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Abstract

The monoids l2q+1(Z[π]) detect s-cobordisms amongst certain bor-
disms between stably diffeomorphic 2q-dimensional manifolds and gener-
alise the Wall simple surgery obstruction groups, Ls

2q+1(Z[π]) ⊂ l2q+1(Z[π]).
In this paper we identify l2q+1(Z[π]) as the edge set of a directed graph
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with vertices a set of equivalence classes of quadratic forms on finitely gen-
erated free Z[π] modules. Our main theorem computes the set of edges
l2q+1(v, v′) ⊂ l2q+1(Z[π]) between the classes of the forms v and v′ via an
exact sequence

L
s
2q+1(Z[π])

ρ
−→ l2q+1(v, v

′)
δ

−→ sbIso(v, v
′)

κ
−→ L

s
2q(Z[π]).

Here sbIso(v, v′) denotes the set of “stable boundary isomorphisms” be-
tween the algebraic boundaries of v and v′. As a consequence we deduce
new classification results for stably diffeomorphic manifolds.

1 Introduction

Let M0 and M1 be connected, compact 2q-dimensional, smooth manifolds (q ≥
2) with (possibly empty) boundary and the same Euler characteristic. A stable
diffeomorphism from M0 to M1 is a diffeomorphism

h : M0♯k(S
q × Sq) ∼= M1♯k(S

q × Sq).

The cancellation problem is to classify stably diffeomorphic manifolds and we
briefly mention its history in section 2. The most systematic approach to date is
via the surgery obstruction monoids l2q+1(Z[π]) [Kre99] which depend upon the
twisted group ring Z[π] defined by the orientation character of the fundamental
group of M0 and the parity of q. Henceforth we assume that q 6= 3, 7 (see
subsection 2.2 for some remarks on these dimensions). A stable diffeomorphism
h gives rise to an element Θ(h) in l2q+1(Z[π]) (see Lemma 2.2) and a fundamental
theorem of [Kre99] states that there is a submonoid El2q+1(Z[π]) ⊂ l2q+1(Z[π])
such that:

if Θ(h) ∈ El2q+1(Z[π]) then there is an s-cobordism between M0 and M1.

Despite its topological significance, no computation of l2q+1(Z[π]) appears in
the literature for any group π. In this paper we give exact sequences which
compute l2q+1(Z[π]). But first we give some topological applications.

Recall that a finitely presented group is polycyclic-by-finite if it has a
subnormal series where the quotients are either cyclic or finite (see Definition
7.2). The number of infinite cyclic quotients is an invariant of π called the
Hirsch number h(π). We define h′(π, q) to be 0 (resp. 1) if π is trivial and q
is odd (resp. even), 2 if π is finite but non-trivial and h(π) + 3 if π is infinite.

Theorem 1.1. Suppose that the fundamental group π of M is polycyclic-by-
finite and that M ∼= N♯k(S

q × Sq) where k ≥ h′(π, q). Then every manifold
stably diffeomorphic to M is s-cobordant to M .

Remark 1.2. For finite π the theorem is [Kre99][Corollary 4]. For closed,
4-dimensional manifolds with finite fundamental group Hambleton and Kreck
[HK93] showed the above theorem holds in the topological category when M ∼=
N♯(Sq × Sq). Recently Khan [Kha04] has also proven cancellation results for
closed topological 4-dimensional manifolds with infinite fundamental group.
While Khan’s bound is sometimes one better than ours, his methods do not
apply for all polycyclic-by-finite groups: for example certain semi-direct prod-
ucts (Z × Z) ×α Z where α ∈ GL2(Z) has infinite order.
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Let Bπ be an aspherical space with fundamental group π. Our next theorem
concerns the representation of elements in the (2q + 1)-dimensional oriented
bordism group of Bπ via mapping tori.

Theorem 1.3. Suppose that M is an oriented manifold with polycyclic-by-
finite fundamental group π, that M = N♯k(S

q × Sq) for k ≥ h′(π, q) and that
the canonical map M → BSO × Bπ classifying the tangent bundle of M and
the universal cover of M is a q-equivalence. Then every element of the oriented
bordism group, ΩSO2q+1(Bπ), can be represented by the mapping torus of an a
orientation preserving diffeomorphism f : M ∼= M which induces the identity
on π.

Whereas the above theorems concern 2q-dimensional manifolds with ap-
propriately large intersection forms our next theorem considers 2q-dimensional
manifolds with small intersection forms. Let K ⊂ Hq(M) (where Z[π] coef-
ficients are understood) be the submodule of elements which evaluate to zero
when paired with all decomposable elements ofHq(M). Further let λM |K be the
restriction of the equivariant intersection form of M , λM : Hq(M) ×Hq(M) →
Z[π] to K × K. Let also π = π1(M) and let UWh(π) (resp. U′Wh(π)) be
the subgroup of the Whitehead group of π given by torsions arising from au-
tomorphisms of quadratic (resp. symmetric) hyperbolic forms (see subsection
6.1).

Theorem 1.4. Suppose that λM0 |K is identically zero and that UWh(π) =
U′Wh(π) for π = π1(M0). Then any manifold M1 which is stably diffeomorphic
to M0 is homotopy equivalent to M0.

Remark 1.5. In fact more is true. For example if M0 is simply connected we
may conclude that M1 is h-cobordant to M0. We refer to Theorem 2.11 for a
more general statement.

Remark 1.6. The intersection form λM0 |K has a quadratic refinement µ and
if µ is identically zero then the above theorem follows easily from results in
[Kre99] so the novelty lies in covering the case where µ is nonzero.

1.1 The structure of l2q+1(Z[π])

We start by giving the topological context for our algebraic results and quickly
recall the modified surgery setting in which l2q+1(Z[π]) arises. For details we
refer the reader to section 2 and [Kre99][§2].

Let B = γ : B → BO be a fibration where B has the homotopy type of
a finite type CW -complex and let π = π1(B). We work in the category of
B-manifolds (M, ν̄) which are compact, smooth manifolds M together with an
equivalence class of maps ν̄ : M → B which factors the stable normal bundle
ν : M → BO up to homotopy. A B-manifold is called a (k − 1)-smoothing if ν̄
is k-connected.

We consider the directed graph GB2q whose vertices, V B2q , are the set of B-
diffeomorphism classes of closed 2q-dimensional (q − 1)-smoothings in B and
whose edges, EB2q, are the set of rel. boundary B-bordism classes of B-bordisms
between closed (q−1)-smoothings with the same Euler characteristic. An edge in
EB2q is represented by a B-bordism (W, ν̄;M0,M1) from (M0, ν̄|M0) to (M1, ν̄|M1)
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and if such a bordism exists [Kre99][Theorem 2] states that M0 and M1 are
stably diffeomorphic. If B = Bq−1(M0) then the converse holds by Lemma 2.2.

We now write Λ for any weakly finite1, unital ring with involution, for ex-
ample Λ = Z[π], and let ǫ = (−1)q. The graph GB2q has an algebraic analogue

GΛ
2q whose edge set is the monoid l2q+1(Λ). The vertex set of GΛ

2q is Fzs
2q(Λ),

the unital abelian monoid of 0-stabilised ǫ-quadratic forms. These are equiva-
lence classes of ǫ-quadratic forms v = (V, θ), defined on finitely generated, free,
based Λ-modules V (see Definition 3.3) where two forms are equivalent if they
become isometric after the addition of zero forms on such modules. We write
[v] ∈ Fzs

2q(Λ) for the 0-stabilised form defined by v. A (q − 1)-smoothing (M, ν̄)
defines a zero stabilised form [v(ν̄)] (see Example 2.5).

The elements of l2q+1(Λ) are algebraic models of bordisms (W, ν̄,M0,M1).
They are defined as equivalence classes [x] of quasi-formations which are
triples

x = (H,ψ;L, V )

consisting of a quadratic form (H,ψ) together with a simple Lagrangian L (see
Definition 3.3) and some other half-rank, based direct summand V ⊂ H . For
the present we omit the precise details of the equivalence relation on quasi-
formations which defines l2q+1(Λ) but refer the reader to subsection 3.4. Addi-
tion in l2q+1(Λ) is the operation induced by the direct sum of quasi-formations.
The quasi-formation x defines induced quadratic forms v and v⊥ on V and its
annihilator, V ⊥. It turns out that we obtain a monoid map

b : l2q+1(Λ) → F
zs
2q(Λ) × F

zs
2q(Λ), [x] 7→ ([v], [−v⊥])

and we view [x] as an algebraic bordism from [v] to [−v⊥].
A (2q + 1)-dimensional bordism W = (W, ν̄;M0,M1) defines an element

Θ(W, ν̄) ∈ l2q+1(Z[π) (see the proof of Lemma 2.7) such that b(Θ(W, ν̄)) =
([v(ν̄0)], [v(ν̄1)]). We wish to know when W is bordant rel. boundary to an s-
cobordism and Θ(W, ν̄) tells us: elements of l2q+1(Z[π]) which are represented
by a quasi-formation (H,ψ;L, V ) for which H = L ⊕ V are called elementary
and Θ(W, ν̄) is elementary if and only if W is bordant rel. boundary to an
s-cobordism.

The elementary elements of l2q+1(Λ) play the role of algebraic bordism
classes of s-cobordisms and form a submonoid El2q+1(Λ). Writing bE for b|El2q+1(Λ)

it is easy to see that bE([x]) = ([v], [v]) lies on the diagonal, ∆(Fzs
2q(Λ)), for every

[x] ∈ El2q+1(Λ) and we prove

Theorem (Corollary 5.4 (ii)). For each 0-stabilised form [v] there is a unique
elementary element, denoted e([v]), with bE(e([v])) = ([v], [v]). There are thus
monoid isomorphisms

El2q+1(Λ)
bE−→ ∆(Fzs

2q(Λ))
∼=
−→ F

zs
2q(Λ).

Given quadratic forms v and v′ of equal rank we define

l2q+1(v, v
′) := b−1([v], [v′]) ⊂ l2q+1(Λ)

to be the set of edges between fixed vertices in GΛ
2q. The algebraic analogue of

the fact that edges of GB2q occur only between stably diffeomorphic manifolds

1That is, the rank of a free f.g. Λ-modules is well-defined. See also [Coh89][p. 143f].
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is that l2q+1(v, v
′) is empty unless [v] ⊕ [Hǫ(Λ

k)] = [v′] ⊕ [Hǫ(Λ
k)] for some k.

In this case [v] and [v′] are called stably equivalent and we write [v] ∼ [v′] and
v ∼ v′. To begin describing l2q+1(v, v

′), let 0 be the zero form. Kreck [Kre99][§6]
proved that L2q+1(Λ) := l2q+1(0, 0) is the group of units of l2q+1(Λ) and that
Ls2q+1(Λ) can be identified with a subgroup of L2q+1(Λ) (see Remarks 3.13 and
3.15 for more details).

As a subgroup of the units Ls2q+1(Λ) acts on l2q+1(Λ) and one easily sees
that this action restricts to l2q+1(v, v

′) and that the orbits of this action are
appropriate equivalence classes of embeddings of v = (V, θ) →֒ (H,ψ) = Hǫ(Λ

r).
The central idea of this paper is to use the theory of algebraic surgery to define
a complete invariant of these embeddings.

Algebraic surgery allows us to treat an embedding j : v = (V, θ) →֒ (H,ψ) =
Hǫ(Λ

k) like an embedding of a co-dimension zero manifold with boundary into
a closed manifold. Specifically, the quadratic forms v and v⊥ have algebraic
boundaries ∂v and ∂v⊥ which are generalisations of boundary quadratic linking
forms. The embedding j defines an isomorphism fj : ∂v ∼= −∂v′ such that
Hǫ(Λ

k) ∼= v∪fj
−v′ where we have glued v to −v′ along fj, a procedure defined

in algebraic surgery. Indeed for any f ∈ Iso(∂v, ∂v′), the set of isomorphisms
from ∂v to ∂v′, we may construct the nonsingular form κ(f) := v ∪f −v

′ and so
obtain an embedding of v into κ(f). Defining

bIso(v, v′) := Iso(∂v, ∂v′)/(Aut(v) × Aut(v′)),

where Aut(v) and Aut(v′) are the groups of isometries of v and v′ which act re-
spectively by pre and post composition with the induced isometry of the bound-
ary, one shows that two embeddings j0, j1 : v → h are equivalent if and only if
[fj0 ] = [fj1 ] ∈ bIso(v, v′) (see Proposition 4.8).

For quadratic forms v ∼ v′, we define a ‘0-stabilised boundary isomorphism
set’ sbIso(v, v′) (see Definition 5.10) and a map

δ : l2q+1(v, v
′) → sbIso(v, v′), [H,ψ;L, V ] 7→ [fj]

where fj : ∂v → ∂v′ is induced by j : v = (V, θ) →֒ (H,ψ). Not every form κ(f)
above is hyperbolic and indeed there is a further map

κ : sbIso(v, v′) → Ls2q(Λ), [f ] 7−→ [v ∪f −v
′]

where Ls2q(Λ) is the usual even dimensional Wall group. The maps κ and δ and
the action ρ of Ls2q+1(Λ) on l2q+1(v, v

′) are related in our main theorem.

Theorem (Theorem 5.12). Let v and v′ be ǫ-quadratic forms with v ∼ v′.
There is an “exact” sequence of sets

Ls2q+1(Λ)
ρ

−→ l2q+1(v, v
′)

δ
−→ sbIso(v, v′)

κ
−→ Ls2q(Λ)

by which we mean that the orbits of ρ are the fibres of δ and Im(δ) = κ−1(0).

In the case where v = v′ the set sbIso(v, v) =: sbAut(v) is the set of stable
boundary automorphisms and contains 1, the equivalence class of the identity.

Theorem (Corollary 5.13). For every ǫ-quadratic form v there is an exact
sequence

Ls2q+1(Λ)
ρ

−→ l2q+1(v, v)
δ

−→ sbAut(v)
κ

−→ Ls2q(Λ)

5



where the orbits of the action ρ are precisely the fibres of δ and Im(δ) = κ−1(0).
Moreover δ([x]) = 1 ∈ sbAut(v) if and only if [x] is elementary modulo the
action of Ls2q+1(Λ).

To discuss our main theorems we define

l2q+1(v) :=
⋃

v′∼v

l2q+1(v, v
′),

the set of edges in GΛ
2q leaving a given vertex [v]. Consider the problem of

determining whether [x] ∈ l2q+1(v) is elementary: the theorems above reveals
three obstacles. Firstly we must have b([x]) = ([v], [v]). Secondly, if [x] ∈
l2q+1(v, v) we need δ([x]) = 1 ∈ sbAut(v). Finally the transitive action of
Ls2q+1(Λ) on δ−1(1) must be taken into account. Up until now the role of b([x])
and the action of Ls2q+1(Λ) have been understood and so our main achievement
is to identify the role of the set sbAut(v) and more generally sbIso(v, v′). We
point out that these sets were already in the literature for l1(Z): on the algebraic
side in [Nik79] and on the topological in explicitly in [Boy87] and implicitly in
[Vog82].

To apply Corollary 5.13 we wish to calculate the set sbAut(v). If v becomes
nonsingular in some localisation of Λ then ∂v is a quadratic linking form and
sbAut(v) is readily identified and often calculable (see Proposition 6.13 for a
general statement). A simple but instructive example of this is the following: if
Λ = Z and ǫ = +1, then for the quadratic form v = (Z, n) where n = p1 . . . pk
is a product of distinct odd primes, then sbAut([v]) ∼= (Z/2)k−1 (see Example
6.16). More generally, we prove

Theorem (Proposition 6.17). For each +-quadratic form v over Z the set l1(v)
is finite but there are v for which {[v′] | [v′] ∼ [v]} or sbAut(v) is arbitrarily
large.

We also show that sbAut(v) is small if v is the sum or a linear and a simple
form and if the torsion hypothesis of Thereom 1.4 holds. Here v = (V, θ) is
linear if θ + θ∗ = 0 and simple if θ + θ∗ : V ∼= V ∗ is a simple isomorphism.

Theorem (Proposition 6.3). If v = (N, η)⊕ (M,ψ) is the sum of a linear form
(N, η) and simple form (M,ψ) and if UWh(Λ) = U′Wh(Λ) then L2q+1(Λ) acts
transitively on l2q+1(v, v).

1.2 Algebraic cancellation

Given a 0-stabilised form [v] it is customary to say that cancellation holds for
[v] if [v′] ∼ [v] entails that [v] = [v′]. Generalising this, we say that strict
cancellation holds for [v] if l2q+1(v) = {e([v])}. The topological significance
of strict cancellation is primarily the following: if [v(ν̄)] is the 0-stabilised form
of a (q − 1)-smoothing (M, ν̄) in Bq−1(M) and if strict cancellation holds for
[v(ν̄)] then every manifold stably diffeomorphic to M is s-cobordant to M . We
show that strict cancellation holds in a variety of algebraic circumstances. In
order of increasing complexity the result are as follows.

Theorem (Corollary 6.5). Let Λ be a field of a characteristic different from 2
or let Λ = Z/2Z. Then all elements of l2q+1(Λ) are elementary.
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Theorem (Proposition 6.20). Every element of l3(Z) is elementary.

Now let rk(V ) denote the rank of the free abelian group V , let G be a finite
abelian group, let l(G) denote the minimal number of generators of G, and
lp(G) = l(Gp) where Gp is the p-primary component of G, p a prime. The first
two parts of the next theorem are translations of results from [Nik79].

Theorem (Proposition 6.18). Let v = (V, θ) be a nondegenerate quadratic form
and let (G,φ) be the associated symmetric boundary (Definition 6.9). Then
strict cancellation holds for v if any of the following conditions hold.

i) The symmetric form (V, θ + θ∗) is indefinite and satisfies

(a) rk(V ) ≥ lp(G) + 2 for all primes p 6= 2,

(b) if rk(V ) = l2(G) then the symmetric boundary associated to
(
Z

2, ( 0 2
0 0 )

)

is a summand of the 2-primary component of (G,φ).

ii) The symmetric form (V, θ+θ∗) is isomorphic to one of the classical lattices
E8, E7, E6, D5 or A4.

iii) The quadratic form v is isomorphic to (Z, p) for any prime p.

We next consider group rings Z[π] for polycyclic-by-finite groups π. Recall
h′(π, q) from Theorem 1.1.

Theorem (Corollary 7.10). Let Λ = Z[π] be the group ring of a polycyclic-
by-finite group π and let [v] be a 0-stabilised form. If [v] = [w] ⊕ [Hǫ(Λ

k)] for
k ≥ h′(π, q), then strict cancellation holds for [v].

Remark 1.7. It is very likely that the bound h(π) + 3 is not optimal for
all infinite polycyclic-by-finite groups. As we noted before, Kahn [Kha04] has
recently obtained cancellation results for topological 4-dimensional manifolds
with certain infinite fundamental groups. When translated to the context of
l5(Z[π]) Khan’s results should give strict cancellation for the group rings he
considers when [v] splits off h(π) + 2 hyperbolic planes.

Finally, we remark that we know of no example where strict cancellation
does not hold where [v] = [w] ⊕ [Hǫ(Λ)] splits off a single hyperbolic plane.

1.3 The Grothendieck group of l2q+1(Λ)

Our aim in this paper has not been to compute the monoid l2q+1(Λ) but to
understand the subsets l2q+1(v, v

′). However, a key stabilization property of
l2q+1(Λ) allows us to compute its Grothendieck group.

Recall that Wall’s original definition of Ls2q+1(Λ) was by isometries of hy-
perbolic forms and that any isometry α : (H,ψ) ∼= (H,ψ) defines the element

[z(α)] := [(H,ψ;L,α(L)] ∈ Ls2q+1(Λ).

Theorem (Lemma 5.15 and Corollary 5.16). Let [x] ∈ l2q+1(Λ)). If α : (H,ψ) ∼=
(H,ψ) restricts to an isometry of V in some representative (H,ψ;L, V ) of [x]
then [z(α)] acts trivially on [x]. In particular, if (V, θ) ∼= (W,σ) ⊕Hǫ(Λ

k) then
any [z] = [Hǫ(Λ

k), J,K] ∈ Ls2q+1(Λ) acts trivially on [x].
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Combining this result and the key Proposition 4.7 we prove

Theorem (Proposition 5.17). For any [x] ∈ l2q+1(Λ), there exists a natural
number k such that [x] + e([Hǫ(Λ

k)]) is elementary.

