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l'orswora 

These are notes based on an introductory course in 

algebraio topology given by Professor Norman Steenrod in 

the fall of 1963. The principal aim of these notes is to 

develop efficient techniques for computing homology groups 

of complexes. The main object of study is a regular complex: 

a C'-complex such that the attaching map for each cell is 

an embedding of the boundary sphere. The structure of a 

regular complex on a given space requires, in general, 

far f ewe r cells than the number of simplices necessary 

to realize the space as a simplicial complex. And yet the 

procedure I orientation ~chain complex ~homology groups 

is essentially as effective as in the case of a simplicial 

comple x. 

In Chapter I we define the notion of CW-complex, due 

to J. H. C. Whitehead. (The letters CW stand for a) closure 

f i n ite--the closure of each cell is contained in the union 

of a finite number of (open) cells-- and b) weak topology-

the topology on the underlying topological space is the weak 

topology with respect to the closed cells of the complex.) 

We gi ve several examples of complexes, regular and irregular, 

and comple te the chapter with a section on simplicial complexes. 

In Chapter II we def ine orientation of a regular complex, 

and chain complex and homology groups of an oriented regular 
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complex. The definition of orientat ion ot a regular complex 

requires ce r t a in properties of regular complexes which we 

cal l redundan t r es tri c t ions. We assume that all regular 

comple xes satisfy these restric tions, and we prove in a 

leter chapte r ( VIII) that the restrictions are indeed re dun

dant . The main results o f the res t of Chapter II are : a 

proof that d iffe r ent orientat ions on a given regular complex 

yie ld isomorphic homology groups, and a proof of the 

un iver sal coeffi oi en t t heo rem for regular complexes which 

have fini tely many cells in each dimension. 

I n Chapter III we define homol ogy groups of spaces 

which are obta1ned from r egular complexes by making cellular 

identifications. This technique simpl i fies the computation 

of the homology groups of many spaces by r educing the number 

of cells required. We compute the homology of 2-manifol ds, 

certain ~ -manifolds called lens spaces, and r eal and complex 

pro j ect ive spaces . 

Chapter IV prov ides background fo r the Kunneth theorem 

on the homol ogy of the product of two regular complexee. 

Given r egular compl exes K and L there 1s an obv i ous way to 

define a cell structure on IKl)( lLl --simpl y take products of 

cells in X and in L. But the product topo logy on IKI X IL' 
is in general t oo coarse to be the weak topo logy with 

respect to c losed cells. Thus KK L, with the product 

topology, i s not in general a regular complex . To get a round 

this difficul ty we al ter the topology on the product. The pro

per notion is that of a compactly generated topology. In order 

to provi de a proper point of view for this question we 

include in Chapter IV a d iscussion of categories and func

tors. 

In Chapter V we prove the Kunneth theorem. We also 

compute the homology of the join of two complexes, and we 

complete the chapter with a section on re lative homology. 

In Chapter VI we prove the invariance theorem, which 

s tates that homeomorphic finite regular complexes have 

isomorphic homo l ogy groups. We also state and prove the 

seven Eilenberg-Steenrod ax ioms for cellular homology. 

We stateIn Chapter VII we define singular homology. 

and prove axioms for singular homology theory, and show that 

if X is the underly ing topo logical space of a regular complex 

K, then the s i ngul ar homo logy groups of X are naturally 

isomorphic to the cellular homo logy groups of K. 

In Chapter VIII we prove Borsuk's theorem on sets in 

n n (S which separate S and Brouwer's theorem invariance of 


m n
domain that Rand R are homeomorphic only if m· n.) 


We ahow that any regular complex satisfies the redundant 


restrictions stated in Chapter II, and settle a question 


raised i n Chapter I concerning quasi complexes. 


In Chapter IX we def ine skeletal decomposition of a 


We
space and homo l ogy groups of a skeletal decomposition. 



prove that the homology groups of a skeletal decompo s i t ion 

are isomorphic to the singula r homo l ogy groups of t he 

underlying space . Finally, we use skeletal homology to 

show that the ho. ology groups we defined in Chapter III 

of a space X obta i ned by identification from a regular 

complex are i somorphi c to the singular homology groups of X. 

We shoul d men tion that we sometimes refer to the 

"homol ogy" of a space wit hout noting which homology theory 

we are using. This is be cause all of the different 

definitions of t he homology groups that we give agree 

on their common domains of definition. 

We a lso remar k t hat cohomology groups, which ws de f i ne 

for a regular complex in Chapter II, are only touched on 

very lightly throughout these notes. We do not cover the 

cup or cap products, and we do not define singular coho

mology groups. 
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haTe helped us in the preparation of t hese no t es. First, we 
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pa instakingly read the first draft and made many helpful 

suggest ions for revision. Secondly, we thank the National 

Science Foundation fo r supporting the first-named author 

dur ing a protion of this work. And finally, we wish to 

thank Elizabe th Epstein, Patricia Clark, Bonnie Kearns, 

Barbara Duld, June Clausen, and Joanne Beale for typing 

and correcting the manusc ript. 
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INrRODUCTION 

One of the ways to proceed from geometric to algebraic topology is 

to. associate with each topological space X a sequence of abelian groups 
00 

(H (X)} ,and to each co.ntinuous map f o.f a space X into a space 
q q=O 

Y a sequence of ho.momorphisms 

f : H (X) ---;;;. H (Y) ,
q* q q 

one for each q. The groups are called homology grou~s of X or of Y, 

as the case may be, and the morphisms f are called the induced homo-
q* 

morphisms of f, or simply induced homomorphi sms. Schematically we have 

e;eometry ---;;;. ale;ebra 


space X ---;;;. homology groups H (X) 

q 

map f: X ~ Y ---;;;. induced homomorphisms f 
q* 


The transition has these properties, among others: 


1. If f: X ~ X is the identity map, then f H (X) ---;;;. H (X) 
q* q q 

is the identity iso.morphism for each q. 

2. If f: X........,. Y and g: Y ---;;;. Z , then g • f for
(gf) q* q* q* 

each q That is, if the diagram 

Y 

f / \ g 
,.
X Z 

g f 

of spaces and mappings is co.mmutative, then so is the diagram 

i 



H (Y) 

I
'1 

\f •• gq. 

H'l (X) --..;;.> H (Z) 
'1 

(gf) '1-)( 

of homology groups and induced homomorphisms , for each '1. In modern 

parlance, homology theory is a func tor from the category of spaces and 

mappings to the category of abelian groups and morphisms. 

The correspondence here between geometry and algebra is often cru.de. 

Topologically distinct spaces may be made to correspond to the same a l ge 

braic objects. For example, a disc and a point have the same homology 

groups. So do a I- sphere and a solid torus (the cartesian product of 

a one-sphere and a diSC.) Despite this, the methods of algebraic topol

ogy may be applied to a broad class of problems, such as extens ion 

problems. 

Suppose we are given a space* x , a subspace A of x , and a map 

h of A into a space Y If we let i denote the inc l usion mapping 

of A into X, then the extension problem is to decide whether there 

exists a map f, indicated by the dashed arr ow in the diagram below, 

of X into Y such that h fi. 

/ 
X 
" ,i 	 f 

'.>I 
A h > Y 

*Unless otherwise stated, the \{Ord space will mean Hausdorff space. 

ii 

If' f exists, ,-re say t hat f is an extension of h to X, or, e'1uiva 

f of X into y.lently, that h has been extended to a mapping 

There a r e famous sol utions of this problem in point-set topology . 

The Urysohn Lemma is one . The hypotheses are: the space X is normal, 

but othenfise arbitrary; the subspace A Ao U Al ,\-Ihere Ao and Al 

Y is the closed unita.re d isjoint, closed subsets of X the space 

interVal [0 ,1) and the map h: A ---> Y carries A o 
to o and Al 

to 1. 

o 

Under these assumptions the Urysohn Lemma asserts that there exists a 

mapping f: X ---> Y such that f hi 

l'i/
X 

" 
'.:::.I. 

[0,1] Y(Ao 	 U AI) ~ 

The 	Tietze Extens i on Theorem is another solution. Here, X is 

A is closed in X, and h is an arbitrary map of A to thenormal, 


set Y of real numbers. 


The theorem asserts the existence of an extension f: X ---> Y of h. 

iii 



Path~~se connectivity can also be described in terms of extensions. 

Let x be the closed unit interval, and let A = (O,l} A space Y 

is pathwise connected if, given two points and of Y , theYo Yl 

mapping h: A~Y defined by h(O) = Yo and h(l) = ' can beYl 

extended to a mapping f: X~Y 

o 


Furthermore, the problem of the existence of a continuous multipli 

cation with a prescribed two-sided unit in a space Y can be phrased as 

an extension problem. We seek a map m: Y X Y ~ Y and an element 1 

in Y such that m(l,y) =m(y,l) = y for each y in Y The reCJ.uire

ment that there be a two-sided unit determines a function h on a sub-

space A = (1 X Y) U (Y X 1) = YVY of Y X Y into Y. The existence 

of a continuous multiplication with ~ t,m-sided unit is now eCJ.uivalent 

to the existence of a map m: Y X Y ~ Y such that mi = h • 

Y X Y 

'1YVY h 

m 

:to ,. Y 

Corresponding to each Beometric extension problem is a homology 

extension problem, described for each CJ. by the followinB diagram: 

iv 

HCJ.(X) 

"
"

"'i·l 
"- ¢ 

~ 
h* H (Y) H (A) 

CJ. CJ. 

Given the groups, the homomo~hisms i* and h*, does there exist a 

homomo~hism ¢: H (X) --7> H (Y) such that i~ h*? 
CJ. CJ. 

If f is a solution of the geometric extension problem, then 

¢ = f is a solution of the algebraic problem for each CJ.. On the 
Cl.* 

other hand, if ¢ does not exi,st, then f does not exist either. This 

latter implication is the principal tool in the proofs of many theorems 

of algebraic topology. 

Let A be a subspace of a space X A map f: X ~ A is a 

r etraction if fx = x for each point x in A • Under these circum-

The Tietze Extension Theoremstances, A is called a retract of X 

implies that if X is a normal space which contains an arc A, then 

X can be retracted to A. 

Throughout this and subseCJ.uent chapters, ~ will denote the closed 

Rnunit ball in Euclidean n-space , and Sn-l will denote the unit 


R
n


{n-l)-sphere in . 

THEORD1: Sn-l is not a retract of ~ • 

f: ~ ~ Sn-lSuppose to the contrary that there exists a map 


sn-l 
 Then f is an extension ofsuch that fx x for each x in 

the identity map h: 

v 



En 

i r"'"f 
n-lS h .. 

~ 
n-lS 

If n 1, the fact that El is connected, while SO is not, 
shows that no such f can exist. 

If n > 2 , a different argument is required. Assume that the 
homology groups of En Sn-land of are, as .~ will later show them 
to be, 

'1 0 
'1 0, n - 1VEi') e { : H (8n-l {z
q ) == 

'12: 1 o O<'1<n-l 

If f exists, then for each 
'1 the following diagram is commutative : 

H (En)

f """"':""'/ 
e f q. 

H (Sn-l) h* > H (Sn-l) 
'1 identity q 

homomorphism 

For q n - 1 , however, the diagram looks like this: 

f n _4f~~ 1 , * 
z h* > Z 

identity 

Since the only homomorphism of the zero group into Z is the zero homo 

morphism, there is no ¢ such that ¢i* = h-~ Hence f cannot exist 
after all. 

vi 

This l as t diagram shows once more that the transition from geometry 

to algebra may be crude. The inclusion mapping i: is aSn-l ~ r 
homeomorphism, yet i* is not one-to-one. Furthermore ~ maps 

n-l n n-lH _ ( ) onto H _ (E) even though i does not map S onto n 1 S n 1
En 


A fixed point of a mapping f: X ~ X is a pOint x in X for 


which fx = x. Using the fact that Sn-l is not a retract of weEn 

can prove the Brouwer Fixed-point Theorem: 

THEOREi,l: ~ mapping f: En ~ En has.!:: ~ pOint . 

Suppose to the contrary that there exists a mapping f: r ~ En 

which has no fixed point. Then we can define a retrs,ction g : En ~ Sn-l 

For each pOint x of En we let Rx denote the directed line segment 

which starts at fx and passes through x. Note that FLx is defined 

f or each x in En, since f has no fixed pOint. Let gx = Rx n(Sn.l_{fx) 

If x lies in Sn-l, then gx = (x) n Sn-l = x. The verification 

that g is continuous is left as an exercise. 

tit 

Sn-l. 

t heorem, and completes the proof of this theorem. 

vii 

Thus g is a retraction of En onto This contradicts the preceding 



Chapter I 

COMPLElCES 

1. Complexes 

If A is a subspace of X and B a subspace of Y, then a ~ 

f: (X,A) ~ (Y,B) of the pair (X,A) to the pair (Y,B) is a map 

of X into Y that carries A into B One can compose mappings 

of pairs. For each pair there is an identity mapping of the pair onto 

itself. A homeomorphism of (X,A) onto (Y,B) is a homeomorphism of 

X onto Y which carries A onto B. A more important concept is 

that of a relative homeomorphism. 

A mapping f: (X,A) ~ (Y,B) is a relative homeomorphism if 

fj (X-A) maps X-A homeomorphically onto Y-B. A relative homeo

morphism need not map A onto B • 

Exercise. Let X be a compact space, and suppose that 

f: (X,A) ~ (Y,B) is a mapping such that fl (X-A) maps X-A one-

to-one onto Y-B. Show that if Y is a Hausdorff space then f is 

a r e lative homeomorphism. 

Exercise. Find an example to show that if Y is not a Hausdorff 

space then f may not be a relative homeomorphism. 

1.1. The definition of a cOSRlex. 

A complex K consists of a Hausdorff space IKI and a se~uence 

of' subspaces, called skeletons, denoted by IK 1 n -1, 0, 1, ••• ,
n 

which satisfy the following conditions. 

1 



--

1. IK_1 1 is the empty set, and IK_11 C IKol c IKll • . • c IKbI c 
2. Each I~I is closed in IKI 

3. IKI '" UIK I • n 

n n n4. For n > 0 , the components al , a2 ,···, ai' ..• of' 1Kn l - I'Kn_l l 
are open sets in the relative topology of' j~1 . They are referred to as 

the n-cells of K. 

n5. For each n-cell a. K -n 
1 

of let denote that subspace ofa i 
n ./K' which is the closure of a ln
i IKI ,rith the relative topology, 


and let 
 rP = Ca~1 - a~) • For each a~1 there exists a relative homeo1 1 

morphism ( n n-l) (-n.n n-lf' .: E, S ~ a., a.) which carries S onton,l 1 1 
'n a For convenience, -n 
i o.

1 
is called a closed n-cell of K , even 

though it need not be homeomorphic to En. 

6. The topology of IKI is the ,~ak topology defined by the closed 

cells of' K: a subset A of IKI is closed if and only if each inter
-nsection -nA n 0 i is closed in o. 

1 

7. The relative topology on IK I and the weak tOPOlogy defined 
n 

by the closed cells of' IK I coincide: a subset A of IK In is closed n 
in the relative topology of IK I if and only if A n a~ is closed inn 1 

a~1 for each q _< n and for each i 

1.2. The structure of ~ complex. 

A complex K is said to be a complex~ jKI ,and IKI is called 

the underlying~, or the geometric realization of K A finite 

complex is one with finitely many cells. A complex is called infinite 

if it is not finite. 

2 

If there exists an integer r such that IK 11 IK I for each 
q+ q 

q?: r , then K is said to be of finite dimension. The least such r 

is called the dimension of K. 

If 0 is a cell of K, we will sometimes write 0 E K , even 

though K is not defined as a collection of cells. 

The subspace IKol is a discrete subspace of IKI . Its components, 

which are pOints by (5), are also open sets of I K I , by (4). The cells 
o 

of are called vertices of KIKOI 

The relative homeomorphisms f . are not part of K. To shown,l 

that a candidate for a complex satisfies (5) one need only exhibit some 

set of fls A complex is to remain unchanged when one set of fls is 

replaced by another. 

By (5), an n-cell O~ of K, with the relative topology, is 
1 

n n-lactually home.omorphic to the n-cell E - S • Its boundary rP need 
1 

n-lnot be homeomorphic to S If, for each a~ there exists a homeo
1 -----

-nEn morp1.l~ f . of onto ai' then K is called regular. other-n,l 

wise, K is irregular. If a~ is a cell of K and if nOne of the 
1 

relative homeomorphisms f . is a homeomorphism, then a~ is calledn,l 

irregular. 

In order to be sure that the topologies in (6) and (7) are well-

defined, one must know that IKI '" u a~ and that IK I '" u a~ . 
1 n. < 1q, i 1; q _ n 

These two facts follow, as they should, from conditions (1) through (5). 

He leave their verification to the reader. 

Exercise. Establish the following elementary facts about the 

s trQcture of K. 

3 



1. IKI = U 	 cr
n 
. U 

-n 
1 	 . cr i

n,i n,l 


q
2. 	 If cr is a q-cell of K then aqe IK I q 

3. cr~ = U 	 cr. •I~I u 
1 

-q 
1

i; q:: n 	 i; q:: n 

aq4. 	 Also, although this won't be used immediately, ;q = n I Kq_ll 

q
for each q-cell cr of K. (While the first three parts of this 

exercise are easily seen to be true, the reader may find this fourth part 

to require some moments of reflection.) 

5. Let X be a space that is the union of finitely many disjoint 

subsets crl , cr
2 

, .. ·,cr • Let cr. denote the closure of cr in X and 
m 1 i 

let oi cr - cr • Suppose that for each i
i i 

k k-l
1. 	 There exists a relative homeomorphism of (E , S ) onto 

(ai' Cri ) for some k. (we call cr. a k-cell and call 
1 

k the dimension of cr .)
i 

2. cr. lies 	in a union of cells of dimension lower than that 
1 

of 	 cr. • 
1 

Then the 	 are the cells of a complex on X .cri 

6. A function f from /KI into a space X is continuous if and 

only if f /0 is continuous for each cell cr of K. 

7. If K is of. finite dimension, then condition (7) implies 

condition (6). 

2. 	 Examples 

n
2.1. 	 ~ regular complex ~ S 

k lFor each k, ° < k < n , identify R + with the subspace 

4 

Rn lof 	 + Let IKI '" Sn , andt (~"",xn+l)I~+2 = ... '" xn+l = OJ 

f or each q ~ ° let the q-ske.leton of K be the q-sphere 

q l 
q::nsq '" {sn n R + 

Sn q>n 

. n. 	 0e 1 n qCertarnly S 1S a Hausdorff space, SSe.·· e s , each S 

sn , and Sn U sq •is closed in 

The O-skeleton SO consists of a 

pair of points. The ( q-l)-skeleton 

Sq- l 	 sq , andis the equator in 

di vides sq into two (open) he.mi

spheres, cri and cr~ , 	 whose union 

is sq _ Sq-l 

q -q is the homeomorphism defined by 	verticalThe 	 map f E ~ cr 1q,l 

projection: 

fl(x..., ... ,X) (x... (1 q2)1/2q, . 1. q 1.' ••• , x , - L: x. )q 1 1 

-q 
. 	 -q A reversal of sign gives the homeomorphism for cr The 
1n 	 cr. • 2 

1 

cr~ 	 are the cells of a regular complex on sn 
verification that the 

1 

is now trivial by Exercise 5. 

2.2. 	 An irregular complex ~ Sn • 

Let IKI = Sn , let crO denote the point (0, ••• ,0,-1) in Sn, 

and 	let the q-skeleton 

if O::q::n-l
IK I = { 00 

q Sn if q~n 

5 



Conditions (1) through (3) are satisfied, and conditions (4) and (5) are 

satisfied vacuously for q < n For the one n-cell, (sn _ aO ) , we 

now define a relative homeomorphism f: (En, Sn-l) ---;;. (Sn, aO ) in two 

stages. First, let P = (0, ... ,0,1) , the point diametrically opposit.e 
O 

3na on Sn, and let E be the closed hemisphere of points of with 

coordinate xn+l ~ 0. Then E contains P, and has as boundary the 
n-l

set S = S of pOints of sn with coordinate ~le define 

a relative homeomorphism g: (E,S) ---;;. (Sn, a
O 

) by doubling angles. 

xn+l 0. 

1> 

E' 

More precisely, for each pOint x in E, gx is that point of Sn 

which is located on the great circular arc that starts at P and passes 
Othrough x to a in such a way that 

sr (p, origin, gx) 2 . Lf.. (p, origin, x) • 

The result of Exercise 2.1 can be used to show that g , which is clearly 

continuous, is a relative homeomorphism. 

To complete the definition of f, compose g with the homeo

morphism h: (En, Sn-l) ---;;. (E,S) defined by 

h(xl ,·· .,xn ) (~, ... ,xn' (1 _ ~ x~//2)
1 l 

6 

The mapping f gh then satisfies condition (5). As in Kxample 2.1, 

(6) and (7) are satisfied because the complex is finite . 

n2.3. A regular complex ~ E 

..ole start wi. th the regular complex for sn-l described in Example 

2.1. Take IK I = sq for °< q < n , IK I = En , and IK I = W for 
q - n q 

q>n To show that these are the skeletons of a regular complex OD 

En it remains only to check the properties required of the one n-cell 

ED _ Sn-l. It is certainly an open, connected subset of IK 1= W 
n ' 

n n-l n n-l
and the homeomorphism f: (E, S ) ---;;. (E ,S ) may be taken to 

be the identity map. 

2.4. An irregular complex ~ En. 

We augment Example 2.2 by taking IK I = IK I = ~ for q > n , 
q n 

and by letting f: (En, Sn-l) ---;;. (En, gn-l) be the identity mapping. 

2. 5. An irregular complex on the torus T. 

Let e and ¢ lie in the closed interval [0, 2rr] ,let a and 

b be positive real numbers with a > b , and let T denote the set of 

points of R3 whose coordinates (x,y,z) satisfy the parametric equations 

7 



x = (a + b cos ¢) sin e 

y = (a + b cos ¢) cos e 

z = b sin ¢ 

'( 

x 

To obtain an irregular complex K on T, subdivide T into the cells 

shown in the following picture. 

211" 
I 

2-c.ell f ,. 	 t 0'0. fl81 l- 0"1. 

1" ~. 
I 

~O'J. 
"

(0,0) ZlT~ 	 (Y2.~ 

The cells can be described precisely by using the parametrization of T, 

which defines a mapping f of the 2-cell 1" [0, 2'lTJ X [0, 2'lTl of 

the e ¢-plane onto T . 

8 

Thus 

a 	
0 = f(O,O) 

1 
a = f« O, 2'IT) X 0)
2 

1 = f(O X ( 0 , 2'IT))al 


of = f«O, 2'IT) X ( 0 , 2'IT)) 


The mappings f . may be taken to be the appropriate restrictions ofn,l 

f . 

2.6. 	 A regular complex ~ T . 

Subdivide as pictured below: 

~ 

l1r .....-~----t 

f,.. 

o ". 21r 

This subdivision of 1" induces a subdivision of T into the cells of 

a regular complex: four vertices, eight edges (l-cells), and four 

2-cells, for which f induces the required homeomorphisms. 

2.,(. !::!l irregular complex ~~ projective n-space, ? 

A point of pn is an equivalence class of points of 

~+l (n+l . . .R = R - the oTlgm) under the relatlon 

9 



(~" " ,xn+l) ~ (rxl,···,rx +l ) ,n

where r i s a real number different from 0 The t opology of pn is 

in the quotient space topology obtained from ?+l Recall that this 

n l
t opology is defined as follows: Let p: R+ ~ pn be the trans

formation which sends each point onto its class in pn Then a subset 

A of pn is closed if and only i f p-l(A) is closed in R"n+l The 

map 15 = plsn: Sn ~ pn is a two-fold covering of pn. The involution 

T : Sn ~ Sn defined by 

T(xl , ·· . ,x +l ) (-Xl' . .• ,-x +l )n	 n

is the covering transformation of' g • 

For each k > 0 define the k-skeleton of pP to be pk g(Sk) . 

SO C Sl C C Sn 

• • + 
po C pl C C pn 

Conditions (1), (2), and (3) are satisfied, pk is homeomorphic 

to real projective k-space, and we can exhibit relative homeomorphisms 

k k-l 
to show that each difference P - P is a cell. 

-l( k k-l) k k-lThe set g P - P = S - S is the union of two open 

k-cells, each of which is mapped homeomorphically by g onto pk _ pk-l 

Let uk denote the upper cell, i.e., the one which has its last non

ak 
zero coordinate positive. Let f : Ek ~ denote 	the usual

k 
k -kprojection of E onto the closed hemisphere u 

f7\ 
-pr.:.~ 


k . 	 k-lRemark. Note that P has been obtained from P by attaching 

- k k-l a to P with the mapping 15 This suggests an inductive construc

tion for pn. start with a point po uO 
Attach a 	 closed l-cell 

(;1 to po by adjoining its end-points to po The resulting space is 

pl 1
Observe that P Sl. To obtain p2 , adjoin a 2-ce11 (;2 to 

pl by a ttaching its boundary sl to p l with the double covering map. 

This attaching operation amounts to wrapping Sl around pl(= sl) twice. 

&' 	
Q)~ 

• 

"P.• 0 '·"'0
'P' 

"'P' 

n-l n 	 n-l
Given P , one constructs P by attaching the boundary S of 

-n n-l 
(J t o p by the double covering map g • 

2 . 8 . 	 A r egular comp l ex ~ pn 

i n lWe start with the regular complex on the boundary + of the unit 

11 
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'n+l 
(n+l)-cube in R

n+l The cells of the complex Qn I are the open 

i n+l i n l 
On + identify pOintsr-dimensional faces (O.::;r'::;n) of we 

that are diametrically opposite with respect to the center (~, ~, ••• ,~) • 

li nWe thus transform the complex on + into a regular complex on pn by 

identifying diametrically opposite cells . To illustrate: 

n
2.9. A regular complex ~ R 

We obtain this complex by considering unit n-dimensional cubes 

Rnwhose vertices are the points of with integral coordinates. The 

cubes, with all their lOvrer dimensional faces, are the cells of R
n 

• 

3. Locally-finite Complexes 

A complex is locally-finite if each point has a neighborhood that 

is contained in the union of a finite number of cells of the complex . 


n

Such a complex is locally compact. The reticulation of R described 


in Example 2.9 is locally-finite, although the complex is infinite. 


12 

3. L A com;Elex ~at is not locally-f~i t.e. 

Let IKII be the union of countably many regular, closed l-cells 

e joined to a common vertex vo For each i let v. be the otheri l 

vertex of e. Give to IKI the weak topology with respect to the 
l 

e'g and v's The e's and v's determine a regular complex on IKI 
that is not locally-finite. 

Each neighborhood of vo meets infinitely many of the e's: it must 

meet each e. in an open subset of e , and this subset is never empty
l i 

because it cuntains v o 

E.~ercise. Show that the space IKI of 3.1 cannot be embedded in 

R
n 

for any n 

4. Subcomplexes 

4.1- DEFHITTION. A complex L is a subcomplex of a complex K 
(in symbols L C K) if (1) ILl is a closed subspace of IKI 
(2) IL I IL l n IK I for each q,and(3) each cell of L is a cell 

q q 

of K . 

13 



The proposition below gives a combinatorial cnaracterization of 

subcomplexes. In particular, it shows that the collection of cells of 

dimension < q of a complex K determines a subcomplex of K This 

subcomplex is denoted by K q ; it is called the q-skeletoIl of K , and 

its underlying space is IK I . q 

4.2. PROPOSITION. (Characterization of subcomplexes.) The cells of a 

collection C of ~~ K are ~ of ~ subcomplex L of K if 

~ only if, ~ each ~ 0' in C, ~ boundary a (~closure of 

0' in IKI , minus a) lies in the union of cells of C of dimension 

less than dim a • 

The proof of this proposition occupies the remainder of this section. 

4.3. COROLLARY. The cells of K are those of a subcomplex of K . q ----- 

This corollary is an immediate consequence of 4.2. 

We now begin the proof of the proposition. Suppose that the cells 

of C are those of a subcomplex 1 of K, let a be a q-cell of 

C , and let 

~ (the closure of 0' in 111) - a • 

We know from Exercise 2.3 that ~C 11q_ll and that 11 11 is the q-

union of cells of 1 of dimension less than q. It remains to show 

that a = cr But this follows from the fact that 111 is closed in 

IKI 
Now suppose that each cell 0' of C satisfies the condition that 

cr lies in the union of cells of C of dimension less than dim 0' • 

Let ILl denote the union of the cells of C with the subspace topology 

14 

from IKI , and let 11 q I = 111 n IK q I . Let 1 consist of the space 

and the subspaces 11 I • We will show· that 1 is a complex whose111 q 

cells are precisely the cells of C, and that 111 is closed in IKI 

(1 ) 111 is a Hausdorff space because it is a subspace of IKI 

(2) 11q_ll C 11q l , and each 11
q l 

is closed in 111 because 

11 I1 I n IK I , the intersection of ILl with a closed subspace of 
q l q 

IKI 

(3) 111 = ILl n (uIKql) = u(ILI n IKql) ul1 q I • 

(4) 11 I - 11 11 = (111 n IK I) - (ILl n IK 1 1) = ILl n (1'K I - IK 11) ,q q- q q- q q

whi ch is the union of the q-cells of C Each q-cell is a component 

of ILq I - 11q-11 because each is connected and no two have a common 

pOint. Each q.-cell is open in the relative topology of 11 Thislq 

follows from the fact that 

11 I - a = 111 f1 IK I - ILl n a = 1111 n (IK I - 0') ,q q q 

which is closed in 111 , and hence in 11q l , because IK I - 0' is q 

closed in IKI • 

It follows from (4) that 11 is the union of the cells of. Clq 

of dimension < q . 

(5) For each q-cell O'~ , the closure of O'~ in IKI is 
l l 

IT ~ a
q 

U cr~ Now o~ C 11 11 by hypothesis together with the fact 
l i l l q-

that 11 11 is the union of cells of C of dimension < q. Therefore, 

-q , I I
q-

-qa i \~ 1 ,and a i is the closure of O'~ in 111 . Accordingly, the 
l 

relative homeomorphism f .: (Eq, sq) ~ (IT~, o~) given for K may
q,l l l 

be taken as the one required for .L • 

15 



80 far we have been able to avoid the ques"t1on of whether ILql 

and ILl are closed in IKI It has been sufficient to know that IL I q 

is closed in ILl , and that if 0 is a cell of e its closure in IKI 

lies in ILl The question must be settled bef ore proceeding to proper

ties ( 6) and (7). To settle it, and to sho., several related fact s , \'Ie 

prove two lenmtas . 

4.4. LEMMA . Let K be a complex. Each compact subset of IKI meets 

only 	finitely ~ cells of K. 

Let D be a compact subset of IKI • He sh01f first that D meets 

cells of only finitely many different dimensions. 8upposetb..at this is 
q. 

not so. Let {o 1) be an infinite sequence of cells of strictly ascend-
q. 

ing dimension, and let X. be a point of (0 1 n D) for each i A 
1 

given IK I contains Xi only if qi ~ q , so t hat {x.) n IK I is 
q 1 q 

finite. (Here ,Ie us e {x.} to denote the entire set {~) x2 , ... ) of 
1 

the xi .) If B is a subset of {Xi)' and if 0 is a q-cell of K, 

then (8 no) C ({x.) n IK I) is finite, and therefore closed. Thus 8 
1 q 

is closed in IKI , and in D as well. It follows that {x.) can have 
1 

no limit point in D, because 8 = {x . ) - {a limit point) would still 
1 

be closed . But this contradicts the compactness of D. 

'de show next that in each dimension D meets only finitely many 

cells. If D meets infinitely many q-cells {o~) , then there exists 
1 

an infinite sequence of points (Xi) with x. in (D n o~) . If 8 
1 1 

is a 	 subset of {x.}, and if o is a cell of dim < q , then S n 0 
1 

is either empty or consists of a single point. It follovs that S is 

closed in the weak topol ogy of IKq I By property (7) of the complex 

K , therefore, S is closed in IKI , and hence in D. It follows, 

16 

{x.) can have no limit point in D, contradicting theas before, that 
1 

compactness of D. 

The le=a is now proved. 

4.5. LEMMA . Let e be a collec tion of cells of ~ complex K such that 

o 	 ~.E: ~ \lJl.ion. of ~ of e, for each cell 0 of e . Let 

be the union of the cells of e ~~th the relative topology inheritedlei - -- ----_ ............... 


f rom IKI . If A is ~ subset 2! lei , such that A n 0 is closed in 
-
o ~ ea ch 0 of e, then A ~ ~losed in IK I • In particula~> Ie I 

~~ in IKI. 

\.le prove the le=a by showing that if .. is a cell of K, then 

An .. is closed. He assume that A n ~ t ¢ , and ~~ argue as follows . 

By the preceding lemma, .. meets only finitely many cells of K, 

Pl ,P2,···, Pn , Pn+l"", Pn+h 

where the first n of these are the ones that lie in e. Since 

n+h 
~ C 	U Pi' 

1 

-',,-e knov that 

n+h 
.. = .. n (U Pi)' 

1 

and 	theref'ore, 

n+h n 

~ n lei = ~ n ( U Pi) n lei = ~ n (u Pi) 
1 1 

Since Pie Ie l , for 1 < i < n 

n 	 n n 
.. n (u P. ) C ~ n IeI = ~ n (u P.. ) C ~ n (u P.) ,

1 1 	 1 1 1 1 

17 



so that 

n 
Tn (UP.) =Tn Icl . 

1 ~ 

Accordingly, 

n n 
AnT AnT n Icl AnT n (u P.) = T n [U (A n P. )1 

1 ~ 1 ~ 

Since each A n P. is closed in P. , their union (finite) is closed 
~ ~ 

in IKI , so that AnT is closed. 

We now return to the proof of Proposition 4.2, and finish showing 

that L is a complex. 

(6) The topology of IL II is the weak topology with respect to the 

cells of ILl First suppose that A is closed in ILl . Then A n 

(any subset of ILI) is closed in that subset of' IL J Hence A n a 
is closed in a for any cell of 'c. Now suppose that A n a is closed 

in a for each cell cr of C. An application of 4.5 shows that A 

is closed in IKI and hence in ILl 

(7) On IL q I the weak topology and the relative topology cOincide. 

First suppose that AC IL I is closed in the relative topology of IL I 
q q 

Then A n (any subset of ILl) is closed in that subset. Therefore, 

An cr is closed in a for any cell of L. Now suppose that AC IL I 
q 

and that A n a is closed for each crC IL I By applying 4.5 with 
q 

Icl = ILq I , we see that A is closed in IKI . Hence A is closed in 

the relative topology of ILql . 

A final application of Lemma 4.5 shows that ILl is closed in IKI 1 

and the proof of Proposition 4.2 is now complete. 

18 

4.6. Exercises. 

1. Let cr be a cell of a complex. Show that a lies in the union 

of f i nitely many cells of dimension less than dim cr • 

2. Let K be a complex and suppose that H is a compact subset 

of IKI Show that H lies in the union of finitely many cells of K 

3. Show that each compact subset of a complex K lies in the union 

of the cells of a finite subcomplex of K. 

4. Assume that K is a complex for which each cell boundary a 
is actually equal to (not merely contained in) the union of a finite 

number of cells of dimension less than dim a. This will be seen 

later to be true ~~enever K is regular. Show that any union of closed 

cells of K is a closed subset of IKJ • 

An immediate consequence of Exercise 3 above is that if IKI is 

locally compact then K is locally finite. 

A complex is closure-fi.n,ite if each closed cell lies in the union 

of the cells of a finite subcomplex of K. The result of Exercise 3 

implies that complexes are closure-finite. The complexes that we have 

defined are the CW-complexes of J. H. C. Whitehead [1]. 

5. The Weak Topology for Skeletons 

The proposition that we established in the preceding section shows 

that the q-skeleton of a complex K is a subcomplex of K. In exam

ining the proof of the proposition to see how the proposition follows 

from known properties of K, one sees that property (7) of the defini

tion of a complex is used in what may be an essential way in the proof 
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of 4 . )-\- . I t is used t here to show that a set S is closed in IKI 
because i t is closed in the veak topology of liK I . In this section 

q 

"re consider an exampl e ,,,.hich may t hr o"\.J some light on the extent to 

which property (7) is really needed . 

A quasi comple x Q consists of a space IQI and a sequence of 

subspaces 1%1 of IQI satisfying condi tions (1) t hrougb (6) of t he 

definition of a complex. There are regular quasi cO]llplexes , irreGular 

quasi complexes , finite ones , and so forth . Every complex is a quas i 

compl ex, but not eve~J qu~si complex is a complex. The qu~si complex 

presented belovr does not satisfy condition (7) . In Chapter VIII 

(Theorem 5.6) '<T€ prove that each regular quas i complex satisfies con

dition (7) (i.e., each regular quas i complex i s a complex). 

We start vith the r egular complex Ie on E3 described in 2.1, 

and pictured be lovr . 

erG 0-;0
2I 

The quas i complex Q vrill have IQI IKI, but Q '.'ill have infinitely 

many cells. In dimension zero , there is no difference between Ie and 

Q: IQ I = o~ U cr~ In dimensions one and t"l-I'O, ne'" cells are defined o 

by subdividing cri The cell cr~ will be included in unchanged .I~I 
The subdivision is canied out by constructing an infinite sequence of 
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.2-1 
l ° °2 

a 
circles 1:. , all of them tangent to the equator at The

1 
-1

d.iameters of the 1:. decreases as i increases , so that as sets the 
l 

-1 0 -2 
conve r ge to in the topol0t:iy of See the diagram belm?cr 11' i °2 

cr.
2 

Subdiv i sion o f ~ 

-1 a i s cons idered to be the image of (E\ So ) under 

1 1 
Each pair ( 1: i' 02 ) 

8. r elative homeomorph ism. The l-cells of 1'111 - IQol a r e c'l' °2 ' 


and the sets = (\ - o~) • The space IQ11 is the union of the
1:i 

cl os ures of all these l-cells , "rLth the Euclidean subspace topology 


obt a ined from E3 . \,]e then let I~ I = I K21 The 2·cell s of Q, 


being the components of I~ I - 1'11 1 , are 


1) the crescent- shaped domains of cri 
? 

- (U 1:i ) , and 


2

2) the single cell °2 

['he cons truction of Q is completed by letting I~I equal I~I , for 
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each n > 3 There is only one 3-cell in Q: the cell J3 By 

definition, the topology on each I~I is the Euclidean subspace 

topology, inherited from IQI = IKI = E3 • 

In IQI , the Euclidean topology and the weak topology agree. It 

is easily seen, however, that in neither IQ11 nor in I~I does the 

Euclidean topology agree with the weak topology. This, in fact, is why 

the eYBmple must be so elaborate as to contain the 3-cell J3. We 

ca=ot stop our construction with Q"'J. or with ~ because neither Ql 

or ~ is a quasi complex. A quasi complex that fails to be a complex 

does so because one of its skeletons, as a subspace with the relative 

topology, fails to have the weak topology with respect to its own closed 

cells. Such a skeleton, by itself, must violate condition (6). 

Exercise. Verify that the Euclidean topology given for IQI IKI, 

in the quasi complex just described, agrees with the weak topology defined 

by the closed cells of Q 

6. Simplicial Complexes 

An n-simplex s consists of a collection {A) of n+l objects, 

called vertices, together wIth the set of all functions a: (A) ~ [O,lJ 

such that L a(A) = 1. The functions are called points of s, and the 
A 

values of a function are called barycentric coordinates of the pOint. 

The point whose value is 1 
on each vertex is called the barycentern+I 

of s . We define 

1 

d(a,~) [>-:; (a(A) ~(A))2 f 
A 

as the distance between the pOints a and ~. The points of s are 

22 

then topologized by this metric. 

A q-dimensional face s' of an n~simplex s is a q-dimensional 

simplex whose vertices are included among those of s. Each point of 

s' is to 'be identified ,,'ith the pOint of s having the same coordinates 

on the vertices of s' (the other coordinates of such a pOint of s are 

zero ). This identification is an isometry of s' with the subset of s 

with which it is identified. Each vertex A of s determines a unique 

O-face of s , and we identify A with the point of that O-face. 

The identification of vert ices with functions allows us to regard 

a simplex as a single topological space, namely, the collection of func

tions a topologized by the metric d. We may also regard a face of 

a simplex as a subspace of that simplex. If two simplexes have vertices 

in common they have points in common: the points of the common face that 

is the simplex determined by the common vertices. 

.thIn Rn+l, let A. = ( 0 , ••• , 0 ,1,0 , ••• ,0) , with the 1 in the 1 
1 

place, let s be the simplex defined by the objects Ai' and, using 

vector addition, let 

n+l 
a= [ a(A.)·A. 

111 

n+l 
for each a in s. Because of the restrictions [a(A.) = 1 and 

1 1 

Rn+lo ~ a(A ) < 1 , the collection ~ = (a) of points of is thei 

convex closure of the vertices A. The correspondence a <~ a 
1 

defines an isometry of s and s The space s is called the standard 

. 1 . n+l 1· . t f 2SlIDP ex III R Be ow 1S a P1C ure or n 
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Hext we ShOlf that an n-s:iJ:nplex is homeomorphic to the n - bal l En 

n lUse the i sometry to get s into R + , project onto the hyperplane 

xn+l = 0 , and , \li th a s:iJ:nilarity transformatt on, move s t o the interior 

of Ef Radia l projection from an interior point of s onto En thus 

yie lds the des ired homeomorphism . 

If a and ~ are distinct points of an ( n+l)- simpl e x s , the 

line segment containinG ex and ~ i s defined to be the collect ion G 

of p oints (to + (l-t) ~ j O 5 t 5 I) . It is easily seen that for each t 

the function to + (l- t~ ) is a point of s I~ote that under the isometry 

n 1~ . t R + th ' f G' d' l' t· Rn+lOL s In 0 " e llllage 0 lS an or l nary lne segrnen In . 

6.1. DEFnrrTION . Suppose we a re given (1 ) a countable collection of 

vertices {A}, and (2) a fa.rnily of fini te subsets of' {A} ,·nth the 

p r operty th'lt each subset of a listed subset i s listed. Each listed 

subset de t e rmines a simpl ex, and the collection K of these simplices 
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i s called a simpliCial complex . 

Since each subset of a lis ted set is li s t ed , each face of a simpl ex 

of K i s a simplex of K The int ersecti on of two s implices of K, 

if not empty, is a simplex of K which is a face of each of the inter

secting s implices . The set Kn of simplices of K of dimension < n 

is a simplicial complex . Take all s implice s on the original list with 

< n+l vertices . This new' lis ting specifi es K 
n 

A weak topol ogy ,,'i, th respect t o the s implices of K can be defined 

for jKj ) the lUlion of t he simplices of K, because each simplex has a 

top·ology . 

A metric topol ogy for j K j can a l so be defined i n a natural ,ray . 

Extend each point a of each simplex s of K to that mapping a of 

the set of all vertices of K into [0,1 ) which 1) agrees with ex 

on v ertices of sand 2 ) is 0 on the other vertices of K Let K 

be the collecti on of such extended funct i ons, ,nth the metric 

p(a,(3 ) [ L: (a(A) ~(A )2)~ 
A 

The bijection ¢: K ~ IKI , defined by ¢(a) = a ) induces a metric 

d on IKj . For t',IO points a and ~ of j KI , not necessarily from 

the s ame simplex, d(a, ~ ) p(a,~) FOT e a ch s implex s of K, the 

f'unction ¢-lj s is an isometry. 

If' K i s finite , t hat is if K has fin itely many simplices , the 

weak topology and the metric topology agree . The proof r e qu.ires sho'"ing 

that each s implex of K is closed. i n the metric topology of IKI • I f 

K is infini te , the two topologies may differ, as t he follOwing exa.'l1p l e 

sho''{s . 

Start •.nth the vertices Vi and t he I - simplices e. of 2 .12. 
1. 
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~I 

-Yo ~::: 

Let be the poin:t in e defined byO:i i 

o:.(v ) 	= 1 - l/i and o:.(v.) l/i •
l 0 	 l l 

Since d(a:., v ) =.J2/i the 0:. converge to Vo in the metric 
l 0 	 l 

topology for IKI However, in the weak topology for IKI , the set 

(0:. } is closed. Thus the two topologies for IKI do not coincide. 
l 

An example of a finite simplicial complex is a simplex with all 

its faces. We will usually use a single symbol to denote both a simplex 

and the complex it determines. If s is a simplex, then s will denote 

the topological boundary of s as well as the simplicial complex con

sisting of' the proper faces of s (those faces of dimension less than 

dim s) • 

6.2. An alternative definition of finite simplicial co~lex. 

~ ~ simplicial complex K is a collectiQn of faces of a sill81e 

simplex, with the~roperty that each face of a simplex of K is likewise 

in K. 

Exercise. Show that 6.2 agrees ~~th 6.1. 

6.3. THEOREM. Let K ~ ~ simplicial complex. The ~ IKI with 

the weak topology, together with the subspaces IK I , determines a 
--- ----	 ----- --- n 

regular complex. 
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Here, IK I denotes the union of the simplices of K of dimension 
n 

<n 

Conditions (1) and (3) present no difficulty. Also, IK I is closed n 

in IKI . If s is a simplex of K then IKn Ins is the union of 

faces of s , so that is the union of a finite number of closedIKnl n s 

sets of IKI 

The points of 'K I - IK 11 are precisely the interior points of n n-

the n-simplices of K: functions from some listed set (Al ,··· ,A +l }n

of K to the ~ interval (0,1) The interior ~ = (s - s) of an 

n-simplex s is connected, and is referred to as an open simplex. Each 

open n-simplex is open in I~I because its complement is closed in 

Each point 0: of 5 lies in IK 11 Thus s = s n IKn-11IKn l 	 n
o

It is easily seen that s is an open n-cell of K and that s 

is a closed n-cell of K. 

i'laPPiDBs f: (En, sn-l) --;.. (s,s) are provided by isometries with 

the standard n-simplex. 

Since each simplex of K is a closed cell of K in the sense of 

condition (5) and since IKI has the ,-reak topology with respect to the 

simplices of K, condition (6) is satisfied. The proof of (7) is left 

to the reader. 
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Chapter II. 

HONOLOGY GROUPS FOR REGUIAR COl<lPLEXES 

1. Redundant Restrictions on Regular Complexes. Homology Groups. 

In this chapter we describe the process of associating with any 


given regular complex an infinite sequence of groups called the homology 


groups of the complex. Fundamental to this process are the concepts of 


chain complex and homology of a chain complex: 


1.1. DEFINITION. A chain complex C over a ground ring R (R assumed 


to be commutative lvith unit) is a collection of unitary R-modules 
 (e :qEZ
Q 

together with R-homomorphisms d: C ~ C 1 such that for every q,
q q q-

d d oq-l q For every q, C q is called the R-module of q-chains of C, 


or the qth chain module, and d 
 is called the qth boundary operatorq 

of C. He will often ,,'rite d for the collection {c\} and call d 

the boundary operator of C. 1-:e then write C as ( {C }, d) • 
q 

1.2. DEFINITION. If C = ({C
q
},o) is a chain complex, then the 

complex of cycles of C, 1"Yitten Z(C) , is the chain complex UZq},O) 

whose qth chain module is Z q = Ker d q and whose boundary operators 

are zero. The complex of boundaries of C, l-.'ritten B( C) , is the 

chain complex ((Bq},O), where Bq 1m d .q+l 

For each q, we call Z 
q 

and Bq the R-modules of q-cycles 

and q-boundaries, respectively, of C. Hote that since dOlO,q q+ 

we have B C Z • 
q - q 

1.3. DEFnU:L'ION. Given a chain complex C = Uc },o) , the qth homology 
q --~----=~ 

module of C is the factor R-module Z IE and is denoted by H (C) • 
q q q 

The homology chain complex of C is the chain complex 1,Titten H*( C) • 

28. 

In this section the ring R will allmys be the ring Z of 

i ntegers. He will sometimes l"Yite 11 chain comple:0' for 11 cha in complex 

over Z ". If' C is a chain complex over Z, its chain modules are 

abelian groups. 

