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G-TRANSVERSALITY REVISITED 

S. R. COSTENOBLE AND S. WANER 

(Communicated by Frederick R. Cohen) 

ABSTRACT. We express the obstruction to G-transversality in two related ways: 
as an element in the quotient of homotopical equivariant normal bordism by 
geometric bordism and also as the obstruction in a homotopy lifting problem. 
In both cases, our formulation is given in terms of the initial data only, in 
contrast to earlier theories. We also obtain related obstructions to equivariant 
"near" transversality, i.e., transversality using arbitrarily small homotopies. 

1. INTRODUCTION 

The G-transversality problem is this: Given smooth G-manifolds M and 
N, a smooth G-invariant submanifold Y c N, and a G-map f: M -, N, is f 
G-homotopic to a map that is transverse to Y ? As is well known, the answer 
may be no, in contrast to the nonequivariant case. Further, this is a global 
problem in the sense that if f is G-homotopic to a transverse map then the 
homotopy may not be a small one, in contrast again to the nonequivariant case. 
If we require that it be possible to make the G-homotopy arbitrarily small, we 
get the different problem of "near" G-transversality. 

Wasserman [Was] gives very useful sufficient conditions for G-transversality 
to hold and Petrie [P] gives an obstruction theory. These discussions, however, 
are not all that can be said about the G-transversality problem, for the following 
reasons. First, Petrie's obstructions and obstruction groups are not well defined, 
in the sense that they are not given in terms of the initial data only. Second, 
whereas Petrie mentions that the G-transversality problem is a global one, nei- 
ther Petrie's nor Wasserman's discussion distinguishes near transversality from 
the global theory. 

We present here two related approaches to the G-transversality problem for 
a finite transformation group G. In the first we restrict attention to the case 
where N is the Thom space of a bundle over Y and consider the following 
stable form of the problem which arises in the study of equivariant Poincar6 
complexes [CW]: If W is a finite-dimensional orthogonal G-module, let D(W) 
denote the unit disc in W and S( W) its boundary. The stable problem is then: 
Given a G-map f: M -, N of smooth G-manifolds and Y c N a smooth G- 
invariant submanifold, is there a W such that f x 1: M x D(W) -, N x D(W) 

Received by the editors February 27, 1991. 
1991 Mathematics Subject Classification. Primary 57R91; Secondary 55S91, 55N91, 57R85. 

( 1992 American Mathematical Society 
0002-9939/92 $1.00 + $.25 per page 

535 



536 S. R. COSTENOBLE AND S. WANER 

is G-homotopic rel M x S( W) to a map that is transverse to Y x 0 ? We display 
the obstruction to stable G-transversality as an element of Q/Q, where Q is 
geometric equivariant normal cobordism and Q is homotopical equivariant 
normal cobordism. This shows that the failure of G-transversality is not only 
responsible for, but is equivalent to, the dichotomy between geometric and 
homotopical equivariant cobordism studied in [tD] and elsewhere. 

Our second approach is to translate the G-transversality problem into a ho- 
motopy lifting problem, thus permitting the application of standard obstruction 
theory to the problem. In order to simplify the resulting obstructions, we con- 
sider in detail only the stable case. The obstruction groups are then Bredon 
cohomology groups of M with local coefficients. We apply these methods also 
to the study of near G-transversality, obtaining stable obstructions for this case. 
These obstructions reside, roughly, in Bredon cohomology of (M, M - f- I (Y)) 
with local coefficients and map to the global obstructions. If f is not patho- 
logical (for example, if f is smooth or PL) then the obstruction groups are 
precisely the Bredon cohomology of (M, M - f1 I (Y)) . 

This paper is organized as follows. In ?2 we express the stable G-transversal- 
ity problem in terms of the geometric/homotopical normal bordism dichotomy. 
In ?3 we express both the unstable and stable G-transversality problems as 
homotopy lifting problems and we relate this to the approach in ?2. In ?4 we 
obtain the obstructions to stable G-transversality and in ?5 we do the same for 
near G-transversality. 

