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Knot cobordism and amphicheirality 

DANIEL CORAY and FRAN~OISE MICHEL 

Introduction 

Let C,  denote  the cobordism group of n-dimensional knots. Cameron Gordon 
has asked the following question ([Ha], problem 16): 

Can every element of order 2 in C1 be represented by a (-1)-amphicheiral knot? 
A knot is called (-1)-amphicheiral  if it is isotopic to its obvious cobordism 

inverse (see w for a precise definition). Hence  it is clear that the cobordism class 
of any (-1)-amphicheira l  knot has order two. Gordon ' s  question is about a partial 
converse of this statement.  

Actually the problem makes sense in any odd dimension. (We recall that 
C,  = 0 for n even [K].) But, for n = 2 q -  1, we show: 

S T A T E M E N T  1. The answer is negative for every q >-- 2. More precisely, some 
Alexander polynomials ~/ have the following property: the cobordism class of every 
knot whose Alexander polynomial is ~ has order two, but contains no ( -1 ) -  
amphicheiral knot. 

S T A T E M E N T  2. For q = 1 the same polynomials provide many examples of 
algebraic cobordism classes of order 2 which contain no (-1)-amphicheiral knot. 
Since they are exceedingly numerous, it seems reasonable to expect that Gordon's 
question should have a negative answer also in the classical case. 

For the proof we work with the algebraic invariants already used in [T], [Mic] 
and [Hi]. One of the main features is a new (-1)-amphicheiral i ty criterion, which 
is considerably more  general than those previously obtained. In particular it is 
invariant under cobordism and applies to knots of any odd dimension. 

We thank J. Hillman, who pointed out the interest of studying Gordon ' s  
problem in higher dimensions. 
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w Statements of the results 

W e  begin with some definitions: 
1. An  n-knot X is a smooth ,  or iented  submanifold of S n+2 which is 

h o m e o m o r p h i c  to S n. 
2. Let o- : S "+2 ~ S n+2 be the reflection in some equatorial  plane, (~r(X))- the 

image of X with the opposi te  orientation.  By - X  we shall denote  (o'(X))- 
regarded  as a submanifold of S "+2. W e  call it the inverse of X. As X # - X  is 

nul l -cobordant ,  the cobord ism class of - X  is the inverse of  the cobord ism class 

of Z. 
3. Z is said to be (-1)-amphicheiral (" involutory"  in the terminology of J. 

Conway)  if it is isotopic to - Z .  
4. For  e = +1,  let C~(7/) be the cobordism group of e - forms  (cf. [L1] or  [K]). 

Associat ing a Seifert form to a (2q - D-kno t  induces a h o m o m o r p h i s m  q~2q ~ from 
C~_1  to C-~-1)~ The  algebraic cobordism class of a ( 2 q - D - k n o t  X is the 
image by q~2q-1 of the cobord ism class of X. We  recall that  q~z, 1 is injective if and 
only if q I>2 ([L1] and [C-G]) .  It  is the reason why our  results do  not answer 
G o r d o n ' s  quest ion when q = 1. 

5. For  any polynomial  A ~2~[X], of degree  d (say), we define A * c  7/[X] by the 
formula:  

a * ( x )  = x ~ a  ( x -  1). 

W e  recall that  A is reciprocal if A = A*. 
6. Given an irreducible reciprocal polynomial  3' c 2~[X], we define K to be the 

number  field Q[X]/(y), and ~r~ its ring of  algebraic integers. As  y is reciprocal,  
mapping  X into X -1 induces an involution on K. W e  write 6 for the image of 
a ~ K  under  this involution. Finally we set a = 3'(0) and adopt  the following 

terminology:  
3' has property P1 if a~i = - 1  for  some c~ in K ;  

has property P2 if cz& = - 1  for  some a in the ring ~K[1 /a ] ;  
3' has property P3 if rl~ = - 1  for some unit ~ in ~K. 
W e  are now in a posit ion to give the precise s ta tements  that  we shall prove.  In 

what  follows, q is any positive integer, and X a ( 2 q - 1 ) - k n o t .  If A is the 
Alexander  polynomial  of  X, we have A = A*. Hence  we can write: 

! 

A = ~ *  [ ' I  Yi, 
i = l  

where  the 3'~ are distinct irreducible reciprocal polynomials .  (The Yi are those 
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reciprocal polynomials which appear with odd multiplicity among the irreducible 
factors of a.) 

T H E O R E M  1. l f  ~ is (-1)-amphicheiral then 3"i has property Pa, for every i <-l. 

This (-1)-amphicheirality criterion is proved in w In practice, property P3 is 
a lot more convenient to work with than P2. This makes the interest of the 
following two propositions, where 3' is assumed to be an irreducible reciprocal 
polynomial such that 3'(1)= +1. 

