥ |Φ̃(θ2)| ∀∇ ∈ CC(E).

It remains to understand the topological meaning of the term Φ̃(θ2). This will follow
from the pairing between K-theory and cyclic cohomology as expressed in terms of con-
nections and curvature (cf. Chapter III Section 3) but requires the following additional
hypothesis. We know that if B is the natural boundary operator

B : H4(A,A∗) → HC3(A),

then BΦ = 0, simply because, by the residue formula (Chapter IV Section 2), the
Hochschild class of Φ is (assuming H∗(A,A∗) to be Hausdorff) the same as the Hochschild
class of a cyclic cocycle, the character of (H, D, γ). However, we shall need the following
hypothesis:

Hypothesis 3. BΦ = 0 as a cochain.
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We shall of course have to check the hypothesis in the relevant examples, but note
already that in the case of the Dirac operator on a Riemannian manifold M of dimension
d = 4, we have

Φ(f 0, . . . , f 4) = − 1
8π2

∫
f 0df 1 ∧ · · · ∧ df 4,

which is a cyclic cocycle and therefore satisfies Hypothesis 3.

Note also that, in general, since B0Φ is already cyclic,

B0Φ(a0, a1, a2, a3) = Φ(1, a0, a1, a2, a3) = Trω(γ[D, a0] · · · [D, a4]D−4);

the condition BΦ = 0 means in fact that B0Φ = 0, i.e., that Φ is a cyclic cocycle. The
corresponding cyclic cohomology class

[Φ] ∈ HC4(A)

is not, in general, the same as the cyclic cohomology class ch∗(H, D, γ) of the Chern
character of the K-cycle, but differs from it by lower-dimensional classes, i.e., by
S
(
HC2(A)

)
.

We may now conclude using 1.11:

Theorem 4. Let A be a ∗-algebra, (H, D, γ) a (4,∞)-summable K-cycle over A, and
ϕω the Hochschild cocycle

ϕω(a0, . . . , a4) = 2Trω(γa0[D, a1] · · · [D, a4]D−4).

Assume that Bϕω = 0. Then, for any Hermitian, finitely generated projective module
E over A, we have

|〈[E ], ϕω〉| ≤ YM(∇) ∀∇ ∈ C(E).

The left-hand side is the pairing between K-theory and cyclic cohomology (Chapter III
Section 3). In the case of the Dirac operator on a compact spin manifold M , the cocycle
ϕω is (2πi)−2 times the fundamental homology class of M and the action YM(∇) is
(8π2)−1 times the usual Yang–Mills action. Thus, the above inequality is the usual one:
|c2(E) − 1

2
c1(E)2| ≤ YM(∇) for any compatible connection ∇ on a Hermitian vector

bundle E on M .

3. Product of the Continuum by the Discrete and the Symmetry Breaking
Mechanism

We have shown how to extend, to our context of finitely summable K-cycles (H, D)
over an algebra A, the concepts of gauge potentials and Yang–Mills action, as well as
the way in which this action is related to a topological action in the case of dimension 4.
In this section we shall give several examples of computations of this action. We first
briefly recall its definition and use the opportunity to add to it a fermionic part.
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We are given a ∗-algebra A and a (d,∞)-summable K-cycle (H, D) over A. This gives
us a representation on H of the reduced universal differential algebra Ω∗A:

π(a0da1 · · · dak) = a0[D, a1] · · · [D, ak] ∀aj ∈ A,

which defines a quotient differential graded algebra

Ω∗
D(A) = Ω∗(A)/J, J = J0 + dJ0, J

(k)
0 = Ωk ∩Ker π.

A compatible connection ∇ on a Hermitian, finitely generated projective module E
over A is given by a linear mapping

∇ : E → E ⊗A Ω1
D

which satisfies the Leibniz rule and is compatible with the inner product. The affine
space C(E) of such connections is acted on by the unitary group U(E) of the ∗-algebra
of endomorphisms EndA(E). This action transforms the curvature θ = ∇2 of such
connections covariantly, and

YM(∇) = Trω

(
π(θ)2|D|−d

)

is a gauge invariant quartic positive action on C(E) (cf. Section 1).

In the case of the trivial module E = A (with the right action of A on itself), a vector
potential is a selfadjoint element V of Ω1

D, and the following expression is also gauge
invariant

〈ψ,
(
D + π(V )

)
ψ〉 ψ ∈ H, V ∈ Ω1

D

where the unitary group U = U(E) = U(A) acts on H by restriction of the action of A,
whereas it acts on vector potentials by gauge transformations:

γu(V ) = ud(u∗) + uV u∗, u ∈ U , V ∈ Ω1
D.

This is the fermionic action that we want to add to the action YM(∇); it extends to
the case of arbitrary Hermitian, finitely generated projective modules E over A, by
means of the next lemma.

Lemma 1. Let A, E , and (H, D) be as above. Then:

1) The tensor product E ⊗A H is a Hilbert space with inner product given by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, (ξ1, ξ2)η2〉 ∀ξj ∈ E , ηj ∈ H.

2) For any compatible connection ∇, the following equality defines a selfadjoint
operator D∇ in the above Hilbert space:

D∇(ξ ⊗ η) = ξ ⊗Dη +
(
(1⊗ π)∇ξ

)
η ∀ξ ∈ E , η ∈ H.
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Thus, the fermionic action is now given by

〈ψ, D∇ψ〉, ∈ E ⊗A H, ∇ ∈ C(E),

and one checks that it is invariant under gauge transformations by elements of U(E).

The total action is
L(∇, ψ) = λ YM(∇) + 〈ψ,D∇ψ〉,

where λ is a coupling constant.

We shall compute it in three cases: a) the discrete case of a 2-point space; b) the product
case of a 4-dimensional manifold by case a); c) the irrational rotation algebra Aθ.

In order to see what the relevant concepts are in the 0-dimensional case a), we first
need to discuss product spaces briefly. We are given two triples

(A1,H1, D1), (A2,H2, D2)

and we assume that one of them is even, i.e., that we are given a Z/2-grading, say γ1,
on H1. The product is then given by the triple (A,H, D), where

A = A1 ⊗A2, H = H1 ⊗ H2, D = D1 ⊗ 1 + γ1 ⊗D2.

This corresponds to the external product of K-cycles. There is an obvious notion of
external product of Hermitian finitely generated projective modules over the Aj.

Next, the formula D2 = D2
1 ⊗ 1 + 1⊗D2

2, which follows from the anticommutation of
D1 with γ1, shows that dimensions add up, that is, if Dj is (pj,∞)-summable then D
is (p,∞)-summable p = p1 + p2; moreover, once the limiting procedure Limω is fixed,
one can show that if one of the two terms is convergent then ∀Tj ∈ L(Hj),

Γ( p
2
+1)

Γ( p1
2

+1) Γ( p2
2

+1)
Trω

(
(T1 ⊗ T2)|D|−p

)
= Trω(T1|D1|−p1)Trω(T2|D2|−p2) .

All of this is true provided that pj ≥ 1, but in the case we are interested in (Example b))
we have p1 = 4 and p2 = 0. The corresponding formula turns out to be

Trω

(
(T1 ⊗ T2)|D|−p

)
= Trω(T1|D1|−p)Trace(T2),

where Trace is the ordinary trace. To understand how this occurs, one can use the
following general equality, assuming that |D|−1 ∈ L(p,∞):

Limω

(
1

λ
Trace(Te−λ−2/pD2

)

)
= Γ

(
p
2

+ 1
)

Trω(T |D|−p)

for all T ∈ L(H).

Thus, the 0-dimensional analogue of the action YM(∇) is just given by Trace(π(θ)2).

2. Example a). The space we are dealing with has two points a and b. Thus, the
algebra A is just the direct sum C⊕ C of two copies of C. An element f ∈ A is given
by two complex numbers f(a), f(b) ∈ C. Let (H, D, γ) be a 0-dimensional K-cycle
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over A; then H is finite-dimensional and the representation of A in H corresponds to
a decomposition of H as a direct sum H = Ha + Hb, with the action of A given by

f ∈ A 7→
[
f(a) 0

0 f(b)

]
.

If we write D as a 2× 2 matrix in this decomposition,

D =

[
Daa Dab

Dba Dbb

]
,

we can ignore the diagonal elements since they commute exactly with the action of A.
We shall thus take D to be of the form

D =

[
0 Dab

Dba 0

]
,

where Dba = D∗
ab and Dba is a linear mapping from Ha to Hb. We shall denote this

linear mapping by M and take for γ the Z/2-grading given by the matrix

[
1 0
0 −1

]
= γ. We thus have

A = C⊕ C, H = Ha ⊕ Hb, D =

[
0 M∗

M 0

]
, γ =

[
1 0
0 −1

]
.

Let us first compute the metric on the space X = {a, b}, given by Formula 1 of
Section 1. Given f ∈ A, we have

[D, f ] =

[[
0 M∗

M 0

]
,

[
f(a) 0

0 f(b)

]]

=

[
0 M∗(f(b)− f(a)

)
−M

(
f(b)− f(a)

)
0

]
=

(
f(b)− f(a)

) [
0 M∗

−M 0

]
.

Thus, the norm of this commutator is |f(b)− f(a)|λ, where λ is the largest eigenvalue
‖M‖ of |M |. Therefore

d(a, b) = sup{|f(a)− f(b)|; ‖[D, f ]‖ ≤ 1} = 1/λ.

Let us now determine the space of gauge potentials, the curvature and the action in
two cases.

Case α): E = A (i.e., the trivial bundle over X)

The space Ω1(A) of universal 1-forms over A is given by the kernel of the multiplication
m : A ⊗ A → A, m(f ⊗ g) = fg. These are functions on X × X that vanish on the
diagonal. Thus, Ω1(A) is a 2-dimensional space; if e ∈ A is the idempotent e(a) = 1,
e(b) = 0, this space has as basis

ede, (1− e)de,
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so that every element of Ω1(A) is of the form λede + µ(1− e)d(1− e). The differential
d : A → Ω1(A) is the finite difference

df = (∆f)ede− (∆f)(1− e)d(1− e), ∆f = f(a)− f(b);

it is a derivation with values in the bimodule Ω1(A), which fails to be commutative
since fω 6= ωf for ω ∈ Ω1, f ∈ A.

Also, if M 6= 0 then the representation π : Ω∗(A) → L(H) is injective on Ω1(A), so
that Ω1(A) = Ω1

D(A). We have

π
(
λede + µ(1− e)de

)
=

[
0 −λM∗

µM 0

]
∈ L(H).

A vector potential is given by a selfadjoint element of Ω1
D, i.e., by a single complex

number Φ, with

π(V ) =

[
0 ΦM∗

ΦM 0

]
.

Since V = −Φede + Φ(1− e)de, its curvature is

θ = dV + V 2 = −Φdede− Φdede +
(
Φede− Φ(1− e)de

)2
,

and, using the equalities ede(1− e) = ede, e(de)e = 0, (1− e)de(1− e) = 0, we have

θ = −(Φ + Φ)dede− (ΦΦ)dede.

Under the representation π, we have π(de) =

[
0 −M∗

M 0

]
and π(dede) =

[−M∗M 0
0 −MM∗

]
.

This yields the formula for the Yang–Mills action

YM(V ) = 2(|Φ + 1|2 − 1)2Trace
(
(M∗M)2

)
,

where Φ is an arbitrary complex number. The action of the gauge group U = U(1)×
U(1) on the space of vector potentials, i.e., on Φ, is given by

γu(V ) = udu∗ + uV u∗;

for u = uae + ub(1− e), this gives

γu(V ) =
(
uae + ub(1− e)

)
(uade− ubde)

+
(
uae + ub(1− e)

)(− Φede + Φ(1− e)de
)(

uae + ub(1− e)
)

= ede + ubua(1− e)de− uaubede− (1− e)de

−uaubΦede + ubuaΦ(1− e)de,

which, on the variable 1 + Φ, just means multiplication by ubua.

In this very simple case, our action YM(V ) reproduces the usual situation of broken
symmetries (Figure 3); it has a non-unique minimum, |Φ+1| = 1, which is acted upon
nontrivially by the gauge group.
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Figure 3. The potential Y M(V )

The fermionic action is in this case given by

〈ψ,
(
D + π(V )

)
ψ〉,

where the operator D + π(V ) is equal to[
0 M∗

M 0

]
+

[
0 ΦM∗

ΦM 0

]
=

[
0 (1 + Φ)M∗

(1 + Φ)M 0

]
,

which is a term of Yukawa type coupling the fields (1 + Φ) and ψ.

Case β): Let us take for E the nontrivial bundle over X = {a, b} with fibers of di-
mensions na and nb, respectively, over a and b. This bundle is nontrivial if and only
if na 6= nb; we shall consider the simplest case na = 2, nb = 1. The finitely generated
projective module E of sections is of the form

E = fA2,

where the idempotent f ∈ M2(A) is given by the formula

f =

[
(1, 1) 0

0 (1, 0)

]
=

[
1 0
0 e

]

in terms of the notation of α).
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To the idempotent f there corresponds a particular compatible connection on E , given
by ∇0ξ = fdξ with the obvious notation. An arbitrary compatible connection on E
has the form

∇ξ = ∇0ξ + ρξ,

where ρ = ρ∗ is a selfadjoint element of M2

(
Ω1

D(A)
)

such that fρ = ρf = ρ. If we
write ρ as a matrix,

ρ =

[
ρ11 ρ12

ρ21 ρ22

]
,

these conditions read:

eρ21 = ρ21, eρ22 = ρ22 = ρ22e, ρ12e = ρ12;

thus we get

ρ11 = −Φ1ede + Φ1(1− e)de, ρ21 = Φ2ede, ρ12 = ρ∗21, ρ22 = 0,

where Φ1 and Φ2 are arbitrary complex numbers.

The curvature θ is given by

θ = fdfdf + fdρf + ρ2

=

[
0 0
0 edede

]
+

[
dρ11 (dρ12)e
edρ21 0

]
+

[
ρ11ρ11 + ρ12ρ21 ρ11ρ12

ρ21ρ11 ρ21ρ12

]
.

An easy calculation gives the action YM(∇) in terms of the variables Φ1, Φ2:

YM(∇) =
(
1 + 2

(
1− (|Φ1 + 1|2 + |Φ2|2)

)2
)
Tr

(
(M∗M)2

)
.

It is, by construction, invariant under the gauge group U(1) × U(2). What we learn
in Example β) rather than in α) is that the choice of vacuum corresponds to a choice
of connection minimizing the action, and in case β) there is really no preferred choice
of∇0, the point 0 of the space of vector potentials (case α)) having no intrinsic meaning.
In fact, the space of connections realizing the minimum of the action Y M is a 3-sphere

{(Φ1, Φ2) ∈ C2; |Φ1 + 1|2 + |Φ2|2 = 1}
whose elements have the following meaning. Let Ea (resp. Eb) be the fiber of our
Hermitian bundle over the point a (resp. b) of X; then dim Ea = 2, dim Eb = 1. As we
saw above, the differential d : A → Ω1(A) is the finite difference. One way to extend
it to the bundle E is to use an isometry u : Eb → Ea and the formula

(∆ξ)a = ξa − uξb, (∆ξ)b = ξb − u∗ξa.

All minimal connections ∇ are of the form

∇ξ = (∆ξ)a ⊗ ede + (∆ξ)b ⊗ (1− e)d(1− e).

Since the minimum of YM(∇) is > 0 we also see that the bundle E is not flat; it does
not admit any compatible connection with vanishing curvature. Since the dimension
of the space X is 0, the action YM has of course no topological meaning. However, we
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shall now return to the 4-dimensional case and work out the case of the product space
in detail.

3. Example b). (4-dimensional Riemannian manifold V )× (2-point space X).

Let us fix the notation: V is a compact Riemannian spin 4-manifold, A1 the algebra
of functions on V and (H1, D1, γ5) the Dirac K-cycle on A1, with its canonical Z/2-
grading γ5 given by the orientation, let A2, H2, D2 be as in Example a) above, that is,
A2 = C⊕ C, H2 is the direct sum H2,a ⊕ H2,b, and D2 is given by the matrix

D2 =

[
0 M∗

M 0

]
.

Let A = A1 ⊗A2, H = H1 ⊗ H2 and D = D1 ⊗ 1 + γ5 ⊗D2.

The algebra A is commutative; it is the algebra of complex-valued functions on the
space Y = V ×X, which is the union of two copies of the manifold V : Y = Va ∪ Vb.

Let us first compute the metric on Y associated with the K-cycle (H, D):

d(p, q) = sup
f∈A

{|f(p)− f(q)|; ‖[D, f ]‖ ≤ 1}.

