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Abstract 

According to Cappell and Shaneson, very often the secondary surgery obstruction 02 to codimen- 
sion two splitting is zero, but examples with 02 # 0 exist. By considering homotopy equivalences 
with codomain the total space of a two disk bundle, we produce many examples with 02 # 0 and 
other examples with 02 = 0. Our approach is: “compare with codimension one splitting”. 
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1. The codimension two splitting problem 

Here, CAT means the topological (TOP), the piecewise linear (PL) or the differentiable 

(DIFF) category. Details are to be found in [5]. If CAT is omitted, we mean any of the 

three categories. 

Let (X, ax) be a Poincare pair with X connected. Let (Y, aY) c (X,3X), Y 

connected, be a Poincare pair such that Y possesses a two-dimensional linear normal 

bundle in X. Let f : (M, C?M) + (X, 3X) be a homotopy equivalence split along the 

boundary, where M is an n-dimensional manifold with boundary. This means that f is 

transverse to 3X and the restricted map flz : 2 + aY, 2 = f-‘(C)Y), is a homotopy 

equivalence. The codimension two splitting problem (CTSP) is to find necessary and 

sufficient conditions for completion of the following diagram. 

M 
f (homotopy equivalence of pairs) 

r x 

U U 
Locally flat + 
submanifold (homotopy equivalencr of pairs) 
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If the above diagram can be completed (after a homotopy of f relative the boundary 

if necessary) then, by definition, f is splittable along Y. It is possible to work with 

CAT = TOP, PL or DIFF. In addition, one can consider the simple splitting problem 

in which (X, ax), (Y; aY) are simple PoincarC pairs and the horizontal maps in the 

diagram above are required to be simple as well. 

1.1. The surgery obstructions 

For simplicity, unless explicitly required, orientation characters of surgery groups will 

be omitted [5,7]. 

As f : M --f X is a homotopy cquivalcncc, set u = g*l/M. The bundle u~4 is the 

stable normal bundle of ~%f and 9 is a homotopy inverse of f. Very basic bundle theory 

provides a bundle map tt : UA~ + I/ covering the homotopy equivalence f : M t X. After 

a homotopy if necessary, we can assume that f is transverse to Y relative the boundary. 

Set N = f-‘(Y). The abstract surgery obstruction is, by definition, the obstruction 

0(f) = 19(fi~, bl~) E LFt_2(nr Y). The superscript e is s for the simple splitting problem. 

Otherwise, it is h. The vanishing of this obstruction is a necessary condition for the 

existence of a solution to the CTSP. 

In higher codimensions (the hypothesis that Y has a linear normal bundle in X is 

artificial [l]), the vanishing of the abstract surgery obstruction enables one to use the 

normal cobordism extension property [l] (see also [6]) to produce a solution to the 

splitting problem [ 11. In codimension two, one can use the normal cobordism extension 

property as well, provided the abstract surgery obstruction vanishes [5]. However, this 

may fail to produce a solution to the CTSP in even dimensions. The secondary obstruction 

measures this failure. More precisely, let n be even. Induction over the normal sphere 

bundle of (Y, aY) c (X, ax) induces a map LF,,_, (nr Y) + L,“,,,, (n,), where 7r denotes 

the projection of this bundle. Composing with natural maps, we obtain 

4 is the homomorphism (3, id) from 3 to idzr,xl F: Z7rr (X - Y) + E7rtX is the 

natural map. We have the following. 

Theorem 1.1 [5, pp. 322, 3231. Consider the CTSP speci$ed by a homotopy equiva- 

lence f : M + X, M an (n > 7).dimensionul manifold, (X, 3X) a Poincare’ pair: Let 

(Y,aY) c (X,ax) b e a Poincar6 pair possessing a two-dimensional linear normal 

bundle. Assume that f is split along the boundary. Jf .9(f) = 0, then f is splittable for 

n odd. If n is even, there is a well-dej?ned obstruction 02(f) E rTk+, (4)/ Imph that 

vanishes if and only if f is splittable. Similarly for the simple CTSI? 

Theorem 1.2 [5, p. 3231. Let f : A4 + X be as in Theorem 1 .l, n even. Assume e(f) = 

O,IfaM=aX=@and7r,(X~Y)=Z or 0, then 02(f) = 0. Similarly for the simple 

CTSI? 
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In particular, very often B(f) = 0 implies that the CTSP has a solution. More precisely, 

0(f) = 0 implies that the CTSP has a solution in odd dimensions, and in even dimensions 

for the cases covered by Theorem 1.2. 

The proof of Theorem 1.2 is a simple calculation in the case 7rt (X - Y) ” 0. In the 

case i71 (X - Y) g Z, it is a generalization of the results of S. Lopez de Medrano [6]. 

