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JACOBI IDENTITIES IN LOW-DIMENSIONAL TOPOLOGY
JAMES CONANT, ROB SCHNEIDERMAN, AND PETER TEICHNER

ABSTRACT. The Jacobi identity is the key relation in the definition of a Lie algebra.
In the last decade, it also appeared at the heart of the theory of finite type invariants
of knots, links and 3-manifolds (and is there called the IHX-relation). In addition, this
relation was recently found to arise naturally in a theory of embedding obstructions for
2-spheres in 4-manifolds [20]. We expose the underlying topological unity between the
3- and 4-dimensional THX-relations, deriving from a picture, Figure Bl of the Borromean
rings embedded on the boundary of an unknotted genus 3 handlebody in 3-space. This
is most naturally related to knot and 3-manifold invariants via the theory of grope
cobordisms [4].
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1. INTRODUCTION

The only axiom in the definition of a Lie algebra, in addition to the bilinearity and
skew-symmetry of the Lie bracket, is the Jacobi identity

[[a, 0], c] = a, [b, c]] + [[c, a], b] = 0.

If the Lie algebra arises as the tangent space at the identity element of a Lie group, the
Jacobi identity follows from the associativity of the group multiplication. Picturing the
Lie bracket as a rooted Y-tree with two inputs (the leaves) and one output (the root),
the Jacobi identity can be encoded by the following figure:

F1GURE 1. The Jacobi identity

One should read this tree from top to bottom, and note that the planarity of the tree
(together with the counter-clockwise orientation of the plane) induces an ordering of each
trivalent vertex which can thus be used as the Lie bracket. A change of this ordering just
introduces a sign due to the skew-symmetry of the bracket. This will later correspond to
the antisymmetry relation for diagrams.

Changing the input letters a,b,c to 1,2,3 and labeling the root 4, Figure [ll may be
redrawn with the position of the labeled univalent vertices fixed as follows:

2 I 2 1 2 1

FIGURE 2. The IHX-relation

This (local) relation is an unrooted version of the Jacobi identity, and is well known in
the theory of finite type (or Vassiliev) invariants of knots, links and 3-manifolds. Because
of its appearance it is called the IHX-relation. The precise connection between finite type
invariants and Lie algebras is very well explained in many references, see e.g. [2].
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1.1. 2-spheres in 4-manifolds. In Section B of this paper we will rediscover the Ja-
cobi or IHX relation in the context of intersection invariants for Whitney towers in
4-manifolds. It is actually a direct consequence of a beautifully symmetric picture, Fig-
ure Bl The expert will see three standard Whitney disks whose Whitney arcs are drawn
in an unconventional way (to be explained in below). Ultimately, the freedom of
choosing the Whitney arcs in this way forces the IHX-relation upon us.

pommmmm——
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F1GURE 3. The geometric origin of the Jacobi identity in Dimension 4.

The reader will recognize the 3-component link in the figure as the Borromean rings.
Each component consists of a semicircle and a planar arc (solid, dashed, dotted respec-
tively), exhibiting the Borromean rings as embedded on the boundary of an unknotted
genus 3 handlebody in 3-space.

The THX relation for Whitney towers plays a key role in the obstruction theory for
embedding 2-spheres into 4-manifolds developed in [20]. However, here no background
is required of the reader beyond a willingness to try to visualize surfaces in 4—space and
our elementary construction can also serve as an introduction to Whitney towers.

Roughly speaking, a Whitney tower is a 2-complex in a 4-manifold, formed inductively
by attaching layers of Whitney disks to pairs of intersection points of previous surface
stages, see Section P2l A Whitney tower has an order which measures how many layers
were used. Moreover, for any unpaired intersection point p in a Whitney tower T' of
order n — 1, one can associate a tree t(p) C T, see Figure [l This is a trivalent tree of
degree n, i.e. t(p) has n — 1 trivalent vertices. Orientations of the surface stages in T’
give vertex-orientations of t(p), i.e. cyclic orderings of the trivalent vertices, and they
also give a sign €,. We define the geometric intersection tree t,,(T") as the disjoint union
of signed vertex-oriented trees t,(T") := Il,¢, - t(p). Properly interpreted, t,(7") contains
information on the homotopy classes of the A; and represents a possible obstruction to
the existence of an order n Whitney tower.
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In the easiest case n = 1, a Whitney tower of order 0 is just a union of immersed
2-spheres Aj,...,A; : S? — M*, and its geometric intersection tree t;(U;A;) is a dis-
joint union of signed arcs, one for each intersection point among the A;, including self-
intersections. The endpoints of the arcs are labeled by the 2-spheres, or better by the set
{1,..., ¢}, organizing the information as to which A; are involved in the intersection.

In this case we know how to proceed, namely by actually summing all these intersec-
tions to get exactly the intersection numbers among the A;. Actually, if M is not simply
connected, these “numbers” should be evaluated in the group ring of m M, rather than
in Z, leading to Wall’s intersection invariants [21]. This corresponds to putting group
elements on the edges of each t(p) and has been worked out in [20] for higher order
Whitney towers. In the present paper our constructions are local so that we may safely
ignore these group elements.

If ¢1(U; A;) = 0 then all the intersections can be paired up by Whitney disks, i.e. there
is a Whitney tower T of order 1 with the A; as bottom stages. Then t5(T') is a signed
sum of oriented Y-trees, and again the univalent vertices have labels from {1,...,¢}. Tt
was shown in [T9] (and in [T6], [23] for simply connected 4-manifolds) that a summation
as above leads to an invariant 75(7") which vanishes if and only if there is a Whitney
tower T of order 2 with the A; as bottom stages. In fact, we showed that if defined in
the correct target group, 72(7") only depends on the regular homotopy classes of the A;
and hence is a well defined higher obstruction for representing these classes by disjoint
embeddings.

For arbitrary n, the summation can be formalized by a map

7 W1 (0) — BL(0)

where W,,_;(¢) denotes the set of 0-oriented Whitney towers of order n — 1 on ¢ bot-
tom stages A;. A O-orientation is an orientation of these bottom stages alone; it is a
consequence of the AS relation explained below that the orientation of all other surface
stages in T is irrelevant for 7,,(T). B (¢) is the free abelian group generated by trivalent
vertex-oriented trees of degree n, with univalent vertices labeled by {1,..., ¢}, modulo
the antisymmetry relations AS. This should be viewed in analogy to the chains of a
(combinatorial) simplicial complex: There one also takes ordered simplices o as a basis,
and divides out by the relations

(o, —or) = —(0,or).

Similarly, AS is the relation which introduces a minus sign whenever the cyclic ordering
at one vertex is changed. This is related to the skew-symmetry of the Lie bracket, as
explained above.

The map 7, takes a Whitney tower 7" to the sum } €, - t(p). The question arises as
to whether this can be made into an obstruction for representing the bottom stages A;
by disjoint embeddings, up to homotopy. The punch-line of the first part of this paper
is that this can only be possible if we quotient the groups g};(ﬁ) by all IHX-relations,
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obtaining groups Bt (¢) (containing elements 7,(7")), which are more customary in the
theory of finite type invariants:

Theorem 1. There exists an oriented order 2 Whitney tower T on four immersed 2-
spheres in the 4—ball such that t3(T) = (+1) U (—H) I (+X) where I, H and X are the
trees shown in Figure [A.

This result comes from the fact alluded to before, namely that Whitney towers have
the indeterminancy of choosing the Whitney arcs!

1.2. Moving down to Dimension 3. In sectionsBlandll we extend the geometric THX-
relation explained above to a 3-dimensional setting via the connection between capped
gropes and Whitney towers worked out in [I7]. More precisely, we shall explain in full
detail the following commutative diagram:

Go(0) 2 W,y (0)

(1) | |
At () 2T B ()

Here G¢(¢) is the set of 0-oriented capped gropes in S3, with ¢ boundary components
and of class n. The map push-in takes a capped grope, pushes it slightlyA into the 4-ball,
and then surgers it into a Whitney tower (of order n — 1). The group A’ (¢) is just like
its B-analogue, except that the univalent vertices of the trees are attached to ¢ numbered
strands (which form a trivial string link). The homomorphism pull-off takes such a tree
and pulls off the strands, just remembering their indices in {1,...,¢}. Thus the diagram
above says exactly what informatiorAl is lost when one moves from 3 to 4 dimensions.
Moreover, the existence of the map W¢ shows that the 4-dimensional IHX-relation from
Theorem [0 can be lifted to a 3-dimensional version. We will prove this by re-interpreting
our central picture, Figure B in terms of capped gropes in S®. See Theorem [ for the
precise formulations.