To the decomposition Y = Va∪Vb there corresponds a decomposition of A as Aa⊕Ab,
so that every f ∈ A is a pair (fa, fb) of functions on V . Also, to the decomposition

H2 = H2,a ⊕ H2,b,

there corresponds a decomposition H = Ha⊕Hb, in which the action of f = (fa, fb) ∈ A
is diagonal:

f 7→
[
fa 0
0 fb

]
∈ L(H).

In this decomposition the operator D becomes

D =

[
∂V ⊗ 1 γ5 ⊗M∗

γ5 ⊗M ∂V ⊗ 1

]
,

where ∂V is the Dirac operator on V and γ5 is the Z/2-grading of its spinor bundle.

This gives us the formula for the “differential” of a function f ∈ A:

[D, f ] =

[
i−1γ(dfa)⊗ 1 (fb − fa)γ5 ⊗M∗

(fa − fb)γ5 ⊗M i−1γ(dfb)⊗ 1

]
.

The differential [D, f ] thus contains three parts:

α) the usual differential dfa of the restriction of f to the copy Va of V ;

β) the usual differential dfb of the restriction of f to the copy Vb of V ;

γ) the finite difference ∆f = f(pa)− f(pb), where pa and pb are the points of Va

and Vb above a given point p of V .
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The norm of the operator [D, f ] can be computed easily: if λ is the norm of M , i.e.,
the largest eigenvalue of |M | = (M∗M)1/2, then

‖[D, f ]‖ = ess sup
p∈V

[ ‖dfa(p)‖ −iλ(∆f)(p)
iλ(∆f)(p) ‖dfb(p)‖

]
,

where ‖dfa(p)‖ is the length of the gradient of fa at p ∈ Va.

We thus obtain:

Proposition 4.

1) The restriction of the metric d on Va ∪ Vb to each copy (Va or Vb) of V is the
Riemannian geodesic distance of V .

2) For each point p = pa of Va, the distance d(pa, Vb) = Inf{d(pa, q); q ∈ Vb} is
equal to λ−1 and is attained at the unique point pb.

Now recall that, given a metric space (Y, d) and two subsets Y1, Y2 of Y , their Hausdorff
distance d(Y1, Y2) is given by

d(Y1, Y2) = sup{d(x, Y2), x ∈ Y1; d(x, Y1), x ∈ Y2}.
Thus, the metric d on Va ∪ Vb = Y is clearly related to the following definition of the
Gromov distance between two metric spaces (X1, d1) and (X2, d2):

Definition 5. [239] Let (X1, d1) and (X2, d2) be two metric spaces. Then, given ε > 0,
the Gromov distance δ(X1, X2) is smaller than ε if and only if there exists a metric d
on X = X1 ∪X2 such that d|Xj = dj, and d(X1, X2) < ε.

Thus, we see that if we try to take different Riemannian metrics ga and gb on the two
copies, Va and Vb, of V , say by letting

D =

[
Da ⊗ 1 γ ⊗M∗

γ ⊗M Db ⊗ 1

]
,

then Proposition 4 fails unless the Gromov distance between ga and gb is less than
ε = 1/λ, λ = ‖M‖.
Let us now pass to the computation of the A-bimodule Ω1

D of 1-forms over the space Y .
The above computation of [D, f ] = π(df) for f ∈ A shows that an element α of the
A-bimodule Ω1

D = π(Ω1) is given by:

α) an ordinary differential form ωa on Va;

β) an ordinary differential form ωb on Vb;

γ) a pair of complex-valued functions δa, δb on V .
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dfb

δ
a
 = fb − f

a

df
a

f = (f
a
, fb)

Mb

M
a

Figure 4. Differential of a function on a double-space

The corresponding operator in H is given by[
i−1γ(ωa)⊗ 1 δaγ5 ⊗M∗

δbγ5 ⊗M i−1γ(ωb)⊗ 1

]
= α;

the bimodule structure over A is given, with obvious notation, by

(fa, fb)(ωa, ωb, δa, δb) = (faωa, fbωb, faδa, fbδb),

(ωa, ωb, δa, δb)(fa, fb) = (faωa, fbωb, fbδa, faδb).

The involution ∗ is given by (ωa, ωb, δa, δb)
∗ = (−ωa,−ωb, δb, δa).

The terms δa and δb correspond to the bimodule of finite differences on passing from
one copy Va to the other copy Vb of V . Note that even though A is commutative,
this bimodule is not commutative; for, if it were commutative then the finite difference
would fail to be a derivation. With the above notation, the differential f ∈ A 7→ π(df)
reads as follows:

f = (fa, fb) 7→ (dfa, dfb, fb − fa, fa − fb) ∈ Ω1
D.

When we project on V , the bimodule Ω1
D can be viewed as a 10-dimensional bundle

over V , given by two copies of the complexified cotangent bundle, and a trivial 2-
dimensional bundle

T ∗
p (V )C ⊕ T ∗

p (V )C ⊕ C⊕ C;
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however, one must keep in mind the nontrivial bimodule structure in the last two terms.
Figure IV.4 illustrates the situation.

As in the case of the Dirac operator on Riemannian manifolds (Section 1, Lemma 6),
let us compute the pairs of operators of the form π(ρ) = T1, π(dρ) = T2 for ρ ∈ Ω1(A).
Given ρ =

∑
fjdgj ∈ Ω1(A), with fj, gj ∈ A, we have

π(ρ) =

[
i−1γ(ωa)⊗ 1 δaγ5 ⊗M∗

δbγ5 ⊗M i−1γ(ωb)⊗ 1

]
,

where ωa =
∑

fjadgja, ωb =
∑

fjbdgjb and

δa =
∑

fja(gjb − gja), δb =
∑

fjb(gja − gjb).

We have π(dρ) =
∑

π(dfj)π(dgj), which gives the 2× 2 matrix

π(dρ) =

[−γ(ξa)⊗ 1 + (δa + δb)⊗M∗M γ5i
−1γ(ηa)⊗M∗

γ5i
−1γ(ηb)⊗M −γ(ξb)⊗ 1 + (δa + δb)⊗MM∗

]
,

where ξa =
∑

dfjadgja and ξb =
∑

dfjbdgjb are sections of the Clifford algebra bundle
C2 over V , whereas

ηb =
∑(

(fja − fjb)dgja − (gja − gjb)dfjb

)
,

ηa =
∑(

(fjb − fja)dgjb − (gjb − gja)dfja

)
.

Using the equalities

dδa =
∑ (

fja(dgjb − dgja) + (gjb − gja)dfja

)
,

dδb =
∑ (

fjb(dgja − dgjb) + (gja − gjb)dfjb

)
,

ωa =
∑

fjadgja, ωb =
∑

fjbdgjb,

we can rewrite ηa and ηb as

ηa = ωb − dδa − ωa, ηb = ωa − dδb − ωb.

As in the Riemannian case (Lemma 6 of Section 1), the sections ξa and ξb of C2 are
arbitrary except for σ2(ξa) = dωa and σ2(ξb) = dωb. This shows that the subspace
π
(
d(J0 ∩ Ω1)

)
of π(Ω2) is the space of 2× 2 matrices of operators of the form

T =

[
γ(ξa)⊗ 1 0

0 γ(ξb)⊗ 1

]
,

where ξa and ξb are sections of C0, i.e., are just arbitrary scalar-valued functions on V ,
so that γ(ξa) = ξa, γ(ξb) = ξb.

A general element of π(Ω2) is a 2× 2 matrix of operators of the form

T =

[−γ(αa)⊗ 1 + ha ⊗M∗M γ5i
−1γ(βa)⊗M∗

γ5i
−1γ(βb)⊗M −γ(αb)⊗ 1 + hb ⊗MM∗

]
,
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where αa, αb are arbitrary sections of C2, ha, hb are arbitrary functions on V and βa, βb

are arbitrary sections of C1 (i.e., 1-forms).

Lemma 6. Assume that M∗M is not a scalar multiple of the identity matrix . Then,
an element of Ω2

D is given by :

1) a pair of ordinary 2-forms αa, αb on V ;

2) a pair of ordinary 1-forms βa, βb on V ;

3) a pair of scalar functions ha, hb on V .

The hypothesis M∗M 6= λ is important since otherwise the functions ha, hb are elimi-
nated by π

(
d(J0 ∩ Ω1)

)
.

Using the above computation of π(dρ) we can, moreover, compute the sextuple (αa, αb,
βa, βb, ha, hb); then for the differential dω of an element ω = (ωa, ωb, δa, δb) of Ω1

D, we
get:

1) αa = dωa, αb = dωb;

2) βa = ωb − ωa − dδa, βb = ωa − ωb − dδb;

3) ha = δa + δb, hb = δa + δb.

Thus, we see that the differential dω ∈ Ω2
D involves the differential terms dωa, dωb, dδa

and dδb as well as the finite-difference terms ωa − ωb and δa + δb, but in combinations
such as ωb − ωa − dδa imposed by d(df) = 0. Let us compute the product ωω′ ∈ Ω2

D

of two elements ω = (ωa, ωb, δa, δb), ω′ = (ω′a, ω
′
b, δ

′
a, δ

′
b) of Ω1

D; we get:

1) αa = ωa ∧ ω′a, αb = ωb ∧ ω′b;

2) βa = δaω
′
b − δ′aωa, βb = δbω

′
a − δ′bωb;

3) ha = δaδ
′
b, hb = δbδ

′
a.

The next step is to determine the inner product on the space Ω2
D of 2-forms given in

Section 1. By definition, we take the orthogonal complement of π
(
d(J0∩Ω1)

)
in π(Ω2)

with the inner product 〈T1, T2〉 = Trω(T ∗
1 T2|D|−4). An easy calculation then gives:

Lemma 7. Let λ(M∗M) be the orthogonal projection (for the Hilbert-Schmidt scalar
product) of the matrix M∗M onto the scalar matrices λid. Then, the squared norm of
an element (αa, αb, βa, βb, ha, hb) of Ω2

D is given by (8π2)−1 times∫

V

(Na‖αa‖2 + Nb‖αb‖2)dv + tr(M∗M)

∫

V

(‖βa‖2 + ‖βb‖2)dv

+ tr
((

M∗M − λ(M∗M)
)2

)
×

∫

V

(‖ha‖2 + ‖hb‖2)dv,

where Na = dim H2,a and Nb = dim H2,b.
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We are now ready to compute the action YM(∇). We shall take the Hermitian bundle
on Y = Va ∪ Vb that has complex fiber C2 on the copy Va of V , and is trivial with
one-dimensional fiber C on the copy Vb of V . In other words, we consider the product
of the example of Section 1 by the example a), β) on the space X. From the above
description of Ω1

D, we see that if ∇ is a compatible connection on E then it is given by
a triple:

α) an ordinary compatible connection ∇a on the restriction of E to Va;

β) an ordinary compatible connection ∇b on the restriction of E to Vb;

γ) a section u on V of the bundle Hom(Eb, Ea) of linear mappings from the fiber
Eb,p to the fiber Ea,p.

Both α) and β) have the obvious meaning, while γ) prescribes the value of the finite-
difference operation on sections ξ of E. At the point pa, this finite difference is

(∆ξ)(pa) = ξ(pa)− upξ(pb) ∈ Epa = C2,

whereas at the point pb it is given by

(∆ξ)(pb) = ξ(pb)− u∗pξ(pa) ∈ Epb
= C.

Of course, the choice of u is given by a pair φ1, φ2 of complex scalar fields on V , namely
the two components of u(1) for the basis of C2 (cf. Example a), β)).
2) For each point p = pa of Va, the distance d(pa, Vb) = Inf{d(pa, q); q ∈ Vb} is equal
to λ−1 and is attained at the unique point pb.

The gauge group U = EndA(E) is the group of unitary endomorphisms of the bundle
E over Y = Va ∪ Vb, or, equivalently, the group

U = Map
(
V, U(1)× U(2)

)
.

Its actions on the U(2) connection ∇a and on the U(1) connection ∇b are the obvious
ones, and the action on a field u ∈ Hom(Eb, Ea) is given by composition.

Let us be more explicit in the description of ∇ as a linear mapping from the space E
of sections of E to E ⊗A Ω1

D. An element of E ⊗A Ω1
D is given by:

1) an ordinary differential form ω = (ωa, ωb) on Y = Va ∪ Vb, with coefficients in
E,

2) a section δ = (δa, δb) on Y = Va ∪ Vb of the bundle E.

The mapping ∇ is then given by

∇(ξa, ξb) = (∇aξa,∇bξb), (ξa − uξb), (ξb − u∗ξa)

for any section ξ = (ξa, ξb) of E.
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Since the restriction of E to Va is trivial with fiber C2, we may as well describe ∇a by a

2× 2 matrix

[
ωa

11 ωa
12

ωa
21 ωa

22

]
of 1-forms on V that is skew-adjoint. Similarly, ∇b is given by

a single skew-adjoint 1-form [ωb
11], and u by a pair of complex fields (1+ϕ1, ϕ2) = u(1).

With these notations, the connection ∇ is given by the equality

∇ξ = fdξ + ρξ ∈ E ⊗A Ω1
D ∀ξ ∈ E ,

where E = fA2, f ∈ M2(A) being the idempotent f =

[
1 0
0 e

]
, e = (0, 1) ∈ A, and

where ρ ∈ M2(Ω
1
D) is the 2× 2 matrix whose entries are the following elements of Ω1

D:

ρ11 = (ωa
11, ω

b
11, ϕ1, ϕ1),

ρ12 = (ωa
12, 0, 0, ϕ2),

ρ21 = (ωa
21, 0, ϕ2, 0),

ρ22 = (ωa
22, 0, 0, 0),

or, equivalently,

ρ =

[[
ωa

11 ωa
12

ωa
21 ωa

22

]
,

[
ωb

11 0
0 0

]
,

[
ϕ1 0
ϕ2 0

]
,

[
ϕ1 ϕ2

0 0

]]
.

The curvature θ is then the following element of fM2(Ω
2
D)f :

θ = fdfdf + fdρf + ρ2,

which is easily determined using the above computation of

d : Ω1
D → Ω2

D, ∧ : Ω1
D × Ω1

D → Ω2
D.

As we saw in Lemma 6, elements of Ω2
D have a differential degree and a finite-difference

degree (α, β) adding up to 2. Let us thus begin with terms in θ of bi-degree (2, 0). To
compute them we just use the formulas 1) following Lemma 6:

αa = dωa, αb = dωb; αa = ωa ∧ ω′a, αb = ωb ∧ ω′b.

We thus see that the component θ(2,0) of bi-degree (2, 0) is the following 2 × 2 matrix
of 2-forms on Va ∪ Vb:

θ(2,0)
a = dωa + ωa ∧ ωa, θ

(2,0)
b = dωb + ωb ∧ ωb =

[
dωb

11 0
0 0

]
.

Next, we look at the component θ(1,1) of bi-degree (1, 1) and use the formulas 2):

βa = ωb − ωa − dδa, βa = δaω
′
b − ωaδ

′
a,

βb = ωa − ωb − dδb, βb = δbω
′
a − ωbδ

′
b.
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Thus, θ(1,1) is the following 2× 2 matrix of 1-forms on Va ∪ Vb:

θ(1,1)
a =

([
ωb

11 0
0 0

]
−

[
ωa

11 ωa
12

ωa
21 ωa

22

]
−

[
dϕ1 0
dϕ2 0

])[
1 0
0 0

]

+

[
ϕ1 0
ϕ2 0

] [
ωb

11 0
0 0

]
−

[
ωa

11 ωa
12

ωa
21 ωa

22

] [
ϕ1 0
ϕ2 0

]

=

[−dϕ1 − (ωa
11 − ωb

11)(ϕ1 + 1)− ωa
12ϕ2 0

−dϕ2 − ωa
21(ϕ1 + 1)− (ωa

22 − ωb
11)ϕ2 0

]
.

Similarly, we have

θ
(1,1)
b =

[
1 0
0 0

]([
ωa

11 ωa
12

ωa
21 ωa

22

]
−

[
ωb

11 0
0 0

]
−

[
dϕ1 dϕ2

0 0

])

+

[
ϕ1 ϕ2

0 0

] [
ωa

11 ωa
12

ωa
21 ωa

22

]
−

[
ωb

11 0
0 0

] [
ϕ1 ϕ2

0 0

]

=

[
dϕ1+(ωa

11−ωb
11)(ϕ1+1)+ωa

21ϕ2 −dϕ2+ωa
12(ϕ1 +1)+(ωa

22−ωb
11)ϕ2

0 0

]
.