2. A SIMPLE OBSERVATION 

We start this section with some general definitions. Let Y be a compact 
G-space and let 4 be a G-vector bundle over Y with Thom space T4. If M 
is a compact G-manifold, then we say that a G-map f: M -- TX is transverse 
to Y if it is transverse in the usual nonequivariant sense. Similarly, if M has 
boundary it is clear what we mean if we say that a base point-preserving G-map 
f: M/IM -- TX is transverse to Y. 

We can stabilize as follows. If W is a finite-dimensional orthogonal rep- 
resentation of G, let D(W) be its unit disk, let S(W) = AD(W), and let 
SW = D(W)/S(W). We write XWX for XASW. 

Definition 2.1. Let (M, AM) be a compact G-manifold, and let 4 be a G- 
vector bundle over the compact G-space Y. A G-map f: M/OM - TX can 
be made stably transverse to Y if there exists a G-representation W such that 
XWf: XWM/OM -- T(4 E W) is G-homotopic to a map transverse to Y. 

In this section we shall translate this problem into a normal cobordism prob- 
lem. 

Definition 2.2. Let (M, AM) be a compact G-manifold of dimension m. 
Let (Y, B) be a pair of G-spaces, and let 4 be a G-vector bundle over 
Y of dimension k. Let QJG(M; Y, B, 4) be the following bordism group. 
Consider (n + m - k)-dimensional G-manifolds (X; 00X, a0X) embedded in 
(M x D(W E Rn); AM x D(W E Rn), M x S(W E Rn)) for some W, together 
with maps (X, aX) -- (Y, B) covered by bundle maps v - 4 E W, where 
v is the normal bundle of X in M x D(W E Rn). QjG(M; Y, B, 4) is then 
the group of normal bordism classes of such manifolds (see [B] or [Wal] for 
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discussions of normal bordism). Define QG(M, aM; Y, B, 4) in the same 
way, except we insist that 0OX = 0. We call this geometric normal bordism. 

An easy argument shows that the following are long exact sequences: 

* 2 G(M, AM; Y.~ B. j) 2 G(M; Y , B.) 

(23 )Qn~j2(aM; Y sB) j2G I(M, aM; Y, B, 
(2.3) 

n QG(M; B, n) - Q-(M; Y, ,) 

j2Gn(M; Y S B j2 I) Q_(M; B. ,.. 

In the former sequence, the first map is the obvious one; the second map 
takes (X; 0OX, 01X) to (aoX; z, aOXnaX); and the third takes (X, AX) c 
(aM x D(W), AM x S(W)) to X x {2} C AM x I c M. In the latter sequence, 
the maps are the usual ones. 

If V is a G-representation, then there are maps 

ca: QG(M; Y B. )- IV, vi(M; (Y, B) x (D(V), S(V)), ) 
and 

a: QG(M, AM; Y, B, 4) jG+ Iv(M, aM; (Y, B) x (D(V), S(V)), ) 

defined by taking (X; aoX, 01X) to (X x D(V); aOX x D(V), 01X x D(V) U 
X x S(V)). 

As in [tD, BH], we make the following 

Definition 2.4. Let 

QG(M; Y, B, 4) = colimvQ +Iv,(M; (Y, B) x (D(V), S(V)), 4) 

and define QnG(M, aM; Y, B, 4) similarly. We call this homotopical normal 
bordism. 

The following theorem justifies the name. We write {X, Y}G for the group 
of homotopy classes of stable G-maps from X to Y, i.e., 

{X, Y}G = colimV[XVX, XVY]G. 

Also, if X is a G-space, we write X+ for X with a G-fixed disjoint basepoint 
adjoined. 

