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1. Introduction

A link projection® is said to be alternating iff it is connected and, as one
follows along any component of the link, undercrossings and overcrossings
alternate. A projection is trivial iff it is connected and has no crossings;
otherwise it is non-trivial. We include trivial projections as alternating.
An alternating link type is one which has an alternating projection.

The principal result of this paper is Theorem 3.5 which contains the
assertion that the degree of the reduced Alexander polynomial of an alter-
nating link type plus one equals twice its genus plus its multiplicity. A
second result, obtained as an immediate corollary of the same method
which ultimately yields (8.5), is Theorem (2.13) : The reduced Alexander
polynomial of an alternating link tyve is an alternating polynomial. This
theorem provides the simplest proof of the existence of non-alternating
types.

The image P of a connected, non-trivial projection has a natural de-
composition as a graph. The vertices are the crossings, i.e., the images of
the undercrossings, and the edges are the open ares into which the cross-
ings subdivide P. Since we shall have no reason to distinguish a point at
infinity, we regard P as a spherical rather than a planar graph. The re-
sults of this paper are obtained by studying the image graph of a non-

1. A link L of multiplicity p is the union of n ordered, oriented, and pairwise disjoint
topological circles (1-spheres) L; imbedded in the 3-sphere S3. Two links L and L’ are
equivalent iff p = p/ and there exists an orientation preserving homeomorphism f of S3 on
itself such that fL;=L;’ and f| L; is also orientation preserving, ¢ =1, ---, u. An equiva-
lence class of links is a link type. A knot is a link of multiplicity x = 1. For any link L, we
may select a ‘“ point at infinity ’’ o« € S3 — L and consider a Cartesian coordinate system
RxRxR=S3— . The projection p: S3-S2 defined by p(e) = o and p(z, ¥, 2) = (x, ¥)
is said to be regular iff

(i) p| L is a homeomorphism except for at most a finite number of double points called
crossings and

(ii) for each crossing p(a) = p(b), a, b € L, a=cb, L is linear in every sufficiently small
neighborhood of a and of b (the one of @ and b with the larger z-coordinate is the over-
crossing and the other is the umdercrossing). Condition (ii) is just one of several ways
of insuring that each double point describes a genuine crossing. By the link type of p is
meant, of course, the link type of L. A given link type is tame iff it possesses a regular
projection p. The projection is commected iff the image P = p(L) is connected. Finally,
in this paper all link projections are assumed to be regular and all link types, tame.
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ALTERNATING LINK TYPES 259

trivial, alternating projection. The connection between knot theory and
graph theory is provided by a combinatorial theorem which relates cer-
tain minor determinants of a matrix of values assigned to the edges of
an oriented graph to the maximal rooted trees of the graph. These deter-
minants, in our application, turn out to be link type invariants. We have
referred to this result (cf. paragraph preceding (2.11)) as the matrix-tree
theorem and a reference is [4]. An edge of a graph will typically be de-
noted by the letter ‘“e¢’’. Thus if G is a graph, the formula ¢ € G is
understood to read ¢‘ ¢ is an edge of G .

I should like to take this opportunity to express my sincerest gratitude
to Professor R. H. Fox for his encouragement and supervision of this re-
search which formed the principal part of my doctoral thesis at Princeton.

2. The reduced Alexander polynomial

Consider a regular projection of a link L. The undercrossings subdivide
L into a set z of n arbitrarily ordered overpasses ., -+ -, «, consisting of
oriented open arcs plus those components of L which contain no under-
crossing. The orientation of each overpass is that which it inherits from
L. The number of overpasses is certainly no less than the number d of
crossings. The latter we order arbitrarily and denote by (1), ---, (d).
Notice that each crossing (), =1, ---, d, lies in the image of just one
overpass, which we denote by x,¢;;. Furthermore, for each¢ =1, ---,d,
we define ., and x,¢;, to be the overpasses to whose images (7) is in-
cident and which are to the left and right, respectively, of (¢) when one
is looking along @, in the direction of its orientation.

Let F(x) be the free group freely generated by . We define the subset
r = (ry,---,7,) of F(z) by

- -1 -
(2.1) Ty = w)\(i)xu(,;)xp(é)xu(i, = 1, e, d .

The group presentation (z: r) can be shown to be a presentation of the
fundamental group =(S® — L) ; it is called a Wirtinger presentation (cf-
[8]) determined by the link projection, and &, and =, are the Wirtinger
generators and relators, respectively.