Now, for an abelian monoid A let Gr(A) denote the Grothendieck group of A.
It is a simple matter to obtain the following

Theorem (Corollary 5.18). The sequence Fzs
2q(Λ) ∼= El2q+1(Λ) →֒ l2q+1(Λ)

induces isomorphisms of Grothendieck groups

Gr(Fzs
2q(Λ)) ∼= Gr(El2q+1(Λ)) ∼= Gr(l2q+1(Λ)).

The remainder of the paper is organised as follows: in section 2 we review the
application of the surgery obstruction monoids l2q+1(Z[π]) to the cancellation
problem and prove our topological results. In section 3 we begin the algebra:
we recall the [Kre99] definition of l2q+1(Λ) and give an equivalent but slightly
more flexible definition closer to the spirit of algebraic surgery. In section 4
we elaborate some results from algebraic surgery on the gluing and splitting of
ǫ-quadratic forms. In section 5 we apply the ideas from section 4 to prove our
main theorems. In section 6 we apply the main theorem in certain situations:
we consider l2q+1(v, v) when v is the sum of a simple and a linear forms, we show
how the bAut-sets and sbIso-sets can often be calculated using automorphisms
of linking forms and we calculate l2q+1(Z). In section 7 we consider strict
cancellation when Λ has finite asymptotic stable rank: e.g. Λ = Z[π] and π is a
polycyclic by finite group.

Acknowledgements: We would like to thank Matthias Kreck and Andrew
Ranicki for their long term support. We would also like to thank Jim Davis,
Ian Hambleton and Qayum Khan for helpful discussions.

2 Stably diffeomorphic manifolds

The cancellation problem and the study of stable diffeomorphisms and stably
diffeomorphic manifolds has a rich history which we shall not attempt to sum-
marise here but the highlights include [Wal64, CS71, Tei92, HK93]. Instead
we shall focus on the modified surgery setting of [Kre99] where the monoids
l2q+1(Z[π]) play a key role. This section has two subsections. In the first sub-
section we give the proofs of all of the topological results from the introduction
assuming the algebraic results on l2q+1(Z[π]) to which the remaining sections of
the paper are devoted. We also prove the useful Lemma 2.2 which extends the
scope of results in [Kre99]. In the first subsection we assume that we are not
in dimensions 6 and 14. In the second subsection we make some short remarks
about dimensions 6 and 14 and the monoids l̃2q+1(Z[π]) which are needed there.

2.1 The proofs of topological applications

We work in the category of compact, smooth manifolds but appropriate trans-
lations of our statements continue to hold for any category, dimension and fun-
damental group where one can do surgery. Let BO be the classifying space for
stable real vector bundles. We let B denote γ : B → BO, a fibration whose
domain is a CW -complex of finite type with fundamental group π1(B) = π.

8



A compact manifold M embedded in a high dimensional Euclidean space
has a stable normal bundle classified by a map ν : M → BO. A B-manifold
(M, ν̄) is a manifold M together with an appropriate equivalence class of lift of
its the stable normal bundle through γ:

ν : M
ν̄

−→ B
γ

−→ BO.

There are notions of B-diffeomorphism, B-bordism and B-bordism groups of
closed, n-dimensional B-manifolds Ωn(B). For all positive integers k, a B-
manifold (M, ν̄) is called a k-smoothing if ν̄ is (k+1)-connected and for every
manifold M the k-th Postnikov factorisation of ν : M → BO defines a fibration
Bk(M) → BO, the normal k-type of M . The fibre homotopy type of Bk(M)
is a diffeomorphism invariant of M and there are always k-smoothings ν̄ : M →
Bk(M).

In this subsection we consider 2q-dimensional B-manifolds for q 6= 3, 7. The
following definition, adapted slightly from [Kre99][Theorem 4], identifies the
bordisms which arise in modified surgery at the (q − 1)-type and which are
relevant to the cancellation problem.

Definition 2.1. Let B → BO be a fibration. A (2q + 1)-dimensional modified
surgery problem over B (W, ν̄ : M0,M1, f) consists of the following data:

i) (M0, ν̄0) and (M1, ν̄1), two compact, connected 2q-dimensional (q − 1)-
smoothings in B with the same Euler characteristic,

ii) a diffeomorphism f : ∂M0

∼=
−→ ∂M1 compatible with ν̄0 and ν̄1,

iii) a compact (2q + 1)-dimensional B-manifold (W, ν̄) with boundary ∂W =
M0 ∪f M1 such that ν̄|Mi

= ν̄i.

Sometimes we shall write simply (W, ν̄) for (W, ν̄;M0,M1, f).

The relevance of modified surgery problems for the cancellation problem is
made clear in the following lemma.

Lemma 2.2. Let M0 and M1 be compact, connected 2q-dimensional manifolds
of equal Euler characteristic and let ν̄0 : M → B = Bq−1(M0) be a (q − 1)-
smoothing of M0 in its (q − 1)-type. Then the following are equivalent.

i) M0 and M1 are stably diffeomorphic.

ii) M1 admits a (q− 1)-smoothing ν̄1 : M1 → B such that there is a modified
surgery problem (W, ν̄;M0,M1, f) with ν̄|Mi

= ν̄i, i = 0, 1.

Moreover, in the case that (i) and (ii) hold then each stable diffeomorphism
h : M0♯k(S

q × Sq) ∼= M1♯k(S
q × Sq) defines element Θ(h, ν̄0) ∈ l2q+1(Z[π]).

Proof. If (W, ν̄;M0,M1, f) exists as in (ii) then [Kre99][Theorem 2] states in
part that M0 and M1 are stably diffeomorphic. In the other direction, given
a diffeomorphism h : M0♯k(S

q × Sq) ∼= M1♯k(S
q × Sq) we can build a bordism

from M0 to zero M1 as follows. Let i = 0 or 1 and let Wi
∼= (Mi × [i, i +

1]♮k(S
q×Dq+1)) be the trace of k trivial surgeries on trivially embedded (q−1)-

spheres in the interior of Mi where the boundary connected sums all take place
in Mi × {1}. The boundary of Wi consists of codimension 0 submanifolds:
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∂W+
i := Mi×{2i}, ∂W c

i := ∂Mi×[i, i+1] and ∂W−
i := Mi♯k(S

q×Sq)×{1}. We
formWh := W0∪hW1 by gluing ∂W−

0 to ∂W−
1 along h. By construction ∂W has

a decomposition by codimension 0 submanifolds ∂W ∼= M0∪∂W
c
0 ∪∂h∂W

c
1 ∪M1.

We must now put a B-structure, ν̄ : W → B, on W such that ν̄|M0 = ν̄0 and
this is easy onW0: just extend ν̄0 trivially over the trace of the trivial surgeries to
obtain B-manifolds (W0, ν̄2) and (∂W−

0 , ν̄
−
2 ) the restriction of (W0, ν̄2) to ∂W−

0 .
To extend the B-structure (W0, ν̄2) to all of W we use h to transport (∂W−

0 , ν̄
−
2 )

to ∂W−
1 and obtain the B-structure (∂W−

1 , ν̄
−
2 ◦h) which we must now extend to

all of W1. This is a homotopy lifting problem for the fibration B → BO and the
pair (W1, ∂W

−
1 ). Since W1 is the trace of k q-surgeries on ∂W−

1 , up to homotopy
W1 ≃ ∂W−

1 ∪ (∪ke
q+1) and we obtain an single obstruction to extending the lift

ν̄−2 ◦ h to all of W1 which lies in Hq+1(W1, ∂W
−
1 ;πq(F )) where F is the fibre of

B → BO. But by the definition of B = Bq−1(M), πq(F ) = 0, the obstruction
vanishes and there is a unique, B structure (W, ν̄) extending (W0, ν̄2) to all of
W . We define ν̄1 : M1 → B to be the restriction of ν̄ to M1 ⊂ ∂W ⊂W .

We must show that (M1, ν̄1) is a (q − 1)-smoothing in B. By construc-
tion (W, ν̄) is a (q − 1)-smoothing and W is homotopy equivalent to (M1 ∨k
Sq)∪ (∪ke

q+1) where ν̄ is homotopically trivial when restricted to ∨kS
q and so

ν̄1 : M1 → B is indeed a q-equivalence.
To finish the proof, we define Θ(h, ν̄0) = Θ(W, ν̄) ∈ l2q+1(Z[π1(B)]).

The following fundamental theorem of Kreck identifies the key role of the
monoids l2q+1(Z[π]) for the cancellation problem.

Theorem 2.3 ([Kre99][Theorem 4]). Let (W, ν̄;M0,M1, f) be a (2q+1)-dimensional
modified surgery problem. Then there is a well-defined surgery obstruction
Θ(W, ν̄) ∈ l2q+1(Z[π]) depending only on the rel. boundary B-bordism class of
(W, ν̄;M0,M1, f) and a submonoid El2q+1(Z[π]) such that Θ(W, ν̄) ∈ El2q+1(Z[π])
if and only if (W, ν̄;M0,M1, f) is bordant rel. boundary to an s-cobordism.

It is customary to say that cancellation holds for M0 if every manifold stably
diffeomorphic to M0 is diffeomorphic to M0. In the light of Lemma 2.2 we make
the following

Definition 2.4. Let (M0, ν̄0) be a (q − 1)-smoothing in B. We say that strict
cancellation holds for (M0, ν̄0) if every modified surgery problem over B is bor-
dant rel. boundary to an s-cobordism. We say that strict cancellation holds for
M0 if it holds for every (q − 1)-smoothing of (M0, ν̄0) in Bq−1(M0).

We next identify a key invariant of a (q−1)-smoothing (M, ν̄) in B which will
allow us to show that strict cancellation holds for many classes of manifolds. As
is explained in [Kre99][§5] subtle but by now standard surgery techniques define
a quadratic form on the Z[π]-module Ker(ν̄ : πq(M) → πq(B)). This form can
be pulled back along the Hurewicz homomorphism to a quadratic form, µ(ν̄),
defined on the finitely generated Z[π]-module Ker(Hq(M) → Hq(B)) where the
homology is understood to be twisted with coefficient in Z[π]. The symmet-
ric bilinear form associated to µ(ν̄) is the restriction of the usual equivariant
intersection form

λM : Hq(M) ×Hq(M) → Z[π].

Let j : V → Ker(Hq(M) → Hq(B)) be a surjective homomorphism with V a
finitely generated free based Z[π]-module and let θ := j∗µ(ν̄) be the quadratic
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form which µ(ν̄) induces on V via j. Kreck [Kre99] shows that this gives rise
to a well-defined zero-stabilised form [V, θ].

Definition 2.5. Let (M, ν̄) be a (q − 1)-smoothing in B. The 0-stabilised
quadratic form of (M, ν̄) is the 0-stabilised form [v(ν̄)] := [V, θ] defined above.

Remark 2.6. We observe that if (M, ν̄) is a (q − 1)-smoothing in Bq−1(M)
then the module Ker(ν̄ : Hq(M) → Hq(B)) is independent of ν̄. This is due to
the uniqueness of Postnikov decompositions [Bau77][Corollary 5.3.8]: a point
observed in [Kre85]. It follows that the choice of ν̄ can only effect the sign of
[v(ν̄)]. Moreover, if strict cancellation holds for any 0-stabilised form [v] then it
holds for [−v] since the automorphism T : l2q+1(Λ) ∼= l2q+1(Λ) of Remark 3.14
gives a bijection from l2q+1(v) to l2q+1(−v).

The following lemma relates strict algebraic cancellation and strict topolog-
ical cancellation.

Lemma 2.7. Let (M, ν̄) be a (q − 1)-smoothing of M in Bq−1(M). If strict
cancellation holds for [v(ν̄)], then strict cancellation holds for M .

Proof. We recall some further facts from the [Kre99] analysis of (2q+1)-dimensional
modified surgery problems (W, ν̄;M0,M1, f) over a general B. After surgery be-
low the middle dimension on the interior of (W, ν̄) we may assume that ν̄ is a q-
equivalence. Let U be the union of k disjoint embeddings Sq×Dq+1 →֒W repre-
senting a set of generators for Im(d : πq+1(B,W ) → πq(W )) and let L = Hq(U).
The surgery obstruction θ(W, ν̄) ∈ l2q+1(Z[π]) is represented by the quasi-
formation (Hǫ(L);L, V ) where

V = Hq+1(W −
◦

U, ∂U ∪M0) −→ Hq(∂U) = Hǫ(L).

Moreover, the induced form (V, θ) and the induced form on the annihilator of
V , (V ⊥, θ⊥), are related to the zero-stable forms of (M0, ν̄0) and (M1, ν̄1) via

[V, θ] = [v(ν̄0)] and [V ⊥,−θ⊥] = [v(ν̄1)].

Assume now that M0 = M and that B = Bq−1(M). We have that the surgery
obstruction Θ(W, ν̄), is represented by a quasi-formation (Hǫ(L);L, V ) where
[V, θ] = [v(ν̄0)] = ±[v(ν̄)] and so satisfies strict algebraic cancellation by Remark
2.6. By definition, this means that Θ(W, ν̄) is elementary and by Theorem 2.3 we
conclude that (W, ν̄;M0,M1, f) is bordant rel. boundary to an s-cobordism.

We now prove our main topological results. Recall h′(π, q) from Theorem
1.1.

Corollary 2.8. Let M be a compact, connected, smooth 2q-dimensional man-
ifold with polycyclic-by-finite fundamental group π. Assume that either of the
following hold:

i) M ∼= N♯k(S
q × Sq) where k ≥ h′(π, q),

ii) q is even, M is simply connected and admits a (q−1)-smoothing µ̄ : M →
Bq−1(M) such that [v(ν̄)] satisfies any of the conditions of Proposition
6.18.
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Then strict cancellation holds for M .

Proof. In the first case, let c : M → N be the collapse map induced by a de-
composition M ∼= N♯k(S

q × Sq) and let ν̄ : N → B be a (q − 1)-smoothing in
B = Bq−1(N). One checks that ν̄ ◦ c : M → Bq−1(N) is a (q − 1)-smoothing
and that B is also the normal (q − 1)-type for M . It follows that [v(ν̄ ◦ c)]
splits off Hǫ(Z[π]k) (see Definition 3.5) and so by Corollary 7.10 or Proposition
6.18 strict algebraic cancellation holds for [v(ν̄ ◦ c)]. Both cases now follow from
Lemma 2.7.

Theorem 1.1 now follows from Lemma 2.2 and Corollary 2.8.

Remark 2.9. We note that Corollary 2.8 (i) shows that the bordisms which fall
under the assumptions of [Kre99][Theorem 5] are already bordant rel. boundary
to an s-cobordism.

We next turn to the proof of Theorem 1.3 and the representation of bordism
classes by mapping tori. Recall that every fibration B defines bordism groups
Ωn(B) of closed B-manifolds up to B-bordism.

Theorem 2.10. Suppose that strict cancellation holds for (M0, ν̄0), a closed,
2q-dimensional, (q−1)-smoothing in B. Then every element of Ω2q+1(B) is rep-
resented by some B-structure on the mapping torus of some B-diffeomorphism
of (M0, ν̄0).

Proof. Let (W, ν̄) = (M0×[0, 1], ν̄0×Id) be the trivial s-cobordism and let (Y, φ)
be a closed (2q + 1)-dimensional B-manifold representing [Y, φ] ∈ Ω2q+1(B).
Then the disjoint union (W ⊔ Y, ν̄W ⊔ ν̄Y ) is a modified surgery problem and so
by assumption there is a B-bordism rel. boundary (X, ν̄X) from (W ⊔Y, ν̄Y ⊔φ)
to an s-cobordism (Z, ν̄Z ;M0,M0). This s-cobordism defines, up to pseudo
isotopy, a B-diffeomorphism g : M0

∼= M0. Let Tg be the mapping torus of g. By
definition, (X, µ̄X) yields a B-bordism from (Y, ν̄Y ) to (Tg, ν̄T ), where ν̄T is the
B-structure induced on Tg by (X, ν̄X). Hence [Tg, ν̄T ] = [Y, ν̄Y ] ∈ Ω2q+1(B).

Theorem 1.3 now follows by combining Theorem 2.10 and Corollary 2.8 (i).
Finally we move from cancellation up to diffeomorphism to cancellation up

to homotopy. We first require some preliminary remarks: the group of units of
l2q+1(Z[π), L2q+1(Z[π]), is an extension of the classical Wall group Ls2q+1(Z[π])
by a subgroup of the Whitehead group of π. Assuming that q ≥ 3 or that q = 2,
π is good and we are in the topological category, the group L2q+1(Z[π]) acts on
s-cobordism classes of manifolds homotopy equivalent to a fixed 2q-dimensional
manifold M . To prove this one only observes that it is no harder to realise a
general formation by a bordism than a simple formation. Recall also that a
form n is linear if its symmetrisation is zero and that a form w is nonsingular if
its symmetrisation is a simple isomorphism.

Theorem 2.11. Let (W, ν̄ : M0,M1, f) be a modified surgery problem between
(q − 1)-smoothings (M0, ν̄0) and (M1, ν̄1) such that [v(ν̄0)] = [v(ν̄1)] = [n+ w]
where n is linear and w is simple. Assume further that UWh(π) = U′Wh(π) for
π = π1(M0) as in Theorem 1.4. Then for some [z] ∈ L2q+1(Z[π]), Θ(W, ν̄) + [z]
is elementary. In particular, M0 is homotopy equivalent to M1.
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Proof. By assumption b(Θ(W, ν̄)) ∈ l2q+1(n+w, n+w) and so we apply Proposi-
tion 6.3 to obtain [z] ∈ L2q+1(Z[π]) such that [z]+Θ(W, ν̄) is elementary. Real-
ising [z] by a bordism (W ′, ν̄′;M1,M2) and forming (W ′′, ν̄′′) = (W, ν̄)∪(W ′, ν̄′)
we have that Θ(W ′′, ν̄′′) is elementary and thus is bordant to an s-cobordism
between M0 and M2. But by construction, M2 is homotopic to M1.

Now let M0 satisfy the hypotheses of Theorem 1.4. It follows for any (q−1)-
smoothing ν̄0 : M0 → Bq−1(M0) that [v(ν̄)] is linear. By Lemma 2.2 if M1 is
stably diffeomorphic to M0, then there is a surgery problem (W, ν̄;M0,M1, f).
Now [v(ν̄0)] = [−v(ν̄0)

⊥] = [v(ν̄1)]: the first equality holds since [v(ν̄0)] is linear
and the second by definition. Now Theorem 1.4 follows from Theorem 2.11.

2.2 Dimensions 6 and 14 and l̃2q+1(Z[π])

In dimensions 6 and 14, when q = 3 or 7, Theorem 2.3 only holds if the
(q + 1)th Stiefel-Whitney class of B, wq+1(B), evaluates trivially on πq+1(B).
If 〈wq+1, πq+1(B)〉 6= 0 then one must instead use slightly altered monoids

l̃2q+1(Λ). This is due to the fact that the tangent bundles of S3 and S7 are
trivial and that the context of modified surgery imposes weaker framing con-
ditions than classical surgery. We briefly explain the algebraic changes which
arise. For l2q+1(Z[π]) we work with quasi formations (H,ψ;L, V ). The quadra-
tic form (H,ψ) is equivalent to a classical quadratic form (H,φ, ν) where ν takes

values in Qǫ(Z[π]) = Z[π]/{x− ǫx̄} as in Remark 3.6. The monoid l̃2q+1(Z[π])
is defined analogously to l2q+1(Z[π]) except one works with quadratic forms
(H,φ, ν̃) where ν̃ takes values in Qǫ(Z[π])/Qǫ(Z).