Proposition 2.5. There are natural isomorphisms 

j2G(M; Y. B. fy_{nM+, 4T4B} 

and 

j2G(M, aM; Y.B. y- znM/aM, T/(I)G 

Proof. The natural isomorphisms are given by the Pontrjagin-Thom construc- 
tion. For example, define 1: QK,(M; Y, ) - {Xn M+, TE,}G as follows. Given 
the manifold X c M x D(W ED Rn), we take the composite 

XwynM+ - Tv/T(vjliX) -) T(, E W) = XwT, 
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where the first map is the collapse and the second is given by the normal map 
v -? W. Since colimits preserve exact sequences, the sequences (2.3) remain 
exact if Q is replaced with Q. Using these it suffices to prove one case, namely, 

j2G(M; Y. 4) {nM+, 'G 

The inverse map, T: {XnM+, TG}G - Qn(M; Y, 4) is defined using trans- 
versality: Represent an element of {fnlM+, T4}G by a map of pairs 

f: (M x D(W E Rn), M x S(W @ Rn)) -- (D(4 @ W), S(4 @ W)). 

We can think of DQ4 E W) as D(p* ), where p * is the bundle over Y x D( W) 
induced by . As such, if W is large enough, then Wassermann's transversality 
results [Was] imply that f is G-homotopic to a map that is transverse to Y x 
D(W), since for large enough W there will be an epimorphism from W onto 
4 . Let X c M x D(W E qRn) then be the preimage of Y x D(W), and let TP[f] 
be the normal bordism class of X. 

Standard arguments now show that P is well defined and inverse to (D. 5 

Now let us return to the question of stable transversality. Given a map 
f: M/IM -- TX as in Definition 2.1, f determines a class [f ] E {M/aM, T }G 

A Q G(M AM; Y, a). Let s: QG(M, AM; Y, 5) 4QG(M, AM; Y, 5) be the 
canonical map. 

Theorem 2.6. f can be made stably transverse to the G-map Y iff [f] E 
QjG(M, AM; Y. ) is in the image of s. 

Thus, we can view the obstruction to f being stably transverse to Y as the 
image of [f] to W3y(M, AM; Y. 5)/sQUG(M, AM; Y. 5). 

Proof. If f can be made stably transverse to Y, then there exists a W for 
which the map (M x D(W), M x S(W)) -- (D(Q E W), S(Q E W)) is G- 
homotopic to a map transverse to Y. If we take X to be the preimage of Y, 
then X and its normal data define an element of QjG(M, M; Y, 4) whose 
image under s is [f]. 

Conversely, maps in the image of s are clearly transverse to Y. E 

3. A LIFTING PROBLEM 

We now show how the transversality problem can be recast as a lifting prob- 
lem. 

We will use the following general situation in the rest of the paper. Consider 
a compact G-space Y and a G-vector bundle 4 over Y. Suppose that N is 
a G-space containing Y as a subspace, such that Y has a closed G-invariant 
neighborhood D in N homeomorphic to D(4). In particular, N might be 
T , or Y might be a submanifold of a G-manifold N; these are the cases of 
most interest. 

If M is a compact G-manifold, then it is clear what is meant for a G-map 
f: M -- N to be transverse to Y. The unstable G-transversality problem is 
this: Given a G-map f: M -- N that is transverse to Y on a G-invariant 
subspace A c M, is f homotopic rel A a map that is transverse to Y on M ? 

Assume for the moment that f is transverse to Y. By definition, f in- 
duces a G,-equivariant epimorphism from the tangent space at each point x 
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in f-1 (Y) to Xf(x), the fiber of 4 over f(x). This continues to hold in a 
tubular neighborhood of Y in N. Precisely, there is an r with 0 < r < 1 such 
that, if U = Int Dr(Q) c D is the interior of the disc bundle of radius r then 
at each x E f-1 (U) the map df: TM, -+ 4(f(x)) is epic; here df denotes the 
derivative of f in the direction of the fibers of 4 and 7r: 4 -- Y denotes the 
projection. If we change f by a homotopy, we can assume that r = 1. This 
motivates the following construction. 

Definition 3.1. We define a G-space Epi(M; N, Y), or Epi when M, N, 
and Y are clear, as E UC F, where 

E = {(m, n, q): m E M, n E D, q: TMm n r(n) a linear epimorphism}, 
C= {(m, n, q) E E: n E OD}, 
F=Mx (N-IntD), 

and f: C -- F is the obvious map. 

