
FIBREWISE HOPF STRUCTURES ON SPHERE-BUNDLES

A. L. COOK AND M. C. CRABB

1. Introduction

According to a celebrated theorem of Adams the sphere Sn, n > 0, admits a Hopf
structure precisely when n = 1, 3 or 7. The spheres S1 and S3 are groups, as the unit
complex numbers and quaternions; S7 has a product given by the Cay ley
multiplication. We investigate the symmetry of these and the other non-standard
Hopf structures on spheres, looking mainly at families of Hopf structures
parametrized by the points of a base space or, more precisely, fibrewise Hopf spaces,
but also at equivariant multiplications.

Let us recall briefly the definitions of equivariant and fibrewise Hopf space.
Consider first a space X with a basepoint which we shall write as 1. Given a pointed

we write fiL: X -> X, /uR: X -> X for the maps x i-> pi(x, 1), x i-> fi( 1, x) respectively. The
multiplication ^ is a Hopf structure if nL and nR are homotopic (through pointed
maps) to the identity. The definition of a G-equivariant Hopf structure, where G is a
compact Lie group, is similar: the group G acts on X, preserving the basepoint 1, and
the multiplication // and the homotopies are required to be equivariant. For the
fibrewise theory we work over a finite complex B. We think of a fibrewise pointed
space over B as a family of pointed spaces parametrized by the points of the base. Let
X -*• B now be such a fibrewise pointed space over B and

a fibrewise pointed map. Maps iiL and tiR: X^>Xare then defined by

= fi(lb,x),

where x lies in the fibre over beB and 16 denotes the basepoint in that fibre. We say
that pi is a fibrewise Hopf structure if //L and /iR are homotopic (through fibrewise
pointed maps) to the identity on X. (Here and elsewhere, when discussing pointed
spaces we assume that maps and homotopies are pointed and, when appropriate,
G-equivariant; in the context of fibrewise pointed spaces, maps and homotopies
are assumed to be fibrewise pointed.)

Before giving an account of our theorems we introduce some notation which will
be used throughout the paper. The letter n is reserved for an odd integer. We write
V for an n-dimensional real vector with inner product, and £ for a real vector bundle
of (odd) dimension n over a finite complex B. When required we shall assume that £
is equipped with an inner product. We always take the base space B to be connected.

It will often be convenient to identify the unit «-sphere S(U 0 V), equipped with
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the basepoint 1 = (1,0), with V+, the 1-point compactification of V, by stereographic
projection (mapping 1 to oo). Similarly, we identify the n-sphere-bundle S(R © £) over
B, with basepoint (1,0) in each fibre, with the fibrewise 1-point compactification ££.

We are able now to formulate precisely the problem with which this paper is
concerned: given a real vector bundle £ (of odd dimension n over a connected finite
complex B), does there exist a fibrewise Hopf structure

M:S(U®0XBS(M®0 >S(ReO? (1.1)
It is sensible to refine the question slightly. Up to homotopy, there is just one Hopf

structure on S1, but there are 12 distinct Hopf structures on S3 and 120 on 5". If we
choose a point of B and fix a Hopf structure on the fibre of ££ at that point, then we
can ask whether this Hopf structure extends to a fibrewise Hopf structure over B. We
think of such an extension as reflecting a sort of symmetry of the Hopf structure on
the fibre. To explain this, we go to the equivariant theory.

Suppose that a compact Lie group G acts orthogonally on a vector space V and
that there is a G-equivariant Hopf structure

H\ S(U®V)xS(U®V) ^ ( R ® F ) . (1.2)

If P -> B is a principal G-bundle over a finite complex B, we can form the real vector
bundle £ := P x G V, and the sphere-bundle S(U © £) = P x G S{U © V), or fibrewise
1-point compactification ££ = P x B V

+, then acquires a fibrewise Hopf structure as in
(1.1).

This principal bundle construction supplies the basic examples of fibrewise Hopf
structures. We shall also use it in the opposite direction to establish non-existence of
equivariant Hopf structures: if there is no fibrewise Hopf structure on P x B V

+, then
there can be equivariant Hopf structure on V+.

Our first theorem gives a complete answer for n = 1 and n = 3. In its statement the
term fibre type, explained in Section 2, refers to the Hopf structure on a fibre: existence
of Hopf structures of each fibre type means that any Hopf structure on a chosen fibre
extends to a fibrewise Hopf structure.

THEOREM 1.3. Let £ be an n-dimensional real vector bunble over a finite
complex B.

(i) Ifn=\, then ££ admits a fibrewise Hopf structure.
(ii) Ifn = 3, then ££ admits a fibrewise Hopf structure if and only if( is orientable.

In that case Q admits fibrewise Hopf structures of each fibre type.
(iii) Ifn = l,a sufficient condition for Q to admit a fibrewise Hopf structure is that

the structure group of £ reduce from Oil) to the subgroup G2, and then it admits
structures of each fibre type. A necessary condition is that £ admit a spin structure.

Our effort, therefore, will be concentrated on the case n = l. Obstruction theory
shows that if the dimension of B is less than 8, then every 7-dimensional spin bundle
£ has a <j2-structure; it follows, by (1.3) (iii), that ££ admits a fibrewise Hopf structure.
The first interesting example (for n = 7) is therefore the case B = S*.

THEOREM 1.4. Let £ over B = S8 be classified by the integer meZ = 7t7(0(7)).
Then ££ admits a fibrewise Hopf structure if and only if m = 0 (mod 8). In that case
there exist fibrewise Hopf structures of each fibre type.
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This result has also been obtained by James [16], using direct computation of the
obstruction to existence of a multiplication. In view of (1.4) there exist both sphere-
bundles which admit a spin structure but no fibrewise Hopf multiplication and
sphere-bundles which possess a fibrewise Hopf structure but no (restructure. Our
second example, concerning bundles over lens spaces, and the related equivariant
problem were suggested by the paper [13] of Ishikawa.

THEOREM 1.5. Let the cyclic group Z/2r act freely on the sphere 52 m"1 = S(Cm) as
multiplication by roots of unity, and write Xfor the standard complex line bundle (lifting
the Hopf line bundle on CP"1"1) over the lens space B = S2m~7(Z/2r). Assume that
m > r2r~x. Let a, b and c be non-zero integers with v2(a) ^ v2(b) < v2(c) and v2(a) < r,
and consider the vector bundle (:= U © Xa © X" © Xc, where Xk denotes the k-fold
tensor product of the complex line bundle X.

Then (£ admits a fibrewise Hopf structure if and only ifv2(a) = v2(b) < v2(c), and in
that case there exist structures of each fibre type.

The associated equivariant result is contained, as the case p = 2, in our final
theorem.

THEOREM 1.6. We take G = Z/pr, where p > 1 is prime. Write Efor the standard
one-dimensional complex representation ofG and Ek for its k\h tensor power. Let V be
a non-trivial 1-dimensional real representation of G.

Then V+ admits a G-equivariant Hopf structure if and only if V is isomorphic to
U © Ea © Eb © Ec, for some non-zero integers a, b, c with v2(a) = v2(b) < v2(c) ^ r if
p = 2, vp(a) = vp(b) ^ vp(c) < r if p is odd (and vp(a) < r since V is non-trivial).