The technical aspects involved in formulating appropriate analogues of the
results in this paper for l̃2q+1(Z[π]) will be routine but painstaking. We con-
jecture that appropriate analogues of all our results for l2q+1(Z[π]) continue to

hold for l̃2q+1(Z[π]) and that the same is true for our topological results. In
particular, we conjecture that Theorems 1.1, 1.3 and 1.4 also hold when q = 3
or 7.

Finally, we point out that 〈wq+1, πq+1(B
q−1(M))〉 6= 0 for any manifold M

when q = 3 or 7 and that Lemma 2.2 continues to hold for q = 3, 7 so long as
one takes Θ(h, ν̄0) ∈ l̃2q+1(Z[π]).

3 Forms, quasi-formations and l2q+1(Λ)

Let q be a positive integer, ǫ = (−1)q and Λ a weakly finite unital ring with
an involution x 7−→ x̄. Important examples are the group rings Z[π] with
involution

∑
g∈π xgg 7−→

∑
g∈π w(g)xgg

−1 where w : π → Z/2Z ∼= {±1} is a
homomorphism.

3.1 Based modules and simple isomorphisms

The following definition reminds the reader of some basic concepts from the
theory of Whitehead torsion which can be found e.g. in [Mil66][§1-4].
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Definition 3.1. i) The ∗-operation on the reduced K-group K̃1(Λ) =
cok(K1(Z) → K1(Λ)) is the isomorphism:

∗ : K̃1(Λ)
∼=
−→ K̃1(Λ), [f ] 7−→ [f∗]

A subgroup Z ⊂ K̃1(Λ) is ∗-invariant if Z∗ ⊂ Z.

ii) Let M be a stably f.g. free left module M over Λ i.e. a f.g. left module
M for which n,m ∈ N0 exist such that M ⊕ Λm ∼= Λn. An s-basis of M
is a basis {b1, . . . , br+m} of some f.g. free left module M ⊕ Λm.

Let Z ⊂ K̃1(Λ) be a ∗-invariant subgroup. Two s-bases {b1, . . . , br+m} ⊂
M ⊕ Λm and {b′1, . . . , b

′
r+m′} ⊂ M ⊕ Λm

′

are Z-equivalent if there is a
k ≥ max(m,m′) such that the transformation matrix in regard to the bases
{b1, . . . , br+m, em+1, . . . , ek} and {b′1, . . . , b

′
r+m′, em′+1, . . . , ek} represents

an element in Z. (Here {e1, . . . , ek} denotes the standard basis of Λk).

iii) A Z-based module (M,B) is a stably f.g. free left module M over Λ
together with a Z-equivalence class of s-bases B = [b1, . . . , bn]. Any rep-
resentative of B is called a preferred s-basis.

iv) The dual of a Z-based module (M, [b1, . . . , bn]) is the Z∗-based module
(M∗, [b∗1, . . . , b

∗
n]) given by M∗ = HomΛ(M,Λ) and

b∗i (bj) =

{
1 : i = j

0 : i 6= j

v) The sum of two Z-based modules (M, [b1, . . . , bn]) and (M ′, [b′1, . . . , b
′
n′ ])

is the Z-based module (M ⊕M ′, [b1, . . . , bn, b
′
1, . . . , b

′
n′ ]).

vi) Let (M,B) and (N,C) be two Z-based modules. Then (M,B) ≤ (N,C) if
there is a Z-based module (P,D) such that (M,B) ⊕ (P,D) = (N,C).

vii) Let (M,B) and (M ′,B′) be Z-based modules and f : M
∼=
−→ M ′ an iso-

morphism of the underlying Λ-modules. Let A ∈Mn(Λ) be the matrix of
f ⊕ id in respect to some s-bases of cardinality n representing B and B′.
The torsion of f is given by τ(f) = [A] ∈ K̃1(Λ). The isomorphism f is
called Z-simple if τ(f) ∈ Z.

viii) A Z-based exact sequence

0 → (M,B)
i
→ (N,C)

p
→ (P,D) → 0

is an exact sequence of the respective modules for which there is a homo-

morphism s : P → N such that p ◦ s = idP and
(
i s

)
: M ⊕ P

∼=
−→ N is

Z-simple.2

Remark 3.2. i) In the following we will no longer mention the s-bases
explicitly in the notation of based modules and we will fix Z, defining
Wh(Λ) = K̃1(Λ)/Z. For group rings Λ = Z[π] we shall use Z = {±g|g ∈
π} and so Wh(Λ) = Wh(π) is the usual Whitehead group.

2The definition is independent of the choice of s. An exact sequence is Z-based if and only
if the exact sequence interpreted as an acyclic chain complex is Z-simple.
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ii) Let (M,B) and (P,D) be based modules and let N be a stably f.g. free
module such that

0 →M
i
→ N

p
→ P → 0

is an exact sequence. There is exactly one equivalence class of s-bases of
N such that this sequence is based.

iii) The canonical isomorphism M
∼=
−→ M∗∗ is simple.

3.2 Forms

In this subsection we recall definitions for ǫ-quadratic forms and the even di-
mension L-groups as well as introducing the notions “zero stable forms”.

Definition 3.3. Let M be a based module.

i) The ǫ-duality involution map

Tǫ : HomΛ(M,M∗) → HomΛ(M,M∗), φ 7−→ (x 7→ (y 7→ ǫφ(y)(x)))

leads to the abelian groupsQǫ(M) = Ker(1−Tǫ) andQǫ(M) = cok(1−Tǫ).

ii) The hyperquadratic groups Q̂−ǫ(M) are defined via the exact sequence

0 −→ Q̂−ǫ(M) −→ Qǫ(M)
1+Tǫ−→ Qǫ(M) −→ Q̂ǫ(M) −→ 0.

iii) An asymmetric form (M,ρ) is a pair with ρ ∈ HomΛ(M,M∗).

iv) An ǫ-symmetric form (M,φ) is a pair with φ ∈ Qǫ(M). It is called
nondegenerate if φ : M → M∗ is injective, nonsingular if φ is an iso-
morphism and simple if φ is a simple isomorphism.

v) An ǫ-quadratic form (M,ψ) is a pair with ψ ∈ Qǫ(M). Its symmetri-
sation is the ǫ-symmetric form (M, (1+Tǫ)ψ). The form (M,ψ) is nonde-
generate, nonsingular or simple if its symmetrisation has this property.
It is linear if its symmetrisation is the zero form.

vi) An ǫ-symmetric form (M,φ) is even if there is a ψ ∈ Qǫ(M) such that
(1 + Tǫ)ψ = φ. A choice of ψ is a quadratic refinement of φ.

vii) The annihilator of a submodule j : L →֒ M of an ǫ-quadratic form
(M,ψ) is the (unbased) submodule L⊥ := Ker(j∗(1 + Tǫ)ψ : M → L∗).
The radical of (M,ψ) is the (unbased) submodule Rad(M,ψ) := M⊥.

viii) A Lagrangian L of an ǫ-quadratic form (M,ψ) is a submodule L ⊂M
that is both a direct summand and a based module such that L = L⊥ (as
unbased modules) and j∗ψj = 0 ∈ Qǫ(L).

ix) A Hamiltonian s-basis of a nonsingular ǫ-quadratic form (M,ψ) induced
by a Lagrangian L is the unique s-basis of M such that

0 −→ L −→M
j∗φ
−→ L∗ −→ 0

is a based exact sequence where φ = (1 + Tǫ)ψ.
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x) A simple Lagrangian L of a simple ǫ-quadratic form (M,ψ) is a
Lagrangian such that its Hamiltonian s-basis is a preferred s-basis of M .

xi) An isometry f : (M,ψ)
∼=
−→ (M ′, ψ′) of ǫ-quadratic forms is an iso-

morphism f : M
∼=
−→ M ′ such that f∗ψ′f = ψ ∈ Qǫ(M). Unless stated

otherwise, we shall assume that all isometries f are simple and we denote
the group of simple self-isometries of (M,ψ) by Aut(M,ψ).

Remark 3.4. The hyperquadratic groups have exponent 2 and satisfy the
equality Q̂ǫ(M ⊕N) = Q̂ǫ(M) ⊕ Q̂ǫ(N) for two based modules M and N .

Definition 3.5. i) For any based module L the hyperbolic ǫ-quadratic
and ǫ-symmetric forms are defined as follows

Hǫ(L) = (L⊕ L∗, ( 0 Id
0 0 )) , Hǫ(L) =

(
L⊕ L∗,

(
0 Id
ǫId 0

))
.

If the rank of L is one, these forms are call hyperbolic planes.

ii) Two ǫ-quadratic forms (M,ψ) and (M ′, ψ′) are stably isometric if there
is a hyperbolic Hǫ(L) such that (M,ψ) ⊕Hǫ(L) ∼= (M ′, ψ′) ⊕Hǫ(L).

iii) The stable isometry classes of nonsingular ǫ-quadratic forms form a group
under direct sum with −[(M,ψ)] = [(M,−ψ)]. This group is denoted
L2q(Λ) with Ls2q(Λ) the subgroup of classes represented by simple forms.

iv) A 0-stabilised ǫ-quadratic form is an equivalence class of forms where two
forms (M,ψ) and (M ′, ψ′) are considered equivalent if there are modules
P and Q and an isometry (M,ψ) ⊕ (P, 0) ∼= (M ′, ψ′) ⊕ (Q, 0). The 0-
stabilised form defined by (V, θ) is denoted [V, θ].

v) We let Fzs
2q(Λ) denote the abelian monoid of 0-stabilised ǫ-quadratic

forms with addition induced by the direct sum of ǫ-quadratic forms and
unit [P, 0] for any module P .

Remark 3.6. i) An ǫ-quadratic form (M,ψ) defines an ǫ-quadratic form
(M,φ, ν) in the classical sense where φ is the symmetrisation of ψ and
ν : M → Qǫ(Λ) is the quadratic refinement given by ν(x) := ψ(x, x).
Conversely, every ǫ-quadratic form (M,φ, ν) in the classical sense gives
rise to an ǫ-quadratic form (M,ψ) ([Ran02][§11]).

ii) The group Ls2q(Z[π]) is Wall’s surgery obstruction group.

Lemma 3.7. Let (M,ψ) be a simple ǫ-quadratic form and let j : L →֒ M be
the inclusion of a simple Lagrangian. Then (M,ψ) ∼= Hǫ(L).

Proof. Let φ = (1 + Tǫ)ψ be the symmetrisation of ψ and let σ : L∗ → M be a

section such that
(
j σ

)
: L⊕L∗

∼=
−→M is simple. Then we have the isometry

(
j σ − ǫjσ∗ψs

)
: Hǫ(L)

∼=
−→ (M,ψ).
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3.3 The original definition of l2q+1(Λ)

We first recall Wall’s original definition of the odd-dimensional simple L-groups
([Wal99][§6]). Let SUk(Λ, ǫ) = Aut(Hǫ(Λ

k)). Let TUk(Λ, ǫ) be the subgroup
of those isometries preserving the Lagrangian Λk × {0} and inducing a simple
automorphism on it. Finally, we define RUk(Λ, ǫ) to be the subgroup generated
by TUk(Λ) and the flip map σk := ( 0 1

ǫ 0 )⊕ idHǫ(Λk−1). The quotient of the limit
groups SU(Λ, ǫ) = limk→∞ SUk(Λ, ǫ) and RU(Λ, ǫ) = limk→∞RUk(Λ, ǫ) is the
abelian group Ls2q+1(Λ) := SU(Λ, ǫ)/RU(Λ, ǫ).

In [Kre99], l2q+1(Λ) is defined as the set of equivalence classes of pairs
(Hǫ(Λ

k), V ) for k ∈ N where V ⊂ Λ2k is a based free direct summand of
rank k. The equivalence relation is given by stabilisation with trivial pairs
(Hǫ(Λ

k),Λk × {0}) and an action of RU(Λ, ǫ) so that two pairs (Hǫ(Λ
k), V )

and (Hǫ(Λ
l), V ′) are equivalent if there is a τ ∈ RUn(Λ, ǫ) such that τ(V ⊕

(Λn−k × {0})) = V ′ ⊕ (Λn−l × {0}). We shall write [Hǫ(Λ
k), V ] ∈ l2q+1(Λ) for

the equivalence class represented by (Hǫ(Λ
k), V ). The orthogonal sum of pairs

induces an abelian monoid structure on l2q+1(Λ) with group of units L2q+1(Λ),
the submonoid of equivalence classes of pairs where the form induced on V is
zero.

A pair (Hǫ(Λ
k), V ) is called elementary if V ⊕ ({0}×Λk) = Λ2k (as based

modules). An element of l2q+1(Λ) is called elementary if it has an elementary
representative. The elementary elements of l2q+1(Λ) form a submonoid which
we denote by El2q+1(Λ).

3.4 A new definition of l2q+1(Λ) via quasi-formations

In this subsection we update Kreck’s definition of l2q+1(Λ) in a manner similar
to Ranicki’s reformulation of Wall’s original definition of the odd-dimensional
L-groups by formations. A formation is a triple (M,ψ;F,G) consisting of
a simple form (M,ψ) together with an ordered pair of simple Lagrangians F
and G. A formation of the form (Hǫ(F );F, F ∗) is called trivial and a stable
isomorphism of formations is an isometry of such triples after possible addition
of trivial formations. There are two different ways of deriving Ls2q+1(Λ) from
the set of stable isomorphism classes of formations ([Ran80][§5], [Ran01][Remark
9.15]):

i) stabilisation by boundaries of forms,

ii) introduction of the additional equivalence relation:

(M,ψ;F,G) ⊕ (M,ψ;G,H) ∼ (M,ψ;F,H).

We now give an alternative description of l2q+1(Λ) in terms of generalised forma-
tions which we shall call quasi-formations. For l2q+1(Λ) one has to be careful
about the equivalence relation for quasi-formations because the extensions of
the two possibilities above are not the same (Remark 3.17). We note that there
is a related earlier approach of defining l2q+1(Λ) via quasi-formations in the
unpublished preprint [Kre85].

Definition 3.8. i) An ǫ-quadratic quasi-formation (M,ψ;L, V ) is a sim-
ple ǫ-quadratic form (M,ψ) together with a simple Lagrangian L and a
based half rank direct summand V .
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ii) An ǫ-quadratic quasi-formation (M,ψ;L, V ) is an ǫ-quadratic form-
ation if V is a Lagrangian.3 If in addition V is a simple Lagrangian
the formation is called simple.

iii) An isomorphism f : (M,ψ;L, V )
∼=
−→ (M ′, ψ′;L′, V ′) of ǫ-quadratic

quasi-formations is an isometry f : (M,ψ)
∼=
−→ (M ′, ψ′) such that f(L) =

L′, f(V ) = V ′ and such that the induced isomorphisms L
∼=
−→ L′ and

V
∼=
−→ V ′ are simple.

iv) A trivial formation is a ǫ-quadratic formation (P, P ∗) := (Hǫ(P );P, P ∗)
for some based module P .

v) The boundary of an asymmetric form (K, ρ) is the ǫ-quadratic quasi-
formation δ(K, ρ) = (Hǫ(K);K,

(
1
ρ

)
K). An ǫ-quadratic quasi-formation

is elementary if it is isomorphic to a boundary.

vi) Two ǫ-quadratic quasi-formations are stably isomorphic if they are iso-
morphic after the addition of trivial formations.

Similarly one can define ǫ-symmetric quasi-formations, etc.

Definition 3.9. i) Let lnew
2q+1(Λ) be the unital abelian monoid of stable iso-

morphism classes of ǫ-quadratic quasi-formations modulo the relation

(M,ψ;K,L) ⊕ (M,ψ;L, V ) ∼ (M,ψ;K,V ) (1)

where K and L both are simple Lagrangians. The unit 0 ∈ lnew
2q+1(Λ) is

the equivalence class of all trivial formations. For an ǫ-quadratic quasi-
formation x = (M,ψ;L, V ), we shall write [x] = [M,ψ;L, V ] ∈ lnew

2q+1(Λ)
for the element represented by x.

ii) An element in lnew
2q+1(Λ) is called elementary if it is represented by a

boundary. The elementary elements form a submonoid Elnew
2q+1(Λ).

iii) Let Lnew
2q+1(Λ) ⊂ lnew

2q+1(Λ) be the abelian group of all classes represented
by ǫ-quadratic formations and let Ls,new

2q+1 (Λ) be the subgroup of all classes
represented by simple ǫ-quadratic formations.

Remark 3.10. i) Any ǫ-quadratic quasi-formation is isomorphic to an ǫ-
quadratic quasi-formation of the type (Hǫ(F );F, V ).

ii) Let (M,ψ;L, V ) be an ǫ-quadratic quasi-formation then there is a well-
defined unique s-basis of V ⊥ such that the short exact sequence

0 −→ V ⊥ −→M
j∗φ
−→ V ∗ −→ 0

is based. Here φ = (1 + Tǫ)ψ and j : V →֒M is the inclusion.

Lemma 3.11. An element x ∈ lnew
2q+1(Λ) is elementary if and only if it has a

representative (M,ψ;L, V ) such that M = L⊕ V (as based modules).

3Strictly speaking, these formations should be called nonsingular following [Ran73].
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Proof. For any ǫ-quadratic quasi-formation (M,ψ;L, V ) it is obvious that

[M,ψ;L∗, V ] = [(M,ψ;L∗, L) ⊕ (M,ψ;L, V )] = [M,ψ;L, V ] ∈ lnew
2q+1(Λ)

Hence, we need to show that x ∈ lnew
2q+1(Λ) is elementary if and only if x =

[M,ψ;L, V ] such that M = L∗ ⊕ V . Any elementary element of lnew
2q+1(Λ) is

represented by a boundary δ(K, ρ) which clearly fulfills the above condition.
On the other hand let (M,ψ;L, V ) be an ǫ-quadratic quasi-formation such

that M = L∗ ⊕ V . W.l.o.g. we assume that (M,ψ) = Hǫ(L) and that L is free.
Let {b1, . . . , bn} ⊂ L and {v1, . . . , vn} ⊂ V be some preferred bases. Then the
basis transformation matrix ( 1 X

0 Y ) in respect to the bases {b1, . . . , bn, v1, . . . , vn}
and {b1, . . . , bn, b

∗
1, . . . , b

∗
n} represents an element in Z. Hence the component

y of the inclusion ( yx ) : V →֒ L ⊕ L∗ must be a simple isomorphism. The

isometry
(
y−1 0
0 y∗

)
of Hǫ(L) induces an isomorphism between (M,ψ;L, V ) and

a boundary.

Proposition 3.12. There is an isomorphism of monoids

η : l2q+1(Λ) −→ lnew
2q+1(Λ)

[H = Hǫ(Λ
k), V ] 7−→ [H ; Λk × 0, V ]

with η(El2q+1(Λ)) = Elnew
2q+1(Λ), η(L2q+1(Λ)) = Lnew

2q+1(Λ) and η(Ls2q+1(Λ)) =
Ls,new

2q+1 (Λ).

Proof. We first show that η is a well-defined map i.e. it is invariant under the
equivalence relations used to define l2q+1(Λ). Let H = Hǫ(Λ

k) and [H,V ] ∈
l2q+1(Λ). Obviously, an isometry τ ∈ TUk(Λ, ǫ) induces an isomorphism be-
tween (H ; Λk×{0}, V ) and (H ; Λk×{0}, τ(V )). Now let σk ∈ RUk(Λ, ǫ) be the
flip map mentioned in §3.3. Let x = (H ;σk(Λ

k × {0}),Λk × {0}). By relation
(1), x⊕ (H ; Λk × {0}, V ) is equivalent to (H ;σk(Λ

k × {0}), V ) which in turn is
isomorphic to (H ; Λk × {0}, σk(V )). Because

x = (Hǫ(Λ), {0} × Λ,Λ × {0})⊕ (Hǫ(Λ
k−1),Λk−1 × {0},Λk−1 × {0})

it represents zero in lnew
2q+1(Λ) which proves that [H ; Λk × {0}, V ] = [H ; Λk ×

{0}, σk(V )] ∈ lnew
2q+1(Λ).

