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ON THE HOMOTOPY OF FINITE CW-COMPLEXES
WITH POLYCYCLIC FUNDAMENTAL GROUP

MIHAI DAMIAN

Abstract. Let X be a finite connected CW-complex of dimension q. If its
fundamental group π1(X) is polycyclic of Hirsch number h > q, we show that
at least one homotopy group πi(X) is not finitely generated. If h = q or
h = q − 1 the same conclusion holds unless X is an Eilenberg-MacLane space
K(π1(X), 1).

1. Introduction

Let X be a finite connected CW-complex of dimension q. Consider the homotopy
groups πi(X) = [Si, X], for i ≥ 2. If all these (Abelian) groups are finitely gener-
ated we say that the homotopy of X is finitely generated. For simply connected
complexes, a celebrated theorem of Serre [31] asserts that

Theorem 1.1. If π1(X) = 1 the homotopy of X is finitely generated.

On the other hand simple examples such as X = S1∨S2 show that the homotopy
of X is not always finitely generated.

One can then ask if there is a general negative statement asserting that the
homotopy of X is not finitely generated under some hypothesis on computable
invariants of X, such as its fundamental group. This is the aim of the present
paper. The statements we will prove have the following form:

If the fundamental group of X satisfies the conditions (C) (which
depend on the dimension q), then the homotopy of X is not finitely
generated unless X is an Eilenberg-Mac Lane space K(π1(X)).

If X is an Eilenberg-Mac Lane space, the cohomological dimension of π1(X)
is less than or equal to q = dim(X). So, we may add cd(π1(X)) > q to the
hypothesis (C) in order to have the desired conclusion on the homotopy of X. For
instance when π1(X) has non-trivial torsion elements the cohomological dimension
cd(π1(X)) is infinite and the above conclusion is valid.

1.1. Statement of the results. Before stating the main theorem we remind the
reader of the following:

Definition. A group G is called the polycyclic if it admits a series

1 = G0 < G1 < · · · < Gk = G
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with cyclic factors Gi+1/Gi. When all the factor groups are infinite cyclic we call
G a poly-Z group.

K. A. Hirsch proved in [15] that the number of infinite cyclic factors in such a
series is an invariant of G. It is called the Hirsch number of G and it is denoted by
h(G).

Here are our main statements:

Theorem 1.2. Suppose that X is a finite connected CW-complex of dimension q
and that π1(X) is polycyclic. Then

a) If h(π1(X)) > q, the homotopy of X is not finitely generated.
b) If h(π1(X)) ∈ {q−1, q}, then the homotopy of X is not finitely generated un-

less X is a K(π1(X), 1). In particular, when π1(X) has torsion, then the conclusion
of a) holds.

Note that, by a result of J-P. Serre (see Theorem 4.2 below), when the homotopy
of X is not finitely generated at least one of the groups π2(X), π3(X), . . . , πq(X) is
not finitely generated. When X is a manifold we can improve this result:

Theorem 1.3. Let Mn be a closed manifold. Let r = max
{[

n
2

]
, 3

}
. Suppose that

π1(M) is polycyclic. Then, if h(π1(M)) ≥ n − 1, the group πi(M) is not finitely
generated for some i ≤ r unless h(π1(M)) = n and M is a K(π1, 1).

Moreover, if n ≥ 6 we can replace the assertion “M is a K(π1, 1)” by the stronger
one “the universal cover of M is diffeomorphic to Rn”.

When n = 3, 4, we are able to prove the above statement for r = 2, namely:

Theorem 1.4. Let Mn be a closed connected manifold of dimension n = 3 or
n = 4 which has a polycyclic fundamental group. If h(π1(M)) ≥ n− 1, then π2(M)
is not finitely generated unless h(π1(M)) = n and M is a K(π1, 1).

Remark. Conversely, for any torsion free polycyclic group G with h(G) = n, there
is a closed manifold M with universal cover diffeomorphic to Rn and such that
π1(M) = G. This result was proved by L. Auslander and F. E. A. Johnson in [1].
Their result generalizes a previous one by C. T. C. Wall [37] (chapter 15B), which
is valid for poly-Z groups.

In the next theorem we weaken the hypothesis on the fundamental group but we
suppose in addition that χ(X) �= 0. Recall first the finiteness properties of a group,
which were introduced by C. T. C. Wall in [36]:

Definition. Let r ≥ 1 be an integer. A group G is of type Fr if there is an
Eilenberg-Mac Lane space K(G, 1) whose r-skeleton has a finite number of cells.
Equivalently a group is of type Fr if it acts freely, properly, cellularly and cocom-
pactly on an (r − 1)-connected cell complex.

A group is of type F∞ if it is of type Fr for any integer r > 0.

Remark. A group G is of type F1 if and only if it is finitely generated. G is of type
F2 if and only if it is finitely presented.

Theorem 1.5. Let Xq be a finite connected CW-complex of dimension q with
fundamental group of type Fq+1. Suppose that there is a non-vanishing morphism
u : π1(X) → Z such that Ker(u) is of type Fq+1. Then, if χ(X) �= 0, the homotopy
of X is not finitely generated.
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If X is a manifold with non-zero Euler characteristic, the same holds for π1(X)
and Ker(u) of type F[ q

2 ].

The hypothesis on u may be reformulated in terms of the Bieri-Renz invariants
of π1(X) as follows:

(∗) Σq+1(π1) ∩ −Σq+1(π1) �= ∅.

The Bieri-Renz invariants Σi(G) of a group G are open subsets of the unit sphere
of Rrk(G). We recall the definition and the properties of these invariants in Section
4.

In the next subsection we show that polycyclic fundamental groups satisfy the
hypothesis of Theorem 1.5 and we give other examples of groups for which the
condition (∗) is fulfilled.

1.2. Comments on the results. An Abelian group is obviously polycyclic of
Hirsch number equal to its rank. It is also of type F∞. For Abelian fundamental
groups the results of the previous subsection were proved by the author in [10].
Here are other remarks about these statements.

Remarks. 1. The lower bound q − 1 for h(π1) in the hypothesis of Theorem 1.2 is
optimal. Indeed, the complex X = Tq−2×S2 fulfills the conditions of the hypothesis
of Theorem 1.2 except for h(π1(X)) = q − 2. It is a consequence of Theorem 1.1 of
J-P. Serre, quoted above, that X does not satisfy the conclusion of Theorem 1.2.

2. If G is a polycyclic group, then [G, G] is obviously polycyclic and therefore
for every morphism u : G → Z, Ker(u) has the same property. This implies that
the hypothesis on the fundamental group of Theorem 1.5 is fulfilled when π1(X) is
polycyclic. Indeed we have:

Proposition 1.6. Polycyclic groups are of type F∞.

