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THE SPACE OF SECTIONS OF A SPHERE-BUNDLE I

by M. C. CRABB and W. A. SUTHERLAND
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. Introduction

fhroughout this paper X will be a finite connected CW-complex of dimension m, and £
ill be a real (n+ 1)-plane bundle over X (n>0) equipped with a Riemannian metric.
We aim to give a systematic account of the space 'S¢ of sections of the sphere-bundle
£

_ In particular we prove a result, announced as Theorem 2.14 of [3], which shows that
or n>2m+1 the homotopy type of 'S¢ determines the stable homotopy type of the
stable) Thom space X ¢ (see Corollary 5.3 below). The ingredients of the proof are
Freudenthal’s suspension theorem over X and S-duality theory.

In a sequel, we shall refine the Freudenthal theorem to an EHP sequence, in analogy
th the classical procedure. This provides a natural setting for the results of [15] (see

The later sections of the paper deal with the homology of I'S&. Let # be the group
orientation-preserving isometric isomorphisms of £ over X and P—B a principal -
ndle over a finite CW-complex B. The main result is a computation of the homology
fPx »1I'S&), up to group extension, for j<2n—2m—1 (see Corollary 9.4), by a sort of
Gysin sequence” involving B and X ¢ As an application we prove two results of J. M.
gller, [11], [12] and [13], on the homology of spaces of sections of projective
undles.

The detailed statements of our results appear in the relevant sections, according to the
liowing plan. In Section 2 we summarize some facts about the geometry of T'SE In
ection 3, assuming that 'S is non-empty, we obtain preliminary results on its
omotopy; in particular we show that each component is a space of finite type. In
ection 4 we establish our basic notation before describing the Freudenthal suspension
heorem. Duality is discussed in Section 5, and under suitable restrictions this adds
recision to the description in Section 3 of the components of I'S¢ (Theorem 5.1). In
ection 6 the suspension process is reformulated in two ways using the stable
ohomotopy Euler class. The first of these is used in Section 7 to study the action of
ertain symmetries of S on the components of I'SE. Finally, in Sections 8 and 9 we
pply previous work to get information on the homology of I'SC.

At two stages we append clarifying details. The appendix to Section 4 deals with “the
:hom space of a virtual bundle”, and the appendix to Section 9 on “stable homotopy
aver a base space” includes the proof of a result (essentially standard, but for which we
now of no suitable reference) used in that section.
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. 2. Geometry of I'S¢

We topologize I'S¢ as a subspace of the Banach space I'¢ of sections of the vector
bundle & Then 'S¢ is a smooth submanifold. Its tangent space at a point s of I'S¢ js
T(s), where {(s) is the sub-bundle of ¢ which is fibrewise orthogonal to the one-
dimensional sub-bundle spanned by s. The normal bundle of I'S¢ in T°¢ is trivial, with
fibre the space €(X) of continuous real-valued functions on X.

In fact I'SE even has an algebraic structure. To sce this, let us write A4 for the
commutative ring 4(X) and P for the finitely-generated projective A-module I'¢. The
Riemannian metric on ¢ induces a non-singular bilinear form {,>:PxP—A4. Our space
I'SE is the set {seP|<s,s>=1}. It is now easy to see that I'S¢ is an affine algebraic
variety over A. '

Let ¢ be the group of isometric automorphisms of & over X. Then % is a Lie group
(in general infinite-dimensional) which is algebraic over A and acts smoothly on I'S¢. It
is easy to show that each component of I'S¢ is a homogeneous space of the connected
component ¥° of the identity in ¢. The part of this assertion which we need later is
recorded in:

Proposition 2.1.  The group %0 qacts transitively on each component of I'SC.”

Proof. See (5.3) of [3].

3. Homotopy type of 'S¢

Throughout the rest of the paper we assume that 'S¢ is non-empty, and we fix a
section s, in I'SE. We shall study the homotopy type of the pointed space ('S¢, sq). By
(2.1) this homotopy type depends only on the homotopy class of s,.

For convenience we often adopt a slightly different viewpoint on (I’ S&,s0), as we shall
now describe. Throughout the paper we use the same symbol for a vector space V and
the product bundle with fibre V' over any space. With this notation, s, determines an
orthogonal splitting {={® R, where { is an n-plane bundle over X and s, Is the
constant section of R with value 1. Now S¢ may be canonically identified with the
fibrewise one-point compactification { * of { (obtained by adjoining a basepoint at
infinity to each fibre of (), in such a way that s, corresponds to the section s, of {*
which picks out the basepoint in each fibre. We often state results in terms of the
pointed space I'(", with the basepoint s, understood. These results may of course be
translated into corresponding results about (I'SE, so)-

Proposition 3.1. (a) The fundamental group n,([¢Y) is finitely generated nilpotent.
(b) If r>1 then n,(I(*) is finitely generated abelian.
() If 0L r<n—m then n,(T'{*)=0.

Most of this proposition is a special case of a result for locally trivial bundles with
nilpotent fibres (cf. [7] 11.2). We include a proof for completeness.

Proof. We use induction over the cells of X. The result holds when X is a single
point, for then m=0 and I'¢* is an n-sphere S".
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Suppose that the proposition holds for (n+ 1)-plane bundles over a finite connected
W-complex Y with dim Y=m, and that X is obtained from Y by attaching a single
_cell with characteristic map f:(D™, 8™~ *)—(X,Y). Let I(Y; {*) denote the pointed space
' sections of the restriction {* | Y. When different base spaces are involved, as here, we
all sometimes for clarity write [(X;{*) instead of I'C *+_ Since the inclusion of Yin X
a cofibration, the restriction map from I(X;(Y) to T(Y;{ *) is a fibration. We write
X, Y;(*) for the fibre over s,. There is a commutative diagram of fibrations:

X, vty — G — TG
L e e (3.2
" s" Lty — TO% ) — L™+,

nd the map f* on fibres is a homeomorphism. After choosing a trivialization of f*{*
ver D™, we may identify the fibre with the iterated loop space Q"S". From the
omotopy exact sequence of the upper fibration in (3.2), it is now easy to see that the
ssertions of the proposition hold for X provided either n—m>1 or we restrict
ttention to those assertions concerning r>1. The fundamental group requires a little
ore care when n—m <1, and we deal with it next.

Recall that whenever F——FE—£-B is a fibration there is a natural action (indicated
ere by a dot) of n,E on n,F, such that for any g, h in n,E,n,F we have (g h=
*(h)g‘l. To compute this action at the upper level in (3.2), by naturality we may
jork at the lower level. But there the action of 7,(S") on 7,(Q™S") is the standard action
7,4 (S"), which is trivial. Thus, writing n now for 7, I'(X;{ *), we see that m is a
entral extension

0->N-n—>H-0 (3.3)
n which N is a quotient of m,(Q™S") and hence is finitely generated abelian, while H is

3 subgroup of =, I(Y;{*). By inductive hypothesis 7, I(Y;{*) is finitely generated
potent, hence so is H and by (3.3) so is 7. This completes the inductive step.