Let p: Epi -- M and q: Epi -- N be the projections. Note that p is a 
fiber bundle whose group can be taken to be O(m) where m = dim M . Indeed, 
the associated principal bundle is isomorphic with that of TM. Although q is 
not a bundle, its restriction to q' (Int D) is a G-bundle with principal bundle 
agreeing with that of 7* () . 

The discussion before the definition shows that if the G-map f: M -+ N 
is transverse to Y, then, for suitable choice of D or by changing f by a G- 
homotopy through transverse maps, df gives a lift 0 making the following 
diagram commute: 

Epi 

(3.2) {pxq 

M - MxN 
1xf 

We can think of this as a diagram over M in the obvious way. Also note that, 
if f is only transverse to Y on A c M, then 0 will only be defined on A. 

The following theorem shows that the transversality problem is equivalent to 
a lifting problem. 

Theorem 3.3. Suppose that f: M -- N is transverse to Y on A with associ- 
ated lift 60 defined on A. Then f: M -- N is G-homotopic rel A to a map 
transverse to Y if there exists a lift 0 extending 00 making diagram (3.2) 
G-homotopy commute over M rel A. 
Proof. We have already shown one direction. As to the converse, assume that 
we have a 0 making diagram (3.2) G-homotopy commute over M rel A. Since 
q 0V f rel A, we can assume, by replacing f with qO0, that the diagram strictly 
commutes. 

Before continuing with the proof, we recall a concept due to Wassermann 
[Was]. Assume that C c M is a G-invariant subspace and that we are given 0 
such that diagram (3.2) commutes. Then we say that f is 0-transverse to Y 
on C if: 

(1) f is transverse to Y on C; 
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(2) If c E C n f-I (Y) and we use the exponential map to identify a neigh- 
borhood of 0 in zM, with a neighborhood of c in M, then the restriction of 
f to the orthogonal complement of the Gc-fixed set is linear and agrees with 
0. 

We now mimic Wasserman's argument to show that the presence of 0 allows 
us to G-homotope f to a map transverse to Y. The argument proceeds by 
induction over fixed sets, the inductive hypothesis being the following: If H c 
G, let M>H be the union of proper fixed subspaces of GMH = M(H), and 
assume by induction that we have G-homotopies f - f' and 0 0' rel A 
such that (p x q) o 6' = 1 x f ' and f ' is 0'-transverse on M>H . We can now 
G-homotope f ' to a map f " that is transverse to y(H) on M(H); this is a 
nonequivariant problem. Since we can accomplish this with a small homotopy, 
ensuring that no tracks leave or enter the neighborhood D of Y, we can lift this 
homotopy over p x q to obtain 0" -_0'. We now use 0" and Wasserman's 
arguments to make f" "transverse to Y on M(H), thus completing the 
inductive step. 0 

Turning to stable transversality, assume that N has a base point outside of 
D. As an immediate consequence of Theorem 3.3 we have 

Corollary 3.4. f: M/A -, N can be made stably transverse to Y if there exists 
a W for which there exists a G-homotopy lift 6 over XWM/A rel base point in 
the following diagram: 

Epi(EWM/A; XWN, Y) 

(3.5) pxq 

XWM/A lxf WM/A XWN 
lxf 

Here Epi is defined as before, except that over * x n we have just a single 
point, even if n E D. 