Constructions of Hopf structures are described in Sections 2 and 3. In order to
obtain obstructions to the existence of fibrewise Hopf structures we generalize an
appropriate version of Adams's proof for spheres. The general method is described
in Section 4. In Section 5 we carry through the computations in mod 2 homology,
generalizing the classical proof that Sn can only admit a Hopf structure if n+1 is a
power of 2, and obtain the necessary conditions of (1.3). Section 6 describes the
KO-thzory (which for spheres gives Adams's result). Sections 7 and 8 contain the
specific KO-theory computations needed to establish (1.4) and (1.5).

Acknowledgements. The first author would like to thank Professor I. M. James
for his guidance during the writing of [5], in which some of the material of this paper
first appeared. We are also indebted to J. R. Hubbuck, N. Iwase, A. Kono and
W. A. Sutherland for valuable comments at various stages of this work.

2. Elementary considerations

We look first at the symmetry of the classical Hopf structures on S1, the complex
numbers of modulus 1, on S3, the quaternions of norm 1, and on S1, the Cayley
numbers of norm 1, given by multiplication in C, D-fl and O. These are clearly
equivariant with respect to the action of the automorphism groups 0(1) of C, SO(3)
of H and G2 of O. We identify the purely imaginary complex numbers, quaternions,
Cayley numbers with Un, n = 1, 3, 7 in the usual way.
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PROPOSITION 2.1. Let V= Un, where n = 1, 3 or 7, with G the subgroup 0(1),
SO(3) or G2 of O(ri) respectively. Then multiplication in C, H or O defines a G-
equivariant Hopf structure on S{U © V). In the first two cases this is actually a group
multiplication.

We have already, in the Introduction, pointed out the relationship between
equivariant and fibrewise Hopf spaces: the principal bundle construction gives
immediately the existence of fibrewise Hopf structures on the sphere-bundles
considered in (1.3).

REMARK 2.2. A special case will be useful. Because SU(3) c G2, we have:
(i) if U is a 3-dimensional complex representation of a group G, with A3U a

trivial G-module, then S(C © U) has a G-equivariant Hopf structure;
(ii) if n is a 3-dimensional complex vector bundle over B with cx{rj) = 0, then

(U © rj)+
B has a fibrewise Hopf structure.

Now we turn to the non-standard multiplications; for details we refer to [14, 4].
The Hopf structures on Sn are classified, up to homotopy, by n2n(S

n) = [Sn A Sn; Sn].
Remembering that any two elements of O generate an associative sub-algebra, we
can write down explicit Hopf structures pi2s+1, indexed by odd integers 2s+1, on
S(U © V), for n = 3 and 7, in terms of quaternionic and Cayley multiplication, as

/WiO>>w) : = [»> w]8(vw). (2.3)
Here [v, w] is the commutator vwv^w'1. The commutator map (or Samelson product
<*, i}) Sn A Sn -> Sn generates the cyclic group n2n(S

n) and the multiplication /i2s+1

is determined (up to homotopy) by 2s +1 (mod 24) if n = 3, by 2s +1 (mod 240) if
n = 7. (We are, in fact, indexing the multiplication by the stable class of the Hopf
construction.) We shall say that a Hopf structure on Sn homotopic to //2g+1 has type

REMARK 2.4. More generally, we can look at the multiplication n given by

//(y, w) := (tAwA... va'wbr)(vw),

where the ai and the bt are integers summing, separately, to zero. Since addition
in n2n(S

n) can be described in terms of either the co-Hopf structure on S2n or the
Hopf structure on Sn, we see that the maps (v, w) *-*• [va, wb] and (v, w) H+ [V, w]ab:
Sn /\Sn -> Sn are homotopic. It follows, as an elementary exercise, that p has type
2s4-1 with s = Yji*naiby

DEFINITION 2.5. Suppose that n = 3 or n = 7 and that CB has a fibrewise Hopf
structure //. If we choose a point £ e 5 and an isomorphism of the fibre £„ with IRn, then
we get an induced multiplication on Sn of type 2s + 1 , say. An orientation-reversing
self-equivalence of Sn is easily seen, by (2.4), to transform a multiplication of type
2 J + 1 into one of type — (2s+1). Hence, because B is connected, the type is well-
defined up to sign. We shall call ± (2s +1) the fibre type of//. Notice that the self-map
— 1: ( -*• £ reverses orientation in fibres. So there is another fibrewise Hopf structure
on CB which induces a multiplication of type — (2s +1) on Sn.

Since the maps fi2s+1, (2.3), are manifestly G-equivariant, we can use them to
construct fibrewise multiplications, thus establishing the sufficient conditions of (1.3),
which are collected in the next proposition.
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PROPOSITION 2.6. Ifn = 1, or n = 3 and £ is orientable, or n = l and the structure
group oftl, reduces to G2, then (£ admits fibrewise Hopf structures of each fibre type.

The case n = 3 is well understood; more needs to be said when n = 7.

LEMMA 2.7. Suppose that n = l and that CB admits a fibrewise Hopf structure of
type ±(2^+ 1). Then it admits a fibrewise Hopf structure of type ±(2r + l)(2s+ I) for
each reZ.

The fibre types ±(2s+1) (mod 240) thus split into classes indexed by the highest
common factor (25+1,15): 1, 3, 5, 15.

Proof We use notation of the form [-;-]B for a set of fibrewise pointed
homotopy classes over B. Suppose that Q has a fibrewise Hopf structure fi
of fibre type ±(25+1). This determines a product, which we write as *, on the set
& '•— [CB X B CB > CBIB- Then, just as when B reduces to a point, every element of 5£ can
be expressed uniquely as a* \p\ with ae$£. The set [CB ^BCB'XB]B embeds in JSf, and
a * \M\ yields a fibrewise Hopf structure precisely when a lies in this subset.

In particular, the opposite multiplication ((x,y)\-^[i(y,x)) corresponds to an
element c, say, in [££ AB(%;Q]B- We define further Hopf structures yU(r) for r ^ 1 by

It is a straightforward computation using (2.4) to check that //(r) has fibre type

This is an appropriate point at which to recollect the notions of fibre degree and
bi-degree. If £ and n are real vector bundles of the same dimension n over (connected)
B and/: CB -> V+B *S a fibrewise pointed map, then the fibre degree is defined up to sign
as follows. Choose a point in B and trivializations of the fibres of ( and rj at that point
to get a map Sn -> Sn of some degree k. We say that/has degree ± k. For a self-map
of (£ there is no ambiguity of sign. The bi-degree of a multiplication fi on Q is

We recall next a construction due to Noakes, [21, 22].

DEFINITION 2.8. For an integer k, we define the /rth power map

<j)k: s(u e v) —> s(u e v)
as follows. Notice first that for any 1-dimensional subspace L of V, S(U 0 L) has a
canonical group structure given by (2.1), n = 1. We now define <j)k to be that unique
self-map of S(U 0 V) which, when restricted to each S(U 0 L), gives the kth power
zi—•z* in that group. It is clear from the preceding description that 0fc is equivariant
with respect to the action of the orthogonal group O(V) of V. We also write

for the associated self-map of a sphere bundle.
On S1, S* and S7, (j>k thus coincides with the kth. power in complex, quaternionic

or Cayley multiplication.
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LEMMA 2.9. The map (f>k has degree k.

