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ADIABATIC LIMITS, NONMULTIPLICATIVITY OF SIGNATURE,
AND LERAY SPECTRAL SEQUENCE

XIANZHE DAI

INTRODUCTION

The #n-invariant is introduced by Atiyah-Patodi-Singer [APS] as the correc-
tion term (from the boundary) for the index formula on a manifold with bound-
ary. In this paper we study the limiting behavior of the #-invariant of a Dirac
operator on the total space of a fibration, when the metric along the base di-
rection is multiplied by a factor x~? and x — 0. This operation of blowing
up the metric is called passing to the adiabatic limit. The situation arises when
one considers an open manifold. The usual passage from compact manifolds
with boundary to open manifolds dictates that we study the contribution from
the boundaries of an exhaustion. Additional algebraic structure on the open
manifold often gives rise to a fibration structure on such boundaries, cf. [ADS,
Mii2].

The original motivation, however, comes from a paper of E. Witten [W]
where the adiabatic limit of the z-invariant is related to the so-called global
anomaly. Witten’s result was given full mathematical treatment in [BF1, BF2,
C2], see also [Si].

Recently J.-M. Bismut and J. Cheeger, [BC1, BC2], extended the results of
these papers to the case in which the base of the fibration is a compact spin
manifold of arbitrary dimension. (Whereas the base in [W, BF1, BF2, C2]
is a circle.) What they found is that the adiabatic limit of the #-invariant
of a Dirac operator on the total space is expressible in terms of a canonically
constructed differential form, 7, on the base. This form # can be viewed as a
higher dimensional analogue of the n-invariant in the sense that it is exactly the
boundary correction term in the Families Index Theorem for manifolds with
boundary, [BC3, BC4].

In their work, they discussed in detail the case when the Dirac operators
along the fibers are always invertible. Their treatment of the general case (i.e.,
the kernels of these operators have constant dimension) was less complete and
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266 XIANZHE DAI

explicit although it did suffice for various applications. For example, one can
recover the work of Atiyah-Donnelly-Singer [ADS] on the Hirzebruch conjec-
ture, and prove results closely related to those of W. Miiller [Miil, Mii2] and
M. Stern [S].

We study questions related to the noninvertible case, which is essential when
we consider the signature operator because then the kernel is always nonempty
and is given by the cohomology. Here some new phenomena occur. In particu-
lar, a global contribution arises from the (asymptotically) very small eigenvalues
(cf. Theorem 0.1). What is more, in the case of the signature operator, these
eigenvalues have a purely topological significance. In fact, the Leray spectral
sequence can be recast in terms of these eigenvalues (Theorem 0.2). This is
reminiscent of Hodge theory. Hence the term Hodge-Leray theory. As a con-
sequence, we are able to identify the global contribution in the adiabatic limit
formula with a topological invariant coming from the Leray spectral sequence
of the fibration.

As an interesting application we give intrinsic characterization of the non-
multiplicativity of signature (see below) in terms of the Leray spectral sequence.

More precisely, let us consider a fibration of closed manifolds ¥ — M 2k=1 1,
B. Equip M with a submersion metric g,,,

8y = n*gg+gya

where g, is a metricon B and g, annihilates the orthogonal compliment of
the tangent space to the fibers. Blowing up the metric in the horizontal direction
by a factor x72 gives us a family of metrics g, ,

-2 %
8§ =X T gB+gy.

We assume that M is spin so that we can consider the Dirac operator D,
associated with g _. Further the bundle of vertical spaces TV M is also spin so
that we have the family of Dirac operators D, along the fibers.

It follows that the base space B is also spin and the Dirac operator D, on
the base is well defined. When ker D,, is a vector bundle on B, one can couple
Dy to it to obtain a twisted Dirac operator D, ® ker D, . Here the connection
on ker D, is the projection of a unitary connection on the infinite-dimensional
bundle of smooth spinor sections along the fibers (cf. §1.1). Its curvature is
denoted by R, .

More generally, we consider the operator D twisted by a hermitian vector
bundle £ on M . Here ¢ is endowed with a unitary connection whose curvature
is denoted by L°. We suppress the £ dependence and use the same notation
for the twisted Dirac operator. Let n(D,) be the p-invariant of D . Also
let R® denote the curvature of the Levi-Civita connection of gy and RY the

curvature of the connection on 7' M obtained by the projection of the Levi-
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Civita connection of g, . Our first main result is

Theorem 0.1 (Adiabatic limit formula). Assume that ker D, is a vector bundle
on B. Assume further that dim(kerD ) becomes constant when 0 < x < x, for
some small x;. Then lim,_  n(D,) exists in R and

(0.1)

lim #(D 2/ ( )/\n+n( B®kerDY)+l%l;_0sgnAx,
01T

where the summation Zlo 2,=0 Tuns over all eigenvalues A, of D, decaying at
least quadratically in x (see Theorem 1.5). Moreover,

Y . .

(0.2) dif=
~(R" —L%)2mi o
/ A BN A tr(eE 1y if dimY odd.
y \2m

Remark 1. The summation Zzo 2,=0 is a finite sum (see Theorem 1.5; also
below). Its limit exists because dim(ker D ) is assumed to stabilize eventually.

Remark 2. Formula (0.2) holds without the assumption on dimkerD,. When
dim Y is even, (0.2) should be viewed as a transgression formula. In fact, by the
Chern-Weil theory, trs(e_R"/ 2’”.) is a representative of ch(IndD;) , the chern
character of the index bundle for D; . On the other hand, Bismut’s local family

index theorem states that [, /T(%Y) A tr(e_Lf/ 2’”) is also a representative of
ch(Ind D;) . Thus 7% serves as a canonically constructed transgression between
the two. When dimY is odd, the assumption that ker D, gives a vector bundle
clearly implies that there is no spectral flow for D, . It is a result of [BF2] that

—_ ¢ | . .
JyA(57) Atr(e L7271y is a representative for the odd chern class of D, . Hence
(0. 2) can be 1nterpreted as saying that the higher spectral flow also vanishes.

When D, is invertible, the spectrum of D is uniformly bounded away from
0, and the last two terms in (0.1) drop out. Thus formula (0.1) reduces to
Bismut-Cheeger’s adiabatic limit formula [BC2]. In general, there are infinitely
many eigenvalues of D approaching 0 as x | 0. This is due to the fact
that the operator D, is degenerate elliptic and is in fact one of the essential
difficulties we have to cope with in the noninvertible case.

In a recent work [MM], R. Mazzeo and R. Melrose studied the Laplacian in
the adiabatic limit. Using a general theory of pseudodifferential calculus devel-
oped by R. Melrose et al. and well adapted to degenerate problems, they were
able to construct a uniform parametrix and obtain a quite explicit description
of the singularities of Green’s operator. We use the same construction to treat
the resolvent of %Dx and analyze the behavior of the eigenvalues of D, as
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x | 0. We show that (Theorem 1.5) the spectrum of D can be divided into
three parts: those uniformly bounded away from 0, those decaying linearly in
Xx (the small eigenvalues), and those, finitely many in number, decaying at least
quadratically (the very small ones). Roughly speaking, the twisted # term in
(0.1) comes from the small eigenvalues, and the last term from the very small
ones (i.e. the finite sum of their signs).

Whereas asking dim(ker D, ) to stabilize is a bit unnatural, it guarantees the
existence of the adiabatic limit of the x-invariant, which does not happen in
general. On the other hand, the limit of the reduced n-invariant, 7, always
exists in R/Z [C2, BC2]. Hence, we have the following modulo Z counterpart
of Theorem 0.1.

Theorem 0.1'. Assume that ker D, is a vector bundle on B. Then

., [ ~(RP\ _ _ 1
(0.3) )1613% n(D,) = /A<§;) AN +7(Dg@kerDy,) + Eh mod Z,
where 3h = 3 dim(ker D,) — y dimker(D, ® ker D)) mod Z is a spin cobordism
invariant [AS3].

An important operator satisfying the hypothesis of Theorem 0.1 is the so-
called signature operator A, whose kernel space is identified with the coho-
mology by the Hodge theory. In this case, as we have indicated, the global
contribution turns out to be a topological invariant. This is a consequence of
the following interesting result.

Theorem 0.2. Let E, = the limit of the spaces spanned by the A -eigenforms
associated to eigenvalues A, such that A, is O(x") (r > 2) in the adiabatic
limit; then (E,, x~"d) forms a spectral sequence that is isomorphic to the Leray
spectral sequence of the fibration. Moreover, the x map induced by the metric
g, gives rise to the duality map.

Remark. That such E’s are well defined is a nontrivial result; compare The-
orem (15) in [MM]. In [CD] we take a different point of view and study the
adiabatic limit of a filtered differential complex. We prove a somewhat stronger
version of Theorem 0.2, and use it to study the Lz-cohomology of a cone bun-
dle.

Theorem 0.2 gives us a refined adiabatic limit formula in the case of the
signature operator. Let (E,, d,) (r > 2) be the E -term of the Leray spectral
sequence of the fibration ¥ — M “=1"_, B. The orientation gives a natural
basis ¢, on E;k_l (in the sense of Chern-Hirzebruch-Serre [CHS], see §4.3),

which then induces a basis £, on Ef k=1 for each r > 2. Consider the pairing
(, ), E'®E! —R,
oy — (p-dy,¢,).

Clearly ( , ), is symmetric when restricted to Eer ~!. Therefore it gives rise

to a symmetric matrix whose signature is denoted by 7,. Define =3 ., 7,.
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Theorem 0.3. Suppose the fibration ¥ — M -1

then

— B is oriented (see §4.1),

hmn 2/ ( )/\17+17( p®kerd,) +2t,

where Ag denotes the signature operator on B and A, the family of signature
operators along Y (for the precise definition of the operator Ay ® ker A, , see
§4.1).

Theorem 0.3 can be used to study the multiplicative behavior of the signature,
in the following sense. Consider an oriented fibration Z — N* - B of
compact manifolds (with or without boundary). Let SignZ denote the signature
bundle of fibers on B. This virtual bundle can be considered as a Z,-graded
bundle. It has a natural flat structure. Therefore we can define sign(B, Sign” ),
the signature of B with coefficients in the Z,-graded flat bundle SignZ (see

[L]). Let
def

A = sign(B, Slgn ) — sign(N).
This is clearly a topological invariant of the fibration Z — N — B. We call
it the nonmultiplicativity of signature. It measures the deviation of signature
from being multiplicative. In the case of an oriented fibration of closed mani-
folds Z — N — B, when = (B) acts trivially on H"(Z), the classical Chern-
Hirzebruch-Serre Theorem [CHS] says

sign N = sign Bsign Z.

In general, the signature for closed oriented manifolds is multiplicative in the
sense that
sign N = sign(B, Signz).

This follows from the Atiyah-Singer index theorems and the signature theorem
for twisted coefficients; see [A, AS1, L].

For manifolds with boundary, however, this does not hold generally, as exam-
ples show. Hence A # 0 in general. (But compare [BC5], where it is shown that
the index theory is asymptotically multiplicative in the invertible case.) There-
fore it would be interesting to compute this nontrivial invariant. The boundary
of the total space N can arise either from the boundary of the fiber or from
that of the base. For the simplicity of exposition, we restrict our attention to
the case when B isclosed and 8Z =Y, 8N = M . (The same result holds for
the other case, i.e. the base has boundary while the fiber is closed, see §4.3.) In
this case, A depends only on the boundary fibration ¥ — M — B by virtue of
the extended Novikov additivity (cf. [BC5]). We have

Theorem 0.4 (intrinsic characterization of the nonmultiplicativity). The topol-
ogical invariant t, which is defined from the closed fibration ¥ — M — B,
intrinsically characterizes the nonmultiplicativity of signature. That is, whenever
there exists another fibration of manifolds with boundary Z — N" — B such
that 0Z =Y, ON=M, then 1 =A.
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Remark. It turns out that the invariant 7 also computes the L2-signature of
the associated cone bundle, see [CD].

As another application of Theorem 0.3, let us consider a locally symmetric
space X of Q-rank one. The cross section of a cusp is a flat bundle over a
compact locally symmetric space, cf. [Mii2]. In this case the invariant 7 can
be shown to be zero (see §4.3). Let Y be the manifold with boundary obtained
by chopping off all the cusps of X. Using the results of Miiller [Mii2] and
Theorem 0.3, we can show that

L*-sign X =sign(Y, 8Y).

Roughly speaking, the above suggests that the contributions from the cohomol-
ogy at infinity cancel out. This is quite similar to [APS], where they showed
that the Lz-signature of an elongation of a manifold with boundary is the same
as the signature of the original manifold with boundary.

The remainder of the paper is organized as follows:
1. The adiabatic limit of the g-invariant
1.1. The local geometry of a fibration, the Levi-Civita
superconnection and the #-form
1.2. Formal computation and outline of the proof
1.3. Large time behavior of heat kernels
1.4. Small time convergence
2. Asymptotic behavior of the spectrum
2.1. Analysis of degenerate elliptic operators
2.2. Asymptotic behavior of the spectrum
3. The uniform asymptotic expansion
3.1. Localization
3.2. A “rough” parametrix
4. The signature operator and Hodge-Leray theory
4.1. The signature operator on an odd-dimensional manifold
4.2. Hodge-Leray theory of the very small eigenvalues
4.3. Adiabatic limit of the #-invariant and nonmultiplicativity of signa-
ture

1. THE ADIABATIC LIMIT OF THE N-INVARIANT

By the work of Bismut-Cheeger the study of the adiabatic limit of the #-
invariant of D, is essentially reduced to the study of the large time behavior
of the heat kernel of D . In this section we analyze this large time behavior
via Theorem 1.5, which gives detailed information about the spectrum of D,
in the adiabatic limit. Theorem 1.5 is proved in the next section. We begin in
§1.1, with some preliminaries and a brief review of the work of [BC2]. Then
we present a formal computation, indicating some ideas behind the proof of
Theorem 0.1. The justification for it is given in §§1.3 and 1.4.
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1.1. The local geometry of a fibration, the Levi-Civita superconnection, and the
n-form. Let

(1.1) Y ->M"L B

be a smooth fibration of closed manifolds. A connection determines a splitting
of the tangent bundle of M into its vertical subbundle and horizontal subbun-
dle,

(1.2) TM=T"MaoT"M.

