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Introduction

0.1. Toric varieties (called torus embeddings in [26]) are algebraic varieties
that are generalizations of both the affine spaces A" and the projective space
P" . Because they are rather simple in structure (although not as primitive as

97



98 V. I. Daniloy

P™), they serve as interesting examples on which one can illustrate concepts of
algebraic geometry such as linear systems, invertible sheaves, cohomology,
resolution of singularities, intersection theory and so on. However, two other
circumstances determine the main reason for interest in toric varieties. The first
is that there are many algebraic varieties which it is most reasonable to embed
not in projective space P” but in a suitable toric variety; it becomes more
natural in such a case to compare the properties of the variety and the ambient
space. This also applies to the choice of compactification of a non-compact
algebraic variety. The second circumstance is closely related to the first, con-
sisting in the fact that varieties “locally” are frequently toric in structure, or
toroidal. As a trivial example, a smooth variety is locally isomorphic to affine
space A" . Toroidal varieties are interesting in that one can transfer to them the
theory of differential forms, which plays such an important role in the study of
smooth varieties.

0.2. To get some idea of toric varieties, let us first consider the simplest
example, the projective space P". This is the variety of lines in an (n + 1)-
dimensional vector space K”* ! where K is the base field (for example K = C,
the complex number field). Let ¢y, . . ., £, be coordinates in K"*!. then the
points of P" are given by “homogeneous coordlnates” (to:ty:. .. : t,). Pick-
ing out the points with non-zero ith coordinate z;, we get an open subvanety
U; C P"_If we consider on U; the n functions x{ = 1, /t; (with
k=0,1,.. ..., 1), then these establish an isomorphism of U; with the
affine space K" ; we call the functions x}c’) coordinates on U;. Projective space
P” is covered by charts Uy, . . ., U,, and on the intersection U; N U; we have

xD =yt fety = xP P

Here the 1mportant thmg is that the coordinate functions x{) on the chart
U can be expressed as Laurent monomials in the coordinates x(’) on U,. We
recall that a Laurent monomial in variables x,, . . ., x, is a product
xTh...x™ or briefly x™, where the exponent m = (m,, . . .,m,) €Z" . In-
cluded as the basis of the definition of toric varieties is the requirement that
on changing from one chart to another the coordinate transformation is
monomial. A smooth n-dimensional toric variety is an algebraic variety X,
together with a collection of charts x(®): U, S K", such that on the inter-
sections of U, with U, the coordinates x(*> must be Laurent monomials in the
x®

Let X be a toric variety. We fix one chart U, with coordinates x,, .. ., x,;
then the coordinate functions x(*) on the remaining U, (and monomials in
them) can be represented as Laurent monomials in x,, . . ., x,, . Furthermore, if
f: U, ~> K is a “regular” function on U,, that is, a polynomial in the variables
x{®, .. x(‘") then f can be represented as a Laurent polynomial in
Xi,-- , that is, as a finite linear combination of Laurent monomials. The
monomlal character of the coordinate transformation is reflected in the fact
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that the regularity condition for a function f on the chart U, can be expressed
in terms of the support of the correspondmg Laurent polynomlal f We recall

that the support of a Laurent polynomial f = 2 ¢,Xx™ istheset
meln

supp(’f Y= {m €Z" | ¢, # 0}. With each chart U, let us associate the cone o,

in R” generated by the exponents of x{¥, . x(“) as Laurent polynomials in
Xq1,...,X,. Weregard an arbitrary Laurent polynom1al f as a rational function
on X as one sees easily, regularity of this function on the chart U, is equivalent
to supp(? ) C o,. Thus, various questions on the behaviour of the rational
function 7011 the toric variety X reduce to the combinatorics of the positioning
of supp(f ) with respect to the system of cones {o,}. The systematic

realization of this remark is the essence of toric geometry.

0.3. As we have just said, a toric variety X with a collection of charts U,
determines a system of cones{g, } in R”. The three diagrams below represent
the systems of cones for the projective plane P2, the quadric P! X P!, and for
the variety obtained by blowing up the origin in the affine plane A? (Fig.1).

A

AN

)

o

Fig. 1.

Conversely, we can construct a toric variety by specifying some system {g,} of
cones satisfying certain requirements. These requirements can incidentally be
most conveniently stated in terms of the system of dual cones 50‘ (see the
notion of fan in §5). Passing to the dual notions is convenient in that it re-
establishes the covariant character of the operations carried out in gluing
together a variety X out of affine pieces U, .

The notion of a fan and the associated smooth toric variety was introduced
by Demazure [16] in studying the action of an algebraic group on rational
varieties. He also described the invertible sheaves on toric varieties and a
method of computing their conomology; these results are given in § §6 and 7.
We supplement these by a description of the fundamental group (§9), the
cohomology ring (for a complex toric variety, § 12) and the closely related ring
of algebraic cycles (§10).

0.4. While restricting himself to the smooth case, Demazure posed the problem
of generalizing the theory of toric varieties to varieties with singularities. The
foundations of this theory were laid in [26].
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General toric varieties are again covered by affine charts U, with monomials
going into monomials on passing from one chart to another. For this one
must, first of all, have a “monomial structure” on each affine chart U, ; let us
explain what this means, restricting ourselves to a single affine piece U. Among
the regular functions on an algebraic variety U a certain subset S of “monomials”
is singled out. Since a product of monomials is again to be a monomial, we
demand that S is a semigroup under multiplication. Finally, we require that the
set S of “monomials” forms a basis of the space of regular functions on U. So
we arrive at the fact that the ring K{ U]} of regular functions on U is the semi-
group algebra K[S] of a semigroup S with coefficients in K. The variety U can be re-
covered as the spectrum of this K-algebra U = Spec K{S1.

Lest we stray too far from the situation considered in 0.2 we suppose that .S
is of the form ¢ N 2"  where ¢ is a convex cone in R" . For §=0¢ N 2" to be
finitely generated, ¢ must be polyhedral and rational. If o is generated by some
basis of the lattice Z" = R"  then U = Spec K[o N 2" ] isisomorphic to A". In
general, U has singularities. For example, let ¢ be the 2-dimensional cone shown
in Fig.2. If x, y, and z are the “monomials” corresponding to the integral points
(1,0), (1, 1), and (1, 2), then they generate the whole of S, and there is the single
relation y? = xz between them. Therefore, the corresponding variety U is the
quadratic cone in A3 with the equation y? = xz.

4

Z
&

4

cl

Fig. 2.

0.5. The properties of the semigroup rings A, = K[o N Z”" ] and of the corres-
ponding affine algebraic varieties are considered in Chapter 1. This chapter is com-
pletely elementary (with the exception of §3, where we prove the theorem of
Hochster that rings of the form 4, are Cohen—Macaulay rings), and is basically
concerned with commutative algebra.

0.6. General toric varieties are glued together from the affine varieties U, as
explained in 0.2. In Chapters II and III we consider various global objects
connected with toric varieties, and interpret these in terms of the corresponding
fan. Unfortunately, lack of space prevents us from saying anything about the
properties of subvarieties of toric varieties, which are undoubtedly more interest-
ing objects than the frigid toric crystals.
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There is a more invariant definition of a toric variety, which explains the
name. A toric variety is characterized by the fact that it contains an
n-dimensional torus T as an open subvariety, and the action of T on itself by
translations extends to an action on the whole variety (see 2.7 and 5.7). An
extension of this theory would seem possible, in which the torus T is replaced
by an arbitrary reductive group G; [27] and [33] give some hope in this
direction.

0.7. Chapter IV is devoted to toroidal varieties, that is, to varieties that are
locally toric in structure; this can be read immediately after Chapter 1. A non-
trivial example of a situation where toroidal singularities appear is the
semistable reduction theorem. This is concerned with simplifying a singular
fibre of a morphism f: X = C of complex varieties by means of blow-ups of X
and cyclic covers of C. The latter operation leads to the appearance of
singularities of the form z? = x% . . . xZ” , which are toroidal. Using a rather
delicate combinatorial argument based on toric and toroidal technique, which
was developed especially for this purpose, Mumford has proved in [26] the
existence of a semistable reduction.

However, an idea of Steenbrink’s seems even more tempting, namely, to
regard singularities of the above type as being in no way ‘‘singular”, and not to
waste our effort in desingularizing them. Instead we only have to carry over to
such singularities the local apparatus of smooth varieties, and in the first
instance the notion of a differential form. It turns out that the right definition
consists in taking as a differential form on a variety one that is defined on the
set of smooth points (see 4.1). Of course, this idea is nothing new and makes
sense for any variety; that it is reasonable in the case of toroidal varieties (over
C) is shown by the fact that for such differential forms the Poincaré lemma
continues to hold: the analytic de Rham complex

0> 0y 50508 — ...

is a resolution of the constant sheaf C, over X (see 13.4). This builds a bridge
between topology and algebra: the cohomology of the topological space X (C)
can be expressed in terms of the cohomology of the coherent sheaves of
differential forms 4.

The proof of this lemma is based on the following simple and attractive des-
cription of the module of p-differentials £27 in the toric case (§4). The ring
A, =C[o N Z"] has an obvious Z" -grading; being canonical, the module £7 is
also a 2"-graded A -module Q” = @ QP (m). Then the space & (m)

mezn
depends only on the smallest face I'(rm) of o containing m. More precisely,
1 (m) is the subspace of C” = R" ® C spanned by the face I'(m), and
QF (m) = AP (2} (m)) is the pth exterior power.
This interpretation reduces many assertions on the modules of differentials
to facts on the exterior algebra of a vector space. We extend to the toroidal
case the notions of a form with logarithmic poles and its Poincaré residue,
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which are useful in the study of the cohomology of “open” algebraic varieties.

0.8. The theory of toric varieties reveals the existence of a close connection
between algebraic geometry and linear Diophantine geometry (integral linear
programming), which is concerned with the study of integral points in poly-
hedra. Thus, the number of integral points in a polyhedron is given by the
Riemann—-Roch formula (see §11). This connection was clearly realized in
[3]. We mention the following articles on linear Diophantine geometry: [2],
[19]1, [29].

0.9. Since the appearance of Mumford’s book [26] many papers on toric
geometry have appeared; we mention only [11, {31, [9], [18], [25], [28],
[34]. Apart from the articles of Demazure [16], Mumford [26], and Steen-
brink [31] already mentioned, the author has been greatly influenced by dis-
cussions with I. V. Dolgachov, A. G. Kushnirenko, and A. G. Khovanskii.

0.10. In this paper we keep to the following notation:

K is the ground field,

M and N are lattices dual to one another,

o and 7 are cones;{v,, . . ., U;) is the cone generated by the vectorsv,, .. ., v ;
o is the cone dual to o,

A, = K[o N M] is the semigroup algebra of 0 N M,

X, = Spec A, is an affine toric variety,

T = Spec K[M] is an algebraic torus,

Z is a fan in the vector space Ng,

=) is the set of k-dimensional cones of %,

Xy is the toric variety associated with Z,

P is the module (or the sheaf) of p-differentials,

A is a polyhedron in the vector space Mg,

L(A) is the space of Laurent polynomials with support in A,

I(A) = dim L(A) is the number of integral points of A.

CHAPTER I
AFFINE TORIC VARIETIES

In this chapter we study affine toric varieties associated with a cone ¢ in a
lattice M.

§ 1. Cones, lattices, and semigroups

1.1 Cones. Let V be a finite-dimensional vector space over the field Q of
rational numbers. A subset of V of the form A~ (Q, ), where X: ¥V > Qis a
non-zero linear functional and Q, = {r€Q |r > 0}, is called a half-space of
V. A cone of V is an intersection of a finite number of half-spaces; a cone is
always convex, polyhedral, and rational. For cones o0 and 7 we denote by
o + 7 the cones {v* v’ |v€o,v' €71}, respectively. Thus, 0 ~ o is the smallest
subspace of V containing o; its dimension is called the dimension of 0 and is
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denoted by dim o.

A subset of ¢ of the form ¢ N A™! (0), where A: ¥V = Qs a linear functional
that is positive on o, is called a face of ¢. A face of a cone is again a cone. The
intersection of a number of faces is again a face. For v € ¢ we denote by I' | (v),
or simply I'(v) the smallest face of o containing v. I'(0) is the greatest subspace
of V contained in g, and is called the cospan of 0. If I'(0) = {0}, we say that ¢
has a vertex.

Foruvy,...,up € Vlet{v,, ..., v;) denote the smallest cone containing
V1, ..., Ug. Any cone is of this form. A cone is said to be simplicial if it is of
the form (v,, . . ., v,) with linearly independent v,, . . ., u;.

1.2. Lattices. By a lattice we mean a free Abelian group of finite rank (which
we call the dimension of the lattice). For a lattice M the lattice N = Hom(M, Z)
is called the dual of M. By a cone in M we mean a cone in the vector space
Mg =M ® Q.Ifoisaconein M, then 0 N M is a commutative subsemigroup
in M.

1.3. LEMMA (Gordan). The semigroup o N M is finitely generated.

PROOF. Breaking ¢ up into simplicial cones, we may assume that o is
simplicial. Let ¢ = {m,, ..., m;), where m,, . . ., m; belong to Mand are
linearly independent. We form the parallelotope

kR
P = {2i aimilOgai<1}.
Obviously, any point of ¢ M M can be uniquely represented asp + § n;m;,
i=1
where p € PN M, and the n; 2 0 are integers. In particular, the finite set
PNM)U {m,, ... my} generatesoc NM.

1.4. Polyhedra. We define a polyhedron in Mg as the intersection of finitely
many affine half-spaces. Thus, a polyhedron is always convex; furthermore, in
what follows we only consider bounded polyhedra. Just as for cones, polyhedra
can be added and subtracted, and can be multiplied by rational numbers. A
polyhedron is said to be integral (relative to M) if its vertices belong to M.

We define I(A) as the number of integral points in a polyhedron A, that is,
I(A) = #(A N M). The connection between the integers /(A), I(24), and so on is
buried in the Poincaré series

Pa(t) =k§0 L(kA)-t*,

The arguments in the proof of Lemma 1.3 show that P, (¢) is a rational function
of t. Restricting ourselves to integral polyhedra, we state a more precise assertion
which will be proved in §3.

1.5. LEMMA. Let A be an integral polyhedron of dimension d. Then

Py (t) =P, (t)o(1 —t)-d—i,
where ® , (t) is a polynomial of degree <d + 1 with non-negative integral

coefficients.
The polynomial ®, (¢) is a very important characteristic of the polyhedron A.
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Thus, &, (1) =d! V;(A), where V;(A) is the d-dimensional volume of A
(relative to the induced lattice). We note that the Hodge numbers of hyperplane
sections of the toric varieties P, can be expressed in terms of &, ().

§2. The definition of an affine toric variety

2.1. Let us fix some field K. Let M be a lattice, and o a cone in M. Let
A(U’M), or A,, denote the semigroup K-algebra K{o N M] of 0 N M. It consists

of all expressions X g, x™, witha, €K and almost all a,, = 0. Two such
meoenNM

expressions are added and multiplied in the usual way; for example,
XM .xm’ = xM +m"

The K-algebra A, has a natural grading of type M. According to Lemma
1.3, it is finitely generated.

2.2. DEFINITION. The affine scheme Spec K[o N M] is called an affine
toric variety; it is denoted by X(a’ M)y OT X, , or simply X.

The reader who is unfamiliar with the notion of the spectrum of a ring can
think of X, naively as a set of points (see 2.3).

2.3. Points. Let L be a commutative K-algebra; by an L-valued point of X
we mean a morphism of K-schemes Spec L = X, that is, a homomorphism of
K-algebras K[o N M] - L. The latter is given by a homomorphism of semi-
groups x: 0 N M —> L, where L is regarded as a multiplicative semigroup. For
each m € ¢ N M the number x(m) € L should be understood as a coordinate of
x.

2.4. EXAMPLE. Let o be the whole vector space Mg ; then
X, =SpecK[X,, Xi',...,X,, X;'] is a torus of dimension n = dim M.

If o is the positive orthant in 2" | then X = Spec K[X,, ..., X, ] is the n-
dimensional affine space over K.

2.5. With each face T of 0 we associate a closed subvariety of X, analogous to a
coordinate subspace in the affine space A”. Let x be the charactenstlc function
of the face 7, that is, the function thatis 1 on 7 and O outside 7. The map
x™ = x(m)x" (for m € 0 N M) extends to a surjective homomorphism of
M-graded K-algebras K[o N M] = K[r N M], which defines a closed embedding
of affine varieties

ii X:—> X,

This embedding is easily described in terms of points. Let x: 7 M M — L be an
L-valued point of X_; then i(x) is the extension by O of the homomorphism x
fromrNMtooNM.

