
CHAPTER XII 

The equivariant stable homotopy category 

1. An introductory overview 

Let us start nonequivariantly. As the home of stable phenomena, the subject 
of stable homotopy theory includes all of homology and cohomology theory. Over 
thirty years ago, it became apparent that very significant benefits would accrue 
if one could work in an additive triangulated category whose objects were "stable 
spaces", or "spectra", a central point being that the translation from topology 
to algebra through such tools as the Adams spectral sequence would become 
far smoother and more structured. Here "triangulated" means that one has a 
suspension functor that is an equivalence of categories, together with cofibration 
sequences that satisfy all of the standard properties. 

The essential point is to have a smash product that is associative, commuta­
tive, and unital up to coherent natural isomorphisms, with unit the sphere spec­
trum S. A category with such a product is said to be "symmetric monoidal". 
This structure allows one to transport algebraic notions such as ring and module 
into stable homotopy theory. Thus, in the stable homotopy category of spectra 
- which we shall denote by h:/' - a ring is just a spectrum R together with a 
product 4> : R 1\ R --> R and unit 'fJ : S --> R such that the following diagrams 
commute in h:/': 

and 

The unlabelled isomorphisms are canonical isomorphisms giving the unital prop­
erty, and we have suppressed associativity isomorphisms in the second diagram. 
Similarly, there is a transposition isomorphism T : E 1\ F --> F 1\ E in h:/" and 
R is said to be commutative if the following diagram commutes in h:/': 

RI\R r >RI\R 

~/. 
R. 
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A left R-module is a spectrum M together with a map f..L : R 1\ M ---+ M such 
that the following diagrams commute in hY: 

1)/\1 
SI\M~RI\M 

~r 
M 

and 

Over twenty years ago, it became apparent that it would be of great value to 
have more precisely structured notions of ring and module, with good properties 
before passage to homotopy. For example, when one is working in hY it is not 
even true that the cofiber of a map of R-modules is an R-module, so that one 
does not have a triangulated category of R-modules. More deeply, when R is 
commutative, one would like to be able to construct a smash product M I\R N 
of R-modules. Quinn, Ray, and I defined such structured ring spectra in 1972. 
Elmendorf and I, and independently Robinson, defined such structured module 
spectra around 1983. However, the problem just posed was not fully solved until 
after the Alaska conference, in work of Elmendorf, Kriz, Mandell, and myself. 
We shall return to this later. 

For now, let us just say that the technical problems focus on the construction 
of an associative and commutative smash product of spectra. Before June of 
1993, I would have said that it was not possible to construct such a product on a 
category that has all colimits and limits and whose associated homotopy category 
is equivalent to the stable homotopy category .. We now have such a construction, 
and it actually gives a point-set level symmetric monoidal category. 

However, it is not a totally new construction. Rather, it is a natural extension 
of the approach to the stable category hY that Lewis and I developed in the early 
1980's. Even from the viewpoint of classical nonequivariant stable homotopy 
theory, this approach has very significant advantages over any of its predecessors. 
What is especially relevant to us is that it is the only approach that extends 
effortlessly to the equivariant context, giving a good stable homotopy category 
of G-spectra for any compact Lie group G. Moreover, for a great deal of the 
homotopical theory, the new point-set level construction offers no advantages 
over the original Lewis-May theory: the latter is by no means rendered obsolete 
by the new theory. 

From an expository point of view this raises a conundrum. The only real 
defect of the Lewis-May approach is that the only published account is in the 
general equivariant context, with emphasis on those details that are special to 
that setting. Therefore, despite the theme of this book, I will first outline some 
features of the theory that are nearly identical in the nonequivariant and equiv­
ariant contexts, returning later to a discussion of significant equivariant points. 
I will follow in part an unpublished exposition of the Lewis-May category due to 
Jim McClure. A comparison with earlier approaches and full details of definitions 
and proofs may be found in the encyclopedic first reference below. The second 
reference contains important technical refinements of the theory, as well as the 
new theory of highly structured ring and module spectra. The third reference 
gives a brief general overview of the theory that the reader may find helpful. We 
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shall often refer to these as [LMS] , [EKMM], and [EKMM']. 

General References 

[LMS] L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). 
Equivariant stable homotopy theory. Springer Lecture Notes in Mathematics. Vol 1213. 1986. 
[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras 
in stable homotopy theory. Amer. Math. Soc. Surveys and Monographs. To appear. 
[EKMM'] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for 
stable homotopy theory. In "Handbook of Algebraic Topology", edited by I.M. James. North 
Holland, 1995, pp 213-254. 

2. Prespectra and spectra 

The simplest relevant notion is that of a prespectrum E. The naive version is 
a sequence of based spaces En, n 2: 0, and based maps 

(Yn : L,En ~ En+1 • 

A map D ~ E of prespectra is a sequence of maps Dn ~ En that commute 
with the structure maps (Yn. The structure maps have adjoints 

O'n: En ~ nEn+l, 

and it is customary to say that E is an n-spectrum if these maps are equiv­
alences. While this is the right kind of spectrum for representing cohomology 
theories on spaces, we shall make little use of this concept. By a spectrum, we 
mean a prespectrum for which the adjoints O'n are homeomorphisms. (The in­
sistence on homeomorphisms goes back to a 1969 paper of mine that initiated 
the present approach to stable homotopy theory.) In particular, for us, an "n­
spectrum" need not be a spectrum: henceforward, we use the more accurate 
term n-prespectrum for this notion. 

One advantage of our definition of a spectrum is that the obvious forgetful 
functor from spectra to prespectra - call it e - has a left adjoint spectrification 
functor L such that the canonical map LeE ~ E is an isomorphism. Since 
we are usually concerned only with formal consequences of the adjunction, we 
will not give the precise construction of L. Its existence follows directly from 
a categorical result called the Freyd adjoint functor theorem. (We will say a 
little bit more about the construction in Section 9.) There is a formal analogy 
between the passage from prespectra to spectra and the passage from presheaves 
to sheaves, which is the reason for the term "prespectrum". The category of 
spectra has limits, which are formed in the obvious way by taking the limit for 
each n separately. It also has colimits. These are formed on the prespectrum 
level by taking the colimit for each n separately; the spectrum level colimit is 
then obtained by applying L. 

The central technical issue that must be faced in any version of the category 
of spectra is how to define the smash product of two prespectra {Dn} and {En}. 
Any such construction must begin with the naive bi-indexed smash product 
{Dm 1\ En}. The problem arises of how to convert it back into a singly indexed 
object in some good way. It is an instructive exercise to attempt to do this 
directly. One quickly gets entangled in permutations of suspension coordinates. 
Let us think of a circle as the one-point compactification of IR and the sphere 
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sn as the one-point compactification of ]Rn. Then the iterated structure maps 
~n Em = Em /\ sn ---4 Em+n seem to involve ]Rn as the last n coordinates in 
]Rm+n. This is literally true if we consider the sphere prespectrum {sn} with 
identity structural maps. This suggests that our entanglement really concerns 
changes of basis. If so, then we all know the solution: do our linear algebra in a 
coordinate-free setting, choosing bases only when it is convenient and avoiding 
doing so when it is inconvenient. 

Let ]Roo denote the union of the ]Rn, n ~ O. This is a space whose elements 
are sequences of real numbers, all but finitely many of which are zero. We give 
it the evident inner product. By a universe U, we mean an inner product space 
isomorphic to ]Roo. If V is a finite dimensional subspace of U, we refer to V as 
an indexing space in U, and we write SV for the one-point compactification of 
V, which is a based sphere. We write ~v X for X /\ SV and nV X for F(SV, X). 

By a prespectrum indexed on U, we mean a family of based spaces EV, one 
for each indexing space V in U, together with structure maps 

o"v,w : ~w-v EV ---4 EW 

whenever V C W, where W - V denotes the orthogonal complement of V in 
W. We require (ivy = id, and we require the evident transitivity diagram to 
commute for V eWe Z: 

~z-w~w-v EV ------"- ~z-w EW 

~t l 
We call E a spectrum indexed on U if the adjoints 

(j: EV ---4 nW-v EW 

of the structural maps are homeomorphisms. As before, the forgetful functor I! 
from spectra to prespectra has a left adjoint spectrification functor L that leaves 
spectra unchanged. We denote the categories of prespectra and spectra indexed 
on U by.9U and YU. When U is fixed and understood, we abbreviate notation 
to.9 and Y. 

If U = ]Roo and E is a spectrum indexed on U, we obtain a spectrum in our 
original sense by setting En = E]Rn. Conversely, if {En} is a spectrum in our 
original sense, we obtain a spectrum indexed on U by setting EV = nlRn-v En, 
where n is minimal such that V C ]Rn. It is easy to work out what the structural 
maps must be. This gives an equivalence between our new category of spectra 
indexed on U and our original category of sequentially indexed spectra. 

More generally, it often happens that a spectrum or prespectrum is naturally 
indexed on some other co final set .vi of indexing spaces in U. Here cofinality 
means that every indexing space V is contained in some A E .vi; it is convenient 
to also require that {O} E .vi. We write .9 Jl1 and Y td for the categories of 
prespectra and spectra indexed on td. On the spectrum level, all of the categories 
Y Jl1 are equivalent since we can extend a spectrum indexed on td to a spectrum 
indexed on all indexing spaces V in U by the method that we just described for 
the case td = {]Rn}. 



3. SMASH PRODUCTS 115 

J. P. May. Categories of spectra and infinite loop spaces. Springer Lecture Notes in Mathe­
matics Vol. 99. 1969, 448-479. 

3. Smash products 

We can now define a smash product. Given prespectra E and E' indexed 
on universes U and U', we form the collection {EV /\ E'V'}, where V and V' 
run through the indexing spaces in U and U', respectively. With the evident 
structure maps, this is a prespectrum indexed on the set of indexing spaces in 
U E9 U' that are of the form V E9 V'. If we start with spectra E and E', we can 
apply the functor L to get to a spectrum indexed on this set, and we can then 
extend the result to a spectrum indexed on all indexing spaces in U E9 U'. We 
thereby obtain the "external smash product" of E and E', 

E /\ E' E Y(U E9 U'). 

Thus, if U = U', then two-fold smash products are indexed on U2
, three-fold 

smash products are indexed on U3 , and so on. 
This external smash product is associative up to isomorphism, 

(E /\ E') /\ E" ~ E /\ (E' /\ E"). 

This is evident on the prespectrum level. It follows on the spectrum level by a 
formal argument of a sort that pervades the theory. One need only show that, 
for prespectra D and D', 

L(n(D) /\ D') ~ L(D /\ D') ~ L(D /\ n(D')). 

Conceptually, these are commutation relations between functors that are left 
adjoints, and, by the uniqueness of adjoints, they will hold if and only if the 
corresponding commutation relations are valid for the right adjoints. We shall 
soon write down the right adjoint function spectra functors. They turn out 
to be so simple and explicit that it is altogether trivial to check the required 
commutation relations relating them and the right adjoint f. 

The external smash product is very nearly commutative, but to see this we 
need another observation. If f : U ~ U' is a linear isometric isomorphism, 
then we obtain an isomorphism of categories f* : YU' ~ YU via 

U* E')(V) = E' UV). 

Its inverse is f. = U- 1 ) •. If r : U E9 U' ~ U' E9 U is the transposition, then 
the commutativity isomorphism of the smash product is 

E' /\ E ~ r.(E /\ E'). 

Analogously, the associativity isomorphism implicitly used the obvious isomor­
phism of universes (U E9 U') E9 U" ~ U E9 (U' E9 U"). 

What about unity? We would like E /\ S to be isomorphic to E, but this 
doesn't make sense on the face of it since these spectra are indexed on different 
universes. However, for a based space X and a prespectrum E, we have a 
prespectrum E /\ X with 

(E /\ X)(V) = EV /\ X. 
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If we start with a spectrum E and apply L, we obtain a spectrum E /\ X. It is 
quite often useful to think of based spaces as spectra indexed on the universe {O}. 
This makes good sense on the face of our definitions, and we have E /\ SO ~ E, 
where SO means the space So. 

Of course, this is not adequate, and we have still not addressed our original 
problem about bi-indexed smash products: we have only given it a bit more 
formal structure. To solve these problems, we go back to our "change of universe 
functors" f* : YU' ----+ YU. Clearly, to define f*, the map f : U ----+ U' need 
only be a linear isometry, not necessarily an isomorphism. While a general 
linear isometry f need not be an isomorphism, it is a monomorphism. For a 
prespectrum E E 9U, we can define a prespectrum f*E E 9U' by 

(3.1) (f*E) (V') = EV/\SV'-fV , where V=f- 1(V'nf(U)). 

Its structure maps are induced from those of E via the isomorphisms 

(3.2) EV /\ SV'-fV /\ SW'-v' ~ EV /\ Sw-v /\ SW'-fW. 

As usual, we use the functor L to extend to a functor f* : YU ----+ YU'. As 
is easily verified on the prespectrum level and follows formally on the spectrum 
level, the inverse isomorphisms that we had in the case of isomorphisms generalize 
to adjunctions in the case of isometries: 

(3.3) Y'U'(f*E,E') ~ YU(E,j*E'). 

How does this help us? Let f(U, U') denote the set of linear isometries 
U ----+ U'. If V is an indexing space in U, then f (V, U') has an evident metric 
topology, and we give f(U, U') the topology of the union. It is vital - and 
not hard to prove - that f(U, U') is in fact a contractible space. As we shall 
explain later, this can be used to prove a version of the following result (which 
is slightly misstated for clarity in this sketch of ideas). 

THEOREM 3.4. Any two linear isometries U ----+ U' induce canonically and 
coherently weakly equivalent functors Y'U ----+ YU'. 

We have not yet defined weak equivalences, nor have we defined the stable 
category. A map f : D ----+ E of spectra is said to be a weak equivalence if 
each of its component maps DV ----+ EV is a weak equivalence. Since the smash 
product of a spectrum and a space is defined, we have cylinders E /\ 1+ and thus 
a notion of homotopy in Y'U. We let hYU be the resulting homotopy category, 
and we let hYU be the category that is obtained from hY'U by adjoining formal 
inverses to the weak equivalences.We shall be more explicit later. 

This is our stable category, and we proceed to define its smash product. We 
choose a linear isometry f : U2 

----+ U. For spectra E and E' indexed on U, we 
define an internal smash product f*(E/\E') E Y'U. Up to canonical isomorphism 
in the stable category hY'U, f*(E /\ E') is independent of the choice of f. For 
associativity, we have 

f*(E /\ f*(E' /\ E")) ~ (f(1 EB f))*(E /\ E' /\ E") 

~ (f(f EB l))*(E /\ E' /\ E") ~ f*(f*(E /\ E') /\ E"). 
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Here we write ~ for isomorphisms that hold on the point-set level and ~ for 
isomorphisms in the category h.'7U. For commutativity, 

f*(E' 1\ E) ~ f*r*(E 1\ E') ~ (fr)*(E 1\ E') ~ f*(E 1\ E'). 

For a space X, we have a suspension prespectrum p:;v X} whose structure 
maps are identity maps. We let Eoo X = L{EV X}. In this case, the construction 
of L is quite concrete, and we find that 

(3.5) 

This gives the suspension spectrum functor EOO : !Y --+ .'7U. It has a right 
adjoint noo which sends a spectrum E to the space Eo = E{O}: 

(3.6) .'7U(EOO X, E) ~ !Y(X, n°o E). 

The functor Q is the same as nooEoo. For a linear isometry f : U --+ U' , we 
have 

(3.7) 

since, trivially, n oo 1* E' = Eb = n oo E'. A space equivalent to Eo for some 
spectrum E is called an infinite loop space. 

Remember that we can think of the category !Y of based spaces as the category 
.'7 {O} of spectra indexed on the universe {O}. With this interpretation, noo 
coincides with i*, where i : {O} --+ U is the inclusion. Therefore, by the 
uniqueness of adjoints, E OO X is isomorphic to i~X. Let i 1 : U --+ U2 be the 
inclusion of U as the first summand in U EB U. The unity isomorphism of the 
smash product is the case X = So of the following isomorphism in h.'7U: 

(3.8) 

f*(E 1\ E
oo 

X) ~ f*(i1)*(E 1\ X) ~ (f 0 id*(E 1\ X) ~ l*(E 1\ X) = E 1\ X. 

We conclude that, up to natural isomorphisms that are implied by Theorem 
3.4 and elementary inspections, the stable category h.'7U is symmetric monoidal 
with respect to the internal smash product f*(E 1\ E') for any choice of linear 
isometry f : U2 

--+ U. It is customary, once this has been proven, to write 
E 1\ E' to mean this internal smash product, relying on context to distinguish it 
from the external product. 

4. Function spectra 

We must define the function spectra that give the right adjoints of our various 
kinds of smash products. For a space X and a spectrum E, the function spectrum 
F(X, E) is given by 

F(X, E) (V) = F(X, EV). 

Note that this is a spectrum as it stands, without use of the functor L. We have 
the isomorphism 

F(E 1\ X, E') ~ F(E, F(X, E')) 
and the adjunction 

(4.1) .'7U(E 1\ X, E') ~ !Y(X, .'7U(E, E')) ~ .'7U(E, F(X, E')), 
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where the set of maps E --t E' is topologized as a subspace of the product over 
all indexing spaces V of the spaces F(EV, E'V). As an example of the use of 
right adjoints to obtain information about left adjoints, we have isomorphisms 

(4.2) 

For the first, the two displayed functors of X both have right adjoint 

F(Y, E)o = F(Y, Eo). 

More generally, for universes U and U' and for spectra E' E YU' and E" E 
Y(U EB U'), we define an external function spectrum 

F(E', E") E YU 

as follows. For an indexing space V in U, define E" [V] E YU' by 

E"[V](V') = E"(V EB V'). 

The structural homeomorphisms are induced by some of those of E", and others 
give a system of isomorphisms E" [V] --t n w - v E" [W]. Define 

F(E',E")(V) = YU'(E',E"[V]). 

We have the adjunction 

(4.3) Y(U EB U')(E /\ E', E") ~ YU(E, F(E', E")). 

When E' = Eooy, YU'(E',E"[V]) ~ 5(Y,E"(V)). Thus, if il : U --t U EB U' 
is the inclusion, then 

F(EOOY,E") ~ F(Y, (id' E"). 

By adjunct ion, this implies the first of the following two isomorphisms: 

When U = U' and f : U2 
--t U is a linear isometry, we obtain the internal 

function spectrum F(E', f* E) E YU for spectra E, E' E YU. Up to canonical 
isomorphism in hYU, it is independent of the choice of f. For spectra all indexed 
on U, we have the composite adjunction 

(4.5) YU(J.(E /\ E'), E") ~ YU(E, F(E', f* E")). 

Again, it is customary to abuse notation by also writing F(E', E) for the in­
ternal function spectrum, relying on the context for clarity. By combining the 
three isomorphisms (3.7), (4.2), and (4.4) - all of which were proven by trivial 
inspections of right adjoints - we obtain the following non-obvious isomorphism 
for internal smash products. 

(4.6) 

Generalized a bit, this will be seen to determine the structure of smash products 
of CW spectra. 
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suitable left adjoint functors from spaces to spectra. For n :::: 0, there is no 
problem: we take s..n = EOO sn. We shall later write sn ambiguously for both 
the sphere space and the sphere spectrum, relying on context for clarity, but we 
had better be pedantic at first. 