If Z(¢t) is the infinite cyclic, multiplicative group generated by ¢, the
homomorphism 6 : F(z) — Z(t) defined by 6z, =¢¢=1,---,n, has a
unique linear extension to a homomorphism 6: JF(x) —» JZ(t) of the
integral group rings [6]. Where || or,/0x, ||, 2=1, -+-,d and j=1, ---, n,
is the matrix of free derivatives [7], we denote by

(2.2) A = llay, |l = || 60r,/o) |l

the image matrix over JZ(t). We call A a reduced Alexander matrix of



260 RICHARD H. CROWELL

the Wirtinger presentation (z: r). It can be shown that
(2.3) E::la“:O, 1=1,---,d.
(2.4) Any row of A is a linear (over JZ(t)) combination of other rows.

The ring JZ(t) is a Gaussian domain [3] whose units are the elements
+t'. The g. c. d. of the determinants of all (» — 1) x (» — 1) minors of A
is the reduced Alexander polynomial of the Wirtinger presentation Z:7)
and is denoted by A(£)(if » > 1and n — 1 > d, then A(¢) = 0; if n = 1,
then A(f) =1). Notice that A(¢) is defined only to within an arbitrary
factor + #'. From (2.3) and (2.4) it follows (cf. [7, pp. 204, 209]) that

(2.5) If 1<n = d, then A(t) is the determinant of any (n — 1) x (n—1)
manor of A.

It is false that the polynomial A(¢) is an invariant of the abstract group
of (z:r). Nevertheless, it can be shown that

(2.6) The reduced Alewander polynomial is an invariant of link type.

If the multiplicity of L is ¢ and A(¢,, ---, t,) is the ordinary Alexander
polynomial [11] of L, it is a straightforward matter (using the results of
[7] Section 6 and [6] Section 1) to prove that.

(2.7) If p =1, the reduced and ordinary Alexander polynomials are
the same. If p > 1, then

A(t) = (1 — DA, +--, B) .

Since a link projection can always be chosen so that » = d, it is a con-
sequence of (2.3) and (2.4) that the reduced Alexander matrix of a link
projection whose image is not connected can be assumed to be of the form
B 0
a=|g g
where B and C are square and det B = det C = 0. Hence,

(2.8) If a link type has a disconnected projection, its polynomial A(t) is
zero.

We define the degree of A(¢) to be the difference between the greatest
and least power of ¢£. This number is obviously unchanged by multiplica-
tion of A(¢) by a unit factor + ¢

For the remainder of this section we shall assume that the link projec-
tion under consideration is non-trivial and alternating. As remarked in
the introduction, the image P is a graph whose vertices are the crossings
(1), -+, (d). We define an orientation o on the graph P and an assignment
a of either +1 or —¢ to each edge of P as follows : For each i=1,---, d,
there are two distinct edges ¢, and e, of P incident to (¢) and contained in -
the images of x,(;, and x,(;, respectively. We set
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(2.9) ae, =1 and ae,= —¢.

Notice that it can happen that «,, = x,¢;). If so, an arbitrary one of e,
and e, is assigned the value 1 and the other the value —¢. Inany event,
(2.9) holds. The orientation o on ¢; and e, is chosen so that the vertex (2)
s the terminal endpoint of both e, and e,. It is easy to see that «w and o are
consistently defined by the above for all edges of P because (and only
because) the link projection is alternating and non-trivial. We call o the
alternating orientation of P ; it is, of course, not the orientation which P
inherits from the original orientation on the link L. We denote the set
of all edges of P whose initial and terminal endpoints with respect to o
are (¢) and (j) respectively by E;;. The number of edges in E;, is either
0,1, or 2. Then,
(2.10) The matriz B = || b, ||, 4,5 =1, -+, d, defined by

b’U = EeGE“ ae ?: :'t j
bn = — Ej=1bj'l
J#i
is the transposed matrix of a reduced Alexander matrixz of the link pro-
Jection.
PRrROOF. Where 6, is the usual Kronecker delta, we have

bi; = Suoaen — E0ucide 1+ .

Since the projection is alternating and non-trivial, each overpass passes
over one and only one undercrossing. Hence, the function (2) — @, is
a one-one correspondence between the crossings and the overpasses, and
we may therefore order them so that u(7) = 4. As a result,

bu = Oy — L0ipp T+ .

