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"The reasonings about the wonderful and intricate operations

of Nature are so full of uncertainty, that, as the Wise-man truly

observes, hardly do we guess aright at the things jhat are upon
earth, and with labour do we find the things that are before us.''

Stephen Hales, Vegetable Staticks (1727), p. 318, 1738.

"Ever since I have been enquiring into the works of Nature
I have always loved and admired the Simplicity of her Ways."
Dr George Martine (a pupil of Boorhaave's), in Medical Essays and
Observations, Edinburgh, 1747.



PREFATORY NOTE

THIS book of mine has little need of preface, for indeed it is

"all preface" from beginning to end. I have written it as

an easy introduction to the study of organic Form, by methods

which are the common-places of physical science, which are by

no means novel in their application to natural history, but which

nevertheless naturalists are little accustomed to employ.

It is not the biologist with an inkling of mathematics, but

the skilled and learned mathematician who must ultimately deal

with such problems as are sketched and adumbrated here. I pretend

to no mathematical skill, but I have made what use I could of

what tools I had; I have dealt with simple cases, and the mathe-

matical methods which I have introduced are of the easiest and

simplest kind. Elementary as they are, my book has not been

written without the help—the indispensable help^—of many friends.

Like Mr Pope translating Homer, when I felt myself deficient I

sought assistance! And the experience which Johnson attributed

to Pope has been mine also, that men of learning did not refuse

to help me.

I wrote this book in wartime, and its revision has employed

me during another war. It gave me solace and occupation, when

service was debarred me by my years.

Few are left of the friends who helped me write it, but I do not

forget the debt I owe them all. Let me add another to these

kindly names, that of Dr G. T. Bennett, of Emmanuel College,

Cambridge; he has never wearied of collaboration with me, and

his criticisms have been an education to receive.

D. W. T.

1916-1941.
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"The mathematicians are well acquainted with the difference

between pure science, which has to do only with ideas, and the

application of its laws to the use of life, in which they are con-

strained to submit to the imperfections of matter and the influence

of accident." Dr Johnson, in the fourteenth Rambler, May 5, 1750.

"Natural History. . .is either the beginning or the end of physical

science." Sir John Herschel, in The Study of Natvml Philosophy,

p. 221, 1831.

"I believe the day must come when the biologist will—without

being a mathematician—not hesitate to use mathematical analysis

when he requires it." Karl Pearsonf in Nature, January 17, 1901.



CHAPTER I

INTRODUCTORY

Of the chemistry of his day and generation, Kant declared that it

was a science, but not Science

—

eine Wissenschaft, aber nicht Wissen-

schaft—for that the criterion of true science lay in its relation to

mathematics*. This was an old story : for Roger Bacon had called

mathematics porta et clavis scientiarum, and Leonardo da Vinci had

said much the samef. Once again, a hundred years after Kant,

Du Bois Reymond, profound student of the many sciences on which

physiology is based, recalled the old saying, and declared that

chemistry would only reach the rank of science, in the high and

strict sense, when it should be found possible to explain che^dcal

reactions in the light of their causal relations to the velocities,

tensions and conditions of equihbrium of the constituent molecules

;

that, in short, the chemistry of the future must deal with molecular

mechanics by the methods and in the strict language of mathematics,

as the astronomy of Newtoii and Laplace dealt with the stars in

their courses. We know how great a step was made towards this

distant goal as Kant defined it, when van't Hoif laid the firm

foundations of a mathematical chemistry, and earned his proud

epitaph

—

Physicam chemiae adiunxitX-

We need not wait for the full reahsation of Kant's desire, to apply

to the natural sciences the principle which he laid down. Though

chemistry fall short of its ultimate goal in mathematical mechanics §,

nevertheless physiology is vastly strengthened and enlarged by

* " Ich behaupte nur dass in jeder besonderen Naturlehre nur so viel eigentliche

Wissenschaft angetroffen konne als darin Mathematik anzutreffen ist" : Gesammelte

Schriften, iv, p. 470.

t "Nessuna humana investigazione si puo dimandare vera scienzia s'essa non

passa per le matematiche dimostrazione."

X Cf. also Crum Brown, On an application of Mathematics to Chemistry, Trans.

R.S.E. XXIV, pp. 691-700, 1867.

§ Ultimate, for, as Francis Bacon tells us: Mathesis philosophiam naturalem

terminare debet, non generare aut procreare.
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making use of the chemistry, and of the physics, of the age. Littl

by httle it draws nearer to our conception of a true science with

each branch of physical science which it brings into relation with

itself: with every physical law and mathematical theorem which it

learns to take into its employ*. Between the physiology of Haller,

fine as it was, and that of Liebig, Helmholtz, Ludwig, Claude

Bernard, there was all the difference in the worldf.

As soon as we adventure on the paths of the physicist, we learn

to weigh and to measure, to deal with time and space and mass and

their related concepts, and to find more and more our knowledge

expressed and our needs satisfied through the concept of number,

as in the dreams and visions of Plato and Pythagoras ; for modern

chemistry would have gladdened the hearts of those great philo-

sophic dreamers. Dreams apart, numerical precision is the very

soul of science, and its attainment affords the best, perhaps, the

only criterion of the truth of theories and the correctness of experi-

mentsj:. So said Sir John Herschel, a hundred years ago; and

Kant had said that it was Nature herself, and not the mathematician,

who brings mathematics into natural philosophy.

But the zoologist or morphologist has been slow, where the

physiologist has long been eager, to invoke the aid of the physical

or mathematical sciences; and the reasons for this difference lie

deep, and are partly rooted in old tradition and partly in the

diverse minds and temperaments of men. To treat the living body

as a mechanism was repugnant, and seemed even ludicrous, to

Pascal §; and Goethe, lover of nature as he was, ruled mathematics

out of place in natural history. Even now the zoologist has scarce

begun to dream of defining in mathematical language even the

simplest organic forms. When he meets with a simple geometrical

* "Sine profunda Mechanices Scientia nil veri vos intellecturos, nil boni pro-

laturos aliis": Boerhaave, De usu ratiocinii Mechanici in Medicina, 1713.

t It is well within my own memor how Thomson and Tait, and Klein and

Sylvester had to lay stress on the mathematical aspect, and urge the mathematical

study, of physical science itself!

X Dr Johnson says that "to count is a modern practice, the ancient method was

to guess"; but Seneca was alive to the difference
—"magnum esse solem philosophus

probabit, quantus sit mathematicus."

§ Cf. Pensees, xxix, "II faut dire, en gros, cela se fait par figure et mouvement,

car cela est yrai. Mais de dire quels, et composer la machine, cela est ridicule,

car cela est inutile, et incertain, et penible."



I] OF ADAPTATION AND FITNESS 3

construction, for instance in the honeycomb, he would fain refer it

to psychical instinct, or to skill and ingenuity, rather than to the

operation of physical forces or mathematical laws; when he sees in

snail, or nautilus, or tiny foraminiferal or radiolarian shell a close

approach to sphere or spiral, he is prone of old habit to believe that

after all it is something more than a spiral or a sphere, and that in

this "something more" there lies what neither mathematics nor

physics can explain. In short, he is deeply reluctant to compare

the living with the dead, or to explain by geometry or by mechanics

thp things which have their part in the mystery of life. Moreover

he IS httle inclined to feel the need of such explanations, or of such

extension of his field of thought. He is not without some justifi-

cation if he feels that in admiration of nature's handiwork he has

an horizon open before his eyes as wide as any man requires. He
has the help of many fascinating theories within the bounds of his

own science, which, though a little lacking in precision, serve the

purpose of ordering his thoughts and of suggesting new objects of

enquiry. His art of classification becomes an endless search after

the blood-relationships of things living and the pedigrees of things

dead and gone. The facts of embryology record for him (as Wolff,

von Baer and Fritz Miiller proclaimed) not only the life-history of

the individual but the ancient annals of its race. The facts of

geographical distribution or even of the migration of birds lead on

and on to speculations regarding lost continents, sunken islands, or

bridges across ancient seas. Every nesting bird, every ant-hill or

spider's web, displays its psychological problenis of instinct or intel-

ligence. Above all, in things both great and small, the naturajist

is rightfully impressed and finally engrossed by the peculiar beauty

which is manifested in apparent fitness or "adaptation"—the flower

for the bee, the berry for the bird.

Some lofty concepts, like space and number, involve truths remote

from the category of causation; and here we must be content, as

Aristotle says, if the mere facts be known*. But natural history

deals with ephemeral and accidental, not eternal nor universal

* ovK diraiTrjTeop 5 ov8i ttju airiav ofxoiojs, dW LKavou ^v tlctl rb on deLxdrjvai /caXcDj

Eth. Nic. 1098a, 33. Teleologist as he was at heart, Aristotle realised that mathematics

was on another plane to teleology: rds 5^ fxad-qfiariKas oOdeva iroieladai \6you wepi

dyaduv xat KaKQv. Met. 996a, 35.
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things ; their causes and effects thru^ themselves on our curiosity, and

become the ultimate relations to which our contemplation extends*.

Time out of mind it has been by way of the "final cause," by the

teleological concept of end, of purpose or of "design," in one of its

many forms (for its moods are many), that men have been chiefly

wont to explain the phenomena of th« Hving world ; and it will be

so while men have eyes to see and ears to hear withal. With Galen,

as with Aristotlef, it was the physician's way; with John Ray J, as

with Aristotle, it was the naturahst's way; with Kant, as with

Aristotle, it was the philosopher's way. It was the old Hebrew

way, and has its splendid setting in the story that God made "every

plant of the field before it was in the earth, and every herb of the

field before it grew." It is a common way, and a great way; for it

brings with it a glimpse of a great vision, and it hes deep as the

love of nature in the hearts of men.

The argument of the final cause is conspicuous in eighteenth-

century physics, half overshadowing the "efficient" or physical

cause in the hands of such men as Euler§, or Fermat or Maupertuis,

to whom Leibniz
1

1 had passed it on. Half overshadowed by the

mechanical concept, it runs through Claude Bernard's Legons sur les

phenomenes de la Vie^, and abides in much of modern physiology**.

* "All reasonings concerning matters of fact seem to be founded on the relation

of Cause and Effect. By means of that relation alone we go beyond the evidence

of our memory and senses": David Hume, On the Operations of the Understanding.

t E.g. "In the works of Nature purpose, not accident, is the main thing": to yap

fir) TvxofTWs, d\\' eveKOL rtros, ev tols tt]S (pixreajs ^pyoLs ecrl ko-I jxaXicra. PA, 645a, 24.

X E.g. "Quaeri fortasse a nonnullis potest, Quis Papilionum usus? Respondeo,

ad ornatum Universi, et ut hominibus spectaculo sint." Joh. Rail, Hist. Insedorum,

p. 109.

§ "Quum enim Mundi universi fabrica sit perfectissima, atque a Creators

sapientissimo absoluta, nihil omnino in Mundo contingit in quo non maximi
minimive ratio quaepiam eluceat; quamobrem dubium prorsus est nullum quin

omnes Mundi effectus ex causis finalibus, ope Methodi maximorum et minimorum,

aeque feliciter determinari queant atque ex ipsis causis efficientibus." Methodus

inveniendi, etc., 1744, p. 24o {cit. Mach, Science of Mechanics, 1902, p. 455).

!| Cf. Opera (ed. Erdmann), p. 106, "Bien loin d'exclure les causes finales...

c'est de la qu'il faut tout deduire en Physique": in sharp contrast to Descartes's

teaching, " NuUas unquam res naturales a fine, quem Deus aut Natura in iis faciendis

sib jproposuit, desumemus, etc." Princip. i, 28.

Tj Cf. p. 162. "La force vitale dirige des phenomenes qu'elle ne produit pas:

les agents physiques produisent des phenomenes qu'ils ne dirigent pas."

** It is now and then conceded with reluctance. Thus Paolo Enriques, a learned

and philosophic naturalist, writing '"dell' economia di sostanza nelle osse cave"
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Inherited from Hegel, it dominated Oken's Naturphilosophie and

lingered among his later disciples, who were wont to liken the course

of organic evolution not to the straggling branches of a tree, but to

the building of a temple, divinely planned, and the crowning of it

with its pohshed minarets*.

It is retained, somewhat crudely, in modern embryology, by those

who see in th^ early processes of growth a significance ''rather

prospective than retrospective," such that the enlbryonic phenomena

must "be referred directly to their usefulness in building up the

body of the future animalf":—which is no more, and no less, than

to say, with Aristotle, that the organism is the reAo?, or final cause,

of its own processes of generation and development. It is writ

large in that Entelechyij: which Driesch rediscovered, and which he

made known to many who had neither learned of it from Aristotle,

nor studied it with Leibniz, nor laughed at it with Rabelais and

Voltaire. And, though it is in a very curious way, we are told

that teleology was "refounded, reformed and rehabihtated " by

Darwin's concept of the origin of species §; for, just as the older

naturalists held (as Addison
||
puts it) that "the make of every kind

of animal is different from that of every other kind; and ye. ti^ere

is not the least turn in the muscles, or twist in the fibres of any one,

which does not render them more proper for that particular animal's

way of life than any other cut or texture of them would have been "

:

so, by the theory of natural selection, "every variety of form and

colour was urgently and absolutely called upon to produce its title

{Arch. f. Entw. Mech. xx, 1906), says "una certa impronta di teleologismo qua
e la e rimasta, mio malgrado, in questo scritto."

* Cf. John Cleland, On terminal forms of life, Journ. Anat. and Physiol.

XVIII, 1884.

t Conklin, Embryology of Crepidula, Journ. of Morphol. xin, p. 203, 1897;

cf. F. R. Lillie, Adaptation in cleavage. Wood's Hole Biol. Lectures, 1899, pp. 43-67.

X I am inclined to trace back Driesch's teaching of Entelechy to no less a person

than Melanchthon. When Bacon {de Augm. iv, 3) states with disapproval that

the soul "has been regarded rather as a function than as a substance," Leslie

Ellis points out that he is referring to Melanchthon's exposition of the Aristotelian

doctrine. For Melanchthon, whose view of the peripatetic philosophy had great

and lasting influence in the Protestant Universities, affirmed that, according to

the true view of Aristotle's opinion, the soul is not a substance but an ivreX^xeia, or

function. He defined it as Sufa/xis quaedam ciens actiones—a description all but

identical with that of Claude Bernard's '''force vitale.''

§ Ray Lankester, art. Zoology, Encycl. Brit. (9th edit.), 1888, p. 806.

!l
Spectator, No. 120.
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to existence either as an active useful agent, or as a survival" of

such active usefulness in the past. But in this last, and very

important case, we have reached a teleology without a rdXos, as

men like Butler and Janet have been prompt to shew, an "adapta-

tion" without "design," a teleology in which the final cause becomes

little more, if anything, than the mere expression or resultant of a

sifting out of the good from the bad, or of the better from the worse,

in short of a process of mechanism. The apparent manifestations

of purpose or adaptation become part of a mechanical philosophy,

"une forme methodologique de connaissance*," according to which

"la Nature agit toujours par les moyens les plus simplest," and

"chaque chose finit toujours par s'accommoder a son miUeu," as in

the Epicurean creed or aphorism that ^atnTe finds a use for every-

thing J. In short, by a road which resembles but is not the same as

Maupertuis's road, we find our way to the very world in which we

are living, and find that, if it be not, it is ever tending to become,

"the best of all possible worlds §."

But the use of the teleological principle is but one way, not the

whole or the only way, by which we may seek to learn how things

came to be, and to take their places in the harmonious complexity

of the world. To seek not for end^ but for antecedents is the way
of the physicist, who finds "causes" in what he has learned to

recognise as fundamental properties, or inseparable concomitants,

or unchanging laws, of matter and of energy. In Aristotle's parable,

the house is there that men may live in it ; but it is also there because

the builders have laid one stone upon another. It is as a mechanism,

or a mechanical construction, that the physicist looks upon the

world; and Democritus, first of physicists and one of the greatest

of the Greeks, chose to refer all natural phenomena to mechanism

and set the final cause aside.

* So Newton, in the Preface to the Principia: "Natura enim simplex est, et

rerura causis superfluis non -luxuriat"; "Nature is pleased with simplicity, and

affects not the pomp of superfluous causes." Modern physics finds the perfection

of mathematical beauty in what Newton called the perfection of simplicity.

t Janet, Les Causes Finales, 1876, p. 350.

X "Nil ideo quoniam natumst in corpore ut uti Possemus sed quod natumst id

procreat usum." Lucret. iv, 834.

§ The phrase is Leibniz's, in his Theodicee: and harks back to Aristotle—If one

way be better than another, that you may be sure is Nature's way; Nic. Eth.

10996, 23 et al.
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Still, all the whiLe, like warp and woof, mechanism and teleology

are interwoven together, and we must not cleave to the one nor

despise the other; for their union is rooted in the very nature of

totality. We may grow shy or weary of looking to a final cause

for an explanation of our phenomena ; but after we have accounted

for these on the plainest principles of mechanical causation it may

be useful and appropriate to see how the final cause would tally

wuth the other, and lead towards the same conclusion*. Maupertuis

had Uttle hking for the final cause, and shewed some sympathy with

Descartes in his repugnance to its appHcation to physical science.

But he found at last, taking the final and the efficient causes one with

another, that "I'harmonie de ces deux attributs est si parfaite que

sans doute tous les effets de la Nature se pourroient deduire de

chacun pris separement. Une Mecanique aveugle et necessaire suit

les dessins de I'lntelHgence la plus eclairee et la plus hbref." Boyle

also, the Father of Chemistry, wrote, in his latter years, a Disquisition

about the Final Causes of Natural Things: Wherein it is Inquired

Whether, And {if at all) With what Cautions, a Naturalist should admit

Themi He found "that all consideration of final cause is not to be

banished from- Natural Philosophy..."; but on the other hand

''that the naturahst who would deserve that name must not let

the search and knowledge of final causes make him neglect the in-

dustrious indagation of efficients J." In our own day the philosopher

neither minimises nor unduly magnifies the mechanical aspect of

the Cosmos; nor need the naturahst either exaggerate • or be-

little the mechanical phenomena which are profoundly associated

with Life, and inseparable from our understanding of Growth and

Form.
^

* "S'il est dangereux de se servir des causes finales a priori pour trouver les lois

des phenomenes, 11 est peut-etre utile et il est au moins curieux de faire voir com-

ment le principe des causes finales s'accorde avec les lois des phenomenes, pourvu

qu'on commence par determiner ces lois d'apres les principes de mecanique clairs

et incontestables." (D'Aiembert, Art. Causes finales, Encyclopedie, ii, p. 789, 1751.)

I SeeJiis essay on the '''Accord des differentes lois de la Nature."

X Cf. also Leibniz {Discours de la Metaphysique: Lettres inedites, ed. de Careil,

1857, p. 354), "L'un et I'autre est bon, I'un et I'autre peut etre utile... et les

auteurs qui suivent ces deux routes differentes ne devraient pas se maltraiter."

Or again in the Monadologie, "Les ames agissent selon les causes finales. ... Les

corps agissent selon les lois des causes efficientes ou des mouveraents. Et les

deux regnes, celui des causes efficientes et des causes finales sont harmonieux

entre eux."
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Nevertheless, when philosophy bids us hearken and obey the

lessons both of mechanical and of teleological interpretation, the

precept is hard to follow: so that oftentimes it has come to pass,

just as in Bacon's day, that a leaning to the side of the final cause

"hath intercepted the severe and diligent enquiry of all real and

physical causes," and has brought it about that "the search of the

physical cause hath been neglected and passed in silence." So long

and so far as "fortuitous variation*" and the "survival of the

fittest" remain engrained as fundamental and satisfactory hypo-

theses in the philosophy of biology, so long will these "satisfactory

and specious causes" tend to stay "severe and diligent enquiry. .

.

to the great arrest and prejudice of future discovery." Long

before the great Lord Keeper wrote these words, Roger Bacon had

shewn how easy it is, and how vain, to survey the operations of

Nature and idly refer her wondrous works to chance or accident,

or to the immediate interposition of Godf.

The difiiculties which surround the concept of ultimate or "real"

caugation, in Bacon's or Newton's sense of the word, the in-

superable difficulty of giving any just and tenable account of the

relation of cause and effect from the empirical point of view, need

scarcely hinder us in our physical enquiry. As students of mathe-

matical and experimental physics we are content to deal with those

antecedents, or concomitants, of our phenomena without which the

phenomenon does not occur—with causes, in short, which, aliae ex

aliis aptaetet necessitate' nexae, are no more, and no less, than con-

ditions sine qua non. Our purpose is still adequately . fulfilled

:

inasmuch as we are still enabled to correlate, and to equate, our

particular phenomena with more and more of the physical phenomena

around, and so to weave a web of connection and interdependence

which shall serve our turn, though the metaphysician withhold from

that interdependence the title of causality J. We come in touch

* The reader will understand that I speak, not of the "severe and diligent

enquiry" of variation or of fortuity, but merely of the easy assumption that these

phenomena are a sufficient basis on which to rest, with the all-powerful help of

natural selection, a theory of definite and progressive evolution.

f Op. tert. (ed. Brewer, p. 99). "Ideo mirabiles actiones naturae, quae tota

die fiunt in nobis et in rebus coram oculis nostris, non percipimus; sed aestimamus

eas fieri vel per specialem operationem divinam. . .vel a casu et fortuna,"

t Cf. Fourier's phrase, in his Theorie de la Chaleur, with which Thomson and

Tait prefaced their Treatise an Natural Philosophy: "Les causes primordiales ne
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with what the schoohnen called a ratio cognoscendi, though the true

ratio efflciendi is still enwrapped in many mysteries. And so handled,

the quest of physical causes merges with another great Aristotelian

theme—the search for relations between things apparently dis-

connected, and for "similitude in things to common view unlike*."

Newton did not shew the cause of the apple falling, but he shewed

a simihtude ("the more to increase our wonder, with an apple")

between the apple and the starsf. By doing so he turned old facts

into new knowledge ; and was well content if he could bring diverse

phenomena under "two or three Principles of Motion" even "though

the Causes of these Principles were not yet discovered".

Moreover, the naturalist and the physicist will continue to speak

of "causes", just as of old, though it may be with some mental

reservations : for, as a French philosopher said in a kindred difficulty

:

"ce sont la des manieres de s'exprimer, et si elles sont interdites

il faut renoncer a parler de ces choses."

The search for differences or fundamental contrasts between the

phenomena of organic and inorganic, of animate and inanimate,

things,, has occupied many men's minds, while the search for com-

munity of principles or essential simihtudes has been pursued by

few; and the contrasts are apt to loom too large, great though they

may be. M. Dunan, discussing the Probleme de la Viel, in an essay

which M. Bergson greatly commends, declares that "les lois physico-

chimiques sont aveugles et brutales ; la ou elles regnent seules, au

lieu d'un ordre et d'un concert, il ne pent y avoir qu'incoherence et

chaos." But the physicist proclaims aloud that the physical

phenomena which meet us by the way have their forms not less

beautiful and scarce less varied than those which move us to admira-

nous sont point connues; mais elles sont assujetties a des lois simples et eonstantes,

que Ton peut decouvrir par I'observation, et dont I'etude est I'objet de la philosophie

naturelle."

* "Plurimum amo analogias, fidelissimos meos magistros, omnium Naturae

arcanorum conscios," said Kepler; and Perrin speaks with admiration, in Les

Atonies, of men like Galileo and Carnot, who "possessed the power of perceiving

analogies to an extraordinary degree." Hure^e declared, and Mill said much the

same thing, that all reasoning whatsoever depends on resemblance or analogy,

and the power to recognise it. Comparative anatomy (as Vicq d'Azyr first called

it), or comparative physics (to use a phrase of Mach's), are particular instances of

a sustained search for analogy or similitude.

t As for Newton's apple, see De Morgan, in Notes and Queries (2), vi, p. 169, 1858.

I Revue Philosophique, xxxiii, 1892.
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tion among living things. The waves of the sea, the little ripples

on the shore, the sweeping curve of the sandy bay between the

headlands, the outline of the hills, the shape of the clouds, all these

are so many riddles of form, so many problems of morphology, and

all of them the physicist can more or less easily read and adequately

solve: solving them by reference to their antecedent phenomena,

in the material system of mechanical forces to which they belong,

and to which we interpret them as being due. They have also,

doubtless, their immanent teleological significance; but it is on

another plane of thought from the physicist's that we contemplate

their intrinsic harmony* and perfection, and "see that they are

good."

Nor is it otherwise with the material forms of living things. Cell

and tissue, shell and bone, leaf and flower, are so many portions of

matter, and it is in obedience to the laws of physics that their

particles have been moved, moulded and conformedf. They are no

exception to the rule that Qeos aet yeajjjLerpeL. Their problems of

form are in the first instance mathematical problems, their problems

of growth are essentially physical problems, and the morphologist is,

ipso facto, a student of physical science. He may learn from that

comprehensive science, as the physiologists have not failed to do,

the point of view from which her problems are approached, the

quantitative methods by which they are attacked, and the whole-

some restraints under which all her work is done. He may come

to realise that there is no branch of mathematics, however abstract,

which may not some day be applied to phenomena of the real

* What I understand by "holism" is what the Greeks called apfiovia. This is

something exhibited not only by a lyre in tune, but by all the handiwork of

craftsmen, and by all that is " put together" by art or nature. It is the " composite-

ness of any composite whole"; and, like the cognate terms KpSicns or (rvvdeais, implies

a balance or attunement. Cf. John Tate, in Class. Review, Feb. 1939.

t This general principle was clearly grasped by Mr George Rainey many years

ago, and expressed in such words as the following: "It is illogical to suppose that

in the case of vital organisms a distinct force exists to produce results perfectly

within the reach of physical agencies, especially as in many instances no end could

be attained were that the case, but that of opposing one force by another capable

of effecting exactly the same purpose." (On artificial calculi, Q.J.M.S. {Trans.

Microsc. Soc), vr, p. 49, 18.58.) Cf. also Helmholtz, infra cit. p. 9. (Mr George

Rainey, a man of learning and originality, was demonstrator of anatomy at

St Thomas's; he followed that modest calling to a great age, and is remembered

by a few old pupils with peculiar affection.)
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world*. He may even find a certain analogy between the slow,

reluctant extension of physical laws to vital phenomena and the slow

triumphant demonstration by Tycho Brahe, Copernicus, GaHleo and

Newton (all in opposition to the Aristotelian cosmogony), that the

heavens are formed of like substance with the earth, and that the

movements of both are subject to the selfsame laws.

Organic evolution has its physical analogue in the universal law

that the world tends, in all its parts and particles, to pass from

certain less probable to certain more probable configurations or

states. This is the second law of thermodynamics. It has been

called the law of evolution of the world'f ; and we call it, after Clausius,

the Principle of Entropy, which is a literal translation of Evolution

into Greek.

The introduction of mathematical concepts into natural' science

has seemed to many men no mere stumbling-block, but a very

parting of the ways. Bichat was a man of genius, who did immense

service to philosophical anatomy, but, like Pascal, he utterly refused

to bring physics or mathematics into biology: " On calcule le retour

d'un comete, les resistances d'un fluide parcourant un canal inerte,

la Vitesse d'un projectile, etc.; mais calculer avec BorelU la force

d'un muscle, avec Keil la vitesse du sang, avec Jurine, Lavoisier et

d'autres la quantite d'air entrant dans le poumon, c'est batir sur un

sable mouvant un edifice sohde par lui-meme, mais qui tombe bientot

faute de base assureej." Comte went further still, and said that

every attempt to introduce mathematics into chemistry must be

deemed profoundly irrational, and contrary to the whole spirit of

the science §. But the great makers of modern science have all gone

the other way. Von Baer, using a bold metaphor, thought that it

might become possible " die bildenden Krafte des thierischen Korpers

. auf die allgemeinen Krafte oder Lebenserscheinun^en des Weltganzes

zuriickzufiihrenll." Thomas Young shewed, as BorelU had done,

how physics may subserve anatomy; he learned from the heart and

a,rteries that " the mechanical motions which take place in an animal's

body are regulated by the same general laws as the motions of

* So said Lobatchevsky.

t Cf. Chwolson, Lehrbuch, iii, p. 499, 1905; J. Perrin, Traitd de chimie physique,

I, p. 142, 1903; and Lotka's Elements of Physical Biology, 1925, p. 26.

t La Vie et la Mort, p. 81. § Philosophie Positive, Bk. rv.

]| Ueber Entwicklung der Thiere: Beobachtungen und Reflexionen, i, p. 22, 1828.
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inanimate bodies*." And Theodore Schwann said plainly, a hun-

dred years ago, "Ich wiederhole iibrigens dass, wenn hier von einer

physikahschen Erklarung der organischen Erscheinungen die Rede
ist, darunter nicht nothwendig eine Erklarung durch die bekannten

physikalischen Krafte. . .zu verstehen ist, sondern iiberhaupt eine

Erklarung durch Krafte, die nach strengen Gesetzen der blinden

Nothwendigkeit wie die physikalischen Krafte wirken, mogen diese

Krafte auch in der anorganischen Natur auftreten oder nicht f."

Helmholtz, in a famous and influential lecture, and surely with

these very words of Schwann's in mind, laid it down as the funda-

mental principle of physiology that "there may be other agents

acting in the hving body than those agents which act in the inorganic

world ; but these forces, so far as they cause chemical and mechanical

influence in the body, must be quite of the same character as inorganic

forces : in this, at least, that their eff'ects must be ruled by necessity,

and must always be the same when acting under the same conditions

;

and so there cannot exist any arbitrary choice in the direction of their

actions." It follows further that, like the other "physical" forces,

they must be subject to mathematical analysis and deduction J.

So much for the physico-chemical problems of physiology. Apart

from these, the road of physico-mathematical or dynamical investi-

gation in morphology has found few to follow it; but the pathway

is old. The way of the old Ionian physicians, of Anaxagoras § , of

Empedocles and his disciples in the days before Aristotle, lay just

by that highway side. It was Galileo's and Borelli's way; and

Harvey's way, when he discovered the circulation of the blood ||.

It was little trodden for long afterwards, but once in a while

Swammerdam and Reaumur passed thereby. And of later years

Moseley and Meyer, Berthold, Errera and Roux have been among

* Croonian Lecture on the heart and arteries, Phil. Trans. 1809, p. 1; Collected

Works, I, p. 511.

t Mikroskopische Untersuchungen, 1839, p. 226.

J The conservation of forces applied to organic nature, Proc. Royal Inst.

April 12, 1861.

§ Whereby he incurred the reproach of Socrates, in the Phaedo. See Clerk

Maxwell on Anaxagoras as a Physicist, in Phil. Mag. (4), xlvi, pp. 453-460, 1873.

II
Cf. Harvey's preface to his Exercitationes de Generatione Animalium, 1651:

"Quoniam igitur in Generatione animalium (ut etiam in caeteris rebus omnibus

de quibus aliquid scire cupimus), inquisitio omnis a caussis petenda est, praesertim

a materiali et efficiente: visum est mihi" etc.
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the little band of travellers. We need not wonder if the way be

hard to follow, and if these wayfarers have yet gathered little.

A harvest has been reaped by others, and the gleaning of the grapes

is slow.

It behoves us always to remember that in physics it has taken

great men to discover simple things. They are very great names

indeed which we couple with the explanation of the path of a stone,

the droop of a chain, the tints of a bubble, the shadows in a cup.

It is but the shghtest adumbration of a dynamical morphology that

we can hope to have until the physicist and the mathematician shall

have made these problems of ours their own, or till anew Boscovich shall

have written for the naturahst thenew TheariaPhilosophiaeNaturalis.

How far even then mathematics will suffice to describe, and

physics to explain, the fabric of the body, no man can foresee. It

may be that all the laws of energy, and all the properties of matter,

and all the chemistry of all the colloids are as powerless to explain

the body as they are impotent to comprehend the soul. For my
part, I think it is not so. Of how it is that the soul informs the

body, physical science teaches me nothing; and that living matter

influences and is influenced by mind is a mystery without a clu'e.

Consciousness is not explained to my comprehension by all the

nerve-paths and neurones of the physiologist ; nor do I ask of physics

how goodness shines in one man's face, and evil betrays itself in

another. But of the construction and growth and working of the

body, as of all else that is of the earth earthy, physical science is,

in my humble opinion, our only teacher and guide.

Often and often it happens that our physical knowledge is in-

adequate to explain the mechanical working of the organism; the

phenomena are superlatively . complex, the procedure is involved

and entangled, and the investigation has occupied but a few short

lives of men. When physical science falls short of explaining the

order which reigns throughout these manifold phenomena—an order

more characteristic in its totality than any of its phenomena in

themselves—men hasten: to invoke a guiding principle, an entelechy,

or call it what you will. But all the while no physical law, any

more than gravity itself, not even among the puzzles of stereo-

chemistry or of physiological surface-action and osmosis, is known

to be transgressed by the bodily mechanism.
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Some physicists declare, as Maxwell did, that atoms or molecules

more compHcated by far than the chemist's hypotheses demand, are

requisite to explain the phenomena of life. If what is impHed be

an explanation of psychical phenomena, let the point be granted at

once; we may go yet further and decHne, with Maxwell, to believe

that anything of the nature of physical complexity, however exalted,

could ever suffice. Other physicists, like Auerbach*, or Larmorj,

or Joly J, assure us that our laws of thermodynamics do not suffice,

or are inappropriate, to explain the maintenance, or (in Joly's phrase)

the accelerative absorption, of the bodily energies, the retardation

of entropy, and the long battle against the cold and darkness which

is death. With these weighty problems I am not for the moment
concerned. My sole purpose is to correlate with mathematical state-

ment and physical law certain of the simpler outward phenomena

of organic growth and structure or form, while all the while regarding

the fabric of the organism, ex hypothesi, as a material and mechanical

configuration. This is my purpose here. But I would not for the

world be thought to beheve that this is the only story which Life

and her Children have tp tell. One does not come by studying

living things for a lifetime to suppose that physics and chemistry

can account for them all§.

Physical science and philosophy stand side by side, and one

upholds the other. Without something of the strength of physics

philosophy would be weak ; and without something of philosophy's

wealth physical science would be poor. "Rien ne retirera du tissu

de la science les fils d'or que la main du philosophe y a introduits||."

But there are fields where each, for a while at least, must work alone;

and where physical science reaches its limitations physical science

itself must help us to discover. Meanwhile the appropriate and

* Ektropismus, oder die physikalische Theorie des Lebens, Leipzig, 1810.

t Wilde Lecture, Nature, March 12, 1908; ibid. Sept. 6, 1900; Aether and Matter,

p. 288. Cf. also Kelvin, Fortnightly Review, 1892, p. 313.

X The abundance of life, Proc. Roy. Dublin Soc. vii, 1890; Scientific Essays,

1915, p. 60 seq.

§ That mechanism has its share in the scheme of nature no philosopher has

denied. Aristotle (or whosoever wrote the De Mundo) goes so far as to assert that

in the most mechanical operations of nature we behold some of the divinest

attributes of God.

II
J. H, Fr. Papillon, Histoire de la jyhilosophie moderne dans ses rapports avec le

developpement des sciences de la nature, i, p. 300, 1870.
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legitimate postulate of the physicist, in approaching the physical

problems of the living body, is that with these physical phenomena

no ahen influence interferes. But the postulate, though it is certainly

legitimate, and though it is the proper and necessary prelude to

scientific enquiry, may some day be proven to be untrue; and its

disproof will not be to the physicist's confusion, but will come as

his reward. In dealing with forms which are so concomitant with

life that they are seemingly controlled by life, it is in no spirit of

arrogant assertiveness if the physicist begins his argument, after the

fashion of a most illustrious exemplar, with the old formula of

scholastic challenge: An Vita sit? Dico quod non.

The terms Growth and Form, which make up the title of this book,

are to be understood, as I need hardly say, in their relation to the

study of organisms. We want to see how, in some cases at least,

the forms of living things, and of the parts of living things, can be

explained by physical considerations, and to realise that in general

no organic forms exist save such as are in conformity with physical

and mathematical laws. And while growth is a somewhat vague

word for a very complex matter, which may depend on various

things, from simple imbibition of water to the complicated results

of the chemistry of nutrition, it deserves to be studied in relation

to form : whether it proceed by simple increase of size without obvious

alteration of form, or whether it so proceed as to bring about a

gradual change of form and the slow development of a more or less

complicated structure.

In the Newtonian language* of elementary physics, force is

recognised by its action in producing or in changing motion, or

in preventing change of motion or in maintaining rest. When we
deal with matter in the concrete, force does not, strictly speaking,

enter into the question, for force, unlike matter, has no independent

objective existence. It is energy in its various forms, known or

unknown, that acts upon matter. But when we abstract our

thoughts from the material to its form, or from the thing moved to

its motions, when we deal with the subjective conceptions of form,

* It is neither unnecessary nor superfluous to explain that physics is passing

through an empirical phase into a phase of pure mathematical reasoning. But
when we use physics to interpret and elucidate our biology, it is the old-fashioned

empirical physics which we endeavour, and are alone able, to apply.
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or movement, or the movements that change of form impHes, then

Force is the appropriate term for our conception of the causes by

which these forms and changes of form are brought about. When
we use the term force, we use it, as the physicist always does, for

the sake of brevity, using a symbol for the magnitude and direction

of an action in reference to the symbol or diagram of a material

thing. It is a term as subjective and symbolic as form itself, and

SO' is used appropriately in connection therewith.

The form, then, of any portion of matter, whether it be living

or dead, and the changes of form which are apparent in its movements

and in its growth, may in all cases alike be described as due to

the action of force. In short, the form of an object is a "diagram

of forces," in this sense, at least, that from it we can judge of or

deduce the forces that are acting or have acted upon it: in this

strict and particular sense, it is a diagram—in the case of a sohd,

of the forces which have been impressed upon it when its conformation

was produced, together with those which enable it to retain its

conformation; in the case of a Hquid (or of a gas) of the forces which

are for the moment acting on it to restrain or balance its own

inherent mobility. In an organism, great or small, it is not merely

the nature of the motions of the hving substance which we must

interpret in terms of force (according to kinetics), but also the

conformation of the organism itself, whose permanence or equilibrium

is explained by the interaction or balance of forces, as described in

statics.

If we look at the hving cell of an Amoeba or a Spirogyra, we

see a something which exhibits certain active movements, and a

certain fluctuating, or more or less lasting, form; and its form at

a given moment, just like its motions, is to be investigated by the

help of physical methods, and explained by the invocation of the

mathematical conception of force.

Now the state, including the shape or form, of a portion of matter

is the resultant of a number of forces, which represent or symbolise

the manifestations of various kinds of energy; and it is obvious,

accordingly, that a great part of physical science must be under-

stood or taken for granted as the necessary preliminary to the

discussion on which we are engaged. But we may at least try to

indicate, very briefly, the nature of the principal forces and the
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principal properties of matter with which our subject obhges us to

deal. Let us imagine, for instance, the case of a so-called "simple"

organism, such as Amoeba; and if our short list of its physical

•properties and conditions be helpful to our further discussion, we

need not consider how far it be complete or adequate from the

wider physical point of view*.

This portion of matter, then, is kept together by the inter-

molecular force of cohesion; in the movements of its particles

relatively to one another, and in its own movements relative to

adjacent matter, it meets with the opposing force of friction

—

without the help of which its creeping movements could not be

performed. It is acted on by gravity, and this force tends (though

slightly, owing to the Amoeba's small mass, and to the small

difference between its density and that of the surrounding fluid)

to flatten it down upon the solid substance on which it may be

creeping. Our Amoeba tends, in the next place, to be deformed

by any pressure from outside, even though slight, which may be

applied to it, and this circumstance shews it to consist of matter

in a fluid, or at least semi-fluid, state: which state is further

indicated when we observe streaming or current motions in its

interior. Like other fluid bodies, its surfacef, whatsoever other

substance—gas, hquid or solid—it be in contact with, and in varying

degree according to the nature of that adjacent substance, is the

seat of molecular force exhibiting itself as a surface-tension, from

the action of which many important consequences follow, greatly

affecting the form of the fluid surface.

While the protoplasmj of the Amoeba reacts to the shghtest

pressure, and tends to "flow," and while we therefore speak of it

* With the special and impprtant properties of colloidal matter we are, for

the time being, not concerned.

t Whether an animal cell has a membrane, or only a pellicle or zona limitans,

was once deemed of great importance, and played a big part in the early contro-

versies between the cell-theory of Schwann and the protoplasma-theory of Max
Schultze and others, Dujardin came near the truth when he said, somewhat
naively, "en niant la presence d'un tegument propre, je ne pretends pas du tout
nier i'existence d'une surface."

% The word protoplasm is used here in its most general sense, as vaguely as when
Huxley spoke of it as the "physical basis of life." Its many changes and shades
of meaning in early years are discussed by Van Bambeke in the Bull. Sac. Beige
de Microscopie, xxn, pp. 1-16, 1896.
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as a fluid*, it is evidently far less mobile than such a fluid (for

instance) as water, but is rather Uke treacle in its slow creeping

movements as it changes its shape in response to force. Such fluids

are said to have a high viscosity, and this viscosity obviously acts

in the way of resisting change of form, or in other words of

retarding the efl'ects of any disturbing action of force. When the

viscous fluid is capable of being drawn out into fine threads, a

property in which we know that some Amoebae differ greatly from

others, we say that the fluid is also viscid, or exhibits viscidity.

Again, not by virtue of our Amoeba being liquid, but at the same

time in vastly greater measure than if it were a sohd (though far less

rapidly than if it were a gas), a process of molecular diffusion is

constantly going on within its substance, by which its particles

interchange their places within the mass, while surrounding fluids,

gases and soUds in solution diffuse into and out of it. In so far

as the outer wall of the cell is different in character from the

interior, whether it be a mere pelhcle as in Amoeba or a firm

cell-wall as in Protococcus, the diffusion which takes place throtigh

this wall is sometimes distinguished under the term osmosis.

Within the cell, chemical forces are at work, and so also in all

probabihty (to judge by analogy) are electrical forces; and the

organism reacts also to forces from without, that have their origin

in chemical, electrical and thermal influences. The processes of

diffusion and of chemical activity within the cell result, by the

drawing in of water, salts, and food-material with or without

chemical transformation into protoplasm, in growth, and this com-

plex phenomenon we shall usually, without discussing its nature

and origin, describe and picture as a force. Indeed we shall

manifestly be incHned to use the term growth in two senses, just

indeed as we do in the case of attraction or gravitation, on the one

hand as a process, and on the other as a force.

In the phenomena of cell-division, in the attractions or repulsions

of the parts of the dividing nucleus, and in the " caryokinetic

"

figures which appear in connection with it, we seem to see in

operation forces and the effects of forces which have, to say the

* One of the first statements which Dujardin made about protoplasm (or, as

he called it, sarcode) was that it was not a fluid; and he relied greatly on this fact

to shew that it was a living, or an organised, structure.
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least of it, a close analogy with known physical phenomena : and

to this matter we shall presently return. But though they resemble

known physical phenomena, their nature is still the subject of much

dubiety and discussion, and neither the forms produced nor the

forces at work can yet be satisfactorily and simply explained. We
may readily admit then, that, besides phenomena which are obviously

physical in their nature, there are actions visible as well as invisible

taking place within living cells which our knowledge does not permit

us to ascribe with certainty to any known physical force; and it

may or may not be that these phenomena will yield in time to the

methods of physical investigation. Whether they do or no, it is

plain that we have no clear rule or guidance as to what is "vital"

and what is not; the whole assemblage of so-called vital phenomena,

or properties of the organism, cannot be clearly classified into those

that are physical in origin and those that are sui generis and peculiar

to living things. All we can do meanwhile is to analyse, bit by bit,

those parts of the whole to which the ordinary laws of the physical

forces more or less obviously and clearly and indubitably apply.

But even the ordinary laws of the physical forces are by no means

simple and plain. In the winding up of a clock (so Kelvin once

said), and in the properties of matter which it involves, there is

enough and more than enough of mystery for our limited under-

standing: "a watchspring is much farther beyond our understanding

than a gaseous nebula." We learn and learn, but never know all,

about the smallest, humblest thing. So said St Bonaventure :
" Si per

multos annos viveres, adhuc naturam unius festucae seu muscae seu

minimae creaturae de mundo ad plenum cognoscere non valeres*."

There is a certain fascination in such ignorance ; and we learn (like

the Abbe Galiani) without discouragement that Science is "plutot

destine a etudier qu'a connaitre, a chercher qu'a trouver la verite."

Morphology is not only a study of material things and of the forms

of material things, but has its dynamical aspect, under which we

deal with the interpretation, in term^ of force, of the operations of

Energyf . And here it is well worth while to remark that, in deahng
* Op. V, p. 541 ; cit. E. Gilson.

t This is a great theme. Boltzmann, writing in 1886 on the second law of

thermodynamics, declared that available energy was the main object at stake

in the struggle for existence and the evolution of the world. Cf. Lotka, The
energetics of evolution, Proc. Nat. Acad. Sci. 1922, p. 147.
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with the facts of embryology or the phenomena of inheritance, the

common language of the, books seems to deal too much with the

material elements concerned, as the causes of development, of

variation or of hereditary transmission. Matter as such produces

nothing, changes nothing, does nothing; and however convenient

it may afterwards be to abbreviate our nomenclature and our

descriptions, we must most carefully realise in the outset that the

spermatozoon, the nucleus, the chromosomes or the germ-plasma

can never act as matter alone, but only as seats of energy and as

centres of force. And this is but an adaptation (in the light, or

rather in the conventional symboHsm, of modern science) of the old

saying of the philosopher : apx^ yo.p r) <j>voLs fxdXXov rrjs vXrjg.

Since this book was written, some five and twenty years ago,

certain great physico-mathematical concepts have greatly changed.

Newtonian mechanics and Newtonian concepts of space and time

are found unsuitable, even untenable or invahd, for the all but

infinitely great and the all but infinitely small. The very idea of

physical causation is said to be illusory, and the physics of the

atom and the electron, and of the quantum theory, are to be

elucidated by the laws of probability rather than by the concept

of causation and its effects. But the orders of magnitude, whether

of space or time, within which these new concepts become useful,

or hold true, lie far away. We distinguish, and can never help

distinguishing, between the things which are of our own scale and

order, to which our minds are accustomed and our senses attuned,

and those remote phenomena which ordinary standards fail to

measure, in regions where (as Robert Louis Stevenson said) there

is no habitable city for the mind of man.

It is no wonder if new methods, new laws, new words, new modes

of thought are needed when we make bold to contemplate a Universe

within which all Newton's is but a speck. But the world of the

Hving, wide as it may be, is bounded by a famihar horizon within

which our thoughts and senses are at home, our scales of time and

magnitude suffice, and the Natural Philosophy of Newton and

Gahleo rests secure.

We start, like Aristotle, with our own stock-in-trade of know-

ledge: dpKTeov OLTTO Tcov rjfjuv yvajpLjjLojv. And only when we are
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steeped to the marrow (as Henri Poincare once said) in the old laws,

and in no danger of forgetting them, may we be allowed to learn

how they have their remote but subtle limitations, and cease afar

off to be more than approximately true *. Kant's axiom of causahty,

that it is denknotwendig—indispensable for thought—remains true

however physical science may change. His later aphorism, that all

changes take place subject to the law which links cause and effect

together
—

"alle Veranderungen geschehen nach dem Gesetz der

Verkniipfung von Ursache und Wirkung"—is still an axiom a priori,

independent of experience: for experience itself depends upon its

truth t-

* So Max Planck himself says somewhere: "In my opinion the teaching of

mechanics will still have to begin with Newtonian force, just as optics begins in

the sensation of colour and thermodynamics with the sensation of warmth,

despite th^ fact that a more precise basis is substituted later on."

t "Weil er [der Grundsatz das Kausalverhaltnisses] selbst der grund der Moglich-

keit einer solchen Erfahrung ist": Kritik d. reinen Vernunft, ed. Odicke, 1889, p. 221.

Cf. also G. W. Kellner, Die Kausalitat in der Physik, Ztschr.f. Physik, lx,iv, pp. 568-

580. 1930.



CHAPTER II

ON MAGNITUDE

To terms of magnitude, and of direction, must we refer all our

conceptions of Form. For the form of an object is defined when we

know its magnitude, actual or relative, in various directions; and

Growth involves the same concepts of magnitude and direction,

related to the further concept, or "dimension," of Time. Before

we proceed to the consideration of specific form, it will be well to

consider certain general phenomena of spatial magnitude, or of the

extension of a body in the several dimensions of space.

We are taught by elementary mathematics—and by Archimedes

himself—that in similar figures the surface increases as the square,

and the volume as the cube, of the linear dimensions. If we take

the simple case of a sphere, with radius r, the area of its surface is

equal to 4:7rr^, and its volume to ^ttt^ ; from which it follows that the

ratio of its volume to surface, or V/S, is Jr. That is to say, VfS

varies as r; or, in other words, the larger the sphere by so much the

greater will be its volume (or its mass, if it be uniformly dense

throughout) in comparison with its superficial area. And, taking

L to represent any linear dimension, we may write the general

equations in the form

Soz L\ F oc L^

or iS = kL\ and V = k'L\

where k, k', are "factors of proportion,"

V V k
and ^ cc L, or — = j-, L = KL.

o ok
So, in Lilliput, "His Majesty's Ministers, finding that Gulhver's

stature exceeded theirs in the proportion of twelve to one, concluded

from the similarity of their bodies that his must contain at least

1728 [or 12^] of theirs, and must needs be rationed accordingly*."

* Likewise Gulliver had a whole Lilliputian hogshead for his half-pint of wine:

in the due proportion of 1728 half-pints, or 108 gallons, equal to one pipe or
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From these elementary principles a great many consequences

follow, all more or less interesting, and some of them of great

importance. In the first place, though growth in length (let us say)

and growth in volume (which is usually tantamount to mass or

weight) are parts of one and the same process or phenomenon, the

one attracts our attention by its increase very much more than the

other. For instance a fish, in doubhng its length, multiphes its

weight no less than eight times; and it all but doubles its weight in

growing from four inches long to five.

In the second place, we see that an understanding of the correla-

tion between length and weight in any particular species of animal,

in other words a determination of k in the formula W = k.L^,

enables us at any time to translate the one magnitude into the other,

and (so to speak) to weigh the animal with a measuring-rod; this,

however, being always subject to the condition that the animal shall

in no way have altered its form, nor its specific gravity. That its

specific gravity or density should materially or rapidly alter is not

very likely; but as long as growth lasts changes of form, even

though inappreciable to the eye, are apt and hkely to occur. Now
weighing is a far easier and far more accurate operation than

measuring; and the measurements which would reveal slight and

otherwise imperceptible changes in the form of a fish—slight relative

differences between length, breadth and depth, for instance—would

need to be very dehcate indeed. But if we can make fairly accurate

determinations of the length, which is much the easiest linear

dimension to measure, and correlate it with the weight, then the

value of k, whether it varies or remains constant, will tell us at once

whether there has or has not been a tendency to alteration in the

general form, or, in other words, a difference in the rates of growth

in different directions. To this subject we shall return, when we

come to consider more particularly the phenomenon of rate ofgrowth.

double-hogshead. But Gilbert White of Selborne could not see what was plain

to the Lilliputians; for finding that a certain little long-legged bird, the stilt,

weighed 4J oz. and had legs 8 in. long, he thought that a flamingo, weighing 4 lbs.,

should have legs 10 ft. long, to be in the same proportion as the stilt's. But
it is obvious to us that, as the weights of the two birds are as 1 : 15, so the legs

(or other linear dimensions) should be as the cube-roots of these numbers, or

nearly as 1 : 2^. And on this scale the flamingo's legs should be, as they actually

are, about 20 in. long.
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We are accustomed to think of magnitude as a purely relative

matter. We call a thing big or little with reference to what it is

wont to be, as when we speak of a small elephant or a large rat ; and

we are apt accordingly to suppose that size makes no other or more

essential difference, and that Lilliput and Brobdingnag* are all

alike, according as we look at them through one end of the glass

or the other. Gulliver himself declared, in Brobdingnag, that

"undoubtedly philosophers are in the right when they tell us that

nothing is great and little otherwise than by comparison": and

Oliver Heaviside used to say, in like manner, that there is no

absolute scale of size in the Universe, for it is boundless towards

the great and also boundless towards the small. It is of the very

essence of the Newtonian philosophy that we should be able to

extend our concepts and deductions from the one extreme of magni-

tude to the other; and Sir John Herschel said that "the student

must lay his account to finding the distinction of great and little

altogether annihilated in nature."

All this is true of number, and of relative magnitude. The Universe

has its endless gamut of great and small, of near and far, of many

and few. Nevertheless, in physical science the scale of absolute

magnitude becomes a very real and important thing; and a new

and deeper interest arises out of the changing ratio of dimensions

when we come to consider the inevitable changes of physical rela-

tions with which it is bound up. The effect of scale depends not on

a thing in itself, but in relation to its whole environment or milieu

;

it is in conformity with the thing's "place in Nature," its field of

action and reaction in the Universe. Everywhere Nature works

true to scale, and everything has its proper size accordingly. Men

and trees, birds and fishes, stars and star-systems, have their

appropriate dimensions, and their more or less narrow range of

absolute magnitudes. The scale of human observation and ex-

perience lies within the narrow bounds of inches, feet or miles, all

measured in terms drawn from our own selves or our own doings.

Scales which include light-years, parsecs. Angstrom units, or atomic

* Swift paid close attention to the arithmetic of magnitude, but none to its

physical aspect. See De Morgan, on Lilliput, in N. and Q. (2), vi, pp. 123-125,

1858. On relative magnitude see also Berkeley, in his Essay towards a New Theory

of Visio7i, 1709.
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and sub-atomic magnitudes, belong to other orders of things and

other principles of cognition.

A common effect of scale is due to the fact that, of the physical

forces, some act either directly at the surface of a body, or otherwise

in proportion to its surface or area; while others, and above all

gravity, act on all particles, internal and external alike, and exert

a force which is proportional to the mass, and so usually to the

volume of the,body.

A simple case is that of two similar weights hung by two similar

wires. The forces exerted by the weights are proportional to their

masses, and these to their volumes, and so to the cubes of the

several Hnear dimensions, including the diameters of the wires.

But the areas of cross-section of the wires are as the squares of the

said linear dimensions; therefore the stresses in the wires 'per unit

area are not identical, but increase in the ratio of the linear dimen-

sions, and the larger the structure the more severe the strain becomes

:

Force l^

A^ ^
r^
^ ^'

and the less the wires are capable of supporting it.

In short, it often happens that of the forces in action in a system

some vary as one power and some as another, of the masses, distances

or other magnitudes involved; the "dimensions" remain the same

in our equations of equilibrium, but the relative values alter with

the scale. This is known as the "Principle of Similitude," or of

dynamical similarity, and it and its consequences are of great

importance. In a handful of matter cohesion, capillarity, chemical

affinity, electric charge are all potent; across the solar system

gravitation* rules supreme; in the mysterious region of the nebulae,

it may haply be that gravitation grows negligible again.

To come back to homelier things, the strength of an iron girder

obviously varies with the cross-section of its members, and each

cross-section varies as the square of a linear dimension; but the

weight of the whole structure varies as the cube of its linear dimen-

* In the early days of the theory of gravitation, it was deemed especially

remarkable that the action of gravity "is proportional to the quantity of solid

matter in bodies, and not to their surfaces as is usual in mechanical causes; this

power, therefore, seems to surpass mere mechanism" (Colin Maclaurin, on Sir

Isaac Newton's Philosophical Discoveries, iv, 9).
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sions. It follows at once that, if we build two bridges geometrically

similar, the larger is the weaker of the two*, and is so in the ratio

of their linear dimensions. It was elementary engineering experience

such as this that led Herbert Spencer to apply the principle of

simihtude to biologyf.

But here, before w^e go further, let us take careful note that

increased weakness is no necessary concomitant of increasing size.

There are exceptions to the rule, in those exceptional cases where we

have to deal only with forces which vary merely with the area on

which they impinge. - If in a big and a httle ship two similar masts

carry two similar sails, the two sails will be similarly strained, and

equally stressed at homologous places, and alike suitable for resisting

the force of the same wind. Two similar umbrellas, however

differing in size, will serve ahke in the same weather; and the

expanse (though not the leverage) of a bird's wing may be enlarged

with little alteration.

The principle of similitude had been admirably apphed in a few

clear instances by LesageJ, a celebrated eighteenth-century physician,

in an unfinished and unpublished work. Lesage argued, for example,

that the larger ratio of surface to mass in a small animal would lead

to excessive transpiration, were the skin as "porous" as our own;

and that we may thus account for the hardened or thickened skins

of insects and many other small terrestrial animals. Again, since

the weight of a fruit increases as the cube of its linear dimensions,

while the strength of the stalk increases as the square, it follows

that the stalk must needs grow out of apparent due proportion to

the fruit: or, alternatively, that tall trees should not bear large

* The subject is treated from the engineer's point of view by Prof. James
Thomson, Comparison of similar structures as to elasticity, strength and stability,

Coll. Papers, 1912, pp. 361-372, and Trans. Inst. Engineers, Scotland, 1876; also

by Prof. A. Barr, ibid. 1899. See also Rayleigh, Nature, April 22, 1915; Sir G.

Greenhill, On mechanical similitude, Math. Gaz. March 1916, Coll. Works, vi,

p. 300. For a mathematical account, sec (e.g.) P. VV. Bridgeman, Dimensional

Analysis (2nd ed.), 1931, or F. W. Lanchester, The Theory of Dimensions, 1936.

t Herbert Spencer, The form of the earth, etc., Phil. Mag. xxx, pp. 194-6,

1847; also Principles of Biology, pt. ii, p. 123 seq., 1864.

I See Pierre Prevost, Notices de la vie et des ecrits de Lesage, 1805. George

Louis Lesage, born at Geneva in 1724, devoted sixty-three years of a life of eighty

to a mechanical theory of gravitation; see W. Thomson (Lord Kelvin), On the

ultramundane corpuscles of Lesage, Proc. E.S.E. vii, pp. 577-589, 1872; Phil. Mag.

XLV, pp. 321-345, 1873; and Clerk Maxwell, art. "Atom," Encyd. Brit. (9), p.' 46.
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fruit on slender branches, and that melons and pumpkins must lie

upon the ground. And yet again, that in quadrupeds a large head

must be supported on a neck which is either excessively thick and

strong like a bull's, or very short like an elephant's*.

But it was Gahleo who, wellnigh three hundred years ago, had

first laid down this general principle of simiUtude; and he did so

with the utmost possible clearness, and with a great wealth of illustra-

tion drawn from structures living and deadf. He said that if we

tried building ships, palaces or temples of enormous size, yards,

beams and bolts would cease to hold together; nor can Nature

grow a tree nor construct an animal beyond a certain size, while

retaining the proportions and employing the materials which suffice

in the case of a smaller structure J. The thing will fall to pieces of

its own weight unless we either change its relative proportions, which

will at length cause it to become clumsy, monstrous and inefficient,

or else we must find new material, harder and stronger than was

used before. Both processes are famihar to us in Nature and in

art, and practical apphcations, undreamed of by Gahleo, meet us at

every turn in this modern age of cement and steel §.

Again, as Galileo was also careful to explain, besides the questions

of pure stress and strain, of the strength of muscles to hft an

increasing weight or of bones to resist its crushing stress, we have

the important question of bending ynornents. This enters, more or

less, into our whole range of problems ; it aifects the whole form of

the skeleton, and sets a limit to the height of a tall tree||.

* Cf. W. Walton, On the debility of large animals and trees, Quart. Journ.

of Math. IX, pp. 179-184, 1868; also L. J. Henderson, On volume in Biology,

Proc. Amer. Acad. Sci. ii, pp. 654-658, 1916; etc.

t Discorsi e Dimostrazioni matematiche, intorno a due nuove scienze attenenti

alia Mecanica ed ai Muovimenti Locali: appresso gli Elzevirii, 1638; Opere,

ed. Favaro, viir, p. 169 seq. Transl. by Henry Crew and A. de Salvio, 1914, p. 130.

X So Werner remarked that Michael Angelo and Bramanti could not have built

of gypsum at Paris on the scale they built of travertin at Rome.

§ The Chrysler and Empire State Buildings, the latter 1048 ft. high to the foot

of its 200 ft. "mooring mast," are the last word, at present, in this brobdingnagian

architecture.

II
It was Euler and Lagrange who first shewed (about 1776-1778) that a column

of a certain height would merely be compressed, but one of a greater height would

be bent by its own weight. See Euler, De altitudine columnarum etc.. Acta Acad.

Sci. Imp. Petropol. 1778, pp. 163-193; G, Greenhill, Determination of the greatest

height to which a tree of given proportions can grow, Cambr. Phil. Soc. Proc. rv,

p. 65, 1881, and Chree, ibid, vu, 1892.
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We learn in elementary mechanics the simple case of two similar

beams, supported at both ends and carrying no other weight than

their own. Within the limits of their elasticity they tend to be

deflected, or to sag downwards, in proportion to the squares of their

linear dimensions ; if a match-stick be two inches long and a similar

beam six feet (or 36 times as long), the latter will sag under its own

weight thirteen hundred times as much as the other. To counteract

this tendency, as the size of an animal increases, the limbs tend to

become thicker and shorter and the whole skeleton bulkier and

heavier; bones make up some 8 per cent, of the body of mouse or wren,

13 or 14 per cent, of goose or dog, and 17 or 18 per cent, of the body

of a man. Elephant and hippopotamus have grown clumsy as well as

big, and the elk is of necessity less graceful than the gazelle. It is of

high interest, on the other hand, to observe how little the skeletal

proportions differ in a httle porpoise and a great whale, even in the

limbs and hmb-bones ; for the whole influence of gravity has become

neghgible, or nearly so, in both of these.

In ifhe problem of the tall tree we have to determine the point

at which the tree will begin to bend under its own weight if it be

ever so little displaced from the perpendicular*. In such an

investigation we have to make certain assumptions—for instance

that the trunk tapers uniformly, and that the sectional area of the

branches varies according to some definite law, or (as Ruskin

assumed) tends to be constant in any horizontal plane; and the

mathematical treatment is apt to be somewhat difficult. But

Greenhill shewed, on such assumptions as the above, that a certain

British Columbian pine-tree, of which the Kew flag-staff, which is

221 ft. high and 21 inches in diameter at the base, was made, could

not possibly, by theory, have grown to more than about 300 ft. It

is very curious that Galileo had suggested precisely the same height

(ducento braccie alta) as the utmost limit of the altitude of a tree.

In general, as Greenhill shewed, the diameter of a tall homogeneous

body must increase as the power 3/2 of its height, which accounts

for the slender proportions of young trees compared with the squat

* In like manner the wheat-straw bends over under the weight of the loaded

ear, and the cat's tail bends over when held erect—not because, they "possess

flexibility," but because they outstrip the dimensions within which stable equi-

librium is possible in a vertical position. The kitten's tail, on the other hand,

stands up spiky and straight.
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or stunted appearance of old and large ones*. In short, as Goethe

says in Dicktung und Wahrheit, "Es ist dafiir gesorgt dass die Baume
nicht in den Himmel wachsen."

But the tapering pine-tree is but a special case of a wider problem.

The oak does not grow so tall as the pine-tree, but it carries a heavier

load, and its boll, broad-based upon its spreading roots, shews a

different contour. Smeaton took it for the pattern of his Hghthouse,

and Eiffel built his great tree of steel, a thousand feet high, to a

similar but a stricter plan. Here the profile of tower or tree follows,

or tends to follow, a logarithmic curve, giving equal strength

throughout, according to a principle which we shall have occasion

to discuss later on, when we come to treat of form and mechanical

efficiency in the skeletons of animals. In the tree, moreover,

anchoring roots form powerful wind-struts, and are most de-

veloped opposite to the direction of the prevailing winds; for the

lifetime of a tree is affected by the frequency of storms, and its

strength is related to the wind-pressure which it must needs with-

standf.

Among animals we see, without the help of mathematics or of

physics, how small birds and beasts are quick and agile, how slower

and sedater movements come with larger size, and how exaggerated

bulk brings with it a certain clumsiness, a certain inefficiency, an

element of risk and hazard, a preponderance of disadvantage. The
case was well put by Owen, in a passage which has an interest of

its own as a premonition, somewhat Hke De. Candolle's, of the

"struggle for existence." Owen wrote as follows J:
" In proportion

to the bulk of a species is the difficulty of the contest which, as a

living organised whole, the individual of each species has to maintain

against the surrounding agencies that are ever tending to dissolve

the vital bond, and subjugate the Hving matter to the ordinary

chemical and physical forces. Any changes, therefore, in such

external conditions as a species may have been original|y adapted

* The stem of the giant bamboo may attain a height of 60 metres while not more
than about 40 cm. in diameter near its base, which dimensions fall not far short
of the theoretical limits; A. J. Ewart, Phil. Trans, cxcviii, p. 71, 1906.

t Cf. {int. al.) T. Fetch, On buttress tree-roots, Ann. R. Bot. Garden, Peradenyia,
XI, pp. 277-285, 1930. Also au interesting paper by James Macdonald, on The
form of coniferous trees. Forestry, vi, 1 and 2, 1931/2.

X Trans. Zool. Soc. iv, p. 27, 1850.
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to exist in, will militate against that existence in a degree

proportionate, perhaps in a geometrical ratio, to the bulk of the

species. If a dry season be greatly prolonged, the large mammal
will suffer from the drought sooner than the small one; if any

alteration of climate affect the quantity of vegetable food, the

bulky Herbivore will be the first to feel the effects of stinted

nourishment."

But the principle of GaHleo carries us further and along more

certain lines. The strength of a muscle, like that of a rope or

girder, varies with its cross-section; and the resistance of a bone

to a crushing stress varies, again hke our girder, with its cross-

section. But in a terrestrial animal the weight which tends to

crush its limbs, or which its muscles have to move, varies as the

cube of its hnear dimensions; and so, to the possible magnitude

of an animal, living under the direct action of gravity, there is a

definite limit set. The elephant, in the dimensions of its limb-bones,

is already shewing signs of a tendency to disproportionate thickness

as compared with the smaller mammals; its movements are in

many ways hampered and its agility diminished: it is already

tending towards the maximal Hmit of size which the physical forces

permit*. The spindleshanks of gnat or daddy-long-legs have their

own factor of safety, conditional on the creature's exiguous bulk

and weight; for after their own fashion even these small creatures

tend towards an inevitable limitation of their natural size. But, as

Gahleo also saw, if the animal be wholly immersed in water like the

whale, or if it be partly so, as was probably the case with the giant

reptiles of the mesozoic age, then the weight is counterpoised to

the extent of an equivalent volume of water, and is completely

counterpoised if the density of the animal's body, with the included

air, be identical (as a whale's very nearly is) with that of the water

around^. Under these circumstances there is no longer the same

physical barrier to the indefinite growth of the animal. Indeed, in the

case of the aquatic animal, there is, as Herbert Spencer pointed out,

* Cf. A. Rauber, Galileo iiber Knochenformen, Morphol. Jahrb. vii, p. 327, 1882.

t Cf. W. S. Wall, A New Sperm Whale etc., Sydney, 1851, p. 64: "As for

the immense size of Cetacea, it evidently proceeds from their buoyancy in the

medium in which they live, and their being enabled thus to counteract the force of

gravity."
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a distinct advantage, in that the larger it grows the greater is its

speed. For its available energy depends on the mass of its muscles,

while its motion through the water is opposed, not by gravity, but

by "skin-friction," which increases only as the square of the linear

dimensions*: whence, other things being equal, the bigger the ship

or the bigger the fish the faster it tends to go, but only in the ratio

of the square root of the increasing length. For the velocity (F)

which the fish attains depends on the work (W) it can do and the

resistance (R) it must overcome. Now we^ have seen that the

dimensions of W are l^, and ofR are l'^ ; and by elementary mechanics

WocRV^ or F^oc^.

73

Therefore V^oCr-=l, and F oc Vl.

This is what is known as Fronde's Law, of the correspondence

of speeds—a simple and most elegant instance of "dimensional

theory!."

But there is often another side to these questions, which makes

them too complicated to answer in a word. For instance, the work

(per stroke) of which two similar engines are capable should vary as

the cubes of their linear dimensions, for it varies on the one hand

with the area of the piston, and on the other with the length of the

stroke; so is it likewise in the animal, where the corresponding

ratio depends on the cross-section of the muscle, and on the distance

through which it contracts. But in two similar engines, the available

horse-power varies as the square of the linear dimensions, and not

as the cube ; and this for the reason that the actual energy developed

depends on the heating-surface of the boilerJ. So likewise must

* We are neglecting "drag" or "head-resistance," which, increasing as the cube

of the speed, is a formidable obstacle to an unstreamlined body. But the perfect

streamlining of whale or fish or bird lets the surrounding air or water behave like

a perfect fluid, gives rise to no "surface of discontinuity," and the creature passes

through it without recoil or turbulence. Froude reckoned skin-friction, or surface-

resistance, as equal to that of a plane as long as the vessel's water-line, and of area

equal to that of the wetted surface of the vessel.

t Though, as Lanchester says, the great designer "was not hampered by a

knowledge of the theory of dimensions."

X The analogy is not a very strict or complete one. We are not taking account,

for instance, of the thickness of the boiler-plates.
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there be a similar tendency among animals for the rate of supply

o^ kinetic energy to vary with the surface of the lung, that is to say

(other things being equal) with the square of the linear dimensions

of the animal ; which means that, caeteris paribus, the small animal

is stronger (having more power per unit weight) than a large one.

We may of course (departing from the condition of similarity) increase

the heating-surface of the boiler, by means of an internal system of

tubes, without increasing its outward dimensions, and in this very

way Nature increases the respiratory surface of a lung by a complex

system of branching tubes and minute air-cells ; but nevertheless in

two similar and closely related animals, as also in two steam-engines

of the same make, the law is bound to hold that the rate of working

tends to vary with the square of the linear dimensions, according to

Froude's law of steamship comparison. In the case of a very large

ship, built for speed, the difficulty is got over by increasing the size

and number of the boilers, till the ratio between boiler-room and

engine-room is far beyond what is required in an ordinary small

vessel*; but though we find lung-space increased among animals

where greater rate of working is required, as in general among birds,

I do not know that it can be shewn to increase, as in the "over-

boilered" ship, with the size of the animal, and in a ratio which

outstrips that of the other bodily dimensions. If it be the case then,

that the working mechanism of the muscles should be able to exert

a force proportionate to the cube of the linear bodily dimensions,

* Let L be the length, S the (wetted) surface, T the tonnage, D the displacement

(or volume) of a ship; and let it cross the Atlantic at a speed V. Then, in com-

paring two ships, similarly constructed but of different magnitudes, we know that

L=V\ S=L^ = V\ D = T = L^=V^; also B (resistance) =/Sf. F^^ F«; H (horse-

power) = i2 . F = F' ; and the coal (C) necessary for the voya,ge—HjV = V^. That

is to say, in ordinary engineering language, to increase the speed across the Atlantic

by 1 per cent, the ship's length must be increased 2 per cent., her tonnage or

displacement 6 per cent., her coal-consumption also 6 per cent., her horse-power,

and therefore her boiler-capacity, 7 per cent. Her bunkers, accordingly, keep

pace with the enlargement of the ship, but her boilers tend to increase out of

proportion to the space available. Suppose a steamer 400 ft. long, of 2000 tons,

2000 H.P., and a speed of 14 knots. The corresponding vessel of 800 ft. long should

develop a speed of 20 knots (I : 2 :: 14^ : 20^), her tonnage would be 16,000, her

H.p. 25,000 or thereby. Such a vessel would probably be driven by four propellers

instead of one, each carrying 8000 h.p. See (int. al.) W. J. Millar, On the most

economical speed to drive a steamer, Proc. Edin. Math. Soc. vii, pp. 27-29, 1889;

Sir James R. Napier, On the most profitable speed for a fully laden cargo steamer

for a given voyage, Proc. Phil. Soc, Glasgow, vi, pp. 33-38, 1865.
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while the respiratory mechanism can only supply a store of energy

at a rate proportional to the square of the said dimensions, the

singular result ought to follow that, in swimming for instance, the

larger fish ought to be able to put on a spurt of speed far in excess

of the smaller one; but the distance travelled by the year's end

should be very much ahke for both of them. And it should also

follow that the curve of fatigue is a steeper one, and the staying

power less, in the smaller than ixx the larger individual. This is the

c^ase in long-distance racing, where neither draws far ahead until

the big winner puts on his big spurt at the end; on which is based

an aphorism of the turf, that "a good big 'un is better than a good

httle 'un." For an analogous reason wise men know that in the

'Varsity boat-race it is prudent and judicious to bet on the heavier

crew.

Consider again the dynamical problem of the movements of the

body and the hmbs. The work done (W) in moving a Hmb, whose

weight is p, over a distance s, is measured hy ps; p varies as the

cube of the hnear dimensions, and s, in ordinary locomotion, varies

as the linear dimensions, that is to say as the length of Hmb

:

Wocpsocl^ xl^lK

But the work done is limited by the power available, and this

varies as the mass of the muscles, or as l^; and under this hmitation

neither p nor s increase as they would otherwise tend to do. The

limbs grow shorter, relatively, as the animal grows bigger; and

spiders, daddy-long-legs and such-hke long-limbed creatures attain

no great size.

Let us consider more closely the actual energies of the body.

A hundred years ago, in Strasburg, a physiologist and a mathema-

tician were studying the temperature of warm-blooded animals*.

The heat lost must, they said, be proportional to the surface of the

animal : and the gain must be equal to the loss, since the temperature

of the body keeps constant. It would seem, therefore, that the

heat lost by radiation and that gained by oxidation vary both alike,

as the surface-area, or the square of the Hnear dimensions, of the

animal. But this result is paradoxical; for whereas the heat lost

* MM. Rameaux et Sarrus, Bull. Acad. R. de Me'decine, in, pp. 1094-1100,

1838-39.
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may well vary as the surface-area, that produced by oxidation

ought rather to vary as the bulk of the animal: one should vary

as the square and the other as the cube of the Hnear dimensions.

Therefore the ratio of loss to gain, hke that of surface to volume,

ought to increase as the size of the creature diminishes. Another

physiologist, Carl Bergmann*, took the case a step further. It was he,

by the way, whp first said that the real distinction was not between

warm-blooded and cold-blooded animals, but between those of

constant and those of variable temperature: and who coined the

terms homoeothermic and poecilothermic which we use today. He
was driven to the conclusion that the smaller animal does produce

more heat (per unit of mass) than the large one, in order to keep

pace with surface-loss; and that this extra heat-production means

more energy spent, more food consumed, more work donef. Sim-

plified as it thus was, the problem still perplexed the physiologists

for years after. The tissues of one mammal are much like those of

another. We can hardly imagine the muscles of a small mammal
to produce more heat {caeteris paribus) than those of a large ; and

we begin to wonder whether it be not nervous excitation, rather than

quahty of muscular tissue, which determines the rate of oxidation

and the output of heat. It is evident in certain cases, and may be

a general rule, that the smaller animals have the bigger brains;

"plus I'animal est petit," says M. Charles Richet, "plus il a des

echanges chimiques actifs, et plus son cerveau est volumineuxj."

That the smaller animal needs more food is. certain and obvious.

The amount of food and oxygen consumed by a small flying insect

is enormous; and bees and flies and hawkmoths and humming-

* Carl Bergmann, Verhaltnisse der Warmeokonomie der Tiere zu ihrer Grosse,

Gottinger Studien, i, pp. 594-708, 1847—a very original paper.

t The metabolic activity of sundry mammals, per 24 hours, has been estimated

as follows

:

Weight (kilo.) Calories per kilo.

Guinea-pig 0-7 223
Rabbit 2 58
Man 70 33
Horse 600 22
Elephant 4000 13

Whale 150000 circa 1-7

J Ch. Richet, Recherches de calorimetrie. Arch, de Physiologie (3), vi, pp. 237-291,

450-497, 1885. Cf. also an interesting historical account by M. Elie le Breton,

Sur la notion de "masse protoplasmique active": i. Probl^mes poses par la

signification de la loi des surfaces, ibid. 1906, p. 606.
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birds live on nectar, the richest and most concentrated of foods*.

Man consumes a fiftieth part of his own weight of food daily, but

a mouse will eat half its own weight in a day; its rate of Hving is

faster, it breeds faster, and old age comes to it much sooner than

to man. A warm-blooded animal much smaller than a mouse

becomes an impossibihty; it could neither obtain nor yet digest the

food required to maintain its constant temperature, and hence no

mammals and no birds are as small as the smallest frogs or fishes.

The disadvantage of small size is all the greater when loss of heat

is accelerated by conduction as in the Arctic, or by convection as

in the sea. The far north is a home of large birds but not of small

;

bears but not mice five through an Arctic winter; the 'least of the

dolphins Hve in warm waters, and there are no small mammals in

the sea. This principle is sometimes spoken of as Bergmann's Law.

The whole subject of the conservation of heat and the maintenance

of an all but constant temperature in warm-blooded animals interests

the physicist and the physiologist ahke. It drew Kelvin's attention

many years agof, and led him to shew, in a curious paper, how
larger bodies are kept warm by clothing while smaller are only

cooled the more. If a current be passed through a thin wire, of

which part is covered and part is bare, the thin bare part may glow

with heat, while convection-currents streaming round the covered

part cool it off and leave it in darkness. The hairy coat of very

small animals is apt to look thin and meagre, but it may serve them

better than a shaggier covering.

Leaving aside the question of the supply of energy, and keeping

to that of the mechanical efficiency of the machine, we may find

endless biological illustrations of the principle of simihtude. All

through the physiology of locomotion we meet with it in various

ways : as, for instance, when we see a cockchafer carry a plate many
times its own weight upon its back, or a flea jump many inches high.

''A dog," says Gahleo, "could probably carry two or three such

dogs upon his back; but I believe that a horse could not carry

even one of his own size."

Cf. R. A. Davies and G. Fraenkel, The oxygen-consumption of flies during
flight, Jl. Exp. Biol. XVII, pp. 402-407, 1940.

t W. Thomson, On the efficiency of clothing for maintaining temperature,
Nature, xxix, p. 567, 1884.
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Such problems were admirably treated by Galileo and Borelli,

but many writers remained ignorant of their work. Linnaeus

remarked that if an elephant were as strong in proportion as a

stag-beetle, it would be able to pull up rocks and level mountains;

and Kirby and Spence have a well-known passage directed to shew

that such powers as have been conferred upon the insect have been

withheld from the higher animals, for the reason that had these

latter been endued therewith they would have "caused the early

desolation of the world*."

Such problems as that presented by the flea's jumping powersf

,

though essentially physiological in their nature, have their interest

for us here: because a steady, progressive diminution of activity

with increasing size would tend to set Hmits to the possible growth

in magnitude of an animal just as surely as those factors which

tend to break and crush the living fabric under its own weight. In

the case of a leap, we have to do rather with a sudden impulse than

with a continued strain, and this impulse should be measured in

terms of the velocity imparted. The velocity is proportional to

the impulse (x), and inversely proportional to the mass (M) moved

:

V = xjM. But, according to what we still speak of as "Borelh's

law," the impulse (i.e. the work of the impulse) is proportional to

the volume of the muscle by which it is produced {, that is to say

(in similarly constructed animals) to th^ mass of the whole body;

for the impulse is proportional on the one hand to the cross-section

of the muscle, and on the other to the distance through which it

* Introduction to Entomology, ii, p. 190, 1826. Kirby and Spence, like many less

learned authors, are fond of popular illustrations of the "wonders of Nature,"

to the neglect of dynamical principles. They suggest that if a white ant were as

big as a man, its tunnels would be "magnificent cylinders of more than three

hundred feet in diameter"; and that if a certain noisy Brazilian insect were as

big as a man, its voice would be heard all the world over, "so that Stentor becomes

a mute when compared with these insects!" It is an easy consequence of

anthropomorphism, and hence a common characteristic of fairy-tales, to neglect

the dynamical and dwell on the geometrical aspect of similarity.

•f
The flea is a very clever jumper; he jumps backwards, is stream-lined ac-

cordingly, and alights on his two long hind-legs. Cf. G. I. Watson, in Nature,

21 May 1938.

X That is to say, the available energy of muscle, in ft.-lbs. per lb. of muscle, is

the same for all animals: a postulate which requires considerable qualification

when we come to compare very different kinds of muscle, such as the insect's and

the mammal's.
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contracts. It follows from this that the velpcity is constant, what-

ever be the size of the animal.

Putting it still more simply, the work done in leaping is propor-

tional to the mass and to the height to which it is raised, W oc mH.
But the muscular power available for this work is proportional to

the mass of muscle, or (in similarly constructed animals) to the mass

of the animal, W oc m. It follows that H is, or tends to be, a

constant. In other words, all animals, provided always that they

are similarly fashioned, with their various levers in Hke proportion,

ought to jump not to the same relative but to the same actual

height*. The grasshopper seems to be as well planned for jumping

as the flea, and the actual heights to which they jump are much of

a muchness; but the flea's jump is about 200 times its own height,

the grasshopper's at most 20-30 times; and neither flea nor grass-

hopper is a better but rather a worse jumper than a horse or a manf

.

As a matter of fact, Borelli is careful to point out that in the act

of leaping the impulse is not actually instantaneous, like the blow

of a hammer, but takes some httle time, during which the levers

are being extended by which the animal is being propelled forwards

;

and this interval of time will be longer in the case of the longer

levers of the larger animal. To some extent, then, this principle

acts as a corrective to the more general one, and tends to leave a

certain balance of advantage in regard to leaping power on the side

of the larger animal J. But on the other hand, the question of

strength of materials comes in once more, and the factors of stress

and strain and bending moment make it more and more difficult

for nature to endow the larger animal with the length of lever with

which she has provided the grasshopper or the flea. To Kirby and

Spence it seemed that "This wonderful strength of insects is

doubtless the result of something peculiar in the structure and

arrangement of their muscles, and principally their extraordinary

* Borelli, Prop. CLxxvn. Animalia minora et minus ponderosa majores saltus

efficiunt respectu sui corporis, si caetera fuerint paria.

t The high jump is nowadays a highly skilled performance. For the jumper

contrives that his centre of gravity goes under the bar, while his body, bit by bit,

goes over it.

J See also {int. al.), John Bernoulli, De Motu Musculorum, Basil., 1694;

Chabry, Mecanisme du saut, J. de VAnat. et de la Physiol, xix, 1883;* Sur la

longueur des membres des animaux sauteurs, ibid, xxi, p. 356, 1885; Le Hello,

De Taction des organes locomoteurs, etc., ibid, xxix, pp. 65-93, 1893; etc.
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power of contraction." This hypothesis, which is so easily seen on

physical grounds to be unnecessary, has been amply disproved in

a series of excellent papers by Felix Plateau*.

From the impulse of the preceding case we may pass to the momentum
created (or destroyed) under similar circumstances by a given force acting

for a given time : mv= Ft.

We know that . m oc P, and t = Ifv,

so that lH= Fllv, or v^ = F/l\

But whatsoever force be available, the animal may only exert so much of

it as is in proportion to the strength of his own limbs, that is to say to the

cross-section of bone, sinew and muscle ; and all of these cross-sections are

proportional to P, the square of the linear dimensions. The maximal force,

-f'max, which the animal dare exert is proportional, then, to l^; therefore

Fraa^JP = coustant.

And the maximal speed which the animal can safely reach, namely

F'max = ^max/^, IS also constaut, or independent {ceteris paribus) of the dimensions

of the animal.

A spurt or effort may be well within the capacity of the animal but far

beyond the margin of safety, as trainer and athlete well know. This margin

is a narrow one, whether for athlete or racehorse; both run a constant risk

of overstrain, under which they may "pull" a muscle, lacerate a tendon, or

even "break down" a bonet.

It is fortunate for their safety that animals do not jump to heights pro-

portional to their own. For conceive an animal (of mass m) to jump to

a certain altitude, such that it reaches the ground with a velocity v; then

if c be the crushing strain at any point of the sectional area (A) of the limbs,

the limiting condition is that mv= cA.

If the animal vary in magnitude without change in the height to which

it jumps (or in the velocity with which it descends), then

m P ,

coc 2 oc ^"2, orZ.

The crushing strain varies directly with the linear dimensions of the animal

;

and this, a dynamical case, is identical with the usual statical limitalfion of

magnitude.

* Recherches sur la force absolue des muscles des Inverlebres, Bull. Acad. R,

de Belgique (3), vi, vii, 1^83-84: see also ibid. (2), xx, 1865; xxii, 1866; Ann.

Mag. N.H. xvii, p. 139, 1866; xix, p. 95, 1867. Cf. M. Radau, Sur la force

musculaire des insectes, Revue des deux Mondes, lxiv, p. 770, 1866. The subject

had been well treated by Straus-Diirckheim, in his Considerations generates sur

Vanatomie comparee des animauz articuUs, 1828.

t Cf. The dynamics of sprint -running, by A. V. Hill and others, Proc. R.S. (B),

cii, pp. 29-42, 1927; or Muscular Movement in Man, by A. V. Hill, New York,

1927, ch. VI, p. 41.
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But if the animal, with increasing size or stature, jump to a correspondingly

increasing height, the case becomes much more serious. For the final velocity

of descent varies as the square root of the altitude reached, and therefore as

the square root of tte linear dimensions of the animal. And since, as before,

13

cccmvcc
j^

Vy

c oc 75 . V ;, or c oc Z».

If a creature's jump were in proportion to its height, the crushing strains

would so increase that its dimensions would be limited thereby in a much higher

degree than was indicated by statical considerations. An animal may grow

to a size where lit is unstable dynamically, though still on the safe side

statically—a size where it moves with difficulty though it rests secure. It is

by reason of dynamical rather than of statical relations that an elephant

is of graver deportment than a.mouse.

An apparently simple problem, much less simple than it looks, lies

in the act of walking, where there will evidently be great economy of

work if the leg swing with the help of gravity, that is to say, at a

peTidulum-rate. The conical shape and jointing of the limb, the time

spent with the foot upon the ground, these and other mechanical

differences complicate the case, and make the rate hard to define or

calculate. Nevertheless, we may convince ourselves by counting our

steps, that the leg does actually tend to swing, as a pendulum does,

at a certain definite rate*. So on the same principle, but to the

slower beat of a longer pendulum, the scythe swings smoothly in

the mower's hands.

To walk quicker, we "step out"; we cause the leg-pendulum to

describe a greater arc, but it does not swing or vibrate faster until

we shorten the pendulum and begin to run. Now let two similar

individuals, A and B, walk in a similar fashion, that is to say with

a similar an^le of swing (Fig. 1). The arc through which the leg

swings, or the amplitude of each step, will then vary as the length

of leg (say as a/6), and so as the height or other linear dimension (/)

of the manf. But the time of swing varies inversely as'the square

* The assertion that the hmb tends to swing in pendulum-time was first made
by the brothers Weber {Mechanik der menschl. Gehwerkzeuge, Gottingen, 1836).

Some later writers have criticised the statement (e.g. Fischer, Die Kinematik dea

Beinschwingens etc., AhJi. math. phys. Kl. k. Sachs. Ges. xxv-xxvin, 1899-1903),

but for all that, with proper and large qualifications, it remains substantially true.

t So the stride of a Brobdingnagian was 10 yards long, or just twelve times the

2 ft. 6 in., which make the average stride or half-pace of a man.
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root of the pendulum-length, or Va/Vb. Therefore the velocity,

which is measured by amphtude/time, or a/b x Vb/Va, will also vary

as the square root of the hnear dimen-

sions; which is Froude's law over again.

The smaller man, or smaller animal,

goes slower than the larger, but only in

the ratio of the square roots of their

linear dimensions ; whereas, if the limbs

moved alike, irrespective of the size of

the animal—if the limbs of the mouse

swung no faster than those of the horse

—then the mouse would be as slow in

its gait or slower than the tortoise.

M. DeHsle* saw a fly walk three inches

in half-a-second ; this was good steady

walking. When we walk five miles an

hour we go about 88 inches in a second,

or 88/6 =14-7 times the pace of M. DeHsle 's fly. We should walk

at just about the fly's pace if our stature were 1/(14-7)2, or 1/216

of our present height—say 72/216 inches, or one-third of an inch

high. Let us note in passing that the number of legs does not

matter, any more than the number of wheels to a coach; the

centipede runs none the faster for all his hundred legs.

But the leg comprises a complicated system of levers, by whose

various exercise we obtain very different results. For instance, by

being careful to rise upon our instep we increase the length or

amplitude of our stride, and improve our speed very materially;

and it is curious to see how Nature lengthens this metatarsal joint,

or instep-lever, in horse f and hare and greyhound, in ostrich and

in kangaroo, and in every speedy animal. Furthermore, in running

we bend and so shorten the leg, in order to accommodate it to a

quicker rate of pendulum-swing J. In short the jointed structure

* Quoted in Mr John Bishop's interesting article in Todd's Cyclopaedia, iii,

p. 443.

t The "cannon-bones" are not only relatively longer but may even be actually

longer in a little racehorse than a great carthorse.

t There is probably another factor involved here: for in bending and thus

shortening the leg, we bring its centre of gravity nearer to the pivot, that is to

say to the joint, and so the muscle tends to move it the ,more quickly. After all,
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of the leg permits us to use it as the shortest possible lever while

it is swinging, and as the longest possible lever when it is exerting

its propulsive force.

The bird's case is of peculiar interest. In running, walking or

swimming, we consider the speed which an animal can attain, and

the increase of speed which increasing size permits of. But in flight

there is a certain necessary speed—a speed (relative to the air) which

the bird must attain in order to maintain itself aloft, and which nfiust

increase as its size increases. It is highly probable, as Lanchester

remarks, that Lilienthal met his untimely death (in August 1896)

not so much from any intrinsic fault in the design or construction

of his machine, but simply because his engine fell somewhat

short of the power required to give the speed necessary for its

stability.

Twenty-five years ago, when this book was written, the bird, or

the aeroplane, was thought of as a machine whose sloping wings,

held at a given angle and driven horizontally forward, deflect the

air downwards and derive support from the upward reaction. In

other words, the bird was supposed to communicate to a mass of

air a downward momentum equivalent (in unit time) to its own

weight, and to do so by direct and continuous impact. The down-

ward momentum is then proportional to the mass of air thrust

downwards, and to the rate at which it is so thrust or driven: the

mass being proportional to the wing-area and to the speed of the

bird, and the rate being again proportional to the flying speed; so

that the momentum varies as the square of the bird's linear dimen-

sions and also as the square of its speed. But in order to balance

its weight, this momentum must also be proportional to the

cube of the bird's linear dimensions; therefore the bird's necessary

speed, such as enables it to maintain level flight, must be pro-

portional to the square root of its linear dimensions, and the whole

work done must be proportional to the power 3J of the said linear

dimensions.

The case stands, so far, as follows : m, the mass of air deflected

downwards; M, the momentum so communicated; W, the work

done—all in unit time; w, the weight, and F, the velocity of the

we know that the pendulum theory is not the whole story, but only an important

first approximation to a complex phenomenon.
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bird; I, a linear dimension, the form of the bird being supposed

constant.
j^j _ ^^ ^ ^3^ but M = mV , and m =W

,

Therefore M - ^272 _ ^3^

and therefore F = VI

and Tf = MF = R
The gist of the matter is, or seems to be, that the work which

can he done varies with the available weight of muscle, that is to say,

with the mass of the bird ; but the work which has to be done varies

with mass and distance; so the larger the bird grows, the greater

the disadvantage under which all its work is done*. The dispropor-

tion does not seem very great at first sight, but it is quite enough

to tell. It is as much as to say that, every time we double the

linear dimensions of the bird, the difficulty of flight, > or the work

which must needs be done in order to fly, is increased in the ratio

of 2^ to 2^*, or 1 : V2, or say 1:14. If we take the ostrich to exceed

the sparrow in linear dimensions as 25 : 1, which seems well within

the mark, the ratio would be that between 25^* and 25^, or between

5' and 5^; in other words, flight would be five times more difficult

for the larger than for the smaller bird.

But this whole explanation is doubly inadequate. For one thing,

it takes no account of gliding flight, in which energy is drawn from

the wind, and neither muscular power nor engine power are em-

ployed; and we see that the larger birds, vulture, albatross or

solan-goose, depend on gliding more and more. Secondly, the old

simple account of the impact of the wing upon the air, and the

manner in which a downward momentum is communicated and

support obtained, is now known to be both inadequate and

erroneous. For the science of flight, or aerodynamics, has grown

out of the older science of hydrodynamics; both deal with the

special properties of a fluid, whether water or air; and in our case,

to be content to think of the air as a body of mass m, to which a

velocity v is imparted, is to neglect all its fluid properties. How the

* This is the result arrived at by Helmholtz, Ueber ein Theorem geometrisch-

ahnliche Bewegungen fliissiger Korper betrefFend, nebst Anwendung auf das

Problem Luftballons zu lenken, Monatsber. Akad. Berlin, 1873, pp. 501-514. It was
criticised and challenged (somewhat rashly) by K. Miillenhof, Die Grosse der Flug-

flachen etc., PfiUger's Archiv, xxxv, p. 407; xxxvi, p. 548, 1885.
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fish or the dolphin swims, and how the bird flies, are up to a certain

point analogous problems ; and stream-lining plays an essential part

in both. But the bird is much heavier than the air, and the fish

has much the same density as the water, so that the problem of

keeping afloat or aloft is negligible in the one, and all-important in

the other. Furthermore, the one fluid is highly compressible, and

the other (to all intents and purposes) incompressible ; and it is this

very difference which the bird, or the aeroplane, takes special

advantage of, and which helps, or even enables, it to fly.

It remains as true as ever that a bird, in order to counteract

gravity, must cause air to move downward and obtains an upward

reaction thereby. But the air displaced downward beneath the

wing accounts for a small and varying part, perhaps a third perhaps

a good deal less, of the whole force derived; and the rest is generated

above the wing, in a less simple way. For, as the air streams past

the slightly sloping wing, as smoothly as the stream-lined form

and polished surface permit, it swirls round the front or "leading"

edge*, and then streams swiftly over the upper surface of the wing;

while it passes comparatively slowly, checked by the opposing slope

of the wing, across the lower side. And this is as much as to say

that it tends to be compressed below and rarefied above; in other

words, that a partial vacuum is formed above the wing and follows

it wherever it goes, so long as the stream-lining of the wing and its

angle of incidence are suitable, and so long as the bird travels fast

enough through the air.

The bird's weight is exerting a downward force upon the air, in

one way just as in the other; and we can imagine a barometer

delicate enough to shew and measure it as the bird flies overhead.

But to calculate that force we should have to consider a multitude

of component elements; we should have to deal with the stream-

lined tubes of flow above and below, and the eddies round the fore-

edge of the wing and elsewhere; and the calculation which was too

simple before now becomes insuperably difficult. But the principle

of necessary speed remains as true as ever. The bigger the bird

* The arched form, or "dipping front edge" of the wing, and its use in causing

a vacuum above, were first recognised by Mr H. F. Phillips, who put the idea into

a patent in 1884. The facts were discovered independently, and soon afterwards,

both by Lilienthal and Lanchester.
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becomes, the more swiftly must the air stream over the wing

to give rise to the rarefaction or negative pressure which is more

and more required; and the harder must it be to fly, so long as

work has to be done by the muscles of the bird. The general

principle is the same as before, though the quantitative relation

does not work out as easily as it did. As a matter of fact, there

is probably little difference in the end; and in aeronautics, the

"total resultant force" which the bird employs for its support is

said, e^npirically, to vary as the square of the air-speed: which is

then a result analogous to Froude's law, and is just what we arrived

at before in the simpler and less accurate setting of the case.

But a comparison between the larger and the smaller bird, like

all other comparisons, applies only so long as the other factors in

the case remain the same ; and these vary so much in the complicated

action of flight that it is hard indeed to compare one bird with

another. For not only is the bird continually changing the incidence

of its wing, but it alters the lie of every single important feather;

and all the ways and means of flight vary so enormously, in big

wings and small, and Nature exhibits so many refinements and
" improvements" in the mechanism required, that a comparison based

on size alone becomes imaginary, and is little worth the making.

The above considerations are of great practical importance in

aeronautics, for they shew how a provision of increasing speed must ac-

company every enlargement of our aeroplanes. Speaking generally,

the necessary or minimal speed of an aeroplane varies as the square

root of its Unear dimensions; if (ceteris paribus) we make it four

times as long, it must, in order to remain aloft, fly twice as fast as

before*. If a given machine weighing, say, 500 lb. be stable at

40 miles an hour, then a geometrically similar one which weighs,

say, a couple of tons has its speed determined as follows

:

W:w::L^:l^::S:l.

Therefore L:l::2:l.

But V^:v^::L:l

Therefore V:v::V2:l = 1-414 : 1.

* G. H. Bryan, Stability in Aviation, 1911; F. W. Lanchester, Aerodynamics,

1909; cf. (int. al.) George Greenhill, The Dynamics of Mechanical Flight, 1912;

F. W. Headley, The Flight of Birds, and recent works.
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That is to say, the larger machine must be capable of a speed of

40 X 1-414, or about 56|, miles per hour.

An arrow is a somewhat rudimentary flying-machine; but it is

capable, to a certain extent and at a high velocity, of acquiring

"stability," and hence of actual flight after the fashion of an aero-

plane; the duration and consequent range of its trajectory are

vastly superior to those of a bullet of the same initial velocity.

Coming back to our birds, and again comparing the ostrich with

the sparrow, we find we know little or nothing about the actual

speed of the latter ; but the minimal speed of the swift is estimated

at 100 ft. per second, or even more—say 70 miles an hour. We
shall be on the safe side, and perhaps not far wrong, to take 20 miles

an hour as the sparrow's minimal speed; and it would then follow

that the ostrich, of 25 times the sparrow's linear dimensions, would

have to fly (if it flew at all) with a minimum velocity of 5 x 20,

or 100 miles an hour*.

The same principle of necessary speed, or the inevitable relation

between the dimensions of a flying object and the minimum velocity

at which its flight is stable, accounts for a considerable number of

* Birds have an ordinary and a forced speed. Meinertzhagen puts the ordinary

flight of the swift at 68 m.p.h., which talhes with the old estimate of Athanasius

Kircher (Physiologia, ed. 1680, p. 65) of 100 ft. per second for the swallow. Abel

Chapman {Retrospect, 1928, ch. xiv) puts the gliding or swooping flight of the swift

at over 150 m.p.h., and that of the griffon vulture at 180 m.p.h.; but these skilled

fliers doubtless far exceed the necessary minimal speeds which we are speaking of.

An airman flying at 70 m.p.h. has seen a golden eagle fly past him easily; but

even this speed is exceptional. Several observers agree in giving 50 m.p.h. for

grouse and woodcock, and 30 m.p.h. for starling, chaffinch, quail and crow. A
migrating flock of lapwing travelled at 41 m.p.h., ten or twelve miles more than

the usual speed of the single bird. Lanchester, on theoretical considerations,

estimates the speed of the herring gull at 26 m.p.h., and of the albatross at about

34 miles. A tern, a very skilful flier, was seen to fly as slowly as 15 m.p.h.

A hornet or a large dragonfly may reach 14 or 18 m.p.h.; but for most insects

2-4 metres per sec, say 4-9 m.p.h., is a common speed (cf, A. Magnan, Vol.

des Insectes, 1834, p. 72). The larger diptera are very swift, but their speed is much
exaggerated. A deerfly (Cephenomyia) has been said to fly at 400 yards per second,

or say 800 m.p.h., an impossible velocity (Irving Langmuir, Science, March 11, 1938).

It would mean a pressure on the fly's head of half an atmosphere, probably enough

to crush the fly; to maintain it would take half a horsepower; and this would need

a food-consumption of 1^ times the fly's weight per second\ 25 m.p.h. is a more

reasonable estimate. The naturalist should not forget, though it does not touch

our present argument, that the aeroplane is built to the pattern of a beetle rather

than of a bird; for the elytra 'are not wings but planes. Cf. int. ah, P. Amans,

Geometrie. . .des ailes rigides, C.R. Assoc. Frang. pour Vavancem. des Sc. 1901.
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observed phenomena. It tells us why the larger birds have a

marked difficulty in rising from the ground, that is to say, in

acquiring to begin with the horizontal velocity necessary for their

support; and why accordingly, as Mouillard* and others have

observed, the heavier birds, even those weighing no more than a

pound or two, can be effectually caged in small enclosures open

to the sky. It explains why, as Mr Abel Chapman says, "all

ponderous birds, wild swans and geese, great bustard and caper-

cailzie, even blackcock, fly faster than they appear to do," while

"light-built types with a big wing-areaf, such as herons and harriers,

possess no turn of speed at all." For the fact is that the heavy

birds must fly quickly, or not at all. It tells us why very small

birds, especially those as small as humming-birds, and a fortiori the

still smaller insects, are capable of "stationary flight," a very slight

and scarcely perceptible velocity relatively to the air being sufficient

for their support and stabihty. And again, since it is in all

these cases velocity relatively to the air which we are speaking

of, we comprehend the reason why one may always tell which

way the wind blows by watching the direction in which a bird starts

to fly.

The wing of a bird or insect, like the tail of a fish or the blade

of an oar, gives rise at each impulsion to a swirl or vortex, which

tends (so to speak) to chng to it and travel along with it;' and the

resistance which wing or oar encounter comes much more from

these vortices than from the viscosity of the fluid. J We learn as a

corollary to this, that vortices form only at the edge of oar or wing

—

it is only the length and not the breadth of these which matters.

A long narrow oar outpaces a broad one, and the efficiency of the

long, narrow wing of albatross, swift or hawkmoth is so far accounted

for. From the length of the wing we can calculate approximately

its rate of swing, and more conjecturally the dimensions of each

vortex, and finally the resistance or Ufting power of the stroke;

and the result shews once again the advantages of the small-scale

* Mouillard, L'empire de Vair; essai d'ornithologie appliqu4e a Vaviationf 1881;

transl. in Annual Report of the Smithsonian Institution^ 1892.

t On wing-area in relation to weight of bird see Lendenfeld in Naturw. Wochenschr.

Nov. 1904, transl. in Smithsonian Inst. Rep. 1904; also E. H. Hankin, Animal

Flight, 1913; etc.

X Cf. V. Bjerknes, Hydrodynamique physique, n, p. 293, 1934.
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mechanism, and the disadvantage under which the larger machine

or larger creature hes.
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the normal anatomy of a bird, becomes physiologically impossible.

The same reasoning applies to the case of man. It would be very

difficult, and probably absolutely impossible, for a bird to flap its

way through the air were it of the bigness of a man; but Borelli,

in discussing the matter, laid even greater stress on the fact that

a man's pectoral muscles are so much less in proportion than those

of a bird, that however we might fit ourselves out with wings, we
could never expect to flap them by any power of our own weak

muscles. Borelli had learned this lesson thoroughly, and in one of

his chapters he deals with the proposition : Est impossibile ut homines

jyropriis viribus artificiose volare possinV^, But gliding flight, where

a ' b

2. Fairy-flies (Mymaridae) : after F. Enock. x 20.

wind-force and gravitational energy take the place of muscular

power, is another story, and its limitations are of another kind.

Nature has many modes and mechanisms of flight, in birds of one

kind and another, in bats and beetles, butterflies, dragonflies and

what not ; and gliding seems to be the common way of birds, and

the flapping flight {remigio alarum) of sparrow and of crow to be

the exception rather than the rule. But it were truer to say that

gliding and soaring, by which energy is captured from the wind, are

modes of flight little needed by the small birds, but more and more

essential to the large. BorelH had proved so convincingly that

we could never hope to fly propriis viribus, that all through the

eighteenth century men tried no more to fly at all. It was in trying

to glide that the pioneers of aviation, Cayley, Wenham and Mouillard,

* Giovanni Alfonso Borelli, De Motu Animalium, i, Prop, cciv, p. 243, edit.

1685. The part on The Flight of Birds is issued by the Royal Aeronautical Society

as No. 6 of its Aeronautical Classics.
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Langley, Lilienthal and the Wrights—all careful students of birds

—

renewed the attempt*; and only after the Wrights had learned to

ghde did they seek to add power to their glider. Flight, as the

Wrights declared, is a matter of practice and of skill, and skill in

gliding has now reached a point which more than justifies all

Leonardo da Vinci's attempts to fly. Birds shew infinite skill and

instinctive knowledge in the use they make of the horizontal accelera-

tion of the wind, and the advantage they take of ascending currents

in the air. Over the hot sands of the Sahara, where every here

and there hot air is going up and cooler coming down, birds keep

as best they can to the one, or ghde quickly through the other;

so we may watch a big dragonfly planing slowly down a few feet

above the heated soil, and only every five minutes or so regaining

height with a vigorous stroke of his wings. The albatross uses the

upward current on the lee-side of a great ocean-wave ; so, on a lesser

scale, does the flying-fish; and the seagull flies in curves, taking

every advantage of the varying wind-velocities at different levels

over the sea. An Indian vulture flaps his way up for a few laborious

yards, then catching an upward current soars in easy spirals to

2000 feet ; here he may stay, effortless, all day long, and come down

at sunset. Nor is the modern sail-plane much less efiicient than a

soaring bird ; for a skilful pilot in the tropics should be able to roam

all day long at willf

.

A bird's sensitiveness to air-pressure is indicated in other ways

besides. Heavy birds, hke duck and partridge, fly low and ap-

parently take advantage of air-pressure reflected from the ground.

Water-hen and dipper follow the windings of the stream as they fly

up or down; a bee-hne would give them a shorter course, but not

so smooth a journey. Some small birds—wagtails, woodpeckers and

a few others—fly, so to speak, by leaps and bounds ; they fly briskly

* Sir George Cayley (1774-1857), father of British aeronautics, was the first to

perceive the capabilities of rigid planes, and to experiment on gliding flight. He
anticipated all the essential principles of the modern aeroplane, and his first paper

"On Aerial Navigation" appeared in Nicholson's Journal for November 1809.

F. H. Wenham (1824-1908) studied the flight of birds and estimated the necessary

proportion of surface to weight and speed; he held that "the whole secret of

success in flight depends upon a proper concave form of the supporting surface."

See his paper "On Aerial Locomotion" in the Report of the Aeronautical Society

1866.

t Sir Gilbert Walker, in Nature, Oct. 2, 1937.
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for a few moments, then close their wings and shoot along*. The

flying-fishes do much the same, save that they keep their wings

outspread. The best of them "taxi" along with only their tails in

the water, the tail vibrating with great rapidity, and the speed

attained lasts the fish on its long glide through the airf.

Flying may have begun, as in Man's case it did, with short spells

of gUding flight, helped by gravity, and far short of sustained or

continuous locomotion. The short wings and long tail of Archae-

opteryx would be efficient as a slow-speed ghder; and we may still

see a Touraco glide down from his perch looking not much unlike

Archaeopteryx in the proportions of his wings and tail. The small

bodies, scanty muscles and narrow but vastly elongated wings of

a Pterodactyl go far beyond the hmits of mechanical efficiency for

ordinary flapping flight; but for ghding they approach perfectionJ.

Sooner or later Nature does everything which is physically possible

;

and to glide with skill and safety through the air is a possibihty

which she did not overlook.

Apart from all differences in the action of the limbs—apart from

differences in mechanical construction or in the manner in which

the mechanism is used—we have now arrived at a curiously simple

and uniform result. For in all the three forms of locomotion which

we have attempted to study, alike in swimming and in walking, and

even in the more, complex problem of flight, the general result,

obtained under very different conditions and arrived at by different

modes of reasoning, shews in every case that speed tends to vary as

the square root of the linear dimensions of the animal.

While the rate of progress tends to increase slowly with increasing

size (according to Froude's law), and the rhythm or pendulum-rate

of the limbs to increase rapidly with decreasing size (according to

Galileo's law), some such increase of velocity with decreasing

* Why large birds cannot do the same is discussed by Lanchester, op. cit.

Appendix iv.,

t Cf. Carl L. Hubbs, On the flight of. . .the Cypselurinae, and remarks on the

evolution of the flight of fishes. Papers of the Michigan Acad, of Sci. xvii, pp. 575-

611, 1933. See also E. H. Hankin, P.Z.S. 1920, pp. 467-474; and C. M. Breeder,

On the structural specialisation of flying fishes from the standpoint of aero-

dynamics, Copeia, 1930, pp. 114-121.

X The old conjecture that their flight was helped or rendered possible by a denser

atmosphere than ours is thus no longer called for.



II] OF THE FORCE OF GRAVITY 51

magnitude is true of all the rhythmic actions of the body, though

for reasons not always easy to explain. The elephant's heart beats

slower than ours*, the dog's quicker; the rabbit's goes pit-a-pat;

the mouse's and the sparrow's are too quick to count. But the very

"rate of Hving" (measured by the consumed and COg produced)

slows down as size increases; and a rat lives so much faster than

a man that the years of its life are three, instead of threescore and

ten.

From all the foregoing discussion we learn that, as Crookes once

upon a time remarked I, the forms as well as the actions of our

bodies are entirely conditioned (save for certain exceptions in the

case of aquatic animals) by the strength of gravity upon this globe;

or, as Sir Charles Bell had put it some sixty years before, the very

animals which move upon the surface of the earth are proportioned

to its magnitude. Were the force of gravity to be doubled our

bipedal form would be a failure, and the majority of terrestrial

animals would resemble short-legged saurians, or else serpents.

Birds and insects would suffer Ukewise, though with some com-

pensation in the increased density of the air. On the other hand,

if gravity were halved, we should get a lighter, slenderer, more active

type, needing less energy, less heat, less heart, less lungs, less blood.

Gravity not only controls the actions but also influences the forms

of all save the least of organisms. The tree under its burden of

leaves or fruit has changed its every curve and outline since its

boughs were bare, and a mantle of snow will alter its configuration

again. Sagging wrinkles, hanging breasts and many another sign

of age are part of gravitation's slow relentless handiwork.

There are other physical factors besides gravity which help to

limit the size to which an animal may grow and to define the con-

ditions under which it may Hve. The small insects skating on a

pool have their movements controlled and their freedom hmited by

the surface-tension between water and air, and the measure of that

tension determines the magnitude which they may attain. A man
coming wet from his bath carries a few ounces of water, and is

perhaps 1 per cent, heavier than before; but a wet fly weighs twice

as much as a dry one, and becomes a helpless thing. * A small

* Say 28 to 30 beats to the minute.

t Proc. Psychical Soc. xn, p. 338-355, 1^97.
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insect finds itself imprisoned in a drop of water, and a fly with

two feet in one drop finds it hard to extricate them.

The mechanical construction of insect or crustacean is highly

efficient up to a certain size, but even crab and lobster never exceed

certain moderate dimensions, perfect within these narrow bounds as

their construction seems to be. Their body lies within a hollow

shell, the stresses within which increase much faster than the mere

scale of size ; every hollow structure, every dome or cyhnder, grows

weaker as it grows larger, and a tin canister is easy to make but a

great boiler is a complicated affair. The boiler has to be strengthened

by "stiffening rings" or ridges, and so has the lobster's shell; but

there is a limit even to this method of counteracting the weakening

effect of size. An ordinary girder-bridge may be made»efficient up

to a span of 200 feet or so ; but it is physically incapable of spanning

the Firth of Forth. The great Japanese spider-crab, Macrocheira,

has a span of some 12 feet across; but Nature meets the difficulty

and solves the problem by keeping the body small, and building up

the long and slender legs out of short lengths of narrow tubes.

A hollow shell is admirable for small animals, but Nature does not

and cannot make use of it for the large.

In the case of insects, other causes help to keep them of small

dimensions. In their peculiar respiratory system blood does not

carry oxygen to the tissues, but innumerable fine tubules or tracheae

lead air into the interstices of the body. If we imagine them growing

even to the size of crab or lobster, a vast complication of tracheal

tubules would be necessary, within which friction would increase

and diffusion be retarded, and which would soon be an inefficient

and inappropriate mechanism.

The vibration of vocal chords and auditory drums has this in

common with the pendulum-hke motion of a hmb that its rate

also tends to vary inversely as the square root of the linear dimen-

sions. We know by common experience of fiddle, drum or organ,

that pitch rises, or the frequency of vibration increases, as the

dimensions of pipe or membrane or string diminish; and in like

manner we expect to hear a bass note from the great beasts and a

piping treble from the small. The rate of vibration {N) of a stretched

string depends on its tension and its density; these beins^ equal, it

varies inversely as its own length and as its diameter, i^or similar
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strings, N oc 1//^, and for a circular membrane, of radius r and

thickness e, N oc ll(r^ Ve).

But the deHcate drums or tympana of various animals seem to

vary much less in thickness than in diameter, and we may be content

to write, once more, N oc l/r^.

Suppose one animal to be fifty times less than another, vocal

chords and all: the one's voice will be pitched 2500 times as many
beats, or some ten or eleven octaves, above the other's; and the

same comparison, or the same contrast, will apply to the tympanic

membranes by which the vibrations are received. But our own

perception of musical notes only reaches to 4000 vibrations per

second, or thereby; a squeaking mouse or bat is heard by few, and

to vibrations of 10,000 per second we are all of us stone-deaf.

Structure apart, mere size is enough to give the lesser birds and

beasts a music quite different to our own: the humming-bird, for

aught we know, may be singing all day long. A minute insect may
utter and receive vibrations of prodigious rapidity; even its little

wings may beat hundreds of times a second*. Far more things

happen to it in a second than to us ; a thousandth part of a second

is no longer neghgible, and time itself seems to run a different course

to ours.

The eye and its retinal elements have ranges of magnitude and

Hmitations of magnitude of their own. A big dog's eye is hardly

bigger than a little dog's; a squirrel's is much larger, propor-

tionately, than an elephant's; and a robin's is but little less than

a pigeon's or a crow's. For the rods and cones do not vary with

the size of the animal, but have their dimensions optically limited

by the interference-patterns of the waves of light, which set bounds

to the production of clear retinal images. True, the larger animal

may want a larger field of view ; but this makeg little difference, for

but a small area of the retina is ever needed or used. The eye, in

short, can never be very small and need never be very big; it has

its own conditions and limitations apart from the size of the animal.

But the insect's eye tells another story. If a fly had an eye like

ours, the pupil would be so small that diffraction would render a

clear image impossible. The only alternative is to unite a number

* The wing-beats are said to be as follows: dragonfly 28 per sec, bee 190,

housefly 330; cf. Erhard, Verh. d. d. zool. Gesellsch. 1913, p. 206.
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of small and optically isolated simple eyes into a compound eye,

and in the insect Nature adopts this alternative possibiHty*.

Our range of vision is limited to a bare octave of "luminous"

waves, which is a considerable part of the whole range of Hght-heat

rays emitted by the sun; the sun's rays extend into the ultra-violet

for another half-octave or more, but the rays to which our eyes are

sensitive are just those which pass with the least absorption through

a watery medium. Some ancient vertebrate may have learned to

see in an ocean which let a certain part of the sun's whole radiation

through, which part is our part still ; or perhaps the watery media

of the eye itself account sufficiently for the selective filtration. In

either case, the dimensions of the retinal elements are so closely

related to the wave-lengths of light (or to their interference patterns)

that we have good reason to look upon the retina as perfect of its

kind, within the hmits which the properties of hght itself impose;

and this perfection is further illustrated by the fact that a few

light-quanta, perhaps a single one, suffice to produce a sensation "j".

The hard eyes of insects are sensitive over a wider range. The bee

has two visual optima, one coincident with our own, the other and

principal one high up in the ultra-violet J. And with the latt^er the

bee is able to see that ultra-violet which is so well reflected by many
flowers that flower-photographs have been taken through a filter

which passes these but transmits no other rays§.

When we talk of hght, and of magnitudes whose order is that of

a wave-length of hght, the subtle phenomenon of colour is near at

hand. The hues of hving things are due to sundry causes; where

they come from chemical pigmentation they are outside our theme,

but oftentimes there is no pigment at all, save perhaps as a screen

or background, and the tints are those proper to a scale of wave-

lengths or range of magnitude. In birds these "optical colours"

are of two chief kinds. One kind include certain vivid blues, the

* Cf. C. J. van der Horst, The optics of the insect eye, Acta Zoolog. 1933,

p. 108.

t Cf. Niels Bohr, in Nature, April 1, 1933, p. 457. Also J. Joly, Proc. R.S. (B),

xcn, p. 222, 1921.

f L. M. Bertholf, Reactions of the honey-bee to light, Journ. of Agric. Res.

XLm, p. 379; xliv, p. 763, 1931.

§ A. Kuhn, Ueber den Farbensinn der Bienen, Ztschr. d. vergl. Physiol, v,

pp. 762-800, 1927; cf. F. K. Richtmeyer, Reflection of ultra-violet by flowers,

Jnum. Optical Soc. Amer. vii, pp. 151-168, 1923; etc.
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blue of a blue jay, an Indian roller or a macaw; to the other belong

the iridescent hues of mother-of-pearl, of the humming-bird, the

peacock and the dove: for the dove's grey breast shews many
colours yet contains but one

—

colores inesse plures nee esse plus uno,

as Cicero said. The jay's blue feather shews a layer of enamel-like

cells beneath a thin horny cuticle, and the cell-walls are spongy

with innumerable tiny air-filled pores. These are about 0-3 /it in

diameter, in some birds even a little less, and so are not far from

the hmits of microscopic vision. A deeper layer carries dark-brown

pigment, but there is no blue pigment at all; if the feather be dipped

in a fluid of refractive index equal to its own, the blue utterly

disappears, to reappear when the feather dries. This blue is like

the colour of the sky; it is ''Tyndall's blue," such as is displayed

by turbid media, cloudy with dust-motes or tiny bubbles of a size

comparable to the wave-lengths of the blue end of the spectrum.

The longer waves of red or yellow pass through, the shorter violet

rays are reflected or scattered; the intensity of the blue depends

on the size and concentration of the particles, while the dark pigment-

screen enhances the effect.

Rainbow hues are more subtle and more complicated ; but in the

peacock and the humming-bird we know for certain* that the

colours are those of Newton's rings, and are produced by thin plates

or films covering the barbules of the feather. The colours are such

as are shewn by films about J [x thick, more or less ; they change

towards the blue end of the spectrum as thei hght falls more and

more obliquely; or towards the red end if you soak the feather

and cause the thin plates to swell. The barbules of the peacock's

feather are broad and flat, smooth and shiny, and their cuticular

layer sphts into three very thin transparent films, hardly more than

1 jjL thick, all three together. The gorgeous tints of the humming-

birds have had their places in Newton's scale defined, and the

changes which they exhibit at varying incidence have been predicted

* Rayleigh, Phil. Mag. (6), xxxvii, p. 98, 1919. For a review of the whole

subject, and a discussion of its many difficulties, see H. Onslow, On a periodic

structure in many insect scales, etc., Phil. Trans. (B), ccxi, pp. 1-74, 1921;

also C. W. Mason, Journ. Physic. Chemistry, xxvii, xxx, xxxi, 1923-25-27;

F. Suffert, Zeitschr. f. Morph. u. Oekol. d. Tiere, i, pp. 171-306, 1924 (scales of

butterflies); also B. Reusch and Th. Elsasser in Journ. f. Ornithologie, lxxiti,

1925; etc.
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and explained. The thickness of each film lies on the very limit of

microscopic vision, and the least change or irregularity in this

minute dimension would throw the whole display of colour out of

gear. No phenomenon of organic magnitude is more striking than

this constancy of size; none more remarkable than that these fine

lamellae should have their tenuity so sharply defined, so uniform

in feather after feather, so identical in all the individuals of a species,

so constant from one generation to another.

A simpler phenomenon, and one which is visible throughout the

whole field of morphology, is the tendency (referable doubtless in

each case to some definite physical cause) for mere bodily surface

to keep pace with volume, through some alteration of its form. The

development of villi on the lining of the intestine (which increase

its surface much as we enlarge the effective surface of a bath-towel),

the various valvular folds of the intestinal lining, including the

remarkable "spiral valve" of the shark's gut, the lobulation of the

kidney in large animals*, the vast increase of respiratory surface in

the air-sacs and alveoli of the lung, the development of gills in the

larger Crustacea and worms though the general surface of the body

suffices for respiration in the smaller species—all these and many
more are cases in which a more or less constant ratio tends to be

maintained between mass and surface, which ratio would have been

more and more departed from with increasing size, had it not been

for such alteration of surface-form f. A leafy wood, a grassy sward,

a piece of sponge, a reef of coral, are all instances of a hke pheno-

menon. In fact, a deal of evolution is involved in keeping due

balance between surface and mass as growth goes on.

In the case of very small animals, and of individual cells, the

principle becomes especially important, in consequence of the

molecular forces whose resultant action is limited to the superficial

layer. In the cases just mentioned, action is facilitated by increase

of surface : diffusion, for instance, of nutrient liquids or respiratory

gases is rendered more rapid by the greater area of surface; but

* Cf. R. Anthony, C.R. clxix, p. 1174, 1919, etc. Cf. also A. Putter, Studien

uber physiologische Ahnlichkeit, Pfluger's Archiv, clxviii, pp. 209-246, 1917.

t For various calculations of the increase of surface due to histological and
anatomical subdivision, see E. Babak, Ueber die Oberflachenentwickelung bei

Organismen, Biol. Centralbl. xxx, pp. 225-239, 257-267, 1910.
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there are other cases in which the ratio of surface to mass may

change the whole condition of the system. Iron rusts when exposed

to moist air, but it rusts ever so much faster, and is soon eaten away,

if the iron be first reduced to a heap of small filings ; this is a mere

difference of degree. But the spherical surface of the rain-drop

and the spherical surface of the ocean (though both happen to be

ahke in mathematical form) are two totally different phenomena,

the one due to surface-energy, and the other to that form of mass-

energy which we ascribe to gravity. The contrast is still more

clearly seen in the case of waves: for the little ripple, whose form

and manner of propagation are governed by surface-tension, is

found to travel with a velocity which is inversely as the square

root of its length; while the ordinary big waves, controlled by

gravitation, have a velocity directly proportional to the square root

of their wave-length. In hke manner we shall find that the form

of all very small organisms is independent of gravity, and largely

if not mainly due to the force of surface-tension: either as the

direct result of the continued action of surface-tension on the

semi-fluid body, or else as the result of its action at a prior stage

of development, in bringing about a form which subsequent chemical

changes have rendered rigid and lasting. In either case, we shall

find a great tendency in small organisms to assume either the

spherical form or other simple forms related to ordinary inanimate

surface-tension phenomena, which forms do not recur in the

external morphology of large animals.

Now this is a very important matter, and is a notable illustration

of that principle of simihtude which we have already discussed in

regard to several of its manifestations. We are coming to a con-

clusion which will affect the whole course of our argument throughout

this book, namely that there is an essential difference in kind

between the phenomena of form in the larger and the smaller

organisms. I have called this book a study of Growth and Fonn,

because in the most familiar illustrations of organic form, as in our

own bodies for example, these two factors are inseparably asso-

ciated, and because we are here justified in thinking of form as the

direct resultant and consequence of growth: of growth, whose

varying rate in one direction or another has produced, by its gradual

and unequal increments, the successive stages of development and
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the final configuration of the whole material structure. But it is

by no means true that form and growth are in this direct and simple

fashion correlative or complementary in the case of minute portions

of living matter. For in the smaller organisms, and in the indi-

vidual cells of the larger, we have reached an order of magnitude

in which the intermolecular forces strive under favourable conditions

with, and at length altogether outweigh, the force of gravity, and

also those other forces leading to movements of convection which

are the prevailing factors in the larger material aggregate.

However, we shall require to deal more fully with this matter in

our discussion of the rate of growth, and we may leave it mean-

while, in order to deal with other matters more or less directly

concerned with the magnitude of the cell.

The hving cell is a very complex field of energy, and of energy

of many kinds, of which surface-energy is not the least. Now the

whole surface-energy of the cell is by no means restricted to its

outer surface; for the cell is a very heterogeneous structure, and all

its protoplasmic alveoli and other visible (as well as invisible) hetero-

geneities make up a great system of internal surfaces, at every part

of which one "phase" comes in contact with another "phase," and

surface-energy is manifested accordingly. But still, the external

surface is a definite portion of the system, with a definite "phase"

of its own, and however little we may know of the distribution of

the total energy of the system, it is at least plain that the conditions

which favour equihbrium will be greatly altered by the changed

ratio of external surface to mass which a mere change of magnitude

produces in the cell. In short, the phenomenon of division of the

growing cell, however it be brought about, will be precisely what

is wanted to keep fairly constant the ratio between surface and

mass, and to retain or restore the balance between surface-energy

and the other forces of the system*. But when a germ-cell divides

or "segments" into two, it does not increase in mass; at least if

there be some shght alleged tendency for the egg to increase in

* Certain cells of the cucumber were found to divide when they had grown to

a volume half as large again as that of the "resting cells." Thus the volumes

of resting, dividing and daughter cells were as 1:1-5: 0-75; and their surfaces,

being as the power 2/3 of these figures, were, roughly, as 1:1-3: 0-8. The ratio

of SjV was then as 1 : 0-9 : 1-1, or much nearer equality. Cf. F. T. Lewis, Anat.

Record, xlvii, pp. 59-99, 1930.
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mass or volume during segmentation it is very slight indeed,

generally imperceptible, and wholly denied by some*. The growth

or development of the egg from a one-celled stage to stages of two

or many cells is thus a somewhat pecuhar kind of growth; it is

growth limited to change of form and increase of surface, unaccom-

panied by growth in volume or in mass. In the case of a soap-bubble,

by the way, if it divide into two bubbles the volume is actually

diminished, while the surface-area is greatly increased! ; the diminution

being due to a cause which we shall have to study later, namely to

the increased pressure due to the greater curvature of the smaller

bubbles.

An immediate and remarkable result of the principles just

described is a tendency on the part of all cells, according to their

kind, to vary but little about a certain mean size, and to have in

fact certain absolute limitations of magnitude. The diameter of a

large parenchymatous cell is perhaps tenfold that of a httle one;

but the tallest phanerogams are ten thousand times the height of

the least. In short, Nature has her materials of predeterminate

dimensions, and keeps to the same bricks whether she build a great

house or a small. Even ordinary drops tend towards a certain

fixed size, which size is a function of the surface-tension, and may
be used (as Quincke used it) as a measure thereof. In a shower of

rain the principle is curiously illustrated, as Wilding Roller and

V. Bjerknes tell us. The drops are of graded sizes, each twice as big

as another, beginning with the minute and uniform droplets of an

impalpable mist. They rotate as they fall, and if two rotate in

contrary directions they draw together and presently coalesce; but

this only happens when two drops are faUing side by side, and since

the rate of fall depends on the size it always is a pair of coequal

drops which so meet, approach and join together. A supreme

instance of constancy or quasi-constancy of size, remote from but

yet analogous to the size-hmitation of a rain-drop or a cell, is the

fact that the stars of heaven (however else one diifereth from

another), and even the nebulae themselves, are all wellnigh co-equal

in mass. Gravity draws matter together, condensing it into a world

* Though the entire egg is not increasing in mass, that is not to say that its living

protoplasm is not increasing all the while at the expense of the reserve material,

t Cf. P. G. Tait, Proc. E.S.E. v, 1866 and vi, 1868.
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or into a star; but ethereal pressure is an opponent force leading

to disruption, negligible on the small scale but potent on the large.

High up in the scale of magnitude, from about 10^^ to 10^^ grams

of matter, these two great cosmic forces balance one another; and

all the magnitudes of all the stars he within or hard by these narrow

limits.

In the hving cell, Sachs pointed out (in 1895) that there is a

tendency for each nucleus to gather around itself a certain definite

amount of protoplasm*. Drieschf, a httle later, found it possible,

by artificial subdivision of the egg, to rear dwarf sea-urchin larvae,

one-half, one-quarter or even one-eighth of their usual size; which

dwarf larvae were composed of only a half, a quarter or an eighth

of the normal number of cells. These observations have been often

repeated and amply confirmed : and Loeb found the sea-urchin eggs

capable of reduction to a certain size, but no further.

In the development of Crepidula (an American "shpper-Hmpet,"

now much at home on our oyster-beds), ConklinJ has succeeded in

rearing dwarf and giant individuals, of which the latter may be

five-and-twenty times as big as the former. But the individual

cells, of skin, gut, liver, muscle and other tissues, are just the same

size in one as in the other, in dwarf and in giant §. In like manner

* Physiologische Notizen (9), p. 425, 1895. Cf. Amelung, Flora, 1893; Stras-

biirger, Ueber die Wirkungssphare der Kerne und die Zellgrosse, Histol. Beitr. (5),

pp. 95-129, 1893; R. Hertwig, Ueber Korrelation von Zell- und Kerngrosse

(Kernplasraarelation), Biol. Centralbl. xvm, pp. 49-62, 108-119, 1903; G. Levi

and T. Terni, Le variazioni dell' indice plasmatico-nucleare durante 1' intercinesi,

Arch. Hal. di Anat. x, p. 545, 1911; also E. le Breton and G. Schaeffer, Variations

hiuchimiqiies du rapport nucleo-plasmatique, Strasburg, 1923.

t Arch.f. Entw. Mech. iv, 1898, pp. 75, 247.

X E. G. Conklin, Cell-size and nuclear size, Journ. Exp. Zool. xii, pp. 1-98,

1912; Body-size and cell-size, Journ. of Morphol. xxiii, pp. 159-188, 1912. Cf.

M. Popoff, Ueber die Zellgrosse, Arch.f. Zellforschung, iii, 1909.

§ Thus the fibres of the crystalline lens are of the same size in large and small

dogs, Rabl, Z.f. w. Z. lxvii, 1899. Cf. {int. al.) Pearson, On the size of the blood-

corpuscles in Rana, Biometrika, vi, p. 403, 1909. Dr Thomas Young caught sight

of the phenomenon early in last century: "The solid particles of the blood do not

by any means vary in magnitude in the same ratio with the bulk of the animal,"

Natural Philosophy, ed. 1845, p. 466; and Leeuwenhoek and Stephen Hales

were aware of it nearly two hundred years before. Leeuwenhoek indeed had

a very good idea of the size of a human blood-corpuscle, and was in the habit of

using its diameter—about 1/3000 of an inch—as a standard of comparison. But

though the blood-corpuscles shew no relation of magnitude to the size of the

animal, they are related without doubt to its activity; for the corpuscles in the
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the leaf-cells are found to be of the same size in an ordinary water-

lily, in the great Victoria regia, and in the still hiiger leaf, nearly

3 metres long, of Euryale ferox in Japan*. Driesch has laid par-

ticular stress upon this principle of a "fixed cell-size," which has,

however, its own limitations and exceptions. Among these excep-

tions, or apparent exceptions, are the giant frond-like cell of a

Caulerpa or the great undivided plasmodium of a Myxomycete.

The flattening of the one and the branching of the other serve (or

help) to increase the ratio of surface to content, the nuclei tend to

multiply, and streaming currents keep the interior and exterior of

the mass in touch with one another.

j^

Rabbit

Man Dog

Fig. 3. Motor ganglion-cells, from the cervical spinal cord.

From Minot, after Irving Hardesty.

We get a good and even a famiUar illustration of the principle

of size-hmitation in comparing the brain-cells or ganghon-cells,

whether of the lower or of the higher animals f . In Fig. 3 we shew

certain identical nerve-cells from various mammals, from mouse to

elephant, all drawn to the same scale of magnification ; and we see

that they are all of much the same order of magnitude. The nerve-

cell of the elephant is about twice that of the mouse in linear

sluggish Amphibia are much the largest known to us, while the smallest are found

among the deer and other agile and speedy animals (cf. Gulliver, P.Z.S. 1875,

p. 474, etc.). This correlation is explained by the surface condensation or

adsorption of oxygen in the blood-corpuscles, a process greatly facilitated and

intensified by the increase of surface due to their minuteness.

* Okada and Yomosuke, in Sci. Rep. Tohoku Univ. iii, pp. 271-278, 1928.

t Cf. P. Enriques, La forma eome funzione della grandezza : Ricerche sui gangli

nervosi degli invertebrati, Arch. f. Entw. Mech. xxv, p. 655, 1907-8.
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dimensions, and therefore about eight times greater in volume or

in mass. But making due allowance for difference of shape, the

linear dimensions of the elephant are to those of the mouse as not

less than one to fifty ; and the bulk of the larger animal is something

like 125,000 times that of the less. It follows, if the size of the

nerve-cells are as eight to one, that, in corresponding parts of the

nervous system, there are more than 15,000 times as many individual

cells in one animal as in the other. In short we may (with Enriques)

lay it down as a general law that among animals, large or small, the

gangUon-cells vary in size within narrow limits; and that, amidst

all the great variety of structure observed in the nervous system

of different classes of animals, it is always found that the smaller

species have simpler gangha than the larger, that is to say ganglia

containing a smaller number of cellular elements*. The bepiing of

such facts as this upon the cell-theory in general is not to be dis-

regarded; and the warning is especially clear against exaggerated

attempts to correlate physiological processes with the visible

mechanism of associated cells, rather than with the system of

energies, or the field of force, which is associated with them. For

the life of the body is more than the swm of the properties of the

cells of which it is composed: as Goethe said, "Das Lebendige ist

zwar in Elemente zerlegt,* aber man kann es aus diesen nicht wieder

zusammenstellen und beleben."

Among certain microscopic organisms such as the Rotifera (which

have the least average size and the narrowest range of size of all

the Metazoa), we are still more palpably struck by the small number

of cells which go to constitute a usually complex organ, such as

kidney, stomach or ovary ; we can sometimes number them in a few

* While the difference in cell-volume is vastly less than that between the

volumes, and very much less also than that between the surfaces, of the respective

animals, yet there is a certain difference ; and this it has been attempted to correlate

with the need for each cell in the many-celled ganglion of the larger animal to

possess a more complex "exchange-system" of branches, for intercommunication

with its more numerous neighbours. Another explanation is based on the fact

that, while such cells as continue to divide throughout life tend to uniformity of

size in all mammals, those which do not do so, and in particular the ganglion cells,

continue to grow, and their size becomes, therefore, a function of the duration of

life. Cf. G. Levi, Studii sulla grandezza delle cellule. Arch. Jtal. di Anat. e di

Embrioloq. v, p. 291, 1906; cf. also A. Berezowski, Studien liber die Zellgrosse,

Arch. f. Zellforsch. v, pp. 375-384, 1910.



II] OF THE LEAST OF ORGANISMS 63

units, in place of the many thousands which make up such an organ

in larger, if not alwayc higher, animals. We have already spoken

of the Fairy-flies, a few score of which would hardly weigh down

one of the larger rotifers, and a hundred thousand would weigh less

than one honey-bee. Their form is complex and their httle bodies

exquisitely beautiful; but I feel sure that their cells are few, and

their organs of great histological simplicity. These considerations

help, I think, to shew that, however important and advantageous

the subdivision of the tissues into cells may be from the construc-

tional, or from the dynamic, point of view, the phenomenon has

less fundamental importance than was once, and is often still,

assigned to it.

Just as Sachs shewed there was a hmit to the amount of cytoplasm

which could gather round a nucleus, so Boveri has demonstrated

that the nucleus itself has its own hmitations of size, and that, in

cell-division after fertilisation, each new nucleus has the same size

as its parent nucleus*; we may nowadays transfer the statement

to the chromosomes. It may be that a bacterium lacks a nucleus

for the simple reason that it is too small to hold one, and that the

same is true of such small plants as the Cyanophyceae, or blue-green

algae. Even a chromatophore with its "pyrenoids" seems to be

impossible below a certain sizej.

Always then, there are reasons, partly physiological but in large

part purely physical, which define or regulate the magnitude of the

organism or the cell. And as we have already found definite

Hmitations to the increase in magnitude of an organism, let us now
enquire whether there be not also a lower limit below which the

very existence of an organism becomes impossible.

* Boveri, Zellen.studien, V: Ueber die Abhangigkeit der Kerngrosse und
Zellenzahl von der Chromosomenzahl der Ausgangszellen. Jena, 1905. Cf. also

{int. al.) H. Voss, Kerngrossenverhaltnisse in der Leber etc., Ztschr.f. Zellforschung,

VII, pp. 187-200, 1928.

t The size of the nucleus may be affected, even determined, by the number of

chromosomes it contains. There are giant race* of Oenothera, Primula and Solanum
whose cell-nuclei contain twice the normal number of chromosomes, and a dwarf

race of a little freshwater crustacean, Cyclops, has half the usual number. The
cytoplasm in turn varies with the amount of nuclear matter, the whole cell is

unusually large or unusually small; and in these exceptional cases we see a direct

relation between the size of the organism and the size of the cell. Cf. {int. al.)

R. P. Gregory, Proc. Camb. Phil Soc. xv, pp. 239-246, 1909; F. Keeble, Journ.

of Genetics, ii, pp. 163-188, 1912. •
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A bacillus of ordinary size is, say, 1 /x in length. The length (or

height) of a man is about a million and three-quarter times as great,

i.e. 1-75 metres, or 1-75 x 10^ /x; and the mass of the man is in the

neighbourhood of 5 x 10^® (five million, million, milHon) times

greater than that of the bacillus. If we ask whether there may not

exist organisms as much less than the bacillus as the bacillus is less

than the man, it is easy to reply that this is quite impossible, for we

are rapidly approaching a point where the question of molecular

dimensions, and of the ultimate divisibility of matter, obtrudes

itself as a crucial factor in the case. Clerk Maxwell dealt with this

matter seventy years ago, in his celebrated article Atom"^. KoUi

(or Colley), a Russian chemist, declared in 1893 that the head of a

spermatozoon could hold no more than a few protein molecules ; and

Errera, ten years later, discussed the same topic with great ingenuity f.

But it needs no elaborate calculation to convince us that the smaller

bacteria or micrococci nearly approach the smallest magnitudes

which we can conceive to have an organised structure. A few small

bacteria are the smallest of visible organisms, and a minute species

associated with influenza, B. pneumosinter, is said to be the least

of them all. Its size is of the order of 0-1 /x, or rather less; and

here we are in close touch with the utmost limits of microscopic

vision, for the wave-lengths of visible light run only from about

400 to 700 m/x. The largest of the bacteria, B. megatherium, larger

than the well-known B. anthracis of splenic fever, has much the

same proportion to the least as an elephant to a guinea-pig {.

Size of body is no mere accident. Man, respiring as he does,

cannot be as small as an insect, nor vice versa; only now and then,

as in the Goliath beetle, do the sizes of mouse and beetle meet and

overlap. The descending scale of mammals stops short at a weight

of about 5 grams, that of beetles at a length of about half a milli-

metre, and every group of animals has its upper and its lower

limitations of size. So, not far from the lower limit of our vision,

does the long series of bacteria come to an end. There remain still

smaller particles which the ultra-microscope in part reveals; and

* Encyclopaedia Britannica, 9th edition, 1875.

f Leo Errera, Siir la limite de la petitesse des organismes, BvlL Soc. Roy. des

Sc. me'd. et nat. de Bruxelles, 1903; Recueil d'osnvres {Physiologie gen^rale), p. 325.

I Cf. A. E. Boycott, The transition from live to dead, Proc. R. Soc. of Medicine,

XXII {Pathology), pp. 55-69, 1928.
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here or hereabouts are said to come the so-called viruses or "filter-

passers," brought within our ken by the maladies, such as hydro-

phobia, or foot-and-mouth disease, or the mosaic diseases of tobacco

and potato, to which they give rise. These minute particles, of the

order of one-tenth the diameter of our smallest bacteria, have no

diffusible contents, no included water—whereby they differ from

every living thing. They appear to be inert colloidal (or even

crystalloid) aggregates of a nucleo-protein, of perhaps ten times the

diameter of an ordinary protein-molecule, and not much larger than

the giant molecules of haemoglobin or haemocyanin *.

Bejerinck called such a virus a contagium vivum; "infective

nucleo-protein" is a newer name. We have stepped down, by a

single step, from Hving to non-Hving things, from bacterial dimen-

sions to the molecular magnitudes of protein chemistry. And we

begin to suspect that the virus-diseases are not due to an "organism,

capable of physiological reproduction and multiphcation, but to a

mere specific chemical substance, capable of catalysing pre-existing

materials and thereby producing more and more molecules hke

itself. The spread of the virus in a plant would then be a mere

autocatalysis, not involving the transport of matter, but only a

progressive change of state in substances already there f."

But, after all, a simple tabulation is all we need to shew how
nearly the least of organisms approach to molecular magnitudes.

The same table will suffice to shew how each main group of animals

has its mean and characteristic size, and a range on either side,

sometimes greater and sometimes less.

Our table of magnitudes is no mere catalogue of isolated facts,

but goes deep into the relation between the creature and its world.

A certain range, and a- narrow one, contains mouse and elephant,

and all whose business it is to walk and run ; this is our own world,

* Cf. Svedberg, Journ. Am. Chem. Soc. XLviir, p. 30, 1926. According to the

Foot-and-Mouth Disease Research Committee {oth Report, 1937), the foot-and-

mouth virus has a diameter, determined by graded filters, of 8-12m/i; while

Kenneth Smith and W. D. MacClement {Proc. R.S. (B), cxxv, p. 296, 1938) calculate

for certain others a diameter of no more than 4m^, or less than a molecule of

haemocyanin.

t H. H. Dixon, Croonian lecture on the transport of substances in plants,

Proc. R.S. (B), vol. cxxv, pp. 22, 23, 1938.
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with whose dimensions our hves, our hmbs, our senses are in tune.

The great whales grow out of this range by throwing the burden

of their bulk upon the waiters; the dinosaurs wallowed in the swamp,

and the hippopotamus, the sea-elephant and Steller's great sea-cow

pass or passed their hves in the rivers or the sea. The things which

Linear dimensions of organisms, and other objects
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until to creep upon wall or ceiling becomes as easy as to walk upon

the ground. Fishes, by evading gravity, increase their range of

magnitude both above and below that of terrestrial animals. Smaller

than all these, passing out of our range of vision and going down to

the least dimensions of hving things, are protozoa, rotifers, spores,

pollen-grains* and bacteria. All save the largest of these float

rather than swim; they are buoyed up by air or water, and fall

(as Stokes's law explains) with exceeding slowness.

There is a certain narrow range of magnitudes where (as we have

partly said) gravity and surface tension become comparable forces,

nicely balanced with one another. Here a population of small

plants and animals not only dwell in the surface waters but are

bound to the surface film itself—the whirligig beetles and pond-

skaters, the larvae of gnat and mosquito, the duckweeds (Lemna),

the tiny Wolffia, and Azolla; even in mid-ocean, one small insect

(Halobates) retains this singular habitat. It would be a long story

to tell the various ways in which surface-tension is thus taken full

advantage of. Gravitation not only Hmits the magnitude but

controls the form of things. With the help of gravity the quadruped

has its back and its belly, and its limbs upon the ground ; its freedom

of motion in a plane perpendicular to gravitational force ; its sense

of fore-and-aft, its head and tail, its bilateral symmetry. Gravitation

influences both our bodies and our minds. We owe to it our sense

of the vertical, our knowledge of up-and-down; our conception of

the horizontal plane on which we stand, and our discovery of two

axes therein, related to the vertical as to one another; it was gravity

which taught us to think of three-dimensional space. Our archi-

tecture is controlled by gravity, but gravity has less influence over

the architecture of the bee ; a bee might be excused, might even be

commended, if it referred space to four dimensions instead of three ! t

The plant has its root and its stem", but about this vertical or

* Pollen-grains, like protozoa, have a considerable range of magnitude. The
largest, such as those of the pumpkin, are about 200/x in diameter; these have to

be carried by insects, for they are above the level of Stokes's law, and no longer

float upon the air. The smallest pollen-grains, such as those of the forget-me-not,

are about 4^ /x in diameter (Wodehouse).

f Corresponding, that is to say, to the four axes which, meeting in a pfoint, make
co-equal angles (the so-called tetrahedral angles) one with another, as do the basal

angles of the honeycomb. (See below, chap, vu.)
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gravitational axis its radiate symmetry remains, undisturbed by

directional polarity, save for the sun. Among animals, radiate

symmetry is confined to creatures of no great size ; and some form

or degree of spherical symmetry becomes the rule in the small world

of the protozoon—unless gravity resume its sway through the added

burden of a shell. The creatures which swim, walk or run, fly,

creep or float are, so to speak, inhabitants and natural proprietors

of as many distinct and all but separate worlds. Humming-bird

and hawkmoth may, once in a way, be co-tenants of the same

world; but for the most part the mammal, the bird, the fish, the

insect and the small life of the sea, not only have their zoological

distinctions, but each has a physical universe of its own. The

world of bacteria is yet another world again, and so is the world of

colloids ; but through these small Lilliputs we pass outside the range

of hving things.

What we call mechanical principles apply to the magnitudes

among which we are at home; but lesser worlds are governed by

other and appropriate physical laws, of capillarity, adsorption and

electric charge. There are other worlds at the far other end of the

scale, in the uttermost depths of space, whose vast magnitudes lie

within a narrow range. When the globular star-clusters are plotted

on a curve, apparent diameter against estimated distance, the

curve is a fair approximation to a rectangular hyperbola; which

means that, to the same rough approximation, the actual diameter

is identical in them all*.

It is a remarkable thing, worth pausing to reflect on, that we can

pass so easily and in a dozen fines from molecular magnitudes f to

the dimensions of a Sequoia or a whale. Addition and subtraction,

the old arithmetic of the Egyptians, are not powerful enough for

such an operation; but the story of the grains of wheat upon the

chessboard shewed the way, and Archimedes and Napier elaborated

* See Harlow Shapley and A. B. Sayer, The angular diameters of globular

clusters, Proc. Nat. Acad, of Sci. xxi, pp. 593-597, 1935. The same is approxi-

mately true of the spiral nebulae also.

t We may call (after Siedentopf and Zsigmondi) the smallest visible particles

microns, such for instance as small bacteria, or the fine particles of gum-mastich

in suspension, measuring 0-5 to 1-0/x; sub-microns are those revealed by the ultra-

microscope, such as particles of colloid gold (2-15m/Lt), or starch-moleculea (5m/x);

amicrons, under Im^, are not perceptible by either method. A water-molecule

measures, probably, about 0-1 m/i.
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the arithmetic of multipHcation. So passing up and down by easy-

steps, as Archimedes did when he numbered the sands of the sea,

we compare the magnitudes of the great beasts and the small, of

che atoms of which they are made, and of the world in which they

dwell*.

While considerations based on the chemical composition of the

organism have taught us that there must be a definite lower hmit

to its magnitude, other considerations of a purely physical kind lead

us to the same conclusion. For our discussion of the principle of

similitude has already taught us that long before we reach these

all but infinitesimal magnitudes the dwindling organism will have

experienced great changes in all its physical relations, and must at

length arrive at conditions surely incompatible with life, or what we

understand as life, in its ordinary development and manifestation.

We are told, for instance, that the powerful force of surface-tension,

or capillarity, begins to act within a range of about 1/500,000 of an

inch, or say 0-05 />t. A soap film, or a film of oil on water, may be

attenuated to far less magnitudes than this; the black spots on a

soap bubble are known, by various concordant methods of measure-

ment, to be only about 6x 10~' cm., or about 6m/x thick, and Lord

Rayleigh and M. Devaux have obtained films of oil of 2mjLt, or even

1 m/x in thickness. But while it is possible for a fluid film to exist

of these molecular dimensions, it is certain that long before we

reach these magnitudes there arise conditions of which we have

little knowledge, and which it is not easy to imagine. A bacillus

lives in a world, or on the borders of a world, far other than our

own, and preconceptions drawn from our experience are not valid

there. Even among inorganic, non-living bodies, there comes a

certain grade of minuteness at which the ordinary properties become

modified. For instance, while under ordinary circumstances crystal-

lisation starts in a solution about a minute sohd fragment or crystal

* Observe that, following a common custom, we have only used a logarithmic

scale for the round numbers representing powers of ten, leaving the interspaces

between these to be filled up, if at all, by ordinary numbers. There is nothing

to prevent us from using fractional indices, if we please, throughout, and calling

a blood-corpuscle, for instance, 10~^"^ cm. in diameter, a man lO^'^^ cm. high, or

Sibbald's Rorqual lOi"*^ metres long. This method, implicit in that of Napier of

Merchiston, was first set forth by Wallis, in his Arithmetica infinitorum.
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of the salt, Ostwald has shewn that we may have particles so minute

that they fail to serve as a nucleus for crystalUsation—which is as

much as to say that they are too small to have the form and pro-

perties of a "crystal." And again, in his thin oil-films, Lord

Rayleigh noted the striking change of physical properties which

ensues when the film becomes attenuated to one, or something less

than one, close-packed layer of molecules, and when, in short, it no

longer has the properties of matter in mass.

These attenuated films are now known to be "monomolecular," the

long-chain molecules of the fatty acids standing close-packed, like the cells

of a honeycomb, and the film being just as thick as the molecules are long.

A recent determination makes the several molecules of oleic, palmitic and

stearic acids measure 10-4, 14-1 and 15- 1 cm. in length, and in breadth 7-4,

6-0 and 5-5 cm., all by 10~^: in good agreement with Lord Rayleigh and

Devaux's lowest estimates (F. J. Hill, Phil. Mag. 1929, pp. 940-946). But

it has since been shewn that in aliphatic substances the long-chain molecules

are not erect, but inclined to the plane of the film ; that the zig-zag constitution

of the molecules permits them to interlock, so giving the film increased

stability ; and that the interlock may be by means of a first or second zig-zag,

the measured area of the film corresponding precisely to these two dimorphic

arrangements. (Cf. C. G. Lyons and E. K. Rideal, Proc. R.S. (A), cxxvin,

pp. 468-473, 1930.) The film may be lifted on to a polished surface of metal,

or even on a sheet of paper, and one monomolecular layer so added to another;

even the complex protein molecule can be unfolded to form a film one amino-

acid molecule thick. The whole subject of monomolecular layers, the nature

of the film, whether condensed, expanded or gaseous, its astonishing sensitive-

ness to the least impurities, apd the manner of spreading of the one liquid

over the other, has become of great interest and importance through the work

of Irving Langmuir, Devaux, N. K. Adam and others, and throws new light

on the whole subject of molecular magnitudes*.

The surface-tension of a drop (as Laplace" conceived it) is the

cumulative effect, the statistical average, of countless molecular

attractions, but we are now entering on dimensions where the

molecules are fewf. The free surface-energy of a body begins to

vary with the radius, when that radius is of an order comparable

to inter-molecular distances; and the whole expression for such

energy tends to vanish away when the radius of the drop or particle

is less than O-Olfx, or lOm^it. The quahties and properties of our

* Cf. (int. al.) Adam, Physics and Chemistry of Surfaces, 1930; Irving Langmuir,

Proc. R.S. (A), CLXX, 1939.

t See a very interesting paper by Fred Vies, Introduction a la physique bac-

terienne, Revue Sclent. 11 juin 1921. Cf. also N. Rashevsky, Zur Theorie d.

spontanen Teilung von mikroskopischen Tropfen, Ztschr.f. Physik, xlvi, p. 578, 1928.
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particle suffer an abrupt change here; what then can we attribute,

in the way of properties, to a corpuscle or organism as small or

smaller than, say, 0-05 or 0-03 /x? It must, in all probability, be a

homogeneous structureless body, composed of a very small number

of albumenoid or other molecules. Its vital properties and functions

must be extremely limited; its specific outward characters, even if

we could see it, must be nil; its osmotic pressure and exchanges

must be anomalous, and under molecular bombardment they may
be rudely disturbed; its properties can be Httle more than those of

an ion-laden corpuscle, enabling it to perform this or that specific

chemical reaction, to effect this or that disturbing influence, or

produce this or that pathogenic effect. Had it sensation, its ex-

periences would be strange indeed; for if it could feel, it would regard

a fall in temperature as a movement of the molecules around, and

if it could see it would be surrounded with light of many shifting

colours, like a room filled with rainbows.

The dimensions of a cilium are of such an order that its substance

is mostly, if not all, under the pecuHar conditions of a surface-layer,

and surface-energy is bound to play a leading part in cihary action.

A cilium or flagellum is (as it seems to me) a portion of matter in

a state sui generis, with properties of its own, just as the film and the

jet have theirs. And just as Savart and Plateau have told us about

jets and films, so will the physicist some day explain the properties

of the cilium and flagellum. It is certain that we shall never

understand these remarkable structures so long as we magnify

them to another scale, and forget that new and pecuhar physical

properties are associated with the scale to which they belong*.

As Clerk Maxwell put it, "molecular science sets us face to face

with physiological theories. It forbids the physiologist to imagine

that structural details of infinitely small dimensions (such as Leibniz

assumed, one within another, ad infinitum) can furnish an explana-

tion of the infinite variety which exists in the properties and functions

of the most minute organisms." And for this reason Maxwell

reprobates, with not undue severity, those advocates of pangenesis

* The cilia on the gills of bivalve molluscs are of exceptional size, measuring

from say 20 to 120^ long. They are thin triangular plates, rather than filaments;

they are from 4 to lO/x broad at the base, but less than 1/x thick. Cf. D. Atkins.

Q.J.M.S., 1938, and other papers.
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and similar theories of heredity, who "would place a whole world

of wonders within a body so small and so devoid of visible structure

as a germ." But indeed it scarcely needed Maxwell's criticism to

shew forth the immense physical difficulties of Darwin's theory of

pangenesis: which, after all, is as old as Democritus, and is no other

than that Promethean particula undique desecta of which we have

read, and at which we have smiled, in our Horace.

There are many other ways in which, when we make a long

excursion into space, we find our ordinary rules of physical behaviour

upset. A very familiar case, analysed by Stokes, is that the

viscosity of the surrounding medium has a relatively powerful effect

upon bodies below a certain size. A droplet of water, a thousandth

of an inch (25 ju,) in diameter, cannot fall in still air quicker than

about an inch and a half per second; as its size decreases, its

resistance varies as the radius, not (as with larger bodies) as the

surface; and its "critical" or terminal velocity varies as the

square of the radius, or as the surface of the drop. A minute

drop in a misty cloud may be one-tenth that size, and will fall a

hundred times slower, say an inch a minute; and one again a tenth

of this diameter (say 0-25 />t, or about twice as big as a small micro-

coccus) will scarcely fall an inch in two hours*. Not only do

dust-particles, spores f and bacteria fall, by reason of this principle,

very slowly through the air, but all minute bodies meet with great

proportionate resistance to their movements through a fluid. In

salt water they have the added influence of a larger coefficient of

friction than in fresh J ; and even such comparatively large organisms

as the diatoms and the foraminifera, laden though they are with a

heavy shell of flint or lime, seem to be poised in the waters of the

ocean, and fall with exceeding slowness.

* The resistance depends on the radius of the particle, the viscosity, and the

rate of fall
(
V) ; the eifective weight by which this resistance is to be overcome

depends on gravity, on the density of the particle compared with that of the

medium, and on the mass, which varies as r^. Resistance =A;rF, and effective

weight = )fcV; when these two equal one another we have the critical or terminal

velocity, and Vccr^.

t A. H. R. BuUer found the spores of a fungus (CoUybia), measuring 5x3/i,

to fall at the rate of half a millimetre per second, or rather more than an inch

a minute; Studies on Fungi, 1909.

X Cf. W. Krause, Biol. Centralbl. i, p. 578, 1881; Fliigel, Meteorol Ztschr. 1881,

p. 321.
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When we talk of one thing touching another, there may yet be

a distance between, not only measurable but even large compared

with the magnitudes we have been considering. Two polished

plates of glass or steel resting on one another are still about 4/x

apart—the average size of the smallest dust; and when all dust-

particles are sedulously excluded, the one plate sinks slowly down

to within O-S/jl of the other, an apparent separation to be accounted

for by minute irregularities of the polished surfaces*.

The Brownian movement has also to be reckoned with—that

remarkable phenomenon studied more than a century ago by Robert

Brown f, Humboldt's /ac?7e princeps botanicorum, and discoverer of

the nucleus of the cell J. It is the chief of those fundamental

phenomena which the biologists have contributed, or helped to

contribute, to the science of physics.

The quivering motion, accompanied by rotation and even by

translation, manifested by the fine granular particle issuing from a

crushed pollen-grain, and which Brown proved to have no vital

significance but to be manifested by all minute particles whatsoever,

was for many years unexplained. Thirty years and more after Brown

wrote, it was said to be "due, either directly to some calorical

changes continually taking place in the fluid, or to some obscure

chemical action between the solid particles and the fluid which is

indirectly promoted by heat§." Soon after these words were

* Cf. Hardy and Nottage, Proc. R.S. (A), cxxviii, p. 209, 1928; Baston and

Bowden, ibid, cxxxiv, p. 404, 1931.

t A Brief Description of Microscopical Observations. . .on the Particles contained

in the Pollen of Plants; and on the General Existence of Active Molecules in Organic

and Inorganic Bodies, London, 1828. See also Edinb. Netv Philosoph. Journ. v,

p. 358, 1828; Edinb. Journ. of Science, i, p. 314, 1829; Ann. Sc. Nat. xiv, pp. 341-

362, 1828; etc. The Brownian movement was hailed by some as supporting

Leibniz's theory of Monads, a theory once so deeply rooted and so widely believed

that even under Schwann's cell-theory Johannes Miiller and Henle spoke of

the cells as "organische Monaden"; cf. Emit du Bois Reymond, Leibnizische

Gedanken in der neueren Naturwissenschaft, Monatsber. d. k. Akad. Wiss., Berlin,

1870.

J The "nucleus" was first seen in the epidermis of Orchids; but "this areola,

or nucleus of the cell as perhaps it might be termed, is not confined to the

epidermis," etc. See his paper on Fecundation in Orchideae and Asclepiadae,

Trans. Linn. Soc. xvi, 1829-33, also Proc. Linn. Soc. March 30, 1832.

§ Carpenter, The Microscope, edit. 1862, p. 185.
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written it was ascribed by Christian Wiener * to molecular move-

ments within the fluid, and was hailed as visible proof of the

atomistic (or molecular) constitution of the same. We now know

that it is indeed due to the impact or bombardment of molecules

upon a body so small that these impacts do not average out, for

the moment, to approximate equality on all sides f. The movement

becomes manifest with particles of somewhere about 20 /x, and is

better displayed by those of about 10 /x, and especially well by

certain colloid suspensions or emulsions whose particles are just

below 1/Lt in diameter {. The bombardment causes our particles to

behave just hke molecules of unusual size, and this behaviour is

manifested in several ways§. Firstly, we have the quivering

movement of the particles; secondly, their movement backwards

and forwards, in short, straight disjointed paths; thirdly, the

particles rotate, and do so the more rapidly the smaller they are:

and by theory, confirmed by observation, it is found that particles

of IjjL in diameter rotate on an average through 100° a second,

while particles of 13/x turn through only 14° a minute. Lastly, the

very curious result appears, that in a layer of fluid the particles are

not evenly distributed, nor do they ever fall under the influence of

gravity to the bottom. For here gravity and the Brownian move-

ment are rival powers, striving for equilibrium; just as gravity is

opposed in the atmosphere by the proper motion of the gaseous

molecules. And just as equihbrium is attained in the atmosphere

when the molecules are so distributed that the density (and therefore

the number of molecules per unit volume) falls oif in geometrical

* In Poggendorffs Annalen, cxviii, pp. 79-94, 1863. For an account of this

remarkable man, see Naturmssensehaften, xv, 1927; cf. also Sigraund Exner,

Ueber Brown's Molecularbewegung, Sitzungsher. kk. Akad. Wien, lvi, p. 116, 1867.

t Perrin, Les preuves de la realite moleculaire, Ann. de Physique, xvii, p. 549,

1905; XIX, p. 571, 1906. The actual molecular collisions are unimaginably

frequent; we see only the residual fluctuations.

J Wiener was struck by the fact that the phenomenon becomes conspicuous

just when the size of the particles becomes comparable to that of a wave-length

of light.

§ For a full, but still elementary, account, see J. Perrin, Les Atomes; cf. also

Th. Svedberg, Die Existenz der Molekiile, 1912; R. A. Millikan, The Electron,

1917, etc. The modern literature of the Brownian movement (by Einstein, Perrin,

de Broglie, Smoluchowski and Millikan) is very large, chiefly owing to the value

which the phenomenon is shewn to have in determining the size of the atom or

the charge on an electron, and of giving, as Ostwald said, experimental proof of

the atomic theory.
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progression as we ascend to higher and higher layers, so is it with

our particles within the narrow Umits of the little portion of fluid

under our microscope.

It is only in regard to particles of the simplest form that these

phenomena have been theoretically investigated*, and we may take

it as certain that more complex particles, such as the twisted body

of a Spirillum, would shew other and still more comphcated mani-

festations. It is at least clear that, just as the early microscopists

in the days before Robert Brown never doubted but that these

phenomena were purely vital, so we also may still be apt to confuse,

in certain cases, the one phenomenon with the other. We cannot,

indeed, without the most careful scrutiny, decide whether the

movements of our minutest organisms are intrinsically "vital" (in

the sense of being beyond a physical mechanism, or working model)

or not. For example, Schaudinn has suggested that the undulating

movements of Spirochaete pallida must be due to the presence of a

minute, unseen, "undulating membrane"; and Doflein says of the

same species that "sie verharrt oft mit eigenthiimlich zitternden

Bewegungen zu einem Orte." Both movements, the trembling or

quivering movement described by Doflein, and the undulating or

rotating movement described by Schaudinn, are just such as may
be easily and naturally interpreted as part and parcel of the Brownian

phenomenon.

While the Brownian movement may thus simulate in a deceptive

way the active movements of an organism, the reverse statement

also to a certain extent holds good. One sometimes Hes awake of

a summer's morning watching the flies as they dance under the

ceiling. It is a very remarkable dance. The dancers do not whirl or

gyrate, either in company or alone; but they advance and retire;

they seem to jostle and rebound; between the rebounds they dart

hither or thither in short straight snatches of hurried flight, and

turn again sharply in a new rebound at the end of each little rushf.

* Cf. R. Gans, Wie fallen Stabe und Scheiben in einer reibenden Fliissigkeit?

Miinchener Bericht, 1911, p. 191; K. Przibram, Ueber die Brown'sche Bewegung
nicht kugelformiger Teilchen, Wiener Bericht, 1912, p. 2339; 1913, pp. 1895-1912.

t As Clerk Maxwell put it to the British Association at Bradford in 1873, "We
cannot do better than observe a swarm of bees, where every individual bee is

flying furiously, first in one direction and then in another, while the swarm as

a whole is either at rest or sails slowly through the air."
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Their motions are erratic, independent of one another, and

devoid of common purpose*. This is nothing else than a

vastly magnified picture, or simulacrum, of the Brownian move-

ment; the parallel between the two cases lies in their complete

irregularity, but this in itself implies a close resemblance. One

might see the same thing in a crowded market-place, always provided

that the busthng crowd had no business whatsoever. In like

manner Lucretius, and Epicurus before him, watched the dust-motes

quivering in the beam, and saw in them a mimic representation,

rei simulacrum et imago, of the eternal motions of the atoms. Again

the same phenomenon may be witnessed under the microscope, in

a drop of water swarming with Paramoecia or such-Hke Infusoria;

and here the analogy has been put to a numerical test. Following

with a pencil the track of each little swimmer, and dotting its place

every few seconds (to the beat of a metronome), Karl Przibram

found that the mean successive distances from a common base-hne

obeyed with great exactitude the "Einstein formula," that is to

say the particular form of the "law of chance" which is apphcable

to the case of the Brownian movement f. The phenomenon is (of

course) merely analogous, and by no means identical with the

Brownian movement; for the range of motion of the little active

organisms, whether they be gnats or infusoria, is vastly greater than

that of the minute particles which are passive under bombardment

;

nevertheless Przibram is inclined to think that even his compara-

tively large infusoria are small enough for the molecular bombard-

ment to be a stimulus, even though not the actual cause, of their

irregular and interrupted movements {.

* Nevertheless there may be a certain amount of bias or direction in these

seemingly random divagations: cf. J. Brownlee, Proc. R.S.E. xxxi, p. 262,

1910-11; F. H. Edgeworth, Metron, i, p. 75, 1920; Lotka, Elem. of Physical

Biology, 1925, p. 344.

t That is to say, the mean square of the displacements of a particle, in any

direction, is proportional to the interval of time. Cf. K. Przibram, Ueber die

ungeordnete Bewegung niederer Tiere, Pfliigefs Archiv, cliii, pp. 401-405, 1913;

Arch. f. Entw. Mech. xliii, pp. 20-27, 1917.

X All that is actually proven is that "pure chance" has governed the movements
of the little organism. Przibram has made the analogous observation that

infusoria, when not too crowded together, spread or diffuse through an aperture

from one vessel to another at a rate very closely comparable to the ordinary laws

of molecular diffusion.
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George Johnstone Stoney, the remarkable man to whom we owe
the name and concept of the electron, went further than this; for

he supposed that molecular bombardment might be the source of

the life-energy of the bacteria. He conceived the swifter moving

molecules to dive deep into the minute body of the organism, and

this in turn to be able to make use of these importations of energy*.

We draw near the end of this discussion. We found, to begin

with, that "scale" had a marked eifect on physical phenomena, and

that increase or diminution of magnitude migl^t mean a complete

change of statical or dynamical equiUbrium. In the end we begin

to see that there are discontinuities in the scale, defining phases in

which different forces predominate and different conditions prevail.

Life has a range of magnitude narrow indeed compared to that with

which physical science deals ; but it is wide enough to include three

such discrepant conditions as those in which a man, an insect and

a bacillus have their being and play their several roles. Man is

ruled by gravitation, and rests on mother earth. A water-beetle

finds the surface of a pool a matter of Ufe and death, a perilous

entanglement or an indispensable support. In a third world,

where the bacillus Hves, gravitation is forgotten, and the viscosity

of the Hquid, the resistance defined by Stokes's law, the molecular

shocks of the Brownian movement, doubtless also the electric

charges of the ionised medium, make up the physical environment

and have their potent and immediate influence on the organism.

The predominant factors are no longer those of our scale ; we have

come to the edge of a world of which we have no experience, and

where all our preconceptions must be recast.

* Phil. Mag. April 1890.



CHAPTER III,

THE RATE OF GROWTH

When we study magnitude by itself, apart from the gradual

changes to which it may be subject, we are deahng with a something

which may be adequately represented by a number, or by means

of a Hne of definite length ; it is what mathematicians call a scalar

phenomenon. When we introduce the conception of change of

magnitude, of magnitude which varies as we pass from one point

to another in space, or from one instant to another in time, our

phenomenon becomes capable of representation by means of a line

of which we define both the length and the direction; it is (in this

particular aspect) what is called a vector phenomenon.

When we deal with magnitude in relation to the dimensions of space,

our diagram plots magnitude in one direction against magnitude in

another—length against height, for instance, or against breadth ; and

the result is what we call a picture or outhne, or (more correctly)

a "plane projection" of the object. In other words, what we call

Form is a ratio of magnitudes* referred to direction in space.

When, in deahng with magnitude, we refer its variations to

successive intervals of time (or when, as it is said, we equate it with

time), we are then dealing with the phenomenon of growth; and

it is evident that this term growth has wide meanings. For growth

may be positive or negative, a thing may grow larger or smaller,

greater or less; and by extension of the concrete signification of

the word we easily arid legitimately apply it to non-material things,

such as temperature, and say, for instance, that a body "grows"

hot or cold. When in a two-dimensional diagram we represent a

magnitude (for instance length) in relation to time (or "plot" length

against time, as the phrase is), we get that kind of vector diagram

which is known as a "curve of growth." We see that the pheno-

menon which we are studying is a velocity (whose "dimensions" are

space/time, or L/T), and this phenomenon we shall speak of, simply,

as a rate of growth.