We also need negative dimensional spheres. We will define them in terms 
of shift desuspension functors, and these functors will also serve to clarify the 
relationship between spectra and their component spaces. Generalizing f!oo, 
define a functor 

f!V' : GY' -4 G!Y 

by f!V' = EV for an indexing space V in U. The functor f!V' has a left adjoint 
shift desuspension functor 

EV' : G!Y -4 GY'. 

The spectrum EV' X is L{EW-V X}. Here the prespectrum {EW-V X} has Wth 
space EW-v X if V c Wand a point otherwise; if V eWe Z, then the 
corresponding structure map is the evident identification 

Ez-wEw-v X ~ EZ-v X. 

The Vth space of EV' X is the zeroth space QX of Eoo X. It is easy to check 
the prespectrum level version of the claimed adjunction, and the spectrum level 
adjunction follows: 

(6.1) GY'(EV' X, E) ~ G!y(X, f!V' E). 

Exactly as in 0(4.2) and (4.6), we have natural isomorphisms 

(6.2) (EV' X) 1\ Y ~ EV'(X 1\ Y) ~ X 1\ (EV'Y) 

and, for the internal smash product, 

(6.3) 

Another check of right adjoints gives the relation 

(6.4) 

It is not hard to see that any spectrum E can be written as the colimit of the 
shift desuspensions of its component spaces. That is, 

(6.5) E ~ colim EV' EV, 

where the colimit is taken over the maps 

EwO" : EV' EV ~ Ew(Ew - v EV) -4 EwEW. 

Let us write U in the form U = UG EB U' and fix an identification of UG 

with lRoo . We abbreviate notation by writing f!;;:" and E;;:" when V = lRn. Now 
define s..-n = E;;:" SO for n > O. The reader will notice that we can generalize our 
definitions to obtain sphere spectra s..V and s..-v for any indexing space V. We 
can even define spheres s..V -w = EwSv. We shall need such generality later. 
However, in developing G-CW theory, it turns out to be appropriate to restrict 
attention to the spheres s..n for integers n. Theorem 6.8 will explain why. 
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In view of our slogan that orbits are the equivariant analogues of points, we 
also consider all spectra 

(6.6) 

as spheres. By (6.2), Q'H ~ r,OO(G/H+ /\ sn) if n ;::: 0 and 8..H ~ r,':G/H+ 
if n < O. We shall be more systematic about change of groups later, but we 
prefer to minimize such equivariant considerations in this section. We define the 
homotopy group systems of G-spectra by setting 

(6.7) 1f:! (E) = Kn(E)(G/ H) = hG.9'(Q'H, E). 

Let !J?JeU be the homotopy category of orbit spectra Q~ = r,ooG/H+; we 
generally abbreviate the names of its objects to G / H. This is an additive cate­
gory, as will become clear shortly, and Kn (E) is an additive contravariant functor 
!J?JeU --+ db. Recall from IX§4 that such functors are called Mackey functors 
when the universe U is complete. They play a fundamentally important role in 
equivariant theory, both in algebra and topology, and we shall return to them 
later. For now, however, we shall concentrate on the individual homotopy groups 
1f:! (E). We shall later reinterpret these as homotopy groups 1fn (EH ) of fixed 
point spectra, but that too can wait. 

The following theorem should be viewed as saying that a weak equivalence 
of G-spectra really is a weak equivalence of G-spectra. Recall that we defined 
a weak equivalence f : D --+ E to be a G-map such that each space level 
G-map fV : DV --+ EV is a weak equivalence. In setting up CW-theory, 
which logically should precede the following theorem, one must mean a weak 
equivalence to be a map that induces an isomorphism on all of the homotopy 
groups 1f:! of (6.7). 

THEOREM 6.8. Let f : E --+ E' be a map ofG-spectra. Then each component 
map fV : EV --+ E'V is a weak equivalence of G-spaces if and only if f* 
1ft! E --+ 1ft! E' is an isomorphism for all H C G and all integers n. 

By our adjunctions, we have 

Therefore, nonequivariantly, the theorem is a tautological triviality. Equivari­
antly, the forward implication is trivial but the backward implication says that 
if each EIRn --+ E'IRn is a weak equivalence, then each EV --+ E'V is also a 
weak equivalence. Thus it says that information at the trivial representations 
in U is somehow capturing information at all other representations in U. Its 
validity justifies the development of G-CW theory in terms of just the sphere 
spectra of integral dimensions. 

We sketch the proof, which goes by induction. We want to prove that each 
map f* : 1f*(EV)H --+ 1f*(E'V)H is an isomorphism. Since G contains no 
infinite descending chains of (closed) subgroups, we may assume that f* is an 
isomorphism for all proper subgroups of H. An auxiliary argument shows that 
we may assume that VH = {O}. We then use the cofiber sequence 

S(V)+ --+ D(V)+ --+ Sv, 
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where S(V) and D(V) are the unit sphere and unit ball in V and thus D(V)+ ~ 
So. Applying f : F(-,EV)H ~ F(-,E'V)H to this cofiber sequence, we 
obtain a comparison of fibration sequences. On one end, this is 

which is given to be a weak equivalence. On the other end, we can triangulate 
S(V) as an H-CW complex with cells of orbit type H/K, where K is a proper 
subgroup of H. We can then use change of groups and the inductive hypothesis 
to deduce that f induces a weak equivalence on this end too. Modulo an extra 
argument to handle 7ro, we conclude that the middle map f : (EV)H ~ (E'V)H 
is a weak equivalence. 

7. G-CW spectra 

Before getting to CW theory, we must say something about compactness, 
which plays an important role. A compact spectrum is one of the form ~v X 
for some indexing space V and compact space X. Since a map of spectra with 
domain ~v X is determined by a map of spaces with domain X, facts about 
maps out of compact spaces imply the corresponding facts about maps out of 
compact spectra. For example, if E is the union of an expanding sequence of 
subspectra E i , then 

(7.1) 

The following lemma clarifies the relationship between space level and spec­
trum level maps. Recall the isomorphisms of (6.4). 

LEMMA 7.2. Let f :~vX ~ ~wy be a map ofG-spectra, where X is com­
pact. Then, for a large enough indexing space Z, there is a map 9 : ~z - V X ~ 
~Z-Wy of G-spaces such that f coincides with 

~zg: ~vX ~ ~z(~Z-vX) ~ ~z(~z-Wy) ~ ~wy. 

This result shows how to calculate the full subcategory of the stable category 
consisting of those G-spectra of the form ~v X for some indexing space V and 
finite G-CW complex X in space level terms. It can be viewed as giving an 
equivariant reformulation of the Spanier-Whitehead S-category. In particular, 
we have the following consistency statement with the definitions of IX§2. 

PROPOSITION 7.3. If X is a finite based G-CW complex and Y is a based 
G-space, then 

From here, the development of CW theory is essentially the same equivari­
antly as nonequivariantly, and essentially the same on the spectrum level as on 
the space level. The only novelty is that, because we have homotopy groups 
in negative degrees, we must use two filtrations. Older readers may see more 
novelty. In contrast with earlier treatments, our CW theory is developed on the 
spectrum level and has nothing whatever to do with any possible cell structures 
on the component spaces of spectra. I view the use of space level cell structures 

c 
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in this context as an obsolete historical detour that serves no useful mathematical 
purpose. 

Let C E = E /\ I denote the cone on a G-spectrum E. 

DEFINITION 7.4. A G-cell spectrum is a spectrum E E GY that is the union 
of an expanding sequence of subspectra En, n ;:::: 0, such that Eo is the trivial 
spectrum (each of its component spaces is a point) and En+! is obtained from En 
by attaching G-cells CH'1 ~ GI H+ /\ CHq along attaching G-maps H'1 -----+ En. 
Cell subspectra, or "sub complexes" , are defined in the evident way. A G-CW 
spectrum is a G-cell spectrum each of whose attaching maps H'1 -----+ En factors 
through a subcomplex that contains only cells of dimension at most q. The n­
skeleton en is then defined to be the union of the cells of dimension less than or 
equal to n. 

LEMMA 7.5. A map from a compact spectrum to a cell spectrum factors through 
a finite subcomplex. Any cell spectrum is the union of its finite subcomplexes. 

The filtration {En} is called the sequential filtration. It records the order 
in which cells are attached, and it can be chosen in many different ways. In 
fact, using the lemma, we see that by changing the sequential filtration on the 
domain, any map between cell spectra can be arranged to preserve the sequential 
filtration. Using this filtration, we find that the inductive proofs of the following 
results that we sketched on the space level work in exactly the same way on 
the spectrum level. We leave it to the reader to formulate their more precise 
"dimension v" versions. 

THEOREM 7.6 (HELP). Let A be a subcomplex of a G-CW spectrum D and 
let e : E -----+ E' be a weak equivalence. Suppose given maps g : A -----+ E, 
h : A /\ h -----+ E', and f : D -----+ E' such that eg = hil and fi = hio in the 
following diagram: 

A 
io 

>A/\I+< 
i, 

A 

;/ ;/ 
E' 

e E 

y '" "-
" -"--" 
h " 

9 
"-

D io 
>D/\h< i, D 

Then there exist maps 9 and ii that make the diagram commute. 

THEOREM 7.7 (WHITEHEAD). Let e : E -----+ E' be a weak equivalence and D 
be a G-CW spectrum. Then e* : hGY(D, E) -----+ hGY(D, E') is a bijection. 

COROLLARY 7.8. If e : E -----+ E' is a weak equivalence between G-CW spectra, 
then e is a G-homotopy equivalence. 
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THEOREM 7.9 (CELLULAR ApPROXIMATION). Let (D, A) and (E, B) be rela­
tive G-CW spectra, (D', A') be a subcomplex of(D, A), and f : (D, A) ---f (E, B) 
be a G-map whose restriction to (D', A') is cellular. Then f is homotopic rel 
D' u A to a cellular map 9 : (D, A) ---f (E, B). 

COROLLARY 7.10. Let D and E be G-CW spectra. Then any G-map f : 
D ---f E is homotopic to a cellular map, and any two homotopic cellular maps 
are cellularly homotopic. 

THEOREM 7.11. For any G-spectrum E, there is a G-CW spectrum fE and 
a weak equivalence 'Y : f E ---f E. 

Exactly as on the space level, it follows from the Whitehead theorem that f 
extends to a functor hGY ---f hG~, where G~ is here the category of G-CW 
spectra and cellular maps, and the morphisms of the stable category hGY can 
be specified by 

(7.12) hGY(E,E') = hGY(fE,fE') = hG~(fE,fE'). 
From now on, we shall write [E, E']a for this set. Again, f gives an equivalence 
of categories hGY ---f hG~. 

We should say something about the transport of functors F on GY to the 
category hGY. All of our functors preserve homotopies, but not all of them 
preserve weak equivalences. If F does not preserve weak equivalences, then, on 
the stable category level, we understand F to mean the functor induced by the 
composite F 0 f, a functor which preserves weak equivalences by converting them 
to genuine equivalences. . 

For this and other reasons, it is quite important to understand when functors 
preserve CW-homotopy types and when they preserve weak equivalences. These 
questions are related. In a general categorical context, a left adjoint preserves 
CW-homotopy types if and only if its right adjoint preserves weak equivalences. 
When these equivalent conditions hold, the induced functors on the categories 
obtained by inverting the weak equivalences are again adjoint. 

For example, since OV' preserves weak equivalences (with the correct logical 
order, by Theorem 6.8), ~V' preserves CW homotopy types. Of course, since our 
left adjoints preserve colimits and smash products with spaces, their behavior 
on CW spectra is determined by their behavior on spheres. Since ~~ clearly 
preserves spheres, it carries G-CW based complexes (with based attaching maps) 
to G-CW spectra. This focuses attention on a significant difference between the 
equivariant and nonequivariant contexts. In both, a CW spectrum is the colimit 
of its finite subcomplexes. NonequivariantlYJ Lemma 7.2 implies that any finite 
CW spectrum is isomorphic to ~~ X for some n and some finite CW complex 
X. Equivariantly, this is only true up to homotopy type. It would be true 
up to isomorphism if we allowed non-trivial representations as the domains of 
attaching maps in our definitions of G-CW complexes and spectra. We have seen 
that such a theory of "G-CW(V)-complexes" is convenient and appropriate on 
the space level, but it seems to serve no useful purpose on the spectrum level. 

Along these lines, we point out an important consequence of (6.3). It implies 
that the smash product of spheres ~H and ~J is (G / H x G / J)+ 1\ ~m+n. When 

( 
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G is finite, we can use double cosets to describe G / H x G / J as a disjoint union of 
orbits G / K. This allows us to deduce that the smash product of G-CW spectra 
is a G-CW spectrum. For general compact Lie groups G, we can only deduce 
that the smash product of G-CW spectra has the homotopy type of a G-CW 
spectrum. 

8. Stability of the stable category 

The observant reader will object that we have called hGY the "stable cat­
egory", but that we haven't given a shred of justification. As usual, we write 
1:v E = E 1\ SV and nV E = F(SV,E). 

THEOREM 8.1. For all indexing spaces V in U, the natural maps 

are isomorphisms in hGY. Therefore nV and 1:v are inverse self-equivalences 
of hGY. 

Thus we can desuspend by any representations that are in U. Once this is 
proven, it is convenient to write 1:-v for n v. There are several possible proofs, 
all of which depend on Theorem 6.8: that is the crux of the matter, and this 
means that the result is trivial in the nonequivariant context. In fact, once we 
have Theorem 6.8, we have that the functor 1:V' preserves G-CW homotopy 
types. Using (6.2), (6.4), and the unit equivalence for the smash product, we 
obtain 

This proves that the functor 1:v is an equivalence of categories. By playing with 
adjoints, we see that nV must be its inverse. Observe that this proof is inde­
pendent of the Freudenthal suspension theorem. This argument and (6.2) give 
the following important consistency relations, where we now drop the underline 
from our notation for sphere spectra: 

(8.2) nV E ~ E 1\ S-v and 1: V' X ~ X 1\ S-v, where S-v == 1: V' So. 

Since all universes contain JR, all G-spectra are equivalent to suspensions. This 
implies that hGY is an additive category, and it is now straightforward to prove 
that hGY is triangulated. In fact, it has two triangulations, by cofibrations and 
fibrations, that differ only by signs. We have already seen that it is symmetric 
monoidal under the smash product and that it has well-behaved function spec­
tra. We have established a good framework in which to do equivariant stable 
homotopy theory, and we shall say more about how to exploit it as we go on. 
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9. Getting into the stable category 

The stable category is an ideal world, and the obvious question that arises 
next is how one gets from the prespectra that occur "in nature" to objects in 
this category. Of course, our prespectra are all encompassing, since we assumed 
nothing about their constituent spaces and structure maps, and we do have the 
left adjoint L : GfYJ ---4 GY. However, this is a theoretical tool: its good formal 
properties come at the price of losing control over homotopical information. We 
need an alternative way of getting into the stable category, one that retains 
homotopical information. 

We first need to say a little more about the functor L. If the adjoint structure 
maps (j : EV ---> nW-v EW of a prespectrum E are inclusions, then (LE)(V) is 
just the union over W :;, V of the spaces n W - v EW. Taking W = V, we obtain 
an inclusion TJ : EV ---4 (LE)(V), and these maps specify a map of prespectra. 
If, further, each (j is a cofibration and an equivalence, then each map TJ is an 
equivalence. 

Thus we seek to transform given prespectra into spacewise equivalent ones 
whose adjoint structural maps are cofibrations. The spacewise equivalence prop­
erty will ensure that n-prespectra are transported to n-prespectra. It is more 
natural to consider cofibration conditions on the structure maps a : E W - v EV --+ 

EW, and we say that a prespectrum E is "E-cofibrant" if each a is a cofibration. 
If E is a E-cofibrant prespectrum and if each EV has cofibered diagonal, in the 
sense that the diagonal map EV ---4 EV x EV is a cofibration, then each adjoint 
map (j : EV ---> nW-v EW is a cofibration, as desired. 

Observe that no non-trivial spectrum can be E-cofibrant as a prespectrum 
since the structure maps a of spectra are surjections rather than injections. We 
say that a spectrum is "tame" if it is homotopy equivalent to LE for some E­
cofibrant prespectrum E. The importance of this condition was only recognized 
during the work of Elmendorf, Kriz, Mandell, and myself on structured ring 
spectra. Its use leads to key technical improvements of [EKMM] over [LMS]. For 
example, the sharpest versions of Theorems 3.4 and 8.1 read as follows (and are 
implied by XXII.1.8 below). 

THEOREM 9.1. Let ytU c YU be the full subcategory of tame spectra in­
dexed on U. Then any two linear isometries U ---4 U' induce canonically and 
coherently equivalent functors hytU ---> hYtU'. The maps TJ : E ---> nEE and 
e : EnE ---4 E are homotopy equivalences of spectra when E is tame. 

Moreover, analogously to (6.5), but much more usefully, if E is a E-cofibrant 
prespectrum, then 

(9.2) LE ~ colim Ev:' EV, 

where the maps of the colimit system are the cofibrations 

Ewa: Ev:' EV ~ Ew(Ew - v EV) ---4 EwEW. 

Here the prespectrum level colimit is already a spectrum, so that the colimit 
is constructed directly, without use of the functor L. Given a G-spectrum E', 

t 
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there results a valuable lim 1 exact sequence 

(9.3) 0 ---> limI [1;EV, E'V]e ---> [LE, E']e ---> lim[EV, E'V]e ---> 0 

for the calculation of maps in fiGSI' in terms of maps in fiGs. 
To avoid nuisance about inverting weak equivalences here, we introduce an 

equivariant version of the classical CW prespectra. 

DEFINITION 9.4. A G-CW prespectrum is a 1;-cofibrant G-prespectrum E 
such that each EV has cofibered diagonal and is of the homotopy type of a 
G-CW complex. 

We can insist on actual G-CW complexes, but it would not be reasonable to 
ask for cellular structure maps. We have the following reassuring result relating 
this notion to our notion of a G-CW spectrum. 

PROPOSITION 9.5. If E is a G-CW prespectrum, then LE has the homotopy 
type of a G-CW spectrum. If E is a G-CW spectrum, then each component space 
EV has the homotopy type of a G-CW complex. 

Now return to our original question of how to get into the stable category. 
The kind of maps of prespectra that we are interested in here are "weak maps" 
D ---> E, whose components DV ---> EV are only required to be compatible up 
to homotopy with the structural maps. If D is 1;-cofibrant, then any weak map 
is spacewise homotopic to a genuine map. The inverse limit term of (9.3) is given 
by weak maps, which represent maps between cohomology theories on spaces, 
and its lim I term measures the difference between weak maps and genuine maps, 
which represent maps between cohomology theories on spectra. 

Applying G-CW approximation spacewise, using 1.3.6, we can replace any 
G-prespectrum E by a spacewise weakly equivalent G-prespectrum rE whose 
component spaces are G-CW complexes and therefore have cofibered diagonal 
maps. However, the structure maps, which come from the Whitehead theorem 
and are only defined up to homotopy, need not be cofibrations. The following 
"cylinder construction" converts a G-prespectrum E whose spaces are of the ho­
motopy types of G-CW complexes and have cofibered diagonals into a spacewise 
equivalent G-CW prespectrum K E. Both constructions are functorial on weak 
maps. 

The composite Kr carries an arbitrary G-prespectrum E to a spacewise equiv­
alent G-CW prespectrum. By Proposition 9.5, LKr E has the homotopy type 
of a G-CW spectrum. In sum, the composite LKr provides a canonical passage 
from G-prespectra to G-CW spectra that is functorial up to weak homotopy and 
preserves all homotopical information in the given G-prespectra. 