Finally, we have to compute the component θ(0,2); we use the formulas 3):

ha = δa + δb, ha = δaδ
′
b,

ha = δa + δb, hb = δbδ
′
a.We then have

θ(0,2)
a =

[
ϕ1 0
ϕ2 0

]
+

[
ϕ1 ϕ2

0 0

]
+

[
ϕ1 0
ϕ2 0

] [
ϕ1 ϕ2

0 0

]

=

[
ϕ1 + ϕ1 + ϕ1ϕ1 ϕ2(1 + ϕ1)

ϕ2(1 + ϕ1) 0

]
,

θ
(0,2)
b =

[
1 0
0 0

]
+

[
1 0
0 0

] [
ϕ1 + ϕ1 ϕ2

ϕ2 0

] [
1 0
0 0

]

+

[
ϕ1 ϕ2

0 0

] [
ϕ1 0
ϕ2 0

]

=

[
1 + ϕ1 + ϕ1 + ϕ1ϕ1 + ϕ2ϕ2 0

0 0

]
.

Thus,
YM(∇) = I2 + I1 + I0,

where each Ij is the integral over M of a Lagrangian density given by the following
formulas.

First, for I2:
|dωa + ωa ∧ ωa|2Na + |dωb|2Nb,
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where Na = dim H2,a, Nb = dim H2,b and the norms are the squared norms for the
curvatures of the connections ∇a and ∇b, respectively.

Next, for I1:

2

∣∣∣∣∇
(

1 + ϕ1

ϕ2

)∣∣∣∣
2

tr(M∗M),

where ∇ is the covariant differentiation of a pair of scalar fields, given by

d +

[
ωa

11 − ωb
11 ωa

12

ωa
21 ωa

22 − ωb
11

]
.

Finally, for I0: (
1 + 2

(
1− (|1 + ϕ1|2 + |ϕ2|2)

)2
)
Tr

((
λ⊥(M∗M)

)2
)
,

where λ⊥ is the orthogonal projection in the Hilbert–Schmidt space of matrices onto
the orthogonal complement of the scalar multiples of the identity. These terms are
obtained, with the right coefficients, from the computation of the Hilbert space norm
on Ω2

D in Lemma 7.

The fermionic action is even easier to compute. We have

〈ψ, D∇ψ〉 = J0 + J1,

where ψ ∈ E ⊗A H, γψ = ψ, is given by a pair of left-handed sections of S ⊗ H2,a

denoted by

[
ψa

1

ψa
2

]
, and a right-handed section of S ⊗ H2,b denoted by ψb. Both J0 and

J1 are given by Lagrangian densities:

J0 : ψ
a(

∂ + i−1γ(ωa)
)
ψa + ψ

b(
∂ + i−1γ(ωb)

)
ψb,

J1 : ψbM [(1 + ϕ1), ϕ2]ψa + h.c.

We can now make the point concerning this example b): modulo a few nuances that
we shall deal with, the five terms of our action

I0 + I1 + I2 + J0 + J1

are the five terms of the Glashow–Weinberg–Salam unification of electromagnetic and
weak forces for N generations of leptons (where N = Na = Nb is the dimension of H2,a

and H2,b).

Let us describe for instance, from [197], and using the conventional notation of physics,
the five constituents of the G.W.S. Lagrangian, which we write directly in the Euclidean
(i.e., imaginary time) framework. For each constituent, we give the corresponding fields
and Lagrangian:

L = LG + Lf + LΦ + LY + LV ,

where
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1) LG: The pure gauge boson part is just

LG =
1

4
(GµνaG

µν
a ) +

1

4
(FµνF

µν),

where Gµνa = ∂µWνa − ∂νWµa + gεabcWµbWνc and Fµν = ∂µBν − ∂νBµ are the
field strength tensors of an SU(2) gauge field Wµa and a U(1) gauge field Bµ.
(Einstein summation over repeated indices is used here.)

2) Lf : The fermion kinetic term has the form

Lf = −
∑ [

fLγµ

(
∂µ + ig

τa

2
Wµa + ig′

YL

2
Bµ

)
fL + fRγµ

(
∂µ + ig′

YR

2
Bµ

)
fR

]
,

where the fL (resp. fR) are the left-handed (resp. right-handed) fermion fields,
which for leptons and for each generation are given by a pair, i.e., an isodou-

blet, of left-handed spinors (such as

[
νL

eL

]
), and a singlet (eR), i.e., a right-

handed spinor.

We shall return later to the hypercharges YL and YR, which for leptons are given by
YL = −1, YR = −2.

3) LΦ: The kinetic terms for the Higgs fields are

LΦ = −
∣∣∣∣
(

∂µ + ig
τa

2
Wµa + i

g′

2
Bµ

)
Φ

∣∣∣∣
2

,

where Φ =

[
Φ1

Φ2

]
is an SU(2) doublet of complex scalar fields Φ1 and Φ2 with

hypercharge YΦ = 1.

4) LY : The Yukawa coupling of Higgs fields with fermions is

LY = −
∑

[Hff ′(fL · Φ)f ′R + H∗
ff ′f

′
R(Φ+ · fL)],

where Hff ′ is a general coupling matrix in the space of different families.

5) LV : The Higgs self-interaction is the potential

LV = µ2(Φ+Φ)− 1

2
λ(Φ+Φ)2,

where λ > 0 and µ2 > 0 are scalars.

All of these terms are deeply rooted in both experimental and theoretical physics,
but we postpone an elaboration of this point to the complete model invoking quarks
and strong interactions as well. For the moment we shall establish a dictionary, or
change-of-variables, between our action and the Glashow–Weinberg–Salam action.

The first obvious nuance between the two actions is that our action involves a U(1) and
a U(2) gauge field while the G.W.S. action involves a U(1) and an SU(2) gauge field
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(however, cf. [579] for an interesting perspective on this point). We shall thus, in an
artificial manner , reduce our theory to U(1)× SU(2) by imposing on the connections
∇a = d + ωa and ∇b = d + ωb the following condition:

Ad hoc condition: tr(ωa) = ωb.

Let us now spell out the dictionary.

Noncommutative geometry Classical field theory

vector ψ ∈ E ⊗A H, γψ = ψ chiral fermion f
differential components of pure gauge bosons W,B

connection ωa, ωb

finite-difference component Higgs field Φ
of connection (1 + δa), δb

I2 LG

I1 LΦ

I0 LV

J0 Lf

J1 LY

It is moreover straightforward, using the above “ad hoc condition”, to work out the
change of variables from our fields ψ, ω, δ to the fields f, W,B, Φ which gives the equality

g−2YM(∇) + 〈ψ, D∇ψ〉 = L(f,W,B, Φ),

where the right-hand side is a special case of the G.W.S. Lagrangian, with a few
constraints. These relations are of limited use for three reasons. The first is that the
model incorporates neither the quarks nor the strong interaction, the second is the
artificial nature of the “ad hoc condition”, and the third and most important is that,
due to renormalization, the coupling constants such as g, g′, µ, λ, Hff ′ that appear in
the G.W.S. model are all functions of an effective energy Λ to which, for the moment,
we can give no preferred value.

In Section 5 we shall remove the first two defects by explaining how to incorporate
quarks and strong interactions, as well as how the hypercharges of physics occur, from
a conceptual point of view.

8. Example c). The noncommutative torus.

In this example we shall treat the noncommutative torus (cf. Chapter IV Section 6)
from a metric point of view, and show how the classical solutions of the extrema of
the Yang–Mills action modulo gauge transformations allow us to recover an ordinary
torus.
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Thus, let us begin with the following ∗-algebra Aθ, where θ ∈ [0, 1] is an irrational
number and λ = e(θ) = exp 2πiθ:

Aθ =
{∑

an,mUnV m; a ∈ S(Z2)
}

,

where S(Z2) is the vector space of sequences (an,m)n,m∈Z that decay faster than the
inverse of any polynomial in (n,m). The product in Aθ is specified by the relation

V U = λUV, λ = e(θ) = exp 2πiθ,

and the involution by U∗ = U−1, V ∗ = V −1.

In Chapter III we computed the cyclic cohomology of this algebra; thus, HC0(Aθ) is
1-dimensional and is generated by the unique trace τ0 of Aθ,

τ0(
∑

an,mUnV m) = a0,0 ∈ C,

whereas besides Sτ0 ∈ HC2 the cyclic cohomology HC2(Aθ) is generated by the cyclic
2-cocycle

τ2(a
0, a1, a2) = −2πi

∑

n0+n1+n2=0

m0+m1+m2=0

(n1m2 − n2m1) a0
n0,m0

a1
n1,m1

a2
n2,m2

.

The above considerations only involve the smooth algebra Aθ; we shall now fix the
metric. To that end we take the element G of Ω+

2 (Aθ) defined by

G = (dU)(dU)∗ + (dV )(dV )∗,

and we solve the following extremum problem (which, in the commutative case, gave
us the conformal structure on a Riemann surface):

Lemma 9. On the intersection of the cyclic cohomology class τ2 + b(KerB) with the
positive cone Z2

+ in Hochschild cohomology , the functional G defined by

ϕ ∈ Z2 7→ 〈G,ϕ〉 = ϕ(1, U, U∗) + ϕ(1, V, V ∗)

reaches its minimum at a unique point ϕ2 given by

ϕ2(a
0, a1, a2) = 2π

∑

n0+n1+n2=0

m0+m1+m2=0

(n1 − im1)(−n2 − im2) a0
n0,m0

a1
n1,m1

a2
n2,m2

.

We shall now use the noncommutative analogue of a conformal structure, i.e., the
positive cocycle ϕ2 together with the trace τ0, to construct the analogue of the Dirac
operator for Aθ, that is, we shall obtain a (2,∞)-summable K-cycle (H, D) on Aθ. The
Hilbert space H is the direct sum H = H+ ⊕ H− of the Hilbert space H− = L2(Aθ, τ0)
of the G.N.S. construction of τ0, and a Hilbert space H+ of forms of type (1, 0) on the
noncommutative torus which is obtained canonically from ϕ2 as follows:
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Proposition 10. Let A be a ∗-algebra and let ϕ2 ∈ Z2
+(A,A∗) be a positive Hochschild

2-cocycle on A. Let H+ be the Hilbert space completion of Ω1(A) equipped with the inner
product

〈a0da1, b0db1〉 = ϕ2(b
0∗a0, a1, b1∗).

Then the actions of A on H+ by left and right multiplications are unitary .

They are automatically bounded if A is a pre-C∗-algebra.

Thus, H+ is a bimodule over A (i.e., a correspondence in the sense of Chapter V) and
the differential d : A → Ω1(A) gives a derivation which, for reasons that will become
clear, we shall denote by ∂ : A → H+.

In our specific example, the computation is straightforward and gives H+ = L2(Aθ, τ0)
as an Aθ-bimodule and ∂ : A → H+ given by ∂ = 1√

2π
(δ1 − iδ2), where δ1, δ2 are the

canonical derivations of A. One can immediately check the following:

Proposition 11. Let A = Aθ act on the left on both H− = L2(Aθ, τ0) and H+

(associated with ϕ2 by Proposition 10). Then, the operator

D =

[
0 ∂
∂∗ 0

]

in H = H+ ⊕ H− defines a (2,∞)-summable K-cycle over Aθ.

The Z/2-grading γ is given by the matrix γ =

[
1 0
0 −1

]
.

We have thus arrived at the desired quantization of the cocycle ϕ2. Further calculation
yields the formula

(∗) −Trω

(
(1 + γ)a0[D, a1][D, a2]D−2

)
= ϕ2(a

0, a1, a2).

The point is that if we had started not with τ2 but with a multiple, λτ2, where λ > 0,
this would have replaced ϕ2 in Lemma 9 by λϕ2 and would thus have modified the
inner product of H+, multiplying it by λ. This is equivalent to the replacement of ∂
by λ1/2∂ keeping the inner product of H+ fixed, in view of the equality

〈a0∂a1, ∂a2〉 = ϕ2(a
0, a1, a2∗).

Thus, this replacement of τ2 by λτ2 replaces D by λ1/2D and clearly leaves unchanged
the left-hand side of formula (∗). This shows that there is a unique normalization of
ϕ2 for which (∗) holds. In fact, this normalization is dictated by the integrality of the
pairing of ϕ2 with K0(Aθ):

〈ϕ2, K0(Aθ)〉 = Z.

The same independence of the choice of trace τ0 applies to the homogeneous formula (∗),
but of course the value of the trace

a ∈ Aθ 7→ Trω(aD−2)



3. PRODUCT OF THE CONTINUUM BY THE DISCRETE AND SYMMETRY BREAKING 594

does depend on the scaling of D.

Note, finally, that we have found a completely canonical procedure for constructing the
K-cycle (H, D, γ) over Aθ from the fundamental class in cyclic cohomology, i.e., the
choice of orientation, and the formal positive element

G = dU(dU)∗ + dV (dV )∗ ∈ Ω2
+(Aθ).

This possibility of going backwards from cyclic cohomology to K-homology is at the
moment limited to the 2-dimensional situation.

We shall now use the (2,∞)-summable K-cycle (H, D, γ) over Aθ and compute the
action YM(∇) on connections ∇ on Hermitian finitely generated projective modules
over Aθ. Our first task will be to determine the differential graded algebra Ω∗

D(Aθ).
We thus need the analogue of Lemma 6 of Section 1. By construction, the Hilbert
space H is the direct sum of two copies of the left regular representation λ of Aθ in
L2(Aθ, τ0), and we have:

Lemma 12.

1) If k ≥ 1 then π(Ωk) ⊂ L(H) is the Aθ-bimodule of all 2×2 matrices with entries

in λ(Aθ) and of degree (−1)k for the Z/2-grading defined by γ =

[
1 0
0 −1

]
.

2) Let aij ∈ Aθ and consider the elements

α =

[
0 λ(a12)

λ(a21) 0

]
∈ π(Ω1), β =

[
λ(a11) 0

0 λ(a22)

]
∈ π(Ω2).

Then there exists an ω ∈ Ω1(Aθ) with α = π(ω) and β = π(dω) if and only if
a22 − a11 = ∂∗a12 − ∂a21.

This is not difficult to verify: first, the image under π of the subspace {aU−1dU +
bV −1dV ; a, b ∈ Aθ} of Ω1(Aθ) already includes all elements of the form

[
0 λ(a12)

λ(a21) 0

]

with aij ∈ Aθ. This shows that π(Ω1) has the desired form, and so does π(Ωk) since it
contains the kth power of π(Ω1).

To verify (2), one uses the commutation ∂∂∗ = ∂∗∂ as well as the equalities

π(ω) = 0, π(dω) =

[
λ(a) 0

0 λ(a)

]
,

where ω ∈ Ω1(Aθ) is given by

ω =
1

2π
a

(
U−1dU − 1

2
U−2d(U2)

)
(a ∈ Aθ).
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It is straightforward to compute the Dixmier trace Trω(TD−2), where T =
(
λ(aij)

)
is

a 2×2 matrix of elements λ(aij) (aij ∈ Aθ), since Aθ (and hence M2(Aθ)) has a unique
normalized trace τ0. Thus, we have

Trω

((
λ(aij)

)
D−2

)
= τ0(a11) + τ0(a22).

With the notation of Section 1, Proposition 5, we thus see that, as an Aθ-bimodule,
the Hilbert space completion H2 of π(Ω2) for the inner product given by the Dixmier
trace may be identified with two copies of L2(Aθ, τ0), each viewed as an Aθ-bimodule.

The projection P is the projection onto the orthogonal complement of the elements
π(dω) with ω ∈ Ω1 and π(ω) = 0. Thus, P is the projection on the orthogonal
complement of the pairs (a11, a22) with ajj ∈ Aθ, a11 = a22. This shows that we

can identify the Aθ-bimodule L2(Aθ, τ0) with Ω2
D by the map a 7→

[
λ(a) 0

0 −λ(a)

]
.

Similarly, we identify the Aθ-bimodule Ω1
D with a sum of two copies of L2(Aθ, τ0) using

the map (a1, a2)7→
[

0 λ(a1−ia2)
−λ(a1+ia2) 0

]
.

Proposition 13. With the above identifications of Aθ-bimodules the differentials d :
Aθ→Ω1, d : Ω1→Ω2 and the product: Ω1×Ω1→Ω2 are given by: da = (δ1 a, δ2 a),
d(a1, a2) = δ2(a1)− δ1(a2),

(a1, a2)(b1, b2) = a1b2 − a2b1 ∀a, aj, bj ∈ Aθ.

