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Abstract

The asymmetry of a nonsingular pairing on a vector space is an endomorphism of the space
on which the classi1cation of arbitrary pairings (not necessarily symmetric or skew-symmetric)
is based. A general notion of asymmetry is de1ned for arbitrary anti-automorphisms on a cen-
tral simple algebra, and conditions are given to characterize the elements which are the asym-
metries of some anti-automorphism. The asymmetry is used to de1ne the determinant of an
anti-automorphism. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: Primary 11E39; secondary 16K20

0. Introduction

The asymmetry of an arbitrary nonsingular pairing (not necessarily symmetric or
skew-symmetric) on a 1nite-dimensional vector space V is an invertible endomorphism
of V which is an important invariant of the pairing. It is 1 if and only if the pairing
is symmetric and −1 if and only if it is skew-symmetric. This invariant was 1rst
considered by Williamson [9], and more recently by Riehm [6].

In the present paper, we determine under which conditions a linear map a ∈ GL(V )
is the asymmetry of some nonsingular pairing on V : the map a must be conjugate to
its inverse and satisfy some conditions on the generalized eigenspaces of eigenvalues
+1 and −1, see Theorem 1. As pointed out by Ranicki, the property that a is an
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asymmetry could be rephrased by saying that a certain asymmetric PoincarBe complex
of dimension 1 is round simple null-cobordant. (See [5, Chapter 20] for background
information on PoincarBe complexes.)

In Section 2, we de1ne the asymmetry of an anti-automorphism � on a central
simple algebra A: it is an element a� ∈ A× which is mapped, under scalar extension
to a splitting 1eld of A, to the asymmetry of any nonsingular pairing to which � is
adjoint. It is de1ned up to sign by the properties that �2(x) = a�xa−1

� for all x ∈ A
and that �(a�) = a−1

� . This element was incidentally used by Saltman [7, Lemma 3:3,
Theorem 4:4] to show that if an Azumaya algebra A carries an anti-automorphism, then
the ring of 2×2 matrices M2(A) carries an involution, and that Azumaya algebras over
connected semilocal rings which are isomorphic to their opposite have an involution.
We show that in a central simple algebra of exponent 2, an invertible element is the
asymmetry of some anti-automorphism if and only if it is conjugate to its inverse
(Theorem 2). Albert’s theorem that every central simple algebra of exponent 2 has an
involution is an immediate consequence, since involutions are the anti-automorphisms
of asymmetry ±1. In the 1nal section, the asymmetry is used to de1ne the determinant
of an anti-automorphism.

1. The asymmetry of a nonsingular pairing

Throughout this section, V denotes a 1nite-dimensional vector space over an arbitrary
1eld F . We de1ne the asymmetry and the adjoint anti-automorphism of a nonsingular
pairing on V , and determine which linear transformations of V are asymmetries.

1.1. De;nitions

Let V ∗=HomF(V; F) be the dual of V . Every pairing (or bilinear form) b :V ×V →
F induces a linear map b̂ :V → V ∗ which carries x ∈ V to b(x; •) ∈ V ∗. The transpose
map b̂t :V = V ∗∗ → V ∗ carries x ∈ V to b(•; x) ∈ V ∗.

Proposition 1. For a pairing b on V , the following conditions are equivalent:
(a) if x ∈ V is such that b(x; y) = 0 for all y ∈ V , then x = 0;
(b) if y ∈ V is such that b(x; y) = 0 for all x ∈ V , then y = 0;
(c) the map b̂ is bijective.

If these conditions hold, the pairing b is called nonsingular.

Proof. Condition (a) is equivalent to injectivity of b̂, and (b) to injectivity of b̂t , hence
also to surjectivity of b̂. Since dim V = dim V ∗, each of these conditions implies that
b̂ is bijective.

All the pairings considered in the sequel are nonsingular. To every nonsingular pair-
ing b on V we attach an anti-automorphism �b of EndFV and a linear transformation
ab ∈ GL(V ) as follows:



A. Cortella, J.-P. Tignol / Journal of Pure and Applied Algebra 167 (2002) 175–193 177

Proposition 2. Let b be a nonsingular pairing on V . There is a unique map �b :
EndF V → EndF V and a unique map ab :V → V such that

b(f(x); y) = b(x; �b(f)(y)) for all x; y ∈ V; f ∈ EndF V (1)

and

b(x; y) = b(y; ab(x)) for all x; y ∈ V: (2)

The map �b is an F-linear anti-automorphism of EndF V and the map ab is linear
and invertible. These maps satisfy the following properties:
(i) �2

b(f) = ab ◦ f ◦ a−1
b for all f ∈ EndF V ;

(ii) �b(ab) = a−1
b .