The version of the cylinder construction presented in [LMS] is rather clumsy. 
The following version is due independently to Elmendorf and Hesselholt. It 
enjoys much more precise properties, details of which are given in [EKMM]. 

CONSTRUCTION 9.6 (CYLINDER CONSTRUCTION). Let E be a G-prespectrum 
indexed on U. Define KE as follows. For an indexing space V, let V be the 
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category of subspaces V' c V and inclusions. Define a functor Ev from V to 
G-spaces by letting EVCV') = EV- v ' EV'. For an inclusion V" --t V', 

V - V" = (V - V') EEl (V' - V") 

and a: EV'-v"EV" --t EV' induces EvCV") --t EVCV'). Define 

C K E) (V) = hocolim Ev . 

An inclusion i : V --t W induces a functor i. : V --t W, the functor E W - v com­
mutes with homotopy colimits, and we have an evident isomorphism E W - v Ev ~ 
Ei. of functors V --t W. Therefore i. induces a map 

a: EW-v hocolimEv ~ hocolimEw - v Ev ~ hocolimEi. --t hocolimEw. 

One can check that this map is a cofibration. Thus, with these structural maps, 
K E is a E-cofibrant prespectrum. The structural maps a : Ev V' --t EV specify 
a natural transformation to the constant functor at EV and so induce a map r : 
C K E) (V) --t EV, and these maps r specify a map of prespectra. Regarding the 
object Vasa trivial subcategory of V, we obtain j : EV --t CKE)(V). Clearly 
rj = id, and jr -:::,' id via a canonical homotopy since V is a terminal object of 
V. The maps j specify a weak map of prespectra, via canonical homotopies. 
Clearly K is functorial and homotopy-preserving, and r is natural. If each space 
EV has the homotopy type of a G-CW complex, then so does each CKE)(V), 
and similarly for the cofibered diagonals condition. 

A striking property of this construction is that it commutes with smash prod­
ucts: if E and E' are prespectra indexed on U and U' , then K E 1\ K E' is 
isomorphic over E 1\ E' to KCE 1\ E'). 



CHAPTER XIII 

RO( G)-graded homology and cohomology theories 

1. Axioms for RO(G)-graded cohomology theories 

Switching to a homological point of view, we now consider RO(G)-graded 
homology and cohomology theories. There are several ways to be precise about 
this, and there are several ways to be imprecise. The latter are better represented 
in the literature than the former. As we have already said, no matter how things 
are set up, "RO( G)-graded" is technically a misnomer since one cannot think of 
representations as isomorphism classes and still keep track of signs. We give a 
formal axiomatic definition here and connect it up with G-spectra in the next 
section. 

From now on, we shall usually restrict attention to reduced homology and 
cohomology theories and shall write them without a tilde. Of course, a Z-graded 
homology or cohomology theory on G-spaces is required to satisfy the redundant 
axioms: homotopy invariance, suspension isomorphism, exactness on cofiber se­
quences, additivity on wedges, and invariance under weak equivalence. Here 
exactness only requires that a cofiber sequence X ~ Y ~ Z be sent to a 
three term exact sequence in each degree. The homotopy and weak equivalence 
axioms say that the theory is defined on hG g-. Such theories determine and are 
determined by unreduced theories that satisfy the Eilenberg-Steenrod axioms, 
minus the dimension axiom. Since 

only the non-negative degree parts of a theory need be specified, and a non­
negative integer n corresponds to IRn. Indexing on Z amounts to either choosing 
a basis for IRoo or, equivalently, choosing a skeleton of a suitable category of 
trivial representations. 

Now assume given a G-universe U, say U = EB(Vi)OO for some sequence of 
distinct irreducible representations Vi with Vi = R An RO(G; U)-graded the­
ory can be thought of as graded on the free Abelian group on basis elements 
corresponding to the Vi. It is equivalent to grade on the skeleton of a category 
of representations embeddable in U, or to grade on this entire category. The last 
approach seems to be preferable when considering change of groups, so we will 
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adopt it. 
Thus let fJl!O(G; U) be the category whose objects are the representations 

embeddable in U and whose morphisms V ---+ Ware the G-linear isometric 
isomorphisms. Say that two such maps are homotopic if their associated based 
G-maps SV -? SW are stably homotopic, and let hfJI!O(G; U) be the resulting 
homotopy category. 

DEFINITION 1.1. An RO(G; U)-graded cohomology theory is a functor 

Ea: hfJI!O(G, U) x (liGgtP ---+ db, 

written (V, X) ---+ E6 (X) on objects and similarly on morphisms, together with 
isomorphisms 

aW : E6 (X) ---+ Egff!W (~w X). 

The aW must be covariantly natural in V and contravariantly natural in X, and 
the following axioms must be satisfied. 

(1) For each representation V, the functor E6 is exact on cofiber sequences 
and sends wedges to products. 

(2) If a : W ---+ W' is a map in hfJI!O(G, U), then the following diagram 
commutes: 

E6 (X) __ ---'<T'--w_---.>o-> Egff! W (~W X) 

<TW/l lE:; Ell a (id) 

Egff!WI (~W' X) (Ea id)" > Egff!WI (~W X). 

(3) aO = id and the a are transitive in the sense that the following diagram 
commutes for each pair of representations (W, Z): 

E6 (X) _____ .....-:::<T_w ____ ->-> Egff!W (~W X) 

~ ~ 
We extend a theory so defined to "formal differences V 8 W" for any pair of 

representations (V, W) by setting 

Egew (X) = E6 (~w X). 

We use the symbol 8 to avoid confusion with either orthogonal complement or 
difference in the representation ring. Rigorously, we are thinking of V 8 W as 
an object of the category hPA!O( G; U) x hPA!O( G; U)OP, and, for each X, we have 
defined a functor from this category to the category of Abelian groups. 

The representation group RO(G; U) relative to the given universe U is ob­
tained by passage to equivalence classes from the set of formal differences V 8 W, 
where V 8 W is equivalent to V' 8 W' if there is a G-linear isometric isomorphism 

a : V EB W' ---+ V' EB W; 
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Let -fO(G; U) and h-fO(G; U) be the full subcategories of &i!O(G; U) and 
h&i!O(G; U) whose objects are the indexing spaces in U, let 

W : -fO(G; U) ----+ &i!O(G; U) 

be the inclusion, and also write W for the inclusion h-fO(G; U) ----+ h&i!O(G; U). 
For each representation V that is embeddable in U, choose an indexing space 
<pV in U and a G-linear isomorphism <Pv : V ----+ <pV. If V is itself an indexing 
space in U, choose <pV = V and let <pv be the identity map. Extend <P to a 
functor 

<P : &i!O(G; U) ----+ -fO(G; U) 

by letting <Pa, a : V ----+ V', be the composite 

<1>-' 
<PV~V~V'~<PV'. 

Then <P 0 W = Id and the <pv define a natural isomorphism Id ----+ W 0 <P. This 
equivalence of categories induces an equivalence of categories between h-fO(G; U) 
and h&i!O(Gj U). A functor F from h-fO(Gj U) to any category ~ extends to 
the functor F<p from h&i!O(Gj U) to C(j', and we agree to write F instead of F<p 
for such an extended functor. 

LEMMA 2.1. Let E be an f'l G-prespectrum. Then E gives the object function 
of a functor E : h&i!O(Gj U) ----+ hG.9'. 

PROOF. By the observations above, it suffices to define E as a functor on 
h-fO(Gj U). Suppose given indexing spaces V and V' in U and a G-linear 
isomorphism a : V ----+ V'. Choose an indexing space W large enough that it 
contains both V and V' and that W - V and W - V' both contain copies of 
representations isomorphic to V and thus to V'. Then there is an isomorphism 
{3 : W - V ----+ W - V' such that 

{3/\ a: SW ~ Sw-v /\ SV ----+ Sw-v' /\ SV' ~ SW 

is stably homotopic to the identity. (For the verification, one relates smash prod­
uct to composition product in the zero stem 1Tf? (SO), exactly as in nonequivariant 
stable homotopy theory.) Then define Ea : EV ----+ EV' to be the composite 

EV~f'lw-vEW !!Ir~ f'lw-V'EW~EV'. 

It is not hard to check that this construction takes stably homotopic maps a 
and a' to homotopic maps Ea and Ea' and that the construction is functorial 
on -fO(Gj U). D 

PROPOSITION 2.2. An f'l-G-prespectrum E indexed on a universe U repre­
sents an RO(Gj U)-graded cohomology theory Ea on based G-spaces. 

PROOF. For a representation V that embeds in U, define 

E~ (X) = [X, E<pV]c. 

For each a : V ----+ V', define 

Ec(X) = [X, E<Pa]c. 
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This gives us the required functor 

Ea: hfJiO(G, U) x (hGfYtP ---> db, 

and it is obvious that Axiom (1) of Definition 1.1 is satisfied. 
Next, suppose given representations V and W that embed in U. We may 

write 
<p(V EB W) = V' + W', 

where V' = 4>VEIlw(V) and W' = 4>VEIlw(W). There result isomorphisms 

LV: <PV~V.!LV' and LW: <PW£W~W', 
where 4>'v = 4>vEIlwlv and 4>~ = 4>vEIlwlw. Define 

aW : E[; (X) ---> E~EIlw (~w X) 

by the commutativity of the following diagram: 

E[; X = [X, E<p V]c ___ I,--id..:..,E_£..:..v,-J -------'>-> [X, EV']c 

llid,aJ 

(7W [X, nW' E(V' + W')]c 

t~ 
E~EIlW (~W X) = [~W X, E<P(V EB W)]c < II:"'~ id,idJ [~W' X, E(V' EB W')]c. 

Diagram chases from the definitions demonstrate that aW is natural, that the 
diagram of Axiom (2) of Definition 1.1 commutes, and that the transitivity 
diagram of Axiom 3 commutes because of the transitivity condition that we 
gave as part of the definition of a G-prespectrum. D 

The evident analogue for homology theories on G-spaces also holds. 
A slight variant of the proof above could be obtained by first replacing the 

given n-G-prespectrum by a spacewise equivalent G-spectrum indexed on U and 
then specializing the following result to suspension G-spectra. Recall that, for 
an indexing space V, we have the shift desuspension functor ~v from based 
G-spaces to G-spectra. It is left adjoint to the Vth space functor: 

(2.3) [~v X, E]c ~ [X, EV]c. 

DEFINITION 2.4. For representations V and W of G that embed in U, define 
the sphere G-spectrum SW8V by 

(2.5) 

where <P : fJiO(G; U) ---> JO(G; U) is the equivalence of categories constructed 
above. 

PROPOSITION 2.6. A G-spectrum E indexed on U determines an RO(G; U)­
graded homology theory Ef and an RO(G; U)-graded cohomology theory Ea on 
G-spectra. 
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PROOF. For G-spectra X and representations V and W that embed in U, we 
define 

(2.7) 

and 

(2.8) E~ew (X) = [Swev 1\ X, E]c = [Swev, F(X, E)]c. 

Of course, to verify the axioms, we may as well restrict attention to the case 
W = O. Obviously, the verification reduces to the study of the properties of 
the G-spheres I: V' So, or of the functors I:V'. First, we need functoriality on 
MlO(G; U), but this is immediate from (2.3) and the functoriality of the EV 
given by Lemma 2.1. With the notations of the previous proof, we obtain the 

aW : Ei;;(X)~E~E9W(I:W X) from the composite isomorphism of functors 

",00 rv ",00 rv '" w' ",00 rv '" W ",00 U<I>V = UV' = U UV' +W' = U u<I>(VE9W), 

where the three isomorphisms are given by use of iV, passage to adjoints from 
the homeomorphism (j : EV' --+ nW' E(V' + W'), and use of <p~. From here, 
the verification of the axioms is straightforward. 0 

3. Brown's theorem and RO( G)-graded cohomology 

We next show that, conversely, all RO( G)-graded cohomology theories on 
based G-spaces are represented by n-G-prespectra and all theories on G-spectra 
are represented by G-spectra. We then discuss the situation in homology, which 
is considerably more subtle equivariantly than nonequivariantly. 

We first record Brown's represent ability theorem. Brown's categorical proof 
applies just as well equivariantly as nonequivariantly, on both the space and the 
spectrum . level. Recall that homotopy pushouts are double mapping cylinders 
and that weak pullbacks satisfy the existence but not the uniqueness property 
of pullbacks. Recall that a G-space X is said to be G-connected if each of its 
fixed point spaces X H is non-empty and connected. 

THEOREM 3.1 (BROWN). A contravariant set-valued functor k on the homo­
topy category of G-connected based G-CW complexes is representable in the form 
kX ~ [X, K]c for a based G-CW complex K if and only if k satisfies the wedge 
and Mayer- Vietoris axioms: k takes wedges to products and takes homotopy 
pushouts to weak pullbacks. The same statement holds for the homotopy cate­
gory of G-CW spectra indexed on U for any G-universe U. 

COROLLARY 3.2. An RO(G; U)-graded cohomology theory Ea on based G­
spaces is represented by an n-G-prespectrum indexed on U. 

PROOF. Restricting attention to G-connected based G-spaces, which is harm­
less in view of the suspension axiom for trivial representations, we see that (1) 
of Definition 1.1 implies the Mayer-Vietoris and wedge axioms that are needed 
to apply Brown's represent ability theorem. This gives that Ei;; is represented 
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by a G-CW complex EV for each indexing space V in U. If Vc W, then the 
suspension isomorphism 

(jW-V : E~(X) 3:! E~j(Ew-vX) 

is represented by a homotopy equivalence if: EV ~ nW-v EW. The transitiv­
ity of the given system of suspension isomorphisms only gives that the structural 
maps are transitive up to homotopy, whereas the definition of a G-prespectrum 
requires that the structural maps be transitive on the point-set level. If we 
restrict to a cofinal sequence of indexing spaces, then we can use transitivity 
to define the structural weak equivalences for non-consecutive terms of the se­
quence. We can then interpolate using loop spaces to construct a representing 
n-G-prespectrum indexed on all indexing spaces. 0 

We emphasize a different point of view of the spectrum level analog. In 
fact, we shall exploit the following result to construct ordinary RO(G)-graded 
cohomology theories in the next section. 

COROLLARY 3.3. A Z-graded cohomology theory on G-spectra indexed on U is 
represented by a G-spectrum indexed on U and therefore extends to an RO(G; U)­
graded cohomology theory on G-spectra indexed on U. 

PROOF. Since the loop and suspension functors are inverse equivalences on 
the stable category hGYU, we can reconstruct the given theory from its zeroth 
term, and Brown's theorem applies to represent the zeroth term. 0 

We showed in the previous chapter that an n-G-prespectrum determines a 
spacewise equivalent G-spectrum, so that a cohomology theory on based G­
spaces extends to a cohomology theory on G-spectra. The extension is unique 
up to non-unique isomorphism, where the non-uniqueness is measured by the 

···lim1 term in XII.9.3. 
Adams proved a variant of Brown's represent ability theorem for functors de­

. fined only on connected finite CW complexes, removing a count ability hypothesis 
that was present in an earlier version due to Brown. This result also generalizes 

· to the equivariant context, with the same proof as Adams' original one. 

THEOREM 3.4 (AOAMS). A contravariant group-valued functor k defined on 
· the homotopy category of G-connected finite based G-CW complexes is repre­

sentable in the form kX 3:! [X, K]a for some G-CW spectrum K if and only if 
k converts finite wedges to direct products and converts homotopy pushouts to 
weak pullbacks of underlYing sets. The same statement holds for the homotopy 
category of finite G-CW spectra. 

Here the representing G-CW spectrum K is usually infinite and is unique 
only up to non-canonical equivalence. More precisely, maps g, g' : Y ~ Y' are 

· said to be weakly homotopic if gf is homotopic to g' f for any map f : X ---> Y 
... defined on a finite G-CW spectrum X, and K is unique up to isomorphism in 

the resulting weak homotopy category of G-CW spectra. 
Nonequivariantly, we pass from here to the representation of homology theo­

ries by use of Spanier-Whitehead duality. A finite CW spectrum X has a dual 
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D X that is also a finite CW spectrum. Given a homology theory E* on based 
spaces or on spectra, we obtain a dual cohomology theory on finite X by setting 

We then argue as above that this cohomology theory on finite X is representable 
by a spectrum E, and we deduce by duality that E also represents the originally 
given homology theory. 

Equivariantly, this argument works for a complete G-universe U, but it does 
not work for a general universe. The problem is that, as we shall see later, only 
those orbit spectra "E,ooG/H+ such that G/H embeds equivariantly in U have 
well-behaved duals. For example, if the universe U is trivial, then inspection of 
definitions shows that F(G/H+, S) = S for all H ~ G, where S is the sphere 
spectrum with trivial G-action. Thus X is not equivalent to DDX in general 
and we cannot hope to recover E*(X) as E*(DX). 

COROLLARY 3.5. If U is a complete G-universe, then an RO(G; U)-graded 
homology theory on based G-spaces or on G-spectra is representable. 

From now on, unless explicitly stated otherwise, we take our given universe U 
to be complete, and we write RO(G) = RO(G; U). As shown by long experience 
in nonequivariant homotopy theory, even if one's primary interest is in spaces, 
the best way to study homology and cohomology theories is to work on the 
spectrum level, exploiting the virtues of the stable homotopy category. 

J. F. Adams. A variant of E. H. Brown's represent~bility theorem. Topology, 10(1971), 185-
198. 
E. H. Brown, Jr. Cohomology theories. Annals of Math. 75(1962),467-484. 
E. H. Brown, Jr. Abstract homotopy theory. Trans. Amer. Math. Soc. 119(1965),79-85. 

4. Equivariant Eilenberg-Mac Lane spectra 

From the topological point of view, a coefficient system is a contravariant 
additive functor from the stable category of naive orbit spectra to Abelian groups. 
In fact, it is easy to see that the group of stable maps G/H+ ---+ G/K+ in the 
naive sense is the free Abelian group on the set of G-maps G / H ---+ G / K. 

Recall from IX§4 that a Mackey functor is defined to be an additive contravari­
ant functor &lJe ---+ db. Clearly the Burnside category &lJ = &lJe introduced 
there is just the full sub category of the stable category whose objects are the 
orbit spectra "E,ooG / H+. The only difference is that, when defining &lJe, we 
abbreviated the names of objects to G / H. 

From this point of view, the forgetful functor that takes a Mackey functor 
to a coefficient system is obtained by pull back along the functor i* from the 
stable category of genuine orbit spectra to the stable category of naive orbit 
spectra. In X§4, Waner described a space level construction of an RO( G)-graded 
cohomology theory with coefficients in a Mackey functor M that extends the 
ordinary Z-graded cohomology theory determined by its underlying coefficient 
system i* M. We shall here give a more sophisticated, and I think more elegant 
and conceptual, spectrum level construction of such "ordinary" RO(G)-graded 
cohomology theories, and similarly for homology. 
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Our strategy is to construct a genuine Eilenberg-Mac Lane G-spectrum H M = 
K(M, 0) to represent our theory. Just as nonequivariantly, an Eilenberg-Mac Lane 
a-spectrum HM is one such that ZIn(HM) = 0 for n =I- O. Of course, 'lI.o(HM) = 
M must be a Mackey functor since that is true of ZIn (E) for any n and any G­
spectrum E. We shall explain the following result. 

THEOREM 4.1. For a Mackey functor M, there is an Eilenberg-MacLane G­
spectrum HM such that'lI.o(HM) = M. It is unique up to isomorphism in hGS". 
For Mackey functors M and M', [H M, H M'le is the group of maps of Mackey 
functors M ~ M'. 

