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1. Introduction

Suppose that e : B → N and f : B → N are two maps from a compact ENR B
to a smooth manifold N (without boundary). The coincidence index of e and f
provides an algebraic count of the coincidence set

Coin(e, f) = {x ∈ B | e(x) = f(x)}.

Classically, B and N were connected, oriented, closed manifolds of the same di-
mension and the coincidence index was defined as an integer. In a series of recent
papers [16, 17, 18, 19, 20, 21, 22] Koschorke has studied, by differential-topological
methods, when B is a closed manifold, rather than a general ENR, what we shall
call the homotopy coincidence index. This index is an element of a certain stable
homotopy group and in a range of dimensions (dim B < 2(dim N−1)) it is the pre-
cise obstruction to the existence of a deformation of e and f to maps with empty
coincidence set. The obstruction theory, which goes back to a paper of Hatcher and
Quinn [12] in the 1970s, has just been reworked by Klein and Williams [14, 15].
Furthermore, their results, which use methods from fibrewise topology, have been
linked in a paper of Ponto [23] to the construction in [5] of the homotopy fixed
point index. In this survey we shall give a systematic account of the construction



2 M.C. Crabb

of the homotopy coincidence index in the light of these recent contributions to
coincidence theory.

The construction uses fibrewise methods in an essential manner. There are
two ways of setting the coincidence problem in a fibrewise framework.

1. As a root problem. Let E → B be the trivial bundle B ×N → B. Choose e
to define a preferred null section z : B → E mapping x ∈ B to (x, e(x)) ∈ E,
and let s be the section given by s(x) = (x, f(x)). Then Coin(e, f) is the
null-set

Null(s) = {x ∈ B | s(x) = z(x)}
of the section s.

2. As an intersection problem. Let E → B be the trivial bundle B× (N ×N) →
B with a null sub-bundle Z = B × ∆(N) → B (where ∆ is the diagonal
inclusion). Write s for the section s(x) = (x, e(x), f(x)). Then Coin(e, f) is
the null-set

Null(s) = {x ∈ B | s(x) ∈ Zx}
of s : B → E.
In Section 2 we shall develop the theory from the first point of view, follow-

ing closely the classical theory of the stable cohomotopy Euler class of a vector
bundle. Section 3 contains a number of examples, some well known in coincidence
theory, but described in the fibrewise language. In Section 4, we restrict the base
B to be a smooth manifold and relate the fibrewise homotopy-theoretic definition
to Koschorke’s construction through differential topology. Section 5 is a digres-
sion on fixed-point theory. The intersection theory, based on the work of Klein
and Williams, is treated in Section 7, after a preparatory section on the homo-
topy Pontrjagin-Thom map. (The adjective ‘homotopy’ will be used systematically
where objects, as here, are defined by a path-space construction. The usage may
be unfamiliar in fixed-point theory, but is standard elsewhere, as in the term ‘ho-
motopy pull-back’ employed in [12].)

The remainder of this Introduction establishes some basic notation. Given
fibrewise pointed spaces X → B and Y → B over a compact ENR base B, we
write

ω0
B{X; Y }

for the abelian group of stable fibrewise maps X → Y over B. (See, for example,
[5] (Part II, Section 3).) More generally, if A ⊆ B is a closed sub-ENR, the relative
group

ω0
(B,A){X; Y }

is defined in terms of homotopy classes of maps that are zero over the subspace
A. We also need to consider fibrewise maps with compact supports. For an open
subset U ⊆ B, we write

cω
0
U{XU ; YU}

for the group of fibrewise stable maps between the restrictions of X and Y to U
that are zero outside a compact subspace of U . Using the fibrewise suspension ΣB
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over B, we extend the ω0-theories to ωi-cohomology theories indexed by i ∈ Z,
so that, for example, ωi

B{X; Y } is identified with ω0
B{Σk

BX; Σk+i
B Y } for k large.

When Y → B is a trivial bundle B × Si → B, there are natural identifications of
the fibrewise groups with the reduced stable cohomotopy of an appropriate pointed
space:

ω0
B{X; B × Si} = ω̃i(X/B), and ω0

(B,A){X; B × Si} = ω̃i(X/(XA ∪B)).

We make the following standing hypotheses. Throughout the paper, B will
be a compact ENR (or finite complex) and E → B will be a locally trivial smooth
fibrewise manifold over B. The fibres of E → B will be assumed to be manifolds
without boundary (smooth, Hausdorff, with a countable basis, admitting a smooth
partition of unity). See [5] (Part II, Section 11). We require each fibre Ex (x ∈ B)
to be connected. The space A, when it appears, will be a compact sub-ENR of B.

Some of the material in this paper was first presented in the Scottish Topology
Seminar in Edinburgh. I am grateful to Andrew Ranicki for the invitation to visit
Edinburgh and to talk there with Ulrich Koschorke.

2. Roots

We develop the theory as an extension of the classical theory of the Euler class
as an obstruction to the existence of a nowhere zero section of a real vector bun-
dle. Notation will follow that used for the stable cohomotopy Euler class in, for
example, [5, 6].

Suppose that the bundle E → B is equipped with a section z : B → E,
which we shall call the null section. (The letter ‘z’ is choesn to suggest ‘zero’.) In a
neighbourhood of any point of the base there is a local trivialization EU

∼= U ×N ,
where U is an open subspace of B and N is a smooth manifold, such that z |U
corresponds to a constant section U → U × N : x ∈ U 7→ (x, ∗), where ∗ is a
basepoint of N . See, for example, [5] (Part II, Proposition 11.20).

Consider any section s : B → E of the fibrewise manifold E → B.

Definition 2.1. We say that the section s is null at x ∈ B if s(x) = z(x) and write
the null-set of s as

Null(s) = {x ∈ B | s(x) = z(x)}.

We shall define, first, a basic obstruction γ(s) to the existence of a homotopy
from s to a section that is nowhere null. Let us write ν = z∗τBE for the restriction
of the fibrewise tangent bundle τBE to the null section B and equip ν with an
inner product. Choose a fibrewise tubular neighbourhood D(ν) ↪→ E, over B, of
the null section. Thus, in the fibre over x ∈ B we have a closed disc D(νx) ↪→ Ex

centered on the point z(x) ∈ Ex. The Pontrjagin-Thom construction gives us a
map cx : Ex → ν+

x to the one-point compactification ν+
x of the vector space νx.

To be precise, we collapse the complement of the disc to a point and identify the
quotient D(νx)/S(νx) of the disc modulo the sphere with ν+

x in the usual way by
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mapping a vector v ∈ νx with ‖v‖ < 1 to (1−‖v‖2)−1/2v. These maps cx for x ∈ B
give a global fibrewise map c : E → ν+

B . to the fibrewise one-point compactification
ν+

B of the vector bundle ν.

Definition 2.2. Any section σ : B → ν+
B determines a fibrewise pointed map

B × S0 → ν+
B

mapping the basepoint (x, 1) in the fibre at x ∈ B to the basepoint at infinity and
the point (x,−1) to σ(x). The stable class of the map determined in this way by
the composition c ◦ s : B → ν+

B will be called the Euler index of the section s,
written as

γ(s) ∈ ω0
B{B × S0; ν+

B} = ω̃0(B−ν)
in the reduced stable cohomotopy of the Thom space B−ν of the virtual bundle
−ν. Elementary considerations show that the index is independent of the choices
made.

The example of Nielsen fixed-point theory suggests the next definition.

Definition 2.3. The homotopy null-set, h-Null(s), of the section s is defined to be
the space of pairs (x, α) where x ∈ B and α : [0, 1] → Ex is a continuous path
in the fibre from α(0) = z(x) to α(1) = s(x), topologized as a subpace of the
path-space of E. The space h-Null(s) is fibred over B by the projection π to the
first factor, and the fibrewise space π : h-Null(s) → B is locally fibre homotopy
trivial. (To check local homotopy triviality, it is enough to look at a trivial bundle
E = U ×N → U with z(x) = (x, ∗) and s(x) = (x, f(x)), where f : U → N maps
into a coordinate chart Rn ⊆ N . A fibre homotopy trivialization is then easily
constructed using straight line paths in Rn to join points in the chart.) There is an
inclusion Null(s) ↪→ h-Null(s) mapping x to (x, α), where α is the constant path
at z(x) = s(x).

We now refine the construction of the Euler index by lifting from ν+
B to the

fibrewise Thom space h-Null(s)π∗ν
B of the pull-back of ν to h-Null(s). This fibrewise

Thom space over B is pointed fibre homotopy trivial, with the fibre at x ∈ B the
Thom space of the pull-back of νx to the fibre of h-Null(s). It is the fibrewise
smash product of ν+

B and h-Null(s)+B (the pointed fibrewise space h-Null(s) t B
obtained by adjoining a disjoint basepoint to each fibre).

Definition 2.4. The homotopy Euler index

h-γ(s) ∈ ω0
B{B × S0; h-Null(s)π∗ν

B } = ω0
B{B × S0; ν+

B ∧B h-Null(s)+B}
of the section s is defined as follows.

Recall that we have taken a fibrewise tubular neighbourhood D(ν) ↪→ E of
the null section. Choose an open neighbourhood W of Null(s) such that W ⊆
s−1(D(ν)). By compactness there exists a real number ε with 0 < ε < 1 such that
for x ∈ W −W the point s(x) lies outside the closed disc bundle Dε(ν) of radius
ε and centre 0 in D(ν). We can then define a section σ of h-Null(s)π∗ν

B mapping
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x ∈ B to the basepoint in the fibre either if x 6∈ W or if x ∈ W and s(x) 6∈ Dε(ν),
while if s(x) ∈ Dε(ν), say s(x) = (z(x), v) with v ∈ νx, we set σ(x) = [α, v/ε],
where α : [0, 1] → Ex is the path α(t) = (z(x), tv) from z(x) to s(x). The section σ
extends to a fibrewise pointed map on B × S0, and this gives the fibrewise stable
map h-γ(s) : B×S0 → h-Null(s)π∗ν

B . Again it is straightforward to check that this
class is independent of the choices made.

By construction h-γ(s) lifts γ(s).

Lemma 2.5. The projection

π∗ : ω0
B{B × S0; h-Null(s)π∗ν

B } → ω0
B{B × S0; ν+

B}

maps h-γ(s) to γ(s). �

It is also clear that the indices behave well under pull-backs.

Lemma 2.6. Let φ : B′ → B be a continuous map from a compact ENR B′ to B.
The sections z and s lift to sections of the pull-back φ∗E → B′ and

h-γ(φ∗s) = φ∗h-γ(s) ∈ ω0
B′{B′ × S0; h-Null(φ∗s)π∗φ∗ν

B′ },

where π is written, also, for the projection h-Null(φ∗s) → B′. �

We interrupt the generalities to define the coincidence invariant.

