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Abstract The loop homology ring of an oriented closed manifold, defined by Chas and Sullivan, is
interpreted as a fibrewise homology Pontrjagin ring. The basic structure, particularly the commutativity
of the loop multiplication and the homotopy invariance, is explained from the viewpoint of the fibrewise
theory, and the definition is extended to arbitrary compact manifolds.
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1. Introduction

In [3] Chas and Sullivan defined the loop product on the (rational) homology, H∗+d(LM),
of the free loop space of an oriented closed d-manifold M , with a dimension shift d,
and showed that the product gave H∗+d(LM) the structure of a (graded) commutative
associative H∗(M)-algebra. The free loop space LM , defined as the space of continuous
loops α : R/Z → M , fibres over M by evaluation at 0: α ∈ LM �→ α(0) ∈ M , and the
fibre at x ∈ M is naturally identified with the space of based loops Ω(M, x) in the space
M with basepoint x. In this framework the loop product can be interpreted as a fibrewise
Pontrjagin product in the fibrewise homology of p : LM → M over M . This paper gives
an account of loop homology from this point of view, with some examples. Although the
elementary definitions can be made for any compact Euclidean neighbourhood retract
M , the proof of the commutativity of the loop product given in § 5 requires M to be
a smooth, but not necessarily orientable, closed manifold. The results are extended to
a compact manifold with non-empty boundary ∂M by looking at the relative fibrewise
homology over (M, ∂M).

Granted some familiarity with fibrewise homology theory, the definition of loop homol-
ogy as a fibrewise theory and the verification of its basic properties are straightforward
exercises. In § 2 we provide a brief review of fibrewise homology theory. For more details
the reader is referred to [9, Part II, § 15]; the account of fibrewise stable homotopy given
there was written primarily as a source for applications to geometry, and this is one
such application (see also [8]). Section 3 describes the basic definition and structure of
loop homology as a fibrewise homology theory. In § 4 we relate the construction to the
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definition given by Cohen and Jones [4] in terms of the Thom space of the pull-back
−p∗τM to LM of the negative of the tangent bundle τM of the smooth manifold. (The
relationship between the two definitions is, in fact, a rather old result, going back at least
to [10].) Section 5 treats the commutativity of the loop product.

There is now a fairly extensive literature on loop homology. The reader is referred, in
particular, to [12–16].

2. A review of fibrewise homology theory

We fix a base space B, which will be a compact Euclidean neighbourhood retract (ENR).
All fibrewise pointed spaces over B will be understood to be locally fibre homotopy
trivial with each fibre of the homotopy type of a pointed CW complex. We also make the
technical restriction that fibrewise pointed spaces be homotopy well pointed (as in [9]).
A subscript x is used to indicate the fibre of a fibrewise space at a point x ∈ B of the
base.

2.1. Definitions

Let E → B and F → B be fibrewise pointed spaces with the fibres of E being of the
homotopy type of finite complexes. Denoting the Eilenberg–MacLane space K(Z, n) by
Kn, we define the fibrewise cohomology groups (with Z-coefficients) for i ∈ Z as direct
limits of sets of fibrewise pointed homotopy classes over B:

Hi
B{E; F} := lim−→

n

[Σn
BE; (B × Kn+i) ∧B F ]B ,

where ΣB is the fibrewise suspension. More generally, if A ⊆ B is a closed sub-ENR of
B, we define the relative groups

Hi
(B,A){E; F} := lim−→

n

[Σn
BE; (B × Kn+i) ∧B F ](B,A)

as homotopy classes of fibrewise maps over B which are null (that is, zero) over A.
If B is a point, we drop the suffix and write simply H∗{X; Y } for pointed CW com-

plexes X and Y (with X finite). (The notation is not widely used in algebraic topol-
ogy, but the cognate KK-notation for Kasparov’s K-groups of C∗-algebras is stan-
dard.) Thus, Hi{X; S0} is the (reduced) cohomology H̃i(X) of the pointed space X,
and Hi{S0; Y } = H̃−i(Y ) is the homology of Y . In simplicial terms, Hi{X; Y } is the
Z-module of chain homotopy classes of chain maps of degree i from the reduced singular
chain complex C̃∗(X) of X to C̃∗(Y ).

In general, we refer to H∗
B{E; B × S0} as the fibrewise cohomology of the fibrewise

pointed space E → B, and to H∗
B{B × S0; F} as the fibrewise homology of F over B.

2.2. Fibrewise cohomology

The fibrewise cohomology group is easily seen to be just the (reduced) cohomology
group of E modulo the subspace B included as the fibrewise basepoint:

Hi
B{E; B × S0} = H̃i(E/B).
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More generally, when F is trivial, say F = B × Y , we have the identification:

Hi
B{E; B × Y } = Hi{E/B; Y }.

2.3. Fibrewise homology

The fibrewise homology groups do not have a corresponding classical interpretation.
We shall be concerned in this paper with the functor

X �→ H∗
B{B × X; F}

on pointed finite complexes X, for a fixed fibrewise space F → B. In the special case that
B is a closed manifold there is a representability theorem, stated precisely as Proposi-
tion 4.1:

H∗
B{B × X; F} = H∗{X; (N ∧B F )/B},

where N is a certain stable space over B (an appropriate fibrewise desuspension of the
fibrewise one-point compactification of the normal bundle of an embedding of B in some
Euclidean space).

