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Abstract

Although Kirby and Siebenmann showed that there are manifolds
which do not admit PL structures, the possibility remained that all
manifolds could be triangulated. In the late seventies Galewski and
Stern constructed a closed 5-manifold M5 so that every n-manifold,
with n ≥ 5, can be triangulated if and only if M5 can be triangulated.
Moreover, M5 admits a triangulation if and only if the Rokhlin µ-
invariant homomorphism, µ : θH3 → Z/2, is split. In 2013 Manolescu
showed that the µ-homomorphism does not split. Consequently, there
exist Galewski-Stern manifolds, Mn, that are not triangulable for each
n ≥ 5. In 1982 Freedman proved that there exists a topological 4-
manifold with even intersection form of signature 8. It followed from
later work of Casson that such 4-manifolds cannot be triangulated.
In 1991 Davis and Januszkiewicz applied Gromov’s hyperbolization
procedure to Freedman’s E8-manifold to show that there exist closed
aspherical 4-manifolds that cannot be triangulated. In this paper we
apply hyperbolization techniques to the Galewski-Stern manifolds to
show that there exist closed aspherical n-manifolds that cannot be
triangulated for each n ≥ 6. The question remains open in dimension
5.
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1 Introduction

Any 3-dimensional homology sphere, H3, bounds a PL 4-manifold, W 4, with
vanishing first and second Stiefel-Whitney classes. The intersection form of
W 4 is then unimodular and even; so, its signature, σ(W 4), is divisible by
8. If H3 is the standard 3-sphere, then, by Rokhlin’s Theorem, σ(W 4) is
divisible by 16. So, one defines the µ-invariant of H3 by

µ(H3) =
1

8
σ(W 4) mod 2.

Let θH3 be the abelian group (under connected sum) of homology cobordism
classes oriented PL homology 3-spheres. The µ-invariant defines a homomor-
phism µ : θH3 → Z/2. (For background about this material, see [14].)

In [11] Kirby and Siebenmann proved that for any topological manifold
Mn there is an obstruction ∆ ∈ H4(Mn;Z/2) which, for n ≥ 5, vanishes if
and only if Mn admits a PL structure. An important point here is that the
Kirby-Siebenmann obstruction can be defined for any polyhedral homology
manifold Mn, as follows. First, there is obstruction in H4(Mn; θH3 ) to finding
an acyclic resolution of M by a PL manifold. This is the class of the cocy-
cle that associates to each 4-dimensional “dual cell” in Mn the class of its
boundary in θH3 . The Kirby-Siebenmann obstruction ∆ is the image of this
element of H4(Mn; θH3 ) under the coefficient homomorphism µ : θH3 → Z/2.

After the proof by Edwards and Cannon of the Double Suspension Theo-
rem, it seemed possible that every topological manifold could still be home-
omorphic to some simplicial complex, even if it did not have a PL structure.
Galewski-Stern [9, 7] and independently Matumoto [13] proved that the fol-
lowing statements are equivalent:

(a) Every manifold of dimension ≥ 5 can be triangulated.

(b) There exists a homology 3-sphere H3 with µ(H3) = 1 and [H3] of order
2 in θH3 .
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Galewski-Stern also showed that, for n ≥ 5, the obstruction for a manifold to
have a simplicial triangulation was the Bockstein of its Kirby-Siebenmann ob-
struction, β(∆) ∈ H5(Mn; Kerµ), where β : H4(Mn;Z/2)→ H5(Mn; Kerµ)
denotes the Bockstein homomorphism associated to the short exact sequence
of coefficients,

0−→ Kerµ−→ θH3
µ−→Z/2−→ 0 . (1)

In fact, as was shown in [8], one can focus instead on a simpler Bockstein
associated to the short exact sequence ofcoefficients,

0−→Z/2 ×2−→ Z/4−→Z/2−→ 0 . (2)

As is well-known, the Bockstein associated to (2) is the first Steenrod square,
Sq1. So, henceforth we will use Sq1 instead of a more general Bockstein β.
The reduction to the case of Sq1 goes as follows. Suppose Nn is a manifold
with Sq1(∆) 6= 0. By [8, Theorem 2.1], if one such Nn can be triangulated,
then every manifold of dimension ≥ 5 can be triangulated (this is statement
(a) above). In [8] Galewski-Stern also constructed n-manifolds, for each
n ≥ 5, with Sq1(∆) 6= 0.