 We write (I*)° for the component of s, in I' +_ From now on we write dg, by, ... for
basepoints of pointed spaces 4, B, ....

Proposition 3.4. The pointed space (TL*)0 is homotopy equivalent to a pointed CW-
mplex A with finite skeleta A” for all r20 and A" ={ay} for r<n—m.

Proof. We use the finiteness criterion of Wall [16]. By (3.1), m,(T¢*)° is finitely
nerated nilpotent. Hence it is finitely presentable and (by Hilbert’s basis theorem) its
egral group ring is Noetherian. Since (I'{*)° is locally path-connected and semi-
cally simply-connected it has a universal cover. The homotopy groups and hence the
mology groups of the universal cover are finitely generated as abelian groups (again
(3.1)) and a fortiori as modules over the group ring. We may therefore apply Wall’s
nstruction, beginning with A® ™ Y={a,} if m<n, and get A as specified in the
oposition together with a weak homotopy equivalence f:4—(I'C *)°. Finally, (I' )
s the homotopy type of a CW-complex by Milnor [10] (cf. Lemma 8.5 of [3]), so fis
homotopy equivalence.
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4. Stabilization

In this section we describe the suspension theorem mentioned in the introduction, ang
prepare the way for the discussion of duality in Section 5. As in Section 3 we use the (*
viewpoint. We shall be doing homotopy theory over the base space X; [9] is a good
textbook reference for the basic theory. First we must fix some notation.

Let Q,—B,Q,—B be locally trivial bundles of pointed finite CW-complexes over 3
fixed finite CW-complex B. (This is sufficiently general for our purposes and indeed we
shall be concerned mainly with sphere-bundles.) In the terminology of [9] these are
(well) sectioned spaces over B (with sections given by the basepoints in the fibres). We
write [Qo; 0,1 for the set of homotopy classes of fibrewise pointed maps from @, to Q,
over B. When 4 is a subcomplex of B we write [Qo; Q; }s, 4 for the corresponding set in
which each map takes the fibre over any point of 4 to the appropriate basepoint.

For example if O is the zero vector bundle over X then [0%;¢* ]y is meI'L™, since a
fibrewise pointed map 0" —(* is determined by its restriction to O and this is simply a
section of ¢ *. Similarly 7 I'(X, Y;{*)=[0";{* ]x. y, where I'(X, Y;(*) is as in (3.2).

Now we stabilize [Qo; Q1z. First, we have a map from

[Qo; Q1lp to [RT A 5Qo; R* A Q:ls

given by the smash product (over B) with the identity map of the trivial bundle R*.
Iterating this process (and making the standard identification of the k-fold product
R* A« A RY with (RY)*), we define the stable group 03{Q0; Q,} as the direct limit of the
sets [(RY)* A 500; (R ' A 50515 (k20). Its elements are called stable maps Q,— @, over B.
The stabilization map from [Qg; Q;1s to w§{Q0;Q,} will be denoted by E. The relative
group 0%, 4{Q0; @} is defined similarly and again we write E for stabilization.

In the usual way we introduce groups ws{Qo;Q,} for jeZ as the direct limit of the
sets [(RY* A 5Q00; (R)* A 50,15 (k,120,1—k= j). Relative groups are defined similarly, and
there is a long exact sequence relating 0%, g{Qo; @1}, 0§ {00;0,} and w%{Qo|4;0,|A}.

If B is a point then we omit it from the notation and we are doing standard stable
homotopy. So if Z,,Z, are pointed finite CW-complexes we write w®{Zy;Z,}, rather
than the more usual {Zy;Z,}, for the group of stable maps from Z, to Z,. Later we
shall introduce analogous groups with stable homotopy @ replaced by homology H.
When we use @ and H in the usual way (for example ®°(X)) we mean the unreduced
theories; @ and A denote the reduced theories.Thus : w/{Z; 5%} =&H(Z,), w'{8°%Z,}=
& (Z,).

We are interested in sphere bundles over X. Let a,,a; be real vector bundles over X.
Then we may think of the group wy{ag;ai } of stable maps of sphere-bundles over X
as stable cohomotopy groups of Thom spaces. We use the traditional notation X° for
the Thom space of &, and write (X, Y)* for the quotient of X* by Y¢lY. As we describe in
detail in the appendix to this section, we may extend this notation to the case of the
virtual vector bundle a=a,—a, over X. We have then:

wf{og sy j=0%X");
' 4.1
0% pied ;o }=a%X, Y)*).

We shall use the following local coefficient notation for any well-behaved cohomology
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gory h, such as integral cohomology or stable cohomotopy.
W(X; o) = hi(X?)
4.2)
WX, Y;0)=hI((X, Y)).

ain, details are in the appendix). If is zero, then hi(X;0) is simply h(X).
y (4.1) and (4.2) we can now write stabilization as E:[og cof x> 0%(X; ).
(¥ ]y =mel'{*, we have in particular a stabilization map

E:molt —»a’(X; =0,
d similarly in the relative case.

Theorem 4.3. The stabilization maps

(a) E:n (" »®(X;—{) and
(b) E:mol(X, Y;(")—0’(X,Y;=0)

e bijective if m<2n— 1, surjective if m<2n— 1.

This may readily be deduced from the following more precise result. If sel{* we
all sometimes write E(s) e ¥ X; () for the stabilization of the class represented by s.

Theorem 4.4. Let m<2n—1. Suppose that x is an element of w{0*;¢*} and s a
ction of {*|Y such that x restricts to E(s) in 03{07;¢"|Y}. Then there is a section § in
X:(*) extending s and such that E@)=x. ‘

The proof of (4.4) is by induction over the cells of X. At the inductive step one uses
reudenthal’s suspension theorem for homotopy groups of spheres. We omit the details.

We can obtain information on ¢t from (4.3) by simply taking adjoints. Let Z be a
nite pointed CW-complex and let us denote the pull-back of ¢* under the projection of
7 « X onto X again by (. Taking adjoints, we may identify the space of pointed maps
rom Z to T(X;(") with T(Z,z0) x X;( ). Hence, as in (4.3)(b), we have a stabilization

oy

E:{Z;T(X; (N =m0l (Z,20) X X; (N> 0*(Z,20) X X5~ 0)- (4.5)

immediate corollary of (4.3)(b) is:

Corollary4.6. Themap Ein (4.5) is bijective if m+ dim Z < 2n— 1, surjective if m+ dmZs
~1.

When Z =S’ the righthand group in (4.5) is 0 (X; —{), and we get:

Corollary 4.7.  The stabilization map

Em(T{") =0 (X;—0)

bijective if j<2n—m—1, surjective if j<2n—m—1.
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~ Remark 48. In particular =, I'(* is abelian when m<2n—2. For E in (4.7) is clearly
a group homomorphism if j>0. If m<2n—2 then (4.7) applies with j=1 and n, e+
is isomorphic to the abelian group o~ '(X; —{).