In various conventional wa-ys we convert a two-dimensional into

* In Aristotelian logic. Form is a quality. None the less, it is related to qiuirUity't

and we jfind the Schoolmen speaking of it as qualitas circa quantitatem.
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a three-dimensional diagram. We do so, for example, when, by

means of the geometrical method of "perspective," we represent

upon a sheet of paper the length, breadth and depth of an object

in three-dimensional space, but we do it better by means of contour-

Hnes or "isopleths." By contour-lines superposed upon a map of

a country, we shew its hills and valleys; and by contour-Unes we
may shew temperature, rainfall, population, language, or any other

*' third dimension" related to the two dimensions of the map. Time

is always impHcit, in so far as each map refers to its own date or

epoch; but Time as a dimension can only be substituted for one of

the three dimensions already there. Thus we may superpose upon

our map the successive outlines of the coast from remote antiquity,

or of any single isotherm or isobar from day to day. And if in hke

manner we superpose on one another, or even set side by side, the

outhnes of a growing organism—for instance of a young leaf and

an old, we have a three-dimensional diagram which is a partial

representation (limited to two dimensions of space) of the organism's

gradual change of form, or course of development; in such a case

our contours may, for the purposes of the embryologist, be separated

by time-intervals of a few hours or days, or, for the palaeontologist,

by interspaces of unnumbered and innumerable years*.

Such a diagram represents in two of its three dimensions form,

and in two (or three) of its dimensions growth, and we see how
intimately the two concepts are correlated or interrelated to one

another. In short it is obvious that the form of an organism is

determined by its rate of growth in various directions ; hence rate

of growth deserves to be studied as a necessary preliminary to the

theoretical study of form, and organic form itself is found,

mathematically speaking, to be di function of time'\.

* Sometimes we find one and the same diagram suffice, whether the time-intervals

be great or small; and we then invoke " Wolff's law" (or Kielmeyer's), and assert

that the life-history of the individual repeats, or recapitulates, the history of the

race. This "recapitulation theory" was alt-important in nineteenth-century

embryology, but was criticised by Adam Sedgwick {Q.J.M.S. xxxvi, p. 38, 1894)

and many later authors; cf. J. Needham, Chemical Embryology, 1931, pp. 1629-1647.

t Our subject is one of Bacon's "Instances of the Course" or studies wherein

we "measure Nature by periods of Time." In Bacpji's Catalogue of Particular

Histories, one of the odd hundred histories or investigations which, he foreshadows

is precisely that which we are engaged on, viz. a "History of the Growth and
Increase of the Body, in the whole and in its parts."
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At the same time, we need only consider this large part of our

subject somewhat briefly. Though it has an essential bearing on

the problems of morphology, it is in greater degree involved with

physiological problems; also, the statistical or numerical aspect of

the question is peculiarly adapted to the mathematical study of

variation and correlation. These important subjects we must not

neglect; but our main purpose will be served if we consider the

characteristics of a rate of growth in a few illustrative cases, and

recognise that this rate of growth is a very important specific

property, with its own characteristic value in this organism or that,

in this or that part of each organism, and in this or that phase of

its existence.

The statement which we have just made that "the form of an

organism is determined by its rate of growth in various directions,"

is one which calls for further explanation and for some measure of

quahfication.

Among organic forms we shall have many an occasion to see that

form may be due in simple cases to the direct action of certain

molecular forces, among which surface-tension plays a leading part.

Now when surface-tension causes (for instance) a minute semifluid

organism to assume a spherical form, or gives to a film of protoplasm

the form of a catenary or of an elastic curve, or when it acts in

various other ways productive of definite contours—just as it does

in the making of a drop, a splash or a jet—this is a process of con-

formation very diiferent from that by which an ordinary plant or

animal grows into its specific form. In both cases change of form

is brought about by the movement of portions of matter, and in

both cases it is ultimately due to the action of molecular forces;

but in the one case the movements of the particles of matter lie for

the most part within molecular range, while in the other we have

to deal with the transference of portions of matter into the system

from without, and from one widely distant part of the organism to

another. It is to this latter class of phenomena that we usually

restrict the term growth; it is in regard to them that we are in a

position to study the rate of action in different directions and at

different times, and to realise that it is on such differences of rate

that form and its modifications essentially and ultimately depend.
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The difference between the two classes of phenomena is akin to

the difference between the forces which determine the form of a

raindrop and those which, by the flowing of the waters and the

sculpturing of the solid earth, have brought about the configuration

of a river or a hill ; molecular forces are paramount in the one, and

wolar forces are dominant in the other.

At the same time, it is true that all changes of form, inasmuch

as they necessarily involve changes of actual and relative magnitude,

may in a sense be looked upon as phenomena of growth ; and it is

also true, since the movement of matter must always involve an

element of time*, that in all cases the rate ofgrowth is a phenomenon

to be considered. Even though the molecular forces which play

their part in modifying the form of an organism exert an action

which is, theoretically, all but instantaneous, that action is apt to

be dragged out to an appreciable interval of time by reason of

viscosity or some other form of resistance in the material. From

the physical or physiological point of view the rate of action may be

well worth studying even in such cases as these; for example, a

study of the rate of cell-division in a segmenting egg may teach us

something about the w^ork done, and the various energies concerned.

But in such cases the action is, as a rule, so homogeneous, and the

form finally attained is so definite and so little dependent on the

time taken to effect it, that the specific rate of change, or rate of

growth, does not enter into the morphological problem.

We are deahng with Form in a very concrete way. To Aristotle

it was a metaphysical concept; to us it is a quasi-mechanical effect

on Matter of the operation of chemico-physical forces f. To

* Cf. Aristotle, Phys. VI, 5, 235a, 11, eirel yap awaaa Kiurjffis ev XP^'^V* kt\.; he had

already told us that natural science deals with magnitude, with motion and with

time: ^<ttiu ij irepl (pvaeus eiriar-qtnj irepl fxiyedos Kai klvt^ctlv koL xP^^^^- Hence

omnis velocitas tempore durat became a scholastic aphorism. Bacon emphasised, in

like manner, the fact that "all motion or natural action is performed in time:

some more quickly, some more slowly, but all in periods determined and fixed in

the nature of things. Even those actions which seem to be performed suddenly,

and (as we say) in the twinkling of an eye, are found to admit of degree in

respect of duration" {Nov. Organon, xlvi). That infinitely small motions take

place in infinitely small intervals of time is the concept which lies at the root of the

calculus. But there is another side to the story.

t Cf. N. K. KoltzotF, Physikalisch-chemische Grundlage der Morphologie,

Biol. Centralbl. 1928, pp. 345-369.
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Aristotle its Form was the essence, the archetype, the very "nature"

of a thing, and Matter and Form were an inseparable duahty.

Even now, when we divide our science into Physiology and Mor-

phology, we are harking back to the old Aristotehan antithesis.

To sum up, we may lay down the following general statements.

The form of organisms is a phenomenon to be referred in part to

the direct action of molecular forces, in larger part to a more complex

and slower process, indirectly resulting from chemical, osmotic and

other forces, by which material is introduced into the organism

and transferred from one part of it to another. It is this latter

complex phenomenon which we usually speak of as "growth."

Every growing organism; and every part of such a growing

organism, has its own specific rate of growth, referred to this or

that particular direction ; and it is by the ratio between these rates

in different directions that we must account for the external forms

oiall save certain very minute organisms. This ratio may sometimes

be of a simple kind, as when it results in the mathematically

definable outhne of a shell, or the smooth curve of the margin of a

leaf. It may sometimes be a very constant ratio, in which case the

organism while growing in bulk suffers httle or no perceptible change

in form; but such constancy seldom endures beyond a season, and

when the ratios tend to alter, then we have the phenomenon of

morphological ''development,'' or steady and persistent alteration of

form.

This elementary concept of Form, as determined by varying rates

of Growth, was clearly apprehended by the mathematical mind of

Haller—who had learned his mathematics of the great John

Bemoulh, as the latter in turn had learned his physiology from the

writings of Borelh* It was this very point, the apparently un-

limited extent to which, in the development of the chick, inequalities

of growth could and did produce changes of form and changes of

anatomical structure, that led Haller to surmise that the process

was actually without Hmits, and that all development was but an

unfolding or "evolutio," in which no part came into being which

* "Qua in re Incomparabilis Viri Joh. Alph. Borelli vestigiis insistemus."

Joh. Bernoulli, De motu musculorum, 1694.



Ill] THE DOCTRINE OF PREFORMATION 83

had not essentially existed before*. In short the celebrated doctrine

of "preformation" implied on the one hand a clear recognition of

what growth can do throughout the several stages of development,

by hastening the increase in size of one part, hindering that of

another, changing their relative magnitudes and positions, and so

altering their forms; while on the other hand it betrayed a failure

(inevitable in those days) to recognise the essential difference

between these movements of masses and the molecular processes

which precede and accompany them, and which are characteristic

of another order of magnitude.

The general connection, between growth and form has been

recognised by other writers besides Haller. Such a connection is

imphcit in the "proportional diagrams" by which Diirer and his

brother-artists illustrated the changes in form, or of relative

dimensions, which mark the child's growth to boyhood and to

manhood. The same connection was recognised by the early

embryologists, and appears, as a survival of the doctrine of pre-

formation, in Pander's I study of the development of the chick.

And long afterwards, the embryological aspect of the case was

emphasised by His J, who pointed out that the foldings of the

blastoderm, by which the neural and amniotic folds are brought

into being, were the resultant of unequal rates of growth in what

to begin with was a uniform layer of embryonic tissue. If a sheet

of paper be made to expand here and contract there, as by moisture

or evaporation, the plane surface becomes dimpled, or folded, or

buckled, by the said expansions and contractions; and the dis-

tortions to which the surface of the "germinal disc" is subject are,

as His shewed once and for all, precisely analogous. There are

* Cf. (e.g.) Elem. Physiologiae, ed. 1766, vm, p. 114, "Ducimur autem ad

evolutionem potissimum, quando a perfecto animale retrorsum progredimuis et

incrementonim atque mutationum seriem relegimus. Ita inveniemus perfectum

illud animal fuisse imperfectius, alterius figurae et fabricae, et denique rude et

informe : et tamen idem semper animal sub iis diversis phasibus fuisse, quae absque

ullo saltu perpetuos parvosque per gradus cohaereant."

t Beitrdge zur Entwickelungsgeschichte des Huhnchens im Ei, 1817, p. 40. Roux
ascribes the same views also to Von Baer and to R. H. Lotze {Allgem. Physiologie,

1851, p. 353).

I W. His, Unsere Korperform, und das physiologische Problem ihrer Entstehung,

1874. See also Archiv f. Anatomie, 1894; and cf. C. B. Davenport, Processes con-

cerned in Ontogeny, Bull. Mus. Comp. Anat, xxvn, 1895; also G. Dehnel and
Jan Tur, De Embryonum evolutionis progressu ineqvuli: Kosmos (Lwow), lhi, 1928.
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certain Nostoc-algae in which unequal growth, ceasing towards the

periphery of a disc and increasing here and there within, gives rise

to folds and bucklings curiously Hke those of our own ears: which

indeed owe their shape and characteristic folding to an identical or

analogous cause.

An experimental demonstration comparable to the actual case is

obtained by making an "artificial blastoderm" of Uttle pills or

pellets of dough, which are caused to grow at varying rates by the

addition of varying quantities of yeast. Here, as Roux is careful

to point out,* it is not only the growth of the individual cells, but

the traction exercised on one another through their mutual inter-

connections, which brings about foldings, wrinklings and other

distortions of the structure. But this again, or such as this, had been

in Haller's mind, and formed an essential part of his embryillogical

doctrine. For he has no sooner treated of incrementum, or celeritas

incrementi, than he proceeds to deal with the contributory and

complementary phenomena of expansion, traction (adtractio)^ and

pressure, and the more subtle influences which he denominates vis

derivationis et revulsionis%'. these latter being the secondary and

correlated effects on growth in one part, brought about by such

changes as are produced, for instance in the circulation, by the

growth of another.

We have to do with growth, with exquisitely graded or balanced

growth, and with forces subtly exerted by one growing part upon

another, in so wonderful a piece of work as the development of the

eye : as its primary vesicle expands and then dimples in, as the lens

appears and fits into place, as the secondary vesicle closes over to

form iris and pupil, and in all the rest of the story.

Let us admit that, on the physiological side, Haller's or His's

methods of explanation carry us but a little way; yet even this

little way is something gained. Nevertheless, I can well remember

* Roux, Die Entwickelungsmechanik, 1905, p. 99.

t Op. cit. p. 302, "Magnum hoc naturae instrumentum, etiam in corpore animato

evolvendo potenter operatur, etc." The recurrent laryngeal nerve, drawn down
as its arch of the aorta descends, is a simple instance of anatomical traction. The
vitelline and omphalomesenteric arteries lead, by more complicated constraints

and tractions, to the characteristic loops of the intestinal blood vessels, and of the

intestine itself. Cf. G. Enbom, Lunds Univ. Arsskrift, 1939.

X Ibid. p. 306, "Subtiliora ista, et aliquantum hypothesi mista, tamen magnam
mihi videntur speciem veri habere."
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the harsh criticism and even contempt which His's doctrine met

with, not merely on the ground that it was inadequate, but because

such an explanation was deemed wholly inappropriate, and was

utterly disavowed*. Oscar Hertwig, for instance, asserted that, in

embryology, when we find one embryonic stage preceding another,

the existence of the former is, for the embryologist, an all-sufficient

"causal explanation" of the latter. "We consider (he says) that

we are studying and explaining a causal relation when we have

demonstrated that the gastrula arises by invagination of a blasto-

sphere, or the neural canal by the infolding of a cell-plate so as to

constitute a tubef." For Hertwig, then, as Roux remarks, the task

of investigating a physical mechanism in embryology
—

"der Ziel das

Wirken zu erforschen"—has no existence at all. For Balfour also,

as for Hertwig, the mechanical or physical aspect of organic develop-

ment had little or no attraction. In one notable instance, Balfour

himself adduced a physical, or quasi-physical, explanation of an

organic process, when he referred the various modes of segmentation

of an ovum, complete or partial, equal or unequal and so forth, to

the varying amount or varying distribution of food-yolk associated

with the germinal protoplasm of the egg. But in the main, like all

the other embryologists of his day, Balfour was engrossed in the

* Cf. His, On the Principles of Animal Morphology, Proc. R.S.E. xv,

p. 294, 1888: "My own attempts to introduce some elementary mechanical or

physiolbgical conceptions into embryology have not generally been agreed to by

morphologists. To one it seemed ridiculous to speak of the elasticity of the germinal

layers; another thought that, by such considerations, we 'put the cart before

the horse'; and one more recent author states, that we have better things to do

in embryology than to discuss tensions of germinal layers and similar questions,

since all explanations must of necessity be of a phylogenetic nature. This opposition

to the application of the fundamental principles of science to embryological questions

would scarcely be intelligible had it not a dogmatic background. No other explana-

tion of living forms is allowed than heredity, and any which is founded on another

basis must be rejected.. . .To think that heredity will build organic beings without

mechanical means is a piece of unscientific mysticism." Even the school of

Entwickelungsmechanik showed a certain reluctance, or extreme caution, in speaking

of the physical forces in relation to embryology or physiology. This reluctant

caution is well exemplified by Martin Heidenhain, writing on "Formen und Krafte

in der lebendigen Natur" in Roux's Vortrdge, xxxir, 1923. Speaking of "die

Krafte welche die Entwickelung und den fertigen Zustand der Formen bedingen",

he says: "letztere kann man aber nicht auf dem Felde der Physik suchen, sondern

nur im Umkreis der Lebendigen, obwohl anzunehmen ist, dass diese Krafte spater

einmal ' analogienhaft ' nach dem Vorbilde der Physik beschreibbar sein werden"

t 0. Hertwig, Zeit- und Streitfragen der Biologie, ii, 1897.
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problems of phylogeny, and he expressly defined the aims of com-

parative embryology (as exemphfied in his own textbook) as being

*' twofold: (1) to form a basis for Phylogeny, and (2) to form a basis

for Organogeny, or the origin and evolution of organs*."

It has been the great service of Roux and his fellow-workers of

the school of "Entwickelungsmechanik," and of many other students

to whose work we shall refer, to try, as His tried, to import into

embryology, wherever possible, the simpler concepts of physics, to

introduce along with them the method of experiment, and to refuse

to be bound by the narrow hmitations which such teaching as that

of Hertwig would of necessity impose on the work and the thought

and the whole philosophy of the biologist.

Before we pass from this general discussion to study some of the

particular phenomena of growth, let m.e give an illustration, from

Darwin, of a point of view which is in marked contrast to Haller's

simple but essentially mathematical conception of Form.

There is a curious passage in the Origin of Species "f,
where Darwin

is discussing the leading facts of enibryology, and in particular

Von Baer's "law of embryonic resemblance." Here Darwin says:

"We are so much accustomed to see a difference in structure between

the embryo and the adult that we are tempted to look at this

difference as in some necessary manner contingent on growth. But

there is no reason why, for instance, the wing of a bat, or the fin

of a porpoise, should not have been sketched out with all their parts

in proper proportion, as soon as any part became visible." After

pointing out various exceptions, with his habitual care, Darwin

proceeds to lay down two general principles, viz. "that shght

variations generally appear at a not very early period of Hfe," and

secondly, that "at whatever age a variation first appears in the

parent, it tends to reappear at a corresponding age in the offspring."

He then argues that it is with nature as with the fancier, who does

not care what his pigeons look Uke in the embryo so long as the

full-grown bird possesses the desired quahties : and that the process

of selection takes place when the birds or other animals are nearly

* Treatise on Comparative Embryology, i, p. 4, 1881.

t Ist ed. p. 444; 6th ed. p. 390. The student should not fail to consult the

passage in question ; for there is always a risk of misunderstanding or misinterpreta-

tion when one attempts to epitomise Darwin's carefully condensed arguments.
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grown up—at least on the part of the breeder, and presumably in

nature as a general rule. The illustration of these principles is set

forth as follows: "Let us take a group of birds, descended from

some ancient form and modified through natural selection for

different habits. Then, from the many successive variations having

supervened iA the several species at a not very early age, and having

been inherited at a corresponding age, the young will still resemble

each other much more closely than do tl^e adults—just as we have

seen with the breeds of the pigeon. . . . Whatever influence long-

continued use or disuse may have had in modifying the limbs or

other parts of any species, this will chiefly or solely have affected

it when nearly mature, when it was compelled to use its full powers

to gain its own living ; and the effects thus produced will have been

transmitted to the offspring at a corresponding nearly mature age.

Thus the young will not be modified, or will be modified only in a

shght degree, through the effects of the increased use or disuse* of

parts." This whole argument is remarkable, in more ways than

we need try to deal with here; but it is especially remarkable that

Darwin should begin by casting doubt upon the broad fact that a

"difference in structure between the embryo and the adult" is

"in some necessary matter contingent on growth"; and that he

should see no reason why compUcated structures of the adult

"should not have been sketched out with all their parts in proper

proportion, as soon as any part became visible." It would seem to

me that even the most elementary attention to form in its relation

to growth would have removed most of Darwin's difficulties in regard

to the particular phenomena which he is considering here. For

these phenomena are phenomena of form, and therefore of relative

magnitude ; and the magnitudes in question are attained by growth,

proceeding with certain specific velocities, and lasting for certain

long periods of time. And it seems obvious accordingly that in any

two related individuals (whether specifically identical or not) the

differences between them must manifest themselves gradually, and

be but Httle apparent in the young. It is for the same simple

reason that animals which are of very different sizes when adult

differ less and less in size (as well as form) as we trace them back-

wards to their early stages.

Though we study the visible effects of varying rates of growth
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throughout wellnigh all the problems of morphology, it is not very

often that we can directly measure the velocities concerned. But

owing to the obvious importance of the phenomenon to the morpho-

logist we must make shift to study it where we can, even though

our illustrative cases may seem sometimes to have little bearing

on the morphological problem*.

In a simple spherical organism, such as the single spherical cell of

Protococcus or of Orbulina, growth is reduced to its simplest terms,

and indeed becomes so simple in its outward manifestations that it

loses interest to the morphologist. The rate of growth is measured

by the rate of change in length of a radius, i.e. F = {R' — R)IT, and

from this we may calculate, as already indicated, the rate in terms

of surface and of volume. The growing body remains of constant

form, by the symmetry of the system; because, that is to say, on

the one hand the pressure exerted by the growing protoplasm is

exerted equally in all directions, after the manner of a hydrostatic

pressure, which indeed it actually is ; while on the other hand the

"skin" or surface layer of the cell is sufficiently homogeneous to exert

an approximately uniform resistance. Under these simple conditions,

then, the rate of growth is uniform in all directions, and does not

affect the form of the organism."

But in a larger or a more complex organism the study of growth,

and of the rate of growth, presents us with a variety of problems,

and the whole phenomenon (apart from its physiological interest)

becomes a factor of great morphological importance. We no longer

find that growth tends to be uniform in all directions, nor have we

any reason to expect it should. The resistances which it meets with

are no longer uniform. In one direction but not in others it will

be opposed by the important resistance of gravity; within the

growing system itself all manner of structural differences come into

play, and set up unequal resistances to growth in one direction or

another. At the same time the actual sources of growth, the

chemical and osmotic forces which lead to the intussusception of

new matter, are not uniformly distributed; one tissue or one organ

may well increase while another does not; a set of bones, their

intervening cartilages and their surrounding muscles, may all be

* "In omni rerum naturalium historia utile est mensuras definiri et numeros,^^

Haller, Elem. Physiol, ii, p. 258, 1760. Cf. Hales, Vegetable Staticks, Introduction.
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capable of very different rates of increment. The changes of form

which result from these differences in rate are especially manifested

during that phase of life when growth itself is rapid: when the

organism^ as we say, is undergoing its development.

When growth in general has slowed down, the differences in rate

between different parts of the organism may still exist, and may be

made manifest by careful observation and measurement, but the

resultant change of form is less apt to strike the eye. Great as are

the differences between the rates of growth in different parts of a

complex organism, the marvel is that the ratios between them are

so nicely balanced as they are, and so capable of keeping the form

of the growing organism all but unchanged for long periods of time,

or of slowly changing it in its own harmonious way. There is the

nicest possible balance of forces and resistances in every part of

the complex body; and when this normal equilibrium is disturbed,

then we get abnormal growth, in the shape of tumours and exostoses,

and other malformations and deformities of every kind.

The rate of growth in man

Man will serve us as well as another organism for our first illus-

trations of rate of growth, nor can we easily find another which we

can better study from birth to the utmost Hmits ofold age. Nor

can we do better than go for our first data concerning him to

Quetelet's Essai de Physique Sociale, an epoch-making book for the

biologist. For it is packed with information, some of it unsurpassed,

in regard to human growth and form; and it stands out as the

first great essay in which social statistics and organic variation are

dealt with from the point of view of the mathematical theory of

probabilities. How on the one hand Quetelet followed Da Vinci,

Luca Pacioli and Dlirer in studying the growth and proportions of

man : and how on the other he simplified and extended the ideas of

James Bernoulli, of d'Alembert, Laplace, Poisson and the rest, is

another and a vastly interesting story*.

* Quetelet, Sur VHomme, ..., ou Essai de Physique Sociale, Bruxelles, 1835:

trans. Edinburgh, 1842; a,\so Instructions populaires sur le calcul des probabilites, 1828;

Lettres. . .sur la theorie des probabilites appliquee aux sciences morales et politiques,

1846 ; and Anthropometrie, 1871 . For an account of his life and writings, see Lottin's

Quetelet, statisticien et sociologue, Louvain, 1912; also J. M. Keynes. Treatise on

Probability, 1921.
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The meaning of the word "statistics" is curiously changed. For

Shakespeare or for Milton a statist meant (so Dr Johnson says)

"a pohtician, a statesman; one skilled in government." The

eighteenth-century Statistical Account of Scotland was a description

of the State and of its people, its wealth, its. agriculture and its trade.

Stature and weight* of man (from QuMeleVs Belgian data,

Essai, II, pp. 23-43; Anthropometric, p. 346) f
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explains, and draws deductions from, the resulting series and arrays

of numbers. It deals with simple and measurable effects, due to

complex and often unknown causes ; and when experiment is not at

hand to disentangle these causes, statistical methods may still do

something to elucidate them.

Now as to the growth of man, if the child be some 20 inches, or

say 50 cm., tall at birth, and the man some six feet, or 180 cm.,

high at twenty, we may say that his average rate of growth had

10 13

Time in years

20

Fig. 4. Curve of growth in man. From Quet^let's Belgian data.

The curve H* is proportional to the height cubed.

been (180 - 50)/20 cm., or 6-5 cm. per annum. But we well know
that this is but a rough preliminary statement, and that growth

was surely quick during some and slow during other of those twenty

years; we must learn not only the result of growth but the course

of growth ; we must study it in its continuity. This we do, in the

first instance, by the method of coordinates, plotting magnitude

against time. We measure time along a certain axis (x), and the

magnitude in question along a coordinate axis (y); a succession of

points defines the magnitudes reached at corresponding epochs, and

these points constitute a ''curve of growth'' when we join them
together.
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Our curve of growth, whether for weight or stature, has a definite

form or characteristic curvature: this being a sign that the rate of

growth is not always the same but changes as time goes on. Such

as it is, the curvature alters in an orderly way; so that, apart from

minor and "fortuitous" irregularities, our curves of growth tend to

be smooth curves. And the fact that they are so is an instance of

that "principle of continuity" which is the foundation of all physical

and natural science.

The curve of growth (Fig. 4) for length or stature in man indicates

a rapid increase at the outset, during the quick growth of babyhood

;

a long period of slower but almost steady growth in boyhood; as

a rule a marked quickening in his early teens, when the boy comes

to the "growing age"; and a gradual arrest of growth as he "comes

to his full height" and reaches manhood. If we carried the curve

farther, we should see a very curious thing. We should see that a

man's full stature endures but for a spell; long before fifty* it has

begun to abate, by sixty it is notably lessened, in extreme old age

the old man's frame is shrunken and it is but a memory that "he

once was tall"; the dechne sets in sooner in women than in men,

and "a httle old woman" is a household word. We have seen,

and we see again, that growth may have a negative value, pointing

towards an inevitable end. The phenomenon of negative growth

extends to weight also; it is largely chemical in origin; the meta-

bolism of the body is impaired, and the tissues keep pace no longer

with senile wastage and decay.

We must be very careful, however, how we interpret such a Table

as this; for it records the character of a population, and we are apt

to read in it the life-history of the individual. The two things are

not necessarily the same. That a man grows less as he grows older

all old men know; but it may also be the case, and our Table may
indicate it, that the short men live longer than the tall.

Our curve of growth is, by implication, a "time-energy" diagram f
or diagram of activity. As man grows he is absorbing energy

beyond his daily needs, and accumulating it at a rate depicted in

* Dr Johnson was not far wrong in saying that "life declines from thirty-five";

though the Autocrat of the Breakfast-table declares, like Cicero, that "the furnace

is in full blast for ten years longer".

t J. Joly, The Abundance of Life, 1915 (1890), p. 86.
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our curve ; till the time comes when he accumulates no longer, and

is constrained to draw upon his dwindhng store. But in part, tte

slow decline in stature is a sign of the unequal contest between our

bodily powers and the unchanging force of gravity, which draws us

down when we would fain rise up*; we strive against it all our

days, in every movement of our limbs, in every beat of our hearts.

Gravity makes a difference to a man's height, and no slight one,

between the morning and the evening ; it leaves its mark in sagging

wrinkles, drooping mouth and hanging breasts ; it is the indomitable

force which defeats us in the end, which lays us on our death-bed

and lowers us to the grave f. But the grip in which it holds us is

the title by which we live; were it not for gravity one man might

hurl another by a puff of his breath into the depths of space, beyond

recall for all eternity {.

Side by side with the curve which represents growth in length,

or height or stature, our diagram shews the corresponding curve of

weight. That this curve is of a different shape from the former one

is accounted for in the main (though not wholly) by the fact

—

which we have already dealt with—that in similar bodies volume,

and therefore weight, varies as the cubes of the linear dimensions;

and drawing a third curve to represent the cubes of the corresponding

heights, it now resembles the curve of weight pretty closely, but

still they are not quite the same. There is a change of direction,

or "point of inflection," in the curve of weight at one or two years

old, and there are certain other features in our curves which the

scale of the diagram does not make clear; and all these differences

are due to the fact that the child is changing shape as he grows,

that other linear dimensions grow somewhat differently from

* "Lou pes, mestre de tout (Le poids, maitre de tout), m^stre senso vergougno,

Que te tirasso en bas de sa brutalo pougno." J. H. Fabre, Oubreto prouven^alo,

p. 61.

t The continuity of the phenomenon of growth, and the natural passage from

the phase of increase to that of decrease or decay, are admirably discussed by
Enriques, in La Morte, Rivista di Scienza, 1907, and in Wachstum und seine

analytische Darstellung, Biol. Centralbl. June, 1909. Haller [Elementa, vii,

p. 68) recognised decrementum as a phase of growth, not less important (theoretically)

than incrementum ; ''Hristis, sed copiosa, haec est materies."

X Boscovich, Theoria, para. 552, "Homo hominem arreptum a Tellure, et

utcumque exigua impulsum vi vel uno etiam oris flatu impetitum, ab hominum
omnium commercio in infinitum expelleret, nunquam per totam aeternitatem

rediturum."
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length or stature, and in short that infant, boy and man are not

similar figures*. The change of form seems sHght and gradual, but

behind it he other and more complex things. Th6 changing ratio

between height and weight imphes changes in the child's metabolism^

in the income and expenditure of the body. The infant stores up

fat, and the active child "runs it off" again; at four years old or

five, bodily metaboUsm and increase of weight are at a minimum;

but a fresh start is made, a new "nutritional period" sets in, and the

small schoolboy grows stout and sJ3rong|.

Our curve of growth shews at successive epochs of time the height

or weight which has been reached by then; it plots changing

magnitude (y) against advancing time (x). It is essentially a

cumulative or summation curve; it sums up or "integrates" all the

successive magnitudes which have been added in all the foregoing

intervals of time. Where the curve is steep it means that growth

was rapid, and when growth ceases the curve becomes a horizontal

line. It follows that, by measuring the slope or steepness of our

curve of growth at successive epochs, we shall obtain a picture of

the successive velocities or growth-rates.

The steepness of a curve is measured by its "gradient J," or we

may roughly estimate it by taking for equal intervals of time

(strictly speaking, for each infinitesimal interval of time) the incre-

ment added during that interval; and this amounts in practice to

taking the differences between the values given for 'the successive

epochs, or ages, which we have begun by studying. Plotting these

successive differences against time, we obtain a curve each point on

which represents a certain rate at a certain time; and while the

former curve shewed a continuous succession of varying magnitudes,

this shews a succession of varying velocities. The mathematician

calls it a curve offirst differences ; we may call it a curve of annual

(or other) increments ; but we shall not go wrong if we call it a curve

of the rate (or rates) of growth, or still more simply, a velocity-curve.

* According to Quetelet's data, man's stature is multiplied by 3-4 and his weight

by 20-3, between birth and the age of twenty-one. But the cube of 3-4 is nearly

40; so the weight at birth should be multiplied forty times by the age of

twenty-one, if infant, boy and man were similar figures.

t Cf. T. W. Adams and E. P. Poulton, Heat production in man, Ouy's Hospital

Reports (4), xvn, 1937, and works quoted therein.

I That is, by its trigonometrical tangent, referred to the base-line.
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We have now obtained two different but closely related curves,

based on the selfsame facts or observations, and illustrating them
in different ways. One is the inverse of the other ; one is the integral

and one the differential of the other; and each makes clear to the

eye phenomena which are imphcit, but are less conspicuous, in the

other. We are using mathematical terms to describe or designate

them; but these "curves of growth" are more comphcated than

the curves with which mathematicians are wont to deal. In our

study of growth we may well hope to find curves simpler than these;

20»

3 5 7 9 II 13 15 17 19 21

Age in years

Fig. 5. Annual increments of growth in man. From Quetelet's Belgian data.

but in the successive annual increments of a boy's growth (as Fig. 5

exhibits them) we are deahng with no one continuous operation

(such as a mathematical formula might define), but with a succession

of events, changing as times and circumstances change.

Our curve of increments, or of first differences, for man's stature

(Fig. 5) is based, perforce, on annual measurements, and growth

alters quickly enough at certain ages to make annual intervals unduly

long; nevertheless our curve shews several important things. It

suffices to shew, for length or stature, that the growth-rate in early

infancy is such as is never afterwards re-attained. From this high

early velocity the rate on the whole falls away, until growth itself
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comes to an end * ; but it does so subject to certain important changes

and interruptions, which are much the same whether we draw them

from Quetelet's Belgian data, or from the British, American and

other statistics of later writers. The curve falls fast and steadily

during the first couple of years of the child's hfe (a). It runs nearly

level during early boyhood, from four or five years old to nine or

ten (6). Then, after a brief but unmistakable period of depression!

during which growth slows down still more (c), the boy enters on

Annual increments of stature and of weight in man
{After Quetelet; see Table, p. 90)
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between them are significant enough. There is some tendency for

growth in weight to fall off or fluctuate at four or five years old,

before the small boy goes to school ; but there is, or should be, httle

retardation of weight when growth in height slows down before

he enters on his teens*. The healthy lad puts on weight again

more and more rapidly, for some httle while after gjowth in stature

has slowed down; and normal increase of weight goes on, more

slowly, while the man is "fiUing out," long after growth in stature

has come to an end. But somewhere about thirty he begins losing

weight a httle ; and such subsequent slow changes as men commonly

undergo we need not stop to deal with.

The differences in stature and build between one race and another

are in hke manner a question of growth-rate in the main. Let us

take a single instance, and compare the annual increments of

growth in Chinese and Enghsh boys. The curves are much the

same in form, but differ in amplitude and phase. The Enghsh boy

is growing faster all the while; but the minimal rate and the

maximal rate come later by a year or more than in the Chinese

curve t (Fig. 6).

Quetelet was not the first to study man's growth and stature,

nor was he the first student of social statistics and "demography."

The foundations of modern vital statistics had been laid by Graunt

and Petty in the seventeenth century J; the economists developed

the subject during the eighteenth §, and parts of it were studied

That the annual increments of weight in boys are nearly constant, and the

curve of growth nearly a straight line at this age, especially from about 8 to 11,

has been repeatedly noticed. Cf. Elderton, Glasgow School-children, Biometrika,

X, p. 283, 1914-15; Fessard and others, Croissance des Ecoliers Pariaiens, 1934,

p. 13. But careful measurements of American children, by Katherine Simmons
and T. Wingate Todd, shew steadily increasing increments from four years old

tiU puberty {Growth, n, pp. 93-133, 1938).

t For copious bibliography, see J. Needham, op. cit., also Gaston Backmah, Das

Wachstum der Korperlange des Menschen, K. Sv.Vetensk. Akad. Hdlgr. (3), xiv, 1934.

X Cf. John Graunt's Natural and Political Observations. . .upon the Bills of

Mortality, London, 1662; The Economic Writings of Sir William Petty, ed. by

C. H. Hull, 2 vols,, Cambridge, Mass., 1927. Concerning Graimt and Petty—two

of the original Fellows of the Royal Society—see {int. al.) H. Westergaard, History

of Statistics, 1932, and L. Hogben (and others). Political Arithmetic, 1938.

§ Besides the many works of the economists, cf. J. G. Roederer, Sermo de

pondere et longitudine recens-natorum. Comment. Soe. Beg. Sci. Oottingae, m,
1753; J. F. G. Dietz, De temporum in graviditate et partu aestimatione, Diss.,

Gottingen, 1757.
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eagerly in the early nineteenth, when the exhaustion of the armies

of France and the evils of factory labour in England drew attention

to the stature and physique of man and to the difference between

the healthy and the stunted child*.

A friend of BufPon's, the Count Philibert Gueneau de Montbeillard,

kept careful measurements of his own son; and Buifon pubhshed

these in 1777, in a supplementary volume of the Histoire Naturelle'f.

The child was born in April 1759; it was measured every six months
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growth in infancy
; (6) the steady growth in early boyhood

;
(c) the

period of retardation which precedes, and (d) the rapid growth which

accompanies, puberty.

Buifon, with his usual wisdom, adds some remarks of his own,

which include two notable discoveries. He had observed that a

man's stature is measurably diminished by fatigue, and the loss soon

made up for in repose; long afterwards Quetelet said, to the same

effect, "le lit est favorable a la croissance, et le matin un homme est

un peu plus grand que le soir." Buffon asked whether growth

varied with the seasons, and Montbeillard's data gave him his reply.

Growth was quicker from April to October than during the rest of

the year: shewing that "la chaleur, qui agit generalement sur le

developpement de tous les etres organisees, influe considerablement

sur I'accroissement du corps humain." Between five years old and

ten, the child grew seven inches during the five summers, but during

the five winters only four; there was a Hke difference again, though

not so great, while the boy was growing quickly in his teens; but

there were no seasonal differences at all from birth to five years old,

when the child was doubtless sheltered from both heat and cold*.

On rate of growth in man and ivoman

That growth follows a different course in boyhood and in girlhood

is a matter of common knowledge; but differences in the curves "of

growth are not very apparent on the scale of our diagrams. They

are better seen in the annual increments, or first differences; and

we may further simplify the comparison by representing the girl's

weight or stature as a percentage of the boy's.

Taking weight to begin with (Fig. 9), the girl's growth-rate is

steady in childhood, from two or three to six or seven years old,

* Growth-rates based on the continuqus study of a single individual are rare;

we depend mostly on average measurements of many individuals grouped according

to their average age. That this is a sound method we take for granted, but we may
lose by it as well as gain. (See above, p. 92.) The chief epochs of growth, the chief

singularities of the curve, will come out much the same in the individual and in the

average curve. But if the individual curves be skew, averaging them will tend to

smooth the skewnesa away; and, more curiously, if they be all more or less diverse,

though all symmetrical, a certain skewness will tend to develop in the composite or

average curve. Cf. Margaret Merrill, The relationship of individual to average

growth, Human Biology, iii. pp. 37-70, 1931.
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J \ I L J \ L
2 4 6 8 10 12 14 16 18 19

Age

Fig. 9. Annual increase in weight of Belgian boys and girls.

From Quetelet's data. (Smoothed curves.)

10 15

Age

Fig. 10. Percentage ratio of female weight and stature to male.

From Quetelet's Belgian data.

23
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just as is the boy's; but her curve stands on a lower level, for the

little maid is putting on less weight than the boy (b). Later on,

her rate accelerates (c) sooner than does his, but it neyer rises quite

so high {d). After a first maximum at eleven or twelve her rate of

growth slows down a Httle, then rises to a second maximum when

112
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1. \ L J I L
1 3 5 7 9 11 13

Fig. i: Relative weight of American boys and girls.

From Simmons and Todd's data.

she is sixteen or seventeen, after the boy's phase of quickest growth

is over and done. This second spurt of growth, this increase of

vigour and of weight in the girl of seventeen or eighteen, Quetelet's

figures indicate and common observation confirms. Last of all,

while men stop adding to their weight about the age of thirty or

before, this does not happen to women. They increase in weight,

though slowly, till much later on: until there comes a final phase,

in both sexes ahke, when weight and height and strength decline

together.
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Stature and weight of American children (Ohio)

(From Katherine Simmons and T. Wingate Todd's data)
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steadily, and the lad of sixteen is some 15 per cent, heavier than

the lass. The disparity tends to diminish for a while, when the

maid of seventeen has her second spurt of growth ; but it increases

again, though slowly, until at five-and-twenty the young woman is

no more than four-fifths the weight of the man. During middle life

she gains on him, and at sixty the difference stands at some 12

1
1

\ r

J i \ \ \ \ L
2 4 6 8 10 12 14 16 18

Age

Fig. 12. Annual increments of stature, in boys and girls.

From Quetelet's data. (Smoothed curves.)

per cent., not far from the mean for all ages; but the old woman
shrinks and dwindles, and the difference tends to increase again.

The rate of increase of stature, like stature itself, differs notably

in the two sexes, and the differences, as in the case of weight, are

mostly a question of phase (Fig. 12). The httle girl is adding rather

more to her stature than the boy at four years old*, but she grows

* This early spurt of growth in the girl is shewn in Enghsh, French and American
observations, but not in Quetelet's.



Ill OF GROWTH IN CHILDHOOD 107

slower than he does for a few years thereafter (6). At ten years old

the girl's growth-rate begins to rise (c), a full year before the boy's;

at twelve or thirteen the rate is much ahke for both, but it has

reached its maximum for the girl. The boys' rate goes on rising,

and at fourteen or fifteen they are growing twice as fast as the girls.

So much for the annual increments, as a rough measure of the rates

of growth. In actual stature the baby girl is some 2 or 3 per cent,

below the boy at birth; she makes up the difference, and there is

7 9

Age

Fig. 13. Ratio of female stature to male.

II 13 15

From Simmons and Todd's data.

From R. M. Fleming's data.

good evidence to shew that she is by a very little the taller for a

while, at about five years old or six. At twelve or thirteen she is

very generally the taller of the two, and we call it her "gawky
age" (Fig. 13).

Man and woman differ in length of life, just 3,s they do in weight

and stature. More baby boys are born than girls by nearly 5 peF
cent. The numbers draw towards equality in their teens; after
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twenty the women begin to outnumber the men, and at eighty-five

there are twice as many women as men left in the world*.

Men have pondered over the likeness and the unhkeness between

the short lifetimes and the long; and some take it to be fallacious

to measure all alike by the common timepiece of the sun. Life,

they say, has a varying time-scale of its own ; and by this modulus

the sparrow hves as long as the eagle and the day-fly as the manf.

The time-scale of the living has in each case so strange a property

of logarithmic decrement that our days and years are long in

childhood, but an old man's minutes hasten to their end.

On pre-natal and post-natal growth

The rates of growth which we have so far studied are based on

annual increments, or "first differences" between yearly determina-

tions of magnitude. The first increment indicates the mean rate of

growth during the first year of the infant's life, or (on a further

assumption) the mean rate at the mean epoch of six months old;

there is a gap between that epoch and the epoch of birth, of which

we have learned nothing; we do not yet know whether the very

high rate shewn within the first year goes on rising, or tends to fall,

as the date of birth is approached. We are accustomed to inter-

polate freely, and on the whole safely, between known points on

a curve: "si timide que Ton soit, il faut bien que Ton interpole,"

says Henri Poincare; but it is much less safe and seldom justifiable

(at least until we understand the physical principle involved and

its mathematical expression) to "extrapolate" beyond the limits of

our observations.

We must look for more detailed observations, and we may learn

much to begin with from certain old tables of Russow's J, who gives

* Cf. F. E. A. Crew's Presidential Address to Section D of the British Association,

1937.

+ Cf. Gaston Backman, Die organische Zeit, Lunds Universitets Arsskrift, xxxv,

Nr. 7, 1939.

J Quoted in Vierordt's Anatomische . . . Daten und Tabellen, 1906, p. 13. See

also, among many others, Camerer's data, in Pfaundler and Schlossman's Hdb. d.

Kinderheilkunde, i, pp. 49, 424, 1908; Variot, op. cit.; for pre-natal growth, R. E.

Scammon and L. A. Calkins, Growth in the Foetal Period, Minneapolis, 1929. Also,

on this and many other matters, E. Faure-Fremiet, La cinetique du developpement,

Paris, 1925; and, not least, J. Needham, Chemical EinJbryology, 1931.
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the stature of the infant, month by month, during the first year of

its hfe, as follows

:

Mean growth of an infant, in its first twelve-month

(After Russow)

Age (months)



Ill] OF PRENATAL GROWTH 111

are born later than a man-child; the puppy and the kitten are born

easier, and in more helpless case than ours; the mouse comes into

the world still earher and more inchoate, so much so that even the

little marsupial is scarcely more embryonic and unformed*. We
must take account, so far as each case permits, of pre-natal or intra-

uterine growth, if we are to study the curve of growth in its entirety.

According to Hisf, the following are the mean lengths from month

to month of the imborn child

:

Months 01 23456789 10
(Birth)

Length (mm.) 7-5 40 84 162 275 352 402 443 472 490)

500)

Increment per — 7-5 32-5 44 78 113 77 '50 41 29 18)

month (mm.) 28)

These data hnk on very well to those of Russow, which we have

just considered; and (though His's measurements for the pre-

natal months are more detailed than are those of Russow for the

first year of post-natal hfe) we may draw a continuous curve of

growth (Fig. 15) and of increments of growth (Fig. 16) for the

combined periods. It will be seen at once that there is a "point

of inflection" somewhere about the fifth month of intra-uterine life;

up to that date growth proceeds with a continually increasing

velocity. After that date, though growth is still rapid, its velocity

tends to fall away; the curve, while still ascending, is becoming

an S-shaped curve (Fig. 15). There is a shght break between our

two sets of statistics at the date of birth, an epoch regarding which

we should like to have precise and continuous information. But

we can see that there is undoubtedly a certain shght arrest of growth,

or diminution of the rate of growth, about this epoch ; the sudden

change of nurture has its inevitable effect, but this shght tem-

* It is part of the story, though Ijy no mean? all, that (as Minot says) the larger

the litter the sooner does birth take place. That the day-old foal or fawn can keep

pace with their galloping dams is very remarkable; it is usually explained

teleologically, as a provision of Nature, on which their safety and their survival

depend. But the fact that they come one at a birth has at least something to do
with their comparative maturity.

t Unsere Korperform und das physiologische Problem ihrer Entstehung, Leipzig, 1874.

On growth in weight of the human embryo, see C. M. Jackson, Amer. Journ. Anat.

XVII, p. 118, 1909; also J. Needham, op. cit. pp. 379-383.
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porary set-back is immediately followed by a secondary, and equally

transitory, acceleration *.

Mean weight in grams of American infants during ten days

after birth. (From Meredith and Brown)

Weight
Age
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4-100

--100

Fig. 17.

3 10

Age in days

Mean weight of American infants. From Meredith and Brown's data.
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the same curves meet us again and again in the growth of other

organisms. The pre-natal growth of the guinea-pig is just the

same*. We have the same essential features, the same S-shaped

curve, in the growth by weight of an ear of maize (Fig. 19), or the

growth in length of the root of a bean (Fig. 20); in both we see

the same slow beginning, the rate rapidly increasing to a maximum,

and the subsequent slowing down or "negative acceleration "f."

One phase passes into another; so far as these curves go, they

exhibit growth as a continuous process, with its beginning, its

middle and its end—a continuity which Sachs recognised some

seventy years ago, and spoke of as the "grand period of growth J."

But these simple curves relate to simple instances, to the infant

sheltered in the womb, or to plant-growth in the sunny season of

the year. They mark a favourable episode, rather than relate the

course of a lifetime. A curve of growth to run all life long is only

simple in the simplest of organisms, and is usually a very complex

affair.

Growth in length of Vallisneria^, and root ofbean\\

and weight of ntaize^

VaUisneria
A
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20 40 60 80 100

Days

Fig. 19. Growth in weight of maize. From Gustav Backman, after Stefanowska.

5 8

Age in days

Fig. 20. Growth in height of a beanstalk. From Sachs's data.
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relatively to their parents' size. But another rule comes in, which

is perhaps less to be expected, that the offspring are born smaller

the larger the species to which they belong. Here we shew, roughly,

the relative weights of the new-born animal and its mother*:

Bear
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character in every cross between a bantam and a larger breed.

The bantam is not produced by selecting smaller and smaller

specimens of a larger breed, as an older school might have supposed

;

but always by first crossing with bantam blood, so introducing the

"character" of smallness or retarded growth, and then segregating

the desired types among the dwarfish offspring. In fact. Darwinian

selection plays a small and unimportant part in the process*.

From the whole of the foregoing discussion we see that rate of

growth is a specific phenomenon, deep-seated in the nature of the

organism; wolf and dog, horse and ass, nay man and woman, grow

at different rates under the same circumstances, and pass at different

epochs through like phases of development. Much the same might

be said of mental or intellectual growth ; the girl's mind is more

precocious than the boy's, and its development is sooner arrested

than the man's f.

On variability, and on the curve offrequency or of error

The magnitudes which we are dealing with in .this chapter

—

heights and weights and rates of change—are (with few exceptions)

mean values derived from a large number of individual cases. We
deal with what (to borrow a word from atomic physics) we may
call an ensemble; we employ the equaUsing powei^ of averages,

invoke the "law of large numbers J," and claim to obtain results

thereby which are more trustworthy than observation itself §. But

in ascertaining a mean value we must also take account of the

amount of variability, or departure from the mean, among the cases

from which the mean value is derived. This leads on far beyond

our scope, but we must spare it a passing word ; it was this identical

phenomenon, in the case of Man, which suggested to Quetelet the

* Cf. Raymond Pearl, The selection problem, Amer. Naturalist, 1917, p. 82;

R. C. Punnett and P. G. Bailey, Journ. of Genetics, iv, pp. 23-39, 1914.

t Cf. E. Devaux, L'p,llure du developpement dans les deux sexes, Revue gindr.

des Sci. 1926, p. 598.

X S. D. Poisson, following James Bernoulli's Ars Conjectandi (op. posth. 1713),

was the discoverer, or inventor, of the law of large numbers. "Les chos^s

de toute nature sont soumises a une loi universelle qu'on pent appeler la loi des

grands nombres" {Recherches, 1837, pp. 7-12).

§ See p. 137, footnote.
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statistical study of Variation, led Francis Galton to enquire into

the laws of Natural Inheritance, and served Karl Pearson as the

foundation of his science of Biometrics.

When Quetelet tells us that the mean stature of a ten-year-old

boy is 1-275 metres, this is found to imply, not only that the

measurements of all his ten-year-old boys group themselves about

this mean value of 1-275 metres, but that they do so in an orderly

way, many departing httle from that mean value, and fewer and

fewer departing more and more. In fact, when all the measure-

ments are grouped and plotted, so as to shew the number of

instances (y) ^ each gradation of size (x), we obtain a characteristic

-2cr —cr

Fig. 21. The normal curve of frequency, or of error.

a, -a, the "standard deviation".

configuration, mathematically definable, called the curve offrequency,

or oi error (Fig. 21). This is a very remarkable fact. That a "curve

of stature" should agree closely with the "normal curve of error"

amazed Galton, and (as he said) formed the mainstay of his long

and fruitful enquiry into natural inheritance*. The curve is a

thing apart, sui generis. It depicts no course of events, it is no

time or vector diagram. It merely deals with the variabihty, and

variation, of magnitudes; and by magnitudes " we mean anything

which can be counted or measured, a regiment of men, a basket of

* Stature itself, in a homogeneous population, is a good instance of a normal
frequency distribution, save only that the spread or range of variation is unusually

low; for one-half of the population of England differs by no more than an inch

and a half from the average of them all. Variation is said to be greater among the

negroid than among the white races, and it is certainly very great from one race

to another: e.g. from the Dinkas of the White Nile with a mean height of 1-8 m.
to the Congo pygmies averaging 1-35, or say 5 ft. 11 in. and 4 ft. 6 in. respectively.
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niits, the florets of a daisy, the stripes of a zebra, the- nearness of

shots to the bull's eye*. It thereby illustrates one of the most

far-reaching, some say one of the most fundamental, of nature's

laws.

We find the curve of error manifesting itself in the departures

from a mean value, which seems itself to be merely accidental

—

as, for instance, the mean height or weight of ten-year-old English

boys; but we find it no less well displayed when a certain definite

or normal number is indicated by the nature of the case. For

instance the Medusae, or jelly-fishes, have a "radiate symmetry"

of eight nodes and internodes. But even so, the number eight is

subject to variation, and the instances of more or less graup them-

selves in a Gaussian curve.

Number of " tentaculocysts'' in Medusae {Ephyra and Aurelia)

[Data from E. T. Browne, QJ.M.S. xxxvii, p. 245, 1895)

5
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thereto. If we pour a bushel of corn out of a sack, the outhne or

profile of the heap resembles such a curve ; and wellnigh every hill

and mountain in the world is analogous (even though remotely) to

that heap of corn *. Causes beyond our ken have cooperated to place

and allocate each grain or pebble; and we call the result a "random

distribution," and attribute it to fortuity, or chance. Galton

devised a very beautiful experiment, in which a slopmg tray is

beset with pins, and sand or millet-seed poured in at the top.

Every falhng grain has its course deflected again and again; the

final distribution is emphatically a random one, and the curve of

error builds itself up before our eyes.

The curve as defined by Gauss, princeps mathematicorum—who

in turn was building on Laplace f—is at once empirical and

theoretical J ; and Lippmann is said to have remarked to Poincare

:

*'Les experimentateurs s'imaginent que c'est un theoreme de

mathematique, et les mathematiciens d'etre un fait experimental
!

"

It is theoretical in so far as its equation is based on certam hypo-

thetical considerations: viz. (1) that the arithmetic mean of a number

of variants is their best or likeliest average, an axiom which is

obviously true in simple cases—but not necessarily in all; (2) that

"fortuity" implies the absence of any predominant, decisive or

overwhelming cause, and connotes rather the coexistence and joint

effect of small, undefined but independent causes, many or few:

* If we pour the corn out carefully through a small hole above, the heap becomes

a cone, with sides sloping at an "angle of repose"; and the cone of Fujiyama is an

exquisite illustration of the same thing. But in these two instances one predominant

cause outweighs all the rest, and the distribution is no longer a random one.

t The Gaussian curve of error is really the "second curve of error" of Laplace.

Laplace's first curve of error (which has uses of its own) consists of two exponential

curves, joining in a sharp peak at the median value. Cf. W. J. Luyten, Proc.

Nat. Acad. Sci. xvm, pp. 360-365, 1932.

I The Gaussian equation to the normal frequency distribution or "curve of

error" need not concern us further, but let us state it once for all:

J,
_(xa-x)*

^ V27T

where Xf^ is the abscissa which gives the maximum ordinate, and where the maximum
ordinate, y^ = 1/^/(27t). Thus the log of the ordinate is a quadratic function of the

abscissa ; and a simple property, fundamental to the curve, is that for equally spaced

ordinates (starting anywhere) the square of any ordinate divided by the product of

its neighbours gives a scalar quantity which is constant all along (G.T.B.).
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producing their several variations, deviations or errors; and potent

in their combinations, permutations and interferences*.

We begin to see why bodily dimensions lend, or submit, them-

selves to this masterful law. Stature is no single, simple thing;

it is compounded of bones, cartilages and other elements, variable

each in its own way, some lengthening as others shorten, each

playing its little part, hke a single pin in Galton's toy, towards a

''fortuitous" resultant. "The beautiful regularity in the statures

of a population (says Galton) whenever they are statistically

marshalled in the order of their heights, is due to the number of

variable and quasi-independent elements of which stature is the

sum." In a bagful of pennies fresh from the Mint each coin is

made by the single stroke of an identical die, and no ordinary

weights and measures suffice to differentiate them; but in a bagful

of old-fashioned hand-made nails a slow succession of repeated

operations has drawn the rod and cut the lengths and hammered

out head, shaft and point of every single nail—and a curve of

error depicts the differences between them.

The law of error was formulated by Gauss for the sake of the

astronomers, who aimed at the highest possible accuracy, and

strove so to interpret their observations as to eliminate or minimise

their inevitable personal and instrumental errors. It had its

roots also in the luck of the gaming-table, and in the discovery

by eighteenth-century mathematicians that "chance might be

defined in terms of mathematical precision, or mathematical 'law'."

It was Quetelet who, beginning as astronomer and meteorologist,

applied the "law of frequency of error" for the first time to

biological statistics, with which in name and origin it had nothing

whatsoever to do.

The intrinsic significance of the theory of probabihties and the

law of error is hard to understand. It is sometimes said that to

forecast the future is the main purpose of statistical study, and

expectation, or expectancy, is a common theme. But all the theory

* "The curve of error would seem to carry the great lesson that the ultimate

differences between individuals are* simple and few ; that they depend on collisions

and arrangements, on permutations and combinations, on groupings and inter-

ferences, of elementary qualities which are limited iyi variety and finite in extent''

(J. M. Keynes). A connection between this law and Mendelian inheritance is

discussed by John Brownlee, P.R.S.E. xxxi, p. 251, 1910.
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in the vorld enables us to foretell no single unknown thing, not even

the turn of a card or the fall of a die. The theory of probabiUties

is a development of the theory of combinations, and only deals with

what occurs, or has occurred, in the long run, among large numbers

and many permutations thereof. Large numbers simplify many
things; a million men are easier to understand than one man out

of a million. As David Hume* said: "What depends on a few

persons is in a great measure to be ascribed to chance, or to secret

and unknown causes; what arises from a great many may often

be accounted for by determinate and known causes." Physics is,

or has become, a comparatively simple science, just because its laws

are based on the statistical averages of innumerable molecular or

primordial elements. In that invisible world we are sometimes told

that "chance" reigns, and "uncertainty" is the rule; but such

phrases as mere chance, or at random, have no meaning at all except

with reference to the knowledge of the observer, and a thing is a

"pure matter of chance" when it depends on laws which we do not

know, or are not considering f. Ever since its inception the merits

and significance of the theory of probabiUties have been variously

estimated. Some say it touches the very foundations of know-

ledge} ; and others remind us that "avec les chiffres on pent tout

demontrer." It is beyond doubt, it is a matter of common ex-

perience, that probability plays its part as a guide to reasoning.

It extends, so to speak, the theory of the syllogism, and has been

called the "logic of uncertain inference "§.

In measuring a group of natural objects, our measurements are

uncertain on the one hand and the objects variable on the other;

and our first care is to measure in such a way, and to such a scale,

that our own errors are small compared with the natural variations.

Then, having made our careful measurements of. a group, we want

to know more of the distribution of the several magnitudes, and

* Essay xiv.

t So Leslie Ellis and G. B. Airy, in correspondence with Sir J. D. Forbes; see

his Life, p. 480.

X Cf. Hans Reichenbach, Les fondements logiques du calcul des probabilit^s,

Annales de Vinst. Poincare, vii, pp. 267, 1937.

§ Cf. J. M. Keynes, A Treatise on Probability, 1921; and A. C. Aitken's Statistical

Mathematics, 1939.
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especially to know two important things. We want a mean value,

as a substitute for the true value* if there be such a thing; let us

use the arithmetic mean to begin with. About this mean the ob-

served values are grouped like a target hit by skilful or unskilful

shots ; we want some measure of their inaccuracy, some measure of

their spread, or scatter, or dispersion, and there are more ways than

one of measuring and of representing this. We do it visibly and

graphically every time we draw the curve (or polygon) of frequency

;

but we want a means of description or tabulation, in words or in

numbers. We find it, according to statistical mathematics, in the

so-called index of variability, or standard deviation (o), which merely

means the average deviation from the meanf. But we must take

some precautions in determining this average; for in the nature of

things these deviations err both by excess and defect, they are

partly positive and partly negative, and their mean value is the mean

of the variants themselves. Their squares, however, are all positive,

and the mean of these takes account of the magnitude of each

deviation with no risk of cancelling out the positive and negative

terms: but the "dimension " of this average of the squares is wrong.

The square root of this average of squares restores the correct

dimension, and the result is the useful index of variability, or of

deviation, which is called o-J.

This standard deviation divides the area under the normal curve

nearly into equal halves, and nearly coincides with the point of

inflexion on either side; it is the simplest algebraic measure of

dispersion, as the mean is the simplest arithmetical measure of

position. When we divide this value by the mean, we get a figure

* It is not always obvious what the "errors" are, nor what it is that they depart

or deviate from. We are apt to think of the arithmetic mean, and to leave it

at that. But were we to try to ascertain the ratio of circumference to diameter

by measuring pennies or cartwheels, our "errors" would be found grouped round

a mean value which no simple arithmetic could define.

t a, the standard deviation, was chosen for its convenience in mathematical

calculation and formulation. It has no special biological significance; and a

simpler index, the "inter-quartile distance," has its advantages for the non-

mathematician, as we shall see presently.

X That is to say : Square the deviation-from-the-mean of each class or ordinate

(^); multiply each by the number of instances (or "variates") in ^that class (/);

divide by the total number (N) ; and take the square-root of the whole : a^= ~ "^ *'
.

I
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which is independent of any particular units, and which is called

the coefficient of variability''^

.

Karl Pearson, measuring the amount of variability in the weight

and height of man, found this coefficient to run as follows : In male

new-born infants, for weight 15-6, and for stature 6-5; in male

adults, for weight 10-8, and for stature 3-6. Here the amount of

variability is thrice as great for weight as for stature among grown

men, and about 2J times as great in infancy f. The same curious

fact is well brought out in some careful measurements of shell-fish,

as follows;

Variability of youdg Clams (Mactra sp.)X
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inequality of age; for in a population only a few weeks old, a few

days sooner or later in the date of birth would make more diiference

than later on. But a more important matter, to be seen in man-

kind (Fig. 22), is that variability of stature runs j)ari passu, or

nearly so, with the rate of growth, or curve of annual increments

(cf. Fig. 12). The curve of variability descends when the growth-

rate slackens, and rises high when in late boyhood growth is speeded

up. In short, the amount of variability in stature or in weight is

correlated with, or is a function of, the rate of growth in these

magnitudes.

Judging from the evidence at hand, we may say that variabihty

reaches its height in man about the age of thirteen or fourteen,

rather earlier in the girls than in the boys, and rather earher in the

case of stature than of weight. The difference in this respect between

the boys and the girls is now on one side, now on the other. In

infancy variabihty is greater in the girls; the boys shew it the

more at five or six years old; about ten years old the girls have

it again. From twelve to sixteen the boys are much the more

variable, but by seventeen the balance has swung the other way

(Fig. 23).

Coefficient of variability (ojM x 100) in man, at various ages

Age ... o 6 7 8 9 10 11 12 13 14 15 16 17 18

ytature

I

British (Fleming):
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61 1 1 1 1 1 r

1 ^

y r^
American.-^ /

-^
/

Japanese^

I I I I I
\ L

5 6 7 8 9 10 II 12 13 14 15 16 17 II

Age

Fig. 22. Variability in stature (boys). After Fleming, Bowditch and Nagai.

+ z
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The amount of variability is bound to differ from one race or

nationality to another, and we find big differences between the

Americans and the Japanese, both in magnitude and phase (Fig. 22).

If we take not merely the variability of stature or -weight at a

given age, but the variability of the yearly increments, we find

that this latter variabihty tends to increase steadily, and more and

more rapidly, within the ages for which we have information; and

this phenomenon is, in the main, easy of explanation. For a great

part of the difference between one individual and another in regard

to rate of growth is a mere difference of phase—a difference in the

epochs of acceleration and retardation, and finally a difference as to

the epoch when growth comes to an end ; it follows that variabihty

will be more and more marked as we approach and reach the period

when some individuals still continue, and others have already ceased,

to grow. In the following epitomised table, I have taken Boas's

determinations * of the standard deviation (ct), converted them into

the corresponding coefficients of variabihty {olM x 100), and then

smoothed the resulting numbers:

Coefficients of variability in annual increments of stature

Age ...
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epoch after birth are growing rapidly and are already "big for their

age"; and .others, of retarded development, who are comparatively

small and have not reached the period of acceleration which, in

greater or less degree, will come to them in turn. In other words,

there must under such circumstances be a strong positive "coefl&cient

of correlation" between stature and rate of growth, and also between

§ 20

7 8 9 10 II 12 13 14 15

Age in years

Fig. 24. Coefficients of variability, in annual increments of stature.

After Boas.

the rate of growth in one year and the next. But it does not by

any means follow that a child who is precociously big will continue

to grow rapidly, and become a man or woman of exceptional

stature *. On the contrary, when in the case of the precocious or

"accelerated" children growth has begun to slow down, the back-

* Some first attempts at analysis seem to shew that the size of the embryo at

birth, or of the seed at germination, has more, influence than we were wont to

suppose on the ultimate size of plant or animal. See (e.g.) Eric Ashby, Heterosis

and the inheritance of acquired characters, Proc. R.S. (B), No. 833, pp. 431-441,

1937; and papers quoted therein.
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ward ones may still be growing rapidly, and so making up (more

or less completely) on the others. In other words, the period of

high positive correlation between stature and increment will tend

to be followed by one of negative correlation. This interesting and
important point, due to Boas and Wissler*, is confirmed by the

following table

:

Correlation of stature and increment in boys and girls

(From Boas and Wissler)

Age 6 7 8 9 10 11 12 13 14 15

Stature (B) 112-7 115-5 123-2 127-4 133-2 136-8 142-7 147-3 155-9 162-2
(G) 111-4 117-7 121-4 127-9 131-8 136-7 144-6 149-7 153-8 157-2

Increment (B) 5-7 5-3 4-9 5-1 5-0 4-7 5-9 7-5 6-2 5-2

(G) 5-9 5-5 5-5 5-9 6-2 7-2 6-5 5-4 3-3 1-7

Correlation (B) 0-25 0-11 0-08 0-25 018 0-18 0-48 0-29 -0-42 -0-44
(G) 0-44 0-14 0-24 0-47 018 -0-18 -0-42 -0-39 -0-63 0-11

A minor but very curious point brought out by the same

investigators is that, if instead of stature we deal with height in

the sitting posture (or, practically speaking, with length of trunk

or back), then the correlations between this height and its annual

increment are throughout negative. In other words, there would

seem to be a general tendency for the long trunks to grow slowly

throughout the whole period under investigation. It is a well-

known anatomical fact that tallness is in the main due not to length

of body but to length of limb.

Since growth in height and growth in weight have each, their own
velocities, and these fluctuate, and even the amount of their

variabihty alters with age, it follows that the correlation between

height and weight must not only also vary but must tend to

fluctuate in a somewhat complicated way. The fact is, this corre-

lation passes through alternate maxima and minima, chief among
which are a maximum at about fourteen years of age and a minimum
about twenty-one. Other intercorrelations, such as those between

height or weight and chest-measurement, shew their periodic

variations in like manner; and it is about the time of puberty

* I.e. p. 42, and other papers there quoted. Cf. also T. B. Robertson, Criteria

of Normality in the Growth of Children, Sydney, 1922.
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that correlation tends to be closest, or a norm to be most nearly

approached*.

The whole subject of variabiHty, both of magnitude and rate of

increment, is highly suggestive and instructive: inasmuch as it

helps further to impress upon us that growth and specific rate of

growth are the main physiological factors, of which specific mag-

nitude, dimensions and form are the concrete and visible resultant.

Nor may we forget for a moment that growth-rate, and growth

itself, are both of them very complex things. The increase of the

active tissues, the building of the skeleton and the laying up

of fat and other stores, all these and more enter into the complex

phenomenon of growth. In the first instance we may treat these

many factors as though they were all one. But the breeder and

the geneticist will soon want to deal with them apart; and the

mathematician will scarce look for a simple expression where

so many factors are involved. But the problems of variability,

though they are intimately related to the general problem of

growth, carry us very soon beyond our hmitations.

The curve of error

To return to the curve of error.

The normal curve is a symmetrical one. Its middle point, or

median ordinate, marks the arithmetic mean of all the measurements

;

it is also the mode, or class to which the largest number of individual

instances belong. Mean, median and mode are three diiferent sorts

of average; but they are one and the same in the normal curve.

It is easy to produce a related curve which is not symmetrical,

and in which mean, median and mode are no longer the same.

The heap of corn will be lop-sided or "skew" if the wind be blowing

while the grain is falling: in other words, if some prevailing cause

disturb the quasi-equihbrium of fortuity ; and there are other ways,

some simple, some more subtle, by^ which asymmetry may be

impressed upon our curve.

The Gaussian curve is only one of many similar bell-shaped curves

;

and the binomial coefficients, the numerical coefficients of (a + by,

yield a curve so Hke it that we may treat them as the same. The
* Cf. Joseph Bergson, Growth-changes in physical correlation, Human Biology,

I, p. 4, 1930.
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Gaussian curve extends, in theory, to infinity at either end; and

this infinite extension, or asymptotism, has its biological significance.

We know that this or that athletic record is lowered, slowly but

continually, as the years go by. This is due in part, doubtless, to

increasing skill and improved technique ; but quite apart from these

the record would slowly fall as more and more races are run, owing

to the indefinite extension of the Gaussian curve*.

On the other hand, while the Gaussian curve extends in theory

to infinity, the fact that variation is always limited and that extreme

v3,riations are infinitely rare is one of the chief lessons of the law

of frequency. If, in a population of 100,000 men, 170 cm. be the

mean height and 6 cm. the standard deviation, only 11 per cenl^.,

or say 130 men, will exceed 188 cm., only 10 men will be over

191 cm., and only one over 193 cm., or 13J per cent, above the

average. The chance is negligible of a single one being found over

210 cm., or 7 ft. high, or 24 per cent, above the average.

Yet, widely as the law holds good, it is hardly safe to count it

as a universal law. Old Parr at 150 years old, or the giant Chang

at more than eight feet high, are not so much extreme instances of

a law of probabihty, as exceptional cases due to some peculiar cause

or influence coming inf. In a somewhat analogous way, one or two

species in a group grow far beyond the average size ; the Atlas moth,

the Gohath beetle, the ostrich and the elephant, are far-off outhers

from the groups to which they belong. A reason is not easy to. find.

It looks as though variations came at last to be in proportion to the

size attained, and so to go on by compound interest or geometrical

progression. There may be nothing surprising in this ; nevertheless,

it is in contradistinction to that summation of small fortuitous

differences which lies at the root of the law of error. If size vary in

proportion to the magnitude of the variant individuals, not only

* This is true up to a certain extent, but would become a mathematical fiction

later on. There will be physical limitations (as there are in quantum mechanics)

both to record-breaking, and to the measurement of minute extensions of the

record.

t We may indeed treat old Parr's case on the ordinary lines of actuarial

probability, but it is "without much actuarial importance." The chance of his

record being broken by a modern centenarian is reckoned at (5)^°, by Major

Greenwood and J. C. Irwin, writing on Senility, in Human Biology, xi, pp. 1-23,

1939.
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will the frequency curve be obviously skew, but the geometric mean^

not the arithmetic, becomes the most probable value*. Now the

logarithm of the geometric mean of a series of numbers is the

arithmetic mean of their logarithms; and it follows that in such

cases the logarithms of the variants, and not the variants them-

selves, will tend to obey the Gaussian law and follow the normal

curve of frequency f.

The Gaussian curve, and the standard deviation associated with

it, were (as we have seen) invented by a mathematician for the use

21 33 3624 27 30

Length in mm.

Fig. 25 A. Curve of frequency of a population of minnows.

39

of an astronomer, and their use in biology has its difficulties and

disadvantages. We may do much in a simpler way. Choosing a

random example, I take a catch of minnows, measured in 3 mm.
groups, as follows (Fig. 25 A):

Size (mm.) 13-15 16^18 19-21 22-24 25-27 28^30 31-33 34-36 37-39

Number 1 22 52 67 114 257 177 41 2

* See especially J. C. Kapteyn, Skew frequency curves in biology and statistics,

Rec. des Trav. Botan. N4erland., Groningen, xin, pp. 105-158, 1916. Also Axel

M. Hemmingsen, Statistical analysis of the differences in body-size of related species,

Danske Vidensk. Selsk. Medd. xcvm, pp. 125-160, 1934.

t This often holds good. Wealth breeds wealth, hence the distribution of

wealth follows a skew curve; but logarithmically this curve becomes a normal

one. Weber's law, in physiology, is a well-known instance; on the thresholds

of sensations, effects are produced proportional to the magnitudes of those

thresholds, and the logs of the thresholds, and not the thresholds themselves,

are normaUy distributed.
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Let us sum the same figures up, so as to show the whole number

above or below the respective sizes.

Size (mm.)
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This S-shaped "summation-curve" is what Francis Galton called a

curve of distribution, and he "Uked it the better the more he used it."

The spread or "scatter" is conveniently and immediately estimated

by the distance between the two quartiles ; and it happens that this

very nearly coincides with the standard deviation of the normal curve.

40 50 60 70

Micrometer-scale units

80 90 100

Fig. 26. A plankton-sample of fish-eggs: North of Scotland, February 1905.

(Only eggs without oil-globule are counted here.)

A. Dab and Flounder. B, Gadus Esmarckii and G. luscus.

C, Cod and Haddock. D, Plaice.

There are biological questions for which we want all the accuracy

which biometric science can give; but there are many others on

which such refinements are thrown away.

Mathematically speaking, we cannot integrate the Gaussian curve,,

save by using an infinite series; but to all intents and purposes we

are doing so, graphically and very easily, in the illustration we have

just shewn. In any case, whatever may be the precise character of

each, we begin to see how our two simplest curves of growth, the

bell-shaped and the S-shaped curve, form a reciprocal pair, the

integral and the differential ofone another "^—hke the distance travelled

* It is of considerable historical interest to know that this practical method of

summation was first used by Edward Wright, in a Table of Latitudes published in

his Certain Errors in Navigation corrected, 1599, as a means of virtually integrating

sec X. (On this, and on Wright's claim to be the inventor of logarithms, see Florian

Cajori, in Napier Memorial Volume, 1915, pp. 94-99.)
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and the velocit}^ of a moving body. If ^ = e"^^ be the ordinate of

the one, z = le-^'^dx is that of the other.

There is one more kind of frequency-curve which we must take

passing note of. We begin by. thinking of our curve, whether

symmetrical or skew, as the outcome of a single homogeneous

group. But if we happen to have two distinct but intermingled

groups to deal with, differing by ever so little in kind, age, place or

circumstance—leaves of both oak and beech, heights of both men
and women—this heterogeneity will tend to manifest itself in two

separate cusps, or modes, on the common curve: which is then

indeed two curves rolled into one, each keeping something of its

own individuality. For example, the floating eggs of the food-fishes

are much alike, but differ appreciably in size. A random gathering,

netted at the surface of the sea, will yield on measurement a multi-

modal curve, each cusp of which is recognisable, more or less

certainly, as belonging to a particular kind of fish (Fig. 26).

A further note upon curves

A statistical "curve", such as Quetelet seems to have been the

first to use*, is a device whose peculiar and varied beauty we are

apt, through famiharity, to disregard. The curve of frequency which

we have been studying depicts (as a rule) the distribution of mag-

nitudes in a material system (a population, for instance) at a

certain epoch of time ; it represents a given state, and we may call

/it a diagram of configuration
"f.

But we oftener use our curves

to compare successive states, or changes of magnitude, as one

configuration gives place to another; and such a curve may be

called a diagram of displacement. An imaginary point moves in

imaginary space, the dimensions of which represent those of the

phenomenon in question, dimensions which we may further define

and measure by a system of "coordinates"; the movements of our

point through its figurative space are thus analogous to, and illus-

trative of, the events which constitute the phenomenon. Time is

often represented, and measured, on one of the coordinate axes, and

our diagram of "displacement" then becomes a diagram of velocity.

* In his Theorie des probabilites, 1846.

t See Clerk Maxwell's article "Diagrams," in the Encyclopaedia Britannica,

9th edition.
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This simple method (said Kelvin) of shewing to the eye the law of

variation, however complicated, of an independent variable, is one

of the most beautiful results of mathematics*.

We make and use our curves in various ways. We set down on

the coordinate network of our chart the points givQ^i by a series of

observations, and connect them up into a continuous series as we

chart the voyage of a ship from her positions day by day ; we may

"smooth" the line, if we so desire. Sometimes we find our points

so crowded, or otherwise so dispersed and distributed, that a line

can be drawn not from one to another but among them all—a method

first used by Sir John Herschel f, when he studied the orbits of the

double stars. His dehcate observations were affected by errors, at

first sight without rhyme or reason, but a curve drawn where the

points lay thickest embodied the common lesson of them all; any

one pair of observations would have sufiiced, whether better or

worse, for the calculation of an orbit, but Herschel's dot-diagram

obtained "from the whole assemblage of observations taken together,

and regarded as a single set of data, a single result in whose favour

they all conspire." It put us in possession, said Herschel, of

something truer than the observations themselves % ; and Whewell

remarked that it enabled us to obtain laws of Nature not only from

good but from very imperfect observations §. These are some

advantages of the use of "curves," which have made them essential

to research and discovery.

It is often helpful and sometimes necessary to smooth our curves,

* Kelvin, Nature, xxix, p. 440, 1884.

t Mem. Astron. Soc. v, p. 171, 1830; Nautical Almanack, 1835, p. 495; etc.

X Here a certain distinction may be observed. We take the average height of a

regiment, because the men actually vary about a mean. But in estimating the place

of a star, or the height of Mont Blanc, we average results which only differ by

I)ersonal or instrumental error. It is this latter process of averaging which leads,

in Herschel's phrase, to results more trustworthy than observation itself. Laplace

had made a similar remark long before {Oeuvres,yii, Theorie des probabilites) : that

we may ascertain the very small effect of a constant cause, by means of a long series

of observations the errors of which exceed the effect itself. He instances the small

deviation to the eastward which the rotation of the earth imposes on a falling body.
In like manner the mean level of the sea may be determined to the second decimal

of an inch by observations of high and low water taken roughly to the nearest inch,

provided these are faithfxilly carried out at every tide, for say a hundred years.

Cf. my paper on Mean Sea Level, in Scottish Fishery Board's Sci. Report for 1915.

§ Novum Organum Renovatum (3rd ed.), 1858, p. 20.
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whether at free hand or by help of m^athematical rules; it is one

way of getting rid of non-essentials—and to do so has been called

the very key-note of mathematics*. A simple rule, first used by

Gauss, is to replace each point by a mean between it and its two

or more neighbours, and so to take a "floating" or "running

average." In so doing we trade once more on the "principle of

continuity"; and recognise that in a series of observations each

one is related to another, and is part of the contributory evidence

on which our knowledge of all the rest depends. But all the while

we feel that Gaussian smoothing gives us a practical or descriptive

result, rather than a mathematical one.

Some curves are more elegant than others. We may have to rest

content with points in which no. order is apparent, as when we plot

the daily rainfall for a month or two; for this phenomenon is one

whose regularity only becomes apparent over long periods, when

average values lead at last to "statistical uniformity." But the

most irregular of curves may be instructive if it coincide with another

not less irregular : as when the curve of a nation's birth-rate, in its

ups and downs, follows or seems to follow the price of wheat or the

spots upon the sun.

It seldom happens, outside of the exact sciences, that we com-

prehend the mathematical aspect of a phenomenon enough to define

(by formulae and constants) the curve which illustrates it. But,

failing such thorough comprehension, we can at least speak of the

trend of our curves and put into words the character and the course

of the phenomena they indicate. We see how this curve or that

indicates a uniform velocity, a tendency towards acceleration or

retardation, a periodic or non-periodic fluctuation, a start from or an

approach to a limit. When the curve becomes, or approximates to,

a mathematical one, the types are few to which it is Kkely to

belong f. A straight line, a parabola, or hyperbola, an exponential

or a logarithmic curve (like x'=ay^), a sine-curve or sinusoid, damped

or no, suffice for a wide range of phenomena; we merely modify our

scale, and change the names of our coordinates.

* Cf. W. H. Young, The mathematic method and its limitations, Atti del Congresso

dei Matematici, Bologna, 192/8, i, p. 203.

t Hence the engineer usually begins, for his first tentative construction, by

drawing one of the familiar curves, catenary, parabola, arc of a circle, or curve of,

sines.
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The curves we mostly use, other than the Gaussian curve, are

time-diagrams. Each has a beginning and an end; and one and

the same curve may illustrate the life of a man, the economic history

of a kingdom, the schedule of a train between one st^^tion and

another. What it then shews is a velocity, an acceleration, and

a subsequent negative acceleration or retardation. It depicts a

"mechanism" at work, and helps us to see analogous ' mechanisms

in different fields; for Nature rings her many changes on a few

simple themes. The same expressions serve for different orders of

phenomena. The swing of a pendulum, the flow of a current, the

attraction of a magnet, the shock of a blow, have their analogues in

a fluctuation of trade, a wave of prosperity, a blow to credit, a tide

in the affairs of men.

The same exponential curve may illustrate a rate of cooHng, a loss

of electric charge, the chemical action of a ferment or a catalyst.

The S-shaped population-curve or "logistic curve" of Verhulst (to

which we are soon coming) is the hysteresis-curve by which Ewing
represented self-induction in a magnetic field ; it is akin to the path

of a falhng body under the influence of friction; and Lotka has

drawn a curve of the growing mileage of American railways, and

found it to be a typical logistic curve. A few bars of music plotted

in wave-lengths of the notes might be mistaken for a tidal record.

The periodicity of a wave, the acceleration of gravity, retardation

by friction, the role of inertia, the explosive action of a spark or

an electric contact—these are some of the modes of action or "forms

of mechanism" which recur in Hmited number, but in endless shapes

and circumstances*. The way in which one curve fits many
phenomena is characteristic of mathematics itself, which does not deal

with the specific or individual case, but generalises all the while, and

is fond (as Henri Poincare said) of giving the same name to different

things.

Our curves, as we have said, are mostly time-diagrams, and
represent a change in time from one magnitude to another; they are

diagrams of displacement, in Maxwell's phrase. We may consider

four different cases, not equally simple mathematically, but all

* See an admirable little book by Michael Petrovich, Les micanismes communs
aux phenomenes disparates, Paris, 1921.
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capable of explanation, up to a certain point, without mathe-

matics.

(1) If in our coordinate diagram we have merely to pass from

one isolated jpoint to another, a straight line joining the two points

is the shortest—and the hkeliest way.

(2) To rise and fall alternately, going to and fro from maximum
to minimum, a zig-zag rectilinear path would still be, geometrically,

the shortest way; but it would be sharply discontinuous at every

turn, it would run counter to the "principle of continuity," it is not

likely to be nature's way. A wavy course, with no more change of

curvature than is absolutely necessary, is the path which nature

follows. We call it a simple harmonic motion, and the simplest of

The Sine -curve

The S-shaped curve

The bell-shaped curve

Fig. 27. Simple curves, representing a change from one magnitude to another.

all such wavy curves we call a sine-curve. If there be but one

maximum and one minimum, which our variant alternates between,

the vector pathway may be translated into jpolar coordinates; the

vector does- what the hands of the clock do, and a circle takes the

place of the sine-curve.

(3) To pass from a zero-line to a maximum once for all is a very

different thing ; for now minimum and maximum are both of them

continuous states, and the principle of continuity will cause our

vector-variant to leave the one gradually, and arrive gradually at

the other. The problem is how to go uphill from one level road to

another, with the least possible interruption or discontinuity. The

path follows an S-shaped course; it has an inflection midway; and

the first phase and the last are represented by horizontal asymptotes.

This is an important curve, and a common one. It so far resembles
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an "elastic curve" (though it is not mathematically identical with it)

that it may be roughly simulated by a watchspring, lying between

two parallel straight lines and touching both of them. It has its

kinetic analogue in the motion of a pendulum, which starts from

rest and comes to rest again, after passing midway through its

maximal velocity. It indicates a balance between production and

waste, between growth and decay: an approach on either side to

a state of rest and equilibrium. It shows the speed of a train

between two stations ; it illustrates the growth of a simple organism,

or even of a population of men. A certain simple and symmetrical

case is called the Verhulst-Pearl curve, or the logistic curve.

(4) Lastly, in order to leave a certain minimum, or zero-hne, and

return to it again, the simplest way will be by a curve asymptotic

to the base-line at both ends—or rather in both directions; it will

be a bell-shaped curve, having a maximum midway, and of necessity

a point of inflection on either side ; it is akin to, and under certain

precise conditions it becomes, the curve of error or Gaussian curve.

Besides the ordinary curve of growth, which is a summation-

curve, and the curve of growth-rates, which is its derivative, there

are yet others which we may employ. One of these was introduced

by Minot*, from 'a feeling that the rate of growth, or the amount

of increment, ought in some way to be equated with the growing

structure. Minot's method is to deal, not with the actual increments

added in successive periods, but with these successive increments

represented as percentages of the amount already reached. For

instance, taking Quetelet's values for the height (in centimetres) of

a male infant, we have as follows:

Years
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Now, in our first curve of growth we plotted length against time,

a very simple thing to do. When we differentiate L with respect to T,

we have dL/dT, which is rate or velocity, again a very simple thing

;

and from this, by a second differentiation, we obtain, if necessary,

d^L/dT^, that is to say, the acceleration.

But when you take percentages of y, you are determining dyjy,

and w^hen you plot this against dx, you have

^, or -^, or -.^.
dx

'

y.dx' y' dx'

That is to say, you are multiplying the thing whose variations

you are studying by another quantity which is itself continually

varying; and are dealing with something more complex than the

original factors*. Minot's method deals with a perfectly legitimate

function of x and y, and is tantamount to plotting log y against x,

that is to say, the logarithm of the increment against the time.

This would be all to the good if it led to some simple result, a straight

line for instance ; but it is seldom if ever, as it seems to me, that it

does anything of the kind. It has also been pointed out as a grave

fault in his method that, whereas growth is a continuous process,

Minot chooses an arbitrary time-interval as his basis of comparison,

and uses the same interval in all stages of development. There is

little use in comparing the percentage increase fer week of a week-

old chick, with that of the same bird at six months old or at six

years.

The growth of a population

After dealing with Man's growth and stature, Quetelet turned to

the analogous problem of the growth of a populatfon—all the more

analogous in our eyes since we know man himself to be a "statistical

unit," an assemblage of organs, a population of cells. He had read

* Schmalhausen, among others, uses the same measure of rate of growth, in the

form
log F-logF dvl^

^~ k{t-t) ~^ dt v'

Arch. f. Entw. Mech. cxm, pp. 462-519, 1928.
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Malthus's Essay on Population* in a French translation, and was

impressed like all the world by the importance of the theme. He

saw that poverty and misery ensue when a population outgrows its

means of support, and believed that multiphcation is checked both

. by lack of food and fear of poverty. He knew that there were,

and must be, obstacles of one kind or another to the unrestricted

increase of a population; and he knew the more subtle fact that

a population, after growing to a certain height, oscillates about an

unstable level of equilibrium f.

Malthus had said that a population grows by geometrical pro-

gression (as 1, 2, 4, 8) while its means of subsistence tend rather to

grow by arithmetical (as 1, 2, 3, 4)—that one adds up while the

other multiphesj. A geometrical progression is a natural and a

* T. R. Malthus, An Essay on the Principle of Population, as it affects the Future

Improvement of Society, etc., 1798 (6th ed. 1826; transl. by P. and G. Prevost,

Geneva, 1830, 1845). Among the books to which Malthus was most indebted was

A Dissertation on the Numbers of Mankind in ancient and modern Times, published

anonymously in Edinburgh in 1753, but known to be by Robert Wallace and read

by him some years before to the Philosophical Society at Edinburgh. In this

remarkable work the writer says (after the manner of Malthus) that mankind

naturally increase by successive doubling, and tend to do so thrice in a hundred

years. He explains, on the other hand, that "mankind do not actually propagate

according to the rule in our tables, or any other constant rule; ^et tables of this

nature are not entirely useless, but may serve to shew, how much the increase of

mankind is prevented by the various causes which confine their number within

such narrow limits." Malthus was also indebted to David Hume's Political

Discourse, Of the Populousness of ancient Nations, 1752, a work criticised by Wallace.

See also McCulloch's notes to Adam Smith's Wealth of Nations, 1828.

f"
That the nearest approach to equilibrium in a population is long-continued

ebb and flow, a mean level and a tide, was known to Herbert Spencer, and was

stated mathematically long afterwards by Vito Volterra. See also Spencer's First

Principles, ch. ^22, sect. 173: "Every species of plant or animal is perpetually

undergoing a rhythmical variation in number—now from abundance of food and

absence of enemies rising above its average, and then by a consequent scarcity

of food and abundance of enemies being depressed below its average.. . .Amid

these oscillations produced by their conflict, lies that average number of the species

at which its expansive tendency ie in equilibrium with surrounding repressive

tendencies." Cf. A. J. Lotka, Analytical note on certain rhythmic relations in

organic systems, Proc. Nat. Acad. Sci. vi, pp. ^10-415, 1920; but cf. also his Elements

of Physical Biology, 1915, p. 90. An analogy, and perhaps a close one, may be found

on the Bourse or money market.

X That a population will soon oiitrun its means of subsistence was a natural

assumption in Malthus's day, and in his own thickly populated land. The danger

may be postponed and the assumption apparently falsified, as by an Argentine

cattle-ranch /or prairie wheat-farm—but only so long as we enjoy world-wide

freedom of import and exchange.
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common thing, and, apart from the free growth of a population or

an organism, we find it in many biological phenomena. An epidemic

dechnes, or tends to decline, at a rate corresponding to a geometrical

progression; the mortahty from zymotic diseases declines in geo-

metrical progression among children from one to ten years old;

and the chances of death increase in geometrical progression after

a certain time of Hfe for us all*.

But in the ascending scale, the story of the horseshoe nails tells

us how formidable a thing successive multipHcation becomes f.

Enghsh law forbids the protracted accumulation of compound

interest; and hkewise Nature deals after herown fashion with the case,

and provides her automatic remedies. A fungus is growing on an

oaktree—it sheds more spores in a night than the tree drops acorns

in a hundred years. A certain bacillus grows up and multiphes by

two in two hoTlrs' time; its descendants, did they all survive, would

number four thousand in a day, as a man's might in three hundred

years. A codfish lays a million eggs and more—all in order that

one pair may survive to take their parents' places in the world.

On the other hand, the humming-birds lay only two eggs, the auks

and guillemots only one; yet the former are multitudinous in their

haunts, and some say that the Arctic auks and auklets outnumber

all other birds in the world. Linnaeus { shewed that an annual

plant would have a miUion offspring in twenty years, if only two

seeds grew up to maturity in a year.

But multiply as they will, these vast populations have their

limits. They reach the end of their tether, the pace slows down, and

at last they increase no more. Their world is fully peopled, whether

it be an island with its swarms of humming-birds, a test-tube with

its myriads of yeast-cells, or a continent with its miUions of mankind.

Growth, whether of a population or an individual, draws to its

natural end; and Quetelet compares it, by a bold metaphor, to the

motion of a body in a resistant medium. A typical population

grows slowly from an asymptotic minimum; it multiphes quickly;

* According to the Law of Gompertz ; cf. John Brownlee, in Proc. R.S.E. xxxi,

pp. 627-634, 1"911.

t Herbert Spencer, A theory of population deduced from the general law of

animal fertility, Westminster Review, April 1852.

X In his essay De Tellure, 1740.
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it draws slowly to an ill-defined and asymptotic maximum. The

two ends of the population-curve define, in a general way, the

whole curve between; for so beginning and so ending the curve

must pass through a point of inflection, it must be an S-shaped

curve. It is just such a curve as we have seen imder simple

conditions of growth in an individual organism.

This general and all but obvious trend of a population-curve has

been recognised, with more or less precision, by many writers. It

is imphcit in Quetelet's own words, as follows: "Quand une

population pent se developper hbrement et sans obstacles, elle croit

selon une progression geometrique; si le developpement a heu au

miheu d'obstacles de toute espece qui tendent a Farreter, et qui

agissent d'une maniere uniforme, c'est a dire si I'etat sociale ne

change point, la population n'augmente pas d'une maniere indefinie,

mais elle tend de plus en plus a devenir stationnaire*.'' P. F. Verhulst,

a mathematical colleague of Quetelet's, was interested in the same

things, and tried to give a mathematical shape to the same general

conclusions; that is to say, he looked for a "fonction retardatrice"

which should turn the Malthusian curve of geometrical progression

into the S-shaped, or as he called it, the logistic curve, which should

thus constitute the true "law of population," and thereby indicate

(among other things) the hmit above which the population^ was not

likely to grow f

.

Verhulst soon saw that he could only solve his problem in a

prehminary and tentative way; ''la hi de la population nous est

inconnue, parcequ'on ignore la nature de la fonction qui sert de

mesure aux obstacles qui s'opposent a la multiphcation indefini de

I'espece humaine." The materials at hand were almost unbeUevably

scanty and poor. The French statistics were taken from documents

"qui ont ete reconnus entierement fictifs"; in England the growth

* Physique Sociale, i, p. 27, 1835. But Quetelet's brief account is somewhat
ambiguous, and he had in mind a body falling through a resistant medium—which

suggests a limiting velocity, or limiting annual increment, rather than a terminal

value. See Sir G. Udny Yule, The growth of population, Journ. R. Statist. Soc.

Lxxxvm, p. 42, 1925.

t P. F. Verhulst, Notice sur la loi que la population suit dans son accroissement.

Correspondence math. etc. public par M. A. Quetelet, x, pp. 113-121, 1838; Rech.

math, sur la loi etc., Nozw. Mem. de VAcad. R. de Bruxelles, xviii, 38 pp., 1845;

deuxieme Mem., ihid. xx, 32 pp., 1847. The term logistic curve had already been

used by Edward Wright; see antea, p. 135. footnote.



146 THE RATE OF GROWTH [ch.

of the population was estimated by the number of births, and the

births by the baptisms in the Church of England, "de maniere que

les enfants des dissidents ne sont point portes sur les registres

officiels." A law of population, or "loi d'affaibhssement" became

a mere matter of conjecture, and the simplest hypothesis seemed to

Verhulst to be, to regard "cet affaibhssement comme proportionnel

a I'accroissement de la population, depuis le moment ou la difficulty

de trouver de bonnes terres a commence a se faire sentir*."

Verhulst was making two assumptions. The first, which is beyond

question, is that the rate of increase cannot be, and indeed is not,

a constant; and the second is that the rate must somehow depend

on (or be some function of) the population for the time being.

A third assumption, again beyond question, is that the simplest

possible function is a linear function. He suggested as the simplest

possible case that, once the rate begins to fall (or once the struggle

for existence sets in), it will fall the more as the population continues

to grow; we shall have a growth-factor and a retardation-factor in

proportion to one another. He was making early use of a simple

differential equation such as Vito Volterra and others now employ

freely in the general study of natural selec.tionf.

The point wher^ a struggle for existence first sets in, and where

ipsofacto the rate of increase begins to diminish, is called by Verhulst

the normal level of the population ; he chooses it for the origin of his

curve, which is so defined as to be symmetrical on either side of

this origin. Thus Verhulst's law, and his logistic curve, owe their

form and their precision and all their power to forecast the future

to certain hypothetical assumptions; and the tentative solution

arrived at is one "sous le point de vue mathematiquej."

Op. cit. p. 8.

t Besides many well-known papers by Volterra, see V. A, Kostitzin, Biologie

mathematique, Paris, 1937. Cf. also, for the so-called "Malaria equations," Ronald
Ross, Prevention of Malaria, 2nd ed. 1911, p. 679; Martini, Zur Epidemiologie d.

Malaria, Hamburg, 1921; W. R. Thompson, C.R. clxxiv, p. 1443, 1922, C. N.

Watson, Nature, cxi, p. 88, 1923.

J Verhulst goes on to say that " une longue serie d 'observations, non interrompues

par de grandes catastrophes sociales ou des revolutions du globe, fera probablement

decouvrir la fonction retardatrice dont il vient d'etre fait mention." Verhulst

simplified his problem to the utmost, but it is more complicated today than ever;

he thought it impossible that a country should draw its bread and meat from

overseas: "lors meme qu'une partie considerable de la population pourrait etre
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The mathematics of the Verhulst-Pearl curve need hardly concern

us; they are fully dealt with in Raymond Pearl's, Lotka's and other

books. Verhulst starts, as Malthus does, with a population growing

in geometrical progression, and so giving a logarithmic curve:

dp

He then assumes, as his "loi d'affaibUssement," a coefficient of

retardation {n) which increases as the population increases:

dp
2

Integrating, p = ^^_^_^_.

If the point of inflection be taken as the origin, k = 0; and again

for < = 00, jt? = — = L. We may write accordingly:

1 + e-^

Malthus had reckoned on a population doubling itself, if unchecked

by want or "accident," every twenty-five years*; but fifty years

after, Verhulst shewed that this "grande vitesse d'accroissement"

was no longer to be found in France or Belgium or other of the

older countries!, but wa^ still being reaUsed in the United States

(Fig. 28). All over Europe, "le rapport de I'exces annuel des nais-

sances sur les deces, a la population qui I'a fourni, va sans cesse en

s'affaiblissant ; de maniere que Faccroissement annuel, dont la valeur

absolue augmente continuellement lorsqu'il y a progression geo-

metrique, parait suivre une progression tout au plus arithmetique."

nourrie de bles etrangers, jamais un gouvernement sage ne consentira a faire

dependre I'existence de milliers de citoyens du bon vouloir des souverains etrangers."

On this and other problems in the growth of a human population, see L. Hogben's
Genetic Problems, etc., 1937, chap. vii. See^also [int. al.) Warren S. Thompson and
P. K. Whelpton, Population Trends in the United States, 1933; F. Lorimer and
F. Osborn, Dynamics of Population, 1934, etc.

* An estimate based, like the rest of Malthus's arithmetic, on very slender

evidence.

t In Quetelet's time the European countries, far from doubling in twenty-five

years, were estimated to do so in from sixty years (Norway) to four hundred years
(France); see M. Haushofer, Lehrbuch der Statiatik, 1882.
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The "celebrated aphorism" of Malthus was thus, and to this extent,

confirmed*. In the United States, the Malthusian estimate of

unrestricted increase continued to be reahsed for a hundred years

after Malthus wrote; for the 3-93 millions of the U.S. census of

1790 were doubled three times over in the census of 1860, and four

times over in that of 1890. A capital which doubles in twenty-five

years has grown at 2-85 per cent, per annum, compound interest;

the U.S. population did rather more, for it grew at fully 3 per cent,

for fifty of those hundred years f.

1790 1800 1850 1900 1930

Fig. 28. Population of the United States, 1790-1930.

The population of the whole world and of every continent has

increased during modem times, and the increase is large though

the rate is low. The rate of increase has been put at about half-a-

per-cent per annum for the last three hundred years—a shade more

in Europe and a shade less in the rest of the world {

:

* Op. cit. 1845, p. 7.

t Verhulst foretold forty millions as the "extreme limit" of the population

of France, and 6^ millions as that of Belgium. The latter estimate he increased

to 8 millions later on. The actual populations of France and Belgium at the

present time are a little more than the ultimate limit which Verhulst foretold.

+ From A. M. Carr-Saunders' World Population, 1936, p. 30.
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An estimate of the population of the world

(After W. F. Willcox)

Mean rate of

1650 1750 1800 1850 1900 increase

Europe 100 140 187 266 401 0-52% per annum
World total 545 728 906 1171 1608 0-49% „

Verhulst was before his time, and his work was neglected and

presently forgotten. Only some twenty years ago, Raymond Pearl

and L. J. Reed of Baltimore, studying the U.S. population as

Verhulst had done, approached the subject in the same way, and

came to an identical result; then, soon afterwards (about 1924),

Raymond Pearl came across Verhulst's papers, and drew attention

to what we now speak of as the Verhulst-Pearl law. Pearl and

Reed saw, as Verhulst had dope, that a "law of population" which

should cover all the ups and downs of human affairs was not to be

found; and yet the general form which such a law must take was

plain to see. There must be a limit to the population of a region,

great or small; and the curve of growth must sooner or later "turn

over," approach the limit, and resolve itself into an S-shaped curve.

The rate of growth (or annual increment) will depend (1) on the

population at the time, and (2) on "the still unutiUsed reserves of

population-support existing" in the available land. Here we have,

to all intents and purposes, the growth-factor and retardation-factor

of Verhulst, and they lead to the same formula, or the same

differential equation, as his*.

A hundred years have passed since Verhulst dealt with the first

U.S. census returns, and found them verifying the Malthusian

expectation of a doubhng every twenty-five years. That "grande

vitesse d'accroissement " continued through five decennia; but it

ceased some seventy years ago, and a retarding influence has been

manifest through all these seventy years (Fig. 29). It is more

recently, only after the census of 1910, that the curve seemed to be

* Raymond Pearl and L. J. Reed, on the Rate of growth of the population of

the U.S. since 1790, and its mathematical representation, Proc. Nat. Acad. Sci.

VI, pp. 275-288, 1920; ibid, vin, pp. 365-368, 1922; Metron, m, 1923. In the

first edition of Pearl's Medical Biometry and Statistics, 1923 (2nd ed. 1930), Verhulst

is not mentioned. See also his Studies in Human Biology, Baltimore, 1924, Natural

History of Population, 1939, and other works.
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1800 1850 1900 1940

Fig. 29. Decennial increments of the population of the United States.

* The Civil War. * * The "slump".

zuu
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finding its turning-point, or point of inflection; and only now, since

1940, can we say with full confidence that it has done so.

A hundred years ago the conditions were still relatively' simple,

but they are far from simple now. Immigration was only beginning

to be an important factor; but immigrants made a quarter of the

whole increase of the population of the United States during eighty

of these hundred years*. Wars and financial crises have made their

mark upon the curve; manners and customs, means and standards

of living, have changed prodigiously. But the S-shaped curve

makes its appearance through all of these, and the Verhulst-Pearl

formula meets the case with surprising accuracy.

Population of the United States

I In ten years
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progression so long as nutriment is enough and to spare; that is to

say, the rate of growth is proportional to the number present:

dt ^

But in a test-tube colony the supply of nourishment is hmited,

and the rate of multiphcation is bound to fall off. If a be the

original concentration of food-stuff, it will have dwindled by time t

to (a — y). The rate of growth will now be

% = by{<^-y),

which means that the rate of increase iS proportional to the number

of organisms present, and to the concentration of the food-supply.

It is Verhulst's case in a nutshell; the differential equation so

indicated leads to an S-shaped curve which further experiment

confirms; and Sach's "grand period of growth" is seen to accom-

phsh itself*.

The growth of yeast is studied in the everyday routine of a

brewery. But the brewer is concerned only with the phase of

unrestricted growth, and the rules of compound interest are all he

needs, to find its rate or test its constancy. A population of 1360

yeast-cells grew to 3,550,000 in 35 hours: it had multiplied -2610

times. Accordingly,

1^8^51^^^^ = 0-098 = log 1-254.

That is to say, the population had increased at the rate of 25-4 per

cent, per hour, during the 35 hours.

The time (^2) required to double the population is easily found

:

log 2 0-301 ^ ^^ ,

* The sigmoid curve illustrates a theorem which, obvious as it may seem, is of no

small philosophical importance, to wit, that a body starting from rest must, in order

to attain a certain velocity, pass through all intermediate velocities on its way.

Galileo discusses this theorem, and attributes it to Plato: "Platone avendo per

avventura avuto concetto non potere alcun mobil passare daUa quiete ad alcun

determinate grado di velocita se non col passare per tutti gli altri gradi di

velocita minori, etc."; Discorsi e dimostrazioni, ed. 1638, p. 254.
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The duplication-period thus determined is known to brewers as

the generation-time.

Much care is taken to ensure the maximal growth. If the yeast

sink to the bottom of the vat only its upper layers enjoy unstinted

nutriment; a potent retardation-factor sets in, and the exponential

phase of the growth-curve degenerates into a premature horizontal

asymptote. Moreover, both the yeast and the bacteria differ in

this respect from the typical (or perhaps only simpHfied) case of

man, that they not only begin to suffer want as soon as there comes

to be a deficiency of any one essential constituent of their food*, but

they also produce things which are injurious to their own growth

and in time fatal to their existence. Growth stops long before the

food-supply is exhausted ; for it does so as soon as a certain balance

is reached, depending on the kind or quahty of the yeast, between

the alcohol and the sugar in the cellf.

If we use the compound-interest law at all, we had better think

of Nature's interest as being paid, not once a year nor once an hour

as our elementary treatment of the yeast-population assumed, but

continuously; and then we learn (in elementary algebra) that in

time t, at rate r, a sum P increases to Pe'^\ or P< ^ ^o^^*.

Applying this to the growth of our sample of 1360 yeast cells,

we have

PtIPo = 2610, log 2610 = 3-417, which, multipHed by the modulus

2-303 = 7-868. Dividing by n = 35, the number of hours,

7-868/35 = 0-225 = r.

The rate, that is to say, is 22-5 per cent, per hour, continuous

compound interest. It becomes a well-defined physiological constant,

and we may call it, with V. H. Blackman, an index of efficiency.

Our former result, for interest at hourly intervals, was 25-4 per

* According to Liebig's "law of the minimum."

t T. Carlson, Geschwindigkeit und Grosse'der Hefevermehrung, Biochem. Ztschr.

Lvn, pp. 313-334, 1913; A. Slator, Journ. Chem. Soc. cxix, pp. 128-142, 1906;

Biochem. Journ. vii, p. 198, 1913; 0. W. Richards, Ann. of Botany, xlh, pp. 271-283,

1928; Alf Klem, Hvalradets Skrifter, nr. 7, pp. 55-91, Oslo, 1933; Per Ottestad,

ibid. pp. 30-54. For optimum conditions of temperature, nutriment, pB., etc. see

Oscar W. Richards, Analysis of growth as illustrated by yeast. Cold Spring Harbour

Symposia, ii, pp. 157-166, 1934.
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cent. ; there is no great difference between such short intervals and

actual continuity, but there is a deal of difference between continuous

payment and payment (say) once a year*. Certain sunflowers

(Helianihus) were found to grow as follows, in thirty-seven days:

Compound interest rate (%)

Weight (gm.) Continuous Discontinuous

Giant sunflower
Dwarf sunflower

Seedling

0033
0035

Plant

17-33

14-81

Per day Per wk. Per day Per wk.

170 119 18-5 228%
16-4 114 17-7 214%

When the yeast population is allowed to run its course, it yields

a simple S-shaped curve ; and the curve of first differences derived

rTi*-2*5<rm-2(r
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we draw the corresponding Gaussian curve; and the close "fit"

between the observed population-curve and the calculated Gaussian

curve is sufficiently shewn by Mr Per Ottestad's figure (Fig. 31).

This is a very remarkable thing. We began to think of the curve

of error as a function with which time had nothing to do, but here

we have the same curve (or to all intents and purposes the same)

with time for one of its coordinates. We might (I think) add one

more to the names of the curve of error, and call it the curve

of optimum ; it represents on either hand the natural passage from

best to worst, from Ukehest to least likely.

A few flies (Drosophila) in a bottle illustrate the rise and fall of

a population more complex than yeast, as Raymond Pearl has

shewn* The colony dwindles to extinction if food be v/ithheld;

if it be sufficient, the numbers rise in a smooth S-shaped curve;

if it be plentiful and of the best, they end by fluctuating about an

unstable maximum. "The population waves up and down about

an average size," as Raymond Pearl says, as Herbert Spencer had

foreseen t, and as Vito Volterra's differential equations explain.

The growth-rate slackens long before the hunger hne is reached;

crowding affects the birth-rate as well as the death-rate, and a

bottleful of flies produces fewer and fewer offspring per pair the

more flies we put into the bottle {. It is true also of mankind, as

Dr WiUiam Farr was the first to shew, that overcrowding diminishes

the birth-rate and shortens the "expectation of Hfe§ ." It happened

so in the United States, pari passu with the growth of immigration,

incipient congestion acting (or so it seemed) as an obstacle, or a

deterrent, to the large families of former days. Nevertheless, children

still pullulate in the slums. The struggle for existence is no simple

affair, and things happen which no mathematics can foretell.

* Raymond Pearl and S. L. Parker, in Proc. Nat. Acad. Sci. vni, pp. 212-219,

1922; Pearl, Journ. Exper. Zool. Lxm, pp. 57-84, 1932.

t "Wherever antagonistic forces are in^ action, there tends to be alternate

predominance."

X In certain insects an optimum density has been observed; a certain amount
of crowding accelerates, and a greater amount retards, the rate of reproduction.

Cf. D. Stewart Maclagan, Effect of population-density on rate of reproduction,

Proc. R, S. (B), CXI, p. 437, 1932; W. Goetsch, Ueber wachstumhemmende Factoren,

Zool. Jakrb. (Allg. Zool.), xlv, pp. 799-840, 1928.

§ Dr W. Farr, Fifth Report of the Registrar-General, 1843, p. 406 (2nd ed.).
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An analogous S-shaped curve, given by the formula L^ = kg^,

was introduced by Benjamin Gompertz in 1825* ; it is well known to

actuaries, and has been used as a curve of growth by several writers

in preference to the logistic curve. It was devised, and well devised,

to express a "law of human mortality", and to signify the number

surviving at any given age (x), "if the average exhaustions of a

man's power to avoid death were such that at the end of infinitely

small intervals of time he lost equal portions (i.e. equal proportions)

of his remaining power 'to oppose destruction." The principle

involved is very important. Death comes by two roads. One is

by cha^ce or accident, the other by a steady deterioration, or

exhaustion, or growing inability to withstand destruction; and

exhaustion comes (roughly speaking) as by the repeated strokes of

an air-pump, for the life-tables shew mortality increasing in geo-

metrical progression, at least to a first approximation and over

considerable periods of years. Gompertz relied wholly on the

experience of "life-contingencies," but the same deterioration of

bodily energies is plainly visible as growth itself slows down; for

we have seen how growth-rate in infancy is such as is never after-

wards attained, and we may speak of growth-energy and its gradual

loss or decrement, by an easy but significant alteration of phrase.

To deal with the declining growth-rate, as Gompertz did with the

falling expectation of life, and so to measure the remaining energy

available from time to time, would be a greater thing than to record

mere weights and sizes; it raises the problem from mere change of

physical magnitudes to an estimation of the falling or fluctuating

physiological energies of the bodyf. We have seen how in only

* Benjamin Gompertz, On the nature of the function expressive of the law of

human mortality, Phil. Trans, xxxvi, pp. 513-585, 1825. First suggested for use

in growth-problems by Sewall Wright, Journ. Amer. Statist, Soc. xxi, p. 493,

1926. See also C. P. Winsor, The Gompertz curve as a growth curve, Proc. Nat.

Acad. Sci. XVIII, pp. 1-8, 1932; cf. {int. al.) G. R. Davies. The growth curve,

Journ. Amer. Statist. Soc. xxii, pp. 370-374, 1927; F. W. Weymouth and S. H.

Thompson, Age and growth of the Pacific cockle, Bull. Bureau Fisheries, xlvi,

pp. 63f3-641, 1930-31 ; also Weymouth, McMillen and Rich, in Journ. Exp. Biol.

vni, p. 228, 1931.

t A bold attempt to treat the question from the physiological side, and on

Gompertz's lines, was made only the other day by P. B. Medawar, The growth,

growth-energy and ageing of the chicken's heart, Proc. R.S. (B), cxxix, pp. 332-

355, 1940. Cf. James Gray, The kinetics of growth, Journ. Exp. Biol, vi, pp. 248-

274, 1929.
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few and simple cases can a simple curve or single formula be found

to represent the growth-rate of an organism; and how our curves

mostly suggest cycles of growth, each spurt or cycle enduring for

a time, and one following another. Nothing can be more natural

from the physiological point of view than that energy should be

now added and now withheld, whether with the return of the

seasons or at other stages on the eventful journey from childhood

to manhood and old age.

The symmetry, or lack of skewness, in the Verhulst-Pearl logistic

curve is a weak point rather than a strong; the Gompertz curve

is a skew curve, with its point of inflexion not half-way, but about

one-third of the way between the asymptotes. But whether in

this or in the logistic or any other equation of growth, the precise

point of inflexion has no biological significance whatsoever. What
we want, in the first instance, is an S-shaped curve with a variable,

or modifiable, degree of skewness. After all, the same difficulty

arises in all the use we make of the Gaussian curve : which has to

be eked out by a whole family of skew curves, more or less easily

derived from it. We are far from being confined to the Gaussian

curve {sensu stricto) in our studies of biological probabihty, or to the

logistic curve in the study of population.

Yet another equation has been proposed to the S-shaped curve

of growth, by Gaston Backman, a very dihgent student of the

whole subject. The rate of growth is made up, he says, of three

components: a constant velocity, an acceleration varying with the

time, and a retardation which we may suppose to vary with the

square of the time. Acceleration would then tend to prevail in the

earlier part of the curve, and retardation in the latter, as in fact

they do; and the equation to the curve might be written:

log H = ko + k^ log T-k^ log2 T.

The formula is an elastic one, and can be made to fit many an

S-shaped curve; but again it is empirical.

The logistic curve, as defined by Verhulst and by Pearl, has

doubtless an interest of its own for the mathematician, the statistician

and the actuary. But putting aside all its mathematical details and

all arbitrary assumptions, the generalised S-shaped curve is a very

symbol of childhood, maturity and age, of activity which rises to
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fall again, of growth which has its sequel in decay. The growth

of a child or of a nation; the history of a railway*, or the speed

between stations of a train; the spread of an epidemic]", or the

evolutionary survival of a favoured type J—all these things run

their course, in its beginning, its middle and its end, after the fashion

of the S-shaped curve. That curve represents a certain common
pattern among Nature's "mechanisms," and is (as we have said

before), a "mecanisme commun aux phenomenes disparates§."

At the same time—and this is a very interesting part of the story

—the S-shaped curve is no other than what Galton called a curve of

distribution, that is to say a curve of integration or summation-

curve, whose differential is closely akin to the Gaussian curve of

error.

Such, to a first approximation, is our S-shaped population-curve,

and such are the many phenomena which, to a first approximation,

it helps us to compare. But it is only to a first approximation that

we compare the growth of a population with that of an organism,

or for that matter of one organism or one pbpulation with another.

There are immense differences between a simple and a complex

organism, between a primitive and a civihsed population. The

yeast-plant gives a growth-curve which we can analyse; but we

must fain be content with a qualitative description of the growth

of a complex organism in its complex world ||.

There is a simphcity in a colony of protozoa and a complexity in

a warm-blooded animal, a uniformity in a primitive tribe and a

heterogeneity in a modern state or town, which affect all their

economies and interchanges, all the relations between milieu interne

and ex^rne. and all the coefficients in any but the simplest equations of

growth which we can ever attempt to frame. Every growth-problem

becomes at last a specific one, running its own course for its own

reasons. Our curves of growth are all alike—but no two are ever

* Raymond Pearl, Amer. Nat. lxi, pp. 289-318, 1927.

t Ronald Ross, Prevention of Malaria (2nd ed.), 1911, p. 679.

j J. B. S. Haldane, Trans. Camb. Phil. Soc. xxm, pp. 19^1, 1924.

§ Cf. {int. al.) J. R. Miner's Note on birth-rate and density in a logistic population,

Human Biology, iv, p. 119, 1932; and cf. Lotka, ibid, in, p. 458, 1931.

II
Cf. {int. al.) C. E. Briggs, Attempts to analyse growth-curves, Proc. E.S. (B),

en, pp. 280-285, 1928.
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the same. Growth keeps caUing our attention to its own com-

plexity. We see it in the rates of growth which change with age

or season, which vary from one hmb to another,; in the influence

of peace and plenty, of war and famine ; not least in those composite

populations whose own parts aid or hamper one another, in any

form or aspect of the struggle for existence. So we come to the

differential equations, easy to frame, more difficult to solve, easy in

their first steps, hard and very powerful later on, by which Lotka

and Volterra have shewn how to apply mathematics to evolutionary

biology, but which he just outside the scope of this book*.

An important element in a population, and one seldom easy to

define, is its age-composition. It may vary one way or the other;

for the diminution of a population may be due to a decrease in the

birth-rate, or to an increasing mortality among the old. A remark-

able instance is that of the food-fishes of the North Sea. Their

birth-rate is so high that the very young fishes remain, to all

appearance, as numerous as ever; those somewhat older are fewer

than before, and the old dwindle to a fraction of what they were

wont to be.

The rate of growth in other organisms

The rise and fall of growth-rate, the acceleration followed by

retardation which finds expression in the S^shaped curve, are seen

alike in the growth of a population and of an individual, and in

most things which have a beginning and an end. But the law of

large numbers smooths the population-curve; the individual Hfe

draws attention to its own ups and downs; and the characteristic

sigmoid curve is only seen in the simpler organisms, or in parts or

"phases" of the more complex lives. We see it at its simplest in

the simple growth-cycle, or single season, of an annual plant, which

cycle draws to its end at flowering; and here not only is the curve

simple, but its amplitude may sometimes be very large. The giant

Heracleum and certain tall varieties of Indian corn grow to twelve feet

* See (int. al.) A. J. Lotka, Elements of Physical Biology, Baltimore, 1925;

Theorie analytique des associations biologiques, Paris, 1934; Vito Volterra, Lemons

sur la theorie mathematique de la lutte pour la vie, 1931; Volterra et U. d'Ancona,

Les associations biologiques au point de vue mathematique, 1935; V. A. Kostitzin,

op. ci7.;\ etc
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high in a summer; the kudzu vine (Pucraria) may grow twelve inches

in twenty-fouE hours, and some bamboos are said to have grown

twenty feet in three days (Figs. 32, 33).

10

Days

Fig. 32. Growth of Lupine. After Pfeffer.

Growth of Lupinus albus. (From G. Backman, after Pfeffer)
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some call it) to succeed another, whether at special epochs in a

lifetime, or as often as winter gives place to spring*.

20

Days

Fig. 33. Growth of Lupine: daily increments.

45 50
days

Fig. 34. Growth in weight of a mouse. After W. Ostwald.

In the accompanying curve of weight of the mouge (Fig. 34) we

see a slackening of the rate of growth when the mouse is about a

fortnight old, at which epoch it opens its eyes, and is weaned soon

* W. PfefiFer, Pflanzenphysiologie, 1881, Bd. ii, p. 78; A. Bennett, On the rate

of growth of the flower-stalk of Vallisneria spiralis and of Hyacinthus, Trans. Linn.

Soc. (2), I, Botany, pp. 133, 139, 1880; cited by G. Backman, Das Wachstums-
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after. At six weeks old there is another well-marked retardation;

it follows on a rapid spurt, and coincides with the epoch of puberty *.

In arthropod animals growth is apt to be especially discontinuous,

for their bodies are more or less closely confined until released by

the casting of the skin. The blowfly has its striking metamorphoses,

yet its growth is wellnigh continuous; for its larval skin is too thin

and dehcate to impede growth in the usual arthropod way. But

in a thick-skinned grasshopper or hard-shelled crab growth goes by

fits and starts, by steps and stairs, as Reaumur was the first to shew

;

for, speaking of insects f, he says: "Peut-etre est-il vrai generale-

ment que leur accroissement, ou au moins leur plus considerable

accroissement, ne se fait que dans le temps qu'ils muent, ou pendant

im temps assez court apres la mue. lis ne sont obHges de quitter

leur enveloppe que parce qu'elle ne prend pas un accroissement

proportionne a celui que prennent les parties qu'elle couvre."

All the visible growth of the lobster takes place once a year at

moulting-time, but he is growing in weight, more or less, all along.

He stores up material for months together; then comes a sudden

rush of water to the tissues, the carapace sphts asunder, the lobster

issues forth, devours his own exuviae, and lies, low for a month while

his new shell hardens.

The silkworm moults four 'times, about once a week, beginning

on the sixth or seventh day after hatching. There is an arrest or

retardation of growth before each moult, but our diagram (i^ig. 35)

is too small to shew the sHght ones which precede the first and

problem, in Ergebnisse d. Physiologie, xxxiii, pp. 883-973, 1931. These two cases

of Lupinus and Vallisneria, a^e among the many which lend themselves easily to

Backman's growth-formula, viz. Lupinus, \ogp= - 2-40 + 1-48 log T - 6-61 log^ T and

Vallisneria, log p = + 1-28 + 4-51 log T - 2-62 log^ T. See for an admirable resume

of facts, Wolfgang Ostwald, Ueher die zeitliche Eigenschaften der Entwicklungsvorgdnge

(71 pp.), 1908 (in Roux's Vortrdge, Heft v); and many later works.

* Cf. R. Robertson, Analysis of the growth of the white mouse into its con-

stituent processes, Journ. Gen. Physiology, vin, p. 463, 1926. Also Gustav

Backman, Wachstum d. w. Maus, Li^nds Univ. Arsskrift, xxxv, Nr. 12, 1939,

with copious bibliography. Backman analyses the complicated growth-curve of

the mouse into one main and three subordinate cycles, two df which are embryonic.

Cf. St Loup, Vitesse de croissance chez les souris. Bull. Soc. Zool. Fr. xviii,

p. 242, 1893; E. Le Breton and G. Schafer, Trav. Inst. Physiol. Strasburg, 1923;

E. C. MacDowell, Growth-curve of the suckling mouse. Science, Lxvin, p. 650,

1928; cf. Journ. Gen. Physiol, xi, p. 57, 1927; Ph. THeritier, Croissance. . .dfeins les

souris, Ann. Physiol, et Phys. Chemie, v, p. i, 1929.

I Memoires, iv, p. 191.

i
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second. Before entering on the pupal or chrysalis stage, when the

worm is about seven weeks old, a remarkable process of purgation
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morphoses of an insect are but phases in a process of growth was

clearly recognised by Swammerdam, in the Bihlid Naturae*.

A stick-insect (Dexippus) moults six or seven times in as many
months ; it lengthens at every ilioult, and keeps of the same length

until the next. Weight is gained more evenly; but before each

moult the creature stops feeding for a day or two, and a little weight

is lost in the casting pf the skin. After its last moult the stick-

insect puts on more weight for a while; but growth soon draws to

an end, and the bodily energies turn towards reproduction.

We have careful measurements of the locust from moult to moult,

and know from these the relative growth-rates of its parts, though

we cannot plot these dimensions against time. Unlike the meta-

morphosis of the silkworm, the locust passes through five larval

stages (or "instars") all much ahke, ' until in a final moult the

"hoppers" become winged. Here are three sets of measurements,

of Hmbs and head, from stage to stage f.

Growth of locust, from one moult to another

Length (mm.) Percentage-grpwth Ratios
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interest rate in the growth and metamorphosis of insects is known
as Dyar's, sometimes as Brooks's, law. According to Przibram, an

insect moults as soon (roughly speaking) as cell-division has doubled

the number of cells throughout the larval body. That being so, each

stage or instar should weigh twice as much as the one before, and

each linear dimension should increase by ^2, or 1-26 times—

a

Ineasure identical, to all intents and purposes, with Brooks's first

estimate. As sl first rough approximation the rule has a certain value.

According to Duarte's measurements the locust's total weight in-

creases from moult to moult by 2-31, 2-16, 242, 2-35, 2-21, or a

mean increase of 2-29, the cube-root of which is 1-32. Each phase

is doubled and more than doubled, in passing to the next*, but

Przibram's estimate is not far departed from.

Whatever truth Przibram's law may have in insects, or (as Fowler

asserted) in the Ostracods, it would seem to have none in the

Cladocera : and this for the sufficient reason that the shell (on which

the form of the creature depends) goes on growing all through post-

embryonic life without further division or multiphcation of its cells,

but only by their individual, and therefore collective, enlargementf.

Shells are easily weighed and measured and their various dimen-

sions have been often studied; only in oysters, pearl-oysters and

the Hke, have they been so kept under observation that their actual

age is known. The oyster-shell grows for a few weeks in spring just

before spawning time, and again in autumn when spawning is over

;

its growth is imperceptible at other times J.

* Cf. H. Przibram and F. Megusar, Wachstummessungen an Sphodromantis,

Arch. f. Entw. Mech. xxxiv, pp. 680-741, 1912; etc. How the discrepancy is

accounted for, by Bodenheimer and others, need not concern us here. But cf.

P.* P. Calvert, On rates of growth among. . .the Odonata, Proc. Amer. Phil. Soc.

Lxviii, pp. 227-274, 1929, who finds growth faster in nine cases out of ten than

Przibram's rule lays down.

Millet asserts, in support of Przibram's law, that in spiders mitotic cell-division

is confined to the epoch of the moult, and is then manifested throughout most of

the tissues (Bull, de Biologie {SuppL), viii, p. 1, 1926). On the other hand, the

rule is rejected by R. Gurney, Rate, of growth in Copepoda, Int. Rev. Hydrohiol.

XXI, pp. 189-27, 1929; Nobumasa Kagi, Growth-curves* of insect-larvae, Mem.
Coll. Agric. Kyoto, No. 1, 1926; and others.

t Cf. W. Rammer, Ueber die Giiltigkeit des Brooksschen Wachsturasgesetzes

bei den Cladoceren, Arch. f. Entw. Mech. cxxi, pp. 111-127, 1930.

X Cf. J. H. Orton, Rhythmic periods... in Ostrea, Jonrn. Mar. Biol. Assoc.

XV, pp. 365^27, 1928; Nature, March 2, 1935, p. 340.
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The window-pane oyster in Ceylon (Placuna placenta) has been
kept under observation for eight years, during which it grows from
two inches long to six (Fig. 36). The young grow quickly, and slow

down asymptotically towards the end; an S-shaped beginning to the

growth-curve has not been seen, but would probably be found in

the growth of the first year. Changes of shape as growth goes on

are hard to see in this and other shells ; rather is it characteristic oi

Fig. 36.

12 3 4 5 6 7

Age in years

Growth of the window-pane oyster; short diameter of the shell.

From Pearson's data.

them to keep their shape from first to last unchanged. Nevertheless,

shght changes are there; in the window-pane oyster the shell grows

somewhat rounder; in seven or eight years the one diameter multi-

plies (roughly speaking) by eleven, and the other by ten*.

Window-pane oysters (Placuna)

Ratio

117
109
107
1-06

105

The American slipper-limpet has lately and quickly become a pest

on English oyster-beds. Its mode of growth is interesting, though

* Joseph Pearson, The growth-rate. . .oi Placuna placenta, Ceylon Bulletin, 1928.

Short
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the actual rate remains unknown. It grows a little longer and

narrower with age. Its weight-length coefficient (of which we shall

have more to say presently) increases as time goes on, and appears

to follow a wavy course which might be accounted for if the

shell grew thinner and then thicker again, as if ever so little more

lime were secreted at one season than another. The growth of a

shell, or the deposition of its calcium carbonate, is much influenced

by temperature; clams and oysters enlarge their shells only so long

as the temperature stands above a certain specific minimum, and

the mean size of the same hmpet is very different in Essex and in

the United States*. Curious peculiarities of growth have been

discovered in slipper-hmpets. Young limpets clustered roimd an

old female grow slower than others which Uve sohtary and apart.

The solitary forms become in turn male, hermaphrodite and at last

female, but the gregarious or clustered forms . develop into males,

and so remain; development of male characters and duration of

the male phase depend on the presence or absence of a female in

the near neighbourhood.

Measurements of slipper-limpets

{From J. H. Eraser's data, epitomised)

No.
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The growth of the tadpole * is Hkewise marked by epochs of

retardation, and finally by a sudden and drastic change (Fig. 37).

There is a shght diminuti9n in weight immediately after the little

larva frees itself from what remains of the egg ; there is a retardation
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Fig. 38. Development of eel : from Leptocephalus larvae to young elver.

After Johannes Schmidt.
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larva. At the root of the matter hes the simple fact that meta-

morphosis involves wastage of tissue, increase of oxidation, expendi-

ture of energy and the doing of work. While as a general rule the

better the animals be fed the quicker they grow and the sooner they

metamorphose, Barfurth has pointed out the curious fact that a

short spell of starvation, just before metamorphosis is due, appears

to hasten the change.

The negative growth, or actual loss of bulk and weight which

often, and perhaps always, accompanies metamorphosis, is well

shewn in the case of the eel *. The contrast of size is great between

the flattened, lancet-shaped Leptocephalus larva and the httle black,

cylindrical, almost thread-Uke elver, whose magnitude is less than

that of the Leptocephalus in every dimension, even at first in length

(Fig. 38), as Grassi was the first to shew.

The lamprey's case is hardly less remarkable. The larval or

Ammocoete stage lasts for three years or more, and metamorphosis,

though preceded by a spurt of growth, is followed by an actual

decrease in size. The little brook lamprey neither feeds nor grows

after metamorphosis, but spawns a few months later and then dies;

but the big sea-lampreys become semi-parasitic on other fishes, and

live and grow to an unknown agef.

Such fluctuations as these are part and parcel of the general flux

of physiological activity, and suggest a finite stock of energy to be

spent, now more now less, on growth and other modes of expenditure.

The larger fluctuations are special interruptions in a process which

is never continuous, but is perpetually varied by rhythms of various

kinds and orders. Hofmeister shewed long ago, for instance, that

Spirogyra grows by fits and starts, in periods of activity and rest

alternating with one another at intervals of so many minutes {
(Fig. 39). And Bose tells us that plant-growth proceeds by tiny and

perfectly rhythmical pulsations, at intervals of a few seconds of time.

* Johannes Schmidt, Contributions to the life-history of the eel, Rapports

du Conseil Intern, pour Vexploration de la mer,y, pp. 137-274, Copenhagen, 1906;

and other papers.

t Cf. {int. al.) A. Meek, The lampreys of the Tyne, Rep. Dove Marine Laboratory

(N.S.), VI, p. 49, 1917; cf. L. Hubbs, in Papers of the Michigan Academy, iv,

p. 587, 1924.

% Die Lehre der Pflanzenzelle, 1867. Cf. W. J. Koningsberger, Tropismus und

Wachstum (Thesis), Utrecht, 1922.
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A crocus grows, he says, by little jerks, each with an amphtude of

about 0-002 mm., every twenty seconds or so, each increment being

followed by a partial recoil* (Fig. 40). If this be so we have come

20 40 60 80 100 120 140 160 180 200 220 240 260
minutes

Fig. 39. Growth in length (mm.) of Spirogyra. From Ostwald, after Hofmeister.

Fig. 40.

seconds.
Pulsations of growth in Crocus, in micro-millimeter?

After Bose.

down, so to speak, from a principle of continuity to a principle of dis-

continuity, and are face to face with what we might call, by rough

analogy, "quanta of growth." We seem to be in touch with things

of another order than the subject of this bookt.

* J. C. Bose, Plant Response, 1906, p. 417; Growth and Tropic Movements of

Plants, 1929.

t There is an apparent and perhaps a real analogy between these periodic

phenomena of growth and the well-known phenomenon of periodic, or oscillatory,

chemical change, as described by W. Ostwald and others; cf. (e.g.) Zeitschr. f.

phys. Chem. xxxv, pp. 33, 204, 1900.
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We may want now and then to make use of scanty data, and find

a rougli estimate better than none. The giant tortoises of the

Galapagos and the Seychelles grow to a great age, and some have

weighed 5001b. and more; but the scanty records of captive

tortoises shew much variation, depending on food and climate as

well as age, Ninety young tortoises brought from the Galapagos

in 1928 to the southern United States weighed on the average

18J lb., and grew to 44-3 lb. in two years. Six taken to Honolulu

weighed 26J lb. each in 1929, and 63 lb. each the following year.

Another, kept in CaHfornia, weighed 29 lb. and 360 lb. seven years

later, but only gained 65 lb. more in the next seven years. Growth,

1899 1906 1913

Fjg. 41. Approximate growth in weight of Galapagos tortoise.

as usual, is quick to begin with, slower lat^r on, and in the old giants

must be slow indeed. If we plot (Fig. 41 ) the three successive weights

of the CaHfornian specimen, at first they help us little; but we can

fit an S-shaped curve to the three points as a first approximation,

and it suggests, with some plausibility, that, at 29 lb. weight the

tortoise was from two to three years old. A loggerhead turtle,

which reaches a great size, was found to grow from a few grammes

to 42 lb. in three years, and to double that weight in another year

and a half; these scanty data are in fair accord, ^o far as they go,

with those for the giant tortoises*.

* For these and other data, see C. H. Townsend, Growth and age in the giant

tortoises of the Galapagos, Zoologica, ix, pp. 459-466, 1931; G. H. Parker, Growth
of the loggerhead turtle, Amer. Naturalist, lxvii, pp. 367-373, 1929; Stanley F.

Flower, Duration of Life in Animals, in, Reptiles, P.Z.S. (A), 1937, pp. 1-39.
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The horny plates of the tortoise grow, to begin with, a trifle faster

than the bony carapace below, and are consequently wrinkled into

folds. There is some evidence, at least in the young tortoises, that

these folds come once a year, which is as much as to say that there

is one season of the year when the growth-rates of bony and horny

carapace are especially discrepant. This would give an easy estimate

of age; but it is plainer in some species than in others, and it never

lasts for long.

re m years

Fig. 42. Growth-rate (approximate) of blue and finner whales.

The blue whale, or ' Sibbald's rorqual, largest of all animals,

grows to 100 ft. long or thereby, the females being a httle bigger

than the males. The mother goes with young eleven months. The

calf measures 22 to 25 ft. at birth, and weighs between three and

four tons; it is bom big, were it smaller it might lose heat too

quickly. It is weaned about nine months later, and is said to be

some 16 metres, or say 53 ft., long by then. It is believed to be

mature at two years old, by which time it is variously stated to be

60 or even 75 ft. long ; the modal size of pregnant females is about

80 ft. or rather more. How long, the whale takes to grow the

further 15 or 20 feet which bring it to its full size is not known;

but, even so far, the rapid growth and early maturity seem very

remarkable (Fig. 42). The Norwegian whalers give us statistics,
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month by month during the Antarctic season, of the sizes of pregnant

females and the foetuses they contain; and from these I draw the

following averages:

Antarctic blue whales; length of mother and offoetus

(Season 1938-39)
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they do not seem to be increasing, though at 84 ft. they still have

another 10 feet or more to grow. They may grow slower, and live

longer, than is often supposed*.

On the other hand, if we draw from the same official statistics

the mean size of mother-whale and foetus at some given epoch of

the year (e.g. March 1934), there appears to be a marked correlation

between them, such as would indicate very considerable growth

of the mother during the months of pregnancy. The matter deserves

further study, and the data need confirmation.

Blue whales; length of mother and foetus {March 1934)



176 THE RATE OF GROWTH [ch.

more may be kept in a tank or pond and watched as they grow.

Both ways are slow and difficult. The advantage of large numbers

is not obtained ; and it is needed all the more because the rate of

growth turns out to be very variable in fishes, as it doubtless is

in all cold-blooded or " poecilothermic " animals: changing and

fluctuating not only with age and season, but with food-supply,

temperature and other known and unknown conditions. Trout in

a chalk-stream so differ from those in the peaty water of a highland

burn that the former may grow to three pounds weight while the

latter only reach four ounces, at three years old or four*.

It is found (and easily verified) that shells on the seashore, kind

for kind, do not follow normal curves of frequency in respect of

magnitude, but fall into size-groups with intervals between, so

constituting a multimodal curve. The reason is that they are not

born all the year round, as we are, but each at a certain annual

breeding-season ; so that the whole population consists of so many
"groups," each one year older, and bigger in proportion, than

another. In short we find size-groups, and recognise them as age-

groups. Each group has its own spread or scatter, which increases

with ^ize and age; even from the first one group tends to overlap

another, but the older groups do so more and more, for they have

had more time and chance to vary. Hence this way of determining

age gets harder and less certain as the years go by; but it is a safe

and useful method for short-lived animals, or in the early lifetime

of the rest. Aristotle's fishermen used it when they recognised

three sorts or sizes of tunnies, the auxids, pelamyds and full-grown

fi^h; and when they found a scarcity of pelamyds in one year to

be followed by a failure of the tunny-fishery in the nextf.

Shells lend themselves to this method, as Louis Agassiz found when

he gathered periwinkles on the New England shore. Winckworth

found the Paphiae in Madras harbour "of two sizes, one group just

under 15 mm. in length, the other nearly all over 30 mm. A small

sample, dredged ^ve months earlier hora the same ground, was inter-

mediate between the other two." When the mean sizes of the two

groups were plotted against time, the lesser group being shifted

* Cf. C. A. Wingfield, Effect of environmental factors on the growth of brown
trout, Journ. Exp. Biol, xvii, pp. 435-448, 1939.

I Aristotle, Hist. Anim. vi, 571 a.
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back a year, a growth-curve extending over two seasons was obtained

;

when extrapolated, it seemed to start from zero about May or June,

and this date, at the beginning of the hot season, was in all proba-

bihty the actual spawning time. Growth stopped in winter, a

common thing in our northern climate but surprising at Madras,

where the sea-temperature seldom falls below 24° C. Shells over

40 mm. long were rare, and over 50 mm. hardly to be found—an

indication that Paphia seldom lives over a third season. Here then,

though the numbers studied were all too few, the method tells us

with httle doubt or ambiguity the age of a sample and the growth-

rate of the species to which it belongs*.

Dr C. J. G. Petersen of Copenhagen brought this method into use

for the study of fishes, and up to a certain point it is safe and

trustworthy though seldom easy. For one thing, it is hard to get

a "random sample" of fish, for one net catches the big and another

the small. The trawl-net takes all the big, but lets more and more

of the small ones through. The drift-net catches herring by their

heads; if too big, the head fails to catch and the fish goes free, if

too small the fish shps through; so the net selects a certain modal

size according to its mesh, and with no great spread or scatter.

When we use Petersen's method and plot the sizes of our catch of

fish, the younger age-groups are easily recognised, even though they

tend to overlap; but the older fish are few, each size-group has a

wider spread, and soon the groups merge together and the modal

cusps cease to be recognisable. There is no way, save a rough

conjectural one, of analysing the composite curve into the several

groups of which it is composed; in short, this method works well

for the younger, but fails for the older fish.

Fig. 44 is drawn from a catch of some 500 small cod, or codhng,

caught one November in the Firth of Forth, in a small-meshed

experimental trawl-net. They are too few for the law of large

numbers to take full effect; but after smoothing the curve, three

peaks are clearly seen, with some sign of a fourth, indicating about

* R. Winckworth, Growth of Paphia undulata, Proc. Malacolog. Soc. xix,

pp. 171-174, 1931. Cf. {int. al.) Weymouth, on Mactra stultorum. Bull. Calif.

Fish Comm. vii, 1923; Orton, on Cardium, Journ. Mar. Biol. Assoc, xiv, 1927,

on Ostrea, and on Patella, ibid, xv, 1928; Ikuso Hamai, on Limpets, Sci. Rep.

Tohoku Imp. Univ. (4), xn, 1937.
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11cm., 26, 44 and 60 cm., as the mean or modal sizes of four

successive broods. The dwindhng heights of the successive cusps

are a first approximation to a "curve of mortahty," shewing how
the young are many and the old are few. Again, plotting the several

sizes against time, we should get our curve of growth for four years,

or a first rough approximation to it. Thus we learn from a random

sample, caught in a single haul, the mean (or modal) sizes of a fish

at several epochs of its fife, say at two, three or even more successive

intervals of a year ; and we learn (to a first approximation) its rate

of growth and its actual age, for the slope of the growth-curve,

drawing to the base-fine, points to the time when growth began.

^, Cod. Nov. 1906. F. of F

20 JO 40

Length, in centimetres

Fig. 44. A catch of cod, shewing a multimodal curve of frequency.

Another haul, soon after, will add new points to the curve, and

confirm our first rough approximation.

An experiment in the Moray Firth, a month or two later, shewed

the first three annual groups in much the same way; but it also

shewed another group, of about 90 cm. long, and others larger still.

At first sight these did not seem to fit on to our four successive

year-groups, of 11, 26, 44 and 60 .cm.; but they did so after all,

only with a gap between. They were older fish, six and seven years

old, which had come back to the Moray Firth to breed after spending

a couple of years elsewhere.

It was thought at first that every such experiment should tally

with another, and bring us to a more and more accurate knowledge

of the growth-rate of this fish or that; but there were continual

discrepancies, and it was soon found that the rate varied from place
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to place, from month to month, and from one year to another.

The growth-rate of a fish varies far more than does that of a warm-

blooded animal. The general character of the curve remains*,

save that the fish continues to grow even in extreme old age, but

it draws towards its upper asymptote with exceeding slowness.

Fig. 45. Growth of cod (after Michael Graham); and of

mullet (after C. D. Serbetis).

The following estimate of the mean growth of North Sea cod is

based, by Michael Graham, on a great mass of various evidence;

and beside it, for comparison, is an estimate for the grey mullet,

by C. D. Serbetis. The shape of the curve (Fig. 45) is enough to

indicate that at six years old the cod is still growing vigorously f,

while the grey mullet has all but ceased to grow. As a matter of

* It is essentially an S-shaped curve, as usual; but the conditions of larval life

obscure the first beginnings of the S.

t Norwegian results, based largely on otoliths, are different. Gunner Rollefsen

holds that the spawning cod, or skrei, do not reach maturity, for the most part,

till 10 or 11 years old, and grow by no more than 1 to 3 cms. a year (Fiskeriskrifter,

Bergen, 1933).
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fact, 90 cm. is, or was till lately, the median size of cod* in our

Scottish trawl-fishery; one-tenth are over a metre long and the

largest are in the neighbourhood of 120 cm., with an occasional

giant of 150 cm. or even more. But it has come to pass that fish

of outstanding size are seen no more save on the virgin fishing

grounds; a Greenland halibut, brought home to Hull in 1938,

weighed four hundredweight, was nearly two feet thick, and must

have been of prodigious age.

Age (years)
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In the following table, we see (a) the sizes, and (6) the number
of scale-rings, in a sample of some 550 herring from the autumn
fishery off the east of Scotland.

Rings 3 4 5 6 7 8 9 10 11 12 Total Mean
cm. rings

31 — — — 1 1 _ 1 _ _ 1 4 8-5

30 — — — 7 5 6 4 — — — 22 7-3
29 — — 5 18 13 6 6 1 1 1 51 70
28 — 3 29 38 11 3 3 1 — — 88 5-9
27 2 13 41 34 5 5 2 _ _ _ 102 5-1

26 7 43 64 29 — — 1 _ _ _ 144 5.0
25 4 36 41 11 — — — — — — 92 4-6
24 2 17 15 4 — — — — — — 38 4-8
23 — 5 — — — — — — — — 5 4K)

Total 15 117 195 142 35 20 17 2 1 2

Mean 25-6 25-4 26-5 27-4 28-6 28-7 28-8 28-5 — —

In this sample, the sizes of the 550 fish are grouped in a somewhat

skew curve, about a mode at 26 cm. ; and the numbers of scale-rings

group themselves in like manner, but with rather more skewness,

about a modal number of five rings. Either way we look at it,

there is only one "group" of fish; and it is highly characteristic

of the herring that a single sample, taken from a single shoal,

exhibits a unimodal curve. Accepting in principle the view that

scale-rings tend to synchronise with age in years, we may draw this

first deduction that our sample consists in part (if not in whole)

of five-year old fish, whose average length is about 26 cm. ; and

this length, of 26 cm. for 5-ringed, or 5-year-old herring, agrees well

with many other determinations from the same region. We shall

be on the safe side if we deal, after this fashion, with the one

predominant group, or mode, in each sample of fish; and Fig. 46

shews an approximate curve of growth for our East Coast herring

drawn in this way.

But the further assumption is commonly and all but universally

made that each individual herring carries the record of its age on its

scale-rings. If this be so, then our sample of 550 fish is a com-

posite population of some ten separate broods or successive ages,

all mixed up in a shoal. And again, if so, the 5-year-olds in the

said population average 26-5 cm. in length, the 3-year-olds 25-6 cm.,

the 10-year-olds 28-5 cm. ; but these values do not fit into a normal
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curve of growth by any means. Still more obvious is it that the

several year-classes (if such they be) do not tally with the age-

composition of any ordinary population, nor agree with any ordinary

curve of mortality. But even if we had ten separate year-groups

represented here, which I most gravely doubt, all that we know of

the selective action of the drift-net forbids us to assume that we

are deahng with a fair random sample of the herring population;

so that, even though the number of rings did enable us to distinguish

the successive broods, we should still have no right to assume that

Fig. 46.

1 2 3 4 5 6

Years

Mean curve of growth of Scottish (East Coast) herring.

these annual broods actually combine in the proportions shewn,

to form the composite population.

It is held by many (in the first" instance by Einar Lea) that we

may deduce the dimensions of a herring at each stage of its past

life from the corresponding dimensions of the rings upon its scales.

Some such relation nmst obviously exist, but it is an approximation

of the roughest kind. For it involves the assumption not only that

the scales add ring to ring regularly year to year, and that fish

and scale grow all the while at corresponding rates or in direct

proportion to one another, but also that the scale grows by mere
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accretion, each annual increment persisting without further change

after it is once laid down. This is what happens in a moUuscan

shell, which is secreted or deposited as mere dead substance or

"formed material"; but it is by no means the case in bone, and

we have httle reason to expect it bf the bony mesoblastic tissue of

a fish's scale. It is much more likely (though we do not know for

sure) that "osteoblasts" and "osteoclasts" continue (as in bone) to

play their part in the scale's growth and maintenance, and that

some sort of give and take goes on. In any case, it is a matter of

Mean ajyparent length of one-year-old herring, as deduced by

scale-readingfrom herring of various ages or ''year-classes'^''

Year-class (or number
of rings)
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or dog, it passes through the same phases of growth ; and, to quote

Dr Johnson again, "whatsoever is formed for long duration arrives

slowly to its maturity*." In all cases growth begins slowly; it

attains a maximum velocity somewhat early in its course, and

afterwards slows down (subject to temporary accelerations) towards

a point where growth ceases altogether. But in cold-blooded

animals, as fish or tortoises, the slowing down is greatly protracted,

and the size of the creature would seem never to reach, but only

to approach asymptotically, to a maximal limit. This, after all,

is an important difference. Among certain still lower animals

growth ceases early but Hfe goes on, and draws (apparently) to no

predetermined end. So sea-anemones have been kept in captivity

for sixty or even eighty years, have fed, flourished and borne

offspring all the while, but have shewn no growth at all.

The rate of growth of various parts or organs f

That the several parts and organs of the body, within and

without, have their own rates of growth can be amply demonstrated

in the case of man, and illustrated also, but chiefly in regard to

external form, in other animals. There lies herein an endless

field for the study of correlation and of variability J.

In the accompanying table I show, from some of Vierordt's data,

the relative weights at various ages, compared with the weight at

birth, of the entire body, and of brain, heart and liver; also the

changing relation which each of these organs consequently bears,

as time goes on, to the weight of the whole body (Fig. 47) §.

* All of which is tantamount to a mere change of scale of the time-curve.

f This phenomenon, of incrementum inequale, as opposed to incrementum in

universum, was most carefully studied by Haller: "Incrementum inequale multis

modis fit, ut aliae partes corporis aliis celerius increscant. Diximus hepar minus

fieri, majorem pulmonem, minimum thymum, etc." (Elem. viii (2), p. 34.)

X See {int. al.) A. Fischel, Variabilitat und Wachsthum des embryonalen

Korpers, Morphol. Jahrb. xxiv, pp. 369-404, 1896; Oppel, Vergleickung des

Entwickelungsgrades der Organe zu verschiedenen Entwickelungszeiten hei Wirhel-

thieren, Jena, 1891; C. M. Jackson, Pre-natal growth of the human body and the

relative growth of the various organs and parts, Amer. Journ. of Anat. ix, 1909;

and of the albino rat, ibid, xv, 1913; L. A. Calkins, Growth of the human body in

the foetal period. Rep. Amer. Assoc. Anat. 1921. For still more detailed measure-

ments, see A. Arnold, Korperuntersuchungen an 1656 Leipziger Studenten, Ztschr.

f.
Konstitutionslehre, xv, pp. 43-113, 1929.

§ From Vierordt's Anatomische Tabellen, pp. 38, 39, much abbreviated.
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Weight of various organs, compared with the total weight of the human

body' (male). (From Vierordfs Anatomische Tahellen)

Percentage increase Percentage of body-wt.
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We see that neither brain, heart nor Hver keeps pace by any

means with the growing weight of the whole; there must then

be other parts of the fabric, probably the muscles and the bones,

which increase more rapidly than the general average. Heart and

liver grow nearly at the same rate, the liver keeping a little ahead

to begin with, and the heart making up on it in the end; by the

age of twenty-five both have multiplied their original weight at

birth about thirteen times, but the body as a whole has multiplied

by twenty-one. In contrast to these the brain has only multiplied

its weight about three and three-quarter times, and shews but little

increase since the child was four or five, and hardly any since it

was eight years old. Man and the gorilla are born with brains much

of a size; but the gorilla's brain stops growing very soon indeed,

while the child's has four years of steady increase. The child's

brain grows quicker than the gorilla's, but the great ape's body

grows much quicker than the child's; at four years old the young

gorilla has reached about 80 per cent, of his bodily stature, and the

child's brain has reached about 80 per cent, of its full size.

Even during foetal life, as well as afterwards, the relative weight of the

brain keeps on declining. It is about 18 per cent, of the body-weight in the

third month, 16 per cent, in the fourth, 14 per cent, in the fifth; and the

ratio falls slowly till it comes to about 12 per cent, at birth, say 10 per cent,

a year afterwards, and little more than 2 per cent, at twenty*. Many statistics

indicate a further decrease of brain-weight, actual as well as relative. The

fact has been doubted and denied ; but Raymond Pearl has shewn evidence

of a slow decline continuing throughout adult life f.

The latter part of the table shews the decreasing weights of the

organs compared with the body as a whole: brain, which was

12 per cent, of the body-weight at birth, falling to 2 per cent, at

five-and-twenty ; heart from 0-76 to 0-46 per cent.; liver from

4-6 to 2-78 per cent. The thyroid gland (as we know it in the rat)

grows for a few weeks, and then diminishes during all the rest of

the creature's Hfetime; even during the brief period of its own

growth it is growing slower than the body as a whole.

It is plain, then, that there is no simple and direct relation, holding

* Cf. J. Ariens Kappers, Proc. K. Akad. Wetensch., Amsterdam, xxxix, No. 7, 1936.

t R. Pearl, Variation and correlation in brain-weight, Biometrika, iv, pp. 13-104,

1905.
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good throughout life, between the size of the body and its organs;

and the ratio of magnitude tends to change not only as the individual

grows, but also with change of bodily size from one individual, one

race, one species to another. In giant and pigmy breeds of rabbits,

the organs have by no means the same ratio to the body-weight ; but

if we choose individuals of the same weight, then the ratios tend to

be identical, irrespective of breed*. The larger breeds of dogs are

for the most part lighter and slenderer than the small, and the organs

change their proportions with their size. The spleen keeps pace

with the weight of the body ; but the liver, hke the brain, becomes

relatively less. It falls from about 6 per cent, of the body-weight

in little dogs to rather over 2 per cent, in a great hound f.

The changing ratio with increasing magnitude is especially

marked in the case of the brain, which constitutes (as we have just

seen) an eighth of the body-weight at birth, and but one-fiftieth at

twenty-five. This faUing ratio finds its parallel in comparative

anatomy, in the general law that the larger the animal the smaller

(relatively) is the brain J. A falhng ratio of brain-weight during life

is seen in other animals. Max Weber § tells us that in the lion, at

five weeks, four months, eleven months and lastly when full-grown,

the brain represents the following fractions of the weight of the body

:

viz. i/18, 1/80, 1/184 and 1/546. And Kellicott has shewn that in the

dogfish, while certain organs, e.g. pancreas and rectal gland, grow

pari passu with the body, the brain grows in a diminishing ratio,

to be represented (roughly) by a logarithmic curve ||.

In the grown man, Raymond Pearl has shewn brain-weight to

increase with the stature of the indix'idual and to decrease with

his age, both in a straight-hne ratio, or linear regression, as the

* R. C. Robb, Hereditary size-limitation in the rabbit, Journ. Exp. Biol, vi,

1929.

t Cf. H. Vorsteher, Einfiuss d. Gesamtgrosse auf die Zusammensetzung des

Kbrpers; Diss., Leipzig, 1923.

X Oliver Goldsmith argues in his Animated Nature as follows, regarding the un-

likelihood of dwarfs or giants: "Had man been born a dwarf, he could not have

been a reasonable creature; for to that end, he must have a jolt head, and then he

would not have body and blood enough to supply his brain with spirits; or if he

had a small head, proportionable to his body, there would not be brain enough for

conducting life. But it is still worse with giants, etc."

§ Die Sdugethiere, p. 117.

II
Amer. Journ. of Anatomy, viii, pp. 319-353, 1908.



188 THE RATE OF GROWTH [ch.

statisticians call it. Thus the following wholly empirical equations

give the required ratios in the case of Swedish males

:

Brain-weight (gms.) = 1487-8 — 1-94 x age, or

= 915-06 + 2-86 X stature.

In the two sexes, and in different races, these empirical constants

will be greatly changed*; and Donaldson has further shewn that

correlation between brain-weight and body-weight is much closer

in the rat than in manf.
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to equal the body-weight; and here again we find the same tendency

towards uniformity*.

The converse to the unequal growth of organs is found in their

unequal loss of weight under starvation. Chossat found, in a

well-known experiment, that a starved pigeon had lost 93 per cent,

of its fat, about 70 per cent, of hver and spleen, 40 per cent, of its

muscles, and only 2 per cent, of brain and nervous tissues f. The

salmon spends many' weeks in the river before spawning, without

taking food. The muscles waste enormously, but the reproductive

bodies continue to grow.

As the internal organs of the body grow at different rates, so that

their ratios one to another alter as time goes on, so is it with those

hnear dimensions whose inconstant ratios constitute the changing

form and proportions of the body. In one of Quetelet's tables

he shews the span of the outstretched arms from year to year, com-

pared with the vertical stature. It happens that height and span

are so nearly co-equal in man that direct comparison means little

;

but the ratio of span to height (Fig. 48) undergoes a significant and

remarkable change. The man grows faster in stretch of arms than

he does in height, and span which was less at birth than stature b}''

about I per cent, exceeds it by about 4 per cent, at the age of

twenty. Quetelet's data are few for later years, but it is clear

enough that span goes on increasing in proportion to stature. How
far this is due to actual growth of the arms and how far to increasing

breadth of the chest is another story, and is not yet ascertained.

* Cf. A. Brandt, Sur le rapport du poids du cerveau a celui du corps chez

diflFerents aniraaux, Bull, de la Soc. Imp. des naturalistes de Moscou, XL, p. 525,

1867; J. Baillanger, De I'etendu de la surface du cerveau, Ann. Med. Psychol.

XVII, p. 1, 1853; Th. van Bischoff, Das Hirngewicht des Menschen, Bonn, 1880

(170 pp.), cf. Biol. Centralhl. i, pp. 531-541, 1881; E. Dubois, On the relation

between the quantity of brain and the size of the body, Proc. K. Akad. Wetensch.,

Amsterdam, xvi, 1913. Also, Th. Ziehen,^ Maszverhaltnisse des Gehirns, in

Bardeleben's Handh. d. Anatomie des Menschen; P. Warneke, Gehirn u. Korper-

gewichtsbestimmungen bei Saugern, Journ. f. Psychol, u. Neurol, xiii, pp. 355-403,

1909; B. Klatt, Studien zum Domestikationsproblem, Bibliotheca genetica, ii,

1921; etc. The case of the heart is somewhat analogous ; see Parrot, Zooi. Ja^r&.

(System.), vii, 1894; Piatt, in Biol. Centralhl. xxxix, p. 406, 1919.

t C. Chossat, Recherches sur I'inanition, Mem. Acad, des Sci., Paris, 1843,

p. 438.
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The growth-rates of head and body differ still more; for the

height of the head is no more than doubled, but stature is trebled,

Height of the head in man at various ages *

(After Quetelet, p. 207, abbreviated)

Men Women
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results from it in the bodily form of the child and the man is easy

to see.

The following table shews the relative sizes of certain parts and

organs of a young trout during its most rapid development; and

so illustrates in a simple way the varying growth-rates in different

parts of the body*. It would not be difficult, from a picture of the

little trout at any one of these stages, to draw its approximate

form at any other by the help of the numerical data here set

forth. In like manner a herring's head and tail grow longer,

the parts betw^een grow relatively less, and the fins change their

places a httle; the same changes take place with their specific

differences in related fishes, and herring, sprat and pilchard

owe their specific characters to their rates of growth or modes of

increment f.

Trout (Salmo fario) ; proportionate growth of various organs

(From Jenkinson's data)

Days
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Graded growth of bean-root
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A like problem occurs when we deal with rates of growth in

successive natural internodes; and we may then pass from the

actual growth of the internodes to the varying number of leaves

which they successively produce. Where we have whorls of leaves

at each node, as in Equisetum or in many water-weeds, then the

problem is simphfied; and one such case has been studied by

Ra3rmond Pearl*. In Ceratophyllum the mean number of leaves

increases with each successive whorl, but the rate of increase

diminishes from whorl to whorl as we ascend. On the main stem

the rate of change is very slow; but in the small twigs, or tertiary

branches, it becomes rapid, as we see from the following abbreviated

table

:

Number of leaves per whorl on the tertiary branches of

Ceratophyllum

Order of whorl ...
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stalk the growth-rate falls away ; the florets are of descending age,

from flower tO' bud: their graded differences of age lead to an

exquisite gradation. of size and form; the time-interval between

one and another, or the "space-time relation" between them all,

gives a peculiar quality—^we may call it phase-beauty—to the

whole. A clump of reeds or rushes shews this same phase-beauty,

and so do the waves on a cornfield or on the sea. A jet of water

is not much, but a fountain becomes a beautiful thing, and the

play of many fountains is an enchantment at Versailles.

On the weight-length coefficient, or ponderal itidex

So much for the visible changes of form which accompany

advancing age, and are brought about by a diversity of rates of

growth at successive points or in different directions. But it often

happens that an animal's change of form may be so gradual as to

pass unnoticed, and even careful measurement of such small changes

becomes difficult and uncertain. Sometimes one dimension is easily

determined, but others are hard to measure with the same accuracy.

The length of a fish is easily measured ; but the breadth and depth

of plaice or haddock are vaguer and more uncertain. We may then

make use of that ratio of weight to length which we spoke of in the

last chapter: viz. that W oc L^, or W ^ kL^, or W/L^ = k, where

k, the "ponderal index," is a constant to be determined for each

particular case*.

We speak of this /; as a "constant," with a mean value specific

to each species of animal and dependent on the bodily proportions

or form of that animal; yet inasmuch as the animal is continually

apt to change its bodily proportions during life, k also is continually

subject to change, and is indeed a very delicate index of such

* This relation, and how important it is, were clearly recognised by Herbert

Spencer in his Recent Discussions in Science, etc., 1871. The formula has been

X y/w
often, and often independently, employed: first perhaps in the form —y- x 100,

by R. Livi, L'indice ponderale, o rapporto tra la statura e il peso, Atti Soc. Romamt

Antropologica, v, 1897. Values of k for man and many animals are given by

H. Przibram, in Form und Formel, 1922. On its use as an index to the condition

or habit of body of an individual, see von Rhode, in Abderhalden's Arbeitsmethoden,

IX, 4. The constant k might be called, more strictly, ki, leaving kf, and k,i for

the similar constants to be deri-ved from the breadth and depth of the fish.
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progressive changes : delicate—because our measurements of length

are very accurate on the whole, and weighing is a still more dehcate

method of comparison.

Thus, in the case of plaice, when we deal with mean values for

large numbers and with samples so far "homogeneous" that they

are taken at one place and time, we find that k is by no means

constant, but varies, and varies in an orderly way, with increasing

size of the fish. The phenomenon is unexpectedly complex, much

more so than I was aware of when I first wrote this book. Fig. 50

120 —
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o 110

§ 100

^ U
90

'
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an epoch in the fish's life; it is about the size when sexual maturity

begins, or at least near enough to suggest a connection between the

two phenomena*.

A step towards further investigation would be to determine k for the two

sexes separately, and to see whether or no the point of inflection occurs, as

maturity is known to be reached, at a smaller size in the male. This d'Ancona

has done, not for the plaice but for the shad {Alosa finta). He finds that the

males are the first to reach maturity, first to shew a retardation of the rate

of growth, first to reach a maximal value of th^ ponderal index, and in all

probability the first to diet

•

Again we may enquire whether, or how, k varies with the time

of year; and this torrelation leads to a striking result J. For the

ponderal index fluctuates periodically with the seasons, falling

steeply to a minimum in March or April, and rising slowly to an

annual maximum in December (Fig. 51) §. The main and obvious

explanation hes in the process of spawning, the rapid loss of weight

thereby, and the slow subsequent rebuilding* of the reproductive

tissues; whence it follows that, without ever seeing the fish spawn,

and without ever dissecting one to see the state of its reproductive

system, we may by this statistical method ascertain its spawning

season, and determine the beginning and end thereof with con-

siderable accuracy. But all the while a similar fluctuation, of

much less amphtude, is to be found in voung plaice before the

spawning age; whence we learn that the* fluctuation is not only

due to shedding and replacement of spawn, but in part also to

seasonal changes in appetite and general condition.

Returning to our former instance, we now see that the March

and December samples of plaice, which shewed such discrepant

variations of the ponderal index with increasing size, happen to

The carp shews still more striking changes than does the plaice in the weight

-

length coefl&cient: in other words, still greater changes in bodily shape with

advancing age and increasing size; cf. P. H. Stnithers, The Champlain Watershed,

Albany, New York, 1930.

j- U. d'Ancona, II problema dell' accrescimento dei pesci, etc., Mem. R. Acad,

dei Lincei (6), n, pp. 497-540, 1928.

J Cf. Lammel, Ueber periodische Variationen in Organismen, Biol. Centralbl.

xxn, pp. 368-376, 1903.

§ When we restrict ourselves, for simphcity'a sake, to fish of one particular

size, we need not determine the values of k, for changes in weight are obvious

enough; but when we have small numbers and various sizes to deal with, the

determination of k helps very much.
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coincide with the beginning and end of the spawning season; the

fish were full of spawn in December, but spent and lean in March.

The weight-length ratio was, of necessity, higher at the former

season; and the faUing-off in condition, and in bulk, which the

March sample indicates, is more and more pronounced in the larger

and therefore more heavily spawn-laden fish.

JFMAMJJASONDJ
Fig. 51. Periodic annual change in the weight-length ratio of plaice.

Periodi-c relation of weight to length in plaice of 55 cm. long
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Plaice caught in a certain area, March 1907 and December 1905.

Variation of k, the weight-length coefficient, with size
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It is the rule in fishes and other cold-blooded vertebrates that

growth is asymptotic and size indeterminate, while in the warm-

blooded growth comes, sooner or later, to an end. But the

characteristic form is established earlier in the former case, and

changes less, save for the minor fluctuations we have spoken of.

In the higher animals, such as ourselves, the whole course of life

is attended by constant alteration and modification of form; and

Fig. 52. The ponderal index, or weight-length coefficient, in

man. From Quetelet's data.

we may use our weight-length formula, or ponderal index, to illus-

trate (for instance) the changing relation between height and weight

in boyhood, of which we spoke before (Fig. 52).

regalis, Bull. U.S. Bureau of Fisheries, xxxni, pp. 141-147, 1913; Selig Hecht,

Form and growth in fishes, Journ. of Morphology, xxvii, pp. 379-400, 1916;

J. Johnstone (Plaice), Trans. Liverpool Biolog. Soc. xxv, pp. 186-224, 1911;

J. J. Tesch (Eel), Journ. du Conseil, iii, 1927; Frances N. Clark (Sardine), Calif.

Fish. Bulletin, No. 19, 1928 (with full bibliography). For a discussion on statistical

lines, apart from any assumptions such as the "law of the cubes," see G. Buncker,

Korrelation zwischen Lange u. Gewicht, etc., Wissensch. Meerestmtersuch. Helgoland,

XV, pp. 1-26, 1923.
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The weight-length coefficient, or ponderal index, k, in young Belgians

(From Quetelefs figures)

(years)
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the height, of the animal. All these ratios change as time goes on.

The ratio of length to height increases, at first considerably, for the

legs seem disproportionately long at birth in the ox, as in other

Relations between the weight and certain linear dimensions of the ox
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dimensions is nearly over*. The ratio W/H^ increases steadily,

and at three years old is double what it was at birth. It is the

most variable of the' three ratios; and it so illustrates the some-

what obvious but not unimportant fact that k varies most for the

dimension which varies least, or grows most uniformly; in other

words, that the values of k, as determined at successive epochs for

any one dimension, are a measure of the variability of the other two.

The same ponderal index serves as an index of "build," or

bodily proportion; and its mean values have been determined for

various ages and f6r many races of mankind. Within one and the

ie>u



Ill] OF WHALES AND ELEPHANTS 203

Ratio of height to weight in man *

No. of
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to be 15-2, in gramme-inches. From this we calculate the weight

of the great rorqual, as follows

:

1 5*2 X SOO^
At 25 ft., or 300 inches, W = -—— = 4,100,000 g.

lUu

= 4,100 kg.

= 4 tons, nearly.

At 50 ft., TF = 4 X 23 tons = 32 tons.

100 ft. = 32 X 23 tons = 256 tons.

106 tons (the largest known) W = 305 tons, nearly.

The two independent estimates are in close agreement.

Of surface and volume

While the weight-length relation is of especial importance, and

is wellnigh fundamental to the understanding of growth and form

and magnitude, the corresponding relation of surface-area to weight

or volume has in certain cases an interest of its own. At the surface

of an animal heat is lost, evaporation takes place, and oxygen may

be taken in, all in due proportion as near as may be to the bulk

of the animal; and again the bird's wing is a surface, the area of

which must be in due proportion to the size of the bird. In hollow

organs, such as heart or stomach, area is the important thing rather

than weight or mass; and we have seen how the brain, an organ

not obviously but essentially and developmentally hollow, tends to

shew its due proportions when reckoned as a surface in comparison

with the creature's mass.

Surface cannot keep pace with increasing volume in bodies of

similar form; wing-area does not and cannot long keep pace with

the bird's increasing bulk and weight, and this is enough of itself

to set limits to the size of the flying bird. It is the ratio between

square-root-of-surface and cube-root-of-volume which should, in

theory, remain constant; but as a matter of fact this ratio varies

(up to a certain extent) with the circumstances, and in the case of

the bird's wing with varying modes and capabilities of _flight. The

owl, with his silent, effortless flight, capable of short swift spurts

of attack, has the largest spread of wings of all ; the kite outstrips

the other hawks in spread of wing, in soaring, and perhaps in speed.
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Stork and seagull have a great expanse of wing; but other skilled

and speedy fliers have long narrow wings rather than large ones.

The peregrine has less wing-area than the goshawk or the kestrel;

the swift and the swallow have less than the lark.

Mean ratio, VS/^^^W, between wing-area and weight of birds

{From Mouillard's data)

Ratio

Owls
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hardly a measurable, change of form*; but the shapes and looks

of man and woman go on changing long after the growing age is

over, even all their lives long. A centipede has its many pairs of

legs alike, to all intents and purposes; they begin alike and grow

uniformly. But a lobster has his great claws a,nd his small, his

lesser legs, his swimmerets and the broad flaps of his tail ; all these

begin ahke, and diverse rates of growth make up the difference

between them. Moreover, we may sometimes watch a single Umb
growing to an unusual size, perhaps in one sex and not in the other,

perhaps on one side and not on the other side of the body: such

are the "horns," or mandibles, of the stag-beetle, only conspicuous

in the male, and the great unsymmetrical claws of the lobster, or

of that extreme case the httle fiddler-crab {Uca pugnax). For such

well-marked cases of differential growth-ratio between one part and

another, JuHan Huxley has introduced the term heterogonyf.

Of the fiddler-crabs some four hundred males were weighed, in

twenty-five graded samples all nearly of a size, and the weights

of the great claw and of the rest of the body recorded separately.

To begin with the great claw was about 8 per cent., and at the end

about 38 per cent., of the total weight of the unmutilated body.

In the female the claw weighs about 8 per cent, of the whole from

beginning to end; and this contrast marks the disproportionate,

or heterogonic, rate of growth in the male. We know nothing

about the actual rate of growth of either body or claw, we cannot

plot either against time; but we know the relative proportions, or

relative rates of growth of the two parts of the animal, and this is

all that matters meanwhile. In Fig. 54, we have set off the successive

weights of the body as abscissae, up to 700 mgm., or about one-third

of its weight in the adult animal; and the ordinates represent the

corresponding weights of the claw. We see that the ratio between

the two magnitudes follows a curve, apparently an exponential

curve; it does in fact (as Huxley has shewn) follow a compound

* Cf, S. Hecht, Form and growth in fishes, Journ. Morphology, xxvii, pp. 379-

400, 1916; F. S. and D. W. Haramett, Proportional length-growth of garfish

(Lepidosteus), Growth, in, pp. 197-209, 1939.

t See Problems of Relative Growth, 1932, and many papers quoted therein.