It is clear that η is a monoid map so we complete the proof by constructing
an inverse homomorphism ν : lnew

2q+1(Λ) → l2q+1(Λ). Let (M,ψ;L, V ) be an ǫ-
quadratic quasi-formation such that M , V and L are free. Choose an isometry

α : (M,ψ)
∼=
−→ H = Hǫ(Λ

k) such that α(L) = Λk × {0} and such that the

isomorphism L
∼=
−→ Λk × {0} induced by α is simple. We would like to define

ν([M,ψ;L, V ]) = [H,α(V )] ∈ l2q+1(Λ) but in order to do so we must show that
this definition is independent of the various equivalence relations. Firstly, a
different choice of α changes (H,V ) only by an action of an element in TUk(Λ, ǫ).
Secondly, two isomorphic quasi-formations are mapped to two pairs differing
again by an element of TUk(Λ, ǫ). Thirdly, trivial quasi-formations are mapped
to trivial pairs.

At last, we have to show that ν is invariant under the relation (1). Let
(M,ψ;K,L) be a simple ǫ-quadratic formation and (M,ψ;L, V ) an ǫ-quadratic

quasi-formation. Let α, α′ : (M,ψ)
∼=
−→ H := Hǫ(Λ

k) be two isometries such
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that α(K) = α′(L) = Λk×{0} and such that the induced isomorphisms between

the respective Lagrangians are simple. Then φ := αα′−1
∈ SUk(Λ, ǫ). Let W :=

α′(V ). By definition ν maps (M,ψ;K,L) ⊕ (M,ψ;L, V ) to (H,φ(Λk × {0}))⊕
(H,W ) and (M,ψ;K,V ) to (H,φ(W )). Now observe that (H,φ(Λk × {0})) ⊕

(H,W ) and (H,φ(W ))⊕(H,Λk×{0}) only differ by an isometry τ =
(

0 φ

φ−1 0

)
of

H⊕H . Moreover, τ ∈ RU(Λ, ǫ) because τ = (σ1⊕· · ·⊕σ1)◦ (φ⊕φ−1) vanishes
in Ls2q+1(Λ). This shows that (M,ψ;K,V ) and (M,ψ;K,L)⊕ (M,ψ;L, V ) are
mapped to equivalent pairs. It is clear that ν is additive and that η and ν are
inverse to each other. Moreover, ν respects elementariness by Lemma 3.11.

Remark 3.13. i) Notice that the isomorphism η shows that Lnew2q+1(Λ) is
the group of units of lnew2q+1(Λ).

ii) Henceforth we shall identify lnew
2q+1(Λ) and l2q+1(Λ), etc. The definition

of the odd-dimensional Wall-groups via formations and the identification
Ls2q+1(Λ) = Ls,new

2q+1 (Λ) was achieved by A. Ranicki in [Ran73] following
ideas of C.T.C. Wall and S.P. Novikov.

Remark 3.14. It is easy to check that there is a well-defined monoid automor-
phism

T : l2q+1(Λ) ∼= l2q+1(Λ), [H,ψ;L, V ] 7→ [H,−ψ;L, V ].

Remark 3.15 (c.f. [Kre99][p.773). ] There is an exact sequence

0 −→ Ls2q+1(Λ) −→ L2q+1(Λ)
δ

−→ Wh(Λ)

where δ([M,ψ;L,K]) is the torsion of any isomorphism (M,B)
∼=
−→ (M,C)

where B is represented by the preferred s-bases of M and C is represented by the
Hamiltonian s-bases of M with respect to K. The group L2q+1(Λ) corresponds
to case C in [Wal99][§17D]. As predicted there, the image of δ lies in Z1(Wh(Λ)),
the set of anti-self dual torsions. We discuss the image of δ further in subsection
6.1.

Remark 3.16. The group Ls2q+1(Λ) is a submonoid of l2q+1(Λ) and therefore
acts on it by addition. Because of relation (1), the set of orbits of this action is
the equivalence set of pairs (H,ψH ;V ) where (H,ψH) is a hyperbolic form and
V ⊂ H is a based half-rank direct summand. Two pairs are equivalent if their
sums with pairs of the form (Hǫ(Λ

r),Λr × {0}) are isomorphic i.e. if there is
an isometry of the hyperbolic forms which induces a simple isomorphism of the
direct summands.

Remark 3.17. We call two ǫ-quadratic quasi-formations bordant if they are
stably isomorphic up to sums with boundaries of even (−ǫ)-symmetric forms
and let lbord

2q+1(Λ) be the monoid of bordism classes of ǫ-quadratic quasi-form-
ations. By [Ran01][Remark 9.15] there is a well-defined canonical epimorphism
of abelian monoids

lbord
2q+1(Λ) −→ l2q+1(Λ), [M,ψ;F, V ]bord 7→ [M,ψ;F, V ]

which induces a group isomorphism Ls2q+1(Λ)
∼=
−→ Ls2q+1(Λ) if restricted to the

classes represented by simple formations. However the unrestricted morphism
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is not always injective as we now show. Let Λ = Z, ǫ = 1 and (K,λ) = (Z, 2).
We define the ǫ-quadratic formations x = (H = Hǫ(K);K,V = ( 1

λ )K) and
x′ = (H ;K∗, V ). Obviously [x′] = [(H ;K,K∗) ⊕ x′] = [x] ∈ l2q+1(Λ).

However, if x and x′ were cobordant there would be skew-symmetric forms
(N,φ) and (N ′, φ′) and modules P and P ′ such that (M,ψ;F,W ) = x ⊕
∂(N,φ) ⊕ (P, P ∗) and (M ′, ψ′;F ′,W ′) = x′ ⊕ ∂(N ′, φ′) ⊕ (P ′, P ′∗) are isomor-
phic. Clearly M/(F+W ) ∼= M/(F ′+W ′). But M/(F +W ) ∼= cokλ⊕cokφ and
M ′/(F ′ + W ′) ∼= cokφ′. Since (N,φ) and (N ′, φ′) are skew-symmetric forms
there are finite abelian groups T and T ′ and n,m ∈ N such that cokφ = T ⊕T ⊕
Z
n and cokφ′ = T ′⊕T ′⊕Z

m ([New72]). That implies that Z/2Z⊕T⊕T⊕Z
n ∼=

T ′ ⊕ T ′ ⊕ Z
m. This is a contradiction.

4 Glueing quadratic forms together

The main theorem of this paper calculates subsets of l2q+1(Λ) using isomorph-
isms between the boundaries of ǫ-quadratic forms. This section introduces the
notions of boundaries and unions of possibly singular forms.

If Λ = Z and the cokernel of a form is finite one can define a linking form
on this cokernel which is often described as the boundary of the form (sub-
section 6.2 or [Ran81][§3.4]). In general, the boundary of an ǫ-quadratic form
is a refined version of a formation: a split ǫ-quadratic formation. If, for
two (possibly singular) ǫ-quadratic forms (V, θ) and (V ′, θ′), there is an isomor-
phism f : ∂(V, θ) ∼= ∂(V ′,−θ′) between their boundaries, one can glue the forms
together. The result is a nonsingular ǫ-quadratic form (V, θ) ∪f (V ′, θ′).

4.1 Formations and boundaries of forms

We review some concepts from [Ran81][p.69ff and p.86ff].

Definition 4.1. i) A simple split ǫ-quadratic formation (F, (( γµ ) , θ)G)
is a simple ǫ-quadratic formation (Hǫ(F );F, ( γµ )G) together with an ele-
ment θ ∈ Q−ǫ(G) such that γ∗µ = θ−ǫθ∗ where γ : G→ F and µ : G→ F ∗

define the embedding of G in Hǫ(F ).

ii) For a module P , the trivial split ǫ-quadratic formation on P is defined
to be (P, P ∗) := (P, (( 0

1 ) , 0)P ∗).

iii) The boundary of an ǫ-quadratic form (K,ψ) is the simple split (−ǫ)-
quadratic formation ∂(K,ψ) =

(
K,

((
1

ψ−ǫψ∗

)
, ψ

)
K

)

iv) An isomorphism of simple split ǫ-quadratic formations

f = (α, β, ν) : (F, (( γµ ) , θ)G)
∼=
−→ (F ′,

((
γ′

µ′

)
, θ′

)
G′)

is a triple consisting of simple isomorphisms α ∈ HomΛ(F, F ′), β ∈
HomΛ(G,G′) and an element ν ∈ Q−ǫ(F

∗) such that:

(a) αγ + α(ν − ǫν∗)∗µ = γ′β ∈ HomΛ(G,F ′),

(b) α−∗µ = µ′β ∈ HomΛ(G,F ′∗),

(c) θ + µ∗νµ = β∗θ′β ∈ Q−ǫ(G).
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v) The boundary of an isometry h : (M,ψ)
∼=
−→ (M ′, ψ′) of simple ǫ-

quadratic forms is the isomorphism ∂h = (h, h, 0): ∂(M,ψ)
∼=
−→ ∂(M ′, ψ′).

vi) The composition of two isomorphisms of simple split ǫ-quadratic forma-
tions is (α′, β′, ν′) ◦ (α, β, ν) = (α′α, β′β, ν + α−1ν′α−∗). The inverse of
an isomorphism (α, β, ν) is (α−1, β−1,−ανα∗). The identity on a split
ǫ-quadratic formation x is the isomorphism (1, 1, 0).

vii) A homotopy of isomorphisms of simple split ǫ-quadratic forma-
tions

∆: (α, β, ν) ≃ (α′, β′, ν′) : (F, (( γµ ) , θ)G)
∼=
−→ (F ′,

((
γ′

µ′

)
, θ′

)
G′)

is a homomorphism ∆ ∈ HomΛ(G∗, F ′) such that:

(a) β′−∗
− β−∗ = µ′∗∆ ∈ HomΛ(G∗, G′∗),

(b) α′ − α = ∆µ∗ ∈ Hom(F, F ′),

(c) α′ν′α′∗ − ανα∗ = (ǫα′γ + ∆θ)∆∗ ∈ Q−ǫ(F
′∗).

viii) A stable isomorphism of two simple split ǫ-quadratic formations
y and z is an isomorphism y ⊕ (P, P ∗) ∼= z ⊕ (Q,Q∗).

ix) Let fi : x⊕ ui
∼=
−→ y ⊕ vi (i = 0, 1) be two isomorphisms of simple split ǫ-

quadratic formations where ui and vi are isomorphic to trivial formations.
Then f0 and f1 are stably homotopic if there are based modules P , Q

and Ri as well as isomorphisms gi : (P, P ∗)
∼=
−→ ui⊕ (Ri, R

∗
i ) and hi : vi ⊕

(Ri, R
∗
i )

∼=
−→ (Q,Q∗) such that there is a homotopy

f̃0 ≃ f̃1 : x⊕ (P, P ∗)
∼=
−→ y ⊕ (Q,Q∗)

where f̃i = (idy ⊕hi) ◦ (fi ⊕ id(Ri,R
∗

i )) ◦ (idx⊕gi).

x) Let y and z be simple split ǫ-quadratic formations. We denote the set of
stable homotopy classes of stable isomorphisms from y to z by Iso(y, z)
and remark that Aut(y) := Iso(y, y) forms a group under composition.

We will see the importance of homotopies in the next section since the isome-
try class of an ǫ-quadratic formation obtained by gluing two forms together with
an isomorphism of their boundary formations depends only on the homotopy
class of the isomorphism. (Proposition 4.6).

Remark 4.2. [Ran01][§6] and [Ran80][§3] explain how an ǫ-quadratic form-
ation gives rise to a short odd complex i.e. a chain complex d : Cq+1 → Cq
together with an ǫ-quadratic structure ψ ∈ Qǫ(C). A (stable) isomorphism of ǫ-
quadratic formations corresponds to a chain isomorphism (chain equivalence) of
the associated short odd complexes. Stable homotopies of stable isomorphisms
of ǫ-quadratic formations correspond to chain homotopies of the respective chain
equivalences.

The following technical lemmas give a better description of stable isomorph-
isms between boundary formations and the conditions under which such iso-
morphisms are homotopic.
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Lemma 4.3. Let (V, θ) and (V ′, θ′) be ǫ-quadratic forms and let λ = θ + ǫθ∗

and λ′ = θ′ + ǫθ′
∗

be the underlying ǫ-symmetric forms.

i) Let P and P ′ be modules and α : V ⊕ P
∼=
−→ V ′ ⊕ P ′ and β : V ⊕ P ∗

∼=
−→

V ′ ⊕ P ′∗ simple isomorphisms. Let ν ∈ Qǫ(V
′∗ ⊕ P ′∗). Then

(α, β, ν) : ∂(V, θ) ⊕ (P, P ∗)
∼=
−→ ∂(V ′, θ′) ⊕ (P ′, P ′∗)

is a stable isomorphism if and only if there are homomorphisms a, a1, a3,
b, b1 and s such that

α =
( a a1

ǫb∗1λ a3

)
: V ⊕ P

∼=
−→ V ′ ⊕ P ′, (2)

β−1 =
(

b b1
a∗1λ

′ a∗3

)
: V ′ ⊕ P ′∗

∼=
−→ V ⊕ P ∗,

ανα∗ =
(
s −ǫab1
0 −b∗1θb1

)
∈ Qǫ(V

′∗ ⊕ P ′∗),

1 = ab+ (s∗ + ǫs)λ′ : V ′ → V ′,

a∗λ′ = λb : V ′ → V ∗,

θ′ = b∗θb + λ′
∗
sλ′ ∈ Qǫ(V

′).

ii) Two stable isomorphisms

f = (α, β, ν) : ∂(V, θ) ⊕ (P, P ∗)
∼=
−→ ∂(V ′, θ′) ⊕ (P ′, P ′∗)

f̃ = (α̃, β̃, ν̃) : ∂(V, θ) ⊕ (Q,Q∗)
∼=
−→ ∂(V ′, θ′) ⊕ (Q′, Q′∗)

are homotopic if and only if there is a ∆1 ∈ HomΛ(V ∗, V ′) such that

ã−a = ∆1λ
∗, b̃− b = ∆∗

1λ
′∗ and (−ǫã+∆1θ)∆

∗
1 = s̃− s ∈ Qǫ(V

′∗) where
we use the notation of (2).

Proof. i) This follows straight from the definition.

ii) W.l.o.g. P = Q and P ′ = Q′. Then use the homotopy
(

∆ ea1−a1

eb∗1−b∗1 ea3−a3

)
.

Lemma 4.4. i) Given a simple ǫ-quadratic form (M,ψ) there is an isomor-

phism (1, φ,−φ−∗ψφ−1) : ∂(M,ψ)
∼=
−→ (M,M∗) where φ = ψ + ǫψ∗.

ii) Let (α, β, ν) : (P, P ∗)
∼=
−→ (P, P ∗) be an isomorphism of trivial formations.

Then ∆ = 1 − α is a homotopy to the identity (1, 1, 0).

4.2 The union and splitting of forms

Definition 4.5 ([Ran81][p.84ff). ]

i) Let (V, θ) and (V ′, θ′) be two ǫ-quadratic forms and let f = (α, β, ν) : ∂(V, θ)⊕

(P, P ∗)
∼=
−→ ∂(V ′,−θ′)⊕ (P ′, P ′∗) be an isomorphism. Using the notation

of Lemma 4.3 (2), we define the union of (V, θ) and (V ′, θ′) along f ,
denoted (V, θ) ∪f (V ′, θ′), to be the ǫ-quadratic form

(M,ψ) =
(
V ⊕ V ′∗,

(
θ 0
ǫa −s

))
.
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ii) Let (V, λ) and (V ′, λ′) be two ǫ-symmetric forms and f = (α, β, σ) : ∂(V, λ)⊕

(P, P ∗)
∼=
−→ ∂(V ′,−λ′)⊕(P ′, P ′∗) be an isomorphism. The union (V, λ)∪f

(V ′, λ′) is the ǫ-symmetric form

(M,φ) =
(
V ⊕ V ′∗,

(
λ a∗

ǫa −ǫt

))

where ασα∗ =
(

t t1
ǫt∗1 t3

)
: V ′∗ ⊕ P ′∗ → V ′ ⊕ P ′.

The following Lemma lists the basic properties of the glueing construction.

Lemma 4.6. Let (M,ψ) = (V, θ)∪f (V ′, θ′) as in Definition 4.5 and let (M,φ)
be its symmetrisation.

i) There is an exact sequence 0 → V
j

−→ M
j′

∗
φ

−→ V ′∗ → 0 where j =
( 1

0 ) : (V, θ) → (M,ψ) and j′ =
(

b
−λ′

)
: (V ′, θ′) → (M,ψ) are split injec-

tions and λ′ = θ′ + ǫθ′
∗
.

ii) The form (M,ψ) is simple.

iii) Let f̃ be a stable isomorphism ∂(V, θ) ∼= ∂(V ′,−θ′) which is stably homo-
topic to f , then the respective unions are isometric relative to (V, θ).

iv) Let k : (V, θ)
∼=
−→ (W,σ) and k′ : (V ′, θ′)

∼=
−→ (W ′, σ′) be isometries. Define

the automorphism f̃ = (∂k′⊕ id(P ′,P ′∗))◦f ◦(∂k−1⊕ id(P,P∗)). Then there

is an isomorphism
(
k 0
0 k′−∗

)
: (V, θ) ∪f (V ′, θ′) ∼= (W,σ) ∪ef (W ′, σ′).

Proof. i) By Lemma 4.3, j′
∗
φ =

(
0 1

)
.

ii) Write α−1 = ( u vx y ) : V ′ ⊕ P ′
∼=
−→ V ⊕ P . Then, using Lemma 4.3, one

computes

φ ◦
(
b1v

∗ ǫb

u∗ −ǫλ′

)
=

(
1 0

ǫ(ab1v
∗−tu∗) 1

)

which shows that φ : M → M∗ is an isomorphism. In order to show that
it is simple we consider three chain maps h : C → C′, g : D → C and
f : E → D of based chain complexes given by

C′
1 = V ′ ⊕ P ′

dC′=
“
λ′∗ 0
0 1

”

// C′
0 = V ′∗ ⊕ P ′

C1 = V ⊕ P
dC=

“
λ∗ 0
0 1

”

//

h1=α

OO

C0 = V ∗ ⊕ P

h0=β
−∗

OO

D1 = V ⊕ V ′
dD=

“
λ∗ 0
a 1

”

//

g1=( 1 0
0 0 )

OO

D0 = M∗ = V ∗ ⊕ V ′

g0=( 1 0
0 0 )

OO

E1 = V ⊕ V ′
dE=

“
1 b
0 −λ′

”

//

f1=ǫ·id

OO

E0 = M = V ⊕ V ′∗

f0=φ

OO

Obviously h and f are chain isomorphisms with torsions τ(h) = τ(α) −
τ(β−∗) = 0 and τ(f) = −τ(φ) and g is a simple equivalence.
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There is a chain homotopy ∆: h ◦ g ◦ f ≃ k given by

k0 = ( 0 1
0 0 ) : E0 = V ⊕ V ′∗ → C′

0 = V ′∗ ⊕ P ′

k1 =
(

0 −ǫ
0 0

)
: E1 = V ⊕ V ′ → C′

1 = V ′ ⊕ P ′

∆ =
(
ǫa −t∗

b∗1λ b
∗

1a
∗

)
: E0 = V ⊕ V ′∗ → C′

1 = V ′ ⊕ P ′.

This shows that τ(φ) = −τ(h ◦ g ◦ f) = −τ(k) = 0.

iii) Given ∆ =
(

∆1 ∆2

∆3 ∆4

)
: V ∗ ⊕ P ∗ → V ′ ⊕ P ′∗ defining a homotopy

∆: f ≃ f̃ : ∂(V, θ) ⊕ (P, P ∗)
∼=
−→ ∂(V ′,−θ′) ⊕ (P ′, P ′∗)

there is an isometry

(
1 −∆∗

1
0 1

)
: (V, θ) ∪f (V ′,−θ′)

∼=
−→ (V, θ) ∪ef (V ′,−θ′).