Appendix: the Thom space of a virtual bundle

A virtual bundle « over X is just an ordered pair (o, ;) of real vector bundles; it g
often written as op—a;. We want to explain how a group such as @°X®) is to be
understood.

It may be helpful to recall first another, familiar, definition: that of the tangent space
T.M at a point x of a smooth m-manifold M. One procedure is as follows. We choose a
chart ¢:U—V, where USM is an open neighbourhood of x and V'is an open subset of
R™ and then for practical purposes take T,M to be the well understood tangent space
R™ of V at ¢(x). Nevertheless T,M is a well-defined geometric object, and formally we
can define a tangent vector at x as an equivalence class of pairs (¢,v) where ¢ is a chart
at x and ve R™

To define Ri(X*) we follow a similar recipe. Choose a trivialization ¢:0; @ 6—-RM for
some vector bundle ¢ and M =>0. Then take (X to be the cohomology h/*M(x* @«
of the genuine space X*®7, or in the notation (4.2) W/ *™(X;u, @ 6). To make sense
of this as a definition we must say how the groups arising from different trivializa-
tions are to be identified. Let y:a, @ t—R"Y be a second trivialization. Consider first
the case =0 ®R, N=M+1, y=¢@ 1. Then we identify W *M(X;0,® o) with
WM X 00 @ o @ R)=h+N(X;00@® 1) by the suspension isomorphism. This allows
us to stabilize, and in general we can reduce by repeated suspension isomorphisms
to the situation in which M and N are equal and dimo=dim1 is large compared with
dim X. Then the linear isomorphism ¢ ~!o¢:a, @ 6—a, @ 7 is homotopic to 1@ f for
some isomorphism f:o—t, and f is unique up to homotopy. The isomorphism
1® f:00® o—to ® 7 induces the required map b/ V(X; 00 ® 7)=h/TM(X; 0y D o). This
construction is consistent with stabilization, and so the identification is unambiguous.

Thus F(X*)=h(X;a) is a well-defined abelian group, independent of any choices
involved in its description. (Formally, an element is an equivalence class of pairs (¢,v)
with vehi " ™(X;a, ® ). And to avoid set-theoretic problems we had better insist that ¢
is a sub-bundle of RM. But this formal approach does not add much to our
understanding of X*)

In the following sections we shall refer to the stable Thom space X* itself. Our
statements involving X* can be interpreted in the way we have just described, without
actually giving a meaning to the object X*. For example, a stable map from a pointed
finite CW-complex Z to X* is an element of the group w®{Z; X*}, which can be defined
exactly as above. To work with X* one chooses a trivialization ¢ and takes X* to be
the stable space (or spectrum) £~ X*®° (Formally, X* is the category of all such
stable spaces, one for each ¢, with morphisms between any two the unique stable map
giving the canonical identification. It is customary to regard such a category as a single
object!)

Finally, we explain the isomorphism (4.1). If «; is trivial, say o; =X x RM, then it is
easy to see that o%{ag;X x(RM)*} is (canonically isomorphic to) o®{ X (RM)*}=

THE S
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X*). See (9.10). In general, we fix a trivialization ¢:o; @ c—RM. The smash product
X with the identity map on ¢* gives a suspension isomorphism

w?({“giaf}‘*w%(“o @) (0 Do)t}

n ¢ induces an isomorphism to w${(xo @ 0)*; X x (RM)*} =@M (X*°®7), which is
) X?). It is straightforward to check that this isomorphism is independent of the choice
s tig
to be
. uality

Space

“ oosea | We now describe the duality mentioned in the introduction. We continue with the
beet of tion of Sections 3 and 4. In particular recall that the basepoints of 4,B,... are
Space ten ao, bo, s
i '
; gh;‘f: Theorem 5.1. Suppose that n=2m+ 1. Then the CW-complex A of (3.4) may be chosen

that A™ = A2"=2m=1 gnd so that this skeleton is S-dual to the stable Thom space X ~*.

 RM for

, The proof is based on (4.6) together with the following facts which hold for a finite
- X®®7) S Bbinted CW-complex P:
! sense '
Aaliza- (a) Suppose that 1<r<s and that P is simply connected with H;(P;Z)=0 for j<r
ot first and for j>s, and H**}(P;Z)=0. Then there is a finite pointed CW-complex Q,

homotopy equivalent to P, with Q¥ ={q,} and dim Q <s. (See [6], Ch. 8).

)au\:;l‘:,t; (b) Suppose that r,s>0, that P***~Y={p,} and that dim P<2r+s. Then there is a
shisms finite pointed CW-complex Q@ with Q" Y={g,} and dimQ<2r, such that P is
- d with homotopy equivalent to the s-fold suspension X°Q. (See [1], Appendix).
B ﬁ -for roof of (5.1). The result is trivially true for m=0. Assume that m>0.
r
| )? 1}::; Step 1. We choose a finite pointed CW-complex D which is S-dual to X ~¢ and study
" s, ell structure. We shall show that D may be chosen so that D ={d,} for 0<i<n—m
' shoices sd dim D <n. For this step it is enough to assume n2=2m.
5 (,0) he special case when X is a closed manifold is illuminating, since then X ¢ is S-dual
that ¢ he stable Thom space X~ * where 7 is the tangent bundle of X. The condition n22m
0 our rantees that { is equivalent to @ y for some (n—m)-plane bundle n over X, and we
take D=X"
. Our 1In general we use (a) and (b) above. Let P be a finite pointed CW-complex which is
vithout idual to XY X ¢ for some N=0. (In other words, if 0 @ {=R" is trivial, P is S-dual
sointed , ¥ "M-N x7) Then A(P;Z)=0, H/(P;Z)=0 unless N+n—m< jSN+n. By (a), there
defined finite pointed CW-complex @, also S-dual to ™V X ¢, with Q™ *""""V={g,} and
1o be Q<N +n. Finally, since n22m we see from (b) that Q may be desuspended to a
- 11 such able D:Q~ XV D.
le map tep 2. We next construct a duality map j:D-I(".
1 single et us choose a duality between D and X% it will be given by stable maps
o AX 58 and u:S°->DA X% (A good reference for duality theory is [4])
en it1s regard Ae@®@’(DA X% as an element of w(D,do)xX;(). By (4.6)

M= D;T¢{* - o%(D, dy) x X; —() is surjective, since m<n. Choose j such that E(j)=4.
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Now for any finite pointed CW-complex Z we have a commutative diagram Stabilizatior

In this secti
(the (¥ vie
spectively.

_As a prelim

Jx

(z;p] —— [Z;T¢H]
Sl . XE (52)
oZ;D} —— 0°(Z,20)xX; =0,
A,

in which S (rather than “E”, which would be confusing here) is the ordinary
stabilization map and 4, is the duality isomorphism. (A stable map g:Z—D gives rise to
a stable map Ao(g A 1}:Z A ¥ -¢»D A X t—>S°, hence to an element in ANZ A XY
which (see (4.2)) is the same as 0°(Z,20) X X; —0)- The inverse for 4, is COﬂStructeci
using p.)

