

Topology and its Applications 75 (1997) 105-111

TOPOLOGY AND ITS APPLICATIONS

# On codimension two and one splitting

Ricardo N. Cruz

UNICAMP, Cidade Universitaria, Barão Geraldo Campinas SP, CEP 13083-970, Brazil Received 23 February 1995; revised 7 May 1996

#### Abstract

According to Cappell and Shaneson, very often the secondary surgery obstruction  $O_2$  to codimension two splitting is zero, but examples with  $O_2 \neq 0$  exist. By considering homotopy equivalences with codomain the total space of a two disk bundle, we produce many examples with  $O_2 \neq 0$  and other examples with  $O_2 = 0$ . Our approach is: "compare with codimension one splitting".

Keywords: Obstruction; Splitting; Surgery

AMS classification: 57R67; 57Q99

# 1. The codimension two splitting problem

Here, CAT means the topological (TOP), the piecewise linear (PL) or the differentiable (DIFF) category. Details are to be found in [5]. If CAT is omitted, we mean any of the three categories.

Let  $(X, \partial X)$  be a Poincaré pair with X connected. Let  $(Y, \partial Y) \subset (X, \partial X)$ , Y connected, be a Poincaré pair such that Y possesses a two-dimensional linear normal bundle in X. Let  $f:(M, \partial M) \to (X, \partial X)$  be a homotopy equivalence split along the boundary, where M is an n-dimensional manifold with boundary. This means that f is transverse to  $\partial X$  and the restricted map  $f|_Z: Z \to \partial Y$ ,  $Z = f^{-1}(\partial Y)$ , is a homotopy equivalence. The codimension two splitting problem (CTSP) is to find necessary and sufficient conditions for completion of the following diagram.



0166-8641/97/\$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved *PII* S0166-8641(96)00089-2

If the above diagram can be completed (after a homotopy of f relative the boundary if necessary) then, by definition, f is splittable along Y. It is possible to work with CAT = TOP, PL or DIFF. In addition, one can consider the simple splitting problem in which  $(X, \partial X), (Y, \partial Y)$  are simple Poincaré pairs and the horizontal maps in the diagram above are required to be simple as well.

#### 1.1. The surgery obstructions

For simplicity, unless explicitly required, orientation characters of surgery groups will be omitted [5,7].

As  $f: M \to X$  is a homotopy equivalence, set  $\nu = g^*\nu_M$ . The bundle  $\nu_M$  is the stable normal bundle of M and g is a homotopy inverse of f. Very basic bundle theory provides a bundle map  $b: \nu_M \to \nu$  covering the homotopy equivalence  $f: M \to X$ . After a homotopy if necessary, we can assume that f is transverse to Y relative the boundary. Set  $N = f^{-1}(Y)$ . The abstract surgery obstruction is, by definition, the obstruction  $\theta(f) = \theta(f|_N, b|_N) \in L^e_{n-2}(\pi_1 Y)$ . The superscript e is s for the simple splitting problem. Otherwise, it is h. The vanishing of this obstruction is a necessary condition for the existence of a solution to the CTSP.

In higher codimensions (the hypothesis that Y has a linear normal bundle in X is artificial [1]), the vanishing of the abstract surgery obstruction enables one to use the normal cobordism extension property [1] (see also [6]) to produce a solution to the splitting problem [1]. In codimension two, one can use the normal cobordism extension property as well, provided the abstract surgery obstruction vanishes [5]. However, this may fail to produce a solution to the CTSP in even dimensions. The secondary obstruction measures this failure. More precisely, let n be even. Induction over the normal sphere bundle of  $(Y, \partial Y) \subset (X, \partial X)$  induces a map  $L_{n-1}^e(\pi_1 Y) \to L_{n+1}^e(\pi_*)$ , where  $\pi$  denotes the projection of this bundle. Composing with natural maps, we obtain

$$\rho^e: L^e_{n+1}(\pi_1 Y) \to \Gamma^e_{n+1}(\phi),$$

 $\phi$  is the homomorphism  $(\mathcal{F}, \mathrm{id})$  from  $\mathcal{F}$  to  $\mathrm{id}_{\mathbb{Z}\pi_1 X}$ ,  $\mathcal{F}: \mathbb{Z}\pi_1(X - Y) \to \mathbb{Z}\pi_1 X$  is the natural map. We have the following.

**Theorem 1.1** [5, pp. 322, 323]. Consider the CTSP specified by a homotopy equivalence  $f: M \to X$ , M an  $(n \ge 7)$ -dimensional manifold,  $(X, \partial X)$  a Poincaré pair. Let  $(Y, \partial Y) \subset (X, \partial X)$  be a Poincaré pair possessing a two-dimensional linear normal bundle. Assume that f is split along the boundary. If  $\theta(f) = 0$ , then f is splittable for n odd. If n is even, there is a well-defined obstruction  $O_2(f) \in \Gamma_{n+1}^h(\phi) / \operatorname{Im} p^h$  that vanishes if and only if f is splittable. Similarly for the simple CTSP.