Proof. This is proved in [22]. The result can also be seen as follows. Write V as
U © Cm, and let the group T of complex numbers of modulus 1 act on Fas complex
multiplication on the summand Cm. Then the degree of <f>k on S{U © V) is equal to
the degree of the restriction to the fixed subspace S{U © V)1 = S(U © U), and this is
k by definition.

The next construction is classical and will be used to show that the existence of
fibrewise Hopf structures is a 2-local problem.

DEFINITION 2.10. For veS{U © V) we define the reflexion map

by Rvw = w — 2(v,w)v. Now define an <9(F)-equivariant map

p: S{U © V) x S{U © V) >S{R © V)

by p{v, w) = R1{RV w). We also write p for any associated bundle map.

On Sl, S3 and S7 it is easy to see that p is given in terms of complex, quaternionic
or Cayley multiplication by the formula p(v, w) = v'^wv'1. We deduce the following
lemma, which shows, in particular, that p has bi-degree (—2,1).

LEMMA 2.11. For k,leZ, we have p{<f>kv,<f>tv) = 0_2fc+jv.

3. Constructions

In constructing fibrewise Hopf structures we shall make use of the following
observation. If p.: ££ x B£+ -> £s is a multiplication on ££ of bi-degree (1,1), so that,
by Dold's theorem (for fibrewise pointed spaces), fiL and fiR are fibre-homotopy
equivalences, then we can define a fibrewise Hopf structure fi' on Q by
p.' = fio(aL x <rR), where aL and aR are homotopy inverses of p.h and p.R.
. We begin this section by discussing the local Dold theorem for sphere bundles.
The form that we use can be stated without using fibrewise localization theory (in the
spirit of Adams's early paper [1] on local spheres).

LEMMA 3.1. Suppose that £ and rj are real vector bundles over B of the same {odd)
dimension n and f. Q -> n% is a {fibrewise pointed) map over B with non-zero fibre
degree ±k. Then there is a {fibrewise pointed) map g'.n^-tQ with fibre degree ±1,
I a power ofk, such that

</>kl:n
+

B >n+
B and

{homotopic through fibrewise pointed maps).

The proof of (3.1) depends upon the following lemma.

LEMMA 3.2. Suppose that f: ££-•££ is a self-map with non-zero fibre degree k.
Then for some q ^ 1 the qth power f9 is homotopic {through fibrewise pointed maps) to
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Proof. We work by induction over the cells of B. Let us assume, therefore, that
B is obtained by adjoining ay-cell to a subcomplex A and that/coincides over A with
(f>k. We shall show that, for some positive integer q, f9 is fibrewise homotopic to (f>kq.
We may suppose that {B, A) = (D1, S1'"1). This reduces us to the situation in which
B = Sj and £ = B x Un is trivial.

In this case, the set of homotopy classes of self-maps of (B may be naturally
identified with Z © nj(iY

lSn) = Z © n)+n(S
n). Composition is given by the formula

(k,x)o(l,y) = (kl,lx + mky), (3.3)

in which mk denotes composition on the left with a degree k self-map of Sn. Then, by
induction, we obtain the qth power

(k, x)9 = (k9, (k*-1+k9~2mk + . . . + m l 1 ) x). (3.4)

Now recall one of the first results of Sullivan's localization theory [23, p. 19]:

ifk^O, the map

*i+n(S
n) • lim {nj+n(S

n) —t. nj+n(S
n) — ^ . . . } (3.5)

is localization: nj+n(S
n) -> nj+n(S

n)[l/k].

In other words, mk is nilpotent on the /^-torsion summand of the finite abelian group
nj+n(S

n) for primes p dividing k and an isomorphism for (p, k) = 1.
The rest is elementary algebra. (We want (k,x)9 = (k9,0). By (3.5), there is a

positive integer N such that (mk/k)N = 1 on ni+n(S
n)[\/k\. Writing M for the order

of 7i}+n(S
n)[l/k], one checks easily that (k,x)MN = (kMN,0) whenever x has order

prime to k. If x is A:-torsion any large integer q will do. In general, one can take q to
be a large multiple of MN.)

Proof of Lemma 3.1. Again we work by induction over the cells and assume that
B is obtained by adjoining ay-cell to a subcomplex A. Given a map h on A with
fohoc <j)km, we shall show that ho 0g extends to B for some power J of k. The obstruc-
tion to extending h itself is an element, say x, of ^ ^ ( S " ) . Then the obstruction
to extending/o hismkx and is zero. The obstruction to extending h o <j>s is 5x. By (3.5)
above we can find s as required such that ho<f>s has an extension, say h', to B.

By (3.2) we now have (Jo h')9 ^ <j>kl and (/»' o / ) 9 ~ <f>kl for some #. Take
g = h'oifohy-1. Then fog m <f>kl and gof^ <j>kl.

PROPOSITION 3.6. Suppose that there is a {fibrewisepointed) mapM: C%x
 BCB~*CB

with bi-degree (2k +1,2/+1). Then ££ admits a fibrewise Hopf structure.

Proof. Define a new multiplication //' by

By (2.11), n' has bi-degree (1,1), and it follows (as noted at the beginning of this
section) that {£ admits a fibrewise Hopf structure.

COROLLARY 3.7. Suppose that C and rj are two n-dimensional real vector bundles
such that there is a (fibrewise pointed) map f: (£ -»• rj+

B of odd degree. Then C,+B admits
a fibrewise Hopf structure if and only ifn+

B does.
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Proof. Let/have fibre degree ± (2k+1). Then, according to (3.1), there is a map
S- V+B ~* Q °f fi°re degree ±(2/+1) for some power 2/+1 of 2k +1. Suppose that v
is a fibrewise Hopf structure on ifB. Then n=fovo(gxg) has bi-degree
±((2k+1)(2/+1), (2k +1)(2/+1)). Now construct a Hopf structure on Q as in (3.6).

In the case n = 1 we can make the following more precise statement about fibre
types. The proof is just a matter of following through the construction for (3.7) when
B is a point, with the help of (2.4), and then using (2.7).

PROPOSITION 3.8. Consider the setting o/(3.7) in the case n = l. Suppose that f has
fibre degree ±(2fc+l) and that n+

B admits a fibrewise Hopf structure of fibre type
+ (25+1). Then Q admits fibrewise Hopf structures of all types divisible by

In the remainder of this section we describe the specific constructions needed to
establish Theorems 1.4, 1.5 and 1.6.

PROPOSITION 3.9. Suppose that £ is a 1-dimensional real vector bundle over a
sphere B = S\ classified by an element ve nt_x(O(J)) whose image in ni+6(S

7) under the
Whitehead J-map is of odd order. Then {£ admits a fibrewise Hopf structure. In the
special case] = 8, there exist Hopf structures of each fibre type.

We shall derive the proof with the aid of a general lemma.