Given a regular complex K, we will define homology groups 

f or K by first givillg K an orientation. Any such orientation 

gives rise to a chain complex, and then the homolor;y groups for K 

will be the homology groups of this chain complex. It will be clear 

that there may be, for a given complex K, many different ways of 

defining an orientation of K. Thus it ,rill appear that the homology 

groups of K ..reI'e not wel-l-defined. )-le will show, however, that the 

h omoloGY groups of K are independent of the orientation used to 

de f ine them. 

As 'ile have just remarked, an orientation on a regular complex 

will induce a chain complex. He will see that only the boundary 

operators of the chain complexes so induced may vary as we v-a:ry 

ori entat ions. The chain groups, however, are defined independent of 

ori entation in the following way. 

1. 4. DEFIlHTION. Given a regular complex K, the group of q-chains 

of K, written Cq(K), is the free abelian group on the q-cells of 

K . 

Thus for q ::: -1, C (K) = 0 • In order to define a boundary
q 

operator: ve will assume that the regular complex K satisfies cer

tain restrictions. At this time ve will state these restrictions 

and assmne that they are satisfied by all regular complexes. 1·1e 

wi ll prove later that this is the case by using the homology theory 

of simplicial complexes. Thus we will show now that the redundant 
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restrictions for regular complexes are satisfied by the subclass of 

simplicial complexes. 

Three Redundant Restrictions on a Regular Complex K 

R.R. l: If r < q , and 0 is a q-cell whose closure contains a 

point of the r-cell ~, then ~C ~ . 

To see that R.R. l is satisfied if K is simplicial, we 

note that a q-cell of K is then the interior of a simplex of K. 

If a point of the interior of an r-simplex lies in a closed q-cell, 

that is, in a q-simplex, then every vertex of the r-simplex is a 

vertex of the q-simplex, and the desired relation holds. 

l.5. DEFINITION. In a regular complex K, if 0 is a cell whose 

closure contains the cell ~,then ~ is called a face of 0. If 

~ is a face of 0, we write ~ < 0 . If ~< 0 and ~ f 0 then 

~ is called a proper face of 0. 

l. 6. PROPOSITION. If K is a regular complex and 0 a cell of K, 

then the collection of faces of 0 is a subcomplex (necessarily 

finite by Lemma 1.4.4) for o , and the collection of proper faces 

of 0 is a finite subcomplex for 0. 

Proof: This proposition follows from Proposition 1.4.2. 

l. 7. PROPOSITION. If 0 is a cell of the regular complex K, 

then a conta~s at least one vertex. 

Proof: The proof is by induction on the dimension of 0 . The 

proposition is obviously true if 0 is a vertex. Suppose it to be 

true for cells of dimension less than q, and let 0 be a q-cell. 

Then ; C 
-

K 
q-

l and 0 is nonempty. If x is a point of 0 , then 
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x is a point of some r-cell ~ with r < q. By the inductive 

hypotheSiS, ~ contains a vertex. By R.R.l, ~C 0 Since 

is closed, ~C 0 , and the conclusion follows. 

An example of a complex not satisfying R.R.l is obtained by 

taking 0 to be a 2-cell whose boundary is collapsed to a point of 

some l-cell ~. The only vertices of the complex 

are the two vertices of ~. This complex is of S2
course irregular. "r 

R.R. 2: If p and ~ are two cells of K such that p < ~ and 

the dimensions of p and ~ are q and q+2 respectively, then 

there are precisely two (q+l)-cells 0 and such that p < 0 l < ~ l O2 

and p < O < ~ •2 

If the dimension q is zero, this means that a vertex of a 

2-cell is a vertex of exactly two l-cells contained in the boundary 

of the 2-cell: 

If q = l, R.R.2 states that an edge p lying in the boundary of 

a 3-cell is the common face of exactly two 2-cells which also lie 

in the boundary of the 3-cell: 

'r~ 

R.R.2 is satisfied if K is simplicial. Indeed, take p 

and ~ to be open simplices such that p < ~ ,with dim p q 

and dim ~ q+2. Then p is a simplex on vertices AO,Al,···,Aq, 

and ~ is a simplex on the vertices of p and two other vertices 
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A and Aq+2 • It is clear that we may take 0 to be the simq+l 1 

plex on the vertices of p and A + , and a the simplex on theq l 2 

vertices of p and Aq+2 

1.8. DEFIIIJITIOE. Given the regular complex K, an incidence 

£'unction 0: on K is a :function assigning to each ordered pair of 

cells 	 a . 1" of K an integer :f-.com the set {-1,0,+1} denoted by 

[a:1")o: 	 (or [a:1"J for short) such that: 

(i) 	 [a:1") is nonzero if and only if 1" is a face of a of one 

101fer dimension. 

( ii) 	 If a is an edge 1fith vertices A and B, then 

[a:A] + [a:B] = ° 
(iii) 	 If P < 1" and dim p = dim 1"-2 , and a and a are thel 2 

two cells with p < 0i < 1" for i = 1,2 , given by R.R.2, 

then 

h: al ]· [al:p] + h: 0
2 ][02: P ] = ° . 

[O:1"J is called the incidence number of the pair 0,1". He say that 

K is oriented by the incidence fUnction 0: , or that 0: yields an 

orientation on K. 

Remark 	on condition (ii) above. It follows easily from the 

definition of a regular complex that every I-cell has precisely two 

vertices. 

1.9. DEFTIIJITION. If 0: is an incidence fUnction on K, the 

associated boundar"J operator ?p, with 2P: C (K) ~ C l(K) , is q q q-

defined as follows. For a a generator of C (K) ,
q 

cPo 	 2: [0:1"]0:1" Note that this sum has finitely many nonzero 
q 

TEK 
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terms by l€mma 1.3. 4. We extend cP 
q 

over all of C 
q 

(K) by line

arity. 

To justify this de f .init ion, we have the folloving lenn:na: 

?P?p1.10. 	 LElIji,lA. For all integers q, q q+l ° . 
Proof: 	 Let T be a senerator of Cq+l(K) • Then, for q>l,we 

have 

0: 0: 0: ] ) o 0 IT 	= 0 (2:[T:O a (by def.) 
q q+ q 

2: h:o]oO:o (by linearity) 
a 	 q 

2: [T:O](2:[o:p]p) (by def.) 
a p 

2: (2:[T:O][O:p])p 
p a 

° 	 (by Def. 2.18 (iii)) 

Thus, by linearity, the result follows for all (q+l)~chains, q ~ 1 • 

This completes theIf q < 1 , then the map 00: 
q 

is the zero map. 

proof. 

DEFUrITION. If c is a O-chain, the index of c, written1.11. 


In c , is the sum of the coefficients of c. 


Remark. Using methods similar to the proof of the above 


lemma, it is easy to see that for a E Cl(K), In (o~a) = ° , as a 


consequence of Definition 11.1.8 (ii). 


1.l2. 	 DEFIl'TITIOJlT. If K is a regular complex oriented by the in

cidence :function 0:, then the chain co~lex induced by 0:, written 


The grOUPS of cycles and
CO: (K) , is the chain complex ({Cq(K) ,00:) 

in dimension q are the SToups of cycles and boundariesboundaries of K 

Ct 0: 


of the 	cha in complex CCt(K) , and are written Z 
q

(K) and Bq (K) , 

r espectively. The qth homology STOUP of K is the STOUP 



ZO:~)jBO:(K) , and is denoted by rf(K). The collection of homologyq q q 

groups and the zero boundary operator form the homology chain com

plex of K, -written i;(K). Notation and minor definitions: A 

q-chain of a regular complex is sometimes referred to as a chain on 

K if it is zero off of the cells of some subcomplex L of K it 

is often said to lie on L, or to be a Chain on L. Two q-cycles 

zl and z2 are said to be homologous if they lie in the same co

set of B~(K) -- that is, if their difference is a boundary -- and 

we -write zl - z2 The collection of q-cycles homologous to a 

given cycle z is called a homology class and is denoted by {z} • 

We shall also say that two chains c ' c are homologous, and -write l 2 


- c ' if their difference is a boundary.
cl 2 

Next we note that for a finite regular complex K, oriented 

by the incidence function 0:, the qth homology group ~(K) is a 

factor group of two finitely generated abelian groups and so is 

finitely generated. By the fundamental theorem on finitely gener

ated abelian groups, ~(K) splits into a direct sum of a free 

abelian group and a finite group. The finite summa.nd is called the 

torsion subgroup of ~(K) , and K is said to have non-trivial 

torsion in dimension q if the torsion subgroup of ~ is non

trivial. The rank of the free summa.nd is called the qth Betti 

number of K and is -written R~(K) • 

R.R. 3: There is an incidence function for any regular complex K. 

This restriction allows one to define homology groups for 

all regular complexes. It is satisfied if K is simplicial. To 

see this, order the vertices of K. If 0 is a simplex spanned 
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by the (ordered) vertices AO, ••. ,A , we define incidence numbers 
q 

[a: ~) for ~ < a as follows. If ~ is of dimension < q-l , we 

set [O : T) O. If T is of dimension q-l, its vertices are 

those of 0 with one vertex, A., say, omitted. We set [a:T)
1 

(_l)i. We leave as an exercise to the reader the verification 

that the function so defined is an incidence function for K. 

There is a practical procedure for defining an incidence 

f unction on a finite regular complex of dimension at most 3: 

(i) Associate an arrow with each I-cell 0 of K, and assign 

the value +1 to [o:A) for A the vertex at the head of the 

arrow, and the value -1 to [o:B) for B the vertex at the tail 

of the arrow. 

B >- 'A 
o 

(11) Associate a circular indicatrix with each 2-cell o. For 

each I-cell T < 0 , assign the value +1 to [O:T) if the direc

tions of the indi.catrix on a and the arrow on T agree, -1 if 

not. 
't3'tI [O:T ) -1

l 

[0: T ) [O:T ) = +1
2 3 

"t'2, 
(iii) Associate a corkscrew with each 3-cell 0; the corkscrew 

induces an orientation (indicatrix) on each 2-cell T < o. We 

assign +1 to [O:T) if the orientation induced by the corkscrew 

on 0 agrees with the circular indicatrix attached to ~ in (11), 

-1 if not. 

[a:~) = +1 

http:summa.nd
http:summa.nd


Once we have an incidence fUnction a on a regular complex 

K , we may compute the homology of K using the chain ccJmplex 

Ca(K). It appears at this point that the homology so obtained 

might depend upon the particular incidence fUnction a on K. It 

will turn out that this is not the case: given two orientations a,~, 

a 
on K, the homology groups of C (K) are isomorphic to those of 

C~(K). In fact, the chain complexes Ca(K) and C~(K) have the 

same structure. The precise sense in which this is true will be 

explained in section 5. 

Example: Computation of the Homology Groups of the n-spher~. 

We have presented a procedure for constructing homology 

groups of a regular complex. Given a topological space X, such 

that X is the space of some regular complex K, we may define the 

homology groups of the space X to be the homology groups of the 

cOI@lex K. We must of course verif'y that if X can be realized 

as the space of another complex L, then K and L have isomorphic 

homology groups. In other words, we must demonstrate that the se

quence of homology groups is a topological invariant for the cate

gory of spaces which realize regular complexes. This will be done 

in a later chapter. AssUIIJ.ing topological invariance for now, we 

compute the homology of the space X by giving X the structure 

of a regular complex K and by defining an orientation on K. We 

demonstrate this technique with the n-sphere Sn. 

The O-sphere is the space of a regular complex with two 

O-cells; orientation is possible in only one way. Cq(SO) '" 0 ex

cept when q 0, and CO(SO) "'" Z EEl Z • Then ZO(S
o

) = CO(S
0 

) and 
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0 0
BO(S ) = 0 , so HO ( S ) "'" Z EEl Z • Hq(SO) = 0 for q -f 0 • 

The I-sphere is obtained from the O-sphere by adjoi ning two 

l-ce·lls. Let T be the mapping Sl --7 Sl inter changing antipodal 

points; then is the space of a regular complex with two O-cellsSl 

eo and TeO and two I-cells e
l 

and Tel' (See diagram.) We 

construct an incidence fUnction on Sl as follows: 

[el:e ] - 1 [Te :e J = +1
O 1 O


[e :Te ] = +1 ITe :Te ] = -1
1 O 1 O

Then del TeO- eO' d Tel = eO- TeO ' ZO(Sl) CO(Sl) "'" z EEl z , 

generated by eO' Teo,Bo(sl) "'" Z , generated by eo - TeO' so 

1 1
HO(S ) = coiBo "'" z . zl(S) "'" Z , generated by e1 + Tel' ~(Sl) =0, 

so ~(Sl) ~ Z. Hq(Sl) = 0 for q > 1 

For k > 0 , S2k+2.lS 0 bt· d from S2k+1 by ad···alne JOlnlllg 

two (2k+2) cells e 2, Te , with the following orientation:2k+ 2k+2 

[e2k+2:e2k+1J = [e2k+2:Te2k+lJ = [Te2k+2:e2k+l J = [Te2k+2:Te2k+1J = +1 • 

other incidence numbers 

are as in S2k+1 

For k > 0 S2k+3 is obtained from S2k+2 by adjoining two (2k+3 ) 

cells ' with the following orientation:e 2k+3, Te2k+
3 

[e2k+3:e2k+2J = - 1 [Te2k+s:e2k+2J = +1 

[e2k+3:Te2k+sJ = +1 [Te2k+3:Te2k+2J -1 
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The reader ~ check that the functions given satisfy the require

ments for incidence functions. Note that the regular complex for 

Sn so obtained is the same as in example 2.1, chapter 1. 

It is clear that H (Sn+l) ~ H (Sn) for n > 1, r of n,
r r 

n+1. III dilJlens ions n, n+l: 

Z (~k+l) = Z 	 (S2k) ~ Z with generator Te e
2k 2k 2k - 2k 


2k+2 2k+l)

Z2k+l (S ) Z2k+l (S ~ Z with generator +e 2k+l Te2k+l 

B (S2k) = 0 
2k

B (2k+l
2k+l S ) = 0 

oe2k+ 1 	 e2k+ 1 +Te2k - e2k 	 oe2k+2 Te2k+1 

k+l) R 	 (k+lThus 11c(S 	 = 0, -1\.+1 S ) ~ Z 

For n > 1, H (Sn) = {z for q = 0 or nS=y: 
- q o otherwise 

f Z EEl Z for q = 0 
Hq(SO) =Lo otherwise 

Exercise. a) Using a regular complex whose space is the 

torus ¥, compute HQ(¥) ~ z, H
l
(¥) "" Z EEl z, ~(¥) ~ Z 

b) Using a regular complex whose space is the projective plane 

2 	 2 2 2)
]P ,compute HQ(JP ) ~ Z, Hl(JP ) "" Z2' ~(]p = 0 • 

2. The EuJ.er Characteristic 

2.1. DEFINITION. The Euler character istic of a finite regular 

complex K is defined by: X(K) = z:dim K( -l)qR (K) • 
q = 0 q 
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2.2. THEOREM. 	 If K is a finite complex and is the nurriber of° q 

q-cells of K , then X(K) = rfiimOK (-l)%:
q= q 

Proof: let P	 '" rank of Z , for each q • is of course the q q ° q 

rank of C Consider the short exact sequenceq 

o 
O---;..Z ~C ~B 1~0 q q q-

B 1 is free since it is a subgroup of the free abelian group C q- q-l 

Thus there is a homomorphis~ r: B 1 ~ C such that 0 r = 1 . q- q q 

This implies that Z is a direct summand and C Z ffiD where q q q q 

D = rB Since ~ ~ B 1 we have that rank B 1 rank D q q-l g q- q- q 

° - P H (K) is the quotient of Z by B , so q q q q q 

Rq(K) = P - (Oq+l - P + ). The rest is aritl1metic:q q l 

Z:(-l)qRq(K) = (PO+ P -0: ) - (P +P -( ) + .••
l 1 l 2 2 

+ (_l)n-l(p l+P -0 ) + (_l)np , 
n- n n n 

where n dim K. Everything drops out except 

PO- C\ +°2 -° +•.. + (-l)nO:n •
3 

But Po = ' and the proof is complete.° 0 

Once we have proved that the homology groups are topologi

cally invariant, we will know that X(K) , as defined above, is 

also a topological invariant. B,y Theorem 2.2, so is Z:(-l)%:q • 

We can compute X(K) using the theorem and any regular decompo

sition of IKI • 

For example, 	 X(Sn) 1 + (_l)n 


X(En
) 1 


x (torus) = 0 




X(JP 2) 	 1 

X( JPn) 1/2 + 1/2 ( _l) n 

This last equality follows from the fact that the regular decompo

sition of SO yields a regular decomposition of JPn with every 

two cells of the same dimension identified. 

We will see later that the product of two finite regular 

complexes K and L can be given the structure of a regular com

plex K X L A q-cell of K X L is a pair (cr,T) with cr a cell 

of K and T a cell of L such that dim cr + dim T q 

Exercise. Show that X(KX L) X(K) ' (L) for any two finite 

regular complexes K and L. This show's, for example, that the 

n- dimensional torus, being the product of n circles. each of Euler 

characteristic zero, has Euler characteristic zero . 

Given a simplicial decomposition of a space IKI, with 0:0 

vertices, 0: edge s , etc . , we know that
1 

O:k S (~l) ,the binomial coefficient . 

In particular, if K i s a finite 2-dimensional simplicial complex, 

1
0:1 S ~(aa-l) If' We triangulate a compact 2-manifold M (with

out boundary) every I-simplex is the face of exactlY '~,o 2- simplices, 

s o 20:1 F2 Then 

6X(M) 	 Etxo - tal + ta2 

tao - 20:1 

> tao - 0:0 (0:0 -1) • 

Thus %-70:0 + 6X(M) > o . Since 0:0 :::: 3 , and the graph of 
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2 
y x _ 7x + 6X(M) is Symmetric about the .11ne x 7/2 , 

0: > 7 + f49 - 24x(M) 
o - 2 · 

The number on the right is called the 1:Ieawood number ·of the mani

fold M and is written h(I"';). Any simplicial decomposition of M 

must have at least h eM) vertices . 

Examples . h(S2) 4. h(torus) = 7 . h(JP2) = 6 . 

Exercise . Exhibit simplicial triangulations of these mani 

folds with these least numbers of vertices. 

3. Homology and Connectedness 

Homology groups of a space are constructed in the hope that 

they will provide some information about the topological properties 

of the space. 'de find in this section that there is a characteri 

zation of the number of connected components of a space in te~ of 

the Oth homology group . First we prove the following theorem. 

3.1. THEOREM. If K is a regular complex, and if the connected 

components of IKI are ~he spaces of sub complexes ~, ••• , Ln' 

t hen ~Qr_ every q, 

H (K) ~ 	the direct sum of the H (L . ) 
q 	 q l 

Proof: 	 Clearly Cq(K) is the direct sum of the C (L.) • Since 
q l 

[cr :T] is zero if cr and T are not in the same component, we have 

t hat boundary maps C (L.) ~ C l(L.) for each i,q Thus the q l q- l 

boundary preserves the direct sum and the conclusion follows. 
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3.2. DEFINITION. If K is a regular conwlex and A and B are 

vertices of K, then an edge path from A to B is a finite 

sequence of vertices (Ai)' 0 < i < n , and edges (a ) ,
i 

o < i < n-l , such that A ' B = An' and has Ai andAO ai 

Ai + as vertices for each il 

3.3. THEOREJv!. The following three statements are equivalent for a 

conwlex K 

(i) IKI is connected. 

( ii) IKII is connected. 

(iii) There is an edge path between every two vertices of K. 

Proof: \<le first prove by induction on dimension that (i) > (ii). 

This is clearly true for dim K 1 Suppose it is true for 

dim K < n let K be a regular conwlex of dimens ion n+ 1 such 

that IKI is connected. Suppose IRlI = P U Q, P open, closed, 

and non-enwty. We show that Q must be enwty. let pI be the 

union of all cells of K having a vertex in P, and define Q' 

similarly. If P contains a vertex of a I-cell it contains that 

I-cell, so if QI is empty, so is Q. If a is a cell of K, 

then a is a subconwlex of K of dimension < n-l. B,y the tpduc

tion hypothesis, 1;11 (the I-skeleton of ~) is connected and must 

lie either in P or in Q. (It is non-enwty by Prop. 1.7.) Thus 

a and all its faces must lie either in P' or in Q'. It follows 

that P' and QI are disjoint and exhaust K. Moreover, P' 

(and Q') meets each closed cell a in the null set or in a and 

so is closed by the weak topology property. B,y the connectedness 

of IKI, Q' is empty. Then so is Q, and so IKII is connected. 
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If K contains cells of arbitrarily high dimension the same 

argument proves that IRlI is connected since we have now sho.m 

that lall is connected for each cell a of K. 

Proof that (ii) > (iii). let IKII be connected, and 

let A be any vertex of K. let U be the union of the cells of 

all edge paths connecting A with other vertices of K A I-cell 

T lies in U if and only if one of its vertices does. So U 

either contains T or is disjoint from T Since Rl is a sub

conwlex of K, U is open and closed in IKII by the weak topo

logy property. IKII is connected, and U contains A and there

fore all of IRlI. 

Proof that (iii) > (i). Since the union of the cells of 

a path of edges is a connected set, (iii) implies at once that IKII 

is connected. Since every closed cell of K is connected and con

tains points of IRlI , we use an elementary theorem on connected 

sets (finite chain theorem in Kelley's General Topology) to deduce 

that IKI is connected. 

In what follows we will say that K is a connected conwlex 

if IKI is a connected space. 

3.4. LE~~. If K is a connected regular conwlex, AO a vertex 

in K. and c a O-chain on K, then c ~ (In c)A
O 

Proof: If c is a multiple of a vertex, say c = mAl ' then there 

exi sts, by the previous theorem, an edge path from AO to AI. 

B,y R.R. 3 we may choose an orientation on K • let LBia i be the 

I-chain with the following properties: (i) the a are the I-cellsi 

of the edge path from AO to AI' (ii) a = .:t 1 , and (iii)i 

d(Eaia i ) = Al -AO. Then mAO ~ mAl ,so c ~ (In c) AO 



If c = Lf m.A. join edge paths from each A. t o AO 
l=O l l l 

so that Ai - AO bounds. Then miAi - m/·O b01mds, and 

I;(m.A. - m.A ) = c - (In c)A ' The latter bounds. so b-y definition 
l l l O ' ' 

C 'V (In c )AO • 

o

3.5. THEOREN. A regQLar complex K is co=ected if and only if 

HO (K) "" Z • 

Proof: Let K be a connected. regQLar compl ex . Let A be any 

Then, by the preceding l emma, any O-cycle is homol o-vertex of K 

gous to a multiple of A Thus, the coset of BO(K) to '-rhich A 

belongs geneTates HO(K). I f rnA bounds fOT some m, then rnA = dc 

for some l-chain c. By the remark after Definition loll, 

m = m(mP.) = In(dc) O . Thus HO(K) "" Z 

If K is not co=ected, yre may apply the fir s t theorem of 

this section, after noting that by Prop . 1.4. 2 a conne cted component 

of a regular compl ex is a subcomplex. 

3. 6. COROLLARY. HO(K) is isomorphic to k copi~s of Z I{here k 

no. of components of K.is the number of components of K . RO(K) 

3.7. OOROLIoARY. Ho (K) is invariant under change of orientation 

and under homeomorphism. That is , if K and L are complexes such 

t hat IKI is homeomorphic to ILl, ,t hen Ho(K) ~ HO(L) . 

4. Computation of Homology Groups 

If.1. DEFllUTIOH. A tree is a co=ected regulae l -dimensional com

plex I{ith no non- ~oero l-cycles. A maximal tree in a regular' complex 

K is a subcomplex 'o'hich is a tree and contains all of the vertices 

of' K. 
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4· . 2 . PROPOS ITION. Each co=ected reguJac compl ex K has a maximal 

tree . 

Proof: The proof uses Zorn" s Lemma. He must show that the set of 

trees in K , ordered by inclusion, has t he property that any totally 

ordered subset has an upper bound. Let {Lo;' 0; E A} be a totally 

ordered set of trees in K The union L of the trees Lo; is 

connected, because any two vert ices of' L must lie in some Lo;' 

and we may apply 3.3.- Any cycle on L , being a finite complex, 

mus t lie in some Lo;' Thus L is a tree . By Zorn's Lemma, there 

is a tree T in K \'rhich is maximal i-Tith respect to inclusion. 

We claim that T is maximal in the sense of 4.1. Let A be a 

vertex of T, and l et B be any vertex of' K . Since K is con

nected, "e may apply 3. 3 to sho1{ that there exist s a path of edges 

A = Al , e ,A2,e2, ••. ,e , An+l = B ~rom A t o B. Let j be thel n 

largest integeT < u+1 such that T contains A. If j < n+1 ,
J 

then T U e. is a tree strictly containing T, Which contradicts 
J 

the maximal ity of T Thus T contains and is aAn+l B 

maxil!lal tree in K 

Remark . The construction of a maximal t ree can be carried 

out effectively .rhenever K has a finite or countab~ e number of 

e dge s. Ide order them in a silIIple sequence {e } , and define ai 

sequence of trees {Ln} inductively by ~ e l , and L 
n 

is the 

union of L _ and the closure of the first edge in the ordering
n l 

with precisely one vertex in L _ Then the union of the L is 
n l n 

a maximal tree. 

Given an oriented co=ected regular complex K we construct 

a basis for Zl (K) as follows. Let T be a maximal tree for K, 
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and let rea' a € A} be the edges of K not in T. For each a, 

e connects two vertices in T. Thus de = B-A for some A and a a 

B in T. Since T is a tree, there is precisely one l-chain c a 

in T such that dC = B-A If we set Za = ea-c ,then za isa a 

a cycle. For each a, Za involves an edge, Za ' not in any z~ 

for ~ fa, so the za's are independent. We show that the za's 

span Zl(K) Let Z be a l-cycle on K. Then Z can be written 

L.aaaea + d ,where d is a chain on T Then Z - L.aaZa LaaC + d a 

the c a as above. In this equation, the left side is a 1-cycle on 

K , while the right side is a l-chain on T • Thus the right side 

is a cycle on T. But T is a tree, and has no non-zero cycles. 

Thus Z = Laifa' as desired, and the za's form a basis for Z1 (K). 

Suppose K is finite in the above computation. Since T 

is a tree, we have aO(T) ~(T) = 1. But every vertex of K is 

in T, so ao(T) = ao(K) and the number of za's is 

~(K) - ~ (T) = ~ (K) - ao(K) + 1 

Thus Zl (K) is isomorphic to a sum of ~ (K) - ao(K) + 1 copies of 

Z if K is finite. This result can also be obtained using purely 

algebraic methods. 

We have shown, incidentally, that every l-cycle of K is a 

sum of simple l-cycles. A simple l-cycle is a cycle carried by a 

simple closed curve -- a l-cycle whose coefficients are all +1 such 

that no more than two of the l-cells of the cycle have any vertex in 

common. We shall consider the analog of a simple l-cycle, the fUnda

mental n-cycle of an orientable n-circuit. 
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4. 3. DEFINITION. An n- circuit is an n-dimensional regular complex 

K such that 1) e ach (n- l )-cell is a face of precisely two n-cells 

and 2) for any two n-cells 0 and 0' , there is a "rath of 

n-cells" joining them; that is, a finite sequence of n-cells 

0o,al ,·· . , as such that o a0' a' as' and each pair (a., a . 1)
l l+ 

bas an (n-l)-dimensional face in common. An example of an n-circuit 

is any regular complex K such that IKI is an n-manifold. 

If K is an oriented finite n-circuit, we compute Hn(K) 

and Hn_l(K) as follows. Order the n-cells of K in a se quence 

00,Ol, • •• ,as ' so that each a
k 

for k > 1 has at least one (n-l)

dimensional face in common with a preceding a ; for each k > 1
i 

choose such an (n-l)-cell, call it Tk • Define integers ~, 

o ~ k ~ S , by induction as follows: Set aO = 1 , and, given a i 

for i < k , define ~ so that d(aOoO + ~ol + •.. + ~ak) has 

coefficient ° on Tk This can always be done since is• Tk 

always a face of precisely one n-cell among aO' al , ... , 0k_l' Note 

that ~ is always +1. The chaip 'Y = ~=O~ak is crucial in 

t he computation of the homology of K. 

Define ILl to be the subset of IKI cons'isting of IK 2 1 
n

and all (n-1)-cells of K not among the Tk'S By Prop . 1.4. 2., 

L is a subcoroplex of K. d'Y i ,s an (n-l)-chain on L, and since 

each (n-l)- cell of K is a face of exactly two n-ce11s, the coeffi

cients of d'Y are members of the set {-2,0, +2}. Thus d'Y = 2~ , 

wbere ~ is an (n-l)-chain on L having coefficients +1. 

4.4. ~~. If an n-chain has its boundary on L, then it is a 

multiple ~f 'Y. 
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SProo:f: let c = L:j =ObjOj , with dc lying on L Then c - bOr = 

S=lbjOj and d(c -bor) lies on L • j'[e show by induction that all 

o:f the b~ are zero. ~-le know that 
J Tl is a :face of and°0 °1 

only, so d(C-bor ) has coe:f:ficient +b on , the Sign depending' - 1 Tl 
only on orientation. But d(c-bor ) lies on L , so b' is zero.1 
Given that b~ = 0 :for j < k , we have that is a :face o:f J Tk Ok 
and o:f no other cells OJ :for j > k • Consequently the coe:f:ficient 

o:f Tk in d(c-bor) is ~bk ' the Sign depending on orientation. 

In any case this must be zero, so \
b ' is zero. Thus Ck bor • 

4.5. COROLIARY. Ii' K has any non-zero n-cycles , they are all 


multiples o:f r 


Thus r is a cycle i:f and only i:f K has some non-zero 


n-cycle. 


4.6. DEFU!ITION. If' the chain r is a cycle, then the n-circuit 


K is said to be orientable. In this case r is called the funda

mental cycle o:f K. I:f r is not a cycle, then. K is called 


non- orientable . (Note the di:f:ference between "oriented" and 


"orientable. " ) 


4.7. COROLIARY. If' K is orientable, H (K) "" Z • 
n If K is non

orientable, H (K) is zero. (We assume here that homology is inde

pendent of orientation.) 

n 

4.8. LEMMA. Each (n-l ) - cy cle of K is homologous to an (n-l) 

cycle on L 

Proo:f: let z be an (n-l)-cycle o:f K • Then z-"s b d- ~=l k Tk + , 
where d is an (n-l)-chain on L. We prove by induction that z 
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is homologous for every j to a cycle which has coefficientsZj 

zero on Tk :for k < j This is vacuously true :for j 1. 

Suppose it is true for j = m , where l<m<S. Then z '" zm 

~=mc T k + d I , for some coefficients c and some Cn-l)-chain d 'k k 

on L • We know that T is a :face of ° and of some with 
m m °i 

i < m Also, dam € T + t .erms involving no preceding Tk' s ,m . 

..heTe € +1 [ 0 : T ] 80 z - € c do Cm+lTm+l··· +C'T +d"m m l!l m m ' S 8 ' 

:for suitable etc., and d" on L • We setc~1,c~2 zm+l 

z - € C dO and note that we have produced a cycle homologous to m m m 

z which has coefficient zero on T a.nd all preceding Tit s.m m 

O:f course Thus z is eventUally sho.~ to be homologouszm+l '" z 

to a cycle on L. 

Note that if an (n-l)-cycle of L bounds in K, then it 

i s a multiple o:f 2~. For, if z is an (n-l)-cycle on L such 

that z = dc for some n-chain c on K, then, by lemma 4.4, 

c = br for some integer b, so z dc dbr = 2b~ • 

4 .9 . THEOREH. If K is an o~ientable n-circuit, then Hn_I(K) ~ 

Zn_l (L) . If' K is non-orientable, then Hn_I(K) "" Zn~l(L)/ 

< 2~ > , where < 2~ > is the subgroup of zn_l(L) generated by 

2~ . (Note that Zn_l(L) '" Hn_I(L) . ) 

Proof: let K be orientable. r i s a cycle, so dr = 2~ = 0 • 

Thus ~ is zero, since C I(K) is :free. We define a homomorphism
n-

f : H _ (K) --7 Zl1_1 (L) as :follows. An (n-l)-cycle z on K is 
n l 

homologous to a cycle z, on L by lemma 4.8. The remark preced

illg this theorem shows that z, is unique. For i:f z, "-' z" and 

both are on L , then their difference bounds in K, and must be a 



multiple of A. But A is zero. Moreover, starting with any zl 

in the homology class of z, we get a cycle zl on 1 homologous 

to But then z, ~ zi and so they are equal. Therefore wezl 

may set f({z}) z' Now f is obviously a homomorphism. It is 

a monomorphism, for if f({z}) o . then z ~ 0 It is an epi

morphism because any cycle on 1 is a member of some honology class 

on K. Thus f is an isomorphism, and H l(K) ~ Z 1(1), as 
n- n

desired. 

I f K is non-orientable, we consider < 2A > , the subgroup 

of multiples of 2A. He define a map f: H l(K) --7 Z 1(1)/ < 2A > n- n

as follows. Given an (n-l)-cycle z on K, we use Lemma 4.8 to 

find z, on 1 homologous to z. Then z· is determined, up to 

an addition of a multiple of 2A, so we may set f( {z) ) equal to 

the coset of < 2A > in which z· lies. As before, f is a homo

morphism. It is a monomorphism because if f({z}) is zero, then 

z is homologous to a multiple of 2A and thus bounds. Since f 

is clearly an epimorphism, it provides the desired isomorphism 

Hn_l(K) ~ Zn_l(1)/ < 2A > 

4.10. COROLLARY. If K is a non-orientable n-circuit, Hn_l(K) 

is isomorphic to a direct sum of Z2 and a finite number of copies 

of Z. 

Proof: We may take a basis for C 1(1) which contains A since 
n-

all of its coefficients are +1 Z 1(1) is a subgroup of 
n-

C _ (1) • By a fundamental theorem on finitely generated abelian 
n l 

groups we ·can find a basis for the free group Z 1(1) each of 
n-

whose elements is a multiple of a basis element of C 1(1) . 
n
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Thus 20A = d2A = 0,But 2A bounds in K and so is a cycle in 1. 

so A itself is a cycle. Therefore A can be taken to be a gener-

The corollary now follows.ator of Zn_l(1) 

The projective plane ]p2, a non-orientable4.11. Example. 

2-circuit. We triangulate lP 2 as in the diagram and label the n

i3Jld (n-l)-cells. Note that the chain "I = 00 + 01 + ••• + 05 ' so 

d"t = 2AB + 2BC + 2CA f O. Thus ]p2 is non-orientable, and 

H2 (]p 2) = O. Zl(1) is a free group on 

one generator, A , so 

Zl(1)/ < 2A > ~ Z2' Thus 
2 ~: At r.~ Xft fAJ 

~ (JP2) ~ Z2' Since lP is 

cQ=ected, HO(]p2) ~ Z • 

Exercises. Show that the homology 

of 1) the torus is H2 ~ Z, ~ ~ Z EEl Z 

HO ~ Z , and 2) the Klein bottle is L: GA
H2 = 0, ~ ~ Z EEl Z2' HO ~ Z , by tri 

angulating them as 2-circuits and using 


the methods of this section. 


5 . Change of Orientation in a Complex 

For this section we will need the notions of chain mapping 

and chain isomorphism. 

".1 . DEFINITION. Given two chain complexes C = ({C
q

},o) and 

C' (fC' },o·) , a chain map <P: C --7 C' is a collection (CPq) of 
q 

cP 0 O·cp:C --7 C' for 
hOlDOmorphisms cp : C --7 C' such that q-l q q q q Q-lq q q 
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each q. A chain map is called a cha:m isomorphism if each of the 

~ IS is an isomorphism.q 

The notion of chain map is important because a chain map is 

easily seen to carry cycles into cycles and boundaries into bound

aries. Thus a chain map ~ induces a chain map ~*: H*(C) ~H*(CI) 

defined by (~*)q(Z) (~qZ) As a matter of convention we shall 

usually omit the subscripts whenever referring to the homomorphisms 

of a chain map or to the boundary operators of a chain complex. 

Thus we write ~ = dl~ as the defining relation of the chain map ~. 

Note that isomorphic chain complexes have isomorphic homology 

groups and that a chain map ~: C ~ C' is a chain isomorphism if 

-1and only if there exists a chain map cp : C' ~ C called the in

verse of ~ such that qxp-l and -1 

~ cp are the identity on C 


and C' 
 respectively. Here we use the fact that the composition 

of two chain maps is a chain map. The basic theorem on induced 

chain mappings of homology groups is: 

5 .2. THEOREl'l. If cp: C ~ C' and 1jr: C' ~ Cn are chain maps then 

1jr*~* (1jr~)*: H*(C) ~ H*(C") • 

The proof is easy and will be omitted. This theorem, to

gether with the fact that the identity chain map induces the 

identity homomorphisms of homology groups, shows that the assign

ment to C of the chain complex H*(C) and the assignment to a 

map ~: C ~ C' the map ~* is a functor from the category of 

chain complexes and abelian groups into itself.* In the future ve 

shall usually omit reference to the homology chain complex and talk 

of the homology groups or regard the collection of homology groups 

as a graded group. 

*See Chapter IV. 
')? 

If we are given a regular complex K with an incidence 

function Gil, we may reverse the orientation on a given cello· of 

K in the following way. Let CO:(K) be the chain complex for K 

given by the incidence function a on K. Vie defi_ne a new inci

dence function ~ for K. ~ is defined to equal C¥ except for 

incidence numbers involving a The ~-incidence numbers involving 

o are defined to be the negative of the ~incidence numbers involv

lng o (we assume that dim 0 ~ 1). Then ~ induces the chain 

complex C~(K) • We say that C~(K) is obtained from CO:(K) by 

an orientation reversal. He define a chain map 1/r: CC¥(K) ~ CP(K) 

as follovrs. 1jr~ ~ for e\~ry cell ~ different from 0 1jro =-0 

Thi s defines 1jr on all the generators of the Cq(K) , and we extend 

1jr by linearity. It is easy to see that 1jr is a chain map and has 

an inverse map which reverses the sign on 0 once again. Thus 1jr 

is a chain isomorphism and induces isomorphisms of the homology 

groups of CO:(K) and C~(K ) . And so H~(K) "" H~(K) for every q. 

For our general theorem on change of orientation we will 

need to assume the following lemma: 

5. 3. I.,E}oJl.1A. Any regular complex on the n-sphere (n ~ 1) is an 

orient able n-circuit. 

The proof of this lemma is given in Chapter VIII, section 4. 

At the present time we may regard the proposition as an additional 

redundant restriction imposed on a regular complex K for each 

q > 1 and each q-cell 0 of K, the boundary 0 is an orientable 

(q-l)-circuit. Notice that R.R.2 asserts that each (q-2)-cell of 

o is a face of exactly two (q-l)-cells of 0, and that R.R.3 

implies that 0 contains the ( q-l)-cycle 00 
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and hence is orientable. Thus we are imposing additionally 

only condition 2 of definition 4. 3 on the existence of a path of 

(q-l)-cells connecting any two (q-l)-cells. In case K is simpli

cial, the condition holds trivially because any two (q-l)-faces of 

a have a common (q-2)-face. 

5.4. THEOREM. Given a regular complex K and two incidence 

fUnctions a and ~ on K, then the chain complexes Ca(K) and 

C~(K) are isomorphic. The isomorphism ~: Ca(K) ~ C~(K) may be 

chosen so that ~a +0 for each cell a of K 

Proof: We define a chain isomorphism V: Ca(K) --) C~(K) by starting 

at the chain group of dimension zero and working upwards. We let 

V: COCK) --) COCK) be the identity isomorphism. To specifY ~ on 

C (K) , let a be a generator with vertices A and B. Now
l 

oaa El(A-B) for El = ~:.l Similarly, o~a = E
2 

(A-B) for _E2 =~l. 

Set va EI E2a. Then 

a 	 ~ ~o a = El(A-B) = EI E2 E2 (A-B) = 0 va • 

Extend 	 V over all of C (K) by linearity. It is clearly anl 

isomorphism. Note that V is induced by a set of independent 

orientation reversals: namely, orientation is reversed on each cell 

a such 	that EIE2 = -1 . 

Suppose now that V has been defined on C.(K) for i < q,
1 

where q is an integer > 2 Suppose that V as defined is an 

isomorphism on each C (K) , commutes with the boundary operatorsi 
oa and o~ , and satisfies va = :,+:.0 for each generator of each 

C. (K) for i < q Then we extend V over Cq(K) so as to have 
1 

54. 

the same properties: For a a generator of Cq (K) we define 

va = :,+:.0 , where the sign is determined by comparing o~a with voaa 

in the following way. First note that o~voaa = Voaoaa = 0 , and of 

course o~~a = 0 • Thus both o~a and voaa are cycles on the 

Moreover, bothsubcomplex a with the orientation induced by ~ 

Now by the pre-have coefficients +1 on the (q-l)-cells of a 

ceding lemma, a is an orientable (q_l)_circuit, since a is a 

q > 2. So Z l(cr) ~ zregular 	complex on the (q-l)-sphere, - q-

We then set a = Ea. We doand o~a = EVoaa for some E = +1 • 

thi,s for each generator of C q (K) , and extend by linearity over 

is a generator of C (K) , we havethe whole group. Then, if a q 

;jrOaa = Eo~a = o~Ea = o~ta This relation extends by linearity 

over the whole group, and so V commutes with the boundary operators. 

Clearly V is an isomorphism on C (K) , and va = +0 for eachq 

a a generator of Cq (K). Note that V is obtained by , a collection 

of orientation reversals. We extend V in this way over all the 

chain groups of K, and then the result is the desired chain iso

-morphism Ca(K) ~ C~(K) • 

5.5. 	 COROLLARY. If K is a ,regular complex with two orientations 

for each q. Homology groups are a and ~ , then H~(K) ~ H~(K) 


independent of orientation. 


Proof: 	 Isomorphic chain complexes have isomorphic homology groups. 

Hq(K) to mean Ha(K) for someFrom now on we will write 	 q 

ex , etc. 
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The lemma stated be fore Theorem 5. 4 has another important 

consequence which relates to the possibility of defining, an incidence 

function on a r egular complex K. In fact we have 

5.6. THEOREM. Given a regular complex K, any incidence function 

ex defined on a subcomplex L of K can be extended to an incidence 

K . 

Proof: \ole extend ex inductively over the subcomplexes L U KO ' 

L U K
l 

, ••• Clearly ex can be regarded as an incidence function f'or 

L U KO We define over L U Kl to be the following extension~ 
of ex If a is a I-cell of K not in L, then there are two 

vertices A and B lying in a, since a is homeomorphic to a 

closed I-ball. 'vie define [a :A] 1, [a:B] -1 arbitrarily. In 

this way ex is defined on all pairs of cells involving I-cells of 

K not in L 

Suppose no,," that we are given an incidence function ex _ 
q l 

defined on the sub complex L U K 
q 

, q > 2 • He extend ex 1 q-
to an 

incidence function ex 
q 

on L U K 
q 

as follows. For any q-cell o 

of K not in L we must define incidence numbers for- pairs of cells 

including a. These will be zero unless the second cell of the 

pair is a (q-l)-face of a Since a is a subcomplex of K 
ex _ . 

oriented by exq-l' by lemma 5· 3, Zq-
q
1

l (a) ~ Z \ole choose a 

generator r. This generator has coefficients +1 on the (q-l) 

cells of a. If T is a (q-l)-cell of a , we set [a:T] equal 

to the coefficient which r has on T • Then the only pI'operty 

of the incidence function ex so def.ined which we need to verify
q 

is (iii) of Def. 2.1.8. Let P be a (q-2)-cell of a • By R.R.2 

there are 2 (q-l)-cells of '[1,T which are faces of a and have p
2 

ex 
Cl q-11 = 0 So the sum [a:Tl][Tl : P] + as a common face. Now 

d
ex 

q-
1 r on p, must be

[a:T ][T :P] , which is the coefficient of 
2 2 

Thus (iii) is verified and ex is an incidence function for zero. q 

We continue this process and extend ex to all of KL U K q 
By taking L to be the empty subcomplex we derive the third 

redundant restriction R.R.3· 

Cohomology.Homology with General Coefficients.6. 

Cq(K) , for a regular complex K, as theWe have 'defined 

All element offree abelian group generated by the q-cells of K. 


is then a function mapping the set of q-cells of K into

Cq(K) 


the integers which is zero on all but a finite number of q-cells. 


by considering functions
We generalize the definition of Cq(K) 


from the set of q-cells of K to an arbitrary R-module G. First 


we make the following definition. 

6.1. DEFINITION. Given a regular complex K and a commutative 

ring R with unit, the qth dimensional R-module of chains of K 


is the set of functions defined on the
with coefficients in E 

collection of q-cells of K mapping into R so as to be zero on 

all but a finite number of q-cells. The addition and scalar multi 

plication are defined as follows. If f and g are two such 

r E R , and a a q-cell, thenfunctions, 


(rf)a = r(fa) ,
(f+g)a = fa + go and 

wbere the addition and scalar multiplication on the right sides are 

The qth dimensional R-module of chains of K with coeffi 
in R 

cients in R is denoted by Cq(K;R). An incidence function ex on 
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K induces a boundary operator (/1: C (KjR) ~ C l(KjR) because of q q q-

the unit in R . More precisely, if a is the chain which takes 

the value 1 on a and 0 elsewhere (1 and 0 are the unit and zero 

of R) we set oaa E K[a:T]T, where [a:T] lies in the set 
q TE 

{-I, ' 0, +l} of elements of R With this boundary operator the 

a
chain modules Ca(KjR) form a chain complex denoted by C (KjR) . 

q 

Note that C
a 

(Kj Z) = Ca
(K) as defined previously. 

6.2. DEFlliITION. Given a regular complex K and a unitary 

R-module G over a commutative ring R, the qth dimensional module 

of chains of K with coefficients in G is the R-module 

Cq(KjR) ~ G 

This R-module is denoted by Cq(KjG) . As in Definition 6.1, an 

orientation a induces boundary homomorphisms mapping Cq(K jG) 

into C l(KjG) for each Q. The qth homomorphism is .the mapping
q

oa 
q 

® 1 , where 1 is the identity mapping on G • The collection 

of modules {Cq(KjG)} together with the boundary homomorphisms 

a(Oa
q 

® I} form a chain complex which we will write as C (KjG) • 

6.3. DEFlliITION. The qth dimensional modules of cycles and bound

aries of the regular complex K with coefficients in the R-module 

G are the qth dimensional modules of cycles and boundaries, respec

a 	 a
tively, of the chain c01llplex C (KjG) , and are denoted by Z 

q 
(KjG) 

and B~(KjG) , respectively. The qth dimensional homology module 

H~(KjG) of K with coefficients in G is the factor module 

a / aZq(Kj G) Bq(KjG) • 
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As in the previous section, one can show that all of the 

are isomoD'hic, and that the homologyCa(K jG)chain complexes 

a The proof of these facts isare all isomorphic.groups Hq(KjG) 

easy and will be omitted. 

Homology with general coefficients is useful in some cases. 

For example, if G is the group of rationals, there is no torsion. 

If G is the group Z2' every n_circuit is orientable, because 

It turns out, however,
the boundary of the chain r is 2~ = 0 . 

that for the case where R is Z, the homology groups with coef-

G can be calculated from
f icients in an arbitrary 	abelian group 

Z . Thus homology with
the homology groups .rith 	coefficients in 

G does not give any new information about
coefficients ill a group 

lie needThis is the main result of this section.the complex K. 

the following definition. 

are twoIf C = ({C },o) and C' ({C'},d')q6.4. 	 DEFINITION. q 

and C' is theC Ell C' of C
chain complexes then the direct sum 

({ C Ell C'},d Ell 0') whose qth boundary operator is
chain complex q q 


the mapping defined by 


(d Ell d ' ) ( c, c' ) (dC, 0' c') • 

This definition can 	be extended to any finite or infinite 

We remark that the homology of C Ell C'
number of chain complexes. 

and of C' that is, for
is the direct sum of the homology of C 


H (C Ell C') "" H (C) Ell H (C') •
each q, q q q 

An elementary chain complex is a chain complex
DEFINITION.6. 5· 


over Z of one of the following three types: 
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i) (Free) All chain groupS are zero except ~or an in~inite 

cyclic group in a single dimension. (All boundary operators 

are o~ course zero.) 