2.4. Products

The fibrewise cohomology has smash and composition products:

∧ : Hi
B{E; F} ⊗ Hi′

B{E′; F ′} → Hi+i′

B {E ∧B E′; F ∧B F ′},

◦ : Hj
B{E; F} ⊗ Hi

B{D; E} → Hj+i
B {D; F}

(for fibrewise pointed spaces E, E′, F , F ′ and D over B with the fibres of E, E′ and D

finite). In particular, H∗
B{E; F} is a (graded) H∗(B)-module.

2.5. The Serre spectral sequence

The classical construction generalizes to give a Serre spectral sequence, functorial for
E and F in the category of fibrewise pointed spaces, with E2-term

Ep,q
2 = Hp(B; Hq),

where Hq is the local coefficient system with Hq
x = Hq{Ex; Fx}, x ∈ B, converging to

H∗
B{E; F}. The differential dr has degree (r, −r+1) (see [9, Part II, Proposition 15.20]).

The spectral sequence is multiplicative, that is, the differentials are derivations, with
respect to the smash and composition products (in § 2.4).

2.6. The fibrewise Pontjragin product

Let Φ → B be a locally fibre homotopy trivial fibrewise space over B (with fibres of the
homotopy type of CW complexes). We write Φ+B → B for the fibrewise pointed space
obtained by adjoining a disjoint basepoint in each fibre. (Thus, the total space Φ+B is
the disjoint union of Φ and B.)
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Suppose that Φ → B is a fibrewise Hopf space with (homotopy) associative multipli-
cation m : Φ×B Φ → Φ and (homotopy) identity e : B → Φ. Then we have an associative
Pontrjagin product

m∗ : H∗
B{E; Φ+B} ⊗ H∗

B{E′; Φ+B} → H∗
B{E ∧B E′; Φ+B}.

In particular, H∗
B{B × S0; Φ+B} is an associative algebra over H∗(B) with identity ele-

ment e∗ ∈ H0
B{B × S0; Φ+B}.

3. The definition of loop homology

Let M be a compact ENR, for example, a closed manifold or finite complex. Consider
the fibrewise pointed space M × M → M : (x, y) �→ x, pointed by the diagonal section:
x �→ (x, x). We shall show that it is a pointed homotopy fibre bundle, in the terminology
of [9], that is, it is locally fibre homotopy trivial as a fibrewise pointed space. (In more
standard, but less geometric, terminology, M × M → M is a based fibration.)

Lemma 3.1. Let M be a compact ENR. Then the fibrewise pointed space M ×M →
M , pointed by the diagonal section, is locally fibre homotopy trivial.

Proof. We may assume that M is a subspace of an open subspace U of some Euclidean
space V and that r : U → M is a retraction. Fix a ∈ M . There is a neighbourhood W of
a in M such that x ± (b − a) ∈ U for all x ∈ M , b ∈ W . Define φ, ψ : W × M → W × M

by φ(b, x) = (x, f(b, x)), where f(b, x) = r(x + (b − a)), and ψ(b, x) = (b, g(b, x)), where
g(b, x) = r(x − (b − a)). Thus, φ(b, a) = (b, b) and ψ(b, b) = (b, a). By an appropriate
choice of W we may arrange that ht(b, x) = (1 − t)f(b, g(b, x)) + tx ∈ U and kt(b, x) =
(1 − t)g(b, f(b, x)) + tx ∈ U for all x ∈ M , b ∈ W , t ∈ [0, 1]. Notice that ht(b, b) = b and
kt(b, a) = a. Then r ◦ ht and r ◦ kt give homotopies φ ◦ ψ � 1 and ψ ◦ φ � 1. The map φ is,
thus, a local fibre homotopy trivialization of the fibrewise pointed space M×M → M . �

Remark 3.2. If M is a closed manifold, the fibrewise pointed space M × M → M

is even topologically locally trivial, essentially because the diffeomorphism group of a
connected closed manifold acts transitively (see, for example, [9, Part II, Example 1.20]).

The fibre of M × M → M over x ∈ M is the pointed space {x} × M with basepoint
(x, x). It is naturally identified, by projection, with the space M with the basepoint x,
and we shall think of the fibres in this way.

The (continuous) free loop space LM = map(R/Z, M) fibres over M by evaluation at
the basepoint 0 ∈ R/Z as the fibrewise loop space ΩM (M × M):

p : LM = ΩM (M × M) → M, α �→ α(0).

The fibre at x ∈ M is (naturally identified with) the loop space Ω(M, x) of M with
x as basepoint. Topologically, LM is an absolute neighbourhood retract (ANR); for, if
M is a retract of an open subset of a finite-dimensional R-vector space V , then LM is
a retract of an open subset of the Banach space of continuous loops in V . Recall that
(LM)+M = LM 	 M is the fibrewise pointed space over M obtained by adjoining a
basepoint to each fibre.
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Definition 3.3. To the compact ENR M we associate the generalized cohomology
theory H

∗
M defined by

H̃
∗
M (X) = H∗

M{M × X; (LM)+M}
for a finite pointed complex X. The graded abelian group H̃

∗
M (X) is a module over

H∗(M). As usual, for a finite complex P we write H
∗
M (P ) = H̃

∗
M (P+), where P+ is the

pointed space obtained by adding a disjoint basepoint to P , and, if Q is a subcomplex
of P , we set H

∗
M (P, Q) = H̃

∗
M (P/Q).