There are several possible proofs. For example, one can exploit projective 
resolutions of Mackey functors. The proof that we shall give is the original one 
of Lewis, McClure, and myself, which I find rather amusing. 

What is amusing is that, motivated by the desire to construct an RO( G)­
graded cohomology theory, we instead construct a Z-graded theory. However, 
this is a Z-graded theory defined on G-spectra. As observed in Corollary 4.3, 
it can be represented and therefore extends to an RO( G)-graded theory. The 
representing G-spectrum is the desired Eilenberg-Mac Lane G-spectrum H M. 
What is also amusing is that the details that we shall use to construct the desired 
cohomology theories are virtually identical to those that we used to construct 
ordinary theories in the first place. 

We start with G-CW spectra X. They have skeletal filtrations, and we define 
Mackey-functor valued cellular chains by setting 

(4.2) 

We used homology groups in I§4, but, aside from nuisance with the cases n = 0 
and n = 1, we could equally well have used homotopy groups. Of course, 
xnjxn-l is a wedge of n-sphere G-spectra SR ~ GjH+ 1\ sn. We see that 
the Cn(X) are projective objects of the Abelian category of Mackey functors 
by essentially the same argument that we used in I§4. As there, the connect­
ing homomorphism of the triple (xn, xn-1, xn-2 ) specifies a map of Mackey 
functors 

d: Cn(X) ~ Cn_1(X), 

and d2 = O. Write Homgjj(M, M') for the Abelian group of maps of Mackey 
functors M ~ M'. For a Mackey functor M, define 

(4.3) CC;,(X; M) = Homgjj(Cn(X), M), with 8 = Homgjj(d, id). 

Then Cc (X; M) is a cochain complex of Abelian groups. We denote its homology 
by Hc(X;M). 

The evident cellular versions of the homotopy, exactness, wedge, and excision 
axioms admit exactly the same quick derivations as on the space level, and we use 
G-CW approximation to extend from G-CW spectra to general G-spectra: we 
have a Z-graded cohomology theory on hGS". It satisfies the dimension axiom 

(4.4) Hc(S~;M) = H~(S~;M) = M(GjH), 
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these giving isomorphisms of Mackey functors. The zeroth term is represented 
by a G-spectrum H M, and we read off its homotopy group Mackey functors 
directly from (4.4): 

JI.o(HM) = M and 1!:n(HM) = 0 if n i= O. 

The uniqueness of H M is evident, and the calculation of [H M, H M'lG follows 
easily from the functoriality in M of the theories Hc(X; M). 

We should observe that spectrum level obstruction theory works exactly as 
on the space level, modulo connectivity assumptions to ensure that one has a 
dimension in which to start inductions. 

For G-spaces X, we have two meanings in sight for the notation Ha (X; M): 
we can regard our Mackey functor as a coefficient system and take ordinary 
cohomology as in I§4, or we can take our newly constructed cohomology. We 
know by the axiomatic characterization of ordinary cohomology that these must 
in fact be isomorphic, but it is instructive to check this directly. At least after 
a single suspension, we can approximate any G-space by a weakly equivalent G­
CW based complex, with based attaching maps. The functor ~oo takes G-CW 
based complexes to G-CW spectra, and we find that the two chain complexes in 
sight are isomorphic. Alternatively, we can check on the represented level: 

What about homology? Recall that a coMackey functor is a covariant functor 
N : [?IJ ---> db. Using the usual coend construction, we define 

(4.5) 

Then C?(X; N) is a chain complex of Abelian groups. We denote its homology 
by H? (X; N). Again, the verification of the axioms for a Z-graded homology 
theory on ht'§ Y is immedIate. The dimension axiom now reads 

(4.6) 

We define a cohomology theory on finite G-spectra X by 

(4.7) Hc(X; N) = H9*(DX; N). 

Applying Adams' variant of the Brown represent ability theorem, we obtain a 
G-spectrum J N that represents this cohomology theory. For finite X, we obtain 

H?(X;N) = H(j*(DX;N) ~ [DX,JNlc* ~ [S,JN I\Xl~ = IN?(X). 

Thus J N represents the Z-graded homology theory that we started with and 
extends it to an RO(G)-graded theory. We again see that, on G-spaces X, 
H?(X; N) agrees with the homology of X with coefficients in the underlying 
covariant coefficient system of N, as defined in I§4. 

What are the homotopy groups of J N? The answer must be 

7r;: (IN) = H;:(D(G/ H+); N). 

For finite G, orbits are self-dual and the resulting isomorphism of the stable 
orbit category with its opposite category induces the evident self-duality of the 
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algebraically defined category of Mackey functors to be discussed in XIX§3. This 
allows us to conclude that 

IN = H(N*), 

where N* is the Mackey functor dual to the coMackey functor N. 
For general compact Lie groups, however, the dual of G / H + is G ~ H s-L( H) , 

and it is not easy to calculate the homotopy groups of J N. This G-spectrum is 
bounded below, but it is not connective. We must learn to live with the fact that 
we have two quite different kinds of Eilenberg-Mac Lane G-spectra, one that is 
suitable for representing "ordinary" cohomology and the other that is suitable 
for representing "ordinary" homology. 

G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomology. Bulletin Amer. 
Math. Soc. 4(1981), 208-212. 

5. Ring G-spectra and products 

Given our precise definition of RO( G)-graded theories and our understand­
ing of their representation by G-spectra, the formal apparatus of products in 
homology and cohomology theories can be developed in a straightforward man­
ner and is little different from the nonequivariant case in classical lectures of 
Adams. However, in that early work, Adams did not take full advantage of the 
stable homotopy category. We here recall briefly the basic definitions from the 
equivariant treatment in [LMS, III§3]. 

There are four basic products to consider, two external products and two slant 
products. The reader should be warned that the treatment of slant products in 
the literature is inconsistent, at best, and often just plain wrong. These four 
products come from the following four natural maps in hGY; all variables are 
G-spectra. 

(5.1) X 1\ E 1\ X' 1\ E' idArAid > X 1\ X' 1\ E 1\ E' 

(5.2) F(X, E) 1\ F(X', E') _-'A"----->-> F(X 1\ X', E 1\ E') 

F(X 1\ X', E) 1\ X 1\ E' ------'-/-~> F(X', E 1\ E') 

(5.3) ~t 1v 
F(X, F(X', E)) 1\ X 1\ E' "Aid > F(X', E) 1\ E' 

(5.4) 
\ X 1\ X' 1\ E 1\ F(X, E') > X' 1\ E 1\ E' 

~~ 
X' 1\ E 1\ F(X, E') 1\ X 
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The T are transposition maps and the € are evaluation maps. The map v 
can be described formally, but it is perhaps best understood by pretending that 
F means Horn and 1\ means 0 over a commutative ring and writing down the 
obvious analog. Categorically, such coherence maps are present in any sym­
metric monoidal c;ttegory with an internal horn functor. A categorical coherence 
theorem asserts that any suitably well formulated diagram involving these trans­
formations will commute. 

On passage to homotopy groups, these maps give rise to four products in 
RO( G)-graded homology and cohomology. With our details on RO( G)-grading, 
we leave it as an exercise for the reader to check exactly how the grading behaves. 

(5.5) E:(X) 0 E'~(X') ---t (E 1\ E'/;(X 1\ X') 

(5.6) Ec(X) 0 E';(X') ---t (E 1\ E')c(X 1\ X') 

(5.7) / : Ec(X 1\ X') 0 E'~ (X) ---t (E 1\ E')c(X') 

(5.8) \ : E:(X 1\ X') 0 E';(X) ---t (E 1\ E')~(X') 

A ring G-spectrum E is one with a product <p : E 1\ E ---t E and a unit map 
1} : S ---t E such that the following diagrams commute in hGY: 

and 

The unlabelled equivalences are canonical isomorphisms in hGY that give the 
unital property, and we have suppressed such an associativity isomorphism in 
the second diagram. Of course, there is a weaker notion in which associativity 
is not required; E is commutative if the following diagram commutes in hGY: 

EI\E T >EI\E 

~/. 
E. 

An E-module is a spectrum M together with a map M : E 1\ M ---t M such 
that the following diagrams commute in hGY : 

7]1\1 
S 1\ M ---'----+ E 1\ M and 

~r 
M 

We obtain various further products by composing the four external products 
displayed above with the multiplication of a ring spectrum or with its action 
on a module spectrum. If X = X' is a based G-space (or rather its suspension 
spectrum), we obtain internal products by composing with the reduced diagonal 

6. 
b 
a 

a 

f 
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A : X ~ X I\X. Of course, it is more usual to think in terms of unbased spaces, 
but then we adjoin a disjoint basepoint. In particular, for a ring G-spectrum E 
and a based G-space X, we obtain the cup and cap products 

(5.9) U : Ea(X) ® Ea(X) ~ Ea(X) 

and 

(5.10) 

from the external products 1\ and \. 
It is natural to ask when H M is a ring G-spectrum. In fact, in common with 

all such categories of additive functors, the category of Mackey functors has an 
internal tensor product (see Mitchell). In the present topological context, we 
can define it simply by setting 

M®M' ='!I.ciHM I\HM'). 

There results a notion of a pairing M ® M' ~ M" of Mackey functors. By 
killing the higher homotopy groups of H M 1\ H M', we obtain a canonical map 

L: HM I\HM' ~ H(M®M'), 

and L induces an isomorphism on Hg(-;M") = [-,HM"lc. It follows that 
pairings of G-spectra H M I\H M' ~ H M" are in bijective correspondence with 
pairings M ® M' ~ M". From here, it is clear how to define the notion of a 
ring in the category of Mackey functors - such objects are called Green functors 
- and to conclude that a ring structure on the 'G-spectrum H M determines and 
is determined by a structure of Green functor on the Mackey functor M. These 
observations come from work of Greenlees and myself on Tate cohomology. 

There is a notion of a ring G-prespectrum; modulo liml problems, its as­
sociated G-spectrum (here constructed using the cylinder construction since 
one wishes to retain homotopical information) inherits a structure of ring G­
spectrum. A good nonequivariant exposition that carries over to the equivariant 
context has been given by McClure. 

J. F. Adams. Lectures on generalized cohomology. in Springer Lecture Notes in Mathematics, 
Vo!. 99, 1-138. 
J. P. C. Greenlees and J. P. May. Generalized Tate cohomology (§8). Memoirs Amer. Math. 
Soc. Number 543. 1995. 
J. E. McClure. Hoo-ring spectra via space-level homotopy theory (§§1-2). In R. Bruner, et aI, 
H oo-ring spectra and their applications. Springer Lecture Notes in Mathematics, Vo!. 1176. 
1986. 
B. Mitchel!. Rings with several objects. Advances in Math 8(1972), 1-16. 



CHAPTER XIV 

An introduction to equivariant K-theory 

by J. P. C. Greenlees 

1. The definition and basic properties of Kc-theory 

The aim of this chapter is to explain the basic facts about equivariant K-theory 
through the Atiyah-Segal completion theorem. Throughout, G is a compact Lie 
group and we focus on complex K-theory. Real K-theory works similarly. 

We briefly outline the geometric roots of equivariant K-theory. A G-vector 
bundle over a G-space X is a G-map ~ : E ---4 X which is a vector bundle such 
that G acts linearly on the fibers, in the sense that 9 : Ex ---4 Egx is a linear 
map. Since G is compact, all short exact sequences of G-vector bundles split. If 
X is a compact space, then Kc(X) is defined to be the Grothendieck group of 
finite dimensional G-vector bundles over X. Tensor product of bundles makes 
Kc(X) into a ring. 

Many applications arise; for example, the equivariant K-groups are the homes 
for indices of G-manifolds and families of elliptic operators. 

Any complex representation V of G defines a trivial bundle over X and, by 
the Peter-Weyl theorem, any G-vector bundle over a compact base space is a 
summand of such a trivial bundle. The cokernel of Kc(*) ---4 Kc(X) can 
therefore be described as the group of stable isomorphism classes of bundles over 
X, where two bundles are stably isomorphic if they become isomorphic upon 
adding an appropriate trivial bundle to each. When X has a G-fixed basepoint 
*, we write Kc(X) for the isomorphic group ker(Kc(X) ---4 K c (*)). 

The definition of a G-vector bundle makes it clear that G-bundles over a free 
G-space correspond to vector bundles over the quotient under pullback. We 
deduce the basic reduction theorem: 

(1.1) Kc(X) = K(XjG) if X is G-free. 

This is essentially the statement that K-theory is split in the sense to be dis­
cussed in XVI§2. It provides the fundamental link between equivariant and 
nonequivariant K-theory. 

143 
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Restriction and induction are the basic pieces of structure that link different 
ambient groups of equivariance. 

If i : H --+ G is the inclusion of a subgroup it is clear that a G-space or 
bundle can be viewed as an H -space or bundle; we thereby obtain a restriction 
map 

i* : Kc(X) --+ KH(X), 

There is another way of thinking about this map. For an H -space Y, 

(1.2) 

since a G-bundle over G XH Y is determined by its underlying H-bundle over Y. 
For a G-space X, G x H X ~ G / H x X, and the restriction map coincides with 
the map 

Kc(X) --+ Kc(G/H x X) ~ KH(X) 

induced by the projection G / H --+ *. 
If H is of finite index in G, an H-bundle over a G-space may be made into 

a G-bundle by applying the functor HomH(G, -). We thus obtain an induction 
map i* : KH(X) --+ Kc(X). However if H is of infinite index this construction 
gives an infinite dimensional bundle. There are three other constructions one 
may hope to use. First, there is smooth induction, which Segal describes for the 
representation ring and which should apply to more general base manifolds than 
a point. 

Second, there is the holomorphic transfer, which one only expects to exist 
when G / H admits the structure of a projective variety. The most important 
case is when H is the maximal torus in the unitary group U (n), in which case a 
construction using elliptic operators is described by Atiyah. Its essential property 
is that it satisfies i* i* = 1. It is used in the proof of Bott periodicity. 

Third, there is a transfer map 
- W - W - v tr : KH(~ X) ~ Kc(G+ I\H ~ X) --+ Kc(~ X) 

induced by the Pontrjagin-Thom construction t : SV --+ G+ I\H SW associated 
to an embedding of G / H in a representation V, where W is the complement of 
the image in V of the tangent H-representation L = L(H) at the identity coset of 
G/H. Once we use Bott periodicity to set up RO(G)-graded K-theory, this may 
be interpreted as a dimension-shifting transfer k'k+L(X) --+ k'b(X). Clearly 
this transfer is not special to K-theory: it is present in any RO(G)-graded theory. 

M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968), 
113-140. 
G. B.SegaJ. Equivariant K-theory. Pub. IHES 34(1968), 129-151. 

2. Bundles over a point: the representation ring 

Bundles over a point are representations and hence equivariant K-theory is 
module-valued over the complex representation ring R(G). More generally, any 
G-vector bundle over a transitive G-space G / H is of the form G x H V --+ 

G XH * = G/H for some representation V of H. Hence Kc(G/H) = R(H). It 
follows that Kc(X) takes values in the category of R(G)-modules, and thus it 
is important to understand the algebraic nature of R( G). 
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Before turning to this, we observe that if G acts trivially on X, then 

Ka(X) ~ R(G) ® K(X). 

Indeed, the map K(X) ---+ Ka(X) obtained by regarding a vector bundle as a 
G-trivial G-vector bundle extends to a map J.L : R(G) ® K(X) of R(G)-modules, 
and this map is the required isomorphism. An explicit inverse can be constructed 
as follows. For a representation V, let V denote the trivial G-vector bundle 
X x V ---+ X. The functor that sends a G-vector bundle ~ to the vector bundle 
Homa(V,~) induces a homomorphism cv : Ka(X) ---+ K(X). Let {Vi} run 
through a set consisting of one representation Vi from each isomorphism class 
[Vi] of irreducible representations. Then a G-vector bundle ~ over X breaks up 
as the Whitney sum of its subbundles Vi ® Homa(Vi, ~). Define v : Ka(X) ---+ 

R(G) ® K(X) by v(o:) = I:i[Vi] ® cVi (0:). It is then easy to check that J.L and v 
are inverse isomorphisms. 

To understand the algebra of R( G), one should concentrate on the so called 
"Cartan subgroups" of G. These are topologically cyclic subgroups H with finite 
Weyl groups Wa(H) = Na(H)/H. Conjugacy classes of Cartan subgroups are 
in one-to-one correspondence with conjugacy classes of cyclic subgroups of the 
component group 7fo (G). Every element of G lies in some Cartan subgroup, and 
therefore the restriction maps give an injective ring homomorphism 

(2.1) R( G) ---+ IT R( C) 
(C) 

where the product is over conjugacy classes of Cartan subgroups. 
The ring R(G) is Noetherian. Indeed, by explicit calculation, R(U(n)) is 

Noetherian and the representation ring of a maximal torus T is finite over it. 
Any group G may be embedded in some U(n), and it is enough to show that R(G) 
is finitely generated as an R(U(n))-module. Now R(G) is detected on finitely 
many topologically cyclic subgroups C, so it is enough to show each R( C) is 
finitely generated over R(U(n)). But each such C is conjugate to a subgroup of 
T, and R(C) is finite over R(T). 

The map (2.1) makes the codomain a finitely generated module over the do­
main and consequently the induced map of prime spectra is surjective and has 
finite fibers. By identifying the fibers it can then be shown that for any prime p 
of R( G) the set of minimal elements of 

{H ~ Gip is the restriction of a prime of R(H)} 

constitutes a single conjugacy class (H) of subgroups, with H topologically cyclic. 
We say that (H) is the support of p. If R( G) / p is of characteristic p > 0 then 
the component group of H has order prime to p. 

The first easy consequence is that the Krull dimension of R( G) is one more 
than the rank of G. 

A more technical consequence which will become important to us later is 
that completion is compatible with restriction. Indeed restriction gives a ring 
homomorphism res: R(G) ---+ R(H) by which we may regard an R(H)-module 
as an R(G)-module. Let I(G) = ker{dim : R(G) ---+ Z} be the augmentation 



146 XIV: AN INTRODUCTION TO EQUIVARIANT K-THEORY 

ideal. Using supports, we see that the ideals I(H) and res(I(G)) . R(H) have 
the same radical. Consequently the I(H)-adic and I(G)-adic completions of an 
R(H)-module coincide. 

Finally, using supports it is straightforward to understand localizations of 
equivariant K-theory at primes of R(G). In fact if (H) is the support of p the 
inclusion X(H) ----7 X induces an isomorphism of KG( - )p, where X(H) is the 
union of the fixed point spaces XH' with H' conjugate to H. 

G. B.Segal. The representation ring of a compact Lie group. Pub. IHES 34(1968), 113-128. 

3. Equivariant Bott periodicity 

Equivariant Bott periodicity is the most important theorem in equivariant 
K-theory and is even more extraordinary than its nonequivariant counterpart. 
It underlies all of the amazing properties of equivariant K-theory. For a locally 
compact G-space X, define KG(X) to be the reduced K-theory of the one-point 
compactification X# of X. That is, writing * for the point at infinity, 

When X is compact, X# is the union X+ of X and a disjoint G-fixed basepoint. 
We issue a warning: in general, for infinite G-CW complexes, KG(X) as just 
defined will not agree with the represented KG-theory of X that will become 
available when we construct the K-theory G-spectrum in the next section. 

THEOREM 3.1 (THOM ISOMORPHISM). For vector bundles E over locally com­
pact base spaces X, there is a natural Thom isomorphism 

<jJ: KG(X) ~ KG(E). 