2.6. Functoriality. The process of associating the toric variety X, ,n with
the pair (M, o), where o is a cone in M, is a contravariant functor. For let
/i (M, 0) > (M', ") be a morphism of such pairs, that is, a homomorphism of
lattices f: M = M' for which fg(0) C o'. Then the semigroup homomorphism
f: e N M— o' N M gives a homomorphism of K-algebras K[c " M] = K[o' "M ']
and a morphism of K-schemes
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°f: X(o',M’) - X(o,M)

On the level of points: if x': ¢' " M’ = L is a point of X (s ), then Uf(x")is
the composite of f: 6 "M = o' N M’ with x'.

Let us consider some particular cases.

2.6.1. Suppose that the lattices M and M’ are the same. Then an inclusion
o C o' of cones leads to a morphism of schemes f,s ,: X, = X, . Especially
important is the case when ¢’ = ¢ — {m), where m € ¢ N M. In this case the ring
A can be identified with the localization of 4, with respect to
x™, A, =Aqs[x"™], and the morphism f,/ ,: X, = X, is the open immersion
of X, onto the complement of me i(X,)in X . The converse is also true:

if fy o is an immersion, then o' is of the form a —{m), where m € ¢. The
easiest way to check this is by using points (see 2.3).

This last fact, and a number of others, can most conveniently be stated in
terms of the dual cone. When o is a cone in M, we write

&= {A ENg|A) =0}

to denote the dual cone in the dual vector space Nq . The condition ¢ C ¢' is
equivalent to ¢’ C &, and the morphism °f. X , - X, is an open immersion if
and only if ¢’ is a face of G.

2.6.2. Let M C M’ be lattices of the same dimension, and let ¢’ = 0. In the
spirit of the proof of Lemma 1.3 we can verify easily that the motphism of
schemes %f: X, py > X (o, M) 1 finite and surjective. If K is an algebraically
closed field of characteristic prime to [M': M], then ?f: X' = X is a Galois
cover (ramified, in general) with Galois group Hom(M'/M, K*).

2.6.3. The variety X, o px ary is the direct product of X, 5, and
Xo My

2.7. Suppose that Mg is generated by the cone 0. Applying 2.6.1 to the cone
o' =0 — 0= Mg we obtain an open immersion of the “big” torus T = Spec K[M]
in X, . It is easy to check that the action of T on itself by translations extends to
an action of T on the whole of X ; again it is simplest to see this by using
points. Algebraically, the action of T is reflected in the presence of an M-grading
of the affine ring 4 ;. The orbits of the action of T on X, are tori T, belonging
to the closed subschemes X, C X, as 7 ranges over the faces of o.

The converse is also true (see [26]): if T C X is an open immersion of a
torus T in a normal affine variety X and the action of T on itself by translations
extends to an action on X, then X is of the form X, ,, where M is the lattice
of characters of T.

2.8. REMARK. If we do not insist on the ‘“‘rationality” of the cone o, then
we obtain rings K[o M M] that are no longer Noetherian, but present some
interest (see [18]).
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§ 3. Properties of toric varieties

Let M be an n-dimensional lattice, and ¢ C M an n-dimensional cone. We
consider properties of the variety X .

3.1. Dimension. The ring 4 = K[o N M] has no zero-divisors, hence the
embedding of the big torus T C, X, is dense and dim X, = dim T =n.
Similarly, dim X, = dim 7 for any face 7 of 0. From this it is also clear that X is
a rational variety.

3.2. PROPOSITION. X is normal.

PROOF. Let us show that 4 = A is integrally closed. Let 7, .. ., 7; be the
faces of o of codimension 1, and ¢; = 0 — ;. Obviously, ¢ = N o;, hence,

A =N A;, where A; = K[o; N M]. Therefore, it is sufficient to show that each
A; is integrally closed. But ¢; is a half-space, so that
A; =KXy, X,, X531, .., X, X;' 1.

3.3. Non-singularity. Let us now see under what conditions X is a smooth
variety, that is, has no singularities. It is enough to do this for a cone o having a
vertex, since the general case differs only by taking the product with a torus,
which does not affect smoothness. The answer is: for a cone o with vertex, the
variety X is smooth if and only if o is generated by a basis of the lattice M.

The “if”” part is obvious. For the converse, suppose that A = 4, is a regular

ring,and let m = & K-x" be the maximal ideal of 4. Since the local ring 4,
m#0

is regular, the ideal mA,; can be generated by n elements. We may assume that
these are of the form x™: . . . x"™", m; € M. But then any element of 0 N M
can be expressed as a non-negative integral combination of my, ..., m,. It
follows that m,, ..., m, generate M and ¢ =(m,, ..., m,).

This criterion looks even nicer in its dual form: for any cone o the variety
X, is smooth if and only if the dual cone G is generated by part of a basis of
N. Quite generally, we say that a cone generated by part of a basis of a lattice is
basic for the lattice.

3.4. THEOREM (Hochster [23]). A = K[ N M) is a Cohen—Macaulay ring
(see Appendix 1).

Our proof is a combination of the arguments of Hochster himself and an
idea due to Kushnirenko. First of all, we may assume that ¢ has a vertex, and
prove that A4 is of depth »n at the vertex. By induction we may assume that for
cones 7 with dim 7 < the theorem holds.

Let 9 denote the ideal of A generated by all monomials x™_ with m strictly
inside o.

3.4.1. LEMMA. The A-module A/ is of depthn—1.

PROOF. Let 90 denote the boundary of o;then A/ = @ K-.z™
medo\M

Using the fact that do can be covered by faces of ¢, we form an M-graded
resolution of A/A:

d
0> A/ — Cpoy —=> Cpog = ... —> Cy— 0.
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Here G = ?AT, where 7 ranges over the k-dimensional faces of ¢; the differ-

ential d is defined in a combinatorial manner (for details see [28], 2.11, or
§ 12 below). It is enough to check the exactness of this sequence “over each
m € 90 N M, and this follows from the fact that do is a homology manifold at
m.
Now let us prove by induction that prof(Ker d; _,) = k for each k. For
k =n — | we then get the lemma. We consider the short exact sequence

0 — Kerd, - C,, - Kerd,_, — 0.

By the inductive hypothesis, prof(Ker d; _, = k — 1. Furthermore, since
dim 7=k <n, we have prof A_ = prof (} = k. It follows (see Appendix 1)
that prof(Ker d; ) = k. The lemma is proved.

If 9 was a principal ideal, it would follow from Lemma 3.4.1 that
prof A =n. Let us show how to reduce the general case to this. _ .

3.4.2. LEMMA. Let M C M be lattices of the same dimension. If A = K[o N M]
is a Cohen—Macaulay ring, then sois A = K[o " M].

PROOF. A4 is a finite A-algebra, (see 2.6.2), and its depth as an A-module is
n. Thus, it is enough to show that A4 is a direct summand of the A-module 4.

Let x be the characteristic function of M. The map x™ + x(7)x™ extends to
an A-linear homomorphism p: 4 - 4, which is a projection onto 4 C A. This
proves Lemma 3.4.2.

3.4.3. It remains to show how to find for our lattice M a superlattice M D M
such that the corresponding ideal A in A = K[o N M] is principal. Then 4 , and
therefore also A4, is a Cohen—Macaulay ring.

For this purpose let us choose a basis e, , . . ., ¢, of M such that e, lies
strictly inside o. Suppose that the faces of o of codimension 1 have equations

n-—1
of the formx, = Z rijX;, with j an index for the faces. The r;; are rational, so
i=1

that we can find an integer d > O for which all the dr,-]- are integers. [t remains

to take M to be the lattice generated by the vectorse,,...,e,_,, €, = dle,,. It

is easy to check that if 7 € M lies strictly inside o, then it is of the form
g, +an element of ¢ N M. In other words, ¥ = z°». 4. This proves Theorem
3.4.

3.5.COROLLARY. The ideal N is also of depth n.

In fact, we only have to apply the corollary in Appendix 1 to the short exact
sequence 0 — Y — A4 — A/ — 0.

3.6. REMARK. In-the following §4 we shall see that 9 is isomorphic to the
canonical module of A, so that if % can be generated by one element, then 4
is a Gorenstein ring, The rings K[o N M] give examples of both Cohen—Macaulay
rings that are not Gorenstein rings, and Gorenstein rings that are not complete
intersections. This final condition can be checked using the local Picard group.

3.7.PROOF OF LEMMA 1.5. We recall that in Lemma 1.5 we were
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concerned with the Poincar€ series P, (1) = 2 I(kA)tk. We form the auxiliary
k>0
lattice M’ =M © Z and consider in Mg the cone ¢ given by
0= {(m,r)EMqg ®Q|mErA}.

If A=C[o N M'] is Z-graded by means of the projection M ® Z—~> Z, then
P, (#) = P4 (2) is the Poincaré series of 4. Suppose that we have managed to

find homogeneous elementsay, . . .,a; € A of degree 1 that form a regular
sequence (see Appendix 1). Then P, (¢)*(1 — £)3* ! is the Poincaré series of the
finite-dimensional ring A/(ay, . . ., ), and it follows that it is a polynomial

with non-negative integral coefficients. The assertion about its degree can be
obtained from the proof of Lemma 1.3.

Since A4 is a Cohen-Macaulay ring, it is enough to find elementsay, . . ., ay
of degree 1 such that the quotient ring A/(ay, . . ., a;) is finite-dimensional (see
Appendix 1). We claim that fora,, . . .,a; we can take “‘general’” elements of
degree 1. To prove this we consider the subring A’ C A generated by the
elements of degree 1. Then A is finite over 4', as follows from the arguments
in the proof of Lemma 1.3 and the fact that dim 4’ =d + 1. It is clear that d + 1
general elements of degree 1 in A’ generate an ideal of finite codimension (since
the intersection of the variety Spec A’ C AV with a general linear subspace of
codimension d + 1 is zero-dimensional). Thus, the ideal (ao, . ..,a;) *4 C A is
also of finite codimension.

3.8. REMARK. Rings similar to 4/% in the proof of Theorem 3.4 and
“composed of™ toric rings A, are often useful. For example, they appear in
(28], §2 in the study of Newton filtrations. Here is another example. (See
Stanley [35]).

Suppose that we are given a triangulation of the sphere S* with the set of
vertices S. With each simplex o ={s,, . . ., sy} of this triangulation we
associate the polynomial ring 4 = C[Uso, Ce Usk] .If ¢' is a face of ¢, then

A, has a natural projection onto A4 ,.. Let A be the projective limit of the
system {4 4}, as o ranges over all simplices of the triangulation, including the
empty simplex. In other words, A4 is the universal ring with homomorphisms
A > A, . Now A4 can be described more explicitly as the quotient ring
ClU;, s € S1/I of the polynomial ring in the variables U, s € S, by the ideal /
generated by the monomials Uso e Usk for which {sy, . . ., s3}is not a simplex
of the triangulation.

For A we have a resolution analogous to that considered in Lemma 3.4.1,

0>4—>Cp—>Cpy—>...>Cy—0,

where C; is the direct sum of the rings A, over k-dimensional simplices 0. The
exactness is checked as in Lemma 3.4.1. From this we obtain two corollaries:
a) if we equip A with the natural Z-grading, then the Poincaré series of A4 is
given by the expression

Py (t) =~ — Aot (=™,
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where g; denotes the number of k-dimensional simplices in our triangulation of
S”,

b) 4 is a Cohen—Macaulay ring. If we choose a regular sequence a as in 3.7,
consisting of elements of degree 1, we find that

Py (t)- (1— )™ = apt apeg (t— 1)+ ...+ (E— )™

has non-negative coefficients, as the Poincaré polynomial of the ring A/a. Later
we interpret A/a as the cohomology ring of a certain smooth variety, and from
this, using Poincaré duality we deduce that P ,,z(¢) is reflexive.

§4. Differential forms on toric varieties

Before reading this section the reader may find it useful to peruse
Appendices 2 and 3.

4.1. DEFINITION. Let X be a normal variety, U= X —Sing X, andj: U= X
the natural embedding; we define the sheaf of differential p-forms, or of
p-differentials (in the sense of Zariski—Steenbrink) to be Qf = j, (Q”X).

In other words, a p-form on X is one on the variety U of smooth points of X.
The sheaves ﬂf", are coherent. Note also that in the definition we can take for U
any open smooth subvariety of X with codim(X — U) = 2.

4.2. The modules QZ. For the remainder of this section, ¢ is a cone generating
Mg, A=K[oNM],and X = Spec 4.

The sheaf SZ;’( on the toric variety X corresponds to a certain A-module; we
will now construct this module explicitly. For this purpose we introduce a
notation that will be in constant use in what follows.

Let V denote the vector space M <ZX> K over K. For each face 7 of ¢ we define

a subspace V_ C V_If 7 is of codimension 1, then we set

“4.2.1) VT=(Mﬂ(T—‘r))§K.
In general, we set
(4.2.2) V1= ﬂ Vea
0ot

where 6 ranges over the faces of ¢ of codimension 1 that contain 7. The
principal application of differentials is to varieties over a field of characteristic
0, and then V_ for any 7 is given by (4.2.1).
Now we define the M-graded K-vector space Qﬁ as
(4.2.3) Qi= @ A? Vrm) -z™
meo(\M
In other words, if £24 (m) is the component of QF of degree m, then

QA (m) = A? (Vegm) 2™ = AP ( ) Vo) 2™

Now 27 is naturally embedded in the A-module A? (V) ® A4 and is thus -
K
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equipped with the structure of an M-graded A-module. -

4.3. PROPOSITION. The sheaf Q4 is isomorphic to the sheaf Q4 associated
with the A-module SZA{’.

We begin the proof by constructing a sheaf morphism

ap: Qﬁ — %,
which will later turn out to be an isomorphism. To do this we must indicate for
an open set U asin 4.1 a homomorphism of A-modules
Qp: Q5 —-T (U, Q’[’]).

For U we take the union of the open sets U, , as 6 ranges over the faces of o of
codimension 1, and U, = X,_, = Spec 4,_, . Clearly, the U, are smooth and
codim(X — U) = 2.

We consider the inclusions

Q4 = Q% = Qi
and
I(U, ) C T(U,, ) € (T, 94,),

where T = Spec K[M] is the big torus of X. We define the map o, as the
restriction of a homomorphism of K[M]-modules

,: ‘QI%[M] - I(T, Q).
Note that the left-hand side is AP (V) ® K[M] = A’ (M ® K[M]), and the right-
K

hand side is AP (I(T, .Q.}, )). Thus, it suffices to specify «; (and to set &, = A? (@, )),
indeed just on the elements of the formm ® x’"', where m, m' € M. We set

ay (m @ &™) =da™ -a™ ™,

Now we have to check that a, takes QF into I'(U, Q7), that is into a p-form
on T that is regular on each U, . Since I'(U, QZ) =NI'U,, .QZ.), and since
]

o — 0 is a half-space, this follows from the more precise assertion:

4.3.1. LEMMA. If 0 is a half-space, then o, establishes an isomorphism of
Qﬁ with I'(X,, Q)’}).
PGROOF. We choose coordinates x4, . . ., x,, so that 4, = K[x;, x,, x3', .. .].
It can be checked immediately that £ is the p-th exterior power of 4 , there-

fore, we may assume that p = 1. But .th is generated by the expressions
ag
e;®x,,e,®1,...,¢,®1,and F(Xo,ﬂ)l‘, ) by the forms
a

d dx dx .
dx, =2%1 .x, 2%z 2Xn  Thijs proves the lemma.
. X1 X2 X

n
Now we turn to the general case. Using the lemma, to show that o, is an iso-
morphism it is enough to establish that Slz =N .Qi . where 0 ranges over
‘] o—
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the faces of ¢ of codimension 1, that is, we have to check that for every m € M
(4.3.1) Qh(m) = Q Qo _o(m).

If m € g, then both sides are 0, since 0 = N (0 — @). Suppose then that m € 0. If
0

m does not belong to the face 8, then m is strictly inside o0 — 8, and hence
Qy,_,(m)= AP (V)x™ . Therefore, (4.3.1) reduces to the equality (see

Appendix 2)
AP (N Ve)= N AP (Vo).
03m 6am

The proposition is now proved.

