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The codimension two placement problem
and homology equivalent manifolds

By SYLvAIN E. CAPPELL"? and JULIUS L. SHANESON"?

PREFACE

In this paper new methods of classifying smooth, piecewise linear (P.L.)
or topological submanifolds are developed as consequences of a classification
theory for manifolds that are homology equivalent, over various systems of
coefficients. These methods are particularly suitable for the placement
problem for submanifolds of codimension two. The role of knot theory in
this larger problem is studied systematically by the introduction of the
local knot group of an arbitrary manifold. Computations of this group are
used to determine when sufficiently close embeddings in codimension two
“differ” by a knot. A geometric periodicity is derived for the knot cobordism
groups.

The methods of this paper can also be applied to get classification results
on submanifolds invariant under group actions and on submanifolds fixed by
group actions. In particular, algebraic calculations of the equivariant knot
cobordism groups are given in this paper and some geometric consequences
are derived. Other applications of the methods of this paper include a
general solution of the codimension two surgery problem, given below, and
corresponding results on smoothings of Poincaré embeddings in codimension
two.

The proofs of many of the results use computations of new algebraic
K-theory functors. In a future paper, the present methods will be applied
to the study of P.L. embeddings and their singularities.

TABLE OF CONTENTS

Introduction ... coouuiiiiiiiiiiii ittt eeennnnnenaas 278
Chapter I: Surgery with coefficients...........ccccvvivveennnn. 285
1. The even dimensional absolute case.............c...... 285
2. The odd dimensional absolute case..........eevuvuennn.n 294
3. The general Case.....ooviiiiiiiiniiieiieneeeeeaeannans 297
Chapter II: The local codimension two problem................ 302
4. The group of local knots of a manifold................ 302

1 Partially supported by an NSF Grant.
2 Alfred P. Sloan Fellow.



278 S. E. CAPPELL AND J. L. SHANESON

5. Local knots and surgery with coefficients.............. 307
6. Relation with knot cobordism ......................... 312
7. The case of the trivial bundle................ccoou... 318
Chapter III: Codimension two splitting and group actions....... 320
8. Codimension two splitting .......coovveiiiiiennnnnnns 320

9. Invariant spheres and characteristic submanifolds for

free actions of ecyclic groups on odd dimensional
0] 4123 320N 324

10. Equivariant cobordism of invariant spheres in
codimension tWo.....ooveeeeiiiiiiiiiiiiiiiiiiieann. 327
11. Knots as fixed points.....ovveeiiiiiiennniieennnnnn. 333
Chapter IV: Some global results........covveiiieeiininnnnnnnn. 334
12. Close embeddings in codimension two.........c.ccvv..n.. 334
13. Knottings of S* X M in S»*2 X M.....cccvviiieeennn.. 336
Appendix I: An eXact SEQUENCE.....vvvrreerererrenneennnennnns 344
Appendix II: “Cracking”....ooeeiiieiiiieeiinieeeeennnnneennns 345

Introduction

In order to get significant classification results, the study of embeddings
in codimension two, i.e., embeddings of a manifold M™ in W"*? has usually
been restricted to the case in which M and W are spheres: i.e., knot theory.
The peculiar difficulties in the study of codimension two embeddings of M in
W are due to the fact that the homomorphism #,(W — M) — z,(W), though
always surjective, may not be an isomorphism. It is rather hard to conclude
directly, from a knowledge of M, W, and the homotopy class of the em-
bedding, enough information about z,(W — M) or, more generally, about
the homotopy type of W — M, to give satisfactory geometric information
about W — M. It is therefore natural to use instead the weaker information
consisting of the homology groups of W — M with coefficients in the local
system of m, W. More precisely, we need a classification theory for manifolds
that are only homotopy equivalent to W — M in the weak sense defined by
coefficients in 7, W, i.e., manifolds homology equivalent to W — M over the
group ring Z[z,W]. In knot theory (M = S*, W = S**?, for example,
while the homotopy type of the complement S*** — S* may be very com-
plicated,' it is in any case always a homology circle. Moreover, this fact
together with other elementary data serves to characterize knot comple-
ments. In this paper we develop a general theory for classifying manifolds
that are homology equivalent over a local coefficient system and perform cal-
culations in this theory to get results on codimension two embeddings.

Even in the case of knot theory, the systematic study of homology
equivalences leads to new understanding and new results. For example, we

1 The simple homotopy type of the knot complement, even relative to the boundary, does
not, in any case, characterize a knot [C1].
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prove a geometric periodicity theorem for high dimensional knot cobordism
groups. Two embeddings of a manifold, f;: X— Y, 7= 0, 1, are said to
be concordant if there is an embedding F: X X I — Y X I with Fi(z, ) =
fi(x), ©=0,1, I=10,1] the unit interval. (In the P.L. and topological
case, only locally flat embeddings are under consideration in this paper.
Non-locally flat embeddings will be studied in [16], [17].) Knots are said to
be cobordant if they are ambient isotopic to concordant knots.! This equiva-
lence relation was introduced by Fox and Milnor [23], in the classical case
X = 8% Y = 8% The cobordism classes of knots form a group, with addi-
tion defined by connected sum. Kervaire [25] studied analogous groups for
higher dimensions and proved that they vanish in even dimensions and are
very large in odd dimensions. Using our methods, we give a conceptually
simple proof (see Corollary 18.11, and also note 2 to Corollary 6.5) of the
vanishing of the even dimensional knot cobordism groups; it is a consequence
of the vanishing of the obstruction group to odd dimensional surgery to obtain
an (integral) homology equivalence. This proof extends to show the vanishing
of the even dimensional equivariant knot cobordism groups (see 10.5).

Levine [31], [82] computed the odd dimensional P.L. or smooth groups
(except in the classical case) and deduced an algebraic periodicity for high
dimensional knot cobordism groups. In [14], it was shown that for topo-
logical knots periodicity applies all the way down to the case of S? in S°.
In the present paper, we employ a new algebraic description (6.4, 13.10) of
knot cobordism in terms of Hermitian or skew-Hermitian quadratic forms
over Z[t, t7'], the ring of finite Laurent series with integer coefficients,
which become unimodular when one puts ¢t = 1.

An especially simple formulation of geometric periodicity for knots is
obtained by comparing, for a simply connected closed manifold M¥*, the
embeddings of S* x M in S™** x M with the embeddings of spheres S*®
in S** and S*** in S**¥*2, A cobordism class x represented by f:S™—
S*+* determines the cobordism class d(M, n)(x) of embeddings of S™ x M
in S x M represented by f X id,. A cobordism class y of embeddings
of S»*+* in S*+*+? determines, by connected sum with f, X id,, f,: S®— S+
the usual inclusion, a cobordism class a(M, n)(y) of embeddings of S™x M
in S™ x M. Let G,(M) be the cobordism classes of embeddings of
S*** x M in S™ x M that are homotopic to f, X id,; see § 13 for the precise
definition of cobordism in this context. Let G, = G,(pt), the knot cobordism
group.

1 For P.L. and topological knots, cobordism implies concordance.



280 S. E. CAPPELL AND J. L. SHANESON

THEOREM (13.1). Assume n = 2 and M* is a simply-connected closed
P. L. or topological manifold. Then a(M, n): G,., — G.(M*) is a one-to-one,
onto map.

In other words, up to cobordism every embedding of G, in G,(MF*) can
be pushed into the usual embedding except in the neighborhood of a point,
and this can be done in a unique way.

THEOREM (13.2). If k = 0 (mod 4) and M has index + 1, and if n >3,
in the P. L. case, or n =3, in the topological case, then 6(M, n): G,— G, (M*)
18 a one-to-one, onto map.

In particular, let M = CP? the space of lines is complex three-space.
GEOMETRIC PERIODICITY THEOREM (18.3). The map
a(CP?, n)™0(CP?, n): G, — Goiu
s an isomorphism for m > 3, in the P. L. case, and for m = 3, in the
topological case.

This geometric periodicity of knot theory leads to a homotopy-theoretic
periodicity in the classifying spaces for P. L. singularities [17].

The methods of this paper also apply to the study of smooth (or locally
flat P. L. or topological) knots invariant under a free action of a cyclic group
or fixed under a semi-free action. S. Lopez de Medrano [35], [36] proved a
number of important results on knots invariant under free Z,-actions. His
work and the ideas of our earlier work [14], [47] suggested the role that
homology equivalences could play in codimension two. Our analysis of in-
variant spheres in codimension two breaks up naturally into two problems;
first the determination of which actions can be obtained by the restriction
of a given action to an invariant sphere, and then the classification up to
equivariant cobordism of the equivariant embeddings of a given free action
on a sphere in another.

On even dimensional spheres, only the cyclic group Z, can act freely,
and Lopez de Medrano has determined which actions admit invariant spheres
in codimension-two; his result is reproved and interpreted in our context
in Appendix I. The following result asserts that the even-dimensional
equivariant knot cobordism groups vanish:

THEOREM (10.5). Let X**%, k=8, be a (homotopy) sphere equipped
with a free Z,action. Then any two invariant spheres of Z*** are
equivariantly cobordant.

On odd dimensional spheres, the results are slightly easier to state if
the group has odd order.
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THEOREM (9.4). Let Z*+' and Z*™* be spheres with free P.L. actions o
and t, respectively, of Z,, s odd. Then there is an equivariantly “nice”
(i.e., smooth or equivariantly locally flat) embedding of Z**~' im I+t if
and only if T*7/t is normally cobordant to a desuspension of the homotopy
lens space X*+/p,

Note that normally cobordant implies homotopy equivalent. Note also
that each normal cobordism class contains several inequivalent actions [8].

In a future paper (see the announcement [16]) it will be shown, as a
consequence of a general theory of P.L. embeddings that there is an
equivariant P. L. embedding, not necessarily equivariantly locally flat, of
X#*-1 ip 3+ if and only if X*'/r and X***/p are homotopy equivalent.

As a consequence of similar criteria for invariant spheres of high codi-
mension, one can prove the following:

COROLLARY. Let T be a free action of Z, on the (homotopy) sphere
Z¥7! that is the restriction of the free action 0 on Z**' to an imvariant
sphere. Assume s is odd. Then X¥*' 18 a characteristic sphere of p (i.e.,
IHH T 48 a characteristic submanifold of Z**'/t) if and only if there is a
tower.

T2+ = U = .. D21 T2k
of invariant spheres.

Characteristic submanifolds are discussed in [35], [36], [6], and below.
An obstruction theory computation shows that for 25 + 1 > (1/2)(2k + 1),
the quotient space of an invariant sphere of dimension (25 + 1) in an action
on a (2k + 1)-sphere is a characteristic submanifold if and only if its normal
bundle splits into a sum of plane bundles.

The determination, for an action o of Z,, s = 2p, on X**+, of which
actions appear as invariant spheres is somewhat more complicated. For
p = 1, this was done by Medrano. The general situation, described in § 9
(see 9.2) below, is that corresponding to each “homotopy desuspension” L of
X#*+1/p there is, for k odd, precisely an entire normal cobordism class of
homotopy lens spaces (or projective spaces) homotopy equivalent to L
occurring as characteristic submanifolds of X*+!/o. For k even, there is an
obstruction in Z, to the existence of any characteristic submanifold homo-
topy equivalent to L, and if it vanishes, then an entire normal cobordism
class occurs.

Our calculation of equivariant knot cobordism (see § 10) will be given
using our new algebraic K-theoretic I'-functors. A closely related computa-
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tion of the knots fixed by semi-free actions yields the following:

THEOREM (11.2). For any integer m and any knot r: S* — S**%, n =3,
K 7 -+« # £ (connected sum m times) is cobordant to a knot fized under o
semi-free action of Z,. Moreover, every element of 8Z, for n = —1 (mod 4),
or Z,, for n =1 (4), occurs as the index, or invariant, of a knot fized under
a semi-free action of Z,,.

Of course, in the P.L. and topological cases only actions that are
“nice” in the neighborhood of the fixed points are under consideration. For
n = 3, in the P.L. and smooth case one can only realize 16Z. Theorem 11.2
below is only stated in the topological case.

In Chapter II and § 12 we study the question of when two sufficiently
close embeddings f, and f, of M* in W*** are concordant, at least up to
taking connected sum with a knot. If f, is sufficiently close to f,, it will lie
in a bundle neighborhood. We therefore consider cobordism classes of em-
beddings of M, in the total space E(£) of the disk bundle of a 2-plane
bundle & over M, homotopic to the zero-section. Such an embedding is
called a local knot of M in &, and the set of cobordism classes is denoted
C(M, &) or just C(M) if ¢ is trivial. (In the sequel, we write C,(M; ¢),
Cru(M; &), Crop(M; &) to distinguish the various categories; in the last two,
local flatness is understood.) C(M, &) is a monoid; the operation is called
composition or tunnel sum and is defined as the composition 7,,, where ¢,
and ¢, are local knots of M in £ and ¢, is a thickening of ¢, to an embedding
of E(£) in itself. We discuss only the case when M is closed; various rela-
tivizations exist.

THEOREM. (See 4.5, 5.3, 6.2, 6.3, and 6.5.) For n = dim M =3, C(M, &)
18 a group under composition, and for n =4 it is abelian. For n+1, C(S™)
1s isomorphic to the n-dimensional knot cobordism group. Conmmected sum
with the zero-section defines a homomorphism a: C(S™) — C(M, &). In the
P.L. or topological case, & is a monomorphism onto a direct summand,
provided & is trivial, and n = 4.

We will compute C(M, &) in terms of an exact sequence involving the
I-groups to be described below. In particular, for dim M = 1 (mod 2), it is
caught in an exact sequence of Wall surgery groups and hence tends to be
fairly small. For example, one has

THEOREM (7.2). For n = dim M = 4 even, there is an injection
p: C(M) — L, (7, M) .

The map p has a geometric definition in terms of a surgery obstruction
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of a type of Seifert surface for local knots.

On the other hand, for M odd-dimensional, C(M, &) is not, in general,
finitely generated. For simply-connected M, the main result is the
following:

THEOREM (6.5and 6.6). Let M be a simply-connected closed n-manifold,
n =4, and let & be a 2-plane bundle over M. Then a: C(S*) — C(M, &) is
onto, and is an isomorphism for & trivial, in the P.L. and topological cases.
For n even, C(M, &) = 0.

We draw some consequences for the study of close embeddings.

THEOREM. (See 12.1 and following discussion.) Let fo: M* — W*** be
an embedding (locally flat, of course) of the closed, simply-connected manifold
M in the (not necessarily compact) manifold W. Assume n = 5. Let f be
another embedding, sufficiently close to f, in the C, topology. Then if the
normal bundle & of f is trivial, or if m 1is even and the Euler class of & is
not divisible by two, or if n =2 (mod 4) and the Euler class of & s
divisible only by two; them, after composition with a homeomorphism (or
diffeomorphism or P.L. homeomorphism) of M homotopic to the identity,
f ts concordant to f,, for n even and to the connected sum of f, with a knot,
Sfor n odd.

The importance of simple connectivity of M is demonstrated by the next
result.

THEOREM (7.3 and 14.5). Let T"=S'X «++ XS, n =4 and even. Then,
in the P.L. category,
C(T*) = [X(T* — pt); G/PL],
and every element of C(T™) can be represented by an embedding arbitrarily
close to the zero-section T*C T" x D C(T*) is generated by products with
various T**C T* of the connected sum of TC T* x D* with knots of
dimension 1.

This follows from 7.2, as quoted above, and from known results in
ordinary surgery theory. Thus C(T*) is a direct sum of copies of Z and Z,
corresponding to the index or Arf invariant of knots sitting along various
sub-tori of non-zero codimension, as described in the theorem. Thus knots
with vanishing index or Arf invariant (a huge supply of them exists)
disappear from sight when placed along a sub-torus. In another paper, we
will show exactly how these knots reappear in the classification of non-locally
flat cobordism classes of non-locally flat embeddings of T*in T* x D

Given a manifold Y*** and a submanifold X*, the problem of making
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a homotopy equivalence f: W—Y transverse regular to X, with f|f'X: f' X—
X a homotopy equivalence, is called the ambient surgery problem. There
is always an abstract surgery obstruction, an element of L,(7,X), to solving
this problem. We solve the codimension two surgery problem, i.e., the case
k = n, using the methods of surgery to obtain homology equivalences.
The odd dimensional result resembles the results of higher codimension
[5]; if the abstract surgery obstruction vanishes the problem can be solved
and all the manifolds homotopy equivalent to X in one mormal cobordism
class can occur as f~'X. In even dimensions, there is an additional obstruc-
tion to this problem, defined in terms of the I'-functors. This obstruction
often can be interpreted in terms of knot cobordism groups. Note that in
codimension two, even if f|f'X:f'X— X is a homotopy equivalence,
St (W — fX) — (Y — X) need only be a Z[r, Y]-homology equivalence.

As an application of our codimension two surgery, one can study the
problem of finding locally flat spines in codimension two. This problem
has been studied by Kato-Matsumoto [29] and Matsumoto [39], using dif-
ferent methods of codimension two surgery in this special case.! In a forth-
coming paper, we will apply our methods to the classification of non-locally
flat spines.

Chapter I develops the theory of homology surgery. Let Z[z] be the
integral group ring of the group =, with a usual involution determined by
a homomorphism w: 7 — {£1}, and let F: Z[x] — A be a homomorphism of
rings with unit and involution. It is convenient, though not always essential,
to assume ¥ is surjective.

THEOREM. Let (Y",0Y) be a manifold pair (or even just a Poincaré
pair over A) with (.Y, w'Y)= (w,w), n=5. A normal map (f,D),
[ (X,0X)—(Y,0Y), of degree one, inducing a homology equivalence over
A of boundaries, determines an element o(f, b) of an algebraically defined
abelian group THF). The element o(f, b) vanishes if and only if (f, b) is
normally cobordant, relative the boundary, to a homology equivalence
over A.

This result, together with a realization theorem for elements of T'*(F)
(see 1.8 and 2.2) and a special study of homology surgery for manifolds
(Y,0Y) with 70Y =71, Y (see 3.1) leads, by a procedure analogous to

1 They try to modify a submanifold to a spine by ambient surgery, as contrasted with
our approach of modifying a transverse inverse image and its complement by abstract sur-
geries. In the even dimensional case, Matsumoto obtains an obstruction group of Seifert
forms that corresponds, in the case of knots, to the expression ¢tV + V’, V a Seifert matrix
with transpose V.
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[58, § 9] to a general relative theory for homology surgery. In this theory
a periodicity theorem which asserts that o((f, b) x idcs:) = o(f, b) plays an
important role. An analogous theory for simple homology equivalences, with
absolute groups I'4(¥), is also developed in Chapter I.

If ¥ is the identity of Z[x], then I',(¥) is the Wall group L,(7), and
o(f, b) is the usual surgery obstruction of Wall.

For n = 2k, T',(¥) is defined as a Grothendieck group of (—1)*-symmetric
Hermitian forms over Zz that become non-singular forms on stably free
modules when tensored with A. If F is onto, so is the natural map
[ou(F) — Lyw(A). For F onto, we show directly that T,,,,(F) is a subgroup
of L., (A). Geometrically, this implies that in odd dimensions the vanishing
of an obstruction in a Wall surgery group is enough to permit completion of
homology surgery.

Further calculations of I'-groups will appear in a future paper.

In terms of I'-groups one has a calculation of C(M, &).

THEOREM (5.2). If m = dim M = 4, then there is an exact sequence

0 — Cu(M, &) =, T,15(g) —2— coker s, ,
H=0, PL, TOP.

Here ¢ is the diagram

2, (0 B)] - Z[m,(0E)]

b

Z[.(E)] -2 2z M]

p the projection of &, and sy:[ZE; G/H]— L:.(ps) is the usual map,
E = E(§). ThisI'-group is calculated by an exact sequence involving absolute
groups as the other terms (see 3.2). Our results on equivariant knot
cobordism (§ 10) are also stated using I'-groups.

Chapter I: Surgery with coefficients

1. The even dimensional absolute case

Let 7 be a finitely presented group and w: w — Z, a homomorphism of
7w to the group of two elements. Let the integral group ring Zz have the
conjugation determined by the formula g = w(g)g™ for gem. Throughout
this section F:Zw — A will denote an epimorphism of rings (with 1 and)
with involution. (Actually, the assumption that F is onto is not used until
Lemma 1.2.) The most important case is the case of A = Zz’ and F a map
induced by an epimorphism of groups.
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Let Wh (¥) = K,(A)/F(£x). Note that in case F is induced by an onto
map of « to #/, Wh(¥) = Wh(x’). Let f: A— B be a map of finite con-
nected CW complexes, with = = 7B, and suppose that f induces iso-
morphisms on homology groups with local coefficients in A. Let C, be the
mapping cylinder of f. Let C’, be its universal covering space, with
Zcéf the induced covering over A. Let C, be the cellular chains of
(C;, 4), a chain complex of free Zmw-modules with basis determined by
choosing lifts of the cells of (C;, A). Then C, ®z. A is acyclic, and its
torsion Ag(f) € Wh () is a well-defined invariant of the homotopy class of f;
see [40] for more details. If As(f) = 0 we say that f is a simple homology
equivalence over A (or, if more precision is needed, over ¥F).