Proof. The proposition is an immediate corollary of the following:

Lemma 1.7. Consider an exact sequence of groups

1 → K → G → Q → 1.

If K and H are of type F∞, then so is G.

To prove the above lemma one may use the following results:
a) If G is finitely presented, then G is F∞ iff H∗(G, ·) commutes with direct

products. This was proved by R. Bieri and B. Eckmann in [3].
b) The Hochschild-Serre spectral sequence [17] which satisfies

E2
pq = Hp(Q, Hq(K, R))

and converges towards H∗(G, R). (The complete statement (Theorem 4.6) is given
in Section 4.)

Now K and Q are finitely presented (F2) and it is obvious that G is also finitely
presented. Then, it is clear how a) and b) imply Lemma 1.7 thus proving Proposi-
tion 1.6. �

3. Other examples of groups satisfying the hypothesis of Theorem 1.5 were con-
structed by M. Bestvina and N. Brady in [2] and then in a more general statement
by J. Meier, H. Meinert and L. Van Wyk in [21]. Let us describe them briefly.
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Definition. A flag complex L is a finite simplicial complex with the property that
any collection of q + 1 mutually adjacent vertices span a q-simplex in L. The
right angled Artin group associated to L is the group GL spanned by the vertices
v1, . . . , vs of L with relations [vi, vj ] = 1 whenever vi and vj are adjacent in L.

Note that the group GL admits a finite Eilenberg-Mac Lane space [2] and there-
fore it is of type F∞. We have

Theorem 1.8 (Bestvina, Brady, Meier, Meinert, Van Wyk). Let L and GL be as
above and consider a morphism u : GL → Z such that u(vi) �= 0 for each generator
vi. Then, if L is (r − 1) connected, Ker(u) is of type Fr.

Considering appropriate flag complexes L (remark that the barycentric subdivi-
sion of any complex is a flag complex) we may find many examples of groups which
fulfill the hypothesis of Theorem 1.5.

1.3. Idea of the proof. The general idea of the proof of Theorem 1.3 is the
following: we show first that a manifold M as in Theorem 1.3 whose dimension is
greater than or equal to 6 and whose homotopy groups πi(M) are finitely generated
for i ≤ r admits a fibration over the circle. This is the main difficulty of the proof.
To overcome it, we will use Novikov homology theory and some of its applications
on Morse functions f : M → S1.

Remark that if the manifold Fn−1 is a fiber, the inclusion j : F ↪→ M induces
isomorphisms in πi for i ≥ 2. The lift of j induces a homotopy equivalence between
the universal covers of F and M .

Now take a manifold M , as in Theorem 1.3, and consider the product M × S3

in order to fulfill the condition on the dimension. Supposing that the homotopy
groups πi(M) are finitely generated for i ≤ r, apply the previous argument to
this product and get a fiber F as above. Then check that F still satisfies the
hypothesis of Theorem 1.3. If its dimension is still greater than or equal to 6 we
apply the same argument to F . By succesive iterations we find a manifold F0 of low
dimension whose universal cover has the same homotopy type as the one of M ×S3.
In particular the homology groups of F̃0 and M̃ ×S3 are isomorphic. By comparing
them, we infer that the universal cover of M is acyclic, which means that M is
Eilenberg-Mac Lane. So, either the homotopy of M is not finitely generated, or M
is Eilenberg-Mac Lane, as in the statement of Theorem 1.3.

To prove Theorem 1.2 we embed X into a Euclidian space and thicken it to a
manifold W, with boundary M . Then we apply the above argument to M .

In the hypothesis of Theorem 1.5, supposing that the homotopy of X is finitely
generated, we are only able to prove that the Novikov homology H∗(M, u) of the
corresponding manifold M vanishes. But this implies that χ(M) = χ(X) = 0,
yielding a contradiction.

The paper is organized as follows. In Section 2 we state the result from Theorem
2.1 on the fibration over the circle which was roughly sketched above. Supposing
Theorem 2.1 is true, we show how it can be succesively applied in order to prove
Theorems 1.3, 1.4 and 1.2. In Section 3 we recall the definition and some useful
properties of the Novikov homology. We also recall some basic facts about Morse
theory of circle-valued functions and point out the relation between the (vanishing
of the) Novikov homology and the existence of a fibration over the circle. In Section
4 we prove Theorems 2.1 and 1.5. We will use the Bieri-Renz criterion which we
recall in Subsection 4.3, devoted to the Bieri-Renz invariants.
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2. Iterated fibrations

Our main result (Theorem 1.2) is a consequence of the following:

Theorem 2.1. Let Mn be a closed manifold of dimension n ≥ 2 with vanishing
Whitehead group Wh(π1(M)). Suppose that π1(M) is of type F[ n

2 ]. Suppose also

that πi(M) are finitely generated for i ≤
[

n
2

]
.

a) Suppose that n ≥ 6 and that there is a non-zero cohomology class u ∈
H1(M ;Z) ≈ Hom(π1(M),Z) such that Ker(u) is of type F[ n

2 ]. Then there is

a fibration f : M → S1 such that [f∗dθ] = u.
b) More generally, suppose that Ker(u) is of type Fr, where r = max

{[
n
2

]
, 2

}
.

Then, for p ≥ max{6 − n, 2} there is a fibration f : M × Sp → S1, such that
[f∗dθ] = u ∈ H1(M ×Sp) ≈ H1(M). For p odd the hypothesis on Wh(π1(M)) can
be dropped.

Remarks. 1. The Whitehead group is defined as follows:

Wh(π) =
GLZ[π]

[GLZ[π], GLZ[π]] , {±g|g ∈ π} ,

where GLZ[π] = lim→ GLmZ[π].
2. T. Farrell and W. Hsiang proved in [12] that Wh(π) vanishes when π is poly-

Z. The Whitehead group also vanishes when π = GL is one of the examples of
Bestvina and Brady. This result was proved by B. Hu [18].

It is conjectured that Wh(π) = 0 for any torsion-free group π.
3. For π1 = Z, Theorem 2.1 was proved by W. Browder and J. Levine in [7].

The proof of Theorem 2.1 will be given in Section 4. Let us now show how this
theorem implies our main results, Theorems 1.3, 1.4 and 1.2.

Proof of Theorem 2.1 =⇒ Theorem 1.3. Without restricting the generality of our
statements, we may suppose that n ≥ 3. We begin with the statement of the
following result, due to K. A. Hirsch ([16], Theorem 2). �

Theorem 2.2. Let G be a polycyclic group. There exists a normal subgroup N of
finite index in G which is poly-Z and such that h(N) = h(G).