Let P , P” denote the projections on TH , TV respectively relative to this
splitting. We use U’s to denote the vertical vectors on M and X’s the tangent
vectors on B as well as their horizontal lifts to M .

Now equip M with a submersion metric g, which preserves the splitting
(1.2),

g=n"gz+ &y

The Levi-Civita connection on M is denoted by vL . This connection does
not preserve the splitting (1.2). In [B] a unitary connection 57 is defined that
respects the splitting. In fact,

Vo Uy=P (V5 U),  V,U=P(VU),

B
VX =0, VyX,=VyX,,

where V? denotes the Levi-Civita connection on B . Denote by T the torsion
tensor of 7 and S the difference tensor of vL and v . Correspondingly, one
has VL”‘ and S* for g, (v isinvariant under this partial scaling). It can be
verified that [BC2, §4(a)]

limy~ =v+P'S
x—0

and is in uppertriangular form (in terms of the splitting (1.2)) with the diagonal
entry V. Consequently, its curvature is also in uppertriangular form with the
diagonal entry R = V2. From this we deduce

Lemma 1.1. Let P be an O(n)-invariant polynomial on the Lie algebra o(n),
and R*, R=RY @ R® the curvatures of v*'*, 7 respectively. Then

lim P(R"/2ni) = P(R/2ni) = P(RY J27i)P(R® )27i).

Assume from now on that n(= dim M) is odd. Further, assume that both
M and TV M are spin. Consequently, sois B. By [BC2, §1], the spinor bundle
F(M) of the total space is related to F(B), the spinor bundle of the base, and
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F(Y), the spinor bundle of T" M , in the following way:
F(M)=n"F(B)® F(Y).

Let £ be a hermitian bundle on M with unitary connection V¢ and curvature
L%, and let V* denote the connection on F (M) ®¢ defined by

V=V -2 S(e)e; ),

where {e;} is a local orthonormal basis for T” M . The Dirac operator along
the fiber D, is defined as D, =¢;V, . We have the following nice formula for

D, [BC2, (4.26)].
Lemma 1.2. If {f } is a local orthonormal basis for TB, then

2
(1.3) DX=foavz+DY—xTZfafﬁT(fQ,fﬂ).

a<lp

For simplicity, we denote D, = Zafavz, T=3%, s L3 TSy fp)-

We now recall the definition of the Levi-Civita superconnection introduced
by Bismut in [B]. The smooth sections of F(Y)®¢ can be viewed as the smooth
sections of an infinite-dimensional vector bundle H_ over B. The fiber of
H,, overapoint y € B is the space of smooth sections of (F(Y)®¢&),-1,,-

Thus it comes with a natural L*-metric. The connection " induces a unitary
connection v* on H_ . If we wish to regard the operator D_ as acting on
sections of F(B)® H,_, we simply write * for 7" in (1.3). The Levi-Civita

superconnection B, on H_ is the superconnection
(1.4) B =v"+1"D, —c(T)/4'?,

where ¢(T) = 3, A" ' T(f,, /3), and dy® denotes the 1-form dual to
£, . It follows from (1.3) that %Dx is the Dirac operator coupled to the Levi-
Civita superconnection B -., cf. [BC2, Appendix 1].

The asymptotics of heat kernels associated to the Levi-Civita superconnection
exhibit some remarkable cancellations. The first one is expressed in the local
index theorem for families [B, BF2]. Essential to our discussion are the other
two cancellation results [BC2]; i.e. when dimY = 2/ is even

(1.5) tr,[(Dy + c(T)/40e % 1= 0" ast—0,
or when dimY =2/ -1 is odd
(1.6) Dy + e(T)/40e % 1= 01" ast—0,

where tr"" indicates taking the even form part of tr.

Remarkably, when ker D, is a vector bundle on B, the expressions on the
left-hand sides of (1.5), (1.6) are also well behaved for the large time. In fact,
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it is shown in [BGV] (in a more general setting) that for dimY = 2/,

(1.7) tr,[(Dy +c(T)/40e 5 1= 0(t™") ast— oo,
and for dimY =2/-1,
(1.8) 1Dy + e(T)/40e 5= 0(™") as t — oo,

By virtue of (1.5)—(1.8), we now define a differential form on B, the # form

1 [ c(T)\ -p| dt e
-\/—E/O trs[<Dy+—:”—>e :IW lfdle—ZI,

\/lﬁ / Cu [(DY + —cg)>e‘33 ] ——2‘:1’/2 if dimY =2/ 1.

For example, the first integral is convergent at 0 because of (1.5), and conver-
gent at oo because of (1.7).

The # should be viewed as a higher dimensionai analogue of the #-invariant.
In fact, when dimY = 2/ — 1 is odd, its O-form component is exactly the #-
invariant of the Dirac operator along the fiber. Moreover, results of [BC3,
BC4] show that it is precisely the boundary correction term in the Families
Index Theorem for manifolds with boundary. We also point out that when
dimY = 2/ the 1-form component of # represents the Quillen connection
of the determinant line bundle det D; , which is interpreted by Witten as the
covariant anomaly [W]; see also [BF2, C2, F].

We normalize # by defining

n=

Z(E%ﬁmzf‘l if dimY =21,
= |
me” if dimYy =2/-1.

Here we decompose the odd (respectively even) form # into its homogeneous
components [ﬂ2j_l (respectively [ﬁ]zj).

Theorem 1.3 (Bismut-Cheeger). Assume that D, , the Dirac operator along the
fiber, is always invertible. Then the limit lim,_ ,%(D,) = lim,_, in(D,) exists
in R and

~

RE
)1(1_r}r(1) n(D,) = /BA(77;> AT

~_ [ = R® —L*)2ni
dn—/YA<—27>/\tr(e ).

Moreover,
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We briefly recall the basic ideas involved in the proof. By virtue of the local
regularity result of [BF2], the n-invariant of D_ has a heat kernel representa-
tion:

2
"D = / 241D, e~ dt.
Note that this involves the contribution from the heat kernel for all the time.

For ¢ € (0, T], we have uniform convergence as x — 0 (in the case of odd-
dimensional fiber, the other case similar),

(1.9)
tr(Dxe‘Di’) = ﬁk /BAA(iRB)tr”e“«DY+ E;?)"_B'z) +o(x(1+TY)

(2mi)

for some N . Thisis shown in [BC2, §4] by exploitation of the so-called Getzler’s
transformation.

For large time the heat kernel contribution is negligible as x — 0. This is
because when D, is invertible, there is a uniform lower bound for the smallest

eigenvalues of ch, see [BC2, §4] for the details.

1.2. Formal computation and outline of the proof. Our starting point is the fol-
lowing observation, which is a direct consequence of the proof of Theorem 1.3
(cf. (1.9) above).

Proposition 1.4. Without the assumption that D, is invertible, one can still find

a small positive number o such that
(1.10)

hmnD)_Z/ ( )/\71+11m—\/=/ P (D e dt,

provided either one of the limits exists.

Here the second term is the large time contribution alluded to previously. The
discussion on the invertible case indicates that information about the spectrum
of D in the adiabatic limit is crucial in understanding the large time behavior
of the heat kernel. In this respect, we have the following result, the proof of
which is deferred to §2.

Theorem 1.5. For x > 0 the eigenvalues of D, depend analytically on x . Thus
there are (countably many) analytic functions /1 such that spec(D,) = {4, } for
all x > 0. Moreover, when ker D,, is a vector bundle on B:

(A) asymptotic behavior. There exists a positive constant A, such that either
A, is uniformly bounded away from 0 by A,

X
M’xl 2 ﬂ'o > 0 s
or A, has a complete asymptotic expansion as x — 0,

2
Ay N AX A ApXT
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where A, € spec(Dy ® kerDY) Here the connection on ker D, is given by
prOJectmg the connection V* on ker Dy, . In the latter case, the correspondence
A, & A, Is bijective (counting multzplzczty);

(B) uniform remainder estimate. If A correspondsto A, and A, # 0, then
(1.11) A=A x +x°C(x)A

with |C(x)| < C uniformly bounded,
(C) finiteness. For any K > 0,

#A | A ~A X+ and 4| < K} < +oo.

In particular, the number of eigenvalues with A, = 0 (those of at least quadratic
decay) is finite.

Granted Theorem 1.5, the generalized adiabatic limit formula (Theorem 0.1)
can be seen formally as follows. By making a substitution (or rescaling)

(1.12)

too 2 ' +oo 1 i
lim t 12 tr(Dxe tD")dt = lim t 1/2 tr ("Dxé’ t(xDy) ) dt
x—0 [ —a x—0 Jy2-a X
+00 2
— i -1/2 1, —ita)
- )lcl-r»r(l)(/z—a t Z ;)“xe dt)
x 14, 1>4
+00 3
: -1/2 1 —t(44))
wim([T0 S e ar)
* AXNAIX+U.
4,#0
+00 _ 1 1 )
clim([T0 S e ar)
x 2
AXNATX Foee
=I+1I+1IL
2 _—a
In I note that for(ltlez[x , +00) and |4, ] > 4,, (xix) > Aox~*. There-
i 1 =340
fore, lim,_, 4 e =0.

For II we have xlx — 4, for A, € spec(DB ®kerDy). Thus

2
(La) —tA?

lim le’ —/l

x—-0x *
Finally for III, we use Mellin’s formula to get

+o00 _ 1 il 2 1 oo _ _
/ A2 € 1xdo) dt = sgn <-lx>/ u e du.
x2—(x X X xZ—a

Hence, modulo technical problems arising from infinite sums,

+00

+00
lim (D) dt = 0+/ ("2 1{(D, ® ker D, )e e P’ gy
@ 0

x—0 /-
+ lin})\/ﬁ E sgni,,
X—

A ~odyx T
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and consequently, Proposition 1.4 yields

hmn 2/ ( >/\77+71(D ®kerD)+lgr(1) Z sgni .

2
A Ay X e

The above formal calculation suggests the following.

(1) Those eigenvalues that are uniformly bounded away from 0 do not con-
tribute.

(2) Those eigenvalues that decay exactly linearly in x give rise to the twisted
n-invariant on the base.

(3) The finiteness result in Theorem 1.5 justifies the calculation of III.

The justification of (1) involves estimates by the finite propagation speed
technique [CGT], while that of (2) is a consequence of Theorem 1.5. In §1.3
combining (1) and (2), we prove a stronger result. We show that the heat kernel
on the total space under the metric shrinking of the fibers converges to the heat
kernel on the base.

Remark 1. Notice that after rescaling, the time interval for integration in (1.2)
is [xz_" , 00). So there arises the question of small time convergence. This is
dealt with in §1.4.

Remark 2. Intuitively, when we are in the finite time, the effect of blowing up
is to localize on the base. Hence the semilocal term 2 [} AA7. When time
goes like x7? , which is comparable to the speed at which the base is blowing
up, one starts to pick up some global contributions. This is the twisted n term.
After x~*, one picks up some “very” global information, i.e. the very small
eigenvalues. In [DM], using the notion of blow up in [M2], the above picture
can be made very precise, thus giving an essentially complete description of the
heat kernel in the adiabatic limit. The discussion generalizes to manifolds with
boundary as well.

1.3. Large time behavior of heat kernels. Motivated by the above formal calcu-
lation, we rescale the (large) time interval [x~*, co) back to [x>™%, c0),

+00 2 +00
/ t‘”2tr(Dxe_’D*)aft:/2 4 (ID e D)) dt.
x~¢ xe

This rescaling corresponds to the metric rescaling
2 * 2
X'g. =7 gp+X &y,

which shrinks the metric along the fiber direction. Our first step toward proving
the adiabatic limit formula is the following result, which appears to have an
interest of its own.
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Theorem 1.6. Let D, = Dy @ ker Dy, . Then for N=p+1+ 2 and x small

Cx —_c't

1 1 2 Y
tr (;Dxe 1Dy) ) —tr(Dye tD")

where tr' indicates taking trace over those eigenvalues, which decay at most
linearly in x. Here and throughout, the C’s are constants that depend on the
dimensions and geometry of the manifolds considered but not on ¢ and x.

Taking into account the rest of the eigenvalues (i.e., those decaying quadrati-
cally) by using Theorem 1.5, we can rewrite the result in Theorem 1.6 in a nicer

although weaker form,
C '
< (Z_N +C ) X.

Roughly speaking, this formula says that when the total space collapses to the
base (in the sense of Checger-Gromov) its heat kernels converge to the corre-
sponding heat kernels on the base.

The proof of Theorem 1.6 goes exactly as our formal calculation suggested,
except that we take a different dividing line between the large eigenvalues (those
not contributing) and small eigenvalues (those giving rise to the twisted # term).
This is determined by the uniform remainder estimate of Theorem 1.5. It turns
out that workable dividing lines are Ayx“ forany 0 <a < 1. We take a = 1/2.

