ANALYSE SUR LES VARIÉTÉS. – La signification cohomologique de l'indice trilatère d'un triplet lagrangien et de l'indice de Maslov. Note (*) de Albert Crumeyrolle, transmise par M. Jean Leray.

On introduit l'indice d'inertie trilatère qui s'identifie à celui de Leray quand les lagrangiens sont 2 à 2 transverses. Cet indice définit un cocycle. La décomposition de l'indice trilatère à l'aide de l'indice de Maslov traduit simplement la finesse d'un faisceau.

Let us consider three lagrangian spaces in a symplectic space. We define an index called "trilateral index" which is the Leray index when the lagrangians are transversal two and two. Trilateral index is a cocycle. Its decomposition by Maslov index, simply, is the classical property of a fine sheave cohomology.

1º E est un espace vectoriel réel de dimension 2 n, muni d'une forme symplectique F.

Lemme 1. — Soient trois espaces lagrangiens L, L', L" tels que L \cap L' = L \cap L". Alors il existe σ , en général non unique, appartenant au groupe symplectique Sp $(2n, \mathbf{R})$ qui laisse fixe tous les éléments de L et applique L' sur L".

Soit $\{e_{\alpha}, e_{\beta^*}\}$, α , $\beta = 1, 2, ..., n$, une base symplectique de E dont les vecteurs (e_{α}) sont dans L. Il est immédiat de voir qu'un tel σ s'exprime par

(1)
$$\begin{cases} \sigma(e_{\alpha}) = e_{\alpha}, \\ \sigma(e_{\alpha^*}) = a_{\alpha^*}^{\beta} e_{\beta} + e_{\alpha^*}, \quad \text{avec} \quad a_{\alpha^*}^{\beta} = a_{\beta^*}^{\alpha}. \end{cases}$$

Il est loisible de supposer que les e_{α} ont été choisis de manière que $(e_1, e_2, \ldots, e_{\lambda})$ engendrent $L \cap L'$. Alors $e_{\lambda+1}, \ldots, e_n, e_{1*}, \ldots e_{\lambda^*}$ engendrent un lagrangien L_1 avec $L_1 \cap L' = L_1 \cap L'' = 0$. Soit L_2 le lagrangien de base $(e_1, e_2, \ldots, e_{\lambda}, e_{(\lambda+1)*}, \ldots, e_{n^*})$, il est immédiat que

$$E = L_1 \oplus L' = L_1 \oplus L'' = L_1 \oplus L_2 \qquad \text{et} \qquad L \cap L' = L \cap L'' = L \cap L_2.$$

Or il existe une transformation symplectique θ qui conserve L_1 point par point, les vecteurs $e_1, e_2, \ldots, e_{\lambda}$, et envoie L' sur L_2 .

Si θ' envoie de la même manière L'' sur L₂, alors $\sigma = \theta'^{-1} \circ \theta$.

Si $L \cap L'$ est non nul, on voit que σ n'est pas unique. Par contre si $L \cap L' = L \cap L'' = 0$, (1) montre l'unicité et établit une correspondance bijective entre l'ensemble des lagrangiens transverses à L et l'ensemble des matrices symétriques $n \times n$.

2° Avec les hypothèses de lemme 1, $Q = F(., \sigma(.))$ est une forme quadratique sur L'. Il est toujours possible de choisir $(e_{\alpha}, e_{\beta^*})$ de manière que :

(2)
$$\begin{cases} \sigma(e_{\alpha}) = e_{\alpha}, \\ \sigma(e_{\alpha^*}) = t_{\alpha}e_{\alpha} + e_{\alpha^*}, & t = 0, 1 \text{ ou } -1, \end{cases}$$

Il faut observer que la signature de Q dépend du choix de σ , si $L \cap L' = L \cap L'' \neq 0$. Si $L \cap L' = L \cap L'' = 0$, il existe $\sigma \in Sp(2n, \mathbb{R})$ unique, qui conserve L point par point et envoie L' sur L''.

DÉFINITION 1. — Si L \cap L' = L \cap L'' = 0, et si $\sigma \in Sp(2n, \mathbb{R})$ conserve L point par point et envoie L' sur L'', la forme quadratique $x \to F(x, \sigma(x)), x \in L'$, admet une signature notée : Inert (L', L, L''). La signature est le nombre de signes (—) dans la décomposition de Sylvester. Inert est l'indice d'inertie de Leray (2).