Now let π0
1 ≤ π1 be a subgroup as in Theorem 2.2 and consider the associated

finite cover M0 → M . Let

1 = G0 < G1 < · · · < Gk = π0
1

be a series with infinite cyclic factor groups: we have therefore h(π1) = k, so by
hypothesis k ≥ n − 1. Denote by u1 the projection Gk → Gk/Gk−1 ≈ Z.

Suppose that πi(M) is finitely generated for i ≤ r = max
{[

n
2

]
, 3

}
.

Consider first the case n ≥ 6. Using Proposition 1.6 we find that u1 fulfills the
hypothesis of Theorem 2.1. We apply Theorem 2.1 and we get a fibration M0 → S1.
Let F1 be a fibre of this fibration. So F1 satisfies:

1. π1(F1) = Ker(u1) = Gk−1.
2. πi(F1) ≈ πi(M) ∀ i ≥ 2.
We wish to apply Theorem 2.1 to F1. We use the cohomology class u2 : Gk−1 →

Gk−1/Gk−2. Its kernel is Gk−2, so, again using Proposition 1.6, Ker(u2) is of type
F[ n

2 ] (actually F∞, since it is polycyclic). The hypothesis on the higher homotopy



1796 MIHAI DAMIAN

groups of Theorem 2.1 is fulfilled by F1 (because of condition 2 above), therefore
we may apply Theorem 2.1 to F1 if its dimension is no less than 6.

We thus get a closed connected manifold F2 ⊂ F1 whose higher homotopy groups
are those of M and whose fundamental group is Gk−2. If its dimension is greater
than or equal to 6 we may again apply Theorem 2.1 to the couple (F2, u3 : Gk−2 →
Gk−2/Gk−3).

By iterating this argument we get a sequence

(1) Fn−5 ↪→ Fn−6 ↪→ · · · ↪→ F1 ↪→ M0

such that for j = 1, . . . , n − 1:
1. π1(Fj) = Gk−j .
2. dim(Fj) = n − j.
3. The inclusion Fj ↪→ M induces isomorphisms in πi for i ≥ 2.
The manifold Fn−5 is of dimension 5, so it does not verify the dimension hy-

pothesis of Theorem 2.1. Its fundamental group is Gk−n+5. In order to continue to
apply Theorem 2.1, we consider the product F = Fn−5 × S3. As above, we have
the cohomology class uk−n+4 : Gk−n+5 → Gk−n+5/Gk−n+4 which is non-zero and
has a (poly-Z) kernel of type F[n

2 ]. By 2.1.b), we get a fibration of F over S1. Its
fiber K0 is a closed connected manifold of dimension 7 with finitely generated πi for
i = 1, . . . , r = max

{[
n
2

]
, 3

}
(since S3 has the same property by Theorem 1.1). Its

fundamental group is Gk−n+4. Since [7/2] = 3, we may apply Theorem 2.1 to K0

and then again to its submanifold K1 given by Theorem 2.1 to obtain a sequence
as above, where the maps are inclusions of fibers of fibrations over the circle which
therefore induce isomorphisms at the level of πi for i ≥ 2:

K2 ↪→ K1 ↪→ K0 ↪→ F.

It follows that the universal covers of K2 and F are homotopically equivalent, in
particular

(2) H∗(K̃2) ≈ H∗(F̃n−5 × S3).

Now K2 is a closed connected 5-dimensional manifold whose fundamental group
is G = Gk−n+2. Since k ≥ n−1, G is an infinite group. It follows that H5(K̃2) = 0
(see [6], p.346). We have therefore that Hi(K̃2) vanishes for i > 4.

Using the Kunneth formula we infer from (2) that Hi(F̃n−5) vanishes for i > 0.
Therefore F̃n−5 is contractible and, using the sequence (1), M̃0 = M̃ is contractible,
too. So M is an Eilenberg-Mac Lane space K(π1(M), 1). The cohomological di-
mension of π1(M) is therefore equal to n. Now we use the following well known
result (for a proof, see [13], Lemma 8, p. 154):

Proposition 2.3. If G is a polycyclic group, then cd(G) is finite if and only if G
is torsion free. In this case cd(G) = h(G).

Applying Proposition 2.3 we get that M cannot be a K(π1, 1) unless h(π1(M)) =
n. If this relation is not valid, we get a contradiction and therefore the homotopy
of M cannot be finitely generated, completing the proof of Theorem 1.3 for n ≥ 6.
If it is and if M is a K(π1, 1), let us show that its universal cover is Rn. Since
according to Theorem 2.1 M fibers over S1, we have

M̃ ≈ F̃ × R.
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To finish the proof we just have to apply a celebrated theorem of J. Stallings [30]
which asserts:

Theorem 2.4. If a manifold Pn≥5 is a product of two open non-trivial contractible
manifolds, then P is diffeomorphic to Rn.

Proof of Theorem 2.1 =⇒Theorem 1.4 (cases n=3 and n=4). Consider first the
case n = 4. Suppose that π2(M) is finitely generated. As in the proof of Theorem
1.3, use Theorem 2.2 and consider a finite cover M0 with poly-Z fundamental group
π0

1 of Hirsch number greater than 2. We first apply Theorem 2.1.b) to M0×S2 and
to the morphism u1 : Gk → Gk/Gk−1. We get a manifold F of dimension 5 which is
a fiber of a fibration M0 → S1. Since [dim(F )/2] = 2 we may again apply Theorem
2.1.b) to the product F × S2 and the cohomology class u2 : Gk−1 → Gk−1/Gk−2;
we get a 6-dimensional submanifold K ↪→ F × S2. We have a sequence

K ↪→ F × S2 ↪→ M × S2 × S2,

which induces homotopy equivalences at the level of the universal covers. In par-
ticular,

H∗(K̃) ∼ H∗(M̃ × S2 × S2).

Now, as above, since k ≥ 3, the fundamental group Gk−2 of K is infinite, so the
homology of K̃ vanishes in degrees i > 5. This implies that the homology of M̃ is
zero, so M is a K(π1, 1). We conclude using Proposition 2.3.