4.4. Exterior derivative. We return to Definition 4.1. Applying j« to the
exterior derivative d: QF > QF* !, we obtain the derivative d: Q& — QE* 1
On the level of the modules Q2 this corresponds to a homogeneous K-linear
homomorphism d: Qﬁ - SZZ + (preserving the M-grading). When we identify
Q8 (m) with AP (Vy,,y), then the derivative d becomes left multiplication by
me@le Vl"(m)'

Now d is a derivation (of degree + 1) on the skew-symmetric algebra

*

Q, = pfo QF, and ded = 0. We define the de Rham complex of A as
Qu=(Q4 5045 ... > 0% > ...).
The identification of K with QX(O) determines an augmentation K - SZ/; .

4.5. LEMMA. Suppose that K is of characteristic 0. Then the de Rham com-
plex S, is a resolution of K.

PROOF. Let A: m —> Z be a linear function, and suppose that A(m) > 0 for
any non-zero m € g N M. We consider the homomorphism of M-graded
A-modules

h: Qi-l_i —_ th
which “on the mth piece” is the inner product with A € V* L A: AP*! (Vr(m)) -
- AP( Vremy) (see Appendix 2). Then dok + hod consists in multiplication by
A(m) (see Appendix 2) and is invertible for m # 0, so that the complex ﬂ/; (m)
is acyclic for m # 0, and £ ; (0) degenerates to 23(0) = K.

4.6. The canonical module. Let » = dim ¢. We consider Q: = wy, the
module of differentials of the highest order #. Since

n { A™ (V) 2™, when m is strictly inside o;
4 (m)= ) 0 otherwise,
we see that 27 = A" (V) % A, where A is the ideal in 3.4. Now A" (V) isa

one-dimensional vector space, so that the module Qﬁ is (non-canonically) iso-
morphic to %.
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On the other hand, it is shown in [20] that Q" = w is a canonical dualizing
module for A. In other words, for any A-module F the pairing
H(o)(F)XEX (F (0)—>I
is perfect (see [22], 6.7), where I= H" (w) is the injective hull of the residue
ﬁeld of A at the vertex. In particular, i F is an A-module of depth n, then
(F) 0 for i <n (see Appendix 1), and Extk (F, w)=0fork >0. The
extenor product gives a pairing of A-modules SZP ® ﬂ""’ > Q= w,,0
equivalently, a homomorphism
@: Q4 — Hom, (47, ©4).
It is well known that for smooth varieties this is an isomorphism.
4.7. PROPOSITION. ¢: Q” - Hom, ()77, w,) is an isomorphism.
PROOF. As was shown in 4 3, 2F is isomorphic to I'(U, 7). On the
other hand, U is smooth so that SZ” 3 Homoy, (277, QF), and hence
Qi s HomoU (Q[7F, QF). Consider the commutative diagram

oA > Hom, (%77, Q%)

— , ¥
l——) Home, (R 7, Qi) <—

where  is the restriction homomorphism from X to U. Since
Q) =T(U, QF)), we see that ¥ is injective and ¢ is an isomorphism.

4 8. PROPOSITION Suppose that K is of characteristic 0 and that o is
simplicial. Then prof Q” =n for all p.

The proof is based on the same device as that of Lemma 3.4.2. Let M be a
lattice containing M with respect to which o is basic. Using the characteristic
function of M, as in Lemma 3.4.2, we form an A-linear homomorphism
p: Q” - Q% which is a projection onto Qﬁ C Q” Hence we find that SZZ
is a dlrect summand of 2%, and prof , Q4 >prof Q&= profy QF. But
A= K{X,,..,X,]isa regular ring, and QZ— is a free A- module, and is there-
fore of depth n.

Applying local duality (see 4.6) we get the following corollary.

4.9. COROLLARY. Under the hypotheses of Proposition 4.8 we have
Extk(Q4, Q%) =0 forallp > 0 and k > 0.

CHAPTER II
GENERAL TORIC VARIETIES

General toric varieties are obtained by gluing together affine toric varieties;
the scheme describing the gluing is given by a certain complex of cones, which we
call a fan. We show how to describe in terms of a fan and a lattice the invertible
sheaves on toric varieties, their cohomology, and also their unramified
coverings. '
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§5. Fans and their associated toric varieties

5.1. DEFINITION. A fan in a Q-vector space in a collection Z of cones
satisfying the following conditions:

a) every cone of X has a vertex;

b)if risafaceofacone 0 € X, thent € Z;

¢) if 0,0’ €, then 0 N o' is a face both of g and of ¢'.

Here are some more definitions relating to fans. The support of a fan X is the

set |2 |= U 0. Afan X' isinscribed in T if for any ¢' € X' thereisac € X
cEZ
such that ¢’ C o. If, furthermore, | Z' | = | Z |, then X’ is said to be a subdivision

of Z. A fan Z is said to be complete if its support | Z | is the whole space. A
fan X is said to be simplicial if it consists of simplicial cones. Finally, pA)
denotes the set of i-dimensional cones of a fan X,

5.2. Let M and N be lattices dual to one another, and let Z be a fan in Ny .
We fix a field K. With each cone 0 € X we associate an affine toric variety
X5 = Spec K[d N M].If 7is a face of 0, then Xy can be identified with an
open subvariety of Xy (see 2.6.1). These identifications allow us to glue
together from the Xy (as o ranges over X) a variety over K, which is denoted by
Xy and is called the roric variety associated with Z.

The affine varieties X y are identified with open pieces in X, which we
denote by the same symbol. Here Xy N Xy =X, .

5.3.EXAMPLE. Let N=2";¢,,.. . e, abasis of N, and
eo =—(e;+...+e,). We consider the fan ¥ consisting of cones (ei1 e e eik>,
with k <z and 0 < i]- < n. As is easy to check, the variety X5 is the projective
space Pg.

We meet other examples of toric varieties later. Sometimes one has to
consider varieties associated with infinite fans (see [18]); however, we restrict
ourselves to the finite case. Local properties of toric varieties were considered in
Chapter I, and from the results there it follows that Xy is a normal Cohen—
Macaulay variety of dimension dim Ng . Also X is a smooth variety if and only
if all the cones of ¥ are basic relative to N; such a fan is called regular.

5.4.PROPOSITION. The variety Xy, is separated.

The proof uses the separation criterion [21], 5.5.6. X is covered by affine
open sets Xy, and since the intersection Xy M Xy is again affine (and isomorphic
to the spectrum of K[(o N o') N M]), it remains to verify that the ring
K[(c No')" N M] is generated by its subrings K[6 N M] and K[¢' N M], that is,
that (¢ N ¢")" is generated by & and ¢'.

Since 0 N ¢’ is a face of ¢ and of ¢', we can find an m € M such that when m
is regarded as a linear function on Ng, thenm = 0 on 0, m < 0 on ¢, and the
hyperplane m = 0 meets ¢ along 0 N ¢’. Now let m' € (0 Ng')", thatis, m'is a
linear function that is positive on 0 N ¢'. We can find an integer r = 0 such that
m’ + rm is positive on o, thatis, m' + rm € ¢'. Thenm'=(@m' + rm) + (=rm) €
SR



114 V. I. Danilov

5.5. Functoriality. Let f: N' = N be a morphism of lattices, X’ a fan in
Ng , and suppose that for each ¢’ € £’ we can find a ¢ € ¥ such that
f(0") C 0. In this situation there arises a morphism of varieties over K
a]c: XXI,N, — XE,N-
Locally ?fis constructed as follows. Under the dual map ; M—>M tof, we

have f(;) - 5', hence (see 2.6) we have a morphism of affine varieties
X my > X my- Now 2f is obtained by gluing together these local
morphisms. Let us consider some particular cases.

5.5.1. The case most frequently occurring is N' =N and X' is inscribed in
Z. Then % X5 = X5 is a birational morphism. According to 2.6.1, % is an
open immersion if and only if £’ C Z. At the opposite extreme, %f is proper if
and only if 2’ is a subdivision of T (see 5.6).

5.5.2. Let N' C N be lattices of the same dimension, and £’ = Z. The mor-
phism Xy 5+ = Xy is finite and surjective.

5.5.3. A lattice homomorphism f: Z - N defines a morphism

%f: G, = Spec K[Z]> T C Xy .

This extends to a map of A! = X,,,  to Xz, yifandonlyif (1)€|Z |.

5.5.4. Let X be a fan in N and X' a fan in N'. The direct product of
K-varieties Xy » >1({ Xy nv is again a toric variety associated with the fan
ZXZinNX N

5.5.5. Blow-up. Let 0 =(e,, .. ., €;), where e, , . . ., e; is part of a basis of
N, and lete, =e,+ ... +e;. We consider the fan ¥ in N consisting of the cones
(e,-l - .,e,-’) withr<kand {i,,... i} # {1,..., k}. Then the morphism
Xz = Xy is the blow-up in X of the closed smooth subscheme X,

5.5.6. PROPOSITION. In the notation of 5.5, the morphism
°f: Xg' n» > Xy is proper if and only if | =Y Z ). In particular,
the completeness of Xy is equivalent to that of Z.

PROOF. Let V be a discrete valuation ring with field of fractions F and

valuation v: F* = Z. A criterion for % to be proper (see {21}, 7.3.8) is that
any commutative diagram

ospang*

Spec F L Spec ¥

e
7
e
#*

Yon T Yo
can be completed by a morphism Spec ¥ = X y- that leaves the diagram
commutative.
Without loss of generality we may assume that Spec F falls into the “big”
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torus T' = Spec K[M'] C Xy nv, hence also into the torus T = Spec K{M]C Xy v
So we obtain F-valued points of T’ and T, that is, semigroup homomorphisms
¢:M->F*and p=¢ o f: M - F*_The image of Spec V lies in one of the
affine pieces Xy, 0 € Z. This means that A0 NMYC V* or (ve o) NM)=0,
that is, v o ¢ regarded as a linear function on M belongs to o.

Arguing similarly with V-valued points of X T N We find that the existence
of a V-valued point of X £ N’ extending a given F-valued point is equivalent to
the existence of a cone ¢’ € T’ such that v o ¢’ € ¢’. The remaining calculations
are obvious.

5.7. Stratification. The torus T = Spec K[M] C Xy has a compatible action
on the open pieces Xy, and this determines its action on Xy . It can be shown
(see [26]) that this property characterizes toric varieties (and this explains the
name): if a normal variety X contains a torus T as a dense open subvariety, and
the action of T on itself extends to an action on X, then X is of the form X .

The orbits of the action of T on Xy are isomorphic to tori and correspond
bijectively to elements of £. More precisely, with a cone 0 € ¥ we associate a
unique closed orbit in Xy, namely, the closed subscheme X C Xy (see
2.5). Its dimension is equal to the codimension of ¢ in Ng .

The closure of the orbit associated with ¢ € Z is henceforth denoted by F;
subvarieties of this form are to play an important role in what follows. F is
again a toric variety; the fan with which it is associated lies in Vg /(0 — 0) and is
obtained as the projection of the star St(0) = {¢' €Z |0’ D o} of ¢ in 2.

5.8. It is sometimes convenient to specify a toric variety by means of a poly-
hedron A in Mg . With each face I" of A we associate a cone o in My : to do
this we take a point m € Mg lying strictly inside the face I', and we set

cospan &

or= U r-(A—m).
20
The system {6’1‘}, as I' ranges over the faces of A, is a complete fan, which we
denote by X, . The toric variety X z, 18 also denoted by P, to emphasize the

analogy with projective space P.

This construction is convenient, for example, in that if ¢ € X, corresponds
to a face I" of A, then the subvariety F, is isomorphic to P, and P.N P = Pp 1.
§6. Linear systems

In this section we consider invertible sheaves on Xy and their sections. As
always, M and N are dual lattices, Z is a fan in Ng, and X = X .

6.1. We begin with a description of the group Pic(X) of invertible sheaves on
X. Let & be an invertible sheaf on X; we restrict it to the big torus T C X.
Since Pic(T) = 0, we see that &, is isomorphic to Oy . An isomorphism
¢: € 1 = O, to within multiplication by an element of K*, is called a
trivialization of &. The group M acts on the set of trivializations (multiplying
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them by x™), and this action is transitive.

Let Div inv(X) denote the set of pairs (&, ¢), where € € Pic X and g is a
trivialization of &. Obviously,

Pic(X) ~ Div inv(X)/M,
so that it is enough to describe the group Div inv(X).

6.2. Let (&, ¢) € Divinv(X), and let 0 € Z be a cone. If we restrict the pair
(&, ) to the affine piece Xy = Spec 4, with 4 = Spec K[6 N M], we obtain an
invertible A-module E together with an isomorphism £ ® K{M] 3 K[M].

A

Temporarily we denote the ring K[M] by B; then we have an inclusion
E C B with E*B = B. According to [6] (Chapter 2, §5, Theorem 4), if we set
E'=(A:E)={b €B|bE C A}, then EE'= A, and E’ is the unique
A-submodule of B having this property. It is easy to check that 4 : E is an
M-graded submodule of B. Since in its turn £= A4 : E', we find that E is an
M-graded A-submodule of B. Therefore, from the fact that F is invertible we
deduce the relation Z e;e; = 1 where the ¢; (and e;) are homogeneous elements
of E (and E"). But then we can also find a relation e*e’ = 1 with homogeneous
eand e’ hence E3 A-e.

Thus, E is of the form A+x™° for some m, € M. This element m is
uniquely determined modulo the cospan of ¢. Or if when we denote by M, the
group M/M N (cospan §), we see that the pair (€, p) determines a collection

(m,), 5, thatis, an element of I1 M. This collection is not arbitrary, it satis-
[}

fies an obvious compatibility condition. Namely, if 7 is a face of g, then under
the projection M, - M_ the element m, goes into m, . In other words, the
group Div inv(X) is the projective limit of the system {M ;| o € 2},

Divinv (Xs) = lim M,.

6.3. The same arguments also allow us to describe the space I'(X, &) of
global sections of an invertible sheaf €. Once more, let us fix a trivialization ¢.
If 5 is a section of &, then y(s) is a section of Oy, that is, a certain Laurent
polynomial Za,,x™ € K[M]. For 0 € Z the condition for s to be regular on the
open piece Xy is that the support of Za,, x™ should be contained in
m, + 6. We obtain an identification of I'(X, &) with L(A), the space of

Laurent polynomials with support in the polyhedron A= N (m, + 0).
geEX

6.4. Of course, it would be more consistent to describe Div inv(Xy ) entirely
in terms of Z and N. To do this we must represent m, € M, as a function on 0.
The compatibility condition of 6.2 then takes the form: if r is a face of o, then
m,,, = m,. In other words, the functions m on the cones o € Z glue together
to a single function on | Z |, which we denote by g = ord (&, ). Clearly, g takes
integer values on elements of | | N N. Thus we obtain another description of
the group of invariant divisors:
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functions g: | Z | & Q such that
Divinv (Xy)= { a)g|, is linear on each o € X,
b) g takes integer valueson | Z | N N.

The group operation on Div inv(X) corresponds to addition of functions; the
principal divisors div(x™) are represented by global linear functions m| 5 |. The
condition that the monomial x™ belongs to the space I'(X, &) can then be re-
written as: m = ord(&€, ¢)on | Z |, where m € M is regarded as a linear
function on N .

6.5. With each invertible ideal J = (&, ¢) € Div inv(X) there is associated a
divisor D on X, that is, an integral combination of irreducible subvarieties of X
of codimension 1. Being T-invariant, this divisor D does not intersect the torus
T, and hence consists of subvarieties ,, with 0 €Z(): D = En_F,. The in-
tegers n, can be expressed very simply in terms of the function ord(/) on | Z |.
Namely, if e, is the primitive vector of N on the ray ¢ € Z(!), then
n, = ord(/)(e,). To verify this relation we can restrict ourselves to the open
piece Xy ; in this case the situation is essentially one-dimensional, and the
assertion is obvious.

6.6. The canonical sheaf. To stay within the framework of smooth varieties
let us suppose here that the fan X is regular. In this case the canonical sheaf
Q% (where n = dim Ng ) is invertible. The invariant n-form

w= i)? A —d;—" gives a trivialization w: QF 3 Oy . The corres-
1 n
ponding divisoris X F_. We can check this, again restricting ourselves to the

cex=(1)

essentially one-dimensional case Xy, 0 € =) (see also 4.6).

6.7. PROPOSITION. Let X be a complete fan, and let (€, p) € Div inv(Xy ).
The sheaf & is generated by its global sections if and only if the function
ord(&é, )is upper convex.