.•• ~o~Z~o 

ii) (Acyclic) All chain groups are zero except ~or in~inite 

cyclic groups in adjacent dimensions, n and n-l, ~or some 

n , and all boundary operators are zero except d , which 
n 

is an isomorphism onto. 

... ~O~z~z~O~ 

iii) 
(Torsion) The complex is the same as in the acyclic case 

except that d is multiplication by an integer other 

than 0 or +1 

n 

Elk 
••• ~O~Z ~ Z~()~ ••• 

6.6. THEOREM. rr c is a chain _complex over Z such that each 

chain group is :free abe1ian and ~initely generated, then C is the 

direct sum o~ elementary chain complexes. 

Proo~: From the proo~ o~ Theorem II.2. 2, we know that 
Zq is a 

direct summand in C ~or eac.h q • We setq C q = Z q EEl Dq Since 
only the zero o~ Dq is a cycle, the boundary operator when re

stricted to D 
q is a monomorphism. The image dD 

q is a subgroup 

o~ the ~initely generated :free abelian group Z Thus we mayg-l 
choose bases (dl'···'~} and (Zl,···,zm} for D and Zq g-l
respectively, such that for 

1 < i < k there are integers Pi> 0 

such that dd. =p.z.
l l l and Pi1pi+l B,y our ~irst assertion C 

is split into a direct sum over g o~ the chain complexes 
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d 
••• -7 0 -7 D -7 Z 1 ~ 0 -7 ••• • We now split each of these into a 

q q-

direct sum of elementary chain complexes. The elementary chain 

complexes we obtain are as follows : For every Pi =1 we have an 

acyclic elementary chain complex with non-zero groups in dimensions 

q and q-l For every p. f 1 we have an elementary chain com
l 

plex of the torsion type with the non-zero groups in dimension q, 

q-l , and the boundary operator the mapping El which multiplies
Pi 

by Pi • For every z. with i > k we have free elementary chain 
l 

complex with the non-zero group in dimension q. The direct sum 

over q of all these chain complexes is C. 

We will use the theorem above to compute the homology groups 

of a regular complex K with coefficients in an arbitrary abelian 

group G. Let a be an orientation on K. The chain complex 

CU(K) satisfies the hypotheses of Theorem 6.6 as long as K ha~ 

f i nitely mar~ cells in each dimension. We will use the result that 

(LA1) 0 G is isomorphic to E(A 0 G) Now by Theorem 6.6,
i 

Ca(K) splits into a direct sum L~N. , where the N. are elementary
l l 

chain complexes. Then it is clear that Ca(KjG) = C
a 

(K)0G""E(N.0G) ,
l 

where the tensor product notation denotes tensoring in each diJllension. 

For instance Ca(K) 0 G is the cbain complex UCq(K) 0 G},d 0 1) 

where (d 01)q (]
q 

01 Therefore, by the remark following 

Definition 6.4, 

H*(KjG) "" E[H*(Ni 0 G)] • 

Computation o~ the homology of K is then reduced to the compu

tat ion of the homology of the chain complexes N. 0 G 
l 

http:K)0G""E(N.0G


If Hi is free , then Ni €I G i s t he chain complex 

.•• -)0 -7G-70-7 ••• and so H (N. €I G) = G ',rhere q is the 
q 1 

dimension of the single non-trivial chain group G of N. €I G 
1 

If is' acyclic, then N. (19 G is the chain complexHi 1 

whose groups are all zero except for two adjacent dimensions q, 

q-l. The non-zero groups are copies of G, and the boundary 

operator between them is an isomorphism. In this case it is easy 

to see that H*(N; 0 G) = 0 

Finally, if Ni is of the torsion type, then N . 0 G is 
1G

kthe chain complex -7 0 -) G -7 G -7 0 -7 ••• , where G is
k 

multiplication by k. Then H (N. €I G) "" Ker ' the subgroupq 1 
Gk 

of elements of G whose order divides k. This group is written 

Also, H leN. €I G) i s G/kG , which we write as G •kG q- 1 k 

We show below that G (= G/kG) is isomorphic to ~ 0 Gk 

Thus in all three cases H*(Ni 0 G) contains H*(Ni ) €I G as a 

direct summand. The only non-trivial complementary summand occurs 

in the torsion case. We have therefore proved the following theorem. 

6.7. TEEOREM. For each q, Ha(K; G) "'" (If(K) EEl 2: kG where the q q 

last sum is over all k for which there is a chain complex of the 

torsion type with qth boundary operator G in the direct sum decom
k 

pos ition of Ca(K) • 

6.8. LEMMA . If G is an arbitrary abelian group then = G/kGGk 

is isomorphic t o G €I ~. If G is finitely generated, then kG, 

the subgroup of elements whose orders divide k, is isomorphic to 

T ® ~ ,where T is the torsion subgroup of G. 
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Proof: To prove the first assertion, we define ~: G -7 G €I ~ by 

setting ~(g) = g 0 1 for all g E G. The kernel of ~ then 

contains kG, and so ~ induces a homomorphism CPO : G/kG -7 G 0 ~ 

ng , for ~v: G 0 ~ -7 G/kG by V(g €I n) coset containingDefine 

It is easily verified that ~O and V are in-
g E G, n E ~ • 

verses of each other. Thus ~ "'" G €I ~ • 

By the fundamental theorem for finitely generated abelian 

groups , together with the relation k(Gl EEl G2 ) ~ EEl kG2 ' theGl 

is a cyclic group.second assertion reduces to the case where G 

are both zero.If G is infinite cyclic then kG and T 0 ~ 

Then G 0 ~Suppose that G is of order n, generated by gO ' 

is of order (n,k). Let I' be an integer. 

rg E kG <===> n divides kr 
o 

n divides r .<===> "("i1,'k) 


n and so has order (n, k) • So

Thus kG is generated by 1ll,kT go 

k G ~ G 0 ~ and the proof is complete. 

Let G be a finitely generated abelian group .6.9. COROLIARY. 

6.10. PROPOSITION. Let G be a torsion free abelian group. 

Tnen, for each q, 

Ha(K;G)
q 

~ (Ha(K) €I G)
q 

EEl (T
a 

l(K) €I T)
q-

where T~_l(K) is the torsion subgroup of 
a 

H l(K)q-
and T is the 

t ors ion subgroup of G. 

Then 

Ha(K;G) ~ Ha(K) 0 G 
q q 

Proof: For then kG = 0 for all k. 
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Exercise. Compute the homology groups of the projective 

plane JP2 with coefficients in Z2. A tabulation of the homology 

groups with coefficients in Z and in Z2 gives: 

HO(JP 
2

) "" Z 
2

HO( JP :z) "'" Z2 

Hl(:p2) "" Z2 2 
HI (JP ; Z2) "'" Z2 

~(JP2) "" 0 
2

~(JP ;~) "" Z2 

The Oth homology group on the left, Z, gives rise to the Oth group 

Z2 on the right; and the 1st homology group on the left, Z2' 

gives rise to both the 1st 	and 2nd groups on the right. 

Given a regular complex K we define the cohomology groups 

of K by first associating with K a cochain complex. 

6.11. 	 DEFIlHTION. A cochain complex C over a ground ring R 

q
(commutative with unit) is 	a sequence (C } of R-modules together 

q lCqwith R-homomorphismP o : C ~ + such that for each q,q 
q

o 0 1 = O. The R-module C is called the module of q-cochainsq q-

of C, and the homomorphism 0q is called the qth coboundary 

operator of C. The modules of q-cocycles and q-coboundaries, 

Bqzq,denoted by are the R-modules Ker 0q and Im 0 1 resq

pectively. The qth cohomology module of C is the factor R-module 

q
Zq/B and is denoted Hq(c). The collection of cohomology modules 

of C together with the zero boundary operators forms a cochain 

complex called the cohomology chain complex of C and denoted 

*H (C) 

6.12 DEFINITION. The qth d:i1nensional module of cochains of a 

regular complex K with coefficients in the R-lIJOdule G, written 
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Cq(K;G) , is the R-module 	 Hom(C (K;R),G) • The cochain complexq 

associated with an oriented regular complex K is the cochain com

plex C·(K) = ({Cq(K(G)},o}), where o = (-l)qHom(d ,1) • The q q 

modules of cocycles and coboundaries of this cochain complex form 

the modules of cocycles and coboundaries, respectively, of K with 

coefficients in G. These modules are written zg(K; G), Bq(K; G) • 

The qth homology module of K with coefficients in G is the 

factor module Zq(K;G)/Bq(K;G), and is written Hq(K;G) • 

If u is a cochain on K of dimension q, and c is a 

q-chain on K, then for the value of u on c we write (u,.c). 

Note that (ou,c) = (-l)q(U,dC) • 

Exercise. 1. state and prove a theorem about decomposing 

cochain complexes over Z whose cochain groups are free and 

finitely generated into a direct sum of elementary cochain. com

plexes. Deduce from the theorem that the cohomology of a finite 

i'egular complex with coefficients in an arbitrary abelian group G 

is determined by the cohomology with coefficients in Z. 

2. Let C ((Cq},O) and D = ((Dq},o') be two cochain 

complexes. Define a cochain map ~: C ~D to be a collection of 

homomorphisms ~ : Cq ~Dq such that m 0 - o'm for each q 
q "'q+l q - q"'q 

Shmfl that ~ induces a cohomology homomorphism 

~ * H (C) * H (D) : ~ * • 

Prove an analog of Theorem 5.2. 
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CHAPTER III 

REGUlAR COMPLEXES WITH IDENTIFICATIONS 

1. The identifications 

Let 	 K be a regular complex, and let a and ~ be cells 

of K of equal dimension. A homeomorphism f of a onto ~ is 

called an identification on K if whenever a < a the restriction o 

flo carries a onto a (closed) face of ~ of the same dimension 
o 0 

as a 
o 

1.1. DEFINITION. A collection F of identifications on K is a 

fawdly of identifications on K if each of the following holds: 

1. 	 For each a ill K the identity homeomo!1Jhism a ~ a 
lies in F 

2. 	 For each f in F, f- l is in F. 

3. 	 If f: p ~ a and g: a~:r are in F, then 

gf: p ~:r is in F 

4. 	 If f: a~ a is in F f is the identity homeo

morphism. 

5. 	 If f: a ~:r is in F and a < a , then fla- is 
o 0 

in. F 

A complex with identifications is a pair (K,F) with K a regular 

c'omplex and F a family of identifications on K. 

If 	 (K,F) is a complex with identifications, the relation 

a"-'~ if f: a ~:r is in F 

is an 	equivalence relation on the cells of K. This follows from 
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properties (1) - (3) for F From properties (3) and (4) we con

clude that if f: a ~:r and g::r ~ a are in F then g= f- l 

Accordingly, if f: a~:r and h: a~:r are in F then h = f. 

That is, if a "-' ~ then there exists one and only one map in F of 

a onto ~. This fact will be used to construct an incidence 

fUnction in the proof of 2.4. 

The family F also determines an equivalence relation for 

points of K 

x"-'y if a map in F carries x to y . 

We let KIF denote the set of equivalence classes of points of IK I . 
The natural fUnction s: IKI ~ KIF '( where sx is the class of x) 

defines a topology for KIF in the famil iar way: a subset X of 

KIF is closed if and only if s-~ is closed in K. Throughout 

this chapter we will omit absolute value bars whenever we can to 

s implify notation. 
l 

We define the q-skeleton (K/F)q of KIF to be the sub-

space s(K ) . The space KIF and the skeletons (K/F)q form a 
q 

complex. The proof of this fact is routine, and we taket1me here to 

point out only a few of the more important considerations. Each 

open cell of KIF is the homeomorphic image, under s, of at 

least one open cell of K. If sa u, then the cells of K 

that s maps onto u are precisely the cells equivalent t~ a 

Property (4) listed for F shows that no two points of the same 

cell of K are ever identified by a map of F. Property (5) 

guarantees that if two cells are identified then so are their 

boundaries. 
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The complex KIF need not be regular, but relative homeo

morphisms may be obtained for the cells of KIF from any set of 

homeomorphisms given for K by composition with s 

h(En,sn-l) ;:. (a, a ) 
homeomorphism 


(s la)h I'i" 

(li,D.) 

The map (sla)h is a relative homeomorphism because sla is a 

relative homeomorphism. 

2. The homology of KIF 

Let (K,F) be a complex with identifications. Although 

KIF is not necessarily regular it is possible to define a chain 

complex based on the cells of KIF whose homology is isomorphic 

to the homology of the space KIF. We mean that 1) the space 

KIF does carry a regular complex, so that its homology groups are 

well defined (see page 33 of Chapter II), and 2) these homology 

groups are isomorphic to the homology groups of the chain complex 

ca(K/F) that we are about to define. Proofs of (1) and (2) 

appear in section 3 of Chapter IX. The justification for presenting 

the chain complex at this stage is the ease with which its homology 

(and hence that of KIF) may someti:a!es be computed. 

2.1. DEFINITION. An incidence fUnction a on K is invariant 

under F if whenever f: p ~ a is in F and -r < p, then 

[p:-rJa = [fp: f-rJa . 
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2.2. EXAMPLE. The torus from a disk by identification. 

Let K be 	a regular complex on the unit s quare with four 

vertices, four I-cells and one 2-cell: 

y 

B I °2 9 

PI l' P2 

x 
--" 

A D°1 

Define f: 	i\ -..;;:. P2 by f(x"O) = (x,l) , and define g: a -..;;:. a
l 2 

by g(O,y ) = (l,y). Then take F to consist of 

1. 	 the identity map on l' 


-1 -1
2. f, g, f and g 

3. the restrictions of these mappings to bounding cells. 

An incidence fUnction invariant under F is given by the diagram 

bel ow (following the arrow-notation introduced on page 35 of 

Chapter II): 

B c 

A > ,D 

2 · 3· EXAMPLE. Real projective n-space pn from Sn by identi 

f icat ions. 

Let K be the regular complex on Sn described in I.2.1. 

We t ake F to be the collection of maps obtained by restricting 
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the involution T (see 1.2.7) to the closed cells of K. The 

complex pn KIF has one cell in each dimension. The incidence 

:t'unction given on pages 36 and 37 of Chapter II is invariant under F'. 

2.4. LEMMA. Let F be a family of identifications for a regular 

complex K. Then th~re e~ists an incidence fUnction on K that 

is invariant under F. 

"\ole construct the function a by induction on successive 

skeletons of K. The argument resembles the proof of 11.5.6. 

For n 1, choose a l-cell from each equivalence class 

of l-cells. Call the vertices of a Ao and Bo For each T 

equivalent to a, let f be the unique map in F that carries 

T to a (Note that we allow T = a , in which case f is the 

identity. ) Define A = f-1A and BT f 
-1

Bo' and set [T:A ] =-1 
T a T 

and [T: B ] = 1 All other incidence numbers involving cells of 
T 

Kl we set equal to zero. It is easy to check that a as defined 

is an incidence function on Kl which is invariant under F. 

Suppose now that a has been defined as an invariant 

incidence 	function on K 1 We devote the next few paragraphs
q-

to showing that a can be extended to an invariant function on Kq 

Choose a preferred cell from each equivalence class of 

q-cells. The union of K 1 and the preferred cells is a subcom
q

plex L of K, and so by 11.5.6 a can be extended over L 

Let a be a q-cell of K-L Let T be the unique preferred cell 

equivalent to a, and let f: a --;.. T be the unique identification. 

If P is a face of a, define [o:p]a = [T:fP]a' If P is not 
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a face of a , set [a: p]a O. 'de assert that the function a 

thus defined is an incidence :t'unction on Kq invariant under F 

Properties (i) and (ii) 'of 11.1.8 are clearly satisfied by a 

Before verifYing property (iii) we show that a is invariant under 

F. As a is invariant on cells of K 1 by the inductive hypoth
q

esis, we need only check incidence numbers involving q-cells of K. 

Let 0 and be q-cells of K with an identification1 O2 

g l a --;.. a The unique preferred cell T equivalent to 0 is
l 2 1 

also equivalent to O , and so we have identification>2 

f .: '0. --;.. T, i = 1,2. By the remark on page 67 , we have 
~ ~ 

fl = f 2 g 	 • let P be a face of 0 Then
1 

[Ol:P]a ~ 	 [T:flPja; by construction 

h:f gp]a since fl = gf
2	 2 

[02: gp ]a by construction. 

Thus a 	 is invariant under F. 

To show that a satisfies propETty (iii) of 11.1.8, let a 

be a q-cell of K-L, and let f: a --;.. T identify a with a 

preferred cell T. Suppose and are {q-l)-d:iloensionalPl P2 

faces of a with a common (q-2)-d:iloensional face P . Then
3 

f Pl 

and fP2 are (q-l)-dimensional faces of fa = T with the common 

(q-2)-d:iloensional face f P . Thus
3
 

[0:Pl ]a[Pl :P ]a + [0:P2 ]a[P2 :P ]a
3 3

= [fO:fPl]a[fPl:fP3]a + [fO:fP2]a[fP2:fP3]a 

because a is invariant under F. The second expression is zero 
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°
because is an incidence function ~or L, and ~ is a cell o~ 

L. The proo~ o~ 2.3 is complete. 

Let (K,F) be a co~lex with identi~ications, and let ° 
be an incidence function on K that is invariant under F . For 

each integer q we de~ine cO(K/F) to be the free abelian group
q 

on the q-cells o~ KIF. 

For each q, the map s:\K\ ----;;. KIF induces a hollO

morphism 

Sllq: C~(K) ----;;. C~(K/F) 

de~ined by 

S~(6 aio~) = 6 a.s(oq) • 
"'" l l i 

A boundary operator 0 ': cO(K/F) ----;;. CO l(K/F) is de~ined by
q q q

0°0o'so sflq_l qq 

To show that 0' is well-de~ined, let ~: cr ----;;. ~ be in F. 
q 

Then 

~, ° 0qSO = s# 0 0q-l q 

S#q_l 6 [o:p]op 
p < ()" 

sflq_l 6 [~O: ~p]( ~p) 
p < 0 

The last equality holds because ° is invariant under F, and 

because sIP = s#~p ~or P < 0 • As P varies over the ~aces o~ 

o , ~P varies over the ~aces o~ ~ , so the last expression 

equals s# 0 ~ = o's~ .q-l ° q 

Oneeasily veri~ies that 0'0' o . Thus (C~(K/F), O~} is 
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a chain complex, which we sha~l denote by cO(K/F). Note that 

s#: CO(K) ----;;. cO(K/F) is a chain map. 

The q-th homology group o~ c°.(K/F) is denoted by 

HO(K/F). In the examples which ~ollow, we will anticipate the 
q 

veri~ications in Chapter IX and re~er to HO(K/F) as the q-th
q 

homology group o~ the space KIF. 

3. The homology o~ a torus 

We begin where Example 2.1 le~ o~~, with the identi~ica-

t ions and orientation exhibited in the diagram below: 

go 
CB 

~ ~PP 

A D 
0 

The complex KIF has ~our cells: sA, so, sp and Each o~s~ 

these cells is a cy~le in the chain complex cO(K/F) : 

O2(s~) = s#o~ = s#( 0 + ~p - go - p) = 0 

0i(so) = s#oo = s#(D-A) = 0 

0i(sp) = sloP = s#(B-A) = 0 

Thus 0' is trivial, so that H(K/F) ~ CO(K/F) and 

H (oI) ~ Z , ~(.;) ~ Z EEl Z , and Ho(oI) "" Z .2
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4. The homology and cohomology of 	pn 

We start with Example 2.2. The complex ~ KI F has one 

seq cell in each dimension, so that C (pn) ~ Z for 0 < q < nq 

The boundary operator 0' is determined by 

d'(se2i ) = s#oe2i = s#(e2i_ + 	 _l ) 
2se _Te2i

0' (se2i+l) s#oe2i+l = s#(Te2i - e2i ) = 0 . 

l 	 2i l 

Schematically the chain complex CQ'(pn) can be written 

Co Cl C2 C3 
e 	 e 

Z ~Z ~ Z ~Z ~ 

where e is multiplication by 2. Accordingly
2 

Ho(pn) ~ Z 

0< q = 2i < nt forH (pn) "'" 
q Z2 for 0< q = 2i + 1 < n 

n even 
H (pn) ~r 

n Z n odd. 

pnThe homology sequence for is 

dimension 0 1 2 3 4 5 n 

n even
Hq(pn) Z 0 0Z2 Z2 Z2 

(0
Z n odd 

It follows from 11.6.'7 that the sequence of homology groups of pn 

with coefficients in Z2 is 

dimension 0 1 2 3 4 n 

Hq(pn:Z2) Z2 Z2 Z2 Z2Z2 Z2 

The cochain complex obta ined from 	 CO'(P[\:Z) is 

3dimension 0 1 2 n 


Cq(JP n) 
 Z Z Z Z Z 

Here, 

ro q odd 
5' (_l)q· Hom (0',1) I 

q 	 q = e1 q e ven
2 

Thus, 

HO(pn) ~ Z 

for odd q < n 
H'C!"') ~r 

for even q < nZ2 

for even n 
Hn(pn) "'" l:2 

for odd n 

Exercise. Compute the cohomology groups of ~ with 

coefficients in Z2 . 

5. The homology of the Klein bottle 

We construct the Klein bottle from a disk, with the identi 

ficati~ns and orientation shown in the following diagram: 

a 
--, 

b ~ rJ ~b 

" a 

The non-trivial chain groups are 

Co ~ Z , C "'" Z EB Z and C "" Z •l 	 2 
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The boundary operator is given by 

°l(sa) sia = 0 

°l(sb) s#Ob = 0 

°2(sa) s#oa = s#(a-a-b-b) -2sb 

Therefore, 

HO "" Z , HI "" Z2 EEl Z and H2 "" 0 • 

6. Compact 2-manifolds without boundary 

We will assume that the re ader is familiar with the fact 

that e ach compact 2~manifold M without bo~dary can be represented 

as a 2-sphere with 0 < h handles and 0 < k < 2 crosscaps. If 

M 1 S2 , then M can, in fact, be obtained from a closed 2-cell 

-2 '2 a by subdividing a into an even number of edges and by identi 

tying these edges in pairs in an appropriate fashion. Such a sub

division determines a regular complex on ;2 , and the identifica

tions are carried out in such a way that M is a complex with 

identifications. A good description of the identification process 

may be found in Chapter 6 of Seifert and Threlfall 's Lehrbuch der 

Topologie. 

In the process described there, each sequence of four 

consecutive edges, oriented and identified as in the following 

diagram, 

0.' 

I 

,.. 

7(). 

p roduces 8. handle. Each pair of consecutive edges oriented and 

ident i fied as in the following diagram 

#" - - " ... 

, 
, 

produces a crosscap. Each M is obtained by subdividing a '2 into 

h handle-producing sequences and k cross cap-producing sequences 

(for some h , and some k < 2). 

We label the edges of the i-th handle-producing sequence 

Iiith the letters ai' bi , ai, bi ' and we label the edges of the 


i-th crosscap-producing sequence with the letters c ' ci Let
i 

s : ;2 ~ M denote the projection. Then M bas one 2-cell, 

2h+k I -cells, and one vertex. Note that by attaching a circular 

2
indicatrix to a , and using the arrows already given, we obtain 

--2an incidence functiOn on a which is invariant under the 

i dent i fications. 

Computation of H*(I>f) 

Case 1 ) : k 0 We have 

o'sa2 
si a2 = s#(Ea . -L:a~ +Th. -Th~) 0

1 1 1 1 

Also, o'sa
1 
. = eSb. 

1 
= 0 . Thus H2 (1,1) "" Z , and Hl (M) is iso

morphic to a direct sum of 2h copies of Z 

Case 2 ): k 1. 1:1e have 

2 2 
ofsa s#oa s# ( L:ai -Lai+Thi-Thi+cl+ci) 2sc • 
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Thus H (1-1) ~ o. As in Case 1, every I-cell of f'! is a cycle .
2 

The boundaries are generated by 2S(C ) , and so Hl(H) is isol 

morphic to the direct sum of 2h copies of Z and a single copy 

of Z2 

Case 3: k 2. \ole have 


2 2
osa s#oa 2sc + 2sc .l 2 

Again H (I-l) ~ O. As before, everyone-cell of l-1 is a cycle.2 

Thus Zl (M) is free abelian on the 2h+2 generators 

sal' sbl" "'s~, sbh , sCI' sC2 . 

Another system of generators for Zl(M) is 

sal' sbl""'s~, sbh , sCI' sCI + sc2 . 

Thus Hl(H) is generated by 2h+2 elements and has a siugle 

relation, that twice sCI + sc is zero. So HI (l-1) is isomorphic
2 

to the direct sum of 2h+l copies of Z and a single copy of Z2' 

7. Lens spaces 

In this section we define, for each pair (p,q) of rela

tively prime positive integers, a 3-manifold L(p,q) called a 

lens space. l-le compute the homology of lens spaces, using a 

family of identifications on the 3-sphere. 

Let X be a topological space and let G be a group of 

homeomorphisms of X onto itself. Then G determines an equiva

lence relation on the points of X, as follows: x and x, in 
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X are G-equivalent if there exists a g in G so that g(l{) = x' • 

It is easy to v~rify that G-equ ivalence is an equivalence relation. 

~ne identification space whose points are G-equivalence classes is 

said to be obtained from X by collapsing under the action of G, 

and is denoted by xlG . 

Let K be a regular complex. A homeo=rphism f of IIKII 
onto itself is called a (cellular) isomorphism of K if f maps 

every cell of' K onto a cell of K of the same dimension. It is 

clear that an isomorphism preserves the f a ce relation : if a < T , 

then fa < fT A group G of homeomorphisms of IKI is called 

cellular if each g in G is an isomorphism. 

Suppose that a cellular group G on IK,I satisfies the 

following property: 

(* ) If a is a cell of K, and g in G is such 

that g maps a onto a, then g is the 

identity. 

Then for e a ch g in G, and each a in K gFj' is an identi 

fic ation on K, and the collection of these identifications forms 

a family F of identifications as is easily verified. The 

identification space KIF is the space IKI/G. 

We specialize. Let S3 be represented as the unit sphere 

2
in the complex plane C That is, 

S3 = ((zO'Zl) E c21z0Z0 + zlzl I} . 

Let p and q be relatively prime positive integers. Let 

27ri/pf.. = e , and define T: S3 ~ S3 by 
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T(zO,Zl) = (AZO,AqZ ) . 
l 

Then T and its iterates ~,T3, •.. ,TP = 1 
form a cyclic group 

G of order p. The collapsed space s3/G is called the lens 

~ 1(p,q) • 	 AqIf q =q' mod p then Aq ' so T T' and 
1(p,q) = 1(p,q') In the special case p q ~ 1 , we have A = 1 
and 1(1,1) = S3 

If P 2 and q 1, then A -1, and T 

is the antipodal map. Thus 1(2,1) is p3 

lie COmpute the homology of 1(p,q) by constructing a 


regular Complex on S3 for which 
 G is cellular and satisfies 
condition (-K-). 

Let p and q be fixed. Set 


o 

o 	 (0,1) 


1 

o [(O,zl) E 83 10 < arg zl < 2~/p) 
2 o ((zO,zl) E 831zo f 0 and arg Zo = OJ 

0 3 
((ZO'Zl) E s31zo f 0 and 0 < arg Zo < 2~/p) • 

To show that the TnOk for k 0,1,2,3 and n = O,l, ... ,p_l , 


are the cells of a regular complex on 3
8 with dim ok = k , we 

shall appeal to ExerCise 5 of 1.1.2. It is clear that the Tnok 

are disjOint and that their union is S3 Also, the TnOk with 
k 0 and k 1 clearly form a regular complex on the circle 

Zo = 0 

The closed cell cr2 is the intersection of S3 with the 
set 

p ((ZO,Zl) E c21zo o or arg Zo 0) . 
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2
If we set Zo xo + iyo and regard C as Euclidean 4-space, 

then P is the half-2-space xo ~ 0, yo O. The intersection 

of the whole 3-space yo = 0 with S3 is a 2-sphere. Thus 

P n S3 is a closed 2-disk, and ei, ~2) is a regular 2-cell. A 

similar argument holds for T~ with n = l, ••• ,p-l . 

The subset 

E3 = ((zO,zl) E s31zo = 0 or 0 ~ arg Zo ~ ~) 

of S3 is a hemisphere and thus a closed disk. There is an 

03obvious map f: E3 ~ defined as follows. 	 liesIf (zo' zl) 
_ iein E3 then Zo = pe with o<e<~. Define 

ie/f (zo'z ) = (pe p Z ) 
1 ' 1 

03Then f is a homeomorphism of E3 onto which carries the 

·3 (-3 ·3)boundary sphere onto o • Thus o ,0 , and similarly each 

-11(-3 ·3)~ 0,0 for n l, .•. ,p-l, is a regular 3-cell. 

n·kFinally, it is an easy matter to show that each T 0 lies 

in a union of cells of dimension less than k By the conclusion of 

I.l.,Exercise 5, then, the Tnok are the cells of a complex on s3. 

The complex is regular because the cells are regular. 

Since ~(Tnok) ~nok, it follows that G is a group 

of isomorphisms of the cellular structure. l-1oreover ~(~ok) 

~Ok if and only if m =0 mod p • Hence G satisfies condi

tion * above. 

An incidence function a that is invariant under G is 

gi ven by: 
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[Tna 3: a2 ]1 ,[ra : 3 To]Tn	 n+l 21 and -1 for n O,l, ... ,p-l, 
['l'na2: ~al] 1 for all m,n , 


[ra l : Tnoo) 1 and [Tnal : Tn+laO] 
 -1 for n = O,l, •.. ,p_l . 

(All other incidence numbers are set equal to zero.) 

The collapsed spa ce s3jG has one cell in each dimension. 

If s denotes the projection of S3 onto s3jG then the bound

0: 3 0:aries in C (S jG) = C (L(p, q)) are given by 

b' s03 = s,i'Ja 3 
sia 

2 
- Ta 

2 
) = ° 

" 
bsa2 a2 ( p-l mi 1) 1

si s# ~i=O ~ a = pso 

o 0bsa1 " s#oo1 
sio - To ) = ° 

Thus the homology of L(p,q) is given by 

HO "" Z , H "" Z H2 "" and1 p , 0 H3 "" Z . 

Note that H*( L(p, q)) is independent of q . 

For an alternative description of 	lens spaces, and for =re 

information, the reader should consult Hilton and 1'lylie's Ho=logy 

Theory, page 223. 

8. Complex projective n-space 

In this section we anticipate later chapters in order to 

state a result which allows us to compute the ho=logy groups of 

certain spaces very quickly. 

In Chapter VII, we define ho=logy groups f'or arbitrary 

spaces in such a way that whenever a space X carries a regular 
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complex the homology groups H (X) defined for X agree with the 
q 

cellular homology groups of t he complex. But the ho=logy groups 

of X need not be computed from a regular complex on X. They 

may in certain cases be computed from an irregular complex on X 

5.1. THEORill4. Let X be a space that carries a complex K with 

the property that for each q the topological boundary of each 

q-cell is contained in K 2 Then for each q Hq(X) is iso
q

morphic to the free abelian group on the q-cells of' K 

For example, suppose that K is the irregular complex on 

Sn given in 1.2.2. Then 5.1 gives the homology of Sn immediately. 

The proof of 5.1 appears in Chapter IX. 

n 	 2~1
Let C denote complex n-space, and let S be repre

Cn+lsented as the unit sphere in Each )... in Sl C C defines 

an automorphism of s2n+l given by scalar multiplication 

)...(z , ... , z) ()...z , •.. ,)...z ) . 
o n o n 

The space S2n+ljsl is called complex pro,jective n-space, and is 

denoted by Cpn. The space CpO consists of a single point; 

cpl is a 2-sphere. The projection map is denoted by 

s : 	 S2n+l ~ Cpn 

Ck+lFor k < n , we identify with the subspace 

n+l 2k+l k+l 2n+l
{(zo, .•. ,zk' O, •.. ,O)} of C . Then S = C n S 

and the inclusion S2k+l C s2n+l is consistent with the action 

of 81 . Thus we have a diagram of inclusions and projections: 
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S2n+lSl C S3 C S5 C ... C 

s1 s1 s1 s1 
cpO C Cpl C Cp2 C ... C Cpn 

For k>O the subspace 

E2k 2k+ll
{(zo"",zk) E S ,zk is real > 0 ) 

2k-l . I 2kis a closed 2k- cell with boundary S . He clalID that s E 

. . . (2k 2k-l ) (k k-l)1S a relat1ve homeomorph1sm of E , S onto CP , CP 

It is sufficient to show t hat for each point k in s2k+ l _ S2k-l 

the open cell E2k _ S2k-l contains exactly one point equivalent 

to x under the action of Sl, and this we show as follows: 

lies in S2k+l _ S2k-lLet x = (zo" ", zk'O, ... ,O) . Since x 

Zk f- ° For ~ = IZk l /zk we have 

M = (~zo""'~~_l' Izkl,o, ... ,O) , 

which lies in E2k _ S2k-l. Further, if I~! I 1 , and if ~!~ 

is real and non-negative in 

~ ! x = (~!zo, ... ,~!~,o, ... ,O) , 

then ~ ! /~ = ~ ! zk/ Izk I is real and non- negative and hence equal 

to 1. So ~ = ~ ! , and x is the unique point in S2k+l _ S2k-l 

equivalent to x . 

lTow let 0 = CP , and for each k>O let 
0 ° 

kC~ _ cpl~-l For each a is a 2k- cell, and each
Ok k> ° 
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point Cpn lies in precisely one a 
k Furthermore, since 

2k (2k 2k-l ) (_k k .. l ). t .s E : E , S ~ CY-, CP 1S a rela i ve homeomorph1smI 

t he cells satisfy the conditions of Exercise 5 of 1 .1. 2 . Ok 

They are , therefore, the cells of an irregular complex K on Cpn 

with skeletons 

'Cpq/2 q even 
IK I = q { cp(q-l )/2 q odd . 

ltTe may now apply 5 .1 to obtain 

q 2k < 2n 

Hq(Cr) "" [ : 
otherwise . 
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CHAPI'ER IV 

COMPACTLY GENERATED SPACES AND PRODUCT COHPLEXES 

In this chapter we introduce the concepts of compactly 

generated spaces and of the product of complexes. Sections 1-6, 8 are 

based upon notes prepared by Hartin Arkowitz for lectures he gave 

in Professor Steenrod's course in the fall of 1963. 

1. Categories 

1.1. DEFINITION. A category ~ is a non-empty class of objects, 

together with a set M(A,B) for every two objects A and B in 

~ . For each triple A,B,C of objects there exists a function 

from the cartesian product H(A,B) X H(B,C) to the set M(A,C) . 

If f E H(A,B) and g E H(B,C) , then the image in H(A,C) of 

f X g is denoted by go f , aod is called the composition of f 

and g Two conditions are imposed: 

1. f o (goh) = (fog)oh . 

2. For 	each object A in ~ , there exists an element 

lA in M(A,A) such that folA = l!3"f = f for each 

f in H(A,B) • 

The set H(A,B) is called the set of morphisms from A to B. 


We write f: A ~ B to indicate that f is a morphism in M(A,B). 


When no conf'usion is likely to result, we shall write gf for gof. 


1.2. Examples of 	Categories 

The category ~ of sets and functions between them. The 

objects are the sets, the morphisms are the functions, and the 
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composition of two morphisms is the usual composition of functions. 

The category :r of all topological spaces (objects) and 

continuous maps (morphisms) between them. The composition of 

morphisms is the usual composition of maps. 

The category (Q of abelian groups (objects) and homomor

phisms. The composition of homomorphisms is the usual one. 

The category .1J of groups and homomorphisms, with the 

usual composition of homomorphisms. 

The category~ , in which the objects (x,x ) are theo

topological spaces with base point, and the morphisms are homotopy 

classes of maps (X,x ) ~ (Y,y ) . o 0 

2. Functors 

Let ~ 	and JJ be categories. A flIDctor F2.1. DEFINITION. 


from C to i) is a function that assigns to each object A in ~ 


an object FA inJ) and to each morphism f: A ~ B a morphism 


Ff , so as to satisfY one of the following two sets of conditions: 


FfoFg 	 orIFA' Ff: FA ~ FE and F(fog)1. 	 F(lA) 


Ff: FA ~ FB and F(fog) FgoFf
2. F(lA) ~A' 
If FIf F satisfies (1) then F is a covariant fUnctor. 


satisfies (2) then F is a contravariant functor. 


2.2. 	 Examples of functors 


The functor Hom. Let A and G be abelian groups, 


and let Hom(A, G) denote the abelian group consisting of all homo-

defined bymorphisms ~: A ~ G , with addition ~1+~2 
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(lll +1l2 )a = Illa + 1l2a • 


If a: A' ~ A 
 and '1: G ~ G' are homomorphisms, then the 

correspondence Il ~ 'Ylla is a homomorphism 


Hom(a,'Y): Hom(A,G) ~ Hom(A',G') 


It is easy to see that 


1. Hom(lA,lG) is the identity map of Hom(A,G) • 

2. If a: A' ~A, a': A" ~A', '1: G...-;:. G' and 

'1': G' ~ Gil are all homomorphisms, then 


Hom(a'a,'Y'Y') = Hom(a,'Y)Hom(a' ,'1') 


Therefore, for a fixed G the correspondence 


A ~ Hom(A,G) 

(a: A' ~ A) ~ (Hom(a,lG): Hom(A,G) ~ Hom(A',G» 


is a contravariant functor iTom CQ to CQ . 
 For fixed A, the 

corresp.ondence 

G ~ Hom(A,G) 

('1: G ~ G') ~ (Hom(lA''Y): Hom(A,G) ~ Hom(A,G'» 

is a covariant functor iTom a to Q . 

The homology functor. For each space X in 'J" let H (X) 
n 

be the nth singular homology group of X with respect to some fixed 

group G. For each map f: X ~ Y let H (f) be the induced 
n 

homomorphism f*: H (X) ~ H (Y). The properties of homology groupsn n 

(established later in these notes, and independently of this example) 
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then guarantee H to be a covariant functor iTom :3 to a . 
n 

The cohomology functor Hn. For each space X in ~ let 

rf(X) be the nth singular cohomology group of X with respect to 

some fixed group G. For each map f: X ~ Y , let Hn( f) be 

the induced homomorphism f*: rf(y) ~ rf(X). The properties to 

be established later about co~omology groups then guarantee rf to 

be a contravariant functor iTom ::J to a . 
The fundamental group functor. For each pair (X,x) in o 

)t define TIl(X,x ) to be the fundamental group of X at x o o 

For each homotopy class (f} of maps from (X,x ) to (Y,yo) ,o 

define TIlf to be the homomorphism f#: TIl(X,x ) ~ TIl(Y,yo)o 

induced by f It is known that f# depends Qnly on the class 

of f , that i~ is the identity and that (fg )# ~ f#g# There

fore TIl is a covariant functor iTom ){ to.Jj • 

Exercises. 

1. If G is a group, let [G,G] denote the commutator 

subgroup. Show that the assignment to each group G of the abelian 

group G/ [G, G) induces a functor iTom}j to () • 

2. t-1ake up a functor us ing @. 

3. Products in a category 

3.1. DEFINITION. Let {Aa} be a collection of objects from a 

category ~. An object P of ~ is said to be the product of 

the Aa if t .here exists a collection (Pa: P ~ Aa} of morphisms 

(called projections) with the following property: Gi ven any object 
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X in 'c and any collection of morphisms (fa: X ~ AaJ , there 

exists a unique morphism f: X ~ P such that Paf fa' for 
each r:t • 

3.2. DE.FINITION. A category ~ is a category with products if 

the product of any family (Aa) of objects of t' exists in t:. 
If the product of any finite family of objects exists in 'e., then 

t; is called a category with finite products. 


In a category (; a morphism 
 f: A ~ B is called an 

equivalence if there exists f': B --;;:. A in 'e such that ff' = IB 
and f' f = lA • If f: A ~ B is an equivalence We call A and 

B equivalent. In '1, for example, "equivalent" means "homeo 

morphic." 

Exercise. Show that the product (if it exists) of a collec

tion (Aa) of objects in a category is unique up to equivalence. 

The uniqueness of products up to equivalence allows us to 

write ITAa for P 

Exercise. Give examples of products, using categories 

defined in 1. 2 . Show that 'J is a category with products, with 

P the cartesian product with the product topology. 
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4. Conpactly generated spaces 

4.1. DEFINITION. A space X is compactly generated if it has the 

following property: a set A is closed in X if and only if A n H 

is closed in H for each compact subset H of X. 

Clearly, "closed" may be replaced by "open" in 4.1. 

Exercises. 

1. Show that if K is a complex then K is compactly 

generated. (Hint: use 1.4.4.) 

2 . Show that a function from one compactly generated space 

into another is continuous if and only if its restriction to each 

compact set is continuous. 

4.2. PROPOSITION. Each locally compact topological space is com

pactly generated. 

Proof. Let X be a topological space. If Fe X is 

closed and He X is compact, then F n H is closed in H by 

definition of the relative topology of H. 

To complete the proof, we show that if Fe X is not closed, 

t hen there exists a compact subset H of X with H n F not closed. 

Let x be a limit point of F that does not lie in F. 

Be cause X is locally compact there exists a compact neighborhood 

H of x. The set F n H is not closed in H because it does 

not contain its limit point x 

Remarks. For Hausdorff spaces, 4.1 can be stated in a 

slightly sillIpler form because If closed in H If can be replaced by 
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n closed" (meaning" closed in X") . With cOIIITlactly generated space 

defined as it is in 4.1, Proposition 4.2 holds for any X in ~ 
To preserve this generality we shall assume in sections 5 and 6 

which follow that X is any space in ~. The results of these 

sections are of course applicable to Hausdorff spaces. In later 

sections of this chapter, as well as in the other chapters of these 

notes, we shall revert to our assumption that spaces are HausdQrff 

spaces. 

4.3. PROPOSITION. If X is any topological space satisfying the 

first axiom of countability, (for example, if X is a metric space) 

then X is compactly generated. 

Proof. Let A be a subset of X such that for any com

pact subset H of X, A n H is closed in H Let x be a 

limit point of A. Since X satisfies the first axiom of counta

bility, there exists a sequence {x } of points of A - {x} which n

converges to x The set Y consisting of the points of the 

sequence {x } together with x is a compact subset of X . 
n

Therefore Any is closed in Y But A already contains the 

sequence {x } , whose closure in Y includes x. Thus x is n

in A and A is closed. 

5. The functor k 

For each space X in ~ , let k(X) denote the space that 

is the underlying set X with the topology defined by 

A is closed (open) if and only if A n H is 

closed (open) in H for each compact subspace 

H of X. 

Q2. 

The topology of k(X) is called the weak topology with respect to 

compact subsets of X The identity map k(X) ~ X is con

tinuous because e ach set that is closed in X is closed in k(X) 

If X is a Hausdorff space, then so is k(X) 

5.1. LEl-lio1A.. X and k(X) have the same compact sets. 

Proof. If H is compact in k(X) then H is compact in 

X because the topology of k(X) is finer than that of X • 

Let H be a set that is compact in X, and let {Da} be 

a covering of H by sets open in k(X). By definition of the 

topology of k(X) , e ach Da n H is open in H. Thus finitely 

many of the Da n H cover H, so that H is compact in k(X) • 

The following two corollaries are immediate. 

j, k(X) is compactly5· 2. COROLIilRY. For e a ch X in 

generated. 

COROLLARY. X is compactly generated if and only if X and5· 3. 

k(X ) are homeomorphic. 

Let X and Y be spaces. If f is a function from X 

to Y then f is also a function from k(X) to k(Y). If 

is continuous,
X ~Y is continuous, then f: k(X) ~ key) 

f is continuous on X, the restriction of f 

f: 

as follows: Since 

to each compact subset of X is continuous . Thus by 5.1 the 

r estriction of f to each compact subset of k(X) is continuous, 

and by Exercise 2 of the preceding section f: k(X) ~ ke y ) is 

continuous. 
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!tIe shall denote by '0k the category whose objects are 

compactly generated spaces and whose morphisms are continuous maps. 

5.4. DEFINITION. The functor k: ') ~'j k is the 

functor that assigns to each X the space k(X) and to each map 

1': X ---...;. Y the map f: k(X) ---...;. k(Y) • 

6. Products in ) k 

6.1. PROPOSITION. The category Jk is a category with products. 

Proof. If [X.}. I (I an arbitrary index set) is a coll lE 

lection of objects of ~k' then . III(k) Xi ' the product of the 
'r lE 

Xi in ~k' is defined to be the space k(.II Xi) ,where .II Xi 
lEI lEI 

is the product of the X. in j.
l We show that . III(k) Xi is a

J lE
product in . If f.; :z. ---...;. x.k l l are morphisms in J k ' then 


the f i are also morphisms !'rom Z in j'
to X. ~. Since
l 

is a category with products, there exists a unique morphism 

f: Z ~ IIXi for which Pif = fi for each i in I, where the 

Pi are the projections II Xi ......;;. Xi. The functor k then 

furnishes us with morphisms [kp.: k(IIX.) ---...;. k(X.)} and with a 
l l l 

unique morphism kf: Z ---...;. k(II x . ) 
l such that kpiokf = kfi 

kp.
kZ~k(IIX . ) ~kX.

l l 

1 
f Pi 

Z ~ IIX. > X. 
l l 

Thus, k( II Xi) is the product of the Xi .J'kin 
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If X and Y are compactly generated spaces then their 

cartesian product X X Y in '3" i s not necessarily compactly 

generated, as an example of C. H. Dowker [1] shows (see Section 8 

of t ·his chapter). In contrast, their product X X Y = k(X X Y)k 

in j k is (by definition) always compactly generated. It will 

be important to distinguish between the two kinds of product when 

we consider products of complexes. 

7. The product of two complexes 

let K and L be complexes. We define the product K X L 

of K and L to be the space IKI ~ILI together with the sub-

spaces 

n 
(K X L) = U (K ~ L _ ), n 0,1,2, ... 

n i n i
i=o 

In this section we show that K X L is a complex. In Section 8 

we discuss conditions on K and L which insure that the carte

s ian product I K I X IL!; be a complex. We also given an example 

of two complexes K and L whose cartesian product is not com

pactly generated, and thus not a complex. 

7.1. LEMMA. The space IKI ~ILI and the skeletons (K x L)n 

s atisfy conditions 1) through 5) of Definition 1.1.1. 

Proof. The spaces (K X L) clearly form an ascending
n 

sequence of closed subsets of IKI ~ I LI whose union is IKI ~ILI. 
we have 

(K X L) - (K XL) 1= 
n 
U [(K - K. 1) X (L . - L . 1)] • 

n n- . i l- k n-l n-l-
l=O 
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Thus the Components of .(K X L) - (K X L) 1 are products of the 
n n-

i n-i i n-i
form a X T ,where a is an i-cell of K and T is an 

(n-i)-cell of L. i n-iTo show that each cell 0 X T is open in 

(K X L) ,we observe that n 

i n i
(K X L) - a X T - = ( U (K XL.)) U ((K _ oi) XL.) 

n j# j 11: n-J i 11: n-~ 

U (K. X (L . _ Tn-i)) 
~ k n-~ 

The right hand side is the union of finitely many closed sets and 

so is closed. 

Relative homeomorphisms for the cells of K X L are easily 

obtained. If f: (Ei ,S ~ (- .) and g: E . ,Sn-i-l) ~ T,T1-1) a,a (n_i (_.) 

are given, then 

( i n-i i n-i-l i-l n-i) (_ _ _. ._)
fXg: E XE ,E XS Us XE ~ aXT,aXT U a X T • 

Since the boundary a X T is a X T - a X T = a X ~ U ~ x :r, f x g 

is the required relative homeomorphism (see the exercise below). 