Furthermore, the reduced Alexander matrix is square, i.e., n = d, and
the Wirtinger relators become

— ~1 1
Ty = Ba@Ti%p)ls -~ -

Consequently (cf. [6]), if ¢ # J.

or
Ay = 0(&;) = O — E0spe) = by .
3

By (2.3)

a a
Ay = — E j=10y = — ijlbjz = by
J#i J#i

and the proof is complete.
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Let Tr(¢) be the set of all rooted trees of P with respect to the orien-
tation o and with origin () which contain all the vertices of P>. We de-
note by A; the determinant of the (d — 1) x (d — 1) principal minor
obtained by deleting the ¢*™ row and column of the matrix B. A direct
application of the matrix-tree theorem (cf. Introduction and [4]) yields

(2~11) ('— 1)d—1Ai = E TETr(4) H ecer &€ .
As a corollary of (2.5), (2.10), and (2.11), we obtain

(2.12) THEOREM. The reduced Alexander polynomial A(t) of a non-trivial,
alternating link projection is given by

A(t) = ETGTT(D H cer &€ .

The proof of our principal result, Theorem (8.5), is obtained using (2.12)
as the basic lemma. An immediate corollary is the rather odd result :

(2.13) THEOREM. The reduced Alexander polynomial of an alternating
link type is an alternating polynomial.®

PrOOF. We note that any alternating link type has a non-trivial alter-
nating projection. Since ae =1 or — ¢, any product [].e, ae is of the
form (—1)"¢". A sum of such monomials is an alternating polynomial.

The Alexander polynomial of the knot type 8, (ef. [8]) is A(¢) =
t° — ° + ¢t* — ¢t + 1, and we therefore conclude that it is non-alternating,
i.e., there exists no alternating projection of this type. Indeed, any non-
alternating polynomial which satisfies Seifert’s n.a.s.c. for being the
Alexander polynomial of a knot (cf. [9]) may be used to construct a non-
alternating type. '

3. The genus of a link type

The genus b = h(L) of a (tame) link L is the minimum of the genera of
all connected, orientable surfaces* S tamely imbedded in the 3-sphere

2 A rooted free of an oriented graph is a subgraph T which is a tree and which con-
tains no two edges with the same terminal endpoint. It is easy to check that if 7' is not
empty, it contains a unique vertex which is the initial endpoint of all edges of 7' to which
it is incident; this vertex is called the origin of T.

8 We define a polynomial Y ant® to be alternating iff (— 1)+Ja;a;=0, e.g., 46—3+1-1,
33+t —7,1,1, and 0O are alternating whereas 4¢ + 3 +t-1 and # — 5+ — ¢t + 1 are
not. Note that a polynomial is alternating iff any unit (4 ') multiple of it is alternating.

* A surface, in our terminology, is @ priori compact. The genus of a connected sur-
face with boundary is by definition the minimum of the genera of all connected bound-
aryless surfaces in which it can be imbedded. The Euler characteristic x and genus A
of a connected, orientable surface whose boundary has p components satisfy the equation
(cf. [10])

x=2-2h—p.
An imbedding of a surface S in the 3-sphere S3 is tame iff there exists a triangulation
of S such that S is a subcomplex. The Alexander ‘‘horned sphere” is an example of
a wild, i.e. not tame, imbedding of the 2-sphere in S3 [1].
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with boundary S = L. Since equivalent links obviously have the same
genus, 2 is an invariant of the link type L of L, and we may write 2=x(L).
Seifert has shown [9] how to construct, for any knot K prescribed by a
regular projection, a tame imbedding of a connected orientable surface
with boundary K. The same procedure is applicable to links : Consider
a connected, non-trivial projection p of a link L. The image graph
p = p(L) inherits an orientation O from L, which we call the link orien-
tation (in contrast to the alternating orientation introduced in the preced-
ing section). A subgraph C of P will be called a Seifert circuit iff (i) C
is an m-circuit, (ii) C is a cycle with respect to O, and (iii) the inverse
image p~!(C) N L has n-components.® An insect crawling along the edges
of P in the O direction which always makes a right or left turn at a
crossing will traverse a Seifert circuit (observe first that his path must be
closed, next that it must be simple, and, finally, that the inverse images
of the edges of the path must be disjoint). Conversely, an insect crawl-
ing along a Seifert circuit in the O direction has his route completely
prescribed. It follows that '

(8.1) Ewvery edge of P lies in exactly one Seifert circuit.