PROOF. Suppose first that ord(&, ¢) is convex. Let 0 € T™) and let
my, € M, = M be the element defined in 6.2. Then the local section x™ gen-
erates & on the open piece Xy C X. Since such open sets cover X, it is enough
to show that x™7 is a global section of &. But according to the definition of
g = ord(&, ¢) we have 8|, =M, ., and since g is convex, m = g on the whole
of | Z |. It remains only to use 6.4.

Conversely, suppose that & is generated by its global sections and let g
denote the convex hull of g = ord(&, ¢). Replacing, if necessary, the invertible

sheaf & by a power &€®% we see that g satisfies the conditions of 6.4, and g
determines an invertible sheaf &, a subsheaf of €. From the description of
the global sections in 6.4 it follows that I'(X, g) =I'(X, €. Since I'(X, &)
generates &, we obtain € = € andg=g.

It is also easy to see that in the convex case the polyhedron A of 6.3 is the
convex hull of the elements m_ with ¢ € 2",

As we have already said, each Laurent monomial f € L(A) can be inter-
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preted as a section of the invertible sheaf €. Hence it determines a closed
subvariety Dy of X, the variety of “‘zeros” of f €ET'(X, ). As f ranges over the
set of non-zero sections of & (or the non-zero elements of L(A)), the effective
divisors Df form the linear system | Dfl on X. When & is generated by its
global sections, this system | Dfl is without base points and it follows from
Bertini’s theorem (in characteristic 0, the last restriction can be lifted) that the
“generic’ element of this system Df has singularities only at the singular points
of X. In particular, for the “‘generic” element f € L(A) the variety Df NTis
smooth.

This last result can be made more precise. Let us call an orbit of the action
of T a stratum of X (see 5.7).

6.8. PROPOSITION. Suppose that K has characteristic 0 and that the in-
vertible sheaf € on Xy is generated by its global sections. Then for the
general section [ €ET(X, &) the variety Df is transversal to all strata of X.

PROOF. We recall that the strata of X corresponds to cones 0 € 2, and that
their closure F, are again toric varieties. Hence, using the consequence of
Bertini’s theorem above it is enough to prove the following assertion.

6.8.1. LEMMA. Let & € Pic X5 be generated by its global sections, and let
o € Z. Then the restriction homomorphism

T(X, &) ~T(Fo €1r,)

is surjective.

PROOF. We choose compatible trivializations of & and € lpa; this is
possible, since Pic Xy = 0 (see 6.2). Then the function ord(&) is zero on 0. The
sections of & | F,, Ormore precisely, a basis of them, are given by the

elements m € M that are zero on o and = ord(é) on St(o¢). But then from the
convexity of ord(&) we deduce that m = ord(€) on the whole of | X |, that is,
x™ € I'(X, &). The lemma and with it Proposition 6.8 are now proved.

The varieties Df are of great interest, since they are generalizations of hyper-
surfaces in P*. Their cohomology is closed connected with the polyhedron A;
we hope to return to this question later.

6.9. Projectivity. As before, let £ be a complete fan. We say that a convex
function g on | X | is strictly convex with respect to Z if g is linear on each
cone g € T and if distinct cones of ™) correspond to distinct linear
functions. In other words, g suffers a break on passing from one chamber of
T to another. We also recall that an invertible sheaf & on X is said to be
ample if some tensor power &®& (k> 0) of it is generated by its global
sections and defines an embedding of X in the projective space P(I'(X, &#)).

6.9.1. PROPOSITION. If & is ample, then ord(&) is strictly convex with
respect to Z.

That ord(&) is convex follows from 6.7, so that it remains to check that
ord(&) suffers a break on each face 0 € ("~ that is, that it is strictly
convex on the stars of the cones of Z(*~"_ Thus, the question reduces to the
one-dimensional case, that is, to ample sheaves on the projective line P!, where
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it is obvious.

Note that the converse assertion also holds (see [26]).

This criterion for ampleness allows us to construct examples of complete,
but not projective toric varieties. Without going into detailed explanations, let
us just say that X is prevented from being projective by the presence in ¥ (or
more precisely, in the intersection of £ with a sphere) of fragments such as
these (Fig. 3):

Fig. 3.

The point is that a convex function on such a complex cannot possibly be
strictly convex. However, we do have the following toric version of Chow’s
lemma:

6.9.2. LEMMA. For every complete fan X there exists a subdivision X' that
is projective, that is, admits a strictly convex function.

For example, we can extend each cone in 2"~ to a hyperplane in Nq and
take the resulting subdivision.

§ 7. The cohomology of invertible sheaves

7.1. We keep to the notation of the previous section. Let € be an invertible
sheaf on X = X . A choice of trivialization ¢: € |7 = Oy defines a T-
linearisation of &€ and hence an action of T on the cohomology spaces
H'(X, ). Therefore, these spaces have a weight decomposition, that is, an
M-grading

H (X, &)= EIEBMHi (X, &) (m).

This decomposition can also be understood from the description in 6.2 and the
computation of the cohomology using a Cech covering. Let us show how a weighted
piece H{(X, & ) (m) can be expressed in terms of g = ord(&, ).

Here it is convenient to regard the o as cones in the real vector space
Np =N ® R;then o and | X | are closed subsets of Ng . We introduce the
closed subset Z,) =Z,  (g)of | Z |:

Z,, ={zx ENg | m(x)=>g(x)}

(here m € M is regarded as a linear function on Ng ).
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7.2. THEOREM. (Demazure [16]). H(X, &)(m) =H2m 4z ;K.

The proof is based on representing both sides as the cohomology of natural
coverings of Xy and | 2 |, which also turn out to be acyclic.

We begin with the left-hand side. X is covered by the affine open pieces
Xy, 0 €Z. An intersection of such affines is of the same form, in particular, is
affine. By Serre’s theorem this covering is acyclic, and the cohomology
H'(X, &) is the same as that of the covering ¥ = {X 5 Joes, thatis, the
cohomology of the complex

C*(E, &)=(... > @ H (X3, §) > ...),
g

whose construction is well known. Each term of this complex has a natural
M-grading (see 6.2), the differential preserves the grading, and the H (X, &)(m)
are equal to the i-dimensional cohomology of the complex C*(%, §)(m) put
together from the H%(X ;, &)(m). )

Now we consider the right-hand side, using the closed covering of | £ | by
the cones o with 0 € . The intersection of cones in X is again a cone of X. Let
us check that our covering is acyclic so that we can then use Leray’s theorem
([71,11,5.2.4) to represent H z,, (I Z |; K) as the i-dimensional cohomology of

the complex
€t (OYoez; K)= (... —> @® Hyp (03 K) > ...).
a

Thus, let us check that Hém (0; K)=0 fori > 0. For this purpose we use the
long exact sequence

o> H" (0—Zp; K)— Hy,, (0; K) ~ H (0; K) -

Since ¢ and 0 — Z,, are convex, we come to the required assertion.
It is now enough to verify that the two spaces H% (X, &)(m) and

HZ0 (0; K) are equal. Bearing 6.2 in mind, we see that the first of these is equal
m

either to K or to 0, depending on whether m belongs to the set m + 0 or not
(where m is as in 6.2), that is, whether or not m =2 m_ = ord(&, ) as
functions on ¢. To find the second space we use the same exact sequence as
before:

0— HY, (0; K) — H° (0; K) — H® (6— Zy,; K).

From this we find that H 9 (o0; K)is isomorphic to X or to 0 depending on
whethero—Z,, is empty 8r non-empty, that is, again whether or not
m=2m, holds ong.

7.3. COROLLARY. Suppose that X is a complete fan, and that g = ord(&, ¢)
is upper convex. Then H (X, &) = 0 fori > 0.

For any m €M the set Ny —Z,, = {x ENg | m(x) <g(z)} is convex, hence,
as in the proof of acyclicity, we obtain H;m (Ng:;K)=0fori>0.
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7.4. COROLLARY. H'(X, Oy ) =0 fori>0.

7.5. We take this opportunity to say a few words on the cohomology of the
sheaves of differential forms Q.g, (see 4.1). These sheaves have a canonical
T-linearization, and the spaces H' (X, Slf",) have a natural M-grading. Using the
covering X and Serre’s theorem, we find that these M-graded spaces coincide
with the cohomology of the complex of M-graded spaces

C*E, ) =(... > @ H (X5, Q%) —>...).
ag

Note that the space H®(Xy, SZ;’() = QFf  is described in (4.2.3). Since 24, (m)
and Qﬁ,, (km) are canonically isomorphic for any k > 0, so are H (X, QP )(m)

and H'(X, P )(mk). This simple remark leads to a corollary:

7.5.1. COROLLARY . If T is a complete fan, then H'(X, Q5 )(m)=0 for
m#*0.

For H(H, Q%) is finite-dimensional.

As for the component H'(X, .Q;})(O) of weight 0, note that the spaces 955(0)

needed to compute it are also of a very simple form, (see 4.2.3), namely:

(7.5.1) Q% (0)= A (¥,

ospan E)

(which in characteristic 0 is equal to AP (cospan ¢) ® K).
Q

Finally, in the style of 6.3 we can describe the space of sections of the sheaf
.Q; ® &, where & € Pic X. We restrict ourselves to the case when ord(&) is
convex. Asin 6.3,

I (X, Q% @ &)= Na"0h ..
o

Alternatively, in terms of the polyhedron A connected with ord(g), for each
m €M let V, denote the subspace of V=M ® K generated by the smallest
face of A containing m. Then

(7.5.2) I(X,%&= @ A (V,) 2™

meANM

The next proposition, which we give without proof, generalizes a well-known
theorem of Bott:

7.5.2. THEOREM. Let £ be a complete fan, and let € be an invertible sheaf
such that ord(&) is strictly convex with respect to X. Then the sheaves
0§ ® & areacyclic, that is, H'(X, Q8 ® €) =0 fori>0.

7.6. The cohomology of the canonical sheaf. Let 3 be a fan that is complete
and regular, so that the variety Xy is complete and smooth. The canonical
sheaf Q;, is invertible, and the function g, = ord(£2%) takes the value 1 on
primitive vectorse,, 0 € = (see 6.6). According to Corollary 7.5.1,

H (X, Q;’{) = H(X, SZ;’[)(O); let us compute this space, using Theorem 7.2. For
go the set Z, = {x € Ng | go(x) < 0} degenerates to a point {0}, so that
H' (X, Q%)(0).is isomorphic to H{,,(R"; K) = H'(R" , R" — {0}; K). We arrive
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finally at
0, istn,
K, i=n.

7.7. Serre duality. We keep the notation and hypotheses of 7.6. Following a
suggestion of Khovanskii we show how to check Serre duality for invertible
sheaves on Xy .

Let w = Qf, and & €Pic X.

7.7.1. PROPOSITION. The natural pairing

HYX, 8 ® H"*(X, 61 ® 0) > H X, o) = K

Hi(X, Q&)z{

is non-degenerate.

To prove this we fix a trivialization of &. The above pairing is compatible
with the M-grading, and to verify that it is non-degenerate we need only check
that for each m € M the spaces H* (X, &)(m) and H" % (X, &' @ w)(—m) are
dual to one another. By changing the trivialization we may assume that
m=0.

Now H¥ (X, &)(0) isisomorphic to H’}(R" ) = H*(R", R"~Z), where

Z={z €R" | 0> ord (&) (x)},

and H" "% (X, &' ® w)(0)isisomorphic to H}~*(R")=H""¥(R", R"-Z"),
where

Z'= {z€R" | ord (&) (z) =g, (z)}.
The above pairing goes over into the cup-product

H*R',R"-Z) ® H" ¥ R",R"-Z)~>H'"(R",R"-ZNZ")=
=H"(R", R" — {0}),

and the question becomes purely topological. We restrict ourselves to the
non-trivial case when both Z and Z' are distinct from R" .
We replace R® by the disc D" ; more precisely, let

DF={z €R”go(x)< 1}.

We set S = 0D"; clearly, S is homeomorphic to the (n — 1)-dimensional sphere
and is a topological manifold. The above pairing can be rewritten
HYD", § —Z) @ H** (D", § — Z')—
— H™ (D™, §) = K.

The key technical remark is that the inclusion Z N § C, §— Z' is a deformation
retract. The required deformation can be constructed separately on each
simplex o N S, taking care to ensure compatibility. We leave the details to the
reader, restricting ourselves to Fig. 4. Of course, here we have to use the cir-
cumstance, which follows from the definition of g0, that the vertices of a
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simplex do not fall into the “belt” strictly between Z and Z'.

Fig. 4.

Thus, (D", S—Z') is equivalent to (D, S N Z), and we have only to check
that the map

H*MD", SN Z)— HD", S — Z)*

is an isomorphism. We consider the commutative diagram
... H™"(D, S) >~ H" (D, SNZ)—> H*™ (S, SNZ)— ...

) l L

... H*D)}* S H'D,S—Z)* >H"'(S—Z)— ...

Here the top row is the long exact sequence of the triple (D, S, SN Z), and the
bottom row is the dual to the long exact sequence of the pair (D, S — Z). The
left-hand vertical arrow is the obvious isomorphism, and the right-hand one is
also an isomorphism, by Lefschetz duality on S (see [12],Ch. 6, §2, Theorem
19). Therefore, the middle vertical arrow is also an isomorphism, which com-
pletes the proof.

7.7.2. REMARK. The results of 7.6 and Proposition 7.7.1 remain true for
any complete fan.

§8. Resolution of singularities

8.1. Using the criterion for a toric variety to be smooth we can give a simple
method of desingularizing toric varieties. We recall that a resolution of the
singularities of a variety X is a morphism f: X' — X such that a) fis proper and
birational, and b) X' is a smooth variety.

Now let T be a fan in Ngq and X = X; . According to 5.5.1, to resolve the
singularities of X it is enough to find a subdivision T’ of ¥ such that =’ is
regular with respect to V. Thus, the problem becomes purely combinatorial,
which is typical for ““toric geometry™.

We construct the required subdivision Z' as a sequence of “‘elementary” sub-
divisions. Let A C | £ | be a ray; the elementary subdivision associated with A\
goes like this: if 0 € Z is a cone not containing A, then it remains unchanged;
otherwise ¢ is replaced by the collection of convex hulls of A with the faces of
o that do not contain A.

8.2. Using the operations indicated above we carry out the barycentric sub-
division of 2. After this, all the cones become simplicial, and our subsequent
actions are directed at ‘‘improving’’ simplicial cones. For this purpose it is con-
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venient to introduce a certain numerical characteristic of simplicial cones,
which measures their deviation from being basic.

Let 0 ={ey, ..., ;) be a simplicial cone, where the vectors e; belong to N
and are primitive, We define the multiplicity mult(o) of ¢ as the index in the
lattice N N (0 ~ o) of the subgroup generated by ey, . . ., ¢;. This number
mult(o) is also equal to the volume of the parallelotope
P, ={Zase; |0 <o; <1} in (0~ 0) normalized by the lattice N N (0 = 0),
and also to the number of integral points (points of N)in P_. Obviously, o is
basic with respect to N if and only if mult(o) = 1.

Suppose that mult(c) > 1. Then we can find a non-zero point x ENN P,
that is, a point of the form

= 2 oe;, 0<Coy<<i.

Let us pass to the subdiyision of ¥ associated with the line (x). Then the
multiplicity decreases, since

mult (e, ..., Ei, «e ey €y Z)y=a; mult (o)

for ¢; # 0; this formula follows easily from the interpretation of multiplicity
as a volume. The argument above can easily be made inductive, proving that
the required subdivision T’ exists.

8.3. REMARK. The subdivision =’, which gives a resolution of singularities
f: X5 = Xy, can be chosen so that

a) f is an isomorphism over the variety of smooth points of X ;

b) f is a projective morphism (more precisely, the normalization of the blow-
up of some closed T-invariant subscheme of X5 ).

8.4. In the two-dimensional case the regular subdivision of a fan Z can be
made canonical; we restrict ourselves to the subdivision of one cone a. Let

A C Q% = Ng be the convex hull of the set (¢ N N)— {0}, and let x,, ..., x;
be the elements of N that lie on the compact faces of dA. Then the rays
(x1), . .., {xg give the required subdivision of the cone o. That the cones so

obtained are basic is due to an elementary fact: if the only integral point of a
triangle in the plane are its vertices, then its area is 1/2. The explicit determin-
ation of the coordinates of the points x, . . ., x;, is closely connected with
expansions in continued fractions.