Now let n = 3 and consider the 4-manifold N = M ×S1. We have h(π1(N)) ≥ 3
and π2(N) ≈ π2(M). Applying the above argument to N , we get that if π2(M)
is finitely generated, then N has a contractible universal covering. The same is
valid for M , and as above this is only possible when h(π1(M)) = 3 (by Proposition
2.3). �

Proof of Theorem 2.1 =⇒ Theorem 1.3 in the case n=5. Suppose that π2(M) and
π3(M) are finitely generated. We apply Theorem 2.1.b) 3 times to the 8-dimensional
manifold M × S3. We get a sequence:

K3 ↪→ K2 ↪→ K1 ↪→ M × S3,

as above. The manifold K3 is of dimension 5 and has an infinite fundamental group.
So, Hi(K̃3) = 0 for i ≥ 5. Since this homology is isomorphic to H∗(M̃ × S3), it
follows that M̃ is acyclic, and therefore that M is an Eilenberg-Mac Lane space.
As above, we use Proposition 2.3 to finish the proof. �

Proof of Theorem 2.1 =⇒ Theorem 1.2. Assume that the homotopy of X is finitely
generated.

a) Suppose that h(π1(X)) = k for some integer k > q. Using Theorem 2.2,
consider a finite cover X0 of X such that π1(X0) is poly-Z and h(π1(X0)) = k.

Embed X0 in a Euclidian space R2q+r+1 for some r ≥ 0 which will be fixed later
in the proof. Let W be a tubular neighbourhood of X0 and denote by M2q+r the
smooth manifold ∂W . Since M is a deformation retract of W \X0, using a general
position argument we get isomorphisms between πi(W ) and πi(M) for i ≤ q+r−1.
In particular, for r > 1 the inclusion M ↪→ W induces an isomorphism at the level
of fundamental groups and, since X0 is a retract of W , the higher homotopy groups
πi(M) are finitely generated for i ≤ q + r − 1. If r ≥ 1, then q + r − 1 ≥

[
2q+r

2

]
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and the hypothesis on the higher homotopy groups of Theorem 2.1 is satisfied by
the manifold M . Let

1 = G0 < G1 < · · · < Gk = π1(X0)

be a series with infinite cyclic factor groups. For r large enough (r ≥ k−2q+5), we
may apply Theorem 2.1 k times, as in the proof of Theorem 1.3, and get a sequence
of closed connected manifolds

(3) Fk ↪→ Fk−1 ↪→ · · · ↪→ F1 ↪→ M

such that for j = 0, . . . , k:
1. π1(Fj) = Gk−j .
2. dim(Fj) = 2q + r − j.
3. The inclusion Fj ↪→ M induces isomorphisms in πi for i ≥ 2.
The constant r ≥ 1 must be chosen large enough to have:
a) dim(Fj) ≥ 5 ∀j : needed for the dimension hypothesis in Theorem 2.1 (this

means 2q + r − k ≥ 5).
b) r + q − 1 ≥

[
2q+r

2

]
(which is true for r ≥ 1) to insure the hypothesis on the

higher homotopy groups in Theorem 2.1, as we explained above.
c) r > k − q.
It follows that the first manifold Fk in the sequence (1) is closed and simply con-

nected, of dimension 2q + r−k > q. Using property 3 we find that the composition

(4) Fk ↪→ M ↪→ W → X0

induces isomorphisms at the level of the higher homotopy groups πi for i = 2, . . . , q+
r − 1. By Whitehead’s theorem, the induced application between the universal
covers of Fk and X0 is an isomorphism at the level of the ith homology group for
i ≤ q + r−1. In particular, since q + r−1 ≥ 2q + r−k (since by hypothesis k > q),
we have

(5) H2q+r−k(F̃k) ≈ H2q+r−k(X̃0).

But Fk is simply connected of dimension 2q + r − k, so the left side of (5) is Z. On
the other hand 2q + r − k > q = dim(X0), so the right side of (5) vanishes. This
contradicts the initial assumption on the finite generation of the homotopy of X
and statement a) of the theorem is proved.

b) Suppose now that k = h(π1(X)) ∈ {q − 1, q}. As above we get a closed
simply connected manifold Fk of dimension 2q + r − k (i.e. q + r + 1 or q + r) such
that the application Hi(Fk) → Hi(X̃0) is an isomorphism for i ≤ q + r − 1. In
particular, the homology Hi(Fk;Z) vanishes for i = q + 1, . . . , q + r − 1.

By the universal coefficients theorem we obtain that the cohomology Hi(Fk;Z)
is zero for i = q + 2, . . . , q + r − 1, so Poincaré duality implies that Hi(Fk;Z) also
vanishes for i = q−k +1, . . . , q + r−k−2. Now q−k +1 ∈ {1, 2} and Fk is simply
connected. We infer after choosing r sufficiently large that the integer homology of
Fk vanishes in the degrees i ≤ q which means that X̃0 is contractible. Therefore X0

and X are Eilenberg-Mac Lane spaces. In particular the cohomological dimension
of π1(X) cannot exceed q, which implies that π1(X) is torsion free.

This completes the proof. �
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3. Novikov homology and fibrations over the circle

In the preceding section we showed that our main results (Theorems 1.2, 1.3
and 1.4) are consequences of Theorem 2.1. Let M be a closed connected manifold
and u ∈ H1(M ;Z) ≈ Hom(π1,Z). The aim of the present section is to introduce
the Novikov homology H∗(M, u) and to describe the situations when the vanishing
of H∗(M, u) implies the existence of a fibration f : M → S1, i.e. the conclusion
of Theorem 2.1. Then in Section 4 we prove that the hypothesis of Theorem 2.1
implies the vanishing of the Novikov homology H∗(M, u).

3.1. Novikov homology. Let u ∈ H1(M ;R). Denote by Λ the ring Z[π1(M)] and
by Λ̂ the Abelian group of formal series Z[[π1(M)]]. Consider a C1-triangulation of
M which we lift to the universal cover M̃ . We get a Λ-free complex C•(M) spanned
by (fixed lifts of) the cells of the triangulation of M .

We define now the completed ring Λu :

Λu :=
{

λ =
∑

nigi ∈ Λ̂ | gi ∈ π1(M), ni ∈ Z, u(gi) → +∞
}

.

The convergence to +∞ means here that for all A > 0, u(gi) < A only for a finite
number of gi which appear with a non-zero coefficient in the sum λ.

Remark. Let λ = 1 +
∑

nigi where u(gi) > 0 for all i. Then λ is invertible in Λu.
Indeed, if we denote by λ0 =

∑
nigi, then it is easy to check that

∑
k≥0(−λ0)k is

an element of Λu and it is obvious that it is the inverse of λ.

Definition. Let C•(M, u) be the Λu-free complex Λu ⊗Λ C•(M). The Novikov
homology H∗(M, u) is the homology of the complex C•(M, u).

A purely algebraic consequence of the previous definition is the following version
of the universal coefficients theorem ([14], p. 102, Th. 5.5.1):

Theorem 3.1. There is a spectral sequence Er
pq which converges to H∗(M, u) and

such that
E2

pq = TorΛ
p (Hq(M̃), Λu).

We will use this result in Section 4 to prove that in the hypothesis of Theorem
1.3 the Novikov homology associated to some class vanishes.

