BRANCHED CYCLIC COVERINGS
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The present paper outlines a solution to the following problem of Fox
[4]: When is the p-fold branched cyclic covering space of a manifold,
with a manifold branching set, again a manifold? The solution of this
problem has many consequences for the study of cyclic group actions on
manifolds. A few examples of applications are described below in Section 1
In Section 2 we study branched cyclic covers of $3 and relate a result on

these to the classical P. A. Smith conjecture and the above problem of Fox.

§1. Solution of Fox’s problem

Let M® and W™2 be P.L. manifolds with M compact and f:M-W
a P.L. embedding which is proper, i.e. f(dM)=dW N f(M). A branched
cyclic covering space of W along M is a simplicial complex Y equipped
with a simplicial map #:Y »W sothat Y is a branched cover of W along
M (4] with n—l(M) =M a P.L. homeomorphism and Y-M - W-M a
regular covering space with a finite cyclic group of covering translations.
Note that we do not assume that f(M) is a locally-flat submanifold of W.
It is easy to see that in general W has a p-fold cyclic cover branched
along M if and only if there is a class of order p in Hl(W—M; Zp)
which under the composition of the natural maps HI(W—-M; Zp) >
III(E_E; Zp) > H%(E, JE; Zp) goes toa mod p Thom class [3] of the regu-
lar neighborhood E of M in W, with JE = JE — interior (GWNE). If
W - E is a regular neighborhood of M, this condition just means that the
integral Thom class of E, defined by analogy with the Thom class of a

bundle, is divisible by p.

*
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Fox observed that if M" is a locally-flat submanifold of Wn+2, Y is
certainly a manifold [4]. A precise but entirely local answer to Fox’s
problem for P.L. but not necessarily locally-flat submanifolds can be
given as follows. Regard M as a subcomplex of a triangulation of W.
For any point in the interior of an i-simplex A(iz of M, the link pair in
(M, W) is the i-th suspension of a P.L. locally flat knot pair (sn-1-1)
st =iy [11]. Let X, be the manifold which is the p-fold cyclic cover
of gti-i along this locally-flat sh-1-i g g easy tosee that Y is a
P.L. manifold if and only if each such X, is a sphere. While this re-
duces Fox’s problem to questions about locally-flat P.L. submanifolds,
it is too local to be very useful in applications.

We are thus led to a reformulation of Fox’s problem. First note that
outside of a regular neighborhood of the branching set M, Y is certainly
a manifold. Thus, Fox’s problem is solved by determining which branched
cyclic cuvers of a manifold regular neighborhood E™2 of M are again
P.L. manifolds. Two manifold oriented regular neighborhoods E8+2 and
E;”"Q of M" are said to be concordant if there is an oriented regular
neighborhood V of M x 1 which restricts to regular neighborhoods E,
of Mx1 and —E;, of Mx 0. Recall the classifying space for oriented
regular neighborhoods BSRN, constructed in {3] using results of [11] and
analyzed using methods of [2]. See also {6],{1]. Concordance classes of
manifold oriented codimension two regular neighborhoods of M are in 1
to 1 correspondence with elements of (M, BSRNQ]. Theorem 1 provides
a global answer to the following formulation of Fox’s problem. Which P.L.
oriented manifold regular neighborhoods of M are concordant to regular
neighborhoods which have manifold p-fold cyclic covers branched along M?
In applying Theorem 1 it is useful to recall that if f;: M - W2 jsa P.L.
embedding, n> 4, with E, the regular neighborhood of f,(M) in W,
and E; is a manifold regular neighborhood of M which is concordant to
EO, then there is an ambient concordance of fO in W toa P.L. embed-

ding f; with E; P.L. homeomorphic to a regular neighborhood of
f, (M) 131
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THEOREM 1, There exzsts a classifying space BSRN, Zp equipped with
a natural map m: BSRN, “p » BSRN, such that an oriented manifold regu-
lar neighborhood E3+2 of the P.L. manifold M® is concordant to an
oriented manifold regular neighborhood E; of M with a manifold p-fold
branched cyclic cover if and only if the map g:M > BSRN, which classi-
fies E, lifts toa map g:M - BSRNQZp so that ng is homotopic to g.