8.5. Toric singularities are rational. Using the results of §7 we prove the
following proposition.

8.5.1. PROPOSITION. If £'is a subdivision of T and f: X5+ > Xy is the
corresponding morphism (see 5.5), then f« OXz' = OXz and Rif. OXz' =0
fori>Q.

PROOF. Since the question is essentially local, we may assume that X = X
is an affine variety, in other words, is of the form X; for some cone ¢ in Ng .
Foreachm €M
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H(Xs, , Ox) (m)=Him (0; K),
where
= {z € og; m(z) = 0}.
If m €6, then Z,, = ¢ and

Hi (0 K)= 1 03 Ky={ o0 1%
Zm(o7 )_ (07 )_{ O, i>0.
But if m & ¢ then ¢ — Z,, is convex and non-empty, so that Hi (o; K) =0

for alli. Finally, we find that Ay 3 H°(X 5, OX ), and H' (X4, OX )=
fori > 0.

8.5.2. REMARK. A similar, although more subtle technique can be applied
to the study of singularities and cohomological properties of generalized flag
varieties G/B and their Schubert subvarieties (see [17], [24}, [27]). Flag
varieties, like toric varieties, have affine coverings; they also have a lattice of
characters and a fan of Weyl chambers.

§9. The fundamental group

In this section we consider unramified covers and the (algebraic)
fundamental group of toric varieties. Throughout we assume that X is
algebraically closed. First of all, we have the following general fact.

9.1. THEOREM. If X is a complete fan, then Xy is simply-connected.

ForX; is a complete normal rational variety, so that the assertion follows
from [30] (exposé XI, 1.2).

9.2. Let us show (at least in characteristic 0) how to obtain this theorem by
more “‘toric’” means, and also how to find the fundamental group of an
arbitrary toric variety X . Let’Z be a fan in Ng ; we assume that | Z | is not
contained in a proper subspace of Ng , since otherwise some torus splits off as
a direct factor of Xy . Suppose further that f: X' - X, is a finite surjective
morphism satisfying the following two conditions:

a) X' is normal and connected;

b) f is unramified over the “big” torus T C X, .

Note that conditions a) and b) hold if fis an etale Galois cover. Now let us
restrict fto T, f: f~1(T) - T. Since in characteristic 0 finite unramified covers
of T are classified by subgroups of finite index in 7, (T) = 2" it is not difficult
to see that f~!1(T) =T’ is again a torus, and if M’ is the character group of T',
then M is a sublattice of finite index in M’', and the Galois group of T' over Tis
1somorphlc to M'/M. In other words,

b") f~1(T) ~ T coincides with Spec K[M'] = Spec K[M].

The subsequent arguments do not use the assumption that the characteristic
is 0, but only the properties a) and b’). Let N' C N be the inclusion of the dual
lattices to M’ and M. From a) and b') it follows that the morphism X' — X, is
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the same as the canonical morphism (see 5.5.2) X3 > X =, N For X’ is the
normalization of X in the field of rational functions of T'; but X5 =Xz n
is normal and contains T' as an open piece.

From now on everything is simple. Let us see what condition is imposed on
the sublattice N’ C N by requiring that X — X, is unramified along T_, that
is, the stratum of X associated with ¢ € Z (see 5.7). The character group of
T, is isomorphic to M N cospan . Over T, there lies the torus T/, with the
character group M’ N cospan §. The condition that f is unramified along
T, is equivalent to

M’ (| (cospanc)/M () cospan o) M'IM,

or in dual terms
NN (o0 —o0)=N'[ (6 — o).

Now we introduce the following notation: Ny C N is the lattice generated

by U (¢ N N). From what we have said above it is clear that Xy > Xy is un-
cEZXT

ramified if and only if Ny CN' CN.

9.3. PROPOSITION. Suppose that K is of characteristic 0 and that | T |
generates No. Then my (X5 ) = N/Ny. In particular, m, (X ) is a finite Abelian
group.

As a corollary we get Theorem 9.1, and also the following estimate: if a fan
Z contains a k-dimensional cone, then 7, (X ) can be generated by n — k ele-
ments (as usual, n = dim Ng ). Simple examples show that X need not be
simply-connected.

9.4. Now let us discuss the case when K has positive characteristic p. First
of all, we cannot expect now to obtain all unramified covers “from the torus”.
For even the affine line A! has many “wild”’ covers of Artin-Schreier type,
given by equations ¥ —y = f(x). It is all the more remarkable that when the
fan “sticks out in all directions”, then the wild effects vanish. We have the
following result, which we prove elsewhere:

9.4.1. PROPOSITION. Suppose that X is not contained in any half-space of
Nq. Let f: X' > X, be a connected finite etale cover. Then its restriction to
the big torus {1 (T) = Tis of the form Spec K[M'] > T, where M' O M and
[M': M} is prime to p.

Arguing as in 9.2 we get the following corollary.

9.4.2. COROLLARY. Suppose that % is not contained in any half-space.
Then my (X ) is isomorphic to the component of N[Ny prime to p.

CHAPTER 111
INTERSECTION THEORY
Intersection theory deals with such global objects as the Chow ring, the

K-functor, and the cohomology ring, which have a multiplication interpreted as
the intersection of corresponding cycles. Here we also have a section on the
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Riemann—Roch theorem, which can be regarded as a comparison between
Chow theory and K-theory.

§10. The Chow ring

10.1. Chow theory deals with algebraic cycles on an algebraic variety X, that
is, with integral linear combinations of algebraic subvarieties of X. Usually X is
assumed to be smooth. If two cycles on X intersect transversally, then it is
fairly clear what we should consider as their ““‘intersection’; in the general case
we have to shift the cycles about, replacing them by cycles that are equivalent
in one sense or another. The simplest equivalence, which is the one we consider
henceforth, is rational equivalence, in which cycles are allowed to vary in a
family parametrized by the projective line P!. Of course, there remains the
question as to whether transversality can always be achieved by replacing a
cycle by an equivalent one. In [14] it is shown that this can be done on pro-
jective varieties; we shall show below how to do this directly for toric varieties.

Let A; (X) denote the group of k-dimensional cycles on X to within rational
equivalence, and let 4+ (X) = ]?Ak (X).If f: Y = X is a proper morphism of

varieties, we have a canonical group homomorphism
for Ag(Y) = Ax(X).

Later we need the following fact:
10.2. LEMMA (see [141). If Y is a closed subvariety of X, then the sequence

A Y) > Ap(X) > A4, (X —-Y)—>0

is exact.

Let us now go over to toric varieties. Let Z be a fan in Ng and X = X . We
recall that with every cone 0 € Z we have associated a closed subvariety F in
X of codimension dim ¢ (see 5.7);let [F,] €A, _4im ,(X) denote the class of
F . The importance of cycles of this form is shown by the following
proposition.

10.3. PROPOSITION. The cycles of the form [F ] generate A«(X).

PROOF. Using Lemma 10.2 we can easily check that 4, (T) = Z is generated
by the fundamental cycle T. Let Y = X —~ T. Applying Lemma 10.2 we find that
A, (X) is generated by the fundamental cycle X = F(g, and that for k <n the
map A, (Y) = A, (X) is surjective. In other words, any cycle on X of dimension
less than n can be crammed into the union of the ¥, with o # {0}. Since F is
again a toric variety, an induction on the dimension completes the proof.

We are about to see that on a smooth toric variety X “‘all cycles are
algebraic”. To attach a meaning to this statement we could make use of l-adic
homology. Instead, we suppose that K = C and use the ordinary homology of the
topological space X(C), equipped with the strong topology.

10.4. PROPOSITION. For a complete smooth toric variety X the canonical
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homomorphism (which doubles the degree)

is surjective.
PROOF. According to Lemma 6.9.2 and 8.3 we can find a regular projective
fan X' that subdivides Z;let X' =X 5. From the commutative diagram

A, (X') > H, (X', Z)

l |

A* (X) _)'H* (X1 Z)

and the fact that H. (X', Z) » H. (X, Z) is surjective (which is a consequence of
Poincaré duality) it is clear that it is enough to prove our proposition for X,
that is, to assume that X is projective. But in the projective case, following
Ehlers (see [18]), we can display more explicitly a basis of A« (X) and of

H. (X, Z), and then the proposition follows. Since this basis is interesting for
its own sake, we dwell on the projective case a little longer.

10.5. Let X be a projective fan, that is, suppose that there exists a function
g: Ng — Q that is strictly convex with respect to Z. The cones of () are called
chambers and their faces of codimension 1 walls. The function g allows us to
order the chambers of X in a certain special way, as follows. We choose a point
X¢ € Nq in general position; then for two chambers ¢ and o' of T we say
that o’ >0 if m(xo) > m,(x,), where m_, m, € Mq are the linear functions
that define g on 0 and ¢'. A wall 7 of a chamber o is said to be positive if
o' > o, where ¢' is the chamber next to ¢ through 7. We denote by (o) the
intersection of all positive walls of a chamber o.

10.5.1. LEMMA. Let 0 and o' be chambers of Z, and suppose that
o' D y(0). Then o' = 0.

PROOF. Passing to the star of y(¢), we may assume that (o) = {0}. Then all
the walls of ¢ are positive, which is equivalent to x, € 0. Since g is convex, it
then follows that m . (xo) = m, (x,) for any chamber ¢'.

10.6. PROPOSITION. For a projective toric variety X the cycles [FW,)]
with g € TM) generate Hv (X, 2).

PROOF. Let T, denote the stratum of X associated with 7 € X (see 5.7). For
a chamber o we set

Clo)= U T,
oD 7Dv(0)
It is easy to see that C(o) is isomorphic to the affine space A®°4™m 7 and that
the closure of C(0) is F,,(a). We form the following filtration ¢ of X:

D (0) = 096’ C (a').

10.6.1. LEMMA. The filtration ® is closed and exhaustive.
To check that ®(o) is closed it is enough to show that the closure of C(0),
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that is, F y is contained in (o). The variety Fy(a consists of the T, with
D 'y(o) and it remains to find for each 7 contammg v(o) a chamber ¢’ such
that ' D 7 D v(0o')and ¢’ = 0. To do thls we take ¢’ to be the m1mma1
chamber in the star of 7; then, firstly, ¢’ 2 7 D v(¢'), and, secondly, ¢’ D 7 D ¥(0),
from which it follows according to Lemma 10.5.1 that ¢' > 0.

That & is exhaustive is completely obvious, since C(g) = F(qy = X if o is the
minimal chamber in ("),

We return to the proof of Proposition 10.6. Let us show by induction that
the homology of ®(g)is generated by the cycles [F.Y(a:)] with o' 2> 0. Let g,
be the chamber immediately following ¢ in the order. Everything follows from
considering the exact homology sequence of the pair (®(0), ®(0,)), which, as
is easy to see, is equivalent to the pair (S2°°%m ¢ point). This proves the
proposition.

10.6.2. REMARK. In fact, the cycles [F. (0)] with 0 € ) form a basis of
H« (X, Z). This is easy to obtain if we use the intersection form on X and the
dual cell decomposition connected with the reverse order on £, From this
we can deduce formulae that connect the Betti numbers of X with the numbers
of cones in 2 of a given dimension; we obtain these below without assuming
X to be projective.

10.7. Up to now we have said nothing about intersections; it is time to turn
to these. As usual, we set A¥ (X) =4, _,(X), and 4*(X) = 29 A* (X). To specify

the intersections on X means to equip 4 *(X) with the structure of a graded
ring.

Among the varieties F the most important are the divisors, that is, the F,
with o0 € Z() . We identify temporarily ¢ with the set of primitive vectors
of N lying on the rays o € (1 for such a vector e € () we denote by D(e)
the divisor F,,,. To begin with we consider the intersections of such divisors.

It is obvious that if ey, . . ., ;) € T then the intersection of
D(ey),....D(e)is transversal and equal to F, e e But if
(ey, ..., e;) does not belong to X, then the intersection of D(e,), . . ., D(ey)

is empty. Finally, among the divisors D(e) we have the following relations:
div(x™) = Z m(e)D(e) for each m € M, and hence, £ m(e)[D(e)] = 0. Using
e [4

these observations, let us formally construct a certain ring.

With each e € Z( we associate a variable U, , and let Z[U] = Z [U,, e € 2V}
be the polynomial ring in these variables. Next, let / C Z[U] be the ideal
generated by the monomials U, -...* U, e such that e, , .. ., e;) ¢ Z. Finally,

let J C Z[U] be the ideal generated by the linear forms a(m) = E m(e)U,, as

m ranges over M (however, it would be enough to take m from a b331s of M).
10.7.1. LEMMA, The ring Z{U}Y /(I + J) is generated by the monomials
Uel L Uek, where all the e, . . ., e, are distinct.

The proof is by induction on the number of coincidencesin U, - ... - Uek.
1
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Suppose, for example, that e; =e,. We choose m € M such that m(e;)=—1
and m(e;) = 0 for ¢; # ¢, . Replacing Ue, by the sum X m(e)U,, which does

e*e,
not involve e;, . . ., ¢, we reduce the number of coincidences in the terms of
the sum 2 m(e)U, Ue2 st Uek. This proves the lemma.

e#e,
10.7.2. COROLLARY. The Z-module Z[U) /(I +J) is finitely generated.
From the definition of rational equivalence it is clear that by assigning to

the monomial U, - ... - U, » with {ey, . .., .)€ Z® the cycle
[Fe, ’“_’ek>] we can obtain a surjective group homomorphism
(10.7.1) ZIU /(I +J) > A*(X).

In the projective case, Jurkiewicz [25] has shown that this is an iso-
morphism. We will show here that this assertion is true for any complete
X ; the isomorphism so obtained defines in 4*(X) a ring structure. To see this
we consider also the natural homomorphism

(10.7.2) A*X)—> H*(X, 2),
which is defined by the Poincaré duality
AFX)= A, (X))~ Hy, (X, 2) S H* (X, 2)

and is surjective according to Proposition 10.4.

10.8. THEOREM. Let X be a complete smooth toric variety over C. Then
the homomorphisms (10.7.1) and (10.7.2) are isomorphisms, and the
Z-modules ‘

ZI A+ N3 A*X) S H*X, 2)

are torsion-free. If a; = #(TV) is the number of i-dimensional cones in Z, then
the rank of the free Z-module A* (X) is equal to

k4" (X) = 3 (— ) (;) .

PROOF. Let us show, first of all, that the Z-module Z{U1/(I +J) is torsion-
free and find its rank. For this purpose we check that for any prime p
multiplication by p in Z[U] /(I +J) is injective. Let m,, ..., m, be a basis of
M; it is enough to show that a(m,), . . .,a(m, ), p is a regular sequence in
Z[U1/I. Since p is obviously not a zero-divisor in Z[ U] /I, it remains to check
that the sequence a(m, ), . . ., a(m,) is regular in (Z/pZ)[U]/I. But according
to 3.8, this is a Cohen—Macaulay ring, and the sequence is regular because
@Z/p2)[U]1 /(I +J) is finite-dimensional (see Corollary 10.7.2). It also follows
from 3.8 that the rank of Z[U} /(I +J) is a, , the number of chambers of Z.
On the other hand, the rank of H*(X, Z) is equal to the Euler characteristic of
X, which is also equal to @, (see §11 or §12). It follows from this that the
epimorphisms (10.7.1) and (10.7.2) are isomorphisms. The formulae for the
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ranks of the A* (X) also follow from 3.8.

10.9. REMARK. Up to now we have assumed that X is a smooth variety.
However, the preceding arguments can be generalized with almost no change to
the varieties Xy associated with complete simplicial fans Z. The only thing we
must do is replace the coefficient ring Z by Q. There are several reasons for
this. The first is Proposition 10.4. The second is that the multiplication table
for the cycles D(e) has rational coefficients: if 6 ={e,, .. ., e;) € T®) then

D(e)- ... D (en) =gy [Fol-

mult (¢

Finally, Poincaré duality for Xy holds over Q (see §14). Taking account of
these remarks we again have isomorphisms

QUIT+T 3 A*(X)q x H¥(X, Q)

together with the formulae of Theorem 10.8 for the dimension of
A¥(X)q 3 H** (X, Q), which we will obtain once more in §12.