This completes the proof of 7.1. 

Exercise. Shov that the product of two relative homeomor

ph1sms is a relative homeomorphism. 


7·2. LEMMA. If K and L are complexes, then each compact sub

set of 
 IKI '1t/ LI lies in a union of finitely many closed cells of 

KXL. 

Proof. Let H be a compact subset of IrKI '1tILI Let P 
and q be the projections of IKI '1tILI onto IK/ and ILl res

pectively. Then pH is compact in IKI By 1.4.4, pH is con

tained in a union of finitely many cells of K, and hence in the 
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m 
aiunion of their closures: pH C U Similarly, qH lies in a 

i=ln 
finite union U :rj 

of closed cells of L . Thus H lies ill the 
j=l 

finite union U (j'i X :rj 
of closed cells of KXL 

i, j 

7.3. COROLlARY. Each compact subset of (K X L) lies in a union 
n 

of finitely many closed cells of (K X L)n . 

Proof. Let H be a compact subset of· (K X L) Since 
n 

(K X L) is a Hausdorff space, H is closed. Set 
n 

H. = H n (K. XL.) Then H. is closed in H and so is a 
~ ~ k n-~ ~ 

compact subset of K. XLi By 1.4.3, and L . are com
~ . k n- Ki n-~ 

plexes. Thus 7.2 implies that Hi is contained in a union of 

finitely many closed cells of Ki '1t L . Thus H = U H. is n_i ~ 

contained in a union of finitely many closed cells of (K XL)
n 

Recall that a quasi complex Q consists of a Hausdorff 

space IQI and a sequence of subspaces Q. satisfying the first 
~ 

six conditions of 1.1.1. 

7.4. LEMMA. Suppose that the Hausdorff space IQI together with 

the subspaces Q., i = 0,1, •.. , satisfies conditions 1) through 
~ 

5) of 1.1.1. Suppose that IQI is compactly generatedand that, 

in addition, each compact subset of IQI is contained in a finite 

union of closed cells. Then Q is a quasi complex. 

Proof. Let A be a subset of IQI which meets each 

closed cell of Q in a closed set. We have to show that A is 

closed. That is, since IQI is compactly generated we have to 

show that A meets each compact set in a closed set. Let H be 

97· 




n . i a compact subset of IQI . Then H C U (?- where each a is a 
i=o 

cell of Q. Then 

n . n . 
A n H A n H n U c?) H n U (A n ;;l)) 

i=o i=o 

Since A n;;i is closed for each i, A n H is closed. Thus A 

is closed in IQI, which completes the proof. 

7.5. LEMMA. A closed subspace of a compactly generated space is 

compactly generated. 

Proof. Let X be compactly generated, and let A be a 

closed subset of X Suppose that B is a subset of A such 

that B ~ C is closed in C for every compact set C CA We 

show that B is closed in X Let H be a compact subset of X. 

Then H n A is closed in H, and so is a compact subset of A 

By hypothesis, H n B = (H n A) n B is closed in H n A Since 

A is closed, it follows that H n B is closed in H. Thus B 

meets every compact subset of X in a relatively closed set . 

Since X is compactly generated, B is closed in X. Therefore 

B is closed in A and so A is compactly generated. 

7.6. THEOREM. If K and L are complexes, then K X L is a 

complex . 

Proof. By 7.1 we need only verify conditions 6) and 7). 

By 7.2 and 7.4, K X L is a quasi complex. That is, K X L satis

fies condition 6). Note that condition 7) merely states that each 

skeleton of a complex has the weak topology with respect to closed 

cells. Since (K X L)n is closed in IKI ~ILI , we know by 7.5 
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that (K X L) is compactly generated. Finally, by 7.3 and 7.4 
n 

(K X L) is a quasi complex. That is, (K X L) has the weak 
n n 

topology with respect to closed cells. Thus K X L satisfies 7) 

and the proof is complete. 

8. The cartesian product IKI X ILl 

It follows from Exercise 1 of Section 4 and Theorem 7.6 

t h at the cartesian product IKI X ILl of two complexes K and L 

is a complex if and only if IKI X ILl is a compactly generated 

sp ace. We now give two results which show that IKI X ILl is com

pactly generated for a large class of pairs (K,L). 

8.1. THEOREM. (Milnor [2]) If K and L are countable com

plexes, then IKI X ILl is compactly generated. 

8.2. THEOREM. (J. H. C. ~~itehead [4]) If K and L are 

complexes and L is locally finite, then IKI X ILl is compactly 

generated. 

For a definition of " locally finite" see 1. 3· 

If X is a topological space, a collection LB of compact 

sets of X is called a base for compact subsets if each compact 

subset of X is contained in some member of CB . 

8 .3. LEMMA. If K is a complex, then K is countable if and 


only if K has a countable base for compact sets. 


Proof. Let K be countable. By 1.4.4, a countable base 

for compact sets of K is given by the collection of finite unions 

of closed cells of K. 
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Conversely, suppose K has a countable base ~ for 

compact sets. Every point of K is contained in some member of 

&:>. By 1.4.4, each member of S is cQntained in a finite union 

of cells of K . Thus K is a countable union of finite unions 

of cells, and is therefore countable. 

The following theorem thus implies 8.1. 

8.4. THEOREM. (Weingr8lll [3]) If X and Y are Hausdorff 

compactly generated spaces each having a countable base for compact 

subsets, then X X Y is compactly generated. 

Proof. The proof is a restatement of Milnor's proof of 

8.1: 

We know that the identity function 1': X Xk Y ~ X X Y 

is continuous. To show that l' is a homeomorphism, and hence that 

X X Y is compactly generated, we need only show that if U is 

open in X Xk Y , then f(U) U is open in X X Y . 

Suppose that x X y is a point of U We will find a 

neighborhood V of x, and a neighborhood W of y, such that 

VXW(U. 

We may assume that X = U Ai and that Y = U Bi ' with 

AO ( Al ( ... CAn C ... and BO C Bl C ... C Bn C ... all compact. 

~le may also assume that {Ai} and {Bi } are bases, and that 

x E AO and y E BO . 

Now, U n (AO X Bo) is open in AO X BO ' afid contains 

x X y. AO and BO are compact Hausdorff spaces and hence regular. 

Thus there exists a set Vo open in AO and containing x, and a 
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set '''0 open in BO and containing y, such that 

Vo xwOCu n (Ao X BO) . 

Assume, by induction, that V and \{n ' open in A and 
n n 

Bn ' contain x and y, respectively, and that 

v X W C U n (A X B ) The set V is closed in A 1 as well n n n n n . n+ 

as in A and is therefore compact in Similarly, W is n An+l n 

compact in Bn+l . Also, U n (An+1 X B 1) is open in An+l X Bn+ln+ 

There exist*, therefore, sets and containing V andVn+l Wn+l n 

and open in A and such thatWn ' n+l Bn+l ' 

Vn+l X Wn+l C U n (An+l X Bn+l ) 

Let V U V and W U Wn Then 
n 

X X YEV X WCU 

Furthermore, V is open in X and W is open in Y, since they 

meet e ach set of a base for compact sets in an open set. This 

concludes the proof of 8.4. 

A complex K is called locally countable if each point 

of K has a neighborhood contained in a countable subcomplex of K. 

8. 5. COROLLARY. If K and L are locally countable complexes, 

t hen IKI X ILl is compactly generated. .. 

*See the theorem of Wallace on p. 142 of J. L. Kelley's General 

Topology. 
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Proof. Let A be a subset of IKI X ILl meeting each 

compact subset of IKI X ILl in a (relatively) open set. Let 

(x,y) be a point of A. Then x £ U c IK'I ,where U is open 

in IKI and K' is a countable sub complex of K. Similarly, 

y £ V C I L' I ,with V open in I L I and L' a countable sub

complex of L. Now IK' I X I L' I is compactly generated, and A 

meets every compact subset of IK'I X IL' I in a relatively open 

set. Therefore, A n (IK' I X IL' I) is open in IK'I X IL'I • 

In particular, A n (U X V) is open, so that A is a neighborhood 

of (x,y) in IKI X ILl . It follows that A, being a neighbor

hood of each of its points, is open in IKI X ILl . 

8.6. THEORTh1. (I-leingram [3]) If X is locally compact, and Y 

is compactly generated, then X X Y is compactly generated. 

Proof. Let U be a subset of X X Y which meets each 

compact subset of X X Y in a (relatively) open set. We must show 

that U is open. Suppose that (xo'YO) is a point of U. Since 

X is locally compact, Xo lies in an open set 'V whose closure 

is compact. The set VX Yo is a compact subset of X X Y • so 

(V xyo) n U is open in V X yO Therefore, there exists a 

neighborhood W of Xo in X such that W X YO C U and Wl C V.l l 

The compact Hausdorff space V is regular, so there exists a 

neighborhood v1 of Xo with W C W . Let z be the collection
2 2 l 

of all points y in Y such that W2 X yC U We assert that Z 

is open in Y Since Y is compactly generated, it will suffice 

to show that Z meets each compact subset of Y in a (relatively) 
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open set. Let H C Y be compact. Let Yl be a point of H n z . 

Then, since Yl belongs to Z, W2 X Yl CU. The set U inter

sects the compact set V X H in an open set, by hypothesis. By 

Wallace's theorem there exists A open in V and B open in H 

with 

W2 X YlC A X B C U n (V X H) 

But this implies ilIImediately that B C z / and so H n Z is open. 

Thus Z is open ~ Y. By construction, W X Z CU. Since
2 

Xo lies in W and yo lies in Z, U is a neighborhood of2 

(xo'yo) and so is open. This completes the proof. 

We conclude this section by describing an example due to 

C. H. Dowker [lJ of two complexes M and N for which IMI X INI 

is not compactly generated, and thus not a complex. 

The complex M is a collection (A.li £ I) of closed 
l 

l - cells, where I is an index set with the power of the continuum. 

The Ai have a common vertex, u ' The complex N is a denumO 

erable collection (B.lj = 1,2, ... ) of closed l-cells, all having
J 

a common vertex, vO' 

We suppose that each A. is parametrized as a unit inter-
l 

val o < Xi S 1 ,with Xi = 0 at u Likewise, we supposeo 

each B. to be parametrized as a unit interval 0 < y. < 1 , with 
J - J 

Yj 0 at vo 

We now identify I with the set of all sequences 

(il~ i2""') of positive integers. Thus, if (i,j) is a pair of 
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indices, with j an integer and with i = (i ,i
2

, ... ) a sequence
l 

of positive integers, we may define p.. to be the point with coor
lJ 

dinates (l/L, l/i ) in A. X B. C li.ll X INI Let p = (Pij} .
J j l J 

Then P n (A. X B. ) is closed.Pij 

If H is a co~act subset of IMI X INI then P n H is 

finite because H lies in a union of finitely many closed cells of 

M X N (7. 2) • In particular, P meets each closed cell of !-l X N 

in a finite, and hence closed, set. Therefore, P is closed in 

IMI ~INI . 

I{e show now that P is not closed in IINI X IINI • 

For each i in I, and for each positive integer j, 

let a and b. be positive real numbers. Let U be the neigh-

l J 

i J 

borhood of u in IHI that is given by x. < a. , and let Vo 	 l l 

be the 	neighborhood of Vo in Ii'll that is given by y. < b. 
J J 

Then U X V is a neighborhood of U o X Vo in IMI X INI 

We shall now choose a pair i,j of indices for which PrJ 
lies in U X V • This will imply that Uo X Vo is a limit point 

of P in IMI X lEI Since U o X YO is not a point of P, it 

will follow that P is not closed in IMI X INI The pair i, j 

is chosen so that Prr is a point of (A. XB.) n (UXV). That 
l J 

is, l/i~ is smaller than either aT "t:J. To accomplish thisor
J 

we pick a sequence i (iI' i 2,· .. , i) so that for each j = 1,2, ... 

both T > j and T > lib. . We then choose 1 to be an integer
j j J 

larger than l/~ 1-lith these chOices, 1/T...,. < J/1 < a-:- and 
l J l 

l/I- < b-:- , so that P7.,.. lies in U X V
j J lJ 
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Thus P is not closed in IMI X INI ,and IHI X INI is 

not compactly generated. 

Exercise. If K 8cnd 1 are regular complexes, then 

IKI X 111 is compactly generated if and only if one of the follow

ing conditions holds: 

a) One 	 of K,1 is locally finite. 

b) Both K and 1 are locally countable. 

{HINT: 	 The sufficiency of these conditions is given by 8.5 and 

8.6. To show necessity, suppose neither condition obtains. Then 

we may assume that K fails to be locally countable at a point x 

and that 1 fails to be locally finite at a point y . Embed 

Dowker's example 11011 X ,INI as a closed subset of IKI X 111, 

based on the point (x, y). Suppose 1KI X 11 ,1 compactly generated. 

The closed subset 1141 X INil would be compactly generated by 7·5, 

and this we know to be false. The contradiction establishes 

necessity. ) 
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Chapter 5 


THE HON:OLOGY OF PRODUCTS AND JOINS 


RELATIVE HOJ.'lOLOGY 


1. The homology of K x L 


Let K and L be regular complexes. In section IV. 7 we defined . 

the product complex K X L. The main result of this section (see 1.5) 

is the computation of H*(K x L) in terms of H*(K) and H*(L) for 

regular complexes K .and L that are finite in each dimension. For 

the moment, however, we allow K and L to be arbitrary regular c=

plexes. Since K and L are regular, K X L is regular. The 

m-cells of K X L are the components of 

(K X L)m - (K X L)m_l U (K . - K. 1) X (L. - L. 1)'
i+j= 1 1- J J-

The products on the right, as well as all other operations considered 

in this chapter, are carried out in the category of compactly gener

ated spaces. (See Chapter IV.) Each m-cell has the form a X T, 

where a is a cell of K, T is a cell of L and dim ~ + dim T = m. 

If A is an arbitrary set, let F(A) denote the free abelian 

group generated by the elements of A. It is easy to show that for 

any sets A and B 

F(A X B) "" F(A) ® F(B). 

From this it follows that 

\)r : C (K X L) "" L C.(K)®C.(L)
m m i+j= 1 J 
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~ 

where the is=orphism \)rm is defined by the correspondence 

aX'''''a®'. 

If K and L are oriented by incidence functions lK and 

lL' we may orient K X L in the following way. A face of a cell 

a X T of K X L is a cell a' X,, with a' < a and ,'< T. 

Accordingly, we set 

i
ra: a' lK if,' T 

[a X ':a' X T'l 

(_l)dim a [,:T'lL if a a'. 

All other in€idence numbers are defined to be zero. We call the 

incidence function so defined the product incjdence function. 

To verify that the product incidence function satisfies property 

(iii) of 11.1.8, let a X T be an m-cellof K X L with dim a = i. 

A face a' X,, of aX T of dimension m-2 is of one of three 

f orms: 

a) a X " dim " =m-i-2 


b) a' X " dim a' i-l, =m-i-l
dim " 

c) a' X , dim a' i-2. 

m case a), we have 

L [aX ':aX p][ax p:a' X,,]

T'<p<, 


L (_l)dim a [~:pl . (_l)dim a [p:,'l
,'<p<, L L 

L [,:plL[P:,'lL = O. 
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In case b) we have 

[ax ':aX ,'][aX ,':0" X ,'J + [aX ':0" X '][0" X ':0" X "l 

, d' , 
= (_l)dLID a [,:,'lL[a:a'lK + (-1) LID a [a:a'lK[':"]L 

0, since dim a dim a' + 1 . 

Case c) is similar to case a). 

Properties (i) and (ii) are easily verified . 

Thus we have associated with each pair of oriented complexes K 

and L the oriented complex K X L. We denote the boundary operator 

associated with the product incidence function by ~ X L' and we 

define e(K x L) t o be the chain complex «(em(K x L)},~ X L)' 

1.1. DEFINITION. Given two chain complexes e = «(e },o)
q 

and 

D = «(Dq},OI) over a ground ring R, the tensor product e ~ D is 

the chain complex whose mth chain group is 

E e , 60_ D 
ji+j= 1 n 

and whose boundary operator is defined by 

o(c @ d) = Oc @ d + (_l)dim c c @ o'd. 

It is easy to see that 00 = O. 

1.2. THEOREM. The correspondence a X , ~ a @, induces an 

isomorphism of chain complexes: e(K X L) "" e(K) @ eeL). • 
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Proof: We know that the corre-spondence a X , ~ a @ ' defines 


an i somorphism V of the mth chain groups of e(K X L) and
m 


e(K) @ eeL). Thus we need only show that these isomorphisms commute 


with the boundary operators. Let a X, generator of
be a e (K xL).
m 

Then 

dKxL ( a X ,) E [a X ':0" X ,,](0" X,,) 
0"<0' 

T'<, 


E [a:a'JK( a' )( T) + E (-1)
d'

LID ar,:T'lL(ax T'). 

0"<0' T'<, 


Under the is omorphism 'lrm_l' 0KxL(a X T) maps t o 


E [a:a'JKa' @ T + E (-1) d'
LID a[,:T'JLa @ T' 


0"<0' ,'<T 


(E [a:a'lKa') @ T + (-1)dim a a @ ( E [T:,'JLT') 
0"<0' ,'<, 

00' @ T + (_l)dim a a @ O'T 

o( a @ '). 

I'hus 

0(* (a X T» 1Vm- l (0KxL (a X ,»m 

and the proof is complete. 

We now turn t o the problem of computing H*(K X L) in terms of 

H*(K) and H*(L). Because of 1.2 we may consider the problem in an 

algebraic setting: given chain complexes e and D, compute H*(e @ D) 

in terms of H*(e ) and H*(D). 

We wish t o define a homomorphism 
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a: H*(C) (8) H*(D) ~ H*(C Q9 D). 

Let zl and z2 be cycles in C and D respectively. Then in 

C ® D we set 

a( {zl} Q9 {z2}) = {zl (8) z2}· 

First we verify that this definition is independent of the choice of 

cycles : 

a( (zl + OC l } (8) (z2 + OIC }) - a( (zl} (8) (z2})2

{Zl (8) OlC 2 + OC l (8) z2 + OC l Q9 O'C 2 }· 

But this latter cycle is the boundary of 

dim zl 
(-1) zl Q9 c2 + c l (8) z2 + c l @ OIC 2, 

so that 

a((zl + OC l } @ (z2 + OIC 2}) = a((zl} @ (Z2})· 

In order to complete the verification that a is well-defined, we 

need only note that 

a( {zl} @ (Z2}) + a( {Z3} @ (Z2}) = a((zl +Z3} @ (z2}) 

and similarly that a is linear in the second component. Thus a 

is a well-defined homomorphism 

a: H (c) @ H (D) ~ H (C @ D).
r s r+s 

We extend a to H*(C) @ H*(D) by linearity, and obtain a degree-

preserving homomorphism 

a: H*(C) @ H*(D) ~ H*(C @ D). 
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We now assume that C and D are chain comple xes over Z 

that are free and finitely generated in each dimension. We apply 

Theorem II.6.6 and write C and D each as a sum of elementary 

chain complexes of types i (free), ii (acyclic) and iii (torsion): 

~l: C ~ D-ii and ~2: D ~ D-l .j 

Using the fact that the tensor product of direct sums of chain com

plexes is the direct sum of the tensor product of chain complexes, 

we have 

C @ D ~ L: H. @ N .•~l Q9 ~2: 
. . l Jl,J 

By the remark follOWing rr.6.4, 

H*(C @ D) ~ L: H*(H @ N ).
i ji,j 

Also, 

H*(C) @ H*(D) ~ H*(l1\) @H*(rn )j 

~ (LH*(H )) @ (LH*(N ))
i j 

"" L: H*(H.) @ H*(N.).
i,j l J 

For each pair (i, j) we have the homomorphism 

aij : H*(M. ) @ H*(N.) ~ H*(K @ N. ),
l J l J 

"hiGh extends by linearity to give the homomorphism 

ID : L: H*(N.) @H*(N.) ~ L: H*(l,L @N.).ij .. l J .. l Jl,J l,J 
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1.3. THEORE],'!. The following diagram is co=utative: and the proof is complete. 

~ ) E R*(N .. 0 N.)
H*(C 0 D) (¢l 0 ¢2)* .. l J 

',J IIDil 
"1 

r1*(C)0H*(D) ~) EH-l(.(M.)0H*(N.) 
,f, 0'\' .. l J
'fl* f2* l,J 

This theorem will allow us to replace a by the homomorphism ~... 
lJ 

Proof of 1.3. Let zl and z2 be cycles of C and D respectively. 

We have 

¢ Z = E x. and ¢2z2 = ~ Yj1 1 i l 
J 

where each x. lies in Z(M . ) and each y. lies in Z(N.). Thenl l J J 

(1) (¢l ® ~2)(Zl ® Z2) Ex.0y .. 
. . l Jl,J 

Thus 

(¢l ® ¢2 )*a((zl) ® (z2)) 

(¢10 ¢2)*[zl ® z2) (by def. of a) 

E' [x. ® y.) (by (1) above)
i,j l J 

=(Ea.. ) E [x.) ® [y.) (by def. of a .. )
i , j lJ i, j l J lJ 

(~ .. )( (E (x.)) ® (E [y.)))
lJ i l j J 

(~ij )(¢l*[zl) ® ¢2*[z2)) 

(~ij)(¢l* ® ¢2*)([zl) ® (z2) )' 
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We remark in pass ing that a is a natural transformation of 

func tors. That is, given chain complexes C, C', D, D' and maps 

f: C ~ C' and g: D :> D', then the diagram below is 

commutative 

f ® g** .....H*(C) ® H*(D) H*(C') ® H*(D') 

1" 1"
H*(C ® D) (f ® g)* :> H*(C' 0 D') 

The proof i s easy and is left to the reader. 

We now investigate the homomorphism ~ij This homomorphism 

is completely determined by the individual 

H*(Mi ) 0 H*(N j ) ~ H*(Mi 0 N ),a ij : j 

and each in turn depends only on the type of Mi and N.. Weaij J 

shall see that is an isomorphism except in the case that Mia ij 

and N. are both of the torsion type with torsion numbers which are 
J 

not relatively prime. In this case we shall prove that is aaij 

monomorphism. To reduce nine cases to four, we say that an elementary 

~hain complex is of type (ii)' if it is of type (ii) or (iii). 

Case (1) ® (i). Let M and N be free elementary chain complexes. 

That is, for some p, q we have 
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generated by a, if' i = P 

Ci (M) "'" 0 

if i f pr 
generated by b, if i = q 

Cj(N) "" 0 

if' i f q.r 
r

Then J-1 181 N is also a free elementary chain c=plex, with 

z generated by a 181 b, if' k = p+q 
' 

c,(M ®N) ~ [0 

k f P-Kl. 

The boundary operators in M, N and M 181 N are all zero, and so 

generated by {a} if i = P 

Hi (M) "" 0 

i f pr 
generated by {b} if j = q 

H/N) "" 0 

j f qr 
Z generated by {a 181 b} if' k = p+q 

~(M 181 N) "" t0 ' 

k f 	p+j 

Thus a: H* (M) 181 H* (N) ----7 H*(M 181 l'!), which maps {a} 181 {b} to 

{a I8Ib} , is an isomorphism. 
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Case (i) 181 (ii)'. Let M be a free elementary chain c=plex with 

one generator a in dimension p. Let N be a chain complex with 

two generators, c in dimension q + 1, and d in dimension q, 

with de nd for some n f O. We show that 

a: 	 H*(M ) 181 H*(N) ----:;.. H*(M 181 1'1) is an is=orphism. 

We have 

generated by a if' i = p 

Hi(M) "" 0 

i f 	pr
[, generated by {d} if j = q 

H/M) "'" n 


0 j f q 


Thus H*(M) 181 H*(N) has a single generator, {a} 181 {d}, of dim-

ension p + q, and of order n. 

The chain complex M 181 N is elementary and of type (ii)', gen

erated by a 181 c in dimension P-Kl.+l and a 181 d in dimension P-Kl., 

vith o(a 181 c) = a 181 nd = n(a 181 d). Thus H*(M I8IN) has a single 

generator, {a 181 d}, of dimension P-Kl. and of order n. So a, 

vhich maps {a} 181 {d} to {a 181 d}, is an isomorphism. 

Case 	(ii)' 181 (i) is like case (i) 181 (ii)'. 

Case (ii)' 181 (ii)'. Let M be a chain complex with two generators, 

a in dimension p+l and b in dimension p, with Oa = mb, m f O. 

Let N be a chain c=plex with two generators, c in dimension q+l 

and d in dimension q, with de = nd, n f O. Then 

-115



~zm' generated by (b) , if i = P 

H. (M)
1 

~ 

o i f. P 

Hj(N) ~ [, generated by 

on 

(d), if·j='1 

j f. '1. 

The tensor product Z 181 Z is cyclic and of order e (m,n), the m n 

greatest common divisor of m and n. Thus H*(!<t) 181 H*(N) has a 

single generator (b} 181 (d), of dimension p+q and of order e. 

The chain complex M® N has four generators, a 181 c of dim

ension p+q+2, a 181 d and b 181 c of dimension p+q+l, and b 181 d 

of dimension p+q. The boundary operator is defined by 

d(a 181 c) = da 181 c + (_ll+l a 181 de = m(b 181 c) + (_l)P+l n(a 181 d) 


d(a 181 d) = m(b 181 d) 


deb 0 c) = (-l)P neb 181 d) 


deb 181 d) = 0. 


We first compute 	 H (M ®N). The boundaries in dimension p+q
p+q 

are generated by m(b 0 d) and (-l)P neb 181 d). As x and y vary 

over the integers, xm + (-l)Pyn describes the subgroup generated by 

e (m,n). Thus the (p+q)-boundaries are generated by e(b 181 d). 

Since b 181 d generates the cycles, we have 

H (M 181 N) ~ Ze' generated by (b 181 d).p+q 
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Next we compute 	 Hp+q+l (M 181 N). In order that 


d(x(a 181 d ) + y(b 181 c)) = 0, 


it is necessary and sufficient that 

xm + (-l)Pyn = O. 

Dividing bye, 

m 
x (_l)P+l Y ~ 

e e 

Since mle and nle are relatively prime, there is an integer k 

such that 

x ( -1 )p+l k ~ and y = k ~ e e 

Thus the (p+q+l)-cycles are generated by 

u '" (_l)P+l(~)(a 181 d) + (~)(b 181 c). 

The (p+q+l)-boundaries are of course generated by d(a 181 c) eu. 

Thus 

generated by (u) .Hp+q+l (M 181 N) ~ Ze' 


The homomorphism 


0:: H*(M) 0 H*(N) ---?- H*(M 181 N) 

IIl&p S (b) 181 (d) to (b 181 d) in dimension p+q. Thus 0:: Ze ---?- Ze 

is an isomorphism in dimension p+q. In dimension p+q+l, 

0: : °~ Ze is a monomorphism. In dimension p+q+2, 0: is an 

isomorphism because both the domain and range of 0: are O. 
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We are now ready to prove 

1.4. THEO~l. If C and D are chain complexes of abelian groups 

that are free and finitely generated in each dimension, then a is 

a monomorphism of H*(C) @H*(D ) onto a direct summand of H*(C @D ). 

The complementary sUIllliland, in dimension m, is isomorphic to 

~ T (C) @ T (D), where T (C) denotes the torsion subgroup of 
~+r~-l ~ r ~ 

the ~th homology group of C. 

Proof . By 1.3 it is sufficient to show that the theorem is t rue if 

C and D are elementary chain complexes. In cases (i) @ (i), 

(i) @ (ii)' and (ii)' @ (i) we have shown that a is an isomor

phism. The statement about the complementary summand is true because 

in each case at least one of the chain complexes has torsion-free 

homology groups. In case (ii)' @ (ii)' we know that a is a mono

morphism onto a direct sUIllliland whose complementary summand is 

H 
p~+

l(M @ N) ~ Ze' 

The only torsion in H*(M) is Zm in dimension p. The only torsion 

in H*(N) is Zn in dimension ~ . Thus 

H 1 (M @ N) ~ Ze ~ Z @ Z "" E H (M) @ H (N).
p~+ . m n r+s=p+q r s 

The proof of the theorem is complete. 

1.5. COROLLARY (the KUnneth relations). If K and L are regular 

complexes with finitel~ many cells in each dimension, then 
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H (K X L) "" ~ H (K) @ H (L) $ ~ T (K) @ T (L), 
m p+q~ P ~ p+q=w.. l p ~ 

where T (K) denotes the torsion subgroup of H 
p 

(K ). 
p 

Proof. This follows immediately from 1.1 and 1. 4. 

1. 6. COROLLARY. 11' K and L are as above I and G is either 

Z for a prime p or the group of rationals, then 
p 

H*(K X L;G) ~ H*(K;G) @ H*(L;G). 

Proof. Apply 1.5, 11.6.9, and 11.6.10. 

Exercises. 
2 2

1. Compute the homology of P X P . 

2. K~eth relations for cohomology. Using the results 

of the exercise at the end of chapter II, and ideas similar to those 

used in the proofs of 1.3 and 1.4 obtain a formula relating 

U*(C· @ D') to n*(c') and H*(D·). 
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2. Joins of Complexes. 

Let X and Y be compactly generated spaces* The join X 0 Y 

of X and Y is the ~uotient space of X X I X Y "lillder the following 

identifications: for all x,x' E X and y,y' E Y, 

(x,O,y) - (x,O,y') and (x,l, y ) ~ (x ' , l,y). 

0The projection map X X I X Y ----?> X Y is denoted by p. The func

tion i: X ~ X 0 Y defined by i(x) = p(x,O,y) embeds X as 

a subspace ,of X 0 Y. Similarly, we can regard Y as embedded in 

X Y.0 

If X E X and y E Y then the line segment from x to y in 

X Y is the subset0 

[x,y] [(x,t ,y ) °< t < 1). 

Each point of X 0 Y with t t 0, 1 lies on a uni~ue [x ,y]. 

TIie mapping cylinder of a map f: X ~ Y is the subspace of 

X Y that includes all line segments [x,fx], x E X, together0 

with the pOints of Y. The join X Y is homeomorphic to the space0 

obtained by identifying the two copies of X X Y in the disjoint 

union of the mapping cylinders of the projections XXY~X and 

X X Y ---7 Y: 

*Recall t hat throughout this chapter we work in the categorJ of com
pactly generated spaces. 
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The join of a point and a space X is called the cone on X, 

and is written ex. The natural inclusioJ;! X C ex embeds X as the 

base of the cone. A space is contractible if there exists a map 

constant. TheFO the identity map and FlF:, I X X ~ X 	 with 

X is contractible, and provides the simplest waycone on any space 


of embedding X in a contractible space. 


2 .1. LEMMA. The j oin of a closed p-cell and a closed q-cell is 

a closed (p+q+l)-cell. The join of a (p-l)-sphere and a closed 

~-c ell is a closed (p+q)-ce ll. The join of a (p-l)-sphere and a 

(q- l)-sphere is a 	 (p+q-l)-sphere. 

(A ' ••• ,~) and (Jq = (B ' .•. ,B~) be simplexes.Proof: Let (Jp 	 oo 

be the simplex on the vertices (Ao' .•• ,~,Bo' ... ,Bq).
Let (Jp+q+l 


We define a map ~: (J X I X (J -----;.. (J 1 by setting
p q, p+q+ 

[¢(f,t, g )]A . = (l-t) f(A.)
1 1 

[~(f,t,g)]Bj = tg(B j ), 

and t eo 1- If f' E (J and g ' E (Jq , then 
for f EO, g E (J~, 	 pp 

inducesThusand ¢(f,l, g ) = ¢(f',l, g ). ¢~ (f,O,g) = ¢(f,O,g') 


Furthermore, ¢ 
 is one -
a c ont inuous map ¢: (Jp (Jq -----'? (Jp+q+l·0 

Hausdorff, ¢ 
0 is compact andone and onto. Since (J cr 	 (Jp+q+l

p q 
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is a homeomorphism. This proves the first statement of the ~emma. 

let E
P 

= (x € If I IIxll ~ I) denote the unit ball in RP. We 

define a map 11': Sp-l X I X Eq ~ If+<l by setting 

1I'(x,t,y) = ((l-t)x,ty) 
((I_t)2 + t 2 )1/2 

q
for x € SP-l, y € E , t € I. If x' € SP-l, y ' € Eq, then 

1I'(x,0,y) = W(x,O,y') and 1I'(x,1,y) = 1I'(x',I,y). Thus ~ induces 


q

a continuous map 11': Sp-l E ~ If+<l. A straightforward cal0 

- p-l 
0 

qculation shows that W is actually a homeomorphism of S E 


onto EP+<l. The restriction of 11' to Sp-l 0 Sq-l 
 is a homeomorphism 

onto SP+q-l. This completes the proof of the lemma. 

The reader should note that the homeomorphism 


~: o 0 ~ 0 1 carries
0p q P+<l+ a 0 U 0 a onto 0 1.P 0 q p 0 q P+<l+ 

Exercise . Show that the join of two spaces is arcwise connected. 

We now introduce a gimmick that will simplify the computation 

of the homology of the join of two complexes. let K be a regular 

complex. We adjoin to the collection of cells of K an ideal cell 

eK of dimension -1. We stipulate that e be a face of every cell
K 

of K. Since every I-cell has precisely two vertices the redundant 

restrictions are all satisfied. Given an incidence function on K, 

we define additional incidence numbers involving ~ by 

fO 
 if 
 dim 0> ° 
[0:"1<:] ~if dim 0 0. 
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We define the augmented chain complex C(K) of the oriented complex 

K by setting C (K) = the free abelian group on the q-cells of K 
q 

and by defining ~ (0) = ~ [O:T]T for any q-cell O. Thus 
q "!"€K 

C-1 (K) = Z, and is generated by eK• To show that C(K) is a chain 

complex, we observe that C(K) = C(K) in dimensions ~ 0, and if c 

is a zero-chain, then de = (In c)e
K

, where In c is the index of c, 

defined in II.I.ll. We remarked following II.l.11 that In de = ° 
for any I-chain c. The homology groups of C(K) are denoted by 

H*(K) and are called the reduced homology groups of K. The obvious 

chain map cp: C(K) ~ C(K) induces an isomorphism Ii q (K) ~ H q (K) 

for q > 0. cp* maps Ii (K) isomorphically onto a direct :summand of 
o 

H (K). A generator for the complementary sunnnand is given by the homo
o 

IO~J class of v, where v is any vertex in K. Thus H (K) ~ Z EB H (K).
o 0 

For a categorical definition of reduced homology, see the exercise at 

the end of VI.4. 

let K and 1 be regular complexes, with ideal cells e and
K 

e1 of dimension -1. We have inclusions i: IKI t:; IKI 111 and0 

j: 111 t:; IKI 111. For notational convenience we write0 

i(x) = x 0 e = x 1_1 and j(y) = e • y = K_l 0 y. Thus we have1 0 K 

an inclusion K 0 1 C IKI 111. We define the j oin complex K 0 10 
m n-

of K and 1 to be the space IKI 111 together with the subspaces0 

m 
(1) (K 1) = U (K. 0 1 . ).0 

m. 1 m-l-1 
1= -1 

We leave to the reader the job of verifying that K 1 thus de fined0 

is a complex. We write ~. e for the ideal cell of K 1. The1 0 

cells of K 0 1 are then given as follows. Let 0 and T be (poss

ibly ideal) cells of K and 1, respectively, of dimensions m and 
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n respectively. Then by 2.1, a T is a closed cell of K L0 0 

of dimension m+n+l, with interior a T - (a U T). Thus the0 

open cells of K 0 L are not joins of open cells. We will, however, 

write a T to denote the (open) cell Int(~ 0 T). By the remark0 

following 2.1, the boundary of a 0 T is the union a 0 T U a T,0 

so a 0 T is a face of a r 0 Tt only when either a a' and 

T < T' or a < a' and T T' or a < a' and 'j" < 'j"'. 

Given incidence functions a on K and ~ on L, we define 

an incidence function a 0 ~ on K 0 L by setting 

a 0[a: a'}. if p a' T 

(-1) l+dim a [T:T']~ if a 0 T'P(2) [aoT:P]ao~ 

o otherwise 

for all cells a, a' of K and T, T' of L. Note that if we set 

a eK, and P e 0 T', then
K 

l+dim e 
[eK 0 T:eK 0 T'] = (-1) K [T:T']~ [T:T' ]~. 

Thus a 0 ~ extends the incidence functions a and ~ on the sub-

complexes K and L of K L. The verification that a ~ is0 0 

indeed an incidence function is routine and is left to the reader. 
H q 

It follows from (1) that C (K L) "" E c. (K) ® 
H 

C l' (L).0 

q i= -1 l q- -l 

The boundary operator in the chain complex C(K L) is given by (2).0 

If a is a generator of C.(K) and T is a generator of Cj(L),
l 

ao~~ l+i .then d ~a T) = oa T + (-1) a CT. Here we wrlte a 0 T0 0 0 
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in the sUlll!llaJld C. (K) ® C.(L) of C.. l(K L).
for the chain a ® T l J l+J+ 0 

of H*(K L) is reduced to the following alge-Thus the computation 0 

b raic problem: Given two chain complexes C = ((C.},o) andl 

D = ((D.},O'), define a new chain complex CoD, with boundary oper
J 

ator d 0', by0 

(C 0 D) E C
i 

® D
jq i+j=q-l 

Oc ® d + (:'ll+dim c c ® Od.(0 0' Hc ® d)0 

Describe the homology of CoD in terms of the homology of C and 

of D. 

is a chain complex, define the suspension of 


If C = ((C.}, 0)
l 

C, written sC, with boundary operator cl, by 

(sC)i = Ci _l 

eSc = Oc for C E (sC). C _ • 
l i l 

2. 2. IEMMA. The function cp: CoD ~ d¢ ® D) defined by 


ep( c ® d) = (_l)dim d(c ® d) is a chain isomorphism. 


Proof; It is clearly sufficient to show that cp is a chain map. 

Let c E Ci ' d E Dj 

(s(o (81 o'))[( _l)dim d(c ® a)](s(o ® O'))cp(c ® d) 

(_l)dim d(o ® o ' )(c (81 d) 

(_l)dim d ( Oc ® d + (_l)dim c c ® oa). 
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0 cp(o 0' )(c Q9 d) = cp(2lc Q9 d + (_ll+dim c c Q9 Ocl) 

( _l)dim d(2lc Q9 d) + ( _l)l+dim C(_l)dim od c Q9 6:i 

(_l)dim d(2lc ® d + (_l)dim c c Q9 Ocl). 

2 . 3. COROLLARY. Let K and L be regular complexes with finitely 

many cells in each dimension . Then 

R (K L) E H.(K) Q9 H.(L) + 2: T.(K) ®T.(L)0 

q i+j=q-l 1 J i+j=q-2 1 J 

Proof : This follows from 1.4 and 2 . 2. 

2 . 4. DEFDUTION. A regular complex K is called acyclic if 

H*(K) = O. Equivalently, any cycle in C(K) bounds in K. 

2.5. PROPOSITION . Let K be a regular complex, and Jet L be a 

point. Then K L, the cone on K, is acyclic.0 

Proof: If K is finite, 2 . 5 is a corollary of 2 . 3 . Let K be 

arbitrary. Let z be a cycle on K L. Since z is a finite0 

linear combination of cells of K L, there exists a finite sub0 

complex K' of K such that z lies on K' L. Applying 2 .3, z0 

must bound in K' L, and therefore in K L.0 0 

Alternate proof of 2 . 5 which does not use 2 .3: Suppose z € Zq(K 0 L). 

0 € dTnen z = c eL + doL, where C C (K), € C l(K). We have 
q q -

o = 0'; = o(c 0 e + doL)
L 

2lc 0 e
L 

+ (_l)l+qc 0 deL + od 0 L + (-l)qd 0 ot 

2lc 0 e + Od 0 L + (-l)qd e .L 0 
L 
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Thus od = 0 and 2lc ( _l)q+ld. It then follows that z is the 

(-1 )q+lc L, and so K L is0 0boundary of the (q+l )-chain 

acyclic . 

3 . The homology of SK 

The join of a complex K with a O-sphere is called the 


suspension of K, and is denoted by SK. In this section we prove 


3 .1. THEOREM. If K is a regular complex then 

H*(SK) "'" sH*(K). 

If K is finite in each dimension this result follows from 


Corollary 2 .3. 


To give a proof for general K we define a chain map 

~: C(K) ~C(SK) that raises dimension by 1, and that induces 

an isomorphism of homology groups . FQr each chain c on K we 

define 

~(c) = (-1)dim c (A c - B 0 c)0 

where A and B are the vertices of the O-sphere with which K 

If dim c > 0 thenis joined. Thus if c = e we have o~(eK) = O.K 

~(c) = (_l)dim c(c _ A 0 2lc - c +B 2lc)0 

(_lfl+dim c(A 0 2lc - B 2lc)0 

= ~(2lc). 
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Thus ¢ induces a homomorphism 

~* : i (K) --? H l(SK), m> O. m m+ 

To show that ~* is a monomorphism, let c be a ~-chain on K 

with ¢(c) = Od. Each chain d in C 1 (SK) is a sum 
~+ 

d = A 0 ~ + B 0 d2 + e o d , with ~, d2 
in C (K), e the ideal3 ~ 

element of t he ~sphere, and in C~+l (K). Accordingly~ 

dd e od + e ad + e odd - Aaed - Badd ¢(c) (-l)~(Aoc - Bac' ).
1 2 3 1 2 

This implies that -A 0 Od (-l)qA a c, so that c is a boundary.
l 

To show that ¢* is onto, suppose that d = Aoa + Bod + e ad
1 2 3 

is a ~-cycle on SK. Then Cd. 0 , so that ~ + d2 + dd O.
3 

Also Odl = 0, so that d is a cycle. Therefore
l 

(-l)q~(dl) A 0 d - B d
l 

0 
l 

(-l)~( dl) - d -B 0 d - B 0 d - e aeL,
l 2 .) 

-B (d + d ) - e a d0 

1 2 3 
B d~ - e a d0 

3 

= e(B a d.,). 
.) 

This s.ays that ¢( (-l)~dl) ... d, so that ¢.,. is onto. Thus is~* 
an isomorphism, as desired. 

As an application we show that it is possible to construct a 

complex with prescribed finitely generated homolo~J groups, prov ided 

that the given Ho is free abelian of rank > 1. 

If K and L are complexes, we shall use K v L, read "K 

'.ledge L", to denote a complex obtained from identifying a vertex 
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of K with a vertex of L. In general K v L depends on the choice 

of vert'ices, but it is easy to show that if K and L are both 

regular then K '" L is regular and 

H (K '" L) "" H (K) EB H (L), ~ > 0 
~ '~q 

H (Kv L) IDZ "" H (K) EBH (L).
000 

Let X be a regular complex obtained from wrapping the bound
p 

:ry of a 2-cell p ti:mes around s1, where p is an integer greater 

than one. For example, IX 1 = p2. Then the homology groups of X
2 p 

are given as follows: 

l p 
{:p 

i 1 

H.(X ) "" i = 0 

o otherwise. 

If S~ denotes the k-th suspension of x 
p 

(defined induct-
P 

iv-ely by S~ SX, Sk+~= S(S~ )), then 
p p pP 

i = k+lt:p 

i '" 0H.(S~ )l p "" 

o otherwise. 

Let G be a finitely generated abelian group. Then 

n 

G "" F EB L: Z , where F is free abelian. Let Y denote the space 


1 Pi 


kk+l Sk+l Sk+l Sk. SkXS V' v . .. '" v -X , v v v S X , where the 

Pl P2 Pn 


number of spheres equals the rank of F. It follows that 
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if i = k+l 

if 	i = 0fli (Y) ~ {: 

otherwi se . 

Given 	a sequence Gl ,G2 , ... of finitely generated abelian groups , 

set 	 W = V Y v... v Yj v ... , where for each j, Y. hasYl 2 J 

been constructed so that 

if i = j 

" i(Y j ) ~ :J if i = 0 

otherwise.r 

Then H. (I·n "" G, if i > 0, and H (W) "" Z. If G is a free 

l l 	 0 0 

abelian group of rank r > 1 we can construct a complex with homo

l ogy Hi "" Gi , i > 0 by f orming the disjoint union of 1'1 with 

r-l points. 

4. Relative Homol ogy . 

A pair (K,L) of regular complexes is a regular complex K 

and a subcomplex L of K. The pair is oriented if K is oriented 

by an incidence function, 'Y say, and L is oriented by the r estric

tion 	of 'Y' 

For each pair (K,L), we have an inclusion homomorphism 

i: C 
q 

(L) ~ C 
q 
(K). We define the group of relative q-chains of 

the pair (K, L), written C (K,L), to be the quotient group
q 
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C (K)/C (L ). If c is a chain on K, we denot e by [c] the co q q 

set of C (L) in C (K) which contains c.q q 

Let (K,L) be an oriented pair. Let ° denote the boundary 

operator both in L and in K. \ole define a homomor phism 

" 	 " 0': C (K,L) ~ C l(K,L) by setting o[c] [Oc] for any
q q

" 
C € 	 C (K). The map ° is well defined because 6 maps C (L) to 

q q 

C l (L). Also, oo[c] = ~[Oc] = [oOc] = O. Thus the collection 
q 

" ( (C (K,L)},o) forms a chain complex, written C(K,L).
q 

4.1. DEFINITION. The qth (relative) homology group of the ori ented 

pair (K, L), written H (K,L), is the qth homolo~J group of the 
q 

chai n complex C(K,L). If we wish to stress the orientation 'Y of 

the 	pair (K,L), we shall write C'Y (K,L), H'Y(K,L).
q 

4. 2 . LEMMA. The inc lusion map i: C(L) ~ C(K) is a chain map. 

The projection map j: C(K) ~ C(K,L) is a chain map. 

Proof: The first assertion is precisely the statement that L is 

a subcomplex oriented by restricti on of the incidence function on K. 

To prove the second assertion, l et C € C (K). Then 
q 

" 	 " 
OjC = o[c] = [Oc] = j(Oc). 

We thus have the f ollowing commutative diagram: 

C (L) ~ C (K) j ~ C (K,L) 
q q . ~ q 

-1jr 

l~1° ,, -- -+ 
C l(L) ~i C l(K) ~ C l(K,L)q- q- J q
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By 4.2, i and j induce homomorphisms i*: H (L) ~ H (K) and 
q q 

j*: q q
H (K) ~ H (K,L). vle wish to define a homomorphism 

d*: H (K,L) ~ H l(L). Let z E Z (K,L). Then z [c] for q q- q 

some C E C (K). He have j ex: = djc = ~ = 0, so ex: is a chain,q 

in fact a cycle, on L. We set o*(z} = (ex:}. If we vary c by a 

chain on L, we vary ex: by a boundary, and so d* is well-defined. 

The map d* is called the boundary or connecting homomorphism for 

the oriented pair (K,L). 

4.3. THEOREM. The sequence of groups and homomorphisms 

d* i* j* d* i*
(1) ... ~ H (L) ~ H (K) ~ H (K,L) ~ H l(L) ~ q q q q-

is exact. 

Proof: (i) Exactness at H (L). Let z E Z l(K,L), z = [cl,
q q+ 

c E Cq+l(K). Then i*d*(Z} = i*(ex:} (iex:) = (dic} = o. Thus 

ker i*:?ill d*. Suppose i*(z} = 0 for z E Zq(L). Then z = ex: 

for some c E C l(K). Also, ~[c] = [ex:] = liz] = 0, so [c] E Z l(K,L).q+ q+ 

It is then obvious that d*([C]} = (z}. Thus ker i* = ill d*. 

(ii) Exactness at Hq (K). Let z E Z (L). Then j*i*(z} = (j i z} = o.q 

So ker j* :? ill i*. Let z E Z (K) such that j*(z} = O. Thenq 
A A 

jz = d[C], CEC l(K). He have j(z-ex:) =jz - jex: =jz - d[C] =0,q+ 

so z is homologous to a cycle on L. Thus Z E im i* and 

ker j* ill i*. 

