
STRUCTURE IN THE CLASSICAL KNOT
CONCORDANCE GROUP

Tim D. Cochran, Kent E. Orr, Peter Teichner∗

Abstract. We provide new information about the structure of the
abelian group of topological concordance classes of knots in S3. One con-
sequence is that there is a subgroup of infinite rank consisting entirely of
knots with vanishing Casson-Gordon invariants but whose non-triviality
is detected by L(2) signatures.

1. Introduction

Let C be the abelian group of topological concordance classes of knots in
S3. In this paper we provide new information about its structure. One conse-
quence is that there is a subgroup of infinite rank consisting entirely of knots
with vanishing Casson-Gordon invariants [CG] but whose non-triviality is
detected by the von Neumann signature invariants of [COT].

Recall that two knotted circles in S3 are topologically concordant if there
is a locally flat topological embedding of the annulus in S3 × [0, 1] whose re-
striction to the boundary components gives the knots. The equivalence class
of the trivial knot is the identity for C, which is a group under connected-sum
of knots, and inverses are given by taking the mirror-image and reversing
the string orientation. A slice knot is one which is zero in this group, or,
equivalently bounds a locally-flat embedded disk in B4. All of our work is
in this topological category.

In [COT] we defined a geometric filtration of C
0 ⊂ · · · ⊂ Fn.5 ⊂ Fn ⊂ · · · ⊂ F1.5 ⊂ F1.0 ⊂ F.5 ⊂ F0 ⊂ C

where Fh consists of all h-solvable knots for h ∈ 1
2N0. An equivalent

and more algebraic definition of these terms is reviewed in the next sec-
tion. We showed that 0-solvable knots are precisely the Arf invariant zero
knots so that C/F0

∼= Z2 given by the Arf invariant and that C/F0.5 is
J.P. Levine’s algebraic concordance group which he proved in [L] was iso-
morphic to Z∞ ⊕ (Z2)∞ ⊕ (Z4)∞.We also showed that knots in F1.5 have
vanishing Casson-Gordon invariants and thus F1.0/F1.5 has infinite rank,
as detected by Casson-Gordon invariants (the last statement goes back to
Jiang [J ]). Finally, we showed that F2.0/F2.5 is non-zero, in particular an
infinite set of non-slice knots with vanishing Casson-Gordon invariants was
exhibited. Here we will show that this set of classes is linearly independent.

More precisely,
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2 STRUCTURE IN THE CLASSICAL KNOT CONCORDANCE GROUP

Theorem. F2.0/F2.5 has infinite rank.

The infinite set {Ki} of non-trivial elements of F2.0/F2.5 that was exhib-
ited in [COT, Sec.6] was obtained from a single “seedling” ribbon knot by
certain satellite constructions (which we call “genetic modifications”) using
a sequence of auxiliary knots {Ji}. Non-triviality was proven by evaluating
a von Neumann signature whose value on Ki was shown to be essentially
the integral of the classical Levine-Tristram signature function of Ji. This
pleasing fact is verified in Section 5 of this paper. It is simple enough to
find a set {Ji} for which the set of these real numbers is integrally linearly
independent (and we do this in Section 5 of the present paper). If our
higher-order invariants were additive under connected-sum, then the The-
orem would follow immediately. However, the higher-order nature of our
invariants (just as for those of Casson and Gordon) makes it difficult even
to formulate an additivity statement. In particular, our third-order invari-
ants depend on choices of “metabolizers” (or self-annihilating submodules)
for the 1st and 2nd-order Blanchfield-Seifert forms, and unfortunately, the
number of such choices is usually infinite for any connected sum of knots.
To avoid the difficulties of the obvious direct approach, we employ a slight
variation which makes crucial use of a special technical feature of the Ki

(arising from the corresponding fact for the original ribbon knot), namely
that they have unique 1st and 2nd-order metabolizers.

Only the seemingly technical problem of finding a “seedling” ribbon knot
with unique metabolizers for its higher order linking forms (of orders 1,
2, . . . , n − 1) obstructs us from using the very same proof to show that
Fn/Fn.5 has infinite rank for each n ∈ Z+.

Remark. In very recent work [CT] two of us have shown that Fn.0/Fn.5

has non-zero rank for each n ≥ 0 but the proof does not seem to adapt to
show infinite rank. The latter is still open for n > 2.

We also include in Section 5 a proof of the following theorem about
genus one slice knots (more generally about 1.5-solvable knots), that was
announced in [COT]. It should be compared and contrasted to Theorem 4
of [Gi]. In the case of slice knots, this result first appeared as a corollary to
Theorem 3.13 in the unpublished Ph.D. thesis of D. Cooper.

Theorem. Suppose K is a 1.5-solvable knot (for example a slice knot)
whose Alexander polynomial is not 1 and which admits a Seifert surface F
of genus 1. Then there exists a homologically essential simple closed curve,
J , on F that has self-linking number zero and such that the integral of the
Levine-Tristram signature function of J vanishes.

In the proof, we first identity the integral of the Levine-Tristram signa-
tures of J as the von Neumann signature, σ

(2)
Z (J), of J with respect to the

homomorphism onto Z, see Proposition 5.1. Then we use the naturality
of von Neumann’s continuous dimension to identify σ

(2)
Z (J) with the von
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Neumann signature, σ
(2)
Γ (K), of the original knot K with respect to a ho-

momorphism to a certain metabelian group Γ. Compared to the other proofs
of this result, our argument gives a more direct reason why this real number
is a concordance invariant of K

We wish to thank Andrew Ranicki and Michael Larsen for helpful contri-
butions.

2. n-solvable knots and von Neumann ρ-invariants

We briefly review some of the definitions of [COT] which are used herein.
Let G(i) denote the i-th derived group of a group G, inductively defined

by G(0) := G and G(i+1) := [G(i), G(i)]. A group is n-solvable if G(n+1) = 1.
For a CW-complex W , we define W (n) to be the regular covering space
corresponding to the subgroup π1(W )(n). If W is an spin 4-manifold then
there is an intersection form

λn : H2(W (n)) × H2(W (n)) −→ Z[π1(W )/π1(W )(n)]

and a self-intersection form µn (see [Wa] chapter 5 and [COT] section 7). An
n-Lagrangian is a Z[π1(W )/π1(W )(n)]-submodule L ⊂ H2(W (n)) on which
λn and µn vanish and which maps (under the covering map) onto a (1/2)-
rank direct summand of H2(W ;Z). An n-surface F in W is a based, im-
mersed surface in W , which lifts to W (n). Thus λn and µn can be computed
in W by considering intersections weighted by elements of π1(W )/π1(W )(n),
and an n-Lagrangian may be conveniently encoded by considering a collec-
tion of n-surfaces whose lifts generate it.

Suppose K is a knot and M is the closed 3-manifold resulting from 0-
framed surgery on S3 along K.

