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Abstract. We describe an equivariant version (for actions of a finite group G)
of Dold’s index theory, [10], for iterated maps. Equivariant Dold indices are
defined, in general, for a G-map U → X defined on an open G-subset of a
G-ANR X (and satisfying a suitable compactness condition). A local index
for isolated fixed-points is introduced, and the theorem of Shub and Sullivan
on the vanishing of all but finitely many Dold indices for a continuously
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1. Introduction

Suppose, first, that X is a compact ENR and φ : X → X is a (continuous) map.
Consider the formal power series

Z(φ,X; q) = exp
(
−

∑
k≥1

L(φk,X)qk/k
)
∈ Q[[q]],

where L(φk,X) ∈ Z is the Lefschetz number of the kth iterate φk : X → X. Such
a formal power series with constant term equal to 1 factorizes, algebraically, as an
infinite product

Z(φ,X; q) =
∏
k≥1

(1 − qk)dk ,

where dk ∈ Q. In [10] Dold showed that the exponents dk are integers. We shall call
them the Dold indices and write them as Dk(φ,X). (In [16] the term ‘multiplicity’
is used, rather than ‘index’.) Dold’s proof involved consideration of the map

πk(φ) : Xk → Xk, (x1, x2, . . . , xk) �→ (φ(xk), φ(x1), . . . , φ(xk−1)),

which had appeared earlier in the work of Fuller [13]. The map πk(φ) is equivariant
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with respect to the action of the group Z/kZ on Xk by cyclic permutation, and
projection to the first (or any) factor Xk → X gives a homeomorphism from the
fixed-subspace of πk(φ) to that of φk under which the action of Z/kZ corresponds
to the operation of the powers of φ. A more conceptual proof of Dold’s theorem
was given, a few years later, by Komiya [17] using equivariant methods.

The equivariant formulation of the proof was recast in [5] as the definition
of the Dold indices and generalized to the fibrewise theory (as a prelude to the
construction of the topological Fuller index). This paper is written as an exposition
of Dold’s theory of iterated maps from this point of view. Specifically, we shall
consider here the G-equivariant generalization of the Dold indices, where G, in
notation used throughout this paper, is a finite group. We shall follow closely
the account of the index theory of iterated maps in [5] (in particular, Section 3),
concentrating on those places where the equivariant theory exhibits new features,
for much of the theory generalizes easily to the G-equivariant situation.

Suppose now that φ : X → X is a G-equivariant self-map of a G-ENR X. Let
K ≤ G be a subgroup and let g ∈ NG(K) be an element of the normalizer of K.
The action of g restricts to a map XK → XK of the sub-ENR XK fixed by each
element of K, and φ(XK) ⊆ XK . For each integer k ≥ 1, we can consider the classi-
cal Lefschetz number L(g−1φk,XK) ∈ Z of the map g−1φk|XK : XK → XK . The
sequence of equivariant Dold indices Dm(φ,X), m ≥ 1, in certain groups B(m)(G)
will determine, and be determined by, the family of all such Lefschetz numbers.

We shall explain various forms of the index. Section 2 deals, combinatorially,
with the case in which X is a finite set and defines the groups B(m)(G). Some results
on equivariant stable homotopy theory are collected in Section 3. The topological
Dold indices are defined in Section 4 for the general case in which X is a G-ANR.
Localization of the index to a neighbourhood of the fixed-subspace is expressed by
constructing, for a map φ : U → X defined on an open G-subspace U of X (and sat-
isfying a suitable compactness hypothesis), an index D̃k(φ,U) in the G-equivariant
stable homotopy of a certain G-space constructed from Uk. Isolated periodic G-
orbits are considered in Section 5, where an equivariant generalization of the
Shub–Sullivan theorem for differentiable maps is given. Section 6 is concerned with
the homotopy Dold indices, defined via equivariant Reidemeister–Nielsen indices.

A good reference for equivariant fixed-point theory is [23]; see also [6] for a
discussion of equivariant stable homotopy theory.

It is a pleasure to dedicate this paper, which relies heavily on the framework
for fixed-point theory constructed in [7], [8], [9], and not just on the specific paper
[10], to Professor Dold on the occasion of his 80th birthday.

2. Combinatorial fixed-point indices

Consider a finite G-set X and a G-map φ : X → X. A point x ∈ X is a periodic
point of φ if φk(x) = x for some k ≥ 1, and in that case the least such integer
k is called the minimal period of x. Let us write Dk for the set of all periodic
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points of φ with minimal period equal to k. Clearly Dk is a G-set. Moreover, it
has a compatible free action of the cyclic group Z/kZ given by the action of the
generator 1 ∈ Z/kZ as φ : Dk → Dk, that is, Dk is a G × Z/kZ-set.

Now the set Fix(φk) = {x ∈ X | φk(x) = x} of fixed-points of the kth iterate
φk decomposes as a disjoint union of G-sets:

Fix(φk) =
⊔
l | k

Dl,

indexed by the divisors l ≥ 1 of k. These various G-sets will be counted by elements
of certain Grothendieck groups which we now describe.

Recall first that the Burnside ring, A(G), of G is defined as the Grothendieck
group of isomorphism classes of finite G-sets under disjoint union, with the multi-
plication arising from the product of sets. Each G-set is a disjoint union of orbits,
and each orbit is isomorphic as a G-set to a homogeneous space G/H, where
H ≤ G is a subgroup of G. Since two coset spaces G/H and G/H ′ are isomorphic
if and only if the subgroups H and H ′ are conjugate, we can identify A(G) with
the free abelian group generated by the conjugacy classes (H) of subgroups of G.
For each conjugacy class (H), we have a ring homomorphism

ρ(H) : A(G) → Z

which maps the class of a G-set S to the number, #SH , of elements in the subset
SH fixed by the subgroup H. Moreover, the product

∏
(H)

ρ(H) : A(G) →
∏
(H)

Z

is injective (and so has finite cokernel).

Definition 2.1. We can now define the Lefschetz fixed-point index of the kth iterate
φk : X → X combinatorially as the class

L(φk,X) = [Fix(φk)] ∈ A(G).

To count the G-sets Dk we make the following definition.

Definition 2.2. For each integer k ≥ 1, let B(k)(G) be the Grothendieck group of
isomorphism classes, under disjoint union, of finite G × Z/kZ-sets on which the
restricted action of Z/kZ (= {1} × Z/kZ) acts freely.

Such a G × Z/kZ-set P on which the subgroup Z/kZ acts freely may be
regarded as a G-equivariant principal Z/kZ-bundle over a finite base. Indeed, P
fibres as the principal Z/kZ-bundle P → P/(Z/kZ) = S. These bundles may be
described, up to isomorphism, as follows. The base S decomposes as a union of
transitive G-sets of the form G/H. Now a principal Z/kZ-bundle over G/H has
the form

P = G ×H Z/kZ → G/H,
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where the action of H is given by a homomorphism α : H → Z/kZ. This leads us
to introduce the notation Ξ(k)(G) for the set of homomorphisms α : H → Z/kZ,
where H ≤ G is a subgroup of G. The group G acts on Ξ(k)(G) by conjugation:

for g ∈ G, g · α : gHg−1 → Z/kZ is the homomorphism ghg−1 �→ α(h).
Let (α) denote the conjugacy class of α and let [α] ∈ B(k)(G) denote the ele-
ment defined by the corresponding principal bundle. We thus have the following
description of B(k)(G).