Proof. For f ∈ EndF V , let �b(f)= (b̂ ◦f ◦ b̂−1)t . Equality (1) is easily checked, and
the fact that �b is an F-linear anti-automorphism of EndF V follows. Uniqueness of �b

follows from the hypothesis that b is nonsingular.
On the other hand, let ab = (b̂t)−1 ◦ b̂. This map is clearly linear and invertible, and

it satis1es (2). Uniqueness of ab is clear. To check the additional properties, observe
that for f ∈ EndF V

�2
b(f) = (b̂ ◦ (b̂ ◦ f ◦ b̂−1)t ◦ b̂−1)t = ((b̂t)−1 ◦ b̂) ◦ f ◦ ((b̂t)−1 ◦ b̂)−1

and

�b((b̂t)−1 ◦ b̂) = (b̂ ◦ ((b̂t)−1 ◦ b̂) ◦ b̂−1)t = ((b̂t)−1 ◦ b̂)−1:

We call �b the anti-automorphism adjoint to b. Using the Skolem–Noether theorem,
it is easily seen that every F-linear anti-automorphism of EndF V is adjoint to some
nonsingular pairing, see [4, p. 1]. The map ab is called the asymmetry of b. From
the de1nition, it is clear that the adjoint anti-automorphism and the asymmetry of any
scalar multiple of b are the same as those of b. Moreover, the map ab is determined
up to sign by properties (i) and (ii).

We combine ab and �b into a linear involution of EndF V as follows:

Proposition 3. Let b be a nonsingular pairing on V . There is a unique linear map
�b : EndF V → EndF V such that

b(x; f(y)) = b(y; �b(f)(x)) for all x; y ∈ V; f ∈ EndF V: (3)

This map satis;es the following additional properties:
(i) �b(f ◦ g ◦ h) = �b(h) ◦ �b(g) ◦ �−1

b (f) for f; g; h ∈ EndF V ;
(ii) �2b = IdEndV ;
(iii) �b(IdV ) = ab.
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Proof. Set �b(f) = �b(f) ◦ ab (=ab ◦ �−1
b (f)) for f ∈ EndF V ; then (iii) is clear and

(3), (i), (ii) follow from the properties of �b and ab.

We call �b the linear involution of EndF V associated to b. As for the adjoint
anti-automorphism �b and the asymmetry ab, it is clear that �b is also the linear invo-
lution associated to any scalar multiple of b.

Remark. There are corresponding notions for pairings on faithfully projective modules
with values in invertible modules (over an arbitrary commutative ring R): see [3,
Chapter III, (8:2)].

1.2. Characterization of asymmetries

The goal of this subsection is to answer the following question: Under which con-
ditions on a map a ∈ GL(V ) does there exist a nonsingular pairing b on V whose
asymmetry is a, i.e., such that ab =a? Identifying EndF V with a matrix algebra Mn(F)
through the choice of a basis of V , this amounts to asking for which invertible matri-
ces a ∈ GLn(F) the equation a = (xt)−1x has a solution x ∈ GLn(F), in view of the
de1nition of a in terms of b̂ in the proof of Proposition 2.

The conditions involve the following vector spaces: for an arbitrary integer m ¿ 1
and � =±1, we let

V �
m =

ker(a − � IdV )m

ker(a − � IdV )m−1 + (a − � IdV )(ker(a − � IdV )m+1)
:

Theorem 1. Suppose char F �= 2. A map a ∈ GL(V ) is the asymmetry of some
nonsingular pairing on V if and only if the following conditions hold:
(1) a is conjugate to a−1 in GL(V );
(2) for every even integer m, dim V+1

m is even;
(3) for every odd integer m, dim V−1

m is even.

If char F =2, a map a ∈ GL(V ) is the asymmetry of some nonsingular pairing on V
if and only if conditions (1) and (2) hold.

Proof. We 1rst show that the conditions are necessary. Suppose b is a nonsingular
pairing on V such that ab = a. Proposition 2 shows that �b(a) = a−1. To see how
this equality implies condition (1), we argue in terms of matrices. Using a basis of
V , we identify EndF V with the matrix algebra Mn(F). Since the transpose map t is
an anti-automorphism, �b ◦ t is a linear automorphism of Mn(F), hence the Skolem–
Noether theorem yields an invertible matrix u such that �b ◦ t is the conjugation by
u. Then �b(x) = uxtu−1 for all x ∈ Mn(F). In particular, since �b(a) = a−1 it follows
that a−1 is conjugate to at . But it is well known that every matrix is conjugate to its
transpose, hence condition (1) is proved.



A. Cortella, J.-P. Tignol / Journal of Pure and Applied Algebra 167 (2002) 175–193 179

To show that conditions (2) and (3) are necessary if char F �= 2, we show that
the nonsingular pairing b induces a nonsingular skew-symmetric pairing on V+1

m if
m is even and on V−1

m if m is odd. Conditions (2) and (3) follow because only
even-dimensional vector spaces carry nonsingular skew-symmetric pairings if the char-
acteristic of the base 1eld is diNerent from 2.