(iii) Exactness at H (K,L). Let z E Z (K). Then q q 

d*j*(Z} = d*(jZ} = (m} = O. Thus ker d* dill j*. Let z € Z (K,L) q 

be such that d* (z) = o. If z = [c], C E C (K), then ex: bOlJUds a q 
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chain d on L. Thus d(c-d) = 0 and (z} = j*(c-d). He have 

shown that ker d* ill j*. The proof of 4.3 is complete. 

The sequence (1) is called the relative homology seguence of 

the oriented pair (K,L) . 

Suppose that 7, y' are orientations of the pair (K,L). Let 

~ : C7(K) ~ C7
, 

(K) be the chain isomorphism of 11. 5.4. Then ¢ 

carries chains on L to chains on L and so induces 

~: C7(K,L) ~ C7'(K,L). If c E C7(K), then ~[c] = a[¢c]q 
A A 

[d¢c] = [¢ex:] = ¢[ex:] = ¢d[c}. Thus ¢ is a chain isomorphism, and 
A 

7 Relative homologyi nduces an isomorphism ¢*: H (K,L) ~ H7' (K,L).
q q 

groups are independent of orientation. Furthermore, the triple 
A 

( ¢ , ¢ IL, ~ ) induces an isomorphism of the exact homology sequences 

associated with the orientations rand 7'. That is to say, the 

di agr am below is commutative: 

i* j* d* 
Hr~ Hr(L) ~ Hr(K) ~ Hr(K.L) ~ l(L) ~ 

q q q , q

¢* ~ ¢* 11 ~(¢,LI·l · (¢,LI·l"
1 

A 

~ Hr ' (L) ~ H'" (K ) ~ H7' (K,L) ~ Hr'l (L) ~ 
q 1* q J* q * q-

The proof that this diagram is commutative is routine and is left to 

the reader. 

Remark: The pxact sequence 

o ~ C (L) ~ C (K) ~ C (K,L) ~ 0 
q q q 
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is of course split exact . Thus we have maps h: c (K) ~ C (L) 
q q 

and k: C (K,L) ~ C (K ) such that hi = 1, jk = 1. The mapq q 

h restricts chains on K to the cells of L. We may take k to 

be de fined as follows. If c is a chain on K, then c d+c ' , 

where d is a chain on L and c' is a chain involving only cells 

of K not in L. Then k([c]) = c'. Using the splittings h and 

k, we could define a map ~: C (K,L) ~ C l(L) by ~ = hdk. q q-
A 

(See diagram p. 13 ~) A tedious calculation shows that 1jrd -dt. 

Thus ~r carries cycles to cycles and boundaries to boundaries, and 

induces a map ~r*: H (K,L} ~ H l(L). It is easy to prove that 
q q

1jr* d*. Note that the splitting maps h and k are not chain maps. 

Exercise: Let K and L be complexes, v a vertex of K, v' a 

vertex of L. The complex K \/ L, obtained by identi~Jing the 

vertices v and v' of the disjoint union K U L, is called the 

wedge of K and L. The wedge can be regarded as the subcomplex 

K X v' U v X L of K X L. Using the KUnneth relations for the homo-

l ogy of a pr oduct, compute H*(K X L,K v L). Show that 

sH*(K X L,K v L) "" R*(K L),0 

using the results in section 2 concerning R*(K L).0 

In defining relative homology groups we had occasion to refer 

to the exact sequence 

o ~ C (L) ~ C (K) ~ C (K,L) ~ 0 q q q 

associated with any pair (K,L). More generally, we may define a 
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short exact sequence of chain complexes to be a sequence 

(1) O~L~K~]'!~O 

of chain complexes and chain maps such that for each q the sequence 

(2) O~L ~K ~M ~ O q q q 

is exact. We may proceed as above to define a connecting homomor

phism d*: H (M) ~ H l(L) for each q. If Z E Z (M), since 
q q- q 

j is onto, we have Z jc for some c E K . Since j is a 
q 

chain map, jde = djc = dZ = o. By the exactness of (2) , de = id 

for some dEL l' Then ida = did = dde = 0, and since i is a 
q

monomorphism, d is a cycle. We set d*CZ} = Cd}. To shuw that d* 

is well-defined, we vary c by id' for some d ' E L. Then 
q 

d(c+id') = de + did' = i(d+dd l ). Thus d varies by a boundary. We 

receive a sequence 

i* j* d* 
(3) .•• ~H (L) ~H (K) ~H (M) ~H l(L) ~ ... q q q q-

which is calle-d the homology sequence of the exact sequence (1) . One 

proves just as in 4.3 that the homology seuqence (3) is exact . 

If 0 ~ L' ~ K' ~ M' ~ 0 is another short exact 

sequence of chain complexes, then a homomorphism of short exact se-
A 

quences of chain complexes is a triple (~,~,~) of chain maps such 

that the following diagram is commutative : 

O~L ~K ~M ~ O 

1~ "' l~ ., l~ 

O~L' ~K' ~M' ~O 
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4.4. PROPOSITION. A homomorphism of short exact se~uences of chain 

complexes induces a homomorphism of the associated homology sequences. 

In other words, the following diagram is commutative. 

<\ i* j* '\ i* 
----?>- H (L) ----?>- H (K ) ----?>- H (tIl) ----?>- H 1 (L ) ~ 

~l·* "1·* "1 "* q-lq;* 
Cli i~ ji Cl~ i~ 

~ H (L') ~ H (K') ~ H (W) ~ H l(U) ----7 
q q q q-

Proof: Cjl*i* (Cjli )* (iCjl)* = i*Cjl*. 

~*j* = (~j)* = (j~)* = j*~* 

The third square is more complicated. Let Z € Z (1<1). Then z jc
q 

for some C € C (K), be = id for some d € Z l(L). Then Cl*(z} = (d) ,q q-

by definition. He have ~ = j 'cpc, Cl'cpc i'cpd, and so Cli(~} = (cpd). 

Thus Cli~*(z} = Cl~(~} (cpd) = Cjl*(d} = Cjl*Cl*(z}. 

Exercise: (Relative homology with coefficients in an arbitrary abelian 

group G.) Verify that the following constructions are valid: Let 

G be an abelian group, and let 0 ----?>- A ~ B ~ C ~ 0 

be an exact sequence of free chain complexes. Then 

O ~A®G~B®G----7C®G----""'O 

is exact, and, as in the case ~ Z, we have a relative homology 

sequence 

~ H (A;G) ----?>- H (B;G) ----7 H (C;G) ----?>- H l(A;G)----?>q q q q-

which is exact. For an arbitrary oriented complex pair (K,L) set 
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A = cCt(L), B = Ca(K), C = cf(K,L). Then we may define H 
q 

(K,L;G), 

the relative homology group with coefficients in G, to be the group 

H (C;G). 
~ 

Exercise: (Relative cohomology with coefficients in G.) Let G 

be an abelian group, and let 0 ~ A ----7 B ----7 C ----7 0 be 

an exact sequence of free chain complexes. Prove that the associated 

sequence 

o ~ Hom(A,G) ~ Hom (B,G) ~ Hom(C,G) ~ 0 

is exact. Define coboundaries in these cochain complexes as in Cha~r 

II and verify that Cjl and ~ are chain maps. Finally, define a 

connecting homomorphism 5*: Hq(A;G) ----7 Hq+l(C;G). Obtain a se

quence 

* * * * * ~ Hq(C;G) ~ Ifl(B;G) ~ Hq(A;G) ~ Hq+l(C;G) ~ 

Prove that this sequence is exact. 

If (K,L) is a pair of complexes, set A =c?(L), B =cf(K), 

C =£f(K,L). The group Hq(C;G) is called the qth relative cohomology 

group of (K,L) with coefficients in G and is written ~(K,L;G). 

It f ollows from the exactness of the sequence above that we get an 

exact sequence: 

----7 Hq(K,L;G) ----?>- Hq(K;G) ----7 Hq(L;G) -----7 Hq+l(K,L;G) ----7 

Tnis sequence is called the exact cohomology sequence with coefficients 

in G of the pair (K,L). 
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Chapter VI. THE DWARIANCE THEOREM 

1. Remarks on the Proof of Topological Invariance. 

Let K and K ' be regular complexes. Suppose that f: K ----;;.. K I 

is a continuous mapping with the following property: for each cell a 

of K, there is a cell T of K' of the same dimension such that 

fa ; T. (We say that f maps cells onto cells . ) Let ~ be an inci

dence function for K'. Define an incidence function 0 for K by 

[o:T10 = [fo:fTl~ 

where a and T are arbitrary cells of K. Then it is easy to ver

ify that 0 is an incidence function for K. We define a chain map 

cp: cf(K) ~ C~(KI) as follows; if is a ~-chain of K,L.ai °i 

then cp(Dl..o.) = Ea.fo • Then cp is a homomorphism. Moreover, if 
~ ~ ~ i 

dO and d~ are the boundary operators associated with 0 and ~, 

respectively, and if a is a generator of C (K), then 
~ 

cpd0: a = cp E [o:Tl T 
TEl{ 0 

E [fo:fTl~fT 
TEl{ 

d~fo 

d~cpo. 

By linearity, this relation holds over all of C (K). Thus cp is a 
~ 

chain. map. Consequently, cp induces homomorphisms 

cp*: H (K) ~ H (K') for every ~. ..,Ie then say that the homomor
~ ~ 

phisms cp* are induced by the mapping f and write them as f~. 

Examples of mappings satisfying the condition given above are 

a) the inclusion of a subcomplex in a complex and b) the projection of 
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a complex K to the complex KIF obtained from K by identification 

(as long as KIF is regular). 

In this chapter we extend this definition of induced homomorphism. 

First, in section 2, we extend it to mappings f which have the prop

erty that the minimal subcomplex containing the f-image of any cell 

is acyclic* Such mappings we call proper mappings. Then, in sec

tions 3 and 4, using the notion of subdivision, we show that an arbi

trary mappi~g f: K ----;;.. KI of finite complexes can be factored 

into proper mappings. He define the homology homomorphisms induced 

by f to be the composition of the homomorphisms induced by the fac

tors of f. 

Returning to our first topiC, we note that if f: K~K is 

the identity mapping then f maps cells onto cells, and 

H (K) ----;.. H (K) is the identity isomorphism for each ~. Also,f*: 
~ ~ 

i f f: K ----;.. KI and g: K I ----;.. K" map cells onto cells, then 

so does gf, and (gf)* = g*f*. These two properties are fundamental 

in homology theory. In section 4 we show that they hold for the induced 

homomorphisms of arbitrary continuous mappings of finite regular com

plexes. The invariance theorem (4.9) is a corollary of this result. 

We emphasize that in this chapter we prove the invariance theorem only 

for finite regular complexes. 

2. Chain Homotopy, Carriers, and Proper Mappirlgs. 

Suppose we are given two topological spaces X and Y, and two 

continuous mappings fo and fl from X to Y. We say that f is o 

*See v.2.4. for a definition. 
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homot9pjc to f 
l 

, written fo =f 
l 

, if there is a continuous mapping 

F: I X X ~ Y such that F(O,x) fox and F(l,x) = fIX. We 

can reformulate this condition as follows. We define mappings Po 

and from X into I X X by P X = (O,x) and PIX (l,x).PI o 

Then two mappings fo and fl from X to Yare homotopic if and 

only if there exists a mapping F: I X X ~ Y such that Fpo fo 

and Fpl = fl· 

We define in a similar way the notion of chain homotopy. Suppose 

that we are given two chain complexes C and C' , and two chain maps 

fo and fl from C to cr. Let I be the cell complex for the 

closed unit interval consisting of a I-cell I and two vertices 0 

and I. Let I also represent the chain complex for I with the 

boundary operator 0 defined b y 01 I - 0. Then in the chain com

plex I 0 C we have 

0(00 c) 00 Oc, d(1 0 c) = I 0 Oc, 

and 

0(1 0 c) 10 c - 00 c - I 0 Oc, 

for c a chain of C. We define chain maps and from CCPo Cj)l 

to 1 0 C by 

Cj)o(c) = 0 0 c and CPl(c) = 1 0 c. 

2.1. DEFINITION. Two chain maps fo,f : C ~ C' are chainl 

homotopic if there exists a chain map F: 1 0 C ~ C' such that 

Fepo fo and F is called a chain homotopy of and f ,FCPl = fl· fO l 

and we write fO =fl to indicate that fo and fl are chain homotopic. 
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2 . 2 . ~~. Let fo and fl be chain maps from C to cr. Then 

fo and fl are chain homotop ic if and only if there are homomorphisms 

1): C ~ C' 1 such that d'f) + 19 1 0 = fl - f for each q,q q q+ q q- 0 

where o and 0' are the boundary operators of C and C' respect

ively. 

Proof: If fo =fl and F is a chain homotopy of f and f
l 

, set o 

19c F(I (8) c) for c € C. Then 
q q 

o'~c d' ,F(I 0 c) 

Fd(I (8) c) 

= F(1 (8) c - 0 0 c - I 0 Oc) 

= Feplc - FCj) c - j} lOc o q-

d' ,$ c + 19. Oc = flc - f c. q q-l 0 

If ~) is given satisfying the conditions of the Lemma, define 
q 

a chain map F: 10 C ~ C' by 

F(O 0 c) fOC' F(I0 c) = flc, and F(I 0 c) = J)-;,
q 

for c a q-chain of C. Then F clearly maps q-chains of I 0 C 

into q-chains of C' , and 

O'F(I 0 c) d'£)C = f 
1

c - f 
0 

c -,e Oc 

F(I0 c) - F(O 0 c) - F(I 0 Oc) 

= F( o( I (8) c)). 

Thus F is a chain map and provides the desired chain homotopy. 

The collection L) of homomorphisms E is called a chain 
q 

deformation for f and f , and is said to exhibit a chain homotopy 
o l 
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of f and 
CD fl· 

2.3. THEOREM. Let 	 f and fl be chain maps from C to C'. I:fo 


f and fl are chain homotopic, then 

o 

(fO )* = (fl )*: H*(C) ~ H*(C '). 

Proof: Let 1) = (j)} be a chain deformation exhibiting a chain homo
q 


topy of f and fl· Let z be a q-cycle of C. Then 
o 

(fl)*{Z} - (fo)*{z) 	 (flz - foz) 

{o',Q
q 

z + [}
q-

lClz) 

{o,nz} since z is a cycle
q 

O. 

Analogous.ly, let C· and D· be cochain complexes, and let 

fo,fl : C· ~ D· 	 be cochain maps. A collection f) = r1}q) of 

Cq Dq lhomomorphisms ,[) : ~ - satisfyingq 

f - f 5fJ+ f) 5
1 0 

is called a cochain deformation. One proves as in 2.3 that if £) is 

a cochain deformation for the cochain maps fo,fi: C· ~ D·, then 

* * *. * .(fo) = (fl ): H (D 	 ) ~ H (C ). 

Now let K and K' be oriented regular complexes, and suppose 

that fo,fl : C(K) ~ C(K') are chain maps. Let G be an abelian 

group. Then fo and fl induce chain maps 

fo ® 1, fl ® 1: C(KjG) ~ C(K'jG) and cochain maps 

Hom(f ,1), Hom(fl,l): C· (K'jG) ~ C·(KjG). Suppose that f and 
o 0 

fl are chain homotopic. If ~ is a chain deformation exhibiting a 
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chain homotopy of f and f , then J) ® 1 is a chain deformation o l 

for fo 0 1 and f l ® 1. Furthermore, {(-l)q+~omvC1 
q

, l)} is a 

cochain deformation for Hom(f ,1) and Hom(f
l 

, 1) . It follows that 
o 

(fO)* (fl )*: H*(K;G) -----'? H*(K' ;G) 

and 

)* = (fl ):* H (K';G) ~ *(f * H (K;G). o 

A carrier from a regular complex K to a regular complex K' 

i s a function X which assigns to each cell cr of K a non-empty 

subc omplex X( cr) of K' in such a way that if cr < T then X(cr) 

is a subcomplex of X(T). A carrier X from a pair of complexes 

(K,.L) to a pair (K', L') is a carrier from K to K' which 1{hen 

r egarded as a function on the cells of L is a carrier from L t o 

L' 

I:f f: K~K' is a continuous function then a carrier f or 

f is a carrier X such that for each cell cr of K, fa CX ( a) . 

X is said to carry f. Carriers for a map always exist -- set 

X( cr j = K' f or each a. The minimal carrier for f is the carrier 

assigning to each a in K the smallest subcomplex in K' contain

ing f' a. 

A carrier X from K to K' is acyclic if for each cr in K 

the subcomplex X(cr) of K' is acyclic. A map f: K ~ K' is 

called proper if the minimal carrier for f is acyclic. We may 

r e lativi ze thes e notions in the obvious way, noting that if 

f: CK,L) ~ (K' ,L') is given, then the minimal carrier for flK is 

automatically a carri er f rom (K,L) to (K',L') . The concept of a 
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proper mapping is fundamental in cellular homology 	theory because a 

proper mapping from one regular complex to another 	can be shown to 

induce homomorphisms of homology groups. 

Finally, we call a chain map rtl: C(K) -----;.. C(K' ) proper if 

for each O-chain c on K, In q;c In c. 

2.4. LEMMA." Let K and KI be oriented r egular complexes, If X 

is an acyclic carrier from K to K' then there exists a proper chain 

map rtl: C(K) ---""" C(K' ) such that for each cell a of K rtla is 

a chain on X( a). (We say X carries rtl.) Fu...-rthermore , if cP and 
------	 0 

rtll are any two proper chain maps carried by X, then rtlo -:: rtll and 

there ex ists a chain deformation £J exhibiting this chain homotopy 

which is also carried by X. 

Proof: We construct. rtl by induction on dimension. For each O-cell 

A of K, we select a verte x B of the non-empty subcomplex X(A) 

of KI. We then set 'P(A) = B, and extend over all of C (K) by
o 

linearity. Then for c a O-chain of K we have In q;c In c. 

Given a l-cell_ a of K, rtlOa is a O-chain on X(a) , and 

In rvOa = In Oa = O. Since X(a) is acyclic, there exists a I-chain 

c on X(a) such that o'c = rtl0a. We set rtla = c. Then 'Pa is a 

I-chain on X(a) and O'rtla 0' c 'PO a so that cP commutes with 

the boundary operators 0 and 0'. We extend cP over C (K) by
l 

linearity. 

Suppose that rtl has been defined on C (K) for all q < n-l 
q 

so that it commutes with the boundary operators and is carried by X. 

Let a be an n-cell of K. Then cpO a is an (n-l )-chain on X(o) 
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since oa is a chain on a. ALso, rvOa is a cycle on X(a) because 

rv00a = O. Thus by the acyclicity of xC a) we may choose ano''P0o 

n-chain c on X(o) such that o'c 'Pda. We set rtla c. We extend 

'P commutes with the boundary op-C (K) and thenby linearity over n . 

erators and is carried by X. In this manner we define rtl for all n. 

CPo and 'PI beTo prove the second assertion of the Lemma, let 

two proper chain maps of C(K) into C(K'), both carried by the 

We construct a chain deformation f) exl1ibitingacyclic carri er ;;( . 


If A
a chain homotopy of rtlo and CPl by induction as 	follows. 

is a vertex of K, 'PoA - rtllA has index zero, and 	thus bounds in 

X{ A). We set f) A equal to a I-chain on X(A) 	 having 'PoA - 'PIA 


Then if c is a 

as boundary and 	extend by linearity over Co (K) . 

o,f) c 'Poc - 'PIC - ,8Oc since the last term is zero.O-chain on K, 


has been defined for all dimensions less than
Suppose that a 

X and satisfies 0',9 = CPo - CPl - Eo.so that it is carried by 

rtloo - 'PIa - j}oo is a chain on 

n 

Let a be an n-cell of K. Then 

X( o). \.Je have 

-

'Pooo - rtll Oa - CCPo - CPl -/Jo)oa 
= O. 

0' (cpo a - cP
1 

a - jjo cr) o'rtloa - o'CPla or/doa 

Then since X( cr) is acyclic we can choose an (n+l)-chain c on 

and exrtlocr = 'PIa -E ocr. We set Eo = c,X( a) whose boundary is 

We continue in this manner for all n.tend by linearity over C (K).
n 

~o defined is carried by X and exhibits the 	desired chain homo

topy of 'Po and 'Pl' The proof of the Lemma is complete. 
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Now suppose that X is an acyclic carrier from (K,L) to 

(K' ,L' ). By L2mrna 2.4, x, as an acyclic carrier from K to K', 

carries a proper chain map ~: C(K) ~ C(K'). The restriction of 

cP to C(L) is a proper chain map ~ : C(L) ~ C(L') which is 

carried by X as an acyc l ic carrier from L to L'. Thus if we set 

~[c] [qc], C E C (K), 
q 

1{e obtain a well-defined homomorphism ~: C (K,L) ~ C (K ' ,L ' ) . 
q '1. 

Since ~[c] = ~[qc] = [ Cq:c ] = [cpOc] = ~[Oc] = ~[c], ~ is a chain 

map. Furthermore, l et ~o' CPl be proper chain maps carried by X. 

Then by 2.4, there exists a chain deformation j} exhibiting a chain 

homot opy of ~o and CPl' and we may suppose B i s carried by X. 

Thus if' c E C q (L), ,G c € Cq+l(L'). It follows that if we set 

ij [c] = ESc] f or c € C (K ), then S: C (K, L) ~ C l(K',L ') 
q q '1.+ 


is well- defined. 


"" ,,/'-..(/3 '0 + 'O ,,.e)( [c]) L$'Oc + 'o',8c] 

[~oc - ~lcl 
" " 

= cpo[c] - CPl [cJ. 

Thus CPo and CPl are chain homotopic . In other words, X ind:uces 

the triple of chain maps ( ~,~, ~) , defined uniquely up to a chain 

homotopy. 

2. 5. COROLLARY . An acyclic carrier X from (K,L) to (K',L ') 

induces a unique set of homology and cohomology homomorphisms 
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* H (K·G) ~ H (KI.G ) cp: Hq(K';G) ~H~(K; G)cP*: q , q ' 
- -* Hq(L; O) ~ Hq(L';G) cP : Hq(L'j G) ~ Hq(L;G)cP*: 


"*
" H (K L·G) ~ H (K' L'·G) Hq(K',L';G) ~ Hq(K,L;G)cP*: q , , q' , ~ : 

for any coefficient group G. The triple of homomorphisms ~*' cP*, 

,.. 

CfJ* defines ~homomorphism_of' the r elative homology sequences of t he 


pairs (K,L ) and (K' ,LI ). In other words, the diagram below is 

commutative: 

'0* i* j* '0* i* 
•••~ H (L;G) ~ H (K;G) ~ H (K,L;G) ~ H l(L;O) ~ •.. 

q '1. q q-

Cf'*l~ l~ I~ 1'o! i~ j! i '0' i' 
•••~ H (LI; G) ~ H (K';G) ~ H (K',L';G) ~ * H (L'· G) ~ * 

'1. '1. q q-l ' 

A similar result holds for cohomology. 

PI·oof : Everything but the commutativity of the diagram has been proved, 

and that follows from v.4.4. 

2 . 6. COROLLARY. If f: (K,L) ~ (K',L ' ) is proper, and if Xo 

and ~ are any two acyclic carriers for f, then the associated homo-

l ogy and cohomology homomorphisms for Xo and Xl coincide. We say 

that f induces these homomorphisms and write them as 

f*: H (K,L;G) ~ H (K' ,L';G)q q 

(f!K )*: H q (K;G) ~ H q (K ' jG) 

(f!L)*: H (L·G) ~ H (L' ·G)q , q' 

and s.imilarly for cohomology. 

-147



Proof: Let X be the minimal carrier for f. Then for each 0 of K, 

X(o) C Xo(a) n ":t(a). Thus, if ~ is a proper chain map carried by X, 

then <p is also carried by X and 'S.; here we are regardingo X, Xo ' a 

'S. as carriers from K to K'. induced byThe unique homomorphisms x o 
and 'S. * are <1'*' ~ , ~*' etc. 

2·7· COROLLARY. If X is an ac~clic carrier from K to K' such ~at 

for each cello£! K, the dimension of X(a) is at most that of a, 

then there is exactly one proper chain map carried by X. 

Proof: By the Lemma, there is at least one proper chain map <p carried 

by X. SUPFose that 11' is also carried by X. Then by the Lemma there is 

a collection of homomorphisms ~ carried by X which gives a chain homl 
q 


<p =11'. If 0 is a q-cell of K, then x( o) is of dimension at most q. 


So .l)q 0, which is a (q+l)-chain on X( a), mus t be zero. Thus each tlJ 

q 

is zero and <p = 11'. 

Examples of proper mappings: 

We assume throughout that a regular compl~ on a closed cell is 

acyclic. This will be proved in section 4 of this chapter. 

(a) Inclusion of a subcomplex: Let (K,L) be a pair of regular 

complexes, and let i: L -----> K denote the inclusion map. The minimal 

carrier for i assigns to each cell a of L the sub complex 0 of K, 

and so i is proper. The induced homomorphisms i* and i are those of* 
the homology and cohomology sequences of the pair (K,L). 
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b) Automorphism of a complex: 

Exercise. Let T: K X L ---? L X K be defined by T(X,y ) (y, x ) 

for X E K, Y E L. Then T is proper, and the minimal carri er 

preserves dimension, so, by 2.7, there is a unique chain map ~ in

duced by T. Show that q:>(c 0 d) = (-l)pq(d ® c) for c E Cp(K), 

dEC 
q 

(L ). Note that the mapping t: C(K) 0 C(L) ~ C(L) ® C(K) 

defined by 'fCc 0 d) = d ® c is not a chain map. 

n l lExercise. Let T: R + -?>- Rn+ be given by a diagonal matrix, 

with k minus ones starting from the upper left, and then n-k+l 

plus ones. Compute T* in H (Sn) . 
n 

c) Projection of a product onto its factors: Let 

f : K ],i, L -?>- K be the projection mapping. The minimal carrier 

X for f satisfies X( a X T) = a. Thus f is proper and induces 

a unique chain map ~, by 2.7. Note that 

if dim T> 0 

0(0"<)" G 
if T is a vertex. 

d) Simplicial mappings: Let K and L be simplicial complexes. 

Then f: K -?>- L is a simplicial mapping if f carries the vertices 

of each simplex of K into vertices bf a simplex of L and is linear 

in terms of barycentric coordinates. A mapping of the vertices of K 

into the vertices of L can be extended to a simpliCial mapping if 

and only if it maps vertices spanning a simplex of K onto vertices 

spanning a simplex of L. If a is a simplex, and T is the face 

opposite a vertex A, then a is the cone on T. Thus a is acyclic 

by V.2.5. It follows that a simplicial mapping induces a unique chain 

map ~: C(K) -?>- C(L ). 
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3. Subdivision of a Regular Complex 

3.1. DEFINITION. Let K be a regular complex. Tne (first i t erated) 


subdivision of K, 
 written Sd K, is the simplicial complex whose 

vertices are the cells of K and whose simplexes are defined as follows : 

A finite collection of cells of K form the vertices of a simplex of 


Sd K 
 if and only if the cells of the collection can be arranged in 


order so that each is a proper face of the next. 


It is obvious from the definition that Sd K is a simplicial complex. 

We topologize ISd K I b:y giving it the weak topology with respect to 

closed simplices. Note that if L is a subcomplex of K, then Sd L 

is a s implicial subcomplex of Sd K. Hote also that in general Sd(K ) 

'1 


is not equal to (Sd K) . 

'1 

3.2. TREOREI1. If K is a regular complex then IKI is homeomorphic 

to ISd KI. 

In the proof of this theorem >Ie ..!ill use the following le=a. 

3.3. m'lMA. If 0 is a ce l -l of a regular complex, then Sd 0, as 

a complex is the join of the vertex 0 with the subcomplex Sd a. 

Proof: A cell , of Sd 0 is a collection of faces of o which can 

be arranged in an increasing order: 0 < 0 < .•• < ok' Either
0 1 

Ok = 0 or , is a cell of Sd o. If ~ = a, then , is the join 

of the vertex a with the cell < •••<ok_l' unless k O. If0 0 

k 0 then , is the vertex o. Thus Sd thosethe cells of 0 are 

of the join of the vertex 0 with the subcomplex Sd o. 
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Proof of Theorem 3.2: We define a homeomorphism h: [Sd K[ --> [K[ by 

step wise extension over the sub complexes Sd(K ). In dimension zero, every
'1 

vertex of K is also a vertex of Sd K, so we have the obvious homeomorphism 

h: Sa(K) --> K • o 0 0 

Suppose that we have extended h to a homeomorphism h ofo '1-1 

Sd(K 1) onto K Let o be a '1-cell of K. Then, by Le=a 3.3,
'1- '1-1 

Sdo ooSda. We choose a homeomorphism f: E'1 ~> a. E'1 is 

'1-1homeomorphic to the join of the origin -with S • By hypothesis, 

h Sd a -----> IT is a homeomorphism and so the mapping f-lh : Sd a-> sq· 
'1-1 '1-1 


-1

is a homeomorphism. We extend f h 1 to a homeomorphism g mapping

'1

Sd 0 onto E'1 which sends the vertex 0 into the origin. We define h 
'1 

on Sd 0 to be fg. We note t hat on Sd IT we have h fg ff 
-1 

h 1 = h 1 g '1- '1

so that h extends h 1 We proceed in this manner for every '1-cell of 
a~ '1

K. The resulting mapping h extends h and is a homeomorphism since a 
'1 '1-1 

function on a regular comples is continuous if and only if it is continuous 

on each closed cell of the complex. The collection of mappings (h} defines 
'1 

a function h: [Sd K[-----> [K[. The inverse of h is continuous because 

it is continuous on each skeleton of K. The function h is also continuous. 

This follows from the fact that if a regular complex L is expressed as a 

wlion of subcomplexes L, then the topology on [L[ is the weak topology
0; 

",ith respect to the closed subsets [Lo;[. Thus h is a homeomorphism and 

the proof is complete. 

Note that the homeomorphism h of i[Sd K[ onto [KI given in 

the proof of 3.2 preserves the cellular structure, in the sense that 



h carries Sd cr onto cr for each cell cr K.of The construction 

of the homeomorphism h involves choosing, f or each cell cr, a home 

omorphism with the Euc lidean ball of the sazne dimension. He shall 


call a function h: h-1
ISdKI. ~ IKI and its inverse subdivision 

homeomorphisms if h satisfies the following two properties: 

a) h is a homeomorphism which carries Sd ~ onto cr for each 


cell cr of K. 


b) If K is itself a Simplicial complex, then for each simplex 


cr of K, h carries the vertex of Sd K
cr onto the barycenter 


of cr, and f'or each simplex , of Sd cr, h maps , linearly, in 


terms of bar ycentric coordinates, into cr. 


He leave as an exercise t o the reader the verification that if 


K 
 i s 8. Simplicial complex, there is one and only one homeomorphism 


ISd KI ~ IKI satisfying a) and b ) above. 


3.4. COROLLARY. Given a finite regular complex K, there exists 

n such that IKI can be embedded in Rn. 

Proof: IK I is homeomorphic to ISd K I by 3.2. Sd K is a finite 

simplicial complex, a subcomplex of the simplex cr on all of the 

vertices of Sd K. If n is the number of vertices of Sd K, then 

Rn lcr can be embedded in  Thus K can be embedded in Euclidean 

space of dimension one less than the number of cells of K. 

Exerc ise : Prove that a c olmtable regular complex of dimension n 

can be embedded in R2n+l. [Hint: Suppose that K is embedded in 

R2q+l q 

For each (Cl+l) -cell cr of K, choose a hyperplane p in 
cr 
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R2q+3 R2q+lwhich contains in such a way that no P contains 
cr 

a limit point of the set consisting of all the other P,'s, except 

2q l .in R + • One easily embeds each cr in P so that cr n R2q+l cr, 
cr 

and then one must verify that the result is indeed an embedding of 

Kq+l in R
2q

+3.] 

3.5. DEFDUTION. The Oth iterated subdivision of a r egular complex 

K is K itself. The (n+l)si iterated subdivision of K is the 

first subdivision of the nth iterated subdivision of K. He write 

Sd% for the nth iterated subdivision of K. 

He nm. describe a way of metrizing a finite regular complex and 

all of its iterated subdivisions. Let K be a finite regular complex. 

Choose a subdivision homeomorphism g : SdK~K and an embedding
o 

n
h : Sd K ~ R which is linear, in t e rws of barycentric coordinates,

l 

on each closed simplex of Sd K. (It suffices to embed Sd K as a 

subcomplex of the standard simplex with n+l vertices, where n+l is 

-1
the number of cells of K.) The embeddings hlgo and hl define a 

metric on IK I and ISd K I , us ~ the metric on ~, in the obvious 

way. By the remarks preceding 3.4, we have uniquely defined homeo

morphisms ~: Sdk+~ ~ Sd~. We metrize I .Sd~ I , k > 2, in 

t e rms of the metric on Sd K by demanding that each be an iso~ 

metry. In the future we shall always regard a finite complex K and 

its subdivisions as metrized in this marmer. \{e note that the metriza

tion depends upon the choices of the subdivision homeomorphism 

go: Sd K ~ K and of the embedding hl : Sd K ~~. 
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3.6. DEFDIITION. Given a metrized finite regular complex K, the 

mesh of K is the maximum of the diameters of the cells of K. 

It is obvious that the diameter of a triangle linearly embedded 

in Euclidean space is the length of its longest edge . From this it 

f ollows that if ° is an n-s1mplex embedded in some Euclidean 

space, and x and y are two points of ° such that the distance 

b etween them is the diameter of 0, then ne ither x nor y lies 

in the interior of a straight line segment contained in 0· Thus x 

and y must be vertices of 0, and so the diameter of ° is the 

length of its longest edge. Therefore the mesh of a finite simplicial 

complex linearly embedded in same Euclidean space is the length of its 

longest l-simplex. 

3.7. THEOREM. Let K be a fin i te regular c amplex. Then 

Lim Mesh(SdrK) = O. 
r-4OO 

Proof: It is clearly sufficient t o show that if L is a finite sim

plicial complex of dimension '1, linearly embedded in R
n

, then 

Mesh(Sd L) < ~1 Mesh L. 
- '1+ ' 

The metric on Sd L is defined by requiring that the subdivision 

homeomorphism h: ISd LI ~ ILl be an isometry. 

Let e b e the longest edge of Sd L. Suppose that the vertices 

of e are the simplices and of L, with We may01 < 02·°1 °2 

assume that the vertices of are and that the ver-Ao,~,···,Aj'°1 

tices of are those of 01 t ogether with Aj+l,Aj+2' ••. '~' where°2 

k ~ q. Under the subdivision homeomorphism h: [Sd L[~[L!., the 
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and are mapped into the barycenters of the simplicesvertices °1 °2 

and r espectively. To compute the l ength of the edge e we 
°1 °2 


compute the distance b etween the barycenters of °2·
and The 
°1 

linear embedding g: L ---7 R
n carries each vertex A. into a 

~ 

point Bi , 
and the barycenters of and into the pOints

°1 °2 

j k 
E Bi respectively. (Here we add the B. as~ E Bi ~ ~and k+l i=Oj+l i=O 

vector s in Rn ). ·The di stance between these two points is the length 

of the vector joining them. This vector i s : 

j 1 k 

~ EBi k+l E B.

j+l i=O i=O l 

k1 j 11 __) E Bi( E Bi
j+l k+l i =O k+l i=j+l 

k . j 1 k 
-J E B - - E B 

(j+l )(k+l) i k+l.. 1 i. -.f> 
~=v l=J+ 

j 1 
k 

k-j)(~ E B. k-j . E B.).(k+l j+l i=O ~ ~=j +l ~ 

j 
the barycenter ofThe inverse g -image of !..- E Bi i s 01; the 

j+l i =O 

k
1 is the barycenter of the simplex of inverse g-image of . E Bi 


k-J i=j+l 


These barycenters both belong t o theL spanned by Aj+l,Aj+2'···'~· 
and so the distance between them i s at most Me sh L.c l osed simplex °2 

Thus the length of the edge e i s at most (k-j)/(k+l) ~ k/(k+l) ~ '1/('1+1 ) 

Thus , by the comments after Definition 3.6, thetimes the mesh of L. 

proof of 3.7 is complete. 
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We are about to prove the main theorem of this section. Given 

a mapping f: K ~ K' of finite regular complexes, we have, for 

each r and s, the following diagram: 

K f ) K' 

gl jg' 
Sdl K f') SdrK' 

In this diagram the mappings g' and g are the iterations of sub

division homeomorphisms. (See comments before 3.4. ) The mapping f' 

is defined by the relation f g'f'g. We say that f induces f' 

or that f' is the mapping f as a mapping of SdsK into SdrK '. 

We shaJ.l sometimes write f for f'. Before stating our theorem we 

prove the following lemma from general topology. 

3.8. LEMMA. (Lebesgue Covering Lemma ). Let X be a compact metric 

-space and let (U.) be an arbitrarily indexed open covering of X. 
l 

Then there exists a number a > 0, call ed a Lebesgue number of the 

covering (U ), such that every set of X of diameter less than ai 

is contained in some U.. 
l 

Proof: For each x E X and every i, let d(x,i) be the radius of 

the largest open ball around x contained in DefineU i · 

d(x) = l.u.b . d(x,i). 
i 

Then d(x) is finite for each x since X is bounded. We sbow that 

d: X ~ R is continuous. Letting p be the metric on X, we 

have !d(X) dey ) I < E whenever p(x, y) < E. Next we note that d(x~ 

is positive for each x, since the U. cover X. Thus d maps X 
l 

-156

into a c ompact subset of the positive real numbers. So d (X) is 

bounded a:<tIay from 	zero by some € > O. Choose any a such that 

o < 5 < E. Let W 	 be a set of X of diameter < 0, Choose x € "I. 

W is contained in 	the open o-ball V about x . But 8 < € ::: d( X). 

wCvCU.. So is a Lebesgue number of theThus for some i, l 
5 

covering (Ui ) . 

3.9. 	 THEOREM. ~ K and K' be finite regular complexes, f a 

a positive integer.continuous function mapping K into K' , and r 

Then there exists an integer N such that for each s > N, the map 

f is proper as a map of SdsK into SdrK'. 

t of open setsK is covered by the collection 


- l( '* varies over the vertices of SdrK'. 


Proof : The complex 

Since K 
f St A.) 1 where Aj

J 
is a compact metric space, "\,e may by 3.8 choose a Lebesgue number ° 

Let N be such that the mesh of SdNK is lessfor the covering t 
than 5. Given s > N, we show that the minimal carrier for 

is acyclic . We note first that the smallest sub-SdSK ~ SdrK'f: 

c omplex of SdrK' containing a given point set X is the union of 

the closures of those cells of SdrK ' which have a non-trivial inter

section with X. 

Let a be a cell (open simplex ) of SdsK. Then the diameter of 

-1 r
is less than 1) so 	that a C f StA for some vertex A of Sd K' . 

a 

then A is aIf fa meets a cell ~ of SarK',Thus fa c;: StA. 

vertex of ~ , We can thus write1: as the join of A with the face 

Thus the smallest subcomplex of
'rA of 1: opposite A: ~ A· ~A' 


is U1: U A 0 ~A A Ij 1:A, Since the

BdrK' contai ning fa 


fan.--/4J 
 ~ ~ 

'*If A is a vertex of a regular complex K, the ( open) star of A, 
written st A, is the union of all (open) cells of K having A as a 

vertex , 

0 



join of a vertex and a complex is acyclic , by V.2.5, the smallest sub-

complex containing fa is acycli c for each a of SdsK. Thus the 

minimal carrier for f i s acyclic, and f i s proper. 
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4. The Indu.ced Homomorphisms and the Invariance Theorem. 

In this section we describe the process of associating with each 

continuous mapping of one finite regular complex into another a 

sequence of homomorphisms of the homology groups of the complexes, 

and similarly for cohomology. We have already shown that a proper 

mapping induces such homomorphisms. Thus Theorem 3.9, which asso

ciates with an arbitrary mapping of a finite regular complex a proper 

mapping, will play an essential role in all that follows. 

4.1. THEOREM. Each continuous mapping f: (K,L) ~ (K' ,L') of 

pairs of oriented finite regular complexes induces homomo~hisms 

H (K L· G) ~ H (K' L'· G) and f * : Hq(K' ,L'; G) ~ Hq(K,L; G)f*: q , , q' , 

for each q, such that the following conditions hold: 

a) If f: (K,L) ~ (K,L) is the identity mapping, then, for 

q
each q, f*: Hq(K,L; G) ~ Hq(K,Lj G) and f:* H ( K, L; G) ----;. 

Hq(K,L; G) are the identity isomorphisms. 

b) If f: (K,L) ----;. (K',L') and g: (K',L') ~ (K",L") 

are arbitrary continuous _mappings, then, for each q, 

(gf)* g*f*: Hq(K,L; G) ~ Hq(KI,L"; G) 

and 

q q(gf)* f *g*= H ( K" ,L"; G) ----;. H ( K, Lj G) 

Pr oof: Let A be the statement that the theorem holds for all 
n 

finite complexes of dimension at most n. Let Bn be the following 

s t atement: If a is a cell of an oriented regular complex and the 

dimension of a is at most n, then a is an acyclic complex. 
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Then EO' AO' and Bl are all obvious. 

A ~ Bn" Let 0 be a cell of a regular complex and letn_l 


dim 0 m < n 
 Then the dimension of 0 is < n-l. He have a 

. m-lhomeomorphism f: Sm-lo ~ S ,where is the regular complex 

on the em- l) sphere given in Section 1.2. Then by AI' there 
n-


are induced homomorphisms f *: H (0) ~ H (Sm- l) and 

q q

l(f- ) : H ISm-l) ~ H (0)
\ -)E- q\ q for each q. From b ) and a ) ~~ derive 

that 

flC_(f
-1

)-)( (ft'
-1)* 1 _)E- 1 . 

Similarly, (f- l 
)-)(_ f * ~ 1 . Thus f* is an isomorphism so that 

if q is 0 or m-l 
H (0) "" 

q 
{z

0 otherwise. 

Consider the following diagram: 

z "" C (a) ~ C lea) ---;;. ... ----;. C (a)m m- 0 

jequality 1eqUality 

C l( 0) ---;;. ... ---;;. C (cr )m- 0 

Here C (a)
m is generated by o. He have Z l ea) = z l( 0) = 

m- m

~_1 ( 0) ""Z The cycle dO has coefficient + 1 on each (m-l) 

cell of o. This implies f irst that dO f 0 J so trmt ~(a) = 0 

and secondly that dO actually generates Zm_l(a) J so that 

11-m- lea) 0 Hq(a) is zero for 1 < q _ < m-2 by the above diagram. 

He have therefore shown that o is acyclic. 

Bn ~An rle first derive some preliminary results, 'which follow 
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from B 
n 

4.2. LEMMA. If the dimension of the oriented regular complex K 

~s at most n and if g: (SdK, SaL) ~ (K, L) is a subdivision 

homeomorphism, then 

-1a) g and g are proper maps. 

b) g* and g* , the homology and cohomology homomorphisms 

induced by g given by 2.5, are independent of the choice of g 

c) g* and g* are isomorphisms. 

Proof: By 3.3 and V.2.5, if a is a cell of a regular complex, 

then Sda is acyclic. Tbe minimal carrier for g 
-1 

maps a~ 
cell o of K into the subcomplex Sda of SdK. Thus g 

-1 
is 

proper. Next we show that g is also proper. If 0 is a cell of 

SdK ,then a is a collection of cells of K which can be arranged 

in an increasing sequence: 0 < 0 < ... < 0q The vertex 0 of
0 1 q 

a is mapped by g into an interior point of o All of 0 is 
q 

mapped into o , so the smallest subcomplex of K containing go
q 

is 0 Since 0 is a cell of dimension at most n , we have from 
q q 

B that 0 is acyclic. Thus the minimal carrier X_ for g is n q - ~ 

acyclic and so g is proper. We have proved a). 

-1
Since the minimal carriers ~ and ~ for g and B are 

i ndependent of the choice of B it follows that the homoloBY andJ 

cohomology homomorphisms induced by B and by g 
-1 

are independent 

of the choice of g. This proves b). 

Now let and be proper chain maps carried by and'Pl 'P2 ~ 
X respectively. Let 0 be a cell of K. Then cp]O is a chain

2 
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L: aTT on ~(a) = SdG For each cell T of saG, X
2 

(T) is a 

closed cell contained in a Thus ~2~1(a ) is a chain on a 

The carrier X from K to K sendinG each cell a to a is 

acyclic by En X carries ~2~1 and also the identity chain map 

1. Since X does not increase dimension, we have from Corollary 

2.7 the fact that This of course implies that~2~1 = 1 


(g-l)*g*
g* ( g 
-1 

)* = 1 and 1 . 

Let a be a cell of SdK. If a is the collection 

a <O·l< •.. <a of cells of K then we have x (a) G Thus o q 2 q 

~2(a) is a chain on a For each cell T of a ,we have 
q q 

Xl (T) = Sd-:r C SdGq 
Consequently, cpl~?(a) is a chain on SdG 

q 

~1~2 is then carried by the acyclic carrier which sends each cell 

a < < a of SdK into SdG But so is the identity chain
O q q 

map, and so ~lcp2 ~ 1 by 2 .4. It follows that ( g 
-1 

)*g* = 1 and 

g*(g-1)* 1 Thus g* and g* are isomorphisms and the lemma 

is proved. 

4 .3. COROLIARY. If K is a regular complex and a is a cell of 

K of dimension at most n, then Sdra is acyclic for every r > 0 

Proof: a is acyclic by Bn . For r ~ 0 ,and q arbitrary, 

r -) r+l-) r-H ( Sd a "'" H (Sd a, by Lemma 4 .2. Thus Sd a is acyclic for 
q q 

r > 0 

4 . 4 . NOTATION. For each pair of no=egative integers rand s 

we have a homeomorphism g (SdrK, SdrL) ~ (SdsK, SdsL) 
r,s 

obtained by composinG subdivision homeomorphisms. 

4 .5. rn,·u-1A • I f K is of dimension at most n, then g is proper 
-- r,s 

for all r, s If r < s , then 

162 

(gr, s)* (gS-1,s)*(GS-2,S-1)* (gr,r+l)* 

* * )*(gr,s >* = (gr,r+l) (gr+l,r+2) (gs-l,s 

If r > s , then 

(gr,s)* (gS+1,s)*(gs+2,s+1)* ( gr,r-l )* 

* * ** ( gr,s) (gr,r-l) (gr-l,r-2) ..• (gs+l,s) 

Proof : Suppose that r < s , and let a be a cell of SdrK The 

minima l carrier X for sends a to Sd
s-r-a, and so is 

gr,s 

acyclic by 4.3. Thus IT is proper . If cpi is a proper chain
Qr,s 

map carried by the minimal carrier X. for g. . l' r < i < s -l ,
l l,l+ - 

s -r-Sd a . By Corollary 2 .5,then CJl _ CJl _ ~r(a) is a chain on 
s I s 2 

and by Theorem 11.5.2, 

(gr,s)* (cpS-l~s-2 ••. CJlr )* 

(~s-l)* ..• (CJl)* 

(gS-l,S)* ... (gr,r+l)* 

Also, by Corollary 2.5 and the exercise at the end of Chapter II, 

we may derive analogously that 

* * ( gr s) = (gr r+l) (gs-l,s )* , , 

Now suppose that r > s. We have 

gr,s gs+l,s gs+2,s+1 ... gr,r-l . 

s+l < i < r , maps cells into (open) cells sinceEach gi,i-l ' for 
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it is a subdivision homeomorphism. Thus maps cells into cellsgr, s 

and so is proper by B 
n 

More explicitly, let 0" be a cell of 

SdrK There are uniquely determined cells 0". 
1 

in 
i

Sd K , s < i < r 

with 0" 0" and 
r 

(g.. 1)0"· C 0". 1 for s+l < i < r .1,1- 1 - 1

The minimal carrier X. for sends O"i to O"i_l. Also ,
1 gi,i-l 

X. sends each face of 0". to a subcomplex of O"i_l Thus if CPi
1 1 

is a proper chain map carried by Xi' and c is a chain on O"i 

then qli(c) is a chain on 0i_l From this it follows immediately 

that is a chain on 0" Thus the minimal carrierqls+lqls+2 .•. qlr 0" S 

for g carries the proper chain map ql 1 ql • The desired 
r,s s+ r 

relatiou~ .'.nvolving (g )* and (g )* follow immediately.
r,s r,s 

4.6. COROLLARY. Given nonnegative integers r, s , and t, 

(gr,t)* (gs,t)*(gr,s)* 

and 

(g
r,t

)* * * (gr,s) (gs,t) 

Proof: This corollary follows immediately frcrm Lemma 4.5 and the 

fact that (gi,i+l)* [(gi+l,i)*]-l , proved in Lemma 4.2. 

i·le proceed with the proof that B ==9A Let f: (K,L) ----?> n n 

(K',L') be an arbitrary mapping of pairs of finite regular complexes 

of dimension < n Let r be a positive integer. Then by Theorem 

3.9, there exists an integer N such that for s > N f is proper 

as a mapping of (SdsK, SdsL) into (SdrK', SdrL') . Thus we have 

the following diagram: 
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(K,L) f > (K',L' ) 

go,s 1 i g~, o 
t SdSK, sasL) f' > (SdrK', SdrL') 

and g ' are iterated subdivision homeo-In this diagram go ,..s r, o 

, f' . fT g ' a r e morphisms and f The mapp1ngs go,s' r,ogr,o Go,s , 

all proper, and vie make the following definition. 