Roughly speaking, a surface S with boundary L is now constructed by
filling in each of the Seifert circuits C,, ---, C; with a spanning 2-cell. A
more detailed deseription (due to R. H. Fox) is as follows: In a suffi-
ciently small neighborhood of each of the d undercrossings and d over-
crossings the link L is linear. Hence, we may select an open, connected,
linear neighborhood of each of these 2d points. At each crossing we then
connect the neighborhood of the undercrossing to that of the overcrossing
lying above it by joining the four endpoints with two straight-line seg-
ments. There are two ways of making this hook-up and the choice is
dictated by the condition that the endpoints of the projection under p of
each segment shall belong to a single Seifert circuit. Let L’ be the graph
obtained from L by discarding the 2d neighborhoods of the undercrossings
and overcrossings and adjoining the segments just described. Obviously,
L/ is an unknotted link of f components L;, - -+, L} which are in a natural
one-one correspondence with the Seifert circuits. We now choose f dis-
tinct planes z =2,,¢ =1, ---,f, lying below L and such thatz, < z; if
pL is contained in the interior of pL;. The image p,L; under the projec-
tion p,(«, ¥, 2) = (=, 9, 2,) is a simple closed curve in the plane z = 2, and

5 An m-circuit is a graph with » =1 edges whose underlying space is a simple closed
curve. Where explicit reference to the number of edges is unnecessary we speak simply
of a circuit. A graph G is a cycle with respect to an orientation iff in the free abelian
group generated by the vertices of G, J.e¢ (terminal endpoint e — initial endpoint e) =
0.
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its interior is an open 2-cell D,. The union E, of D, and the points lying
between L; and z = 2, (i.e., E; = D, U {(x, y, 2) | for some %, (z, y, %) € L!
and 2z, < 2<Z}) is also an open 2-cell. Finally, at each crossing we intro-
duce a 2-cell F; whose boundary consists of the two linear neighborhoods
of the undercrossing and overcrossing and the two segments joining their
endpoints. It should be clear that the union

S=LUL uUlE UU.LF,
is a surface with boundary L, (Fig. 1). In addition, we have described a
cellular decomposition of S into (f + d) 2-cells, (2d + 4d) edges, and 4d
vertices. Hence, by the Euler-Poincaré formula,
r=(+d—-—Q2d+4d)+4d=f—4d.
Since P is connected, we may conclude that S is also connected ; and,
since the 2-cells may be coherently oriented so that the sum of the

boundaries is just L with its prescribed orientation, we know that S is
orientable. Thus (cf. footnote 4), we have

(3.2) 2h(S)+p—1=d—f+1.

|

Q\

\
%

\
.

~

vertices

\

vertices
Fig. 1.

Torres [11] has proved that the genus 4(.L) of a link type £ of multi-
plicity g and its reduced Alexander polynomial A(¢) satisfy the relation
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3.3) degree A(t) < 2 (L) + ¢ —1

(cf. (2.7) in conjunction with Torres’ statement of the above inequality).
Since, by definition, (L) < A(S), we obtain from (3.3) and (3.2)

(8.4) degree AQ)=2M L)+ p—1=2MS)+pr—1=d—f+1.

The principal result of this paper is that, for a non-trivial, alternating
link projection, degree A(t) = d — f + 1 and, therefore, the inequalities
(8.4) are equalities. Thus, we shall have proved

(8.5) THEOREM. If L is an alternating link type of multiplicity p and
genus (L), then

degree A(t) = 2W(L) + ¢ — 1

where A(t) is the reduced Alexander polynomial of L. Furthermore, the
genus h(S) of any Seifert surface constructed with respect to any non-
trivial, alternating projection of type L is minimal, i.e., M(S) = W(L).
An interesting corollary is
(3.6) An alternating link type cannot be pulled apart® (does not possess
a disconnected projection).

PRrOOF. Suppose L is alternating and does have a disconnected pro-
jection. Then ¢ = 2, and

degree A(t) =2n( L)+ p—1=1.

By (2.8), -L has polynomial A(¢) = 0. Since our definition gives the zero
polynomial degree zero, we have a contradiction, and the proof is com-
plete.