There is a fibrewise Hopf structure

m : ΩM (M × M) ×M ΩM (M × M) → ΩM (M × M)

defined in the fibre over x by the standard homotopy associative loop multiplication
Ω(M, x) × Ω(M, x) → Ω(M, x), with (homotopy) identity

e : M → ΩM (M × M)

given in the fibre by the inclusion of the constant loop at x.
The fibrewise Pontrjagin multiplication (see § 2.6) thus gives an associative loop product

µ : H̃
i
M (X) ⊗ H̃

j
M (Y ) → H̃

i+j
M (X ∧ Y ). (3.1)

In particular, the coefficient ring H
∗
M (∗), which (following [3,4]) will be called the loop

homology of M , is an associative graded H∗(M)-algebra with identity 1 ∈ H
0
M (∗) given

by the section e. (The algebra is also equipped with an involution, given by reversing
loops: ΩM (M × M) → ΩM (M × M).)

We record two immediate consequences of the definition.

Proposition 3.4. For each point x ∈ M , there is a natural multiplicative transfor-
mation:

H̃
∗
M (X) → H∗{X; (Ω(M, x))+}.

Proof. This is given by restriction to fibres at x:

H̃
∗
M (X) = H∗

M{M × X; (LM)+M} → H∗{X; (Ω(M, x))+}.

�

Proposition 3.5. There exists a natural multiplicative transformation of H∗(M)-
modules:

H̃
∗
M (X) → H̃∗(M+ ∧ X).

Proof. The transformation is induced by the projection LM → M :

H̃
∗
M (X) = H∗

M{M × X; (LM)+M} → H∗
M{M × X; M × S0} = H̃∗(M+ ∧ X).

It is evidently multiplicative with respect to µ and the cup product:

H̃∗(M+ ∧ X) ⊗ H̃∗(M+ ∧ Y ) → H̃∗(M+ ∧ (X ∧ Y )).

�
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Next we investigate the dependence of the loop homology on M .

Lemma 3.6. Let f : M → N be a homotopy equivalence between compact ENRs.
Then the fibrewise map

(LM)+M
��

��

(f∗LN)+M

��
M M

determined by f is a pointed fibre homotopy equivalence.

Proof. On the fibres at x ∈ M we have the induced map

Ω(M, x) → Ω(N, f(x)),

which is a pointed homotopy equivalence because the ENRs M and N are well pointed
by any choice of basepoint. In view of Dold’s theorem (as, for example, in [9, Part II,
Theorem 1.29]), we recognize a pointed fibre homotopy equivalence over M . �

We thus obtain isomorphisms

H∗
M{M × X; (LM)+M} f∗−→∼= H∗

M{M × X; (f∗LN)+M} f∗

←−∼= H∗
N{N × X; (LN)+N},

the first induced by the fibre homotopy equivalence in Lemma 3.6 and the second by
lifting from N to M . Denoting the composition (f∗)−1f∗ by f#, we have established the
following homotopy invariance property of loop homology.

Theorem 3.7 (homotopy invariance of loop homology). Let f : M → N be a
homotopy equivalence between compact ENRs. Then there is an induced equivalence of
multiplicative cohomology theories

f# : H̃
∗
M (X) → H̃

∗
N (X).

�

The Serre spectral sequence in § 2.5 yields the following spectral sequence for loop
homology, which has appeared, as an independent construction, in [5].

Proposition 3.8 (Serre spectral sequence for loop homology). There is a mul-
tiplicative spectral sequence with E2-term H∗(M ; H∗), where H∗ is the local coeffi-
cient system with H∗

x = H−∗(Ω(M, x)) at x ∈ M , converging to the loop homology
ring H

∗
M (∗). �

Example 3.9. The calculation of the loop homology ring H
∗
M (∗) of an odd-dimen-

sional sphere M = S2n+1, n � 1, was made in [9] (see Part II, Proposition 15.28) and the
discussion following Part II, Remark 15.31)) and in [5]. If we write M as the unit sphere
S(Cn+1) in C

n+1, we can split the tangent bundle as τM = R⊕ζ, where the fibre ζx at x

is the orthogonal complement of Cx in C
n. Then Ω(M, x) can be written as ΩS(Cx⊕ζx)
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and identified with ΩΣζ+
x , where the sphere ζ+

x is the one-point compactification of ζx.
This allows us to write LM as the fibrewise loop space

LM = ΩMΣMζ+
M

of the fibrewise suspension of the fibrewise one-point compactification ζ+
M of the vector

bundle ζ. The inclusion of the (pointed) sphere bundle

ζ+
M ↪→ ΩMΣMζ+

M

by the James construction (in each fibre) gives, as the image of the Thom class of the
oriented vector bundle ζ, a fibrewise homology class z which generates the loop homology
as a polynomial ring over H∗(M):

H
∗
M (∗) = (Z[u]/(u2)) ⊗ Z[z], where u ∈ H2n+1(M), z ∈ H

−2n
M (∗).

More generally, we can look at the loop homology of M = N × S2n+1 for any compact
ENR N . By the same method we obtain

H̃
∗
N×S2n+1(X) = H̃

∗
N (X) ⊗ H

∗
S2n+1(∗).

�
Example 3.10. Let M = U(n), where n � 1, be the unitary group. Then the bundle

LM → M is trivial as a fibrewise Hopf space: L U(n) = U(n)×Ω U(n). So we may write
down the loop homology as

H
∗
U(n)(∗) = H∗(M) ⊗ Z[x0, x

−1
0 ][x1, . . . , xn−1],

where xi ∈ H
−2i
M (∗). (For the related calculation of the fibrewise Pontrjagin ring of the

fibrewise Hopf space LB U(n) → B U(n) with fibre U(n), see [8,9].)
This includes the special case M = U(1) = S1, for which the free loop space LM → M

is fibre homotopy equivalent to M × Z → M and

H
∗
M (∗) = (Z[u]/(u2)) ⊗ Z[z, z−1], where u ∈ H1(M), z ∈ H

0
M (∗).

�
In [2] we established a fibrewise stable splitting of LM → M when M is a sphere or

real projective space. This result specializes to give the following additive decomposition
of the loop homology.