The spaces that appear in diagram (3.5) are the Wth spaces of prespectra. 
In the bottom row we see the suspension spectrum 1??M/A and the product 
spectrum XO'M/A x XO'N (see [LMS, ?1] for generalities about equivariant 
spectra and prespectra). The top space is the Wth space of a prespectrum 
whose associated spectrum we shall call E = E(M/A; N, Y). The structure 
map 

XZEpi(XWM/A; XWN, Y) -, Epi(XW+ZMIA; Xw+zN, Y) 
is given by sending (m, n, q, z) to ((m, z), (n, z), q + id) for z E SZ. 
Thus we can restate Corollary 3.4 as follows: f: M/A -, N can be made 
stably transverse to Y iff there exists a map of spectra 0 making the following 
diagram homotopy commute over XS'M/A: 

E(M/A; N, Y) 

(3.6) \ a 
xq 

XOMIA YI- XM/A x XOON 
1xf 

We can now relate these results to those of ?2. Let hFn (E) be the set of 
G-homotopy classes of sections of p: E(XnM/aM; T4, Y) - X~X00M/OM. 
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Then there is a split surjection T: h]F(E) ,_ QG(M, AM; Y, 4) given by 
transversality, using Corollary 3.4. A left inverse T: QG(M, AM; Y, 4) 
h]Fn(E) of P is given by the Pontrjagin-Thom construction, but ' fails to 
be an isomorphism even in the nonequivariant case. While we suspect that 
E could be modified to make ' an isomorphism, this would unnecessarily 
complicate the obstruction theory to follow. However, both QG(M, AM; Y, 4) 
and hrn(E) map to QjG(M, aM; Y, 4), and it follows that the two cokernels 
coincide. Thus the obstruction defined in Theorem 2.6 may be regarded as 
an element of Q (M, aM; Y, 4)/hFO(E), and thus is the obstruction to the 
existence of a homotopy lift 0 in diagram (3.6). 

4. OBSTRUCTIONS TO STABLE G-TRANSVERSALITY 

The obstruction v to stable G-transversality has been shown in Theorem 
2.6 to be an element of a certain cokernel; however, the groups involved are 
difficult to compute. As pointed out at the end of ?3, we may identify v with 
the obstruction to a lifting problem. Thus we can use standard obstruction 
theory to replace v with a series of simpler obstructions. In order to define 
the latter, we first need to recall the notion of Bredon cohomology with local 
coefficients. 

Definition 4.1. The fundamental groupoid n(X; G) of the G-space X is the 
following category. For the objects, we take the G-maps x: G/H -+ X (or 
equivalently, points x E XH) for subgroups H c G. A morphism from x to 
y: G/K -- X in n(X; G) is an equivalence class [co, a], where a: G/H 
G/K is a G-map and co is a G-homotopy x y o a. (co, a) z (co', a) if 
co and co' are homotopic rel end points. Note that n(X; G) comes equipped 
with a covariant functor So: n(X; G) -- A, where W is the category of G-orbits 
G/H and G-maps, viz. (p(x: G/H -- X) = G/H and (P[co, a] = a. 

A local coefficient system on X is then a contravariant functor T: 7r(X; G) 
X b where - b is the category of abelian groups. Given a G-space X and a 
local coefficient system T on X, one can construct Bredon cohomology with 
local coefficients [MS, M]. 

Consider again the general setting for stable G-transversality. Thus we are 
given a G-map f: M/A -, N and Y c N as described at the beginning of ?3. 
By ?4, f can be made stably transverse to Y iff there exists a map of spectra 
0 making the following diagram homotopy commute over 11'0M/A: 

E(M/A; N, Y) 

(3.6) / xq 

YSc)OM-A Y XM/A x Xc?N 
lxf 

Let Mn denote the relative n-skeleton of (M, A), assume that 0 has been 
constructed on X;c?Mn/A, and consider the obstruction to extending 0 over 
yOMn+l /A. The map 0 can be extended over a cell of the form G/H x Dn+ 
in Mn+1 iff the associated H-map 

(D(W+n+ 1), S(W+n+ 1)) -, (XwM/A x XwN Epi(XwM/A; XwN, Y)) 
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is equivariantly trivial over XWM/A for some W. Since TM is trivial over the 
cell in question, we can replace Epi(XWM/A; X;WN, Y) with 
Epi(TMmPW; XWN, Y) xD(W+n+ 1), where m is the center of {eH} xDn+l 
and where Epi(F; XWN, Y) is defined in the same way as Epi(M; N, Y), 
except that in place of M we use a single point and in place of TM we use 
the single H-vector space F. Since we are now lifting to the total space of a 
product bundle, we can represent this local lifting problem as the relative stable 
H-homotopy class of 