The proof is straightforward. This proposition shows that the notion of compatible
connection ∇ ∈ C(E) on a Hermitian, finitely generated projective module E over Aθ,
as defined in Section 1, is identical with the notion of compatible connection that
was first introduced in [98] and used in [135] and which depended on the natural
parallelizable structure of Aθ . Moreover, up to normalization, the two actions YM—
the first as defined in Section 1, the second as defined in [135]—do coincide. We can
thus exploit the results of [135] and state:

Theorem 14. Let E be an arbitrary Hermitian, finitely generated projective module
over Aθ and let d be the largest integer such that E = Λd is a multiple of a finitely
generated projective module Λ. Then the moduli space of the equivalence classes un-
der U(E) of the compatible connections ∇ on c that minimize the action YM(∇) is
homeomorphic to (T2)d/Sd, the quotient of the dth power of a 2-torus by the action of
the symmetric group Sd.

This shows that even though we started with the irrational rotation algebra, a fairly
irrational or singular datum, the Yang–Mills problem takes us back to a fairly regular
situation.
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We should again stress that the only data used in setting up the Yang–Mills problem
are 1) the ∗-algebra Aθ, and 2) the formal “metric”

dUdU∗ + dV dV ∗ ∈ Ω2
+(Aθ).

We shall now give a thorough description of all the finitely generated projective modules
over Aθ and of the actual connections that minimize the action YM.

Let us recall from Chapter III Theorem 3.14 that the isomorphism classes of finitely
generated projective modules over Aθ are parametrized by the intersection of the lattice
Z2 with the half-space

{(x, y); x− θy > 0},
i.e.,

{(p, q) ∈ Z2; p− θq > 0}.
The mapping that associates with a finitely generated projective module E the positive
real number p− θq is the pairing with the trace τ0 that is the generator of HC0(Aθ).
It thus plays the role of the dimension, and indeed it is the Murray–von Neumann
dimension over the II1 factor R, the weak closure of Aθ on the Hilbert space H of the
K-cycle (H, D).

The mapping that assigns to E the integer q ∈ Z plays the role of the first Chern
class and is given by the pairing with the fundamental class τ2 ∈ HC2(Aθ) in cyclic
cohomology. It will be relevant to compare it below with the action YM.

Thus, let (p, q) ∈ Z2, q > 0, be a pair of relatively prime integers (p = 0 being
allowed). We recall (Section III.3) that a finitely generated projective module E over
Aθ is obtained as follows. Let S(R) be the usual Schwartz space of complex-valued
functions on the real line and define two operators V1 and V2 on S(R) by

(V1ξ)(s) = ξ(s− ε), (V2ξ)(s) = e(s)ξ(s)
(
s ∈ R, ξ ∈ S(R)

)
,

where ε = p
q
− θ and e(s) = exp 2πis (∀s ∈ R). Of course,

V2V1 = e(ε)V1V2.

Next, let K be a finite-dimensional Hilbert space and let w1, w2 be unitary operators
on K such that

w2w1 = e(p/q)w1w2, wq
1 = wq

2 = 1.

We make E into a right Aθ-module by defining

ξU = (V1 ⊗ w1)ξ, ξV = (V2 ⊗ w2)ξ (∀ξ ∈ S(R)⊗K = E).

By Theorem 14 of Chapter III Section 3 the above modules, together with the free
modulesAp

θ, give us the complete list of finitely generated projective modules E overAθ.
Since, given such an E , all the Hermitian structures on E are pairwise isomorphic, we
need only describe one of them on S(R)⊗K.
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We view E as the space S(R, K) of K-valued Schwartz functions on R and we define
the Hermitian metric, i.e., the Aθ-valued inner product, by the formula

〈ξ, η〉Aθ
(m,n) =

∫ ∞

−∞
〈wn

2 wm
1 ξ(s−mε), η(s)〉e(ns)ds,

where we have identified the elements a of Aθ with sequences f(m,n) of rapid decay
on Z2:

a =
∑

f(m,n)UmV n.

It is not difficult to check that this inner product defines a Hermitian structure on E .

All of the above constructions have a clear geometric origin if one remembers that
the algebra Aθ corresponds to the noncommutative space of leaves of the irrational
Kronecker foliation of the 2-torus (cf. Chapter II). Then the closed geodesics of the
2-torus are transverse to the foliation and yield the above description of Hermitian
finitely generated projective modules. However, we do not want at present to deviate
from our canonical route from Aθ and the metric dUdU∗ + dV dV ∗ to the Yang–Mills
problem under discussion.

We are now ready to describe the connections ∇ that minimize the action YM. By
Proposition 13, 2), giving a connection ∇ on a finitely generated projective module E
is equivalent to giving the two covariant differentials ∇j (j = 1, 2) such that

∇j(ξa) = (∇jξ)a + ξδj(a) ∀ξ ∈ E , a ∈ Aθ, j = 1, 2

(∇j is a linear mapping from E to E). Also, by Proposition 13, the curvature is, under
the identification of Ω2

D with L2(Aθ, τ0), equal to the endomorphism ∇1∇2 − ∇2∇1

of E . We shall thus say (as in [135]) that the curvature is constant if the endomorphism
∇1∇2 −∇2∇1 of E is a scalar multiple of the identity.

Let E be the Hermitian, finitely generated projective module S(R, K) as above; we
define ([98]) a connection ∇ on E by

(∇1ξ)(s) = 2πi(s/ε)ξ(s), (∇2ξ)(s) = (dξ/ds)(s) ∀s ∈ R,

where ε = p
q
− θ as above. Straightforward calculations show that this is indeed a

connection and that it is compatible with the Hermitian metric defined above.

Moreover, one checks that the curvature θ = ∇1∇2 − ∇2∇1 is constant and is given
by

θ = −2πi

ε
id.

All of this remains true, with the same value of the constant curvature, for the connec-
tions ∇σ obtained from the formulas

(∇σ
1ξ)(s) = 2πi(

s

ε
)ξ(s) + 2πiσ1ξ(s),

(∇σ
2ξ)(s) = (

dξ

ds
)(s) + 2πiσ2ξ(s),
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where σ1 and σ2 are commuting selfadjoint operators in K that commute with w1

and w2. We then have:

Theorem 15. [135]

1) All the above connections ∇σ are compatible, have constant curvature −2πi/ε
and minimize the action YM(∇).

2) Every compatible connection ∇ that minimizes the action YM has constant
curvature −2πi/ε and is gauge equivalent under U(E) to a connection of the
form ∇σ.

To conclude this section we note that with E as above, both the dimension (i.e., the
Murray–von Neumann dimension p− θq) and the curvature constant

θ

2πi
= −1

ε
, with ε =

p

q
− θ,

are irrational numbers, but their product is an integer , which gives the pairing between
E viewed as an element of K0(Aθ) with the cyclic cohomology fundamental class τ2

of Aθ (cf. Chapter III).

4. The Notion of Manifold in Noncommutative Geometry

Let X be a noncommutative space and A the corresponding ∗-algebra. We saw above
that giving a K-cycle (H, D) over A yields a metric d(ϕ, ψ) on the state space of A,
permits constructing a differential graded algebra Ω∗

D, and, in the (d,∞)- summable
case, recovers integration in terms of the Dixmier trace. The nontriviality of the K-
homology class, i.e., of the stable homotopy class, of the K-cycle (H, D) played a crucial
role in the residue theorem (Chapter IV.2) in ensuring the nonvanishing of the Dixmier
trace on the d-dimensional forms Ωd

D.

In this section we shall first expound classical results from the theory of manifolds and
their characteristic classes, in particular, those of D. Sullivan, which exhibit the central
role played by K-homology. We shall then explain how to formulate Poincaré duality
in K-homology in the noncommutative context. This will allow us to get closer to
the concept of a manifold in noncommutative geometry, and we shall see how ordinary
manifolds, the noncommutative tori and, later, Euclidean space-time as determined by
the U(1)×SU(2)×SU(3) standard model, fit in with this algebraic notion of manifold.
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4.α The classical notion of manifold. A d-dimensional closed topological man-
ifold X is a compact space locally homeomorphic to open sets in Euclidean space of
dimension d. Such local homeomorphisms are called charts. If two charts overlap in
the manifold one obtains an overlap homeomorphism between open subsets of Euclid-
ean space. A smooth (resp. PL . . .) structure on X is given by a covering by charts
so that all overlap homeomorphisms are smooth (resp. PL . . .). By definition a PL
homeomorphism is simply a homeomorphism which is piecewise affine.

Smooth manifolds can be triangulated and the resulting PL structure up to equivalence
is uniquely determined by the original smooth structure. We can thus write

(6.12) Smooth ⇒PL⇒ Top.

The above three notions of Smooth, PL and Topological manifolds are compared using
the respective notions of tangent bundles. A smooth manifold X possesses a tangent
bundle TX which is a real vector bundle over X. The stable isomorphism class of TX
in the real K-theory of X is classified by the homotopy class of a map

(6.13) X→BO.

Similarly, a PL (resp. Top) manifold possesses a tangent bundle which is no longer a
vector bundle but rather a suitable neighborhood of the diagonal in X×X for which
the projection (x, y) 7→ x on X defines a PL (resp. Top) bundle. Such bundles are
stably classified by the homotopy class of a natural map

(6.14) X→BPL (resp. B Top).

The implication (1) yields natural maps:

(6.15) BO→BPL→B Top

and the nuances between the three above kinds of manifolds are governed by the ability
to lift up to homotopy the classifying maps (3) for the tangent bundles. (In dimension 4
this statement has to be made unstably to go from Top to PL.) It follows, for instance,
that every PL manifold of dimension d ≤ 7 possesses a compatible smooth structure.
Also for d ≥ 5, a topological manifold Xd admits a PL structure iff a single topological
obstruction δ ∈ H4(X,Z/2) vanishes.

For d = 4 one has Smooth = PL but topological manifolds only sometimes possess
smooth structures (and when they do they are not unique up to equivalence) as follows
from the work of Donaldson and Freedman.

The KO-orientation of a manifold.

Any finite simplicial complex can be embedded in Euclidean space and has the homo-
topy type of a manifold with boundary. The homotopy types of these manifolds with
boundary are thus rather arbitrary. For closed manifolds this is no longer true and we
shall now discuss this point.
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Let X be a closed oriented manifold. Then the orientation class µX ∈ Hn(X,Z) = Z
defines a natural isomorphism

(6.16) a ∈ H i (X) 7→ a ∩ µX ∈ Hn−i (X)

which is called the Poincaré duality isomorphism. This continues to hold for any space
Y homotopy equivalent to X since homology and cohomology are invariant under
homotopy.

Conversely, let X be a finite simplicial complex which satisfies Poincaré duality (5) for a
suitable class µX ; then X is called a Poincaré complex. If one assumes that X is simply
connected (π1(X) = {e}), then ([394]) there exists a spherical fibration E →p X over
X (the fibers p−1(b), b ∈ X have the homotopy type of a sphere), which is unique up
to fibre homotopy equivalence, and which plays the role of the stable tangent bundle
when X is homotopy equivalent to a manifold. Moreover, in the simply connected case
and with d = dim X ≥ 5, the problem of finding a PL manifold in the homotopy type
of X is the same as that of promoting this spherical fibration to a PL bundle. There
are, in general, obstructions for doing that, but a key result of D. Sullivan [ICM, Nice
1970] asserts that after tensoring the relevant abelian obstruction groups by Z

[
1
2

]
, a

PL bundle is the same thing as a spherical fibration together with a KO-orientation.
This shows first that the characteristic feature of the homotopy type of a PL manifold
is to possess a KO-orientation

(6.17) νX ∈ KO∗(X)

which defines a Poincaré duality isomorphism in real K-theory, after tensoring by Z
[

1
2

]
:

(6.18) a ∈ KO∗(X)1/2 7→ a ∩ νX ∈ KO∗(X)1/2.

Moreover, it was shown that this element νX ∈ KO∗(X) describes all the invariants of
the PL manifolds in a given homotopy type, provided the latter is simply connected and
all relevant abelian obstruction groups are tensored by Z

[
1
2

]
. Among these invariants

are the rational Pontryagin classes of the manifold. For smooth manifolds they are
the Pontryagin classes of the tangent vector bundle, but, in general, they are obtained
from the Chern character of the KO-orientation class νX . These classes continue to
make sense for topological manifolds and are known to be homeomorphism invariants
thanks to the work of S. Novikov.

We can thus assert that, in the simply connected case, a closed manifold is, in a rather
deep sense, more or less the same thing as a homotopy type X satisfying Poincaré
duality in ordinary homology together with a preferred element νX ∈ KO∗(X) which
induces Poincaré duality in KO-theory tensored by Z

[
1
2

]
. In the non-simply-connected

case one has to take into account the equivariance with respect to the fundamental

group π1(X) = Γ acting on the universal cover X̃.
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4.β Bivariant K-theory and Poincaré duality. The main property of (the
stable homotopy class of) the fundamental class in K-homology is that it gives a
Poincaré duality that exchanges K-homology with K-theory. In the noncommutative
case this is a little more involved than in the commutative case, so we shall first review
how Poincaré duality is formulated in bivariant K-theory ([334], [136]).

Kasparov’s bivariant K-theory ([329]) is a bifunctor KK from the category C∗-Alg
of C∗-algebras (with morphisms given by algebra ∗-homomorphisms) to the category
of abelian groups. The abelian group associated with a pair (A,B) of C∗-algebras is
denoted KK(A,B); it is covariant in B and contravariant in A, so that, for instance,
to a morphism ρ : A1 → A2 there corresponds a map ρ∗ : KK(A2, B) → KK(A1, B).
This bifunctor has the following properties:

1) For A = C, KK(C, B) is naturally isomorphic to the K-theory group K0(B).

2) For B = C, KK(A,C) is the K-homology of A; in particular, to every K-cycle
on a ∗-algebra A there corresponds an element of KK(A,C), where A is the
norm closure of A in L(H).

3) KK(A,B) is homotopy invariant. This means that the morphisms ρ∗ and ρ∗
of abelian groups associated with a morphism ρ of C∗-algebras depend only
on the homotopy class of ρ.

4) A bilinear, associative intersection product is defined, given C∗-algebras A1,
A2, B1, B2 and D:

KK(A1, B1 ⊗D)⊗D KK(D ⊗ A2, B2) −→ KK(A1 ⊗ A2, B1 ⊗B2).

We refer the reader to Chapter IV Appendix A for the properties of the intersec-
tion product. One way to remember these properties is to think of the elements of
KK(A,B) as (homotopy classes of) generalized morphisms from A to B, the intersec-
tion product then being composition. For any C∗-algebra A the intersection product
provides the abelian group KK(A,A) with a ring structure, whose unit element will
be denoted 1A.

Now let A and B be C∗-algebras and let us assume that we have two elements

α ∈ KK(A⊗B,C), β ∈ KK(C, A⊗B)

such that
β ⊗A α = 1B ∈ KK(B,B),

(∗) β ⊗B α = 1A ∈ KK(A,A).

It then follows from the general properties of the intersection product that there are
canonical isomorphisms

K∗(A) = KK(C, A) ∼= KK(B,C) = K∗(B),

K∗(B) = KK(C, B) ∼= KK(A,C) = K∗(A)
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that exchange the K-theory of A with the K-homology of B.

More explicitly, the map from K∗(A) to K∗(B) is given by the intersection product
with α:

x ∈ K∗(A) = KK(C, A) → x⊗A α ∈ KK(B,C) = K∗(B).

The inverse map from K∗(B) = KK(B,C) to K∗(A) is given by the intersection
product with β:

y ∈ K∗(B) = KK(B,C) → β ⊗B y ∈ KK(C, A) = K∗(A).

More generally, for any pair of C∗-algebras C and D, we have canonical isomorphisms

KK(C, A⊗D) ∼= KK(C ⊗B, D),

KK(C, B ⊗D) ∼= KK(C ⊗ A, D),

which show that the above pair α, β establishes a duality between A and B with
arbitrary coefficients.

In [333] and [136] an example of this duality was worked out with A = C(V ) and B =
C0(TV ), where V is a compact manifold, A is the C∗-algebra of continuous functions
on V , and TV is the total space of the tangent bundle of V . The differentiable structure
of V then provides, through the pseudo-differential calculus, the desired elements α ∈
KK(A⊗B,C), β ∈ KK(C, A⊗B) fulfilling the above condition (∗).
The Thom isomorphism for vector bundles ([329]) provides a natural KK-equivalence
(i.e., an isomorphism in the category of C∗-algebras with KK(A,B) as the morphisms
from A to B)

C0(TV ) ∼= CV ,

where CV is the C∗-algebra of continuous sections of the bundle over V of Clifford
algebras Cp = CliffC

(
Tp(V )

)
. We thus get, using the KK-equivalence, a natural du-

ality between A = C(V ) and B = CV . We shall now describe in greater detail the
corresponding elements

α ∈ KK
(
C(V )⊗ CV ,C)

)
, β ∈ KK

(
C, C(V )⊗ CV

)
.