(2) montre que si $r = \dim L' \cap L''$, on peut définir :

(3)
$$Inert(L'', L, L') = -Inert(L', L, L'') + (n-r).$$

L' et L'' étant transverse à L fixé, le choix de (e_{α}, e_{β}) identifie L' et L'' à des matrices symétriques.

Si le triplet (L', L, L") se déforme continûment, L' et L" restant transverses à L et $\dim(L' \cap L'')$ demeurant constante, Inert (L', L, L") garde une valeur constante.

Observons que si r=0, $e_{\alpha^*} \to e_{\alpha^*}$, $e_{\alpha} \to -e_{\alpha} - t_{\alpha} e_{\alpha^*}$, définit une transformation symplectique qui conserve L' point par point et envoie L sur L"; donc quand

$$L' \cap L'' = L \cap L' = L \cap L'' = 0$$
.

on peut poser:

$$Inert(L, L', L'') = -Inert(L', L, L'') + n$$

et Inert est invariant par permutation circulaire sur L, L', L".

Si $L \cap L' = L \cap L'' = 0$, avec $L' \cap L'' \neq 0$, nous poserons

(4)
$$\begin{cases} Inert(L, L', L'') = -Inert(L', L, L'') + n \\ et \\ Inert(L', L'', L) = -Inert(L', L, L'') + n. \end{cases}$$

On notera que notre définition de Inert n'est plus alors identique à celle de Leray, à moins que les trois lagrangiens ne soient deux à deux transverses : l'indice que nous venons de définir sera appelé indice d'inertie trilatère.

3º Indice d'inertie trilatère d'un triplet ordonné quelconque de lagrangiens.

LEMME 2. — Il existe un lagrangien M transverse simultanément à trois lagrangiens L, L', L'' donnés.

Selon Souriau (3) on peut identifier un lagrangien L à l'image de $a \in U(n)$ par $a \to a$ $\bar{a}^{-1} = l$ et L transverse à M équivaut à (l-m) inversible, si la matrice m représente M. Le lemme est alors immédiat; observons qu'il y a une infinité de choix possibles pour M. (Il serait aussi possible de donner une démonstration indépendante à l'aide des spineurs symplectiques).

Lemme 3. — $Si\ L_1$, L_2 , L_3 , L_4 sont des lagrangiens tels que L_2 et L_3 soient transverses aux trois autres :

(5)
$$Inert(L_1, L_2, L_3) - Inert(L_1, L_2, L_4) + Inert(L_1, L_3, L_4) - Inert(L_2, L_3, L_4) = 0.$$

Cela résulte des remarques faites au 2°.

Si maintenant L_1 , L_2 , L_3 sont des lagrangiens quelconques, nous choisissons M transverse à chacun d'eux, alors conformément à (5) nous posons :

(6)
$$Inert(L_1, L_2, L_3) = Inert(L_1, L_2, M) - Inert(L_1, L_3, M) + Inert(L_2, L_3, M).$$

vint par gnature vosition

natrices

à L et te.

m sym-

à moins 1011s de

angiens

(n) par trice m e choix endante

rsverses

= 0.

1 trans-

).

Comme les trois indices d'inerties du deuxième membre sont constants quand M varie en restant transverse à L_1 , L_2 , L_3 fixés, la valeur du premier membre ne dépend pas du choix de M. Il est rappelé que Inert $(L_1, L_2, M) = -\text{Inert}(L_1, M, L_2) + n$, où les termes du deuxième membre sont calculés selon la définition 1.

En général l'indice trilatère n'est pas invariant par permutation circulaire. Par contre (6) montre que 4 lagrangiens quelconques L₁, L₂, L₃, L₄ satisfont une relation de cocyclicité.

4° L'indice trilatère et la décomposition d'un élément du groupe symplectique en produit de transvections.

Soit σ l'élément unique qui conserve L point par point et envoie L' sur L'', L' et L'' transverses à L.

Introduisons ici l'algèbre de Clifford symplectique (1). Au-dessus de σ on peut déterminer $\gamma \in G_s$ groupe de Clifford symplectique, modulo un scalaire, tel que

$$p(\gamma) = \sigma$$
 par projection : $p(\gamma)(x) = \gamma x \gamma^{-1}$, $x \in E$.

LEMME 4. — L'ensemble des éléments $\sigma \in Sp(2n, \mathbb{R})$ qui conservent L point par point s'identifie à l'ensemble $p(\exp(V L))$.