1.2. Examples of the CTSP 

Example 1.3. 

M” t UZP” Mn + RPn 

U U U U 
? - - - - - - + cp”-z ‘, - - - - - - + Rpn-2 

We have 7rt (@Pn - cP+*) ” 0,7rl (RPn - RP”-2) ” z. 
Therefore, for both CTSP above, the abstract surgery obstruction being zero will guar- 

antee the existence of a solution. Of course, as Wh(7r) = 0, 7r = 1,232, for the two 

examples above, splitting is the same as simple splitting. Here, n 3 7. 

Example 1.4. CP” = E(v) U II,. D, is a disk and v is the canonical complex bundle 

over @Pnp2. E(v) is the total space of the associated disk bundle. Consider the CTSP 

(necessarily simple as Wh(1) = 0) below. CAT = TOP, PL, n 3 7. 

M” 
h 

* E(v) 

U U 
? - - - - - - + @P”-2 

Extend a CAT-homeomorphism aM + aD, to a CAT-homeomorphism p : D --t D,, D 
a disk. By considering the associated CTSP 

M”uD 
hw 

t cPn 

U u ’ 
? - --- - - - + @p"-2 

we have the following: the CTSP of this example has a solution if and only if the abstract 

surgery obstruction vanishes. It is straightforward to check this by using the examples 

above. 

Example 1.5. Y is a Poincare complex, X = Y x D2, and M” is an n-dimensional 

manifold, n 3 7. 

M” 
f 

* x 

U U 
? -----__+ y 



The CTSP above has a solution if B(f) = 0. Similarly for the simple CTSP. The reason 

is the following: set rr = -iriX. We have ~-1 (X - Y) = 7r x Z. 3: 2[7r x Z] t Z[rr] is 

induced by the projection onto the first factor 7r x Z + 7r. We have [5] a commutative 

diagram 

As r x Z --t n splits, 3, splits as well. Thus F+ is surjective. By [5, p. 3201 we are 

done. 

2. Comparing one- and two-dimensional splitting 

The codimension one splitting problem (COSP) is defined the same way as the CTSP. 

The only difference is: Y above possesses a one-dimensional linear normal bundle in X 

above. The abstract surgery obstruction is similarly defined and is a necessary condition 

for solution. 

Let 770 be the canonical line bundle over IRP”-2. Let E(va) be the total space of the 

associated disk bundle over lRP”-‘. E(va) = RP’“-’ ~ intD,, where D, is a disk. Take 

any homotopy projective space Q’“-’ 171. Let Q;-’ = Qn-’ - int D, where D is a disk. 

Choose a homotopy equivalence of pairs /I.: (Qz-‘, aQ,“-‘) + (E(qe), S(qo)), where 

S(~O) is the total space of the sphere bundle associated to ~0. Consider the COSP, CTSP 

below, CAT = PL, TOP. 

QF’ 
h 

+ E(td q-’ x I 
h.xidr 

ME x I 

U U U U 
? _-____“~p”-’ ‘f _ _ - _ _ _ *Rp7L--2 >: {;} 

For simplicity we will identify IwP7’~‘, with LRP’“~” x {i}. 

Theorem 2.1. For n 3 7, tlze two problems have, or have not, solutions jointly. 

Remark 2.2. Let /) : i& x S”-’ + A’+’ be a free involution such that Q”-’ = S”-l/p. 

If the COSP above has a solution, WC have 

QF 
h 

> E(w) 

U u 
Q”-2 

hi 
) RI” --2 

The space Q n-2 above is a homotopy projective space. Let q be the unique nontrivial line 

bundle over Q”-2. Let T be a tubular neighborhood of Qn-’ in Q;l-‘. The s-cobordism 
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theorem applied to Q:-’ - T(Qnp2) gives that Q,“-’ = E(v). Write Qnp2 = ,S’+*/r, 

where r : Z2 x Snp2 + S-’ is a free involution. As Q,“-’ = E(v), p &suspends to a 

conjugate of r [2]. Conversely, if p desuspends, the COSP above has a solution. 

Proof of Theorem 2.1. If the COSP above has 

has a solution. 

Assume that the CTSP above has a solution 

Q;-’ x I 
hxidr 

rE(rlo) x 1 

U u . 

’ + S7L--] extends to a standard CAT = 

Qn-* horn. eq. z- lRP”-2 

By Lemma 2.1 [4, p. 401 the action p: & x S” 

PL, TOP semifree & action on S”, also denoted by p. In addition, p admits a periodic 

knot f : (ST’-*, T) + (ST’, p) (7 : & x Snp2 + Snm2 is a free CAT involution) [4]. Now, 

by Theorem 2.2 [4, p. 421, pls7%+ desuspends to a conjugate of T. Set Qnp2 = ,9-*/r. 