Fix some integer m and � =±1. For the convenience of notation, we let

U �
m = ker(a − � IdV )m;

so V �
m = U �

m=(U �
m−1 + (a − � IdV )(U �

m+1)). For x; y ∈ U �
m, de1ne

b�
m(x; y) = b(x; (a − � IdV )m−1(y)):

Since y ∈ U �
m, we have

a ◦ (a − � IdV )m−1(y) = �(a − �IdV )m−1(y); (4)

hence

b(y; (a − � IdV )m−1(x)) = �b(y; a ◦ (a − � IdV )m−1(x))

= �b((a − � IdV )m−1(x); y): (5)

On the other hand, equality (4) yields

(a − � IdV )m−1(y) = (�a−1)m−1(a − � IdV )m−1(y)

= (−1)m−1�b(a − � IdV )m−1(y);

hence

b((a − � IdV )m−1(x); y) = (−1)m−1b(x; (a − � IdV )m−1(y)): (6)

Comparing (5) and (6), we obtain

b�
m(y; x) = (−1)m−1�b�

m(x; y):

Therefore, b�
m is a skew-symmetric bilinear form on U �

m if � =+1 and m is even, and
also if � =−1 and m is odd.

To see that b�
m induces a nonsingular pairing on V �

m, we consider the radical of b�
m,

which is

rad b�
m = {x ∈ U �

m | b(x; z) = 0 for all z ∈ (a − � IdV )m−1(U �
m)}:

Thus, rad b�
m is the intersection of U �

m with the orthogonal 2 complement for the form
b of

(a − � IdV )m−1(U �
m) = im (a − � IdV )m−1 ∩ ker (a − � IdV );

2 If b is not symmetric nor skew-symmetric, one has to distinguish orthogonality on the left and on the right;
the orthogonal complements of a-invariant subspaces coincide, however.
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which is ker �b(a−� IdV )m−1+im �b(a−� IdV ). Since �b(a)=a−1, we have ker �b(a−
� IdV )m−1 = ker (a − � IdV )m−1 and im �b(a − � IdV ) = im (a − � IdV ), hence

rad b�
m = (U �

m−1 + im (a − � IdV )) ∩ U �
m

= U �
m−1 + (im (a − � IdV ) ∩ U �

m)

= U �
m−1 + (a − � IdV )(U �

m+1):

Therefore, b�
m induces a nonsingular pairing on U �

m=(U �
m−1 + (a − � IdV )(U �

m+1)) = V �
m.

Suppose now char F = 2. The arguments above still show that b�
m induces a non-

singular bilinear pairing on V �
m, but in characteristic 2 skew-symmetric pairings are

symmetric, hence we cannot conclude that dim V �
m is even. To show that dim V+1

m is
even if m is even, we show that b+1

m is in fact alternating if m is even. For x ∈ U+1
m

we have

(a − IdV )m−2(x) ∈ ker (a − IdV )2 = ker (a2 − IdV );

hence a2 ◦ (a− IdV )m−2(x)= (a− IdV )m−2(x). Since m is even, we obtain by induction

am−2 ◦ (a − IdV )m−2(x) = (a − IdV )m−2(x);

hence

(a − IdV )m−2(x) = a2−m ◦ (a − IdV )m−2(x) = �(a − IdV )m−2(x):

Therefore,

b(x; (a − IdV )m−2(x)) = b((a − IdV )m−2(x); x) = b(x; a ◦ (a − IdV )m−2(x)):

It follows that b(x; (a − IdV )m−1(x)) = 0, hence b+1
m is alternating. This completes the

proof that the conditions are necessary.
To prove that the conditions are suOcient, we shall make V into a module over the

ring F[X; X −1] of Laurent polynomials in one indeterminate X . As a preparation, we
make some observations on the prime ideals of this principal ideal domain.

Let J be the automorphism of F[X; X −1] which maps X to X −1. We also denote by
J the extension of this automorphism to the 1eld of fractions F(X ) and to the factor
module E = F(X )=F[X; X −1]. Every prime ideal P ⊂ F[X; X −1] is generated by an
irreducible polynomial of the form

� = a0 + a1X + · · ·+ adX d ∈ F[X ]

such that a0, ad �= 0. If PJ =P, the Laurent polynomials �, �J diNer by a factor which
is invertible in F[X; X −1], hence �= �X d�J for some � ∈ F×. Comparing coeOcients,
we have

ai = �ad−i for i = 0; : : : ; d;

hence ad = �a0 = �2ad and therefore � =±1. If d is odd, then

� =
(d−1)=2∑

i=0

ai(X i + �X d−i);
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hence � is divisible by 1+�X . As � is irreducible, we may then choose �=X +1 if
� = 1, and � = X − 1 if � = −1. Suppose next d is even. If � = −1 and char F �= 2,
then ad=2 =−ad=2 implies ad=2 = 0. In that case, we have

� =
d=2−1∑

i=0

ai(X i − X d−i);

hence � is divisible by 1 − X . This is a contradiction, since � is assumed to be
irreducible. Therefore, �=1 and (X d=2�−1)J =X d=2�−1. We may then choose � of the
form

� = 1 + a1X + a2X 2 + · · ·+ a2X d−2 + a1X d−1 + X d:

Let R1 be the set of irreducible polynomials of this form.
For each pair of prime ideals {P; PJ} with PJ �= P, we arbitrarily choose a generator

� ∈ F[X ] of one of P, PJ and denote by R2 the set of irreducible polynomials thus
chosen. Thus, the set of prime ideals of F[X; X −1] is {�F[X; X −1]} where � runs over
the set R1 ∪R2 ∪RJ

2 ∪{X − 1; X +1}, and we have �J F[X; X −1] �= �F[X; X −1] if and
only if � ∈ R2 ∪RJ