Since, as a rule, K-homology is always more difficult than K-theory, we shall concen-
trate on the description of α. The description of β is much simpler.

We shall describe α as a very specific K-cycle on C(V )⊗ CV : we let H be the Hilbert
space of square-integrable differential forms on V , where V is equipped with a Rie-
mannian metric g:

H = L2(V,
∧∗
CT

∗V ).

We let D = d + d∗ be the selfadjoint operator in H given by the sum of the exterior
differential d with its adjoint d∗. The action of C(V ) on H is the obvious one, by
multiplication. For the action of CV we have the following:

Lemma 1. Let (H, D) be the K-cycle over C(V ) given above. Then the commutant
on H of the algebra generated by C(V ) and the [D, f ] (f ∈ C(V ), ‖[D, f ]‖ < ∞) is
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canonically isomorphic to the algebra of bounded measurable sections of the bundle C
of Clifford algebras .

Indeed, the commutant of C(V ) on H is the algebra of bounded measurable sections of
the bundle End(∧∗CT ∗V ) of endomorphisms of ∧∗CT ∗V , so that it is enough to compute
for each p ∈ V the commutant of the algebra generated by the operators γ(ξ), ξ ∈
T ∗

p (V ), where
γ(ξ)η = ξ ∧ η + iξη ∀η ∈ ∧∗CT ∗

p (V ).

However, γ defines a representation of the Clifford algebra Cp on the Hilbert space
∧CT ∗

p (V ) with 1 ∈ ∧CT ∗
p (V ) as cyclic and separating vector, so that its commutant is

also given by a canonical representation of Cp, given explicitly by the formula

γ′p(ξ)η = (−1)∂η(ξ ∧ η − iξη) ∀η ∈ ∧∗CT ∗
p (V ).

This K-cycle (H, D) over C(V )⊗CV defines the fundamental class of V in K-homology,
α ∈ KK

(
C(V ) ⊗ CV ,C)

)
, and yields, for instance, the construction of the Dirac

operator with coefficients in a Clifford bundle ([227]) as the natural mapping

K∗(CV ) → K∗(C(V )
)
.

The K-theory class β ∈ KK(C, C(V ) ⊗ CV ) is easier to describe; it is just the fam-
ily, parametrized by p ∈ V , of Bott elements βp ∈ K∗(CV ) obtained from the Bott
periodicity applied to a small disk centered at p ∈ V .

In general, CV is not Morita equivalent to C(V ). Giving a Spinc structure on V
determines such a Morita equivalence and thus permits replacing α and β by equivalent
elements

α ∈ KK
(
C(V )⊗ C(V ),C

)
, β ∈ KK

(
C, C(V )⊗ C(V )

)
.

This time α is given by the Dirac K-cycle on V and the two representations of C(V ) on
H are identical, thus yielding the diagonal representation of C(V )⊗ C(V ) on H. This
is a very special feature of the commutative case: if A is abelian then every A-module
is in a trivial way an A-bimodule, since one then has the diagonal homomorphism
A ⊗ A → A. In general, as we saw above, the fundamental class in K-homology
involves an algebra A, its Poincaré dual B and (A,B)-bimodules.

We shall now review the construction in Section 3, Example c) of the K-cycle (H, D, γ)
on the ∗-algebra Aθ and find out that the Aθ-module H is in fact in a canonical way
an Aθ-bimodule, thus yielding the desired fundamental class for the noncommutative
torus:

[(H, D, γ)] = α ∈ KK(Aθ ⊗ Ao
θ,C),

where Aθ, the norm closure of Aθ, is the irrational rotation C∗-algebra.

Recall how we constructed H: we have H = H+ ⊕ H−, where H− is the Hilbert space
of the G.N.S. construction relative to the unique normalized trace τ0, and H+ is given
by Proposition 10 of Section 3. On H− we have natural actions of Aθ on both sides
(left and right) on the G.N.S. representation relative to a trace. On H+ Proposition 10
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of Section 3 shows that we also have a natural bimodule structure on Aθ. We thus
see that H is naturally an Aθ ⊗Ao

θ-module and it remains to verify that the operator

D =

[
0 ∂
∂∗ 0

]
is still a K-cycle for Aθ ⊗Ao

θ. In fact, we have the following analogue of

Lemma 1:

Lemma 2.

a) For any a, b ∈ Aθ the commutator [D, a⊗ bo] is bounded .

b) The commutant on H of the algebra generated by the left action of Aθ and the
commutators [D, a] (a ∈ Aθ) is the weak closure R = (Ao

θ)
′′ of the right action

of Aθ on H.

The assertion a) is clear. To see b), just use Lemma 3.12, which shows that (with the
notation of that lemma) the ∗-algebra generated by Aθ and the [D, a] (a ∈ Aθ) is the
left action of M2(Aθ) on H.

This is a good point at which to comment a little on noncommutative measure theory
in this example; the von Neumann algebra (A0

θ)
′′ is the hyperfinite factor R of type II1

(Chapter V), and the Dixmier trace gives the following formula for a hypertrace on R:

ϕ(T ) = Trω(TD−2) ∀T ∈ L(H)

(cf. Chapter V).

The Z/2-grading γ =

[
1 0
0 −1

]
on H = H+ ⊕ H− then turns (H, D, γ) into an element

α ∈ KK(Aθ ⊗ Ao
θ,C).

We leave it to the reader to determine a K-theory class β ∈ K0(Aθ⊗Ao
θ) = KK(C, Aθ⊗

Ao
θ) such that the pair (α, β) satisfies the rules (∗) of Poincaré duality.

The lesson that we want to draw from this section is that the K-homology fundamental
class of a noncommutative space is given by a bimodule, not just a module, (H, D).

We should of course stress that we are interested in the actual K-cycle (H, D) over
A⊗ B and not only in its stable homotopy class.

4.γ Poincaré duality and cyclic cohomology. The above discussion involved
Poincaré duality in K-theory; we shall now turn to cohomology. We showed in Section 1
how to associate to a K-cycle (H, D) on a ∗-algebra A a differential graded algebra Ω∗

D

which, in the case of the Dirac K-cycle on a Riemannian manifold, gives the de Rham
differential algebra of ordinary forms. Now, Ω∗

D makes sense in general, and, as does
every differential graded algebra, it has a cohomology ring H∗(Ω∗

D) which, in general,
will fail to be graded commutative. We shall now explain how in the finitely summable
case, using the Dixmier trace, one has natural maps
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A) Ωk
D(A) → Hd−k(B,B∗),

B) Hk
(
Ω∗

D(A)
) → Hd−k(B),

that relate a pair A, B of Poincaré dual algebras, where H∗(B,B∗) and H∗(B) are,
respectively, the Hochschild and the periodic cyclic cohomologies of the algebra B.

Note that unlike H∗(Ω∗
D(A)), the periodic cyclic cohomology H∗(B) of an algebra B

does not , in general, have a natural ring structure. In fact, even in the commutative
case, say if B is the algebra of Lipschitz functions on a simplicial complex X, the cyclic
cohomology H∗(B) of B is the homology of X, which, unless X is a manifold, has no
natural ring structure.

Thus, let (H, D, γ) be an even (d,∞)-summable K-cycle over A ⊗ B. In order to
construct these mappings we shall need the following conditions, which, thanks to the
above Lemmas 1 and 2, are fulfilled in the examples.

The order 1 condition on D: [[D, a], b] = 0 ∀a ∈ A, b ∈ B
Note that since [a, b] = 0 (∀a ∈ A, b ∈ B), this condition is symmetric in A and B. Note
also that given the K-cycle (H, D) on A, there is a largest algebra B fulfilling the above
condition; namely, if M is the von Neumann algebra commutant of A∪{[D, a]; a ∈ A}
then

B = {x ∈ M ; [D, x] is bounded}.
The second condition is the one we already met in Theorem 4 of Section 2; namely, we
want to assume that BΦω = 0, where Φω is the Hochschild cocycle on A⊗B given by

Trω(γx0[D, x1] · · · [D, xn]|D|−n) = Φω(x0, . . . , xn).

The closedness condition: Trω(γ[D, x1] · · · [D, xn]|D|−n) = 0 ∀xj ∈ A⊗ B
This condition is fulfilled and easy to check in the examples of Riemannian manifolds
with the Dirac K-cycle, or in the C(V )⊗CV example discussed above. Let us verify it
in the case of the noncommutative torus with A = Aθ and B = Aθ. We have to show
that

Trω(γ[D, a1 ⊗ b1][D, a2 ⊗ b2]D−2) = 0 ∀aj, bj ∈ Aθ,

the action of a⊗ b on H being given by the 2× 2 matrix

π(a⊗ b) =

[
λ(a)λ′(b) 0

0 λ(a)λ′(b)

]
, a ∈ Aθ, b ∈ A0

θ,

where λ (resp. λ′) is the left (resp. right) regular representation of Aθ on L2(Aθ, τ0)

(cf. Lemma 12 of Section 3). Since D =

[
0 ∂
∂∗ 0

]
, we have

[D, π(a⊗ b)] =

[
0 λ(∂a)λ′(b) + λ(a)λ′(∂b)

λ(∂∗a)λ′(b) + λ(a)λ′(∂∗b) 0

]
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just using the derivation rule for both ∂ = δ1 − iδ2 and ∂∗ = −δ1 − iδ2. Next, for any
2× 2 matrix Xij = λ(aij)λ

′(bij) with aij, bij ∈ Aθ, one verifies that, by the uniqueness
of the trace on Aθ,

Trω([Xij]D
−2) = τ0(a11)τ0(b11) + τ0(a22)τ0(b22).

Now [D, a1 ⊗ b1][D, a2 ⊗ b2] = [Xij], with

X11 =
(
λ(∂a1)λ′(b1) + λ(a1)λ′(∂b1)

)(
λ(∂∗a2)λ′(b2) + λ(a2)λ′(∂∗b2)

)
,

X22 =
(
λ(∂∗a1)λ′(b1) + λ(a1)λ′(∂∗b1)

)(
λ(∂a2)λ′(b2) + λ(a2)λ′(∂b2)

)
.

Thus, Trω(γ[D, a1 ⊗ b1][D, a2 ⊗ b2]D−2) is the sum of 8 terms

τ0(∂a1∂∗a2)τ0(b
1b2) + τ0

(
(∂a1)a2

)
τ0(b

1∂∗b2)

+ τ0(a
1∂∗a2)τ0

(
(∂b1)b2

)
+ τ0(a

1a2)τ0(∂b1∂∗b2)

− τ0(∂
∗a1∂a2)τ0(b

1b2)− τ0(∂
∗a1a2)τ0(b

1∂b2)

− τ0(a
1∂a2)τ0

(
(∂∗b1)b2

)− τ0(a
1a2)τ0(∂

∗b1∂b2).

One sees that these terms add up to 0, thanks to the following relations:

α) τ0(∂a1∂∗a2) = τ0(∂
∗a1∂a2) (using transposition and the commutation of ∂

and ∂∗). Similarly, τ0(∂b1∂∗b2) = τ0(∂
∗b1∂b2).

β) τ0

(
(∂a1)a2

)
= −τ0(a

1∂a2) (transposition), τ0(b
1∂∗b2) = −τ0

(
(∂∗b1)b2

)
.

We are now ready to construct the mappings A and B in general.

Lemma 3. Let (H, D, γ) be a (d,∞)-summable (A,B)-bimodule satisfying the order 1
condition. Then:

1) For every k ≤ d and α ∈ Ωk(A), a Hochschild cocycle Cα ∈ Zd−k(B,B∗) is
defined by

Cα(b0, . . . , bd−k) = Trω(γπ(α)b0[D, b1] · · · [D, bd−k]|D|−d) ∀bj ∈ B.

2) If the closedness condition is satisfied , then Cα depends only on the class of α
in Ωk

D(A), and we have

B0Cα = (−1)kCdα.

Here B0 is the cyclic cohomology operator

(B0ϕ)(b0, . . . , bq−1) = ϕ(1, b0, . . . , bq−1) + (−1)qϕ(b0, . . . , bq−1, 1).

To verify 1), simply note that π(α) belongs to the commutant of B; this is sufficient
because when computing the coboundary

bCα(b0, . . . , bd−k+1),
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one gets only two terms

Trω(γπ(α)b0[D, b1] · · · [D, bd−k]bd−k+1|D|−d)

− Trω(γπ(α)bd−k+1b0[D, b1] · · · [D, bd−k]|D|−d),

(6.19)

and these terms cancel due to the commutation of bd−k+1 with |D|−d modulo trace class
operators.

To verify 2), let us consider the differential graded algebra Ω∗
D(A⊗B). First, we have

[da, b] = 0 (∀a ∈ A, b ∈ B) and similarly [db, a] = 0, using the order 1 condition.
Next, for α ∈ Ωd

D(A⊗B), the value of Trω

(
γπ(α0)|D|−d

)
, where α0 ∈ Ωd(A⊗B) is any

representative of α, is well-defined. Indeed, it depends only on π(α0), and if α0 ∈ dJd−1
0

then it vanishes by the closedness condition. We shall denote this value by
∫

α, and
we note that it gives a closed, graded trace on the differential algebra Ω∗

D(A⊗ B).

Using the natural homomorphism Ω∗
D(A) → Ω∗

D(A ⊗ B), the quotient of Ω∗(A) →
Ω∗(A⊗B), we see that Cα only depends on the class α ∈ Ωk

D(A). By construction, the
Hochschild cocycle Cα(b0, . . . , bd−k) vanishes if any bj, j ≥ 1, is one. Thus,

(B0Cα)(b0, . . . , bd−k−1) =

∫
α db0db1 · · · dbd−k−1

= (−1)k

∫
(dα)b0db1 · · · dbd−k−1

= (−1)kCdα(b0, . . . , bd−k−1).

Proposition 4. Let (H, D, γ) be an (A,B)-bimodule which is (d,∞)-summable and
satisfies both the order 1 and the closedness condition. Then:

1) For 0 ≤ k ≤ d, the mapping α → Cα is well -defined from Ωk
D(A) to the

Hochschild cocycles Zd−k(B,B∗).
2) The image under C of Kerd ⊂ Ωk

D(A) is contained in Zd−k
λ (B), i.e., Cα is a

cyclic cocycle if dα = 0 in Ωk+1
D (A).

3) The image under C of =d ⊂ Ωk
D(A) is contained in =B, where B : Hd−k+1(B,B∗) →

HCd−k(B) is the cyclic cohomology operation.

4) C defines a mapping from H∗(Ω∗
D(A)) to periodic cyclic cohomology H∗(B)

that is compatible with the natural filtrations .

The first assertion follows from Lemma 3. To prove 2), just note that by Lemma 3, if
dα = 0 then B0Cα = 0, but since Cα is a Hochschild cocycle it then follows that Cα is
also a cyclic cocycle. To get 3), note that if α = dβ then first of all, dα = 0, so that
Cα is a cyclic cocycle by (2). Then, by 2) of Lemma 3, we have Cα = (−1)k−1B0Cβ
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and, since Cα is cyclic, ACα = (d − k + 1)Cα, where A is cyclic antisymmetrization;

thus Cα = (−1)k−1

d−k+1
BCβ belongs to the range of B.

Thus, C is a well-defined mapping from Hk(Ω∗
D) to HCd−k(B)/=B, and the assertion

4) follows.

4.δ Bivector potentials on an (A,B)-bimodule (H, D, γ). Let A,B be a pair
of ∗-algebras and let (H, D, γ) be an even K-cycle on A⊗Bo that satisfies the order 1
condition:

(∗) [[D, a], b] = 0 (∀a ∈ A, b ∈ Bo).

Since (H, D, γ) is a K-cycle over A ⊗ Bo = C, the entire construction of Section 1
applies, in particular, the concepts of a vector potential V and its Yang–Mills action
YM(V ) when (H, D, γ) is (d,∞)-summable. We only want to remark here that if one
considers the group G = UA × UB which is the product of the unitary group of A
by that of B, then there is a natural affine subspace V of the space VA⊗Bo of vector
potentials for A⊗ Bo, which satisfies the following conditions:

α) V is invariant under the affine action of G = UA × UB.
β) For every V ∈ V the operator D + V also satisfies the order 1 condition (∗).