One consequence of this work is the following theorem, phrased in the language of
claspers familiar to many in the finite-type community.

Theorem 2. Suppose three tree claspers C; differ locally by the three terms in the IHX
relation. Given an embedding of Cy into a 3-manifold, there are embeddings of Cy and Cs
inside a reqular neighborhood of Cy, such that the leaves are parallel copies of the leaves
of C1, and the edges avoid any caps that C; may have. Moreover, surgery on C7UCyUCs
is diffeomorphic (rel boundary of the handlebody neighborhood) to doing no surgery at all.

This theorem was stated and utilized in [5], although the fact that the claspers must be
tree claspers was accidentally omitted. The theorem was needed in [B] to prove Theorem
24(a), restated and proven here. Our treatment here makes it clear that only tree claspers
are needed.
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Garoufalidis and Ohtsuki [I0] were the first to prove a version of a topological ITHX
relation. It was needed to show that a map from trivalent diagrams to homology spheres
was well-defined. Habegger [I2] improved and conceptualized their construction. Moving
to the modern techniques of claspers (clovers), Garoufalidis, Goussarov and Polyak [7]
sketch a proof of our Theorem ] a theorem of which Habiro was also aware. Our proof
is completely new, and, we believe, more conceptual. Moreover it serves as a bridge
between the three- and four-dimensional worlds.

1.3. Grope cobordism of string links. In the last section, we shall use the techniques
developed in this paper to obtain new information about string links. Let £(¢) be the set
of isotopy classes of string links in D? with ¢ components (which is a monoid with respect
to the usual “stacking” operation). Its quotient by the relation of grope cobordism of
class n is denoted L({)/G,,, compare Definition [l The submonoid of £(¢), consisting of
those string links which cobound a class n grope with the trivial string link, is denoted
by G, (f). Using results of Habiro [I1] we show that £({)/G,41 are finitely generated
groups and that the iterated quotients

Gn(0)/ G

are central subgroups (implying that £(¢)/G,41 are nilpotent). We will construct a
surjective homomorphism from diagrams to string links modulo grope cobordism:

D, (0): BI(l) = Gn(0)/G s

where B? denotes the usual abelian group of trivalent graphs, modulo IHX- and AS-
relations, but graded by the grope degree (which is the Vassiliev degree plus the first
Betti number), compare Section

Theorem 3. ¢,,({) @ Q: BI({) ® Q — Gn(£)/Gri1 @ Q is an isomorphism.

This extends a result in [5] from knots to string links and it relies on the existence of
the Kontsevich integral for string links, which serves as an inverse to the above map.

Acknowledgment: It is a pleasure to thank Tara Brendle and Stavros Garoufalidis for
helpful discussions.

2. A JacoBi IDENTITY IN DIMENSION 4

In this section we prove Theorem [I] after first sketching some background material and
stating a more general Corollary which is proved and used in [20]. For more details on
immersed surfaces in 4-manifolds we refer to [6], for more details on Whitney towers
compare [I7], [18], [20].

2.1. Whitney towers. Using local coordinates R? x (—¢, +¢), Figure Hl shows a pair
of disjoint local sheets of surfaces A; and Ay in 4-space. Figure B shows the result of
applying a (Casson) finger move to the sheets of Figurell with A; having been changed by
an isotopy supported near an arc from A; to As, creating a pair of transverse intersection
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FIGURE 4.

points in A; N Ay C R® x {0}. Such a pair of intersection points is called a cancelling

FIGURE 5.

pair since their signs differ and they can be paired by a Whitney disk as illustrated in
Figure @ Such a Whitney disk guides a motion (of either sheet) called a Whitney move

FIGURE 6. Left: A cancelling pair of intersections p*. Right: A Whitney
disk pairing p*.

that eliminates the pair of intersection points [6]. A Whitney move guided by a Whitney
disk whose interior is free of singularities can be thought of as an “inverse” to the finger
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move since it eliminates a cancelling pair without creating any new intersections. In
general, Whitney disks may have interior self-intersections and intersections with other
surfaces so that eliminating a cancelling pair via a Whitney move may also create new
singularities. Pairing up “higher order” interior intersections in a Whitney disk by “higher
order” Whitney disks leads to the notion of a Whitney tower:

Definition 4 (compare [I7],[18],[20]).

e A surface of order 0in a 4—manifold M is a properly immersed surface (boundary
embedded in the boundary of M and interior immersed in the interior of M). A
Whitney tower of order 0 in M is a collection of order 0 surfaces.

e The order of a (transverse) intersection point between a surface of order n and
a surface of order m is n +m + 1.

e The order of a Whitney disk is n if it pairs intersection points of order n.

e For n > 1, a Whitney tower T of order n is a Whitney tower of order n — 1
together with (framed) Whitney disks pairing all order n intersection points of
T, see Figure [l (These top order disks are allowed to intersect each other as
well as lower order surfaces.)

The boundaries of the Whitney disks in a Whitney tower are required to be disjointly
embedded.

Framings of Whitney disks will not be discussed here (see e.g. [6]). In the construction
of an order 2 Whitney tower, in the proof of Theorem [l the reader familiar with framings
can check that the Whitney disks are correctly framed.

Ak\ _)_y . K\ ,/]

FIGURE 7. Part of an order 2 Whitney tower on order 0 surfaces A;, A;,
Ay, and A; and the labeled tree t(p) (of Vassiliev degree 3) associated to
the order 3 intersection point p.

2.2. Intersection trees for Whitney towers. For each order n intersection point p in
a Whitney tower 7" there is an associated labeled trivalent tree ¢(p) of Vassiliev degree n
(Figure [). (The Vassiliev degree of a unitrivalent graph is half the number of vertices.)
This tree t(p) is most easily described as a subset of T" which “branches down” from p
to the order 0 surfaces, bifurcating in each Whitney disk: The trivalent vertices of ¢(p)
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correspond to Whitney disks in 7', the labeled univalent vertices of ¢(p) correspond to the
labeled order 0 surfaces of 7" and the edges of ¢(p) correspond to sheet-changing paths
between adjacent surfaces in T.

Fixing orientations on all surfaces in 7' (including Whitney disks) orients T" and de-
termines a cyclic orientation for each of the trivalent vertices of ¢(p) via a bracketing
convention which will be illustrated explicitly during the proof of Theorem [ below. The
orientation of 7" also endows each intersection point p with a sign ¢, € {£}, determined
as usual by comparing the orientations of the intersecting sheets at p with that of the
ambient manifold. A precise and more elaborate definition of ¢(p) is given in [20].

The “interesting” intersection points in an order n—1 Whitney tower 1" are the order n
intersection points, since these points may represent an obstruction to the existence of
an order n Whitney tower on the order 0 surfaces of T'.

Definition 5. For an oriented order (n — 1) Whitney tower 7', define ¢,(T"), the order n
geometric intersection tree of T, to be the disjoint union of signed labeled vertex-oriented
trivalent trees

to(T) =11, ¢, - t(p)
over all order n intersection points p € T

We emphasize that t,(T") is a collection of signed trees of Vassiliev degree n, possibly
with repetitions, without cancellation of terms.

As mentioned in the introduction, taking ¢,(7") as a sum in an appropriate abelian
group defines an element 7,,(7") which gives information on the homotopy classes of the
order 0 surfaces. The nature of this group depends in general on the 4-manifold and
the order 0 surfaces. However, it turns out that for a fixed Whitney tower T', the AS
antisymmetry relations correspond ezactly to the indeterminacies coming from orientation
choices on the Whitney disks in 7', so that the element 7,,(T") € B!, only depends on the
O-orientation of T, i.e. the orientations of the order 0 surfaces. On the other hand, by
fixing the order 0 surfaces and varying the choices of Whitney disks we are led to the
IHX relations, as we describe in the next subsection.