Proposition 4.7. Let (V, θ) and (V ′, θ′) be ǫ-quadratic forms and let f : ∂(V, θ)⊕

(P, P ∗)
∼=
−→ ∂(V ′, θ′) ⊕ (P ′, P ′∗) be an isomorphism. If (M,ψ) = (V, θ) ∪f

(V ′,−θ′) and (M ′, ψ′) = Hǫ(V
′) then there is an isometry

h : (V, θ) ⊕ (M ′, ψ′)
∼=
−→ (V ′, θ′) ⊕ (M,ψ)

such that ∂h is stably homotopic to f .

Proof. Using the notation of Lemma 4.3 we define the isometry

h = −
(

0 1 0
1 b 0
0 −λ′ 1

) (
1 0 0
−a 1 −s∗

0 0 1

)
: (V, θ) ⊕ (M ′, ψ′)

∼=
−→ (V ′, θ′) ⊕ (M,ψ)

The isomorphism h is simple because it is the composition of triangular matrices
with only ones in the diagonal and permutation matrices. By Lemma 4.4 (i)

there are natural isomorphisms g : ∂(M,ψ)
∼=
−→ (M,M∗) and g′ : ∂(M ′, ψ′)

∼=
−→

(M ′,M ′∗). Using Lemma 4.3 one proves that (∂ idV ′ ⊕g) ◦ ∂h ◦ (∂ idV ⊕g′−1) is
stably homotopic to f.

The facts contained in the following proposition are mentioned without proof
in [Ran81][p.86] but since an explicit description of the maps occurring in the
proposition plays a crucial role in our results we give a detailed proof.

Proposition 4.8. Let (M,ψ) be a simple ǫ-quadratic form with φ = (1+Tǫ)ψ.
Let j : (V, θ) →֒ (M,ψ) be a split inclusion of ǫ-quadratic forms. Let (V ⊥, θ⊥)
be the induced quadratic form. Then there is a stable isomorphism fj between
the boundaries of (V, θ) and (V ⊥,−θ⊥) and an isometry

rj : (M,ψ)
∼=
−→ (V, θ) ∪fj

(V ⊥, θ⊥).

Moreover, the isomorphism fj is well-defined up to homotopy and fj and rj are
natural with respect to isometries of such pairs of forms.

Proof. Let λ = θ + ǫθ∗ and λ⊥ = θ⊥ + ǫ(θ⊥)∗. The short exact sequence

0 −→ V
j

−→M
(j⊥)∗φ
−→ (V ⊥)∗ −→ 0

25



is based. Let σ ∈ HomΛ((V ⊥)∗,M) be any section so that (j⊥)∗φσ = id(V ⊥)∗ .
The isomorphism

h =
(

1 0 0
j⊥ σ j

)(
−σ∗φ∗j 1 −σ∗ψ∗σ

0 0 1
1 0 0

)
: V ⊕ V ⊥ ⊕ (V ⊥)∗

∼=
−→ V ⊥ ⊕M

is obviously simple and even an isometry h : (V, θ) ⊕ (M ′, ψ′)
∼=
−→ (V ⊥,−θ⊥) ⊕

(M,ψ) with (M ′, ψ′) = Hǫ(V
⊥). We write φ′ = ψ′ + ǫψ′∗. Using Lemma 4.4

we obtain an isomorphism

fj =
(
(1, 1, 0)⊕ (1, φ,−φ−∗ψφ−1)

)
◦ ∂h ◦

(
(1, 1, 0) ⊕ (1, φ′

−1
, φ′

−∗
ψ′φ′

−1
)
)

: ∂(V, θ) ⊕ (M ′,M ′∗)
∼=
−→ ∂(V ⊥,−θ⊥) ⊕ (M,M∗)

Then r =
(
j −ǫσ

)
: (V, θ) ∪f (V ⊥, θ⊥)

∼=
−→ (M,ψ) is an isometry.

Now we analyze the effect of different choices of σ and ψ on fj . Let σ̃

be another section and ψ̃ another representative of [ψ] ∈ Qǫ(M). There are
homomorphisms l ∈ HomΛ((V ⊥)∗, V ) and κ ∈ HomΛ(M,M∗) such that σ̃−σ =

jl and ψ̃ − ψ = κ− ǫκ∗. We construct an isometry h̃ and a stable isomorphism
f̃j using σ̃ and ψ̃ as before. Then there is a homotopy

∆ =
(

−l∗ ǫx 0

−j⊥l∗ ǫ(j⊥x+jl) 0

)
: ∂h ≃ ∂h̃

: ∂ ((V, θ) ⊕ (M ′, ψ′))
∼=
−→ ∂

(
(V ⊥,−θ⊥) ⊕ (M,ψ)

)

where x = −σ̃∗ψ̃∗σ̃ + σ∗ψ∗σ. It follows that f̃j ≃ fj .

At last, we discuss naturality. Let g : (M,ψ)
∼=
−→ (M̄, ψ̄) be an isometry and

let V̄ = g(j(V )). Let θ̄ be the induced quadratic form on V̄ , etc. Choose the
section σ̄ = gσg∗. Construct h̄, f̄ , etc. as before. Then

(g ⊕ g) ◦ h ◦ (g−1 ⊕ g−1 ⊕ g∗) = h̄.

It is easy to see that

(1, φ̄,−φ̄−∗ψ̄φ̄−1) = (g, g−1∗, 0) ◦ (1, φ,−φ−∗ψφ−1) ◦ (g−1, g−1, 0).

Putting these facts together we have

f̄j = (∂g ⊕ (g, g−1∗, 0)) ◦ f ◦ (∂g−1 ⊕ (g−1, g∗, 0)) : (3)

∂(V̄ , θ̄) ⊕ (M̄ ′, M̄ ′∗)
∼=
−→ ∂(V̄ ⊥,−θ̄⊥) ⊕ (M̄, M̄∗).

Example 4.9. Let z = (M,ψ;K,L) be a possibly non-simple ǫ-quadratic for-
mation. We would like to compute fj associated to the inclusion of the la-
grangian j : L →֒ (M,ψ). Similarly to the proof of Lemma 3.7 we can as-

sume that there is a possibly non-simple isomorphism g : L∗
∼=
−→ L∗ such that

[g] = −[g∗] ∈ Wh(Λ) and (M,ψ) =
(
L⊕ L∗,

(
0 g
0 0

))
. Therefore j = ( 1

0 ),
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j⊥ =
(
g−∗

0

)
, σ = ( 0

1 ) and h =

(
−g∗ 1 0

0 g−∗ 0
0 0 1

)
. We compute

fj =

((
1 0 0
0 1 0
0 0 1

)
,

(
1 0 0
0 0 g

0 ǫg∗ 0

)
,
( 0 0 0

0 0 0
−ǫg−1 0 0

))
◦ (h, h, 0) ◦

((
1 0 0
0 1 0
0 0 1

)
,
(

1 0 0
0 0 ǫ
0 1 0

)
,
(

0 0 0
0 0 0
ǫ 0 0

))

=

((
−g∗ 1 0

0 g−∗ 0
0 0 1

)
,

(
−g∗ 1 0
0 0 g
0 ǫ 0

)
,
( 0 0 0

0 0 0
ǫg−2 0 0

))
◦

((
1 0 0
0 1 0
0 0 1

)
,
(

1 0 0
0 0 ǫ
0 1 0

)
,
(

0 0 0
0 0 0
−ǫ 0 0

))

=

((
−g∗ 1 0

0 g−∗ 0
0 0 1

)
,

(
−g∗ 0 ǫ
0 g 0
0 0 1

)
,

(
0 0 0
0 0 0

ǫ(g−2−1) 0 0

))

By Lemma 4.3 fj is stably homotopic to the stable isomorphism

(
−g∗ ⊕ g−∗,−g∗ ⊕ g−∗, 0

)
: (V, 0) ⊕ (V, V ∗)

∼=
−→ (V, 0) ⊕ (V, V ∗)

In particular, if z is simple, we can choose g = idV ∗ and therefore fj is stably
homotopic to the boundary of the identity idV ∈ Aut(V, 0).

Example 4.10. Let δ(K, ρ) = (Hǫ(K);K,
(

1
ρ

)
K) be the boundary of an asym-

metric form (K, ρ). Using the notation of the proof of Proposition 4.8 with
(M,ψ) = (M ′, ψ′) = Hǫ(K) we have

j =
(

1
ρ

)
: K →M = K ⊕K∗,

j⊥ =
(

1
−ǫρ∗

)
: K →M = K ⊕K∗,

σ = ( 0
1 ) : K∗ → K ⊕K∗.

The isometry h from Proposition 4.8 is

h =
(

−1 1 0
0 1 0

(ρ+ǫρ∗) −ǫρ∗ 1

)
: (K, θ) ⊕Hǫ(K)

∼=
−→ (K, θ) ⊕Hǫ(K)

where (K, θ) is the ǫ-quadratic form with θ = [ρ] ∈ Qǫ(K). There is a homotopy

∆ : ∂h ≃ ∂(− idK ⊕ idHǫ(K)) : ∂((K, θ) ⊕Hǫ(K)) ∼= ∂((K, θ) ⊕Hǫ(K)),

∆ =
(

0 0 −1
0 0 0
−ǫ 0 ǫc∗

)
: K∗ ⊕K∗ ⊕K → K ⊕K ⊕K∗

and therefore the stable isomorphism fj is homotopic to ∂(− idK).

5 The structure of l2q+1(Λ)

In this section we prove our main theorem about the structure of l2q+1(Λ).

5.1 The map b : l2q+1(Λ) → Fzs
2q(Λ) × Fzs

2q(Λ)

Definition 5.1. Let x = (M,ψ;F, V ) be an ǫ-quadratic quasi-formation. Let
j : V →֒ M and j⊥ : V ⊥ →֒ M be the inclusions of V and its annihilator. The
boundaries of x are the induced ǫ-quadratic forms (V, θ) and (V ⊥,−θ⊥) where
θ = j∗ψj and θ⊥ = (j⊥)∗ψ(j⊥) and V ⊥ is s-based as in Remark 3.10 (iii).

Remark 5.2 ([Kre99][Proposition 8]). Recall that if (W, ν̄;M0,M1, f) is a mod-
ified surgery problem over B with surgery obstruction Θ(W, ν̄) = [H,ψ;F, V ]
then there are surjective isometries (V, θ) → Ker(Hq(M0) → Hq(B)) and (V ⊥,−θ⊥) →
Ker(Hq(M1) → Hq(B)).
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The following proposition records the basic properties of the boundaries of
quasi-formations.

Proposition 5.3. Let x = (M,ψ;F, V ) and x′ = (M ′, ψ′;F ′, V ′) be ǫ-quadratic

quasi-formations with boundaries (V, θ), (V ⊥,−θ⊥), (V ′, θ′) and (V ′⊥,−θ′
⊥

)
respectively. Then

i) there is an isometry (V, θ) ⊕Hǫ(F ) ∼= (V ⊥,−θ⊥) ⊕Hǫ(F ),

ii) if [x] = [x′] ∈ l2q+1(Λ) then (V, θ) ⊕ (P, 0) ∼= (V ′, θ′) ⊕ (P ′, 0) and

(V ⊥, θ⊥) ⊕ (P, 0) ∼= (V ′⊥, θ′
⊥

) ⊕ (P ′, 0) for some based modules P , P ′,

iii) if x is elementary then (V, θ) ∼= (V ⊥,−θ⊥),

iv) Rad(V, θ) = Rad(V ⊥,−θ⊥) and rk(V ) = rk(V ⊥) = 1
2 rk(M).

Proof. i) Follows from Propositions 4.8 and 4.7.

ii) This statement follows from the fact that an isomorphism of quasi-formations
induces isometries of its boundary forms and that the boundaries of ǫ-
quadratic formations are zero forms.

iii) By definition x is isometric to the boundary of an asymmetric form (K, ρ).
Therefore (V, θ) ∼= (K, [ρ]) and (V ⊥, θ⊥) ∼= (K, [−ρ]).

iv) By definition Rad(V, θ) = V ∩ V ⊥ = Rad(V ⊥,−θ⊥). The second equality
follows from the decomposition M ∼= V ⊕ V ⊥ in Proposition 3.9.

An immediate consequence of (ii) above is that there is a unital monoid map

b : l2q+1(Λ) −→ F
zs
2q(Λ) × F

zs
2q(Λ)

[M,ψ;F, V ] 7−→ ([V, θ], [V ⊥,−θ⊥]).

We record the essential properties of b in the following

Corollary 5.4. The monoid maps b : l2q+1(Λ) → Fzs
2q(Λ) × Fzs

2q(Λ) and bE :=
b|El2q+1(Λ) satisfy

i) Im(b) = {([w], [w′]) | [w] + [Hǫ(Λ
r)] = [w′] + [Hǫ(Λ

r)] for some r},

ii) bE : El2q+1(Λ)
∼=
−→ ∆(Fzs

2q(Λ)) :=
{
([w], [w]) | [w] ∈ Fzs

2q(Λ)
}
,

iii) b−1((0, 0)) = L2q+1(Λ).

Proof. i) One inclusion follows from Proposition 5.3 (i). So let (W,σ) and
(W ′, σ′) be ǫ-quadratic forms and let Q be a based module such that there
exists an isometry

h : (W,σ) ⊕Hǫ(Q) ∼= (W ′, σ′) ⊕Hǫ(Q).

Applying Lemma 4.6 iv) we see that the form

(M,ψ) := ((W,σ) ⊕Hǫ(Q)) ∪∂h ((W ′,−σ′) ⊕−Hǫ(Q))
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is isometric to the trivial double and hence hyperbolic. The boundary of
Hǫ(Q) is trivial and so ∂h is stably homotopic to some stable isomorphism
f between ∂(W,σ) and ∂(W ′, σ′). Thus

(M,ψ) ∼= ((W,σ) ∪f (W ′,−σ′)) ⊕Hǫ(Q⊕Q).

Now consider the ǫ-quadratic quasi-formation x := (M,ψ;L, j(W )⊕Q⊕Q)
where j is the map from Lemma 4.6 and L is some arbitrary Lagrangian.
By construction b([x]) = ([W,σ], [W ′, σ′]).

ii) By Proposition 5.3 iii) and by Example 4.10, bE (El2q+1(Λ)) = ∆(Fzs
2q(Λ)).

Now assume that b ([δ(K, ρ)]) = b ([δ(K ′, ρ′)]) for asymmetric forms (K, ρ)
and (K ′, ρ′). That is, there are based modules X and X ′ and an isometry

h : (Y, [ν]) = (K, [ρ]) ⊕ (X, 0)
∼=
−→ (Y ′, [ν′]) = (K ′, [ρ′]) ⊕ (X ′, 0). There is

an χ ∈ HomΛ(Y, Y ∗) such that h∗ν′h− ν = χ− ǫχ∗ ∈ HomΛ(Y, Y ∗). This
isometry induces an isomorphism

(
h 0
0 h−∗

) (
1 0

χ−ǫχ∗ 1

)
: (Hǫ(Y );Y ∗, ( 1

ν )Y )
∼=
−→ (Hǫ(Y

′);Y ′∗,
(

1
ν′

)
Y ′)

Adding trivial formations and the relation (1) shows that [δ(Y, ν)] =
[δ(Y ′, ν′)] ∈ l2q+1(Λ). Because boundaries of zero-forms vanish in the
l-monoid, [δ(K, ρ)] = [δ(Y, ν)] = [δ(Y ′, ν′)] = [δ(K ′, ρ′)] ∈ l2q+1(Λ).

iii) If x = (H,ψ;L, V ) is a formation such that (V, θ) = (V, 0) then V ⊥ = V
(possibly with a different basis but that does not concern us). Hence (V, θ)
is a zero form if and only if (V ⊥,−θ⊥) is a zero form. It is now a matter
of definition that L2q+1(Λ) = b−1(([0], [0])).

Definition 5.5. Given a 0-stabilised form [v], we write e([v]) for the unique
element of El2q+1(Λ) such that b(e([v])) = ([v], [v]). In fact e([v]) = [δ(V, ρ)]
from Definition 3.8 where v = (V, θ) and ρ is a representative of θ.

5.2 Boundary isomorphisms

Recall for quadratic forms v and v′ of the same rank we write v ∼ v′ if [v] +
[Hǫ(Λ

k)] = [v′] + [Hǫ(Λ
k)] for some k. If v ∼ v′ then ([v], [v′]) ∈ Im(b) and we

define the set
l2q+1(v, v

′) := b−1([v], [v′]) ⊂ l2q+1(Λ)

which is the focal point of our main theorem. Recall also that a quadratic form
w has a boundary ∂w which is a split formation and that Iso(∂v, ∂v′) denotes
the set of homotopy classes of stable isomorphisms from ∂v to ∂v′. If v ∼ v′

then for some module Q, ∂(v ⊕ (Q, 0)) ∼= ∂(v ⊕ (Q, 0)). In this subsection we
gather the results from sections 3 and 4 to calculate l2q+1(v, v

′) in terms of the
classical L-groups and an appropriate elaboration of Iso(∂v, ∂v′).

Definition 5.6. Given ǫ-quadratic forms (V, θ) and (V ′, θ′) we define the bound-
ary isomorphism set bIso((V, θ), (V ′, θ′)) to be the set of orbits of the group
action

(Aut(V, θ) × Aut(V ′, θ′)) × Iso(∂(V, θ), ∂(V ′, θ′)) −→ Iso(∂(V, θ), ∂(V ′, θ′))

((g, h), [f ]) 7−→ [∂h ◦ f ◦ ∂g−1].

29



When (V, θ) = (V ′, θ′) we define bAut(V, θ) := bIso((V, θ), (V, θ)) and let 1 ∈
bAut(V, θ) be the orbit containing the isomorphism ∂ id(V ′,0) = (idV , idV , 0).

Remark 5.7. Isometries k : (V, θ)
∼=
−→ (W,σ) and l : (V ′, θ′)

∼=
−→ (W ′, σ′) give

rise to an identification bIso((V, θ), (V ′, θ′)) ∼= bIso((W,σ), (W ′, σ′)) via [f ] 7→
[∂l ◦ f ◦ ∂k−1]. Evidently this identification is independent of the isometries
chosen. We shall often make this sort of identification without comment.

Definition 5.8. For an ǫ-quadratic quasi-formation x = (M,ψ;L, V ) let δ(x) ∈
bIso((V, θ), (V ⊥,−θ⊥)) be the homotopy class of the stable isomorphism fj de-
fined in Proposition 4.8. We note that δ(x) does not depend upon L.

Example 5.9. Let x = (M,ψ;L, V ) be an ǫ-quadratic quasi-formation.

i) If x is an elementary then by Lemma 5.3 and Example 4.10 δ(x) = 1 ∈
bAut(V, θ).

ii) If x is a simple ǫ-quadratic formation then by Example 4.9 δ(x) = 1 ∈
bAut(V, θ).

iii) If y = x ⊕ δ(M,ρ) where ρ represents ψ then by Proposition 4.7 δ(y) =
1 ∈ bAut((V, θ) ⊕ (M,ψ)).

As elements of l2q+1(Λ) are stable equivalence classes of ǫ-quadratic quasi-
formations, we need to stabilise the boundary isomorphism set in order to con-
vert δ(x) into an invariant of [x] ∈ l2q+1(Λ). For any based module Q we have
the stabilisation map

Aut(v) −→ Aut(v ⊕ (Q, 0)), g 7→ g ⊕ idQ .

We use this map and the analogous map for v′ in the definition of the stabilisa-
tion map

sQ : bIso(v, v′) −→ bIso(v ⊕ (Q, 0), v′ ⊕ (Q, 0)), [f ] 7−→ [f ⊕ ∂ idQ].

The set of all based modules (Λk,B) with the relation ≤ is a directed poset
(Definition 3.1). In that way the maps s(Λk,B) define a directed system of sets
which leads to the following definition.