2 .
Returning to the proof of Theorem 1, we de1ne a structure of F[X; X −1]-module on

V by letting

X · v = a(v) for all v ∈ V:

Since F[X; X −1] is a principal ideal domain, the F[X; X −1]-module V decomposes as
a (1nite) direct sum of quotients of F[X; X −1], as follows:

V �
⊕
�;m

(F[X; X −1]=�m)"(�;m)

for some integers "(�; m) which all vanish except a 1nite number, where � runs over
R1 ∪R2 ∪RJ

2 ∪ {X − 1; X + 1}, and m over the positive integers.
Condition (1) shows that the elementary divisors of a are the same as those of a−1,

hence

V �
⊕
�;m

(F[X; X −1]=(�J )m)"(�;m):

Therefore, we have "(�; m) = "(�J ; m) for all m if � ∈ R2.
For all integers m and for � =±1 we have

dim V �
m = "(X − �; m):

Therefore, condition (2) says that "(X −1; m) is even for all m even, and condition (3)
says that "(X + 1; m) is even for all m odd. Assuming char F �= 2 and conditions (1),
(2) and (3) hold, we may decompose V into a direct sum of six F[X; X −1]-submodules

V = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6;
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where

V1 �
⊕
�∈R1

⊕
m

(F[X; X −1]=�m)"(�;m);

V2 �
⊕
�∈R2

⊕
m

(F[X; X −1]=�m ⊕ F[X; X −1]=(�J )m)"(�;m);

V3 �
⊕

m odd

(F[X; X −1]=(X − 1)m)"(X−1;m);

V4 �
⊕

m even

(F[X; X −1]=(X − 1)m ⊕ F[X; X −1]=(X − 1)m)"(X−1;m)=2;

V5 �
⊕

m even

(F[X; X −1]=(X + 1)m)"(X+1;m);

V6 �
⊕

m odd

(F[X; X −1]=(X + 1)m ⊕ F[X; X −1]=(X + 1)m)"(X+1;m)=2:

If char F = 2 and conditions (1), (2) hold, there is a similar decomposition

V = V1 ⊕ V2 ⊕ V3 ⊕ V4;

where V1; : : : ; V4 are as above. We shall show below (see Lemma 1) that there are
nonsingular (−X )-hermitian forms with values in E (with respect to J ) on

F[X; X −1]=�m if � ∈ R1;

F[X; X −1]=�m ⊕ F[X; X −1]=(�J )m if � ∈ R2;

F[X; X −1]=(X − 1)m if m is odd;

(F[X; X −1]=(X − 1)m)2 if m is even;

F[X; X −1]=(X + 1)m if m is even and char F �= 2;

(F[X; X −1]=(X + 1)m)2 if m is odd and char F �= 2:

(7)

The orthogonal sum of these forms yields a nonsingular (−X )-hermitian form

h :V × V → E

with respect to J . As Ischebeck-Scharlau [2] or Waterhouse [8], de1ne an F-linear map
T :E → F by observing that every element in E is represented by a unique rational
fraction f which has a zero at ∞ and does not have a pole at 0, and letting

T (f + F[X; X −1]) = f(0):

It is easily veri1ed that T (rJ ) = −T (r) for all r ∈ E. Moreover, for every nonzero
r ∈ E there exists an integer k such that T (X −kr) �= 0, hence T does not vanish on
any nonzero F[X; X −1]-submodule of E.
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Let T∗(h) :V × V → F be the transfer bilinear map, de1ned by

T∗(h)(x; y) = T (h(x; y)) for x; y ∈ V:

If x ∈ V is such that T∗(h)(x; y)=0 for all y ∈ V , then T vanishes on the F[X; X −1]-sub-
module h(x; V ), hence h(x; V ) = {0} and therefore x = 0 since h is nonsingular. This
shows that T∗(h) is nonsingular.

Moreover, since h is (−X )-hermitian we have

T∗(h)(y; x) = T ((−X )h(x; y)J ) =−T (Xh(x; y) J )

= T (X J h(x; y)) = T (h(x; Xy)) = T∗(h)(x; a(y))

for all x; y ∈ V . Therefore, a is the asymmetry of T∗(h).

To complete the proof, we prove the existence of nonsingular (−X )-hermitian forms
as asserted above.

Lemma 1. There are nonsingular (−X )-hermitian forms with values in E (with respect
to J ) on the modules listed in (7).

Proof. Suppose 1rst � ∈ R1, hence (X d=2�−1)J = X d=2�−1, where d is the degree of
�. For u, v ∈ F[X; X −1], let

h(u; v) = (X − 1)(X d=2�−1)muJ v + F[X; X −1] ∈ E:

This map induces a sesquilinear form on F[X; X −1]=�m. The induced form is (−X )-
hermitian since (X − 1)J = −X −1(X − 1); it is nonsingular since h(1; v) = 0 implies
�m divides (X − 1)v in F[X; X −1], hence v = 0 in F[X; X −1]=�m since � is prime to
X − 1.