Definition 2.1. A knot (or M) is n-solvable (n ∈ N0) if M bounds a spin
4-manifold W , such that the inclusion map induces an isomorphism on first
homology and such that W admits two dual n-Lagrangians. This means that
λn pairs the two Lagrangians non-singularly and that their images together
freely generate H2(W ). Such a W is called an n-solution for K (or for M).
Note that the exterior of a slice disk is, for any n, an n-solution for the slice
knot (and for M) simply because the second integral homology vanishes.

A knot is (n.5)-solvable, n ∈ N0, if, in addition to the above, one of the
dual n-Lagrangians is the image (under the covering map) of an (n + 1)-
Lagrangian. Then W is called an (n.5)-solution for K (or for M).

The set Fn (respectively F(n.5)) of concordance classes of n-solvable (re-
spectively (n.5)-solvable) knots is a subgroup of C.

More details can be found in [COT] sections 1, 7 and 8.
Suppose φ : π1(M) −→ Γ is a homomorphism. The von Neumann ρ-

invariant ρ(M, φ) ∈ R is then defined and satisfies ρ(−M, φ) = −ρ(M, φ) [ChG].
Recall [COT, Definition 5.8 and Lemma 5.9] that whenever (M, φ) = ∂(W, ψ)
for some compact, oriented 4-manifold W , ρ(M, φ) = σ

(2)
Γ (W, ψ) − σ0(W )
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where σ
(2)
Γ is the von Neumann signature of the intersection form on H2(W ;ZΓ)

and σ0 is the ordinary signature. If Γ is a poly-torsion-free-abelian group
(henceforth PTFA) then ZΓ embeds in a skew field of fractions KΓ and σ

(2)
Γ

may be viewed as a real-valued homomorphism from L0(KΓ), so σ
(2)
Γ (W, ψ)

is a function of the Witt class of the intersection form on the free module
H2(W ;KΓ).

We shall need only the following properties of ρ from [COT].
(2.2) If Γ is an n-solvable PTFA group and φ extends over some (n.5)-

solution W for M , then ρ(M, φ) = 0 [COT, Theorem 4.2]. In par-
ticular, if K is a slice knot and φ extends over the exterior of a slice
disk then ρ(M, φ) = 0 for any PTFA group Γ. The reader who is
not familiar with [COT] can see that the latter follows from the very
believable fact that H2(W ;Z) = 0 implies that H2 of the Γ-cover of
W is Γ-torsion, hence H2(W ;KΓ) = 0 [COT, Prop. 4.3].

(2.3) (subgroup property) If φ factors through a subgroup Γ′, then ρ(M, φ) =
ρ(M, φ0) where φ0 : π1(M) −→ Γ′ is the induced factorization of φ
[COT, Proposition 5.13]. This is a consequence of the corresponding
fact for the canonical trace on a group von Neumann algebra.

(2.4) If Γ = Z and φ is non-trivial then ρ(M, φ) =
∫
z∈S1 σ(h(z))dz −σ0(h)

if h is a matrix representing the intersection form on

H2(W ;C[t, t−1])/torsion

and σ0 is the ordinary signature [COT, Lemma 5.4, Def. 5.3] (in fact
we prove in the Appendix that ρ(M, φ) is the integral of the Levine-
Tristram signature function of the knot K normalized to have value
0 at z = 1, although this more precise fact is not strictly needed).

(2.5) If φ is the trivial homomorphism then ρ(M, φ) = 0.
If K is an oriented knot then there is a canonical epimorphism φ :

π1(M) −→ Z. If K has Arf invariant zero then there exists a spin 4-manifold
W and a map ψ : π1(W ) −→ Z such that ∂(W, ψ) = (M, φ). In fact we
can assume π1(W ) ∼= Z. Such a W is then a 0-solution for K (for M). In
particular, ρ(M, φ) is always defined for such φ. Let ρ(K) denote this canon-
ical real number (the integral of the normalized Levine-Tristram signature
function of K). Note M−J = −MJ so ρ(−J) = −ρ(J). The proof of the
following technical result is deferred to Section 5.

Proposition 2.6. There exists an infinite set {Ji | i ∈ Z+} of Arf invariant
zero knots such that {ρ(Ji)} is linearly independent over the integers.

3. Constructing n-solvable knots by Genetic Modification

We describe a satellite construction, that we call “genetic modification”,
in which a given seed knot K is altered by an infection knot J along an axis
η. We then evaluate the effect of such an alteration on the von Neumann
ρ-invariants introduced in section 2. The construction is a special case of
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J. Levine’s knot realization construction via surgery on links and can be
summarized as follows.

Seize a collection of parallel strands of K in one hand, just as you might
grab some hair in preparation for braiding. Then, treating the collection as
a single fat strand, tie it into the knot J . For example, applying this to a
single strand of K has the effect of altering K by the addition of the local
knot J . This would be a rather radical alteration. Applying this to two
strands of K which are part of a “band” of a Seifert surface for K has the
effect of tying that band into a knot J . In this simple case the construc-
tion agrees with the one used often by A. Casson, C. Gordon, P. Gilmer,
R. Litherland, D. Ruberman, C. Livingston and others to create knots with
identical Alexander modules but different Casson-Gordon invariants. Var-
ious other versions of this construction have been useful in knot and link
theory (see e.g. [Lt], [Li], [CO], [C]).

In the application relevant to this paper, we will choose the seed knot K
to be a ribbon knot and choose a circle in S3\K (the axis of the modifi-
cation) which lies deep in the derived series of π1(S3\K) and yet bounds
an embedded disk in S3. The knot will pierce this disk many times. The
alteration is to cut open K along this disk and tie all the strands passing
through into a knot J which we call the infection (compare Definition 3.1
and the right-most part of Figure 1).

We named this procedure a “genetic modification” because, as opposed to
a general surgery, its controlling parameter, the axis, involves very precise
and subtle knowledge of the derived series of the knot group. A DNA strand
is a million times longer than the diameter of a cell and topoisomerases
miraculously find the precise locations on this strand to perform their genetic
modifications. Analogously, the knot group is infinitely long as measured
by the derived series [C, Corollary 4.8] and we use extremely precise control
of this when choosing the axis (especially in [CT]). On the other hand, the
infection knots J that we use in the modification are quite robust (in [COT]
it’s a trefoil knot), just like a virus seems to be a very robust thing.

This should be contrasted to the construction proposed by Casson-Gordon
(to create candidates for non-slice knots with vanishing Casson-Gordon in-
variants) and to the more recent modification constructions of T. Stanford
(inserting braids) and K. Habiro (simple clasper modification). There one
uses very little control on the axis of the modification but the infecting
knot J is a subtle knot (e.g. has vanishing Casson-Gordon invariants or has
vanishing finite type invariants up to a given degree).