2.3. The IHX relation for 2-spheres in 4—space. The element 7,(7") determined by
tn(T) should vanish for any Whitney tower 7" on immersed 2-spheres into 4-space since
all such spheres are null-homotopic. Theorem [l from the introduction (proven below),
and its corollary (Corollary @) illustrate the necessity of the IHX relation in the target
of 7,. Since Theorem [l is a local statement (taking place in a 4-ball) it can be used to
“geometrically realize” all higher degree IHX relations for Whitney towers in arbitrary 4—
manifolds, a key part of the obstruction theory described in [20]. The following corollary
of Theorem [ is proved in [20].

Corollary 6. Let T be any (oriented) order (n — 1) Whitney tower on order 0 surfaces
A;. Then, given any order n trivalent trees t;, tg and tx differing only by the usual local
IHX relation, there exists an (oriented) order (n—1) Whitney tower T" on A} homotopic
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(rel boundary) to the A; such that
tn(T") = to(T) L (+t7) T (—tg) TT (+tx).
U

The idea of the proof of Corollary [l is that by applying finger moves to surfaces in a
Whitney tower one can create clean Whitney disks which are then tubed into the spheres
in Theorem [ This construction can be done without creating extra intersections since

finger moves are supported near arcs and the construction of Theorem [0 is contained in
a 4-ball (see [20]).

Proof of Theorem[. The 4-dimensional IHX construction starts with any four disjointly
embedded oriented 2-spheres Aq, As, A3, Ay in 4-space. Perform finger moves on each
A;, for i = 1,2, 3, to create a cancelling pair of order 1 intersection points p?;’ 2 between
each of the first three 2-spheres (still denoted A;) and A, as pictured in the left-hand
side of Figure B where A4 appears as the “plane of the paper” with the standard counter-
clockwise orientation. Choose disjointly embedded oriented order 1 Whitney disks W3 4,
W24y and W4 1) for the cancelling pairs pa 4 88 in the right-hand side of Figure B Here
the bracket sub-script notation corresponds to the following orientation convention: The
bracket subscript (i, j) on a Whitney disk indicates that the boundary OW( ;) of the
Whitney disk is oriented from the negative intersection point to the positive intersection
point along A; and from the positive to the negative intersection point along A;. This
orientation of W, ;) together with a second “inward pointing” tangent vector induces
the orientation of Wy, ;.

AZ
r W(ﬂ) - + W(z,z:)
ey

O
—_ + i

ey

) N
Foy© © Py § - +

FiGURE 8. Left: The order zero 2-spheres and cancelling pairs of first
order intersection points. Right: The clean first order Whitney tower 77°.
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We have constructed an order 1 Whitney tower 7° which is clean, meaning that 7° has
no higher order intersection points and hence is in fact a Whitney tower of order n for
all n. Now change W3 4) by isotoping its boundary 0W(; 4) along A, and across pzrz’ 2 and

FIGURE 9.

Do) 85 indicated in Figure [ and extending this isotopy to a collar of W3 4y. Note that
a cancelling pair of order 2 intersection points pZ_LZ,(B, 1) has been created between A, and
the interior of the “new” W34 (still denoted by W(s4)). The pair pa(g’ 4 Is indicated
in Figure @ by the small dashed circles near pa 2) and, since the orientation of A, is the
standard counter-clockwise orientation of the plane, the sign of pz;,(g, 1)) (resp. P, 4)))
agrees with the sign of pa 1) (resp. P, 4)). By perturbing the interior of W(34) slightly
into past or future we may assume that pé@ 1)) lie near, but not on, OW(34). A Whitney
disk W(s,(3,4)) (of order 2) for the cancelling pair pZ_LZ,(B, 4 can be constructed by altering a
parallel copy of W, 4 in a collar of its boundary as indicated in Figure [0h. The part of
the boundary of W(y 34y that lies on W34 is indicated by a dashed line in Figure [Ta.
The other arc (lying in As) of OW 9 (3,4)) is not visible in the figure but would run parallel
(perturbed slightly into past or future) to the arc of 0W(y 4y in As.

Take the orientation of W3 (3 4)) that corresponds to its bracket sub-script via the above
convention, i.e., that induced by orienting OW(z, 34y from Pa,(3,4)) tO pz;’(gA)) along A,
and from pa(gv 1) 10 P2 3.y along W3 4) together with a second inward pointing vector.

Note that Wy 3.4y has a single positive intersection point piass (of order 3) with A;.
To this point pj234 We associate the positively signed labeled I-tree (of Vassiliev degree 3)
as illustrated in Figure [b. This I-tree, ¢(pia34), is embedded in the construction with

the trivalent vertices lying in the interiors of the Whitney disks, W, 4y and Wi (34, and
each i-labeled univalent vertex lying on A;. Each trivalent vertex of #(pje34) inherits a



12 J. CONANT, R. SCHNEIDERMAN, AND P. TEICHNER

as

@64

FIGURE 10.

cyclic orientation from the ordering of the components in the bracket associated to the
corresponding oriented Whitney disk. Note that the pair of edges which pass from a
trivalent vertex down into the lower order surfaces paired by a Whitney disk determine
a “corner” of the Whitney disk which does not contain the other edge of the trivalent
vertex. If this corner contains the positive intersection point paired by the Whitney disk,
then the vertex orientation and the Whitney disk orientation agree ([20]). Our figures
are drawn to satisfy this convention.

The antisymmetry relation can be seen here by noting that, according to our orien-
tation conventions, switching the cyclic orientation of one trivalent vertex changes the
orientations of both Whitney disks and hence changes the sign of the unpaired order 3
intersection point associated to the tree.

We have described how to construct (from the original Wz 4 of T°) Whitney disks
Wia,3,4)) and Wiz 4y such that W (34)) pairs Ay N W34 and Ay N Wiy 3.4)) consists of
a single point pis34. In fact, this construction can be carried out symmetrically and
simultaneously on all three of the original Whitney disks in 7° yielding additional order
3 intersection points pazar € Az N Wiz 4,1)) (With negative sign and associated labeled
trivalent tree H) and pgio4 € Az N Wiy (2,4)) (With positive sign and associated labeled
trivalent tree X). Here W3 (41y) pairs As N W1y and Wiy 2,4y pairs Ay N Wa 4 and it
can be arranged that all the Whitney disks have pairwise disjointly embedded interiors
and pairwise disjointly embedded boundaries: One way to see this is to first observe
that the boundaries of the first order Whitney disks W34y, W41y and W4y can be
disjointly embedded, as pictured in Figure Bl then push the collars of two of the first
order Whitney disks into past and future respectively and continue with the previously
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described construction. The resulting order 2 Whitney tower 1" has exactly three order
3 intersection points with t3(7) = (+1) Il (—H) II (+X). The correspondence between
the Whitney disks in this construction and the trivalent vertices in the IHX relation is
indicated in Figure [Tl O

I/V(/,(Zﬁl))

N

FIGURE 11. The correspondence between the trivalent vertices in the IHX
relation and the (oriented) Whitney disks in the construction. (The triva-
lent orientations are all counter-clockwise.)

W,
— W) Wy - 77

4 3 4 3

3. CONNECTING DIMENSIONS 3 AND 4

In this section we motivate the 3—dimensional IHX construction by describing a con-
nection between 3—dimensional and 4-dimensional tree-valued invariants of string links.
Summarizing this section, the ideas are as follows: A 3—dimensional capped grope cobor-
dism between string links o and o’ is a collection of disjointly embedded gropes in the
3-ball with boundary o U ¢’. Moreover, the tips of the gropes have to bound disjointly
embedded caps (2-disks) which are disjoint from all but the bottom stage surfaces of
the gropes. Analogously to Whitney towers, such a grope cobordism is assumed to be
oriented and then has an associated geometric intersection tree, which in this case is a
disjoint union of signed vertex-oriented trivalent trees whose univalent vertices are at-
tached to the string link components. A class n 3—dimensional grope cobordism can be
pushed into 4-space and surgered to an order (n — 1) Whitney concordance, that is, a
collection of properly immersed 2—disks admitting an order (n — 1) Whitney tower in the
4-ball with boundary o U ¢’ C S3. It follows from Theorem 6 in [I7] that this push-
ing and surgering “preserves trees” in the sense that applying summation maps to the
3— and 4—-dimensional geometric intersection trees, respectively, yields isomorphic group
elements after pulling the 3—dimensional trees off of the string link components.