Proposition 5. If V = VA +VBo is the subspace of VA⊗Bo of sums of vector potentials
relative to A and Bo, then V satisfies the above conditions α) and β).

The action of the unitary group of A⊗Bo on vector potentials is determined (cf. Sec-
tion 1) by the equality g(D + V )g∗ = D + γg(V ). Let us specialize it to elements
g = uv ∈ UA × UB and verify α). Let V = V a + V b ∈ VA + VB . Then

uv(D + V a + V b)v∗u∗ = uvDv∗u∗ + uV au∗ + vV bv∗,

since, by the order 1 condition, every element V a of Va (resp. V b of Vb) commutes
with B (resp. A). Next,

uvDv∗u∗ = u(D + v[D, v∗])u∗ = D + u[D, u∗] + v[D, v∗],

using again the order 1 condition. Thus, we get

γuv(V
a + V b) = γu(V

a) + γv(V
b),

which shows that the action of the gauge group is the product action. One checks β)
similarly.
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5. The Standard U(1)× SU(2)× SU(3) Model

In this section, we shall start from the main point of the computation of our Yang–
Mills functional in Example b) of Section 3 (referred to briefly as Example 3b)), i.e.,
in the case of the product of a continuum by a discrete 2-point space. The point
is that we recovered the Glashow–Weinberg–Salam model for leptons, with the five
different pieces of its Lagrangian, from this simple modification of the (4-dimensional)
continuum. The question we shall answer in the present section is the following: Can
one, by a similar procedure, incorporate the quarks as well as strong interactions?

Before embarking on this problem, some preparation is required to explain better what
our aim is. First, there is at present (1993) no question that the standard model of
electro-weak and strong interactions is a remarkably successful phenomenological model
of particle physics. Since I did not take any part in its elaboration, I shall refrain from
a survey of the experimental roots of this model or of the long history of its elaboration.
I refer the reader to the beautiful book of A. Pais [429] or to the more technical papers
[197]. This seems an important prerequisite for a mathematician reader of the present
section, who might otherwise underestimate the depth of the physical roots of the
model.

Next, by the work of ’t Hooft [284] this model is renormalizable ([57], [213]), a nec-
essary requirement for applying the only known perturbative recipe for quantizing the
theory. It nevertheless has problems, such as the naturalness problem [197], which
make specialists doubt that it is really of fundamental significance, thus leading them
to look for alternative routes, grand unification, technicolor. . . These alternate routes
all share a common feature: they deny any fundamental significance to the Higgs boson.

Our contribution does not throw any new light on the above theoretical problems of
the standard model, since it is limited to the classical level . However, it specifies very
precisely which modification of the continuum, in fact its replacement by a product with
a finite space, entails that the Lagrangian of quantum electrodynamics becomes the
Lagrangian of the standard model. As we shall see, the geometry of the finite set will
be, as advocated above, specified by its Dirac operator , and this will be an operator in
a finite-dimensional Hilbert space encoding both the masses of the elementary particles
and the Kobayashi–Maskawa mixing parameters.

Once the structure of this finite space F is given, we merely apply our general action
to the space (continuum) × F to get the standard model action. In many ways, our
contribution should be regarded as an interpretation, of a geometric nature, of all the
intricacies of the most accurate phenomenological model of high-energy physics; if it
makes the model more intelligible to a mathematical audience, then our purpose will in
some small measure be achieved. It does undoubtedly confirm that high-energy (i.e.,
small-distance) physics is in fact unveiling the fine structure of space-time. Finally, it
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gives a status to the Higgs boson as just another gauge field, but corresponding to a
finite difference rather than a differential.

5.α The dictionary. We shall first need to refine our dictionary between the
language of noncommutative geometry and that of particle physics.

In the basic data of noncommutative geometry, (A,H, D), the Hilbert space H and the
operator D have a straightforward translations (cf. Example 3b)):

H = the Hilbert space of Euclidean fermions,

D = the inverse of the Euclidean propagator of fermions.

The algebra A is related to the gauge group of local gauge transformations, but the
relation deserves to be spelled out at the mathematical level. It is given by

∗-algebra A → unitary group U(A).

We need to make some comments on this functor U from ∗-algebras to groups.

Firstly, a similar functor, namely A → GL(A), which replaces an algebra A by its
group of invertible elements, plays a fundamental role in algebraic K-theory ([391]).

When the above functor U is applied to Mn(A), the algebra of n× n matrices over A,
and one retains the corresponding inclusion of U(n) = U(Mn(C)) ⊂ G = U(Mn(A)),
one recovers uniquely the algebra A from the pair of groups U(n) ⊂ G, provided that
n > 2 . Indeed, at the Lie algebra level one knows the inclusion of the complexified
Lie algebra of U(n), i.e., the Lie algebra of matrices, in the complexified Lie algebra
of U(Mn(A)), i.e., again the Lie algebra Mn(A) with bracket [a, b] = ab− ba. Let eij,
i, j = 1, . . . , n, be the usual matrix units in Mn(C), and H(λ) the diagonal matrix∑n

j=1 λj ejj for λj ∈ C. Then for i 6= j the subspace of Mn(A)

Eij = {x; [H(λ), x] = (λi − λj) x , ∀λj ∈ C}
is equal to A eij and these subspaces are pairwise isomorphic using the maps x 7→[x, ek`].
Thus the algebra structure on A is uniquely recovered from the equality

[a eij, b ejk] = ab eik i 6= k , a, b ∈ A.

This shows that the replacement of an algebra by its associated groups loses very little
information, at least in the nonabelian case. Giving the algebra A from which the
group G = U(A) comes singles out a very narrow class of representations of G. Indeed,
there is a natural mapping

Rep(A)
Res−→ Rep(G)

which associates to every unitary representation π of A on a Hilbert space Hπ its
restriction to the unitary group U(A). This mapping is, by construction, compatible
with direct sums, but—and this is an essential point—while group representations
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ρ1, ρ2 ∈ RepG can be tensored, yielding a representation ρ = ρ1 ⊗ ρ2 of G on H1 ⊗H2,
there is no corresponding operation for representations of an (involutive) algebra.

In particular, the above mapping Res : Rep(A) → Rep(U(A)) is, in general, far from
surjective. Just take the simplest example, A = Mn(C) so that G = U(n), and the
range of Res consists of the multiples of the fundamental representation ϕ of U(n) in Cn.
In other words, to assume that a representation ρ of G comes from a representation of
A by restriction is a very restrictive condition.

Now, the group G does have a clear significance as the group of local gauge transfor-
mations, and we shall take it as a characteristic of its representation in the one-particle
space of Euclidean fermions that this representation of U(A) comes by restriction from
a representation of A.

Notice also that it is only through the group G = U(A) and the corresponding algebra
A that Euclidean space-time enters the picture, since in quantum field theory the
space-time points merely play the role of indices or labels except in their occurrence
in the construction of the group of local gauge transformations. Thus, the last piece of
the dictionary is:

∗ -algebra A → U(A) = Group of local gauge transformations

on Euclidean space-time.

All of this works perfectly well for the Glashow–Weinberg–Salam model for leptons, as
shown in Example 3b), and we shall see how the incorporation of quarks and strong
interactions will require the setup of Poincaré duality and bimodules of Section 4. We
first need to recall the detailed description of the standard model.

5.β The standard model. Just as for the Glashow–Weinberg–Salam model for
leptons, the Lagrangian of the standard model contains five different terms,

L = LG + Lf + Lϕ + LY + LV ,

which we now describe together with the field content of the theory. (As before, we
shall use the Einstein convention of summation over repeated indices.)

1) The pure gauge boson part LG

LG =
1

4
(GµνaG

µν
a ) +

1

4
(FµνF

µν) +
1

4
(HµνbH

µν
b ),

where Gµνa is the field strength tensor of an SU(2) gauge field Wµa, Fµ is the field
strength tensor of a U(1) gauge field Bµ, and Hµνb is the field strength tensor of an
SU(3) gauge field Vµb. This last gauge field, the gluon field , is the carrier of the strong
force; the gauge group SU(3) is the color group, and is thus the essential new ingredient.
The respective coupling constants for the fields W , B, and V will be denoted g, g′, and
g′′, consistent with the previous notation.
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2) The fermion kinetic term Lf

To the leptonic terms

−
∑

f

[fLγµ(∂µ + ig
τa

2
Wµa + ig′

YL

2
Bµ)fL + fRγµ(∂µ + ig′

YR

2
Bµ)fR],

one adds the following similar terms involving the quarks:

−
∑

f

[fLγµ(∂µ + ig
τa

2
Wµa + ig′

YL

2
Bµ + ig′′λbVµb)fL

+ fRγµ(∂µ + ig′
YR

2
Bµ + ig′′λbVµb)fR].

For each of the three generations of quarks

[
u
d

]
,

[
c
s

]
, and

[
t
b

]
one has a left-handed

isodoublet (such as

[
uL

dL

]
), two right-handed SU(2) singlets (such as

[
uR

dR

]
), and each

quark field appears in 3 colors so that, for instance, there are three uR fields: ur
R, uy

R,
ub

R. All of these quark fields are thus in the fundamental representation 333 of SU(3).

The hypercharges YL and YR are identical for different generations and are given by
the following table:

e, µ, τ νe, νµ, ντ u, c, t d, s, b

YL −1 −1 1
3

1
3

YR −2 4
3

−2
3

These numbers are not explained by theory but are set by hand so as to get the correct
electromagnetic charges Qem from the formulas

2Qem = YL + 2I3, 2Qem = YR,

where I3 is the third generator of the weak isospin group SU(2).

3) The kinetic terms for the Higgs fields

Lϕ = −
∣∣∣∣
(

∂µ + ig
τa

2
Wµa + i

g′

2
Bµ

)
ϕ

∣∣∣∣
2

,

where ϕ =

[
ϕ1

ϕ2

]
is an SU(2) doublet of complex scalar fields with hypercharge Yϕ = 1.

This term is exactly the same as in the G.W.S. model for leptons.
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4) The Yukawa coupling of Higgs fields with fermions

LY = −
∑

f,f ′
[Hff ′ fL · ϕ f ′R + H∗

ff ′f
′
R(ϕ∗ · fL)],

where Hff ′ is a general coupling matrix in the space of different fermions, about which
we must now be more explicit. First, there is no Hff ′ 6= 0 between leptons and quarks,
so that LY is a sum of a leptonic and a quark part. Since there is no right-handed
neutrino in this model, the leptonic part can always be put into the form

LY,lepton = −Ge(Le · ϕ)eR −Gµ(Lµ · ϕ)µR −Gτ (Lτ · ϕ)τR + h.c.,

where Le is the isodoublet

[
νe,L

eL

]
, and similarly for the other generations. The cou-

pling constants Ge, Gµ, and Gτ provide the lepton masses through the Higgs vacuum
contribution.

The quark Yukawa coupling is more complicated owing to new terms which provide
the masses of the up particles, and to the mixing angles. We have three new terms.
The first is of the form

(∗) GLuRϕ̃,

where the isodoublet L =

[
uL

qL

]
is obtained from a left-handed up quark and a mixing

qL of left-handed down quarks (taken from the three families); the two others have
a similar structure but with the up quark replaced by the charm and top quarks
respectively. Also, ϕ̃ needs to have the same isospin but opposite hypercharge to the
Higgs doublet ϕ and is given by

(∗∗) ϕ̃ = Jϕ∗, J =

[
0 1
−1 0

]
.

We refer to [197] for more details on this point, to which we shall return later.

5) The Higgs self-interaction

LV = µ2ϕ+ϕ− 1

2
λ(ϕ+ϕ)2

has exactly the same form as in the previous case.

Thus, we see that there are, essentially, three novel features of the complete standard
model with respect to the leptonic case:

A) The new gauge symmetry: color , with gluons responsible for the strong inter-
action.

B) The new values 1
3
, 4

3
, −2

3
of the hypercharge for quarks.

C) The new Yukawa coupling terms (∗).
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We shall now briefly explain how these new features motivate a corresponding modifi-
cation of Example 3b), which led us above to the G.W.S. model for leptons. First, our
model will still be a product of an ordinary Euclidean continuum by a finite space.

In Example 3b), for the algebra A of functions on the finite space, we took the algebra
Ca ⊕ Cb. But since we then considered a bundle on {a, b} with fiber C2 over a and C
over b, we could have in an equivalent fashion taken A = M2(C) ⊕ C and then dealt
with vector potentials, instead of connections on vector bundles. Let us see how C)
leads to replacing A = M2(C)⊕C by A = H⊕C, where H is the Hamiltonian algebra
of quaternions. The point is simply that the equation (∗∗) which relates ϕ and ϕ̃ is the
same as the unitary equivalence 222 ∼ 222 of the fundamental representation 222 of SU(2)
with the complex-conjugate or contragradient representation 222, i.e., we have

g ∈ U(2), JgJ−1 = g ⇔ g ∈ SU(2).

Let us simply remark that x ∈ M2(C), JxJ−1 = x defines an algebra, the quaternion
algebra H.

Next, let us see how A) leads us to the formalism of bimodules and Poincaré duality

of Section 4. Indeed, let us look at any isodoublet of the form

[
uL

dL

]
of left-handed

quarks. It appears in 3 colors,

ur
L uy

L ub
L

dr
L dy

L db
L

,

which makes it clear that the corresponding representation of SU(2) × SU(3) is the
external tensor product 222SU(2)⊗333SU(3) of their fundamental representations. It is easy
to convince oneself that even if one neglects the nuance between U(n) and SU(n) in
general, there is no way to obtain such groups and representations from a single algebra
and its unitary group. The solution that we found, namely to take (A,B)-bimodules,
with B = C ⊕ M3(C) (and A = C ⊕ H as above) is in fact already suggested by
the following picture in a paper of J. Ellis [197], very close to that of the diagonal
∆ ⊂ X ×X in Poincaré duality:
The apparent “generation” or “family” structure of fundamental fermions.

We just refine it by taking algebras—C⊕H for the y-axis, C⊕M3(C) for the x-axis—
instead of groups, which allows us to account better for the leptons (by using the C of
C⊕M3(C)).

Finally, we shall get a conceptual understanding of the numbers B) from a general
unimodularity condition that makes sense in noncommutative geometry, but we need
not anticipate that point.
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Figure 5. The apparent “generation” or “family” structure of funda-
mental fermions. The horizontal axis corresponds to SU(3) color prop-
erties, the vertical axis to SU(2)×U(1) representation contents

We are now ready to describe in detail the geometric structure of the finite space F
which, once crossed by R4, gives the standard model.

5.γ Geometric structure of the finite space F . This structure is given by
an (A,B)-module (H, D, γ), where A is the ∗-algebra C ⊕ H while B is the ∗-algebra
C⊕M3(C). Unlike B, the algebra A is only an algebra over R. The ∗-representations π
of A on a finite-dimensional Hilbert space are characterized (up to unitary equivalence)
by three multiplicities: n+, n−, and m, where Hπ = Cn+ ⊕ Cn− ⊕ C2m; if a = (λ, q) ∈
A = C⊕H, then π(a) is the block diagonal matrix

π(a) = (λ⊗ idn+)⊕ (λ⊗ idn−)⊕
([

α β
−β α

]
⊗ idm

)
,

where the quaternion q is q = α + βj with α, β ∈ C ⊂ H. The representation of the
complex ∗-algebra B on H gives a decomposition

H = H0 ⊕ (H1 ⊗ C3)

in which B acts by π(b) = b0⊕(1⊗b1) for b = (b0, b1) ∈ C⊕M3(C); thus the commuting
representation of A is given by a pair π0, π1 of representations on H0 and H1. The
(A,B)-bimodule H is thus completely described by six multiplicities: (n0

+, n0
−,m0) for

π0 and (n1
+, n1

−,m1) for π1. We shall take these to be of the form

(n0
+, n0

−,m0) = N(1, 0, 1), (n1
+, n1

−,m1) = N(1, 1, 1)
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(where N will eventually be the number of generations N = 3). We shall take the
Z/2-grading γ in H to be given, as in Example 3b), by the element γ = (1,−1) of the
center of A. Finally, we shall take for D the most general selfadjoint operator in H
that anticommutes with γ (Dγ = −γD) and commutes with C ⊗ B, where C ⊂ A is
the diagonal subalgebra {(λ, λ); λ ∈ C}. (As we shall see, D encodes both the masses
of the fermions and the Kobayashi–Maskawa mixing parameters.) It follows that the
action of A and the operator D in H0 (resp. H1) have the following general form (with
q = α + βj ∈ H):

π0(f, q) =




f 0 0
0 α β
0 −β α


 , D0 =




0 M∗
e 0

Me 0 0
0 0 0


 ,

π1(f, q) =




f 0 0 0
0 f 0 0
0 0 α β
0 0 −β α


 , D1 =




0 0 M∗
d 0

0 0 0 M∗
u

Md 0 0 0
0 Mu 0 0


 ,

where Me, Mu, Md are arbitrary N ×N complex matrices.