Details of the general construction follow.
Let M and MJ , respectively, denote the zero framed surgeries on the

knots K and J , and E and EJ denote their exteriors. Suppose η is an
oriented simple closed curve in E, which is unknotted in S3. Choose an
identification of a tubular neighborhood of η with η × D2 in such a way
that η × {1} ⊂ η × ∂D2 is a longitude !η, and {∗} × ∂D2 is a meridian
µη. Form a new oriented manifold E′ = (E − int(η × D2)) ∪ EJ by an
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Figure 1

identification of ∂EJ with η × ∂D2 which sends µ−1
η to the longitude of J ,

denoted !J , and sends !η to µJ . Note that ∂E′ = ∂E = K × D2 and since
E ∪ (K × D2) = S3, E′ ∪ (K × D2) = (S3 − int(η × D2)) ∪ EJ . Since η is
unknotted, S3 − int(η × D2) is a solid torus ST and ST ∪ EJ

∼= S3 as can
be confirmed by checking the identifications. Hence E′ ∪ (K × D2) ∼= S3.
Therefore E′ is the exterior S3 \ K ′ of a knot K ′ which is the image of K
under the identification E′ ∪ (K × D2) ∼= S3.

Definition 3.1. The new knot K ′ = K(J, η) is called the genetic modifica-
tion of the seed knot K with the infection knot J along the axis η. Since
K ⊂ ST, K ′ is a satellite of J .

It is left to the reader to see that K ′ is indeed the result of tying the
strands of K that “pass through the 2-disk spanned by η” into the knot
J . Finally, if we let M ′ denote the zero framed surgery on K ′, then M ′ =
(M − int(η × D2)) ∪ EJ . We shall show the following:

Proposition 3.1. If K is n-solvable, η ∈ π1(M)(n) and J has Arf invariant
zero, then K ′ = K(J, η) is n-solvable.

Hence one speculates that if one begins with a slice knot K, which is of
course n-solvable for each n, and η ∈ π1(M)(n) − π1(M)(n+1), then many
different n-solvable knots could be constructed as long as the derived series
of π1(M) does not stabilize. In fact it is proved in [C] that the derived series
of a knot group cannot stabilize unless it has Alexander polynomial 1 and
that of π1(M) cannot stabilize unless the Alexander polynomial has degree 0
or 2. The above speculation is also confirmed in [C].

We remark that if n-solvable is replaced by rationally n-solvable (see
[COT, section 4]) then the analogous result holds without a condition on
the Arf invariant of J . This is of interest in studying knots which bound
disks in rational homology balls.

We now want to show that many of these families of knots are different,
even up to concordance. For this purpose we consider the von Neumann
signature invariants of section 2 [COT, section 5].
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Suppose one is given homomorphisms φ : π1(M) → Γ, φJ : π1(MJ) → Γ
such that φ([η]) = φJ([µJ ]) and Γ is a PTFA group. Then, if M ′ is as above,
a unique φ′ : π1(M ′) → Γ is induced which extends φ and φJ .

Proposition 3.2. Given K, J , η, φ, φJ as above,
ρ(M ′, φ′) = ρ(M, φ) + ρ(MJ , φJ) whenever the right hand side is defined.

Proof of Proposition 3.1. Let W be an n-solution for K and let WJ be the 0-
solution for J with π1

∼= Z discussed above Proposition 2.6. So ∂WJ = MJ =
EJ∪(S1×D2) where S1×{∗} is µJ and {∗}×∂D2 is !J . Let W ′ be the 4-manifold
obtained from WJ and W by identifying the solid torus S1×D2 ⊂ ∂WJ with
η×D2 ⊂ ∂W . Observe that ∂W ′ = M ′, the zero surgery on K ′ = K(J, η).
We claim that W ′ is an n-solution for K ′. First consider the Mayer-Vietoris
sequence below

0 −→ H2(W )⊕H2(WJ) π∗−→ H2(W ′) ∂∗−→ H1(W ∩WJ) i∗−→ H1(W )⊕H1(WJ)

Since W∩WJ � S1, H2(W∩WJ) = 0 for any coefficients. Since the inclusion
W∩WJ → WJ induces an isomorphism on π1, the map i∗ is a monomorphism
with any coefficients. Thus π∗ is an isomorphism with any coefficients, and
the intersection and self-intersection forms on H2 split naturally. We may
think of an n-Lagrangian with its n-duals for W as being generated by
finite collections of based surfaces in W each of which lifts to the π1(W )(n)-
cover (these were called “n-surfaces” in [COT]; sections 7–8). These same
surfaces are clearly n-surfaces in W ′ since nth-order commutators in π1(W )
are nth-order commutators in π1(W ′). Similarly consider the collection of
“0-surfaces” generating a 0-Lagrangian and its duals for WJ . Since the map
π1(WJ) → π1(W ′)/π1(W ′)(n) is trivial (since π1(WJ) is generated by η),
these 0-surfaces are n-surfaces in W ′. It then follows easily by naturality
that the union of these collections of n-surfaces constitutes an n-Lagrangian
with n-duals for W ′ (see [COT]; sections 7–8).

Proof of Proposition 3.2. Suppose ∂(W, ψ) = (M, φ) and ∂(WJ , ψJ) = (MJ , φJ)
for some H1-bordisms as described in Section 2. Note that MJ = EJ ∪
(S1 × D2) where {1} × ∂D2 is a longitude of J . Let W ′ be the 4-manifold
obtained from WJ and W by identifying the solid torus S1×D2 ⊂ ∂WJ with
η×D2 ⊂ ∂W . Observe that ∂W ′ = M ′ and that ψ and ψJ piece together
to give an extension of φ′ to ψ′ : π1(W ′) → Γ. Thus (W ′, ψ′) can be used
to compute ρ(M ′, φ′). It now suffices to show that the natural inclusions
induce an isomorphism H2(W )⊕H2(WJ) → H2(W ′) with K coefficients. As
above, H2(W ∩WJ) = 0 with any coefficients. Now, appealing to the Mayer-
Vietoris sequence, it will suffice to show that H1(W ∩WJ ;K) → H1(WJ ;K)
is a monomorphism. If φ([µJ ]) = φ([η]) �= 0 then H1(W ∩ WJ ;K) = 0
since the induced Γ-cover of a circle is a union of lines (alternatively use
[COT]; Proposition 2.11). If φ([µJ ]) = 0 then φJ is the zero map since
π1(MJ) is normally generated by [µJ ]. Hence we may assume ψJ is the
zero homomorphism. Therefore the coefficient system ψJ : Q[π1(WJ)] → K
factors as the augmentation ε : Q[π1(WJ)] → Q followed by the inclusion
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Z = Q[{1}] ↪→ QΓ ↪→ K. Thus H1(WJ ;K) ∼= H1(WJ ;Q) ⊗Q K ∼= K and
similarly for H1(W ∩ WJ ;K). Since the inclusion W ∩ WJ → WJ induces
an isomorphism on H1( ;Q), it induces an isomorphism on H1( ;K) as
well.