LEMMA 3.10. Let £, and n be two real vector bundles of dimension k and I over
B = Sj classified by elements uEn^Oik)), ven^Otf)). Consider the restriction map

from the set offibrewise homotopy classes over Sj to the maps of fibres at the basepoint
in S*. Then a class xenk(S

l) extends to a fibrewise map over S} if and only if

xoJu = Jvo^'^x in n}_1+k(S
l).

Proof This is standard obstruction theory. We outline what is essentially a
Mayer-Vietoris argument. Decompose the sphere S} as the union of two hemispheres
with intersection S*'1. Write S!^1 for the sphere with an added disjoint basepoint. The
clutching map for £,+B is

(\,Ju)e[Si-l;nkSk] = nk(S><) 0 7t,_1+fc(S*),

and for rfB it is (\,Jv). The condition that classes x and y in nk(S
l) at the two poles

patch together is that

(x,0)o(l,/iO = (l,Jv)o(y,0) in [ ^ I O ^ 1 ] = nk(S
l)®n^^S1).

Proof of Proposition 3.9. From (3.10) with £ = Bx U7 and n - C, a (pointed)
map S1' -• S17 of degree d extends to a (fibrewise pointed) map BxS1 ->(B if and only
if d Jv = 0. So if Jv has odd order there is a (fibrewise pointed) map B x S7 -> CB with
odd fibre degree; the existence of a fibrewise Hopf structure follows from (3.7).
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We now consider the casey = 8 in detail. Recall that 7c14(iS
7) is cyclic of order 120,

with generator x say. We also need to know that nl0(S
3) is equal to Z/3a, where

£4a = 8T. Write Jv = mx. The order of Jv is thus a divisor of 15 and we cannot apply
(3.8).

As noted in the proof of (2.7), fibrewise Hopf structures are classified by
KB hB(B;(B]B. SO we have to show that this set maps, by restriction to a fibre, onto
7r14(S

7). According to (3.10) with £ = { © £ and n = { and hence Ju = 2V Jv = 2mx, the
obstruction to lifting the generator x of 7r14(5'7) is x o Z7(2mi) — (mx) o I 7 T = m(roE7T)
in 7c21(5'7). (Remember that S7 is a Hopf space.). Now this obstruction has odd order.
On the other hand, 64(T O SY) = £4a o S n a . But I 3 a o l 1 0 a = a A a, which, by
symmetry, is equal to (—l)o(aAa). Hence 2(S4aoZ11a) = 0, and the obstruction
vanishes, as required.

REMARK 3.11. The results above may be expressed more elegantly, if at a less
elementary level, using fibrewise localization theory. In (3.7) the fibrewise 2-
localizations of (B and nB are homotopy equivalent. The content of (3.6) is that the
existence of a fibrewise Hopf structure depends only on the 2-local homotopy type of
the sphere-bundle. And this fact lies behind (3.9), for there the fibrewise 2-localization
of CB is fibre-homotopy trivial. Compare the results of Kahn [17, Theorem 2.1] and
May [18, Proposition 5.5].

PROPOSITION 3.12. Suppose that X is a complex line bundle over B. Set { =
U. © Xa © Xb © kc, where a, b, c are non-zero integers with v2(a) = v2(b) < v2(c). Let d
be the highest common factor of a, b and c. Then ££ admits fibrewise Hopf structures
of each fibre type divisible by the highest common factor (abc/d3,15).

Proof. Recall that for any complex line bundle X and integer k we have a map

ak:S(X) >S(Xk), (3.13)

(which is the solution of the Adams conjecture for line bundles) given by the 7cth
tensor power z\-*zk. It has fibre degree (±)k.

We shall show below that there exist odd integers i,j, k such that ai+bj+ck = 0
and {ijk, 15) = (abc/d3,15). Put n = U 0 Xai © Xbi © Xck. The fibrewise join

5(C) *B S(Xa) *B S(Xb) *B S(X°)ltaitaraic>S(C) *B S(Xai) *B S(X") *B S(Xck), (3.14)

gives a (fibrewise pointed) map C,+B -*• ifB of odd fibre degree ( + ) ijk.
By (2.2) (ii), rj+

B admits a fibrewise Hopf structure of fibre type ± 1 . The result
follows from (3.7) and (3.8).

It remains to show that there exist integers /, j , k with the property claimed.
Write S — v2(c) —v2(a), and let e be an odd integer such that e-2s = 2 (mod 15). Set
a = a'd, b = b'd, c = c'2sd. Then we may take i = —b'c',j = (1 —e2s)a'c', k = a'b'e.

We conclude this section by constructing the equivariant Hopf structures required
by Theorem 1.6. Fix then a prime p > 1, let G be the group 1/pr, and let E be the
standard one-dimensional complex representation C with the generator acting as
multiplication by e2nilpr. We identify Ea with C again in the natural way using the ath
power and this allows us to write Ea = Ea+1>r. The M i power thus gives an equivariant
map, of degree k, ak: S(Ea) -*• S(Ea) for integers a and a' satisfying the congruence
a' = ka (mod pr).



374 A. L. COOK AND M. C. CRABB

Let a, b, c be non-zero integers with vp{a) < vp(b) ^ vp(c), and vp(a) <r; set
V = U 0 Ea 0 Eb 0 Ec. We write a = vp(a), fi = vp(Z?)5 y = vp(c).

LEMMA 3.15. If V+ admits a G-equivariant Hopf structure, then vp(a) = vp{b).

Proof. Consider the subspace of V+ fixed by the subgroup Z/pp. This is a sphere
with a Hopf structure, and is, therefore, of dimension 1, 3 or 7. Only the last is
possible, and then vp(a) = vp(b).

Suppose now that a = /? ^ y, and, if/? = 2, that a < y. We shall show that for such
a representation V the sphere V+ does admit a G-Hopf structure. The argument is
similar to that used in the proof of (3.12). We construct G-maps of the type ak with
k odd and prime to p as indicated below:

S(Ea) —

(Note that, if/? is odd, then one of ak and ak+pr has odd degree.) According to (2.2) (i),
the G-sphere

admits an equivariant Hopf structure. Using it we may construct a multiplication
fj,: V+ x V+ -»• V+ such that /tL = nR is the join h: K+ -+ V+ of the three maps listed at
(3.16) above together with 1: S(C) -*• S(C).

We must now analyse [V+; V+]° and we do this in the standard way by looking at
degrees on fixed subspaces. We write

d=(do,...,dr):[V
+;Vr > PI 2, (3.17)

where dt(f) is the degree of the restriction of a G-map/: V+ -> V+ to the subspace, a
sphere, fixed by the subgroup Z/pl of order/?'. From consideration of fixed points, we
see that dt(f) is equal to dJJ~) if / < a, dy(J~) if a < i ̂  y, rfr(/) if y < / < r.

To complete the proof it suffices to find a map g: V+ -*• V+ such that

for some k. For then the construction of (3.6) applied to go/i gives a multiplication
on V+ which on each factor of V+ x V+ is a map/with </(/) = (1, . . . , 1). It follows that
/ i s a G-homotopy equivalence, and, therefore (compare the opening paragraph of
this section), that V+ admits a G-Hopf structure.