(1.14) <

1 ~tip 2 _DZ
tr( D e HxPo) ) —tr(D,e ! )

Proof. One has
1 —t(LD )? 1 —t(La )
tr (—Dxe (xPx) ) =S aeT
X X

where the summation ¥’ runs over all (nonzero) eigenvalues of D, that decay
at most linearly. Also

_+n? 492
tr(D,e tD°)=Z/11e 4

where the summation runs over all (nonzero) eigenvalues of D, . Thus

1 L 2 _n?
tr' (;Dxe 1Dy > — tr(Dye ™)
b1, gl —ta?

=\Z e ~S ae

1, —ila)? ' 1, —u(da)? —122
DTl ) SR TRSt S a1

[A >4 vX
We now divide our discussion into two parts.
(1) Large eigenvalues. Define

<

0 otherwise; 0 otherwise.

£ = {Ae‘”z i 42 2VE )2 {xze—"z if || > A/,
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Then the operators fx(%Dx) and hx(li) can be defined by the spectral the-
orem. Moreover, by the spectral mapping theorem,

1 —t(42,)?
E ;Axe

4 /%1220/ VX

< X

- X
1A, /x1220/ VX

1 z_ It
< X (;ix) e = uh (1D,)),
I /X2 0/ V%

| tr(f (D))l =

l/le

X

—1(a,)?

for x small enough. Choose a nonnegative function ¢ (1) € C*(-o0, +o0)
such that ¢ (1) =0 for |A| < 4,/2v/x and ¢ (4) =1 for |4 > 4,/y/X . Further
o llc2 < C uniformly for x € (0, 1]. Set

2
H=H()=21e" 9 (4).

Clearly we have

tr(h, (LD,)) < tr(H,(1D,)).

Let kHX = ka(§ D) denote the (Schwartz) kernel of the operator Hx(li)

(with respect to the volume element induced by the metric ngx). We want
to estimate k, by the finite propagation speed technique of Cheeger-Gromov-
Taylor [CGT]."

First of all, note that %Dx corresponds to the metric x? &, - The sectional

curvature of this metric is bounded by C (l/x2 ), and the injectivity radius is
bounded from below by Cx (cf. [C2]). Therefore, by (1.29) of [CGT], one has
the pointwise estimate

n+1

C +oo
(1.15) k| < < Y- [ 1V ) ds,
X k=0 0

+oo
where n = dim M . Thus it remains to estimate / |H (k)(s)l ds. To do this,
0

write

(1.16) /0+°° \H® (5)|ds = /0+°° (1 + AP (5)| ds.

We show that

(1+s%)
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By calculus and the basic properties of the Fourier transform, we have
1+ A% (5) = BY(s) + szﬁ(k)(s)
= 8%s) + (s*H(s )) —2k(sE)* 7Y — (ke = 1)2E* V()
(1.17) =A%)+ @ () - 2k(H)CY = (k = 1BV s).

Now
| (s)] = ' / e M =i H(A)dA

2
<C Mk+2e—t}. |d/1
4124/2v/%
©  C(k)

C(k) —u/ax
roj2vE (D2 e .

—tA%2 5.
he di= t(k+1)/2

(1.18) <2

The last step comes from the elementary inequality
. 2 . 2
(1.19) et < (e,
One can apply the same argument as above to estimate (17’ )(k—l) and
(H")®) . Plug (1.18) and the corresponding estimates for (H')*~" and (H")®
n (1.17), and together with (1.15), (1.16), one finds

C —tA2/ax

n+ 1 (n+5)/2

ky | <
ky (1p,) .

Thus one can integrate to obtain

1 C —143/4x
tr (Hx (—X—Dx>> < xp+1t(n+5)/2e T

where p is the dimension of the base B. Consequently,

(1.20)

C —liax _ C(p, Ag)X  _unlsx
- xp+1t(n+5)/2 - tp+2+(n+5)/2 ’

1, (i)’
Z ;Axe
1A /x1>20/ VX
again by (1.19).
(2) Small eigenvalues. If |4, | < 4, then by Theorem 1.5, 11, — A, for

some A, € spec(DO) . Since we are taking tr', we have A, #0. Now

E/ x —z(lz Z’l e -1}

|/1X|<AO\/—
! 1 —t(d2) A) —t,l2
< Z (;Ax_ﬂﬂ) Z A (e —e )
I <hoVE I/I <3gV/%
(1.21) +H Y Ae™=I+I+IL

14, 1240/2V/%
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By the same argument as we show (1.20) (in a simpler situation), it is easy

to see that
C —tlg/4x< Cx _ul/8x

IIISWe < tp/2+le

To estimate I and II, we invoke the uniform remainder estimate in Theo-
rem 1.5. Note that the remainder there is bounded by a uniform constant times
the square of 4, , which can be arbitrarily large. To cope with this problem, we
now use the fact that the summations are over |4, | < 4,v/X, together with the
estimates (2.12), (2.13) in the proof of Theorem 1.5, to show that A, cannot
grow too fast relative to x.

Since 14, — 4,, by taking x — 0 in (2.12) where A_ obeys (2.13), we
deduce

A, — Aol < C.
Now |4 | < 4,v/x together with (2.13) and (2.12) yields
- 1 A 24
< — <2 =9,
Aol < 1A, 1+ Cx < x'lx +2C < \/E+2CS %

Combining the two gives

IA,] < 33/ VR.

1

Hence A, grows no faster than x~ /2 1t follows from this and the uniform

remainder estimate that
1 2 2 5 /12
(;zx) =1+ xC04)" 2 7,
provided x < 1/3642C>. This combined with (1.11) implies

—(La ) _122
I< ZxCAfe 1A ngZAfe /4
4,70 1,40
Cx _ct
= tn/2+le

The last step is by virtue of (1.19) and the standard heat kernel estimates (cf.,
say, [CGTY)).

For II, notice that by using the inequality |e_’I -1 < |/1|e|’1| (which follows
by the standard expansion),

L 2 492 422 L 2_ 52
|e t(£4,) e ti,l =|e M‘(e (34, =41 1)|

< tC/lzltxe—t}tf(l—ZCle|—C2x2)~f).
Therefore,
3 —122/4 Cx —c't
< CXZZM” e s 2+

These estimates combined with (1.20) give us (1.13). O
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Remark. The above method allows a more general statement. For example, if
f€([0, +0)) is in the Schwartz class, then the same argument (with a slight
adaptation) gives an estimate of the same type for |tr'(f(1D,)) — tr'(f (Dy))I-

Here the first tr' means the same as before, and the second tr' indicates taklng

out the zero spectrum. An interesting example of such an f would be e —? ,

which gives rise to the heat kernel. Thus

—t'LD D CX —Ct
G2 4 (e e

/
|tr'(e Il < N

As an immediate consequence of Theorem 1.6, we have

Corollary 1.6. There exists B > 0 sufficiently small such that

+00

. —1/2 —tD?
)lcl—%_\/? Cx~F / tr(Dxe ")t
1 [ _1p —tD} .
(1.22) - = /0 £ (Do~ ™)t + lim Zz sen i,
A ~Ayx e
if either one of the limits exists in R.
Proof.
. —D?
.}51}41})7/ —2+Bt tr D e )dt
+o0o _ 1 a1 2
1 oo -1y2 —1(ip ) .
= lim — t =D, xTx 1 .
lim— 1, ( e )dt+x1_% z:z sgn i,
A ~Ayxtee

In the last step above, we used Mellin’s formula and the fact that the number of
eigenvalues that decay at least quadratically is finite. Now take 0 < g < 1/2N
and apply Theorem 1.6. O

1.4. Small time convergence. In the proceeding section large time behavior of
the heat kernel is analyzed by virtue of our detailed knowledge of the (small)
eigenvalues. As a result we obtained (1.22), which furnished a justification for
(1) and (2) of §1.2, but only for the time interval [x >*#, 00), where f§ isa
sufficiently small positive number. Thus we are left with the task of showing
that the remaining piece (the small time contribution after the rescaling) is
negligible. This is done by establishing a uniform asymptotic expansion.

Theorem 1.7. One has the following uniform pointwise asymptotic expansion,

2 N .
(123) (D™ ) =3 a,(0x)? + o(ex)M?), asx -0,

i=—n

where a,(t)’s are bounded for t > 1, and so is O(-).
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The proof of this theorem is given in §3. Here we demonstrate that Theorems
1.6 and 1.8 combined imply the small time convergence.

Proposition 1.8. Forany >0 small, 2> a >0,

x—2+ﬁ

2
(1.24) lim / 240D e~ P)dt = 0.

x—0 Jy—a

2
Proof. That tr(Dxe_’D *) converges as x | O implies significant cancellation
here. In fact, since for fixed ¢ the left-hand side of (1.23) approaches a finite
limit as x — 0, we must have

a.=0, ifi<O0.

1

A further cancellation result is furnished by our uniform asymptotic expansion
and estimate (1.14). Again,

x—2+ﬁ 1

B
_ —_tD? . X _ 1 2
lim D™ Pydt=1im [ 7 (;D e ’(*DX)>dt.

— — X
x—0 X« x— x2—e

2
Now we apply the uniform asymptotic expansion (1.23) to tr(Dxe_’(*D x) )} with
t/x2 as the new time parameter. Thus

N'-1
—t(LD ) j !
e = S ayx e+ oM,
i=0

tr(D

X

and hence

5 N'—1 ) ,
(1.25)  tr (-;Dxe‘“f”x) ) =Y a,t/xH)Px7 oV P,
i=0

To obtain cancellation in the x parameter, we use the estimate (1.14). Take
M>N+1, N>2M+1 and set x = — 0. By the same reasoning as
above one finds

1-2M

a (' MM 2 o).

1

Or
a,(t™") = o T T,

Plugging in (1.25) we finally arrive at

N' -1

1 —_HLlp \? M =l ’ _

tr (;Dxe t(XD*))= E a; ARSI +0(tN/2/x 1),
i=0
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where a; are bounded functions. Consequently

xﬂ 2
/ 4 (—I—Dxe_t()w*) )dtl
x2—a X

B
X
< Cxl/(ZM—l)/ t—l/2—M/(2M—1)dt
X

- 2—a

N'-1 . xﬂ 1
N Z Cx(z—l)(aM—l)/(ZM—l)/z 2 g4 O — 3P Ve
X«

i=1
’

< Cx®/M=D + Z Cx(i—1)(aM—1)/(2M—1)(xﬂ/2 _xl—a/2)
i=1
i C(xﬁ _ xz—a)x(N'—l)a/z—l
Taking M >a”' and N >2a"' +1 gives us (1.24). O

Proof of Theorem 0.1. By Proposition 1.4, Corollary 1.7, and Proposition 1.9,
to show the existence of lim _ ,#7(4,) and the resulting formula for it, we just
have to show the existence of lim __, 210, 2,=0 580 A, . The only way it would
not exist is if such a A, fluctuates around 0 as x | 0. This is prevented by
our assumption that dim(ker D, ) stabilizes eventually.

As for the transgression formula, we prove it for dimY odd since the dis-
cussions are parallel. Let us first note that (cf. [BC2, (4.38)])

0 _Bf _ 3Bt —B,z
Etr(e )=—-dtr (We )

_ o(T)\ -p 1
——dtr((DY—i—T)e )W

Taking the odd form part, we have

0 , odd —B,2 _ even C(T) —Bf 1
attr (e ")=-dtr ((DY+ 47 )e )211/2.

Thus

2 ) _p2
—d7 = lim "% %) - limtr*(e75).
t—o0 t—0

Here 7 is the unnormalized version of 7 ; see §1.1. It is shown in [BF2] that

_B? ~ ¢
1mﬁﬂe%=/mmﬁmmLy
Y

t—0

On the other hand, when ker D, is a vector bundle, it is proved in [BGV] that

. -B? —R
lime " =¢ "°,

t—o00

where R, is the curvature of the connection on ker D, . Since e %o contains
only even forms, our formula follows. O
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2. ASYMPTOTIC BEHAVIOR OF THE SPECTRUM

This section is devoted to the proof of Theorem 1.5. Recall that D, is

associated with the metric that is rescaled in the base direction by x~2. From
the local point of view, the rescaling is making the operator D, better since
the local geometry is simplifying. And this is the reason that for the finite time
behavior of the heat kernel one can work effectively with the so-called Getzler’s
transformation. However, from the global point of view, the elliptic operator
D, becomes degenerate as x | 0. This degeneracy is the essential difficulty
here.

Recently using a general theory of pseudodifferential calculus developed by
Melrose et al. (cf. [M1-M3]), Mazzeo and Melrose [MM] constructed a "ni-
form parametrix for the Laplacian in the adiabatic limit. From there they obtain
a quite explicit description of the singularities of Green’s operator. Their con-
struction extends to Dirac operators as well. Our main point here is to use this
description to show that the resolvents of the operators %Dx are L*-bounded

and further as L-bounded operators these resolvents depend smoothly on the
parameter x down to x = 0. The result, combined with the regular perturba-
tion theory, gives us the asymptotic behavior of the small eigenvalues at x =0,
in §2.2. The finiteness result, which is a consequence of ellipticity, is also dis-
cussed there. The uniform remainder estimate is established by a deformation
argument where the local geometry of the fibration plays a definite role.

2.1. Analysis of degenerate elliptic operators. We first fix some notations.
Throughout this section, for Z a manifold with corner, U ¢ Z an embedded
submanifold, and E — Z a vector bundle, I”(Z, U; E) denotes the space of
E-valued distributions conormal to U, of order m. The reader is referred to
[H] for the basic properties of conormal distributions.