Definition 2.7. Let e, f : B → N be two maps, as in the Introduction, from the
compact ENR B to a manifold N . Write E → B for the trivial bundle B×N → B,
and let z and s be the sections given by z(x) = (x, e(x)) and s(x) = (x, f(x)) for
x ∈ B. Then Null(s) is the coincidence set Coin(e, f) = {x ∈ B | e(x) = f(x)} and
h-Null(s) is naturally identified with the homotopy coincidence set h-Coin(e, f)
consisting of the pairs (x, α), where x ∈ B and α : [0, 1] → N is a continuous path
from e(x) = α(0) to f(x) = α(1). We shall call

h-γ(s) ∈ ω0
B{B × S0; (e∗τN)+B ∧B h-Coin(e, f)+B}

the homotopy coincidence index of e and f . As it stands, this definition is not
symmetric in e and f ; we shall return to this point in Section 7.

Remark 2.8. Suppose, more generally, that the compact ENR B is the total space
of a fibre bundle B → X over a compact ENR X and that N → X is a locally
trivial fibrewise manifold. Consider two fibrewise maps e, f : B → N over X.
Take E to be the pull-back B×X N over B and lift e and f to sections z and s of
E → B. Then h-γ(s) is the fibrewise homotopy coincidence index studied (under
a different name) in [9].

The indices can be localized to a neighbourhood of the null-set.

Definition 2.9. Let U ⊆ B be an open subspace such that the set Null(s) ∩ U is
compact. By choosing the open set W in the construction (Definition 2.4) above



6 M.C. Crabb

such that W ⊆ U , we obtain well-defined localized Euler indices in fibrewise stable
homotopy with compact supports:

γ(s |U) ∈ cω
0
U{U × S0; ν+

U }
and

h-γ(s |U) ∈ cω
0
U{U × S0; h-Null(s)π∗ν

U }.

Let us write iU for both of the natural (Gysin) maps

cω
0
U{U × S0; ν+

U } → ω0
B{B × S0; ν+

B}
and

cω
0
U{U × S0; h-Null(s)π∗ν

U } → ω0
B{B × S0; h-Null(s)π∗ν

B }
defined by extending a fibrewise map with compact supports in U to a map on the
whole of B that is zero outside of U . The localization properties are summarized
in the next lemma, proved by inspection of the definitions.

Lemma 2.10. (i) (Localization). Suppose that U and V are open subsets of B
with U ⊆ V and U ∩ Null(s) = V ∩ Null(s) compact. Then h-γ(s |U) maps to
h-γ(s |V ) under the Gysin map

cω
0
U{U × S0; h-Null(s)π∗ν

U } → cω
0
V {V × S0; h-Null(s)π∗ν

V }.
In particular, if U is an open neighbourhood of Null(s), then

γ(s) = iUγ(s |U) and h-γ(s) = iUh-γ(s |U).

(ii) (Additivity), Suppose that U1 and U2 are disjoint open subsets of B such that
U1 ∩Null(s) and U2 ∩Null(s) are compact. Then

iU1∪U2γ(s |U1 ∪ U2) = iU1γ(s |U1) + +iU2γ(s |U2)

and
iU1∪U2h-γ(s |U1 ∪ U2) = iU1h-γ(s |U1) + +iU2h-γ(s |U2). �

Remark 2.11. For simplicity, we have assumed that the section s is globally defined
on B. However, the indices γ(s |U) and h-γ(s |U) can evidently be defined for a
section s that is defined only on the subspace U , provided that Null(s) = {x ∈
U | s(x) = z(x)} is compact, with h-Null(s) defined as the space, over U , of pairs
(x, α) with x ∈ U and α a path in Ex from z(x) to s(x).

In order to do obstruction theory we introduce, as a generalization of the
classical relative Euler class, relative Euler indices.

Definition 2.12. Let A ⊆ B be a closed sub-ENR. Suppose that Null(s) is disjoint
from A. By modifying the construction in Definition 2.4 so as to take W with
W ⊆ B − A, we obtain a section σ of h-Null(s)π∗ν

B which is zero over A. The
associated stable map defines the relative Euler indices

h-γ(s;A) ∈ ω0
(B,A){B × S0; h-Null(s)π∗ν

B }.
and

γ(s;A) = π∗h-γ(s;A) ∈ ω0
(B,A){B × S0; ν+

B} = ω̃0((B,A)−ν)
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(the stable cohomotopy group of the relative Thom space). Notice that these co-
incide with the localized indices γ(s |B −A) and h-γ(s |B −A).

Naturality follows directly from the definition.

Lemma 2.13. Let φ : (B′, A′) → (B,A) be a map of compact ENR pairs. Then, for
a section s which is nowhere null on A, we have h-γ(φ∗s;A′) = φ∗h-γ(s;A). �

The Euler indices depend only on the homotopy class of the section s in the
sense that we now formulate.

Proposition 2.14. (Homotopy invariance). Consider a closed sub-ENR A of B.
Suppose that st, 0 ≤ t ≤ 1, is a homotopy through sections of E → B such that
Null(st) ∩ A = ∅ for each t. The homotopy determines, up to homotopy, a fibre
homotopy equivalence h-Null(s0) → h-Null(s1) over B, inducing an isomorphism

ω0
(B,A){B × S0; h-Null(s0)π∗ν

B }
∼=−→ ω0

(B,A){B × S0; h-Null(s1)π∗ν
B }.

This isomorphism maps h-γ(s0;A) to h-γ(s1;A). In particular, γ(s0;A) = γ(s1;A).

Proof. We shall establish a slightly more general result in which the null section,
too, is allowed to vary through a homotopy. Suppose that we have a given null
section z′ of the product bundle E′ = [0, 1] × E over B′ = [0, 1] × B. Consider a
section s′ of E′ → B′ such that Null(s′) ∩ ([0, 1] × A) = ∅. The fibrewise space
h-Null(s′) → B′ is a fibration and homotopically locally trivial, as noted in Defi-
nition 2.3. Write zt and st for the restrictions of z′ and s′ to {t} × E → {t} × B
(identified with E → B) and νt = z∗t τBE. Thus we obtain, up to homotopy, a
fibre homotopy equivalence h-Null(s0) → h-Null(s1) and a bundle isomorphism
ν0 → ν1. The index

h-γ(s′; [0, 1]×A) ∈ ω0
[0,1]×(B,A){[0, 1]×B × S0; h-Null(s′)ν′

B′},

where ν′ = (z′)∗τB′E′, restricts to both h-γ(s0;A) and h-γ(s1;A). And each re-
striction map from the stable homotopy group over [0, 1] × (B,A) to the stable
homotopy group over {t} × (B,A), for 0 ≤ t ≤ 1, is an isomorphism.

By specializing to the case in which zt = z is constant, we deduce the propo-
sition as stated. �

Remark 2.15. There is a corresponding local version. Suppose that U is an open
subspace of B and that st is a homotopy through sections of E → B such that the
intersection of [0, 1]× U with {(t, x) ∈ [0, 1]×B | st(x) = z(x)} is compact. Then
h-γ(s0 |U) maps to h-γ(s1 |U) under the isomorphism given by the fibre homotopy
equivalence h-Null(s0) → h-Null(s1) and γ(st |U) is constant.

If a section s which is nowhere null on the sub-ENR A is homotopic through
sections that coincide with s on A to a section that is nowhere null, then it fol-
lows from homotopy invariance, Lemma 2.14, and naturality, Lemma 2.13, that
h-γ(s;A) = 0. In a stable range the homotopy Euler index is the precise obstruc-
tion.
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Proposition 2.16. Suppose that B is a finite complex of dimension < 2(dim ν− 1).
Then s is homotopic, relative to A, to a nowhere null section of E → B if and
only if h-γ(s;A) = 0.

Proof. This is a special case of Proposition 7.4 to appear later. �

The homotopy invariance of the Euler indices has an important consequence
which we shall call Jiang invariance, by analogy with the corresponding result in
fixed-point theory (see Section 5). Consider the fibrewise loop-space ΩBE, with
fibre Ω(Ex, z(x)) over x ∈ B. Concatenation of paths gives a fibrewise map

ΩBE ×B h-Null(s) → h-Null(s).

(A loop in Ex based at z(x) is followed by a path from z(x) to s(x).) We also have,
up to homotopy, a fibrewise (reversed) monodromy map

µ : ΩBE → Aut(ν)

over B, where Aut(ν) is the automorphism bundle of the vector bundle ν over B.
Indeed, the pull-back of the fibrewise tangent bundle τBE to [0, 1]× ΩBE by the
evaluation map (t, ω) 7→ ω(t) ∈ E is isomorphic to the pull-back of ν from B by
a map which is the identity over {0} × ΩBE. Fixing such an isomorphism, which
is unique up to homotopy, we get maps (τBE)ω(t) → νω(0) for 0 ≤ t ≤ 1. Taking
t = 1, we get the monodromy map µ(ω) : νω(0) = (τBE)ω(1) → νω(0) around the
loop ω. Concatenation and the monodromy together give an action (on the left)
of the group π0(Γ(ΩBE)) of homotopy classes of sections of ΩBE on the group
ω0

B{B × S0; h-Null(s)π∗ν
B }.

Proposition 2.17. (Jiang invariance). Consider a globally defined section s of E →
B. The homotopy Euler index

h-γ(s) ∈ ω0
B{B × S0; h-Null(s)π∗ν

B }

is fixed under the action of the group π0(Γ(ΩBE)) of homotopy classes of sections
of ΩBE.

Proof. In view of the symmetry of the index construction in the sections s and
z, discussed in connection with Lemma 7.9, the Jiang invariance is essentially
equivalent to the homotopy invariance of the index as stated in Proposition 2.14
(when A = ∅). We shall deduce it here from the result obtained in the course of
the proof of that proposition, with A = ∅.

Suppose that ω is a section of ΩBE. This time we specialize by defining the
null section z′ as z′(t, x) = ω(x)(t) for (t, x) ∈ [0, 1]× B and the section s′ as the
constant lift of s: s′(t, x) = s(x) The indices h-γ(s0) and h-γ(s1) correspond under
the action of ω. But s0 = s = s1. �

The homotopy null-set h-Null(s) is a disjoint union of path-components. We
introduce notation for the corresponding decomposition of the Euler indices.
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Definition 2.18. Let R(s) denote the set of path-components of h-Null(s), with a
typical element written as a ∈ R(s). For clarity we also write h-Nulla(s) for the
component a when it appears as a space. Thus,

h-Null(s) =
⊔

a∈R(s)

h-Nulla(s),

and we have a decomposition of the index h-γ(s) as a sum of terms

h-γa(s) ∈ ω0
B{B × S0; h-Nulla(s)π∗ν

B },
indexed by a ∈ R(s), with h-γa(s) = 0 for all but finitely many a. We define

γa(s) = π∗h-γa(s) ∈ ω0
B{B × S0; ν+

B} = ω̃0(B−ν),

so that γa(s) is also zero for all but finitely many a ∈ R(s) and

γ(s) =
∑

a∈R(s)

γa(s).