4. Proof of Theorem (3.5)

Throughout this section we consider an arbitrary non-trivial, alternat-
ing link projection with image P. As in the preceding sections, the
graph P is assumed to possess link orientation O, edge assignment «
(cf., (2.9)), and alternating orientation o. We continue to denote the
number of vertices (crossings) of P by d and the number of Seifert
circuits of P by f. Since any alternating link type has a non-trivial
alternating projection, Theorem (3.5) follows from the inequalities (3.4)
if it can be proved that

4.1) degree A(t) =d —f+ 1.
Hence, this inequality will be the object of the discussion which follows.

There are at least two other proofs of this result; cf. [2, 5].
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A decomposition of P into the union of edgewise disjoint subgraphs H
and K is obtained by defining

H=P—a'(—t)and K = P — a-'(1) .

Thus, H consists of all vertices of P and all edges which are assigned the
value 1 by «, and K consists of the vertices of P and edges assigned the
value —¢. Probably the most important single property of these two sub-
graphs is the fact (Fig. 2) that

(4.2) Neither H nor K contains a pair of distinct edges with a common
terminal endpoint with respect to the orientation o.

One important consequence is that every circuit of H or of K is a cycle
with respect to 0. A simple counting (Fig. 2) yields

(4.3) Number of edges of H = number of vertices of H = number of
K = number of vertices of K = d.
Hence, we obtain

(4.4) FEvery component of each of the graphs H and K contains exactly
one circuit.

ProOF. The Euler-Poincaré formula applied to (4.3) shows that the
number of components of H does not exceed the number of circuits. If
the latter were not distributed one to a component, we could obviously
find a pair of edges of H with a common terminal endpoint with respect
to 0. The same argument holds for K.

K alternatung
orientation o

Fig. 2

We define the characteristic of any rooted tree T of the oriented graph
(P, 0), denoted by char T, to be the number of edges of 7' which lie in K.
As a result of Theorem (2.12), the problem of proving the basic inequality
(4.1) becomes one of showing that (P, o) has maximal rooted trees of suf-
ficiently high and sufficiently low characteristic. ‘

An arbitrary graph G with an orientation 8 will be called 9-connected
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iff any two vertices u and v of G can be joined by a path coherently
oriented with respect to @ which runs from u to».” It is a straightforward
matter to check that

(4.5) Amny rooted tree of a 0-connected graph (G, 0) can be extended to a
rooted tree with the same origin which contains all the vertices of G.

In particular, in any 9-connected graph (G, d) rooted trees with any
given vertex as origin which contain all the vertices of G do exist.

(4.6) The graph (P, o) is o-connected.

PROOF. Itis aconsequence of the fact that every vertex of Pis of even
order and of the configuration of (P, 0) at any vertex (Fig. 2) that the
boundary of every region of P is a cycle with respect to 0. Hence, any
path joining two vertices # and v can be replaced by one coherently
oriented with respect to o and running from » to ». Since P is connected,
the proof is complete.

A Seifert circuit C of P will be called special iff one of the two regions
into which C divides the 2-sphere contains no edges or vertices of P. We
denote the set of all Seifert circuits of P by & and the set of special Sei-
fert circuits by %s. For any oriented graph (G, 9), we denote by C (G, 0)
the set of all circuits of G which are cycles with respect to 8. Then,
4.7) F = C(P,0) N C(P,0)and Fs = C(H,0) U C(K, o) .

ProoOF. That the Seifert circuits of P are precisely those circuits which
are cycles with respect to both orientations O and o is easily seen from

/
e\
/_% _*_/ \

7 Such a path is a subgraph L of G such that, with respect to 4 and in the free abel-
ian group generated by the vertices of G, >cer (terminal endpoint e — initial endpoint e)
= v — u. Notice that the existence of another path coherently oriented and running
from v to w is implied.
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Fig. 2 and the characterization in Section 2 of a Seifert circuit as the path
of a traveling insect. To check the second equation, we consider, first of
all, two consecutive crossings along an arbitrary C € F. Incidentally,
since all 1-circuits of P (subgraphs consisting of one edge and one vertex)
are contained in ¥ and C(H, o) U C(K, 0) anyway, we may safely assume
that C contains at least two edges. The four possible configurations are
displayed in Fig. 3, whence it is obvious that consecutive edges of C must
lie either both in H or both in K. We conclude that F,c C(H, 0) U C(K, o).

