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§ 1 Introduction

In 1964 P.M. Cohn introduced a generalized Euclidean algorithm for the group
ring QF of the free group {or monoid) over a field Q [Cohn, FIRL He deduced
that QF is a fir which means that all of its ideals? are free as modules® over QF.
In particular, QF  is locally free, that is to say, finitely generated submodules
of free modules over the group ring of the free group on m generators with
coefficients In Q are free themselves® . This is the theorem to which the title refers®

Topologists are Interested in this last resuit because it yields an isomorphism
between the chain complex with coefficients in a field Q of the universal covering
of any compact connected 2-complex with free fundamental group to the chain
complex with coefficients in Q of the universal covering of the wedge of one-
and two-dimensional spheres. Shortly after Cohn presented his theorem, Bass
{Bass] extended an argument of Seshadri to prove that then, in fact, such an
isomorphism exists with integer coefficients. This in turn implies that the
homotopy type of a compact connected 2-complex with free fundamental group is
completely .determined by the number of free generators of its fundamental group
and its Euler characteristic {Wall, prop. 3.31.

The proof of Cohn's Theorem is lengthy and leads to technical difficulties®,
but it has the merit that it can be generalized to study the theory of modules
pver the group ring of an arbitrary free product with field coefficients [Bergmanl.
However, for the theorem in its original statement there is a short proof by
geometric methods, which works with an algorithmic reduction of the diameter of
generators of an ideal. This will be done in this paper.

The idea of this proof was first discussed during a seminar organized by Wolfgang
Metzler in 1987 in Southern Tyrol (Italy). I want to thank the participants of my
working section Paul Latiolais, Martin Lustig and Wolfgang Metzler for their
stimulating suggestions and comments. Also I want to thank Leonid Vaserstein for
his interest and encouragement, and George Bergman for his helpful correspondence.

| Partially supported by a DFG-grant.

? Throughout this paper, module means left module and ideal means left ideal.

3 However, in contrast to what happens over Euclidean rings, a free module
might contain free submodules of higher rank. For example, the augmentation ideal
of QF, is a free QF -module of rank m.

¢ Actually the methods presented here also reveal QF being a fir but we do not
want to distract the reader's attention from what we are essentially interested in.

3 Warren Dicks pointed out tc me that the first correct proof was given by
Jacques Lewin [Lewin] five years later.
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§ 2 The Geometry of QF

In what follows, let Q be a field, F,, the free group on m generators, and
En{QF,,) the group generated by the elementary nxn matrices over the group
ring QF,,. Here an elementary matrix differs from the unit matrix only by one entry.
If this happens to be on the diagonal, only a group element or -1 Is allowed.

Elements of the group ring QF,, can be interpreted geometrically as 0- dimen-
sional chains In the Cayley-graph I' of F,. It will be crucial for the following
observations that T is a tree.

For 0 # x = quww ¢ QF,,, look at the set of w € F with q # 0. Define

dist (x) to be the maximum of lengths (number of edges) of reduced edge paths
from 1 to such a w., With dist (0) = -1 we have
dist (x)=0 & x € Q\{0}
This distance from the origin, however, is not invariant under the group operation.
In contrast, diam {x) is invariant under the group action where diam (x) denotes
the maximum of lengths of reduced edge paths between two elements u and v with
nonzero q, and q, in 0 # x = Z qu. diam (0) :

So diam (%) is the diameter' of the tree spanned by those group elements for
which x has a nonzero coefficient. This tree also has a well defined barycenter el
If the midpoints p,q of two diameters of a tree were distinct, then from the
midpoint of an arc from p to q one could run more than half a diameter in both
directions, which is a contradiction.
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Example: let s and t be generators of F, and take x:= qcsts+q“s+qt_,s_‘t"s“’
8

with all coefficients in Q\{0). The tree spanned by x has the shape: LF:
g-ig=t

We read off dist(x)=2, diam(x)=4, %=1 ¢F,

¢ A diameter in a finite tree is a longest reduced edge path in it as well as
the length of the path.

7 The reader should figure out, in which pleces of the figure identifications are
possible.



1ne group r, acts by transiation:
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Now, for the study of linear dependences between given X,...,x, ¢ dFm, consider
n

n-tuple a,....a_ € QF . and form the linear combination L, a X, Writing the a,

wEl Ty

ZF q,, w, we obtain J E?,‘;wx\,. Among the summands look what the maximal
wé Fn w€
12vsn

lue of dist (g, wx ) is.