There are similar decompositions of the relative indices h-γ(s;A) and γ(s;A) if
Null(s) ∩A = ∅.

The set R(s) can be described as follows. Suppose that B is connected and
choose a basepoint ∗ ∈ B. The fibre, F say, of h-Null(s) at ∗ is the space of paths
α : [0, 1] → E∗ from z(∗) to s(∗). As we have already observed in the global setting,
concatenation of paths defines a free, transitive action of the fundamental group
π1(E∗, z(∗)) on π0(F ). There are also compatible monodromy actions of π1(B, ∗)
on the group π1(E∗, z(∗)) and on the π1(E∗, z(∗))-set π0(F ).

Lemma 2.19. In the situation described in the text, R(s) is identified with the set
of π1(B, ∗)-orbits of π0(F ). By choosing a class [α] ∈ π0(F ), we may express the
action of g ∈ π1(B, ∗) on π0(F ) as:

q[α] 7→ ((g · q)σ(g)−1)[α] for q ∈ π1(E∗, z(∗)),
where σ : π1(B, ∗) → π1(E∗, z(∗)) is a 1-cocycle (satisfying σ(gh) = σ(g)(g · σ(h))
for g, h ∈ π1(B, ∗)). As [α] varies, the corresponding cocycles run through the
homology class of σ. �

In terms of this description, π0(Γ(ΩBE)) acts on R(s) through the evaluation
homomorphism π0(Γ(ΩBE)) → π0(Ω(E∗, z(∗))) = π1(E∗, z(∗)).

The indices behave well with respect to products. Given two sets of root
problem data Ei → Bi, zi, si : Bi → EI , i = 1, 2, we can form the product
E = E1 × E2 → B = B1 × B2 with the null section z = z1 × z2 and a section
s = s1×s2. Then we can identify h-Null(s) with the product h-Null(s1)×h-Null(s2)
and the normal bundle ν with ν1 × ν2, where νi = z∗i τBi

Ei.

Lemma 2.20. The homotopy Euler index

h-γ(s) ∈ ω0
B{B × S0; h-Null(s)π∗ν

B }
is equal to the product h-γ(s1)× h-γ(s2). More precisely, we may make the identi-
fiction: R(s) = R(s1)×R(s2), and then h-γa1×a2(s) = h-γa1(s1)× h-γa2(s2). �
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The construction of the basic Euler index γ(s;A) for a section s that is
nowhere null on a subspace A ⊆ B follows closely the definition of the classical
relative Euler class for a section of a vector bundle that is nowhere zero on a
subspace. The precise relationship, stated below, is an immediate consequence of
the definitions.

Proposition 2.21. Suppose that E is the total space of a finite-dimensional real
vector bundle ξ over B and that z is the zero section of the vector bundle, so that
ν = ξ.
(i). Suppose that U ⊆ B is open and that s is a section defined on U with compact

null-set. Then
γ(s |U) ∈ cω

0(U ; −ν)
is the stable cohomotopy Euler class with compact supports as defined in [6].

(ii). Suppose that A ⊆ B is a closed sub-ENR, that s is a section defined over
B with Null(s) ∩ A = ∅. Then γ(s;A) is equal to the relative Euler class
γ(ξ; s) ∈ ω̃0((B,A)−ξ) as defined in, for example, [5]. It depends only on the
restriction of s to A, and, if A = ∅, then γ(s) is equal to the (absolute) stable
cohomotopy Euler class γ(ξ) of the vector bundle ξ. �

When E is a vector bundle as in Proposition 2.21, h-Null(s) → B is clearly
fibre-homotopy equivalent to the trivial bundle B → B. So h-γ(s) contains no
additional information in this case, and Proposition 2.16 specializes to the classical
obstruction theory for the existence of a nowhere zero section of a vector bundle.

Any section of a vector bundle is homotopic to the zero section. In the general
case, the Euler index of a section s which is homotopic to the null section z is given
by a stable cohomotopy Euler class.

Proposition 2.22. Consider a general bundle E → B with null section z and the
section s = z. The Euler index γ(z) is equal to the stable cohomotopy Euler class
γ(ν) of the vector bundle ν and h-γ(z) is its image under the injective map

ω0
B{B × S0; ν+

B} → ω0
B{B × S0; (ΩBE)π∗ν

B }
induced by the inclusion of the basepoint section in the fibrewise loop space ΩBE =
h-Null(z). In particular, γa(z) = 0 if a ∈ R(z) is non-trivial.

Proof. Following through the construction in Definition 2.4, we have Null(s) = B,
W = B and σ(x), for x ∈ B, is equal to [α, 0], where α is the constant path at
z(x). �

3. Some examples

We begin by examining some consequences of the homotopy invariance of the
homotopy Euler index. The hypotheses and notation of Section 2 are retained: z is
a distinguished null section of the fibrewise manifold E → B and s is an arbitrary
section. Recall that π0(Γ(ΩBE))) acts on the set R(s) of components of h-Null(s).
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Lemma 3.1. Suppose that a, b ∈ R(s) lie in the same π0(Γ(ΩBE)))-orbit. Then
γa(s) = uγb(s) for some unit u ∈ ω0(B), and h-γa(s) = 0 if and only if h-γb(s) =
0.

Proof. This follows directly from Jiang invariance (Proposition 2.17). The action
on γ(s) is given by the monodromy map µ: the induced automorphism of ω̃0(B−ν)
is multiplication by an element in the image of the J-homomorphism from the real
KO-group KO−1(B) to the group of units in ω0(B). �

The first application generalizes the main result (Theorem 1.4) of [11].

Proposition 3.2. Suppose that, for each x ∈ B, the evaluation homomorphism
π0(Γ(ΩBE))) → π1(Ex, z(x)) is non-trivial. Then the stable cohomotopy Euler
class, γ(ν), of ν = z∗τBE vanishes and, hence, h-γ(z) = 0.

Proof. There is no loss of generality in assuming that B is connected. We take
z = s, and then the description of R(z) in Lemma 2.19 simplifies to identify R(s)
with the set of orbits of the action of π1(B, ∗) on the group π1(E∗, z(∗)). The
single element orbit {1} corresponds to the trivial class, a say. By assumption,
there is another class b 6= a to which we may apply Lemma 3.1. But according to
Proposition 2.22, we have γa(a) = γ(ν) and γb(z) = 0. Hence γa(s) = 0. �

The next result is an immediate corollary of Lemma 3.1.

Proposition 3.3. Suppose that π0(Γ(ΩBE)) acts transitively on the set of compo-
nents R(s) of h-Null(s). Then,

(i) either γa(s) = 0 for all a ∈ R(s) or γa(s) 6= 0 for all a ∈ R(s);
(ii) either h-γa(s) = 0 for all a ∈ R(s) or h-γa(s) 6= 0 for all a ∈ R(s).

In particular, if R(s) is infinite, then h-γa(s) = 0 and γa(s) = 0 for all a ∈
R(s). �

We seek conditions for π0(Γ(ΩBE))) to act transitively on R(s).

Lemma 3.4. Suppose that B is connected and the evaluation map π0(Γ(ΩBE)) →
π1(Ex, z(x)) is surjective for each x ∈ B. Then π0(Γ(ΩBE)) acts transitively on
R(s). �

This is true, in particular, if E → B is trivial as a pointed bundle. In that
case, we may refine Lemma 3.1 to the following more precise statement.

Proposition 3.5. Let N be a connected closed manifold. Suppose that E = B×N →
B is the product bundle over a connected base and that z(x) = (x, ∗), where ∗ ∈ N
is a basepoint. Then π1(N, ∗) acts transitively on R(s) and there is a monodromy
action

w : π1(N, ∗) → {1, −1},
given by the orientation of loops. We have

γα·a(s) = w(α)γa(s)

for a ∈ R(s), α ∈ π1(N, ∗).



12 M.C. Crabb

Proof. The fibrewise loop space ΩBE is the product B × ΩN , and we have a
split inclusion π1(N, ∗) = π0(N) → π0(Γ(ΩBE)) given by the constant sections.
For a loop α ∈ π1(N), the unit in ω0(B) determined by the monodromy is +1
or −1 according as the bundle α∗τN over the circle is orientable or not. The
homomorphism w, regarded as an element of H1(N ; Z/2Z) is the first Stiefel-
Whitney class w1(τN). �

Consider more generally the case of classical coincidence theory in which E
is a trivial bundle B ×N → B, where N is a connected closed manifold, so that
the null section z has the form z(x) = (x, e(x)) for some map e : B → N , but that
e is not necessarily constant. The evaluation π0(Γ(ΩBE)) → π1(E∗, z(∗)) at ∗ ∈ B
is surjective, for any base B, if N is a so-called Jiang space. For the condition
that N be a Jiang space can be formulated as precisely this property for the case
that B = N and z is the diagonal section N → N × N . One may then think of
ΩBE → B as the evaluation at 1 ∈ T: map(T, N) → N on the free loop space
of maps from the circle group T to N . If the base B is simply-connected, then a
weaker condition will suffice, namely that the space of sections of the pull-back
of map(T, N) → N to the universal cover Ñ of N should map onto π1(N, ∗).
Homogeneous spaces and lens spaces provide well-known examples.

Example 3.6. Suppose that G is a connected compact Lie group, H ≤ G is a
connected closed subgroup, and Γ ≤ G is a finite subgroup that acts freely (on the
left) on G/H. Let N = Γ\G/H, and let E = B × N → N be the trivial bundle
equipped with the null section z(x) = (x, e(x)).

Suppose that either (i) Γ is a subgroup of some maximal torus T in G or (ii)
e : B → N lifts to a map ẽ : B → G/H. Then the evaluation map π0(Γ(ΩBE)) →
π1(Ex, z(x)) is surjective for each x ∈ B.

An example of type (ii) can be found in [22] Corollary 3.5.

Proof. (i). For γ ∈ Γ, let ΩγT be the space of paths from 1 to γ in T . We have
a map ΩγT → Γ(ΩBE) sending α ∈ ΩγT to the section x 7→ (x, αx), where αx :
[0, 1] → N is given by αx(t) = α(t)e(x). (Notice that T acts on N , αx(0) = e(x)
and αx(1) = γe(x) = e(x).) Since π1(T ) maps onto π1(G), we see that π0(ΩγT )
maps onto the γ-coset of π1(G) in π1(N):

1 → π1(G) = π1(G/H) → π1(N) → Γ → 1.

(If Γ is trivial, the argument is easier. We have a surjective bundle map

B ×G → E = B ×G/H : (x, g) 7→ (x, ge(x)),

which maps the constant section x 7→ (x, 1) to z. So we have a map ΩG →
Γ(ΩBE). Since H is connected, π1(G) maps onto π1(G/H), and π0(Γ(ΩBE)) maps
surjectively to π1(Ex, z(x)) for any x ∈ B.)