Definition 5.10. Let v ∼ v′ be ǫ-quadratic forms.

i) The stable boundary isomorphism set is

sbIso(v, v′) := lim
−→

Q=(Λk,B)

bIso(v ⊕ (Q, 0), v′ ⊕ (Q, 0)).

ii) When v = v′ we have the stable boundary automorphism set

sbAut(v) := sbIso(v, v) with 1 = [∂ idV ] ∈ sbAut(v).

iii) There is an obvious stabilisation map

s : bIso(v, v′) −→ sbIso(v, v′), [f ] 7→ [f ].
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Lemma 5.11. For any based module Q the stabilisation map

sQ : bAut(v) −→ bAut(v ⊕ (Q, 0)), [f ] 7−→ [f ⊕ ∂ idQ]

satisfies s−1
Q (1) = 1. Consequently for s : bAut(v) → sbAut(v), s−1(1) = 1.

Proof. Let f be an automorphism of ∂v ⊕ (P, P ∗) such that f ⊕ ∂ idQ = 1 ∈
bAut(v⊕ (Q, 0)). After possibly enlarging P there is an isometry G of v⊕ (Q, 0)
and a homotopy

∆: f ⊕ ∂ idQ ≃ ∂G⊕ id(P,P∗) :

∂v ⊕ ∂(Q, 0) ⊕ (P, P ∗)
∼=
−→ ∂v ⊕ ∂(Q, 0) ⊕ (P, P ∗).

The definition of homotopy shows, firstly, that

G =
(
GV 0
G21 idQ

)
: W ⊕Q

∼=
−→W ⊕Q

(where GV is an isometry of w) and that, secondly, ∆ induces a stable homotopy
between f and ∂GV .

We next describe the maps which allow us to compute l2q+1(v, v
′). Firstly,

abusing notation, we write

ρ : L2q+1(Λ) → l2q+1(v, v
′)

for the action of L2q+1(Λ) ∋ [z] on l2q+1(v, v
′) ∋ [x], ρ([x], [z]) = [x] + [z].

Secondly there is the map

δ : l2q+1(v, v
′) −→ sbIso(v, v′)

which is defined as follows. Given [x] ∈ l2q+1(v, v
′) choose a representative

x = (M,ψ, F,W ) where for notational reasons we have written W for the second
summand in place of the usual V . If (W,σ) is the induced form on W then by
definition [W,σ] = [v] and [W⊥,−σ⊥] = [v′]. Applying Definition 5.8, we have
δ(x) ∈ bIso((W,σ), (W⊥,−σ⊥)). It follows that there are modules Q and P and

isomorphisms k : (W,σ) ⊕ (Q, 0)
∼=
−→ v ⊕ (P, 0) and l : (W⊥,−σ⊥) ⊕ (Q, 0) ∼=

v′ ⊕ (P, 0). We define

δ([x]) := [∂l ◦ (δ(x) ⊕ ∂idQ) ◦ ∂k−1] ∈ sbIso(v, v′).

We now show that δ is well-defined. By Remark 5.7, different choices of l
and k don’t effect δ([x]). The construction of fj is well-defined up to homotopy.
By the naturality of Proposition 4.8 (in particular equation (3) from the proof)
an isomorphism of ǫ-quadratic quasi-formations doesn’t change δ([x]) either.
Lastly, we have to analyse the effect of adding trivial formations and the relation
(1). Since δ(x ⊕ x′) = δ(x) ⊕ δ(x′) and by Example 5.9[ii] δ(x′) = 1 for any
simple formation x′ we see that adding simple formations, and in particular
trivial formations, does not alter δ([x]). As we remarked above, the definition
of δ(x) does not depend upon the Lagrangian in the quasi-formation x and so
δ is invariant under the relation (1) which only alters Lagrangians.

We turn to the preliminaries required to determine the image of δ. Gluing
quadratic forms together defines a map

κ : bIso(v, v′) −→ Ls2q(Λ), [f ] 7−→ [κ(f)]
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where κ(f) = v ∪f (−v′). By Lemma 4.6, [κ(f)] ∈ Ls2q(Λ) doesn’t change if one
takes another representative for [f ] ∈ bIso(v, v′). Stabilisation of f with the
identity on another zero form will only add a hyperbolic form to κ(f). Hence κ
extends to a well-defined map κ : sbIso(v, v′) → Ls2q(Λ).

Theorem 5.12. Let v ∼ v′ be ǫ-quadratic forms with v ∼ v′. There is an
“exact” sequence of sets

Ls2q+1(Λ)
ρ

−→ l2q+1(v, v
′)

δ
−→ sbIso(v, v′)

κ
−→ Ls2q(Λ)

by which we mean that the orbits of ρ are the fibres of δ and Im(δ) = κ−1(0).

The case v = v′ is of particular interest. By combining Theorem 5.12 and
Example 4.10 we obtain the following

Corollary 5.13. For any ǫ-quadratic form v there is an exact sequence

Ls2q+1(Λ)
ρ

−→ l2q+1(v, v)
δ

−→ sbAut(v)
κ

−→ Ls2q(Λ)

in the following sense: the orbits of the action ρ are precisely the fibres of the
map δ and Im(δ) = κ−1(0). Moreover δ([x]) = 1 ∈ sbAut(v) if and only if [x] is
elementary modulo the action of Ls2q+1(Λ).

Corollary 5.14. Let x = (M,ψ;L, V ) be an ǫ-quadratic quasi-formation. Then
[x] ∈ l2q+1(Λ) is elementary modulo Ls2q+1(Λ) if and only if there is a module

P such that (V, θ) ⊕ (P, 0) ∼= (V ⊥,−θ⊥) ⊕ (P, 0) and δ(x ⊕ (Hǫ(P );P, P ∗)) =
1 ∈ bAut((V, θ) ⊕ (P, 0)),

Proof. Follows from Lemma 5.11, Proposition 5.3 and Corollary 5.13.

Proof of Theorem 5.12. By definition δ is invariant under the action of Ls2q+1(Λ).
Now let [x], [x′] ∈ l2q+1(v, v

′) be such that δ([x]) = δ([x′]). Choose equal rank
representatives (M,ψ;F, V ) and (M ′, ψ′;F ′, V ′) for [x] and [x′] and let fj and
fj′ be the associated boundary isomorphisms for the embeddings j : (V, θ) →֒
(M,ψ) and j′ : (V ′, θ′) →֒ (M ′, ψ′) as defined in Lemma 4.8. The equality
δ([x]) = δ([x′]) implies that there are modules P and P ′, isometries k : (V, θ) ⊕

(P, 0)
∼=
−→ (V ′, θ′) ⊕ (P ′, 0) and l : (V ⊥,−θ⊥) ⊕ (P, 0)

∼=
−→ (V ′⊥,−θ′

⊥
) ⊕ (P ′, 0)

and a stable homotopy ∆ between fj′ ⊕ id∂(P ′,0) and ∂l ◦
(
fj ⊕ id∂(P,0)

)
◦ ∂k−1.
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Lemmas 4.6 and 4.8 yield the following commutative diagram.

V ⊕ P
j⊕
“

idP

0

”

// (M,ψ) ⊕Hǫ(P )

rj⊕idHǫ(P )∼=

��
V ⊕ P

“
idV

0

”
⊕

“
idP

0

”

//
(
(V, θ) ∪fj

−(V ⊥, θ⊥)
)
⊕Hǫ(P )

∼=

��
V ⊕ P

 1 0
0 1
0 0
0 0

!

//

k ∼=

��

((V, θ) ⊕ (P, 0)) ∪fj⊕id∂(P,0)
−

(
(V ⊥, θ⊥) ⊕ (P, 0)

)

“
1 ∆1
0 1

”“
k 0
0 l−∗

”
∼=

��

V ′ ⊕ P ′

 1 0
0 1
0 0
0 0

!

// ((V ′, θ) ⊕ (P ′, 0)) ∪fj′⊕id∂(P ′,0)
−

(
(V ′⊥, θ′

⊥
) ⊕ (P ′, 0)

)

∼=

��

V ′ ⊕ P ′

 1 0
0 1
0 0
0 0

!

//
(
(V ′, θ′) ∪fj′

−(V ′⊥, θ′
⊥

)
)
⊕Hǫ(P

′)

rj′⊕idHǫ(P ′)∼=

��
V ′ ⊕ P ′

j′⊕
“

idP ′

0

”

// (M ′, ψ′) ⊕Hǫ(P
′)

The composition of the right hand isometries yields an isomorphism

g : ((M,ψ) ⊕Hǫ(P );L⊕ P, V ⊕ P )
∼=
−→ ((M ′, ψ′) ⊕Hǫ(P

′); g(L⊕ P ), V ′ ⊕ P ′)

Therefore [x] = [x′] + [z] ∈ l2q+1(Λ) with

z = [(M ′, ψ′) ⊕Hǫ(P
′);L′ ⊕ P ′, g(L⊕ P )] ∈ Ls2q+1(Λ).

Finally, the composition of κ and δ maps an ǫ-quadratic quasi-formation
x = (M,ψ;F, V ) to [(M,ψ)] = 0 ∈ Ls2q(Λ) and therefore κ ◦ δ is trivial. In
the other direction, let v = (V, θ) and v′ = (V ′, θ′) be ǫ-quadratic forms with

v ∼ v′ and let f : ∂v ⊕ (P, P ∗)
∼=
−→ ∂v′ ⊕ (P, P ∗) be a stable isomorphism

between their boundaries such that κ([f ]) = 0. This means that the form
κ(f) = v ∪f (−v′) is stably hyperbolic i.e. there are based modules P and
Q such that κ(f) ⊕ Hǫ(P ) ∼= Hǫ(Q). But κ(f) ⊕ Hǫ(P ) = κ(f ⊕ ∂ idP ). It
follows that δ([x]) = [f ] ∈ sbIso(v, v′) where x is the quasi-formation x =
(κ(h⊕ idP );L, V ⊕P ) for any Lagrangian L ⊂ κ(f⊕ idP ). But b([x]) = ([v], [v′])
and so δ : l2q+1(v, v

′) → κ−1(0) is onto.

5.3 The Grothendieck group of l2q+1(Λ)

In this subsection we prove that for every [x] ∈ l2q+1(Λ) there is an integer k
such that [x]+e([Hǫ(Λ

k)]) is elementary (see Definiton 5.5). This is an algebraic
analogue of [Kre99][Theorem 2] that can also be used to find an alternative proof
of that theorem.

We begin with a Lemma about the action of Ls2q+1(Λ) on l2q+1(Λ). Following
the original definition of Ls2q+1(Λ) we define z(α) = (Hǫ(F );F, α(F )) for α ∈
Aut(Hǫ(F )). Every simple ǫ-quadratic formation can be represented in this
manner up to isometry.
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Lemma 5.15. Let [x] ∈ l2q+1(Λ) be represented by x = (Hǫ(F );F,W ) and
suppose that an isometry α ∈ Aut(Hǫ(F )) restricts to an isometry of W . Then
[z(α)] ∈ Ls2q+1(Λ) acts trivially on [x].

Proof. Such an isometry α is also an isomorphism x
∼=
−→ (Hǫ(F );α(F ),W ) and

therefore [z(α)]+ [x] = [(Hǫ(F );F, α(F ))⊕ (Hǫ(F );α(F ),W )] = [Hǫ(F );F,W ].

Corollary 5.16. If [x] ∈ l2q+1(Λ) is represented by x = (M,ψ;L, V ) and
(V, θ) ∼= Hǫ(F ) ⊕ (V ′, θ′) splits off a hyperbolic summand then every element
of Ls2q+1(Λ) which can be represented by a formation z = (Hǫ(F );F,G) acts
trivially on [x].

Proof. There is a decomposition (M,ψ) = Hǫ(F )⊕ (M ′, ψ′) such that Hǫ(F ) ⊂
(V, θ) and (V ′, θ′) ⊂ (M ′, ψ′). There is an isometry α0 ∈ Aut(Hǫ(F )) such that
[z] = [z(α0)]. We extend α0 to α ∈ Aut(M,ψ) where α = α0 ⊕ idM ′ . Evidently
α satisfies the hypothesis of Lemma 5.15 and so [z(α0)] = [z(α)] acts trivially
on [x].

Proposition 5.17. For every element [x] ∈ l2q+1(Λ), there is a positive integer
k such that [x] + e([Hǫ(Λ

k)]) is elementary.

Proof. Write x = (Hǫ(L);L, V ). It follows immediately from Example 5.9[iii]
and the definitions that b([x] + e([Hǫ(L)])) ∈ ∆(Fzs

2q(Λ)) and that δ([x] +
e([Hǫ(L)])) = 1 ∈ sbAut((V, θ) ⊕ Hǫ(L)). Hence by Corollary 5.13 there is
a [z] ∈ Ls2q+1(Λ) such that ([x] + e([Hǫ(L)])) + [z] is elementary. Now z can be
chosen to be of the form (Hǫ(F );F,G) and by Corollary 5.16 [z]⊕ e([Hǫ(F )]) =
e([Hǫ(F )]). It follows that [x] ⊕ e([Hǫ(F ⊕ L)]) is elementary.

Corollary 5.18. The monoid homorphisms F
zs
2q(Λ) ∼= El2q+1(Λ) →֒ l2q+1(Λ)

induce isomorphisms of the respective Grothendieck groups

Gr(Fzs
2q(Λ)) ∼= Gr(El2q+1(Λ)) ∼= Gr(l2q+1(Λ)).

Proof. Let i : El2q+1(Λ) →֒ l2q+1(Λ) denote the inclusion. The induced homo-
morphism Gr(i) : Gr(El2q+1(Λ)) → Gr(l2q+1(Λ)) is onto by Proposition 5.17.
On the other hand the monoid isomorphism bE : El2q+1(Λ) ∼= ∆(Fzs

2q(Λ)) factors
as bE = b ◦ i and this shows that Gr(i) is injective.

6 Calculations in special cases

In this we calculate sbAut(v) and sbIso(v, v′) in special situations. The first
subsection concerns sbAut(v) when v is the sum on linear and simple forms. In
the next subsection we compute sbIso(v, v′) when v and v′ become nonsingular
after localisation. In this case ∂v and ∂v are quadratic linking forms. In the
final subsection we compute l2q+1(Z).
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6.1 On l2q+1(v, v) for linear and simple quadratic forms

Recall that an ǫ-quadratic form v = (V, θ) is linear if θ + ǫθ∗ = 0 and simple if
θ+ ǫθ∗ : V → V ∗ is a simple isomorphism. Prior to our first definition, we warn
the reader that torsions and in particular torsions of non-simple isometries will
play a key role in this subsection and thus, isomorphisms and isometries are not
assumed to be simple in this subsection.

Definition 6.1. Give an ǫ-quadratic form (V, θ), let Auth(V, θ) be the group
of all isometries of (V, θ), simple or not. Let

Z1(Wh(Λ)) := {[h] ∈ Wh(Λ) | [h] = −[h∗]}

and let UWh(Λ) ⊂ Z1(Wh(Λ)) be the subgroup of all torsions τ(h) ∈ Wh(Λ)
where h ∈ Auth(Hǫ(L)) for some hyperbolic form.

We begin with the trivial case.

Lemma 6.2. Suppose that v = (N, 0) is a zero form. Then sbAut(v) =
Z1(Wh(Λ)) and identifying L2q+1(Λ) = l2q+1(v, v), the exact sequence of Corol-
lary 5.13 for v, extends and improves the sequence of Remark 3.15 and also maps
onto a fragment of the Ranicki-Rothenberg sequence:

Ls2q+1(Λ) �

� ρ // L2q+1(Λ)

����

δ // Z1(Wh(Λ))

����

κ // Ls2q(Λ)

· · · // Ls2q+1(Λ) // Lh2q+1(Λ) // Ĥ1(Wh(Λ)) // Ls2q(Λ) // · · ·

where Ĥ1(Wh(Λ)) = Z1(Wh(Λ))/{[h]− [h]∗ | [h] ∈ Wh(Λ)} and L2q+1(Λ) maps
onto the unbased odd-dimensional surgery obstruction group Lh2q+1(Λ) (see
[Ran73]). Moreover, the image of δ is UWh(Λ) so there is a short exact se-
quence

0 −→ Ls2q+1(Λ) → L2q+1(Λ) → UWh(Λ) −→ 0.

Proof. Using the definitions and Lemma 4.3 one sees that there is an isomor-
phism

δT(N,0) : Aut(∂(N, 0))
∼=
−→ {h ∈ GL(N) | [h] = −[h∗] ∈ Wh(Λ)}

[(α, β, ν)] 7−→ [α|N : N
∼=
−→ N ]

where GL(N) is the group of all isomorphisms N ∼= N , simple or not. Since
Aut(N, 0) = {h ∈ GL(N)|[h] = 0 ∈ Wh(Λ)} we obtain after stabilisation that
sbAut(N, 0) ∼= Z1(Wh(Λ)). The map onto the Ranicki-Rothenberg sequence
follows from the definitions. Finally, the identification of the image of δ comes
from the fact that L2q+1(Λ) ∼= U(Λ, ǫ)/RU(Λ, ǫ) where U(Λ, ǫ), the stable uni-
tary group, is defined just as SU(Λ, ǫ) in subsection 3.3 minus the requirement
that isometries need be simple.

Now let U′Wh(Λ) ⊂ Z1(Wh(Λ)) be the subgroup of all torsions τ(h) ∈
Wh(Λ) where h ∈ Auth(Hǫ(L)) for some symmetric hyperbolic form. The main
result of this subsection is the following
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Proposition 6.3. If v = (N, η)⊕ (M,ψ) is the sum of a linear form (N, η) and
simple form (M,ψ) and if UWh(Λ) = U′Wh(Λ) then L2q+1(Λ) acts transitively
on l2q+1(v, v).

In the general case v = (N, η) ⊕ (M,ψ), ∂v = ∂(N, η) ⊕ ∂(M,ψ) and by
Lemma 4.4, ∂(M,ψ) ∼= (M,M∗) is isomorphic to a trivial split formation. It
follows from Lemma 4.3 that there is a homomorphism

δTv : Aut(∂v) → Z1(Wh(Λ)), [(α, β, ν)] 7→ [a]

where a = α|N : N ∼= N as in the notation of Lemma 4.3. Evidently δTv is well-
defined after stabilisation. For any isometry h ∈ Aut(N, η) of the linear form
(N, η), δT(N,η)(∂h) = 0. Hence δT(N,η) induces a map sbAut(N, η) → Z1(Wh(Λ)).

Next consider any automorphism of v, h =
(
a b
c d

)
: N ⊕M

∼=
−→ N ⊕M , and

observe that hmust preserveN , the radical of φ = ψ+ǫψ∗. It follows that c = 0,
that a is a possibly non-simple isometry of (N, η), that d is a possibly non-simple
isometry of the symmetric form (M,φ) and that [a] = −[d] ∈ Z1(Wh(Λ)).

Lemma 6.4. Let (N, η) be a linear form and (M,ψ) a simple form. Then

i : sbAut(N, η) −→ sbAut((N, η) ⊕ (M,ψ)), [f ] 7−→ [f ⊕ ∂ idM ]

is surjective and injective on the fibres of δT(N,η).

Proof. The surjectivity of i follows immediately from the fact that ∂(M,ψ) is
trivial. For the injectivity of i, let f and f ′ be two stable automorphisms of
∂((N, η) ⊕ (Q, 0)) representing elements [f ] and [f ′] in sbAut(N, η) for a based
module Q. We assume that Q = Q0 ⊕Q1 where Q1 is a based module of rank
greater than the rank of M such that f |∂(Q1,0) = f ′|∂(Q1,0) = ∂IdQ1 . Assume
that δT(N,η)(f) = δT(N,η)(f

′) and that

i(f) = i(f ′) ∈ bAut((N, ν) ⊕ (Q, 0) ⊕ (M,ψ) ⊕ (P, 0))

for some based module P . This means that there are isometries h, h′ ∈ Aut((N, ν)⊕
(Q, 0) ⊕ (M,ψ) ⊕ (P, 0)) such that

∂h ◦ (f ⊕ id∂(M,ψ) ⊕ id∂(P,0)) ◦ ∂h
′ ≃ f ′ ⊕ id∂(M,ψ) ⊕ id∂(P,0) .