The term, as Huxley, tells us, had been used by Pezard; but it Jiad been used, in

another sense, by Rolleston long before to mean an alternation of generations,

or production of offspring dissimilar to the parent.
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interest law, which (calhng y and x the weights of the claw and of

the rest of the body) may be expressed by the usual formula for

compound interest,

y = bx^, or log y = \ogb + k log x;

and the coefficients (6 and Jc) work out in the case of the fiddler-crab,

to begin with, at

2/
= 0-0073 xi-«2. .

300

100 200 300 400 500 600 700

Weight of body (mgm.)

Eig. 54. Relative weights of body and claw in the fiddler-

crab
{
Uca 'pugnax).

But after a certain age, or certain size, th^e coefficients no longer

hold, and new coefficients have to be found. Whether or no, the

formula is mathematical rather than biological; there is a lack of

either biological or physical significance in a growth-rate which

happens to stand, during part of an animaFs fife, at 62 per cent,

compound interest.

Julian Huxley holds, and many hoki with him, that the exponential

or logarithmic formula, or the compound-interest .law, is of general

application to cases of differential growth-rates. I do not find it to

be so : any more than we have found organ, organism or population

to increase by compound interest or geometrical progression, save
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under exceptional circumstances and in transient phase. Undoubtedly

many of Huxley's instances shew increase by compound interest,

during a phase of rapid and unstinted growth; but I find many

others following a simple-interest rather than a compound-interest

law.

Relative weights of claw and body in fiddler-crabs (Uca pugnax).

(Data abbreviated from Huxley, Problems of Relative Growth,

p. 12)

rt. of body
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From the observed data we may solve, by the method of least

squares, the simple equations

y = a -{- bx, z= c + dx,

or in other words, find the equations of the straight lines in closest

agreement with the observed data. The solutions are as follows*:

y - 11-02 + 0-512^, and z^- 5-64 + 0-368x,

the two coefficients 0-368 and 0-512 signifying the difference between

the rates *of increase of the two organs. The number of samples is

not very large, and some deviation is to be expected; nevertheless,

the calculated straight lines come close to the observed values.

40

10 20

Fig.

30 40 50

Total length (mm.)

55. Relative growth of body and mandible in reindeer-beetle

{Cydommatus tarandus).

The reindeer-beetle {Cydommatus tarandus), belonging to the

same family, shews much the same thing. The mandible grows in

approximately linear ratio to the body, save that it tends to be at

first a little above, and later on a little below, this Unear ratio

(Fig. 55).

Measurements o/ Cydommatus tarandus f (mm.)

Length of mandible (y)
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Once again we find close agreement between the observed and

calculated values, although the observations are somewhat few and

the equation is arrived at in a simple way. We may take it as

proven that the relation between the two growth-rates is essentially

linear.

A compound-interest law of growth occurs, as Malthus knew,

in cases, and at times, of rapid and unrestricted growth. But

unrestricted growth occurs under special conditions and for brief

50 100

Length of cranial portion (mm.)

150

Fig. 56. Relative growth of the cranial and facial portions of the

skull in the sheepdog. Cf. Huxley, p. 18, after Becher,

periods; it is the exception rather than the rule, whether in a

population or in the single organism. In cases of diiferential

growth the compound-interest law manifests itself, for the same

reason, when one of the two growth-rates is rapid and "unre-

stricted," and when the discrepancy between the two growth-rates is

consequently large, for instance in the fiddler-crabs. The compound-

interest law is a very natural mode of growth, but its range is
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limited. A linear relation, or simple-interest law, seems less likely

to occur; but the fact is, it does occur, and occurs commonly.

On so-called dimorphism

In a well-known paper, Bateson and Brindley shewed that among

a large number of earwigs collected in a particular locality, the

males fell into two groups, characterised by large or by small

DD
Fig. 57. Tail-forceps of earwig. From Martin Burr, after Willi Kuhl.

150
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Fig. .58. Variability of length of tail-forceps in a sample of earwigs.

After Bateson and Brindley, P.Z.S. 1892, p. 588.

tail-forceps (Fig. 57), with few instances of intermediate magnitude*.

This distribution into two groups, according to magnitude, is

illustrated in the accompanying diagram (Fig. 58); and the

* W. Bateson and H. H. Brindley, On some cases of variation in secondary

sexual characters [Forficula, Xylotrupa], statistically examined, P.Z.S. 1892,

pp. 585-594. Cf. D. M. Diakonow, On dimorphic variability of Forficula, Joum.
Genet, xv, pp. 201-232, 1925; and Julian Huxley, The bimodal cephalic horn of

Xylotrupa, ibid, xviii, pp. 45-53, 1927.
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phenomenon was described, and has been often quoted, as one

of dimorphism or discontinuous variation. In this diagram the

time-element does not appear; but 'it looks as, though it lay close

behind. For the two size-groups into which the tails of the earwigs

fall look curiously hke two age-groups such as we have already

studied in a fish, where the ages and therefore also the magnitudes of a

random sample form a discontinuous series (Fig. 59). And if, instead

of measuring the whole length of our fish, we had confined ourselves

to particular parts, .such as' head, or tail or fin, we should have

obtained discontinuous curves of distribution for the magnitudes

200
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Length in cm.

Fig. 59. Length of body in a random sample of plaice.

of these organs, just as for the whole body of the fish, and just as

for the tails of Bateson's earwigs. The differences, in short, with

which Bateson was dealing were a question of magnitude, and it

was only natural to refer these diverse magnitudes to diversities of

growth; that is to say, it seemed natural to suppose that in this

case of "dimorphism," the tails of the one group of earwigs (which

Bateson called the "high males") had either grown faster, or had

been growing for a longer period of time, than those of the "low

males." If the whole random sample of earwigs were of one and

the same age, the dimorphism would appear to be due to two

alternative values for the mean growth-rate, individual earwigs

varying around one mean or the other. If, on the other hand, the
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two groups of earwigs were of diiferent ages, or had passed through

one moult more or less, the phenomenon would be simple indeed,

and there would be no more to be said about it*. Diakonow made

the not unimportant observation that in earwigs living in un-

favourable conditions only the short-tailed type tended to appear.

In apparent close analogy with the case of the earwigs, and in

apparent corroboration of their dimorphism being due to age,

Fritz Werner measured large numbers of water-fleas, all apparently

adult, found his measurements falling into groups and so giving

multimodal curves. The several cusps, or modes, he interpreted

without difficulty as indicating diiferences of age, or the number

of moults which the creatures had passed through f (Fig. BO).

9
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Fig. 60. Measurements of the dorsal edge in a population of

Chydorus sphaericus, a water-flea. From Fritz Werner.

An apparently analogous but more difficult case is that of a

certain little beetle, Onthofhagus taurus, which bears two "horns"

on its head, of variable size or prominence. Linnaeus saw in it

a single species, Fabricius saw two; and the question long remained

an open one among the eniomologists. We now know that there

are two "modes," two predominant sizes in a continuous range of

* The number of moults is known to be variable in many species of Orthoptera,

and even occasionally in higher insects; and how the number of moults may be

influenced by hunger, damp or cold is discussed by P. P. Calvert, Proc. Amer.

Pkilos. Soc. Lxviii, p. 246, 1929. On the number of moults in earwigs, see E. B.

Worthington, Entomologist, 1926, and W. K. Weyrauch, Biol. Centralbl. 1929,

pp. 543-5^8.

f Fritz Werner, Variationsanalytische Untersuchungen an Chydoren, Ztschr. f.

Morphologie u. Oekologie d. Tiere, n, pp. 58-188, 1924.
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variation*. In the "complete metamorphosis" of a beetle there

is no room for a moult more or less, and the reason for the two

modal sizes remains hidden (Fig. 61).

But new hght has been thrown on the case of the earwigs, which

may help to explain other obscure diversities of shape and size

within the class of insects. At metamorphosis, and even in a simple

moult, the external organs of an insect may often be seen to unfold,

as do, for instance, the wings of a butterfly; they then quickly

harden, in a form and of a size with which ordinary gradual growth

I

200
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Fig. 61. Two forms of the male, in the beetle Ontkophagvs taurus.

has had nothing directly to do. This is a very peculiar phenomenon,

and marks a singular departure from the usual interdependence of

growth and form. When the nymph, or larval earwig, is about to

shed its skin for the last time, the tail-forceps, still soft and tender,

are folded together and wrapped in a sheath; they need to be

distended, or inflated, by a combined pressure of the body-fluid

(or haemolymph) and an intake of respiratory air. If all goes well,

* Rene Paulian, Bull. Soc. Zool. Fr. 1933; also Le polymorpMsme des mMea de

Cddoptires, Paris, 1935, p. 8.
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the forceps expand to their full size; if the .reature be weak or

underfed, inflation is incomplete and tho tail-forceps remain small.

In either case it is an affair of a few critical moments during the

final ecdysis; in ten minutes or less, the chitin has hardened, and

shape and size change no- more. Willi Kuhl, who has given us this

interesting explanation, suggests that the dimorphism observed by

Bateson and by Diakonow is not an essential part of the pheno-

menon; he has found it in one instance, but in other and much larger

samples he has found all gradations, but only a single,- well-marked

unimodal peak*.

The effect of temperature'f

The rates of growth which we have hitherto dealt with are mostly

based on special investigations, conducted under particular local

conditions; for instance, Quetelet's data, so far as we have used

them to illustrate the rate of growth in man, are drawn from his

study of the Belgian people. But apart from that "fortuitous"

individual variation which we have already considered, it is obvious

that the normal rate of growth will be found to vary, in man and

in other animals, just as the average stature varies, in different

locahties and in different "races." This phenomenon is a very

complex one, and is doubtless a resultant of many undefined con-

tributory causes; but we at least gain something in regard to it

when we discover that rate of growth is directly affected by

temperature, and doubtless by other physical conditions. Reaumur
was the first to shew, and the observation was repeated by Bonnet {,

that the rate of growth or development of the chick was dependent

on temperature, being retarded at temperatures below and somewhat

* Willi Kuhl, Die Variabilitat der abdominalen Korperanhange bei Forficula,

Ztsch. Morph. u. Oek. d. Tiere, xii, p. 299, 1924. Cf. Malcolm Burr, Discovery,

1939, pp. 340^345.

t The temperature limitations of life, and to some extent of growth, are sum-
marised for a large number of species by Davenport, Exper. Morphology, cc. viii,

xviii, and by Hans Przibram, Exp. Zoologie, iv, c. v.^

X Reaumur, L'art de faire eclorre et elever en toute saison des oiseaux domestiques,

soil par le moyen de la chaleur du fumee, soil par le moyen de celle du feu ordinaire,

Paris, 1749. He had also studied, a few years before, the effects of heat and cold

on growth-rate and duration of life in caterpillars and chrysalids: Memoires, ii,

p. 1, de la dnree de la vie des crisalides (1736). See also his Observations du
Thermometre, etc., Mem. Acad., Paris, 1735, pp. 345-376.
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accelerated at temperatures above the normal temperature of

incubation, that is to say the temperature of the sitting- hen. In

the case of plants the fact that growth is greatly affected by tem-

perature is a matter of famiUar knowledge; the subject was first

carefully studied by Alphonse De Candolle, and his results and those

of his followers are discussed in the textbooks of botany*.

That temperature is only one of the climatic factors determining growth and

yield is well known to agriculturists; and a method of "multiple correlation"

has been used to analyse the several influences of temperature and of rainfall

at different seasons on the future yield of our own crops f. The same joint

influence can be recognised in the bamboo; for it is said (by Lock) that the

growth-rate of the bamboo in Ceylon is proportional to the humidity of the

atmosphere, and again (by Shibata) that it is proportional to the temperature

in Japan. But BlackmanJ suggests that in Ceylon temperature conditions

are all that can be desired, but moisture is apt to be deficient, while in Japan

there is rain in abundance but the average temperature is somewhat low:

so that in the one country it is the one factor, and in the other country the

other, whose variation is both conspicuous and significant. After all, it is

probably rate of evaporation, the joint result of temperature and humidity,

which is the crux of the matter§. "Climate" is a subtle thing, and includes

a sort of micro-meteorology. A sheltered corner has a climate of its own; one

side of the garden-wall has a different climate to the other; and deep in the

undergrowth of a wood celandine and anemone enjoy a climate many degrees

warmer than what is registered on the screen ||.

Among the mould-fungi each several species has its own optimum tempera-

ture for germination and growth. At this optimum temperature growth is

further accelerated by increase of humidity ; and the further we depart from

the optimum temperature, the narrower becomes the range of humidity within

which growth can proceed^. Entomologists know, in like manner, how over-

abundance of an insect-pest comes, or is apt to come, with a double optimum

of temperature and humidity.

* Cf. {int. at.) H. de Vries, Materiaux pour la connaissance de I'influence de la

temperature sur les plantes, Arch. Neerlandaises, v, pp. 385-401, 1870; C. Linsser,

Periodische Erscheinungen des Pflanzenlebens, Mem. Acad, des Sc, 8t Petersbourg

(7), XI, XII, 1867-69; Koppen, Warme und Pflanzenwachstum, Bull. Soc. Imp.

Nat., Moscou, xliii, pp. 41-110, 1871; H. Hoffmann, Thermisehe Vegetations-

constanten, Ztschr. Oesterr. Ges. f. Meteorologie, xvii, pp. 121-131, 1881; Pheno-

logische Studien, Meteorolog. Ztschr. iii, pp. H3-120, 1886.

t See [int. al.) R. H. Hooker, Journ. Roy. Statist. Soc. 1907, p. 70; Journ. Roy.

Meteor. Soc. 1922, p. 46.

I F. F. Blackman, Ann. Bot. xix, p. 281, 1905.

§ Szava-Kovatz, in Petermann's Mitteilungen, 1927, p. 7.

II
Cf. E. J. Salisbury, On the oecological aspects of Meteorology, Q.J.R. Meteorol.

Soc. July 1939.

^ R. G. Tomkins, Proc. R.S. (B), cv, pp. 375^01, 1929.
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The annexed diagram (Fig. 62), showing growth in length of the

roots of some common plants at various temperatures, is a sufl&cient

illustration of the phenomenon. We see that there is always a

certain temperature at which the rate is a maximum ; while on either

side of the optimum the rate falls off, after the fashion of the normal

curve of error. We see further, from the data given by Sachs and

others, that the optimum is very much the same for all the common
plants of our own chmate. For these it is somewhere about 26° C.

80

70

M^ie 16 20 22 24 26 28 30 32 34 36 38 40°
Temp.

Fig. 62. Relation of rate of growth to temperature in certain

plants. From Sachs's data.

(say 77° F.), or about the temperature of a warm summer's day;

while it is considerably higher, naturally, in such plants as the melon

ot* the maize, which are at home in warmer countries than our own.

The bacteria have, in like manner, their various optima, and some-

times a high one. The tuberculosis-bacillus, as Koch shewed, only

begins to grow at about 28° C, and multipUes most rapidly at

37-38°, the body-temperature of its host.

The setting and ripening of fruit is a phase of growth stiU more

dependent on temperature; hence it is a "dehcate test of climate,"

and a proof of its constancy, that the date-palm grows but bears
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no fruit in Judaea, and the vine bears freely at Eshcol, but not in

the hotter country to the south*. Shellfish have their own appro-

priate spawning-temperatures; it needs a warm summer for the

oyster to shed her spat, and Hippopus and Tridacna, the great clams

of the coral-reefs, only do so when the water has reached the high

temperature of 30° C. For brown trout, 6° C. is found to be a

critical temperature, a minimum short of which they do not grow

at all; it follows that in a Highland burn their growth is at a

standstill for fully half the yearf.

That a rise of temperature accelerates growth is but part of the

story, and is not always true. Several insects, experimentally

reared, have been found to diminish in size as the temperature

increased J; and certain flies have been found to be larger in their

winter than their summer broods. The common copepod, Calmius

finmarchicus, has spring, summer and autumn broods, which (at

Plymouth §) are large, middle-sized and small; but the large spring

brood are hatched and reared in the cold "winter" water, and the

small autumn-winter brood in the warmest water of the year. In

the cold waters of Barents Sea Calanus grows larger still; of an

allied genus, a large species lives in the Antarctic, a small one in

the tropics, a middle-sized is common in the temperate oceans.

The large size of many Arctic animals, coelenterates and crustaceans,

is well known; and so is that of many tropical forms, Hke Fungia

among the corals, or the great Tritons and Tridacnas among
molluscs. Another common phenomenon is the increasing number

of males in late summer and autumn, as in the Rotifers and in the

above-mentioned Calani. All these things seem somehow related

to temperature; but other physical conditions enter iilto the case,

for instance the amount of dissolved oxygen in the cold waters, and

the physical chemistry of carbonate of Hme in the warm||.

The vast profusion of life, both great and small, in Arctic seas, the multitude

of individuals and the unusual size to which many species grow, has been

often ascribed to a superabundance of dissolved oxygen, but oxygen alone

would not go far. The nutrient salts, nitrates and phosphates, are the

* Cf. J. W. Gregory, in Geogr. Journ. 1914, and Journ. E. Geogr. Soc. Oct. 1930.

t Cf. C. A. Wingfield, op. cit. supra, p. 176.

X B. P. Uvarow, Trans. Ent. Soc. Lond. lxxix, p. 38, 1931.

§ W. H. Golightly and LI. Lloyd, in Nature, July 22, 1939.

li
Cf. B. G. Bogorow and others, in the Journ. M.B.A. xix, 1933-34.
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limiting factor in the growth of that micro-vegetation with which the whole

cycle of life begins. The tropical oceans are often very bare of these salts;

in our own latitudes there is none too much, and the spring-growth tends to

use up the supply. But we have learned from the Discovery Expedition

that these salts are so abundant in the Antarctic that plant-growth is never

checked for stint of them. Along the Chilean coast and in S.W. Africa,

cold Antarctic water wells up from below the warm equatorial current. It

is ill-suited for the growth of corals, which build their reefs in the warmer
waters of the eastern side ; but it teems with nourishment, breeds a plankton-

fauna of the richest kind, which feeds fishes preyed on by innumerable birds,

the guano of which is sent all over the world. Now and then persistent winds

thrust the cold current aside ; a new warm current, el Nino of the Chileans,

upsets the old equilibrium ; the fishes die, the water stinks, the birds starve.

The same thing happens also at Walfisch Bay, where on such rare occasions

dead fish lie piled up high along the shore.

It is curiously characteristic of certain physiological reactions,

growth among them, to be affected not merely by the temperature

of the moment, but also by that to which the organism has been

previously and temporarily exposed. In other words, acclimatisation

to a certain temperature may continue for some time afterwards to

affect all the temperature relations of the body*. That temporary

c<!>ld may, under certain circumstances, cause a subsequent accelera-

tion of growth is made use of in the remarkable process known as

vernalisation. An ingenious man, observing that a winter wheat failed

to flower when sown in spring, argued that exposure to the cold of

winter was necessary for its subsequent rapid growth ; and this he

verified by " chiUing" his seedlings for a month to near freezing-point,

after which they grew quickly, and flowered at the same time as the

spring wheat. The economic advantages are great of so shortening

the growing period of a crop as to protect it from autumn frosts in a

cold chmate or summer drought in a hot one ; much has been done,

especially by Lysenko in Russia, with this end in viewf.

The most diverse physiological processes may be afl'ected by

temperature. A great astronomer at Mount, Wilson, in California,

used some idle hours to watch the "trail-running" ants, which run

all night and all day. Their speed increases so regularly with the

temperature that the time taken to run 30 cm. suffices to tell the

* Cf. Kenneth Mellanby, On temperature coefficients and acclimatisation,

Nature, 3 August 1940.

t Of. {int. al.) V. H. Blackman, in Nature, June 13, 1936.
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temperature to 1° C. ! Of two allied species, one ran nearly half as

fast again as the other, at the same temperature*.

While at low temperatures growth is arrested and at temperatures

unduly high hfe itself becomes impossible, we have now seen that

within the range of more or less congenial temperatures growth

proceeds the faster the higher the temperature. The same is true

of the ordinary reactions of chemistry, and here Van't Hoff and

Arrheniusf have shewn that a definite increase in the velocity of

the reaction follows a definite increase of temperature, according to

an exponential law: such that, for an interval of n degrees the

velocity varies as x", x being called the "temperature coefficient"

for the reaction in question J. The law holds good throughout a

considerable range, but is departed from when we pass beyond

certain normal limits ; moreover, the value of the coefficient is found

to keep to a certain order of magnitude—somewhere about 2 for

a temperature-interval of 10° C.—which means to say that, the

velocity of the reaction is just about doubled, more or less, for a

rise of 10° C.

This law, which has become a fundamental principle of chemical

mechanics, is applicable (with certain qualifications) to the pheno-

mena of vital chemistry, as Van't Hoff himself was the first to declare

;

and it follows that, on much the same fines, one may speak of a

"temperature coefficient" of growth. At the same time we must
remember that there is a very important difference (though we need

not call it a fundamental one) between the purely physical and the

* Harlow Shapley, On the thermokinetics of Dolichoderine ants, Proc. Nat.

Acad. Sci. x, pp. 436-439, 1924.

t Van't HofF and Cohen, Studien zur chemischen Dynamik, 1896; Sv. Arrhenius,

Ztschr. f. phys. Chemie, iv, p. 226.

X For various instances of a temperature coefficient in physiological processes,

see (e.g.) Cohen, Physical Chemistry for ... Biologists (Enghsh edition), 1903;

Kanitz and Herzog in Zeitschr. f. Elektrochemie, xi, 1905; F. F. Blackman, Ann.
Bot. XIX, p. 281, 1905; K. Peter, Arch.f. Entw. Mech. xx, p. 130, 1905; Arrhenius,

Ergebn. d. Physiol, vii, p. 480, 1908, and Quantitative Laws in Biological Chemistry,

1915; Krogh in Zeitschr. f.allgem. Physiologie,xyi, -pp. 163,178,1914; James Gray,
Proc. E.S. (B), xcv, pp. 6-15, 1923; W. J. Crozier, many papers in Journ. Gen.

Physiol. 1924; J. Belehradek, in Biol. Reviews, v, pp. 1-29, 1930. On the general

subject, see E. Janisch, Temperaturabhangigkeit biologischer Vorgange und ihrer

kurvenmassige Analyse, Pfluger's Archiv, ccix, p. 414, 1925; G. and P. Hertwig,

Regulation von Wachstum . . . durch Umweltsfaktoren, in Hdb. d. normal, u. pathol.

Physiologie, xvi, 1930.
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physiological phenomenon, in that in the former we study (or seek

and profess to study) one thing at a time, while in the living body

we have constantly to do with factors which interact and interfere;

increase in the one case (or change of any kind) tends to be con-

tinuous, in the other case it tends to be brought, or to bring

itself, to arrest. This is the simple meaning of that Law of

Optimum, laid down by Errera and by Sachs as a general principle

of physiology ; namely that every physiological process which varies

(Hke growth itself) with the amount or intensity of some external

influence, does so under such conditions that progressive increase is

followed by progressive decrease; in other words, the function has

its optimum condition, and its curve shews a definite maximu^n.

In the case of temperature, as Jost puts it, it has on the one hand

its accelerating effect, which tends to follow Van't Hoff's law. But

it has also another and a cumulative effect upon the organism:

"Sie schadigt oder sie ermiidet ihn, und je hoher sie steigt desto

rascher macht sie die Schadigung geltend und desto schneller scbxeitet

sie voran*." It is this double effect of temperature on the organism

which gives, or helps to give us our "optim'im" curves, which (like

all other curves of frequency or error) are the expression, not of a

single solitary phenomenon,' but of a more or less complex resultant.

Moreover, as Blackman and others have pointed out, our "optimum"

temperature is ill-defined until we take account also of the duration

of our experiment; for a high temperature may lead to a short but

exhausting spell of rapid growth, while the slower rate manifested

at a lower temperature may be the best in the end. The mile and

the hundred yards are won by different runners; and maximum

rate of worldng,^ and maximum amount of work done, are two very

different things f.

In the case of maize, a certain series of experiments shewed that

the growth in length of the roots varied with the temperature as

follows J:

* On such limiting factors, or counter-reactions, see Putter, Ztschr. f. aUgem.

Physiologic, xvi, pp. 574-627, 1914.

t Cf. L. Errera, UOptimum, 1896 (Recueil d'oeuvres, Physiologie genirale, pp. 338-

368, 1910) ; Sachs, Physiologie d. Pflanzen, 1882, p. 233; PfeflFer, Pflanzenphysiologie,

n, p. 78, 194; and cf, Jost, Ueber die Reactionsgeschwindigkeit ira Organismus,

Biol. CentraWl. xxvi, pp. 225-244, 1906.

t After Koppen, Bull. Soc. Nat. Moscou, XLin, pp. 41-101, 1871.
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In Fig. 64 are shewn the mean rates of growth (based on about a hundred

experiments) at some thirty-four different temperatures between 0-8° and
29-3°, each experiment lasting rather less than twenty-four hours. Working

out the mean temperature coefficient for a great many combinations of these

values, I obtain a value of 1-092 per C.°, or 2-41 for an interval of 10°, and

a mean value for the whole series shewing a rate of growth of just about

1 mm. per hour at a temperature of 20°. My curve in Fig. 64 is drawn from

these determinations; and it will be seen that, while it is by no means exact

at the lower temperatures, and will fail us altogether at very high tem-

peratures, yet it serves as a satisfactory guide to the relations between rate

and temperature within the ordinary limits of healthy growth. Miss Leitch

18 20 22 24 26 28 30 32 34°C

Fig. 63. Relation of rate of growth to temperature in maize. Observed

values (after Koppen), and calculated curve.

holds that the curve is not a Van't Hoff curve ; and this, in strict accuracy,

we need not dispute. But the phenomenon seems to me to be one into which

the Van't Hoff ratio enters largely, though doubtless combine'd with other

factors which we cannot determine or eliminate.

While the above results conform fairly well to the law of the

temperature-coefficient, it is evident that the imbibition of water

plays so large a part in the process of elongation of the root or

stem that the phenomenon is as much or more a physical than a

chemical one: and on this account, as Blackman has remarked, the

data commonly given for the rate of growth in plants are apt to

be irregular, and sometimes misleading*. We have abundant

* F. F. Blackman, Presidential Address in Botany, Brit. Assoc. Dublin, 1908.
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illustrations, however, among animals, in which we may study the

temperature-coefficient under circumstances where, though the

phenomenon is always complicated, true metabohc growth or

chemical combination plays a larger role. Thus Mile. Maltaux and

Professor Massart* have studied the rate of division in a certain

flagellate, Chilomonas paramoecium, and found the process to take

20
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illustration, which has been often copied, of 0. Hertwig's work on

the effect of temperature on the rate of development of the tadpole*.
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From inspection of this diagram, we see that the time taken to

attain certain stages of development (denoted by the numbers

III-VII) was as follows, at 20° and at 10° C, respectively.
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That is to say, between the intervals of 10° and 20° C, if it take

m days, at a certain given temperature, for a certain stage of

development to be attained, it will take m x 1-128" days, when the

temperature is n degrees less, for the same stage to be arrived at.

Fig. 66 is calculated throughout from this value; and it will be

found extremely concordant with the original diagram, as regards

all the stages of development and the whole range of temperatures

shewn; in spite of the fact that the coefficient on which it is based

was derived by an easy method from a very few points on the

original curves. In hke manner, the following table shews the

"incubation period" for trout-eggs, or interval between fertihsation

and hatching, at different temperatures *

:

Incubation-period of trout-eggs

Temperature
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Using three other pairs of observations, we have the following

concordant results

:

At 12-2° and 2-8^, x - M91
10-0° 3-6° M79
9-0° 5-7°; M78
8-0° 5-0° M65

Mean M8
A very curious point is that (as Gray tells us) the young fish which

have hatched slowly at a low temperature are bigger than those

whose growth has been hastened by warmth.

Again, plaice-eggs were found to hatch and grow to a certain

length (4-6 mm.), as follows*:

Temperature (° C.) Days

41 230
6-1 181
8-0 13-3

10-1 10-3

120 8-3

From these we obtain, as before, the following constants:

At 12° and 8°, x = M3
12° 4-1° M4
10-1° 6-1° M5
8-0° 4-1° M5

Mean M4
The value of x is much the same for the one fish as for the other.

Karl Peter t, experimenting on echinoderm eggs, and making use

also of Richard Hertwig's experiments on young tadpoles, gives the

temperature-coefficients for intervals of 10° C. (commonly written

Qio) as follows, to which I have added the corresponding values

forg,:

Sphaerechinus Qiq =2-15 Qi^ 1-08

Echinus ?'13 1-08

Rana 2-86 Ml
* Data from A. C. Johansen and A. Krogh, Influence of temperature, etc.,

Publ. de Circonstance, No. 68, 1914. The function is here said to be a linear one

—

which would have been an anomalous and unlikely thing".

t Der Grad der Beschleunigung tierischer Entwicklung durch erhohte Tem-
peratur, Arch. f. Entw. Mech. xx, p. 130, 1905. More recently Bialaszewicz has

determined the coefficient for the rate of segmentation in Rana as being 2-4 per 10° C.
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These values are not only concordant, but are of the same order

of magnitude as the temperature-coefficient in ordinary chemical

reactions. Peter has also discovered the interesting fact that the

temperature-coefficient alters with age, usually but not always

decreasing as time goes on*:

Sphaerechinus Segmentation Q^q =2-29 Q^ = 1-09

Later stages 2-03 1-07

Echinus Segmentation 2-30 1-09

Later stages 2-08 1-08

Rana Segmentation 2-23 1-08

Later stages 3-34 1-13

Furthermore, the temperature-coefficient varies with the tem-

perature itself, falhng as the temperature rises—a rule which Van't

Hoff shewed to hold in ordinary chemical operations. Thus in Rana
the temperature-coefficient (Qiq) at low temperatures may be as

high as 5-6; which is just another way of saying that at low

temperatures development is exceptionally retarded.

As the several stages of development are accelerated by warmth,

so is the duration of each and all, and of life itself, proportionately

curtailed. The span of life itself may have its temperature-

coefficient—in so far as Life is a chemical process, and Death a

chemical result. In hot climates puberty comes early, and old age

(at least in women) follows soon; fishes grow faster and spawn

earlier in the Mediterranean than in the North Sea. Jacques Loeb f
found (in complete agreement with the general case) that the larval

stages of a fly are abbreviated by rise of temperature; that the

mean duration of life at various temperatures can be expressed by

a temperature-coefficient of the usual order of magnitude ; that this

coefficient tends, as usual, to fall as the temperature rises; and

lastly—what is not a little curious—^that the coefficient is very much
the same, in fact all but identical, for the larva, pupa and imago of

the fly.

* The diflferences are, after all, of small order of magnitude, as is all the better

seen when we reduce the ten-degree to one-degree coefficients.

t J- Loeb and Northrop, On the influence of food and temperature upon the

duration of life, Journ. Biol Chemistry, xxxii, pp. 103-121, 1917.
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Temperature-coefficients (Q^q) of Drosophila
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The constancy of these results might tempt us to look on the

phenomenon as a simple one, though we well know it to be highly

complex. But we had better rest content to see, as Arrhenius saw

in the beginning, a general resemblance rather than an identity

between the temperature-coefficients in physico-chemical and

biological processes*.

It was seen from the first that to extend Van't Hoff's law from physical

chemistry to physiology was a bold assumption, to all appearance largely

justified, but always subject to severe and cautious limitations. If it seemed

to simplify certain organic phenomena, further study soon shewed how far

from simple these phenomena were. Living matter is always heterogeneous,

and from one phase to another its reactions change; the temperature-

coefficient varies likewise, and indicates at the best a summation, or integration,

of phenomena. Nevertheless, attempts have been made to go a little further

towards a physical explanation of the physiological coefficient. Van't Hoff

suggested a viscosity-correction for the temperature -coefficient even of an

ordinary chemical reaction; the viscosity of protoplasm varies in a marked

degree, inversely with the temperature, and the viscosity-factor goes, perhaps,

a long way to account for the aberrations of the temperature-coefficient. It

has even been suggested (by Belehradekf) that the temperature- coefficients

of the biologist are merely those of protoplasmic viscosity. For instance, the

temperature-coefficients of mitotic cell-division have been shewn to alter

from one phase to another of the mitotic process, being much greater at the

start than at the end| ; and so, precisely, has it been shewn that protoplasmic

viscosity is high at the beginning and low at the end of the mitotic process §.

On seasonal growth

There is abundant evidence in certain fishes, such as plaice and

haddock, that the ascending curve of growth is subject to seasonal

fluctuations or interruptions, the rate during the winter months

bejng always slower than in the months of summer. Thus the

Newfoundland cod have their maximum growth-rate in June, and

in January-February they cease to grow; it is as though we super-

imposed a periodic annual sine-curve upon the continuous curve of

growth. Furthermore, as growth itself grows less and less from

year to year, so will the difference between the summer and the

Cf. L. V. Heilbronn, Science, lxii, p. 268, 1925.

t J. Belehradek, in Biol. Reviews, v, pp. 30-58, 1930.

X Cf. E. Faure-Fremiet, La cinetique du developpement, 1925; also B. Ephrussi,

C.R. cLxxxii, p. 810, 1926.

§ See {int. al.) L. V. Heilbronn, The Colloid Chemistry of Protoplasm, 1928.
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winter rates grow less and less. The fluctuation in rate represents

a vibration which is gradually dying out; the amplitude of the

sine-curve diminishes till it disappears; in short our phenomenon

is simply expressed by what is known as a "damped sine-curve*."

Growth in height of German military cadets, in half-yearly periods

Increment (em.)
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that they form two even and entirely separate series. Danish school-

boys show just the same periodicity of growth in stature.

The seasonal effect on visible growth-rate is much alike in fishes

and in man, in spite of the fact that the bodily temperature of the one

varies with the milieu externe and that of the other keeps constant

to within a fraction of a degree.

While temperature is the dominant cause, it is not the only cause

of seasonal fluctuations of growth; for alternate scarcity and

abundance of food is often, as in herbivorous animals, the ostensible

18

10

a
o
S
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The growth of trees

Some sixty years ago Sir Robert Christison, a learned and versatile

Edinburgh professor, was the first to study the "exact measurement"

of the girth of trees*; and his way of putting a girdle round the

tree, and fitting a recording device to the girdle, is copied in the

" dendrographs "
t used in forestry today. The Edinburgh beeches

begin to enlarge their trunks in late May or June, when in full leaf,

and cease growing some three months later;' the buds sprout and

the leaves begin their work before the cambium wakens to activity.

The beech-trees in Maryland do likewise, save that the dates are

a little earlier in the year; and walnut-trees on high ground in

Arizona shew a like short season of growth, differing somewhat in

date or "phase," just as it did in Edinburgh, from one year to

another.

Deciduous trees stop growing after the fall of the leaf, but ever-

greens grow all the year round, more or less. This broad fact is

illustrated in the following table, which happens to relate to the

Mean monthly increase in girth of trees at San Jorge, Uruguay : from

C. E. HalVs data. Values given in ^percentages of total annual

increment J
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and Acacia; the deciduous trees included Quercus, Populus, Robinia

and Melia. The result (Fig. 70) is much as we might expect.

The deciduous trees cease to grow in winter-time, and during

all the months when the trees are bare; during the warm season

the monthly values are regularly graded, approximately in a sine-

curve, with a clear maximum (in the southern hemisphere) about

the month of December. In the evergreens the amplitude of the

Fig. 70. Periodic annual fluctuation in rate of growth of trees in

the southern hemisphere. From C. E. Hall's data.

annual wave is much less ; there is a notable amount of growth all

the year round, and while there is a marked diminution in rate

during the coldest months, there is a tendency towards equality

over a considerable part of the warmer season. In short, the

evergreens, at least in this case, do not grow the faster as the

temperature continues to rise; and it seems probable that some of

them, especially the pines, are definitely retarded in their growth,

either by a temperature above their optimum or by a deficiency of

moisture, during the hottest season of the year.

Fig. 71 shews how a cypress never ceased to grow, but had alternate
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spells of quicker and slower growth, according to conditions of

which we are not informed. Another figure (Fig. 72) illustrates the

growth in three successive seasons of the Californian redwood, a near

ally of the most gigantic of trees. Evergreen though the redwood

is, its growth has periods of abeyance; there is a second minimum

about midsummer, and the chief maximum of the year may be that

before or after this.

Fig. 71. Growth of cypress (C. macrocarpa), shewing seasonal periodicity.

From MacDougal's data: smoothed curve.

1931 1932 1933

Fig. 72. Fortnightly increase of girth in Californian redwood (Sequoia

sempervirens), shewing seasonal periodicity. After MacDougal.

In warm countries tree-growth is apt to shew a double maximum,

for the cold of winter and the drought of summer are equally

antagonistic tQ it. Trees grow slower—and grow fewer—the farther

north we go, till only a few birches and willows remain, -stunted and

old; it is nearly a hundred years ago since Auguste Bravais*

shewed a steadily decreasing growth-rate in the forests between

50° and 70° N.

* Recherches sur la croissance du pin silvestre dans le nord de I'Europe, Mdm.
couronnees de VAcad. R. de Belgique, xv, 64 pp., 1840-41.
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The delicate measuring apparatus now used shews sundry minor

but beautiful phenomena. A daily periodicity of growth is a

common thing* (Fig. 73). In the tree-cactuses the trunk expands

by day and shrinks again after nightfall ; for the stomata close in sun-

light, and transpiration is checked until the sun goes down. But

it is more usual for the trunk to shrink from sunrise until evening

and to swell from sunset until dawn ; for by dayhght the leaves lose

70° F

Black Poplar

feet above ground, 59 inches

July 24 26

Fig. 73. Growth of black poplar, shewing daily periodicity.

After A. Mallock.

water faster, and in the dark they lose it slower, than the roots

replace it. The rapid midday loss of water even at the top of a

tail Sequoia is quickly followed by a measurable constriction of the

trunk fifty or even a hundred yards below f.

* The diurnal periodicity is beautifully shewn in the case of the hop by Johannes

Schmidt, C.R. du Laboratoire Carlsberg, x, pp. 235-248, Copenhagen, 1913.

•f
This rapid movement is accounted for by Dixon and Joly's "cohesion-theory"

of the ascent of sap. The leaves shew innumerable minute menisci, or cup-shaped

water-surfaces, in their intercellular air-spaces. As water evaporates from these

the little cups deepen, capillarity increases its pull, and suffices to put in motion

the strands or columns of water which run continuously through the vessels of

wood, and withstand rupture even under a pull of 100-200 atmospheres. See

{int. al.) H. H. Dixon and J. Joly, On the ascent of sap, Phil. Trans. (B), clxxxvi,

p. 563, 1895; also Dixon's Transpiration and the Ascent of Sap, 8vo, London, 1914.
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In the case of trees, the seasonal periodicity of growth and the

direct influence of weather are both so well marked that we are

entitled to make use of the phenomenon in a converse way, and to

draw deductions (as Leonardo da Vinci did*) as to climate during

past years from the varying rates of growth which the tree has

recorded for us by the thickness of its annual rings. Mr A. E.

Douglass, of the University .of California, has made a careful study

of this question, and I received from him (through Professor H. H.

Turner) some measurements of the average width of the annual

rings in Californian redwood, five hundred yfears old, in which trees

the rings are very clearly shewn. For the first hundred years the

mean of two trees was used, for the next four hundred years the

mean of five; and the means of these (and sometimes of larger

numbers) were found to be very concordant. A correction was

appHed by drawing a nearly straight fine through the curve for the

whole period, which line was assumed to represent the slowly

diminishing mean width of annual ring accompanying the increasing

size, or age, of the tree; and the actual growth as measured was

equated with this diminishing mean. The figures used give, then,

the ratio of the actual growth in each year to the mean growth

of the tree at that epoch.

It was at once manifest that the growth-rate so determined

shewed a tendency to fluctuate in a long period of between 100 and

200 years. I then smoothed the yearly values in groups of 100

(by Gauss's method of "moving averages"),, so that each number

thus found represented the mean annual increase during a century:

that is to say, the value ascribed to the year 1500 represented the

average annual growth during the whole period between 1450 and

1550, and so on. These values, so simply obtained, give us a curve

of beautiful and surprising smoothness, from which we draw the

direct conclusion that the climate of Arizona, during the last five

hundred years, has fluctuated with a regular periodicity of almost

precisely 150 years. I have drawn, more recently, and also from

Mr Douglass's data, a similar curve for a group of pine trees in

Calaveras County |. These trees are about 300 years old, and the

* Cf. J. Playfair McMurrich, Leonardo da Vinci, 1930, p. 247.

t When this was first written I had not seen Mr Douglass's paper On a method
of estimating rainfall by the growth of trees. Bull. Amer. Geograph. Soc. XLVI,
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data are reduced, as before, to moving averages of 100 years, but

without further correction. The agreement between the growth-

rate of these pines and that of the great Sequoias during the same

period is very remarkable (Fig. 74).

We should be left in doubt, so far as these observations go,

whether the essential factor be a fluctuation of temperature or an

alternation of drought and humidity; but the character of the

Arizona chmate, and the known facts of recent years, encourage

the behef that the latter is the more direct and more important

factor. In a New England forest many trees of many kinds were

studied after a hurricane; they shewed on the whole no correlation^

1440

CQ

Fig. 74. Long-period fluctuation in growth of Arizona redwood (Sequoia), from

A.D. 1390 to 1910; and of yellow pine from Calaveras County, from a.d. 1620

to 1920. (Smoothed in 100-year periods.)

between growth-rate and temperature, with the remarkable exception

(in the conifers) of a clear correlation with the temperature of

March and April, a month or two before the season's growth began.

In a cold spring the melting snows and early rains ran off into the

rivers, in a warm and early one they sank into the soil * ; in other

words, humidity was still the controlling factor. An ancient oak'

tree in Tunis is said to have recorded fifty years of abundant rain.

pp. 321-335, 1914; nor, of course, his great work on Climatic cycles and tree-

growth, Carnegie Inst. Publications, 1919, 1928, 1936. Mr Douglass does not

fail to notice the long period here described, but he is more interested in the

sunspot-cycle and other shorter cycles known to meteorologists. See also (int. al.)

E. Huntingdon, The fluctuating climate of North America, Geograph. Journ.

Oct. 1912; and Otto Pettersson, Climatic variation in historic and prehistoric

time, Svens^M, Hydrografisk-Biolog. Skrifter, v, 1914.

C. J. Lyon, Amer. Assoc. Rep. 1939; Nature, Apr. 13, 1940, p. 595.



Ill] OF THE INFLUENCE OF LIGHT 241

with short intervals of drought, during the eighteenth century ; then,

after 1790, longer droughts and shorter spells of rainy seasons*.

It has been often remarked that our common European trees,

such as the elm or the cherry, have larger leaves the farther north

we go ; but the phenomenon is due to the longer hours of dayhght

throughout the summer, rather than to intensity of illumination or

diJBFerence of temperature. On the other hand, long dayhght, by

prolonging vegetative growth, retards flowering and fruiting; and

late varieties of soya bean may be forced into early ripeness by

artificially shortening their dayhght at midsummer f.

The effect of ultra-violet hght, or any other portion of the

spectrum, is part, and perhaps the chief part, of the same problem.

That ultra-violet hght accelerates growth has been shewn both in

plants and animals f. In tomatoes, growth is favoured by just such

ultra-violet hght as comes very near the end of the solar spectrum §,

and as happens, also, to be especially absorbed by ordinary green-

house glass
II

. At the other end of the spectrum, in red or orange

light, the leaves become smaller, their petioles longer, the nodes

more numerous, the very cells longer and more attenuated. It is

a physiological problem, and as such it shews how plant-hfe is

adapted, on the whole, to just such rays as the sun sends; but it

also shews the morphologist how the secondary effects of chmate

may so influence growth as to modify both size and form^. An
analogous case is the influence of hght, rather than temperature,

in modifying the coloration of organisms, such as certain butterflies.

* Le chene Zeem d'Ain Draham, Bull, du Directeur General, Tunisie, 1927.

t That the plant grows by turns in darkness and in light, and has its characteristic

growth-phases in each, longer >or shorter according to species and variety and
normal habitat, is a subject now studied under the name of "photoperiodism,"

and become of great practical importance for the northerly extension of cereal

crops in Canada and Russia. Cf. R. G. Whyte and M. A. Oljhovikov, Nature,

Feb. 18, 1939.

I Cf. Kuro Suzuki and T. Hatano, in Proc. Imp. Acad, ofJapan, in, pp. 94-96, 1927.

§ Withrow and Benedict, in Bull, of Basic Scient. Research, iii, pp. 161-174, 1931.

II
Cf. E. C. Teodoresco, Croissance des plantes aux lumieres de diverses longueurs

d'onde, ^WTi. Sc. Nat, Bat. (8), pp. 141-336, 1929; N. Pfeiffer, Botan. Gaz. lxxxv,

p. 127, 1929; etc.

II See D. T. MacDougal, Influence of light and darkness, etc., Mem. N. Y. Botan.

Garden, 1903, 392 pp.; Growth in trees, Carnegie Inst. 1921, 1924, etc.; J. Wiesner,

Lichtgenuss der Pflunzen, vn, 322 pp., 1907; Earl S. Johnston, Smithson. Misc.

Contrib. 18 pp., 1938; etc. On the curious effect of short spells of light and dark-

ness, see H. Dickson, Proc. E.S. (B), cxv, pp. 115-123, 1938.
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Now if temperature or light affect the rate of growth in strict

uniformity, aHke in all parts and in all directions, it will only lead

to local races or varieties differing in size, as the Siberian goldfinch

or bullfinch differs from our own. But if there be ever so Httle of a

discriminating tendency such as to enhance the growth of one tissue

or one organ more than another*, then it must soon lead to racial,

or even "specific," difference of form.

It is hardly to be doubted that chmate has some such dis-

criminating influence. The large leaves of our northern trees are

an instance of it; and we have a better instance of it still in Alpine

plants, whose general habit is dwarfed though their floral organs

suffer little or no reduction f. Sunhght of itself would seem to be

a hindrance rather than a stimulant to growth; and the familiar

fact of a plant turning towards the sun means increased growth on

the shady side, or partial inhibition on the other.

More curious and still more obscure is the moon's influence on

growth, as on the growth and ripening of the eggs of oysters, sea-

urchins and crabs. Behef in such lunar influence is as old as Egypt;

it is confirmed and justified, in certain cases, nowadays, but the

way in which the influence is exerted is quite unknown J.

Osmotic factors in growth

The curves of growth which we have been studying have a

twofold interest, morphological and physiological. To the morpho-

logist, who has learned to recognise form as a "function of growth,"

the most important facts are these: (1) that rate of growth is an

orderly phenomenon, with general features common to various

organisms, each having its own characteristic rates, or specific

constants; (2) that rate of growth varies with temperature, and so

with season and with climate, and also with various other physical

factors, external and internal to the organism
; (3) that it varies in

different parts of the body, and along various directions or axes:

* Or as we might say nowadays, have a different "threshold value" in one
organ to another.

t Cf. for instance, NageH's classical account of the effect of change of habitat
on alpine and other plants, Sitzungsber. Baier. Akad. Wiss. 1865, pp. 228-284.

X Cf. Munro Fox, Lunar periodicity in reproduction, Proc. R.S. (B), xcv,

pp. 523-550, 1935; also Silvio Ranzi, Pubblic. Slaz. Zool. Napoli, xi, 1931.
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such variations being harmoniously "graded," or related to one

another by a "principle of continuity," so giving rise to the

characteristic form and dimensions of the organism and to the

changes of form which it exhibits in the course of its development.

To the physiologist the phenomenon of growth suggests many other

considerations, and especially the relation of growth itself to chemical

and physical forces and energies.

To be content to shew that a certain rate of growth occurs in

a certain organism under certain conditions, or to speak of the

phenomenon as a "reaction" of the living organism to its environ-

ment or to certain stimuh, would be but an example of that "lack

of particularity" with which we are apt to be all too easily satisfied.

But in the case of growth we pass some little way beyond these

limitations: to this extent, that an affinity with certain types of

chemical and physical reaction has been recognised by a great number

of physiologists*.

A large part of the phenomenon of growth, in animals and still

more conspicuously in plants, is associated with "turgor," that is

to say, is dependent on osmotic conditions. In other words, the

rate of growth depends (as we have already seen) as much or more

on the amount of water taken up into the living cells f, as on the

actual amount of chemical metabohsm performed by them; and

sometimes, as in certain insect-larvae, we can even distinguish

between tissues which grow by increase of cell-size, the result 'of

imbibition, and others which grow by multiplication of their

constituent cells |. Of the chemical phenomena which result in the

* Cf. F. F. Blackman, Presidential Address in Botany, Brit. Assoc, Dublin,

1908. The idea was first enunciated by Baudrimont and St Ange, Recherches sur

le developpement du foetus, Mem. Acad. Sci. xi, p. 469, 1851.

t Cf. J. Loeb, Untersuckungen zur physiologischen Morphologie der Tiere, 1892;

also Experiments on cleavage, Journ. Morphology, vii, p. 253, 1892; Ueber die

Dynamik des tierischen Wachstums, Arch. f. Entw. Mech. xv, p. 669, 1902-3;

Davenport, On the role of water in growth, Boston Soc. N.H. 1897; Ida H. Hyde

in Amer. Journ. Physiology, xii, p. 241, 1905; Bottazzi, Osmotischer Druck und

elektrische Leitungsfahigkeit der Fliissigkeiten der Organismen, in Asher-Spiro's

Ergebnisse der Physiologic, vn, pp. 160-402, 1908; H. A. Murray in Journ. Gener.

Physiology, ix, p. 1, 1925; J. Gray, The role of water in the evolution of the

terrestrial vertebrates, Journ. Exper. Biology, vi, pp. 26-31, 1928; and A. N. J. Heyn,

Physiology of cell-elongation, Botan. Review, vi, pp. 515-574, 1940.

X Cf. C. A. Berger, Carnegie Inst, of Washington, Contributions to Embryology,

xxvu, 1938.
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actual increase of protoplasm we shall speak presently, but the role

of water in growth deserves a passing word, even in our morpho-

logical enquiry.

The lower plants only Uve and grow in abundant moisture; lew

fungi continue growing when the humidity falls below 85 per cent,

of saturation, and the mould-fungi, such as Penicillium, need more

moisture still (Fig. 75). Their hmit is reached a little below 90%.

Humidity ^

I.
75. Growth of PeniciUium in relation to humidity.

Growth of PeniciUium (at 25° C.) *

Humidity
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another. It has an upper limit of size vaguely characteristic of the

species, and if fed well and often it may reach it in a year ; on stinted

diet it grows slowly or may dwindle down; it may be kept at

wellnigh what size one pleases. Certain full-grown anemones were

left untended in war-time, unfed and in water which evaporated

down to half its bulk; they shrank down to little beads, and grew

up again when fed and cared for.

Loeb shewed, in certain zoophytes, that not only must the cells

be turgescent in order to grow, but that this turgescence is possible

only so long as the salt-water in which the cells lie does not overstep

a certain limit of concentration: a limit reached, in the case of

Tubularia, when the salinity amounts to about 3-4 per cent. Sea-

water contains some 3-0 to 3-5 per cent, of salts in the open sea,

but the salinity falls much below this normal, to about 2-2 per cent.,

before Tubularia exhibits its full turgescence and maximal growth;

a further dilution is deleterious to the animal. It is likely enough

that osmotic conditions control, after this fashion, the distribution

and local abundance of many zoophytes. Loeb has also shewn*

that in certain fish-eggs (e.g. of Fundulus) an increasing concentration,

leading to a lessening water-content of the egg, retards the rate of

segmentation and at last arrests it, though nuclear division goes on

for some time longer.

The eggs of many insects absorb water in large quantities, even

doubling their weight thereby, and fail to develop if drought prevents

their doing so ; and sometimes the egg has a thin-walled stalk, or else

a "hydropyle," or other structure by which the water is taken inf.

In the frog, according to Bialaszewicz J, the growth of the embryo

while within the vitelline membrane depends wholly on absorption

of water. The rate varies with the temperature, but the amount

of water absorbed is constant, whether growth be fast or slow.

Moreover, the successive changes of form correspond to definite

quantities of water absorbed, much of which water is intracellular.

The solid residue, as Davenport Has also shewn, may even diminish

* Pfinger's Archiv, lv, 1893.

t Cf. V. B. Wigglesworth, hised Physiology, 1939, p. 2.

% Beitrage zur Kenntniss d. Wachstumsvorgange bei Amphibienerabryonen, Bull.

Acad. Sci. de Cracovie, 1908, p. 783; also A. Drzwina and C. Bohn, De Taction. . .dea

solutions salines sur les larves des batraciens, ibuL 1906.
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notably, while all the while the embryo continues to grow in bulk

and weight. But later on, and especially in the higher animals, the

water-content diminishes as growth proceeds and age advances;

and loss of water is followed, or accompanied, by retardation and

cessation of growth. A crab loses water as each phase of growth

draws to an end and the corresponding moult approaches; but it

absorbs water in large quantities as soon as the new period of

growth begins*. Moreover, that water is lost as growth goes on has

been shewn by Davenport for the frog, by Potts for the chick, and

particularly by Fehhng in the case of man. Fehhng's results may
be condensed as follows

:

Age in weeks (man) 6 17 22 24 26 30 35 39

Percentage of water 97-5 91-8 92-0 89-9 86-4 83-7 82-9 74-2

I

The following illustrate Davenport's results for the frog:

Age in weeks (frog)
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Distribution of water in a hen's egg



248 THE RATE OF GROWTH [ch.

distributed in the tissues that water may be*. Land animals have

evolved from water animals with Httle change in this respect,

though the constant proportion of water is variously achieved.

A. newt loses moisture by evaporation with the utmost freedom, and

regains it by no less rapid absorption through the skin; while a

lizard in his scaly coat is less hable to the one and less capable of

the other, and must drink to replace what water it may lose.

We are on the verge of a difficult subject when we speak of the

role of water in the living tissues, in the growth of the organism,

and in the manifold activities of the cell ; and. we soon learn, among

other more or less unexpected things, that osmotic equihbrium is

neither universal nor yet common in the living organism. The yolk

maintains a higher osmotic pressure than the white of the egg—so

long as the egg is living; and the watery body of a jellyfish, though

aot far off osmotic equilibrium, has a somewhat less salinity than

the sea-water. In other words, its surface acts to some extent as

a semipermeable membrane, and the fluid which causes turgescence

of the tissues is less dense than the sea-water outside!.

In most marine invertebrates, however, the body-fluids con-

stituting the milieu interne are isotonic with the milieu externe, and

vary in these animals pari passu with the large variations to which

sea-water itself is subject. On the other hand, the dwellers in

fresh-water, whether invertebrates or fishes, have, naturally, a more

concentrated medium within than without. As to fishes, diiferent

kinds shew remarkable differences. Sharks and dogfish have an

osmotic pressure in their blood and their body fluids little diiferent

* The vitreous humour is nearly all water, the enamel has next to 'none, the

grey matter has some 86 per cent., the bones, say 22 per cent. ; lung and kidney

take up mor^ than they can hold, and so become excretory or regulatory organs.

Eggs, whether of dogfish, salmon, frogs, ' snakes or birds, are composed, roughly

speaking, of half water and half solid matter.

t Cf. {int. al.) G. Teissier, Sur la teneur en eau. . .de Chrysaora, Bull. Soc. Biol,

de France, 1926, p. 266. And especially A. V. Hill, R. A. Gortner and others. On

the state of water in colloidal and living systems. Trans. Faraday Soc. xxvi,

pp. 678-704, 1930. For recent literature see (e.g.) Homer Smith, in Q. Rev. Biol.

vn, p. 1, 1932; E. K. Marshall, Physiol. Rev. xiv, p. 133, 1934; Lovatt Evans,

Recent Advances in Physiology, 4th ed., 1930; M. Duval, Recherches. . .sur le milieu

interieur des animaux aquatiques, Thhe, Paris, 1925; Paul Portier, Physiologic des

animaux marins. Chap, iii, Paris, 1938; G. P. Wells and I. C. Ledingham, Effects

of a hypotonic environment, Journ. Exp. Biol, xvii, pp. 337-352, 1940.
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from that of the sea-water outside: but with certain chemical

diiferences, for instance that the chlorides within are much

diminished, and the molecular concentration is eked out by large

accumulations of urea in the blood. The marine teleosts, on the

other hand, have a much lower osmotic pressure within than that

of the sea-water outside, and only a httle higher than that of their

fresh-water allies. Some, hke the conger-eel, maintain an all but

constant internal concentration, very different from that outside;

and this fish, like others, is constantly absorbing water from the sea

;

it must be exuding or excreting salt continually*. Other teleosts

differ greatly in their powers of regulation and of tolerance, the

common stickleback (which we may come across in a pool or in the

middle of the North Sea) being exceptionally tolerant or "eury-

halinef." Physiology becomes "comparative" when it deals with

differences such as these, and Claude Bernard foresaw the existence

of just such differences: "Chez tous les etres vivants le milieu

interieur, qui est un produit de I'organisme, conserve les rapports

necessaires d'echange avec le milieu exterieur; mais a mesure que

I'organisme devient plus parfait le milieu organique se specifie, et

s'isole en quelque sorte de plus en plus au milieu ambiant J." Claude

Bernard was building, if I mistake not, on Bichat's earUer concept,

famous in its day, of life as "une alternation habituelle d'action de

la part des corps exterieurs,* et de reaction de la part du corps

vivant": out of which grew his still more famous aphorism, "La

vie est I'ensemble des fonctions qui resistent a la mort§."

One crab, like one fish, differs widely from another in its power

* Probably by help of Henle's tubules in the kidney, which structures the dogfish

does not possess. But the gills have their part to play as water-regulators, as

also, for instance, in the crab.

t The grey mullets go down to the sea to spawn, but may live and grow in

brackish or nearly fresh-water. The several species differ much in their adaptability,

and Brunelli sets forth, as follows, the range of salinity which each can tolerate

:

M. auratus 24-35 per mille

saliens 16-40

chelo 10-40
capita 5-40
cephalus 4^0

X Introduction d Vetude de la medecine experimentale, 1855, p. 110. For a dis-

cussion of this famous concept see J. Barcroft, "La fixite du milieu interieur est

la condition de la vie libre," Biol. Reviews, viii, pp. 24-87, 1932.

§ Sur la vie et la mart, p. 1.



250 THE RATE OF GROWTH [ch.

of self-regulation; and these physiological differences help to explain,

in both cases, the limitation of this species or that to more or less

brackish, or more or less saline, waters. In deep-sea crabs {Hyas,

for instance) the osnjotic pressure of the blood keeps nearly to that

of the milieu exteme, and falls quickly and dangerously with any

dilution of the latter; but the httle shore-crab (Cardnus moenas)

can hve for many days in sea-water diluted down to one-quarter of

its usual sahnity. Meanwhile its own fluids dilute slowly, but not

near so far; in other words, this crab combines great powers of

osmotic regulation with , a large capacity for tolerating osmotic

gradients which are beyond its power to regulate. How the unequal

balance is maintained is yet but httle understood. But we do know
that certain organs or tissues, especially the gills and the antennary

gland, absorb, retain or ehminate certain elements, or certain ions,

faster than others, and faster than mere diffusion accounts for; in

other words, "ionic*' regulation goes hand in hand with "osmotic"

regulation, as a distinct and even more fundamental phenomenon*.

This at least seems generally true—and only natural—that quickened

respiration and increased oxygen-consumption accompany all such

one-sided conditions: in other words, the "steady state" is only

maintained by the doing of work and the expenditure of energyf.

To the dependence of growth on the uptake of water, and to the

phenomena of osmotic balance and its regulation, HoberJ and also

Loeb were inclined to refer the modifications of form which certain

phyllopod Crustacea undergo when the highly sahne waters which

they inhabit are further concentrated, or are abnormally diluted.

Their growth is retarded by increased concentration, so that

individuals from the more saline waters appear stunted and dwarfish

;

and they become altered or transformed in other ways, suggestive

of "degeneration," or a failure to attain full and perfect develop-

* See especially D. A. Webb, Ionic regulation in Cardnus moenas, Proc. R.S. (B),

cxxix, pp. 107-136, 1940.

t In general the fresh-water Crustacea have a larger oxygen-consumption than

the marine. Stenohaline and euryhaline are terms applied nowadays to species

which are. confined to a narrow range of salinity, or are tolerant of a wide one.

An extreme case of toleration, or adaptability, is that of the Chinese woolly-handed

crab, Eriockeir, which has not only acclimatised itself in the North Sea but has

ascended the Elbe as far as Dresden.

X R. Hober, Bedeutung der Theorie der Losungen fiir Physiologic und Medizin,

Biol. Centralbl. xix, p. 272, 1899.
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merit*. Important physiological changes ensue. The consumption

of oxygen increases greatly in the stronger brines, as more and more

active " osmo-regulation " is required. The rate of multiplication is

increased, and parthenogenetic reproduction is encouraged. In the

less sahne waters male individuals, usually rare, become plentiful,

and here the females bring forth their young alive ; males disappear

altogether in the more concentrated brines, and then the females

lay eggs, which, however, only begin to develop when the sahnity

is somewhat reduced.

The best-known case is the little brine-shrimp, Artemia salina,

found in one form or another all the world over, and first discovered

nearly two hundred years ago in the salt-pans at Lymington.

Among many allied forms, one, A. milhausenii, inhabits the natron-

lakes of Egypt and Arabia, where, under the name of "loul," or

"Fezzan-worm," it is eaten by the Arabsf. This fact is interesting,

because it indicates (and investigation has apparently confirmed)

that the tissues of the creature are not impregnated with salt, as

is the medium in which it hves. In short Artemia, hke teleostean

fishes in the sea, hves constantly in a "hypertonic medium"; the

fluids of the body, the milieu interne, are no more salt than are those

of any ordinary crustacean or other animal, but contain only some

0-8 per cent, of NaCl J , while the milieu externe may contain from

3 to 30 per cent, of this and other salts; the skin, or body-wall, of.

the creature acts as a "semi-permeable membrane," through which

the dissolved salts are not permitted to diffuse, though water passes

freely. When brought into a lower concentration the animal may
grow large and turgescent, until a statical equilibrium, or steady

state, is at length attained.

Among the structural changes which result from increased con-

* Schmankewitsch, Zeitschr. f. wiss. Zool. xxix, p. 429, 1877. Schraankewitsch

has made equally interesting observations on change of size and form in other

organisms, after some generations in a milieu of altered density ; e.g. in the flagellate

infusorian Ascinonema acinus Biitschli.

t These "Fezzan-worms," when first described, were supposed to be "insects'

eggs"; cf. Humboldt^ Personal Narrative, vi, i, 8, note; Kirby and Spence, Letter x.

X See D. J. Kuenen, Notes, systematic and physiological, on Artemia, Arch.

N4erland. Zool. iii, pp. 365-449, 1939; cf. also Abonyi, Z.f. w. Z. cxiv, p. 134, 1915.

Cf. Mme. Medwedewa, Ueber den osmotischen Druck der Haemolymph v. Artemia;

in Ztsch. f. vergl. Physiolog. v, pp. 547-554, 1922.
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centration of the brine (partly during the hfe-time of the individual,

but more markedly during the short season which suffices for the

development of three or four, or perhaps more, successive genera-

tions), it is found that the tail comes to bear fewer and fewer

bristles, and the tail-fins themselves tend at last to disappear:

these changes corresponding to what have been described as the

specific characters of A. milhausenii, and of a still more extreme

form, A. koppeniana] while on the other hand, progressive dilution

of the water tends ' to precisely opposite conditions, resulting in

forms which have also been described as separate species, and even

u ^wwwWWWH
I

I

Artewia s.str. Callaonella

Fig. 77. Brine-shrimps (Artemia), from more or less saline water. Upper figures

shew tail-segment and tail-fins; lower figures, relative length of cephalothorax

and abdomen. After Abonyi.

referred to a separate genus, Callaonella, closely akin to Branchipus

(Fig. 77). Pari passu with these changes, there is a marked change

in the relative lengths of the fore and hind portions of the body,

that is to say, of the cephalothorax and abdomen: the latter

growing relatively longer, the Salter the water. In other words,

not only is the rate of growth of the whole animal lessened by the

sahne concentration, but the specific rates of growth in the parts

of its body are relatively changed. This latter phenomenon lends

itself to numerical statement, and Abonyi has shewn that we may

construct a very regular curve, by plotting the proportionate length

of the creature's abdomen against the salinity, or density, of the

water; and the several species of Artemia, with all their other

correlated specific characters, are then found to occupy successive,

more or less well-defined, and more or less extended, regions of the
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curve (Fig. 78). In short, the density of the water is so clearly

"specific," that we might briefly define Artemia jelskii, for instance,

as the Artemia of density 1000-1010 (NaCl), or all but fresh water,

and the typical A. salina (or principalis) as the Artemia of density

1018-1025, and so on*.
Koppeniana

160
"""^

140

120

100

1000 1020 1080 11001040 1060
Density of water

Fig. 78, Percentage ratio of length of abdomen to cephalothorax

in brine-shrimps, at various salinities. After Abonyi.

These Artemiae are capable of living in waters not only of great

density, but of very varied chemical composition, and it is hard to

say how far they are safeguarded by semi-permeabihty or by specific

properties and reactions of the living colloids "j". The natron-lakes,

* Different authorities have recognised from one to twenty species of Artemia.

Daday de Dees {Ann. sci. nat. 1910) reduces the salt-water forms to one species

with four varieties, but keeps A. jelskii in a separate sub-genus. Kuenen suggests

two species, A. salina and gracilis, one for the European and one for the American

forms. According to Schmankewitsch every systematic character can be shewn

to vary with the external medium. Cf. Professor Labbe on change of characters,

specific and even generic, of Copepods according to the ^H of saline waters at

Le Croisic, Nature, March 10, 1928.

t We may compare Wo. Ostwald's old experiments on Daphnia, which died in

a pure solution of NaCl isotonic with normal sea-water. Their death was not to

be explained on osmotic grounds; but was seemingly due to the fact that the

organic gels do not retain their normal water-content save in the presence of such

concentrations of MgClj (and other salts) as are present in sea-water.
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for instance, contain large quantities of magnesium sulphate; and

the Artemiae continue to live equally well in artificial solutions

where this salt, or where calcium chloride, has largely replaced the

common salt of the more usual habitat. Moreover, such waters as

those of the natron-lakes are subject to great changes of chemical

composition as evaporation and concentration proceed, owing to the

different solubilities of the constituent salts; but it appears that

the forms which the Artemiae assume, and the changes which they

undergo, are identical, or indistinguishable, whichever of the above

salts happen to exist or to predominate in their saline habitat. At

the same time we still lack, so far as I know, the simple but crucial

experiments which shall tell us whether, in solutions of different

chemical composition, it is at equal densities, or at isotonic concen-

trations (that is to say, under conditions where the osmotic pressure,

and consequently the rate of diffusion, is identical), that the same

changes of form and structure are produced and corresponding

phases of equihbrium attained.

Sea-water has been described as an instance of the "fitness of the

environment*" for the maintenance of protoplasm in an appropriate

milieu; but our Artemias suffice to shew how nature, when hard

put to it, makes shift with an environment which is wholly abnormal

and anything but "fit."

While Hober and others f have referred all these phenomena to

osmosis, Abonyi is inclined to believe that the viscosity, or

mechanical resistance, of the fluid also reacts upon the organism;

and other possible modes of operation have been suggested. But

we may take it for certain that the phenomenon as a whole is not

a simple one. We should have to look far in organic nature for

what the physicist would call simple osmosis % ; and assuredly there

is always at work, besides the passive phenomena of intermolecular

* L. H. Henderson, The Fitness of the Environment, 1913.

t Cf. Schmankewitsch, Z. f. w. Zool. xxv, ISTi); xxix, 1877,. etc.; transl. in

appendix to Packard's Monogr. of N. American Phyllopoda, 1^83, pp. 466-514;

Daday de Dees, Ann. Sci. Nat. (Zool), (9), xi, 1910; Samter und Heymons, Abh.

d. K. pr. Akad. Wiss. 1902; Bateson, Mat. for the Study of Variation, 1894, pp.

96-101; Anikin, Mitlh. Kais. Univ. Tomsk, xiv: Zool. Centralhl. vi, pp. 756-760,

1908; Abonyi, Z.f. w. Zool. cxiv, pp. 96-168, 1915 (with copious bibliography), etc.

% Cf. C. F. A. Pantin, Body fluids in animals, Biol. Reviews, \i, p. 4, 1931;

J. Duclaux, Chimie apjMquee a la biologic, 1937, ii, chap. 4.
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diffusion, some other activity to play the part of a regulatory

mechanism*.

On growth and catalytic action

In ordinary chemical reactions we have to deal (1) with a specific

velocity proper to the particular reaction, (2) with variations due

to temperature and other physical conditions, (3) with variations

due to the quantities present of the reacting substances, according

to Van't Hoff's "Law of Mass Action," and (4) in certain cases with

variations due to the presence of "catalysing agents," as BerzeHus

called them a hundred years agof. In the simpler reactions, the

law of mass involves a steady slowing-down of the process as the

reaction proceeds and as the initial amount of substance diminishes:

a phenomenon, however, which is more or less evaded in the organism,

part of whose energies are devoted to the continual bringing-up of

supphes.

Catalytic action occurs when some substance, often in very

minute quantity, is present, and by its presence produces or

accelerates a reaction by opening "a way round," without the

catalysing agent itself being diminished or used up J. It diminishes

the resistance somehow—little as we know what resistance means

* According to the empirical canon of physiology, that, as Leon Fredericq

expresses it (Arch, rfc Zool. 1885), '*L'etre vivant est agence de telle maniere que

chaque influence pertyrbatrice provoque d'elle-meme la mise en activite de Tappareil

compensateur qui doit neutraliser et reparer le dommage." Herbert Spencer had

conceived a similar principle, and thought he recognised in it the vis medicutrix.

Nahirae. It is the physiological analogue of the "principle of Le Chatelier " (1888),

with this important difference that the latter is a rigorous and quantitative law,

ba8e<i on a definite and stable equilibrium. The close relation between the two is

maintained by Le Dantec {La titabilite de la Vie, 1910, p, 24), and criticised by

Lotka {Physical Biology, p, 283 seq.).

t In a paper in the Berliner Jahrbuch for 1836, This paper was translated in

the Edinburgh New Philosophical Journal in the following year; and a curioas

little paper On the coagulation of albumen, and catalysis, by Dr Samuel Brown,

followed in the Edinburgh Academic Annual for 1840,

X Such phenomena come precisely under the head of what Bacon called

Instances of Magic: "By which I mean those wherein the material or efficient

cause is scanty and small as compared with the work or effect produced; so that

even when they are common, they seem like miracles, some at first sight, others

even after attentive consideration. These magical effects are brought about in

three ways. . .[of which one is] by excitation or invitaticm in another body, as in

the magnet which excites numberless needles without losing any of its virtue, or

in yeast and such-like." Nov. Org,, cap. li.
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in a chemical reaction. But the velocity-curve is not altered in

form ; for the amount of energy in the system is not affected by the

presence of the catalyst, the law of mass exerts its eifect, and the

rate of action gradually slows down. In certain cases we have

the remarkable phenomenon that a body capable of acting as a

catalyser is necessarily formed as a product, or by-product, of the

main reaction, and in such a case as this the reaction-velocity will

tend to be steadily accelerated. Instead of dwindhng away, such

a reaction continues with an ever-increasing velocity: always

subject to the reservation that limiting conditions will in time make

themselves felt, such as a failure of some necessary ingredient (the

"law of the minimum"), or the production of some substance which

shall antagonise and finally destroy the original reaction. Such an

action as this we have learned, from Ostwald, to describe as "auto-

catalysis." Now we know that certain products of protoplasmic

metabohsm—we call them enzymes—are very powerful catalysers,

a fact clearly understood by Claude Bernard long ago*; and we

are therefore entitled, to that extent, to speak of an autocatalytic

action on the part of protoplasm itself.

Going a httle farther in the footsteps of Claude Bernard, Chodat

of Geneva suggested (as we are told by his pupil Monnier) that

growth itself might be looked on as a catalytic, or autocatalytic

reaction: "On peut bien, ainsi que M. Chodat I'a propose, considerer

I'accroissement comme une reaction chimique complexe, dans

laquelle le catalysateur est la cellule vivante, et les corps en presence

sont I'eau, les sels et Facide carboniquet-"

A similar suggestion was made by Loeb, in connection with the

* "Les diastases contiennent, en definitive, le secret de la vie. Or, les actions

diastatiques nous apparaissent comme des phenomenes catalytiques, en d'autres

termes, des accelerations de vitesse de reaction." Cf. M. F. Porchet, Rewie

Scientifique, 18th Feb. 1911. For a last word on this subject, see W. Frankenberger,

Katalytische Umsetzungen in homogenen u. enzymatischen Systemen, Leipzig, 1937.

t Cf. R. Chodat, Principes de Botanique (2nd ed.), 1907, p. 133; A. Monnier, La
loi d'accroissement des vegetaux, Publ. de VInst. de Bot. de VUniv. de Geneve (7),

m, 1905. Cf. W. Ostwald, Vorlesungen iiber Naturphilosophie, 1902, p. 342;

Wo. Ostwald, Zeitliche Eigenschaften der Entwicklungsvorgange, in Roux's

Vortrdge, Heft 5, 1908; Robertson, Normal growth of an individual, and its

biochemical significance, Arch.f. Entw. Mech. xxv, pp. 581-614; xxvi, pp. 108-118,

1908; S. Hatai, Growth-curves from a dynamical standpoint, Anat. Record, v,

p. 373, 1911; A. J. Lotka, Ztschr. f. physikal. Chemie, Lxxn, p. 511, 1910; lxxx,

p. 159, 1912; etc.
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synthesis of nuclear protoplasm, or nuclein; for he remarked that,

as in an autocatalysed chemical reaction the rate of synthesis

increases during the initial stage of cell-division in proportion to the

amount of nuclear matter already there. In other words, one of

the products of the reaction, i.e. one of the constituents of the

nucleus, accelerates the production of nuclear from cytoplasmic

material. To take one more instance, Blackman said, in the address

already quoted, that "the botanists (or the zoologists) speak of

growth, attribute it to a specific power of protoplasm for assimila-

tion, and leave it alone as a fundamental phenomenon; but they

are much concerned as to the distribution of new growth in innu-

merable specifically distinct forms. While the chemist, on the

other hand, recognises it as a famihar phenomenon, and refers it to

the same category as his other known examples of autocatalysis."

Later on, Brailsford Robertson upheld the autocatalytic theory

with skill and learning*; and knowing well that growth was no

simple solitary chemical reaction, he thought that behind it lay some

one master-reaction, essentially autocatalytic, by which protoplasmic

synthesis was effected or controlled. He adduced at least one

curious case, in the growth and multiphcation of the Infusoria,

which can hardly be described otherwise than as catalytic. Two
minute individuals (of Enchelys or Colpodiuyn) kept in the same drop

of water, so enhance each other's rate of asexual reproduction that

it may be many times as great when two are together as when one

is alone; the phenomenon has been called allelocatalysis. When a

single infusorian is isolated, it multiplies the quicker the smaller the

drop it is in—a further proof or indication that something is being

given oif, in this instance by the living cells, which hastens growth

and reproduction. But even the ordinary multiplication of a

bacterium, which doubles its numbers every few minutes till (were

it not for hmiting factors) those numbers would be all but incal-

culable in a day, looks like and has been cited as a simple but most

striking instance of the potentiahties of protoplasmic catalysis.

It is not necessary for us to pursue this subject much further.

* T. B. Robertson, The Chemical Basis of Growth and Senescence, 1923; and
earlier papers. Cf. his Multiplication of isolated infusoria, Biochem. Journ. xv,

pp. 598-611, 1921; cf. Journ. Physiol, lvi, pp. 404-412, 1921; R. A. Peters,

Substances needed for the growth of. . .Colpodiy,m, Journ. Physiol, lv, p. 1, 1921.
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It is sufficiently obvious that the normal S-shaped curve of growth

of an organism resembles in its general features the velocity-curve

of chemical autocatalysis, and many writers have enlarged on the

resemblance; but the S-shaped curve of growth of a population

resembles it just as well. When the same curve depicts the growth

of an individual, and of a population, and the velocity of a chemical

reaction, it is enough to shew that the analogy between these is a

mathematical and not a physico-chemical one. The sigmoid curve

of growth, common to them all, is sufficiently explained as an

interference effect, due to opposing factors such as we may use a

differential equation to express : a phase of acceleration is followed

by a phase of retardation, and the causes of both are in each case

complex, uncertain or unknown. . Nor are points of difference lacking

between the chemical and the biological phenomena. As the

chemical reaction draws to a close, it is by the gradual attainment

of chemical equihbrium; but when organic growth comes to an end,

it is (in all but the lowest organisms) by reason of a very different

kind of equilibrium, due in the main to the gradual differentiation

of the organism into parts, among whose pecuHar properties or

functions that of growth or multiphcation falls into abeyance.

The analogy between organic growth and chemical autocatalysis

is close enough to let us use, or try to use, just such mathematics as

the chemist applies to his reactions, and so to reduce certain curves

of growth to logarithmic formulae. This has been done by many, and

with no httle success in simple cases. So have we done, partially,

in the case of yeast ; so the statisticians and actuaries do with human

populations; so we may do again, borrowing (for illustration) a

certain well-known study of the growing sunflower (Figs. 79, 80).

Taking our mathematics from elementary physical chemistry, we

learn that

:

The velocity of a reaction depends on the concentration a of

the substance acted on: V varies as a,

V = Ka.

The concentration continually decreases, so that at time t (in a

monomolecular reaction),
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Fig. 79. Growth of sunflower-stem : observed and calculated curves.

From Reed and Holland.
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But if the substance produced exercise a catalytic effect, then the

velocity will vary not only as above but will also increase as x

increases: the equation becomes

V = -T- ^k'x(a — x),
Cut

which is the elementary equation of autoca.talysis. Integrating,

at a — X

In our growth-problem it is sometimes found convenient to choose

for our epoch, t', the time when growth is half-completed, as the

chemist takes the time at which his reaction is half-way through;

and we may then write (with a changed constant)

This is the physico-chemical formula which Reed and Holland

apply to the growing sunflower-stem—a simple case*. For a we

take the maximum height attained, viz. 254-5 cm. ; for t\ the epoch

when one-half of that height was reached, viz. (by interpolation)

about 34-2 days. Taking an observation at random, say that for

the 56th day, when the stem was 228-3 cm. high, we have

K in this case is found to be 0-043, and the mean of all such

determinations t is not far difierent.

Applying this formula to successive epochs, we get a calculated

curve in close agreement with the observed one; and by well-

known statistical methods we confirm, and measure, its "closeness

of fit." But jtist as the chemist must vary and develop his funda-

mental formula to suit the course of more and more comphcated

reactions, so the biologist finds that only the simplest of his curves

* H. S. Reed and R. H. Holland, The growth-rate of an annual plant, Helianthus,

Proc. Nat. Acad, of Sci. (Washington), v, p. 135, 1919; cf. Lotka, op. cit., p. 74,

A sifnilar case is that of a gourd, recorded by A. P. Anderson, Bull. Survey,

Minnesota, 1895, and analysed by T. B. Robertson, ibid. pp. 72-75.

t Better determined, especially in more complex cases, by the method of least

squares.
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of growth, or only portions of the rest, can be fitted to this simplest

of formulae. In a Hfe-time are many ages; and no all-embracing

formula covers the infant in the womb, the suckling child, the

growing schoolboy, the old man when his work is done. Besides,

we need such a formula as a biologist can understand ! One which

gives a mere coincidence of numbers may be of little use or none,

unless it go some way to depict and explain the modus operandi of

growth. As d'Ancona puts it : "II importe d'apphquer des formules

qui correspondent non seulement au point de vue geometrique, mais

soient representees par des valeurs de signification biologique."

A mere curve-diagram is better than an empirical formula; for it

gives us at least a picture of the phenomenon, and a qualitative

answer to the problem.

Growth of sunflower-stem. (After Reed and Holland)

1st diff.

15-8

24-4

33-3

39-2

38-4

31-6

22-6

14-4

8-5

4-9

2-8

The chemical aspect of growth

As soon as we touch on such matters as the chemical phenomenon

of catalysis we are on the threshold of a subject which, if we were

able to pursue it, would lead us far into the special domain of

physiology ; and there it would be necessary to follow it if we were

dealing with growth as a phenomenon in itself, instead of mainly

as a help to our study and comprehension of form. The whole

question of diet, of overfeeding and underfeeding*, would present

* For example, A. S. Parker has shewn that mice suckled by rats, and conse-

quently much overfed, grow so quickly that in three weeks they reach double their

normal weight; but their development is not accelerated; Ann. Appl. Biol, xvi,

1929.
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itself for discussion*. But without opening up this large subject,

we may say one more passing word on the remarkable fact that

certain chemical substances, or certain physiological secretions,

have the power of accelerating or of retarding or in some way

regulating growth, and of so influencing the morphological features

of the organism.

To begin with there are numerous elements, such as boron,

manganese, cobalt, arsenic, which serve to stimulate growth, or

whose complete absence impairs or hampers it; just as there are

a few others, such as selenium, whose presence in the minutest

quantity is injurious or pernicious. The chemistry of the hving

body is more complex than we were wont to suppose.

Lecithin was shewn long ago to have a remarkable power of

stimulating growth in animals t, and accelerators of plant-growth,

foretold by Sachs, were demonstrated by Bottomley and others J;

the several vitamins are either accelerators of growth, or are indis-

pensable in order that it may proceed.

In the little duckweed of our ponds and ditches [Lemna minor) the botanists

have found a plant in which growth and multiplication are reduced to very

simple terms. For it multiplies by budding, grows a rootlet and two or three

leaves, and buds again; it is all young tissue, it carries no dead load; while

the sun shines it has no lack of nourishment, and may spread to the limits of

the pond. In one of Bottomley's early experiments, duckweed was grown

(1) in a "culture solution" without stint of space or food, and (2) in the same,

with the addition of a little bacterised peat or "auximone." In both cases the

little plant spread freely, as in the first, or Malthusian, phase of a population

curve; but the peat greatly accelerated the rate, which was not slow before.

Without the auximone the population doubled in nine or ten days, and with

it in five or six; but in two months the one was seventy-fold the other

!

The subject has grown big from small beginnings. We know

certain substances, haematin being one, which stimulate the growth

of bacteria, and seem to act on them as true catalysts. An obscure

but complex body known as "bios" powerfully stimulates the

growth of yeast; and the so-called auxins, a name which covers

numerous bodies both nitrogenous and non-nitrogenous, serve in

* For a brief resume of this subject see Morgan's Experimental Zoology, chap. xvi.

t Hatai, Amer. Joum. Physiology, x, p. 57, 1904; Danilewsky, C.R. cxxi, cxxn,

1895-96.

X W. B. Bottomley, Proc. R.S. (B), lxxxviii, pp. 237-247, 1914, and other

papers. O. Haberlandt, Beitr. z. allgem. Botanik, 1921.
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minute doses to accelerate the growth of the higher plants*. Some

of these "growth-substances" have been extracted from moulds or

from bacteria, and one remarkable one, to which the name auxin

is especially applied, from seedhng oats. This last is no enzyme

but a stable non-nitrogfenous substance, which seems to act by

softening the cell-wall and so facihtating the expansion of the cell.

Lastly the remarkable discovery has been made that certain indol-

compounds, comparatively simple bodies, act to all intents and

purposes in the same way as the growth-hormones or natural

auxins, and one of these "hetero-auxins." an indol-acetic acidf,

is already in common and successful use to promote the growth and

rooting of cuttings.

Growth of duckweed, with and without peat-auodmone

Without With
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trophy or over-activity goes to the making of a giant; the Umb-

bones of the giant grow longer, their epiphyses get thick and clumsy,

and the deformity known as "acromegaly" ensues*. This has

become a famihar illustration of functional regulation, by some

glandular or "endocrinal" secretion, some enzyme or harmozone

as Gley called it, or hormone'f as Bayliss and Starhng called it—in

the particular case where the function to be regulated is growth,

with its consequent influence on form. But we may be sure that

this so-called regulation of growth is no simple and no specific thing,

but imphes a far-reaching and complicated influence on the bodily

metabohsmj.

Some say that in large animals the pituitary is. apt to be dispro-

portionately large §; and the giant dinosaur Branchiosaurus, hugest

of land animals, is reputed to have the largest hypophyseal recess

(or cavity for the pituitary body) ever observed.

The thyroid also has its part to play in growth, as Gudernatsch

was the first to shew||; perhaps it acts, as Uhlenhorth suggests,

by releasing the pituitary hormone. In a curious race of dwarf

frogs both thyroid and pituitary were found to be atrophied ^. When
tadpoles are fed on thyroid their legs grow out long before the usual

time; on the other hand removal of the thyroid delays metamor-

phosis, and the tadpoles remain tadpoles to an unusual size**.

The great American bull-frog (R. Catesheiana) fives for two or

three years in tadpole form; but a diet of thyroid turns the little

tadpoles into bull-frogs before they are a month old If- The converse

* Cf. E. A. Schafer, The function ofjthe pituitary body, Proc. R.S. (B), lxxxi,

p. 442, 1904.

t It is not easy to dtaw a line between enzyme and vitamin, or between hormone

and enzyme.

X The -physiological relations between insulin and the pituitary body might

seem to indicate that it is the carbohydrate metabolism which is more especially

concerned. Cf. (e.g.) Eric Holmes, Metabolism of the Living Tissue, 1937.

§ Van der Horst finds this to be the case in Zalophus and in the ostrich, compared

with smaller seals or birds; cf. Ariens Kappers, Journ. Anat. lxiv, p. 256, 1930.

II
Gudernatsch, in Arch. f. Entw. Mech. xxxv, 1912.

<;; Eidmann, ibid, xlix, pp. 510-537, 1921.

** Allen, Journ. Exp. Zod. xxiv, p. 499, 1918. Cf. [int. al.) E. Uhlenhuth,

Experimental production of gigantism, Journ. Gen. Physiol, ill, p. 347; iv, p. 321,

1921-22.

tt W. W. Swingle, Journ. Exp. Zool. xxiv, 1918; xxxvn, 1923; Journ. Gen.

Physiol. I, II, 1918-19; etc!
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experiment has been performed on ordinary tadpoles*; with their

thyroids removed they remain normal to all appearance, but the

weeks go by and metamorphosis does not take place. Gill-clefts

and tail persist, no limbs appear, brain and gut retain their larval

features; but months after, or apparently at any time, the belated

tadpoles respond to a diet of thyroid, and may be turned into frogs

by means of it. The Mexican axolotl is a grown-up tadpole which,

when the ponds dry up (as they seldom do), completes its growth

and turns into a gill-less, lung-breathing newt or salamander!; but

feed it on thyroid, even for a single meal, and its metamorphosis is

hastened and ensured {.

Much has been done since these pioneering experiments, all going

to shew that the thyroid plays its active part in the tissue-changes

which accompany and constitute metamorphosis. It looks as though

more thyroid meant more respiratory activity, more oxygen-

consumption, more oxidative metabohsm, more tissue-change, hence/

earlier bodily development §. Pituitary and thyroid are very different

things; the one enhances growth, the other retards it. Thyroid

stimulates metabolism and hastens development, but the tissues

waste.

It is a curious fact, but it has often been observed, that starvation

or inanition has, in the long run, a similar effect of hastening

metamorphosis
II

. The meaning of this phenomenon is unknown.

An extremely remarkable case is that of the "galls", brought

into existence on various plants in response to the prick of a small

insect's ovipositor. One tree, an oak for instance, may bear galls

* Bennett Allen, Biol. Bull, xxxii, 1917; Journ. Exp. Zool. xxiv, 1918; xxx,

1920; etc.

t Colorado axolotls are much more apt to metamorphose than the Mexican

variety.

J Babak, Ueber die Beziehung der Metamorphose . . . zur inneren Secretion,

Centralbl f. Physiol, x, 1913. Cf. Abderhalden, Studien iiber die von einzelrien

Organen hervorgebrachten Substanzen mit spezifischer Wirkung, Pfliiger's Archiv,

CLXii, 1915.

§ Certain experiments by M. Morse {Journ. Biol. Chem. xix, 1915) seeihed to

shew that the effect of thyroid on metamorphosis depended on iodine; l;^t the

case is by no means clear (cf. 0. Shinryo, Sci. Rep. Tohoku Univ. iii, 1928, and

others). The axolotl is said to shew little response to experimental iodine, and

its ally Necturus none at all (cf. B. M. Allen, in Biol. Reviews, xiii, 1939).

!| Cf. Krizensky, Die beschleunigende Einwirkung des Hungerns auf die Meta-

morphose, Biol. Centralbl. xi.iv, 1914. Cf. antea, p. 170.
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of many kinds, well-defined and widely different, each caused to

grow out of the tissues of the plant by a chemical stimulus contri-

buted by the insect, in very minute amount; and the insects are

so much alike that the galls are easier to distinguish than the flies.

The same insect may produce the same gall on different plants,

for instance on several species of willow ; or sometimes on different

parts, or tissues, of the same plant. Small pieces of a dead larva

have been used to infect a plant, and a gall of the usual kind has

resulted. Beyerinck killed the eggs with a hot wire as soon as

they were deposited in the tree, yet the galls grew as usual. Here,

as Needham has lately pointed out, is a great field for reflection

and future experiment. The minute drop of fluid exuded by the

insect has marvellous properties. It is not only a stimulant of

growth, like any ordinary auxin or hormone; it causes the growth

of a peculiar tissue, and shapes it into a new and specific form*.

Among other illustrations (which are plentiful) of the subtle

influence of some substance upon growth, we have, for instance,

the growth of the placental decidua, which Loeb shewed to be due

to a substance given off by the corpus luteum, lending to the uterine

tissues an enhanced capacity for growth, to be called into action by

contact with the ovum or even of a foreign body. Various sexual

characters, such as the plumage, comb and spurs of the cock, arise

in hke manner in response to an internal secretion or "male

hormone "
; and when castration removes the source of the secretion,

well-known morphological changes take place. When a converse

change takes place the female acquires, in greater or less degree,

characters which are proper to the male: as in those extreme cases,

known from time immemorial, when an old and barren hen assumes

the plumage of the cockf.

The mane of the lion, the antlers of the stag, the tail of the peacock,

are all examples of intensifled differential growth, or localised and

* Joseph Needham, Aspects nouveaux de la chimie et de la biologic de la croia-

sance organisee. Folia Morphologica, Warszawa, viii, p. 32, 1938. On galls, see

{int. al.) Cobbold, Ross und Hedicke, Die Pflanzengallen, Jena, 1927; etc. And
on their "raorphogenic stimulus", cf. Herbst, Biolog. Cblt., 1894-5, passim.

t The hen which assumed the voice and plumage of the male was a portent or

omen

—

gallina cecinit. The first scientific account was John Hunter's celebrated

Account of an extraordinary pheasant, and Of the appearance of the change

of sex in Lady Tynte's peahen, Phil. Trans, lxx, pp. 527, 534, 1780.
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sex-linked hypertrophy; and in the singular and striking plumage
of innumerable birds we may easily see how enhanced growth of a

tuft of feathers, perhaps exaggeration of a single plume, is at

the root of the whole matter. Among extreme instances we may
think of the immensely long first primary of the pennant-winged
nightjar; of the long feather over the eye in Pteridophora alberti,

Fig. 81. A single pair of hypertrophied feathers in a bird-of-paradise,

Pteridophora alberti.

.-I

Fig. 82. Unequal growth in the three pairs of tail-feathers of a humming-bird
{Loddigesia). 1, rudimentafy: 2, short and stiff; 3, long and spathulate.

or the Fix long plumes over or behind the eye in the six-shafted

bird-of-paradise; or among the humming-birds, of the long outer

rectrix in Lesbia, the second outer one in Aethusa, or of the extra-

ordinary inequalities of the tail-feathers of Loddigesia mirabilis,

some rudimentary, some short and straight and stiff, and other two
immensely elongated, curved and spathulate. The sexual, hormones
have a potent influence on the plumage of a>bird ; they serve, somehow,
to orientate and regulate the rate of growth from one feather-tract

to another, and from one end to another, even from one side to the

other, of a single feather. An extreme case is the occasional pheno-
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menon of a " gynandrous " feather, male and female on two sides

of the same vane*.

While unequal or differential growth is of pecuhar interest to

the morphologist, rate of growth pure and simple, with all the

agencies which control or accelerate it, remains of deeper importance

to the practical man. The live-stock breeder keeps many desirable

quahties in view: constitution, fertility, yield and quahty of milk

or wool are some of these; but rate of growth, with its corollaries

of early maturity and large ultimate size, is generally more important

than them all. The inheritance of size is somewhat complicated,

and limited from the breeder's point of view by the mother's

inability to nourish and bring forth a crossbred offspring of a breed

larger than her own. A cart mare, covered by a Shetland sire,

produces a good-sized foal; but the Shetland mare, crossed with

a carthorse, has a foal a little bigger, but not much bigger, than

herself (Fig. 83). In size and rate of growth, as in other qualities,

our farm animals differ vastly from their wild progenitors, or from

the " un-improved " stock in days before Bakewell and the other

great breeders began. The improvement has been brought about

by "selection"; but what lies behind? Endocrine secretions,

especially pituitary, are doubtless at work; and already the stock-

raiser and the biochemist may be found hand in hand.

If we once admit, as we are now bound to do, the existence of

factors which by their physiological activity, and apart from any

direct action of the nervous system, tend towards the acceleration

of growth and consequent modification of form, we are led into wide

fields of speculation by an easy and a legitimate pathway. Professor

Gley carries such speculations a long, long way: for He saysf that

by these chemical influences "Toute une partie de la construction

des etres parait s'expliquer d'une fayontoute mecanique. La forteresse,

si longtemps inaccessible, du vitahsme est entamee. Car la notion

morphogenique etait, suivant le mot de Dastre J , comme ' le dernier

reduit de la force vitale'."

* See an interesting paper by Frank R, Lillie and Mary Juhn, on The physiology

of development of feathers: I, Growth-rate and pattern in the individual feather.

Physiological Zoology, v, pp. 124-184, 1932, and many papers quoted therein.

f Le Neo-vitalisme, Revue Scientifique, March 1911.

X La Vie et la Mart, 1902, p. 43.
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The physiological speculations we need not discuss: but, to take

a single example from morphology, we begin to understand the

possibihty, and to comprehend the probable meaning, of the all but

sudden appearance on the earth of such exaggerated and almost

monstrous forms as those of the great secondary reptiles and the

500

Pure Shetland

10 20

Age, in months

30 40

Fig. 83. Effect of cross-breeding on rate of growth in Shetland ponies.

From Walton and Hammond's data.*

great tertiary mammals f. We begin to see that it is in order to

account not for the appearance but for the disappearance of such

forms as these that natural selection must be invoked. And we

then, I think, draw near to the conclusion that what is true of these

is universally true, and that the great function of natural selection

* Walton and Hammond, Proc. R.S. (B), No. 840, p. 317, 1938.

t Cf. also Dendy, Evolutionary Biology, 1912, p. 408.
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is not to originate* but to remove: donee ad interitum genus id

natura redegitf.

The world of things living, like the world of things inanimate,

grows of itself, and pursues its ceaseless course of creative evolution.

It has room, wide but not unbounded, for variety of living form

and structure, as these tend towards their seemingly endless but

yet strictly hmited possibilities of permutation and degree^ it has

room for the great, and for the small, room for the weak and for the

strong. Environment and circumstance do not always make a

prison, wherein perforce the organism must either live or die; for

the ways of hfe may be changed, and many a refuge found, before

the sentence of unfitness is pronounced and the penalty of exter-

mination paid. But there comes a time when "variation," in form,

dimensions, or other qualities of the organism, goes further than is

compatible with all the means at hand of health and welfare for

the individual and the stock; when, under the active and creative

stimulus of forces from within and from without, the active and

creative energies of growth pass the bounds of physical and

physiological equilibrium: and so reach the Hmits which, as again

Lucretius tells us, natural law has set between what may and what

may not be,

et quid quaeque queant per foedera natural

quid porro nequeant.

Then, at last, we are entitled to use the customary metaphor, and

to see in natural selection an inexorable force whose function is not

to create but to destroy—to weed, to prune, to cut down and to

cast into the fire J.

* So said Yves Delage {UherediU, 1903, p. 397): "La selection naturelle est un

principe admirable et parfaitement juste. Tout le monde est d'accord sur ce point.

Mais ou Ton n'est pas d'accord, c'est sur la limite de sa puissance et sur la question

de savoir si elle pent engendrer des formes specifiques nouvelles. II semble bien

demontre aujourd'hui qu'elle ne le pent pas.''

t Lucret. v, 875, "Lucretius nowhere seems to recognise the possibility of

improvement or change of species by 'natural selection'; the animals remain as

they were at the first, except that the weaker and more useless kinds have been

crushed out. Hence he stands in marked contrast with modern evolutionists."

Kelsey's note, ad loc.

X Even after we have so narrowed its scope and sphere, natural selection is

still a hard saying ; for the causes of extinction are wellnigh as hard to understand

as are those of the origin of species. If we assert (as has been lightly and too
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Of regeneration, or growth and repair

The phenomenon of regeneration, or the restoration of lost or

amputated parts, is a particular case of growth which deserves

separate consideration. It is a property manifested in a high

degree among invertebrates and many cold-blooded vertebrates,

diminishing as we ascend the scale, until it lessens down in the

warm-blooded animals to that vis smedicatrix which heals a wound.

Ever since the days of Aristotle, and still more since the experiments

of Trembley, Reaumur and Spallanzani in the eighteenth century,

physiologist and psychologist alike have recognised that the pheno-

menon is both perplexing and important. "Its discovery," said

Spallanzani, " was an immense addition to the riches of organic philo-

sophy, and an inexhaustible source of meditation for the philosopher."

The general phenomenon is amply treated of elsewhere*, and we
need only deal with it in its immediate relation to growth.

Regeneration, like growth in other cases, proceeds with a velocity

which varies according to a definite law; the rate varies with the

time, and we may study it as velocity and as acceleration. Let us

take, as an instance, Miss M. L. Durbin's measurements of the rate

.of regeneration of tadpoles' tails : the rate being measured in terms

of length, or longitudinal increment f. From a number of tadpoles,

whose average length was in one experiment 34 mm., and in another

49 mm., about half the tail was cut off, and the average amounts

regenerated in successive periods are shewn as follows

:

Days 3 5 7 10 12 14 17 18 24 28 30

Amount regenerated (mm.):

First experiment 1-4 — 3-4 4-3 — 5-2 — 5-5 6-2 — 6o
Second „ 0-9 2-2 3-7 5-2 60 6-4 7-1 — 7-6 8-2 8-4

confidently done) that Smilodon perished on account of its gigantic tusks, that

Teleosaurus was handicapped by its exaggerated snout, or Stegosaurus weighed

down by its intolerable load of armour, we may call to mind kindred forms where

similar conditions did not lead to rapid extermination, or where extinction ensued

apart from any such apparent and visible disadvantages. Cf. F. A. Lucas, On
momentum in variation, Amer. Nat. xli, p. 46, 1907.

* See Professor T. H. Morgan's Regeneration (316 pp.), 1901, for a full account

and copious bibliography. The early experiments on regeneration, by V^allisneri,

Dicquemare, Spallanzani, Reaumur, Trembley, Baster, Bonnet and others, are

epitomised by Haller, Elementa Physiologiae, viii, pp. 156 seq.

t Journ. Exper. Zool. vii, p. 397, 1909.
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Both experiments give us fairly smooth curves of growth within

the period of the observations; and, with a shght and easy extra-

polation, both curves draw to the base-hne at zero (Fig. 84). More-

Fig. 84. Curve ofregenerative growth in tadpoles' tails.

From M. L. Durbin's data.

Fig. 85. Tadpoles' tails : , amount regenerated daily, in mm.
(Smoothed curve).

over, if from the smoothed curves we deduce the daily increments,

we get (Fig. 85) a bell-shaped curve similar to (or to all appearance

identical with) a skew curve of error. In point of fact, this instance

of regeneration is a very ordinary example of growth, with its
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S-shaped curve of integration and its bell-shaped differential curve,

just as we have seen it in simple cases, or simple phases, of 'the

growth of a population or an individual.

If we amputate one limb of a pair in some animal with rapid

powers of regeneration, we may compare from time to time the

dimensions of the regenerating hmb with those of its uninjured

fellow, and so deal with a relative rather than an absolute velocity.

The legs of insect-larvae are easily restored, but after pupation no

further growth or regeneration takes place. An easy experiment,

then, is to remove a limb in larvae of various ages, and to compare

100 120

Fig. 86. Regenerative growth in mealworms' legs.

at leisure in the pupa the dimensions of the new Hmb with the old.

The following much-abbreviated table shews the gradual increase

of a regenerating limb in a mealworm, up to final equahty with the

normal Hmb, the rate varying according to the usual S-shaped

curve* (Fig. 86).

Rate of regeneration in the mealworm (Tenebrio moHtor, larva)

Days after amputation

% ratio of new limb to old

16 21 25 34 44 58 70 100 121

7 11 20 29 42 71 83 91 100

* From J. Krizenecky, Versuch zur statisch-graphischen Untersuchung . . .der

Regenerationsvorgange, Arch. f. Entw. Mech. xxxix, 1914; xlii, 1917.
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Some writers have found the curve of regenerative growth to be

different from the curve of ordinary growth, and have commented

on the apparent difference; but they have been misled (as it seems

to me) by the fact that regeneration is seen from the start or very

nearly so, while the ordinary curves of growth, as they are usually

presented to us, date not from the beginning of growth, but from

the comparatively late, and unimportant, and even fallacious epoch

of birth. A complete curve of growth, starting from zero, has the

same essential characteristics as the regeneration curve.

Indeed the more we consider the phenomenon of regeneration,

the more plainly does it shew itself to us as but a particular case

of the general phenomenon of growth*, following the same lines,

obeying the same laws, and merely started into activity by the

special stimulus, direct or indirect, caused by the infliction of a

wound. Neither more nor less than in other problems of physiology

are we called upon, in the case of regeneration, to indulge in

metaphysical speculation, or to dwell upon the beneficent purpose

which seemingly underhes this process of heahng and repair.

It is a very general rule, though not a universal one, that

regeneration tends to fall somewhat short of a complete restoration

of the lost part; a certain percentage only of the lost tissues is

restored. This fact was well known to some of those old .investi-

gators, who, like the Abbe Trembley and hke Voltaire, found a

fascination in the study of artificial injury and the regeneration

which followed it. Sir John Graham Dalyell, for instance, says, in

the course of an admirable paragraph on regeneration!: "The

reproductive faculty ... is not confined to one pjortion, but may
extend over many; and it may ensue even in relation to the

regenerated portion more than once. Nevertheless, the faculty

gradually weakens, so that in general every successive regeneration

is smaller and more imperfect than the organisation preceding it;

and at length it is exhausted."

* The experiments of Loeb on the growth of Tubularia in various saline

solutions, referred to on p. 24.5, might as well or better have been referred to under

the heading of regeneration, as they were performed on cut pieces of the zoophyte.

(Cf. Morgan, op. cit. p. 35.)

t Powers of the Creator, i, p. 7, 1851. See also Rare and Remarkable Animals,

u, pp. 17-19, 90, 1847.
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In certain minute animals, such as the Infusoria, in which the

capacity for regeneration is so great that the entire animal may-

be restored from a mere fragment, it becomes of great interest to

discover whether there be some definite size at which the fragment

ceases to display this power. This question has been studied by

Lillie*, who found that in Stentor, while still smaller fragments were

capable of surviving for days, the smallest portions capable of

regeneration were of a size equal to a sphere of about 80 /x in

diameter, that is to say of a volume equal to about one twenty-

seventh of the average entire animal. He arrives at the remarkable

conclusion that for this, and for all other species of animals, there

is a "minimal organisation mass," that is to say a "minimal mass

of definite size consisting of nucleus and cytoplasm within which

the organisation of the species can just find its latent expression."

And in like manner, Boverif has shewn that the fragment of a sea-

urchin's egg capable of growing up into a new embryo, and so

discharging the complete functions of an entire and uninjured ovum,

reaches its limit at about one-twentieth of the original egg—other

writers having found a Hmit at about one-fourth. These magnitudes,

small as they are, represent objects easily visible under a low power

of the microscope, and so stand in a very different category to the

minimal magnitudes in which fife itself can be manifested, and

which we have discussed in another chapter.

The Bermuda "hfe-plant" (Bryophyllum calycinum) has so

remarkable a power of regeneration that a single leaf, kept damp,

sprouts into fresh leaves and rootlets which only need nourishment

to grow into a new plant. If a stem bearing two opposite leaves

be split asunder, the two co-equal sister-leaves will produce (as we
might indeed expect) equal masses of shoots in equal times, whether

these shoots be many or fe^^; and, if one leaf of the pair have part

cut off it and the other be left intact, the amount of new growth
* F. R. Lillie, The smallest parts of Stentor capable of regeneration, Journ.

Morphology, xii, p. 239, 1897.

t -Boveri, Entwicklungsfahigkeit kernloser Seeigeleier, etc.. Arch. /. Entw. Mech.
u, 1895. See also Morgan, Studies of the partial larvae of Sphaerechinus, ibid.

1895; J. Loeb, On the limits of divisibility of living matter, Biol. Lectures, 1894;

Pfluger's Archiv, lix, 1894, etc. Bonnet studied the same problem a hundred
and seventy years ago, and found that the smallest part of the worm Lumbriculus
capable of regenerating was 1^ lines (3-4 mm.) long. For other references and
discussion see H. Przibram, Form und Formel, 1922, ch. v.
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will be in direct and precise proportion to the mass of the leaf from

which it grew. The leaf is all the while a living tissue, manu-
facturing material to build its own offshoots ; and we have a simple

case of the law of mass action in the relation between the mass of

the leaf with its 'included chlorophyll and. that of its regenerated

oifshoot*.

16 18 20
days

Fig. 87. Relation between the percentage amount of tail removed, the percentage

restored, and the time required for its restoration. Constructed from M. M.
Ellis's data.

A number of phenomena connected with the linear rate of

regeneration are illustrated and epitomised in the accompanying

diagram (Fig. 87), which I have constructed from certain data

given by Ellis in a paper on the relation of the amount of tail

regenerated to the amount removed, in tadpoles. These data are

summarised in the next table. The tadpoles were all very much

* Jacques Loeb, The law controlling the quantity and rate of regeneration,

Proc. Nat. Acad. Sci. iv, pp. 117-121, 1918; Journ. Gen. Physiol, i, pp. 81-96,

1918; Botan. Oaz. lxv, pp. 150-174, 1918.
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of a size, about 40 mm. ; the average length of tail was very near

to 26 mm., or 65 per cent, of the whole body-length; and in four

series of experiments about 10, 20, 40 and 60 per cent, of the tail

were severally removed. The amount regenerated in successive

intervals of three days is shewn in our table. By plotting the

actual amounts regenerated against these three-day intervals of

time, we may interpolate values for the time taken to regenerate

definite percentage amounts, 5 per cent., 10 per cent., etc. of the

amount removed; and my diagram is constructed from the four

sets of values thus obtained, that is to say from the four sets of

experiments which differed from one another in the amount of tail

amputated. To these we have to add the general result of a fifth

series of experiments, which shewed that when as much as 75 per

cent, of the tail was cut off, no regeneration took place at all, but

the animal presently died. In our diagram, then, each curve

indicates the time taken to regenerate n per cent, of the amount

removed. All the curves converge towards infinity of time, when

the amount removed approaches 75 per cent, of the whole; and all

start from zero, for nothing is regenerated where nothing had been

destroyed.

The rate of regenerative growth in tadpoles' tails

(After M. M. Ellis, Journ. Exp. Zool. vii, ^.421, 1909)
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ticularly well developed in arthropod animals, and is sometimes

accompanied by remarkable modification of the form of the

regenerated limb. A case in point, which has attracted much

attention, occurs in connection with the claws of certain Crustacea*.

In many of these we have an asymmetry of the great claws,

one being larger than the other and also more or less different in

form. For instance in the common lobster, one claw, the larger

of the two, is provided with a few great "crushing" teeth, while

the smaller claw has more numerous teeth, small and serrated.

Though Aristotle thought otherwise, it appears that the crushing-

claw may be on the right' or left side, indifferently ; whether it be

on one or the other is a matter of "chance." It is otherwise in

many other Crustacea, where the larger and more powerful claw is

always left or right, as the case may be, according to the species:

where, in other words, the "probability" of the large or the small

claw being left or being right is tantamount to certainty f.

As we have already seen, the one claw is the larger because it

has grown the faster; it has a higher "coefficient of growth," and

accordingly, as age advances, the disproportion between the two

claws becomes more and more evident. Moreover, we must assume

that the characteristic form of the claw is a "function" of its

magnitude ; the knobbiness is a phenomenon coincident with

growth, and we never, under any circumstances, find the smaller

claw with big crushing teeth and the big claw with Httle serrate

ones. There are many other somewhat similar cases where size

and form are manifestly correlated, and we have already seen, to

some extent, how the phenomenon of growth is often accompanied

by such ratios of velocity as lead inevitably to changes of form.

Meanwhile, then, we must simply assume that the essential difference

between the two claws is one of magnitude, with which a certain

differentiation of form is inseparably associated.

* Cf. H. Przibram, Scheerenumkehr bei dekapoden Crustaceen, Arch. f. Entw.

Mech. XIX, pp. 181-247, 1905; xxv, pp. 266-344, 1907; Emmel, ibid, xxii, p. 542,

1906; Regeneration of lost parts in lobster, Bep. Comm. Inland Fisheries, Rhode
Island, XXXV, xxxvi, 1905-6; Science (N.S.), xxvi, pp. 83-87, 1907; Zeleny,

Compensatory regulation, Journ. Exp. Zool. ii, pp. 1-102, 347-369, 1905; etc.

t Lobsters are occasionally found with two symmetrical claws: which are then

usually serrated, sometimes (but very rarely) both blunt-toothed. Cf. W. T. Caiman,
P.Z.8. 1906, pp. 633, 634, and reff.
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If we amputate a claw, or if, as often happens, the crab "casts

it off," it undergoes a process of regeneration—it grows anew,

and does so with an accelerated velocity which ceases when

equilibrium of the parts is once more attained : the accelerated velocity

being a case in point to illustrate that vis revulsionis of Haller to

which we have already referred.

With the help of this principle, Przibram accounts for certain

curious phenomena which accompany the process of regeneration.

As his experiments and those of Morgan shew, if the large or knobby

claw (A) be removed, there are certain cases, e.g. the common
lobster, where it is directly regenerated. In other cases, e.g.

Alpheus*, the other claw (B) assumes the size and form of that

which was amputated, while the latter regenerates itself in the

form of the lesser and weaker one; A and B have apparently

changed places. In a third case, as in the hermit-crabs, the A-

claw regenerates itself as a small or 5-claw, but the 5-claw

remains for a time unaltered, though slowly and in the course of

repeated moults it later on assumes the large and heavily toothed

^-form.

Much has been written on this phenomenon, but in essence it is

very simple. It depends upon the respective rates of growth, upon

a ratio between the rate of regeneration and the rate of growth of

the uninjured limb: that is to say, on the familiar phenomenon of

unequal growth, or, as it has been called, heterogony*. It is com-

plicated a little, however, by the possibility of the uninjured limb

growing all the faster for a time after the animal has been relieved

of the other. From the time of amputation, say of A, A begins to

grow from zero, with a high "regenerative" velocity; while B,

starting from a definite magnitude, continues to increase with its

normal or perhaps somewhat accelerated velocity. The ratio

between the two velocities of growth will determine whether, by a

given time, A has equalled, outstripped, or still fallen short of the

magnitude of B.

That this is the gist of the whole problem is confirmed (if con-

firmation be necessary) by certain experiments of Wilson's. It is

* E.' B. Wilson, Reversal of symmetry in Alpheus heterocheles, Biol. Bull, iv,

p. 197, 1903.

t See p. 205.
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known that by section of the nerve to a crab's claw, its growth is

retarded, and as the general growth of the animal proceeds the claw

comes to appear stunted or dwarfed. Now in such a case as that

of Alpheus, we have seen that the rate of regenerative growth in an

amputated large claw fails to let it reach or overtake the magnitude

of the growing little claw: which latter, in short, now appears as

the big one. But if at the same time as we amputate the big claw

we also sever the nerve to the lesser one, we so far slow down the

latter's growth that the other is able to make up to it, and in this

case the two claws continue to grow at approximately equal rates,

or in other words continue of coequal size.

The phenomenon of regeneration goes some little way towards

helping us to comprehend the phenomenon of "multiplication by

fission," as it is exemplified in its simpler cases in many worms and

worm-like animals. For physical reasons which we shall have to

study in another chapter, there is a natural tendency for any tube,

if it have the properties of a fluid or semi-fluid substance, to break

up into segments after it comes to a certain length*; and nothing

can prevent its doing so except the presence of some controlling

force, such for instance as may be due to the pressure of some

external support, or some superficial thickening or other intrinsic

rigidity of its own substance. If we add to this natural tendency

towards fission of a cylindrical or tubular worm, the ordinary

phenomenon of regeneration, we have all that is essentially implied

in "reproduction by fission." And in so far as the process rests

upon a physical principle, or natural tendency, we may account for

its occurrence in a great variety of animals, zoologically dissimilar;

and for its presence here and absence there, in forms which are

materially different in a physical sense, though zoologically speaking

they are very closely allied.

But the phenomena of regeneration, like all the other phenomena

of growth, soon carry us far afield, and we must draw this long

discussion to a close.

* A morphological polarity, or essential difference between one end and the other

of a segment, is important even in so simple a case as the internode of a hydroid

zoophyte; and an electrical polarity seems always to accompany it. Cf. A. P.

Matthews, Amer. Journ. Physiology, viii, j). 294, 1903; E. J. Lund, Journ. Exper.

Zool. xxxiy, pp. 477-493; xxxvi, pp. 477^94, 1921-22.
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Summary and Conclusion

For the main features which appear to be common to all curves

of growth we may hope to have, some day, a simple explanation.

In particular we should like to know the plain meaning of that point

of inflection, or abrupt change from an increasing to a decreasing

velocity of growth, which all our curves, and especially our accelera-

tion curves, demonstrate the existence of, provided only that they

include the initial- stages of the whole phenomenon: just as we

should also hke to have a full physical or physiological explanation

of the gradually diminishing velocity of growth which follows, and

which (though subject to temporary interruption or abeyance) is

on the whole characteristic of growth in all cases whatsoever. In

short, the characteristic form of the curve of growth in length (or

any other linear dimension) is a phenomenon which we are at

present little able to explain, but which presents us with a definite

and attractive problem for future solution. It would look as

though the abrupt change in velocity must be due, either to a change

in that pressure outwards from within by which the "forces of

growth" make themselves manifest, or to a change in the resistances

against which they act, that is to say the tension of the surface;

and this latter force we do not by any means limit to "surface-

tension" proper, but may extend to the development of a more or

less resistant membrane or "skin," or even to the resistance of fibres

or other histological elements binding the boundary layers to the

parts within*. I take it that the sudden arrest of velocity is much

more likely to be due to a sudden increase of resistance than to a

sudden diminution of internal energies: in other words, I suspect

that it is coincident with some notable event of histological

differentiation, such as the rapid formation of a comparatively firm

skin ; and that the dwindling of velocities, or the negative accelera-

tion, which follows, is the resultant or composite effect of waning

forces of growth on the one hand, and increasing superficial resistance

* It is natural to suppose the cell-wall less rigid, or more plastic, in the growing

tissue than in the full-grown or resting cell. It has been suggested that this plasticity-

is due to, or is increased by, auxins, whether in the course of nature, or in our

stimulation of growth by the use of these bodies. Cf. H. Soding, Jahrb. d. wiss. Bot.

Lxxiv, p. 127; 1931.
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on the other. This is as much as to say that growth, while its own

energy tends to increase, leads also, after a while, to the establish-

ment of resistances which check its own further increase.

Our knowledge of the whole complex phenomenon of growth is

so scanty that it may seem rash to advance even this tentative

suggestion. But yet there are one or two known facts which seem

to bear upon the question, and to indicate at least the manner in

which a varying resistance to expansion may affect the velocity

of growth. For instance, it has been shewn by Frazee* that

electrical stimulation of tadpoles, with small current density and

low voltage, increases the rate of regenerative growth. As just

such an electrification would tend to lower the surface-tension, and

accordingly decrease the external resistance, the experiment would

seem to support, in some slight degree, the suggestion which I have

made.

To another important aspect of regeneration we can do no more

than allude. The Planarian worms rival Hydra itself in their powers

of regeneration; and in both cases even small bits of the animal

are likely to include endoderm cells capable of intracellular digestion,

whereby the fragment is enabled to live and to grow. Now if a

Planarian worm be cut in separate pieces and these be suffered to

grow and regenerate, they do so in a definite and orderly way ; that

part of a shce or fragment which had been nearer tq the original

head will develop a head, and a tail will be regenerated at the

opposite end of the same fragment, the end which Had been tailward

in the beginning; the amputated fragments possess sides and ends,

a front end and a hind end, like the entire worm; in short, they

retain their polarity. This remarkable discovery is due to Child,

who has amplified and extended it in various instructive ways.

The existence of two poles, positive and negative, implies a

"gradient" between them. It means that one part leads and

another follows; that one part is dominant, or prepotent over the

rest, whether in regenerative growth or embryonic development.

We may summarise, as follows, the main results of the foregoing

discussion

:

(1) Except in certain minute organisms, whose form (hke that

* Journ. Ezper. ZooL vii, p. 457, 1909.
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of a drop of water) is due to the direct action of the molecular forces,

we may look upon the form of an organism as a " function of growth,"

or a direct consequence of growth whose rate varies in its different

directions. In a newer language we might call the form of an

organism an "event in space-time," and not merely a "configuration

in space."

(2) Growth varies in rate in an orderly way, or is subject, like

other physiological activities, to definite "laws." The rates differ

in degree, or form "gradients," from one point of an organism to

another; the rates in different parts and in different directions

tend to maintain more or less constant ratios to one another in

each organism ; , and to the regularity and constancy of these relative

rates of growth is due the fact that the form of the organism is in

general regular and constant.

(3) Nevertheless, the ratio of velocities in different directions is

not absolutely constant, but tends to alter in course of time, or to

fluctuate in an orderly way; and to these progressive changes are

due the changes of form which accompany development, and the

slower changes which continue perceptibly in after hfe.

(4) Rate of growth depends on the age of the organism. It has

a maximum somewhat early in hfe, after which epoch of maximum

it slowly declines.

(5) Rate of growth is directly affected by temperature, and by

other physical conditions: the influence of temperature being

notably large in the case of cold-blooded or " poecilothermic

"

animals. Growth tends in these latter to be asymptotic, becoming

slower but never ending with old age.

(6) It is markedly affected, in the way of acceleration or retarda-

tion, at certain physiological epochs of hfe, such as birth, puberty

or metamorphosis.

(7) Under certain circumstances, growth may be negative, the

organism growing smaller; and such negative growth is a common

accompaniment of metamorphosis, and a frequent concomitant of

old age.

(8) The phenomenon of regeneration is associated with a large

transitory increase in the rate of growth (or acceleration of growth)

in the region of injury; in other respects regenerative growth is

similar to ordinary growth in all its essential phenomena.
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In this discussion of growth, we have left out of account a vast

number of processes or phenomena in the physiological mechanism

of the body, by which growth is effected and controlled. We have

dealt with growth in its relation to magnitude, and to that relativity

of magnitudes which constitutes form; and so we have studied it

as a phenomenon which stands at the beginning of a morphological,

rather than at the end of a physiological enquiry. Under these

restrictions, we have treated it as far as possible, or in such fashion

as our present knowledge permits, on strictly physical lines. That

is to say, we rule "heredity" or any such concept out of our present

account, however true, however important, however indispen-

sable in another setting of the story, such a concept may be.

In physics "on admet que I'etat actuel du monde ne depend que du

passe le. plus proche, sans etre influence, pour ainsi dire, par le

souvenir d'un passe lointain*." This is the concept to which the

differential equation gives expression; it is the step which Newton

took when he left Kepler behind.

In all its aspects, and not least in its relation to form, the growth

of organisms has many analogies, some close, some more remote,

among inanimate things. As the waves grow when the winds strive

with the other forces which govern the movements of the surface

of the sea, as the heap grows when we pour corn out of a sack, as

the crystal grows when from the surrounding solution the proper

molecules fall into their appropriate places: so in all these cases,

very much as in the organism itself, is growth accompanied by

change of form, and by a development of definite shapes and

contours. And in these cases (as in all other mechanical phenomena),

we are led to equate our various magnitudes with time, and so to

recognise that growth is essentially a question of rate, or of velocity.

The diiferences of form, and changes of form, which are brought

about by varying rates (or "laws") of growth, are essentially the

same phenomenon whether they be episodes in the life-history of

the individual, or manifest themselves as the distinctive charac-

teristics of what we call separate species of the race. From one

form, or one ratio of magnitude, to another there is but one straight

and direct road of transformation, be the journey taken fast or

* Cf. H. Poincare, La physique generale et la physique mathematique, Rev.

gin. des Sciences, xi, p. 1167, 1900.
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slow; and if the transformation take place at all, it will in all

likelihood proceed in the self-same way, whether it occur within

the Ufetime of an individual or during the long ancestral history of

a race. No small part of what is known as Wolff's or von Baer*s

law, that the individual organism tends to pass through the phases

characteristic of its ancestors, or that the life-history of the individual

tends to recapitulate the ancestral history of its race, lies wrapped

up in this simple account of the relation between growth and form.

But enough of this discussion. Let us leave for a while the

subject of the growth of the organism, and attempt to study the

conformation, within and without, of the individual cell.



CHAPTER IV

ON THE INTERNAL FORM AND STRUCTURE
OF THE CELL

In the early days of the cell-theory, a hundred years ago, Goodsir

was wont to speak of cells as "centres of growth" or "centres of

nutrition," and to consider them as essentially "centres of force*".

He looked forward to a time when the forces connected with the

cell should be particularly investigated : when, that is to say, minute

anatomy should be studied in its dynamical aspect. "When this

branch of enquiry," he says, "shall have been opened up, we shall

expect to have a science of organic forces, having direct relation

to anatomy, the science of organic forms." And likewise, long

afterwards, Giard contemplated a science of morphodynatnique—but

still looked upon it as forming so guarded and hidden a "territoire

scientifique, que la plupart des naturalistes de nos jours ne le verront

que comme Moise vit la terre promise, seulement de loin et sans

pouvoir y entrerf
."

To the external forms of cells, and to the forces which produce

and modify these forms, we shall pay attention in a later chapter.

But there are forms and configurations of matter within the cell

which also deserve to be studied with due regard to the forces,

known or unknown, of whose resultant they are the visible

expression.

* Anatomical and Pathological Observations, p. 3, 1845; Anatomical Memoirs,

II, p. 392, 1868. This was a notable improvement on the "kleine wirkungsfahige

Zentren oder Elementen" of the Cellularpathologie. Goodsir seems to have been

seeking an analogy between the living cell and the physical atom, which Faraday,

following Boscovich, had been speaking of as a centre of force in the very year

before Goodsir published his Observations: see Faraday's Speculations concerning

Electrical Conductivity and the Nature of Matter, 1844. For Newton's "molecules"

had been turned by his successors into material points; and it was Boscovich (in

1758) who first regarded these material points as mere persistent centres of force.

It was the same fertile conception of a centre of force which led Rutherford, later

on, to the discovery of the nucleus of the atom.

t A. Giard, L'oeuf et les debuts de revolution, Bull. Sci. du Nord de la Fr. vm,

pp. 252-258, 1876.
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In the long interval since Goodsir's day, the visible structure,

the conformation and configuration, of the cell, has been studied

far more abundantly than the purely dynamic problems which are

associated therewith. The overwhelming progress of microscopic

observation has multipHed our knowledge of cellular and intra-

cellular structure ; and to the multitude of visible structures it has

been often easier to attribute virtues than to ascribe intelUgible

functions or modes of action. But here and there nevertheless,

throughout the whole hteratiire of the subject, we find recognition

of the inevitable fact that dynamical problems lie behind the

morphological problems of the cell.

Biitschli pointed out sixty years ago, with emphatic clearness,

the failure of morphological methods and the need for physical

methods if we were to penetrate deeper into the essential nature of

the cell*. And such men as Loeb and Whitman, Driesch and Roux,

and not a few besides, have pursued the same train of thought and

similar methods of enquiry.

Whitman t, for instance, puts the case in a nutshell when, in

speaking of the so-called " caryokinetic " phenomena of nuclear

division, he reminds us that the leading idea in the term ''caryo-

kinesis'' is ynotion—"motion viewed as an exponent of forces

residing in, or acting upon, the nucleus. It regards the nucleus

as a seat of energy, which displays itself in phenomena of motion X-^'

In short it would seem evident that, except in relation to a

dynamical investigation, the mere study of cell structure has but

* Entwickelungsvorgdnge der Eizelle, 1876; Investigations on Microscopic Foams

and Protoplasm, p. 1, 1894.

t Journ. Morphology, i, p. 229, 1887.

t While it has been very common to look upon the phenomena of mitosis as

sufficiently explained by the results towards which they seem to lead, we may find

here and there a strong protest against this mode of interpretation. The following

is a case in point: ''On a tente d'etablir dans la mitose dite primitive plusieurs

categories, plusieurs types de mitose. On a choisi le plus souvent comme base

de ces systemes des concepts abstraits et teleologiques : repartition plus ou moins

exacte de la chromatine entre les deux noyaux-fils suivant qu'il y a ou non des

chromosomes (Dangeard), distribution particuliere et signification dualiste des

substances nucleaires (substance kinetique et substance generative ou hereditaire,

Ilartmann et ses eleves), etc. Pour moi tous ces essais sont a rejeter categorique-

ment a cause de leur caractere finaliste; de plus, ils sont construits sur des concepts

non demontres, et qui parfois representent des generalisations absolument erronees.''

A. Alexeieflf, Archiv fiir Protistenkunde, xix, p. 344, 1913.
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little value of its own. That a given cell, an ovum for instance,

contains this or that visible substance or structure, germinal vesicle

or germinal spot, chromatin or achromatin, chromosomes or centro-

somes, obviously gives no explanation of the activities of the cell.

And in all such hypotheses as that of "pangenesis," in all the

theories which attribute specific properties to micellae, chromosomes,

idioplasts, ids, or other constituent particles of protoplasm or of

the cell, we are apt to fall into the error of attributing to matter

what is due to energy and is manifested in force: or, more strictly

speaking, of attributing to material particles individually what is

due to the energy of their collocation.

The tendency is a very natural one, as knowledge of structure

increases, to ascribe particular virtues to the material structures

themselves, and the error is one into which the disciple is Ukely

to fall but "of which we need not suspect the master-mind. The

dynamical aspect of the case was in all probability kept well in view

by those who, Hke Goodsir himself, first attacked the problem of

the cell and originated our conceptions of its nature and functions*.

If we speak, as Weismann and others speak, of an "hereditary

sitbstance,'' a substance which is spHt off from the parent-body, and

which hands on to the new generation the characteristics of the old,

we can only justify our mode of speech by the assumption that that

particular portion of matter is the essential vehicle of a particular

charge or distribution of energy, in which is involved the capabihty

of producing motion, or of doing "work." For, as Newton said,

to tell us that a thing "is endowed with an occult specific quahtyf,

by which it acts and produces manifest effects, is to tell us nothing

;

but to derive two or three general principles of motion { from

* See also {int. al.) R. S. Lillie's papers on the physiology of cell-division in the

Journ. Exper. Physiology; especially No. vi, Rhythmical changes in the resistance

of the dividing sea-urchin egg, ibid, xvi, pp. 369-402, 1916.

f Such as the vertu donnitive which accounts for the soporific action of opium.

We are now more apt. as Le Dantec says, to substitute for this occult quality the

hypothetical substance dormitin.

X This is the old philosophic axiom writ large: Ignorato motu, ignoratur -natura;

which again is but an adaptation of Aristotle's phrase, 17 dpx^ ^V^ Kivrjcrecxjs, as

equivalent to the "Efiicient Cause." FitzGerald holds that "all explanation

consists in a description of underlying motions" {Scientific Writings, 1902, p. 385);

and Oliver Lodge remarked, "You can move Matter; it is the only thing you can

do to it."
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phenomena would be a very great step in philosophy, though the

causes of those principles were not yet discovered." The things

which we see in the cell are less important than the actions which

we recognise in the cell; and these latter we must especially,

scrutinise, in the hope of discovering how far they may be attributed

to the simple and well-known physical forces, and how far they be

relevant or irrelevant to the phenomena which we associate with,

and deem essential to, the manifestation of life. It may be that in

this way we shall in time draw nigh to the recognition of a specific

and ultimate residuum.

And lacking, as we still do lack, direct knowledge of the

actual forces inherent in the cell, we may yet learn something

of their distribution, if not also of their nature, from the

outward and inward configuration of the cell and from the

changes taking place in this configuration; that is to say from

the movements of matter, the kinetic phenomena, which the forces

in action set up.

The fact that the germ-cell develops into a very complex structure

is no absolute proof that the cell itself is structurally a very com-

phcated mechanism : nor yet does it prove, though this is somewhat

less obvious, that the forces at work or latent within it are especially

numerous and complex. If we blow into a bowl of soapsuds and

raise a great mass of many-hued and variously shaped bubbles, if

we explode a rocket and watch the regular and beautiful configura-

tion of its falhng streamers, if we consider the wonders of a Hmestone

cavern which a filtering stream has filled with stalactites, we soon

perceive that in all these cases we have begun with an initial system

of very slight complexity, whose structure in no way foreshadowed

the result, and whose comparatively simple intrinsic forces only

play their part by complex interaction with the equally simple

forces of the surrounding medium. In an earlier age, men sought

for the visible embryo, even for the homunculus, within the repro-

ductive cells; and to this day we scrutinise these cells for visible

structure, unable to free ourselves from that old doctrine of
'

' pre-formation * .

"

Moreover, the microscope seemed to substantiate the idea (which

* As when Nageli concluded that the organism is, in a certain sense, "vorge-

bildet"; Beitr. zur wiss. Botanik, ii, 1860.
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we may trace back to Leibniz* and to Hobbest), that there is no

Hmit to the mechanical complexity which we may postulate in an

organism, and no limit, therefore, to the hypotheses which we may
rest thereon. But no microscopical examination of a stick of sealing-

wax, no study of the material of which it is composed, can enlighten

us as to its electrical manifestations or properties. Matter of itself

has no power to do, to make, or to become: it is in energy that

all these potentiaUties reside, energy invisibly associated with the

material system, and in interaction with the energies of the

surrounding universe.

That ''function presupposes structure" has been declared an

accepted axiom of biology. Who it was that so formulated the

aphorism I do not know; but as regards the structure of the cell

it harks back to Briicke, with whose demand for a mechanism, or

an organisation, within the cell histologists have ever since been

trying to comply J. But unless we mean to include thereby

invisible, and merely chemicu,l or molecular, structure, we come at

once on dangerous ground. For we have seen in a former chapter

that organisms are known of magnitudes so nearly approaching the

molecalar, that everything which the morphologist is accustomed to

conceive as "structure" has become physically impossible; and

recent research tends to reduce, rather than to extend, our con-

ceptions of the visible structure necessarily inherent in living

protoplasm §. The microscopic structure which in the last resort

* "La matiere arrangee par une sagesse divine doit etre essentiellement organisee

partout. . .il y a machine dans les parties de la machine naturelle a I'infini." Siir le

principe de la Vie, p. 431 (Erdmann). This is the very converse of the doctrine

of the Atomists, who could not conceive a condition "w6/ dimidiae partis pars

semper hahehit Dimidiam partem, nee res praefiniet ulla.''

t Cf. an interesting passage from the Elements (i, p. 445, Molesworth's edit.),

quoted by Owen, Hunterian Lectures on the Invertebrates, 2nd ed. pp. 40, 41, 1855.

% "Wir miissen deshalb den lebenden Zellen, abgesehen von der Molekular-

structur der organischen Verbindungen welche sie enthalt, noch eine andere und

in anderer Weise complicirte Structur zuschreiben, und diese es ist welche wir

mit dem Namen Organisation bezeichnen," Briicke, Die Elementarorganismen,

Wiener Sitzungsber. xliv, 1861, p. 386; quoted by Wilson, The Cell, etc., p. 289.

Cf. also Hardy, Journ. Physiol, xxiv, 1899, p. 159.

§ The term protoplasm was first used by Purkinje, about 1839 or 1840 (cf.

Reichert, Arch. f. Anat. u. Physiol. 1841). But it was better defined and more

strictly used by Hugo von Mohl in his paper Ueber die Saftbewegung im Inneren

der Zellen, Botan. Zeitung, iv, col. 73-78, 89-94, 1846.
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or in the simplest cases it seems to sheWj is that of a more or less

viscous colloid, or rather mixtm:e of colloids, and nothing more.

Now, as Clerk Maxwell puts it in discussing this very problem,

"one material system can differ from another only in the configura-

tion and motion which it has at a given instant*." If we cannot

assume differences in structure or configuration, we must assume

differences in motion, that is to say in energy. And if we cannot

do this, then indeed we are thrown back upon modes of reasoning

unauthorised in physical science, and shall find ourselves constrained

to assume, or to "admit, that the properties of a germ are not those

of a purely material system."

But we are by no means necessarily in this dilemma. For though

we come perilously near to it when we contemplate the lowest

orders of magnitude to which hfe has been attributed, yet in the

case of the ordinary cell, or ordinary egg or germ which is going

to develop into a complex organism, if we have no reason to assume

or to beheve that it comprises an intricate "mechanism," we mgiy

be quite sure, both on direct and indirect evidence, that, hke the

powder in our rocket, it is very heterogeneous in its structure.

It is a mixture of substances of various kinds, more or less fluid,

more or less mobile, influenced in various ways by chemical, electrical,

osmotic and other forces, and in their admixture separated by a

multitude of surfaces or boundaries, at which these or certain of

these forces are made manifest.

Indeed, such an arrangement as this is already enough to con-

stitute a "mechanism"; for we must be very careful not to let our

physical or physiological concept of mechanism be narrowed to an

interpretation of the term derived from the comphcated contrivances

of himaan skill. From the physical point of view, we understand

by a "mechanism" w^hatsoever checks or controls, and guides into

determinate paths, the workings of energy: in other words, what-

soever leads in the degradation of energy to its manifestation in

some form of work, at a stage short of that ultimate degradation

which lapses in uniformly diffused heat. This, as Warburg has well

explained, is the general effect or function of the physiological

machine, and in particular of that part of it which we call "cell-

* Precisely as in the Lueretian concursus, motus, ordo, positura, figurae, whereby

bodies mutato ordine mutant naturam.
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structure*." The normal muscle-cell is something which turns

energy, derived from oxidation, into work; it is a mechanism which

arrests and utihses the chemical energy of oxidation in its downward

course; but the same cell when injured or disintegrated loses its

"usefulness," and sets free a greatly increased proportion of its

energy in the form of heat. It was a saying of Faraday's, that

"even a Hfe is but a chemical act prolonged. If death occur, the

more rapidly oxygen and the affinities run on to their final state f."

Very great and wonderful things are done by means of a

mechanism (whether natural or artificial) of extreme simphcity.

A pool of water, by virtue of its surface, is an admirable mechanism

for the making of waves ; with a lump of ice in it, it becomes an

efficient and self-contained mechanism for the making of currents.

Music itself is made of simple things—a reed, a pipe, a string.

The great cosmic mechanisms are stupendous in their simphcity;

and, in point of fact, every great or little aggregate of heterogeneous

matter (not identical in "phase") involves, ipso facto, the essentials

of a mechanism. Even a non-living colloid, from its intrinsic hetero-

geneity, is in this sense a mechanism, and one in which energy is

manifested in the movement and ceaseless rearrangement of the

constituent particles. For this reason Graham speaks somewhere

or other of the colloid state as "the dynamic state of matter"; in

the same philosopher's' phrase, it possesses ^' energia%.'^

Let us turn then to consider, briefly and diagrammatically, the

structure of the cell, a fertilised germ-cell or ovum for instance, not

in any vain attempt to correlate this structure with the structure

or properties of the resulting and yet distant organism ; but merely

to see how far, by the study of its form and its changing internal

configuration, we may throw hght on certain forces which are for

the time being at work within it.

We may say at once that we can scarcely hope to learn more of

these forces, in the first instance, than a few facts regarding their

* Otto Warburg, Beitrage zur Physiologie der Zelle, insbesondere iiber die

Oxidationsgeschwindigkeit in Zellen; in Asher-Spiro's Ergebnisse der Physiologie,

XIV, pp. 253-337, 1914 (see p. 315).

t See his Life by Bence Jones, ii, p. 299.

X Both phrases occur, side by side, in Graham's classical paper on Liquid

diffusion applied to analysis, Phil. Trans, cli, p. 184, 1861; Chem. and Phys.

Researches (ed. Angus Smith), 1876, p. 554.
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direction and magnitude; tli£ nature and specific identity of the

force or forces is a very different matter. This latter problem is

likely to be difficult of elucidation, for the reason, among others,

that very different forces are often much alike in their outward and

visible manifestations. So it has come to pass that we have a

multitude of discordant hypotheses as to the nature of the forces

acting within the cell, and producing in cell division the "caryo-

kinetic" figures of which we are about to speak. One student may,

like Rhumbler, choose to account for them by an hj^othesis of

mechanical traction, acting on a reticular web of protoplasm*;

another, hke Leduc, may shew us how in many of their most striking

features they may be admirably simulated by salts diffusing in a

colloid medium; others, hke Lamb and Graham Cannon, have

compared them to the stream-hnes produced and the field of force

set up by bodies vibrating in a fluid; others, like Gallardof and

Rhumbler in his earher papers J, insisted on their resemblance to

certain phenomena of electricity and magnetism §; while Hartog

believed that the force in question is only analogous to these, and

has a specific identity of its own||. All these conflicting views are

of secondary importance, so long as we seek only to account for

certain configurations which reveal the direction, rather than the

nature, of a force. One and the same system of lines of force may

appear in a field of magnetic or of electrical energy, of the osmotic

energy of diffusion, of the gravitational energy of a flowing stream.

In short, we may expect to learn something of the pure or abstract

dynamics long before we can deal with the special physics of the

* L. Rhumbler, Mechanische Erklarung der Aehnlichkeit zwischen magne-

tischen Kraftliniensystemen und Zelltheilungsfiguren, Arch. f. Entw. Mech. xv,

p. 482, 1903.

t A. Gallardo, Essai d'interpretation des figures caryocinetiques, Armies del

Museo de Buenos-Aires (2), ii, 1896; Arch. f. Entw. Mech. xxvm, 1909, etc.

X Arch.f. Entw. Mech. ill, iv, 1896-97.

§ On various theories of the mechanism of mitosis, see (e.g.) Wilson, The Cell

in Development, etc.; Meves, Zelltheilung, in Merkel u. Bonnet's Ergehnisse der

Anatomic, etc., vii, viii, 1897-98; Ida H. Hyde, Amer. Journ. Physiol, xii, pp. 241-

275, 1905; and especially A. Prenant, Theories et interpretations physiques de

la mitose, Journ. de VAnat. et Physiol, xlvi, pp. 511-578, 1910. See also A. Conard,

Sur le mecanisme de la division cellulaire, et sur les bases, morphologiques de la

Cytologie, Bruxelles, 1939: a work which I find hard to follow.

II
M. Hartog, Une force nouvelle: le mitokinetisme, C.R. 11 Juli 1910; Arch. f.

Entw. Mech. xxvii, pp. 141-145, 1909; cf. ibid, xl, pp. 33-64, 1914.
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cell. For indeed, just as uniform expansion about a single centre,

to whatsoever physical cause it may be due, will lead to the con-

figuration of a sphere, so will any two centres or foci of potential

(of whatsoever kind) lead to the configurations with which Faraday

first made us famihar under the name of "lines of force*"; a^d

this is as much as to say that the phenomenon, though physical in the

concrete, is in the abstract purely mathematical, and in its very essence

is neither more nor less than a property of three-dimensional space.

But as a matter of fact, in this instance, that is to say in trying

to explain the leading phenomena of the caryokinetic division of

the cell, we shall soon perceive that any explanation which is based,

like Rhumbler's, on mere mechanical traction, is obviously inade-

quate, and we shall find ourselves limited to the hypothesis of some

polarised and polarising force, such as we deal with, for instance,

in magnetism or electricity, or in certain less familiar phenomena

of hydrodynamics. Let us speak first of the cell itself, as it appears

in a state of rest, and let us proceed afterwards to study the more

active phenomena which accompany its division.

Our typical cell is a spherical body; that is to say, the uniform

surface-tension at its boundary is balanced by the outward resistance

of uniform forces within. But at times the surface-tension may be

a fluctuating quantity, as when it produces the rhythmical con-

tractions or "Ransom's waves "f on the surface of a trout's egg; or

again, the surface-tension may be locally unequal and variable, giving

rise to an amoeboid figure, as in the egg of HydraX-

Within the cell is a nucleus or germinal vesicle, also spherical,

* The configurations, as obtained by the usual experimental methods, were

of course known long before Faraday's day, and constituted the "convergent and

divergent magnetic curves" of eighteenth century mathematicians. As Leslie

said, in 1821, they were "regarded with wonder by a certain class of dreaming

philosophers, whp did not hesitate to consider them as the actual traces of an

invisible fluid, perpetually circulating between the poles of the magnet." Faraday's

great advance was to interpret them as indications of stress in a medium—of.

tension or attraction along the lines, and of repulsion transverse to the lines, of the

diagram.

t W. H. Ransom, On the ovum of osseous fishes, Phil. Trans, clvii, pp. 431-502,

1867 (vide p. 463 et. seq.) (Ransom, afterwards a Nottingham physician, was

Huxley's friend and class-fellow at University College, and beat him for the medal

in Grant's class of zoology.)

X Cf, also the curiou.s phenomenon in a dividing egg described as "spinning"

by Mrs G. F. Andrews, Journ. Morph. xii, pp. 367-389, 1897.
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and consisting of portions of "chromatin," aggregated together

within a more fluid drop. The fact has often been commented

upon that, in cells generally, there is no correlation of form

(though there apparently is of size) between the nucleus and the

"cytoplasm," or main body of the cell. So Whitman* remarks

that "except during the process of division the nucleus seldom

departs from it^ cypical spherical form. It divides and sub-divides,

ever returning to the same round or oval form. . . . How different

with the cell. It preserves the spherical form as rarely as the

nucleus departs from it. Variation in form marks the beginning

and the end of every important chapter in its history." On simple

dynamical grounds, the contrast is easily explained. So long as

the fluid substance of the nucleus is qualitatively different from,

and incapable of mixing with, the fluid or semi-fluid protoplasm

surrounding it, we shall expect it to be, as it almost always is, of

spherical form. For on the one hand, it has a surface of its own

whose surface-tension is presumably uniform, and on the other, it

is immersed in a medium which transmits on all sides a uniform

fluid or "hydrostatic" pressure f; thus the case of the spherical

nucleus is closely akin to that of the spherical yolk within the

bird's egg. Again, for a similar reason, the contractile vacuole of

a protozoon is spherical {. It is just a drop of fluid, bounded by a

* Whitman, Journ. Morph. ii, p. 40, 1889.

t "Souvent il n'y a qu'une separation physique entre le cytoplasme et le sue

hucleaire, comme entre deux liquides immiscibles, etc."; Alexeieff, 8ur la mitose

dite primitive, Arch. f. Protistenk. xxix, p. 357, 1913.

X The appearance of " vacuolation " is a result of endosmosis, or the diffusion

of a less dense fluid into the denser plasma of the cell. But while water is probably

taken up at the surface of the cell by purely passive osmotic intake, a definite

"vacuole" appears at a place where osmotic work is being actively done. A higher

osmotic pressure than that of the external medium is maintained within the cell,

but as a "steady state" rather than a condition of equilibrium, in other words by

the continual expenditure of energy; and the difference of pressure is at best small.

The "contractile vacuole" bursts when it touches the surface of the cell, and

bursting may be delayed by manipulating the vacuole towards the interior. It

may sometimes burst towards the interior of the cell through inequalities in its

own surface-tension, and the collapsing vacuole is then apt to shew a star-shaped

figure. The cause of the higher osmotic pressure within the cell is a matter for

the colloid chemist, and cannot be discussed here. On the physiology of the

contractile vacuole, see {int. al.) H. Z. Gow, Arch. f. Protistenk. lxxxvii, pp. 185-

212, 1936; J. Spek, Einfluss der Salze auf die Plasmkolloide von Actinosphaerium,

Acta Zool. 1921; J. A, Kitching, Journ. Exp. Biology, xi, xiii, xv, 1934-38.
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uniform surface-tension, and through whose boundary-film diffusion

is taking place; but here, owing to the small difference between the

fluid constituting and that surrounding the drop, the surface-tension

equihbrium is somewhat unstable; it is apt to vanish, and the

rounded outhne of the drop disappears, Uke a burst bubble, in a

moment.

If, on the other hand, the substance of the cell acquire a greater

soUdity, as for instance in a muscle-cell, or by reason of mucous

accumulations in an epithehum cell, then the laws of fluid pressure

no longer apply, the pressure on the nucleus tends to become

unsymmetrical, and its shape is modified accordingly. Amoeboid

movements may be set up in the nucleus by anything which disturbs

the symmetry of its own surface-tension; and where "nuclear

material" is scattered in small portions throughout the cell as in

many Rhizopods, instead of being aggregated in a single nucleus,

the simple explanation probably is that the "phase difference" (as

the chemists say) between the nuclear and the protoplasmic substance

is comparatively shght, and the surface-tension which tends to keep

them separate is correspondingly small*.

Apart from that invisible or ultra-microscopic heterogeneity

which is inseparable from our notion of a "colloid," there is a

visible heterogeneity of structure within both the nucleus and the

outer protoplasm. The former contains, for instance, a rounded

nucleolus or "germinal spot," certain conspicuous granules or

strands of the peculiar substance called chromatin*)*, and a coarse

meshwork of a protoplasmic material known as "linin" or achro-

matin; the outer protoplasm, or cytoplasm, is generally believed

to consist throughout of a sponge-work, or rather alveolar mesh-

work, of more and less fluid substances; it may contain "mito-

chondria," appearing in tissue-cultures as small amoeboid bodies;

and lastly, there are generally to be detected (in the animal, rarely

in the vegetable kingdom) one or more very minute bodies, usually

in the cytoplasm sometimes within the nucleus, known as the

centrosome or centrosomes.

* The elongated or curved "macronucleus" of an Infusorian is to be looked

upon as a single mass of chromatin, rather than as an aggregation of particles in

a fluid drop, as in the case described. It has a shape of its own, in which ordinary

surface-tension plays a very subordinate part.

•j- First so-called by W. Flemming, in his Zellsubstanz, Kern und Zelltheilung, 1882.
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The morphologist is accustomed to speak of a "polarity" of the

cell, meaning thereby a symmetry of visible structure about a

particular axis. For instance, whenever we can recognise in a cell

both a nucleus and a centrosome, we may consider a hne drawn

through the two as the morphological axis of polarity ; an epitheUum

cell is morphologically symmetrical about a median axis passing

from its free surface to its attached base. Again, by an extension

of the term polarity, as is customary in dynamics, we may have

a "radial" polarity, between centre and periphery; and lastly, we

may have several apparently independent centres of polarity within

the single cell. Only in cells of quite irregular or amoeboid form

do we fail to recognise a definite and symmetrical polarity. The

morphological polarity is accompanied by, and is but the outward

expression (or part of it) of a true dynamical polarity, or distribution

of forces; and the hues of force are, or may be, rendered visible

by concatenation of particles of matter, such as come under the

influence of the forces in action.

When hnes of force stream inwards from the periphery towards

a point in the interior of the cell, particles susceptible of attraction

either crowd towards the surface of the cell or, when retarded by

friction, are seen forming lines or "fibrillae" which radiate outwards

from the centre. In the cells of columnar or cihated epithehum,

where the sides of the cell are symmetrically disposed to their

neighbours but the free and attached surfaces are very diverse from

one another in their external relations, it is these latter surfaces

which constitute the opposite poles; and in accordance with the

parallel lines of force so set up, we very frequently see parallel lines

of granules which have ranged themselves perpendicularly to the

free surface of the cell (cf. Fig. 149).

A simple manifestation of polarity may be well illustrated by

the phenomenon of diffusion, where we may conceive, and may
automatically reproduce, a field of force, with its poles and its

visible lines of equipotential, very much as in Faraday's conception

of the field of force of a magnetic system. Thus, in one of Leduc's

experiments*, if we spread a layer of salt solution over a level

plate of glass, and let fall into the middle of it a drop of indian

ink, or of blood, we shall find the coloured particles travelling

* Thtorie physico-chimique de la Vie, 1910, p. 73.
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outwards from the central "pole of concentration" along the lines

of diffusive force, and so mapping out for us a "monopolar field"

of diffusion : and if we set two such drops side by side, their fines

of diffusion will oppose and repel one another. Or, instead of the

uniform layer of salt solution, we may place at a little distance

from one another a grain of salt and a drop of blood, representing

two opposite poles: and so obtain a picture of a "bipolar field"

of diffusion. In either case, we obtain results closely analogous to

the morphological, but really dynamical, polarity of the organic

cell. But in all probability, the dynamical polarity or asymmetry

of the cell is a very complicated phenomenon: for the obvious

reason that, in any system, one asymmetry will tend to beget

another. A chemical asymmetry will induce an inequafity of

surface-tension, which will lead directly to a modification of form

;

the chemical asymmetry may in turn be due to a process of

electrolysis in a polarised electrical field; and again the chemical

heterogeneity may be intensified into a chemical polarity, by the

tendency of certain substances to seek a locus of gi^eater or less

surface-energy. We need not attempt to grapple with a subject so

compHcated, and leading to so many problems which lie beyond

the sphere of interest of the morphologist. But yet the morpho-

logist, in his study of the cell, cannot quite evade these important

issues; and we shall return to them again when we have dealt

somewhat with the form of the cell, and have taken account of

some of its simpler phenomena.

We are now ready, and in some measure prepared, to study the

numerous and complex phenomena which accompany the division

of the cell, for instance of the fertilised egg. But it is no easy task

to epitomise the facts of the case, and none the easier that of late

new methods have shewn us new things, and have cast doubt on

not a little that we have been accustomed to believe.

Division of the cell is of necessity accompanied, or preceded, by

a change from a radial or monopolar to a definitely bipolar sym-

metry. In the hitherto quiescent or apparently quiescent cell, we

perceive certain movements, which correspond precisely to what

must accompany and result from a polarisation of forces within:

of forces which, whatever be their specific nature, are at least
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capable of polarisation, and of producing consequent attraction or

repulsion between charged particles. The opposing forces which

are distributed in equilibrium throughout the cell become focused

in two "centrosomes*," which may or may not be already visible.

It generally happens that, in the egg, one of these centrosomes is

near to and the other far from the "animal pole," which is both

visibly and chemically different from the other, and is where the

more conspicuous developmental changes will presently begin.

Between the two centrosomes, in stained preparations, a spindle-

shaped figure appears (Fig. 88), whose striking resemblance to the

Fig. 8». Caryokinetic ligure in a dividing cell (or blastomere) of a trout s egg.

After Prenant, from a preparation by Prof. Bouin.

lines of force made visible by iron-filings between the poles of a

magnet was at once recognised by Hermann Fol, in 1873, when he

witnessed the phenomenon for the first timef. On the farther

side of the centrosomes are seen star-like figures, or "asters," in

which we se^m to recognise the broken lines of force which run

externally to those stronger lines which lie nearer to the axis and

constitute the "spindle." The lines of force are rendered visible,

or materialised, just as in the experiment of the iron-fihngs, by the

fact that, in the heterogeneous substance of the cell, certain portions

* These centrosomes are the two halves of a single granule, and are said (by

Boveri) to come from the middle piece of the original spermatozoon.

t He did so in the egg of a medusa {Geryon), Jen. Zeitschr. vii, p. 476, 1873.

Similar ideas have been expressed by Strasbiirger, Henneguy, Van Beneden,

Errera, Ziegler, Gallardo and others.
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of matter are more "permeable" to the acting force than others,

become themselves polarised after the fashion of a magnetic or

"paramagnetic" body, arrange themselves in an orderly way

between the two poles of the field of force, seem to cling to one

another as it were in threads*, and are only prevented by the

friction of the surrounding medium from approaching and con-

gregating around the adjacent poles.

As the field of force strengthens, the more will the lines of force

be drawn in towards the interpolar axis, and the less evident will

be those remoter lines which constitute the terminal, or extrapolar,

asters: a clear space, free from materialised fines of force, may
thus tend to be set up on either side of the spindle, the so-called

''Biitschfi space" of the histologistsl. On the other hand, the lines

of force constituting the spindle will be less concentrated if they

find a path of less resistance at the periphery of the ceU : as happens

in our experiment of the iron-filings, when we encircle the field of

force with an iron ring. On this principle, the differences observed

between cells in which the spindle is well developed and the asters

small, and others in which the spindle is weak and the asters greatly

developed, might easily be explained by variations in the potential

of the field, the large, conspicuous asters being correlated in turn

with a marked permeability of the surface of the cell.

The visible field of force, though often called the "nuclear

spindle," is formed outside of, but usually near to, the nucleus.

* Whence the name "mitosis" (Greek /ziros, a thread), applied first by Flemming

to the whole phenomenon. Kolimann (Biol. Centralbl. ii, p. 107, 1882) called it

divisio per fila, or divisio laqueis implicata. Many of the earlier students, such as

Van Beneden (Rech. sur la maturation de I'oeuf, Arch, de Biol, iv, 1883), and

Hermann Fol (Zur Lehre v. d. Entstehung d. karyokinetischen Spindel, Arch. f.

mikrosk. Anat. x,xxvii, 1891) thought they recognised actual muscular threads,

drawing the nuclear material asunder towards the respective foci or poles; and

some such view of Zugkrdfte was long maintained by other writers, by Heidenhain

especially, by Boveri, Flemming, R. Hertwig, Rhumbler, and many more. In fact,

the existence of contractile threads, or the ascription to the spindle rather than to

the poles or centrosomes of the active forces concerned in nuclear division, formed

the main tenet of all those who declined to go beyond the "contractile properties

of protoplasm" for an explanation of the phenomenon (cf. J. W. Jenkinson,

Q.J.M.S. XLViii, p. 471, 1904. See also J. Spek's historical account of the theories

of cell-division. Arch. f. Entw. Mech. xliv, pp. 5-29, 1918).

t Cf. 0, Biitschli, Ueber die kiinstliche Nachahmung der karyokinetischen

Figur, Verh. Med. Nat. Ver. Heidelberg, v, pp. 28-41 (1892), 1897.
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Let us look a little more closely into the structure of this body,

and into the changes which it presently undergoes.

Within its spherical outHne (Fig. 89 a), it contains an ''alveolar"

meshwork (often described, from its appearance in optical section,

as a "reticulum"), consisting of more sohd substances with more

fluid matter filling up the interalveolar spaces. This phenomenon,

familiar to the colloid chemist, is what he calls a "two-phase

system," one substance or "phase" forming a continuum through

which the other is dispersed; it is closely alhed to what we call in

atrracHon - sphere

1 ,C€ntro3omes

Fig. 89 A. Fig. 89 B.

ordinary language a. froth ot'sl foam*, save that in these latter the

disperse phase is represented by air. It is a surface-tension pheno-

menon, due to the interaction of two intermixed fluids not very

different in density, as they strive to separate. Of precisely the

same kind (as Biitschli was the first to shew) are the minute alveolar

networks which are to be discerned in the cytoplasm of the cellf,

* Froth and foam have been much studied of late years for technical reasons,

and other factors than surface-tension are foiind to be concerned in their existence

and their stability. See (int. al.) Freundlich's Capillarchemie, and various papers

by Sasaki, in Bull. Chem. Soc. of Japan, 1936-39.

t Biitschli, Untersuchungen iiber mikroskopische Schdume und das Protoplasma,

1892; Untersuchungen uber Strukturen, etc., 1898; L. Rhumbler, Protoplasma als

physikalisches System, Ergehn. d. Physiologie, 1914; H. Giersberg, Plasmabau

der Amoben, im Hinblick auf die Wabentheorie, Arch. f. Entw. Mech. li, pp. 150-250,

1922; etc.
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and which we now know to be not inherent in the nature of proto-

plasm nor of Hving matter in general, but to be due to various

causes, natural as well as artificial*. The microscopic honeycomb

structure of cast metal under various conditions of coohng is an

example of similar surface-tension phenomena.

Such then, in briefest outhne, is the typical structure commonly

ascribed to a cell when its latent energies are about to manifest

themselves in the phenomenon of cell-division. The account is

based on observation not of the hving cell but of the dead : on the

assumption, that is to say, that fixed and stained material gives a

true picture of reahty. But in Robert Chambers's method of micro-

dissection f, the hving cell is manipulated with fine glass needles

under a high magnification, and shews us many interesting things.

Chambers assures us that the spindle fibres never make their

appearance as visible structures until coagulation has set in; and

that astral rays are, or appear to be, channels in which the more

fluid content of the cell flows towards a centrosome:|:. Within the

bounds to which we are at present keeping, these things are of no

great moment; for whether the spindle appear early or late, it still

bears witness to the fact that matter has arranged itself along

bipolar fines of force; and even if the astral rays be only streams

or currents, on lines of force they still approximately he. Yet the

change from the old story to the new is important, and may make

a world of diff'erence when we attempt to define the forces concerned.

All our descriptions, all our interpretations, are bound to be

influenced by our conception of the mechanism before us; and he

* Arrhenius, in describing a typical colloid precipitate, does so in terms that

are very closely applicable to the ordinary microscopic appearance of the protoplasm

of the cell. The precipitate consists, he says, "en un reseau d'une substance solide

contenant peu d'eau, dans les mailles duquel est inclus un fluide contenant un peu

de colloide dans beaucoup d'eau. . . . Evidemment cette structure se forme a cause

de la petite difference de poids specifique des deux phases, et de la consistance

gluante des particules separees, qui s'attachent en forme de reseau " {Rev. Scientifique,

Feb. 1911). This, however, is far from being the whole story: cf. (e.g.) S. C.

Bradford, On the theory of gels, Biochem. Journ. xvii, p. 230, 1925; W. Seifritz,

The alveolar structure of protoplasm, Protoplasma, ix, p. 198, 1930; and A. Frey-

Wissling, Submikroskopische Morphologie des Protoplasmas, Berlin, 1938.

t See R. Chambers, An apparatus. . .for the dissection and injection of living

cells, Anatom. Record, xxiv, 19 pp., 1922.

X This centripetal flow of fluid was announced by Biitschli in his early papers,

and confirmed by Rhumbler, though attributed to another cause.
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who sees threads where another sees channels is hkely to tell a

different story about neighbouring and associated things.

It has also been suggested that the spindle is somehow due to a re-arrange-

ment of protein macromolecules or micelles ; that such changes of orientation

of large colloid particles may be a widespread phenomenon; and that coagu-

lation itself is but a polymerisation of larger and larger macromolecules*.

But here we have touched the brink of a subject so important that we must

not pass it by without a word, and yet so contentious that we must not enter

into its details. The question involved is simply whether the great mass of

recorded observations and accepted beliefs with regard to the visible structure

of protoplasm and of the cell constitute a fair picture of the actual living cell,

or be based on appearances which are incident to death itself and to the

artificial treatment which the microscopist is accustomed to apply. The great

bulk of histological work is done by methods which involve the sudden killing

of the cell or organism by strong reagents, the assumption being that death

is so rapid that the visible phenomena exhibited during life are retained or

"fixed" in our preparations.

Hermann Fol struck a warning note full sixty years ago: "II importe a

I'avenir de I'histologie de combattre la tendance a tirer des conclusions des

images obtenues par des moyens artificiels et a leur donner une valeur intrin-

seque, sans que ces images aient ete controlees sur le vivantf." Fol was
thinking especially of cell-membranes and the delimitation of cells; but still

more difficult and precarious is the interpretation of the minute internal net-

works, granules, etc., which represent the alleged structure of protoplasm.

A colloid body, or colloid solution, is ipso facto heterogeneous; it has after

some fashion a structure of its own. And this structure chemical action,

under the microscope, may demonstrate, or emphasise, or alter and disguise.

As Hardy put it, "It is notorious that the various fixing reagents are co-

agulants of organic colloids, and that the figure varies according to the reagent

used."

A case in point is that of the vitreous humour, to which some histologists

have ascribed a fairly complex structure, seeing in it a framework of fibres

with the meshes filled with fluid. But it is really a true gel, without any
structure in the usual sense of the word. The "fibres" seen in ordinary

microscopic preparations are due to the coagulation of micellae by the fixative

employed. Under the ultra-microscope the vitreous is optically empty to

begin with; then innumerable minute fibrillae appear in the beam of light,

criss-crossing one another. Soon these break down into strings of beads, and

* Cf. J. D. Bernal, on Molecular architecture of biological systems, Proc. Boy.

Inst., 1938; H. Staiidinger, Nature, Aug. I, 1939.

t H. Fol, Becherches sur la fecondation et le commencement de VMnogenie chez

divers animaux, Geneve, 1879, pp. 241-242. Cf. A. Daleq, in Biol. Beviews, iii,

p. 24, 1928: "II serait desirable de nous debarrasser de I'idee que tout ce qu'il

y a d'important dans la cellule serait providentiellement colorable par I'hematoxy-

line, la safranine ou le violet de gentiane."
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finally only separate dots are seen*. Other sources of error arise from the

optical principles concerned in microscopic vision; for the diffraction-pattern

which we call the "image" may, under certain circumstances, be very different

from the actual object f. Furthermore, the optical properties of living proto-

plasm are especially complicated and imperfectly known, as in general those

of colloids may be said to be; the minute aggregates of the "disperse phase"

of gels produce a scattering action on light,' leading to appearances of turbidity

etc., with no other or more real basis J.

So it comes to pass that some writers have altogether denied the existence

in the living cell-protoplasm of a network or alveolar "foam"; others have

cast doubts on the main tenets of recent histology regarding nuclear structure

;

and Hardy, discussing the structure of certain gland-cells, declared that

"there is no evidence that the structure discoverable in the cell-substance of

these cells after fixation has any counterpart in the cell when living." "A
large part of it" he went on to say "is an artefact. The profound difference

in the minute structure of a secretory cell of a mucous gland according to the

reagent which is used to fix it would, it seems to me, almost suffice to establish

this statement in the absence of other evidence §."

Nevertheless, histological study proceeds, especially on the part of the

morphologists, with but little change in theory or in method, in spite of these

and many other warnings. That certain visible structures, nucleus, vacuoles,

"attraction-spheres" or centrosomes, etc., are actually present in the living

cell we know for certain; and to this class belong the majority of structures

with which we are at present concerned. That many other alleged structures

are artificial has also been placed beyond a doubt; but where to draw the

dividing line we often do not know.

The following is a brief epitome of the visible changes undergone

by a t3rpical cell, subsequent to the resting stage, leading up to the

act of segmentation, and constituting the phenomenon of mitosis

or caryokinetic division. In the fertilised egg of a sea-urchin we

see with almost diagrammatic completeness, in fixed and stained

specimens, what is set forth here||.

* W. S. Duke-Elder, Journ. Physiol, lxviii, pp. 1.54-165, 1930; of. Baurmann,

Arch.f. Ophthalm. 1923, 1926; etc.

t Abbe, Arch.f. mikrosk. Anat. ix, p. 413, 1874; Gesammelte Ahhandl. i, p. 45,

1904.

X Cf. Rayleigh, On the light from the sky, Phil. Mag. (4) xli, p. 107, 1871.

§ W. B. Hardy, On the structure of cell protoplasm, Journ. Physiol, xxiv,

pp. 158-207, 1889; also Hober, Physikalische Chemie der Zelle und der Gewebe,

1902; W. Berg, Beitrage zur Theorie der Fixation, etc., Arch.f. mikr. Anat. LXii,'

pp. 367-440, 1903, Cf. {int. al.) Flemming, Zellsubstanz, Kern und Zelltheilung,

1882, p. 51; etc.

II
My description and diagrams (Figs. 89-93) are mostly based on those of

the late Professor E. B. Wilson.
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1. The chromatin, which to begin with had been dimly seen as

granules on a vague achromatic reticulum (Figs. 89, 90)—perhaps no

more than an histological artefact—concentrates to form a skein or

spireme, often looked on as a continuous thread, but perhaps

discontinuous or fragmented from the first. It, or its several

fragments, will presently spht asunder; for it is essentially double,

and may even be seen as a double thread, or pair of chromatids, from

an early stage. The chromosomss are portions of this double thread,

which shorten down to form httle rods,' straight or curved, often

chromoaome*

Fig. 90 A. Fig. 90 B.

bent into a V, sometimes ovoid, round or even annular, and which

in the living cell are frequently seen in active, writhing movement,

*"hke eels in a box"*; they keep apart from one another, as by

some repulsion, and tend to move outward towards the nuclear

membrane. Certain deeply staining masses, the nucleoh, may be

present in the resting nucleus, but take no part (at least as a rule)

in the formation of the chromosomes; they are either cast out of

the nucleus and dissolved in the cytoplasm, or else fade away in situ.

* T. S. Strangeways, Proc. E.S. (B), xciv, p. 139, 1922. The tendency of the

chromatin to form spirals, large or small, while the nucleus is issuing from its

resting-stage, is very remarkable. The tensions to which it is due may be overcome,

and the chromosomes made to uncoil, by treatment with ammonia or acetic acid

vapour. See Y. Kuwada, Botan. Mag. Tokyo, xlvi, p. 307, 1932; and C. D.

Darlington, Mechanical aspects of nuclear division, Sci. Journ. B. Coll, of Sci.

TV, p. 94, 1934.
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But this rule does not always hold; for they persist in many
protozoa, and now and then the nucleolus remains and becomes

itself a chromosome, as in the spermogonia of certain insects.

2. Meanwhile a certain deeply staining granule (here extra-

nuclear), known as the centrosome*, has divided into two. It is all

but universally visible, save in the higher plants; perhaps less stress

is laid on it than at one time, but Bovery called i-t the "dynamic

centre" of the cellf. The two resulting granules travel to

opposite poles Df the nucleus, and there eacii becomes surrounded

by a starhke figure, the aster, of which we have sptken already;

immediately around the centrosome is a clear space, the centro-

sphere. Between the two centrosomes, or the two asters, stretches

the spindle. It lies in the long axis, if there be one, of the cell, a

rule laid down nearly sixty years ago, and still remembered as

"Hertwig's Law" J; but the rule is as much and no more than to

say that the spindle sets in the direction of least resistance. Where

the egg is laden with food-yolk, as often happens, the latter is

heavier than the cytoplasm; and gravity, by orienting the egg

itself, thus influences, though only indirectly, the first planes of

segmentation §.

3. The definite nuclear outhne is soon lost; for the chemical

"phase-difference" between nucleus and cytoplasm has broken

down, and where the nucleus was, the chromosomes now he (Figs.

90, 91). The lines of the spindle become visible, the chromosomes

arrange themselves midway between its poles, to form the equatorial

plate, and are spaced out evenly around the central spindle, again

a simple result of mutual repulsion.

4. Each chromosome separates longitudinally into two|| : usually

at this stage—but it is to be noted that the spHtting may have taken

place as early as the spireme stage (Fig. 92).

* The centrosome has a curious history of its own, none too well ascertained.

The ovum has a centrosome, and in self-fertilised eggs this is retained; but when
a sperm-cell enters the egg the original centrosome degenerates, and its place is

taken by the "middle-piece" of the spermatozoon,

f The stages 1, 2, 5 and 6 are called by embryologista the prophase, metaphase,

anaphase and telophase.