Example 3.11. Let M be the real projective space of dimension d. Then

H
∗
M (∗) = H∗(M) ⊕

⊕
l�1

H̃∗+l(S(τM)−lπ∗τM ),

as a module over H∗(M), where π : S(τM) → M is the sphere bundle of the tangent
bundle τM . (Here and elsewhere we write Bξ for the Thom space of a finite-dimensional
real vector bundle ξ over a base B.) �
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The Serre spectral sequence in Proposition 3.8 was used by Cohen et al . [5] to calculate
the loop homology of even- (and odd-) dimensional spheres and of complex projective
spaces. (See also [9, Part II, Propositions 15.30 and 15.33] and [1] for similar calculations
of fibrewise Pontrjagin rings.)

In considering manifolds with boundary, as in the next section, we shall require the
following extension of the basic definition.

Definition 3.12. Let A be a closed sub-ENR of the compact ENR M . Then we define

H̃
∗
(M,A)(X) = H∗

(M,A){M × X; (LM)+M}.

The Pontrjagin product provides an associative loop multiplication

µ : H̃
∗
(M,A)(X) ⊗ H̃

∗
(M,A)(Y ) → H̃

∗
(M,A)(X ∧ Y ). (3.2)

In particular, H
∗
(M,A)(∗) is an associative H∗(M)-algebra. It will not normally possess

an identity element if A is non-empty.

Example 3.13. Indeed, if M is the disc Dd, d � 1, and A is its boundary ∂Dd, the loop
homology algebra is Z concentrated in dimension d. For the inclusion, M×S0 → (LM)+M

is a fibre homotopy equivalence and we may, more generally, calculate

H̃
∗
(M,A)(X) = H∗

(M,A){M × X; M × S0} = H̃∗−d(X).

4. The loop homology of a smooth manifold

We recall the following result from [10, § 9, particularly Lemmas 9.3 and 9.11].

Proposition 4.1. Suppose that M is a closed (smooth) manifold, with tangent bundle
τM . Then there is a natural equivalence,

λM : H∗
M{M × X; F}

∼=−→ H∗{X; (F, M)−p∗τM},

for any finite pointed complex X and any pointed homotopy fibre bundle p : F → M with
fibres of the homotopy type of CW complexes. Naturality in X and F has the obvious
meaning; naturality in M is to be understood as follows. Suppose that f : M ′ → M is a
(continuous) map from a closed manifold M ′, and write p′ : F ′ → M ′ for the pull-back
of F → M . Then there is a commutative diagram

H∗
M{M × X; F} f∗

��

λM
∼=

��

H∗
M ′{M ′ × X; F ′}

λM′∼=
��

H∗{X; (F, M)−p∗τM}
f !

�� H∗{X; (F ′, M ′)−p′∗τM ′}

in which f∗ is given by lifting from M to M ′ and the Umkehr map f ! is defined by the
Pontrjagin–Thom construction. �
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In the statement, the relative Thom space (or, rather, spectrum) (F, M)−p∗τM is the
homotopy cofibre of the inclusion

M−τM → F−p∗τM

of Thom spaces (given by the inclusion of the basepoint section M ↪→ F ).
Although the result in Proposition 4.1 was described in [10] as ‘more or less standard’,

it was, perhaps, not so well known at that time. Other accounts have since become
available (see, for example, [9, Part II, Corollary 12.41 and Proposition 12.43)] or [13]).
When F is a trivial bundle, the isomorphism λM reduces to the Poincaré–Atiyah dual-
ity between M+ and M−τM , and the naturality involving f is the standard relation
between the Umkehr f ! and the induced map f∗ under duality. As is explained in [10,
p. 401], the general result can be established, like the duality theorem, by constructing
λM and an inverse map µM explicitly using Umkehr maps and then checking, by an
essentially formal argument using the properties of the Umkehr, that λM and µM are
mutual inverses. The correspondence between f∗ and f ! (which was not discussed in [10])
follows from the functoriality of the Umkehr map. It is also clear, from the nature of the
proof, that the result (stated in [10] for stable cohomotopy) holds for other cohomology
theories.

The correspondence in Proposition 4.1 allows us to relate our definition (Definition 3.3)
of loop homology in terms of fibrewise homology to the definition given by Cohen and
Jones in [4].

Theorem 4.2. Let M be a closed (smooth) manifold. Then there is a natural equiv-
alence,

H̃
∗
M (X) = H∗

M{M × X; (LM)+M} λM−−→ H∗{X; (LM)−p∗τM},

under which the fibrewise product in H̃
∗
M (X) corresponds to the product defined by

Cohen and Jones using the Pontrjagin–Thom construction.

Proof. We have to show that the fibrewise Pontrjagin product corresponds under
the equivalence λM of Proposition 4.1 to the Cohen–Jones version of the Chas–Sullivan
multiplication. This will follow from the commutativity of the diagram in Figure 1, in
which the left-hand column is a factorization of the loop multiplication µ and the right-
hand column defines the Cohen–Jones multiplication.