Lemma 2.3. The group B(k)(G) is free abelian on the set {[α] | (α) ∈ Ξ(k)(G)/G}
of equivalence classes of homomorphisms α : H → Z/kZ. �

An element α : H → Z/kZ of Ξ(k)(G) determines a subgroup

Tk(α) = {(h,−α(h)) ∈ G × Z/kZ | h ∈ H} ≤ G × Z/kZ

and a fixed-point homomorphism, depending only on the conjugacy class (α),

ρ(α) : B(k)(G) → Z,

which counts the Tk(α)-fixed-points of a G × Z/kZ-set with free Z/kZ-action:

[P ] �→ 1
k

#PTk(α) = #(PTk(α)/(Z/kZ)).

Consider an element α′ : H ′ → Z/kZ of Ξ(k)(G), determining a principal
bundle P ′ = G ×H′ Z/kZ. Then

(P ′)Tk(α) = {[g, i] | H ≤ gH ′g−1, α = g · α′|H, i ∈ Z/kZ}
(where (g ·α′)(gkg−1) = α′(k) for k ∈ H ′). The set Ξ(k)(G)/G is partially ordered
by the relation:

(α) ≤ (α′) if and only if, for some g ∈ G, H ≤ gH ′g−1 and α = g · α′|H.
Thus, ρ(α)([α′]) is 0 unless (α) ≤ (α′), and is a unit in Z[1/#G] if (α) = (α′). It
follows that the product of the fixed-point homomorphisms

(ρ(α)) : B(k)(G) →
∏

(α)∈Ξ(k)(G)/G

Z

is injective and becomes an isomorphism on inverting the order #G of the group.

Definition 2.4. The Dold indices of the G-map φ : X → X can be defined combi-
natorially as

Dk(φ,X) = [Dk] ∈ B(k)(G), k ≥ 1.

The relationship with the Lefschetz indices L(φk,X) involves the forgetful
maps

σ(k) : B(k)(G) → A(G)
defined by mapping a G×Z/kZ-set with free Z/kZ-action to the underlying G-set.
When G is trivial, both B(k)(G) and A(G) are naturally identified with Z, and
σ(k) is multiplication by k. In general, we have the following integrality condition.
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Lemma 2.5. Let e(G) be the exponent of G, that is, the least integer e ≥ 1 such
that ge = 1 for all g ∈ G. Then

e(G)σ(k)(B(k)(G)) ⊆ kA(G).

Proof. It is enough to look at an element [α] ∈ B(k)(G). The homomorphism
α : H → Z/kZ must map into the subgroup M with order equal to the highest
common factor m of k and e(G). Hence, the corresponding bundle P = G×H Z/kZ

decomposes as a G-set into a disjoint union of k/m subspaces each isomorphic to
G ×H M . �

From the decomposition of Fix(φk) we obtain at once the fundamental iden-
tity expressing the Lefschetz numbers of the iterates in terms of the Dold indices.

Proposition 2.6. Let φ : X → X be an equivariant self-map of a finite G-set X.
Then

L(φk,X) =
∑
l | k

σ(l)Dl(φ,X) ∈ A(G),

for each k ≥ 1. Moreover, the indices Dl(φ,X) satisfy the equivariant Dold con-
gruences:

e(G)σ(l)Dl(φ,X) ∈ lA(G). �

If l divides k, we may include Z/lZ as a subgroup of Z/kZ by mapping
the generator 1 to k/l. The associated group-theoretic induction homomorphism
A(G × Z/lZ) → A(G × Z/kZ) restricts to an injective map

i : B(l)(G) ↪→ B(k)(G).

In concrete terms, a G-equivariant principal Z/lZ-bundle Q is mapped to the
principal Z/kZ-bundle P = Q ×Z/lZ Z/kZ, or a homomorphism β : H → Z/lZ

representing an element of Ξ(l)(G) is mapped to the composition α = i ◦ β : H →
Z/lZ ↪→ Z/kZ giving an element of Ξ(k)(G). When G is trivial, i is the identity
map Z → Z.

Lemma 2.7. Suppose that l divides k. Then the composition

σ(k) ◦ i : B(l)(G) ↪→ B(k)(G) → A(G)

is equal to (k/l)σ(l). �

Remark 2.8. Let T be the circle group of complex numbers of modulus 1, and
define B(G), as in [3], to be the Grothendieck group of isomorphism classes of
G-equivariant principal T-bundles over finite G-sets. The group B(G) may be
identified additively with the free abelian group on the set of conjugacy classes of
homomorphisms α : H → T, where H ≤ G. It has an associative product given by
the group multiplication on T (or, equivalently, by the tensor product of complex
line bundles) and thus becomes a commutative ring.

Including Z/kZ in T by mapping 1 to e2πi/k ∈ T we can embed B(k)(G) as
a subring of B(G) and Ξ(k)(G) as a subset of the set Ξ(G) of homomorphisms
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α : H → T. Notice that B(k)(G) = B(G) if k is divisible by e(G). We may identify
B(1)(G) with A(G). Each group B(k)(G) thus has the structure of an A(G)-module;
indeed, it is the obvious structure given by the Cartesian product. The map σ(k)

is an A(G)-module homomorphism, but not, in general, a ring homomorphism.
However, there is a ring homomorphism

τ : B(G) → A(G)

defined by mapping the class of a bundle P → S to its base [S] ∈ A(G).

The translation from the discrete to the topological setting requires a change
of viewpoint. For an integer k ≥ 1, we make the k-fold product Xk, thought of
as the space of maps Z/kZ → X, into a G × Z/kZ-set by letting the generator
1 ∈ Z/kZ act by the cyclic shift

(x1, x2, . . . , xk) �→ (xk, x1, . . . , xk−1).

Then, following [5], we write

πk(φ) : Xk → Xk (where k ≥ 1)

for the G×Z/kZ-equivariant map (x1, . . . , xk) �→ (φ(xk), φ(x1), . . . , φ(xk−1)). The
fixed-point set of πk(φ) is naturally identified with the fixed-point set of φk by the
correspondence

x �→ (x, φ(x), . . . , φk−1(x)), Fix(φk) → Fix(πk(φ)),

under which the action of 1 ∈ Z/kZ on Fix(πk(φ)) corresponds to the action of φ
on Fix(φk). The equivariant Lefschetz index of πk(φ) is thus defined as an element
of A(G × Z/kZ). This Burnside ring is easily described in terms of the groups
B(k)(G).

Lemma 2.9. There is a natural isomorphism

A(G × Z/kZ) =
⊕
l | k

B(l)(G).

Proof. Indeed, a G × Z/kZ-set may be thought of as a G-set equipped with a
self-map whose kth power is the identity. The result follows from the partition
considered earlier into the subsets of points with minimal period equal to l. �

This leads us to re-define the Dold index.

Definition 2.10. The Dold index Dk(φ,X) ∈ B(k)(G) is defined to be the B(k)(G)-
component of L(πk(φ),Xk) ∈ A(G×Z/kZ) in the above decomposition, in Lemma
2.9, of A(G × Z/kZ).

In order to establish Proposition 2.6 with this new definition, or, more pre-
cisely, to show that the components of L(πk(φ,Xk) are the indices D(l)(φ,X), l | k,
we must compare πk(φ) and πl(φ).

First, we record an easy observation.
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Lemma 2.11. In terms of the decomposition in Lemma 2.9 the (forgetful) restriction
map A(G × Z/kZ) → A(G) is given by σ(l) on the summand B(l)(G). �

For a divisor l of k, there is a fixed-point homomorphism

ρlZ/kZ : A(G × Z/kZ) =
⊕
m | k

B(m)(G) → A(G × Z/lZ) =
⊕
m | l

B(m)(G)

which maps a finite G × Z/kZ-set S to the subset SlZ/kZ fixed by the subgroup
lZ/kZ ≤ Z/kZ ≤ G×Z/kZ. The quotient (G×Z/kZ)/(lZ/kZ) acting on the fixed
subset is identified with G × Z/lZ in the obvious way.