We proceed to find g. Let R be the subring of flo«i«r 2 consisting of all (.s0 , sr)
with: st = j a if i < a, J, = ^ if a < / < y, s{ = sr if y< i ̂  r, and j < + 1 = st (mod/?1""')
for 0 < i < r. Because V+ is a suspension, the image of d, (3.17), is a subring. By
looking at self-maps of S(E% t = a, b or c, joined with the identity on the other three
factors, one sees that R £ im d. It is clear, from the definition of h above, that
d{h) G R. (In fact, by looking at the Buraside ring one can see that im dis precisely R. See
torn Dieck [11, 11(5.17)] for a general result.) Moreover, each dt(h) is odd.

By elementary algebra one can show that there is a map g: V+ -* V+ with d(goh)
as required. (The ring R(p) is local and R[l/p] is a product of factors Z[\//?].)
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REMARK 3.18. If p is odd and (is the bundle R © Xa © Xb © Xc, over a m o d / lens
space JB, then by (3.7) (£ has a fibrewise Hopf structure, whatever the integers a, b,
c. For p > 5 there will be Hopf structures of each fibre type, by (3.8). We have not
determined the possible fibre types for p — 3 and p = 5.

4. Obstructions to the existence of fibrewise Hopf structures

Our strategy is a fibrewise generalization of one version of the standard homology
and AT-theory proof, mostly contained in Adams's work [2] on the vector field
theorem, that the sphere Sn does not admit a Hopf structure unless n = 1, 3 or 7, and
we begin by reviewing that argument.

We shall use co for unreduced stable homotopy theory. Following [10, Section 4],
we shall often use the local coefficient notation co*(X; a) for the stable cohomotopy
co*(Ara) of the Thorn space of a virtual bundle a over a finite complex X. A subscript
' + ' will denote adjunction of a disjoint basepoint to a space. We write P(V) for the
real projective space on a vector space V, and P(Q for the bundle of projective spaces
over B associated to the vector bundle £.

Recall first the stable Hopf invariant

defined for k ^ \,q,r ^ 0. (See, for example, [15, Chapter 14, or 19].) In the range
q < 3r—2 this map is the ' i / ' of the James-Toda .E/fP-sequence

EH P
• • • • TlgW ) *• K/c+qW ) *Off-AA11* )/P\U )) *• ••••

In any case Hkx is an obstruction to fc-fold desuspension of a class xenk+Q(Sk+r) to
nq(S

r). The obstruction Hx to a single desuspension is the classical stable Hopf
invariant. The maps Hk for different k are compatible; to be precise, fory < k we have
a commutative square

Hk

(4.1)

in which n is the projection map.
Given a Hopf structure//: Sn x Sn -*• Sn on Sn, the Hopf construction gives a map

h,,: S2n+1 -» Sn+1 with classical Hopf invariant, H^hJ, equal to (±)1. It follows from
(4.1) that the element

#n+i(^e<3n(P([ir+1)+) is mapped to (£)1 ecbn(P(Un+1)/P(Un)) = Z.

The first step of the argument uses mod 2 homology H. If we apply the Hurewicz
map a>n(P(Un+1)+)^Hn(P(Un+1)+) to Hn+1(h^ we obtain a class in Hn(P(Un+\)
which is fixed by the total Steenrod square Sq and which maps (under n*) to
le.tfn(/

>(Rn+1)/JP(IRn)) = F2. From this one deduces easily that n + l is necessarily
a power of 2.

In the second step we replace mod 2 homology by real .KO-theory. Using the
Hurewicz map to KOi2), we obtain an element of KOn(P(Rn+1)+){2) fixed by the Adams
operation if/3 and mapping to 1 e KOn(P(Un+1)/P(Un))(2) = Z(2). If n +1 = 0 (mod 8), it
follows readily that n = 7.
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We shall repeat the above argument over the base B. The definition of the stable
Hopf invariant outlined in [7, pp. 60-63], extends easily to the theory over B. Details
of the construction and of the properties which we need can be found in [6]. Let K and
n be real vector bundles over B, and Z - > 5 a (nice) fibrewise pointed space over B.
If X-> B and Y-* B are (nice) pointed spaces over B, we write [X; Y]B for the set of
homotopy classes of fibrewise pointed maps from X to Y, and co°B{X; Y) for the group
of stable homotopy classes over B. Then we have a stable Hopf invariant

Hk: [K+
B AB Z ; (* 0 rj)+

B]B > coB{Z; (P(K 0 r,)/B P{r,)) AB rj+
B}, (4.2)

which is an obstruction to fibrewise desuspension to [Z;nB]B.
Suppose now that //: {B x B£B -> £B is a fibrewise Hopf structure. Let

denote the class given by the fibrewise Hopf construction (B *B (B -> £B £B. Recall that
the projection n from the Cartesian to the smash product induces an inclusion

FB(CB A B C B ) ; S B C B ] B — > P B ( C B X B G ) ; Z , £ J B

under which hM maps to

- P»R nR], (4.3)

where nL and 7rfi are the projections onto the left- and right-hand factors. (Although
this is well known we have been unable to find a reference. For completeness we
include an outline proof in an appendix to this section.)

We next compute the Hopf invariant HH{h^. The quotient P(U © Q/B P(Q is
identified in the usual way with C,%. We have a suspension isomorphism

co\B) = <{0B;0B} >coB{(B;£+
B},

which then allows us to write co°B{Q;P(U ©Q/BP{Q) as co°(B). The stabilization he
f̂iiCfi ABCB;CB} of hp can be regarded by suspension as an element of the group

co°B{(B; 0B}, which is naturally identified with the stable homotopy dj°(i?c) of the Thom
space of (• Making these identifications and using the local coefficient notation,
we have a class h€co°(B;Q. We also need the stable cohomotopy Euler class
y(0eco°(B;-Q. Again see [10].

LEMMA 4.4. The stable Hopf invariant

€ CD\B) = coB{CB; P(U 0 Q/B

is equal to — (l+2y(Qh), where h is the stabilization of hM and y(Q is the stable
cohomotopy Euler class.

Proof We lift to CB x BCB- The Hopf invariant HR above extends to

#«: [ZB(CBxBCB);ZBCB]B—><(CBxBCB;CB ABCB}.

This obeys the usual additivity formula for the classical Hopf invariant, namely

for classes x,y stabilizing to x,y. (See, for example, [6].) We use this repeatedly,
together with the fact that HH(x) = 0 if x is a suspension. In particular, HR(—y) =
yAy-HR(y).
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One obtains

- n*HR{h^ = [piL n J A [JIR nR] + \jiL TTJ A 7r*h + n*h A \nR n^,

where 7t*h = \M\ — [ML ni] ~ \MR ̂ J- We look at the three terms on the right in turn. The
first is 7r*l. The second is the lift of the stable composition

A A I lAh
r+ A r+ > r+

 A r+
 A f+ • r+

 A r+

S>B '*B^B ' B nBT>B nB^>B "»B / X B S B J

where A is the diagonal inclusion. But A: (B -+ (B AB(B is fibrewise homotopic to the
product ZA 1: 0B ABCB~*CB ABCB of the inclusion z of the zero-section and the
identity, or, in the opposite order, to 1 A z. By definition, z represents the Euler class
y(Oeco°(B; -Q = o)°B{0B;CB}. (See, for example, [9, Section 1].) Hence the second
term is n*(y(C)-h) = n*(h-y(Q); the third is the same.