The following application is what we will use in the proof of the main
theorem.

Example 3.3. Suppose K is a ribbon knot, η ∈ π1(M)(n) and J has Arf
invariant zero. Then K ′ = K(J, η) is n-solvable by Proposition 3.1. Let W
be the exterior of a ribbon disk for K and let WJ be the (0)-solution for
J with π1(WJ) ∼= Z as in section 2. Then let W ′ be the n-solution for K ′

formed as in the proof of Proposition 3.1 by gluing WJ to W along η × D2.
Suppose ψ′ : π1(W ′) → Γ is a homomorphism defining, by restriction, φ′, ψ,
φJ and ψJ from (respectively) π1(M ′), π1(W ), π1(MJ), and π1(WJ). Then
ρ(M ′, φ′) = ρ(MJ , φJ) by Proposition 3.2 and 2.2. Then, (since π1(WJ) ∼= Z
is generated by η) using 2.3, 2.4, and 2.5, ρ(M ′, φ′) equals ρ(J) if φ(η) �= 1
and equals 0 if φ(η) = 1.

4. The Main Theorem

Theorem 4.1. F(2.0)/F(2.5) has infinite rank.

Proof. It is sufficient to exhibit an infinite set of (2.0)-solvable knots Ki, i ∈
Z+, such that no non-trivial linear combination is (2.5)-solvable. Let Kr be
the “seedling” ribbon knot shown in Figure 3.1 and η be the designated circle
just as was used in [COT, section 6]. Let Ji be the knots of Proposition 2.6
and let Ki = Kr(Ji, η) be the family of knots resulting from the grafting
construction of Example 3.3. It was shown in [COT, section 6] that each of
these knots is 2-solvable and not (2.5)-solvable. Suppose that a non-trivial
linear combination #m

i=1n
′
iKi, n′i �= 0, were (2.5)-solvable. We shall derive a

contradiction.
We may assume all n′i > 0 by replacing Ki by −Ki if n′i < 0. We may

also assume that if m = 1 then n′1 > 1. For simplicity let Mi denote MKi ,
and note that −Mi = M−Ki because −Ki can be obtained by applying a
reflection to (S3, Ki). Let M0 denote the zero surgery on #n′iKi and let W0

denote the putative (2.5)-solution.

From these assumptions we construct a very specific 2-solution W for
M1. This is shown schematically in Figure 2 where C and Wi are to be
defined. The Wi, i > 0, are the specific 2-solutions for Mi constructed
as in Example 3.3. There are ni copies of Wi where n1 = n′1 − 1 and
ni = n′i if i > 1. The 4-manifold C is merely a standard cobordism between
zero surgery on a connected sum of knots and the disjoint union of the
zero surgeries on its summands. For the case of just two knots A#B, the
manifold C is described as follows. Beginning with a collar on MA � MB,
add a 1-handle to get a connected 4-manifold whose “upper” boundary is
given by surgery on the split link A � B ↪→ S3, each with zero framing.
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Next add a zero framed 2-handle along a circle as shown in Figure 3a.
This completes the description of C in this simple case. We need only
show that the 3-manifold in Figure 3a is homeomorphic to MA#B. This
is accomplished most easily in the language of Kirby’s calculus of framed
links [Ki]. By “sliding” the A circle over the B circle, one arrives at the
equivalent description shown in Figure 3b. But now the circle labeled B
may be canceled by the small linking circle, leaving only the desired zero
surgery on the connected sum. By iterating this idea, one sees that our
C has a handlebody decomposition, relative to

∐m
i=1 n′iMi, consisting of

(
∑m

i=1 |ni|) 1-handles and the same number of 2-handles. The 1-handles have
no effect on H1 or H2, while the 2-handles serve to equate all the meridional
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generators of H1 (and thus do not affect H2). Hence H1(C;Z) ∼= Z and
the inclusion from any of its boundary components induces an isomorphism
on H1; and H2(C) ∼= H2(�n′iMi). Moreover, in H2(C), the generator of
H2(M0) is equal to the sum of generators of H2 of the other components of
∂C.

We now verify that W is an H1-bordism for M1, and identify H2(W ). The
inclusions induce isomorphisms H1(Mi;Z) → H1(Wi;Z). It then follows
that H1(M1) → H1(W ) ∼= Z is an isomorphism. Now consider a Mayer-
Vietoris sequence for W = C ∪ W ∗ where W ∗ = C − W . We see that
H1(C ∩ W ∗) → H1(W ∗) is injective by the remarks above. Note that the
boundary map H3(Wi, Mi) → H2(Mi) is an isomorphism since it is dual to
the inclusion H1(Wi) −→ H1(Mi). Thus for i ≥ 0, H2(Mi) → H2(Wi) is the
zero map. Therefore H2(C ∩ W ∗) → H2(W ∗) is the zero map. By the last
sentence of the previous paragraph, H2(C ∩ W ∗) → H2(C) is surjective. It
follows that H2(W ) ∼= H2(W ∗) ∼= H2(W0)

⊕m
i=1 niH2(Wi). It is not difficult

to see that W is a spin bordism since each individual piece is spin with 2
spin structures and Ωspin

3 (Z) ∼= Z2 is given by the Arf invariant.
To show that W is a 2-solution for M1, we must exhibit a 2-Lagrangian

with 2-duals. But this is obtained merely by taking the “union” of the 2-
Lagrangians and 2-duals for W0 and each ±Wi which appears as part of W .
(Recall that since W0 is a (2.5)-solution it is also a 2-solution). More pre-
cisely suppose, for example, that {L1, . . . , Lm}, {D1, . . . , Dm} are 2-surfaces
in W0 which generate the 2-Lagrangian and its dual 2-Lagrangian for W0.
In particular these surfaces lift to W

(2)
0 and so the image of π1(Li) in π1(W0)

is contained in π1(W0)(2). Thus this image is contained in π1(W )(2) and so
these surfaces lift to W (2). Similarly by functoriality of intersection with
twisted coefficients, these surfaces have the required intersection properties
when considering the intersection form on W with Z[π1(W )/π1(W )(2)] co-
efficients. An identical argument is used for each Wi, making it clear that
the union of these 2-surfaces represents a 2-Lagrangian and 2-duals for W ,
completing the demonstration that W is a 2-solution for M1.