4 . 7. DEFnUTION. If f: (K,L) ----?> (K' ,L') is a mappinG of finite 

regular complexes- of dimension at most n, then the homology and 

cohomolo~ homomorphisms induced by f , wTitten f* and f * 

respectively, are the compositions 

f* = (G~,o )*(f ·)*( go ,s)* 

and 

f * ( go , s) * (f') *(g~,o)* . 

In order to justify this definition, we prove: 

4 . 8 . LEMMA . The induced homomorphisms f* and f * are independent 

of rand s 

Proof: Let r be given and suppose saud t, with s < t , are 

such that f , as a mapping of both (SdsK, SdsL) and (SdtK, SdtL) 

into (SdrK', SdrL') , is proper. In the diagram below, fO and fl 

are induced by f : 
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(K,L) f > (K' ,L') 

go,s1 i g~, o 
s ) fgo,t (SdsK, Sd L ~ 

(SdrK', SdrL')1 ~gs,t 

t ,t ) /r(Sd K, Sd L 1 

By 4.6, (g t)*(g )* = (g t)*' and similarly for cohomology. s, o,s 0, 

Thus we need prove only that 

(fO)* (fl)*(gs,t)* 

and that 

* * * (fO) = (gs,t) (fl ) . 

Let x, XO' ~ be the minimal carriers for gs,t' fo ' and fl ' 

and let ~, ~O' ~l be proper chain maps carried by X, Xo ' and 

s () t-s-If a i s a cell of Sd K , then X a Sd a So cpa~ 
is a chain on Sdt-s Ci , and CPlcpa i s a chain on U1" € Sdt-s - ~ (1")cr 

If T € Sdt-sa , then fl -r: ~ fo a~ Xo( cr) Thus CP1CPcr is a chain 

on Xo ( cr) and so ~l cP :::: CPO . The desired equalities follow. 

Let rand r' be given, ~~th r < r' , and suppose s is 

chosen so that f is proper as a mapping of (SdsK, SdsL) into 

r r r' r'
(Sd K', Sd L') and into (Sd K', Sd L'). In the diagram below, 

f O and fl a re induced by f : 
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I > (K',L') \(K,L ) jg. 
go,s r , o 1 

f (SdrK ', SdrL'») gr' , 0 

(SdsK, SdsL) ~ i g~"r 
~ (Sdr' K', Sdr'L') 

By 4.6, we need only prove that 

(f O)* = (g~, ,r)*(fl )* 

and 

* * * ( fO ) = (f l ) (g~, ,r) 

Let cr be a cell of SdsK . Let X ' ~ be the minimal carriers
O 

for fO' fl and CPO' CPl proper chain maps carried by XO' ~ . 

Then ~la is a chain on ~(a) . xO (cr) is a subcomplex containing 

rr_r r'
fOa , so Sd Xo(a) is a subcomplex of Sd K' containing flcr 

Thus 

r '-r
Xl ( cr) ~ Sd Xo ( cr) ,and g , r ' ,r(~ ( cr» ~ Xo ( cr) . 

Thus if cP is a chain map carried by the minimal car:rier for " ' ,Dr' ,r 

CPCPl cr is a chain on Xo ( cr) Consequently CPo :::: ~l ' and the des ired 

equalities follow. The proof of the l emma is complete. 

We show now that the induced homomorphism satisfies properties 

a) and b ) of the theorem. To prove a) we note that the identity map 

is proper by En If f: (K,L) ~ (K',L') is an arbitrary pr oper 

mapp ing of finite regular complexes of dimension < n , then by an 

argument similar to the proof of Lemma 4.8, the induced homomorphisms 
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f* and f * given by Definition 4.7 coincide with those previously 

defined (Corollary 2.6) for f as a proper mapping. Property a) 

follows as a special case. 

To prove b), let f: (K,L) ~ (K' ,L ' ) and g : (K' ,L') ~ 

(K",L") be mappings of pairs of finite regular complexes of dimension 

< n. Let r be a positive integer. We subdivide (K',L') so 

finely that if A is a vertex of SdsK ' , then there is a vertex B 

of SdrK" such that g(St A) C St B. For, if' 5 is a Lebesgue 

number of the covering 

-1 I r{g (st B) B a vertex of Sd ](" ) , 

then it suffices to take S so large that t>1esh(Sd
s
K') < ~. In 

order to ensure that stars of verti_ces 01' SdsK' are acyclic , we 

also require that s > 1. Then we take t so large that if a 

is a cell of SdtK , there is a vertex A of SdsK' such that 

faC St A , as in the proof of Theorem 3.9. In the diagram below, 

f' and g' are the mapping;'! induced by f and g respectively: 

(K,L) (K' ,L') (K" ,L") 

1 11 1g~,o
go,t g's,o g''a,s 

(Sdt k , Sd t L) ~ (SdSK', SdSL') ~ (SdrK", SdrL") 

Arguing as in Theorem 3.9, 'we show easily that f', g' and g'f' 

are all proper. Let their minimal carriers be ~,X2' and X ,
3 

respectively. Then each Xi carries a proper chain map ~i Given 

t C sa cello of Sd K, f' a st A for some vertex A of Sd K' . Thus 

Xl(0) Cst A , and ~l 0 is a chain on ~ ( 0) But g'(St A) C st B 

Sdrfor some vertex B of K" This implies that for each cell ~ 
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of ~(o), g'(~) Cst B and so X2(-r) Cst B. As in the proof 

of Theorem 3.9 ,_ ~( ~) , which is the minimal Subcolllplex containing 

gl(~) , can be written in the form B 0 M~ -where 1>1 is a subcom
~ 

plex of SdrK" depending on -r . Thus U ~(~) 
T E ~ (0) 

U B 0 M B a U M.r is an acyclic subcomplex of st -B 
~ E ~(0) ~ ~ E ~(0) 

We define 

X4( 0) U X2(~). 
~ E ~ (0) 

If < a then ~(a') C >S.(a) so x4(a') Cx4 ( a) . Thus ~a' 

is an acyclic carrier. Since ~la is a chain on ~(a), ~2~1(a) 

is a chain on X4(a). So is an acyclic carrier for ~2~1 .X4 

But 

glf'(a) C gl~(O) U gl(~) C X4( a)~ (a) X2 ( ~)~ E ~ (a) ~ E 

so carries g'f' . Thus and are both carried byX4 CP2~1 CP3 


and so we have CP2~1::: ~3 Consequently,
X4 

(g'f ')* = (g')-j'(f ' )* and (g'f' )* (f')*(gl)* • 

Fr om Lemma 4.5 and the proof of Lemma 4.2, 

(g~,s)*(g~,o)* 1 . 

Thus 

g*f* (g~,O)*(g')*(g~,S)*(g~,O)*(fl)*(go,t)* 

(g~,o)*(g' )*(f' )*(go,t)* 

(gr" o)*(g'f')*(go t)*, , 
(gf )* • 
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.,.. .,.. 
A similar argument shol{s that (gf )'" f g Thus B > A 

n n 

He have t hus shol{l1 that A is true for all n We note that 
n 

the processes used f or different n in defining the induced homo

morphisms lead to the same result. ),jore precisely , if 

f': (K,L) --.;;. (K' ,L') is a mapping of finite regular complexe s, 

then for nand n' both greater than the dimensions of the com

plexes, the induced homomorphisms given by A and coincide. 
n An' 

Also, the properties a} and b) follm{ since in anyone instance vre 

may take n large enough and apply A Theorem 4.1 is proved.
n 

It is important for later considerations to note that in our 

proof ve .do not assume Lemma I1.5.3. He only assume, in effect, 

that K and K' satisfy the redundant restrictions . Stated another 

'.fay, no matter hoy vre orient K and K' our proof yields the fact 

(see belo\{) t hat their homology groups are isomorphic. This is one 

,ray to prove, incidentally, that homology groups are independent of 

orientation! (See Chapter VIII, Section 4 . ) 

4.9. COROLLARY. (The Invariance Theorem). If f: (K,L) ~ (K',L') 

is a homeomorphism of oriented finite regular complexes, then for 

each q i-l~have 

f: H (K L' G) ~ H (K' L" G)* q " q" 

f *: Hq(K' ,L'; G) ~ Hq(K,L; G) • 

Thus t he homology and coh omology groups are topological invariants. 

- -1 -1 -1)Proof: f*(f )* = (ff )* = 1* = 1 . Similarly, (f *f* =' 1 . 

Thus f* is an isomorphism. By similar reasQning, f * is also. 
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If Vie a re g iven a map f: (K,L) ~ ( K' ,.L ' ) of oriented f inite 

regular complexes, t hen f as a mapping of K into K' induces 

homomorphisms of the homology groups of K into those of K' which 

we shall write ( f IK)* Similarly, ,ore have hOmOmOIllhisms (f IL)* 

It is easy to see that the triple f*, (fIK)*, (fIL).:, defines a 

homomorphism of the exact homology sequences associated Mith (K,L) 

and (K' ,L') , using Corollary 2.5 and the dsfinition of- the induced 

homomorphism. Thus ,re have 

4 .10 . COROLLARY. The exact homolog y and cohomology sequences of' a 

pair are topological i nvari ants . 

Exe rcise. (Reduced homology groups.) For each complex K, the 

uni qUe map f: K --.;;. point induces homomorphisms 

~(K) ~ H*(point) . Set H.*(K) = ker f?:. Shovr that if 

g: o·Kl ~ y~ is a continuous map, then to i ndu ces a map 

g* : H*( Kl ) --.;;. H* ( IS: ) . Shov that the sequence beloy; is exact, 

i f L is a subcomplex of K 

~ H (L) ~ Ii (K) ~ H (K L) g* > H (L)---->q q q , q-l 

Here i* is induced by i: L c: K, 3'* is giVen by the composition 

H(K) r H (K) _1* > H (K,L) ,,-,here j: K r (K,L) is the inclusion,q :,. q q '::., 

and Cl* is i nduced by the boundary homomorphism of t he ordinary 

homology sequence. One mu st sho'.-I' that the composition 

H (K, L) ~ II l(L) ----> H 1- (point) is zero. q q- q-

More generally, let t: be a category vrith a m2.xilrlal object P , 

sati s f'yirlg 

(i ) For each object A € r:: , there is one and only one 

morphism f'A E M(A, p) . 
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(ii ) If A and B are objects of r:: , and f € 11(A,B) , 

then fB 0 f fA 

Let F: ?; -.;> abe a covariant functor from <:: to the category 

of abelian groups and homomorphisms. Define the reduced functor 

F by setting 

peA) ker F(fA) for A € <::. 

If f € M(A,B) , since fB 0 f fA' it follo~~ that F(f) maps 

peA) into F(B) Thus we may define 

F(f) = F(f)lker F(fA) 

for f € l1(A,B) Verify that F is a covariant functor from ~ 

to ~ Carry out an analogous definition for a contravariant 

functor F: t: -.;> ~, using cokernels. 
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5. The Properties of Cellular Homology Theory. 

Cellular homology theor'J assigns to each pair of regular complexes 

a sequence of homology groups and t o each continuous mapping of pairs 

of regular complexes induced homomor phisms of the homology groups.* 

In this section we state the seven basic properties of cellular homology 

theory . It turns out that these properties charac.terize cellular 

homology theor'J. A description of the precise sense in 'iThich this 

is true and a proof of the characterization may be f ound in Foundations 

of Algebrai c Topology. by Eilenberg and Steenrod. 

He keep the coeffi cient group G fixed throughout this section. 

I . If f: (K, L) -.;> (K,L) is the identity, then £' is the
* 

ident ity isomorphism in each dimension. 

II. If f: (K,L) -.;> (K' ,L') and g: (K' ,L') -.;> (KI! ,LI!) are 

arbitra.ry continuous mappings, then (gf)* g*£'*. 

Ill. Let f: (K,L) -.;> (K' ,L') be an arbitrary continuous mapping. 

If ~* and O~ are the boundary homomorphisms of the exact homology 

sequences associated with (K,L) and (K',L'), respectively, then 

O_~f* = (fIL)*O* Property III follows from the remarks after 

Corollary 4.9. 

IV . The homology sequence of a pair is exact. Property IV ~~s 

proved in Chapter V. We note that properties II and III imply that 

* We restrict ourselves in t his section to finite regular complexes. 
We will use s ingular homology theory in the next chapter t o extend 
our results t o infinite complexes. 
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the induced homomorphism is actually a homomorphism of the exact 

homology sequences. 

V. If f and g are homotopic mappings of (K,L) into (K '/ L') , 

then f* = g* . 

Proof of Property V: Let PO and Pl mapping K, into I X K 

be the embeddings defined in the first paragraph of Section 2. Then 

Po and Pl are proper and their minimal carriers preserve dimension. 

Thus and. induce unique chain maps and respect.ively.Po Pl CPo CPl 

Note that and are the chain maps defined at the start ofCPo CPl 

Section 2. Now, since f and g are homotopic, there is a mapping 

Fpl 

f* = F*(PO)* and g* = F*(Pl)* ' and we must show that 

(po )-* (Pl)*. He define f) : eq(K) ~ C +l (I X K) byq 

J!)(c) I (8) c for C E e 
q

(K) If d and d' are the boundary 

operators for e(K) and e(I X K) respectively, we have 

d' J9 (c) = I (8) c - (5 (8) c - I (8) dC 

= CPlc - CPOc - ~ (dc) • 

Consequently, f) is a chain deformation exhibiting a chain homotopy 

of CPo and CPl • Thus (po)* (Pl)* and our proof is complete. 

5.1. DEFINITION. Two pairs of topological spaces (X,A) and (Y,B) 

are said to be homotopically equivalent if there exist mappings 

f: (X,A) ~ (Y,B) and g: (Y,B) ~ (X,A) such that gf ~ 1 on 

(X,A) and f g ~ 1 on (Y,B) This means we can find a homot opy 

F: (I X X, I X A) ~ (X,A) of fg and the identity, and similarly 

for (Y,B) . The map f is called a homotopr equivalence with 

homotopy inverse g . 
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It is easy to show that homotopy equivalence is an equivalence relation. A 

property which, "hen possessed by an arbitrary space X, is pos

sessed by all spaces homotopically equivalent to X, i s called a 

homotopy invariant. Properties I, II, and V imply that homology 

groups are homotopy invariants. 

5.2. THEORElvI. If f: (K, L) ~ (K' ,L') is a homotopy equivalence 

then f*: H q(K,L; G) "'" H q(K' ,L ' j G) for each q. Homotopically 

equivalent complexes have isomorphic homology groups. 

Proof : Let g be a homotopy inverse for f By pr operties II, 

V, and I, in that order, we have 

(gf )-;:_ 1_)(, 1 .g*f* 

Simil arly f*g* 1. Thus f* is an isomorphism. 

The sixth property of cellular homology theory is called 

invariance under excision. An inclusion mapping i , (K,L) ~ (K',L') 

is called an excision if K ~ L K' - L' . 

VI. If i: (K,L) ~ (K',L') is an excision, then 

i*: H q(K,Lj G) "'" H q (K',L'; G) for each q . 

Proof of Property VI: It is only necessary to observe that if an 

orientation is chosen for K, inducing orientations on L, K' , 

and L' , then C(K,L) e(K ' ,L') • 

VII. I f K is a complex wh.ose only cell is a single vertex, then 

if q=OH(K) "" [G
q 0 otherwise. 
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Thus, a point is an acyclic complex. 

Exercise : state and prove the corresponding seven basic properties 

of cellula r cohomology theory. 
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Chapter VII. SDWULAR HQIvlOWGY THEORY 

1. Direct Spectra. 

Up until now, we have defined h=ology groups only for regular 

complexes and induced hom=orphisms only for mappings of £inite 

regular complexes. The process of direct limit, introduced in this 

section, will enable us to extend our domain of definitions over 

the entire category of topological spaces and continuous mappings. 

"He will define the singular h=ology groups of a pair of spaces 

(X, A) in terms of mappings of pairs of oriented finite regular com

plexes (K,L) into (X, A). l-lore specifically, we will associate 

with each mapping f: (K,L) ~ (X, A) the qth homology group 

of (K,L), and the collection of these groups will form a direct 

spectrum of groups. The limit group of this direct spectrum will 

be by definition the qth singular homology group of the pair (X,A). 

1 . 1 . DEFD~ITION. A directed set (class) is a set (class) A to

gether with a binary relation < on A. The relation < is re

quired to be reflexive and transitive, and to satisfy the following 

property: For any m and n in A there is an element p € A 

such that m < p and n S p. The ordering < is said to direct A. 

1.2. DEFINITION. A direct spectrum of abelian groups is a triple 

~= ({G }, A,< ), where {G} is a collection of abelian groups in-
a - a 

dexed by the directed set ( or class) (A,S), satisfying the following 

conditions: (i) For each pair (a,~) of elements of A such that 

a < ~ there is given a nonempty collection { a~~} of hom=orphisms 

mapping G into G~; these h=omorphisms are called admiSSible;
a 

(ii) Whenever a~~: Ga--;;"G~ and a~,.: G~--;;"G,. are 
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j iadmissible, then so is t he c omposition G ~ G. (iii)°!3rOa !3 : a r ' 
i JIf and are admissible, and then there exists ag EGa'°a!3 °a!3 

k k i k jr and an admissible homomorphism such that 
°!3r °!3roa!3g °!3roa !3

g • 

A direct spectrum which has at most one admissible homomorphism 

for any pair (a, !3 ) is called a direct s ystem of abelian groups .
°a!3 


Note ; He do not re'luire in this case that be t he i dentity.

°a,a 

Let ./:J = ([ G }, A, < ) be a direct spectrum. Given an e lement a 

g of some G, and an admissible homomorphism ° i A' we say t hat 
a a~ 

o~!3g is a ~-successor ( or successor, for short) of g, and that 

8 is a ~-ancestor ( or ancestor, f or short) of 
i 

g
°a!3 • 

i-re show that any tiW elements having a common ancestor have a 

c ommon successor. He note first that condition (iii) of 1. 2 states 

that two e l ements of the same group which have a common ancestor 

must have a common successor. Let gl E G and g2 E G!3 have t he 
a 

Jcommon ancestor g~ E G • Thus - i '" for s ome 
j r gl = Gra°3' g2 = °a!3g3 

i jadmissible homomorphisms Now, since the indexing setora' °r!3' 
kof the G 's is directed, there are admissible homomorphismsa °a~ 

k' k i k' jand for s ome 5. The elements g are
°!35 °aE-° ,erg3 and °!350r!3 3 

both elements of By conditions these elementsGE>' (iii),(ii' and 

have a common successor 84' But then g4 is a common successor 

of andgl g2' 

He define a relation R on the set theoretic disjoint union 

of the G as follows. Given gl E G and g2 € G then 8 Rg2a a 13
, 

1 

if and only if' and have a common successor. Then R isgl 82 

clearly reflexive and symmetric. To show that R is transitive, 

suppose elements and are given such that g Rg andgl' g2' g3 l 2 
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Then and have a common successor andg2Rg3 ' 81 g2 g4' g2 

and g3 have a common successor g5' But then g4 and g5 have 

the common ancestor g2' so by what we proved above, t.hey must 

have a common successor g6' The element g6 is a common successor 

of gl and g3' Thus R i .s an equivalence relation. Given an 

element we denote the R-equivalence class to whichgl EGa' gl 

belongs by {gl) • 

1. 3. DEFn~ITION . Given a direct spectrum of abelian groups 

1; = ({G } ,A,< ), the limit group of ~ is the abelian group whose a 
elements are the e'luivalence classes of the relation R defined 

above. Addition is defined as follows. Gi ven two equivalence 

classes {gl} and {g2} represented by gl E G and E G!3 ' a 82 
i

there exist admissible homomorphisms and o~r for some r·°a?, 

We define {gl} + {g2} {O~rgl + O~?,g2} ' where the addition in 

the brackets on the right is the addition in G , The limit group 
r 

is written L~ G ,a 

To justify this definition, one must show that addition as 

def ined is independent of the various choices made and gives a 

group structure on the R-e'luivalence classes. This we leave as 

an exercise to the reader. 'de note that the zero of Lim G is the 
a a 

R-e'luivalence class containing all the zeroes of the G'S. a 

We prove now a theorem which gives an interesting application 

of the direct limit process. Let K be an arbitrary oriented 

r egular complex. Let ~ be the collection of finite subcomplexes 

179 



of K, ordered by inclusion. Then t is a directed set. Let 

q be a fixed integer. We define a direct spectrum of groups by 

setting 

G(L) = H (L) for each L E ~. q 

iolhenever L \: LI , the inclusion induces a homomorphism 

H (L) i(L,L' ») H (LI ). The collection (H (L») together with the q q q 

inclusion homomorphisms (i(L, L' ») forms a direct system of abelian 

groups. 

1. 4. THEOREM. For each q, Lim H (L) "" H (K).
LE t q q 

Proof: He define a homomorphism 

qJ: Lim H (L) ~ H (K) . 
LE ~ q q 

An element (u) of 	 Lim H (L) is represented by u € H (L) for 
L€ t q q 

some L C K. Denoting the inclusion of L C K by i, we set 

qJ(u) = i*u. To show that qJ is well-defined, suppose that 

U E Hq(Lt) is another representative of (u). Then there is ao 
finite subcomplex L" such that i(L,L")(u) = i(L',L")(u ) E H (L"). 

L

o q 
UIt follm.'s t.hat if i ': L' C K and i": C K then- , 

i*u = i~ i(L,Ln)(u) = 	i~ i(L',L" )(uO) 

i!. Uo 

and so qJ is well defined. It is clear that qJ is a homomorphism. 

Suppose z is a cycle of a homology class U € H (L) such that 
q 

qJ( (u) = O. T'nen z bounds in K. Suppose z 2x:. The chain c 
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lies on some finite subcomplex L' containing L. iole then have 

i(L,L')u = 0 

and so (u) = O. Thus qJ is one-one. To see that qJ is onto, let 


U E H 
q 

(K ). If z is a cycle representing u, then z lies on 


s ome finite subcomplex L. If u' E H (L) is the homology class 

q 

of z as a cycle on L, then qJ(u') = u. Thus qJ is an isomorphism 


and the theorem is proved. 


1.5. DEFJNITION. Let JJ = ((Ga),A,:s:) and ]..l = ((H(:)) ,B, :s: ' ) be 


direct spectra. Let f : A ~ B be an order preserving function. 


Suppose that for each 	 a E A we have a homcrnorphism qJa: G ~ Hf(a)"a 


The collection (qJaJ is called a homomorphism of direct spectra if, 


whenever x E G has 	a (l,-successor y E G " then qJ I(Y ) is an a # 	 a a 

J.I -successor of qJa(Y). 

We shall sometimes write qJ: .1f ----:;..']1 to indicate that the 


collection (qJ) is a homomorphism. It is clear that a homomorphism 

a 


of direct spectra induces a homomorphism of their limits. 


He say that the direct spectrum L = ((G) ,A,<) is contained;U ex-

in the direct spectTUIIl 'JJ = ((H(:)) , B, :s:') if (1) (A, :s:) is a subset 

(or subclass) of (B,:s: ' ) (2) for all aEA, Ga=Hex' and (3) 

evexy ) - admissible homomorphism is an 'JI-admisSible homomorphism. 

Thus if J; is contained in W, the inclusion )J \: J.J is a 

homomorphism of direct spectra. 

If J; is contained in)J, we say that ,J; is cofinal in 

)J if the following two conditions are satisfied : 

(a) For every (:) E B, there is an ex E A and an 

~-admiSSible homomorphism mapping H(:) into G
0;. 
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(b) If g EGa' and aCt(3 : Ga~ Gi3 is an 


~-admissible homomorphism, then g and a g have a cammon

exi3


..);J -successor. 


1. 6. THEOREM. If)J is cofinal in 'JJ then the inclusion 

1J c;: 'f.j induces an isomorphism Lim G "" Lim H 
Q 

• 

a ex i3 f-' 

Proof: Condition (a) of cofinality implies that the homomorphism 

cp: Lim G ~ Lim HQ induced by the inclusion j; C J;!! is onto. 
a f-' a 13 


For if h E H , b bas an '].J -successor g E G for some ex by

i3 a 


(i). Since a < a in A, we bave a ;l1-admiSSible (and tbus 


It J-admissible) homomorphism a : G ~ G. Thus h and g
fi ar:x ex a 

have the common~-successor a~. (g might not be a successor 

of itself.) It follows that applying cp to the class (g) E Lim G 
a ex 

yields the class (h) E Lim H . Next we use both conditions of co
i3i3 

finality to show that cp is one-one. Let gl E G and g2 E G 
~ a2 

be such that CP{gl} = CP(g2}. Then gl and g2 bave a cammon 

~-successor h E Hi3 for some 13. Now h has an~-successor 

g~ E G for some a by (a). Thus gl and g2 have the commonJ a 33 
fl-successor g3 E G · By (b), gl and g3 have a cammon 

ex3 
~ -successor, and the same is true of Thus in Lim G g2 and g3· 

a a 
we have 

{81 } = {g3} = { g2 } . 

It follows that cp is one-one. The theorem is proved. 
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2. Singular Homology Groups 

For convenience, in this and the next two sections of this 

chapter, the word "complex" will mean" oriented finite regular 

complex". Hhen we make reference to a pair of complexes (K,L), we 

will assume that the orientation of L is induced by restriction of 

the orientation of K. 

Let (X,A) be a pair of topological spaces. Let S(X,A) de

note the class of all continuous mappings of pairs of complexes into 

(X,A). We define an ordering in S(X,A) as follows. If 

f: (K,L) ~ (X,A) and g: (K',L') ~ (X,A) are given, then 

f ~ g if and only if there is an isomorphic embedding* 

h: (K,L) ~ (K',L ' ) such that f = gh. The ordering < is 

obviously reflexive and transitive. To see that < directs S(X,A), 

let f and g, mapping (K,L) and (K' ,L') respectively, into 

(X, A), be given. Let (K" ,LiI) be the disjoint union of (K,L) 

and (K',L'). Then f and g induce a mapping 

f U g: (K" ,L") ~ (X,A), and using the obvious embeddings we 

see that f < f U g and g ~ f U g. Then (S(X,A),~) is a directed 

set. 

For each mapping f: (K,L) ~ (X,A) (i.e., for each 

f E S(X,A)), let H
f 

(K,L;G) be a labeled copy of H (K,L;G). Tech-q q 

nically, Hf(K,L;G) is a group isomorphic to H (K,L;G) together
q q 

wi th a definite isomorphism Hf(K,L;G) ~ H (K,L;G). If 
q q 

U E Hq(K,LjG), we write [u,f] for the element corresponding to u 

in Hf(K,L;G). 
q 

*An isomorphic embedding is an embedding which maps cells onto cells. 
He shall often use "embedding" to mean "isomorphic embedding". 
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\'le \i ish to show that the triple ((H
f 

(K,L;G)l1 S(X,A), <), 
q - 

together with appropriate admissible homomorphisms, i s a direct 

spectrum. To define the admissib le homomorphisms , we suppose that 

f,g € S(X, A) and that f ~ g. Thus f: (K, L) ~ (X, A) and 

g : (K" , LI) ~ (X,A), and there is at l east one embedding 

h: (K, L) ~ (K ' ,L") satisfying f = gh. The admissible h omo 

morphism mapping ~(K,L; G ) to Hg(KI,L 'i G) are then the homology
q q 

homomorphisms induced by embeddings h such that f = gh . To be 

precise , if h is such an emb edding, then the mapping 

[u,f] ~ [h*u,g] is an admissible h omomorphism. Not e that 

there may be more than one admissible homomorphi sm betwe en a given 

pair of groups. 

2.1. PROPOSITION. For each q, the triple ((H
f 

(K,L; G»), S(X,A), <),
q . 

with the admis sible homomorphisms defined above, is a direct spectrum 

of abeli~an groups, wri tten .JJ
q 

(X,A; G). 

Proof: \'Ie verify t he properties of a direct spectrum, referring to 

Definiti on 1. 2 . Property (i ) is clear. Property (ii) follows from 

Property II of cellular h omol ogy theory. To prove (iii)J let 

f: (K,L) ~ (X,A) and g: (K', L ' ) ~ ( X, A) be given. Suppose 

that hl and h 2 are embeddings of (K, L) in (K',LI) satisfying 

f gh gh
2

, and l e t [u, f ] € Hf(K, LjG). He find an admissible
l q 

homomorphism carrying [(hl '*u,g ] and [(h )*u, g ] into the same ele~2 

ment. lt1e define a complex (K" ,L") as follows. Let I be a complex 

on the unit. interva l with v e rtic es a t 0, 1/2, and 1. (K" ,L" ) is 

then the c omplex obtained f rom the disjoint union I X (K,L) U (K' , L') 
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by the identifications (O,x) - hlx, (l,x) - h 2X, for all x E (K,L) . 

Define(K',L')C: (K", L" ) be the obvious inclusion . Let h: 

gl: (K" ,L") ~ (X,A) by setting 

g(h-1X) f or x E h(K') 

g'x = 
{ 

f y for x (t, y) E I X K. 

is well .de fine d because f = gh2 . It is easy t o s ee 

(k~~) 

Then g ' ghl 


is cont inuous. Als o , g'h g by c onstruction, so the map
that 


is an admissible homomorphism, 

h *: 

fl lk 

onto opposite ends of I X (K,L)
Sinc e hhl and hh2 map (K,L) 

Thus (hh )* = (hh2 )* by Prop-
in (K" ,L"), we have hhl =hh2' l 

Thuserty V of cellular b omol ogy tbeory. 

[b*(b )*U,gl][h*(bl)*u,g'] [(hhl)*u,g'] [(hh2 )*u,g'] 2 

and the proof of the Lemma i s complete. 
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2. 2 • DEFINI'I'ION. The qth s ingular homology group of (X,A) ,,,ith 

coefficients in G, written HS(X,A;G), is Lim Hf(K,L;G), the 
- f q 

limit group of the direc t spectrum lJ.(X,Ai G). 
q 

Notation: If ff: (K,L) ~ (X,A) i s given and [u,f] E H (K,L;G), 
q 

then we write {[u,f]) for the equivalence class of ~(X,A; G ) con 
q 

taining [u,f]. 
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3. The Properties of Singular Homology Theory 

In cellular theory we found it relatively easy to compute homo 

logy groups and difficult to prove that they are topol ogical invariants. 

The r everse i s true of singular theory. 

Given a continuous mapping f: (X,A) ~ (Y,B) of pairs of 

t opol ogi cal spaces, we define the induced h omomorphism 

f*: ~(X,A;G) ~ ~(y,B;G) as follows. If we associate with each 
q q 

mapping g of a pair of complexes (K,L) i nto (X,A) the mapping 

f g : (K,L) ~ (Y,B), we obtain an order -preserving function from 

S(X,A) to S(Y,B). For each g E S(X,A), define 

~ : Hg(K,L;G) ~ Hfg(K,L;G) by setting ~ [u, g ] = [u,fg ]. The 
g q q g 

collection { ~) i s c learly a homomorphism of direct spectra (1. 5 ),
g 

and is said t o be induced by the mapping f: (X,A) ~ (Y,B) . The 

r esulting homomorphism of limit groups i s called the homology homo

morphism induced by f and is written f*: ~(X,A;G) ~ HS(Y,B;G).
q q 

1. If 1: (X,A) ~ (X,A) is the identity, then 

(1 )*: ~(X,A;G) ~ ~(X,A;G) i s the identity f or each q.
q q 

II. If f: (X,A) ~ (Y,B) and g : (Y,B) ~ (Z,C) are 

arbitrary continuous mappings, then g*f* (gf)*. 

It f ollows that the s ingular homol ogy groups are topological 

i nvariants . 

If (X,A) is given, we define a boundary homomorphism 

S ~(X,A;G) ~~ l(A;G) f or each q as follows. If we "*: q q

assoc iate to each mapping f: (K,L) ~ (X,A) the mapping 

(fI L): L ~ A, we obtain an order-preserving functi on from 
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S(X,A) to SeA). For each f E S(X,A) , define 

_f (fIL) .
*f: ~(K, L;G ) 	~ Hq_ (L;G) by sett1ng ~f[u,f] = [o*u,( r IL)],l 

where c\ is t he boundary hom=orphism of the relative homology 

sequence of the pair (K,L) . To show that the collection ('f l 

preserves the successor relation and thus is a homomorphism of direct 

spectra, let g : (K',.L') ----?> eX,A) be a mapping such that there 

is an embedding h: (K,L) ~ (K' ,L') with f = gh. Let 

(u, f] E If(K,L;G); then [h*u,g] is a successor of [u,f]. By
q 

property III of cellular homology (VI.5), 

[o~h*u,(gIL')] = [ (hIL)*O*u,gIL'] where o~ is the boundary homo

morphism for (K',L'). Thus (o~h*u,(g I L')] is a successor of 

(o*u,(fIL)] in the direct spec trum ~_l(A;G). Therefore (*f} 

is a homomorphism of direct spectrum. We define 

oS*: HS(X,A;G ) ~~ l(A;G) t o be the homomorphism of the limit 
q q-

groups of x!J (X,A;G) and it l(A;G) induced by ("'f l. q 	 q-

III. 	 If f: (X,A) ~ (Y,B) is a continuous mapping of pairs of 

S S 
spaces, then O*f* = (fIA)*o*. 

Proof of III: 	 Consider the following diagram 

11 (X,A;G) ~1I (Y,B;G) 

q ·1 	 1·'
- q 

4_1(A;G) ~~_l(B;G) 

Here ~ is the h=omorphism of direct spectra induced by f, q; is 

induc ed by (fIA), are defined as in the discussionand V and " 
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The composit ion *'~ is a homomorphism of direct spect r a; before III. 

the hcmmnorphism of limits induced by '¥'<p i s the compos ition of the 

Similarly forh omomorphisms of limits induced by ,+,' and by ~. 

it suffices t o show thatthus, to show that d;f* (fIA)*d~,CfJ'fi 

the above diagram is commutative. 

(u,gj E Hg (K, Lj G),
Let g: (K,L) 	~ (X, A) be given. Then if q 

we have 

*fg~g (U,g] 	= yrg[u,fg ] 

= [o*u, (fgIL)]. 

On the other hand 

~(gIL)Yg[U, g ] = ~(gIL)[o*u,(g IL)] 
[o*u,(fIA) (gIL») 

[o*u, ( fgIL» ). 

Thus ,'<p ~ and the proof i s complete. 

TV. If (X, A) is a pair of spaces, l et i: AC X and j : xC: (X, A) 

denote the inclusion mappings. Then the sequence below, called the 

homolo~J sequence of the pair (X, A), is exact: 

. 	 ~ . . t 
J* ~C; o~_ S 1* S J * ---.S * 

•••~ H- l (X, A;G) ~ H (A;G) ----:;;.. H (X;G) --?- lr(X, A;G) --?q+ q q q 

S and l eave the rest as
Proof of TV: We prove exa.ctness at Hq (Xi G) 

an exercise to the reader. 


L ~ A is gi ven. Let

a) Tm i* c: ker j*. Suppose that f: 

Define g : (L,L ) ~ (X, A) ~: L ~ ( L,L) denote t he inclusion. 
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so t.hat the diagr'C\m bela'..! 	 i .s commutB.tive: 

L f > A 

,1 	 ~i 

(L,L) g > (X, A) 

If [u,f) 
f

E H (L;G),
q then j*i*([u ,f)} ([u , jif)}. Since A is 

an embedding, ([u, jif)} ([A*U,g)}; but A*U = 0, so 

j*i*( [u, f)} = O. 

b ) Ker j* c;: ira i-l(.' Suppose that f: K ~ X is given and that 

[u ,f) E Hf(K;G) satisfies j*([u,f)} = O. Then there exists a mapq 

g: (K' ,L') ~ (X,A) 	 and an embedding h: K c;: (K' ,L') such 

that 	 gh = jf and h*u = O. We denote the embedding K c;: K' by h ', 

kl k2
and ,,'e have inclusions L' ~ K' ~ (K' ,L' ). Then 

(k2 )*h~u = h-l(u O. By the exactne ss of the r e lative homology sequence 

of the pair (K' ,L'), hiu (kl)*v for some v 	 E R (L'). He showq 
that i*[[v,(gIL'))} = ([u,f)}. 

k 
L' 1 k 2 > K' ------=--~~ 

(glL'J (d K') 	~K/K'l'::') 
A . ~X/

l j;:' 	(X, A) 

Now i*([v,( g IU))} is represented by [v,i(gl u)J. Since 

i(gIL') (gIK' )kl and (kl)*v = hiu, it follows that [v,i(gIL' )) 

and [u,f) have the common successor [hiu,(gIK')) in the direct 

spectrum 1; (X;G). Thus i *([v,(gIL'))} = ([u,f)} and ker j* = im i*.q 

Note that II and III imply 	that the homomorphisms of Singular 
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h omology groups induced by a map f: (X,A) --->- (Y,B) co=ute with 

the homomorphisms of the exact homology sequence s of the pairs (x, A) 

and (Y,B). Thus f induces a homomorphism of' exact sequences. 

V. Invar'iance under homotopy : If fO and fl are maps of (X,A) 


into (Y, B ) such that f O =f l , then 


(fO)* = (fl )*: ~( X, A;G ) --->- H~(y, B;G). 


Proof of V: Let g : (K,L) ~ ( X,A) b e given, and suppose that 

[u, g ) E Hg (K,L;G). Let F: I X (X,A) ~ (Y,B) be a homotopy
q 

co=ecting fO and fl' Define Pi: (K,L) ~ I X (K,L) f or 

i = 0, 1 by PO(x) = (O,x) and Pl(x) = (l,x), for x E K. Define 

G: I X (K,L) ~ (Y,B) by G(t,x) = F(t,g(x)). Then Gpo = fOg 

and GP = fIg· Since Po Z PI property V of cellular homology1 

theory implies that (p )* (P )*. Thus [u,fOg ] and [u,flg)o 1 

have the co=on success or [(PO)*u,G) in the direct spectrum 

A (Y,B;G). (See diagram below.) It follows that 
q 


(fO)*([u, g J) = (fl)*([u,g] }. 


fog 

;:. ((K,L) > I J( K,L) ~=---3>-
PI 

fIg 

3. 1. COROLLARY. A homotopy equivalence between two pairs of spaces 

induces isomorphisms of their singular homology groups. 
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3.2. DEFINITION. An inclusion mapping (X,A) c: (y, B) is called an 

exc ision if Y - B X - A. The excision is called pro~er if t he 

closure of Y - X is conta ined in the i nterior of' B. 

VI. If' (X, A) c: (Y,B) is a proper eXClsion, t hen the induced homo

morphism HS(X,A;G ) -----...,.. 1f (Y, B,oG) is an isomorphism for each q.q 	 q 

He give the proof of VI in section 4. 

VII. 	 If X is a point then 

i f q = 0 
HSC Xo G) ~ [G

q , 0 
otherwise. 

VII follows from the fact that a map f; .K -......,.. X can be 

factored through an acyclic complex. 
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!+. The excision property. 

4.1. A counterexample f or improper excision : Let X be the closed 

region of the xy-plane that lies below the curve y = sin !, above 
x 

the line y = -2, and between the lines x = 0 and x = 2/rr. X is 

homotopically equivalent to a point, so ~(x) = ~(X ) = O. Let A 

be the boundary of X. By the exactness of the homology sequence 

for (X,A), c~: ~(X,A) ~ ~(A). 

° 1y Sln 
x 

x 2 
rr 

x 0 

x 

y -2 

He show first that ~(A) = O. \-Je claim that it is enough to show 

that 

(1 ) If f: L ~ A is a mapping of the finite regular complex 

L into A, then f is homotopic to a constant. 

Suppose that we have proved (1). Let f: L~A be given, 

f h oand suppose that [u,f] E Hl (L). We have the inclusion LC CL 

of L as the base of the cone on L. Since f =constant, there 
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exists a map g: CL ~ A such that gh f. Thus [u, f ] has 

the class [h*u, g ] as a succes sor. But CL is acyclic (V. 2.5), 

so h*u = 0. That is, {[u,f] ) = ° and so (1) implies that H~(A ) 0. 

Proof of (1): Suppose that f: L ~ A is given, and l et S be 

. 1that part of feLl which lies on Y Sln \~e show that S is 
x 

bounded away from the line x 0. Suppose not: Then there exist s 

a sequence {v) of points in S which c onve r ges to a point of t he 
n 

form (O,a), -1 < a < 1. For each n , choose wn E L so that 

f(w ) = v ' Since L is compact, {w ) has a limit point w, and 
a n n 

then it follows that f ew) (O,a). Now A f ails to be lo~ ally 

c o=ected at (O,a). l~ore precisely, there exists a neighborhood U 

(in A) of (O, a ) such that the co=ected component of U which 

contains (O,a) lies on the line x = 0. Since L is l ocally con 

nected, f-l(U) c ontains a connected neighborhood W of w. Since 

the continuous image of a co=ected set is connected, f(l-I) must lie 

on the line x 0 . But that implies that W i s a ne i ghborhood of 

w not containing any points of the sequence {w ), which contradicts 
n 

the fact that {w ) has w as a limit point. This contradiction n 

establishes (1). 

2Let Y be the closed region bounded by x = 0, y - 2 , 
x = rr' 

Y +1, and l et B Y - (X-A). We have as before that H~(y, B ) ~ ~(B). 

But B is homotop,ically equiva l ent to a Circle , and so ~(B) ~ Z. 

Consequently ~(X, A ) = 0 , H~(y,B) ~ Z, and the homomorphism induced 

by the excis ion (X,A) c: (Y,B) is not an isomorphism. 

To prove that a proper excision i nduces is omorphisms of singular 
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homology groups we find it conveni ent to define a new direct spectrum 

'jf(X,A;G) associated with a pair (X, A). He define a new ordering 
q 


on S (X,A) by s aying that if f: (K,L) ~ (X, A) and 


g : (K',L') ~ (X,A), then f « g if there exists a continuous 

mapping h: (K,L) ~ (K',L') such that f = gh . The groups of 


the direct spect rum 'J.I, (X, A; G) are then the same as bef ore : 

q 


{Hf (K,LjG)lf: (K,L) ----7 (X,A)). If f, g E S( X,A) as above and 

q 


f «g, then the admissible homomorphisms mapping 


~(K,L;G) ~ Rg(KI,LI;G) are the homol ogy homomorphisms induc ed 
q q 


by continuous maps h: (K,L) ~ (K' ,L') such that f = gh. We 


claim that W. (X,A;G) = ((~ (K,L;G) ) , S(X,A),« ) is then a direct 
q q 

s pectrum. (S(X,A), « ) is a directed clas s since the relation « 


contains the relation <. Properties (i) and (ii) of Definition 1. 2 


are immediate. Pr operty (iii) i s given by Corollary 4.3 be l ow. 


He assert that our original direct spectrum 1; (X,A;G) is 
q 

cofinal in the new direct spectrum ~ (X, A;G). The firs t condition 
q 


of cofinality is obvious since we don't have any new groups . The 


second condition of cofinality is contained in the foll owing l emma: 

4.2 . LEMMA. If f: (K,L) ----0;.. (X,A), g : (K' ,L' )----7 (X,A) 

and h: (K,L) ~ (K',L') are continuous mappings satisfying 

f gb, then there exi st isomorphic embeddings hl and h2 of 

(K" ,L" ), and a mapping(K,L) and (K',L'), respectively, in a pair 


fl: (K",L") ~ (X,A), such that flhl = f, f'h2 = g, and 


(h1 )* = (h2 )*h*. 

4.3 . COROLLARY. '11 (X,A;G) satisfies condition (iii) of Definition ~q . 

1. 2 and is thus a direct spectrum. 
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Proof of Corollary : Suppose we are given the commutative diagram 


belm,: 

f _ 

fl 

(K,L) ~ (K' ,L') ----'=''---......,.. 

f2 

Here fl and f2 are arbitrary continuous mappings. Suppose that 


[u,f] E ~(K,L;G). Then by the Lemma, [u,f] and [{fl)*u,g] have
q 

a c orumon ~-successor vI' and [u,f] and [{f2 )*u,g] have a 

common ,f; -successor v 2 · Since vI and v have the common2 

1f -ancessor [u,f], they have a common 1; -successor v3 (see 

page 178). Consequently [{fl)*u,g] and [(f )*u,g] have the coramQn
2 

.)f-successor (and thus ~ -successor) v 3· 

We prepare for the proof of Lemma 4.2 with a few definitions 


and results. 


If f: K ~ L is a map of regular complexes, then for each 

s > 0, f induces a map f': SdsK ~ Sd L such that the follow

ing diagram is coramutative 

K f ) L 

} 1k 
' 

SdsK f' 3> Sd L 

Here k and k' are subdivision homeomorphisms. (See VI. 3 for 

details. ) 

4.4 DEFINITION. A s implicial approximation to f is a simpli.cial 

map g: SdsK ~ Sd L such that, for each x E SdsK, g{x) lies 

1 of-

i n the closure of the unique open simpl ex containing f'{x). 

Si nce g{x ) and f '(x ) lie i n a closed simplex, there is a 

line segment j o ining g (x) and f' (x ) in Sd L for each x E SdsK. 

Thus f l and g are homotopic. 

4 .5. THEORE.t\l. Let K be a f inite regular complex, f: K ~ L 

a map of K to an arbitrary r egular complex L. Then for some 

integer s > 0 there exists a simplicial approximation 

g: SdsK --+ Sd L t o :t'. 

Proof: We proceed as in the proof of ~neorem VI,3.9, except that we choose 

N so that the mesh of SdNK is l e ss t han 0/2. Let s be any 

integer larger than ]\) . For each vertex B of SdsK, there exists 

a vertex A of' Sd L such that f' (St B) ~. St A, since the dia 

meter of st B is less than 5 . Define a function g from the 

vertices of SdsK to those of Sd. L by choosing, for e ach B, a 

verte x .t.. such that f' (St B ) ~ St A, and s etting g (B) = A. To 

show t hat g extends t o a simplicial map of SdsK, it is sufficient 

t o shaw that g maps the vertices of any simplex of SdsK onto the 

vert ices of some sim~lex of Sd L. Let a be a simplex of SdsK, 

wit h ve rtices BO,Bl , ... ,B • Then a C n St B., and so 
g - j J 

f '( a) C n St(gB .). 
- j J 

This implies that nStg(B . ) is non-empty. Let 'I' be any simplex
Jj 

whose interior meets n st g(B. ) in a non-empty set. For each j,
Jj 

St g(B
j

) n 'I' F0, and so g (B
j 

) is a vertex OfT. Thus the 

vertices (g{B.») span some face T' of T. Itf'ollowsthat g
J 
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extends to a simplicial map of SdsK into Sd L. Let x E a. Then 

f'(x) E n St g (B. ) . Thus the unique simplex of Sd L containing 
j J 

f' (x) in its interior contains each g (B,) as a vertex, and so has 

,,' as a fac e . Therefore g( x ), which of 

J 

course lies in or' , is 

contai ned in the closed simplex containing f'(x), and so g is a 

simplicial approximation to fl. 