Since the stable Hopf invariant -^Rec(yecoB{CB; P(U®Q+B} maps to Hn{h^,
we deduce the following necessary condition for the existence of a fibrewise Hopf
structure.

PROPOSITION 4.5. If {B admits a fibrewise Hopf structure, then there is a class
Hecol{&P(n®Q,B}mappingto\+2y(0-hina>\B) = co^
some class h in co°(B;Q.

The group coB{CB;P(R © OB) c a n be identified by duality over B with

co°B{CB ABP(UeOB-"®(R®°;0B} = co\P(ue0;R©C-#<8>(R00).
In fact this duality is essential to the construction in [6] of the Hopf invariant,
and it is the dual form which we shall use in our calculations. So we have a class
H 6 c o \ P ( U © O ; R 0 C - # ® ( R 0 O ) restricting to 1 + 2y(Q• h in

m\B) = co°(B x P(U); U 0 £-H® (R 0 Q).

We shall compute the cohomology of the projective bundle using Z/2-equivariant
methods. Let L denote the real representation U of Z/2 with the involution — 1. Then
the projective bundle P(U 0 Q is the quotient of the sphere-bundle S(L ® (R 0 0) by
the free involution, and the Hopf line bundle H corresponds to the trivial bundle L.
We have

co\P(U 0 0 ; R © C-H® (R © 0) = co°z/2(S(L ® (U © 0) ; (R © Q-L ® (R 0 0),
and this last group can be calculated from the (Gysin) exact sequence

•y(L®(R©0)

5
K » ° ( P ( R © 0 ; R © C - # ® ( R © 0 ) >coz/2(B;M®0 •••• (4-6)

of the disc modulo the sphere. See [8, Section 1].

Appendix: the Hopf construction

Let X, Y and Z all be pointed compact ENR, / / : I x Y-*Z a. pointed map. The
Hopf construction hf:X,Y—>ZZ

is defined on the (reduced) join by [x, t,y]i-+[t,f4x,y)]. Write/: X* Y^>Z(Ix Y) for
[x,t,y]t-*[t,(x,y)] and let n: Xx Y-*XA Y denote the projection. Then Sko/is a
homotopy equivalence.
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LEMMA 4.7. In the group [Epf x Y);1Z] we have

where l(x,y) = (x, *), 1 is the identity map on XxY, and r(x,y) = (*,y).

Proof. Define g: 1(X x Y) -> X * Y by

[x,l-3t,*] i f O ^ / ^ i

[x,3t-l,y] i f H ' ^ l

Then fog is equal to - Z / + S l - Z r in \Z(Xx Y);I,(Xx Y)] and I.no(fog) is
homotopic to £TT. The result follows.

The proof of the fibrewise version used above is a routine extension using Dold's
theorem.

5. Homology computations

In this section H* will denote cohomology with F2-coefficients. We use notation
for H* corresponding exactly with that for stable cohomotopy co*. To avoid
cumbersome formulae we shall often use the same symbol for a stable cohomotopy
class and its Hurewicz image in cohomology.

We apply the Hurewicz homomorphism from stable cohomotopy to mod 2
cohomology to the criterion (4.5). The argument is conveniently illustrated by the
diagram

Hurewicz Hurewicz

Here H*B denotes the cohomology over B, defined, for example, in terms of spectra
over B: if X-+ B and Y-* B are (nice) fibrewise pointed spaces over B then H%{X; Y)
is the group [X; Y AB (B x K)]B, where X and Y are the suspension spectra of X and
Y over B and K is the mod 2 Eilenberg-MacLane spectrum.

The Hurewicz image of the class H in (4.5), which we denote by the same letter,
is an element HeHQ

B{C,+B; P{U © 0+B}, fixed (since it is spherical) by the total Steenrod
square Sq, and restricting to 1 eH°(B). This leads to the following condition.

PROPOSITION 5.1. A necessary condition for ££ to admit a fibrewise Hopfstructure
is that

wt(Q = Qifn+\—iis not a power of 2.

In particular, if n = 3, then wxC, = 0; if n = 7, then wxC = 0, w2£ = 0, so that £ has
a spin structure, (and then, necessarily, w3 = Sq1w2 + w1w2 and w& = Sq2w3 +
wx M>4 + w2 w3 vanish). We also obtain the classical restriction that n +1 be a power of
2. This establishes the necessary conditions of (1.3).

REMARK 5.2. The original proof of these conditions on the Stiefel-Whitney
classes, given in [5], used computations in the cohomology of the fibrewise projective
plane.
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For the proof of (5.1) we replace H°B{C+
B;P(R © 0+B} by

H°(P(U © 0 ; R © C - # ® (R © 0)

and use the cohomology version

•y(L®(U®0)
0 (H°z/2(B;U®0

8
•••• (5.3)

of the Gysin sequence (4.6). Here by H£/2 we mean Borel cohomology, which has
coefficient ring i/*/2(*) = F2[[TJ], where Te H\l2(*) is the Euler class of L.

Now we have Thorn classes ueHn+1(B; R © 0 of R © ( and

of L ® (U © 0. Recollect that the total Steenrod square acts on a Thorn class as
multiplication by the total Stiefel-Whitney class.

Consider the class H, given by (4.5), in H°(P(U® Q;U® C-H ®(R©0).
Because H maps to 1 in H\B), it must be the image in (5.3) of the generator MM"1

of Hll2{B;U®C,-L® (R©0). Because H is fixed by Sq, we see, from an
examination of the sequence (5.3), that there is an element y of H^B; U © 0 such
that

SqiuuT^-u-uT1 = yy(L®(U® 0)eflJ2(5; R © (,-L (g) (R © 0),

or, more usefully, that

u-'Sqiu) - ii^Sqiu) = / •u-y(L®(M®Q)e H*2(B)

for some y' in H*/2(B). This statement is easily rewritten as

e(L ® (R © 0) divides w(R © 0 - w(L ® (R © 0), (5.4)

where w denotes the total Stiefel-Whitney class and e(L ® (U © 0) is the classical
cohomology Euler class u-y(L ® (M © 0). (The relation between y and the classical
Euler class e is described, for example, in [9, Lemma 1.1].) The criterion (5.4) readily
reduces to

t ((l + T y - ^ - o + rn+1-')) wtc = o (5.5)
<-o

in H*(B)[[T\], which immediately gives the condition of the proposition.

6. K-theory computations

In this section we map (4.5) to ATO-theory. For notation we follow that used for
cohomology in the preceding section; the method, too, runs parallel to that in Section
5. We may assume that n = 7 (mod 8) and that £ admits a spin structure.