Let M be the total space of the fibration (1.1). Set

X =[0,00)x M, Z=[0,00)xMxM=XxM.

The spinor bundle F(M) liftsto X and Z in the obvious way. The Schwartz
kernels of the operators concerned here are generally distributions on Z . How-
ever, the degeneracy of our problem means that these distributions have com-
plicated singularities. One of the central ideas in [MM)] is the notion of blow
up.

Let

Q={0,p,0)|n,(p) =7x(P)} CZ =10, 00) x M x M,

where 7, and n, are the left and right fibrations. The blow up of Z along
the submanifold Q is

Z,=SNQU[Z\Q],

where SNQ is the inward-pointing unit spherical bundle of Q in Z. This
is a manifold with corner with two codimension 1 boundary faces and one
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codimension 2 boundary face. As a set it is given by replacing Q by SNQ. It
comes equipped with the ‘blow-down’ map

nQ:ZQ—»Z,

which is the identity away from the ‘front face’ SNQ , which we denote ff(Z,) .
The blown up space Z, has a unique C* structure such that m, isa c*™
diffeomorphism from Z,\ff(Z,) to Z\Q and has rank dimB +2dimY +1 at
ff(ZQ). Moreover, the diagonal A = {(x, p, p)|x >0, p € M} has a unique
lift A, to Z,, which intersects ff (Z,) transversally; see [MM].

The significance of the blown up space ZQ is that the singularities of the
parametrix and hence of the resolvents can be much better described when lifted
upto Z,. Let R be a defining function of the front face. Then p = x/R is
a defining function for the boundary face other than the front face. As we will
see, besides the usual diagonal singularity the boundary singularity only involves
the powers of these defining functions.

Following [MM)], the Schwartz kernels here are taken with respect to the
singular measure dg, = xPdg. By a straightforward modification of the
construction in [MM] (for the simplicity of notation, in what follows, we use
“Hom” to denote “End F(M)” and “F” to denote “F(M)”), we have

Proposition 2.1. Assume that ker Dy, gives a vector bundle on B. If A & spec(D,,),

then the resolvent (1D - l)_' exists for x sufficiently small. Further, its
Schwartz kernel lies in the space x& where

-1 -1
=1y (Z,, A, ; Hom) + p”

+x"~'C*™(Z , Hom)

C*(Z,, Hom) +x""'logR - C™(Z, Hom)

and it maps C™ (X, F) into itself. Here I ' consists of all conormal distribu-
tions in I”" that vanish in a neighborhood of 8ZQ\17(ZQ).

With this explicit description of the resolvent, we can now proceed to prove

Theorem 2.2. Every element of x% defines a bounded operator on L* (M, F)
and consequently (1D, — l)_l (A & spec(D,)) defines a family of bounded
operators on L? (M, F). Furthermore, this family depends smoothly on x down
to x=0.

Proof. We divide the proof into two parts, corresponding to the two statements
in the theorem.
(A) One shows that each element of

xI;'(Z,, A, ; Hom), xp’~'C*(Z,, Hom),
x"logR - C*(Z, Hom), x’C*(Z , Hom)

defines bounded operator on LZ(M , F). This is clear for elements in
xPC*(Z , Hom). We now look at xp"_lC°°(ZQ, Hom). Let y, z be local



286 XIANZHE DAI

coordinate systems on B and Y respectively. Since we are using the singular
measure dg, = x"Pdydz,if G is a Schwartz kernel, then

(G9)x. 3. 2) = [ Glx.v, 2.y, )00, 2)ds,
=/ xPGpdy' dz'.
M
For G ¢ xpp_lC°°(ZQ, Hom),
GE¥x7?Ge x_p+1pp_1C°°(ZQ , Hom) = Rl_pr(ZQ, Hom).

If x>0, wehave R>0 and G’ clearly defines a L*-bounded operator. Thus
it suffices to prove the statement for x = 0. By using the Schwarz inequality,

2
/ (Go)(x, v, 2)dydz = / / Glx,v, 2,5, 20, 2)dy dZ| dydz
(2.1) 5/(/|G’(x,y, z,y’,z’)|dy’dz’)

X (/ |G'(x, v, z, y', z')||¢(y', z')|2dy'dz') dyd:z.

Introduce polar coordinates around Q:

/
R 1212 _ i y-=y _ ’ ’
R—(X +|y y ) ’ @ (Ra R ) (p,(l)),y,Z,Z.

This defines a local coordinate near the front face on ZQ. We can take our

previous defining function R and replace it by the above defined R since they
are both defining functions for the front face. Let

IG|(R, 0)= sup |[R"'GR,w,z,y,7)

"
z,yY 2

This is a smooth function of R and w. Therefore

/|G'(0, v, 2,y 2)dy dz = / IG(R,»,z,y, )R " dRdw
< /|G’|(R, w)dRdw = C' < cc.
Plug this into (2.1) to get
1600, 7. 2)Pdyaz
<c [ [160.y. 2.5, 2160/ )Py d=' dy
¢ [([i60.y. 2.5, ldydz) 6w, 2 ) dy' d

<c? / 6, 2)Pdy dz'.
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This is the desired L*-boundedness of xp’ _1C°°(ZQ, Hom). From the

proof, we see that the singularity here comes from the factor R'™? , which
is cancelled in the polar coordinates. The argument clearly carries over for
xPlogR-C*(Z, Hom).

For xI, 1(ZQ, A, ; Hom), one reduces it to the L*-boundedness of

x10_°°(ZQ , A, ; Hom) C xC°°(ZQ , A, ; Hom).

Then, because the support of the elements of xI; °°(ZQ,A7; Hom) is
contained in {p # 0}, the same argument as above works also for
xI, °°(ZQ, A, ; Hom). For the reduction we need the following version of
Hormander’s lemma.

Lemma 2.3. If 4 € I°(Z,, A, ; Hom) and v € C*(M, QM) is a positive
density on M, then there exists a constant C >0 and B € IO(ZQ , A, ; Hom),
selfadjoint with respect to v such that

(2.2) A"A=-B’+C+R, Rel *(Z,,A,;Hom),
where A* is taken with respect to v .

Proof. First a little explanation is in order. Note that (see [M1])
0 —00 —00
I'(Z,,Ay; Hom) c C ~(Z,, Hom) =C " (Z, Hom).
Thus every G € IO(ZQ , A, ; Hom) defines

G: C°X,F) —  CX,F)
U U
CP({x}xM,F) — C®({x}xM,F).

The element v gives a positive density on every {x} x M, with respect to
which we can define
G :CT({x}x M, F) — C™({x} x M, F).

One checks that G" is still in IO(ZQ , Ay ; Hom) and its symbol behaves
like the usual symbol. (This is nothing but simultaneously taking adjoints of the
operators for each parameter.) Hence (2.2) follows from the formal properties
of the symbolic calculus, as in the proof of Hérmander’s lemma; cf. [H, M1].

Now, wusing Lemma 2.3, we can verify the L*-boundedness of
xIO_'(ZQ, A, ; Hom). Take x € C°°(ZQ) such that y = 1 on the support
of the given element 4 of xI ! and X vanishes on the nonfront face of the
boundary. Then by (2.2)

I461° = (¢, x4" Axd)
= —|lxBo|* + Cllxol’ + (6, xR9)
<(C+CHel*, if [xRell < C'l8).
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This reduces the L*-boundedness of xI, ' to that of xI, °°, which can be
handled by our previous argument.

(B) We now turn to the proof of smooth dependence of the resolvents on x .
By the principle of uniform boundedness, it suffices to show that for ¢, v €
L*(M,F), G e xZ, wehave F(x) = (G$, y) € C™([0, +oc)). Here the
inner product ( , ) on L2(M , F) is induced by g, . First let us note that
F(x)e L_([0, +00)). In fact, one has

loc

(2.3) / F(0) 12(0)ldx < COlél, vl

where C(x) is a constant depending only on y, a compactly supported smooth
function on [0, oo). To see this, write out

F(x) = / Gx,v,2,¥, )0, 2 (v, 2)dg. dg.

Then
JIF@I xtx)dx < [141161 161 1wldx dg, d.
Since
GexZ% = xIO_I(ZQ , A, ; Hom) + xpp_1C°°(ZQ , Hom)
+x"logR- C*(Z , Hom) + x* C*(Z , Hom),
one finds

— —p ,—1 o0
p ' Gexp’ly (Z,y, A, ; Hom)+ RC (Z,, Hom)
+R’logR- C™(Z,, Hom) + R°C*(Z , Hom).
By using Lemma 2.3, we can assume that

p"GeRC™(Z,, Hom) + R log RC™(Z,,, Hom) + R°C*(Z , Hom).

Hence p "G = R'/*G’' where G is bounded continuous on Z .
Without loss of generality, we assume that ¢(y', z') and w(y, z) are com-
pactly supported. Now

[ 12116116l vidxds,dg < € [ R?"Ig) ly|dxdy' a2’ dy dz.
Here the integration in x is over a bounded interval. Note that
R=(x"+ly-yH'"
Let R = ((x —x')2 + [y —y'|)"?. Then
/R_”+1/2|¢| ly|dxdy' dZ dydz < /R'_”+l/2|¢| ly|dxdx'dy' dz dydz.

Here the integrations in both x and x’ are over bounded intervals. The desired
estimate now follows from Schur’s lemma.
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We now show the tangential regularity.
Lemma 2.4. F(x) is conormal to {x =0}: F(x) € & ([0, +o0)).
Proof. To show this, we have to check that (xax)kF (x) € L, ([0, +00)) for
any integer k. For k = 0, this is (2.3). For k = 1, note that x0, lifts trivially
to 7,(Z,), tangent to A, . Since & (thus x¥) is invariant under the action
of this type of vector fields of %(ZQ) , (x0,)G is also in x¥ . Hence
(X8,)F(x) = (x8,)Gp , w) € L ([0, +00)).

Repeating this argument finishes the proof.
The next lemma gives the normal regularity.
Lemma 2.5. The Mellin transform of F(x),

t—1
X

T(1)

extends to an entire function in t € C, i.e. F(x)e &'([0, +0)).

F(x) € CT([0, +0)),

Proof. Note that {-%F (x) = <(r(z G)$, v). Hence ’f-—'(_ITIF (x) is holomorphic
on the halfplane Re ¢t > 1. Now if ¢ € C*(M, F), then Proposition 2.1
implies G¢ € C*(Z, F). Consequently %'F (x) is entire.

For ¢ € L*(M, F), choose ¢; € C*(M, F) such that ||¢;, — ¢|l, —» 0 as
0 — 0 and [¢4]l, < 2||¢]l. Set

F5(x) = (G, v).

We claim that {r(z 5(X)}s is a normal family of entire functions. Granted

this, the limit of the normal family {%F 5(X)}; (which exists by the normality
and the principle of uniform boundedness, i.e. the Banach-Steinhaus Theorem)
is also an entire function with values in C~°°([0, +00)). On the other hand,
one has for Re t > 1, i‘%Fa(x) — %F(x) weakly by (2.3). This proves the
lemma.

It remains to establish the claim. We show that the family is locally uniformly
bounded. For this note that for Re # > 1 and y € C*([0, o)) compactly
supported,

Re t—1

oy Caly)
[ Ttton e < —|W/ 5 lrldx
C(x)a(x)R“ :

where the last inequality comes from (2.3) (and ||¢4]|, < 2||¢||). Since ’l‘_'(_tl «

y(t) satisfies the functional equation

(24) Lyy=p-),
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using integration by parts, we have for Re ¢t > -k + 1,

Re t+k—1 k

@5 | [ g Fantn ax] < s 5107l

We want to estimate [|0, F5||L. in terms of ||#||, and |ly|,. Without loss of
generality let us assume that the F’s and Fy’s have compact support. Define

(e ) oo t—1
Fy (1) = /0 *'F(x)dx,  E)= /0 %F(x)dx

Then
(2.6) B0 = 20,
and

(@) (8,F),,(t) =—(t— 1)F, (t = 1).

(b) (xB,F),,(t) = —tF,,(1).

(c) (Plancherel’s identity) (F, F') = / F M(t)Fjw(t_) dt.
Re t=0

The verifications of (a) and (b) are just computations, while (c) follows from

Plancherel’s identity for the Fourier transform, when we make the substitution
—iu

x=e

Now F(x) € C*([0, +o0)) implies that F(¢) is entire. It follows from (2.6)
that F, () is then meromorphic with at most simple poles at negative integers.
If, in addition, F(x) vanishes near x =0, F, (¢) is then entire. This can be
seen trivially from the definition.