4.6. DEFIIHTIOH. Let K and L be simpliCial c omplexes , and let 

f: K ~ L be a simplicial mapping. Then the simplicial mapping 

cylinder L of the mapping f is the simpliCial complex given as
f 

folla.ls. The vertices of L are the vertices of K together with
f 

those of L. (K and L are assumed to be dis joint.) A collection 

{~, ... ,AS' Bl,···,B : A. E K, B. E L} of vertices spans a simplex
t l J 

of L if the A 's span a simplex a in K and the B.' s span
f i J 

the simplex fa. He include all faces of such simplexes together 

with all simplexes of L. 

Note that K and L are embedded as subcomplexes in L . Note
f 

also that IL I is not homeomorphic to the mapping cylinder of f,
f 

defined i n V.2. 

4.7. LEMMA. Let i: KCLf , j: LCLf denote the inclus ions. 

Then i ::." jf. 

Proof: Suppose that x E K. Then x lies in some simplex (~, ... ,As)' 

and fx lies in the simplex (f~, ... ,fAs)' since f is a simplicial 

map. Thus the simplex (~, ... ,As' fAo, ..• ,fA ) of L contains the 
s f 

line segment from ix to jfx. It follows that i::." jf. 
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Proof of Lemma 4 .2 : Let h': (Sd\,sdsL) ~ ( SdK ' ,Sd. L') be a 

simplicial approximation to h. Consider the diagram belm" in 

whi ch k and k' are subdivision homeomorphisms, and h" = k'h'k. 

Thus h" ::." h. 

h" 
~ (K',LI) g ::> (X,A)(K,L) 

(1) t Ik' 
(SdsK,Sd.sL) h' _ ::> (Sd K',Sd L') 

\</e define the complex (K" ,L") as folla.,'s. Let (Sd K' , Sd L')h' 

be the simplicial mapping cylinder of the simplicial map h'. (K" ,L") 

is obtained fr om the d isjoint union 

[I X (K,L)] U (Sd K', Sd L')h' U [I X (K',L')] 

by making the f oll owing identifications: 

(l,x) - X E K, i: (SdsK,SdsL) C (Sd K', Sd L' )h'ikx 

(O,x') _ j (k' )
-1

x' x' E K', j: (Sd K', Sd L') C (Sd K', Sd L' )h' 

Then (K" , L") is a regular complex. 


Furthermore, v e have embeddings h l , 


i , j, h2 of (K,L), (SdsK,SdsL), 


(Sd K', Sd L'), and (K',L') r espect


:t x.(k~l) 

(Stl ~: S.a l!)~ 
frl- - - - --~ 

IK(~' 

- - -
(k')L') 

i ve ly, in (K" ,L"). (See picture.) 


i-le want t o shov that 


(h
l 

)* = (h
2 

)*h*. It is clear that 


hl ::." ik, and t hat h 2k' ::." j. In 


a ddi t ion , Lemma 4.7 implie s that 
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i Z jh' . It f Qllows that 

(hl )* = 	 i*k* (since hI :: ik) 

j*h~k* (since i ::: jh l ) 

(h2 )*k~h~k* (since h kl :: j)
2 

(h2)*h~ (since hit = k'h'k) 

(h2 )*h* (since htl :: h). 

He must nOl, define the mapping f l: (KIt,11t) ---;;.. (X,A ) . 

(a) On 	 I X (K, L) : Since f gb. ::- ghlt gk'hlk, we may use the 

homotopy between f and gklh'k to define f' on I X (K,1) so 


that 


f'(O,x) =fx (x € K) 

f ' (l,x) = gklh'kx (x € K). 

(b) 	 On (Sd K', Sd 1 1 )h : Define a simplicial map

'
 

m: (Sd KI , Sd 1')h' ~ 'Sd K', Sd 1') by setting m(iA) = h'A 

for A a vertex of SasK, and m(jB) = B for B a vertex of Sd K'. 

Define fl on (Sd K', Sd 1 1 )h l to be the composition gklm. 

(c ) On 	 I X (K', L' ) : Set f' (t, x ' ) g(x ') for x E K' . 

As the reader may verify, f' as defined above is consistent with 


the identifications yielding (Kit, 11t ). By construction, flh f 

l 


and f lh2 g . The proof of Lemma 4.2 is complete. 


4.8. COROLLARY. ~ (X,A;G) is cofinal in ~(X,A;G), and soCJ. 


H
S 

(X,A; G) is isomorphic to the limit group of the direct spectrum
CJ. 

J./q(X,A;G). 
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Tn the pr,?of of Theorem 4.9, we will work with the direct spec

trum 1; (X, A;G). How that we have proved Lemma 4. 2, we can use 
CJ. 

results concerning the successor relation in 'J.I (X,A;G ) to deduce 
CJ. 

results 	about );j (X,A;G).
CJ. 

4.9. THEORDf. If i: (X, A) c;: (Y,B) is a proper excision, then 

i *: ~(X, A; G ) ~ ~(y,B;G).
CJ. CJ. 

Proof : We prove first that i* is a monomorphism. Suppose that we 

are given a map f: (K,1) ~ (X, A) and [u,f] € Hf (K,1jG) such 
q 

that i*([u,f]} = O. This means there exists a map 

g: (K' ,1 1 ) ~ (Y,B) and an embedding h: (K,.1) ~ (K' ,1') 

such that if gh and h*u O. 

(K, L) f 
) (X, A) 

~ 	 1· 

(K ', L') 

g 
~ (Y,B) 

The sets Tnt B and Y - Y-X form an open covering of Y. Thus 

- 1 -1
g Tnt B and g (1 - Y-X) form an open covering of K'. He 

choose an integer r so that: 

(1) 	 Every closed simplex of SdrK' lies in an open set of the 

-1 -l(covering (k1B Tnt B, klg Y Y-X)}, where kl : 
KI ~ SdrK" 

r
1 1is a subdivision homeomorphism. Let ~ • Sd U {closed simplexes 

which are mapped by gk-1 into Tnt B}. Let K" be the subcomplex
l 

of SdrK' of all closed simplexes mapped into X by gkl 
-1 

. Set 

L" = K" n 11" Finally, since h is an embedding, h (K, 1) is a sub-

complex of (K ' , 1' ) . We set (K"' ,1" 1 ) (Sdr h(K }, Sdr h(1) . Then we 

have the diagram below, 	where k2' k3' and k4 are the obvious 
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inclusions and k5 = klh. 

(K,L) 

~k5 
(Kill ,L'" ) ~ (X,A) 

( K'.t~ 
h ~3 Ii 

(SdrK I 'Ll)~l
jk2 gkl 

V 
(SdrK ' ,SdrL') . (Y, B) 

Ikl 
(K' ,L') 

g 

He show that SdrK ' - Ll = K" - til. In other words, is ank3 

excision of c ompl exes . Let 0 be an open simplex of SdrK' - L
l 

· 

-1
Then gkl 0 intersects Y - Int B nontI'ivially. By (1 ) , 

-C -l( -l-C
O _klti Y Y- X) , and s o gkl ° _ x. Thus ~ <;: K" , and since 

L" = K" n ~, 0(; K" - L". He have shown that SdrKI - Ll (; K" - L" i 

the reverse inc l usion is obvious, and k3 is an excision of complexes. 

By Property VI of cellular' homol ogy t heory, 

(k~ )* : H (K", L"i G) ~ H (SdI'K',LliG) is an isomorphism. ..Ie have 
~ ~ q 

k3k4k 5 = k 2k l h: (K,L) ~ (SdrKI, L ), and s o 
l 

(k k 4kS)*u = (k2k l h)*u = (k2k l )*h*U = O. Since (k3)* is an isomoI' 
3

phism, (k1. f 
k 

5 
)*u = O. Note t hat k4k5 is not an embedding . Let g ' 

denote the mapping ( gk~lI K" ): (K",L") ~ (X,A). In the dir ect 

spect rum 'JI (X,A; G), [u,f] E ~(K,Li G) has t he s ucce ssor q q 

")1"'1..'") 

[(k k )*U, g ' ] e H~'(K",L"iG). But (k k )*u = 0 , and so by Lemma
4 5 4 5 

4.2, [u,f] represents the zero of H ( X, A; G). It follows that 
q 

S ~C;
i*: H (X,AiG) ~ H-'(Y,B : G) is a monomorphism. 
qq ' 

We prove in a simil a r manner that i* is onto . Suppose that 

g : (K ', L') ~ (Y,B) is given, and t hat [u,gk Hg(K', r!; G). Pro-
q 

ceeding as in the proof that i* is a monomorphism, COBstruCt the 

complexes and maps in the diagram below: 

g'
(K" ,L") ,.. (X,A) 

tk 
3 

i( SdrK" Ll)~" 
1'k 2 

(SdrK',ISdr LI) ~ (Y, B) 

gt l 

/ 
(K ' ,L') 

is an inclusion, andHere k l is a subdivision homeomorphism, k2 

k3 is an excision of complexe s . Thus 

(k )* : Hq(K",L" i G) ---::>- Hq(SdrK ',L ) i s an isomorphism. Letl3

v = (k ): 1(k )* (k )*U € Hq(K" , L"j G) . Let g" denote t he map


3 2 l
 

gk~\ (SdrK' ,L ) ---::>- (Y,B). Then [u, f] e H! (K', LI; G) and

l . ,l g [v ,ig '] € H (K" , L"; G) have t he c=non succe ssor 

q 

[(k )*v, g"] € ~" (SdI'K I,Lli G) in the dir ect spec t rum )I (y,B;G) . 
q3 

It follows from Lemma 4 . 2 that i* ( [v, g I ]) ( [u , g]) . This completes 

the proof of 4 . 9 . 
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5 . Equivalence of Cellular and Singular Homology 

Theories. The Invarianc~ Theorem for Infinite Complexes. 

IJet (K,L) be an oriented pair of (not necessarily finite) 

regular complexes. IJet ~ denote the collection of finite sub-

complexes of K, ordered by inclusion. We define a direct spectrum 

of abelian eroups by setti.ns 

G(M) = H 
q 

(M, M n L) for each MEt . 

The collection (G(M)) , together with the homomorphisms induced by 

inclusions, forms a direct system of abelian groups. We claim that 

(G (M) ) is cofinal in the direct spectrum ~ (IKI, ILl). First, if 
q 

f: (K',L') ~ (K,L) is a map of the pair of finite regular com

plexes (K',L ') into (K,L), then, since IK'I is compact, f can 

be factored through some finite subcomplex of K. This proves con

dition (a) of cofinality. Condition (b) is trivial in this case, 

because if 1-1 and M' are finite subcomplexes of K such that M~ M', 

then the only admissible homomorphism mapping H (M, M n L) to 
q 

H (W, M' n L) in the direct spectrum ']J. (IKI, ILl) is the homo-q q 

morphism induced by inclusion. The latter is of course admissible 

in the direct system (G(M)). Thus the following theorem follows from 

1.4 relativized, 1.6, and 4.2: 

S5.1. THEOREl-l. Hq ( IKI, ILliG) "" H q (K,Li G). 

5.2. COROLLARY. Cellular homolosy groups of infinite regular com

plexes are topological invariants. 

We can prove a little more. We restrict ourselves to the cate

80ry of finite regular complexes. IJet f: (K,L) ~ (K' ,L') be a 

continuous mapping of complexes. Then we have induced homology 

S .
homomorphisms f* and f* for cellular and slngular homology, 

respectively. Since (K,L) is finite the single group Hl(K,Lj G)
q 

with 1: (K, L) ~ (IKI, ILl) the identity, is cofinal in the 

direct spectrum 'J.I (IKI, ILl iG). Likewise, Hl(K ' ,L' iG ) is co
q q 

final in JJ ( IK ' I, lL' liG). So we have the followinG diagram,
q 

where ~ denotes the isomorphism defined by taking equivalence 

classes under the relation of baving a common successor: 

qJ
H (K,L; G) Hl(K, L'G) rt'(IKI,ILI;G)q , > 

(1 ) 

q '" 

q l~ 
1:* 

H (K' L"G) = Hl(K' L"G) C£ > ~(IK'I,ILII;G)
q " q" "" 

5.3. DEFDUTION. IJet t and f) be categories, and let F and 

G o.e two covariant functors from t to 1.9. A natural transform

ation qJ from F to G is a collection (qJclc E ~), where each 

qJC E M(F(C ) ,G(C )), such that if C and D are objects of ~ and 

f E MeC, D), then 

~ • F(r) = G(r) 0 qJC' 

One defines a natural transformation of contravariant functors ana

logously. 

5.4 THEOREM. The di agram (1) above is commutative. Thus ~ yields 

a natural transformation of functors. 

s 
Proof: IJet [u,l] E Hl(K,L;G). Then f*{ [u,l]) is represented by 

q 

[u, f] E Hf(K, L;G ). But [f*u,l] E Hl(K' , L'j G) is a successor of 
q q 
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[u,f] in t he di rect spectrum ?J ( IK' IJ IL'l ;G), and so 
q 

f~, ( [u, III ( [ f*u,l] ) . 

Exercise . Let (K,L) be a pair of finit e r egular complexes . Prove that 

the diagr am be l~l i s commutative f or every q: 

R (K,L, G) :£ '> lIS ( IK I, ILl; G ) q q 

f* 
"" 

tS 
0* 

SSf!H l( L,G ) ;. H l(IL I;G )q  <1"" 

This fact) t OGether "I>'it h Them'em 5. 3 and the result t hat cp i s an 

i s omorphi sm of cellular and singular homology groups for finite 

r egular c omplexes, cons titute the statement that qJ defines an 

equival ence of ce llular and singular homo l ogy theories on t he cate 

gory of finite r egular c omplexes . (See Ei lenbe:cg and! Steenro~, 

Foundations of Al€ ebraic TopoJ.?,gy . ) 
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INTRODUCTORY HOMOTOPY THEORY AND TEE PROOFS 


OF TIlE REDUNDANT RESTRICTIONS 


I n t h i s chapter we will be touching upon a main prob l em in t opol.ogy 

t he e x tens i on problem as defin.eCi, in the Introduction, page ii. Our main 

goals are the horllQtopy extension theorem and t he t heorem on i nvariance of 

domain . We will compl.ete the chapter' by proving the r-edundance of the 

restr ictions imposed on :cegul comple xe s i n Chapter II, and 'by proving 

t nat each r egular quasi compl e x is a comple x. (See 1 .5.) 

1. Solid s-paces . Be'l:;rac ts . 

1.1. DEFINITION. A space Y i s solid if wheneveI ' there i s given a 


normal space X, a closed subspace A of X, and a continuous func t i on 


f :A --> Y, then f' extends over X. 

The proper ty o f b eing s olid ie topological . The space conSisting 

of a single ~oint 1s solid . The Ti etze exte nsion t heorem asserts t hat the 

dosed unit interval is so~id . The next pr oposition thus impl i es that the 

closed n-ball is sol.id . 

1.2 . PROPOSITI ON. A product of solid space s is solid. 

Proof : Let Y , a€J\, be an arbitrary fami.J.y of sol id spa ces. Let X a 
be nor mal, A closed. in X, and f:A -->a7J.AYa a conti nuou s mapping . I f 

p : ~ Y ---> Y is t he projection then for each a, Pa f :A ---> Y can 
~ a€ A a -~ a 


be extended to a mapp i ng g:X --> Y , since Y is solid . A point of 
a a a 
is a function 't on 11 mapping each a t o eo point 't(a ) € Y · a'KA Ya a 

Define g: X - > nY by [g(x ) J(a) = g x. Then p fl. g for each a,
a a 0:- a 

and so g i s c ontinuous and extends f . 



~· 3· DEFINITI ON. Let 	 A be a subset of a space X. Then A is called 

a retract 01' X if t here exists a map r:X ---> A whos e r estriction to 

A is the identity . The map r is called a retraction of X onto A. 

Note that if X is a Hansdorff space, each r etract of X is closed 

It is e asy to see that A is a retract of X if and o~y i f for any space 

Y, every map of A to Y e xt €n d s to a map ot' X to y. Example s of 

n - l 
r etracts: S is a retract of nn minus the origin and of' En minus 

N
nthe origin. (But not of or of r, a s ,~e shall prove l ater in thi s 

cilapter. ) In the product XxY of arbitrary spaces a cross sec t i on xo x y 

i s a r etract. Also , i f f: X ---> Y is continuous, then the funct ion 1' , 

consid ered as a set of ordered pall's , is a I 'etract of X x y. Thus t he 

diagonal X C X x X is a retI'act of X x X . Finall y , suppose X is normal , 

I f A is sol id and closed in X, then A is a retract of X, fo:!' the 

identity map l:A --> A extends over X. A space is c a lled an absolute 

retract i f it j_s a retra ct of any nor mal space containing it as 8. c losed 

subs pace . Thus a solid space is an obsolute retract. 

Given any diagram of spaces and maps "Ie obtain a cor r esponding 

i agram of homology groups and induced homomorphisms . I i' -we let i :JCX 

denote inclusion, then the extension problem for a mapping f :A ---> Y 

corresponds to the e xtension problem diagrammed b elow: 

H (X) 
i * /' a .... ' .... ~ 
;/ ":.l 

Hn (A) f • Hn (Y) 

* 

For each n, is there a homomorphism ¢ such that ¢ i.* 1'* ? If there is 

a map g:X ---> Y extending f then "e can set ¢ f.* and obtain a solutio 

to the algebraic extension problem . Thus the exis t e nce , for each n , of 

a homomorphism ¢ such t hat ¢ i* = 1'* is a necessary condition f or the 

existence of a mapping g s uch that gi f. (It is not in G<2neral a 

sufficient conditic,n . ) 

The above reasoning -was used i n the introduction to prov<2 that 

is a r etract of X, s o that 
sn- l is not a retract of En . Note that if A 


ri 1, then r_*i* '" 1 : 

',ve have i:A C X and r:X ---> A satisfying 


I t fol lowS that i* is a monomorphism

H (A) - > H (A) , for each n . 

n n 
n . Suppos e , foX' example , 	 thatfor eachand Hn (X) = 1m i* IS: Ker r * 

,,'hich ,1 2 	 be a s imple closed cuX've in XLet AS x D , a solid torus .x 
AlthoughHI (X) "" z . as a cycle , represents t'll ice the gemorator of 

is a monomorphism t he image is not a direct summand and 
i * :H ( A) - > R1 (X)

1 

so A is not a. retract of X. 

The problem of determining vlhether a given subset A of a space 

is a retract __ ,-lhich Vie call a r etract i on problem -- is of course an extension 

that every extens i on p:coblem is actually
The proposition below ShO'.'ISproblem . 


eClu ivalent to a retraction problem . 


f :A - > YLet A 'De a subspace of 	 X and suppose that1.4. 	 DEFll'lITI ON . 


The adjunction space of the mapping f, vritten

is a continuous mapping. 

x u Y by i dentify-ing
is the space obtainecl- from the disjoint unionx U , Y, 

f 
f( X) € Y . xeA viith its imageeach 

as a subspace . containsNote that X Uf Y 
y 

PROPOSITION. Let. f :A -	 > Y be given. The n tnere e xis-ts an
1.5 · 

if and only if' Y is a retract of the adjunction
extension of f to X 

space X U y . 
- - l' 
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Proof' : Let j :X --> X U n y map X E X to its equi valence class in 
I 

x U y. If r:X U f Y -.--> Y i s a re traction, then rj is an extension
f 

of f . On the other hand , sugpose g : X ---> Y extends 1' . Then we define 

r: X U Y ---> Y by settingf 

g( z. ) if z € 	 X 
r(z) 

z if z € X 

for all z E X U-r y. Then r is well-defined and continuous , and r etracts 

X U Y onto y . 
f 

The following porpos i tion is called a Polish add i t i on theorem . 

1.0. PROPOSITI ON. Suppose Y is a metric space . I f Y' and Y" 

are closed subspaces of Y s atis:f'ying Y Y' U y lI> and i f Y',yll, and 

y ' ny" ax'e 	 all solid , t hen y is soli d . 

f -i.,Proof : Let X be normal, A cl osed in X, and le t f:A --> y. Se t A' 

A I' = 1'-1 y" . Suppose we have found closed subspaces X' and X" of X 

such that X X ' U X" , A ' C X' , A" C X", and x 'n X" n A = A' n A". Then 

'We can extend f fA' n A" to a map f: X' n X" --> Y' n Y" s ince Y' n Y" 

is solid . Similarly, we can extend fl(x ' n X") U A'to a map gl:X' - -> Y' 

and we can extend f I(X I n X" ) U A" to a map g2: X" _ _> yll . Then since 

gl ~ g2 agree on X' n X", they defi ne a mapping g:X --> Y which 

extends f . Thus 'We only have to find X' and X" sat is fying the conditions 

given above. 

We defi ne Y' (YEY 'ld(y ' n y ll , y ) > ~ J 
n 	 n 

and y " {y € y " Id(Y' n Y" , y ) > 1 
n 	 n 
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Then Y' and y" are closed for each n . "\ole set A' f-~' 
n 

and 
nn n 

A" f-~II. U Y I Y I _ Y'n y " \ole have U A I A' - A'n A" .Since 
n n n n ' n n 


A ' n A" = A" n A I = ¢. 
Similarly, 	 HA~ A" - A I n A". For each n, n n 

and U" such t hat Since X is normal, we may choose open sets U' nn 

A' ( U A" ( U" and U' nAil ij"" n A' ¢. For each n WE: set 
n ~ n'' n 	~ n ' n n ' 


ij"" and V" U" - LJ W Then, for each n, V' conta i ns 

V' U ' 	 n-~ n n mZn 	 n 

m < n. Then V' ( U ' and so 
n n n 

A' and V" cont a ins A". Suppose 	 n ~ nnn n 

V" ( U" C 	X - V' • Thus V' n V" ¢ . Similarly, V ' n V" ¢ . Thus 
m nm ~ m n n m 

V' U V' and V" U V" are disjoint open sets such that A ' - A ' nAil n 
UA 

n 
' (
~ n nn n 

U A" ( V", and V I n A" V" n A' ¢ . Thus we may takeA" A' n A" n n ~ 


X" '" X - V ' and X' = X - V" . 


2 . The Homo t opy Extension Theorem . 

Let X and Y be topological space s . The r elation of homotopy is 

an equival ence re lation on the collection of mappings from X to y. Thus 

the mappin@from X to Y are partitioned into equivalence classes of' 

homotopic mappi ngs . He denote by rr(XiY) the collection of these equi valence 

classes . Suppose X' is another' space , and f :X' --> X is a map . To 


each map g :X --> Y 'de can assign the composition gf :X' --> y . This 


as s ignment pr eser ves t he relation of homotopy and so f i ndu ces a function 

is another space , and f:Y --> Y' f * : rr(Xj Y) - > rr(Xi Y) . Similarly, if' y l 

is a map , t hen f induces , by composition , a function f* :rr( XiY) - > rr(Xi y l ) . 

Thus t he a ss ignment to every two spaces X and Y of the set rr(XiY), with 

the induced 	functi ons described above , is a function of t\iO variable , 

contr avariant in X and covariant in y . 

X toI f Y is arc- wis e connected , then any tl,W const ant maJls from 

Thus the constant maps are all contained in a s ingle classy are homotopic. 
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of "(XjY). A map from X to an arc -wise connected space Y i s called 

homo top ically trivial or inessential t f i t i s homotopi c to a constant map. 

All other maps are called essential. 

The homo t opy clas s ificat i on problem for the s paces X and Y is to 

enumerat e the homotopy classes in IT( X;Y) and to give an al gor i thm f or 

d eciding t o which homotopy class any given map from X to Y belongs . 

The problem of de c iding whether blo maps f and g fr om X to 

Yare homotopic is an extension problem . That is , we have a map F definet 

on 0 X X U 1 >.: X in I X X by 

F(O,X) f x 

F(l,X) = gx 

and f:: g it' and only it F' e:;.,,'tends to a map of I X X to y. It fDllows 

that if Y is solid and I X X is normal, then " (XjY) consis ts of one 

class onlY, that of the inessential maps . 

Les s t rivially, s uppos e X is a soltd metric space, I X X is 

normal, and Y i s ar c wise connected. By the Tietze extension theorem, 

I is solid. By 1.6, the set Z = 0 X X U I X Xo U 1 X X is solid for any 

X € X. It follows that Z is a retract of I X X. Since Y is arc wis6:o
connected, we can extend the map F defined above over Z, and t hen '.e 

can use the r e traction I X X ~-y Z to extend F over all of I X X. 

Finally, suppose K and K' are finite s~licial complexes . Then 

by the simplicial approximation theorem (vIr.4.5) every cont inuous map 

f :K --y K' is homotopiC to a simpl i c ial map of Sd~ to K' for s ome n. 


Since for each n there are only f i nitely many s implic i al maps f rom 


Sd~ to K " it 1'ollo\IS that " (KjK , ) is countable . 


2 .1. DEFINITION. Let (X,A) be a PBir of spaces . The space A has 

t he homotopy extens ion property i n X with r espect to a space Y if, given 

any map f:X --> y , and a homotopy G:I X A ---> Y of flA ( i. e . a map 

such t hat G(O, x) fX for x € A), then there exi sts a homotopy 

F: I x X --y Y of' f which extends G. The space A has 	 the absolute 

homotopy extens i on -property i n X if A has the homotopy extens i on pr operty 

i n X 'With r espect to every spa ce y . 

2 .2 . PROPOSI TION. Let (X,A) be a pair of spaces , and assume that A 

is 	clos ed in X. I f A has the homotopy extens i on pr operty i n X with 

s equence ofre spect t o an arc, "liSe connected space Y, then t he f'ollmli 

sets and f unctions is 8xact at IT( X jY) 

* * 
Tr(XjAjY) -p-> "(XjY ) 2....-> IT(A jY) 

Here X L-> XjA is pI'o j e ction ont o the space obtained f rom J{ by 


ident i f ying A to a point . 


Proof': Since the compos ition A ---> X ---> X/A maps A t o 	a point, 

the composition i P sends every clas s in IT( XjA jY ) to the 	inessential 

class . On the other hand , suppose ex E IT (XjY ) satisfi es i *ex O. Let 

is homotopic to a constant 

* * 

f:X --> Y represent ex . Since i *ex = 0, f IA 

map of A to Borne point Yo €Y' Let G:I X A --> Y be a homotopy of f iA 


and a constant map . Since A has t he homotopy extens ion pr oper t y in X 

'Wi t h re spect to Y, G extends to a map F :I X X --> Y sati s :t'ying F(O,x )=fx 

and F (l, x) = yo for all x € A. The map g defined by g (x) = F (l ,x) 

i s homotopic to f and maps A to yO ' Thus g define s a map h:XjA --> Y 
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such that hp g . It then follows that if h represents ~€ rr(x/ A;Y) , p*~ = a. 

Exercise. Let v be a point of Sl. Prove that S\13l SIx v U v x Sl C SIx S 

has the absolute homotopy extension Property in Sl X Sl. 

2·3· PROPOSITION. Let X,A) be a pair of spaces with A c l osed in X. 

Then A has the absolute homotopy extension llroperty in X if and only if 

I x A U 0 x X i s a retract of I X X. 

Proof: Suppose A has the absol.ute homotopy extension property in X. Let 

f:X 0 X X c.. I X A U 0 X X be the obvious embedding. Let G:I X A _> I X A 


U 0 X X be the inclusion. 
 G and f together define the identity map 


I X A U 0 X X ,-> I X A U 0 x X. USing the homotopy extension property for 


A i n X with respect to the space I X A U 0 X X, 
 t hi s map extends to give 


a retraction 
 of I XX onto I X A U 0 X X. 

On the other hand, Suppose r : IXX -> I X A U 0 X X is a retraction. 

If f:X -> Y and a homotopy G:I X A -> Y such that G(O,x) fx for 

x € A are given, then f and [!; define a map H:I X A U 0 X X _> Y. 

Extend Hover I X X by compOSing with the retraction r. 

2.4. THEOREM: ([,he Homotopy Ext ension Theorem for Ree;ular Complexes). 

If fK,L is a pair of regular compleses, then L has the absolute homotopy 

extension property in K. 

Proof: He show that I X L U 0 X K is a retract of I X K. P"ropos i tion 

2·3 then applies to give the theorem. 

2·5· LEJ·ir.1A. Let En be the closed unit n-ball. Then I X Sn-IV 0 X En 

is a retract of I X En. 
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Proof : Embed I X En as the subset of Rn+.L consisting of all points 
n ? 

( XO' Xl' "'J x ) such that 0 ~ Xo ~ 1 and i~l x~ 1. Then project
n 

n n n-l . (I X E to 0 X E U I X S from the pOlnt 2,0,0, ••• ,0). 

We obtain a retraction of I X K onto I X L U 0 X K by applyine; 

the r etraction of 2 . 5 to the individual cells of K - L. For each n, let 

K: K ULand M I X K U 0 X K, with M 1 I X L U 0 X K. Then for n n n n 

each n > 0 we define as retraction r :M -> j.1 as follows. If' e is 
n n n-l 

an n-cell of K-L, we have the retraction r defined on I X e uSing 2.5 . 
n 

These retractions together with the identity map on M _1. define the function n

X' on all of 1ft. Since the topology on M is given by the weak topology
n n n 

with respect to the cells of lli , r n i s continuoup. For n 0 t here n

is an obvious retraction rO of Vb onto M_ l • 

For each n > 0, let r' 
n 

:M 
n 

--> Iii be the composition rOrl···r · -1 n 

Then r ~ retract's Mn onto M_ l · Define r: I X K - -> M-1 by taking the 

union of all of the m~ppings r' Since r' and r' agree on 1'1 forn' m n m 

m < n, r is well-defined. The map r is continuous because I X K has 

the weak topology with r espect to closed cells. This completes the proof' 

of 2.4. 

It follows from the homotopy extens i on theorem that extendibility of 

a map depends only on its homotopy class. Thus, in the light of the remarks 

before 2 .1, if K and K' are finite simplicial complexes there are only 

countably many extension problems involving maps of a subcompl ex L of K 

into K'. Also, if a map f:L --> Y is homotopic to a constant map, then 

f extends to all of K. 

2.6. COROLLARY. If the dimension of L is l ess than n, any map 

f :L --> Sn is extendible over K. 
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Proof : Let h: Sd~ ---> Sn be a simplicial approximation to f, using 

some simplicial decomposition of' Sn . IT e is an n- simplex of Sn, and 

P is a point in the interior of e, then h maps Sd~ into Sn _p. But 

n
Sn_p is contractible in 8 and s o h is homotopic 	to a constant . 

Exercise. She,,, that in the group of linear fractional transformations of 

the Ri emann Shpere, the identity is homotopic to the map ~ . This meansz 
2there is a homotopy F: 	 1I x S2 --- > 8 of the identity and such that z 


f or each t, F (t,z) is a linear fractional transformation . 


2 > 82Exercise . Define the degree of a map f' :8 --- to be the unique integer 

n such that f*( u) nu, ~heTe 	 9 
U generates H2(8-) . IT fe z) = p ( z)/Q(z) 

,,,ith P and Q. pol ynomials, shmi' that the degree of f is the maximum of t: 

algebraic degrees of t he polynomials P and Q, assuming that P and Q 

ha\~ no common roots . I f the degree of f is n, eY~ibit a homotopy f ~ g 

in t he Space of rational :f'\mctions, where ng ( z ) z • 

Example . Let p ( z ) be a polynomial in z of degl'ee n with leading 
n- l . n-lcoefficient 1 . Let 	 lp ( z) = zn + ~ a.z Define F (t,z) = zn + (l - t ) ~ ai:
i=O l 

i=O
I f we define PCco) = co and F Ct,oo) = co then F is a homotopy of P as a 

mapping of S2 to i tself. F(O, z) p (z) and F( l:z) = zn. It was shown 

i n the s econd exercise above that the degree of the map z ___> zn is n . 

Therefore if n > 0, P i s not homotopic to a constant, by propel' ty ~ of 

cellu~ar homology theory, section VI. 5 . pThus is onto and so maps some 

poi nt to zero . In other ~ords, P must have a root . Fe have sketched a 

proof of' the fundarnental theorem of algebr a using methods of algebraic topolog 

We give an example to show that the conclusion of the 	homotopy extension 

1
t heorem is f al se in general . Let X be the subspace of R consisting 

of the origin t ogether with all points of the form 1 with n a positive
n 

integer . Let A be the origin, and set Y = X U [ -1,0 ] . 

A 
----+----..l.~----~ ______ 

- 1 	 1o ~ 
'-------------v--- 

X 
\ -.~~. 

"'----- y ------ 

Suppose f :X ---> Y is the inclusion. Then f lA is homotopic in y t o 

the map sending 0 to -1 . vie claim that there is no homotopy of f t o 

a map whi ch sends 0 to - 1 . This is so because, except at the origin, X 

is d iscrete, and so any homotopy F ( t,x) of f must satisfy F ( t,x) =fx 

for all t . 

2 ·7· THEOREN . If Y is a f inite Simplicial complex, A is closed 

in X, and X and I X X are normal, then A has the homotopy extension 

property in X with respect to y . 

2.8. m\iHA . If K is a finite Si mplicial complex 	and L is a subcom~lex, 

then there exists an open neighborhood U of L such that L is a retract 

of U . 

Proof of 2 .8 ; Let s be the set of vertices of K which lie in 

L, and let T be the set of vertices of K not in L. We define 

U = ra E K I .E a ( v) > ~ J 
( VES 
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If a € L, then E_ a(v) 1, so LeU. The set U is open becauseves 

it meets every simplex of K in an open set, We define a retraction of 


U onto L by s etting 

(r(a))(v ) = ( a(v) if' V € S 
v'~S 

o if' V € T 

vie may describe the retraction as follo-ws. 

If a is a simplex of K, then a may be exmessed as the join 


of' t-wo of its face s, a TO,.', -where T a n L. Each point a € U n 


Int a lies on a uni~ue line segment joining a point of T' to a point 


~ of T. We set rea) = ~. 


Remark: We note that the retraction r is homotopic to the identity 

mapping on U. For example, -we may def'ine a homotopy F by F(t,x)=(l-t)a + 

t.r(a). This -works because the line segment joini ng a point a -with 

its image rCa) lies in U. 

In general, a retraction r:X --> A is a deformation retraction 


if it is homotopic to the identity on X; that is, if there exists a 


mapping F:I X X -> X -with F(O,x) x and F(l,x) = rx, In this case 


A is called a deformation retract of X . In the proof of 2 .8, L is a 


deformation retract of U. 


2,9· LEMNA, Let Y be a finite simplicial complex. If X is a 

normal space and A a closed subspace of X, then for each map f :A --> Y 

there is an open nieghborhood V of A and an extension of f to a map 

g:V -> Y. 

Proof of 2.9: Regard Y as a. subcomplex of the simplex a on the 

vertices of y. Since a is solid, -we may extend f to a mapping 

h: X --> a. By 2.8, there exists a neighborhood U of Y in a and a 

retraction r:U --> y. Then set V h-~ and define g:V -> Y to 

be the composition rho 

By 2 . 9, sinceProof of 2 .7: Let G:I X A U ° X X ---> Y be given. 

I X A U 0 X X is closed in I X X, G extends to a mapping H:V --> Y 

where V is open and contains I X A U °X X. It is easy to see , using 

the compactness of I, that for each x € A there exi sts a set N(x) 

containing x -which is open X and such that I X N(X) ~ V. Let 

W = x~ !'l(x). Then I'T is an open set containing A and I X A .c..- I X '.1 C V. 

Since X is normal there exists a Urysobn function h:X --> [0, 1] such 

t hat heAl = 1 and heX - H) = O. Let E = {(t,x)lo ~ t ~ hex)}. Then 


I X A U 0 X X C E C I X I~ C V, and -we define a retraction r:I X X --> E 


by 


r(t,x) (h(x),x) if t ~ hex) 

( t,x) if t ~ hex) 

Then Hr:I X X ___> Y extends G and the proof of 2·7 is complete. 

The hypotheses of 2.7 can be relaxed. The exerc i ses in Chapter I 


of Ru 's book, Homotopy Theory, provide references. In particular, -we note 


that O. Hanner proved (Archiv For i'iathematik, 1951 ) that a locally f inite 


s implicial complex is an absolute neighborhood retract (abbreviated ANR). 


A metr i c space X is an ANR if given an embedding of X as a c.losed 


ubspace of a metric spB,ce Z, then X is a retract of some open neighborhood 
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i n Z. Lemma 2. 9 i mpl i e s tha t. 8! fi ni te compl ex i s an ANR. From Hanner 's 

r esultit f ollows that 2 .7 hol d s "it h Y a l ocall y f init,e simplicial comple! 

2.10. DETn U T ION • A space X i s contracti ble i f the ident:ity map of X 

i s homotopi c to a constant map . 

Exer c i se . Prove that i f X i s contract i ble t hen ~ (X) "" Z and 

HS (X ) "" 0 f or' q > O. (Hint : ShO"I, that 8! contrac t i ble space has the 
q 

homotopy t ype of a poi nt . ) 

Note t ha t i f X i s solid and I X X is normal, then X i s 

contractible. Also , i f X i s any space, then t he coue ex (See V .2 f or 

a defi nition ) i s contractible. 

2 .11. PROPOSITION. Suppose that (X ,A ) i s a pair of spaces such t hat 

A i s closed i n X and has t he ab solute homotopy extens i on pr operty i n 

X. Suppose also that A i s contractible . If (Y, yO) i s the pair obtai ned 

from (X,A ) by ident i fyi ng A to t he po i nt yo' t hen t he ident i f icat i on 

map f:(X ,A) --> (y,Yo) is a homotopy equival ence of pairs . 

Proof : Since A i s contract ible t here exists a homotopy F: I X A --> A 

of the identity to the cons tant map s end i ng A to a poi nt aO €A. Since A 

has t he absolut e homotopy extens ion property in X, there ex i sts a homot opy 

G:I X X --> X which extend s F and sat i sfie s G(O,x) x f or all x€X. 

Define h: X - > X by h(x )=G(l, x ). Then h maPS A t o the poi nt a ' 
O 

Not i ng that the i dentif i cat ion map f:(X,A) --> (Y , yo) i s one - one on 

X - A, we de f i ne g mapping Y to X by 

-1 
: hf y f or' y E Y - YO 

g(y ) 
a i f y = yoOf 

??() 

and so h gf. The map g i s Then for a E A, gfa gyO ha ,aO 

(Y, yO) ha s t he quot i ent topolo~J i nduced by f. By continuous since 

compos i ng g with the i nclus i on (X,a ) ~ (X,A) we may r egard g a s O

mapping (Y , yO) i nto (X,A) • We show that g i s a homotopy i nvers e 

for f . 

Firs t, gfx lLx = G(l ,x) , so G i s a homotopy of gf and the 

I X A i nto A.) Next, defineident i ty . (Not e t hat G maps 

,- 1 , i s one - one on X - A, H(t, y) i s wellH t , y) = fG ( t , f y ) . Si nce f( 
- 1 A, but since G(t , A)~ AYdefined for YEY - YO' if Y YO ' then f 


Thus H i s s i ngle valued and leaves yo 
 fixed . 
we have f G(t, f -ly ) = YO' 


I X Y 
i s continuous , ,Ie use t he f act t hat t he topol ogy onTo sho\, t hat H 


1 X 1':1 X X - > I X y. (For 
i s the qu oti e nt topo l ogy i nduced by the map 


1:1e have
a proof , see Hilton , An Introduct ion to Homotopy Theory, p. 109 · ) 

the follml ing d iagram : 

(I X X, I X A) ~> (X, A) 

~l X f tf 

H
( I X Y, I X YO )~> (Y, yO ) 

i s contiuuous, the fact that I X Y has t he quot i ent topol ogySince f G 


implies that H is conti nuouS . Si nce
wiGh respe ct to 1 X f 

. (-1 ) -1- 1 H l ( ,y) = :fG l , f Y = fhi' Y f gy,
H(O ,y) ~ f'G( O, f'-ly) ff y: y and 


H is a homotopy of fg and the ident i ty on (Y,yO) ' This compl ete s t he 


proof of 2.11 . 

I -dimens i onal complex . Le t ting
Examples : 1. Let K b e a fiui t e connected 

A b e a maximal tree , 2.11 shows that K i s homotopi c all y equival ent to a 



wedge of c ircles . 

2 . Let K be the 2-torus 1-lith t'Wo disc s adjoined along t he 

generators of the fundamental group . Then if A is the union of t hese 

d i scs , p inch i ng A t o a pOi nt shows that K is homotopically equival ent 

to the 2- sphere. 

2 .12. PROPOSITION. Let (X,A) be a pair of spaces such t hat A i s 

closed in X a~d has the absolute homotopy extension property in X. 


Then the identification map 
 1i1O) defined in 2.11 induce s 

isomorphisms of Si ngular homology groups. 

Proof: Let j: I X A C CA denote the inc I us ion of' I X A, as the bottom 

half of the cone CA. Consider t he following commutative diagram, where 

X l\CA is the adj unction space of the inc l usion k of' A as the base of 

the cone CA: 

(X , A) 2-> (X U I X A, I X A) ..iT....> 
(x Uk r~ CAl 

f (Y'YO ) 

The maps are given as follows: i is the inclusion, J is induced 

by j:I X A C CA, and g is the projection defined by identifying CA 

to t he point YO ' The inclusion i is a homotopy equivalence of pairs, 

and J is a proper excision. USing 2.3, it is easy to see that CA has 

the absol ute homotopy ext ension property in X Uk CA, and so, by 2.11, 

g is a homotopy eqUivalence. Thus the composition f = gJi induces 

isomorphisms of Singular homology groups. 

3. Invariance of Domain 

In this section "W e prove some classical theorems about the topology 

of the n-spher e. Our principal result i s the theorem on invariance of 

m
domain which states t hat if U C R and V e Rn are homeomorphic open sets 

then m n. The proofs of the follo"Wing classical theorem and corollary 

"Were given in the Introduction. 

3 .1 . THEOREM. If n ~ 1 , then the unit Cn - 1 ) sphere Sn-l is not 

a retr act of the closed unit n-ball En. 

3 . 2 . COROLLARY. (The Brou"Wer Fixed-Point Theorem. ) Any continuous map 

of t he closed unit n-ball En into itself has a fixed point. 

Note that the proof of 3 .1 utilizes the concept of induced homology 

homomQrphism and thus depends upon Theorem VI 4.1. Since \ore are going t o use 

3 .1 to prove r esults "Which will lead t o proofs of the r edundant restrictions, 

it i s essential that we remark that the proof of 3.1 may be obtained using 

simplicial homology theory alone. We verified at the start that simplicial 

complexes satisfy the redundant r estr i ctions. Tbus"We may use Theorem 

Vr.4 .1 , stated f or simplicial complexes, to derive Theorem 3.1 above. 

If a space X is homeomorphic to [K [ for some r egular complex K, 

thus X is said to be triangulable and K is called a triangulation of X. 

3 .3. THEOREM. (Characterization of dime nsion of a finite regular complex) 


Let K be a finite regular complex . Then the follo"Wing t"Wo statements are 


equivalent for each n: 


(i ). The dimenSion of K i s less than or equal to n. 


( ii l .For each closed set A C iKi, every mapping f:A --> Sn is extendible 


,..,,..,-, 



over [K [ . 


Sta tement (ii) expres s es a topological property. 
 Thus the dimensions of two 

triangulations of IKI are equal and dimension is a topological property of 

triangulable spaces. 

Proof that (i) => (ii): Suppose dim K ~ n, and that f~ ___>Gn is given 

with A closed i n K. Then by 2.9, there e xists an open neighborhood U of 

A and a map g: U ---> Sn ~ich extends f. Using the compactness of A, 

we may subdivide K so finely the-I-, each simplex of SdsK meeting A lies 

in U. Set L equal to the subcomplex of SdsK consisting of all closed 

simplices meeting A. Then LCUand ( g ' L):L ___ > Sn extends f. Let 

-	 s 6M = L 1 U K-L. Then M is a subcomplex of Sd Y . By 2. , we may extendn-

g[L 1 	 to a map g ':M ---> Sn. Then g iL and g' agree on L 1 since 
n- n

pl n L = L 1. Thus we may define h:K _ > Sn by

n-

hex) 	 g(x) xe:L 

g ' (x) x e:101 

Proof that (i i ) ~ ( i): Suppose dim K > n. Let a be an ~n+l)-cel1 of 

K, and let f:En+l ---> a be a homeomorphism sending Sn onto a. Define 

g :cr ---> Sn to be the inverse of (fISn 
). If g were extendible to a map 

n ~ n+l n
h:K ---> S , then hf:E ---> S would be a retraction. This is impossible , 

and the proof is complete. 

3·4. THEOREM. (Borsuk) Let X be 	a closed proper subset of Sn+l,where 

n+l . n n~ O. If' X does not separate S ,then e very mapplng f :X ---> S is 

homotopically tri v ial . 

Theorem 	3.4 follo'..:s :;"rom the follo'\-ling theorem. 

Sn+l3·5· THEOREvl. Let X be a closed proper subset of If F is 

a set consisting of exac t ly one point from each component of Sn+l - X, 

and if f:X ---> Sn is an arbitrary continuous mapping, then there exists 

a finite subset F' of F and an extension g :( s n+l - F') ---> Sn of the 

mapping f. 

Proof that 3.5 => 3.4: Let X be a closed proper subs et of Sn+l which 

Sn+l n+l Xdoes not separate and let f:X _> Sn. Since S - is counect 

F has just one point, and so F' F or p In either case 3.5 asserts 

the existence of an extension g:(Sn+l - x ) ___>.Sn of the mapping I' for
O

some point xoe:sn+l - X. Since (sn+l - x ) is contractible, g, and hence 
o 

f, is homotopic to a constant map. 

Proof of 3.5: USing an arg~nt similar to the one used in the proof of 

Theorem 3.3, we take (K,L) to be a pair of finite regular complexes such 

that X~ L, and such that there exists an extension'KI = 
Sn+l 

g:L ---> Sn of the mapping f. Since the dimension of LUK is n, 
n n 

we may, by 3.3, extend (g ilL) to a map g': (L UK) -> Sn. Then g
n 	 n n 

and! g' define a map h:L U K - ---> Sn, and h of course extends f. 
n 

For each (n+l)-cell a of K not 	in L, choose a point x e:a and a 
a 

retraction ra: CG - x ) --> a. The composition of these retractions with 
a 

h gives a mapping h' : (K - {x )) _> Sn. 
a 

Now let {V. :.1.< i < k I be the components of Sn+l - X which contain 
l - 

points of {x}. Each x e:V. is 	an interior point. Let y. be the pointa all 

of F which lies in V.• Since V. js open and connected, there exists 
l -l 

Bn+la homeomorph of the closed unit (n+l)-ball containing simultaneously
i 

each xae:Vi and Yi' and such that Bi
n+l ~ V

i 
• 'Let r. 

l 
be a retraction of 
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n+l 
Bi - Yi onto the boundary ·n+l 

Bi Let Y Sn+l U 
i 

Int 
• n+l
B. •l 

Then the r e tractions r. 
l 

together with the mapping (hIIY) give a mapping 

hll: (Sn+l _ (y. ) ) 
l 

_ ,> Sn which extends f. To be precise, h" is defined 

by 

h"x h'x for x € Y 

n+lhlr.x for x € Bi
l 

The Theorem is now proved. 

n+l . n+l3.6. THEOREIl . Let X be a compact subset of R • A pOlnt X
O

€ R - X 

lies in the unbounded component of Rn+l - X if and only if the mapping 

g :X --> Sn defined by-Xo 

x - Xo 
~ (x) 

Ix - Xo Io 

is homotopically trivial. 