Since π0 is a degenerate case (Mu = 0) of π1, we just restrict to π1 in order to determine
Ω1

D(A).

A straightforward computation gives π1(
∑

ajda′j) with aj, a
′
j ∈ A, aj = (λj, qj), qj =

αj + βjj, q′j = α′j + β′jj; we have

π1(
∑

ajda′j) =

[
0 X
Y 0

]
,

where X and Y are the matrices

X =

[
M∗

dϕ1 M∗
dϕ2

−M∗
uϕ2 M∗

uϕ1

]
, Y =




Mdϕ
′
1 Muϕ

′
2

−Mdϕ′2 Muϕ′1


 ,

with

ϕ1 =
∑

λi(α
′
i − λ′i), ϕ2 =

∑
λiβ

′
i,

ϕ′1 =
∑

αi(λ
′
i − α′i) + βiβ′i, ϕ′2 =

∑
−αiβ

′
i + βi(λ′i − α′i).

It follows that Ω1
D(A) = H⊕H with the A-bimodule structure given by

(λ, q)(q1, q2) = (λq1, qq2) ∀q1, q2 ∈ H,

(q1, q2)(λ, q) = (q1q, q2λ) ∀λ ∈ C, q ∈ H,

and the differential d again being the finite difference:

d(λ, q) = (q − λ, λ− q) ∈ H⊕H
(just set q1 = ϕ1 + ϕ2j, q2 = ϕ′1 + ϕ′2j with the above ϕ’s).
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Finally, the involution ∗ on Ω1
D(A) is given by

(q1, q2)
∗ = (q2, q1) ∀qj ∈ H.

The space U of vector potentials is thus naturally isomorphic to H, and a similar
computation shows that Ω2

D(A) = H⊕H with the A-bimodule structure

(λ, q)(q1, q2)(λ
′, q′) = (λq1λ

′, qq2q
′) ∀λ, λ′ ∈ C, q, q′ ∈ H;

the product Ω1
D × Ω1

D → Ω2
D is given by

(q1, q2) ∧ (q′1, q
′
2) = (q1q

′
2, q2q

′
1),

and the differential d : Ω1
D → Ω2

D by

d(q1, q2) = (q1 + q2, q1 + q2).

Thus, the curvature θ of a vector potential V = (q, q) is

θ = dV + V 2 = (q + q∗ + qq∗, q + q∗ + q∗q) = (|1 + q|2 − 1)(1, 1),

where q 7→ |q| denotes the norm of quaternions.

We thus see that the action YM(V ) = Trace
(
π(θ)2

)
(we are in the 0-dimensional case)

is the same symmetry-breaking quartic potential for a pair of complex numbers as in
Example 3b).

The detailed expression for the Hilbert space norm on Ω2
D(A) = H ⊕ H is given, for

ω = (q1, q2), qj = αj + βjj, by

‖ω‖2 = λ1|α1|2 + µ1|β1|2 + λ2(|q2|2),
where

λ1 = Trace(|Me|4) + 3Trace(|Md|4 + |Mu|4),
µ1 = 6 Trace(|Md|2|Mu|2),
λ2 =

1

2
Trace

(|Me|4 + 3(|Md|4 + |Mu|4 + 2|Md|2|Mu|2)
)
.

Finally, we shall investigate what freedom we have in the choice of the selfadjoint
operators D0, D1 on H0, H1 in the above example. Two pairs (Hj, Dj) and (H′

j, D
′
j)

give identical results if there exist unitaries Uj : Hj → H′
j such that:

α) UjDjU
∗
j = Dj (j = 1, 2),

β) Ujπj(a)U∗
j = π′j(a) ∀a ∈ A, j = 1, 2.

Making use of this freedom, we can assume that D0 is diagonal in H0 and has positive
eigenvalues e1, e2, e3. Thus, the situation for D0 is described by these 3 positive
numbers.
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For H1, a general element of the commutant of π1(A) is of the form

U1 =




V1 0 0 0
0 V2 0 0
0 0 V3 0
0 0 0 V3


 ,

where the Vj are unitary operators when U1 is unitary.

Conjugating D1 by U1 replaces Md and Mu, respectively, by

M ′
d = V1MdV

∗
3 , M ′

u = V2MuV
∗
3 .

We thus see that we can assume that both Mu and Md are positive matrices and that
one of them, say Mu, is diagonal.

The invariants are thus the eigenvalues of Mu and Md, i.e., a total of 6 positive num-
bers, and the pair of maximal abelian subalgebras generated by Mu and Md. Since
any pair A1, A2 of maximal abelian subalgebras of M3(C) are conjugate by a uni-
tary W , WA1W

∗ = A2, which is given modulo the unitary groups U(Aj), there remain
4 parameters with which to specify W so that WMdW

∗ is also diagonal. Such a W
corresponds to the Kobayashi–Maskawa mixing matrix in the standard model.

5.δ Geometric structure of the standard model. We shall show in this sec-
tion how the standard model is obtained from the product geometry of the usual
4-dimensional continuum by the above finite geometry F . Thus, we let V be a 4-
dimensional spin manifold and (L2, ∂V , γ5) its Dirac K-cycle. The product geometry
is, according to the general rule for forming products, described by the algebras

A = C∞(V )⊗ (C⊕H), B = C∞(V )⊗ (
C⊕M3(C)

)
.

The Hilbert space H = L2(V, S) ⊗ HF , where HF is described in γ) above, i.e., HF =
H0 ⊕ (H1 ⊗ C3). There is a corresponding decomposition H = H0 ⊕ (H1 ⊗ C3), with
corresponding representations πj of A on Hj.

Then D = ∂V ⊗ 1 + γ5 ⊗ DF , where DF is as above. This gives a decomposition
D = D0 ⊕ (D1 ⊗ 1), where, according to γ), we take Me, Mu and Md to be positive
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matrices:

D0 =




∂V ⊗ 1 γ5 ⊗Me 0

γ5 ⊗Me ∂V ⊗ 1 0

0 0 ∂V ⊗ 1




,

D1 =




∂V ⊗ 1 0 γ5 ⊗Md 0

0 ∂V ⊗ 1 0 γ5 ⊗Mu

γ5 ⊗Md 0 ∂V ⊗ 1 0

0 γ5 ⊗Mu 0 ∂V ⊗ 1




.

We shall first restrict attention to the algebra A, the case of B being easier. Note that
A = C∞(V,C)⊕ C∞(V,H), so that every a ∈ A is given by a pair (f, q) consisting of
a C-valued function f on V and an H-valued function q on V .

Let us first compute Ω1
D(A). Given ρ =

∑
asda′s ∈ Ω1(A), with as, a

′
s ∈ A, we have

as = (fs, qs), a′s = (f ′s, q
′
s), where fs, f ′s are complex-valued functions on V and qs, q′s

are H-valued functions on V , of the form

qs = αs + βsj, q′s = α′s + β′sj.

Then

π1(ρ) =




i−1γ(A)⊗ 1 0 ϕ1γ5 ⊗Md ϕ2γ5 ⊗Md

0 i−1γ(A)⊗ 1 −ϕ2γ5 ⊗Mu ϕ1γ5 ⊗Mu

ϕ′1γ5 ⊗Md ϕ′2γ5 ⊗Mu i−1γ(W1)⊗ 1 i−1γ(W2)⊗ 1

−ϕ′2γ5 ⊗Md ϕ′1γ5 ⊗Mu iγ(W 2)⊗ 1 i−1γ(W 1)⊗ 1




,

where A =
∑

fsdf ′s is a C-valued 1-form on V , and W1 + W2j = W =
∑

qsdq′s is an
H-valued 1-form on V (cf. [20]).

Also, ϕj and ϕ′j are complex-valued functions on V given by the same formulas as
above for the finite geometry, namely,

ϕ1 =
∑

fs(α
′
s − f ′s), ϕ2 =

∑
fsβ

′
s,

ϕ′1 =
∑ (

αs(f
′
s − α′s) + βsβ′s

)
, ϕ′2 =

∑ (
βs(f ′s − α′s)− αsβ

′
s

)
.
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This means that the pair (q, q′) of H-valued functions, given by q = ϕ1 + ϕ2j, q′ =
ϕ′1 + ϕ′2j, satisfies

(q, q′) =
∑

as∆a′s,

where ∆a′s = (q′s − λ′s, λ
′
s − q′s) is the finite-difference operation, while the A-bimodule

structure on the space of H⊕H-valued functions (q1, q2) is given by

(f, q)(q1, q2) = (fq1, qq2), (q1, q2)(f, q) = (q1q, q2f) for all (f, q) ∈ A.

This shows that Ω1
D(A) is the direct sum of two subspaces:

Ω1
D(A) = Ω

(1,0)
D ⊕ Ω

(0,1)
D ,

where:

Ω
(1,0)
D , the subspace of elements of differential type, is the space of pairs (A,W )

consisting of a C-valued 1-form A on V and an H-valued 1-form W on V ;

Ω
(0,1)
D , the subspace of elements of finite-difference type, is the space of pairs

(q1, q2) of H-valued functions on V , with the above A-bimodule structure.

The geometric picture is that of two copies VR and VL of V , with C-valued functions
on VR, and H-valued functions on VL. More generally, the differential forms on VR

are C-valued, whereas on VL they are H-valued, exactly as in Atiyah’s book [20]. Of
course the finite difference mixes both sides, so they are not independent.

Given an element a = (f, q) of A, the element da of Ω1
D has a differential component

(df, dq), given by the C-valued 1-form df and the H-valued 1-form dq; and a finite-
difference component (q − f, f − q).

The involution ∗ on Ω1
D is given by
(
(A,W ), (q1, q2)

)∗
=

(
(−A,−W ), (q2, q1)

)
,

so that a vector potential is given by:

α) an ordinary U(1) vector potential on V ;

β) an SU(2) vector potential on V (cf. [20]);

γ) a pair q = α + βj of complex scalar fields on V .

The next step is to compute Ω2
D( cA) as well as the product

Ω1
D × Ω1

D → Ω2
D

and the differential d : Ω1
D → Ω2

D.

We shall first state the result. It holds provided a certain nondegeneracy condition is
satisfied, namely, that the following matrices are not scalar multiples of the identity
matrix:

M2
d or

1

2
(M2

d + M2
u), M2

d or M2
e or M2

u .
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The result then is that an element of Ω2
D( cA) has:

1) a component of type (2, 0) given by a pair (F, G) consisting of a C-valued
2-form F and an H-valued 2-form G on V ;

2) a component of type (1, 1) given by a pair (ω1, ω2) of quaternionic 1-forms ω1,
ω2 on V ;

3) a component of type (0, 2) given by a pair (q1, q2) of quaternionic functions
on V .

Moreover, with the obvious notation, the following formulas hold:

d
(
(A, W ), (q1, q2)

)

= {(dA, dW ), (dq1 + A−W, dq2 + W − A), (q1 + q2, q1 + q2)},(
(A,W ), (q1, q2

) · ((A′,W ′), (q′1, q
′
2)

)

= {(A ∧ A′,W ∧W ′), (Aq′1 − q1W
′,Wq′2 − q2A

′, (q1q
′
2, q2q

′
1)};

they show that we are dealing with the graded tensor product of the differential algebra
of V (the de Rham algebra) by the differential algebra ΩD of the finite space F .

In order to compute the Hilbert space norm on Ω2
D(A), we have to write down explicitly

the class in π
(
Ω2(A)

)
/π(J) associated with an arbitrary element

(
(F, G), (ω1, ω2),

(q1, q2)
)

of Ω2
D(A). We shall first write what happens for π1; the case of π0 is a

degenerate case obtained by taking Mu = 0. The subspace π(J) only interacts with
the elements of degree 0 in the Clifford algebra, and any element of π(J) is given by
5 complex-valued functions α, β, γ, Y , and Z on V , whose representation in H1 is
given by: 



α⊗ 1 0 0 0
0 α⊗ 1 0 0
0 0 T11 T12

0 0 T21 T22


 ,

where

T =

[
β γ
−γ β

]
⊗ 1 +

[
Y Z
Z −Y

]
⊗ 1

2
(M2

d −M2
u).

In the Hilbert space H0, the same element is represented by



α⊗ 1 0 0
0 T ′

11 T ′
12

0 T ′
21 T ′

22


 ,

with

T ′ =
[

β γ
−γ β

]
⊗ 1 +

[
Y Z
Z −Y

]
⊗ 1

2
M2

e .
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The elements (F,G) and (ω1, ω2) of degree (2, 0) and (1, 1) have canonical representa-
tives given by the following expressions, where ωk = αk + βkj and αk, βk are complex-
valued 1-forms on V :




i−2γ(F )⊗ 1 0 0 0

0 i−2γ(F )⊗ 1 0 0

0 0
i−2γ(G)⊗ 1

0 0




for H1,




i−2γ(F )⊗1 0 0
0

i−2γ(G)⊗ 1
0


 for H0,




0 0 i−1γ(α1)γ5⊗Md i−1γ(β1)γ5⊗Md

0 0 iγ(β1)γ5⊗Mu i−1γ(α1)γ5⊗Mu

i−1γ(α2)γ5⊗Md i−1γ(β2)γ5⊗Mu 0 0

iγ(β2)γ5⊗Md i−1γ(α2)γ5⊗Mu 0 0




for H1,




0 i−1γ(α1)γ5 ⊗Me i−1γ(β1)γ5 ⊗Me

i−1γ(α2)γ5 ⊗Me 0 0

iγ(β2)γ5 ⊗Me 0 0




for H0.

The component (q1, q2) of degree (0, 2), qi = αi+βij, has the representative modulo π(J)




α1M
2
d β1MdMu 0 0

−β1MuMd α1M
2
u 0 0

0 0
q2 ⊗ 1

2
(M2

d + M2
u)

0 0




,
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α1M
2
e 0 0

0
q2 ⊗ 1

2
M2

e

0




.

The nondegeneracy condition ensures that the various terms such as α1M
2
d do not

disappear modulo π(J). It is now straightforward, as in Section 3, to compute the
action. One gets the five terms of the U(1)× SU(2) part of the standard model, with
the new Yukawa coupling terms C). But before we discuss the coefficients with which
they arise we need to show how to reduce the gauge group U(A)×U(B) of the theory
to the global gauge group U(1) × SU(2) × SU(3) and obtain the intricate table of
hypercharges of the standard model. Note that we did not make the straightforward
calculation of vector potentials and action for the algebra B, which yield a pure gauge
action with group U(1)× U(3).

5.ε Unimodularity condition and hypercharges. We shall now see how, from
a general condition of unimodularity valid in the general context of noncommutative
geometry, one obtains the intricate table of hypercharges of elementary particles:

e, µ, τ νeνµντ u, c, t d, s, b

YL −1 −1 1
3

1
3

YR −2 4
3

−2
3

(Note that since we are dealing with the Lie algebra of U(1), this table is only deter-
mined up to a common scale.)

To obtain these values and at the same time obtain the global gauge group U(1) ×
SU(2) × SU(3), we shall simply replace the local gauge group U(A) × U(B) by its
unimodular subgroup SU relative to A.

In our context, the notion of determinant of a unitary makes sense provided that a
trace τ is given. More precisely, by [269], given a C∗-algebra C and a self-adjoint trace

τ on C (i.e., τ(x∗) = τ(x) for all x ∈ C), one obtains the phase of the determinant of
a unitary u as follows:

Phaseτ (u) =
1

2πi

∫ 1

0

τ
(
u(t)′u(t)−1

)
dt,

where u(t) is a smooth path of unitaries joining u to 1. Thus, this phase is only defined
in the connected component U0(C) of the identity, and it is ambiguous, by the image
〈τ,K0(C)〉 of K0(C) under the trace τ , which is a countable subgroup of R.
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The condition Phaseτ (u) = 0 is well-defined and gives a normal subgroup of U(C). We
let SτU(C) be the connected component of its identity element.

Now let A and B be ∗-algebras and let (H, D) be a (d,∞)-summable bimodule over
A,B. We shall apply the above considerations to the C∗-algebra C on H generated
by A and B and to the family of self-adjoint traces τ on C given by the selfadjoint
elements ρ = ρ∗ of the center of A, so

τρ(x) = Trω(ρxD−d) ∀x ∈ C.