3.2. Morse-Novikov theory. We recall in this subsection the relation between
Novikov homology and closed one forms. In dimension n ≥ 6, when the Novikov
homology vanishes, some hypothesis on π1 stated below implies the existence of
a nowhere vanishing closed one form on M . It is well known (see [35]) that the
existence of such a form is equivalent to the existence of a fibration of M over S1.

Let α be a closed generic one form in the class u. Let ξ be the gradient of α
with respect to some generic metric on M . For every critical point c of α we fix a
point c̃ above c in the universal cover M̃ . We can then define a complex C•(α, ξ)
spanned by the zeros of α: the incidence number [d, c] for two zeros of consecutive
indices is the (possibly infinite) sum

∑
nigi where ni is the algebraic number of

flow lines which join c and d and which are covered by a path in M̃ joining gic̃ and
d̃. It turns out that this incidence number belongs to Λu, so C•(α, ξ) is actually a
Λu-free complex.
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The fundamental property of the Novikov homology is the following [23], [33]:

Theorem 3.2. For any generic couple (α, ξ) the Novikov homology H∗(M, [α]) is
isomorphic to the homology of the complex C•(α, ξ).

We have a straightforward corollary:

Corollary 3.3. For any q ≥ 2 and u ∈ H1(M) we have an isomorphism

H∗(M × Sq, u) ≈ H∗(M, u) ⊕ H∗+q(M, u).

Proof of Corollary 3.3. Take a generic couple (α, ξ) on M , and a couple (df, η) on
Sq, where f is a function which has only two critical points. Then, obviously, we
have the equality

C•(α + df, ξ + η) = C•(α, ξ) ⊕ C•+q(α, ξ).

The lemma is proved, using Theorem 3.2. �

Another consequence of Theorem 3.2 is obtained by comparing the complexes
C•(α, ξ) and C•(−α,−ξ). We get the following duality property (see Prop. 2.8 in
[9] and 2.30 in [19]):

Theorem 3.4. Let Mn be a closed connected manifold, let u ∈ H1(M ;R) and let
l be an integer. If Hi(M,−u) = 0 for i ≤ l, then Hi(M, u) = 0 for i ≥ n − l.

If the form α has no zeroes, then C•(α, ξ) vanishes and therefore we have
H∗(M, [α]) = 0. Conversely, one can ask if the vanishing of H∗(M, u) implies the
existence of a nowhere vanishing closed 1-form belonging to the class u ∈ H1(M).
For n ≥ 6 this problem was independently solved by F. Latour [19] and A. Pajitnov
[24], [25]. The statement is ([19], Th.1′):

Theorem 3.5. For dim(M) ≥ 6 the following set of conditions is equivalent to the
existence of a nowhere vanishing closed 1-form in u ∈ H1(M,Z):

1. Vanishing Novikov homology H∗(M, u).
2. Vanishing Whitehead torsion τ (M, u) ∈ Wh(M, u).
3. Finitely presented Ker(u) ⊂ π1(M).

Using Corollary 3.3 and Remark 1, below, one immediately infers:

Corollary 3.6. If q ≥ 2 is an integer such that dim(M) + q ≥ 6, the same con-
ditions 1-3 of Theorem 3.5 are equivalent to the existence of a nowhere vanishing
closed one form on M × Sq in the cohomology class

u ∈ H1(M,Z) ≈ H1(M × Sq,Z).

Moreover, if q is odd condition 2 is always fulfilled (see Remark 1 below), so 1 and
3 are sufficient for the existence of a nowhere vanishing one form in the class u.

Remarks. 1. The definitions of the generalized Whitehead group Wh(M, u) and of
the Whitehead torsion τ (M, u) are given in [19]. Wh(M, u) is an Abelian group
which only depends on π1(M) and on u. The Whitehead torsion is an element of
Wh(π1(M), u) which is associated to the acyclic complex C•(M, u). Whitehead
torsion is additive:

τ (C• ⊕ D•) = τ (C•) + τ (D•),
and satisfies

τ (C•+1) = −τ (C•).
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In particular, the equality of complexes in the proof of Corollary 3.3 above shows
that

τ (M × Sq, u) = τ (M, u) + (−1)qτ (M, u),
therefore

τ (M, u) = 0 ⇒ τ (M × Sq, u) = 0
and τ (M × Sq, u) = 0 for q odd.

2. In the statement of [24] the first two conditions are replaced by:
1′. C•(M, u) is simply equivalent to zero.
Actually, one can show (see [20]) that 1′ is equivalent to “1 and 2”.
3. In earlier works on the subject as those of F. T. Farrell [11] and L. Siebenmann

[32] the algebraic conditions which are equivalent to the existence of a nowhere van-
ishing closed 1-form in a rational cohomology class u were stated in the hypothesis
that the infinite cyclic cover P associated to u is finitely dominated. (P → M is
defined to be the pull-back of the universal covering R → S1 defined by a function
f : M → S1 such that [f∗dθ] = u.) The relation between the finite domination
of P and vanishing of the Novikov homology was first established by A. Ranicki in
[28], [29]. A. Ranicki ([27], Chap.14) established a relation between the Whitehead
“fibering obstruction” from [11] and [32] and condition 2 above. Then A. Pajitnov
and A. Ranicki proved in [26] the following

Theorem 3.7. If G is a group with Wh(G) = 0 and u : G → Z is a morphism,
then Wh(G, u) = 0.

It follows that under the hypothesis of Theorem 2.1 condition 2 of Theorem 3.5
is always satisfied.

In order to prove Theorem 1.5 we use

Proposition 3.8. If H∗(M, u) = 0 for some class u, then χ(M) = 0.

Proof. The complex C•(M, u) is acyclic. As in [20] one can then show that this
complex is simply equivalent to a complex of the form

0 → Λp
u

∂→ Λq
u → 0.

This means that the second complex is isomorphic to the first after adding or
cancelling a finite number of trivial summands

0 → Λu
Id→ Λu → 0.

Now the ring Λu satisfies an invariant basis property so p = q, and in particular

χ(M) = χ(C•(M, u)) = 0. �

4. Novikov homology and finiteness properties of groups

In this section we will achieve the proof of our results Theorems 1.2 ... 1.5. Up
to now we have proved that Theorems 1.2, 1.3 and 1.4 are implied by Theorem 2.1
(Section 2) and that the conclusion of Theorem 2.1 is valid if the three conditions
of Theorem 3.5 are fulfilled. It remains to show that the hypothesis of Theorem
2.1 implies these three conditions. It is clearly the case for the third one, since in
the hypothesis of Theorem 2.1, Ker(u) is of type F[ n

2 ], in particular of type F2,
i.e. finitely presented. The second condition is also satisfied, according to Theorem
3.7.
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The main point of our proof is the vanishing of the Novikov homology H∗(M, u)
under the assumption of the hypothesis of Theorem 2.1.