§11. The Riemann—Roch theorem

11.1. Let X be a complete variety over a field K, and let § be a coherent
sheaf over X. The Euler—Poincaré characteristic of & is the integer

21X, F) =2 =2 (—1) dimg H* (X, F).

i>0
The Chow ring 4*(X), which we considered in the last section, is also interest-
ing in that x(X, %) can be expressed in terms of the intersection of algebraic
cycles on X. This is precisely the content of the Riemann—Roch theorem (see
[13] or [32]): if X is a smooth projective variety, then
Here ch(%) and Td(X) are certain elements of 4*(X)q called, respectively,
the Chern character of & and the Todd class of X; and the bracket on the
right-hand side denotes the intersection form on A*(X)q, that is, the com-
posite of multiplication in A *(X)q with the homomorphism
A*(X)q = A*(point)q = Q. We apply this theorem to invertible sheaves on a
toric variety X = Xy . If for € € Pic X the function g = ord(&) is convex on
| Z | =Ng, then Hi(X, &) =0 fori >0, and the Riemann—Roch theorem gives
a certain expression for the dimension of H°(X, &) = L(Ag), that is, for the
number of integral points in the convex polyhedron Ag CMq.

To begin with, we explain the terms in the Riemann—Roch theorem.

11.2. The Chern character ch(&) of an invertible sheaf & is the element of
A*(X)q given by the formula

ch (§) = (P) =1+ [D] -+ 5 [DI*+ ...+~ (DI,

where D is a divisor on X such that & = O, (D).
11.3. Chern classes. Chern classes are needed to define the Todd class. They
are given axiomatically by associating with each coherent sheaf & on X an
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element ¢(FF) € 4*(X) so that the following conditions hold:
a) naturality: when f: X = Y is a morphism, then

e(f* (F)=1* (),
b) multiplicativity : for each exact sequence of sheaves
0% —F =F —0 wehave

e(F) = o(F)e(F",

¢) normalization: for a divisor D on X we have
c(ODY)) =1 + [D].

The kth component of ¢(5%) is denoted by ¢x(55) and is called the kth Chern
class of §; ¢o(F) = 1.

Of greatest interest are the Chern classes of the cotangent sheaf Q5% , and
also of the sheaves Q§ and Q” , becayse they are invariantly linked with X. The
Chern classes of the tangent sheaf .Q)’( are called the Chern classes of X and
are denoted by c(X). Let us compute ¢(X) for a complete smooth toric variety
X=Xy .Letey, ... e, beall the primitive vectors of T (see 10.7), and let
D(e;) be the corresponding divisors on X.

11.4. PROPOSITION. c(Q4) = IT (1 — D(e,)).

1

PROOF. Let D denote the union of all the D(e;); then X ~D =T. We
consider the sheaf §21 y(log D) of 1-differentials of X with logarithmic poles
along D (see §15). The sheaf /{, is naturally included in 2} y(log D), and the
Poincaré residue (see §15) gives an isomorphism

Y (log D)/ =3 ® Oneey.
Using b) we get
¢ Q) =c (Qk (log D)) -[] e (Opep)™
dX, ax,
X, X,
and c(Q (log D))= 1. To find c(OD(e y) we use the exact sequence
0> Oy (— (e z))—*OX'*OD(ei)—*O
From this we see that C(OD(ei)) = (1-=D(e;))™?, as required.

11.5. COROLLARY. c,(X)= = [F,].
cexz (k)

PROOF. By the preceding proposition, c¢(X) = c(SZ )= H (1 +D(e;)), and it

Since the sections are a basis of 2} y(og D), this sheaf is free,

remains to expand the product using the multiplication table in 10.7.
In particular, ¢, (X)= £ [F,] consists of @, points, where a, = #(Z®))
sexz(n)
is the number of chambers of Z. Since the degree of ¢, (X) is equal to the Euler
characteristic E(X) of X (see [13], 4.10.1), we obtain the following corollary.
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11.6. COROLLARY. For a variety X = X5 over C the Euler characteristic
E(X) = Z (- 1Ydim H'(X, C) is equal to a,, the number of n-dimensional cones
inx. !

11.7. The Todd class is a method of associating with each sheaf § a certain
element Td(F) € A*(X)q such that the conditions a) and b) of 11.3 hold, and
the normalization c) is replaced by the following condition:

¢’) for a divisor D on X we have

R -1
D i Dt D D2 Dt
TdO0x D)= =(J (V' Gy) =t +T+gr =+ -

i>0

The Todd class can be expressed in terms of the Chern classes:

7 { 2 c
Td(%):l—}—019)—{—62(%)_*;20‘(%) + 1(%;[:2(3)+__.

By the Todd class of a variety X we mean the Todd class of its tangent sheaf,
Td(X) = Td(S2}).

11.8. All this referred to smooth varieties. However, if we are interested only
in invertible sheaves on complete toric varieties, we can often reduce everything
to the smooth case. Let £’ be a subdivision of  such that the variety
X=X ¢ is smooth and projective. Applying Proposition 8.5.1 to the
morphism f: X'~ X and to the invertible sheaf & on X we obtain the formula

XX, & = w(X', f*(&)) = (ch(/*&), Td(X")).

A consequence of this is the following proposition, which was proved by
Snapper and Kleiman for any complete variety.

11.9. PROPOSITION. Let Ly, . . ., L; be invertible sheaves on a complete
toric variety X. Then x(LP%1 x ... x L&vr) is a polynomial of degree
<n =dim X in the (integer) variables vy, . . ., vy.

PROOF. We may suppose that X is smooth. Let L; = O(D;), where the D; are
divisors on X. According to the Riemann—Roch formula it is enough to check
that ch(O(Z v;D;)) polynomially depends on vy, . . ., ¥, and that its total degree

H

is at most n. But according to 11.2
-1 ® 1 n
ch(O (2 ViDi))=1~!—[Z ViDiJ+ .o +7,—[E ViDiJ ,
and then everything is obvious.

From the preceding argument it is clear that if k = », then the coefficient of
the monomial v, , . . ., v, in x(O(Z v;D;)) is equal to the coefficient of the same
i

monomial in the expression
(chn (0D wiD1)), Tdo(X)) :ni![z viD; |"

(since Tdq(X) = 1), which in turn is equal to the degree of the product
D,-...-D,, thatis, to the so-called intersection number of the divisors
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D,,...,D,. Denoting thisby (D,, .. ., D, ), we have the following corollary:

11.10. COROLLARY. For n divisors D, . . ., D, on Xy the intersection
number (D, . . ., D, ) is equal to the coefficient of vy . .. v in X(O(Zv;(D;)).

For an arbitrary complete variety the assertion of Corollary 11.10 is taken as
the definition of (D,, . ..,D,).

11.11. COROLLARY. The self-intersection number (D" Y= (D, .. .,D)ofa
divisor D on X is equal to nla, where a is the coefficient of V' in the
polynomial x(O(vD)).

For (D) is the coefficientof v; .. .», in

O, + .oo +v D) =a-(vi+ .o +Vv )" 4 ...,
that is, n! a.

11.12. Let us apply these corrollaries to questions concerning the number of
integral points in convex polyhedra. Suppose that A is an integral (see 1.4)
polyhedron in M, and £ = X, the fan in Ng associated with A (see 5.8). Since
the vertices of A are integral, they define a compatible system {m,} in the
sense of 6.2, and hence also an invertible sheaf & on X = X; (together with a
trivialization). The function ord(€) is convex, therefore, (&) is equal to the
dimension of the space H®(X, &) = L(A), that is, to the number of integral points
in A, Since addition of polyhedra corresponds to tensor multiplication of the
corresponding invertible sheaves, Corollary 11.10 can be restated as follows:

11.12.1. COROLLARY. The number of integer points of the polyhedron
Zv;4,; is a polynomial of degree <ninv,, ... v, 20.

This fact was obtained by different arguments by McMullen [29] and
Bernshtein [4].

Corollary 11.11 implies that the self-intersection number (D") of the divisor
D on X corresponding to A is nla, where a is the coefficient of »” in
l(vA) (v = 0). As is easy to see, a coincides with ¥, (A), the n-dimensional
volume of A, measured with respect to the lattice M. So we obtain the
following result.

11.12.2. D*)=n!V,(A).

In general, if the divisors D,, . . ., D, correspond to integral polyhedra
Ay, ..., A, then (see also [9])

Dy, ...,D,)=n!"(mixed volume of Ay, ..., 4,).

Let us subdivide £ to a regular fan X', The Todd class Td(Xy ) is a certain
combination of the cycles F, witho € Z":
TdXg)=Zr,*[F,], r, €Q.

[

According to the Riemann—Roch formula,
10 O) =3 g (D=4 1Fol)-

If a divisor D corresponds to a polyhedron A, then for o € T ~k) the inter-



The geometry of toric varieties 135

section number (D*, [F, ]) is nothing other than k!V, (T',). Here T, is the
unique k-dimensional face of A for which 0 C 6., and V; is its k-dimensional
volume. So we obtain the formula

11.12.3. L(A) = D) rs*Veodim o (To)-
[+

This formula expresses the number of integral points of A in terms of the
volumes of its faces. Unfortunately, the numbers 7, are not uniquely deter-
mined, and their explicit computation remains an open question (for example,
can one say that the r, depend only on ¢ and not on the fan 2?). In the
simplest two-dimensional case we obtain for an integral polygon A in the plane
the well known and elementary formula

I(A) = area (A) +% (perimeter (A)) + 1.

Of course, the “length” of each side of A is measured with respect to the
induced one-dimensional lattice.

11.12.4. The inversion formula. Let A be an n-dimensional polyhedron in
M, and P(t) the polynomial such that P(v) = I(rA) for v = 0 is the number of
integral pointsin vA. Then (— 1) p(—v) for v > Q is the number of integral
points strictly within vA.

This is the so-called inversion formula (see [19] and [29]). For the proof we
again take a regular fan X’ subdividing Z, and the divisor D on X corres-
ponding to A. By Serre duality,

)P v)= (- 1)'x(0(=vD)) =x(0O(D) @ w).

Now we use the exact sequence (see 6.6)
0 > vx -0x — Op_ —0,
where D, = U F_. We obtain x(O(vD) ® w)=x(0wD))—x(0D.)® O(vD)).
o#{0}
The first term is the number of integral points in »A. The second term (for
v > () is easily seen to be the number of integral points on the boundary of vA.

§12. Complex cohomology

Here we consider toric varieties over the field of complex numbers C. In this
case the set X(C) of complex-valued points of X is naturally equipped with the
strong topology, and we can use complex cohomology H*(X, C), together with
the Hodge structure on it. In contrast to § 10, here we only assume that the
toric variety X = X is complete.

12.1. Asin §7, we can make use of the covering {X;}sex to compute the
cohomology of Xy . Of course, this covering is not acyclic, but this is no
disaster, we only have to replace the complex of a covering by the correspond-
ing spectral sequence (see [7], I, 5.4.1). However, it is preferable here to use a
somewhat modified spectral sequence, which is more economical and reflects
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the essence of the matter. This modification is based on using the “simplicial”
structure of Z. Let us say more about it.

By a contravariant functor on ¥ we mean a way of associating with each
cone ¢ € T an object F(0), and with each inclusion 7 C o a morphism
@, o F(0) > F(7), such that g, ; =, , o ¢, , for 6 C7 Co. Let F be an
additive functor on X ; we orient all cones ¢ € ¥ arbitrarily and form the com-

plex C*(Z, F) for which C?(Z, F)= @ F(a), and the differential
ocx (n—q)

d: CI(Z, F)~ C9*(Z, F) is composed in the usual way from the maps
ty, . F(0) > F(7), where 7 ranges over the faces of ¢ of codimension 1, and
the sign + or — is chosen according as the orientations of 7 and o agree or dis-
agree. The cohomology of the complex C*(Z, F)is denoted by H*(Z, F).
Now let HY (E) be the functor on Z that associates with each 0 € Z the
vector space H?(Xy, C).
12,2, THEOREM. There is a spectral sequence

EP4 =P (3, H1(C))= HP*9(X, C).

We briefly explain how this spectral sequence is constructed. Unfortunately,
I have been unable to copy the construction of the spectral sequence for an
open covering, therefore, the first trick consists in replacing an open covering
by a clgsed one. To do this we replace our space X by another topological
space X. N

The space X consists of pairs (x, p) € X x| ¥ | (here once more | X |is a sub-
space of Np rather than Ng ) such that x € Xy, where o is the smallest cone of
2 that contains p € | Z |. In other words, X is a fibering over | Z | = Ny, and
the fibre over a point p lying strictly inside a cone ¢ is the affine toric variety
Xy . The projectiops of X x | Z | onto iAts factors give two contir}\uous maps
p: X - X and m: X > | £ |. We define X, as 77! (0); obviously, X, is a closed
subset of X. .

12.2.1. LEMMA. p*: H*(X, C) > H*(X,, C) is an.isomorphism.

PROOF. Let p be some point strictly inside o; by assignin§ to a point
x € Xy the pair (x, p) we define a section s: Xy > X, of p: X, = Xy. On the
other hand, it is obvious that the embedding s is a deformation retract. (The
deformation of X to s(X ) proceeds along the  1ays emanating from p.)

12.2.2. COROLLARY. p*: H*(X, C) —>H*(X C) is an isomorphism.

For p* effects an isomorphism of the spectral sequences of the coverings
{X5}and {X}. ) )

Now replacing X by X and Xy by X »» we need only construct the
correspondmg spectral sequence for X For this purpose we consider the
functor C on ¥ that associates with each cone o € 2 the sheaf C %, on X the

constant sheaf on X with stalk C extended by zero to the whole of X and
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associates with an inclusion 7 C ¢ the restriction homomorphism
Cy — C; . As we have explained in 12.1, there arises a complex C*(Z, C) of
g T

A

sheaves on X.

12.2.3. LEMMA. The complex C*(Z, E) is a resolution of the constant
sheaf Cx .

PROQF. It is enough to prove the lemma point-by-point. But for each
point x € X the exactness of the sequence

0->C4 > C%=,C)~> CH(Z,C)~. ..

of sheaves over x reduces to the fact that | £ | is a manifold at w(x).
Now the required spectral sequence can be obtained as the spectral sequence
of the resolution C*(Z, C),

EP4 = HI(X, CP(Z, C))= HP*9(X, C).

For HY(X, CP (2, C)) = C? (=, HY(C)). This proves the theorem.

12.2.4. REMARK. There is an analogous spectral sequence for any sheaf
over X . The spectral sequence of Theorem 12.2 is interesting for two reasons.
Firstly, as we shall soon see, its initial term E¥? has a very simple structure.
Secondly, it degenerates at £, .

12.3. LEMMA. H*(X}, C) = A*(cospan 6)63 C.

PROOF. We represent ¢ as the product of the vector space (cospan 6) and
of a cone with vertex. Then everything follows from two obvious assertions:

a) if 0 is a cone with vertex, then X is contractible.

b) for T = Spec C[M]

H¥(T,C)=A*M ® C).

12.4. LEMMA. HY(X, Q%) =HI(Z, H°(2P)).

Here H°(£2?) on the right-hand side denotes the functor on ¥ that associates
with a cone ¢ € X the space H°(X, Q)’}&) = Q”a . To prove this we have to
take the spectral sequence analogous to the one in Theorem 12.2 for the sheaf
2% on X, and to note that owing to Serre’s theorem H*(QP)=0 for k > 0.

12.4.1. REMARK. The functor H? (£ ) on X takes values in the category
of M-graded vector spaces. Since according to Corollary 7.5.1
HY(X, Q%)= H1 (X, 2§)(0), we see that HY(X, Q&) is isomorphic to the qth
cohomology of the complex C*(Z, H° (2P )(0)), which is the complex of the
functor on Z that associates with a cone 0 € T the vector space (see (7.5.1))

H°(X g, QF) (0)=Q%., (0)= AP (cospan 6) ® C.

From this we obtain two results: N
a) the complex C*(Z, H® (£ )(0)) can be identified with C*(Z, HP (C));
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b) HY(X, Q&) is isomorphic to H1(Z, H? (C)), the EEY-term of the spectral
sequence in Theorem 12.2.

12.5. THEOREM. Let X = X, where Z is a complete fan. Then the Hodge—
de Rham spectral sequence (see §13)

EP1 = H1(X, Q8)= HP*4(X, C)

degenerates at the E,-term (thatis, E, =F_).
PROOF. Using Lemma 12.4 we represent the Hodge—de Rham spectral
sequence as the spectral sequence of the double complex

Eft = CYZ, HYQP)).