It is significant that the connection between function spaces and duality was already
emphasized in the initial work of Spanier [14]. If ¢ is the trivial bundle R", then jis a
map D—M(X,S§") to the space of maps from X to S".

Step 3. j induces an isomorphism of homotopy groups in an appropriate range.

Consider the diagram (5.2). By (4.6), E is bijective for dim Z <2n—m—1. Since D is
n—m-— 1)-connected, Freudenthal’s suspension theorem shows that S, and hence Eo j,,
is bijective for dim Z <2n—2m— 1, surjective for dimZ<2n—2m—1. Hence j, satisfies
the same conditions. Taking Z to be a sphere we get the desired conditions on

homotopy groups.
| The next

erms of di
(DR, ¢
efinitions
I(X,Y;{

Step 4. If n22m+1, then n<2n—2m—1. We take A@n-2m~1) =D mapped to (I'{*)°
by j, and continue the step-by-step construction of A as in [16] (cf. (3.4) above). This
completes the proof of (5.1). '

The homotopy type of (I'0 *)° does not in general determine the homotopy type of the
skeleton A®. But if it happens that 44+D = 4D then this picks out a natural homotopy
type for A9, This occurs for A® when n>2m+ 1, since then 2n—2m—1>n, and so since

~ A@n—2m=1) = A® we have certainly AP D= A,

Corollary 5.3. Suppose that ¢ and n are real n-plane bundles over X with n>2m+1,
and that T+ and Tn* are (weakly) homotopy equivalent in dimensions =n. Then the | i
stable Thom spaces X ~* and X ™" are homotopy equivalent. . mit the d

Proof. Let A be the CW-complex produced by Theorem 5.1 for T+ and let B be
the similar CW-complex corresponding to In*. Then under the current hypotheses, A®
and B™ are homotopy equivalent. Hence so are their S-duals X ¢ and X"

We note in particular:

Corollary 54. Suppose that n>2m+1. Then 'ttt is homotopy equivalent to the space
M(X,S") of maps from X to S" if and only if the sphere-bundle ¢* is fibre homotopy
trivial.
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tabilization reformulated

n this section we give two reformulations of stabilization, both giving less emphasis
the {* viewpoint than Section 4. These will be used in Section 7 and Section 8
ectively.

s a preliminary, we recall some definitions (for example from Section 2 of [2]). The
ble cohomotopy) Euler class p(&) of & is the class in w%X; —¢), or equivalently in
0%; &%}, represented by the inclusion of 0% in ¢*. In other words, y(¢) is the
ilization of the zero-section of ¢¥. Let seI'(Y;S¢&), where Y is a subcomplex of X.
relative Euler class y(¢,s) in w%X, Y; —¢&) is defined as follows. Let D¢ be the unit
bundle of &, and choose a section § in I'(X;D¢) extending s. There is a standard
motopy class of) bundle map c: DE—¢™ collapsing S¢ fibrewise to s,. The homotopy
s of the composition c¢-§ in I'(X,Y;¢*) is independent of the choice of §. Set
s)=E(c-§). It clearly vanishes if s extends to a section of S over X.

f sections to,t; of S& over X agree on Y, then the difference class d(to, ;) may be
ned in (X, Y; —¢&) as follows. Let p: X x [->X be the projection. Define a section
S(p*&) over X x dI U Yx I to agree with p*t, on X x {0}, p*t; on X x {1} and their
mmon value on YxI. Then y(p*&,t) lies in %X x I, X xdIuY xI; —p*&), and we
ne 8(ty,t,) to be its image in (X, Y; —¢&) under the suspension isomorphism. The
erence class vanishes if t, and ¢, are homotopic. If t,,t,,¢, are sections of S¢ which
ee on Y, then almost by definition of addition

6(1:0, t2)=5(t0>t1)+6(t1’t2)' . (61)

he next lemma expresses the stabilization map E:mo[(X,Y;{*)—0(X,Y; —{) in
ms of difference classes. Recall that s, is a fixed section of S¢ giving the splitting
(@R, and SE=(*. We may identify o XX,Y; —§ with 0%X,Y;—{), from the
nitions of these groups. Also, if s is a section of S¢ agreeing with s, on Y, then s lies
T'(X,Y;(*), so that the stabilization E(s) of s lies in %X, Y; —{).

emma 6.2. Under the above identification,
E(s) = (s, s¢)-

he proof is an exercise in relating reduced and unreduced fibrewise suspensions. We
it the details.
Under identifications similar to those above, the stabilization map of (4.5) becomes

E[Z;TS¢]- 07 '(Z,20) x X; — ).

want next to give a description of E which does not involve the basepoint s, of I'SE.
is will be convenient when we come to discuss homology in Sections 8, 9 and in
ticular when we look at the action of symmetries of S¢ which do not preserve the
epoint.

Let CZ denote the (unreduced) cone I x Z/{1}xZ on Z. Thus Z&CZ as {0} x Z. As
al the coboundary A:w Y(Z,zo) x X; —&)—-w’(CZ,Z)x X; —£) in the exact se-
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_ Proof. From (6.1
aturality of 4.

For an element g€
by plg)x=J()x+0(g
hard to check the cc
hrase (7.2) in term

quence of the triple (CZ,Z,z,) x X is an isomorphism, since CZ is contractible to
Given a pointed map s:Z—I'S¢, its adjoint is a section, also called s, of (the pull—bac;
of) S¢ over Z x X, agreeing with s, on {zo} xX. Thus on the one hand we have 4
difference class d(s,50) in ®~ Y(Z,2,) x X; —&) and on the other a relative Euler clasg
W&,s) in @°(CZ,Z) x X; —&).

Lemma 6.3. With the above notation

AY(s, So) =&, 9) Before illustrating

The point of the lemma is that, by (6.2), the stabilization E(s) is determined by d(s,s,), The antipodal invo

and so, by (6.3), stabilization may be viewed as a map from [Z;TSE] to w(CZ,Z) x X; — 9,

avoiding any mention of s,. Proposition 7.4. (

(@) T=n-[&]in K
(b) (T'so,50)=¥(
Proof. (a) If & i
_definition of . The {
(b) By (6.2), o(T.
entification of S¢

Proof of (6.3). It is convenient to split A into the composition:

0 WZ,zo)xX; =8 = o%ZxI{zo}xIVZxdl)xX;—{)
Al %(q*)‘1

(6.4)

w™(CZ,Z)x X; —¢) 0%(CZ,C{zo} v Z) x X; =),

Next, for any ¢ i
rthogonal to t. Le!

nd e=J(n-[£])-

where i is the inclusion and g:Z x I-»CZ is the collapsing map. We have a section § on
(C{zo}uZ)x X given by s, on C{zo} x X and by s on Zx X. Then g*y(&,5)=4(s, s;) by
definition of the difference class, and i*y(£,5)=v(¢, s). Now (6.3) follows.