Suppose first that q is an odd integer and £, is a real vector bundle over B of
dimension 0(mod8) which admits a spin structure. A choice of spin structure
determines a Bott class u e KO°(B; 0 . (A different choice will multiply u by + the class
of a real hne bundle.) The Bott cannibalistic class /?9(0 in KO\B) is defined by the
equation i//Q(u) = p9(£)-u; it is independent of the choice of spin structure and
orientation. We shall also need a Z/2-equivariant version. Write KO\I2{*) = T\®Zt,
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where / = [L]. The bundle L ® f over B admits a Z/2-equivariant spin structure and
Bott class ueKO°m(B) lifting u. We now define classes p9

+(&,pl(O in KO\B) by the

(For more information the reader is referred to [8, Section 2].) In what follows f will
b e R 0 £ .

Consider next the KO-theory Euler class

y(L ® (R 0 0) in KO%%{B\ -L ® (R 0 0).

Given a choice of spin structure as above, we have the classical KO-EUIQT class
u • y(L ® (R 0 0) in Z^/2CB) = #0°CB) 0 ^ ° ( 5 ) /, and it must be of the form (1 - 0 e
for some eeKO°(B), since R 0 £ has a non-zero section and the non-equivariant
Euler class obtained by replacing t by 1 must vanish.

To obtain a manageable criterion from the isfO-Hurewicz image of (4.5) it is
convenient to assume that K0\B) has no 2-torsion.

PROPOSITION 6.1. Suppose that n = l (mod 8) and that Q admits afibrewise Hopf
structure. Write the classical KO-Euler class of L®(M®£) for some choice of
equivariant spin structure as (1 — t)e, eeKO°(B). Assume that K0\B)(2) is torsion-free.
Then there exists a class feKO°(B){2) such that

e divides (1 +2t)pl(U 0 Q + (y/9f-f)p9(U 0 Q
in KO\B\2).

Proof. The criterion (4.5) mapped to 2-local KO-theory gives spherical classes

0)( 2 )

such that H restricts to 1 +2y(0'h in KO°(B\2).
First, we shall show that h is zero. The group KO\B;Q{2) is isomorphic to

K0\B)(2) by Bott periodicity, so is torsion-free; but co\B;Q®Q is zero, because
rational cohomology H~n{B\ Q) is zero. Hence h = 0.

We look next at the AT0(2)-Gysin sequence (4.6). A similar argument shows
that only the zero element of KO\,2(B;M(BQm is fixed by y/q. (The subspace of
KO\B;U@Q®Q fixed by y/9 is isomorphic to H'n(B;Q) = 0 again. Because y/9

fixes t it respects the decomposition of KO\I2{B; R 0 £)(2) as

KO\B; R 0 0(2) © K0\B\ R 0 0(2) t.
The assertion follows.)

This means that H lifts to a class in

KO°m(B; R0C-£<8>(R0 O)<2)

(isomorphic under Bott periodicity to KO%2(B\2) = KO\B\2) 0 K0\B\2) t) of the
form u-u~\\+(\-t)t). The assertion that H is fixed by y/Q becomes the statement
that ( l - / ) e divides A O " 0 ^ ( 0 + ^ ( 0 ' O ^ O + O - O ^ O - O + 0 - 0 0 , which
quickly reduces to the form given.

The classical theorem of Adams for B a point now follows easily. Write
n = 8m-1 . Then e = 2im~x and p1(U%m) = |(34m-1) in Z = KO\*). (See Section
8 for similar, more complicated calculations.) The condition (6.1) becomes:
24fn-1||(34w-l), whence m = 1.
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7. Proof of Theorem 1.4

In this section we take B = S* and n = 7. Recall that the group TI7(0(7)) is infinite
cyclic and maps under stabilization onto 2Z £ / = n7(0(oo)). The vector bundle £ is
classified by m times a generator of TT7(0(7)), and if we write v for a generator of
£O°(S8), we have [Q = l + 2mv€K0°(B) = Z[v]/(v2).

Recall, too, that under the /-map, 7i7(O(7)) maps onto

7T7(Q7S7) = 7T14(S
7) = Z /120 .

So if w is divisible by 8 we deduce from (3.9) that ££ admits fibrewise Hopf structures
of each fibre type. Notice here that 7T7(G2) is zero [20] so that only if £ is trivial does
the structure group reduce to G2.

Suppose then that C,+B does admit a Hopf structure. It remains to show that 81 m.
We apply (6.1).

LEMMA 7.1. We have
(i)

(ii) p3_

Proof. Part (i) is due to Adams [3]. For (ii), we may use the relation

Pl(O -PKZ) = A 0 " 1 • V V(£))- (7.2)
This is proved in [8, Lemma 2.6], for the complex theory; the same proof works in
the real theory for spin classes.

LEMMA 7.3. The classical KO-Euler class is given by

u-y(L® (IR0 0) = ±(S-mv)(l-t).

Proof The vector bundle ( i s stably complex; indeed, because [(] — 7 is divisible
by 2 in K0°(B), there is an isomorphism 1R9 0 C = C4 © ^ for some complex
4-dimensional bundle r\. Also, complexification K0°(B) -»• K°(B) is an isomorphism,
and we can compute in complex A^-theory.

In complex ^-theory we have the standard Bott class XLt8)rieK^/2(B;L®rj) given
by the exterior algebra, and

This expression is easily seen to be 2 + X2r} — 2trj, since X^r\ is trivial, and reduces, by
application of the identity 2X2rj = rj2 — y/2ri to [rj] = 4 + mv, to (8—Amv) — (8 + 2mu)/.

Since r\ is an .SC/(4)-bundle, the class AL0^ lifts to a Bott class

ueKO°z/2(B;L®(M®0)-
For this choice, we then obtain

which gives the result.
The proof that 8|m now follows easily from (6.1) with q = 3. We have 2-local

integers a, b, c, d such that

= (c + dv)(%-mv).
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At once we see that c is odd and that — me = — (1 + Id) • 22m (mod 8). So 8 divides m.
This completes the proof of Theorem 1.4.

8. Proof of Theorems 1.5 and 1.6

We use the notation introduced in the statements of the two theorems. The next
proposition contains the main step in the proof.

PROPOSITION 8.1. Suppose that r> 1 and write s = 2r~x. Assume that either
(i) £ = R © A* © A8 © As or (ii) ( = R © Xs © C © C, and that the sphere-bundle Q
admits afibrewise Hopf structure. Then m ^ r2r~1.

We use (6.1) to establish first the following lemma.

LEMMA 8.2. Under the conditions of Proposition 8.1, */m = 1 (mod 4), then
KO\B) is torsion-free and the class 2r(l -[Xs]) is zero in KO°(B).

Computations are most easily performed using equivariant /sT-theory. Write
G = Z/2r. Then we have K%(*) = I[z]/(z2r-\), where z = [E]. Complexification
KO%(*) -• K%(*) is injective and maps onto the subgroup generated by 1, tv:=z*
and the elements zt+z'1 for 0 <j < s.

Proof of Lemma 8.2. Writing mE for the m-fold direct sum, we have a Gysin
sequence

y(mE)
... >KOG(*;mE) > KOG{*)

8
• KO°G(S(mE)) = KO\B) > KOX*; mE) •....

From this sequence one checks that KO°G(*) -> KO°(B) is surjective and KO\B) is
torsion-free (for m = 1 (mod 4)).

We shall take q = 2 r +1 . This means that y/9 acts trivially on ££(*) and KO\B),
and simplifies computations considerably.