Next, suppose � ∈ R2. For u1, u2, v1, v2 ∈ F[X; X −1], we let

h((u1; u2); (v1; v2)) = �−muJ
1v2 − X (�J )−muJ

2v1 + F[X; X −1] ∈ E:

Computation shows that this map induces a nonsingular (−X )-hermitian form on
(F[X; X −1]=�m)× (F[X; X −1]=(�J )m).

Similarly, the following maps induce nonsingular (−X )-hermitian forms on the cor-
responding modules (where e is an arbitrary nonnegative integer):

h(u; v) = X e−1(X − 1)−2e−1uJ v + F[X; X −1] ∈ E on F[X; X −1]=(X − 1)2e+1;

h((u1; u2); (v1; v2)) = X e(X − 1)−2e(uJ
1v2 − XuJ

2v1) + F[X; X −1] ∈ E

on (F[X; X −1]=(X − 1)2e)2
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and if char F �= 2,

h(u; v) = (X − 1)X e(X + 1)−2euJ v + F[X; X −1] ∈ E on F[X; X −1]=(X + 1)2e;

h((u1; u2); (v1; v2)) = (X − 1)2e+1(X + 1)−2e−1(uJ
1v2 + XuJ

2v1) + F[X; X −1] ∈ E

on (F[X; X −1]=(X + 1)2e+1)2:

We omit the straightforward veri1cations.

Remark. The theory of hermitian forms over principal ideal domains can also be used
to show that the conditions in Theorem 1 are necessary.

2. The asymmetry of an anti-automorphism

2.1. De;nition

Let A be a (1nite-dimensional) central simple algebra over an arbitrary 1eld F , and
let � :A → A be an F-linear anti-automorphism of A. Our goal is to attach to � a
unit a� ∈ A× which plays the same rôle as the asymmetry ab of a nonsingular pairing
b with respect to the adjoint anti-automorphism �b. The key to the de1nition is an
analogue of the linear involution �b, which we now de1ne.

Proposition 4. There is a unique linear map �� :A → A which satis;es the following
property: for any splitting ;eld K of A, any isomorphism

( :AK = A ⊗F K → EndKV

and any nonsingular pairing b on V such that �b = ( ◦ (� ⊗ IdK) ◦ ( −1;

( ◦ (�� ⊗ IdK) ◦ ( −1 = �b:

This map satis;es the following additional properties:
(i) ��(xyz) = �(z)��(y)�−1(x) for x; y; z ∈ A;
(ii) �2� = IdA.

Proof. It suOces to prove the existence of ��. Uniqueness is then clear, and the addi-
tional properties follow from those of �b in Proposition 3.

Let T� :A × A → F be the nonsingular pairing de1ned by

T�(x; y) = TrdA(�(x)y) for x; y ∈ A;

where TrdA is the reduced trace. Let (ei)i∈I be a basis of A and let (e]
i )i∈I be the dual

basis with respect to the pairing T�, so that

T�(e]
i ; ej) = ,ij for i; j ∈ I:
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We let

��(x) =
∑
i∈I

eixe]
i for x ∈ A:

In other words, �� is the image of
∑

i∈I ei ⊗ e]
i ∈ A ⊗F A under the “sandwich” map

Sand : A ⊗F A → EndF A de1ned by Sand(x ⊗ y)(z) = xzy. Observe that �� does not
depend on the choice of the basis (ei)i∈I since

∑
i∈I ei ⊗ e]

i is the element which
corresponds to IdA under the bijection IdA ⊗ T̂ � :A ⊗F A → A ⊗F A∗ = EndF A.

As a consequence, for every 1eld extension K=F , the map ��⊗IdK :A ⊗ K → A ⊗ K
satis1es

��⊗IdK = �� ⊗ IdK

since for x ∈ A ⊗ K ,

��⊗IdK (x) =
∑
i∈I

(ei ⊗ 1)x(e]
i ⊗ 1) = (�� ⊗ IdK)(x):

To show that �� is as required, assume that A is split: let A = EndF V and let b
be a nonsingular pairing on V such that � = �b. We have to show that �� = �b. To
prove this equality, we use the identi1cation V ⊗F V = EndF V de1ned by the linear
isomorphism IdV ⊗ b̂ :V ⊗F V → V ⊗F V ∗ = EndF V . Then (v ⊗ w)(x) = vb(w; x) for
v; w; x ∈ V and moreover

f ◦ (v ⊗ w) = f(v)⊗ w; �(v ⊗ w) = ab(w)⊗ v and Trd(v ⊗ w) = b(w; v)

for v; w ∈ V and f ∈ EndF V . Let (vi)16i6n be a basis of V and let (v′i)16i6n be the
dual basis for the pairing b, so that

b(v′i ; vj) = ,ij for i; j = 1; : : : ; n: (8)

Then (vi ⊗ vj)16i; j6n is a basis of EndF V , and the dual basis with respect to T� is
given by

(vi ⊗ vj)] = v′i ⊗ v′j :

Therefore, we have for f ∈ EndF V

��(f) =
n∑

i; j=1

(vi ⊗ vj) ◦ f ◦ (v′i ⊗ v′j)

=
n∑

i; j=1

vi ⊗ v′jb(vj; f(v′i))

=
n∑

i; j=1

vi ⊗ v′j b(v′i ; �b(f)(vj)):
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For all x ∈ V we have x =
∑n

i=1 vib(v′i ; x), hence
∑n

i=1 vib(v′i ; �b(f)(vj)) = �b(f)(vj)
for all j, and the last equality above simpli1es to

��(f) =
n∑

j=1

�b(f)(vj)⊗ v′j = �b(f) ◦

 n∑

j=1

vj ⊗ v′j


 :

Since
∑n

j=1 vj ⊗ v′j = IdV , it follows that ��(f) = �b(f).