Proposition 7.5.

(a) p(R(so)T)x=-
(b) p(R(so))x=—
(c) p(S(t)x=x+(

or xew HX;—&).

Proof. Since R(
(c) we use the iden!
us to compute p(R(

7. Action of % on n,I'S¢

An element g in % determines an element g, say, in KO Y(X). (Explicitly, choose a
trivialization ¢: ¢ @ c—RN for N large. Then g @ 1, gives rise to a map from X to the
orthogonal group O(N) representing g. It is easy to check that g is independent of the
choice of ¢ and ¢.) The J-homomorphism maps KO 1X) to the group of units in
the (unreduced) stable cohomotopy ring % X). The next lemma follows by unwinding
definitions.

Lemma 7.1. With the above notation, J(g) corresponds to the fibrewise one-point
compactification g*:E* —E* under the natural isomorphism of 0%(X) with 0°(X;¢—8)=
R {E5 €T}

The following obstruction-theoretic fact is also useful in studying the action of ¢ on

Example 7.6. (¢
and let £ bean (m+
but we shall see ti
odd, so () is a -

noI'SE. assertion follows fr
In the case when
Lemma 7.2. Let gc%,se'SE. Then v see the connection

degree r. Then (7.
8(g5, 30) = J(8)0(s, o) + (250, S0)- are isometries) bet'
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Proof. From (6.1), &(gs,s,)=0(gs,g50)+0(g50,S0), and (gs,gso) =J(£)0(s,50) by
turality of 4. )

For an element ge %, let us define an affine linear map p(g):0 ™ }(X; — - YX; -9
p(g)x =J(g)x+8(g50, o). Clearly p(g) depends only on the component of g. It is not
rd to check the cocycle condition: p(gh)=p(g)p(h) for g,he%. Now by (6.2) we can
phrase (7.2) in terms of E:noI'S¢—»w’(X; —¢) as:

E(g " s)=p(8)E(s). (7.3)

Before illustrating the use of these results, we describe p(g) for certain symmetries g.
he antipodal involution T which acts as —1 in each fibre of ¢ is particularly
teresting. Let n denote the Hopf element which generates KO~ Yx)=7/2.

Proposition 74. (cf. [8]) Let [£] be the class of £ in KO%X). Then

() T=n-[{]in KO™'(X),
(5) &(T'so,80) =(0)-

Proof. (a) If ¢ is the trivial bundle R over a point % then T=pn essentially by
finition of n. The general case quickly follows.

(b) By (6.2), 8(Tsq,s0)=E(Tse). But Ts, is the zero-section of {* (in the usual
entification of S¢ with (%), so E(Ts,)=7({) by definition of y (see the beginning of
ction 6).

Next, for any ¢ in ['S¢ let R(f) be the (fibrewise) reflection of ¢ in the hyperplane
thogonal to t. Let S(t) be the orientation-preserving element R(t)R(so). Write y=E(t)
d e=J(n-[£).

on § on
5, 50) by

Proposition 7.5. With notation as above,

(@) p(R(s) Thx=—ex,
(b) p(R(sp))x=—x+¥(0),
(©) p(S(D)x=x+(1+¢e)y,

t xew YX;—&).

hoose a
{ to the
it of the
units in
- winding Proof. Since R(t) = — 1 and R(so)so= T, () and (b) follow easily from (7.4). From
) we use the identity R(f)t=Tt. It follows that p(R(2))y=p(T)y=ey+¥({). This enables
s to compute p(R(t)) and then, using (b), p(S5(2)).

ne-point ‘Example 7.6. (cf. [5], [15]). Let X be a closed connected m-manifold with m odd,
£=0)= nd let & be an (m -+ 1)-plane bundle over X with w,&=w,X. Then 7,['S¢ =~ Y(X; —&)=Z,

ut we shall see that there are at most two orbits under the action of 4. For dim{ is
of 4 on dd, so y({) is a 2-torsion class and therefore y({)=0 here. Also, ¢ acts as +1. The

sertion follows from (7.5)(c).

In the case when X is orientable and & is trivial, this result was first proved in [S]. To
ec the connection, let M, denote the component of M(X,S™) consisting of all maps of
egree r. Then (7.6) says that ¢ provides strong equivalences (diffcomorphisms which
re isometries) between M, and M, , ,, for any integers r and s.
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Example 7.7. Let X be a closed connected m-manifold with m even and let ¢ be ap
(m+ 1)-plane bundle with w,é#w,X and w,&+#0. Then 'S¢ has two components and
they are strongly equivalent by (7.5)(b).

8. Homology of I'SE

In this section, continuing with the notation of previous sections, we deduce results
about the homology of I'S¢ from the suspension theorem in Section 4. Since (I'{*)° is
of finite type by (3.4), the homology groups H((I'(*)?) are finitely generated. In a
certain stable range they can be described in terms of the cohomology of X (Corollary
8.3). This is deduced from a similar fact about stable homotopy and cohomotopy
(Proposition 8.2). We then reformulate these results without refererice to the basepoint
sg» preparing the way for the next section.

First we “stabilize” the map E of (4.5).

Proposition 8.1  There exists a homomorphism E, making the following triangle commute:

[Z; T ]—"— 0°((Z, 20) X X5 —0),
o®{Z;T¢*}
where S (for clarity, instead of E as elsewhere) is the ordinary stabilization map.

Proof. The proof is by universality. We shall therefore be dealing with “the stable
cohomotopy of I'{ *”. For our purposes, however, it is unnecessary to define this phrase:
for “I'C*” one may simply read A™ where 4 is as in (3.4) and N is sufficiently large.

Let 1 be the identity class in [I'*;T(*], and let e be the universal class E(1) in
(", 5.)" x X; —{). Since E maps the class of g:Z—T'(" to g*(e), we may define E,
by sending any stable map g:Z—-I'{™" to g*(e). :

Now consider the case Z =S’. The next proposition follows easily from (4.7), (8.1) and
the usual Freudenthal suspension theorem applied to S.

Proposition 8.2. Suppose that m<n. Then E:&{I'C Yo H(X; —{) is an isomorphism
for j<2n—2m—1, an epimorphism for j<2n—2m—1 (and indeed for j<2n— m).

This gives rise to our first result on integral homology; it is just the homology
analogue of (8.2). To state it, we use the local coefficient notation introduced in Section
4, and we let e denote also the Hurewicz image in HO(T¢Y,s,)x X; —{) of the stable
cohomotopy class e above. (In cohomology there is no need for the inverted commas on
I'¢*.) Taking the product with e defines a map

E H(T(M)-H(X; -0).

Corollary 83. The above E, is an isomorphism for j<2n—2m—1, an epimorphism for
j=£2n—-2m—1.