Ce lemme résulte de la formule (1) et des remarques suivantes :

si $p(\gamma) = \sigma$ conserve L point par point il se factorise en produit de transvections symplectiques;

si $a \in L$:

$$\exp\frac{ta^2}{2}x\exp\left(-\frac{ta^2}{2}\right) = x + F(a, x)ta, \qquad t \in \mathbb{R}^*,$$

et on peut choisir a de manière que $t = \pm 1$.

Prenant

$$\gamma = \prod_{i} \exp \frac{t_i(a_i)^2}{2} = \exp \left(\sum_{i} \frac{t_i(a_i)^2}{2} \right), \quad a_i \in L, \quad t_i = \pm 1,$$

un choix convenable des a_i , t_i permet d'atteindre tout élément σ défini par la formule (1). En particulier on voit que l'on peut choisir la base symplectique $(e_{\alpha}, e_{\beta^*})$ de manière que σ se traduise par la formule (2):

$$\gamma = \prod_{\alpha} \exp\left(\frac{t_{\alpha}(e_{\alpha})^2}{2}\right),\,$$

ainsi : tout $\gamma \in G_s$ qui conserve L point par point peut se factoriser en

(7)
$$\gamma = \prod_{\alpha} \exp \frac{t_{\alpha}(e_{\alpha})^{2}}{2}, \qquad t_{\alpha} = \pm 1;$$

la suite des (t_{α}) est intrinséquement attachée à γ et si $L' \oplus L = E$, $L'' = \gamma$ (L'), la signature de cette suite est l'indice d'inertie de Leray : Inert (L', L, L'').

5° Considérons une variété réelle V paracompacte, de dimension 2n, à structure presque symplectique et le préfaisceau $\mathscr{D}_{\mathbf{Z}}$ des applications quelconques d'ouverts de V dans \mathbf{Z} . Si \mathbf{Pr} et \mathbf{Fs} désignent respectivement les foncteurs « préfaisceau » et « faisceau »,

construisons Fs $\mathscr{P}_{\mathbf{Z}} = \mathscr{F}_{\mathbf{Z}}$; selon un résultat classique ce faisceau est fin, donc compte tenu de la paracompacité de V :

(8)
$$H^q(V, \mathscr{F}_Z) \simeq H^q(V, \Pr \operatorname{Fs} \mathscr{P}_Z) \simeq H^q(V, \mathscr{P}_Z) = 0$$
, pour $q \ge 1$.

Si on introduit un recouvrement de V par des ouverts U_{α} domaines de définition de sections lagrangiennes $L_{\alpha}: x \in U_{\alpha} \to L_{\alpha}(x)$, suffisamment petits pour être munis de sections $\lambda_{\alpha}: x \to \lambda_{\alpha}(x)$ dans le revêtement de la grassmannienne lagrangienne, on peut définir un cocycle par

$$x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \to \operatorname{Inert}(L_{\alpha}(x), L_{\beta}(x), L_{\gamma}(x)),$$

encore noté Inert $(\lambda_{\alpha}(x), \lambda_{\beta}(x), \lambda_{\gamma}(x))$.

Mais en raison de (8) ce cocycle est un cobord, il existe donc m:

$$x \in U_{\alpha} \cap U_{\beta} \to m(\lambda_{\alpha}(x), \lambda_{\beta}(x)) \in \mathbb{Z}$$

tel que

Inert
$$(\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma}) = m(\lambda_{\alpha}, \lambda_{\beta}) + m(\lambda_{\beta}, \lambda_{\gamma}) - m(\lambda_{\alpha}, \lambda_{\gamma}).$$

Ainsi : la décomposition du cocycle d'inertie au moyen de l'indice de Maslov, donnée par Leray, résulte de la trivialité de la cohomologie $H^q(V, \mathcal{P}_Z)$, pour $q \ge 1$.

Introduisant les divers revêtement du groupe symplectique et de la grassmannienne lagrangienne, il est évident qu'on obtient des résultat analogues avec des indices mod $q, q \in \mathbb{Z}$.

- (*) Séance du 14 mars 1977.
- (1) A. CRUMEYROLLE, Comptes rendus, 280, série A, 1975, p. 1689.
- (2) J. LERAY, R.C.P., 25, 18, Strasbourg, 1973.
- (3) J. M. Souriau, Construction explicite de l'indice de Maslov. Applications Group Theoretical Methods in Physics nº 50 (Springer-Verlag) p. 117.

Université de Toulouse III, 118, route de Narbonne, 31077 Toulouse.