In view of property (i), we have

��(x) = �(x)��(1) = ��(1)�−1(x) for all x ∈ A: (9)

Therefore, �� is completely determined by the element ��(1) ∈ A×.

De#nition. The asymmetry of the anti-automorphism � is the element a�=��(1) ∈ A×,
where �� is the linear involution de1ned in Proposition 4.

If A = EndF V and � = �b is the anti-automorphism adjoint to some nonsingular
pairing b on V , it follows from Proposition 4 and property (iii) of Proposition 3 that
a� is the asymmetry of the nonsingular form b, i.e.,

a� = ab:

In the general case, Eq. (9) shows that

�2(x) = a�xa−1
� for all x ∈ A: (10)

Moreover, since �2� = IdA we have

1 = ��(a�) = �(a�)a�: (11)

The element a� is uniquely determined up to sign by (10) and (11).
Recall that an anti-automorphism � is called an involution if �2 = IdA.

Proposition 5. A linear anti-automorphism is an involution if and only if its asym-
metry is +1 or −1.

Proof. If a� = ±1, Eq. (10) shows that �2 = IdA. Conversely, if � is an involution,
(10) shows that a� ∈ F×. It then follows from (11) that a2

� = 1, hence a� =±1.

If char F �= 2, a linear involution � is called orthogonal (resp. symplectic) if after
scalar extension to a splitting 1eld it is adjoint to a symmetric (resp. skew-symmetric)
bilinear pairing. Therefore, orthogonal involutions are exactly the linear anti-
automorphisms with asymmetry +1, and symplectic involutions are those with
asymmetry −1. Therefore, Eqs. (10) and (11) are not suOcient to determine the type
of the involution.
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The following proposition yields an alternative de1nition of the asymmetry a�, with-
out reference to the linear involution �� and without scalar extension to a splitting
1eld.

Let �∗ :A ⊗F A → EndF A be the F-algebra homomorphism de1ned by

�∗(a ⊗ b)(x) = ax�(b) for a; b; x ∈ A

and recall (from [4, (3.5)], for instance) the Goldman element of A: this is the element
g ∈ A⊗F A such that Sand(g)(x)=TrdA(x) for all x ∈ A. Thus, there is a well-de1ned
linear endomorphism �∗(g) :A → A.

Proposition 6. The asymmetry of � is the unique element a� ∈ A× such that

�(�∗(g)(f)) = a�f

for all f ∈ A.

Proof. It suOces to prove that a� satis1es the property above, since uniqueness is
clear. To do this, we may extend scalars to a splitting 1eld. Therefore, we may assume
A = EndF V for some F-vector space V , and � = �b is the anti-automorphism adjoint
to some nonsingular pairing b on V .

For all f ∈ A and all x; y ∈ V we have

b(f(x); y) = b(y; a� ◦ f(x));

by de1nition of the asymmetry (see (2)), hence we have to show

b(f(x); y) = b(y; �(�∗(g)(f))(x))

or, equivalently (by de1nition of � = �b),

b(f(x); y) = b(�∗(g)(f)(y); x) (12)

for all f ∈ A and all x; y ∈ V .
In order to compute the right-hand side, we identify A = EndF V to V ⊗F V via

the linear isomorphism IdV ⊗ b̂ : V ⊗F V → V ⊗F V ∗ = EndF V , as in the proof of
Proposition 4. If (vi)16i6n is a basis of V and (v′i)16i6n is the dual basis for the
pairing b (see (8)), then the Goldman element is

g =
∑
i; j

(vi ⊗ v′j)⊗ (vj ⊗ v′i)

since it is easily computed that for all u, w ∈ V

Sand(g)(u ⊗ w) =
∑
i; j

(vi ⊗ v′j) ◦ (u ⊗ w) ◦ (vj ⊗ v′i)

=

(∑
i

vi ⊗ v′i

)(∑
j

b(v′j ; u)b(w; vj)

)

= b(w; u)
∑

i

vi ⊗ v′i = Trd(u ⊗ w)IdV :
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Now, for u; w ∈ V ,

�∗(g)(u ⊗ w) =
∑
i; j

(vi ⊗ v′j) ◦ (u ⊗ w) ◦ �(vj ⊗ v′i):

Since (u⊗w)◦�(f)=u⊗f(w) for f ∈ EndF V , the right-hand side of the last equality
simpli1es to∑

i; j

((vi ⊗ v′j(u))⊗ ((vj ⊗ v′i)(w)) =
∑
i; j

vi ⊗ vjb(v′j ; u)b(v
′
i ; w);

hence

�∗(g)(u ⊗ w) = w ⊗ u:

Therefore, for u; w; x; y ∈ V ,

b(�∗(g)(u ⊗ w)(y); x) = b((w ⊗ u)(y); x) = b(w; x)b(u; y):

Since we also have b((u ⊗ w)(x); y) = b(u; y)b(w; x), Eq. (12) holds for f = u ⊗ w.
Since EndF V = V ⊗F V , it follows that (12) holds for all f ∈ A, and the proof is
complete.