THE S

Proof. Let P be
E, is induced by a
on the jth stable |
N+2n-2m—1. By i

Remark 84. If :
give

with E, j,,=1. The &

Next, for use in §
Since @;(I'(*) may
we first move to vi
Section 6 we c:
0:0;41(CTSET'SE)-
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Proof. Let P be a finite pointed CW-complex dual to X"¥X ~¢ for some N 20. Then

E, is induced by a stable map f:Z¥“I'{*”—P. By (8.2), f induces an isomorphism

n the jth stable homotopy group for j<N+2n—2m—1, an epimorphism for j=<
N +2n—2m—1. By the Whitehead theorem, it does the same on homology groups.

Remark 84. If n=2m+1 we can apply the results of Section 5. (5.2) stabilizes to
ive

@®{Z; D} 0®{Z; T }- 2 0®{Z; D}

with E, j, = 1. The S-dual D of X ~* is a stable retract of “I'{*”.

Next, for use in Section 9, we wish to rephrase (8.2) and (8.3) without mentioning s,,.
ince @{I'(*) may be identified with w{I'S,s0) and ™ ¥(X; —{) with o Ut(X; ),

we first move to viewing E, as a map from w{I'S&,s,) to ™Y V(X; —¢). Then as in
ection 6 we can “get rid of” s, by using the boundary isomorphism
(@4 1(CT'SE, TSE)—w{I'SE, s5). In order to get the desired translation of (8.2) we need
lemma.

Lemma 8.5. The composition
E,8:0;,,(CTSE TSO)—0™I* N(X; —&)

s given by multiplication by the relative Euler class y(£, 1) in 0®(*(CT'SE, T'SE)” x X; —¢),
where 1 is the canonical section of (the pull-back of) S& over I'SE x X given by the identity
map of I'SE.

Proof. This follows from (6.3) applied with Z=“T"S¢&”.

Now (8.2) and (8.3) immediately give corresponding statements in which E, is

eplaced by multiplication by the Euler class y(&, 1) in stable cohomotopy or in integral
ohomology. We record these as:

Corollary 8.6. Let m<n. Then
W& 1) 10, 1(CTSE, TS~ V(X ~ &)
s an isomorphism for j<2n—2m—1, an epimorphism for j<2n—2m—1.
Corollary 8.7. Let m<n. Then

W& 1) :Hyy ((CTSETSE)-H ™V D(X; - )

s an isomorphism for j<2n-—2m—1, an epimorphism for j<2n—2m—1.




396 M. C. CRABB AND W. A. SUTHERLAND

Since 0:H;,,(CTSETSE)—-H(ISE) is an isomorphism, (8.7) shows that we cap
express H(['S¢) as H™U*Y(X; —¢) provided 0< j<2n—2m—1. (This of course follows
from (5.1) in the special case n22m+1))

Remark 88. A symmetry g in % acts on H™U"Y(X; —{) as multiplication by the
degree of g in H°(X). In particular if g is orientation-preserving (that is, of degree +1)
then it acts trivially on H{(I'S¢) for j<2n—2m—1, since everything involved in the
isomorphism of H (T'S¢) with H™Y* (X —¢) is natural with respect to g.

9. A “Gysin sequence”

Our immediate goal is a bundle version of (8.7), from which weé shall deduce a kind of
Gysin sequence for a bundle with fibre I'S¢ (Corollary 9.4). We conclude the section
with some applications, including an alternative proof of Theorem 2.13 in [3].

Suppose that p: E—B is a locally trivial bundle over a finite CW-complex B, and that
for each point b in B the fibre E, over b is homeomorphic to X. Suppose that p is a real
(n+1)-plane bundle over E equipped with a Riemannian metric. Write p,=p|E, We
assume that m<n, so that the space of sections I'Sp,, or I, for short, is non-empty and
connected. The I, can be assembled as the fibres of a locally trivial bundle n:T'—B. Let
Cyn:Cyl'> B be the cone over B of n. Thus I’ < CyI™ and the pointed space Cgl'/T is the
mapping cone of n. This gives an exact sequence in homology (and likewise in stable
homotopy): ’

< Hj (D"H,, (B"—H,; 1 (Cyl, D)—2oH{)-... 9.1)

Using (8.7) we shall compute H;.,(Cgl’,T) for j<2n—2m—1 and thus obtain an exact
sequence which can be applied to the calculation of the groups H{I') in this range.

Let Sy be the fibre suspension of T its fibre over a point b of B is ST, =CI'y/I',. Let
R be the stable bundle over B with fibre over b the stable Thom space R,=E{ *"; then
R/B is the stable Thom space E~”. (To work with genuine spaces, one chooses a
trivialization of p @ ¢ for some vector bundle ¢ over E and considers the bundle with
fibre at b the Thom space of ¢|E,.)

The computation of H;,(Cgl',I') is an exercise in homotopy theory over B and in
essence it is straightforward. Suppose that A, is a (stable) dual of R,. Then y(p,,1) in
@®(“(CT,, Ty)” x Ey; —p,) can be regarded as a stable map 6,:“ST,”—A,, which,
according to (8.7), induces an isomorphism H . ,(STy)—H,;,(4,) for j<2n—2m—1, an
epimorphism for j<2n—2m—1. Now suppose that we could assemble the spaces
A,,be B, into a locally trivial (stable) bundle over B, S-dual over B to the bundle R, and
the 6, into a stable map 6:“SgI”’—»A over B. Then 0*:17 }-H(SBF/B)—J? j+1(A/B) would
be an isomorphism in the same range j<2n—2m—1, an epimorphism for j<2n—2m—1.
This is the substance of the computation. However, we do not wish to discuss general
duality theory over B and shall, therefore, proceed slightly differently.

For simplicity we assume that B is a closed manifold with tangent bundle 1. (No
doubt the theory can be carried through without this restriction, but we have not done
s0.) Here is the result. In the statement D denotes the canonical duality isomorphism.

THE ¢
Proposition 9.2.