Lemma 2.12. The homomorphism ρlZ/kZ maps a summand B(m)(G) to 0 if m

does not divide l, and isomorphically to the summand B(m)(G) as the identity on
B(m)(G) if m divides l. �

Taking fixed-points under lZ/kZ maps πk(φ) : Xk → Xk to πl(φ) : X l → X l

and so
ρlZ/kZL(πk(φ),Xk) = L(πl(φ),X l).

This equality, in conjunction with Lemma 2.11, establishes Proposition 2.6 for the
re-defined Dold indices.

Example 2.13. Let p > 1 be a prime, and suppose that G is cyclic of order p. The
Burnside ring A(G) is generated by 1 = [G/G] and x = [G/1]:

A(G) = Z[x]/(x2 − px).

The ring B(G), described in Remark 2.8, is generated as an A(G)-algebra by an
element y ∈ B(p)(G) corresponding to a chosen isomorphism G → Z/pZ:

B(G) = A(G)[y]/(xy − x, yp − 1),

σ(k)(1) = k and, if p | k, σ(k)(yi) = kx/p, 1 ≤ i ≤ p − 1, and τ(y) = 1.

The equivariant Dold indices also count the fixed-points of g−1φk for each
g ∈ G. Indeed,

Fix(g−1φk) = {x ∈ X | φk(x) = gx} ⊆ Fix(φke),

where e is the order of g, and we shall see that L(g−1φk,X) is determined by the
indices Dl(φ,X) ∈ B(l)(G) where l is a divisor of ke. On the subgroup 〈g〉 ≤ G
generated by g we have an injective homomorphism α : 〈g〉 → Z/keZ mapping g
to k. Now consider the fixed-point homomorphism

ρTke(α) : A(G × Z/keZ) =
⊕
l | ke

B(l)(G) → Z

for the associated subgroup Tke(α) of G × Z/keZ.
On the B(l)(G)-summand this corresponds to taking fixed-points of the image

of Tke(α) under the projection map G × Z/keZ → G × Z/lZ. This image is the
subgroup Tl(αl), where αl is the homomorphism

g �→ k, 〈g〉 → Z/lZ.
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The subspace of Xke fixed by Tke(α) is the set

{(x1, . . . , xke) ∈ Xke | xi+k = gxi}
(where the subscripts i are interpreted mod ke). We may identify this set with
Xk, by projecting to the first k factors, and the restriction of πke(φ) to this set
corresponds to the map:

(x1, . . . , xk) �→ (g−1φ(xk), φ(x1), . . . , φ(xk−1)),

since xke = ge−1xk = g−1xk. Its fixed-point set is then identified with Fix(g−1φk)
by the correspondence

x �→ (x, φ(x), φ2(x), . . . , φk−1(x)).

This computes the non-equivariant Lefschetz index

L(g−1φk,X) = ρTke(α)L(πk(φ),Xk) ∈ Z

as the sum of the terms ρ(αl)Dl(φ,X). More generally, by only minor changes, we
obtain:

Proposition 2.14. Consider a subgroup K ≤ G and an element g ∈ NG(K). Let
H = 〈K, g〉 be the subgroup generated by K and g. Suppose that gK ∈ WG(K) =
NG(K)/K has order e. Then

L(g−1φk,XK) =
∑
l | ke

ρ(αl)Dl(φ,X) ∈ Z,

where ρ(αl) : B(l)(G) → Z is the fixed-point map defined by the homomorphism
αl : H → Z/lZ mapping K to 0 and g to k. �

In the opposite direction, it follows that the equivariant Dold indices are
determined by the integers L(g−1φk,XK).

Corollary 2.15. The equivariant Dold index Dm(φ,X) ∈ B(m)(G) is determined
by the non-equivariant fixed-point indices L(g−1φk,XK) ∈ Z for the various sub-
groups K ≤ G, elements g ∈ NG(K), and integers k ≥ 1 such that ke divides m,
where e is the order of gK in WG(K).

Proof. Consider a subgroup H ≤ G and a homomorphism α : H → Z/mZ. It
suffices to show that ρ(α)Dm(φ,X) is determined by the Lefschetz indices. Let K
be the kernel of α and choose an element g ∈ H such that α(g) = m/e, where e
is the order of the image of α. Applying Proposition 2.14 with k = m/e, we see
that ρ(α)Dm(φ,X) is determined by L(g−1φk,XK) and the indices Dl(φ,X) for
the strict divisors l < m of m.

The proof is completed by induction on m. �
Remark 2.16. In Proposition 2.14, we have discussed only the non-equivariant
index L(g−1φk,XK) ∈ Z. The group WG(K) acts on XK and the map g−1φk :
XK → XK is equivariant with respect to the action of the centralizer Z of gK in
WG(K). We thus have a Z-equivariant fixed-point index L(g−1φk,XK) ∈ A(Z).
This, too, is determined by the Dold indices Dl(φ,X) for the divisors l of ke.
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3. Equivariant stable homotopy groups

Restricting attention to metrizable ANRs, we shall call a G-space X a G-ANR if
it can be embedded as a G-retract of an open subset of a normed G-vector space.
Thus, we have a normed vector space E, on which G acts by a homomorphism
G → GL(E) (where GL(E) is the group of invertible continuous linear operators
on E), an open G-subset U of E, and continuous G-maps i : X → U and r : U → X
such that r ◦ i = 1X : X → X.

We shall use the notation ωG
i (X), where i ∈ Z, for the ith unreduced G-

equivariant stable homotopy group of X. (This is the group of stable maps from the
sphere Si, for i ≥ 0, to the pointed space obtained by adding a disjoint basepoint
to X.) A good reference for the basic theory is the textbook [6], with the caution
that this notation is used there for the reduced stable homotopy of a pointed space.

In particular, the equivariant stable homotopy ring ωG
0 (∗) of a point ∗ is

naturally identified with the Burnside ring A(G), described in Section 2 as a free
abelian group on the set of conjugacy classes of subgroups. This identification may
be regarded as a special case of the decomposition theorem of tom Dieck et al.:

ωG
i (X) =

⊕
(H)

ωi(EWG(H) ×WG(H) XH)

expressing the G-equivariant stable homotopy group as a sum of components in-
dexed by the conjugacy classes of subgroups H of G. Here the quotient WG(H) =
NG(H)/H acts on the fixed subspace XH and EWG(H) is the universal free
WG(H)-space. In dimension 0 this gives an elementary description of the group.

Lemma 3.1. Let X be a G-ANR. Then

ωG
0 (X) =

⊕
(H)

Z[π0(XH)/WG(H)],

where π0(XH)/WG(H) is the set of WG(H)-orbits of the action of WG(H) =
NG(H)/H on the set of path-components of the subspace XH .

Proof. The 0th stable homotopy group of a space is free abelian on the set of
path-components of the space. The path-components of the homotopy-orbit space
EWG(H) ×WG(H) XH correspond to orbits of the action of WG(H) on XH . �

Remark 3.2. This result allows us to interpret ωG
0 (X) as a Grothendieck group of

G-maps from a finite G-set to X. Two such G-maps f : S → X and f ′ : S′ → X
are to be regarded as equivalent if there is a G-isomorphism t : S → S′ such that
f is homotopic to f ′ ◦ t. The monoid structure is provided by disjoint union.

For each integer k ≥ 1, the k-fold product Xk is a G×Z/kZ-space, with Z/kZ

acting, according to the interpretation of Xk as map(Z/kZ,X), by translation as
described in Section 2. The splitting of the Burnside ring A(G×Z/kZ) in Lemma
2.9 generalizes to a decomposition of the G × Z/kZ-equivariant stable homotopy
groups of Xk.
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Lemma 3.3. There is a natural decomposition

ω
G×Z/kZ

i (Xk) =
⊕
l | k

ωG
i (EG(Z/lZ) ×Z/lZ X l),

where EG(Z/lZ) → BG(Z/lZ) is a universal G-equivariant principal Z/lZ-bundle.