This has one combinatorial differential Ef9 - EE9*1 (see 12.1), and the
other differential E§? - E5* 9 comes from the exterior derivative

d: QP - QP*! (see 4.4). As already mentioned, all the terms carry an M-
graded structure, and the action of the differentials is compatible with this
grading. Thus, the spectral sequence E also splits into a sum of spectral

sequences, E= & E(m). It remains to check that each of the E(m) degenerates
meM

at the E, (m)-term. We consider separately the cases m ¥ 0 and m = 0.

m #* 0. In this case already £, (m) = 0. For (see 12.4.1),
EPi(m)=HI1(X, QF )(m)=0.

m = 0. In this case the second differential £29 (0) > EE* “9(0) is zero. For
over m € M the exterior derivative d: QP - QP*! acts as multiplication by m
(see 4.4); over m = 0 this is zero. This proves the theorem.

This theorem confirms the conjecture in § 13 in the case of toric varieties.
What is more important, it implies the following result.

12.6. THEOREM. The spectral sequence of Theorem 12.2 degenerates at the
E,-term, thatis, E, = E .

PROOF. Everything follows from the equalities

dim H* (X, C) = 2 dim H (X, Q%)= 2 dim E¥.
p+a=h p+a=h
The first of these follows from Theorem 12.5, and the second from 12.4.1 b).

12.6.1. REMARK. There is (or there should be) a deeper reason for the de-
generation of the spectral sequence of Theorem 12.2. It consists in the fact
that since the open sets X that figure in the construction of the spectral
sequence of Theorem 12.2 are algebraic subvarieties of X, it is a spectral sequence
of Hodge structures. In particular, all the differentials should be morphisms
of Hodge structures. On the other hand, the Hodge structure on H%(Xy, C) is
the same as that of some torus (see the proof of Lemma 12.3), and its type is
@, p) (see [151). Hence it follows that all the differentials d; for i > 1 should
change the Hodge type, and thus must be 0. Furthermore, we find that
HY(Z, HP (C )) can be identified with the part “of weight 2p” in HP*4(X, C).

Here are a few consequences of the preceding results. Note, first of all, that
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dim cospan 5) _ (codim Y )
p P )

Hence, for p > codim ¢ this number is zero, that is, C? (X, H? (6)) =0 for
p > q. So we have the following corollary.

12.7.COROLLARY. H4(X, Q§)= 0 for g <p.

Furthermore, we see that the “weight” of H* (X, C) is not greater than &,
which is as it should be for a complete variety.

In general, if g; = #(ZD) is the number of i-dimensional cones of £, then

dim AP (cospan 0) = (

. ~ q
(12.7.1) dim CY(Z, H”(C))=an_q (p)
Let us use this to compute the Euler characteristic of X:

E(X)=2 (—1)""dim EF =3 (—ﬂ”*"%—a'( q)=
»,q P

r,q
=S (10 3 (=17 ! ) = T (a0,
q P p q

Once more we obtain the result:

12.8. COROLLARY. E(X) =a, = #(Z™).

Here are two more facts for arbitrary complete X .

12.9. PROPOSITION. HY (X, Oy ) = H4(Z, H*(€)) =0 for g > 0.
This has already been proved in Corollary 7.4, and it also follows from the
fact that | Z | is a manifold at 0.

12.10. PROPOSITION. For p <n we have

H"(X, Q8)=H"(Z, HP (€)= 0.

To prove this we have to show that the map E{~ %7 > EMP is surjective,
that is, the map

® AP (cospan ¢) > AP (cospan 6) = AP (My).
cexz ()

In the sum on the left-hand side it is enough to take rays o € = that generate
Ngq . After this everything becomes obvious. For lete,, .. ., e, be the dual
basis of Mg . Every element of A? (Mg ) is a sum of expressions of the form
23 A--.A ¢ ,andsince p <n,somei, € [1,n] does not occur among
iy, ..., i,.Butthene; A...A e, EAP(® Q¢
i#1,

Thus, even in the general case in the E§9-table for the spectral sequence
in Theorem 12.2 there are many zeros. If T is simplicial, then only the
diagonal terms E§? can be non-zero.

12.11. PROPOSITION. Suppose that T is a simplicial fan. Then

HY (X, Q8) = H(Z, HP (C)) = 0 for p #q.
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PROOF. If g <p, this follows from Corollary 12.7. If g > p, the space
HYX, Qf{,) is dual to H" 79 (X, Q577) (see §14), which is zero by Corollary
12.7. Another way of proving the proposition is as follows: the Hodge
structure on H¥ (X, C) is pure of weight k (see § 14), and it remains to use
Remark 12.6.1.

In particular, the odd-dimensional cohomology groups of X are zero, and
for the even-dimensional ones we have the resolution

~ d ~
0->H*x, C)~> k=, HF(C)~> c**1(Z, HF C)—~ . ..

From this we derive formulae for the Betti numbers of Xy (when Z isa
simplicial fan), which we have already met in Theorem 10.8:

k k-1 S : t
dimH2k(X, C) =an_h(k)—an—h—1( k )+ =2 (_1)1_kan-i (]1,)

i=k

12.12. EXAMPLE. As an illustration let us work out an example of a three-
dimensional toric variety. For £ we take the fan ¥, , where A C Q3 is the
octohedron spanned by the vectors £ e;, where e,, e,, e; is a basis of Z>. It is
easy to see that Xy is smooth everywhere, except at the six quadratic
singularities corresponding to the vertices of A.

From the above results it is clear that essentially we have only to deal with
the complex C*(Z, H? (E)). More precisely, we compute the kernel of
d: CY(Z, HY)—=> C*(Z, H'). To do this, we represent the spaces concerned
more geometrically on A. Now C1(Z, H!) consists of cocycles assigning to
each edge of A a vector lying on this edge; similarly, C?(Z, H!) consists of the
vectors lying on the two-dimensional faces of A, The differential
d: CY(Z, H' )~ C*(Z, H!) takes for each two-dimensional face the sum (res-
pecting the orientation) of the vectors on the edges that bound this face. A
direct computation shows that Kerd = H! (Z, H'(C)) is one-dimensional.
From this we obtain

~ 2 ~
—dim H2(Z, HY(C)) = az—a,-( 1 ) +ay: ( i ) —dim H* (2, H(C)) =

=12—-8.24+1.3—1=—2,
and

~ 3
dim H2(Z, H2(C)) :ai—ao-( 8 ) —8_1.3=5.

Our final table for the Betti numbers b; = dim H(X, C)is as follows:
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We note that H3(X, C) is of weight 2.

CHAPTER IV
THE ANALYTIC THEORY

From now we consider almost always varieties over C. For varieties having
toroidal singularities we develop a theory analogous to the Hodge—de Rham
theory, which allows us to-compare complex cohomology with the
cohomology of the sheaves of differential forms QF .

8 13. Toroidal varieties

Let K be an algebraically closed field (from 13.3 onwards K = C), and X an
algebraic variety over K.

13.1.DEFINITION. X is said to be (formally) toroidal at x € X if there exists
a pair (M, o), where M is a lattice and ¢ a cone in M with vertex, and a formal
isomorphism of (X, x) and (X, 0). By this we mean an isomorphism of the

completions of the corresponding local rings 0 Xx > OX 0 The toric vanety X,

is called a local model for X at x. :
A variety is said to be toroidal if it is toroidal at each of its points. A toroidal
variety is naturally stratified into smooth subvarieties according to the types of
local models.
13.2. EXAMPLE. Any toric variety is toroidal. This is a simple fact, but not
a tautology. Since the definition is local, we can assume our toric variety to be
affine and isomorphic to X, , and x to lic on the stratum X, C X, where o is

the cospan of . We represent ¢ as g, X ¢,;, where ¢, is a cone with vertex. Next,
let 04 be any basic cone in 04 (dim 05 =dim 04), and let ¢' =0y X ¢,. Then

X, = TX X, canbe embedded as an open piece in X,» = AX X, . By ashift in
A any point of T C A can be moved to the origin, which proves that (X, x) is
toroidal.

The following fact is likewise trivial. Let X be a toroidal variety, and suppose
that a divisor D of X intersects all the strata of X transversally. Then D is also
toroidal. More precisely, if x € D, then a local model of (X, x) has the form X,
where 0 = § X ¢’ and 0 is a ray, and then X is a local model of (D, x).

In particular, according to Proposition 6.8 the divisor Df of the zeros of a
general Laurent polynomial f € L(A) is a toroidal variety.

13.3. In the definition of a toroidal variety we could require instead of a formal
isomorphism the existence of an analytic isomorphism between (X, x) and the
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local model (X, 0) (of course, here K = C). However, it follows from Artin’s
approximation theorem that the two definitions coincide, so that we do not
distinguish between them.

A toroidal variety is normal and Cohen—Macaulay. On it we can define
sheaves of differential forms .Q” and an exterior derivative d: Sl” - SZ”“
as in §4. This gives rise to the algebrazc de Rham complex

Qxr={0% > QF -5 ...}

Note that these are coherent sheaves on X for the Zariski topology.

From now on we assume that K = C. Let X?" denote the analytic space
associated with a variety X. Then O ;“ is the sheaf of germs of holomorphic
functlons on X" for a coherent sheaf # on X we denote by

= # Qox OX the analytic version of .#. Extending the d

to the analytic version of Qf{, in the natural way, we obtain the analytic
de Rham complex

oan® ran? }
*,an — s ,an
Qpa={QYn> QL

Note that these are now sheaves relative to the strong topology.

13.4. PROPOSITION. The complex Q)";a" is a resolution of the constant
sheaf Cy on X*".

PROOF. That the complex C > £ X an ig exact can be verified locally, and by
going to a local model we may assume that (X, x ) = (X, 0). We consider the
map of 4-modules A: Qﬁ“ - SZZ (where 4 = C [0 N M]), that was introduced
in the proof of Lemma 4.5. Taking the tensor product with 0 an o over A4 we get
a homomorphism of (0¥ 0)—modu1es h: SZ”“ an - Qp, g“ Now we consider
the action of the operator doh + hod. An element of 9,” -3 is a convergent
series T w, x™, where w, € AP (Vy(,) C AP (M ® C), and doh + hod

meenM
takes it into the series Z A(m)w,, x™ . For p > 0 this transformatlon has an

inverse, which takes the series Zw,, x™ into the series E w,, x™ , which
obviously converges. This shows that the complex is acychc In its positive
terms. The fact that the kernel of d: 0;3:0 - SZ;,*‘(;‘ is just C is obvious.
13.5.COROLLARY. For a toroidal variety X there is a Hodge-de Rham spectral
sequence
EP? = g9 (x", Q§’a“)=Hp+q(X‘“‘, C).

Supposing X to be complete and using the results of GAGA, this spectral
sequence can be rewritten as

(13.5.1) EY? = HU(X, Q%) = HP*4 (X", C).
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Thus, the problem of computing the cohomology of a toroidal variety becomes
almost algebraic. The word ‘“‘almost” could be removed if the following were
proved:

13.5.1. CONJECTURE. For a complete toroidal algebraic variety X the
spectral sequence (13.5.1) degenerates at the E,-term and converges to the
Hodge filtration on H* x, C).

As Steenbrink has shown (see also the next section), this conjecture holds
for quasi-smooth varieties; it also holds for toric varieties (Theorem 12.5). In
§ 15 we will construct a spectral sequence that generalizes (13.5.1) to the case
of non-complete toroidal varieties.

13.6. COROLLARY. If X is an affine toroidal variety, then H* X, C)=0 for
k>dim X.

For in this case X*" is a Stein space, and H? (X*", Q8 -2") = 0 for g > 0.

§ 14. Quasi-smooth varieties

14.1. A toroidal variety X is said to be quasi-smooth!® if all the local models
X, are associated with simplicial cones ¢. A smooth variety is, of course, quasi-
smooth.

Let X be an n-dimensional quasi-smooth variety: using Corollary 4.9 we see
that fork >0

Ezt5_ (Q%, Q%) =0.
Hence and from Proposition 4.7 it follows that
Exté (X; Q%, Q%) =H"(X, Hom (2, Q") = H* (X, Q% 7).
If we assume, in addition, that X is projective (or would completeness
suffice?) we deduce from Serre—Grothendieck duality that the pairing
HY(X, Q) x H"Y(X, Q¥ ") >H" (X, Qy) =K
is non-degenerate.
1_4.2. PROPOSITION. Let X be a projective quasi-smooth variety, and
p: X = X a resolution of singularities. Then the homomorphism
p*: H* (X, Q%) —~ H* (X, Q&)
is injective.
PROOF. We use the commutative diagram
HY(X, Q) x H"9(X, Q5 ")~ H" (X, Q%)
Tp*xp* ] Tp*
HYX, QPyx H (X, Q% ) — H" (X, Q%)
and the fact that the lower pairing is non-degenerate.
14.3. THEOREM (Steenbrink [31]). Let X be a projective quasi-smooth

L' closely related notion, that of V-manifolds, was introduced by Baily {36], [37].
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variety over C. Then the Hodge—de Rham spectral sequence (13.5.1)
qu H? (X Q’P) HPHe (X, C)

degenerates at the E-term and converges to the Hodge filtration on H* X, C).

PROOF. Let p: X — X be a resolution of singularities; we consider the
morphism of spectral sequences

EY==H"(X, Q%)= H""" (X, C)
Tp* Tp*

M= (X, Q%)= H" (X, C).

According to classical Hodge theory (see [8]), the assertions of the theorem
hold for the upper spectral sequence; in particular, £ 1 E2 =, . . =K, , and all
the differentials di are zero fori 2 1. Let us show by induction that E; fori > 1
maps injectively to E,-. For i = 1 this follows from Proposition 14.2; let us go from i
toi+ 1. Since E; C E; and d; = 0, we have d; = 0, so that E;, , is equal to E; and
is again a subspace of ]:_:i+ i

We have, thus, shown that £, =E_. and is included in £, = E, . From this
it follows that H* (X, C) is included in H* (X, C), and the limit filtration 'F on
H* (X, C) is induced by the limit filtration 'F on H* (X, C).

Finally, because the Hodge filtration is functorial (see [15]), the Hodge
filtration F on H* (X, C) is induced by the Hodge filtration Fon H¥ X, C). It
remains to make use of the already mentioned fact that F= 'F. The theorem is
now proved.

14.4. COROLLARY. For a projective quasi-smooth variety X the Hodge
structure on H* (X, C) is pure of weight k, and the HP4 (X) are isomorphic to
HY(X, Q).

For H* (X, C) is a substructure of the pure structure on H* (X, ©), as is clear
from the proof of the theorem.

The purity of the cohomology of a quasi-smooth X also follows from the
fact that Poincaré duality holds for the complex cohomology of X. This
duality is, in turn, a consequence of the fact that a quasi-smooth variety is a
rational homology manifold (see {15]).

§15. Differential forms with logarithmic poles

Up to now we have dealt with “regular” differential forms. However, in the
study of the cohomology of “open” varieties differential forms with so-called
logarithmic poles are useful. We begin with the simplest case of a smooth

variety.
15.1. Let X be a smooth variety (over C), and D a smooth subvariety of
codimension 1. Let z,, . . ., z, be local coordinates at a point x € X, and let

z,, = 0 be the local equation of D at this point. A 1-form w on X —D issaid to
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have a logarithmic pole along D at x if w can be expressed in a neighbourhood
of x as

dzn
o=f1 (@) st ...+ Fuot (2) dZnes +f (3) T2,
where f}, . . ., f, are regular functions in a neighbourhood of x in X. It is easy

to check that this definition does not depend on the choice of local
coordinates. Considering the germs of such forms we obtain the sheaf Sl}((logD)
of germs of differential 1-forms on X with logarithmic poles along D. Locally
this sheaf is generated by the formsdz,, ..., dz,_,, dz,/z,, so that it is
a locally free Oy -module of rank n = dim X.

For any p 2 0 we set

Q% (log D)= A® Q% (log D));

this is again a locally free sheaf containing £2%.

The role played by forms with logarithmic poles is explained by the fact that
locally they represent the cohomology of X — D near D. For around a point
x € D the manifold X — D has, from the homological point of view, the
structure of a circle S, and the cycle S is caught by the form d(log z,,) =dz,, /z,

S dz, [z, = 2m/~1.
S

15.2. We now turn to the more general case. Namely, we suppose that X is
merely a normal variety, and that the divisor D C X is merely smooth at its generic
point. We consider an open subvariety U C X such that a) U is smooth, b)
Dy =D N Uis asmooth divisor on U, and ¢) X — U is of codimension greater
than 1 in X. Letj: U — X be the inclusion. We set

Q% (log D) = j, (2 (log Dv))
and call this the sheaf of germs of p-differentials on X with logarithmic poles
along D. It can be verified that the definition is independent of the choice of
U.