Since W is a 2-solution for M1, Theorem 4.6 of [COT] guarantees the exis-
tence of certain non-trivial homomorphisms φ2 : π1(M1) → ΓU

2 , for a certain
universal solvable group ΓU

2 , which extend to π1(W ). Moreover, if W is fixed,
such homomorphisms actually factor through a much smaller group (the im-
age of π1(W ), for example). This improvement was mentioned in Remark 4.7
of [COT] and was discussed in detail in section 6 of that paper for precisely
the case at hand. We shall repeat some of that argument. Let Γ0 = Z and
let φ0 : π1(M1) → Γ0 be the canonical epimorphism which extends uniquely
to an epimorphism ψ0 : π1(W ) → Γ0. Recall that the classical Alexander
module A0(M1) = H1(M1;Q[t, t−1]) is isomorphic to Q[t, t−1]/(p(t))2 where
p(t) = t−1 − 3 + t (this computation was discussed, but left to the reader
in section 6 of [COT]). Let A0(W ) = H1(W ;Q[t, t−1]). By [COT, Theo-
rem 4.4], since W is a 1-solution for M1, the kernel of the inclusion-induced
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map j∗ : A0(M1) → A0(W ) is self-annihilating with respect to the Blanch-
field form B!0. Since A0(M1) has a unique proper submodule P0, the latter
is in fact this kernel. Choose a non-zero p0 ∈ P0, inducing φ1 : π1(M1) → ΓU

1

by [COT, Theorem 3.5] (recall ΓU
1 = Q(t)/Q[t, t−1] � Γ0). By [COT, The-

orem 3.6] φ1 extends to ψ1 : π1(W ) → ΓU
1 . Using the argument of ([COT],

see just before Proposition 6.1), we can replace ΓU
1 by a subgroup Γ1 which

contains the image of φ1 and is isomorphic to Q[t, t−1]/(p(t)m) � Γ0 for
some positive integer m; replace φ1 by restricting its image and replace
ψ1 by a new map extending this restriction. We re-label these new maps
by φ1 and ψ1. Continuing as in [COT], we choose a subring R1 of the
field of fractions of ZΓ1 where R1 = (Q[[Γ1,Γ1]] − {0})−1QΓ1 and then
set A1(M1) = H1(M1;R1), A1(W ) = H1(W ;R1) using the coefficient sys-
tems φ1 and ψ1 respectively. Then, since W is a 2-solution, the kernel of
j∗ : A1(M1) → A1(W ) is self-annihilating with respect to the non-singular
linking form B!1 [COT, Theorem 4.4]. By Proposition 6.1 of [COT], A1(M1)
has a unique self-annihilating submodule P1 which is therefore the kernel of
j∗. Choose a non-zero element p1 ∈ P1 (by [COT, Proposition 6.2b] P1

is non-trivial). This induces φ2 : π1(M1) → Γ2 (Γ2 = K1/R1 � Γ1 where
K1 is the quotient field of R1). We note that the loop η is chosen so that
φ2(η) �= e (see below Proposition 6.1 in [COT]). Since W is a 2-solution
for M1, Theorem 3.6.1 of [COT] applies (with n = 2, x = p1) to show that
φ2 extends to ψ2 : π1(W ) → Γ2. Therefore ρ(M1, φ2) is defined and can be
computed using (W, ψ2).

We shall now compute ρ(M1, φ2) using (W, ψ2). Let φ(i,j) denote the
restriction of ψ to the jth copy of π1(Mi) 1 ≤ j ≤ ni, and let φ0 denote
the restriction of ψ to π1(M0). Note that each of these homomorphisms is
non-trivial since the generator of H1(C;Z) ∼= H1(M1;Z) ∼= Z is carried by
each Mi and since φ2 and ψ2 agree on the abelianizations. Let K2 denote the
quotient (skew) field of ZΓ2. Consequently H∗(Mi;K2) = 0 for i ≥ 0 (Propo-
sitions 2.9 and 2.11 of [COT]), and hence a Mayer-Vietoris sequence shows
that H2(W ;K2) ∼= H2(W0;K2)⊕H2(C;K2)⊕H2(W1;K2) · · · ⊕H2(Wm;K2)
where −Wi occurs ni times and the coefficient systems on the subspaces of
W are induced by inclusion. Similarly the intersection form on H2(W ;K2)
splits as such a direct sum. Moreover we claim that H2(C;K2) = 0. Let
∂+C = ∂W0 and ∂−C =

∐
n′iMi. We have observed that (C, ∂−C) is a

relative 2-complex with an equal number of 1-handles and 2-handles. The
claim will follow from Lemma 4.2 which shows that, even though C is not
an integral homology cobordism, it is a K2-homology cobordism.

Lemma 4.2. Suppose (C, ∂C) is a compact, oriented 4-dimensional Poincaré
complex such that ∂C = ∂+C � ∂−C, (C, ∂−C) is homotopy equivalent to a
finite (relative) 2-complex with no 0-handles and a equal number of 1- and
2-handles. Suppose also that β1(∂+C) = 1 and that φ : π1(C) → Γ is non-
trivial on π1(∂−C) where Γ is a poly-torsion-free-abelian group with quotient
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field KΓ. Then

H∗(C, ∂+C;KΓ) ∼= H∗(C, ∂−C;KΓ) ∼= H∗(C;KΓ) ∼= 0.

Proof. It follows that φ is non-trivial on π1(C) and π1(∂+C) and so H0(C;K) ∼=
H0(∂+C;K) ∼= H0(∂−C;K) ∼= H0(C, ∂+C;K) ∼= H0(C, ∂−C;K) ∼= 0 by
[COT, Proposition 2.9]. Moreover H1(C, ∂+C;K) ∼= H3(C, ∂−C;K) ∼= 0
since (C, ∂−C) is a 2-complex. Since β1(∂+C) = 1, H1(∂+C;K) = 0
by [COT, Proposition 2.11] and H2(∂+C;K) ∼= H1(∂+C;K) ∼= 0 by Re-
mark 2.8.3 of that paper. Combining this with the previous facts, we see
that H1(C;K) ∼= 0 and hence that H1(C, ∂−C;K) ∼= 0 by consider the se-
quence of the pair (C, ∂−C). Finally, note that the chain complex obtained
from the cell-structure of the 2-complex (C, ∂−C), by lifting to the Γ-cover
and tensoring with K, has only two non-zero terms, which are free K-modules
of the same rank. Since H1 of this chain complex is zero, the boundary map
∂2 is an epimorphism and hence an isomorphism. Thus H2(C, ∂−C;K) = 0
which implies H2(C;K) vanishes, implying H2(C, ∂+C;K) = 0, and the
claimed results in relative homology and hence homology now follow.

Thus, since σ(2) is a homomorphism on Witt classes of non-singular forms
with K2 coefficients, we see that

ρ(M1, φ2) = ρ(M0, φ0) +
m∑

i=1

ni∑
j=1

ρ(−Mi, φ(i,j)).