Proof. This may be established by the methods of tom Dieck [6], who writes
E(G, Z/lZ) rather than EG(Z/lZ). It is a special case of results in [19], where the
notation EF(Z/lZ;G × Z/lZ) is used. �

Remark 3.4. As a concrete realisation of EG(Z/kZ) we may take a direct limit
of spheres S(E) on finite-dimensional complex G-modules E with Z/kZ acting as
complex multiplication by kth roots of unity.

The fact that Lemma 2.9 is a specialization of Lemma 3.3 is a consequence
of:

Lemma 3.5. There is a natural identification

B(k)(G) = ωG
0 (BG(Z/kZ)).

Proof. This may be seen by relating the description of A(G × Z/kZ) in terms of
the conjugacy classes of subgroups of G × Z/kZ, described in Section 2, to the
decomposition in Lemma 2.9.

Alternatively, we may apply Lemma 3.1 to the G-space BG(Z/kZ). Consider
a fixed subgroup H ≤ G. The components of the subspace of BG(Z/kZ) fixed by H
are indexed by the homomorphisms α : H → Z/kZ. (See [3] for the corresponding
statement for B(G).) The stable homotopy group is thus identified with the free
abelian group on generators indexed by (α) ∈ Ξ(k)(G)/G. This coincides with the
description of B(k)(G) given in Lemma 2.3. �

Remark 3.6. From this point of view, the ring structure on B(k)(G) described in
Remark 2.8 appears as the Pontryagin ring structure on the stable homotopy of
the Hopf space BG(Z/kZ).

The forgetful mapping σ(k) : B(k)(G) → A(G) admits a straightforward
generalization.

Definition 3.7. For k ≥ 1, we define

σ(k) : ωG
i (EG(Z/kZ) ×Z/kZ Xk) → ωG

i (X)

to be the composition of the inclusion of the top summand in the splitting of
ω

G×Z/kZ

i (Xk) in Lemma 3.3, the restriction map to ωG
i (Xk) (forgetting the action

of Z/kZ) and the map to ωG
i (X) induced by the projection Xk → X to any factor.

(Because we started with invariance under the cyclic action of Z/kZ, it does not
matter which factor we choose.)
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To complete this preparation for the definition of the Dold indices we need
to extend Lemma 2.12. Suppose that l divides k. Then by taking fixed-points
with respect to the action of the subgroup G × lZ/kZ of G × Z/kZ we obtain a
homomorphism ρlZ/kZ :

ω
G×Z/kZ

i (Xk) =
⊕
m | k

ωG
i (EG(Z/mZ) ×Z/mZ Xm)

→ ω
G×Z/lZ
i (X l) =

⊕
m | l

ωG
i (EG(Z/mZ) ×Z/mZ Xm).

Lemma 3.8. The homomorphism ρlZ/kZ described above maps a summand indexed
by a divisor m of k to 0 if m does not divide l, and identically to the corresponding
summand if m does divide l.

Proof. This is a feature of the naturality of the decomposition in Lemma 3.3. �

4. Topological fixed-point indices

We recall, first, the notation for the Lefschetz fixed-point index as used in [5]. (See,
also, [4], where the emphasis is on the parametrized theory.)

Suppose that X is a G-ANR, U ⊆ X is an open G-subspace, and φ : U → X is
a (continuous) G-map which is compactly fixed in the sense that the fixed-subspace
Fix(φ) is compact and there is an open G-neighbourhood V of Fix(φ) such that
φ(V ) has compact closure in X. The Lefschetz fixed-point index is an element

L(φ,U) ∈ ωG
0 (∗) = A(G)

of the equivariant stable homotopy ring of a point, ωG
0 (∗). More precisely, we have

a Lefschetz–Hopf fixed-point index

L̃(φ,U) ∈ ωG
0 (U),

lifting L(φ,U) and localizing the fixed-point information to the neighbourhood U
of the fixed-subspace.

Having established notation, we turn to the definition of the Dold indices for
iterated maps. For an integer k ≥ 1, we write

πk(φ) : Uk → Xk

as in the discrete case, for the G × Z/kZ-equivariant map

(x1, . . . , xk) �→ (φ(xk), φ(x1), . . . , φ(xk−1)).

When πk(φ) is compactly fixed, we thus have fixed-point indices

L(πk(φ), Uk) ∈ ω
G×Z/kZ

0 (∗) = A(G × Z/kZ)

and
L̃(πk(φ), Uk) ∈ ω

G×Z/kZ

0 (Uk).
The condition that πk(φ) be compactly fixed is easily expressed in terms of

the kth iterate φk.
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Lemma 4.1. The fixed-point set Fix(πk(φ)) is naturally identified with the fixed-
point set of the kth iterate φk : (φ−1)k−1(U) → X, and πk(φ) is compactly fixed
if and only if Fix(φk) is compact and there is a G-neighbourhood V of Fix(φk) in
(φ−1)k−1(U) such that φ(V ) has compact closure in X. �

In what follows, we shall assume that the map φ satisfies the compactly fixed
properties required to define the various indices considered.

The compatibility of the Lefschetz indices of πk(φ) and πl(φ), as expressed
in the next lemma, is proved just as in the non-equivariant case, [5, Lemma 3.8].

Lemma 4.2. Suppose that l divides k. Then L(πl(φ), U l) and L̃(πl(φ), U l) are the
images of L(πk(φ), Uk) and L̃(πk(φ), Uk) respectively under the fixed-point homo-
morphisms ρlZ/kZ:

A(G × Z/kZ) → A(G × Z/lZ), ω
G×Z/kZ

0 (Uk) → ω
G×Z/lZ
0 (U l). �

We can now extend Definition 2.10 from the discrete to the topological situ-
ation.

Definition 4.3. Let φ : U → X be a G-map such that πk(φ) : Uk → Xk is
compactly fixed. The G-equivariant Dold indices

Dk(φ,U) ∈ B(k)(G) = ωG
0 (BG(Z/kZ))

and
D̃k(φ,U) ∈ ωG

0 (EG(Z/kZ) ×Z/kZ Uk)

are defined to be the respective top components of the G × Z/kZ-equivariant
Lefschetz indices L(πk(φ), Uk) ∈ A(G × Z/kZ) and L̃(πk(φ), Uk) ∈ ω

G×Z/kZ

0 (Uk)
in the decompositions given by (Lemma 2.9 and) Lemma 3.3.

It now follows from Lemmas 4.2 and 3.8, exactly as in the discrete case, that

L(πk(φ), Uk) =
∑
l | k

Dl(φ,U) ∈
⊕
l | k

B(l)(G) = A(G × Z/kZ)

and

L̃(πk(φ), Uk) =
∑
l | k

D̃l(φ,U) ∈
⊕
l | k

ωG
0 (EG(Z/lZ) ×Z/lZ U l) = ω

G×Z/kZ

0 (Uk).

Lemma 4.4. The Lefschetz index L̃(πk(φ), Uk) ∈ ω
G×Z/kZ

0 (Uk) maps by restriction
of groups from G × Z/kZ to G and projection from Uk to any factor U to an
element of ωG

0 (U). This element is the image of L̃(φk, V ) ∈ ωG
0 (V ), where V =

(φ−1)k−1(U), under the inclusion V ↪→ U .