(ii). For γ ∈ Γ, let ΩγG be the space of paths in G from 1 to γ. Now
we have a map ΩγG → Γ(ΩBE) sending α to the section x 7→ (x, αx), where
αx(t) = [α(t)ẽ(x)]. �
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The next result is related to Proposition 3.5 as the homotopy invariance of
the Euler index is related to Jiang invariance.

Proposition 3.7. Suppose that E = B × N → B is the product bundle over a
connected base B, with fibre a connected closed manifold N , equipped with a null
section z and a section s that is constant, that is, s(x) = (x, ∗) for some basepoint
∗ ∈ N . Then γa(s) is independent of a ∈ R(s).

Proof. We interchange the rôles of z and s in the proof of Proposition 3.5. Let
α : [0, 1] → N be a loop at α(0) = α(1) = ∗. It defines sections st of E → B, for
0 ≤ t ≤ 1, by st(x) = (x, α(t)), with s0 = s1 = s. By Proposition 2.14, γ(s) is
fixed by the self-map h-Null(s)π∗ν

B induced by concatenation of paths with α (on
the right) and the identity on ν. �

Standard transfer techniques lead to the following generalization.

Corollary 3.8. Suppose that there is a connected d-fold finite cover p : B̃ → B such
that there is a trivialization of the pull-back p∗E as B̃ × N in which the section
p∗s is constant. Then there exist positive integers ma ≤ d, (a ∈ R(s)), and a class
u ∈ ω0

B{B × S0; ν+
B}[1/d] such that

γa(s) = mau ∈ ω0
B{B × S0; ν+

B}[1/d] (a ∈ R(s)).

Proof. Clearly h-Null(p∗s) = p∗h-Null(s), h-γ(p∗s) = p∗h-γ(s) by naturality,. and
there is a surjection R(p∗s) → R(s). As well as the classical transfer map p! :
ω0(B̃) → ω0(B), we have a transfer

p! : ω0
B̃
{B̃ × S0; h-Null(p∗s)p∗ν

B̃
} → ω0

B{B × S0; h-Null(s)ν
B}.

Now p!(h-γ(p∗s)) = p!p
∗h-γ(s) = p!(1) · h-γ(s).

The classes γã(p∗s) for ã ∈ R(p∗s) are all equal by Proposition 3.7; write

v ∈ ω0
B̃
{B̃ × S0; (p∗ν)+

B̃
}

for their common value. Let ma, for a ∈ R(s), denote the number of components
of p∗a. Thus, 1 ≤ ma ≤ d, and

p!(1) · γa(s) = map!(v).

Since p!(1)− d ∈ ω0(B) is nilpotent, the class p!(1) is invertible in ω0(B)[1/d] and
we may set u = (p!(1))−1p!(v). This completes the proof. �

Remark 3.9. More generally, one may consider a connected fibrewise manifold
p : B̃ → B with fibres closed manifolds such that p∗E → B̃ admits a trivialization
in which p∗s is constant. Let d be the number of components and χ the Euler
characteristic of the fibre. Assume that χ 6= 0. Then there are positive integers
ma ≤ d for a ∈ R(s) and a class u ∈ ω̃0(B−ν)[1/χ] such that γa(s) = mau ∈
ω̃0(B−ν)[1/χ].
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Example 3.10. Let N = G/H, where G is a connected Lie group and H ≤ G is
a finite subgroup. Suppose that E → B is the trivial bundle B × N → B over a
connected base B. Then the conditions of Corollary 3.8 hold with d a divisor of
#H.

For more information on this example the reader is referred to [26].

Proof. Writing the section s as s(x) = (x, f(x)), take p : B̃ → B to be any
connected component of the pull-back by f : B → G/H of the projection G →
G/H. If f̃ : B̃ → G is the lift of f , we have a trivialization B̃ × G/H → p∗E:
(x, gH) 7→ (x, f̃(x)gH) in which the constant section at H ∈ G/H maps to p∗s. �

Here is an explicit example in which the fibre is a homogeneous space, but
only one of the indices γa(s) is non-zero.

Example 3.11. Consider the maximal torus T of diagonal matrices in G = SU(l+1),
where l ≥ 1. The Weyl group NG(T )/T is the permutation group Sl+1. Let H ≤
NG(T ) be the inverse image of the alternating group Al+1 ≤ Sl+1. Put N = G/H.
Then π1(N) = π0(H) is identified with Al+1, N is orientable, and the Euler
characteristic of N is equal to (l + 1)!/2. Consider the case in which B = N ,
E = B×N → B is the projection, and z : B → E is the diagonal map z(x) = (x, x).
Then π0(h-Null(z)) is identified with the set of conjugacy classes in Al+1, γa(z) is
non-zero if a is the trivial class and is zero otherwise, by Proposition 2.22.

Propositions 3.5 and 3.7 can be glued together in the following manner.

Proposition 3.12. Consider a trivial bundle E = B × N → B over a connected
and simply connected base B, with dim N > 1. Write z(x) = (x, e(x)) and s(x) =
(x, f(x)), where e and f are maps B → N . Suppose that there are non-empty open
subsets U and V of B such that B = U ∪ V , f is constant on U and e is constant
on V , with Null(s)∩ (U ∩V ) = ∅. Choose a basepoint ∗ ∈ U ∩V . Then π1(N, e(∗))
acts transitively and freely on R(s) and there is a class u ∈ ω̃0(B−ν) such that

γα·a(s)− u = w(α)(γa(s)− u) for a ∈ R(s), α ∈ π1(N, e(∗)).

Proof. We have a decomposition γa(s) = iUγa(s |U)+iV γa(s |V ), where iU and iV
are the Gysin maps, by the additivity of the index. Consider a loop α : [0, 1] → N
at e(∗) representing a class in π1(N, e(∗)). Since dim N > 1, we can arrange that α
does not pass through f(∗). From the homotopy invariance of the index, we deduce
that γα·a(s |V ) = w(α)γa(s |V ) for a ∈ R(s). It follows similarly, by a relative
version of Jiang invariance using loops at f(∗) which miss e(∗), that γa(s |U) is
independent of a. �

As an application we have the following generalization of [21] Theorem 1.21.

Proposition 3.13. Suppose that B = S0 ∗ A is the unreduced suspension of a con-
nected compact ENR A and that e : B → N is a map to a connected closed manifold
N of dimension greater than 1. Let E = B×N → B be the trivial bundle with the
null section z: x 7→ (x, e(x)). If N has a non-trivial orientation-preserving loop,
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then the stable cohomotopy Euler class γ(e∗τN) is zero, that is γ(ν) = 0, and
hence h-γ(z) = 0.

Proof. We can think of S0 ∗A as the quotient of [−1, 1]×A in which {−1}×A and
{1}×A are each collapsed to a point. Let U and V be the quotients of [−1, 1/2)×A
and (−1/2, 1]×A respectively. Change z by a homotopy so that it is constant on V ,
and choose a section s homotopic to z and constant on U . The chosen homotopy
from z to s picks out a component a ∈ R(s) with γa(s) = γ(ν). By assumption,
there is a loop α with w(α) = 1 such that α ·a 6= a, which implies that γα·a(s) = 0.
We deduce that γ(ν) = γa(s) = γα·a(s) = 0. �

Consider a finite-dimensional real vector bundle η over B, and suppose that
s0 and s1 are two sections of the sphere bundle S(η) which coincide on the closed
sub-ENR A ⊆ B. Let p : B× [0, 1] → B be the projection. Then we have a section
σ of π∗η given by σ(x, t) = (1− t)s0(x) + ts1(x) (x ∈ B, t ∈ [0, 1]). This section is
non-zero on the subspace (B × {0, 1}) ∪ (A × [0, 1]). We can, thus, construct the
relative Euler class

γ(p∗η; σ) ∈ ω̃0((B × [0, 1], (B × {0, 1}) ∪ (A× [0, 1]))−p∗η).

The corresponding class δ(s0, s1) ∈ ω̃−1((B,A)−η) under the suspension isomor-
phism is called the difference class of the two sections. (See, for example, [5].) It
vanishes if the two sections are homotopic (relative to A) and in a stable range
it is the precise obstruction to the existence of a homotopy. We now relate this
difference class to the Euler index when E is the sphere bundle E = S(R ⊕ ξ)
on the direct sum of the trivial line bundle B × R and a vector bundle ξ, with
the null section z given by z(x) = (1, 0) ∈ S(R ⊕ ξx). The section −z defined
by (−z)(x) = (−1, 0) is nowhere null, and clearly any section s of E → B that is
nowhere null is homotopic to −z. If B is a finite complex with dim B < 2 dim ξ−1,
then, for a section s coinciding with −z on a subcomplex A, δ(−z, s) = 0 if and
only if s is homotopic, through a homotopy constant on A, to −z.

Proposition 3.14. Let ξ be a non-zero real vector bundle over B, with an inner
product, and let E → B be the sphere bundle S(R ⊕ ξ). Take z to be the section
(1, 0), so that ν = ξ. Consider a section s such that Null(s) is disjoint from the
closed sub-ENR A ⊆ B. Up to homotopy we may assume that s coincides with −z
over A so that the difference class δ(−z, s) ∈ ω̃−1((B,A)−R⊕ξ) of the two sections
of the sphere bundle is defined. Then, under the suspension isomorphism,

γ(s;A) = δ(−z, s) ∈ ω̃0((B,A)−ξ).

In particular, when A = ∅ we have

γ(s) = δ(−z, s) = δ(z, s) + γ(ξ) ∈ ω̃0(B−ξ).

Proof. This is established by direct comparison of the definitions of the Euler index
and the difference class. The Euler index is represented by the fibrewise pointed
map

f : B × S0 → S(R⊕ ξ)/B(−z)B = ξ+
B
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determined by the section s of S(R⊕ ξ), and the differennce class by

g : B × R+ = B × ([0, 1]/{0, 1}) → D(R⊕ ξ)/BS(R⊕ ξ) = (R⊕ ξ)+B ,

where g(x, [t]) = [(1 − t)(−z)(x) + ts(x)] (t ∈ [0, 1], x ∈ B). Here ‘/B ’ denotes
the fibrewise quotient: thus the fibre of D(R⊕ ξ)/BS(R⊕ ξ) is the pointed space
D(ξx)/S(ξx). Equality is used for natural identifications (up to homotopy). One
checks by inspection that g is the fibrewise suspension of f .