As above, the isometries h and h′ give possibly non-simple isometries a, a′ of
(N, η) ⊕ (Q, 0)⊕ (P, 0). We claim that h and h′ can be chosen so that a and a′

are simple and hence a, a′ ∈ Aut((N, η) ⊕ (Q, 0) ⊕ (P, 0)). It then follows that

∂a ◦ (f ⊕ id∂(P,0)) ◦ ∂a
′ ≃ f ′ ⊕ id∂(P,0)

and therefore [f ] = [f ′] ∈ sbAut(N, η).
We demonstrate the claim as follows: firstly τ(a) = δT(N,η)(∂a) and similarly

for a′, so the equality τ(a) + ∂T(N,η)(f) + τ(a′) = δT(N,η)(f
′) gives rise to τ(a) =

−τ(a′). Now let g be an isomorphism of N ⊕Q⊕ P such that g|N⊕Q0⊕P = Id
and τ(g) = −τ(a) (which is possible since the rank of Q1 is larger than the rank

of M and from above we see that there is an isomorphism d : M
∼=
−→ M with

τ(d−1) = τ(a)). It follows that τ(ag) = τ(g−1a′) = 0 and so we replace h and
h′ by (g ⊕ IdM ) ◦ h and (g−1 ⊕ IdM ) ◦ h′.
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Proof of Proposition 6.3. Consider to begin the case where v = (N, η) is linear
and let x = (Hǫ(L);L,N) represent [x] ∈ l2q+1(v, v). By Example 5.9 we see
that δ([x]) ∈ sbAut(N, η) maps to 1 ∈ sbAut((N, η) ⊕Hǫ(L)) under the map i
of Lemma 6.4. Now the injectivity part of Lemmas 6.4 shows that δT(N,η)(δ([x]))

is the remaining obstruction to δ([x]) being equal to 1. Moreover, the considera-
tions just prior to Lemma 6.4 show that δT(N,η)(δ([x])) is equal to the torsion of an

isometry of the symmetric form Hǫ(L). Applying Lemma 6.2 and the assump-
tion that UWh(Λ) = U′Wh(Λ) we see that there exists a [z1] ∈ L2q+1(Λ) such
that δ([x] + [z1]) = 1 ∈ sbAut(v). By Corollary 5.13 there is a [z2] ∈ Ls2q+1(Λ)
such that [x] + [z1] + [z2] is elementary.

The general case for v = (N, η) ⊕ (M,ψ) now follows immediately from
Lemma 6.4.

Corollary 6.5. If Λ is a field with charΛ 6= 2 or Λ = Z/2Z and we set Z =

K̃1(Λ), then all elements of l2q+1(Λ) are elementary.

Proof. Let x = (M,ψ;L, V ) be an ǫ-quadratic quasi-formation over Λ and let
(V, θ) and (V ⊥, θ⊥) be the boundaries of x (see 5.1). By proposition 5.3 (V, θ)⊕
(M,ψ) ∼= (V ⊥,−θ⊥) ⊕ (M,ψ) and so by Witt’s cancellation theorem for Λ 6=
Z/2 and by [Bro72] Theorem III.1.14 for Λ = Z/2, we deduce that (V, θ) ∼=
(V ⊥,−θ⊥). Hence [x] ∈ l2q+1((V, θ), (V, θ)). Moreover, as Λ is a field, (V, θ) is
the orthogonal sum of a linear form and a nonsingular form. Now Proposition
6.3 states that L2q+1(Λ) acts transitively on l2q+1((V, θ), (V, θ)) but by [Ran78]
L2q+1(Λ) = 0 and we are done.

We conclude the subsection with some simple examples of linear forms where
κ : sbAut(w) → Ls2q(Λ) is an isomorphism.

Example 6.6. i) Let Λ = Z and ǫ = −1. Then κ : bAut(Z, 1) → L2(Z) =
Z/2Z is a bijection with κ(IdZ, IdZ, 1) the rank 2 Arf invariant 1 form.
The sequence of Corollary 5.13 gives

0
∼=
−→ l3(Z, 1) −→ sbAut(Z, 1)

∼=
−→ L2(Z).

ii) Let Λ = Z/2 and ǫ = ±1. Then κ : sbAut(Z/2, 1) ∼= L1−ǫ(Z/2) ∼= Z/2.
The sequence of Corollary 5.13 gives

0
∼=
−→ l2−ǫ(Z/2, 1) −→ sbAut(Z/2, 1)

∼=
−→ L1−ǫ(Z/2).

6.2 Linking forms

In this section we show how to calculate boundary isomorphism sets of forms
which become nonsingular after localisation. To avoid complications with tor-
sions we assume throughout the section that Wh(Λ) = {0} (see Remark 3.2).
However, torsions can be interlaced with what follows using [Ran81][Chapter
3.7]. The following technical lemma applies for all the forms considered later in
the section.

Lemma 6.7. Let (V, θ) and (V ′, θ, ) be ǫ-quadratic forms with stably isomorphic
boundaries and injective symmetrisations λ = θ + ǫθ∗ : V → V ∗ and λ′ =
θ′ + ǫθ′∗ : V ′ → V ′∗. Then

s : bIso((V, θ), (V ′, θ′)) ∼= sbIso((V, θ), (V ′, θ′)).
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Proof. It suffices to show that

sQ : bIso((V, θ), (V ′, θ′)) ∼= bIso((V, θ) ⊕ (Q, 0), (V ′, θ′) ⊕ (Q, 0))

is an isomorphism for any based module Q. So let f = (α, β, ν) : y
∼=
−→ y′ be an

isomorphism with

y = (F, (( γµ ) , ψ)G) = ∂(V, θ) ⊕ (P, P ∗) ⊕ ∂(Q, 0)

y′ = (F ′,
((

γ′

µ′

)
, ψ′

)
G′) = ∂(V ′, θ′) ⊕ (P ′, P

′∗) ⊕ ∂(Q, 0).

We write β = (bij)1≤i,j≤3 : V ⊕P ∗⊕Q
∼=
−→ V ′⊕P ′∗⊕Q and similarly α = (aij),

ν = (nij). The equation α−∗µ = µ′β entails that b13 and b23 are zero. Hence

b33 and β̃ =
(
b11 b12
b21 b22

)
are isomorphisms. Evaluating α(γ + (ν − ǫν∗)∗µ) = γ′β

yields the vanishing of a13 and a23 and that a22 = b22. Therefore α̃ = ( a11 a12
a21 a22

)

is an isomorphism. Setting ν̃ = ( n11 n12
n21 n22

) one observes that C(f) := (α̃, β̃, ν̃) is
an isomorphism ∂(V, θ) ⊕ (P, P ∗) ∼= ∂(V ′, θ′) ⊕ (P ′, P ′∗).

Moreover, one may also check that if ∆ is a homotopy from f to another
isomorphism f ′ = (α′, β′, ν′), then C(∆) :=

(
∆11 ∆12

∆21 ∆22

)
is a homotopy from C(f)

to C(f ′). It also clear that if g : y
∼=
−→ y and g′ : y′

∼=
−→ y′ are isomorphisms,

then C(g′ ◦f ◦g) = C(g′)◦C(f)◦C(g). If h is an isometry of (V, θ)⊕ (Q, 0) and
prV : V ⊕ Q → V the projection then hV := prV ◦ h|V is an isometry of (V, θ)
and C(∂h) = ∂(hV ).

We now show the injectivity of sQ. Let f0, f1 ∈ Iso(∂(V, θ), ∂(V ′, θ′)) be
such that sQ([f0]) = sQ([f1]) ∈ bIso((V, θ) ⊕ (Q, 0), (V ′, θ′) ⊕ (Q, 0)). Then
there are isometries h ∈ Aut((V, θ)⊕ (Q, 0)) and h′ ∈ Aut((V ′, θ′)⊕ (Q, 0)) such
that f0 ⊕ ∂ idQ is stably homotopic to ∂h′ ◦ (f1 ⊕ ∂ idQ) ◦ ∂h. Using the fact
that fi = C(fi ⊕ ∂ idQ) and applying C to the homotopic isomorphisms above
we see that f0 is homotopic to C(∂h′) ◦ f1 ◦C(∂h) = ∂h′V ′ ◦ f1 ◦ ∂hV and hence
[f0] = [f1] ∈ bIso((V, θ), (V ′, θ′)).

We now turn to the surjectivity of sQ. Given f as in the beginning, consider
the automorphism g = f ◦ (C(f) ⊕ ∂ idQ)−1 and, reusing notation, write g =
(α, β, ν) where α = (aij), β = (bij) and ν = (nij). Calculation gives that

(aij) =
(

1 0 0
0 1 0
a31 a32 a33

)

(bij) =
(

1 0 0
0 1 0
b31 a32 b23

)

(nij) =
(

0 0 n13
0 0 0
0 n32 n33

)
∈ Qǫ(V ⊕Q⊕ P ∗)

Now the isomorphism h =
(

idV 0

−a
−1
33 a31 a

−1
33

)
is an isometry of (V, θ) ⊕ (Q, 0).

Replacing g by g ◦ (∂h⊕ id(P,P∗)) reduces to the case the case where a33 = b33 =
idQ and a31 = 0. From the equation α(γ + (ν + ǫν∗)∗µ) = γβ it follows that

n32 = ǫb32 and b31 = n∗
13λ. Then ∆ =

(
0 0 n13

0 0 b∗32
0 −a32 −ǫn∗

33+a32b
∗

32

)
is a homotopy

from g ◦ (∂h⊕ id(P,P∗)) to the identity. Thus f is homotopic to (C(f) ⊕ idQ) ◦
(∂h−1 ⊕ id(P,P∗)) which means that [f ] = sQ[C(f)] and so sQ is surjective.

Let S ⊂ Λ be a central and multiplicative subset and denote the localisation
of Λ away from S by S−1Λ. If P is a Λ-module then S−1P := S−1Λ⊗ΛP is the
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induced S−1Λ module. First we repeat some definitions from [Ran81][Chapters
3.1 and 3.4].

Definition 6.8. i) Let P and Q be f.g. free modules. A homomorphism
f ∈ HomΛ(P,Q) is called an S-isomorphism if S−1f := f ⊗Λ idS−1Λ ∈
HomS−1Λ(S−1P, S−1Q) is an isomorphism.

ii) A (Λ, S)-moduleM is a Λ-moduleM such that there is an exact sequence

0 → P
d
→ Q→M → 0 where d is an S-isomorphism.

iii) An ǫ-symmetric linking form (M,φ) over (Λ, S) is a (Λ, S)-module M
together with a pairing φ : M ×M → S−1Λ/Λ such that φ(x,−) : M →
S−1Λ/Λ is Λ-linear for all x ∈M and φ(x, y) = ǫφ(y, x) for all x, y ∈M .

iv) A split ǫ-quadratic linking form (M,φ, ν) over (Λ, S) is an ǫ-symmetric
linking form (M,φ) over (Λ, S) together with a map ν : M → Qǫ(S

−1Λ/Λ)
such that for all x, y ∈M and a ∈ Λ

(a) ν(ax) = aν(x)ā ∈ Qǫ(S
−1Λ/Λ)

(b) ν(x + y) − ν(x) − ν(y) = φ(x, y) ∈ Qǫ(S
−1Λ/Λ)

(c) (1 + Tǫ)ν(x) = φ(x, x) ∈ S−1Λ/Λ

v) An isometry between ǫ-quadratic linking forms (M0, φ0, ν0) and (M1, φ1, ν1)

is a Λ-module isomorphism f : M0

∼=
−→M1 such that φ0(x, y) = φ1(f(x), f(y))

and ν0(x) = ν1(f(x)) for all x, y ∈M0.

vi) We write IsoS((M0, φ0, ν0), (M1, φ1, ν1)) and AutS(M,φ, ν) for, respec-
tively, the set of isometries between ǫ-quadratic linking forms and the
group of automorphisms of an ǫ-quadratic linking form.

Definition 6.9. Let (V, θ) be an ǫ-quadratic form and let λ = θ + ǫθ∗.

i) The form (V, θ) is S-nonsingular if λ is an S-isomorphism.

ii) The S-boundary of an S-nonsingular form (V, θ) is the split ǫ-quadratic
linking form ∂S(V, θ) := (cokλ, φ, ν) given by

φ : cokλ× cokλ −→ S−1Λ/Λ, (x, y) 7−→
x(z)

s

ν : cokλ −→ Qǫ(S
−1Λ/Λ), y 7−→

1

s̄
θ(z, z)

1

s

with x, y ∈ V ∗, z ∈ V , s ∈ S such that sy = λ(z). We call the pair
(cokλ, φ) the symmetric S-boundary of (V, θ).

iii) The boundary of an isometry h : (V, θ)
∼=
−→ (V ′, θ′) of S-nonsingular

ǫ-quadratic forms is the isometry ∂Sh := [h−∗] : ∂S(V, θ)
∼=
−→ ∂S(V ′, θ′).

Let (V, θ) and (V ′, θ′) be S-nonsingular forms such that ∂(V, θ) ∼= ∂(V ′, θ′).
There is a group homomorphism

q : Iso(∂(V, θ), ∂(V ′, θ′)) −→ IsoS(∂S(V, θ), ∂S(V ′, θ′))
[(α, β, ν)] 7−→ [α−∗]

relating the isomorphisms of quasi-formations and the associated linking forms.
In order to investigate this map we start by considering the case where (V, θ) =
(V ′, θ′).
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Proposition 6.10. Let (V, θ) be an S-nonsingular form, let λ = θ + ǫθ∗ and
let Kθ be the kernel of the map

Q̂−ǫ(V ∗) −→ Q̂−ǫ(V ), ν 7−→ λ∗νλ.

There is an exact sequence of groups

0 −→ Kθ −→ Aut(∂(V, θ))
q

−→ AutS(∂S(V, θ)) → 0.

Proof. Define the homomorphism

κ : Kθ −→ Aut(∂(V, θ)), χ 7−→ (idV , idV , χ).

The surjectivity of q follows from the proof of [Ran81][Proposition 3.4.1] and
[Ran80][Proposition 1.5]. Let (α, β, ν) be a stable isomorphism of ∂(V, θ) which
is in the kernel of q. Then α−∗ = 1+µ∆∗ for some ∆ ∈ HomΛ(V ∗, V ). Because
of the equation α−∗µ = µβ it follows that β = 1+∆∗µ. Hence ∆ is a homotopy
between (α, β, ν) and (1, 1, ν) for some ν ∈ Qǫ(V

∗ ⊕ P ∗). But by the definition
of homotopy 4.1, we see that ν must have trivial symmetrisation and satisfy
λ∗νλ = 0. Thus (1, 1, ν) ∈ Im(κ). The injectivity of κ follows quickly from
Lemma 4.3 and the fact that λ is injective.

Corollary 6.11. Let (V, θ) and (V ′, θ′) be S-nonsingular forms with ∂(V, θ) ∼=
∂(V ′, θ′). Then there is an exact sequence

0 −→ Kθ −→ Iso(∂(V, θ), ∂(V ′, θ′))
q

−→ IsoS(∂S(V, θ), ∂S(V ′, θ′)) −→ 0

in the sense that there is a free action of Kθ on Iso(∂(V, θ), (V ′, θ′)) with orbits
the fibres of q.

Proof. The automorphism group Aut(∂(V, θ)) acts freely and transitively on the
set Iso(∂(V, θ), ∂(V ′, θ′)) by precomposition. Restricting to κ(Kθ) ⊂ Aut(∂(V, θ))
gives the required action which, is [(α, β, ν)] + χ = [(α, β, ν +χ)]. Similarly the
group AutS(∂S(V, θ)) acts freely and transitively on IsoS(∂S(V, θ), ∂S(V ′, θ′)).
Moreover, the map q maps the first action to the latter with kernel Kθ and the
Corollary now follows.

We now define a “linking boundary isomorphism set” for S-nonsingular forms
and relate it to the full boundary isomorphism set.

Definition 6.12. Let (V, θ) and (V ′, θ′) be S-nonsingular forms. The linking
boundary isomorphism set bIsoS((V, θ), (V ′, θ′)) is the set of orbits of the
group action

(Aut(V, θ) × Aut(V ′, θ′)) × AutS(∂S(V, θ)) → IsoS(∂S(V, θ), ∂S(V ′, θ′))

(h, g, f) 7−→ ∂Sh ◦ f ◦ ∂Sg
−1.

When (V ′, θ′) = (V, θ) we have the linking boundary automorphism set
bAutS(V, θ) := bIsoS((V, θ), (V, θ)). The orbit of the identity map is denoted
by 1 ∈ bAutS(V, θ).
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The map q above induces a map

qb : bIso((V, θ), (V ′, θ′)) → bIsoS((V, θ), (V ′, θ′)), [f ] → [q(f)].

As (V, θ) and (V ′, θ′) are S-nonsingular ǫ-quadratic forms the maps λ = θ +
ǫθ∗ and λ′ = θ′ + ǫθ

′∗ are injective otherwise S−1λ and S−1λ′ could not be
isomorphisms. Hence we may apply Lemma 6.7 to deduce that

s : sbIso((V, θ), (V ′, θ′))
∼=
−→ bIso((V, θ), (V ′, θ′)).

Proposition 6.13. Let (V, θ) and (V ′, θ′) be S-nonsingular ǫ-quadratic forms
with ∂(V, θ) ∼= ∂(V ′, θ′). There is a surjection

sbIso((V, θ), (V ′, θ′))
qb◦s

−1

−→ bIsoS((V, θ), (V ′, θ′))

such that Kθ is mapped onto but not necessarily into its fibres.

Proof. The surjectivity of qb ◦ s−1 follows from the surjectivity of qb. Let
[f0], [f1] ∈ bIso((V, θ), (V ′, θ′)) be such that qb([f0]) = qb([f1]). Then there
are isometries h of (V, θ) and h′ of (V ′, θ′) such that q(f0) = ∂Sh

′ ◦ q(f1) ◦ ∂Sh.
But since q(∂h) = ∂Sh and similarly for h′, we have that q(f0) = q(∂h′ ◦f1 ◦∂h)
and now by Corollary 6.11 it follows that there is a χ ∈ Kθ such that f0◦κ(χ) =
∂h′ ◦ f1 ◦ ∂h, completing the proof.

Remark 6.14. We remind the reader that Kθ ⊂ Q̂−ǫ(V ∗), that the group

Q̂−ǫ(V ∗) has exponent 2 in general and that Q̂−ǫ(V ∗) may vanish, for example
when Λ = Z[π], w = 0 and ǫ = 1.

6.3 On l2q+1(Z)

We begin with the +-quadratic case and l1(Z) which is in general very complex
but stably very simple. Every +-quadratic form over Z, w = (W,σ), determines
and is determined by its symmetrisation, w̄ = (W,σ + σ∗), which is an even
symmetric bilinear form. Moreover each w splits uniquely up to isomorphism as
(W,σ) ∼= (V, θ) ⊕ (U, 0) where v = (V, θ) is nondegenerate: that is, if v̄ = (V, λ)
then λ : V → V ∗ is injective. It follows that Fzs

0 (Z) can be identified with the set
of isomorphism classes of nondegenerate symmetric bilinear forms. Following
[Nik79], we call nondegenerate even symmetric bilinear forms lattices. A lattice
(V, λ) is called indefinite if λ(x, x) = 0 for some x ∈ V − {0}. Of course, the
classification of lattices, and in particular definite lattices, is an extremely rich
and complicated subject. Classically, two lattices are said to belong to the same
genus if they become isomorphic when tensored with the p-adic integers for each
prime p. We record here just two basic facts.

Proposition 6.15. i) The set of isomorphism classes of lattices of a fixed
rank is finite but may be arbitrarily large.

ii) If v̄ and v̄′ are stably isometric, then they belong to the same genus.

Proof. Part (i) can be found in [MH73][II.1.6]. The second part follows from
[Nik79][ Corollary 1.9.4] which states that the rank, signature and induced qua-
dratic linking form on the boundary determine the genus of a lattice. But these
invariants are agree for v̄ and v̄′ if and only if they agree for v̄ ⊕ H+(Zk) and
v̄′ ⊕H+(Zk).
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Turning to l1(Z), we fix a nondegenerate quadratic form v and consider

l1(v) =
⋃

v′∼v

l1(v, v
′) ⊂ l1(Z).