There is a quick reduction to the case when X is compact, and in this case 
we can use that any G-bundle is a summand of the trivial bundle of some repre­
sentation V to reduce to the case when E = V x X. Here, with an appropriate 
description of the Thorn isomorphism, one can reinterpret the statement as a 
convenient and explicit version of Bott periodicity. To see this, let >'(V) E R( G) 
denote the alternating sum of exterior powers 

let ev : SO ----7 SV be the based map that sends the non-basepoint to 0, and, 
taking X to be a point, let bv = <jJ(1) E i((SV). Observe that ev induces 

ev : {((Sv) ----7 (((SO) = R(G). 

THEOREM 3.2 (BOTT PERIODICITY). For a compact G-space X and a com­
plex representation V of G, multiplication by bv specifies an isomorphism 

Moreover, ev(bv ) = >.(V). 
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The Thom isomorphism can be proven for line bundles, trivial or not, by 
arguing with clutching functions, as in the nonequivariant case. The essential 
point is to show that the K-theory ofthe projective bundle P(E (f) C) is the free 
KG (X)-module generated by the unit element {I} and the Hopf bundle H. This 
implies the case when E is a sum of trivial line bundles. If G is abelian, every 
V is a sum of one dimensional representations so the theorem is proved. This 
deals with the case of a torus T. The significantly new feature of the equivariant 
case is the use of holomorphic transfer to deduce the case of U(n). Finally, by 
change of groups, the result follows for any subgroup of U(n). 

For real equivariant K-theory KOG, the Bott periodicity theorem is true as 
stated provided that we restrict V to be a Spin representation of dimension 
divisible by eight. However, the proof is significantly more difficult, requiring 
the use of pseudo-differential operators. 

Now we may extend KG( -) to a cohomology theory. Following our usual 
conventions, we shall write KG for the reduced theory on based G-spaces X. 
Since we need compactness, we consider based finite G-CW complexes, and we 
then have the notational conventions that in degree zero 

Kg(X+) = KG(X) for finite G-CW complexes X 

and 
Kg(X) = KG(X) for based finite G-CW complexes X. 

Of course we could already have made the definition Kc/(X) = Kg(EqX) for 
positive q, but we now know that these are periodic with period 2 since ]R2 = C. 
Thus we may take 

K'tt(X) = Kg(X) and K~n+l(x) = Kg(El X) for all n. 

Note in particular that the coefficient ring is R( G) in even degrees. It is zero in 
odd degrees because all bundles over SI are pullbacks of bundles over a point, 
GLn(C) being connected. We can extend this to an RO(G)-graded theory that 
is R( G)-periodic, but we let the construction of a representing G-spectrum in 
the next section take care of this for us. 

M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968), 
113-140. 
M. F.Atiyah and R. Bott. On the periodicity theorem for complex vector bundles. Acta math. 
112(1964), 229-247. 
G. B.Segal. Equivariant K-theory. Pub. IHES 34(1968), 129-151. 

4. Equivariant K-theory spectra 

Following the procedures indicated in XII§9, we run through the construction 
of a G-spectrum that represents equivariant K-theory. Recall from VII.3.1 that 
the Grassmannian G-space BU(n, V) of complex n-planes in a complex inner 
product G-space V classifies complex n-dimensional G-vector bundles if V is 
sufficiently large, for example if V contains a complete complex G-universe. 

Diverging slightly from our usual notation, fix a complete G-universe '2/. For 
each indexing space V c '2/ and each q ;::: 0, we have a classifying space 

BU(q, V (f) '2/) 
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for q-plane bundles. For V ~ W, we have an inclusion 

BU(q, V EB 0//) --> BU(q + IW - VI, W EB 0//) 

that sends a plane A to the plane A + (W - V). Define 

BUe(V) = 11 BU(q, V EB 0//). 
q2:0 

We take the plane V in BU(IVI, V EB 0//) as the canonical G-fixed basepoint of 
BUe(V). For V c W, we then have an inclusion BUe(V) in BUe(W) of based 
G-spaces. Define BUe to be the colimit of the BUe(V). 

For finite (unbased) G-CW complexes X, the definition of Ke(X) as a Groth­
endieck group and the classification theorem for complex G-vector bundles lead 
to an isomorphism 

The finiteness ensures that our bundles embed in trivial bundles and thus have 
complements. In turn, this ensures that every element of the Grothendieck group 
is the difference of a bundle and a trivial bundle. For the proof, we may as well 
assume that XjG is connected. In this case, a G-map </> : X --> BUe factors 
through a map f : BUe(q, V EB 0//) for some q and V. If f classifies the G-bundle 
~, then the isomorphism sends </> to ~ - V. 

The spaces BUe(V) and BUe have the homotopy types of G-CW complexes. 
If we wish, we can replace them by actual G-CW complexes by use of the functor 
r from G-spaces to G-CW complexes. For a complex representation V and based 
finite G-CW complexes X, Bott periodicity implies a natural isomorphism 

By Adams' variant XIII.3.4 of Brown's representability theorem, this isomor­
phism is represented by a G-map jj : BUe --> nV BUe, which must be an 
equivalence. However, we must check the vanishing of the appropriate lim l-term 
to see that the homotopy class of jj is well-defined. Restricting to a cofinal se­
quence of representations so as to arrange transitivity (as in XIII.3.2), we have 
an n-G-prespectrum. It need not be ~-cofibrant, but we can apply the cylinder 
construction K to make it so. Applying L, we then obtain a G-spectrum Kc. It 
is related to the n-G-prespectrum that we started with by a spacewise equiva­
lence. Of course, the restriction to complex indexing spaces is no problem since 
we can extend to all real indexing spaces, as explained in XII§2. 

Using real inner product spaces, we obtain an analogous G-space BOe and 
an analogous isomorphism 

[X, BOele ~ KOe(X). 

If we start with Spin representations of dimension 8n, those being the ones for 
which we have real Bott periodicity, the same argument works to construct a 
G-spectrum KOe that represents real K-theory. 
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5. The Atiyah-Segal completion theorem 

It is especially important to understand bundles over the universal space EG, 
because of their role in the theory of characteristic classes. We have already 
mentioned one very simple construction of bundles. In fact for any representation 
V we may form the bundle EG x V ~ EG x * and hence we obtain the 
homomorphism 

Q: R(G) ~ Kc(EG). 

Evidently Q is induced by the projection map 7r : EG ~ *. The Atiyah-Segal 
completion theorem measures how near Q is to being an isomorphism. 

Of course, EG is a free G-CW complex. Any (based) free G-CW complex is 
constructed from the G-spaces G + I\sn by means of wedges, cofibers, and passage 
to colimits. From the change of groups isomorphism Kc(G+ 1\ X) ~ K*(X) we 
see that the augmentation ideal I = I(G) acts as zero on the K-theory of any 
space G+ 1\ X. 

In particular the K-theory of G+ 1\ sn is complete as an R(G)-module for 
the topology defined by powers of I. Completeness is preserved by extensions of 
finitely generated modules, so we that Kc(X) is I-complete for any finite free 
G-CW complex X. Completeness is also preserved by inverse limits so, provided 
liml error terms vanish, the K-theory of EG is I-complete. 

Remarkably the K-theory of EG is fully accounted for by the representation 
ring, in the simplest way allowed for by completeness. The Atiyah-Segal theorem 
can be seen as a comparison between the algebraic process of I-adic completion 
and the geometric process of "completion" by making a space free. 

The map Q has a counterpart in all degrees, and it is useful to allow a param­
eter space, which will be a based G-space X. Thus we consider the map 

7r* : Kc(X) ~ Kc(EG+ 1\ X). 

The target is isomorphic to the non-equivariant K-theory K*(EG+ I\c X), and 
the following theorem may be regarded as a calculation of this in terms of the 
more approachable group Kc(X). 

THEOREM 5.1 (ATIYAH-SEGAL). Provided that X is a finite G-CW-complex, 
the map 7r* above is completion at the augmentation ideal, so that 

Kc(EG+ 1\ X) ~ Kc(X)i. 

In particular, 

We sketch the simplest proof, which is that of Adams, Haeberly, Jackowski, 
and May. We skate over two technical points and return to them at the end. 
For simplicity of notation, we omit the parameter space X. We do not yet 
know that Kc(EG+) is complete since we do not yet know that the relevant 
liml-term vanishes. If we did know this, we would be reduced to proving that 
7r : EG+ ~ Sa induces an isomorphism of I-completed K-theory. 

If we also knew that "completed K-theory" was a cohomology theory it would 
then be enough to show that the cofiber of 7r was acyclic. It is standard to let 
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EG denote this cofiber, which is easily seen to be the unreduced suspension of 
EG with one of the cone points as base point. That is, it would be enough to 
prove that Kc(EG) = 0 after completion. 

The next simplification is adapted from a step in Carlsson's proof of the Segal 
conjecture. If we argue by induction on the size of the group (which is possible 
since chains of subgroups of compact Lie groups satisfy the descending chain 
condition), we may suppose the result proved for all proper subgroups H of 
G. Accordingly, by change of groups, Kc (G j H + /\ Y) = 0 after completion for 
any nonequivariantly contractible space Y and hence by wedges, cofibers, and 
colimits Kc(E /\ Y) = 0 after completion for any G-CW complex E constructed 
using cells G j H+ /\ sn for various proper subgroups H. 

Now if G is finite, let V denote the reduced regular representation and let 
SOO v be the union of the representation spheres Sk v. For a general compact Lie 
group G, we let soov denote the union of the representation spheres SV as V 
runs over the indexing spaces V such that VG = 0 in a complete G-universe U. 

Clearly (sooV)H is contractible if H is a proper subgroup and (SooV)G = So. 
Thus soov j SO has no G-fixed points and may therefore be constructed using 
cells GjH+ /\ sn for proper subgroups H. Thus, by the inductive hypothesis, 
Kc (Soo v j SO /\ EG) = 0 after completion, and hence 

Kc(SooV /\ EG) ~ Kc (So /\ EG) = Kc(EG) 

after completion. But evidently the inclusion 

soov = soov /\ SO --+ soov /\ EG 

is an equivariant homotopy equivalence by consideration of the various fixed 
point sets. This proves a most convenient reduction: it is enough to prove that 
Kc(SOOV) = 0 after completion. 

In fact, this is easy to prove. When G is finite, one just notes that (ignoring 
liml problems again) 

Kc(Soov) = lirn KC(SkV) = lirn Kc(SO), 

where the second limit is taken over count ably many copies of the multiplication 
map A(V) : Kc(SO) --+ Kc(SO). Since A(V) acts invertibly on this inverse limit 
and A(V) El, (limKc(S°))i = 0 by the obvious fact that Mi = 0 if IM = M. 
The argument in the general compact Lie case is only a little more elaborate. 

To make this proof honest, we must address the two important properties that 
we used without justification: (a) that completed K-theory takes cofiberings to 
exact sequences and (b) that the K -theories of certain infinite complexes are 
the inverse limits of the K-theories of their finite subcomplexes. In other words 
the points that we skated over were the linked problems of the inexactness of 
completion and the nonvanishing of liml terms. 

Now, since R( G) is N oetherian, completion is exact on finitely generated mod­
ules, and the K groups of finite complexes are finitely generated. Accordingly, 
one route is to arrange the formalities so as to only discuss finite complexes: 
this is the method of pro-groups, as in the original approach of Atiyah. It is 
elementary and widely usefuL Instead of considering the single group Kc(X) 
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we consider the inverse system of groups K'G(Xa) as Xa runs over the finite 
subcomplexes of X. 

We do not need to know much about pro-groups. A pro-group is just an 
inverse system of Abelian groups. There is a natural way to define morphisms, 
and the resulting category is Abelian. The fundamental technical advantage of 
working in the category of pro-groups is that, in this category, the inverse limit 
functor is exact. For an Abelian group valued functor h on G-CW complexes or 
spectra, we define the associated pro-group valued functor h by letting h(X) be 
the inverse system {h(Xa)}, where Xa runs over the finite subcomplexes of X. 

As long as all K-theory is interpreted as pro-group valued, the argument just 
given is honest. The conclusion of the argument is that, for a finite G-CW 
complex X, 11' : EG+ 1\ X --+ X induces an isomorphism of I-completed pro­
group valued K-theory. Here the I-completion of a pro-R(G)-module M = {Ma} 
is just the inverse system {Ma/fT Ma}. When M is a constant system, such as 
Kc(SO), this is just an inverse system of epimorphisms and has zero limI

. It 
follows from the isomorphism of pn;>-groups that lim I is also zero for the pro­
group K'G(EG+ I\X), and hence the group K'G(EG+ 1\ X) is the inverse limit of 
the K -theories of the skeleta of EG + 1\ X. We may thus simply pass to inverse 
limits to obtain the conclusion of Theorem 5.1 as originally stated for ordinary 
rather than pro-R(G)-modules. 

There is an alternative way to be honest: we could accept the inexactness and 
adapt the usual methods for discussing it by derived functors. In fact' we shall 
later see how to realize the construction of left derived functors of completion 
geometrically. This approach leads compellingly to consideration of completions 
of Kc-module spectra and to the consideration of homology. We invite the 
interested reader to turn to Chapter XXV (especially Section 7). 

J. F.Adams, J.-P.Haeberly, S.Jackowski and J. P.May A generalization of the Atiyah-Segal 
completion theorem. Topology 27(1988), 1-6. 
M. F. Atiyah. Characters and cohomology of finite groups. Pub. IHES 9(1961), 23-64. 
M. F. Atiyah and G. B. Segal. Equivariant K-theory and completion. J.Diff. Geom. 3(1969), 
1-18. 
G.Carlsson. Equivariant stable homotopy and Segal's Burnside ring conjecture. Annals of 
Math. 120(1984), 189-224. 
S. Jackowski. Families of subgroups and completions. J. Pure and Applied Algebra 37(1985), 
167-179. 

6. The generalization to families 

The above statements and proofs for the universal free G-space EG and the 
augmentation ideal I carry over with the given proofs to theorems about the 
universal ~-free space E~ and the ideal 

I~ = n ker{res~: R(G) --+ R(H)}. 
HE§; 

The only difference is that for most families ~ there is no reduction of Kc(E~) 
to the nonequivariant K-theory of some other space. Note that, by the injectivity 
of (2.1), if ~ includes all cyclic subgroups then I~ = O. 



152 c ~IV. AN INTRODUCTION TO EQUIVARIANT K-THEORY 

THEOREM 6.1. For any family ff and any finite G-CW-complex X the pro­
jection map Eff ----+ * induces completion, so that 

Kc(Eff+ 1\ X) ~ KC(X)/$. 

In particular 

Kg(Eff+) ~ R(G)/$ and Kb(Eff+) = O. 

Two useful consequences of these generalizations are that K -theory is detected 
on finite subgroups and that isomorphisms are detected by cyclic groups. 

THEOREM 6.2 (MCCLURE). (a) If X is a finite G-CW-complex and x E 

Ka(X) restricts to zero in KH(X) for all finite subgroups H of G then x = o. 
(b) If f : X ---7 Y is a map of finite G-CW-complexes that induces an isomor­
phism Kc(Y) ----+ Kc(X) for all finite cyclic subgroups C then f* : Ka(Y) ----+ 

Ka(X) is also an isomorphism. 

Thinking about characters, one might be tempted to believe that finite sub­
groups could be replaced by finite cyclic subgroups in (a), but that is false. 

J. F.Adams, J.-P.Haeberly, S.Jackowski and J. P.May. A generalization of the Atiyah-Segal 
completion theorem. Topology 27(1988), 1-6. 
J.E.McClure. Restriction maps in equivariant K-theory. Topology 25(1986) 399-409. 



CHAPTER XV 

An introduction to equivariant cobordism 

by S. R. Costenoble 

1. A review of nonequivariant cobordism 

We start with a brief summary of nonequivariant cobordism. 
We define a sequence of groups JYQ, AJ:, .A2, ... as follows: We say that 

two smooth closed k-dimensional manifolds Ml and M2 are cobordant if there 
is a smooth (k + I)-dimensional manifold W (the cobordism) such that aw ~ 
Ml II M 2 ; this is an equivalence relation, and.Ak is the set of cobordism classes 
of k-dimensional manifolds. We make this into an abelian group with addition 
being disjoint union. The 0 element is the class of the empty manifold 0; a 
manifold is cobordant to 0 if it bounds. Every manifold is its own inverse, 
since M II M bounds M x I. We can make the graded group ut:; into a ring 
by using cartesian product as multiplication. This ring has been calculated: 
ut:; ~ Z/2[Xk I k f:. 2i - 1]. We'll say more about how we attack this calculation 
in a moment. This is the unoriented bordism ring, due to Thom. 

Thom also considered the variant in which the manifolds are oriented. In this 
case, the cobordism is also required to be oriented, and the boundary aw is 
oriented so that its orientation, together with the inward normal into W, gives 
the restriction of the orientation of W to aw. The effect is that, if M is a 
closed oriented manifold, then a(M x 1) = M II (-M) where -M denotes M 
with its orientation reversed. This makes -M the negative of M in the resulting 
oriented bordism ring 0*. This ring is more complicated than ut:;, having both 
a torsion-free part (calculated by Thom) and a torsion part, consisting entirely 
of elements of order 2 (calculated by Milnor and Wall). 

There are many other variants of these rings, including unitary bordism, %'*' 
which uses "stably almost complex" manifolds; M is such a manifold if there is 
given an embedding M C ]R.n and a complex structure on the normal bundle to 
this embedding. The calculation is %'* ~ Z[Z2k]' This and other variants are 
discussed in Stong. 

These rings are actually coefficient rings of certain homology theories, the 
bordism theories (there is a nice convention, due to Atiyah, that we use the 
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name bordism for the homology theory, and the name cobordism for the related 
co homology theory). If X is a space, we define the group .A'k(X) to be the set of 
bordism classes of maps M ---> X, where M is a k-dimensional smooth closed 
manifold and the map is continuous. Cobordisms must also map into X, and the 
restriction of the map to the boundary must agree with the given maps on the k­
manifolds. Defining the relative groups JY:;.(X, A) is a little trickier. We consider 
maps (M,8M) ---> (X, A). Such a map is cobordant to (N,8N) ---> (X, A) if 
there exists a triple (W,80W,81W), where 8W = 80WU81W, the intersection 
80W n 81 W is the common boundary 8(80W) = 8(81 W), and 80W ~ M II N, 
together with a map (W, 81 W) ---> (X, A) that restricts to the given maps on 
80 W. (This makes the most sense if you draw a picture.) It's useful to think of 
W as having a "corner" at 80 W n 81 W; otherwise you have to use resmoothings 
to get an equivalence relation. It is now a pretty geometric exercise to show that 
there is a long exact sequence 

... ---> .A'k(A) ---> .A'k(X) ---> .A'k(X, A) ---> .A'k-1 (A) ---> ... 

where the "boundary map" is precisely taking the boundary. There are oriented, 
unitary, and other variants of this homology theory. 

Calculation of these groups is possible largely because we know the represent­
ing spectra for these theories. Let TO (the Thom prespectrum) be the prespec­
trum whose kth space is TO(k), the Thorn space of the universal k-plane bundle 
over BO(k). It is an inclusion prespectrum and, applying the spectrification 
functor L to it, we obtain the Thom spectrum MO. Its homotopy groups are 
given by 

7rk(MO) = colimq 7rq+k(TO(q)). 