Manolescu has recently established that homology 3-spheres satisfying (b)
do not exist [12, Cor. 1.2]. It follows that any manifold with Sq1(∆) 6= 0 is
not homeomorphic to a simplicial complex. So the Galewski-Stern manifolds
cannot be triangulated.

By work of Freedman and Casson nontriangulable manifolds exist in di-
mension 4 (cf. [1]). First, Freedman [6] showed that any homology 3-sphere
bounds a contractible (topological) 4-manifold. One defines the E8-homology
manifold X4 as follows. Start with the plumbing Q(E8) defined by the E8

diagram. It is a smooth, parallelizable 4-manifold with boundary; its bound-
ary being Poincaré’s homology 3-sphere, H3. The signature of Q(E8) is 8.
X4 is defined to be the union of this plumbing with c(H3) (the cone on H3).
It is a polyhedral homology 4-manifold with one non-manifold point. By
[6] we can topologically “resolve the singularity” of X4 by replacing c(H3)
with a contractible 4-manifold bounded by H3 to obtain a topological 4-
manifold M4 with nontrivial Kirby-Siebenmann invariant. M4 cannot be
triangulated. (Proof: For any triangulation of M4, the link of a vertex is a
simply connected 3-dimensional homology sphere; so, by Perelman’s proof of
the Poincaré Conjecture, it is S3. Alternatively, since the Casson invariant of
any homotopy 3-sphere is 0, so is its µ-invariant. So any triangulation of M4

would automatically be PL, contradicting Rokhlin’s Theorem.) A variation
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of this idea was used in [3] to produce an aspherical 4-manifold that cannot
be triangulated. Start with a triangulation of X4. Apply the technique of [3]
to X4 to get its “hyperbolization” h(X4). It is a CAT(0) polyhedral homol-
ogy manifold with one non-manifold point, the link of which is H3. Resolve
the conical singularity to obtain a closed aspherical topological manifold N4

with ∆(N4) 6= 0. By the previous argument, N4 cannot be triangulated.
(Of course, N4 × S1 can be triangulated since it is homeomorphic to the
triangulated manifold X4 × S1.)

The idea of this paper is to apply hyperbolization techniques to the
Galewski-Stern manifolds to obtain aspherical manifolds Nn that cannot be
triangulated. We do not know how to make our techniques work in dimension
5; however, they do work in any dimension ≥ 6. So, we get the following.

The Main Theorem. For each n ≥ 6 there is a closed aspherical manifold
Nn that cannot be triangulated.

Our thanks go to Ron Stern for some helpful comments.

2 The construction

The Galewski-Stern 5-manifold. We recall the Galewski-Stern construc-
tion in [8] of a 5-manifold, N5, now known to be nontriangulable. Start with
X4 × I, where X4 is the E8-homology manifold. Attach an orientation-
reversing 1-handle, D3 × I, connecting the two copies of c(H3) along their
boundary. The two copies of Q(E8) become the boundary connected sum
Q(E8)#bQ(E8); it is a 4-manifold with boundary, the boundary beingH3#H3

(not H3#(−H3)). Consider c(H3) ∪ (D3 × I) ∪ c(H3). It is a contractible
polyhedral homology 4-manifold; its boundary is H3#H3. Fill in the bound-
ary with c(H3#H3) to obtain a polyhedral homology manifold T with the
homology of S4 (i.e., a “generalized homology 4-sphere”). Next fill in T with
c(T ). The result is the polyhedral 5-manifold with boundary

P 5 := (X4 × I) ∪ c(T ). (3)

Roughly speaking, after ignoring the differences between homology spheres
and spheres, we have attached an orientation-reversing 1-handle D4 × I to
X4× I (the 1-handle is actually c(T )). So, P 5 is a nonorientable, polyhedral
homology 5-manifold with boundary; it is homotopy equivalent to S1 ∨X4.
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The boundary of P 5 is c(H3#H3)∪Q(E8)#bQ(E8); so, ∂P 5 contains a single
non-manifold point (the cone point of c(H3#H3)). By Edwards’ Polyhedral-
Topological Manifold Characterization Theorem [5, p. 119], the interior of
P 5 is a topological manifold. Its Kirby-Siebenmann invariant, ∆(P 5), is the
image of [X4] in H4(P 5;Z/2). Thus, P 5 is polyhedral homology manifold
with boundary and its interior is a topological manifold which does not ad-
mit a PL structure. Since the Kirby-Siebenmann obstruction of ∂P is 0,
∆(P ) is the image of a (unique) class ∆(P, ∂P ) ∈ H4(P, ∂P ;Z/2); more-
over, one sees that the image Sq1(∆(P, ∂P )) under Sq1 is the nonzero class
in H5(P, ∂P ;Z/2).