Take ¢(x) € C*([0, +00)) identically 1 on [1, +00) and O on [0, 1/2], and

put ¢,.(x) = ¢(x/e). Apply Plancherel’s identity to q;e(x)af F;(x) to obtain
2 k 2 k T ko o~
| eiwiotErax= [ (000F), (000,00, 0dr
e t=

By the above discussion, ((/)8(’5?;c Fy) M(t)((psafF&) (D) is entire, which allows us
to shift the line of integration Re ¢ = 0 to any other such line. Hence

/ P2 (0)|0X F,(x)? dx = / (0,0F,),,(1)(9,0°F,) () dt.
0 Re t=k+3
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Letting ¢ — O and noting that for Re ¢ > 0, (9,0XF;),,(t) = (85F;),, (1), we
deduce

2.7)
/0 10X F,(x)Pdx

_ /R e t=k+3(8:F5)M(t)m it

=/ (=12 (t =k = ) (Ey),, (t— k - )Fy),, G-k =T)dt.
Re t=k+3

To estimate (Fj),,(7), we use (b) above. Thus for any large N,
.
(Fp) g (O < CA+1e) ™ 3 1((x0,) Fy)p, (1),
Jj=0

By the invariance of x% under the action of x4, , (xax)j F; obeys an estimate
of the type (2.3), which yields

Re t—1

((x8,) Fy),, (0] < Ca™ Higll, 1w, »

provided Re ¢ > 1. Combining these two, we finally arrive at

(2.8) |(Fy)ar (0] < Ca™ = 1+ 1) ™Ml 1wl

The claim follows from (2.5), (2.7), and (2.8) by taking N >k + 1.
Now the smooth dependence of the resolvents on the parameter follows from
Lemmas 2.4, 2.5 and the following fact (see [M2]),

& ([0, +00)) N ([0, +00)) = CZ([0, +0)). D

2.2. Asymptotic behavior of spectrum. The proceeding analysis of the resolvent
of %Dx bears important implications for the spectrum of D_ in the adiabatic
limit. However, before one can apply regular perturbation theory to obtain the
asymptotic behavior of spec(D, ), one needs certain finiteness results. To this
end we now take a closer look at our operator by exploring the local geometry
of the fibration.

In terms of the decomposition
L*(M, F) = Image P* @ Image P,

where P =P, D, » Our operator can be written in the matrix form

1 (4, A,
2= (3t ).
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where (see (1.3))

A, =x"'D, + P D P + xPLgPl,
A, =P D P+ xPl%P,

T
A3=DO+XP2P.

Lemma 2.6. (a) There exists a constant A, > 0 such that spec(|4,|) is contained
in the halfline [4,/x, +00).
(b) A, (consequently A3) is bounded on L2(M , F).

Proof. Statement (a) is essentially Proposition 4.41 in [BC2].

b) First note that the commutator [D,,, D,] & p.D,+D,D, is a first
vy g v“B BZY

order differential operator, which acts fiberwise (cf. [BC2, §4(a)(b)]). On the
other hand, PL[DY , DglP = PJ‘DYDBP is fiberwisely of finite rank. Therefore

P*D,D,P = (P*D,P")P*D,P isbounded on L*(M, F). But (P*D,P*)”"
is also bounded on L2(M , F). It follows that PlﬁBP, consequently A4, =
PJ‘EBP + xPJ‘§P ,is bounded. O

To have a first picture of spec(D, ), we deform xle to an operator whose
spectrum we know much more about. For this purpose, the following lemma is
quite useful.

Lemma 2.7. If T(e) is an analytic family of selfadjoint operators on a Hilbert
space. Then its eigenvalue A(¢) (which can be arranged to be analytic in ¢)
satisfies

(2.9) A(e) = (T'(e)gle), d(e)),

where ¢(e) is a normalized eigenvector associated with the eigenvalue A(e). In
particular,
@)l < IT'@)l-

For the proof, see [K, p. 391].

Lemma 2.8. Consider the operator

A, 0
T= ( ! )
0 4,
Its eigenvalues A, are analytic in x for x > 0. Furthermore for the positive
constant 4, of Lemma 2.6, either
(2.10) A > Ty/x,

or A, is analyticat x =0,

(2.11) A, =Ag+Ax+--,  with Ay € spec(D,).
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2 ; 1 1
Moreover, for each A there corresponds an eigenvalue A  of D, so that
(2.12) 11i.-2,/<C

for a uniform constant C .

Proof. The eigenvalues of T are either eigenvalues of 4, or that of 4,. Ac-
cordingly, we call them of type I or II. By the previous lemma, the eigenvalues
A, of type I, i.e. of A, satisfy

1A, > 2q/x.

On the other hand 4, = D, + xP%P is an entire family of selfadjoint operators
(in the sense of Kato). Therefore its eigenvalues 4 (type II) depend analytically
on x and we have (2.11). In this case, we also have a uniform remainder
estimate

(2.13) A, =Ay+xC(x),

with |C(x)| < C uniformly. This can be shown by the argument below, using
the deformation A,(4) = D, + AxP%P and the fact that |PZP|| < C.
Now consider the deformation

A, AA
= (7 ).
A4, A
we have T(0) =T and T(1) = 1D . For each fixed x >0, T(A) is an entire
family of selfadjoint operators. Therefore its eigenvalues depend analytically
on A. Thus for each A, of T(0), there correspondsa 14 of T(1). Moreover
(see Lemma 2.7)

1 _ 1
(2.14) $h—i < [T s .

where the last inequality follows from (b) of Lemma 2.6. 0O

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. For x > 0, D_ is what is called in [K] the analytic family
of type (B) of selfadjoint operators. The first statement follows immediately.
Thus the main point here is the study of the behavior of A, as x — 0.

Lemma 2.8 already contains important information about spec (D, ). In fact
if 11 correspondsto 4, , which is of type I, then x|4 | > 4, and (2.14) implies
that

A > x[A |- Cx>2/2% 4,

provided x < ZO /2C . On the other hand, if ZX is of type II, we have

LA | <A+ C <ag+2C

by (2.13). In particular {}clx} are uniformly bounded. They must converge
as x — 0 to an eigenvalue A, of D,. Otherwise, a subsequence of {11 }
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convergesto A’ ¢ spec(D,) . This implies that the resolvent (%Dx - i’)_l cannot

exist no matter how small x is, in contradiction to Proposition 2.1.

Suppose &, > 0 is chosen such that A, +¢, ¢ spec(D,) and %lx’s are in the
gy-ball around A, for x small. By Theorem 2.2,

-1
P(x):-L/ (lD —,1> )
2mi [A—2,|=¢, x *

is well defined and C™ in x as a family of orthogonal projections. The fol-
lowing lemma says that they are unitarily equivalent to each other.

Lemma 2.9. Let P and Q be (orthogonal) projections on a Hilbert space with
IP—-Qll<1. Then

2

W=[1-(P-Q)"1""[PQ+(1-P)1-0Q)]
is well defined and invertible (unitary). Furthermore,
W™ =[(1-Q)(1-P)+QPI[l - (P-Q)1'"?,

wlpw = Q.

For the proof of this lemma see [RS, p. 72].
Lemma 2.9 applied to the family P(x) produces a smooth family of unitary
operators U(x) such that

Ux)"'P(x)U(x)=P(0)  (x small).

Moreover, U(x)_l(lD -4 —eo)_lU(x) isa C® family on Image P(0):

XX
1 2 -1
Image P(x) GO A Image P(x)
T U) T U
Image P(0) — Image P(0).

We claim that dim(Image P(0)) < +oo. In fact, being a smooth family of
projections,

rank P(x) = rank P(0).
Further, by the discreteness of spec(D,) and functional analysis, for x > 0,
(2.15) Px)= @ P,
bh—dil<e,

where P, is the orthogonal projection onto the A -eigenspace. In other words,
rank P(x) equals to the number of A, (counted with multiplicity) such that
%lx lies in an ¢-ball around A, . For x small, such A, could only correspond
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to the eigenvalues A, of A4, which obey
5 ! al
A, =AgtAx+--

with % € spec(D,) . This, together with (2.14) and (2.13), implies rank P(x) is
bounded from above by the number of eigenvalues of D, lyingina (2C +¢;)-
ball around 4, , counted with multiplicity. There are only finitely many of them,
yielding
rank P(x) < +o0,
ie.
dim(Image P(0)) < +oo.

Thus U (x)_l()l‘Dx -4 - 80)—1 U(x) is a smooth family on a finite-dimen-
sional vector space. By standard functional analysis so is its inverse
Ux)"' (D, - 4, — g)U(x) = U(x)""(LD)U(x) — 4, — &,. One can then
apply the following lemma (cf. [Sn, Lemma 5.2]), showing the existence of
complete asymptotic expausions for those A _ with %/lx lying near an eigen-
value of D, .

Lemma 2.10. Let C(x) be a family of symmetric matrices whose elements have
complete asymptotic expansion in x as x — 0. Then the eigenvalues of C(x)
have complete asymptotic expansions.

It remains to prove (1.11). Choose A ¢ spec(D,)) real and consider
_ (A -4 &4,
S(e) = ( eA) A3—/1>'
Set T(¢) = S(¢)”". One has

%T(s) - S(a)“‘1"2;(:)5(8)‘1 = T(e) (1% “2)2) T(e).

By straightforward calculation, one finds

ro=(z 7).

where
-1 * -1

2
T = (4, —A—&d,(4;, - 1) 437",
T, = —e(d, — ) Ay(dy — A— e Ay(4, - 2)'4,) 7,
T, = (4, —A— 454, - 1) ' 4,) 7",
From Lemma 2.6, we have
17,1l < Cx, IT,]l < Cx, 175 < C.

It follows then

iT(e)

7 <Cx.
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This, together with (2.9), implies |4'(¢)] < Cx. But A(1) = (’-1; - 27" and
A0) = (4, - A)~' where A, is the same as in Lemma 2.8. Thus
(e/x =17 = (A, =D < Cx,
or
(2.16) A /x =2, < Cxla /x = A A, - Al.

Since A /x — A, we musthave 4, = A, + C(x)x, where |C(x)| < C. Plugging
in (2.16), and using the estimate (2.12) of Lemma 2.8, one obtains

A/x — A < CxAl.
This is (1.11). O

3. THE UNIFORM ASYMPTOTIC EXPANSION

2
In what follows we also use the notation Dxe‘tDX to denote its own kernel

2
taken with respect to the metric g,, . Therefore tr(Dxe_’DX) could mean either
the integrated trace or the pointwise trace, depending on the situation. We make
it clear in the context.

Theorem 3.1. Pointwisely, one has the following uniform asymptotic expansion
(compare [BC2, (4.81)]),

=

2 -1 .
3.) e )= a(nexh)” + o(xHY?), asx -0,

—n

where the a,(t)’s are bounded for t > 1, and so is O(-).

This section is devoted to the proof of this statement. We first localize the
problem, i.e., we transplant the problem to a trivial fibration whose base space
is an Euclidean space. Then we construct a parametrix by taking the product of
the heat kernels on the base and along the fiber, and then applying Duhamel’s
principle. The asymptotic expansion comes from the standard heat expansion.

Remark. In [DM], as indicated, we examine the heat kernel of ch on an appro-
priate blow-up space. As a consequence, we obtain a more general expansion.

3.1. Localization. Fix a point y € B, let U = Bro(y) in the metric g, for
a fixed small number r, > 0. Denote by K, (z,), z, y', z') the kernel of
Dxe_tD * with respect to the metric g =n"g, + &y .

Lemma 3.2. K (t,y,z,)', z') decays exponentially as x — 0 for those y' &
U, i.e., there exist positive constants C and C' such that

—
1o -p ~C'y,y" jtx’
(3.2) K (t,y,2z,y,2)]<Cx "e .

One has the same bounds for the derivativesin v, z,y", z'.
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Proof This follows essentlally from the theorem of Cheeger-Gromov-Taylor.
Let K (Y, z, y', z') be the kernel of D e Ds with respect to the metric
then

K(t,y,z,¥,2)=xT"K (t,y,z,), 7).
By estimate (1.30) in [CGT],
Ry, 2 <SP ¥ / 74 (5)1ds,
0<i,j<N
where r = min(r,/3, inj(M, g)), f(2) = Ae™* % ig(2), and d_ = the dis-
tance in g, between (y, z) and (', z'). Clearly d. >y, Vix>y,y2x+r
for x small. Note that (see [CGT, p. 28])

(k) A (k1 C(k) —1/2 —s*/8t
7901 = 18" V0] < e e,

Therefore,

- C [T _12 —s8
K(t,y,z,y',z')lg——/_ t e dt
I x \/Z v /[2x
e e—wz/ﬂtxz.
R
This implies (3.2). The estimates for the derivatives are similar. 0

Let r, be small so that U is a trivializing neighborhood of 7. Consider
now the trivial fibration

Y -M=Y xR — R,

E=T"gw+8y,
where g, coincides with g, in a neighborhood of 0 and is flat outside a
compact domain. g, coincides with g, ., in a neighborhood of 0 and is
constant outside the compact domain. Correspondingly, we have Ex. Let
> -~ — _2 . .
K. (t,y,z, y', ') be the kernel of D e Py with respect to g. The following
lemma says that instead of considering D, , we can just as well consider Ex .

Lemma 3.3. K, and T(X differ by an exponentially decaying term,

i i = i l —n —C'/tx2
|Kx(t,y,z,yaZ)—Kx(t,y,Z,y,Z)|SCUC e .

Proof. Basically this is because inside a small neighborhood the two operators
coincide while outside the neighborhood the heat kernels decay exponentially.

Let G, and Qc be the kernels of e ® and e 'BX. Then

K.,=DG,, K, =DG,.
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Choose a smooth function ¢ = ¢(y, y') such that ¢(y, y') =1 when y' € U/3
and ¢(y,y’) =0 when y' ¢ U. Consider

G(t,y,2,9", 20, ¥") = Gy(t,p, 2,¥", 2V, ¥
/ as/G S, V.2,V , z)@x(t—s,yl,z',y",z")
x¢(v, y)$(y', y")dy' dz' ds
—/Ot/Gx(s, v,z,¥,2)D,-D )G (t—s,y,2,y", 2"
xp(v, ¥ ) o0, y")dy' d7' ds.
Since D, =D_ in U, one has
K (t,y,2,9", 20, y") =K (t, v, 2, 5", 2)8(y, ¥")
= —JC/DXGX(S, v,z,y,2)D, -D )G (t-s, v,z vy, 2"
xp(v,¥) oy, V") dy' dz' ds
= —/Ot /y_y>r0(D" -D)D.G (s,y,z,y,2)G (t-s,y,2,y", 2"
x¢(v,y) ¢y, y")dy'dz'ds.