An isomorphism of stably based A-modules will be called F-simple, or
just simple if there is no danger of confusion, if and only if it represents
the zero element of Wh (¥). A stable basis of a A-module will be said to be
in the (F)-preferred class, with respect to a given stable basis, if and only
if the stable automorphism given by change of basis is simple with respect
to the given basis.

Let 7= +1. Let I, = {\ — yn|xeZn}. By a special 7-form over F
is meant a triple (H, @, ), H a finitely-generated (right) Zz-module,
@: H x H—Zr a Z-bilinear map, py: H—Zr/I,, satisfying the following
properties:

Q1) o=, y») = P(x, YN , vz, y € H and VY € Z;
Q2) P(z,y) = 79y, «) , vz, ye H ;
Q3) P(z, x) = px) + Ne) , vee H ;
Q4) p(x + y) — p(») — () = P(x, y)ymod I, , va, ye H ;
(Q5) p(xn) = (@), veze H;

(Q6) H, = H ®z. A is stably based, and the map
Ap,: Hy — Hom, (Hy, A) given by AP,(x)(y) = Pa(x, ¥), Pa

induced by @, is a simple isomorphism with respect to a preferred class of
stable bases and its dual.

Note that by (Q6), (H,, Pa, ts) is a special 7-Hermitian form over A,
in the sense of Wall [58].

The special 7-forms form a semi-group under orthogonal direct sum,
denoted L.

We say the n-form « is strongly equivalent to zero (write a ~ 0) if 3
a submodule K c H with the following properties:

(PS1) o(x,y) =0 and p(z) =0 V. y€ K; and
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(PS2) The image of K, in H, is a subkernel in the sense of Wall
[68, Lemma 5.3].
The submodule K will be called a pre-subkernel.

If «a =(H, o, is an y-form, we define —a = (H, —p, — ).

LEmMMA 1.1, @ L (—@) L £~ 0, £ a kernel over Zr.

Proof. Let a= (H, @, pt). Adding a kernel over Zz [58, p. 47], we may
assume that H, is free. Let Kc H@ H be the diagonal submodule; i.e.,
K ={(z,x)|xe H}. Clearly ¢ L (—®) and g L (—p) vanish on K. The
same argument as in [58, Lemma 5.4] shows that K satisfies (PS2).

Now say @ ~ B (a is equivalent to B) if and only if a L (—g) ~ 0.
Let T',(F) be the set of equivalences classes of 2-forms under the
equivalence relation generated by ~; L induces the structure of an abelian
group on I',(F). We also write I',(F) = I, (F) for » = (—1)*. Note that the
n-form « represents zero in I',(F) if and only if there exists an »-form 8 with
B~0and @ L B~ 0. Clearly I')(F) depends functorially on ¥.

LEMMA 1.2. Each n-form « = (H, @, pt) is equivalent to a form a, =
(H,, ®o, tto) with H, free, with a basis whose image in H,Q A is in the
preferred class.

Proof. After adding a kernel over Zr, if necessary, let 4, «++, ¥, be a
basis of H, in the preferred class. Since ¥ is an epimorphism, we may
write ¥, =2, ® 1, x;€Zr. Let H, be the free Zn-module with basis
X, ++-, %, and let p: H — H be the homomorphism determined by p(z;) =
z;. Let @iz, y) = o(px, py), t(xr) = (px). The base #, ---, z, provides
(H,), with a basis also, and it is clear that a, = (H,, ®,, #,) is an »-form,
with 2, ®1, ---, 2, ® 1 in the preferred class. Let K = {(pz, z) |x € Hy};
then (PS1) for K is clear and (PS2) follows by [58, 5.4]. Hence K< HR H,
is a pre-subkernel for a | (—a,); i.e., @ ~ «,.

LEMMA 1.3. The n-form « represents zero in I'y(F) if and only if
there exists a kernel k over Zmw with a | k£~ 0.

Proof. Suppose « represents zero. Then there exists 8~ 0 with
a | B~0. Write g = (H, ®, ¢). Then, by (PS1) and (PS2), there exist
elements x,, -+, 2, in H such that # and g vanish on the submodule
spanned by these elements and such that there exist y, ---,y, with
2®L e, 2. @1, ¥, ®1, -+, y.,®1 a preferred basis of H,, with @,
and g, trivial on the submodule spanned by % ®1, ---, ¥; ® 1, and with
Pu(e; ® 1, ¥y; ® 1) = d;;. The elements y;, ---, 9, are found by lifting to
H a suitable basis of the dual subkernel to the image in H, of a pre-
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subkernel; the ,, ---, z, arise by lifting a suitable basis of this image to
the pre-subkernel itself; again this uses the fact that F is onto.

Let H, be the free Zr-module on {x,, ---, x,, ¥,, *++, ¥,}. Let p: H—H
be the homomorphism with p(z;) = x; and p(y;) = y;. Define @z, y) =
P(px, py) and p(x, y) = (px). Let (H,), have the stable basis 2,®1, ---,
Y. @ 1 (there is a certain abuse of notation here). It is easy to see that
if K is a pre-subkernel for @ L g, then ((id,) L »)™K is a pre-subkernel
for @ 1 B,, where id, denotes the identity automorphism of a. In particular
al B,~ 0.

Now let £ be the kernel over Zr of dimension 2r, with standard basis
€, o+r € fo ooe, fri Len, if K= (K, 0, ), O(es, £)) =015, ples, €)= O(fsr f}) =
vie) =v(f)) =0, and e, +++,¢,, f, --+, f, is in the preferred class. We
define a homomorphism 4: 8, — £ by setting

h(z;) = Z;=1 e:‘(ﬁ?’o(yi’ xs)) and
h(y) = fiu + Twer + Zj>,,ej(77¢o(yi; ?/k)) ’

where 7, = f4(y,) mod I,. It is easy to verify that h preserves forms by
checking it on basis elements. For example,

p(h(xi)’ h(yk)) = NPo(Yiy Ts) = P°Po(Ts, Yi) = Po(%s, Ys) -
Further (id, L ) ® id, = id, , L (P ®id,) is an isomorphism of the special
7-Hermitian forms (a L B,) and (« L £),. It now follows that if L is a pre-
subkernel for a 1 B, then (id, L h)(N) is a pre-subkernel for a I «; i.e.,
al k~0.

If we omit the words “simple” and “preferred class of basis” from the
above discussion, we obtain groups I'i(F) = I'A(F), = (—1)*. The lemmas
remain valid, by easier versions of the same proofs. When we wish to
emphasize the distinction between the two types of groups, we write I', =
I';. There are natural homomorphisms I'j; — I'%,

For ¢ = s, h there are natural homomorphisms

Li(w, w) — Ti(F) and Ii(F) — Lin(A, £57) ;

the second homomorphism will be generically called j,, and is clearly an
epimorphism. By Lg(A, =Fr) we mean Ll (A) if e =k and, for e = s,
we mean the Wall group of special 7-Hermitian forms defined using vanish-
ing in Wh (¥F) as the criterion for “simplicity”. If A = Zn’ and F is induced
by a homomorphism of groups,

LA, £Fm) = L(n’, w') .

For I':(¥), one actually needs only that F be locally epic; i.e., Y\, ++ <, N\ €
A, there exists a unit  of A with Mu, «++, Mu in F(Z7).
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Note that for A = Zz and F = identity, I's(F) = Li(z, w). As another
essentially known example, let B be an extension of Z contained in the
rationals. Let F be the inclusion of Zz in Rm. Then ¥ is locally epic.
Using Lemmas 1.2 and 1.8, it is not hard to show that I'’,(F) = L%(R=).

Before applying this algebra to geometric problems, we will need the
following result, essentially a consequence of Theorem 3.3 of [11]:

LEMMA 1.4. Let C, be a finite chain complex of free Zm-modules.
Suppose H,(C,) =0 for i< m. Then the natural map H,(Cy) QA —
H,(C. ® A) is an tsomorphism.

Proof. Let Cy w C; A C;_.,—0-++-—0 be the chain complex C,,
with ¢ < m. Since H,_(C,) = 0, 0—C/ — C; % C,_,— 0 is exact, where
C! = ker 0;. Hence there exists a free module F with C; @ F free. Con-
sider the chain complex

a‘+1®—1>0{®F———+0——>--~ )

ChiCy 2o i — G @ F

The obvious map C}— C, (which is trivial on the two summands F') induces
isomorphisms of homology groups and hence, by a theorem of [61], is a
chain homotopy equivalence. So by induction we need only consider a com-
plex that vanishes in degrees less than m; for such a complex the result
follows from right exactness of tensor products.

By a simple Poincaré (or just Poincaré) complex, pair, triad, etc. over
F, we mean just the same thing as in Chapter 2 of [58] (respectively, [59,
§ 2]), except that cap product with a (possibly infinite) chain representing
the fundamental class is only required to be a simple chain equivalence
(resp. chain equivalence) after tensoring all relevant chain complexes with
A. For the notion of simple chain equivalence, we require the vanishing in
Wh (F) of the torsion of the algebraic mapping cone of the chain equivalence
under study; [40, p. 882]. A Poincaré complex over F has a (twisted)
integral fundamental class; actually one could carry out the subsequent
theory with a fundamental class over A, with some care.

Let (X, Y) be a simple Poincaré pair, of dimension 2k, k = 3, over &,
X connected, and suppose that n,.X = w and w: w — Z, is the orientation
character of X. Let

b

Yy — &

L]

(M, oM) — (X, Y)
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be a normal map of degree one [3], [58] of the manifold pair (M, M) into
(X, Y). M may be a smooth, PL, or topological manifold, and v, denotes
its stable normal bundle. We will concentrate on the smooth case in the
rest of this chapter; the transition to the PL case is standard, and for the
topological case one appeals to the results of Lees [30], Kirby-Siebenmann
[27], [28].

Let 0Y = Y, U --+ U Y, be the decomposition of Y into components,
and let o;: Zn,Y;—Zr be induced by inclusion. Let M, = (f|oM)~'Y..
Then we assume the following:

fI M;: M; — Y, induces isomorphism of homology groups with
local coefficients in A, and Az, (f | M) =0.

We will usually say, in the future, that f induces a simple homology
equivalence of boundaries over A.

By KM, B), Ki(M,oM; B), K'(M; B) etc., B a Zr-module, we mean
the same thing as in [58, § 2. When B = Zz, it will be omitted from the
notation.

By surgery we may assume, after a normal cobordism relative the
boundary, that f is k-connected. Let » = (—1)*. Suppose first that (X, Y)
is an actual Poincaré pair. Then intersection and self-intersection forms
?: Ky(M) X Ky,(M)—Zr and p: K, (M) — I,, respectively, are defined. This
is done exactly as in [58, § 1] using the fact that the connecting homo-
morphism H,,,(f) — K.(M) is an isomorphism, a consequence of Poincaré
duality, and the Hurewicz isomorphism H,,,(f) = 7,..(f).

In the general case, these forms are defined on H,,,(f); note that by
Poincaré duality over A, H,.(f; A) = Ku(M; A), and by 1.4, H,,.(f; A) =
H (f) @ A; the Hurewicz isomorphism still holds. However, in order to
keep the notation uncluttered and the exposition more in line with [58], and
since we do not use this case in this paper, we abuse the notation and con-
tinue to write K,.,(M), @, and g for H,,,(f) = m,..(f) with its intersec-
tion and self-intersection forms.

It follows exactly as in [58, 5.2], that a(f, b) = (K.(M), P, ) satisfies
(Q1)-(Q5). It follows exactly as in [58, 2.2], over the coefficients A, that
K,.(M; A) = H,.,(f; A) is stably free. Given a stable basis, the torsion A(f)
is defined, and there is a unique class of stable bases with respect to which
this torsion vanishes [40, § 3, 4]. Similarly, K*(M; A) is stably based, and,
recalling that K,(0M; A) = 0, it is not hard to see (compare [58, 2.5 and
2.6], [40] and [41]) that Poincaré duality yields a simple isomorphism
K.(M; A) — K*(M; A). Since K,(M;A) = 0 for ¢ < k, the analogue of 1.4 for
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the functor Hom, over A, implies that the natural map gives an isomorphism
K*M; A) = Hom, (K,,(M ;A); A). This isomorphism carries the preferred
class of stable bases to the class of dual bases to the preferred class of
bases of K,(M; A); compare [58, § 2]. Under this isomorphism, and using
1.4, the duality map corresponds to the adjoint A®,. Thus «a(f, b), =
(Ku(M) ® A, P4, £,) satisfies (Q6); i.e., a(f, b), is an y-form.

By o(f, b) € T, (F) we denote the element represented by a(f, b).

Now suppose that (f,, b,) is another normal map, k-connected, inducing
a simple homology equivalence of boundaries over A.

PROPOSITION 1.5. If (f, b) and (f,, b)) are normally cobordant relative
the boundary, then a(f, b) = o(f,, by).

Remark. Actually one can show, by the same argument, a stronger
result analogous to [46, Th. 1.2], a result due to Wall for Wall groups.
However, this result also follows as a formal consequence of § 3 below.

Proof. Let (F, B), F: W— X x I be the normal cobordism; i.e., 0 W =
My @M x I)U M, where 6M,=0M x 1, and (F, B)| M= (f, b), (F, B)| M, =
(fi, b), and F(OM x I)C Y x I. By surgery in the interior of W, we may
assume that F' is k-connected. By handle subtractions [58], we can also
kill K,(W, M) and K, (W, M,); as f and f, are k-connected, the effect of
these subtractions on (f, b) and (f,, b) will be to perform surgery on
trivial (k — 1)-spheres; i.e., to take connected sum with copies of S* x S*.
This will add kernels over Zz to a(f, b) and a(f,, b,), leaving their classes
in T, (F) unchanged. So we may assume K, (W, M) = K, (W, M,) = 0.

Let @, and 2, be intersection and self-intersection forms on the module
K,(M,), a stably based module after taking tensor product with A. Then
K. MU M,) = K.(M) ® K.(M,), and on this module intersection and self-
intersection forms are given by @, L (—®) and g, L (—g); the change of
sign is due to the orientation convention J[X x I] = [X x 1] — [X X 0].
So we have to show (K.(MU M), @, L (—9), t L (—p) ~ 0.

Note that K, (0 W; A)=K,(M,U M;A) and K, (W, W;A)=K,(W,MU M,;
A), since K, (0M; A) = 0. By duality over A, K (W,oW; A)=0for i =k + 1.
So K,..,(W,oW; A) is a stably based A-module; we take for the preferred
class of stable bases the unique class with respect to which the torsion
in Wh () of the map F: (W,dW)— (X x I, (X x I)) of pairs vanishes.
By adding trivial k-handles to W along M or M, we can increase the
rank of K,,(W,oW;A) until the stable basis can be realized by an
actual basis; again this will only add kernels over Zmw to «a(f,b) and

a(fl, bl)‘
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Similarly, K,(W; A) is stably based and so, by adding trivial k-handles
as above, may be taken to be based. Then it is evident from [40, 3.2] the
following is a based exact sequence:

(1.5.1) 0— K\ (W, 0W; A) — K, 0W; A) —> K, (W; A) — 0 .

Further duality K,..(W,dW;A) — K“W; A) = Hom, (K.(W; A); A) carries
the basis to a basis in the preferred class of bases dual to the preferred
bases of K,(W; A); this follows by considering torsions defined using co-
chains and cohomology instead of chains and homology and relating them by
duality, as in [58, § 2] for the usual case. From all this and 1.4, it follows
(compare the proof of 5.7 in [58]) that the image of K, (W, M, U M,) in
K, (M, U M,) satisfies (PS2). -

The proof that (PS1) is satisfied is almost identical with [58, 5.7] or
[59, 7.3] and is left to the reader.

PROPOSITION 1.6. Let (f, b) be a normal map of degree one inducing
a simple homology equivalence over A on boundaries. Suppose f is itself a
simple homology equivalence over A. Then o(f, b) = 0.

Proof. This is proved using a slight modification of the preceding proof.
Let (F, B), F: W— X x I, be a normal cobordism, relative the boundary
of i M— X to f': M’ — X, f’ k-connected. Again, by handle subtraction,
it may be assumed that K, (W, M’')=0. As in 1.5, if a(f’, B|M') =
(Ku(M'), ', u), ' and u’ vanish on the image of 8:K,,,(W, M) — K,(M").
Since K;(M, A) = 0, the based sequence (1.5.1) will still hold here, after
further subtractions. Hence the image of o will be a pre-subkernel for
a(f’, B| M).

Given any normal map (f,b), f: (M*,0M)— (X, Y) of degree one,
inducing a simple homology equivalence of boundaries, over A, we define
o(f, b) = o(f,, b)), where (f;, b)) is a k-connected normal map that is nor-
mally cobordant, relative to boundary, to (f, b).

THEOREM 1.7. The imvariant o(f,b) depends only upon the normal
cobordism class of (f,b) and vanishes if and only if (f,b) is mormally
cobordant to a simple homology equivalence over A.

Proof. By 1.5 and 1.6, it remains only to show that if o(f, b) = 0, then
(f, b) is normally cobordant to a simple homology equivalence over A. By
surgery, we may assume that f is k-connected, so that a(f, b) is defined.
By Lemma 1.3, there exists a kernel & over Zz with a(f, b) L £ ~ 0. We
may realize the orthogonal sum geometrically by taking connected sum with
copies of S* x S*; so we may as well assume that a(f, b) ~ 0.
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Hence there exists a subkernel H C K,(M). Since ¥ is (locally) epic, we
can find elements &, -+, z, € H whose images in K,(M; A) = K(M) Q® A
form a preferred basis for a subkernel of a(f, b),. Since the intersection
and self-intersection forms vanish on the subspace generated by z,, ---, z,,
these elements can be represented by disjointly embedded framed spheres.
Surgery can be performed on these spheres; the same argument as in
[69, 5.6] shows that the result is a simple homology equivalence A.

ApDENDUM TO 1.7. If a(f, b)=0, f is normally cobordant to a (k — 1)-
connected simple homology equivalence over A.
Now we consider the special case X* =Y x I, k= 3. Let (h,c¢),

h: (P,0P)—(Y,3Y), be a simple homology equivalence of pairs over A, P
a manifold.

THEOREM 1.8. Let veT,(F). Then there exists a normal cobordism

(f, b of (h,c), relative the boundary, to a simple homology equivalence over
A, with o(f, b) = 7.

Proof. Let 7 be represented by (H, ®, ¢), with H a free module with
basis ®,, <+, 2,, so that #, ® 1, «-+, z, ® 1 is in the preferred class of bases
of HRYA=H,. Let f:S**x D¢*—IntP, 1 <7< m, be disjoint, un-
linked, unknotted embeddings. According to [59, p. 53], we can subject
the f? to regular homotopies 7;: S¥* x D* x I — (Int P) x I, with inter-
section numbers 7;-7; = @(x;, x;) and with the self-intersection number of 7;
equal to p(z;). We will also assume that 7; is constant on S** x D* x
[0, 1/4] and that S** x D* x [0, 1/4] = n*(P x [0, 1/4]). Let f} be the
final stage of %;, and let (f, b), f: M— Y x I, be obtained from hAx1: P x I—
Y x I by attaching handles to P x I with attaching maps f! Then
K,(M, P) is isomorphic to H, and under the obvious isomorphism, inter-
section and self-intersection forms correspond to ® and , respectively.

To analyze (f, b), we must make it k-connected. To do this, we perform
surgery on (f,b)|P x [0, 1/4], relative the boundary, to obtain (f’, '),
f'sU— Y x [0, 1/4] a k-connected map. Let W= (M — P x [0,1/4]) U U,
and define (f,, b) on W to be the union of (f,b) and (f’,d’). By Van
Kampen’s theorem, f, is an isomorphism on fundamental groups, and it is

not hard to check, using homology with local coefficients in Zz, that f, is
k-connected.