Then JY:;. ~ 7r*(MO), and in fact MO represents unoriented bordism. 
The proof goes like this: Given a k-dimensional manifold M, embed M in 

some IRq+k with normal bundle v. The unit disk of this bundle is homeomorphic 
to a tubular neighborhood N of M in IRq+k , and so there is a collapse map 
c : Sq+k ---> Tv given by collapsing everything outside of N to the basepoint. 
There is also a classifying map Tv ---> TO(q), and the composite 

Sq+k --t Tv --t TO(q) 

represents an element of 7rk(MO). Applying a similar construction to a cobor­
dism gives a homotopy between the two maps obtained from cobordant mani­
folds. This construction, known as the Pontrjagin- Thom construction, describes 
the map .A'k ---> 7rk(MO). 

The inverse map is constructed as follows: Given a map f: sq+k --t TO(q), 
we may assume that f is transverse to the zero-section. The inverse image 
M = f-1(BO(q)) is then a k-dimensional submanifold of Sq+k (provided that 
we use Grassmannian manifold approximations of classifying spaces), and the 
normal bundle to the embedding of M in sq+k is the pull back of the universal 
bundle. Making a homotopy between two maps transverse provides a cobordism 
between the two manifolds obtained from the maps. One can now check that 
these two constructions are well-defined and inverse isomorphisms. The analysis 
of JY:;.(X, A) is almost identical. 
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In fact MO is a ring spectrum, and the Thom isomorphism just constructed 
is an isomorphism of rings. The product on MO is induced from the maps 

TO(j) 1\ TO(k) --+ TO(j + k) 

of Thom complexes arising from the classifying map of the external sum of 
the jth and kth universal bundle. This becomes clearer when one thinks in a 
coordinate-free wayj in fact, it was inspection of Thom spectra that led to the 
description of the stable homotopy category that May gave in Chapter XII. 

Now MO is a very tractable spectrum. To compute its homotopy we have 
available such tools as the Thom isomorphism, the Steenrod algebra (mod 2), 
and the Adams spectral sequence for the most sophisticated calculation. (Stong 
gives a calculation not using the spectral sequence.) The point is that we now 
have something concrete to work with, and adequate tools to do the job. For 
oriented bordism, we replace MO with MSO, which is constructed similarly 
except that we use the universal oriented bundles over the spaces BSO(k). Here 
we use the fact that an orientation of a manifold is equivalent to an orientation 
of its normal bundle. Similarly, for unitary bordism we use the spectrum MU, 
constructed out of the universal unitary bundles. 

The standard general reference is 
R. E. Stong. Notes on Cobordism Theory. Princeton University Press. 1968. 

2. Equivariant cobordisrn and Thorn spectra 

Now we take a compact Lie group G and try to generalize everything to the 
G-equivariant context. This generalization of nonequivariant bordism was first 
studied by Conner and Floyd. Using smooth G-manifolds throughout we can 
certainly copy the definition of cobordism to obtain the equivariant bordism 
groups ut:a and, for pairs of G-spaces (X, A), the groups ut:a(X, A). We shall 
concentrate on unoriented bordism. To define unitary bordism, we consider a 
unitary manifold to be a smooth G-manifold M together with an embedding of 
M in either V or V EBlR., where V is a complex representation of G, and a complex 
structure on the resulting normal bundle. The notion of an oriented G-manifold 
is complicated and still controversial, although for odd order groups it suffices 
to look at oriented manifolds with an action of Gj the action of G automatically 
preserves the orientation. 

It is also easy to generalize the Thom spectrum. Let CfI be a complete G­
universe. In view of the description of the K-theory G-spectra in the previous 
chapter, it seems most natural to start with the universal n-plane bundles 

7r(V) : EO(IVI, V EB CfI) --+ BO(IVI, V EB CfI) 

for indexing spaces V in CfI. Let TOa(V) be the Thom space of 7r(V). For 
V ~ W, the pullback of 7r(W) over the inclusion 

BO(IVI, V EB CfI) --+ BO(IWI, W EB CfI) 

is the Whitney sum of 7r(V) and the trivial bundle with fiber W - V. Its Thom 
space is "Ew-vTOa(V), and the evident map of bundles induces an inclusion 

a: "Ew-vTOa(V) --+ TOa(W). 
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This construction gives us an inclusion G-prespectrum TOc. We define the 
real Thorn G-spectrum to be its spectrification MOc = LTOc. Using complex 
representations throughout, we obtain the complex analogs TUc and MUc. This 
definition is essentially due to tom Dieck. 

The interesting thing is that MOc does not represent vr;;.c. It is easy to define 
a map vr;;.C ~ 7r?(MOc ) = MO? using the Pontrjagin-Thom construction, 
but we cannot define an inverse. The problem is the failure of transversality 
in the equivariant context. As a simple example of this failure, consider the 
group G = 7/.,/2, let M = * be a one-point G-set (a O-dimensional manifold), 
let N = ]R with the nontriviallinear action of G, and let Y = {O} c N. Let 
f : M ~ N be the only G-map that can be defined: it takes M to Y. Clearly f 
cannot be made transverse to Y, since it is homotopic only to itself. This simple 
example is paradigmatic. In general, given manifolds M and YeN and a map 
f : M ~ N, if f fails to be homotopic to a map transverse to Y it is because of 
the presence in the normal bundle to Y of a nontrivial representation of G that 
cannot be mapped onto by the representations available in the tangent bundle 
of M. Wasserman provided conditions under which we can get transversality. If 
G is a product of a torus and a finite group, he gives a sufficient condition for 
transversality that amounts to saying that, where needed, we will always have 
in M a nontrivial representation mapping onto the nontrivial representation 
we see in the normal bundle to Y. Others have given obstruction theories to 
transversality, for example Petrie and Waner and myself. 

Using Wasserman's condition, it is possible (for one of his G) to construct the 
G-spectrum that does represent vr;;.c. Again, . let 0// be a complete G-universe. 
We can construct a G-prespectrum toc with associated G-spectrum moc by 
letting V run through the indexing spaces in our complete universe 0// as before, 
but replacing 0// by its G-fixed point space o//C ~ ]Roo in the bundles we start 
with. That is, we start with the G-bundles 

for indexing spaces V in 0//. Again, restricting attention to complex represen­
tations, we obtain the complex analogs tuc and muc. The fact that there are 
so few nontrivial representations present in the bundle EO(IVI, V EB o//C) allows 
us to use Wasserman's transversality results to show that moc represents vr;;.c. 
The inclusion o//C ~ 0// induces a map 

moc~MOc 

that represents the map vr;;.C ~ MO? that we originally hoped was an isomor­
phism. 

On the other hand, there is also a geometric interpretation of MO? Using 
either transversality arguments or a clever argument due to Bracker and Hook 
that works for all compact Lie groups, one can show that 

Mof(x, A) ~ colimv Ak~IVI((X, A) x (D(V), S(V))). 

Here the maps in the colimit are given by multiplying manifolds by disks of 
representations, smoothing corners as necessary. We interpret this in the simplest 
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case as follows. A class in MOf ~ colimv ~~IVI(D(V), S(V)) is represented 
by a manifold (M,8M) together with a map (M,8M) ~ (D(V),S(V)). This 
map is equivalent in the colimit to (M x D(W), 8(M x D(W))) together with 
the map 

(M x D(W),8(M x D(W))) ~ (D(V) x D(W), 8(D(V) x D(W))) 

~ (D(V EEl W), S(V EEl W)) 

that is obtained by crossing the original map with the identity map on D(W). 
We call the equivalence class of such a manifold over the disk of a representation a 
stable manifold. Its (virtual) dimension is dim M -dim V. We can then interpret 
Mof as the group of cobordism classes of stable manifolds of dimension k. A 
similar interpretation works for MOf(X, A). 

With this interpretation we can see clearly one of the differences between ~c 
and MO,? If V is a representation of G with no trivial summands, then there 
is a stable manifold represented by * ~ D(V), the inclusion of the origin. This 
represents a nontrivial element X(V) E MOC!.n where n = IVI. This element 
is called the Euler class of V. Tom Dieck showed the nontriviality of these 
elements and we'll give a version of the argument below; note that if V had a 
trivial summand, then * ~ D(V) would be homotopiG to a map into S(V), so 
that X(V) = O. On the other hand, ~c has no nontrivial elements in negative 
dimensions, by definition. 

Here is another, related difference: Stable bordism is periodic in a sense. 
If V is any representation of G, then, by the definition of MOc, MOc(V) ~ 
MOc(IVI); the point is that MOc(V) really depends only on IVI. This gives an 
equivalence I;v MOc c:::: I;n MOc if n = lVI, or 

MOc c:::: I;v-nMOc . 

One way of defining an explicit equivalence is to start by classifying the bundle 
V ------> * and so obtain an associated map of Thorn complexes (a Thom class) 

SV ~ TOc(lRn) c MOc(lRn). 

This is adjoint to a map J.l(V) : sV-n = ~~Sv ~ MOc . The required 
equivalence is the evident composite 

SV-n 1\ MOc ------> MOc 1\ MOc ~ MOc. 

Reversing the roles of V and IRn, we obtain an analogous map sn-v ~ M Oc. 
It is not hard to check that these are inverse units in the RO( G)-graded ring 
MO,? In homology, this gives isomorphisms of MO,?-modules 

MOf(~IVIX) ~ MOf(~v X) 

and 
Mof(x) ~ Mof+n(~v X) 

for all k. This is really a special case of a Thorn isomorphism that holds for every 
bundle. The Thom class of a bundle ~ is the element in cobordism represented 
by the map of Thorn complexes T~ ------> TOc(IW c MOc(IW induced by the 
classifying map of ~. Another consequence of the isomorphisms above is that 
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MO~(X) S:! MO;; (X), so that the RO(G)-graded groups that we get are no 
different from the groups in integer grading. We can think of this as a periodicity 
given by multiplication by the unit JL(V). It should also be clear that, if IVI = m 
and IWI = n, then the composite isomorphism 

MO~(X) S:! MO~+m(Ev X) S:! MO~+m+n(EVEllW X) 

agrees with the isomorphism MO~(X) S:! MO~+m+n(EVEllW X) associated with 
the representation V EEl W. 

We record one further consequence of all this. Consider the inclusion e 
SO ---> SV, where IVI = n. This induces a map 

MDr+n(X) ---> MO~+n(EVX) S:! MO~(X). 

It is easy to see geometrically that this is given by multiplication by the stable 
manifold * ---> D(V), the inclusion of the origin, which represents X(V) E 

M Oqn' The similar map in cobordism, 

MO~(X) S:! Mo~+n(Ev X) ---> Mo~+n(x) 

is also given by multiplication by X(V) E MOc, as we can see by representing 
X(V) by the stable map 

SO ---> SV ---> E V MOc ~ En MOc . 

T. Bracker and E. C. Hook. Stable equivariant bordism. Math. Z. 129(1972), 269-277. 
P. E. Conner and E. E. Floyd. Differentiable periodic maps. Academic Press, Inc. 1964. 
S. Costenoble and S. Waner. G-transversality revisited. Proc. Amer. Math. Soc. 116(1992), 
535-546. 
T. tom Dieck. Bordism of G-manifolds and integrality thereoms, Topology 9 (1970), 345-358. 
T. Petrie. Pseudoequivalences of G-manifolds. Proc. Symp. Pure Math. 32. Amer. Math. 
Soc. 1978, 169-210. 
A. G. Wasserman. Equivariant differential topology. Topology 8(1969), 128-144. 

3. Computations: the use of families 

For computations, we start with the fact that ~c (X) is a module over J1I;. 
(the nonequivariant bordism ring, which we know) by cartesian product. The 
question is then its structure as a module. We'll take a look at the main com­
putational techniques and at some of the simpler known results. 

The main computational technique was introduced by Conner and Floyd. 
Recall that a family of subgroups of G is a collection of subgroups closed un­
der conjugacy and taking of subgroups (in short, under subconjugacy). If § is 
such a family, we define an §-manifold to be a smooth G-manifold all of whose 
isotropy groups are in §. If we restrict our attention to closed §-manifolds 
and cobordisms that are also § -manifolds, we get the groups ~c [§] of cobor­
dism classes of manifolds with restricted isotropy. Similarly, we can consider the 
bordism theory ~c[§](X, A). Now there is a relative version of this as well. 
Suppose that §' c §. An (§, §')-manifold is a manifold (M, aM) where M 
is an §-manifold and aM is an §'-manifold (possibly empty, of course). To 
define cobordism of such manifolds, we must resort to manifolds with multi­
part boundaries, or manifolds with corners. Precisely, (M, aM) is cobordant to 

I 
.;4 
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(N,8N) if there is a manifold (W,8oW,81W) such that W is an §-manifold, 
81W is an §'-manifold, and 80W = MllN, where as usual8W = 8oWU81W 
and 8oWn81 W is the common boundary of 80W and 81 W. With this definition 
we can form the relative bordism groups ~G [§, §']. Of course, there is also 
an associated bordism theory, although to describe the relative groups of that 
theory requires manifolds with 2-part boundaries, and cobordisms with 3-part 
boundaries! 

From a homotopy theoretic point of view it's interesting to notice that 

since a manifold over E§ must be an §-manifold, and any §-manifold has a 
unique homotopy class of maps into E§. Similarly, 

and so on. For the purposes of computation, it is usually more fruitful to think 
in terms of manifolds with restricted isotropy, however. Notice that this gives 
us an easy way to define MO,?[§]: it is MO,?(E§). We can also interpret this 
in terms of stable manifolds with restricted isotropy. 

As a first illustration of the use of families, we give the promised proof of the 
nontriviality of Euler classes. 

LEMMA 3.1. Let G be a compact Lie group and V be a representation of G 
without trivial summands. Then X(V) i:- 0 in MOc;.n, where n = IVI· 

PROOF. Let .szI be the family of all subgroups, and let fJi' be the family of 
proper subgroups. Consider the map MO;: ---+ MO;:[.szI, fJi']. We claim that the 
image of X(V) is invertible in MO;:[.szI, fJi'] (which is nonzero), so that X(V) i:- O. 
Thinking in terms of stable manifolds, X(V) = [* ---+ D(V)]. Its inverse is 
D(V) ---+ *, which lives in the group MO;:[.szI, fJi'] because 8D(V) = S(V) has 
no fixed points. It's slightly tricky to show that the product, which is represented 
by D(V) ---+ * ---+ D(V), is cobordant to the identity D(V) ---+ D(V), as we 
have to change the interpretation of the boundary S(V) of the source from being 
the "fJi'-manifold part" to being the "maps into S(V) part". However, a little 
cleverness with D(V) x I does the trick. 0 

Returning to our general discussion of the use of families, note that, for a pair 
of families (§, §'), there is a long exact sequence 

where the boundary map is given by taking boundaries. (This is of course the 
same as the long exact sequence associated with the pair of spaces (E§, E§').) 
We would like to use this exact sequence to calculate ~G inductively. To set 
this up a little more systematically, suppose that we have a sequence §o C §1 C 
§2 C ... of families of subgroups whose union is the family of all subgroups. 
If we can calculate JtkG[§o] and each relative term JtkG[§p, §p-1], we may be 
able to calculate every JtkG[§p] and ultimately ~G. We can also introduce the 
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machinery of spectral sequences here: The long exact sequences give us an exact 
couple 

A-:G[ffp,ffp_ 1] 

and hence a spectral sequence with E~,q = ~G[ffp, ffp-d that converges to 

A-:G. 
This would all be.academic if not for the fact that A-:G[ffp, ffp- 1] is often com­

putable. Let us start off with the base ofthe induction: A-:G[{ e}, 0] = JfkG[{ e }]. 
This is the bordism group of free closed G-manifolds. Now, if M is a free G­
manifold, then MIG is also a manifold, of dimension dim M -dimG. There is a 
unique homotopy class of G-maps M --+ EG, which passes to quotients to give 
a map MIG --+ BG. Moreover, given the map MIG --+ BG we can recover 
the original manifold M, since it is the pullback in the following diagram: 

M >EG 

t t 
MIG ---:;.... BG. 

This applies equally well to manifolds with or without boundary, so it applies to 
cobordisms as well. This establishes the isomorphism 

JfkG[{e}] ~ JVk-dimG(BG). 

Now the bordism of a classifying space mayor may not be easy to compute, but 
at least this is a nonequivariant problem. 

The inductive step can also be reduced to a nonequivariant calculation. Sup­
pose that G is finite or Abelian for convenience. We say that ff and ff' are 
adjacent if ff = ff' U (H) for a single conjugacy class of subgroups (H), and 
it suffices to restrict attention to such an adjacent pair. Suppose that (M, aM) 
is an (ff, ff')-manifold. Let M(H) denote the set of points in M with isotropy 
groups in (H); M(H) lies in the interior of M, since aM is an ff'-manifold, 
and M(H) = UKE(H)M K is a union of closed submanifolds of M. Moreover, 
these submanifolds are pairwise disjoint, since (H) is maximal in ff. Therefore 
M(H) is a closed G-invariant submanifold in the interior of M, isomorphic to 
G x N H M H. (Here is where it is convenient to have G finite or Abelian.) Thus 
M(H) has a G-invariant closed tubular neighborhood in M, call it N. Here is 
the key step: (M, aM) is cobordant to (N, aN) as an (ff, ff')-manifold. The 
cobordism is provided by M x I with corners smoothed (this is easiest to see in 
a picture). 

As usual, let WH = NHIH. Now (N,aN) is determined by the free WH­
manifold M H and the N H -vector bundle over it which is its normal bundle. Since 
W H acts freely on the base, each fib er is a representation of H with no trivial 
summands and decomposes into a sum of multiples of irreducible representations. 
This also decomposes the whole bundle: Suppose that the nontrivial irreducible 

" 
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representations of H are VI, V2 , .... Then v = Et)vi, where each fib er of each Vi is 
a sum of copies of Vi. Clearly Vi is completely determined by the free W H -bundle 
Home (Vi, Vi), which has fibers r where IF' is one of JR., C, or lHI, depending on Vi. 
Notice, however, that the NH-action on V induces certain isomorphisms among 
the Vi: If Vi and \Ij are conjugate representations under the action of NH, then 
Vi and Vj must be isomorphic. 

The upshot of all of this is that Jr~,a[$,$'] is isomorphic to the group ob­
tained in the following way. Suppose that the dimension of Vi is di and that 
Home (Vi, Vi) = IF'i, where IF'i = JR., C, or lHI. Consider free WH-manifolds M, 
together with a sequence of WH-bundles 6, 6, ... over M, one for each Vi, 
the group of ~i being O(IF'i' ni) (Le., O(ni), U(ni), or Sp(ni)). If Vi and \Ij are 
conjugate under the action of NH, then we insist that ~i and ~j be isomorphic. 
The dimension of (M; 6, 6,···) is dim M + E nidi; that is, this should equal k. 
Now define (M; 6, 6,··· ) to be cobordant to (N; (1, (2,···) if there exists some 
(W; 01 , O2 , ... ) such that aw = M 1I N and the restriction of Oi to aw is ~i 1I (i. 
It should be reasonably clear from this description that we have an isomorphism 

i+En;d;=k 

where W H acts on XiBO(IF'i, ni) via its permutation of the representations of H. 
One more step and this becomes a nonequivariant problem: We take the quotient 
by WH, which we can do because the argument EWH x (XiBO(IF'i,ni)) is free 
(this being just like the case ut:G[{e}] above). This gives 

.Aj(EWH XWH (XiBO(IF'i,ni))). 

dim WH+i+ En;d;=k 

Notice that, if G is Abelian or if W H acts trivially on the representations of H 
for some other reason, then the argument is BWH x (XiBO(IF'i,ni))). 