Proof. See the proof of [5, Lemma 3.9], which is essentially a classical proof of the
commutativity property of the Lefschetz index. �
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The corresponding statement for L(φk, V ) ∈ A(G) follows by projecting U
and V to a point. Expressing the Lefschetz indices of πk(φ) in terms of the Dold
indices and writing the forgetful maps on the components as σ(l) (Definition 3.7),
we obtain:

Theorem 4.5. Let φ : U → X be a G-map such that πk(φ), for some fixed k ≥ 1,
is compactly fixed. Then the Lefschetz index of the iterate φk, defined on V =
(φ−1)k−1(U), is given by

L(φk, V ) =
∑
l | k

σ(l)Dl(φ,U) ∈ ωG
0 (∗) = A(G),

and L̃(φk, V ) ∈ ωG
0 (V ) maps, by the inclusion of V in U , to∑

l | k
σ(l)D̃l(φ,U) ∈ ωG

0 (U). �

Proposition 2.14 also extends to the topological case.

Theorem 4.6. Let φ : U → X be a G-map such that πk(φ), for some fixed k ≥ 1,
is compactly fixed. Consider a subgroup K ≤ G and an element g ∈ NG(K). Then
the non-equivariant Lefschetz index of g−1φk is given by

L(g−1φk, (φ−1)k−1(U)) =
∑
l | ke

ρ(αl)Dl(φ,U) ∈ Z,

where e is the order of gK in WG(K) and αl : 〈K, g〉 → Z/lZ is the homomorphism
mapping K to 0 and g to k.

Proof. The main ingredients, including the description of ρ(αl) : B(l)(G) → Z, are
already in Section 2. Let Tke(αk) be the subgroup of G × Z/keZ associated with
the homomorphism αk, as in Section 2. We apply the fixed-point construction for
this subgroup to the Lefschetz index L(πke(φ), Uke) ∈ B(ke)(G). The result is the
integer described in the statement as a linear combination of Dold indices. On the
other hand, it is the Lefschetz fixed-point index of the restricted map

πke(φ)| : (Uke)Tke(αk) → (Xke)Tke(αk).

Following the proof of Proposition 2.14, we may identify this restriction with the
map

(UK)k → (XK)k, (x1, . . . , xk) �→ (g−1φ(xk), φ(x1), . . . , φ(xk−1)).

The fixed-points of this map clearly correspond to the fixed-points of g−1φk, and
the classical homotopy argument shows that the Lefschetz numbers of the two
maps coincide. �

For future use we record some properties of the Dold index that follow im-
mediately from the corresponding properties of the Lefschetz index.

Proposition 4.7. Let φ : U → X be a G-map such that πk(φ) : Uk → Xk is
compactly fixed for a given integer k ≥ 1.



184 M. C. Crabb JFPTA

(i) (Localization). Suppose that U ′ ⊆ U is an open G-subset containing Fix(φk).
Then D̃k(φ|U ′, U ′) maps to D̃k(φ,U) under the inclusion map

ωG
0 (EG(Z/kZ) ×Z/kZ (U ′)k) → ωG

0 (EG(Z/kZ) ×Z/kZ Uk)

and Dk(φ|U ′, U ′) = Dk(φ,U) ∈ B(k)(G).
(ii) (Additivity). Suppose that U is the disjoint union of open G-subsets U1 and

U2. Then
Dk(φ,U) = Dk(φ|U1, U1) + Dk(φ|U2, U2). �

5. Isolated fixed orbits

Continuing to assume that X is a G-ANR and that φ : U → X is a G-map defined
on an open G-subspace U ⊆ X, we first review some results from [5].

Suppose that the fixed-subspace Fix(φ) of φ consists of just one G-orbit
P (and that there is an open G-neighbourhood V of P in U such that φ(V ) has
compact closure in X). By the localization property, the Lefschetz index L(φ,U) ∈
A(G) is unchanged if we replace U by a smaller neighbourhood of P . It depends
only on the germ of φ at P , and we denote it by

L(φ, P ) ∈ A(G).

Choose a point x ∈ P , with stabilizer subgroup H ≤ G.

Lemma 5.1. The G-equivariant index L(φ, P ) ∈ A(G) is equal to the image of the
H-equivariant index L(φ, x) ∈ A(H) under the induction homomorphism

A(H) → A(G), [S] �→ [G ×H S].

Proof. Choose an H-invariant open neighbourhood Y ⊆ X of x such that the
translates gY , gH ∈ G/H, are disjoint. (Since X is a G-ANR, it admits a G-
invariant metric. We may take Y to be an open ball, of centre x, with small
radius.) Put V = φ−1(Y ). The restriction of φ to the union of the disjoint open
sets gV , gH ∈ G/H, reduces to the union

G ×H V → G ×H Y

of the translates of the restriction φ|V : V → Y . The assertion follows from the
geometric construction of the induction map as ‘G ×H −’. �

When X is a finite-dimensional (smooth) G-manifold, the fixed-point index
of an isolated fixed-G-orbit P can be computed as a local degree. Without loss of
generality, we may suppose that X = E is a Euclidean G-module and, in view of
Lemma 5.1, consider the case in which P consists of the single point 0 ∈ U ⊆ E.
We may also assume that U contains the closed unit disc D(E) of radius 1 and
centre 0. The vector field v : U → E defined by v(x) = x − φ(x) has an isolated
zero at 0, and L(φ, a) ∈ A(G) is equal to the equivariant degree of the self-map

a : x �→ ‖v(x)‖−1v(x), S(E) → S(E)

of the unit sphere S(E) in E.
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We can generalize this description of the fixed-point index as a degree, by
allowing E to be a (real) Banach G-module. Suppose further that φ : U → E
is continuously differentiable with derivative A = Dφ(0) at the fixed-point 0. To
define the index L(φ, 0), we require that {0} be a compactly fixed subspace, and
this implies that A is a compact operator. If 1−A is non-singular, then the index is
computed by real K-theory, as we now explain. The endomorphism 1−A : E → E
defines an element of the real K-group KO−1

G (∗), and the local degree is the image
of [1 − A] under the equivariant J-homomorphism

J : KO−1
G (∗) → A(G)× (⊆ A(G))

to the group of units in the Burnside ring. Let Ĝ be the set of isomorphism
classes of irreducible real G-modules and for each α ∈ Ĝ choose a representative
G-module Vα. The KO-group is a direct sum

KO−1
G (∗) =

⊕

α∈Ĝ real

(Z/2Z)η[Vα],

where η is the generator of KO−1(∗) = Z/2Z and the summation runs over the
isomorphism classes of irreducible real representations α of G whose endomorphism
ring is equal to R. The G-module E splits as a direct sum

⊕
α∈Ĝ Eα, where

Eα = HomG(Vα, E) ⊗Kα
Vα, Kα = EndG(Vα),

and A splits, correspondingly, as a sum of endomorphisms Aα ∈ End(Eα). Let
tα = J(η[Vα]) ∈ A(G), so that t2α = 1.

Lemma 5.2. Suppose that E is finite-dimensional. Then the local degree is computed
K-theoretically as

J([1 − A]) =
∏

α∈Ĝ real

tsign(det(1−Aα))
α ∈ A(G)×.

Proof. The α-component of [1 − A] is equal to 0 if det(1 − Aα) > 0, and η[Vα] if
det(1−Aα) < 0. In the infinite-dimensional case the determinant is not, in general,
defined, but one can still make sense of the sign as a topological index. �

We shall need the following technical lemma from [5, Lemma 3.17].