In the square [1], the maps ∧ are given by the (exterior) smash product and LM ×LM

fibres over M × M by the projection p × p. The map ∆ in the square [2] is the diagonal
M → M ×M ; commutativity follows from the naturality of the equivalence λ. The square
[3] commutes by naturality of Proposition 4.1 in F . �

When M is an oriented closed manifold of dimension d, we may use the Thom isomor-
phism for τM to identify H∗{X; (LM)−p∗τM} with the homology H∗−d{X; (LM)+} of
LM with a shift of degree d. This is the case considered by Chas and Sullivan in [3].
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H∗
M{M × X; (LM)+M}

⊗H∗
M{M × Y ; (LM)+M}

λM ⊗λM ��

∧
��

H∗{X; (LM)−p∗τM}
⊗H∗{Y ; (LM)−p∗τM}

∧
��

H∗
M×M{(M × M) × (X ∧ Y );

(LM × LM)+(M×M)}

=

��

[1]
H∗{X ∧ Y ;

(LM)−p∗τM ∧ (LM)−p∗τM}

=

��
H∗

M×M{(M × M) × (X ∧ Y );
(LM × LM)+(M×M)}

λM×M ��

∆∗

��

[2]

H∗{X ∧ Y ;
(LM × LM)−(p×p)∗τ(M×M)}

∆!

��
H∗

M{M × (X ∧ Y ); (LM ×M LM)+M} λM ��

m∗

��
[3]

H∗{X ∧ Y ; (LM ×M LM)−p∗τM}

m∗

��
H∗

M{M × (X ∧ Y ); (LM)+M} λM �� H∗{X ∧ Y ; (LM)−p∗τM}
Figure 1.

The structure described in Propositions 3.4 and 3.5 translates under the equivalence
in Theorem 4.2 into [4, Theorem 1 (1) and (2)]. The Serre spectral sequence in Proposi-
tion 3.8 gives the spectral sequence constructed by an ad hoc method in [5]. The homo-
topy invariance (Theorem 3.7) leads, as we now explain, to the homotopy invariance
of the Chas–Sullivan product established in [6]. Suppose that f : M → N is a homo-
topy equivalence between closed, smooth manifolds. Recall that there is an associated
‘homotopy derivative’ df , which is a stable fibre homotopy equivalence

(τM)+M ∼=
df ��

��

(f∗τN)+M ��

��

(τN)+N

��
M 1

�� M
f

�� N

from the fibrewise one-point compactification of τM over M to that of the pull-back
f∗τN (see, for example, [7, Chapter 8]).

Proposition 4.3. Let f : M → N be a homotopy equivalence between closed, smooth
manifolds. Then the equivalence f# : H̃

∗
M (X) → H̃

∗
N (X) (Theorem 3.7) of multiplicative

cohomology theories corresponds under the isomorphism in Theorem 4.2 to the compo-
sition

(f,df)∗ : H∗{X; (LM)−p∗τM} (df)∗−−−→∼=
H∗{X; (LM)−p∗f∗τN} f∗−→∼= H∗{X; (LN)−q∗τN},

where q is the projection LN → N .
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Proof. First, we have by the naturality of λ a commutative diagram:

H∗
M{M × X; (LM)+M} ∼=

f∗ ��

λM
∼=

��

H∗
M{M × X; (f∗LN)+M}

λM
∼=

��

H∗
N{N × X; (LN)+N}∼=

f∗
��

λN
∼=

��
H∗{X; (LM)−p∗τM}

f∗
�� H∗{X; (f∗LN)−p∗τM}

f !
�� H∗{X; (LN)−q∗τN}

Since df is a fibrewise equivalence over M , we may replace f∗ ◦ (df)∗ in the square

H∗{X; (LM)−p∗τM}
(df)∗ ��

f∗

��

H∗{X; (LM)−p∗f∗τN}

f∗

��
H∗{X; (f∗LN)−p∗τM}

(df)∗

�� H∗{X; (f∗LN)−p∗f∗τN}

by (df)∗ ◦ f∗. It remains, therefore, to show that the inverse of the Umkehr map f ! above
is the composition

H∗{X; (f∗LN)−p∗τM} (df)∗−−−→ H∗{X; (f∗LN)−p∗f∗τN} f∗−→ H∗{X; (LN)−q∗τN}.

But this is a standard result about the Umkehr map for a homotopy equivalence (following
from the definition of the homotopy derivative itself in terms of the Umkehr map); see,
for example, [7]. �

This proof of homotopy invariance is essentially that given by Gruher and Salvatore
in [12], except that they do not use fibrewise homology and work entirely within the
Cohen–Jones framework.

The equivalence in Proposition 4.1 extends to manifolds with boundary (see [9, Part II,
Proposition 12.44]).

Proposition 4.4. Let M be a compact manifold with boundary. Then there are
natural equivalences

H∗
(M,∂M){M × X; F} = H∗{X; (F, M)−p∗τM}

and

H∗
M{M × X; F} = H∗{X; (F, (F | ∂M) ∪ M)−p∗τM}

for a pointed finite complex X and pointed homotopy fibre bundle p : F → M with fibres
of the homotopy type of CW complexes. �

Specializing to (LM)+M → M we obtain the following.