(D(W + n + 1), S(W + n + 1)) (YWN, Epi(TMm, W; XwN, Y)), 

or as an element of 7r H I (DION, E(TMm; N, Y)), where E(TMm; N, Y) is the 
H-spectrum whose Wth space is Epi(TMm @ W; XWN, Y). With qm(N, Y): 
E(TMm; N, Y) _ DION denoting the projection, we can replace 
7t HI (DION, E(TMm; N, Y)) by 7rfH(Cqm(N, Y)), where Cqm is the cofiber 
of qm. 

We can now use this to define a local coefficient system 7n (Cq# (N, Y)) on M 
by taking 7tn(Cq#(N, Y))(x: G/H -- M) = 74/H(Cqx(eH) (N, Y)) . The action of 
rn (Cq#(N, Y)) on morphisms is given by the G-covering homotopy property 

for TM. Standard arguments now give us 

Theorem 4.2. A G-map f: M/A -- N can be made stably transverse to Y iff a 
series of obstructions vn+1 in HG+1(M/A; 7rn(Cq#(N, Y))) vanish. 

A rather surprising consequence of the theorem is that the obstructions de- 
pend only on the Thom space of 4 (recall that the disc bundle of 4 is a subspace 
of N). 

Corollary 4.3. (a) A G-map f: M/A -- N can be made stably transverse to Y 
iff a series of obstructions vn+1 in HG+1 (M/A; 7rn (Cq#(T4, Y))) vanish. 

(b) Let c: N -- TX be the collapse. Then f: M/A -- N can be made stably 
transverse to Y iff c o f: M/A -* T, can. 

Proof. For (a), note that c: N -* T, induces a map Epi(TMm E W; XWN, Y) 
Epi(TMm E W; XWT4, Y) and that, in the diagram 

Epi(TMm E W; XWN, Y) - XWN ) Cqm(N, Y)(W) 

Epi(TMm EJ W; WT4, Y) - XWTX ) Cqm(T4, Y)(W) 

one can easily see that the map Cqm (N, Y) (W) -* Cqm (T4, Y) (W) is given 
by collapsing out a contractible subspace. In essence, this is excision for the 
relative homotopy groups. Part (b) now follows formally, since c induces an 
isomorphism of obstruction groups and takes obstructions to obstructions. 0 

Remarks 4.4. (a) The space Epi(TMm W; XWT ,, Y) may in fact be described 
as the Thom space of an H-vector bundle over the space Epi(TMm @ W. 5 W) 
of linear epimorphisms. Let r: Epi(TMm @ W, 5 W) -* Y be the bundle pro- 
jection. Then Epi(TMm D W; XWTT,, Y) - T(r*, W). This fact, together 
with Corollary 4.3(a), allows us to view the coefficient system as a relative nor- 
mal bordism group. On the other hand, Corollary 4.3(b) together with Theorem 
2.6 allows us to view the global obstruction in terms of relative normal bordism. 
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(b) Assume that for each H c G, each component C of MH has dimen- 
sion lower than the connectivity of Epi(TMm E W. Xy E W)K for some W, 
with m E C, whenever K c H and y E yK. This connectivity can be 
computed as follows, as in [P, 11.4.6]. Decompose TMm - Xy as a sum of K- 
irreducibles; TMm - Xy = Rno ( E Z. '. Let di = 1, 2, or 4, if Zi is real, 
complex, or quaternionic, respectively (do = 1). Then the connectivity of 
Epi(TMm E W, ,y E W)K is mini{di(ni + 1) - 2}. By Remark (a) above, the 
coefficient groups 7in(Cq#(T4, Y)) vanish if the dimension of C is less than 
this connectivity. Note that this condition is essentially the condition needed 
to ensure that the coefficients vanish in Petrie's formulation [P, 11.4]. 