Applying the previous estimates on the derivatives of G, and using the fact
that as an L* operator ﬁx has norm bounded by 1, we find

— _ ! 2
K. (t,y, 2,9, 20,y ) - K, (t,y,2,¥", 2")o(y, y") < CtxPe™ /™.

In particular, one has

! 2
K (t,y, 2,9, 2") =K (t,y,2,¥", 2") < Ctx"e” /™

when y, " < ry/3. For those y, " such that y,»” > r,/3 each of K
and fx are exponentially decaying by (3.2). Combining the two finishes the
proof. O

3.2. A “rough” parametrix. By the above result we can replace the original fi-
bration by the trivial one

Y —-M=Y xR — R”.

We now construct a parametrix for our operator living on the trivial fibration.
For the simplicity of notations we suppress the “bar’s” below.
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Recall that the tangent bundle of M splits as the Whitney sum of its vertical
space and its horizontal space by the connection,

T™M=T oT",
and the horizontal lift gives an isomorphism
(3.3) T, R’ = T(y 2)
for any z € n_l(y). Also we have by (1.3),
(3.4) D, =D, +xDy+x'T/4,

where 53 is the Dirac operator on R’ lifted via the isomorphism (3.3). Taking
the square of (3.4), we have

2 2 ~ 22 2 T 3[~ T 4 (T\?
Dx=Dy+x[Dy,DB]+x Dy +x [DY’Z]-'-X [DB,Z]+X (Z) .

Recall the basic fact that [Dy, D gl is a first order differential operator act-

ing fiberwise. Thus we can construct the heat kernel F Wt x,z,z ") of DY +
x[Dy, DB] Here the subscript 1nd1cates 1ts dependence on the base variable.

Let E(t,y, ') be the heat kernel of e =D, 5, originally living on R’ , and lifted
to M via the horizontal lift. Consider

! ! ! 2 !
K(t,y,z,y,2)=F/(t,x,z,2)E(tx",y,y),

G.(t,y,z,y,2)=(8/0t+ DK (t,y, 2, , 7).

Note that here and throughout, we use y’s as the coordinates of the base, R” ,
and z’s as the coordinates of the fiber Y . One has

Lemma 34. K _ is a “rough” parametrix for /0t + Di, i.e. it satisfies the
estimate ,
(8/8t + DL)K,| < C(tx*) 271125

for t>1.
Proof. We calculate,
(3.5)

G, =(0/01F,)E + F,(9/91E) + ((Dy + XDy , Dy])F,E + x* (D, F,)E

+ x*(DyF,)(DyE) + x’F,(D,E) + xF, L(RE) + x*(IDy , 11F,)E

~M

+x F(D E)+x(IDg, F)E +x° F([Dy, FIE) +x*(Z)? FE
=x*(D;} F)E +x (D'F)(D E)+x° F(RE)+x (IDy, §1F,)E

~M

+x"F,(DyE) + x(IDy, T1F,)E + X’ F,(IDy, F1E) + x*(T)’F,

Here D! g etc. are first order differential operators acting horizontally, and the
curvature factor R comes from the use of the Lichnerowicz formula.
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To estimate (3.5), we introduce the following notation. We use | | to
denote the sup norm, and | |, ; the sup norm of all the derivatives up to ith
order. Here we make the convention that derivatives are taken with respect to
the space variables but not the time variable. Thus |F, (¢, x, z, 2. -
denotes the sup norm of F together with its derivatives with respect to y up
to i,th order, z up to i,th order, z' upto i;th order.

First we show that for ¢t > 1,
I . . .
|F,(t, x, 2,2z )|m,il’i2,i3 < C(iy, iy, Iy).

In fact, for i, =0, this is the standard heat kernel estimate and follows from,
for example, [CGT). For arbitrary i, , note that, since dimker D, is assumed
to be a (finite) constant and Di, +x[Dy, D] is a small perturbation of Dg, , it
follows that all its eigenvalues are bounded away from 0 by a positive constant
Ay except a finite number of them, which decay in x. We claim that such
eigenvalues must be decaying quadratically. To see this, note that in terms of
the splitting
LZ(Y) =kerD, & (kerDY)J' ,

our operator Di, + x[Dy, 531 is of the following special form

=~ 0 xC
D +x[Dy, Dy = <xc* D ) ,

where C = Py, [Dy, DylP,p, is bounded (cf. Lemma 2.6), and D =

P Dy(Df, +x[Dy, D) Ps. p, - Our claim follows from a similar analysis as in
the proof of (1.11).

Let P be the projection on the space spanned by the eigenspaces correspond-
ing to such eigenvalues. P is a smoothing operator that depends smoothly also
on the base variable. Let Fyo(t, x, z, Z') denote the Schwartz kernel of PF,P.

Fyo(t, x,z,z) obeys
0 . . .
(3.6) Bt %, 2,2 ;1 i S CUy, g, i),

Put D, = (Df, + x[Dy, 5B])| p+ . Then its eigenvalues are bounded away from
0 by 4,. Therefore, if Fy(t, x,z,2') denotes the heat kernel of D, , for
t>1,

< C(iy, ig)e~

—_ /
IFy(t, %, 2, 2)l 0,4, S

Now by Duhamel’s principle,
a - I ! - " a_Qy— " ! n
5Fy(t, X, 2z, z)———/0 /YFy(s,x, z,z )—E)—J-)—Fy(t—s,x, z ,z)dz dt.

To estimate this convolution, we consider the time intervals s < ¢/2 and s > t/2
separately. If s < /2, then t —s > t/2. Thinking of F (s, x, z, Z") as the

kernel of an integral operator on LZ(Y) whose norm is bounded by 1, we see



ADIABATIC LIMITS AND LERAY SPECTRAL SEQUENCE 301

that by the elliptic estimate,

— oD, —
/Fy(s, x, z, z");YFy(t—s, x,z", 2YdzZ"
Y oy 00,0, iy, 1y

- . 0D, — "oy
S ||QI;’IQI;,2'a—yYFy(t—S, x, Zz ) Z)”LZ(Y)

<CF,(t-s,x,2", 2 o,

00,0,2i,42,2i, = Cli, 13)e

On the other hand, if s > ¢/2, note that
— 0Dy v [ (0Dy\'= , — .,
/YFy(s)WFy(t—s)dz _/Y (W) F,(s)F,(t—s)dz".

Thus letting F (¢ -5, X, z", z') play the role of F (s, x, z, Z"), we obtain
the same estimate. Hence
I%Fy(t, x,z,2)

< Cliy, iy)te™™,

00,0, iy ,i,

or

F,(t,x, 2, 2) < Cliy, iy).

0o, 1,i,,i; =

Proceed inductively, one proves that

= ! . . .
|F(t, x, z, ) < Ciy, iy, Iy).

00, iy iy, iy =
Combined with (3.6), this gives the estimate we want.

Second, for tx? small, note the standard heat kernel estimate, which follows
from the finite propagation speed technique [CGT],

B9, V)leo i, S Cly, B)(0x") 70750,
From these discussions we see by (3.5)
(3.7) G |<Cux’)™*'Px* fort>1. n

Denote

G #G, = —/Ot/Gx(s, v, z,¥, z')Gx(t—s, v,z y", z")dy’dz'ds.

In general denote

A version of Duhamel’s principle says

—

2 m— . .
(3.8) e =3 ()M GLaK + GTee™
i=0

2
Dx

Applying this to get the asymptotic expansion, we need estimates on the m-fold
convolutions G .
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Lemma 3.5. G improves with m,
(3.9) IGY| < C(m)(tx) "m0y 2,

Proof. Let us begin with G, #G_. We divide the integral over [0, {] into two,
one over [0, ¢/2], and the other [¢/2, ¢],

t/2 ! ! ! /! n n / !
G #G, = - ) Oy 2y, 206G (t=s.y, 2,y 2)dy dzZ ds

t
_/ /Gx(s, v,z,¥, z')Gx(t—s, v,z ", ZYdy' dz' ds
12

2 g ¢

By (3.5) and integration by parts, we can rewrite I as
(3.10)

12
’='/ /Kx<s,y,z,y',z’>G;<z—s,y',z’,y",z”)dy'dz’ds,
0
where by the same consideration as in showing (3.7)
G| < C(ex®) X%,

As an integral operator on the L? space, the norm of K is bounded by 1.
Therefore,

1< 12G (t =5, -, V", 2",
< C(txz)_"/2x2.
The estimate for II is similar. In this way one obtains
|G #G | < C(ex?) ™™,

In estimating the m-fold convolution, one divides the time interval into m
subintervals, on each of them one of the m-tuplet o= tis sty y—1t, 18
greater than or equal to ¢#/m. One lets the kernels corresponding to the other
time parameters play the role of K (after integration by parts), and proceeds
as for G #G, . O

Now by the standard heat asymptotic expansion and the above estimate, we

arrive at the uniform asymptotic expansion as claimed.

4. THE SIGNATURE OPERATOR AND HODGE-LERAY THEORY

In the previous sections we proved the adiabatic limit formula (0.1) with
the global contribution expressed in terms of the very small eigenvalues. Here,
confining ourselves to signature operators, we identify this global contribution
with a topological invariant constructed from the Leray spectral sequence of
the fibration. In fact we show that one can recover the Leray spectral sequence
from the eigenspaces associated to these eigenvalues.
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4.1. The signature operator on an odd-dimensional manifold. For an even-dimen-
sional oriented Riemannian manifold N”, one can define an involution 7 on
the complexified exterior bundle A*N ® C by setting

e = (VTDEP
Correspondingly A*N ® C decomposes into the +1-eigenspaces of 7:
A'N®C~A, ®A_.
The operator
d+6:A'N®C - A'N®C
anticommutes with 7 and hence
(d+9),: A, —A_.

This operator is called the signature operator on N for the reason that its index
gives the signature of N when N is compact.
When N is spin, one has the bundle isomorphism

(4.1 A'N®C ~ F(N)® F(N).

This is basically because the twisted adjoint representation is equivalent to the
tensor product of the spinor representation with itself, see [Gi, Chapter 3.2;
LM, Chapter 1].

It is important to note that the two Clifford module structures correspond to
multiplication on the left and on the right (by the transpose) in Cl(n) . It is not
hard to verify that under (4.1)

(4.2) e+ ¢~ (ext, —int,)p,
(4.3) @ - e~ (ext, +int,)ap,

for e € TN . Here ext, and int, denote the exterior and interior multiplication
respectively, and af,, = (-1)°.
With the bundle isomorphism (4.1) one has

d+6=D@F(N),

where the connections on both the left and the right F(N) are induced by the
Levi-Civita connection on N . Moreover the involution 7 also identifies with
the involution on the left F(N) that determines the splitting

F(N)=F_(N)® F_(N).
It follows that
(4.4) (d+9), =D, ®F(N).

For an oriented odd-dimensional manifold M", we define the signature op-
erator A4 to be the tangential part of the signature operator on M x R_. Here
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R, =[0,00) and M x R, is given the product metric dar* + &y - Thus A4 is
such that

(d+96), = (CXta, - intar)(ar + A4),

and A is a selfadjoint operator acting on A, (M x R ) restricted to M.
Now restricted to M, A (M x R,) can be identified with A*M @ C. A
straightforward calculation yields

A=1(d+d6)=dt+1d: "MC—>A"M3C,

where 7|, = (v=1)5 0 Dy 21,
On the other hand, by using (4.4), one finds

(45) A=D®FMxR): FIM)® F(M xR) —» F(M)® F(M x R).
Here the identification is

A'M=~A (MxR,)~F,(MxR)®F(M xR)
=F(M)® F(M x R).

One verifies that (4.2) and (4.3) still hold.

Suppose now that M is fibered by (1.1), where we assume the base B, and
the vertical bundle T" M are both oriented. (In this case we say the fibration
is oriented.) In view of (4.5) one would like to apply Theorem 0.1 to the
operator A, . There is a minor complication here since in (4.5) we are forced
to use on the twisted bundle F(M x R) the connection induced by the Levi-
Civita connection of the rescaled metric 8, > rendering it x-dependent. Now

v —vis¥, By a straightforward computation one finds
A, =Ay +x[4z® 1+ f ® Vf; + %(S(ei)ej , j;)ei(ejj; + e;f:)]
(4.6) +x" (SN S, [)(—e S Sy +e Sl f; + 2180 ).

Here the e;’s and f’s are left Clifford multiplications acting by (4.2) and the
e/’sand fs are right Clifford multiplications acting by (4.3). Also Ay is the
family of signature operators along the fibers, 4 g the signature operator on the
base, and the summation convention is understood.

Since in Getzler’s transformation, we only scale the “left” Clifford variables
but not the “right” Clifford variables, it is clear that the extra terms in (4.6) (i.e.
those involving the right Clifford variables ) do not contribute to the first term
in the adiabatic limit formula. That is, for the first term (the # term), it is
as if we are dealing with D ® F(M x R) where the connection on the twisting
bundle F(M x R) is induced by V (which does not depend on x).