When A = ∅, the difference class δ(−z, z) is equal to the stable cohomotopy
Euler class γ(ξ). The identity δ(−z, s) = δ(−z, z) + δ(z, s) is immediate, from the
difference property: δ(s0, s1) + δ(s1, s2) = δ(s0, s2) for sections s0, s1, s2. �

Remark 3.15. If dim ξ > 1, then the fibres of E = S(R⊕ ξ) are simply-connected.
There is more to say when ξ is a line bundle. In this case, let us write ξ = λ, so
that E = S(λ)×Z/2 S(C) (where Z/2 acts on C by conjugation and on the double
cover S(λ) → B as ±1) is a bundle of circle groups. The group of homotopy classes
of sections s is identified with the cohomology group H1(B; Z(λ)), where Z(λ) is
the system of Z-coefficients twisted by the bundle λ. Let us write

η : H1(B; Z(λ)) → ω̃0(B−λ)

for the (not, in general, linear) map [s] 7→ δ(z, s). The Hurewicz homomorphism

h : ω̃0(B−λ) → H̃0(B−λ; Z) = H1(B; Z(λ))

sends η[s] to [s].
Now consider a section s over B. The homotopy null-set h-Null(s) is ho-

motopy equivalent to an infinite cyclic cover of B. For each a ∈ R(s) we can
find a section sa coinciding with s in a neighbourhood of the intersection of
Null(s) with h-Nulla(s) and nowhere null outside that neighbourhood, so that
γa(s) = γ(sa) = δ(z, sa)+γ(λ). It follows that γa(s) is determined by its Hurewicz
image x ∈ H1(B; Z(λ)) as η(x− e(λ)) + γ(λ), where e(λ) = h(γ(λ)) is the coho-
mology Euler class of λ.

Suppose that B is connected with a basepoint ∗. Fix an orientation of the fibre
λ∗ and let w : π1(B, ∗) → {±1} be first Stiefel-Whitney class of λ. The homotopy
class [s] ∈ H1(B; Z(λ)) is represented by a 1-cocycle σ : π1(B, ∗) → Z satisfying
σ(gh) = σ(g) + w(g)σ(h) for g, h ∈ π1(B, ∗). The set of components R(s) is
identified with the set of orbits of the action of π1(B, ∗) on Z by g ·q = w(g)q−σ(g)
(q ∈ Z).

It is a routine exercise to describeR(s) in terms of σ and to calculate h(γa(s))
for a ∈ R(s).

Suppose first that λ is trivial. The group H1(B; Z) is torsion-free. If σ = 0,
then R(s) is identified with Z and each γa(s) is zero. Otherwise, the homomor-
phism σ : π1(B, ∗) → Z has image kZ for k ≥ 1, R(s) is identified with Z/kZ,
π0(Γ(ΩBE)) = Z acts transitively on R(s), and all the indices h(γa(s)) are equal
to x, where kx = [s].

Suppose that λ is non-trivial. The torsion subgroup of H1(B; Z(λ)) is cyclic
of order 2, generated by e(λ). Choose an element g ∈ π1(B, ∗) such that w(g) = −1
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and write r = σ(g). Let σ(ker w) = kZ, where k ≥ 0. Then R(s) is identified with
the quotient of Z/kZ by the involution τ : q 7→ −q + r. The indices are as follows.

(i) k = 0, r even (that is, [s] = [z]). Then h(γa(s)) = e(λ) for a corresponding
to the unique fixed-point of τ ; otherwise h(γa(s)) = 0.

(ii) k = 0, r odd (that is, [s] = [−z]). For all a we have h(γa(s)) = 0.
(iii) k ≥ 1 odd. Then #R(s) = (k +1)/2, h(γa(s)) = x+e(λ) for a corresponding

to the unique fixed-point of τ and h(γa(s)) = 2x for the remaining (k− 1)/2
components, where kx = [s].

(iv) k even, r even (so that [s] is divisible by 2). The involution τ has two fixed-
points and #R(s) = k/2 + 1. The indices h(γa(s)) for the components cor-
responding to the fixed-points are x and x + e(λ), where kx = [s], and the
remaining k/2− 1 components have index 2x.

(v) k even, r odd (so that [s] + e(λ) is divisible by 2). The involution τ has no
fixed-points, #R(s) = k/2 and each component has index h(γa(s)) = 2x,
where kx = [s] + e(λ).
Specific examples are examined in more detail in [9].

4. Smooth fibre bundles

When the base B is a smooth manifold, the fibrewise stable homotopy groups in
which the Euler indices lie can be expressed as ordinary stable homotopy groups.
This simplification depends upon the following basic result from fibrewise stable
homotopy theory; see, for example, [5, 4].

Proposition 4.1. Let B be a compact manifold with boundary. Then there is a
natural equivalence

λB : ω∗(B,∂B){B ×X; F}
∼=−→ ω∗{X; (F,B)−p∗τB},

for any finite pointed complex X and any pointed homotopy fibre bundle p : F →
B (that is, a fibrewise pointed space which is locally fibre homotopy trivial) with
fibres of the homotopy type of CW complexes. More generally, for an open subset
U ⊆ B − ∂B there is a natural equivalence

λU : cω
∗
U{B ×X; F}

∼=−→ ω∗{X; (p−1U,U)−p∗τU},

The more general statement follows easily from the basic result by expressing
the stable homotopy with compact supports in U as a direct limit of relative
homotopy groups over (B′, ∂B′) indexed by the compact submanifolds B′ of U .
When the bundle is trivial, the equivalence λB reduces to the Poincaré-Atiyah
duality between B/∂B and B−τB .

Proposition 4.2. For a vector bundle ν over B, the isomorphism

λB : ω∗(B,∂B){B × S0; ν+
B}

∼=−→ ω∗{S0; (ν+
B , B)−p∗τB} = ω0{S0; Bν−τB}

is precisely the duality isomorphism ω̃∗((B, ∂B)ν)
∼=−→ ω̃−∗(Bν−τB).
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Throughout this section E → B will be a locally trivial smooth fibre bundle
over a compact manifold B, z : B → E will be a smooth null section and s will be
a continuous section. Proposition 4.1 specializes to the following equivalence.

Lemma 4.3. Suppose that B is a smooth manifold with boundary A = ∂B, that
E → B is a smooth fibre bundle and z is a smooth section. Then we have the
identification

ω0
(B,∂B){B × S0; h-Null(s)π∗ν

B } = ω̃0(h-Null(s)π∗(ν−τB)). �

This allows us to describe the groups quite explicitly when the base and fibre
have the same dimension.

Proposition 4.4. Suppose that the base B and the fibres of E → B have the same
dimension. Then

ω0
(B,∂B){B × S0; h-Null(s)π∗ν

B } =
⊕

a∈R(s)

H0(h-Nulla(s); Z(a)),

where Z(a) is the system of Z-coefficients twisted by the orientation bundle of the
lift of ν − τB to the a-component, so that H0(h-Nulla(s); Z(a)) is isomorphic to
Z or Z/2Z according as the lift is orientable or non-orientable. �

In particular, if dim ν = dim B and ν and τB are both oriented, then

ω0
(B,∂B){B × S0; h-Null(s)π∗ν

B } = Z[R(s)]

is the free abelian group on R(s). When B is a closed n-manifold and E = B×N
is the trivial bundle with fibre N , then h-γ(s) ∈ Z[R(s)] is Staecker’s coincidence
Reidemeister trace [25], as is the local version iUh-γ(s |U).

Now suppose that the null-set Null(s) is a smooth submanifold of B with
normal bundle ξ. As in Definition 2.4, let D(ν) ↪→ E be a fibrewise tubular
neighbourhood of the null section. Then we may choose a tubular neighbourhood
D(ξ) ↪→ B−∂B of Null(s) so small that in the tubular neighbourhood the section
s takes values in D(ν) ⊆ E. This means that in the neighbourhood D(ξ) we may
think of z and s as sections of the disc bundle D(ν); the null section z is the zero
section and Null(s) is the zero-set of s. The relative Euler class

γ(ν; s) ∈ ω̃0((D(ξ), S(ξ))−ν) = ω̃0(Null(s)ξ−ν)

of s regarded as a nowhere zero section of ν over the subspace S(ξ) of D(ξ)
determines the homotopy Euler index.

Lemma 4.5. In the situation described above, the relative Euler class γ(ν; s) maps
to the homotopy Euler index h-γ(s; ∂B) under the composition

ω̃0(Null(s)ξ−ν)
∼=−→ ω̃0(Null(s)ν−τB) → ω̃0(h-Null(s)π∗(ν−τB))

of the duality isomorphism and the homomorphism induced by the inclusion of
Null(s) into h-Null(s).
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Proof. By naturality, there is no loss of generality in assuming that B = D(ξ),
A = S(ξ). Using Proposition 2.21(ii), we may identify the relative Euler class with
the index

γ(s; A) ∈ ω0
(B,A){B × S0; ν+

B}.
And from Definition 2.4, the homotopy index h-γ(s; A) is the image of this class
under the fibrewise map

ν+
B → h-Null(s)π∗ν

B

induced by the section B → h-Null(s) which assigns to a point x ∈ B = D(ξ) the
linear path from 0 = z(x) to s(x) in D(νx) ⊆ Ex.

The proof is completed by using the natural equivalence λB from Propo-
sition 4.1 and then applying Proposition 4.2 (with the homotopy equivalence
B = D(ξ) → Null(s)). �

As a first consequence, we deduce that the topologically defined indices agree
with those defined by Koschorke in the differentiable case.

Proposition 4.6. Suppose that s is a smooth section that is nowhere null on ∂B
and is transverse to z. Then Null(s) is a submanifold of B − ∂B, and the normal
bundle of Null(s) in B is identified with the restriction of ν, so that we have an
induced map

ω̃0(Null(s)−τNull(s)) → ω̃0(h-Null(s)π∗(ν−τB))
given by the inclusion of Null(s) in h-Null(s). The homotopy Euler index h-γ(s; ∂B)
is the image, under this homomorphism, of the fundamental class of the null-set.

Proof. In the notation of the lemma, we have ξ = ν (restricted to Null(s)), ν
restricted to the tubular neighbourhood D(ξ) is isomorphic to the pull-back of
ν |Null(s), and s on S(ξ) is effectively the diagonal inclusion of S(ξ) = S(ν) in
D(ν). The relative Euler class corresponds to the identity element in ω0(Null(s)),
which is dual to the fundamental class. �

Remark 4.7. More generally, we may consider an open subspace U ⊆ B−∂B such
that P = U ∩ Null(s) is compact. Suppose that s is transverse to z on U . Then
P is a closed submanifold with normal bundle the restriction of ν. The image of
h-γ(s |U) in ω̃0(h-Null(s)π∗(ν−τB)) is represented by P ↪→ h-Null(s).

There are some special cases of this situation in which the inclusion Null(s) ↪→
h-Null(s) is a homotopy equivalence. The simplest example is: B = T, E is the
trivial bundle of groups B × T, z is the section z(x) = (x, 1) and s is the section
s(x) = (x, xd), where d 6= 0.