Lemma 5.3. Let E be a Banach G-module and let φ : U → E be a C1 map with an
isolated (and compactly fixed) fixed-point at 0. Suppose that E = F ′ ⊕F ′′ splits as
a direct sum of Banach G-modules such that φ(U ∩ F ′) ⊆ F ′. Write φ′ : U ′ → F ′

for the restriction of φ to the first factor U ′ = U ∩ F ′ and A′′ : F ′′ → F ′′ for the
(2, 2) component of A = Dφ(0). Suppose that 1 − A′′ is non-singular. Then

L(φ, 0) = L(φ′, 0) · L(A′′, 0) = L(φ′, 0) · J([1 − A′′]) ∈ A(G). �

This completes the preparatory material, and we turn to consideration of the
iterates of a G-map φ : U → X defined on an open subspace of a G-ANR.
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Definition 5.4. Consider a G-orbit P ⊆ U such that φ(P ) = P . We assume that
there is a G-neighbourhood V of P in U such that φ(V ) has compact closure in X.
Suppose that P is an isolated fixed-subset of φk, where k ≥ 1. Choose an open
neighbourhood U ′ of P in U such that the points of P are the only fixed-points of
φk in U ′. By the localization property (Proposition 4.7(i)), the indices Dl(φ,U ′),
for l | k, depend only on P , not on the open neighbourhood U ′. We write them as
the local Dold indices

Dl(φ, P ) ∈ B(l)(G).

Our first result is an equivariant version of the theorem of Shub and Sullivan
[22].

Theorem 5.5. Let E be a finite-dimensional G-module, and let φ : U → E be a
continuously differentiable G-map defined on an open G-neighbourhood U of 0.
Suppose that 0 is an isolated fixed-point of φk for each k ≥ 1. Then Dk(φ, 0)
vanishes for all but finitely many k.

This will be proved in the more precise form, stated below as Theorem 5.6,
due to Chow, Mallet-Paret and Yorke [2]. (See also the accounts in [15] and [16].)
Our exposition will follow closely that in [5] (but sharpened to include the full
result of Chow et al.).

Theorem 5.6. Let U be an open G-neighbourhood of 0 in a Banach G-module E
and let φ : U → E be a continuously differentiable mapping such that φ(0) = 0
and φ(U) has compact closure in E. Suppose that 0 is an isolated fixed-point of φk

for some fixed k ≥ 1.
Let Λ ⊆ N be the smallest set of natural numbers that is closed under forma-

tion of least common multiples and contains 1 and the order of each eigenvalue of
(Dφ)(0) that is a root of unity.

Suppose that k /∈ Λ. Then Dk(φ, 0) = 0 unless k = 2l, where l ∈ Λ is odd,
and in that case Dk(φ, 0) = ε · Dl(φ, 0), where ε ∈ B(2)(G) is defined in the text
and the product is formed in A(G × Z/2lZ).

Proof. We again write A for the compact operator Dφ(0).
(1) Suppose that 1 is not an eigenvalue of A. Then, since D1(φ, 0) = L(φ, 0),

we have already shown that

D1(φ, 0) = J([1 − A]) ∈ A(G) = B(1)(G),

where
J : KO−1

G (∗) → A(G)×

is the J-homomorphism.
(2) Suppose that k is even and that −1 is not an eigenvalue of A. Then,

writing L for the representation R of Z/2Z on which the generator acts as −1, we
have a class

J([(1 + A) ⊗ L]) ∈ A(G × Z/2Z) = B(1)(G) ⊕ B(2)(G).
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The first component is 1 ∈ A(G), because taking fixed-points with respect to Z/2Z

sends [(1 + A) ⊗ L] to 0. Let us write the second component as ε ∈ B(2)(G).
(3) Now suppose that l (l �= k) is a proper divisor of k and that every kth

root of unity which is an eigenvalue of A is an lth root of unity.
We examine the index of πk(φ) : Uk → Ek. As a Z/kZ-module, Ek = E⊗Vk,

where Vk is the representation Rk on which Z/kZ acts, in the usual way, by cyclic
permutation. The derivative of πk(φ) at 0 is πk(A) = A⊗S, where S : Vk → Vk is
given by the action of the generator 1 ∈ Z/kZ (so the cyclic shift by one step).

Now

Vk =

{
R ⊕ (

⊕
1≤r≤(k−1)/2 Lr) if k is odd,

R ⊕ (
⊕

1≤r<k/2 Lr) ⊕ L if k is even,

where Lr is the 1-dimensional complex representation C on which S acts as mul-
tiplication by e2πir/k, and L, if k is even, is the 1-dimensional real representation
R on which S acts as −1 (as in the case k = 2 already considered).

We split Ek = E ⊗ Vk as the direct sum F ′ ⊕ F ′′ of F ′ = E ⊗ Vl and
F ′′ = E ⊗ V ⊥

l , where Vl is the submodule fixed by lZ/kZ, and V ⊥
l is the direct

sum of the complex lines Lr for r not divisible by l and, in the special case that k
is even and l is odd, the real line L. Observe that, in this special case, −1 is not
an eigenvalue of A.

The proof will be completed by applying Lemma 5.3 to the G × Z/kZ-
equivariant map πk(φ) : Uk → F ′ ⊕F ′′. In the notation employed there, 1−A′′ is
non-singular and the index L(A′′, 0) is determined by the class of 1 − A′′ in

KO−1
G×Z/kZ

(∗) =

{
KO−1

G (∗) if k is odd,

KO−1
G (∗) ⊕ KO−1

G (∗) · [L] if k is even.

Apart from the special case, A′′ is C-linear and the KO-theory class is trivial,
because the complex K-group K−1

G×Z/kZ
(∗) is zero. Hence the index L(A′′, 0) ∈

A(G × Z/kZ) is equal to 1, except in the case that k is even and l is odd. In that
case, the class is the pullback of 1 + ε ∈ A(G × Z/2Z) to A(G × Z/kZ).

The index of the restriction of πk(φ) to the subspace Uk ∩F ′ fixed by lZ/kZ

is equal to p∗L(πl(φ), 0), where

p∗ : A(G × Z/lZ) → A(G × Z/kZ)

is induced by the projection p : Z/kZ → Z/lZ. (The homomorphism p∗ splits the
fixed-point homomorphism ρlZ/kZ.)

By Lemma 5.3, L(πk(φ), 0) is the product p∗L(πl(φ)) · L(A′′, 0). It follows
that Dk(φ, 0) = 0, except in the special case. When k = 2l and l is odd, then
D2l(φ, 0) ∈ B(2l)(G) is the product in A(G×Z/2lZ) of ε ∈ B(2)(G) and Dl(φ, 0) ∈
B(l)(G). �

Consider again a general G-map φ : U → X defined on an open G-subspace
of a G-ANR. Suppose that x ∈ U is a periodic point of φ, that is, φm(x) is defined
and equal to x for some m ≥ 1. The least such integer m, the minimal period of x,
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will be denoted by m(x). Clearly every point in the orbit P of x is periodic, with
the same minimal period, which we may write as m(P ). Let [P ] be the union of
the sets φi(P ), i ≥ 0. There is a free action of the group Z/m(P )Z on [P ] with
1 acting as φ, and [P ] thus becomes a transitive G × Z/m(P )Z-set determining
an element (α) ∈ Ξ(m(P ))(G)/G, where α : H → Z/m(P )Z is the homomorphism
defined on the subgroup H of elements g ∈ G such that g(x) = φi(x) for some
i ≥ 0 by α(g) = i (mod m(P )). We denote by e(P ) the least positive integer such
that φe(P )(P ) ⊆ P ; in other words, e(P ) is the order of the image of α.

Suppose that for some integer k ≥ 1, necessarily a multiple of m(P ), the
subset [P ] is an isolated fixed-subset of φk. Then we may choose an open G-
neighbourhood V ⊆ U of [P ] in which the only fixed-points of φk are the points
of [P ]. In order to define the fixed-point indices, we assume that V may be chosen
so that φ(V ) has compact closure in X.