The rest of this section is devoted to making this discussion precise by explaining in
detail the commutative diagram [ in of the introduction.

3.1. (Capped) Gropes and Grope Cobordisms.

Definition 7. A genus one grope g is constructed by the following method. Start with
a compact orientable connected surface of any genus (the bottom stage of g); choose a
symplectic basis of circles on this bottom stage surface and attach punctured tori to any
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number of the basis circles. Next choose hyperbolic pairs of circles on each attached
torus and attach punctured tori to any of these circles. Iterating this construction any
number of times yields g. The attached tori are the higher stages of g. The basis circles
in all stages of g that do not have a torus attached to them are called the tips of g¢.
Attaching 2—disks along all the tips of ¢ yields a capped grope (of genus one), denoted
¢¢. In the case of an (uncapped) grope, it is often convenient to attach an annulus along
one of its boundary components to each tip. These annuli are called pushing annuli, and
every tame embedding of a grope in a 3—manifold can be extended to include the pushing
annuli. In general a grope is allowed to have surfaces of arbitrary genus at all stages, see
M) for the precise general definition.

Let g¢ be a capped genus one grope. We define an associated rooted trivalent tree ¢(g)
as follows:

Definition 8. Assume first that the bottom stage of ¢g¢ is a genus one surface with
boundary. Then define ¢(g°) to be the rooted trivalent tree which is dual to the 2-
complex ¢¢; specifically, t(g°) sits as an embedded subset of g¢ in the following way: The
root univalent vertex of ¢(¢¢) is a point in the boundary of the bottom stage of ¢¢, each of
the other univalent vertices is a point in the interior of a cap of g¢, each higher stage of g¢
contains a single trivalent vertex of t(g°), and each edge of t(¢°) is a sheet-changing path
between trivalent vertices in adjacent stages or caps (here “adjacent” means “intersecting
in a circle”), see Figure [Zb. In the case where the bottom stage of g has genus > 1,
then t(g°) is defined by cutting the bottom stage into genus one pieces and taking the
disjoint union of the trees just described. In the case of genus zero, t(g¢) is the empty
tree.

We can now define the relevant complexity of a grope.

Definition 9. The class of g¢ is the minimum of the Vassiliev degrees of the connected
trees in t(g¢). The underlying uncapped grope g (the body of ¢¢) inherits the same tree,
t(g) = t(¢°), and the same notion of class. For a general grope, refer to [] for the
definition of class. If the grope consists of a surface of genus zero, we regard it as a grope
of class n for all n.

The non-root univalent vertices of t(g) are called leaves and each leaf of t(g) corresponds
to a tip of g.

Definition 10. A grope is said to be minimal if the deletion of any stage will reduce
the class. Any grope can be turned into a minimal grope by deleting superfluous stages,
and we will assume throughout the paper that our gropes are minimal.

A 0-orientation of a (capped) grope is a choice of orientation for the bottom stage.

Given an embedding of a grope into an oriented three manifold, a 0-orientation deter-
mines orientations for each stage and cap of the grope, up to some indeterminacy, in the
following way. Each surface stage or cap is attached to a previous stage along a circle,
which hits the attaching region for one other surface stage or cap in a point. Near this
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point, the 2-complex is modeled by the following subset of R3:
{(z,y,2) 1 2=0}U{(z,y,2) :2=0,2 20} U{(z,y,2) : y = 0,2 < O}
Distinguish two of the quadrants as positive, namely the quadrants where both x,y > 0

and where both z,y < 0. See Figure [[Zh, where the two positive quadrants are indicated.
Now suppose that the bottom stage (z = 0) has an orientation. Choose one of the

(a) Positive quadrants and orienta- (b) A trivalent vertex of t(g¢).
tion.

FIGURE 12.

two positive quadrants. The orientation of the surface induces an orientation of a small
triangle in the positive quadrant which has a vertex at the origin and two edges contained
in the axes. This then induces an orientation of the boundaries of the two higher surface
stages, and hence induces an orientation of the higher surface stages. If we use the
other positive quadrant instead, this has the effect of flipping the orientation of both
higher surface stages, and this is the indeterminacy we mentioned previously. This is
all pictured in Figure [Zh, where an orientation of the bottom stage is pictured inside
a positive quadrant, and the induced orientations on the two higher surfaces and their
boundaries is indicated.

The orientation of a capped grope ¢¢ induces vertex-orientations of the trivalent ver-
tices of t(g¢) by taking each trivalent vertex of #(g¢) to lie in a positive quadrant (see
Figure [[2Zb). Here also, the pairs of edges that cross into the next stages are required to
do so through positive quadrants.

Definition 11. A class n grope cobordism G between ¢-component string links o and o’
is a collection of disjointly embedded class n gropes g; (i = 1,2,...,¢) in the 3-ball, such
that the boundary of each g; is equal to the union of the ith strands o; and o) along their
boundary points. If all the tips of all the g; bound embedded caps whose interiors are
disjoint from each other and disjoint from all but the bottom stages of the g;, then G
together with these caps forms a (class n) capped grope cobordism G¢ between ¢ and o’.
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If G is oriented and the orientations of the bottom stages induce the orientations of
the strands of o, then we say that G¢ is a capped grope cobordism “of ¢”, or “from o to
o'.” Denote by G¢ (¢) the set of class n oriented capped grope cobordisms of {-component
string links.

3.2. Intersection trees for capped gropes. Let G € G¢ (/) be a capped grope cobor-
dism of a string link o. It turns out that one can assume that the intersections of the
caps with the bottom stages are arcs from o to ¢’. This can be accomplished by finger
moves of the caps across the boundary of the bottom stages. Also, by applying Krushkal’s
splitting technique (as adapted to 3—dimensions in [4]) it can be assumed that each grope
component is genus one and that each cap contains just a single intersection arc.

Now let gf be an oriented, genus one, capped grope component of G¢. Assume that
each cap of g¢ contains only a single arc of intersections, which can be with any bottom
stage surface in gf C G°. Then t(gf) is a disjoint union II,#] of vertex-oriented trees
tr, each of which sits as an embedded subset of ¢f, with the root of ¢] lying on the ith
strand of ¢ (in Jgf) and each leaf of ] lying on a jth strand of o at an intersection point
between a cap of gf and that jth strand (see left hand side of Figure [3]). Associate to
each leaf of ¢] the sign of the corresponding intersection point (between the cap and the
jth strand) and denote by €/ € {4+, —} the product of these signs.

Now the geometric intersection tree t(G¢) of G° is defined to be the disjoint union
IT; I, € - t7 of all the signed trees associated to all the ¢gf. Note that each tree should
avoid the intersections between caps and the bottom stage, and this forces the roots to
attach to the ith strand of ¢ in a specific ordering.

Definition 12. The abelian group A’ (¢) is additively generated by (isomorphism classes
of) vertex-oriented trivalent trees of Vassiliev degree n whose univalent vertices are at-
tached to ¢ directed line segments. The relations are exactly the antisymmetry relations
which introduce a minus sign whenever the cyclic ordering at one vertex is changed. Note
that we do not divide out by the IHX relations. That’s why our groups have hats on top
of them. R R

To define the map W¢: G¢(¢) — Al ({), interpret each signed tree in the oriented
intersection tree ¢(G¢) = II; 11, € - t* as a generator of AL (¢) by choosing the leaves to lie
on the strands of o (and forgetting the embedding of o). Then sum over i and r to get:

GEDH IR

Well-definedness of this map is an issue for a couple of reasons. First one must show
that different orientations induced by the same 0-orientation do not affect \Tffl. Secondly,
one must show that different choices of tips for a surface stage will also leave \TffL invariant.
Proposition addresses this in the uncapped situation. We leave it to the reader to
modify the argument for the capped case.