For the second term (the twisted n term), however, these terms do make a
difference. Let

Ap@kerdy =P, [43 @1+ 1,0V, + 5(S(e)e;, f)ee,f, + e;f;)]PkerAy.
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Then

Corollary 4.1. The adiabatic limit of the n-invariant of the signature operator
always exists. Moreover,

lim 7(4 2/ < )/\n+n( B®kerAY)+)lc%l;~osgnlx.
0°71™

Proof. By the Hodge theorem, both ker 4 and ker 4, are of constant dimen-
sion. Therefore this is an immediate consequence of the above discussion and
the proof of Theorem 0.1. O

Before we go into the topological interpretation of the very small eigenvalues,
we give two ways of thinking about the operator 4, ® ker 4, . First note that

v, - $S(e)e;, 1)

defines a unitary connection with respect to the L*-metric on the infinite-
dimensional bundle over B of the differential forms along the fibers, cf. §1.1.
From here one sees that 4, ® ker 4, is the sum of the signature operator on the
base coupled to the projected unitary connection on ker 4, and %(S(el.)ej , f)
X PkerA eze;fc:PkerAY :

The operator A, ® ker 4, can also be expressed in terms of the natural flat
connection on kerd, (= #*(Y)). Let d be the exterior differential on the
(ker Ay )-valued differential forms defined in terms of the flat connection. We
define an involution 7 on A™(B)® ker 4, by

T= PkerAy(\/__) f fkel kerA

This is essentially the Hodge * operator on the base coupled to the * operators
along the fibers. Then

(4.7) Ap®kerd, =dt+1d.

To see this, define a new connection vY on T"M by setting
VU =P (VpU),  VyX=[U,X]

The projection of V" is the flat connection on ker4, . Let

d=fA(V]@1+18V])), t=("DFf fe e,

and

It can be shown that
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and by a straightforward calculation using (4.2) and (4.3) one finds
Ap®1+£,®V, +3(S(e)e;, fele f,+e f))=A.

Our claim follows.

4.2. Hodge-Leray theory of the very small eigenvalues. Here we start out to prove
Theorem 0.2. We use Serre’s construction of the Leray spectral sequence. To
relate our space E, to the E -term of the Leray spectral sequence, we introduce
another complex that incorporates the asymptotic properties in its filtration. Let
us first recall Serre’s filtration. '
Consider the de Rham complex (C*(A*M), d). An [-form w isin F' if

oU,,U,,...,U)=0,

whenever [/ — i+ 1 of the tangent vectors U j’s are vertical.

In our case, we are given a splitting TM = T'"MoT " M2n"TBo T ' M.
Thus A*M = n"A"B® A"T" M . Formally, we can use a(y, z)dy* Adz" (y
local coordinates of B, z local coordinates of Y) to indicate such a splitting.
With this convention, Serre’s filtration can be simply described as

F'={aWy, z)dy“ Adz’ :|a| > i}.
It is well known that Serre’s filtration gives rise to the Leray spectral sequence
of the fibration, (E;, d,).
To make sense of the spaces considered in the Hodge-Leray theorem (The-
orem 0.2) we proceed to construct good bases for such spaces. These bases
are also used in proving the Hodge-Leray theorem. Let us first introduce some

notations.
Let A, denote k-tuplets of real numbers

Ay ={2g> Ays oo s Ay}
and similarly we use A to denote infinite sequence of real numbers
A={4y, 4, ...}

Also, let /1; be a function of x that has complete asymptotic expansion at
x = 0. When we say A; € A, we mean that the first kK coefficients in the
asymptotic expansion of l; at x = 0 are prescribed by A,

/ k—1
Aomdg+ A X+ A X

Similarly A; € A means all the coefficients are prescribed by A. Now for the
eigenvalues 4 of A _, set A =1 _/x and define

(4.8) Gy, = P EG,), G,= P E@G,),

AEA, A €A
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where E(4,) is the eigenspace associated to A . Thus G, is the direct sum
of the eigenspaces corresponding to the elgenvalues whose ﬁrst coefficient in the
asymptotic expansion is 0 and whose next k coefficients are prescribed by A, ,
and G, is the direct sum of the eigenspaces corresponding to the eigenvalues
whose first coefficient is 0 and whose other coefficients are all prescribed by A.
Obviously

GyC Gy CGy -
Proposition 4.2. Let A, be an eigenvalue of A, such that A, ~ A\ x + izxz +

., and let A be the infinite sequence given by the coefficients of 4, . Then G,
is a family of finite-dimensional vector space that depends smoothly on x down
to x = 0. That is, there is an orthonormal basis for G, that is smooth in x
downto x=0.

Proof. The same analysis as in the proof of Theorem 1.5 reduces it to the
finite-dimensional case. Therefore it suffices to prove the following lemma

Lemma 4.3. If T(x) is a family of ﬁnite—dimensional selfadjoint operators that
depends smoothly on x, then G EB; ca E(4,) depends smoothly on x for
all k=1,2,...,0 (AOO=A)

Proof. Note the slight modification in the definition of G, . The idea is to show
by induction that the orthogonal projection Q,(x) on G A, depends smoothly

on x. Then by Lemma 2.9, we have a smooth family of unitary operators
V,(x) such that

-1
Ve(x) @ (x)Vi(x) = O, (0).
Therefore the desired basis can be gotten by taking the V) (x)-image of an or-
thonormal basis for Image @, (0).
By the discreteness of spec (7(0)), there exists an ¢ > 0 such that 4 is the

only point of spec(7(0)) in |4 —4,| < &. By the first resolvent formula and the
smoothness of 7'(x),

1
2mi

00) =57 [ (TG =2)7'da
A—y|=e
is well defined for small x and is smooth. One easily sees that Q(x) = Q,(x).
Now assume that Q, _,(x) is smooth. Then the family

def -1

S(x) =V (x) T(x)V,_(x)

is smooth on Image @, ,(0) and the eigenvalues of S(x) are the eigenval-
ues of T'(x) having the first k — 1 coefficients of their asymptotic expansions
prescribed by A, _, . Set

S(x) = (g + A x + -+ A x*7h)

xk
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This is a smooth family of selfadjoint operators, and as above, one finds

1 -1
i /M—ik|=e(R(X) —A) dA.

This shows that Q, (x) is also smooth and the induction is complete.

Because we are in a finite-dimensional space, the induction process must stop
in finitely many steps, proving it for k =c0. 0O

Now consider

07TV (x) =

Then G, is the direct sum of the eigenspaces associated to eigenvalues that

decay at least like x". From the previous discussion, one knows that G AD
is a smooth family of finite-dimensional vector spaces, thus it makes sense to
consider

E =lim GAo

r x—0
for r > 2. This defines the space considered in Theorem 0.2.
Before we introduce our next complex, recall that X = [0, co) x M . Define
the bundle 7 T*M to be spanned by 4} , dz . Its corresponding exterior bundle
is denoted by 7 A*. The space of Laurent series, .2 (X, 7A*) is defined as,

{(ueC®X,” A", xue C®X,” A*), forsomeq e Z}

COSONE e

b

where C®°(X, 7 A") is the space of C™ sections vanishing to all orders at the
boundary. .Z (X, 7 A") is a module over the ring of formal Laurent series

Z =2Z([0, ))

in the variable Xx.

Formally, an element in (X, %A*) can be represented as Y > ajx

where a; is sum of elements of the form b(y, z)( )* dz* with b a smooth
functlon The exterior differential d acts on it in the obvious way.

Now consider the complex (,CZ (X %A ), d). It comes equipped with a
natural filtration F' = {3 > AX 7}, thus g1v1ng rise to a spectral sequence
(E;,d) = (®,E, ®,d’). Note that x? : F' = F'* induces E/ = E!*".
Further the diagram

) a7 p+i
B L Er
1 x* Lxf
=p+q 47 mpig+i
Erre % preen
commutes: x?d? = d’*?x?. Hence E, = EO®£” (x) (with the natural grada-
tion induced by that of .#(x)) and df’ = ”d? ®1.
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Explicit calculation shows
E,2C*”(A"B® CT(A'Y)) ® Z(x),
(4.9) E 2CPABZ (Y)®Z(x),
E,~H(B,# (Y))®Z(x).

IR

(%

By the finite dimensionality of Ez (as an .Z(x)-module), this spectral se-
quence must degenerate after finitely many steps.

Remark. These quotient modules (. (x)-modules) can actually be viewed as
vector spaces.

Proof of Theorem 0.2. We prove E, = E_ by showing that both of them are
isomorphic to E? .

(a) E, %E? forall r >0.

Consider the natural inciusion:

CO(A'M) = Z2(x,” A",
aly, z)dy*dz* — x"a@y, 2)dy/x)* dz".

It is clearly filtration preserving. Thus it induces homomorphisms zf: Ef —
Define

q
ro

0
ie. 1, =3" _ox" %] (p=dimB). We show that 7, is a homomorphism that
preserves the differentials.
In fact we know that
E,
p p+r
b, L1
E’ o EPY
commutes. Hence /*'d? = d”i . Also x?d” = d"*x". Therefore

—-p—rp+rgp _ _—p-ripp _ j0_-pp
x U d =x " di, =dx "

This shows
J— d_ J—
Er - Er
i1, i,
0 d =0
Er —_— Er
commutes, i.e. 1,d = a71,.
Further, the explicit calculation (4.9) shows that :, induces isomorphisms
for r<2. Tberefore it induces isomorphisms for all r.
(b) E, = E° for r>2.
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The scaled metric g, induces a bilinear form

X, 7 A x2x,7 A 2ix)

and (d-,-) = (-, 0-). This is the same as saying that J is the adjoint of d
with respect to g_ for every x. (Here of course we are suppressing the x-
dependence of J.) It follows that

2 2 2
(4.10) (d+6)z|” = lldz||” + [|6z]|".
Our operator A4, is, up to sign, x(d +J). Therefore if 4.9 =4 ¢ , then
2 2 2 2
(4.11) ldo "+ 160, II" = 1A, o, lI".

For simplicity we use the shorthand notation z~x" for ze F(Z(X,” A").
Clearly z ~ x" is the same as ||z|| ~ x". By (4.10) one has
(4.12) d+0)z~x =dz~x", dz~x.

Basic to our proof is the observation that (E , x~"d) does form a spectral
sequence, though it is not clear if it comes from a filtered complex. To see this,
let us first show that x~"d maps E, into E,. In fact, by the definition of E,
and (4.11), (4.12), it suffices to show that d leaves each eigenspace invariant.
This can be seen in the following way. Clearly d maps the O-eigenspace to 0 (by,

say, (4.10)). Now let A # O be an eigenvalue of 4, and ¢, a corresponding
eigenform, 4 ¢ =4 _¢ . But

A, =xxdxdx.
Thus
9, = *d(xo [A)+dx (Lo /1))
déf*dc//x +dx a,//;.

Since *dy, (d * y/;) is coexact (exact) and 4, takes coexact (exact) forms to
coexact (exact) forms, one must have

(4.13) A (xdy,) =4 (xdy,),
Adxy))=2,(d*y.).

That is, the eigenspace corresponding to a nonzero eigenvalue splits into the
direct sum of coexact and the exact eigenspaces. Obviously d takes exact
forms to zero. And (4.13) is the same as

«d(xdy,) = 4, (xdy,).
Taking d of this equation one finds
dxd(xdy,) =Ad(xdy,) or dx(dxdy,)=2.(d+dy,).

This proves the invariance of the A -eigenspace under d .
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To see E,,, = H(E,, x~"d), note that by the finite-dimensional analog of

the Hodge theory
H(E,, x~'d) = ker(x""d) Nnker(x"'9).

Together with (4.11), this implies 4, = O(x’“) and the converse is easier.
Let h, = dimE,, h = dimE_ = dim H*(M). By Proposition 4.2, we can

choose

(4.14) Plseee s Opsenn s @

2

such that ¢, ..., ¢, form a smooth basis for E,, forall r > 2. From (4.12)
it is clear that (4.14) induces a linear map

=0
Er—»Er.

It is a homomorphism between the two differential complex because the two dif-
ferentials are formally idencical. We show that it is an isomorphism by showing
that it is an isomorphism for r = 2.

1-1:If z€ E,, then dz~x", §z~x". Assume r > 1. Now if z=0 in
Ef’, then z = z, +dz, with z, ~x and dz, ~x", z, ~ x dz, ~ x°.
But then ddz, = 6(z — z,) ~ x. Therefore dz, ~ x and thus z ~ x. ie.
z=0in E,.

onto : Let z € Eg. Then z ~ x°, dz ~ x*. Consider z' = z —
Zf’il((pi, z)p,. Clearly z'_l_E2 and dz’ ~ x*. By the formal Hodge de-
composition ([MM, Proposition (56)], or rather a straightforward adaptation
to the operator d + J; cf. also its proof), z' = (d + d)z, with z, ~ x7 .
Now dz' = doz, ~ x?, which implies that 6z, ~ x2, iLe. 0z, € le . Also
dz, € D(l) . Hence z' =0 in E? . This shows that the map is onto for r=2.

Finally to show that the Hodge * operator with respect to g_ induces the
duality map on every E,-term under the identification we just established, it suf-
fices to prove it for the E,-term because of the functoriality. Now if we realize
Ez as H *(B , Z"(Y)), i.e. the harmonic forms on the base with coefficients in
the bundle of fiber-harmonic forms, the multiplication on Fz is just the wedge
on the forms. Now by Lemma (49) in [MM] and the above discussion, we can
actually deduce that

H*(B,Z"(Y)) = E,(¥ lim Gpo)-

X—

Our claim follows. O

4.3. Adiabatic limit of #n-invariant and nonmultiplicativity of signature. In (0.1)
the adiabatic limit formula, the global contribution is found to be
ZAO, 3,20 limsgnA, . In the light of the Hodge-Leray theory proved above, it
should be possible to characterize this term topologically. This is indeed the
case here.
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To have a topological counterpart of this term, let us consider the Leray
spectral sequence (E,, d,). One has

E,=H'(B,Z"(Y)), E_=H (M).