Example 4.8. Let Π and Γ be finitely-generated torsion-free nilpotent groups, and
suppose that ε and σ are group homorphisms Π → Γ. Recall (for example from [1])
that such a group Π is functorially embedded as a co-compact discrete subgroup
of a contractible nilpotent Lie group ΠR, and then Π/ΠR is a classifying space for
Π. Take B = ΠR/Π, E = B×N where N = ΓR/Γ, and let z and s be the sections
determined by ε∗ and σ∗: ΠR/Π → ΓR/Γ. Then R(s) can be identified with the
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set of Π-orbits of the action of Π on Γ by π · γ = ε(π)γσ(π)−1. If R(s) is finite,
then z and s are transverse sections, the inclusion of Null(s) into h-Null(s) is a
homotopy equivalence and h-γ(s) corresponds to the fundamental class of Null(s)
under the isomorphism:

ω̃0(Null(s)−τNull(s)) ∼= ω̃0(h-Null(s)π∗(ν−τB)).

More information on these examples can be found in [10].

We also have a Poincaré-Hopf theorem, extending the classical theorem for
vector bundles, when the null-set is finite. At an isolated point x in Null(s), the
relative Euler class construction of Lemma 4.5 determines a local index

γx(s) ∈ ω̃0((D(τxB), S(τxB))−νx) = ω0{(τxB)+; (νx)+} = ω̃0({x}νx−τxB).

Proposition 4.9. (Poincaré-Hopf theorem). Let B be a compact manifold with
boundary A = ∂B. Suppose that s is a section of E → B which is null at just
a finite number of points (in B−∂B). At each x ∈ Null(s), the relative Euler class
determines a local index γx(s) ∈ ω̃0({x}νx−τxB). Then

h-γ(s; ∂B) =
∑

x∈Null(s)

(ix)∗γx(s) ∈ ω̃0(h-Null(s)π∗(ν−τB)),

where ix : {x} → h-Null(s) is the inclusion.

Proof. This follows at once from Lemma 4.5. �

In the classical situation in which τB and ν are oriented and of the same
dimension, the local indices can be regarded as integers and the Poincaré-Hopf
formula computes h-γ(s) ∈ Z[R(s)].

There is a natural generalization of Wecken’s theorem for smooth manifolds.
Versions very close to that stated below can be found in [21] Corollary 3.3 and [9];
see, also, [24].

Proposition 4.10. (The smooth Wecken theorem). Suppose that B is a smooth
manifold of dimension n ≥ 3 with boundary A = ∂B and that E → B is a smooth
fibre bundle with fibres of the same dimension n and that z is a smooth section.
Then any section which is nowhere null on ∂B is homotopic through sections that
are constant on ∂B to a section s such that Null(s) is finite and contains precisely
one point in each component a ∈ R(s) such that h-γa(s) 6= 0 and no point in a
component a with h-γa(s) = 0.

Proof. The proof follows closely the proof of the classical Wecken theorem, as
described, for example, in [13]. We shall only outline the main steps.

By transversality, since n = dim B is equal to the fibre dimension, any section
that is nowhere null on ∂B is homotopic, through sections constant on ∂B, to a
section s with Null(s) finite.

One shows next that if Null(s) contains two points x 6= y in the same compo-
nent of h-Null(s), then we may replace s by a section with null-set of cardinality
#Null(s)−1. By assumption, there is a path α : [0, 1] → B with α(0) = x, α(1) = y,
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such that the pull-back α∗s over [0, 1] is homotopic, by a homotopy fixed at the
end-points, to α∗z. We can certainly arrange that the path lies in B − ∂B and,
since dim B ≥ 3, we may choose α to be a smooth embedding with α(t) /∈ Null(s)
for 0 < t < 1. Now take a smoothly embedded closed n-disc D ↪→ B − ∂B such
that the path α lies in the interior of D and D ∩ Null(s) = {x, y}. There is a
trivialization of E → B over D as D × N → D with z given by x 7→ (x, ∗) for a
basepoint ∗ ∈ N . Since dim N ≥ 3, we may choose a homotopy su, 0 ≤ u ≤ 1, be-
tween s0 = α∗s and s1 = α∗z such that su maps (0, 1) into N −{∗} for 0 ≤ u < 1.
Using this homotopy one can deform s to a section s′ coinciding with s outside
the interior of D with Null(s′) ∩ D = α[0, 1]. Finally, choose a coordinate chart
Rn ↪→ N centred at ∗ and an embedded closed n-disc D′ ↪→ D such that α[0, 1]
lies in the interior of D′ and s′ maps D′ into the coordinate chart. Then deform
s′ by radial extension to a section s′′ coinciding with s′ outside the interior of D′

such that Null(s′′) ∩D′ consists of a single point, the centre of D′.
By iterating this procedure one reduces to the case in which Null(s) is finite

and contains at most one point in each component of h-Null(s).
For a ∈ R(s) such that the pull-back of ν−τB to h-Nulla(s) is not orientable

we can replace a single point x at which s is null by a circle. There is a path
α : [0, 1] → B such that α(0) = x = α(1), the pull-back α∗s is homotopic to
α∗z relative to the end-points, and α reverses the orientation of νx − τxB. We
may choose α so as to give a smoothly embedded circle C = α[0, 1], and s may
be modified in a small tubular neighbourhood of C to a section s′ with C =
Null(s′) ∩ h-Nulla(s′).

Finally, suppose that either (i) the pull-back of ν − τB to h-Nulla(s) is ori-
entable and Null(s) ∩ h-Nulla(s) consists of a single point x or (ii) the pull-back
is non-orientable and Null(s) ∩ h-Nulla(s) is a circle C as described above. Fix
a fibrewise tubular neighbourhood D(ν) ↪→ E of the null section. Then we may
choose a tubular neighbourhood in (B− ∂B)∩ s−1(D(ν)) of (i) {x} or (ii) C con-
taining no other point of Null(s). The index h-γa(s) is an integer invariant in case
(i) and an element of Z/2Z in case (ii). It is the precise obstruction to deforming
s in the tubular neighbourhood, considered as a section of the disc bundle D(ν)
(⊆ E), to a section such that Null(s) ∩ h-Nulla(s) = ∅. �

5. A generalized fixed-point index

Consider, first, a continuous self-map f : N → N of a closed manifold N . Write
B = N , and let E → B be the trivial bundle B ×N → B with the null section z
given by the diagonal map z(x) = (x, x). With the map f we associate the section
s(x) = (x, f(x)).

The null-set Null(s) is the fixed-subspace Fix(f) = {x ∈ B | f(x) = x} of f
and h-Null(s) is naturally identified with the homotopy fixed-point set h-Fix(f)
(see [3, 5]) consisting of the paths α : [0, 1] → N such that α(1) = f(α(0)).
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In [5] and [3] we defined, in a general fibrewise and equivariant setting, the
homotopy Lefschetz index

h-L(f) ∈ ω0{S0; h-Fix(f)+} = ω0(h-Fix(f))

of f . (In [5] the term ‘Nielsen-Reidemeister index’ was used.) Here it is just the
sum over the path-components of h-Fix(f) (that is, the Reidemeister classes) of
the integral Lefschetz indices associated with each component.

Now the normal bundle ν over B is equal to τB, and so we have an isomor-
phism

λB : ω0
B{B × S0; h-Null(s)π∗ν

B }
∼=−→ ω0(h-Null(s)).

Proposition 5.1. In the situation described above, the homotopy Lefschetz index
h-L(f) of the map f corresponds to the homotopy Euler index h-γ(s) of the asso-
ciated section s.

Proof. This will be proved as a special case of Proposition 5.4. �

Consider, next, a smooth fibre bundle e : B → N , where B and N are closed
manifolds, and suppose that f : B → N is a continuous map. As usual, we let
E = B×N → B be the trivial bundle with fibre N , equipped with the null section
z(x) = (x, e(x)). The normal bundle is ν = e∗τN , and associated with f there is
a section s(x) = (x, f(x)). The homotopy Euler index h-γ(s) lies in the group

ω0
B{B × S0; h-Null(s)π∗ν

B },
which we may identify, using λB , with

ω0{S0; h-Null(s)−π∗τ(e)},
where τ(e) is the tangent bundle (τNB) along the fibres, because τB ∼= τ(e) ⊕
e∗τN . We shall interpret the corresponding class as a generalized fixed-point index
constructed, under weaker hypotheses, by an extension of Dold’s method.

Definition 5.2. Let e : B → N be a smooth fibrewise manifold over a compact
ENR N and let f : U → N be a continuous map defined on an open subset U ⊆ B
such that Fix(f) = {x ∈ U | f(x) = e(x)} is compact. The homotopy fixed-point
set of f is defined to be the set of pairs (x, α), where x ∈ U and α : [0, 1] → N
is a continuous path from e(x) = α(0) to f(x) = α(1), topologized in the usual
way. Let π : h-Fix(f) → U be the projection to the first factor. We construct the
generalized homotopy Lefschetz index

h-L(f, U) ∈ ω0{S0; h-Fix(f)−π∗τ(e)} = ω̃0(h-Fix(f)−π∗τ(e))

as follows.
First we choose a fibrewise smooth embedding j : B ↪→ N × V, over N , for

some Euclidean space V. The normal bundle ν(j) of j satisfies τ(e)⊕ν(j) = B×V
(up to homotopy). So we can realize the stable homotopy of the virtual Thom
space as

ω0{S0; h-Fix(f)−π∗τ(e)} = ω0{V+; h-Fix(f)π∗ν(j)}.
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Choose a fibrewise tubular neighbourhood of j over N : D(ν(j)) ↪→ N×V. We also
need an embedding i : N ↪→ W ⊆ U of the ENR N as a retract of an open subspace
W of a Euclidean space U , with a retraction r : W → N . By the compactness of
Fix(f), we may choose an open neighbourhood V with compact closure V such
that Fix(f) ⊆ V ⊆ V ⊆ U and (1 − t)ie(x) + tif(x) ∈ W for all x ∈ V and
0 ≤ t ≤ 1, and then a real number ε > 0 such that ‖if(x) − ie(x)‖ ≥ ε for all
x ∈ V − V .

We use i and j to regard D(ν(j)) as a subspace of U × V. The homotopy
Lefschetz index is then represented by the pointed map

U+ ∧ V+ → U+ ∧ h-Fix(f)π∗ν(j)|U = (D(U)/S(U)) ∧ (D(π∗ν(j)|U)/S(π∗ν(j)|U))

sending a point v of D(ν(j)|V ) in the fibre of ν(j) over x ∈ B such that ‖if(x)−
ie(x)‖ < ε to [ε−1(if(x)− ie(x)), (x, α, v)]), where α(t) = r((1− t)ie(x) + tif(x)),
and collapsing the complement to the basepoint.

One must check, of course, that the class so constructed is independent of
the choices made. It is implicit in the terminology that the index coincides when
e = 1 : B = N → N with the standard fixed-point index. Indeed, we may take
V = 0 and j = 1 : B → N . Then the construction reduces to that described in
[5, 3].

Remark 5.3. A finite d-fold cover e : B → N is a fibrewise smooth manifold over
N , but the construction is only slightly simpler in this special case. The fibrewise
tangent bundle τ(e) is zero, and we can project from h-Fix(f) to U by π:

h-L(f, U) ∈ ω0(h-Fix(f)) → ω0(U),

to obtain a Lefschetz index L(f, U) ∈ ω0(U) = ω0{S0; U+}. A globally defined
map f : B → N that is injective on each fibre can be regarded as a d-valued
function from N to N with fixed-point set e(Fix(f)) ⊆ N ; see, for example, [2].