We will relax the condition that G¢ is of genus one and further generalize \Tffl in the
next section.
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Definition 13. A singular concordance between string links o and ¢’ is a collection
of properly immersed 2-disks D; in the product B? x I of the 3-ball with the unit
interval I = [0,1], with dD; equal to the union of the ith strands o; C B* x {0} and
o/ C B? x {1} together with their end points crossed with I. For instance, any generic
homotopy between o and ¢’ defines such a singular concordance. An order n Whitney
tower on a singular concordance is an order n Whitney concordance. Denote by W, (¢)
the set of oriented order n Whitney concordances of /-component string links, where an
oriented singular concordance “of” ¢ induces the orientation of o.

Definition 14. The abelian group gfl(ﬁ) is additively generated by isomorphism classes
of vertex-oriented trivalent trees of Vassiliev degree n whose univalent vertices are labeled
from {1,2,...,¢}. Again the relations are only the antisymmetry relations and not THX.

To define the map 7,: W,_1(£) — BL((), take a Whitney tower T and apply the
summation map to the intersection tree ¢, (1) = 11, ¢, - t(p) of Definition Bk

7lT) = 6, tp) € BL(0)

3.3. From grope cobordism to Whitney concordance. Let G¢ be a capped grope
cobordism (from ¢ to ¢’) in G¢(¢). Think of G€ as sitting in the middle slice B* x {1/2}
of B® x I. Extending 0 C G¢ to B* x {0}, via the product with [0,1/2], and extending
o' C G° to B® x {1}, via the product with [1/2,1], yields a collection of class n capped
gropes properly embedded in B* = B3 x I, i.e. a 4-dimensional grope cobordism, or
grope concordance, from o to o’. After perturbing the interiors of the caps slightly, we
may assume that all caps are still disjointly embedded and that a cap which intersected
the jth string link component in the 3-dimensional grope cobordism now has a single
transverse intersection point with the interior of a bottom stage of the jth grope in the
4—dimensional grope concordance. By fixing the appropriate orientation conventions, the
construction preserves the signs of these intersection points.

Consider the effect of this construction on the trees ¢(gf) which were embedded in the
original G¢ and are now sitting in the class n capped gropes in the 4-ball: Any root vertex
that was lying on an ¢th string link strand is now in the interior of the ith bottom stage,
and any leaf that corresponded to an intersection between a cap and a jth strand now
corresponds to an intersection between a cap and a jth bottom stage. These are exactly
the labeled trees associated to gropes in 4—manifolds as described in [I7] and Theorem 6
of [I7] describes how to surger such gropes to an order (n — 1) Whitney concordance T
while preserving trees, meaning that the labeled trees associated to the gropes become the
order n intersection tree ¢, (7). Although signs and orientations are not discussed in [I7],
the notation there is chosen to be compatible with the sign conventions of this paper and a
basic case of the compatibility is illustrated in Figure [[3 which shows a “push and surger”
step in the modification of a 3-dimensional grope cobordism to a Whitney concordance
applied to a top stage. (The modification in general involves “hybrid” grope-towers but
reduces essentially to this case as explained in [I7]).
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FIGURE 13. Left: A top stage of a capped grope cobordism. Right: The
corresponding part of a Whitney concordance after pushing into 4-space
and surgering a cap.

Definition 15. The above constructions define the map push-in : G¢(¢) — W,,_(¢)
which pushes a grope into the 4-ball and surgers it into a Whitney tower. It is used in
our main diagram [0 in the introduction.

Remark 16. The only information contained in the original geometric intersection tree
t(G°) that is lost by the map (induced by) push-in is the ordering in which the univalent
vertices of the t(gf) were attached to the string link components. Thus, pushing a class n
3—dimensional grope cobordism into 4-dimensions, surgering to an order (n—1) Whitney
concordance and applying the map 7,, is the same as the composition of the map \T/n with
the homomorphism

pull-off : ./Tfl — [3\2

that pulls the trees off the string link components and labels the univalent vertices ac-
cordingly.

Notice that the map pull-off is very different from the rational PBW-type isomorphism
0 ARQ —B®Q.

4. JACOBI IDENTITIES IN DIMENSION 3

As a consequence of our work so far, [HX relations appear in gﬁl as the image under
7, of Whitney concordances from any string-link to itself (e.g., tube the 2—spheres in
Theorem [0 into a product concordance). In this section we show that this phenomenon
pulls back to the 3—dimensional world: There are capped grope cobordisms from any
string link to itself whose images under \Tf; give all IHX relations. We will also realize
all IHX relations in a group generated by unitrivalent graphs by defining a more general
map W, on un-capped class n grope cobordisms. We want to work in a general setting
that includes knots, links and string links, which leads to the definitions below.
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4.1. X-links. Let X be a finite union of directed circles and line segments. Define an
X-link to be a proper embedding of A into a 3-ball, where the endpoints of the line
segments are fixed as in the case of string links. For example, if X is a union of ¢ circles,
then an X-link is the same as an /-component link, whereas if X is a union of ¢ line
segments, then an X-link is an /~-component string link. Let {x;} denote the components
of X.

Let G, (&X) be the set of class n oriented grope cobordisms of X-links, where we allow
genus > 1 at all stages and the orientations of all bottom stages are induced by the
orientations on the components of X. Let G%(X) be the same, except that the gropes
are capped. R

Define the abelian group A*(X') to be generated by connected trivalent vertex-oriented
trees which have X" as a skeleton, modulo AS relations. That is, each generator is formed
by attaching the univalent vertices of a tree to X. Let .Zﬁl(/'\f ) be the subgroup generated
by trees of Vassiliev degree n.

We will define a map ¢ (X) : G&(X) — AL (X) which is a straightforward gener-

alization of the map W¢ in Definition which was only defined for genus one grope
cobordisms of string links; here we just sum over “all genus and all cap-intersection
components”: Let G¢ € G, (X) be a capped grope cobordism. It consists of disjointly
embedded capped gropes ¢g¢, one for each component of X'. Choosing contiguous genus
one pieces of stages in a gf, from the bottom stage up, determines a genus one branch
of gf. For each genus one branch, construct a vertex-oriented trivalent tree sitting as
a subset of gf whose leaves correspond to caps of gf, as we did previously. Choose an
intersection component for each cap; each such component corresponds to a place where
the embedding of X punctures the cap. Glue the leaves of the tree to X based on where
this intersection occurs. The root of the tree is glued to x; in the boundary of the bottom
stage of gf. Together with the product of the signs of the intersections in the caps, this
gives a generator of A’ (X). Now ¢ (X)(G) by definition is the sum of these generators,
over all choices of branches, over all choices of intersections with each cap, and over all
g5 in G°.

Remark 17. This version of \TIC(X ) can also be defined by applying Krushkal’s grope-
splitting procedure (as adapted to 3—dimensions in [4]) and then using the genus one
definition of the previous section.

When X is understood, the notation \TIC(GC) may be used.

4.2. The THX relation for string links. The geometric degree 3 IHX construction
for string links contained in Theorem [[d below will play a key role in all subsequent IHX
constructions. At the heart of the proof of Theorem [[A is a 3—dimensional interpretation
of Figure Bl which leads to the following construction of a (slightly) singular capped grope
cobordism.
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Construction 18. Consider a trivial three-component string link in the 3-ball. We
will construct a singular capped grope g°¢ of class three with an unknotted boundary
component on the surface of the ball. (So X" is the union of three line segments with a
circle.) Its bottom stage is of genus three and embedded. The second stage surfaces of
g¢ are of genus one and are each embedded. The interiors of the second stage surfaces
intersect each other but are disjoint from the bottom stage of g¢. Denote by G¢ the union
of g¢ together with trivial cobordisms of the strands of the string link (embedded 2—disks
traced out by perturbations of the interiors of the strands). Then the key property of g°

is that lffg(é\f)(@c) € AL(X) is equal to the three terms of the THX relation in Figure &
Here the strands of the trivial string link are labeled by 1, 2, 3 and g° is interpreted as
a null bordism of its unknotted boundary which is labeled 4. Note that ¥ still makes
sense as a sum of subtrees of g° whose leaves are attached to intersections with caps, even
though g°¢ is singular.