**Theorem 1.2** [5, p. 323]. Let  $f: M \to X$  be as in Theorem 1.1, n even. Assume  $\theta(f) = 0$ . If  $\partial M = \partial X = \phi$  and  $\pi_1(X - Y) \cong \mathbb{Z}$  or 0, then  $O_2(f) = 0$ . Similarly for the simple CTSP.

In particular, very often  $\theta(f) = 0$  implies that the CTSP has a solution. More precisely,  $\theta(f) = 0$  implies that the CTSP has a solution in odd dimensions, and in even dimensions for the cases covered by Theorem 1.2.

The proof of Theorem 1.2 is a simple calculation in the case  $\pi_1(X - Y) \cong 0$ . In the case  $\pi_1(X - Y) \cong \mathbb{Z}$ , it is a generalization of the results of S. Lopez de Medrano [6].

## 1.2. Examples of the CTSP

### Example 1.3.

| $M^n$ |                 | $\mathbb{C}P^n$     | $M^n$ | <br>$\mathbb{R}P^n$     |
|-------|-----------------|---------------------|-------|-------------------------|
| U     |                 | U                   | U     | U                       |
| ?     | <del>&gt;</del> | $\mathbb{C}P^{n-2}$ | ?     | <br>$\mathbb{R}P^{n-2}$ |

We have  $\pi_1(\mathbb{C}P^n - \mathbb{C}P^{n-2}) \cong 0, \pi_1(\mathbb{R}P^n - \mathbb{R}P^{n-2}) \cong \mathbb{Z}.$ 

Therefore, for both CTSP above, the abstract surgery obstruction being zero will guarantee the existence of a solution. Of course, as  $Wh(\pi) = 0$ ,  $\pi = 1, \mathbb{Z}_2$ , for the two examples above, splitting is the same as simple splitting. Here,  $n \ge 7$ .

**Example 1.4.**  $\mathbb{C}P^n = E(\nu) \cup D_o$ .  $D_o$  is a disk and  $\nu$  is the canonical complex bundle over  $\mathbb{C}P^{n-2}$ .  $E(\nu)$  is the total space of the associated disk bundle. Consider the CTSP (necessarily simple as Wh(1) = 0) below. CAT = TOP, PL,  $n \ge 7$ .

$$\begin{array}{cccc} M^n & \xrightarrow{h} & E(\nu) \\ \bigcup & & \bigcup \\ ? & & - & - & - & \sim & \mathbb{C}P^{n-2} \end{array}$$

Extend a CAT-homeomorphism  $\partial M \to \partial D_o$  to a CAT-homeomorphism  $\varphi: D \to D_o, D$ a disk. By considering the associated CTSP

$$\begin{array}{ccc} M^n \cup D & \xrightarrow{hu\varphi} & \mathbb{C}P^n \\ \bigcup & & \bigcup \\ ? & ---- & \mathbb{C}P^{n-2} \end{array},$$

we have the following: the CTSP of this example has a solution if and only if the abstract surgery obstruction vanishes. It is straightforward to check this by using the examples above.

**Example 1.5.** Y is a Poincaré complex,  $X = Y \times D^2$ , and  $M^n$  is an *n*-dimensional manifold,  $n \ge 7$ .



The CTSP above has a solution if  $\theta(f) = 0$ . Similarly for the simple CTSP. The reason is the following: set  $\pi = \pi_1 X$ . We have  $\pi_1(X - Y) = \pi \times \mathbb{Z}$ .  $\mathcal{F} : \mathbb{Z}[\pi \times \mathbb{Z}] \to \mathbb{Z}[\pi]$  is induced by the projection onto the first factor  $\pi \times \mathbb{Z} \to \pi$ . We have [5] a commutative diagram



As  $\pi \times \mathbb{Z} \to \pi$  splits,  $\mathcal{F}_*$  splits as well. Thus  $\mathcal{F}_*$  is surjective. By [5, p. 320] we are done.

## 2. Comparing one- and two-dimensional splitting

The codimension one splitting problem (COSP) is defined the same way as the CTSP. The only difference is: Y above possesses a *one*-dimensional linear normal bundle in X above. The abstract surgery obstruction is similarly defined and is a necessary condition for solution.