P. E. Conner and E. E. Floyd. Differentiable periodic maps. Academic Press, Inc. 1964. 

4. Special cases: odd order groups and 7l/2 

If G is a finite group of odd order, then the differentials in the spectral sequence 
for ut:G all vanish, and ut:G is the direct sum over (H) of the groups displayed in 
(3.2). This is actually a consequence of a very general splitting result that will be 
explained in XVII§6. The point is that ut:G is a 7l/2-vector space and, away from 
the order of the group, the Burnside ring A( G) splits as a direct sum of copies of 
7l[1/IGI], one for each conjugacy class of subgroups of G. This induces splittings 
in all modules over the Burnside ring, including all RO(G)-graded homology 
theories (that is, those homology theories represented by spectra indexed on 
complete universes). The moral of the story is that, away from the order of the 
group, equivariant topology generally reduces to nonequivariant topology. 

This observation can also be used to show that the spectra mOG and MOG 
split as products of Eilenberg-Mac Lane spectra, just as in the nonequivariant 
case. Remember that this depends on G having odd order. 
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Conner and Floyd computed the additive structure of Jr;.Z/2, and Alexander 
computed its multiplicative structure. There is a split short exact sequence 

o -+ ~Z/2 -+ EBO:<:;n:<:;kA'k-n(BO(n)) -+ A'k_I(BZj2) -+ 0, 

which is part of the long exact sequence of the pair ({Zj2, e}, {e}). The first 
map is given by restriction to Zj2-fixed points and the normal bundles to these. 
The second map is given by taking the unit sphere of a bundle, then taking the 
quotient by the antipodal map (a free Zj2-action) and classifying the resulting 
Zj2-bundle. This map is the only nontrivial differential in the spectral sequence. 
Now 

EBO:<:;n:<:;kA'k-n(BO(n)) ~ Jr;.[XI,X2,···], 
where Xk E A'k-I(BO(l)) is the class of the canonical line bundle over IRpk-l. 
On the other hand, 

Jr;. (BZj2) ~ Jr;. {ro, rI, r2, ... } 

is the free .A<;,-module generated by {rd, where rk is the class oflRpk -+ BZj2. 
The splitting is the obvious one: it sends rk to Xk+l' In fact, the Xk all live in 
the summand Jr;.(BZj2) = Jr;.(BO(l)), and the splitting is simply the inclusion 
of this summand. It follows that Jr;.Z/2 is a free module over Jr;., and one can 
write down explicit generators. Alexander writes down explicit multiplicative 
generators. 

A similar calculation can be done for MO~/2. The short exact sequence is 
then 

o -+ MO~/2 -+ EBnA'k-n(BO)-+ A'k-I(BZj2) -+ 0, 

where now k and n range over the integers, positive and negative, and the sum 
in the middle is infinite. In fact, 

EBnJr;.-n(BO) ~ Jr;. [XiI, Xl, X2,' .. ], 

where the Xi are the images of the elements of the same name from the geo­
metric case. Here XiI is the image of XL, where L is the nontrivial irreducible 
representation of Zj2. 

It is natural to ask whether or not mOZ/2 and MOZ/2 are products of Eilenberg­
Mac Lane Zj2-spectra, as in the case of odd order groups. I showed that the 
answer turns out to be no. 

J. C. Alexander. The bordism ring of manifolds with involution. Proc. Amer. Math. Soc. 
31(1972), 536-542. 
P. E. Conner and E. E. Floyd. Differentiable periodic maps. Academic Press, Inc. 1964. 
S. Costenoble. The structure of some equivariant Thom spectra. Trans. Amer. Math. Soc. 
315(1989), 231-254. 



CHAPTER XVI 

Spectra and G-spectra; change of groups; duality 

In this and the following three chapters, we return to the development of features 
of the equivariant stable homotopy category. The basic reference is [LMS], and 
specific citations are given at the ends of sections. 

1. Fixed point spectra and orbit spectra 

Much of the most interesting work in equivariant algebraic topology involves 
the connection between equivariant constructions and nonequivariant topics of 
current interest. We here explain the basic facts concerning the relationships 
between G-spectra and spectra and between equivariant and nonequivariant co­
homology theories. 

We restrict attention to a complete G-universe U and we write RO( G) for 
RO(Gj U). Given the details of Chapter XIII, we shall be more informal about 
the RO(G)-grading from now on. In particular, we shall allow ourselves to write 
Ea(X) for a E RO(G), ignoring the fact that, for rigor, we must first fix a 
presentation of a as a formal difference V 8 W. We write sa instead of Svew 
and, for G-spectra X and E, we write 

(1.1) E~(X) = [sa,E 1\ X]c 

and 

(1.2) Ea(X) = [s-a I\X,E]c = [s-a,F(X,E)]c. 

To relate this to nonequivariant theories, let i : UC --+ U be the inclusion of 
the fixed point universe. Recall that we have the forgetful functor 

i* : GYU --+ GYUc 

obtained by forgetting the indexing G-spaces with non-trivial G-action. The 
"underlying nonequivariant spectrum" of E is i* E with its action by G ignored. 
Recall too that i* has a left adjoint 

i* : GYUc 
--+ GYU 
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that builds in non-trivial representations. Explicitly, for a naive G-prespectrum 
D and an indexing G-space V, 

For a naive G~spectrum D, i*D = Li*£D, as usual. These change of universe 
functors play a subtle and critical role in relating equivariant and nonequivariant 
phenomena. Since, with G-actions ignored, the universes are isomorphic, the 
following result is intuitively obvious. 

LEMMA 1.3. For DE GYUG, the unit G-map 1]: D -- i*i*D of the (i*,i*) 
adjunction is a nonequivariant equivalence. For E E GYU, the counit G-map 
€ : i*i* E -- E is a nonequivariant equivalence. 

We define the fixed point spectrum DG of a naive G-spectrum D by passing 
to fixed points spacewise, DG(V) = (DV)G. This functor is right adjoint to the 
trivial G-action functor from spectra to naive G-spectra: 

It is essential that G act trivially on the universe to obtain well-defined structural 
homeomorphisms on DG. For E E GYU, we define EG = (i*E)G. Composing 
the (i*, i*)-adjunction with (1.4), we obtain 

The sphere G-spectra GI H+ 1\ sn in GYU are obtained by applying i* to the 
corresponding sphere G-spectra in GYUG. When we restrict (1.1) and (1.2) to 
integer gradings and take H = G, we see that (1.5) implies 

(1.6) 

and 

(1.7) 

As in the second isomorphism, naive G-spectra D represent Z-graded coho­
mology theories on naive G-spectra or on G-spaces. In contrast, as already 
noted in XIII§3, we cannot expect to represent interesting homology theories on 
G-spaces X in the form 7r*((D 1\ X)G) for a naive G-spectrum D: here smash 
products commute with fixed points, hence such theories vanish on X I XG. For 
genuine G-spectra, there is a well-behaved natural map 

(1.8) 

but, even when E' is replaced by a G-space, it is not an equivalence. In Section 3, 
we shall define a different G-fixed point functor that does commute with smash 
products. 

Orbit spectra DIG of naive G-spectra are constructed by first passing to 
orbits spacewise on the prespectrum level and then applying the functor L from 
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prespectra to spectra. Here (E= X)/G ~ E=(X/G). The orbit functor is left 
adjoint to the trivial G-action functor from spectra to naive G-spectra: 

(1.9) YUG(D/G,C) ~ GYUG(D,C) for C E YUG and DE GYUG. 

For a genuine G-spectrum E, it is tempting to define E/G to be L((i* E)/G), 
but this appears to be an entirely useless construction. For free actions, we will 
shortly give a substitute. 

{LMS, especially I§3] 

2. Split G-spectra and free G-spectra 

The calculation of the equivariant cohomology of free G-spectra in terms of the 
nonequivariant cohomology of orbit spectra is fundamental to the passage back 
and forth between equivariant and nonequivariant phenomena. This requires the 
subtle and important notion of a "split G-spectrum" . 

DEFINITION 2.1. A naive G-spectrum D is said to be split if there is a none qui­
variant map of spectra ( : D ---> DG whose composite with the inclusion of DG 
in D is homotopic to the identity map. A genuine G-spectrum E is said to be 
split if i* E is split. 

The K-theory G-spectra KG and KOG are split. Intuitively, the splitting 
is obtained by giving nonequivariant bundles trivial G-action. The cobordism 
spectra MOG and MUG are also split. The Eilenberg-MacLane G-spectrum 
H M associated to a Mackey functor M is split if and only if the canonical map 
M(G/G) ---> M(G/e) is a split epimorphism; this implies that G acts trivially 
on M (G / e), which is usually not the case. The suspension G-spectrum E= X 
of a G-space X is split if and only if X is stably a retract up to homotopy of 
X G , which again is usually not the case. In particular, however, the sphere 
G-spectrum S = E= SO is split. The following consequence of Lemma 1.3 gives 
more examples. 

LEMMA 2.2. If D E GYUG is split, then i*D E GYU is also split. 

The notion of a split G-spectrum is defined in nonequivariant terms, but it 
admits the following equivariant interpretation. 

LEMMA 2.3. If E is a G-spectrum with underlying nonequivariant spectrum 
D, then E is split if and only if there is a map of G-spectra i*D ---> E that is a 
nonequivariant homotopy equivalence. 

Recall that a based G-space is said to be free if it is free away from its G­
fixed basepoint. A G-spectrum, either naive or genuine, is said to be free if it is 
equivalent to a G-CW spectrum built up out offree cells G+/\csn. The functors 
E= : !Y ----> GYUG and i* : GYUG ---> GYU carry free G-spaces to free naive 
G-spectra and free naive G-spectra to free G-spectra. In all three categories, 
X is homotopy equivalent to a free object if and only if the canonical G-map 
EG+ /\ X ---> X is an equivalence. A free G-spectrum E is equivalent to i*D for 
a free naive G-spectrum D, unique up to equivalence; the orbit spectrum D/G 
is the substitute for E/G that we alluded to above. A useful mnemonic slogan is 
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that "free G-spectra live in the trivial universe". Note, however, that we cannot 
take D = i * E: this is not a free G-spectrum. For example, EooG+ E GYUG 

clearly satisfies (EooG+)G = *, but we shall see later that i*EooG+, which is the 
genuine suspension G-spectrum EooG+ E GYU, satisfies (i*EooG+)G = S. 

THEOREM 2.4. If E is a split G-spectrum and X is a free naive G-spectrum, 
then there are natural isomorphisms 

E~(i*X) ~ En((EAd(G) X)/G) and Ec(i*X) ~ En(X/G), 

where Ad( G) is the adjoint representation of G and E* and E* denote the theo­
ries represented by the underlying nonequivariant spectrum of E. 

The cohomology isomorphism holds by inductive reduction to the case X = 
G+ and use of Lemma 2.3. The homology isomorphism is quite subtle and de­
pends on a dimension-shifting transfer isomorphism that we shall say more about 
later. This result is an essential starting point for the approach to generalized 
Tate cohomology theory that we shall present later. 

In analogy with (1.8), there is a well-behaved natural map 

(2.5) 

but it is not an equivalence. 

[LMS, especially 11.1.8, II.2.8, II.2.12, II.8.4j 

3. Geometric fixed point spectra 

There is a "geometric fixed-point functor" 

<pG : GYU ----7 YUG 

that enjoys the properties 

(3.1) 

and 

(3.2) 

To construct it, recall the definition of E§ for a family § from V.4.6 and set 

(3.3) 

where f!lJ is the family of all proper subgroups of G. Here E 1\ Ef!lJ is H-trivial 
for all H E f!lJ. 

The name "geometric fixed point spectrum" comes from an equivalent de­
scription of the functor <pG. There is an intuitive "spacewise G-fixed point 
functor" <pG from G-prespectra indexed on U to prespectra indexed on UG . To 
be precise about this, we index G-prespectra on an indexing sequence {Vi}, so 
that Vi C Vi+! and U = UVi, and index prespectra on the indexing sequence 
{Vp} . Here we use indexing sequences to avoid ambiguities resulting from 
the fact that different indexing spaces in U can have the same G-fixed point 
space. For a G-prespectrum D = {DVi}, the prespectrum <pG D is given by 
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(cJ>G D)(VP) = (Dl;i)G, with structural maps 1:V;~l-V;G (Dl;i)G ~ (Dl;i+l)G 
obtained from those of D by passage to G~fixed points. We are interested in 
homotopical properties of this construction, and when applying it to spectra 
regarded as prespectra, we must first apply the cylinder functor K and CW ap­
proximation functor r discussed in XII§9. The relationship between the resulting 
construction and the spectrum-level construction (3.3) is as follows. Remember 
that e denotes the forgetful functor from spectra to prespectra and L denotes its 
left adjoint. 

THEOREM 3.4. For 1:-cofibrant G-prespectra D, there is a natural weak equiv­
alence of spectra 

For G-CW spectra E, there is a natural weak equivalence of spectra 

It is not hard to deduce the isomorphisms (3.1) and (3.2) in the stable homo­
topy category hYUG from this prespectrum level description of cJ>G. 

[LMS, II§9] 

4. Change of groups and the Wirthmiiller isomorphism 

In the previous sections, we discussed the relationship between G-spectra 
and e-spectra, where we write e both for the identity element and the trivial 
subgroup of G. We must consider other subgroups and quotient groups of G. 
First, consider a subgroup H. Since any representation of N H extends to a 
representation of G and since a W H -representation is just an H -fixed N H­
representation, the H-fixed point space UH of our given complete G-universe U 
is a complete WH-universe. We define 

(4.1) 

This gives a functor GYU ---+ (W H)YU H. Of course, we can also define 
EH as a spectrum in YUG. The forgetful functor associated to the inclusion 
UG ---+ U H carries the first version of EH to the second, and we use the same 
notation for both. For D E (N H)YUH , the orbit spectrum D / H is also a 
W H -spectrum. 

Exactly as on the space level in I§l, we have induced and coinduced G-spectra 
generated by an H-spectrum D E HYU. These are denoted by 

The "twisted" notation I>< is used because there is a little twist in the definitions 
to take account of the action of G on indexing spaces. As on the space level, these 
functors are left and right adjoint to the forgetful functor GYU ---+ H YU: for 
DE HYU and E E GYU, we have 

(4.2) GYU(G I><H D,E) ~ HYU(D,E) 
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and 

(4.3) HYU(E,D) 3:! GYU(E,FH[G,D)). 

Again, as on the space level, for E E GYU we have 

(4.4) 

and 

(4.5) 

As promised in XII§6, we can now deduce as in (1.6) that 

In cohomology, the isomorphism (4.2) gives 

(4.7) Ea(G T><H D) 3:! E1(D). 

We shall not go into detail, but we can interpret this in terms of RO( G) and 
RO(H) graded theories via the evident functor &fO(G) ---> &fO(H). The iso­
morphism (4.3) does not have such a convenient interpretation as it stands. How­
ever, there is a fundamental change of groups result - called the Wirthmiiller 
isomorphism - which in its most conceptual form is given by a calculation of 
the functor FH[G, D). It leads to the followi~g homological complement of (4.7). 
Let L(H) be the tangent H-representation at the identity coset of G / H. Then 

(4.8) 

THEOREM 4.9 (GENERALIZED WIRTHMULLER ISOMORPHISM). For H -spectra 
D, there is a natural equivalence of G-spectra 

Therefore, for G-spectra E, 

The last isomorphism complements the isomorphism from (4.2): 

(4.10) [G T><H D, E]a 3:! [D, E]H. 

We deduce (4.8) by replacing E in Theorem 4.9 by a sphere, replacing D by 
E /\ D, and using the generalization 

of(4.4). 

[LMS, II§§2-4] 

G T><H (D /\ E) 3:! (G T><H D) /\ E 

K. Wirthmiiller. Equivariant homology and duality. Manuscripta Math. 11(1974),373-390. 
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5. Quotient groups and the Adams isomorphism 

Let N be a normal subgroup of G with quotient group J. In practice, one is 
often thinking of a quotient map N H --+ W H rather than G --+ J. There is 
an analog of the Wirthmiiller isomorphism - called the Adams isomorphism -
that compares orbit and fixed-point spectra. It involves the change of universe 
functors associated to the inclusion i : UN --+ U and requires restriction to N­
free G-spectra. We note first that the fixed point and orbit functors GYUN --+ 

JYUN are right and left adjoint to the evident pullback functor from J-spectra 
to G-spectra: for D E JYUN and E E GYUN, 

(5.1) 

and 

(5.2) 

Here we suppress notation for the pullback functor JYUN --+ GYUN. An N­
free G-spectrum E indexed on U is equivalent to i*D for an N-free G-spectrum 
D indexed on UN, and D is unique up to equivalence. Thus our slogan that "free 
G-spectra live in the trivial universe" generalizes to the slogan that "N-free G­
spectra live in the N-fixed universe". This gives force to "the following version 
of (5.2). It compares maps of J-spectra indexed on UN with maps of G-spectra 
indexed on U. 

THEOREM 5.3. Let J = G/N. For N-free G-spectra E indexed on UN and 
J -spectra D indexed on UN, . 

The conjugation action of G on N gives rise to an action of G on the tangent 
space of N at e; we call this representation Ad{N), or Ad{N; G). The following 
result complements the previous one, but is very much deeper. When N = G, it 
is the heart of the proof of the homology isomorphism of Theorem 2.4. We shall 
later describe the dimension-shifting transfer that is the basic ingredient in its 
proof. 

THEOREM 5.4 (GENERALIZED ADAMS ISOMORPHISM). Let J = G/N. For 
N -free G-spectra E E GYUN, there is a natural equivalence of J -spectra 

E/N --+ {~-Ad(N)i*E)N. 

Therefore, for D E J YU N , 

[D,E/NjJ ~ [i*D,~-Ad(N)i*EjG. 

This result is another of the essential starting points for the approach to 
generalized Tate cohomology that we will present later. The last two -results 
cry out for general homological and cohomological interpretations, like those of 
Theorem 2.4. Looking back at Lemma 2.3, we see that what is needed for this are 
analogs of the underlying nonequivariant spectrum and of the characterization of 
split G-spectra that make sense for quotient groups J. What is so special about 
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the trivial group is just that it is naturally both a subgroup and a quotient group 
ofG. 

The language of families is helpful here. Let § be a family. We say that a 
G-spectrum E is §-free, or is an §-spectrum, if E is equivalent to a G-CW 
spectrum all of whose cells are of orbit type in §. Thus free G-spectra are {e}­
free. We say that a map f : D --+ E is an §-equivalence if fH : DH --+ EH is 
an equivalence for all H E § or, equivalently by the Whitehead theorem, if f is 
an H -equivalence for all H E §. 

Returning to our normal subgroup N, let §(N) = §(N; G) be the family of 
subgroups of G that intersect N in the trivial group. Thus an §(N)-spectrum 
is an N-free G-spectrum. We have seen these families before, in our study of 
equivariant bundles. We can now state precise generalizations of Lemma 2.3 and 
Theorem 2.4. Fix spectra 

DE JY'UN and E E GY'U. 

LEMMA 5.5. A G-map ~ : i*D --+ E is an §(N)-equivalence if and only if 
the composite of the adjoint D --+ (i* E)N of~ and the inclusion (i* E)N --+ i* E 
is an §(N)-equivalence. 

THEOREM 5.6. Assume given an §(N)-equivalence i*D --+ E. For any N­
free G-spectrum X E GY'uN , 

E~(E-Ad(N)(i*X)) ~ D!, (X/N) and Ec(i*X) ~ Dj(X/N). 