Since φ0 extends to the (2.5)-solution W0, ρ(M0, φ0) vanishes by (2.2). Let
εij equal 0 or 1 according as φ(i,j)(η) equals 0 or not. Since φ(i,j) extends to
−Wi, Example 3.3 establishes that ρ(−Mi, φ(i,j)) = −εijρ(Ji). This shows
that ρ(M1, φ2) +

∑m
i=1 ciρ(Ji) = 0 where ci =

∑ni
j=1 εij is non-negative.

It will now suffice to show that ρ(M1, φ2) equals ρ(J1), for this will, for any
ci, contradict Proposition 2.6. The argument of [COT, section 6] (outlined
earlier in this proof as regards extension to W ) shows that φ2 extends to the
manifold W1 as constructed in Example 3.3, the crucial facts being that W1

is a 2-solution and the uniqueness of the self-annihilating submodules for
the ordinary and first-order generalized Alexander modules of K1. Hence,
by 2.3 ρ(M1, φ2) = ρ(J1) since φ2(η) �= e. This contradiction establishes
that no non-trivial linear combination of the Ki is (2.5)-solvable and hence
proves the Theorem.

5. Appendix: Some Results on Slice Knots

The purpose of this section is to prove the following two results, as well as
to prove Proposition 2.6. Only the latter is required for our main theorem.

Proposition 5.1. For ω ∈ S1, let σω be the Levine-Tristram signature of
a knot K. Then the (reduced) von Neumann signature of K (denoted ρ(K)
in Section 2) is the integral of these signatures σω, integrated over the circle
normalized to length one.
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Theorem 5.2. Suppose K is a 1.5-solvable knot (for example a slice knot)
whose Alexander polynomial is not 1 and which admits a Seifert surface F
of genus 1. Then there exists a homologically essential simple closed curve,
J , on F that has self-linking number zero and such that the integral of the
Levine-Tristram signature function of J vanishes.

The above theorem was announced in [COT]. In the case of slice knots, it
first appeared in the unpublished Ph.D. thesis of D. Cooper and can also be
compared to [Gi, Theorem 4]. It is not known if the latter theorem implies
ours or vice-versa.

Proof of Theorem 5.2. Suppose W is a 1.5-solution for M , the zero framed
surgery on K. Let G = π1(W ), let A = G(1)/G(2) ⊗Z[t,t−1] Q[t, t−1], and let
Γ = A�Z. Since A is a torsion-free abelian group, Γ is a PTFA (poly-torsion-
free-abelian-group) and is 1-solvable. Moreover there is a canonical homo-
morphism ψ : G → Γ since G/G(2) ∼= (G(1)/G(2)) � Z. Let φ : π1(M) → Γ
be the composition of j∗ : π1(M) → π1(W ) with ψ. By 2.2, ρ(M, φ) = 0.
Since H1(M) ∼= H1(W ) ∼= H1(Γ) ∼= Z we can consider the inclusion induced
map on infinite cyclic covers, j∗ : H1(M ;Q[t, t−1]) → H1(W ;Q[t, t−1]). The
former group is isomorphic to the classical rational Alexander module A
of K (since the longitude lies in the second derived) and the latter is the
group denoted A above. Since W is a 1-solution for M , the kernel of j∗ is
a submodule which is self-annihilating with respect to the classical Blanch-
field form (apply [COT, Theorem 4.4] with n = 1 and Γ = Z). This fact
is well known in case W is the exterior of a slice disk for K. In particu-
lar, this implies that the kernel of j∗ and the image of j∗ have rank (over
Q) equal to one-half the degree of the Alexander polynomial, which is, by
assumption, positive. Moreover this implies that K is algebraically slice.
The following algebraic fact about a genus 1 algebraically slice knot can be
found in [Gi, Section 5]. A is a cyclic module with precisely 2 proper sub-
modules each generated by a simple closed curve on F of zero self-linking
number. Let J denote the proper submodule contained in kernel (j∗). It
follows that J represents an element of kernel φ. Now construct a cobordism
over Γ from (M, φ) to (MJ , φ′) as follows, where MJ is zero surery on J . To
M × {1} ⊂ M × [0, 1] attach a zero-framed 2-handle along J × {1}. The
result of such a surgery can be seen to be homeomorphic to MJ#S1 ×S2 by
sliding the zero-framed 2-handle K×{1} twice over J so that it becomes un-
knotted and unlinked from J . Adding a 3-handle along {pt}×S2 completes
the cobordism. Since J ⊂ ker φ, φ extends over the cobordism, inducing
φ′ : π1(MJ) → Γ. Since π1(MJ) is normally generated by the meridian of
J , which clearly is null-homologous in the cobordism, φ′ factors through
[Γ,Γ] = A. Since H1(MJ) ∼= Z, the image of φ′ is either 0 or Z. We claim
it is the latter. For since the image of j∗ is not zero, there is an element of
the Alexander module that maps non-trivially under j∗. Let γ ∈ π1(M −F )
represent this element. Then γ maps non-trivially under φ. Since the 2
and 3-handles above are attached disjointly from M − F , γ represents an
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element of π1(MJ) which maps non-trivially under φ′. Thus the image of
φ′ is Z. By Lemma 4.2, this cobordism is a KΓ-homology cobordism and
thus 0 = ρ(M, φ) = ρ(MJ , φ′). Moreover ρ(MJ , φ′) = ρ(J) which equals the
integral of the signature function of J (by 2.3, 2.4 and Proposition 5.1).

We now move to the proof of Proposition 5.1. Note that even though the
σω are integers, the integral is in general only a real number. We first give
the relevant definitions and then derive Proposition 5.1 from Lemma 5.4.

First recall that the Levine-Tristram signature is defined as follows: Pick
a Seifert surface F for the knot, together with a basis of embedded curves
a1, . . . , a2g on F . Using the positive push-off’s a↑i of ai into 3-space, the
corresponding Seifert matrix is defined using linking numbers in S3:

Sij := lk(ai, a
↑
j ).

Then for ω ∈ S1, σω is the signature of the complex hermitian form

λω(F ) := (1 − ω−1) · S + (1 − ω) · ST .

Instead of choosing a Seifert surface for the knot K, one can also choose a
4-manifold W which bounds the 0-surgery MK on K. One can also arrange
that W has signature zero (by adding copies of ±CP2) and that π1W ∼= Z,
generated by a meridian t of the knot. This follows from the fact that the
bordism group Ω3(S1) vanishes.

For the purpose of this section, let’s call a 4-manifold W as above a Z-
bordism for the knot K. The following twisted signatures are associated
to it: Define σω(W ) to be the signature of the intersection form λω(W ) on
H2(W ;Cω), where Cω is the module over Z[π1W ] = Z[t, t−1] obtained by
letting t act on C via multiplication by ω. The isomorphism Ω4(S1) ∼= Z,
given by the (untwisted!) signature, implies by the additivity and bordism
invariance of all twisted signatures that the signatures of λω(W ) are in fact
independent of the Z-bordism W for K.