X C. Hertwig, Jenaische Ztschr. xviii, 1884.

§ See James Gray, The effect of gravity on the eggs of Echinus, Jl. Exp. Zool. v,

pp. 102-11, 1927.

II
A fundamental fact, first seen by Flemming in 1880.
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5. The halves of the spht chromosomes now separate from and

apparently repel one another, travelUng in opposite directions

towards the two poles* (Fig. 92 b), for all the world as though they

were being pulled asunder by actual threads.

Fig. 91 A. Fig. 91 B.

central spindle

mantle 'fibres

split chromosome*

Fig. 92 A. Fig. 92 B.

6. Presently the spindle itself changes shape, lengthens and con-

tracts, and seems as it were to push the two groups of daughter-

* Cf. K. Belar, Beitrage zur Causalanalyse der Mitose, Ztschr. f. Zellforschung,

X, pp. 73-124, 1929.
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chromosomes into their new places* (Figs. 92, 93); and its chromo-

somes form once more an alveolar reticulum and may occasionally

form another spireme at this stage. A boundary-surface, or at least a

recognisable phase-difference, now develops round each reconstructed

nuclear mass, and the spindle disappears (Fig. 93 b). The centrosome

remains, as a rule, outside the nucleus.

7. On the central spindle, in the position of the equatorial plate,

a "cell-plate," consisting of deeply staining thickenings, has made
its appearance during the migration of the chromosomes. This cell-

plate is more conspicuous in plant-cells.

otfrottron spncft

,d>iopptQr,ng spmifte

Htcon^rucffd dough/trnuei^t

Fig. 93 B.

8. Meanwhile a constriction has appeared in the cytoplasm, and

the cell divides through the equatorial plane. In plant-cells the

line of this division is foreshadowed by the "cell-plate," which

extends from the spindle across the entire cell, and spHts into two

layers, between which appears the membrane by which the daughter-

cells are cleft asunder. In animal cells the cell-plate does not attain

such dimensions, and no cell-wall is formed.

The whole process takes from half-an-hour to an hour; and this

extreme slowness is not. the least remarkable part of the pheno-

menon, from a physical point of view. The two halves of the

* The spindle has no actual threads or fibres, for Robert Chambers's micro-

needles pass freely through it without disturbing the chromosomes: nor is it

visible at all in living cells in vitro. It seems to be due to partial gelation of the

cytoplasm, under conditions which, whether they be mechanical or chemical, are

not easy to understand.
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dividing centrosome, while moving apart, take some twenty minutes

to travel a distance of 20 /x, or at the rate, say, of two years to a

yard. It is a question of inertia, and the inertia of the system must
be very large.

The beautiful technique of cell-culture in vitro has of late years

let this whole succession of phenomena, once only to be deduced

from sections, be easily followed as it proceeds within the living

tissue or cell. The vivid accounts which have been given of this

spectacle add little to the older account as we have related it:

save that, when the equatorial constriction begins and the halves

of the split chromosomes drift apart, the protoplasm begins to show

a curious and even violent activity. The cytoplasm is thrust in

and out in bulging pustules or "balloons"; and the granules and

fat-globules stream in and out as the pustules rise and fall away.

At length the turmoil dies down; and now each half of the cell

(not an ovum but a tissue-cell or "fibroplast") pushes out large

pseudopodia, flattens into an amoeboid phase, the connecting thread

of protoplasm snaps in the divided cell, and the daughter-cells fall

apart and crawl away. The two groups of chromosomes, on reaching

the poles of the spindle, turn into bunches of short thick rods; these

grow diffuse, and form a network of chromatin within a nucleus;

and at last the chromosomes, having lost their identity, disappear

entirely, and two or more nucleoH are all that is to be seen within

the cell.

The whole, or very nearly the whole, of these nuclear phenomena

may be brought into relation with some such polarisation of forces

in the cell as a whole as is indicated by the "spindle" and "asters"

of which we have already spoken: certain particular phenomena,

directly attributable to surface-tension and diffusion, taking place

in more or less obvious and inevitable dependence upon the polar

system. At the same time, in attempting to explain the phenomena,

we cannot say too clearly, or too often, that all that we are meanwhile

justified in doing is to try to shew that such and such actions He

within the range of known physical actions and phenomena, or that

known physical phenomena produce effects similar to them. We
feel that the whole phenomenon is iiot sui generis, but is some-

how or other capable of being referred to dynamical laws, and to
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the general principles of physical science. But when we speak of

some particular force or mode of action, using it as an illustrative

hypothesis, we stop far short of the implication that this or that

force is necessarily the very one which is actually at work within

the living cell; and certainly we need not attempt the formidable

task of trying to reconcile, or to choose between, the various

hypotheses which have already been enunciated, or the several

assumptions on which they depend.

Many other things happen within the cell, especiall)^ in the germ-

cell both before and after fertilisation. They also have a physical

element, or a mechanical aspect, like the phenomena of cell-

division which we are speaking of; but the narrow bounds to which

we are keeping hold difficulties enough*.

Any region of space within which action is manifested is a field

of force; and a simple example is a bipolar field, in which the

action is symmetrical with reference to the fine joining two points,

or poles, and with reference also to the "equatorial" plane equi-

distant from both. We have such a field of force in the neigh-

bourhood of the centrosome of the ripe cell or ovum, when it is

about to divide; and by the time the centrosome has divided, the

field is definitely a bipolar one.

The quality of a medium filling the field of force may be uniform,

or it may vary from point to point. In particular, it may depend

upon the magnitude of the field; and the quality of one medium

may differ from that of another. Such variation of quality, within

one medium, or from one medium to another, is capable of diagram-

matic representation by a variation of the direction or the strength

of the field (other conditions being the same) from the state

manifested in some uniform medium taken as a standard. The

medium is said to be permeable to the force, in greater or less degree

than the standard medium, according as the variation of the density

of the lines of force from the standard case, under otherwise identical

conditions, is in excess or defect. A body placed in the medium will

tend to move towards regions of greater or less force according as its

* Cf. C. D. Darlington, JieretU Advances in Cytology, 1932, and other well-known

works.
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penneability is greater or less than that of the surrounding medium'^.

In the common experiment of placing iron-filings between the two

poles of a magnetic field, the filings have a very high permeability;

and not only do they themselves become polarised so as to attract

one another, but they tend to be attracted from the weaker to the

stronger parts of the field, and as we have seen, they would soon

gather together around the nearest pole were it not for friction

or some other resistance. But if we "repeat the same experiment

with such a metal as bismuth, which is very little permeable to the

magnetic force, then the conditions are reversed, and the particles,

being repelled from the stronger to the weaker parts of the field,

tend to take up their position as far from the poles as possible.

The particles have become polarised, but in a sense opposite to that

of the surrounding, or adjacent, field.

Now, in the field of force whose opposite poles are marked by

the centrosomes, we may imagine the nucleus to act as a more or

less permeable body, as a body more permeable than the surrounding

medium, that is to say the " cytoplasm " of the cell. It is accordingly

attracted by, and drawn into, the field of force, and tries, as it

were, to set itself between the poles and as far as possible from both

of them. In other words,' the centrosome-foci will be apparently

drawn over its surface, until the nucleus as a whole is involved

within the field of force which is visibly marked out by the "spindle"

(Fig. 90 b).

If the field of force be electrical, or act in a fashion analogous

to an electrical field, the charged nucleus will have its surface-

tensions diminished f: with the double result that the inner alveolar

meshwork will be broken up (par. 1), and that the spherical

boundary of tKe whole nucleus will disappear (par. 2). The break-

up of the alveoli (by thinning and rupture of their partition walls)

* If the word penneability be deemed too directly suggestive of the phenomena
of magnetism, we may replace it by the more general term of specific iyidiictive

capacity. This would cover the particular case, which is by no means an improbable

one, of our phenomena being due to a "surface charge" borne by the nucleus

itself and also by the chromosomes: this surface charge being in turn the result

of a difference in inductive capacity between the body or particle and its surrounding

medium.

t On the effect of electrical influences in altering the surface-tensions of the

colloid particles, see Bredig, Anorganische Fermente, pp. 15, 16, 1901.
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leads to the formation of a net, and the further break-up of the net

may lead to the unravelling of a thread or "spireme".

Here there comes into play a fundamental principle which, in

so far as we require to understand it, can be explained in simple

words. The eifect (and we might even say the object) of drawing

the more permeable body in between the poles is to obtain an

"easier path" by which the Hues of force may travel; but it is

obvious that a longer route through the more permeable body may

at length be found less advantageous than a shorter route through

the less permeable medium. That is to say, the more permeable

body will only tend to be drawn into the field of force until a point

is reached where (so to speak) the way round and the way through

are equally advantageous. We should accordingly expect that (on

our hjrpothesis) there would be found cases in which the nucleus

was wholly, and others in which it was only partially, and in greater

or less degree, drawn in to the field between the centrosomes. This

is precisely what is found to occur in actual fact. Figs. 90 a and b

represent two so-called "types," of a phase which follows that

represented in Fig. 89. According to the usual descriptions we are

told that, in such a case as Fig. 90b, the "primary spindle"

disappears* and the centrosomes diverge to opposite poles of the

nucleus; such a condition being found in many plant-cells, and in

the cleavage-stages of many eggs. In Fig. 90 a, on the other hand,

the primary spindle persists, and subsequently comes to form the

main or "central" spindle; while at the same time we see the

fading away of the nuclear membrane, the breaking up of the

spireme into separate chromosomes, and an ingrowth into the nu-

clear area of the "astral rays"—all as in Fig. 91 a, which represents

the next succeeding phase of Fig. 90 b. This condition, of Fig. 91 a,

occurs in a variety of cases; it is well seen in the epidermal cells

of the salamander, and is also on the whole characteristic of the

mode of formation of the "polar bodies t." It is clear and obv;ous

that the two "types" correspond to mere differences of degree,

* The spindle is potentially there, even though (as Chambers assures us) it only

becomes visible after post-mortem coagulation. It is also said to become visible

under crossed nicols: W. J. Schmidt, Biodynamica, xxii, 1936.

t These v/ere first observed in the egg of a pond-snail (Limnaea) by B. Dumortier,

Mim. sur Vemhryoginie des mollusques, Bruxelles, 1837.
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and are such as would naturally be brought about by differences

in the relative permeabilities of the nuclear mass and of the

surrounding cytoplasm, or even by differences in the magnitude of

the former body.

But now an important change takes place, or rather an important

difference appears; for, whereas the nucleus as a whole tended to

be drawn in to the stronger parts of the field, when it comes to break

up we find, on the contrary, that its contained spireme-thread or

separate chromosomes tend to be repelled to the weaker parts.

Whatever this difference may be due to—whether, for instance, to

actual differences of permeability, or possibly to differences in

"surface-charge" or to other causes—the fact is that the chromatin

substance now behaves after the fashion of a "diamagnetic'' body,

and is repelled from the stronger to the weaker parts of the field.

In other words, its particles, lying in the inter-polar field, tend to

travel towards the equatorial plane thereof (Figs. 91, 92), and

further tend to move outwards towards the periphery of that plane,

towards what the histologist calls the "mantle-fibres," or outermost

of the lines of force of which the spindle is made up (par. 5, Fig. 91 b).

And if this comparatively non-permeable chromatin substance come

to consist of separate portions, more or less elongated in form,

these portions, or separate "chromosomes," will adjust themselves

longitudinally, in a peripheral equatorial circle (Figs. 92 a, b). This

is precisely what actually takes place. Moreover, before the breaking

up of the nucleus, long before the chromatin material has broken

up into separate chromosomes, and at the v^ry time when it is

being fashioned into a "spireme," this body already lies in a polar

field, and must already have a tendency to set itself in the equatorial

plane thereof. But the long, continuous spireme thread is unable,

so long as the nucleus retains its spherical boundary wall, to adjust

itself in a simple equatorial annulus; in striving to do so, it must

tend to coil and "kink" itself, and in so doing (if all this be so),

it must t^nd to assume the characteristic convolutions of the

"spireme."

After the spireme has broken up into separate chromosomes,

these bodies come to rest in the equatorial plane, somewhere near

its periphery ; and here they tend to set themselves in a symmetrical

arrangement (Fig. 94), such as makes for still better equihbrium.
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The particles ir^y be rounded or linear, straight or bent, sometimes

annular; they may be all alike, or one or more may differ from

the rest. Lying as they do in a semi-fluid medium, and subject

(doubtless) to some symmetrical play of forces, it is not to be

wondered at that they arrange themselves in a symmetrical con-

figuration; and the field of force seems simple enough to let us

predict, to some extent, the symmetries open to them. We do not

know, we cannot safely surmise, the nature of the forces involved.

In discussing Brauer's observations on the sphtting of the chromatic

filament, and on the symmetrical arrangement of the separate

granules, in Ascaris megalocephala, LiUie* remarks: "This behaviour

Fig. 94. Chromosomes, undergoing splitting and separation.

After Hatsehek and Flemming, diagrammatised.

is strongly suggestive of the division of a colloidal particle under

the influence of its surface electrical charge, and of the effects of

mutual repulsion in keeping the products of division apart." It is

probable that surface-tensions between the particles and the sur-

rounding protoplasm would bring about an identical result, and

would sufficiently account for the obvious, and at first sight very

curious symmetry. If we float a couple of matches in water, we

know that they tend to approach one another till they He close

together, side by side; and if we lay upon a smooth wet plate

four matches, half broken across, a similar attraction brings the

four matches together in the form of a symmetrical cross. Whether

one of these, or yet another, be the explanation of the phenomenon,

* R. S. Lillie, Conditions determining the disposition of the chromatic filaments,

etc., in mitosis; Biol. Bulletin, viii, 1905.
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it is at least plain that by some physical cause, some mutual

attraotion or common repulsion of the particles, we must seek to

account for the symmetry of the so-called "tetrads," and other

more or less familiar configurations. The remarkable annular

chromosomes, shewn in Fig. 95, can be closely imitated by loops

of thread upon a soapy film, when the film within the annulus is

broken or its tension reduced ; the balance of forces is here a simple

one, between the uniform capillary tension which tends to widen out

the ring and the uniform cohesion of its particles which keeps it

together.

We may find other cases, at once simpler and more varied, where

the chromosomes are bodies of rounded form and more or less

Fig. 95. Annular chromosomes, formed in the spermatogenesis of the

mole-cric'iict. From Wilson, after Vom Rath.

uniform size. These also find their way to. an equatorial plate;

we gather (and Lamb assures us) that they are repelled from the

centrosomes. They may go near the equatorial periphery, but they

are not driven there; and we infer that some bond of mutual

attraction holds them together. If they be free to move in a fluid

medium, subject both to some common repulsion and some mutual

attraction, then their circumstances are much like those of Mayer's

well-known experiment of the floating magnets. A number of

magnetised needles stuck in corks, all with like poles upwards, are

set afloat in a basin; they repel one another, and scatter away to

the sides. But bring a strong magnet (of unlike pole) overhead,

and the little magnets gather in under its common attraction, while

still keeping asunder through their own mutual repulsion. The

symmetry of forces leads to a symmetrical configuration, which is
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the mathematical expression of a physical equiUbrium—and is the

not too remote counterpart of the arrangement of the electrons in

an atom. Be that as it may, it is found that a group of three,

four or five Httle magnets arrange themselves at the corners of an

equilateral triangle, square or pentagon; but a sixth passes within

the ring, and comes to rest in the centre of symmetry of the

pentagon. If there be seven magnets, six form the ring, and the

seventh occupies the centre ; if there be ten, there is a ring of eight

and two within it ; and so on, as follows *

:

Number of magnets
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which give rise to the appearance of rays, or striae, around the

nucleus: and through increasing diffusion and weakening surface-

tension the rounded outHne of the nucleus finally disappears.

As we study these manifold phenomena in the individual cases

of particular plants and animals, we recognise a close identity of

type coupled with almost endless variation of specific detail; and

••• •V.
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Fig. 96. Various numbers of chromosomes in the equatorial plate: the ring-

diagrams give the arrangements predicted by theory. From Graham Cannon.

in particular, the order of succession in which certain of the pheno-

mena occur is variable and irregular. The precise order of the

phenomena, the tiiiie of longitudinal and of transverse fission of

the chromatin thread, of the break-up of the nuclear wall, and so

forth, will depend upon various minor contingencies and ''inter-

ferences." And it is worthy of particular note that these variations

in the order of events and in other subordinate details, while
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doubtless attributable to specific physical conditions, would seem

to be without any obvious classificatory meaning or other biological

significance.

So far as we have now gone, there is no great difficulty in pointing

to simple and familiar examples of a field of force which are

similar, or comparable, to the phenomena which we witness within

the cell. But among these latter phenomena there are others for

which it is not so easy to suggest, in accordance with known laws,

a simple mode of physical causation. It is not at once obvious

how, in any system of symmetrical forces, the chromosomes, which

had at first been apparently repelled from the poles towards the

equatorial plane, should then be spht asunder, and should presently

be attracted in opposite directions, some to one pole and some to

the other. Remembering that it is not our purpose to assert that

some one particular mode of action is at work, but merely to shew

that there do exist physical forces, or distributions of force, which

are capable of producing the required result, I give the following

suggestive hypothesis, which I owe to my colleague Professor W.

Peddie.

As we have begun by supposing that the nuclear or chromosomal

matter differs in permeability from the medium, that is to say the

cytoplasm, in which it hes, let us now make the further assumption

that its permeabihty is variable, and depends upon the strength of

the field.

In Fig. 97, we have a field of force (representing our cell), con-

sisting of a homogeneous medium, and including two opposite

poles : lines of force are indicated by full lines, and loci of constant

magnitude of force are shewn by dotted lines, these latter being what

are known as Cayley's equipotential curves*.

Let us now consider a body whose permeabihty (/a) depends on

the strength of the field F. At two field-strengths, such as F^, F^,

let the permeability of the body be equal to that of the medium,

and let the curved line in Fig. 98 represent generally its permeabihty

at other field-strengths; and let the outer and inner dotted curves

in Fig. 97 represent respectively the loci of the field-strengths F^,

* Phil. Trans, xiv, p. 142, 1857. Cf. also F. G. Teixeira, TraiU des Courhes,

I, p. 372, Coimbra'. 1908.
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and Fa. The body if it be placed in the medium within either

branch of the inner curve, or outside the outer curve, will tend to

move into the neighbourhood of the adjacent pole. If it be placed

Fb

Fig. 97.

Fig. 98.

in the region intermediate to the two dotted curves, it will tend to

move towards regions of weaker field-strength.

The locus Fly is therefore a locus of stable position, towards which

the body tends to move ; the locus F^ is a locus of unstable position,

from which it tends to move. If the body were placed across F^^,
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it might be torn asunder into two portions, the split coinciding

with the locus F^.

Suppose a number of such bodies to be scattered throughout the

medium. Let at first the regions ¥„, and F^ be entirely outside the

space where the bodies are situated: and, in making this supposition

we may, if we please, suppose that the loci which we are calhng

Fa and F^, are meanwhile situated somewhat farther from the axis

than in our figure, that (for instance) F^ is situated where we have

drawn F^, and that F^ is still farther out. The bodies then tend

towards the poles; but the tendency may be very small if, in

Fig. 98, the curve and its intersecting straight hne do not diverge

very far from one another beyond Fa\ in other words, if, when

Fig. 99.

situated in this region, the permeability of the bodies is not very

much in excess of that of the medium.

Let the poles now tend to separate farther and farther from one

another, the strength of each pole remaining unaltered; in other

words, let the centrosome-foci recede from one another,- as they

actually do, drawing out the spindle-threads between them. The

loci Fa, F^ will close in to nearer relative distances from the poles.

In doing so, when the locus F^ crosses one of the bodies, the body

may be torn asunder; if the body be of elongated shape, and be

crossed at more points than one, the forces at work will tend to

exaggerate its foldings, and the tendency to rupture is greatest

when Fa is in some median position (Fig. 99).

When the locus Fa has passed entirely over the body, the body

tends to move towards regions of weaker force; but when, in turn,

the locus Fi, has crossed it, then the body again moves towards

regions of stronger force, that is to say, towards the nearest pole.
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And, in thus moving towards the pole, it will do so, as appears

actually to be the case in the dividing cell, along the course of the

outer hues of force, the so-called "mantle-fibres" of the histologist*.

Such considerations as these give general results, easily open to

modification in detail by a change of any of the arbitrary postulates

which have been made for the sake of simpHcity. Doubtless there

are other assumptions which would meet the case; for instance,

that during the active phase of the chromatin molecule (when it de-

composes and sets free nucleic acid) it carries a charge opposite to

that which it bears during its resting, or alkahne phase ; and that it

would accordingly move towards different poles under the influetice

of a current, wandering with its negative charge in an alkahne fluid

during its acid phase to the anode, and to the kathode during its

alkahne phase. A whole field of speculation is opened up when we
begin to consider the cell not merely as a polarised electrical field,

but also as an electrolytic field, full of wandering ions. Indeed it

is high time we reminded ourselves that we have perhaps been

deahng too much with ordinary physical analogies: and that our

whole field of force within the cell is of an order of magnitude where

these grosser analogies may fail to serve us, and might even play

us false, or lead us astray. But our sole object meanwhile, as I

have said more than once, is to demonstrate, by such illustrations

as these, that, whatever be the actual and as yet unknown modus

operandi, there are physical conditions and distributions of force

which could produce just such phenomena of movement as we see

taking place within the living cell. This, and no more, is precisely

what Descartes is said to have claimed for his description of the

human body as a " mechanism f."

While it can scarcely be too often repeated that our enquiry is

not directed towards the solution of physiological problems, save

only in so far as they are inseparable from the problems presented

by the visible configurations of form and structure, and while we

try, as far as possible, to evade, the difficult question of what

* • We have not taken account in the above paragraphs of the obvious fact that

the supposed symmetrical field of force is distorted by the presence in it of the

more or less permeable bodies; nor is it necessary for us to do so, for to that

distorted field the above argument continues to apply, word for word.

t Michael Foster, Lectures on the History of Physiology, 1901, p. 62.
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particular forces are at work when the mere visible forms produced

are such as to leave this an 6pen question, yet in this particular

case we have been drawn into the use of electrical analogies, and

we are bound to justify, if possible, our resort to this particular

mode of physical action. There is an important paper by R. S. LiUie,

on the "Electrical convection of certain free cells and nuclei*,"

which, while I cannot quote it in direct support of the suggestions

which I have made, yet gives just the evidence we need in order

to shew that electrical forces act upon the constituents of the cell,

and that their action discriminates between the two species of

colloids represented by the cytoplasm and the nuclear chromatin.

And the difference is such that, in the presence of an electrical

current, the cell substance and the nuclei (including sperm-cells)

tend to migrate, the former on the whole with the positive, the

latter with the negative stream : a difference of electrical potential

being thus indicated between the particle and the surrounding

medium, just as in the case of minute suspended particles of various

kinds in various feebly conducting media j*. And the electrical

difference is doubtless greatest, in the case of the cell constituents,

just at the period of mitosis: when the chromatin is invariably

in its most deeply staining, most strongly acid, and therefore,

presumably, in its most electrically negative phase. In short, LilHe

comes easily to the conclusion that "electrical theories of mitosis

are entitled to more careful consideration than they have hitherto

received."

* Amer. J. Physiol, viii, pp. 273-283, 1903 {vide supra, p. 314); cf. ibid, xv,

pp. 46-84, 1905; xxii, p. 106, 1910; xxvii, p. 289, 1911; Journ. Exp. Zool. xv,

p. 23, 1913; etc.

t In like manner Hardy shewed that colloid particles migrate with the negative

stream if the reaction of the surrounding fluid be alkahne, and vice versa. The

whole subject is much wider than these brief allusions suggest, and is essentially

part of Quincke's theory of Electrical Diffusion or Endosmosis: according to

which the particles and the fluid in which they float (or the fluid and the capillary

wall through which it flows) each carry a charge: there being a discontinuity of

potential at the surface of contact and hence a field of force leading to powerful

tangential or shearing stresses, communicating to the particles a velocity which

varies with the density per unit area of the surface charge. See W. B. Hardy's

paper on Coagulation by electricity, Journ. Physiol, xxrv, pp. 288-304, 1899;

also Hardy and H. W. Harvey, Surface electric charges of living cells, Proc. E.S.

(B), Lxxxiv, pp. 217-226, 191 1, and papers quoted therein. Cf. also E. N. Harvey's

observations on the convection of unicellular organisms in an electric field (Studies

on the permeability of cells, Journ. Exp. Zool. x, pp. 508-556, 1911).
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Among other investigations all leading towards the same general

conclusion, namely that differences of electric potential play their

part in the phenomena of cell division, I would mention a note-

worthy paper by Ida H. Hyde*, in which the writer shews (among

other important observations) that not only is there a measurable

difference of potential between the animal and vegetative poles of

a fertilised egg (Fundulus, toad, turtle, etc.), but also that this

difference fluctuates, or actually reverses its direction, periodically,

at epochs coinciding with successive acts of segmentation or other

Fig. 100. Final stage in the first seg-

mentation of the egg of Cerebra-

tidus. From Prenant, after Coe*.

Fig. 101. Diagram of field of force

with two similar poles.

important phases in the development of the' eggt; just as other

physical rhythms, for instance, in the production of COg , had already

been shewn to do. Hence we need not be surprised to find that th^

"materialised" hues of force, which in the earlier stages form the

* On differences in electrical potential in developing eggs, Amer. Journ. Physiol.

XII, pp. 241-275, 1905. This paper contains an excellent summary, for the time

being, of physical theories of the segmentation of the cell.

t Gray has demonstrated a temporary increase of electrical conductivity in

sea-urchin eggs during the process of fertilisation, and ascribes the changes in

resistance to polarisation of the surface: Electrical conductivity of echinoderm

eggs, etc., Phil. Trans. (B), ccvii, pp. 481-529, 1916.
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convergent curves of the spindle, are replaced in the later phases of

caryokinesis by divergent curves, indicating that the two foci, which

are marked out in the field by the divided and reconstituted nuclei,

are now ahke in their polarity* (Figs. 100, 101).

The foregoing account is based on the provisional assumption

that the phenomena of caryokinesis are analogous to those of a

bipolar electrical field—a comparison which seems to offer a helpful

and instructive series of analogies. But there are other forces which

lead to similar configurations. For instance, some of Leduc's

diffusion-experiments offer very remarkable analogies to the dia-

grammatic phenomena of caryokinesis, as shewn in Fig. 102 f.

Fig. 102. Artificial caryokinesis (after Leduc), for comparison with Fig. 88, p. 299.

Here we have two identical (not opposite) poles of osmotic con-

centration, formed by placing a drop of Indian ink in salt water,

and then on either side of this central drop, a hypertonic drop of

salt solution more lightly coloured. On either side the pigment of

the central drop has been drawn towards the focus nearest to it;

but in the middle line, the pigment is drawn in opposite directions

by equal forces, and so tends to remain undisturbed, in the form of

an "equatorial plate."

To account for the same mitotic phenomena an elegant hypothesis

has been put forward by A. B. Lamb J, and developed by Graham

* W. R. Coe, Maturation and fertilisation of the egg of Cerebratulus, Zool.

Jahrbiicher {Anat. Abth.), xii, pp, 425^76, 1899.

t Op. cit. pp. 110 and 91.

t A. B. Lamb, A new explanation of the mechanism of mitosis, Journ. Exp. Zool.

V, pp. 27-33. 1908.
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Cannon*. It depends on certain investigations of the Bjerknes,

father and sonf, which prove that bodies pulsating or oscillating J

in a fluid set up a field of force precisely comparable with the lines

of force in a magnetic field. Certain old and even familiar observa-

tions had pointed towards this phenomenon. Guyot had noticed

that bits of paper were attracted towards a vibrating tuning-fork;

and Schellbach found that a sounding-board so acts on bodies in its

neighbourhood as to attract those which are heavier and repel those

which are lighter than the surrounding medium; in air bits of

paper are attracted and a gas-flame is repelled. To explain these

simple observations, Bjerknes experimented with Httle drums

attached to an automatic bellows. He found that two bodies in

a fluid field, synchronously pulsating or synchronously oscillating,

repel one another when their oscillations are in the same phase, or

their pulsations are in opposite phase; and vice versa: while other

particles, floating passively in the same fluid, tend (as Schellbach

had observed before) to be attracted or repulsed according as they

are heavier or lighter than the fluid medium. The two bodies

behave towards one another like two electrified bodies, or like two

poles of a magnet; we are entitled to speak of them as "hydro-

dynamic poles," we might even call them " hydrodynamic magnets"

;

and pursuing the analogy, we may call the heavy bodies para-

magnetic, and the light ones diamagnetic with regard to them.

Lamb's hypothesis then, and Cannon's, is that the centrosomes act

as "hydrodynamic magnets." The explanation depends on oscilla-

tions which have never been seen, in centrosomes which are not

always to be discovered. But it brings together certain curious

analogies, and these, where we know so little, may be worth

reflecting on.

If we assume that each centrosome is endowed with a vibratory

motion as it floats in the semi-fluid colloids, or hydrosols (to use

Graham's word) of the cell, we ma;^ take it that the visible intra-

cellular phenomena will be much the same as those we have

* Op. cit. Cf. also Gertrud Woken, Zur Physik der Kernteilung, Z. f. allg, Physiol.

XVIII, pp. 39-57, 1918.

t V. Bjerknes, Vorlesungen liber hydrodynamische Fernkrdjte, nach C. A. Bjerknes^

Theorie, Leipzig, 1900.

J A body is said to pulsate when it undergoes a rhythmic change of volume;

it oscillates when it undergoes a rhythmic change of place.
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described under an electrical hypothesis; the lines of force will

have the same distribution, and such movements as the chromo-

somes undergo, and such symmetrical configurations as they assume,

may be accounted for under the one hypothesis pretty much as

under the other. There are however other phenomena accompanying

mitosis, such as Chambers's astral currents and certain local changes

in the viscosity of the egg, which are more easily explained by the

hydrodynamic theory.

We may assume that the cytoplasm, however complex it may be,

is but a sort of microscopically homogeneous emulsion of high

dispersion, that is to say one in which the minute particles of one

phase are widely scattered throughout, and freely mobile in, the

other; and this indeed is what is meant by caUing it a hydrosol.

Let us assume also that the particles are a little less dense than the

continuous phase in which they are dispersed; and assume lastly

(it is not the easiest of our assumptions) that these ultra-minute

particles will be affected, just as are the grosser ones, by the forces

of the hydrodynamic field.

All this being so, the disperse particles will be repelled from the

oscillating centrosome, with a force which falls off very rapidly, for

Bjerknes tells us that it varies inversely as the seventh power of

the distance; a round clear field, hke a drop or a bubble, will be

formed round the centrosome ; and the disperse particles, expelled

from this region, will tend to accumulate in a crowded spherica-

zone immediately beyond it. Outside of this again they will con-

tinue to be repulsed, but slowly, and we may expect a second and

lesser concentration at the periphery of the cell. A clear central

mass, or "centrosphere," will thus come into being; and the

surrounding cytoplasm will be rendered denser and more viscous,

especially close around the centrosphere and again peripherally, by

condensation of the disperse particles. Moreover, all outward

movements of these lighter particles entail inward movements of

the heavier, which (by hypothesis) are also the more fluid ; stream-

lines or visible currents will flow towards the centre, giving rise to

the star-shaped "aster," and the best accounts of the sea-urchin's

egg* tally well with what is thus deduced from the hydrodynamic

* Cf. R. Chambers, in Journ. Exp. Zool. xxni, p. 483, 1917; Trans. R.S. Canada,

XII, 1918; Journ. Gen. Physiol, ii, 1919.
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hypothesis. The round drop of clear fluid which forms the centre

of the aster grows as the aster grows, fluid streaming towards it

from all parts of the cell along the channels of the astral rays.

The cytoplasni between the rays is in the gel state, but gradually

passes into a sol beyond the confines of the aster. Seifritz asserts

that the substance of the centrosphere is *'not much more viscous

than water," but that the wedges of cytoplasm between the inwardly

directed streams are stiff and viscous*.

After the centrosome divides we have two oscillating bodies

instead of one; they tend to repel one another, and pass easily

through the fluid centrosphere to the denser layer around. But

now the new centrosomes, on opposite sides of the centrosphere,

repel, each on its own side, the disperse particles of the denser zone

;

and two new asters are formed, their rays marked by the streams

coursing inwards to the centrosome-foci. Thus the amphiaster

comes into being; it is not that the old aster divides, as a definite

entity; but the old aster ceases to exist when its focus is disturbed,

and about the new foci new asters are necessarily and automatically

developed. Again this hypothetic account taUies well with Chambers's

description.

The same attractions and repulsions should be manifested, perhaps

better still, in whatsoever bodies he or float within the cell, whether

liquid or solid, oil-globules, yolk-particlea, mitochondria, chromo-

somes or what not. A zoned, concentric arrangement of yolk-

globules is often seen in the egg, with the centrosome as focus;

and in certain sea-urchin eggs the mitochondria gather around

the centrosome while the amphiaster is forming, collecting together

in that very zone to which Chambers ascribes a semi-rigid or viscous

consistency!. The Golgi bodies found in various germ-cells are at

first black rod-hke bodies embedded in the centrosphere ; they

undergo changes and complex movements, now scattering through

the cytoplasm and anon crowding again around the centrosome.

Some periodic change in the density of these bodies compared with

Cf. W. Seifritz, Some physical properties of protoplasm, Ann. Bot. xxxv,

1921. Wo. Ostwald and M. H. Fischer had thought that the astral rays were

due to local changes of the plasma-sol into a gel, Zur physikal. chem. Theorie der

Befruchtung, Pfluger's Archiv, cvi, pp. 2^3-266, 1905.

t Cf. F. Vejdovsky and A. Mrazek, Umbildung des Cytoplasma wahrend der

Befruchtung und Zelltheilung, Arch. f. mikr. Anat. LXii. 431-579, 1903.
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that of the medium in which they He seems all that is required

to account for their excursions; and such changes of density are

not only of likely occurrence during the active chemical operations

associated with fertilisation and division, but are in all probability

inseparable from the changes in viscosity which are known to

occur*. The movements and arrangements of the chromosomes,

already described, may be easily accounted for if we postulate, in

addition to their repulsion from the oscillating centrosomes, induced

oscillations in themselves such as to cause them to attract one another.

The well-defined length of the spindle and the position of equili-

brium in which it comes to rest may be conceived as resultants of

the several mutual repulsions of the centrosomes by one another,

by the chromosomes or other lighter material of the equatorial plate,

and again by such lighter material as may have accumulated at the

periphery of the egg ; the first two of these will tend to lengthen the

spindle, the last to shorten it; and the last will especially affect its

position and direction. When Chambers amputated part of an

amphiastral egg, the remains of the amphiaster disappeared, and

then came into being again in a new and more symmetrical position

;

it or its centrosomal focus had been symmetrically repelled, we may
suppose, by the fresh surface. Hertwig's law that the spindle-axis

tends to lie in the direction of the largest mass of protoplasm, in

other words to point where the cell-surface lies farthest off and its

repulsion is least felt, may likewise find its easy explanation.

Between these hypotheses we may choose one or other (if we

choose at all), according to our judgment. As Henri Poincare tells

us, we never know that any one physical hypothesis is true, we take

the simplest we can find; and this we call the guiding principle of

simphcity ! In this case, the hydrodynamic hypothesis is a simple

one; but it all rests on a hypothetic oscillation of the centrosomes,

which has never been witnessed. Bayliss has shewn that precisely

such reversible states of gelation as we have been speaking of as

* Cf. G. Odquist, Viscositatsanderungen des Zellplasmas wahrend der ersten

Entwicklungsstufen des Froscheies, Arch. f. Entw. Mech. ia, pp. 610-624, 1922;

A. Gurwitsch, Pramissen und anstossgebende Faktoren der Furchung und

Zelltheilung, Arch. f. Zellforsch. n, pp. 495-548, 1909; L. V. Heilbrunn,

Protoplasmic viscosity-changes during mitosis, Journ. Exp. Zool. xxxiv, pp. 417-447,

1921 ; ibid, xliv, pp. 255-278, 1926; E. Leblond, Passage de I'etat de gel a I'etat de sol

dans le protoplasme vivant, C.R. Soc. Biol, lxxxii, p. 1150; of. ibid. p. 1220; etc.



rv] AND STRUCTURE OF THE CELL 329

"periodic changes in viscosity" may be induced in living protoplasm

by electrical stimulation*. On the other hand, the fact that the

hydrodynamic forces fall off as fast as they do with increasing

distance Hmits their efficacy ; and the minute disperse particles

must, under Stokes's law, be slow to move. Lastly, it may well be

(as Lillie has urged) that such work as his own, or Ida Hyde's, or

Gray's, on change of potential in developing eggs, taken together

with that of many others on the behaviour of colloid particles in an

electrical field, has not yet been followed out in all its consequences,

either on the physical or the physiological side of the problem.

But to return to our general discussion.

As regards the actual mechanical division of the cell into two

halves, we shall see presently that, in certain cases, such as that

of a long cylindrical filament, surface-tension, and what is known

as the principle of "minimal areas," go a long way to explain the

mechanical process of division; and in all cells whatsoever, the

process of division must somehow be explained as the result of a

conflict between surface-tension and its opposing forces. But in

such a case as our spherical cell, it is none too easy to see what

physical cause is at work to disturb its equiUbrium and its integrity.

The fact that when actual division of the cell takes place, it does

so at right angles to the polar axis and precisely in the direction

of the equatorial plane, would lead us to suspect that the new

surface formed in the equatorial plane sets up an annular tension,

directed inwards, where it meets the outer surface layer of the cell

itself. But at this point the problem becomes more comphcated.

Before we can hope to comprehend it, we shall have not only to

enquire into the potential distribution at the surface of the cell in

relation to that which we have seen to exist in its interior, but also

to take account of the differences of potential which the material

arrangements along the lines of force must themselves tend to

produce. Only thus can we approach a comprehension of the

balance of forces which cohesion, friction, capillarity and electrical

distribution combine to set up.

The manner in which we regard the phenomenon would seem to

* W. M. Bayliss, Reversible gelation in living protoplasm, Proc. R.S. (B), xci,

pp. 196-201, 1920.
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turn, in great measure, upon whether or no we are justified in

assuming that, in the hquid surface-film of a minute spherical cell,

local and symmetrically localised differences of surface-tension are

likely to occur. If not, then changes in the conformation of the

cell such as lead immediately to its division must be ascribed not

to local changes in its surface-tension, but rather to direct changes

in internal pressure, or to mechanical forces due to an induced

surface-distribution of electrical potential. We have little reason to

be sceptical ; in fact we now know that the cell is so far from being

chemically and physically homogeneous that local variations in its

surface-tension are more than likely, they are certain to occur.

Biitschh suggested more than sixty years ago that cell-division

was brought about by an increase of surface-tension in the equatorial

region of the cell ; and the suggestion was the more remarkable that

it was (I beheve) the very first attempt to invoke surface-tension

as a factor in the physical causation of a biological phenomenon*.

An increase of equatorial tension would cause the surface-area there

to diminish, and the equator to be pinched in, but the total surface-

area of the cell would be increased thereby, and the two effects

would strike a balance f. But, as Biitschh knew very well, the

surface-tension change would not stand alone; it would bring other

phenomena in its train, currents would tend to be set up, and

tangential strains would be imposed on the cell-membrane or cell-

surface as a whole. The secondary if not the direct effects of

increased equatorial tension might, after all, suffice for the division of

the cell. It was Loeb, in 1895, who first shewed that streaming went

on from the equator towards the divided nuclei. To the violence

of these streaming movements he attributed the phenomenon of

division, and many other physiologists have adopted this hypo-

thesis J. The currents of which Loeb spoke call for counter-currents

* 0. Butschli, tJber die ersten Entwicklungsvorgange der Eizelle, Abh.

Senckenberg. naturf. Gesellsch. x, 1876; Uber Plasmastrqmungen bei der Zell-

theilung, Arch. f. Entw. Mech. x, p. 52, 1900. Ryder ascribed the earyokinetic

figures to surface-tension in his Dynamics in Evolution, 1894.

t A relative, not positive, increase of surface-tension, was part of Giardina's

hypothesis: Note sul mecanismo della divisione cellulare, Anat. Anz. xxi. 1902.

J J. Loeb, Amer. Journ. Physiol, vi, p. 432, 1902; E. G. Conklin, Protoplasmic

movements as a factor in differentiation, Wood's Hole Biol. Lectures, p. 69, etc.,

1898-99; J. Spek, Oberflachenspannungsdifferenzen als eine Ursache der Zell-

teilung, Arch.f. Entw. Mech. xliv, pp. 54-73, 1918.
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towards the equator, in or near the surface of the cell; and theory

and observation both indicate that precisely such currents are bound
to be set up by the surface-energy involved in the increase of

equatorial tension.

An opposite view has been held by some, and especially by

T. B. Robertson*. Quincke had shewn that the formation of soap

at the surface of an oil-droplet lowers the surface-tension of the

latter, and that if the saponification be local, that part of the surface

tends to enlarge and spread out accordingly. Robertson, in a very

curious experiment, found that by laying a thread, moistened with

dilute caustic alkali or merely smeared with soap, across a drop of

olive oil afloat in water, the drop at once divided into two. A
vast amount of controversy has arisen over this experiment, but

Spek seems to have shewn conclusively that it is an exceptional

case.

In a drop of olive-oil, balanced in water f and touched anywhere

with an alkaH, there is so copious a formation of lighter soaps that

di^erences of density tend to drag the drop in two. But in the

case of other oils (and especially the thinner oils, such as oil of

bergamot) the saponified portion bulges, as theory directs; and

when the alkali is applied to two opposite poles the equatorial

region is pinched in, as McClendonJ, in opposition to Robertson,

had found it to do. Conversely, if an alkaline thread be looped

around the drop, the zone of contact bulges, and instead of dividing

at the equator the drop assumes a lens-like form.

We may take it then as proven that a relative increase of equatorial

surface-tension, whether in oil-drops, mercury-globules or living

cells, does lead, or tend to lead, to an equatorial constriction. In

all cases a system of surface-currents is set up among the fluid drops

towards the zone of increased tension ; and an axial counter-current

flows towards the pole or poles of lowered tension. Precisely such

currents have been observed to run in various eggs (especially of

T. B. Robertson, Note on the chemical mechanics of cell-division, Arch. f.

Entw. Mech. xxvn, p. 29, 1909; xxxii, p. 308, 1911; xxxv, p. 402, 1913. Cf.

R. S. Lillie, Joum.-Exp. Zool. xxi, pp. 369^02, 1916; McClendon, loc. cit.; etc.

t In these experiments, and in many of Quincke's, a little chloroform is added
to the oil, in order to bring its density as near as may be to that of water.

X J. F. McClendon, Note on the mechanics of cell -division, Arch. f. Entw. Mech.

xxxrv, pp. 263-266, 1912.



332 ON THE INTERNAL FORM [ch.

certain Nematodes) during division of the cell; but if the })rocess

be slow, more than 7 or 8 minutes long, the slow currents become

hard to see. Various contents of the cell are transported by these

currents, and clear, yolk-free polar caps and equatorial accumula-

tions of yolk and pigment are among the various manifestations of

the phenomenon. The extrusion of a polar body, at a small and

sharply defined region of lowered tension, is a particular case of the

same principle*.

But purely chemical changes are not of necessity the fundamental

cause of alteration in the surface-tension of the egg, for the action

of electrolytes on surface-tension is now well known and easily

demonstrated. So, according to other views than those with which

we have been dealing, electrical charges are sufficient in themselves

to account for alterations of surface-tension, and in turn for that

protoplasmic streaming which, as so many investigators agree,

initiates the segmentation of the eggf. A great part of our difficulty

arises from the fact that in such a case as this the various pheno-

mena are so entangled and apparently concurrent that it is hard

to say which initiates another, and to which this or that secondary

phenomenon may be considered due. Of recent years the pheno-

menon of adsorption has been adduced (as we have already briefly

said) in order to account for many of the events and appearances

which are associated with the asymmetry, and lead towards the

division, of the cell. But our short discussion of this phenomenon

may be reserved for another chapter.

However, we are not directly concerned here with the phenomena

of segmentation or cell-division in themselves, except only in so far

as visible changes of form are capable of easy and obvious correla-

tion with the play of force. The very fact of "development"

indicates that, while it lasts, the equihbrium of the egg is never

complete J. And the gist of the matter is that, if you have caryo-

kinetic figures developing inside the cell, that of itself indicates that

the dynamic system and the localised forces arising from it are in

* J. Spek, loc. cit. pp. 108-109.

t Cf. D'Arsonval, Relation entre la tension superficielle et certains phenomenes
electriques d'origine animale. Arch, de Physiol, i, pp. 460-472, 1889; Ida H. Hyde,

op. cit. p. 242.

I Cf. Plateau's remarks (Statique des liquides, ii, p. 154) on the tendency towards

equilibrium, rather than actual equilibrium, in many of his systems of soap-films.
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gradual alteration; and changes in the outward configuration of

the system are bound, consequently, to take place.

Perhaps we may simplify the case still more. We have learned

many things about cell-division, but we do not know much in the

end. We have dealt, perhaps, with too many related phenomena,

and failed because we tried to combine and account for them all.

A physical problem, still more a mathematical one, wants reducing

to its simplest terms, and Dr Rashevsky has simplified and general-

ised the problem of cell-division (or division of a drop) in a series of

papers, which still outrun by far the elementary mathematics of

this book. If we cannot follow^ him in all he does, we may find

useful lessons in his way of doing it. Cells are of many kinds; they

differ in size and shape, in visible structure and chemical com-

position. Most have a nucleus, some few have none; most need

oxygen, some few do not; some metabolise in one way, some in

another. What small residuum of properties remains common to

them all? A living cell is a little fluid (or semi-fluid) system, in

which work is being done, physical forces are in operation and

chemical changes are going on. It is in such intimate relation with

the world outside—its own milieu interne with the great ynilieu

externe—that substances are continually entering the cell, some to

remain there and contribute to its growth, some to pass out again

with loss of energy and metabolic change. The picture seems

simplicity itself, but it is less simple than it looks. For on either

side of the boundary-wall, both in the adjacent medium and in the

living protoplasm within, there will be no uniformity, but only

degrees of activity, and gradients of concentration. Substances

which are being absorbed and consumed will diminish from periphery

to centre; those which are diffusing outwards have their greatest

concentration near the centre, decrease towards the periphery, and

diminish further with increasing distance in the near neighbourhood of

the system. Size, shape, diffusibility, permeability, chemical properties

of this and that, may affect the gradients, but in the living cell the

interchanges are always going on, and the gradients are always there *.

* Outward diffusion makes one of the many contrasts between cell-growth and

crystal-growth. But the diffusion^gradients round a growing crystal are far more

complicated than was once supposed. Cf. W. F. Berg, Crystal growth from

solutions, Proc. R.8. (A), clxiv, pp. 79-95, 1938.
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If the cell be homogeneous, taking in and giving out at a constant

rate in a uniform way, its shape will be spherical, the concentration-

field of force, or concentration-field, will likewise have a spherical

symmetry, and the resultant force will be zero. But if the symmetry

be ever so little disturbed, and the shape be ever so little deformed,

then there will be forces at work tending to increase the deformation,

and others tending to equalise the surface-tension and restore the

spherical symmetry, and it can be shewn that such agencies are

within the range of the chemistry of the- cell. Since surface-

tension becomes more and more potent as the size of the drop

diminishes, it follows that (under fluid conditions) the smallest

solitary cells are least likely to depart from a spherical shape, and

that cell-division is only likely to occur in cells above a certain

critical order of magnitude; and using such physical constants

as are available, Rashevsky finds that this critical magnitude

tallies fairly well with the average size of a living cell. The more

important lesson to learn, however, is this, that, merely by virtue

of its metabolism, every cell contains within itself factors which may
lead to its division after it reaches a certain critical size.

There are simple corollaries to this simple setting of the case.

Since unequal concentration-gradients are the chief cause which

renders non-spherical shapes of cell possible, and these last only so

long as the cell lives and metabolises, it follows that, as soon as the

gradients disappear, whether in death or in a "resting-stage", the

cell reverts to a spherical shape and symmetry. Again, not only is

there a critical size above which cell-division becomes possible,,

and more and more probable, but there must also be a size beyond

which the cell is not likely to grow. For the "specific surface"

decreases, the metabolic exchanges diminish, the gradients become

less steep, and the rate of growth decreases too ; there must come

a stage where anabolism just balances katabolism, and growth

ceases though life goes on. When streaming currents are visible

within the cell, they seem to complicate the problem; but after all,

they are part of the result, and proof of the existence, of the gradients

•we have described. In any further account of Rashevsky 's theories

the mathematical difficulties very soon begin. But it is well to

realise that pure theory often carries the mathematical physicist a

long way ; and that higher and higher powers of the microscope, and
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greater and greater histological skill are not the one and only way
to study the physical forces acting within the cell *.

As regards the phenomena of fertihsation, of the union of the

spermatozoon with the "pronucleus" of the egg, we might study

these also in illustration, up to a certain point, of the forces which

are more or less manifestly at work. But we shall merely take, as

a single illustration, the paths of the male and female pronuclei, as

they travel to their ultimate meeting-place.

The spermatozoon, when within a very short distance of the egg-

cell, is attracted by it, the same attraction being further manifested

in a small conical uprising of the surface of the eggt. The nature

of the attractive force has been much disputed. Loeb found the

spermatozoon to be equally attracted by other substances, even by

a bead of glass. It has been held also that the attraction is

chemotropic, some substance being secreted by the egg which drew

the sperm towards it: just as Pfeifer, having shewn that maUc acid

has an attraction for fern-antheridia, supposed this substance to

play its attractive part within the mucus of the archegonia. Again,

the chemical secretion may be neither attractive nor directive, but

yet play a useful part in activating the spermatozoa. However

that may be, Gray has shewn reason to believe that an electromotive

force is developed in the contact between active spermatozoon and

inactive ovum; and that it is the electrical change so set up, and

almost instantaneously propagated, which precludes the entry of

another spermatozoon J. Whatever the force may be, it is one

which acts normally to the surface of the ovum, and after entry the

* Cf. N. Rashevsky, Mathematical Biophysics, Chicago, 1938; and many earlier

papers. Eg. Physico-matheraatical aspects of cellular multiplication and de-

velopment, Cold Spring Harbor Symposia, ii, 1934; The mechanism of division of

small liquid systems which are the seat of physico-chemical reactions, Physics, in,

pp. 374-379, 1934; papers in Protoplasma, xiv-xx, 1931-33, etc.

t With the classical account by H. Fol, C.R. lxxxiii, p. 667, 1876; Mem. Soc.

Phys. Geneve, xxvi, p. 89, 1879, cf. Robert Chambers, The mechanism of the entrance

of sperm into the star-fish egg, Journ. Gen, Physiol, v, pp. 821-829, 1923. Here
a delicate filament is said to run out from the fertilisation-cone and drag the

spermatozoon in; but this is disputed and denied by E. Just, Biol. Bull. LVii,

pp. 311-325, 1929.

I But, under artificial conditions, "polyspermy" may take place, eg. under
the action of dilute poisons, or of an abnormally high temperature, these being

doubtless also conditions under which the surface-tension is diminished.



336 ON THE INTERNAL FORM [ch.

spermatozoon points straight towards the centre of the egg. From

the fact that other spermatozoa, subsequent to the first, fail to

effect an entry, we may safely conclude that an immediate con-

sequence of the entry of the spermatozoon is an increase in the

surface-tension of the egg: this being but one of the complex

reactions exhibited by the surface, or cortex of the cell*. Some-

where or other, within the egg, near or far away, lies its own nuclear

body, the so-called female pronucleus, and we find that after a

while this has fused with the "male pronucleus" or head of the

spermatozoon, and that, the body resulting from their fusion has

come to occupy the centre of the egg. This must be due (as Whitman

pointed out many years ago) to a force of attraction acting between

the two bodies, and another force acting upon one or other or both

in the direction of the centre of the cell. Did we know the magnitude

of these several forces, it would be an easy task to calculate the

precise path which the two pronuclei would follow, leading to con-

jugation and to the central position. As we do not know the

magnitude, but only the direction, of these forces, we can only make

a general statement: (1) the paths of both moving bodies will he

wholly within a plane triangle drawn between the two bodies and

the centre of the cell; (2) unless the two bodies happen to he, to

begin with, precisely on a diameter of the cell, their paths until they

meet one another will be curved paths, the convexity of the curve

being towards the straight line joining the two bodies; (3) the two

bodies will meet a httle before they reach the centre; and, having

met and fused, will travel on to reach the centre in a straight hne.

The actual study and observation of the path followed is not very

easy, owing to the fact that what we usually see is not the path

itself, but only a projection of the path upon the plane of the

microscope ; but the curved path is particularly well seen in the frog's

egg, where the path of the spermatozoon is marked by a little streak

of brown pigment, and the fact of the meeting of the pronuclei before

reaching the centre has been repeatedly seen by many observers f.

* See Mrs Andrews' beautiful observations on "Some spinning activities of

protoplasm in starfish and echinoid eggs," Jown. Morphol. xii, pp. 307-389, 1897.

t W. Pfeffer, Locomotorische Richtungsbewegungen durch chemische Reize,

Unters. a. d. Botan. Inst. Tubingen, i, 1884; Physiology of Plants, m, p. 345, Oxford,

1906; W. J. Dakin and M. G. C, Fordham, Journ. Exp. Biol. t. pp. 183-200, 1924.

Cf. J. Loeb, Dynamics of Living Matter, 1906, p. 153.
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The problem recalls the famous problem of three bodies, which has

so occupied the astronomers; and it is obvious that the foregoing

brief description is very far from including all possible cases.

Many of these are particularly described in the works of Fol, Roux,

Whitman and others*.

The intracellular phenomena of which we have now spoken have

assumed great importance in biological literature and discussion

during the last fifty years; but it is open to us to doubt whether

they will be found in the end to possess more than a secondary,

even a remote, biological significance. Most, if not all of them,

would seem to follow immediately and inevitably from certain

simple assumptions as to the physical constitution of the cell, and

from an extremely simple distribution of polarised forces within it.

We have already seen that how a thing grows, and what it grows

into, is a dynamic and not a merely material problem; so far as

the material substance is concerned, it is so only by reason of the

chemical, electrical or other forces which are associated with it.

But there is another consideration which would lead us to suspect

that many features in the structure and configuration of the cell

are of secondary biological importance; and that is, the great

variation to which these phenomena are subject in similar or closely

related organisms, and the apparent impossibihty of correlating

them with the pecuHarities of the organism as a whole. In a

broad and general way the phenomena are always the same. Certain

structures swell and contract, twine and untwine, split and unite,

advance and retire ; certain chemical changes also repeat themselves.

But Nature rings the changes on all the details. "Comparative

study has shewn that almost every detail of the processes (of

mitosis) described above is subject to variation in different forms

of cells |." A multitude of cells divide to the accompaniment of

caryokinetic phenomena; but others do so without any visible

caryokinesis at all. Sometimes the polarised field of force is within,

* H. Fol, Becherches sur la fecondation, 1879; W. Roux, Beitrage zur Erit-

wickelungsmechanik des Embryos, Arch. f. Mikr. Anat. xix, 1887; C. 0. Whitman,

Ookinesis, Journ. Morph. i, 1887; E. Giglio-Tos, Entwicklungsmechanische

Studien, I, Arch. f. Entw. Mech. li, p. 94, 1922, See also Frank R. Lillie, Problems

of Fertilisation, Chicago, 1919.

t Wilson, The Cell. p. 77; cf. 3rd ed. (1925), p. 120.
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sometimes it is adjacent to, and at other times it lies remote from,

the nucleus. The distribution of potential is very often symmetrical

and bipolar, as in the case described; but a less symmetrical

distribution often occurs, with the result that we have, for a time

at least, numerous centres of force, instead of the two main correlated

poles : this is the simple explanation of the numerous stellate figures,

Haploid number of chr.'raosomes

Fig. 103. Summation diagram shewing the % number of instances (among 2,415

phanerogams and 1,070 metazoa), in which the chromosomes do not exceed

a given number. Data from M. J. D. White.

or "Strahlungen," which have been described in certain eggs, such as

those of Chaetopterus. The number of chromosomes may be constant

within a group, as in the tailed Amphibia, with 12; or very variable,

as in sedges, and in grasshoppers * ; in one and the same species

of worm (Ascaris megdlocephala), one group or two groups of

chromosomes may be present. And remarkably constant, in

general, as the number in any one species undoubtedly is, yet we

must not forget that, in plants and animals alike, the whole range

of observed numbers is but a small one (Fig. 103); for (as regards

* There are varieties of Artemia salina which hardly differ in outward characters,

but differ widely in the number of their chromosomes.
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the germ-nuclei) few have less than six chromosomes, and few have

more than twenty*. In closely related animals, such as various

species of Copepods, and even in the same species of worm or insect,

the form of the chromosomes and their arrangement in relation* to

the nuclear spindle have been found to differ in ways alluded to

above ; while only here and there, as among the chrysanthemums,

do related species or varieties shew their own characteristic chromo-

some numbers. In contrast to the narrow range of the chromo-

some numbers, we may reflect on the all but infinite possibilities of

chemical variabihty. Miescher shewed that a molecule containing

40 C-atoms would admit (arithmetically though not necessarily

chemically) of a million possible isomers; and changes in position

of the N-atoms of a protein, for instance, might vastly increase

that prodigious number. In short, we cannot help perceiving

that many nuclear phenomena are not specifically related to the

particular organism in which they have been observed, and that

some are not even specially and indisputably connected with the

organism as such. They include such manifestations of the physical

forces, in their various permutations and combinations, as may also

be witnessed, under appropriate conditions, in non-living things.

When we attempt to separate our purely morphological or "purely

* The commonest numbers of (haploid) chromosomes, both in plants and

animals, are 8, 12 and 16. The median number is 12 in both, and the lower

quartile is 8, likewise in both; but the upper quartile is 24 or thereby in animals,

and in the neighbourhood of 16 in plants. If we may judge by the long lists given

by E. B. Wilson (The Cell, 3rd ed. pp. 855-865), by M. Ishikawa in Botan. Mag.

Tokyo, XXX, 1916, by M. J. D. White in his book on Chromosomes, or by Tischler

in Tabulae Biologicae (1927), fully 60 per cent, of the observed cases lie between 6

and 16. As Wilson says (p. 866) "the number of chromosomes is per se a matter

of secondary importance"; and (p. 868) "We must admit the present inadequacy

of attempts to reduce the chromosome numbers to any single or consistent

arithmetical rules." Clifford Dobell had said the same thing: "Nobody nowadays

will be prepared to argue that chromosome numbers, as such, have any quantitative

or qualitative relation to the characters exhibited by their owners. Complexity

of bodily structure is certainly not correlated in any way with multiplicity of

chromosomes " ; La Cellule, xxxv, p. 188, 1924. On the other hand, Tischler stoutly

maintains that chromosome-numbers give useful evidence of phylogenetic affinity

{Biol. Centralbl. XLvni, pp. 321-345, 1928); and there axe a few well-known cases,

such as the chrysanthemums, where, undoubtedly, the numbers are constant and

specific. Again in certain cases, the number of the chromosomes may- differ in

dififerent races (diploid and tetraploid) of the same plant; and the difference is

accompanied by differences in cell-size, in rate of growth, and even in the shape

of the fruit (of. Sinnott and Blakeslee, Xat. Acad, of Sci. 1938, p. 476).
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embryological " studies from physiological and physical investiga-

tions, we tend ipso facto to regard each particular structure and

configuration as an attribute, or a particular "character," of this or

that particular organism. From this assumption we are easily led to

the framing of theories as to the ancestral history, the classificatory

position, the natural affinities of the several organisms : in fact, to

apply our embryological knowledge to the study of phylogeny.

When we find, as we are not long of finding, that our phylogenetic

hypotheses become complex and unwieldy, we are nevertheless

reluctant to admit that the whole method, with its fundamental

postulates, is at fault; and yet nothing short of this would seem

to be the case, in regard to the earher phases at least of embryonic

development. All the evidence at hand goes, as it seems to me, to

shew that embryological data, prior to and even long after the

epoch of segmentation, are essentially a subject for physiological and

physical investigation and have but the shghtest fink, if any, with

the problems of zoological classification. Comparative embryology

has its own facts to classify, and its own methods and principles of

classification. We may classify eggs according to the presence or

absence, the paucity or abundance, of their associated food-yolk,

the chromosomes according to their form and their number, the

segmentation according to its various "types"—radial, bilateral,

spiral, and so forth. But we have httle right to expect, and in

point of fact we shall very seldom and (as it were) only accidentally

find, that these embryological categories coincide with the lines of

"natural" or "phylogenetic" classification which have been arrived

at by the systematic zoologist.

The efforts to explain "heredity" by help of "genes" and chromo-

somes, which have grown up in the hands of Morgan and others since

this book was first written, stand by themselves in a category which

is all their own and constitutes a science which is justified of

itself. To weigh or criticise these explanations would lie outside

my purpose, even were I fitted to attempt the task. When these

great discoveries began to be made, Bateson crossed the ocean

to see and hear for himself what Morgan and his pupils had to

shew and to tell. He came home convinced, and humbly marvelling.

And I leave this great subject on one side not because I doubt for a

moment the facts nor dispute the hypotheses nor decry the im-
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portance of one or other; but because we are so much in the dark

as to the mysterious field of force in which the chromosomes he,

far from the visible horizon of physical science, that the matter lies

(for the present) beyond the range of problems which this book

professes to discuss, and the trend of reasoning which it endeavours

to mamtain.

The cell*, which Goodsir spoke of as a centre offorce, is in reality

a sphere of action of certain more or less localised forces; and of

these, surface-tension is the particular force which is especially

responsible for giving to the cell its outline and its morphological

individuahty. The partially segmented differs from the totally

segmented egg, the unicellular Infusorian from the minute multi-

* The " cell-theory " began early and grew slowly. In a curious passage which
Mr Clifford Dobell has shewn me {Nov. Org. ii, 7, ad fin.). Bacon speaks of "cells"

in the human body: of a " coUocatio spiritus per corpoream molem, eiusque pori,

meatus, venae et cellulae, et rudimenta sive tentamenta corporis organici." It is

" surely one of the most strangely prophetic utterances which even Bacon ever

made." Apart from this the story begins in the seventeenth century, with Robert

Hooke's well-known figure of the "cells" in a piece of cork (1665), with Grew's

"bladders" or "bubbles" in the parenchyma of young beans, and Malpighi's

"utriculi" or "sacculi" in the parenchyma or "utriculorum substantia" of

various plants. Christian Fr. v. Wolff conceived, about the same time, a hypo-

thetical "cell-theory," on the analogy of Leibniz's Monads; but the first clear

idea of a cellular parenchyma, or contextus cellularis, came from C. Gottlieb

Ludwig (1742), and from K. Fr. Wolff, who spoke freely of cells or cellulae.

Fontana, author of a curious Traite sur le venin de la vipere (1781), described

various histological elements, caught a glimpse of the nucleus, and experi-

mented with reagents, using syrup of violets for a stain. Early in the

eighteenth century the vessels of the plant played an important role, under Kurt
Sprengel and Treviranus; but it was not till 1831 that Hugo v. Mohl recognised

that they also arose from "cells." About this time Robert Brown discovered,

or re-discovered, the nucleus (1833), which Schleiden called the cytohlast, or "cell-

producer." It was Schleiden's idea, and a far-seeing one, that the cell lived a double

life, a life of its own and the life of the plant to which it belonged: "jede Zelle

fuhrt nun ein zweifaches Leben : ein selbststandiges, nur ihrer eigenen Entwicklung
angehorigen, und ein anderes mittelbares, insofern sie integrierender Theil einer

Pfianze geworden ist " {Phylogenesis, 1838, p. 1 ). The cell-theory, so long a- building,

may be said to have been launched, and christened, with Schwann's Mikroskopische

Untersmhungen of 1839. Within the next five years Martin Barry shewed how
cell-division starts with the nucleus, Henle described the budding of certain cells,

and Goodsir declared that all cells originate in pre-existing cells, a doctrine at once
accepted by Remak, and made famous in pathology by Virchow. (Cf. {int. al.)

J. G. McKendrick, On the modern cell-theory, etc., Proc Phil. Soc. Glasgow, xix,

pp. 1-55, 1887; J. Stephenson, Robert Brown. . .and the cell-theory, Proc. Linn.
Soc. 1931-2, pp. 45-54; M. Mobius, Hundert Jahre Zellenlehre, Jen. Ztschr. lxxi,

pp. 313-326, 1938.)
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cellular Turbellarian, in the intensity and the range of those surface-

tensions which in the one case succeed and in the other fail to form

a visible separation between the cells. Adam Sedgwick used to

call attention to the fact that very often, even in eggs that appear

to be totally segmented, it is yet impossible to discover an actual

separation or cleavage, through and through, between the cells which

on the surface of the egg are so clearly delimited; so far and no

farther have the physical forces effectuated a visible "cleavage."

The vacuolation of the protoplasm in Actinophrys or Actinosphaerium

is due to localised surface-tensions, quite irrespective of the multi-

nuclear nature of the latter organism. In short, the boundary walls

due to surface-tension may be present or may be absent, with or

without the delimination of the other specific fields of force which

are usually correlated with these boundaries and with the inde-

pendent individuality of the cells. What we may safely admit,

however, is that one effect of these circumscribed fields of force is

usually such a separation or segregation of the protoplasmic

constituents, the more fluid from the less fluid and so forth, as to

give a field where surface-tension may do its work and bring a

visible bouhdary into being. When the formation of a "surface"

is once effected, its physical condition, or phase, will be bound to

differ notably from that of the interior of the cell, and under

appropriate chemical conditions the formation of an actual cell-wall,

cellulose or other, is easily inteUigible. To this subject we shall

return again, in another chapter.

From the moment that we enter on a dynamical conception of

the cell, we perceive that the old debates were vain as to what

visible portions of the cell were active or passive, living or non-

living. For the manifestations of force can only be due to the

interaction of the various parts, to the transference of energy from

one to another. Certain properties may be manifested, certain

functions may be carried on, by the protoplasm apart from the

nucleus; but the interaction of the two is necessary, that other

and more important properties or functions may be manifested.

We know, for instance, that portions of an Infusorian are incapable

of regenerating lost parts in the absence of a nucleus, while nucleated

pieces soon regain the specific form of the organism: and we are

told that reproduction by fission cannot be initiated, though
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apparently all its later steps can be carried on, independently of

nuclear action. Nor, as Verworn pointed out, can the nucleus

possibly be regarded as the "sole vehicle of inheritance," since only

in the conjunction of cell and nucleus do we find the essentials of

cell-hfe. "Kern und Protoplasma sind nur vereint lebensfahig," as

Nussbaum said. Indeed we may, with E. B. Wilson, go further,

and say that "the terms 'nucleus' and 'cell-body' should probably

be regarded as only topographical expressions denoting two

differentiated areas in a common structural basis."

Endless discussion has taken place regarding the centrosome,

some holding that it is a specific and essential structure, a permanent

corpuscle derived from a similar pre-existing corpuscle, a "fertilising

element" in the spermatozoon, a special "organ of cell-division,"

a material "dynamic centre" of the cell (as Van Beneden and

Boveri call it); while on the other hand, it is pointed out that

many cells live and multiply without any visible centrosomes, that

a centrosome may disappear and be created anew, and even that

under artificial conditions abnormal chemical stimuh may lead to

the formation of new centrosomes. We may safely take it that the

centrosome, or the "attraction sphere," is essentially a "centre of

force," and that this dynamic centre may or may not be constituted

by (but will be very apt to produce) a concrete and visible con-

centration of matter.

It is far from correct to say, as is often done, that the cell-wall,

or cell-membrane, belongs "to the passive products of protoplasm

rather than to the hving cell itself"; or to say that in the animal

cell, the cell-wall, because it is "slightly developed," is relatively

unimportant compared with the important role which it assumes

in plants. On the contrary, it is quite certain that, whether visibly

diiferentiated into a semi-permeable membrane or merely con-

stituted by a liquid film, the surface of the cell is the seat of

important forces, capillary and electrical, which play an essential

part in the dynamics of the cell. Even in the thickened, largely

solidified cellulose wall of the plant-cell, apart from the mechanical

resistances which it affords, the osmotic forces developed in con-

nection with it are of essential importance.

But if the cell acts, after this fashion, as a whole, each part

interacting of necessity with the rest, the same is certainly true of
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the entire multicellular organism : as Schwann said of old, in very-

precise and adequate words, "the whole organism subsists only by
means of the recijpTocal action of the single elementary parts*." As
Wilson says again, "the physiological autonomy of the individual

cell falls into the background . . . and the apparently composite

character which the multicellular organism may exhibit is owing to

a secondary distribution of its energies among local centres of

action!." I* is here that the homology breaks down which is so

often drawn, and overdrawn, between the unicellular organism and

the individual cell of the metazoonj.

Whitman, Adam Sedgwick §, and others have lost no opportunity

of warning us against a too hteral acceptation of the cell-theory,

against the view that the multicellular organism is a colony (or, as

Haeckel called it, in the case of the plant, a "republic") of inde-

pendent units of Ufe||. As Goethe said long ago, "Das lebendige

ist zwar in Elemente zerlegt, aber man kann es aus diesen nicht

wieder zusammenstellen und beleben " ; the dictum of the Cellular-

pathologie being just the opposite, "Jedes Thier erscheint als cine

Summe vitaler Einheiten, von denen jede den vollen Charakter des

Lebens an sich trdgt."

Hofmeister and Sachs have taught us that in the plant the growth

Theory of Cells, p. 191.

t The Cell in Development, etc., p. 59; cf. 3rd ed. (1925), p. 102.-

X E.g. Brticke, Elementarorganismen, p. 387: "Wir miissen in der Zelle einen

kleinen Thierleib sehen, und diirfen die Analogien, welche zwischen ihr und den
kleinsten Thierformen existiren, niemals aus den Augen lassen."

§ C. 0. Whitman, The inadequacy of the cell-theory, Journ. Morphol. viii,

pp. 639-658, 1893; A. Sedgwick, On the inadequacy of the cellular theory of

development, Q.J.M.S. xxxvii, pp. 87-101, 1895; xxxviii, pp. 331-337, 1896.

Cf. G. C. Bourne, ibid, xxxviii, pp. 137-174, 1896; Clifford Dobell, The principles

of Protistology, Arch. f. Protistenk. xxiii, p. 270, 1911.

II
Cf. 0. Hertwig, Die Zelle und die Gewebe, 1893, p. 1: "Die Zellen, in welche

der Anatom die pflanzlichen und thierischen Organismen zerlegt, sind die Trager

der Lebensfunktionen ; sie sind, wie Virchow sich ausgedruckt hat, die 'Lebensein-

heiten.' Von diesem Gesichtspunkt aus betrachtet, erscheint der Gesammtlebens-
prozess eines zusammengesetzten Organismus nichts Anderes zu sein als das hochst

yerwickelte Resultat der einzelnen Lebensprozesse seiner zahlreichen, verschieden

functionirenden Zellen." But in 1920 Doncaster (Cytology, p. 1) declared that "the
old idea of discrete and independent cells is almost abandoned," and that the

word cell was coming to be used "rather as a convenient descriptive term than

as denoting a fundamental concept of biology"; and James Gray {Experimental

Cytology, p. 2) said, in 1931, that "we must be careful to avoid any tacit assumption

that the cell is a natural, or even legitimate, unit of life and function."
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of the mass, the growth of the organ, is the primary fact, that

"cell formation is a phenomenon very general in organic life, but

still only of secondary significance." "Comparative embryology,'*

says Whitman, "reminds us at every turn that the organism

dominates cell-formation, using for the same purpose one, several,

or many cells, massing its material and directing its movements

and shaping its organs, as if cells did not exist*." So Rauber

declared that, in the whole world of organisms, "das Ganze liefert

die Theile, nicht die Theile das Ganze: letzteres setzt die Theile

zusammen, nicht diese jenesf." And on the botanical side De Bary

has summed up the matter in an aphorism, "Die Pflanze bildet

Zellen, nicht die Zelle bildet Pflanzen."

Discussed almost wholly from the concrete, or morphological

point of view, the question has for the most part been made to turn

on whether actual protoplasmic continuity can be demonstrated

between one cell and another, whether the organism be an actual

reticulum, or syncytium J. But from the dynamical point of view

the question is much simpler. We then deal not with material

continuity, not with little bridges of connecting protoplasm, but

with a continuity of forces, a comprehensive field of force, which

runs through and* through the entire organism and is by no means

restricted in its passage to a protoplasmic continuum. And such

a continuous field of force, somehow shaping the whole organism,

independently of the number, magnitude and form of the individual

cells, which enter hke a froth into its fabric, seems to me certainly

and obviously to exist. As Whitman says, "the fact that physio-

logical unity is not broken by cell-boundaries is confirmed in so

many ways that it must be accepted as one of the fundamental

truths of biology §."

* Journ. Morph. viii, p. 653, 1893.

t Neue Grundlegungen zur Kenntniss der Zelle, Morph. Jahrb. viii, pp. 272,

313, 333, 1883.

X Cf. e.g. Ch. van Bambeke, A propos de la delimitation cellulaire, Bull. Soc.

beige de Microsc. xxiii, pp. 72-87, 1897.

§ Journ. Morph. ii, p. 49, 1889.



CHAPTER V

THE FORMS OF CELLS

Protoplasm, as we have already said, is a fluid* or a semi-fluid

substance, and we need not try to describe the particular properties

of the colloid or jelly-like 'substances to which it is alHed, or rather

the characteristics of the "colloidal state" in which it and they

exist; we should find it no easy matter f. Nor need we appeal to

precise theoretical definitions of fluidity, lest we come into a

debatable land. It is in the most general sense that protoplasm

is "fluid." As Graham said (of colloid matter in general), "its

softness partakes of fluidity, and enables the colloid to become a

vehicle for liquid diffusion, like water itselfJ." When we can deal

with protoplasm in sufficient quantity we see it /oi^§; particles

move freely through it, air-bubbles and liquid droplets shew round

or spherical within it; and we shall have much to say about other

phenomena manifested by its own surface, which are those especially

characteristic of liquids. It may encompass and contain solid

bodies, and it may "secrete" solid substances within or around

itself; and it often happens in the complex Hving organism that

these sohd substances, such as shell or nail or horn or feather,

remain when the protoplasm which formed them is dead and gone.

But the protoplasm itself is fluid or semi-fluid, and permits of free

(though not necessarily rapid) diffusion and easy convection of

particles within itself, which simple fact is of elementary importance

* Cf. W. Kuhne, Ueber das Protoplasma, 1864.

t Sand, or a heap of millet-seed, may in a sense be deemed a "fluid," and such

the learned Father Boscovich held them to be {Theoria, p. 427), but at best they

are fluids without a surface. Galileo had drawn the same comparison; but went on
to contrast the continuity, or infinite subdivision, of a fluid with the finite, dis-

continuous subdivision of a fine powder. Cf. Boyer, Concepts of the Calculus, 1939,

p. 291. .

J Phil Trans, clt, p 183, 1861; Researches, ed. Angus Smith, 1877, p 553.

We no longer speak, however, of "colloids' in a specific sense, as Graham did;

for any substance can be brought into the "colloidal state" by appropriate means
or in an appropriate medmm.

§ The copious protoplasm of a Myxomycete has been passed unharmed through

filter-paper with a pore-size of about 1 /x, or 0001 mm.
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in connection with form, throwing light on what seem to be common
characteristics and pecuHarities of the forms of Hving things.

Much has been done, and more said, about the nature of protoplasm since

this book was written. Calling cytoplasm the cell-protoplasm after deduction

of chloroplasts and other gross inclusions, we find it to contain fats, proteins,

lecithin and some other substances combined with much water (up to

97 per cent.) to form a sort of watery gel. The microscopic structures

attributed to it, alveolar, granular or fibrillar, are inconstant or invalid;

but it does appear to possess an invisible or submicroscopic structure,

distinguishing it from an ordinary colloid gel, and forming a quasi-solid

framework or reticulum. This framework is based on proteid macromolecules,

in the form of polypeptide chains, of great length and carrying in side-chains

other organic constituents of the cytoplasm*. The polymerised units

represent the micellae f which the genius of Nageli predicted or postulated

more than sixty years ago; and we may speak of a "micellar framework"

as representing in our cytoplasm the dispersed phase of an ordinary colloid.

In short, as the cytoplasm is neither true fluid not true solid, neither is it true

colloid in the ordinary sense. Its micellar structure gives it a certain rigidity

or tendency to retain its shape, a certain plasticity and tensile strength, a

certain ductility or capacity to be drawn out in threads; but yet leaves it

with a permeability (or semi-permeability), a capacity to swell by imbibition,

above all an ability to stream and flow, which justify our calling it "fluid

or semi-fluid," and account for its exhibition of surface-tension and other

capillary phenomena.

The older naturalists, in discussing the differences between organic and
inorganic bodies, laid stress upon the circumstance that the latter grow by
"agglutination," and the former by what they termed "intussusception."

The contrast is true; but it applies rather to solid or crystalline bodies as

compared with colloids of all kinds, whether living or dead. But it so happens

that the great majority of colloids are of organic origin; and out of them our

bodies, and our food, and the very clothes we wear, are almost wholly made.

A crystal "grows" by deposition of new molecules, one by one

and layer by layer, each one superimposed on the solid substratum

* See {int. al.) A. Frey-Wyssling, Subrnikroskopische Morphologie des Protoplasmas,

Berlin, 1938; cf. Nature, June 10, 1939, p. 965; also A. R. Moore, in Scientia,

LXii, July 1, 1937. On the nature of viscid fluid threads, cf. Larmor, Nature,

July 11, 1936, p. 74.

f Micella, or micula, diminutive of mica, a crumb, grain or morsel

—

ynica panis,

salis, turis, etc. Nageli used the word to mean an aggregation of molecules, as

the molecule is an aggregation of atoms; the one, however, is a physical and the

other a chemical concept. Roughly speaking, we may think of micellae as varying

from about 1 to 200 /x/x; they play a corresponding part in the "disperse phase"

of a colloid to that played by the molecules in an ordinary solution. The macro-

molecules of modern chemistry are sometimes distinguished from these as still

larger aggregates. See Carl Nageli, Das Mikroskop (2nd ed.), 1877; Theorie der

Gahrung, 1879.
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already formed. Each particle would seem to be influenced only

by the particles in its immediate neighbourhood, and to be in

a state of freedom and independence from the influence, either

direct or indirect, of its remoter neighbours. So Lavoisier was

the first to say. And as Kelvin and others later on explained

the formation and the resulting forms of crystals, so wo beheve

that each added particle takes up its position in relation to its

immediate neighbours already arranged, in the holes and corners

that their arrangement leaves, and in closest contact with the

greatest number*; hence we may repeat or imitate this process of

arrangement, with great or apparently even with precise accuracy

(in the case of the simpler crystalhne systems), by piling up spherical

pills or grains of shot. In so doing, we must have regard to the

fact that each particle must drop into the place where it can go

most easily, or where no easier place offers. In more technical

language, each particle is free to take up, and does take up, its

position of least potential energy relative to those already there:

in other words, for each particle motion is induced until the energy

of the system is so distributed that no tendency or resultant force

remains to move it more. This has been shewn to lead to the

production of plane surfaces f (in all cases where, by the hmitation

of material, surfaces must occur); where we have planes, there

straight edges and solid angles must obviously occur also, and, if

equihbrium is to follow, must occur symmetrically. Our pihng up

of shot to make mimic crystals gives us visible demonstration that

the result is actually to obtain, as in the natural crystal, plane

surfaces and sharp angles symmetrically disposed.

* Cf. Kelvin, On the molecular tactics of a crystal, The Boyle Lecture, Oxford,

1893; Baltimore Lectures, 1904, pp. 612-642. Here Kelvin was mainly following

Bravais's (and Frankenheim's) theory of "space-lattices," but he had been largely

anticipated by the crystallographers. For an account of the development of the

subject in modern crystallography, by Sohncke, von Fedorow, 8chonfliess, Barlow

and others, see (e.g.) Tutton's Crystallography, and the many papers by W. E. Bragg

and others.

t In a homogeneous crystalline arrangement, symmetry compels a locus of one

property to be a plane or set of planes ; the locus in this case being that of least

surface potential energy. Crystals "seem to be, as it were, the Elemental Figures,

or the A B C of Nature's workmg, the reason of whose curious Geometrical Forms
(if I may so call them) is very easily explicable" (Robert Hooke, Posthumous Works^

1745, p. 280).
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But the living cell grows in a totally different way, very much

as a piece of glue swells up in water, by "imbibition," or by inter-

penetration into and throughout its entire substance. The semi-

fluid colloid mass takes up water, partly to combine chemically

with its individual molecules*; partly by physical diffusion into

the interstices between molecules or micellae, and partly, as it would

seem, in other ways; so that the entire phenomenon is a complex

and even an obscure onef. But, so far as we are concerned, the

net result is very simple. For the equilibrium, or tendency to

equilibrium, of fluid pressure in all parts of its interior while the

process of imbibition is going on, the constant rearrangement of its

fluid mass, the contrast in short with the crystalhne method of

growth where each particle comes to rest to move (relatively to the

whole) no more, lead the mass of jelly to swell up very much as a

bladder into which we blow air, and so, by a graded and harmonious

distribution of forces, to assume everywhere a rounded and more

or less bubble-hke external form J. So, when the same school of

older naturahsts called attention to a new distinction or contrast of

form between organic and inorganic objects, in that the contours

of the former tended to roundness and curvature, and those of the

latter to be bounded by straight lines, planes and sharp angles, we

see that this contrast was not a new and different one, but only

another aspect of their former statement, and an immediate con-

sequence of the difference between the processes of agglutination

and intussusception §.

So far then as growth goes on undisturbed by pressure or other

external force, the fluidity of the protoplasm, its mobility internal

* This is what Graham called the water of gelatination, on the analogy of water

of crystallisation; Chem. and Phys. Researches, p. 597.

t On this important phenomenon, see J. R. Katz, Oesetze der Quellung, Dresden,

1916. Swelling is due to "concentrated solution," and is accompanied by increase

of volume and liberation of energy, as when the Egyptians split granite by the

swelling of wood.

X Here, in a non-crystalline or random arrangement of particles, symmetry
ensures that the potential energy shall be the same per unit area of all surfaces;

and it follows from geometrical considerations that the total surface energy will

be least if the surface be spherical.

§ Intussusception has its shades of meaning; it is excluded from the idea of a

crystalline body, but not limited to the ordinary conception of a colloid one. When
new micellar strands become interwoven in the micro-structure of a cellulose cell-

wall, that is a special kind of "intussusception."
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and external*, and the way in which particles move freely hither

and thither within, all manifestly tend to the production of swelhng,

rounded surfaces, and to their great predominance over plane sur-

faces in the contours of the organism. These rounded contours

will tend to be preserved for a while, in the case of naked protoplasm

by its viscosity, and in presence of a cell-wall by its very lack of

fluidity. In a general way, the presence of curved boundary

surfaces will be especially obvious in the unicellular organisms, and

generally in the external form of all organisms, and wherever

mutual pressure between adjacent cells, or other adjacent parts,

has not come into play to flatten the rounded surfaces into planes.

The swelling of any object, organic or inorganic, living or dead, is bound to

be influenced by any lack of structural symmetry or homogeneity f. We
may take it that all elongated structures, such as hairs, fibres of silk or cotton,

fibrillae of tendon and connective tissue, have by virtue of their elongation

an invisible as well as a visible polarity. Moreover, the ultimate fibrils are

apt to be invested by a protein different from the "collagen" within, and

liable to swell more or to swell less. In ordinary tendons there is a "reticular

sheath," which swells less, and is apt to burst under pressure from within;

it breaks into short lengths, and when the strain is relieved these roll back,

and form the familiar annuli. Another instance is the tendency to swell of

the "macro-molecules" of many polymerised organic bodies, proteins among
them.

But the rounded contours which are assumed and exhibited by

a piece of hard glue when we throw it into water and see it expand

as it sucks the water up, are not near so regular nor so beautiful as

are those which appear when we blow a bubble, or form a drop, or

even pour water into an elastic bag. For these curving contours

depend upon the properties of the bag itself, of the film or membrane

which contains the mobile gas, or which contains or bounds the

mobile liquid mass. And hereby, in the case of the fluid or semifluid

mass, we are introduced to the subject of surface-tension: of which

indeed we have spoken in the preceding chapter, but which we must

now examine with greater care.

* The protoplasm of a sea-urchin's egg has a viscosity only about four times,

and that of various plants not more than ten to twenty times, that of water itself.

See, for a general discussion, L. V. Heilbrunn, Colloid Symposium Monograph^ 1928.

t D. Jordan Lloyd and R. H. Marriott, The swelling of structural proteins,

Proc. U.S. (B), No. 810, pp. 439-44.3, 1935.
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Among the forces which determine the forms of cells, whether

they be sohtary or arranged in contact with one another, this force

of surface-tension is certainly of great, and is probably of paramount,

importance. But while we shall try to separate out the phenomena

which are directly due to it, we must not forget that, in each

particular case, the actual conformation which we study may be,

and usually is, the more or less complex resultant of surface-tension

acting together with gravity, mechanical pressure, osmosis, or other

physical forces. The peculiar beauty of a soap-bubble, solitary or

in collocation, depends on the absence (to all intents and purposes)

of these ahen forces from the field ; hence Plateau spoke of the films

which were the subject of his experiments as "lames fluides sans

pesanteur.'' The resulting form is in such a case so pure, and simple

that we come to look on it as wellnigh a mathematical abstraction.

Surface-tension, then, is that force by which we explain the form

of a drop or of a bubble, of the surfaces external and internal of

a "froth" or collocation of bubbles, and of many other things of

like nature and in hke circumstances*. It is a property of Hquids

(in the sense at least with which our subject is concerned), and it

is manifested at or very near the surface, where the liquid comes

into contact with another hquid, a solid or a gas. We note here

that the term surface is to be interpreted in a wide sense; for

wherever we have solid particles embedded in a fluid, wherever we

have a non-homogeneous fluid or semi-fluid, or a "two-phase colloid

"

such as a particle of protoplasm, wherever we have the presence of

"impurities" as in a mass of molten metal, there we have always

to bear in mind the existence of surfaces and of surface-phenomena,

not only on the exterior of the mass but also throughout its inter-

stices, wherever like and unlike meet.

* The idea of a "surface-tension" in liquids was first enunciated by Segner, and

ascribed by him to forces of attraction whose range of action was so small "ut

nullo adhuc sensu percipi potuerat" {Defiguris superficierum fiuidarum, in Comment.

Soc. Roy. GoUingen, 1751, p. 301). Hooke, in the Micrographia (1665, Obs. viii,

etc.), had called attention to the globular or spherical form of the little morsels

of steel struck off by a flint, and had shewn how to make a powder of such spherical

grains, by heating fine filings to melting point, "This Phaenomenon" he said

"proceeds from a propriety which belongs to all kinds of fluid Bodies more or less,

and is caused by the Incongruity of the Atnbient and included Fluid, which so

acts and modulates each other, that they acquire, as neer as is possible, a spherical

or globular form "
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A liquid in the mass is devoid of structure ; it is homogeneous, and

without direction or polarity. But the very concept of surface-

tension forbids this to be true of the surface-layer of a body of liquid,

or of the "interphase" between two liquids, or of any film, bubble,

drop, or capillary jet or stream. In all these cases, and more empha-

tically in the case of a "monolayer," even the liquid has a structure

of its own ; and we are reminded once again of how largely the living

organism, whether high or low, is composed of colloid matter in

precisely such forms and structural conditions.

Surface-tension is due to molecular force *
: to force, that is to say,

arising from the action of one molecule upon another; and since

we can only ascribe a small "sphere of action" to each several

molecule, this force is manifested only within a narrow range.

Within the interior of the liquid mass we imagine that such molecular

interactions negative one another ; but at and near the free surface,

within a layer or film approximately equal to the range of the

molecular force—or to the radius of the aforesaid " sphere of action
"

—there is a lack of equilibrium and a consequent manifestation of

force.

The action of the molecular forces has been variously explained.

But one simple explanation (or mode of statement) is that the

molecules of the surface-layer are being constantly attracted into

the interior by such as are just a little more deeply situated; the

surface shrinks as molecules keep quitting it for the interior, and

this surface-shrinkage exhibits itself as a surface-tension. The process

continues till it can go no farther, that is to say until the surface

itself becomes a "minimal areaf." This is a sufficient description

of the phenomenon in cases where a portion of liquid is subject to

no other than its own molecular forces, and (since the sphere has,

* While we explain certain phenomena of the organism by reference to atomic

or molecular forces, the following words of Du Bois Reymond's seem worth

recalling: ' Naturerkennen ist Zuriickfiihren der Veranderungen in der Korperwelt

auf Bewegung von Atomen, die durch deren von der Zeit unabhangige Centralkrafte

bewirkt werden, oder Auflosung der Naturkrafte in Mechanik der Atome. Es ist

eine psychologische Erfahrungstatsache dass, wo solche Auflosung gelangt, unser

Causalbediirfniss vorlaiifig sioh befriedigt fiihlt" (Ueber die Grenzen des Natnr-

erkennens, Leipzig, 1873).

t There must obviously be a certain kinetic energy in the molecules within

the drop, to balance the forces which are trying to contract and diminish the

surface.
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of all solids, the least surface for a given volume) it accounts for

the spherical form of the raindrop*, of the grain of shot, or of the

living cell in innumerable simple organisms f. It accounts also, as

we shall presently see, for many much more complicated forms,

manifested under less simple conditions.

Let us note in passing that surface-tension is a comparatively

small force and is easily measurable: for instance that between

water and air is equivalent to but a few grains per linear inch, or

a few grammes per metre. But this small tension, when it exists

in a curved surface of great curvature, such as that of a minute drop,

gives nse to a very great pressure, directed inwards towards the

centre of curvature. We may easily calculate this pressure, and so

satisfy ourselves that, when the radius of curvature approaches

molecular dimensions, the pressure is of the order of thousands of

atmospheres—a conclusion which is supported by other physical

considerations.

The contraction of a liquid surface, and the other phenomena of

surface-tension, involve the doing of work, and the power to do

work is what we call Energy. The whole energy of the system is

diffused throughout its molecules, as is obvious in such a simple

case as we have just considered; but of the whole stock of energy

only the part residing at or very near the surface normally manifests

itself in work, and hence we speak (though the term be open to

* Raindrops must be spherical, or they would not produce a rainbow; and the

fact that the upper part of the bow is the brightest and sharpest shews that the

higher raindrops are more truly spherical, as well as smaller than the lower ones.

So also the smallest dewdrops are found to be more iridescent than the large, shewing

that they also are the more truly spherical; cf. T. W. Backhouse, in Monthly

Meteorol. Mag. March, 1879. Mercury has a high surface-tension, and its globules

are very nearly round.

t That the offspring of a spherical cell (whether it be raindrop, plant or animal)

should be also a spherical cell, would seem to need no other explanation than that

both are of identical substance, and each subject to a similar equilibrium of

surface-forces; but the biologists have been apt to look for a subtler reason.

Giglio-Tos, speaking of a sea-urchin's dividing egg, asks why the daughter-cells

are spherical like the mother-cell, and finds the reason in "heredity": "Wenn also

die letztere (d. i. die Mutterzelle) eine spharische Form besass, so nehmen auch die

Tochterzellen dieselbe ein; ware urspriinglich eine kubische Form vorhanden,

so wurden also auch die Tochterzellen dieselbe auch aneignen. Die Ursache warum
die Tochterzellen die spharische Form anzunehmen trachten liegt darin, dasa

diese die Ur- und Grundform alter Zellen ist, sowohl bet Tieren ivie bei den Pflanzen''

[Arch.f. Entw. Mech. Li, p. 115, 1922).
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some objection) of a specific surface-energy. Surface-energy, and

the way it is increased and multiplied by the multiphcation of

surfaces due to the subdivision of the tissues into cells, is of the

highest interest tq the physiologist; and even the morphologist

cannot pass it by. For the one finds surface-energy present, often

perhaps paramount, in every cell of the body ; and the other may find,

if he will only look for it, the form of every solitary cell, hke that of

any other drop or bubble, related to if not controlled by capillarity.

The theory of "capillarity," or "surface-energy," has been set forth

with the utmost possible lucidity by Tait and by Clerk Maxwell, on

whom the following paragraphs are based: they having based their

teaching on that of Gauss*, who rested on Laplace.

Let E be the whole potential energy of a mass M of hquid; let

Cq be the energy per unit mass of the interior hquid (we may call it

the internal energy); and let e be the energy per unit mass for a

layer of the skin, of surface S, of thickness t, and density p (e being

what we call the surface-energy). It is obvious that the total energy

consists of the internal plus the surface-energy, and that the former

is distributed through the whole mass, minus its surface layers.

That is to say, in mathematical language,

E={M -S. l.tp) e^ + S . I^tpe.

But this is equivalent to writing

:

= MeQ + S .I.tp{e- eo);

and this is as much as to say that the total energy of the system

may be taken to consist of two portions, one uniform throughout

the whole mass, and another, which is proportional on the one hand

to the amount of surface, and on the other hand to the difference

between e and Cq, that is to say to the difference between the unit

values of the internal and the surface energy.

It was Gauss who first shewed how, from the mutual attractions

between all the particles, we are led to an expression for what we

* See Gauss's Principia generalia Theoriae Figurae Fluidorum in statu equilibriif

Gottingen, 1830. The historical student will not overlook the claims to priority

of Thomas Young, in his Essay on the cohesion of fluids, Phil. Trans. 1805; see

the account given in his Life by Dean Peacock, 18.55, pp. 199-210.
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no\v' call the potential energy* of the system; and we know, as a

fundamental theorem of dynamics, as well as of molecular physics,

that the potential energy of the system tends to a minimum, and

finds in that minimum its stable equihbrium.

We see in our last equation that the term Mcq is irreducible, save

by a reduction of the mass itself. But the other term may be

diminished (1) by a reduction in the area of surface, S, or (2) by

a tendency towards equahty of e and ^q , that is to say by a diminu-

tion of the specific surface energy, e.

These then are the two methods by which the energy of the

system will manifest itself in work. The one, which is much the

more important for our purposes, leads always to a diminution of

surface, to the so-called "principle of minimal areas"; the other,

which leads to the lowering (under certain circumstances) of surface

tension, is the basis of the theory of Adsorption, to which we shall

have some occasion to refer as the modus operandi in the develop-

ment of a celi-wall, and in a variety of other histological phenomena.

In the technical phraseology of the day, the '^capacity factor" is

involved in the one case, and the "intensity factor" in the otherf.

Inasmuch as we are concerned with the form of the cell, it is the

former which becomes our main postulate: telhng us that the

energy-equations of the surface of a cell, or of the free surfaces of

cells in partial contact, or of the partition-surfaces of cells in contact

with one another, all indicate a minimum of potential energy in the

system, by which minimal condition the system is brought, ipso

facto, into equihbrium. And we shall not fail to observe, with

something more than mere historical interest and curiosity, how

* The word Energy was substituted for the old vis viva by Thomas Young early

in the nineteenth century, and was used by James Thomson, Lord Kelvin's brother,

about 1852, to mean, more generally, "capacity for doing work." The term potential,

or latent, in contrast to actual energy, in other words the distinction between " energy

of activity and energy of configuration," was proposed by Macquorn Rankine, and

suggested to him by Aristotle's use of 8vva/j.L$ and evepyeia; see Rankine's paper

On the general law of the transformation of energy, Phil. Soc. Glasgow, Jan.

5, 1853, cf. ibid. Jan. 23, 1867, and Phil. Mag. (4), xxvii, p. 404, 1864. The phrase

potential energy was at once adopted, but kinetic was substituted for actical by

Thomson and Tait.

t The capacity factor, inasmuch as it leads to diminution of surface, is responsible

for the concrescence of droplets into drops, of microcrystals into larger units, for

the flocculation of colloids, and for many other similar "changes of state."
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deeply and intrinsically there enter into this whole class of problems

the method of maxima and minima discovered by Fermat, the "loi

universelle de repos" of Maupertuis, "dont tous les cas d'equilibre

dans la statique ordinaire ne sont que des cas particuhers", and the

lineae curvae maximi miniynive proprietatibus gaudentes of Euler, by
which principles these old natural philosophers explained correctly

a multitude of phenomena, and drew the lines whereon the founda-

tions of great part of modern physics are well and truly laid. For

that physical laws deal with minima is very generally true, and is

highly characteristic of them. The hanging chain so hangs that the

height of its centre of gravity is a minimum ; a ray of hght takes

the path, however devious, by which the time of its journey is a

minimum ; two chemical substances in reaction so behave that their

thermodynamic potential tends to a minimum, and so on. The
natural philosophers of the eighteenth century were engrossed in

minimal problems ; and the differential equations which solve them
nowadays are among the most useful and most characteristic equa-

tions in mathematical physics.

"Voici," said Maupertuis, "dans un assez petit volume a quoi je

reduis mes ouvrages mathematiques
!

" And when Lagrange, fol-

lowing Euler's lead*, conceived the principle of least action, he

regarded it not as a metaphysical principle but as "un resultat

simple et general des lois de la mecaniquef." The principle of

least action J explains nothing, it tells us nothing of causation,

yet it illuminates a host of things. Like Maxwell's equations and

other such flashes of genius it clarifies our knowledge, adds weight

to our observations, brings order into our stock-in-trade of facts.

It embodies and extends that "law of simplicity" which Borelli

was the first to lay down: "Lex perpetua Naturae est ut agat

minimo labore, mediis et modis simplicissimis, facillimis, certis et

* Euler, Traite des Isoperimetres, Lausanne, 1744.

t Lagrange, Mecanique Analytique (2), ii, p. 188; ed. in 4to, 1788.

{ This profound conception, not less metaphysical in the outset than physical,

began in the seventeenth century with Fermat, who shewed (in 1629) that a ray

of light followed the quickest path available, or, as Leibniz put it, via omnium
facillima; it was over this principle that Voltaire quarrelled with Euler and
Maupertuis. The mathematician will think also of Hamilton's restatement of the

principle, and of its extension to the theory of probabilities by Boltzmann and
Willard Gibbs. Cf. (int. al.) A. Mayer, Geschichte des Prinzips der kleinsten Action,

1877.
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tutis: evitando, quam maxime fieri potest, incommoditates et

prolixitates." The principle of least action grew up, and grew

quickly, out of cruder, narrower notions of "least time" or "least

space or distance." Nowadays it is developing into a principle of

"least action in space-time," which shall still govern and predict

the motions of the universe. The infinite perfection of Nature is

expressed and reflected in these concepts, and Aristotle's great

aphorism that "Nature does nothing in vain" lies at the bottom

of them all.

In all cases where the principle of maxima and minima comes

into play, as it conspicuously does in films at rest under surface-

tension, the configurations so produced are characterised by obvious

and remarkable symmetry'^. Such symmetry is highly characteristic

of organic forms, and is rarely absent in living things—save in such

few cases as Amoeba, where the rest and equilibrium on which

symmetry depends are likewise lacking. And if we ask what

physical equilibrium has to do with formal symmetry and structural

regularity, the reason is not far to seek, nor can it be better put

than in these words of Mach'sf: "In every symmetrical system

every deformation that tends to destroy the symmetry is com-

plemented by an equal and opposite deformation that tends to

restore it. In each deformation, positive and negative work is done.

One condition, therefore, though not an absolutely sufficient one,

that a niaximum or minimum of work corresponds to the form of

equiUbrium, is thus supj)ned by symmetry. Regularity is successive

symmetry; there is no reason, therefore, to be astonished that the

forms of equiUbrium are often symmetrical and regular."

A crystal is the perfection of symmetry and of regularity;

symmetry is displayed in its external form, and regularity revealed

in its internal lattices. Complex and obscure as the attractions,

rotations, vibrations and what not within the crystal may be, we

rest assured that the configuration, repeated again and again, of

* On the mathematical side, cf. Jacob Nteiner, Einfache Beweise der isoperi-

metrischen Hauptsatze, Abh. k. Akad. Wisa. Berlin, xxiii, pp. 116-135, 1836 (1838).

On the biological side, see {int. al.) F. M. Jaeger, Lectures on the Principle of Symmetry,

and its application to the natural sciences, Amsterdam, 1917; also F. T. Lewis,

Symmetry. . .in evolution, Amer. Nat. lvii, pp. 5-41, 1923.

f Science of Mechanics, 1902, p. 395; see also Mach's article Ueber die physika-

lische Bedeutung der Gesetze der Symmetrie, Lotos, xxi, pp. 139-147, 1871.
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the component atoms is precisely that for which the energy is a

minimum; and we recognise that this minimal distril^ution is of

itself tantamount to symmetry and to stability.

Moreover, the principle of least action is but a setting of a still

more universal law—that the world and all the parts thereof tend

ever to pass from less to more probable configurations; in which

the physicist recognises the principle of Clausius, or second law of

thermodynamics, and with which the biologist must somehow

reconcile the whole "theory of evolution."

As we proceed in our enquiry, and especially when we approach

the subject of tissues, or agglomerations of cells, we shall have from

time to time to call in the help of elementary mathematics. But

already, with very Httle mathematical help, we find ourselves in a

position to deal with some simple examples of organic forms.

When we melt a stick of sealing-wax in the flame, surface-tension

(which was ineffectively present in the solid but finds play in the

now fluid mass) rounds off its sharp edges into curves, so striving

tbwards a surface of minimal area ; and in like manner, by merely

melting the tip of a thin rod of glass, Hooke made the little spherical

beads which served him for a microscope*. When any drop of

protoplasm, either over all its surface or at some free end, as at the

extremity of the pseudopodium of an amoeba, is seen hkewise to

"round itself off," that is not an effect of "vital contractility," but,

as Hofmeister shewed so long ago as 1867, a simple consequence of

surface-tension; and almost immediately afterwards Engelmannf

argued on the same lines, that the forces which cause the contraction

of protoplasm in general may "be just the same as those which tend

to make every non-spherical drop of fluid become spherical." We
are not concerned here with the many theories and speculations

which would connect the phenomena of surface-tension with con-

tractility, muscular movement, or other special 'physiological func-

* Similarly, Sir David Brewster and others made powerful lenses by simply

dropping small drops of Canada balsam, castor oil, or other strongly refractive

liquids, on to a glass plate: On New Philosophical Instruments (Description of a

new fluid microscope), Edinburgh, 1813, p. 413. See also Hooke's Micrographia,

1665; and Adam's Essay on the Microscope, 1798, p. 8: "No person has carried

the use of these globules so far as Father Torre of Naples, etc." Leeuwenhoek.

on the other hand, ground his lenses with exquisite skill.

t Beitrage zur Physiologie des Protoplasma, Pfluger's Archlv, ii, p. 307, 1869.
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tions, but we find ample room to trace the operation of the same

cause in producing, under conditions of rest and equiUbrium, certain

definite and inevitable forms.

It is of great importance to observe that the living cell is one

of those cases where the phenomena of surface-tension are by no

means limited to the outer surface; for within the heterogeneous

emulsion of the cell, between the protoplasm and its nuclear and

other contents, and in the "alveolar network" of the cytoplasm

itself (so far as that alveolar structure is actually present in life),

we have a multitude of interior surfaces; and, especially among

plants, we may have large internal "interfacial contacts" between

the protoplasm and its included granules, or its vacuoles filled with

the "cell-sap." Here we have a great field for surface-action; and

so long ago as 1865, Nageli and Schwendener shewed that the

streaming currents of plant cells might be plausibly explained by

this phenomenon. Even ten years earlier, Weber had remarked

upon the resemblance between the protoplasmic streamings and

the currents to be observed in certain inanimate drops for which

no cause but capillarity could be assigned*. What sort of chemical

changes lead up to, or go hand in hand with, the variations of

surface-tension in a hving cell, is a vastly important question. It

is hardly one for us to deal with ; but this at least is clear, that the

phenomenon is more complicated than its first investigators, such

as BUtschli and Quincke, ever took it to be. For the lowered

surface-tension which leads, say, to the throwing out of a pseudo-

podium, is accompanied first by local acidity, then by local

adsorption of proteins, lastly and consequently by gelation; and

this last is tantamount to the formation of "ectoplasm"—a step

in the direction of encystmentf.

The elementary case of Amoeba is none the less a complicated one.

The "amoeboid" form is the very negation of rest or of equihbrium;

* Poggendorff's Annalen, xciv, pp. 447-459, 1855. Cf. Strethill Wright, Phil.

Mag. Feb. 1860; Journ.Anat. and Physiol, i, p. 337, 1867.

t Cf. C, J. Pantin, Journ. Mar. Biol. Assoc, xiii, p. 24, 1923; Journ. Exp. Biol.

1923 and 1926; S. 0. Mast, Jo^lrn. Morph. xli, p. 347, 1926; and 0. W. Tiegs,

Surface tension and the theory of protoplasmic movement, Protoplasma, iv,

pp. 88-139, 1928. See also (int. al.) N. K. Adam, Physics and Chemistry of Surfaces,

1930; also Discussion on colloid science applied to biology (passim), Trans. Faraday

Soc. XXVI, pp. 663 seq., 1930.
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the creature is always moving, from one protean configuration to

another; its surface-tension is never constant, but continually

varies from here to there. Where the surface tension ^is greater,

that portion of the surface will contract into spherical or spheroidal

forms; where it is less, the surface will correspondingly extend.

While generally speaking the surface-energy has a minimal value,

it is not necessarily constant. It may be diminished by a rise of

temperature; it may be altered by contact with adjacent sub-

stances*, by the transport of constituent materials from the interior

to the surface, or again by actual chemical and fermentative change

;

for within the cell, the surface-energies developed about its hetero-

geneous contents will continually vary as these contents are affected

by chemical metabolism. As the colloid materials are broken down

and as the particles in suspension are diminished in size the "free

surface-energy" will be increased, but the osmotic energy will be

diminished!. Thus arise the various fluctuations of surface-tension,

and the various phenomena of amoeboid form and motion, which

Biitschli and others have reproduced or imitated by means of the

fine emulsions which constitute their "artificial amoebae."

A multitude of experiments shew how extraordinarily dehcate is

the adjustment of the surface-tension forces, and how sensitive they

are to the least change of temperature or chemical state. Thus,

* Haycraft and Carlier pointed out long ago {Proc. R.S.E. xv, pp. 220-224,

1888) that the amoeboid movements of a white blood-corpuscle are only manifested

when the corpuscle is in contact with some solid substance: while floating freely

in the plasma or serum of the blood, these corpuscles are spherical, that is to say

they are at rest and in equilibrium. The same fact was recorded anew by

Ledingham (On phagocytosis from an adsorptive point of view, Journ. Hygiene,

XII, p. 324, 1912). On the emission of pseudopodia as brought about by changes

in surface tension, see also {int. al.) J. A. Ryder, Dynamics in Evolution, 1894;

Jensen, L'eber den Geotropismus niederer Orgahismen, Pfliiger's Archiv, liii, 1893.

Jensen remarks that in Orbitolites, the pseudopodia issuing through the pores of

the shell first float freely, then as they grow longer bend over till they touch the

ground, whereupon they begin to display amoeboid and streaming motions.

\'erworn indicates {Ally. Physiol. 189o, p. 429), and Davenport says {Exper.

Morphology, ii, p. 376), that "this persistent clinging to the substratum is a
' thigmotropic ' reaction, and one which belongs clearly to the category of ' response '.

"

Cf. Putter, Thigmotaxis bei Protisten, Arch. f. Physiol. 1900, Suppl. p. 247; but

it is not clear to my mind that to account for this simple phenomenon we need

invoke other factors than gravity and surface-action.

t Cf. Pauli, Allgemeine physikalische Chemie d. Zellen u. Gewebe, in Asher-Spiro's

Ergebnisse der Physiologic, 1912; Przibram, Vitalitdt, 1913, p. 6.
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on a plate which we have warmed at one side a drop of alcohol

runs towards the warm area, a drop of oil away from it; and a

drop of water on the glass plate exhibits lively movements when

we bring into its neighbourhood a heated wire, or a glass rod dipped

in ether*. The water-colour painter makes good use of the surface-

tension effect of the minutest trace of ox-gall. When a plasmodium

of Aethalium creeps towards a damp spot or a warm spot, or

towards substances which happen to be nutritious, and creeps

away from solutions of sugar or of salt, we are dealing with pheno-

mena too often ascribed to 'purposeful' action or adaptation, but

every one of which can be paralleled by ordinary phenomena of

surface-tensiont- The soap-bubble itself is never in equilibrium:

for the simple reason that its film, Hke the protoplasm of Amoeba

or Aethalium, is exceedingly heterogeneous. Its surface-energies

vary from point to point, and chemical changes and changes of

temperature increase and magnify the variation. The surface of

the bubble is in continual movement, as more concentrated portions

of the soapy fluid make their way outwards from the deeper layers

;

it thins and it thickens, its colours change, currents are set up in

it and little bubbles glide over it; it continues in this state of

restless movement as its parts strive one with another in their

interactioAs towards unattainable equilibrium J. On reaching a

certain tenuity the bubble bursts: as is bound to happen when

the attenuated film has no longer the properties of matter in mass.

* 80 Bernstein shewed that a drop of mercury in nitric acid moves towards, or

is "attracted by," a crystal of potassium bichromate; Pfliiger's Archiv, lxxx,

p. 628, 1900. "^

t The surface-tension theory of protoplasmic movement has been denied by

many. Cf. (e.g.) H. S. Jennings, Contributions to the behaviour of the lower

organisms, Carnegie Instit. 1904, pp. 130-230; O. P. Dellinger, Locomotion of

Amoebae, etc., Journ. Exp. Zool. iii, pp. 337-3o7, 1906; also various papers by

Max Heidenhain, in Merkel u. Bonnet's Anatomische Hefte; etc.

X These motions of a liquid surface, and other still more striking movements,

such as those of a piece of camphor floating on water, were at one time ascribed

by certain physicists to a peculiar force, ^sui generis, the force epipolique of

Dutrochet; until van der Mensbrugghe shewed that differences of surface-tension

were enough to account for this whole series of phenomena (Sur la tension super-

ficielle des liquides, consideree au point de vue de certains mouvements observes

a leur surface, Mem. Cour. Acad, de Belgique, xxxiv, 1869, Phil. Mag. Sept. 1867;

cf. Plateau, Statique des Liquides, p. 283). An interesting early paper is by Dr
G. Carradini of Pisa, DelF adesione o attrazione di superficie, Mem. di Matem. e

di Fisica d. Soc. Ital. d. Sci. (Modena), xi, p. 75, xii, p. 89, 1804-5.



362 THE FORMS OF CELLS [ch.

The film becomes a mere bimolecular, or even a monomolecular,

layer; and at last we may treat it as a simple "surface of discon-

tinuity." So long as the changes due to imperfect equihbrium are

taking place very slowly, we speak of the bubble as "at rest"; it is

then, as Willard Gibbs remarks, that the characters of a film are

most striking and most sharply defined*.

So also, and surely not less than the soap-bubble, is every cell-

surface a complex affair. Face and interface have a molecular

orientation of their own, -depending both on the partition-membrane

and on the phases on either side. It is a variable orientation,

changing at short intervals of space and time; it coincides with

inconstant fields of force, electrical and other; it initiates, and

controls or catalyses, chemical reactions of great variety and

importance. In short we acknowledge and confess that, in sim-

pHfying the surface phenomena of the cell, for the time being and

for our purely morphological ends, we may be losing sight, or

making abstraction, of some of its most specific physical and

physiological characteristics.

In the case of the naked protoplasmic cell, as the amoeboid phase

is emphatically a phase of freedom and activity, of unstable equi-

librium, of chemical and physiological change, so on the other hand

does the spherical form indicate a phase of stabihty, of inactivity,

of rest. In the one phase we see unequal surface-tensions manifested

in the creeping movements of the amoeboid body, in the rounding-

off of the ends of its pseudopodia, in the flowing out of its substance

over a particle of "food," and in the current-motions in the interior

of its mass ; till, in the alternate phase, when internal homogeneity

and equilibrium have been as far as possible attained and the

potential energy of the system is at a minimum, the cell assumes a

rounded or spherical form, passes into a state of "rest," and (for a

reason which we shall presently consider) becomes at the same time

encysted f.

* On the equilibrium of heterogeneous substances, Collected Works, i, pp. 55-353;

Trans. Conn. Acad. 1876-78.

f We still speak of the naked protoplasm of Amoeba; but short, and far short,

of "encystment," there is always a certain tendency towards adsorptive action,

leading to a surface-layer, or "plasma-membrane," still semi-fluid but less fluid than

before, and different from the protoplasm within ; it was one of the first and chief

things revealed by the new technique of "micro-dissection." Little is known of
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In their amoeboid phase the various Amoebae are just so many

varying distributions of surface-energy, and varying amounts of

surface-potential*. An ordinary floating drop is a figure of equi-

librium under conditions of which we shall soon have something to

say; and if both it and the fluid in which it floats be homogeneous

it will be a round drop, a "figure of revolution." But the least

chemical heterogeneity will cause the surface-tension to vary here

and there, and the drop to change its form accordingly. The httle

swarm-spores of many algae lose their flagella as they settle down,

and become mere drops of protoplasm for the time being; they

"put out pseudopodia"—in other words their outline changes; and

presently this amoeboid outHne grows out into characteristic lobes

or lappets, a sign of more or less symmetrical heterogeneity in the

cell-substance.

In a budding yeast-cell (Fig. 103 A), we see a definite and restricted

change of surface-tension. When a "bud" appears, whether with

or without actual growth by osmosis or otherwise

of the mass, it does so because at a certain part

of the cell-surface the tension has diminished, and

the area of that portion expands accordingly ; but

in turn the surface-tension of the expanded or ex-

truded portion makes itself felt, and the bud

rounds itself off into a more or less spherical form.
^^'

The yeast-cell with its bud is a simple example of an important

principle. Our whole treatment of cell-form in relation to surface-

tension depends on the fact (which Errera was the first to give clear

expression to) that the incipient cell-wall retains with but little

impairment the properties of a liquid filmf, and that the growing

cell, in spite of the wall by which it has begun to be surrounded,

the physical nature of this so-called membrane. It behaved more or less like a fluid

lipoid envelope, immiscible with its surroundings. It is easily injured and easily

repaired, and the well-being of the internal protoplasm is said to depend on the

maintenance of its integrity. Robert Chambers, Physical Properties of Protoplasm,

1926; The living cell as revealed by microdissection, Harvey Lectures, Ser. xxii,

1926-27; Journ. Gen. Physiol, vm, p. 369, 1926; etc.

* See (int. al.) Mary J. Hogue, The effect of media of different densities on the

shape of Amoebae, Journ. Exp. Zool. xxii, pp. 565-572, 1917. Scheel had said

in 1889 that A. radiosa is only an early stage of ^. proteus {Festschr. z. 70. Geburtstag

0. V. Kuptfer).

t Cf. infra, p. 561.
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behaves very much Hke a fluid drop. So, to a first approximation,

even the yeast-cell shews, by its ovoid and non-spherical form, that

it has acquired its shape under some influence other than the uniform

and symmetrical surface-tension which makes a soap-bubble into a

sphere. This oval or any other asymmetrical form, once acquired,

may be retained by virtue of the solidification and consequent

rigidity of the membrane-like wall of the cell; and, unless rigidity

ensue, it is* plain that such a conformation as that of the yeast-cell

with its attached bud could not be long retained as a figure of even

partial equilibrium. But as a matter of fact, the cell in this case

is not in equilibrium at all ; it is in process of budding, and is slowly

altering its shape by rounding off its bud. In like manner the

developing egg, through all its successive phases of form, is never

in complete equilibrium: but is constantly responding to slowly

changing conditions, by phases of partial, transitory, unstable and

conditional equihbrium.

There are innumerable solitary plant-cells, and unicellular

organisms in general, which, hke the yeast-cell, do not correspond

to any of the simple forms which may be generated under the

influence of simple and homogeneous surface-tension ; and in many

cases these forms, which we should expect to be unstable and

transitory, have become fixed and stable by reason of some com-

paratively sudden solidification of the envelope. This is the case,

for instance, in the more comphcated forms of diatoms or of desmids,

where we are dealing, in a less striking but even more curious way

than in the budding yeast-cell, not with one simple act of formation,

but with a complicated result of successive stages of localised growth,

interrupted by phases of partial consolidation. The original cell

has acquired a certain form, and then, under altering conditions

and new distributions of energy, has thickened here or weakened

there, and has grown out, or tended (as it were) tc branch, at par-

ticular points. We can often trace in each particular stage of

growth, or at each particular temporary growing point, the laws of

surface tension manifesting themselves in what is for the time being

a fluid surface ; nay more, even in the adult and completed structure

we have little difficulty in tracing and recognising (for instance in

the outline of such a desmid as Euastrum) the rounded lobes which

have successively grown or flowed out from the original rounded and
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flattened cell. What we see in a many chambered foraminifer, such

as Glohigerina or Rotalia, is the same thing, save that the stages are

more separate and distinct, and the whole is carried out to greater

completeness and perfection. The little organism as a whole is not

a figure of equihbrium nor of minimal area; but each new bud or

separate chamber is such a figure, conditioned by the forces of

surface-tension, and superposed upon the complex aggregate of

similar bubbles after these latter have become consoHdated one by

one into a rigid system.

Let us now make some enquiry into the forms which a fluid

surface can assume under the mere influence of surface-tension.

In doing so we are limited to conditions under which other forces

are relatively unimportant, that is to say where the surface energy

is a considerable fraction of the whole energy of the system; and

in general this will be the case when we are dealing with portions

of liquid so small that their dimensions come within or near to what

we have called the molecular range, or, more generally, in which

the "specific surface" is large. In other words it is the small or

minute organisms, or small cellular elements of larger organisms,

whose forms will be governed by surface-tension; while the forms

of the larger organisms are due to other and non-molecular forces.

A large surface of water sets itself level because here gravity is

predominant; but the surface of water in a narrow tube is curved,

for the reason that we are here deahng with particles which he within

the range of each other's molecular forces. The like is the case with

the cell-surfaces and cell-partitions which we are about to study, and

the effect of gravity will be especially counteracted and concealed

when the object is immersed in a hquid of nearly its own density.

We have already learned, as a fundamental law of "capillarity,"

that a liquid film in equilibrium assumes a form which gives it a

minimal area under the conditions to which it is subject. These

conditions include (1) the form of the boundary, if such exist, and

(2) the pressure, if any, to which the film is subject: which pressure

is closely related to the volume of air, or of liquid, that the film

(if it be a closed one) may have to contain. In the simplest of cases,

as when we take up a soap-film on a plane wire ring, the film is

exposed to equal atmospheric pressure on both side^, and it ob-
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viously has its minimal area in the form of a plane. So long as our

wire ring lies in one plane (however irregular in outline), the film

stretched across it will still be in a plane; but if we bend the ring

so that it lies no longer in a plane, then our film will become curved

into a surface which may be extremely comphcated, but is still the

smallest possible surface which can be drawn continuously across

the uneven boundary.

The question of pressure involves not only external pressures

acting on the film, but also that which the film itself is capable of

exerting. For we have seen that the film is always contracting to

the utmost; and when the film is curved, this leads to a pressure

directed inwards—perpendicular, that is to say, to the surface of

the film. In the case of the soap-bubble, the uniform contraction

of whose surface has led to its spherical form, this pressure is

balanced by the pressure of the air within; and if an outlet be

given for this air, then the bubble contracts with perceptible force

until it stretches across the mouth of the tube, for instance across

the mouth of the pipe through which we have blown the bubble.

A precisely similar pressure, directed inwards, is exercised by the

surface layer of a drop of water or a globule of mercury, or by the

surface pellicle on a portion or "drop" of protoplasm. Only we

must always remember that in the soap-bubble, or the bubble which

a glass-blower blows, there is a twofold pressure as compared with

that which the surface-film exercises on the drop of liquid of which

it is a part ; for the bubble consists (unless it be so thin as to consist

of a mere layer of molecules*) of a Kquid layer, with a free surface

within and another without, and each of these two surfaces exercises

its own independent and coequal tension and its corresponding

pressure!.

If we stretch a tape upon a flat table, whatever be the tension

of the tape it obviously exercises no pressure upon the table below.

But if we stretch it over a curved surface, a cyfinder for instance,

it does exercise a downward pressure; and the more curved the

surface the greater is this pressure, that is to say the greater is this

share of the entire force of tension which is resolved in the down-

* Or, more strictly speaking, unless its thickness be less than twice the range

of the molecular forces.

t It follows that the tension of a bubble, depending only on the surface-conditions,

is independent of the thickness of the film.
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ward direction. In mathematical language, the pressm-e (p) varies

directly as the tension (T), and inversely as the radius of curvature

(R) : that is to say, p = T/R, per unit of surface.

If instead of a cylinder, whose curvature lies only in one direction,

we take a case of curvature in two dimensions (as for. instance a

sphere), then the effects of these two curvatures must be added

together to give the resulting pressure p: which becomes equal to

T/R + TIR\ or
1 1

R'^R'i.= H+-*

And if in addition to the pressure p, which is due to surface-tension,

we have to take into account other pressures, p\ p", etc., due to

gravity or other forces, then we may say that the total pressure

p=/+/'+2'(l+l)

We may have to take account of the extraneous pressures in

some cases, as when we come to speak of the shape of a bird's egg

;

but in this first part of our subject we are able for the most part

to neglect them.

Our equation is an equation of equihbrium. The resistance to

compression—the pressure outwards—of our fluid mass is a constant

quantity (P); the pressure inwards, T (IjR + l/R'), is also con-

stant; and if the surface (unlike that of the mobile amoeba) be

homogeneous, so that T is everywhere equal, it follows that

1/i? + l/R' = C (a constant), throughout the whole surface in question.

Now equihbrium is reached after the surface-contraction has

done its utmost, that is to say when it has reduced the surface to

the least possible area. So we arrive at the conclusion, from the

physical side, that a surface such that IjR + IjR' = C, in other

\<^ords a surface which has the same 7nean curvature at all points,

is equivalent to a surface of minimal area for the volume enclosed f

;

* This simple but immensely important formula is due to Laplace (Mecanique

Celeste, Bk x, suppl. Theorie de Vaction capillaire, 1806).

t A surface may be "minimal" in respect of the area occupied, or of the volume

enclosed: the former being such as the surface which a soap-film forms when it

fills up a ring, whether plane or no. The geometers are apt to restrict the term

"minimal surface" to such as these, or, more generally, to all cases where the mean
curvature i» nil; the others, being only minimal with respect to the volume con-

tained, they call "surfaces of constant mean curvature."
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and to the same conclusion we may also come by ways purely

mathematical. The plane and the sphere are two obvious examples

of such surfaces, for in both the radius of curvature is everywhere

constant.

From the fact that we may extend a soap-film across any ring

of wire, however fantastically the wire be bent, we see that there

is no end to the number of surfaces of minimal area which may be

constructed or imagined*. While some of these are very com-

phcated indeed, others, such as a spiral or helicoid screw, are

relatively simple. But if we Umit ourselves to surfaces of revolution

(that is to say, to surfaces symmetrical about an axis), w^e find, as

Plateau was the first to shew, that those which meet the case are

few in number. They are six in all, nam-ely the plane, the sphere,

the cyhnder, the catenoid, the unduloid, and a curious surface which

Plateau called the nodoid.

A B CD
Fig. 104. Roulettes of the conic sections.

These several surfaces are all closely related, and the passage

from one to another is generally easy. Their mathematical inter-

relation is expressed by the fact (first shewn by Delaunayf, in 1841)

that the plane curves by whose revolution they are generated are

themselves generated as "roulettes" of the conic sections.

Let us imagine a straight line, or axis, on which a circle, ellipse or

other conic section rolls ; the focus of the conic section will describe

a line in some relation to the fixed axis, and this fine (or roulette),

when we rotate it around the axis, will describe in space one or

another of the six surfaces of revolution of which we are speaking.

If we imagine an elhpse so to roll on a base-hne, either of its foci

will describe a sinuous or wavy fine (Fig. 104, B) at a distance

* To fit a minimal surface to the boundary of any given closed curve in space is

a problem formulated by Lagrange, and commonly known as the "problem of

Plateau," who solved it with his soap-films.

f Sur la surface de revolution dont la courbure moyenne est constante, Journ.

de M. Liouville, vi, p. 309, 1841. Cf. {int. al.) J. Clerk Maxwell, On the theory of

rolUng curves. Trans. R.S.E. xvi, pp. 519-540, 1849; J. K. Wittemore, Minimal

surfaces of rotation, Ann. Math. (2), xix, 1917, Amer. Journ. Math, xl, p. 69,

1918; Crino Loria, Courbes planes speciales, theorie ef histoire, Milan, 574 pp., 1930.
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alternately maximal and minimal from the axis; this wavy Hne,

by rotation about the axis, becomes the meridional Hne of the

surface which we call the unduloid, and the more unequal the two

axes are of our elhpse, the more pronounced will be the undulating

sinuosity of the roulette. If the two axes be equal, then our elhpse

becomes a circle ; the path described by its roUing centre is a straight

line parallel to the axis (A), and the sohd of revolution generated

therefrom will be a cylinder: in other words, the cylinder is a

"Hmiting case" of the unduloid. If one axis of our ellipse vanish,

while the other remains of finite length, then the elhpse is reduced

to a straight line with its foci at the two ends, and its roulette will

appear as a succession of semicircles touching one another upon the

axis (C); the solid of revolution will be a series of equal spheres.

If as before one axis of the ellipse vanish, but the other be infinitely

long, then the roulette described by the focus of this ellipse will be

a circular arc at an infinite distance; i.e. it will be a straight line

normal to the axis, and the surface of revolution traced by this

straight hne turning about the axis will be a plane. If we imagine

one focus of our ellipse to remain at a given distance from the axis,

but the other to become infinitely remote, that is tantamount to

saying that the elhpse becomes transformed into a parabola; and

by the rolling of this curve along the axis there is described a

catenary (D), whose solid of revolution is the catenoid.

Lastly, but this is more difficult to imagine, we have the case of

the hyperbola. We cannot well imagine the hyperbola rolling upon

a fixed straight line so that its focus shall describe a continuous

curve. But let us suppose that the fixed hne is, to begin with,

asymptotic to one branch of the hyperbola, and that the rolUng

proceeds until the hne is now asymptotic to the other branch, that

is to say touching it at an infinite distance; there will then be

mathematical continuity if we recommence rolling with this second

branch, and so in turn with the other, when each has run its course.

We shall see, on reflection, that the line traced by one and the

same focus will be an "elastic curve," describing a succession of

kinks or knots (E), and the solid of revolution described by this

meridional line about the axis is the so-called nodoid.

I

The physical transition of one of these surfaces into another can
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be experimentally illustrated by means of soap-bubbles, or better

still, after another method of Plateau's, by means of a large globule

of oil, supported when necessary by wire rings, and lying in a fluid

of specific gravity equal to its own.

To prepare a mixture of alcohol and water of a density precisely

equal to that of the oil-globule is a troublesome matter, and a

method devised by Mr C. R. Darhng is a great improvement on

Plateau's*. Mr Darhng used the oily hquid orthotoluidene, which

does not mix with water, has a beautiful and conspicuous red

colour, and has precisely the same density as water when both

are kept at' a temperature of 24° C. We have therefore only to

run the liquid into water at this temperature in order to produce

beautifully spherical drops of any required size : and by adding a

little salt to the lower layers of water, the drop may be made to

rest or float upon the denser liquid.

Fig. 105.

We have seen that, the soap-bubble, spherical to begin with, is

transformed into a plane when we release its internal pressure and

let the film shrink back upon the orifice of the pipe. If we blow

a bubble and then catch it up on a second pipe, so that it stretches

between, we may draw the two pipes apart, with the result that

the spheroidal surface will be gradually flattened in a longitudinal

direction, and the hubble will be transformed into a cyhnder. But

if we draw the pipes yet farther apart, the cyhnder narrows in the

middle into a sort of hour-glass form, the increasing curvature of

its transverse section being balanced by a gradually increasing

negative curvature in the longitudinal section; the cyhnder has, in

turn, been converted into an unduloid. When we hold a soft glass

tube in the flame and "draw it out," we are in the same identical

fashion converting a cylinder into an unduloid (Fig. 105, A)\ when

on the other hand we stop the end and blow, we again convert the

cylinder into an unduloid (B), but into one which is now positively,

while the former was negatively, curved. The two figures are

* See Liquid Drops and Globules, 1914, p. 11. Robert Boyle used turpentine

in much the same way; for other methods see Plateau, op. cit. p. 154.



v] OF MINIMAL SURFACES 371

essentially the same, save that the two halves of the one change

places in the other.

That spheres, cylinders and unduloids are of the commonest

occurrence among the forms of small unicellular organisms or of

individual cells in the simpler aggregates, and that in the processes

of growth, reproduction and development transitions are frequent

from one of these forms to another, is obvious to the naturalist*,

and we shall deal presently with a few of these phenomena.

But before we go further in this enquiry we must consider, to

some small extent at least, the curvatures of the six different sur-

faces, so far as to determine what modification is required, in each

case, of the general equation which apphes to them all. We shall

find that with this question is closely connected the question of

the pressures exercised by or impinging on the film, and also the

very important question of the limiting conditions which, from the

nature of the case, set bounds to the extension of certain of the

figures. The whole subject is mathematical, and we shall only deal

with it in the most elementary way.

We have seen that, in our general formula, the expression

IjR + IjR' = C, a constant; and that this is, in all cases, the

condition of our surface being one of minimal area. That is to say,

it is always true for one and all of the six surfaces which we have

to consider; but the constant C may have any value, positive,

negative or nil.

In the case of the plane, where R and R' are both infinite,

IjR + IjR' = 0. The expression therefore vanishes, and our dy-

namical equation of equihbrium becomes P = p. In short, we can

only have a plane film, or we shall only find a plane surface in our

cell, when on either side thereof we have equal pressures or no

pressure at all; a simple case is the plane^partition between two

equal and similar cells, as in a filament of Spirogyra.

In the sphere the radii are all equal, R= R'; they are also positive,

and T (l/R + l/R'), or 2T/R, is a- positive quantity, involving a

constant positive pressure P, on the other side of the equation.

In the cylinder one radius of curvature has the finite and positive

value R; but the other is infinite. Our formula becomes TjR, to

* They tend to reappear, no less obviously, in those precipitated structures which

simulate organic form in the experiments of Leduc, Herrera and Lillie.
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which corresponds a positive pressure P, suppHed by the surface-

tension as in the case of the sphere, but evidently of just half the

magnitude.

In plane, sphere and cyUnder the two principal curvatures are

constant, separately and together; but in the unduloid the curva-

tures change from one point to another. At the middle of one of

the swollen "beads" or bubbles, the curvatures are both positive;

the expression (l/R + 1/^') is therefore positive, and it is also finite.

The film exercises (like the cyUnder) a positive pressure inwards,

to be compensated by an equivalent outward pressure from within.

Between two adjacent beads, at the middle of one of the narrow

necks, there is obviously a much stronger curvature in the trans-

verse direction; but the total pressure is unchanged, and we now

see that a negative curvature along the unduloid balances the

increased curvature in the transverse direction. The sum of the two

must remain positive as well as constant; therefore the convex or

positive curvature must always be greater than the concave or

negative curvature at the same point, and this is plainly the case

in our figure of the unduloid.

The catenoid, in this respect a limiting case of the unduloid, has

its curvature in one direction equal and opposite to its curvature

in the other, this property holding good for all points of the surface

;

R = — R'; and the expression becomes

{l/R -+- l/R') = (L/R - l/R) = 0.

That is to say, the mean curvature is zero, and the catenoid,

like the plane itself, has no curvature, and exerts no pressure.

None of the other surfaces save these two share this remarkable

property; and it follows that we may have at times the plane and

the catenoid co-existing as parts of one and the same boundary

system, just as the cyHnder or the unduloid may be capped by

portions of spheres. It follows also that if we stretch a soap-film

between two rings, and so form an annular surface open at both ends,

that surface is a catenoid : the simplest case being when the rings are

parallel and normal to the axis of the figure*.

* A topsail bellied out by the wind is not a catenoid surface, but in vertical

section it is everywhere a catenary curve; and Diirer shews beautiful catenary

curves in the wrinkles under an Old Man's eyes. A simple experiment is to invert
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The nodoid is, like the iinduloid, a continuous curve which keeps

altering its curvature as it alters its distance from the axis; but in

this case the resultant pressure inwards is negative instead of

positive. But this curve is a complicated one, and its full mathe-

matical treatment is too hard for us.

In one of Plateau's experiments, a bubble of oil (protected from

gravity by a fluid of equal density to its own) is balanced between

annuh; and by adjusting the distance apart of these, it may be

brought to assume the form of Fig. 106, that is to say, of a cyhndet

with spherical ends; there is then everywhere a pressure inwards

on the fluid contents of the bubble a pressure due to the convexity

Fig. 106. Fig. 107.

of the surface film. This cylinder may be converted into an undu-

loid, either by drawing the rings farther apart or by abstracting

some of the oil, imtil at length rupture ensues, and the cylinder

breaks up into two spherical drops. Or again, if the surrounding

liquid be made ever so little heavier or hghter than that which

constitutes the drop, then gravity comes into play, the conditions

of equihbrium are modified accordingly, and the cylinder becomes

part of an unduloid, with its dilated portion above or below as the

case may be (Fig. 107).

In all cases the unduloid, like the original cyhnder, is capped

by spherical ends, the sign and the consequence of a positive

pressure produced by the curved walls of the unduloid. But if

our initial cyhnder, instead of being tall, be a flat or dumpy one

a small funnel in a large one, wet them with soap-solution, and draw them apart;

the film which develops between them is a catenoid surface, set perpendicularly

to the two funnels. On this and other geometrical illustrations of the fact that

a soap-film sets itself at right angles to a solid boundary, see an elegant paper by

Mary E. Sinclair, in Annals of Mathematics, viii, 1907.
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(with certain definite relations of height to breadth), then new
phenomena may occur. For now, if oil be cautiously withdrawn

from the mass by help of a small syringe, the cylinder may be made
to flatten down so that its upper and lower surfaces become plane:

which is of itself a sufficient indication that the pressure inwards

is now nil. But at the very moment when the upper and lower

surfaces become plane, it will be found that the sides curve inwards,

in the fashion shewn in Fig. 108 B. This figure is a catenoid, which,

B
Fig. 108.

as we have seen, is, like the plane itself, a surface exercising no

pressure, and which therefore may coexist with the plane as part

of one and the same system.

We may continue to withdraw more oil from our bubble, drop

by drop, and now the upper and lower surfaces dimple down into

concave portions of spheres, as the

result of the negative internal

pressure ; and thereupon the peri-

pheral catenoid surface alters its

form (perhaps, on this small scale,

imperceptibly), and becomes a

portion of a nodoid. It represents,

in fact, that portion of the nodoid

which in Fig. 109 lies between such points as 0, P. While it is easy to

draw the outline, or meridional section, of the nodoid, it is obvious

that the solid of revolution to be derived from it can never be

reahsed in its entirety : for one part of the solid figure would cut, or

entangle with, another. All that we can ever do, accordingly, is to

reahse isolated portions of the nodoid*.

* This curve resembles the looped Elastic Curve (see Thomson and Tait, ii,

p. 148, fig. 7), but has its axis on the other side of the curve. The nodoid was

represented upside-down in the first edition of this book, a mistake into which others

have fallen, including no less a person than Clerk Maxwell, in his article "Capillarity
"

in the Encycl. Brit. 9th ed.

Fig. 109.
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In all these cases the ring or annulus is not merely a means of

mechanical restraint, controlling the form of the drop or bubble ; it

also marks the boundary, or "locus of discontinuity," between one

surface and another.

If, in a sequel to the preceding experiment of Plateau's, we use

solid discs instead of annuli, we may exert pressure on our oil-

globule as we exerted traction before. We begin again by adjusting

the pressure of these discs so that the oil assumes the form of a

cylinder: our discs, that is to say, are adjusted to exercise a

mechanical pressure just equal to what in the former case was

supplied by the surface-tension of the spherical caps or ends of the

bubble. If we now increase the pressure slightly, the peripheral

walls become convexly curved, exercising a precisely corresponding

pressure; the form assumed by the sides of our figure is now that

of a portion of an unduloid. If we increase the pressure, the

peripheral surface of oil will bulge out more and more, and will

presently constitute a portion of a sphere. But we may continue

the process yet further, and find within certain limits the system

remaining perfectly stable. What is this new curved surface which

has arisen out of the sphere, as the latter was produced from the

unduloid? It is no other than a portion of a nodoid, that part

which in Fig. 109 lies between M and N. But this surface, which is

concave in both directions towards the surface of the oil within,

is exerting a pressure upon the latter, just as did the sphere out of

which a moment ago it was transformed; and we had just stated,

in considering the previous experiment, that the pressure inwards

exerted by the nodoid was a negative one. The explanation of this

seeming discrepancy lies in the simple fact that, if we follow the

outline of our nodoid curve in Fig. 109, from OP, the surface con-

cerned in the former case, to MN, that concerned in the present,

we shall see that in the two experiments the surface of the Uquid

is not the same, but lies on the positive side of the curve in the one

case, and on the negative side in the other.

These capillary surfaces of Plateau's form a beautiful example

of the "materialisation" of mathematical law. Theory leads to

certain equations which determine the position of points in a

system, and these points we may then plot as curves on a coordinate

diagram; but a drop or a bubble may realise in an instant the
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whole result of our calculations, and materialise our whole ap-

paratus of curves. Such a case is what Bacon calls a "collective

instance," bearing witness to the fact that one common law is

obeyed by every point or particle of the system. Where the under-

lying equations are unknown to us, as happens in so many natural

configurations, we may still rest assured that kindred mathematical

laws are being automatically followed, and rigorously obeyed, and

sometimes half-revealed.

Of all the surfaces which we have been describing, the sphere is

the only one which can enclose space of itself; the others can only

help to do so, in combination with one another or with the sphere.

Moreover, the sphere is also, of all possible figures, that which

encloses the greatest volume with the least area of surface * ; it is

strictly and absolutely the surface of minimal area, and it is, ipso

facto, the form which will be assumed by a unicellular organism

(just as by a raindrop), if it be practically homogeneous and if, Hke

Orhulina floating in the ocean, its surroundings be likewise homo-

geneous and its field of force symmetrical f. It is only relatively

speaking that the rest of these configurations are surfaces minimae

areae', for they are so under conditions which involve various

pressures or restraints. Such restraints are imposed by the pipe or

annulus which supports and confines our oil-globule or soap-bubble

;

and in the case of the organic cell, similar restraints are supplied

by solidifications partial or complete, or other modifications local

or general, of the cell-surface or cell-wall.

One thing we must not fail to bear in mind. In the case of the

soap-bubble we look for stabihty or instability, equihbrium or non-

equilibrium, in its several configurations. But the living cell is

seldom in equihbrium. It is continually using or expending energy;

and this ceaseless flow of energy gives rise to a "steady state,"

taking the place of and simulating equilibrium. In like manner the

* On the circle and sphere as giving the smallest boundary for a given content,

see (e.g.) Jacob Steiner, Einfache Beweisen der isoperimetrischen Hauptsatze,

Berlin. Abhandlungen, 1836, pp. 123-132.

t The essential conditions of homogeneity and symmetry are none too common,
and a spherical organism is only to be looked for among simple things. The
floating (or pelagic) eggs of fishes, the spores of red seaweeds, the oospheres of

Fucus or Oedogonium, the plasma-masses escaping from the cells of Vaucheriaf

are among the instances which come to mind.
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hardly changing outHne of a jet or waterfall is but in pseudo-

equiHbrium; it is in a steady state, dynamically speaking. Many

puzzling and apparent paradoxes of physiology, such (to take a

single instance) as the maintenance of a constant osmotic pressure

on either side of a cell-membrane, are accounted for by the fact

that energy is being spent and work done, and a steady state or

pseudo-equilibrium maintained thereby.

Before we pass to biological illustrations of our surface-tension

figures we have still another matter to deal with. We have seen

from our description of two of Plateau's classical experiments, that

at some particular point one type of surface gives place to another

;

and again we know that, when we draw out our soap-bubble into

a cyhnder, and then beyond, there comes a certain point at which

the bubble breaks in two, and leaves us with two bubbles of w^hich

each is a sphere or a portion of a sphere. In short there are certain

limits to the dimensions of our figures, within which limits equi-

librium is stable, but at which it becomes unstable, and beyond which

it breaks down. Moreover, in our composite surfaces, when the

cyhnder for instance is capped by two spherical cups or lenticular

discs, there are well-defined ratios which regulate their respective

curvatures and their respective dimensions. These two matters we

may deal with together.

Let us imagine a Hquid drop which in

appropriate conditions has been made to

assume the form of a cylinder; we have

already seen that its ends will be capped

by portions of spheres. Since one and

the same liquid film covers the sides and

ends of the drop (or since one and the

same delicate membrane encloses the

sides and ends of the cell), w^e assume

the surface-tension (T) to be everywhere

identical; and it follows, since the

internal fluid-pressure is also every-

where identical, that the expression (IjR + 1/i?') for the cylinder

is equal to the corresponding expression, which we may cafl

(1/r + 1/r'), in the case of the terminal spheres. But in the
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cylinder l/R' =- 0, and in the sphere 1/r = 1/r'. Therefore our

relation of equality becomes l/R = 2/r, or r = 2R; which means

that the sphere in question has just twice the radius of the cylinder

of which it forms a cap.

And if Ob, the radius of the sphere, be equal to twice the radius

(Oa) of the cyhnder, it follows that the angle aOb is an angle of 60°,

and bOc is also an angle of 60° ; that is to say, the arc be is equal to

Jtt. In other words, the spherical disc which (under the given

conditions) caps our cylinder is not a portion taken at haphazard,

but is neither more nor less than that portion of a sphere which is

subtended by a cone of 60°. Moreover, it is plain that the height

of the spherical cap, de, = Ob — ab = R (2 — ^/3) = 0'27R, where

R is the radius of our cylinder, or one-half the radius of our spherical

cap: in other words the normal height of the spherical cap over

the end of the cylindrical cell is just a very little more than one-

eighth of the diameter of the cylinder, or of the radius of the sphere.

And these are the proportions which we recognise, more or less,

under normal circumstances, in such a case as the cylindrical cell

of Spirogyra, when one end is free and capped by a portion of a

sphere*.

Among the many theoretical discoveries which we owe to Plateau,

one to which we have just referred is of peculiar importance:

namely that, with the exception of the sphere and the plane, the

surfaces with which we have been dealing are only in complete

equilibrium within certain dimensional limits, or in other words,

have a certain definite limit of stabihty; only the plane and the

sphere, or any portion of a sphere, are perfectly stable, because

they are perfectly symmetrical, figures.

Perhaps it were better to say that their symmetry is such that

any small disturbance will probably readjust itself, and leave the

plane or spherical surface as it was before, while in the other

configurations the chances are that a disturbance once set up will

travel in one direction or another, increasing as it goes. For

equihbrium and probabihty (as Boltzman told us) are nearly alHed:

* The conditions of stability of the cyhnder, and also of the catenoid, are

explained with the utmost simplicity by Clerk Maxwell, in his article, already

quoted, on "Capillarity.'' On the catenoids, see A. Terquem. C.R. xcii, pp. 407-9,

1881.
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so nearly that that state of a system which is most likely to occur,

or most likely to endure, is precisely that which we call the state of

equilibrium.

For experimental demonstration, the case of the cylinder is the

simplest. If we construct a liquid cylinder, either by drawing out

a bubble or by supporting a globule of oil between two rings, the

experiment proceeds easily until the length of the cylinder becomes

just about three times as great as its diameter. But soon afterwards

instability begins, and the cylinder alters its form; it narrows at

Fig. 111.

the waist, so passing into an unduloid, and the deformation pro-

gresses quickly until our cylinder breaks in two, and its two halves

become portions of spheres. This physical change of one surface into

another corresponds to what the mathematicians call a "discon-

tinuous solution" of a problem of minima. The theoretical limit of

stability, according to Plateau, is when the length of the cylinder is

equal to its circumference, that is to say, when L = Inr, or when the

ratio of length to diameter is represented by -n.

The fact is that any small disturbance takes the form of a wave,

and travels along the cylinder. Short waves do not affect the

stability of the system ; but waves whose length exceeds that of the

circumference tend to grow in amplitude: until, contracting here,

expanding there, the cylinder turns into a pronounced unduloid,

and soon breaks into two parts or more. Thus the cylinder is a
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stable figure until it becomes longer than its own circumference,

and then the risk of rupture may be said to begin. But Rayleigh

shewed that still longer waves, leading to still greater instability,

are needed to break down material resistance*. For, as Plateau

knew well, his was a theoretical result, to be departed from under

material conditions; it is affected largely by viscosity, and, as in

the case of a flowing cylinder or jet, by inertia. When inertia plays

a leading part, viscosity being small, the node of maximum in-

stability corresponds to nearly half as much again as in the simple

or theoretical case: and this result is very near to what Plateau

himself had deduced from Savart's experiments on jets of water "j".

When the fluid is external >(as when the cyhnder is of air) the wave-

length of maximal instability is longer still. Lastly, when viscosity

is very large, and becomes paramount, then the wave-length between

regions of maximal instability may become very long indeed: so

that (as Rayleigh put it) ''long (viscid) threads do not tend to divide

themselves into drops at mutual distances comparable with the

diameter of the cylinder, but rather to give way by attenuation at

few and distant places." It is this that renders possible the making

of long glass tubes, or the spinning of threads of "viscose" and like

materials; but while these latter preserve their continuity, the

principle of Plateau tends to give them something of a wavy,

unduloid surface, to the great enhancement of their beauty. We
are prepared, then, to find that such cylinders and unduloids as

occur in organic nature seldom approach in regularity to those which

theory prescribes or a soap-film may be made to shew; but rather

exhibit all manner of gradations, from something exquisitely neat

and regular to a coarse and distant approximation to the ideal

thing {.

The unduloid has certain peculiar properties as regards its limita-

tions of stabihty, but we need mention two facts only: (1) that

when the unduloid, which we produce with our soap-bubble or our

* Rayleigh, On the instability of fluid surfaces, Sci. Papers, iii, p. 594.

t Cf. E. Tylor, Phil. J^ag. xvi, pp. 504-518, 1933.

X Cf. F. Savart, Sur la constitution des veines liquides lancees par des orifices,

etc., Ann. de Chimie, liii, pp. 337-386, 1833. Rayleigh, On the instability of

a cylinder of viscous liquid, etc., Phil. Mag. (5), xxxiv, 1892, or Sci. Papers, i,

p. 361. See also Larmor, On the nature of viscid fluid threads. Nature, July 11,

1936, p. 74.
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oil-globule, consists of the figure containing a complete constriction,

then it has somewhat wide limits of stabiHty; but (2) if it contain

the swollen portion, then equilibrium is limited to the case of the

figure consisting of one complete unduloid, no less nor more; that

is to say when the ends of the figure are constituted by the narrowest

portions, and its middle by the widest portion of the entire curve.

The theoretical proof of this is difficult ; but if we take the proof for

granted, the fact itself will serve to throw light on what we have

learned regarding the stabihty of the cyhnder. For, when we

remember that the meridional section of our unduloid is generated

by the rolhng of an ellipse upon a straight line in its own plane,

we easily see that the length of the entire unduloid is equal to the

circumference of the generating ellipse. As the unduloid becomes

less and less sinuous in outUne it approaches, and in time reaches,

the form of the cylinder, as a "Hmiting case"; and jpari passu, the

ellipse which generated it passes into a circle, as its foci come closer

and closer together. The cyhnder of a length equal to the circum-

ference of its generating circle is homologous to an unduloid whose

length is equal to the circumference of its generating elhpse; and

this is just what we recognise as constituting one complete segment

of the unduloid.

The cylinder turns so easily into an unduloid, and the unduloid

is capable of assuming so many graded differences of form, that we

may expect to find it abundantly and variously represented among

the simpler living things. For the same reason it is the very

stand-by of the glass-blower, whose flasks and bottles are, of

necessity, unduloids*. The blown-glass bottle is a true unduloid,

and the potter's vase a close approach to an unduloid; but the

alabaster bottle, turned on the lathe, is another story. It may be

an imitation, or a reminiscence, of the potter's or the glass-blower's

work; but it is no unduloid nor any surface of minimal area at all.

The catenoid, as we have seen, is a surface of zero pressure, and as

such is unlikely to form part (unless momentarily) of the closed

boundary of a cell. It forms a limiting case between unduloid and

nodoid, and, were it realised, it would seldom be visibly different from

the other two. In Trichodina pediculus, a minute infusorian para-

* Unless, that is to say, their shape be cramped and their mathematical beauty

annihilated, by compression in a mould.
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site of the freshwater polype, we have a circular disc bounded

(apparently) by two parallel rings of cilia, with a pulley-like groove

between. The groove looks very like

that catenoid surface which we have

produced from two parallel and

opposite annuli; and the fact that

the lower surface of the little creature

is practically plane, where it creeps

^.^^^^^^^^^ over the smooth body of the Hydra,

i\ '\\\ vvjN ^ looks like confirming the catenoid

Fig. 112. Triclwdiruz pediculus.
analogy. But the upper surface of

the infusorian, with its ciliated

"gullet," gives no assurance of a zero pressure; and we must

take it that the equatorial groove of Trichodina resembles, or

approaches, but is not mathematically identical with, a catenoid

surface.

While those figures of equilibrium which are also surfaces of

revolution are only six in number, there is an infinite number of

other figures of equilibrium, that is to say of surfaces of constant

mean curvature, which are jiot surfaces of revolution; and it can

be shewn mathematically that any given contour can be occupied

by a finite portion of some one such surface, in stable equilibrium.

The experimental verification of this theorem lies in the simple fact

(already noted) that however we bend a wire into a closed curve,

plane or not plane, we may always fill the entire area with a con-

tinuous film. No more interesting problem has ever been pro-

pounded to mathematicians as the outcome of experiment than the

general problem so to describe a minimal surface passing through

a closed contour; and no complete solution, no general method of

approach, has yet been discovered*.

Of the regular figures of equihbrium, or surfaces of constant mean

curvature, apart from the surfaces of revolution which we have

discussed, the helicoid spiral is the most interesting to the biologist.

* Partial solutions, closely connected with recent developments of mathematical

analysis, are due to Riemann, Weierstrass and Schartz. Cf. (int. al.) G. Darboux,

Theorie des surfaces, 1914, pp. 490-601; T. Bonneson, Problemes des i^operimetres

et des iaipipJianes, Paris, 1929; Hilbert's AnschauUche Geometrie, 1932, p. 237 seq.;

a good account also in G. A. Bliss's Calculus of Variations, Chicago, 1925. See also

(int. al.) Tibor Rado, Mathem. Ztschr. xxxir, 1930; -Jesse Douglas, Amer. Math.

Journ. XXXIII, 1931, Journ. Math. Phys. xv, 1936.
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This is a helicoid generated by a straight Hne perpendicular to an

axis, about which it turns at a uniform rate, while at the same time

it slides, also uniformly, along this same axis. At any point in this

surface, the curvatures are equal and of opposite sign, and the sum

of the curvatures is accordingly nil. Among what are called "ruled

surfaces," or surfaces capable of being defined by a system of

stretched strings*, the plane and the hehcoid are the only two whose

mean curvature is null, while the cyhnder is the only one whose

curvature is finite and constant. As this simplest of hehcoids

corresponds, in three dimensions, to what in two dimensions is

merely a plane (the latter being generated by the rotation of a

straight line about an axis without the superadded gliding motion

which generates the hehcoid), so there are other and much more

complicated helicoids which correspond to the sphere, the unduloid

and the rest of our figures of revolution, the generating planes of

these latter being supposed to wind spirally about an axis. In the

case of the cyhnder it is obvious that the resulting figure is indis-

tinguishable from the cyhnder itself. In the case of the unduloid

we obtain a grooved spiral, and we meet with something very like

it in nature (for instance in Spirochaetes, Bodo gracilis, etc.) ; but in

point of fact, the screw motion given to an unduloid or catenary

curve fails to give a minimal screw surface, as we might have

expected it to do.

The foregoing considerations deal with a small part only of the

theory of surface-tension, or capillarity: with that part, namely,

which relates to the surfaces capable of subsisting in equilibrium

under the action of that force, either of itself or subject to certain

simple constraints. And as yet we have limited ourselves to the

case of a single surface, or of a single drop or bubble, leaving to

another occasion a discussion of the forms assumed when such drops

or vesicles meet and combine together. Ip short, what we have

said may help us to understand the form of a cell—considered, as

with certain hmitations we may legitimately consider it, as a Hquid

drop or liquid vesicle ; the conformation of a tissue or cell-aggregate

must be dealt with in the light of another series of theoretical con-

siderations. In both cases, we can do no more than touch on the

fringe of a large and difficult subject. There are many forms

* Or rather, surfaces such that through every point there runs a straight line

which lies wholly in the surface.
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capable of realisation under surface-tension, and many of them

doubtless to be recognised among organisms, which we cannot

deal with in this elementary account. The subject is a very

general one; it is, in its essence, more mathematical than physical;

it is part of the mathematics of surfaces, and only comes into relation

with surface-tension because this physical phenomenon illustrates

and exemplifies, in a concrete way, the simple an4 symmetrical

conditions with which the mathematical theory is capable of deahng.

And before we pass to illustrate the physical phenomena by biological

examples, we must repeat that the simple physical conditions which

we presuppose will never be wholly realised in the organic cell.

Its substance will never be a perfect fluid, and hence equilibrium

will be slowly reached; its surface will seldom be perfectly homo-

geneous, and therefore equilibrium will seldom be perfectly attained

;

it will very often, or generally, be the seat of other forces, symmetrical

or unsymmetrical ; and all these causes will more or less perturb the

surface-tension effects*. But we shall find that, on the whole, these

effects of surface-tension though modified are not obliterated nor

even masked; and accordingly the phenomena to which I have

devoted the foregoing pages will be found manifestly recurring and

repeating themselves among the phenomena of the organic cell.

In a spider's web we find exemplified several of the principles of

surface-tension which we have now explained. The thread is spun

out of a glandular secretion which issues from the spider's body as

a semi-fluid cyHnder, the force of expulsion giving it its length and

that' of surface-tension giving it its circular section. It is too viscid,

and too soon hardened on exposure to the air, to break up into drops

or spherules ; but it is otherwise with another sticky secretion which,

coming from another gland, is simultaneously poured over the

* That "every particular that worketh any effect is a thing compounded more

or less of diverse single natures, more manifest and more obscure" is a point made

and dwelt on by Bacon. Of the same principle a great astronomer speaks as

follows: "It is one of the fundamental characteristics of natural science that we

never get beyond an approximation. . .Nature never offers us simple and undivided

phenomena to observe, but always infinitely complex compounds of many different

phenomena. Each single phenomenon can be described mathematically in terms

of the accepted fundamental laws of Nature : . . . but we can never be sure that we

have carried the analysis to its full exhaustion, and have isolated one single simple

phenomenon." W. de Sitter, in Nature, Jan. 21, 1928, p. 99.
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slacker cross-threads as they issue to form the spiral portion of the

web. This latter secretion is more fluid than the first, and only

dries up after several hours*. By capillarity it "wets" the thread,

spreading over it in an even film or liquid cylinder. As such it

has its limits of stabihty, and tends to disrupt at points more

distant than the theoretical wave-length, owing to the imperfect

fluidity of the viscous film and still more to the frictional drag of

the inner thread with which it is in contact. Save for this qualifi-

cation the cyhnder disrupts in the usual manner, passing first into

the wavy outhne of an unduloid, whose swollen internodes swell

more and more till the necks between them break asunder, and leave

a row of spherical drops or beads strung like dewdrops at regular

intervals along the thread. If we try to varnish a thin taut wire

we produce automatically the same identical result t; imless our

varnish be such as to dry almost instantaneously it gathers into

beads, and do what we will we fail to spread it smooth. It follows

that, according to the drying quahties of our varnish, the process

may stop at any point short of the formation of perfect spherules;

and as our final stage we may only obtain half-formed beads or the

wavy outlines of an unduloid. The beads may be helped to form

by jerking the stretched thread, and so disturbing the unstable

equilibrium of the viscid cyhnder. This the spider has been said

to do, but Dr G. T. Bennett assures me that she does nothing of the

kind. She only draws her thread out a little, and leaves it a trifle

slack ; if the gum should break into droplets, well, and good, but it

matters httle. The web with its sticky threads is not improved

thereby. Another curious phenomenon here presents itself.

In Plateau's experimental separation of a cyhnder of oil into two

spherical halves, it was noticed that, when contact was nearly

broken, that is to say when the narrow neck of the unduloid had

become very thin, the two spherical bullae, instead of absorbing

the fluid out of the narrow neck into themselves as they had done

with the preceding portion, drew out this small remaining part of

* When we see a web bespangled with dew of a morning, the dewdrops are not

drops of pure water, but of water mixed with the sticky, gummy fluid of the cross-

threads ; the radii seldom if ever shew dewdrops. See F, Strehlke, Beobachtungen

an Spinnengewebe, Poggendorff's Annalen, XL, p. 146, 1937.

t Felix Plateau recommends the use of a weighted thread or plumb-line, to be

drawn up slowly out of a jar of water or oil; Phil. Mag. xxxiv, p. 246, 1867.



386 THE FORMS OF CELLS [ch.

the liquid into a thin thread as they completed their spherical f^rm

and receded from one another: the reason being that, after the

thread or "neck" has reached a certain tenuity, internal friction

prevents or retards a rapid exit of the fluid from the thread to the

adjacent spherule. It is for the same reason that we are able to

draw a glass rod or tube, which we have heated in the middle, into

a long and uniform cyhnder or thread by quickly separating the

two ends. But in the case of the glass rod the long thin thread

quickly cools and sohdifies, while in the ordinary separation of a

liquid cylinder the corresponding intermediate cylinder remains

liquid; and therefore, Hke any other liquid cylinder, it is liable to

Fig. 113. Dew-drops on a spider's web.

break up, provided that its dimensions exceed the limit of stability.

And its length is generally such that it breaks at two points, thus

leaving two terminal portions continuous and confluent with the

spheres, and one median portion w^hich resolves itself into .a

tiny spherical drop, midway between the original and larger two.

Occasionally, the same process of formation of a connecting thread

repeats itself a second time, between the small intermediate spherule

and the large spheres; and in this case we obtain two additional

spherules, still smaller in size, and lying one on either side of our

first little one. This whole phenomenon, of equal and regularly

interspaced beads, often with little beads regularly interspaced

between the larger ones, and now and then with a third order of

still smaller beads regularly intercalated, may be easily observed

in a spider's web, such as that of Epeira, very often with beautiful

regularity—sometimes interrupted and disturbed by a sKght want

of homogeneity in the secreted fluid ; and the same phenomenon is
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repeated on a grosser scale when the web is bespangled with dew,

and its threads bestrung with pearls innumerable. To the older

naturalists, these regularly arranged and beautifully formed globules

on the spider's -web were a frequent source of wonderment. Black-

wall, counting some twenty globules in a tenth of an inch, calculated

that a large garden-spider's web should comprise about 120,000

globules; the net was spun and finished in about forty minutes,

and Blackwall was filled with admiration of the skill and quickness

with which the spider manufactured these little beads. And no

wonder, for according to the above estimate they had to be made

at the rate of about 50 per second*.

Here we see exemphfied what Plateau told us of the law of minimal

areas transforming the cylinder into the unduloid and disrupting it

Fig. 114. Root-hair of Trianea, in glycerine. After Berthold.

into spheres. The httle dehcate beads which stud, the long thin

pseudopodia.o.f a foraminifer, such as Gromia, or which appear in

like manner on the film of protoplasm coating the long radiating

spicules of Globigerina, represent an identical phenomenon. Indeed

we may study in a protoplasmic filament the whole process of

formation of such beads: if we squeeze out on a shde the viscid

contents of a mistletoe-berry, the long sticky threads into which the

substance runs shew the whole phenomenon particularly well. True,

many long cylindrical cells, such as are common in plants, shew no

sign of beading or disruption ; but here .the cell-walls are never fluid

but harden as they grow, and the protoplasm within is kept in place

and shape by its contact with the cell-wall. It was noticed many
years ago by Hofmeisterf, and afterwards explained by Berthold,

that if we dip the long root-hairs of certain water-plants, such as

Hydrocharis or Trianea, in a denser fluid (a httle sugar-solution or

* J. Blackwall, Spiders of Great Britain (Ray Society), 1859, p. 10; Trans. Linn.

Soc. XVI, p. 477, 1833. On the strength and elasticity of the spider's web, see

J. R. Benton, Amer. Journ. Science, xxiv, pp. 75-78, 1907.

t Lehrbuch von der Pflanzenzelley p. 71 ; cf. Nageli, Pflanzenphysiologische Unter-

suchungen [Spirogyra), ni, p. 10.
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dilute glycerine), the cell-sap tends to diffuse outwards, the proto-

plasm parts company with its surrounding and supporting wall, and

then hes free as a protoplasmic cylinder in the interior of the cell.

Thereupon it soon shews signs of instability, and commences to

disrupt; it tends to gather into spheres, which however, as in our

illustration, may be prevented by their narrow quarters from

assuming the complete spherical form; and in between these

spheres, we have more or less regularly alternate ones, of smaller

size*. We could not wish for a better or a simpler proof of the

essential fluidity of the protoplasm f. Similar, but less regular,

beads or droplets may be caused to appear, under stimulation by an

alternating current, in. the protoplasmic threads within the living

cells of the hairs of Tradescantia; the explanation usually given is,

that the viscosity of the protoplasm is reduced, or its fluidity

increased ; but an increase of the surface-tension would seem a more

likely reason}.

In one of Robert Chambers's delicate experiments, a filament of

protoplasm is drawn off, by a micro-needle, from the fluid surface

of a starfish-egg. If drawn too far it breaks, and part returns within

the protoplasm while the other rounds itself off on the needle's

point. If drawn out less far, it looks hke a row of beads or chain

of droplets; if yet more relaxed, the droplets begin to fuse until

the whole filament is withdrawn; if drawn out anew the process

repeats itself. The whole story is a perfect description of the

behaviour of a fltiid jet or cyfinder, of varying length and

thickness §.

We may take note here of a remarkable series of phenomena,

which, though they seem at first sight to be of a very different order,

* The intermediate spherules appear with great regularity and beauty whenever

a liquid jet breaks up into drops. So a bursting soap-bubble scatters a shower

of droplets all around, sometimes all alike, but often with a beautiful alternation

of great and small. How the breaking up of thread or jet into drops may be helped,

regularised, and sometimes complicated, by external vibrations is another and by

no means unimportant story.

t Though doubtless to speak of the viscid thread as a fluid is but a first approxi-

mation; cf. Larmor, in Nature, July 11, 1936.

X Kiihne, Untersuchungen ilber das Protoplasma, 1864, p. 75, etc.

§ Cf. R. Chambers in Colloid Chemistry, theoretical and applied, ii, cap. 24, 1928;

also Ann. de Physiol, vi, p. 234, 1930; etc.
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are closely related to those which attend and which bring about the

breaking-up of a liquid cylinder or thread.

In Mr Worthington's beautiful experiments on splashes*, it was

found that the fall of a found pebble into water from a height first

formed a dip or hollow in the surface, and then caused a filmy

"cup" of water to rise up all round, opening out trumpet-fashion

Fig. 115. Phases of a splash. From Worthington.

""''^WiW^JSSM,
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Fig. 116. A wave breaking into spray.

or closing in like a bubble, according to the height from which the

pebble fell. The cup or "crater" tends to be fluted in alternate

ridges and grooves, its edges get scolloped into corresponding lobes

and notches, and the projecting lobes or prominences tend to break

off or break up into drops or beads (Fig. 115). A similar appearance

is seen on a great scale in the edge of a breaking wave : for the smooth

* A Study of SplasJies, 1908, p. 38, etc.; also various papers in Proc. R.S.

1876-1882, and Phil Trans. (A), 1897 and 1900.
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edge becomes notched or sinuous, and the surface near by becomes

ribbed or fluted, owing to the internal flow being helped here and

hindered there by a viscous shear; and then all of a sudden the

uneven edge shoots out an array of tiny jets, which break up into

the countless droplets which constitute "spray" (Fig. 116). The

naturalist may be reminded also of the beautifully symmetrical

notching of the calycles of many hydroid zoophytes, which little

cups had begun their existence as Hquid or semi-hquid films before

they became stiff and rigid. The next phase of the splash (with

which we are less directly concerned) is that the crater subsides,

and where it stood a tall column rises up, which also tends, if it be

tall enough, to break up into drops. Lastly the column sinks down

in its turn, and a ripple runs out from where it stood.

The edge of our little cup forms a hquid ring or annulus, com-

parable on the one hand to the edge of an advancing wave, and

on the other to a hquid thread or cylinder if only we conceive the

thread to be bent round into a ring; and accordingly, just as the

thread segments first into an unduloid and then into separate

spherical drops, so likewise will the edge of cup or annulus tend to

do. This phase of notching, or beading, of the edge of the splash

is beautifully seen in many of Worthington's experiments*, and still

more beautifully in recent work (Frontispiece f). In the second place

the fact that the crater rises up means that liquid is flowing in from

below; the segmentation of the rim means that channels of easier

flow are being created, along which the liquid is led or driven into

the protuberances; and these last are thereby exaggerated into the

jets or streams which become conspicuous at the edge of the crater.

In short any film or film-like fluid or semi-fluid cup will be unstable

;

its instability will tend to show itself in a fluting of the surface and

a notching of the edge; and just such a fluting and notching are

conspicuous features of many minute organic cup-like structures.

In the hydroids (Fig. 117), we see that these common features of the

* Cf. A Study of Splashes, pp. 17, 77. The same phenomenon is often well seen

in the splash of an oar. It is beautifully and continuously evident when a strong

jet of water from a tap impinges on a curved surface and then shoots off again.

t We owe this picture to the kindness of Mr Harold E. Edgerton, of the

Massachusetts Institute of Technology. It shews the splash caused by a drop

falling into a thin layer of milk; a second drop of milk is seen above, following

the first. The exposure-time was 1/50,000 of a second.



The latter phase of a splash: the crater has subsided, a columnar jet has risen up,
and the jet is dividing into droplets. From Harold E. Edgerton,

Massachusetts Institute of Technology
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cup and the annulation of the stem are phenomena of the same order.

A cord-hke thickening of the edge of the cup is a variant of the

same order of phenomena; it is due to the checking at the rim of

the flow of hquid from below, and a similar thickening is to be seen,

not only in some hydroid calycles but also in many Vorticellae

(cf. Fig. 124) and other cup-shaped organisms. And these are by

no means the only manifestations of surface-tension in a splash

which shew resemblances and analogies to organic form*.

The phenomena of an ordinary liquid splash are so swiftly tran-

sitory that their study is only rendered possible by photography:

01 [VA~/"'^^^VY

Fig. 117. Calycles of Campanularia spp.

but this excessive rapidity is not an essential part of the pheno-

menon. For instance, we can repeat and demonstrate many of the

simpler phenomena, in a permanent or quasi-permanent form, by

splashing water on to a surface of dry sandf, or by firing a bullet

into a soft metal target. There is nothing, then, to prevent a slow

and lasting manifestation, in a viscous medium such as a proto-

plasmic organism, of phenomena which appear and disappear with

* The. same phenomena are modified in various ways, and the drops are given

off much more freely, when the splash takes place in an electric field—all owing

to the general instability of an electrified liquid -surface; and a study of this aspect

of the subject might suggest yet more analogies with organic form. Cf. J. Zeleny,

Phys. Rev. x, 1917; J. P. Gott, Proc. Cambridge Philos. Soc. xxxi, 1935; etc.

t We find now and then in certain brick-clays of glacial origin, hard, quoit-

shaped rings, each with an equally indurated, round or flattened ball resting on it.