Proposition 5.4. Suppose that e : B → N is a smooth fibre bundle, where B and
N are closed manifolds. For a map f : B → N , the homotopy Euler index

h-γ(s) ∈ ω0
B{B × S0; h-Null(s)π∗ν

B }

of the associated section s of E = B × N → B corresponds under the duality
isomorphism λB to the homotopy Lefschetz index

h-L(f,B) ∈ ω0{S0; h-Fix(f)−π∗τ(e)}.

Proof. We need an explicit description of the isomorphism λB . Choose a smooth
embedding k : B ↪→ W of B into some Euclidean space W with normal bundle
ν(k) and fix a tubular neighbourhood D(ν(k)) ↪→ W. In Definition 2.4, h-γ(s) is
defined by a section σ : B → h-Null(s)π∗ν

B . The corresponding class λB(h-γ(s)) is
represented by the pointed map

W+ →
(
h-Null(s)π∗ν

B ∧B (D(ν(k))/BS(ν(k))
)
/B = h-Null(s)π∗(ν⊕ν(k)),
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given by mapping a point (x, v) ∈ D(ν(k)) ⊆ W, where x ∈ B and v ∈ D(ν(k)x),
to [σ(x), (x, v)], and collapsing the complement to the basepoint. (Recall that ‘/B ’
denotes the fibrewise quotient.)

The proof is completed by comparing the two definitions, taking i in Defini-
tion 5.2 to be a smooth embedding, W to be a tubular neighbourhood and W to
be U × V. �

Remark 5.5. There is a fibrewise version of the theory, in which the ENR N is
generalized to be a fibrewise ENR over a compact ENR X and f : U → N is
required to be a fibre-preserving map over X. See [9] for the case B = N .

6. The homotopy Pontrjagin-Thom construction

Consider a closed submanifold M of a manifold N without boundary. Let ν be the
normal bundle of the embedding and choose a tubular neighbourhood D(ν) ↪→ N .

The Pontrjagin-Thom construction collapses the complement of the open disc
bundle B(ν) to a point and identifies the quotient D(ν)/S(ν) with the one-point
compactification Mν of the total space of ν to give a pointed map

N+ → Mν

from the one-point compactification of N to the Thom space of ν. By construction,
we have a cofibre sequence

N −B(ν) ↪→ N → Mν .

The homotopy Pontrjagin-Thom construction is less well known; see [5] (Part
II, Section 12), where it is described as a ‘refinement of the Gysin map’. Let C → N
be the space of continuous paths α : [0, 1] → N such that α(0) ∈ M , fibred over
N by projection to the end-point α(1). We have a map π : C → M given by
π(α) = α(0), and this lifts the normal bundle ν to π∗ν over C. The homotopy
Pontrjagin-Thom map is a fibrewise pointed map with compact support over N

N × S0 → Cπ∗ν
N

prescribed as follows by a section σ of the fibrewise Thom space of π∗ν. Outside
the tubular neighbourhood B(ν) ⊆ N , the section σ maps to the basepoint in the
fibre, so that the support lies within the compact subspace D(ν) ⊆ N . For a point
(x, v) ∈ D(ν) ⊆ N , where x ∈ M , v ∈ D(νx), the fibre C(x,v) is the space of paths
β : [0, 1] → N with β(0) ∈ M and β(1) = (x, v). We define σ(x, v) = [α, v], where
α : [0, 1] → N is given by the radial path α(t) = (x, tv) ∈ D(ν) ⊆ N . The fibre of
π∗ν at α is νx and v determines an element [v] ∈ D(νx)/S(νx).

Let B be the space of continuous paths β : [0, 1] → N and let A be the
subspace of paths β with β(0) ∈ N − B(ν), both fibred over N by β 7→ β(1).
Clearly the path space B → N is fibre homotopy equivalent, over N , to the identity
map N → N , and adjoining basepoints in each fibre gives a model B+N for N×S0.
The following analogue of the cofibre sequence for the Pontrjagin-Thom map is
implicit in the work of Klein and Willioms [14].
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Lemma 6.1. The homotopy Pontrjagin-Thom map fits into a fibrewise (homotopy)
cofibration sequence

A+N ↪→ B+N (' N × S0) → Cπ∗ν
N

over N .

Notice that the fibrewise pointed spaces appearing in the statement are locally
fibre homotopy trivial.

Proof. This is a proof by inspection. A path β : [0, 1] → N in the complement
B − A starts at β(0) ∈ B(ν), say β(0) = (x, v), where x ∈ M , v ∈ B(νx). We can
extend β to a path α : [0, 1] → N with α(0) = x ∈ M , α(1) = β(1), by

α(t) =

{
(x, 2tv) if 0 ≤ t ≤ 1

2 ,
β(2t− 1) if 1

2 ≤ t ≤ 1.

This constructs a map B −A → B(π∗ν): β 7→ (α, v). The routine checking that it
induces a homotopy equivalence from the cofibre of A+N ↪→ B+N to the fibrewise
Thom space of π∗ν over C is omitted. �

7. Intersections

Suppose that Z → B is a fibrewise smooth fibre bundle with closed (so compact)
fibres embedded as a fibrewise submanifold in E → B. Let ν, over Z, be the
(fibrewise) normal bundle of the inclusion. Locally, such a bundle pair (E,Z) is
of the form (U × N,U × M), where M ⊆ N is a closed submanifold (and U is
an open subspace of B). For example, if z : B → E is a section, we may take
Z to be z(B) ⊆ E; in that case, ν is the restriction of τBE to Z, so that Z is
identified with B and ν with z∗τBE. The definitions and constructions in Section
2 generalize easily.

Definition 7.1. Given a section s of E → B we say that s is null at a point x ∈ B
if s(x) ∈ Zx and write

Null(s) = {x ∈ B | s(x) ∈ Zx}
for the null-set of s. The homotopy null-set, h-Null(s) is defined as the set of pairs
(x, α), with x ∈ B and α : [0, 1] → Ex a continuous path in the fibre at x with
α(0) ∈ Zx and α(1) = s(x). (The set is topologized as a subspace of the fibrewise
path-space.) It is fibred over B by projecting (x, α) to x. We include Null(s) in
h-Null(s) as the space of constant paths. There is a map π : h-Null(s) → Z over
B, mapping (x, α) to α(0).

We shall rephrase the constructions of the Euler indices in the language of
Section 6. The constructions there extend to fibre bundles. Thus, from the fibrewise
submanifold Z ⊆ E we obtain a fibrewise Pontrjagin-Thom map over B:

E+
B → Zν

B

from the fibrewise one-point compactification of E to the fibrewise Thom space.
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Definition 7.2. Let s be a section of E → B. It determines a fibrewise pointed map
B×S0 → E+

B mapping the basepoint (x, 1) in the fibre at x ∈ B to the basepoint
at infinity and (x,−1) to s(x). The composition of this map with the fibrewise
Pontrjagin-Thom map above is the Euler index

γ(s) ∈ ω0
B{B × S0; Zν

B}.

More generally, if the null-set Null(s) is disjoint from a closed sub-ENR A ⊆
B, then we have a relative Euler index

γ(s; A) ∈ ω0
(B,A){B × S0; Zν

B},

which vanishes if s is homotopic, relative to A, to a section that is nowhere null.
Let C be the space of pairs (x, α), where x ∈ B and α : [0, 1] → Ex is a path

with α(0) ∈ Zx. There is a projection C → E mapping (x, α) to α(1) and a map
π : C → Z given by π(x, α) = α(0). The fibrewise homotopy Pontrjagin-Thom
map of the fibrewise submanifold Z ⊆ E is a pointed map over E with compact
support:

E × S0 → Cπ∗ν
E .

Definition 7.3. Let s : B → E be a section. The pull-back of C → E by s is the
homotopy null-set h-Null(s) → B. We define the homotopy Euler index

h-γ(s) ∈ ω0
B{B × S0; h-Null(s)π∗s

B }
to be the lift of the homotopy Pontrjagin-Thom map of the fibrewise embedding
Z ↪→ E.

There is again a relative version

h-γ(s; A) ∈ ω0
(B,A){B × S0; h-Null(s)π∗s

B }

if s is nowhere null on A, and γ(s; A) = π∗h-γ(s; A). In the same way, if U ⊆ B
is an open subset such that Null(s) ∩ U is compact, we have a local index

h-γ(s |U) ∈ cω
0
U{U × S0; h-Null(s)π∗ν

U }.
The construction may be spelt out as in Definition 2.4. Having chosen a fibrewise
tubular neighbourhood D(ν) ↪→ E of the fibrewise submanifold Z ⊆ E over B, we
let W be an open neighbourhood of Null(s)∩U such that W ⊆ U ∩s−1(D(ν)). By
compactness there exists ε with 0 < ε < 1 such that s(x) 6∈ Dε(ν) for x ∈ W −W .
We can then define a section of h-Null(s)π∗ν

B mapping x ∈ B to the basepoint
in the fibre if x 6∈ W or if x ∈ W and s(x) 6∈ Dε(ν), while if s(x) ∈ Dε(ν), say
s(x) = (y, v) with y ∈ Zx, v ∈ νy, we map to [α, v/ε], where α : [0, 1] → Ex is the
path α(t) = (y, tv) from y ∈ Zx to s(x).

From its construction, the relative index h-γ(s; A) is an obstruction to de-
forming s to a section with empty null-set. The next result, essentially due to
Hatcher and Quinn [12], asserts that, in a range of dimensions, it is the exact
obstruction. Our approach follows that taken by Klein and Williams in [14]. An
application to immersion theory is described in [7].



The homotopy coincidence index 27

Proposition 7.4. Suppose that B is a finite complex of dimension < 2(dim ν − 1).
Let s be a section of E → B which is nowhere null on a subcomplex A. Then s
is homotopic, relative to A, to a nowhere null section of E → B if and only if
h-γ(s;A) = 0.

Proof. Choose a fibrewise tubular neighbourhood D(ν) ↪→ E over B such that
s(A) ∩ D(ν) = ∅, and let A → E be the space of pairs (x, β) where x ∈ B and
β : [0, 1] → Ex is a continuous path with β(0) /∈ B(ν), fibred over E by mapping
to β(1) ∈ Ex. The pull-back s∗A → B consists of the pairs (x, β), where x ∈ B
and β is a path in Ex with β(0) /∈ B(ν) and β(1) = s(x). Now we have a section
σ of s∗A → B over the subcomplex A, given by mapping x ∈ A to the constant
path at s(x). And s is homotopic, through a homotopy constant on A, to a section
that is nowhere null if and only if the section σ, defined on A, extends over B.