The following result was proven in [COT, Section 5] and will be used in
order to avoid having to recall the definition of the von Neumann signature
(or L2-signature). Note however that the (reduced) L2-signature of a knot
is by definition the (reduced) L2-signature of a Z-bordism W . By [COT,
Lemma 5.9.4] this is independent of the choice of W . Note also that since
we have required that the ordinary signature of W is zero, the reduced and
unreduced L2-signatures are identical.

Lemma 5.3. Let W be a Z-bordism for a knot K. Then the L2-signature of
K is the integral of the twisted signatures σω(W ), integrated over the circle
normalized to length one.

In order to connect to the setting of [COT, Section 5], note that the
universal coefficient spectral sequence implies that for any C[t, t−1]-module
M there is an isomorphism

H2(W ;M) ∼= H2(W ;C[t, t−1]) ⊗C[t,t−1] M.
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First apply this isomorphism to M = UZ, the algebra of unbounded opera-
tors affiliated to the von Neumann algebra NZ. It follows that the intersec-
tion form used in [COT, Def.5.8] to define the L2-signature of W is nothing
else but λW ⊗ UZ, where λW is Wall’s Z[t, t−1]-valued intersection form on
H2(W ;Z[t, t−1]). This implies by [COT, Lemma 5.6] that the L2-signature
of W is the L2-signature of the form λW ⊗Z C on the free C[t, t−1]-module
H2(W ;C[t, t−1])/ Torsion.

Finally, apply the isomorphism above to M = Cω and observe that the
intersection form λω is obtained from the C[t, t−1]-valued intersection form
λW ⊗C by substituting ω for t. Hence the discussion of [COT, Def.5.3] and
in particular Lemma 5.4 apply to prove Lemma 5.3.

We return to the proof of Proposition 5.1 above. It now suffices to prove
the following lemma.

Lemma 5.4. For a given Seifert surface F for K, there exists a Z-bordism
WF such that the signatures of λω(F ) and λω(WF ) agree for all ω ∈ S1.

Proof. First observe that the equality is true for the untwisted case ω = 1
since both signatures are zero. This holds for any Z-bordism W . All other
signatures can be calculated after inverting the element (1 − t) since for
ω �= 1, the twisted homology is given as follows:

H2(W ;Cω) ∼= H2(W ;C[t, t−1]) ⊗C[t,t−1] Cω
∼= H2(W ; Λ) ⊗Λ Cω

where Λ := C[t, t−1, (1 − t)−1]. The second isomorphism uses the fact that
Λ is a flat module over the ring C[t, t−1]. Note that we are using ω �= 1 to
make C a module over Λ (again denoted by Cω).

We finish our proof by showing that for a given Seifert surface F for K,
there is a certain choice of W = WF such that the intersection form on
H2(WF ; Λ) is represented by the matrix

λ(F ) := (1 − t−1) · S + (1 − t) · ST

where S is again the Seifert matrix for a basis of embedded curves a1, . . . , a2g

on F . The first part of our computation follows [Ko] closely.
Let VF be the complement of a neighborhood of the Seifert surface F

pushed into the 4-ball D4. We will later modify VF to get the desired 4-
manifold WF . π1(VF ) = 〈t〉 ∼= Z. We construct the universal cover of VF

in the usual manner. Cut along the trace of pushing the surface F into
the 4-ball. The cut manifold is homeomorphic to D4. This determines two
embeddings of F × I in the boundary of D4 and we label the positive side
F+ and the negative side F−. Construct the universal cover of VF from
countably many copies of D4 labeled tkD4, k ∈ Z by identifying F+ ⊂ tkD4

with F− ⊂ tk−1D4 in the obvious manner. Each 4-ball is a fundamental
domain of this cover.

The Mayer-Vietoris sequence of this decomposition gives an isomorphism
of Z[Z]-modules

H2(VF ;Z[Z]) ∂−→ H1(F ;Z) ⊗Z Z[Z].
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Thus, H2(VF ;Z[Z]) is a free Z[Z] module generated by H1(F ). Furthermore,
a basis of H2(VF ;Z[Z]) ∼= π2(VF ) is obtained from a basis of curves of
H1(F ; Z), ai ⊂ F , by choosing immersed 2-disks

(Σ+
i , ∂Σ+

i ) ⊂ (tD4, F+) and (Σ−i , ∂Σ−i ) ⊂ (t0D4, F−)

and orienting Σi := Σ+
i ∪ Σ−i (and F ) so that

∂Σ+
i = a↑i and ∂Σ−i = −a↓i .

By the Mayer-Vietoris argument given above and the usual geometric in-
terpretation of the connecting homomorphism, the spheres Σ1, . . . ,Σ2g to-
gether give a basis for the free Z[Z] module H2(VF ;Z[Z]). We now compute
the equivariant intersection form λVF

on H2(VF ;Z[Z]) ∼= π2(VF ) given by

λVF
(Σi,Σj) =

∑
k

(Σi · tkΣj)tk ∈ Z[Z],

where · is the usual (integer valued) intersection number of the 2-spheres Σi

in the universal cover of VF .
By general position, we may assume that Σi and Σj do not intersect each

other along F × I (since they intersect F × I only in their boundary circles).
Moreover, Σi · tkΣj = 0 for k �= −1, 0, 1. Recalling that Si,j = lk(ai, a

↑
j ) is

the (i, j) entry of the Seifert matrix S associated to the Seifert surface F ,
we now compute equivariant intersection numbers as follows.

Σi · Σj = Σ−i · Σ−j + Σ+
i · Σ+

j = lk(−a↓i ,−a↓j ) + lk(a↑i , a
↑
j )

= lk(ai, a
↓
j ) + lk(ai, a

↑
j ) = Sj,i + Si,j .

Note that by symmetry, this is independent of how the curves ai respectively
aj are pushed into general position. Moreover, one has

Σi · tΣj = Σ+
i · tΣ−j = lk(a↑i ,−a↓j ) = −lk(aj , a

↑
i ) = −Sj,i,

Σi · t−1Σj = Σ−i · t−1Σ+
j = lk(−a↓i , a

↑
j ) = −lk(ai, a

↑
j ) = −Si,j .

Thus the intersection form on H2(VF ;Z[Z]) is given by the matrix

λVF
(Σi,Σj) = (1 − t−1)Si,j + (1 − t)ST

i,j = λ(F )i,j

as claimed.
Even though it might look now like we are done, the 4-manifold VF isn’t

quite what we want since it’s boundary is not MK . By construction, ∂VF is
obtained from the knot complement by attaching F ×S1 (instead of D2×S1

to get MK .) We turn VF into a 4-manifold WF with the correct boundary
by attaching round handles (D2 × D1) × S1 to a disjointly embedded half
basis of curves on F . In other words, we start with g surgeries turning F
into a 2-disk and then cross with the circle. Clearly the boundary of WF is
MK . What happened to the equivariant intersection form?
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Here we make use of the ring Λ to simplify life tremendously. Lemma 5.6
below and an easy Mayer-Vietoris sequence argument imply that the inclu-
sion induces an isomorphism H2(VF ; Λ) ∼= H2(WF ; Λ), and thus concludes
the proof of Proposition 5.1.