PROPOSITION 1. Suppose 13'(0) I is a prime p and 2IX, x-a] / (3 ' )=  0K[1/p]. 
Then 3' has property P2 if and only if it has P3. 

PROPOSITION 2. Suppose t3"(0)1 is a prime p and K is a Galois extension of 
Q. Then 3" has property P2 if and only if it has P3. 

For Proposition 1 we give a topological argument, while Proposition 2 is 
established by purely algebraic means. 

Remark. Proposition 2 will be used in w in constructing the appropriate 
examples. 

In w we prove: 

T H E O R E M  2. Let X be a (2q -1 ) -kno t  whose Alexander polynomial 3" is 
irreducible. Then: 

(1) 3" has property P~ if and only if the algebraic cobordism class of X has order 
two; 

(2) if X is cobordant to some (-1)-amphicheiral knot then 3" has property Pa. 

SCHOLIUM. If  q >-- 2 and 3" has property P1 then the geometric cobordism class 
of X is also of order two, as follows from [L1]. 

COROLLARY.  To prove statements 1 and 2 of the introduction it is enough to 
produce some irreducible, reciprocal polynomials 3' with the following properties: 

(1) 3" is the Alexander polynomial of some ( 2 q -  1)-knot; 
(2) 3" has property P1; 
(3) 3' fails to have property P2. 

In w we show how to construct infinitely many irreducible Alexander polyno- 
mials having property P~ but not i~ As a matter of fact there are some examples 
already in degree 2, but recall: 
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Levine's criterion [L1]. A reciprocal polynomial ~ �9 7/[X], with degree d, is the 
Alexander polynomial of some (2q - 1)-knot if and only if 31(1) = e a/2 and ~/(e) is a 
perfect square, where e = ( - 1 )  "+l. 

Now, if 3, is any reciprocal polynomial  of degree 2 such that , / ( 1 ) = - 1 ,  we 
observe that  ~/(-1), being the discriminant of % can be a perfect  square only if 
is reducible! Therefore ,  by Levine ' s  criterion, no  example  with q even can be 
obta ined  in degree  2. Tha t  is why we shall give two series of  examples:  

I. The quadratic case (which occurs only for odd values of q) 

~(X)  = - p X  2 + (2p + 1 ) X -  p, 

where  p runs th rough  a certain set of  primes:  p = 367, 379, 4 6 1 , 7 5 1 , 9 9 1 ,  �9 �9 �9 (61 

examples for  p < 10,000). 

Remark. In  IT], H. F. T ro t t e r  already observed  that  the knots  with Alexander  
polynomial  3 ~ ( X ) = - 3 6 7 X 2 +  7 3 5 X - 3 6 7  are not  ( -1) -amphiche i ra l .  

II .  The biquadratic case (which occurs for any q) 

In  w we prove  the following theorem:  

T H E O R E M  3. Let p be an odd prime and 

~(X)  = - p X 4 +  (2p + 1)X2-p .  

Then ~ is irreducible. Moreover: 
(1) 3' has property P1; 
(2) 3' fails to have property P2 if and only if p is congruent to 3 modulo 4 and 

the fundamental unit of O ( ~ p + l )  has norm +1.  

Remark. This yields infinitely many  examples.  Indeed  the fundamenta l  unit of 
Q(~/4p + 1) has n o r m  +1 whenever  4p + 1 has a pr ime factor  with odd multiplicity 
which is congruent  to  3 modu lo  4 (e.g. p = 19, 23, etc.), and also in certain o ther  

cases, like p = 367, 379, 751, 9 9 1 , . . .  etc. 

Other examples. The fol lowing polynomials :  

~/(X) = X 4 -  2 / tX 3 + (4), - 1 )X 2 -  2AX + 1, 

with )t = 36, 45, �9 �9 �9 (an infinity of  examples),  satisfy all three propert ies  of  the 
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above corollary. This is proved in [C] with the techniques that we use in the proof 
of Theorem 3. The particular interest of these examples is that they can be 
realized as Alexander polynomials of some fibered knots. 

w An amphicheirality criterion 

Proof of Theorem 1. We recall that ,~ is a (-1)-amphicheiral ( 2 q -  1)-knot 
with Alexander polynomial A. To prove Theorem 1, we must show: if A = 
3 ,2~+1 �9 tx, where 3' is reciprocal, irreducible and prime to tx, then 3~ has property 
Pa- 