These may be precisely imitated by splashing large drops of water on a smooth

surface of fine dry sand. The ring corresponds, apparently, to the crater of the

splash, and the ball (or its water content) to the pillar rising in the middle.
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evanescent rapidity in a more mobile liquid. Nor is there anything

pecuhar in the splash itself; it is simply a convenient method of

setting up certain motions or currents, and producing certain surface-

forms, in a Hquid medium—or even in such an imperfect fluid as a bed

of sand. Accordingly, we have a large range of possible conditions

under which the organism might conceivably display configurations

analogous to, or identical with, those which Mr Worthington has

shewn us how to exhibit by one particular experimental method.

To one who has watched the potter at his wheel, it is plain that

the potter's thumb, like the glass-blower's blast of air, depends for

its efficacy upon the physical properties of the clay or "shp" it

works on, which for the time being is essentially a fluid. The cup

and the saucer, like the tube and the bulb, display (in their simple

and primitive forms) beautiful surfaces of equilibrium as manifested

under certain hmiting conditions. They are neither more nor less

than glorified "splashes," formed slowly, under conditions of

restraint which enhance or reveal their mathematical symmetry.

We have seen, and we shall see again before we are done, that the

art of the glass-blower is full of lessons for the naturahst as also

for the physicist: illustrating as it does the development of a host

of mathematical configurations and organic conformations which

depend essentially on the establishment of a constant and uniform

pressure within a closed elastic shell or fluid envelope or bubble.

In hke manner the potter's art illustrates the somewhat obscurer

and more complex problems (scarcely less frequent in biology) of a

figure of equilibrium which is an open surface of revolution. The

two series of problems are closely akin; for the glass-blower can

make most things which the potter makes, by cutting off portions

of his hollow ware; besides, when this fails and the glass-blower,

ceasing to blow, begins to use his rod to trim the sides or turn the

edges of wineglass or of beaker, he is merely borrowing a trick from

the still older craft of the potter.

It would seem venturesome to extend our comparison with these

liquid surface-tension phenomena from the cup or calycleof the

hydrozoon to the little hydroid polyp within: and yet there is

something to be learned by such a comparison. The cylindrical

body of the tiny polyp, the jet-hke row of tentacles, the beaded
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annulations which these tentacles exhibit, the web-like film which

sometimes (when they stand a httle way apart) conjoins their bases,

the thin annular film of tissue which surrounds the little organism's

mouth, and the manner in which this annular "peristome" con-

tracts*, like a shrinking soap-bubble, to close the aperture, are

every one of them features to which we may find a singular and

striking parallel in the surface-tension phenomena of the splash
"f".

Some seventy years ago much interest was aroused by Helmholtz's

work (and also Kirchhoff's) on "discontinuous motions of a fluidj";

that is to say, on the movements of one body of fluid within another,

and the resulting phenomena due to friction at the surfaces between.

What Kelvin§ called Helmholtz's "admirable discovery of the law

of vortex-motion in 'a perfect fluid" was the chief result of this

investigation; and was followed by much experimental work, in

order to illustrate and to extend the mathematical conclusions.

The drop, the bubble and the splash are parts of a long story;

and a "falling drop," or a drop moving through surrounding fluid,

is a case deserving to be considered. A drop of water, tinged with

fuchsin, is gently released (under a pressure of a couple of milh-

metres) at the bottom of a glass of water
||

. Its momentum enables

it to rise through a few centimetres of the surrounding water, and

in doing so it communicates motion to the water around. In front

the rising drop thrusts its way through, almost like a sohd body;

behind it tends to drag the surrounding water after it, by fluid

friction^ ; and these two motions together give rise to beautiful vorti-

coid configurations, the Strdmungspilze or Tintenpilze of their first

discoverers (Fig. 119). Under a higher and more continuous pressure

* See a Study of Splashes, p. 54.

t There is little or no difference between a splash and a burst bubble. The craters

of the moon have been compared with, and explained by, both of these.

X Helmholtz, in Berlin. Monatsber. 1868, pp. 215-228; Kirchhoflf, in CreUe'a

Journal, lxx, pp. 289-298, lxxi, 237-273, 1869-70.

§ W. Thomson, in Proc. R.S.E. vi, p. 94, 1867.

II
See A. Overbeck, Ucber discontinuirliche Fliissigkeitsbewegungen, Wiedemann''

s

Annalen, ii, 1877; W. Bezold, Ueber Stromungsfiguren in Fliissigkeiten, ibid.

XXIV, pp. 569-593, 1885; P. Czermak, ibid, l, p. 329, 1893; etc.

% The frictional drag on the hinder part of the drop is felt alike in the ship, the

bird and the aeroplane, and tends to produce retarding vortices in them all. It is

always minimised in one way or another, and it is autoraaticaUy minimised in the

present instance, as the drop thins off and tapers down.
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__Md3:::,,^^

Fig. 118. a, b. More phases of a splash, after Worthington.

c. A hydroid polype, after Allman.

o ^t

Fip. 119. -Liiquid jets. From A. Overbeck.
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the drop becomes a jet; the, form of the vortex is modified thereby,

and may be further modified by sHght differences of temperature

(i.e. of density), or by interrupting the rate of flow. To let a drop

of ink fall into water is a simple and most beautiful experiment*.

The effect is more violent than in the former case. The descending

Fig. 120. Falling drops. A, ink in water, after J. J. Thomson and Newall.

B, fusel oil in paraffin, after Tomlinson.

drop turns into a complete vortex-ring ; it expands and attenuates

;

it waves about, and the descending loops again turn into incipient

vortices (Fig. 120).

Lastly, instead of letting our drop rise or fall freely, we may use

a hanging drop, which, while it sinks, remains suspended to the

surface. Thus it cannot form a complete annulus, but only a

* J. J. Thomson and H. F. Newall, On the formation of vortex-rings by drops,

Proc. R.S. XXXIX, pp. 417-436, 1885. Emil Hatschek, On forms assumed by a

gelatinising liquid in various coagulating solutions, ibid. (A) xciv, pp. 303-316, 1918.
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partial vortex suspended by a thread or column—just as in Over-

beck's jet-experiments; and the figure so produced, in either case,

is closely analogous to that of a medusa or jellyfish, with its bell

or "umbrella," and its clapper or "manubrium" as well. Some
years ago Emil Hatschek made such vortex-drops as these of hquid

gelatine dropped into a hardening fluid. These " artificial medusae
"

sometimes show a symmetrical pattern of radial "ribs", due to

shrinkage, and this to dehydration by the coagulating fluid. An

Fig. 121. Various medusoids: 1, Syncoryne; 2, Cordylophora;

3, Cladonema (after Allmaii).

extremely curious result of Hatschek's experiments is to shew how

sensitive these vorticoid drops are to physical conditions. For using

the same gelatine all the while, and merely varying the density of

the fluid in the third decimal place, we obtain a whole range of

configurations, from the ordinary hanging drop to the same with a

ribbed pattern, and then to medusoid vortices of various graded forms.

The livingmedusa has a geometricalsymmetry so marked and regular

as to suggest a physical or mechanical element in the little creature's

growth and construction. It has, to begin with, its vortex-hke bell

or umbrella, with its cylindrical handle or manubrium. The bell is
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traversed by radial canals, four or in multiples of four; its edge is

beset with tentacles, smooth or often beaded, at regular intervals

and of graded sizes ; and certain sensory structures, including sohd

concretions or "otohths," are also symmetrically interspaced. No
sooner made, than it begins to pulsate ; the little bell begins to " ring."

m

&

Fig. 1216. "Medusoid drops", of gelatin. After Hatschek,

Buds, miniature replicas of the parent-organism, are very apt to appear

on the tentacles, or on the manubrium or sometimes on the edge of the

bell; we seem to see one vortex producing others before our eyes.

The development of a medusoid deserves to be studied without

prejudice, from this point of view. Certain it is that the tiny

medusoids of Obelia, for instance, are , budded off with a rapidity

and a complete perfection which suggest an automatic and all but

instantaneous act of conformation, rather than a gradual process of

growth.

Moreover, not only do we recognise in a vorti-

coid drop a "schema" or analogue of medusoid

form, but we seem able to discover -various actual

phases of the splash ot drop in the all but in-

numerable living types of jellyfish; in Cladoneyna

we seem to see an early stage of a breaking drop,

and in Cordylophom a beautiful picture of incipient

vortices. It is hard indeed to say how much or little all these

analogies imply. But they indicate, at the very least, how certain

simple organic forms might be naturally assumed by one fluid mass

within another, when gravity, surface tension and fluid friction play

Fig. 122. Meckbsach-

loris, a ciliate

infusoiia.
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their part, under balanced conditions of temperature, density and

chemical composition.

A little green infusorian from the Baltic Sea is, as near as may

be, a medusa in miniature*. It is curious indeed to find the same

medusoid, or as we may now call it vorticoid, configuration occurring

in a form so much lower in the scale, and so much less in order of

magnitude, than the ordinary medusae.

According to Plateau, the viscidity of the liquid, while it

retards the breaking up of the cylinder and increases the length

of the segments beyond that which theory demands, has never-

theless less influence in this direction than we might have expected.

On the other hand any external support or adhesion, or mere

contact with a sohd body, will be equivalent to a reduction of

surface-tension and so will very greatly increase the stability of

our cylinder. It is for this reason that the mercury in our thermo-

meters seldom separates into drops: though it sometimes does so,

much to our inconvenience. And again it is for this reason that

the protoplasm in a long tubular or cyhndrical cell need not divide

into separate cells and internodes until the length of these far

exceeds the theoretical limits.

An interesting case is that of a viscous drop immersed in another

viscous fluid, and drawn out into a thread by a shearing motion of

the latter. The thread seems stable at first, but when left to rest

it breaks up into drops of a very definite and uniform, size, the size

of the drops, or wave-length of the unduloid of which they are made,

depending on the relative viscosities of the two threads f-

Plateau's results, though discovered by way of experiment and

though (as we have said) they illustrate the " materiahsation " of

mathematical law, are nevertheless essentially theoretical results

approached rather than realised in material systems. That a hquid

cylinder begins to be unstable when its length exceeds ^-nr is all

but mathematically true of an all but immaterial soap-bubble ; but

very far from true, as Plateau himself was well aware, in a flowing

jet, retarded by viscosity and by inertia. The principle is true and

universal; but our living cylinders do not follow the abstract laws

* Medusachloris phiale, of A. Pascher, Biol. Centralbl. xxxvii, pp. 421-429, 1917.

t See especially Rayleigh, Phil. Mag. xxxiv, p. 145, 1892, by whom the subject

is carried much further than where Plateau left it. See also {int. al.) G. I. Taylor,

Proc. R.S. (A), cxLvi, p. 501, 1934; S. Tomotika, ibid, cl, p. 322, 1935; etc.
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of mathematics, any more than do the drops and jets of ordinary

fluids or the quickly drawn and quickly cooling tubes in the glass-

worker's hands.

Plateau says that in most hquids the influence of viscosity is such

as to cause the cylinder to segment when its length is about four

times, or even six times, its diameter, instead of a fraction over

three times, as theory would demand of a perfect fluid. If we take

it at four times, the resulting spherules would have a diameter of

about 1-8 times, and their distance apart would be about 2-2 times,

the original diameter of the cylinder; and the calculation is not

difficult which would shew how these dimensions are altered in the

case of a cylinder formed around a solid core, as in the case of a

spider's web. Plateau also observed that the time taken in the

division of the cyUnder is directly proportional to its diameter,

while varying with the nature of the hquid. This question, of the

time taken in the division of a cell or filament in relation to its

dimensions, has not so far as I know been enquired into by biologists.

From the simple fact that the sphere is of aU configurations that

whose surface-area for a given volume is an absolute minimum, we

have seen it to be the one figure of equilibrium assumed by a drop

or vesicle when no disturbing factor is at hand; but such freedom

from counter-influences is likely to be rare, and neither does the rain-

drop nor the round world itself retain its primal sphericity. For one

thing, gravity will always be at hand to drag and distort our drop

or bubble, unless its dimensions be so minute that gravity becomes

insignificant compared with capillarity. Even the soap-bubble will

be flattened or elongated by gravity, according as we support it

from below or from above; and the bubble which is thinned out

almost to blackness will, from its small mass, be the one which

remains most nearly spherical*.

Innumerable new conditions will be introduced, in the shape of

comphcated tensions and pressures,, when one drop or bubble

becomes associated with another, and when a system of inter-

mediate films or partition-walls is developed between them. This

subject we shall discuss later, in connection with cell-aggregates or

tissues, and we shall find that further theoretical considerations are

* Cf. Dewar, On soap-bubbles of long duration, Proc. Roy. Inst. Jan. 19, 1929.
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needed as a preliminary to any such enquiry. Meanwhile let us

consider a few cases of the forms of cells, either sohtary, or in such

simple aggregates that their individual form is httle disturbed thereby.

Let us clearly understand that the cases we are about to consider

are those where the perfect sjnnmetry of the sphere is replaced by

another symmetry, less complete, such as that of an ellipsoidal or

cylindrical cell. The cases of asymmetrical deformation or dis-

placement, such as are illustrated in the production of a bud or

the development of a lateral branch, are much simpler; for here

we need only assume a slight and locahsed variation of surface-

tension, such as may be brought about in various ways through

the heterogeneous chemistry of the cell. But such diffused and

graded asymmetry as brings about for instance the ellipsoidal shape

of a yeast-cell is another matter.

If the sphere be the one surface of complete symmetry and

therefore of independent equilibrium, it follows that in every cell

which is otherwise conformed there must be some definite cause of

its departure from sphericity; and if this cause be the obvious one

of resistance offered by a solidified envelope, such as an egg-shell

or firm cell-wall, we must still seek for the deforming force which

was in action to bring about the given shape prior to the assumption

of rigidity. Such a cause may be either external to, or may lie

within, the cell itself. On the one hand it may be due to external

pressure or some form of mechanical restraint, as when we submit our

bubble to the partial restraint of discs or rings or more compHcated

cages of wire ; on the other hand it maybe due to intrinsic causes, which

must come under the head either of differences of internal pressure,

or of lack of homogeneity or isotropy in the surface or its envelope*.

* A case which we have not specially considered, but which may be found to

deserve consideration in biology, is that of a cell or drop suspended in a liquid of

varying density, for instance in the upper layers of a fluid (e.g. sea-water) at whose

surface condensation is going on, so as to produce a steady density-gradient. In

this case the normally spherical drop will be flattened into an oval form, with its

maximum surface-curvature lying at the level where the densities of the drop

and the surrounding liquid are just equal. The sectional outline of the drop has

been shewn to be not a true oval or ellipse, but a somewhat complicated quartic

curve. (Rice, Phil. Mag. Jan. 1915.) A more general case, which also may well

deserve consideration by the biologist, is that of a charged bubble in (for instance)

a uniform field of force : which will expand or elongate in the direction of the lines

of force, and become a spheroidal surface in continuous transformation with the

original sphere.
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Our formula of equilibrium, or equation to an elastic surface, is

P = jDg + (TjR + T'jR), where P is the internal pressure, jo^ any

extraneous pressure normal to the surface, R, R' the radii of

curvature at a point, and T, T' the corresponding tensions, normal

to one another, of the envelope.

Now in any given form which we seek to account for, R, R' are

known quantities; but all the other factors of the equation are

subject to enquiry. And somehow or other, by this formula, we

must account for the form of any solitary cell whatsoever (provided

always that it be not formed by successive stages of sohdification),

the cyhndrical cell of Spirogyra^ the elhpsoidal yeast-cell, or (as

we shall see in another chapter) even the egg of any bird. In

using this formula hitherto we have taken it in a simphfied form,

that is to say we have made several limiting assumptions. We have

assumed that P was the uniform hydrostatic pressure, equal in all

directions, of a body of hquid; we have assumed likewise that the

tension T was due to surface-tension in a homogeneous hquid film,

and was therefore equal in all directions, so that T = T' ; and we

have only dealt with surfaces, or parts of a surface, where extraneous

pressure, jo„, was non-existent. Now in the case of a bird's egg

the external pressure p^, that is to say the pressure exercised by

the walls of the oviduct, will be found to be a very important

factor; but in the case of the yeast-cell or the Spirogym, wholly

immersed in water, no such external pressure comes into play.

We are accordingly left in such cases as these last with 'two

hypotheses, namely that the departure from a spherical form is due

to inequahties in the internal pressure P, or else to inequahties in

the tension T, that is to say to a difference between T and T'.

In other words, it is theoretically possible that the oval form of a

yeast-cell is due to a greater internal pressure, a greater '"tendency

to grow" in the direction of the longer axis of the ellipse, or

alternatively, that with equal and symmetrical tendencies to growth

there is associated a difference of external resistance in respect of

the tension, and implicitly the molecular structure, of the cell-wall.

Now' the former hypothesis is not impossible. Protoplasm is far

from being a perfect fluid; it is the seat of various internal forces,

sometimes manifestly polar, and it is quite possible that the forces,

osmotic and other, which lead to an increase of the content of the
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cell and are manifested in pressure outwardly directed upon its wall

niay be unsymmetrical, and such as to deform what would otherwise

be a simple sphere. But while this hypothesis is not impossible,

it is not very easy of acceptance. The protoplasm, though not a

perfect fluid, has yet on the whole the properties of a fluid ; within

the small compass of the cell there is httle room for the development

of unsymmetrical pressures; and in such a case as Spirogyra, where

most part of the cavity is filled by watery sap, the conditions are

still more obviously, or more nearly, those under which a uniform

hydrostatic pressure should be displayed. But in variations of T,

that is to say of the specific surface-tension per unit area, we have

an ample field for all the various deformations with which we shall

have to deal. Our condition now is, that (TIR + T'jR) = a con-

stant; but it no longer follows, though it may still often be the

case, that this will represent a surface of absolute minimal area.

As soon as T and T' become unequal, we are no longer dealing

with a perfectly hquid surface film; but its departure from perfect

fluidity may be of all degrees, from that of a slight non-isotropic

viscosity to the state of a firm elastic membrane * ; and it matters

little whether this viscosity or semi-rigidity be manifested in the

self-same layer which is still a part of the protoplasm of the cell,

or in a layer which is completely differentiated into a distinct and

separate membrane. As soon as, by secretion or adsorption, the

molecular constitution of the surface-layer is altered, it is clearly

conceivable that the alteration, or the secondary chemical changes

which follow it, may be such as to produce an anisotropy, and to

render the molecular forces less capable in one direction than another

of exerting that contractile force by which they are striving to reduce

to a minimum the surface area of the cell. A slight inequality in

two opposite directions will produce the eUipsoid cell, and a great

inequahty will give rise to the cylindrical cell.

I take it therefore, that the cylindrical cell of Spirogyra, or any

other cyhndrical cell which grows in freedom from any manifest

external restraint, has assumed that particular form simply by

reason of the molecular constitution of its developing wall or

* Indeed any non-isotropic stiffness, even though T remained uniform, would

simulate, and be indistinguishable from, a condition of non-stiffness and non-

isotropic T.
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membrane; and that this molecular constitution was anisotropous,

in such a way as to render extension easier in one direction than

another. Such a lack of homogeneity or of isotropy in the

cell-wall is often rendered visible, especially in plant-cells, in the

form of concentric lamellae, annular and spiral striations, and the

like. But there exists yet another heterogeneity, to help us account

for the long threads, hairs, fibres, cylinders, which are so often

formed. Carl NageH said many years ago that organised bodies,

starch-grains, cellulose and protoplasm itself, consisted of invisible

particles, each an aggregate of many molecules—he called them

micellae; and these were isolated, or "dispersed" as we should say,

in a watery medium. This theory was, to begin with, an attempt to

account for the colloid state; but at the same time, the particles

were supposed to be so ordered and arranged as to render the

substance anisotropic, to confer on it vectorial properties as we say

nowadays, and so to account for the polarisation of light by a starch-

grain or a hair. It was so criticised by Biitschli and von Ebner that

it fell into disrepute, if not oblivion; but a great part of it was true.

And the micellar structure of wool, cotton, silk and similar substances

is now rendered clearly visible by the same X-ray methods as

revealed the molecular orientation, or lattice-structure, of a crystal

to von Laue.

It is now well known that the cell-wall has in many cases a definite structure

which depends on molecular assemblages in the material of which it is com-

posed, and is made visible by X-rays in the form of "diffraction patterns".

The green alga Valonia has very large bubbly cells, 2-3 centimetres long, with

cell-walls formed, as usual, of cellulose; this substance is a polysaccharide,

with long-chain molecules some 500 Angstrom-units, or say 0-05 /x long,

bound together sideways to form a multiple sheet or three-dimensional lattice.

In the cell-wall of Valonia one set of chains runs round in a left-handed

spiral, another forms meridians from pole to pole, and these two layers

are superposed alternately to build the wall. Hemp has two layers, both

running in right-handed spirals; flax two layers, crossing and recrossing in

spirals of opposite sign. Even the cytoplasm and its contents seem to be

influenced by molecular ''lignes directrices,'''' corresponding to the striae of

the cell-wall. Analogous but still more complicated results of molecular

structure are to be found in wool, cotton and other fibres*.

* Cf. R. D. Preston, Phil. Trans. (B), ccxxiv, p. 131, 1934: Preston and Astbury,

Proc. R.S. (B), cxxii, pp. 76-97, 1937; and many other important papers by
Astbury, van Iterson, Heyn, and others. We are brought by them to a borderland
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But this phenomenon, while it brings about a certain departure

from complete symmetry, is still compatible with, and coexistent

with, many of the phenomena which we have seen to be associated

with surface-tension. The symmetry of tensions still leaves the

cell a solid of revolution, and its surface is still a surface of equi-

librium. The fluid pressure within the cyUnder still causes the

film or membrane which caps its ends to be of a spherical form.

And in the young cell, where the surface pellicle is absent or but

little differentiated, as for instance in the oogonium of Aclilya or

in the young zygospore of Spirogyra, we see the tendency of the

entire structure towards a spherical form reasserting itself: unless,

as in the latter case, it be overcome by direct compression within

the cyhndrical mother-cell. Moreover, in those cases where the

adult filament consists of cylindrical cells we see that the young

germinating spore, at first spherical, very soon assumes with growth

an elliptical or ovoid form—the direct result of an incipient aniso-

tropy of its envelope, which when more developed will convert the

ovoid into a cyhnder. We may also notice that a truly cyhndrical

cell is comparatively rare, for in many cases what we call a

cylindrical cell shews a distinct bulging of its sides; it is not truly

a cyhnder, but a portion of a spheroid or ellipsoid.

Unicellular organisms in general—protozoa, unicellular crypto-

gams, various bacteria and the free isolated cells, spores, ova, etc.

of higher organisms—are referable for the most part to a small

number of typical forms ; but there are many others in which either

no symmetry is to be recognised, or in which the form is clearly

not one of equihbrium. Among these latter we have Amoeba itself

and all manner of amoeboid organisms, and also many curiously

shaped cells such as the Trypanosomes and various aberrant

Infusoria. We shall return to the consideration of these; but in

the meanwhile it will suffice to say (and to repeat) that, inasmuch

as their surfaces are not equihbrium-surfaces, so neither are the

Uving cells themselves in any stable equihbrium. On the contrary,

they are in continual flux and movement, each portion of the

between chemical and histological structure, where micellae and long-chain molecules
enlarge and alter our conceptions not only of cellulose and keratin, but of pseudopodia
and cilia, of bone and muscle, and of the naked surface of the cell. See L. E. R.
Picken, The fine structure of biological systems, Biol. Reviews, xv, pp. 133-67, 1940.
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surface constantly changing its form, passing from one phase to

another of an equihbrium which is never stable for more than a

moment, and which death restores to the stable equilibrium of a

sphere. The former class, which rest in stable equihbrium, must

fall (as we have seen) into two classes—those whose equilibrium

arises from liquid surface-tension alone, and those in whose con-

formation some other pressure or restraint has been superimposed

upon ordinary surface-tension.

To the fact that all these organisms belong to an order of

magnitude in which form is mainly, if not wholly, conditioned and

controlled by molecular forces is due the hmited range of forms

which they actually exhibit. They vary according to varying

physical conditions. Sometimes they do so in so regular and

orderly a way that w^e intuitively explain them as "phases of a

Hfe-history," and leave physical properties and physical causation

alone: but many of their variations of form we treat as exceptional,

abnormal, decadent or morbid, and are apt to pass these over in

neglect, while we give our attention to what we call a typical or

"characteristic" form or attitude. In the case of the smallest

organisms, bacteria, micrococci, and so forth, the range of form is

especially limited, owing to their minuteness, the powerful pressure

which their highly curved surfaces exert, and the comparatively

homogeneous nature of their substance. But within their narrow

range of possible diversity these minute organisms are protean in

their changes of form. A certain species will not only change its

shape from stage to stage of its little "cycle" of hfe; but it will

be remarkably different in outward form according to the circum-

stances under which we find it, or the histological treatment to

which we subject it. Hence the pathological student, commencing

the study of bacteriology, is early warned to pay little heed to

differences of form, for purposes of recognition or specific identi-

fication. Whatever grounds we may have for attributing to

these organisms a permanent or stable specific identity (after

the fashion of the higher plants and animals), we can seldom

safely do so on the ground of definite and always recognisable

form: we may often be inclined, in short, to ascribe to them a

physiological (sometimes a "pathogenic") rather than a morpho-

logical specificity.
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Many unicellular forms, and a few other simple organisms, are

spherical, and serve to illustrate in the simplest way the point at

issue. Unicellular algae, such as Protococcus or Halisphaera, the

innumerable floating eggs of fishes, the floating unilocular foraminifer

Orbulina, the lavely green multicellular Volvox of our ponds, all

these in their several grades of simplicity or complication are so

many round drops, spherical because no alien forces have deformed

or mis-shapen them. But observe that, with the exception of

Volvox, whose spherical body is covered wholly and uniformly with

minute ciha, all the above are passive or inactive forms; and in a

"resting" or encysted phase the spherical form is common and

general in a great range of unicellular organisms.

Conversely, we see that those unicellular forms which depart

jUBrkedly from sphericity—excluding for the moment the amoeboid

forms and those provided with skeletons

—are all cihate or flagellate. Ciha and

flagella are sui generis ; we know nothing

of them from the physical side, we cannot

reproduce or imitate them in any non-

hving drop or fluid surface. But we can

easily see that they have an influence on

form, besides serving for locomotion.

When our httle Monad or Euglena

develops a flagellum, that is in itself an

indication of asymmetry or "polarity,"

of non-homogeneity of the little cell ; and

in the various flagellate types the flagellum or its analogues always

stand on prominent points, or ends, or edges of the cell—on parts,

that is to say, where curvature is high and surface-tension may be

expected to be low—for the product of surface-tension by mean

curvature tends to be constant.

Fig. 123. A flagellate "monad,"

Distigma proteus Ehr,

After Saville Kent.

The minute dimensions of a cilium or a flagellum are such that the molecular

forces leading to surface-tension must here be under peculiar conditions and
restraints; we cannot hope to understand them by comparison with a whip-

lash, or through any other analogy drawn from a different order of magnitude.

I suspect that a ciliary surface is always electrically charged, and that

a point-charge is formed or induced in each cilium or flagellum. Just as we
learn the properties of a drop or a jet as phenomena proper to their scale of

magnitude, so some day we shall learn the very different physical, but
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microcosmic, properties of these minute, mobile, pointed, fluid or semi-fluid

threads.*

Cilia, like flagella, tend to occupy positions, or cover surfaces,

which would otherwise be unstable; and often indeed (as in a

trochosphere larva or even in a Rotifer) a ring of cilia seems to

play the very part of one of Plateau's wire rings, supporting and

steadying the semi-fluid mass in its otherwise unstable configura-

tion. Let us note here (in passing) what seems to be an analogous

phenomenon. Chitinous hairs, spines or bristles are common and

characteristic structures among the smaller Crustacea, and more or

less generally among the Arthropods. We find them at every

exposed point or corner; they fringe the sharp edge or border of

a limb; as we draw the creature, we seem to know where to put

them in ! In short, they tend to occur, as the flagella do, just where

the surface-tension would be lowest, if or when the surface was in

a fluid condition.

Of the other surfaces of Plateau, we find cylinders enough and

to spare in Spirogyra and a host of other filamentous algae and

fungi. But it is to the vegetable kingdom that we go to find them,

where a cellulose envelope enables the cyUnder to develop beyond

its ordinary limitations.

The unduloid makes its appearance whenever sphere or cyhnder

begin to give way. We see the transitory figure of an unduloid in

the normal fission of a simple cell, or of the nucleus itself; and we
have already seen it to perfection in the incipient headings of a

spider's web, or of a pseudopodial thread of protoplasm. A large

number of infusoria have unduloid contours, in part at least; and

this figure appears and reappears in a great variety of forms. The

cups of various Vorticellae (Fig. 124), below the ciliated ring, look

like a beautiful series of unduloids, in every gradation of form, from

what is all but cylindrical to all but a perfect sphere; moreover

successive phases in their hfe-historyappear as mere graded changes

* It is highly characteristic of a cilium or a flagellum that neither is ever seen

motionless, unless the cell to which it belongs is moribund. "I believe the motion
to be ceaseless, unconscious and uncontrolled, a direct function of the chemical

and physical environment "; tieorge Bidder, in Presidential Address to Section D,
British Associqtion, 1927. Cf. also James Gray, Proc. R.S. (B), xcix, p. 398,

1926.
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of unduloid form. It has been shewn lately, in one or two

instances at least, that species of Vorticella may "metamorphose"

into one another : in other words, that contours supposed to charac-

terise species are not "specific" These VorticelUd unduloids are

>^-

Fig. 124. Various species of Vorticella.M
Fig. 1 25. Various species of Salpingoeca.

Fig. 126. Various species of Tintinnus, Dinohryon and Codonella.

After Saville Kent and others.

not fully symmetrical ; rather are they such unduloids as develop

when we suspend an oil-globule between two unequal rings, or blow

a bubble between two unequal pipes. For our Vorticellid bell hangs

by two terminal supports, the narrow stallj to which it is attached

below, and the thickened ring from which spring its circumoral

cilia; and it is most interesting to see how, when the bell leaves
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its stalk (as sometimes happens) and swims away, a new ring of

cilia comes into being, to encircle and support its narrow end.

Similar unduloids may be traced in even greater variety among

other famihes or genera of the Infusoria. Sometimes, as in Vorticella

itself, the unduloid is seen in the contour of the soft semifluid

body of the hving animal. At other times, as in Salpingoeca,

Tintinnus, and many other genera, we have a membranous cup

containing the animal, but originally secreted by, and moulded

upon, its semifluid hving surface. Here we have an excellent

illustration of the contrast between the different ways in which

such a structure may be regarded and interpreted. The teleological

explanation is that it is developed for the sake of protection,

127. Vaginicola. Fig. 128. FolUculina.

as a domicile and shelter for the httle organism within. The

mechanical explanation of the physicist (seeking after the "efficient,"

not the "final" cause) is that it owes its presence, and its actual

conformation, to certain chemico-physical conditions: that it was

inevitable, under the given conditions, that certain constituent

substances present in the protoplasm should be drawn by molecular

forces to its surface layer; that under this adsorptive process, the

conditions continuing favourable, the particles accumulated and

concentrated till they formed (with the help of the surrounding

medium) a pellicle or membrane, thicker or thinner as the case

might be; that this surface pellicPe or membrane was inevitably

bound, by molecular forces, to contract into a surface of the

least possible area which the circumstances permitted; that in

the present case the symmetry and "freedom" of the system

permitted, and ipso facto caused, this surface to be a surface of

revolution; and that of the few surfaces of revolution which, as
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being also surfaces minimae areae, were available, the unduloid was

manifestly the one permitted, and ipso facto caused, by the dimen-

sions of the organism and other circumstances of the case. And

just as the thickness or thinness of the pellicle

was obviously a subordinate matter, a mere

matter of degree, so we see that the actual

outhne of this or that particular unduloid is

also a very subordinate matter, such as physico-

chemical variants of a minor order would suffice

to -bring about; for between the various undu-

loids which the various species of Vorticella

represent, there is no more real difference than

that difference of ratio or degree which exists

between two circles of different diameter, or

two hnes of unequal length.

In many cases (of which' Fig. 129 is an

example) we have a more or less unduloid form

exhibited not by a surrounding pelHcle or shell,

but by the soft protoplasmic body of a ciliated

organism; in such cases the form is mobile,

and changes continually from one to another

unduloid contour according to the movements

of the animal.* We are deahng here with no

stable equihbrium, but possibly with a subtle

problem of ''stream-lines," as in the difficult

but beautiful problems suggested by the form

of a fish. But this whole class of cases, and

of problems, we merely take note of here; we shall speak of them

again, but their treatment is hard.

In considering such series of forms as these various unduloids we

are brought sharply up (as in the case of our bacteria or micrococci)

against the biological concept of organic species. In the intense

classificatory activity of the last hundred years it has come about

that every form which is apparently characteristic, that is to Say

which is capable of being described or portrayed, and of being

* Doflein lays stress, in like manner, on the fact that Spirochade, unlike

Spirillum, "ist nicht von einer starren Membran umhiillt," and that waves of

contraction may be seen passing down its body.

Fig. 129. Trachelo-

phyllum. After

Wreszniowski.
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recognised when met with again, has been recorded as a species—
for we need not concern ourselves with the occasional discussions,

or individual opinions, as to whether such and such a form deserves

"specific rank," or be "only a variety." And this secular labour

is pursued in direct obedience to the precept of the Systema Naturae
—''ut sic in summa confusione rerum apparenti, summus conspiciatur

Naturae ordo.'' In like manner the physicist records, and is entitled

to record, his many hundred "species" of snow-crystals*, or of

crystals of calcium carbonate. Indeed the snow-crystal illustrates to

perfection how Nature rings the changes on every possible variation

and permutation and combination of form: subject only to the

condition (in this instance) that a snow-crystal shall be a plane,

symmetrical, rectilinear figure, with all its external angles those of

a regular hexagon. We may draw what we please on a sheet of

"hexagonal paper," keeping to its lines; and when we repeat our

drawing, kaleidoscope-fashion, about a centre, the stellate figure so

obtained is sure to resemble one or another of the many recorded

species of snow-crystals. And this endless beauty of crystalline

form is further enhanced when the flakes begin to thaw, and all

their feathery outlines soften. But regarding these "species" of his,

the physicist makes no assumptions: he records them simpliciter;

he notes, as best he can, the circumstances (such as temperature or

humidity) under which each occurs, in the hope of elucidating the.

conditions which determine their formation f; but above all, he

* The case of the snow-crystals is a particularly interesting one; for their

"distribution" is analogous to what we find, for instance, among our microscopic

skeletons of Radiolarians. That is to say, we may one day meet with myriads
of some one particular form or species, and another day with myriads of another
while at another time and place we may find species intermingled in all but
inexhaustible variety. Cf. e.g. J. Glaisher, Illustrated London News, Feb. 17, 1855
Q.J.M.S. m, pp. 179-185, 1855; Sir Edward Belcher, Last of the Arctic Voyages,

II, pp. 288-306 (4 plates), 1855; William Scoresby, An Account of the Arctic Regions,

Edinburgh, 1820; G. Hellmann, Schneekrystalle, Berlin, 1893; Bentley and Hum
phreys. Snow Crystals, New York, 1931; and the especially beautiful figures of

Nakaya and Hasikura in Journ. Fac. Sci. Hokkaido, Dec. 1934.

t Every snow-crystal tells, more or less plainly, the story of its own development.
The cold upper air is saturated with water-vapour, but this is scanty and rarefied

compared with the space in which snow-crystallisation is going on. Hence
crystallisation tends to proceed only along the main axes, or cardinal framework,
of the crystalline structure of ice ; in so doing it gives a visible picture or actual

embodiment of the trigonal-hexagonal space-lattice, in the endless permutations
and combinations of its constituent elements.
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does not introduce the element of time, and of succession, or discuss

their origin and affihation as an historical sequence of events. But

in biology, the term species carries with it many large though often

vague assumptions; though the doctrine or concept of the "per-

manence of species" is dead and gone, yet a certain quasi-permanency

is still connoted by the term. If a tiny foraminiferal shell, a Lagena

for instance, be found hving to-day, and a shell indistinguishable

from it to the eye be found fossil in the Chalk or some still more

remote geological formation, the assumption is deemed legitimate

that that species has "survived," and has handed down its minute

specific character or characters from generation to generation,

unchanged for untold milHons of years*. If the ancient forms be

Hke to rather than identical with the recent, we still assume an

unbroken descent, accompanied by the hereditary transmission of

common characters and progressive variations. And if two identical

forms be discovered at the ends of the earth, still (with occasional

slight reservations on the score of possible "homoplasy") we build

hypotheses on this fact of identity, taking it for granted that the

two appertain to a common stock, whose dispersal in space must

somehow be accounted for, its route traced, its epoch determined,

and its causes discussed or discovered. In short, the naturaUst

admits no exception to the rule that a natural classification can only

be a genealogical one, nor ever doubts that '"The fact that we are able

to classify organisms at all in accordance with the structural charac-

teristics which they present is due to the fact of their being related by

descenf\'' But this great and valuable and even fundamental

generahsation sometimes carries us too far. It may be safe and

sure and helpful and illuminating when we apply it to such complex

entities—such thousand-fold resultants of the combination and

permutation of many variable characters—as a horse, a lion or an

eagle; but (to my mind) it has, a very different look, and a far less

firm foundation, when we attempt to extend it to minute organisms

whose specific characters are few and simple, whose simplicity

* Cf. Bergson, Creative Evolution, p. 107: "Certain Foraminifera have not

varied since the Silurian epoch. Unmoved witnesses of the innumerable revolu-

tions that have upheaved our planet, the Lingulae are today what they were at

the remotest times of the palaeozoic era."

t Ray Lankester, A.M.N.H. (4), xi, p. 321, 1873.
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becomes more manifest from the point of view of physical and

mathematical analysis, and whose form is referable, or largely

referable, to the direct action of a physical force. When we come

to the minute skeletons of the Radiolaria we shall again find our-

selves dealing with endless modifications of form, in which it becomes

more and more difficult to discern, and at last vain and hopeless to

apply, the guiding principle of affihation or '^phylogeny.''

Among the Foraminifera we have an immense variety of forms,

which, in the hght of surface-tension and of the principle of minimal

area, are capable of explanation and of reduction to a small number

of characteristic types. Many of them are composite structures,

formed by the successive imposition of cell upon cell, and these we shall

deal with later on ; let us glance here at the simpler conformations

exhibited by the single chambered or " monothalamic " genera, and

perhaps one or two of the simplest composites.

We begin with forms like Astrorhiza (Fig. 320, p. 703), which are

large, coarse and highly irregular, and end with others which are

minute and delicate, and which manifest a perfect and mathe-

matical regularity. The broad difference between these two types

is that the former are characterised, like Amoeba, by a variable

surface-tension, and consequently by unstable equihbrium; but the

strong contrast between these and the regular forms is bridged over

by various transition-stages, or differences of degree. Indeed, as

in all other Rhizopods, the very fact of the emission of pseudopodia,

which are especially characteristic of this group of animals, is

a sign of unstable surface-equihbrium ; and we must therefore

consider, or may at least suspect, that those forms whose shells

indicate the most perfect symmetry and equilibrium have secreted

these during periods when rest and uniformity of surface-conditions

contrasted with the phases of pseudopodial activity. The irregular

forms are in almost all cases arenaceous, that is to say they have

no soHd shells formed by steady adsorptive secretion, but only a

looser covering of sand grains with which the protoplasmic body

has come in contact and cohered. Sometimes, as in Ramulina, we

have a calcareous shell combined with irregularity of form; but

here we can easily see a partial and as it were a broken regularity,

the regular forms of sphere and cylinder being repeated in various
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parts of the ramified mass. When we look more closely at the

arenaceous forms, we find the same thing true of them; they

represent, in whole or part, approximations to the surfaces of

equilibrium, spheres, cylinders and so forth. In Aschemonella we
have a precise rephca of the calcareous Ramuliyia; and in Astrorhiza

itself, in the forms distinguished by jiaturalists as A. crassatina,

what is described as the " subsegmented interior*" seems to shew

Fig. 130. Various species of Zagrew«. After Brady.

the natural, physical tendency of the long semifluid cylinder of

protoplasm to contract at its limit of stability into unduloid

constrictions, as a step towards the breaking up into separate

spheres : the completion of which process is restrained or prevented

by contact with the unyielding arenaceous covering.

Passing to the typical calcareous Foraminifera, we have the most

symmetrical of all possible types in the perfect sphere of Orbulina
;

this is a pelagic organism, whose floating habitat gives it a field of

Brady, Challenger Monograph, pi. xx, p. 233.
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force of perfect symmetry. Save for one or two other forms which

are also spherical, or approximately so, like Thurammina, the rest

of the monothalamic calcareous

Foraminifera are all comprised by

naturalists within the genus

Lagena. This large and varied

genus consists of "flask-shaped"

shells, whose surface is that of an

unduloid, or, hke that of a flask

itself, an unduloid combined with

a portion of a sphere. We do

not know the circumstances under

which the shell oiLagena is formed,

nor the nature of the force by

which, during its. formation, the

surface is stretched out into the

unduloid form; but we may be

pretty sure that it is suspended

vertically in the sea, that is to

say in a position of symmetry as

regards its vertical axis, about

which the unduloid surface of re-

volution is symmetrically formed.

4 5 6

Fig. 131. Roman pottery, for comparison

with species oi Lagena. E.g., 1, 2, with

L. sulcata; 3, L. orbignyana; 4, L.

striata; 5, L. crenata; 6, L. stelligera.

At the same time we have other

types of the same shell in which the form is more or less flattened

;

and these are doubtless the cases in which such symmetry of position

was not present, or was replaced by a broader, lateral contact with

the surface pellicle*.

While Orhulina is a simple spherical drop, Lagena suggests to our

minds a hanging drop, drawn out to a longer or shorter neck by

* That the Foraminifera not only can but do hang from the surface of the

water is confirmed by the following apt quotation which I owe to Mr E. Heron

-

Allen: "Quand on place, comme il a ete dit, le depot provenant du lavage des

fucus dans un fiacon que Ton remplit de nouvelle eau, on voit au bout d'une heure

environ les animaux [Gromia dujardinii] se mettre en mouvement et commencer

a grimper. Six heures apres ils tapissent Texterieur du flacon, de sorte que les plus

eleves sont a trente-six ou quarante-deux millimetres du fond; le lendemain

beaucoup d'entre eux, apres avoir atteint le niveau du liquide, ont continue a rarnper

a sa surface, en se laissant pendre au-dessous comme certains mollusques gastero-

podes." (F. Dujardin, Observations nouvelles sur les pretendus cephalopodes

microscopiques, Ann. des Sci. Nat. (2), iii, p. 312, 1835.)
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its own weight, aided by the viscosity of the material. Indeed the

various hanging drops, such as Mr C. R. DarUng shews us, are the

most beautiful and perfect unduloids, with spherical ends, that it

is possible to conceive. A suitable hquid, a httle denser than water

and incapable of mixing with it (such as ethyl benzoati), is poured

on a surface of water. It spreads over the surface and gradually

forms a hanging drop, approximately hemispherical; but as more
liquid is added the drop sinks or rather stretches downwards, still

adhering to the surface fihn; and the balance of forces between

gravity and surface-tension results in the unduloid contour, as the

increasing weight of the drop tends to stretch it out and finally

Sreak it in two. At the moment of rupture, by the way, a tiny

Fig. 132. Large "hanging drops" ot oil. After Darling.

droplet js formed in the attenuated neck, such as we described in

the normal division of a cyhndrical thread.

The thin, fusiform, pointed, non-globular Lagenas are less easily

explained. Surface-tension, which tends to keep the drop spherical,

is overmastered here, and the elongate shape suggests the viscous

drag of a shearing fluid*.

To pass to a more highly organised class of animals, v^e find the unduloid

beautifully exemplified in the little flask-shaped shells of certain Pteropod

mollusca, e.g. Cuvierina-\. Here again the symmetry of the figure would

at once lead us to suspect that the creature lived in a position of symmetry
to the surrounding forces, as for instance if it floated in the ocean in an

erect position, that is to say with its long axis coincident with the direction

of gravity; and this we know to be actually the mode of life of the little

Pteropod.

* Cf. G. I. Taylor, The formation ofemulsions in definable fields of flow, Proc. R.S.

(A), No. 858, p. 501, 1934.

t Cf. Boas, Spolia Atlantica, 1886, pi. 6.
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Many species of Lagena are complicated and beautified by a

pattern, and some by the superaddition to the shell of plane

extensions or "wings." These latter give a secondary, bilateral

symmetry to the little shell, and are strongly suggestive of a phase

or period of growth in which it lay horizontally on the surface,

instead of hanging vertically from the surface-film : in which, that

is to say, it was a floating and not a hanging drop. The pattern

is of two kinds. Sometimes it consists of a sort of fine reticulation,

with rounded or more or less hexagonal interspaces: in other cases

it is produced by a symmetrical series of ridges or folds, usually

longitudinal, on the body of the flask-shaped cell, but occasionally

transversely arranged upon the narrow neck. The reticulated and

folded patterns we may consider separately. The netted pattern

is very similar to the wrinkled surface of a dried pea, or to the more

regular wrinkled patterns on poppy and other seeds and even pollen-

grains. If a spherical body after developing a "skin" begin to

shrink a little, and if the skin have so far lost its elasticity as to

be unable to keep pace with the shrinkage of the inner mass, it will

tend to fold or wrinkle; and if the shrinkage be uniform, and the

elasticity and flexibihty of the skin be also uniform, then the amount

of foldings will be uniformly distributed over the surface. Little

elevations and depressions will appear, regularly interspaced, and

separated by concave or convex folds. These being of equal size

(unless the system be otherwise perturbed), each one wiU tend to

be surrounded by six others; and when the process has reached its

limit, the intermediate boundary-walls, or folds, will be found

converted into a more or less regular pattern of hexagons. To these

symmetrical wrinkles or shrinkage-patterns we shall return again.

But the analogy of the mechanical wrinkHng of the coat of a

seed is but a rough and distant one; for we are deahng with

molecular rather than with mechanical forces. In one of Darling's

experiments, a little heavy tar-oil is dropped on to a saucer of

water, over which it spreads in a thin film shewing beautiful

interference colours after the fashion of those of a soap-bubble.

Presently tiny holes appear in the film, which gradually increase

in size till they form a cellular pattern or honeycomb, the oil

gathering together in the meshes or walls of the cellular net. Some

action of this sort is in aU probability at work in a surface-film
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of protoplasm covering the shell. As a physical phenomenon the

actions involved are by no means fully understood, but surface-

tension, diffusion and cohesion play their respective parts therein*.

The very perfect cellular patterns obtained by Leduc (to which we

shall have occasion to refer in a subsequent chapter) are diffusion

patterns on a larger scale, but not essentially different.

The folded or pleated pattern is doubtless to be explained, in

a general way, by the shrinkage of a surface-film under certain

conditions of viscous or frictional restraint.

A case which (as it seems to me) is closely

alhed to that of our foraminiferal shells is

described by Quincke t, who let a film of

chromatised gelatin or of resin set and harden

upon a surface of quicksilver, and found that

the little solid pelHcle had been thrown into

a pattern of symmetrical folds, as fine as a
Fig.^ 133.

diffraction grating. If the surface thus folded

or wrinkled be a cyhnder, or any other figure with one principal axis

* This cellular pattern would seem to be related to the "cohesion figures"

described by Tomlinson in various surface-films {Phil. Mag. 1861-70); to the

"tesselated structure" on liquid surfaces described by James Thomson in 1882

{Collected Papers, p. 136); and (more remotely) to the tourhillons cellulaires of

Benard, Ann. de Chimie (7), xxiii, pp. 62-144, 1901; (8), xxiv, pp. 563-566, 1911,

Bev. gener. des Sci. xi, p. 1268, 1900; cf. also E. H. Weber, Mikroskopische Beo-

bachtungen sehr gesetzmassiger Bewegungen welche die Bildung von Niederschlagen

harziger Korper aus Weingeist begleiten, Poggend. Ann. xciv, pp. 447-459, 1855;

etc. Some at least of TomHnson's cohesion-figures arise, according to van Mens-

brugghe, from the disengagement of minute bubbles of gas, when a fluid holding

gases in solution comes in contact with a fluid of lower surface-tension. The whole

phenomenon is of great interest and various appearances have been referred to

it, in biology, geology, metallurgy and even astronomy: for the flocculent clouds

in the solar photosphere shew an analogous configuration. (See letters by Kerr

Grant, Larmor, Wager and others, in Nature, April 16 to June 11, 1914; also

Rayleigh, Phil. Mag. xxxii, p. 529, 1916; G. T. Walker, Clouds, natural and
artificial,' i?oz/a/ Inst. 8 Feb. 1935; etc.) In many instances, marked by strict

symmetry or regularity, it is very possible that the interference of waves or ripples

may play its part in the phenomenon. But in the majority of cases, it is fairly

certain that localised centres of action, or of diminished tension, are present, such

as might be provided by dust-particles in the case of Benard's experiment (cf.

infra, p. 503).

t Quincke, Ueber physikalische Eigenschaften diinner fester Lamellen, Sitzungsb,

Berlin. Akad. 1888, p. 789; Ueber ansichtbare Eigenschaften, etc., Ann. d. Physik,

1920, p. 653. Quincke found that "sehr kleine Menge fremder Substanz haben

eine grosse Einfluss auf die Bildung der Schaumwande."
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of symmetry, such as an ellipsoid or unduloid, the folds will tend

to be related to the ax's of symmetry, and we may expect accordingly

to find regular longitudinal, or regular transverse wrinkling. Now
as a matter of fact we almost invariably find in Lagena the former

condition: that is to say, in our ellipsoid or unduloid shell, the

puckering takes the form of the vertical fluting on a column, rather

than that of the transverse pleating of an accordion; and further,

there is often a tendency for such longitudinal flutings to be more

or less locaHsed at the end of the eUipsoid, or in the region where

the unduloid merges into its spherical base*. In the latter region

we often meet with a regular series of short longitudinal folds, as

in the forms denominated L. semistriata. All these various forms

of surface can be imitated, or precisely reproduced, by the art of

the glass-blower; and they can be seen in a contracting bubble of

saponin, though not in the more fluid soap-bubble. They remind

one of the ribs or flutings in the film or sheath which splashes up

to envelop a smooth pebble dropped into a hquid, as Mr Worthington

has so beautifully shewn.

In Mr Worthington's experiment there appears to be something

of the nature of a viscous drag in the surface-pellicle ; but whatever

be the actual cause of variation of tension, it is not difiicult to

see that there must be in general a tendency towards longitudinal

puckering or "fluting" in the case of a thin-walled cyhndrical or.

other elongated body, rather than a tendency towards transverse

puckering, or "pleating." For let us suppose that some change

takes place involving an increase of surface-tension in some small

area of the curved wall, and leading therefore to an increase of

pressure : that is to say let T become T + t, and P become P + p.

Our new equation of equilibrium, then, in place of P = T/r -f- T/r',

becomes

T+t T+t
P + P = —— + —J-'

* Certain palaeontologists (e.g. Haeusler and Spandel) have asserted that in

each family or genus the plain smooth-shelled forms are primitive and ancient,

and that the ribbed and otherwise ornamented shells make their appearance at

later dates in the course of advancing evolution (cf. Rhumbler, Foraminiferen

der Plankton-Expedition, 1911, p. 21). If this were true it would be of fundamental

importance: but this book of mine would not deserve to be written.
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and by subtraction,

p = tlr + tjr'.

Now if r< r\ t/r > tjr'.

Therefore, in ordei to produce the small increment of pressure p,

it is easier to do so by increasing tjr than tjr' ; that is to say, the

easier way is to alter or diminish r. And the same will hold good

if the tension and pressure be diminished instead of increased.

This is as much as to say that, when corrugation or "ripphng"

of the walls takes place owing to small changes of surface-tension,

and consequently of pressure, such corrugation is more Hkely to

take place in the plane of r—that is to say, in the 'plane of greatest

curvature. And it follows that in such a figure as an ellipsoid,

wrinkling will be most likely to take place not only in a longitudinal

direction but near the extremities of the figure, that is to say again

in the region of greatest curvature.

The longitudinal wrinkUng of the flask-shaped bodies of our

Lagenae, and of the more or less cyhndrical cells of many other

Foraminifera (Fig. 134), is in complete accord with the above con-

siderations ; but nevertheless, we soon find that .our result is not

a general one but is defined by certain hmiting conditions, and is

accordingly subject to what are, at first sight; important exceptions

For instance, when we turn to the narrow neck of the Lagena we

see at once that our theory no longer holds ; for the wrinkling which

was invariably longitudinal in the body of the cell is as invariably

transverse in the narrow neck. The reason for the difference is not

far to seek. The conditions in the neck are very different from

those in the expanded portion of the cell : the main difference being

that the thickness of the wall is no longer insignificant, but is of

considerable magnitude as compared with the diameter, or circum-

ference, of the neck. We must accordingly take it into account in

considering the bending moments at any point in this region of the

shell-wall. And it is at once obvious that, in any portion of the

narrow neck, flexure of a wall in a transverse direction will be very

difficult, while flexure in a longitudinal direction will be compara-

tively easy; just as, in the case of a long narrow. strip of iron, we

may easily bend it into folds running transversely to its long axis,

but not the other way. The manner in which our little Lagena-sheW
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tends to fold or wrinkle, longitudinally in its wider part and trans-

versely or annularly in its narrow neck, is thus completely explained.

An identical phenomenon is apt to occur in the little flask-shaped

gonangia, or reproductive capsules, of some of the hydroid zoophytes.

In the annexed drawings of these gonangia in two species of Cam-

panularia, we see that in one case the httle vesicle has the flask-

shaped or unduloid configuration of a Lagena; and here the walls

of the flask are longitudinally fluted, just after the manner we have

witnessed in the latter genus. In the other Campanularian the

vesicles are long, narrow and tubular, and here a transverse folding

Fig. 134. Nodosaria scalaria

Batsch.

135. Gonangia of Canjpanularians.

(a) C. gracilis; [b) C. grandis.

After AUman.

or pleating takes the place of the longitudinally fluted pattern;

and the very form of the folds or pleats is enough to suggest that

we are not dealing here with a simple phenomenon of surface-tension,

but with a condition in which surface-tension and stiffness are both

present, and play their parts in the resultant form.

An everted rim, or short neck, may arise in various ways apart

from the phenomenon of the hanging drop. To make a "thistle-

head" the glassblower blows a bubble, and from that another one;

after blowing the latter up large and thin he crushes it to pieces,

and melting down what is left of it he forms the rim. I take it that

the neck or rim of the shell in Diffiugia is formed in an analogous

way, in connection with the growth of a new individual at the mouth
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of the first. There is a very neat expanded orifice in the cyst of

Chromulina (Fig. 136); it is doubtless fashioned in just as simple

a way, but how I know not.

Passing from the sohtary flask-shaped cell of Lagena, but without

leaving the Foraminifera, we find in Nodosaria, Rheophax or Sagrina

constricted cyUnders, or successive unduloids, such as are repre-

sented in Fig. 137. In some of these, as in the arenaceous genus

Fig. 136. Flask-shaped shells or cysts, a, b, Chromulina and

Deropyxis (Flagellata); c, Difflugia.

tig. llil . Various species of Nodosaria, Rheophax. Sagrina. After Brady.

Rheophax, we have to do with the ordinary phenomenon of a

partially segmenting cylinder. But in others, the structure is not

developed out of a continuous protoplasmic cyhnder, but, as we

can see by examining the interior of the shell, it has been formed

in successive stages, beginning with a simple unduloid ''Lagena,''

about which, after it solidified, another drop of protoplasm accu-

mulated, and in turn assumed the unduloid or lagenoid form. The

chains of interconnected bubbles which Morey and Draper made many
years ago of melted resin are a similar if not identical phenomenon*.

* See Sillijnan's Journal, ii, p. 179, 1820; and cf. Plateau, op. cit. ii, pp. 134, 461.



V] OF THE QUIET OF THE DEEP SEA 423

Fishes shew a vast though hmited variety of form; and some of

the strangest shapes are found in the great depths of the ocean.

Here, in unchanging temperature, in darkness save for a few

phosphorescent rays, above all in unruffled stillness and eternal

Fig. 138. Deep-sea fishes (Stomiatidae). a,Lamprotoxusflagellibarbis; b, Eustomias

dactylobus; c, E. parri; d, E. schmidti; e, E. silvescens. After Tate Regan and

Trewavas.

calm*, the conditions of hfe are strange indeed. In deep-sea fishes

length and attenuation are common characters of the body and of

its parts. A barbel below the hp may grow to ten times the

whole length of the fish ; it ends, commonly, in a httle bulb or blob

;

it may give off threadlike branches, and these last slender filaments

* In Overbeck's jet-experiments {supra, p. 394) the water into which the jet is

led must first stand for many hours, till all internal movements and temperature-

differences are eliminated.



424 THE FORMS OF CELLS [ch.

are sometimes finely beaded* ; and slight differences in the beading

and branching are said to characterise allied species of fish. Such

a barbel looks hke a jet or branching stream of one fluid falhng

through another. It may indeed

be that in these quiet depths

growth easily follows its fines of

least. resistance, and that in the

shaping of these pecufiar out-

growths hydrodynamical and

capillary forces are taking the

upper hand.

We have found it easy to illus-

trate the sphere, the cyfinder and

the unduloid, three of the six

"surfaces of Plateau," all with

an endless wealth of illustration

among the simplest of organisms.

The plane we need hardly look

for among the finite outlines of a

fluid body; and the catenoid, also

*a surface of zero mean curvature,

can likewise only be a rare and

transitory configuration. One last

surface still remains, namely the

nodoid; and there also remains

one very common but most re-

markable Protozoan configura-

Fig. 139. Stentor, a cUiate infusorian: tion, that of the cifiate Infusoria,
from Savile Kent. ii.i, ^.i, j. • ,.- r i.

to the most characteristic leature

of which we have not so far found a physical analogue. Here the

curved contour seems to enter, re-enter, and disappear within the

substance of the body, so bounding a deep and twisted space or

passage, which merges with the fluid contents and vanishes within

the cell, and is called by naturafists the "gullet." This very

pecufiar and compficated structure is only kept in equifibrium, and

in existence, by the constant activity of cifia over the general surface

* See, for instance, C. Tate Regan and E. Trewavas on The Stomiatidae of the

Dana Expedition, 1930; W. Beebe, Deep-sea Stomiatoids, Copeia, Dec. 1833.
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of the body and very especially in the said gullet or re-entrant

portion of the surface. Now we have seen the nodoid to be a curved

surface, re-entering on itself and endless; no method of support,

by wire-rings or otherwise, enables us to construct or reahse more

than a small portion of it. But the typical cihate, such as Para-

moecium, looks just hke what we might expect a^ nodoid surface to

be, if we could only realise it (or a single segment of it) in a drop of

fluid, and imagine it to be kept in quasi-equiUbrium by continual

cihary activity. I suspect, indeed, that here is nothing more, and*

nothing less, than a partial realisation of the nodoid itself; that the

so-called gullet is but the characteristic inversion or "kink" in that

curve; and that the ciHa, which normally clothe the surface and

always line the gullet, are needed to reahse and to maintain the

unstable equihbrium of the figure. If this be so—it is a suggestion

and no more—we shall have found among our simple organisms the

complete realisation, in varying abundance, of each and all of the

six surfaces of Plateau. On each and all of them we have a host

of beautiful "patterns" of various sorts; all of them so beautiful

and so symmetrical that they ought to be capable of geometric

representation—and all waiting for their interpreter

!

From all these configurations, which the law of minimal area

controls and dominates, Aynoeba stands aloof and alone. The rest

are all figures of equilibrium, unstable though it may sometimes be.

But Amoeba is the characteristic case of a fluid surface without an

equihbrium; it is the very negation of stabihty. In composition

it is neither constant nor homogeneous ; its chemistry is in constant

flux, its surface energies vary from here to there, its fluid substance

is drawn hither and thither; within and without it is never still,

be its motions swift or be they slow. The heterogeneity of its

system points towards a maximal surface-area, .rather than a

minimal one ; only here and there, in small portions of its hetero-

geneous substance, do we see the rounded contours of a fluid drop,

in token of temporary equihbrium. Only when its heterogeneous

reactions quieten down and the little living speck enters on its

"resting-stage," does the protoplasmic body withdraw itself into a

sphere and the law of area minima come into its own. Physically

analogous is the case of such comphcated pseudopodia, or " axopodia ",

as we find among the Foraminifera and Hehozoa : where the whole
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fabric is in a flux, and currents flow and granules are carried

hither and thither. Here again there is no statical equilibrium;

but surface tension varies, as does the chemistry of the protoplasm,

from oiie spot to another.

The great oceanic group of the Radiolaria, and the highly com-

plicated skeletons which they construct, give us many beautiful

illustrations of physical phenomena, among which the efl'ects of

surface-tension are as usual prominent. But we shall deal later on

with these little skeletons under the head of spicular concretions.

In a simple and typical Heliozoan, such as the sun-animalcule,

Actinophrys sol, we have a "drop" of protoplasm, contracted by its

surface tension into a spherical form. Within this heterogeneous

protoplasm are more fluid portions, and a similar surface-tension

causes these also to assume the form of spherical "vacuoles," or of

little clear drops within the big one; unless indeed they become

numerous and. closely packed, in which case they run together and

constitute a "froth," such as we shall study in the next chapter.

One or more of such clear spaces may be what is called a "con-

tractile vacuole " : that is to say, a droplet whose surface-tension

is in unstable equilibrium and is apt to vanish altogether, so that

the definite outHne of the vacuole suddenly disappears*. Again,

within the protoplasm are one or more nuclei, whose own surface-

tension draws them in turn into the shape of spheres. Outwards

through the protoplasm, and stretching far beyond the spherical

surface of the cell, run stiff linear threads of modified protoplasm,

reinforced in some cases by delicate siliceous needles. In either

case we know little or nothing about the forces which lead to their

production, and we do not hide our ignorance when we ascribe

their development to a "radial polarisation" of the cell. In the

case of the protoplasmic filament, we may (if we seek for a hypo-

thesis) suppose that it is somehow comparable to a viscid stream,

or "liquid vein," thrust or spirted out from the body of the cell.

But when it is once formed, this long and comparatively rigid

filament is separated by a distinct surface from the neighbouring

* The presence or absence of the contractile vacuole or vacuoles is one of the

chief distinctions, in systematic zoology, between the Heliozoa and the Radiolaria.

As we have seen on p. 295 (footnote), it is probably no more than a physical con-

sequence of the different conditions of existence in fresh and in salt water.
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protoplasm, that is to say, from the more fluid surface-protoplasm

of the cell; and the latter begins to creep up the filament, just as

water would creep up the interior of a glass tube, or the sides of

a glass rod immersed in the liquid. It is the simple case of a balance

between three separate tensions: (1) that between the filament and

the adjacent protoplasm, (2) that between the filament and the

adjacent water, and (3) that between the water and the protoplasm.

Catting these tensions respectively T/^, T^^,, and T^^^,, equilibrium

will be attained when the angle of contact between the fluid

T — T
protoplasm and the filament is such that cos a = -^~r^

—~'
- It is

evident in this case that the angle is a very small one. The precise

form of the curve is somewhat different from that which, under

ordinary circumstances, is assumed by a liquid which creeps up a

solid surface, as water in contact with air creeps up a surface of

glass; the -difference being due to the fact that here, owing to the

density of the protoplasm being all but identical wuth that of the

surrounding medium, the whole system is practically immune from

gravity. Under normal circumstances the curve is part of the

"elastic curve" by which that surface of revolution is generated

which we have called, after Plateau, the nodoid; but in the present

case it is apparently a catenary. Whatever curve it be, it obviously

forms a surface of revolution around the filament.

Since this surface-tension is symmetrical around the filament, the

latter will be pulled equally in all directions; in other words the

filament will tend to be set normally to the surface of the sphere,

that is to say radiating directly outwards from the centre. If the

distance between two adjacent filaments be considerable, the curve

will simply meet the filament at the angle a already referred to;

but if they be sufficiently near together, we shall have a continuous

catenary curve forming a hanging loop between one filament and

the other. And when this is so, and the radial filaments are more

or less symmetrically interspaced, we may have a beautiful system

of honeycomb-like depressions over the surface of the organism,

each cell of the honeycomb having a strictly defined geometric

configuration (cf. p. 710).

In the simpler Radiolaria. the spherical form of the entire organism

is equally well marked; and here, as also in the more complicated
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Heliozoa (such as Actinosphaerium), the organism is apt to be

differentiated into layers, so constituting sphere within sphere,

whose inter-surfaces become the seat of adsorption, and the locus

of skeletal secretion. One layer at least is close-packed with

vacuoles, forming an "alveolar meshwork," with the configura-

tions of which we shall attempt in another chapter to correlate

certain characteristic types of skeleton. In Actinosphaerium the

radial filaments pass through the outer layer, and seem to rest on

but do not penetrate the layer below; this must happen if the

surface-energy between the one plasma-layer and the other be less

than that between the filament and the water around*.

A very curious conformation is that of the vibratile "collar,"

found in Codosiga and the other "Choanoflagellates," and which we

also meet with in the "collar-cells" which line the interior cavities

of a sponge. Such collar-cells are always very minute, and the

collar is constituted of a very dehcate film which shews an undu-

latory or ripphng motion. It is a surface of revolution, and as it

maintains itself in equihbrium (though a somewhat unstable and

fluctuating one) it must be, under the restraining circumstances of

its case, a surface of minimal area. But it is not so easy to see

what these special circumstances are, and it is obvious that the

collar, if left to itself, must shrink or shrivel towards its base and

become confluent with the general surface of the cell ; for it has no

longitudinal supports and no strengthening ring at its periphery.

But in all these collar-cells, there stands within the annulus of the

collar a large and powerful cilium ot flagellum, in constant move-

ment; and by the action of this flagellum, and doubtless in part

also by the intrinsic vibrations of the collar itself, there is set up a

constant steady current in the surrounding water, whose direction

would seem to be such that it passes up the outside of the collar,

down its inner side, and out in the middle in the direction of the

flagellum; and there is a distinct eddy, in which foreign particles

tend to be caught, around the peripheral margin of the collar f.

* Cf. N. K. Koltzoff, AnaL Anzeiger, xli, p. 190, 1912.

t The very minute size of Codosiga, whose collar and flagellum measure about

30-40 /i,, and of all such collar-cells, make the apparently complex current-system

all the harder to comprehend. Cf. G. Lepage, Notes on C. botrytis, Q.J.M.S.
LXix, pp. 471-508, 1925.
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When the cell dies, that is to say when motion ceases, the collar

immediately shrivels away and disappears. It is notable, by the

way, that the edge of this little mobile cup is always smooth, never

notched or lobed as in the cases we have discussed

on p. 390 : this latter condition being the outcome

of a definite instability, marking the close of a

period of equihbrium. But the vibratile collar of

Codosiga is in "a steady state," its equihbrium,

such as it is, being constantly renewed and per-

petuated, like that of a juggler^s pole, by the

motions of the system. Somehow its existence is

due to the current motions and to the traction

exerted upon it through the friction of the stream

which is constantly passing by. In short, I think

that it is formed very much in the same way as

the cup-hke ring of streaming ribbons, which we

see fluttering and vibrating in the air-current of „. ,,^

a ventiktmg fan. If we turn once more to

Mr Worthington's Study of Splashes, we may find a curious

suggestion of analogy in the beautiful craters encirchng a central

jet (as the collar of Codosiga encircles the flagellum), which we see

produced in the later stages of the splash of a pebble.

Another exceptional form of cell, and beautiful manifestation of

capillarity, occurs in Trypanosomes, those tiny parasites of the

blood which are associated with sleeping-sickness and certain other

dire maladies of beast and man. These minute organisms consist

of elongated sohtary cells down one side of which runs a very

delicate frill, or "undulating membrane," the free edge of which is

seen to be sHghtly thickened, and the whole of which undergoes

rhythmical and beautiful wavy movements. When certain Trypano-

somes are artificially cultivated (for instance T. rotatorium, from the

blood of the frog), phases of growth are witnessed in which the

organism has no undulating membrane, but possesses a long cihum

or "flagellum," springing from near the front end, and exceeding

the whole body in length*. Again, in T. lewisii, when it reproduces

by "multiple fission," the products of this division are Hkewise

* Cf. Doflein, Lehrbuch der Protozoenkunde, 1911, p. 422.



430 THE FORMS OF CELLS [CH.

devoid of an undulating membrane, but are provided with a long

free flagellum*. It is a plausible assumption to suppose that, as

the flagellum waves about, it comes to lie near and parallel to the

body of the cell, and that the frill or undulating membrane is formed

by the clear, fluid protoplasm of the surface layer springing up in

Fig. 141. A, Trichomonas muris Hartmann; B, Trichomastix serpentis DobeU;

C, Trichomonas angusta Alexeieff. After Kofoid.

Fig. 142. A "Trypanosome.

a film to run up and along the flagellum, just as a soap-film would

form under similar circumstances.

This mode of formation of the undulating membrane or frill

appears to be confirmed by the appearances shewn in Fig, 14L

Here we have three little organisms closely allied to the ordinary

Trypanosomes, of which one, Trichomastix (B), possesses four

flagella, and the other two. Trichomonas, apparently three only:

* Cf. Minchin, Introduction to the Study of the Protozoa, 1914, p. 293, Fig. 127.
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the two latter possess the frill, which is lacking in the first*. But

it is impossible to doubt that when the frill is present (as in A and

C), its outer edge is constituted by the apparently missing flagellum

a, which has become attached to the body of the creature at the

point c, near its posterior end; and all along its course the super-

ficial protoplasm has been drawn out into a film, between the

flagellum a and the adjacent surface or edge of the body b.

Moreover, this mode of formation has been actually witnessed

and described, though in a somewhat

exceptional case. The little flagellate

monad Herpetomonas is normally desti-

tute of an undulating membrane, but

possesses a single long terminal flagellum.

According to Prof. D. L. Mackinnon, the

cytoplasm in a certain stage of growth

becomes somewhat "sticky," a phrase

which we may in all probabihty interpret

to mean that its surface-tension is being

reduced. For this stickiness is shewn in

two ways. In the first place, the long

body, in the course of its various bending

movements, is apt to adhere head to „
, ., . ^ ,, . . , ,

Fig. 143. ^er^e^omonas assuming
tail (so to speak), giving a rounded or the undulatory membrane
sometimes annular form to the organism, of a Trypanosome. After

such as has also been described in certain ^- ^' ^^a^^^^^non.

species or stages of Trypanosomes. But again, the long flagellum,

if it get bent backwards upon the body, tends to adhere to its

surface. "Where the flagellum was pretty long and active, its

efforts to continue movement under these abnormal conditions

resulted in the gradual lifting up from the cytoplasm of the body
of a sort of pseudo-undnlsitmg membrane (Fig. 143). The move-
ments of this structure were so exactly those of a true undu-
lating membrane that it was difficult to beheve one was not deahn^
with a small, blunt Trypanosome"*. This in short is a precise

* Cf. C. A. Kofoid and Olive Swezy, On Trichomonad flagellates, etc., Pr.
Amer. Acad, of Arts and Sci. li, pp. 289-378, 1915. Also C. H. Martin and Muriel
Robertson, Q.J.M.S. lvii, pp. 53-81, 1912.

t D. L. Mackinnon, Herpetomonads from the alimentary tract of certain dungflies,

Parasitology, iii, p. 268, 1910.
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description of the mode of development which, from theoretical

considerations alone, we should conceive to be the natural if not

the only possible way in which the undulating membrane could

come into existence.

There is a genus closely alhed to Trypanosoma, viz. Trypanoplasma,

which possesses one free flagellum, together with an undulating

membrane; and it resembles the neighbouring genus Bodo, save

that the latter has two flagella and no undulating membrane. In

lijce manner, Trypanosoma so closely resembles Herpetomonas that,

when individuals ascribed to the former genus exhibit a free

flagellum only, they are said to be in the "Herpetomonas stage."

In short, all through the order, we have pairs of genera which are

presumed to be separate and distinct, viz^ Trypanosoma-Herpeto-

monas, Trypanoplasma-Bodo, Trichomastix-Trichomonas, in which

one differs from the other mainly if not solely in the fact that a free

flagellum in the one is replaced by an undulating membrane in the

other. We can scarcely doubt that the two structures are essen-

tially one and the same.

The undulating membrane of a Trypanosome, then, according

to our interpretation of it, is a hquid film and must obey the law

of constant mean curvature. It is under curious limitations of

freedom: for by one border it is attached to the comparatively,

motionless body, while its free border is constituted by a flagellum

which retains its activity and is being constantly thrown, like the

lash of a whip, into wavy curves. It follows that the membrane,

for every alteration of its longitudinal curvature, must at the same

instant become curved in a direction perpendicular thereto; it

bends, not as a tape bends, but with the accompaniment of beautiful

but tiny waves of double curvature, all tending towards the

estabhshment of an " equipotential surface", which indeed, as it is

under no pressure on either side, is really a surface of no curvature

at all; and its characteristic undulations are not originated by an

active mobihty of the melhbrane but are due to the molecular tensions

which produce the very same result in a soap-film under similar

circumstances. Some of the larger Spirochaetes possess a structure so

like to the undulating membrane of the Trypanosomes that it has led

some persons to include these peculiar allies of the bacteria among the

flagellate protozoa; but it would seem (according to the weight of
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evidence) that the Spirochaete membrane does not undulate, and

possesses no thickened border or marginal filament (Randfade)*.

It forms a "screw-surface," or helicoid, and, though we might

think that nothing could well be more curved, yet its mathematical

properties are such that it constitutes a "ruled surface" whose

mean curvature is everywhere nil. Precisely such a surface, and of

exquisite beauty, may be produced by bending a wire upon itself so

that part forms an axial rod and part winds spirally round the axis,

and then dipping the whole into a soapy solution.

Fig. 144, Dinenympha gracilis Leidy.

A pecuUar type is the flattened spiral of Dinenympha '\ , which

reminds us of the cylindrical spiral of a Spirillum among the bacteria.

Here we have a symmetrical figure, whose two opposite surfaces

each constitute a surface of constant mean curvature; it is evidently

* For a discussion of this obscure lamella, and of the crista which seems to

correspond with it in other species, see Doflein, Probleme der Protistenkunde, ii,

Die Natur der Spirochaeten, Jena, 1911; see also ChfFord Dobell, Arch.f. Protisten-

kunde, 1912.

t Leidy, Parasites of the termites, Journ. Nat. Sci., Philadelphia, viii, pp. 425-

447, 1874-81; cf. Savile-Kent's Infusoria, ii, p. 551.
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a figure of equilibrium under certain special conditions of restraint.

The cylindrical coil of the Spirillum, on the other hand, is a surface

of constant mean curvature, and therefore of equilibrium, as truly,

and in the same sense, as the cylinder itself.

A very beautiful " saddle-shaped " surface, of constant mean
curvature, is to be found in the little diatom Cmnpylodiscus, and

others, a httle more complicated, in the allied genus Surirella*.

These undulating and helicoid surfaces are exactly reproduced

among certain forms of spermatozoa. The tail of a spermatozoon

consists normally of an axis surrounded by clearer and more fluid

protoplasm, and the axis sometimes splits up into two or more

slender filaments. To surface-tension operating between these and

the surface of the fluid protoplasm (just as in the case of the flagellum

of the Trypanosome), I ascribe the formation of the undulating

membrane which we find, for instance, in the spermatozoa of the

newt or salamander; and of the helicoid membrane, wrapped in a

far closer and more beautiful spiral than that which we saw in

Spirochaeta, which is characteristic of the spermatozoa of many
birds. The undulatory membrane which certain ciliate infusoria

exhibit is, seemingly, a difl'erent thing. It is not based on a single

marginal flagellum, but consists of a row of fine ciha fused together.

The membrane can be broken up by certain reagents into fibrillae,

and—what is more remarkable—a touch of the micro-dissection

needle may split it into a multitude of cilia, all active but beating

out of time; a moment more and they unite again, all but dis-

appearing from view as they fuse into the optically homogeneous

membrane. They unite as quickly and as intimately as though

they were so many liquid jets, and they manifestly "partake of

fluidity." Neither they, nor cilia in general, have received, nor

seem hkely to receive, a simple explanation f. Nevertheless, we

may see a httle hght in the darkness after all.

It would be overbold to seek for every form of living cell a parallel

configuration due to simple capillary forces, as manifested in drop

or bubble or jet. And yet, if the simple cases of sphere or cyhnder

be the beginning of the story, they assuredly are not the end. The
* Van Heurck, Synopsis des Diatomees de Belgique, pis. Ixxiv, 6; Ixxvii, 4.

t H. N. Maier, Der feinere Bau der Wimperapparate der Infusorien, Arch. f.

Protistenk. ii, p. 73, 1903; R. Chambers and J. A. Dawson, Structure of the

undulating membrane in the ciliate Blepharisma, Biol. Bull, xlviii, p. 240, 1925.
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pointed and flagellate cell of a Monad, one of the least and com-

monest of micro-organisms, is far removed from a simple "drop,"

and all its characters, to the microscopist's eye, are both generally

and Specifically those of a hving thing. But a drop of water falhng

through an electric field, as in a thunderstorm, is found to lengthen

out to three or four times as long as it is broad; and then, if the

strength of the field increase a httle, the prolate drop becomes

unstable, it grows spindle-shaped, and suddenly from one of its two

pointed spindle-ends (the positive end especially) a long and slender

filament shoots out, to the accompaniment of an electrical discharge.

We need not assert that the phenomena are identical, nor that th^

forces in action are absolutely the same. Yet it is no small thing to

have learned that the pecuhar conformation of the Httle flagellate

Monad has its analogue in an electrified drop, and is not unique after

all*.

Before we pass from the subject of the conformation of the

solitary cell we must take some account of certain other exceptional

forms, less easy of explanation, and still less perfectly understood.

Such is the case, for instance, of the red blood-corpuscles of man
and other vertebrates; and among the sperm-cells of the decapod

Crustacea we find forms still more aberrant and not less perplexing.

These are among the comparatively few cells or cell-like structures

whose form seeins to be incapable of explanation by theories of

surface-tension.

In all the mammalia (save a very few) the red blood-corpuscles

are flattened circular discs, dimpled in upon their two opposite sides.

This configuration closely resembles that of an india-rubber ball

when we pinch it tightly between finger and thumb •)".

The form of the corpuscle is symmetrical ; it is a sohd of revolu-

tion, but its surface is not a surface of constant mean curvature.

From the surface-tension point of view, the blood-corpuscle is not

a surface of equilibrium ; in other words, it is not a fluid drop poised

* Cf. W. A. Macky, On the deformation of water-drops in strong electric fields,

Proc. B.S. (A), cxxxiii, pp; 565-587, 1931.

t On this analogy we might expect the double concavity to pass, with no great

difficulty, into the single hollow of a cup or bell, and such a shape the blood-

corpuscles are said sometimes to assume. Cf. Weidenreich, Arch. f. mikr. Anat.

Lxvii, 1902; and cf. Clerk-Maxwell on "dimples" in Tr. R.S.E. xxvi, p. 11, 1870.
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in another liquid. Some other force or forces must be at work to

conform it, and the simple effect of mechanical pressure is excluded,

because the corpuscle exhibits its characteristic shape while floating

freely in the blood. It has been suggested that the corpuscle is

perhaps comparable to a sohd of revolution described about one of

Cayley's equipotential curves*, such as we have spoken of briefly

on p. 318. Were the corpuscle a sphere, or a thin plate, a gas

diffusing inwards would reach all parts equally soon ; but the surface

would be small in the one case and

-^_C ^ ^ the volume in the other. In so

far as the corpuscle resembles or

approaches the equipotential form,

we might look on it as a com-

Fiff 14.^

^" ^ promise; but however advan-

tageous such a shape might be, and

however interesting physiologically, we should be as far as ever

from understanding how it was produced. In all other vertebrates,

from fishes to birds, sluggish or active, warm-blooded or cold, the

blood-corpuscles have the simpler form of a flattened oval disc,

with somewhat sharp edges and eUipsoidal surfaces, and this again

is manifestly not a surface of fluid equilibrium. But there is

nothing to choose between the one type and the other in the way

of physiological efficiency, nor any apparent need for a refinement

of adaptive form in either of them.

Two facts are noteworthy in connection with the form of the

mammalian blood-corpuscle. In the first place its form is only

maintained, that is to say it is only in equilibrium, in specific relation

to the medium in which it floats. If we add water to the blood,

the corpuscle becomes a spherical drop, a true surface of minimal

area and stable equiUbrium; if, conversely, we add a little salt, or

a drop of glycerine, the corpuscle shrinks, and its surface becomes

puckered and uneven. So far, it merely obeys the laws of diffusion;

but the phenomenon is more complex than this|. For the spherical

form is assumed just as well in various isotonic solutions, leaving

Cf. H. Hartridge, Journ. Physiol, lii, p. Ixxxi, 1919-20; Eric Ponder, Journ.

Gen. Physiol, ix, pp. 197-204, 625-629, 1925-26.

I Cf. A. Gough, On the assumption of a spherical form by human blood-

corpuscles, Biochem. Journ. xvni, p. 202, 1924.
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the volume unchanged; a httle ammonium oxalate impedes or

inhibits the change of form, a little serum brings the spherical

corpuscles back to biconcave discs again. We are no longer deaUng

with simple diffusion, but with phenomena of a very subtle kind.

Secondly, the form of the corpuscle can be imitated artificially

by means of other colloid substances. Many years ago Norris made
the interesting observation that drops of glue in an emulsion assumed

a biconcave form closely resembling that of the mammahan cor-

kpuscles*; the glue was impure and doubtless contained lecithin.

Waymouth Reid made similar emulsions of cholesterin oleate, in

which the same conformation of the drops or particles is beautifully

shewn; and Emil Hatschek has made somewhat similar biconcave

bodies by dropping gelatine containing potassium ferrocyanide into

copper sulphate or a tannin solution. Here Hatschek beheves that

his biconcave drops are half-formed vortex-rings, arrested by the

formation of a semi-permeable membrane ; but the explanation does

not seem to fit the blood-corpuscle. The cholesterin bodies in

Waymouth Reid's experiment are such as have a place of their own
among Lehmann's "fluid crystals "f; and it becomes at least con-

ceivable that obscure forces akin t6 those of crystalHsation may
be playing their part along with surface-energy in these strange but

famihar conformations. The case is a hard one in every way.

From the physiological point of view it is difficult and coinplex^

enough. For the surface of the corpuscle is equivalent to a semi-

permeable membrane t, through which certain substances pass freely

but not others—for the most part anions and not cations §; and

accordingly we have here in life a steady state of osmotic inequih-

brium, of negative osmotic tension within, and to this comparatively

simple cause the imperfect distension of the corpus(5le may be due.

* Proc. M.S. ;xn, pp. 251-257, 1862-63.

t Cf. {int. al.) Lehmann, Ueber scheinbar lebende Kristalle und Myelinformen,

Arch.f. Entw. Mech. xx\^, p. 483, 1908; Ann. d. Physik, xliv, p. 969, iai4.

X That no "true membrane" exists has long been known; cf. [int. al.) Rohring,

KoU. Chem. Beihefte, viii, pp. 337-398, 1916. On the other hand the surface of

the corpuscle is defined by a monolayer, and very probably by the still more stable

condition of two "interpenetrating" monolayers, a proteid and a lipoid. Cf.

Eric Ponder, Phys. Rev. xvi, p. 19, 1936; and on "interpenetration," Schulman
and Rideal in Proc. M.S. (B), cxxii, pp. 29-57, 1937.

§ Cf. Hamburger, Z. f. physikal. Chem. lxix, p. 663, 1909; Pfluger's Archiv,

1902, p. 442; etc.
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Whatever the forces are which make and keep the man's corpuscle

a dimpled disc and the frog's a flattened ellipsoid, they seem to be

of a powerful kind. When we submit either to great hydrostatic

pressure, it tends to become spherical at last, the natural result of

uniform pressure over its whole surface; but the pressure necessary

to bring this result about is very great indeed*. Since the form

of the blood-corpuscle cannot, then, be rated as a figure of equili-

brium, we must be content to regard it as a "steady state"; and

this, moreover, is all we can say of its physico-chemical conditional

The red blood-corpuscle, especially the non-nucleated one, is in no

ordinary sense alive'f. It has no power of movement, of reproduction

or of repair; it is a mere haemoglobin-freighted drop of protein;

its own metabolism, apart from its alternate give and take of

oxygen, is slight indeed or absent altogether. But all the same,

chemical change is continually going on; anions (Uke HCO3) pass

freely through its walls, simple cations (like Na, K) find it imper-

meable; and so, between plasma and corpuscles the conditions are

fulfilled for that steady osmotic state known as a "Donnan equi-

Kbrium." Somehow, but we know not how, a steady state is

maintained alike in the corpuscle's osmotic equihbrium and in its

form.

In mammalian blood, the running together of the round biconcave

corpuscles into "rouleaux" gives a well-known and characteristic

picture. When cold, rouleaux are formed slowly, in warmed plasma

they form quickly and well, in salt-solution they do not form at all.

* The whole phenomenon would become simple and mechanical if we might

postulate a stiffer peripheral region to the corpuscle, in the form (for instance) of an

elastic ring. Such an annular stiffening, like the " collapse-rings" which an engineer

inserts in a boiler or the whalebone ring which a Breton fisherman fits into his beret,

has been repeatedly asserted to exist; by Dehler, Arch.f. mikr. Anat. xlvi, 1895; by

Meves, ibid. Lxxvii, 1911; and especially by J. Riinnstrom, Was bedingt die Form
und die Formveranderungen derSaiigetiererythrocytcn, Arch. f. Entw. Mech. i, pp.

391-409^,1922. It has been denied at least as often; but the remarkable statement

has been lately made that in a corpuscle which has been swollen up and then brought

back to its biconcave form, the dimples reappear on the same sides as before:

apparently in "strong evidence for some sort of fixed cellular structure"; see

R. F. Furchgott and Eric Ponder in Jonrn. Exp. Biol. xvii. pp. 30-44, 117-127,

1940. See also, on the whole subject, Eric Ponder, The Mammalian Red Cell,

Berlin, 1934.

t Cf. A. V. Hill, Trans. Faraday Soc. xxvi, p. 667, 1930; Proc. R.S. (B), 1930;

K. R. Dixon, in Current Sci. vii, p. 169, 1938; etc.
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The phenomenon, though a purely physical one, is none too clear.

There is a difference of electrical potential between corpuscles and

plasma, and the charged corpuscles tend to repel one another; but

they also tend to adhere together, all the, more when they meet

broadside on, whether by actual stickiness or through surface-

energy. The attractive forces then overcome the repulsive, and the

rouleau is formed. But if the potential be reduced, and mutual

repulsion reduced with it, then the corpuscles stick together just as

they happen to meet; rouleaux are no longer formed, and ordinary

"agglutination" takes place. Whatever be the precise nature of

the phenomenon, the number of rouleaux and the mean number of

Fig. 146. Sperm-cells of Decapod Crustacea (after Koltzoff). a, Inachus scorpio;

b, Galathea sqimmijera; c, do. after maceration, to shew spiral fibrillae.

corpuscles in each is found, after a given time, to obey a certain

law (Smoluchowsky's Law), defining the number of contacts of

floating bodies under ordinary physical conditions*.

The sperm-cells of the Decapod Crustacea exhibit various singular

shapes. In the crayfish they are flattened cells with stiff curved

processes radiating outwards Hke St Catherine's wheel; in Inachus

there are two such circles of stiff processes ; in Galathea we have a

still more comphcated form, with long and slightly twisted processes.

* Smoluohowsky, Ztschr. f. physik. Chemie, xcix, p. 129, 1917; Eric Ponder,
On Rouleaux-formation, Q. Journ. Exp. Physiol, xvi, pp. 173-194, 1926.
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In all these cases, just as in the case of the blood-corpuscle, the

structure alters, and finally loses, its characteristic form when the

constitution of the surrounding medium is changed*.

Here again, as in the blood-cOrpuscle, we have to do with the

important force of osmosis, manifested under conditions similar

to those of Pfeffer's classical experiments on the plant-cell f. The

surface of the cell acts as a semi-permeable membrane, permitting

the passage of certain dissolved substances (or their ions), and

including or excluding others: and thus rendering manifest and

measurable the existence of a definite "osmotic pressure." Again,

in the hen's egg a delicate yolk-membrane separates the yolk from

the white. The morphologist looks on it but as the cell-wall of

a vast yolk-laden germ-cell; the physiologist sees in it a semi-

permeable membrane, the seat of many complex activities. The

end and upshot of these last is that a steady difference of osmotic

pressure, the equivalent of some two atmospheres, is maintained

between yolk and white ; and yet there is no current flowing through.

Somewhere or other in the system there is a constant metabolic

flux, a continuous liberation of energy, a continual doing of work,

all leading to the maintenance of a steady dynamical state, which

is not " equilibrium {."

In the case of the sperm-cells of Inachus, certain quantitative

experiments have been performed. The sperm-cell exhibits its

characteristic conformation while lying in the serous fluid of the

animal's body, in ordinary sea-water, or in a 5 per cent, solution

of potassium nitrate, these three fluids being all "isotonic" with

one another. As we alter the concentration of potassium nitrate,

the cell assumes certain definite forms corresponding to definite

concentrations of the salt; and, as a further and final proof that

the phenomenon is entirely physical, it is found that other salts

produce an identical effect when their concentration is proportionate

to their molecular weight, and whatever identical effect is produced

* Cf. N. K. KoltzofF, Studien iiber die Gestalt der Zelle, Arch. f. mikrosk. Anat.

Lxvii, pp. 365-572, 1905; Biol. Centralhl. xxm, pp. 680-696, 1903; xxvi, pp. 854-

863, 1906; XLvm, pp. 345-369, 1928; Arch. f. Zellforschung, u, pp. 1-65, 1908;

vn, pp. 344^23, 1911; Anat. Anzeiger, xli, pp. 183-206, 1912.

t W Pfeffer, Osmotische Untersuchungen, Leipzig, 1877.

X Cf. J. Straub, Der Unterschied in osmotischer Konzentration zwischen Eigelb

und Eiklar, Rer. Trav. Chim. du Pays-Bas, XLvni, p. 49, 1929.
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by various salts in their respective concentrations, a similarly

identical effect is produced when these concentrations are doubled

or otherwise proportionately changed.

KNO

Fig. 147. Sperm-cells oi Inachtis, as they appear in saline solutions of

varying density. After KoltzoflF.

Thus the following table shews the percentage concentrations of

certain salts necessary to bring the cell into the forms a and c

of Fig. 147; in each case the quantities are proportional to the

molecular weights, and in each case twice the quantity is necessary

to produce the effect of c, compared with that which gives rise to

the all but spherical form of a.

% concentration of salts in which
the sperm- cell of Inachus

assumes the form of
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complicated arrangement of more or less rigid or elastic structures

in the wall of the cell, which, like the wire framework in Plateau's

experiments, restrain and modify the forces acting on the drop.

In one form of Plateau's experiments, instead of supporting his

drop on rings or frames of wire, he laid

upon its surface one or more elastic

coils; and then, on withdrawing oil

from the centre of his globule, he saw

its uniform shrinkage counteracted by

the spiral springs, with the result that

the centre of each elastic coil seemed

to shoot out into a prominence. Just

such spiral coils are figured (after

"''•

""-A^rKXcff.'
"'""'"

Koltzoff) in Fig. 148*; and they may

be regarded as closely akin to those

local thickenings or striations, spiral ard other, which are common

in vegetable cells.

Physically speaking, the protoplasmic colloids are neither simple

nor uniform. We begin by thinking of our cell as a drop of a homo-

geneous fluid and on this bold simplifying assumption we account

for its form to a first, and often to a near, approximation. For the

cell is largely composed of fluid "hydrosols," which are still fluid

however viscous they may be, and still tend towards rounded,

drop-hke configurations. But it has also its "hydrogels," which

shew a certain tenacity, a certain elasticity, a certain reluctance to

let their particles move on one another; and of these are formed

the scarce distinguishable fibrillae within a host of highly specialised

cells, the elastic fibres of a tendon, the incipient cell-walls of a plant,

the rudiments of many axial and skeletal structures.

The cases which we have just dealt with lead us to another

consideration. In a semi-]:^ermeable membrane, through which

water passes freely in and out, the conditions of a liquid surface are

greatly modified; in the ideal or ultimate case, there is neither

surface nor surface-tension at all. And this would lead us some-

* As Bethe points out (Zellgestalt, Plateausche Fliissigkeitsfigur und Neuro-

fibrille, Armt. Anz. xl, p. 209, 1911), the spiral fibres of which Koltzoff speaks must

lie in the surface, and not within the substance, of the cell whose conformation is

affected by them.
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what to reconsider our position, and to enquire whether the true

surface-tension of a Hquid film is actually responsible for all that

we have ascribed to it, or whether certain of the phenomena which

we have assigned to that cause may not in part be due to the

contractility of definite and elastic membranes. But to investigate

this question, in particular cases, is rather for the physiologist: and

the morphologist may go his way, paying little heed to what is no

great difficulty. For in surface-tension we have the production of

a film with the properties of an elastic membrane, and with the

special peculiarity that contraction continues with the same energy

however far the process may have already gone ; while the ordinary

elastic membrane contracts to a certain extent, and contracts no

more. But within wide limits the essential phenomena are the

same in both cases. Our fundamental equations apply to both

cases alike. And accordingly, so long as our purpose is morpho-

logical, so long as what we seek to explain is regularity and definite-

ness of form, it matters little if we should happen, here or there,

to confuse surface-tension with elasticity, the contractile forces

manifested at a liquid surface with those which come into play at

the complex internal surfaces of an elastic solid.



CHAPTER VI

A NOTE ON ADSORPTION

An important corollary to, or amplification of, the theory of

surface-tension is to be found in the chemico-physical doctrine of

Adsorption; which means, in a word, the concentration of a

substance at a surface, by reason of that surface-energy of which

we have had so much to say*. Charcoal, with its vast internal

surface-area of carbonised cell-walls, is the commonest and most

famihar of adsorbents, and of it Du Bois Reymond first used the

name. In its full statement this subject becomes very complicated,

and involves physical conceptions and mathematical treatment

which go far beyond our range. But it is necessary for us to take

account of the phenomenon, even though it be in the most elemen-

tary way.

In the brief account of the theory of surface-tension with which

our last chapter began, it was shewn that, in a drop of liquid, the

potential energy of the system could be diminished, and work mani-

fested accordingly, in two ways. In the first place we saw that,

at our liquid surface, surface-tension tends to set up an equilibrium

of form, in which the surface is reduced or contracted either to the

absolute minimum of a sphere, or at any rate to the least possible

area which is permitted by the various circumstances and conditions

;

and if the two bodies which comprise our system, namely the drop

of Uquid and its surrounding medium, be simple substances, and

the system be uncomphcated by other distributions of force, then

the energy of the system will have done its work when this

equihbrium of form, this minimal area of surface, is once attained.

This phenomenon of the production of a minimal surface-area we

have now seen to be of fundamental importance in the external

* Some define adsorption as surface-condensation, without reference to the

forces which produce it; in other words they recognize chemical, electrical and

other forces, including cohesion, as producing analogous or indistinguishable

results: of. A. P. Mathews, in Physiological Reviews, i, pp. 553-597, 1921.
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morphology of the cell, and especially (so far as we have yet gone)

of the solitary cell or unicellular organism.

But we also saw, according to Gauss's equation, that the potential

energy of the system will be diminished (and its diminution will

accordingly be manifested in work) if from any cause the specific

surface-energy be diminished, that is to say if it be brought more

nearly to an equality with the specific energy of the molecules in

the interior of the liquid mass. This latter is a phenomenon of

great moment in physiology, and, while we need not attempt to

deal with it in detail, it has a bearing on cell-form and cell-structure

which we cannot afford to overlook.

A diminution of the surface-energy may be brought about in

various ways. For instance, it is known that every isolated drop

of fluid has, under normal circumstances, a surface-charge of

electricity: in such a way that a positive or negative charge (as

the case may be) is inherent in the surface of the drop, while a

corresponding charge, of contrary sign, is inherent in the imme-

diately adjacent molecular layer of the surrounding medium. Now
the effect of this distribution, by which all the surface molecules

of our drop are similarly charged, is that by virtue of the charge

they tend to repel one another, and possibly also to draw other

molecules, of opposite charge, from the interior of the mass; the

result being in either case to antagonise or cancel, more or less,

that normal tendency of the surface molecules to attract one

another which is manifested in surface-tension. In other words,

an increased electrical charge concentrating at the surface of a drop

tends, whether it be positive or negative, to lower the surface-tension.

Again, a rfse of temperature diminishes surface-tension, and

consequently facilitates the formation of a bubble or a froth. It

follows (from the principle of Le Chatelier) that foam is warmer than,

the fluid of which it is made, and the difference is all the greater the

lower the concentration of the foaming (or capillary-active) substance*.

But a still more important case has next to be considered. Let

us suppose that our drop consists no longer of a single chemical

substance, but contains other substances either in suspension or

in solution. Suppose (as a very simple case) that it be a watery

* Cf. Fr. Schiitz, in Nature, April 10, 1937. In the case of 001 per cent, solution

of saponin, the temperature-diflFerence is no less than 3-3° C.
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fluid, exposed to air, and containing droplets of oil : we know that

the specific surface-tension of oil in contact with air is much less

than that of water, and it follows that, if the watery surface of

our drop be replaced by an oily surface the specific surface-energy

of the system will be notably diminished. Now under these circum-

stances it is found that (quite apart from gravity, which might

cause it to float to the surface) the oil has a tendency to be drawn

to the surface; and again this phenomenon of molecular attraction

or adsorption represents work done, equivalent to the diminished

potential energy of the system*. In more general terms, if a Hquid

be a chemical mixture, some one constituent in which, if it entered

into or increased in amount in the surface layer, would have the

effect of diminishing its surface-tension, then that constituent will

have a tendency to accumulate or concentrate at the surface: the

surface-tension may be said, as it were, to exercise an attraction

on this constituent substance, drawing it into the surface-layer,

and this tendency will proceed until at a certain "surface-con-

centration" equilibrium is reached, its opponent being that osmotic

force which tends to keep the substance in uniform solution or

diffusion. In other words, in any "two-phase" system, a change

of concentration at the boundary-surface and a diminution of

surface-tension there accompany one another of necessity
;

positive

adsorption means negative surface-tension, and vice versa. Further-

more, the lowering of surface-tension (as by saponin) will permit

(caeteris paribus) an extension of surface, manifesting itself in

"froth." Thus the production of a froth and the concentration

of appropriate substances therein are two sides of one and the same

phenomenon.

In the complex mixtures which constitute the protoplasm of the

living cell, this phenomenon of adsorption has abundant play: for

many of its constituents, such as fats, soaps, proteins, lecithin, etc.,

possess the required property of diminishing surface-tension.

* The first instance of what we now call an adsorptive phenomenon was

observed in soap-bubbles. Leidenfrost was aware that the outer layer of the

bubble was covered by an "oily" layer {De aquae communis nonnullis qualitatihus

tractatus, Duisburg, 1756). A hundred years later Dupre shewed that in a soap-

solution the soap tends to concentrate at the surface, so that the surface-tension

of a very weak solution is very little different from that of a strong one {Theorie

mdcanique de la chaleur, 1869, p. 376; cf. Plateau, ii, p. 100).
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Moreover, the more a substance has the power of lowering the

surface-tension of the Hquid in which it happens to be dissolved,

the more will it tend to displace another and less effective substance

from the surface-layer. Thus we know that protoplasm always

contains fats, not only in visible drops, but also in the finest sus-

pension or "colloidal solution"; and if under any impulse, such for

instance as might arise from the Brownian movement, a droplet of

oil be brought close to the surface, it is at once drawn into that

surface and tends to spread itself in a thin layer over the whole

surface of the cell. But a soapy surface (for instance) in contact

•with the surrounding water would have a surface-tension even less

than that of the film of oil: and consequently, if soap be present

in the water it will in turn be adsorbed, and will tend to displace

the oil from the surface pellicle*. And all this is as much as to

say that the molecules of the dissolved or suspended substance or

substances will so distribute themselves throughout the drop as to

lead towards an equilibrium, for each small unit of volume, between

the superficial and internal energy; or, in other words, so as to

reduce towards a minimum the potential energy of the system.

This tendency to concentration at a surface of any substance within

the cell by which the surface-tension tends to be diminished, or

vice versa, constitutes, then, the phenomenon of adsorption; and

the general statement by which it is defined is known as the Willard-

Gibbs, or Gibbs-Thomson lawf, and was arrived at not by experi-

mental but by theoretical and hydrodynamical methods.

An assemblage of drops or droplets offers a great extension of

surface, but so also does an assemblage of equally minute cells or

* This identical phenomenon was the basis of Quincke's theory of amoeboid

movement (Ueber periodische Ausbreitung von Fliissigkeitsoberflachen, etc., SB.

Berlin. Akad. 1888, pp. 791-806; cf. Pfiuger's Archiv, 1879, p. 136). We must bear

in mind that to describe an amoeboid cell as "naked" does not imply that its outer

layer is identical with its internal substance.

t J. Willard Gibbs, Equilibrium of heterogeneous substances, Tr. Conn. Acad.

Ill, pp. 380-400, 1876, also in Collected Papers, i, pp. 185-218, London, 1906;

J. J. Thomson, Applications of Dynamics to Physics and Chemistry, 1888 (Surface

tension of solutions), p. 190. See also {int. al.) various papers by C. M. Lewis,

Phil. Mag. (6), xv, p. 499, 1908; xvii, p. 466, 1909; Zeitschr. f. physik. Chemie,

Lxx, p. 129, 1910; Milner, Phil. Mag. (6), xm, p. 96, 1907; A. B. Macallum, The
role of surface-tension in determining the distribution of salts in living matter,

Trans, loth Int. Congress on Hygiene, etc., Washington, 1912; etc.
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pores; both alike are "two-phase" systems, and in both ahke the

phenomenon of adsorption has free play. The occlusion of gases,

including water-vapour, by charcoal is a familiar phenomenon of

adsorption, and is due to the minuteness of the pores only in so far

as surface-area is increased and multipUed thereby. For surface-

energy is surface-strain or surface-tension x surface-area, and is

vastly increased by minute subdivision. And surface-energy is

such that, whenever a substance is introduced into a two-phase

system—which merely means two things in touch (or surface-

contact) with one another—it is apt to concentrate itself on the

surface where the two phases meet. Absorption implies uniform

distribution, as when a gas is absorbed by a liquid; adsorption

imphes a heterogeneous field, and a concentration localised on the

surfaces therein.

Among the many important physical features or concomitants

of this phenomenon, let us take note at present that we need not

conceive of a strictly superficial distribution of the adsorbed sub-

stance, that is to say of its direct association with the surface-layer

of molecules such as we imagined in the case of an electrical charge

;

but rather of a progressive tendency to concentrate more and more,

the nearer the surface is approached. Indeed we may conceive

the colloid or gelatinous precipitate in which, in the case of our

protoplasmic cell, the dissolved substance tends often to be thrown

down, to constitute one boundary layer after another, the general

effect being intensified and multiplied by the repetition of these

new surfaces.

Moreover, it is not less important to observe that the process

of adsorption, in the neighbourhood of the surface of a hetero-

geneous liquid mass, is a process which takes time; the tendency

to surface concentration is a gradual and progressive one, and will

fluctuate with every minute change in the composition of our

substance and with every change in the area of its surface. In

other words, it involves (in every heterogeneous substance) a con-

tinual instabihty: and a constant manifestation of motion, some-

times in the mere invisible transfer of molecules, but often in the

production of visible currents, or manifest alterations in the form

or outline of the system.

Cellular activity is of necessity associated with cellular structure,
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even in our simplest interpretation thereof, as a mere increase of

surface due to the existence and the multiphcation of cells. In the

chemistry of the tissues there may be substances (catalysts and

others) which exhibit their proper reactions even though the cells

containing them be disintegrated or destroyed ; but other processes,

oxidation itself among them, are essentially surface-actions, based

on.adsorption at the vast cell-surface of the tissue*. The breaking-

down of the cell-walls, the disintegration of cellular structure in a

tissue, brings about "a biochemical chaos, a medley of reactions f."

Cells are not merely there because the tissue has grown by their

multiplication; there are physico-chemical reasons, even of an

elementary kind, which render the morphological phenomenon of

the cell indispensable to physiological action.

The physiologist deals with the surface-phenomena of the cell in

ways undreamed of when I began to write this book. To begin

with, the concept of a surface (in the old mathematical or quasi-

mathematical sense) no longer suffices to describe the boundary

conditions of even a "naked" protoplasmic cell. As Rayleigh

foretold, and as Irving Langmuir has proved, the "boundary-state"

consists of a layer of complex molecules, each one a long array of

atoms, all set side by side in an orderly and uniform way. There

is not merely a boundary-surface between two phases (as the older

colloid chemistry supposed) but a boundary-layer, which itself

constitutes a third phase, or interphase, and which part of the

surface-energy has gone to the making of.

Surface-energy plays a leading part in modern theories of muscular

contraction, and has indeed done so ever since FitzGerald and

d'Arsonval indicated a connection between them some sixty years

or more agof. It plays its part handsomely (we may be sure) in the

electric pile of the Torpedo, where two miUion tiny discs present a

* Many surface-active substances are known to be among the most active

pharmacologically; cf. Michaelis and Rona, Physikal. Chemie, 1930.

t A. V. Hill, Proc. R.S. (B), cm, p. 138^; cf. also M. Penrose and J. H. Quastel,

on Cell structure and cell activity, ibid, cvii, p. 168.

X Cf. G. F. FitzGerald, On the theory of muscular contraction, Brit. Ass. Rep.

1878; also in Scientific Writings, ed. Larmor, 1902, pp. 34, 75. A. d'Arsonval,

Relations entre I'electricite animale et la tension superficielle, C.R. cvi, p. 1740,

1888; A. Imbert, Le mecanisme de la contraction musculaire, deduit de la

consideration des forces de tension superficielle. Arch, de Phys. (5), ix, pp. 289-301,

1897; A. J. Ewart, Protoplasmic Streami-ng in Plants, Oxford, 1903, pp. 112-119.
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vast aggregate of interfacial contact. It gives us a new conception,

as Wolfgang Ostwald was the first to shew, of the relation of oxygen

to the red corpuscles of the blood*. But many more and still more

comphcated "film-reactions" are started or intensified by the oriented

molecules of the monolayer. The catalytic action of living ferments

(a subject vast indeed) is largely .a question of modified adsorption,

or of surface-action. The range of bodies so adsorbed is extremply

hmited; the specific reactions, which depend on the bacterium

engaged, are fewer still ; and sometimes a whole class of substances

may be adsorbed, and only one of them thrown specifically into

action!. The physiological, and sometimes lethal, actions of

various substances are examples of similar effects. The chemistry

of the surface-layer in this cell or that may be elucidated by its

reactions to various "penetrants," and depends somehow on the

molecular orientation of the surfaces, and on the potentials associated

with the characteristic electric fields which we may suppose to

correspond to the particular molecular arrangements J.

It is the dynamic aspect of the case, the ingresses, egresses and

metabolic changes associated with the boundary-layer, which interest

the physiologist. He finds the monolayer acting in ways not known

in a homogeneous hquid—and adsorption is one of these ways. We
keep as much as may be to the morphological side of the case rather

than to the physiological, to the static side rather than to the

dynamic, to the equilibrium attained rather than to the energies to

which it is due. We continue to speak of surface, and of surface-

* Ueber die Natur der Bindung der Gase im Blut und in seinen Bestandteilen,

Kolloid Ztschr. ii, pp. 264-272, 1908; cf. Loewy. Dissociationsspannung des

Oxyhaemoglobin im Blut, Arch. f. Anat. u. Physiol. 1904, p. 231. Arrhenius

remarked long ago that the forces which produce adsorption are of the same order,

and of the same nature, as those which cause the mutual attractions of the molecules

of a gas. Hence the order is constant in which various gases are adsorbed by

different adsorbents. The question of the inner mechanism of the forces which

result in surface-tension, adsorption and allied phenomena, and their relation

to electric charge on particles or ions, belongs to the highest parts of physical

chemistry. Besides countless recent papers, M. v. Smoluchowski's Versuch einer

mathematischen Theorie der Koagulationskritik, Z.f. physik. Chemie, xcii, pp. 129-

168, 1918, is still interesting.

t Cf. N. K. Adams, Physics and Chemistry of Surfaces, 1930. Also {int. al.)

J. H. Quastel, Mechanism of bacterial action. Trans. Faraday Soc. xxvi, pp. 831-

861, 19.30.

+ This is Loeb's so-called "membrane-effect," cf. Journ. Biol. Chemistry, xxxii,

p. 147, 1917; and J. Gray, Journ. Physiol. Liv, pp. 68-78, 1920.
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energy and of adsorptive phenomena, in a somewhat old-fashioned

way; but even with this simphfying Uniitation we find them helpful,

throwing hght upon our subject.

In the first place our preHminary account, such as it is, is already

tantamount to a description of the process of development of a

cell-membrane, or cell-wall. The so-called "secretion" of this cell-

wall is nothing more than a sort of exudation, or striving towards

the surface, of certain constituent molecules or particles within the

cell; and the Gibbs-Thomson law formulates, in part at least, the

conditions under which they do so. The adsorbed material may
range from an almost unrecognisable pellicle to the distinctly

differentiated "ectosarc" of a protozoon, and again to the develop-

ment of a fully-formed cell-wall, as in the cellulose partitions of a

vegetable tissue. In such cases, the dissolved and adsorbtive

material has not only the property of lowering the surface-tension,

and hence of itself accumulating at the 'surface, but has also the

prope^y of increasing the viscosity and mechanical rigidity of the

material in which it is dissolved or suspended, and so of constituting

a visible and tangible "membrane*." The "zoogloea" around a

group of bacteria is probably a phenomenon of the same order.

In the superficial deposition of inorganic materials we see the same

process abundantly exemphfied. Not only do we have the simple

case of the building of a shell or '"test" upon the outward surface

of a Hving cell, as for instance in a Foraminifer, but in a sub-

sequent chapter, when we come to deal with spicules and spicular

skeletons such as those of the sponges and of the Radiolaria^ we

shall see how highly characteristic it is of the whole process of

* We may trace the first steps in the study of this phenomenon to Melsens,

who found that thin films of white of egg become firm and insoluble (Sur les

modifications apportees a I'albumine. . .par faction purement mecanique, C.R.

XXXIII, p. 247; Ann. de chimie et de physique (3), xxxiii, p. 170, 1851); and Harting

made similar observations about the same time. Ramsden investigated the same
subject, and also the more general phenomenon of the formation of albuminoid

and fatty membranes by adsorption, and found {i7it. al.) that on shaking white of egg

practically all .the albumin passes gradually into the froth; cf. his Koagulierung

der Eiweisskorper auf mechanischer Wege, Arch. f. Anat. u. Phys. {Phys. Ahth.),

1894, p. 517; Abscheidung fester Korper in Oberflachenschichten, Z. f. phys. Chern.

XLVii, p. 341, 1902; Proc. R.S. Lxxii, p. 156, 1904. For a general review of the

whole subject see H. Zangger, Ueber Membranen und Membranfunktionen, in

Asher-8piro's Ergebnisse der Physioloyie, vii, pp. 99-1(50, 1908.



452 A NOTE ON ADSORPTION [ch.

spicule-formation for the deposits to be laid down just in the

" interfacial " boundaries between cells or vacuoles, and how the

form of the spicular structures tends in many cases to be regulated

and determined by the arrangement of these boundaries. The

so-called collenchyma, in which an excess of cellulose is laid down
around the angles of contact of adjacent cells, in a kind of exag-

gerated "bourrelet," is another case in point*.

No pure liquid ever forms a froth or foam. White of egg is no

exception to the rule; for the albumin is somehow changed, or

" denatured," and becomes a quasi-solid when we beat it up. But

in the frothing liquid there must always be some admixture present

to concentrate on, or be adsorbed by, the surfaces and interfaces

of the other ; and this dispersion must go on completely and uni-

formly, so as to leave the whole system homogeneous. The resulting

diminution of surface-tension facihtates the subdivision of the

bubbles and dispersion of the air ; and the adsorbed surface-layer

gives firmness and stability to the system. The sudden increase of

surface diminishes, for the moment, the concentration, or "thick-

ness" of the surface-layer; the tension rises accordingly, and the

cycle of operations begins anewf

.

In physical chemistry, a distinction is usually drawn between adsorption

and psevdo-adsorption, the former being a reversible, the latter an irreversible

or permanent phenomenon. That is to say, adsorption, strictly speaking,

implies the surface-concentration of a dissolved substance, under circumstances

which, if they be altered or reversed, will cause the concentration to diminish

or disappear. But pseudo-adsorption includes cases, doubtless originating in

adsorption proper, where subsequent changes leave the concentrated substance

incapable of re-entering the liquid system. It is obvious that many (though

not all) of our biological illustrations, for instance the formation of spicules

or of permanent cell-membranes, belong to the class of so-called pseudo-

adsorption phenomena. But the apparent contrast between the two is in

the main a secondary one, and however important to the chemist is of little

consequence to us.

While this brief sketch of the theory of membrane-formation is

cursory and inadequate, it is enough to shew that the physical

theory of adsorption tends in part to overturn, in part to simphfy

Cf. G. Haberlandt, Zelle u. Elementarorgane, Biol. Centralbl. 1925, p. 263.

t Cf. F. G. Donnan, Some aspects of the physical chemistry of interfaces, Brit.

Ass. Address (Section B), 1923; Nature, Bee. 15, 22, 1923.
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enormously, the older histological descriptions. We can no longer

be content with such statements as that of Strasbiirger, that

membrane-formation in general is associated with the "activity of

the kinoplasm," or that of Harper that a certain spore-membrane

arises directly from the astral rays*. In short, we have easily

reached the general conclusion that the formation of a cell-wall or

cell-membrane is a chemico-physical phenomenon, which the purely

objective methods of the biological microscopist do not suffice to

interpret.

Having reached this conclusion we may wait patiently, and

confidently, for more. But when the physico-chemical nature of

these phenomena is admitted, and their dependence on adsorption

recognised, or at least assumed, we have still to remember that the

chemist himself is none too certain of his ground.. He still finds it

hardj now and then, to teU how far adsorption and direct chemical

action go their way together, what parts they severally play, what

shares they take in their.intimate cooperation f.

If the process of adsorption, on which the formation of a mem-
brane depends, be itself dependent on the power of the adsorbed

substance to lower the surface-tension, it is obvious that adsorption

can only take place when the surface-tension already present is

greater than zero. It is for this reason that films or threads of

creeping protoplasm shew little tendency, or none, to cover them-

selves with an encysting membrane; and that it is only when, in

an altered phase, the protoplasm has developed a positive surface-

tension, and has accordingly gathered itself up into a more or less

spherical body, that the tendency to form a membrane is manifested,

and the organism develops its "cyst" or cell-wall. The holes in a

Globigerina-shell are there "to let the pseudopodia through." They

may also be described as due to unequal distribution of surface-

energy, such as to prevent shell-substance from being adsorbed

here and there, and at the same time inducing a pseudopodium to

emerge.

* Strasbiirger, Ueber Cytoplasmastrukturen, etc., Jahrb. f, wiss. Bot. xxx,
1897; R. A. Harper, Kerntheilung und freie Zellbildung ira Ascus, ibid.; cf.

Wilson, The Cell in Development, etc., pp. 53-55.

t The "adsorption theory" of dyeing is a case in point, where the precise mode,

or modes, of action seem still far from settled.
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It is found that a rise of temperature greatly reduces the

adsorbability of a substance, and this doubtless comes, either in

part or whole, from the fact that a rise of temperature is itself a

cause of the lowering of surface-tension. We may in all probability

ascribe to this fact and to its converse, or at least associate with it,

such phenomena as the encystment of unicellular organisms at the

approach of winter, or the frequent formation of strong shells or

membranous capsules in "winter-eggs."

Again, since a film or a froth (which is a system of films) can

only be maintained by virtue of a certain viscosity or rigidity of

the liquid, it may be quickly caused to disappear by the presence

in its neighbourhood of some substance capable of materially

reducing the . surface-tension ; for this substance, being adsorbed,

may displace from the surface-layer a material to which was due

the rigidity of the film. In this way a "bathytonic" substance,

such as ether, causes most foams to subside, and the pouring oil on

troubled waters not only calms the waves but still more quickly

dissipates the foam of the breakers. In a very different order of

things, the breaking up of an alveolar network, as at a certain stage

in the nuclear division of the cell, may be due in part to just such

a cause, as well as to the direct lowering of surface-tension by

electrical agency.

Our last illustration has led us back to the subject of a previous

chapter, namely to the visible configuration of the interior of the

cell, in so far (at least) as it represents a "dispersed system," coarse

enough to be visible; and in connection with this wide subject there

are many phenomena on which light is apparently thrown by our

knowledge of adsorption, of which we took Httle or no account in

our former discussion. One of these phenomena is nothing less than

that visible or concrete "polarity," which we have seen to be in

some way associated with a dynamical polarity of the cell.

This morphological polarity may be of a very simple kind, as

when it is manifested, in an epithelial cell, by the outward shape of

the elongated or columnar cell itself, by the essential difference

between its free surface and its attached base, or by the presence

in the neighbourhood of the former of mucus or other products of

the cell's activity. But in, a great many cases, this polarised

symmetry is supplemented by the presence of various fibrillae, or
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of linear arrangements of particles, which in the elongated or

"monopolar" cell run parallel with its axis, but tend to a radial

arrangement in the more or less rounded or spherical cell. Of late

years great importance has been attached to these various linear or

fibrillar arrangements, as they are seen (after staining) in the cell-

substance of intestinal epithelium, of spermatocytes, of ganglion

cells, and most abundantly and frequently of all in gland cells.

Various functions have been assigned, and hard names given to

them; for these structures include your mitochondria* and your

chondriokonts (both of these being varieties of chondriosomes), your

Altmann's granules, your microsomes, pseudo-chromosomes, epi-

'M^m.

Ih

A B C
Fig. 149. A, B, Chondriosomes in kidney- cells, prior to and during secretory

activity (after Barratt); C, do. in pancreas of frog (after Mathews).

dermal fibrils and basal filaments, your archeoplasm and ergasto-

plasm, and probably your idiozomes, plasmosomes, and many other

histological minutiae f.

The position of these bodies with regard to the other cell-

structures is carefully described. Sometimes they he in the

neighbourhood of the nucleus itself, that is to say in proximity to

the fluid boundary surface which separates the nucleus from the

* Mitochondria are threads which move slowly through the protoplasm, some-

times break in two, and often tend to radiate from the centrosphere or division-centre

of the cell. The nucleoli are two or more Opaque bodies within the nucleus, which
keep shifting their position ; within the cytoplasm many small fatty bodies likewise

move about, and display the Brownian oscillation,

t Cf. A. Gurwitsch, Morphologie und Biologie der Zelle, 1904, pp. 169-185;

Meves, Die Chondriosomen als Trager erblicher Anlagen, Arch.
'f.

mikrosk. Anat.

1908, p. 72; J. 0. W, Barratt, Changes in chondriosomes, etc., Q.J.M.S. LVin,

pp. 553-566, 1913, etc.; A. P. Mathews, Changes in structure of the pancreas cell,

etc., Journ. Mc/rph. xv (Suppl.), pp. 171-222, 1899.
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cytoplasm ; and in this position they often form a somewhat cloudy

sphere which constitutes the Nebenkern. In the majority of cases,

as in the epithehal cells, they form filamentous structures, and rows

of granules, whose main direction is parallel to the axis of the cell

;

and which may, in some cases, and in some forms, be conspicuous

at the one end, and in some cases at the other end of the cell. But

I seldom find the histologists attempting to explain, or to correlate

with other phenomena, the tendency of these bodies to lie parallel

with the axis, and perpendicular to the extremities- of the cell ; it

is merely noted as a peculiarity, or a specific character, of these

particular structures. Extraordinarily complicated and diverse

functions have been ascribed to them. Engelmann's "Fibrillen-

konus," which was almost certainly another aspect of the same

phenomenon, was held by him and by cytologists hke Breda and

Heidenhain to be an apparatus connected in some unexplained

way with the mechanism of ciliary movement. Meves looked upon

the chondriosomes as the actual carriers or ti*ansmitters of heredity.

Altmann invented a new aphorism, Omne granulum e granulo, as a

refinement of Virchow's (or Remak's) omnis cellula e ceUula*; and

many other histologists, more or less in accord, accepted the chon-

driosomes as important entities, sui generis, intermediate in grade

between the cell itself and its ultimate molecular components. The

extreme cytologists of the Munich school, Popoif, Goldschmidt and

others, following Richard Hertwig, declaring these structures to be

identical with "chromidia" (under which name Hertwig ranked all

extra-nuclear chromatin), w^ould assign them complex functions in

maintaining the balance between nuclear and cytoplasmic material;

and the "chromidial hypothesis," as every reader of cytological

literature knows, has become a very abstruse and comphcated

thing f. With the help of the " binuclearity hypothesis" of

Schaudinn and his school, it has given us the chromidial net, the

Virchow, Arch. f. pathol. Anat. viii, p. 23, 1855; but used, implicitly, by

Remak, in his paper Ueber extracellulare Entstehung thierischer Zellen und iiber

die Vermehrung derselben durch Theilung, Muller's Archiv, 1852, pp. 47-57. That

cells come, and only come, from pre-existing cells seems to have been clearly

understood by John Goodoir, in 1846; see his Anatomical Memoirs, ii, pp. 90, 389.

f Cf. Clifford Dobell, Chromidia and the binuclearity hypotheses; a review and

a criticism, Q.J.M.S. liii, pp. 279-326, 1909; A. Prenant, Les Mitochondries et

I'Ergastoplasme, Journ. de VAnut. et de la Physiol. Xlvi, pp. 217-285, 1910 (both

with copious bibliography).
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chromidial apparatus, the tropliochromidia, idiochromidia, gameto-

chromidia, the protogonoplasm, and many other novel and original

conceptions. There is apt to be confusion between important and

unimportant things ; and the very names are apt to vary somewhat

in significance from one writer to another.

The outstanding fact, as it seems to me, is that physiological

science has been heavily burdened in this matter, with a jargon of

names and a thick cloud of hypotheses ; but from the physical point

of view we see but little mystery in the whole phenomenon. For,

on the one hand, it is likely enough that these various bodies,

by vastly extending the intra-cellular surface-area, may serve

to increase the physico-chemical activities of the cell; and, on

the other hand, we ascribe their very existence, in all probability

and in general terms, to the "clumping" together under surface-

tension of various constituents .of the heterogeneous cell-contents,

and to the drawing out of the little clumps along the axis of the cell

towards one extremity or the other, in relation to osmotic currents

as these are set up in turn in direct relation to the phenomena of

surface-energy and of adsorption*. And all this imphes that the

study of these minute structures, even if it taught us nothing else,

at least surely and certainly reveals the presence of a definite field

of force, and a dynamical polarity within the celll.

* Traube in particular has maintained that in differences of surface-tension"

we have the origin of the active force productive of osmotic currents, and that

herein we find an explanation, or an approach to an explanation, of many phenomena
which were formerly deemed peculiarly "vital" in their character. "Die Diiferenz

der Oberflachenspannungen oder der Oberflachendruck eine Kraft darstellt, welche

als treibende Kraft der Osmose, an die Stelle des nicht mit dem Oberflachendruck

identischen osmotischen Druckes zu setzen ist, etc." (Oberflachendruck und
seine Bedeutung im Organismus, Pfluger's Archiv, cv, p. 559, 1904.) There is,

moreover, good reason to believe that physiological "osmosis" is not a general

phenomenon common to this or that colloid membrane or dialyser, but depends

{int. al.) on a specific affinity between the particular membrane (or the particular

material it is moistened with) and the substance dialysed. This statement, made
by Kahlenberg in 1906 {Journ. Phys. Cheni^. x, p. 141; also Nature, lxxv, p. 430,

1907), has been confirmed (e.g.) by R. Brinkmann and A. von Szent-Gyorgyi

in Biochem. Ztschr'. cxxxix, pp. 261-273, 1923.

t C. E. Walker, in an interesting paper on Artefacts as a guide to the chemistry

of the cell, Proc. E.S. (B), cm, pp. 397-403, 1928, tells how he took mixtures of

albumen, gelatine and lipins, with droplets of methyl myristate (with or without

phosphorus) to act as nuclei; and found on treating with osmic acid that the lipins

had separated out and arranged themselves very much as do Golgi bodies and
other structural elements in ordinary histological preparations.
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Our next and last illustration of the effects of adsorption, which

we owe to the work of the late Professor A. B. Macallum* of

Montreal, is of great importance ; for it introduces us to phenomena

in regard to which we seem to stand on firmer ground than in some

of the foregoing cases, albeit the whole story has not been told.

In our last chapter we were restricted mainly, though not entirely,

to a consideration of figures of equilibrium, such as the sphere, the

cyhnder or the unduloid ; and we began at once to find ourselves in

difficulties when we were confronted by departures from symmetry,

even in such a simple case as the ellipsoidal yeast-cell and the

production of its bud. We found the cylindrical cell of Spirogyra,

with its plane partitions or its spherical ends, a simple matter to

understand; but when this uniform cylinder puts out a lateral

outgrowth in the act of conjugation, we have a new and very

different system of forces to account for and explain. The analogy

of the soap-bubble, or of the simple hquid drop, was apt to lead us

to suppose that surface-tension w^as, on the -whole, uniform over

the surface of the cell; and that its departures from symmetry of

form were due to variations in external resistance. But if we

have been inchned to make such an assumption we must now

reconsider it, and be prepared to deal with important localised

variations in the surface-tension of the cell. For, as a matter of

fact, the simple case of a perfectly symmetrical drop, with uniform

surface, at which adsorption takes place with similar uniformity,

is probably rare in physics, and rarer still (if it exist at all) in the

fluid or fluid-containing system which we call in biology a cell.

We have more to do with cells whose general heterogeneity of

substance leads to quahtative diSerences of surface, and hence

to varying distributions of surface-tension. We must accordingly

investigate the case of a cell which displays some definite and

regular heterogeneity of its liquid surface, just as Amoeba displays

a heterogeneity which is complex, irregular and continually

fluctuating in amount and distribution. Such heterogeneity as we

are speaking of must be essentially chemical, and the preliminary

problem is to devise methods of " microchemical " analysis, which

shall reveal localised accumulations of particular substances within

* See his Methoden u. Ergebnisse der Mikrochemie in der biologischen Forschung;

Asher-Spiro's Ergebnisse, vn, 1908.
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the narrow limits of a cell in the hope that, their normal effect on

surface-tension being ascertained, we may then correlate with their

presence and distribution the actual indications of varying surface-

tension which the form or movement of the cell displays. In

theory the method is all that we could wish, but in practice we

must be content with a very limited apphcation of it; for the

substances which have such action as we are looking for, and

which are also actual or possible constituents of the cell, are very

numerous, while the means are very seldom at hand to demonstrate

their precise distribution and locahsation. But in one or two cases

we have such means, and the most notable is in connection with

the element potassium. As Macallum has shewn, this element can

be revealed in very minute quantities by means of a certain salt,

a nitrite of cobalt and sodium*. This salt penetrates readily into

the tissues and into the interior of the cell ; it combines with

potassium to form a sparingly soluble nitrite of cobalt, sodium and

potassium; and this, on subsequent treatment with ammonium

sulphide, is converted into a characteristic black precipitate of

cobaltic sulphide f.

By this means Macallum demonstrated, years ago, the unexpected

presence of potassium (i.e. of chlorides or other potassium salts)

accumulated in particular parts of various cells, both sohtary cells

and tissue cells J ; and he arrived at the conclusion that the localised

accumulations in question were simply evidences of concentration of

the dissolved potassium salts, formed and locaUsed in accordance

with the Gibbs-Thomson Law. For potassium (as we now know)

has a much higher ionic velocity than sodium ; and accordingly the

* On the distribution of potassium in animal and vegetable cells, Journ. Physiol.

XXXII, p. 95, 1905. (The only substance at all likely "to be confused with potassium

in this reaction is creatine.)

t The reader will recognise a fundamental difference, and contrast, between

such experiments as those of Macallum 's and the ordinary staining processes of

the histologist. The latter are (as a general rule) merely empirical, while the former

endeavour to reveal the true microchemistry of the cell. "On pent dire que la

microchimie n'est encore qu'a la periode d'essai, et que I'avenir de I'histologie

et specialement de la cytologic est tout entier dans la microchimie": A. Prenant,

Methodes et resultats de la microchimie, Journ. de VAnat. et de la Physiol, xlvi,

pp. 343-404, 1910. There is an interesting paper by Brunswick, on the Limitations

of microchemical methods in biology, in Die Naturwissenschaften, Nov. 2, 1923.

X It is always conspicuously absent, as are chlorides and phosphates in general,

from the nuclear substance.
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K-ioris reach and occupy the adsorbing surfaces of the cell-membranes

out of all proportion to their abundance in the external media*.

And we may take it also that our potassium salts, hke inorganic

substances in general, tend to raise the surface-tension, and will be

found concentrated, therefore, at a portion of the surface where the

tension is weakf. ,

iM2^

Fig. 150. Adsorptive concentration of potassium salts in (1) a cell of Pleurocarpus

about to conjugate; (2) conjugating cells of Mesocarpus; (3) sprouting spores

of Equisetum. After Macallum.

In Professor Macallum's figure (Fig. 150, 1) of the little green

alga Pleurocarpus , we see that one side of the cell is beginning to

bulge out in a wide convexity. This bulge is, in the first place,

a sign of weakened surface-tension on one side of the cell, which as

a whole had hitherto been a symmetrical cylinder; in the second

place, we see that the bulging area corresponds to the position of

a great concentration of the potassium salt; while in the third place,

* Cf. A. B. Macallum, Address to Section I, Brit. Ass. 1910; Oberflachen-

spannung und Lebenserscheinungen, in Asher-Spiro's Ergehnisse der Physiologie,

XI, pp. 598-688, 1911; also his important paper on Tonic mobility as a factor in

influencing the distribution of potassium in living matter, Proc. R.S. (B), civ,

pp. 440-458, 1929; cf. E. F. Burton, Trans. Faraday Soc. xxvi, p. 677, 1930.

• t Ii^ accordance with the "principle of Le Chatelier," which is in fact a corollary

to the Gibbs-Thomson Law.
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from the physiological point of view, we call the phenomenon

the first stage in the process of conjugation. In the figure of

Mesocarpus (a close ally of Spirogyra), we see the same phenomenon

admirably exemplified in a later stage. From the adjacent cells

distinct outgrowths are being emitted, where the surface-tension has

been weakened: just as the glass-blower warms and softens a small

part of his tube to blow out the softened area into a bubble or'

diverticulum; and in our Mesocarpus cells (besides a certain

amount of potassium rendered visible over the boundary which

separates the green protoplasm from the cell-sap), there is a very

large accumulation precisely at the point where the tension of the

originally cylindrical cell is weakening to produce the bulge.

But in a still later stage, when the boundary between the two

conjugating cells is lost and the cytoplasm of the two cells becomes

fused together, then the signs of potassium concentration quickly

disappear, the salt becoming generally diffused through the now

symmetrical and spherical "zygospore."

In a spore of Equisetum, while it is still a single cell, no

localised concentration of potassium is to be discerned; but as

soon as the spore has divided by an internal partition into two

cells, the potassium salt is found to be concentrated in the smaller

one, and especially towards its outer wall which is marked by a

pronounced convexity. As this convexity (which corresponds

to one pole of the now asymmetrical, or quasi-ellipsoidal spore)

grows out into the root-hair, the potassium salt accompanies its

growth and is concentrated under its wall. The concentration is,

accordingly, a concomitant of the diminished surface-tension which

is manifested in the altered configuration of the system.

The Acinete protozoa obtain their food through suctorial tentacles

extruded from the surface of the cell : their extrusion being doubtless

due to a local diminution of surface-tension. A dense concentration

of potassium reveals itself, accordingly, in the surface-film of each

tiny tentacle. As the tentacles are withdrawn their potassium

diffuses into the cytoplasm; when retraction is complete it is again

found in surface-concentration, but the surface-films on which it

now concentrates are the surfaces of the protein-spherules (or "food-

vacuoles") within the body of the cell.

In the case of ciliate or flagellate cells, there is to be found a
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characteristic accumulation of potassium at and near the base of

the ciUa. The relation of ciliary movement to surface-tension*

lies beyond our range, but the fact which we have just mentioned

throws light upon the frequent or general presence of a little

protuberance of the cell-surface just where a flagellum is given oif

(cf. p. 406), and of a little projecting ridge or fillet at the base of

an isolated row of cilia, such as we find in Vorticella.

Yet another of Professor Macallum's demonstrations, though its

interest is mainly physiological, will help us somewhat further to

comprehend what is impHed in our phenomenon. In a normal cell

of Spirogyra, a concentration of potassium is revealed along the

whole surface of the spiral coil of chlorophyll-bearing, or "chromato-

phoral," protoplasm, the rest of the cell being wholly destitute of

that substance : the inference being that at this particular boundary,

between chromatophore and cell-sap, the surface-tension is small

in comparison with any other interfacial surface within the system.

And again, in certain minute Chytridia-like fungi, parasitic on

Spirogyra and the like, the potassium-reaction helps to trace the

delicate haustoria of the parasite in their course within the host-cell

—a clear indication of low surface-tension at the surface between.

Now as Macallum points out, the presence of potassium is known

to be a factor, in connection with the chlorophyll-bearing proto-

plasm, in the synthetic production of starch from COg under the

influence of sunlight; but we are left in some doubt as to the

consecutive order of the phenomena. For the lowered surface-

tension, indicated by the presence of the potassium, may be itself

a cause of the carbohydrate synthesis; while on the other hand,

this synthesis may be attended by the production of substances

(e.g. formaldehyde) which lower the surface-tension, and so conduce

to the concentration of potassium. All we know for certain is that

the several phenomena are associated with one another, as ap-

parently inseparable parts or inevitable concomitants of a certain

complex aqtionf.

* Cf. J. Gray, The mechanism of ciliary movement, Proc. U.S. (B), 1922-24.

t The distribution of potassium within plant-cells is more complicated than it

seemed at first to be; but it is still the general if not the invariable rule to find it

associated (by adsorption) with one boundary-surface or another. Cf. E. S.

Dowding, Regional and seasonal distribution of potassium in plant tissues, Ann.

Bot. xxxix, pp. 459-470, 1925. The whole ciuestion, first adumbrated by Macallum,
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And now to return, for a moment, to the question of cell-form.

When we assert that the form of a cell (in the absence of mechanical

pressure) is essentiall> ..^pendent on surface-tension, and even when

we make the preliminary assumption that protoplasm is essentially

a fluid, we are resting our belief on a general consensus of evidence,

rather than on comphance with any one crucial definition. The

simple fact is that the agreement of cell-forms with the forms which

physical experiment and mathematical theory assign to liquid

surfaces under the influence of surface-tension is so frequently and

often so typically manifested that we are led, or driven, to accept

the surface-tension hypothesis as generally apphcable and as equi-

valent to a universal law. The occasional difficulties or apparent

exceptions are such as to call for further enquiry, but fall short of

throwing doubt on the hypothesis. Macallum's researches introduce

a new element of certainty, a "nail in a sure place," when they

demonstrate that in certain movements or changes of form which

we should naturally attribute to weakened surface-tension, a

chemical concentration which would naturally accompany such

weakening actually takes place. They further teach us that in the

cell a chemical heterogeneity may exist of a very marked kind,

certain substances being accumulated here and absent there, within

the narrow bounds of the system.

" Such localised accumulations can as yet only be demonstrated in

the case of a very few substances, and of a single one in particular

;

and these few are substances whose presence does not produce, but

whose concentration tends to follow^ a weakening of surface-tension.

The physical cause of the localised inequalities of surface-tension

remains unknown. We may assume, if we please, that they are

due to the prior accumulation, or local production, of bodies which

have this direct effect; though we are by no means limited to this

hypothesis. But in spite of some remaining difficulties and un-

certainties, we have arrived at the conclusion, as regards unicellular

organisms, that not only their general configuration but also their

is part of the general subject of ionic regulation, which has since become a matter
of great physiological importance; cf. [int. al.) D. A. Webb, Ionic regulation in

Carcinus mnenns, Pror. R,S. (B), cxxix, pp. 107-130, 1940, and many works
quoted therein. It is curious and interesting that Macallum's first work on unequal
ionic distribution in the tissues and Donnan's fundamental conception of the Donnan
equilibrium {Journ. Chem,. Sdv. xcix, p. 1554, 1911) came just at the same time.
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departures from symmetry may be correlated with the molecular

forces manifested in their fluid or semi-fluid surfaces.

Looking at the physiological side, rather than at the morphological

which is more properly our own, we see how very important a

cellular system is bound to be, even in respect of its surface-area

alone. The order of magnitude of the cells which constitute our

tissues is such as to give a relation of surface to volume far beyond

anything in all the structures or mechanisms devised and fabricated

by man. At this extensive surface, capillary energy, a form of

energy scarcely utilised by man, plays a large predominant part in

the energetics of the organism. Even the warm-blooded animal is

not in reality a heat-engine; working as it does at almost constant

temperatures its output of energy is bound, by the principle of

Carnot, to be small. Nor is it an electrostatic machine, nor yet an

electrodynamic one. It is a mechanism in which chemical energy

turns into surface-energy, and, working hand in hand, the two are

transformed into mechanical energy, by steps which are for the

most part unknown*.

We are led on by these considerations to reflect on the molecular,

rather than the histological, structure of the cell. We have already

spoken in passing of " monomolecular layers," such as Henri Devaux

imagined some thirty years ago, and afterwards obtained f, and

such as Irving Langmuir has lately made his own. The free surface

of every liquid (provided the form and symmetry of its molecules

permit) presents a single layer of oriented molecules. Such a surface

h no mere limit or simple boundary; it becomes a region of great

importance and peculiar activity in certain cases, when, for instance,

protein molecules of vast complexity are concerned. It is then

a morphological field with a molecular structure of its own, and a

dynamical field with energetics of its own. It becomes a frontier

where this alien molecule may be excluded and that other be passed

through: where some must submit to mere adsorption, and others

sufl'er chemical change. In a word, we begin to look on a surface-layer

or membrane, visible or invisible, as a vastly important thing, a place

of delicate operations, and a field of peculiar and potent activity.

* Lippmann imagined a moteur electrocapillaire, unique in the history of

mechanical invention. Cf. Berthelot, Rev. Sci. Dec. 7, 1913.

t CL{int. al.) H. Devaux, La structure moleculaire de la cellule vegetale, Bull.

Soc. Bot. de France, lxxv, p. 88, 1928.



CHAPTER VII

THE FORMS OF TISSUES OR CELL-AGGREGATES

We pass from the solitary cell to cells in contact with one another

—to what we may call in the first instance "cell-aggregates,"

through which we shall be led ultimately to the study of complex

tissues. In this part of our subject, as in the preceding chapters,

we shall have to consider the effect of various forces; but, as in

the case of the soUtary cell, we shall probably find, and we may at

least begin by assuming, that the agency of surface-tension is

especially manifest and important. The effect of this surface-tension

will manifest itself in surfaces mininiae areae: where, as Plateau

was always careful to point out, we must understand by this

expression not an absolute but a relative minimum, an area, that

is to say, which approximates to an absolute minimum as nearly as

the circumstances and material exigencies of the case permit.

There are certain fundamental principles, or fundamental equa-

tions, besides those we have already considered, which we shall need

in our enquiry; for instance, the case which we briefly touched

on (on p. 426) of the angle of contact between the protoplasm

and the axial filament in a Heliozoan, we shall now find to be but

a particular case of a general and elementary theorem.

Let us re-state as follows, in terms of Energy, the general

principle which underlies the theory of surface-tension or capillarity*.

When a fluid is in contact with another fluid, or with a solid or

with a gas, a portion of the total energy of the system (that, namely,

which we call surface energy) is proportional to the area of the

surface of contact; it is also proportional to a coefficient which is

specific for each particular pair of substances and is constant for

these, save only in so far as it may be modified by changes of

temperature or of electrical charge. Equihbrium, which is the

condition of minimum potential energy in the system, will accordingly

* See Clerk Maxwell's famous article on "Capillarity" in the ninth edition of

the Encyclopedia Britannica, revised by Lord Rayleigh in the tenth edition.
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be obtained, caeteris paribus, by the utmost possible reduction of

the surfaces in contact.

When we have three bodies in contact with one another the same

is true, but the case becomes a Httle more complex. Suppose a

drop of some fluid, A, to float on another fluid, J5, while both are

exposed to air, C Here are three surfaces of contact, that of the

drop with the fluid on which it floats, and those of air with the one

and other of these two; and the whole surface-energy, E, of the

system consists of. three' parts resident in these three surfaces,

Fig. 151.

or of three specific energies, -S^^, -E'^ic ^bc- "^^^ condition of

equihbrium, or minimal potential energy, will be reached by con-

tracting those surfaces whose specific energy happens to be large

and extending those where it is small—contraction leading to the

production of a "drop,'f and extension to a spreading "film."

Floating on water, turpentine gathers into a drop, olive-oil spreads

out in a film; and these, according to the several specific energies,

are the ways by which the total energy of the system is diminished

and equihbrium attained.

A drop will continue to exist provided its own two surface-energies

exceed, per unit area, the specific energy of the water-air surface

around: that is to say, provided (Fig. 151)

^AB + ^AC > ^BC
But if the one fluid happen to be oil and the other water, then the

combined energy per unit-area of the oil-water and the oil-air

surfaces together is less than that of the water-air surface

:

E > E 4- E

Hence the oil-air and oil-water surfaces increase, the air-water

surface contracts and disappears, the oil spreads over the water,

and the "drop" gives place to a "film," In both cases the total

surface-area is a minimum under the circumstances of the case, and

always provided that no external force, such as gravity, complicates

the situation.
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The surface-energy of which we are speaking here is manifested

in that contractile force, or tension, of which we have had so much

to say*. In any part of the free water-surface, for instance, one

surface-particle attracts another surface-particle, and the multi-

tudinous attractions result in equilibrium. But a water-particle in

the immediate neighbourhood of the drop may be pulled outwards,

Pig. 152.

so to speak, by another water-particle, but find none on the other

side to furnish the counter-pull; the pull required for equiUbrium

must therefore be provided by tensions existing in the other two

surfaces of contact. In short, if we imagine a single particle placed

at the very point of contact, it will be drawn upon by three different

forces, whose directions lie in the three surface-planes and whose

* It can easily be proved (by equating the increase of energy stored in an
increased surface with the work done in increasing that surface), that the tension

measured per unit breadth, T^^, is equal to the energy per unit area, EfO,- Surface-

tensions are very diverse in magnitude, -but all are positive; Clerk Maxwell
conceived the existence of negative surface-tensions, but could not point to any
certain instance. When blood-serum meets a solution of common salt, the two
fluids hasten to mix, long streamers of the one running into the other; this

remarkable phenomenon, first observed by»Almroth Wright {Proc. R.S. (B),

xcii, 1921) and called by him " pseudopodial intertraction," was described by
Schoneboom (ibid. (A), ci, 1922) as a case of negative surface-tension. But it

is a diffusion-phenomenon rather than a capillary one.
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magnitudes are proportional to the specific tensions characteristic

of the three " interfacial " surfaces. Now for three forces acting at

a point to be in equihbrium they must be capable of representation,

in magnitude and direction, by the three sides of a triangle taken

in order, in accordance with the theorem of the Triangle of Forces.

So, if we know the form of our drop as it floats on the surface

(Fig. 152), then by drawing tangents P, R, from (the point of

mutual contact), we determine the three angles of our triangle, and

know therefore the relative magnitudes of the three surface-tensions

proportional to its sides. Conversely, if we know the three tensions

acting in the directions P, R, S (viz. Tab, T^c, T^^) we know the three

sides of the triangle, and know from its three angles the form of

the section of the drop. All points round the edge of the drop being

under similar conditions, the drop must be circular and its figure

that of a sohd of revolution*.

The principle of the triangle of forces is expanded, as follows,

in an old seventeenth-century theorem, called Lamy's Theorem

:

// three forces acting at a point be in equilibrium, each force is

proportional to the sine of the angle contained between the directions of

the other two. That is to say (in Fig. 152)

P : R : S = sin
(f)

: sin p : sin s, .

P R S
or ^-7 = -^

—

==-—

•

sm
(f)

sm p sm s"

And from this, in turn, we derive the equivalent formulae by which

each force is expressed in terms of the other two and of the angle

between them: viz.

P^ = R^ + S^+ 2RS cos </., etc.

From this and the foregoing, we learn the following important

and useful deductions:

(1) The three forces can only be in equihbrium when each is less

* Bubbles have many beautiful properties besides the more obvious ones. For

instance, a floating bubble is always part of a sphere, but never more than a

hemisphere; in fact it is always rather less, and a very small bubble is considerably

less, than a hemisphere. Again, as we blow up a bubble, its thickness varies

inversely as the square of its diameter; the bubble becomes a hundred and fifty

times thinner as it grows from an inch in diameter to a foot. In an actual calculation

we must always take account of the tensions on both surfaces of each film or

membrane.
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than the sum of the other two ; otherwise the triangle is impossible.

In the case of a drop of olive-oil on a clean water-surface, the relative

magnitudes of the three tensions (at 15° C.) are nearly as follows:

Water-air surface 59

Oil-air „ 25

Oil-water ,, 16

No triangle having sides of these relative magnitudes is possible,

and no such drop can remain in existence*.

(2) The three surfaces may be all ahke : as when two soap-bubbles

are joined together on either side of a partition-film. The three

tensions then are all co-equal, and the three angles are co-equal;

that is to say, when three similar liquid surfaces, or films, meet

together, they always do so at identical angles of 120°. Whether

our two conjoined soap-bubbles be equal or unequal, this is still

the invariable rule; because the specific tension of a particular

surface is independent of form or magnitude.

(3) If all three surfaces be different, as when a fluid drop Ues

between water and air, the three surface-tensions will (in all likeli-

hood) be different, and the two surfaces of the drop will differ in

their amount of curvature.

Fig, 153.

(4) If two only of the surfaces be alike, then two of the angles

will be ahke and the other will be unlike; and this last will be the

difference between 360° and the sum of the other two. A particular

case is when a film is stretched between sohd and parallel walls,

like a soap-film within a cylindrical tube. Here, so long as no

external pressure is applied to either side, so long as both ends of

the tube are open or closed, the angles on either side of the film

will be equal, that is to say the film will set itself at right angles to

the sides. Many years ago Sachs laid it down as a principle, which

* Nevertheless, if the water-surface be contaminated by ever so thin a film of

oil, the oil-drop may be made to float upon it. See Rayleigh on Foam, Collected

Works, m, p. 351.
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has become celebrated in botany under the name of Sachs's Rule,

that one cell-wall always tends to set itself at right angles to another

cell-wall. But this rule only applies to the case we have just

illustrated; and such validity as it possesses is due to the fact that

among plant-tissues it commonly happens that one cell-wall has

become soUd and rigid before another partition-wall impinges upon it.

(5) Another important principle . arises, not out of our equations

but out of the general considerations which led to them. We saw in

the soap-bubble that at and near the point of contact between our

several surfaces, there is a continued balance of forces, carried (so

to speak) across the interval; in other words, there is physical

continuity between one surface and another and it follows that the

surfaces merge one into another by a continuous curve. Whatever

A^
Fig. 154. Plateau's bourrelet,

in an algal filament. After a b

Berthold. Fig. 155.

be the form of our surfaces and whatever the angle between them,

a small intervening curved surface is always there to bridge over

the Hne of contact; and this Uttle fillet, or "bourrelet," as Plateau

called it, is big enough to be a common and conspicuous feature in

the microscopy of tissues (Fig. 154). A similar "bourrelet" is

clearly seen at the boundary between a floating bubble and the liquid

on which it floats: in which case it constitutes a "masse annulaire,"

whose mathematical properties and relation to the form of the

nearly hemispherical bubble have been investigated by van der

Mensbrugghe*. The superficial vacuoles in Actinophrys or Actino-

sphaerium present an identical phenomenon.

(6) It is a curious efl'ect, or consequence, of the bourrelet that

a "horizontal" soap-film is never either horizontal or plane. For

the bourrelet at its edge is deformed by gravity, and the film is

correspondingly inclined upwards where it meets it (Fig. 155 6).

* Cf. Plateau, op. cit. p. 366.
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(7) The bourrelet, a fluid mass connected with a fluid film, is no

mere passive phenomenon but has its active influence or dynamical

effect. This was pointed out by Willard Gibbs*, and Plateau's

bourrelet is more often called, nowadays, "Gibbs's Ring." The ring

is continuous in phase with the interior of the film, and fluid is

sucked into it from the latter, which thins rapidly; and this,

becoming a more potent factor of unrest than gravity itself, leads

presently to the rupture of the film. Plateau's explanation of his

bourrelet as a ''surface of continuity" is thus but a part, and a

small part of the story.

(8) In the succulent, or parenchymatous, tissue of a vegetable,

the cells have their internal corners rounded off (Fig. 156) in a way

which might suggest the bourrelet, but comes pf another cause.

Fig. 156. Parenchyma of maize ; shewing intercellular spaces.

Where the angles are rounded off the cell-walls tend to split apart

from one another, and each cell seems tending to withdraw, as far

as it can, into a sphere; and this happens, not when the tissue is

young and the cell-walls tender and quasi-fluid, but later on, when

cellulose is forming freely at the surface of the cell. The cell-walls

no longer meet as fluid films, but are stiffening into pelHcles; the

cells, which began as an association of bubbles, are now so many

balls, in solid contact or partial detachment; and flexibility and

elasticity have taken the place of the capillary forces of an earlier

and more liquid phase f.

* Collected Works, i, p. 309.

t J. H. Priestley, Cell-growth

,

pp. 54-81, 1929.

, in the flowering plant, New Phytologist, xxviii,



472 THE FORMS OF TISSUES [ch.

(9) Statically though not dynamically, that is to say as a line or

surface of continuity in Plateau's sense, our bourrelet is analogous

to the accumulation of sand seen where two nodal lines cross in a

Chladni figure: "Vers les endroits oii des lignes nodales se coupent,

elles s'elargissent toujours, de sorte que la forme des parties vibrantes

pres de ces endroits n'est pas angulaire mais plus ou moins arrondie,

souvent en forme d'hyperbole*." And in somewhat remoter analogy,

we may look on the three corpora Arantii as so many bourrelets,

helping to fill the angles where three semilunar valves meet at the

base of the great arteries.

We may now illustrate some of the foregoing principles, con-

stantly bearing in mind the principles set forth in our chapter on

the Forms of Cells, and especially those relating to the\pressure

exercised by a curved film.

Fig. 157.

Let us look for a moment at the case presented by the partition-

wall in a double soap-bubble. As we have just seen, the three films

in contact (viz. the outer walls of the two bubbles and the partition-

wall between) being all composed of the same substance and being

all ahke in contact with air, the three tensions must be equal, and

the three films must, in all cases, meet at co-equal angles of 120°. But

unless the two bubbles be of precisely equal size, and therefore of

equal curvature, the tangents to the spheres will not meet the plane

of their circle of contact at equal angles, and the partition-wall will

of necessity be a curved, and indeed a spherical, surface; it is only

plane when it divides two equal and symmetrical cells. It is

obvious, from the symmetry of the figure, that the centres of the

two bubbles and of the partition between are all on one and the

same straight line.

The two bubbles exert a pressure inwards which is inversely

E. F. F. Chladni, Traite d'acoustique, 1809, p. 127.
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proportional to their radii: that is to say, p: p' :: Ijr : l/r'; and the

partition-wall must, for equilibrium, exert a pressure (P) which is

equal to the difference between these two pressures, that is to say,

P = l/R = Ijr' — Ijr = (r — r')lrr'. It follows that the curvature of

the partition must be just such as is capable of exerting this pressure,

that is to say, R = rr'j(r — /). The partition, then, is a portion of

a spherical surface, whose radius is equal to the product, divided

by the difference, ofthe radii of the two bubbles; if the two bubbles

be equal, the radius of curvature of the partition is infinitely great,

that is to say the partition is (as we have already seen) a plane

surface.

Fig. 158.

In the typical case of an evenly divided cell, such as a double

and co-equal soap-bubble (Fig. 158), where partition-wall and outer

walls are identical with one another and the same air is in contact

with them all, we can easily determine the form of the system.

For, at any point of the boundary of the partition, P, the tensions

being equal, the angles QPP', RPP', QPR are all equal, and each

is, therefore, an angle of 120°. But PQ, PR being tangents, the

centres of the two spheres (or circular arcs in the figure) lie on lines

perpendicular to them; therefore the radii CP, C'P meet at an

angle of 60°, and CPC is an equilateral triangle. That is to say,

the centre of each circle Hes on the circumference of the other; the
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partition lies midway between the two centres; and the diameter

OP a/3
of the partition-wall, PP\ is -^^ = sin 60° = —- = 0-866 times the

diameter of each of the two cells. This gives us, then, the form

of a combination of two co-equal spherical cells under uniform

conditions.

By integrating between the known values of the meridian section and the

plane partition, we should find each half of the double cell (or soap-bubble)

to be equal to 27/32 of a complete sphere. Therefore the radius of curvature

of each half of the divided bubble is greater than that of a sphere of equal

volume in the ratio of:

\^32 : \^27 = 2 . ^4 : 3 = 1058 : 1 = 1 : 0-945.

And the radius of the original sphere, before division, is to the radius of

each half, or each product of cell-division, as

^54:^^32 = 3.^^2:2.^^4 = 1191: 1 = 1:0-84.

In the case of three co-equal and united bubbles (to which case we shall

presently return), each is approximately five-sevenths of a whole sphere:

and their radii, therefore, are to the radius of the whole sphere as

^7 : \^5 = 1 : 0-893 = 1 : (0-945)2.

When two co-equal bubbles coalesce, the internal pressure, du5 to the

tension of the wall and varying inversely as its radius of curvature, is

diminished in the ratio of 1 : 0-945, or say 5i per cent. And we begin to see,

in the case of three bubbles, that the process proceeds in a geometrical

progression, each new coalescence increasing the radius of curvature and

diminishing the internal pressure, by a constant fraction of the whole. This

and other simple corollaries may perchance, some day, be found useful to the

biologist.

In the case of unequal bubbles, the curvature of their partition-

wall is easily determined, and is shewn in Fig. 159. The three

films meeting in P being (as before) identical films, the three

tangents, PQ, PR, PS, meet at co-equal angles of 120°, and PS
produced bisects the angle QPR. PQ, PR are tangents perpen-

dicular to the radii CP, C'P\ and C"P, the radius of the spherical

partition PP\ is found by drawing a perpendicular to PS in P.

The centre C" is, by the symmetry of the figure, in a straight line

with C, C.

Whether the partition be or be not a plane surface, it is obvious

that its line of junction with the rest of the system lies in a plane,
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and is at right angles to the axis of symmetry. The actual curvature

of the partition-wall is easily seen in optical section ; but in surface

view the line of junction is projected as a plane (Fig. 160), perpen-

dicular to the axis, and this appearance has helped to lend support

and authority to "Sachs's Rule."

Fig. 159. Fig. 160.

As soon as the tensions of the cell-walls become unequal, whether

from changes in their own substance or in the substances with

which they are in contact, then the form alters. If the tension

along the partition P diminishes, the partition itself enlarges and

the angle QPR increases: until, when the tension p is very small

compared with q or r, the whole figure becomes a sphere, and the

partition-wall, dividing it into two hemispheres, stands at right

angles to the outer wall. This is the case w^hen the outer wall of

the cell is practically sohd. On the other hand, if p begins to

Fig. 161.

increase relatively to q and r, then the partition-wall contracts,

and the two adjacent cells become larger and larger segments of

a sphere, until at length the system becomes divided into tw^o

separate cells.

To put the matter still more simply, let the annexed diagrams

(Fig. 161) represent a system of three films, one being a partition-
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wall running between the other two; and where the partition t

meets the outer wall TT\ let the several tensions, or the tractions

exerted on a point at their meeting-place, be proportional to T, T
and t. Let a, ^, y be, as in the figure, the opposite angles. Then:

(1) If T be equal to T' , and t be relatively insignificant, the

angles a, ^ will be of 90°.

(2) If r = T\ but be a little greater than t, then t will exert

an appreciable traction, and a, ^ will be more than 90°, say for

instance, 100°.

(3) lfT=T' = t, then a, ^, y will all equal 120°.

Fig. I(i2. Part of a dragonfly's wing.

The outer walls of the two cells on either side of the partition

will be straight, as well as continuous, in the first case, and more

or less curved in the other two. We have a vivid illustration (if a

somewhat crude one) of the first case in a section of honey : where

the waxen walls, which meet one another at 120°, meet the wooden

sides of the box at 90°.

The wing of a dragon-fly shews a seemingly complicated system

of veins which the foregoing considerations help much to simplify.

The wing is traversed by a few strong "veins," or ribs, more or

less parallel to one another, between which finer veins make a
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meshwork of "cells," these lesser veins being all much of a muchness,

and exerting tensions insignificant compared with those of the

greater veins. Where (a) two ribs run so near together that only

one row of cells lies betw^een, these cells are quadrangular in form,

their thin partitions meeting the ribs at right angles on either side.

Where (6) two rows of cells are intercalated between a pair of ribs,

one row fits into the other by angles of 120°, the result of co-equal

tensions; but both meet the ribs at right angles, as in the former

case. W^here (c) the cell-rows are numerous, all their angles in

common tend to be co-equal angles of 120°, and the cells resolve,

consequently^ into a hexagonal meshw^ork.

Many spherical cells, such as Protococcus, divide into two equal

halves, separated by a plane partition. Among other lower Algae

akin to Protococcus, such as the Nostocs

and Oscillatoriae, in which the cells are a OCOOOTyCOD
embedded in a gelatinous matrix, we

find a series of forms such as are re-

presented in Fig. 163, which various OOCjOOOO
conditions depend, according to what r^rv"

—

^z- v^ I

we have already learned, upon the
^^--^ AJ

relative magnitudes of the tensions at

the surface of the cells and the boundary q fTTTHnnnrTT'T^
between them. In some cases (Fig.

163, B) the cells remain spherical,

because they are merely embedded in D 1 1 I 1 I I I I I I I I

the matrix, with no other physical Fig. 163. Filaments, or chains of

continuity between them; even two cells, in various lower Algae.

soap-bubbles do not tend to unite,
\f:l J"T-' ^fln'^nT'"'

^ '(C) Rivulana; (D) Oscillatoria.

unless their surfaces be moist or we
put a drop of soap-solution between them. In certain other cases,

the system consists of a relatively thick-walled tube, subdivided by
more dehcate partitions, which latter then tend (as in D) to become
plane septa, set at right angles to the walls. Or again, side-walls

and septa may be all alike, or nearly so ; and then the configuration

(as in C, on Fig. 163) is that of a linear cluster of soap-bubbles*.

In the spores of liverworts, such as Pellia, the first partition

* Cf. Dewar, Studies on liquid films, Proc. Roy. Inst. 1918, p. 359.
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(the equatorial partition in Fig. 165 a) divides the spore into two

equal halves, and is therefore a plane surface normal to the surface

of the cell. But the next partitions arise near to either end of the

original spherical or elliptical cell, and each of these latter will

likewise tend to set itself normally to the cell-wall—at least the

Fig. 164.

angles on either side of the partition will tend to be identical, and

their magnitude will depend on the relative tensions of the cell-wall

and the partition. The angles will be right angles if the cell-wall is

solid or nearly so when the partition is formed; but they will be

somewhat greater, if (in all probability) rigidity of the cell-wall

has not been quite attained. In either case the partition itself will

Fig. 165. Early development of a liverwort (Pellia). After Wildeman.

be part of a spherical surface, whose curvature will now correspond

to the difference of pressures in the two chambers (or cells) which

it serves to separate.

We have innumerable cases, near the tip of a growing filament

for instance, where in like manner the partition-wall which cuts off

the terminal, more or less conical, cell constitutes a spherical lens-



VII] OF CELL-PARTITIONS 479

shaped surface, set normally to the adjacent walls; and the centre

of curvature is the meeting-point of two tangents to the cone. We
find such a lenticular partition at the tips of the branches of many
Florideae; in Dictyota dichotoma, as figured by Reinke, we have

a succession of them. And by the way, where, in such cases as

these, the tissues happen to be very transparent, we often have a

puzzUng confusion of lines (Fig. 166); one being the optical section

©
®

©
Fig. 166. CeWs oi Dictyota. Fig. 167. Terminal and other cells

After Reinke. of Chara.

of the curved partition-wall, the other being the straight linear

projection of its outer edge to which w^ have already referred. In

the conical terminal cell of Chara, we have the same lens-shaped

curve; but a little lower down, w^here the sides of the shoot are

approximately parallel, we have flat transverse partitions, and the

form of the cells is, more or less, w^hat we have been led to expect

in the simple case of successive transverse partitions (Fig. 167).

In the young antheridia of Chara (Fig. 168), and in the geo-

metrically similar case of the sporangium (or conidiophore) of

Mucor, we easily recognise the hemispherical form

of the septum which shuts off the large spherical

cell from the cylindrical filament. Here, in the first

phase of development, we should have to take

into consideration the different pressures exerted

by the single curvature of the cyUnder and the

double curvature of its spherical cap (p. 371) ; a id

we should find that the partition would have a

somewhat low curvature, with a radius less than

the diameter of the cylinder, which it would have Fig. 168. Young

exactly equalled but for the additional pressure anthendium of

inwards which it receives from the curvature of

the large surrounding sphere. But as the latter continues to
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grow its curvature decreases, and so likewise does the inward

pressure of its surface ; and accordingly the little convex partition

bulges out more and more.

In the ordinary meristematic tissue of a plant, the new partition-

wall within a dividing cell will generally meet the old walls at right

angles to begin with, because its tension is usually small compared

to what theirs has become. But as the system grows and the old

wall strengthens, the tensions of all three walls become approxi-

mately the same; and they tend towards a new position of equi-

librium, in which (as seen in optical section) they meet as before,

at co-equal angles of 120°*.

A B

Fig. 169. Cambium cells after division, altering from A to B.

The biological facts which the foregoing considerations go far to

explain and account for have been the subject of much argument

and discussion on the part of the botanists. Let me recapitulate,

in a very few words, the history of this long discussion.

Some seventy years ago, Hofmeister laid it down as a general,

but purely empirical, law that "The partition-wall stands always

perpendicular to what was previously the principal direction of

growth in the cell"—or, in most cases, perpendicular to the long

axis of the cellf. This contains an important truth; for it is as

much as to say that the cell tends to be divided by the smallest

* J. H. Priestley, Studies. . .of cambium activity,. New Phytologist, xxix, p. 101.

1930. Cf. also J. J. Beijer, Vermehrung der radialen Reihen in Cambium, Rec.

de trav. hot. Need, xxiv, pp. 631-786, 1927.

Hofmeister, Pringsheini's Jahrh. iii, p. 272, 1863; Hdb. d. physiol. Bot. i,

p. 129, 1867; etc. Hofmeister adds the somewhat curious qualification: "Wohl-

bemerkt, nicht senkrecht zum grossten Durchmesser der Zelle, der mit der Richtung

des starksten Wachstums nicht zusammenfallen braucht, und in sehr viel Fallen

in der That auch nicht mit ihr zusammenfallt."
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partition capable of doing so. Ten years later, Sachs formulated

his rule of "rectangular section," declaring that in all tissues,

however complex, the cell-walls cut one another (at the time of

their formation) at right angles*. Years before, Schwendenlfer had

found in the final results of cell-division a universal system of

"orthogonal trajectoriesf; and this idea Sachs further developed,

introducing complicated systems of confocal elhpses and hyperbolae,

and distinguishing between pericHnal walls whose curves approxi-

mate to the peripheral contours, radial partitions which cut these

at an angle of 90°, and finally anticlines, which stand at right angles

to the other two.

Reinke (in 1880) was the first to throw doubt upon this explana-

tion. He pointed out cases where the angle was not a right angle,

but very definitely an acute one; and he saw in the commoner
rectangular symmetry merely what he called a necessary, but

secondary, result of growth {.

Within the next few years a number of botanical writers were

content to point out further exceptions to Sachs's rule§, and in

some cases to show that the curvatures of the partition-walls,

especially such cases of lenticular curvature as we have described,

were by no means accounted for by either Hofmeister or Sachs;

while within the same period, Sachs himself, and also Rauber,

attempted to extend the main generalisation to animal tissues^.

The simple fact is that Sachs's rule is limited to those many
caaes where one cell-wall grows stiff or solid before another

* Sachs, Ueber die Anordnung d. Zellen in jiingsten Pflanzentheilen, Verh. pkys.-

med. Gesellsch. Wurzhurg, xi, pp. 219-242, 1877; Ueber Zellenanordnung u.

Waehstum, ibid, xii, 1878; cf. Arb. bot. Inst. Wurzburg, ii, 1882; Ueber die durch
Wachstum bedingte Verschiebung kleinster Theilchen in trajeetorisehen Curven,
Monatsb. k. Akad. Wiss. Berlin, 1880; Physiology of Plants, chap, xxvii, Oxford,
1887.

t Schwendener, Bau u. Wachstum des Flechtenthallus, Naturf. Gesellsch. Zurich,

1,860," pp. 272-296.

J Reinke, Lehrbuch d. Botanik, 1880, p. 519; Kienitz-Gerloff, Botan. 7Ag. 1878,

p. 58, had already shewn some exceptions "to Sachs's rules, and ascribed them,
vaguely, to "heredity." It was a time when heredity overruled everything, and
when Sachs himself spoke of the difficulty of demonstrating the causes of any
morphological phenomenon in any other way than "genetically": Textbook. 1882,

p. 201.

§ E.g., Leitgeb, Vniersuchungen iiber die Lebermoose, ii, p. 4, Graz, 1881.

•i Rauber, Neue Grundlegungen zur Kenntniss der Zelle, Morvhol. Jahrb. viii,

pp. 279, 334, 1882.
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impinges upon it; and, suuject to this limitation, the rule is strictly

true.

While thes^ writers regarded the form and arrangement of the

cell-wdls as a biological phenomenon, with little if any direct

relation to ordinary physical laws, or wioh but a vague reference

to "mechanical conditions," the physical side of the case was

soon urged by others, with more or less force and cogency. Indeed

the general resemblance between a cellular tissue and a "froth"

had been pointed out long before. Robert Hooke described the

cells within the shaft of a feather as forming "a kind of solid or

hardened froth, or a congeries of very small bubbles," and Grew

described a parenchyma as made by "fermentation", "as we see

Bread in Baking", and again as being "much the same thing, as to

its construction which the froth of beer or eggs is." Later on, within

the days of the cell-theory, Melsens made an "artificial tissue" by

blowing into a solution of white of egg*.

In 1886, Berthold pubhshed his Protoplasmamechanik, in which he

definitely adopted the principle of "minimal areas," and, following

on the lines of Plateau, compared the forms of many cells and the

arrangement of their partitions with those assumed under surface-

tension by a system of "weightless films." But, as Klebs| pointed

out, in reviewing the book, Berthold was so cautious as to stop short

of attributing the biological phenomena to a mechanical cause.

They remained for him, as they had done for Sachs, so many

"phenomena of growth," or "properties of protoplasm."