Remark 5.5. The above proof inverts 1− t to save a lot of work. The more
geometric reader will find the intersection pairing for WF before localization
computed in [Ko].

One should compare that work with the simplicity of the following

Lemma 5.6. Let X be a finite CW-complex and t be a generator of π1S
1.

If Λ := Z[t, t−1, (1 − t)−1], then

H∗(X × S1; Λ) = 0

if the twisting is given by the projection p2 : X × S1 → S1.

Proof. The differential in the cellular chain complex of the universal cover
of S1 = e0 ∪ e1 is given by multiplication with (t − 1). This is clearly an
isomorphism after tensoring with Λ. Hence, this chain complex is acyclic,
and thus contractible.

The cellular chain complex of the Z-cover of X × S1 with Λ coefficients
is the tensor product of the cellular chains of X with the contractible Λ-
module chain complex for S1. A tensor product with a contractible chain
complex is again contractible, and therefor acyclic.

Remark 5.7. It is clear that the manifold VF constructed in Lemma 5.4
has a spin structure as a subset of the 4-ball. The reader is invited to check
that the Z-bordism WF is a spin manifold if and only if the original knot
K has trivial Arf invariant. For example, if the Arf invariant is trivial then
one may choose a half basis of curves a1, . . . , ag on F with even self-linking
number. This implies that the round surgeries leading from VF to WF are
spin structure preserving.

We now return to prove the technical Proposition 2.6.

Proof of 2.6. Let Jm, m ≥ 1, be a knot with Alexander polynomial ∆(t) =
2mt − (4m − 1) + 2mt−1. Such a knot necessarily has zero Arf invari-
ant (see Theorem 10.4 of [Ka]). Let M be the zero surgery on Jm and
W be a compact, spin 4-manifold with ∂W = M , π1(W ) ∼= Z and j∗ :
H1(M ;Z) −→ H1(W,Z) an isomorphism. By considering the long exact
homology sequence for the pair (W, M) with Z[t, t−1] coefficients (using the
canonical epimorphisms φi, ψi to Z to define the coefficient systems) one
sees that the order of the Alexander module H1(M ;Q[t, t−1]) is the deter-
minant of a matrix h representing the intersection form on H2(W ;Q[t, t−1]).
The (reduced) signature function σ(h(z)) − σ0(h) : S1 −→ Z is a locally-
constant function which is 0 at z = 1 and changes value only (possibly) at
the two zeros of det h(z) = ±∆(z) which are e±iθm , where 0 ≤ θm ≤ π

2 and
cos θm = (4m − 1)/4m. Since deth(z) changes sign at eiθm , σ(h(z)) must



18 STRUCTURE IN THE CLASSICAL KNOT CONCORDANCE GROUP

change value there. Thus σ(h(−1)) = am, for some non-zero integer am

(actually ±2), and ρ(Mm, φm) = am(π − θm)/π. To prove 2.6, it will suffice
to prove that there exists a infinite collection of integers m such that {θm}
is linearly independent over the integers.

Choose primes pi, 5 ≤ p1 < p2 < · · · < pj < . . . , each congruent to 1

modulo 4, and set mj = 1
8(pj − 1)2. We claim that if Θj = cos−1

(
4mj−1
4mj

)
,

then {Θj} is linearly independent over the rationals.

Lemma 5.8. Suppose 5 ≤ p1 < p2 < · · · < pn are primes. Let ξj =
i
√

pj(pj − 2) where i =
√

−1. Then [Q(ξ1, . . . , ξn) : Q] = 2n and the Ga-
lois group over Q is (Z2)n generated by automorphisms φj where φj(ξ�) ={

−ξ� if ! = j

ξ� if ! �= j
.

Proof of Lemma 5.8. One verifies easily that the Lemma is true for n = 1.
Now assume [Q(ξ1, . . . , ξk−1) : Q] = 2k−1 for any increasing sequence of
primes 5 < p1 < · · · < pk−1. We shall show [Q(ξ1, . . . , ξk) : Q] = 2k. It
suffices to show ξk is not in Q(ξ1, . . . , ξk−1). If it were then there are α,
β ∈ Q(ξ1, . . . , ξk−2) with ξk = α + βξk−1. Squaring each side yields

ξ2
k = (α2 + β2ξ2

k−1) + 2αβξk−1.

Since ξ2
k, ξ2

k−1, α and β lie in Q(ξ1, . . . , ξk−2) and since, by the induc-
tive hypothesis, ξk−1 /∈ Q(ξ1, . . . , ξk−2), we have αβ = 0. If β = 0 then
ξk ∈ Q(ξ1, . . . , ξk−2). This will contradict the induction hypothesis for the
sequence 5 < p1 < · · · < pk−2 < pk. Suppose α = 0. Since β = γ + δξk−2

where γ, δ ∈ Q(ξ1, . . . , ξk−3), by squaring each side of ξk = βξk−1 and
applying induction we again conclude γδ = 0. As above if δ = 0 then
β ∈ Q(ξ1, . . . , ξk−3) so ξk ∈ Q(ξ1, . . . , ξk−3, ξk−1) contradicting the induc-
tion hypothesis. Thus γ = 0 and ξk = δξk−2ξk−1. We continue in this
fashion until we conclude ξk = Θξ1ξ2 . . . ξk−1 where Θ ∈ Q, implying

−pk(pk − 2) = (r2/s2)ξ2
1 . . . ξ2

k−1.

Multiplying by s2 yields an equation over Z which has no solution since
pk divides the left hand side an odd number of times and the right hand
side an even number of times. This contradiction finishes the proof that
[Q(ξ1, . . . , ξk) : Q] = 2k.

Consider the subgroup of the Galois group generated by the φj . The
subset {φi1φi2 . . . φim | 1 ≤ φi1 < · · · < φim ≤ n} is easily seen to contain 2n

distinct elements of order 2 and the result follows.

Now suppose
∑n

j=1 cjΘj = 0 where cj ∈ Z. Multiplying by i and expo-
nentiating yields

n∏
j=1

(
4mj − 1

4mj
+

ξj

4mj

)cj

= 1.
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Evaluating φj on each side yields that
(

4mj−1
4mj

+ ξj

4mj

)cj

is real and hence

(being of norm 1) is ±1. Thus 4mj−1
4mj

+ ξj

4mj
is a primitive rth

j root of unity
for some rj | cj . Since [Q(ξj),Q] = 2, rj equals 3, 4 or 6. But, given the
bound on mj , one checks by inspection that this is not the case. This is a
contradiction.
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