Proposition 4.5. For a compact manifold M with boundary,

H̃
∗
(M,∂M)(X) = H∗{X; (LM)−p∗τM}
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and

H̃
∗
M (X) = H∗{X; (LM, LM | ∂M)−p∗τM},

where LM | ∂M is the space of free loops α : R/Z → M with α(0) ∈ ∂M (that is,
beginning on the boundary). �

Example 4.6. Let Γ be a finite subgroup of the group Sp(1) of unit quaternions and
take M = Sp(1)/Γ . For γ ∈ Γ , let Ωγ denote the space of paths ω : [0, 1] → Sp(1)
from 1 = ω(0) to γ = ω(1); it is homotopy equivalent to Ω Sp(1). Associated to the
adjoint action of Γ on itself by inner automorphisms there is the bundle of groups Φ =
Sp(1) ×Γ Γ → Sp(1)/Γ = M . A loop α ∈ LM based at gΓ ∈ Sp(1)/Γ , where g ∈ Sp(1),
lifts to a (unique) path gω, with ω ∈ Ωγ , from g to gγ in Sp(1), and the assignment
α �→ [gΓ, γ] ∈ Φ defines a fibrewise Hopf map ρ : LM → Φ. For both LM and Φ the path
components correspond to the conjugacy classes [γ] in Γ . The component LγM of LM

corresponding to [γ] is identified with (Sp(1)/C(γ)) × Ωγ , where C(γ) is the centralizer
of γ in Γ , by mapping α in the description above to (gC(γ), ω). The γ-component Φγ of
Φ is Sp(1) ×Γ [γ] = Sp(1)/C(γ), and ρ restricts to the map LγM → Φγ projecting onto
the first factor.

Composition with a chosen element of Ωγ gives a homotopy equivalence ΩS3 = Ω1 →
Ωγ . Using Proposition 4.1 and then Poincaré duality for each component to make the
identification

H∗
M{M × S0; (Sp(1)/C(γ))+M} = H∗(Sp(1)/C(γ)),

we obtain an additive decomposition of the loop homology as

H
∗
M (∗) =

⊕
[γ]

H∗(Sp(1)/C(γ)) ⊗ Z[z],

where z ∈ H
−2
M (∗) comes from a generator of H−∗(ΩS3) = Z[z].

The homology H0{S0; Ω(M, Γ )+} of the fibre at Γ ∈ M is the group ring Z[Γ ].
The loop homology H

0
M (∗) = H0

M{M × S0; (LM)+M} in dimension 0 is identified by
restriction to the fibre at Γ with the (commutative) ring of invariants Z[Γ ]Γ , which as
a free abelian group has a basis indexed by the conjugacy classes of Γ . Moreover, the
induced maps

ρ∗ : Z[Γ ] = H0{S0; Ω(M, Γ )+} → H0{S0; ΦΓ }
and

ρ∗ : Z[Γ ]Γ = H0
M{M × S0; (LM)+M} → H0

M{M × S0; Φ+M}
are isomorphisms.

5. Commutativity

Of course, the fibrewise Hopf space LM = ΩM (M ×M) → M is not normally homotopy-
commutative (if only because the fibre need not be homotopy-commutative) and the
Pontrjagin ring H∗

M{E; (LM)+M} for a non-trivial fibrewise pointed space E → M need
not be commutative (see [11] for discussion of a related commutativity problem).
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Example 5.1. In Example 4.6, suppose that the group Γ is non-abelian. Then the ring
H0

M{(Φ×M Φ)+M ; (LM)+M} is not commutative. For it maps surjectively to H0
M{(Φ×M

Φ)+M ; Φ+M} by the ring homomorphism ρ∗, and this ring, which contains the Hopf
multiplication of Φ, cannot be commutative, because the homology H0{S0; ΦΓ } of a
fibre is not.

But the loop homology ring of a closed manifold is commutative, as we shall verify
below.

Proposition 5.2. Let M be a closed smooth manifold. Then the loop product µ

is commutative, that is, for pointed finite complexes X and Y there is a commutative
diagram:

H̃
i
M (X) ⊗ H̃

j
M (Y ) µ

��

T

��

H̃
i+j
M (X ∧ Y )

τ∗

��
H̃

j
M (Y ) ⊗ H̃

i
M (X) µ

�� H̃j+i
M (Y ∧ X)

where τ : X∧Y → Y ∧X is the canonical equivalence and T is the algebraic transposition
(including the sign). In particular, H

∗
M (∗) is a (super) commutative graded algebra over

H∗(M).

The commutativity of the ring H
∗
M (∗) when M is orientable was demonstrated by Chas

and Sullivan in [3]. The proof below derives from ideas of Cohen and Jones which were
included in a preprint draft of [4] but did not appear in the published version. Another,
rather different, proof is given by Klein in [14, p. 1826]; see Remark 5.10.

Suppose, more generally, that M is a compact manifold, possibly with non-empty
boundary, of dimension d.

For a loop α : R/Z → M and t ∈ R, we shall abbreviate α(t+ Z) to α(t). Consider the
mapping

q : LM × R → M, (α, t) �→ α(t).

Since the space LM is metrizable, it is paracompact, and there is a vector bundle iso-
morphism

θ : p∗τM → q∗τM (over LM × R)

that restricts to the identity on M × {0}. (To be precise, we should write p∗τM × {0}
instead of simply p∗τM .) Moreover, such an isomorphism θ is unique up to homotopy.
It determines, for each loop α ∈ LM , a family of vector space isomorphisms

θ(α, t) : τα(0)M → τα(t)M, t ∈ R,

with θ(α, 0) = 1.
Translation θ(α, 1) : Tα(0)M → Tα(0)M once around a loop yields a homotopy class

h ∈ [(LM)+; O(2d+1)], which is independent of the choice of the isomorphism θ (because
any two are homotopic). For we can embed τM , uniquely up to homotopy, in a trivial
bundle M × R

2d+1 over M and define h(α) to be θ(α, 1) ⊕ 1 : R
2d+1 → R

2d+1.
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Remark 5.3. If the space LM of continuous loops is replaced by the space of smooth
loops, we can specify an isomorphism θ by choosing a (smooth) Riemannian metric on M .
Parallel translation with respect to the Riemannian connection along any closed smooth
loop α then gives an isomorphism θ(α, t) : τα(0)M → τα(t)M . The corresponding class h

is the (stable) holonomy.