Hj+1‘

stable homotopy
homology version
following result frc

Lemma 93. L«
pointed finite CW=(

which is natural
canonical duality i

w—*:

Proof of the stz
o*{S°; Spl'/B} ¥
*(E; —p—p*1)=
Now consider

g

Multiplication b

or

according to ou
At the fibre
f,:0 YTV{0";1
an epimorphisn
epimorphism in
is easy to argu
homotopy over
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- Proposition 9.2. There is a natural map 0 making the following diagram commute:

Hj+1(B) - Hj+1(CBF’ I)

~ the ~

bl C

-1) . . } )
. the H™U*Y(B; —1) ——H U*(E; —p*1)—> H Y"NE; —p—p*1).
* v(p)
oreover, 0 is an isomorphism for j<2n—2m—1, an epimorphism for j<2n—2m—1.
Note that if B is a single point then (9.2) reduces to (8.7). We shall in fact prove a
; stable homotopy version of the proposition (from which the isomorphisms in the
o homology version follow by the usual Whitehead argument). For this we need the
on following result from fibre homotopy theory. It is proved in the appendix.
: za; Lemma 9.3. Let Z be a finite pointed CW-complex, p:Q—B a locally trivial bundle of
W?e pointed finite CW-complexes. Then there is an isomorphism
',njt wo*{Z;Q/B} »ok{BxZ;t* A0},
t;:z which is natural in Z and Q and which reduces when Z =5° and Q=BxS° to the
canonical duality isomorphism of
1) o (B)=w*{8% (B x S°)/B} with w*(B; —t)=w§{B x 8%t}
Proof of the stable homotopy version of (9.2). By (9.3) we can identify w_,(Csl,T)=
act *{89,S,I'/B} with }{Bx5%t* AzSsI'}. Note also, from the definitions, that
*E; —p—p*t)=wi{R;t"}
Let Now consider the relative Euler class y(p, 1) in
1en
5 a W%(ACI, T) X gE; — p) =03 “SgT” A gR; 07},
ith
ultiplication by y(p, 1) gives a homomorphism 6:
in
in ;+1(C3T, D)~ U* D(E; — p—p*7)
ch,
an
ces Wy V{05t A pST} s VT P{R; T}
ind
- uld cording to our point of view.
-1 At the fibre level, (8.6) tells us (in view of the identifications noted above) that
ral (™01t AST,} »w U*D{R,; 1} is an isomorphism for j<2n—2m—1+dim B,
n epimorphism for j<2n—2m—1+dimB. It follows that 6 is an isomorphism or
No pimorphism in the range claimed. (If B has the structure of a finite CW-complex then it
me easy to argue by induction over the cells, using the exact sequence relating stable

omotopy over B, over a subcomplex A and over (B, 4).)
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Finally, we see from (9.3) that k:a)jH(B)—ij(CBF, I') corresponds under « to the
map from oz Y*P{0%;7"} to w5 9P{0*;1* A gSpL} induced by the inclusion of B ip
SeI" as the vertex of the cone. Then composition with 6 gives multiplication by the
Euler class y(p). This completes the proof.

Bundles of the type we have been discussing arise in the following way. Ley # <% be
the subgroup of orientation-preserving symmetries of & Suppose that P is the total
space of a (locally trivial) principal J#-bundle over B, and let E=BxX, with
p:Bx X—B the projection, and p=Px 4 (See Example 9.7 below for a specific
example of the type we have in mind) Write ¢:Bx X—>X for the projection onto X
Since # is orientation-preserving the orientation bundle of p is identified with that of
g*¢, and we have a Thom class u, say, in Ho(Bx X i p—q¥E). .

In applying (9.2), it is convenient to use the following notation in cohomology, by
analogy with stable cohomotopy: for finite pointed CW-complexes Zy,Z, we write
H*{Z,; Z,} for the group of chain homotopy classes of chain maps from the reduced
chain complex C(Z,) to C.(Z,). (Thus, H{Z ;S is cohomology HX(Z,) and
HY{S°;Z,} is homology A _(Z,). H*{ZZ,} should be thought of as the morphisms
from Z, to Z, in the “homology category”. In the context of general duality theory
described in [4], it is transparent that H *{Zo;Zy} can be identified with H*(Z, A D(Z,)),
where D(Z,) is an S-dual of Z,. We shall use this identification in the proof of (9.4)
below. For the computation of H *(Zo;,Z,} one has a (split) short exact sequences:

0—Ext (H,(Z,), A (Z,)»H*{Zo; Z,} ~Hom (A (Zo), HAZ1)~0,

or its analogue involving the cohomology groups of Z, and Z,.)
Now let e be the Euler class y(p) u in HO(B x X; —p*&). We write B * for the disjoint
union of B with a basepoint.

Corollary 9.4. With notation as above, there is an exact sequence:
...——»Hj+1(B)—£'—+H"f+1’{X’¢;B+}—+HJ(P x 4L SE-2>H(B)— ...
for j<2n—2m—1.

Proof. By standard considerations it is enough to assume that B is a closed
manifold. (In general, a finite complex B is a retract of a closed manifold.) The result
now follows from (9.1) and (9.2). For by (9.2) H,(Cpl\T) is isomorphic via 8 to
H™*(Bx X, —p—p*7), which in turn is identified with H™*(Bx X; —p*t—q*¢) via the
Thom isomorphism (multiplication by u). Now this last group is, by definition,
A-*(B~*A X %), which is identified by the canonical duality between B~ 7 and B with
H™*{X~%B*}. The map k in (9.1) passes to multiplication by e when H U*V{X % B"}
is substituted for H;, (Cgl’, I"). This establishes 9.4).

Remark 9.5. In (9.4) we can allow B to be an arbitrary CW-complex. For then it is
a direct limit of its finite subcomplexes and (9.4) is compatible with the direct limit

Remark 96. U
replaced by
Hom (H*(ZO)’ ﬁ*(
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ocess. We can also replace # by an arbitrary subgroup #' < #. For if P’»B is a
ncipal #’-bundle we can extend it to P=P' X o —B and then P'x,I'S{=

'SE.
H

kemark 9.6. Using homology with F,-coefficients, we get a result like (9.4)9.5) with
replaced by % Notice that for field coefficients H*{Zy;Z,} is just
m (H ,(Zo), H (Z,)). So H™U+D{X % B*} is easy to compute in this case.

Example 9.7. Suppose that X is a connected oriented closed even-dimensional
nifold, of dimension m=2r, and that ¢ is a complex s-plane bundle (with Hermitian
tric) over X with n=2s—1 and r<s. We take H# =S' (as in (9.5)) acting on ¢ by

plex scalar multiplication and P— B the universal S'-bundle $°—CP®. Then p, in
: proof of (9.4), is H ® &, where H is the Hopf line bundle over CP*. Because S' acts
ely on I'SE, we have an isomorphism: H,(S® x s, I'SE)—~H(I'S¢/S). A routine
culation using the exact sequence of (9.4) now yields:

H,_ (IS8 2)=2Z/c,l[X],

ere ¢, ¢ is the rth Chern class and [X] the fundamental homology class.