The converse inclusion is somewhat more subtle. Consider any
C e C(H,0). We denote the two 2-cells into which C divides the 2-sphere
by A and B, of which, say, A4 is on the left with respect to 0. Consider
any edge of C, whose initial and terminal endpoints with respect to o we
denote by u and v, respectively. As before, we may assume C has at
least two edges; so # # v. The four possible configurations are shown
below in Fig. 4, where the edges of C are distinguished by solid line seg-
ments. For each of these, on the basis of the definition of H, we have
determined the corresponding link orientation at ». The crux of the argu-
ment is the fact that, with respect to the link orientation O, the number
of edges in the interior of 4 with an initial endpoint on C must equal the
number with a terminal endpoint on C, and the same goes for B. This
remark follows from the fact that the image of any component of the
original link is a closed curve and must eventually return to its starting
point. From Fig. 4, however, one sees that any occurrence of either (ii)
or (iii) will spoil the count. Thus, in traversing C one will either make a
left turn at every crossing or a right turn at every crossing. This con-
clusion implies, first, that one of A or B contains none of P and, second,
that C is a cycle with respect to O. Hence, C € F;. The analogous
argument holds for K, and the proof is complete.

The proof of (4.1) is based, as we have remarked, on Theorem 2.12
and proceeds from there by induction on the number N of non-special
Seifert circuits, i.e., N = cardinality of & — F,. Itis interesting that
the invariance of the polynomial A(¢) enters the induction in an essential
way (cf. (4.11)). As a corollary of (4.4) and (4.7), we have

(4.8) S=N+ p(H) + p(K) .
The first step of the induction is

4.9) If N =0, then, for any vertex v of P there exist maximal rooted
trees T(H) and T(K) of (P, 0) with origin v such that
T(H) contains d — p,(H) edges of H
T(K) contains d — p(K) edges of K .
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Proor. Observe, first of all, that every edge of H belongs to a circuit
of ((H, o) and similarly for K. For, if N = 0, we have,?

HUK=P=|9|=|9|=|0H, 0| U|UK, 0)l.

alternating Link
orienlalion o orientation O
I
‘ | A |
—— (r) ——i S
/ B l
| |
! | A 4
—_— (i) —= ——

s

N A !
_§§ (i) —_— -
N
N | ‘B
\ : [
\ |
A \
{iv) ———-\ - ———
: |
| 8 A
[ |
' |

Fig. 4

Each C e T is the boundary of exactly one 2-cell of the cellular decom-
position of the 2-sphere determinable by the spherical graph P. We con-
struect a new spherical graph P’ by collapsing to a point the closure of
each 2-cell whose boundary is a circuit of ((H, o). This collapsing is

8 If @ is any set, by | Q| we mean the union of the members of Q.
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possible because (i) the closure of any 2-cell bounded by a circuit is simply-
connected and (ii) by virtue of (4.4), the closed 2-cells which are to be
collapsed are disjoint from one another. The graph P’ inherits an
orientation from o which we also denote by o. Since P’ is connected,
since every vertex is of even order, and since, in addition, the boundary
of any 2-cell of P’ is obviously a cycle with respect to 0, we may con-
clude that P’ is o-connected. Consequently (cf. (4.5)), there exists a
maximal rooted tree of (P’, 0) with origin ¢/, where v’ is the vertex into
which v has collapsed. If one now pictures P’ as being simply P with
the circuits of H filled in and constituting the vertices of P, it is appar-
ent that by replacing each vertex of 7" by the corresponding circuit of
H with one edge removed, we may obtain from 7" a maximal rooted tree
T(H) of (P, o) with origin v. In view of our initial observation that every
edge of H lies in a circuit of H, we see that the number of edges in
T(H) N H is exactly d — p(H), i.e., the total number d of edges of H
(cf. (4.3)) minus one for each circuit of H (cf. (4.4)). The analogous
argument is valid for the graph K, and the proof of (4.9) is complete.
Next consider

(4.10) There exist a vertex v of P, mawimal rooted trees T(H) and T(K)
of (P, o) with origin v, and non-negative integers h and k such that
T(H) contains at least d — p(H) — h edges of H
T(K) contains at least d — p(K) — k edges of K
N=h+Ek.
Notice that an apparently stronger result is the assertion that the trees
and non-negative integers described in (4.10) exist for any vertex v of P,
In fact, let us refer to the proposition ‘‘ For any vertex v of P, there

exist maximal rooted trees ete.”’ as the ¢ strong form of Lemma (4.10)".
Before proving (4.10), we observe that

(4.11) The following are equivalent :
(i) Lemma 4.10 ;
(ii) degree A(t)=d —f+ 1;
(iii) Strong form of Lemma 4.10 .
PROOF. (i) implies (ii): Since any maximal tree of P contains d — 1
edges,
char T(H) = (d — 1) — (d — p(H) — h) = p(H) + h — 1
char T(K) = d — p(K) — k .