By excision, K,(W, U) = K,(M, P x [0, 1/4]) = K,(M, P), and this
identification respects intersection and self-intersection numbers. Hence we
have the following exact sequence

0 — K(U) — Ky(W) — K.(M, P) — 0,
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with the maps preserving intersection and self-intersection forms. Since
the f?, and hence the f}*: S** x D* x 1/4— P x 1/4, are unlinked and
unknotted, there is a splitting of the sequence that exhibits K,(W), with
its intersection and self-intersection forms, as the orthogonal direct sum of
K, (U) and K,(M, P) with their forms. Hence the form on K,(W) is a
special (—1)* form over ¥F; by [Q6] and the same argument (over A) as in
[58, 5.8], it follows that f, induces a simple homology equivalence of boundaries
over A. The split exact sequence above now implies

a(fo, bo) = a(f” b’) L (H9 ¢9 ﬂ) *
But o(f’, b") = 0, by Theorem 1.7. So
G(f()’ bO) = ‘O(f,b) = 7’

which proves the theorem.

ADDENDUM TO 1.8. If h was i-connected, i < k, then so is the normal
map into Y X 1 obtained from h by the surgeries described above.

Proof. To obtain this normal map, only surgery on (k — 1)-spheres was
performed.

If we omit the word “simple” throughout the entire discussion, we obtain
the theory for surgery to get just homology equivalence over A. The ob-
structions o(f, b) will lie in groups I'},(F) mentioned above. The analogues
of 1.5-1.8 remain valid and are easier to prove. We will refer to these num-
bers for these propositions and their non-simple analogues throughout the
rest of this paper.

2. The odd dimensional absolute case

Let F:Zm — A be an epimorphism of rings, as in § 1. Let (X*™' Y)
be a Poincaré pair over F, £ =3. As in [60], we may write X = X,U D*™*
with (X,; Y, S*~!) a Poincaré triad, over F. In this section we discuss the
non-simple case; the simple case is actually the easier of the two in these
dimensions.

Let (f, b), f: (M, 0M)— (X, Y), be a degree one normal map inducing
a homology equivalence of boundaries, over A. By surgery, one can make
f (k — 1)-connected. Let f;:S**' x D*—Int M be disjoint framed em-
beddings representing a set of generators of K, _,(M; A). Let U be the union
of the images of the f;; we may assume f(U)c D*, f(M,) c X,, M, =
cl(M— U).

For any Zn-module B we have the diagram *(B):
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—
/Kk(M, M,; B) = K,(U, aU; B) Kk—x(Mm )7
0 / N
\.

K,(M; B) K, .U; B) K,, -(M; B)
0 — \ V
\K.(M’ U: B) = K.(M,, oU: B) K.(U: B)

\__’/\

and for B = A, *(B) has exact arcs (compare [58, p. 56]). (Again, if (X, Y)
is not a Poincaré pair, we should really use homology groups of suitable
maps, over Zx as in § 1.)

Applying essentially the arguments of Theorem 1.5, one may show that
after a stabilization the image of 0, is a pre-subkernel for K,_,(@U), which
we identify, as in [59], with a standard kernel over Zz. The stabilization
is achieved by adding some trivial elements to our set of generators of
K, _.(M; A).

The image of 9, is the standard subkernel of the kernel K, ,(dU). So
by 5.3.1 of [58], any isomorphism of K,(U,oU;A) with K,(M, U; A) will
extend to an automorphism «, say, of the standard kernel K, ,(0U; A).
Then « represents an element of the Wall [58, 17D] group L% _,(A), and
the arguments of [58, § 6], essentially unmodified, show that this element,
denoted o(f, b), is a well-defined invariant of the normal cobordism class of
(f, b) relative the boundary and vanishes for f a homology equivalence
over A.

Conversely, suppose that o(f, b) = 0; i.e., & represents zero in L} _,(A).
Then after stabilizing we may write

a=20a -0,

where each «; stably represents an element of RU(A) or is of the form
H(A), A a non-singular matrix over A. The notation here is exactly as in
[59, § 6], except that to measure Whitehead torsion we replace Wh (7) by
Wh (¥). The stabilization can be achieved by adding some trivial classes in
K,_.(M); this changes a to a @ o and replaces X, by X,,,. Here we are
using the description of Lk%.,(A) as the quotient of U(A), (analogous to
SU(A) in [59] except that we forget about Whitehead torsion considerations)
by the subgroup generated by RU(A) and {H(A)| A non-singular}. This is
clearly equivalent to the description mentioned, for example, in [46].
However, [U(A), UA)] = [SUA), SU(A)] < RU(A); the inclusion is pro-
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ved by Wall [58] and the equality follows, for example, from an identity of
Vaserstein [57]. (See also [50], where the analogue for unitary Steinberg
groups is given.) So, after further stabilizations, we may assume that

a=Z.H(4)B,

A non-singular and e RU(A). We may change a to Z,H(A) by doing
surgeries and altering some arbitrary choices, exactly as in [59, § 6]; this
uses the fact that F is onto. It is quite easy to see from *(A) that for such
an «a, K,_,(M; A) = 0, which makes f a homology equivalence over A.

To define o(f, b) for an arbitrary normal map, put o(f, b) = a(f’, ¥'),
where (f’, b’) is a (k — 1)-connected normal map normally cobordant, rela-
tive the boundary, to (f, b).

Then we have shown the following:

PROPOSITION 2.1. The invariant o(f, b) € Lk,_,(A) depends only upon the
normal cobordism class of (f,b) and vanishes if and only if (f,b) is
normally cobordant relative the boundary to a homology equivalence with
coefficients im A. Further, if o(f,b) =0, (f,d) is actually normally
cobordant relative the boundary to a (k — 1)-conmected simple homology
equivalence over A.

However, recall that in *(Zz) the image of 4, was actually a pre-
subkernel. So define I'}_,(¥) to be the subgroup of elements of L%_,(A)
that have representatives a € U(A) with the property that there exists a
pre-subkernel of the standard kernel over Zz whose image in the standard
kernel over A, after tensoring with A, is precisely the image under @ of
the standard subkernel (i.e., image of 9, in *(A)). One sees that thisisa
subgroup by using the orthogonal sum representation of addition in LZ(A).
The invariant o(f, b) defined above always lies in T'%_,(F).

We usually write j,: L%_,(F) — L&_,(A) for the inclusion.

Next, let h:(P*™ 6P)— (X,0X), P a manifold, be a homology
equivalence over A, and let ¢: v, — ¢ be a bundle map over A.

THEOREM 2.2. Let v €Tk _(F), k = 4. Then there is a normal cobordism,
(f, b), relative the boundary, of (h,c) to a homology equivalence over A,
with o(f, b) = 7.

Proof. First, let (F, B,), F,: W,— X x [0, 1/2], be a normal cobordism
of (h,c) to (h,, c,), where

hgT=Pgr(S*™ x S* ) — X x 1/2
is obtained by boundary connected sum along (Int P) x 1/2 of P x [0, 1/2]
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and r copies S** x D* Choose r so that v has a representative a e U,.(A)
exhibiting v as an element of I}, ,(¥), as described above. Hence if
e, *++, ¢, is the standard base of the subkernel of K, ,(T; A); i.e., ¢; is
carried by the ™ copy of S*! x pt; then we may choose z,, ++-, x, € K,_,(T)
whose images in K,_,(T; A) are a(e,), -+, ®(e,), respectively, and such that
intersection and self-intersection forms vanish on the submodule they
generate. Represent z,, ---, x, by framed embedded spheres of dimension
(k — 1) and perform surgery to obtain a normal cobordism (F,, B,) of (h,, ¢,),
F: W,— X x [1/2,1]. Let (f, b) = (F,, By) U (F,, B,).

If f were (kK — 1)-connected, we could conclude exactly as in [58, § 6]
that o(f, b) = 7. One can deal with this point exactly as we dealt with a
similar problem in 1.8; perform surgery near P x 0 C d(W, U W,) to make
f (k — 1)-connected and observe that the surgery obstruction of the resulting
normal map is represented by « L 8, where, using 2.1, 3 represents zero in

t—1(A). Hence o(f, b) = v. We leave the details to the reader.

ADDENDUM TO 2.2. If h is i-connected, 1 < (k — 1), so is the normal
map tnto X X 1 obtained by the surgeries described above.

In the simple case we get obstructions o(f, b) lying in T _,(F) =
T3_.(F) C Ly, (A, =F7); the last term denotes a Wall group SU(A)/RU(A);
SU(A) consists of stabilizations of elements that have vanishing torsion in
Wh (F) with respect to the usual basis of the standard kernel; RU(A) is
generated by TU(A) and o¢; TU(A) consists of stabilizations of elements of
U(A) that preserve the standard subkernel and induce on it an automorphism
with vanishing torsion in Wh (¥). Note that for the case A = Zz’ and F
induced by a group homomorphism, L, _,(A, +F%) = Lj,_,(7'). There are
natural maps I';,_, — T4 _..

3. The general case

The purpose of this section is to define relative groups for the surgery
problem with coefficients. This could be done using algebraically defined
obstruction groups as in § 1, 2, essentially along the lines of the thesis of
Sharpe [49]. Instead, we proceed as in § 9 of [59] to construct such groups
abstractly and fit them into appropriate exact sequences. This will provide
sufficient information for the applications to follow. However, it should be
pointed out that the algebraic descriptions given above for the absolute
groups, especially the realization theorems 1.8 and 2.2, are essential to prove
an analogous realization theorem for relative groups. This result is in turn
essential in applications.
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The main point in defining relative groups in surgery theory is to show
geometrically that such groups must vanish for the identity map. More
precisely, let (X*; Y_, Y,) be a simple Poincaré triad over F:Zm — A,
w = m,X, X connected. Assume that Y, is connected and the natural map
7, Y,—m X is an isomorphism; write 7, Y, =x. Let (f, b), f:(M";_M, 0. M)—
(X; Y_, Y,) be a degree one normal map with f|d_M: (0_M, 3(3_M)) —
(Y_, 3Y_) a simple homology equivalence over A.

THEOREM 3.1. The normal map (f, b) is normally cobordant, relative
0_M, to a simple homology equivalence of triads, over A, m = 6.

Remarks. 1. This generalizes Theorem 3.3 [58]. However, the present
proof differs somewhat from that of [58], even for the case of Wall groups
(i.e., F = identity).

2. A similar result is valid in the non-simple case.

Proof of 8.1. Let (f., b.) denote the restriction of (f, b) to d,M and
d0_M, respectively.

CaseI. n = 2k + 1. Then the argument of Theorem 1.5 applies to
show that o(f,, b,) e T'%(F) vanishes. (Compare [58, 5.6 and 5.7].) So let
(F, B), F: W— Y, x [0, 1/2] be a normal cobordism, relative the boundary,
of (f;, b;) to a simple homology equivalence over A, (&, ¢) say. Then (f, b)U
(F,B) is a normal map from MU ., W to XU, (Y, x [0,1/2]) that
induces a simple homology equivalence of boundaries, over A. Let v =
o(fUF,bU B) el (F) be its surgery obstruction.

By Theorem 2.2. there exists a normal cobordism (G, C), G: V— Y, X
[1/2, 1], relative the boundary, of (k,c) to a simple homology equivalence
over A, with ¢(G, C) = —n.

By additivity,

o(fUFUG,bUBUC)=0(F U f,BUb) +3d(G,C)=0.

In these dimensions these obstructions lie in a subgroup of a Wall group, so

that the required additivity over unions follows exactly the same way as

for Wall obstructions; we omit the details. So there is a normal cobordism,

relative the boundary, of (fUF UG, bU BUC) to a simple A-homology

equivalence. Clearly this normal cobordism may be viewed as a cobordism
Tof (f,b), relative d_M; it is the desired cobordism.

Case II. n = 2k. By surgery we may assume that f, is (k¥ — 1)-connected
and f is k-connected. Hence K,(M,d,M;A) =0 for i+ k, by Poincaré
duality over A. Hence, as in the proof of 2.3 of [58], K.(M, d.M; A) is
stably based. After handle subtractions if necessary, let =, -+, z, be a
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basis of K,(M, d,M; A) that is in the preferred class of bases.

By the Hurewicz theorem and the connectivity assumptions, the classes
%; can be represented by framed k-disks in (M, 0,M). By transversality we
may assume the immersions are regular and mutually transverse; in par-
ticular the boundary spheres will be disjointly embedded in d,M. Using
the 1-connectedness of (M, 0, M), one may eliminate all these intersections
and self-intersections by piping across the boundary (see [42, p. 73-84)),
obtaining regularly homotopic disjoint framed embeddings. Perform handle
subtractions using those embeddings. Then the same argument as in
§ 4 of [59], over A, shows that the result is a simple homology equivalence
over A.

With the aid of Theorem 3.1, the groups I'i(¥), e = s or h, can be
defined geometrically as in § 9 of [59], « finitely presented. The “objects”
and “restricted objects” are the same as in [59], except for two changes:
the targets can be Poincaré triads or simple Poincaré triads over &, and
homotopy or simple homotopy equivalences in [59] are only required to be
homology or simple homology equivalences over A. It follows from 3.1 that
the group of objects and the set of restricted objects (with K = K(z, 1))
are naturally isomorphic to each other and to I's(¥), in dimension = = 6.
(Note: If F = id, we actually obtain a slight variation from [59, § 9] in
terms of what is required of the restriction of a normal map to the boundary.
The present approach seems more natural, even for Wall groups.)

Let ¢ = (@, @) be a homomorphism from F to $:Zzn'— A'; i.e., the
following square commutes:

Zr Z, A
l=
/4 2, A
Then we may define, similarly, I';(¢), » = 6, functorial in ¢. There are
natural maps I'i(¢) — I'%(g).

PROPOSITION 3.2. For n = 6, there is a natural exact sequence

I4i(9) —— Ta(F) 2 Ta(8) — Ti(9) -

The proof is immediate from the definitions in terms of unrestricted
objects. The map o corresponds to taking a suitable part of the boundary
of a normal map. Geometrically ¢, may be described as “weakening the
coefficients”; in terms of the descriptions in § 1 and § 2, ¢, is just the map
induced functorially by ¢. If one thinks of I':(8) as described in this
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section, the unlabeled map can be described geometrically by introducing a
trivial boundary component to the normal map (e.g., use the empty set or
add the identity map on a disjoint cell), which becomes the part of the
boundary corresponding to Z[7] — A. One may also “free” a portion of the
boundary on which one already has a (simple) homology equivalence over A.

If A= ZII, A’ = ZII' are group rings and «, a’, § and § are induced
by group homomorphisms, we may think of ¢ as induced from a diagram

K(z, 1) — K(II, 1)
K(z', 1) — K(IT', 1)

of Eilenberg-MacLane spaces. Hence, from the description of Wall groups
in § 9 of [58] and the preceding, it is easy to see that there is a natural
map j,: ['s(4) — Li(e'), so that the following diagram commutes:

Ti4i(8) — T4(F) —2 T5(8) — i)
(3'2'1) *.7'* 1.7'* l.’i* 1.7'*
L () =2 Le(mm) 22 L) — Li(@) ;

the other maps j, have been already defined.

The relative groups solve a relative surgery problem. That is, let
(f, b), f: (M 6_M,0,M) — (X; Y_, Y,) be a normal map into the simple
Poincaré triad (X; Y_, Y,) over 9, of degree one, with 7,Y, = 7, 7,.X = 7,
and « the natural map induced by inclusion. (X and Y, are assumed con-
nected.) We assume (Y,,0Y,) a simple Poincaré pair over F. Assume
f-:0_M—Y_isasimple homology equivalence over A’ and f_|3(0_M):0(0_M)—
0Y_ is a simple homology equivalence over A.

THEOREM 3.8. Let n = 6. The element o(f, b)eTl'i(¢) represented by
(f, b) vanishes if and only if (f, b) is normally cobordant relative o_M to
(g9,¢), 9:(N;0_N,3,N)—(X; Y_, Y,) (so 0_N = o_M) with g|0,N:0,N—
Y., a simple homology equivalence over A and g a simple homology equiva-
lence over A'.

A similar result holds in the non-simple case. Whenever we write T',,
we always mean I'%. The theorem may be derived formally from 3.2,
roughly as follows: since do(f, b) = 0, we first do surgery on the boundary
to get a simple homology equivalence over A. The resulting normal map
has a surgery obstruction in I',(¥) which, by hypothesis, has vanishing
image in T',(¢). Hence it is in the image of ¢,. Therefore, it may be killed
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by a further normal cobordism of the boundary. Surgery can then be per-
formed relative the boundary to obtain the normal map (g, ¢).

ADDENDUM TO 3.8. In Theorem 3.3, g can be taken to induce isomor-
phisms of TN to m,.X and of 7o, N to Y.

This is easy to see from the preceding proof and the same result in the
absolute case; the absolute case is in turn easy to check from §1, 2 (see
2.1, 1.7).

Using 3.3, 1.8, 2.2, and addenda, one can imitate the proof of 10.4 of [59]
to derive a realization theorem, namely: suppose X* = Z x I, (Z;Z_, Z,) a
simple Poincaré triad over F, with (Z,, 0Z,) a simple Poincaré pair over ¥,
where 7, Z, = 7, m,Z = ©’, and « is the natural map.

THEOREM 3.4. Let (h,c) be a normal map, h: (M", 0.M)—(Z; Z.) a
simple homology equivalence of triads over A', with h|o,M:0.M—Z, a
stmple homology equivalence over A. Suppose h:M— Z 1is i-connected,
2t <m, or h|0,.M:0,M— Z, is j-connected, 2 <n — 1. Let n =17, and
veT,(¢). Then there exists a normal cobordism, relative 6_M, (F, B), to a
map satisfying the same conditions as h, with o(F, B) = 7.

A similar result holds in the non-simple case.

It follows from this section that surgery obstructions for homology
equivalence satisfy natural properties and additive formulae similar to the
corresponding properties and formulae for Wall groups. For the absolute
case, such properties can also be derived directly from the definitions in
§ 1, 2, using the special forms given in 1.8 and 2.2. The general results
can then be derived formally from 8.3 and the absolute case.

Let CP? denote the complex projective plane.

THEOREM 3.5. Let (f,b),f:(M",oM)— (X,Y), n=5 be a normal
map, (X, Y) a simple Poincaré pair over A, F:Zr — A a homomorphism
as above where t = m,X. Assume f induces a simple homology equivalence
over A. Then, in Ti(F) = I't . (F),

o(f, b) = o((f, b) x CP?).

The proof is the same as for [59, 9.9]. Applying the five lemma yields
the following, ¢ as above:

COROLLARY 3.6. Taking products with CP* induces isomorphisms

Ti(g) — Tasi(9) » nz"T.

Remark 3.7. Let (f,b) f: W»— X x I, X closed, be a normal map

that induces homology equivalences on boundary components over A,
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F:Zr, X— A an epimorphism. Suppose that Az(f|0_W) = Aq(f |0, W).
Then one can actually define o(f, b) € I';,(¥), which vanishes if and only if
f is normally cobordant to a homology equivalence over A with torsion
Ag(f|0_-W). All obstructions can be realized beginning with a given
homology equivalence over A. One can sum this up, after changing a sign
in one of the boundary components to account for orientations, by saying

that obstructions in I'%, are still defined under the hypotheses that the total
Whitehead torsion, i.e., the sum of the torsions of the components of the

boundary, vanishes. A similar remark applies to the relative groups defined
in this section. We leave the details to the reader.

Chapter II: The local codimension two problem

4. The group of local knots of a manifold

Let M" be a closed, connected, smooth (piecewise linear, topological)
manifold. Let & be a 2-plane bundle over M, with disk bundle E = E(§)
and boundary sphere bundle S =0FE. lLet n’' =M= nkKE, ©=xS,
F:Zr — Zr’ = A the map induced by S c E or, equivalently, by projection
p of E(§) onto M. The involution on Zz is given by g = w(g9)g™", gem,
where w: 7w — {+1} is the orientation character of S. This notation will
remain constant throughout this section.

By a smooth (resp. P.L., topological) local knot of M (in &) is meant a
smooth (resp. P.L. locally flat, topologically locally flat) embedding ¢: M —
E — S homotopic to the zero section M C E.

Two local knots ¢ and ¢, are said to be equivalent if there exists a
diffeomorphism (resp. P.L. homeomorphism, homeomorphism) @: (£, S) —
(E, S), homotopic to the identity as a map of pairs, with ¢¢ = ¢,.

The local knots ¢ and ¢, are said to be concordant if there is a smooth
(resp. P.L. locally flat, topologically locally fiat) embedding of M X I in
E x I that restricts to (¢, 0) and (¢, 1) on M x 0 and M X 1, respectively.

Two local knots are said to be cobordant if they are equivalent to con-
cordant knots. Cobordism is easily seen to be an equivalence relation. Let
Co(M, &) (resp. Cer(M, &), Crop(M, £)) denote the cobordism classes of smooth
(resp. P.L., topological) local knots of M in &.