From Section 8 of [3] (especially Lemma 8.2) it follows that if H'(X;Z)=0 then
£/S* is homotopy equivalent to a certain space N¢ of sections of the projective
ndle CP¢. The above calculation therefore gives an alternative proof of Theorem 2.13
[3] (for m<n). Other results first proved by Moller in [11], [12], [13] can be
tained similarly from (9.4).

ample 9.8. (cf. Moller [12] (3.4).) Suppose that X is a connected closed m-manifold
¢ a real (n+ 1)-plane bundle with m<n. We may take ¥=17/2 in (9.6), acting on ¢
ultiplication by {+1}, and P— B the universal Z/2-bundle. Again the action on I'sé
e, and we obtain:

H,_(TSE(Z/2);Fy)=F, ® (F5/wat[X]),

te w, & is the mth Stiefel-Whitney class.

emark 9.9. In this and the preceding section we have dealt only with stable
otopy and classical cohomology. There are corresponding results for any connective
Itiplicative) homology theory. For example, suppose that & is a complex (Hermitian)
dle, # the unitary subgroup of 4. Then we can replace H in (9.4) by connective
plex K-theory.

ppendix: stable homotopy over a base space

e shall be doing homotopy theory over a fixed finite CW-complex B. Let p:Q— B be
cally trivial bundle of pointed finitt CW-complexes. Then Q is a sectioned space
B and we shall sometimes regard the section as an inclusion B&Q. Let Z be a
ted finite CW-complex, and consider the product bundle BxZ—B. There is an
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evident correspondence between fibrewise pointed maps Q—Bx Z over B and pointed
maps Q/B—Z. This observation leads easily to the well known lemma:

Lemma 9.10. There is a canonical isomorphism between w}{Q; Bx Z} and w*{Q/B; 7).

In particular, w%{Q; B x §°}, which one might call the “stable cohomotopy of Q over
B”, is equal to @*(Q/B), the stable cohomotopy of Q/B. It is natural to ask for a similar
interpretation of the “stable homotopy of @ over B”, w}{Bx 5% Q}. The purpose of this
appendix is to give such an interpretation, at least if, as we now assume, B is a closed
smooth manifold. We write © for the tangent bundle of B.

Lemma 9.11. With the above notation, there is a natural isomorphism
wa*{Z;((—7)* A yQ)/B}»0i{BxZ;0}.

If we fix a trivialization 1 @ v—R”, for some normal bundle v, then we can express
the group on the left in more concrete terms as w* ~V{Z;(v* A 5Q)/B}. The equivalence o
here is essentially the same as that in (9.3); we can go from (9.3) to (9.11) by substituting
v* AQ for Q. The remainder of this appendix is concerned with the proof of (9.3).
Although we know of no reference, the result is more or less standard. We therefore
only indicate the main steps of the proof here.

We need to recall the general construction of the Umkehr map. Suppose first that
f:X—-Y is a smooth map between closed manifolds X and Y with tangent bundles
1X,7Y. Let R—Y be a locally trivial bundle of pointed finitt CW-complexes over ¥, and
f*R—X its pull-back over X. Then there is a natural stable map (depending only on
the homotopy class of f)

(=) AyR)/ Y ((—1X)" A f*R)/X (9.12)

which we shall call the Umkehr map. (It has many names.) The construction is easiest
to describe if f is an embedding of a submanifold X <Y with normal bundle v. We
write Dv for the unit disc bundle and identify its interior Dv—Sv with v in the usual
way. Choose a tubular neighbourhood DveY of X and identify the restriction R|Dv with
the pull-back (Dv) x x(RIX) by an isomorphism restricting to the identity on X. Now
we generalize the standard Pontrjagin-Thom construction. Collapsing (R|(Y~v))uY
in R and ((Sv) x x(R|X))uDv in (Dv) x x(R| X) to points, we obtain a map

fER/Y=(v* A xf*R)/X. (9.13)

Substituting (—tY)* AyR for R, we obtain the more symmetrical form (9.12). In
general, if f is not an embedding one chooses an embedding i:X -V of X in some
Euclidean space V and applies the above Pontrjagin-Thom construction to
(f,):X-YxV.

The construction carries through, virtually unchanged, over B. Let p:E—B, q:F—B be
locally trivial smooth fibre bundles over B with fibres closed manifolds. Write ©(p), o(q)
for the bundles of tangents along the fibres. (In fact we do not need a differentiable
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tructure on B; it is enough that E, F be manifolds over B.) Let f now be a smooth map
—F over B and R—F a locally trivial bundle of pointed finite CW-complexes over F.
hen we have a stable map over B

i 2}
0 over FH(—=d@)* A pR)/pF—>(—1p)* A pf *R)/5E, (9.14)
: Lsimi;jgi*
- ofogﬁ?; here /p is the quotient over B (see [9]) collapsing a subspace to a point in each fibre.
1 clog
= ~ _ Sketch proof of (9.3). Recall first how the canonical duality between B* (the one-
soint-compactification of B, with basepoint at o0) and B™* is defined. It will be
onvenient to denote a point by 0, so that 0% is the pointed space $°. We require two
tructure maps A:B* A B7*—0%, w:0*—>B" A B7" satisfying certain identities. Let
A:B—B x B be the diagonal and n: B—0 the constant map. We write n,,7,:B x B—+B for
he projections onto the first and second factor, so that B* AB™*=(B x B) ™",

CXpress Then A is the composition

alence %
stituting
- of (9.3),
herefore

(Bx B) ™AL B* —1,0* (9.15)

i nd dually u is
irst that

" bundiss
r Y, and
only ‘en

0+ - B *—A,(Bx B) "™, (9.16)

r A' we take R=m,*t* in (9.12). We identify A*r,*r and A*n,*t with 1. One verifies
t A, p are duality maps by an essentially formal argument using the properties of the

(9.12) mkehr construction.
' We shall define the transformation « in a rather similar way. It is enough to consider
s easiest. the case Z=Q/B and define o(1), where 1 in w°{Q/B;Q/B} is the identity map. (For

ev. We
he usual
|Dv with
X. Now
—ut

then, in general, if x is in w°{Z; Q/B} we can set a(x)=(1 x x)*«(1).) We use the notation
(9.14). Take 1:B—B for p and n,;:Bx B—B for q. Then f will be A and R will be
*t* A Q). Thus:

T A g0 A Q)

613 B—% ,BxB

3.12). In o, Sm

in some B (9.17)
tion” 10

- _ om (9.14) we get A'ewd{Bx(Q/B);t* A0}, because 1(p)=0 and 1(g)=n,*t. We
F-Bb fine a(1) to be the Umkehr map A'.

T(p)j{gz ' To show that o is an isomorphism we construct an inverse §. It is convenient to
rentia entify wi{(—1)" A g(BxZ);Q] with wf{BxZ;t" A 50} by the fibrewise suspension



402 M. C. CRABB AND W. A. SUTHERLAND

(product with the identity map on t*) and define § as a composition:
WE{(—1)* A (Bx Z);Q}—— w*{B™*A Z;Q/B}——w*{Z; 0/B}.

Here c collapses the section B to a point, and =, is composition with 7':0* —B".
The proof is completed by what is again a rather formal verification that « and g are
inverse to one another.

Remark 9.18. There is one case in which one can give a rather simpler proof, namely
when Q—B is the fibrewise one-point compactification of a locally trivial smooth fibre
bundle p:E—B with closed fibre. Then one can use duality over B to identify
wi{BxZ;t* A 5Q} with w}{Z x((—tE)*/3E);0"}, since tE is the direct sum tB@1(p).
This group is, by (9.10), @*(Z A E™"F), which by ordinary duality is ©*{Z; E*}. And
finally, E* is Q/B.
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