Let X be the infinite cyclic covering of the complement of N. Put M =  Hq(X); 
this is a torsion module over 7/[X, X-l] .  Let B : M x M ~ Q(X)/7][X,X -~] be the 
Blanchfield pairing associated with X (cf. [L3], p. 15). If we write e for ( -1)  q+~, 
the Blanchfield pairing is e-hermitian and unimodular (i.e. the adjoint of B yields 
a Z[X, X-1]-isomorphism between M and HomzEx.x-,j(M, Q(X)/7/[X,X-1])) (cf. 
[L3]). We recall that B can be constructed as follows ([L3], Proposition 14.3, p. 
44): 

Let A be an r x r matrix which represents a Seifert pairing of ~ (see, for 
example, [K]). We denote by A ' the transpose of A. Now M is isomorphic to 

(2[[X, X-1])~/(AX - eA  ') 

and, with this presentation of M, the form B corresponds to ( 1 -  X ) ( A X - e A ' )  -1. 
As - A  is a Seifert matrix for -X,  it follows from the above that (M, - B )  is the 

Blanchfield pairing of -X.  Now the isomorphism class of (M, B) is an invariant of 
the isotopy class of ~. Hence the (-1)-amphicheirality of ,~ yields a 7/[X, X-1]- 
automorphism F of M such that B(F(oO, F(/3)) = -B(a , /3 )  for all a and/3 in M. 

Let A0 be any non-degenerate Seifert matrix in the S-equivalence class of A 
(cf. [T]). Then A(X)= det (AoX-eA 'o )  is independent of the choice of A0, and 
A(0) = det (Ao) ~ 0. 

By assumption, zi = 3~ 2~+1 �9 with coprime 3' and ix. Let us define: 

My = ~ ( X ) M c K e r  3"(X) 2~+~ and M~ = 3'21+l(X)M~Ker t~(X). 

Clearly ~ N M~ = 0. Since/z and 3, are both reciprocal, the Blanchfield pairing B 
splits orthogonally on Mv~M,, .  Moreover, the index o f / V / v ~ M  . in M is finite; 
therefore the restriction, By, of B to My is non-degenerate. Furthermore the 
restriction, F~, of F to M v yields an isomorphism from (M v, B v) to (M v, -B~).  
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We now define: 

M'  ={,~ ~M~ [ vi(X),~ --0} 

H i = M i / ( M  i 1 + 3 , ( X ) M  i+,). 

Put R =7/[X, X-1]/(3,). Then H i is an R-module  of finite rank e~ (say) and the 
Q[X, X-1]-module  M~ ~ Q is isomorphic to: 

(Q[x, x 1]/(3,)~).. 
i = 1  

As ~=1  i "ei = 2 / +  1, there is only a finite number  of non-zero ei; and one of 
them, say %, must be odd. We write: n = ei,,, H = H i,,, and denote by [a]  the class 
in H of an element a ~ M i',. One can define a non-degenerate,  e-hermitian form 
b : H x H - - ~ Q ( X ) / ~ _ [ X , X  1] by setting, for any a and /3 in Mio: 

b([a],  [/3])= *,, ' B~(3, (X)<~,/3). 

That  the form b is well-defined is proved in [Mil], where it is also shown that b is 
non-degenerate  provided B., is. 

As 3,(X)b(a , /3)  is in 2~[X,X 1] for all a and /3 in H, it follows that 
b ( a , / 3 ) = P ( X ) / 3 , ( X ) ,  where P ( X )  is some polynomial in 7/IX, X - I ] .  Setting 
b'(a, /3) = P ( X )  defines a non-degenerate  e-hermitian form b' : H • H ~ R,  and F~ 
induces an R-isomorphism from (H, b') to (H, - b ' ) .  Since H is of rank n over  R, 
we see that A " H ,  the n-th exterior power of H, can be identified with an R-ideal  
L In [B] (w no 9, p. 31) the n-th exterior power of b' is defined, and it is shown 
that A'~b ' is non-degenerate  provided b' is. Let f be the isomorphism from 
(L A"b' )  to (L A " ( - b ' ) )  which is induced by F~. We write R/ for the ring of 
coefficients of the R-ideal  /, i.e. Rt = { a  c K l a I  c I}. We recall that a = 3,(0); so 
R = 6K[1/a] .  

L E M M A  1. R i C ~ K [ 1 / a ] .  