Hence,
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char T(K) — char T(H) = d — (p(H) + p(K) + h + k) + 1
=d—(p(H)+0(K)+ N)+1.
By (4.8) and (3.2),
char T(K) — charT(H) =d —f+1=0.
Using Theorem 2.12, we conclude that
degree A(t) = |char T(K) — char T(H) | =d — f + 1.
(ii) emplies (iii): Let v be an arbitrary vertex of Pand let 7(H) and T(K)
be maximal rooted trees of (P, 0) with origin v of smallest and largest
characteristic, respectively. Then,
degree A(t) = char T(K) — char T(H) =d — f + 1.

Since a tree cannot contain a circuit, (cf. (4.3) and (4.4))

no. edgesin T'(H) N H< d — p(H)

no. edgesin7(K) N K< d — p(K) .
That is, there exist non-negative integers m and » such that

no. edgesin T'(H) N H=d — p(H) — m

no. edgesin 7(K) N K=d — p(K) — n .
Hence,

degree A(t) = char T(K) — char T(H)
=d—p(K)—n—H)+m—1)
=d— (p(H) + p(K) +m+mn)+ 1.
Hence, by (ii) and (4.8), we obtain
Nzm+mn

and we may therefore choose integers 2= m and k& = » which satisfy the
requirements of (iii). That (iii) 4mplies (i) is obvious, and the proof of
(4.11) is complete.

Proor or LEMMA 4.10. By (4.11) and induction on N. Since (4.9)
gives the strong form of (4.10) for N = 0, we pass immediately to the
induective step N>0. Consequently, there exists at least one non-special
Seifert circuit C, (Fig. 5). We construct two new link projections as fol-
lows : the image P, of one consists of C and that part of P lying in the
exterior of C, and the image P, of the other consists of C and that part
of P lying in the interior of C, (Fig. 6). The orientations O and o on each
of P, and P, are the same as on P. It is obvious that these link projections
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exist and that both are non-trivial and alternating. The essential feature
of this decomposition is, of course, that C is a special Seifert circuit of
both P, and P,. Notice that the one simple closed curve | C|is the under-
lying space of three distinet graphs: (i) the non-special Seifert circuit
C of P, (ii) and (iii) the special Seifert circuit C; of P,, ¢+ =1, 2. That
is, the set of vertices of C is the disjoint union of the sets of vertices
of C, and C,. We denote the number of vertices, Seifert circuits, non-
special Seifert circuits, the graphs H and K, ete., of P;,7=1,2, by
d,, fi, N;, H;, K,, etc. Clearly,

d+ d=d

(1) Hi+ fi=f+1
N,+N,=N-1.

L (C,o0).

Fig. 5

Since C; is a special Seifert circuit, we have (cf. (4.7)) that either C;,C H,
or C; C K,,% =1, 2. Thus, there are the four possibilities.

(i) C,CcH and C,CK,
(ii) C,c K, and C,C H,
(iii) C,c H and C,CH,
(iv) C,cK, and C,CK,.

The last two are actually impossibilities. To see this, recall the important
fact that no two edges belonging to H or to K can have a common terminal
point with respect to o (this remark is also true of H; and K;). Since

H—-CcH-C and K,—C,cK—-C i=1,2,

(iii) implies that all edges of P—C which have a terminal point in €' must
lie in K, and this fact implies Cc H. Similarly, (iv) implies CC K. Since
C is by assumption non-special, neither inclusion is possible (cf. (4.7)).
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Either of the remaining possibilities can occur and it makes no difference
which. To be specific, we shall assume that it is (i) which is valid. Ob-
viously,

(2) v(H) + p(H,) = p(H) + 1

P(Ky) + p(K,) = p(K) + 1.