Recall that, by Theorem 3.1, there is a spectral sequence Er
pq which converges

to H∗(M, u) and whose term E2
pq is equal to TorΛ

p (Hq(M̃), Λu). Recall also that,
by the duality result of Theorem 3.4 we have the implication

Hi(M,±u) = 0 ∀i ≤
[n

2

]
⇒ Hi(M, u) = 0 ∀i.

It suffices therefore to prove the following statement:

Proposition 4.1. Let Mn be a closed manifold. Suppose that π1(M) is of type
F[ n

2 ]. Suppose also that πi(M) are finitely generated for i ≤
[

n
2

]
.

Suppose there is a non-zero cohomology class u∈H1(M ;R) ≈Hom(π1(M),R)
such that Ker(u) is of type F[n

2 ]. Then, for all integers 0 ≤ p, q ≤
[

n
2

]
, we have

TorΛ
p (Hq(M̃), Λ±u) = 0.

Note that this result is purely algebraic. In order to prove it we use some facts
about

4.1. Hurewicz-type morphisms. Recall that the classical Hurewicz theorem as-
serts that for q ≥ 2 the canonical morphism Iq : πq(M) → Hq(M) is an isomorphism
provided that M is (q − 1)-connected.

In [31] J-P. Serre generalized this theorem (see also [34], p. 504). For some
“admissible” classes of groups C, he showed that, if X is simply connected such
that πi(X) ∈ C for i = 1, . . . , q − 1, where q ≥ 2, then Iq is an isomorphism mod
C: This means that Ker(Iq) and Coker(Iq) are in C.

The class of finitely generated Abelian groups is such an admissible class. In
particular we have:

Theorem 4.2. Let X be a simply connected space. Then πi(X) is finitely generated
for i ≤ q iff Hi(X) is finitely generated for i ≤ q.

In particular any compact, simply connected CW-complex has finitely generated
homotopy groups (which is Theorem 1.1).

By applying this theorem to M̃ we may replace the hypothesis on πi(M) by the
analogue hypothesis on Hi(M̃). From now on we will suppose that for all i ≤

[
n
2

]
,

Hi(M̃) = Zri ⊕ Ti, where Ti is a torsion finitely generated Z-module. The proof of
Proposition 4.1 relies on the following statement:

Proposition 4.3. Let π be a group of type Fp for some positive integer p and
u : π → Z a morphism whose kernel is of type Fp. Suppose that Zr is a π-module.
Denote by Λ the ring Z[π] and by Λu the completed ring, as above. Let π0 ≤ π be a
normal subgroup of finite index and Λ0 the corresponding group ring Z[π0]. Then
for i ≤ p we have

TorΛ0
i (Zr, Λu) = 0.

Remark. For π0 = π and r = 1 (and therefore for arbitrary r and trivial action of
π on Zr) the statement above was proved by J-C. Sikorav in this thesis [33].
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We postpone the proof of Proposition 4.3 to Subsection 4.4. We now show:

4.2. Proof of Proposition 4.3 =⇒ Proposition 4.1. Fix p, q ≤
[

n
2

]
. For

g ∈ π1(M), denote by φg the automorphism of Hq(M̃) = Zrq ⊕ Tq, given by the
action of π1(M). We have:

φg =
(

ag 0
bg cg

)
,

where ag : Zrq → Zrq , bg : Zrq → Tq and cg : Tq → Tq. Note that ag and cg are
automorphisms (of inverses ag−1 , resp. cg−1). Let

π0 = { g ∈ π1 | cg = Id}.
Since Tq is finite, there is only a finite number of automorphisms c : Tq → Tq.
Therefore π0 is a normal subgroup of π1(M) of finite index. (It is the kernel of the
morphism π1(M) → Aut(Tq) defined by g �→ cg.) We use the following:

Lemma 4.4. Let G be a group of type Fp and G0 ≤ G a normal subgroup of finite
index. Then G0 is of type Fp.

The proof of Lemma 4.4 is obvious: if Q is a K(G, 1) with finite p-skeleton,
then the finite cover of Q corresponding to G0 ≤ G will be a K(G0, 1) with finite
p-skeleton.

Now let u : π1(M) → R, as in the statement of Proposition 4.1, and let u0 =
u|π0 . Obviously, Ker(u0) has finite index in Ker(u) so, using Lemma 4.4, both π0

and Ker(u0) are of type Fp.
Now consider the short exact sequence:

0 → Tq
(0,Id)−→ Zrq ⊕ Tq

Id⊕0−→ Zrq → 0.

One immediately checks that this is an exact sequence of π0-modules (where the
action of π0 on Zrq is x �→ ag(x)). Now consider Λ0 = Z[π0], and view the completed
ring Λu as a Λ0-module. The tensor product of Λu and the exact sequence above
yields a long exact sequence:

(1) · · · → TorΛ0
p (Tq, Λu) → TorΛ0

p (Zrq ⊕ Tq, Λu) → TorΛ0
p (Zrq , Λu) → · · · .

As a consequence of Proposition 4.3, the right term in the sequence above van-
ishes. In order to prove that the left term is zero, we consider an exact sequence of
the form

0 → Zm → Zm → Tq → 0,

which is viewed as a sequence of π0-modules with trivial actions (recall that, by
construction, π0 acts trivially on Tq). The corresponding long exact sequence given
by the tensor product with Λu writes:

(2) · · · → TorΛ0
p (Zm, Λu) → TorΛ0

p (Tq, Λu) → TorΛ0
p−1(Z

m, Λu) → · · · .

Applying again Proposition 4.3 we infer TorΛ0
p (Tq, Λu) = 0, therefore the middle

term in (1) vanishes.
We have thus established that for each p, q ≤

[
n
2

]
(3) TorΛ0

p (Hq(M̃), Λu) = 0,

which is the assertion required in Proposition 4.1, with Λ0 instead of Λ. To complete
the proof we need the following results.
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Proposition 4.5. Let G be a group, let L be a Z[G] right module and let N be a
Z[G] left module. Assume that N is Z-torsion-free. Then

Tor
Z[G]
∗ (L, N) ≈ H∗(G, L ⊗Z N),

where G acts diagonally on L ⊗Z N : g(x ⊗ y) = xg−1 ⊗ gy.

This proposition is proved in [8] (prop. 2.2, p. 61).