Points at that distance from 1 are called extreme points of the linear
mbination. For example, the picture above to the right can be interpreted as a
ear combination having just one summand ax, where a=gs+t. All points at
tance 3 from 1 form the set of extreme points of this linear combination.

We shall call XXy € QFy, weakly linearly dependent, if there exist a,...8p € QF,
: all zero such that dist (vg‘ a x) < dist (extreme points of vzi a,x,), te. If
contributions to extreme points cancel,

Note that if XypeoiXy, € QFy, are not weakly linearly dependent, the nonzero X,
linearly independent.

§ 3 The Algorithm

worem: 1If XX, € QF,, are weakly linearly dependent then there exists

]Eﬂ(le] such that ﬂ
(-l) (' >
jn n

then vtx diam (y,) < _ﬁ:, diam (x,).

of: Let sz ax, be a weak linear dependence with a,, =w§¥mq“;w and extreme

its being all points at distance ro from 1. Let wyx, (if needs be, renumber) be

maximal diameter d among those wx,, containing extreme points. Abbreviate
ds2,

“onsider the set M of wx,, with g* #0 such that wx,, contains an extreme
it p for which ""o:’z; lies on the reduced path from 1 to p. p then is called a
sial extreme point. By definition of 0, the contributions of ; q,, wx,, to special
eme points must also cancel.

Now observe that wyx,¢ R 5;
7
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or Otherwise one could join Woﬁ?l to a reduced path from 1 to an
extreme point p which is contained in WoX,» There must be a
radius starting at wgﬁl and going in a different direction ending
q in some q. That radius adds to the reduced path from 1 to

W&, proving dist (q) to be bigger than ry- This is a contradiction.
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Observe also that points of any wx, €N can be no further away from wDS?l than
special extreme points are:

Otherwise put a reduced path p from such a point p to woﬁl

, together with the reduced path from w8, to 1. The latter has
a been shown in the last paragraph to have length ry-ri. As the
g roor L . b length of the whole is not allowed to exceed o there must be

cancelling edges at WOQ‘. But then p together with a reduced path
from w0521 to some special extreme point q of wx,, ylelds a reduced
path from p to q showing diam wx,>d. This is a contradiction.

The subtree formed by points at distance at most ry from wyR, has barycenter woﬁi.
A diameter of wx, €M runs compietely in that subtree. Therefore, if its length
takea the maximal possible value d, its midpoint is WOQ,. Hence, its barycenter wS?v
falls upon w;R,. But for a fixed v there exists at most one u€F, carrying R,
into R such that w is completely determined as wou". In particular wx, €R
implies w= Wo-

By the same argument, If diam (g q,,wx,) still was d, any diameter of it would

have wui?1 as its midpoint. (At least) one of the two radii of this diameter combines
with the reduced path from 1 to wof, to form a reduced path, Its endpoint has
distance r;+{ry-r,) from 1 and is therefore a special extreme point of f:lavx\,.

v

This contradicts the fact that g 9 W X, was supposed to have coefficient 0 at
special extreme points.

Therefore with y, = x+ é:ow;’ g 9, wx,, and y, = x,,..., Yn = X,
NES
we have diam y, = diam (% a5, wx,) < diam (x;) v
Corollary: Finitely generated submodules of free modules over QF_, are free,

Proof: Let M be a finitely generated submodule of a free QF,-module. Since
a finite system of generators of M can only use a finite number of basis elements,
M is, without loss of generality, a submodule of a free module of finite rank.
Let A be the QF,,-matrix with rows consiating of a system of generators of M
expressed in a basis of the free module. Using row-operations as in the theorem

8 In fact, note that all extreme points of WoX, are special.
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{change of generators of M), row-permutations (renumbering of the generators of
M) and canceiling zero-rows if possible, A can be brought into the form

°© i

In each row the first nonzero element is marked with a <4, and those elements
of a fixed column are not weakly linearly dependent and nonzero. In particular,
these elements are linearly independent so that M is free with the row vectors of
the transformed matrix as a basis. v

We conclude with an outline of how these results have been used for
the homotopy classification of compact connected 2-complexes with free
fundamental group:

Arguing similarly as in the proof of the Corollary, one can deduce from the
Theorem® that GL,(QF,,) is generated by E,(QF,) and GL,(Q)-matrices. This
property when joined to the Corollary form the hypotheses which imply that
finitely generated modules over free groups are free [Bassl. At this step then, the
required homotopy classification follows easily [Walll.
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