To begin the construction of g¢, consider Figure Bl again. Think of it as taking place
inside a 3-ball B, so that the horizontal plane has an unknotted boundary on 0B. The
arcs that each puncture the plane twice are the three strands of a trivial string link.
Add tubes around the arcs to turn the plane into a genus three surface . X is the
bottom stage of our singular grope. We construct a symplectic basis for ¥ as follows.
Three of the curves are meridians to the tubes. To get the other three basis curves,
connect the endpoints of each of the three pictured arcs in the plane (formerly Whitney
arcs) by an untwisted arc that travels once over a tube. (Exercise: these three curves
form a Borromean rings.) We fix surfaces bounding these latter three basis curves in the
following way. Consider Figure [, where a Whitney disk pushed slightly in the future is
pictured. Think of the Whitney disk, instead, as being entirely in the present. It will
have two intersections with an arc as pictured. Add a tube along the arc to make a
surface s;. This surface has two dual caps, one of which hits the upper right strand 2,
and one of which hits the bottom strand 1. The curve dual to the attaching curve of s;
is a meridian to the strand 3 and so bounds a cap hitting strand 3 once. Symmetrically,
we can construct so and s3. Adding these three capped surfaces si, so, s3 to the surface
> we get the desired singular capped grope g°. The tree structure for the stage s; is
[[1,2],3], and for s, and s3 we get [1, [2, 3]] and [[3, 1], 2]] which, if we add strand 4 as the
root, are exactly the terms of the IHX relation. Keeping track of orientations, the signs
work out correctly.

Theorem 19. Suppose | > 4 and t; —tyg + tx is any IHX relation in :4\}3,(6) Then there
is a class three capped grope cobordism G¢, which takes the {-component trivial string link
to itself, such that V§(G°) =t; —ty +tx.

Remark 20. As will be clear from the proof, we emphasize that there are no hidden
cancelling terms here and the sum t; — ty + tx of basis elements is also equal to the
geometric intersection tree t(G¢) as in section
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Proof. First consider the case where ¢ = 4 and t; — ty + tx is as in Figure I We
will construct G¢ as a connected cobordism of strand 4 together with trivial cobordisms
(disks) of the other three strands. Take the 3-ball B from the above Construction [[§ and
remove regular neighborhoods of the three strands of the trivial string link in B to get
a handlebody M which contains the uncapped body g of the singular capped grope g°.
Let m; be a meridian to the ith strand on the surface of M. Now in the complement of a
trivial 4-component string link, embed M so that m; is a meridian to strand . Connect
a parallel copy of the fourth strand by a band to the unknot dg on the boundary surface
of M calling the resulting strand 4. The embedding of M extends (by attaching disks
to the m;) to an embedding of B into the 3-ball containing the 4-component string link.
Thus, 4 and 4’ cobound the singular capped grope g¢ from Construction [[§ which sits
inside B, where, by abuse of terminology, we let g¢ also denote the grope that has 4 and
4" as its boundary.

Pick arcs a and 3 contained in the bottom stage of g¢ and sharing endpoints with 4 and
4" such that o U [ splits g° into three genus one capped grope cobordisms ¢f, g5 and g¢5.
If we number them appropriately, gf modifies strand 4 to the strand «, g5 modifies a to
B and ¢g§ modifies 5 to 4. Note that each of these three grope cobordisms is nonsingular.

Examining the way in which the caps hit the strands, we see that > \ng(Gj) =t;—tp+
tx, where each G is just g7 together with trivial cobordisms on the first three strands.

In order to get the desired G¢, we wish to glue these cobordisms Gf back together so
that the resulting grope is embedded. To do this, we use the transitivity argument from [4],
which is easily adapted to the current situation of arcs rel boundary (as opposed to knots).
In that argument the individual gropes that are being glued together are homotoped
inside the ambient 3—manifold until they match up. However, the homotopies are always
isotopies when restricted to individual gropes. (Except in the framing correction move
where some twists are introduced, which will not affect U¢(G*).) Thus @g(GC) =ty —
ty + tx is not changed during this procedure.

Now consider the case where ¢ = 4 but the univalent vertices of the trees in the IHX
relation are attached to strands j;, j2, 73 and j4 which are not necessarily distinct. Then
the only modification needed in the above proof is to embed M so that the m,; are
meridians to the j;th strand arranged in the correct ordering (i = 1,2, 3), and make sure
that the band from 0g attaches to the jsth strand in the right place.

Finally, if there are more than four strands, add the rest of the strands to the picture
away from the above construction. U

More generally, let us consider grope cobordisms of higher class. We begin by realizing
[HX relations for trees whose univalent vertices lie on distinct components. The non-
distinct case will be covered in Theorem B4l below.

Theorem 21. Let t;, ty and tx be three trees which differ by the terms in an IHX
relation in At (0), where { > n + 1. Assume that no two univalent vertices of any one
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tree are attached to the same component. Then there is a class n capped grope cobordism
G°, from the (-component trivial string link to itself, such that VS (G®) =t; —ty + tx.

Proof. As in the previous Theorem, we will construct a cobordism of one of the strands,
extending the others by disks. Also, it will be sufficient to consider the case | = n + 1
since extra strands can be added away from the construction.

Decompose t; into rooted trees I, A, B,C, R, where I represents the “I” in the THX
relation, a chosen root of I is connected to R, and the leaves of I connect to the roots
of the trees A, B and C. Let the rooted tree given by I union A, B and C be called t
as illustrated in Figure [[4l Think of the ball containing n + 1 strands as a boundary-

A \(B CY/\

1

FIGURE 14.

connected-sum B;# Bpr, where B; is a ball with strands which inherit the (distinct) labels
of t and Bp is ball with strands labeled distinctly from the rest of {1,2,...,n+ 1}.

Consider a capped grope g; with one boundary component having geometric intersec-
tion tree equal to the tree ¢ and contained in B;. (To see that such a grope exists note
that a regular neighborhood of a grope is a handlebody, which can be thought of as a
ball with a tubular neighborhood of some arcs removed. The tips are part of a spine for
the handlebody, so that there is a bijection between tips and arcs, with each arc going
through a single tip once. Thus, the tips bound disks that are punctured by distinct arcs.
Now there is an embedding of this ball-with-arcs to B; that takes the arcs to strands in
B, according to any bijection.)

Pruning the “I” part g¢ of g;, we get three capped gropes realizing the trees A, B, C,
denoted ¢9, 9%, g¢ respectively. As in Theorem [[9, consider the genus three handlebody
M which is the complement of a trivial 3—strand string link with m; meridians to the
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strands on 0M. Taking M to be a regular neighborhood of g¢, there is an embedding
of M into B, such that the m; map to dg%, 09%, 0g¢.. Now, by Construction [[§, there
is a singular grope g of class three inside M which bounds an unknot on the boundary
of M such that the tips of § bound parallel copies of ¢4, ¢% and g¢. (Note that these
parallel copies intersect each other because the second stages of g intersect each other,
and because parallel gropes in dimension three intersect.)

Let g% be a capped grope realizing the tree R inside Bp, such that the tip Tj of g%
corresponding to the leaf of ¢ that connects to the root of I bounds a cap that does not
intersect any strands. Note that g% can be surgered into a disk, so that its boundary is
unknotted.

Tube the cap on the (unknotted) tip Tj of g% to the (unknotted) g on the boundary of
M. Connect-sum the (unknotted) dg§, to (a push-off of) the strand in By corresponding
to the root of R.

We get a singular capped grope cobordism G¢ taking the trivial (n + 1)-component
string link to itself such that @;(GC) =t; —tg + tx. The connected grope cobordism of
the strand corresponding to the root of R is genus three at one stage and is embedded at
that and all lower stages (the “R part”). Higher stages (the “A, B, and C parts”) that
lie above different genus one subsurfaces of the genus three stage (in the “I part”) may
intersect. Splitting the grope via Proposition 16 of ], we get three grope cobordisms,
each separately embedded, which can then be reglued by transitivity, as in the proof of
Theorem [[9 O

The previous theorem can be rephrased in the language of claspers as Theorem B of
the introduction.