Proof. Put  S = ~ K [ l l a ]  and J = I �9 S. Clearly the ring of coefficients, Sj, of J 
contains RI. Hence it is enough to show that S j c  S. But S is a Dedekind ring; 
hence the ring of coefficients of any non-zero S-ideal is S itself. [ ]  

As f is an R-au tomorph i sm o f / ,  there exists u in Rt, hence in ~?K[1/a] (by the 
lemma), such that f ( a )  = ua for all ot in L Now n is odd, hence A " ( - b ' )  = - A " b ' .  
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Let us take a and /3 in /, both non-zero; then (A"b')(~,/3) r 0; so the relations 

(A"b')(f(a),  f(/3)) = ufi(A"b')(a, [3) = - (A"b ' ) (a ,  /3) 

imply ufi = - 1 .  This completes the proof of Theorem 1. [ ]  

Proof of Proposition 1. Suppose 3' has property P2- Under  the assumptions of 
Proposition 1, we show that 3' also has property P3. Let M=Y_[X, X-l]/(3 ') ;  we 
define a unimodular hermitian form B : M x M - - ~ Q ( X ) / 7 / [ X , X  -l] by setting 

B(a,/3)  = a~/3`(X) for any a and /3 in M. 
As 3' has property P2 and ~?K[1/3'(0)] = Y[X, X-t]/(3') ,  multiplication by an 

element u in ~?K[1/3"(0)] such that ut~ = - 1  yields an isomorphism from (M, B) to 
(M, - B ) .  Now the form (M, B) is always the Blanchfield pairing of some (2q - 1)- 
knot, provided we choose q odd (see Theorem 12.1 in [L3] ). Let A be a 
non-degenerate  Seifert matrix associated with such a knot. Assuming 13'(0)t is a 
prime number  p, Trot ter  [T] (Corollary 4.7, p. 196) shows that (M, B) is 
isomorphic to (M, - B )  if and only if A is isomorphic to - A .  (A word of caution: 
Trot ter  calls Seifert form what is usually called Blanchfield pairing, as here.) 

On the other  hand, since 3' is irreducible, the isomorphism between A and - A  
implies the existence of u in ~YK such that uti = - 1  (cf. [Mic]). This completes the 
proof of Proposition 1. []  

Proof of Proposition 2. We begin by showing that Proposition 2 can be 
deduced from the following lemma: 

L E M M A  2. Let F be a number field, ~F its ring of algebraic integers and 
a c N*. Suppose there exists a Galois automorphism o- : F--> F such that o -2 = id (o- is 
an involution of F), and an element ct in ~F[1/a]  such that ct �9 tr(t~) = - 1 .  If, for 
some odd integer A ~N*, every prime ideal #c~? F dividing a and distinct from o-(/~) 
is such that #x is principal, then there exists "q in ~1: such that "qo-(rl)=-1. 

Lemma 2 implies Proposition 2: 
We recall that p = 13'(0)1 is prime. Consider the following polynomial: 

q~(X) = 3 ` (1 )xd3 ` (1 -X)  = 3"(1)(3`(1)Xd + �9 �9 �9 + (-1)a3"(O)), 

where d is the degree of 3 .̀ As 3`(1)= • the polynomial q~ is monic, and 

,p(o) = :~p. 
Let ~1 . . . . .  ~ be the roots of q~. Since q~ is irreducible, they are all distinct. 

Moreover,  K is Galois; hence they all lie in K. For every i, the ideal #~ = (~) is 
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pr ime  (with degree  one),  since NK/o(~)= +P. By construct ion it is principal  and 

d 

(p) = l-I  
i = l  

(We do not  c la im that  the  ~ are all distinct!) T h e r e f o r e  all p r ime  ideals dividing p 
are  principal.  Thus  Propos i t ion  2 is a consequence  of L e m m a  2 (with F =  K, 
t r ( a )  = &, a = p and  )t = 1). 

Proof of Lemma 2. Suppose  o~ �9 t r (a)  = - 1  for  some  a in ~TF[1/a]. W e  may  
wri te  the fract ional  ideal (a )  as a p roduc t  of  p r ime ideals: 

(a )  = I I  ~ , ( " )  (2.1) 

Since a t r ( c t ) = - 1 ,  we have:  

v,~(a) + v,(,~)(ot) = 0 V~. (2.2) 

If v,~(o0 ~ 0 ,  it follows f rom (2.2) that  e i ther  v~(a) or  v,,(,,)(ct) is negat ive;  
hence  ~ divides a. T h e  re la t ion (2.2) shows also that  v~(ot)= 0 if ~ = cr(~). 

Le t  us now consider  the  p r ime  ideals A ~ t r (A)  which divide a. By assumpt ion ,  
we may  wri te  A~ = (~r~) for  some  7r~ ~ F. T h e n  the re la t ions (2.1) and (2.2) imply: 

(tr(rr')~ ~', (2.3) 
C ~ x = ' q l ~ i  " "/'/'i / 

with txieT/ and ~1 a unit in 0~. W e  see that  ctXcr(a) ~ = ~  �9 tr(*l). Now h is odd; 
hence  ~1 �9 o - (71 )=-1 .  This  comple tes  the p roo f  of L e m m a  2. [ ]  

w Knot eobordism d~ses of order two 

Proof of the first assertion of Theorem 2. Let  Z be a ( 2 q -  1)-knot  whose  
A l e x a n d e r  polynomia l  ~ is irreducible.  Put  e = ( - 1 )  q. W e  recall  some  definit ions 
and  basic facts abou t  a lgebraic  cobord i sm (for m o r e  detai ls  see [K]). 