Recall from Lemma 2.7 that for a divisor l of k we may regard B(l)(G) as an
A(G)-submodule of B(k)(G).

Lemma 5.7. In the situation described above, let l = k/m(P ) and let K ≤ G be
the stabilizer subgroup, ker α, of the point x. Then

(i) Dk(φ|V, V ) = Dk/e(P )(φe(P ), P ) ∈ B(k/e(P ))(G) ⊆ B(k)(G);
(ii) Dk/e(P )(φe(P ), P ) = Dl(φm(P ), P ) ∈ B(l)(G) ⊆ B(k/e(P ))(G);
(iii) Dl(φm(P ), P ) ∈ B(l)(G) is the image of Dl(φm(P ), x) ∈ B(l)(K) under the

induction homomorphism B(l)(K) → B(l)(G).

Proof. Choose an open G-neighbourhood W ⊆ V of P containing no other points
of [P ]. The argument used to establish Proposition 3.13 of [5] then shows that
Dk(φ|V, V ) ∈ B(k)(G) is equal to the image of Dk/e(P )(φe(P )|W,W ) ∈ Bk/e(P )(G)
under the inclusion map, and so proves (i).

Lemma 3.9 in [5], with the formal introduction of G-equivariance, verifies
(ii). (Like Lemma 4.4, this is essentially the classical argument used to prove the
commutativity formula for the Lefschetz index.)

The statement (iii) follows immediately from Lemma 5.1. �
The next global result extends a theorem of Franks [12] to the equivariant

case.

Theorem 5.8. Suppose that φ : X → X is a self-map of a compact G-ANR such
that the kth power φk, for some fixed k ≥ 1, has only finitely many fixed-points.
Then

Dk(φ,X) =
∑
[P ]

Dk/m(P )(φm(P ), P ) ∈ B(k)(G),

where P runs over the set of orbits of periodic points fixed by φk, m(P ) is the
least integer m ≥ 1 such that φm fixes each point of P , and [P ] is the union of the
translates φi(P ) of P .

Proof. This now follows easily from Lemma 5.7(ii) and the additivity and local-
ization properties (Proposition 4.7) of the Dold index. �
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Example 5.9. Tori provide the simplest examples. Let EZ be a finitely gener-
ated free Z-module with a (linear) action of G and let AZ : EZ → EZ be a
G-endomorphism. Write E = R ⊗ EZ and A = 1 ⊗ AZ : E → E. Then A induces
a G-equivariant self-map φ : X → X of the torus X = E/EZ. The fixed-subspace
is Fix(φ) = (1 − A)−1(EZ)/EZ.

Suppose that, for each k ≥ 1, the endomorphism 1−Ak is non-singular and,
in the notation of Lemma 5.2, that det(1 − Ak

α) > 0 for each irreducible real
representation Vα of G with EndGVα = R. Then the set, Dk say, of periodic points
with minimal period k is a finite G-set with a free action of Z/kZ, via φ, and

Dk(φ,X) = [Dk] ∈ B(k)(G).

We conclude this section with an equivariant form of a theorem of Matsuoka
and Shiraki [20], [21].

Corollary 5.10. Suppose that φ : X → X is a G-equivariant C1-self-map of a
closed (smooth, finite-dimensional) G-manifold X such that each power φr has only
isolated fixed-points. Let p > 2 be an odd prime. Suppose that for each periodic point
x of φ the minimal period m(x) is not divisible by p and no eigenvalue of Dφm(x)(x)
is a root of unity with order divisible by p. If p divides k then Dk(φ,X) = 0 ∈
B(k)(G).

Proof. Suppose that k is a multiple of p. Consider a periodic point x with pe-
riod m(x) dividing k. Using the notation of Lemma 5.7, we shall show that
Dl(φm(P ), x) ∈ B(l)(K) is zero. It will then follow from part (i) of Lemma 5.7
and Theorem 5.8 that Dk(φ,X) is zero. By hypothesis, p does not divide m(P ),
and so p divides l. We now apply Theorem 5.6 to the isolated fixed-point x of the
map φm(P ). Defining Λ ⊆ N as in that theorem, we see that l /∈ Λ and, if l is even,
l/2 /∈ Λ. Hence Dl(φm(P ), x) = 0. �

Further results on isolated periodic points can be found in [1], [11] and [16].

6. Homotopy fixed-point indices

We begin with a survey of the equivariant Nielsen–Reidemeister index, adapting
the fibrewise theory described in [4]; see [14] for a more conventional account.
Throughout this section, X will be a G-ANR and φ : X → X will be a G-map.
The homotopy fixed-point set of φ is defined to be the G-space

h-Fix(φ) = {γ : [0, 1] → X | γ(1) = φ(γ(0))}
(of continuous paths). For example, the homotopy fixed-point set of the identity
map is the free loop space of X. There is a projection map h-Fix(φ) → X given
by evaluation at 0 and an inclusion of the fixed-subspace Fix(φ) ↪→ h-Fix(φ) as
the space of constant paths.

Lemma 6.1 (Properties of the homotopy fixed-point set).
(i) The homotopy fixed-point set h-Fix(φ) is a G-ANR.
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(ii) The map φ∗ : h-Fix(φ) → h-Fix(φ) mapping γ to φ ◦ γ is homotopic to the
identity.

(iii) A G-homotopy φt : X → X, 0 ≤ t ≤ 1, determines (up to homotopy) a
G-homotopy equivalence h-Fix(φ0) → h-Fix(φ1).

Proof. (i) Let U ⊆ E be an open G-subspace of a normed G-vector space E and
let i : X → U and r : U → X be G-maps such that r ◦ i = 1. To simplify
the notation we may assume that i is the inclusion of a subspace X ⊆ U . The
homotopy fixed-point set is thus included as a subspace of the normed G-vector
space of continuous paths [0, 1] → E. Let W be the set of paths γ : [0, 1] → U ⊆ E
such that γ′(t) = γ(t) + t((φ ◦ r)(γ(0))− γ(1)) ∈ U for 0 ≤ t ≤ 1. Then W is open
in the normed vector space C([0, 1];E) and retracts onto h-Fix(φ) by the mapping
γ �→ r ◦ γ′.

(ii) An explicit homotopy between γ and φ ◦ γ is given by

As(t) =

{
γ(s + t) if 0 ≤ t ≤ 1 − s,
φ(γ(s + t − 1))) if 1 − s ≤ t ≤ 1,

(0 ≤ s ≤ 1).

We have A0 = γ and A1 = φ ◦ γ.
(iii) This follows from the description of the homotopy fixed-point set of φ as

the pullback of the fibration

map([0, 1],X) → X × X, γ �→ (γ(0), γ(1)),

under the map x �→ (x, φ(x)) : X → X × X. �
Example 6.2. Consider again the self-map φ : X → X of the torus E/EZ in-
troduced in Example 5.9. The homotopy fixed-point set is G-homotopy equiva-
lent to the discrete space EZ/(1 − A)EZ. If 1 − A is non-singular, the inclusion
Fix(φ) ↪→ h-Fix(φ) is an equivariant homotopy equivalence.

Now suppose that φ : X → X is compactly fixed. Then the Lefschetz index
L̃(φ,X) ∈ ωG

0 (X) lifts to the homotopy Lefschetz index

h-L(φ,X) ∈ ωG
0 (h-Fix(φ)).