Assertions about “local knots” with no additional adjective are meant
to cover all three categories. Proofs of such assertions will usually apply as
written at least in the smooth and P.L. category. In the topological cate-
gory, the arguments can be modified using [30], [27, 2].

LEMMA 4.1. Let ¢: M— E(&) be a local knot. Then the inclusion
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SC E — «(M) is a simple homology equivalence over Zr' = A.

Proof. By Poincaré duality over A and the fact that ¢ is a simple
homotopy equivalence.

LEMMA 4.2. Let ¢: M— E be a local knot with tubular neighborhood
TcE—S. Let W=cl(E— T). Then there exists a map f: W— S, with
S| S the identity and f|0T: 0T — S a bundle map, so that pf is homotopic
to p| W. Further, f is unique up to a homotopy, relative S, that is an iso-
topy of bundle maps on dT. In particular, ¢ has normal bundle equivalent
to &.

Note. A similar result, in a relative form, holds for a concordance
M x I— E x I, and is proved the same way.

Proof. Consider the lifting problem

s s
N~ |ais
w2

The obstructions to lifting p|W to S, rel S, all lie in cohomology groups of
(W, S) with local coefficients in ,(S*), module over Zz’ by the action deter-
mined by the circle fibration S(¢). By Lemma 4.1, such groups must vanish.
So there exists f: W— S, solving the lifting problem. Let q: 8T — M be the
projection of the normal bundle. Since ¢ and p |dT are homotopic, as their
obvious extensions to T are, we may suppose by the covering homotopy and
homotopy extension properties that p(f | 0T) = q, after a homotopy relative S.

Clearly f| 4T has degree one, and so induces an epimorphism of funda-
mental groups. It follows by considering the exact sequence of homotopy
groups that f|oT is a (homotopy) equivalence of spherical fiber spaces.
Since G,/O, is contractible, f|3T is homotopic, through maps of spherical
fiber spaces, to a bundle map. The homotopy extension property then yields
the desired map f.

The uniqueness assertions follow from similar considerations for
¢X 1 MXx I—Ex I

We say ¢: M — E, a local knot, is 1-simple if the inclusion SC E — (M)
induces an isomorphism of fundamental groups. Using 4.2, it is easy to see
that ¢ is 1-simple if and only if 47 — W induces an isomorphism of funda-
mental groups, 7 and W as in 4.2.

LEMMA 4.3. Every local knot of M*, n =3, is concordant to a 1-simple
local Enot.
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The reader will observe that the argument we are about to give actually
makes the inclusion of S as highly connected as possible without being a
homotopy equivalence. We will never need so strong a result; actually it
seems probable that even Lemma 4.3 can be omitted, at the expense of
complicating later portions of the exposition.

Proof of 4.3. Let ¢: M— E be a local knot. Let T, f: W— S be as in
Lemma 4.2. Let F = (f,7), F: W—Sx I, v a Morse function with
v0) = aT, v*(1) = S. It iseasy to find a map B of stable normal bundles,
covering F. (Compare § 5, second paragraph.) By surgery, we may find a
normal cobordism, relative the boundary, of (¥, B) to (¥’, B’) with
F’ [(n + 2)/2]-connected. Since F' is a simple homology equivalence over A,
by 4.1, o(F’', B') e T':,,(F) vanishes. Hence, by performing surgery on
[(n + 2)/2]-spheres, we can find (F”, B"”), normally cobordant relative
boundary to (F’, B’), with F" a simple homology equivalence over A.
Clearly F'" will be [(n + 1)/2]-connected.

The normal cobordism of (F', B) to (F'”, B”) may have a non-vanishing
obstruction in T',.,(¥); since surgery obstructions add over unions, this
may be killed by adding a further normal cobordism of (F”, B”). By the
addenda to 1.8 and 2.2, we may do this without lowering the connectivity
of F'”. So, changing notation, we may assume that if (G, C) is the normal
cobordism of (F', B) to (F'", B"), relative boundary, G: Z—Sx Ix I is a
simple homology equivalence over Zz'. By the argument of the preceding
paragraph, we can suppose G induces isomorphisms of fundamental groups.

Let X = (T x I) U Z; note that (T x I) N Z =0T x I. Clearly X is
a homology s-cobordism over Zz’. Let V be the domain of F'”. Since
T =nX=nE=n(Tx1UV), X is actually an s-cobordism, relative
boundary. Apply the s-cobordism theorem; let @: X — E x I a diffeomor-
phism (resp. P.L. homeomorphism, homeomorphism) with ¢ | E: E— E x 0
the obvious map. Then the desired concordance is given by the composition

Mx IS rxIcex-2ExI.

LEMMA 4.4. Let ¢: M — E be a smooth (P.L., topological) local knot.
Let W be the closed complement of a tubular neighborhood T of ¢(M). Let
@: 0T — 0T be a diffeomorphism (resp. P.L. homeomorphism, homeomor-
phism) and ® a homotopy of P to the identity. Then @ extends to a
homotopy of the identity of (W,dW) to a diffeomorphism (resp. P.L. homeo-
morphism, homeomorphism) extending @, assuming n = 3.

Proof. Consider §,0T x I, 0T x oI), as in § 10 of [58], for example,
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H =0, PL, TOP. (In [58], &, is called $y,r.) Then @ represents an element
of this set, and it suffices (using the relative s-cobordism theorem) to show
that the natural boundary homomorphism

0:8uy(Wx I, Wx oI) — §,(0T x I, 0T x oI)
is an epimorphism.

The following diagram has exact rows and commutes; the exactness of
the top row uses the 1-simplicity of ¢:

(W, G/H] — LU —3) — (W X I, W x ) — [EW,; G/H] — Lyt Umr — 1)

| : , .
1 l l J l

(29T i G/H] — Lipya() ———— 540T x I, 3T x 0I) —> [£6T,; G/H] —> Lipsolm) -

The unlabeled maps are isomorphisms because 07 c W is, in particular by
Lemma 4.1, a homology equivalence over Z. The maps on surgery groups
are essentially well known to be isomorphisms; see [58]. Hence the central
map is an isomorphism, proving the lemma.

Now we can define the group structure on Cp(M*; &), n» = 3. Let
¢, t.: M — E be two local knots. We define the composition, or tunnel sum
of ¢ and ¢, written ¢o¢, as follows: let T be a tubular neighborhood of
¢, (M) and let g: T— E(&) be the canonical extension (to a bundle map) of
J10T, f as in Lemma 4.2. Then we define ¢,0¢, to be the composition

MBSl 7R,

Clearly ¢,0¢, is well-defined, up to isotopy, in terms of ¢, and ¢.

Alternatively, let W be the closed complement of T. Then ¢,0¢, can be
defined as the composition

M- EcE y w9 row=g,

(f1aT)

where the identification space is obtained by identifying €T with f(x) € S.
It is clear that these two definitions are the same.

PROPOSITION 4.5. The cobordism of ¢,ot, depends only upon the cobordism
classes of ¢, and t,. The operation of tunnel sum induces the structure of a
group on Cy(M, ¢), H = O, PL, TOP.

Proof. The equivalence class of ¢,0¢, is clearly not affected by the com-
position of ¢ with a diffeomorphism (P.L. homeomorphism, homeomorphism)
of (E, S) homotopic to the identity.

A concordance a: M x I — E x I of ¢, to ¢, leads to a concordance



306 S. E. CAPPELL AND J. L. SHANESON

MxI-5SExIc(E U W) x -0 g
flar
of ¢0t}.

Suppose B: M x I— E x I is a concordance of ¢, with ¢. Let U bea
tubular neighborhood of (M x I), respecting the boundary, with closed
complement Z. By the note following Lemma 4.2, there is a canonical
bundle map G: U— E x I, extending the bundle maps on the ends pro-
vided by 4.2. The following composition is a concordance between ¢o¢, and
oty

M x Ii‘iiEx IcExD U 259 yuz=Ex1I.

GlaU

To complete the proof that tunnel sum induces a well-defined operation
on Cu(M; &), it suffices to show that the cobordism class of ¢o¢, is unchanged
under composition of ¢, with a diffeomorphism (P.L. homeomorphism, homeo-
morphism). By Lemma 4.3 and what has been shown already, ¢, may be
assumed 1-simple without altering the cobordism class of ¢0¢,. In this case
the result follows from Lemma 4.4.

It is obvious that tunnel sum on cobordism classes is associative and
that the zero-section M c E is a left and right identity.

To show that inverses exist, let ¢: M — E be a 1-simple local knot.
Let T be a tubular neighborhood of ¢(M) with closed complement W, let
g: T— E be the canonical extension to T of f| 97, f as in Lemma 4.2, and
let V= Wx0USx IUE x ICE x I. Then it follows from 1-simplicity
and Lemma 4.1 that (E x I; T, V) is an s-cobordism. Hence there exists
a diffeomorphism (a P.L. homeomorphism or homeomorphism) a: E x I —
ExI with «|T=g. Let ¢ be the local knot MCE x 1C V—V>
(E x 1) U (S x I) = E, where the first inclusion is the 0-section. Then we
may view the composite

Min(—leExl———»ExI

as a concordance of the 0-section to fo¢c. So ¢ represents the inverse of ¢ in
Cx(M; &). This completes the proof of Proposition 4.5.
The final result of this section will be useful later.

LEMMA 4.6. Let ¢: M — E(&) be a smooth (P.L., topological) local knot.
Let T, W, f: W— 8 be as in Lemma 4.2, and let F = (f,7), 7: (W;0T, S)—
(I; 0,1), be a Morse function. Let g: T— E be the canonical extension
(i.e., by a bundle map) to g: T—E. Then h=gUF: (TUW,S)—
(EUS x I, S x 1) = (E, S) is homotopic (as a map of pairs) toa diffeo-
morphism (resp. P.L. homeomorphism, homeomorphism).
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Proof. We will show that h is homotopic to a bundle map. Since ¢ is
homotopic to the 0-section, M C E, ph is homotopic to p; let H: E x I —
M, H(x, 0) = ph(x), H(x,1) = p(x), be a homotopy. By the covering homo-
topy extension property for the circle fibration p| S, we may lift H|S x I
to H:Sx I— S with pH = H and H|S x 0 = h|S = identity of S. By
the covering homotopy extension property of the disk fibration p, H may be
extended to H: E x I — E with pH = H, with H(z, 0) = h(v), xc E. Write
k(x) = H(z,1). Then k is a map of fiber spaces with fiber (D? S'). Since
G,/0, is contractible, it follows that k& is homotopic through fiber space maps
to a bundle map.

5. Local knots and surgery with coefficients

Let ¢ M™— E(&) be a local knot of M in & Let T be a tubular
neighborhood, with closed complement W. Let f: W— S be the canonical
map, as in Lemma 4.2. Choose a Morse function v on W, and let

=F, N (W;0T,S) — (S x ;Sx0,Sx1).
By Lemma 4.1 and the existence of the augmentation Zz' = A —Z, ScW
is an integral homology equivalence. Hence [ W; BO] — [S; BO] and [ W; O] —
[S; O] are isomorphisms'. So there exists a map B of stable normal bundles,
unique up to isotopy of bundle maps, with B| S the identity. By Lemma
4.1, F' is a simple homology equivalence over A.

Now, (F', B) represents an element in the normal cobordism class,
relative S x 0, of normal maps into S x I. By a theorem of Sullivan [51],
these normal cobordism classes are in 1-1 correspondence with [S x I/S x 0;
G/H] =0, H = O, PL, TOP. Hence (F, B) is normally cobordant, relative
0T, to a diffeomorphism (P.L. homeomorphism, homeomorphism); for ex-
ample, to (f|0T) x id: 0T x I— S x I. Denote the normal cobordism by
(G, C). By similar considerations, (G, C) is unique up to normal cobordism
relative the part of the boundary corresponding under G to S x I x 0U
Sx0xIUSxIx1. (Recall the targetof G is S x I x I.)

Let ¢ be the diagram

Zn:—i»Zn

1” l:r
F
It — ZI7' = A,

considered as a map from id;, to . Then what has just been said (together
with the tubular neighborhood theorem, relative S) implies that

1 [X, Y] = homotopy classes of maps X > Y.
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20(‘) = U(Gy C) € F'n+3(¢)
is a well-defined invariant of ¢, n =3,

PROPOSITION 5.1. For n =38, Z,() depends only upon the cobordism
class of ¢ and induces a homomorphism

Z: Cu(M, §) — Tans(9)
H = 0, PL, TOP.

Proof. It suffices to show that Zy(t,06) = Zi(6) + Zo() and Z,(¢) = 0 if
¢ is cobordant to the zero-section.

To prove the additivity, let W;, W, © = 1, 2, be the closed complements
of tubular neighborhoods Ti, T of ¢(M) and ¢(M), respectively, where
¢ = t,ot,. Let (F, B;) be as in the definition of Z,(z), ¢ = 1, 2, respectively.
Write F,(x) = (9(%), 0), €dT. Then W =W, U,~ W, Since W, and W, are
homology products, we may assume g carries B, to B;|S = id, following
an isotopy of bundle maps. Then for (F, B) in the definition of Z(¢)
we may take (F, B) = (F:, B,) U (FY, B), F: W— S x [0, 2], where F;(x) =

Now let (G, C), Gi: Z;— S x [2 — 4,8 — 1] x [0, 1], © = 1, 2 be normal
cobordisms of (F/, B) and (F,, B,), relative aT;, to (F;|dT;) x id, respec-
tively. Let

Z = Z2 Uszl WZ X [0, 1] Ug_1x1d1 Zl
and let (G, C),

G:Z—> S x[0,1] x[1,21US x [0,1] x [0,1]U S x [1, 2] x [0, 1]

be the union
(G}, Cy) U (F, x id, B, x id) U (G,, C)) ,

where Gi(x) = (x,8,t + 1) if Gy(x) = (v,s,8)eS x I x I.
Here is a schematic picture of Z:

Z,

W, x I A

o1 S (identified with 8T}) .

The range of G is obviously diffeomorphic (P.L. homeomorphic, homeomor-
phic) to S x [0, 2] x [0, 2], and it is clear that
20 =0(G,C).

On the other hand, surgery obstructions add over unions along homology
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equivalence over A (see § 3). Further, by 4.1, F, is a homology equivalence
over A.
Hence
0(G, C) = (G, C) + 0(Gs, C) = Zy(t)) + Zo(t) -
So this proves the additivity.

Next, suppose ¢ represents zero in Cy(4; &. It is not hard to show
that X,(¢) is an invariant of equivalence class. Further, it is clear that if ¢
is cobordant to M c E, the 0-section, then an equivalent local knot is con-
cordant to the O-section. Therefore, consider a concordance &: M x I—
E x I of ¢ with the 0-section; we have to show that X,¢) = 0. But this
follows easily by using the relative form of Lemma 4.2 to construct a normal
cobordism (G, C) as in the definition of Z,(¢) with G a simple homology
equivalence over A and a simple homotopy equivalence on the part of
boundary mapping to S x 0 X I; i.e., Z(¢) = (G, C) = 0. So this con-
cludes 5.1.

Let ji: This(d) = L,s(F) be the natural map, defined in § 3. Let!

Sy [EE(E): G/H] — L3 4(F) , H = 0, PL, TOP,
be the map defined by taking surgery obstructions of normal cobordism

classes [3], [68]. Let o be the composition of j, with the quotient map to the
cokernel of sg.

THEOREM 5.2. Let n = dim M be at least four. Then the following
sequence is exact:

0— Cx(M; &) 2, T..s(4) —— coker sy .
COROLLARY 5.3. The group Cy(M*, &) is abelian, n = 4.

Notes. 1. For the case n = 3, one can show ImX = ker o. All of
Theorem 5.2 still holds provided that, in the definition of Cy(M; &), one
replaces “concordance” by “s-cobordism”. For the case M a simply-connected
3-manifold, this change makes no difference, by [48] or [53, 6.1]. In particular,
5.2 holds precisely for M = S:.

2. It seems that 5.8 should have a more direct geometric proof, perhaps
using the s-cobordism theorem only. Some such theorem probably must be
used, in view of the difficulties that arise in trying to define and study a
group C(S*, &), & trivial.

COROLLARY 5.4. If M = S®or dim M = 4 and M is in the appropriate

1 Strictly speaking we should use ZE+, E+ = the union of E with a disjoint point. As
G/H is simply-connected, we shall ignore this point.



310 S. E. CAPPELL AND J. L. SHANESON

category, the natural maps Co(M, &) — Cor(M; &) and Cpu(M; &) — Crop(M, &),
are monomorphisms.

This is actually not difficult to see directly, as in [14].

Proof of 5.2. To show X is 1-1, let ¢: M— E be a local knot with
2, = 0. Let T be a tubular neighborhood of ¢(M) with closed complement
W. Let (F, B), (G, C) be as in the definition of X, so that by assumption
(G, C) = 0. Write

G:(Z:0-2,0,2) — (Sx IX L Y,Sx 1 x I),

where Y=SXxIXx0USXx0xIUSxIx1l and 0. Z=W U,;0T X
[0, 2] with a “corner” at 6T x 1. By Theorem 3.3, we may assume follow-
ing a normal cobordism relative d_Z, that G is a simple homology equivalence
over Zn' = A and G|0,Z:0,Z— S x 1 x I is a simple homology equivalence
over Zr. By the addendum to 3.3, we may assume that G and its restric-
tion 0,Z induce isomorphisms of fundamental groups; note that this is
already the case for G| 0_Z. Inparticular, G|0,Z will be a simple homotopy
equivalence; i.e., 0.7 is an s-cobordism.

Let D= T X IU;rx;Z. Then view (D, 0.Z) as a cobordism from
(B, 8)=(TUW,S) to (TU,;dT x[1,2], 9T x 2). By Van-Kampen’s
theorem, and the preceding paragraph, w,D = x’, and the inclusions of E
and T U 0T x I induce isomorphisms of fundamental groups. Again by the
preceding paragraph, it is easy to see that D is a homology s-cobordism
over A = Zn'. Hence (D,0,Z) is an s-cobordism. By the s-cobordism
theorem, let a:(D,d,Z)— (E x I, S x I) be a diffeomorphism (P.L.
homeomorphism, homeomorphism) with a(x) = (x, 0) for x e K.

Let g: T— E be the canonical map extending F'|0T:0T— S x 0= S.
Consider the concordance

MxIcExI-ZX  ry IcD-SExI;

the first inclusion denotes the zero-section. On M x 0, this concordance
carries (x, 0) to (ex, 0). So it suffices to show that

McEX L TU,0T x [1,2] > E

is equivalent to the 0-section.

Let /¢: E— E be any diffeomorphism (P.L. homeomorphism, homeo-
morphism) with @ | M homotopic to the inclusion M c E as the zero-section.
By the argument of 4.6, ® is homotopic, as a map of the pair (X, S) to
itself, to a bundle map, ¢ say. By definition, g™ | M: M — E is equivalent
to the zero-section. On the other hand, | M =@ | M. So ¢|M is
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equivalent to the zero-section. (Note: Let ¢: M— E be a local knot, and
let ¢: E — E be a diffeomorphism (P.L. homeomorphism, homeomorphism)
with @ homotopic to ¢. Let @,: T, () — ,1:(¢) denote the map induced
by the map induced by ® on fundamental groups. Then one can show
easily, by naturality of surgery obstructions,

(5.2.1) Zo(P) = PLE(0) -
It is not hard to show that composition with @ induces a map ¢': C5(M, &) —
Cy(M, &), and we have,
Zq)l = P, X -)
To prove that pX = 0, let (G, C) be as in the definition of Z(¢), ¢: M —
E alocal knot, T and W as above. Then, by the naturality of surgery
obstructions (see § 3 and [59, § 9]), the following holds in L,.,(¥):

0'((G, C) ) idTXI) = j*(O'(G, C)) .

Hence, by Lemma 4.6, j,(d(G, C)) acts trivially on the class in $y(E) re-
presented by the identity of E. The surgery exact sequence [58], [3]

[EE; G/H] =25 Lpyo(F) — Su(E)

implies that j,(0(G, C)) € Im sz; i.e., 0(2()) = p(j«(0(G, C))) = 0.

Conversely, given 7eT,.,:(¢), we may find a normal map (G, C), with
v = ¢(G, C), which is a normal cobordism, relative S x 0, of the identity
of S x I to a simple homology equivalence f: (V,0V)— (S x I, S x oI)
over A that induces a simple homology equivalence over Zz of boundaries;
also we can suppose f induces an isomorphism of 7,V with 7,S and of the
fundamental groups of the boundary components. Consider

dUff EUgo V—EUSX I=E.