D E F I N I T I O N .  An  n x n integral  mat r ix  B represents an e-form if the  matr ix  
B + eB' is invert ible ove r  7/. 

If  A is a Seifert  matr ix  associated with Z, then  A + eA'  is the  mat r ix  of  the 



Knot cobordism and amphicheirality 609 

intersection form on a Seifert surface of X. Since Z is a sphere, this intersection 
form is unimodular [K]. Hence A represents an e-form. 

DEFINITION. An e-form is null-cobordant if it is represented by a matrix of 

0 A I ) ,  where Ai are all square integral matrices. the form A2 A3 the 
] 

Let C ~ (;g) be the group of cobordism classes of e-forms. On tensoring with Q, 
we obtain an injective map from C ~ (7/) to the group of cobordism classes of 
rational e-forms,  say, C~(Q). 

The first assertion of Theorem 2 can therefore be stated as follows: Given a 
Seifert matrix A of 1~, then A ~ A is null-cobordant if and only if3" has property P1. 
This fact can be deduced from Levine 's  description of C~(Q) [I-,2] or from 
Stoltzfus's computation of C~(7/) [St], but we shall give here a direct and 
elementary proof. 

As in w K is the number  field O[X]/(3'). Let H~(K) be the Witt group of 
non-degenerate  e-hermitian forms B : M  x M--*, K, where M runs through the 
finite-dimensional vector spaces over K. 

L E M M A  3. Suppose M is a one-dimensional vector space over K. Then the 
class of B in H ~ (K) has order two if and only if 3' has property P1. 

Proof. If 3  ̀has property P1, then a ~  = - 1  for some a in K. Multiplication by a 
yields an automorphism of M that carries B into - B .  Thus B ~ B  is isomorphic to 
B ( ~ ( - B ) ;  therefore its Witt class is zero. 

As B has rank one, if the Witt class of B ~ B  is zero, this form is represented 

( 0  /31) wi th /3 ,~K,  i f ~ E K ,  i s t h e d e t e r m i n a n t o f B  ' by a matrix of the form e/31 /32 
then: 

13 = e~. (3.1) 

As the determinant  is defined up to an element of K* of the form rl �9 ~, we obtain 
the relation: 

det ( B ~ B ) =/32 = -e[Jl~ln~. (3.2) 

If we write a =/3-1/31~, the relations (3.1) and (3.2) show that a �9 & = - 1 .  This 

completes the proof  of Lemma  3. [ ]  
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In the S-equivalence class of Seifert matrices corresponding to ~, we can 
choose one which is non-degenerate  IT]. Call it A. Then the rank of A is equal to 
the degree, d, of 3,. Let  M be a d-dimensional vector space over Q. The matrix 
T = - e A - 1 A  ' represents an automorphism of M. Put X �9 a = T(a) .  This action of 
Q[X] induces on M the structure of a one-dimensional K-vector  space. There  
exists an e-hermit ian form B : M x  M--~ K such that the relation: 

(aa) ' (A + eA')(/3) = traceK/o aB(a,  /3) (3.3) 

is satisfied for all a in K and a, /3 in M (see [Mil]). Now, using (3.3), a direct 
computation shows that A O A  is null-cobordant if and only if the Witt class of B 
has order two. By L e m m a  3 this completes the proof of assertion (1). 

Proof of the second assertion of Theorem 2. Suppose X is cobordant  to X'. 
Then the Fox-Milnor  relation shows that the Alexander polynomial of X'  is of the 
form 8 �9 8* .  3" for some integral polynomial 8 (for a proof see [Lt], p. 237). If, 
moreover,  X is ( -1)-amphicheiral ,  it follows from Theorem 1 that 3' has property 
P2. This completes the proof of Theorem 2. [ ]  

w Explicit examples 

In this section, which is purely number-theoretical ,  we show that there exist 
infinitely many irreducible Alexander polynomials of low degree having property 
P1 but not P2. 

I. The quadratic case 

P R O P O S I T I O N  3. Let p be an odd prime, D the square-free part of 4p + 1, 
and 

3"(X) = - p X  2 + (2p + 1 ) X -  p. 

Then 3, is irreducible. Moreover: 
(1) 3' has property P1 if and only if all prime factors of D are congruent to 1 

modulo 4; 
(2) 3" fails to have property P2 if and only if the fundamental unit of Q(x/D) has 

norm +1. 