The holonomy map h determines (by the fibrewise version of the classical J-construc-
tion) a self-map

h∗ : Σ2d+1
M (LM)+M → Σ2d+1

M (LM)+M (5.1)

of the fibrewise suspension of (LM)+M over M . We shall show in Lemma 5.4 that h∗
acts as the identity on loop homology.

The proof exploits the action of the group R on LM by rotating loops:

(t · α)(u) = α(t + u), t, u ∈ R.

Using the map θ we can lift rotation through t ∈ R to an automorphism ft of the vector
bundle p∗τM over LM :

(α, v) �→ (t · α, θ(α, t)v), v ∈ τα(0)M,

and this vector bundle automorphism induces a self-map

(ft)∗ : (LM)−p∗τM → (LM)−p∗τM

of the Thom space of the virtual bundle −p∗τM . (A discussion of the category of virtual
bundles can be found, for example, in [9, Part II, § 8)].) Here is a concrete description of
(ft)∗. Let ν be the normal bundle of an embedding of M in R

2d+1, so that τM⊕ν = R
2d+1

is trivial. Then (LM)−p∗τM is the (2d + 1)-fold desuspension of the Thom space of p∗ν.
Moreover, there is a vector bundle isomorphism φ : p∗ν → q∗ν over LM ×R restricting to
the identity on LM×{0}, and the sum θ⊕φ is homotopic to the identity automorphism of
the trivial bundle R

2d+1 over LM×R. For t ∈ R, let gt be the vector bundle automorphism

(α, w) �→ (t · α, φ(α, t)w), w ∈ να(0),

of p∗ν. Then (ft)∗ is the (2d + 1)-fold desuspension of (gt)∗.

Lemma 5.4. Composition with the map h∗, (5.1), given by the holonomy h ∈
[(LM)+; O(2d + 1)] induces the identity on

H̃
∗
(M,∂M)(Z) = H∗

(M,∂M){M × Z; (LM)+M}

for any pointed finite complex Z.

Proof. The proof depends upon the following elementary observation. Let ξ be a
finite-dimensional real vector bundle over a space B. Suppose that a and b are auto-
morphisms, over B, of the trivial bundle B × R

n and of ξ, respectively, such that a ⊕ 1
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and 1 ⊕ b are homotopic as automorphisms of the direct sum R
n ⊕ ξ. Then the induced

self-maps of the Thom space of R
n ⊕ ξ are homotopic:

(a ⊕ 1)∗ � 1 ∧ b∗ : BR
n⊕ξ = Σn(Bξ) → BR

n⊕ξ = Σn(Bξ).

The map (f1)∗, being homotopic to (f0)∗ = 1, induces the identity on the homology
H∗{Z; (LM)−p∗τM} of the Thom space. But f1 is a fibre-preserving map over LM . We
now apply the observation above (with ξ the pull-back p∗ν of the normal bundle ν to
B = LM , b = g1 and a = h−1) to see that (f1)∗ is induced by h−1, regarded as an
automorphism of the trivial bundle LM × R

2d+1 over LM . Hence, h−1, and so also h,
induce the identity on H∗{Z; (LM)−p∗τM}.

Under the equivalence in Theorem 4.2, the action of h on (LM)−τM corresponds to
composition with the self-map h∗ in (5.1). �

Remark 5.5. The class h is not, in general, trivial. Indeed, if M is not orientable,
then the restriction to a single loop α ∈ LM may be non-trivial. In homology h gives
a class in H0(LM) which will be ±1 on a component: +1 on the component LαM of
a loop α such that the bundle α∗τM is orientable (so trivial), −1 where the bundle is
non-orientable.

It follows from Lemma 5.4 that for the component LαM of a loop α such that α∗τM

is non-orientable,
2H∗

(M,∂M){M × Z; (LαM)+M} = 0.

The standard loop multiplication µ : LM ×M LM → LM , taking an ordered pair
(α, β) with α(0) = β(0) to the loop γ defined by

γ(t) =

{
α(2t) if 0 � t � 1

2 ,

β(2t − 1) if 1
2 � t � 1

identifies the fibre product with the subspace

L2M = {γ ∈ LM | γ(0) = γ( 1
2 )}

of LM . Rotation by 1
2 ∈ R preserves the subspace L2M and f1/2 corresponds on the

fibre product to the map induced by the automorphism

(α, β, v) �→ (β, α, θ(α, 1
2 )v), v ∈ τα(0)=β(0)M,

of the bundle p∗τM over LM ×M LM .

Lemma 5.6. Let t : LM ×M LM → LM ×M LM be the map that interchanges the
two factors and let h∗ be as in (5.1). Then µ∗ ◦ t ◦(1 ∧ h∗) = µ∗:

H∗
(M,∂M){M × Z; (LM ×M LM)+M} → H∗

(M,∂M){M × Z; (LM)+M}.
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Proof. This is similar to the proof of Lemma 5.4. On (LM)−p∗τM the map (f1/2)∗
is homotopic to 1, and so induces the identity on H∗{Z; (LM)−τM}. Over the subspace
L2M , the map f1/2 is fibre preserving, and the description above shows that (f1/2)∗ on
(L2M)−p∗τM is induced by t ◦(h−1 ∧ 1). It follows that µ∗ ◦ t ◦(h−1

∗ ∧ 1) = µ∗. The rest
is algebra. By squaring, it is found that µ∗ = µ∗ ◦(h−1

∗ ∧ h−1
∗ ). Multiplying by h∗ ∧ h∗

then yields the result. �

With this preparation, we are ready to prove the following extension of Proposition 5.2
to manifolds with boundary.