15.3. In the classical case, X is a smooth variety and D is a divisor with
normal crossings. If z,, . . ., z,, are local coordinates and D is given by an
equationzy,,* ... -z, =0, then Q/{,(log D) is generated by the forms
dzy,...,dz;,dz; /24, . . ..d2,/z, and is again locally free, and
Q% (log D) = AP (Q! (log D)). The connection of such sheaves with the
cohomology of X — D is established by the following theorem (Deligne [8]):
there is a spectral sequence

EP'= H(X, Q% (log D))= H"*? (X —D, C),

which degenerates at the E-term and converges to the Hodge filtration on
H*(X—-D, C).
15.4. Later we shall be interested in the toroidal case. Generalizing



146 The geometry of toric varieties

Definition 13.1 we say that a pair (X, D) (where X is a variety and D a divisor
on X) is toroidal if for each point x € X we can find a local toric model X,
such that D goes over into a T-invariant divisor D, on X, . Such a divisor D, is
a union of subvarieties X, C X, where 0 ranges over certain faces of o of co-
dimension 1.

To give an idea of the local structure of the sheaves S?.;(log D) in the
toroidal case, we devote some time to the study of the corresponding toric
case,

Thus, let o be an n-dimensional cone in an n-dimensional lattice M; let / be a
set of faces of o of codimension 1. In §4 above we associated with each face 7
the space V, = (1 —17) ? K. Now we set for each face 8 of codimension 1

v if ecl,
V"(log)={ Ve if 04l.

By analogy with the module Qﬁ (see 4.2) we introduce the M-graded A-module
Q% (log)= @ QF (log) (m),
mec\M

setting foreachm €o N M
Q% (log) (m) = AP ( N Va(log)).
03m
15.5.PROPOSITION. Let X=X, D = UIXe. Then the sheaf of O y-modules
s
Q% (log D) is associated with the A-module QF (log).
The proof is completely analogous to that of Proposition 4.3.
The derivatives d: QP = QP *! extend to derivatives
d: QP (log D)~ §P* ! (log D), which under the identifications of Proposition
15.5 transform into M-homogeneous derivatives, which over 1 € M are con-
structed like the exterior product withm ® 1€V,
15.6. The sheaves Q}’{,(log D) have the so-called weight filtration W. We
explain this in the toric case, where it turns into an M-graded filtration
0= Wi (log) < W, Q4 (log) = ... = W, Q%(log) = Q% (log).
On a homogeneous component over m € M this is given by the formula

(W24 (log)) (m) = Q4" (m) A\Ql (log) (m).
In particular, for the quotients we have
(Wr/Wi_y) (m) = AP™* (Vi) @ A* (Vrem) (108)/Vrim))-

15.7. The Poincaré residue. In the case of a simplicial cone g these quotients
have an interesting interpretation. Suppose that ¢ is given by #» linear inequalities
N, =0, fori=1,..., n, where \;: M — Z are linear functions. The faces of o
correspond to subsets of {1, ...,n}. Let/={r+1,.. ., n}, and let the corres-
ponding divisorbe D=D,,, U...UD,. Finally, let o, be the face of o
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corresponding to 1.
In this situation we define the Poincaré residue isomorphism

W, (log)/ W, (log) = & 94",

where the summation on the right is over the faces 7 of codimension k that
contain 0, . This isomorphism is M-homogeneous, and it is enough to specify it
over each m € M. Let I(m) = {i | \;(m) = 0}. Then on the left-hand side we
have the space

AP (Viimy) ® A* (Viemy (108) IV (m)-
where V; denotes the intersection of the kernels of A, ® 1: V> K,i€J. The
space V,,(log) is the same as V;,,,y_r, and the functions \; ® 1 with
[ € I N I(m) give an isomorphism
V](m) (log)/VI(m) :KIQI(m)

Thus, the space A¥ (Vl(m)(log)/ Viim) has a canonical basis in correspondence

with k-element subsets of I N I(m), that is, with faces of ¢ of codimension &

containing both o, and m. We claim that if 7 is such a face, then

ﬂf’[" (m)= AP~k (Vi¢my)- For ﬂi‘k (m) is the (p — k)th exterior power of the
T T

subspace of V_ = VIT cut out by the equations A; ® 1=0,i € [(m)—[_, that

is, just V(. If a face 7 of codimension k contains g but not m, then
& my=o.

It is easy to globalize the Poincaré residue isomorphisms. Let X be a quasi-
smooth variety, and suppose that the divisor D consists of quasi-smooth com-
ponents D, . . ., Dy that intersect quasi-transversally. Then we have
isomorphisms

W1, Q% (log D)/W Q% (log D) — e Q%
where D; i =D 0L .ﬁDik.

15.8. Let us now show how to apply differentials with logarithmic poles to
the cohomology of open toric varieties. Let X be a complete variety over C,
and D a Cartier divisor on X (that is, D can locally be defined by one equation).
Suppose that the pair (X, D) is toroidal. Then the following theorem holds.

15.9. THEOREM. In the notation and under the hypotheses of 15.8 there
exists a spectral sequence

EM=HY(X, Q% (log D)) = H***(X =D, C).
Of course, this is the spectral sequence of the complex
Qi (log D) = {Q% (log D) - Q¥ (log D) > ...}

Supposedly, this degenerates at the E; -term and converge to the Hodge
filtration on H¥ (X — D, C) (Conjecture 13.5.1). When X is quasi-smooth, this is
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actually so (see [31]), and the weight filtration W on the complex £ ;{(log D)
induces the weight filtration of the Hodge structure on H* (X — D, C).

Leaving aside the necessary formal incantations on the hypercohomology of
complexes (in the spirit of [8]), the content of the proof of Theorem 15.9
reduces to the following. We consider the sheaf morphism

¢: S (Qx (log D)*") — R*j (Cx_p)

(here &% denotes the cohomology sheaf of a complex, and j the embedding of

X — D in X), that takes a closed k-form over an open W C X into the de Rham
cohomology class on W — D defined by it. To prove Theorem 15.9 we have to
establish the following assertion, which generalizes Proposition 13.4.

15.10. LEMMA. @ is an isomorphism of sheaves.

PROOF OF THE LEMMA. Since the assertion is local, we can check it point
by point. Going over to a local model, we may assume that X = X and that D

is given by an equation xo ,withmy, €0 N M. Let O be the “vertex” of X; we
have to prove that .
FH* (Qx (log D)*")g —~ R, (Cx_p o
is.an isomorphism.
THE RIGHT-HAND SIDE. By definition,

R¥je(Cx_p)o = lim H*(W-D, C),
W

where W ranges over a basis of the neighbourhoods of 0 in X. We specify such a
basis explicitly. For this purpose we introduce a function p: X(C) > R
measuring the “distance from 0.

We fix a linear function A: M = Z such that A(0) > 0 and A1 (0) N ¢ = {0}.
We recall (see 2.3) that a C-valued point x € X(C) is a homomorphism of
semigroups x: ¢ N M — C. We set

b (2) = max { | = (m) | 7).
m=£Q

Here m ranges over the non-zero elements of o0 N M (or just over a set of
generators of this semigroup). Now p is continuous, and p(x) = 0 if and only if
x = 0. Therefore, the sets We=p~1 ([0, el) for & > 0 form a basis of the
neighbourhoods of 0.

The group R of positive real numbers acts on X(C) by the formula: for
r>0and x € X(C)

(r-z)(m) = rMm z(m).

This action preserves the strata of X and, in particular, the divisor D. Since
p(r+x) =rp(x), we see that all the sets We— D are homotopy-equivalent to
X —D. Hence,
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lim B* (W.—D, C) = H*¥(X-D, C).
e>0
We know the cohomology of X, =D = Xa—(mo) from Lemma 12.3, and finally,

Rkj, Cx_pl = A¥ (cospan(o —{(my))) ® C.

THE LEFT-HAND SIDE. This is the cohomology of the complex of 0;’:0-
modules £ (log D)g" . We argue as in the proof of Proposition 13.4. Again we
use the homomorphism #4: SZ;* "(log D)3 - Q& (log D)§*. Over m € M the
operator doh + hed acts as multiplication by A(m). For a non-zero
m € ¢ N M this number A(m) is invertible, so that we can only have cohomology
over m = (0, and this reduces to the cohomology of the complex Q;l (log D)Y(0)
with the zero differential. We deduce from this that
S (.Q)'((log DY), = Qﬁ (log)(0) is isomorphic to the kth exterior power of

N Vy(log)= N V,. It remains to remark that N (6 — @) is the
630 83m, 63m,
same as the space cospan(o —{m,)), and this proves the theorem.

'APPENDIX 1
DEPTH AND LOCAL COHOMOLOGY

This question is also treated in [11] and [22]. Let A be a local Neotherian
ring with maximal ideal m, and /' a Noetherian A-module. A sequence
ay,...,a, of elements of 4 is said to be F-regular if a; for each i from 1 to n
is not a zero-divisor in the A-module F/(a,, . . .,a;_, )F. For the connection
between regularity of a sequence and acyclicity of the Koszul complex, see
[11].

The length of a maximal F-regular sequence is called the depth of F and is
denoted by prof(F). We always have prof(¥) < dim(F); if this equality holds,
then F is said to be a Cohen—Macaulay module. A ring A is said to be a
Cohen—Macaulay ring if it is a Cohen—Macaulay module over itself. If 4 is an
n-dimensional Cohen—Macaulay ring, then a sequence ay, . . ., a, is regular if
and only if the ideal (a,, . . ., a,) has finite codimension in A.

Let Hy, (F)denote the submodule of F consisting of the elements of F that
are killed by some power of m. This Hm is a left-exact additive functor on the
category of A-modules; the gth right derived functor H*{n associated with Hiy
is called the gtk local cohomology functor.

PROPOSITION ([22]). For a natural number n the following are equivalent:

a) prof(F) > n;

b) Hy, (F)=0 forall i <n.

COROLLARY. Let 0~ F— G- H— 0 be an exact sequence of A-modules,
with prof G =nand prof H=n — 1. Then prof F =n.

The preceding proposition is applied to the local cohomology long exact
sequence,
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APPENDIX 2
THE EXTERIOR ALGEBRA

This question is treated in more detail in [5], Ch. III, § § 5 and 8.

Let K be a commutative ring with 1, and let ¥ be a K-module. Let p = 1 be
an integer; the pth exterior power of V is the quotient module of the
p-fold tensor product V' ® ... ® V= V& by the submodule N generated by
primitive tensors z; ® ... ®uxp in which at least two terms x; and x; are
equal. The pth exterior power of V is written AP (¥); we set A°(V) =K.

The direct sum A*(V)= @ AP(V)is called the exterior algebra of V; its
p=>0

multiplication is given by the exterior product (x, y)—x /\ y. The exterior
product is skew-symmetric, that is, if x € AP (V) and y € A? (V), then
x Ny=¢1p1y A x

If V, and V, are K-modules, then we have a canonical isomorphism of
graded skew-symmetric K-algebras.

AV, @ V) = AX(TV) © AX(TVy).

From this we can deduce by induction that if V is a free K-module with a basis
ey, ... e, then AP (V) has a basis consisting of the expressions e;, A . .. A e,

with 1 <i, <.. <, <n.

The (left) multiplication by an element v € V defines a module homo-
morphismv A : AP (V) - AP*!(V), which we denote by ,E. Since
v A v =0, we obtain a complex of K-modules

0>M W) B A BAazw) S ...

Conversely, if we take a linear map A: ¥V = K, then there is a unique way of
extending A to a K-linear derivation of the algebra A*(V) that decreases
degrees by 1. This is called the right internal multiplication by X and is denoted
by LA or ], . In particular, for x € AP (V) we have

(1) EAYLA=@EL)AYy+ (—1)PzAGLAMN.
Ife,,...,e, isa basis of ¥, then L A can be given by the formula

P ~
(e A oo New) L 7“:;;1 (—=D*Aes) e A oo Aey, A-ot Aeiy
It is easy to check that I, oI, = 0, and again we get a complex

0 <A0 (V) & AL (V) Az vy 2 .

‘s

which is known as the Koszul complex of the sequence A(e,), . . ., (e, ) of
elements of K. The relation (1) for x € V' = A!(V) can be rewritten in the form

@) Ino gE 4 Eo I =M\()

and can be interpreted as a homotopy. Thus, ifa,, . . ., a, generate the unit
ideal of K, that is, if @, fy +...+a,f, =1 for some f; € K, then by taking for
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x the vector (fy, . . ., f,,) € K" we find that the Koszul complex fora,, .. .,a
is homotopic to 0, and hence is acyclic.

Now suppose that K is a field. If W is a subspace of V, then there arises an
increasing filtration on A? (V),

O Woo W, < ... W, = AP(V),

n

where W, = (AP~FW)) A (A* (V). For the quotients we have isomorphisms

3) Wyl Wiy o~ AP (W) @ A* (VIW).
Finally, if W,, ..., W, are subspaces of V, then
4 AP (NW;) = N AP (W)).
APPENDIX 3
DIFFERENTIALS

1. Let K be a commutative ring with 1, A* a graded skew-symmetric
K-algebra, and M* a graded A*-module. A K-linear map of degree v

D: A* — M*
is called a K-derivation if for A € A? and u € A*
(1) D (M) =D () p+ (— 1" 1-D (u).

2. Let A be a commutative K-algebra, with the multiplication
u: A ? A~ A sothat u(a @ b)=ab. Let I denoté the kernel of u. The A-

module I/I? is called the module of K-differentials of A and is denoted by
9,411/1( . The name is explained by the fact that the map

(2) d: A — QYx,

defined by d(@)=(a ® 1 — 1 ® a) mod I? is a K-derivation (and is universal is
a certain sense). Note that 9}4 /K is generated as A-module by the set 2(4).

For example,if 4 = K[T;, ..., T,] is the polynomial ringin T, ..., T,
then 9,11/1( is the free A-module with the basis dT, . . .,dT,.

3. We write in/K = A”(Q}UK ).

PROPOSITION. There exists one and only one K-derivation of degree 1 of
the algebra Q* = A*(Q:I/K)

d: QF — QP+l

for which deod = 0 and which for p = 0 coincides with (2).

PROOF.UNIQUENESS: Since d is to be a derivation, it suffices to verify
uniqueness for p = 1. The A-module ! is generated by d(A4), so that it is

enough to check that for q, b € A the expression d(a*db) is uniquely
determined. But
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3 d(a-db) = da A db+ a-d(db) = da A db

by the condition thatd o d = 0.
EXISTENCE: We define d: ! - Q2 by (3). More precisely, we consider
first the K-linear homomorphism

d:A®AZ501 00 > A2 (@) =02,
K K

Since

(a1 —10a001—-1Q D)=
=dab @1 —a@b—-bQ@at+1®ab)=—da \ db —db® da =0,

d’' vanishes on I? and hence defines a K-linear map d: Q! - Q2.

For p > 2 we define d: QP — QP*! by means of (1). To see that d is well-
defined we have to check that d vanishes on primitive tensors of the form
L. AW® ... Qw @ .. .with w € Q!. We leave the details to the
reader.

4. If A is a graded K-algebra, then it is easy to check that the constructions
of 2. and 3. above are compatible with the grading. Thus, the multiplication
u: A ? A — A is homogeneous of degree 0, /= Ker u is a homogeneous ideal in

A® A, I/I? = Q,}l/K is a graded A-module, and d: 4 = Q!, together with the
K

remaining d: P - QP*!, are homogeneous homomorphisms of degree 0.

5. Qﬁ /K is called the module of p-differentials, and d the exterior derivative.
These formations are functorial. In particular, if S is a multiplicative set in A4,
then there are canonical isomorphisms (see [10])

QZ[S_I]/K ~ QQ/K Qx A [S-il.

This allows us to glue the modules 2P together into a sheaf on an arbitrary
K-scheme X; the resulting sheaves of Oy -modules are denoted by Q”X/ K and
“are called the sheaves of p-differentials of X over K. The derivatives d can also

be glued together into K-linear sheaf morphisms
d: Q?(/K -— 9%71 .

For a smooth K-scheme X the sheaves of Oy-modules ‘Qi]\’/ x are locally free.

6. REMARK. The sheaves of differentials with which we work in the main
text differ from those defined here, although the notation is the same. In the
smooth case the two definitions agree.
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