Proof. The  discriminant 4p + 1 of 3' is not a square, since it is congruent to 5 

modulo 8. Hence  3, is irreducible. 
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(1) As K = Q(~/D), it is clear that P1 holds if and only if the equat ion 

x 2 -  D y  2 = - 1 (4.1) 

can be solved with x, y c Q .  A local calculation and the Hasse-Minkowski  
theorem show that this is the case if and only if all pr ime factors of D are 
congruent  to 1 modulo  4. (In fact this is a well-known result on sums of  two 
squares.) 

(2) This is an immediate  consequence  of Proposi t ion 2, since 13'(0)1 = P  and 
K/Q is Galois. [ ]  

E X A M P L E S .  As is well-known, the fundamenta l  unit of  Q(~/D) has norm +1 
if and only if the period of the cont inued fraction expansion of x/D is even. 

There  is a very efficient algori thm for  determining that period (see [Si], p. 296;  
and [P], w pp. 102-103,  for a useful refinement). In point  of fact the 
fundamenta l  unit itself is detected by this procedure,  which involves a compute r  
calculation whose only difficulty is the number  of digits to be handled (for 

D = 991, already thirty digits are required!).  The  two smallest examples (1) illus- 
trating Proposit ion 3 are: 

p = 367; D = 1 3 .  113; ~ = 5 6 + 3 8  

p = 3 7 9 ;  D = 3 7 . 4 1 ;  r l = 1 9 + 6  

(We denote  by rl the fundamenta l  unit of  Q(~/D), and 8 = ( l+~/D)/2.)  

Remark.  In these examples, D is never  a prime. This follows f rom an 
e lementary  result, which will be used again later: 

L E M M A  4. Suppose D is a prime congruent to 1 modulo 4. Then equation 

(4.1) can be solved with x, y~7/. Hence the fundamental unit of Q(x/D) has 
norm - 1. 

A proof  can be  found  in [Mo], Chap. 8. The  idea is to  start f rom the 
fundamenta l  solution of the Pell equat ion t 2 - D u  2= 1. The  assumptions on D 
enable one  to write 

t - 1 t + l  
= x 2 and D y  2, 

2 ---2-- = 

with x, y ~ g .  Then  (x, y) is a solution of  (4.1). 

m A complete list with p --<50,000 is available on request. 
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II. Proof of Theorem 3 
Let  r be any root  of  the polynomial  

3"(X) = - p X  4 + (2p + l ) X  a -  p. 

As  the o ther  roots  are - - r  and + l / r ,  we see that K = 4)(r) is a Galois extension of 
Q. Moreover ,  K contains Q( r  z) =O(x /D) ,  where  as above we denote by D the 
square-free part of 4p + 1. Since p is odd, 4p + 1 is congruent  to 5 modulo  8, hence  
D~:  1. the fixed field of the involution "r~--~ 1 / r  is the field Q(cr), with (r = - r +  1/I" = 

x/(4p + 1)/p. From this we see that  K/Q is an extension of  degree  4 (whence 3' is 
irreducible), with Galois group 7//2 x7//2. Therefore  K contains three quadratic 
subfields: 

k a = Q(x/p) k2 = Q(x/D) k3 = Q(tr) 

It is useful to observe  that  the involution r~--* 1 / r  induces the ordinary conjugat ion 

on kl and on k2:x/p~-->-x/p, resp. x/D~-~,-x/D. 
(1) We wish to prove that 3" has property P1. Now an e lement  ot ~ K can be 

writ ten in the fo rm o~ = x + yx/p with x, y ~ Q(tr). There fo re  we have to show that 

the equat ion 

xZ--py  2=  --1 (4.2) 

can be solved with x, y ~ Q(tr). Equivalently,  we are reduced to showing that  the 
h o m o g e n e o u s  equat ion 

x 2_  py2 + z 2 = 0 (4.3) 

has a non-trivial  solution in Q(tr).  
By the Hasse -Minkowski  t heo rem for  the number  field ~(tr)  (see for  example  

[C-F] ,  ex. 4.8, p. 359), it will suffice to show that  (4.3) can be solved non-trivially 
in all complet ions  of Q(tr). Since the quadrat ic  form in (4.3) is defined over  Q, it is 
indefinite for each of the two real embeddings  of Q(tr). There fore  it suffices to 

consider  the non-a rch imedean  valuations. 
If  p - 1  ( rood4) ,  we know that  p is a sum of two squares;  hence  (4.3) is 
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already solvable over Q. (By Lemma 4 we know that (4.2) is even solvable over 
7/.) Thus we may assume without loss of generality that p----3 (mod 4). Then 
pD=-3 (mod4) ;  hence the ideal (2) ramifies in Q ( ~ ) = Q ( p ~ ) .  Therefore it is 
enough to prove that (4.3) has a non-trivial solution in all non-archimedean 
completions of Q(cr) whose residue field is of characteristic 42. Indeed, by the 
product formula ([C-F], ex. 4.5, p. 358), the number  of places where a quadratic 
form in three variables does not represent zero is even; but there is only one 
prime ideal above (2). 