Theorem 5.7 (commutativity of the loop product). Let M be a compact smooth
manifold. Then the loop multiplication µ is commutative, that is, the square

H̃
i
(M,∂M)(X) ⊗ H̃

j
(M,∂M)(Y )

µ ��

T

��

H̃
i+j
(M,∂M)(X ∧ Y )

τ∗

��
H̃

j
(M,∂M)(Y ) ⊗ H̃

i
(M,∂M)(X)

µ
�� H̃j+i

(M,∂M)(Y ∧ X)

is commutative for pointed finite complexes X and Y .

Proof. The multiplication µ factors as

H∗
(M,∂M){M × X; (LM)+M} ⊗ H∗

(M,∂M){M × Y ; (LM)+M}
∧−→ H∗

(M,∂M){M × (X ∧ Y ); (LM ×M LM)+M}
µ∗−→ H∗

(M,∂M){M × (X ∧ Y ); (LM)+M}.

Let x ∈ H̃
i
(M,∂M)(X), y ∈ H̃

j
(M,∂M)(Y ). From Lemma 5.6 with Z = X ∧ Y , we have

x · y = µ∗(x ∧ y) = µ∗(t(x ∧ h∗y)) = (−1)ijµ∗(h∗y ∧ x). = (−1)ijh∗y · x.

But h∗y = y, by Lemma 5.4. �

Remark 5.8. This argument will not apply to H
∗
M (∗) if the boundary is non-empty

(because the rotation of loops in LM does not preserve the subspace LM | ∂M of
loops α with α(0) ∈ ∂M), and the author does not know whether this ring, called the
loop homology in this paper, is commutative in general. It may be that the term ‘loop
homology’ is better reserved only for the groups H

∗
(M,∂M)(X), defined for a compact

manifold M of dimension d. When M is orientable we have a Thom isomorphism

H
∗
(M,∂M)(∗) ∼= Hd−∗(LM),

as in the original definition of Chas and Sullivan when M is closed. This isomorphism
lends support to the case for restricting the terminology.
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Remark 5.9. The proof of commutativity is much simpler if the manifold M is ori-
entable. In that case there is no need to look at the holonomy map h. For an orientation
of M determines a homological trivialization of τM and so of the pull-back p∗τM to
LM .

Remark 5.10. Klein’s proof of commutativity in [14] depends on a different approach
to the loop product. Suppose that φ : M → B is a map to, say, a finite complex B, and
let M be the space of pairs (x, α), where x ∈ M and α : [0, 1] → B is a path in B such
that α(1) = φ(x). Thus, we have a path-space fibration M → B, mapping (x, α) to α(0)
and a homotopy equivalence M → M. Klein constructs, in the language of this paper, a
composition product

H∗
M{M × X; (φ∗M)+M} ⊗ H∗

M{M × Y ; (φ∗M)+M} → H∗
M{M × (X ∧ Y ); (φ∗M)+M}

in the following way. Consider first the special case in which M → B is a fibre bundle.
Replacing M by M , we may then make the obvious identification

H∗
M{M ×X; (φ∗M)+M} = H∗

M{M ×X; (M ×B M)+M}
∼=−→ H∗

B{(B×X)∧B M+B ; M+B}.

The composition (see § 2.4) defines an H∗(B)-bilinear product

H∗
B{(B × X) ∧B M+B ; M+B} ⊗ H∗

B{(B × Y ) ∧B M+B ; M+B}
→ H∗

B{(B × (X ∧ Y )) ∧B M+B ; M+B},

and this lifts to the required product on the H∗
M -groups above. In general, it is necessary

to work with M rather than M (which takes us outside the setting of § 2).
When φ is the diagonal inclusion M → M × M , we may identify φ∗M → M with the

projection p : LM → M and thus obtain a product on the loop homology.
This construction of the composition product works for any compact ENR M . If M is

a closed manifold, we may use λM to make the identification

H∗
M{M × X; (φ∗M)+M}

∼=−→ H∗{X; (φ∗M)−p∗τM}.

In [14], this equivalence, in a rather more general setting, is called the ‘norm map’.

6. Other cohomology theories

We have restricted our attention to cohomology with integer coefficients. Rational or
mod 2 cohomology can be treated in exactly the same way. As Cohen and Jones observed
in [4], one may just as easily replace ordinary cohomology by other cohomology theories,
such as stable cohomotopy or K-theory (periodic or connective). (A brief introduction to
fibrewise K-theory can be found in [9, Part II, § 15].) In the definition of the generalized
loop homology and in establishing the main properties there is little to change, except
that Remark 5.5 must be replaced by Remark 6.1, below. Otherwise, it is the only the
specific computations performed in integral cohomology that may not be feasible when
working with another cohomology theory.
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Remark 6.1. Let ω∗, as in [9], denote stable cohomotopy. In the setting of Remark 5.5,
consider the component LαM of a loop α such that α∗τM is non-trivial. Then

2eω∗
(M,∂M){M × Z; (LαM)+M} = 0,

where the exponent e depends only on the dimension d of M .
For the action of the holonomy h∗ in (5.1) lifts from a class in the group of units in

the stable cohomotopy ring ω0(O−(2d + 1)) of the orientation-reversing component of
O(2d + 1), and this class has the form −1 + x, where x is nilpotent. If xe = 0, then
(2e−1 − 2e−2x + · · · + (−1)e−1xe−1)(2 − x) = 2e.

Acknowledgements. I am grateful to the referee for explaining the relation between
Klein’s construction in [14] and the fibrewise theory and for drawing my attention to [12],
which appeared at about the same time as this paper was submitted.
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