We thus get a normal subgroup SA(C) of the unitary group of C by intersecting all of
the Sτ , τ = τρ as above. Since U(A)×U(B) is a subgroup of U(C), its intersection with
SA(C) gives a normal subgroup S(A,B) of U(A)×U(B). We shall see what S(A,B) is,
in simple examples, but our main point now is:

Theorem 1. Let (A,B,H, D) be the product geometry of a 4-dimensional Riemann-
ian spin manifold V by the finite geometry F . Then the group S(A,B) is equal to
Map

(
V, U(1) × SU(2) × SU(3)

)
and its representation in H is , for the U(1) factor ,

given by the above table of hypercharges .

By construction, A = C∞(V ) ⊗ AF , B = C∞(V ) ⊗ BF , H = L2(V, S) ⊗ HF , D =
∂V ⊗ 1 + γ5 ⊗DF , and it follows by a straightforward argument that

S(A,B) = Map
(
V, S(AF ,BF )

)
,

where S(AF ,BF ) is defined as above, but using the ordinary trace in the finite-dimensional
space HF instead of the Dixmier trace. Thus, we need only compute the group
S(AF ,BF ) over a point, and its representation in HF . Now, every selfadjoint ele-
ment ρ of the center Z(AF ) is of the form ρ = λ1e + λ2(1 − e), where the λj are real
numbers, e = (0, 1) ∈ C⊕H and 1− e = (1, 0). It follows easily that

S(AF ,BF ) =
(U(AF )× U(BF )

) ∩ (
SU(eHF )× SU((1− e)HF )

)
.

In other words, the unimodularity condition means that the action is unimodular on
both eHF and (1 − e)HF . Let, then, U be an element of U(AF ) × U(BF ). It is given
by a quadruple

U =
(
(λ, q), (u, v)

)
; λ ∈ U(1), q ∈ SU(2), u ∈ U(1), v ∈ U(3).

We have HF = H0 ⊕ (H1 ⊗ C3) and, with the notation of γ), the action of U on HF is
given by

π0(λ, q)u⊕ (
π1(λ, q)⊗ v

)
.

This operator restricts to both eHF and (1 − e)HF , and we have to compute the
determinants of these restrictions. With N generations, we get

det(Ue) = u2N × (
det(v)

)2N
, det(U1−e) = (λu)N × (det v)2N ,
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hence the unimodularity condition means, independently of N , that

(∗) λ = u, det v = u−1.

It follows that S(AF ,BF ) = U(1) × SU(2) × SU(3). Let us compute the table of
hypercharges, taking u as generator. Since λ = u, for H0 we get

π0(λ, q)u =

[
λu 0
0 qu

]
=

[
u2 0
0 qu

]
,

which gives the hypercharge 2 to eR, µR, τR and 1 to eL, µL, τL and νe, νµ, ντ . For H1

we get v = v0u
−1/3 with v0 ∈ SU(3) and u1/3 a cube root of u, so that

π1(λ, q)u−1/3 =




λu−1/3 0 0 0

0 λ−1u−1/3 0 0

0 0
qu−1/3

0 0




,

which gives the hypercharge 2
3

to dR, sR, bR; −4
3

to uR, cR, tR; and −1
3

for the left-
handed quarks. An overall sign is of course irrelevant (change u to u−1), so we get the
desired table.

Remark. 1) Let A be the algebra of functions on a 4-dimensional spin manifold V ,
let (H, D) be the sum of N copies of the Dirac K-cycle (L2, ∂V ) on V , and B the
commutant of A∪ [D,A] on H. Then the group S(A,B) is the group Map

(
V, SU(N)

)
of local gauge transformations associated with the global gauge group SU(N).

2) To the above reduction of the gauge group there corresponds a similar reduction of
bivector potentials A, which in the case of Theorem 1 means that A is traceless in the
spaces eHF and (1−e)HF , and in the case of Remark 1 yields the corresponding SU(N)
pure gauge theory .

We are now ready to compare our theory with the standard model of electro-weak and
strong interactions. We first note that the bimodule (H, D) over A,B of Theorem 1 is
not irreducible, i.e., the commutant of the algebra generated by A, B and D does not
reduce to C. With generic Me, Mu, Md, one can check that this commutant is C4 so
that (H, D) splits as a direct sum of 4 irreducible bimodules, three for the three lepton
generations, i.e., for H0, and one for H1 which is irreducible.

Theorem 2. Let (A,B,H, D) be the product geometry of a 4-dimensional spin Rie-
mannian manifold by the finite geometry F . Let S(A,B) be the reduced gauge group
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and V the corresponding space of bivector potentials . Then the following action gives
the standard model with its 18 free parameters :

Trω

(
(λAθ2

A + λBθ2
B)D

−4
)

+ 〈ψ, DV ψ〉,
where λA, λB belong to the commutant of the bimodule and θA, θB are the respective
curvatures .

The proof is straightforward, given Theorem 1 and the above computations.

Let us now note that, at the classical level which we have not left so far, there is a
natural 17-dimensional subspace given by the following restriction:

λA, λB belong to the algebra generated by A and B.

The corresponding classical relation can only have a heuristic value. In the limit of
large top mass mt, i.e., neglecting the other fermion masses, one gets the following:

(6.20) mt ≥
√

3mW if λA > 0;

(6.21) mH = mt

(
3
x2 + 8x + 14

x2 + 9x + 18

)1/2

,
1

4
x +

3

4
=

(
mt

2mW

)2

.

Here x is the ratio between the two eigenvalues of the operator λA, so that the value
x = 1 is the most natural, leading to mt = 2mW . None of these relations is a physical
prediction, but if they were nearly satisfied by the physical values of mt and mH it
would show that the change of parametrization in the standard model given by the
above theorem is qualitatively a good one at the classical level.

In order to transform our interpretation of the standard model into a predictive theory
it is important to solve the following problems:

1) Find a nontrivial finite quantum group of symmetries of the finite space F .

2) Determine the structure of the Clifford algebra of the finite space F , given by the
linear map from the space H⊕H of 1-forms into the algebra of endomorphisms of HF

which to a 1-form
∑

ai dbi associates
∑

ai[D, bi].
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133-252; MR 49 # 5865.

[90] A. Connes. Classification of injective factors. Ann. of Math. (2) 104 (1976), 73-115; MR 56 #
12908.

[91] A. Connes. Outer conjugacy classes of automorphisms of factors. Ann. Sci. École Norm. Sup. (4)
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Math. Phys. 114 (1988), 515-526; MR 89h:46098.
[118] A. Connes and T. Fack. Morse inequalities for measured foliations.
[119] A. Connes, M. Flato and D. Sternheimer. Closed star products and cyclic cohomology. Lett.

Math. Phys. 24 (1992), 1-12; MR 93d:19003.
[120] A. Connes, J. Feldman and B. Weiss. An amenable equivalence relation is generated by a single

transformation. Ergodic Theory and Dynamical Systems 1 (1982), 431-450; MR 84h:46090.
[121] A. Connes, M. Gromov and H. Moscovici. Conjecture de Novikov et fibrés presque plats. C.R.

Acad. Sci. Paris Ser. I Math. 310 (1990), 273-277; MR 91e:57041.
[122] A. Connes, M. Gromov and H. Moscovici. Group cohomology with Lipschitz control and higher

signatures. Geom. Functional Anal. 3 (1993), 1-78.
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(Bruxelles, 1959), pp. 137-150, Centre Belge Rech. Math., Louvain, 1959; MR 22 # 7148.
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pp. 109-172, Univ. Toronto Press, Toronto, 1963.

[191] E.G. Effros, D.E. Handelman and C.L. Shen. Dimension groups and their affine representations.
Amer. J. Math. 102 (1980), 385-407; MR 83g:46061.

[192] E.G. Effros and C. Lance. Tensor products of operator algebras. Adv. in Math. 25 (1977), 1-34;
MR 56 # 6402.

[193] G. Elliott. On the classification of inductive limits of sequences of semisimple finite-dimensional
algebras. J. Algebra 38 (1976), 29-44; MR 53 # 1279.

[194] G.A. Elliott. On totally ordered groups, and K0. Ring theory (Waterloo, 1978), pp. 1-49, Lecture
Notes in Math., 734, Springer, Berlin, 1979; MR 81g:06012.

[195] G. Elliott, T. Natsume and R. Nest. Cyclic cohomology for one-parameter smooth crossed
products. Acta Math. 160 (1988), 285-305; MR 89h:46093.

[196] G. Elliott and E.J. Woods, The equivalence of various definitions for a properly infinite von
Neumann algebra to be approximately finite dimensional. Proc. Amer. Math. Soc. 60 (1976),
175-178; MR 58 # 23630.

[197] J. Ellis. Phenomenology of unified gauge theories. Les Houches, Session XXXVII (1981), North-
Holland, 1983.
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théorie de Kasparov. Ann. Sci. École Norm. Sup. (4) 20 (1987), 325-390; MR 90a:58169.
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Sci. Paris Sér. A-B 291 (1980), A399-A401; MR 82d:46093.
[424] A. Ocneanu. Quantized groups, string algebras and Galois theory for algebras. Operator algebras

and applications, Vol. 2, pp. 119-172, London Math. Soc. Lecture Note Ser., 136, Cambridge
Univ. Press, Cambridge, 1988; MR 91k:46068.



BIBLIOGRAPHY 647

[425] H. Omori, Y. Maeda and A. Yoshioka. Weyl manifolds and deformation quantization. Adv. in
Math. 85 (1991), 224-255; MR 92d:58071.

[426] H. Omori, Y. Maeda and A. Yoshioka. Existence of a closed star product. Lett. math. Phys. 26
(1992) 285-294; MR 94c:58078.

[427] D. Ornstein and B. Weiss. Ergodic theory of amenable group actions, I. The Rohlin lemma.
Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161-164; MR 80j:28031.

[428] J. Oxtoby and S. Ulam. Measure-preserving homeomorphisms and metrical transitivity. Ann.
of Math. (2) 42 (1941), 874-920; MR 3, 211.

[429] A. Pais. Inward bound of matter and forces in the physical world. Clarendon, Oxford, 1986.
[430] R.S. Palais. Seminar on the Atiyah-Singer index theorem. Ann. of Math. Stud., 57, Princeton

Univ. Press, Princeton, N.J., 1965; MR 33 # 6649.
[431] S.J. Patterson. The limit set of a Fuchsian group. Acta Math. 136 (1976), 241-273; MR 56 #

8841.
[432] S.J. Patterson. Some examples of Fuchsian groups. Proc. London Math. Soc. 39 (1979), 276-298;

MR 80j:30070.
[433] R. Parthasarathy. Dirac operator and the discrete series. Ann. of Math. 96 (1972), 1-30; MR

47 # 6945.
[434] W. Paschke. Inner product modules over B∗-algebras. Trans. Amer. Math. Soc. 182 (1973),

443-468; MR 50 # 8087.
[435] G. Pedersen. Measure theory for C∗-algebras, I-III. Math. Scand. 19 (1966), 131-145, ibid. 22

(1968), 63-74, and ibid. 25 (1969), 71-93; MR 35 # 3453, 39 # 7444 and 41 # 4263.
[436] G. Pedersen. C∗-algebras and their automorphism groups. London Math. Soc. Monographs, 14,

Academic, New York, 1979; MR 81e:46037.
[437] V.V. Peller. Smooth Hankel operators and their applications. Dokl. Akad. Nauk SSSR 252

(1980), 43-48; translated as Soviet. Math. Dokl. 21 3 (1980), 683-688; MR 83g:47030.
[438] V.V. Peller. Nuclearity of Hankel operators. Preprint, Steklov Inst. Math., Leningrad, 1979.
[439] V.V. Peller. Hankel operators of the class Lp and their applications (rational approximation,

Gaussian processes, majorization problem for operators). Mat. Sb. (N.S.) 113(155) (1980), 538-
581; MR 82g:47022.

[440] V.V. Peller. Vectorial Hankel operators, commutators and related operators of the Schatten-von
Neumann class Lp. Preprint, Leningrad, 1981.

[441] V.V. Peller and S.V. Hruschev. Hankel operators, best approximations, and stationary Gaussian
processes, I-III. Uspekhi Mat. Nauk 37 (1982), 53-124; translated as Russian Math. Surveys 37
(1982), 61-144; MR 84e:47036.

[442] M. Penington. K-theory and C∗-algebras of Lie groups and foliations. PhD thesis, Oxford,
Michaelmas, Term 1983.

[443] M. Penington and R. Plymen. The Dirac operator and the principal series for complex semisimple
Lie groups. J. Functional Anal. 53 (1983), 269-286; MR 85d:22016.

[444] J. Phillips. Automorphisms of full II1 factors, with applications to factors of type III. Duke
Math. J. 43 (1976), 375-385; MR 53 # 6337.

[445] M. Pimsner and S. Popa. Entropy and index for subfactors. Ann. Sci. École Norm. Sup. (4) 19
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et globales. C.R. Acad. Sci. Paris Sér. A-B 263 (1966), A907-A910; MR 35 # 4954.
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[579] S. Weinberg. Conceptual foundations of the unified theory of weak and electromagnetic interac-

tions. Nobel Lecture (Dec. 8, 1979).



BIBLIOGRAPHY 654

[580] S. Weinberger. Aspects of the Novikov conjecture. Geometric and topological invariants of elliptic
operators. (Brunswick, Maine, 1988), Contemp. Math., 105, Amer. Math. Soc., Providence, R.I.,
1990; MR 91a:57020.

[581] H. Wenzl. On sequences of projections. C.R. Math. Rep. Acad. Sci. Canada 9 (1987), 5-9; MR
88k:46070.

[582] H. Widom. Families of pseudodifferential operators. Topics in functional analysis, I, pp. 345-395,
Adv. in Math. Supp. Stud., 3, Academic, New York, 1978; MR 81c:58062.

[583] H. Widom. A complete symbolic calculus for pseudodifferential operators. Bull. Sci. Math. (2)
104 (1980), 19-63; MR 81m:58078.

[584] M. De Wilde and P.B. Lecomte. Existence of star-products and of formal deformations of the
Poisson-Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7 (1983), 487-496; MR
85j:17021.

[585] E. Winkelnkemper. The graph of a foliation. Ann. Global Anal. and Geom. 1 (1983), no. 3,
51-75; MR 85j:57043.

[586] M. Winnink. Algebraic aspects of the Kubo-Martin-Schwinger boundary condition. Cargese
Lectures in Physics, 4, pp. 235-255, Gordon and Breach, New York, 1989.

[587] E. Witten. Supersymmetry and Morse theory. J. Differential Geom. 17 (1982), 661-692; MR
84b:58111.

[588] M. Wodzicki. Excision in cyclic homology and in rational algebraic K-theory. Ann. of Math. (2)
129 (1989), 591-639; MR 91h:19008.

[589] M. Wodzicki. Local invariants of spectral asymmetry. Invent. Math. 75 (1984), 143-177; MR
85g:58089.

[590] M. Wodzicki. Noncommutative residue, Part I. Fundamentals. K-theory, arithmetic and geom-
etry (Moscow, 1984-86), pp 320-399, Lecture Notes Math., 1289, Springer, Berlin, 1987; MR
90a:58175.

[591] R. Wood. Banach algebras and Bott periodicity. Topology 4 (1965/66), 371-389; MR 32 # 3062.
[592] S.L. Woronowicz. Twisted SU(2) group. An example of a noncommutative differential calculus.

Publ. Res. Inst Math. Sci. 23 (1987), 117-181; MR 88h:46130.
[593] S.L. Woronowicz. Compact matrix pseudogroups. Comm. Math. Phys. 111 (1987), 613-665; MR

88m:46079.
[594] F.J. Yeadon. A new proof of the existence of a trace in a finite von Neumann algebra. Bull.

Amer. Math. Soc. 77 (1971), 257-260; MR 42 # 6629.
[595] J. Zak. Magnetic translation group, II. Phys. Rev. A 134 (1964), A1602-A1606; MR 31 # 2031.
[596] R. Zekri. A new description of Kasparov’s theory of C∗-algebra extensions. J. Functional Anal.

84 (1989), 441-471; MR 90g:46106.
[597] R. Zimmer. Hyperfinite factors and amenable ergodic actions. Invent. Math. 41 (1977), 23-31;

MR 57 # 10438.
[598] R. Zimmer. Ergodic theory of semisimple groups. Monographs in Math., 81, Birkhäuser, Boston,
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