Let  $\eta_0$  be the canonical line bundle over  $\mathbb{R}P^{n-2}$ . Let  $E(\eta_0)$  be the total space of the associated disk bundle over  $\mathbb{R}P^{n-2}$ .  $E(\eta_0) = \mathbb{R}P^{n-1} - \operatorname{int} D_o$ , where  $D_o$  is a disk. Take any homotopy projective space  $Q^{n-1}$  [7]. Let  $Q_0^{n-1} = Q^{n-1} - \operatorname{int} D$ , where D is a disk. Choose a homotopy equivalence of pairs  $h: (Q_0^{n-1}, \partial Q_0^{n-1}) \to (E(\eta_0), S(\eta_0))$ , where  $S(\eta_0)$  is the total space of the sphere bundle associated to  $\eta_0$ . Consider the COSP, CTSP below, CAT = PL, TOP.

For simplicity we will identify  $\mathbb{R}P^{n-2}$ , with  $\mathbb{R}P^{n-2} \times \{\frac{1}{2}\}$ .

**Theorem 2.1.** For  $n \ge 7$ , the two problems have, or have not, solutions jointly.

**Remark 2.2.** Let  $\rho: \mathbb{Z}_2 \times S^{n-1} \to S^{n-1}$  be a free involution such that  $Q^{n-1} = S^{n-1}/\rho$ . If the COSP above has a solution, we have



The space  $Q^{n-2}$  above is a homotopy projective space. Let  $\eta$  be the unique nontrivial line bundle over  $Q^{n-2}$ . Let T be a tubular neighborhood of  $Q^{n-2}$  in  $Q_0^{n-1}$ . The s-cobordism theorem applied to  $Q_0^{n-1} - T(Q^{n-2})$  gives that  $Q_0^{n-1} = E(\eta)$ . Write  $Q^{n-2} = S^{n-2}/\tau$ , where  $\tau : \mathbb{Z}_2 \times S^{n-2} \to S^{n-2}$  is a free involution. As  $Q_0^{n-1} = E(\eta)$ ,  $\rho$  desuspends to a conjugate of  $\tau$  [2]. Conversely, if  $\rho$  desuspends, the COSP above has a solution.

**Proof of Theorem 2.1.** If the COSP above has a solution, trivially the CTSP above also has a solution.

Assume that the CTSP above has a solution

$$\begin{array}{ccc} Q_0^{n-1} \times I & \xrightarrow{h \times \mathrm{id}_I} & \xrightarrow{E(\eta_0)} \times I \\ \bigcup & & \bigcup \\ Q^{n-2} & \xrightarrow{\mathrm{hom. eq.}} & \mathbb{R}P^{n-2} \end{array}$$

By Lemma 2.1 [4, p. 40] the action  $\rho: \mathbb{Z}_2 \times S^{n-1} \to S^{n-1}$  extends to a standard CAT = PL, TOP semifree  $\mathbb{Z}_2$  action on  $S^n$ , also denoted by  $\rho$ . In addition,  $\rho$  admits a periodic knot  $f: (S^{n-2}, \tau) \to (S^n, \rho)$  ( $\tau: \mathbb{Z}_2 \times S^{n-2} \to S^{n-2}$  is a free CAT involution) [4]. Now, by Theorem 2.2 [4, p. 42],  $\rho|_{S^{n-1}}$  desuspends to a conjugate of  $\tau$ . Set  $Q^{n-2} = S^{n-2}/\tau$ . By the remark above, there is a solution

$$\begin{array}{cccc} Q_0^{n-1} & & & h & & E(\eta_0) \\ \bigcup & & & \bigcup & \\ Q^{n-2} & & & & \mathbb{R}P^{n-2} \end{array}$$

for the COSP above.  $\Box$ 

**Remark 2.3.** Consider the situation of Theorem 2.1. S. Lopez de Medrano [6] produces homotopy projective spaces  $Q^{n-1}$ , CAT = PL, TOP with the following properties. Write  $Q^{n-1} = S^{n-1}/\rho$ , where  $\rho: \mathbb{Z}_2 \times S^{n-1} \to S^{n-1}$  is a free involution. Then  $\rho$  is nondesuspendable. In addition, remove an open disk from  $Q^{n-1}$  obtaining  $Q_0^{n-1}$ , and choose a homotopy equivalence  $h: Q_0^{n-1} \to E(\eta_0)$ . It turns out that the COSP

$$\begin{array}{cccc} Q_0^{n-1} & & & h & & E(\eta_0) \\ \bigcup & & & \bigcup & \\ ? & & & & \bigoplus & \mathbb{R}P^{n-2} \end{array}$$

has  $\theta(h) = 0$ . For such examples,  $O_2(h \times id_I) \neq 0$ .