This classifying space for branched cyclic covers BSRNQZp has non-
finitely generated homotopy groups in even dimensions greater than 2. To
see this, note that an element of 77i(BSRN2 P} is represented by a regular
neighborhood EN2 of Si, which after being modified within its concord-
ance class may be assumed to be locally-flat except possibly at one point
P of Si. The p-fold cyclic branched cover of the link pair of P in
(Si, Ei+2) is then, by the local criteria for branched covering spaces to
be manifolds discussed above, a sphere equipped with a semi-free Zp
action with a knot as fixed points. This construction defines a map which
is an isomorphism (except for i =2, when it has kernel Z) of
7ri(BSRN2 Py to the groups of concordance classes of ‘‘(i+2)-dimensional
counterexamples to the P. A. Smith conjecture” defined and algebraically
analyzed in [2, §11]. In particular, (BSRN p) is not finitely gener-
ated for i>1, m,;, {(BSRN, Zpy-0 for p odd, and 7,(BSRN, Zpy-z
the classical P.A. Smith conjecture 1s true for Z actions on S3. Thus,
as a consequence of [13], 7,(BSRN, 2) =

The detailed homotopy type of BSRN2 P can be studied by combining
the homology surgery method of studying codimension two embedding
problems of [2], the global approach to non-locally flat embeddings de-
veloped in [3] and generalizations of the characteristic variety theorem
developed by Sullivan {12] to study G/PL. That the characteristic
variety theorem could be generalized to spaces other than G/PL was
observed by J. Morgun and by L. Jones.

As an application of Theorem 1 we will consider the following problem:

Which oriented closed nanilold:s M" are the codimension two fixed points
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of semi-free actions on S™2? Theorem 3 which answers this problem
will combine the following criteria for M to have a P.L. embedding in
S™2 with the condition that M be a Zp-homology sphere which is im-

posed by P.A. Smith theory.

THEOREM 2 |3]. Let M® be a closed P.L. manifold with 7rn+1(2M) >
H_ . (EM) onto. Then there is a P.L. embedding M C snt2,

The relationship between the dimension k of the non-locally flat

S™2 and the characteristic classes

points of the embedding of M" in
of M, developed in [3] shows that in many cases k must be at least
n—4. Note that if M® does have a P.L. embedding in S™?Z, then by
the Thom-Pontrjagen construction, 77n+2(22M) > Hn+2(22M) is onto.
The following result is a kind of converse to P.A. Smith theory. Re-

lated results were obtained by L. Jones in high codimensions [7].

THEOREM 3. Let M" be a z, homology sphere with m 1 (ZM) »
Hml(EM) surjective. Assume that HZ(M; Z,)=0. Then there exists a

semi-free P.L. action of Zp on S™2 with M as fixed points.

Many M which satisfy the hypothesis of this theorem do not have
locally-flat embeddings in S™*2  If the condition in Theorem 3 on the
surjectivity of the Hurewicz map is dropped, we can still show, for n odd,
that there is a Zp homology sphere V™2 with a semi-free Zp action
and with M as fixed points. The condition on HQ(M;ZZ) arises from
the 3-dimensional P.A. Smith conjecture in a manner which will be de-
scribed below.

Another result which follows from Theorem 1, an analysis of BSRN2Zp
and methods of [2],{3] is the following:

THEOREM 4. Let WO2  pe an oriented compact P.l.. manifold equipped

with a semi-free Zp action, p odd, with fixcd points M" C interior (W),
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M an oriented closed P.L. manifold with HZ(M;ZZ)=0. Then if n is
odd or if w (W) =0, for every closed P.L. manifold M’ homotopy equiva
lent to M, there exists a compact P.L. manifold W', equipped with a
semi-free P.L. Zp action with M’ as fixed points, with (W', 0W") equi-
variantly homotopy equivalent to (W,JW).

The conditions on HZ(M; ZZ) in the above results arise in the follow-
ing way. In proving Theorems 3 and 4, we study a natural map of BSRNZZp
to G/PL and attempt to find a splitting of it. In particular, on the level
of the second homotopy groups, we are trying to find a splitting of the map
which assigns to a knot which is a counterexample to the classical P.A.
Smith conjecture its Arf invariant. We thus propose the following weak
form of the P.A. Smith conjecture, whose truth would imply the necessity

of the conditions on HZ(M; 22)‘

WEAK P.A. SMITH CONJECTURE. Let KCS3, K = S! be the fixed
points of a P.L. Zp action on Ss, p odd. Then is AK(—I) =t1
(modulo 8), where AK(t) is the Alexander polynomial of the knot K C s3»

Fox [5] studied restrictions on AK(t). However as his methods, which
involve expressing homology in terms of AK(t), apply in high dimensions,
where for p odd the weak P.A. Smith conjecture is false (2], they alone

will not suffice.
A result on ﬂz(BSRNZZp) is indicated at the end of Section 2 below.