In the same year, but while still unacquainted, apparently, with

Berthold's work, Leo Errera pubhshed a short but very striking

article J in which he definitely ascribed to the cell-wall (as

Hofmeister had already done) the properties of a semi-liquid film,

and drew from this as a logical consequence the deduction that it

must assume the various configurations which the law of minimal

areas imposes on the soap-bubble. So what we may call Errera's

Law is formulated as follows: A cell-wall, at the moment of its

* C.R. xxxin, p. 247, 1851; Ann. de chimie et de phys. (3), xxxra, p. 170, 1851

;

Bull. R. Acad. Belg. xxiv, p. 531, 1857.

t Georg Klebs, Biol. Centralbl. vn, pp. 193-201, 1887.

X L. Errera, Sur une condition fondaraentale d'equilibre des cellules vivantes,

C.R. cm, p. 822, 1886; Bull. Soc. Beige de Microscopie, xm, Oct. 1886: Recueil

d'ceuvres {Physiologie gdnirale), 1910, pp. 201-205.
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formation, tends to assume the form which would be assumed under

the same conditions by a Uquid fihn destitute of weight*.

Soon afterwards Chabryf, discussing the segmentation of the

Ascidian egg, indicated many ways in which cells and cell-partitions

repeat the surface-tension phenomena of the soap-bubble. He
came to the conclusion that some, at least, of the embryological

phenomena were purely physical, and the same line of investigation

and thought was pursued and developed by RobertJ in connection

w^ith the embryology of the Mollusca. Driesch also, in a series of

papers, continued to draw attention to capillary phenomena in the

segmenting cells of various embryos, and came to the conclusion,

startling to the embryologists of the time, that the mode of

segmentation was of little importance as regards the final result §.

Lastly de Wildeman^f, in a somewhat wider but also vaguer

generahsation than Errera's, declared that "The form of the cellular

framework of plants and also of animals depends, in its essential

features, upon the forces of molecular physics."

Let us return to our problem of the arrangement of partition

films. When we have three bubbles in contact, instead of two as

in the case already considered, the phenomenon is strictly analogous

to the former case. The three bubbles are separated by three

partition surfaces, whose curvature will depend upon the relative

size of the spheres, and which will be plane if the latter are all of

equal size; but whether plane or curved, the three partitions will

meet one another at angles of 120°, in an axial fine. Various

pretty geometrical corollaries accompany this arrangement. For

instance, if Fig. 170 represent the three associated bubbles in a

* There was no lack of hearty antagonism to Berthold and Errera's views.

Cf. (e.g.) Zimmermann, Beitr. z. Morphologie und Physiologie der Pflanzenzelle,

Tubingen, 1891; Jost, Vorlesungen iiber Pflanzenphysiologie, 1904, p. 329, etc.;

Giesenhagen, Studien iiber Zelltheilungen im Pjianzenreiohe, 1905. Cf. also K.
Habermehl, Die mechanische Ursache fiir die xegelmdssige Anordnung der Teilungs-

wdnde in Pflanzenzellen (Inaug. Diss;), Kaiserslautern, 1909.

t L. Chabry, Embryologie des Ascidiens, J. Anat. et Physiol, xxm:, p. 266, 1887.

X H. Robert, Embryologie des Troques, Arch, de Zool. exper. et gen. (3), x, 1892.

§ "Dass der Furchungsmodus etwas fiir das Zukiinftige unwesentliches ist,"

Z. /. w. Z. LV, 1893, p. 37. With this statement compare, or contrast, that of

Conklin, quoted on p. 5; cf. also p, 287 (footnote).

Tl E. de Wildeman, Etudes sur I'attache des cloisons cellulaires, Mem. Couronn.

de VAcad. R. de Belgique, mi, 84 pp., 1893-94.
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Fig. 170.

Fig. 171.
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plane drawn through their centres, c, c', c" (or what is the same

thing, if it represent the base of three bubbles resting on a plane),

then the lines uc, uc", or sc, sc', etc., drawn to the centres from the

points of intersection of the circular arcs, will always enclose an

angle of 60°. Again (Fig. 171), if we make the angle c"uf equal

to 60°, and produce uf to meet cc" in/, / will be the centre of the

circular arc which constitutes the partition Ou; and further, the

three points /, g, h, successively determined in this manner, will lie

on one and the same straight line. In the case of three co-equal

bubbles (as in Fig. 170, B), it is obvious that the hnes joining their

centres form an equilateral triangle: and consequently, that the

centre of each circle (or sphere) lies on the circumference of the

other two; it is also obvious that uf is now parallel to cc'\ and

accordingly that the centre of curvature of the partition is now

infinitely distant, or (as we have already said) that the partition

itself is plane.

The mathematician will find a more elegant way of dealing with our

spherical bubbles and their associated interfaces by the method of spherical

inversion, (i) Take three planes through a line, cutting one another at 60°,

and invert from any point, arid you have the case of two spherical bubbles

fused, with their interface also spherical, (ii) Take the six planes projecting

the edges of a regular tetrahedron from its centre, and you get by inversion

the case of the three unequal bubbles and their three interfaces, (iii) Take

these same planes with a bubble added centrally (thus adding a spherical

tetrahedron), and inversion gives the general case of four fused bubbles and

their six spherical partitions.

When we have four bubbles meeting in a plane (Fig. 172), they

would seem capable of arrangement in two symmetrical ways:

either (a) with four partition-walls intersecting at right angles,

or (6) with five partitions meeting, three and three, at angles of 120°.

The latter arrangement is strictly analogous to the arrangement of

three bubbles in Fig. 170. Now, though both of these figures might

seem, from their apparent symmetry, to be figures of equilibrium,

yet in point of fact the latter turns out to be of stable and the

former of unstable equilibrium. If we try to bring four bubbles

into the form (a), that arrangement endures only for an instant;

the partitions glide upon one another, an intermediate wall springs

into existence, and the system assumes the form (6), with its two
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triple, instead of one quadruple, conjunction. In like manner, when

four billiard-balls are packed close upon a table, two tend to come

together and separate the other two.

Let us epitomise the Law of Minimal Areas and its chief clauses

or corollaries in the particular case of an assemblage of fluid films,

as was first done by Lamarle*. Firstly and in general: In every

liquid system of thin films in stable equihbrium, the sum of the

areas of the films is a minimum. From, observation and experience,

rather than by demonstration, it follows that (2) the area of each

is a minimum under its own limiting conditions; and further that

(3) the mean curvature of any film is constant throughout its whole

area, null when the pressures are equal on either side and in other

Fig. 172. A, an unstable arrangement of four cells or bubbles. B, the normal and

stable configuration, showing the polar furrow.

cases proportional to their difference. Less obvious, very important,

and hkewise subject (but none too easily) to rigorous mathematical

proof, are the next two propositions, both of which had been laid

down empirically by Plateau: (4) the films meeting in any one edge

are three in number; (5) the crests or edges meetirg in any one

corner are four in number, neither more nor less. Lastly, and

following easily from these: (6) the three films meeting in a crest

or edge do so. at co-equal angles, and the same is true of the four

edges meeting in a corner.

Wherever we have a true cellular complex, an arrangement of

cells in actual physical contact by means of their intervening

boundary walls, we find these general principles in force; we must

only bear in mind that, for their easy and perfect recognition, we

* Ernest Lamarle, Sur la stabilite des systemes liquides en lames minces, Mem.
de VAcad. R. de Belgique, xxxv, xxxvr, 1864-67.
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must De able to view the object in a plane at right angles to the

boundary walls. For instance, in any ordinary plane section of a

vegetable parenchyma, we recognise the appearance of a "froth,"

precisely resembling that which we can construct by imprisoning

a mass of soap-bubbles in a narrow vessel with flat sides of glass;

in both cases we see the cell-walls everywhere meeting, by threes,

at angles of 120°, irrespective of the size of the individual cells:

whose relative size, on the other hand, determines the curvature of

the partition-walls. On the surface of a honey-comb we have

precisely the same conjunction, between cell and cell, of three

boundary walls, meeting at 120°. In embryology, when we examine

a segmenting egg, of four (or more) segments, we find in like manner,

in the majority of cases if not in all, that the same principle is still

exemplified. The four segments do not meet in a common centre,

but each cell is in contact with two others ; and the three, and only

three, common boundary walls meet at the normal angle of 120°.

A so-called polar furrow"^, the visible edge of a vertical partition-

wall, joins (or separates) the two triple contacts, precisely as in

Fig. 172, B, and so gives rise to a diamond-shaped figure, which

was recognised more than a hundred years ago (in a newt or

salamander) by Rusconi, and called by him a tetracitula.

That four cells, contiguous in a plane, tend to meet in a lozenge

with three-way junctions and a "polar furrow" between the cells, is

a geometrical theorem of wide bearing. The first four cells in

a wasp's nest shew it neither better nor worse than do those of

a segmenting ovum, or the ambulacral plates of a sea-urchin

or the oosphere of Oedogonium giving birth to its four zoo-

spores!. Going farther afield for an illustration, we find it in the

molecules of a viscous liquid under shear: where a group of four

* It was so termed by Conklin in 1897, in his paper on Crepidula (Journ. Morph.

XIII, 1897). It is the Querfurche of Rabl (Morph. Jahrh. v, 1879); the Polarfurche

of (). Hertwig (Jen. Zeitschr. xiv, 1880); the Brechuugslinie of Rauber (Neue

Grundlage zur Kenntniss der Zelle, Morph. Jahrb. viir, 1882); and the cross-line of

T. H. Morgan (1897). It is carefully discussed by Robert, op. rit. p. 307 seq.

t Speaking of the complicated polygonal patterns in the test of the protozoon

genus Peridinium, Barrows says: "In the experience of the writer no case has

been found in which four sutures actually meet at one point. Cases which at first

sight appeared as such, upon loser analysis in a favourable position have been

resolved into two junction-points of three sutures each, etc." On skeletal variation

in the genus Peridinium, Univ. Calif. Puhl. 1918, p. 463.
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molecules is supposed to slip from one lozenge-configuration to an

opposite one, passing on the way through the simple cross or square

—a configuration of "higher energy" and less stable equilibrium*.

The sohd geometry of this four-celled figure is not without

interest. If the two polar furrows (the one above and the other

below) run criss-cross, the whole is a more or less flattened and

distorted spherical tetrahedron. If they run parallel, then it is a

four-sided lozenge with two curved quadrilateral faces, and two

bilateral faces each bounded by two curved edges, Hke the "liths"

Fig. 173. Examples of the "polar furrow". A, Pollen-grains (tetrads) of Neottia.

B, Egg of hookworm {Ankylostoma). C, First cells of a wasp's nest (Polistes).

(From Packard, after Saussure.) D, Four-celled stage of Volvox: from Janet.

E, Hair of Salvia, after Hanstein.

of an orange I . In either case the lozenge-configuration is under

some restraint to keep its four cells in a plane; for a tetrahedral

pile, or pyramid, of four spheres would be the simplest arrangement

of all.

The polar furrow and the partition of which it forms an edge are, like all

the edges and partitions in our associated cells, perfectly definite in dimensions

and position; and to draw them to scale, in projection, is a simple matter.

Taking the simplest case, when the radii of all four cells are equal to one another,

let c, c\ c" and c'" be the centres of the four cells, Fig. 174. The centres of

* Cf. J. D. Bernal, Proc. R.S. (A), No. 914, p. 321, 1937.

t The geometer seldom takes account of such two-sided surfaces or facets;

but in groups of cells or bubbles they are of common occurrence, and in the theory

of polyhedra they fit in without difficulty with the rest (cf. infra, p. 737).
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any two are related precisely as though two cells only were conjoined; the

centres of three contiguous cells (as c, c' and c") are related as though three

only were concerned; and the centres of two opposite cells are situated

symmetrically to one another. This is as much as to say that if there be

two bubbles in contact the addition of a third does not disturb their symmetry;

and if there be three in contact, the addition of a fourth leaves the first three

likewise in statu quo. Thus the triangle cc'c" is equilateral, as we already

know. The partition so bisects the side cc", and the angle cc'c"; and the

point o is the centre of gravity of the triangle. Therefore oj) — \oc" and

Fig. 174. The geometric symmetry of a system of four cells.

Again, in the triangle cpc", where cc" = r, pc" — ^r, and oo' (the polar

furrow) = -7:^ r. Once again, in the triangle soc", sc= r; and so (one of

V3
2

the partitions) = -^ r = twice 00'. The length of the polar furrow, then, as

V.3

seen in vertical projection in a system of four co-equal cells, is (theoretically)

just one-half that of the four intercellular partitions, and very nearly three-

fifths that of a c(4l-radius.

It is worth while to remark that the universal phenomenon of a

polar furrow gives an appearance of bilateral symmetry to every

egg or embryo in its four-celled stage, no matter to what kind or

class or organism it belongs.
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In the four-celled stage of the frog's egg, Rauber (an exception-

ally careful observer) shews us three alternative modes in which

the four cells may be found to be conjoined (Fig. 175). In A we
have the commonest arrangement, which is that which we have

just studied and found to be the simplest theoretical one; that

namely where a straight polar furrow intervenes, and where the

partition-walls are conjoined at its extremities, three by three.

In B, we have again a polar furrow, which is now seen to be a

portion of the first "segmentation-furrow" by which the egg was

originally divided into two; the four-celled stage being reached by

the appearance of the two transverse furrows. In this case, the

polar furrow is seen to be sinuously curved, and Rauber tells us that

its curvature gradually alters; as a matter of fact, it, or rather the

-f-
Fig. 175. Various conjunctions of the first four cells in a

frog's egg. After Rauber.

partition-wall corresponding to it, is gradually setting itself into a

position of equilibrium, that is to say of equiangular contact with

its neighbours, which position is already attained or nearly so in

A. In C we have a very different condition, with which we shall

deal in a moment.

The polar furrow may be longer or shorter, and it may be so

minute as to be not easily discernible; but it is quite certain that

no simple and homogeneous system of fluid films such as we 'are

deahng with is in equilibrium without its presence. In the accounts

given, however, by embryologists of the segmentation of the egg,

while the polar furrow is depicted in the great majority of cases,

there are others in which it has not been seen and some in which

its absence is definitely asserted*. The cases where four cells lying

* Thus Wilson declared (Journ. Morph. viii, 1895) that in Amphioxus the polar

furrow was occasionally absent, and Driesch took occasion *to criticise and to

throw doubt upon the statement {Arch. f. Entw. Mech. i, p. 418, 1895).
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in one plane meet in a point, such as were frequently figured by the

older embryologists, are hard to verify and sometimes not easy to

believe. Considering the physical stability of the other arrange-

ment, the great preponderance of cases in which it is known to

occur, the difficulty of recognising the polar furrow in cases where

it is very small and unless it be specially looked for, and the natural

tendency of the draughtsman to make an all but symmetrical

structure appear wholly so, I was wont to attribute to error or

imperfect observation all those cases where the junction-hnes of four

cells are represented (after the manner of Fig. 172, A) as a simple

cross*. As a matter of fact, the simple cross is no very rare pheno-

menon, even in the frog's egg; but it is a transitory one, and

unstable. Viscosity and friction may enable it to endure for a

while, but the partitions inevitably shift into the stable, three-way,

configuration. In such a case, the polar furrow manifests itself

slowly and as it were laboriously; but in the more fluid soap-bubble

it does so in the twinkling of an eye.

While a true four-rayed intersection, or simple cross, is theoretic-

ally impossible save as a transitory and unstable condition, there

is another configuration which may closely simulate it, and which

is common enough. There are plenty of faithful representations of

segmenting eggs in which, instead of the triple junctions and polar

furrow, the four cells (and also their more numerous successors) are

represented as rounded off, and separated from one another by an

empty space, or by a little drop of extraneous fluid, evidertly not

directly miscible with the fluid surface of the cells. Such is the

case in the obviously accurate figure which Rauber gives (Fig.

175, C) of his third mode of conjunction in the four-celled stage of

the frog's egg. Here Rauber is most careful to point out that the

furrows do not simply "cross," or meet in a point, but are separated

by a little space, which he calls the Polgrilbchen, and asserts to be

constantly present whensoever the polar furrow, or Brechungslinie,

is not to be discerned. This little interposed space with its con-

tained drop of fluid materially alters the case, and implies a new

* The same remark was made long atgo by Driesch: "Das so oft schematisch

gezeichnete Vierzellenstadium mit zwei sieh in zwei Punkten scheidende Medianen

kann man wohl getrost aus der Rcihe des Existierenden streichen" (Entw, mech.

Studien. Z. f. w. Z. liii, p. 166, 1892). Cf. also his Math, mechanische Bedeutung

morphologischer Probleme der Biologic, Jena, 59 pp., 1891.
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condition of theoretical and actual equilibrium. For on the one

hand, we see that now the four intercellular partitions do not meet

one another at all', but really impinge upon four new and separate

partitions, which constitute interfacial contacts not between cell

and cell, but between the respective cells and the intercalated

drop. And secondly, the angles at which these four little surfaces

meet the four cell -partitions will be determined, in the usual way,

by the balance between the respective tensions of these several

surfaces. In an extreme case (as in some pollen-grains) it may be

found that the cells under the observed circumstances are not truly

in surface contact: that they are so many drops which touch but

do not "wet" one another, and which are merely held together

by the pressure of the surrounding envelope. But even supposing

that they are in actual fluid contact, the case from the point of

view of surface-tension presents no difficulty. In the case of the

conjoined soap-bubbles, we were dealing with similar contacts and

with equal surface-tensions throughout the system; but in the

system of protoplasmic cells which constitute the segmenting egg

we must make allowance for inequality of tensions, between the

surfaces where cell meets cell and where on the other hand cell-

surface is in,contact with the surrounding medium—generally water

or one of the fluids of the body. Remember that our general con-

dition is that, in our entire system, the sum of the surface energies

is a minimum ; and, while this is attained by the sum of the surfaces

being a minimum in the case ' where the energy is uniformly

distributed, it is not necessarily so under non-uniform conditions.

In the diagram (Fig. 176), if the energy per unit area be greater

along the contact surface cc', where cell meets cell, than along ca
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or c6, where cell-surface is in contact with the surrounding medium,

these latter surfaces will tend to increase and the surface of cell-

contact to diminish. In short there will be the usual balance of

forces between the tension along the surface <x\ and the two

opposing tensions along ca and ch. If the former be greater than

either of the other two, the outside angle will be less than 120°;

and if the tension along the surface cc be as much or more than

the sum of the other two, then the drops will merely touch one

another, save for the. possible effect of external pressure. This is

the explanation, in general terms, of the peculiar conditions ob-

taining in Nostoc and its allies (p. 477), and it also leads us to a

consideration of the general properties and characters of a super-

ficial or "epidermal" layer*.

While the inner cells of the honeycomb are symmetrically

situated, sharing with their neighbours in equally distributed

pressures or tensions, and therefore all tending closely to identity

of form, the case is obviously different with the cells at the borders

of the system. So it is with our froth of soap-bubbles f. The

bubbles, or cells, in the interior of the mass are all ahke in general

character, and if they be equal in size are alike in every respect:

as we see them in projection their sides are uniformly flattened,

and tend to meet at equal angles of 120°. But the bubbles which

constitute the outer layer retain their spherical surfaces (just as

in the cells of a honeycomb), and these still tend to meet the

partition-walls connected with them at constant angles of 120°.

This outer layer of bubbles, which forms the surface of our froth,

constitutes after a fashion what we should call in botany an

"epidermal" layer. But in our froth of soap-bubbles we have, as

* A surface-layer always tends to have, ipso facto, a character of its own : a "skin "

has such and such characteristics just because it is a skin. The "Beilby layer"

on a metallic surface is, in its own special way;- a consequence of its own externality.

f A froth is a collocation of bubbles containing air; or in the language of colloid

chemistry, an emulsion with air for its disperse phase. The power of forming

a froth is not the same as that of forming isolated bubbles; for some liquids, such

as a solution of saponin, of gum arable, of albumin itself, give a copious and lasting

froth, but we find it hard to blow even a single tiny bubble with any of them.

Something more than surface-tension seems necessary for the production and main-

tenance of a film : perhaps a certain amount of viscosity, to resist the tendency of

surface-tension to tear the film asunder.
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a rule, the same kind of contact (that is to say, contact with air)

both within and without the bubbles; while in our hving cell, the

outer wall of the epidermal cell is exposed to air on the one side,

but is in contact with the protoplasm of the cell on the other : and

this involves a difference of tensions, so that the outer walls and

their adjacent partitions need no longer meet at precisely equal

angles of 120°. Moreover a chemical change, due perhaps to

oxidation or possibly also to adsorption, is very apt to affect the

external wall and lead to the formation of a "cuticle"; and this

process, as we have seen, is tantamount to a large increase of tension

In t^at outer wall, and will cause the adjacent partitions to impinge

upon it at angles more and more nearly approximating to 90°: the

bubble-hke, or spherical, surfaces of the individual cells being more

Fig. 177. A froth, with its outer and inner cells or vesicles,

and more flattened in consequence. Lastly, the chemical changes

which affect the outer walls of the superficial cells may extend in

greater or less degree to their inner walls also : with the result that

these cells will tend to become more or less rectangular throughout,

and will cease to dovetail into the interstices of the next subjacent

layer. These then are the general characters which we recognise

in an epidermis ; and we now perceive that its fundamental character

simply is that it lies outside, and that its physical characteristics

follow, as a matter of course, from the position which it occupies

and from the various consequences which that situation entails.

In the young shoot or growing point of a flowering plant botanists

(following Hanstein) find three cell-layers, and call them dermatogen,

periblern and plerome. The first is an epidermis, such as we have

just described. Its cells grow long as the shoot grows long; new

partitions cross the lengthening cell and tend to lie at right angles

to its hardening walls; and this epidermis, once formed, remains

a single superficial layer. The next few layers, the so-called peri-
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blem, are compressed and flattened between the epidermis with its

tense cuticle and the growing mass within ; and mider this restraint

the cell-layers of the periblem also continue to divide in their own

plane or planes. But the cells of the inner mass or plerome, lying

in a more homogeneous field, tend to form " space-fiUing " poly-

hedra, twelve- or perhaps fourteen-sided according to the freedom

which they enjoy. In a well-known passage Sachs declares that

the behaviour of the cells in the growing point is determined not

by any specific characters or properties of their own, but by their

position and the forces to which they are subject in the system of

which they are a part*. This was a prescient utterance, and is

abundantly confirmed f.

We have hitherto considered our cells, or our bubbles, as lying

in a plane of symmetry, and have only considered their appearance

as projected on that plane; but we must also begin to consider

them as sohds, whether they lie in a plane (hke the four cells in

Fig. 172), or are heaped on one another, like a froth of bubbles or

a pile of cannon-balls. We have still much to do with the study

of more complex partitioning in a plane, and we have the whole

subject to enter on of the solid geometry of bodies in "close

packing," or three-dimensional juxtaposition.

The same principles which account for the development of

hexagonal symmetry hold true, as a matter of course, not only of

cells (in the biological sense), but of any bodies of uniform size and

originally circular outline, close-packed in a plane; and hence the

hexagonal pattern is of very common occurrence, under widely

varying circumstances. The curious reader may consult Sir Thomas

Browne's quaint and beautiful account, in the Garden of Cyrus, of

hexagonal, and also of quincuncial, symmetry in plants and animals,

which "doth neatly declare how nature Geometrizeth, and observeth

order in all things,"

We come back to very elementary geometry. The first and

simplest of all figures in plane geometry (wdth which for that reason

Euclid begins his book) is the equilateral triangle; because three

straight lines are the least number which enclose two-dimensional

* Lectures on the Physiology of the Plant, Oxford, 1887, p. 460, etc.

t Cf. J. H. Priestley in Biol. Reviews, m, pp. 1-20, 1928; U. Tetley in Ann. Bot.

L, pp. 522-557, 1936; etc.
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space, and three equal sides make the simplest of triangles. But

it by no means follows that equilateral, or any other, triangles

combine to form the simplest of polygonal associations or patterns.

On the other hand, three straight lines meeting in a point are the

least number by which we can subdivide or partition two-dimensional

space ; the simplest case of all is when the three partitions meet at

co-equal angles, and a pattern of hexagons, so produced, is, geo-

metrically speaking, the siiT^plest of all ways in which a surface can

be subdivided—the simplest of all two-dimensional '"space-fiUing"

patterns. So it comes to pass that we meet with a pattern of

hexagons here and there and again and again, in all sorts of plane

symmetrical configurations, from a soapy froth to the retinal

pigment, from the cells of the honeycomb to the basaltic columns

of Staffa and the Giant's Causeway.

We pass to solid geometry, and arrive by similar steps at an

analogous result. Four plane sides are now the least number which

enclose space, and (next to the sphere itself) the regular tetrahedron

is the first and simplest of solids; but its simplicity is that of a

solitary or isolated figure, and tetrahedra do not combine to fill space

at all. But as the partitioning of an equilateral triangle was the

first step towards the symmetrical partitioning of two-dimensional

space, so we draw from the regular tetrahedron a first lesson in the

partitioning of space of three dimensions ; and as three lines meeting

in a point w«ere needed to partition two-dimensional space, so here,

for three-dimensional space, we need four. The simplest case is, as

before, when these meet at co-equal angles, but we do not see quite

so easily what those four co-equal angles are.

For as the centreof symmetry of our equilateral triangle was defined

by three lines bisecting its three angles and meeting one another in

a point at co-equal angles of 120°, so in our regular tetrahedron four

straight fines, running symmetrically inwards from the four corners,

meet in a point at co-equal angles, and again define the centre of

symmetry. If we make (as Plateau made) a wire tetrahedron, and

dip it into soap-solution, we find that a film has attached itself to

each of the six wires which constitute the httle tetrahedral cage;

that these six films meet, three by three, in four edges; and that

these four edges meet at- co-equal angles in a point, which is the

centi'oid, or centre of symmetry, or centre of gravity, of the system.
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This is the centre of symmetry not only for our tetrahedron, but for

any close-packed tetrahedral aggregate of co-equal spheres ; we meet

with it over and over again, in a pile of cannon-balls, a froth of

soap-suds, a parenchyma of cells, or the interior of the honeycomb.

Moreover, in the actual demonstration by soap-films of this tetra-

hedral symmetry, we see reahsed all the main criteria laid down by

Plateau and by Lamarle for a system minimae areae: three films

and no more meet in an edge; four fluid edges and no more meet

in a point, just as three wire edges and one fluid edge met in a

point at each corner of the experimental figure. Lastly, the sym-

metry of the whole configuration is such that the three fluid films

Vh 178. A regular tetrahedron, with its centre of symmetry.

meeting in an edge, or the four fluid edges meeting in a point, all

do so at co-equal angles.

In the plane configuration we saw without more ado that the

angles of symmetry were the co-equal angles of 120°; but the four

co-equal angles between the four edges which meet at the centre of

our tetrahedron require a little more consideration. If in our figure

of a regular tetrahedron (Fig. 178) o be the centroid, and we produce

ao to p, the centre of the opposite side^ bed, it may be shewn that

the fine ap is so divided that ao = Sop and ao = bo = co = do.

For let four equal weights be put at the four corners of the tetra-

hedron, a, 6, c, d. The resultant of the three at b, c, d is equivalent

to 3 If at p, the centre of symmetry of the equilateral triangle.



498 THE FORMS OF TISSUES [ch.

The resultant of all four is equal to the resultant of W at a, and

3Pf at p; it lies, therefore, on the straight line ap, and at the

point 0, such that ao = '6of. Therefore, in the triangle pod, as

in the other three similar triangles in the figure, cos pod = 1/3,

and cos aod = — 1/3. Our tables tell us that the angle pod, whose

trigonometrical value is the very simple one of cos pod ^ 1/3, has;

in degrees and minutes to the nearest second, the seemingly less

simple value of 70° 31' 43"; and its supplement, the angle aod,

has the corresponding value of 109° 28' 16".

This latter angle, then, of 109° 28' 16", or very nearly 109 degrees

and a half, is the angle at which, in this and throughout every other

three-dimensional system of liquid films, the edges of the partition-

walls meet one another. It is the fundamental angle in simple

homogeneous partitioning of three-dimensional space. It is an

angle of statical equilibrium, an angle of close-packing, an angle

of repose. In the simplest of carbon-compounds, the molecule of

marsh-gas (CH4), we may be sure that this angle governs the

arrangement of the H-atoms; it determines the relation of the

carbon-atoms one to another in a diamond—simplest of crystal-

lattices; it defines the intersections of the bubbles in a froth, and

of the cells in the honeycomb of the bee.

It is sometimes called the "tetrahedral angle"; it might be better

called (for a reason we shall see presently) "Maraldi's angle." The

whole story is less a physical than a mathematical one; for the

phenomena do not depend on surface tension nor on any other

physical force, but on such relations between surface and volume

as are involved in the properties of space. If we take four little

elastic balloons, half fill them with air, smear them with glycerine

to lessen friction, place them in a bottle and exhaust the air therein,

they wull expand, adjust themselves together, and group themselves

in a tetrahedral configuration, whose partition walls, edges and

centre of symmetry are just those of our experiment of the soap-films.

This characteristic angle, though it leads in ordinary angular measurement
to an endless decimal of a second, is nevertheless a very simple and perfectly

definite magnitude. It is a strange property of Number that it fails to express

certain simple and definite magnitudes, such as tt, or y/2, or Vs, or this four-

fold angle made by four lines meeting symmetrically in three-dimensional space.

It is not these magnitudes that are peculiar, it is Number itself that is so ! In

all of these cases we have to import a new symbol; and in this case, when we
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draw it not from arithmetic but from trigonometry, and define our angle as

cos — ^ , nothing can or need be more precise or siinpler. We may put the

same thing a little differently, and say that Number itself fails us, now and

then, to express what we want, although we have all the ten digits and their

apparently endless permutations at our command. In such a deadlock, we
have only to bring one new symbol, one new quantity, into use; and at once

a wide new field is open to us.

Out of these two angles—the Maraldi angle of 109° etc., and the

plane angle of 120°—we may construct a great variety of figures,

Fig. 179. Diagram of hexagonal cells. After Bonanni.

plane and solid, which become still more complex and varied when

we consider associations of unequal as well as of co-equal cells, and

thereby admit curved as well as plane intercellular partitions. Let

us consider some examples of these, beginning with such as w^e need

only consider in reference to a plane.

Let us imagine a system of equal cylinders, or equal spheres, in

contact with one another in a plane, and represented in section by

the equal and contiguous circles of Fig. 179. I borrow my figure

from an old Italian naturalist, Bonanni (a contemporary of Borelli,

of Ray and Willoughby, and of Martin Lister), who dealt with this

matter in a book chiefly devoted to molluscan. shells*.

* A. P. P. Bonanni, Kicreatione delV occhlo e delta mente, nelV Osservatione delle

Chiocciole, Roma, 1681.



500 THE FORMS OF TISSUES [ch.

It is obvious, as a simple geometrical fact, that each of these

co-equal circles is in contact with six others around. Imagine the

whole system under some uniform stress—of pressure caused by-

growth or expansion within the cells, or due to some uniformly

applied constricting pressure from without. In these cases the six

points of contact between the circles in the diagram will be extended

into lines, representing surfaces of contact in the actual spheres or

cylinders; and the equal circles of our diagram will be converted

into regular and co-equal hexagons. The result is just the same

so far as form is concerned—so long as we are concerned only with

a morphological result and not with a physiological process—what-

ever be the force which brings the bodies together. For instance,

the cells of a segmenting egg, lying within their vitelhne membrane

or within some common film or ectoplasm, are pressed together as

they grow, and suffer deformation accordingly; their surface tends

towards an area minima, but we need not even enquire, in the first

instance, whether it be surface-tension, mechanical pressure, or what

not other physical force, which is the cause of the phenomenon*.

The production by mutual interaction of polygons, which be-

come regular hexagons when conditions are perfectly symmetrical,

is beautifully illustrated by Benard's tourbillons cellulaires, and also

in some of Leduc's diffusion experiments. In these latter, a

solution of gelatine is allowed to set on a plate of glass, and little

drops of weak potassium ferrocyanide are then let fall at regular

intervals upon the gelatine. Immediately each little drop becomes

the centre of a system of diffusion currents, and the several systems

conflict with and repel one another; so that presently each little

area becomes the seat of a to-and-fro current system, outwards and

back again, until the concentration of the field becomes equalised

and the currents cease. When equihbrium is attained, and when

the gelatin-layer is allowed to dry, we have an artificial tissue of

* The following is one of many curious corollaries to the principle of close-

packing here touched upon. A circle surrounded by six similar circles, the whole

bounded by a circle of three times the radius of the original one, forms a unit, so

to speak, next in order after the circle itself. A round pea or grain of shot will

pass through a hole of its own size; but peas or shot will not rtin out of a vessel

through a hole less than three times their own diameter. There can be no freedom

of motion among the close-packed grains when confronted by a smaller orifice.

Cf. K. Takahasi, Sci. Papers Inst. Chem., etc., Tokio, xxvi, p. 19. 1935.
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Fig. 180. An "artificial tissue," formed by coloured drops of sodium chloride

solution diffusing in a less dense .solution of the same salt. After Leduc.

Fig. 181. An artificial cellular tissue, formed by the diffusion in gelatine of

drops of a solution of potassium ferrocyanide. After Leduc.
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hexagonal "cells," which simulate an organic parenchyma very

closely; and by varying the experiment in ways which Leduc

describes, we may imitate various forms of tissue, and produce cells

with thick walls or with thin, cells in close contact or with wide

intercellular spaces, cells with plane or with curved partitions, and

so forth.

James Thomson (Kelvin's elder brother) had observed nearly

sixty years ago a curious "tesselated structure" on a Hquid surface,

to wit, the soapy water of a wash-tub. The eddies and streaks of

swirling water settled down into a cellular configuration, which

continued for hours together to alter its details; small areoles

disappeared, large ones grew larger, and subdivided into small ones

again. With few and transitory exceptions three partitions and no

m^ re met at every node of the meshwork ; and (as it seems to me)

the subsequent changes were all due to such shifting of the lines as

tended to make the three adjacent angles more and more nearly

co-equal with one another : the obvious effect of this being to make

the pattern more and more regularly hexagonal*.

In a not less homely . experiment, hot water is poured into a

shallow tin and a layer of milk run in below ; on blowing gently to

cool the water, holes, more or less close-packed and evenly inter-

spaced, appear in the milk. They shew how cooling has taken place,

so to speak, in spots, and the cooled water has descended in isolated

columns f.

Benard's "tourbillons cellulaires"J, set up in a thin hquid layer,

* James Thomson, On a changing tesselated structure in certain liquids, Proc.

Glasgow Phil. Soc. 1881-82; Coll. Papers, p. 136—a paper with which M. Benard

was not acquainted, but see Benard's later note in Ann. <Ie Chim. Dec. 1911.

t See Graham's paper, quoted below.

% H. Benard, Les tourbillons cellulaires dans une nappe hquide. Rev. gener. des

Sciences, xii, pp. 1261-1271, 1309-1328, 1900; Ann. Chimie et Physique (7), xxm,

pp. 62-144, 1901 ; ibid. 1911. Quincke had seen much the same long before: An7i. d.

Phys. cxxxix, p. 28, 1870. The "figures of de Heen" are an analogous electrical

phenomenon; cf. P. de Heen, Les tourbillons et les projections de I'ether, Bull.

Acad, de Bruxelles (3) xxxvii, p. 589, 1899; A. Lafay, Ann. de Physique (10), xiii,

pp. 349-394, 19.30. These various phenomena, all leading to a pattern of hexagons,

have often been studied mathematically: cf. Rayleigh, Phil. Mag. xxxii, pp. 529-

546, 1916, Coll. Papers, vi, p. 48; also Ann Pellew and R. V. Southwell, Proc. R.S. (A),

CLXXVi, pp. 312-343, 1940. The hexagonal pattern is a particular case of stability,

but not necessarily the simplest; it is only by experiment that we know it to be

the permanent condition in an unlimited field.
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are similar ^to but more elegant than James Thomson's tesselated

patterns, and both of them are in their own way still more curious

than M. Leduc's; for the latter depend on centres of diffusion

artificially inserted into the system and determining the number

and position of the "cells," while in the others the cells make

themselves. In Benard's experiment a thin layer of Hquid is

warmed in a copper dish. The hquid is under peculiar conditions of

instability, for the least fortuitous excess of heat here or there would

suffice to start a current, and we should expect the whole system to

be highly unstable and unsymmetrical. But if all be kept carefully

uniform, small disturbances appear at random all over the system;

a current ascends in the centre of each; and a "steady state," if

not a stable equilibrium, is reached in time, when the descending

currents, impinging on one another, mark out a "cellular system."

If we set the fluid gently in motion to begin with, the first "cell-

divisions" will be in the direction of the flow; long tubes appear,

or "vessels," as the botanist would be apt to call them. As the

flow slows down new cell-boundaries appear, at right angles to the

first and at even distances from one another; parallel rows of cells

arise, and this transitory stage of partial equilibrium or imperfect

symmetry is such as to remind the botanist of his cambium tissues,

which are, so to speak, a temporary phase of histological equilibrium.

If the impressed motion be not longitudinal but rotary, the first fines

of demarcation are spiral curves, followed by orthogonal inter-

sections.

Whether we start with liquid in motion or at rest, symmetry and

uniformity are ultimately p,ttained. The cells draw towards uni-

formity, but four, five or seven-sided cells are still to be found

among the prevailing hexagons. The larger cells grow less,, the

smaller enlarge or disappear; where four partition-walls happen to

meet, they shift till only three converge; the sides adjust themselves

to equal lengths, the angles also to equahty. In the final stage the

cells are hexagonal prisms of definite dimensions, which depend on

temperature and on the nature and thickness of the liquid layer;

molecular forces have not only given us a definite cellular pattern,

but also a "fixed cell-size."

Solid particles in the fluid come to rest in svmmetrical positions.

If they be heavier they accumulate in little isolated heaps, each in
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the focus or axis of a cell; if they be hghter they drift to the

boundaries, then towards the nodes, where they tend to form

tri-radiate figures like so many 'Hri-radiate spicules". But if they

be in very fine suspension a curious thing happens: for as they are

carried round in the vortex, the lowermost layer of hquid, next to

the solid floor, keeps free of particles; and this "dust-free coat*",

rising in the axis of the cell and descending at its boundary-walls,

surrounds an inner vortex to which the suspended particles are

confined. The cell-contents have, so to speak, become differentiated

into an "ectoplasm" and an "endoplasm"; and an analogy appears

A B

Fig. 182. Benard patterns in smoke : ^, at rest; B, under shear. After K. Chandra.

with the phenomenon of protoplasmic "rotation," where the outer

layer of a cell tends to be free from granules. When bright glittering

particles are used for the suspension (such as graphite or butterfly-

scales) beautiful optical effects are obtained, deep shadows marking

the outlines and the centres of the cells. Lastly, and this is by no

means the least curious part of the phenomenon, the free surface

of the Hquid is not plane; but each little cell is found to be dimpled

in the centre and raised at the edges, in a surface of very complex

curvature!, and there is a curious pulsation in the flow, especially

when waxes' are used.

* Cf. Tyndall, Proc. Roy. Inst, vi, p. 3, 1870.

t The differences of level are of a very small order of magnitude, say 1 /x in

a layer of spermaceti 1 mm. thick.
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Ringing the changes on Benard's experiment, we may use unstable

layers of various liquids or gases, or even a thin layer of smoke

between a hot plate and a cold (Fig. 182). The smoke will form waves

and folds and rolHng clouds; then, with increasing and more and

more symmetrical instabihty, polygonal or hexagonal prisms; and

all these configurations we may deform or "shear" by sliding one

plate over the other. Famihar cloud-patterns, as of a dappled or

mackerel sky, can be imitated in this way. When the hexagonal

prisms have been developed it is found that a steady shear deforms

them into a well-known curvihnear tesselated pattern (Fig. 183)

Direction of

motion

Fig. 183.

of air or

Shear-patterns in an unstable layer

raoke. After Graham.

Fig. 184. Ambulaeral plates

of a sea-urchin (Lepides-

thes), to illustrate the

"shearing" of a pattern

normally hexagonal.

After Hawkins*.

and this may be sheared again into hexagons, oriented in an opposite

direction to the first t. The very same pattern occurs now and then

in organisms, as a deformation of what is normally a pattern of

hexagons (Fig. 184).

* From H. L. Hawkins, Phil. Trans. (B), ccix, p. 383, 1920.

t Cf. A. Graham, Shear patterns in an unstable layer of air, Phil. Trans. (A),

No. 714, 1933; Gilbert Walker and Phillips, Q.J.R. Met. ;Soc. Lvm, p. 23, 1932;

Mais, Beitr. Phys. frei. Atmosph. xvii, p. \o, 1930; H. Jeffreys, Proc. R.S. (A),

cxvm, p. 195, 1928; Krishna Chandra, ibid, clxiv, pp. 231-242, 1938. After a

steady state is reached it is found that in air or smoke the centre of each

polygon is a funnel of descent, but it is an ascending column if the layer be

liquid. Now the viscosity of a gas increases, and that of a hquid decreases, with

rise of temperature, and the greater the viscosity the more stable is the layer.

Accordingly, for a gas the upper, and for a liquid the lower layer is the more

unstable, and it is there that in each case the flow begins.
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We learn from these experiments of Benard and others how
similar distributions of force, and identical figures of equihbrium,

may arise through different physical agencies. We see that patterns

closely analogous to those of. living cells and tissues may be due

to very different causes ; and we may be led to scrutinise anew, with

an open mind, various histological configurations whose origin is

doubtful or obscure. The chitinous shells of certain water-fleas

(Cladocera) are beset with a roughly hexagonal pattern, and each

little chitinous polygon is supposed to correspond to, and to be

formed by, an underlying "hypodermis" cell*. But we presently

discover that the existence of these hypodermis-cells is merely

deduced from the polygons themselves and from a coincident
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change is from a more to a less probable configuration—the

entropy is diminished; and if we apply no further pressure the

tension of the films adjusts itself again, and the system recovers

its former symmetry*.

The epithelial hning of the blood-vessels shews a curious and

beautiful pattern. The cells seem diamond-shaped, but looking

closer we see that each is in contact (usually) with six others; they

are not rhombs, or diamonds, but elongated hexagons, pulled out

long by the growth of the vessel and the elastic traction of its walls.

The sides of each cell are curiously waved, and a simple experiment

explains this phenomenon. If we make a froth of white-of-egg

upon a stretched sheet of rubber, the cells of the froth will tend to

Fig. 186. Sinuous outlines of epithelial cells, a, endothelium of a blood-vessel;

h, epidermis of hnpatiens; r, epidermal cells of a grass (Festuca).

assume their normal hexagonal pattern ; but relax the elastic mem-
brane, and the cell-walls are thrown into beautiful sinuous or wavy
folds. The froth-cells cannot contract as the rubber does which

carries them, nor can the epithelial cells contract as does the

muscular coat of the blood-vessel ; in both cases alike the cell-walls

are obliged to fold or wrinkle up, from lack of power to shorten.

The epithelial cells on the gills of a mussel I are wrinkled after

the same fashion; but the more coarsely sinuous outlines of the

epithelium in many plants is another story, and not so easily

accounted for.

The hexagonal pattern is illustrated among organisms in count-

less cases, but those in which the pattern is perfectly regular, by

* That everything is passing all the while towards a ''more probable state'' is

known as the "principle of Carnot," and is the most general of all physical laws

or aphorisms.

t Cf. James Gray's Experimental Cytology, p. 252.
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reason of perfect uniformity of force and perfect equality of the

individual cells, are not so numerous. The hexagonal cells of the

pigmented epithelium of the retina are a good example. Here we
have a single layer of uniform cells, reposing on the one hand upon

a basement membrane, supported behind by the sohd. wall of the

sclerotic, and exposed on the other hand to the uniform fluid

pressure of the vitreous humour. The conditions all point, and

lead, to a symmetrical result: the cells, uniform in size, are flattened

out to a uniform thickness by uniform pressure, and their reaction

one upon another converts each flattened disc into a regular

hexagon. An equally symmetrical case, one of the first-known

examples of an "epithehum," is to be found on the inner wall of

the amnion, where, as Theodor Schwann remarked, "die sechs-

eckige Plattchen sind sehr schon und gross*."

Fig. 187. Epidermis of Girardia. After GoebeJ.

In an ordinary columnar epithelium, such as that of the intestine,

again the columnar cells are compressed into hexagonal prisms;

but here the cells are less uniform in size, small cells are apt to

be intercalated among the larger, and the perfect symmetry is

lost accordingly. But obviously, wherever we have, in- addition

to the forces which tend to produce the regular hexagonal sym-

metry, some other component arising asymmetrically from growth

or traction, then our regular hexagons will be distorted in various

simple ways. Thus in the delicate epidermis of a leaf or young

shoot we begin with hexagonal cells of exquisite regularity: on

which, however, subsequent longitudinal growth may impose an

equally simple and symmetrical deformation or polarity (Fig. 187).

In the growth of an ordinary dicotyledonous leaf, we see reflected

in the form of its cells the tractions, irregular but on the whole

longitudinal, which growth has superposed on the tensions of the

* Untersuchungen, p. 84; cf. Sydenham Society's translation, p. 75.
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partition walls (Fig. 188). In the narrow elongated leaf of a mono-

cotyledon, such as a hyacinth, the elongated, apparently quad-

rangular cells of the epidermis appear as a necessary consequence

of the simpler laws of growth which gave its

simple form to the leaf as a whole. In all

these cases ahke, however, the rule still

holds that only three partitions (in surface

view or plane projection) meet in a point;

and near their point of meeting the walls are

manifestly curved for a little way, so as to

permit the triple conjunction to take place

at or near the co-equal angles of 120°, after

the fashion described above.

Briefly speaking, wherever we have a system
j^^jg ^g^ Epidermal cells

of cylinders or spheres, associated together from leaf of Elodea

with sufficient mutual interaction to bring canadensis. After

, ^ Berthold.
them into complete suriace contact, there,

in section or in surface view, we tend to get a pattern of hexagons.

In thickened cells or fibres of bast or wood, the " sclerenchyma

"

of vegetable histology, the hexagonal pattern is all but lost, and we

see in cross-section the more or less circular transverse outlines of

elongated and tapering cells. Looking closer we see that the

primitive cell-walls preserve their angular contours, and shew much

as usual an hexagonal pattern, with only such irregularities as

follow from the unequal sizes of the associated cells. But when

these primary walls are once laid down, the secondary deposits which

follow them are under different conditions; and these obey the law

of minimal areas in their own way, by filling up the angles of the

primary cell and by continuing to grow inwards in concentric and

more and more nearly circular rings.

While the formation of an hexagonal pattern on the basis of ready-formed

and symmetrically arranged material units is a very common, and indeed the

general way, it does not follow that there are not others by which such a

pattern can be obtained. For instance, if we take a little triangular dish of

mercury and set it vibrating (either by help of a tuning-fork, or by simply

tapping on the sides) we shall have a series of little waves or ripples starting

inwards from each of the three faces; and the intercrossing, or interference

of these three sets of waves produces crests and hollows, and intermediate

points of no disturbance, whose loci are seen as a beautiful pattern of minute
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hexagons. It is possible that the very minute and astonishingly regular

pattern of hexagons which we see on the surface of many diatoms (Fig. 189)

may be a phenomenon of this order*. The same may be the case also in Arcella,

where an apparently hexagonal pattern is found not to consist of simple

hexagons, but of "straight lines in three sets of parallels, the lines of each

set making an angle of sixty degrees with those of the other two setst-" We
must also bear in mind, in the case of the minuter forms, the large possibilities

of optical illusion. For instance, in one of Abbe's "diffraction-plates," a

pattern of dots, set at equal interspaces, is reproduced on a very minute scale

by photography; but under certain conditions of microscopic illumination

and focusing, these isolated dots appear as a pattern of hexagons.

A symmetrical arrangement of hexagons, such as we have just been studying,

suggests various geometrical corollaries, of which the following may be a

useful one. We sometimes desire to estimate the number of hexagonal areas or

facets in some structure where these are numerous, such for instance as the

cornea of an insect's eye, or in the minute pattern of hexagons on many
diatoms. An approxipiate enumeration is easily made as follows.

For the area of a hexagon (if we call 8 the short diameter, that namely

which bisects two of the opposite sides) is 8^ x v 3/2, the area of a circle

being ci^.7r/4. Then, if the diameter {d) of a circular area include n hexagons,

the area of that circle equals {n.Sfxn/i:. And, dividing this number by

the area of a single hexagon, we obtain for the number of areas in the circle,

each equal to a hexagonal facet, the expression w^ x7r/4 x 2/\/3 = 0'9077i^ or

9/lO.w^ nearly.

This calculation deals, not only with the complete facets, but with the

areas of the broken hexagons at the periphery of the circle. If we neglect

these latter, and consider our whole field as consisting of successive rings of

hexagons about a central one, we obtain a simpler rule. For obviously,

around our central hexagon there stands a zone of six, and around these

* Cf. some of J. H. Vincent's photographs of ripples, in Phil. Mag. 1897-99;

or those of F. R. Watson, in Phys. Review, 1897, 1901, 1916. The appearance will

depend on the rate of the wave, and in turn on the surface-tension; with a low

tension one would probably see only a moving "jabble." Cf. also Faraday, On
the crispations of fluids resting upon a vibrating support, Phil. Mag. 1831, p. 299;

and Rayleigh, Sound, u, p. 346, 1896. FitzGerald thought diatom-patterns might

be due to electromagnetic vibrations (Works, p. 503, 1902); with which of. W. D.

Dye, Vibration-patterns of quartz plates, Proc. R.S. (A), cxxxviii, p. 1, 1932.

Dye's Fig. 17, which he calls "one of the most beautiful types of minor vibration

met with in discs", is closely akin to the diatom Orthoneis splendida. In both cases

two nodal systems, conjugate to one another, are based on two foci near the ends of

an elliptical plate; . but bands in the experimental plate are further broken up into

rows of dots in the diatom. See also Max Schultze, Die Struktur der Diatomeenschale

verglichen mit gewi.ssen aus Fluorkiesel kiinstlich darstellbaren Kieselhauten, Verh.

nnturh. Ver. Bonn, xx, pp. 1-42, 1863; Trans. Microsc. Soc. (N.S.), xi, pp. 120-136,

1863; H. J. Slack, Monthly Microsc. Journ. 1870, p. 183.

t J. A. Cushman and W. P. Henderson, Amer. Nat. XL, pp. 797-802, 1906.
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Fig. 189. A diatom. Triccrniiinn sj).. shewing j)attern of hrxagoiis;

(). Prochnow, foDnenkunst der Xatur.

y'.HH). From

a zone of twelve, and around these a zone of eighteen, and so on.

total number, excluding the central hexagon, is accordingly:

And the

For one zone

„ two zones

,, three zones

„ four zones

„ five zones

6=3x1x2=6x1
18 2x3 3

36 3x4 6

60 4x5 10

90 5x6 15

and so forth. If N be the number of zones, and if we add one to the above
numbers for the odd central hexagon, then the rule is that the total number
H = 3N (A' + l) + l. Thus, if in a preparation of a fly's cornea I can count
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twenty-five facets in a line from a central one, the total number in the entire

field is (3 X 25 X 26) + 1 = 1951 *.

The electrical engineer is dealing with the selfsame problem when he finds

he can pack 6 + 18 + 36+ ... wires around a central wire, to form a multiple

cable of 1, 2 and 3 concentric strands. He coimts them by the same formula,

in the simpler form of 6<+ 1 : where t is a "triangular number," 1, 3, 6, 10, etc.,

corresponding to the number of strands. Thus 1951=6x325 + 1; 325 being

the triangular number of 25, 1 + 2 + 3 + . . . + 25.

We have many varied examples of this principle among corals,

wherever the polypes are in close juxtaposition, with neither empty

space nor accumulations of matrix between their adjacent walls.

Favosites gothlandica, for instance, furnishes us with an excellent

example. In the great genus Lithostrotion we have some species

which are "massive" and others which are "fasciculate." In other

words, in some the long cylindrical corallites are closely packed

together, and in others they are separate and loosely bundled (Fig.

190); in the former the corallites are squeezed into hexagonal

prisms, while in the latter they retain their cylindrical form. Where

the polypes are comparatively few, and so have room to spread,

the mutual pressure ceases to work or only tends to push them

asunder, letting them remain circular in outhne (e.g. Thecosmilia).

Where they vary gradually in size, as for instance in Cyathophyllum

hexagonum, they are more or less hexagonal but are not regular

hexagons; and where there is greater and more irregular variation

in size, the cells will be on the average hexagonal, but some will

have fewer and some more sides than six, as in the annexed figure

of Aracknophyllum (Fig. 192). Where larger and smaller cells,

corresponding to two different kinds of zooids, are mixed together,

we may get various results. If the larger cells are numerous enough

* This estimate neglects not merely the broken hexagons, but all those whose

centres lie between the circle and a hexagon inscribed in it. The discrepancy

is considerable, but a correction is easily made. It will be found that the numbers

arrived at by the two methods are approximately as 6:5. For more detaOed

calculations see a paper by H.M. (? H. Munro) in Q.J.M.S. vi, p. 83, 1858. The

methods of enumeration used by older writers, especially by Leeuwenhoek, are

sometimes curious and interesting; cf. Hooke, Micrographia, 1665, p. 176;

Leeuwenhoek, Arcana naturae, 1695, p. 477; Phil. Trans. 1698, p. 169; Epist.

physiolog. 1719, p. 342; Swammerdam, Biblia Naturae, 1737, p. 490. Leeuwenhoek

found, or estimated, 3181 facets on the cornea of a scarab, and 8000 on that of

a fly; M. Puget, about the same time, found 17,325 in that of a butterfly. See also

Karl Leinemann, Die Zahl der Facetten in den. . .Coleopteren, Hildesheim, 1904.
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to be more or less in contact with one another (e.g. various Monti-

cuHporae) they will be irregular hexagons, while the smaller cells

between them will be crushed into all manner of irregular angular

Fig. 190. Lithostrotion Martini.

After Nicholson.

Fig. 191. Cyathophyllum hexagonum.

From Nicholson, after Zittel.

Fig. 192. Arachnophyllujn pentagonum.

After Nicholson.

mm
Fig. 193. Heliolites. After Woods.

forms. If on the other hand the large cells are comparatively few

and are large and strong-walled compared with their smaller neigh-

bours, then the latter alone will be squeezed into hexagons while

the larger ones will tend to retain their circular outhne undisturbed

(e.g. Heliopora, Heliolites, etc. (Fig. 193)).
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When, as happens in certain corals, the peripheral walls or

"thecae" of the individual polypes remain undeveloped but the

radiating septa are formed and calcified, then we obtain new and

beautiful mathematical configurations (Fig. 194). For the radiating

septa are no longer confined to the circular or hexagonal bounds of

a polypite, but tend to meet and become confluent with their

neighbours on every side; and, tending to assume positions of

equihbrium, or of minimum, under the restraints to which they

are subject, they fall into congruent curves, which correspond in

a striking manner to lines running in a common field of force

between a number of secondary centres. Similar patterns may be

produced in various ways by the play of osmotic or magnetic forces

;

Fig. 194. Surface-views of corals with undeveloped thecae and confluent septa.

A, Thamnastraea ; B, Comoseris. From Nicholson, after Zittel.

and a very curious case is to be found in those compHcated forms

of nuclear division known as triasters, polyasters, etc., whose

relation to a field of force Hartog in part explained*. It is obvious

that in our corals these curving septa are all orthogonal to the

non-existent hexagonal boundaries ; and, as the phenomenon is due

to the imperfect development, or non-existence, of a thecal wall, it

is not surprising that we find identical configurations among various

corals, or families of corals, not otherwise related to one another.

We find the same or very similar patterns displayed, for instance,

inSynhelia (Oculinidae), in Philhpsastraea (Rugosa), in Thamnastraea

(Fungida), and in many more.

* Cf. M. Hartog, The dual force of the dividing cell, Science Progress (N.S.),

I, Oct. 1907, and other papers. Also Baltzer, Mehrpolige Mitosen bet Seeeigeleiern,

Diss., 1908.

'



VII OF HEXAGONAL SYMMETRY 515

Fig. 195.

Female cone

of Zamia.

A beautiful hexagonal pattern is seen in the male and female

cones of Zamia, where the scales which bear the pollen-sacs or the

ovules are crowded together, and are so formed and circumstanced

that they cannot protrude and overlap. They become

compressed accordingly into regular hexagons*, smaller

and more regular in the male cone than in the female,

in which latter the cone as a whole has tended to grow

more in breadth than in length, and the hexagons are

somewhat broader than they are long. In a cob of

maize the hexagonal form of the grains, such as should

result from close-packing and mutual compression, is

exhibited faintly if at all; for growth and elongation

of the spike itself has reheved, or helped to reheve, the

mutual pressure of the grains.

The pine-cone shews a simple, but unusual mode of

close-packing. The spiral arrangement causes each

scale to lie, to right and to left, on two prmcipal spirals;

it has close neighbours on four sides, and mutual

compression leads to a square or rhomboidal, instead of an hexa-

gonal, configuration*. On the other hand, the scales of the larch

-

cone overlap: therefore they are not subject to compression, but

grow more freely into leaf-like curves.

The story of the hexagon leads us far afield, and in many directions,

but it begins with something simpler even than the hexagon. We
have seen that in a soapy froth three films, and three only, meet

in an edge, a phenomenon capable of explanation by the law of

areae minirnae. But the conjunction, three by three, of almost any

assemblage of partitions, of cracks in drying mud, of varnish on an

old picture, of the various cellular systems we have described, is a

general tendency, to be explained more simply still. It would be

a complex pattern indeed, and highly improbable, were all the cracks

(for instance) to meet one another six by six; four by four would

be less so, but still too much; and three by three is nature's way,

simply because it is the simplest and the least. When the partitions

meet three by three, the angles by which they do so may vary

indefinitely, but their average will be 120°; and if all be on the

* In some small, few-scaled cones the packing remains incomplete, and the scales

are four-, five-, or six-sided, as the case may be.
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average angles of 120°, the polygonal areas must, on the average,

be hexagonal. This, then, is the simple geometrical explanation,

apart from any physical one, of the widespread appearance of the

pattern of hexagons.

If the law of minimal areas holds good in a "cellular" structure,

as in a froth of soap-bubbles or in a vegetable parenchyma, then

not merely on the average, but actually at every node, three partition-

walls (in plane projection) meet together. Under perfect symmetry

they do so at co-equal angles of 120°, and the assemblage consists

Fig. 196. Cracks in drying mud; a thread encircles and marks out a "'polar

furrow"; cf. p. 487. From R. H. Wodehouse.

(in plane projection) of co-equal hexagons; but the angles may vary,

the cells be unequal, and the hexagons interspersed with other

polygonal figures. Nevertheless, so long as three partition-walls and

only three meet together, the cells are, ipso facto, on the average

hexagonal*.

We may count the cells if we please. A section of Cycas-petiole

gave the following numbers: ^

Number of sides 3 4 5 6 7 8 9

„ instances 8 97 207 96 9

Mean number of sides: 6-00.

The fine emulsion of an Agfa plate shews a beautiful polygonal

pattern which obeys the law of the triple node; and a patch of a

* A more elaborate proof is given by W. C. Goldstein, On the average number
of sides of polygons of a net, Ann. Math. (2), xxxii, pp. 149-153, 1931.
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thousand cells in such a plate has been found, Uke the Cycas-petiole,

to average out at six sides each, precisely*

The cracking of a fine varnish may illustrate (as in Fig. 19.7) the

same phenomenon. A little water in the varnish tends to accumu-

late between the cells, interferes with their close-packing, and

complicates the arrangement of their partitions.

The horny plates which form the carapace of a tortoise (different

as the case may seem) still obey the two guiding principles (1) that

the polygonal boundaries meet in three-way nodes, and (2) that the

three angles tend towards equality, always provided that no alien

influences interfere. These principles are of the widest apphcation;

the carapace of a Eurypterid, the dermal armour of an Old Red

Fig. 197. Cellular patterns in varnish, a, dissolv'ed in dry acetone;

b, containing a little water.

Sandstone fish like Hugh Miller's Asterolepis, exhibit them at a

glancef. The carapace of our tortoise is formed of a bony framework

of ribs and vertebrae, overlaid by superficial plates of horn or

tortoiseshell ; it is these latter with which we are about to deal.

They are arranged in three rows down the back, and a marginal row

of smaller plates surrounds the others ; there are (normally) twenty-

four plates in the marginal series, and five large ones in the median

longitudinal row. With these few^ facts, and our general principles

* F. T. Lewis, Polygons in a film... and the pattern of simple epithelium,

Anat. Record, l, pp. 235-265, 1931.

t The all but universal law of the triple corner, or triradiate suture, is now
and then enough to give a deceptive likeness to very different things. When
Cope marred his brilliant classification of the Ostracoderm fishes by seeing in the

carapace of Bothriolepis a likeness to the dorsal plates of the tunicate Chelyosoma,

it was this and this alone which led him astray.
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in hand, how far can we go towards depicting the carapace? The

five plates of the median row must alternate with their lateral

neighbours, and four plates in each lateral row will, accordingly, be

the simplest case or most probably number. If at each three-way

junction between median and lateral plates the angles tend to

equality, it follows that the median plates become converted into

more or less regular, or at least symmetrical, hexagons. As to the

twenty-four marginal plates, let us put one in front* and one

behind, leaving eleven for each side; and let us see to it carefully

Fig. 198. Asterolepis: an Old Red
Sandstone fish. After Traquair.

Fig. 199. Horny carapace of a

tortoise ; diagrammatic.

that the sutures between these do not coincide but alternate

with those of the lateral row. Here we begin to meet with con-

ditions of restraint analogous to those of the surface layer of a

froth, for the long marginal cells must remain marginal, and their

sides must continue to run more or less parallel, or more or less

perpendicular, to the edge of the shell; »only in the immediate

* The Old World tortoises have twenty-five marginal plates, those of the

New World lack the anterior median, or "nuchal" plate. This difference is a

biological accident, it has neither mathematical interest nor functional significance;

it exemplifies the aphorism that whatsoever is possible Nature will sooner or

later do.
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neighbourhood of each corner will the sides tend to curve in, so

forming a notch whose curved sides have tangents approximately

120° apart, again just as in our projection of the surface of a froth

(p. 494). Already these considerations lead us to a fair sketch of,

or first approximation to, the carapace of a tortoise; but we may

go on a httle further. The horny plates and the bony carapace

below must grow at such a rate as to keep pace, more or less exactly,

with one another; but it does not follow that they will keep time

precisely. If the horny. plates grow ever so httle faster than the

bones below, they will fail to fit, will overcrowd one another, and

will be forced to bulge or wrinkle. Both of these things they often,

and even characteristically, do; the wrinkles appear in orderly,

parallel folds, pointing to alternate periods, or spurts, of faster and

slower growth; and the characteristic patterns which. ensue are

the visible expression of these differential growth-rates.

In all this we assume tHat the plates are lying in one and the

same plane or even surface, abutting against one another as they

grow, and so crowding and squeezing one another into the fornj of

straight-edged polygons. The result will be very different if they

overlap, after the manner of slates on a roof: the difference is what

we have seen to exist between the cones of Pinus and of Larix.

The overlapping edges will be* free to grow into natural, rounded

curves ; each plate, uncrowded and unconstrained, will stay smooth

and unwrinkled; the number and order of the plates will be the

same as before—but the shell will be no longer that of a tortoise,

but of the turtle from which " tortoise-shell" is obtained.

A snow-crystal is a very beautiful example of hexagonal sym-

metry. It belongs to another order of things to those we have been

speaking of: for in substance it is a solid, and in form it is a crystal,

and its own intrinsic molecular forces build it up in its own way.

But (as we have mentioned once before) it is an exquisite illus-

tration of Nature's way of producing infinite variety from the

permutations and combinations of a single type. The snowflake is

a crystal formed by sublimation, that is to say by precipitation

from a vapour without passing through a liquid phase. It begins

as a tiny hexagon, the making of which tends to use up the vapour

near by; the angles of the hexagon jut out, so to speak, into regions

of greater, or less depleted, vapour-pressure, and at these corners
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further crystallisation will next set in. The hexagon will tend to

grow out into a six-rayed star; and later and more slowly the

material for further crystallisation will make its way between the

rays, and begin to build side-growths on them*.

The basaltic column

Hexagonal patterns are by no means confined to the organic

world. The basalt of Staffa and the Giant's Causeway shews a

wonderful array of prismatic columns of irregular size and form,

Fig. 200. Basalt at Giant's Causeway. B}^ Mr R. Welch, Belfast.

but mostly hexagonal; so also does the frozen soil of Spitzbergen;

starch sets on coohng into analogous prisms, but in a ruder fashion

as on a smaller scale; and all these are due to simple forces in a

simple field, namely to tension, or shrinkage, in a horizontal mass

or layer. Imagine a sheet or "sill" of intrusive basalt, thrust

in as a molten mass between older rocks. It is gradually chilled

by the cold air above or by the rocks on either side, and its inner

mass, cooling slower than the outer layer, contracts slowly. Nothing

hinders its vertical contraction, rather is this helped by its own weight

and by the load above; but no further lateral contraction can take

place without splitting the mass, once the basalt sets hard. Con-

Cf. Gerald Seligmann, Nature, 26 June, 1937, p. 1090.
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traction, however, does take place, irresistibly, and it may be that

long cracks appear; the strain being so far relieved, the next cracks

will tend to take place at right angles to the first. But more

commonly rupture is delayed until considerable strain-energy has

been stored up ; once started, it proceeds explosively from a number

of centres, and shatters the whole mass into prismatic fragments.

However quickly and explosively the cracks succeed one another

each reheves an existing tension, and the next crack will give rehef

in a different direction to the first. When one crack meets another

it will seldom cross it, for the strain which led to the former fracture

does not extend into the new field. In short the cracks will be

found to meet one another three, by three, and therefore at angles

071 the average of 120°, and the columns will be on the average

hexagonal. For the making of a prismatic structure all that is

required is more or less uniform tensile strain in the two dimensions

of a horizontal plane; uniform tension in three dimensions would

have given rise to a cellular structure, of which the hexagonal

"causeway"' is the two-dimensional analogue.

The columnar structure is accompanied by sundry secondary

phenomena. The vertical columns tend to break across on further

contraction, and exhibit rounded or basin-shaped ends, fitting

together in a shallow ball-and-socket; this beautiful configuration

has only lately been explained*. When cooling has caused the

mass to split into vertical columns, air or it may be water enters

the rifts and further cools or quenches the now sohd but still glowing

basalt. Each column tends to be chilled all round while still hot

within; but the hot unshrunken mass within checks or hinders the

contraction of the cooler outer layers. Thus unequal coohng causes

vertical as well as horizontal tensions; and just as these last are

relieved by the existing cracks, so new rifts appear crosswise to the

column, and relieve the vertical tensions.

If the coohng come downward from above, then, at any given

level, the column will always be cooler above it than below; the

* F \V Preston ball-and-socket jointing in basalt prisms, Proc R S (B),

cVI, pp. 87-92, 1930 A study of the rupture of glass Trans Soc of Glass Technology

^

1926 p 263 On the general subject of prismatic structure m igneous rocks, see

also Robert Mallet, Phil. Mag. (4), l. pp. 122-135, 201-226, 1875, James Thomson,
Trans. Geol. Soc. Glasgow, March, 1877; Coll. Works, p. 422; R. B. Sosman, Journ.

Geology, xxiv, p. 215, 1916.
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part above will shrink the more; and this will set up a horizontal

shear in the interior of the column, in addition to the existing

vertical tension. The principal stress, compounded of shear and

tension, will be neither vertical nor horizontal, but inclined

obhquely between the two. Now in a brittle substance, such as

glass or basalt, an advancing fracture tends to advance at right

angles to the principal tension. Where the surface of the column

meets the cool air the tension is parallel to the face, and the fissure

enters at right angles to the face, that is to say, horizontally; it is

for this reason that the ball-and-socket joint is found to have

a square lip. Once inside the boundary, however, the advancing

rift finds itself in a region where the principal stress is inclined,

4 /.
t P

3

Fig. 201. (1) Diagram of the vertical and shearing stresses in a shrinking column

of basalt, (2) The same in the neighbourhood of the point P. (3) JSS' re-

sultant stress, and TT' direction of rupture. After F. W. Preston.

slightly, to the vertical; the crack consequently bends down, the

downward tilt increases for a short distance and then approaches

the horizontal again, and the opposing surfaces of "ball and socket"

are thus defined. The crack often fails to complete its journey, and

leaves a core of rock unbroken in the middle of the bowl.

The curved sides of the basin, its square lip, its flattened centre,

often incomplete, are thus all explained; and whether it be convex

or concave, dome or basin, merely depends on whether the cooling

or quenching came from above or from below.

The basin, or bowl, will always be a shallow one. For if at

a point P, within the column, the vertical tension be /, and the

horizontal shear-stress be /,., then the direction of the principal

planes will be 2(/. == tan-^ (- 2fjf) ; so that, since / and /^ are both

positive,
<f>j^

hes between 45° and 90°, while ^2 ^i^s between 135°
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and 180°. Hence the rift, dipping down at the angle TT\ will

never dip at a greater angle than 45°, and generally much less.

Now a spherical bowl whose hp is at 45° to the horizontal has a

depth of times its lip diameter, or approximately one-fifth.

And one-fifth of the diameter of the column is, approximately, the

depth of the deepest bowl.

The hexagonal pattern and the three-way corners on which it

is based are characteristic (as we have already explained) of a

condition of symmetry or uniformity .under which a partition is

as hkely to arise in any one direction as in any other, and no
series of partitions has precedence over the rest. We have seen,

Fig. 2U2. Crackles on a porcelain bowl. From H. Hukusima.

in the dragon-fly's wing and in cambium-tissue, how different is

the result when primary partitions are first established and con-

solidated, to be followed by a secondary and a weaker set. The
"crackles" on a porcelain bowl look somewhat like a cellular

epithelium; but the porcelain has been under strain in more ways
than one. The plastic clay was first shaped upon a wheel, and
potential stress-energy so acquired is stored up even in the finished

ware ; again, as the ware cools and shrinks after it is drawn from the

kiln the glaze is apt to cool quicker and shrink more than the paste

below, and tension-energy is stored up till the glaze ruptures and
the cracks appear.' Various rates of cooling and of contraction, the

nature of paste and glaze, the shape of the ware, and even the way
in which the potter worked the clay, may all influence the pattern

of the crackle. The primary crack will be perpendicular to the
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main tension; secondaries will tend to be more or less orthogonal

to the primary cracks; two secondaries on opposite sides of a

primary will tend to be near togetiier, though not opposite; and

spiral cracks are often to be seen, the remote effect of plasticity

under the potter's wheel. The net result is that certain primary

cracks appear, related (more or less clearly) to the circular or spiral

shaping of the clay upon the wheel; and each primary crack so

reheves the tension in one direction that the secondaries tend to

follow in a direction at right angles to the first. While co-equal

angles of 120° were likely to occur in certain symmetrical cases,

leading to a simultaneous pattern of hexagons, in other cases suc-

Fig. 203. Colour-patterns of kidney-beans with diagrammatic contour-lines

added; a, b, Japanese "quail-beans"; c, scarlet-runner. After M. Hirata.

cessive partitions or cracks tend to be at right angles to one another

;

and Sachs's Law becomes truer of the porcelain than of the plant*.

In this latter case, and doubtless in many more, we are deahng

not 'with a random pattern, but with one based on systematic and

predetermined lines. The apparently confused or random pattern

of a kidney-bean comes under the same class of configurations,

inasmuch as it also is based on an underlying polarity, whose

centre of symmetry is in the stalk or "hilus." For simphcity's

sake, imagine the bean round hke a pea, and its surface mapped

out, orthogonally, by two sets of boundary-hnes, radial and con-

centric. Then suppose an asymmetry of growth to be introduced

so that the round pea grows into the elhpsoid of a bean; and

suppose that the whole system of boundary-lines is subject to the

same conformal transformation—which elliptic functions might help

* See H. Hukueima, Cracks upon the glazed surface of ceramic wares, Sci.

Papers, Inst, of Chem. and Phys. Research, Tokyo, xxvii, pp. 235-243. 1935.
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us to define. The colour-pattern of the bean will then be found

following the direction of the boundary-lines, and occupying areas

or patches corresponding to parts of the orthogonal system. The

lines are equipotential hnes, or akin thereto. If we varnish an

elastic bag, dry it and expand it, the varnish will tend to crack along

the same orthogonal boundaries*.

The bee^s cell

The most famous of all hexagonal conformations, and one of the

most beautiful, is the bee's cell. As in the basalt or the coral, we

have to deal with an assemblage of co-equal cylinders, of circular

section, compressed into regular hexagonal prisms; but in this case

we have two layers of such cyhnders or prisms, one facing one

way and one the other, and a new problem arises in connection

with their inner ends. We may suppose the original cyhnders

to have spherical endsf, which is their normal and symmetrical way

of terminating; then, for closest packing, it is obvious that the end

of any one cylinder in the one layer will touch, and fit in between,

the ends of three cylinders in the other. It is just as when we

pile round-shot in a heap; we begin with three, a fourth fits into

its nest iDetween the three others, and the four form a ''tetrad,"

or regular tetragonal arrangement.

Just as it was obvious, then, that by mutual pressure from the

sides of six adjacent cells any one cell would be squeezed into a

hexagonal prism, so is it also obvious that, by mutual pressure

against the ends of three opposite neighbours, the end of each and

every cell will be compressed into a trihedral pyramid. The three

sides of this pyramid are set, in. plane projection, at co-equal angles

of 120° to one another; but the three apical angles (as in the

analogous case already described of a system of soap-bubbles) are,

* M. Hirata, Coloured patches in kidney-beans, Set. Papers, Inst. Chem. Researchy

Tokyo, XXVI, pp. 122-135, 1936.

f In the combs of certain tropical bees the hexagona structure is imperfect and

the cells are not far removed from cylinders. They are set in tiers, not contiguous

but separated by little pillars of wax, and the base of each cell is a portion of

a sphere. They differ from the ordinary honeycomb in the same sort of way as

the fasciculate from the massive corals, of which we spoke on p. 512. Cf. Leonard

Martin, Sur les Melipones de Bresil, La Nature, 1930, pp. 97-100.
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by the geometry of the case*, co-equal angles of 109° and so many

minutes and seconds.

If we experiment, not with cyHnders but with spheres, if for

instance we pile bread-pills together and then submit the whole to

a uniform pressure, as we shall presently find that Buffon did : each

ball (hke the seeds in a pomegranate, as Kepler said) will be in contact

with twelve others—six in its own plane, three below and three above,

and under compression it will develop twelve plane surfaces.

It will repeat, above and below, the conditions to which the bee's

cell is subject at one end only; and, since the sphere is symmetrically

situated towards its neighbours on all sides, it follows that the

twelve plane sides to which its surface has been reduced will be all

similar, equal and similarly situated. Moreover, since we have

produced this result by squeezing our original spheres close together, it

is evident that the bodies so formed completely fill space. The regular

solid which fulfils all these conditions is the rhombic dodecahedron.

The bee's cell is this figure incompletely formed; it represents, so

to speak, one-half of that figure, with its apex and the six

adjacent corners proper to the rhombic dodecahedron, but six sides

continued, as a hexagonal prism, to an open or unfinished endf.

The bee's comb is vertical and the cells nearly horizontal, but

sloping slightly downwards from mouth to floor; in each prismatic

cell two sides stand vertically, and two corners lie above and below.

Thus for every honeycomb or "section" of honey, there is one and

only one "right way up"; and the work of the hive is so far con-

trolled by gravity. Wasps build the other way, with the cells upright

and the combs horizontal; in a hornet's nest, or in that of Polistes,

the cells stand upright like the wasp's, but their mouths look down-

wards in the hornet's nest arid upwards in the wasp's.

What Jeremy Taylor called "the discipline of bees and the rare

fabric of honeycombs " must have attracted the attention and excited

the admiration of mathematicians from time immemorial. "Ma
maison est construite," says the bee in the Arabian Nights, "selon

* The dihedral angle of 120° is, physically speaking, the essential thing; the

Maraldi angle, of 109°, etc., is a geometrical consequence. Cf. G. Cesaro, Sur la

forme de Falveole de I'abeille, Bull. Acad. R. Belgique (Sci.), 1920, p. 100.

t See especially Haiiy, the crystallographer; Sur le rapport des figures qui

existe entre Falveole des abeilles et le grenat dodecaedre, Journ. d'hist. naturelle,

n, p. 47, 1792.
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lesloisd'une severe architecture; et Euclidos lui-meme s'instruirait

en admirant la geometrie de ses alveoles*." Ausonius speaks of

the geometrica forma favorum,, and Pliny tells of men who gave a

lifetime to its study.

Pappus the Alexandrine has left us an account of its hexagonal

plan, and drew from it the conclusion that the bees were endowed

Vith "a certain geometrical forethought "f- "There being, then,

three figures which of themselves can fill up the space round a point,

viz. the triangle, the square and the hexagon, the bees have wisely

selected for their structure that which contains most angles, sus-

pecting indeed that it could hold more honev than either of the

•Y^^v;v^<"r

Fig. 204. Portion of a honeycomb. After WiJlem.

Other two J." Erasmus Bartholin was apparently the first to

suggest that the hypothesis of '"economy" was not warranted, and

that the hexagonal cell was no more than the necessary result of

equal pressures, each bee striving to make its own little circle as

large as possible.

The investigation of the ends of the cell was a more difficult

matter than that of its sides, and came later, in general terms the

arrangement was doubtless often studied and described: as for

* Ed. Mardrus, xv, p. 173.

t (pvaLK7]v ye(i}/j.eTpiKi]u Trpbvoiav. Pappus, Bk. V; cf. Heath, Hist, of Gk. Math, ii,

p. 589. St Basil discusses ttiv yewixerplav t^s cro<pu}Ta.TTj<> fxeXlaoTjs: Hexaem. vni,

p. 172 (Migne); Virgil speaks of the pars divinae mentis of the bee, and Kepler

found the bees anxmd praedifas et geomet. riae suo modo capaces.

X This was according to the "theorem of Zenodorus." The use by Pappus of

"economy" as a guiding principle is remarkable. For it means that, like Hero
with his mirrors, he had a pretty clear adumbration of that principle of minima,

which culminated in the principle of least action, which guided eighteenth-century

physics, was generalised (after Fermat) by Lagrange, inspired Hamilton and
Maxwell, and reappears in the latest developments of wave-mechanics.
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instance, in the Garden of Cyrus: "And the Combes themselves

so regularly contrived that their mutual intersections make three

Lozenges at the bottom of every Cell* which severally regarded

make three Rows of neat Rhomboidall Figures, connected at the

angles, and so continue three several chains throughout the whole

comb " Or as Reaumur put it, a little later on: "trois cellules

accolees laissent un vuide pyramidal, precisement semblable a celui

de la base d'une autre cellule tourn^e en sens contraire."

Kepler had deduced from the space-filling symmetry of the honey-

comb that its angles must be those of the rhombic dodecahedron;

and Swammerdam also recognised the same geometrical figure in

the base of the cell*. But Kepler's discovery passed unnoticed,

and Maraldi the astronomer, Cassini's nephew, has the credit of

ascertaining for the first time the shape of the rhombs and of the

sohd angle which they bound, while watching the bees in "les ruches

vitrees dans le jardin de M. Cassini attenant I'Observatoire de

Paris -f." The angles of the rhomb, he tells us, are 110° and 70°:

"Chaque base d'alveole est formee de trois rombes presque toujours

egaux et semblables, qui, suivant les mesures que nous avons 2^rises,

ont les deux angles obtus chacun de 110 degres, et par consequent

les deux aigus chacun de 70 degres." Further on (p. 312), he

observes that on the magnitude of the angles of the three rhombs

at the base of the cell depends that of the basal angles of the six

trapezia which form its sides; and it occurs to him to ask what

must these angles be, if those of the floor and those of the sides be

equal one to another. The solution of this problem is that "les

angles aigus des rombes etant de 70 degres 32 minutes, et les obtus

de 109 degres 28 minutes, ceux des trapezes qui leur sont contigus

doivent etre aussi de la meme grandeur." And lastly: "II resulte

de cette grandeur d'angle non seulement une plus grande facilite et

simpHcite dans la construction, a cause que par cette maniere les

abeilles n'employent que deux sortes d'angles, mais il en resulte

encore une plus belle simetrie dans la disposition et dans la figure

* Kepleri Opera omnia, ed. Fritsch, v, pp. 115, 122, 178, vii, p. 719, 1864;

Swammerdam, Tractatus de apibus (observations made in 1673).

t Obs. sur les abeilles, Mem. Acad. R. Sciences (1712), 1731, pp. 297-331.

Sir C. Wren had used "transparent bee-hives" long before; see his Letter concerning

that pleasant and profitable invention, etc., in S. Hartlib's Reformed Common-

Wealth of Bees, 1655.
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de rAlveole." In short, Maraldi takes the two principles of sim-

phcity and mathematical beauty as his sure and sufficient guides.

The next step was that which had been foreshadowed long before

by Pappus. Though Euler had not yet published his famous

dissertation on curves maximi minimive proprietate gaudentes, the

idea of maxima and minima was in the air as a guiding postulate,

an heuristic method, to be used as Maraldi had used his principle

of simphcity. So it occurred to Reaumur, as apparently it had not

done to Maraldi, that a minimal configuration, and consequent

economy of material in the waxen walls of the cell, might be at

the root of the matter: and that, just as the close-packed hexagons

gave the minimal extent of boundary in a plane, so the figure deter-

mined by Maraldi, namely the rhombic dodecahedron, might be

that which employs the minimum of surface for a given content:

or which, in other words, should hold the most honey for' the least

wax. "Convaincu que les abeilles employent le fond pyramidal qui

merite d'etre prefere, j'ai soup9onne que la raison, ou une des

raisons, qui les avoit decidees etait I'epargne de la cire; qu'entre

les cellules de meme capacite et a fond pyramidal, celle qui pouvait

etre faite avec moins de matiere ou de cire etoit celle dont chaque

rhombe avoit deux angles chacun d'environ 110 degres, et deux

chacun d'environ 70°." He set the problem to Samuel Koenig,

a young Swiss mathematician: Given an hexagonal cell terminated

by three similar and equal rhombs, what is the configuration which

requires the least quantity of material for its construction? Koenig

confirmed Reaumur's conjecture, and gave 109° 26' and 70° 34' as

the angles which should fulfil the condition; and Reaumur then

sent him the Memoires de I'Academie for 1712, where Koenig was

"agreeably surprised" to find: "que les rombes que sa solution

avait determine, avait a deux minutes pres* les angles que

M. Maraldi avait trouves par des mesures actuelles a chaque rhombe

des cellules d'abeilles. . . . Un tel accord entre la solution et les

mesures actuelles a assurement de quoi surprendre." Koenig

asserted that the bees had solved a problem beyond the reach of

* The discrepancy was due to a mistake of Koenig's, doubtless misled by his

tables, in the determination of V2; but Koenig's own paper, sent to Reaumur,

remained unpublished and his method of working is unknown. An abridged

notice appears in the Mdm. de VAcad. 1739, pp. 30-35.
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the old geometry and requiring the methods of Newton and Leibniz.

Whereupon Fontenelle, as Secretaire Perpetuel, summed up the

case in a famous judgment, in which he denied intelhgence to the

bees but nevertheless found them blindly using the highest mathe-

matics by divine guidance and command*.
When CoHn Maclaurin studied the honeycomb in Edinburgh, a

few years after Maraldi in Paris, he proceeded to solve the problem

without using "any higher Geometry than was known to the

Antients," and he began his account by saying: "These bases are

fornled from Three equal Rhombus's, the obtuse angles of which

are found to be the doubles of an Angle that often offers itself to

mathematicians in Questions relating to Maxima and Minima.f" It

was an angle of 109° 28' 16", with its supplement of 70° 31' 44".

And this angle of the bee's cell determined by Maraldi, Koenig and

Maclaurin in their several ways, this angle which has for its cosine 1/3

and is double of the angle which has for its tangent V2, is on the

one hand an angle of the rhombic dodecahedron, and on the other

is that very angle of simple tetrahedral symmetry which the soap-

films within the tetrahedral cage spontaneously assume, and whose

frequent appearance and wide importance we havo already touched

upon J.

That "the true theoretical angles were 109° 28' and 70° 32',

precisely corresponding ivith the actual measurement of the bee's cell,''

and that the bees had been "proved to be right and the mathema-

ticians wrong," was long believed by many. Lord Brougham
* La grande merveille est que la determination de ces angles passe de beaucoup

les forces de la Geometrie commune, et n'appartient qu'aux nouvelles Methodes
fondees sur la Theorie de I'lnfini. Mais a la fin les Abeilles en S9auraient trop,

et I'exces de leur gloire en est la ruine. II faut remonter jusqu'a une Intelligence

infinie, qui les fait agir aveuglemerit sous ses ordres, sans leur accorder de ces

lumieres capables de s'accroitre et de se fortifier par elles-memes, qui font I'honneur

de notre Raison." Histolre de VAcademie Royale, 1739, p. 3.j.

t Colin Maclaurin, On the bases of the cells wherein the bees deposit their

honey, Phil. Trans, xlii, pp. 561-571, 1743; also in the Abridgement, viii, pp. 709-

713, 1809; it was characteristic of Maclaurin to use geometrical methods for

wellnigh everything, even in his book on Fluxions, or in his famous essay on the

equilibrium of spinning planets. Cf. also Lhuiller, Memoire sur le minimum du
cire des alveoles des Abeilles, et en particulier sur un minimum minimorum relatif a

cette matiere, Nouv. Mem. de VAcad. de Berlin, 1781 (1783), pp. 277-300. Cf.

Castillon, ibid, (commenting on Lhuiller); also Ettore Carruccio, Notizie storiche

eulla geometria delle api, Periodica di Mathematiche, (4) xvi, pp. 35-54, 1936.

X Supra, p. 497. The faces of a regular octahedron meet at the same angle.
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helped notably to spread these and other errors, and his writings

on the bee's cell contain, according to Glaisher, "as striking

examples of bad reasoning as are often to be met with in writings

relating to mathematical subjects." The fact is that, were the

angles and facets of the honevcomb as sharp and smooth, and as

constant and uniform, as those of a quartz-crystal, it would still be

a dehcate matter to measure the angles within a minute or two of

arc, and a technique unknown in Maraldi's day would be required

to do it. The minute-hand of a clock (if it move continuously)

moves through one degree of arc in ten seconds of time, and through

an angle of two minutes m one-third of a second;—and this last is

the angle which Maraldi is supposed to have measured. It was

eighty years after Maraldi had told Reaumur what the angle was

that Boscovich pointed out for the first time that to ascertain the

angle to the nearest minute by direct admeasurement of the waxen

cell was utterly impossible. Yet Reaumur had certainly beheved,

and apparently had persuaded Koenig, that Maraldi's determina-

tions, first and last, were the result of measurement ; and Fontenelle,

the historian of the Academy, epitomising Koenig's paper, speaks

of "les mesures actuelles de M. Maraldi," of the bees being in

error to the trifling extent of 2', and of the grande merveille of their

so nearly solving a problem belonging to the higher geometry.

Boscovich, in a long-forgotten note, rediscovered by Glaisher, puts

the case in a nutshell: "Mirum sane si Maraldus ex observatione

angulum aestimasset intra minuta, quod in tarn exigua mole fieri

utique non poterat. At is (ut satis patet ex ipsa ejus determina-

tione) affirmat se invenisse angulos circiter 110° et 70°, nee minuta

emit ex observatione sed ex equahtate angulorum pertinentium ad

rhombos et ad trapezia ; ad quam habendam Geometria ipsa docuit

requiri ilia minuta*." Indeed he goes on to say the wonder is that

the angles could be measured even within a few degrees, variable

and irregular as they are seen to be, and as even Reaumur f knew

* In his note De apium cellulis, appended to the philosophical poem of Benedict

Stay, II, pp. 498-504, Romae, 1792.

t Op. cit. V, p. 382. Several authors recognised that the cells are far from

identical, and do no more than approximate to an average or ideal angle: e.g.

Swammerdam in the Biblia Naturae, u, p. 379; G. S. Klugel, Grosstes u. Kleinstes,

in Mathem. Worterb. 1803, Castillon, op. cit.; and especially Jeffries Wyman,
Notes on the cells of the bee, Proc. Amer. Acad. Sci. and Arts, vn, 1868.
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well they were. The old misunderstanding was at last explained

and corrected by Leslie Ellis; and better still by Glaislier, in a

Uttle-known but very beautiful paper*. For these two mathe-

maticians shewed that, though Maraldi's account of his "measure-

ments" led to misunderstanding, yet he had really done well and

scientifically when he eked out a rough observation by finer theory,

and deemed himself entitled thereby to discuss the cell and its angles

in the same precise terms that he would use as a mathematician in

speaking of its geometrical prototype f.

y Many diverse proofs { have been

given of the minimal character of the

bee's cell, some few, hke Maclaurin's,

purely geometrical, others arrived at by

help of the calculus. The following

seems as simple as any:

ABCDEF, abcdef, is a right prism

upon a regular hexagonal base. The

corners B, D, F are cut oif by planes

through the fines AC, CE, EA, meeting

in a point V on the axis VN of the

prism, and intersecting Bb, Dd, Ff, in

Z, Y, Z. The volume of the figure thus

formed is the same as that of the

L original prism with its hexagonal ends

:

for, ifthe axis cut the hexagon ABCDEF
in N, the volumes ACVN, ACBX are

equal.

pjg 205. It is required to find the inchnation

to the axis of the faces forming the

/

L.eslie Ellis, On the form of bees' cells, in Mathematical and other Writings,

1863, p. 353; J. W. L. Glaisher, do., Phil. Mag. (4), xlvi, pp. 103-122, 1873.

t The learned and original Kieser, in his Memoire sur Vorganisation des plantes,

1812, p. iv, gives advice to the same effect: "II est indispensable de se former,

avant de dessiner, une idee de Tobjet dans sa plus grande perfection, et de dessiner

selon cette idee, et non pas I'objet plus ou moins imparfait, plus ou moins altere

par le scalpel.. Voila la methode qu'ont suivi Haller, Albinus et tous les autres

grands anatomistes. . . . Mais il faut employer pour cela la plus grande precaution,

la circonspection la plus tranquille pour I'observation, etc."

I Cf. Koenig, Lhuiller and Boscovich, opp. cit. ; H. Hennessy, Proc. E.S. xxxix,

p. 253, 1885; XLi, pp. 4^2, 443, 1886; XLii. pp. 176, 177, 1887.
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trihedral angle at F, such that the surface of the whole figure may
be a minimum.

Let the angle NVX, which is the inclination of the plane of the

rhonlbus to the axis of the prism, = d\ the side of the hexagon, as

AB, = s\ and the height, as Aa, = h.

Then AC = 25 cos 30°, = s VS. And, from inspection of the

triangle LXB,
VX

sin 6

Therefore the area of the rhombus

VAXC
V3

2sin^*

And the area of AabX = -{2h— ^VX cos 6),
2i

"

= ' (2A - \s cot Q).
z

Therefore the total area of the figure

= the hexagonal base ahcdef + 3s (2h — |s cot 6) + 3 —-.—-,

(^(area) Ss^ / 1 a/3 cos ^
Therefore —j^— = -^ ~^~t^ . o n

ad 2 Vsm^ d sm^ d. \

^ , . . . ,
d (area) ^ , ^1

But this expression vanishes, or = 0, when cos U = -—
=,^

dd V3

that is to say, when 6 = 54° 44' 8" = } (109° 28' 16").

Such then are the conditions under which the total area of the

figure has its minimal value.

The following is, in substance, Maclaurin's elementary but somewhat lengthy

proof of the minimal properties of the bee's cell, using "no higher Geometry

than was known to the Antients."

Let ABCD, abed, represent one-half of a right prism on a regular hexagonal

base; and let AabE, EbcC be the trapezial portions of two adjacent sides, to

which one of the three rhombs, AECe, is fitted.

Let be the centre of the hexagon, of which AB, EC are adjacent sides;

join ^C and OB, intersecting in P. Then, because AOC = ABC, and BE= Oe,
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the solid AECB = AeCO; whence it appears that the solid content of the

whole cell will be the same, wherever the point E be taken in Bb, and will

in fact be identical with the content of the hexagonal prism. We have -then

to enquire where E is to be taken in Bb, in order that the combined surfaces

of the rhomb and of the two trapezia may be a minimum.
Because Ee is perpendicular to ^C in P, the area of the rhombus = P^.^C';

and the area of the two trapezia = {Aa + Eb) x BC. The total area in question,

then, is PE .AC + 2BC .Bb-BC. BE. But BC . Bb is constant ; so the question

remains. When is PE.AC— BC.BE a minimum?
Let a point L be so taken in Bb that BL : PL :: BC : AC. From the

centre P, in the plane PBE, describe the circular arc ER, meeting PL in R;

and on PL let fall the perpendiculars ES, BT.

Fig. 206.

The triangles LES, LBT, LPB are all similar. Therefore

LS:LE::LT:LB::LB:LP,

and (by hypothesis) : : BC : AC.

Hence {LT -LS) : (LB-LE) :: BC : AC,

i.e. ST: BE:: BC: AC.

Therefore ST.AC =BE.BC

and consequently, PE .AC-BE .BC=PE .AC-ST .AC

=AC{PE-8T).

But PE^PR; therefore AC {PR - ST) ^AC {PT + RS).
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But AC and FT do not vaiy, while BS varies with the position of E.

Accordingly, AC{PT + RS), or PE.AC-BE. BC, is a minimum when RS
vanishes: that is to say, when E coincides with L.

"Therefore A LCI is the Rhombus of the most advantageous Form in respect

of Frugality, when BL is to PL as BC to .46'."

Again, since OB = BC, and OP= PB, BC^ = 4PB\ and PC^ = 3PB^, and

AC= 2PC = 2V3.PB.

Therefore

and, by hypothesis.

and

Therefore

BC:AC::2PB:2VS.PB:: 1 : Vs,

BLiPL:



536 THE FORMS OF TISSUES [ch.

A soap-bubble, or soap-film, assumes a minimal configuratiou

instantaneously*, however small the saving of surface-area may be.

But after learning that the bee's cell has undoubted minimal

properties, we should hke to know what saving is actually obtained

by substituting a rhomboidal pyramid for a plane base in the

hexagonal prism. It turns out, after all, to be a small matter!

The calculation was first made by Maclaurin and by Lhuiller, in

both cases briefly but correctly. Lhuiller stated that the whole

amount used in the bee's cell was to that required for a flat-topped

prismatic cell of equal volume as 25 + V6 (or 2745) to 28, the

saving being thus a little more than 2 per cent, of the whole quantity

of wax required t- Glaisher recalculated the values, taking the cell

part by part. Assuming, with Lhuiller, that the radius of the

inscribed circle of the hexagon is to the depth of the prismatic cell,

when the latter has the same capacity as the real cell, as 1| to 5,

then, taking the side of the hexagon as unity, we have for the same

depth (viz. the longest side of the trapezium in the real cell) the

25 VS
value ; and then (to three places of decimals):

Area of the three rhombs, f a/2

„ „ „ six triangles, f V2

„ „ „ six sides of the equivalent

prismatic cell, -^^ V 3

„ „ „ hexagonal base, f VS

The whole surface of the real cell, accordingly,

= (i)-f-(iii)-(ii) = 23-772;

* For the most part instantaneously; but sometimes, when there are two

positions of nearly equal potential energy, the film "creeps" from the less to the

more advantageous of the two.

t We must take into account the depth of the cell, or assume a value for it,

if we are to estimate the percentage saving of wax on the whole construction.

But (as Dr G. T. Bennett says) the whole saving is on the roof, and the height

of the house does not matter; the question rather is, what is saved on the

rhomboidal sloping roof compared with a flat one? If the short axis of the rhombs

be 2 units (the edge of the cube), then 3 rhombs have area 6 V2, the wall-saving

is 2 V2, while the flat hexagonal top is 4 Vs. So the actual saving is the diflFerence

between 4 V2 and 4 Vs—which looks much less negligible ! But it is only on

a small portion of the work.

3-182
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and that of the flat-bottomed hexagonal prism

= (iii) + (iv) = 24-249;

,
24-249 102 ,.^^.

23772
""

100
'

^^ ^ ^^^^
'

so that the saving in the former case amounts to about 2 per cent.,

as Lhuiller had found it to be.

Glaisher sums up the matter as follows: "As the result of a

tolerably careful examination of the whole question, I may be

permitted to say that I agree with Lhuiller in beheving that the

economy of wax has played a very subordinate part in the deter-

mination of the form of the cell ; in fact I should not be surprised

if it were acknowledged hereafter that the form of the cell had

been determined by other considerations, into which the saving of

wax did not enter (that is to say did not enter sensibly; of course

I do not mean that the amount of wax required was a matter of

absolute indifference to the bees). The fact of all the dihedral

angles being 120° is, it is not unlikely, the cause that determined

the form of the cell." This last fact, that in such a cell every plane

cuts every other plane at an angle of 120°, was known both to Kliigel

and to Boscovich; it is no mere corollary, but the root of the

matter. It is, as Glaisher indicates, the fundamental physical

principle of construction from which the apical angles of 109° follow

as a geometrical corollary. And it is curious indeed to see how
the obtuse angle of the rhomb, and its cosine —J, drew attention

all the while; but the dihedral angle of 120° of the rhombohedron,

and the inclination of its three short diagonals at 90° to one another,

got rare and scanty notice.

Darwin had hstened too closely to Brougham and the rest when

he spoke of the bee's architecture as "the most wonderful of known
instincts"; and when he declared that "beyond this stage of per-

fection in architecture natural selection could not lead ; for the

comb of the hive-bee, as far as we can see, is absolutely perfect in

economising labour and wax."

The minimal properties of the cell and all the geometrical reasoning

in the case postulate cell-walls of uniform tenuity and edges which

are mathematically straight. But the walls, and still more their

edges, are always thickened ; the edges are never accurately straight,
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nor the cells strictly horizontal. The base is always thicker than

the side-walls; ,its solid angles are by no means sharp, but filled up

with curving surfaces of wax, after the fashion, but more coarsely,

of Plateau's bourrelet. Hence the Maraldi angle is seldom or never

attained; the mean value (according to Vogt) is no more than

106-7° for the workers, and 107-3° for the drones. The hexagonal

angles of the prism are fairly constant; about 4° is the limit of

departure, and about 1-8° the mean error, on either side.

r^-t^

Fig. 208. Brood-comb, with eggs.

The bee makes no economies; and whatever economies lie in the

theoretical construction, the bee's handiwork is not fine nor accurate

enough to take advantage of them*.

The cells vary little in size, so little that Thevenot, a friend of

Swammerdam's, suggested using their dimensions as a modulus

or standard of length; but after all, the constancy is not so great

as has been supposed. Swammerdam gives measurements which

work out at 5-15 mm. for the mean diameter of the worker-cells,

and 7 mm. for those of the drones ; Jeffries Wyman found mean

values for the worker-cells from 5-1 to 5-2 mm.; Vogt, after many
careful measurements, found a mean of 5-37 mm. for the worker-

* All this Heinrich Vogt has abundantly shewn, in part by making casts of the

interior of the cells, as Castellan had done a hundred years before. See his

admirable paper on the Geometric und Oekonomie der Bienenzelle, in Festschrift

d. Universitdt Breslau, 1911, pp. 27-274.
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cells, with an insignificant difference in the various diameters, and

a mean of 6-9 for the drone-cells, with their horizontal diameter some-

what in excess, and averaging 7-1 mm. A curious attempt has been

made of late years by Italian bee-keepers to let the bees work on

a larger foundation, and so induce them to build larger cells; and

some, but by no means all, assert that the young bees reared in the

larger cells are themselves of larger stature*.

That the beautiful regularity of the bee's architecture is due to

some automatic play of the physical forces, and that it were

fantastic to assume (with Pappus and Reaumur) that the bee

intentionally seeks for a method of economising wax, is certain;

but the precise manner of this automatic action is not so clear.

When the hive-bee builds a solitary cell, or a small cluster of cells,

as it does for those eggs which are to develop into queens, it makes

but a rude construction. The queen-cells are lumps of coarse wax

hollowed out and roughly bitten into shape, bearing the marks of

the bee's jaws like the marks of a blunt adze on a rough-hewn log.

Omitting the simplest of all cases, when (among some humble-

bees) the old cocoons are used to hold honey, the cells built by the

"solitary" wasps and bees are of various kinds. They may be

formed by partitioning off little chambers in a hollow stem; they

may be rounded or oval capsules, often very neatly constructed

out of mud or vegetable fibre or httle stones, agglutinated together

with a salivary glue; but they shew, except for their rounded or

tubular form, no mathematical symmetry. The social wasps and

many bees build, usually out of vegetable matter chewed into a

paste with saliva, very beautiful nests of '"combs"; and the close-

set papery cells which constitute these combs are just as regularly

hexagonal as are the waxen cells of the hive-bee. But in these cases

(or nearly all of them) the cells are in a single row ; their sides are

regularly hexagonal, but their ends, for want of opponent forces,

remain simply spherical.

In Melipona domestica (of which Darwin epitomises Pierre Huber's

description) "the large waxen honey-cells are nearly spherical,

nearly equal in size, and are aggregated into an irregular mass."

* Cf. (int. al.) H. Gontarsi, >Sammelleistungen von Bienen aus vergrosserten

Brutzellen, Arch.f. Bienenkunde, xvi, p. 7, 1935; A. Ghetti, Celli ed api piu grandi,

IV Congresso nazion. della S.A.I. 1935.
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But the spherical form is only seen on the outside of the mass;

for inwardly each cell is flattened into "two, three or m.ore flat

surfaces, according as the cell adjoins two, three or more other cells.

When one cell rests on three other cells, which from the spheres

Fig. 209. An early stage of a wasp's nest. Observe the spherical caps, and the

irregular shape of the peripheral cells. After R. Bott.

being nearly of the same size is very frequently and necessarily the

case, the three flat surfaces are united into a pyramid; and this

pyramid, as Huber has remarked, is manifestly a gross imitation

of the three-sided pyramidal base of the cell of the hive-bee*."

* Origin of Species, ch. viii (6th ed., p. 221). The cells of various bees, humble-

bees and social wasps have been described and mathematically investigated by

K. MiillenhofF, Pfiuger's Archiv, xxxii, p. 589, 1883; but his many interesting

results are too complex to .epitomise. For figures of various nests and combs see

(e.g.) von Buttel-Reepen, Biol. Centralbl. xxxm, pp.. 4, 89, 129, 183, 1903.
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We had better be content to say that it depends on the same

elementary geometry.

The question is, To what particular force are we to ascribe the

plane surfaces and definite angles which define the sides of the cell

in all these cases, and the ends of the cell in cases where one row

meets and opposes another? We have seen that Bartholin sug-

gested, and it is still commonly beheved, that this result is due to

mere physical pressure, each bee enlarging as much as it can the

cell which it is a-building-, and nudging its wall outwards till it fills

every intervening gap, and presses hard against the similar efforts

of its neighbour in the cell next door*.

That the bee, if left to itself, "works in segments of circles," or

in other words builds a rounded and roughly spherical cell, is ah

old contention! which some recent experiments of M. Victor

Willem amplify and confirm {. M. Willem describes vividly how

each cell begins as a Httle hemispherical basin or "cuvette," how

the workers proceed at first with Httle apparent order and method,

laying on the wax roughly like the mud when a swallow builds;

how presently they concentrate their toil, each burying its head in

its own cuvette, and slowly scraping, smoothing and ramming

home; how those on the other side gradually adjust themselves

* Darwin had a somewhat similar idea, though he allowed more play to the

bee's instinct or conscious intention. Thus, when he noticed certain half-completed

cell-walls to be concave on one side and convex on the other, but to become perfectly

flat when restored for a short time to the hive, he says: "It was absolutely im-

possible, from the extreme thinness of the little plate, that they could have effected

this by gnawing away the convex side; and I suspect that the bees in such cases

stand on opposite sides and push and bend the ductile and warm wax (which as

I have tried is easily done) into its proper intermediate plane, and thus flatten it."

Ruber thought the difference in form between the inner and the outer cells a clear

proof of intelhgence; it is really a direct proof of the contrary. And while cells

differ when their situations and circumstances differ, yet over great stretches of

comb extreme uniformity, unbroken by any sign of individual differences, is the

strikingly mechanical characteristic of the cells.

I It is so stated in the Penny Cyclopedia, 1835, Art. "Bees"; and is expounded

by Mr G. H. Waterhouse [Trans. Entom. Soc, London, ii, p. 115, 1864) in an

article of which Darwin made good use. Waterhouse shewed that when the

bees were given a plate of wax, the separate excavations they made therein

remained hemispherical, or were built up into cylindrical tubes; but cells in

juxtaposition with one another had their party-walls flattened, and their forms

more or less prismatic.

X V^ictor Willem, L'architecture des abeilles, Bull. Acad. Roy. de Belgique (5),

XIV, pp. 672-705, 1928.
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to their opposite neighbours ; and how the rounded ends of the cells

fashion themselves into the rhomboidal* pyramids, "a la suite de

I'amincissement progressif des cloisons communes, et des pressions

antagonistes exercees sur les deux faces de ces cloisons."

Among other curious and instructive observations, M. Willem has

watched the bees at work on the waxen "foundations" now com-

monly used, on which a rhomboidal pattern is impressed with a

view to starting the work and saving the labour of the bees. The

bees (he says) disdain these half-laid foundations of their cells; they

hollow out the wax, erase the rhombs, and turn the pyramidal

hollows into hemispherical "cuvettes" in their usual way; and the

vertical walls which they raise, more or less on the lines laid down
for them, are not hexagonal but cylindrical to begin with. "La
forme plane, en facettes, tant de prismes que des fonds, n'est obtenue

que plus tard, progressivement, comme resultat de retouches,

d'enlevements et de pressions exercees sur les cloisons qui s'amin-

cissent, par des groupes d'ouvrieres operant face a face, de maniere

antagoniste."

But when all is said and done, it is doubtful whether such

retouches, enlevements and pressions antagonistes, such mechanical

forces intermittently exercised, could produce the nearly smooth

surfaces, the all but constant angles and the close approach to a

minimal configuration which characterise the cell, whether it be

constructed by the bee of wax or by the wasp of papery pulp.

We have the properties of the material to consider; and it seems

much more Ukely to me that we have to do with a true tension

effect: in other words, that the walls assume their configuration

when in a semi-fluid state, while the watery pulp is still liquid or

the wax warm under the high temperature of the crowded hive.

In the first few cells of a wasp's comb, long before crowding and

mutual pressure come into play, we recognise the identical con-

figurations which we have seen exhibited by a group of three or

four soap-bubbles, the first three or four cells of a segmenting

egg. The direct efforts of the wasp or bee may be supposed to be

limited, at this stage, to the making of little hemispherical cups,

as thin as the nature of the material permits, and packing these

little round cups as close as possible together. It is then con-

ceiv ble, and indeed probable, that the symmetrical tensions of the
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semi-fluid films should suffice (however retarded by viscosity) to

bring the whole system into equihbrium, that is to say into the

configuration which the comb actually assumes.

The remarkable passage in which Bufi'on discusses the bee's cell

and the hexagonal configuration in general is of such historical

importance, and tallies so closely with the whole trend of our

enquiry, that before we leave the subject I wull quote it in full*:

"Dirai-je encore un mot: ces cellules des abeilles, tant vantees,

tant admirees, me fournissent une preuve de plus contre I'en-

thousiasme et Tadmiration; cette figure, toute geometrique et toute

reguliere qu'elle nous parait, et qu'elle est en effet dans la specula-

tion, n'est ici qu'un resultat niecanique et assez imparfait qui se

trouve souvent dans la nature, et que Ton remarque meme dans les

productions les plus brutes; les cristaux et plusieurs autres pierres,

quelques sels, etc., prennent constamment cette figure 'dans leur

formation. Qu'on observe les petites ecailles de la peau d'une

roussette, on verra qu'elles sont hexagones, parce que chaque ecaille

croissant en meme temps se fait obstacle et tend a occuper le plus

d'espace qu'il est possible dans un espace donne: on voit ces memes

hexagones dans le second estomac des animaux ruminans, on les

trouve dans les graines, dans leurs capsules, dans certaines fleurs,

etc. Qu'on remplisse un vaisseau de pois, ou plutot de quelque

autre graine cylindrique, et qu'on le ferme exactement apres y avoir

verse autant d'eau que les intervalles qui restent entre ces graines

peuvent en recevoir; qu'on fasse bouillir cette eau, tons ces cylindres

deviendront de colonnes a six pans. On y voit clairement la

raison, qui est purement mecanique; chaque graine, dont la figure

est cyhndrique, tend par son renflement a occuper le plus d'espace

possible dans un espace donne, elles deviennent done toutes neces-

sairement hexagones par la compression reciproque. Chaque abeille

cherche a occuper de meme le plus d'espace possible dans un espace

donne, il est done necessaire aussi, puisque le corps des abeilles est

cylindrique, que leurs cellules sont hexagones—par la meme raison

* Buffon, Histoire naturelle, iv, p. 99, Paris, 1753. Bonnet criticised BuflFon's

explanation, on the ground that his description was incomplete; for Buffon took

no account of the Maraldi pyramids. Not a few others discovered impiety in his

hypotheses, and some dismissed them with the remark that "philosophical

absurdities are the most difficult to refute"; cf. W. Smellie, Philosophy of Natural

History, Edinburgh, 1790, p. 424.
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des obstacles reciproques. On donne plus d'esprit aux mouches

dont les ouvrages sont les plus reguliers; les abeilles sont, dit-on,

plus ingenieuses que les guepes, que les frelons, etc., qui savent aussi

rarchitecture, mais dont les constructions sont plus grossieres et

plus irregulieres que celles des abeilles: on ne veut pas voir, ou Ton

ne se doute pas, que cette regularite, plus ou moins grande, depend

uniquement du nombre et de la figure, et nuUement de I'intelligence

de ces petites betes
;
plus elles sont nombreuses, plus il y a des forces

qui agissent egalement et s'opposent de meme, plus il y a par

consequent de contrainte mecanique, de regularite forcee, et de

perfection apparente dans leurs productions*."

Of parenchymatous cells

Just as Bonanni and other early writers sought, as we have seen,

to explain hexagonal symmetry on mechanical principles, so other

early naturalists, relying more or less on the analogy of the bee's

cell, endeavoured to explain the cells of vegetable parenchyma ; and

to refer them to the rhombic dodecahedron or garnet-form, which

sohd figure, in close-packed association, was believed in their time,

and long afterwards, to enclose space with a minimal extent of surface.

* Among countless papers on the bee's cell, see John Barclay and others in

Ann. of Philosophy, ix, x, 1817; Henry Lord Brougham, in Dissertations...

connected with Natural Theology, app. to Paley's Works, i, pp. 218-368, 1839;

C.R. Acad. Sci. Paris, xlvi, pp. 1024-1029, 1858; Tracts, Mathematical and Physical,

1860, pp. 103-121, etc.; E. Carruccio, Note storiche sulla geometria delle api,

Periodico di Matem. (4), xvi, 20 pp., 1936; G. Cesaro, Sur la forme de I'alveole

des abeilles. Bull. Acad. Roy. Belg. (Sci.), Avril 10, 1929; Sam. Haughton, On
the form of the cells made by various wasps and by the honey-bee, Proc. Nat.

Hist. Soc. Dublin, in, pp. 128-140, 1863; Ann. Mdg. Nat. Hist. (3), xi, pp. 415-429,

1863; A. R. Wallace, Remarks on the foregoing paper, ibid, xii, p. 33; J. 0.

Hennum, Arch. f. Math. u. Vidensk., Christiania, ix, p. 301, 1884; F. Huber,

Nouv. obs. sur les abeilles, ii, p. 475, 1814; F. W. Hultmann, Tidsskr.'f. Math.,

Uppsala, I, p. 197, 1868; John Hunter, Observations on bees, Phil. Trans. 1792,

pp. 128-195; Jacob, Nouv. Ann. de Math, ii, p. 160, 1843; G. S. Kliigel, Mathem.

Betrachtungcn iib. d. kunstreichen Bau d. Bienenzellen, Hannoversches Mag.

1772, pp. 353-368; Leon Lalanne, Note sur I'architecture des abeilles, Ann. Sc. Nat.

Zool. (2), XIII, pp. 358-374, 1840; B. PoweU, Proc. Ashmol. Soc. i, p. 10, 1844;

K. H Schellbach, Mathem Lehrstunde • Lehre v. Grossten u. Kleinsten, 1860,

pp. 35-37; Sam Sharpe, Phil. Mag iv pp 19-21, 1828; J. E. Siegwart, Die

Mathematik im Dienste d. Bienenzucht, Schw. Bitnenzeitung, iii, 1880; 0. Terquem,

Nouv. Ann. de M h xv, p. 176, 1856, C. M. Willick, On the angle of dock-gates and

the bee's cell, Phtl. Mag. (4) xviii, p. 427, 1859; C.R. li, p. 633, 1860; Chauncy

Wright, Proc. Amer. Acad. Arts and Sci. iv, p. 432, 1860.
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We have mentioned both Hooke and Grew*, and we have just heard

Buffon engaged in such speculations; but the matter was more

elaborately treated near the beginning of last century by Dieterich

George Kieserf, an ingenious friend and

colleague of the celebrated Lorenz Oken.

Kieser clearly understood that the cell has

not a shape of its own, but merely one

impressed on it by physical forces and

defined by mathematical laws. In his

Memoire sur Vorganisation des plantes, he

gives an admirable historical account of the

work of Malpighi, Hooke, Grew, John Hill

and other early microscopists ; and then he Fig. 210. A rhombic

says "La forme des cellules est variee dans dodecahedron.

les plantes diiferentes, mais il y a des formes principales, fondees sur

les lois des mathematiques, que la nature suit toujours dans ses

formations.. . .La forme la plus commune est celle que prennent

necessairement des globules rondes ou allongees, pressees ensemble,

celle des corps hexagonaux a parois quadrilaterales, ou d'une colonne

tres courte hexagone, coupee horizontalement d'en haut et d'en bas."

Here we have, briefly described and sufficiently accounted for, the

configuration of what we call a "pavement epithelium," or other

simple association of cells in a single layer.

But another passage (from the same author's Phytotomie) is worth

quoting at length, where he deals with cells in the mass, that is to

say with the three-dimensional problem. "Die nach mathematische

Gesetzen bestinlmte als nothwendige Grundforra der Zelle der voll-

kommenen Zellengewebe ist das langgezogene Rhombododekaheder.

. . . Mathematisch liegt das Beweis dass diese Figur die Grundform

der vollkommenen Zellengewebe sei darin, dass unter alien mathe-

matischen Korpern welche durch Zusammensetzung einen sohden

Korper ohne Zwischenraume bilden, das Rhombododekaheder die

einzige ist welche mit der wenigsteri Masse des Umkreises den

grossten Raum einschliesst. Sollte also aus dem Globus—dem

* R. Hooke, Micrographia, 1665, pp. 115-116; Nehemiah Grew, Anatomy of

Plants, 1682, pp. 64, 76, 120.

t D. G. Kieser, Memoire, etc., Haarlem, 1814, p. 89; Phytotomie, oder Grundziige

der Anatomic der Pfianzen, Jena, 1815, p. 4.
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urspriinglichsten Schleimblaschen der Pflanzenzelle—ein eckiger

Korper gebildet werden, so musste dieser das Rhombododekaheder

sein, well dieser- im Hinsicht des Minimums der Masse zu dem

Maximum des eingeschlossenen Raumes dem Globus am nachsten

liegt. Als die Urform der Pflanzenzelle ist nicht Globus sondern

Ellipsoide, daher muss das Dodekaheder, welche die Grundform der

eckigen Pflanzenzelle ist, auch aus dem Ellipsoide entstanden sein.

Das Rhombododekaheder wird also vom unten nach oben gestreckt,

und die Grundform der eckigen Pflanzenzelle ist das in perpen-

dicularer Richtung langsgestreckte Rhombododekaheder."

These views and speculations of Kieser's, now all but forgotten,

were by no means neglected in their day. Oken accepted them,

and taught them*; Schleiden remarks that "the form of cells

frequently passes into that of the rhombic dodecahedron, so beauti-

fully determined, a priori, by Kieserf"; and De CandoUe thought

it necessary to warn his readers that cells are not as geometrically

regular as pubhshed figures might lead one to believe J.

The same principles apply to various orders of magnitude, and

close-packing may be seen even in the inner contents of a cell. In

vitally stained "goblet-cells," the mucin gathers into clumps or

droplets, of which each appears in optical section to be surrounded

by six more. When fixed they draw together, appear in optical

section to be hexagonal, and we may take it that they have become,

to a first approximation, rhombic dodecahedra§.

These then, and such as these, were the not unimportant specu-

lations on the forms of cells by men who early grasped the fact that

form had a physical cause and a mathematical significance. But

their conception of the phenomenon was of necessity hmited to the

play of the mechanical forces; for Plateau's Statique des Liquides

had not yet shewn what the capillary forces can do, nor opened a

way thereby for Berthold and for Errera.

A very beautiful hexagonal symmetry as seen in section, or

dodecahedral as viewed in the soHd, is presented by the pith of

certain rushes (e.g. Juncus effusus), and somewhat less diagram-

* Oken, Physiophilosophy (Ray Society), 1847, p. 209.

t Muller's Archiv, 1838, p. 146.

X Organogenic vegetale, i, p. 13, 1827.

§ E. S..Duthie, in Proc, B,S. (B), cxiii, pp. 459-463, 1933.
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matically by the pith of the banana. The cells are stellate, and

the tissue has the appearance in section of a network of six-rayed

stars (Fig. 211), linked together by the tips of the rays, and separated

by symmetrical, air-filled intercellular spaces, which give its snow-

like whiteness to the pith. In thick sections, the solid twelve-rayed

" star-dodecahedra " may be very beautifully seen under the

binocular microscope. They are not difficult to understand.

Imagine, as before, a system of equal spheres in close contact, each

one touching its twelve neighbours, six of them in the equatorial

Fig. 211. Stellate cells in pith of Juncus.

plane ; and let the cells be not only in contact, but become attached

at the points of contact. Then, instead of each cell expanding so

as to encroach on and fill up the intercellular spaces, let each tend

to shrink or shrivel up by the withdrawal of fluid from its interior.

The result will be to enlarge the intercellular spaces ; the attachments

of each cell to its neighbours will remain fixed, but the walls between

these points of attachment will be withdrawn in a symmetrical

fashion towards the centre. As the final result w^e have the star-

dodecahedron, which appears in plane section as a six-rayed figure.

It is necessary not only that the pith-cells should be attached to

one another, but also that the outermost should be attached to a

boundary wall, to preserve the symmetry of the system. What
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actually occurs in the rush is tantamount to this, but not absolutely

identical. It is not so much the pith-cells which tend to shrink

within a boundary of constant size, but rather the boundary wall

which continues to expand after the pith-cells which it encloses have

ceased to grow or to multiply. The points of attachment on the

surface of each little pith-cell are drawn asunder, but the content

of the cell does not correspondingly increase; and the remaining

portions of the surface shrink inwards, accordingly, and gradually

constitute the complicated . figure which Kepler called a star-

dodecahedron, which is still a symmetrical figure, and is still a

surface of minimal area under the new and altered conditions.

The tetrakaidekahedron

A few years after the pubhcation of Plateau's book, Lord Kelvin

shewed, in a short but very beautiful paper*, that we must not

hastily assume from such arguments as the foregoing that a close-

packed assemblage of rhombic dodecahedra will be the true and

general solution of the problem of dividing space with a minimum

partitional area, or will be present in a liquid ''foam," in which the

general problem is completely and automatically solved. The

general mathematical solution of the problem (as we have already

indicated) is, that every interface or partition-wall must have con-

stant mean curvature throughout ; that where these partitions meet

in an edge, they must intersect at angles such that equal forces, in

planes perpendicular to the line of intersection, shall balance ; that

no more than three such interfaces may meet in a line or edge,

whence it follows (for symmetry) that the angle of intersection of

all surfaces or facets must be 120°; and that neither more nor less

than four edges meet in a point or corner. An assemblage of rhombic

dodecahedra goes far to meet the case. It fills space; its surfaces

or interfaces are planes, and therefore surfaces of constant curvature

throughout; and they meet together at angles of 120°. Never^

theless, the proof that the rhombic dodecahedron (which we find

exemplified in the bee's cell) is a figure of minimal area is not

a comprehensive proof; it is Hmited to certain conditions, and

* Sir W. Thomson, On the division of space with minimum partitional acea,

Phil. Mag. (5), xxiv, pp. 503-514, Dec. 1887; cf. Baltimore Lectures, 1904, p. 615;

Molecular tactics of a crystal (Robert Boyle Lecture), 1894, pp. 21-25.
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practically amounts to no more than this, that of the ordinary

space-filling soHds with all sides plane and similar, this one has the

least surface for its solid content.

The rhombic dodecahedron has six tetrahedral angles and eight

trihedral angles. At each of the latter three, and at each of the

former six, dodecahedra meet in a point in close packing; and foiir

edges meet in a point in the one case and eight in the other. This

is enough to shew that' the conditions for minimal area are not

rigorously metr In one of Plateau's most beautiful experiments*,

a wire cube is dipped in soap-solution. When hfted out, a film is

seen to pass inwards from each of the twelve edges of the cube, and

these twelve films meet, three by three, in eight edges, running

inwards from the eight corners of the

cube; but the twelve films and their

eight edges do not meet in a point, but

are grouped around a small central

quadrilateral fihn (Fig. 212). Two of

the eight edges run to each corner of the

little square, and, with the two sides of

the square itself, make up the four edges

meeting in a point which the theory of

area minima requires. We may sub- ^^'

stitute (by a second dip) a little cube for the little square; now an

edge from each corner of the outer cube runs to the corresponding

corner of the inner one, and with the three adjacent edges of the

little cube itself the number four is still maintained. Twelve films,

and eight edges meeting in a point, w^ere essentially unstable; but

the introduction of the little square or cube meets most of the

conditions of stabihty which Plateau was the first to lay down.

One more condition has to be met, namely the equality of angles at

which the four edges meet in each conjunction. These co-equal

"Maraldi angles" at each corner of the square can only be con-

structed by help of a slight curvature of the sides, and the httle

square is seen to have its sides curved into circular arcs accordingly;

moreover its size and shape, as that of all the other films in the

system, are perfectly definite. It is all one, according to the

* Also discovered independently by Sir David Brewster, Trans. R.S.E. xxrv,

p. 505, 1867; xxv, p. 115, 1869.
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symmetry of the figure, to which side of the skeleton cube the

square lies parallel; wherever it may be, if we blow gently on it,

then (as M. Van Rees discovered) it alters its place and sets itself

parallel now to one and now to another of the paired faces of the

cube.

The skeleton cube, Hke the tetrahedron which we have already

studied, is only one of many interesting cases; for we may vary

the shape of our wire cages and obtain other and not less beautiful

configurations. An hexagonal prism, if its sides be square or nearly

so, gives us six vertical triangular films, whose apices meet the

corners of a horizontal hexagon*; also six pairs of truncated

triangles, which link the top and bottom edges of the cage to the

sides of the median hexagon. But if the height of the hexagonal

prism be increased, the six vertical films become curvihnear triangles,

with sides concave towards the apex; and the twelve remaining

films, which spring from the top and bottom of the hexagon, are

curved surfaces, looking like a sort of hexagonal hourglass f.

There is a deal of elegant geometry in these various configurations.

Lamarle shewed that if, in a figure represented by our wire cage,

we suppress (in imagination) one face and all the other faces

adjoining it, then the faces which remain are those which appear

in the centre of the figure after the cage has been withdrawn from

the soap-solution. Thus, in a cube, we suppress one face and the

four adjacent to it; only one remains, and it reappears as the central

square in the middle of the new configuration; in the tetrahedron,

when we have suppressed one face and the three adjacent to it,

there is nothing left—save, a median point, corresponding to the

opposite corner. In a regular dodecahedron, if we suppress one

pentagonal face and its five neighbours, the other half of the whole

figure remains; and the dodecahedral cage, after immersion in the

soap, shews a central and symmetrical group of six pentagons J.

Moreover, while the cage is carrying its configuration of films,

we may blow a bubble within it, and so insert a new polyhedron

* The angles of a hexagon are too big, as those of a square were too small, to

form the Maraldi angles of symmetry; hence the sides of the hexagon are found

to be concave, as those of the square bulged out convexly.

t Cf. Dewar, op. cit. 1918.

X That is to say, if nF„^ be a polyhedron (of n m-faced sides), the corresponding

wire cage will exhibit (w - m + 1) i^^ as central fenestrae.



VII] OF THE TETRAKAIDEKAHEDRON 551

within the old, and set it in place of the former fenestra. The inner

polyhedral bubble so produced may be of any dimensions, but it

resembles the outer polyhedral cage precisely, except in the

curvature of its sides ; it has all its faces spherical, and all of equal

radius of curvature; its edges are either arcs of circles or straight

lines. Later on, we shall see that there is no small biological

interest attaching to these configurations.

Lord Kelvin made the remarkable discovery that the square

fenestra with the four quadrilateral films impinging on its sides, in

Plateau's experiment, represented the one-sixth part of a symmetrical

figure; that this figure when complete was bounded by six squares

and eight hexagons; that by means of an assemblage of these

Fig. 213. A set of 14-he(lra, to shew close-packing. From F. T. Lewis

fourteen-sided figures, or "tetrakaidekahedra," space is filled and

homogeneously partitioned—into equal, similar and similarly situated

cells—with an economy of surface in relation to volume even greater

than in an assemblage of rhombic dodecahedra*.

The tetrakaidekahedron, in its most generalised case, is bounded

by three pairs of equal and opposite quadrilateral faces, and four

pairs of equal and opposite hexagonal faces, neither the quadri-

laterals nor the hexagons being necessarily plane. In its simplest

case, with all its facets plane and equilateral, it is Kelvin's "ortho-

tetrakaidekahedron " ; and also (though Kelvin was unaware of the

fact) one of the thirteen semi-regular and isogonal polyhedra, or

"Archimedean bodies." In a particular case, the quadrilaterals are

plane surfaces with curved edges, but the hexagons are slightly

* Kelvin, Boyle Lecture and Baltitnore Lectures. In the first of these Kelvin

described the plane-faced tetrakaidekahedron; in the second he shewed how that

figure must have its faces warped and edges curved to fulfil all the conditions of

minimal area.
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curved " anticlastic " surfaces;- and these latter have at every point

equal and opposite curvatures, and are surfaces of minimal curvature

for a boundary of six curved edges. This figure has the remarkable

property that, hke the plane rhombic dodecahedron, it so partitions

space that three faces meeting in an edge do so everywhere at

co-equal angles of 120°; and, unlike the rhombic dodecahedron,

four edges meet in each point or corner at co-equal angles of

109° 28'*.

We may take it as certain tha^), in a homogeneous system of fluid

films Hke the interior of a froth of soap-bubbles, where the films

are perfectly free to glide or turn over one another and are of

approximately co-equal size, the mass is actually divided into cells

of this remarkable conformation: and the possibility of such a

configuration being present even in the cells of an ordinary vegetable

pareilchyma was suggested in the first edition of this book. It is

all a question of restraint, of degrees of mobihty or fluidity. If we

squeeze a mass of clay pellets together, hke Buffon's peas, they come

out, or all the inner ones do, in neat garnet-shape, or rhombic

dodecahedra. But a young student once shewed me (in Yale) that

if you wet these clay pellets thoroughly, so that they slide easily

on one another and so acquire a sort of pseudo-fluidity in the mass,

they no longer come out as regular dodecahedra, but with square

and , hexagonal facets recognisable as those of ill-formed or half-

formed tetrakaidekahedra.

Dr F. T. Lewis has made a long and careful study of various

vegetable parenchymas, by simple maceration, wax-plate recon-

* Von Fedorov/ had already described (in Russian), unaware that Archimedes

had done so, the same figure under the name of cubo-octahedron, or hepta-

parallelohedron^ hmited however to the case where all the faces are plane and
regular. This cubo-octahedron, together with the cube, the hexagonal prism,

the rhombic dodecahedron and the "elongated dodecahedron," constitute the

five plane-faced, parallel-sided figures by which space is capable of being completely

filled and uniformly partitioned; the series so forming the foundation of Von
Fedorow's theory of crystalline structure—though the space-fillers are not all, and

cannot all be, crystalline forms. All of these figures, save the hexagonal prism,

are related to and derivable from the cube, so we end by recognising two principal

types, cubic and hexagonal. We have learned to recognise the dodecahedron,

and we may find in still closer packing the cubo-octahedron, in a parenchyma;
the elongated dodecahedron is, essentially, the figure of the bee's cell; the cube

we have, in essence, in cambium -tissue; the hexagonal prism, dwarf or tall, simple

or recognisably deformed, we see in every epithelium.
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struction and otherwise, and has succeeded in shewing that the

tetrakaidekahedral form is closely approached, or even attained, in

certain simple and homogeneous tissues. After reconstructing a

large model of the cells of elder-pith, he finds that the fourteen-sided

figure clearly manifests itself as the characteristic or typical form

to which the cells approximate, in spite of repeated cell-divisions

and consequent inequalities of size. Counting in a hundred cells

the number of contacts which each made with its neighbours, that

is to say the total number both of actual and potential facets, Lewis

found that 74 per cent, of the cells were either 12, 13, 14, 15 or

16-sided, 56 per cent, either 13, 14 or 15-sided, and that the averagje

-•-^

Fig. 214. Reconstructed models of cells of elder-pith, shewing a certain

approximation to 14-hedral form. From F. T. Lewis.

number of facets or contacts was, in this instance, just 13-96. These

figures indicate the general symmetry of the cells, their departure

from the dodecahedral, and their tendency towards the tetra-

kaidekahedral, form*.

But after all, the geometry of the 14-hedron, displayed to per-

fection by our soap-films in the twinkhng of an eye, is only roughly

developed in an organic structure, even one so delicate as elder-

pith; the conditions are no longer simple, for friction, viscosity and

* F. T. Lewis, The typical shape of polyhedral cells in vegetable parenchyma,

and the restoration of that shape following cell-division, Proc. Amer. Acad, of Arts

and Sci. lviii, pp. 537-552, 1923, and other papers. See also {int. al.) J. W. Marvin,

The aggregation of orthis-tetrakaidekahedra. Science, lxxxiii, p. 188, 1936;

E. B. Metzger, An analysis of the orthotetrakaidekahedron, Bull. Torrey Bot. Club,

Liv, pp. 341-348, 1927. Professor van Iterson of Delft tells me that Asparagus

Sprengeri (a common greenhouse plant) is a good subject for shewing the 14-hedral

cells.
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solidification have vastly complicated the case. We get a curious

and an unexpected variant of the same phenomenon in the micro-

scopic foam-like structure assumed as molten metal cools. If these

foam-cells were again 14-hedra, their facets would all be either

squares or hexagons; but pentagonal facets are commoner than

either, and the cells often approach closely to the form of a regular

pentagonal dodecahedron ! The edges of this figure meet at angles

of 108°, not far from the characteristic Maraldi angle of 109° 28';

and the faces meet at an angle not far removed from 120°. A slight

curvature of the sides is enough to turn our pentagonal dodecahedron

into a possible figure of equihbrium for a foam-cell. We cannot

close-pack pentagonal dodecahedra, whether equal or unequal, so

as to fill space; but still the figure may be, and seems to be, common,

interspersed among the polyhedra of various shapes and sizes which

are packed together in a metallic foam*.

A somewhat similar result, and a curious one, was found by

Mr J. W. Marvin, who compressed leaden small-shot in a steel

cylinder, as Buffon compressed his peas; but this time the pressure

on the plunger ran from 1000 to 35,000 lb. or nearly twenty tons to

the square inch. When the shot was introduced carefully, so as

to lie in ordinary close packing, the result was an assemblage of

regular rhombic dodecahedra, as might be expected and as Buffon

had found. But the result was very different when the shot was

poured at random into the cyhnder, for the average number of

facets on each grain now varied with the pressure, from about 8-5

at 1000 lb. to 12-9 at 10,000 lb., and to no less than 14-16 facets or

contacts after all interstices were eliminated, which took the full

pressure of 35,000 lb. to do. An average of just over fourteen

facets might seem to indicate a tendency to the production of

tetrakaidekahedra, just as in the froth of soap-bubbles; but this

is not so. The squeezed grains are irregular in shape, and pentagonal

facets are much the commonest, just as we found them to be in

the microscopic structure of a once-molten metal. At first sight

it might seem that, though the experiment has something to teach

us about random packing in a limited space, it has no biological

significance; but it is curious to find that the pith-cells of

* Cf. Cecil H. Desch, The solidification of metals from the liquid state, Joarn.

Inst, of Metals, xxii, p. 247, 1919.
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Eupatorium have a similar average configuration, with the same

predominance of pentagonal facets*.

We learn, in short, from Lewis and from Marvin that the

mechanical result of mutual pressure, even in an assemblage of

co-equal spheres, is more varied and more complex than we had

supposed. The two simple and homogeneous configurations—the

rhombo-dodecahedral and tetrakaidekahedral assemblages—are

easily and commonly produced, the one by the compression of solid

spheres in ordinary close-packing, the other when a liquid system

of spheres or bubbles is free to slide and glide into a packing which

is closer still. Between these two configurations there is no othei

symmetrical or homogeneous arrangement possible; but random

packing and degrees of compression leave their random effects,

among which are traces here and there of regular shape and

symmetry.

As a froth has its histological lessons for us, throwing light on

the structure of a parenchyma, so may we draw an illustration

or two from the analogous characteristics of an emulsion. Both

alike are "states of aggregation"; both are "two-phase systems,"

one phase being dispersed and the other the medium of dispersion.

Both phases are liquid in the emulsion, in the froth the dispersed

phase is a gas; our living tissue is, so far, more likely to be an

emulsion than a froth. The concept widens. A colony of bacteria,

the blood corpuscles in their plasma, the filaments of an alga, the

heterogeneous texture of any ordinary tissue, may all be brought

under the general concept of "phase systems," and share the

common character that one phase exposes a large "interface" to

the other. If we take milk as a simple emulsion, we see its hquid

oil-globules dispersed in a watery medium and rounded by surface

tension into spheres. The watery medium, as is usual in such

emulsions, contains dissolved substances which tend to lower the

interfacial tension; for were that tension high the globules would
tend to be larger and their aggregate surface less. Suppose the

"phase-ratio" to alter, the globules becoming more numerous and
the disperse medium less and less, the globules will be close-packed

* J. W. Marvin, The shape of compressed lead-shot, etc.; Amer. Journ. of
Botany xxvi, pp. 280-288, 1939; Cell-shape studies in the pith of Eupatorium,
ibid. pp. 487-504.
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at last. Then each (provided they be of equal size) will be in touch

with twelve neighbours; and if the spheres were solid—were the

system not an emulsion but a " suspension "—the matter would end

here. But our hquid globules are capable of deformation, and the

points of contact are flattened in still closer packing into planes.

Ttey become polyhedral, and tend to take the form of rhombic

dodecahedra, or it may be even of 14-hedra, and the dispersion-

medium is reduced to mere films or pellicles between. At the stage

of mere twelve-point contact, the spherules constitute about 74 per

cent., and the disperse .medium 26 per cent., of the whole. But in

the final stage the phase-ratio has so altered that the disperse-

medium is but a small fraction of the whole, the thin film to which

it has been reduced has the appearance of a cell-membrane separating

the cells, and the microscopic structure of the whole corresponds to

the cellular configuration of a parenchymatous tissue*.

Of certain groupings of cells

It follows from all that we have said that the problems connected

with the conformation of cells, and with the manner in which a

given space is partitioned by them, soon become complex; and

while this is so even when all our cells are equal and symmetrically

placed, it becomes vastly more so when cells varying even slightly

in size, in hardness, rigidity or other quahties, are packed together.

The mathematics of the case very soon become too hard for us,

but in its essence the phenomenon remains the same. We have

little reason to doubt, and no just cause to disbelieve, that the

whole configuration, for instance of an egg in the advanced stages

of segmentation, is accurately determined by simple physical laws:

just as much as in the early stages of two or four cells, during which

early stages we are able to recognise and demonstrate the forces

and their effects. But when mathematical investigation has become

too difficult, physical experiment can often reproduce the pheno-

mena which Nature exhibits, and which we are striving to com-

prehend. In an admirable research, M. Robert not only shewed

some years ago that the early segmentation of the egg of Trochus

(a marine univalve mollusc) proceeded in accordance with the laws

* Cf. E. Hatschek, Homogeneous partitionings, etc., Phil. Mag. xxxiii, p. 83,

1917.
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of Surface-tension, but he also succeeded in imitating by means of

soap-bubbles one stage after another of the developing egg.

M. Robert carried his experiments as far as the stage of sixteen

cells, or bubbles. It is not easy to carry the artificial system quite

so far, but in the earHer stages the experiment is easy; we have

merely to blow our bubbles in a httle dish, adding one to another,

and adjusting their sizes to produce a symmetrical system. One

of the simplest and prettiest parts of his investigation concerned

the "polar furrow " of which we have spoken on p. 489. On blowing

four httle contiguous bubbles he found (as we may all find with the

greatest ease) that they form a symmetrical system, two in contact

with one another by a laminar film, and two which are elevated

a httle above the others and are separated by the length of

the aforesaid lamina. The bubbles are thus in contact three by

three, their partition-walls making with one another equal angles

of 120°. The upper and lower edges of the intermediate lamina

(the lower one visible through the transparent system) constitute

the two polar furrows of the embryologist (Fig. 215, 1-3). The

lamina itself is plane when the system is symmetrical, but it responds

by a corresponding curvature to the least inequahty of the bubbles

on either side. In the experiment, the upper polar furrow is usually

a httle shorter than the lower, but parallel to it; that is to say,

the lamina is of trapezoidal form : this lack of perfect symmetry

being due (in the experimental case) to the lower portion of the

bubbles being somewhat drawn asunder by the tension of their

attachments to the sides of the dish (Fig. 215, 4). A similar

phenomenon is usually found in Trochus, according to -Robert,

and many otlier observers have hkewise found the upper furrow

to be shorter than the one below. In the various species of the

genus Crepidula, Conklin asserts that the two furrows are equal

in C. convexa, ^'^hat the upper one is the shorter in C. fornicata,

and that the upper one all but disappears in C. plana; but we

may well be permitted to doubt, without the evidence of very

special investigations, whether these slight physical differences are

actually characteristic of, and constant in, particular species.

Returning to the experimental case, Robert found that by with-

drawing a little air from, and so diminishing the bulk of the two

terminal bubbles (i.e. those at the ends of the intermediate lamina),
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the upper polar furrow was caused to elongate, till it became equal

in length to the lower; and by continuing the process it became

the longer in its turn. These two conditions have again been

described by investigators as characteristic of this embryo or that;

for instance in Unio, Lillie has described the two furrows as

gradually altering their respective lengths*; and Wilson (as LilHe

Fig. 215. Aggregations of four soap-bubbles, to shew various arrangements of

the intermediate partition and polar furrows. After Robert.

remarks) had already pointed out that "the reduction of the apical

cross-furrow, as compared with that at the vegetative pole in

molluscs and annelids, 'stands in obvious relation to the different

size of the cells produced at the two polesf."

When the two lateral bubbles are gradually reduced in size, or

the two terminal ones enlarged, the upper furrow becomes shorter

* F. R. Lillie, Embryology of the Unionidae, Journ. Morph. x, p. 12, 1895.

t E. B. Wilson, The cell-lineage of Nereis, Journ. Morph. vi, p. 452, 1892.
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and shorter; and at the moment when it is about to vanish, a new

furrow makes its instantaneous appearance in a direction perpen-

dicular to the old one; but the inferior furrow, constrained by its

attachment to the base, remains unchanged, and it looks as though

our two polar furrows, which were formerly parallel, were now at

right angles to one another. But in fact, the geometry of the

whole system is entirely altered. Before, two furrows left each

end of one polar furrow for the same end of the other polar furrow,

and the two cells at either end were shaped like "liths" of an orange.

Under the new arrangement, two furrows leave each end of one for

the two ends of another. The figure is now divided by six similar

furrows into four similar curviHnear triangles*; it has become

(approximately) a spherical tetrahedron, and the four cells into

which it is divided are four similar and symmetrical figures, also

tetrahedral, all meeting in a point at the centroid of the figure.

Such a four-celled embryo, described as having two polar furrows

arranged in a cross, has often been seen and figured by the

embryologists. Robert himself found this condition in Trochus, as

an occasional or exceptional occurrence : it has been described as

normal in Asterina by Ludwig, in Branchipus by Spangenberg, and

in Podocoryne and Hydractinia by Bunting.

So, by slight and delicate modifications, we pass through many,

and perhaps through all, of the possible arrangements of external

furrows and internal partitions which divide the four cells from one

another in a four-celled egg or embryo; and many, or most, or

possibly all of these arrangements have been more or less frequently

observed in the four-celled stages of various embryos. iVnd all

these configurations, which the embryologists have witnessed and

described, belong to that large class of phenomena whose distribution

among embryos, or among organisms in general, bears no relation

to the boundaries of zoological classification; through molluscs,

worms, coelenterates, vertebrates and what not, we meet with now

one and now another, in a medley which defies classification. They

are not ''vital phenomena," or "functions" of the organism, or

special characteristics of this organism or that, but purely physical

* That the sphere can be symmetrically divided into four equilateral triangles,

after the manner of these embryos (or of many pollen-grains), is an elementary

fact of great importance in geometry and trigonometry.
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phenomena. The kindred but more compUcated phenomena analogous

to the polar furrow, which arise when a larger number of cells

than four are associated together, we shall deal with in the next

chapter.

Having shewn that the capillary phenomena are patent and

unmistakable during the earlier stages of embryonic development,

but soon become more obscure and less capable of experimental

reproduction in the later stages when the cells have increased in

number, various writers including Robert himself have been inclined

to argue that the physical phenomena die away, and are over-

powered and cancelled by agencies of a different order. Here we

pass into a region where observation and experiment are not at

hand to guide us, and where a man's trend of thought, and way of

judging the whole evidence in the case, must shape his philosophy.

We must always remember that even in a froth of soap-bubbles

we can apply an exact analysis only to the simplest cases and

conditions; we cannot describe, but can only imagine, the forces

which in such a froth control the respective sizes, positions and

curvatures of the innumerable bubbles and films of which it con-

sists; but our knowledge is enough to leave us assured that what

we have learned by investigation of the simplest cases includes the

principles which determine the most complex. In the case of the

growing embryo we know from the beginning that surface-tension

is only one of the physical forces at work; and that other forces,

including those displayed within the interior of each living cell, play

their part in the determination of the system. But we have no

evidence whatsoever that at this point, or that point, or at any, the

dominion of the physical forces over the material system gives place

to a new condition where agencies at present unknown to the

physicist impose themselves on the living matter, and become

responsible for the conformation of its material fabric.

Before we leave for the, present the subject of the segmenting

egg, we may take brief note of two associated problems: viz.

(1) the formation and enlargement of the segmentation cavity, or

central interspace around which the cells tend to 'group themselves

in a single layer, and (2) the formation of the gastrula, that is to

say (in a typical case) the conversion by "invagination," of the
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one-layered ball into a two-layered cup. Neither problem is free

from difficulty, and all we can do meanwhile is to state them in

general terms, introducing some more or less plausible assumptions.

The former problem is comparatively easy, as regards the tendency

of a segmentation cavity to enlarge, when once it has been estab-

lished. We may then assume that subdivision of the cells is due

to the appearance of a new-formed septum within each cell, that

this septum has a tendency to shrink under surface-tension, and

that these changes will be accompanied on the whole by a diminu-

tion of surface-energy in the system. This being so, it may be

shewn that the volume of the divided cells must be less than it was

prior to division, or in other words that part of their contents must

exude during the process of segmentation*. Accordingly, the case

where the segmentation cavity enlarges and the embryo developes

into a hollow blastosphere may, under the circumstances, be simply

described as the case where that outflow or exudation from the cells

of the blastoderm is directed on the whole inwards.

The physical forces involved in the invagination of the cell-layer

to form the gastrula have been repeatedly discussed f, but the

several explanations are conflicting, and are far from clear. There

is, however, a certain homely phenomenon which goes some way,

perhaps a long way, to explain this remarkable configuration. An
ordinary gelatine lozenge, or jujube, has (Uke the developing

gastrula) a more or less spherical form, depressed or dimpled at one

side; this is a very noteworthy conformation, and it arises, auto-

matically, by the shrinkage of a sphere. Were the initial sphere of

gelatine perfectly homogeneous, and so situated as to shrink with

absolute uniformity, it would merely shrink into a smaller sphere;

it does nothing of the kind. There is always some part or other

which shrinks a little 'hore than the restJ ; and the dimple so formed

goes on increasing, until at last a very perfect cup-shaped figure is

formed. I imagine that the gastrula is formed in much the

* Professor Peddie has given me this interesting result, but the mathematical

reasoning is too lengthy to be set forth here.

t Cf. Butschli, Arch.f. Entw. Mech. v, p. 592, 1897; Rhumbler, ibid, xiv, p. 401,

1902; Assheton, ibid, xxxi, p. 46, 1910.

X Just as there may be some small part which shrinks a little less. But this

we should not distinguish from the common case where one small part grows

a little more, and so "produces a 6ud," as in the yeast-cell on p. 363.
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same way, save only that the initial dimple, instead of being

fortuitous, has its constant place, determined by the physico-

chemical heterogeneity of the embryo. We may even go one step

further, and see (or imagine we see) in the formation of the gastrula

a physico-chemical or physiological turning-point, the segmentation

cavity being due (as we have seen) to an inward flow, and a reversal

of the current leading to that shrinkage which produces the gastrula.

Fig. 216. Effect of shrinkage on a globule of gelatine.

After E. Hatschek.

A note on shrinkage

We have dealt much with growth, but the fact is that negative

growth, or shrinkage, is also an important matter; and just as we

find a whole series of phenomena to be based on the extension or

expansion of bubbles, vesicles, etc., so there is another series,

physically ahke and mathematically identical, which depend on the

shrinkage of a soHd or semi-fluid mass. After all, growth and its

converse go hand in hand, and a special case of shrinkage is that

surface-tension to which all the Plateau configurations are due.

One clear case, the gastrula, we have touched on, and we have

discussed another which led to the stellate dodecahedra of the Rush.

As a cube of gelatine, or of paraffin, dries, and shrinks, it alters

its shape in a remarkable way*. Its corners become more salient,

its sides become concave ; its cross-section has the form of a four-

* Emil Hatschek. Kolloid Ztschr. xxxv, pp. 67-76, 1924; Nature, 1st Nov. 1924.
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rayed star with rounded angles. The block has dried unequally;

its corners and its edges were naturally the first to dry*, and the

twelve dried and hardened edges began to play the part of the wire

frame in Plateau's soap-bubble experiment. The shrinking cube is

tending towards the identical configuration shewn in Fig. 212; it is

a minimal configuration, partially reahsed in a coarse material, but

reahsable to perfection in a film.

A shrinking cylinder (as Plateau knew) she)vs various

phenomena, depending on its proportions. A low, squat cyhnder

begins to show a pulley-hke groove—a catenoid—around its periphery,

precisely like the soap-film between its two wire rings in Fig. 108

;

and as the groove deepens, the plane surfaces of the cyhnder also begin

Fig. 217. Shrinkage of cube and cylinder.

to dimple in. They become spherical as they grow more concave, and

the deepening groove of the pulley passes from a catenoid to a nodoid

curve—so at least theory tells usf, for, beautiful as the experimental

configurations are, they hardly lend themselves to precise measure-

ments of curvature. But this shrunken cyhnder is now wonderfully

like the " amphicoelous " vertebra of a cartilaginous fish, the simplest

and most ''primitive" vertebra of all. A series of cracks, or sphts,

around the circular groove in the vertebra seem to be a final result

of irregular shrinkage, not shewn in the more homogeneous gelatine.

A long cylinder, or thread, of gelatine tends to become fluted,

with three or more ribs or folds, and it is in this way that threads

* Just as, conversely, the prominent parts of a crystal tend to grow more
rapidly than the rest in a super-saturated solution, and to dissolve more rapidly

in one below saturation; cf. 0. Lehmann, Ueber das Wachstum der Krystalle,

Ztschr. f. Krystallogr. i, p. 453.

t See p 369.
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of viscose, or artificial silk, tend likewise to have a ridged or fluted

structure, and gain in lustre thereby. The subject is new, and

hardly ripe for full discussion ; but it holds out promise (as it seems

to me) of many biological lessons and illustrations.

We glanced in passing at such "shrinkage-patterns" as are found,

for instance, on the little shells of Lagena, or on those other hanging

drops which constitute Emil Hatschek's artificial medusae; it

is no small subject. A stretched elastic membrane, circular or

spherical, remains spherical or circular when we let its tension

relax; but if, to begin with, we coat the rubber with a pliant but

non-elastic material such as wax, the waxen layer, failing to con-

Fig. 218. Amphicoelous vertebrae of a shark.

tract, is thrown into more or less characteristic folds. In a dried

pea the seed has shrunken through loss of moisture, and the loose

outer coat wrinkles up*. The pretty pattern of a poppy-seed arises

in the same way; but so do the wrinkles on an old man's withered

skin. When our experimental elastic with its non-contractile coat

is suffered to contract, the first sign of the coat's inability to keep

pace is the appearance of little domes, or hummocks, or bhsters;

and soon from each of these there run out folds, which tend to fork,

and the angles between the three branches tend to equalise. They

tend, in simple and symmetrical cases, to form a pattern of hexagons,

with occasional pentagons or quadrilaterals between ; but where the

surface is larger and the coat more flexible the folds form an irregular

network, still with the various anticlines mostly meeting in three-

* The difference between a smooth and a wrinkled pea, familiar to Mendelians,

merely depends, somehow, on amount and rate of shrinkage.
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way nodes*. Nature will ring the changes on the resultant patterns,

according as the surface be plane or curved, spherical or cylindrical,

coarse or fine, fragile or tough. But on these general fines very

many structures, both regular and irregular, spines, bristles, ridges,

tubercles and wrinkled patterns, bid fair to find their physical or

mechanical interpretation; and it is in the more or less hardened

parts of plant or animal that we find them one and all displayed.

On the egg of a butterfly, on the grooved and dotted elytron of a

beetle, on the notched forehead of a scarab, in thesaw-fike teeth on

a grasshopper's leg, in the little fines of dotted tubercles on the

shell of a Rissoa, more crudely in the lozenged bark of elm or pine,

we see a very few of this innumerable class of " shrinkage-patterns."

* The fact that such triplets of divergent ridges or crests are not a feature in

the topography of mountain-ranges is a strong argument against the view that

general shrinkage accounts for the pattern of the earth's crust. Cf. A. J. Bull,

The pattern of a contracting earth, Geolog. Mag. lxix, pp. 73-75, 1932; A. E. B.

de Chancourtois, <^.R. lix, p. 348, 1903.



CHAPTER VIII

THE FORMS OF TISSUES OR CELL-AGGREGATES {continued)

The problems which we have been considering, and especially that

of the bee's cell, belong to a class of " isoperimetrical " problems,

which, deal with figures whose surface is a minimum for a definite

content or volume. Such problems soon become difficult*, but we

may find many easy examples which lead us towards the explanation

of biological phenomena; and the particular subject which we shall

find most easy of approach is that of the division, in definite pro-

portions, of some definite portion of space, by a partition-wall of

minimal area. The theoretical principles so arrived at we shall then

attempt to apply, after the manner of Berthold and Errera, to the

biological phenomena of cell-division.

This investigation may be approached in two ways: by con-

sidering the partitioning off from some given space or area of one-half

(or some other fraction) of its content; or again, by dealing with the

partitions necessary for the breaking up of a given space into a

definite numbet of compartments.

If We begin with the simple case of a cubical cell, it is obvious that,

to divide it into two halves, the smallest partition-wall is one which

runs parallel to, and midway between, two of its opposite sides.

If we call a the length of one of the edges of the cube, then a^ is the

area, ahke of one of its sides and of the partition which 'we have

interposed parallel thereto. But if we now consider the bisected

cube, and wish to divide the one-half of it again, it is obvious that

another partition parallel to the first, so far from being the smallest

possible, is twice the size of a cross-partition perpendicular to it;

for the area of this new partition is a x a/2. And again, for a

third bisection, our next partition must be perpendicular to the other

two, and is obviously a Httle scj^uare, with an area of (|a)2 = ^a^.

* Minkowski, and others have shewn how hard it is, for instance, to prove the

seemingly obvious proposition that the sphere, of all figures, has the greatest volume
for a given surface; cf. (e.g.) T. Bonneson, Les problemes des isoperimetres et des

iseplphanes, Paris, 1929. For a historical account of this class of problems, see

G. Enestrom, in Bibl. Math. 1888.
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From this we may draw the simple rule that, for a rectangular

body or parallelepiped to be bisected by means of a partition of

minimal area, (1) the partition must cut across the longest axis of

the figure; and (2) in successive bisections, each partition must run.

at right angles to its immediate predecessor.

X

/\
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and conditions. This latter condition, of asymmetry of field, is

frequent in segmenting eggs*, and it then covers or includes the

principle upon which Balfour laid stress as leading to "unequal" or

to "partial" segmentation of the egg—viz, the unequal or asym-

metrical distribution of protoplasm and of food-yolk.

The second rule, which also has its exceptions, is true in a large

number of cases, and owes its vahdity, as we may judge from the

illustration of the repeatedly bisected cube, to the guiding principle

of minimal areas. It is in short subordinate to a much more

important and fundamental rule, due not to Sachs but to Errera;

that (3) the incipient partition-wall of a dividing cell tends to be

such that its area is the least possible by which the given space-content

can be enclosed.

Let us return to the case of our cube, and suppose that, instead

of bisecting it, we desire to shut off some small portion only of its

volume. It is found in the course of experiments upon soap-films,

that if we try to bring a partition-film too near to one side of a

cubical (or rectangular) space it becomes unstable, and is then easily

shifted to a new position in which it constitutes a curved cylindrical

wall cutting oif one corner of the cube. It still meets the sides of

the cube at right angles (for reasons which we have already con-

sidered); and, as we may see from the symmetry of the case, it

constitutes one-quarter of a cylinder. Our plane transverse parti-

tion had always the same area, wherever it was placed, viz. a^\

and it is obvious that a cylindrical wall, if it cut oif a small corner,

may be much less than this. We want, accordingly, to determine

what volume might be partitioned oif with equal economy of wall-

space in one way as the other, that is to say, what area of cyhndrical

* M. Robert {loc. cit. p. 305) has compiled a long list of cages among the molluscs

and the worms, where the initial segmentation of the egg proceeds by equal or

unequal division. The two cases are about equally numerous. But like most
other writers of his time, he would ascribe this equality or inequality rather to

a provision for the future than to a direct effect of immediate physical causation

:

"II semble assez probable, comme on I'a dit souvent, que la plus grande taille

d'un blastomere est liee a I'importance et au developpement precoce des parties

du corps qui doivent en naitre : il y aurait la une sorte de reflet des stades posterieures

du developpement sur les premieres phenomenes, ce que M. Ray Lankester appelle

precocious segregation. II faut avouer pourtant qu'on est parfois assez embarrasse

pour assigner une cause a pareilles differences."
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wall would be neither more nor less than the area a^. The calculation

is easy.

The surface-area of a cylinder of length a is 27rr . a, and that

of our quarter-cylinder is, therefore, a.7Trl2; and this being, by

hypothesis, = a^, we have a = 7rr/2, or r = 2a/7r.

The volmne of a cyhnder of length a is anr^, and that of our

quarter-cyhnder is a . Trr^/i, which (by substituting the value of r)

is equal to a^JTi^

Now precisely this same volume is, obviously, shut off by a

transverse partition of area a^ if the third side of the rectangular

space be equal to a/n; and this fraction,

if we take a = 1, is equal to 0-318... , or

rather less than one-third. And, as we

have just seen, the radius, or side, of

the corresponding quarter-cylinder will

be twice that fraction, or equal to 0-636

times the side of the cubical cell.

If then, in the process of division of

a cubical cell, it so divide that the two

portions be not equal in volume but

that one portion be anything less than

about three-tenths of the whole or three-

sevenths of the other portion, there will be a tendency for the cell

to divide, not by means of a plane transverse partition, but by means

of a curved, cylindrical wall cutting off one corner of the original

cell; and the part so cut off will be one-quarter of a cylinder.

By a similar calculation we can shew that a spherical wall, cutting

oiF one soHd angle of the cube and constituting an octant of a sphere,

would likewise be of less area than a plane partition as soon as the

volume to be enclosed was not greater than about one-quarter of

the original cell*. But while both the cyhndrical wall and the

Fig. 220.

* The principle is well illustrated in an experiment of Sir David Brewster's

{Trans. R.S.E. xxv, p. Ill, 1869). A soap-film is drawn over the rim of a wine-

glass, and then covered by a watch-glass. The film is inclined or shaken till it

becomes attached to the glass covering, and it then immediately changes place,

leaving its transverse position to take up that of a spherical segment extending

from one side of the wine-glass to its cover, and so enclosing the same volume of

air as formerly but with a great economy of surface, precisely as in the case of our

spherical partition cutting oflF one corner of a cube.
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spherical wall would be of less area than the plane transverse

partition after that Hmit (of one-quarter volume) was passed, the

cylindrical would still be the better of the two up to a further hmit.

It is only when the volume to be partitioned off is no greater than
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always equal to a^, or =1. If one-half of the cube have to be cut off, this

plane transverse partition is much the best, for we see by the diagram that a

cylindrical partition cutting off an equal volume would have an area about

25 per cent, and a spherical partition would have an area about 50 per cent,

greater. The point A in the diagram corresponds to the point where the

cylindrical partition would begin to have an advantage over the plane, thati i

to say (as we have seen) when the fraction to be cut off is about one-third,

or 0-318 of the whole. In like manner, at B the spherical octant begins to

have an advantage over the plane; and it is not till we reach the point C
that the spherical octant becomes of less area than the quarter-cylinder.

The case we have dealt with is of little practical importance to

the biologist, because the cases in which a cubical, or rectangular,

cell divides unequally and unsymmetrically are apparently few ; but

we can find, as Berthold pointed out, a few examples, as in the hairs

within the reproductive " conceptacles " of

certain Fuci (Sphacelaria, etc.. Fig. 222), or

in the "paraphyses" of mosses (Fig. 226).

But it is of great theoretical importance : as

serving to introduce us to a large class of

cases in which, under the guiding principle

of minimal areas, the shape and relative

dimensions of the original cavity lead to

cell-division in very definite and sometimes

unexpected ways. It is not easy, nor indeed possible, to give a general

account of these cases, for the limiting conditions are somewhat,

complex and the mathematical treatment soon becomes hard. But

it is easy to comprehend a few simple cases, which carry us a good

long way; and which will go far to persuade the student that, in

other cases which we cannot fully master-, the same guiding principle

is at the root of the matter.

The bisection of a solid (or its subdivision in other definite propor-

tions) soon leads us into a geometry which, if not necessarily difficult,

is apt to be unfamiliar ; ^ but in such problems we can go some way,

and often far enough for our purpose, if we merely consider the

plane geometry of a side or section of our figure. For instance, in

the case of the cube which we have just been considering, and in

the case of the plane and cyhndrical partitions by which it has been

divided, it is obvious, since these two partitions extend symmetrically

from top to bottom of our cube, that we need only have considered
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the manner in which they subdivide the base of the cube; in short

the problem of the sohd, up to a certain point, is contained in our

plane diagram of Fig. 221. And when our particular soUd is a

solid of revolution^ then it is equally obvious that a study of its

plane of symmetry (that is to say any plane passing through its

axis of rotation) gives us the solution of the whole problem. The
right cone is a case in point, for here the investigation of its modes
of symmetrical subdivision is completely met by an examination

of the isosceles triangle which constitutes its plane of symmetry.

The bisection of an isosceles triangle by a Hne which shall be the

shortest possible is an easy problem; for it is obvious that, if the

triangle be low, a vertical partition will be shortest; if it be high,

a horizontal one ; if it be equilateral, the partition may run parallel

to any side; and if it be right-angled, the partition may bisect the

right angle or run parallel to either side equally well.

Let ABC be an isosceles triangle of which A is the apex ; it may
be shewn that, for its shortest Hne of bisection, we are limited to

three cases: viz. to a vertical line AD, bisecting the angle at^ and

the side BC\ to a transverse line parallel to the base BC\ or to an

obUque Hne paraUel to AB or to AC. The lengths of these partition

Hues follow at once from the magnitudes of the angles of our triangle.

We know, to begin with, since the areas of similar figures vary as

the squares of their linear dimensions, that, in order to bisect the

area, a line parallel to one side of our triangle must always have

a length equal to 1/a/2 of that side. If then, we take our base,

BC, in all cases of a length = 2, the transverse partition, EF, drawn

parallel to it wiU always have a length equal to 2/V2, or = a/2.

The vertical partition, AD, since BD = 1, will always equal tan^;

and the oblique partition, GH, being equal to ABjV^, = l/'v/2 cos j8.

If then we call our vertical, transverse and obUque partitions F,

T, and 0, we have F = tan j8; T == a/2; and - 1/V2 cos j8, or

V:T:0 = tan^/V2 : 1 : 1/2 cos^S.

And, working out these equations for various values of j8, we soon

see that the vertical partition (F) is the least of the three until

P = 45°, at which limit F and are each equal to 1/V2 = 0-707

;

that then becomes the least of the three, and remains so until
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^ = 60"", when cos ^ = 0-5, and 0= T; after which T (whose value

always = 1) is the shortest of the three partitions. And, as we have

80° 90°10° 20° 30° 40" 50° 60" 70'

Basal angle of triangle

Fig. 224. Comparative length of the partitions, transverse, oblique

or vertical, bisecting an isosceles triangle.

seen, these results are at once apphcable, not only to the case of

the plane triangle, but also to that of the conical or pyramidal

cell.
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In like manner, if we have a spheroidal body less than a hemi-

sphere, such for instance as a low, watchglass-shaped cell (Fig.

225, A), it is obvious that the smallest partition by which we can

divide it into two halves is (as in our flattened disc) a median

vertical one; jand likewise, the hemisphere itself can be bisected

by no smaller partition meeting the walls at right angles than that

median one which divides it into two similar quadrants of a sphere.

But if we produce our hemisphere into a more elevated conical

body, or into a cylinder with spherical cap, there comes a point

where a transverse horizontal partition will bisect the figure with

less area of partition-wall than a median vertical one (C). And

furthermore, there will be an intermediate region, a region where

height and base have their relative dimensions nearly equal (as

Fig. 225.

in B), where an oblique partition will be better than either 'the

vertical or the transverse ; though here the analogy of our triangle

does not suffice to give us the precise hmiting values.

We need not examine these hmitations in detail, but we must

look at the curvatures which accompany the several conditions. We
have seen that a film tends to set itself at equal angles to the surface

which it meets, and therefore, when that surface is a sohd, to meet

it (or its tangent) at right angles. Our vertical partition is, there-

fore, a plane surface, everywhere normal to the original cell-walls.

But in the taller, conical cell .with transverse partition, the latter

still meets the opposite sides of the cell at right angles, and it

follows that it must itself be curved; moreover, since the tension,

and therefore the curvature, of the partition is everywhere uniform,

it follows that its curved surface must be a portion of a sphere,

concave towards the apex of the original cell. In the intermediate

case, where we have an obhque partition meeting both the base

and the curved sides of the mother-cell, the contact must still be
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everywhere at right angles: provided we continue to suppose that

the walls of the mother-cell (hke those of our diagrammatic /cube)

have become practically rigid before the partition appears, and are

therefore not affected and deformed by the tension of the latter.

In such a case, and especially when the cell is elliptical in cross-

section or still more comphcated in form, the partition may have

to assume a complex curvature in order to remain a surface of

minimal area.

Fig. 226. S-shaped partitions: A, Taonia atomaria (after Rcinke); B, paraphya

of Fucus; C, rhizoids of moss; D, paraphyses oi Polytrichmn.

While in very many cases the partitions (like the walls of the

original cell) will be either plane or spherical, a more complex

curvature will sometimes be alssumed. It will be apt to occur when

the mother-cell is irregular in shape, and one particular case of

such asymmetry will be that in which (as in Fig. 227) the cell has

begun to branch before division takes place. And again, whenever

we have a marked internal asymmetry of the cell, leading to irregular

and anomalous modes of division, in which the cell is not necessarily

divided into two equal halves and in which the partition-wall may
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assume an oblique position, then equally anomalous curvatures will

tend to make their appearance*.

Suppose an oblong cell to divide by means of an obhque partition

(as may happen through various causes or conditions of asymmetry),

such a partition will still have a tendency to set itself at right angles

to the rigid walls of the mother-cell : and it follows that our oblique

partition, throughout its whole extent, will assume the form of a

complex, saddle-shaped or anticlastic surface.

Many such partitions of complex or double curvature exist, but

they are not always easy of recognition, nor do they often appear

in a terminal cell. We may see them in the roots (or rhizoids) of

t

"

A B C D

Fig. 227. Diagrammatic explanation of S-shaped partition. ,

mosses, especially at the point of development of a new rootlet

(Fig. 226, C); and again among mosses, in the "paraphyses" of the

male plants (e.g. in Polytrichum), we find more or less similar

partitions (D). They are frequent also among Fuci, as in the hairs

or paraphyses of Fucus itself (B). In Taonia atofnaria, as figured

in Reinke's memoir on the Dictyotaceae of the Gulf of Naples |,

we see, in like manner, oblique partitions, which on more careful

examination are seen to be curves of double curvature (Fig. 226, A).

The physical cause and origin of these S-shaped partitions is

somewhat obscure, but we may attempt a tentative explanation.

When we assert a tendency for the cell to divide transversely to

its long axis, we are not only stating empirically that the partition

* Cf Wildeman, Attache des cloisons, etc., pis. 1, 2.

f Nova Acta K. Leop. Akad. xi, 1, pi. iv.
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tends to appear in a small, rather than a large cross-section of the

cell: but we are also ascribing to the cell a longitudinal polarity

(Fig. 227, A), and imphcitly asserting that it tends to divide (just

as the segmenting egg does), by a partition transverse to its polar

axis. Such a polarity may conceivably be due to a chemical

asymmetry, or anisotropy, such as we have learned of (from

Macallum's experiments) in our chapter on Adsorption. Now if the

chemical concentration, on which this anisotropy or polarity (by

hypothesis) depends, be unsymmetrical, one of its poles being as it

were deflected to one side where a little branch or bud is being

(or about to be) given off—all in precise accordance with the

adsorption phenomena described on p. 4607-then oiir "polar axis"

would necessaiily be a curved axis, and the partition, being con-

strained (again ex hypothesi) to arise transversely to the polar axis,

would lie obHquely to the apparent axis of the cell (as in B or C).

And if the oblique partition be so situated that it has to meet the

opposite walls (as in C), then, in order to do so symmetrically (i.e.

either perpendicularly, as when the cell-wall is already solidified, or

at least at equal angles on either side), it is evident that the partition,

in its course from one side of the cell to the other, must necessarily

assume a more or less S-shaped curvature (D).