The above discussion, in particular Proposition 6.15 (i), implies that the above
union may be taken over a finite set of v′. By Theorem 5.12 each l2q+1(v, v

′)
sits in the exact sequence

L1(Z) = 0
ρ

−→ l1(v, v
′)

δ
−→ sbIso(v, v′)

κ
−→ L0(Z) = Z.

Since the signature of twisted doubles w ∪g −w of quadratic forms is zero (see
[Ran98] 42), κ is the zero map. Setting S := Z − {0} we see that every non-
degenerate form is S-nonsingular and applying Lemma 6.7 we may conclude
that

l1(v, v
′) = sbIso(v, v′) = bIsoS(v, v′).

This set is finite because it is a quotient of the finite group of isomorphisms
between the boundary quadratic linking forms: Iso(∂Sv, ∂Sv

′). However even
for very simple forms v the set sbAut(v) can be arbitrarily large.

Example 6.16. Let (Z, n) be the quadratic form where n = pm1
1 . . . pmk

k ∈
Z is a product of k distinct odd primes powers pmi

i with mi ≥ 1. Then

AutS(∂(Z, n)) ∼= Aut(Z/2nZ, 1) and (Z/2nZ, 1) ∼= (Z/2Z, 1)
⊕k

i=1(Z/p
mi

i Z, 1)
has an automorphism group isomorphic to (Z/2Z)k containing Aut(Z, n) =
{±1} as a normal subgroup. Therefore sbAut(Z, n) ∼= (Z/2Z)k−1.

Summarizing our discussion we have

Proposition 6.17. For each +-quadratic form v over Z the set l1(v) is finite
but there are v for which {[v′] | [v′] ∼ [v]} or sbAut(v) is arbitrarily large.

We now consider the question for which nondegenerate quadratic forms v
does strict cancellation hold? That is, for which forms v is l4k+1(v) = {e([v])}?
From the discussion of Theorem 5.12 above this is equivalent to asking whether
v ∼ v′ implies that v ∼= v′ and, if so, whether sbAut(v) = {1}.

In [Nik79] Nikulin explicitly raised very similar questions concerning sym-
metric bilinear forms and we report translations of his results in parts (i) and
(ii) of the following proposition. Here rk(V ) denotes the rank of a free abelian
group V , l(G) denotes the minimal number of generators of a finite abelian
group G and lp(G) = l(Gp) where Gp is the p-primary component of G for a
prime p.

Proposition 6.18. Let v = (V, θ) be a nondegenerate quadratic form and
let (G,φ) be the associated symmetric boundary (Definition 6.9). Then strict
cancellation holds for v if any of the following conditions hold.

i) The symmetric form (V, θ + θ∗) is indefinite and satisfies

(a) rk(V ) ≥ lp(G) + 2 for all primes p 6= 2,

(b) if rk(V ) = l2(G) then the symmetric boundary associated to
(
Z

2, ( 0 2
0 0 )

)

is a summand of the 2-primary component of (G,φ).
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ii) The symmetric form (V, θ+θ∗) is isomorphic to one of the classical lattices
E8, E7, E6, D5 or A4.

iii) The quadratic form v is isomorphic to (Z, p) for any prime p.

Proof. The proof of parts (i) and (ii) requires only that we translate some re-
sults of Nikulin concerning lattices and the isomorphisms of their boundaries.
Specifically Theorem 1.14.2 and Remark 1.14.6. [Nik79] assert for any lattice
(V, θ + θ∗) in part (i) or (ii) respectively that all lattices in the same genus
as (V, θ + θ∗) are isometric to (V, θ + θ∗) and that sbAut(v) = {1}. Applying
Proposition 6.15 (ii) we are done.

For part (iii), note that any form which is stably isometric to (Z, p) is a rank
1 form v′ with ∂S(v′) ∼= (Z/2p, 1) and so v′ must be isomorphic to (Z, p). Hence
l5(v) = l5(v, v). Moreover, Aut(v) ∼= Z/2 ∼= Aut(∂S(v)) and so bAut(v) = {1}.

Remark 6.19. The case (i) includes the case when v = w⊕H+(Z) splits off a
single hyperbolic plane.

In the skew-quadratic case the monoid l3(Z) is as simple as one can hope.

Proposition 6.20. All elements of l4k+3(Z) are elementary.

Proof. Let x = (M,ψ;L, V ) be a skew-symmetric quasi-formation representing
[x] ∈ l4k+3(Z). As L4k+3(Z) = 0 it suffices to show that V has a Lagrangian
complement in M . As in Example 5.9[iii], we set y = x ⊕ δ(M,ρ) where ρ
represents ψ and obtain that δ(y) = 1 ∈ bAut(V ⊕M, θ ⊕ ψ). Now by Lemma
4.6[iii] it follows that V ⊕M has a Lagrangian complement in (M,ψ;L, V ) ⊕
δ(M,ρ). We now wish to apply the penultimate section (pp. 742-3) of the proof
of Corollary 4 in [Kre99] to conclude that V has a Lagrangian complement in
M : observe that δ(M,ρ) corresponds to Kreck’s (Hǫ(Λ

2k), Hǫ(Λ
k)) under the

isomorphism of Proposition 3.12. However we note that the argument there
relies on [Kre99][Proposition 9] and for the case ǫ = −1, Λ = Z the proof of
Proposition 9 ignores the quadratic refinement. We may therefore conclude
only that V has complement W in M on which φ = ψ − ψ∗ vanishes. Let
µ : M → Q−1(Z) = Z/2Z be the quadratic refinement corresponding to ψ as
in Remark 3.6. The restriction µ|W is a homomorphism W → Z/2Z. Thus we
may choose bases of {v1, . . . , vk} and {w1, . . . , wk} of V and W respectively so
that

φ(vi, wj) = δij , φ(wi, wj) = 0, µ(wi) = δ1i

where δij = 0 if i 6= j and 1 if i = j. As {v1, . . . , vk, w1, . . . , wk} forms a
basis for the hyperbolic form (M,ψ) we see that µ(v1) = 0. This is because
{w1, v1} spans a nonsingular sub-form of (M,ψ) which we call (M0, ψ0), and
thus (M,ψ) ∼= (M0, ψ0) ⊕ (M⊥

0 , ψ
⊥
0 ). But {w2, . . . wk} spans a Lagrangian in

(M⊥
0 , ψ

⊥
0 ) and so the Arf invariant of this form vanishes. Hence the Arf invariant

of (M0, ψ0) vanishes but this is µ(w1) ·µ(v1) and so µ(v1) = 0. We therefore let
K be the Lagrangian with basis {w1 + v1, w2, . . . , wk} and observe that K is a
Lagrangian complement for V .

Corollary 6.21. There is a sequence of monoid isomorphisms

El4k+3(Z) = l4k+3(Z)
b

−→ ∆(Fzs4k+2(Z))
∼=
−→ F

zs
4k+2(Z).
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7 Strict cancellation and absolute stable rank

Recall that strict cancellation holds for a 0-stabilised form [v] if for any quasi-
formation x = (M,ψ;L, V ) with [V, θ] = [v], [x] ∈ l2q+1(Λ) is elementary. Below
we define the absolute stable rank of a ring Λ, asr(Λ), and in this section Λ is
always a ring with finite absolute stable rank: e.g. Λ = Z[π] for π polycyclic-
by-finite. We shall prove that strict cancellation holds for any 0-stabilised form
[v] over Λ if [v] = [w] ⊕ [Hǫ(Λ

k)] and k ≥ asr(Λ) + 1.
The proof follows from Corollary 5.13 and the cancellation and transitivity

theorems of [MvdKV88] which hold for rings with finite absolute stable rank:
if (V, θ) contains a hyperbolic of rank asr(Λ) + 1 then any stable isometry from
(V, θ) to another form can be replaced by an isometry that induces the same
boundary isomorphism. In addition, Ls2q+1(Λ) acts trivially on [x].

Under these circumstances we show that [x] ∈ l2q+1(Λ) is elementary as
follows. By Proposition 5.3 (V, θ) and (V ⊥, θ⊥) are stably isometric and the
cancellation theorem mentioned above states that they are already isometric.
Therefore [x] ∈ l2q+1((V, θ), (V, θ)).

The second obstruction to [x] being elementary, δ([x]), is represented by the
stable isomorphism fj of Proposition 4.8 which is the boundary of an isometry

h : (V, θ) ⊕Hǫ(K)
∼=
−→ (V ⊥,−θ⊥) ⊕Hǫ(K) by Proposition 4.7. Again, the can-

cellation theorem allows us to replace h by an isometry (V, θ)
∼=
−→ (V ⊥,−θ⊥)

without changing the boundary isomorphism. Hence δ([x]) = 1 and [x] is ele-
mentary modulo the action of Ls2q+1(Λ). But the action of Ls2q+1(Λ) on [x] is
trivial and therefore [x] is indeed elementary.

The topological consequence of this algebra is Theorem 1.1 which is a can-
cellation result for stably diffeomorphic manifolds with polycyclic-by-finite fun-
damental group which split off enough Sq × Sq connected summands.

We now introduce the absolute stable rank of Magurn, Van der Kallen and
Vaserstein which is a generalisation of concepts of Bass and Stein.

Definition 7.1 ([MvdKV88], [RG67]). i) Let S ⊂ Λ. Let J(S) denote the
intersection of all maximal left ideals of Λ which contain S. The ideal J(0)
is the Jacobson radical of Λ.

ii) The absolute stable rank of Λ, asr(Λ), is the minimum of all integers
n with the following property: for all (n+ 1)-pairs (ai)0≤i≤n in Λ there is
an n-pair (ti)0≤i≤n−1 in Λ such that an ∈ J(a0+t0an, . . . , an−1+tn−1an).
If no such n exists we set asr(Λ) = ∞.

Important examples of rings with finite absolute stable rank are the group
rings of polycyclic-by-finite groups.

Definition 7.2. [[Sco64][§7.1]] A group π is polycyclic-by-finite if there is a
subnormal series 4 1 = π0 ⊳ π1 ⊳ · · · ⊳ πs = π such that πk/πk−1 is either cyclic
or finite. The number of infinite cyclic factors is an invariant of π called the
Hirsch number h(π).

Theorem 7.3. Let π be a polycyclic-by-finite group. Then asr(Z[π]) ≤ 2+h(π).

4A series is subnormal if all πi−1 ⊂ πi are normal subgroups. It is not necessary that the
πi are normal subgroups of π.
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Proof. Let Λ = Z[π]. The ring Λ is right-Noetherian due to [MR87][§1.5].
Consecutively, we apply [Sta90][Theorem A(i)], [RG67][(e)] and [Smi73] in order
to show that asr(Λ) ≤ 1+Kdim(Λ/J(0)) ≤ 1+Kdim(Λ) = 2+h(π) where Kdim
denotes the Krull-dimension.

We now introduce some important concepts related to cancellation of hyper-
bolic forms.

Definition 7.4 ([MvdKV88], [Bas73][I.5.1]). Let (V, θ) be an ǫ-quadratic form
and λ = θ + ǫθ∗.

i) The Witt-index ind(V, θ) is the largest integer k such that there exists
a sub form of (V, θ) isometric to Hǫ(Λ

k). (Then there is a decomposition
(V, θ) ∼= (V ′, θ′) ⊕Hǫ(Λ

k) by [Bas73][I.3.2].)

ii) A vector v ∈ V is (V, θ)-unimodular if there is a w ∈ V with λ(v, w) = 1.

iii) A symplectic basis S = (ei, fi)i of an ǫ-quadratic form Hǫ(P ) is
an ordered basis of P ⊕ P ∗ with θ(u, v) = 0 for all u, v ∈ S except for
θ(ei, fi) = 1 for all i.

iv) A hyperbolic pair (e, f) of (V, θ) is a symplectic basis of some hyperbolic
subform of (V, θ).

v) Let u, v ∈ V and a ∈ Λ be such that u is (V, θ)-unimodular, λ(u, v) = 0 ∈
Λ, θ(u, u) = 0 ∈ Qǫ(Λ) and θ(v, v) = [a] ∈ Qǫ(Λ). Then the (orthogonal)
transvection τu,a,v is the homomorphism

V −→ V, x 7−→ x+ uλ(v, x) − ǫvλ(u, x) − ǫuaλ(u, x).

Proposition 7.5. We use the notation of the preceding definitions.

i) All transvections are isometries of (V, θ).

ii) τu,a′,v′ ◦ τu,a,v = τu,a′+λ(v′,v)+a,v.

iii) τ−1
u,a,v = τu,λ(v,v)−a,−v.

iv) [∂τu,a,v] = 1 ∈ Aut(∂(V, θ)).

v) Let (V, θ) = Hǫ(Λ
k) and let S := {ei, fi}1≤i≤k be the canonical symplectic

basis. Then τu,a,v ∈ RUk(Λ, ǫ) for all u ∈ S.

Proof. The first three statements are proved in [Bas73][I.5]. With the help of
Lemma 4.3 one computes that ∆ = −ǫuv∗ + vu∗ + uau∗ defines a homotopy
∂τu,a,v ≃ ∂ id(V,θ). For the last claim we write v =

∑k
i=1 aiei+

∑k
i=1 bifi. There

is a decomposition

τu,a,v =
k∏

i=1

τu,0,aiei
◦

k∏

i=1

τu,0,bifi
◦ τu,x,0

and each of the factors is in RUk(Λ, ǫ).
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Theorem 7.6 ([MvdKV88][Theorem 8.1]). Let (V, θ) be an ǫ-quadratic form
with k := ind(V, θ) ≥ asr(Λ) + 2. Let S := {ei, fi}1≤i≤k be a symplectic basis
of a hyperbolic sub form of (V, θ). Let v, v′ ∈ V be (V, θ)-unimodular with
θ(v, v) = θ(v′, v′) ∈ Qǫ(Λ). Then there exists an f ∈ Aut(V, θ) mapping v to v′

which is a product of transvections of the form τu,a,v with u ∈ S.

An analysis of [MvdKV88][Corollary 8.2] shows that cancellation holds for
forms with high enough Witt-index.

Corollary 7.7. Let f : (V, θ) ⊕Hǫ(L)
∼=
−→ (V ′, θ′) ⊕ Hǫ(L) be an isometry of

ǫ-quadratic forms where ind(V, θ) ≥ asr(Λ) + 1. Then there is an isometry

f ′ : (V, θ)
∼=
−→ (V ′, θ′) such that ∂f and ∂f ′ are stably homotopic.

Proof. We can assume that (V, θ) = (W,σ)⊕Hǫ(K) where rk(K) > asr(Λ). By
the proof of [MvdKV88][Corollary 8.2], there are products of transvections, σ
and σ′, such that

σ′ ◦ f ◦ σ =
(
g 0
0 h

)
: (V, θ) ⊕Hǫ(L)

∼=
−→ (V ′, θ′) ⊕Hǫ(L).

This isometry has the same boundary as f by Proposition 7.5[iii]. Assume for a

moment that there is a possibly non-simple isometry h̃ : Hǫ(K)
∼=
−→ Hǫ(K) with

τ(h̃) = τ(h). Then g ◦ (idW ⊕h̃) is a simple isometry with the same boundary
as f .

It remains to find h̃. If rk(L) ≤ rk(K) we simply use h plus the identity
on Hǫ(L)/Hǫ(K). Otherwise, we can again compose h with transvections such
that the result is

(
h′ 0
0 h2

)
: Hǫ(L) = Hǫ(L

′) ⊕Hǫ(K)
∼=
−→ Hǫ(L

′) ⊕Hǫ(K).

If rk(L′) ≤ rk(K) then take h̃ = h2 ◦ (id⊕h′). However, if rk(L′) > rk(K)

then h′1 = h′ ◦ (id⊕h2) : Hǫ(L
′)

∼=
−→ Hǫ(L

′) is a possibly non-simple isometry
with τ(h′1) = τ(h). We repeat this process for h′ until we arrive at the desired

non-simple isometry h̃.

A second consequence of Theorem 7.6 is the following

Corollary 7.8. Let (V, θ) = Hǫ(Λ
k) with k ≥ asr(Λ) + 2. Then RUǫ(Λ

k) acts
transitively on all bases of all hyperbolic planes in (V, θ).

Proof. Let λ = θ+ ǫθ∗ the underlying ǫ- symmetric form of (V, θ). Let {e, f} be
a hyperbolic pair and let {ei, fi}1≤i≤k be the standard symplectic bases of (V, θ).
By Theorem 7.6 and Lemma 7.5 there is a σ ∈ RUǫ(Λ

k) with σ(e) = e1. Write
σ(f) = ae1 + bf1 + v where a, b ∈ Λ and v is in the span of e2, . . . , ek, f2 . . . fk.
If follows from λ(σ(e), σ(f)) = λ(e, f) = 1 and θ(f, f) = 0 that b = 1 and
θ(v, v) = [−a] ∈ Qǫ(Λ). One easily computes that ρ = τe1,−ǫa,−ǫv sends f1 to
σ(f1) and fixes e1. Hence ρ−1σ ∈ RUǫ(Λ

k) maps e to e1 and f to f1.

Theorem 7.9. Let x = (Hǫ(L);L, V ) be an ǫ-quadratic quasi-formation and
let v = (V, θ) be the induced form. If ind(V, θ) ≥ asr(Λ) + 1 then [x] ∈ l2q+1(Λ)
is elementary.
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Proof. Due to Corollary 7.7 and Proposition 5.3, there is an isometry

k′ : (V ⊥,−θ⊥)
∼=
−→ (V, θ).

Therefore δ(x) = [∂k′ ◦ fj] ∈ bAut(V, θ) where fj is the stable isomorphism
obtained by applying Proposition 4.8 to the inclusion j : (V, θ) →֒ Hǫ(L). By

Proposition 4.7 and Corollary 7.7 there is an isometry h : (V, θ)
∼=
−→ (V ⊥,−θ⊥)

such that ∂h ≃ f . Hence δ(x) = ∂(k′h) = 1 ∈ bAut(V, θ) and [x] is elementary
modulo the action of Ls2q+1(Λ) by Corollary 5.13.

Now we show that Ls2q+1(Λ) acts trivially on [x]. Let k be the rank of L
and let j = k − asr(Λ) − 1. Let (ei, fi)1≤i≤k be the standard symplectic basis
of Hǫ(L). W.l.o.g the hyperbolic form spanned by (ei, fi)j≤i≤k, call it H , lies
in V . We denote by H⊥ the orthogonal complement of H in Hǫ(L) (i.e. the
span of (ei, fi)1≤i<j) and by V ′ the orthogonal complement of H in V . Clearly
V = V ′ ⊕H and V ′ ⊂ H⊥ by [Bas73][I.3.2].

Finally, we use an argument from the proof of [Kre99][Theorem 5] to com-
plete the proof. Let [z] ∈ Ls2q+1(Λ). Then [x + z] = [(Hǫ(L);L,α(V )] for some
α ∈ Aut(Hǫ(L)). Inductive application of Corollary 7.8 shows that there is a
β ∈ RUǫ(L) with βα(ei) = ei and βα(fi) = fi for 1 ≤ i < j. Hence βα is the
identity on H⊥ and therefore on V ′. Moreover, βα ∈ Aut(Hǫ(Λ)) must map H
to itself and therefore βα(V ) = V . Therefore [Hǫ(L);L,α(V )] = [Hǫ(L);L, V ] ∈
l2q+1(Λ).

Finally recall the defintion of h′(π, q) from Theorem 1.1.

Corollary 7.10. Let Λ = Z[π] be the group ring of a polycyclic-by-finite group
π and let [v] be a 0-stabilised form. If [v] = [w]⊕ [Hǫ(Λ

k)] for k ≥ h′(π, q), then
strict cancellation holds for [v].

Proof. If π is infinite then h′(π, q) = h(π) + 3 ≥ asr(Z[π]) + 1 by Theorem
7.3 and we apply Theorem 7.9. If π is trivial then we apply Remark 6.19 and
Proposition 6.20. If π is non-trivial but finite, then the proof follows along the
same lines as the proof of Proposition 6.20 except that now there is no gap to
be filled in the proof of [Kre99][Proposition 9].
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