Remark. Asymmetries can be de1ned on the same model for anti-automorphisms of
Azumaya algebras; one may avoid the use of a basis of A in Proposition 4 by de1ning
��=Sand(.�) where .� ∈ A⊗A is the element mapped to IdA by IdA⊗T̂ �. Alternatively,
we may set .� = (IdA ⊗ �−1)(g) where g ∈ A⊗A is the Goldman element. This is the
approach taken by Saltman in [7] (see also [3, Chapter III, Section 8]).

2.2. Characterization of asymmetries

In this subsection, we show that in a central simple algebra of exponent 2, every
unit which is conjugate to its inverse is the asymmetry of some anti-automorphism.

We 1rst compare the asymmetries of two anti-automorphisms �, / on a central simple
algebra A. The Skolem–Noether theorem shows that the automorphism / ◦ �−1 is the
conjugation by some unit u ∈ A×, i.e.,

/(x) = u�(x)u−1 for all x ∈ A: (13)

Proposition 7. Let �; / be anti-automorphisms of a central simple algebra A; and let
u ∈ A× be such that (13) holds. The asymmetries a�; a/ of � and / are related by

a/ = u�(u)−1a�:

Proof. We use the de1nition of asymmetry provided by Proposition 6. For a; b; x ∈ A,
we have

/∗(a ⊗ b)(x) = ax/(b) = axu�(b)u−1;
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hence

/∗(a ⊗ b)(x) = �∗(a ⊗ b)(xu)u−1:

Therefore, denoting by ru : A → A the linear map of multiplication on the right by u,
we have

/∗(a ⊗ b) = (ru)−1 ◦ �∗(a ⊗ b) ◦ ru

for all a; b ∈ A, hence also

/∗(g) = (ru)−1 ◦ �∗(g) ◦ ru

for g the Goldman element of A. It follows that for all f ∈ A,

/∗(g)(f) = �∗(fu)u−1: (14)

By Proposition 6, the asymmetry a/ satis1es

a/f = /(/∗(g)(f)) for all f ∈ A:

Using (14), we obtain

a/f = /(�∗(g)(fu)u−1) = u�(�∗(g)(fu)u−1)u−1 = u�(u)−1�(�∗(g)(fu))u−1:

Proposition 6 also yields �(�∗(g)(fu)) = a�fu, hence

a/f = u�(u)−1a�f for all f ∈ A:

The proposition follows.

Theorem 2. Let A be a central simple algebra of exponent 2 over an arbitrary ;eld
F . A unit is the asymmetry of some anti-automorphism of A if and only if it is
conjugate to its inverse.

Proof. Suppose a ∈ A× is the asymmetry of some anti-automorphism �. We have to
show that the F-vector space

U = {x ∈ A | xa = a−1x}
contains an invertible element. This amounts to proving that the restriction of the
reduced norm polynomial NrdA does not vanish on U . Theorem 1 shows that this
polynomial does not vanish on U ⊗ K , for any splitting 1eld K of A, since a is the
asymmetry of � ⊗ IdK . Therefore, the reduced norm does not vanish on U , since F
is an in1nite 1eld. (Note that every central simple algebra over a 1nite 1eld is split,
hence of exponent 1.)

For the converse, suppose a ∈ A× is conjugate to a−1. Let K be a splitting 1eld
of A; identify A ⊗ K = EndK V for some K-vector space V . We 1rst show, by using
Theorem 1, that a (=a ⊗ 1) is the asymmetry of some anti-automorphism of EndK V .
With the same notation as in Theorem 1, we have to prove that dimK V+1

m is even if
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m is even, and moreover that dimK V−1
m is even if m is odd and char F �= 2. For every

integer m ¿ 1 and � =±1, we have an exact sequence of K-vector spaces

0 → ker(a − � IdV )m+1

ker(a − � IdV )m
a−� IdV−−−−→ ker(a − � IdV )m

ker(a − � IdV )m−1 → V �
m → 0;

hence

dim V �
m = rk(a − � IdV )m−1 − 2 rk (a − � IdV )m + rk(a − � IdV )m+1; (15)

where rk denotes the rank.
For all b ∈ A we have

rk b =
dimK b(A ⊗ K)
deg(A ⊗ K)

=
dimF bA
degA

;

hence rk b is divisible by the Schur index ind A (see [4, (1.9)]). Since A has exponent
2, ind A is even, by Albert [1, Theorem 5:17]. Therefore, rk b is even for all b ∈ A, and
Eq. (15) shows that dim V �

m is even for every integer m and for �=±1. By Theorem 1,
it follows that a is the asymmetry of some anti-automorphism ( of A ⊗ K .