**Remark 2.4.** It is possible in Theorem 2.1 to work with a homotopy projective space  $Q^{n-2}$  instead of  $\mathbb{R}P^{n-2}$ . Let  $\eta$  (respectively  $\varepsilon$ ) be the unique nontrivial, (respectively trivial) line bundle over  $Q^{n-2}$ . Notice that  $E(\eta \oplus \varepsilon) = E(\eta) \times I(E())$  means total space of the associated disk bundle). Let  $Q^{n-1}$  be a homotopy projective space. Take a disk D in  $Q^{n-1}$ . Set  $Q_0^{n-1} = Q^{n-1} - \operatorname{int} D$ . Choose a homotopy equivalence  $h: Q_0^{n-1} \to E(\nu)$ . The two splitting problems below have, or have not, solutions jointly.

Now, consider the (simple) splitting problem in which Y is a closed CAT = PL, TOP manifold,  $|\pi_1(Y)|$  is finite and divisible by two. In addition, assume that the universal cover of Y is a sphere. Let  $\eta$  (respectively  $\varepsilon$ ) be a nontrivial (respectively trivial) line bundle over Y. Assume  $X = E(\eta \oplus \varepsilon) = E(\eta) \times I$ ,  $M = N \times I$ ,  $f = h \times id_I$ ,  $h: N \to E(\eta)$  is a (simple) homotopy equivalence. As the Browder-Livesay desuspension obstruction [2,6] will appear in our setting only for  $n \equiv 0 \mod 4$ , we will work in this range of dimensions. Take a  $(|\pi_1(Y)|/2)$ -fold cover of N and glue a disk to obtain a homotopy projective space  $Q^{n-1}$ . Write  $Q^{n-1} = S^{n-1}/\rho$ ,  $\rho: \mathbb{Z}_2 \times S^{n-1} \to S^{n-1}$  is a free involution. We have the following.

**Theorem 2.5.** Let  $n \ge 7$ ,  $n = 0 \mod 4$ , and assume that the abstract surgery obstruction of the CTSP

vanishes. Then, if  $\rho$  as above does not desuspend,  $O_2(h \times id_I) \neq 0$ .

**Proof.** Take the  $(|\pi_1(Y)|/2)$ -fold cover of the CTSP above and use Remark 2.4.  $\Box$ 

#### 3. A particular CTSP

Consider the CTSP where Y is a closed manifold  $X = E(\nu)$  and  $\nu$  is an orientable two dimensional linear bundle over Y. In addition, assume Y simply connected. Let  $q: E(\nu) \to Y$  be induced by bundle projection. Denote by  $S(\nu)$  the associated sphere bundle. By the homotopy exact sequence of a fibration the map  $\pi_1(S(\nu)) \to \pi_1(Y)$ induced by q, is a projection of a cyclic group to the trivial group. As a result [7], the map  $L_{n+1}(\pi_1(X - Y)) \to L_{n+1}(\pi_1 X)$  induced by inclusion is an epimorphism. By [5, p. 320], if the abstract surgery obstruction vanishes then  $O_2(f) = 0$  as well.

#### 4. Concluding remarks

The phenomenon  $O_2(f) \neq 0$  appeared in many of the examples presented above. In each of these cases, the normal bundle of Y in X is nonorientable. We leave the following problem for the reader: prove or disprove the following: assume  $\nu$  orientable, then  $O_2(f)$ , if defined, must be zero. An interesting special case is given by the following.

**Proposition 4.1.** Let X, Y be orientable manifolds,  $\partial Y = \phi$ ,  $\nu = \nu(Y \subset X)$  orientable. Assume  $\pi_1(Y) \cong \pi_1(S(\nu)) \cong 0$ , and  $\pi_1(X - E(\nu))$  is 2-torsion free. Then, if  $O_2(f)$  is defined,  $O_2(f) = 0$ .

**Proof.** If  $X = E(\nu)$ , by the previous results, we are done. If not, use Cappell's splitting theorem [3] to split f along  $S(\nu)$ , reducing the proof to the case  $X = E(\nu)$ .  $\Box$ 

We would like to thank the referee for his or her helpful comments.

# References

- W. Browder, Embedding smooth manifolds, in: Proc. Internat. Congress of Math., Moscow, 1966 (Mir, Moscow, 1968) 712–719.
- [2] W. Browder and G.R. Livesay, Fixed point free involutions on homotopy spheres, Tôhoku Math. J. (2) 1 (1973) 69-88.
- [3] S. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976) 69-170.
- [4] R. Cruz, Periodic knots and desuspensions of free involutions on spheres, Lecture Notes in Math. 1440 (Springer, Berlin, 1990) 39-47.
- [5] S. Cappell and J. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. 99 (1974) 277–348.
- [6] S. Lopez de Medrano, Involutions on Manifolds (Springer, Berlin, 1971).
- [7] C.T.C Wall, Surgery on Compact Manifolds (Academic Press, New York, 1970).