By Van-Kampen’s theorem and the properties of f, id; Uf is a simple

homotopy equivalence of manifold pairs. Suppose oY = 0. Then by the

naturality and the surgery sequence mentioned in the preceding paragraph,

id; U f is homotopic, as a map of manifold pairs, to a diffeomorphism (or

P.L. homeomorphism, homeomorphism) @; i.e., idz U f is trivial in Sy (F).
Let ¢ be the local knot

McEcCEUV-2E.

Then it is easy to see that £(¢) = —v. So —< and, hence, v are in the
image of Z.

To conclude this section, we observe that in the present case the sequence
of 8.2 becomes the following:

coe — Ly o(T) — T is(F) — Tryo(¢) — Lipse(mw) — Cppo(F) —— « -
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6. Relation with knot cobordism

Let ¢: M" — E(£) be a local knot, and let B*c M" be a closed ball.
Then ¢ is said to be in mormal form (with respect to B) if ¢| B is the
restriction of the zero-section to B and if ¢«(M) N E(¢| B) = ¢«(B). If a local
knot is in normal form with respect to B, it can be placed in normal form
with respect to any given ball by an isotopy.

LEMMA 6.1. Ewvery l-simple local knot ¢: M* — E s equivalent (even
1sotopic) to a local knot in mormal form (with respect to an arbitrary ball),
provided n = 3.

Proof. Let B M be a closed ball. A standard argument shows that
after an isotopy, it may be supposed that ¢| B is the restriction of the zero-
section. Let xcInt B, and let E, be the fiber of E(£) over x. Suppose
¢«M)N E, = {x}. Then ¢(B')N E|B) =¢B’), by compactness, for a smaller
ball B’, and so ¢ is in normal form with respect to B’.

In any case, we may suppose ¢(M) meets E,, transversely, in points.
Suitably orienting E,, its integral intersection number with ¢(M) will be
+1. (In case M is not orientable, we use twisted integer coefficients; see
[58, 2], for example.) Let z, we («(M) — x) N E, be two points with opposite
intersection numbers, and choose paths ! from z to w in ¢(M) — «(M) N E,
and !’ from w to z in E, — E, N ¢(M). Push LUl slightly to get it off
E, U «M); let © be the resulting loop. If © is null-homotopic in E — E, U
¢(M), then we could span it by an embedded 2-disk and carry out the
Whitney process to remove the two points z and w from the intersection
(see [42, p. 78-82]). By general position, it suffices to have © null-homotopic
in B — «(M).

Since m,E = m,M, a suitable choice of the path [ in ¢(M) will assure
that © is contractible in E. From the 1-simplicity and Van Kampen’s
theorem, m,(E — ¢(M)) — m,(E) has kernel generated by the homotopy class
[C] of a meridian C, which may be taken near w. (A meridian is the
boundary of a fiber of a tubular neighborhood.) © may be (pre-) multiplied
by [C]* by twisting | k times around M when pushing it off M to create O.
So we may take © to be contractible in E — ¢(M) and remove the points 2z
and w. Proceeding inductively, the result follows.

Let CZ denote the group of cobordism classes of smooth (H = 0),
piecewise linear locally flat' (H = PL), or topologically locally flat (H = TOP)
embeddings of S* in S"*?. Then connected sum gives a well-defined map,

1 By smoothing theory [37], CE are the knot groups studied in [30].
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written (z, y) —x #y, from CZ x Cx(M, &) to Cx(M, §). (We assume orienta-
tions have been fixed once and for all.) Define
a=ay(M, E&:CH— Cy(M, &)
by a(x) = ¢ %¢, ¢, the zero-section. Since the group structure in CJ is
defined by connected sum, it follows easily that
@+y)sz=x4@yi2).
On the other hand, by considering two local knots of M in E that are

in normal form with respect to the same ball (their composition will also
have this property), it is easy to see that

xf(zou) = @ER)ou = 2o(xfu.

In particular, if 2z is the neutral element of Cy(HM, &),

@+vgz=@+Y¥E2) =24k 2)
=af(Wh2)e2) = Wha)o(z2) .

Thus we have
PROPOSITION 6.2. The map a(M, &) is a homomorphism.

Note. This proposition and the usual description of inverses in knot
cobordism suggests that if ¢: M — E(&) is a local knot, the inverse of its
class in Cy(M, &) should be represented by B¢, where g is a bundle map
over the identity that reverses orientations of the fibers.

PROPOSITION 6.3. Let n=38. Then ay(S*, &) is an isomorphism, H = O,
PL, TOP.

Note that & must be trivial. For n = 2, one can show, using some of
the methods in this paper, that C,(S?% &) = 0, so that a will be an iso-
morphism for » = 2 also.

Proof. Let ¢: S*— S™ x D* be in normal form. Let % be the composite
of ¢ with the inclusion S* x D*c S*** of a tubular neighborhood of the
unknotted sphere. Then it is easy to see that [¢] = a[k]. Hence, by 6.1 and
4.3, ay(S* &) is onto.

Given h:S™— S™+2, it is well known that % can be factored, after an
isotopy, as

S'n_[_)Sn x D*c S*+

as above, ¢ a local knot. Using the unknotting theorems of [33], [48], [52]
(see [14] for the topological case) it follows that if ¢ is equivalent to the
zero-section, then % will be unknotted. Hence a concordance of ¢ to a local



314 S. E. CAPPELL AND J. L. SHANESON

knot equivalent to the zero-section leads, by gluing in D*** x S x I to get
S*** x I as target, to a cobordism of 4 to an unknotted embedding. Hence
a,(S", &) is also a monomorphism.

Let ¢, be the diagram

712] -%., 7[z]
lid l:}'o
Fo
Z[Z) — Z,
where F, is the augmentation. Let tex = 7,(S(¢)) be represented by a
fiber; we suppose, the orientations having been fixed, that ¢ represents a
positively oriented generator. Identifying Z[Z] = Z[r,S'] determines an
obvious homomorphism
Bigo—¢.
Notice that if ¢ is the trivial bundle, so that n’ = Z x m, then B has a

left inverse.
By the functoriality of I'-groups (§8), B induces a homomorphism

Bx: Fi(¢o) - F,-(gb).
THEOREM 6.4. Suppose n = 8. Then the following diagram commutes:

Za
cl —— Fn+3(¢o)

ja(M: ‘:C) ll.B*
z
Cu(M, &) — Tis(9) -

For H=PL, TOP, Za:CF —T,.s(s) 1s an isomorphism, for H= 0 a
monomorphism.

COROLLARY 6.5. Let & be trivial. Assume n = 4. Then ay(M, &) is a
monomorphism. If H is PL or TOP, its image is a direct summand.

Notes. 1. For n = 3, one can show that Za is still an isomorphism for
H = TOP, and a monomorphism onto a subgroup of index two for H = O,
PL; see [14]. One can further show that the corollary remains true for
n = 3, at least if one replaces Cy(M, &) by s-cobordism classes of local
knots. For = = 4, 6.5 is immediate from 6.3, 6.4, and the existence of a
left inverse for @ when ¢ is trivial

2. From the exact sequence

F'n+3(‘(}-0) B Fn+3(¢o) — L'n+2(Z) -_— F'n+2(3:0) ’

we see that T',.4() = 0 if n is even, namely: T, 4(Fo) C L,.s(e) = 0 for n
even and L, ,(Z) —T,.,(F) is monic because the composition with the



THE CODIMENSION TWO PLACEMENT PROBLEM 315

natural map gives the natural map L,,.(Z) — L,,.(¢), an isomorphism [46].
Thus we recover the theorem of Kervaire [25] on the vanishing of even
dimensional knot groups. For odd dimensions, we may view 6.3 and 6.4 as
a new calculation of knot groups.

THEOREM 6.6. Let M", n = 4, be simply-connected. Let H = PL, TOP.
Then ay(M, &) is onto. In particular, Cy(M*", &) = 0 if n is even. More-
over, for n even Cy(M, &) = 0 also.

This result can also be proven using methods of [29], [39].

This theorem asserts that every PL or topological knot of M is the
connected sum of a knot with the zero-section, up to cobordism. By 6.5, the
cobordism class of the knot is uniquely determined, for & trivial.

Notes. 1. For n = 8, Theorem 6.6 remains valid, H = O, PL, or TOP.
The proof of this uses the note following 5.2.

2. The reader may observe that a result for H = O and % odd can be
stated in terms of the inertial group of M.

Proof of 6.6 (assuming 6.4). Suppose first that = is even. Then the
commutative square

[2E; G/H] = Ly.o)
4
[ZM; G/H] 25 Loyi(e) = 0,
p the projection of &, shows that the upper map is trivial. (The right map
p* is defined geometrically [58, § 9] by inducing bundles over normal maps.)

So by Theorem 5.2 and the results of § 3, we have the following commuta-
tive diagram with exact rows and column:

Fn+3(?)

. .
0 — Cu(M, &) — T 15(8) 2 Loys(F)
2 |
Tops®) = Lyp(m) .
So 92 = 0. But T',.s(F) C L,ys(e) = 0, by §2. Hence X is trivial. So, by

Theorem 5.2, Cy(M, &) = 0.
Suppose that 7 is odd. The theorem then follows from 6.4 and 5.2 if
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we can show that the image of B,:T,.s(#) — I',.s(#) contains the image of
2Z: Cy(M, &) — T',15(8). The following commutative diagram has exact rows:

Fn+3(<rfo) —_— Fu+s(¢o) — Ln+2(Z) — 0= Fu+z(g:o)

P
Lpis(F) = Thss(@) — Lypao(m) — 0 = T, 10(F) «

The maps 0 and = are induced by the restriction g to suitable portions of
the square ¢,. In particular, ¢ is induced by an epimorphism Z[Z] — Z[x]
and so is easily seen to be onto. Hence, by a simple diagram chase, it
suffices to prove that the image of 4X: Cy(M, &) — L, .,(7) is contained in
the image of 7.

Let \: L,,(¢) — L,..(7) be the composite of p* and the natural map o'.
The square at the start of this proof, the diagram

[2S(8); G/H] - L, o)

I SH Ia’
[ZE; G/H] — L&),

and Theorem 5.2 imply that the image of 0T is contained in the image of \.
But the diagram

Ln+1(e) ‘\—2——’ L%“(Z)
\2 1,
AN

N L@

also commutes, where \ is a map defined geometrically by crossing with a
circle. This is seen using the facts that A can be described geometrically
as inducing over a circle bundle, that an arbitrary element of L,.,(e) can be
realized by a connected sum with a normal map into a disk (“local character”
of surgery obstructions [3], [58]), and by the “naturality property” of surgery
obstructions [58]. We leave the details as an exercise in surgery theory.
This diagram implies Image A C image z, completing the proof.

Proof of 6.4. By 6.3, to prove the second statement, it suffices to show
that Z: Cx(S™, &) — I',15(¢y) is an isomorphism for H = PL, TOP, and monic
for H = O. By 5.2, X is always monic.

For H=PL, TOP, it is well-known, [3], [51], [58] that s;: [ZS*; G/H]—
L,.,(¢) is an isomorphism. The following diagram commutes, where the
right vertical map is given geometrically by crossing normal maps with D?
and the left one is the obvious map:
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[2(S* x DY; G/H] — Lips(F)

o S
[£S% G/H] —E—— Loi(e) -

So we have to show that @ is an epimorphism.
The sequence

o’
L,1s(Z) — Lyys(€) — Lyuio(F) — LinsalZ) — Lysa(e)

is exact [58, §9]. By [46, 5.1] it follows that L,.,(F) = 0 for n even, and
that 9” is an isomorphism for n odd. Clearly, 3" is precisely \: L,,(e) —
L,..(Z), an isomorphism by [46].

To prove commutativity of the square in 6.4, let v e C¥ and choose a
representative h: S* — S™*%. Then it is easy to see that after an isotopy A
may be assumed to be a composite

Sn_;S‘n « D*c S,
where ¢ is a local knot and the inclusion is unknotted. We may assume
that ¢ is normal with respect to a disk B, S*, the closure of whose comple-
ment we identify with a closed disk Bc M. Identify E(¢| B) with B x D*
Let ¢: M — E be the zero-section. Then it is clear that an(M, §)(x) is
represented by ¢, where ¢/ | B = ¢| Band ¢ = ¢, outside B. We have already
seen that ¢ represents @(S*, £)(x). So we want to show that Z(¢) = B.Z.().

Choose a tubular neighborhood T of ¢(S,) so that, over B, T is a
standard tube, B, x (1/2)D? say, and so that T N (B, x D°) = B, x (1/2)D%
(1/2)D* denotes the disk of radius 1/2. Let W be the closure of the comple-
ment of 7T, and let W, be the closure of B x D* — T'Nn (B X D%, so that

W= W0U<B0>< S‘x[-;—,l]).

Let f: W—— S” x S* be as in Lemma 4.2; it is not hard to see that we
may suppose f| B, x S* x [1/2, 1] is just the natural projection on B, x S'.
Let v be a Morse function, 7v: W — [1/2, 1] that restricts to the usual pro-
jection on B, x S' x [1/2,1]. Let F = (f,7); we may find (see §4,5) a
covering bundle map b of F with b|B, x S* x [1/2, 1] the identity.

Note that [B x S* x [1/2, 1]/6B x S* x [1/2,1] U B x S* X 1/2; G/H] = 0.
So (F| W,, b| W,) is normally cobordant relative 6B x S* x [1/2,1]UoT U
(B x DY to a diffeomorphism (P.L. homeomorphism, homeomorphism). Let
(G, C) be the normal cobordism. Clearly, if e is the identity normal
cobordism of the identity of B, x S* x [1/2, 1] to itself, then

oG, C) =a(G,C)Ue) = Z([d) = Z,0) »
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by definition and naturality of surgery obstructions.
Let ¢, be the identity normal cobordism of the identity of S(§|M;) x
[¢, 1], M, = cI(M — B). Then it is clear that

o((G, C) U ex) = Z() -

But, by naturality of surgery obstructions (§ 8), o((G, C) Uey) = B.0(G, C).
This completes the proof.

To conclude this section, we state an easy consequence of 5.2 and 3.1
(or 3.2).

THEOREM 6.7. Let & be a 2-plane bundle over the simply connected
manifold M*®, with Euler class a primitive element of H*(M) (so that
7,S(€) = 0). Then, for n = 4, Cy(M, §) =0, H = O, PL, TOP.

Thus the connnected sum of a knot with the zero-section in a bundle as
in 6.7 is cobordant to the zero-section.

7. The case of the trivial bundle
In this section we outline some simplifications that occur when ¢ is
trivial; in this case we write Cy(M) for Cy(M,¢). We have 1 =Z x 7’
and F:Zrw — Zn', the natural map.
The exact sequence
Lo X Z) — Lpyo(T') — Lo F) — Lpso(m’ X Z) — L,1s(7')

shows that L,.,(F) is the kernel of L,.,(7" X Z) — L, (7"); by [46] this is
just L:,.(n"), viewed as a subgroup of L,.,(7' xZ) by crossing with a
circle. This induces an isomorphism of L,,(F)/sz[Z(M x D?; G/H] with
Lk, (n")/sx[EM; G/H]. Let ¢ be the composition of Z:Cy(M) — I',.s(¢) with
the map

Tyis() =2 Loa(F) = Ly ()

Let i T,s(F) — Tais(¢) be the appropriate map in 3.2. Note that
by Lpio(m) — Topo(F) carries Lk, (7') trivially if n is odd, by [46, 5.1] and
the fact from § 2 that the natural map T',,,(F) — L,..(7") is monic. Using
this fact, Theorems 5.2 and 3.2, it is not hard to see the following:

THEOREM 7.1. If n = dim M = 4, the following sequence is exact:

@ x-1 7
Lsa(1) —255 Ty o F) 25 C(M) 2 L, ()

If n is odd, the image of D is the image of sy [EM; G/H] — Ly, (7). If n s
even, then the image of p is the intersection with image sy of the kernel of
the restriction of ¢y Lo(mt) — Tpio(F) to Lt (7') C L, (7).
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For n = 3, one has to modify the definition of Cy(M) slightly to obtain
this result, as usual.

The homomorphism P can be defined intrinsically as follows: Given
t: M— M x D* = E(&), & trivial, let W be the closure of the complement
of a tubular neighborhood T of ¢(M). Let f: W— M x S* be as in Lemma
4.2, and let m,: M x S'— S* be the natural projection. Let p: M x D*—-M
be the natural projection on M. Let ye S* be a regular value of m,of, and
let V = (m.f)~*(y). It is not hard to find a bundle map b of normal bundles
covering p| V: V—M. Let v: V—1I be a Morse function. Let g = (7 |V, 7).
Clearly g induces a homotopy equivalence, in fact a diffeomorphism (homeo-
morphism, P.L. homeomorphism), of boundaries and one may show:

ADDENDUM TO 7.1. p[i] = a(g, b) € Li,,(w,M).

If n is even, then we get a strikingly small answer. For I',.(F) — s
L, .4(') is a monomorphism, by § 2, and the natural map L,.s(7) — L.s(7')
is onto. Hence

COROLLARY 7.2. If n =dim M is even, p:Cy(M)— Ly, (m M) is a
monomorphism.

For example, L..(Z,) =0, p odd, [34], [6]. Hence if M is orientable
with #,M = Z,, then Cy(M) = 0.

To conclude, we compute local knottings of T*=S'x -+ X 8%, n
even. If H = PL, TOP, then sy:[2T* G/H]— L,.,(Z" is a monomor-
phism, [24], [68], where H = PL or TOP.

THEOREM 7.3. For n even, sz'p: Cyx(T™ — [E2T"; G/H] is an isomor-
phism, H = PL, TOP, n= 4. A minimal set of generators for Croe(T") can
be obtained as follows: for each odd integer k < m, let a, be a topologically
locally flat knot of S* in S*** with index equal to 8 (k= —1mod 4) or
Arf invariant (k = 1mod 4) equal to one. (For k = 3, see [14]. ) For each
odd k, let HfCcT" j=1,---, (k)’ be the standard subtori (given by hold-
ing certain factors in S*' X +-+ X S fized), with complementary standard
subtorus H}. Then a minimal set of generators of Crop(T™) is represented
by the local knots

7o f, 7 x HF % FE o HEx DX e D

t, the zero-section and B a suitable shuffling of co-ordinates.
A similar construction gives gemerators of Ce(T™); for k =3, a, 1is
taken to have index sixteen.

The proof follows easily from the addendum to 4.1, Corollary 7.2, and
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the well-known calculation of L,,,(Z"), [46], [68] and of the map
sut[ET"G/H] — L,4,(Z"), [24], [58].

In Chapter V, we will complete this result by calculating C,(T*) for n
odd; see 14.5.

Chapter III: Codimension two splitting and group actions

8. Codimension two splitting

Let (X", 0X) be a Poincaré pair (e.g., a compact manifold), X con-
nected. Let (Y,0Y) c (X,0X), Y connected, be a Poincaré (simple Poin-
caré) pair' having a linear normal bundle in (X, 0X). The case 0X # @ is
not excluded. Let (M, 0M) be a smooth, piecewise linear, or topological
manifold pair and let f:(M,dM)— (X, 0X) be a homotopy equivalence.
Assume f is split (resp. simply split) along the boundary; i.e., f|oM is
transverse to 0Y and f restricts to a homotopy (resp. simple homotopy
equivalence) of (f|0X)™*(@Y) with 07Y.

The (simple) splitting problem is the following: when is a homotopy
equivalence f, (simply) split along the boundary, homotopic relative the
boundary, to ¢ transverse to Y with g|¢g™'Y:97'Y — Y a (simple) homo-
topy equivalence? Such a g will be called (simply) split, and if it exists f
will be said to be (simply) splittable along Y.

LEMMA 8.1a. Suppose f: (M*, oM)— (X, 0X), as above, is mormally
cobordant, relative the boundary to a split (simply split) homotopy equiva-
lence. Assume n =5. If n is odd, then f is (simply) splittable.

b. If instead n is even, then f is (stmply) splittable if and only if f is
normally cobordant to a (simply) split map via a normal cobordism with
surgery obstruction in the image of the natural map j,: 't (F)— L, (7, X),
F induced by the inclusion of X — Y in X.

Note. Of course, j, is onto if the natural map from L}, (7(X — Y)) to
L!, (7, X) is onto. In particular, this is always the case if Y has a trivial
normal bundle in X.