The complex curvature of the partition-walls in such cases as

these m^y be illustrated by the following experiment. Set two
plates of glass (as in Fig. 228) in a wire .

frame, so that they may he parallel or / /
at any angle to one another; and dip ^——
the whole thing in soap-solution, so that

a sheet of film is formed between the

two plates and is framed by the two /
wires which carry them. The film is, ^

of course, a surface of minimal area ; its
^^'

mean curva,ture is constant everywhere, and (since the film is an

open surface with identical pressure on both sides) the mean curvature

is everywhere nil. A related condition is that the film must meet

its solid framework, glass or wire, everywhere at right angles or

*' orthogonally"; and this last constraint leads to curvatures of

extreme complexity, which continually vary as we rotate one plate

on the plane of the other.
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As a matter of fact, while we have abundant simple illustrations

of the principles which we have now begun to study, apparent

exceptions to this simplicity, due to an asymmetry of the cell itself

or of the system of which the single cell is a part, are by no means

rare. We know that in cambium-cells division often takes place

parallel to the long axis of the cell, though a partition of much less

area would suffice if it were set cross-ways: and it is only when a

considerable disproportion has been set up between the length and

breadth of the cell that the balance is in part redressed by the-

appearance of a transverse partition. It was owing to such excep-

tions that Berthold was led to quahfy and even to depreciate the

importance of the law of minimal areas as a factor in cell-division,

after he himself had done so much to demonstrate and elucidate

it*. He was deeply and rightly impressed by the fact that other

forces besides surface tension, both external and internal to the cell,

play their part in determining its partitions, and that the answer

to our problem is not to be given in a word. Hpw fundamentally

important it is, however, in spite of all conflicting tendencies and

apparent exceptions, we shall see better and better as we proceed.

But let us leave the exceptions and consider the simpler and

more general phenomena. And let us leave the case of the cubical,

quadrangular or cylindrical cell, and examine that of a spherical

cell and of its successive divisions, or the still simpler case of a

circular, discoidal cell.

When we attempt to investigate mathematically the place and

form of a partition of minimal area, it is plain that we shall be

dealing with comparatively simple cases wherever even one dimen-

sion of the cell is much less than the other two. Where two

dimensions are.small compared with the third, as in a thin cylindrical

filament like that of Spirogyra, we have the problem at its simplest

;

for it is obvious, then, that the partition must lie transversely to

the long axis of the thread. But even where one dimension only

is relatively small, as for instance in a flattened plate, our problem

* Cf. Protoplasmamechanik, p. 229: "Insofern liegen also die Verhaltnisse hier

wesentlich anders als bei der Zertheilung hohler Korperformen durclj fliissige

Lamellen. Wenn die Membran bei der Zelltheilung die von dem Prinzip der

kleinsten Flachen geforderte Lage und Kriimmung annimmt, so werden wit den

Grund dafiir in andrer Weise abzuleiten haben."
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is so far simplified that we see at once that the partition cannot be

parallel to the extended plane, but most cut the cell, somehow, at

right angles to that plane. In short, the problem of dividing a

much flattened sohd becomes identical with that of dividing a

simple surface of the same form.

There are a number of small algae growing in the form of small

flattened discs, and consisting (for a time at any rate) of but a

single layer of cells, which, as Berthold shewed, exempUfy this

comparatively simple problem;* and we shall find presently that

it is admirably illustrated in the cell-divisions which occur in the

egg of a frog or a sea-urchin, when it is flattened out under artificial

pressure. These same httle algae which serve to exempHfy the

partitioning of a disc also illustrate, now

and then, a curious feature of its contour.

Such a small^ green alga as Castagna

(Fig. 229) shews, and many Desmids

shew just as well, a sinuous border

running out into rounded crenations or

lobes. This is a surface-tension phe-

nomenon. A little milk poured over an

apple-pie gives a homely illustration of Fig. .229. Castagna pdycarpa.

the same sinuous outlines; a drop on a ^^^^^^^^ZlT^
^''''"^ ^^^"*''

greasy plate spreads in the same uneven

way, and does so indeed unless the utmost care be taken to ensure

absolute cleanhness and surface equihbrium*.

Fig. 230 1 represents younger and older discs of the little alga

Erythrotrichia discigera; and it will be seen that in all stages save

the first we have an arrangement of cell-partitions which looks

somewhat complex, but into which we must attempt to throw some

light and order. Starting with the original single, and flattened,

cell, we have no difficulty with the first two cell-divisions; for we

know that no bisecting partitions can possibly be shorter than the

two diameters, which divide the cell into halves and into quarters.

We have only to remember that, for the sum total of partitions to

* Cf. Quincke's " Ausbreitungserscheinungen," in Poggendorff^s Annalen, cxxxix,

p. 37, 1870; also Tomlinson's papers in Phil. Mag. vm-xxxix; and Van der

Mensbrugghe, Mem. Cour. de VAcad. R. Belgique, xxxiv, 1870; xxxvii, 1873.

t From Berthold's Monograph of the Naples Bangiaceae, 1882.
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be a minimum, three only must meet in a point; and therefore,

the four quadrantal walls must shift a Uttle, producing the usual

little median partition, or cross-furrow, instead of one common

central point of junction. This intermediate partition, however,

Fig. 230. Development of Erythrotrichia. After Berthold.

will be small, and to all intents and purposes we may deal with the

case as though we had now to do with four equal cells, each one

of them a perfect quadrant; so our piroblem is, to find the shortest

line which shall divide the quadrant of a circle into two halves of

V
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outer border; in oth^r words, our partition may (B) cut both radial

walls, or (C) may cut one radial wall and the periphery. These are

the two methods of division which Sachs called, respectively,

(B) periclinal, and (C) anticlinal*. We may either treat the wa&s

of the dividing quadrant as already sohdified, or at least as having

a tension compared with which that of the incipient partition film

is inconsiderable; in either case the new partition must meet the

old wall, on either side, at right angles, and (its own tension and

curvature being everywhere uniform) must take the form of a

circular arc.

jgX
M

Fig. 232.

We find that a flattened cell which is approximately a quadrant

of a circle invariably divides ^fter the manner of Fig. 231, C, that

is to say, by an approximately circular, anticlinal wall, and this

we now recognise in the eight-celled stage of Eryihrotrichia (Fig.

230) ; let us then consider that Nature has solved our problem, and

let us work out the actual geometrio conditions.

Let the quadrant OAB (in Fig. 232) be divided into two parts

of equal area, by the circular arc MP. It is required to determine

* There is, I think, some ambiguity or disagreement among botanists as to the

use of this latter term : the sense in which I am using it, viz. for any partition

which meets the outer or peripheral wall at right angles (the strictly radial partition

being for the present excluded), is, however, clear.
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(i) the position of P upon the arc of the quadrant, that is to say

the angle BOP\ (2) the position of the point M on the side OA;

and (3) the length of the arc MP in terms of a radius of the quadrant.

(1) Draw 0P\ also PC a tangent, meeting OA in C; and PN

,

perpendicular to OA. Let us call a a radius; and 6 the angle at C,

which is equal to OPN , or POB. Then

CP = a cot ^; PN = a cos ^; NO = CP cos 6 = a . cos^ ^/sin 6.

The area of the portion PMN

= iCP^ d - iPN . NO
= Ja2 cot2 d-iacosd .a cos^ ^/sin 6

= ia^ (d cot2 d - cos3 e-lsin 6).

And the area of the portion PNA

= ia^ (77/2 -6)- \0N . NP
= U^ (77/2 - (9) - Ja sin ^ . a cos ^

= \a^ (7r/2 - ^ - sin ^ . cos d).

Therefore the area of the whole portion PMA

= a^l2 (77/2 - e + d cot2 d - cos3 ^/sin ^ - sin ^ . cos 9)

= a2/2 (77/2 - ^ + ^ cot2 d - cot <9),

and also, by hypothesis, = J . area of the quadrant, = Tra'^/S.

Hence 6 is defined by the equation

072 (77/2 - e+ d cot2 e - cot d) = 77a2/8,

or 77/4:- 6+ d cot2 ^ - cot ^ = 0.

We may solve this equation by constructing a table (of which

the following is a small portion) for various values of d.

d
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34° 3^1'. That is to say, a quadrant of a circle is bisected by a

circular arc cutting the side and the periphery of the quadrant

at right angles, when the arc is such as to include (90° — 34° 38'),

i.e. 55° 22' of the quadrantal arc. This determination of ours is

practically identical with that which Berthold arrived at by a

rough and ready method, without the use of mathematics. He
simply tried various w^ays of dividing a quadrant of paper by means

of a circular arc, and went on doing so till he got the weights of

his two pieces of paper approximately equal. The angle, as he

thus determined it, was 34-6°, or say 34° 36'.

(2) The position of M on the side of the quadrant OA is given

by the equation OM = a cosec 6 — a cot 6 ; the value oi which

expression, for the angle which we have just discovered, is 0-3028.

That is to say, the radius (or side) of the quadrant will be divided

by the new partition into two parts, in the proportions, nearly, of

three to seven.

(3) The length of the arc MP is equal to ad cot d; and the

value of this for the given angle is 0-8751. This is as much as to

say that the curved partition-wall which we ' are considering is

shorter than a radial partition in the proportion of 8| to 10, or

seven-eighths, almost exactly.

But we must also compare the length of this curved antichnal

partition-wall (MP) with that of the concentric, or perichnal, one

{RS, Fig. 233) by which the quadrant might also

be bisected. The length of this partition is

obviously equal to the arc of the quadrant (i.e.

the peripheral wall of the cell) divided by V2;
or, in terms of the radius, = 77/2 a/2 = 1-111.

So that, not only is the anticlinal partition (such

as we actually find in nature) notably the best,

but the periclinal one, when it comes to dividing

an entire quadrant, is very considerably larger even than a radial

partition.

The two cells into which our original quadrant is now divided

are equal in volume, but of very different shapes; the one is a

triangle (MAP) with circular arcs for two of its sides, and the other

is a four-sided figure (MOBP), which we may call approximately

oblong. How will they continue to divide? We cannot say as
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yet how the triangular portion ought to divide; but it is obvious

that the least possible partition-wall which shall bisect the other

must run across the long axis of the oblong, that is to say periclihally.

This is precisely what tends actually to take place. In the following

diagrams (Fig. 234) of a frog's egg dividing under pressure, that

is to say when reduced to the form of a flattened plate, we see,

firstly (A), the division into four quadrants (by the partitions L 2);

secondly (B), the division of each quadrant by means of an anti-

clinal circular arc (3, 3), cutting the peripheral wall of the quaarant

approximately in the proportions of three to seven; and thirdly

3ABO
Fig. 234. Segmentation of frog's egg, under artificial compression.

After Roux.

(C), we see that of the eight cells (four triangular and four oblong)

into which the whole egg is now divided, the four which we have

called oblong now proceed to divide by partitions transverse to

their long axes, or roughly parallel to' the periphery of the egg.

The question how the other, or triangular, portion of the divided

quadrant will next divide leads us to a well-defined problem which

is only a shght extension, making allowance for the circular arcs,

of that elementary problem of the triangle we have already con-

sidered. We know now that an entire quadrant (in order that its

bisecting wall shall have the least possible area) must divide by

means of an antichnal partition, but how about any smaller sectors

of circles? It is obvious in the case of a small prismatic sector,

such as that shewn in Fig. 235, that a periclinal partition is the

least by which we can bisect the cell; we want, accordingly, to

know the limits below which the periclinal partition is always the
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best, and above which the anticHnal arc has the advantage, as in

the case of the whole quadrant.

This may be easily determined; for the preceding investigation

is a perfectly general one, and the results hold good for sectors of

any other arc, as well as for the quadrant, or arc of 90°. That is

to* say, the length of the partition-wall MP is always determined

by the angle 9, according to our equation MP -^ ad cot 6; and the

angle 6 has a definite relation to a, the angle of arc.

Fig. 235.

Moreover, in the case of the periclinal boundary, RS (Fig. 233)

(or ab, Fig. 235), we know that, if it bisects the cell,

RS = a. a/V2.

Accordingly, the arc RS will be just equal to the arc MP when

^ cot ^ = a/v/2.

When ^ cot ^> a/V2, or MP < RS,

then division will take place as in RS, or perichnally.

When 6* cot ^ < a/V2, or MP > RS,

then division will take place as in MP, or anticlinally.

In the accompanying diagram (Fig. 236), I have plotted the

various magnitudes with which we are concerned, in order to

exhibit the several limiting values. Here we see, in the first place,

the curve marked a, which shews on the (left-hand) vertical scale

the various possible magnitudes of that angle (viz. the angle of arc

of the whole sector which we wish to divide), and on the horizontal

scale the corresponding values of 6, or the angle which determines

the point on the periphery where it is cut by the partition-wall.
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MP. Two limiting cases are to be noticed here: (1) at 90° (point

A in diagram), because we are at present only dealing with arcs

no greater than a quadrant; and (2), the point (B) where the angle 6

Fig. 23G.

comes to equal the angle a, for after that point the construction

becomes impossible, since an anticlinal bisecting partition-wall

would be partly outside the cell. The only partition which, after

that point, can possibly exist is a periclinal one; and this point,
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as our diagram shews us, occurs when the two angles (a and 9) are

both rather under 52°.

Next I have plotted on the same diagram, and in relation to

the same scale of angles, the corresponding lengths of the two

partitions, viz. RS and MP, their lengths being expressed (on the

right-hand side of the diagram) in terms of the radius of the circle

(a), that is to say the side wall, OA, of our cell.

The hmiting values here are (1), C, C[, where the angle of arc

is 90°, and where, as we have already seen, the two partition-walls

have the relative magnitudes of MP : J?*S = 0-875 : Mil: (2) the

point D, where RS equals unity, that is to say where the periclinal

partition has the same length as a radial one; this occurs when

a is rather under 82° (cf. the points D, D'): (3) the point E, where

RS and MP intersect, that is to say the point at which the two

partitions, periclinal and anticlinal, are of the same magnitude;

this is the case, according to our diagram, when the angle of arc

is just over 62J°. We see from this that what we have called an

antichnal partition, as MP, is only Ukely to occur in a triangular

or prismatic cell whose angle of arc hes between 90° and 62|°; in

all narrower or more tapering cells the periclinal partition will be

of less area, and will therefore be more and more likely to occur.

The case (F) where the angle a is just 60° is of some interest.

Here, owing to the curvature of the peripheral border, and the

consequent fact that the peripheral angles are somewhat greater

than the apical angle a, the periclinal partition has a very slight

and almost imperceptible advantage over the anticlinal, the relative

proportions being about as MP\ RSwO'lZ.O-n. But if the

triangle be a plane equiangular triangle, bounded by circular arcs,

then we see that there is no longer any distinction at all between

our two partitions; MP and RS are now identical.

On the same diagram, I have inserted the curve for values of

cosec ^ — cot ^ = OM, that is to say the distances from the centre,

along the side of the cell, of the starting-point (M) of the anticlinal

partition. The point C" represents its position in the case of a

quadrant, and shews it to be (as we have already said) about 3/10

of the length of the radius from the centre. If on the other hand

our cell be an equilateral triangle, then we have to read oif the

point on this curve corresponding to a -- 60°; and we find it at
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the point F'" (vertically under F), wbich tells us that the partition

now starts 45/100, or nearly halfway, along the radial wall.

The foregoing considerations carry us a long way in our investi-

gation of the simpler forms of cell-division. Strictly speaking they

are hmited to the case of flattened cells, in which we can treat the

problem as though we were partitioning a plane surface. But it is

obvious that, though they do not teach us the whole conformation

of the partition which divides a more comphcated solid into two

halves, yet, even in such a case they so far enlighten us as to tell

us the appearance presented in one plane of the actual solid. And,

as this is all that we see in a microscopic section, it follows that

the results we have arrived at will help us greatly in the interpreta-

tion of microscopic appearances, even in comparatively complex

cases of cell-division.

Let us now return to our quadrant cell (OAPB), which we have

found to be divided into a triangular and a quadrilateral portion,

as in Figs. 233 or 237 ; and let us _,

now suppose the whole system to

grow, in a uniform fashion, as a

prelude to further subdivision. The

whole quadrant, growing uniformly

(or with equal radial increments),

will still remain a quadrant, and it

is obvious, therefore, that for every

new increment of size, more will be

added to the margin of its triangular

portion than to the narrower margin

of the quadrilateral; and the in-

. Ml 1 • ^' ^ Fig- 237.
crements will be m proportion to

the angles of arc, viz. 55° 22' :
34° 38', or as 0-96 : 0-60, i.e. as 8 : 5.

Accordingly, if we may assume (and the assumption is a very

plausible one), that, just as the quadrant itself divided into two

halves after it got to a certain size, so each of its two halves will

reach the same size before again dividing, it is obvious that the

triangular portion will be doubled in size, and therefore ready to

divide, a considerable time before the quadrilateral part. To work

out the problem in detail would lead us into troublesome mathe-
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matics; but if we simply assume that the increments are propor-

tional to the increasing radii of the circle, we have the following

equations

:

Call the triangular cell T, and the quadrilateral Q (Fig. 237);

let the radius, OA, of the original quadrantal cell = a = 1; and let

the increment which is required to add on a portion equal to T
(such as PP'A'A) be called x, and let that required, similarly, for

the doubhng of Q be called x'

.

Then we see that the area of the original quadrant

= T + Q = Itto" = 0-7854a2,

while the area of T =Q = 0-3927a2.

The area of the enlarged sector, P'OA',

= {a + x)^ X (55° 22') ^ 2 = 0-4831 (a + x)^,

and the area OPA

= a^x (55° 22') -^ 2 = 0-4831a2.

Therefore the area of the added portion, T\

= 0-4831 {{a + x)^ - a^}.

And this, by hypothesis,

= T = 0-3927a2.

We get, accordingly, since a = I,

x^ + 2x= 0-3927/0-4831 = 0-810,

and, solving,

x-{-l = Vrsi = 1-345, or x^ 0-345.

Working out x' in the same way, we arrive at the approximate

value, x' + 1 = 1-517.

This is as much as to say that, supposing each cell tends to

divide into two halves when (and not before) its original size is

doubled, then, in our flattened disc, the triangular cell T will tend

to divide ,when the radius of the disc has increased by about a

third (from 1 to 1-345), but the quadrilateral cell, Q, will not tend

to divide until the Hnear dimensions of the disc have increased by

fully a half (from 1 to 1-517).
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The case here illustrated is of no small importance. For it shews

us that a uniform and symmetrical growth of the organism (sym-

metrical, that is to say, under the limitations of a plane surface,

or plane section) by no means involves a uniform or symmetrical

growth of the individual cells, but may under certain conditions

actually lead to inequahty among these; and this phenomenon

(or to be quite candid, this hypothesis, which is due to Berthold)

is independent of any change or variation in surface tensions,

and is essentially different from that unequal segmentation (studied

by Balfour) to which we.have referred on p. 568.

After this fashion we might go on to consider the manner, and

the order of succession, in which subsequent cell-divisions should

tend to take place, as governed by the principle of minimal areas.

I

Fig. 238.

The calculations would grow more difficult, and the results •got

by simple methods would grow less and less exact; at the same

time some of the results would be of great interest, and well worth

our while to obtain. For instance, the precise manner in which our

triangular cell, T, would next divide would be interesting to know,

and a general solution of this problem is certainly troublesome to

calculate. But in this particular case we see that the width of the

triangular cell near P (Fig. 238) is so obviously less than that near

either of the other two angles, that a circular arc cutting off that

angle is bound to be the shortest possible bisecting line; and that,

in short, our triangular cell will tend to subdivide, just hke the

original quadrant, into a triangular and a quadrilateral portion.

But the case will be different next time, because in this new

triangle,' PRQ, the least width is near the innermost angle, that

at Q\ and the bisecting circular arc will therefore be opposite to Q,

or (approximately) parallel to PR. The importance of this fact is

at once evident; for it means to say that there comes a time
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when, whether by the division of triangles or of quadrilaterals, we

find only quadrilateral cells adjoining the periphery of our circular

disc. In the subsequent division of these quadrilaterals, the parti-

tions will arise transversely to their long axes, that is to say, radially

(as U, V) ; and we shall consequently have a superficial or peripheral

layer of quadrilateral cells, with sides approximately parallel, that

is to say what we are accustomed to call an epidermis. And this

epidermis or superficial layer will be in clear contrast with the more

irregularly shaped cells, the products of triangles and quadrilaterals,

which make up the deeper, underlying layers of tissue.

In following out these theoretic principles, and others Hke to

them, in the actual division of living cells, we must bear in mind

certain conditions and qualifications. In the first place, the law

of minimal area and the other rules which we have arrived at are

not absolute but relative : they are Unks,. and very important links,

in a chain of physical causation ; they are always £tt work, but their

effects may be overridden and concealed by the operation of other

forces. Secondly, we must remember that, in most cases, the cell-

system which we have in view is constantly increasing in magnitude

by active growth; and by this means the form and also the propor-

tions of the cells are continually altering, of which phenomenon we

have already had an example. Thirdly, we must carefully remember

that, until our cell-walls become absolutely solid and rigid, they are

always apt to be modified in form owing to the tension of the

adjacent walls; and again, that so long as our partition films are

fluid or semifluid, their points and fines of contact with one another

may shift, like the shifting outlines of a system of soap-bubbles.

This is the physical cause of the movements frequently seen among
segmenting cells, like those to which Rauber called attention in

the segmenting ovum of the frog, and hke those more striking

movements or accommodations which give rise to a so-called

"spiral" type of segmentation.

Bearing in mind these considerations, let us see what our fla|itened

disc is hkely to look like, after a few successive Cell-divisions. In

Fig. 239 a, we have a diagrammatic representation of our disc, after

it has divided into four quadrants, and each quadrant into a

triangular and a quadrilateral portion; but as yet, this, figure has
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scarcely anything like the normal look of an aggregate of hving

cells. But let us go a little further, still hmiting ourselves to the

consideration of the eight-celled stage. Wherever one of our

radiating partitions meets the peripheral wall, there will (as we

know) be a mutual tension between the three convergent films,

which will tend to set their edges at equal angles to one another,

angles that is to say of 120°. In consequence of this, the outer wall

of each individual cell will (in this surface view of our disc) be an

arc of a circle of which we can determine the centre by the method

used on p. 485; and, furthermore, the narrower cells, that is to say

the quadrilaterals, will have this outer border somewhat more

Fig. 239. Diagram of flattened or discoid cell dividing into octants : to shew

gradual tendency towards a position of equilibrium.

curved than their broader neighbours. We arrive, then, at the

condition shewn in Fig. 239 b. Within the cell, also, wherever

wall meets wall, the angle of contact must tend, in every case, to

be an angle of 120°; in no case may more than three films (as seen

in section) meet in a point (c) ; and this condition, of the partitions

meeting three by three and at co-equal angles, will involve the

curvature of some, if not all, of the partitions (d) which to begin

with we treated as plane. To solve this problem in a general way

is no easy matter; but it is a problem which Nature solves in

every case where, as in the case we are considering, eight bubbles

or eight cells meet together in a plane or curved surface. An
approximate solution has been given in d; and it will at once be

recognised that this figure has vastly more resemblance to an
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aggregate of living cells than had the diagram of a, with whi«h we
began.

Just as we have constructed in this case a series of purely

diagrammatic or schematic figures, so will it be possible as a rule

to diagrammatise, with but little alteration, the complicated ap-

pearances presented by any ordinary aggregate of cells. The

accompanying httle figure (Fig. 240), of a germinating

spore of a Liverwort (Riccia), after a drawing of D. H.

Campbell's, scarcely needs further explanation: for it is

well-nigh a typical diagram of the method of space-

partitioning which we are now considering. The same is

equally true of any one of Hanstein's figures of the

hairs on a leaf-bud*, or Berthold's of the small discoid algae. Let

us look again at our figures of Erythrotrichia or Chaetopeltis from

Berthold's Monograph, and redraw some of the earher stages.

Ficr. 240.

Fig. 241. Embryo-stages of Chaetopeltis orbicularis. After Berthold.

In the following diagrams (Fig. 242) the new partitions, or those just

about to form, are in each case outhned ; and in the next succeeding

stage they are shewn after settling down into position, and after

exercising their respective tractions on the walls previously kid

down. It is clear, I think, that these four diagrammatic figures

represent all that is shewn in the first five stages drawn by Berthold

from the plant itself; ,but the correspondence cannot in this case

be precisely accurate, for the reason that Berthold's figures are

taken from different individuals, and so are not strictly and con-

secutively continuous. The last of the six drawings in Fig. 230 is

already too comphcated for diagrammatisation, that is to say it is

too comphcated for us to decipher with certainty the order of

appearance of the numerous partitions which it contains. But in

Fig. 243 I shew one more diagrammatic figure, of a disc which has

* Bot. Zeitung, xxvi, p. 11, xi, xii, 1868.
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divided, according to the" theoretical plan, into about sixty-four

cells; and making due allowance for the changes which mutual

tensions and tractions bring about, increasing in complexity with

each succeeding stage, we can see, even at this advanced and

"DC d

Fig. 242. Theoretical arrangement of successive partitions in a discoid cell;

for comparison with Figs. 230 and 241.

complicated stage, a very considerable resemblance between the

actual picture and the diagram which we have here constructed

in obedience to a few simple rules.

Fig. 243. Theoretical division of a discoid cell into sixty-four chambers: no

allowance being made for the mutual tractions of the cell-walls.

In like manner, in the annexed figures representing sections

through a young embryo of a moss, we have little difficulty in

discerning the successive stages which must have intervened between

the two stages shewn: so as to lead from the just divided or dividing

quadrants (a), to the stage (6) in which a well-marked epidermal
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layer surrounds an at first sight irregular agglomeration of "funda-

mental tissue".

In the last paragraph but one, I have spoken of the difficulty of

so arranging the meetmg-places of a number of cells that at each

junction only three cell-walls shall meet in a point, and all three

shall meet at equal angles of 120°. As a matter of fact, the problem

is soluble in a number of ways; that is to say, when we have a

number of cells enclosed in a common boundary, say eight as in

the case considered, there are various ways in which their walls

may meet internally, three by three, at equal angles; and these

differences will entail differences also in the curvature of the walls,

and consequently in the shape of the cells. The question is some-

a —^-------^ b

Fig. 244. Sections of embryo of a moss. After Kienitz-Gerlofif.

what complex ; it has been dealt with by Plateau, " and treated

mathematically by M. Van Rees*.

If within our boundary we have only three cells all meeting

internally, they must meet in a point; furthermore, they tend to

do so at equal angles of 120°, and there is an end of the matter.

If we have four cells, then, as we have already seen, the conditions

are satisfied by interposing a little intermediate wall, the two

extremities of which constitute the meeting-points of three cells

each, and the upper edge of which marks the "polar furrow."

In the case of five cells, we require two httle intermediate walls,

and two polar furrows; and we soon arrive at the rule that, for

n cells, we require ti — 3 Httle longitudinal partitions (and corre-

sponding polar furrows), connecting the triple junctions of the cells f

;

and these Httle walls, Hke all the rest within the system, tend to

* Cit. Plateau, Statique des Liquides, i, p. 358.

t There is an obvious analogy between this rule for the number of internal

partitions within a polygonal system, and Lamarle's rule for the number of "free

films " within a polyhedron. Vide supra, ^. b5Q.
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incline to one another at angles of 120°. Where we have only one

such wall (in the case of four cells), or only two (in the case

of five cells), there is no room for ambiguity. But where we have

three little connecting-walls, in the case of six cells, we can

arrange them in three different ways, as Plateau* found his six

3 4 5 "* 6 7 8 Cells'

etc.

Fig. 245. Various possible arrangements of intermediate positions,

in groups of 3, 4, 5, 6, 7 or 8 cells.

soap-films to do (Fig. 246). In the system of seven cells, the four

partitions can be arranged in four ways; and the five partitions

required in the case of eight cells can be arranged in no less than

Fig. 246..

twelve different waysf. It does not follow that these various

arrangements are all equally good; some are known to be more

stable than others, and some are hard to realise in actual experiment.

Examples of these various arrangements meet us at every turn,

in all sorts of partitioning, whether there be actual walls or mere

* Plateau experimented with a wire frame or "cage", in the form of a low

hexagonal prism. When this was plunged in soap-solution and withdrawn upright,

a vertical film occupied its six quadrangular. sides and nothing more. But when
it was drawn out sideways, six films starting from the six vertical edges met some-

how in the middle, and divided the hexagon into six cells. Moreover the partition-

films automatically solved the problem of meeting one another three-by-three, at

co-equal angles of 120°; and did so in more ways than one, which could be controlled

more or less, according to the manner and direction of lifting the cage.

t Plateau, on Van Rees's authority, says thirteen; but this is wrong—unless

he meant to include the case where one cell is wholly surrounded by the seven

others.
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rifts and cracks in a broken surface. The phenomeiion is in the

first instance mathematical, in the second physical ; and. the limited

number of possible arrangements appear and reappear in the most

diverse fields, and are capable of representation by the same

diagrams. We have seen in Fig. 196 how the cracks in drying mud
exhibit to perfection the polar furrow joining two three-way nodes,

which is the characteristic feature of the four-celled stage of a

segmenting egg.

The possible arrangements of the intermediate partitions becomes

a question of permutations. Let us call the flexure between two

consecutive furrows a or 6, according to its direction, right or left;

and let a triple conjunction be called c. Then the three possible

arrangements in a system of six cells are aa, ah, c; the four in a

system of seven cells are aaa, aab, aba, ac; and the twelve possible

arrangements in a system of eight cells are as follows*

:

a
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A B C D

aac 222 33 44 6 8-5

aca 222 33 44 6 8-5

acb
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serving (so to speak) as a base under all the rest. Then, calling

^3, ^4, etc., the number of three-sided and four-sided facets, we re-

classify our twelve configurations as follows

:

Polyhedral arrangements of eight cells (none of them ''insular'*)^

considered as part of a nine-faced polyhedron, whose ninth face

is octagonal.

^3 ^4 F, F,

I

ae

cd

b

i

h

f
gk

J

2 —
— 1

2 —
1 —

It is of interest, and of more than mere mathematical interest,

to know, not only that these possible arrangements are few, but

that they are strictly defined as to the number and form of the

respective faces. For we know that we are limited to three-way

corners or nodes; and, that being so, the fpllowing simple rule holds

for the facets—a rule which we shall use later on in still more

curious circumstances, and which may be easily verified in any line

of the foregoing table

:

ZF^ + 2F, + F,± O.F, -F,- 2F, - etc. = 12.

We may produce and illustrate all these configurations by blowing

bubbles in a dish and here (Fig. 247) is the complete series, up to

seven cells. They correspond precisely to the diagrams shewn on

p. 596, and their resemblance to embryological diagrams is only

cloaked a little by the circular outhne, the artificial boundary of

the system. Of the twelve eight-celled arrangements, four seem

unstable; these include the one case (i) where one cell of the eight

is in contact with all seven others, and the three cases (a, e, h)

where one is in contact with six others. The reason of this insta-

bility is, I imagine, that the internal angles cannot be angles of

120°, as equilibrium demands, unless the sides be curved, and

convex inwards; but this implies a combined pressure from without

on the large cell in the middle. While it adjusts its walls, then,

to the required angles, the large cell tends to close up, to lose hold
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of the boundary of the system, and to become an island-cell entirely

surrounded by the rest.

Fig. 247. Group of soap-bubbles, blown in Petri dishes, a, b, c, the normal

partitioning^ of groups of three, four or five cells or bubbles, d, the three ways

of partitioning a group of six cells or bubbles, e, three of the four ways of

partitioning a group of seven cells.

Among the published figures of embryonic stages and other cell

aggregates, we only discern the httle intermediate partitions in

cases where the investigator has drawn carefully just what lay

before him, without any preconceived notions as to radial or other

symmetry; but even in other cases we can often recognise,

without much difficulty, what the actual arrangement was whereby
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the cell-walls met together in equihbrium. I suspect that a leaning

towards Sachs's Rule, that one cell-wall tends to set itself at right

angles to another cell-wall (a rule whose strict hmitations and
narrow range of apphcation we have already considered) is responsible

for many inaccurate or incomplete representations of the mutual
arrangement of associated cells.

In the accompanying series of figures (Figs. 248-255) I have set

forth a few aggregates of eight cells, mostly from drawings of

Figj 248. Segmenting egg

oiTrochus. After Robert.

Fig. 249. Two views of segmenting egg of

Cynthia partita. After Conklin.

Fig. 250. [a) Section of apical cone of Salvinia. After Pringsheim *.

[h) Diagram of probable actual arrangement.

segmenting eggs. In some cases they shew clearly the manner in

which the cell-walls meet one another, always by three-way junctions,

at angles of about 120°, more or less, and always with the help of

five intermediate boundary walls within the eight-celled system;

in other cases I have added a slightly altered drawing, so as to shew,

with as Httle change as possible, the arrangement of boundaries

* This, like many similar figures, is manifestly drawn under the influence of

Sachs's theoretical views, or assumptions, regarding orthogonal trajectories, coaxial

circles, confocal ellipses, etc.
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which may have existed, and given rise to the appearance which the

observer drew. These drawings may be compared with the diagrams

on p. 598, in which the twelve possible arrangements of five inter-

mediate partitions for a system of eight cells have been set forth.

It will be seen that Robert-Tornow's figure of the segmenting egg

of Trochus (Fig. 248) clearly shews the cells grouped after the fashion

of l\ while Conkhn's figure of the ascidian egg (Cynthia) shews

equally clearly the arrangement e. A sea-urchin egg segmenting

Fig. 251. Egg of Pyrosoma.

After KorotneflF.

Fig. 252. Egg of Echinus, segmenting

under pressure. After Driesch.

Fig. 253. (a) Part of segmenting egg of Cephalopod (after Watase)

;

(6) probable actual arrangement.

under pressure, as figured by Driesch, scarcely wants any modifica-

tion of the drawing to appear in one case as type /, in another as g.

Turning to a botanical illustration, we have a figure of Pringsheim's

shewing an eight-celled stage in the apex of the young cone of

Salvinia: it is ill drawn, but may be referable, as in my diagram,

to type /; after it is figured a very different object, a segmenting

egg of the ascidian Pyrosoma, after Korotneif, also, but still more

doubtfully, referred to /. In the cuttlefish egg there is again some

uncertainty, but it is probably referable to g. Lastly, I have

copied from Roux a curious figure of the frog's egg, viewed from

the animal pole; it is obviously inaccurate, but may perhaps

belong to type e. Of type i, in which the five partitions form
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four re-entrant angles, that is to say a figure representing the five

sides of a hexagon, and one cell is in touch with seven others,

I have found no examples among pubhshed figures of segmenting

It is obvious enough, without more ado, that these phenomena

2 2

Fig. 254. (a) Egg oi Echinus; (6) do. oi Nereis, under pressure.

After Driesch.

a b

Fig. 255. (a) Eg^of frog, under pressure (after Roux);

(6) probable actual arrangement.

are in the strictest and completest way common to both plants and

animals, in which respect they tally with, and further extend, the

fundamental conclusions laid down by Schwann wellnigh a hundred

years ago, in his Mikroskopische Untersuthungen iiher die Ueberein-

stimmung in der Struktur und dem Wachsthwn der Thiere und

Pflanzen*.

But now that we have seen how a certain limited number of

types of eight-celled segmentation (or of arrangements of eight

cell-partitions) appear and reappear here and there throughout the

whole world of organisms, there still remains the very important

* Berlin, 1839; Sydenham Society, 1847.
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question, whether in each particular organisin the conditions are

such as to lead to one particular arrangement being predominant,

characteristic, or even invariable. In short, is a particular arrange-

ment of cell-partitions to be looked upon (as the published figures

of the embryologist are apt to suggest) as a specific character, or at

least a constant or normal character, of the particular organism?

The answer to this question is a direct negative, but it is only in

the work of the most careful and accurate observers that we find

it revealed. Rauber (whom, we have more than once had occasion

to quote) was one of those embryologists who recorded just what

he saw, without prejudice or preconception; as Boerhaave said

of Swammerdam, quod vidit id asseruit. Now Rauber has put on

record a considerable number of variations in the arrangement of

the first eight cells, which form a discoid surface about the dorsal

(or "animal") pole of the frog's egg. In a certain number of

cases these figures are identical with one another in type, identical

(that is to say) save for slight differences in magnitude, relative

proportions, or orientation. But I have selected (Fig. 256) six

diagrammatic figures, which are all essentially different, and these

diagrams seem to me to bear intrinsic evidence of their accuracy:

the curvatures of the partition-walls and the angles at which

they meet agree closely with the requirements of theory, and when

they depart from theoretical symmetry they do so only to the

slight extent which we might expect in a material system*.

Of these six illustrations, two are exceptional. In Fig. 256, 5,

we observe that one of the eight cells is insular, and surrounded

by the other seven. This is a perfectly natural condition, and

represents, like the rest, a phase of partial or conditional equili-

brium; but it is not included in the series we are now considering,

which is restricted to the case of eight cells extending outwards

to a common boundary. The condition shewn in Fig. 256, 6, is

* Such preconceptions as Rauber entertained were all in a direction likely to

lead him away from such phenomena as he has faithfully depicted. Rauber had

no idea whatsoever of the principles by which we are guided in this discussion,

nor does he introduce at all the analogy of surface-tension, or any other purely

physical concept; but he was deeply under the influence of Sachs's rule of

rectangular intersection, and he was accordingly disposed to look upon the

configuration represented above in Fig. 256, 6, as the most typical or primitive.

His articles on Thier und Pflanze, in Biol. Cbt. iv, 1881, tell us much about this and
other biological theories of his time.
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again peculiar, and is probably rare, but it is included under the

cases considered on p. 491, in which the cells are not in complete

fluid contact but are separated by Httle droplets of extraneous

matter; it needs no further comment. But the other four cases

are beautiful diagrams of space-partitioning, similar to those we

have just been considering, but so exquisitely clear that they need

no modification, no "touching-up," to exhibit their mathematical

regularity. It will easily be recognised that in Fig. 256, 1 and 2,

4 5 6

Fig. 256. Various modes of grouping of eight cells, at the dorsal or

epiblastic pole of the frog's egg. After Rauber.

we have the arrangements corresponding to I and g, and in 3 and 4 to c

in our table on p. 598. One thing stands out as very certain indeed:

that the elementary diagram of the frog's segmenting egg given in

textbooks of embryology—in which the cells are depicted as

uniformly symmetrical and more or less quadrangular bodies—is

entirely inaccurate and grossly misleading*.

* Cf. Rauber, Neue Grundlegungen z. K.Mer Zelle, Morphol. Jahrb. viii, p. 273,

1883 :
" leh betone noch, dass unter meinen Figuren diejenige gar nicht enthalten ist,

welche zum Typus der Batrachierfurchung gehorig am meisten bekannt ist Es
haben so ausgezeichnete Beobachter sie als vorhanden besehrieben, dass es mir

nicht einfallen kann, sie liberhaupt nicht anzuerkennen." See also 0. Hertwig,

Ueber den Werth d. erste Furchungszelle fiir die Organbildung des Embryo,
Arch. f. A7iat. XLin, 1893; here 0. Hertwig maintains that there is no such thing

as "cellular homology."
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We begin to realise the remarkable fact, which may even appear

a startHng one to the biologist, that all possible groupings or

arrangements whatsoever of eight cells in a single layer or surface

(none being submerged or wholly enveloped by the rest) are referable

to one or another of twelve types or patterns; and that all the

thousands and thousands of drawings which dihgent observers have

made of such eight-celled embryos or blastoderms, or other eight-

celled structures, animal or vegetable, anatomical, histological or

Fig. 257. Photographs of lVf)<fs' eggs, slunving various arrangements, or

partitionings, of the lirst eight cells.

embryological, are one and all of them representations of some one

or other of these twelve types—or rather for the most part of less

than the whole twelve; for a certain small number are essentially

unstable, and have at best but a transitory and evanescent existence.

But that even the unstable cases should now and then be seen is

not to be wondered at : when viscidity and friction, and in general

the imperfect fluidity of the system, retard the adjustment of the cells

and delay the advent of equilibrium.

As soon as we reahse that the number of cell-patterns, for instance

in a segmenting egg, is strictly limited, we want to know how many
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patterns actually occur and in what proportions they do so in a

random sample of identical eggs. Some years ago Mr Martin

Adamson photographed more than a thousand frogs' eggs in my
laboratory, all at the stage shewing an eight-celled group of epiblastic

cells: with the remarkable result that every one of the twelve

possible arrangements was found to occur^ but some were common
and some rare, and the following were their comparative frequencies

:

ype
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eight cells), we see that, in type j, two cells are each in contact with

two others, two with three others, and four each with four other

cells; in type /, four cells are each in contact with two, two with

4
Fig. 258. Aggregations of oil-drops. After Roux.

Nos. 5, 6 represent successive changes in a single system.

four and two with five; and in type i, two are in contact with two,

four with three and one with no less than seven. And if we sum

up, irrespective of sign, the differences from the mean in these three

cases, the sum amounts in / to 6, in i to 7-5, and in / to no less than

10. We might expect to find in such arrangements, that the com-

monest and most stable types were those in which the cell-contacts

were most evenly distributed, and the fact that j is (according to

Martin Adamson's results) one of the commonest, and I one of the
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rarest of all looks Hke supporting the conjecture. Moreover, in all

the commonest types we have a more or less equable division; but

on the other hand, the number of contacts in "type /is just the same

as in b, but the latter occurred thrice as often, and k, which is as

equable as any, was one of the least frequent of all. Coincidences

are weighed down by discrepancies, and we are left pretty much in

the dark as to why some types are much commoner than others.

The rules and principles which we have arrived at from the point

of view of surface tension have a much wider bearing than is at

once suggested by the problems to which we have apphed them;

for in this study of a segmenting egg we are on the verge of a subject

adumbrated by Leibniz, studied more deeply by Euler, and greatly

developed of recent years. It is the Geotnetria Situs of Gauss, the

Analysis Situs of Riemann, the Theory of Partitions of Cayley, of

Spatial Complexes or Topology of Johann Benedict Listing*. It

begins with regions, boundaries and neighbourhoods, but leads

to abstruse developments in modern mathematics. Leibniz

had pointed outf that there was room for an analysis of mere

position, apart from magnitude: "je croy qu'il nous faut encor une

autre analyse, qui nous exprime directement situm, comme I'Algebre

exprime magnitudinem.'' There were many things to which the

new Geometria Situs could be applied. Leibniz used it to explain

the game of sohtaire, Euler to explain the knight's move on the

chess-board, or the routes over the bridges of a town. Vandermonde

created a geometric de tissage%, which Leibniz himself had foreseen,

to describe the intricate complexity of interwoven threads in a satin

or a brocade§. Listing, in a famous paper ||, admired by Maxwell,

Cayley and Tait, gave a new name to this new "algorithm," and

shewed its apphcation to the curvature of a twining stem or tendril,

* Cf. Clerk Maxwell, On reciprocal figures. Trans. R.S.E. xxvi, p. 9, 1870.

t In a letter to Huygens, Sept. 8, 1679; see Hugenii Exercitationes math, et

philos., etc., ed. Uylenbroeck, p. 9, 1833.

X Remarques sur les problemes de situation, Mem. Acad. Sci. Paris (1771),

1774, p. 566.

§ A problem developed by many eminent mathematicians, and which Edouard
Lucas shewed to be intimately related to the construction of Magic Squares:

Recreations mathem. i, p. xxii, 1891.

II
Vorstudien iiber Topologie, Gottinger Studien, i, pp. 811-75, 1847; Der Census

raumlicher Complexe, ibid, x, pp. 97 seq., 1861.
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the aestivation of a flower, the spiral of a snail-shell, the scales on

a fir-cone, and many other common things. The theory of "spatial

complexes," as illustrated especially by knots, is a large part of

the subject.

Topological analysis seems somewhat superfluous here; but it

may come into use some day to describe and classify such com-

pUcated, and diagnostic, patterns as are seen in the wings of a

butterfly or a fly. Let us look for a moment at how the topologist

might begin to study one of our groups of cells ; he would probably

Fig. 260.

call it an island divided into n counties, all maritime (i.e. none

encircled by the rest), and having inland none but three-way

junctions*. Here (in Fig. 260 a) is an island with nine counties;

and here (b) is a 9-gon, whose corners represent the same counties, and

the lines connecting these (whether sides or chords) represent the

contacts between. The polygon is now divided by six chords into

seven triangles. Three of these are peripheral, BCD, FGH, HJA
;

mark their vertices, C, G, J, each with the symbol 4, and obliterate

these three triangles (as in c). The remaining polygon has two

peripheral triangles BDE, EFH; obHterate these, after marking

This, like many another thing, comes from my good friend Dr G. T. Bennett.
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their vertices with the symbol 3. There remains the quadrilateral

ABEH, containing two peripheral triangles ABE, EHA; mark B
and H each with the symbol 2. The residual points A, E are to be

marked 1 and 1. The polygon ABCDEFGHJ may now be read

off: 124313424; and this formula, resulting from the triangula-

tion, defines completely the system of chords and the topology of the

"island." This is one of the twenty-seven cases of a nine-celled

arrangement; and here are our twelve arrangements of eight cells,

recatalogued under the new method:

a 11231323
| g 12341243

b 1 1321323
c 12312313
d 12313132
e 123 132 13

/ 1234 1234

h 12341342
i 12 3 4 14 3 2

j 12 4 3 12 4 3

k 12431342
I 1323 1323

The crucial point for the biologist to comprehend is, that in a

closed surface divided into a number of faces, the arrangement of

all the faces, lines and points in the system is capable of analysis,

and that, when the number of faces or areas is small, the number

of possible arrangements is small also. This is the simple reason

why we meet in such a case as we have been discussing (viz. the

arrangement of a group or system of eight cells) with the same few

types recurring again and again in all sorts of organisms, plants as

well as animals, and with no relation to the fines of biological

classification: and why, further, we find similar configurations

occurring to mark the symmetry, not of cells merely, but of the

parts and organs of entire animals. The phenomena are not

"functions," or specific characters, of this or that tissue or organism,

but involve general principles, even "properties of space," which

lie within the province of the mathematician.

The theory of space-partitioning, to which the segmentation of

the egg gives us an easy practical introduction, is illustrated in

innumerable ways, some simple, some extremely compHcated, in

other fields of natural history ; and some serve the better to illustrate

the mathematical, and others the physical groundwork of the

phenomenon.
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Very beautiful instances are to be found in insects' wings. In the

dragonfly's wing (which we have already spoken of on p. 476) we

see at first sight a vague assemblage of reticulate cells; but their

arrangement is both orderly and simple. The long narrow wing is

stiffened by longitudinal " veins," which in front lie near and parallel,

for reasons well known to the student of aerodynamics*, but become

remote and divergent over the rest of the wing; finer veinlets,

running between the veins, break up the surface into cells or

areolae. Where two large veins run parallel, and so near together

that there is only room for one row of cells between, the walls of

these meet the large veins at right angles, for the reason that the

Fig. 261. Wing of "demoiselle" dragonfly (Agrion).

tension in these latter is much greater than their own ; and this

happens nearly all over the delicate wings of the little dragonflies

called "demoiselles." But in the big dragonflies (Aeschna), and

in general wherever there is space enough between two strong veins

to hold a double row of cells, the walls of these intercalate with one

another at co-equal angles of 120°, while still impinging at right

angles on the strong longitudinal partitions. Wherever, as in the

hinder parts of the wing, the great veins are few, the cells numerous,

and their walls equally delicate, then the reticulum of cells becomes

an hexagonal network of all but perfect regularity. In a cicada and

in many others there is less contrast between great veins and small

;

the cells are few, the veins meet neither orthogonally nor at co-equal

angles, and the shape of the cells suggests a common deformation

under strain. In this last case, and generally in flies, bees and

butterflies, the few cells form a complex space-arrangement, simplified

* Sir George Cayley was the first to shew that in a sail—or wing—set at an

acute angle to the wind, the centre of pressure lay near the front edge, which

had, therefore, to be supported or stiffened {Nicholson's Journal, xxv, 1810).
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only by the condition that the walls impinge on one another three

by three; and this being so, the assemblage includes a number of

small intermediate partitions analogous to the "polar furrows" of

embryology. We have seen how complex such configurations become

as the cells increase in number; and another source of complexity

comes in when the veins are of varying thickness and unequal tension,

and hence meet one another at varying angles.

The entomologist is much concerned with the number and

arrangement of these veins. In Fig. 263 we shew three forewings

of a certain stonefiy, which serve first to shew how constantly the

veins meet in three-way junctions; and then we notice how the

Fig. 262. Forewing of cicada.

three wings are not exactly alike, for all their close resemblance,

because in two of them there is one cell less than in the third, a being

confluent with h in one of these cases and with c in the gther*. In

other words, the veinlet ah has gone amissing in the one, and ac in

the other, and in each case the remaining veinlet has sprung into a

position of equihbrium. This is one of more than two hundred

variations which have been recorded in the wing-veins of this one

insect; it might seem superfluous to look for more.

The lower algae shew us many beautiful patterns or collocations

of cells, sometimes very compUcated, as in Volvox or Hydrodictyon.

A simpler case is that of Gonium. Of its sixteen cells four commonly

form a square, being so thrust apart out of closer packing by accu-

mulated intercellular substance; the other twelve are grouped

around these four, and obey the rule that three cells and no more

meet at each node or point of contact (Fig. 264). The twelve cells

* From Arthur Willey, Graded mutations in wings of a stonefly {Allocapnia

pygmaea Burm.), Nature, July 17, 1937.
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Fig. 263. Forewing of a stonefly, Allocapnia sp.

1-3 from A. WiUey.

Fig. 204. The four-sided, 16-celled disc of Cotilum,

a minute algae. After Harper, diagrammatic.
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are thus in three series, four in touch with six neighbours each,

four with four, and four with three; and this arrangement leads

to curved contour-lines which may be seen in some of Cohn's figures.

Sometimes the interstitial substance is not enough to keep the four

cells apart ; then they come together in the usual rhomb or lozenge,

and the rest group themselves around in the simplest and most sym-

metrical way. That the whole arrangement is as compact as possible

under the conditions, that it is in accord with the principle of minimal

areas, and is "such as-would result from surface-tension and adhesion

between viscous colloidal globules" is now well known to botanists*.

The tiny plates which form the microscopic shell of a Peridinian

illustrate over again by their various collocations the principles

which we have been studying in the partition-walls of the segmenting

egg; and. if the one case has shewn us pitfalls in the way of the

embryologist, the other shews how the systematist, in his endless

task of describing the forms and patterij^s of things, may sometimes

base distinctions on what seem trivial differences from the physical

or mathematical point of view.

On the upper half (or epitheca) of the globular test of a Peridinium

we have fourteen Httle plates, or fourteen "cells," to use the word

in a mathematical rather than a histological sense, whose boundary-

walls always meet in three-way nodes. We may reproduce the

identical arrangement of the Peridinial plates by blowing bubbles

in a saucer; but to deal with so many bubbles at once needs more

patience than do the other similar experiments which we have

described. That the cells are fourteen in number is, from the

physical point of view, the merest accident, but from the zoologist's

it is a criterion of the genus; when there are more cells or fewer,

the organism is called by another name. The number of possible

arrangements of fourteen polygonal cells, linked by three-way nodes,

is very large; but the "characters of the genus" exclude many of

the variants. Many of them occur—it is quite possible that all

occur—in Nature; but they are not called Peridinium. The fol-

lowing arrangement defines the genus. There is a central or apical

cell, around which are grouped six others ; of these six, one extends

to the boundary of the figure, that is, to the equator of the globular

R. A. Harper, The colony in Gonium, Trans. Anier. Microsc. Soc. xxxi, pp. 65-

84, 1912; cf. F. Cohn, in Nova Acta Acad. C.L.C., xxiv, p. lOJ, 1854.
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shell, and seven other "equatorial cells" complete the boundary.

In other words, the apical hexagon is surrounded by two concentric

rows, originally of six cells each, whereof one cell of the inner row

has (as it were) burst through a cell of the outer row, so reaching

the boundary itself, and so dividing into two the equatorial cell

which it encroached on and bisected.

In any such collocation as this, the number of sides and the

number of nodes or corners are strictly determined ; there are here

fourteen cells, all conjoined by three-way nodes, and it follows that

there are just 39 separate walls or edges, and just 26 nodes or

corners. Many of these last are already defined for us; for six of

them are the corners of the central hexagon, eight lie on the equator,

and six more are at the inner ends of the radial partitions which

separate the equatorial cells from one another. Six remain to be

determined, those, namely, where the

partitions running outwards from the

apical cell meet the walls of the

equatorial cells. The diagram (Fig.

265) shews us two sets of radiating

partitions, six running inwards from

the equator (a, 6, c, d, e, /) and six

running outwards from the central

hexagon (A. . .F), those of the one

set being nearly opposite to those of

the other; but near as they may be

they never meet, for to do so would

be to make a four-way node, which

theory forbids and which observation tells us does not occur. In

every case, one partition must be slewed a little to one side or

other of its opposite neighbour; and the whole range of possible

variations depends on whether the shift be to the one side or to the

other. We have six pairs of partitions, and in each of the six there

is this possible alternative of right or left ; there are therefore 2® or

64 possible variations in all. Whether all six may vary, I do not

know; there is no obvious reason why they should not. But

alternative variation does occur in the two anterior and two posterior

pairs of partitions; and these four give us 2^ or 16 possible arrange-

ments.

Fig. 265. Dorsal view of a
Peridinium : diagrammatic.
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When the partitions A, F meet the equatorial cells on the hither

side of the partitions a, /, then, obviously, the large cell R is an

irregular hexagon, and is in contact with two equatorial cells only;

such an arrangement is said to define the genus Orthoperidinium.

When A, F happen to fall on the farther sides of a,/, the large cell

has eight sides, and is in contact with four equatorial cells ; we have

the new genus Paraperidinium. When A falls within a, but F falls

beyond /, we have the genus Metaperidinium. There remains one

alternative case, the converse of the last, to which the systematists

have not given a name.

The same physical phenomenon occurs at the opposite pole of the

disc, where the partitions C, D may fall within or without, or one

within and one without the positions of c, d\ where, in other words,

the intercalated cell CD is in contact with one, with three, or with

two equatorial cells. Jorgensen, seeing these three types occurring

both among the Orthoperidinia and the Metaperidinia, draws the

conclusion that this character is more primitive, or more ancestral,

than that by which Ortho- and Metaperidinia are separated from

one another, a phylogenetic deduction concerning which topology

has nothing to say*. Within the restricted genus Peridinium we

have at present two sub-genera and seven sub-groups of these, this

being the number of the 64 possible arrangements so far recognised

and named. These may have a certain constancy or stability ; and

trivial as their differences may seem to the physicist, they may still

be worth the naturalist's while to study and record.

Ano'ther case, geometrically akin but biologically very different,

is to be found in the httle diatoms of the genus Asterolampra, and

their immediate congenersf. In Asterolampra we have a little disc,

in which we see (as it were) radiating spokes of one material alter-

nating with intervals occupied on the flattened wheel-like disc by

another (Fig. 266). The spokes vary in number, but the general

appearance is in a high degree suggestive of the Chladni figures

produced by the vibration of a circular plate. The spokes broaden

out towards the centre, and interlock by visible junctions, which

* E. Jorgensen, Ueber Planktonproben, Svenska Hydrogr. Biol. Komm. Skrifter,

IV, 1913.

t See K. R. Greville, Monograph of the genus Asterolampra ^
Q.J.M.S. viii,

(Trans.), pp. 102-124, 1860; cf. ibid. (n.s.). ii, pp. 41-55, 1862.
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generally obey the rule of triple intersection, and accordingly

exemplify the partition-figures with which we have been dealing.

But whereas we have found the particular arrangement in which

one cell is in contact with all the rest to be unstable, according to

Roux's oil-drop experiments, and to be conspicuous by its absence

from our diagrams of segmenting eggs, here in Asterolampra, on the

other hand, it occurs frequently, and is indeed the commonest

arrangement (Fig, 266, B). In all probability, we are entitled to

consider this marked difference natural enough. For we may
suppose that in Asterolampra (unlike the 'case of the segmenting

egg) the tendency is to perfect radial sjnnmetry, all the spokes

emanating from a point in the centre: such a condition would be

-IB c

Fig. 266. (A) Asterolampra marylandica Ehr.;

(B, C) A. variabilis Grev. After Greville.

eminently unstable, and would break down under the least asym-

metry. A very simple, perhaps the simplest case, would be that

one single spoke should differ slightly from the rest, and should so

tend to be drawn in amid the others, these latter remaining similar

and symmetrical among themselves. Such a configuration would

be vastly less unstable than the original one in which all the

boundaries meet in a point; and the fact that further progress is

not made towards other configurations' of still greater stability may
be sufficiently accounted for by viscosity, rapid solidification, or

other conditions of restraint. A perfectly stable condition would of

course be obtained if, as in the case of Roux's oil-drop (Fig. 257, 6),

one of the cellular spaces passed into the centre of the system, the

other partitions radiating outwards from its circular wall to the

periphery of the whole system. Precisely such a condition occurs
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among our diatoms; but when it does so, it is looked upon as the

mark and characterisation of the allied genus Arachnoidiscus.

A simple case, introductory to others of a more complex kind,

is that of the radial canals of the Medusae. Here, in certain cases

(e.g. Eleutheria), the usual arrangement of eight radial canals is not

seldom modified, as for example, when two or more of them arise

14 -< ^ 15 --<.^-^l6

Fig. 207, Variations observed in the catial-system of a raedusoid {Eleutheria); after

Hans Lengerich. 1-8, the eight possible arrangements of eight radial canals;

9-10, some observed instances of nine radial canals.

not separately but by bifurcation*. We then have just eight

possible arrangements, as shewn in Fig. 267, 1-8, and of these eight

no less than six have been actually observed. The other two are

just as hkely to occur, and we may take it that they also will in

due time be recorded. It is yet another simple illustration of the

* Hans Lengerich. Verzweigungsarten der Radialkanale bei Eleutheria, Zool.

Jahrbuch, 1922, p. 325.
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aphorism that whatsoever is possible, that Nature does, all in her

own time and way; what things Nature does not do are the things

which are mathematically impossible or are barred by physical

conditions. It is possible for our little Medusa to develop nine

radial canals instead of eight, and so at times she does ; again they

may be simple or branched, and trifurcations as well as bifurcations

may appear. So we may extend our Hst of possible permutations

and combinations, and find as before that a fair proportion of these

possible arrangements have been observed already. There are

many other Medusae ' (e.g. Willsia), where the number of radial

III ^<^JU^ IV

Fig. 268. A medusa {Willsia ornnta)

shewing, diagrammatically, the order

of development of the numerous radial

canals. After Mayor.

Fig. 269. Section of Alcyonarian

polyp.

canals much exceeds the simple symmetry of four or eight ; and in

these we may sometimes see, very beautifully, how the successive

canals arrange themselves according to the same principles which

we have now studied in so many diverse cases of partitioning

(Fig. 268)*.

In a diagrammatic section of an Alcyonarian polyp (Fig. 269),

we have eight chambers set, symmetrically, about a ninth, which

constitutes the "stomach." In this arrangement there is no diffi-

culty, for it is obvious that, throughout the system, three boundaries

meet (in plane section) in a point. In many corals we have as

* Such branching canals are characteristic of the Dendrostaurinae, a subfamily

of the Oceanidae, a family of Anthomedusae ; and very much the same occur in

a certain subfamily of Leptomedusae. See Mayor's Medusae of the World, i,

p. 190.
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simple or even simpler conditions, for the radiating calcified

partitions either converge upon a central chamber, or fail to meet

it and end freely. But in a few cases, the partitions or "septa"

converge to meet one another, there being no central chamber on

which they may impinge; and here the manner in which contact

is effected becomes comphcated, and involves problems identical

with those which we are now studying.

In the great majority of corals we have as simple or even simpler

conditions than those of Alcyonium; for as a rule the calcified

partitions or septa of the coral either con-

verge upon a central chamber (or central

"columella"), or else fail to meet it and end

freely. In the latter case the problem of

space-partitioning does not arise; in the

former, however numerous the septa be,

their separate contacts with the wall of the

central chamber comply with our funda-

mental rule according to which three lines ^. ^^ ^^ , „.^
. Fig. 270. Heterophylha angu-

and no more meet in a pomt, and from ^^j^. After Nicholson.,

this simple and symmetrical arrangement

there is little tendency to variation. But in a few cases, the septal

partitions converge to meet one another, there being no central

chamber on which they may impinge ; and here the manner in which

contact is effected becomes complicated, and involves problems of

space-partitioning identical with those which we are now studying.

In the genus Heterophyllia and in a few alhed forms we have such

conditions, and students of the Coelenterata have found them very

puzzling. McCoy*, their first discoverer, pronounced these corals

to be "totally unhke" any other group, recent or fossil; and

Professor Martin Duncan, writing a memoir on Heterophyllia and

its allies I, described them as "paradoxical in their anatomy."

The simplest or youngest Heterophylliae known have six septa

(as in Fig. 271, A); in the case figured, four of these septa are

conjoined two and two, thus forming the usual triple junctions

together with their intermediate partition-walls; and in the case

of the other two we may fairly assume that their proper and original

* Ann. Mag. N.H. (2), iii, p. 126, 1849.

t Phil. Trans. cLvii, pp. 643-656, 1867.
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arrangement was that of our type 6 6 (Fig. 245), though the central

intermediate partition has been crowded out by partial coalescence.

When with increasing age the septa become more numerous, their

arrangement becomes exceedingly variable; for the simple reason

that, from the mathematical point of view, the number of possible

arrangements, of 10, 12 or more cellular partitions in triple contact,

tends to increase with great rapidity, and there is little to choose

among many of them in regard to symmetry and equihbrium. But

while, mathematically speaking, each particular case among the

Fig. 271. Heterophyllia sp. After Martin Duncan.

multitude of possible cases is an orderly and definite arrangement,

from the purely biological point of view on the other hand no law

or order is recognisable; and so McCoy described the genus as

being characterised by the possession of septa 'destitute of any

order of arrangement, but irregularly branching and coalescing in

their passage from the sohd external walls towards some indefinite

point near the centre where the few main lamellae irregularly

anastomose."

In the two examples figured (Fig. 271 B, C), both comparatively

simple ones, it will be seen that, of the main chambers, one is in each
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case an unsymmetrical one ; that is to say, there is one chamber which

is in contact with a greater number of its neighbours than any

other, and which at an earher stage must have had contact with

them all ; this was the case of our type i, in the eight-celled system

(p. 598). Such an asymmetrical chamber (which may occur in

a system of any number of cells greater than six) constitutes what

is known to students of the Coelenterata as a "fossula"; and we
may recognise it not only here, but also in Zaphrentis and its allies,

and in a good many other corals besides. Moreover, certain corals

are described as having more than one fossula: this appearance

being naturally produced under certain of the other asymmetrical

variations of normal space-partitioning. Where a single fossula

occurs, we are usually told that it is a symptom of " bilateraUty "

;

and this is in turn interpreted as an indication of a higher grade of

organisation than is implied in the purely "radial symmetry" of the

commoner types of coral. The mathematical aspect of the case

gives no warrant for this interpretation.

Let us carefully notice (lest we run the risk of confusing two

distinct problems) that the space-partitioning of Heterophyllia by
no means agrees with the details of that which we have studied

in (for instance) the case of the developing disc of Erytkrotrichia:

the difference simply being that Heterophyllia illustrates the general

case of cell-partitioning as Plateau and Van Rees studied it, whil^

in Erythrotrichia, and in our other embryological and histological

instances, we have found ourselves justified in making the additional

assumption that each new partition divided a cell into co-equal

parts. No such law holds in Heterophyllia, whose case is essentially

different from the others: inasmuch as the chambers whose parti-

tion we are discussing in the coral are mere empty spaces (empty

save for the mere access of sea-water); while in our histological

and embryological instances, we were speaking of the division of

a cellular unit of living protoplasm. Accordingly, among other

differences, the "transverse" or "periclinal" partitions, which were

bound to appear at regular intervals and in definite positions, when
co-equal bisection was a feature of the case, are comparatively few

and irregular in the earlier stages of Heterophyllia, though they

begin to appear in numbers after the main, more or less radial,

partitions have become numerous, and when accordingly these
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radiating partitions come to bound narrow and almost parallel-sided

interspaces; then it is that the transverse or perichnal partitions

begin to come in, and form what the student of the Coelenterata calls

the ''dissepiments" of the coral. We need go no further into the

configuration and anatomy of the corals ; but it seems to me beyond

a doubt that the whole question of the complicated arrangement

of septa and dissepiments throughout the group (including the

curious, vesicular or bubble-like tissue of the Cyathophyllidae and

the general structural plan of the Tetracoralla, such as Streptoplasma

and its allies) is well worth investigation from the physical and

mathematical point of view, after the fashion which is here shghtly

adumbrated.

The method of dividing a circular, or spherical, system into

eight parts, equal as to their areas but unequal in their peripheral

boundaries, is probably of wide biological application; that is to

say, without necessarily supposing it to be rigorously followed, the

typical configuration which it yields seems to recur again and

Fig. 272. Diagrammatic section of a Ctenophore (^wcAan's).

again, with more or less approximation to precision, and under

widely different circumstances. I am inclined to think, for instance,

that the unequal division of the surface of a Ctenophore by its

meridian-like cihated bands is a case in point (Fig. 272). Here, if we

imagine each quadrant to be twice bisected by a curved anticline,
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we shall get what is apparently a close approximation to the actual

position of the cihated bands. The case however is comphcated

by the fact that the sectional plan of the organism is never quite

circular, but always more or less elhptical. One point, at least, is

clearly seen in the symmetry of the Ctenophores; and that is that

the radiating canals which pass outwards to correspond in position

with the cihated bands have no common centre, but diverge from

one another by repeated bifurcations, in a manner comparable to

the conjunctions of our cell-walls.

In the early development of the shell (or "test") of a sea-urchin*,

each interambulacral area'consists of a lozenge of four plates, in the

famihar configuration assumed by four cells or bubbles, the polar

furrow lying in the direction of a " radius
"

of the shell. A fifth plate, or "cell,"

presently fits itself in between the third

and fourth, that is to say between the

terminal plate and one of the lateral ones,

and in doing so thrusts the former to

one side; a sixth intercalates itself be- ^'f'
^^^- / ''^"^^"

.r"!,
^

lozenge : stages in the de-

tween the fourth and fifth, and so on velopment of the ambulacral

alternately. An ambulacrum consists of and interambulacral plates of

two columns of calcareous plates, which
^
J^'^^^^i^-

^^' I- ^^'

fit into one another in the usual way by

sutures set at angles of 120°. Each plate consists of three platelets;

a "primary" plate (a) is succeeded by a smaller and narrower

secondary plate (b) ; the squarish primary has one corner cut off by

a curved partition, to form a "demiplate", and the whole is called by

students of this group an " echinoid triad ". Though we do not know
precisely how the partitions arise, nor can we prove by measurement

their obedience to the laws of maxima and minima, yet their

general analogy to the principles we have explained is sufficiently

obvious.

I am even inchned to think that the same principle helps us to

understand the arrangement of the skeletal rods of a larval

Echinoderm, and the complex conformation of the larva which is

brought about by the presence of these long, slender skeletal

* Isabella Gordon, The development of the calcareous test of Echinus miliaris,

Phil. Tram.'iB), No. 214, p. 282, 1926; etc.
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In Fig. 274 I have divided a circle into its four quadrants,

and have bisected each quadrant by a circular arc {BC), passing from

radius to periphery, as in the foregoing cases of cell-division (e.g.

p. 590); and I have again bisected, in a similar way, the triangular

B^ \B
Fig. 274. Diagrammatic arrangement of partitions, represented by skeletal

rods, in a larval Echinoderm (Ophiura).

halves of each quadrant (D, D). I have also inserted a small circle in

the middle of the figure, concentric with the large one. If now we

imagine the partition-hnes in the figure to be replaced by solid

rods, we shall have at once the frame-work of an Ophiurid (Pluteus)

Fig. 275. Pluteus-larva of Ophiurid.

larva. Let us imagine all these arms to be bent symmetrically

downwards, so that the plane of the paper is transformed into

a conical surface with curved sides; let a membrane be spread,

umbrella-Hke, between the outstretched skeletal rods, and let

* J. Loeb has shewn (Amer. Journ. Physiol, vii, p. 441, 1900) that the sea-urchin's

egg can be reared for a time in a balanced solution of sodium, potassium and

calcium chloride, developing no spicules and so forming no pluteus larva; on

adding sodium carbonate the spicules are laid down and the pluteus larva takes

shape accordingly.
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its margin loop from rod to rod in curves which are possibly

catenaries but are more probably portions of an "elastic curve,"

and the outward resemblance to a Pluteus larva is now complete.

By various slight modifications, by altering the relative lengths of

the rods, by modifying their curvature or by replacing the curved

rod by a tangent to itself, we can ring the changes which lead us

from one known type of Pluteus to another. The case of the

Bipinnaria larvae of Echinids is certainly analogous, but it becomes

very much more compHcated; we have to do with a more complex

partitioning of space, and I confess that I am not yet able to

represent the more compUcated forms in so simple a way.

There are a few notable exceptions (besides the various unequally

segmenting eggs) to the general rule that in cell-division the mother-

cell tends to divide into equal halves ; and one of these exceptional

cases is to be found in connection with the development of

"stomata" in the leaves of plants*. The epidermal cells by which

the leaf is covered may be of various shapes; sometimes, as in a

hyacinth, they are oblong, but more often they have an irregular

shape in which we can recognise, more or less clearly, a distorted

or imperfect hexagon. In the case of the oblong cells, a transverse

partition will be the least possible, whether the cell be equally or

unequally divided, unless (as we have already seen) the space to

be cut off be a very small one, not more than about three-tenths

the area of a square based on the short side of the original rectangular

cell. As the portion usually cut off is not nearly so small as this,

we get the form of partition shewn in Fig. 276, and the cell so cut

off is next bisected by a partition at right angles to the first; this

latter partition splits, and the two last-formed cells constitute the

so-called "guard-cells" of the stoma. In other cases, as in Fig. 277,

there will come a point where the minimal partition necessary to

cut off the required fraction of, the cell-content is no longer a

* We know more about the physical activities of the storaata than about the

mechanics of their development. It is known that the rate of gaseous diffusion

through apertures of their order of magnitude is inversely proportional to the

diameters of the apertures; and this law, by which the sufficient entry of carbonic

acid through the stomata is fully accounted for, is (like Pfeffer's work on natural

semi-permeable membranes) one of the notable cases where physiology has enlarged

the boundaries of physical science. Cf. Horace T. Brown, Some recent work on
diffusion, Proc. Roy. Instit. March, 1901.
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transverse one, but is a portion of a cylindrical wall (2) cutting off

one corner of the mother-cell. The cell so cut off is now a certain

segment of a circle, with an arc of approximately 120°; and its

next division will be by means of a curved wall cutting it into a

-A^

Fig. 276. Diagrammatic development of stomata in hyacinth.

triangular and a quadrangular portion (3). The triangular portion

will continue to divide in a similar way (4, 5), and at length (for

a reason which is not yet clear) the partition wall between the

new-formed cells splits, and again we have the phenomenon of a

Diagrammatic development of stomata in Seduni.

(Cf. fig. in Sachs's Botany, 1882, p. 103.)

"stoma" with its attendant guard-cells. In Fig. 277 are shewn the

successive stages of division, and the changing curvatures of the

various walls which ensue as each subsequent partition appears,

and introduces a new tension into the system. Among the oblong
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cells of the epidermis in the hyacinth the stomata will be found

arranged in regular rows, while they will be irregularly distributed

over the surface of the leaf in such a case as we have depicted in

Sedum.

As I have said, the mechanical cause of the split which constitutes

the orifice of the stoma is not quite clear. It may be directly due

to the subepidermal air-space which the stoma communicates with,

for an air-surface on both sides of the dehcate epidermis might

well cause such an alteration of tensions that the two halves of

the dividing cell would tend to part company. In Professor

Macallum's experiments, which we have briefly discussed in our

short chapter on Adsorption, it was found that large quantities of

potassium gathered together along the outer walls of the guard-cells

of the stoma, thereby indicating a low surface-tension along these

outer walls. The tendency of the guard-cells to bulge outwards

is so far explained, and it is possible that, under the existing

conditions of restraint, we may have here a force tending, or helping,

to spht the two cells asunder. It is clear enough, however, that

the last stage in the development of a stoma is, from the physical

point of view, not yet properly understood*. It is noteworthy,

and Nageli took note of it wellnigh a hundred years ago, that the

stomatal mother-cells remain small while the others grow, and also

that they only divide once for all, while their neighbours divide

and divide again, 4» produce the lateral or accessory guard-cells.

In all our foregoing examples of the development of a "tissue"

we have seen that the process consists in the successive division

of cells, each act of division being accompanied by the formation

of a boundary-surface, which, whether it become at once a. soHd

or semi-sohd partition or whether it remain semi-fluid, exercises

in all cases an effect on the position and the form of the boundary

which comes into being with the next act of division. In contrast

to this general process stands the phenomenon known as "free

cell-formation," in which, out of a common mass of protoplasm,

a number of separate cells are simultaneously, or all but simul-

taneously, differentiated; and the case is all the more interesting

* Botanische Beitrage, Linnaea, xvi, p. 238, 1842. Cf. Garreau, Mem. sur les

stomates, Ann. Sc. Nat., Bot. (4), i, p. 213, 1854.
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when the daughter-cells remain, for a time at least, within the

envelope of the mother-cell. It sometimes happens, to begin with,

that a number of mother-cells are formed simultaneously, and

that the content of each divides, by successive divisions, into four

"daughter-cells." These daughter-cells tend to groi^p themselves,

just as would four soap-bubbles, into a "tetrad," the four cells

forming a spherical tetrahedron. For the system of four bodies

is in perfect symmetry. The four" cells are closely packed within

the cell-wall of the mother-cell ; their outer walls divide the

sphere into four equiangular triangles; their inner walls meet

three-by-three in an edge, and the four edges converge in the

geometrical centre of the system; and these partition walls and

their respective edges meet one another everywhere at co-equal

angles. This is the typical mode of development of pbllen-grains,

common among monocotyledons and all but universal among

dicotyledonous plants. By a loosening of the surrounding tissue

and an expansion of the cavity, or anther-cell, in which they He,

the. pollen-grains afterwards fall apart, and their individual form

will depend upon whether or no their walls have soKdified before

this liberation takes place. For if not, then the separate grains will

be free to assume a spherical form as a consequence of their own

individual and unrestricted growth ; but if they become set or rigid

prior to the separation of the tetrad, then they will conserve more or

less completely the plane interfaces and sharp angles of the elements

of the tetrahedron. The latter is apparently the case in the pollen-

grains of Epilobium (Fig. 278, 1 ) and in many others. In the passion-

flower (2) we have an intermediate condition : in which we can still see

an indication of the facets where the grains abutted on one another

in the tetrad, but the plane faces have been swollen by growth into

spheroidal or spherical surfaces. In heaths and in azaleas the four

cells of the tetrad remain attached together, and form a compound

tetrahedral pollen-grain. Six furrows correspond to the six edges

of the tetrahedron, and each is continued across a pair of cells; they

are formed (I take it) along lines of weakness at the edges of the

tetrahedron, and they make three furrows upon each one of the

four coherent grains, just as we see them on a large number of

ordinary separate and non-coherent pollen-grains. On the other

hand, there may easily be cases where the tetrads of daughter-cells
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fail to assume, even temporarily, the tetrahedral form: cases, in a

general way, where the four cells escape from the confinement of

their envelope, and fall into a looser, less close-packed arrangement*.

The figures given by Goebel of the development of the pollen* of

Neottia (3, a-e\ all the figures referring to grains taken from a

single anther) illustrate this to perfection, and it will be seen that,

Fig. 278. Various pollen-grains and spores (after Berthold, Campbell, Goebe
and others). (1) Epilobium; (2) Passiflora; (3) Neottia; (4) Periploca

graeca; (5) Apocynum; (6) Erica; (7) spore of Osmuyida; (8) tetraspore of

CnUithavinion.

Fig. 271). I'ollon of bulrush (Tifpha). After Wodehouse.

when the four cells lie in a plane, they conform exactly to our

typical diagram of the first four .cells in a segmenting ovum;
physically, as well as biologically, the tetrads a-d and the tetrad e

are "allelomorphs" of one another. Again in the bulrush (Fig. 279),

* Cf. C. Nageli, Znr Entwickhingsgeschichte des Pollens bei den Phanerogamen,

36 pp., Zurich, 1842; Hugo Fischer, Vergleichende Morphologie der Pollenkorner,

Berlin, 1890; see also, for many and varied illustrations, R. P. Wodehouse's
beautiful book on Pollen, 574 pp.. New York, 193o, and earlier papers.
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the four cells remain attached to one another, and lie upon a level

with a " polar furrow " well displayed. Occasionally, though the four

cells lie in a plane, the diagran^^seenis to fail us, for the cells appear

to meet in a simple cross (as in 5); but here we soon perceive that

the cells are not in complete interfacial contact, but are kept apart

by a httle intervening drop of fluid or bubble of air. The spores of

ferns (7) for the most part develop in much the same way as pollen-

grains; they also very often retain traces of the shape which they

assumed as members of a tetrahedral figure, and the same is equally

true of liverworts. Among the " tetraspores "
(8) of the Florideae,

or red seaweeds, we have a condition which is in every respect

analogous. The same thing happens in certain simple algae alHed to

Protococcus: where four daughter-cells, confined within a mother-

cell, form a spherical tetrahedron, much hke a spore of Osmunda on

a smaller scale*.

Here again it is obvious that, apart from differences in actual

magnitude, and apart from superficial or "accidental" differences

(referable to other .physical phenomena) in the way of colour,

texture and minute sculpture or pattern, a very small number of

diagrammatic figures will sufficiently represent the outward forms

of all the tetraspores, four-celled pollen-grains, and other four-

celled aggregates which are known or are even capable of existence.

And it is equally obvious that the resemblance of these things, to

this extent, is a matter of physical and mathematical symmetry, and

carries no proof of near relationship or common ancestry.

We have been dealing hitherto (save for some slight exceptions)

with the partitioning of cells on the assumption that the system

either remains unaltered in size or else that growth has proceeded

uniformly in all directions. But we extend the scope of our enquiry

greatly when we begin to deal with unequal growth, with cells so

growing and dividing as to produce a greater extension along

some one axis than another. And here we come close in touch

with that great and still (as I think) insufficiently appreciated

generahsation of Sachs, that the manner in which the cells divide

is the result, and not the cause, of the form of the dividing structure

:

that the form of the mass is caused by its growth as a whole, and

* Cf. A. Pascher, Arch. f. Protozoenk. lxxvi, p. 409; lxxvii, p. 195, 1932.
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is not a resultant of the growth of the cells individually considered*.

Such asymmetry of growth may be easily imagined, and may
conceivably arise from a variety of causes. In any individual cell,

for instance, it may arise from molecular asymmetry of the structure

of the cell-wall, giving it greater rigidity in one direction than

another, while all the while the hydrostatic pressure within the

cell remains constant and uniform. In an aggregate of cells, it

may very well arise from a greater chemical, or osmotic, activity

in one than another, leading to a locahsed increase in the fluid

pressure, and to a corresponding bulge over a certain area of the

external surface. It might conceivably occur as a direct result of

preceding cell-divisions, when these are such as to produce many
peripheral or concentric walls in one part and few or none in another,

with the obvious result of strengthening the boundary wall here

and weakening it there ; that is to say, in our dividing quadrant,

if its quadrangular portion subdivide by perichnes, and the

triangular portion by oblique antichnes (as we have seen to be

the natural tendency), then we might expect that external growth

would be more manifest over the latter than over the former areas.

As a direct and immediate consequence of this we might expect

a tendency for special outgrowths, or "buds," to arise from the

triangular rather than from the quadrangular cells; and this turns

out to be not merely a tendency towards which theoretical con-

siderations point, but a widespread and important factor in the

morphology of the cryptogams. But meanwhile, without enquiring

further into this complicated question, let us simply take it that,

if we start from such a simple case as a round cell which has divided

into two halves or four quarters (as the case may be), we shall at

once get bilateral symmetry about a main axis, and other secondary

results arising therefrom, as soon as one of the halves, or one of

the quarters, begins to shew a rate of growth in advance of the

others; for the more rapidly growing cell, or the peripheral wall

common to two or more such rapidly growing cells, will bulge out,

and may finally extend into a cylinder with rounded end. This

latter very simple case is illustrated in the development of a

* Sachs, Pflanzenphysiologie {Vorlesung xxiv), 1882; cf. Rauber, Neue Grund-
legungen zur Kenntniss der Zelle, Morphol. Jahrb. vni, p. 303 seq., 1883;

E. B. Wilson, Cell-lineage of Nereis, Journ. Morph. vi, p. 448, 1892; etc.
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pollen-tube, where the rapidly growing cell develops into the

elongated cyUndrical tube, and the slow-growing or quiescent part

remains behind as the so-called "vegetative" cell qf cells.

Just as we have found it easier to study the segmentation of

a circular disc than that of a spherical cell, so let us begin in the

same way, by enquiring into the divisions which will ensue if the

disc tend to grow, or elongate, in some one particular direction

instead of in radial symmetry. The figures which we shall then

obtain will not only apply to the disc, but will also represent, in

all essential features, a projection or longitudinal section of a solid

body, spherical to begin with, preserving its symmetry as a solid

of revolution, and subject to the same general laws as we study

in the disc*.

(1) Suppose, in the first place, that the axis of growth lies

symmetrically in one of the original quadrantal cells of a segmenting

disc; and let this growing cell elongate with comparative rapidity

before it subdivides. When it does divide, it will necessarily do

so by a transverse partition, concave towards the apex of the cell

:

and, as further elongation takes place, the cylindrical structure

which will be developed. thereby will tend to be again and again

subdivided by similar transverse partitions (Fig. 280). If at any

time, through this process of concurrent elongation and subdivision,

the apical cell become equivalent to, or less than, a hemisphere,

it will next divide by means of a longitudinal, or vertical partition;

and similar longitudinal partitions will arise in the other segments

of the cylinder, as soon as it comes about that their length (in the

direction of the axis) is less than their breadth.

But when we think of this structure in the solid, we at once

perceive that each of these flattened segments, into which our

cyUnder divided to begin with, is equivalent to a flattened circular

disc; and its further division will accordingly tend to proceed like

* In the following account I follow closely on the lines laid down by Berthold;

Protoplasmamechanik, cap.^ vii. Many botanical phenomena identical and similar

to those here dealt with are elaborately discussed by Sachs in his Physiology of

Plants (chap, xxvii, pp. 431-459, Oxford, 1887), and in his earlier papers, Ueber

die Anordnung der Zellen in jiingsten Pflanzentheilen, and Ueber Zellenanordnung

und Wachsthum {Arh. d. botav. Inst. Wurzbnrg, 1877/78). But Sachs's treatment

differs entirely from that which I adopt and advocate here: his explanations being

based on his "law" of rectangular succession, and involving complicated systems

of confocal conies, with their orthogonally intersecting ellipses and hyperbolas.
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any other flattened disc, namely into four quadrants, and afterwards

by anticlines and periclines in the usual way. A section across the

cyhnder, then, will tend to shew us precisely the same arrangements

as we have already so fully studied in connection with the typical

division of a circular cell into quadrants, and of these quadrants

into triangular and quadrangular portions, and so on.

But there are other possibilities to be considered, in regard to

the mode of division of the elongating quasi-cylindrical portion, as

it gradually develops out of the growing and bulging quadrantal

cell; for the manner in which this latter cell divides will simply

depend upon the form it has assumed before each successive act

Fig. 280. Diagrammatic, or hypothetical, result of asymmetrical growth.

of division takes place, that is to say upon the ratio between its

rate of growth and the frequency of its successive divisions. For,

as we have already seen, if the growing cell attain a markedly

oblong or cylindrical form before division ensues, then the partition

will arise transversely to the long axis; if it be but a httle more

than a hemisphere, it will divide by an oblique partition; and if

it be less than a hemisphere (as it may come to be after successive

transverse divisions) it will divide by a vertical partition, that is

to say by one coinciding with its axis of growth. An immense

number of permutations and combinations may arise in this way,

and we must confine our illustrations to a small number of cases.

The important thing is not so much to trace out the various

conformations which may arise, but to grasp the fundamental

principle: which is, that the forces which dominate the form of
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each cell regulate the manner of its subdivision, that is to say the

form of the new cells into which it subdivides; or in other words,

the form of the growing organism regulates the form and number

of the cells which eventually constitute it. The complex cell-

network is not the cause but the result of the general configuration,

which latter has its essential cause in whatsoever physical and

chemical processes have led to a varying velocity of growth in one

direction as compared with another.

In the annexed figure of an embryo of Sphagnum we see a mode

of development almost precisely corresponding to the hypothetical

case which we have just de'scribed—the case,

that is to say, where one of the four original

quadrants of the mother-cell is the chief

agent in future growth and development.

We see at the base of our first figure (a),

the three stationary, or undivided quadrants,

one of which has further slowly divided in

the stage b. The active quadrant has grown

quickly into a cyHndrical structure, which

inevitably divides, in the next place, into a

series of transverse partitions; and accord-

ingly, this mode of development carries with

it the presence of a single " apical cell," whose

lower wall is a spherical surface with its p^g ^gi. Development of

convexity downwards. Each cell of the Sphagnum. After Camp-

subdivided cylinder now appears as a more ^^^•

or less flattened disc, whose mode of further subdivision we may
prognosticate according to our former investigation, to which subject

we shall presently return.

(2) In the next place, still keeping to the case where only one

of the original quadrant-cells continues to grow and develop, let us

suppose that this growing cell falls to be divided when by growth

it has become just a little greater than a hemisphere; it will then

divide, as in Fig. 282, 2, by an oblique partition, in the usual way,

whose precise position and inclination to the base will depend

entirely on the configuration of the cell itself, save only, of course,

that we may have also to take into account the possibility of the

division being into two unequal halves. By our hypothesis, the
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growth of the whole system is mainly in a vertical direction, which

is as much as to say that the more actively growing pro'toplasm,

or at least the strongest osmotic force, will be found near the apex;

where indeed there is obviously more external surface for osmotic

action. It will therefore be that one of the two cells which contains,

or constitutes, the apex which will grow more rapidly than the

other, and which therefore will be the first to divide; and indeed

in any case, it will, usually be this one of the two which will tend

to divide first, inasmuch as the triangular and not the quadrangular

half is bound to constitute the apex*. It is obvious that (unless

4 5 6 7
Fig. 282. Development of antheridium of liverwort (diagrammatic).

the act of division be so long postponed that the cell has become
quasi-cylindrical) it will divide by another obhque partition, starting

from, and running at right angles to, the first. And so division

will proceed by oblique alternate partitions, each one tending to

be, at first, perpendicular to that on which it is based and also to

the peripheral wall; but all these points of contact soon tending,

by reason of the equal tensions of the three films or surfaces which

meet there, to form angles of 120°.^ There will always be a single

apical cell, of a triangular form. The developing antheridium of a

liverwort (Riccia) is a typical example of such a case. In Fig. 283

which represents a "gemma" of a moss, we see just the same thing;

with this addition, that here the lower of the two original cells has

grown even more quickly than the other, constituting a long cyhn-

* Cf. p. 590.
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drical stalk, and dividing in accordance with its shape by means of

transverse septa. In all such cases the cells may continue to sub-

divide, and the manner in which they do so must depend upon
their own proportions; and in all cases there will sooner or later be

a tendency to the formation of perichnal walls, cutting off an

epidermal layer of cells, as Fig. 284 illustrates very well.

The method of division by means of oblique partitions is a

common one in the case of "growing points"; for it evidently

includes all cases in which the act of cell-division does not lag far

behind that elongation which is determined by the specific rate of

Fig. 283. Gemma
of moss. After

Campbell.

Fig. 284. Development of antheridium

of Riccia. After Campbell.

growth. And it is also obvious that, under a common type, there

must here be included a variety of cases which will, at first sight,

present a very different appearance one from another. For instance,

in Fig. 285 which represents a growing shoot of Selaginella, and

somewhat less diagrammatically in the young embryo of Junger-

mannia (Fig. 286), we have the appearance of an almost straight

vertical partition running up in the axis of the system, and the

primary cell-walls are set almost at right angles to it—almost

transversely, that is to say, to the outer walls and to the long axis

of the structure. We soon recognise, however, that the difference

is merely a difference of degree. The more remote the partitions

are, that is to say the greater the velocity of growth relatively to
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that of division, the less abrupt will be the alternate kinks or

curvatures of the portions which lie along the axis, and the more will

these portions appear to constitute a single unbroken wall.

(3) But an appearance nearly, if not quite, indistinguishable

from this may be got in another way, namely, when the original

growing cell is so nearly hemispherical that it is actually divided

Fig. 285. Section of growing shoot

of Selaginella, diagrammatic.

Fig. 286. Embryo of Jungermannia.

After Kienitz-Gerloif.

by a vertical partition into two quadrants, and when from this vertical

partition, as it elongates, lateral partition-walls arise on either

side. Then, by the tensions exercised by these, the vertical partition

Fig. 287.

will be bent into little portions set at 120° one to another, and the

whole w^ill come to look just like that which, in the former case, was

made up of parts of many successive obhque partitions (Fig. 287).

Let us now, in one or two cases, follow out a httle further the

stages of cell-division whose beginnings we have studied in the

last paragraphs. In the antheridium of Riccia, after successive

obhque partitions have produced the longitudinal series of cells

shewn in Fig. 284, 4, it is plain that the next partitions will arise

periclinally, that is to say parallel to the outer wall, which coin-

cides with the short axis of the oblong cells. The effect is to produce
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an epidermal layer, whose cells subdivide further by partitions

perpendicular to the surface, that is to say crossing the flattened

cells by their shortest diameter. The inner mass consists of cells

which are still more or less oblong, or which become so in process of

growth; and these again divide, parallel to their short axes, into

squarish cells, which as usual, by the mutual tension of their walls,

become hexagonal as seen in a plane section. There is a clear dis-

tinction, then, in form as well as in position, between the outer

covering-cells and those which he within this envelope; the latter

are reduced to a condition which fulfils the mechanical function of a

protective coat, while the former undergo less modification, and

become the actively Uving, reproductive elements.

Fig. 288. Development of sporangium of Osmuuda. After Bower.

In Fig. 288 is shewn the development of the sporangium of a

fern (Osmunda). We may trace here the common phenomenon of

a series of oblique partitions, built alternately on one another, and

cutting off a conspicuous triangular apical cell. Over the whole

system an epidermal layer , is formed, in the manner we have

described; and in this case it covers the apical cell also, owing to

the fact that it was of such dimensions that, at one stage of growth,

a pericKnal partition wall, cutting off its outer end, was indicated

as of less area than an anticlinal one. This periclinal wall cuts

down the apical cell to the proportions, very nearly, of an equi-

lateral triangle, but the solid form of the cell is obviously that of

a tetrahedron with curved faces ; and accordingly, the least possible

partitions by which further subdivision can be effected will run

successively parallel to its four sides (or its three sides when we
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confine ourselves to the appearances as seen in section). The effect

, is to cut off on each side of the apical cell a characteristically

flattened cell, oblong as seen in section, still leaving a triangular

(or strictly speaking, a tetrahedral) one in the centre. The oblong

cells, which constitute no specific structure and perform no specific

physiological function*, but which merely represent certain direc-

tions in space towards which the whole system of partitioning has

gradually led, are called by botanists the "tapetum." The active

growing tetrahedral cell which lies between them, and from which

in a sense every other cell in the system has been either directly

or indirectly segmented off, still manifests its vigour and activity,

and becomes, by internal subdivision, the mother-cell of the spores.

In all these cases, for simplicity's sake, we have merely con-

sidered the appearances presented in a single longitudinal plane

of optical section. But it is not difficult to interpret from these

appearances what would be seen in another plane, for instance in

a transverse section. In our first example, for instance, that oi

the developing embryo of Sphagnum (Fig. 281 c, d), we see that,

at appropriate levels, the cells of the original cyhndrical row have

divided into transverse rows of four, and then of eight cells. We
may be sure that the four cells represent, approximately, quadrants

of a cylindrical disc, the four cells, as usual, not meeting in a point,

but intercepted by a small intermediate partition. Again, where

we have a plate of eight cells, we may well imagine that the eight

octants are arranged in what we have found to be the way naturally

resulting from the division of four quadrants, that is to say into

alternately triangular and quadrangular portions ; and this is found

by means of sections to be the case. The figure is precisely com-

parable to our previous diagrams of the arrangement of eight pells m
a dividing disc, save only that, in two cases, the cells have already

undergone a further subdivision.

It follows that we are apt to meet with this characteristic figure, in

one or other of its possible and strictly limited variations, in the

cross-sections of many growing structures, just as we have already

* This is not to say that Nature makes no use of the tapetal cells. In the end
they break down and contribute to the growth of the spore-mother-cell: very
much as the "superfluous" eggs in a fly's ovary contribute yolk-material to the

developing ovum.
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seen it appear in cases where the entire system consists of eight

cells only. For example, we have it in a section of a young embryo

of a moss (Phascum), and again, in a section of an embryo of a

fern (Adiantum). In Fig, 290, shewing a section through a growing

frond of a sea-weed (Girardia), we have a case where the partitions

forming the eight octants have conformed to the usual type; but

instead of the usual division by periclines of the four quadrangular

spaces, these latter are dividing by means of oblique septa, apparently

owing to the fact that the cell is not dividing into two equal, but

into two unequal portions. In this last figure we have a peculiar

look of stiffness or formahty, such that it appears at first to bear

little resemblance to the rest. The explanation is of the simplest.

The mode of partitioning differs little (except to some slight extent

Fig. 280. (A, B) Sections of younger and older embryos oi Phascum;

(C) do. of Adiantum. After Kienitz-Gerloff.

in the way already mentioned) from the normal type; but in this

case the partition walls are so thick and become so soon com-

paratively solid and rigid, that the secondary curvatures due to their

successive mutual tractions are here imperceptible.

A curious „and beautiful case, apparently aberrant but which

would doubtless be found conforming strictly to physical laws if

only we 'clearly understood the actual conditions, is indicated in

the development of the antheridium of a fern, as described by

Strasblirger. Here the antheridium develops from a single cell,

which (Fig. 291) has grown to something more than a hemisphere;

and the first partition, instead of stretching transversely across the

cell, as we should expect it to do if the cell were actually spherical,

has as it were sagged down to come in contact with the base, and

so to develop into an annular partition, running round the lower
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margin of the cell. The phenomenon is precisely identical to that

bisection of a quadrant by means of a circular arc, of which we

spoke on p. 581, and the annular film is very easy to reproduce

by means of a soap-bubble in the bottom of a cyUndrical dish or

beaker. The next partition is a perichnal one, concentric with the

outer surface of the young antheridium ; and this in turn is followed

by a concave partition which cuts off the apex of the original cell

:

but which becomes connected with the second, or perichnal partition

in precisely the same annular fashion as the first partition did with

the base of the httle antheridium. The result is that, at this stage,

we have four cell-cavities in the little antheridium- (1) a central

Fig. 291. Development of anthe-

11- c,n,. o ^- ^L L r J r ridium of Pteris. After Stras-
J^ig. 290. Section through frond of

Girardia sphacelaria. After Goebel. ^

cavity; (2) an annular space around the lower margin; (3) a narrow

annular or cylindrical space around the sides of the antheridium;

and (4) a small terminal or apical cell. It is evident that the

tendency, in the next place, will be to subdivide the flattened

external cells by means of anticlinal partitions, and so to convert

the whole structure into a single layer of epidermal cells, surrounding

a central cell within which, in course of time, the antherozoids are

developed.

The foregoing account deals only with a few elementary pheno-

mena, and may seem to fall far short of an attempt to deal in general

with "the forms of tissues." But it is the principle involved, and

not its ultimate and very complex results, that we can alone attempt

to grapple with. The stock-in-trade of mathematical physics, in

all the subjects with which that science "deals, is for the most part
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made up of simple, or simpKfied, cases of phenomena which in their

actual and concrete manifestations are usually too complex for

matheniatical analysis; hence, even in physics, the full mechanical

explanation of a phenomenon is seldom if ever more than the

''cadre ideal" towards which our never-finished picture extends.

When we attempt to apply the same methods of mathematical

physics to our biological and histological phenomena, we need

not wonder if we be Hmited to illustrations of a simple kind,

which cover but a small part of the phenomena with which

histology has to do. But yet it is only relatively that these pheno-

mena to which we have found the method appUcable are to be

deemed simple and few.. They go already far beyond the simplest

phenomena of all, such as we see in the dividing Protococcus, and

in the first stages, two-celled or four-celled, of the segmenting egg.,

They carry us into stages where the cells are already numerous,

and where the whole conformation has become by no means easy

to depict or visuahse, without the help and guidance which the

phenomena of surface-tension, the laws of equihbrium and the

principle of minimal areas are at hand to supply. And so far as

we have gone, and so far as we can discern, we see no sign of the

guiding principles faihng us, or of the simple laws ceasing to hold

good.



CHAPTER IX

ON CONCRETIONS, SPICULES, AND
SPICULAR SKELETONS

The deposition of inorganic material in the living body, usually

in the form of calcium salts or of silica, is a common phenomenon.

It begins by the appearance of small isolated particles, crystalline

or non-crystalline, whose form has little relation or none to the

structure of the organism; it culminates in the complex skeletons

of the vertebrate animals, in the massive skeletons of the corals, or

in the polished, sculptured and mathematically regular molluscan

shells. Even among very simple organisms, such as diatoms,

radiolarians, foraminifera or sponges, the skeleton displays extra-

ordinary variety and beauty, whether by reason of the intrinsic

form of its elementary constituents or the geometric symmetry with

which these are interconnected and arranged.

With regard to the form of these various structures (and this is

all that immediately concerns us here), we have to do with two

distinct problems, which merge with one another though they are

theoretically distinct. For the form of the spicule or other skeletal

element may depend solely on its chemical nature, as for instance,

to take a simple but not the only case, when it is purely crystalline

;

or the inorganic material may be laid down in conformity with the

shapes assumed by cells, tissues or organs, and so be, as it were,

moulded to the living organism ; and there may well be intermediate

stages in which both phenomena are simultaneously at work, the

molecular forces playing their part in conjunction with the other

forces inherent in the system.

So far as the problem is a purely chemical one we must deal

with it very briefly indeed: all the more because special investiga-

tions regarding it have as yet been few, and even the main facts

of the case are very imperfectly known. This at least is clear, that

the phenomena with which we are about to deal go deep into the

subject of colloid chemistry, and especially that part of the science
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which deals with colloids in connection with surface phenomena.

It is to the special student of the chemistry and physics of the

colloids that we must look for the elucidation of our problem*.

In the first and simplest part of our subject, the essential problem

is the problem of crystallisation in presence of colloids. In the cells

of plants true crystals are found in comparative abundance, and

consist, in the majority of cases, of calcium oxalate. In the stem

and root of the rhubarb for instance; in the' leaf-stalk of Begonia

and in countless other cases, sometimes within the cell, sometimes

in the substance of the cell-wall, we find large and well-formed

crystals of this salt; their varieties of form, which are extremely

numerous, are simply the crystalline forms proper to the salt itself,

and belong to the two systems, cubic and monocHnic, in one or other

of which, according to the amount of water of crystallisation, this

salt is known to crystalhse. When calcium oxalate crystalhses

according to the latter system (as it does when its molecule is com-

bined with two molecules of water), the microscopic crystals have

the form of fine needles, or "raphides"; these are very common in

plants, and may be artificially produced when the salt is crystallised

out in presence of glucose or of dextrinf

.

Calcium carbonate, on the other hand, when it occurs in plant-

cells, as it does abundantly (for instance in the "cystoliths" of the

Urticaceae and Acanthaceae, and in great quantities in Melobesia

and the other calcareous or "stony" algae), appears in the form

of fine rounded granules, whose inherent crystalline structure is

only revealed (like that of a molluscan shell) under polarised light.

Among animals, a skeleton of carbonate of lime occurs under a

multitude of forms, of which we need only mention a few of the

most conspicuous. The spicules of the calcareous sponges are

triradiate, occasionally quadriradiate, bodies, with pointed rays, not

crystalline in outward form but with a definitely crystalline internal

* There is much information regarding the chemical composition and minera-

logical structure of shells and other organic products in H. C. .Sorby's Presidential

Address to the Geological Society {Proc. G'eol. Soc. 1879, pp. 56-93); but Sorby

failed to recognise that association with "organic" matter, or with colloid matter

whether living or dead, introduced a new series of purely physical phenomena.

f Jidien \'esque, Sur la production artificielle de cristaux d"oxalate de chaux

semblables a ceux qui se forment dans les plantcs. Ann. Sc. Xat. (Bot.) (5) xix.

pp. 300-313. 1874.
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structure; we shall return again to these, and find for them what

would seem to be a satisfactory explanation of their form. Among

the Alcyonarian zoophytes we have a great variety of spicules*,

which are sometimes straight and slender rods, sometimes flattened

and more or less striated plates, and still more often disorderly

aggregations of micro-crystals, in the form of rounded or branched

concretions with rough or knobby surfaces t (Figs. 292, 298). A
third type, presented by several very different things, such as a

Fio;. 292. Alcyonarian sijicules: Siphonogorgia Sind AntJioyorgia. After Studer.

})earl or the ear-bone of a bony fish, consists of a more or less rounded

body, sometimes spherical, sometimes flattened, in which the cal-

careous matter is laid down in concentric zones, denser and clearer

layers alternating with one another. In the development of the

molluscan shell and in the calcification of a bird's egg or a crab's

shell, small spheroidal bodies with similar concentric striation make

their appearance; but instead of remaining separate they become

* Cf. Kolliker, Icones Histologicae, 1804, p. 119, etc.

t In rare cases, these shew a single optic axis and behave as individual crystals:

W.- J. Schmidt, Arch.f. Knhr. Mech. lt, pp. .")00-.V) 1 . 1922.
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crowded together, and in doing so are apt to form a pattern of

hexagons. In some cases the carbonate of lime, on being dissolved

away by acid, leaves behind it a certain small amount of organic

residue; in many cases other salts, such as phosphates of lime,

ammonia or magnesia, are present in small quantities; and in most

cases, if not all, the developing spicule or concretion is somehow so

associated with Hving cells that we are apt to take it for granted

that it' owes its form to the constructive or plastic agency of these.

The appearance of direct association with hving cells, however,

is apt to be fallacious; for the actual precipitation takes place, as

a rule, not in actively hving, but in dead or at least inactive tissue *

;

that is to say in the "formed material" or matrix which accumulates

round the living cells, or in the interspaces between these latter,

or, as often happens, in the cell-wall or cell-membrane rather than

within the substance of the protoplasm itself. We need not go the

length of asserting that this is a rule without exception; but, so

far as it goes, it is of great importance and to its consideration we

shall presently return f.

Cognate with this is the fact that, at least in some cases, the

organism can go on, in apparently unimpaired health, when stinted

or even wholly deprived of the material of which it is wont to make

its spicules or its shell. Thus the eggs of sea-urchins reared in lime-

free water develop, in apparent health and comfort, into larvae

which lack the usual skeleton of calcareous rods: and in which,

accordingly, the long arms of the Pluteus larva, which the rods

should support and extend, are entirely absent {. Again, when

foraminifera are kept for generations in water from which they

gradually exhaust the lime, their shells grow hyaline and trans-

parent, and dwindle to a mere chitinous peUicle; on the other hand,

In an interesting paper by Robert Irvine and Sims Woodhead on the Secretion of

carbonate of lime by animals (Proc. R.S.E. xv, pp. 308-316; xvi, pp. 324-351,

1889-90) it is asserted (p. 351) that "Hme salts, of whatever form, are deposited

only in vitally inactive tissue."

t The tube of Teredo shews no trace of organic matter, but consists of irregular

prismatic crystals: the whole structure "being identical with that of small veins

of calcite, such as are seen in thin sections of rocks" (Sorby, Proc. Geol. Soc. 1879,

p. 58). This, then, would seem to be a somewhat exceptional case of a shell laid

down completely outside of the animal's external layer of organic substance.

t Cf. Pouchet and Chabry, C.R. Soc. Biol. Paris (9), i, pp. 17-20, 1889; C.R.

Acad. Sci. cvm, pp. 196-198, 1889.
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in the presence of excess of lime their shells become much altered,

are strengthened with various ridges or "ornaments," and come to

resemble other varieties and even "species*."

The crucial experiment, then, is to attempt the formation of

similar spicules or concretions apart from the living organism. But

however feasible the attempt may be in theory, we must be prepared

to encounter many difficulties; and to realise that, though the

reactions involved may be well within the range of physical chemistry,

yet the actual conditions of the case may be so complex, subtle and

dehcate that only now and then, and only in the simplest of cases,

has it been found possible to imitate the natural objects successfully.

Such an attempt is part of that wide field of enquiry through which

Stephane Leduc and other workers have sought to produce, by

synthetic means, forms similar to those of living things; but it is

a circumscribed and well-defined part of that wider investigationf.

When we find ourselves investigating the forms assumed by

chemical compounds under the pecuhar circumstances of association

with a Hving body, and when we find these forms to be characteristic

or recognisable, and somehow different from those which the same

substance is wont to assume under other circumstances, an analogy,

captivating though perhaps remote, presents itself to our minds

between this subject of ours and certain synthetic problems of the

organic chemist. There is doubtless an essential difference, as well

as a difference of scale, between the visible form of a spicule or con-

* Cf. Heron-Allen, Phil. Trans. (B), ccvi, p. 262, 1915.

f Leduc's artificial growths were mostly obtained by introducing salts of the

heavy metals or alkaline earths into solutions which form with them a "precipitation-

membrane"—as when we introduce copper sulphate into a ferrocyanide solution.

See his Mechanism of Life, 1911, ch. x, for copious references to other works on

the "artificial production of organic forms." Closely related to Leduc's experi-

ments are those of Denis Monnier and Carl Vogt, Sur la fabrication artificielle

des formes des elements organiques, Journ. de VAnaf. xviii, pp. 117-123, 1882;

cf. Moritz Traube, Zur Geschichte der mechanischen Theorie des Wachstums der

organischen Zelle, Botan. Ztg. xxxvi, 1878. Cf. also A. L. Herrera, Sur les

phenomenes de vie apparente observes dans les emulsions de carbonate de chaux

dans la silice gelatineuse, Mem. Soc. Alzaje, Mexico, xxvi, 1908; Los Protobios,

Boll, de la Dir. de Estud. Biolog., Mexico, i, pp. 607-631, and other papers. Also

{int. al.) R. S. Lillie and E. N. Johnston, Precipitation-structures simulating organic

growth, Biol. Bull, xxxiii, p. 135, 1917; xxxvi, pp. 225-272, 1919; Scientific

Monthly, Feb. 1922, p. 125; H. W. Morse, C. H. Warren and J. D. H. Donnay,

Artificial spherulites, etc., Ainer. .11. of Sci. (5) xxiii, pp. 421-439, 1932.
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cretion and the hypothetical form of an individual molecule. But

molecular form is a very important concept; and the chemist has

not only succeeded, since the days of Wohler, in synthetising many
substances which are characteristically associated with living matter,

but his task has included the attempt to account for the molecular

forms of certain "asymmetric" substances—glucose, malic acid and

many more—as they occur in Nature. These are bodies which, when

artificially synthetised, have no optical activity, but which, as we

actually find them in organisms, turn (when in solution) the plane

of polarised hght in one direction rather than the other; thus

dextroglucose and laevomahc acid are common products of plant

metabohsm, but dextromalic acid and laevoglucose do not occur in

Nature at all. The optical activity of these bodies depends, as

Pasteur shewed eighty years ago*, upon the form, right-handed or

left-handed, of their molecules, which molecular asymmetry further

gives rise to a corresponding right- or left-handedness (or enantio-

morphism) in the crystalline aggregates. It is a distinct problem

in organic or physiological chemistry, and by no means without its

interest for the norpholonrist, to discover how it is that Nature, for

each particular substance, habitually builds up, or at least selects,

its molecules in a one-sided fashion, right-handed or left-handed as

the case may be. It will serve us no better to assert that this pheno-

menon has its origin in "fortuity" than to repeat the Abbe Galiani's

saying, ''les des de la nature sont pipes.''

The problem is not so closely related to our immediate subject

that we need discuss it at length; but it has its relation, such as it

is, to the general question oi form in relation to vital phenomena,

and it has its historic interest as a theme of long-continued discussion.

According to Pasteur, there lay in the molecular asymmetry of

the natural bodies and their symmetry when artificially produced,

one of the most deep-seated differences between vital and non-vital

phenomena: he went further, and declared that "this was perhaps

the only well-marked line of demarcation th'at can at present [1860]

be drawn between the chemistry of dead and of living matter."

Nearly forty years afterwards the same theme was pursued and

* Lectures on the molecular asymmetry of natural organic compounds, Chemical

Soc. of Paris, 1860; also in Ostwald's Klassiker d. exact. Wiss. No. 28, and in

Alembic Club Reprints, No. 14, Edinburgh, 1897; cf. G. M. Richardson, Foundations

of Stereochemistry, New York, 1901.
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elaborated by Japp in a celebrated lecture*, and the distinction

still Has its weight, I believe, in the minds of many chemists.

"We arrive at the conclusion," said Professor Japp, "that the

production of single asymmetric compounds, or their isolation from

the mixture of their enantiomorphs, is, as Pasteur firmly held, the

prerogative of life. Only the living organism, or the Hving intelH-

gence with its conception of asymmetry, can produce this result.

Only asymmetry can beget asymmetry." In these last words

(which, so far as the chemist and the biologist are concerned, we

may acknowledge to be truef) lies the crux of the difficulty.

Observe that it is only the first beginnings of chemical asymmetry

that we need discover; for when asymmetry is once manifested,

it is not disputed that it will continue "to beget asymmetry."

A plausible suggestion is at hand, which if it were confirmed and

extended would supply or at least sufficiently illustrate the kind of

explanation that is required. We know that when ordinary non-

polarised light acts upon a chemical substance, the amount of

chemical action is proportionate to the amount of light absorbed.

We know in the second place J that light circularly polarised is

absorbed in certain cases in different amounts by the right-handed

or left-handed varieties of an asymmetric substance. And thirdly,

we know that a portion of the light which comes to us from the sun

is already plane-polarised hght, which becomes in part circularly

polarised, by reflection (according to Jamin) at the surface of the

sea, and then rotated* in a particular direction under the influence

of terrestrial magnetism. We only require to be assured that the

relation between absorption of light and chemical activity, will

continue to hold good in the case of circularly polarised light;

that is to say that the formation of some new substance or other,

under the influence of light so polarised, will proceed asymmetrically

in consonance with the asymmetry of the light itself; or conversely,

* F. R. Japp, Stereochemistry and vitalism, Brit. Ass. Rep. (Bristol), 1898, p. 813;

cf. also a voluminous discussion in Nature, 1^98-91).

. t They represent the general theorem of which particular cases are found, for

instance, in the asymmetry of the ferments (or enzymes) which act upon
asymmetrical bodies, the one fitting the other, according to Emil Fischer's well-

known phrase, as lock and key. Cf. his Bedeutung der Stereochemie fiir die

Physiologie, Z. f. physiol. Chemie, v, p. 60, 1899, and various papers in the Ber.

d. d. cheni. (Jes. from 1894.

+ Cf. Cotton. Ann. de Chim. el de Phys. (7), viii, pp. 347-432 (cf. p. 373), 1896.
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that the asymmetrically polarised light will tend to more rapid

decomposition of those^ molecules by which it is chiefly absorbed.

This latter proof is said to be furnished by Byk*. who asserts

that certain tartrates become unsymmetrical under the continued

influence of the asymmetric rays. Here then we seem to have

an example, of a particular kind and in a particular instance, an

example hmited but yet crucial if confirmed, of an asymmetric

force, non-vital in its origin, which might conceivably be the

starting-point of that asymmetry which is characteristic of so many
organic products.

The mysteries of organic chemistry are great, and the differences

between its processes or reactions as they are carried out in the

organism and in the laboratory are manyt; the actions, catalytic

and other, which go on in the living cell are of extraordinary

complexity. But the contention that they are different in kind

from ordinary chemical operations, or that in the production of

single asymmetric compounds there is actually, as Pasteur main-

tained, a "prerogative of life," would seem to be no longer tenable.

Oiir historic interest in the whole question is increased by the

fact, or the great probability, that "the tenacity with which Pasteur

fought against the doctrine of spontaneous generation was not

unconnected with his belief that chemical compounds of x)ne-sided

symmetry could not arise save under the influence of hfej." But

the question whether spontaneous generation be a fact or not does

not depend upon theoretical considerations; our negative response

is based, and is soundly based, on repeated failures to demonstrate

its occurrence. Many a great law of physical science, not excepting

gravitation itself, has no higher claim on our acceptance.

Let us return from this digression to the general subject of the

forms assumed by certain chemical bodies when deposited or

precipitated within the organism, and to the question of how far

these forms may be artificially imitated or theoretically explained.

* A, Byk, Zur Frage der 8paltbarkeit von Racemverbindungen durch zirkular-

polarisiertes Licht, ein Beitrag zur primaren Entstehung optisch-activer Substanzen,

Zeitsch. f. physikal. Chetnie, xlix, pp. 641-687, 1904. It must be admitted that

positive evidence on these lines is still awanting.

f Cf, (int. al.) Emil Fischer, Untersuchungen iiber Aminosduren, Proteine, etc.

Berlin, 1906.

J Japp, loc. cit. p. 828.
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Mr George Rainey, of St Thomas's Hospital (of whom we have

spoken before), and Professor P. Harting, of Utrecht, were the

first to deal with this specific problem. Rainey published, between

1857 and 1861, a series of valuable and thoughtful papers to shew

that shell and bone and certain other organic structures were formed

"by a process of molecular coalescence, demonstrable in certain

artificially formed products*." Harting, after thirty years of

experimental work, published in 1872 a paper, which has become

classical, entitled Recherches de morphologie synthetique, sur la pro-

duction artificielle de quelques fonnations calcaires organiques f ; his

aim was to pave the way for a "morphologie synthetique," as

Wohler had laid the foundations of a "chimie synthetique" by his

classical discovery forty years before.

Rainey and Harting used similar methods—and these were such

as other workers have continued to employ—partly with the direct

object of explaining the genesis of organic forms and partly as an

integral part of what is now known as Colloid Chemistry. The gist

of the method was to bring some soluble salt of hme, such as the

chloride or nitrate, into solution within a colloid medium, such as

gum, gelatine or albumin; and then to precipitate it out in the

form of some insc/luble compound, such as the carbonate or oxalate.

Harting found that, when he added a httle sodium or potassium

carbonate to a concentrated solution of calcium chloride in albumin,

he got at first a gelatinous mass, or "colloid precipitate": which

slowly transformed by the appearance of tiny microscopic particles,

* George Rainey, On the- elementary formation of the skeletons of animals, and

other hard structures formed in connection with living tissue, Brit, and For. Med.

Ch. Rev. XX, pp. 451-476, 1857; published separately with additions, 8vo, London,

1858. For other papers by Rainey on kindred subjects see Q.J.M.S. vi (Tr.

Microsc. Soc), pp. 41-50, 1858; vii, pp. 212-225, 1859; vm, pp. 1-10, 1860;

I (n.s.), pp. 23-32, 1861. Cf. also W. Miller Ord, On the influence exercised by colloids

upon crystalline form, pp. x, 179, 1874; cf. also Q.J.M.S. xii, pp. 219-239, 1872;

also the early but still interesting observations of Mr Charles Hatchett, Chemical

experiments on zoophytes; with some observations on the component parts of

membrane, Phil. Trans. 1800, pp. 327-402. For early references to sclerites formed

in cells, see (e.g.) L. Selenka, Z.J.w.Z. xxxiii, p. 45, 1879 and R. Semon, Mitth.

Zool. St. Neapel, vii, p. 288, 1886 (both in holothurians) ; Blochmann, Die

Epithelfrage hei Cestodenu. Trcmatoden, Hamburg, 1896; also Leger's Observations

on crystals of calcium oxalate in tlie cysts ,of Lithocystis Schneider i, A. M.N. II. (6),

xviii^ p. 479, 1895.

t Cf. Q.J.M.S. XII, pp. 118-123, 1872.
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shewing, as they grew larger, the typical Brownian movement. So

far, much the same phenomena were witnessed whether the solution

were albuminous or not, and similar appearances indeed had been

witnessed and recorded by Gustav Rose, so far back as 1837*; but

in the later stages the presence of albuminoid matter made a great

difference. Now, after a few days, the calcium carbonate was seen

to be deposited in the form of large rounded concretions, each with

a more or less distinct central nucleus and with a surrounding

structure at once radiate and concentric; the presence of concentric

zones or lamellae, alternately dark and clear, was especially charac-

teristic. These round " calcospherites " shewed a tendency to

aggregate in layers, and then to assume polyhedral, often regularly

hexagonal, outhnes. In this latter condition they closely resemble

the early stages of calcification in a molluscan (Fig. 296), or still

more in a crustacean shell f; while in their isolated condition they

* Cf. Quincke, Ueber unsichtbare Flussigkeitsschichten, etc., Ann. der Physik

(4), VII, pp. 631-682, 701-744, 1902.

t See for instance other excellent illustrations in Carpenter's article "Shell,"

in Todd's Cyclopcedia, iv, pp. 556-571, 1847-49. According to Carpenter, the

shells of the mollusca (and also of the Crustacea) are "essentially composed of

cells, consolidated by a deposit of carbonate of lime in their interior." That is

to say, Carpenter supposed that the spherulites or calcospherites of Harting were,

to begin with, just so many living protoplasmic cells. Soon afterwards, however,

Huxley pointed out that the mode of formation, while at first sight "irresistibly

suggesting a cellular structure. . .is in reality nothing of the kind," but "is simply

the result of the concretionary manner in which the calcareous matter is deposited";

ibid. art. "Tegumentary organs," v, p. 487, 1859. Quekett (Lectures on Histology,

II, p. 393, 1854, and Q.J.M.S. xi, pp. 95-104, 1863) supported Carpenter; but^

Williamson (Histological features in the shells of the Crustacea, Q.J.M.S. viii,

pp. 35-47, 1860) amply confirmed Huxley's view, which in the end Carpenter

himself adopted {The Microscope, 1862, p. 604). A like controversy arose later

in regard to corals. Mrs Gordon (M. M. Ogilvie) asserted that the coral was built

up "of successive layers of calcified cells, which hang together at first by their

cell-walls, and ultimately, as crystalline changes continue, form the individual

laminae of the skeletal structures" {Phil. Trans, clxxxvii, p. 102, 1896): whereas

von Koch had figured the coral as formed out of a mass of " Kalkconcremente

"

or "crystalline spheroids," laid down outside the ectoderm, and precisely similar

both in their early rounded and later polygonal stages (though von Koch was not

aware of the fact) to the calcospherites of Harting (Entw. d. Kalkskelettes von

Astroides, Mitth. Zool. St. Neapel, iii, pp. 284-290, pi. xx, 1882). Lastly, W. H.

Bryan finds all ordinary corals {Hexacoralla) to be mineral aggregates formed by

"spherulitic crystallisation," due in turn to the presence of a colloid matrix secreted

by certain areas of ectoderm; see Prof . R.S. Queensland, Lu, pp. 41-53, 1940; Univ.

of Queensland Papers, Geology, u, 4 and 5, 1941. Cf. J. E. Duerden, On Siderastraea

.

Carnegie Inst. Washington, 1904, p. 34.
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Fig. 293. Calcospherites, or con-

cretions of calcium carbonate,

deposited in white of egg.

^fter Harting.

Fig. 294. A single

calcospherite, with

central "nucleus,"

and striated, iride-

scent border. After

Harting.

Fig. 295. Later stages in the same experiment-

A B

Fig. 2y(), A, Section of shell; B, Section of hinge-tooth of Mya.

After Carpenter.
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closely resemble the little calcareous bodies in the tissues of a

trematode or a cestode worm, or in the oesophageal glands of an

earthworm*.

When the albumin was somewhat scanty, or when it was mixed

with gelatine, and especially when a little phosphate of lime was

added to the mixture, the spheroidal globules tended to become

rough, by an outgrowth of spinous or digitiform projections; and

Fig. 297. Large irregular calcareous concretions, or spicules, deposited in a piece

of dead cartilage, in presence of calcium phosphate. After Harting.

in some cases, but not without the presence of the phosphatef, the

result was an irregularly shaped knobJ3y spicule, precisely similar

to those which are characteristic of the Alcyonaria%.

The rough spicules of the Alcyonaria are extraordinarily variable in shape

and size, as, looking at them from the chemist's or the physicist's point of

view, we should expect them to be. Partly upon the form of these spicules,

and partly on the general form or mode of branching of the entire colony of

polyps, a vast number of separate "species" have been based by systematic

* Cf. Claparede, Z.f.w.Z. xix, p. 604, 1869. On the structure of the moUuscan
shell, see O. B. Boggild, K. Vidensk. Selsk. Skr., Kjobenh., (9) ii, 1930. On nacre,

or mother-of-pearl, see Brewster, Treatise on Optics, 1853, p. 137; Schmidt, Die

Bausteine der Tierkorper in polarisirtem Licht, Bonn, 1924. Also S. Ruma Swamy,
Proc. Ind. Acad. Sci. (A), i, p. 871, 1935; P. S. Srinivasam, ibid, v, pp. 464-483,

1937; and, on the specific qualities of the nacre in the several divisions of the

Mollusca, Sir C. V. Raman, ibid. pp. 559, etc., 1935.

t On the deposition of phosphates in organisms, cf. Pauli u. Samec, Biochem.

/Aschr. XVII, p. 235, 1909; Wiener mediz. Wochenschr. 1910, pp. 2287-2292.

X Spicules much like those of the Alcyonaria occur also in a few sponges; cf. (e.g.),

V'aughan Jennings, Journ. Linn. Soc. xxiii, p. .")31, pi. 13, fig. 8, 1891.



ixj OF SPHERULITES OR CALCOSPHERITES 657

zoologists./ But it is now admitted that even in specimens of a single species,

from one and the same locality, the spicules may vary immensely in shape

and size: and Professor S. J. Hickson declared that after many years of

laborious work in striving to determine species of these animal colonies, he

felt "'quite convinced that we have been engaged in a more or less fruitless

task*."

The formation of a tooth is a phenomenon of the same order. That is to

say, '"calcification in both dentine and enamel is in great part a physical

phenomenon; the actual deposit in both tissues occurs in the form of calco-

spherites, and the process in mammalian tissue is identical in every point with

Fig^ 298. Additional illustrations of alcyonarian spicules: Eunicea. After Studer.

the same process occurrmg m lower organisms!." The ossification of bone,

we may be sure, is in the same sense and to the same extent a physical

phenomenon.

The typical structure of a calcospherite is no other than that of

a pearl, nor does it differ essentially from tha^ of the otohth of a

mollusc or of a bony fish. (The otoliths of the elasmobranch fishes,

like those of reptiles and birds, are not developed after this fashion,

but are true crystals of calc-spar.)

The effect of surface-tension is manifest throughout these pheno-

mena. It is by surface-tension that ultra-microscopic particles are

brought together in the first floccular precipitate or coagulum; by

* Mem. Manchester Lit. and Phil. Soc. lx, p. II, 1916.

t J. H. Mummery. On calcification in enamel and dentine, Phil. Trans. (B),

rev, pp. 95-111. 1914.
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the same agency the coarser particles are in turn agglutinated into

visible lumps; and the form of the calcospherites, whether it be

that of the solitary spheres or that assumed in various stages of

aggregation (e.g. Fig. 300)*, is hkewise due to the same agency.

From the point of view of colloid chemistry the whole pheno-

menon is important and significant; and not the least significant

part is this tendency of the solidified deposits to assume the form

of "spheruhtes" and other rounded contours. In the phraseology

Fig. 299. A "crust" of close-packed

calcareous concretions, precipitated Fig. 300. Aggregated calco-

at the surface of an albuminous spherites. After Harting.

solution. After Harting.

of that science, we are dealing with a iwo-phase system, which

finally consists df solid particles in suspension in a liquid—a disperse

phase ir^ a dispersion medium. In accordance with a rule first

recognised by Ostwald, when a substance begins to separate out

from a solution, so making its appearance as a new phase, it always

makes its appearance first as a liquid f. Here is a case in point.

The minute quantities of material, on th^ir way from a state of

solution to a state of "suspension," pass through a Hquid to a sohd

form; their temporary sojourn in the former leaves its impress in

the rounded contours which surface-tension brought about while the

httle aggregate was still labile or fluid : while coincidently with this

surface-tension effect, crystallisation tends to take place throughout

the httle liquid mass, or in such portions of it as have not yet con-

solidated and crystallised.

* The artificial concretion represented in Fig. 300 is identical in appearance

with the concretions found in the kidney oi Nautilus, as figured by Willey (Zoological

Results, p. Ixxvi, Fig. 2, 1902).

t This rule, undreamed of by Errera, supports and justifies his cardinal

assumption (of which we have had so much to say in discussing the forms of cells

and tissues) that the incipient cell-wall behaves as, and indeed actually is, a liquid

film (cf. p. 482).
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Where we have simple aggregates of two or three calcospherites

the resulting figure is that of so many contiguous soap-bubbles.

In other cases composite forms result which are not so easily ex-

plained, but which, if we could only account for them, would be

of very great interest to the biologist. For instance, when smaller

calcospheres seem, as it were, to invade the substance of a larger one,

we get curious conformations which somewhat resemble the outlines

of certain diatoms (Fig. 301). Another curious formation, which

Harting calls a '"conostat," is of frequent occurrence, and in it we

Fig. .'iUl. Composite calcospheres. Alter Harting.

see at least a suggestion of analogy with the configuration which,

in a protoplasmic structure, we have spoken of as a "collar-cell."

The conostats, which are formed in the surface layef of the solution,

consist of a portion of a spheroidal calcospherite, whose upper part

is continued into a thin spheroidal collar of somewhat larger radius

than the solid sphere; but the precise manner in which the collar,

is formed, possibly around a bubble of gas, possibly about a vortex-

like diffusion-current, is not obvious.

Among these various phenomena, the concentric striation of the

calcospherite has acquired a special interest and importance*. It

is part of a phenomenon now widely known under the name of

"Liesegang's Ringst."

* Cf. Harting, op. cit. pp. 22, 50: "J'avais cru d'abord que ces couches

concentriques etaient produites par I'alternance de la chaleur ou de la lumiere,

pendant le jour et la nuit. Mais I'experience, expressement instituee pour

examiner cette question, y a repondu negativement."

f R. E. Liesegang, Ueber die Schichtungen hei Diffusionen, Leipzig, 1907, and

earlier papers. A periodic precipitate is said to have been first noticed (on filter-

paper) by Runge, in 1885; cf. Quincke, Ueber unsichtbare Fliissigkeitsschichten,

Ann. d. Physik (4), vii, pp. 643-7, 1902. On a very minute periodicity in the

so-called Hookham's crystals, formed by crystallising copper sulphate and salicin

in strong syrup, see Rayleigh, Collected Papers, vi, p. 661: "There is much here,"'

says Rayleigh, '"to excite admiration and perj)lexity."
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If we dissolve, for instance, a little potassium bichromate in

gelatine, pour it on to a glass plate, and after it is set pour upon it a

drop of silver nitrate solution, there appears in the course of a few

hours the phenomenon of Liesegang's rings. At first the silver

Fig. 302. Conostats. * After Harting.

forms a central patch of abundant reddish-brown chromate pre-

cipitate; but around this, as the silver nitrate diffuses slowly

through the gelatine, the precipitate no longer comes down con-

tinuously, but forms a series of concentric rings or zones, beautifully

Fig. .303. Liesegang'.s rings. After Leduc.

regular, which alternate with clear interspaces of jelly and stand

farther and farther apart in a definite ratio as they recede from

the centre*. For a discussion of the raison d'etre of this phenomenon,

the student will consult the textbooks of physical and colloid

chemistry. But, speaking generally, we may say that the appearance

* It is now known that periodic precipitation may be exhibited even in aqueous

solutions, and that what the gel does is to enlarge the intervals, and to enhance

the phenomenon, by affecting the rate or relative rates of diffusion. Cf. H. W.
Morse, Journ. Phys. Chem. 1931.
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of Liesegang's rings is but a particular case of a more general

phenomenon, namely the influence on crystalhsation of the presence

of foreign bodies or "impurities," represented in this case by the

gel or colloid matrix. F. S. Beudant had shewn in a fine paper,

more than a hundred years ago, that impurities were the chief cause

of variation of crystal habit*. Faraday proved that to diffusion

in presence of slight impurities, not to actual stratification or

altei'nate deposition, could be ascribed the banded structure of ice,

Fig. 304. The Liesegang phenomena. After Emil Hatschek.

of agate or of onyx; and Quincke and Tomhnson added to our

scanty knowledge of this remarkable phenomenon f. Ruskin, who

knew a great deal about agates, spoke of the perpetual difficulty of

distinguishing "between concretionary separation and successive

deposition." And Rayleigh shewed how to such a periodic, but

* F. S. Beudant, Recherehes sur les causes qui peuvent varier les formes crystal-

lines d'une meme substance minerale, Ann. de Chimie, viii, pp. 5-52, 1818. See

also his Memoire sur les parties solides des MoUusques, Mem. du Museum, xv,

pp. 66-75, 1810.

t Cf. Faraday, On ice of irregular fusibility, Phil. Trans. 1858, p. 228; Researches

in Chemistry, etc., 1859, p. 374; Canon Moseley, On the veined structure of the

ice of glaciers, Phil. Mag. (4), xxxix, p. 241, 1870; R. Weber, in Poggend. Ann.

cix, p. 379, 1860; Tyndall, Forms of Water, 1872, p. 178; C. Tomlinson, On some

eflFects of small quantities of foreign matter on crystallisation, Phil. Mag. (5)

XXXI, p. 393, 1891, and other papers. Cf. Liesegang, Centralbl. f. Mineralogie,

XVI, p. 497, 1911; E. S. Hedges and J. E. Myers, The ^problem, of physico-chemical

periodicity, London, 1926; W. F. Berg, Crystal growth from solutions, Proc. R.S. (A),

CLxi\', pp. 79-95, 1938.
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unstratified structure all the colours of the opal and the iridescence

of ancient glass are alike due.

Besides the tendency to rhythmic action, as manifested in

Liesegang's rings, the association of colloid matter with a crystalloid

in solution may lead to other well-marked effects. These include*:

(1) the total prevention of crystallisation; (2) suppression of certain

of the lines of crystal growth; (3) extension of the crystal to

abnormal proportions, with a tendency to become compound;

(4) a curving or gyrating of the crystal or its parts.

It would seem that, if the supply of material to the growing

crystal begin to run short (as may well happen in a colloid medium

for lack of convection-currents), then growth will follow only the

strongest lines of crystallising force, and will be suppressed or

partially suppressed along other axes. The crystal will have a

tendency to become filiform, or ''fibrous"; and the raphides of our

plant-cells, and the needle-hke "oxyotes" of sponges, are cases in

point. Again, the long slender crystal so formed, pushing its way

into new material, may start a new centre of crystallisation:

whereby we get the phenomenon known as a "relay," along the

principal lines of force and sometimes along subordinate axes as

well. This phenomenon is illustrated in the accompanying figure

of common salt crystaUising in a colloid medium; and it may be

that we have here an explanation, or part of an explanation, of

the compound siliceous spicules of the Hexactinellid sponges.

Lastly, when the crystaUising force is nearly equalled by the

resistance of the viscous medium, the crystal takes the fine of least

resistance, with very various results. One of these results would

seem to be a gyratory course, giving to the crystal a curious wheel-

like shape, as in Fig. 306; and other results are the feathery,

fern-like or arborescent shapes so frequently seen in microscopic

crystallisation.

To return to Liesegang's rings, the typical appearance of con-

centric rings upon a plate of gelatine may be modified in various

experimental ways. For instance, if our gelatinous medium be placed

in a capillary tube immersed in a solution of the precipitating salt,

we obtain (Fig. 304) a vertical succession of bands or zones regularly

* Cf. J. H. Bowman, A study in crystallisation, Journ. Soc. of Chem. Industry,

XXV, p. 143, 1906.
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interspaced : the result being very closely comparable to the banded

pigmentation which we see in the hair of a rabbit or a rat. In the

ordinary plate preparation, the free surface of the gelatine is under

different conditions to the layers below and especially to the lowest

layer of all in contact with the glass; and so we often obtain a

Fig. 305. Relay- crystals of common salt. After Bowman.

double series of rings, one deep and the other superficial, whiclj. by

occasional blending or interlacing may produce a netted pattern.

Sometimes, when only the inner surface of our capillary tube is

covered with a layer of gelatine, there is a tendency for the deposit

Fig. 306. Wheel-like crystals in a colloid. After Bowman.

to take place in a continuous spiral, rather than in concentric and

separate zones. By such means, -according to Kiister*, various

forms of annular, spiral and reticulated thickenings in the vascular

tissue of plants may be closely imitated ; and he and certain other

writers have been incHned to carry the same chemico-physical

* E. Kiister, Ueber die Schichtung der Starkekorner, Ber. d. botan. Gesellsch.

XXXI, pp. 339-346, 1913; Ueber Zonenbildung in kolloidalen Medien, Roll. Ztachr.

xiii, pp. 192-194; XIV, pp. 307-319, 1913-14.
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phenomenon a very long way, in the explanation of various banded,

striped, and other rhythmically successional types of structure or

pigmentation. The striped leaves of many plants (such as Eulalia

jajponica), the striped or clouded colouring of many feathers or of

a cat's skin, the patterns of many fishes, such for instance as the

brightly coloured tropical Chaetodonts and the like, are all regarded

by him as so many instances of "diffusion-figures" closely related

to the typical Liesegang phenomenon. Gebhardt* declares that the

banded wings of Papilio podalirius are analogous to or even closely

imitated in Liesegang's experiments; that the finer markings on

the wings of the goatmoth shew a double rhythm, alternately

coarse and fine, such as 'is manifested in certain experimental cases

of the same kind ; that the alternate banding of the antennae (for

instance in Sesia spheciformis), a pigmentation not concurrent with

the antennal joints, is exphcable in the same way; and that the

ocelli on the wings of the Emperor moth are typical illustrations

of the common concentric type. Darwin's well-known disquisition

on the ocellar pattern of the feathers of the Argus pheasant, as a

result of sexual selection, will occur to the reader's mind, in striking

contrast to this or to any other direct physical explanationf.

To turn from the distribution of pigment to more deeply seated

structural characters, Leduc has argued, for instance, that the

laminar structure of the cornea or the lens is, or may be, a similar

phenomenon. In the lens of the fish's eye, we have a very curious

appearance, the consecutive lamellae being roughened or notched

by close-set, interlocking sinuosities; and the same appearance,

save that it is not quite so regular, is presented in one of Klister's

figures as the effect of precipitating a little sodium phosphate in

a gelatinous medium. Biedermann has studied, from the same

* Verh. d. d. zool. Gesellsch. p. 179, 1912.

t As a matter of fact, the phenomena associated with the development of an

"ocellus" are or may be of great complexity, inasmuch as they involve not only

a graded distribution of pigment, but also, in "optical" coloration, a symmetrical

distribution of structure or form. The subject therefore deserves very careful

discussion, such as Bateson gives to it
(
Variation, chap. xii). This, by the way,

is one of the very rare cases in which Bateson appears inclined to suggest a purely

physical explanation of an organic phenomenon: "The suggestion is strong that

the whole series of rings (in Morpho) may have been formed by some one central

disturban(»e, somewhat as a series of concentric waves may be formed by the splash

of a stone thrown into a pool." Cf. Darwin, Descent of Man, ii, p. 132, 1871.
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point of view, the structure and development of the molluscan shell,

the problem which Rainey had first attacked more than fifty years

before*; and Liesegang himself has applied his results to the

formation of pearls, and, as Bechhold has also done, to the develop-

ment of bonef.

The presence of concentric rings or zones in slow-growing

structures is evidently after some fashion a function of the time,

and an indication of periodic acceleration or variation of growth;

it is apt to be referred, rightly or wrongly, to the seasons of the

year, and to be interpreted (with or without confirmation and proof)

as a sure mark and measure of the creature's age. This is the case,

for instance, with the scales, bones and otoliths of fishes; and a

kindred phenomenon in starch-grains has given rise, in like manner,

to the belief that they indicate a diurnal and nocturnal periodicity

of activity and rest J on the part of the cell wherein they grew.

That this is actually the case in growing starch-grains is often

if not generally beheved, on the authority of Meyer §; but while

under certain circumstances a marked alternation of growing and

resting periods may occur, and may leave its impress on the structure

of the grain, there is now more reason to beheve that, apart from

such external influences, the internal phenomena of diffusion may,

just as in the typical Liesegang experiment, produce the well-known

concentric rings. The spherocrystals of inulin, in like manner,

shew, like the calcospherites of Harting (Fig. 307), a concentric

structure which in all likelihood has had no causative impulse save

from within.

The striation, or concentric lamellation, of the scales and otoHths

of fishes has been much employed, not as a mere indication, but

* Cf. also Sir D. Brewster, On optical properties of mother of pearl, Phil. Trans.

1814, p. 397; and J. F. W. Hersehel, in Edin. Phil. Journ. ii, p. 116, 1819.

f VV. Biedermann, Ueber die Bedeutung von KristaUisationsprozessen der

Skelette wirbelloser Thiere, naraentlich der Molluskenschalen, Z. f. allg. Physiol.

I, p. 154, 1902; Ueber Bau und Entstehung der Molluskenschale, Jen. Zeitschr.

XXXVI, pp. 1-164, 1902. Cf. also Steinmann, Ueber Schale und Kalksteinbildungen,

Ber. Naturf. Ges. Freiburg i. Br. iv, 1889; Liesegang, Naturw. Wochenschr. 1910.

p. 641; Arch. f. Entw. Mech. xxxiv, p. 452, 1912; H. Bechhold, Ztschr. f. phys.

Chem. Lii, p. 185, 1905.

X Cf. Biitschli, Ueber die Herstellung kiinstlicher Starkekorner oder von

Spharokrystallen der Starke, Verh. nat. med. Ver. Heidelberg, v, pp. 457-472, 1896.

§ UntersuchiLngen ilber die Stdrkekorner, Jena, 1905.
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as a trustworthy and unmistakeable measure of the- fish's age (see

ante, p. 180). There are some difficulties in the way of accepting

this hypothesis, not the least of which is the fact that the otolith-

zones, for instance, are extremely well marked even in the case of

some fishes which spend their lives in deep water, where temperature

and other physical conditions shew little or no appreciable fluctuation

with the seasons of the year. There are, on the other hand, pheno-

mena which seem strongly confirmatory of the hypothesis: for

instance, the fact (if it be fully established) that in such a fish as

the cod, zones of growth^ identical in number, are found both on

Fig. 307. A sphero-

crystal of" inulin.

Fig. .*i08. Otoliths of plaice, shewing

four zones or "age-rings." After

Wallace.

the scales and in the otoliths*. The subject is as difficult as it is

important, but it is at least certain, with the Liesegang pheno-

menon in view, that we have no right to assume, without proof

and confirmation, that rhythm and periodicity in structure and

growth are necessarily bound up with, and indubitably brought

about by, a periodic or seasonal recurrence of particular external

conditions^.

But while in the ordinary Liesegang phenomenon rhythmic

* Cf. Winge, Meddel. fra Komni, for Havundersogelse {Fiskeri), iv, p. 20, Copen-

hagen, 1915.

t A. VV. Morosow strongly supports the view—uncertain as it seems to be

—

that the concentric pattern of a fish's scale is due to the Liesegang phenomenon;
he produces an "artificial scale," with its "summer and winter rings," by

precipitating sodium carbonate and calcium chloride in gelatin: Zur Frage iiber

die Natur des Schuppenwachstums bei Fischen (and in Russian), Nation. Comm.
Agriculture: Rep. Sci. Inst. Fisheries, i, Moscow, 1924; abstract in Michael

Graham's Studies of age-determination in fish, Rep. Ministry of Agr. and Fisheries,

Fishery Investigations, (2) xi, no. 3, p. 28, 1928.
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precipitation depends only on forces intrinsic to the system, and

is independent of any corresponding rhythmic changes in external

conditions, we have not far to seek for analogous chemico-physical

phenomena where rhythmic alternations of structure are produced

in close relation to periodic fluctuations of temperature. The

banding, or "varving," of Swedish and Irish glacial clays is a re-

markable instance. A well-known and a simple case is that of the

Stassfurt deposits, where the rock-salt alternates with thin layers of

"anhydrite," or (in another series of beds) with " polyhahte
*
"

:

and where these zones are commonly regarded as marking years,

and their alternate bands as due to the seasons. A discussion,

however, of this remarkable and significant phenomenon, and of

how the chemist explains it, by help of the "phase-rule," in con-

nection with temperature conditions, would lead us far beyond our

scope.

We may turn aside to touch, for a single moment, on certain

forms and patterns not easy to classify: some of which depend on

the molecular structure of a colloid matrix, while others are of a

coarser and more mechanical grade. So many organic forms and

patterns await explanation that we cannot seek too widely for

examples, nor for explanations, of such things. For instance, a

drop of dried egg-albumin shews beautiful radial cracks, with cross-

lines here and there; and a drop of blood drying on a glass plate

shews a complete system of radial fissures, in series after series,

sometimes with and sometimes without a clear central space. The

general resemblance to the cross-section of a stem, with its pith and

its primary and secondary medullary rays, is striking enough to

have led some even to look upon a tree as one great complicated

but symmetrical colloid massf. We may compare also the beautiful

radiating structure which Biitschli observed long ago around small

* The anhydrite is sulphate of lime (Ca>S04) ; the polyhalite is a triple sulphate

of lime, magnesia and potash (2CaSO4.MgSO4.K2.SO4 + 2H2O).

t Cf. H. WisHcenus, Ztschr. f. Chemie u. Kolloide, vi, 1910; A. Lingelsheim,

PHanzenanatomische Strukturbilder in trocknenden Kolloiden, Arch.f. Entw. Mech.

XLii, pp. 117-125, 1917. Cf. also Liesegang, Trocknungserscheinungen bei Gelen,

Ztschr. f. Ch. u. K. x, p. 229 sq., 1912; Biitschli, Verh. n. h. Ver. Heidelberg, vii,

p. 653, 1904. Also {int. al.) Norman Stuart, on Spiral growths in silica gel, Nature,

Oct. 2, 1937, p. .589.
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bubbles in chrome-gelatine, and which he usecT in one of his early

(and none too fortunate) speculations on the nature of the nuclear

spindle.

We see that the methods by which we attempt to study the

chemico-physical characteristics of an inorganic concretion or spicule

within the body of an organism soon introduce us to a multitude

of phenomena of which our knowledge is extremely scanty, and

which we must not attempt to discuss at greater length. As regargls

our main point, namely the formation of spicules and other

elementary skeletal forms, we have seen that some of them may
be safely ascribed to precipitation or crystalhsation of inorganic

materials in ways modified by the presence of albuminous or other

colloid substances. The effect of these latter is found to be much
greater in the case of some crystalhsable bodies than in others.

For instance Harting, and Rainey also, found that calcium oxalate

was much less affected by a colloid medium than was calcium

carbonate; it shewed in their hands no tendency to form rounded

concretions or " calcospherites " in presence of a colloid, but con-

tinued to crystallise, either normally or with a tendency to form

needles or raphides. It is doubtless for this reason that, as we have

seen, crystals of calcium oxalate are so common in the tissues of

plants, while those of other calcium salts are rare; but true calco-

spherites, or spherocrystals, even of the oxalate are occasionally

found, for instance in certain Cacti, and Biitschli* has succeeded

in making them artificially in Harting's usual way, that is to say

by crystalhsation in a colloid medium. If the nature of the salt

has a marked specific qffect, so also has the gel: silver chromate

is thrown down in rings in gelatin but not in agar; replace the

silver by lead, and the rings come in agar but not in gelatin; while

neither lead nor silver produce them in silicic- acid gel.

There link on to such observations as Harting's, and to the

statement already quoted that calcareous deposits are associated

with the dead residua, or "formed materials," rather than with

the living cells of the organism, certain very interesting facts in

regard to the solubility of salts in colloid media, which go far to

account for the presence (apart from the form) of calcareous pre-

* Spharocrystalle von Kalkoxalat bei Kakteen, Ber. d. d. Bot. Gesellsch. p. 178,

1885.
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cipitates within the organism*. It has been shewn, in the first

place, that the presence of albumin has a notable effect on the

solubility in a watery solution of calcium salts, increasing the

solubility of the phosphate in a marked degree and that of the

carbonate in still greater proportion; but the sulphate is only very

little more soluble in presence of albumin than in pure water, and

the rarity of its occurrence within the organism is accounted for

thereby. On the other hand, the bodies derived from the breaking

down of the albumins—their "catabolic'' products, such as the

peptones, etc.—dissolve the calcium salts to a much less degree than

albumin itself; and phosphate of lime is scarcely more soluble in

them than in water. The probabihty is, therefore, that the actual

precipitation of the calcium salts is not due to the direct action of

carbonic acid on a more soluble salt (as was at one time believed);

but to catabolic changes in the proteids of the organism, which

throw down salts that had been already formed, but had remained

hitherto in albuminous solution. The very shght solubiHty of

calcium phosphate under such circumstances accounts for its pre-

dominance in mammalian bonef; and, in short, wherever a supply

of this salt has been available to the organism.

To sum up, we see that, whether from food or from sea-water,

calcium sulphate will tend to pass but little into solution in the

albuminoid substances of the body: that calcium carbonate will

enter more freely, but a considerable part of it will tend to remain

in solution: while calcium phosphate will pass into solution in

considerable amount, but will be almost wholly precipitated again

as the albumin becomes broken down in the normal process of

metabolism. We have still to wait for a similar and equally

illuminating study of the solution and precipitation of silica in

presence of organic colloids.

When carbonate of hme is secreted or precipitated by hving

organisms, to form bone, shell, egg-shell, coral and what not, its

mineralogical form may vary, but the causes which determine it

* W. Pauli u. M. Samec, Ueber Loslichkeitsbeeinfliissung von Elektrolyten

durch Eiweisskorper, Biochem. Zeitschr. xvii, p. 235, 1910. Some of these results

were known much earher; cf. Fokker in Pflilger's Archiv, vii, p. 274, 1873; also

Robert Irvine and Sims Woodhead, op. cit. p. 347.

t Which, in 1000 parts of ash. contains about 840 parts of phosphate and

76 parts of calcium carbonate.
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are all but unknown. It is amorphous in our Ijones. It has the

form of calcite in an oyster, a starfish, a Gorgonia, a Globigerina;

but of aragonite in most molluscs and in all ordinary corals. It is

of calcite in a bird's egg, of aragonite in a tortoise's; of the one

in Argonauta, of the other in Nautilus; of the one in an Ammonite,

and the other in its Aptychus-\id ; of the one in Ostrea, the other in

Unio; of the one in the outer and the other in the inner layers of

a limpet or a mussel-shell. Physical chemistry has little to say

of the formation of these two, of the parts played by temperature,

by the presence of sulphate of hme, or of magnesia or of various

impurities; it leaves us in the dark as to what brings the one form

or the other into being in the organism*.

Organic fibres, animal and vegetable, proteid and non-proteid,

hair and wool, silk, cotton and the rest, may be mentioned here

in passing: because, as formed material, they have a certain analogy

to the spicular formations with which we are concerned. A hair

or a wool-fibre may shew upon its surface the scaly or scurfy

remnants of the living cells among which its substance was laid

down; but the wool itself is by no means. living, but is so nearly

crystalline as to shew, in an X-ray photograph, the Laue interference-

figures well known to physicists. Moreover, the same identical

figure is obtained from such diverse sources as human hair, merino-

wool and porcupine's quill. But if we stretch the thread, whether

of hair or wool, the first Laue diagram changes to another; one

crystalline arrangement has shifted over into a new form of molecular

equihbrium. We are deahng with a crystalline, or crystal-hke,

form of keratin, the substance of which hoof and horn, nail, scale

and feather are made; and this remarkable substance turns out to

be a comparatively simple substance after all, with no very high

or protein-like molecule |.

From the comparatively small groun of inorganic formations

which, arising within living organisms, owe their form to precipita-

tion or to crystallisation, that is to say to chemical or other molecular

* Cf. Marcel Prenant, Les formes mineralogiques du calcaire chez les etres

vivants, Biol. Reviews, ii, pp. 365-393, 1927.

•f"
The study of wool and other fibres has much technical importance, ancj has

gone far during the last few years; cf. W. T. Astbury, in Phil. Trans. (A), ccxxx,

pp. 75-100, 1931, and other papers.
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forces, we shall presently pass to that other and larger group which

appears to be conformed in direct relation to the forms and the

arrangement of cells or other protoplasmic elements*. The two

principles of conformation are both illustrated in the spicular

skeletons of the sponges.

In a considerable number but withal a minority of cases, the

form of the sponge-spicule may be deemed sufficiently explained

on the Hnes of Harting's and Rainey's experiments, that is to say

as the direct result of chemical or physical phenomena associated

with the deposition of Ume or of silica in presence of colloids f.

This is the case, for instance, with various small spicules of a

globular or spheroidal form, consisting of amorphous silica, con-

centrically striated within, and often developing irregular knobs

or tiny tubercles over their surfaces. In the aberrant sponge

AstroscleraX, we have, to begin with, rounded, striated discs or

globules, which in hke manner are nothing more nor less than the

calcospherites of Harting's experiments; and as these grow

they become closely aggregated together (Fig. 309), and assume an

angular, polyhedral form, once more in complete accordance with

the results of experiment §. Again, in many monaxonid sponges,

we have irregularly shaped, or branched spicules, roughened or

tuberculated by secondary superficial deposits, and reminding one

of the spicules of the Alcyonaria. These also must be looked

upon as the simple result of chemical deposition, the form of the

deposit being somewhat modified in conformity with the surrounding

tissues: just as in the simple experiment the form of the con-

cretionary precipitate is affected by the heterogeneity, visible or

invisible, of the matrix. Lastly, the simple needles of amorphous

* Cf. Fr. Dreyer, Die Principien der Geriistbildung bei Rhizopoden, Spongien

und Echinodermen, Jen. Zeitschr. xxvi, pp. 204-468, 1892.

t In a very anomalous Australian sponge, described by Professor Dendy {Nature,

May 18, 1916, p. 253) under the name of Collosderophora, the spicules are

"gelatinous," consisting of a gel of colloid silica with a high percentage of water.

It is not stated whether an organic colloid is present together with the silica.

These gelatinous spicules arise as exudations on the outer surface of cells, and

come to lie in intercellular spaces or vesicles.

J J. J. Lister, in Willey's Zoological Results, pt iv, p. 459, 1900.

§ The peculiar spicules of Astrosdera are said to consist of spherules, or calco-

spherites, of aragonite, spores of a certain red seaweed forming
^
the nuclei or

starting-points of the concretions (R. Kirkpatrick, Proc. E.S. (B), lxxxiv, p. 579,

1911).
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silica which constitute one of the commonest types of spicule call

for little in the way of explanation ; they are accretions or deposits

about a linear axis, or fine thread of organic material, just as the

ordinary rounded calcospherite is deposited about some minute

point or centre of crystallisation, and as ordinary crystallisation

may be started by a particle of dust; in some cases they also, like

the others, are apt to be roughened by more irregular secondary

NMNf
Fig. .*i09. Close-packed caleospherites, or so-called '"spicules,"

oi Astrosclera. After Lister.

deposits, which probably, as in Harting's experiments, assume this

irregular form when material runs short.

Our few foregoing examples, diverse as they are in look and kind,

from the spicules of Astrosclera or Alcyonium to the otoliths of a

fish, seem all to have their free origin in some larger or smaller

fluid-containing space or cavity of the body: pretty much as

Harting's calcospheres made their appearance in the albuminous

content of a dish. But we come at last to a much larger class of

spicular and skeletal structures, for whose regular and often complex

forms some other explanation than the intrinsic forces of crystal-

lisation or molecular adhesion is required. As we enter on this
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subject, which is certainly no small nor easy one, it may conduce

to simplicity and to brevity if we make a rough classification, by
way of forecast, of the conditions we are likely to meet with.

Just as we look upon animals as constituted, some of a great

number of cells, others of a single cell or of but few, and just as

the shape of the former has no longer a visible relation to the

individual shapes of its constituent cells while in the latter it is

cell-form which dominates or is actually equivalent to the form of

the organism, so shall we find it to be, with more or less exact

analogy, in the case of the skeleton. For example, our own skeleton

consists of bones, in the formation of each of which a vast number
of minute ll.ing cellular elements are necessarily concerned; but

the form and even the arrangement of these bone-forming cells or

corpuscles are monotonously simple, and give no physical explana-

tion of the outward and visible configuration of the bone. It is as

part of a far larger field of force—in which we must consider gravity,

the action of various muscles, the compressions, tensions and

bending moments due to variously distributed loads, the whole

interaction of a very complex mechanical system—that we must

explain (if we are to explain at all) the configuration of a bone.

In contrast to these massive skeletons we have other skeletal

elements whose whole magnitude is commensurate with that of a

living cell, or (as comes to very much the same thing) is comparable

to the range of action of the molecular forces. Such is the case

with the ordinary spicules of a sponge, with the dehcate skeleton

of a radiolarian, or with the denser and robuster shells of the

foraminifera. The effect of scale', then, of which we had so much
to say in our introductory chapter on Magnitude, is bound to be

apparent in the study of skeletal fabrics, and to lead to essential

differences between the big and the Httle, the massive and the

minute, in regard to their controlling forces and resultant forms.

And if all this be so, and if the range of action of the molecular

forces be now the important and fundamental thing, then we may
somewhat extend our statement of the case, and include among our

directive or constructive influences not only association with the

living cellular elements of the body, but also association with any

bubbles, drops, vacuoles or vesicles which may be comprised within

the bounds of the organism, and which are (as their names and
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characters connote) of the order of magnitude of which we are

speaking.

Proceeding a Httle farther in our classification, we may conceive

each Httle skeletal element to be associated with, and developed by,

a single cell or vesicle, or alternatively a cluster or "system" of

consociat^d cells. In either case there are various possibilities.

For instance, the calcified or other skeletal material may tend to

overspread the entire outer surface of the cell or cluster of cells,

and so tend to assume a configuration comparable to the surface

of a fluid drop or aggregation of drops ; this, in brief, is the gist and

essence of our story of the foraminiferal shell. Another common

but very different condition will arise if, in the case of the cell-

aggregates, the skeletal material tends to accumulate in the inter-

stices between the cells, in the partition-walls which separate them,

or in the still more restricted edges, or junctions between these

partition-walls; conditions such as these will go a long way to

help us to understand many sponge-spicules and an immense

variety of radiolarian skeletons. And lastly (for the present),

there is a possible and very interesting case of a skeletal element

associated with the surface of a cell, not so as to cover it like

a shell, but only so as to pursue a course of its own within it,

and subject to the restraints imposed by such confinement to a

curved and limited surface. With this curious condition we shall

deal immediately.

This preliminary and much simplified classification of the lesser

skeletal, or micro-skeletal, forms does not pretend (as is evident

enough) to completeness. It leaves out of account some conforma-

tions and configurations with which we shall attempt to deal, and

others which we must perforce omit. But nevertheless it may help

to clear or mark our way towards the subjects which this chapter

has to consider, and the con4itions by which they are at least

partially defined.

Among the possible, or conceivable, types of microscopic skeletons

let us begin with the case of a spicule, more or less simply

linear as far as its intrinsic powers of growth are concerned, but

which owes its more complicated form to a restraint imposed by

the cell to which it is confined, and within whosebounds it is generated.
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The conception of a spicule developed under such conditions came

from that very great mathematical physicist, G. F. FitzGerald.

Many years ago, Sollas pointed out that if a spicule begin to grow-

in some particular way, presumably under the control or constraint

imposed by the organism, it continues to grow by further chemical

deposition in the same form or direction even after it has got beyond

the boundaries of the organism or its cells. This phenomenon is

what we see in, and this imperfect explanation goes so far to account

for, the continued growth in straight Hnes of the long calcareous

spines of Globigerina or Hastigerina, or the similarly radiating but

siliceous spicules of many Radiolaria. In physical language, if our

crystalline structure has once begun to be laid down in a definite

orientation, further additions tend to accrue in a like regular fashion

and in an identical direction: corresponding to the phenomenon

of so-called "orientirte Adsorption," as described by Lehmann.

In Globigerina or in Acanihocystis the long needles grow out

freely into the surrounding medium, with nothing to impede their

rectihnear growth and approximately radiate symmetry. But let

us consider some simple cases to illustrate the forms which a spicule

will tend to assume when, striving (as it were) to grow straight,

it comes under some simple and constant restraint or compulsion.

If we take any two points on a smooth curved surface, such

as that of a sphere or spheroid, and imagine a string stretched

between them, we obtain what is known in mathematics as a

''geodesic" curve. It is the shortest Une which can be traced

between the two points upon the surface itself, and it has always

the same direction upon the surface to which it is confined; the

most famihar of all cases, from which the name is derived, is that

curve, or "rhumb-line," upon the earth's surface which the navi-

gator learns to follow in the practice of "great-circle sailing," never

altermg his direction nor departing from his nearest road. Where

the surface is spherical, the geodesic is Hterally a "great circle,"

a circle, that is to say, whose centre is the centre of the sphere.

If instead of a sphere we be dealing with a spheroid, whether

prolate or oblate (that is to say a figure of revolution in which an

ellipse rotates about its long or its short axis), then the system of

geodesies becomes more complicated. For in it the elliptic meridians

are all geodesies, and so is the circle of the equator; though the
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circles of latitude are not so, any more than in the sphere. But

a line which crosses the equator at an oblique angle, if it is to-be

geodesic, will go on so far and then turn back again, winding its

way in a continual figure-of-eight curve between two extreme

latitudes, as when we wind a ball of wool. To say, as we have done,

that the geodesic is the shortest Une between two points upon the

surface, is as much as to say that it is a trace of some particular

straight line upon the surface in question ; and it follows that, if any

linear body be confined to that surface, while retaining a tendency to

grow (save only for its confinement to that surface) in a straight line,

the resultant form which it will assume will be that of a geodesic.

Let us now imagine a spicule whose natural tendency is to grow

into a straight Hnear element, either by reason of its own molecular

anisotropy or because it is deposited about a thread-Hke axis, and

let us suppose that it is confined either within a cell-wall or in

adhesion thereto ; its fine of growth will be a geodesic to the surface

of the cell. And if the cell be an imperfect sphere, or a more or

less regular elhpsoid, the spicule will tend to grow into one or other

of three forms: either a plane curve of nearly circular arc; or,

more commonly, a plane curve which is a portion of an eUipse;

or, most commonly of all, a curve which is a portion of a spiral in

space. In the latter case, the number of turns of the spiral will

depend not only on the length of the spicule, but on the relative

dimensions of the ellipsoidal cell, as well as on the angle by which

the spicule is inclined to the elhpsoid axes; but a very common

case will probably be that in which the spicule looks at first sight

to be a plane C-shaped figure, but is discovered, on more careful

inspection, to he not in one plane but in a more comphcated twist.

This investigation includes a series of forms which are abundantly

represented among actual sponge-spicules, as illustrated in Figs. 310

and 311. ^t^,

Growth or motion, when confined to some particular curved

surface, may appear in various forms and in unexpected places.

An amoeba, creeping along the inside or the outside of a glass tube,

was found in either case to follow a winding, spiral path : it was

really doing its best to go straight—in other words it was following

a geodesic or loxodromic path, determined by whatsoever angle of

obhquity to the axis of the tube it had chanced to start out upon.
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The spiral bands of chlorophyll in Spirogyra, set at varying angles

of hehcoid obhquity, are (I take it) very beautiful examples of con-

tinuous growth under the restraint of a cylindrical surface.

(Q)

Fig. 310. Sponge and holothurian spicules.

To return to our sponge-spicules. If the spicule be not restricted

to linear growth, but have a tendency to expand, or to branch out

from a main axis, we shall obtain a series of more complex figures,

all related to the geodesic system of curves. A notable case will

arise where the spicule occupies, in the first instance, the axis of the

containing cell, and then, on reaching its boundary, tends to branch

or spread outwards. We shall now get various figures, in some of

Fig. 312. An "amphidisc"

of Ilyalonema.

which the spicule will appear as an axis expanding into a disc or

wheel at either end; and in other cases, the terminal disc will be

replaced by rays or spokes with a reflex curvature, corresponding

to the spherical or elhpsoid curvature of the cell. Such spicules as

these are exceedingly conmion among various sponges (Fig. 312).
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Furthermore, if these mechanical methods of conformation, and

others hke to these, be the true cause of the shapes which the

spicules assume, it is plain that the production of these spicular

shapes is not a specific function of the sponge, but that we should

expect the same or similar spicules to occur in other organisms,

wherever the conditions of inorganic secretion within closed cells

were very much the same. As a matter of fact, in the sea-cucumbers,

where the formation of intracellular spicules is a characteristic

feature of the group, all the principal types of conformation which

we have just described can be closely paralleled; indeed, in many
cases, the forms of the holothurian spicules are identical and indis-

tinguishable from those of the sponges*. But the holothurian

spicules are composed of calcium carbonate while those which we

have just described in the case of sponges are siUceous: this being

just another proof of the fact that in such cases as these the form

of the spicule is not due to its chemical nature or molecular

structure, but to the external forces to which it is subjected.

The broad fact that the skeleton is calcareous in certain large

groups of animals and calcareous in others is as remarkable as its

causes are obscure. I for one have no idea why some sponge-

skeletons are of the one and some the other, with never the least

admixture of the two; or why the diatoms and radiolarians are all

the one, and the molluscs and corals and foraminifera are all the

other!.

So much for that small class of sponge-spicules whose forms seem

due to the fact that they are developed within, or under the restraint

imposed by, the surface of a single cell or vesicle. Such spicules

are usually of small size as well as of simple form ; and they are

greatly outstripped in number, in size, and in supposed importance

as guides to zoological classification, by another class of spicules.

These are the many and various cases which we explain on the

* See for instance the plates in' Theel's Monograph of the Challenger Holo-

thuroidea; also Sollas's Telractinellida, p. Ixi. Cf. also E. Merke, Studien am Skelet

der Echin^dernien, Zool. Jahrbiicher (Abth. f. allgem. Zoologie), 1916-19.

t The particles of lime and silica tend to bear opposite charges; siliceous

organisms seem to flourish in the colder waters as the calcareous certainly do in

warmer seas. And such facts, or tendencies, as these may help some day to explain

the phenomenon.
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assumption that they develop in association (of some sort or another)

with the lines of junction, or boundary-edges, of contiguous cells.

They include the triradiate spicules of the calcareous sponges, the

quadriradiate or " tetractinelHd " spicules which occur sometimes

in the same group but more characteristically in certain siHceous

sponges known as the TetractineUidae, and perhaps (though these

last are somewhat harder to understand) the six-rayed spicules of

the HexactinelHds. We shall come later on to more compUcated

skeletons of the same type among the Radiolaria.

The spicules of the calcareous sponges are commonly triradiate,

and the three radii are usually inclined to one another at nearly

equal angles; in certain cases, two of the three rays are nearly in

a straight line, and at right angles to the third *. They are not always

in a plane, but are often inchned to one another in a trihedral

angle, not easy of precise measurement under the microscope. The

three rays are often supplemented by a fourth, which is set tetra-

hedrally, making nearly co-equal angles with the other three. The

calcareous spicule consists mainly of carbonate of lime in the form

of calcite, with (according to von Ebner) some admixture of soda

and magnesia, of sulphates and of water. According to the sarne

writer there is no organic matter in the spicule, either in the form

of an axial filament or otherwise, and the appearance of stratifica-

tion, often simulating the presence of an axial fibre, is due to "mixed

crystallisation" of the various constituents. The spicule is a true

crystal, and therefore its existence and its form are primarily due

to the molecular forces of crystallisation; moreover it is a single

crystal and not a group of crystals, as is seen by its behaviour in

polarised fight. But its axes are not crystalline axes, its angles are

variable and indefinite, and its form neither agrees with, nor in any

way resembles, any one of the countless, polymorphic forms in

which calcite is capable of crystallising. It is as though it were

carved out of a solid crystal; it is, in fact, a crystal under restraint,

a crystal growing, as it were, in an artificial mould, and this mould

is constituted by the surrounding cells or structural vesicles of the

sponge.

* For very numerous illustrations of the triradiate and quadriradiate spicules

of the calcareous sponges, see (int. at.), papers by Dendy {Q.J.M.S. xxxv, 1893),

Minchin {P.Z.S. 1904), Jenkin {P.Z.S. 1908), etc.
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We have already studied in an elementary way, but enough for

our purpose, the manner in which three, four or more cells, or

bubbles, meet together under the influence of surface-tension, in

configurations geometrically similar to what may be brought about

by a uniform distribution of mechanical pressure. And we have

seen how surface-energy leads to the adsorption of certain chemical

substances, first at the corners, then at the edges, lastly in the

partition-walls, of such an assemblage of cells. A spicule formed

in the interior of such a mass, starting at a corner where four cells

meet and extending along the adjacent edges, would then (in theory)

have the characteristic form which the geometry of the bee's cell

has taught us, of four rays radiating from a point, and set at co-equal

angles to one another of 109°, approximately. Precisely such

" tetractinellid " spicules are often formed.

But when we confine ourselves to a plane assemblage of cells, or

to the outer surface of a mass, we need only deal with the simpler

geometry of the hexagon. In such a plane assemblage we find the

cells meeting one another in threes ; when the cells are uniform in

size the partitions are straight lines, and combine to form regular

hexagons; but when the cells are unequal, the partitions tend to be

curved, and to' combine to form other and less regular polygons.

Accordingly, a skeletal secretion originating in a layer or surface

of cells will begin at the corners and extend to the edges of the cells,

and will thus take the form of triradiate spicules, whose rays (in a

typical case) will be set at co-equal angles of 120° (Fig. 313, F). This

latter condition of inequahty will be open to modification in various

ways. It will be modified by any inequality in the specific tensions

of adjacent cells ; as a special case, it will be apt to be greatly modified

at the surface of the system, where a spicule happens to be formed

in a plane perpendicular to the cell-layer, so that one of its three rays

lies between two adjacent cells and the other two are associated

with the surface of contact between the cells and the surrounding

medium; in such a case (as in the cases considered in connection

with the forms of the cells themselves on p. 494), we shall tend to

obtain a spicule with two equal angles and one unequal (Fig. 313,

A, C) ; in the last case, the two outer, or superficial rays, will tend

to be markedly curved. Again, the equiangular condition will be

departed from, and more or less curvature will be imparted to the
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rays, wherever the cells of the system cease to be uniform in size,

and when the hexagonal symmetry of the system is lost accordingly.

Lastly, although we speak of the rays as meeting at certain definite

angles, this statement applies to their axes rather than to the rays

themselves. For if the triradiate spicule be developed in the

interspace between three juxtaposed cells it is obvious that its sides

will tend to be concave, because the space between three contiguous

equal circles is an equilateral, curvilinear triangle ; and even if our

Fig. 313. Spicules of Granlia and other calcareous sponges.

After Haeckel.

spicule be deposited, not in the space between our three cells, but

in the mere thickness of an intervening wall, then we may recollect

that the several partitions never actually meet at sharp angles, but

the angle of contact is always bridged over by an accumulation of

material (varying in amount according to its fluidity) whose boundary

takes the form of a circular arc, and which constitutes the " bourrelet

"

of Plateau. In any sample of the triradiate spicules of Grantia,

or in any series of careful drawings, such as Haeckel's, we shall find

all these various configurations severally and completely illustrated.
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The tetrahedral, or rather tetractineUid, spicule needs no further

explanation in detail (Fig. 313, D, E). For just as a triradiate

spicule corresponds to the case of three cells in mutual contact, so

does the four-rayed spicule to that of a solid aggregate of four cells

:

these latter tending to meet one another in a tetrahedral system,

shewing four edges, at each of which three facets or partitions meet,

their edges being inclined to one another at equal angles of about

109°—the "Maraldi" angle. And even in the case of a single layer,

or superficial layer, of cells, if the skeleton originate in connection

with all the edges of mutual contact, we shall (in complete and

typical cases) have a four-rayed spicule, of which one straight limb

will correspond to the hne of junction between the three cells, and

the other three limbs (which will then be curved Hmbs) will corre-

spond to the three edges where the three cells meet in pairs on the

surface of the system.