Theorem 4.6. For any group extension

1 → K → G → Q → 1

and any G-module R there is a spectral sequence of the form

E2
ij = Hi(Q, Hj(K, R))

which converges to Hi+j(G, R).

This theorem is due to G. Hochschild and J-P. Serre [17] (see also [8], p. 171).
We first apply Proposition 4.5 and infer from (3) that for each p, q ≤

[
n
2

]
we

have:

(4) Hp(π0, Hq(M̃) ⊗Z Λu) = 0.

Note that the hypothesis of Proposition 4.5 is fulfilled by N = Λu.
We fix q and denote by R the π1(M)-module Hq(M̃) ⊗Z Λu (for the diagonal

action). Then we apply Theorem 4.6 to the extension

1 → π0 → π1(M) → π1(M)/π0 → 1

and to the module R. We find using (4) that E2
ij = 0 for all j ≤

[
n
2

]
and for all

i ∈ N. According to Theorem 4.6, this implies that

(5) Hi(π1(M), R) = 0 ∀i ≤
[n

2

]
.

Finally, we once again apply Proposition 4.5 and we get that for all i, q ≤
[

n
2

]
we have

TorΛ
i (Hq(M̃), Λu) = 0.

The analogous relation for Λ−u instead of Λu can be established in the same
way, so Proposition 4.1 follows. �

We only have to prove Proposition 4.3 to complete the proof of Theorems 1.2,
1.3 and 1.4. The proof involves some facts about Bieri-Renz invariants. We recall
the definition and some properties of these invariants in the subsection below.

4.3. Bieri-Renz invariants. Proof of Proposition 4.3. Let G be a group
of type Fm. We call two non-zero homomorphisms u, v : G → R equivalent if
u = λv for some positive λ ∈ R. We denote by S(G) the quotient Hom(G,R)/ ≈
(which is an (rk(G)−1)-dimensional sphere). The Bieri-Renz invariants Σi(G) and
Σi(G,Z), defined for i = 1, . . . , m, are open subsets of S(G). They were introduced
by R. Bieri, W. Neumann and R. Strebel in [4] for i = 1 and by R. Bieri and
B. Renz in [5] for i ≥ 2.

These invariants are defined as follows. Let X be a K(G, 1) which is a complex
with finite m-skeleton and let u : G → R be a non-zero homomorphism. Then
there exists an equivariant height function f : X̃ → R, i.e. a function which
satisfies f(gx) = f(x) + u(g). (If X is a manifold, then f is a primitive of the
pullback of some 1-form in the class u.) It can be shown that the difference of
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two such functions is bounded. Consider the maximal subcomplex Xf of X̃ whose
image by f is contained in [0, +∞[.

Definition. Let u ∈ S(G) and i ∈ {1, . . . , m}. Then u belongs to Σi(G) (resp. to
Σi(G,Z)), if for some couple (X, f) as above the subcomplex Xf is (i−1)-connected
(resp. (i − 1)-acyclic).

Bieri and Renz show that the definition does not depend on (X, f). The following
properties of the Bieri-Renz invariants are obvious from the definition:

a) Σi(G) ⊂ Σi(G,Z).
b) Σ1(G) = Σ1(G,Z).
c) For i ≥ 2, Σi(G) = Σi(G,Z) ∩ Σ2(G).
The most striking application of these invariants is stated in the following:

Theorem 4.7. Let N ⊂ G be a normal subgroup with Abelian quotient G/N .
Denote by S(G, N) the subset of S(G) defined by {u ∈ S(G) |u|N = 0}. Then, for
any i = 1, . . . , m, we have the equivalence:

N is of type Fi iff S(G, N) ⊂ Σi(G).

Note that {u,−u} ⊂ S(G, Ker(u)). When Im(u) is cyclic it is easy to show that
these two sets coincide. Note also that S(G, [G, G]) = S(G). So, one immediately
infers the following corollary:

Corollary 4.8. i) Let u ∈ S(G) and let i be an integer as above. If Ker(u) is Fi,
then ±u ∈ Σi(G). The converse is valid if Im(u) is cyclic.

ii) Σi(G) = S(G) if and only if [G, G] is of type Fi.

In the sequel we give an algebraic description of the invariants Σi(G,Z) following
[5], Section 4. Fix a non-zero homomorphism u : G → R. Let F be a finitely
generated free Z[G]-module, and {ei}i=1,...,k a basis of F . We define an application
v : F → R as follows: v is defined arbitrarily on the elements ei. Then for any
g ∈ G we put v(gei) = v(ei)+u(g). Finally, λ =

∑
i,j nijgjei for λ ∈ F in the basis

{ei}, we define
v(λ) = inf{v(gjei) |nij �= 0},

and v(0) = +∞. Following Bieri and Renz we call v a valuation extending u. Now
suppose that G is of type Fm and let

Pm
∂m→ Pm−1

∂m−1→ · · · ∂1→ P0
∂0→ Z → 0

be a Z[G]-free, finitely generated resolution (which exists since there exists a K(G, 1)
with finite m-skeleton). Define as above vi : Pi → R which are valuations extending
u. We may suppose in addition that for any i = 1, . . . , m and for any x ∈ Pi we
have

(1) vi(x) ≤ vi−1(∂i(x)).

Indeed, one easily sees that it suffices to check the relation above on the basis {ei}
of Pi. We can construct v inductively, by choosing v(ei) sufficiently negative in
order to satisfy the inequality (1).

Bieri and Renz proved the following theorem ([5], theorem 4.1):

Theorem 4.9. Let P• → Z be a Z[G]-free, finitely generated resolution of length m
and let v : P• → R be a valuation extending u satisfying (1). Then u ∈ Σm(G,Z) if
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and only if there exists a chain endomorphism Φ : P• → P• which lifts the identity
of Z and which satisfies the property

(2) v(Φ(x)) > v(x) ∀x ∈ P•.

We will reformulate this theorem as follows. It is obvious that one can construct
the valuation v : P• → R such that it satisfies an additional feature: for all j =
1, . . . , m, v is constant on the set {ej

i} of the basis elements of Pj . Denote this
constant by νj . Then, the valuation vj : Pj → R is given by

vj(λ) = νj + inf{u(gk) |nj
ik �= 0},

where λ =
∑

i,k nj
ikgkej

i , gk ∈ G, nj
ik ∈ Z. Thus, for an endomorphism Φ given by

Theorem 4.9, if
Φ(ej

i ) =
∑
i,k

nj
ikgj

ikej
k

(where gj
ik ∈ G and nj

ik ∈ Z), the inequality (2) implies that u(gj
ik) > 0 for all

elements of G appearing with non-zero coefficient nj
ik.