Proof. We ignore the boundary, since it plays no essential role in the
proof. As a first step, we show that, under the hypothesis of 8.1, f is

h-cobordant, relative boundary, to a split map.
Suppose 7 is odd. The normal cobordism f to a (simply) split map will

1 In general the closure of the complement of a neighborhood will be a (simple) Poincaré
pair over Z[z,X], with boundary a simple Poincaré pair. A Poincaré embedding of Y in X
can by definition be taken as an inclusion, as above, after changing the finite complex X to
a homotopy equivalent one.
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have a surgery obstruction v e L%, (7,X). We will construct, given a (simply)
split map g: N — X, a normal cobordism of g to a simply split map, with
surgery obstruction —7v. Having done this, we can paste the given normal
cobordism to the constructed one along g to obtain a normal cobordism with
vanishing obstruction in L, (7, X). Performing surgery yields the desired
h-cobordism.

To construct the desired normal cobordism, let C be the complement of
the interior of a closed disk bundle neighborhood of Y. Let ¥:Z[r,C]—
Z[x,X] be induced by the natural map, a surjection 7,C — 7. X by Van
Kampen’s theorem (or general position). By lifting matrices, it is obvious
that the natural map 7,: ', (F) — Lk, (7, X) is a surjection. Let de I}, (F)
with 7,0 = —7.

We may suppose that g is a bundle map on a tubular neighborhood T
of g7'Y, with U = ¢g7'(C) = closure of M — T. Then it is not hard to see
that g| U: U—C is a simple homology equivalence over Z[r X]. By
Theorem 1.8, let (¥, B) be a normal cobordism of g | U, relative boundary,
to a simple homology equivalence k over Zm X, with o(F, B) = 0. By the
same argument as in Lemma 4.3, we may assume, after a further homology
s-cobordism over Z[m X], if necessary, that A induces an isomorphism of
fundamental groups; this will not alter o(F', B), by additivity.

Let W be the domain of F, so that we have

F:(W; UU@UX I),0,W)—> (Cx I,Cx0UICx I Cx1).

Let V=TxIUwuW. Let (G C)=({F,B) U(g|T,0b), b a suitable
bundle map. By Van Kampen’s theorem and a Meyer-Vietoris argument,
G|Tx1Ud,W is a homology equivalence over Z[7,X] and induces an iso-
morphism of fundamental groups. Hence it is a homotopy equivalence. It is
evidently (simply) split. By naturality (§ 8) (or by comparing the realization
Theorem 1.8 with [59, 5.8]), it follows that ¢(G, C) = j.o(F, B) = j,0 = —7.

If n is even, the hypothesis of 8.1b allows us to apply the same
argument.

Thus f is h-cobordant to a (simply) split map g: N— X. An h-cobordism
R will have torsion (R, N) = t€ Wh (7,X). To show f is (simply) split-
table, it suffices to show that g is h-cobordant to a (simply) split map by an
h-cobordism with torsion —z. For then, pasting the given h-cobordism R
to the constructed one along N yields an s-cobordism of f with a (simply)
split homotopy equivalence, and the s-cobordism theorem implies the result.
However, it is easy to see, from the construction of non-trivial k-cobordisms
outlined in [40, § 11] for example, that they may be constructed by attaching
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handles entirely in the complement of any submanifold with complement
having a fundamental group that maps onto 7,X by the natural map. In
particular, a submanifold of codimension two can always be avoided. Hence
the required h-cobordism can always be constructed.

Now consider f: (M, 0M) — (X, 6X), (simply) split along the boundary,
as in the first paragraph of this section. Suppose f is transverse to Y.
There is a natural bundle map b, as in [5], [68, § 11] for higher codimen-
sion, with domain the stable normal bundle of f~'Y, covering f| Y. Let
Z(f)eL: ,(mY), e =s or h as appropriate, be the surgery obstruction of
(f1 f7'Y, b). This is easily seen to be an invariant of homotopy class of f,
relative the boundary. We call Z,(f) the abstract surgery obstruction of f.

THEOREM 8.2. Let n =7 be odd. Let f be split (simply-split) along
the boundary. Then Z,(f) (’resp. 2.(f)) vanishes if and only if f is split-
table (resp. simply splittable).

For higher codimensions, the analogous theorem is due to Browder [5].

Proof of 8.2. We consider only the non-simple case; e.g., ¢ = h. The
proof for the simple case is the same. It suffices to show that f is normally
cobordant relative boundary to a split homotopy equivalence, by 8.1,
assuming %,(f) = 0. By surgery on f| f~'Y and the cobordism extension
theorem, f is normally cobordant to a normal map (g, b), g: N — X, with
g|97'Y:9g7'Y — Y a homotopy equivalence. We may suppose g is actually a
bundle map on a neighborhood T of g—'Y. Let U = g~*(C), C the comple-
ment of the interior of a tubular neighborhood of Y. Then a(g| U, b| U)e
T4(F) is defined, F: Z[r,C] — Z[x, X] the natural map, as in the proof of
8.1. By naturality, j.o(g| U, b| U) = (g, b) € Li(7,X). But o(g,b) =0, as
(g, b) is normally cobordant to f. By §2 and since n is odd, this implies
that a(g| U, b| U) = 0 also.

Hence, by 2.1, (g| U, b| U) is normally cobordant, relative the boundary,
to a homology equivalence over Z[x, X] that induces an isomorphism of
fundamental groups. Gluing T back in along the appropriate part of the
boundary and using g| T to extend the homology equivalence, we obtain a
split homotopy equivalence normally cobordant to f.

In the even dimensional case, it is still necessary for splittability that
the obstruction X,(f) must vanish. In this case a secondary obstruction in
I'4(F) arises to completing the surgery to get a normally cobordant split
map. In general, we know only that the image of this obstruction in L:(r, X)
must vanish. However, if 0X = dM = ¢, then one sees that the secondary
obstruction actually lies in the image of L:(m,C) under the natural map of
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this group of I'4(F). Hence one has the following result:

THEOREM 8.3. Let n =17 be even. Let f: M— X be a homotopy equiva-
lence, as in 8.1, but with oM = 60X = . Assume that the kernel of the
natural map iy: Li(r(X — Y)) — Li(n,X) vanishes under the natural map
of Li(m(X — Y)) into TiTF), F:Zn(X — Y)— Zm X the natural map.
Assume also that j,: T (F)— Lk, (7, X) is surjective. (See note following
8.1.) Then f is splittable if and only if its abstract surgery obstruction
vanishes.

For the simple splitting problem, the analogous result holds.

COROLLARY 8.4. If i M— X isasin 8.3, and if n,(X — Y) = Z or 0,
then f is splittable (or simply splittable) if and only if its abstract surgery
obstruction Z,(f) (or Z.(f)), vanishes.

This extends the results of Lopez de Medrano [36].

Proof of 8.4. If m(X—7Y) = 0, then 7, X = 0 also and 1, is the identity.
If (X — Y) = Z and X — Y is orientable, then sois X and the composite

L.(Z) — Li(m.X) — Lu(e)

is an isomorphism [46]. In the non-orientable case, let w: 7, X — Z,, be the
orientation character. For n» = 2 (mod 4),

L.(Z,, —) — Li(m.X, w) — Lu(Z, —)

is an isomorphism (see [58], for example). For n = 0 (4), this composite is
trivial and we apply the result A. 1 of Appendix II. Also, L, (7. X) = O or
Z, [34], [7], [62], [63], and in case it is Z,, the natural map from L,(Z) is
surjective [62], [63]; hence 80 is j,.

For the general splitting problem in even dimensions, the secondary
obstruction can be made a little more precise as follows: given (Y, 0Y) C
(X, dX) as in the beginning of this section, induction over the normal
sphere bundle induces a map L:_,(7,Y) — L (7,), m the projection of this
bundle. Composing with natural maps, we obtain o°: L;,,(7,Y) — I's..(9),
¢ the homomorphism (7, id) from F to idz. x, F:Zr (X — Y)— Zm, X the
natural map.

THEOREM 8.5. Let f: (M*, 0M) — (X, 0X) be as in 8.1, but with n = 6
even. Then if the surgery obstruction Z,(f) (resp. Z( f)) vanishes, there is
a well-defined obstruction in Tt (¢)/Im p* (resp. I's.1()/Im p°) that vanishes
if and only if f is splittable (resp. simply splittable).

The proof is omitted, but we point out that in general all these obstruc-
tions may arise.
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The results of this section imply results of [29] and [39] on the existence
of locally flat spines. For example, suppose the P.L. manifold W=** has
the homotopy type of the closed Poincaré complex Y*, n=4. If n =4,
assume Y is a manifold. Then it is not hard to exhibit a natural Poincaré
embedding Y — X, with linear normal bundle, and a homotopy equivalence
h: W— X. So for n odd, Theorem 8.2 applies to yield a locally flat spine
for W provided that a well-defined surgery invariant vanishes. Hence if
m, W = 0, a locally flat spine exists, for n odd. For n even, the surgery
obstruction and the secondary obstructions mentioned above can be killed
by introducing a singular point whose link pair corresponds to the appro-
priate secondary obstruction under the identification of § 6 of knot cobordism
groups with I'-groups. Thus, if 7, W = 0, a spine with only one non-locally
flat point exists.

A general theory of non-locally flat P.L. submanifolds is developed in
[16], [L17]. The phenomenon of “total spinelessness” will be studied in [64].

9. Invariant spheres and characteristic submanifolds for free
actions of cyclic groups on odd dimensional spheres

Let Z, be the cyclic group of order s. We study free P.L.! (orientation
preserving) actions of Z, on odd dimensional spheres. The quotient space
of such an action is an oriented PL manifold with an identification of its
fundamental group with Z,, a so-called “fake lens space”. We will say two
actions are equivalent (homotopy equivalent) if their quotient spaces are P.L.
homeomorphic (resp. homotopy equivalent) by a map of degree 1 that pre-
serves the identifications of fundamental groups with Z,. Many of the
results of this section are also valid for the other categories.

A suspension of a free action is defined as any free action obtained from
the given one by taking the join with a free action on S!. The quotient
manifold of a suspension will also be called a suspension of the quotient
manifold. There is one suspension for each primitive s** root of unity. Let
M be a fake lens space. Then, by considering a homotopy equivalent classical
lens space and using the classical criterion for them to be homotopy equivalent
[44], [40], it is easy to see that the different suspensions of M are not homo-
topy equivalent. (Compare [58, 14 E. 9].) A suspension N of the fake lens
space L is easily seen to be determined by the normal bundle, of L in M, a
two-disk bundle with Chern class a generator of H*L; Z) = Z,.

Let o be a free action of Z, on S**!, with quotient space M = S%*+/p,
An (locally flat) invariant sphere (of codimension two) is a (always assumed

1 This means the quotient space is given a P.L. manifold structure.
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locally flat) submanifold K*~* c S+, P.L. homeomorphic to S*7, invariant
under the action p. It follows that there is a bundle neighborhood on which
p carries fibers linearly to fibers. A (simple) characteristic submanifold for a
homotopy equivalence f: M— N, N a suspension of L*7, is a submanifold g7 L,
where g: M — N is homotopic to f, transverse to L, and g|g¢—L: ¢g7'L — L
is a (simple) homotopy equivalence. If h: L— L' is a homotopy equivalence,
there exists a canonical extension #: N — N’, for a unique suspension N’ of
L', so that characteristic submanifolds for f and kf coincide.

A characteristic submanifold is clearly the quotient space for the
restriction of 0 to an invariant sphere. On the other hand, let L*~* be the
quotient space of the restriction of o to an invariant sphere. Then a little
obstruction theory shows that, for the suspension N of L determined by
the normal bundle of L in M, the identity of L extends to a homotopy
equivalence f: M — N for which L is a characteristic submanifold. So we
have

PROPOSITION 9.1. The quotient spaces of imvariant spheres of 0 are
exactly the characteristic submanifolds of M = S**/p.

Let N be a suspension of L*™, L a fake lens space. Then we define
ti: [N; G/PL] — Z, as follows:
ti(x) = w,o(x| L) if s and k are both even;
th(x) =0 otherwise;
where o:[L; G/PL] — Ly._,(Z,) is the surgery obstruction map and
wy: Ly_(Z,) — Ly_,(Z;) = Z, is the natural map, k and s both even. If

f: M — N is a homotopy equivalence, we may write t5(f) for t;(x), where
« is the normal invariant of f.

THEOREM 9.2. Let p be a free action of Z, on S*™*', k = 2. Let M =
S#*+1/0, Let T be a free action of Z, on S*™'. Then t is homotopy equivalent
to the restriction of © to an imvariant sphere if and only if L = S*7'/t has
a suspension N homotopy equivalent to M by a homotopy equivalence f: M—
N with t5(f) = 0.

COROLLARY 9.3. For s and k = 2 not both even, every free action of
Z., on S**' has an invariant sphere of codimension two.

Notes. 1. Actually, the results hold in the topological and smooth
categories as well and are proved the same way. Inthe smooth category the
statement about L in 9.2 will refer to the underlying P.L. homotopy lens
spaces.

2. For k = 1, the analogous result to 9.2 is trivial.
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3. The corollary follows from 9.2 and the fact that every homotopy
lens space has the homotopy type of classical lens space. For s odd, 9.3
also follows from the unique desuspension theorem of [8]. For s =2, it is
a result of Lopez de Medrano [35]. The existence of characteristic submani-
folds in higher codimension is due to W. Browder [6].

Proof of 9.2. The necessity of the condition that z have the homotopy
type of the restriction of o follows easily from 9.1. Conversely, suppose
fiM— N, N a suspension of L = S*™'/z, Then, by [568, 14. E. 4], the
abstract surgery obstruction of f, with respect to L — N, vanishes if and
only if ti(f) = 0. (For s odd, this is due to Browder [6].) Hence, for k = 3,
9.2 follows immediately from 8.2.

For k = 2, the composition of the surgery obstruction with w, induces
an isomorphism [L®; G/PL] — Z,. Hence the vanishing of t%(f) in this case
implies that the restriction of f to the transverse inverse image f'L is
normally cobordant to a homotopy equivalence; in fact it is normally cobordant
to the identity. Using this, the proof of 8.2 will carry through to show
that, in fact, 7 itself is the restriction of o to an invariant sphere.

If 7, 7, are free actions of Z, on a sphere with the same homotopy
type, let f:S‘/t,— S/, be a homotopy equivalence, of degree one, pre-
serving identifications of fundamental groups with Z,. Then we say 7, is
normally cobordant to 7, if and only if the normal invariant 7(f) of f in
[Si/z.,, G/PL] vanishes. Normal cobordism is an equivalence relation, in
view of the formula 7(g° f) = 9(g) + (g7)*0(f).

THEOREM 9.4. Let 7, be equivalent to the restriction of a free action 0
on S*™* to an imvariant sphere of codimension two. Let T, be homotopy
equivalent to t,. Assume k = 2. Then t, is the restriction of 0 to an )
invariant sphere if and only if T, is normally cobordant to ..

Note. Smooth and topological analogues are valid also, and proved in
the same way. For &k = 1, Theorem 9.4 is trivial.

Proof. That 7, and 7, must be normally cobordant if they are restrie-
tions of o to invariant spheres follows easily from 9.1 and transversality,
using the natural homotopy equivalence of appropriate suspensions of 7,
and 7,.

To prove the converse, let N be a suspension of L, = S*~!/z, so that
there is a homotopy equivalence f: M — N, M = S*+!/p, with L, charac-
teristic for f and f| L, the identity. (See the discussion preceding 9.1.
Here we have L, M by identifying 7, with the equivalent restriction of
0.) Let g: W— L x I be a normal cobordism of the identity of L, to a
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homotopy equivalence h: L, — L,, L, = S*™/z, of degree one and preserving
identifications of fundamental groups. (Bundle maps are omitted from
the notation.) By the cobordism extension theorem, we may extend g
to a normal cobordism G: V—Nx I of f to a map H: M'— N with
WcV, G L xI)=W, G| W=g, and G a bundle map on a neighbor-
hood of W.

Let R be a bundle neighborhood of L, in N, with interior R. Then
the surgery obstruction o(H | H*(N — 102)) e T2, (F) is defined, F: Z[Z] —
Z[Z,] a natural map induced by inclusion of N — IOB in N. Its image under
Jx» the natural map to L},.,(Z,), is, by naturality, just o(H) = a(f) = 0.
Hence o(H|H(N— 102)) =0. So, after some surgeries avoiding L, if necessary,
H|H*(N — 103) can be assumed to be a homology equivalence over Z[Z,], as
well as an isomorphism of fundamental groups, by 2.1. Hence H will be a
homotopy equivalence.

So L, is a characteristic submanifold of a homotopy lens space normally
cobordant to M. The proof of 8.1a shows that this implies that L, is a
characteristic submanifold of M also, which implies the result. Observe
that in the proof of 8.1, the codimension two submanifolds were never dis-
turbed, as all surgeries, normal cobordisms, etc. took place in the complement.

10. Equivariant cobordism of invariant spheres in codimension two

Let o be a free action of Z, on S*+, in the P.L. category; i.e., S*+!/p is
a P.L. manifold. Many of the results can be formulated for the smooth and
topological categories also. Let R, R, S**' be invariant (locally flat)
spheres of codimension two. Let S**' x I have the action given by p in the
first factor and be trivial on the second. Then R, and R, are equivariantly
cobordant if and only if there is a submanifold W of S*+' x I, invariant
under the action of Z,, P.L. equivariantly homomorphic to R, x I, and
meeting the boundary transversely in 6 W = (R, x 0) U (R, x 1). In parti-
cular, p| R, and o| R, are equivalent. (More precisely, the above should
be called equivariant s-cobordism. The methods of this section could also be
used to study equivariant A-cobordism.)

Let M = S*+*'/p, and let L*™ = S*~'/r be a homotopy lens space.
Suppose p has an invariant sphere equivalent to z; in § 9 we determined
when this happens. Then, by 9.1 (more precisely, by the discussion preceding
9.1), there is a unique suspension N of L and a homotopy equivalence h: M—
N, preserving orientation and identification of fundamental groups with
Z,, for which S*~'/r is a characteristic submanifold. A similar argument
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shows that equivariant cobordism classes of invariant spheres for which the
restriction of p is equivalent to 7, denoted C(p, 7), correspond exactly to
cobordism classes of (simple) characteristic submanifolds for 4 that are P.L.
homeomorphic to L via a homeomorphism preserving orientation and identi-
fication of fundamental groups with Z,. Two (simple) characteristic sub-
manifolds for h, L; = ¢g;7'L, © = 0, 1, are cobordant if and only if there
exists a homotopy G of g, with g,, transverse regular to L x I, with
G | G™(L x I) a simple homotopy equivalence onto L x I.

Let C(0) be the union of the sets C(o, 7), for all v equivalent to the
restriction of o to an invariant sphere.

Let K M be a characteristic submanifold for A: M — N, P.L. homeo-
morphic to L by a homeomorphism that preserves polarization (i.e., orien-
tation and identification of fundamental groups; see [58, 14. E. 3]). Then
K = g™'L, where g: M — N is homotopic to k, transverse to L, and g| K: K —
L is homotopic to a P.L.. homeomorphism. We may suppose g| R(K): R(K)—
R(L) is a bundle map, where R(K), for example, denotes a bundle neigh-
borhood of K. Let f: W— D* x S* be the restriction of g to a map from
W =cl(M— R(K)) to D* x S* = cl(N — R(L)). Let F: Z[Z]—Z[Z,] be induced
by the map on fundamental groups induced by inclusion D* x S*c N. Then
f is a homology equivalence over Z[Z,] and /|0 W is a homotopy equivalence
of 6 Wwith S*' x S*, homotopic to a P.L. homeomorphism. Furthermore, the
torsion A4(f) e Wh (F) = Wh (Z,) is easily see to be precisely the torsion
0e Wh (Z,) of the map h.

Let § = §%(D* x S') denote homology s-cobordism classes, over Z[Z,],
of homology equivalences f: (W, dW) — (D* x S*, S** x S*) with torsion é
that restrict to homotopy equivalences on the boundary. More precisely fand
f' will represent the same element in § if there exists a relative cobordism
(U, V) of (W, W) with (W', dW’), with V an s-cobordism and U a homology
s-cobordism over Z[Z,], and an extension F: (U, V) — (D* x S, S** x S
of fU f’. The definition of f in the preceding paragraph defines an invariant
O(K) e S of the characteristic submanifold K, easily seen to depend only on
the cobordism class of K. Using the fact [4], [38] that P.L. homeomorphisms
of S' x S™, homotopic to the identity are pseudo-isotopic to the identity;
the s-cobordism theorem (including Theorem 2.1 of [48]); and the fact (com-
pare Lemma 4.3) that given a cobordism (U, V) as above, one can always
find U’, homology s-cobordant to U over Z[Z,], relative the boundary with
7w, U’ = Z, one can easily show the following:

ProposITION 10.1. Let K and K’ be characteristic submansifolds for
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h: M7+ — N that are P.L. homeomorphic to L via a homeomorphism pre-
serving polarizations. Then 0(K) = 0(K') if and only if K and K’ are
cobordant, k = 2.