§2. Cyclic branched covering of g3
Let BC S be a knot. Let V be a Seifert surface of B, with link-
ing form Ly,. Let L be a matrix for Ly, with respect to some basis.

Let L’ denote the transpose of L. If & is complex number of norm 1,

let
N Ke - Lo L —¢L &7,



170 SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

Then Ké— is a Hermitian form over the complex numbers; let og B)
denote its signature. Let 2Z(3,p) be the p-fold cyclic branched cover of

s® along B, with the induced orientation.

THEOREM 5. The p-fold cyclic cover 2(f,p) bounds a parallelizable

manifold with signature p—1

2 Ugi(ﬁ),
i=1

th

& a primitive p'! root of unity.

NOTES:
1. Ué’(B): 05_1(6).
2. The function og (B) is actually a cobordism invariant of (3.
3. osc(B) is continuous in &, except possibly at the negatives of
the roots of the Alexander polynomial of .
4. The manifold constructed to bound X = 2(B3,p) is simply connected

and has even middle betti number.

5. Analogous results are true in high dimensions.
Theorem 5 has been obtained independently by L. Kauffman {141,

Proof of Theorem 5. Consider

P-pfxl |J vxocsixr U p*=Dn*.
x 0 s3xo

Then the p-fold cyclic branched cover Q of D* along P is a 4-manifold
with boundary (B, p). Clearly

Q- CExnupd® |J PxD?
P xS

~

where 2 is the part of 3 lying over the closure of the complement of a
tubular neighborhood of f3, and p(DY) is attached to X x 1 along the
subset of its boundary pS3 s3U...US? consisting of p copies of the
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closure of the complement of a tubular neighborhood of V in s3. qf
7:-8% is the projection, 77]‘77_1(53—\/) is the trivial p-fold covering
space.)

Let Q= SxI1U pD*C Q. By excision Hy(@Q) = Hy(Q,pD?) =
H,(p(VxI, Vxdl)) = H{(pV). Moreover, the mapping Hz(@) - Hy(Q) is

surjective, as the composite

H,(Q,Q) — Hy(PxD?, PxS") — H(PxS!) — H,(Q)
0l
z
£ = linking number with P, is a monomorphism. Hence (5 and Q have
the same index. Since (3 is an unbranched cover of a subset of S3, it
is parallelizable, i.e. for x ¢ Hz(Q), x-x = 0(2). Hence Q is also
parallelizable.

A basis of H,(Q) is obtained by pushing circles representing a basis
of H;(V) in each component of 77V in $x 0 to each of the boundary
components of a neighborhood of 7~V and making the results bound in
the corresponding copy of D%, With respect to the basis thus obtained
from the basis of H;V used to obtain L from Ly, it is easy to see

that the intersection form on Hz(é) has the matrix

I+L” ~L 0 cee 0 -L’
L’ L+L’ 0o ... 0 0
K - 0 —L°  L+L7 -L cen 0--0
: 0
: -L
-L 0 o .- -L” L+

Let H be the matrix

I I &1 .. Ep-1p

i Spon f(P—l)ZI.
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h

where & is a primitive pt root of 1 and I is the identity matrix of

the same size as L. Then H'KH is the matrix

Ko 0

0 Kpp-t

and H'H - pl. The theorem follows.

NOTE. One can easily show that the intersection form on HZ(Q) has the

matrix

From this and Poincare Duality, we may recover all known results on HI(E).

EXAMPLE: B = trefoil knot, p = 5. Then

L - ,
0 -1
so that U‘f(ﬁ) =-2=0_,(8) for

£= 2™t 1/6<t<5/6 ,
and
ag(B) =0 if -1/6<t<1/6 .

4
Thus X Ué’(B):—8.

i=1
In fact, it is well known [10] that the 5-fold branched cyclic cover of

3, is binary dodecahedral space (‘‘Poincare space”’).
As a consequence of Theorem 5 and Rohlin’s Theorem [9}, and results
Z ~ VA R
of [2] the natural periodicity map 772(BSRN2 Py, 77()(B§.RN2 p) is seen to

be not surjective.
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