The rest is standard obstruction theory using Lemma 6.1 and the Blakers-
Massey theorem (as formulated in [5], Part II, Proposition 2.18). Suppose that
h-γ(s; A) = 0. To show that σ extends over B, one proceeds step by step over
the cells of the complement. See, for example, the proof given in [5] (Part II,
Proposition 4.9) in the special case that Z is the zero section in a real vector
bundle E. �

Example 7.5. Suppose that Z = B×M and E = B×N , where M is a submanifold
of N , are fibred as trivial bundles over B. Then the section s is given by a map
f : B → N such that f(A)∩M = ∅. We are considering the problem of deforming
f , relative to A, to a map that does not meet M .

Example 7.6. Suppoe that E is the total space of a real vector bundle over B and
that Z → B is a finite cover. Let s be the zero section of ξ. Then π : h-Null(s) → Z
is a fibre homotopy equivalence. The index h-γ(s) corresponds to the pull-back of
the Euler class γ(ξ) to Z. If B is a finite complex with dim B < 2(dim ξ− 1), then
there is a section of E − Z → B if and only if the stable cohomotopy Euler class
of the lift of ξ to Z is zero.

There is another way of thinking of the Euler indices. By lifting from B to Z,
we obtain an associated root problem. Write Ẽ → B̃ for the pull-back Z×B E → Z,
and let z̃ : B̃ → Ẽ be the diagonal section: z̃(y) = (y, y). A section s of E → B

determines a section s̃ : B̃ → Ẽ, namely, s̃(y) = (y, s(x)) ∈ Ẽy, where x ∈ B,
y ∈ Zx. The projection from Z to B induces homeomorphisms Null(s̃) → Null(s)
and h-Null(s̃) → h-Null(s). The normal bundle ν̃ = z̃∗τB̃Ẽ is the restriction τBE|Z
and splits, up to homotopy, as τBZ ⊕ ν.

The equivalence described in Proposition 4.1 generalizes from a manifold to
the fibrewise manifold Z → B to give compatible isomorphisms

λZ→B : ω0
Z{Z × S0; h-Null(s)π∗(τBE|Z)

Z } → ω0
B{B × S0; h-Null(s)π∗ν

B }.
and

λZ→B : ω0
Z{Z × S0; (τBE|Z)+Z} → ω0

B{B × S0; Zν
B}.

See [5] (Part II, Section 12).
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Lemma 7.7. Let s be a section of E → B. Then the Euler indices h-γ(s) and γ(s)
correspond, respectively, under the equivalence λZ→B above to the Euler indices
h-γ(s̃) and γ(s̃) for the associated root problem.

Proof. The inverse of the isomorphism

λZ→B : ω0
Z{Z × S0; (τBZ)+Z ∧Z F} → ω0

B{B × S0; F/BZ},

where F → Z is a pointed homotopy fibre bundle (with fibres of the homotopy
type of CW complexes) is described explicitly in [5]. In the cases of interest here,
F is Null(s)π∗ν

Z or ν+
Z . The case in which F = ν+

Z is easier to describe. The inverse
of λZ→B is a composition of two maps:

ω0
B{B × S0; Zν

B}
Z×B−−−→ ω0

Z{Z × S0; (Z ×B Z)ν
Z}

∆!

−→ ω0
Z{Z × S0; ZτBZ⊕ν

Z }.

The first lifts spaces and maps over B to spaces and maps over Z by the taking
the fibre product with Z and the identity map Z → Z, respectively. We have
identified Z ×B (Zν

B) with the fibrewise Thom space of the pull-back of ν to the
second factor of Z × Z. The second is the fibrewise Pontrjagin-Thom map of the
diagonal inclusion ∆ : Z → Z ×B Z; the normal bundle is identified with the
tangent bundle τBZ of the second factor Z.

Now the Euler indices γ(s) and γ(s̃) are constructed from fibrewise Pontrjagin-
Thom maps

E+
B

i!−→ Zν
B and (Z ×B E)+Z

ĩ!−→ (τBZ ⊕ ν)+Z .

One checks that ĩ! is the composition of Z×B i! and the diagonal Pontrjagin-Thom
map:

(Z ×B E)+Z
Z×Zi!−−−−→ (Z ×B Z)ν

Z
∆!

−→ (τBZ ⊕ ν)+Z .

Pulling back by the section s, one obtains the identity γ(s̃) = λ−1
Z→B(γ(s)).

The case of the homotopy indices is similar; we omit the details. �

Notice, however, that, although the indices of s and s̃ are the same, the
obstruction theory is different. If s is homotopic to a nowhere null section, then
so is s̃. But the converse is, in general, false.

When the base B is a smooth manifold, we may use the equivalence λB from
Proposition 4.1 to write

ω0
(B,∂B){B × S0; h-Null(s)π∗ν

B } = ω̃0(h-Null(s)π∗(ν−p∗τB)),

where p : Z → B is the projection. The differential-topological interpretation of
the indices in Section 4 then has the following generalization.

Proposition 7.8. Suppose that E → B is a smooth fibre bundle over a man-
ifold B and that Z → B a smooth sub-bundle. Consider a smooth section s
which is nowhere null on ∂B and is transverse to Z. Then Null(s) is a sub-
manifold of B − ∂B with normal bundle s∗ν. This manifold, with the inclusion
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Null(s) → h-Null(s) and the stable isomorphism between the tangent bundle and
the restriction of −π∗(ν − p∗τB), represents the homotopy Euler index

h-γ(s; ∂B) ∈ ω̃0(h-Null(s)π∗(ν−p∗τB)).

Proof. Using the functoriality of the λ-equivalences: λZ = λB ◦ λZ→B , we can
deduce this from Proposition 4.6 and a relative version of Lemma 7.7. �

We return to the discussion of coincidence invariants. Consider, as in Section
2, a root problem given by a bundle E → B and sections z and s, where E is
compact. There are two ways in which this may be fitted into the intersection
framework. We may simply take Z = z(B) ⊆ E with the given section s. Alterna-
tively, treating the sections z and s symmetrically, we may take the intersection
problem specified by the bundle E′ = E ×B E → B and the null sub-bundle
Z ′ = ∆(E) ⊆ E′ with the section s′ = (z, s). The null-sets Null(s) and Null(s′)
are equal. If s is homotopic to a nowhere null section, so also is s′. If s′ is homotopic
to a nowhere null section then z and s may be deformed to nowhere coincident
sections.

The homotopy null-sets Null(s′) and h-Null(s) are homeomorphic as spaces
over B. Indeed, we may think of elements of h-Null(s′) as triples (x, α1, α2) where
x ∈ B and α1, α2 : [0, 1] → Ex are paths such that α1(0) = α2(0), α1(1) = z(x)
and α2(x) = s(x). Such a triple corresponds to (x, α) ∈ h-Null(s), where α :
[0, 1] → Ex is the path:

α(t) =

{
α1(1− 2t) if 0 ≤ t ≤ 1/2,
α2(2t− 1) if 1/2 ≤ t ≤ 1.

For 0 ≤ t ≤ 1, let πt : h-Null(s) → E map (x, α) to α(t) ∈ Ex. Then the
projection π′ : h-Null(s′) → E = Z ′, corresponding to π1/2, is homotopic to π0.
The homotopy provides, up to homotopy, an isomorphism between (π′)∗τBE and
π∗(τBE|Z). This allows us to compare the Euler indices of s and s′.

Lemma 7.9. The homotopy Euler indices h-Null(s) and h-Null(s′) coincide under
the isomorphism

ω0
B{B × S0; h-Null(s)π∗(τBE|Z)

B } = ω0
B{B × S0; h-Null(s′)(π

′)∗(τBE)
B }

induced by the fibre homotopy equivalence described above. The Euler index γ(s′)
is the image of γ(s) under the homomorphism

ω0
B{B × S0; (z∗τBE)+B} → ω0

B{B × S0; EτBE
B }

induced by the section z: B → E considered as a map over B. �

Remark 7.10. These considerations suggest that the definition of the homotopy
coincidence index in Definition 2.7 might be modified to define the index as an
element of

ω0
B{B × S0; h-Coin(e, f)π∗τN

B }
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where π : h-Coin(e, f) → N maps (x, α) symmetrically to α(1/2). Its image under
π in

ω0
B{B × S0; (B ×N)τN

B } = ω0{B; NτN}
might then be called the coincidence index of e and f .

We conclude with a result that has applications to linking invariants. Re-
turning to a general fibrewise submanifold Z ⊆ E and section s, suppose that
φ : B → R is a continuous map such that φ(x) 6= 0 for all x ∈ Null(s). Put
U+ = {x ∈ B | φ(x) > 0} and U− = {x ∈ B | φ(x) < 0}.

Definition 7.11. We write

h-γ±(s, φ) = iU±(h-γ(s |U±)) ∈ ω0
B{B × S0; h-Null(s)π∗ν

B },

where iU± is the inclusion map.

Thus h-γ+(s, φ) is zero if φ(x) < 0 for all x ∈ Null(s) and, in general, this
class is an obstruction to deforming s and φ to a section and function with this
property. By Lemma 2.10 (ii),

h-γ(s) = h-γ+(s, φ) + h-γ−(s, φ).

Proposition 7.12. Suppose that B is a finite complex with dim B ≤ 2(dim ν − 1).
Then there is a homotopy (st, φt), 0 ≤ t ≤ 1, through sections st and functions φt

with φt(x) 6= 0 for all x ∈ Null(st), such that (s0, φ0) = (s, φ) and φ1(x) < 0 for
all x ∈ Null(s1) if and only if h-γ+(s, φ) = 0.

Proof. Choose m > 0 such that m > φ(x) for all x ∈ B.
Consider the product bundle E′ = [0, 1] × E × R over B′ = [0, 1] × B with

Z ′ = [0, 1]× Z × {0} and section s′(t, x) = (t, s(x), φ(x)− tm). Then

Null(s′) = {(t, x) | s(x) ∈ Zx, φ(x) = tm}

is homeomorphic to Null(s) ∩ U+ by projection to B and is disjoint from A′ =
{0, 1} ×B.

Now
h-γ(s′;A′) ∈ ω0

(B′,A′){B
′ × S0; h-Null(s′)π∗(ν⊕R)

B′ }
corresponds under the suspension isomorphism and the homotopy equivalence be-
tween h-Null(s′) and the pull-back of h-Null(s) to h-γ+(s).

The result follows from Proposition 7.4. �

Example 7.13. Consider two closed manifolds P1, P2 and maps fi : Pi → Q
to a manifold Q (without boundary). Take B = P1 × P2, E = B × (Q × Q),
Z = B ×∆(Q), fibred by projection to B, and s(x1, x2) = (x1, x2, f1(x1), f2(x2)).
Suppose that φ1 : P1 → R and φ2 : P2 → R are maps such that φ1(x1) 6= φ2(x2) if
f1(x1) = f2(x2). Put φ(x1, x2) = φ1(x1)− φ2(x2). Then h-γ+(s, φ) is Koschorke’s
linking obstruction introduced in [17].
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