To calculate &, let ¢ be the diagram

71z] - 717)

id F
Z[lZ] Z, Zl[Z.] ,

a morphism from the identity of Z[Z] to Z[Z,]. The group Ij...(¢) acts on
S5(D* x S'); when 6 = 0 this action is given by the realization Theorem
3.4 and is analogous to the usual action of Wall groups on §,.(P), P a
manifold; when 6 = 0 one appeals to 8.7. Since 7,(G/PL) = 0, the elements
of § are all normally cobordant. Hence the action of I'j..,(¢) is transitive.

Every map f: W— D* x S' representing an element of § is normally
cobordant to the identity; this normal cobordism will have an obstruction in
Tti:(¢). Further, if an element of TI'j...(¢) acts trivially on the identity
element, then it is represented by a normal map into S* x D* x I thatis a
homotopy equivalence on the parts of the boundary -corresponding to
St x D* x {0,1}; hence it is in the image of I'.,,(Z, Z) = 0 under the
natural map, and so vanishes. These two facts, together with additivity of
surgery obstructions over unions, imply that if &eT'j,..(¢) acts trivially on
any element of §, then the image of ¢ in I'L,,,(4) under the natural map
vanishes. In Appendix I we will show that the natural map I'%;..(¢) — I'k12(4)
is a monomorphism. So we have:

PROPOSITION 10.2. The action of I's..(¢) on SH(D*™ x SY) is transitive
and free, k = 3.

If we fix a characteristic submanifold K#**c M for h: M — N, P.L.
homeomorphic to L via a map preserving polarization, then the action
of T'3ii2(¢) on 6(K,) gives a bijection Ag, = A:T3,,(8) — S, and so we get
an invariant A™'6(K) that determines the cobordism class of K.

To determine the image of A™'4, let K be a characteristic submanifold
for h, P.L. homeomorphic to L via a polarization preserving map. Then
there is a map F: M x I— N x I, homotopic to h x 1, transverse to L x I,
so that if W=FL x I), then oW = (K, x 0) U (K x 1). We may
suppose

Fp, =F|R(W):R(W)— R(L) x I
is linear on a bundle neighborhood R(W) of W. Let G, be the restriction
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of F' to a map of the closure of the complement of B(W) to the closure of
the complement of R(L) x I. Then it is clear that

AT(K) = 0(Gy) -

(Bundle maps will be omitted from the discussion, for convenience.)

Recall the natural map j,: I'sii2(¢) — Li(F). By additivity over unions
and naturality of surgery obstructions, 7,0(Gy) — o(Fy) is just the image
of o(F) e Ly45(Z,) in Ly.,(F) under the natural map; this holds for any
normal map into N x I with torsion 6 on both ends (see 3.7 for the case
0 # 0). The sign is due to orientation considerations. Since F' is a homotopy
equivalence with torsion 4, ¢(#) = 0. Thus

3x0(Gw) = 0(Fy) .

Let p: L, (Z,) — L,,.2(F) be the map defined geometrically by inducing
normal maps into L x I over the normal bundle of L x I in N x I. Since
Fy, is a bundle map, o(F}) = po(F,), where F, is the restriction of F to a
normal map of W to L x I. By hypothesis, FF/|K, x 0 and F|K X 1 are
homotopic, as maps into L x 0 and L x 1 respectively, to P.L. homo-
morphisms preserving polarization. Hence o(F,) is in the image of the
surgery map s: [XL; G/PL] — L,.(Z,). Thus j,A™6(K) is in the image of
pos. It is straightforward to reverse the above argument to show that
every element &€ Iy 0(¢) with j,6€Im (pos) is of the form A™'6(K), K a
characteristic submanifold P.L. homeomorphic to L by a polarization pre-
serving map. Thus cobordism classes of such charcteristic submanifolds are
in one-one correspondence with ji' (Im pos). In terms of invariant spheres,
we have:

THEOREM 10.3. Let o be a free action of Z, on S**', k= 2, in the
P.L. category. Let T be a free action on S*, equivalent to the restriction of
o to a locally flat inmvariant sphere R. Let L = S*7'/r. Let K, be the
quotient characteristic submanifold corresponding to R. Then the invariant
Axi0, on the quotient characteristic submanifolds, gives a bijection of equiv-
ariant cobordism classes of invariant spheres R', with 0| R’ equivalent
to 7 (i.e., of C(p, 7)) to elements &€ Tyia(d) s0 that ji& is in the image of

[EL; G/PL] — Ly (Z) —2 Lyp.o(F) -

Actually the case &k = 2 has not been adequately dealt with here. This
case requires further special arguments which would clutter up the present
exposition.

To interpret 10.3, consider the following diagrams, which commute:
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0
sz+2(z) ﬁ" sz+z(f}') I sz+z(¢) = L2k+1(z) — sz+1(?)

(a) |- Jis Jis E 1

0
Lueo@) =25 Lupss(Ze) — Lo F) —2 Lyss (Z) — Ligas(Z) 5

Loi(Z.) =2 Ly o)

(b) 110 162

Ly(e) —— Lyy(Z) -

The diagram (a) is just the transcription of (3.2.1) to the present case.
In (b) 7, is the transfer homomorphism, defined geometrically by passing to
universal covering spaces; 9, is the natural map in the exact sequence [58,
§ 3] for the Wall group of a pair; and « is defined in [46], and is an isomor-
phism [46, 5.1]. By Toiie(¥) and L,.15(Z,) we denote the cokernels of 5, and
B, respectively.

If s is even and k is odd, then [58, B.A. 9] implies that 9, and 9, are
trivial. So in this case p induces

D: Ly(Z,) — Ezk+2(zn) .

Let A,, C Tyii(F) be those elements & with 7,(€) in the image of Hos,
7. induced by the natural map, for s even and k odd.

If s is odd or k is even, the last maps on the right in (a) are trivial,
by [58, 14. E. 5] and 2.1. Further, recalling that the natural map <,: L,.(e)—
L,.(Z) is an isomorphism, it follows using (b) that the composite

0
L) ~25 Lu(Z) —2 Lo F) —2> Lypin(2)

is a monomorphism; this also uses the fact that 7,8,%.(x) = sx. So, in fact,
the image of 9,pB, is generated by sg, g a generator of L;..,(Z). In parti-
cular, p induces a map

fj: Ezk(zc) — E2k+2(za) .

In this case, let 4, , denote the inverse image under j,: Tuis(F) — Doiso(Z,)
of the image of the composition of 7 with the composite of s: [ZL; G/PL] —
L,.(Z,) and the quotient map of L, (Z,) to Ly (Z,).

Clearly the natural map induces a monomorphism of A, into T'y..(4),
which acted freely on S. The reader will see that this leads to a free action
of A, on C(o, 7), which can easily be given a direct description in terms of
the action of elements of I'y..,(F) on the complements of characteristic sub-
manifolds to produce new characteristic submanifolds.

If sis evenand k odd, let p(x) = 0 for all z e C(po, 7); otherwise let
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Z, keven

1
= 105,05:0(x) € Lus(e) =
p@) = ~-a0AZ0@) & Lule) = || o

K as in 10.3. Then we may reformulate 10.3 as follows:

COROLLARY 10.4. The group A, acts freely on C(o, ) and p induces
a bijection of the quotients space with Z, k even, or Z,, k odd.

Notes 1. If s is odd, then it follows from [45] (see also [8], [58], [6])
that the image of s lies entirely in L., (e) © L,.(Z,). Hence A, , is just the
kernel of 7,: Tsao(F) — Luso(Z,) in this case. It is easy to check, recalling
the isomorphism L, ,(¢) = L,...(Z) [46, 5.1], that A, is naturally isomorphic
to the kernel of j, itself.

2. Let s*:[XL; G/PL] — L%(Z,) be the surgery map. Then using 10.4
and 9.3, one can produce a one-one correspondence of C(o) with A4, P
L,.(e) ® Ly (Z,))Ims*, s and (k + 1) not both even, and with A,, D
L,(Z,)/Im s* if sand (k + 1) are both even. Again, if s is odd s* vanishes.

3. If s is odd and p is a suspension of 7z, then the unique desuspension
theorem [8, Cor. 1] provides a canonical choice for K,.

To conclude this section, we consider a free action o of Z, on a 2k-
dimensional (homotopy) sphere, in the smooth, P.L., or topological category.
In this case, the quotient M = S*/p is always homotopy equivalent to real
projective space P, and any (locally flat) invariant (homotopy) sphere is a
characteristic submanifold for the (unique up to homotopy) homotopy
equivalence f: M — P*, with respect to the standard codimension two pro-
jective space P*~*C P%*,

THEOREM 10.5. There exists at most one cobordism class of characteristic
submanifolds for f, k = 4. Thus a smooth, P.L. (locally flat), or topological
(locally flat) invariant sphere R (homotopy sphere in the smooth case) is
unique up to equivariant cobordism, assuming k = 4.

For k = 3, a result can be stated in terms of a definition of cobordism
sufficiently weakened to compensate for the lack of an s-cobordism theorem
in dimension five.

Proof of 10.5. Let F: M x I— P* x I be a (simple, as Wh(Z,) = 0)
homotopy equivalence, transverse to P** x I. Let V = F~*(P**x I), and
suppose F'|0V: 0V — P* x {0, 1} is a homotopy equivalence. To prove the
theorem we have to show that the characteristic submanifolds (@V) N (M x 0)
and V)N (M x 1) are cobordant; we are taking for granted a relative
analogue of 9.1.

By 13. A. 1 of [58], L,._,(Z;) = 0. Hence, by the cobordism extension
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theorem F'|V is normally cobordant to a homotopy equivalence. By the
cobordism extension theorem, it follows that F' is normally cobordant, re-
lative the boundary, to G: W— P* x I with G| U: U— P*™* x I a homo-
topy equivalence, G transverse to P*~% x I and U= G™(P** x I).

We may suppose that G is a bundle map on a neighborhood R(U)
to a neighborhood R(P*™* x I). Let H:Q— B = 8" x D*™* x I be the
restriction of G to a normal map of the closure of the complements of these
neighborhoods. Then, by Meyer-Vietoris sequences, H induces a (simple)
homology equivalence over Z[Z,], so that o(H)e T4, (F) is defined,
F:Z[Z] — Z[Z,] the natural map. By § 2 and 13. A. 1 of [59], this group is
zero. So, by 2.1 H is normally cobordant, relative the boundary, to a homo-
logy equivalence over Z[Z,], H': @ — B, say, that induces an isomorphism
of fundamental groups. Clearly R(U)UQ' will be an s-cobordism (recall
Wh (Z,) = 0), containing the s-cobordism U. The s-cobordism theorem now
provides the required cobordism.

11. Knots as fixed points

Let CZ, denote the group of locally flat cobordism classes of locally
flat topological knots of S%*~' in S**!. In this section we state without
proof some results on the following question: which elements in CjY can
be represented by a knot that forms the fixed point set of a semi-free action
of a cyclic group Z, that is linear on the fibers of a bundle neighborhood of
the fixed points? Such an action will be called locally linear. Similar results
can be stated for C#_,, H = O or PL; the statements are simpler in the
present case because the groups C:%, k = 2, satisfy periodicity [14].

Let 0,: C32i — Ly(e) = {Zz ig Z i: g:irgn denote the homomorphism that

measures the Arf invariant or one-eighth the index of a Seifert surface;
for k = 2 we use the suspended Seifert surface of [14]. One can also des-

cribe o, as the composition
z 0 0
1P %, Coor(S*Y) — Tyrsa(Be) — Ligss(Fo) — Lun(Z) = Luile) 5

see § 6. From Theorem 6.4 it follows that the kernel o is isomorphic to
Tyi42(Fo) via the restriction of Z; here F:Z[Z] — Z is the augmentation
and T,...(F,) is the quotient of T',,(F,) by the image of L,;..(Z).
Let F: Z[Z] — Z[Z,] be the natural map. Then, as in the usual surgery
theory, there is a transfer map
T = T4 Do) — Tuere(Fo) 5

7 can be given a purely algebraic description; geometrically it corresponds
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to passing to the s-fold cover. By # we denote the map from I'%..,(F) to
Ts2(Fo) induced by <.

PRrOPOSITION 11.1. An element xeker p,, k = 3, admils a representa-
tive that is the fived point of a semi-free action of Z, that is locally limear
if and only if Z(x) is in the image 7.

This is actually not difficult to verify.

Using the method of [14], [47] (essential fact is that I'y(F,) =0, < odd),
one may exhibit a knot afec C;%, with o,(af) = &€ Ly(e), forall & k = 2,
that is the fixed point set of a semi-free action of Z, which is locally linear.-

THEOREM 11.2. For k = 2, the cosets of Z‘.“’r‘,,(ﬂ,,ﬂ(&')) containing the
classes represented by the knots af, &e Ly(e), are precisely the elements of

oy admitting representatives that are fixed points of locally limear semi-

free actions of Z,.

Let 7: F — & Dbe defined by sending a generator to s times a generator,
and let 7,: Type(Fo) — Torro(F) be induced by 4.

LEMMA 11.8. For 1€ Tyye(Fo)s Tie(n) = 7.

This can be proved in the same way as the analogous theorem for
surgery groups.

COROLLARY 11.4. The cosets of s(ker p) = {sx |z ¢ ker p} containing the
elements ok, k= 2, all admit representatives that are the fized points locally
linear semi-free actions of Z,. In particular, for all y e C3%, sy admits such
a representative.

In particular, it follows from [32] that if s is odd, all torsion classes in

F admit representatives that are the fixed points of locally linear semi-

free actions of Z,.

Chapter IV: Some global results

12. Close embeddings in codimension two

Let W™, n = 5, be a P.L. manifold, not necessarily compact, with a
metric d for its topology.

THEOREM 12.1. Let f:M*— W, M a closed, simply-connmected P.L.
manifold, be a locally flat P.L. embedding, with trivial normal bundle. Then
there exists € > 0 such that if g: M— W is a locally flat embedding with
a(f (x), 9(x)) < € for we M, then there exists a P.L. homeomorphism ®: M —
M, homotopic to the identity, so that g is (locally flat) concordant to fop,
assuming n s even. If n is odd, the conclusion will still hold after replacing
g by its conmected sum with a knot.
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Remarks 1. If s: [EM; G/PL] — L,.,(e) is a monomorphism, then every
P.L. homeomorphism of M homotopic to the identity is pseudo-isotopic to it.
Therefore, for such an M, one may take @ to be the identity, in the conclu-
sion of 12.1. For example, this is the case when M is a complex projective
space CP*.

2. The concordance of 12.1 may be to required take place within a given
tubular neighborhood of f(M).

3. In the paper [18], it will be shown that for # even the conclusion of
Theorem 12.1 holds in the smooth, P.L., and topological categories without
any restriction on the normal bundle.

Proof of 12.1. Identify M with f(M), so that f becomes an inclusion
McW, and let Mc M x D*C W be a closed tubular neighborhood. Choose
¢ so that d(z, y) < € for y e M implies x € M x D*. Further, by a standard
argument, we may choose ¢ > 0 so that if d(g(v), f()) < ¢ for all ze M,
then g: M— M x D* is homotopic to f. Then if d(g(x), F@) <e g(M) will
liein M x D? and g: M— M x D? will be homotopic to the zero section.

If » is even, then C: (M) = 0, by Theorem 6.6. So in this case g is
cobordant to the zero-section. It follows easily that g is concordant to | M,
where - is a P.L. homeomorphism of M x D* that is homotopic to the
identity, as a map of manifold pairs. If nis odd, Theorem 6.6 asserts that
a: Cp(S™) — Cr(M), given by connected sum of the zero section with a knot,
is an isomorphism. Hence + will still exist for a P.L. embedding obtained
from g by connected sum with a suitable knot.

Theorem 12.1 now follows easily from

LEMMA 12.2. Let «p: (M x D*, M x S*)— (M x D* M x S') be a P.L.
homeomorphism homotopic to the identity. Then + is pseudo-isotopic to
@ X idpe, for @: M— M a P.L. homeomorphism homotopic to the identity.

Proof. By a well-known argument (compare 4.4), it suffices to prove
(in the notation of [59, § 10]) that the map

SerM x I, M x 0I) — Sp (M X D* x I, M x D* x oI) ,

given by taking the product with the identity on D? is a surjective map.
Let E = M x D*. Then the following diagram with exact rows commutes:

Linis(€) ———— (M x I, M x 8I) — [SM; G/PL] — L, ..(e)

|
7 lrz J"rs 174
£ 2

L,.\Z—e¢)—> S(E x I, E x 0I) — [ZE; G/PL] — L,s(Z—¢) ,
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where the 7, are all given geometrically by crossing with D®. The rows can

be found in [58, § 10], for example. The map 7, can also be described as the

natural map induced by the projection of E on M, and so is an isomorphism.

Thus, to prove 12.2, it will suffice to show that v, and v, are isomorphisms.
To see this, consider the exact sequence

0 — Ly(Z — €) —— Ly ,(Z) > Ly () — 0 ;

the long exact sequence for Wall groups [58, § 3] splits in this case for
functorial reasons. If ¢ is odd, 6 is an isomorphism [46], so L;(Z —¢) =
L; ,(e) = 0. If 4 is even, then 0 is an isomorphism, and 8v: L;_,(¢) — L,_,(Z)
is clearly the isomorphism of [46] given by crossing with a circle, so that v
is also an isomorphism.

13. Knottings of S™ X M in S™"* X M and knot periodicity

Let M be an oriented, closed P.L. manifold. We consider locally flat
P.L. embeddings f: S* x M — S™** x M, homotopic to the product of a map
from S* to S*** with the identity of M, i.e., in the “usual” homotopy class.
Two such, fand g, will be called conjugate if there are P.L. homeomorphisms
4 of S™ x M with itself and @ of S*** x M with itself, satisfying the
following conditions:

(i) myy is homotopic' to 7,, 7., the natural projection onto M;

(ii) @ is orientation preserving (we suppose S"** and S* have been
given fixed orientations once and for all) and =, is homotopic to =,.

(i) f = Pgy.

As usual, we say f and g are concordant if there is a locally flat em-
bedding of S™ x M x I in S*** x M x I that restricts to f on one end and
g on the other. We say f and g are cobordant if they are conjugate to
concordant embeddings. The cobordism classes of embeddings f in the
homotopy class under study will be denoted G,(M). Clearly G, = G.(pt)
(C3*¥ in the notation of Chapter II) is the group of cobordism classes of
knotted n-spheres in S"+*, studied in [23], [25], [31].

When M is a closed topological manifold, the topological cobordism
classes GI°°(M) may also be defined.

Let a(M, n): G,+x — G,(M), k = dim M, be defined by taking connected
sum of a knot with the embedding f, x id,, fi: S®— S™* an unknotted
embedding, e.g., an equator. Similarly, a™*(M, n) is defined.

Let 6(M, n): G, — G,(M) be defined as follows: If x ¢ G, is represented

! It is not hard to show that replacing (i) by the condition that ¥ be homotopic to the
identity yields the same set of cobordism classes.
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by f:S*— S"t2, then (M, n)(x) is represented by f x id,. Similarly,
define 6™%(M, n).

THEOREM 13.1. Assume n = 2 and let M be a closed, simply-connected
oriented P.L. manifold. Then a(M, n) is a bijection.

The arguments of [14] show that for n + k > 3, G,.(M) = G2 (M).
Hence 13.1 remains valid in the topological' case for n = 3, there being
nothing to prove when » = 8 and k = 0.

Recall from [14] that the natural map G, — G;° is a monomorphism
whose image G, — GI°® has index 2. Non-smoothable knots are detected by
an index invariant along a “suspended Seifert surface”. Let CP* be complex
projective 2-space.

THEOREM 13.2. For n =2, but n # 3, 6(CP?* n) is a bijection. For
n = 8, 6™F(CP?, n) s a bijection.

COROLLARY 13.3. For n >3 or n = 2,
a(CP?, n)™*0(CP?, n): G, — G4,

18 an isomorphism. For m = 8, it is a monomorphism onto a subgroup of
index two that extends to the isomorphism
a™*(CP?, n)~'0™F(CP? n) of G°° with G334 .

For n = 3, the Corollary follows immediately from the theorems; for
n = 3 one also has to use [14].

Corollary 13.3 gives a geometric description of the periodicity of knot
cobordism: take the product with CP*? and push the resulting knot of
S™ x CP? in S™* x CP? into a cell. Using ideas of [14], in particular the
definition of a Seifert matrix using the “suspended Seifert surface”, one can
show that the periodicity isomorphisms of 13.3 coincide with the (algebraic)
isomorphisms resulting from Levine’s calculation of the groups G, in terms
of cobordism classes of Seifert matrices.