(Although this notation for the Nielsen–Reidemeister index is not standard, it
is systematic, and better than the confusing notation ‘N ’ used in [4].) The in-
dex is constructed in [4] by extending the inclusion Fix(φ) ↪→ h-Fix(φ) to a G-
neighbourhood U of Fix(φ) using the equivariant uniform local contractibility of
X and defining h-L(φ,X) to be the image of L̃(φ|U,U) ∈ ωG

0 (U). (If X is an open
subspace of a normed G-vector space E, we may take U to be the set of points
x ∈ X such that γx(t) = (1 − t)x + tφ(x) ∈ X for all t ∈ [0, 1] and map x ∈ U to
γx ∈ h-Fix(φ).) By construction, if φ has no fixed-points, then h-L(φ,X) = 0.

The subspace of h-Fix(φ) fixed by a subgroup H ≤ G is clearly just the ho-
motopy fixed-point set of the restricted map φH : XH → XH and its components
are the Nielsen–Reidemeister classes of φH . Hence ωG

0 (h-Fix(φ)) can be computed
as a free abelian group by Lemma 3.1.

We shall now introduce the corresponding homotopy Dold indices.
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Definition 6.3. Let φ : X → X be a G-map such that, for a given k ≥ 1, the
G × Z/kZ-equivariant map

πk(φ) : Xk → Xk

is compactly fixed. We define the homotopy Dold index

h-Dk(φ,X) ∈ ωG
0 (EG(Z/kZ) ×Z/kZ h-Fix(πkφ))

to be the top component of the homotopy Lefschetz index

h-L(πk(φ),Xk) ∈ ω
G×Z/kZ

0 (h-Fix(πk(φ)))

in the canonical decomposition of the equivariant stable homotopy of h-Fix(πk(φ))
(as given in Lemma 3.3 for the space Xk).

Various properties follow at once from the definition.

Lemma 6.4 (Properties of the homotopy Dold indices).
(i) Under the homomorphism

ωG
0 (EG(Z/kZ) ×Z/kZ h-Fix(πk(φ))) → ωG

0 (EG(Z/kZ) ×Z/kZ Xk)

induced by the projection h-Fix(πk(φ)) → Xk the homotopy index h-Dk(φ,X)
maps to D̃k(φ,X).

(ii) If φk has no fixed-points, then h-Dk(φ,X) = 0.
(iii) Suppose that φt : X → X, 0 ≤ t ≤ 1, is a G-homotopy satisfying the appro-

priate compactness condition (that there exists an open neighbourhood of the
compact set {(t, x) ∈ [0, 1] × X | φk

t (x) = x} mapping under the homotopy
(t, x) �→ φtx into a compact subset of X). Then h-Dk(φ0,X) is mapped to
h-Dk(φ1,X) under the G×Z/kZ-equivalence h-Fix(πk(φ0)) → h-Fix(πk(φ1))
determined by the homotopy. �

Remark 6.5. Part (iii) of Lemma 6.4 gives, in particular, the Jiang-invariance of
the homotopy Dold indices. The various G-homotopies φt : X → X (satisfying the
compactness condition) with φ0 = φ = φ1 determine a group of automorphisms of
ωG

0 (EG(Z/kZ) ×Z/kZ Xk) which fixes h-Dk(φ,X).

Suppose that l divides k. Then the subspace of h-Fix(πk(φ)) fixed by the
subgroup of index l in Z/kZ is naturally identified, G × Z/lZ-equivariantly, with
h-Fix(πl(φ)). So we may write the decomposition as

ω
G×Z/kZ

0 (h-Fix(πk(φ))) =
⊕
l | k

ωG
0 (EG(Z/lZ) ×Z/lZ h-Fix(πl(φ))).

Following the argument used in the topological case, we see that the components
of h-L(πk(φ),Xk) are the Dold indices h-Dl(φ,X).

Lemma 6.6. The homotopy fixed-point set h-Fix(πk(φ)) of πk(φ) is G-homotopy
equivalent to the homotopy fixed-point set h-Fix(φk) of the iterate φk : X → X.
Moreover, the action of the generator 1 of Z/kZ on h-Fix(πk(φ)) corresponds to
the operation of φ∗, as a G-homotopy equivalence, on h-Fix(φk).
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Proof. We can think of an element of h-Fix(πk(φ)) as a k-tuple (γ1, . . . , γk) of
paths γi : [0, 1] → X such that γi(1) = φ(γi−1(0)) (for i ∈ Z/kZ). Concatenation
of the paths γk, φ ◦ γk−1, . . . , φ

k−1 ◦ γ1 gives a path from γk(0) to φk(γk(0)), so an
element of h-Fix(φk). This defines a map λ : h-Fix(πk(φ)) → h-Fix(φk).

In the opposite direction, given γ ∈ h-Fix(φk), we may write it as a similar
concatenation of paths δk, δk−1, . . . , δ1. Put γk = φk ◦ δk, γk−1 = φk−1 ◦ δk−1,
. . . , γ1 = φ ◦ δ1. This defines an element of h-Fix(πk(φ)) and we have thus con-
structed a map μ : h-Fix(φk) → h-Fix(πk(φ)).

Now the composition λ ◦ μ : h-Fix(φk) → h-Fix(φk) is induced by φk, and
μ◦λ : h-Fix(πk(φ)) → h-Fix(πk(φ)) is induced by (πk(φ))k. Both compositions are
homotopic to the identity, by Lemma 6.1(ii). �

This leads us to a homotopy version of the maps σ(k) in Definition 3.7.

Definition 6.7. For k ≥ 1,

σ(k) : ωG
0 (EG(Z/kZ) ×Z/kZ h-Fix(πk(φ))) → ωG

0 (h-Fix(φk))

is defined to be the composition of the inclusion in ω
G×Z/kZ

0 (h-Fix(πk(φ))) of the
top summand and the forgetful map to ωG

0 (h-Fix(πk(φ))) using the equivalence
from Lemma 6.6.

Proceeding as in the case of the topological indices, we can express the ho-
motopy Lefschetz index of φk in terms of the Dold indices.

Theorem 6.8. Let φ : X → X be an equivariant self-map of a G-ANR X such
that, for a given k ≥ 1, there is an open neighbourhood of Fix(φk) whose image
under φ has compact closure in X. Then

h-L(φk,X) =
∑
l | k

(jl)∗σ(l)h-Dl(φ,X) ∈ ωG
0 (h-Fix(φk)),

where jl : h-Fix(φl) ↪→ h-Fix(φk) is the natural inclusion. �
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vent. Math. 91 (1988), 129–135.

[18] K. Komiya, Congruences for fixed point indices of equivariant maps and iterated
maps. In: Topological Fixed Point Theory and Applications (Tianjin, 1988), Lecture
Notes in Math. 1411, Springer, 1989, 130–136.

[19] L. G. Lewis, Jr., J. P. May and M. Steinberger, Equivariant Stable Homotopy Theory.
Lecture Notes in Math. 1213, Springer, Berlin, 1986.

[20] T. Matsuoka and H. Shiraki, Smooth maps with finitely many periodic points.
Mem. Fac. Sci. Kochi Univ. Ser. A Math. 11 (1990), 1–6.

[21] H. Shiraki, Some topological properties of C1-maps with finitely many periodic points.
Mem. Fac. Sci. Kochi Univ. Ser. A Math. 21 (2000), 93–102.

[22] M. Shub and D. Sullivan, A remark on the Lefschetz fixed point formula for differ-
entiable maps. Topology 13 (1974), 189–191.

[23] H. Ulrich, Fixed Point Theory of Parametrized Equivariant Maps. Lecture Notes in
Math. 1343, Springer, Berlin, 1988.

M. C. Crabb
Department of Mathematical Sciences
University of Aberdeen
Aberdeen AB24 3UE, UK
e-mail: m.crabb@maths.abdn.ac.uk


	1. Introduction
	2. Combinatorial fixed-point indices
	3. Equivariant stable homotopy groups
	4. Topological fixed-point indices
	5. Isolated fixed orbits
	6. Homotopy fixed-point indices
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