5. OBSTRUCTIONS TO STABLE NEAR G-TRANSVERSALITY 

We now turn to the obstruction theory for "near" G-transversality. To make 
sense of this, we assume that N is a metric space such that D = B(Y, 1) . 

Definition 5.1. We say that f: M/A -* N is nearly G-transverse to Y if for 
each e > 0, f can be made G-homotopic to a transverse map through an 
e-homotopy. Here, an e-homotopy is one in which the diameter of each track 
is less than e. 

Before seeking conditions under which f is nearly G-transverse to Y, we 
must be a little more fastidious with the construction of Ep i. If 3 > 0, let 
Ep i be constructed in the same way as was Epi except that D is replaced 
by B(Y, min{1, _3}). By the theory in ?3, f is nearly transverse to Y iff f 
nearly lifts to Epi, i.e., for each e > 0 there is a 3 > 0 and a lift 0 making 
diagram (3.2) e-homotopy commute over M, where Epi is replaced by Epid. 
This follows because, once we have 0, the argument of Theorem 3.3 involves 
arbitrarily small homotopies. 

We now proceed as follows. Let 0 < e < 1 be so small that the preimage 
under 7r: D -* Y of any set of diameter e is a product. Choose a finite open 
cover of Y in N by products of the form Uy = By(y, e/2) x BF(Y, e/2), 
where F = r- I(y) . We can also assume that GBy(y, e/2) _ GXGyBy(y, c/2). 
Call any G-triangulation of M subordinate of {f- (Uy), f (N - Y) } an e- 
triangulation. Consider the following condition on f: 

Condition 5.2. For each e > 0 and each e-triangulation there exists a 3 > 0, 
an e-homotopy h: f f' and a lift 0 of f' to Epi3 such that if a is a 
simplex in M with f(a) c Uy then h(a x I) c Uy . 

Lemma 5.3. f: M/A -* N is nearly transverse to Y if Condition 5.2 holds. 
Proof. Sufficiency is clear. For the other direction, assume that f is almost 
transverse to Y, let e > 0 be as above, and assume given an e-triangulation of 
M. Choose c' < c such that B(f(a), c') c Uy whenever f(a) c Uy. By the 
hypothesis, there is an c'-homotopy of f to f ' and a lift of f ' to some Epid . 
But the choice of c' ensures that the latter part of Condition 5.2 holds. 51 

We now consider the obstructions to stably nearly lifting f . Let c > 0 and 
assume we are given an e-triangulation of M. Let M' denote the relative n- 
skeleton of (M, A) and assume inductively that f stably nearly lifts on Mn . 
Let c' < e/6 be small enough so that f(a) is at least 2e' from Y if a is a 
simplex such that f(a)nY = 0. Choose an c'-homotopy h: fj Mn xD(W) f ' 
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and a lift 0 of Pf to some Epi3 with 3 < e', satisfying the latter part of 
Condition 5.2 in the following form: if a is a simplex in Mn with f(a) c Uy 
then h(a x D,13(W) x I) C Uy x D,/2(W). We seek to extend h over Mn+1 
satisfying Condition 5.2 in the same way. As seen earlier, the obstruction to 
extending h and 0 over a cell of the form G/H x qn+l in Mn+l is the stable 
H-equivariant homotopy class of an H-map 

(D(W + n + 1), S(W + n + 1)) (XW N, Epi(TMm E W; XWN, Y)). 

Also note that, by our choice of e' and the restrictions on h, if f(a) n Y = 0 
then h(9a x D(W) x I) nB(Y, 3) = 0 . Further, h(9a x (D(W) -D13(W)) x I) 
nB(Y, 3) = 0 for all a. In view of this, there is no obstruction to extending h 
and 0 over a x D(W) if f(a) n Y = 0, and the same is true for a x (D(W) - 
D,13(W)) for all a. Thus we consider the obstruction to extending h and 0 
over a x D,13(W), where f(a) meets Y. This is the H-homotopy class of an 
H-map 

(D(W+ n + 1), S(W+ n+ 1)) 
-* (Uy x D/2(W) , Epi6 (TMm E W; Uy x D,/2 (W) , Y n Uy)) 

for some y E yH. Since Uy is a product neighborhood, this is equivalent to 
the H-homotopy class of an H-map 

(D(W+ n + 1), S(W+ n + 1)) -, (D(Qy E W), Epi(TMm E W; D(Qy E W), 0)). 