Given E, when do we have an appropriate D? We often have theories that 
are defined on the category of all compact Lie groups, or on a suitable sub­
category. When such theories satisfy appropriate naturality axioms, the theory 
EJ associated to J will necessarily bear the appropriate relationship to the theory 
Ec associated to G. We shall not go into detail here. One assumes that the 
homomorphisms a : H --+ G in one's category induce maps of H -spectra ~o: : 

a* Ec --+ EH in a functorial way, where some bookkeeping with universes is 
needed to make sense of a*, and one assumes that ~o: is an H -equivalence if a is 
an inclusion. For each H E §(N), the quotient map q : G --+ J restricts to an 
isomorphism from H to its image K. If the five visible maps, 

H c G, K c J, q: G --+ J, q: H --+ K, and q-l : K --+ H, 

are in one's category, one can deduce that ~q : q* EJ = i*EJ --+ Ec is an 
§(N)-equivalence. This is not too surprising in view of Lemma 2.3, but it 
is a bit subtle: there are examples where all axioms are satisfied, except that 
q-l is not in the category, and the conclusion fails because ~q is not an H­
equivalence. However, this does work for equivariant K-theory and the stable 
forms of equivariant cobordism, generalizing the arguments used to prove that 
these theories split. For K-theory, the Bott isomorphisms are suitably natural, by 
the specification of the Bott elements in terms of exterior powers. For cobordism, 
we shall explain in XXVI§5 that MOc and MUc arise from functors, called 
"global ,J'>functors with smash product", that are defined on all compact Lie 
groups and their representations and take values in spaces with group actions. 
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All theories with such a concrete geometric source are defined with suitable 
naturality on all compact Lie groups G. 

J. F. Adams. Prerequisites (on equivariant theory) for Carlsson's lecture. Springer Lecture 
Notes in Mathematics Vol. 1051, 1984, 483-532. 
[LMS, II§§8-9] 

6. The construction of G / N -spectra from G-spectra 

A different line of thought leads to a construction of J -spectra from G-spectra, 
J = G / N, that is a direct generalization of the geometric fixed point construction 
<])c E. The appropriate analog of f!lJ is the family $[N] of those subgroups of 
G that do not contain N. Note that this is a family since N is normal. For a 
spectrum E in GYU, we define 

(6.1) 

We have the expected generalizations of (3.1) and (3.2): for a G-space X, 

(6.2) 

and, for G-spectra E and E', 

(6.3) 

We can define <])H E for a not necessarily normal subgroup H by regarding 
E as an N H-spectrum. Although the Whitehead theorem appears naturally 
as a statement about homotopy groups and thus about the genuine fixed point 
functors characterized by the standard adjunctions, it is worth observing that it 
implies a version in terms of these <])-fixed point spectra. 

THEOREM 6.4. A map f : E --t E' of G-spectra is an equivalence if and only 
if each <])H f : <])H E --t <])H E' is a nonequivariant equivalence. 

Note that, for any family $ and any G-spectra E and E', 

[E /\ E$+, E' /\ E$]c = 0 

since E$ only has cells of orbit type G/H with H E $ and E$ is H­
contractible for such H. Therefore the canonical G-map E --t E /\ E$ induces 
an isomorphism 

(6.5) 

In the case of $[N], E --t E /\ E$[N] is an equivalence if and only if E is 
concentrated over N, in the sense that Eis H-contractible if H does not contain 
N. Maps into such G-spectra determine and are determined by the J-maps 
obtained by passage to <])N -fixed point spectra. In fact, the stable category of 
J -spectra is equivalent to the full subcategory of the stable category of G-spectra 
consisting of the G-spectra concentrated over N. 
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THEOREM 6.6. For J-spectra D E J.5/UN and G-spectra E E G.5/U concen­
trated over N, there is a natural isomorphism 

For J -spectra D and D', the functor i* ( -) 1\ E§[Nj induces a natural isomor­
phism 

[D, D'jJ ~ [i*D 1\ E§[Nj, i*D 1\ E§[Nlla. 

For general G-spectra E and E', the functor fPN ( -) induces a natural isomor­
phism 

PROOF. The first isomorphism is a consequence of (5.1) and (6.5). The other 
two isomorphisms follow once one shows that the unit 

and counit 

of the adjunction are equivalences. One proves this by use of a spacewise N­
fixed point functor, also denoted fPN, from G-prespectra to J-prespectra. This 
functor is defined exactly as was the spacewise G-fixed point functor in Section 
3. It satisfies fPN (i*D) = D, and it commutes with smash products. The 
following generalization of Theorem 3.4, which shows that the prespectrum level 
functor fPN induces a functor equivalent to fPN on the spectrum level, leads to 
the conclusion. 0 

THEOREM 6.7. For 'E-cofibrant G-prespectra D, there is a natural weak equiv­
alence of J -spectra 

For G-CW spectra E, there is a natural weak equivalence of J-spectra 

As an illuminating example of the use of RO( G)-grading to allow calculational 
descriptions invisible to the Z-graded part of a theory, we record how to compute 
the cohomology theory represented by fPN (E) in terms of the cohomology theory 
represented by E. This uses the Euler classes of representations, which appear 
ubiquitously in equivariant theory. For a representation V, we define e(V) E 
E~ (SO) to be the image of 1 E Eg(SO) ~ E~ (SV) under e*, where e : SO --+ SV 
sends the basepoint to the point at 00 and the non-basepoint to O. 

PROPOSITION 6.8. Let E be a ring G-spectrum. For a finite J -CW spectrum 
X, (fPN E)j(X) is the localization of Ec(X) obtained by inverting the Euler 
classes of all representations V such that VN = {O}. 
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PROOF. By (6.3), (PN(E) inherits a ring structure from E. In interpreting 
the grading, we regard representations of J as representations of G by pullback. 
A check of fixed points, using the cofibrations 8(V) ~ B(V) ~ 8v , shows 
that we obtain a model for E§[N] by taking the colimit of the spaces 8v as 
V ranges over the representations of G such that V N = {o}. This leads to 
a colimit description of (pN E)j(X) that coincides algebraically with the cited 
localization. 0 

With motivation from the last few results, the unfortunate alternative nota­
tion E J = (pN (Ea) was used in [LMS] and elsewhere. This is a red herring from 
the point of view of Theorem 5.6, and it is ambiguous on two accounts. First, 
the J-spectrum (pN (Ea) depends vitally on the extension J = G / N and not just 
on the group J. Second, in classical examples, the spectrum "El" will generally 
not agree with the preassigned spectrum with the same notation. For example, 
the subquotient J-spectrum "Kl" associated to the K-theory G-spectrum Ka 
is not the K-theory J-spectrum KJ. However, if 8a is the sphere G-spectrum, 
then the sub quotient J-spectrum 8J is the sphere J-spectrum. We shall see 
that this easy fact plays a key conceptual role in Carlsson's proof of the Segal 
conjecture. 

[LMS, 1I§9] 

7. Spanier-Whitehead duality 

We can develop abstract duality theory in any symmetric monoidal category, 
such as hGY for our fixed complete G-universe U. While the elegant approach 
is to start from the abstract context, we shall specialize to hGY from the start 
since we wish to emphasize equivariant phenomena. Define the dual of a G­
spectrum X to be DX = F(X,8) and note that there is a natural evaluation 
map c: : (DX) 1\ X ~ 8. There is also a natural map 

(7.1) v: F(X, Y) 1\ Z ~ F(X, Y 1\ Z). 

Using the unit isomorphism, it speCializes to 

(7.2) v: (DX) 1\ X ~ F(X,X). 

The adjoint of the unit isomorphism 8 1\ X ~ X gives a natural map Tf : 8 ~ 
F(X, X). We say that X is "strongly dualizable" if there is a coevaluation map 
Tf: 8 ~ X 1\ (DX) such that the following diagram commutes, where I is the 
commutativity isomorphism. 

8---'-'1,>-> X 1\ (DX) 

(7.3) '1l t~ 
F(X, X) "'11 (DX) 1\ X 

It is a categorical implication of the definition that the map v of (7.1) is an 
isomorphism if either X or Z is strongly dualizable, and there are various other 
such formal consequences, such as X ~ DD(X) when X is strongly dualizable. In 
particular, if X is strongly dualizable, then the map v of (7.2) is an isomorphism. 
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Conversely, ifthe map 1/ of (7.2) is an isomorphism, then X is strongly dualizable 
since the coevaluation map 1] can and must be defined to be the composite "11/-11] 

in (7.3). 

THEOREM 7.4. A G-CW spectrum is strongly dualizable if and only if it is 
equivalent to a wedge summand of a finite G-CW spectrum. 

PROOF. The evaluation map of X induces a natural map 

c# : [Y, Z 1\ DX]G ----? [Y 1\ X, Z]G 

via c#(f) = (id I\c)(f 1\ id), and X is strongly dualizable if and only if c# is 
an isomorphism for all Y and Z. The Wirthmilller isomorphism implies that 
D("E,c,oG / H+) is equivalent to G ~ H S-L(H), and diagram chases show that it 
also implies that c# is an isomorphism. Actually, this duality on orbits is the 
heart of the Wirthmiiller isomorphism, and we shall explain it in direct geometric 
terms in the next section. If X is strongly dualizable, then so is EX. The cofiber 
of a map between strongly dualizable G-spectra is strongly dualizable since both 
sides of ( *) turn cofibrations in X into long exact sequences. By induction on the 
number of cells, a finite G-CW spectrum is strongly dualizable, and it is formal 
that a wedge summand of a strongly dualizable G-spectrum is strongly dualiz­
able. For the converse, which was conjectured in [LMS] and proven by Greenlees 
(unpublished), let X be a strongly dualizable G-CW spectrum with co evaluation 
map 1]. Then 1] factors through A 1\ DX for some finite sub complex A of X, the 
following diagram commutes, and its botto~ composite is the identity: 

AI\ (DX) I\X ~AI\S ~ A 

~ t 1 
X ~ S 1\ X I'/I\id X 1\ (DX) 1\ X i<i"Ai X 1\ S ~ x. 

Therefore X is a retract up to homotopy and thus a wedge summand up to 
homotopy of A. 0 

In contrast to the nonequivariant case, wedge summands of finite G-CW spec­
tra need not be equivalent to finite G-CW spectra. 

COROLLARY 7.5 (SPANIER-WHITEHEAD DUALITY). If X is a wedge summand 
of a finite G-CW spectrum and E is any G-spectrum, then 

1/ : DX 1\ E ----? F(X, E) 

is an isomorphism in hGY. Therefore, for any representation a, 

E~(DX) ~ Ec/'(X). 

So far, we have concentrated on the naturally given dual DX. However, it is 
important to identify the homotopy types of duals concretely, as we did in the 
case of orbits. There are a number of equivalent criteria. The most basic one 
goes as follows. 



8. Y-DUALITY OF G-SPACES AND ATIYAH DUALITY 

THEOREM 7.6. Suppose given G-spectra X and Y and maps 

c : Y 1\ X - Sand 'T/: S - X 1\ Y 

such that the composites 

X ~ S 1\ X "lAid> X 1\ Y 1\ X ~ X 1\ S ~ X 

and 

Y~YI\S~YI\XI\Y~SI\Y~Y 
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are the respective identity maps. Then the adjoint if : Y - DX of c is an 
equivalence and X is strongly dualizable with coevaluation map (id l\if)'T/. 

It is important to note that the maps 'T/ and c that display the duality are 
not unique, although each determines the other. Thus a duality between X and 
Y should be interpreted as a choice of duality maps c and 'T/ - much of the 
literature on duality is quite sloppy about this point. 

This criterion admits a homological interpretation, but we will not go into 
that here. It entails a reinterpretation in terms of the slant products relating 
homology and cohomology that we defined in XIII§5, and it works in the same 
way equivariantly as nonequivariantly. 

[LMS, III§§1-3] 

8. V -duality of G-spaces and Atiyah duality 

There is a concrete space level version of the duality criterion just given. To 
describe it, let X and Y be G-spaces and let V be a representation of G. Suppose 
given G-maps 

c : Y 1\ X - SV and 'T/: SV - X 1\ Y 

such that the following diagrams are stably homotopy commutative, where (J : 
SV _ SV is the sign map, (J(v) = -v, and the 'Y are transpositions. 

and 

On application of the functor EV', we find that Eoo X and EV'Y are strongly 
dualizable and dual to one another by our spectrum level criterion. 

For reasonable X and Y, say finite G-CW complexes, or, more generally, 
compact G-ENR's (ENR = Euclidean neighborhood retract), we can use the 
space level equivariant suspension and Whitehead theorems to prove that a pair 
of G-maps (c, 'T/) displays a V-duality between X and Y, as above, if and only if 
the fixed point pair (cH,'T/H) displays an n(H)-duality between XH and yH for 
each H C G, where n(H) = dim(VH). 

If X is a compact G-ENR, then X embeds as a retract of an open set of a 
G-representation V. One can use elementary space level methods to construct an 
explicit V-duality between X+ and the unreduced mapping cone VU C(V - X). 
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For a G-cofibration A ---> X, there is a relative version that constructs a V­
duality between X U CA and (V - A) U C(V - X). The argument specializes 
to give an equivariant version of the Atiyah duality theorem, via precise duality 
maps. Recall that the Thom complex of a vector bundle is obtained by fiberwise 
one-point compactification followed by identification of the points at infinity. 
When the base space is compact, this is just the one-point compactification of 
the total space. 

THEOREM 8.1 (ATIYAH DUALITY). If M is a smooth closed G-manifold em­
bedded in a representation V with normal bundle v, then M+ is V -dual to the 
Thom complex Tv. If M is a smooth compact G-manifold with boundary aM, 
V = V' EB JR, and (M, aM) is properly embedded in (V' x [0,00), V' x {O}) with 
normal bundles v' of aM in V' and v of M in V, then M/aM is V-dual to Tv, 
M+ is V -dual to Tv/Tv', and the cofibration sequence 

Tv' ---> Tv ---> Tv/Tv' ---> ETv' 

is V -dual to the cofibration sequence 

We display the duality maps explicitly in the closed case. By the equivariant 
tubular neighborhood theorem, we may extend the embedding of M in V to an 
embedding of the normal bundle v and apply the Pontrjagin-Thom construction 
to obtain a map t : SV ---> Tv. The diagonal map ofthe total space of v induces 
the Thom diagonal A : Tv ---> M+ 1\ Tv. The map TJ is just A 0 t. The map € is 
equally explicit but a bit more complicated to describe. Let s : M ---> v be the 
zero section. The composite of A : M ---> M x M and s x id : M x M ---> v x M 
is an embedding with trivial normal bundle. The Pontrjagin-Thom construction 
gives a map t : Tv 1\ M+ ---> M+ 1\ SV. Let ~ : M+ ---> SO collapse all of M 
to the non-basepoint. The map € is just (~ 1\ id) 0 t. This explicit construction 
implies that the maps ~ : M+ ---> SO and t : SV ---> Tv are dual to one another. 

Let us specialize this discussion to orbits G / H (compare IX.3.4). Recall that 
L = L(H) is the tangent H-representation at the identity coset of G/H. We 
have 

T = G XH L(H) and TT = G+ I\H SL(H). 

If G / H is embedded in V with normal bundle v, then v EB T is the trivial bundle 
G/H x V. Let W be the orthogonal complement to L(H) in the fiber over the 
identity coset, so that V = L EB Was an H-space. Since G/ H+ is V-dual to Tv, 
Eoo G / H + is dual to E'VTv. Since SW 1\ S-v ~ S- LasH-spectra, we find that 
E'VTv ~ G ~H S-L. 

[LMS, III§§3-5] 

9. Poincare duality 

Returning to general smooth G-manifolds, we can deduce an equivariant ver­
sion of the Poincare duality theorem by combining Spanier-Whitehead duality, 
Atiyah duality, and the Thom isomorphism. 
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DEFINITION 9.1. Let E be a ring G-spectrum and let ~ be an n-plane G­
bundle over a G-space X. An E-orientation of ~ is an element IL E Eg(T~) 
for some a E RO( G) of virtual dimension n such that, for each inclusion i : 
G / H --+ X, the restriction of IL to the Thom complex of the pullback i* ~ is a 
generator of the free EHCSO)-module EG(Ti*~). 

Here i* ~ has the form G x H W for some representation W of Hand Ti* ~ = 
G+ 1\ SW has cohomology EG(Ti*~) 3! EH(SW) 3! E;{W(SO). Thus the defini­
tion makes sense, but it is limited in scope. If X is G-connected, then there is 
an obvious preferred choice for a, namely the fiber representation V at any fixed 
point of X: each W will then be isomorphic to V regarded as a representation 
of H. In general, however, there is no preferred choice for a and the existence 
of an orientation implies restrictions on the coefficients EH(SO): there must be 
units in degree a - wE RO(H). If a -# w, this forces a certain amount of peri­
odicity in the theory. There is a great deal of further work, largely unpublished, 
by Costenoble, Waner, Kriz, and myself in the area of orientation theory and 
Poincare duality, but the full story is not yet in place. Where it applies, the 
present definition does have the expected consequences. 

THEOREM 9.2 (THOM ISOMORPHISM). Let IL E Eg(T~) be an orientation of 
the G-vector bundle ~ over X. Then 

UIL: E~(X+) --+ E~+f3(T~) 

is an isomorphism for all (3. 

There is also a relative version. Specializing to oriented manifolds, we obtain 
the Poincare duality theorem as an immediate consequence. Observe first that, 
for bundles ~ and 1] over X, the diagonal map of X induces a canonical map 

There results a pairing 

We say that a smooth compact G-manifold M is E-oriented if its tangent bundle 
r is oriented, say via IL E Eg(Tr). In view of our discussion above, this makes 
most sense when M is a V-manifold and we take a to be V. If M has boundary, 
the smooth boundary collar theorem shows that the normal bundle of aM in M 
is trivial, and we deduce that an orientation of M determines an orientation OIL 
of aM in degree a -1 such that, under the pairing (*), the product of OIL and the 
canonical orientation i E Eb(E(aM)+) of the normal bundle is the restriction 
of IL to T(rlaM). Similarly, if M is embedded in V, then IL determines an 
orientation w of the normal bundle v such that the product of IL and w is the 
canonical orientation of the trivial bundle in Ec(EV M+). 

DEFINITION 9.3 (POlNCARE DUALITY). If M is a closed E-oriented smooth 
G-manifold with orientation IL E Eg(Tr), then the composite 

D : E~(M+) ---4 E~-a+f3(Tv) ---+ E~_f3(M) 
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of the Thorn and Spanier-Whitehead duality isomorphisms is the Poincare du­
ality isomorphism; the element [M] = D(l) in E[i(M) is called the fundamental 
class associated to the orientation. If M is a compact E-oriented smooth G­
manifold with boundary, then the analogous composites 

D : Eg(M+) ---+ Ei;-a+P(Tv) ---+ E;;_p(M, 8M) 

and 
D: Eg(M,8M) ---+ Ei;-a+P(Tv,T(vI8M)) ---+ E;;_p(M) 

are called the relative Poincare duality isomorphisms. With the Poincare duality 
isomorphism for 8 M, they specify an isomorphism from the cohomology long 
exact sequence to the homology long exact sequence of (M,8M). Here the 
element [M] = D(l) in E[i(M,8M) is called the fundamental class associated 
to the orientation. 

One can check that these isomorphisms are given by capping with the funda­
mental class, as one would expect. 
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