A picture of three claspers of degree three as in Theorem Bl is given in Figure 9 of [f).
This was derived from Theorem [[J using a mixture of claspers and gropes in the following
way. First, (using the notation in the proof of Theorem [[d) the clasper representing ¢¢
was drawn. Next, we modified strand 1 by ¢{ to the new position . We then drew
in the clasper representing g5. This clasper intersects the grope gy, but using the usual
pushing-down argument we pushed all the intersections down to the bottom stage. We
then pushed them off the strand 0 boundary component of the grope, which is an isotopy
in the complement of o. This gave rise to two disjoint claspers, surgery on which moves
strand O to the arc 3. The process was repeated for the clasper representing g¢5: it was
pushed out of the trace of the first two grope cobordisms/clasper surgeries. We double-
checked the result by performing surgery along these three claspers and verified the result
was isotopic to the original trivial 4-component string link.

4.3. General THX relations and the map W(X). Next, we extend the realization

of THX relations from trees to arbitrary diagrams. Extending the map T° to un-capped
grope cobordisms involves two new wrinkles. First of all, in the absence of caps bounding
the grope tips, it will not be possible to attach the leaves of the grope-trees to X with a
meaningful ordering; however leaves will still be associated to components of X according
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to the linking between the components and the corresponding tips. Secondly, non-trivial
linking between certain tips will lead to the construction of graphs with non-zero Betti
number W/}\lich result from gluing together the corresponding leaves.

Define B(X) to be the abelian group generated by connected diagrams whose univalent
vertices are labeled by the components z; of X', modulo the AS antisymmetry relations.
Here a diagram is a vertex-oriented unitrivalent graph having at least one univalent
vertex. Let BZ(X) be the subgroup generated by diagrams of grope degree n, where the
grope degree is equal to the Vassiliev degree plus the first Betti number.

Now we define U, (X): G, (X) — BI(X). Let G be a grope cobordism of class n.
First, choose a grope component g C GG. As before, each branch of g has an associated
vertex-oriented trivalent rooted tree t whose leaves L; correspond to tips 7; of g. For
each such T;, choose either a component z; of X, or another tip 7} of ¢, and label the
corresponding leaf L; of ¢ by (L;, z;), or (L;,T;) respectively. The root of ¢ is labeled by
the component of X that the boundary of ¢ meets. Now sum over all choices to get a
formal sum of labeled trees denoted ((G)).

Now we proceed to glue together some of the leaves on each of these labeled trees, based
on the geometric information of how the tips link each other and X. Let ¢ be a labeled
tree. It has leaves L, labeled (L;,T}) or labeled (L;, x;), where each leaf L, corresponds
to the tip Tx. A matching of such a labeled tree t is a partition of the set of all the leaves
of t labeled by tips (and not X components) into pairs, such that the labels on each
pair are of the form (L;,Tj), (L;,T;). A matching determines a labeled connected graph
I', gotten by gluing together matched leaves of ¢, where each edge resulting from such
a gluing assumes the coefficient 1k(7;,T;) = 1k(7},T;). Each of the remaining univalent
vertices L; is labeled by some component z;, and assumes the coefficient 1k(L;, z;). Each
such I' determines a multiple of a generating diagram of l?g()( ), where the coefficient of
the diagram is the product of the coefficients on the leaves and edges of I'. Define <t >
as the sum of these elements in BY(X’) over all matchings of ¢. If there are no matchings,
then <t >=0 by definition. Extend < - > to linear combinations of trees linearly. Now
define ¥, (X)(G) to be < ((G)) >.

Remark 22. If G extends to a capped grope cobordism G C G¢, then v »(G) is just the
image of U¢(G¢) under the map pull-off: AL(X) — B9(X) that pulls the trees off the
components of X and labels their univalent vertices accordingly.

Proposition 23. U, is well-defined.

Proof. The first ambiguity is the orientation. The same cyclic orientation is induced at a
trivalent vertex independently of which positive quadrant is chosen. What changes is that
the orientation of the next two dual stages S, .55 is switched. If \S; is a pushing annulus,
this will reverse the orientation of a tip. The effect of switching a tip’s orientation is
to reverse the overall sign of U,. If S; is a surface stage, this will reverse the cyclic
orientation of the corresponding trivalent vertex, and by the AS antisymmetry relation,
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this also introduces a sign. Thus two factors of —1 are introduced in all cases, and the
overall sign remains unchanged.

The second ambiguity arises from choosing different tips for a grope component g C G.
Notice that ¥,, never sees the linking of tips on the same stage of g: Either they belong
to different branches and hence will be part of different tree summands, or they are dual
to each other in which case a graph with a loop at a vertex (which is zero by the AS
relations) would result. Thus on a single surface stage, the linking number with objects ¢;
is all that matters, where ¢; is either a component of X or another tip of g on a different
stage.

Suppose we are not at a top stage. Then at least one curve in every hyperbolic
pair bounds a higher surface stage. Removing a regular neighborhood of the higher
surface stages, we get a planar surface. The tips become arcs joining some pairs of
boundary components. Different choices of tips are related by Dehn twists on curves in
the planar surface. Note that the boundary components of the planar surface are all
null-homologous in the complement of Uc;. (They bound surfaces, and if the surfaces
are slightly perturbed, they avoid ¢;.) Hence choices of tips differ by multiples of curves
which link the ¢; trivially and hence do not change the contribution of g to U, (G).

Now suppose we are at a top stage of genus m. Any two choices of tips = symplectic
bases (a1, 01, .. ., Qm, B) are related by an element of Sp(2m, Z), which is generated by
the following automorphisms:

e for some i, a; — «; + [; and everything else is fixed
e for some i, §; — «; + 3; and everything else is fixed

o; — o +
Bj = =B+ 5;
a; — oy + G
a; — B +

e for some i # j, and everything else is fixed

and everything else is fixed

oforsomeiséj{

Bi — Bi +
B — a; + B
Bi = Bi + B;

ﬂj = —Q; +Oéj

and everything else is fixed

o for somez';«éj{

and everything else is fixed

oforsomeiséj{

Let us adopt the following notation for expressing the contribution ((g)) of g to ((G)).
Compute the disjoint union of trees where the leaves correspond to the tips of g, and
label each leaf L; by a linear combination ) n,c, where the labels ¢, correspond to
components of X and tips T} of g with j # i (and n, is the corresponding linking number
with 7;). This represents ((g)) by expanding the trees linearly in the labels. Note that
if any labeled trees in ((g)) represent zero modulo AS relations, then these relations will
still be present upon gluing, so that the corresponding contribution to ¥,,(G) =< ((G)) >
will also be zero.



26 J. CONANT, R. SCHNEIDERMAN, AND P. TEICHNER

The trees in ((g)) before and after applying the first automorphism above only differ in
a subtree isomorphic to a “Y”, which we can represent by a bracket [, |. The difference
is then represented by

[Z lk(ai,cr)cr,Zlk(ﬁi,cr)cr] - [Z Ik(a; +ﬁi,cr)cr,21k(ﬁi,cr)cr] :

Breaking the second summand into two terms, and using the fact that

[Z k(B er)ee, > Ik(3:, cr)cr] =0

by the AS relations, we see that ((g)), and hence W, (@), remains unchanged. The case
of the second automorphism is handled in the same way.

Let’s consider the third automorphism. Abbreviate the notations ) lk(a,c,)c, by
lk(cv, ¢). Then notice that the difference in ((g)) only occurs in the i and j trees, and this
difference is

[Ue(as, €), (6, )] + [k(, ©), k(B €)] = [k + @, ), (B, ¢)] -
[k (e, ¢),1k(—=5; + B;.¢)] ,

which is easily seen to be zero. The cases of the last three automorphisms are handled
identically. U

Theorem 24.

(a) Let Dy, Dy, Dx € l?g()() be diagrams differing by the terms in an IHX relation.
Then there is a grope cobordism G, from the trivial X-link to itself, such that
V,.(G)=D;— Dy + Dx.