Passing to the colimit over W gives an element of 7nH I (*, E(TMm; D(4y), 0)) 
-nH(E(TMm; D(4y), 0)). Here, E(TMm; D(4y), 0) is the H-spectrum whose 

(REDW)th space is Epi(TMmR W; XWD (4yER), 0) , where we base D(4y ER) 
at (0, 1). 

Let C c M be the G-subcomplex consisting of all simplices a with f(a) n 
Y = 0. Define a local coefficient system 7n(E(TM#; D(4f(#)), 0)) on M - C 
by taking 

7n(E(TM#; D(,f(#)), O))(x: G/H -* M) = irH (E(TMx(eH); D(4f(x(eH))), 0)). 

The action on morphisms is given by the G-covering homotopy property for 
TM and 4. 

The discussion so far gives obstruction elements in the cohomology groups 
HG 1(M, C; 7in(E(TM#; D(4f(#)), 0))). Here, the subcomplex C depends on 
the choice of e and the particular triangulation used. Define 2Gn+l (M, U) = 
limHGn+1(M, C), the limit running over all G-triangulations of M and G- 
subcomplexes C c U. Equivalently, by cofinality, we can take the limit over 
G-invariant compact subsets of submanifolds of U. When f-'(Y) is "nice," 
for example, a G-subcomplex of some triangulation M, then 

n+ I 
(M, M - f'(Y)) = HG+ 1 (M, M - f-'(Y)). The discussion of the pre- 

ceding paragraphs, together with standard subdivision arguments, shows the 
following. 

Theorem 5.4. A G-map f: M/A -* N is stably nearly G-transverse to Y if a 
series of obstructions vn+1 in 2Gn (M, M-f-'(Y); inr(E(TM#; D(4f(#)), 0))) 
vanish. 
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As in Remark 4.4(b), we can write down sufficient conditions for these ob- 
struction groups to vanish. If V and W are orthogonal G-vector spaces, recall 
that Epi(V, W) is the G-space of linear epimorphisms V -* W. Let U be an 
open invariant neighborhood of f- (Y) contained in ft1(D). If m E UH, 
let n(m) be the smallest connectivity of Epi(TMm, Xf(m))K, taken over all 
K c H, as computed in Remark 4.4(b). Note that n(m) depends only on 
the component of m in UH, and we shall write nc for n(m) if C is the 
component of UH containing m. We now have 

Corollary 5.5. Assume that for each H c G and each component C of UH one 
has dim C < nc. Then f is stably nearly G-transverse to Y. 
Proof. Let y = f(m) . We show that the coefficient groups 

tn (E(TMm; D(4f (m)) S 0)) 

vanish. Consider the Puppe sequence 

S(~y ED W) , Epi(TMm E W; D(Ey E W) , 0) 

Epi(TMm (D W. E y (D W)+ /\ S4Y'3w 

By the hypothesis, the connecting map in equivariant stable homotopy is an iso- 
morphism through dimension n(m) and an epimorphism in dimension n(m) + 
1 . Indeed, the fact that n(m) must be positive if the hypothesis is to hold en- 
sures that Epi(TMm E W, y ED W)H # 0, showing that 

Epi(TMm D W. y D W)+ A S4YEDW - S4 yEDW 

splits. 51 

Remark 5.6. There is a natural homomorphism 

Y:XG ' l(M,M-f-'(Y);7in(E(TM#;D(Qf(#)),O))) 
- HG+ 1 (M/A; in (Cq# (N, Y))) 

given by the restriction map on the arguments and by the inclusion of D in 
N on coefficients. The similarity of our constructions shows that y carries 
the obstructions to stable near G-transversality to the obstructions to stable 
G-transversality. 
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