Now, 1x some anti-automorphism � of A. Let a� be its asymmetry and consider the
F-vector space

W = {x ∈ A | xa = �(x)a�}:

If u ∈ (A⊗K)× is such that ((x)=u(�⊗IdK)(x)u−1 for all x ∈ A⊗K , then u−1 ∈ W⊗K ,
by Proposition 7. Therefore, the same arguments as in the 1rst part of the proof show
that W contains an invertible element w. Using Proposition 7 again, we see that a is
the asymmetry of the anti-automorphism x �→ w−1�(x)w.

Corollary 1 (Albert). Every central simple algebra of exponent 2 carries an involu-
tion. Moreover, if the characteristic of the base ;eld is di@erent from 2; every central
simple algebra of exponent 2 carries involutions of both orthogonal and symplectic
types.

Proof. It readily follows from Theorem 2 that +1 and −1 are asymmetries of some
anti-automorphisms. These anti-automorphisms are involutions, by Proposition 5.

2.3. The determinant of an anti-automorphism

Let � be a linear anti-automorphism of a central simple algebra A over an arbitrary
1eld F . Let a� ∈ A× be the asymmetry of A and �� the linear involution of Proposition
4. Consider the vector spaces

Alt(A; �) = {x − �(x)a� | x ∈ A}= {x − ��(x) | x ∈ A}



A. Cortella, J.-P. Tignol / Journal of Pure and Applied Algebra 167 (2002) 175–193 191

and

Sk(A; �) = {x ∈ A |�(x) + xa−1
� = 0}= {x ∈ A | ��(x) =−x}:

From Eqs. (10) and (11), it follows that Alt(A; �) ⊂ Sk(A; �). Moreover, we have
x − ��(x) = 2x for all x ∈ Sk(A; �), hence Alt(A; �) = Sk(A; �) if char F �= 2.

Lemma 2. Suppose �; / are anti-automorphisms of A; and let u ∈ A× be such that

/(x) = u�(x)u−1 for all x ∈ A:

Then

Alt(A; /) = uAlt(A; �) and Sk(A; /) = uSk(A; �):

Proof. Proposition 7 yields a/ = u �(u)−1a� and a� = u−1/(u)a/. Therefore, for all
x ∈ A we have

x − /(x)a/ = u (u−1x − �(u−1x)a�) and u (x − �(x)a�) = ux − /(ux)a/;

proving that Alt(A; /) = uAlt(A; �). The proof that Sk(A; /) = uSk(A; �) is along the
same lines.

Lemma 3. If degA is even; Alt(A; �) contains invertible elements. Moreover; the
square class NrdA(x)F×2 ∈ F×=F×2 does not depend on the choice of x ∈ A× ∩
Alt(A; �).

Proof. Let / be an anti-automorphism of A with asymmetry +1 and let u ∈ A× be
such that

/(x) = u�(x)u−1 for all x ∈ A:

By Lemma 2, we have

Alt(A; �) = u−1Alt(A; /): (16)

Since / is an involution, Corollary (2:8) of [4] shows that Alt(A; /) contains invertible
elements if degA is even, hence Alt(A; �) also contains invertible elements. Moreover,
from [4, (7.1)], it follows that all the invertible elements have the same reduced norm
up to a square of F ; therefore, if v ∈ A×∩Alt(A; /) it follows from (16) that NrdA(x) ∈
NrdA(u−1v)F×2 for all x ∈ A× ∩ Alt(A; �).

This last lemma allows us to de1ne the determinant of an anti-automorphism � of
a central simple algebra A of even degree, as follows:

det � = NrdA(x)F×2 ∈ F×=F×2

for any x ∈ A× ∩ Alt(A; �).
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This de1nition is consistent with [4, (7.2)], where the determinant of an orthogonal
involution is de1ned.

Example 1. Since clearly 1− a� ∈ Alt(A; �), we have

det � = NrdA(1− a�)F×2

if 1 − a� is invertible. Therefore, the determinant of � is entirely determined by its
asymmetry in this particular case.

Example 2. The transpose involution on a matrix algebra Mn(F) (with n even) has
trivial determinant. Indeed, the matrix


m1 0

. . .
0 mn=2


 where m1 = · · ·= mn=2 =

(
0 1

−1 0

)

is in Alt(Mn(F); t) and has determinant 1.

Proposition 8. Let �; / be anti-automorphisms of a central simple algebra A of even
degree; and let u ∈ A× be such that

/(x) = u�(x)u−1 for all x ∈ A:

Then

det / = NrdA(u)det �:

Proof. This readily follows from Lemma 2.

Proposition 9. Let V be an even-dimensional vector space over an arbitrary ;eld F
and let b be a nonsingular pairing on V . For every basis (vi)16i6n of V;

det �b = det(b(vi; vj))16i; j6nF×2:

Proof. Identify EndF V with the matrix algebra Mn(F) by means of the basis (vi)16i6n.
The anti-automorphism �b is then given by

�b(m) = u−1mtu for all m ∈ Mn(F);

where u = (b(vi; vj))16i; j6n ∈ Mn(F). Therefore, Proposition 8 yields

det �b = det u−1det t:

Since it was observed in Example 2 above that det t is trivial, the proposition follows.
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