By a well-known result (a special case of the Chevalley-Warning theorem), 
(4.3) has non-trivial solutions in every finite field. By Hensel 's  lemma (cf. [C-F], 
p. 83), these solutions can be lifted over the corresponding completions, provided 
the characteristic of the residue field is not equal to 2 or p. In addition, the ideal 
(p) ramifies in Q(oQ = Q( p ~ ) ;  therefore all we have to show is that (4.3) can be 
solved//-adically,  where / /deno tes  the unique ideal above (p). 

Since (p) =//2, locally we can write p = w2~, where ~r is a uniformizing element 
and rl a / / - ad ic  unit. Now, if we write Y = wy, we are reduced to showing that 

X2-- ~ y 2  q-- z2 = 0 

has a non-tr ivial / / -adic solution. Since now ~ is a unit, the above argument with 
Hensel 's  l emma applies. This completes the proof that 3' has property PI. 

(2) Let us examine under what conditions 3' has property P2. In each quadratic 
subfield ki of K there is a fundamental  unit ei. Now since the involution l"~--~l/1- 
acts as the ordinary conjugation on kl and k2, it is clear that 3' has property P3 (a 
fortiori P2) if either s 1 or e 2 has norm - 1 .  As we saw in Lemma  4, e~ has norm 
- 1  if p-= 1 (mod 4); and only then, since obviously (4.2) has no rational solution 
for p =-- 3 (mod 4). This proves one of the implications in the second assertion of 
Theorem 3. In order to establish the converse, we first note that the two 
properties/ : '2 and P3 are in fact equivalent in our  case, as follows from Proposi- 
tion 2. Therefore  we are reduced to proving the following lemma: 

L E M M A  5. Suppose el and ez have norm +1. Then 3" fails to have property P3. 

Proof. The general theory of units in biquadratic fields is fairly well under- 
stood (cf. [Kur], [Kub], [N]); but the special shape of the polynomial 3' yields 
some further information, which will be needed. Let UK be the group of units in 
the ring of integers ~?r. As K is totally real, we choose once for all a real 
embedding and denote by U~ the free 77-module of rank 3 consisting of all 
positive units. Correspondingly, we agree that el, e2 and e3 are elements of U~. 
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(a) A classical a rgument  [Kur]  shows that  the sub-Z-module  R c U~ gener-  

ated by el, e2 and e3 is of finite index in U~. For if ~ c UK is any unit then rla c R. 

Indeed,  let rl ' be the conjugate  of ~l above kl. Then  

NK/k, ('O) = "O'O '=  •  ~, 

and similarly: 

"O~'=• "O'~= +e~ ( a , b , c ~ Z ) .  

Hence  rl 2 = • 'O2('O~'fi~ ') = = e~ebe;  e R .  

Remark .  This a rgument  shows that the index J = [U~:: R ]  is in fact a divisor of 
8. Kuroda  [Kur]  has shown that, in the general  case, there are seven essentially 
distinct possibilities and that  every divisor of  8 can occur.  In our  present  case, 
however ,  J is always equal to 2, since we prove below that  U~: is generated by e~, 

e2 and ~/e3. 

(b) Suppose now "OR = E1 for some unit "q; then rl 2 belongs to the submodule 

R ' c  R which is generated by el and e2. Indeed,  we have just seen that rl a =  
a b r  e leze3 ,  in addit ion e3=g3 .  F rom the assumption ~ = E l  we therefore  get: 

1 = r12~] 2=  e 2c, which is possible only if c = 0. 

(e) Suppose ~/ has p roper ty  P3, i.e. there  exists a unit ~1 c U~: such that  
"O'q = - 1 .  Then  ~ R ' ,  since by assumption e l ~  = e292 = +1. Fur ther  we know, by 
(b) above,  that  42 is of the fo rm e~e~ with a, b oZ.  Since rl~ R ' ,  we see that a and 
b are not  bo th  even. This implies that  at least one  of the numbers  el, e2 and exe2 
is a square in K. Therefore the l emma will be proved once we show that none of  the 

numbers e~, e2 and ete2 is a square in K. 
(d) W e  consider  first e2. If it were a square  in K, there  would exist a , /3 c k2 

such that  e2  = (Or + / 3 n / p )  2 = (a2+p/32)+2a/3x/p .  Of  course 134 0, since e2  is not  a 
square in k2. But  the coefficient of ~/p must  vanish, hence  a = 0. Thus  we get: 

ez=p/32,  with /3~k2. This is impossible, since p does not  ramify in k2 = 
Q(~/4p + 1). (One  can also proceed  as in (g) below: /3 is in fact an e lement  of  ~?k2, 
and p does not  divide the unit e2.) W e  have shown that e2 is not a square in K. 