S

C, <H, C.cho
Fig. 6
Select an edge b of C whose terminal endpoint v, is a vertex of C; and
whose initial endpoint v, is a vertex of C, (with respect to 0) ; we denote
the edge of C preceding b, i.e., whose terminal endpoint with respect to
0 is v,, by a. Since N, < N, =1, 2, the principle of induction and (4.11)
imply the strong form of (4.10) for P, and P,. Thus, there exist maximal
rooted trees T(H,) and T(K;) of (P;, 0) with origin v, and non-negative
integers &; and k, such that
no. edges in T(H;) N H;, = d, — p(H,) — h,

(3) no. edges in T(K,) N K, = d; — p(K;) — k; 1=1,2

hy +k;, =N, .

Let us denote by ¢,, i=1, 2, the edge of C; whose terminal endpoint with
respect to o is v;. We contend that T'(H,) and T(K,) can always be so
chosen that

(4) C,—eCcT(H) and C,—e C T(K) .
The proof for T'(H,) is as follows : Suppose e is an edge of C, other than

e, which is not contained in T'(H,). Denote the terminal endpoint of e by
v and the other edge whose terminal endpoint is v by ¢g. Since T(H,) is
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a maximal tree and there is no other way of getting to v, we have
g € T(H,). Obviously, T(H,)—g is the disjoint union of two rooted trees,
one with origin v, and the other v. The graph T'(H,) = (T(H,) — g)Ue is
thus a maximal rooted tree of (P,, 0) with origin v,. Finally, since T(H,)
contains one more edge of H, than does T(H,), it too has at least
d, — p(H,) — h, edges of H,. This construction may be repeated as often
as necessary and the contention is proved for T'(H,). The analogous argu-
ment holds for 7'(K,). We shall assume, therefore, that conditions (4) are
fulfilled.

The construction of T'(H) now proceeds easily. By virtue of (4), we
see that the graph T"(H) formed from T(H,) by deleting all the edges
of C, is the disjoint union of rooted trees of (P, 0) whose origins are just
the vertices of C,. The tree T(H,) may be regarded as a subgraph of P
if C, is subdivided to C. Then, the graph T*H) = T(H,) U (H N C),
which is formed from T'(H,) by adding all the edges of HN C not already
contained in 7'(H,), is a rooted tree of (P, o) with origin v,. To check this
last remark, recall that, since C, C K,, all edges of P, — C, with a ter-
minal point on C, lie in H and, therefore, all edges of C with terminal
endpoints in C, lie in K. Consequently, the addition of edges of C N H
results in the formation of no cycles nor any pair of distinet edges with
a common terminal point. A similar argument shows that 7% H) contains
all the vertices of C. Finally, then, the union

TH) =T (H) U T*(H)
is a maximal rooted tree of (P, o) with origin v,. Moreover, where p is
the number of edges of C,, T(H) contains the following number of edges
of H

(i) at least d, — p(H) — %4 —(p — 1) from T'(H)
(ii) at least d, — p(H,) — h, from T(H)
(iii) exactly p from CnN H.

Since C, C K,, none of the edges of T'(H,) N H, lies in C,; hence, no edge
is counted twice in (i), (ii), (iii). Thus T'(H) contains at least
(di + dy) — (p(H) + p(H) — 1) — (°y + k)
edges of H. From (1) and (2), we have
(5) no. edgesin T(H) N H=d — p(H) — (h, + h,) .
In order to get T'(K') we carry out the exact analogue of the construc-

tion of T'(H). The result is a maximal rooted tree of (P, 0) with origin v,
which we denote by 7"(K). The analogue of (5) is

(6) no. edgesin T"(K)yN K=d — p(K) — (k. + k) .
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To shift the origin to v, so it will be the same as 7'(H), we make use of
the relative positions of v, and v, and the edges @ and b. It follows from
the construction of 7"(K) that @ € T"(K) and b ¢ T"(K). Hence,

I(K)=(T"(K) —a) U b

is a maximal rooted tree of (P, 0) with origin v,. Since ¢ € Kand b e H,
we get, from (6),

(7) no. edgesin T"(K) N K=d — p(K) — (b, + k, + 1) .
Since, by (3) and (1)

equations (5) and (7) are exactly the inequalities called for in the state-
ment of Lemma 4.10, and the proof is complete.

The combination of (4.10) and (4.11) yields the inequality degree A(t)
=>d — f + 1, which, as we have observed, implies Theorem 3.5.

DARTMOUTH COLLEGE
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