When it comes to applying hyperbolization, it is at this point where the
Galewski-Stern construction becomes problematic. Galewski and Stern get
rid of the singular point of ∂P 5 as follows: (1) attach an external collar
∂P × [0, 1] to P , (2) find a PL manifold V 4 embedded in ∂P × (0, 1), (3)
define U to be the part of the external collar between ∂P × 0 and V 4, (4)
argue that V 4 bounds a PL 5-manifold W (necessarily nonorientable), and
finally, (5) glue in W to get the desired manifold,

N5 := P ∪ U ∪W.

Galewski-Stern manifolds of dimension > 5. In dimensions > 5 there
are versions of these manifolds to which it is easier to apply hyperbolization.
To fix ideas, suppose the dimension is 6. Let P ′ := P 5× S1, where P 5 is the
polyhedral homology 5-manifold with boundary which was constructed pre-
viously. Then ∆(P ′) is the nontrivial element in H4(P ;Z/2)⊗H0(S1;Z/2),
a summand of H4(P ′;Z/2). It is the image of the unique nontrivial element
∆(P ′, ∂P ′) of H4(P, ∂P ;Z/2)⊗H0(S1;Z/2). Its image under Sq1 is denoted
Sq1(∆(P ′, ∂P ′)) ∈ H5(P, ∂P ;Z/2)⊗H0(S1;Z/2) ∼= Z/2. By Edwards’ The-
orem, ∂P ′ is a topological 5-manifold. Since ∆(∂P ′) is zero, ∂P ′ is actually
homeomorphic to a PL 5-manifold V ′. It is easy to see that V ′ bounds a PL
6-manifold W ′. Put

N ′ := P ′ ∪ U ∪W ′

where U is the mapping cylinder of a homeomorphism between ∂P ′ and
V ′ = ∂W ′. Since ∆(N ′) restricts to ∆(P ′), we have ∆(N ′) 6= 0 and one sees
as before that ∆(N ′) is the image of

∆(P ′, ∂P ′) ∈ H4(P ′, ∂P ′;Z/2) ∼= H4(N ′, U ∪W ′;Z/2).
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By Wu’s Formula, Sq1(∆(P ′, ∂P ′)) = w1(P
′) ∪∆(P ′, ∂P ′) 6= 0. (This argu-

ment is from the final paragraph of [8].) Hence, Sq1(∆(N ′)) is the nonzero
image of Sq1(∆(P ′, ∂P ′)).

Hyperbolization. A hyperbolization technique of Gromov [10] is explained
in [3]: given a simplicial complex K, one can construct a new space h(K)
and a map f : h(K)→ K with the following properties.

(a) h(K) is a locally CAT(0) cubical complex; in particular, it is aspherical.

(b) The inverse image in h(K) of any simplex of K is a “hyperbolized sim-
plex”. So, the inverse image of each vertex in K is a point in h(K).

(c) f : h(K)→ K induces a split injection on cohomology (cf. [3, p. 355]).

(d) Hyperbolization preserves local structure: for any simplex σ in K the
link of f−1(σ) is isomorphic to a subdivision of the link of σ in K (cf. [3,
p. 356]). So, if K is a polyhedral homology manifold, then so is h(K).

(e) If K is a polyhedral homology manifold, then f : h(K)→ K pulls back
the Stiefel-Whitney classes of K to those of h(K).