Assume that our fibration is oriented. The orientation of 7% M gives a triv-
ialization of the flat line bundle #"?(Y) on B (note that n — p = dimY).
Together with the orientation of B, one finds

E;=H'(B,#"°(Y)) =~ H’(B) =R
Thus the multiplicative structure on E, gives rise to a Poincaré pairing

ES@E ™ R

If we denote by &, the natural base for E;’ induced by the orientations, it
induces a natural base ¢, for each Er" (r > 2). Now consider the bilinear
pairing:
1 E,QE —R
tpey)=(p-dy,&) E (p,dy).
It is easy to verify that

) — (_ 1)(deg¢+1)(deg y/+1)(

(p,dy v,dp).

In our situation n = 4m — 1. This implies that 7, restricted to E2m U is

symmetric. By viewing 7, as a symmetric matrix one can take its s1gnature,
signt,. Now define
= signt,.

r>2
This is clearly a topological invariant.

Theorem 4.4 (Adiabatic limit formula). We have the equality

Z 11m sgni .

x—0

A ,4,=0

Consequently the following adiabatic limit formula holds,

hmr] —2/ ( )/\17+r]( p®kerd,) + 2t

Proof. 1t suffices to prove the first equality (see Corollary 4.1). To do this, we
claim that

1.. /
> 5 limsgna, = > limsgn,,
Ay 2y =0 Ao A=0

where > indicates that the summation is over all ., which are the eigenvalues
of x.d on A~ Granted this, Theorem 4.4 can then be proved as follows.
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Since E, = H"(B, #"(Y)), it inherits an inner product (-, -), which then
induces an inner product on each E,. Define

(9,dv)=(p,xd0p).

Then as symmetric mappings, the eigenvalues of 7, are the same as those of
*.d, . By Theorem 0.2,

d ~x"'d and x ~ x.

We see immediately that the first statement of Theorem 4.4 holds. The adiabatic
limit formula follows then from (0.1).

It remains to justify the claim. For simplicity we suppress the x dependence
and consider A4 = xd £ dx: A"(M) — A*(M). Since *: A% — A% g
an isomorphism, A is just two copies of its restriction to A% . By the Hodge
decomposition

Aodd _ %odd @ d Aeven @ 5 Aeven.

Observe that the operator A annihilates #°% and coincides up to sign with
dx on dA®" and with *d on SA®".

Now dx: dA” — dA* 272 «d: 6A® — SA*™ % and 2p # 4m —
2p -2, 2p=4m—2p iff p = m. Hence we can decompose

A=4,04,04,,

where 4, is the zero operator on #°* and A, =xd on SA™™ and A, is an
operator of the form
0o T
(7 9)

therefore having symmetric spectrum. O

We now turn to applications of (0.1) and give intrinsic characterizations of
the nonmultiplicativity of signature for manifolds with boundary.

Chern-Hirzebruch-Serre first studied the multiplicative behavior of signature
for closed manifolds [CHS]. They showed that for a fibration Z — N" — B,
we have the multiplicativity

(4.15) sign N = sign B - sign Z ,

provided Z, B are closed manifolds, and 7, (B) acts triviallyon H"(Z). Later
Atiyah [A] gave an example showing that this naive sense of multiplicativity
does not hold in general. However, he observed that, by the Hirzebruch signa-
ture theorem and Atiyah-Singer Family Index Theorem [AS2], one does have a
generalized multiplicativity for closed manifolds,

(4.16) sign N = sign(B, SignZ) = / Z(B) Ach(SignZ),
B
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where .Z(B) is a characteristic class that may substitute for the Hirzebruch L-
genus, Sign Z is the signature bundle of Z over B, and ch(Sign Z ) is its Chern
character. When =, (B) acts trivially on H"(Z), this reduces to (4.15).

This generalized multiplicativity has a Leray spectral sequence interpretation.
Consider the pairing

E/@E'" —R, gay—(p-y,¢&),

where E_ is the Leray spectral sequence of the fibration and £, is defined in the
same way as before. When n = 4k, the above pairing restricts to a symmetric
pairing on Erzk , whose signature is denoted by o,. Then (4.16) is equivalent
to
o,=0_.

This follows from [CHS] and the signature theorem for twisted coefficients [L,
AS2].

However, for manifolds with boundary, the generalized multiplicativity fails,
as can be seen in the following example.

Example (Disk bundles). Let V2 — B? be an oriented 2-plane bundle over
an oriented surface. Denote by @ the Thom class and x (V) the Euler number
of V. Consider its disk bundle D* — D(V) — B? with its sphere bundle
S(V). By the Thom isomorphism

H7(B) 22 H (D(V), S(V)),

one easily finds

sign(D(V')) = sgn x (V).
But sign(B) = sign(Dz) = 0. In particular, if V is the Hopf bundle,
sign(D(V))=1#0.

Thus it is quite interesting to study the difference
A sign(B, Sign Z) — sign N = / Z(B) Ach(Sign Z) — sign N.
B

A is called the nonmultiplicativity of signature. We separate our discussion
into two cases, depending on how the boundary of the total manifold arises.

Case (a). In the fibration, we assume B is closed, even-dimensional, and Z
has nonempty boundary Y. Consequently N has a nonempty boundary M
that is fibered over B with typical fiber Y :

Y — M — B.

By the extended Novikov additivity [BC5] and the generalized multiplicativity
for closed manifolds, A depends only on the associated boundary fibration.

Theorem 0.4 (a). The topological invariant t, which is defined from the closed
fibration Y — M — B, intrinsically characterizes the nonmultiplicativity of
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signature. That is, whenever there exists another fibration of manifolds with
boundary Z — N" — B such that 0Z =Y, ON =M, we have t=A.

Proof. We start with Atiyah-Patodi-Singer’s signature formula [APS] for a man-

ifold with boundary,
sign N = / (27:1) 2r](A ).

Take the adiabatic limit of both sides. The left-hand side remains since signa-
ture is a topological invariant. The first term on the right-hand side yields, by

Lemma 1.1,
R® R? R? R?
J# () v () = [ () ~ (2 (5):
while the second term can be replaced by the adiabatic limit formula (0.1).
Therefore we obtain

sign(N) = ( ) ( (27::))

RPN _ 1
/.? 37 A — 5”('4 ®kerdy) -1

R? R*\ .
- [, () ([ () -7) =
where the n-term drops out because dim B is even. In fact, the involution
1= (vV=1)/? fy--+ f, anticommutes with 4, ® ker 4, which can be seen by
using (4.7).

On the other hand, Bismut-Cheeger’s Families Index Theorem [BC3, BC4]
states that [,.2( %z;) — 7 is a representative for the chern character of the
signature bundle Sign Z . Combining these two finishes the proof. O

Case (b). Now assume that Z is closed but B has a nonempty boundary
OB . Again A is intrinsic to the boundary. We show that the same conclusion
as in Theorem 0.4(a) holds here.

Theorem 0.4(b). Again, t intrinsically characterizes the nonmultiplicativity of
signature in this case.

Proof. By the same reasoning as in the proof of Theorem 0.4(a), one arrives at:

w2 (5 ([ #(5)

ROE |
- /aag(2m> AT - 2’7(A33 ®SignZ) - .
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On the other hand, by the Atiyah-Patodi-Singer index theorem,

R® : 1 .
g(?ﬂ) Ach(SignZ) — EW(AaB ® Sign Z).

sign(B, Sign Z) = /
B

Our claim clearly follows if we show
RB
/B,Sﬂ(m) A ch(Sign Z)

e (L= () - = (Ga) v

This is a consequence of the transgression formula (0.2). In fact, since .& (257%)
is a closed form,

) (s () ()
=_/BB.?(%7) N

We finish our discussion with an example. Consider the fibration ¥ - M —
B . Suppose it admits a flat connection, i.e. there is a splitting

TM=T"MoT'M

such that the horizontal distribution 77M is involutive: (r%Mm, TP M]
THM . We want to show that, in this case, the intrinsic nonmultiplicativity
7=0.

‘We first do some general calculations using Serre’s filtration. Recall that
F' = {w|lw € A'(M), and w(Y,,...,Y,) =0 whenever r —i+ 1 of the r
tangential vectors are vertical }. In what follows, we use X’s to denote the
tangent vectors on B as well as their horizontal lifts and 7’s to denote vertical
vectors. Now

Ey=F'[F™ - C®(A'(B) @ C*(A*(Y)))
(0] - @,

where @(X, ..., X))V, ..., V)y=oX,..., X, V,..., Vj). It is clear
that @ is independent of the choice of representative. Conversely, given @ €
C*(A'(B)® C*(A"Y)), we define

X, X))V, V), if k=1,
XV, V) {0,1 i J

X .
o otherwise.

1o

Thus, E, can be identified with C*°(A(B) ® C*(A'Y)).
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To compute d,,, we look at the diagram:

[w] E; - E, [dw]
! ol ol l
@ C®A(B)®CT(A'Y)) — CT(A(B)@ C®(A'Y)) d,b.

The well-known formula for the exterior derivative gives

+ 2D Voo Vs> Vi)

+Z(_1)k+lw([xk,xl],...,,?k,...,,\71,...,1/}“)
+Z( Dty ([Xk,VI],...,,?k,...,fil,...,VjH)
+Z Doy, V1, - T T V)

By the way we define w, the first and the third terms drop out. Also
[X,,V]eT Y M . 1t follows that the fourth term vanishes as well. Thus,

dw(X13 ’,I/}+1)
=Y DM W@X, LX)V T V)
k
+y aX,, \[Ve» V] 7 N )
k,l
= (=1)'dy(@X,, ..., X)Wy oo s Vig))s

where d, denotes the extenor differentiation along the fiber. This implies
d, = (—1) a' , and hence E| can be identified with C*(A'(B) @ #*(Y)), if
we denote by Z/ (Y) the bundle of the fiber harmonic forms.
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We now proceed to compute d, . If @ € C®(A(B)® #*(Y)), then dw €
F'*!' and

do(X,,..., X

i+1°

Viveoi s V)

=Y )X (X, .. K, V)
k

k+1 B S
+Y DT oX, X, Ky XL V)

k,l
+Z(_1)i+l+k+1w([Xk’ Vi, ... ’/?k’ ces 17;, e I/;)
k,l

=S D X (@, KL V)
k
=S oy, . X L XL V)
!

k+1 S
+3 DT X, X, K XL V).
k,l

Let v be the connection on T M so that (see §4.1 where this connection is
denoted by VY)

v Vi =X, Vil

This connection gives rise to a connection on the infinite-dimensional bundle
C*(A"Y) over B, which in turn projects to a connection on #"(Y) ; see [BC2]
for details. Hence

-~ ~

X (@Xy, oo s X s V) =D 0K, Xy oo 1K XL L )
[

=(vXkE[)(X1,... ,//Y\'k,... ,X

i+1

T A}

From here we conclude that d, = n,d"n, = d"*V" . Here n, denotes the
projection of C®(A'(B)® C®(A*Y)) onto C™(A'B, #*(Y)) induced by the
Hodge theorem. Therefore E; can be identified with H i(B, Z(Y)).

Similarly we want to compute d,. Let @ € H'(B, #*(Y)). In general, we
do not have dw € F'** since d,@ = 0 implies only nygz% =0. Thus w is
not a valid representative for w in E, .
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Now this is exactly where our assumption really simplifies the calculation.
Under our assumption, d, = d" . Further,
do(X;, ... s X;,, Vi, Vi)

Z X X))o oo s Xy oo, X, Vi)

z+k+l~ S S
9 s e ,Xk, s ,XI, see ’Xl+2)

wa

X QX X)), Vys oo Vi),

where Q is the curvature operator.
Given @ as above, the formula

By(Xys oo s X)) Vs oo s Vi)
=B, .., K K X)) QX X)LV L V)

defines @,, € C”(A'(B) ® C*(A"Y)). Let m, be the projection of
C*(A'(B) ® C*°(A'Y)) onto H'(B, #*(Y)) induced by the Hodge theorem.
It is clear that .
doo =3 (-1)" @,
k.l

When Q = 0, we have @,; = 0 and so d, = 0. Moreover, it also follows
that d, = 0 for all r > 2. (This is not true if we just assume ny@,, = 0.) This
shows that the spectral sequence degenerates at E, .

An interesting special case is when one considers a locally symmetric space
X of Q-rank one. The cross section M of a cusp has the fibration structure of
a flat torus bundle over a compact locally symmetric space B (cf. [Mii2]). In
[Mii2] Miiller studied the L’-index theory on X . Among other things, Miiller
derived the following formula for the L2-signature of X:

(4.17) L2 sign(X) = / P —L0)-1/21,
X

where L(0) is the value of some L-function at 0 and 7 is the twisted eta
invariant on B, see [Mii2] for details.

On the other hand, if we apply the Atiyah-Patodi-Singer formula to the man-
ifold Y, which is obtained from X by chopping off the cusps, and take the
adiabatic limit, we have

(4.18) sign(Y,&Y):/.?—/E/\'ri—1/27]—1:.
X B

In [BC6] / AN n is shown to be exactly L(0). And by our above discussion,
t=0. Henlée we deduce

L%-sign(X) = sign(Y, 8Y).
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