Theorem 18.2 generalizes to any M of index one. For index M = 1,
however, 6(M, n) will in general not be an isomorphism.

Recall that G, = 0 if n is even [25]; this has already been reproved by
us in Chapter II and will also follow from the proof of 13.1.> In fact, we will
give a description (13.10) of knot groups, different from [31], but essentially
identical to that of § 6.
mis also follows directly from the methods of the present paper.

2 Except that we will take the result for granted for # =2, in order to avoid the
special arguments needed for this case.
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If we altered the definition of conjugacy in defining G,(M), to require
® and + to be homotopic to the identity, the theorems would no longer be
valid. The difference is precisely measured by the image of [M; PL,.,] in
[M; Goisl, Gass a component of (S™+2)5™*2,

To prove the theorems, let f: S™ x M — S™**x M, M a closed simply-
connected P.L. manifold, represent an element of G,(M).

LeMMA 13.4. The normal bundle of f is trivial and has a unique
trivialization (up to isotopy of bundle maps), determined by the orientations.

Proof. Let T be a tubular neighborhood of f(S™ x M). Let W be the
closure of S*** x M — T. By Alexander duality, H'(W) = Z, and the
orientations of S* x M and S*** x M (and a choice of convention, fixed
once and for all) determine a generator of H'(W). Let \n: W — S* represent
this generator. Since a fiber of T meets f(S™ x M) transversely in one
point, it follows from Alexander duality that the restriction of \ to a fiber
of the circle bundle 07T is a homotopy equivalence. This implies that the
normal bundle of f is fiber homotopically trivial, and hence trivial. The
uniqueness follows from H'(S"™ x M) = 0.

Thus there is an extension f:S" x M x D?*— S™* x M of f, unique
up to ambient isotopy. Let T = f(S™ x M x D?, with W the closure of
its complement. Let w: S” x M x D — S* be the natural projection. The
composite w,(f'|0T) obviously extends, uniquely up to homotopy, to
®: W— D™, Define F: W — D™ x M x S* by F = (wk, ), k|0T = n,f*
and k& homotopic to 7, | W (by homotopy extension), \ as in the proof of 13.4;
we may also suppose Nf | S™ x M x S! is the natural map. F will be called
a complementary map for f.

Write S**2 x M = (S* x M x D? U (D*** x M x S%, the standard de-
composition, arising from the standard decomposition of S™** as a neighbor-
hood of an unknotted n-sphere and its complement. We may extend F' to
F: 8™t x M— S** x M by putting F(f(z, y, ?) = (x,y,2) on T. We call
F a characteristic map for f;; it is unique up to homotopy and up to isotopy
on T.

Note that the complementary and characteristic maps of a concordance
can also be defined, and a relative version of the preceding discussion yields:

LEMMA 13.5. Characterstic maps of concordant embeddings of S*™ x M
in S™* x M are homotopic via a homotopy that is a characteristic map of a
concordance between them.

LEMMA 18.6. Let f: 8" x M — S™** x M be an embedding (in the usual
homotopy class). Then the complementary map F is a homology equivalence,
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and the characteristic map F is a homotopy equivalence homotopic to a P.L.
homeomorphism, n = 2.

Proof. The assertion about the complementary map follows easily from
Alexander duality. That F is a homotopy equivalence then follows from
standard arguments.

To prove the assertion about the characteristic map, it suffices [3], [51],
[58] to show that it has vanishing normal invariant in [S*** x M; G/PL],
unless n + k = 2; in this case F' is a degree one map of S* to itself and so
homotopic to the ids. Since the restriction F to F~(S* x M) is homo-
topic to a P.L. homeomorphism, the restriction of the normal invariant of
F to z x M, ze S**, will be trivial. On the other hand, F commutes with
projection 7, onto M, and hence extends to a map G: D***x M — D™ x M,
easily seen to have degree one and hence to be a homotopy equivalence. In
particular, the normal invariant of F is the restriction of an element in
[D™* x M; G/PL]; hence it must be trivial.

Now let f:S* x M — 8™t x M represent an element xe G,(M) and
let F: W— D™ x M x S* be a complementary map, defined using »: W—S*
whose restriction to 87T is the canonical projection, T a tubular neighbor-
hood of the image of f. After a homotopy relative boundary, we may move
F to F, transverse regular to D*** x M = D" x M x z, z€S*. Let V' =
F-(D™ x M). It is easy to see that there is a canonical bundle map (which
we omit from the notation) covering F,|V:V — D" x M, a degree one
map inducing a homotopy equivalence of boundaries. We define o(x) =
0(F,| V)€ Ly1.(e), k = dim M.

Alternatively, o(r) may be described as the image of 0(F') € Lyy4:(Z)
under the map L, z42(Z) — L,1i1.(e) defined in [46]. This description (or a
simple direct argument) makes it apparent that o(x) is actually a well-
defined invariant of the cobordism class « of f. For the case n =3,k =0,
we may take this description as the definition of 0: G5°" — Li(e).

LEMMA 138.7. Every element of G,(M"*), n = 2, has a representative for
which the complementary map induces an isomorphism of fundamental
groups.

For n = 2 and k& = 0 this follows from the vanishing of G,. In the case
n + k = 38, this result is proved quite like 4.3; hence the proof is omitted.
We actually use this lemma only for technical convenience.

Next we define the action of T, .s(F) on G,(M*), F:Z[Z] - Z the
augmentation. Let f:S" x M — S*** x M represent xe G,.(M"), and let
F: W— D" x M x S, which we assume to induce an isomorphism of
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fundamental groups, be a complementary map for f. Let veT, u.(%).
Clearly F is covered by a canonical bundle map, B say, the restriction of
the one that covered F. By the realization Theorems 1.8 and 2.2, and
addenda, there exists a normal cobordism (&, b), relative boundary of (F, B)
to (F',B'), F': W' — D' x M x S' a homology equivalence inducing iso-
morphisms of fundamental groups. Since id,UF": T U,, W' —S**2x M
is a homotopy equivalence normally cobordant to the characteristic map ¥,
it has vanishing normal invariant, by 13.6. (Recall W was the closure of
the complement of 7'). Hence id, U F’ is homotopic to a P.L. homeomor-
phism, g say, [3], [61]. We define -2 to be the class of the composite

S x ML 79T, guie o 31

It clearly does not depend on the choice of g.

To see that -2 does not depend on the choice of normal cobordism
(h, b) with o(h, b) = 7, let (h, b,) be another such, of (F, B) to fI: W/ —
D' x M x S'. Let ¢(v,t) = (v, —t), ve D" x M x 8, tel. Let (k,c) =
(h, b) U (chy, b)), a normal map from V U, V, to D™ x M x S' x [—1, 1],
where V and V, are the domains of % and h,, respectively. By additivity,
o(k,c) = 0. Hence (k,c) is normally cobordant, relative boundary, to a
homology equivalence,

H.Z— 8'x D" x M x [-1,1],
which induces an isomorphism of fundamental groups, by 1.7 or 2.1.

Let R= Tx[—1,1] Usrxi1,nZ. Then H = H U idy. ., is easily seen
to be a homotopy equivalence, as R is an h-cobordism; R is easily seen to
be simply-connected. Hence, by the h-cobordism theorem, there exists a P.L.
homeomorphism B: (T U W') x [—1,1] - R with B(y,1) =y forye TU W".
Consider the composite

S x Mx [, 128 7w (-1, 1c REL (Tu W) x [=1,1]

91 w5 M[—1, 1],

a concordance. On S" x M x 1, it evidently restricts to (g | T)of, which is
v-x defined using (h, b). The composite HB is a homotopy of g with
(id; UF)) e B|(TUW’) x (—1). Hence the above concordance on S*x Mx —1
is conjugate to the representative for v-x defined above using (4, b,); i.e.,
the two definitions are cobordant.

Using Lemma 13.5 and what has just been shown, it is easy to see that
the cobordism class obtained is unchanged when f is altered by a concordance.
It is easy to check that the cobordism class obtained remains unchanged
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when f is replaced by a conjugate embedding by considering the obvious
relation of the complementary maps of conjugate embeddings. We leave the
details to the reader.

As usual, additivity of surgery obstructions implies that (v + ¥)-(x) =
v+(Y+(®)). Also 0-x = x; this uses the fact that the characteristic map com-
mutes up to homotopy with =, so that composition with a P.L.. homeomor-
phism homotopic to it does not alter the cobordism class.

The next proposition is proved quite like 6.4.

PROPOSITION 13.8. Let Y€ T, 11s(F); let € Goypye Then
a(M*, n)(v-8&) = v+ (a(M*, n)(©9)) .
More generally, if ne G, (M*),
VEED = HEN =657 .
(Connected sum is denoted by “#”.)
ProPOSITION 13.9. Let £ G,.,. Then
o(a(M*, m)§) = 0() .
More generally, if ne G,(M*),
&%) = o + o) .

Proof. It is easy to see that ©o(£#7) can be computed as a surgery
obstruction of the boundary connected sum of a Seifert surface of a knot
representing », equipped with a normal map into a disk, with a normal map
whose surgery obstruction is p(¢). The result follows from additivity of
simply-connected surgery obstructions [3].

THEOREM 13.10. Let n = 2. Then the action of T,isn(F) on G, (M)
induces a free action of T,ipis(F). Unless n =38 and k=0, 0 induces a
bijection of the orbit set with L,...(e).

For n=38 and k =0, p induces a bijection of the orbit set with even
elements in L,(e), and extends to a bijection of the orbit space of G™F, under
a stmilar action, with L,(e).

Proof. Forn =2,k =0, G, = I'y(F) = Ly(e) = 0, so there is nothing to
prove. So assume n + k£ = 3.

That the image of o is as claimed follows from 13.9 and the fact (see for
example [81]) that the image of o is as asserted for M a point. Here is an
outline of a direct proof of this fact: By crossing with a circle, L, ..(¢) can
be viewed as the kernel of the natural map from L,,,,,(Z) to L,.,..(e) [46].
By § 2, the realization theorem for surgery obstructions [58], and the fact
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that any homotopy S* x S™ is P.L. homeomorphic to S* x S™, m = 3, [46],
[38], any element in this kernel is the obstruction o(h, b), where

h: W—— §* x Dre+

is a homology equivalence that induces an isomorphism on x, and a P.L.
homeomorphism of boundaries. To obtain a knot representing an element in
G.i; with image o(h, b) under p, just attach S*** x D* to W using k| W.

The statement about G;°F follows from the rest of the theorem and [14];
the extension of the action of TI'y(F) to Gi°® is straightforward, using
topological surgery techniques [30], [27, 2].

Let x e G,(M*), and suppose to begin with, that p(x) = 0. Let f: S* x
M — S*** x M be a representative embedding, with a characteristic map F.
Let H: S*** x M x I— 8™* x M x I be a homotopy of F to P.L. homeo-
morphism, g say, by 13.6. Note that g commutes with z, up to homotopy,
so that g7 |S" x M: S" x M— S"** x M, the restriction of g~ to the
standard inclusion, represents the same element as the standard inclusion.

Let D;** be a disk bounding the standard S”c S**?, obtained from
D*** x zc D" x S*c S"** by adding an extra collar of the boundary. We
may suppose H transverse to D;*' x M x I, without changing it on the
boundary. Let V = H™(D;** x M x I). Then (omitting bundle maps) we
have a normal map

H V:V—sDi** x M x I.

The sum of the surgery obstructions of the various boundary components

must vanish [3], [59, § 3,4]. Hence if U= HS* x M x I),
oH|U)+ px =0.

Hence o(H| U) = 0.

The “cobordism extension theorem” implies that, after changing H by
a normal cobordism relative the boundary we may suppose H| U: U—
S" x M x I is a homotopy equivalence'; i.e., U is an h-cobordism, and so a
product. Further, we may assume H is a bundle map on a neighborhood
R(U) of U such that H maps the closure of its complement, @ say, into
D™ x M x S*. But then H|Q: @ — D"+ x M x 8! is a normal map that
induces a homology equivalence of boundaries. Hence o(H) €T, ,..s(F) and
it is quite easy to check that = = o(H)-x, where x, is represented by the
standard embedding.

(Note: The fact that we had to use the h-cobordism theorem on U in

! For the case » =3, k =0 we observe that the surgery obstruction map [ZS?%; G/PL] -
Ly(e) is a monomorphism, so that its vanishing implies U is normally cobordant to a product
S® x I, relative boundary.
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the last paragraph is what requires the introduction of the P.L. homeo-
morphism + in the definition of conjugacy.)

Now suppose po(x) = p(x'). Choose 7neG,,, with p(n) = —po(x). Then
e@¥n) = o' $7n) =0, so by what has just been shown, 247 and 2’ %7
are in the same orbit; let Y€ T',,,45(F) with (@ #7) = 2" # 7. Let 6 be the
inverse of » in G,,,. Applying 13.9, and associativity of #,

Vo= Ya)§ (40 = (-(@EN) ko= EDLEs =2 .
Thus 2 and 2’ are in the same orbit.

We leave the converse, that o(v-x) = po(x), as an easy exercise in
transversality.

Now consider the action of T',.,.:(F) on G,.(M*). It follows from the
generalized Poincaré conjecture that the image of L,,..s(¢) acts trivially
(compare [51], [3], for example). Since for n + k + 3 even the natural map
L, 145(€)—L,i145(Z) is an isomorphism [46], and for n + k + 8 odd T, 1.:(F) S
L, .1+5(e) = 0, we have an induced action of T',,;.5(F).

Suppose 7 acts trivially on w, the class represented by the usual
embedding. Then there is a normal cobordism with obstruction v from the
identity of D" x M x S*, relative boundary, to a homology equivalence
F:W— D" x M x S! that is the complementary map to an embedding f
representing x,. Using the fact that f is cobordant to the usual embedding,
it is easy to see that F' is homology h-cobordant to the identity of D"+ x
M x S*; gluing on this homology h-cobordism leads to a normal map E, with
obstruction v, that induces a homotopy equivalence of boundaries. Clearly
7 is the image of the usual surgery obstruction of E in L,..s(Z) under the
natural map. Thus T,,..(F) acts freely on the orbit of .

Let z e G, (M%), with 7.2 = 2, Ye ', 11:(F). Let neG,, with o() =
—o(x), so that p(x#7) =0, by 13.9. By 13.8, v(x#7) = x#7. By what
we have already shown, x £ 7 is in the orbit of x,. Hence 7 represents zero
in T',,,.5(F), by the preceding argument. This completes the proof of 13.10.

COROLLARY 13.11. G,(M*) =0 if n + k is even, n = 2.
Proof. T,i14s(F) = L,i1+.(e) = 0 in this case.

Proof of 13.1. We may assume 7 + k = 3. To show that a(M, n) is
onto, let xeG,(M*). Then, by 18.10, there exists ne G,,, with o) =
—p(x), so by 13.9 o(x#7) = 0. Hence by 13.10 47 = 7.2, for some ve
Toirss(F), @, the class of the usual embedding. Hence 2 % n = a(M, n)(é),
& = 77, N, the trivial element of G,,,. If ¢ is the inverse 7 in the group
G, then clearly x = a(M, n)(¢ % 95).
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Suppose a(M, n)n = a(M, n)é, 1, £€G.ue By 13.9, o) = p(&). So
7 = 7§, by 18.10, some Y€ T, ,+:(F). By 13.8,

a(M, myp = (@M, ) .
Hence, by 18.10, v represents zero in T',,,,s(F), which implies that 7 = &.

Proof of 13.2. Theorem 13.2 follows directly from 13.10, 3.5, and the
following two simple observations

() If veT,.s(F) and neG,, then 6(M, n)(v-n) = 7-(6(M, n)y), where
in the right side, 7 is the element ¥ X M eT,.,.s(F) obtained by taking the
product of a suitable normal map with M;

(i) p(8(CP? m)n) = p(n) for ne G,; this uses periodicity of simply con-
nected surgery obstructions [3], [561], [569]; note that the topological analogue
of (ii) also holds for n = 3, k = 0.

Appendix I: An exact sequence

We have a natural map T';(F) — T'E(F), forgetting preferred bases. Let
A, (7', w') be as in [46, § 4]. Composing the natural map T'*(F) — Li(z’, w')
with a suitable map in the Rothenberg sequence [46, 4.1] gives a map T':(F)—
A, (7', w'). Finally, it is not hard to find a natural lift of the map A,(z’, w')
of the Rothenberg sequence to a map A,(7', w') —T:_,(F). For n even,
T (F) c Li_ (7', w'), so it suffices to see, in this case, that the image of the
map of 4.1 of [46] lies in T';_,(F); but this follows easily from the definition
of [46] and the fact that a matrix over Zz’ lifts to Zz. For » odd, one uses
elements of Wh (') to change the preferred base of £, X Zz', £, a kernel (of
dimension 2r) over Zz, analogous to the definition for the case in [46, 4.1].

PROPOSITION. The sequence
— @) — TiF) —A@, W) — Th(F) —
18 exact.

This is not hard, using [46, 4.1]. At certain points, one uses arguments
quite similar to the proof of 4.1 in [46]; at others, including exactness at
A,(7', w'), one uses the exactness of the Rothenberg sequence and the com-
mutativity of

S TiF) ——— T4

AN
An+1(7rl, W’) < 1.7* 1-7* > A,,(ﬂ", W’) M
N Ly, w) — L', w') /

We omit the details.
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For example, if 7’ = Z, is eyclic and w’ is trivial, then A,(7', w') = 0
for n odd, by 7.5 ff of Chapter 11 of [1] and 6.7 of [40]. Hence if 7 = Z and
¥ is the natural map, I's.(F) — T4(F) is a monomorphism. Using the exact
sequence 3.2, this implies the following, which was used in § 10.

COROLLARY. Let ¢ be the square

7[7] - 7[7]
lid l:?
F
2Z] —— Z[Z.] ,

F the natural map. Then Ti(p) — Th(s), the natural homomorphism, is a
monomorphism.

Appendix II: *‘Cracking”

This appendix gives an algebraic analogue and extension of the “cracking”
process of S. Lopez de Medrano [36] for Z,-actions (i.e., 7 = Z, in Theorem
A.1). This result is used to prove a general codimension two splitting
theorem of the case of cyclic fundamental groups, Corollary 8.4 above.

LEMMA. Let 7 be a cyclic group generated by ¢, with | 7| # 1 (mod 4).
Then the ideal generated by 5 and (t — 3) in the group ring Zx is all of Z=.

Proof. Let n = |m|. We wish to solve
ba + (t — 3)g = 1.

Let a=ay+at+ +++ +a,t"", B=1"b,+ +++ + b,,t"". Then we must
solve the system

5a, — 8b, + b,_, =1.

5aj—3bj+bj—1=07 1=j=n-1.
Firstlet a; =0, 1 <j < n — 1, so that b,_, = 3b,. Then the first equation
becomes

5a, — (8" *—1)b,, =1,

which has an integral solution as 5 and 8" — 1 are relatively prime for
n % 1 (mod 4).

THEOREM A.l. Let G be infinite cyclic with generator T and m of even
order with generator t. Let F:Z|G] — Z[r] be induced by F[T] = t. Let
w:w— {+1} with wit) = —1, and let Z[G] and Z[r] have the involutions
determined by woF and w, respectively. Then the natural map

Li(G, woF) — Ti(F)
18 trivial, e = s, h.
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Proof. We need only consider the case ¢ = s. L, (G, woF) is isomorphic
to Z,, generated by (H, g, ), where 2 has matrix

21000000

12100000
01210000
00121000
0001210 1]
00001210
00000120
0000100 2

the Milnor matrix, with respect to a basis e, «+-, ¢, say. Following Lopez
de Medrano, let

e = —e, + 20 — 3¢, + 4e, — 5e; + 4¢; — 2¢, + 3¢, .
Then let K < H be spanned by the elements
Te, + e, Te, + €5, Te, + e;, Te, + ¢ .
One checks easily that ¢ and (hence) # vanish on K. For example,
#(Te, + e, Te, + e1)

= —¢(es, &) + To(e, €) — T é(es, €1) + #(es, €5)
=—-14+1=0.

On the other hand, by the lemma, there exist &, 8¢ Zr so that the
matrix

0 0 0 00 10
0¢t 0 0 01 00
-1 2 t—3 4 —5 4 —2 3
00 0 ¢t 00 01
00 88 0 a0 00
00 0 0 01 00
00 0 0 00 10
00 0 0 00 01

will have determinant one. Hence, using the fact that SK,(Zz) = 0 [1], K
is a pre-subkernel of (H, ¢, #), viewed as a form over F, which proves the
theorem.
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