In [4] the above version of hyperbolization is used to define a “relative hy-
perbolization procedure” (an idea also due to Gromov [10]). Given (K, ∂K),
a triangulated manifold with boundary, form K ∪ c(∂K) and then define
H(K, ∂K) to be the complement of an open neighborhood of the cone point
in h(K ∪ c(∂K)). Then H(K, ∂K) is a manifold with boundary; its bound-
ary is homeomorphic to ∂K. The main result of [4] is that if each com-
ponent of ∂K is aspherical, then so is H(K, ∂K); moreover, the inclusion
∂K → H(K, ∂K) induces an injection on fundamental groups for each com-
ponent of ∂K. In other words, if a triangulated aspherical manifold bounds
a triangulated manifold, then it bounds an aspherical manifold.

Proof of the Main Theorem. Our nontriangulable 6-manifold N6 will be the
union of three pieces, N6 = P1 ∪ U ∪ P2, where P1 and P2 are triangulable,
aspherical 6-manifolds with boundary, and where U is the mapping cylinder
of a homeomorphism ∂P1 → ∂P2. P1 will be defined via hyperbolization
and P2 via relative hyperbolization. Put P1 := h(P ′), where P ′ = P 5 × S1

is the simplicially triangulated 6-manifold with boundary discussed above.
Then P1 is a topological 6-manifold with boundary and ∂P1 = h(∂P ′) is
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homeomorphic to a PL 5-manifold V . (N.B. the PL structure on V is in-
compatible with the triangulation of ∂P1 as a subcomplex of P1.) Let U
be the mapping cylinder of a homeomorphism h(∂P ′) → V . Let W be a
PL manifold bounded by V . Equip W with a PL triangulation. Apply-
ing relative hyperbolization, we get an aspherical 6-manifold with boundary
P2 := H(W,V ); its boundary being V . Then N6 = P1 ∪U ∪P2 is aspherical.
By properties (c) and (d) of hyperbolization, ∆(P1, ∂P1) = f ∗(∆(P ′, ∂P ′)).
So, Sq1(∆(P1, ∂P1)) = f ∗(Sq1(∆(P ′, ∂P ′))). Consequently, ∆(P1, ∂P1) and
Sq1(∆(P1, ∂P1)) are both nonzero. Since P2 is a PL manifold, its obstruc-
tions vanish. As before, it follows that ∆(N6) and Sq1(∆(N6)) are both
nonzero.

Remarks. (a) What is the situation in dimension 5? As explained in the
Introduction, any polyhedral homology 4-manifold, M4, can be resolved to a
topological manifold M4

res. When P 5 is defined by (3), (∂P )res does not sup-
port a PL structure (although ∆((∂P )res) = 0). However, one can vary the
definition of P so that (∂P )res becomes homeomorphic to a PL 4-manifold.
To complete our construction we need (h(∂P ))res, the resolution of the hy-
perbolization, to be PL. If this could be achieved, we could finish by finding a
PL 5-manifold bounded by (h(∂P ))res and applying relative hyperbolization
as before.

(b) The Galewsi-Stern 5-manifold is nonorientable. (In fact, Siebenmann
showed in [15] that every orientable 5-manifold can be triangulated.) Since
our construction of a nontriangulable aspherical manifold N6 starts from
P 5 × S1, the manifold N6 is also nonorientable (by property (e) of hyper-
bolization). The question arises: do orientable examples exist? The answer is
yes. To construct one, start from the nonorientable S1-bundle over P instead
of P×S1, where w1 of the associated vector bundle is w1(P ). The total space
E of the S1-bundle is then a 6-dimensional, orientable, polyhedral homology
manifold with boundary. The restriction of the S1-bundle to ∂P is orientable
so ∂E = ∂P × S1 is the same. As before, we get N6 = P1 ∪ U ∪ P2 where
P1 = h(E), V is a PL-manifold manifold homeomorphic to ∂P1, W is a PL
manifold bounded by V , P2 = H(W,V ), and U is the mapping cylinder of a
homeomorphism ∂P2 → ∂P1.

(c) By using relative hyperbolization, it is proved in [4] that if an aspher-
ical manifold bounds a triangulable manifold, then it bounds an aspherical
one. Can we omit the word “triangulable?” In other words, if an aspherical
topological manifold M bounds, does it bound an aspherical manifold? If
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M does not support any triangulation, then it cannot bound a triangulated
manifold, and one can no longer use relative hyperbolization directly. For
the specific examples of nontriangulable aspherical manifolds given in this
paper, a similar construction can be applied to produce aspherical manifolds
that they bound. The general case remains open.
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