The calculations can all be done in the complex theory and come from the
following standard result. Let F denote the standard 1-dimensional complex
representation of the circle group T. As before we write XF e FC&*; F) for the Bott
generator. Then

y(F)-XF=l-[F]eK<>(*) (8.3)
and

y,°(XF) = (1 + [F] + [F]2 + . . . + [FT1) • XF €*?(*; F). (8.4)
(See, for example, [3].)

In the notation of Section 6, we write «• y(L (g) (R © 0) = e(l -1) . From (8.3) one
sees that e is ±(\ — t)(l — twf in case (i), ±(l — t)\\ — tw) in case (ii). In both cases
these expressions simplify to give e = ±8(1 -I- w). All that we shall use is

( l - w ) e = 0. (8.5)
From (8.4) one obtains

i)twf i n c a s e©-_l)imq+ 1)+te_ 1},„,) incase(ii).
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Hence

1)#(1—w) in case (n).

Finally, multiply the criterion of (6.1) by 1 — w to obtain in both cases the
condition | (# 2 -1)(1 -w) = 0 in KO°(B)(2). Hence 2r(l - w) = 0, since r > 1.

To prove (8.1) we now take m = rs +1 and show that 2r(l — w) is non-zero in
KO°(B\2y It is straightforward to check that y(mE) • KO%{*; mE) lies in the ideal
( ( z - 2 + 2-x)(m+1)/2) of KO°G(*). So it will suffice to show that

2 r ( l -z 8 ) is non-zero in Z[z ] / ( ( z - l ) m + \ z 2 r -1 ) . (8.7)

This is a routine exercise, which runs as follows.
Put X = z— 1. If 2r( 1 — z*) is zero, then we have

2r(l -(1+X)8) = PXm+1 + Q(l - ( 1 +X)2S)

for some polynomials .P,£ in Z[X]. Hence the formal power series 2r • (1 + (1 + X)8)'1 in
Q[[X\] has integral coefficients up to degree m— 1. Now 1 +(1+X)8 can be written as
2(\+XR+\X8) where i? is a polynomial in A'with integral coefficients. Expanding
2r~1(l +A7?+i;r)~1 as 27"-1 £ i > 0 ( - l)XXR + \Xs)}, we see that the coefficient of Xrs is
not integral.

This completes the proof of (8.1). The case r = 1 is covered by our final
proposition.

PROPOSITION 8.8. Let B be the real projective plane P(U3), C the vector bundle
W~m 0 mH, 0 ^ m ^ 7. Then Q admits afibrewise Hopf structure if and only ifm is
0 or 4.

Proof. This follows from the spin condition, (1.3) (hi).

Proof of Theorem 1.5. Because the order of X is 2r, there is no loss of generality
in assuming that a, b and c are prime to 15. The sufficiency of the condition is
then established by (3.12). So suppose that either (i) v2(a) = v2(b) = v2(c)
or (ii)v2(a) < v2(b). If C,+B admits a Hopf structure, so does its pull-back to
S(mE)/lz/2a+1), where a = v2(a). This contradicts (8.1) or (8.8).

Proof of Theorem 1.6. The case p odd and the sufficiency for p = 2 were
dealt with in Section 3. To establish necessity for p = 2 we assume that V+ admits
a Hopf structure and form the associated bundle £ = S(mE)xGV over the lens
space B of (1.5), with m > r2r"1. Since £ is orientable, by (1.3), the representation
V must be isomorphic to U 0 Ea © Eb 0 Ec for some non-zero integers a, 6, c with
v2(a) < v2(6) ̂  v2(c). The proof is completed by an appeal to (1.5).

REMARK 8.9. The case G = Z/2 of (1.6) is included in the work of Iriye [12]. We
note that the proof above depends upon nothing more than computations of Stiefel-
Whitney classes.

References

1. J. F. ADAMS, 'The sphere, considered as an //-space modp\ Quart. J. Math. Oxford 12 (1961) 52-60.
2. J. F. ADAMS, 'Vector fields on spheres', Ann. of Math. 75 (1962) 603-632.



384 FIBREWISE HOPF STRUCTURES ON SPHERE-BUNDLES

3. J. F. ADAMS, 'On the groups J(X)—U\ Topology 3 (1965) 137-171.
4. M. ARKOWITZ and C. R. CURJEL, 'On maps of //-spaces', Topology 6 (1967) 137-148.
5. A. L. COOK, 'Fibrewise Hopf spaces', D. Phil, thesis, University of Oxford 1991.
6. A. L. COOK, M. C. CRABB and W. A. SUTHERLAND, The space of sections of a sphere-bundle, II (in

preparation).
7. M. C. CRABB, Z/2-Homotopy theory, London Mathematical Society Lecture Notes 44 (University

Press, Cambridge, 1980).
8. M. C. CRABB, 'On the A:0Z/2-Euler class, I ' , Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 115-137.
9. M. C. CRABB and K. KNAPP, 'On the codegree of negative multiples of the Hopf bundle', Proc. Roy.

Soc. Edinburgh Sect. A 107 (1987) 87-107.
10. M. C. CRABB and W. A. SUTHERLAND, 'The space of sections of a sphere-bundle, I ' , Proc. Edinburgh

Math. Soc. 29 (1986) 383^03.
11. T. TOM DIECK, Transformation groups (de Gruyter, Berlin, 1987).
12. K. IRIYE, 'Hopf r-spaces and r-homotopy groups', J. Math. Kyoto Univ. 22 (1983) 719-727.
13. N. ISHIKAWA, 'On the equivariant Hopf structures of a sphere with an S ̂ action', Mem. Fac. Sci.

Kyushu Univ. Ser. A 41 (1987) 85-96.
14. I. M. JAMES, 'On //-spaces and their homotopy groups', Quart. J. Math. Oxford 11 (1960) 161-179.
15. I. M. JAMES, The topology of Stiefel manifolds, London Mathematical Society Lecture Notes 24

(University Press, Cambridge, 1976).
16. I. M. JAMES, Fibrewise homotopy theory (in preparation).
17. P. J. KAHN, 'Mixing homotopy types of manifolds', Topology 14 (1975) 203-216.
18. J. P. MAY, 'Fibrewise localization and completion', Trans. Amer. Math. Soc. 258 (1980) 127-146.
19.. R. J. MILGRAM, Unstable homotopy from the stable point of view, Lecture Notes in Mathematics 368

(Springer, Berlin, 1974).
20. M. MIMURA, 'The Homotopy groups of Lie groups of low rank', / . Math. Kyoto Univ. 6 (1967)

131-176.
21. J. L. NOAKES, 'Symmetric overmaps', Proc. Amer. Math. Soc. 56 (1976) 333-336.
22. J. L. NOAKES, 'Self maps of sphere bundles I ' , / . Pure Appl. Algebra 10 (1977) 95-99.
23. D. SULLIVAN, 'Genetics of homotopy theory and the Adams conjecture', Ann. of Math. 100 (1974)

1-79.

Mathematical Institute Department of Mathematical Sciences
24-29 St. Giles University of Aberdeen
Oxford OX1 3LB Aberdeen AB9 2TY