(e) Let  us examine el. As  p ~ 3  (mod4) ,  we can write e l = a l + b l ~ / p  with 
aa, bl ~ Z. W e  claim that ba is odd. To  see that,  it suffices to  repeat  the a rgument  

a 1 - pb x = 1 would  by which one  proves  L e m m a  4: if bl were even,  the equali ty 2 2 

imply 

where  

[ a l [ - 1  [ a l l + l  
u = ~ and v 

2 2 
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are copr ime integers. Since p is a pr ime,  e i ther  u or  v is a square.  In ei ther  case 
we get a contradict ion:  if u = s  z and v = p t  2, then s 2 - p t 2 = u - v = - l ;  hence 
s + t ~ / p c k l  would be  a unit of norm - 1 .  If v = s  2 and u = p t  2, then  s2--pt  2=  

v - - u = l ,  and l < t s l < t a l t .  This  is impossible,  for  the fundamenta l  unit el 
cor responds  to a solution of the Pell equat ion s 2 - p t  2= 1 for which Isl>l is 
minimal .  

(f) W e  put  o = ~/p, ~ = (1 + ~/D)/2. As D --- 1 (mod 4), one  checks easily that  
~K is the f ree  Z -modu le  with basis {1, 0, ~, 06}. (This follows also f rom [L], chap. 
3, w prop.  17.) Thus  any e lement  ~ ~ ~?t< can be  wri t ten in the fo rm ~ = a +/30 
with a , /3  c ~7k2. Then  ~2 takes  the fo rm ( 2 +  p/32)+2a/30. On  writing oq3 = a + b6 

with a, b c Z, we reach the  following conclusion: when ~2 is expressed in the Z-base 

{1, 0, 6, 08}, the coefficients of  o and 96 are even. 
(g) Put t ing (e) and (f) together ,  it is immedia te  that  el  = al  + bxO is not a square 

in K, since bl is odd.  Finally, let us write e z = a 2 + b z S ,  with az, b 2 e Z ;  the 
coefficients of 0 and 0~ in the product  ele2 are then respect ively b~a2 and bib2. If 
e~e2 were  a square  in K, these integers would have  to be  even. But  b~ is odd;  
hence  bo th  a2 and b2 should be  even. This  is clearly not the case, since e2 is not  
divisible by  2. This shows that  e1~2 is not a square in K and comple tes  the  proof  
of the l emma.  [ ]  

Remark .  In (a) above  it is c la imed that  U~: is genera ted  by el, e2 and ~/e3. In 
view of the  results ga thered  so far, it is enough to p rove  that  ez is a square.  Now 
the si tuat ion we are in is quite except ional  in that the fundamenta l  unit E3 is given 
by an explicit formula!  Indeed  let 

"113 = ( 8 p  -I- 1) + 4~/p(4p + 1). (4.4) 

It  is a s imple  exercise to show that  (8p + 1, 4) is the fundamenta l  solution of the  
Pell  equa t ion  x ~ - p ( 4 p +  1)y 2=  1. H e n c e  "03 = e3 if 4p + 1 is square- f ree ;  o ther -  
wise r13 = e~ for  some  v e N .  Moreover ,  "03 is the square  of  

~/ rl 3 = 2 ~/ p + , ~ p  + l E K (4.5) 

Fur the rmore ,  v is necessarily odd, since ",/~3 does not lie in k 3. H e n c e  in all cases 

e3 is a square,  and J = 2. 
I t  is a firmly establ ished tradit ion tha t  unit computa t ions  in a n u m b e r  field 

culminate  in the de te rmina t ion  of the  class number .  As  J =  2, one  has the 

following formula ,  ([Kub], Satz 5, p. 80): 

H=�89  (4.6) 



616 DANIEL CORAY AND FRAN(;OISE MICHEL 

in which hi. (resp. H)  denotes the class number of the field kl (resp. K).  We see 
that the product hlh2h3 is always even. This is not surprising; indeed, using (4.4) 
or (4.5), one shows easily that every prime factor of D is the square of a 
non-principal ideal of k3, and therefore accounts for a factor 2 in h 3. 

Note. The proof of Theorem 3 shows that there exist infinitely many polyno- 
mials of degree four having the required properties. For the quadratic case we do 
not know whether the constructed family of polynomials is infinite (but we believe 
SO). 
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