(b) Let t;,ty.tx € AL(X) be trees differing by the terms in an IHX relation. Then
there is a capped grope cobordism G°, from the trivial X-link to itself, such that
Ve (GY) =t; —ty +tx.

Proof. (a) First, cut some edges (not contained in the “I” part) of D; to make a tree DY.
Pick a univalent vertex that did not come from a cut as the root. Let ¢ be the number
of leaves. As before, think of the complement of a trivial ¢ string link as a handlebody;,
M, with special curves {m;}‘_, on its boundary. Let the leaves of D! be placed in
correspondence with the curves m;. Embed M in the complement of a trivial X-link,
such that if a leaf L; of D} is labeled by a component x of X', then the corresponding m;
links x exactly once. Also, leaves resulting from cuts of D; should have the corresponding
m; linking exactly once. Take a trivial subarc of the component of X corresponding to the
root of D} and perform a finger move so that it goes through M as a trivial subarc n. Now
the proof of Theorem 2l yields a “weak” capped grope cobordism ¢¢ (with g C M) which
modifies 7, where the weakness comes from the fact that here the linking pairs of leaves
have intersecting caps. Ignoring this defect, ¢¢ extends (as in the proof of Theorem EII)
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to a (weak) capped grope cobordism G¢ of X such that \Tfi(Gé) equals three terms in an
IHX relation which looks locally like Dy — Dy + Dy, where UC is the obvious extension
of W€ which identifies leaves corresponding to Hopf-linked tips. When we throw away the
caps and apply < - > to glue these trees into graphs, note that the tips of G are parallel
to the curves m;, so that this has exactly the effect of gluing together the broken edges,
and labeling the univalent vertices appropriately.

(b) The proof of this part is similar to that of part (a). When embedding the handlebody
M, make sure all m; bound disjoint disks that intersect X in the same pattern that the
univalent vertices of ¢; hit X. When picking the finger move of the “root” component to
M, have it start where the root of ¢; hits X'. Then find a grope cobordism inside M. [J

5. MAPPING DIAGRAMS TO STRING LINKS

Let £(¢) be the set of isotopy classes of string links in D3 with ¢ components (which
is a monoid with respect to the usual “stacking” operation). Its quotient by the relation
of grope cobordism (respectively capped grope cobordism) of class n is denoted L(¢)/G,,
(respectively L(¢)/G¢), compare Definition [Il The submonoid of £(¢), consisting of
those string links which cobound a class n grope (respectively capped grope) with the
trivial string link, is denoted by G,,(¢) (respectively G¢()).

Proposition 25. L({)/Gp41 and L(€)/GS ., are finitely generated groups and the iterated
quotients

Gn(0)/Gny1  respectively Gy (0)/Gy .y
are central subgroups. As a consequence, L({)/Gpy1 and L(0)/GS., are nilpotent.

Proof. Let us begin with the statements for the capped case. Then L(¢)/G¢ can be
identified with the quotient of L£(¢) modulo the relation of simple clasper surgery of
class n. This translation works just like for knots where it was explained in []. All
the results then follow from [I1, Thm.5.4]. For example, the fact that the iterated
quotients are central is proven by showing that ab = ba, modulo simple clasper surgery
of class (n+1), if a is a string link that is simple clasper n-equivalent to the trivial string
link. This follows by sliding the claspers (that turn the trivial string link into a) past
another string link b.

In the absence of caps one has to translate into rooted clasper surgery of grope degree n

instead, as explained in [H]. Just as above, all results follow from the techniques of Habiro
[11]. O

This result makes it possible to try to compute the abelian iterated quotients in terms
of diagrams, which we proceed to do. We shall first define the map from diagrams to
string links modulo grope cobordism:

D, (0): BI() = Gp(0)) G-
Indeed, we defined this for £ = 1 in [B] in the following way. Given a diagram D €
B9 (), find a grope cobordism g of class n, corresponding to a simple clasper, such that
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U,(¢)(g) = D. Then define
@4 (0)(D) = D19(0bg) ",

where 0g = 0yg U 01¢9. One must show that the map is well-defined, i.e. that the choice
of the simple clasper (and its embedding) does not matter. The argument given in [f]
works with little modification for all ¢ > 1. R

The next proposition implies that we can take any grope g satisfying ¥, (¢) = D in
the above definition, not having to restrict to those corresponding to simple claspers. We
shall write ® (respectively W) instead of ®,(¢) (respectively W, (¢)) if the indices are clear
from the context.

~

Proposition 26. Given any grope g of class n, 01g(9og) ™' = do U(g) € G,(0)/Gria

Proof. Any grope cobordism can be refined to a sequence of genus one grope cobordisms
by Proposition 16 of [4] and this refinement evidently commutes with W. Then, using
Theorem 35 of M, each of these cobordisms can be refined into a sequence of simple
clasper surgeries and clasper surgeries of higher degree, and this refinement commutes

with W. (To see this it suffices to notice that the “zip construction” commutes with U )
Thus

D19(00g) " = (Org) (L) " (Lie) (Li—1) ™"+ (L1)(Bog) ",

where the L; are string links modified by successive simple clasper surgeries. Note that
we can omit any pairs (L;)(L;_1)~! corresponding to clasper surgeries of higher degree,
since this product is trivial in £(¢)/G,+1. On the other hand, we know that for pairs

corresponding to simple claspers C; of degree n, (L;)(Li_1)~" = ®(¥(C;)), by definition
of . Thus

D19(8og) ™" = #;
D

which completes the proof. O

We next show that ® vanishes on all IHX relations and hence descends to a well-defined
map .

Theorem 27. ®,,(¢): BL({) — G, ({)/Gpyi1 is a well-defined surjective homomorphism.

Proof of Theorem [27]. By Theorem P4, any IHX relation, Ry x, is the image under U of
a cobordism, g, from a trivial string link to another trivial string link, denoted 1,. So by
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Proposition 26,

~

O(Riux) = D(V(g))
= (019)(0og)~"

= 1,#1;!
=1,

Next we consider surjectivity of ¢, (¢). The elements of G,,(¢) are by definition of the
form 01g where g is a class n grope cobordism with dyg = 1,. By Proposition Ef,
g =P, (l) o, (£)(9g).

0

Using the Kontsevich integral as a rational inverse, we are now able to prove Theorem
which says that ®,,(¢) turns into an isomorphism after tensoring with Q.

Sketch of proof of Theorem[d. This was proven in full detail in [5] for the case when ¢ = 1.
One sets up the (logarithm of the) Kontsevich integral as an inverse. Using the Aarhus
integral [I], it is easy to show that the bottom degree term of the Kontsevich integral
coincides with our map \Tfn(ﬁ) More precisely, if g is a grope cobordism, then Aarhus
surgery formulae show that

(10g Z)n(819(809) ") = Un(g),

where (log Z),, is of grope degree n. Thus ®,((log Z),(019(00g)™")) = 019(dpg)~!, or
®, o (log Z), = id. On the other hand (log Z),(®,(D)) = (log Z),(019(dyg)~") for a
grope ¢ satisfying \Tfn(g) = D. But then, by the above highlighted formula we can
conclude that (log Z),, o ®,, = id.

Also, the Kontsevich integral of grope cobordisms of class n + 1 will lie in degree
n + 1, so that the Kontsevich integral indeed factors through G, (¢)/G,1 ® Q. (Here
we use the fact that the Kontsevich integral of string links preserves the loop (and hence
grope) degree.) The fact that log Z, is a homomorphism is straightforward using the
Aarhus formula. (In [5] we used the Wheeling isomorphism to show this for knots, but
that was unnecessary. The lowest degree part of the Wheeling isomorphism is just the
identity.) O

It is unknown whether the analogous statements for the relation of capped grope cobor-
dism of string links are true. There are two difficulties, one is the question whether one
can realize the STU-relations in A4, (¢) by capped grope cobordisms. The other is the
question whether Habiro’s main theorem [T1] generalizes from knots to string links: Does
the Vassiliev filtration of string links agree with the relation generated by simple clasper
surgery? It follows from the techniques of [4] that the latter agrees with capped grope
cobordism.
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