We call an element λ =
∑

i nigi of Z[G] u-positive if u(gi) > 0 for any gi which
has a non-zero coefficient ni in the writing of λ. We call a matrix A ∈ Mk(Z[G]) u-
positive if all its entries are u-positive. Taking into account the preceding remarks,
Theorem 4.9 can be stated as follows:

Theorem 4.10. Let P• → Z be a resolution of length m which is Z[G]-free and
finitely generated. Fix a basis for each Pj for all j = 1, . . . , m. Then u ∈ Σm(G,Z)
if and only if there exists a chain endomorphism Φ : P• → P• which lifts the identity
of Z and such that for all j = 1, . . . , m the matrices of Φj : Pj → Pj in the fixed
basis are u-positive.

Now we are able to complete the

Proof of Proposition 4.3. Applying Proposition 4.5 we infer that TorΛ0
i (Zr, Λu) is

isomorphic to Hi(π0,Zr ⊗Z Λu), where the action of π0 on Zr ⊗Z Λu is given by
x⊗ λ �→ xg−1 ⊗ gλ. It suffices therefore to prove that the latter vanishes for i ≤ p.

Let
Pp → Pp−1 → · · · → P1 → P0 → Z

be a Z[π0]-free resolution which we may suppose is finitely generated since π0 is
Fp. By definition we have

(3) Hi(π0,Zr ⊗Z Λu) ≈ Hi(P• ⊗Z[π0] (Zr ⊗Z Λu)).

We will prove that the right term of (3) vanishes for all i ≤ p. Fix a basis
{ej

i}i for each module Pj . Since Ker(u|π0) is of type Fp, it follows by Corollary
4.8.i) that u ∈ Σp(π0,Z), so, applying Theorem 4.10 we obtain an endomorphism
Φ : P• → P• such that for all j = 1, . . . , m the matrix of Φj associated to the basis
{ej

i} is u-positive.
Let Ψ = Φ ⊗ Id : P• ⊗Z[π0] (Zr ⊗Z Λu) → P• ⊗Z[π0] (Zr ⊗Z Λu). �

The proof of Proposition 4.3 will be complete if we prove the following:

Lemma 4.11. The homomorphism Id − Ψ is invertible and it induces zero in
homology.
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Proof. Let us prove first that Id−Ψ vanishes in homology. Since Φ : P• → P• lifts
the identity of Z, and P• is free, it is well known and easy to prove that there exists
a homotopy s : P• → P•+1 between Φ and Id. It follows that s⊗ Id is a homotopy
between Ψ and Id, so Id − Ψ induces the zero morphism in homology.

Now let us prove the first assertion of the lemma. Let {f1, f2, . . . , fr} be the
canonical basis of Zr. We can see Zr ⊗Z Λu as a right Λu-module endowed with
the canonical structure (x ⊗ λ)µ = x ⊗ λµ. It is a free module of rank r and
{f1 ⊗ 1, f2 ⊗ 1, . . . , fr ⊗ 1} is a basis for this module.

Recall that we denoted by Λ0 the ring Z[π0]. For any j = 1, . . . , m, the product
Pj ⊗Λ0 (Zr ⊗Z Λu) inherits the structure of the right Λu-module described above.
On the other hand, since Pj is free we have

(4) Pj ⊗Λ0 (Zr ⊗Z Λu) ≈ (Zr ⊗Z Λu)rk(Pj) ≈ (Λu)r·rk(Pj).

If {ej
i}i=1,...,rk(Pj) is the given basis of Pj , then

(5) {ej
i ⊗Λ0 (fs ⊗ 1)}i=1,...,rk(Pj), s=1,...,r

will be a basis for Pj ⊗Λ0 (Zr ⊗Z Λu).
It is easy to check that the isomorphisms (4) preserve the right Λu-module struc-

ture. Moreover, the differential ∂⊗Λ0 Id of the complex P•⊗Λ0 (Zr ⊗Z Λu) respects
this structure, therefore it is a complex of free right Λu-modules. �

We claim that the matrices of Ψ in the basis (5) are u-positive. Indeed, for
fixed j, let (λik)i,k=1,...,rk(Pj) be the matrix of Φj in the basis {ej

i}. This matrix is
known as u-positive. We dropped the index j from the coefficients of the matrix
to simplify the notations. Denote by λ̄ the image of an element λ ∈ Λ0 under the
endomorphism Λ0 → Λ0 induced by the involution of π0: g �→ g−1. The right
action of λ̄ik on Zr, evaluated on the basis {fs}, is:

fsλ̄ik =
r∑

l=1

nl
iksfl ,

for some integers nl
iks.

We infer that

Ψj(e
j
i ⊗Λ0 (fs ⊗ 1)) =

∑
k

ej
kλik ⊗Λ0 (fs ⊗ 1)

=
∑

k

ej
k ⊗Λ0 (fsλ̄ik ⊗ λik) =

∑
k,l

ej
k ⊗Λ0 (nl

iksfl ⊗ λik)

=
∑
k,l

ej
k ⊗Λ0 (fl ⊗ nl

iksλik) =
∑
k,l

[ej
k ⊗Λ0 (fl ⊗ 1)] nl

iksλik,

so the matrix of Ψj is u-positive.
Denote this matrix by Aj and define another matrix Bj by Bj = Id +

∑+∞
k=1 Ak

j .
As Aj is u-positive it is easy to check that the matrix Bj belongs to Mr·rk(Pj)(Λu).
It therefore defines, using the basis (5), an endomorphism of Pj ⊗Λ0 (Zr ⊗Z Λu). It
is actually an automorphism since obviously (Id − Aj)Bj = Id. Finally, as Ψ is a
morphism of complexes, the morphism Id + Ψ + Ψ2 + · · · induced by Bj will also
commute with the differential. We finally have an automorphism of P• ⊗Λ0 (Zr ⊗Z

Λu) whose inverse is Id − Ψ. This completes the proof of Lemma 4.11 and hence
the proof of Proposition 4.3 which implies our main theorems 1.2, 1.3 and 1.4. �
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4.4. Proof of Theorem 1.5. Assume that the homotopy of X is finitely generated.
By embedding X in R2q+3 construct a manifold M = ∂W of dimension 2q+2 as in
the proof of Theorem 1.2. We have χ(X) = χ(W ) = 2χ(M). By general position
πi(M) ≈ πi(X) for i ≤ q + 1. These groups are therefore finitely generated.
The hypothesis of Proposition 4.1 is fulfilled and, by applying this result, we get
H∗(M, u) = 0. But according to Proposition 3.8 this implies χ(M) = 0, thus
contradicting the hypothesis on χ(X).

If X is a manifold, the result follows directly from Propositions 4.1 and 3.8 and
Theorem 3.1. The proof is finished. �
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