Proof: Suppose Xo lies in the unbounded component U of Rn+l - x. 


Since X is compact there exists a solid ball B about the origin containing 


x. Choose a point Xl€U lying outside B. Since U is open and connected, 

there exists a path h: [0,1] _> Rn+l such that h(O) = x ' hell = Xl'o 

and h(t) €U for every t € [0,1]. Define a homotopy H(t,x) by 

x - h(t)a(t,x) X € X, tdO,l]
Ix- h(t)1 
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H(O,x) = gXo(X) and H(l,x) = g (xl. Thus and g are homotopic.
Xl ' gxo Xl 

Since Xl lies outside of the ball B containing X, the image of 

g :X ----> Sn is contained in a hemisphere. Thus g, , and so also g , 
Xl Xl Xo 

is homot-opic to a constant map. 

Now suppose Xo lies in a bounded component V of Rn+l - X. We 

may assume that Xo is the origin of Rn+l and that X is contained in 

the ill1it ball Bn+l. Suppose that the map g ,which is defined by
Xo 

g (x) -b, is inessential. Then we shall apply the homotopy extension 
xo ,x , 

theorem (2.7) to obtain an extension of g to X U V. VIe must verify that 
Xo 

the h~~otheses of 2.7 are satisfied. Note that the boundary of V is 

contained in X. Thus X U V X U V is compact. Consequently X U V and 

I X (X U V) are normal. Clearly X is closed in X U V, and so we may 

apply 2. 7 to obtain a mapping g':X U V ~> Sn which extends g. VIe define 

"n+l ng:B -> S by 

if x € X U V g"x f~x 
if X € Bn+l - V

TxT 

Then g" is continuous since V is a neighborhood of the origin xO. But 

g" is a retraction of Bn+l onto Sn, which is impossible . Consequently 

g is essential and the proof is complete. 
Xo 

3·7· THEOREM. (Borsuk) If X is a closed proper subset of Sn+ll ~ 

X separates Sn+l if and only if· there exists a mapping f::l( --_> Sn 

wh i ch is essential. 



Proof: If X separates Sn+l, let Xo and xl be pOints in different 

n+l . .. n+l n+lcomponents of S - X. Under stereographlc proJectlon p:S --> R 

projects into a bounded component of the projection offrom xo' xl 

Sn+l _ X. By theorem 3.6, the map gp(xl):p:x:-> Sn is essential. 

If X 	 does not separate Sn+l,then apply Theorem 3.4. 

3.8. 	 COROLLARY. Let h:Bh -> Sn be an embedding of the closed unit 

. n n (n-l) ( n n-ln-ball In S. Then S - h S has exactly two components, h B - S ) 

Sn (nand -hB). 

BnProof: 	 Since is contractible, so is h(Bn ). Thus any map of h(Bn ) 

into Sn~l is homotopic to a constant. By 3.7, h(Bn ) does not separate 

Bn _ 	Sn-l _Sn. 	 Therefore Sn heBn) is connected. Since is connected, 

so is 	 h(Bn _ Sn-l). But h(Sn-l) separates Sn since h is an 

embedding, by 3.7. It follows that Sn _ h(Bn) , h(Bn _ Sn-l) are the 

components of Sn _ h(Bn ). 

3.9. 	 COROLLARY. (Invariance of Domain)(Brouwer) If U is an open set 

n ( n . n ( nof 	 Ror S), and ~ h embeds U In Ror S ), then the h-image of 

nU 	 is open in R (or Sn). 

Proof: 	 Let x be a point of U. There exists a closed ball B containing 

n x such that Be.. U. By 3.8, h(:B- B) is open in R (or Sn). Thus 

nhen) is a neighborhood of hx, and so h(U) is open in R (or Sn). 

Rn
3.10. COROLLARY. A none~ty open set of Can not be embedded in Rk 

for any k < n. 
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m n
3.1.1. COROLLARY. If U C...- R and V e.. R are homeomorphic open sets, 

then m n. 

4 . Proofs of the Redundant Restr ictions. 

Let P(q,r ) be the following statement : for all regular complexes 

K, if a is a q-cell of K and T an r-cell which meets 0, then 

'I" e.. a. We prove 

R.R.l. p (q,r ) is true for all q and r . 

Proof: The proof is most conveniently given in three steps. 


Step 1. P(q,r) is vacuously true for all q and r with q:::: r. 


Step 2 . P(q+l,q) is true for all q. 


Proof: Let a be a (q+l)-cell of K, and let T be a q- cell such that 


.~ nO- +,¢. Let f:S
q =--> cr be a hOIlleomorphism. Since ae.. Kq and 'I" 


is open in K , i-l'l" is open in sq. The restriction of f to 1'-1'1" 

q 

is a homeomorphism of f-l 'l" onto 'I" n cr. Since ~ n crC- '1", the restriction 

-1 -1of 	 f to f 'I" is an embedding of f 'I" in '1". But 'I" is homeomorphic 

Rqto • By the theorem on invariance of domain (3.9), 'I" n a is open in 

'1". Since 0- is closed, T n a ts c losed in ~. Since 'I" is connected, 

and 'I" n o- +¢, we have 'I" n 0- = 'I" and so 'l"e.. a. 

St ep 3 . If p (q,r) for all r, then p(q + 1, r) for all r. 

Proof: By Step I, p(q + l,r) is true for all r ~ q+l. By Step 2, P(q+l,q) 

is true. Let a be a (q+l)-cell of K. Define A to be the union of 

t he closures of the q-cells which intersect a. Since cr is compact, it 

meets only finitely many cells, by 1.4.4. Thus A is a finite union of 

closed cell:; and so A is closed. Since P( q+l,q) is true, each of the 
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We ne}.:t prove R.R.2. Nm, that we have proved R.R.l, 1.4.2 impliesq- cells which meets 0 is contained in cr o Thus AC cr. By construction 


cr C AUK 1 0 T,le assert that aC A U K for all r. This is proved that for each cell 0 of a regular complex, a is a regular subcomplex. 
_ q- _ r 

by a descending induction on r. Suppose that r ~ q-l and that crCA UK . Thus the following theorem implies R.R.2; _ r 

vle s how that cr C A U K l' Let ,. be an r-cell of K. If ,. interesects r  4. 2. THEOREM. Let 	 K be a regular complex on the n-sphere . Each q-cell 
A then ,. intersects a closed q-cell contained in A, and so, by P(q, r), 

of K is a face of at least one n-cell, and each ( n-l )-cell is a face of 
,. C A Ca. Suppose that ,. n A = jJ. We claim that ,. n a :: jJ. Since 

exactly two n-cells. 
,. is open in K, 	and A is closed, ,. is open in AUK. Let 

r 	 r 
f: sq --> a be a 	homeomorphism. Then f- l ,. is open in sq. AB in Step 2, Proof: Let 0 be 	a q-cell of K. Among those cells of K whose closures 

lf restricted to f- ,. is an embedding of f- l ,. in ,. . But 'r is homeomorphic contain 0, choose 	a cell ~ of ~~imal dimension. We 
r 

to R , and r < q-l 	< q . By invariance of domain ( 3.10), f- l ,. is empty. show that 1" is open in IK I. Suppose p is an arbitrary cell of K such 


Thus ,. n a= jJ , and so aC A U K _l • Thus cr C A U K for all r • So 
r - r that 1" meets p. Using R.R.l it follows that 1" Cp. Thus p contains o. 


cr CA. Thus a = A. Let,. be an r-cell of K such that ,. n cr of jJ. 
 Since ,. is of' maximal dimension among the cells of K whose closures 

Then since cr is a union of closed q-cells, ,. meets some closed q-cell contain 0, dim,. d.im p, and so 1" p. Thus 1" meets p in an open 

p contained in A. By P(q,r),,. is contained in p and so is contained in set, and so 1" is 	open in IKI. The theorem on invariance of domain 

o. Thus p(q+l,r) is true for all r. implies that dim 1" n. 


The proof of R.R.l is completed by an induction on q. P(O.r) is 
 Now let 0 be an (n-l)-cell of K. 'i'le have already proved that there 

true for all r by Step 1. Step 3 provides the inductive step. Q.E.D is an n-cell of K such that We show that there is at least0<1"1'"1 

one other n-cell 1"2 of K such that 0 < 1"2' Suppose, to the contrary,
4.1. 	lEMMA. Let K be a regular complex, 0 a cell of K. Let U be the 

that 0 is a face only of the n-cell 1"1' By 4.1, 1"1 U 0 is open in
union of all cells 1" of K such that 1" ) o. Then U is open. 

n -	 . n-l .
K. Let f: E --> 1"1 be a homeomorphism carrylllg S onto 1"1' LetI I 

Proof: We show that the complement of U is a subcomplex and thus is closed. - 1 n-l n 	 n (n n-lU = f oC S • Regarding E as a subset of R , the set E - S ) U U 

Let P be a cell of IKI-u. Then p does not contain o. By R.R.l, P does n . [( n n-l ) ]is not open in R. It follows by invarlance of domain that f E - S U U ="lUo 
-and so does not intersect o.not intersect o. 	 If Po < P theR Po CP Po is not open in IKI. This is a contradiction, and so o is a face of some 

ByR.R.l,p is the union of the proper i acfS ot p. Since
Thus Po C IKI-u. 	 n-cell distinct from1"2 	 1"1' 

So IKI-u is a union of theeach proper face is contained in IKI-u, pC IKI-u. 
He complete the proof by showing that 1"1 and 1"2 ar'e the 


cells of a collection satisfying 1.4.2. Therefore [KI-u is a 8ubcomplex. 

only n- cells having 0 as a face. Any nei ghborhood of a face of a cell 


Thus U is open as desired. 

contains points in the interior of the cell, so it is clearly sufficient 
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n 
to ShOH that 1"1 U a U 'r2 

is a neighborhb.od of a . Let f2 :EO -> 'r2 
n-l (be a homeomorphism carryi ng So onto 'r2 ' Here E~ is a copy of En. ) 

We define a homeomorphism h sending an open n-ball E into 'rl U a U 'r2 

such that a C heE l. Let E+ be the upper half of E together with the 

open equatorial disc D, and let E be the lower half of E together 

with D. Finally, define ala ~o be the cone on f~l (c ) with apex at the 

origin of 	 En, and let C a be the cone on f;l ( a) with apex at the origin
2

n 	 Claof EO' Then the set * Cla - (origin} is homeomorphic to the product 

+ * (0,1] ~ a, and so there exists a homeomorphism hl:E -> Cla carrying D 

-1 
onto fl 	 a. Similar l y, there exists a homeomorphism ~:E - -> C* 2 a carryir 

-1 [D onto f2 a and such that f2h2 D flhl[D . r.,le define h:E-> 'rl U a U or;: 

by 

if x e: E+ 
h:X: = ( flhlx 

if x e: Ef2h2x 

Then h maps E homeomorphically into 'rl U a U 'r2 and carries D onto 

a. Thus aC h(E), and by invariance of domain, h(E) is open in [K[. The 

proof is complete. 

En @_l
C· a f a

1 1 

)/ ~. 
E EB 

~@_l~ * f2 a 
Eon C a 

4.1. THEOREM. (Lemma 11.5.3) Let K be a reG~ar complex on Sn. Then 

K is an orientable n-circuit. 

Proof: The preceding proposition states that every (n-l}-cell of K is 

the face of precisely two n-cells of K. Since K _ is of dimension n-2,n 2 

we know from the proof of 2.6 and from Borsuk's Theorem (3·7) that K 2 n-

does not separate Sn. Consequently the union of the n- and (n-l)-cells 

of K is connected. From this it follows very quickly that any two n-cells 

of K can be joined by a path of n-cells. To see this, let a bean 

n-cell of K. Set A equal to the union of the closures of all n-cells 

which can be connected to a by a path of n-cell.s. Then A - K _ is both n 2 

open and closed in K-K _ · Consequently A = K-K _2 · n 2 n

In proving that K is orientable we are going to use V1.4.9 

(Topological Invariance) and so we have to be a little bit careful. 

Let C be the statement that Theorem 4.1 is satisfied in dimensions 
n 

< n . Let Dn be the statement that all regular complexes of dimension < n 

can be oriented (R.R.3). By Theorem 11.5·6, C => D l' For in provingn n+ 

that for any complex K of dimension at most n+l there exists an incidence 

function for K, we only need to know that the boundary of each q-cell of K 

is an orientable (q-l)-circuit for q ~ n+l. Using the theorem of topologica: 

invariance, we see that Dn+l => C +l . In detail, if K is a complex on n 

the (n+l)-sphere, then by R.R.l, R.R.2, and D l' we can define homologyn+ 

groups f or K, and by topological invariance, H l(K) is isomorphic ton+ 

H l(Sn+l) ~ Z. Thus K is indeed orientable. Since is obviouslyn+ Cl 

true, it follows that C is true for all n. This proves 4.1. As in n 

11.5.6, 4.1 implies R.R.3. The proofs of the redundant restrictions on 

regular complexes are complete. 
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5. Regular Quasi Complexes 

On this section we prove that a r egular Cluasi complex is a complex. 

The key step in the proof, Lemma 5.3 below, is due to Dennis Sullivan. 

5.1. IEI,lMA. Le t K be a regular Cluasi complex . Let a be a cell of 

K such that the number of cells of K contained in a is finite . Then 

a is a union of finitely many cells of K. 

Proof: The proof is by induction on the dimension of a. If a is of 

dimension ° or 1, the lemma is obviously true. Suppos e that the lemma 

is true for cells of dimension <q. Let a be a q-cell such that the 

number of ce.lls of K contained in a is finite. Recalling Step 2 of 

the proof of R.R.l in §4, we note that property 7) of Definition 1.1.1 

is never used. (Property 6) is not used either.) Thus any (Cl-l )-cell 

which meets a must be contained in a. Let A be the union of the 

closures of the finitely many (q-l)-cells which are contained in a. It 

follows, just as in Step 3 of the proof of R.R.l, that a= A. Let ~. be 

a (q-l) -cell in A. Then T ea and so any cell contained in ~ is 

contained in a. Since the number of cells contained in a is finite, 

the same is true for T. By the inductive hypothesis, T is a union of 

finitely many cells. Since there are only finitely many (q-l)-cells contained 

in 0, and a A is the union of their closures, a itself is a union 

of finitely many cells. This completes the proof. 

5.2. IEMMA· Let K b e a r egular quasi complex, and let a be a q-cell 

of K. Then the number of r-cells which interSect a is countable . 

Proof': Let a be a q-cell of K, and suppose there are uncountably many 

r-cells, ~a' a ranging over an index set A, which intersect a. Choose 

a point x € ~ na for each a € A. We claim that some point :n: isa a 
a limit point of the set S = ( xa1a € A). Let L be the set of limit points 

of S . Let d(x, y) be a metric for a. Then if U ,n=l,2, ... , denote·s the 
n 

set of points in a whose distance from L is less t han ~, we have 
n 

n U L, since L is closed . Each Un must contain all but a finite number 
n n 

of the xa's, because a is compact and so any infinite subset has a limit 

point . Thus the intersection of the Un' s contains all but countably many 

of the xa 's. For some a, xa € L. But xa € ~a' and ~a is an open set 

in K . ~ is thus a neighborhocd of x which contains only one element 
r a ex 

of S. So x cannot be a limit point of S. This contradiction establishes a 
the l emma . 

5. 3 . IEMl-lA. Let K be a regular quasi complex . Let a be a cell of K. 


Tben the number of cells of K contained in cr is f inite . 


Proof: The proof is by a double induction. Let Q(q,r) be the statement 


t hat the number of r-cells contained i n the closure of each q-cell is finite. 


Step 1. Q(O, r ) is clearly true for all r. 


Step 2 . Q( q,o) is true for all q because the closure of a cell is compact 


and the zero skeleton KO is discrete. 


Step 3. Suppose that Q(s, t) is true for all pairs (~,t ) with s < q. 


Suppose that Q(q,t) is true for all t < r. Then Q(Cl, r ) is true. 


Proof: Let a be a q-cell of K. Let T be an r-cell contained in a. 


Since r < q, Q(r,t) is true for · 11 t, and so the number of cells contained 


in T is finite . By Lemma 5.1, i is a fin ite union of cells. Assume that 


(* ) The number of' r-cells contained in a is infinite. 
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We will show that (* ) leads to a contradiction. This will prove Q(~)r). 

steps 1)2 and 3 prove the leIlllIla by double indu.ction. 

Since Q(q)t) is true for all t < r) the collection C of all cells 

of dimension < r which are contained in CJ is finite. ;For each T-cell 

T Cal i is a finite union of cells of the collection C. There are only 

finitely many such unions. Thus (*) implies that there are infinitely 

many r-cells T )T ) .•• contained in CJ) all with a common boundary Sr-l
l 2

We show that this is impossible. Let (x . ) be a se~uence of points I~ith 
l 

Xi€ T for each i. Such a sequence we call a fundamental sequence in the
i 

cells T.. We define the limit su£erior of the cells T.) written lim sup T.)
l l l 

to be the set of all limit points of fundamental se~uences. Since the 

r-skeleton of K is closed) lim sup T. r K. Since each r-cell of K is 
l ~ r 

open in K ) and any fundamental se~uence in the cells intersectsTi 

any (open) r-cell in at most one point) no fundamental sequence has a limit 

point in any r-cell. Thus lim sup 'r. C K l' Since CJ is closed) lim sup 

r 

l r-

Ti CK _ 0 CJ. By lemma 5.2 ) K _1 na is the union of countably manyr l r 

closed sets of dimension less than r. Thus) by the sum th~orem for 

dimension (Hurewicz and Wallman) Dimension Theory) p. 30)) the dimension 

of K 1 n a is < r-1. This implies that dim(lim sup T.) < r-1. But this r- l 

is impossible) as shown by the following lemma. 

5 .4. LEMt.ffi. · is_.::T.:::h.:::e--=.s.:::t;::a.:::te.:;m=e.:;n.:::t~(,-*_)<-.:im=p.:::l:.:i:.:e.:::s--=t.:::h.:::a:.:t---=.t=h.:::e_d=im=e.:;n.:::s:.:l::..:o:.:n.:......:o:.:f:.-::l.:::im=-.:::s.:::U""P.......:.Ti_

> r. 

r-l
Proof: The common boundary S of the cells Ti is a closed subset of 

lim sup Ti . Suppose that the dimension of lim sup Ti is < r-l. Theorem 

3.3 of this chapter can be generalized as follows: 

THEOREM. A separable metric space X has dimension < r-l and only if for each 

r-lclosed subset C and each mapping f :C ---> S ) there is an extension of 

f ove:c all of X. 

The proof is given on page 83 of Dimension Theory . Applying this theorem 


r-l r-l r-l
with X lim sup Ti ) C S ) and f = identity : S ~> S ) it 

follows that Sr-l is a :t'etract of lim sup T.. 
l 

Next) an easy arGUlllent shows that lim sup Ti is closed in CJ. He now 


use the following theorem, proved on page 82 of Dimension Theory. 


THEOREM. Let C be a closed subset of the separable metric space X) 


and f a mapping of C to Sr-l . Then there is an open set containing 


C over which f can be extended. 


Applying t his theorem with C lim sup T ) X CJ) we may extend thei
 

retraction obtained above to a retraction r 
 of some open set U containing 

lim sup T.· Suppose that ~. CU for some i. The restriction of r
l l 

to Ti gives a retraction of T. onto sn-l) which is impossible by 3.1.
l 

Thus for each i there exists a point X.€ Ti - U. The se~uence (x.} 
- l l 

converges to some point y since CJ is compact . By definition) y € lim sup T 

But each Xi lies outside of U) and since U is open) y ~ U. This 

contradicts the fact that lim sup Ti CU. Thus the proof of 5.4) and 

hence that of 5.3) is complete. 

5 ·5. COROLLARY TO LENHA 5·3. A regular quas i complex satisfies R.R .1. 

Eac h closed cell is a union of finitely many cells. 

Proof: This follows immediately from 5.3 together with 5.1. 

5.6. THEOREH. A regular quasi complex i s a complex. 

Proof: Let K be a regul~~ quasi complex. We have to prove that for any 

given q) if A CK meets every closed c:ell of dimension < q in a closedq 



s e t, then A is closed in K. Thus we must prove that A meets any 

closed cell of K in a closed set. Let a be a cell of K. Then a 

is a union of f initely many cells, by 5·5· In particular, a n K 
q 

is a 

union of finitely many closed cell s . But A intersects each of these 

closed cells in a closed set . Thus A n -; is a finite union of c l osed 

sets, and so is c l osed . The proof is complete . 

Chapter IX 

SKELET~L HOMOLOGY 

In thi s chapter we introduoe t he concepts of skeletal 

decomposition of a apace and of skeletal homo logy groups. 

We show that there is a natur a l isomorphi sm of ske le tal 

homology groups and singul ar homology groupe of the under

lying space. We also justify the methode and r esults of 

Chapter III. 

1. Ske l etal Homology. 

1.1. DEFINITION. ~ fil t r ation of a topologica l s pace 'xl 
is a n increasing sequence X - r-O, 1, . . .J of closediXrl 

sub spaces of Ixl such that U X - Ixl· A filtration X is 
.. r 

cal l ed a skeletal decomposition of the space Ixl if the 

f ol l owing two conditions are satisfiedl 

Si) Fo r all r ~ O and for all q +r, H (X , x _ ) - 0;
q r r l 

we set X_ l - " for convenience. 

ii) Ixl has the weak topology with respect to the 

subspacea X • 
r 

1. 2 . PROPOSITION. If K is a (not necessarily regular) 

S S complex. then Hq(Kr' Kr _1 ) - 0 for q t r, and H (K ,K 1)q q q-

is isomorphic to the f ree abelian group generated by the 

9-ce11s of K. 
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Proofs Let r be given. For each r-cell ~i o~ K ohoose a 
r r-l _.

relative homeomorphism ~il (E ,S )--'{or-.~). Define 

Un - VfJ txt Erl Ixl < 1/n1] Let V· Kr - and let, U3 
W • K - U2 • Then V and Ware open in X , and the olosure r r 

of W is contained in V. The i nclusion (X • X _l ) S; (X ' V)r r r 

is a homotopy equival ence of pairs--a homotopy inverse maps 

V by radial projection to K _ and dilates U along radius r 1 3 
vectors onto Kr--and so induces iso.morphisms of singular 

homology groups. The inclusion (X -'if. V-'if) C (It • V) is 
r - r 

a proper exoision, and thus induces isomorphisms of singular 

homology. Finally. the pa ir (Xr-W, V-W) - (U 2' U2-U 3) is 

homotopy equivalent 8S a pair to (U2 ' U2). Thus uS(r:, Kr 1)q r 
S - .)is isomorphic to Hq(U 2, ' and the conolusion of theU2 

proposition no. ~ollows from the tact that W2 is a union 

of disjoint closed r-cells, one for each r-ce1l ot K. 

We next construct an explicit ieomorphism ~ mapping the 

Stree abel ian group on the q-oells of K to B (X ,K 1)' For q q q

eaoh q-cell tT of K, choose a relativ-e homeomorphism 

fer' (Eq , s q-1)--+(cr,Cr) and a generator u,E Bq(E
q 

, sQ-1) . 

Then we define 'S (cr) to be the class in aB(X • K 1)q q q-

represented by [urI ~f..]E a~'(Eq, SQ.-I), where \r 
is the inclusion map of the pair (cr t!r) in (X, K 1) • 

I q q_ 

It follows ~rom the proof of 1.2 that 5 so defined is an 

isomorphism. 
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1.3. COROLLARY. The sequence of skeletons ot a complex It 

is a skeletal deco mposition of ths underlying apace lIe!. 

Exercisel Give a proof of 1.2 using VlII.2.l2. 

Let X be a filtration of the space Ixl satisfying 

condi t ion ii) of Definition 1.1. Let fB:(Xn)s q fixed, 

n • 0. 1, .. .J be the direct eystem with admis8ib1e homo

1II0rphisms induced by the incl usions X eX. m5 n. 
m- n 

1.4. PROPOSITION. For every g! as( Ixl) :::: Lim as(X).
q n q n 

Proofs Por each n we have a homomorphi8m h: aSCx )--to
n q n 

H:(IXI ) induced by includon. Suppose u, a:(x.) has the 

succeS80r T ~ a:(X ). I f.,e let i denote the inclusion o~ n

X in X , this me&os that 1* 
S 

u - v. I t follows. using
III n 

property II of singular homo l ogy theory, that hn(v)

Shn(i.u) - hm(u) . Thus the hn'e induce a homomorph1am 

h: Lim as(X )--+as( Ixl ).
n q n q 

We ahow that h i 8 an i 80morphism. First note that if 

Y i8 a compaot set contained 1n lxi, then Y i8 oontained 

in Xn for 80me n. ( One prOTes t hia using sequential com

pactneas, aa in the first part of the proor of 1.4.4.) 

Nezt, let xE H:( Ixl) be repr esented by [u, rJ t where 

uE Hq(K) and t is a map of t he f ini te complex X int o lx,. 

Sinoe rex) i s compact, f maps K i nto X f or some n. Thus 
n 

(u. t] represent s a clas 8 y in H~ (Xn)' Clsarly hnY. x, 
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and so h is onto. Nex t, suppose that XE KS( X) is such q n 

that h x • O. Choose a represent ative [u, fJ fo r x, where 
n 

u is in H (K) and f mape the fiI.ite complex K i nto X . The q n 

class h x is represented by [u, jf]. where j denotes the n 

incl usion of Xn inlXI. To say that h x • 0 means that 
n 

there exists an embedding k: K S L, where L is a finite 

complex, such that k. u - 0, and a map g: L-+JxJ suoh that 

gk - jf. Since L is compact, g maps L into X. for some 

lilt and we lIlay assume that m~n. If i' denotee the inolusion 

of Xn in X.' then i t follows that (l')~X - class of (k* u, til • O. 

Thus x repr esents the zero of Lilli H:(X ) and so h 1s '8. 
nn 

monomorphism. The proof of 1.4 is complete. 

1.5 . CO ROLLARY. Let X be a skel etal decomposition of the 

space Ixl. Then for each pair of integers g. r, with 9< r, 

(j )*5, Ffl(X )~ HS(IXI ) , where j denotes the includon of r qr q --r 

Xr in Ixl. 

Proof: Let k be a non-negative integer, and consider the portion 

US (X X )--+ HSe X )~KS( X ) Ji3(x X)q+l r +k+l ' r +k q r+k q r+k+l --. q r+k+l' r +k 

of the homology sequence of the pa ir (~ k l ' X k) ' Since 
r+ + r + 

q < r, the two r e l ative groupe a re zer o, and so i . is an 

isomorphi sm. Thus the limit group of the direc t system 

~H~(Xn): q fixed, n - 0. 1, •••! 1s i somorphic to H~ ( Xr) ' 
and we apply 1.4 to comple te the proof. 
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With each skeletal decomposition X we associate t he 

chain complex C(X) - (iCqCX)~,~), defined as follows. 

For each q, C (X) - USCX • X 1)' and a : C (X)-+C l(X)q q q q- q q q-

is the boundary operator of the triple (X, x l' X 2)'q q- q-

That is, if" ~*: Jti(X , X l)~HS l(X 1) is the bound.aryq q q- q- q

operator for the pair (X, X 1) and j.: BS leX 1)--+q q- q- q

U:_l(Xq _1 , Xq _2) i.s the homomorphism induced by the 

inclusion, then aq - j.~*. See the diagram below: 

S( X 1) ~"" c (X) - Hq Xq ' q - ~-S (X ) 
q Hq_ Q-l

lh t i• 
c l( X) • <-1 (Xq_l , Xq-{.\'H (X 2)

Sq- q-2 q-I ~_1 ,...-,;.. 
C J. (X) - H~_2(Xq_2' X _3q-2 q

Since b.j* - 0 in the homology sequence of the pair 

(Xq _1 , X q _2 ) , ~q-l~q - O. e(x) is oalled the skeletal 

~ complex of X; the homol ogy groups of C(X) are called 

the sk.eletal homology groups of X and a.re denoted by B.(X). 

After looking at an example, we will prove tha t the 

skeletal homology of X is isomorphic to the singular homology 

of the underl ying space Ix\. (See Theorsm 1.7 below.) 

This 1eomorphism, together with t he co nclusions of 1.2 and 

1.3, give a method of computing the homology groups of th.e 

space underl y ing an arbi t rary irr egular complex. 

Example: The homology of a torus SPx sq, where p and q are 
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posit i ve integers. SPx SQ. is the underlying apaoe of an 

irregular complex with four oel l s of dimensions 0, p, Q., 

and p+q. Consider the skeletal decomposition K of SPx sq 

given by skeletons of ths oomp1ex. We claim that the 

boundary operator in 0(1) is zero. In dimension p+q, 

there 1e a commutative diagram: 

c (X) - rr (sP>' SQ. SPv sq)
p-t-q - p+q "I. ' 
al Ifp+q-11(;PvsQ.) 

J,j" 
C (K)-BS (Spv sq X )

p-t-q-l - p+q-l ' p+q-2 

The proposition below asserts in particular t hat 

i., HS l( SPy sq) ~HS ·l(SPX sq) is a monomorphism. By
p+q- p+q

the exactness of the singular homology sequence of the pair 

( SPKSq spvsq) ~Srrf3 (SP)(sq sPvSq)~HS (SP'IISq) is 0 
• , .. p+q' p+q - 1 • 

and thus also a: 0 (K) ~e..< I\K). we leave the reetp+q p...q-

of the proof that ~=o as an exercise to the reader. 'rhe 

skeletal homo l ogy of the decomposition K is then free abelian 

on generators oorresponding to the four cel l s of SPXS
q 

• 

1.6. PROPO SIT ION. Let K and L be regular complexes. Choose 

vertioes vII and w6.L. Then t he inolusion iJ I",L. 

K)( w V v)( L S: K k L induoes a monomorphi sm of homo l ogy groups. 

Proofl In the proof we use cellu l ar homology. Any oycle on 

K "'L is a sum of a cycle on K and a cycle on L . But K and L 
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are retraots of KXL. Thus the homology groups of KVL, 

whioh in dimensions greater than zero split as the di rect 1Jum 

of the homology groups of K and those of L, must map mono

morphically into the homo l ogy groups of K "L. 

Let X and Y be skeletal decompositions of spaces \xl and 

Iyl. A map fr Ixl.-.trr is called a skeletal mapping from 

X to Y if' f maps Xq into Yq for each q. A skeletal 

mapping from X to Y induces homomorphisms from H~(Xq' X _l )q

to HS (Y ,Y 1) for all q, and it £ollows from propertiesq q q-

I I and III of singular homo l ogy that these homomorphisms 

dsfine a chain map from C(X) to e(y). This ohain map induces 

a homomorphism of skeletal homology, denoted by f." 

We now show that if X is a skeletal decomposi t ion of a 

epace \xt then the skeletal homology of X is naturally 

isomorphic to the singular homology of lxl . For each q, 

inclusions induce homomorphisme of singular homologyl 

d. 
H!(Xq)---'B~(Xq' X _1) • Cq(X)q 

~P 
H~(Xq+l) 

1.7. THEOREM.. The homomorphisms oc. ~, de1'ined above induce 

an isomorphism ~X: B (x)-..gS(lxl) for each 9. This isoq q 

morphiem ie natura l under skeletal mappings I i.e •• if f: X-fY 

1s a slceleta~ mapping then the diagram belo" is commutative for 

each 9. 
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..", 
SH q (x) -4Hq ( Ixi ) 

'·1 ,!1
1'
H (y)--4HS( IXl )q q 

SProof; First note t hat H 
q

(Xr ) ,. 0 for r <q. This is 


proved by induction on r, using condi tion i) of Def inition 


1.1 and the exact homo l ogy sequenoes of the pairs (X t Xl)'r r-

In particula.r, H5 (X 1). 0, and so 0(. is a monoaorphiSIII.
q q-

Next, by 1.5, the inclusion of X
q+

1 in Ixl induces an iso

morphisa of singular homology, and by a similar &.rg'Ullent 

A I HS(X ) -+HS{X 1 ) i s on t o.I'" q q q q+ 

We now construct l'x. Let uEHq{X} be represented by 

Sthe skeletal cyc l e z 'H ( X ,X 1)' "'e then havs ~ z -« c).z - O. q q q-

Since oc. is a lIonomorphism, a.1I - O. Thus z -oc.y for sOllie 

y E Hq (X ), and since 0( is a monomorphism, y is well-defined.q 

Denote t he inclusion of Xq+l in txl by jq+l' Then we set 

1x(u) - ( j q+I ).P y. If u is also repr esented by 21'. 80 t hat 

Sz' - z - ~ x -0( a.x f or some x i H 1 ( X l' X ), then 70' q+ q+ q 


Z +01: ).x - 0( (y + a.x). Since 


(jq+l).~ ( Y + ~.x) - ( j q+l) --I'Y + (jq+l ).pa.x 

• (jq+l).py· '1 a. - O) • 

it f ollows that ~x{u) is well -defined. 

It i s clear t ha t tx as de f ined above is a homomorphi sm. 

Suppose that 1"x(u) - 0 . If u is repr esented by z - «y, then 
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'>"x(u) - ( Jq+l).py - O. Since (jq+l). is an isomorphism, 

fJy - 0, and so y - ~*x tor some XEH:+I(Xq+l • Xq). :But 

then z -GeT -0( a. x -?> x, and so z ill a boundary and 

u - 0. Finally, t he fact thatj3 is onto impl ies immedi ately 

that 1'x 1s onto, and ao ')"X is an isomor phism. 

The p.roof that 1"x is natur al with respec t to skeletal 

mappings is an easy exercise in the application of proper ties 

II and I II of s ingular homology and is left to the reade r. 

1.8. COROLLARY. (Theorem 5. 1 of Cha.pter III ) Let X be a 


topological space untie rlying a complex I with the property 


that for each 9 t he topo l ogi cal boundary of each 9-cel l l ie s 


in t he (g-2)-akeleton of K. Then for each 9 HS(X) is iso

q 

morphi c to t he free abe l ian group on the 9-ce11s of K. 

Proof: The sequence of ske l e t ons of X i9 a ske l etal de com

pOSition of X by 1.;, and we shall denote this de compos i t i on 

by K. By 1. 7, the e i ngular homology groups of X ar e isomorphic 

to the skele tal homology groups H* (K) . We show t hat the 

boundary ope r a t or in C(I) is identi ca lly zer o. Ac cording to 

1.2 and the r emar ks f ollowi ng , Cq(X) - ~(Kq' K _1) is iso
q

morphi c to the free abel ian group on the q- cells of K, and 


t he ge nerator ! (V) cor responding to a given q-cel l a is 


repre s ented by [u ' \rf",] £ H!-'fcr(Eq , s q-l ) . The class
cr
 

~~(~) in C le x) - as I(X l' K 2) is represented by
.;) q- q - q- q 

247 

http:Jq+l).py
http:jq+l).py


[a.~, j(~ISCl-l)] £ R~~i-'t>Cl-1 ) (SCl-l). where jJCr~(KCl_l' K 
Cl 

18 	the inclusion. By hypothesis i:r c: K 2' Thu8 the composition
-	 q

j ( 1j,.JsCl-l) sende sq-l into K _ , and ao induces a map h of q 2

the pair (sq-l, sq-l) t o (X l' K 2)' It It. I sq-l ~ 
q- q

(sq-l, sct-l) danotea inclusion, t hen [a.u.. , j(~lsq-l)J 

baa the aucceuor [k.ait 1lcr' h] f. H! -1(sq-1. sq-1) • But thia 

latter group is zero, and so ~ !(cr ) • O. Thus the boundar,y 

in e(x) is identically zero. and so 

H~(X) - Hq (X) 

• Cq(X) 

• 	 free aba1ian group on the 

q-ce11a of K, b7 1.2. 

For the final theorem of thia section we suppose that 

K ia a regular complex oriented by the i .ncidence function «. 
Let e(K) denote the oel lular chain complex for the oriented 

regular complex X and let D(K) de note the skeletal chain 

oomplex associated with the akeletal decompoeition of X giTen 

b7 the skeletons of X. 

1 .9. THEOREM. The chain complexes e(l:) ~ D(K) are chain 

isomorphic. 

Proofl We define a chain isomorphism ¢ mapping e(K) to D(K). 

Let tT be a q-cell of K. Then rl. 1 e (K)~D (x) - SS(K ,K 1)rq q q q q q

mapa the generator ~ of 0q(X) to the aingular homology class 
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represen ted by (u • ier] E Hi,(i',ir ) , where 1er: (cr, Oo) ~ _ ) 	 cr q2
(K ,K 1) denotes inclusion a n d u_i H (;P,;') i s aq q_ 	 qv 

generator chosen inductively ae followe. In dimension zero 

we 	 demand only t hat in each connected component of K the 

cla8ses U ' RO(A), A a vertex of K, be homologous in K.A 

In dimension 1, ~e choose Ucr s o as to s a ti sfy 

~u.. - [crt 1aci.uA + [0"1 ~_j.~, where A and B are the 

vertioes offJ' and 1: ASci' and jl B~h- are the inclueions. 

How assume that u.e' Hr(f, + ) haa been chosen for each 

r-cell "t of dimension less than q, whe re Cl~2. Let tr be a 

q-ce1l, and euppose that'l" is a (q-l) -face of tr. Ths inclueion 

11 (r, 1:-) ~ (ci',.r-t') 1 8 an exoision of regular complexes and 

so induces i somorphi sms of cellular homol ogy groups. We 

next consider the inc l usion fr C; CG-t c1'-T) . 

1.10. LEJnlA. The regula r complex er-T is acyolic. 

Proof: By comparing ir...-r with;" we s e e that ;--r has no 

non-bound ing cycles exoept perhaps in dimension Cl-l. In 

dimension q-l, any cyole inCr-'t IIlUS t a l so be a cycle in ir 

and hence a mul tiple of the fundame ntal cycle ino-. But 

the fundamenta l cycle in ir ha s ooefficient ±1 on the ce11 1" t 

and so there are no (q-l ) -cycl es in (,--T. 

Thus the incl usion klCT C; (cr,ir-1') induoes isomorphisms 

of cellular homology groups in dimensions greater than zero. 

It fol l ows that we have isomorphi sms: 
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-..I;. i . .. k* a* _.
(1) H l(?"~ )---+H l~<r,cr-t')+-- H l(b)'--H (6',<7' ) 

q - ~ q - ~ q- :::: q 

We deno te t he c ompo s i tion by e (cr, 't" ) : H 1 (f, -to )-+ H (ii, iT) . 
q- q 

Finally, we s e t Ucr = [cr: T].. 9(<r,'t") u t'. 

1. 11. LEMMA. The de fini t i on of Ucr given above is 

independen t of t he choice of "t". 

Proof: If 't" is another (q- l) -face o f tT then, since iT is 

an orient able ( q-l)-circui t , the r e is a chain of (q - l )-cells 

from ~ to ~'. Therefore i t is s ufficient to sho w that t he 

def init ions of u~ are t he same if we start f r om adj acen t 

cel ls T and T'. We let f be a (q-2)-face of T and ~'. 

We have defined isomorphi sms 

e (cr, T) I H let, i' ) -+H (~, cr)
q- q 

e ( a-; 'l"') : H 1 cF~ i') ~H (i, iT ) q- q 

e(T, f) : Hq_ cf. P)~Hq_/~' t)2 

- . e (,r: p) : Hq -2 (P' p) H CT' 'l' ')q-1' . 

We wan t to show that 

(2 ) (CT :'t] 9 (CT, 't")U-r = [cr,T']9(a',T')u....,.
G( ., T 

Substituting e x pressions in terms of for ~ andup u.r, • 
we replace (2) by 

(cr:-r][-r:pJ&(CT/'t) e(t',p) lAp =[cr:'t'][-t ' :p] eCa:;"r') e(T~p) "p. 
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Since [G'":TJ['t'~f] -+ [G'":-r'] [T': p] =0 it is suffi cient 

to prove that 

0) eCcr,T) a(T1 p) = - e(~'t') &("r~ p). 

In the proof of (3) we wil l u se the f ollowing " he xagonal 

l e mma", wh ich is proved in Eil enbe rg and s teen-rod, 

Foundations of Algebraic Topology, p . :5'8. 

1. 12. LEMMA. Cons i der the d iagram of S!0uEs and homomor-

Ehi s ms be low: 

~Gl~ 
G6 k i G2

t~G.-:(T

2 ~7~ 2 

j 

k t'1 
1 

G ~1 G5~2~3 
j3 (7 i 3 

4 

Assume that 

a) Each triangl e is commu t a tive 

b) i2 a nd j 2 a re isomorphi sm s 

c) Ke r f2 = 1m II ~ Ker g2 1m gl 

d ) k 2 kl - 0 

Then it follows that i3 i;l i l ~ - j3 j;l jl" 

In applying the he xa gonal lemma we consider the diagram 

on the next page. The homomorphisms are boundary maps and 

maps induced by inclusion . The composition of the vertical 
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H,,(5',o-) 

"altl z 

Hg

1~. 
,'" ......H,.,{Cr, cr-t') 

-l(tT) 

. ( 
.. ~ 

Mo., (cr,O"'-t)" ~_ (. 

· ~ - ~':-l:.:y
,.. 


(eJ(iSio 


~_,(f.)r~ (tvi')-f) 

H\_I(f~'F, -tu~ 1 ~T"i"~T.+J 


_. /~(fI~i"i~~~~ 
_ 
11,-, ('t"/t') -It,~(i~t') H,.i't',i') 

"*f / 1 ~ ~/~

Ho-2(t) H /,- .If.' . ') ) H,_t.(V)

D . ~ tool,t'''''l',\t'vt' -p 

~\, '/' jct«<~ \ i: eCt;e) 
H!;"3.(i-,i-:> ( Hta(ot" i'-& 

~~ H,.q(~,e)~) 
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maps from R(ii,t1) to H 2(O,P') via H l (T'",T:t-..,r)q q- l q-

is zero because the map froID H le;...?(i- ...i'J-..1 t o H 2(tut-')q- P q_ 

factors through Hq_2(~v+~-,), and eo two eucce8s~ve maps 

of the exaot homology sequence of the pai r (i ...i" ,(i'v'i")~ 

oocur. The sequence 

H l(~' t) ~H lef... -r-',t ...t') ~H lCi .. :r',-r",t)q- q- q

is easily s een to be exac t --in fact i t ie isomorphic to t he 

split exact sequen ce Z~Z.Z --+Z. The commuta tivity of 

al l t he necessary triangles follows by nat u r al ity and the 

boundar y axiom of cel l ular homology. Thus the hexagonal lemma 

applies to yield (3) as desi red. 

According to 1. 2 and the r emarks before 1. 3, the map 

Jl so defined is an i somorphism fo r each q. Thus t he pr oof q 


of 1.9 wIl l be compl ete when we show t ha t the diagram be l ow 


ie commutative for each q: 

C (K) AHS(K • Kq 1)
q q q 

1a~ 
~ H~_l(Kq _l )1~,-t ! k~ ( inC l usion) 

Cq_1CK)~H~ _l (Kq_ l ' Kq_2) 

LetfT be a q-cell of K, (We assume tha t q~2 ; the proof 

f or q 0 or 1 is easy.) Then ~ 
q 
(~) i s represen t e d bys 

[u.,... 1a]'H~(ci.cr). Thus k~b~¢q(cr) is repre se nte d by 


[~*Ucr' k~f'<:l (cr). where j :Cr~ Kq is t he inclusion.
_l 
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Let L denote the (q-2)-ske l eton of<T. The oomposition kj 

oarriee L into tbe (q-2)-skeleton of X and so [(). u.,., k j] has 

t h e suooessor [h.l.ueJ" g]Ea:_1(Cr, L), where g' (is', L)~ 
(K l' K. 2) and b:Cr C. (cT, L) are inclusions. 

q- q- 

On the other hand, aCT-r p" :·t'lt'. For each (q-1)-face 

,l 't' i -' T of CT, "q-l ('t') is represented by [~, it'J~ fiq!'l ('t, 't'). The 

inclusion (f,t) C ( K l' K 2) factors through (0-, L) and so 
- q- q

[ut-' Lr] has the Bucoeesor ~ jt') .. ~, ~ B:-1(<rt L). where 

jt'l (f, 1:-) ~ (G-, L) is t he inclusion. ThuB ~q-1~6' is repre

sented by [t ~:'t] (Jt') .. u.r, g) S:-l (0', L). We complete 

the proof that the diagram above is commutative by showing that 

(4) h.~. Ucr - I: @- I't"] (.1t-) .. 'lor ' 
T 

Sinoe L is the (q-2)-skeleton of Cr, 1.2 implies tbat Ii q-lCer. L) 

is the direot sum of the images of Bq_l(f,~) under (J,)., 

.bere"t' varies over the (q-l)-faoes offl'. To show that (4) 

holds it is sufficient to cheok tha t (4) h.olds under projeo

tion onto eaoh direct summand of B leG; L). Consider the mapslq-

CT, 'bjf(ir, L)~(~Cr-'t)f-k <r. 

The homomorphism p. maps each d i rect eumma.nd of Bq -1(G-, L) to 

zero exoept for (jT). Eq_l(f, 1r), which i e mapped isomorphical17 

(by the excision axiom) onto Ii 1(0.,0--1"). :But by definition 
q

(See (1) above) k.).~ -[cr I't"] p.(~) * ur. This is true for 

each (q-l ) -face ~ ofer, and so equation (4) 1s proved. Tbis 

completes the proof of 1 . 9. 
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2. Complexes .ith Ident ifications. 

Let K be a regular complex, I' a family of identifi 

cations on K. (See Chapter III for definitions.) Let s: Ixl--+ 
X/F de.note proje ction onto the identification s paoe. In 

general. K/F is an irregula r complex with (K/F) q - S(lC ) . q

Choose an inoidence timotion 0(. for K .hioh is invariant 

under F . Let C(I/:-) denote the ch.ain oomplex defined as 

in III.2 i n terms of the inoidence function «. Finally. let 

D(K/F) ~enote the skeletal ohain complex assooiated to the 

deoomposition of K/F as a oomplex. 

2.1. THEOREM. The homol ogy grOUpS of C(X/F) are isomorphic 

to the singular homology groups of the space K/F. 

Proof: Theorem 1 . 7 implies that i t is sufficient to show that 

C(IC/F) and D(K/F) are chain isomorphic. Consider the diagraml 

Cq(K/F) -----~ Cq _1(K/P)

s.1 " ~T 
C (K) ~ ~ c 1(1)

q q

,01 '¢! 
~(Xq' X _1) ~ )a:_l(X _l , K _2 )~, 
 q q q


\! ~ ~l 
~«K/F)q' (X/F)q_l)--+H~_l « K/F)q_l' (K/F)q_2) 

t ~ 1 
Dq(K/F) ) Dq_l(X/P) 

255 

http:eumma.nd


~ lJtrk1~'1' 
The map¢ is the chain isomorphism of 1.9. The only 

freedom of choioe in the definition of s6 occurs in dimenaion 

zero. We s t ipulate that for each pair of verticea A and B 

mapping by s to the same vertex of K/F a. U A • s+ u •B

The first or uppermost square of the diagram ia 

cOlllllll1tative by construction. (See Chapter III.) The 

aeoond square ia oommutative because ~ia a chain map. The 

third square 1e cOllUDutative because a is a skeletal lII.apping. 

We define a obain lIlap J z eeK/F) --t D(K/F) 8a follows. 

Let (1' be a q-cell of K/F. Suppose that"t is a q-oell of K 

which is mapped by a onto 0". Then '12 (CT) £0 BS( (K/F) ,(K/F) 1) .s q q q

i8 represented by rUt; 8 ~ fH: ir(lf, t ). It is eaay to show 

by induction on q that tbe definition at J (D") 1e independent 

of the choice of t". Aleo, if't' is mapped onto (J""by s, then 

! (0') - s . ¢(T) , and 80 l is a chain map sinoe the diagram 

on page 255 is commutative. The remarks following the proof 

of 1.2 i mply that Ji is an isomorphi sm in each dimenaion, 

and so l is a chain isomorp.hiem. This completeB t he proof 

of Theorem 2.1. 
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