By the remark above, there is a solution 

a solution, trivially the CTSP above also 

h 
N E(m) 

U U 
QTL-2 

horn. eq. z- IRP-2 

for the COSP above. 0 

Remark 2.3. Consider the situation of Theorem 2.1. S. Lopez de Medrano [6] produces 

homotopy projective spaces Q”-‘, CAT = PL, TOP with the following properties. Write 

Q”-’ = Sn-l/p, where p: Z.2 x S”-’ + S”-’ is a free involution. Then p is non- 

desuspendable. In addition, remove an open disk from Q”-’ obtaining Q,“-‘, and choose 

a homotopy equivalence h : Qt-’ + E(qo). It turns out that the COSP 

QF 
h 

t E(vo) 

U U 
7 

horn. eq. t IL?,P”-2 

has B(h) = 0. For such examples, Oz(h x idl) # 0. 

Remark 2.4. It is possible in Theorem 2.1 to work with a homotopy projective space 

Qn-* instead of lRP”-2. Let q (respectively E) be the unique nontrivial, (respectively 

trivial) line bundle over Q n-2. Notice that E(~@E) = E(q) x I (E( ) means total space 

of the associated disk bundle). Let Q+-] be a homotopy projective space. Take a disk D 

in Q”-‘. Set Q,“-’ = Q”-’ - int D. Ch oose a homotopy equivalence h : Q,“-’ + E(v). 

The two splitting problems below have, or have not, solutions jointly. 

QF' 
h 

> E(v) Q,“-’ x I 
hxidl 

>E(v @ &) 

U U U U 
? _ _ _ _ _ _ + QTL-2 ? __---__+ Qn-2 
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Now, consider the (simple) splitting problem in which Y is a closed CAT = PL, TOP 

manifold, 1~1 (Y)l fi ‘t 1s m e and divisible by two. In addition, assume that the universal 

cover of Y is a sphere. Let v (respectively E) be a nontrivial (respectively trivial) line bun- 

dleoverY.AssumeX=E(~@&)=E(~)xI, M=NxI, f=hxidl, h:N+E(v) 

is a (simple) homotopy equivalence. As the Browder-Livesay desuspension obstruction 

[2,6] will appear in our setting only for n = 0 mod 4, we will work in this range of 

dimensions. Take a (1~1 (Y) I/2)-fold cover of N and glue a disk to obtain a homo- 

topy projective space Q+‘. Write Qn-’ = S’“-’ /p, p : Z.2 X S”-’ t S”-’ is a free 

involution. We have the following. 

Theorem 2.5. Let n 3 7, n = 0 mod 4, and assume that the abstract surgery obstruction 

of the CTSP 

NxI 
hxidr 

rE(rl cf3 ~1 

U U 
? -----_+ y 

vanishes. Then, if p as above does not desuspend, 02(h x idl) # 0. 

Proof. Take the (1~1 (Y)I/2)-fold cover of the CTSP above and use Remark 2.4. CI 

3. A particular CTSP 

Consider the CTSP where Y is a closed manifold X = E(v) and v is an orientable 

two dimensional linear bundle over Y. In addition, assume Y simply connected. Let 

q : E(v) + Y be induced by bundle projection. Denote by S(Y) the associated sphere 

bundle. By the homotopy exact sequence of a fibration the map ~1 (S(Y)) + 7rt (Y) 

induced by q, is a projection of a cyclic group to the trivial group. As a result [7], the 

map -&+I (70 (X - Y)) + &+I (“1X) induced by inclusion is an epimorphism. By [S, 

p. 3201, if the abstract surgery obstruction vanishes then 02(f) = 0 as well. 

4. Concluding remarks 

The phenomenon 02(f) # 0 app eared in many of the examples presented above. In 

each of these cases, the normal bundle of Y in X is nonorientable. We leave the following 

problem for the reader: prove or disprove the following: assume v orientable, then 02(f), 

if defined, must be zero. An interesting special case is given by the following. 

Proposition 4.1. Let X, Y be orientable manifolds, aY = 4, u = I,(Y c X) orientable. 

Assume n](Y) Z rl(S(~)) ” 0, and ~1 (X - E(u)) is 2-torsion free. Then, if 02(f) is 

dejked, 02 (f) = 0. 

Proof. If X = E(v), by the previous results, we are done. If not, use Cappell’s splitting 

theorem [3] to split f along S(Y), reducing the proof to the case X = E(v). 0 
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