But if such a physical explanation of the forms of our spicules is

to be accepted, we must seek for some physical agency to explain

the presence of the solid material just at the junctions or interfaces

of the cells, and for the forces by which it is confined to, and moulded

to the form of, these intercellular or interfacial contacts. We owe

to Dreyer the physical or mechanical theory of spicular conforma-

tion which I have just described—a theory which ultimately rests

on the form assumed, under surface-tension, by an aggregation of

cells or vesicles. But this fundamental point being granted, we

have still several possible alternatives by which to explain the

details of the phenomenon.

Dreyer, if I understand him aright, was content to assume that

the soHd material, secreted or excreted by the organism, accumu-

lates in the interstices between the cells, and is there subjected

to mechanical pressure or constraint as the cells get crowded

together by their own growth and that of the system generally.

As far as the general form of the spicules goes such explanation is

not inadequate, though under it we might have to renounce some

of our assumptions as to what takes j)lace at the surface of

the system. But where a few years ago the concept of secretion

seemed precise enough, we turn now-a-days to the phenomenon of

adsorption as a further stage towards the elucidation of our facts,

and here we have a case in point. In the tissues of our sponge,
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wherever two cells meet, there we have a definite surface of contact,

and there accordingly we have a manifestation of surface-energy;

and the concentration of surface-energy will tend to be a maximum
at the lines or edges whereby such surfaces are conjoined. Of the

micro-chemistry of the sponge-cells our ignorance is great; but

(without venturing on any hypothesis involving the chemical details

of the process) we may safely assert that there is an inherent prob-

abihty that certain substances will tend to be concentrated and

ultimately deposited .just in these hues of intercellular contact and

conjunction. In other words, adsorptive concentration, under

osmotic pressure, at and in the surface-film which bounds contiguous

cells, and especially in the edges where these films meet and intersect,

emerges as an alternative (and, as it seems to me, a highly preferable

alternative) to Dreyer's conception of an accumulation under

mechanical pressure in the vacant spaces left between one cell and

another.

But a purely chemical, or purely molecular, adsorption is not the

only form of the hypothesis on which we may rely. For from the

purely physical point of view, angles and edges of contact between

adjacent cells will be loci in the field of distribution of surface-

energy, and any material particles whatsoever will tend to undergo

a diminution of freedom on entering one of those boundary regions.

Let us imagine a couple of soap bubbles in contact with one another

;

over the surface of each bubble tiny bubbles and droplets glide in

every direction ; but as soon as these find their way into the groove

or re-entrant angle between the two bubbles, there their freedom

of movement is so far restrained, and out of that groove they have

little tendency, or little freedom, to emerge. A cognate phenomenon

is to be witnessed in microscopic sections of steel or other metals.

Here, together with its crystalline structure, the metal develops a

cellular structure by reason of its lack of homogeneity; for in the

molten state one constituent tends to separate out into drops, while

the other spreads over these and forms a fihny reticulum between

—-the disperse phase and the continuous phase of the colloid chemists.

In a poHshed section we easily observe that the little particles of

graphite and other foreign bodies common in the matrix have

tended to aggregate themselves in the walls and at the angles of

the polygonal cells—this being a direct result of the diminished
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freedom which they undergo on entering one of these boundary

regions. And the same phenomenon is turned to account in the

various "separation-processes" in which metalHc particles are caught

up in the interstices of a froth, that is to say in the walls of the

foam-cells or Schaumkammern*

.

It is by a combination of these two principles, chemical adsorp-

tion on the one hand and physical quasi-adsorption or concentration

of grosser particles on the other, that I conceive the substance of

the sponge-spicule to be concentrated and aggregated at the cell

boundaries; and the forms of the triradiate and tetractinellid

spicules are in precise conformity with this hypothesis. A few

general matters, and a few particular cases, remain to be considered.

It matters httle or not at all for the phenomenon in question, what

is the histological nature or "grade" of the vesicular structures

on which it depends. In some cases (apart from sponges), they

may be no more than httle alveoh of an intracellular protoplasmic

network, and this would seem to be the case at least in the protozoan

Entosolenia aspera, within the vesicular protoplasm of whose single

cell Mobius has described tiny spicules in the shape of little tetra-

hedra with sunken or concave sides. It is probably the case also

in the small beginnings of Echinoderm spicules, which are likewise

intracellular and are of similar shape. Among the sponges we have

many varying conditions. In some cases there is reason to believe

that the spicule is formed at the boundaries of true cells or histo-

logical units ; but in the case of the larger triradiate or tetractineUid

spicules they far surpass in size the actual "cells." We find them

lying, regularly and symmetrically arranged, between the "pore-

canals" or "ciliated chambers," and it is in conformity with the

shape and arrangement of these large rounded or spheroidal struc-

tures that their shape is assumed.

Again, it is not at variance with our hypothesis to find that, in

the adult sponge, the larger spicules may greatly outgrow the

bounds not only of actual cells but also of the ciliated chambers,

and may even appear to project freely from the surface of the

sponge. For we have already seen that the spicule is capable of

* The crystalline composition of iron was recognised by Hooke in the Micro-

graphia (1665); and the cellular or polyhedral structure of the raetal was clearly

recognised by Reaumur, in his Art de convertir le fer forge en acier, 1722.
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growing, without marked change of form, by further deposition, or

crystalhsation, of layer upon layer of calcareous molecules, even in

an artificial solution; and we are entitled to believe that the same

process may be carried on in the tissues of the sponge, without

greatly altering the symmetry of the spicule, long after it has

estabhshed its characteristic but non-crystalline form of a system

of slender trihedral or tetrahedral rays.

Neither is it of great importance to our hypothesis whether the

rayed spicule ^necessarily arises as a single structure, or does so from

separate minute centres of aggregation. Minchin has shewn that,

in some cases at least, the latter is the case; the spicule begins,

he tells us, as three tiny rods, separate from one another, each

developed in the interspace between two sister-cells, which are

themselves the results of the division of one of a little trio of cells;

and the little rods meet and fuse together while still very minute,

when the whole spicule is only about 200 ^^ ^ milhmetre long.

At this stage, it is interesting to learn that the spicule is non-

crystaUine; but the new accretions of calcareous matter are soon

deposited in crystaUine form.

This observation threw difficulties in the way of former mechanical

theories of the conformation of the spicule, and was quite at variance

with Dreyer's theory, according to which the spicule was bound to

begin from a central nucleus coinciding with the meeting-place of

three contiguous cells, or rather the interspace between them. But

the difficulty is removed when we import the concept of adsorption;

for by this agency it is natural enough, or conceivable enough, that

deposition should go on at separate parts of a common system of

surfaces; and if the cells tend to meet one another by their interfaces

before these interfaces extend to the angles and so complete the

polygonal cell, it is again only natural that the spicule should first

arise in the form of separate and detached Hmbs or rays.

Among the " tetractinelhd " sponges, whose spicules are com-

posed of amorphous silica or opal, all or most of the above-described

main types of spicule occur, and, as the name of the group implies,

the four-rayed, tetrahedral spicules are especially represented.

A somewhat frequent type of spicule is one in which one of the four

rays is greatly developed, and the other three constitute small

prongs diverging at equal angles from the main or axial ray. In
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all probability, as Dreyer suggests, we have here had to do with a

group of four vesicles, of which three were large and co-equal, while

i\ fourth and very much smaller one lay

above and between the other three. In

certain cases where we have hkewise one

large and three much smaller rays, the

latter are recurved, as in Fig. 314, a-c.

This type, save for the constancy of the

number of rays and the limitation of the

terminal ones to three, and save also for

the more important difference that they

occur only at one and not at both ends of

the long axis, is similar to the type of

V y 1

1

spicule illustrated in Fig. 312, which we

\^ 1 ^f fl have explained as being probably de-

^fflr
J

veloped within an oval cell, by whose
^

11 walk its branches have been cabined and

I I confined. But it is more probable that

' we have here to do with a spicule de-
Fig. 314. Spicules of tetracti-

i • ^i •
i ^ r r j.\.

nellid sponges (after SoUas). veloped m the midst of a group of three

a-e, anatriaenes; d-f, pro- co-equal and more or less elongated or

tnaenes.
cylindrical cells or vesicles, the long axial

ray corresponding to their common edge or line of contact, and the

three short rays having each lain in the surface furrow between two

out of the three adjacent cells.

Just as in the case of the little S-shaped spicules formed within

the bounds of a single cell, so also in the case of the larger tetrac-

tinellid types do we find the same configurations reproduced among

the holothuroids as we have dealt with in the sponges. The holo-

thurian spicules are a little less neatly formed, a little rougher, than

the sponge-spicules, and certain forms occur among the former

group which do not present themselves among the latter; but for

the most part a community of type is obvious and striking (Fig. 315).

The very peculiar spicules of the holothurian Synapta, where a

tiny anchor is pivoted or hinged on a perforated plate, are a puzzle

indeed; but we may at least solve part of the riddle. How the

hinge is formed, I do not know; the anchor gets its shape, perhaps,

in some such way as we have supposed the " amphidiscs "of -ff^^/^Zo-
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nema to acquire their reflexed spokes, but the perforated plate is

more comprehensible. Each plate starts in a httle clump of cells

in whose boundary-walls calcareous matter is deposited, doubtless

by adsorption, the holes in the finished plate thus corresponding to

the cells which formed it. Close-packing leads to an arrangement

of six cells round a central one, and the normal pattern of the plate

displays this hexagonal configuration. The calcareous plate begins

as a little rod whose ends fork, and then fork again: in the same

inevitable trinodal pattern which includes the "polar furrow" of

the embryologists. The anchor had been first formed, and the

Rh
r^^O

Fig, 315. Various holothurian spicules. After Theel.

little plate is added on beneath it. The first spicular rudiment of

the plate may lie parallel to the stock of the anchor or it may lie

athwart* it. From the physical point of view it would seem to be

a mere matter of chance 'which way the cluster of cells happens to

he; but this difference of direction will cause a certain difference

in the symmetry of the resulting plate. It is this very difference

which systematic zoologists at one time seized upon to distinguish

S. Buskii from our two commoner "species." The two latter

* Cf. S. Becher, Nicht-funktionelle Korrelation in der Bildung selbstandiger

Skeletelemente, Zool. Jahrbucher (Physiol.), xxxi, pp. 1-189, 1912; Hedwiga
Wilhelmi, Skeletbildung der fiisslosen Holothurien, ibid, xxxvii, pp. 493-547,

1920; Arch. f. Entw. Mech. xlvi, pp. 210-258, 1920. See also W. Woodland,
Studies in spicule-formation, Q.J.M.S. xlix, pp. 535-559, 1906; li, pp. 483-509,

1907 and R. Semon, Naturgeschichte der Synaptiden, Mitth. Zool. St. Neapel, vii,

pp. 272-299, 1886. On the common species of Synapta, see Koehler, Faune de

France, Echinodermes, 1921, pp. 188-9.
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{S. inhaerens and S. digitata) are mainly distinguislied from one

another by the number of holes in the plate, that is to say, by the

average number of cells in the little cluster of which the plate or

spicule was formed. In many or perhaps most other holothurians

Fig. 316. Development of anchor-plate in Synapta. After Semon.

the spicules consist of little perforated plates or baskets, developed

in the same way, about cells or vesicles more or less close-packed,

and therefore more or less symmetrically arranged (Fig. 316).

Fig. 317. Spicules of hexactinellid sponges. After F. E. Schultze.

The six-rayed siliceous spicules of the hexactinellid sponges, while

they are perhaps the most regular and beautifully formed spicules

to be found within the entire group, have beert found very difficult

to explain, and Dreyer has confessed his complete inabihty to

account for their conformation*. But, though it may only be

* Cf. Albr. Schwan, Ueber die Funktion des Hexactinellidenskelets, u. seine

Vergleichbarkeit mit dera Radiolarienskelet, Zool. Jb., Ahth. allg. Zool. u. Physiol.

XXXIII, pp. 603-616, 1913; cf. V. Hacker, Bericht uber d. Tripyleenausbeute

d. d. Tiefsee-Exped, Verh. d. zool. Ges. 1904.
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throwing the difficulty a Uttle further back, we may so far account

for them by considering that the cells or vesicles by which they

are conformed are not arranged in what is known as '/closest

packing," but in hnear series; so that in their arrangement, and

by their mutual compression, we tend to get a pattern not of

hexagons but of squares: or, looking to the solid, not of dodeca-

hedra but of cubes or parallelepipeda. This indeed appears to be

the case, not with the individual cells (in the histological sense),

but with the larger units or vesicles, which make up the body of the

hexactinelHd. And this being so, the spicules formed between the

linear, or cubical series of vesicles, will have the same tendency

towards a " hexactinelhd " shape, corresponding to the angles and

adjacent edges of a system of cubes, as in our former case they had

to a triradiate or a tetractinellid form, when developed in connection

with the angles and edges of a system of hexagons, or a system of

rhombic dodecahedra.

However the hexactinelhd spicules be arranged (and this is none

too easy to determine) in relation to the tissues and chambers of

the sponge, it is at least clear that, whether they lie separate or

be fused together in a composite skeleton, th-ey effect a symmetrical

partitioning of space according to the cubical system, in contrast

to that closer packing which is represented and effected by the

tetrahedral system^*.

Histologically, the case is illustrated by a. well-known pheno-

menon in embryology. In the segmenting ovum, there is a tendency

for the cells to be budded off in linear series; and so they often

remain, in rows side by side, at least for a considerable time and

during the course of several consecutive cell divisions. Such an

arrangement constitutes what the embryologists call the "radial

type" of segmentationf. But in what is described as the "spiral

type" of segmentation, it is stated that, as soon as the first hori-

zontal furrow has divided the cells into an upper and a lower layer,

those of "the upper layer are shifted in respect to the lower layer,

* Chall. Hep., Hexactinellida, pis. xvi. liii, Ixxvi, Ixxxviii.

t See, for instance, the figures ofIhe segmenting egg of Synapta (after Selenka),

in Korschelt and Heider's Vergleichende Entvnckinngsgeschichte. On the spiral

type of segmentation as a secondary derivative, due to mechanical causes, of the

"radial" type of segmentation, see E. B. Wilson, Cell-lineage of Nereis, Journ,

Morph. VI, p. 450, 1892.
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by means of a rotation about the vertical axis*." It is, of course,

evident that the whole process is merely that which is familiar to

physicists as "close packing." It is a very simple case of what

Lord Kelvin used to call "a problem in tactics." It is a mere

question of the rigidity of the system, of the freedom of movement

on the part of its constituent cells, whether or at what stage this

tendency to shp into the closest propinquity, or position of minimmn

potential, will be found to manifest itself.

Lastly, a curious case is presented by the so-called "chessman"

spicules of Latrunculia and of a few other sponges, where the spicular

shaft is thickened at regular intervals, and the thickenings grow

into whorled and flattened lobes. Dendy suggested that the

developing spicule is in a state of vibration (due perhaps to the

water-currents of the sponge), and that the whorls correspond to

nodes, or loci of comparative rest, where the formative cells tend

to settle down and do their work undisturbed. The position of

the nodes and internodes will depend on many circumstances, on

whether the spicule be a fixed rod or a free one, straight or curved,

uniform in section or tapering towards either end. In the free bar

there should tend, in any case, to be a node in the middle, and

two more at definite distances from either end. It so happens that

in the forms investigated there are only two whorls, the median

and one other; but J. W. Nicholson has calculated the positions

of these according to the vibration theory, and the theoretical

results are found to agree with those of observation very closely

indeed. That one of the whorls should be lacking might seem to

imperil the proof; but on the other hand among large numbers of

spicules no one was found to have its whorls in a position incon-

sistent with the theory, and there was the required agreement

between the shape of the spicule and the position of the whorls.

The absence of a third whorl is explained as due to a lack of the

necessary formative cells at that part of the spiculef. The theory

is in a way supported by recent work (by R. W. Wood of Baltimore

and others) on "supersonic vibrations," showing excessively rapid

* Korschelt and Heider, p. 16.

t A. Dendy and J. W. Nicholson, On the influence of vibration upon the form

of certain sponge-spicules, Proc. R.S. (B), lxxxix, pp. .'^73-587, 1917; A. Dendy,

The chessman spicules of the genus Latrunculia, etc., Journ. Quekett Microsc. Club,

xm, pp. 1-16, 1917.
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vibrations in quartz rods, more rapid even than Dendy's hypothesis

would seem to require. But on the other hand, it is only to few

and even exceptional spicules that the theory would seem to apply.

This question of the origin and causation of the forms of sponge-

spicules, with which ^we have now sought to deal, is all the more

important and all the more interesting because it has been discussed

time and again, from points of view which are characteristic of

very different schools of thought in biology. Haeckel found in the

form of the sponge-spicule a typical illustration of his theory of

"bio-crystallisation"; he considered that these " biocrystals " re-

presented something midway

—

ein Mittelding—between an inorganic

crystal and an organic secretion; that there was a ''compromise

between the crystallising efforts of the calcium carbonate and the

formative activity of the fused cells of the syncytium"; and that

the semi-crystalhne secretions of calcium carbonate "were utihsed

by natural selection as 'spicules' for building up a skeleton, and

afterwards, by the interaction of adaptation and heredity, became

modified in form, and differentiated in a vast variety of ways, in

the struggle for existence*." What Haeckel precisely meant by

these words is not clear to me.

F. E. Schultze, perceiving that identical forms of spicule were

developed whether the material were crystaUine or non-crystaUine,

abandoned all theories based upon crystaUisation ; he simply saw

in the form and arrangement of the spicules something which was

"best fitted" for its purpose, that is to say for the support and

strengthening of the porous w^alls of the sponge, and finding clear

evidence of "utility" in the specific characters of these skeletal

elements, had no difficulty in ascribing them to natural selection.

SoUas and Dreyer, as we have seen, introduced in various ways

the conception of physical causation—as indeed Haeckel himself

had done in regard to one particular, when he supposed the position

of the spicules to be due to the constant passage of the water-

* "Hierbei nahm der kohlensaure Kalk eine halb-krystallinische Beschaffen-

heit an, und gestaltete sich unter Aufnahme von Krystallwasser und in Verbindung

mit einer geringen Quantitat von organischer Substanz zu jenen individuellen,

festen Korpern, welche durch die naturliche Ziichtung als Spicula zur Skeletbildung

benutzt, und spaterhin durch die Wechselwirkung von Anpassung und Vererbung

ira Kampfe urns Dasein auf das Vielfaltigste umgebildet und differenziert wurden."

Die Kalkschwdmme, i, p. 377, 1872; cf. also pp. 482, 483.
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currents; though even here, by the way, if I understand Haeckel

aright, he was thinking not of a direct or immediate physical

causation, but rather of one manifesting itself through the agency

of natural selection*. SoUas laid stress upon the "path of least

resistance" as determining the direction of growth; while Dreyer

dealt in greater detail with the tensions and pressures to which the

growing spicule was exposed, amid the alveolar or vesicular structure

which was represented alike by the chambers of the sponge, by the

constituent cells, or by the minute structure of the intracellular

protoplasm. But neither of these writers, so far as I can discover,

was inchned to doubt for a moment the received canon of biology,

which sees in such strucHires as these the characteristics of true

organic species, the indications of blood-relationship and family hke-

ness, and the evidence by which evolutionary descent throughout

geologic time may be deduced or deciphered.

Minchin, in a well-known paperf, took sides with F. E. Schultze,

and gave his reasons for dissenting from such mechanical theories as

those of SoUas and of Dreyer. For example, after pointing out

that all protoplasm contains a number of "granules" or micro-

somes, contained in an alveolar framework and lodged at the nodes

of a reticulum, he argued that these also ought to acquire a form

such as the spicules possess, if it were the case that these latter

owed their form to their similar or identical position. "If vesicular

tension cannot in any other instance cause the granules at the

nodes to assume a tetraxon form, why should it do so for the

sclerites?" The answer is not far to seek. If the force which the

"mechanical" hypothesis has in view were simply that of mechanical

pressure, as between solid bodies, then indeed we should expect

that any substances lying between the impinging spheres would

tend to assume the quadriradiate or "tetraxon" form; but this

conclusion does not follow at all, in so far as it is to surface-energy

that we ascribe the phenomenon. Here the specific nature of the

substance makes all the difference. We cannot argue from one

Op. cit. p. 483. "Die geordnete, oft so sehr regelmassige und zierliche Zusam-

mensetzung des Skeletsystems ist zum grossten Theile unmittelbares Product

der Wasserstromung; die characteristische Lagerung der Spioula ist von der

constanten Richtung des Wasserstroms hervorgebracht; zum kleinsten Theile ist

Bie die Folge von Anpassungen an untergeordnete ^ussere Existenzbedingungen."

t Materials for a Monograph of the Ascones, Q.J.M.S. XL, pp. 469-587, 1898.
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substance to another; adsorptive attraction shews its effect on one

and not on another; and we have no reason to be surprised if we
find that the Httle granules of protoplasmic material, which as they

lie bathed in the more fluid protoplasm have (presumably, and as

their shape indicates) a strong surface-tension of their own, behave

towards the adjacent vesicles in a very different fashion to the

incipient aggregations of calcareous or siliceous matter in a colloid

medium. "The ontogeny of the spicules," says Professor Minchin,

"points clearly to their regular form being a phylogenetic adaptation,

which has becmne fixed and handed on by heredity, appearing in the

ontogeny ai a prophetic adaptation.'' And again, "The forms of the

spicules are the result of adaptation to the requirements of the

sponge as a whole, produced by the action of natural selection upon

variation in every direction." It would scarcely be possible to

illustrate more briefly and more cogently than by these few words

(or the similar words of Haeckel quoted on p. 691), the fundamental

difference between the Darwinian conception of the causation and

determination of Form, and that which is based on, and characteristic

of, the physical sciences.

Last of all, Dendy took a middle course. While admitting that

the majority of sponge-spicules are "the outcome of conditions

which are in large part purely physical," he still saw in them "a very

high taxonomic value," as "indications of phylogenetic history"

all on the ground that "it seei^is impossible to account in any other

way for the"^ fact that we can actually arrange the different forms

in such well-graduated series." At the same time he believed that

"the vast majority of spicule-characters appear to be non-adaptive,"

"that no one form of spicule has, as a rule, any greater survival-

value than another," and that "the natural selection of favourable

varieties can have had very Uttle to do with the matter*."

The quest after lines and evidences of descent dominated morpho-

logy for many years, and preoccupied the minds of two or three

generations of naturahsts. We find it easier to see than they did

that a graduated or consecutive series of forms may be based on

physical causes, that forms mathematically akin may belong to

* Cf. A. Dendy, The Tetraxonid sponge-spicule : a study in evolution, Acta

Zoologica, 1921, pp. 136, 146, etc. Cf. also Bye-products of organic evolution,

jQurn. Quekett Microscop. Club, xii, pp. 65-82, 1913.
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organisms biologically remote, and that, in general, mere formal

likeness may be a fallacious guide to evolution in time and to

relationship by descent and heredity.

If I have dealt comparatively briefly with the inorganic skeletons

of sponges, in spite of the interest of the subject from the physical

point of view, it has been owing to several reasons. In the first

place, though the general trend of the phenomena is clear, it must

be admijited that many points are obscure, and could only be

discussed at the cost of a long argument. In the second place, the

physical theory is too often (as I have shewn) in conflict with the

accounts given by embryologists of the development of the spicules,

and with the current biological theories which their descriptions

embody; it is beyond our scope to deal with such descriptions

in detail. Lastly, we find ourselves able to illustrate the same

physical principles with greater clearness and greater certitude in

another group of animals, namely the Radiolaria.

The group of microscopic organisms known as the Radiolaria is

extraordinarily rich in diverse forms or "species." I do not know

how many of such species have been described and defined by

naturaUsts, but some fifty years ago the number was said to be

over four thousand, arranged in more than seven hundred genera*;

of late years there has been a tendency to reduce the number.

But apart from the extraordinary multiplicity of forms among the

Radiolaria, there are certain features in this multiphcity which

arrest our attention. Their distribution in space is curious and

vague ; many species are found all over the world, or at least every

here and there, with no evidence of specific limitations of geo-

graphical habitat; some occur in the neighbourhood of the two

poles, some are confined to warm and others to cold currents of

the ocean. In time their distribution is not less vague: so much

so that it has been asserted of them that "from the Cambrian age

downwards, the families and even genera appear identical with

those now Hving." Lastly, except perhaps in the case of a few

large "colonial forms," we seldom if ever find, as is usual in most

animals, a local predominance of one particular species. On the

* Haeckel, in his Challenger Monograph, p. clxxxviii (1887), estimated the

number of known forms at 4314 species, included in 739 genera. Of these, 3508

species were described for the first time in that \i?ork.
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contrary, in a little pinch of deep-sea mud or of some fossil "radio-

larian earth," we shall probably find scores, and it may be even

hundreds, of different forms. Moreover, the radiolarian skeletons

are of quite extraordinary delicacy and complexity, in spite of their

minuteness and the comparative simplicity of the "unicellular"

organisms within which they grow; and these complex conforma-

tions have a wonderful and unusual appearance of geometric

regularity. All these general considerations seem such as to prepare

us for some physical hypothesis of causation. The Httle skeletons

remind us of such things as snow-crystals (themselves almost endless

in their diversity), rather than of a collection of animals, constructed

in accordance with functional needs and distributed in accordance

with their fitness for particular situations. Nevertheless, great

efforts have been made to attach "a biological meaning" to these

elaborate structures, and "to justify the hope that in time their

utilitarian character will be more completely recognised*."

As Ernst Haeckel described and figured many hundred "species"

of radiolarian skeletons, so have the physicists depicted snow-

crystals in several thousand different forms |. These owe their

multitudinous variety to symmetrical repetitions of qne simple

crystalline form—a beautiful illustration of Plato's One among the

Many, to ev napa ra iroXXd. On the other hand, the radiolarian

skeleton rings its endless changes on combinations of certain facets,

corners and edges within a filmy and bubbly mass. The broad

difference between the two is very plain and instructive.

Kepler studied the snowflake with care and insight, though he

said that to care for such a trifle was like Socrates measuring the

hop of a flea. The first drawings I know are by Dominic Cassini;

and if that great astronomer was content with them they shew how

the physical sciences lagged behind astronomy. They date from the

time when Maraldi, Cassini's nephew, was studying the bee's cell;

* Cf. Gamble, Radiolaria (Lankester's Treatise on Zoology), i, p. 131, 1909.

Cf. also papers by V. Hacker, in Jen. Zeitschr. xxxix, p. 581, 1905; Z. f. vnss.

Zool. Lxxxiii, p. 336, 1905; Arch. f. Protistenkunde, ix, p. 139, 1907; etc.

I See above, p. 411; and see (besides the works quoted there) Kepler, De nive

sexangula (1611), Opera, ed. Fritsch, vii, pp. 715-730; Erasmus Bartholin, De

figura nivis, Diss., Hafniae, 1661; Dom. Cassini, Obs. de la figure de la neige

(Abstr.), Mem. Acad. R. des Sciences (1666-1699), x, 1730; J. C. Wilcke, Om de

naturliga sno-figurers, K. V. Akad. Handl. xxii, 1761.
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and they shew once more how very rough his measurements of the

honeycoipb are bound to have been.

Crystals He outside the province of this book
;
yet snow-crystals,

and all the rest besides, have much to teach us about the variety,

the beauty and the very nature of form. To begin with, the

snow-crystal is a regular hexagonal plate or thin prism; that is to

Fig. 318 a. Snow-crystals, or "snow -flowers." From Dominic Cassini (c. 1600).

say, it shews hexagonal faces above and below, with edges set at

co-equal angles of 120°. Ringing her changes on this fundamental

form, Nature superadds to the primary hexagon endless combina-

tions of sii^iilar plates or prisms, all with identical angles but varying

lengths of side; and she repeats, with an exquisite symmetry.

Fig. 318 6. Snow-crystals. From Bentley and Humphreys, 1931.

about all three axes of the hexagon, whatsoever she may have

done for the adornment and elaboration of one. These snow-crystals

seem (as Tutton says) to give visible proof of the space-lattice on

which their structure is framed.

The beauty of a snow-crystal depends on its mathematical

regularity and symmetry; but somehow the association of many
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variants of a single type, all related but no two the same, vastly

increases our pleasure and admiration. Such is the pecuHar beauty

which a Japanese artist sees in a bed of rushes or a clump of

bamboos, especially when the wind's ablowing; and such (as we

saw before) is the phase-beauty of a flowering spray when it shews

every gradation from opening bud to fading flower.

The snow-crystal is further complicated, and its beauty is notably

enhanced, by minute occluded bubbles of air or drops of water, whose

symmetrical form and arrangement are very curious and not always

easy to explain*. Lastly, we are apt to see our snow^-crystals after

a slight thaw has rounded their sharp edges, and has heightened

their beauty by softening their contours.

In the majority of cases, the skeleton of the Radiolaria is com-

posed, like that of so many sponges, of silica; in one large family,

the Acantharia, and perhaps in some others, it is made of a very

unusual constituent, namely strontium sulphate f. There is no

important morphological character in which the shells made of these

two constituents differ from one another; and in no case can the

chemical properties of these inorganic materials be said to influence

the form of the complex skeleton or shell, save only in this general

way that, by their hardness, toughness and rigidity, they give rise

to a fabric more slender and delicate than we find among calcareous

organisms.

A shght exception to this rule is found in the presence of true

crystals, which occur within the central capsules of certain Radio-

laria, for instance the genus Collos'phaera%. Johannes Miiller

(whose knowledge and insight never fail to astonish us§) remarked

* We may find some suggestive analogies to these occlusions in Emil Hatschek's

paper, Gestalt und Orientirung von Gasblasen in Gelen, Kolloid. Ztschr. xx, pp.

226-234, 1914.

t Biitschli, Ueber die chemische Natur der Skeletsubstanz der Acantharia,

Zool. Anz. XXX, p. 784, 1906.

I For figures of these crystals see Brandt, F. n. Fl. d. Golfes von Neapel, xiii,

Radiolaria, 1885, pi. v. Cf. Johannes Miiller, Ueber die Thalassicollen, etc., Abh. K.

Akad. Wiss. Berlin, 1858.

§ It is interesting to think of the lesser discoveries or inventions, due to men
famous for greater things. Johannes Miiller first used th^e tow-net, and Edward
Forbes first borrowed the oyster-man's dredge. When we watch a living polyp

under the microscope in its tiny aquarium of a glass-cell, we are doing what John

Goodsir was the first to do; and the microtome itself was the invention of that

best of laboratory-servants, "old Stirling," Goodsir's right-hand man.
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that these were identical in form with crystals of celestine, a

sulphate of strontium and barium; and Biitschli's discovery of

sulphates of strontium and of barium in kindred forms renders it

all but certain that they are actually true crystals of celestine*.

In its typical form, the radiolarian body consists of a spherical

mass of protoplasm, around which, and separated from it by some

sort of porous "capsule," lies a frothy protoplasm, bubbled up into

a multitude of alveoU or vacuoles, filled with a fluid which can

scarcely differ much from sea-waterf. According to their surface-

tension conditions, these vacuoles may appear more or less isolated

and spherical, or joined together in a "froth" of polyhedral cells;

and in the latter, which is the commoner condition, the cells tend

to be of equal size, and the resulting polygonal meshwork beautifully

regular. In some cases a large number of such simple individual

organisms are associated together, forming a floating colony; and

it is probable that many others, with whose scattered skeletons we

are alone acquainted, had likewise formed part of a colonial

organism.

In contradistinction to the sponges, in which the skeleton always

begins as a loose mass of isolated spicules, which only in a few

exceptional cases (such as Euplectella and Farrea) fuse into a

continuous network, the characteristic feature of the radiolarians

lies in the production of a continuous skeleton, of netted mesh or

perforated lacework, sometimes replaced by and oftener associated

with minute independent spicules. Before we proceed to treat of

the more complex skeletons, we may begin by dealing with those

comparatively few simple cases where the skeleton is represented

by loose, separate spicules or aciculae, which seem, like the spicules

of Alcyonium, to be isolated formations or deposits, precipitated in

the colloid matrix, with no relation to cellular or vesicular boun-

daries. These simple acicular spicules occupy a definite position

in the organism. Sometimes, as for instance among the fresh-water

Heliozoa (e.g. Raphidiophrys), they lie on the outer surface of the

organism, and not infrequently (when few in number) they tend to

* Celestine, or celestite, is SrS04 with some BaO replacing SrO.

t With the colloid chemists, we may adopt (as Rhumbler has done) the terms

sputnoid or emulsoid to denote an agglomeration of fluid-filled vesicles, restricting

the na.me froth to such vesicles when filled with air or some other gas.
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collect rouiul the bases of the [)seiidopo(lia, or around the larger

radiating spicules or axial rays in cases where these latter are

present. When the spicules are thus localised around some pro-

minent centre, they tend to take up a position of symmetry in

regard to it ; instead of forming a tangled or felted layer, they come

to lie side by side, in a radiating cluster round the focus. In other

cases (as for instance in the well-known radiolarian Aulacantha

scolymantha) the felted layer of aciculae lies at some depth below

the surface, forming a sphere concentric with the entire spherical

organism. In either case, whether the layer of spicules be deep or

be superficial, it tends to mark a "surface of discontinuity," a

meeting place either between two distinct layers of protoplasm or

between the protoplasm and the water around; and it is evident

that, in either case, there are manifestations of surface-energy at

the boundary, which cause the spicules to be retained there and to

take up their position in its plane. The case is analogous to that

of a cirrus cloud, which marks a surface of discontinuity in a

stratified atmosphere.

We have, then, to enquire w^hat are the conditions, apart from

gravity, which confine an extraneous body to a surface-film ; and

we may do this very simply, by con-

sidering the surface-energy of the entire

system. In Fig. 319 we have two fluids

in contact with one another (let us call W
them water and protoplasm), and a

body (6) which may be immersed in

either, or may be restricted to the

boundary between. We have here

three possible "interfacial contacts,"

each with its own specific surface-

energy per unit of surface area:

namely, that between our particle and

the water (let us call it a), that between

the particle and the protoplasm (^), and

that between water and protoplasm (y). When the body lies in

the boundary of the two fluids, let us say half in one and half

in the other, the surface-energies concerned are equivalent to

(>S'/2) a 4- (^/2) ^; but we nmst also remember that, by the presence

Fig. 319.
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of the particle, a small portion (equal to its sectional area s) of the

original contact-surface between water and protoplasm has been

obliterated, and with it a proportionate quantity of energy, equi-

valent to sy, has been set free. When, on the other hand, the body
lies entirely within, one or other fluid, the surface-energies of the

system (so far as we are concerned) are equivalent to Sol + sy, or

S^ + sy, as the case may be. Accordingly as a be less or greater

than ^, the particle will have a tendency to remain immersed in

the water or in the protoplasm ; but if (aS/2) (a + ^) - sy be less

than either Sol or 8/3, then the condition of minimal potential will

be found when the particle lies, as we have said, in the boundary

zone, half in one fluid and half in the other; and, if we were to

attempt a more general solution of the problem, we should have

to deal with possible conditions of equilibrium under which the

necessary balance of energies would be attained by the particle

rising or sinking in the boundary zone, so as to adjust the relative

magnitudes of the surface-areas concerned. This principle may, in

certain cases, help us to explain the position even of a radial spicule,

which is just a case where the surface of the sohd spicule is dis-

tributed between the fluids with a minimal disturbance, or minimal

replacement, of the original surface of contact between the one

fluid and the other.

In like manner we may provide for the case (a common and

an important one) where the protoplasm "creeps up" the spicule,

covering it with a dehcate film, and forming catenary curves or

festoons between one spicule and another; and a less fluid or more

tenacious thread of protoplasm may serve, like a solid spicule, to

extend the more fluid film, as we see, for instance, in Chlamydomyxa

or in Gromia. When the spicules are numerous and close-set, the

surface-film of protoplasm stretching between them will tend to look

like a layer of concave or inverted bubbles ; and this honeycombed

bubbly surface is sometimes beautifully regular, to judge from a

well-known figure of the living Globigerina* . In Acanthocystis we
have yet another special case, where the radial spicules plunge only

a certain distance into the protoplasm of the cell, being arrested

at a boundary-surface between an inner and an outer layer of

* See H. B. Brady's Challenger Monograph, pi. Ixxvii; and see the figure of

Chlamydomyxa in Doflein's Protozoenkunde, p. 374.
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cytoplasm; here we have only to assume that there is a

tension at this surface, between the two layers of protoplasm,

sufficient to balance the tensions which act directly on the

spicule*.

In various Acanthometridae, besides such typical characteristics

as the radial symmetry, the concentric layers of protoplasm, and

the capillary surfaces in which the outer vacuolated protoplasm

is festooned upon the projecting radii, we have another curious

feature. On the surface of the protoplasm where it creeps up the

sides of the long radial spicules, we find a number of elongated

bodies, forming in each case one or several little groups, and

lying neatly arranged in parallel bundles. A Russian naturalist,

Schewiakoff, whose views have been accepted in the text-books,

tells us that these are muscular structures, serving to raise or

lower the conical masses of protoplasm about the radial spicules,

which latter serve as so many "tent-poles" or masts, on which the

protoplasmic membranes are hoisted up; and the little elongated

bodies are dignified with various names, such as "myonemes" or

"myophriscs," ,in allusion to their supposed muscular nature f.

This explanation is by no means convincing. To begin with, we

have precisely similar festoons of protoplasm in a multitude of other

cases where the "myonemes" are lacking; from their minute size

(0-006-0-012 mm.) and the amount of contraction they are said to

be capable of, the myonemes can hardly be very efficient instruments

of traction; and further, for them to act (as is alleged) for a specific

purpose, namely the "hydrostatic regulation" of the organism

giving it power to sink or to swim, would seem to imply a mechanism

of action and of coordination not easy to conceive in these minute

and simple organisms. The fact is that the whole explanation is

unnecessary. Just as the supposed "hauling up" of the proto-

plasmic festoons may be at once explained by capillary phenomena,

so also (in all probability) may the position and arrangement of

the little elongated bodies. Whatever the actual nature of these

bodies may be, whether they be truly portions of differentiated

protoplasm, or whether they be foreign bodies or spicular structures

(as bodies occupying a similar position in other cases undoubtedly

* Cf. Koltzoff, Zur Frage der Zellgestalt, Anat. Anzeiger, xli, p. 190, 1912.

t Mem. de VAcad. des Sci., St Petersbourg, xii, Nr. 10, 1902.
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are), we can explain their situation on the surface of the protoplasm,

and their arrangement around the radial spicules, all by the prin-

ciples of capillarity.

This last case is not of the simplest; and I do not forget that

my explanation of it, which is wholly theoretical, impHes a doubt

of Schewiakoif 's statements, founded on his personal observation.

This I am none too wiUing to do; but whether it be justly done

in this case or not, I hold that it is in principle justifiable to look

with suspicion upon all such statements where the observer has

obviously left out of account the physical aspect of the pheno-

menon, and all the opportunities of simple explanation which the

consideration of that aspect might aiford.

Whether it be applicable to this particular and complex case or

no, our general theorem of the localisation and arrestment of sohd

particles in a surface-film is of great biological significance ; for on

it depends the power displayed by many httle naked protoplasmic

organisms of covering themselves with an "agglutinated" shell.

Sometimes, as in Difflugia, Astrorhiza (Fig. 320) and others, this

covering consists of sand-grains picked up from the surrounding

medium, and sometimes, on the other hand, as in Quadrula, it

consists of sohd particles said to arise as inorganic deposits or

concretions within the protoplasm itself, and to find their way

outwards to a position of equihbrium in the surface-layer; and in

both cases, the mutual capillary attractions between the particles,

confined to the boundary-layer but enjoying a certain measure of

freedom therein, tends to the orderly arrangement of the particles

one with another, and even to the appearance of a regular "pattern"

as the result of this arrangement.

The "picking up" by the protoplasmic organism of a solid

particle with which "to build its house" (for it is hard to avoid

this customary use of figures of speech, misleading though it be)

is a physical phenomenon akin to that by which an amoeba

"swallows" a particle of food. This latter process has been repro-

duced or imitated in various pretty experimental ways. For

instance, Rhumbler hsts shewn that if a splinter of glass be covered

with shellac and brought near a drop of chloroform suspended in

water, the drop takes in the spicule, robs it of its shellac covering,
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Fig. 320. Arenaceoi;s Foraminifera; Astrorhiza liinirola and nrc)iari(f.

From Brady's Challenger MonrxjrajJt.
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and then passes it out again*. In another case a thread of shellac,

laid on a drop of chloroform, is drawn in and coiled within it:

precisely as we may see a filament of Oscillatoria ingested by an

Amoeba, and twisted and coiled within its cell. It is all a question

of relative surface-energies, leading to different degrees of " adhesion
"

between the chloroform and the splinter of glass or its shellac

covering. Thus it is that the Amoeba takes in the diatom, dissolves

off its proteid covering, and casts out the shell.

Furthermore, as the whole phenomenon depends on a distribu-

tion of surface-energy, the amount of which is specific to certain

particular substances in contact with one another, we have no

difficulty in understanding the selective action which is very often

a conspicuous feature in the phenomenon")*. Just as some caddis-

worms make their houses of twigs, and others of shells and again

others of stones, so some Rhizopods construct their agglutinated

"test" out of stray sponge-spicules, or frustules of diatoms, or

again of tiny mud particles or of larger grains of sand. In all these

cases, we have to deal with specific surface-energies, and also

doubtless with differences in the total available amount of surface-

* Rhumbler, Physikalische Analyse von Lebenserscheinungen der Zelle, Arch,

f. Entw. Mech. vii, p. 250, 1898.

t The whole phenomenon has been described as a "surprising exhibition of

constructive and selective activity," and ascribed, in varying phraseology, to

inteUigence, skill, purpose, psychical activity, or "microscopic mentality": that is

to say, to Galen's t(x^lk7] (pvais, or "artistic creativeness " (cf. Brock's Galen, 1916,

p. xxix); cf. Carpenter, Mental Physiology, 1874, p. 41; Norman, Architectural

achievements of Little Masons, etc., Ann. Mag. Nat. Hist. (5), i, p. 284, 1878; Heron-

Allen, Contributions ... to the study of the Foraminifera, Phil. Trans. (B), ccvi,

pp. 227-279, 1915; Theory and phenomena of purpose and intelligence exhibited by

the Protozoa, as illustrated by selection and behaviour in the Foraminifera, Journ.

R. Microsc. Soc. 1915, pp. .547-.557; ibid., 1916, pp. 1.37-140. Sir J. A. Thomson

{New Statesman, Oct. 23, 1915) describes a certain little foraminifer, whose proto-

plasmic body is overlaid by a crust of sponge-spicules, as "a psycho-physical

individuality, whose experiments in self-expression include a masterly treatment of

sponge-spicules, and illustrate that organic skill which came before the dawn of Art."

tSir Kay Lankester finds it "not difficult to conceive of the existence of a mechanism

in the protoplasm of the Protozoa which selects and rejects building-material,

and determines the shapes of the structures built, comparable to that mechanism

which is assumed to exist in the nervous system of insects and other animals which

'automatically' go through wonderfully elaborate series of complicated actions."

And he agrees with "Darwin and others [who] have attributed the building up of

these inherited mechanisms to the age-long action of Natural Selection, and the

survival of those individuals possessing qualities or 'tricks' of life-saving value,"

Iniirn. R. Microsc. Soc. April, 1916, p. 136.
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energy in relation to gravity or other extraneous forces. In my
early student days, Wyville Thomson used to tell us that certain

deep-sea "Difflugias," after constructing a shell out of particles of

the black volcanic sand common in parts of the North Atlantic,

finished it off with "a clean white collar" of httle grains of quartz.

Even this phenomenon may be accounted for on surface-tension

principles, if we may assume that the surface-energy ratios have

tended to change, either with the growth of the protoplasm or by

reason of external variation of temperature or the like; we are by
no means obhged to attribute even this phenomenon to a mani-

festation of volition, or taste, or aesthetic skiU, on the part of the

microscopic organism. Nor, when certain Radiolaria tend more

than others to attract into their own substance diatoms and such-

hke foreign bodies, is it scientifically correct to speak, as some

text-books do, of species "in which diatom-selection has become

a regular habits To do so is an exaggerated misuse of anthropo-

morphic phraseology.

The formation of an "agglutinated" shell is thus seen to be a

purely physical phenomenon, and indeed a special case of a more
general physical phenomenon which has important consequences in

biology. For the shell to assume the sohd and permanent character

which it acquires in Difflugia, we have only to make the further

assumption that small quantities of a cementing substance are

secreted by the animal, and that this substance flows or creeps by
capillary attraction through all the interstices . of the little quartz

grains, and ends by binding them together. Rhumbler* has shewn

us how these agglutinated tests of spicules or of sand-grains can

be precisely imitated, and how they are formed with greater or less

ease and greater or less rapidity according to the nature of the

materials employed, that is to say according to the specific surface-

tensions which are involved. If we mix up a little powdered glass

with chloroform, and set a drop of the mixture in water, the glass

particles gather neatly round the surface of the drop so quickly that

the eye cannot follow the operation. If we do the same with oil

and fine sand, dropped into 70 per cent, alcohol, a still more

* Rhumbler, Beitrage z. Kenntniss d. Rhizopoden, i-v, Z. f. w. Z. 1891-o; Das
Protoplasma als physikalisches System, Jena, p. 591, 1914; also in Arch. J. Ent-
wickelungsmech. vii, pp. 279-335, 1898; Biol. Centralbl. xvm, 1898; etc.
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beautiful artificial Rhizopod-shell is formed, but it takes some three

hours to do. Where the action is quick the Uttle test forms as the

droplet exudes from the pipette : precisely as in the living Difflugia

when new protoplasm, laden with soHd particles, is being extruded

from the mouth of the parent-cell. The experiment can be varied,

simply and easily. Instead of a spherical drop a pear-shaped one

may easily be formed, so exactly like the common Difflugia pyriformis

that -Rhumbler himself was unable, sometimes, to tell under the

microscope the real from the artefact. Again he found that, when

the alcohol dissolved the oily substance of the (^rop and shrinkage

took place accordingly, the surface-layer with its solid particles got

kinked or folded in—and reproduced in doing so, with startUng

accuracy, a httle shell of common occurrence, known by the generic

name of Lesqueureusia, or Diffiugia spiralis. The pecuhar shape

of this little twisted and bulging shell has been taken to shew that

"it had enlarged after its first formation, a very rare occurrence in this

group*"; the very opposite is the case. Neither here nor in any.

allied form does the agglutinated test, once set in order by capillary

forces, yield scope for intercalation and enlargement.

At the very tinje when Rhumbler was thus demonstrating the

physical nature of the Difflugian shell, Verworn, a very notable

person, was studying the same and kindred organisms from the

older standpoint of an incipient psychology!. But as Rhumbler

himself admits, Verworn (unlike many another) was doing his best

not to over-estimate the appearance of vohtion, or selective choice,

in the little organism's use of materials to construct its dweUing.

This long parenthesis has led us away, for the time being, from

the subject of the radiolarian skeleton, and to that subject we must

now return. Leaving aside, then, the loose and scattered spicules,

which we Have sufficiently discussed, the more perfect radiolarian

skeletons consist of a continuous and regular structure; and the

sihceous (or other inorganic) material of which this framework is

composed tends to be deposited in one or other of two ways or in

both combined: (1) in long radial spicules, emanating symmetrically

from, and usually conjoined at, the centre of the protoplasmic body;

* Cf. Cambridge Natural History, Protozoa, p. 55.

t Max Verworn, Psycho-physiologische Protisten-Studien, Jena, 1889 (219 pp.);

Biologische Protisten-Studien, Z. f. wiss. Z. L, pp. 445-467, 1890.
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(2) in the form of a crust, developed either on the outer surface of

the organism or in relation to one or more of the internal surfaces

which separate its concentric layers or its component vesicles.

Not infrequently, this superficial skeleton comes to constitute a

spherical shell, or a system of concentric spheres.

We have already seen that a great part of the body of the

Radiolarian, and especially that outer portion to which Haeckel

has given the name of the "calymma," is built up of a mass of

"vesicles," forming a sort of stiff froth, and equivalent in the

physical though not necessarily in the biological sense to "cells,"

inasmuch as the little vesicles have their own well-defined boun-

daries, and their own surface phenomena. In short, all that we

have said of cell-surfaces and cell-conformations in our discussion

of cells and of tissues will apply in like manner, and under appro-

priate conditions, to these. In certain cases, even in so common
and so simple a one as the vacuolated substance of an Actino-

sphaerium, we may see a close resemblance, or formal analogy, to

a cellular or parenchymatous tissue in the close-packed arrangement

and consequent configuration of these vesicles, and even at times

in a shght membranous hardening of their walls. Leidy has figured *

some curious httle bodies hke small masses of consoUdated froth,

which seem to be nothing else than the dead and empty husks, or

filmy skeletons, of Actinosphaerium ; and Carnoyf has demon-

strated in certain cell-nuclei an all but precisely similar framework,

of extreme minuteness and tenuity, formed by adsorption or partial

sohdification of interstitial matter in a close-packed system of

alveoh (Fig. 321). In short, we are again dealing or about to deal

with a network or basketwork, whose meshes correspond to the

boundary fines between associated cells or vesicles. It is just in

those boimdary walls or films, still more in their edges or at their

corners, that surface-energy will be concentrated and adsorption

will be hard at work; and the whole arrangement will follow, or

tend to follow, the rules of areas minimae—the partition-walls

meeting at co-equal angles, three by three in an edge, and their

edges meeting four by four in a corner.

Let us suppose the outer surface of our Radiolarian to be covered

* J. Leidy, Fresh-water Rhizopods of North America, 1879, p. 262, pi. xli, figs. 11,12.

t Carnoy, Biologie Cellulaire, p. 244, fig. 108; cf. Dreyer, op. cit. 1892, fig. 185.
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by a layer of froth-like vesicles, uniform in size or nearly so. We
know that their mutual tensions will tend to conform them into the

fashion of a honeycomb, or regular meshwork of hexagons, and

that the free end of each hexagonal prism will be a little spherical

cap. Suppose now that it be at the outer surface of the protoplasm

(in contact with the. surrounding sea-water) that the sihceous

particles have a tendency to be secreted or adsorbed; the distribu-

tion of surface-energy will lead them to accumulate in the grooves

which separate the vesicles, and the result will be the development

Fig. 321. '''' Reticulum plasmatique
J"

After Carnoy.

Fig. 322. Aulonia hexagona Hkl.

of a dehcate sphere composed of tiny rods arranged, or apparently

arranged, in a hexagonal network after the fashion of Carnoy's

reticulum jplasmatique, only more solid, and still more neat and

regular. Just such a spherical basket, looking like the finest

imaginable Chinese ivory ball, is found in the siliceous skeleton of

Aulonia, another of Haeckel's Radiolaria from the Challenger.

But here a strange thing comes to light. No system of hexagons

can enclose space; whether the hexagons be equal or unequal,

regular or irregular, it is still under all circumstances mathematically

impossible. So we learn from Euler: the array of hexagons may
be extended as far as you please, and over a surface either plane or

curved, but it never closes in. Neither our reticulum plasmatique
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nor what seems the very perfection of hexagonal symmetry in

Aulonia are as we are wont to conceive them; hexagons indeed

predominate in both, but a certain number of facets are and must

be other than hexagonal. If we look carefully at Carnoy's careful

drawing we see that both pentagons and heptagons are shewn in

his reticulum, and Haeckel actually states, in his brief description

of his Aulonia hexagona, that a few square or pentagonal facets are

to be found among the hexagons.

Such skeletal conformations are common: and Nature, as in all

her handiwork, is quick to ring the changes on the theme. Among

Fig, 323. Actinomma arcadophorum Hkl.

its many variants may be found cases (e.g. Actinonima) where the

vesicles have been less regular in size; and others in which the

meshwork has been developed not on an outer surface only but at

successive levels, producing a system of concentric spheres. If the

sihceous material be not limited to the linear junctions of the cells

but spread over a portion of the outer spherical surfaces or caps,

then we shall have the condition represented in Fig. 324 (Eihmo-

sphaera), where the shell appears perforated by circular instead

of hexagonal apertures and the circular pores are set on shght

spheroidal eminences; and, interconnected with such types as this,
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we have others in which the accumulating peUicles of skeletal matter

have extended from the edges into the substances of the boundary

walls and have so produced a system of films, normal to the surface

of the sphere, constituting a very perfect honeycomb, as in Ceno-

sphaera favosa and vesparia*.

In one or two simple forms, such as the fresh-water Clathrulina,

just such a spherical perforated shell is produced out of some

Fig. 324. Ethmosphaera conoslphonia Fig. 325. Portions ofshells

Hkl. of two "species" of

Cenosphaera : upper

figure, C. favosa ; lower,

C. vesparia Hkl.

organic, acanthin-like substance; and in some examples of Clath-

rulina the chitinous lattice-work of the shell is just as regular and

delicate, with the meshes for the most part as beautifully hexagonal

as in the siHceous shells of the oceanic Radiolaria. This is only

another proof (if proof be needed) that the peculiar form and

character of these little skeletons are due not to the material of

which they are composed, but to the moulding of that material

upon an underlying vesicular structure.

Let us next suppose that another and outer layer of cells or

vesicles develops upon some such lattice-work as has just been

* In all these latter cases we recognise a relation to, or extension of, the principle

of Plateau's bourrelet, or van der Mensbrugghe's masse annulaire, or Gibbs's ring,

of which we have had much to say.
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described; and that instead of forming a second hexagonal lattice-

work, the skeletal matter tends to be developed normally to the

surface of the sphere, that is to say along the radial edges where

the external vesicles (now compressed into hexagonal prisms) meet

one another three by three. The result will be that, if the vesicles

be removed, a series of radiating spicules will be left, directed

outwards from the angles of the original polyhedron meshwork, all

as is seen in Fig. 326. And it may further happen that thes6

radiating skeletal rods branch at their outer ends into divergent

rays, forming a triple fork, and corresponding (after the fashion

Fig. 326. Aulaatrum triceros Hkl.

which we have already described as occurring in certain sponge-

spicules) to the superficial furrows between the three adjacent cells;

this is, as it were, a halfway stage between simple rods or radial

spicules and the full completion of another sphere of latticed

hexagons. Another possible case, among many, is when the large,

uniform vesicles of the outer protoplasm are replaced by smaller

vesicles, piled on one another in concentric layers. In this case

the radial rods will no longer be straight, but will be bent zig-zag,

with their angles in three vertical planes corresponding to the

alternate contacts of the successive layers of cells (Fig. 327).

The solid skeleton is confined, in all these cases, to the boundary-

lines, or edges, or grooves between adjacent cells or vesicles, but
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adsorptive energy may extend throughout the intervening walls.

This happens in not a few Radiolaria, and in a certain group called

the Nassellaria it produces geometrical forms of peculiar elegance

and mathematical beauty.

When Plateau made the wire framework of a regular tetrahedron

and dipped it in soap-solution, he obtained in an instant (as we
well know) a beautifully symmetrical system of six films, meeting

/^JvVvi

Fig. 327. Fig. 328. . A Nassellarian skeleton, Callimitra agnesae Hkl.

(0-15 mm. diameter).

three by three in four edges, and these four edges running from the

corners of the figure to its centre of symmetry. Here they meet,

two by two, at the Maraldi angle; and the films meet three by

three, to form the re-entrant soHd angle which we have called a

"Maraldi pyramid" in our account of the architecture of the honey-

comb. The very same configuration is easily recognised in the

minute siliceous skeleton of Callimitra. There are two discrepancies,

neither of which need raise any difiiculty. The figure is not a

rectilinear but a spherical tetrahedron, such as might be formed
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by the boundary-edges of a tetrahedral cluster of four co-equal

bubbles; and just as Plateau extended his experiment by blowing

a small bubble in the centre of his tetrahedral system, so we have

a central bubble also here.

This bubble may be of any size*; but its situation (if it be

present at all) is always the same, and its shape is always such

as to give the Maraldi angles at its own four corners. The tensions

A B
Fig. 329. Diagrammatic construction of Callimitra. A, a bubble suspended within

a tetrahedral cage. B, another bubble within a skeleton of the former bubble.

of its own walls, and those of the films by which it is supported Or

slung, all balance one another. Hence the bubble appears in plane

projection as a curvihnear equilateral triangle; and we have only

got to convert this plane diagram

into the corresponding sohd to obtain

the spherical tetrahedron we have

been seeking to explain (Fig. 329).

We may make a simpHfied model

(omitting the central bubble) of the

tetrahedral skeleton of Callimitra, after

the fashion of that of the bee's cell

(p. 535). Take OC =^ CD = DB, and

draw a circle with radius OB and

diameter AB. Erect a perpendicular Fig. 330. Geometrical construction

to AB at C, cutting the circle at E, F.
°^ Callimitra-sl.eleton.

AOE, ^Oi^ will be (as before) Maraldi angles of 109°; the arcs AE,

* Plateau introduced the central bubble into his cube or tetrahedron by dipping

the cage a second time, and so adding an extra face-film; under these circum-

stances the bubble has a definite magnitude.
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AF will be edges of the spherical tetrahedron, and will be the

centre of s)niimetry. Make the angle FOG = FOA = EOA. Cut out

the circle EAFG, and cut through the radius E0\ fold at AO, FO,

GO, and fasten together, using EOG for a flap. Make four such

sheets, and fasten together back to back. The model will be much
improved if little cusps be left at the corners in the cuttmg out.

The geometry of the little inner tetrahedron is not less simple

and elegant. Its six edges and four faces are all equal. The films

attaching it to the outer skeleton are all planes. Its faces are

spherical, and each has its centre in the opposite corner. The

edges are circular arcs, with cosine ^ ; each''is in a plane perpendicular

to the chord of the arc opposite, and each has its centre in the middle

of that chord. Along each edge the two intersecting spheres meet

each other at an angle of 120°*.

This completes the elelmentary geometry of the figure; but one

or two points Temain to be considered.

We may notice that the outer edges of the little skeleton are

thickened or intensified, and these thickened edges often remain

whole or strong while the rest of the surfaces shew signs of imper-

fection or of breaking away; moreover, the four corners of the

tetrahedron are not re-entrant (as in a group of bubbles) but a

surplus of material forms a little point or vcusp at each corner.

In all this there is nothing anomalous, and nothing new. For we

have already seen that it is at the margins or edges, and a fortiori

at the corners, that the surface-energy reaches its maximum—with

the double effect of accumulating protoplasmic material in the form

of a Gibbs's ring or bourrelet, and of intensifying along the same

Hues the adsorptive secretion of skeletal matter. In some other

tetrahedral systems analogous to Callimitra, the whole of the

skeletal matter is concentrated along the boundary-edges, and none

left to spread over the boundary-planes or interfaces: just as among
our spherical Radiolaria it was at the boundary-edges of their many
cells or vesicles, and often there alone, that skeletal formation

occurred, and gave rise to the spherical skeleton and its meshwork

* For proof, see Lamarle, op. cit. pp. 6-8. Lamarle shewed that the sphere

can be so divided in seven ways, but of these seven figures the tetrahedron alone

is stable. The other six are the cube and the regular dodecahedron; prisms,

triangular and pentagonal, with equilateral base and a certain ratio of base to

height; and two polyhedra constructed of pentagons and quadrilaterals.
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of hexagons. In the beautiful form which Haeckel calls Archi-

scenium the boundary edges disappear, the, four edges converging

on the median point are^ intensified, and only three of the six

convergent facets are retained; but, much as the two differ in

appearance, the geometry of this and of Callimitra remain essentially

the same.

We learned also from Plateau that, just as a tetrahedral bubble

can be inserted within the tetrahedral skeleton or cage, so may a

cubical bubble be introduced within a cubical cage; and the edges

of the inn^er cube will be just so curved as to give the Maraldi angles

at the corners. We find among Haeckel's Radiolaria one (he calls

it Lithocubus geometricus) which precisely corresponds to the skeleton

A B

Fig. 331. A, bubble suspended within i cubical cage.

B, Lithocubus geometricus Hkl.

of this inner cubical bubble; and the httle spokes or spikes which

project from the corners are parts of the edges which once joined

the corners of the enclosing figure to those of the bubble within

(Fig. 331).

Again, if we construct a cage in the form of an equilateral

triangular prism, and proceed as before, we shall probably see a

vertical edge in the centre of the prism connecting two nodes near

either end, in each of which the Maraldi figure is displayed. But

if we gradually shorten our prism there comes a point where the

two nodes disappear, a plane curvilinear triangle appears horizon-

tally in the middle of the figure, and at each of its three corners four

curved edges meet at the famihar angle. Here again we may insert

a central bubble, which will now take the form of a curvihnear
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equilateral triangular prism; and Haeckel's Prismatium tripodium
repeats this configuration (Fig. 332).

In a framework of two crossed rectangles, we may insert one
bubble after another, producing a chain of superposed vesicles whose
shapes vary as we alter the relative positions of the rectangular
frames. Various species of Triolampas, Theocyrtis, etc. are more
or less akin to these complicated figures of equilibrium. A very
beautiful series of forms may be made by introducing successive
bubbles within the film-system formed by a tetrahedron or a

Fig. 332. Prismatium tripodium Hkl.

parallelepipedon. The shape and the curvature of the bubbles

and of their suspensory films become extremely beautiful, and we

have certain of them reproduced unmistakably in various Nassel-

larian genera, such as Podocyrtis and its allies.

In Fig. 333 we see a curious little skeletal structure or complex

spicule, whose conformation is easily accounted for. Isolated spicules

such as this form the skeleton in the genus Dictyocha, and occur

scattered over the spherical surface of the organism (Fig. 334). The

basket-shaped spicule has evidently been developed about a cluster

of four cells or vesicles, lying in or on the surface of the organism,

and therefore arranged, not in the three-dimensional, tetrahedral

form of Callimitra, but in the manner in which four contiguous cells

lying side by side in one plane normally set themselves, like the
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four cells of a segmenting egg: that is to say with an intervening

"polar furrow," whose ends mark the meeting place, at equal angles,

of the four cells in groups of three. The Uttle projecting spokes, or

spikes, which are set normally to the main basket-work, seem to be

uncompleted portions of a larger basket, corresponding to a more

numerous aggregation of cells. Similar but more complex forma-

Fig. 333. An isolated portion of the skeleton of Dityocha.

tions, all explicable as basket-like frameworks developed around

a cluster of cells, and adsorbed or secreted in the grooves common

to adjacent cells or bubbles, are found in great variety.

Kg. 334. Dictyocha stapedia Hkl.

The Dicfyocha-si^icule, laid down as a siliceous framework in

the grooves between a few clustered cells, is too simple and natural

to be confined to one group of animals. We have already seen it,

as a calcareous spicule, in the holothurian genus Thyone, and we
may find it again, in many various forms, in the protozoan group

known as the Silicoflagellata*. Nothing can better illustrate the

physico-mathematical character of these configurations than their

* See {iyit. al.) G. Deflandre, Les Silicoflagelles, etc., Bull. Soc. Fr. de Microscopic,

I, p. 1, 1932: the figures in which article are mostly drawn from Ehrenberg's

Mikrogeologie, 1854.
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common occurrence in diverse groups of organisms. And the simple

fact is, that we seem to know less and less of these things on the

biological side, the more we come to understand their physical and

Fig. 335. Various species of Distephanus (SilicojEIagellata).

From Deflandre, after Ehrenberg.

mathematical characters. I have lost faith in Haeckel's four

thousand "species" of Radiolaria.

In Callimitra itself, and elsewhere where the boundary-walls (and

not merely their edges) are sihcified, the skeletal matter is not

Fig. 336. Holothurian spicules. A, of Thyone (Mortensen) ; B, Holothuria ladea

(Perrier); C, D, Holothuria and Phyllophorus (Deichman).

deposited in an even layer, like the waxen walls of a bee's cell, but

in a close meshwork of fine curvilinear threads; and the curves

seem to form three main series more or less closely related to the

three edges of the partition. Sometimes (as may also be seen in

our figure) the system is further comphcated by a radial series

running from the centre towards the free edge of each partition.
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As to the former, their arrangement is such as would result if

deposition or soKdification had proceeded in waves, starting inde-

pendently from each of the three boundary-edges of the Httle

partition-wall, and something of this kind is doubtless what actually

happened. We are reminded of the wave-hke periodicity of the

Liesegang phenomenon, and especially, perhaps, of the criss-cross

rings which Liesegang observed in frozen gelatine {supra, p. 663).

But there may be other explanations. For instance the film, hquid

or other, which originally constituted the partition, might conceivably

be thrown into vibrations, and then (hke the dust upon a Chladni

plate) minute particles in or on the film would tend to take up

position in an orderly way, in relation to the nodal points or fines

of the vibrating surface*. Some such hypothetical vibration may
(to my thinking) account for the minute and varied and very

beautiful patterns upon many diatoms, the resemblance of which

patterns to the Chladni figures (in certain of their simpler cases)

seems here and there striking and obvious. But I have not attempted

to investigate the many special problems suggested by the diatom-

skeleton.

The cusps at the four corners of the tetrahedral skeleton are a

marked peculiarity of our Nassellarian shell, and we should by no

means expect to see them in a skeleton formed at the boundary-

edges of ai simple tetrahedral pyramid of four bubbles or cells. But
when we introduce another bubble into the centre of a system of

four, then, as Plateau shewed, the tensions of its walls and of the

surrounding partitions so balance one another that it becomes a

regular curvifinear tetrahedron, or, as seen in plane projection

(Fig. 337), a curvilinear, equilateral triangle, with prominent, not

re-entrant angles. A drop of fluid tends to accumulate at each

corner where four edges meet, and forms a bourreletf ; it is drawn
out in the directions of the four films which impinge upon it, and

* Cf. Faraday's beautiful experiments, On the moving groups of particles found
on vibrating elastic surfaces, etc., Phil. Trans. 1831, p. 299; Researches, 1859,

pp. 314-358.

t The bourrelet is not on4y, as Plateau expresses it, a "surface of continuity,"

but we also recognise that it tends (so far as material is available for its production)

to further lessen the free surface-area. On its relation to vapour-pressure and to

the stability of foam, see FitzGerald's interesting note in Nature, Feb. 1, 1894
{Works, p. 309); and on its effect in thinning the soap-bubble to bursting-point,

see Willard Gibbs, Coll. Papers, i, p. 307 seq.
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so tends to assume in miniature the very same shape as the tetra-

hedron to whose corner it is attached. Out of these bourrelets, then,

the cusps at the four corners of our httle skeleton are formed.

A large and curiously beautiful family of radiolarian (or "poly-

cystine") skeletons look, in a general way, Uke tiny hehnets or

Pickelhauben, with spike above, and three (or sometimes six) curved

lobes, Hke helmet-straps, below. We recognise a family likeness,

even a mathematical identity, between this figure and the last, for

both alike are based on a tetrahedral symmetry: the body of the

helmet corresponding to the inner vesicle of Callimitra, and the

spike and the three straps to the four edges which ran out from the

inner to the outer tetrahedron. In the one case an inner vesicle

is surrounded by a tetrahedral figure whose outer walls, indeed, are

absent, but its edges remain, and so do the walls connecting the

outer and inner vesicles. In the other case the outer edges are

gone, and so are the filmy partition-walls, save parts which corre-

spond to the four internal edges between them*. There are apt

to be two slight discrepancies. The helmet is often of somewhat

complicated form, easily explained as due to the presence of two

superposed bubbles instead of one. The other apparent anomaly

is that the three helmet-straps are curved, while the corresponding

edges are straight in Plateau's figure of the regular tetrahedron.

But it is a paramount necessity (as we well know) for each set of

four edges in a system of fluid films to meet in a point two and two

at the Maraldi angle
\

just as it is necessary for the faces to meet

* Looking through Haeckel's very numerous figures, we see that now and then
something more is left than the mere edges of the partition-walls.
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at 120°; and faces and edges become curved, whenever necessary,

in order that these conditions may be fulfilled. The need may arise

in various ways. Suppose (as in Fig. 339) that our httle central

bubble be no longer in the centre of

symmetry, but near one corner of the

enclosing tetrahedron; the short edge

running out from that corner will tend

to remain straight (and so form the

spike of the helmet); while the other

three will each form an S-shaped curve,

as a condition of making co-equal angles

at their two extremities. An analogous

case is figured in one of Sir David

Brewster's papers where he repeats and

amplifies some experiments of Plateau's*.

Fig. 339. Diagram of one of the He made a tetrahedral cage, and fitted

helmet-shaped radiolaria, e.g. it with three more wires, leading from
Podocyrtis: to shew its tetra- ,^ , ,-, •

t t, • , n i i i

hedral symmetry. ^^^ ^P®^ ^^ the middle pomt of each basal

edge. On dipping this into soap-solution,

various comphcations were seen. At the apex, six films must not

meet together, for no more than three surfaces may meet in an edge

;

intermediate or interstitial films make their appearance, with which

we are not greatly concerned. But six films now ascend towards the

apex from the base instead of three, and the three which come from

the corners have a longer path than the other three which come from

the mid-points of the basal edges ; they must be curved in different

degrees in order that all t&ree may make at either end their co-equal

angles. And if we now introduce a bubble (or two bubbles) into the

interior of the system, we obtain the characteristic form of our helmet-

shaped Radiolarian—the spike above, the single or double vesicle

of the body, and the straps or lappets with their peculiar and

characteristic curvatures.

The Httle shell is perforated with many rounded holes, and it

remains to account for these. They are required, so we are told,

for the passage of pseudopodia; well and good. We have referred

the Dictyocha-si^icule and the hexagonal meshwork of Aulonia to

froth-like associations of vesicles and to adsorption taking place

* On the figures of equihbrium in liquid films, Trans. R.S.E. xxiv, 1866.
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between; so far so good, again. But the irregular lacework of the

Uttle helmets does not suit this explanation very well, and there

may be yet other possibilities. We have already mentioned

Tomhnson's "cohesion figures*." Experimenting with a great

variety of substances, Tomhnson studied the innumerable ways in

which drops, jets or floating films "cohere," disrupt or otherwise

behave, under the resultant influences of surface-tension, cohesion,

viscosity and friction; in one case a film runs out into a wavy or

broken edge, in another it gives way here and there, and makes

rents or holes in its surface. I take the Httle holes in our polycystine

skeleton to be cohesion-figures, in Tomhnson's sense of the word

—

spots where the delicate film has given way and run into holes, and

where surface-tension has rounded off the broken edges, and made

the rents into rounded apertures.

In the foregoing examples of Radiolaria, the symmetry which

the organism displays seems identical with that symmetry of forces

which results from the play and interplay of surface-tensions in the

whole system : this symmetry being displayed, in one class of cases,

in a more or less spherical mass of froth, and in another class in

a simpler aggregation of a few, otherwise isolated, vesicles. In

either case skeletons are formed, in great variety, by one and the

same kind of surface-action, namely by the adsorptive deposition

of sihca in walls and edges, corresponding to the manifold surfaces

and interfaces of the system. But among the vast number of

known Radiolaria, there are certain forms (especially among the

Phaeodaria and Acantharia) which display a no less remarkable

symmetry the origin of which is by no means clear, though surface-

tension may play a part in its causation. Even this is doubtful;

for the fact that three-way nodes are no longer to be seen at the

junctions of the cells suggests that another law than that of minimal

areas had been in action here. They are cases in which (as in some

of those already described) the skeleton consists (1) of radiating

spicular rods, definite in number and position, and (2) of inter-

connecting rods or plates, tangential to the more or less spherical

body of the organism, whose form becomes, accordingly, that of a

geometric, polyhedral sohd. The great regularity, the numerical

Cf. supra, p. 418
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symmetries and the apparent simplicity of these latter forms makes

of them a class apart, and suggests problems which have not been

solved or even investigated.

The matter is partially illustrated by the accompanying figures

(Fig. 340) from Haeckel's Monograph of the Challenger Radiolaria*.

In one of these we see a regular octahedron, in another a regular,

or pentagonal, dodecahedron, in a third a regular icosahedron. In

all cases the figure appears to be perfectly symmetrical, though

neither the triangular facets of the octahedron and icosahedron,

nor the pentagonal facets of the dodecahedron, are necessarily plane

surfaces. In all of these cases, the radial spicules correspond to the

comers of the figure; and they are, accordingly, six in number

in the octahedron, twenty in the dodecahedron, and twelve in the

icosahedron. If we add to these three figures the regular tetra-

hedron which we have just been studying, and the cube (which is

represented, at least in outline, in the skeleton of the hexactinelhd

sponges), we have completed the series of the five regular polyhedra

known to geometers, the Platonic bodies
"f

of the older mathema-

ticians. It is at first sight all the more remarkable that we should

here meet with the whole five regular polyhedra, when we remember

that, among the vast variety of crystalline forms known among
minerals, the regular dodecahedron and icosahedron, simple as they

are from the mathematical point of view never occur. Not only

do these latter never occur in crystallography but (as is explained

in textbooks of that science) it has been shewn that they cannot

occur, owing to the fact that their indices (or numbers expressing

the relation of the faces to the three primary axes) involve an

irrational quantity: whereas it is a fundamental law of crystallo-

graphy, involved in the whole theory of space-partitioning, that

"the indices of any and every face of a crystal are small whole

numbers J." At the same time, an imperfect pentagonal dodeca-

* Of the many thousand figures in the hundred and forty plates of this beautifully

illustrated book, there is scarcely one which does not depict some subtle and

elegant yeornetrical configuration.

t They were known long before Plato- llXdnov 5^ kuI iv tovtols irvdayopl^ei.

X If the equation of any plane face of a crystal be written in the form

hx + ky -\-lz-\, then h, k, I are the indices of which we are speaking. They are

the reciprocals of the parameters, or reciprocals of the distances from the origin

at which the plane meets the several axes. In the case of the regular or pentagonal

do«lecahedron these indices are 2, 1 -r Vo, 0. Kepler described as follows, briefly
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hedron, whose pentagonal sides are non-equilateral, is common
among crystals. If we may safely judge from Haeckel's figures,

the pentagonal dodecahedron of the Radiolarian (Circorhegma) is

perfectly regular, and we may rest assured, accordingly, that it is

not brought about by principles of space-partitioning similar to

those which manifest themselves in the phenomenon of crystallisa-

tion. It will be observed that in all these radiolarian polyhedral

shells, the surface of each external facet is formed of a minute

hexagonal network, whose probable origin, in relation to a vesicular

structure, is such as we have already discussed.

In certain allied Radiolaria of the family Acanthometridae (Fig.

341), which have twenty radial spines, the arrangement of these

spines is commonly described in a somewhat singular way. The

twenty spines are referred to five whorls of four spines each, arranged

as parallel circles on the sphere, and corresponding to the equator,

the tropics and the polar circles. This rule was laid down by the

celebrated Johannes Miiller, and has ever since been used and

quoted as Miiller's law*. But when we come to examine the figure,

we find that Miiller's law hardly does justice to the facts, and seems

to overlook a simpler symmetry. We see in the first place that

here, unlike our former cases, the twenty radial spines issue through

the facets (and all the facets) of the polyhedron, instead of coming

from its corners; and that our twenty .spines correspond, therefore,

not to the corners of a dodecahedron, but to the facets of some sort

of an icosahedron. We see, in the next place, that this icosahedron

is composed of faces of two kinds, hexagonal and pentagonal ; and

that the whole figure may be described as a hexagonal prism, whose

twelve corners are truncated, and replaced by pentagonal facets.

Both hexagons and pentagons appear to be equilateral, but if we
but adequately, the common characteristics of the dodecahedron and icosahedron

:

"Duo sunt corpora regularia, dodecaedron et icosaedron, quorum illud quin-

quangulis figuratur expresse, hoc triangulis quidem sed in quinquanguli formam
coaptati^. Utriusque horum corporum Jpsiusque adeo quinquanguli structura

perfici non potest sine proportione ilia, quam hodierni geometrae divinam appellant''

(De nive sexangula (1611), Opera, ed. Fritsch, vn, p. 723). Here Kepler was dealing,

somewhat after the manner of Sir Thomas Browne, with the mysteries of the

quincunx, and also of the hexagon; and was seeking for an explanation of the

mysterious or even mystical beauty of the 5-petalled or 3-petalled flower

—

pulchri-

tudinis aut proprietatis fgurae, quae animam harum plantarum characterisavit.

* See Johannes Miiller, Ueber die Thalassicollen, Polycistinen und Acantho-

metren des Mittelmeeres, Abh. d. Akad. Wiss. Berlin, 1858, pp. 1-62, 11 pi.
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try to construct a plane-sided polyhedron of this kind, we find it

to be impossible; for into the angles between the six equatorial

Fig. 340. Skeletons of various Radiolarians, after Haeckel. 1, Circoporus sexfurcus;

2, C. odahe.drus; 3, Circogonia icosahcdra; 4, Circospathis novena; 5, Circorrhegma

dodecahedra.

regular hexagons six regular pentagons will not fit. The figure,

however, can be easily constructed if we replace the straight edges
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(or some of them) by curves, the plane facets by slightly curved

surfaces, or the regular by non-equilateral polygons*.

In some cases, such as Haeckel's Phatnaspis cristata (Fig. 342),

we have an elHpsoidal body from which the spines emerge in the

order described, but which is not obviously divided into facets.

In Fig. 234 I have indicated the facets corresponding to the rays,

and dividing the surface in the usual symmetrical way.

6F,

eF.

-6F,

Fig. 341. Dorataspis cristata Hkl. A, viewed according to Muller's law: a, four

polar plates; h, four intermediate or "tropical" plates; c, four equatorial

plates. B, an alternative description: Fg, two polar and six equatorial

hexagonal plates; F5, two rows of six intermediate pentagonal plates.

About any polyhedron (within or without) we may describe

another whose corners correspond to the sides, and whose sides to

the corners, of the original figure; or the one configuration may
be developed from the other by bevelling off, to a certain definite

extent, the corners of the original polyhedron. The two figures,

thus reciprocal to one another, form a "conjugate pair," and the

principle is known as the "principle of duahty" in polyhedral

.

Of the regular sohds, cube and octahedron, dodecahedron and

* Muller's interpretation was emended by Brandt, and what is known as Brandt's

Law, viz. that the symmetry consists of two polar rays and three whorls of six

each, coincides so far with the above description : save only that Brandt says plainly

that the intermediate whorls stand equidistant between the equator and the poles,

i.e. in latitude 45", which, though not very far wrong, is geometrically inaecurate.

But Brandt, if I understand him rightly, did not propose his "law" as a substitute

for Muller's, but rather as a second law, applicable to a few special cases.

t First proved by Legendre, EUm. de Geometrie, vii. Prop. 25, 1794.
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Kg. 342 A. Phatnaspis cristata Hkl.

Fig. 342 B. The same, diagrammatic.
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icosahedron, are conjugate pairs; but the first and simplest of all

solid figures, the tetrahedron, has no conjugate but itself.

In our httle shell of Dorataspis, the twenty spicules (as we have

seen) spring from and correspond to the twenty facets of the poly-

hedron, twelve pentagonal and eight hexagonal, meeting at thirty-six

corners, in all cases three by three; we may write the formula of

the polyhedron, accordingly, as

12i^5 + 8i?'6 + 36C3.

If we now connect up the twenty spicules, three by three, we

shall obtain thirty-six triangles, completely covering the figure;

but we shall find that of the twenty corners twelve are surrounded

by five, and eight by six triangles. The formula is now

362^3 +I2C5+8C6,

and the two figures are fully reciprocal or conjugate.

I do not know of any radiolarian in which this configuration is

to be found; nor does it seem a likely one, owing to the large and

variable number of edges which meet in its corners. But we may
have polyhedra related to, or derived from, one another in a less

full and perfect degree. For instance, letting the twenty spicules

of Dorataspis again serve as corners for the new figure, let four

facets meet in each corner; or (which comes to the same thing) let

each spicule give off four branches or offshoots, which shall meet

their corresponding neighbours, and form the boundary-edges of a

new network of facets. The result (Fig. 34'3) is a symmetrical

figure, not geometrically perfect but elegant in its own way, which

we recognise in a number of described forms*. It shews eight

triangular and fourteen rhomboidal facets; and its formula is

8^3+142^4 + 2004.

Many subsidiary varieties may arise in turn: when, for instance,

certain of the little branches fail to meet, or others grow large and

widely confluent, always in symmetrical fashion.

We now see how in all such cases as these there is a double

symmetry involved, that of two superimposed, and conjugate or

semi-conjugate, figures. And the ambiguity which attends such

descriptions as that which Johannes Miiller embodied in his "law"

* Cf. W. Mielck, Acanthometren aus Neu-Pommern, Diss., Kiel, 1907.
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seems due to a failure to recognise this twofold or alternative

symmetry.

In all these latter cases it is the arrangement of the axial rods

—

the "polar symmetry" of the entire organism—which hes at "the

root of the matter; and which, if only we could account for it,

would make it comparatively easy to explain the superficial con-

figuration. But there are no obvious mechanical forces by which

we can so explain this peculiar polarity. This at least is evident,

that it arises in the central mass of protoplasm, which is the essential

living portion of the organism as distinguished from that frothy

Fig. 343. Acanthometra sp. A
derivative of the Dorataspis

figure. After Mielck.

Fig, 344. Phractaapis prototypus Hkl.

peripheral mass whose structure has helped us to explain so many
phenomena of the superficial or external skeleton. To say that the

arrangement depends upon a specific polarisation of the cell is

merely to refer the problem to other terms, and to set it aside for

future solution. But it is possible that we may learn something

about the fines in which to seek for such a solution by considering

the cage of Lehmann's "fluid crystals," and the light which they

throw upon the phenomena of molecular aggregation.

The phenomenon of "fluid crystallisation" is found in a number
of chemical bodies; it is exhibited at a specific temperature for each

substance; and it would seem to be limited to bodies in which

there is an elongated, or "long-chain" arrangement of the atoms
in the molecule. Such bodies, at the appropriate temperature, tend

to aggregate themselves into masses, which are sometimes spherical
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drops or globules (the so-called "spherulites"), and sometimes have

the definite form of needle-like or prismatic crystals. In either case

they remain Hquid, and are also doubly refractive, polarising Hght

in brilhant colours. Together with them are formed ordinary sohd

crystals, also with characteristic polarisation, and into such soHd

crystals all the fluid material ultimately turns. It seems that in

these hquid crystals, though the molecules are freely mobile, just

as are those of water, they are yet subject to, or endowed w4th,

a ''directive force," a force which confers upon them a definite

configuration or "polarity," the " Gestaltungskraft " of Lehmann.

Such an hypothesis as this has been gradually extruded from the

theories of mathematical crystallography*; and it has come to be

understood that the s^onmetrical conformation of a homogeneous

crystalhne structure is sufficiently explained by the mere mechanical

fitting together of appropriate structural units along the easiest and

simplest lines of "close packing": just as a pile of oranges becomes

definite, both in outward form and inward structural arrangement,

without the play of any specific directive force. But w^hile our

conceptions of the tactical arrangement of crystalline molecules

remain the same as before, and our hypotheses of "modes of

packing" or of "space-lattices" remain as useful and as adequate

as ever for the definition and explanation of the miolecular arrange-

ments, a new conception is introduced when we find something hke

such space-lattices maintained in what has hitherto been considered

the molecular freedom of a liquid field; and Lehmann would per-

suade us, accordingly, to postulate a specific molecular force, or

" Gestaltungskraft " (not unlike Kepler's "facultas formatrix"), to

account for the phenomenon^.

Now just as some sort of specific " Gestaltungskraft " had been

of old the deus ex machina accounting for all crystalline phenomena

(gnara totius geometriae, et in ea exercita, as Kepler said), and as

* Cf. Tutton, Crystallography, 1911, p. 932.

t Kepler, if I understand him aright, saw his way to account for the shape of the

bee's cell or the pomegranate-seed; and it was for want of any such mechanical

explanation, and as little more than a confession of ignorance, that he fell back

on a facultas formatrix to account for the six rays of the snow-crystal or the five

petals of the flower. He was equally ready, unfortunately, to explain, by the

same facultas formatrix in acre, the appearance of a plague of locusts or a swarm
of flies.
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such an hypothesis, after being dethroned and repudiated, has now

fought its way back and claims a right to be heard, so it may be

also in biology. We begin by an easy and general assumption of

specific properties, by which each organism assumes its own specific

form ; we learn later (as it is the purpose of this book to shew) that

throughout the whole range of organic morphology there are innu-

merable phenomena of form which are not pecuhar to living things,

but which are more or less simple manifestations of ordinary physical

law. But every now and then we come to deep-seated signs of

protoplasmic symmetry or polarisation, which seem to lie beyond

the reach of the ordinary physical forces. It by no means follows

that the forces in question are not essentially physical forces, more

obscure and less familiar to us than the rest; and this would seem

to be a great part of the lesson for us to draw from Lehmann's

beautiful discovery. For Lehmann claims to have demonstrated,

in non-living, chemical bodies, the existence of just such a deter-

minant, just such a "Gestaltungskraft," as would be of infinite help

to us if we might postulate it for the explanation (for instance) of

our Radiolarian's axial symmetry. Further than this we cannot

go; such analogy as we seem to see in the Lehmann phenomenon

soon evades us, and refuses to be pressed home. The symmetry

of crystallisation, which Haeckel tried hard to discover and to reveal

in these and other organisms, resolves itself into remote analogies

from which no conclusions can be drawn. Many a beautiful

protozoan form has lent itself to easy physico-mathematical ex-

planation ; others, no less simple and no more beautiful prove harder

to explain. That Nature keeps some of her secrets longer than

others—that she tells the secret of the rainbow and hides that of

the northern hghts—is a lesson taught me when I was a boy.

A note on Polyhedra.

The theory of Polyhedra, Euler's doctrina solidorum, is a branch

of geometry which deals with the more or less regular solids; and

the rudiments of the theory may help us to study certain more or

less symmetrical organic forms. Euler, a contemporary of Lin-

naeus, is the most celebrated of the many mathematicians who

have carried this subject beyond where Pythagoras, Plato, Euclid

and Archimedes had left it. He drew up a classification of poly-
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hedral solids, using a binomial nomenclature based on the number

of their corners or vertices, and sides or faces. Thus, for example,

he called a figure with eight corners and seven faces Octogonum

hsptaedrum; and the analogy between this and Linnaeus's botanical

classification and nomenclature—e.g. Hexandria trigynia and the

rest—is very close and curious.

A simple theorem, of which Euler was vastly proud and which

we still speak of as Euler 's Law*, is fundamental to the theory of

polyhedra. It tells us that in every polyhedron whatsoever, the

faces and corners together outnumber the edges by two t :

C-E+F=2 (1).

Another fundamental theorem follows. We know from Euchd

that the three angles of a triangle are equal to two right angles;

consequently, that in a polygon of C angles, the sum of the angles

-= 2 (C — 2) right angles. And there follows from this—but by no

means expectedly—the analogous and extremely simple relation

* Euler, Elementa doctrinae solidorum, Novi Comment. Acad. Sci. Imp.
Petropol. IV, p. 109 seq. (ad annos 17.52 et 1753), 1758: "In omni solido hedris

planis inclusum, aggregatura ex numero angulorum solidorum et ex numero
hedraruiu binario excedit numerum acierum." For a proof, see {int. al.) De
Morgan, article Polyhedron in the Penny Cyclopaedia. There is reason to believe

that Descartes was acquainted with this theorem between 1672 and 1676; cf.

Foucher de Careil, (Euvres inedites de Descartes, Paris, ii, p. 214. Cf. Baltzer,

Monatsber. Berlin. Akad. 1861, p. 1043; and de Jonquieres, C.R. 1890, p. 261.

(The student will be struck by the resemblance between this formula and the phase

rule of Willard Gibbs.)

t If we include, besides the corners, edges and faces (i.e. points, lines and
surfaces) the solid figure itself, Euler's Law becomes

C-E + F-S = \.

And in this form the theorem extends to n dimensions, as follows:

With equal beauty and simplicity, the simplest figure in each ^-dimensional

space is given as follows:

Kq rC% A^2 "'S "^4 ^^^»

w = 1
" =1 (point)12-1 =1 (line)

2 3-3 +1 =1 (triangle)

3 4 -6 +4 -1 —1 (tetrahedron)

4 5 -10 +10 -5 +1 =1 (pentahedroid)

etc.

And, in a figure of /i-dimensions, the sum of the plane angles =2*"-^' (C-2)
right angles.
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that in a polyhedron of C corners, the sum of the plane

angles

= 4 (C - 2) right angles (2)*.

Hence, if the polyhedron be isogonal, the sum of the plane angles

at each corner

4 (C - 2)

C
90°, or U - ^i right angles (3).

The five regular sohds, or Platonic bodies—there can be no more

—^have been known from remote antiquity ; they have their corners

all ahke and their face's all alike, they are isogonal and isohedral.

Three of them, the tetrahedron, octahedron and icosahedron, have

triangular faces; three of them, the tetrahedron, cube and dodeca-

hedron, have trihedral or three-way corners. One or other of these,

triangles or three-way corners, must (as we shall soon see) be present

in every polyhedron whatsoever.

The semi-regular solids are -regular in one respect or other, but

not in both; they are either isogonal or isohedral—isohedral, when

every face is an identical polygon and isogonal when at every corner

the same set of faces is combined. The semi-regular isogonal gohds,

with all their corners ahke but with two or more kinds of regular

polygons for their faces, are thirteen in number—there can be no

more; they were all described by Archimedes, and we call them

by his name. One of them, with six square and eight hexagonal

facets, derived by truncating the octahedron or the cube, we have

found to be of pecuhar interest, and it has become famihar to us

as, of all homogeneous space-fillers, the one which encloses a given

volume within ,a minimal area of surface. It is the cuho-octahedron

of Kepler or of Fedorow, the tetrakaidekahedron of Kelvin, which

latter name we commonly use.

Of semi-regular isohedral bodies, with all their sides alike (though

no longer regular polygons) and their corners of two kinds or more,

only one was known to antiquity; it is the rhombic dodecahedron,

which is the crystalline form of the garnet, and appears in part

* On this remarkable parallel see Jacob Steiner, Gesammelte Werke, i, p. 97.

It follows that the sum of the plane angles in a polyhedron, as in a plane polygon,

is at once determined by the number of its comers: a result which dehghted

Euler, and led him to base his primary or generic classification of polyhedra on

their comers rather than their sides.
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again as a "space-filler" at the base of the bee's cell. A closely

related rhombic icosahedron was known to Kepler; but it was

left to Catalan* to discover, only some seventy-five years ago,

that the isohedral bodies were thirteen in number, and were

precisely comparable with and reciprocal to the Archimedean

solids.

The semi-regular solids, both of Archimedes and of Catalan, are

all, like the Platonic bodies, related to the sphere |, for a circum-

scribing sphere meets all the corners of an Archimedean solid, and

an inscribed sphere touches all the faces of a solid of Catalan; and

while the isogonal bodies can be constructed by various simple

geometrical means, the general method of constructing the thirteen

isohedral bodies is by dividing the sphere into so many similar and

equal areas J. It is a matter of spherical trigonometry rather than of

simple geometry, and the problem, for that very reason, remained

long unsolved.

The thirteen Archimedean bodies are derivable from the five

Platonic bodies, in most cases easily, by so truncating their corners

and their edges as to produce new and rpgularly polygonal faces in

place of the old faces, corners and edges, and the possible number

of faces in the new figure will be easily derived from the edges,

corners and faces of the old. Part of the old faces will remain;

each truncated corner will yield one new face; but each edge may
be truncated, or bevelled, more than once, so as to yield one, two,

or possibly three new faces. In short, if the faces, corners and

edges of a regular solid be F, C, E, those of the Archimedean solids

derivable from it {Fj) will be

F^ = F + mC + nE,

where m = or 1, and n = 0, 1, or 2.

From the cube six Archimedean bodies may be derived, from the

dodecahedron six, and from the tetrahedron one.

* Journal de Vecole imper. polytechnique, xli, pp. 1-71, 1865.

t It follows that the Chinese carved and perforated ivory balls, which are

based on regular and symmetrical division of the sphere, can all be referred to one

or another of the Platonic or Archimedean bodies.

J As a matter of fact, the Catalan bodies can be formed by adding to the Platonic

bodies, just as (but not so easily as) the Archimedean bodies can be formed by

truncating: them.
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The derivatives of the cube (with its six sides and eight corners)

have the following numbers of sides

:

F^ = F+C =6 + 8 =14
F+C + E =6 + 8+12 = 26

i^+C+2j6;=6 + 8 + 24 = 38.

The derivatives of the dodecahedron have, in hke manner, 32, 62

or 92 sides; while the tetrahedron yields, by truncation of its four

corners, a solid with eight sides.

The growth and form of crystals is a subject alien to our own,

yet near enough to attract and tempt us. It is a curious thing

(probably traceable to the Index Law of the crystallographer) that

the Archimedean or isogonal bodies seldom occur and certainly play

no conspicuous part in crystallography, while several of Catalan's

isohedral figures are the characteristic forms of well-known minerals *.

Just as we pass from the Platonic to the Archimedean bodies by

truncating the corners or edges of the former, so conversely, by

producing their faces to a limit we obtain another family of figures

—in all cases save the tetrahedron, which admits of no such

extension; and the figures of this family are remarkable for the

"twinned," or duphcate or multiple appearance which they present.

If we extend the faces of an octahedron we get what looks hke two

tetrahedra, "twinned with" or interpenetrating one another; but

there has been no interpenetration in the construction of this twin-

like figure, only further accretion upon, and extension of, the facets

of the octahedron. Among the higher polyhedra there are many

figures which look, in a far more complicated way, like the twinning

of simpler but still comphcated forms; and these also have been

constructed, not by interpenetration, but by the mere superposition

of new parts on old.

An elementary, even a very elementary, knowledge of the theory

of polyhedra becomes useful to the naturahst in various ways.

Among organic structures we often find many-sided boxes (or what

may be regarded as such), like the capsular seed-vessels of plants,

the skeletons of certain Radiolaria, the shells of the Peridinia, the

carapace of a tortoise, and a great many more. Or we may go

* E.g. the triakis, tetrakis and hexakis octahedra of fluor-spar. However the

Archimedean tetrakaidekahedron [QF^ SFq) occurs in ahmi.
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further and treat any cluster of cells, such as a segmenting ovum,

as a species of polyhedron and study it from the point of view

of Euler's Law and its associated theorems. We should have to

include, as the geometer seldom does, the case of two-sided facets

—

facets with two corners and two curved sides or edges—hke the

" hths " * of a peeled orange ; but the general formula would include

these as a matter of course. On the other hand, we need very

seldom consider any other than trihedral or three-way corners.

When we limit ourselves to polyhedra with trihedral corners the

following formula applies

:

4A+ 3/3+ 2/4+/6± 0./,-/, - 2/3- ... = 12 (4).

That this formula apphes to the tetrahedron with its four triangles,

the cube with its six squares and the dodecahedron with its twelve

pentagons, is at once obvious. The now famihar case of our four-

celled egg with its polar furrows (Fig. 486, B, etc.) appears in two

forms, according as the polar furrows run criss-cross or parallel.

In the one case we have a curvilinear tetrahedron, in the other a

figure with two two-sided and two four-sided facets; in either case

the formula is obviously satisfied.

But the main lesson for us to learn is the broad, general principle

that we cannot group as we please any number and sort of polygons

into a polyhedron, but that the number and kind of facets in the

latter is strictly Umited to a narrow range of possibiHties. For

example, the case of Aulonia has already taught us that a poly-

hedron composed entirely of hexagons is a mathematical impossi-

bihtyt; and the zero-coefficient which defines the number of

Jiexagons in the above formula (4) is the mathematical statement

of the fact J. We can state it still more simply by the following

corollary, hkewise hmited to the case of three-way corners

:

* Lith, a useful Scottish word for a joint X)t segment. Cromwell, according to

Carlyle, "gar'd kings ken they had a lith in their necks."

t That hexagons cannot enclose space, or form a "three-way graph," has been

recognised as a significant fact in organic chemistry : where, for instance, it limits,

somewhat unexpectedly, the ways in which a closed cyclol, or space-enclosing

protein molecule, can be imagined to be built up. Cf. Dorothy Wrinch, in

Proc. R. S. (A), No. 907, p. 510, 1937.

J Euler shewed at the same time the singular fact that no polyhedron can exist

with seven edges.
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This applies at once to the tetrahedron, the cube and the regular

dodecahedron, and at once excludes the possibihty of the closed

hexagonal network.

We found in Dorataspis a closed shell consisting only of hexagons

and pentagons; without counting these latter we know, by our

formula, that they must be twelve in number, neither more nor

less. Lord Kelvin's tetrakaidekahedron consists only of squares

and hex:agons; the squares are, and must be, six in number.

In a typical Peridinian, such as Goniodoma, there are twelve

plates, all meeting by three-way nodes or corners; we know^ and

we have no difficulty in verifying the fact, that the twelve plates

are all pentagonal.

T. 345. Goniodoma, from above and below.

Without going beyond the elements of our subject we may want

to extend our last formula, and remove the restriction to three-way

corners under which it lay. We know that a tetrahedron has four

triangles and four trihedral corners ; that a cube has six squares and

eight trihedral corners ; an octahedron eight triangles and six four-way
corners ; an icosahedron twenty triangles and twelve five-way corners.

By inspection of these numbers we are led to the following rule, and

may estabhsh it as a deduction from Euler's Law

:

ifs + c,) = 8 + 0if, + c,) + {f, + c,) + 2if, + c,)+etc (5).

This important formula further illustrates the limitations to which

all polyhedra are subject; for it shews us, among other things, that

(if we neglect the exceptional case of dihedral facets or 'Uiths")

every polyhedron must possess either triangular faces or trihedral

corners, and that these taken together are never less than eight in

number.
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We may add yet two more formulae, both related to the last, and

all derivable, ultimately, from Euler's Law *

:

3/3+2/4+/5-^12 + 0.C3+2c4+4c5+... + 0./e+/7 + 2/8 (6)

and

3C3+ 2c4 + C5 = 12 + 0,/3+ 2/4+ 4/5 + ... + O.Ce + C7 + 2c, ...(7).

These imply that in every polyhedron the triangular, quadrangular

and pentagonal faces (or corners) must, taken together and multi-

plied as above, be at least twelve in number. Therefore no poly-

hedron can exist which has not a certain number of triangles,

squares or pentagons in its composition; and the impossibihty of

a polyhedron consisting only of hexagons is demonstrated once

again.

Formulae (5), (6) and (7) further shew us that not only is a three-

way polyhedron of hexagons impossible, but also a four-way

polyhedron of quadrangles, or one of six-way corners and triangular

facets ; all of which become the more obvious when we reflect that

the plane angles meeting in each point or node must be, on the

average, in the first case 3 x 120°, in the second 4 x 90°, and in the

third 6 X 60°.

Lastly, having now considered the case of other than trihedral

corners, we may learn a simple but very curious relation between

the number of faces and corners, arising (like so much else) out of

Euler's Law. In a polyhedron whose corners are all n-hedral,

nC=2E; therefore (by Euler) 7iC/2 + 2 = F + C; therefore

2F ={n-2)C + 4.

Therefore, if

n=3, 2F=4:+ C]

= 4, =4 + 2cl (8).

= 5, = 4 + 3Cj

Let us look again at the microscopic skeleton of Dorataspis

(Fig. 341). We have seen that some of its facets are hexagonal,

the rest pentagonal; there happen to be eight of the former, and

therefore (as we now know) there must be twelve of the latter.

* Derivable from Euler together with the formulae for the "edge-counts,"

viz. llnF^ = 2E, and SnC„ = 2^; which merely mean that each edge separates

two faces, and joins two corners.
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We know also that, having no triangular facets, the polyhedral

skeleton must possess trihedral corners; and these, moreover, must

(by equation 5) be eight in number, plus the number of pentagons,

plus twice the number of hexagons. The total,

8 +/5+ 2/6= 8 + 12 + (2 X 8) = 36,

is precisely the number of corners in the figure, all of them trihedral.

We also know (from equation 2) that the sum of its plane angles

= 4 (36 - 2) X 90° =12,240°,

which agrees with the sum of the angles of twelve pentagons and

eight hexagons. The configuration, then, is a possible one.

So here and elsewhere an apparently infinite variety of form is

defined by mathematical laws and theorems, and hmited by the

properties of space and number. And the whole matter is a running

commentary on the cardinal fact that, under such foedera Natural

"as Lucretius recognised of old, there are things which are possible,

and things which are impossible, even to Nature herself.



CHAPTER X

A PARENTHETIC NOTE ON GEODESICS

We have made use in the last chapter of the mathematical principle

of Geodesies (or Geodetics) in order to explain the conformation

of a certain class of sponge-spicules ; but the principle is of much

wider appHcation in morphology, and would seem to deserve atten-

tion which it has not yet received. The subject is not an easy one,

and if we are to avoid mathematical difficulties we must keep within

narrow bounds.

Fig. 346. Annular and spiral thickenings in the walls of plant-cells.

Defining, meanwhile, our geodesic hne (as we have already done)

as the shortest distance between two points on the surface of a

soUd of revolution, we find that the cyhnder gives us some of the

simplest of cases. Here it is plain that the geodesies are of three

kinds: (1) a series of annuh around the cyhnder, that is to say, a

system of circles, in planes parallel to one another and at right

angles to the axis of the cylinder (Fig. 346, A); (2) a series of

straight lines parallel to the axis; and (3) a series of spiral curves

winding round the wall of the cyhnder (B, C). These three systems
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are all of frequent occurrence, and are illustrated in the local

thickenings of the wall of the cyHndrical cells or vessels of plants.

The spiral, or rather helical, geodesic is particularly common in

cylindrical structures, and is beautifully shewn for instance in the

spiral coil which stiffens the tracheal tubes of an insect, or the

so-called tracheides of a woody stem. A Hke phenomenon is

often witnessed in the splitting of a glass tube. If a crack appear

in a test-tube it has a tendency to be prolonged in its own direction,

and the more isotropic be the glass the more evenly will the split

tend to follow the straight course in which it began. As a result,

the crack often continues till our test-tube is split into a continuous

spiral ribbon.

One may stretch a tape along a cylinder, but it no sooner swerves

to one side than it begins to wind itself around; it is tracing its

geodesic*.

In a circular cone, the spiral geodesic falls into closer and closer

coils as the cone narrows, till it comes to the end, and then it winds

back the same way; and a beautiful geodesic of this kind is

exemplified in the sutural line of a spiral shell, such as Turritella,

or in the striations which run parallel with the spiral suture. On
a prolate spheroid, the coils of a spiral geodesic come closer together

as they approach the ends of the long axis of the ellipse, and wind

back and forward from one pole to the other "j". We have a case of

this kind in an Equisetum-sipoTe, when the integument splits into the

spiral "elaters," though the spire is not long enough to shew all its

geodesic features in detail.

We begin to see that our first definition of a geodesic requires to

be modified; for it is only subject to conditions that it is ''the

shortest distance between two points on the surface of the solid,"

and one of the commonest of these restricting conditions is that

our geodesic may be constrained to go twice, or many times, round

the surface on its way. In short, we may re-define a geodesic, as

a curve drawn upon a surface such that, if we take any two adjacent

* It is not that the geodesic is rectified into a straight line; but that a straight

line (the midline of the tape or ribbon)^ is converted into the geodesic on the given

surface.

t In all these cases, r cos a = a constant, where r is the radius of the circular

section, and a the angle at which it is crossed by the geodesic. And the constant

is measured by the smallest circle which the geodesic can reach.
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points on the curve, the curve gives the shortest distance between

them. It often happens, in the geodesic systems which we meet

with in morphology, that two opposite spirals or rather helices

run separate and distinct from one another, as in Fig. 346, C;

and it is also common to find the two interfering with one another,

and forming a criss-cross or reticulated arrangement. This indeed

is a common source of reticulated patterns.

The microscopic and even ultramicroscopic structure of the cell-

wall shews analogous configurations: as in the large cells of the

alga Valonia, where the wall consists of many lamellae, each com-

posed of parallel fibrillae running in spiral geodesies, and alternating

in direction from one lamella to another. Here, and not less clearly

in the young parenchyma of seedHng oats, it is the long-chain

cellulose molecules which follow a spiral course around the cell-wall,

right-handed or left-handed as the case may be, and inchned more

or less steeply according to the elongation of the cell. But these

highly interesting questions of molecular, or micellar, structure

lie beyond our scope*.

Among the ciliated infusoria, we have a variety of beautiful

geodesic curves in the spiral patterns in which their ciha are

arranged; though it is probable enough that in some comphcated

cases these are not simple geodesies, but developments of curves other

than a straight hne upon the surface of the organism. In other words,

they seem to be instances of "geodesic curvature."

Lastly, an instructive case is furnished by the arrangement of

the muscular fibres on the surface of a hollow organ, such as the

heart or the stomach. Here we may consider the phenomenon

from the point of view of mechanical efficiency, as well as from

that of descriptive anatomy. In fact we have a right to expect

that the muscular fibres covering such hollow organs will coincide

with geodesic lines, in the sense in which we are using the term.

For if we imagine a contractile fibre, .or an elastic band, to be fixed

by its two ends upon a curved surface, it is obvious that its first

effort of contraction will tend to expend itself in accommodating

* Cf. (e.g.) C. Correns, Innere Struktur einiger Algenmembranen, Beitr. zur

Morphol. u. Physiol, d. Pflanzenzelle, 1893, p. 260; W. T. Astbury and others,

Proc, E.S. (B), cix, p. 443, 1932, and other papers; G. van Iterson, jr.. Nature,

cxxxviii, p. 364, 1936; R. D. Preston, Proc. U.S. (B), cxxv, p. 772, 1938; etc.
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the band to the form of the surface, in "stretching it tight," or in

other words in causing it to assume a. direction which is the shortest

possible hne upon the surface between the two extremes: and it is

only then that further contraction will have the effect of constricting

the tube and so exercising pressure on its contents. Thus the

muscular fibres, as they wind over the curved surface of an organ,

arrange themselves automatically in geodesic curves: in precisely

the same manner as we also automatically construct complex

systems of geodesies whenever we wind a ball of wool or a spindle

of tow, or when the skilful surgeon bandages a Hmb ; indeed the

surgeon must fold and crease his bandage if it is not to keep on

geodesic lines. It is as a simple, necessary result of geodesic

principles that we see those " figures-of-eight " produced, to which,

in the case for instance of the heart-muscles, Pettigrew and other

anatomists have ascribed pecuhar importance. In the case of

both heart and stomach we must look upon these organs as de-

veloped from a simple cyhndrical tube, after the fashion of the

glass-blower, as is further discussed on p. 1049 of this book, the

modification of the simple cyhnder consisting of various degrees of

dilatation and of twisting. In the primitive undistorted cyhnder,

as in an artery or in the intestine, the muscles run in simple geodesic

fines, and constitute the circular and longitudinal coats which form

(or are said to form) the normal musculature of all tubular organs,

or the cylindrical body of a worm. However, we can often recog-

nise, in a small artery for instance, that the so-called circular fibres

tend to take a shghtly obhque or spiral course; and that the

so-called annular muscle-fibres are really spirals is an old statement

which may very hkely be true*. If we consider each muscular

fibre as an elastic strand embedded in the elastic membrane which

constitutes the wall of the organ, it is evident that, whatever be

the distortion suffered by the entire organ, the individual fibre will

follow its own course, which will still, in a sense, be geodesic.

But if the distortion be considerable, as for instance if the tube

* See A Discourse concerning the Spiral, instead of the supposed Annular,

structure of the Fibres of the Intestins; discover'd and shewn by the Learn'd

and Inquisitive Dr. William Cole to the Royal Society, Phil. Trans, xi, pp. 603-609,

1676. Cf. Eben J. Carey, Studies on the. . .small intestine, Anat. Record, xxi, pp.

189-215, 1921 ; F. T. Lewis, The spiral trend of intestinal muscle fibres. Science, LV,

June 30, 1922.
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become bent upon itself, or if at some point its walls bulge outwards

in a diverticulum or pouch, then the old system of geodesies will

only mark the shortest distance between two points more or less

approximate to one another, and new systems of geodesies,

peculiar to the new surface, will tend to appear, and link

up points more remote from one another. This is evidently the

case in the human stomach. We still have the systems, or their

unobhterated remains, of circular and longitudinal muscles; but

we also see two new systems of fibres, both obviously geodesic

(or rather, when we look more closely, both parts of one and the

same geodesic system), in the form of annuh encircling the pouch

or diverticulum at the cardiac end of the stomach, and of obhque

fibres taking a spiral course from the neighbourhood of the

oesophagus over the sides of the organ.

In the heart we have a similar, but more complicated pheno-

menon. Its musculature consists, in great part, of the original

simple system of circular and longitudinal muscles which enveloped

the original arterial tubes, which tubes, after a process of local

thickening, expansion, and especially tuisting, came together to

constitute the composite, or double, mammalian heart; and these

systems of muscular fibres, geodesic to begin with, remain geodesic

(in the sense in which we are using the word) after all the twisting

which the primitive cylindrical tube or tubes have undergone.

That is to say, these fibres still run their shortest possible course,

from start to finish, over the complicated curved surface of the

organ; and, as Borelli well understood, it is only because they do

so that their contraction, or longitudinal shortening, is able to

produce its direct eifect in the contraction or systole of the heart*.

As a parenthetic corollary to the case o-f the spiral pattern upon

the wall of a cyhndrical cell, we may consider for a moment the

spiral fine which many small organisms tend to follow in their path

* The spiral fibres, or a large portion of them, constitute what Searle called

"the rope of the heart" (Todd's Cyclopaedia, ii, p. 621, 1836). The "twisted

sinews of the heart" were known to early anatomists, and have been frequently

and elaborately studied: for instance, by Gerdy {Bull. Fac. Med. Paris, 1820,

pp. 40-148), and by Pettigrew (Phil. Trans. 1864), and again by J. B. Macallum

{Johns Hopkins Hospital Report, ix, 1900) and by Franklin P. Mall {Amer. Journ.

Anat. XI, 1911).
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of locomotion*. A certain physiologist observed that an Amoeba,

crawling within a narrow tube, wound its slow way in a spiral course

instead of going straight along the tube. The creature was going

nowhere in particular, but merely following the direction in which

it had begun : in curious illustration of a familiar statement in the

"dynamics of a particle," that a particle moving on a surface

without constraint will describe geodesic lines.

But it is after a different fashion, and without any constraint to

a surface, that the smaller ciliated organisms, such as the ciliate

and flagellate infusoria, the rotifers, the swarm-spores of various

Protista, and so forth, shew a tendency to pursue a spiral path in

their ordinary locomotion. The means of locomotion which they

possess in their cilia are at best somewhat primitive and inefficient;

they have no apparent means of steering, or modifying their

direction; and, if their course tended to swerve ever so little to

one side, the result would be to bring them round and round again

in an approximately circular path (such as a man astray on the

prairie is said to follow), with little or no progress in a definite

longitudinal direction. But as a matter of fact, by reason of a

more or less unsymmetrical form of the body, all these creatures

tend more or less to rotate about their long axis while they swim.

And this axial rotation, just as in the case of a rifle-bullet, causes

their natural swerve, which is always in the same direction as

regards their own bodies, to be in a continually changing direction

as regards space: in short, to make a spiral course around, and more

or less near to, a straight axial line|.

In this short chapter we have touched on phenomena where form

repeats itself, and mathematical analogies recur, in very different

things and very different orders of magnitude. The spiral muscles

of heart or stomach are the mechanical outcome of twists which

these tubular organs have undergone in the course of their develop-

ment, and come, accordingly, under the general category of organic

* Cf. Butschli, "Protozoa," in Bronn's Thierreich, ii, p. 848, in, p. 1785, etc.,

1883-87; Jennings, Amer. Nat. xxxv, p. 369, 1901; Putter, Thigmotaxie bei

Protisten, Arch. f. Anat. u. Phys. {Phys. Abth. Swppl.), pp. 243-302, 1900.

t Cf. W. Ludwig, Ueber die Schraubenbahnen niederer Organismen, Arch. f.

vergl. Physiologic, ix, 1919.
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or embryological growth. But the spiral thickenings in the woody
fibres of a plant are of another order of things, and lie in the region

of molecular phenomena. The delicate spirals of the cell-wall of

a cotton-hair are based on a complicated cellulose space-lattice,

recaUing Nageh's micellar hypothesis in a new setting; and giving

us a glimpse of organic growth after the very fashion of crystaUine

growth, that is to say from the starting-point of molecular structure

and configuration*.

* W. Lawrence Balls, Determiners of cellulose structure as seen in the cell-wall

of cotton-hairs, Proc. R.S. (B), xcv, pp. 72-89, 1923, and other papers. Cf. also

Wilfred Robinson, Microscopical features of mechanical strains in timber, and the
bearing of these on the structure of the cell-wall in plants, Phil. Trans. (B), ccx,

pp. 49-82, 1920.



CHAPTER XI

THE EQUIANGULAR SPIRAL

The very numerous examples of spiral conformation which we

meet with in our studies of organic form are pecuUarly adapted

to mathematical methods of investigation. But ere we begin to

study them we must take care to define our terms, and we had

better also attempt some rough preliminary classification of the

objects with which we shall have to deal.

In general terms, a Spiral is a curve which, starting from

a point of origin, continually diminishes in curvature as it recedes

from that point; or, in other words, whose radius of curvature

continually increases. This definition is wide enough to include

a number of different curves, but on the other hand it excludes

at least one which in popular speech we are apt to confuse with

a true spiral. This latter curve is the simple screw, or cyhndrical

helix, which curve neither starts from a definite origin nor changes

its curvature as it proceeds. The "spiral" thickening of a woody

plant-cell, the "spiral" thread within an insect's tracheal tube, or

the "spiral" twist and twine of a climbing stem are not, mathe-

matically speaking, spirals at all, but screws or helices. They belong

to a distinct, though not very remote, family of curves.

Of true organic spirals we have no lack*. We think at once of

horns of ruminants, and of still more exquisitely beautiful molluscan

shells—in which (as Pliny says) tnagna ludentis Naturae varietas.

Closely related spirals may be traced in the florets of a sunflower;

a true spiral, though not, by the way, so easy of investigation, is seen

in the outhne of a cordiform leaf; and yet again, we can recognise

typical though transitory spirals in a lock of hair, in a staple of

woolt, in the coil of an elephant's trunk, in the "circling spires"

* A great number of spiral forms, both organic and artificial, are described

and beautifully illustrated in Sir T. A. Cook's Spirals in Nature and Art, 1903, and

Curves of Life, 1914.

t On this interesting case see, e.g. J. E. Duerden, in Science, May 25, 1934.
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of a snake, in the coils of a cuttle-fish's arm, or of a monkey's or

a chameleon's tail.

Fig. 347. The shell of Nautilus pompilius, from a radiograph: to shew the

equiangular spiral of the shell, together with the arrangement of the internal

septa. From Green and Gardiner, in Proc. Malacol. Soc. ii, 1897.

Among such forms as these, and the many others which we

might easily add to them, it is obvious that we have to do with

things which, though mathematically similar, are biologically
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speaking fundamentally different ; and not only are they biologically

remote, but they are also physically different, in regard to the causes

to which they are severally due. For in the first place, the spiral

coil of the elephant's trunk or of the chameleon's tail is, as we have

said, but a transitory configuration, and is plainly the result of

certain muscular forces acting upon a structure of a definite, and

normally an essentially different, form. It is rather a position, or

an attitude, than a form., in the sense in which we have been using

this latter term; and, unhke most of the forms which we have been

studying, it has little or no direct relation to the phenomenon of

growth.

Fig. 348. A foraminiferal shell {Pulvinnlina).

Again, there is a difference between such' a spiral conformation

as is built up by the separate and successive florets in. the sunflower,

and that which, in the snail or Nautilus shell, is apparently a single

and indivisible unit. And a similar if not identical difference is

apparent between the Nautilus shell and the minute shells of the

Foraminifera which so closely simulate it: inasmuch as the spiral

shells of these latter are composite structures, combined out of

successive and separate chambers, while the molluscan shell, though

it may (as in Nautilus) become secondarily subdivided, has grown

as one continuous tube. It follows from all this that there cannot

be a physical or dynamical, though there may well be a mathematical

law of growth, which is common to, and which defines, the spiral

form in Nautilus, in Globigerina, in the ram's horn, and in the

inflorescence of the sunflower. Nature at least exhibits in them all

^'un reflet des formes rigoureuses qu'etudie la geometrie"^
.''

* Haton de la Goupilliere, in the introduction to his important study of the

Surfaces Nautiloides, Annaes sci. da Acad. Polytechnica do Porto, Coimbra, ni, 1908.
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Of the spiral forms which we have now mentioned, every one

(with the single exception of the cordate outline of the leaf) is an

example of the remarkable curve known as the equiangular or

logarithmic spiral. But before we enter upon the mathematics of

the equiangular spiral, let us carefully observe that the whole of the

organic forms in which it is clearly and permanently exhibited,

however different they may be from one another in outward appear-

ance, in nature and in origin, nevertheless all belong, in a certain

sense, to one particular class of conformations. In the great

majority of cases, when we consider an organism in part or whole,

when we look (for instance) at our own hand or foot, or contemplate

an insect or a worm, we have no reason (or very Httle) to consider

one part of the existing structure as older than another; through

and through, the newer particles have been merged and commingled

among the old ; the outhne, such as it is, is due to forces which for

the most part are still at work to shape it, and which in shaping it

have shaped it as a whole. But the horn, or the snail-shell, is

curiously different; for in these the presently existing structure is,

so to speak, partly old and partly new. It has been conformed by

successive and continuous increments; and each successive stage of

growth, starting from the origin, remains as an integral and un-

changing portion of the growing structure.

We may go further, and see that horn and shell, though they

belong to the living, are in no sense alive*. They are by-products

of the animal; they consist of "formed material," as it is sometimes

called ; their growth is not of their own doing, hut comes of Hving

cells beneath them or around. The many structures which display

the logarithmic spiral increase, or accumulate, rather than grow.

The shell of nautilus or snail, the chambered shell of a foraminifer,

the elephant's tusk, the beaver's tooth, the cat's claws or the

canary-bird's—all these shew the same simple and very beautiful

spiral curve. And all alike consist of stuff secreted or deposited by

living cells ; all grow, as an edifice grows, by accretion of accumulated

* For Oken and Goodsir the logarithmic spiral had a profound significance, for

they saw in it a manifestation of life itself. For a like reason Sir Theodore Cook
spoke of the Curves of Life; and Alfred Lartigues says (in his Biodynamique generale,

1930, p. 60): "Nous verrons la Conchyliologie apporter une magnifique contribution

a la Stereodynamique du tourbillon vital." The fact that the spiral is always

formed of non-living matter helps to contradict these mystical conceptions.
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material; and in all alike the parts once formed remain in being,

and are thenceforward incapable of change.

In a shghtly different, but closely cognate way, the same is true

of the spirally arranged florets of the sunflower. For here again

we are regarding serially arranged portions of a composite structure,

which portions, similar to one another in form, differ in age; and

differ also in magnitude in the strict ratio of their age. Somehow

or other, in the equiangular spiral the time-element always enters

in; and to this important fact, full of curious biological as well as

mathematical significance, we shall afterwards return.

In the elementary mathematics of a spiral, we speak of the point

of origin as the pole (0) ; a straight hne having its extremity in the

pole, and revolving about it, is called the radius vector; and a

point (P), travelling along the radius vector under definite conditions

of velocity, will then describe our spiral curve.

Of several mathematical curves whose form and development

may be so conceived, the two most important (and the only two

with which we need deal) are those which are known as (1) the

equable spiral, or spiral of Archimedes, and (2) the equiangular or

logarithmic spiral.

The former may be roughly illustrated by the way a sailor

coils a rope upon the deck; as the rope is of uniform thickness, so

in the whole spiral coil is each whorl of the same breadth as that

which precedes and as that which follows it. Using its ancient

definition, we may define it by saying, that ''If a straight fine

revolve uniformly about its extremity, a point which Hkewise travels

uniformly along it will describe the equable spiral*." Or, putting

the same thing into our more modern words, "If, while the radius

vector revolve uniformly about the pole, a point (P) travel with

uniform velocity along it, the curve described will be that called

the equable spiral, or spiral of Archimedes." It is plain that the

spiral of Archimedes may be compared, but again roughly, to a

cylinder coiled up. It is plain also that a radius {r = OP), made
up of the successive and equal whorls, will increase in arithmetical

progression : and will equal a certain constant quantity (a) multiplied

* Leslie's Geometry of Curved Lines, 1821, p. 417. This is practically identical

with Archimedes' own definition (ed. Torelli, p. 219); cf. Cantor, Geschichte der

Mathematik, i, p. 262, 1880.
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by the whole number of whorls, (or more strictly speaking) multiplied

by the whole angle (6) through which it has revolved: so that

r = ad. And it is also plain that the radius meets the curve (or

its tangent) at an angle which changes slowly but continuously,

and which tends towards a right angle as the whorls increase in

number and become more and more nearly circular.

But, in contrast to this, in the equiangular spiral of the Nautilus

or the snail-shell or Globigerina, the whorls continually increase

in breadth, and do so in a steady and unchanging ratio. Our

definition is as follows: "If, instead of travelhng with a uniform

velocity, our point move along the radius vector with a velocity

increasing as its distance from the pole, then the path described is

Fig. 349. The spiral of Archimedes.

called an equiangular spiral." Each whorl which the radius vector

intersects will be broader than its predecessor in a definite ratio;

the radius vector will increase in length in geometrical progression, as

it sweeps through successive equal angles ; and the equation to the

spiral will be r = a^. As the spiral of Archimedes, in our example of

the coiled rope, might be looked upon as a coiled cyfinder, so (but

equally roughly) may the equiangular spiral, in the case of the shell,

be pictured as a cone coiled upon itself; and it is the conical shape

of the elephant's trunk or the chameleon's tail which makes them coil

into a rough simulacrum of an equiangular spiral.

While the one spiral was known in ancient times, and was

investigated if not discovered by Archimedes, the other was first
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recognised by Descartes, and discussed in the year 1638 in his letters

to Mersenne*. Starting with the conception of a growing curve

which should cut each radius vector at a constant angle—just as

a circle does—Descartes shewed how tt would necessarily follow that

radii at equal angles to one another at the pole would be in con-

tinued proportion ; that the same is therefore true of the parts cut off

from a common radius vector by successive whorls or convolutions

of the spire; and furthermore, that distances measured along the

curve from its origin, and intercepted by any radii, as at B, C, are

proportional to the lengths of these radii, OB, OC. It follows that

Fig. 350. The equiangular spiral.

the sectors cut off by successive radii, at equal vectorial angles, are

similar to one another in every respect; and it further follows that

the figure may be conceived as growing continuously without ever

changing its shape the while.

If the whorls increase very slowly, the equiangular spiral will come to look

like a spiral of Archimedes. The Nummulite is a case in point. Here we have

a large number of whorls, very narrow, very close together, and apparently of

equal breadth, which give rise to an appearance similar to that of our coiled

rope. And, in a case of this kind, we might actually find that the whorls

were of equal breadth, being produced (as is apparently the case in the

Nummulite) not by any very slow and gradual growth in thickness of a con-

tinuous tube, but by a succession of similar cells or chambers laid on, round

and round, determined as to their size by constant surface-tension conditions

and therefore of unvarying dimensions. The Nummulite must always have

a central core, or initial cell, around which the coil is not only wrapped, but

out of which it springs ; and this initial chamber corresponds to our a' in the

expression r= a' + ad cot a.

* (Euvres, ed. Adam et Tannery, Paris, 1898, p. 360.
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The many specific properties of the equiangular spiral are so

interrelated to one another that we may choose pretty well any

one of them as the basis of our definition, and deduce the others

from it either by analytical methods or by elementary geometry.

In algebra, when m^ = n, x is called the logarithm of n to the base

m. Hence, in this instance, the equation r = a^ may be written in

the form log r = 6 log a, or 6 = log r/log a, or (since a is a constant)

6 = A; log /•*. Which is as much as to say that (as Descartes dis-

covered) the vector angles about the pole are proportional to the

logarithms of the successive radii; from which circumstance the

alternative name of the "logarithmic spiral" is derivedf.

Moreover, for as many properties as the curve exhibits, so many
names may it more or less appropriately receive. ^James Bernoulli

called it the logarithmic spiral, as we still often do ; P. Nicolas called

it the geometrical spiral, because radii at equal polar angles are in

geometrical progression; Halley, the proportional spiral, because

the parts of a radius cut off by successive whorls are in continued

proportion; and lastly, Roger Cotes, going back to Descartes' first

description or first definition of all, called it the equiangular spiral J.

We may also recall Newton's remarkable demonstration that, had

the force of gravity varied inversely as the cube instead of the

square of the distance, the planets, instead of being bound to their

* Instead of r=a^, we might write r = rQa^; in which case r^ is the value of r

for zero value of 6.

f Of the two names for this spiral, equiangular and logarithmic, I used the

latter in my first edition, but equiangular spiral seems to be the better name;
for the constant angle is its most distinguishing characteristic, and that which
leads to its remarkable property of continuous self-similarity. Equiangular spiral

is its name in geometry; it is the analyst who derives from its geometrical pro-

perties its relation to the logarithm. The mechanical as well^as the mathematical

properties of this curve are very numerous. A Swedish admiral, in the eighteenth

century, shewed an equiangular spiral (of a certain angle) to be the best form for

an anchor-fluke {Sv. Vet. Akad. Hdl. xv, pp. 1-24, 1796), and in a parrot's

beak it has the same efl&ciency. Macquorn Rankine shewed its advantages in

the pitch of a cam or non-circular wheel {^Manual of Mechanics, 1859, pp. 99-102;

cf. R. C. Archibald, Scripta Mathem. m (4), p. 366, 1935).

X James Bernoulli, in Acta Eruditorum, 1691, p. 282; P. Nicolas, De novis

spiralibus, Tolosae, 1693, p. 27; E. Halley, Phil. Trans, xix, p. 58, 1696; Roger
Cotes, ibid. 1714, and Harmonia Mensurarum, 1722, p. 19. For the further history

of the curve see (e.g.) Gomes de Teixeira, Traite des courbes remarqicables, Coimbre,

1909, pp. 76-86; Gino Loria, Spezielle algebrdische Kurven, ii, p. 60 scq., 1911;

R. C. Archibald (to whom I am much indebted) in Amer. Mathem. Monthly, xxv,

pp. 189-193, 1918, and in Jay Hambidge's Dynamic Symmetry, 1920, pp. 146-157.
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ellipses, would have been shot off in spiral orbits from the sun, the

equiangular spiral being one case thereof.*

A singular instance of the same spiral is given by the route which

certain insects follow towards a candle. Owing to the structure

of their compound eyes, these insects do not look straight ahead

but make for a light which they see abeam, at a certain angle.

As. they continually adjust their path to this constant angle, a spiral

pathway brings them to their destination at last|.

In mechanical structures, curvature is essentially a mechanical

phenomenon. It is found in flexible structures as the result of

Fig. 351. Spiral path of an insect,

as it draws towards a light.

From Wigglesworth (after van

Buddenbroek).

Fig. 352. Dynamical aspect

of the equiangular spiral.

bending, or it may be introduced into the construction for the

purpose of resisting such a bending-moment. But neither shell nor

tooth nor claw are flexible structures ; they have not been bent into

their pecuhar curvature, they have grown into it.

We may for a moment, however, regard the equiangular or logarithmic

spiral of our shell from the dynamical point of view, by looking on growth

itself as the force concerned. In the growing structure, let growth at any

point P be resolved into a force F acting along the line joining P to a pole 0,

and a force T acting in a direction perpendicular to OP; and let the magnitude

of these forces (or of these rates of growth) remain constant. It follows that

* Principia, I, 9; ii, 15, On these "Cotes's spirals" see Tait and Steele, p. 147.

t Cf. W. Buddenbroek, Sitzungsber. Heidelb. Akad., 1917; V. H. Wigglesworth,

Insect Physiology, 1839, p. 167.
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the resultant of the forces F and T (as PQ) makes a constant angle with

the radius vector. But a constant angle between tangent and radius vector

is a fundamental property of the "equiangular" spiral: the very property

with which Descartes started his investigation, and that which gives its

alternative name to the curve.

In such a spiral, radial growth and growth in the direction of the curve

bear a constant ratio to one another. For, if we consider a consecutive

radius vector, 0P\ whose increment as compared with OP is dr, while ds is

the small arc PP', then dr/ds = cos a = constant.

In the growth of a shell, we can conceive no simpler law than

this, namely, that it shall widen and lengthen in the same unvarying

proportions: and this simplest of laws is that which Nature tends

to follow. The shell, hke the creature within it, grows in size

but does not change its shape; and the existence of this constant

relativity of growth, or constant similarity of form, is of the essence,

and may be made the basis of a definition, of the equiangular spiral*.

Such a. definition, though not commonly used by mathematicians,

has been occasionally employed; and it is one from which the other

properties of the curve can be deduced with great ease and sim-

plicity. In mathematical language it would run as follows: "Any
[plane] curve proceeding from a fixed point (which is called the

pole), and such that the arc intercepted between any two radii at

a given angle to one another is always similar to itself, is called an

equiangular, or logarithmic, spiral."

In this definition, we have the most fundamental and "intrinsic"

property of the curve, namely the property of continual similarity,

and the very property by reason of which it is associated with

organic growth in such structures as the horn or the shell. For it

is peculiarly characteristic of the spiral shell, for instance, that it

does not alter as it grows ; each increment is similar to its predecessor,

and the whole, after every spurt of growth, is just Uke what it was

before. We feel no surprise when the animal which secretes

the shell, or any other animal whatsoever, grows by such sym-

metrical expansion as to preserve- its form unchanged; though even

there, as we have already seen, the unchanging form denotes a nice

balance between the rates of growth in various directions, which is

* See an interesting paper by W. A. Whitworth, The equiangular spiral, its chief

properties proved geometrically, Messenger of Mathematics (1), i, p. 5, 1862. The
celebrated Christian Wiener gave an explanation on these lines of the logarithmic

spiral of the shell, in his highly original Grundzuge der Weltordnung, 1863.
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but seldom accurately maintained for long. But the shell retains

its unchanging form in spite of its asymmetrical growth; it grows

at one end only, and so does the horn. And this remarkable

property of increasing by terminal growth, but nevertheless retaining

.unchanged the form of the entire figure, is cnaracteristic of the

equiangular spiral, and of no other mathematical curve. It well

deserves the name, by which James Bernoulli was wont to call it,

of spira mirahilis.

We may at once illustrate this curious phenomenon by drawing

the outline of a Uttle Nautilus shell within a big one. We know,

or we may see at once, that they are of precisely the same shape

;

so that, if we look at the little shell through a magnifying glass,

it becomes identical with the big one. But we know, on 'the other

hand, that the little Nautilus shell grows into the big one, not by

growth or magnification in all parts and directions, as when the boy

grows into the man, but by growing at one end only.

If we should want further proof or illustration of the fact that the spiral

shell remains of the same shape while increasing in magnitude by its terminal

growth, we may find it by help of our ratio W : L^, which remains constant

so long as the shape remains unchanged. Here are weights and measurements

of a series of small land-shells {Clausilia):*

W (mgm.) L (mm.) </lf/L

50
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any cone; for evidently, in Fig. 353, the little inner cone (repre-

sented in its triangular section) may become identical with the larger

one either by magnification all round (as in a), or by an increment

at one end (as in b) ; or for that matter on the rest of its surface,

represented by the other two sides, as in c. All this is associated

with the fact, which we have already noted, that the Nautilus shell

is but a cone rolled up; that, in other words, the cone is but a

particular variety, or "hmiting case," of the spiral shell.

This singular property of continued similarity, which we see in

the cone, and recognise as characteristic of the logarithmic spiral,

would seem, under a more general aspect, to have engaged the

particular attention of ancient mathematicians even from the days

of Pythagoras, and so, with little doubt, from the still more ancient

days of that Egyptian school whence he derived the foundations of

his learning*; and its bearing on our biological problem of the

shell, however indirect, is close enough to deserve our very careful

consideration.

There are certain things, says Aristotle, which suffer no alteration

(save of magnitude) when they growf . Thus if we add to a square

an L-shaped portion, shaped Hke a carpenter's square, the resulting

figure is still a square ; and the portion which we have so added, with

this singular result, is called in Greek a "gnomon."

EucUd extends the term to include the case of any parallelogram J,

whether rectangular or not (Fig.^ 354); and Hero of Alexandria

* I am well aware that the debt of Greek science to Egypt and the East is

vigorously denied by many scholars, some of whom go so far as to believe that the

Egyptians never had any science, save only some "rough rules of thumb for

measuring fields and pyramids" (Burnet's Greek Philosophy, 1914, p. 5).

t Categ. 14, 15a, 30: ?(Ttl tipo. av^au 6fxeva a ouk dWoiourat, olov to Terpdyuvop,

•)vu)ixouo^ wepiTedevTo^, rjv^rjrat. fiiv dWoidrepov 5e oudev yeyiurjTai.

I Euclid (II, def. 2).
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specifically defines a gnomon (as indeed Aristotle had implicitly

defined it), as any figure which, being added to any figure what-

soever, leaves the resultant figure similar to the original. Included

in this important definition is the case of numbers, considered

geometrically; that is to say, the clbrjTLKot apiOixol, which can be

translated into fwm, by means of rows of dots or other signs (cf.

Arist. Metaph. 1092 b 12), or in the pattern of a tiled floor: all

according to "the mystical way of Pythagoras, and the secret

Fig. 354. Gnomonic figures.

magick ot numbers." For instance, the triangular numbers, 1, 3,

6, 10 etc., have the natural numbers for their "differences"; and

so the natural numbers may be called their gnomons, because they

keep the triangular numbers still triangular. In hke manner the

square numbers have the successive odd numbers for their gnomons,

as follows:

0+ 1- P
P + 3 = 22

22 + 5 = 32

32 + 7 = 42 etc.

And this gnomonic relation we may illustrate graphically {axr]fJiaTo-

ypa<f>€tv) by the dots whose addition keeps the annexed figures

perfect squares*:

• • • • • •
• • • • •

There are other gnomonic figures more curious still. For example,

if we make a rectangle (Fig. 355) such that the two sides are in the

* Cf. Treutlein, Ztschr. /. Math. u. Phya. {Hist. litt. Abth.), xxviii, p. 209, 1883.
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ratio of 1 : a/2, it is obvious that, on doubling it, we obtain a similar

figure; for 1 : V2 : : a/2 : 2; and each half of the figure, accordingly,

is now a gnomon to the other. Were we to make our paper of such

a shape (say, roughly, 10 in. x 7 in.), we might fold and fold it,

and the shape of folio, quarto and octavo pages would be all the

same. For another elegant example, let us start with a rectangle

(A) whose sides are in the proportion of the "divine" or "golden

section*" that is to say as 1 : J {Vb — 1), or, approximately, as

1:0-618.... The gnomon to this rectangle is the square (B)

erected on its longer side, and so on successively (Fig. 356).
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many interesting geometrical constructions, such as the regular

pentagon, and its mystical "pentalpha," and a whole range of other

curious figures beloved of the ancient mathematicians *
: culminating

A

C B C B
Fig. 357. Fig. 358.

in the regular, or pentagonal, dodecahedron, which symbolised the

universe itself, and with which Euclidean geometry ends.

If we take any one of these figures, for instance the isosceles

triangle which we have just described, and add to it (or subtract

Fig. 359.

from it) in succession a series of gnomons, so converting it into larger

and larger (or smaller and smaller) triangles all similar to the first,

we find that the apices (or other corresponding points) of all these

* See, on the mathematical history of the gnomon, Heath's Euclid, i, passim,

1908; Zeuthen, Theoreme de Pythagore, Geneve, 1904; also a curious and
interesting book, Das Theorem des Pythagoras, by Dr H. A. Naber, Haarlem, 1908.
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triangles have their locus upon a equiangular spiral: a result which

follows directly froni that alternative definition of the equiangular

spiral which I have quoted from Whitworth (p. 757).

If in this, or any other isosceles triangle, we take corresponding

median lines of the successive triangles, by joining C to the mid-'

point (M) of AB, and D to the mid-point (N) of BC, then the pole

of the spiral, or centre of similitude of ABC and BCD, is the point

of intersection of CM and DN*.

Again, ,we may build up a series of right-angled triangles, each

of which is a gnomon to the preceding figure; and here again, an

equiangular spiral is the locus of corresponding points in these suc-

cessive triangles. And lastly, whensoever we fill up space with a

collection of equal and similar figures, as in Figs. 360, 361, there

we can always discover a series of equiangular spirals in their

successive multiples*)*.

Once more, then, we may modify our definition, and say that:

"Any plane curve proceeding from a fixed point (or pole), and such

that the vectorial area of any sector is always a gnomon to the

whole preceding figure, is called an equiangular, or logarithmic,

spiral." And we may now introduce this new concept and nomen-

clature into our description of the Nautilus shell and other related

organic forms, by saying that: (1) if a growing structure be built

up of successive parts, similar in form, magnified in geometrical

progression, and similarly situated with respect' to a centre of

similitude, we can always trace through corresponding points a

series of equiangular spirals; and (2) it is characteristic of the

* I owe this simple but novel construction, like so much else, to Dr G. T. Bennett.

t In each and all of these gnomonic figures we may now recognise a never-

ending polygon, with equal angles at its corners, and with its successive sides in

geometrical progression; and such a polygon we may look upon as the natural

precursor of the equiangular spiral. If we call the exterior or "bending" angle

of th'^ polygon j3, and the ratio of its sides A, then the vertices lie on an equiangular

spiral of angle a, given by logg A = j3 cot a. In the spiral of Fig. 359 the constant

angle is thus found to be about 75° 40', in "that of Fig. 355, 77° 40', and in that of

Fig. 356, 72° 50'.

The calculation is as follows. Taking, for example, the successive triangles of

Fig. 359, the ratio (A) of the sides, as BC : AC, is that of the golden section, 1

:

1-618.

The external angle (^), as ADB, is 108°, or in radians 1-885. Then

log 1-618=0-209, from which log, 1-618=0-481

and cota =!^ =^^=0-255 = cot75°4y.
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growth of the horn, of the shell, and of all other organic forms in

which an equiangular spiral can be recognised, that each successive

increment of growth is similar, and similarly magnified, and similarly

1
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outline of the shell or of the horn we can always inscribe an endless

variety of other gnomonic figures, having no necessary relation,

save as a mathematical accident, to the nature or mode of develop-

ment of the actual structure*. But observe that the gnomons to

a square may form increments of any size, and the same is true of

the gnomons to a Haliotis-sheW ; but" in the higher symmetry of a

chambered Nautilus, or of the successive triangles in Fig. 359,

growth goes on by a progressive series of gnomons, each one of

which is the gnomon to another.

Fig. 362. A shell of Haliotis, with two of the many hues of growtii, or generating

curves, marked out in black: the areas bounded by these hnes of growth being

in all cases gnomons to the pre-existing shell.

Of these three propositions, the second is of great use and

advantage for our easy understanding and simple description of

the molluscan shell, and of a great variety of other structures whose

mode of growth is analogous, and whose mathematical properties

are therefore identical. We see that the successive chambers of a

spiral Nautilus or of a straight Orthocems, each whorl or part of a

whorl of a periwinkle or other gastropod, each new increment of the

operculum of a gastropod, each additional increment of an elephant's

tusk, or each new chamber of a spiral foraminifer, has its leading

characteristic at once described and its form so far explained by the

* For many beautiful geometrical constructions based on the molluscan shell,

see S. Colman and C. A. Coan, Nature a Harmonic Unity (ch. ix, Conchology),

New York, 1912.
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simple statement that it constitutes a gnomon to the whole previously

existing structure. And herein lies the explanation of that "time-

element" in the development of organic spirals of which we have

spoken already; for it follows as a simple corollary to this theory

M^iZ

Fig. 363. A spiral foraminifer {Pnlvinulina), to shew how each successive chanibei

continues the symmetry of, or constitutes a gnomon to, the rest of the structure.

of gnomons that we nmst never expect to find the logarithmic spiral

manifested in a structure whose parts are simultaneously produced,

as for instance in the maririn of a leaf, or among the many curves

that make the contour of a fish. But we most look for it wherever

,
-

' the organism retains, and still presents

at a single view, the successive phases of

precedinggrowth : the successive magni-

tudes attained, the successive outhnes

occui)ied, as growth pursued the even

tenor of its way. And it follows from

this that it is in the hard parts of

organisms, and not the soft, fleshy,

actively growing parts, that this spiral

is commonly and characteristically

found: not in the fresh mobile tisssue

whose form is constrained merely by

the active forces of the moment; but

in things like shell and tusk, and horn and claw, visibly composed

Fig. 364. Another spiral fora-.

minifer, Cristellaria.
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of parts successively and permanently laid down. The shell-less

molluscs are never spiral; the snail is spiral but not the slug*. In

short, it is the shell which curves the sr^ail, and not the snail which

curves the shell. The logarithmic spiral is characteristic, not of the

hving tissues, but of the dead. And for the same reason if will

always or nearly always be accompanied, and adorned, by a pattern

formed of "hues of growth," the lasting record of successive stages

of form and magnitude!.

The cymose inflorescences of the botanists are analogous in a

curious and instructive way to the equiangular spiral.

In Fig. 365 B (which represents the Cicinnus of Schimper, or cyme unipare

scorpioide of Bravais, as seen in the Borage), we begin with a primary shoot

from which is given off, at a certain definite angle,

a secondary shoot: and from that in turn, on the

same side and at the same angle, another shoot, and

so on. The deflection, or curvature, is continuous

and progressive, for it is caused by no external

force but only by causes intrinsic in the system.

And the whole system is symmetrical: the angles

at which the successive shoots are given off being

all equal, and the lengths of the shoots diminishing

in constant ratio. The result is that the successive

shoots, or successive increments of growth, are

tangents to a curve, and this curve is a true

logarithmic spiral. Or in other words, we may
regard each successive shoot as forming, or defining,

a gnomon to the preceding structure. While in

this simple case the successive shoots are depicted

as lying in a plane, it may also happen that, in addition to their successive

angular divergence from one another wildiin that plane, they also tend to

Fig. 365. A, a helicoid;

B, jbl scorpioid cyme.

* Note also that Chiton, where the pieces of the shell are disconnected, shews

no sign of spirality.

t That the invert to an equiangular spiral is identical with the original curve

does not concern us in our study of organic form, but it is one of the most beautiful

and most singular properties of the curve. It was this which led James Bernoulli,

in imitation of Archimedfes, to have the logarithmic spiral inscribed upon his tomb;

and on John Goodsir's grave near Edinburgh the same symbol is reinscribed.

Bernoulli's account of the matter is interesting and remarkable: "Cum autem

ob proprietatem tam singularem tamque admirabilem mire mihi placeat spira

haec mirabilis, sic ut ejus contemplatione satiari vix nequeam: cogitavi iUam

ad varias res symbolice repraesentandas non inconcinne adhiberi posse. Quoniam
enim semper sibi et eandera spiram gignit, utcunque volvatur. evjlvatur, radiet,

hinc poterit esse vei sobolis parentibus per omnia similis Emblema: Simillima

Filia Matri; vel (si rem aeternae veritatis Fidel mysteriis accommodare non eat
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diverge by successive equal angles from that plane of reference; and by

this means, there will be superposed upon the equiangular spiral a twist or

screw. And, in the particular case where this latter angle of divergence is

just equal to 180°, or two right angles, the successive shoots will once more

come to lie in a plane, but they will appear to come off from one another on

alternate sides, as in Fig. 365 A. This is the Schrauhel or Bostryx of Schimper,

the cyme unipare helicoide of Bravais. The equiangular spiral is still latent

in it, as in the other; but is concealed from view by the deformation resulting

from the helicoid. Many botanists did not recognise (as the brothers Bravais

did) the mathematical significance of the latter case, but were led by the

snail-like spiral of the scorpoid cyme to transfer the name "helicoid" to it*.

The spiral curve of the shell is, in a sense, a vector diagram of its

own growth; for it shews at each instant of time the direction,

radial and tangential, of growth, and the unchanging ratio of

velocities in these directions. Regarding the actual velocity of

growth in the shell, we know very little by way of experimental

measurement; but if we make a certain simple assumption, then

we may go a good deal further in our description of the equiangular

spiral as it appears in this concrete case.

Let us make the assumption that similar increments are added

to the shell in equal times; that is to say, that the amount of

growth in unit time is measured by the areas subtended by equal

angles. Thus, in the outer whorl of a spiral shell a definite area

marked out by ridges, tubercles, etc., has very different linear

dimensions to the corresponding areas of an inner whorl, but the

symmetry of the figure imphes that it subtends an equal angle

with these; and it is reasonable to suppose that the successive

regions, marked out in this way by successive natural boundaries

or patterns, are produced in equal intervals of time.

prohibitum) ipsius aeternae generationis Filii, qui Patris veluti Imago, et ab illo ut

Lumen a Lumine emanans, eidem bixoLovaLo% existit, qualiscunque adumbratio. Aut,

si mavis, quia Curva nostra mirabilis in ipsa mutatione semper sibi constantissime

manet similis at numero eadem, poterit esse vel fortitudinis et constantiae in

adversitatibus, vel etiam Carnis nostrae post varias alterationes et tandem ipsam

quoque mortem, ejusdem numero resurrecturae symbolum: adeo quidem, ut si

Archimedem imitandi hodiernum consuetudo obtineret, libenter Spiram hanc tumulo

meo juberem incidi, cum Epigraphe, Eadem numero mutata resurgeV; Acta Erudi-

torum, M. Mali, 1692, p. 213. Cf. L. Isely, Epigraphes tumulaires de mathe-

maticiens, Bull. Soc. Set. nat. Neuchdtel. xxvii, p. 171, 1899.

* The names of these structures have been often confused and misunderstood

;

cf. S. H. Vines, The history of the scorpioid cyme, Journ. Bot. (n.s.), x, pp. 3-9,

1881.
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If this be so, the radii measured from the pole to the boundary

of the shell will in each case be proportional to the velocity of

growth at this point upon the circumference, and at the time when
it corresponded with the outer hp, or region of active growth ; and

while the direction of the radius vector corresponds with the

direction of growth in thickness of the animal, so does the tangent

to bhe curve correspond with the direction, for the time being, of

the animal's growth in length. The successive radii are a measure

of the acceleration of growth, and the spiral curve of the shell

itself, if the radius rotate uniformly, is no other than the hodograph

of the growth of the contained organism*.

So far as we have now gone, we have studied the elementary

properties of the equiangular spiral, including its fundamental

property of continued si?nilarity; and we have accordingly learned

that the shell or the horn tends necessarily to assume the form

of this mathematical figure, because in these structures growth

proceeds by successive increments which are ailways similar in

form, similarly situated, and of constant relative magnitude one

to another. Our chief objects in enquiring further into the mathe-

matical properties of the equiangular spiral will be: (1) to find

means of confirming and verifying the fact that the shell (or other

organic curve) is actually an equiangular spiral; (2) to learn how,

by the properties of the curve, we may further extend our knowledge

or simphfy our descriptions of the shell; and (3) to understand the

factors by which the characteristic form of any particular equiangular

spiral is determined, and so to comprehend the nature of the specific

or generic differences between one spiral shell and another.

Of the elementary properties of the equiangular spiral the

following are those which we may most easily investigate in the

concrete case of the molluscan shell: (1) that the polar radii whose

vectorial angles are in arithmetical progression are themselves in

geometrical progression; hence (2) that the vectorial angles are pro-

portional to the logarithms of the corresponding radii ; and (3) that

the tangent at any point of an equiangular spiral makes a constant

angle (called the angle of the spiral) with the polar radius vector.

* The hodograph of a logarithmic spiral (i.e. of a point which lies on a uniformly

revolving radius and describes a logarithmic spiral) is likewise a logarithmic spiral

:

W. Walton, Collection of Problerha in Theoretical Mechanics (3rd ed.), 1876, p. 296.
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The first of these propositions may be written in a simpler form,

as follows: radii which form equal angles about the pole of the

equiangular spira] are themselves continued proportionals. That

is to say, in Fig. 366, when the angle ROQ is equal

to the angle QOP, then OP:OQ::OQ: OR.

A particular case of this proposition is when the

equal angles are each angles of 360° : that is to say

when in each case the radius vector makes a complete

revolution, and when, therefore, P, Q and R all he

upon tjie same radius.

It was by observing with the help of very careftil

measurement this continued proportionality, that

Moseley was enabled to verify his first assumption,

based on the general appearance of the shell, that

the shell of Nautilus was actually an equiangular

spiral, and this demonstration he was soon after-
Via ^ftfi

wards in a position to generalise by extending it to

all spiral Ammonitoid and Gastropod mollusca*. For, taking a

median transverse section of a Nautilus pompilius, and carefully

measuring the successive breadths of the whorls (from the dark line

which marks what was originally the outer surface, before it was

covered up Tjy fresh deposits on the part of the growing and

advancing shell), Moseley found that "the distance of any two of its

whorls measured upon a radius vector is one-third that of the two

next whorls measured upon the same radius vectorf. Thus (in

* The Rev. H. Moseley, On the geometrical forms of turbinated and discoid

shells, Phil. Trans. 1838, Pt. i, pp. 351-370. Reaumur, in describing the snail-shell

(Mem. Acad, des Sci. 1709, p. 378), had a glimpse of the same geometrical law:
" Le diametre de chaque tour des spirale, ou sa plus grande longueur, est a peu pres

double de celui qui la precede et la moitie de celui qui la suit." Leslie (in his

Geometry of Curved Lines, 1822, p. 438) compared the "general form and the

elegant septa of the Nautilus'" to an equiangular spiral and a series of its involutes.

f It will be observed that here Moseley, speaking as a mathematician and
considering the linear spiral, speaks of whorls when he means the linear boundaries,

or lines traced by the revolving radius vector; while the conchologist usually

applies the term whorl to the whole space between the two boundaries. As con-

chologists, therefore, we call the breadth of a whorl what Moseley looked updn as

the distance between two consecutive whorls. But this latter nomenclature Moseley

himself often uses. Observe also that Moseley gets a very good approximate result

by his measurements "upon a radius vector," although he has to be content with

a very rough determination of the pole.
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Fig. 367), ab is one-third of 6c, de of e/, gh of hi, and kl of Im. The

curve is therefore an equiangular spiral."

The numerical ratio in the case of the Nautilus happens to be

one of unusual simplicity. Let us take, with ^oseley, a somewhat

more complicated example.

Fig. 367. Spiral of the Naviilua.

Fig. 368. Turritella dupli-

cata (L.), Moseley's

. Turbo duplicatus. From
Chenu. x ^.

From the apex of a large Turritella {Turbo) duplicata* a line

was drawn across its whorls, and their widths were measured upon

it in succession, beginning with the last but one. The measure-

* In the case of ''Turbo'", and all other turbinate shells, we are dealing not with

a plane logarithmic spiral, as in Nautilus, but with a "gauche" spiral, such that

the radius vector no longer revolves in a plane perpendicular to the axis of the

system, but is inclined to that axis at some constant angle (j3). The figure still

preserves its continued similarity, and may be called a logarithmic spiral in space;

indeed it is commonly spoken of as a logarithmic spiral wrapped upon a cone, its pole

coinciding with the apex of the cone. It follows that the distances of successive

whorls of the spiral measured on the same straight Line passing through the apex

of the cone are in geometrical progression, and conversely; just as in the former

case. But the ratio between any two consecutive interspaces (i.e. ^3 - R2IR2 - Ri)

is now equal to e^'^^i^^cota^^ being the semi-angle of the enveloping cone. (Cf.

Moseley, Phil. Mag. xxi, p. 300, 1842.)
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ments were, as before, made with a fine pair of compasses and a

diagonal scale. The sight was assisted by a magnifying glass.

In a parallel colimin to the following admeasurements are the

terms of a geometric progression, whose first term is the width of

the widest whorl measured, and whose common ratio is 1-1804.

Turritella duplicata

Widths of successive Terms of a geometrical progression,

whorls, measured in whose first term is the width of

inches and parts the widest whorl, and whose
of an inch common ratio is 1-1804

1-31 1-310

1-12 1110
0-94 0-940

0-80 0-797

0-67 0-675

0-57 0-572

0-48 0-484

0-41 0-410

The close coincidence between the observed and the calculated

figures is very remarkable, and is amply sufiicient to justify the

conclusion that we are here deaUng with a true logarithmic spiral*.

Nevertheless, in order to verify his conclusion still further,

and to get partially rid of the inaccuracies due to successive small

measurements, Moseley proceeded to investigate the same shell,

measuring not single whorls but groups of whorls taken several

at a time: making use of the following property of a geometrical

progression, that ''if /x represent the ratio of the sum of every

even number (m) of its terms to the sum of half that number of

terms, then the common ratio (r) of the series is represented by

the formula
2

r={fjL- 1)^."

* Moseley, writing a hundred years ago, uses an obsolete nomenclature which

is apt to be very misleading. His Turbo duplicatus, of Linnaeus, is now Turritella

duplicata, the common large Indian Turritella, a slender, tapering shell with a

very beautiful spiral, about six or seven inches long. But the operculum which

he describes as that of Turbo does indeed belong to that genus, sensu stricto; it is

the well-known calcareous operculum or "eyestone" of some such common species

as Turbo petholatus. Turritella has a very different kind of operculum, a thin

chitinous disc in the form of a close spiral coil, not nearly fiUing up the aperture

of the shell. Moseley's Turbo phasianus is again no true Turbo, but is (to judge

from his figure) Phasianella bulimoides Lam. =P. australis (Gmelin); and his

Buccinum aubulatum is Terebra subulata (L.).



XI] OF CERTAIN OPERCULA 773

Accordingly, Moseley made the following measurements, begin-

ning from the second and third whorls respectively:

Width of Ratio fi

Six whorls
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Lastly, we may if we please, in this simple case, reduce the whole

matter to arithmetic, and, dividing the width of each whorl by

that of the next, see that these quotients are nearly identical, and

that their mean value, or common ratio, is precisely that which

we have already found.

We may shew, in the same simple fashion, by measurements

of Terebra (Fig. 397), how the relative widths of successive whorls

fall into a geometric progression, the criterion of a logarithmic

spiral. ^

Measurements of a large specimen (15-5 cm.) of Terebra maculata,

along three several tangents (a, 6, c) to the whorls. {After Chr.

Peterson, 1921.)

Width (mm.)
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in (e.g.) Nerita (Fig. 371); that is to say, apart from the side con-

stituting the outer edge of the operculum (which side is always and

of necessity curved) the successive increments constitute curvihnear

Fig. 369. Operculum of Turbo.

triangles in the one case, and rectilinear triangles in the other.

The sides of these triangles are tangents to the spiral Une of the

Fig. 370. Fig. 371.

Figs. 370, 371. Opercula of Turbo and Nerita. After Moseley.

operculum, and may be supposed to generate it by their consecutive

intersections.

In a number of such opercula, Moseley measured the breadths
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of tlie successive whorls along a radius vector*, just in the same

way as he did with the entire shell in the foregoing cases;

here is one example of his results.

Operculum of Turbo sp. ; breadth {in inches) of successive

whorls, mea^redfrom the pole

and

Distance
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apparent complication and difficulty. But God hath bestowed

upon this humble architect the practical skill of a learned geo-

metrician, and he makes this provision with admirable precision

in that curvature of the logarithmic spiral which he gives to the

section of the shell. This curvature obtaining, he has only to turn

his operculum shghtly round in its own plane as he advances it

into each newly formed portion of his chamber, to adapt one margin

of it to a new and larger surface and a different curvature, leaving

the space to be filled up by increasing the operculum wholly on

the other margin." The fact is that self-similar or gnomonic growth

is taking place both in the shell and its operculum; in both of them

growth is in reference to a fixed centre, and to a fixed axis through

that centre; and in both of them growth proceeds in geometric

progression from the centre while rotation takes place in arithmetic

progression about the axis. The same architecture which builds

the house constructs the door. Moreover, not only are house and

door governed by the same law of growth, but, growing together,

door and doorway adapt themselves to one another.

The operculum of the gastropods varies from a more or less close-wound

spiral, as in Turritella, Trochus or Pleurotomaria, to cases in which accretion

takes place, by concentric (or more. or less excentric) rings, all round. But

these latter cases, so Mr Winckworth tells me, are not very common. Paludina

and Ampullaria come near to having a concentric operculum, and so do some

of the Murices, such as M. tribulus, and a few Turrids, and the genus Helicina;

but even these opercula probably begin as spirals, adding on their gnomonic

increments at one end or side, and only growing on all sides later on. There

would seem to be a truly concentric operculum in the Siphonium group of

Vermetus, where the spiral of the shell itself is lost, or nearly so; but it is

usually overgrown with Melobesia, and hard to see.

Fig. 372.

One more proposition, an all but self-evident one, we may make

passing mention of here: If upon any polar radius vector OP,
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a triangle OPQ be drawn similar to a given triangle, the locus of

the vertex Q will*be a spiral similar to the original spiral. We may
extend this proposition (as given by Whitworth) from the simple

case of the triangle to any similar figures whatsoever ; and see from

it how every spot or ridge or tubercle repeated symmetrically from

one radius vector (or one generating curve) to another becomes

part of a spiral pattern on the shell.

Viewed in regard to its own fundamental properties and to those

of its hmiting cases, the equiangular spiral is one of the simplest

of all known curves ; aiid the rigid uniformity of the simple laws by

which it is developed sufficiently account for its frequent manifesta-

tion in the structures built up by the slow and steady growth of

organisms.

In order to translate into precise terms the whole form and

growth of a spiral shell, we should have to employ a mathematical

notation considerably more complicated than any that I have

attempted to make use of in this book. But we may at least try

to describe in elementary language the general method, and some of

the variations, of the mathematical development of the shell. But

here it is high time to observe that, while we have been speaking of

the shell (which is a surface) as a logarithmic spiral (which is a line),

we have been simphfying the case, in a provisional or preparatory

way. The logarithmic spiral is but one factor in the case, albeit

the chief or dominating one. The problem is one not of plane but

of sohd geometry, and the solid in question is described by the

movement in space of a certain area, or closed curve*.

Let us imagine a closed curve in space, whether circular or

eUiptical or of some other and more complex specific form, not

necessarily in a plane: such a curve as we see before us when we

consider the mouth, or terminal orifice, of our tubular shell. Let

* For a more advanced study of the family of surfaces of which the Nautilus

is a simple case, see M. Haton de la Goupilliere {op. cit.). The turbinate shells

represent a sub-family, which may be called that of the "surfaces cerithioides "

;

and "surfaces a front generateur" is a short title of the whole family. The form of

the generating curve, its rate of expansion, the direction of its advance, and the

angle which the generating front makes with the directrix, define, and give a wide

extension to, the family. These parameters are all severally to be recognised in the

growth of the living object; and they make of a collection of shells an unusually

beautiful materialisation of the rigorous definitions of geometry.
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us call this closed curve the "generating curve"; the surface which

it bounds we may call (if need arise) the "generating front," and

let us imagine some one characteristic point within this closed

curve, such as its centre of gravity. Then, starting from a fixed

origin, let this characteristic point describe an equiangular spiral

Fig. |373. Melo ethiopicus L.

in space about a fixed axis or "conductrix" (namely the axis of the

shell), while at the same time the generating curve grows with each

increment of rotation in such a way as to preserve the symmetry
of the entire figure, with or without a simultaneous movement of

translation along the axis.

The resulting shell may now be looked upon in either of two ways.

It is, on the one hand, an ensemble gf similar closed curves, spirally

arranged in space, and gradually increasing in dimensions in pro-

portion to the increase of their vector-angle from the pole*. In

* The plumber, the copper-smith and the glass-blower are at pains to conserve

in every part of their tubular constructions, however these branch or bend, the

constant form which their cross-sections ought to have. Throughout the spiral

twisting of the shell, throughout the windings and branchings of the blood-vessels,

the same uniformity is maintained.
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other words, we can imagine our shell cut up into a system of rings,

following one another in continuous spiral succession, from that

terminal and largest one which constitutes the hp of the orifice of

the shell. Or on the other hand, we may figure to ourselves the

whole shell as made up of an ensemble of spiral lines in space, each

spiral having been traced out by the gradual growth and revolution

of a radius vector from the pole to a given point on the boundary

of the generating curve.

-r"
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the shell. And in not a few cases, as in Harpa, Dolium perdix, etc.,

both ahke are conspicuous, ridges and colour-bands^ intersecting

one another in a beautiful isogonal system.

In ordinary gastropods the shell is formed at or near the mantle-

edge. Here, near the mantle-border, is a groove Hned with a

secretory epithehum which produces the horny cuticle or perio

stracum of the shell*. A narrow zone of the mantle just behind

this secretes Hme abundantly, depositing it in a layer below the

periostracum ; and for some httle way back more hme may be

secreted, and pigment superadded from appropriate glands. Growth

and secretion are periodic rather than continuous. Even in a snail-

shell it is easy to see how the shell is built up of narrow annular

increments; and many other shells record, in conspicuous colour-

patterns, the alternate periods of rest and of activity which their

pigment-glands have undergone.

The periodic accelerations and retardations in the growth of a

shell are marked in various ways. Often we have nothing more

than an increased activity from time to time at or near the mantle-

edge—enough to give rise to shght successive ridges, each corre-

sponding to a "generating curve" in the conformation of the shell.

But in many other cases, as in Murex, Ranella and the like, the

mantle-edge has its alternate phases of rest and of turgescence, its

outline being plain and even in the one and folded and contorted

in the other; and these recurring folds or pleatings of the edge

leave their impress in the form of various ridges, ruffles or comb-like

rows of spines upon the shell f.

In not a few cases the colour-pattern shews, or seems to shew,

how some play of forces has fashioned and transformed the first

elementary pattern of pigmentary drops or jets. As the book-

binder drops or dusts a little colour on a viscous fluid, and then

produces the beautiful streamlines of his marbled papers by stirring

* That the shell grows by accretion at the mantle-edge was one of Reaumur's

countless discoveries {Mem. Acad. Roy. des Sc. 1709, p. 364 seq.). It follows

that the mathematical "generating curves," as Moseley chose them, correspond to

the material increments of the shell.

t The periodic appearance of a ridge, or row of tubercles, or other ornament

on the growing shell is illustrated or even exaggerated in the delicate "combs"

of Murex aculeatus. Here normal growth is. interrupted for the time being, the

mantle-edge is temporarily folded and reflexed, and shell-substance is poured out

into the folds.
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and combing the colloid mass, so we may see, in the harp-shells

or the volutes, how a few simple spots or hnes have been drawn out

into analogous wavy patterns by streaming movements during the

formation of the shell.

' In the complete mathematical formula for any given turbinate

shell, we may include, with Moseley, factors for the following

elements: (1) for the specific form of a section of the tube, or

(as we have called it) the generating curve; (2) for the specific rate

of growth of this generating curve; (3) for its incHnation to the

directrix, or to the axis
; (4) for its specific rate of angular rotation

about the pole, in a projection perpendicular to the axis; and

(5) in turbinate (as opposed to nautiloid) shells, for its rate of

screw-translation, parallel to the axis, as measured by the angle

between a tangent to the whorls and the axis of the shell*. It seems

a compHcated affair; but it is only a pathway winding at a steady

slope up a conical hill. This uniform gradient is traced* by any

given point on the generating curve while the vector angle increases

in arithmetical progression, and the scale changes in geometrical

progression; and a certain ensemble, or bunch, of these spiral curves

in space constitutes the self-similar surface of the shell.

But after all this is not the only way, neither is it the easiest way,

to approach our problem of the turbinate shell. The conchologist

turned mathematician is apt to think of the generating curve by

which the spiral surface is described as necessarily identical, or

coincident, with the mouth or Hp of the shell; for this is where

growth actually goes on, and where the successive increments of

shell-growth are visibly accumulated. But it does oiot follow that

this particular generating curve is chosen for the best from the

mathematical point of view; and the mathematician, unconcerned

with the physiological side of the case and regardless of the suc-

cession of the parts in time, is free to choose any other generating

curve which the geometry of the figure may suggest to him. We
are following Moseley's example (as is usually done) when we think

of no other generating curve but that which takes the form of a

* Note that this tangent touches the curve at a series of points, whorl by whorl,

instead of at one only. Observe also that we may have various tangent-cones,

all centred on the apex of the shell. In an open spiral, like a ram's horn, or a

half-open spiral like the shell Solarium, w^ have two cones, one touching the

outside, the other the inside of the shell.
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frontal plane, outlined by the lip, and sliding along the axis while

revolving round it; but the geometer takes a better and a simpler

way. For, when of two similar figures in space one is derived from

the other by a screw-displacement accompanied by change of scale

—

as in the case of a big whelk and a little whelk—there is a unique

(apical) point which suffers no displacement; and if we choose for

our generating curve a sectional figure centred on the apical point

and passing through the axis of rotation, the whole development

of the surface may be simply described as due to a rotation of this

generating figure about the axis (z), together with a change of scale

with the point as centre of simihtude. We need not, and now
must not, think of a slide or shear as part of the operation; the

translation along the axis is merely part and parcel of the magnifica-

tion of the new generating curve. It follows that angular rotation

in arithmetical progression, combined with change of scale (from 0)

in geometrical progression, causes any arbitrary point on the

generating curve to trace a path of uniform gradient round a

circular cone, or in other words to describe a helico-spiral or gauche

equiangular spiral in space. The spiral curve cuts all the straight-

fine generators of the cone at the same angle ; and it further follows

that the successive increments are, and the whole figure constantly

remains, "self-similar"*.

Apart from the specific form of the generating curve, it is the

ratios which happen to exist between the various factors, the ratio

for instance between the growth-factor and the rate of angular

revolution, which give the endless possibihties - of permutation of

form. For example, a certain rate of growth in the generating

curve, together with a certain rate of vectorial rotation, will give

us a spiral shell of which each successive whorl will just touch its

predecessor and no more; with a slower growth-factor the whorls

will stand asunder, as in a ram's horn; with a quicker growth-factor

* The equation to the surface of a turbinate shell is discussed by Moseley both

in terms of polar and of rectangular coordinates, and the method of polar co-

ordmates is used also by Haton de la Goupilliere; but both accounts are subject

to mathematical objection. Dr G. T. Bennett, choosing his generating curve

(as described above) in the axial plane from which the vertical angles are measured
(the plane ^ =0), would state his equation in cylindrical coordinates, / {za^, ra^) =0:
that is to say in terms of z, conjointly with ordinary plane cylindrical coordi-

nates.
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each will cut or intersect its predecessor, as in an Ammonite or

the majority of gastropods, and so on.

A similar relation of velocities suffices to determine the apical

angle of the resulting cone, and give us the diflFerence, for example,

between the sharp, pointed cone of Turritella, the less acute one of

Fusus or Buccinum, and the obtuse one of Harpa or^of Dolium.

In short it is obvious that all the differences of form which we

observe between one shell and another are referable to inatters of

degree, depending, one and all, upon the relative magnitudes of the

various factors in the complex equation to the curve. This is an

immensely important thing. To learn that all the multitudinous

shapes of shells, in their all but infinite variety, may be reduced to

the variant properties of a single simple curve, is a great achieve-

ment. It exemphfies very beautifully what Bacoi^ meant in saying

that the forms or differences of things are simple and few, and the

degrees and coordinations of these make all their variety*. And
after such a fashion as this John Goodsir imagined that the naturahst

of the future would determine and classify his shells, so that

conchology should presently become, hke mineralogy, a mathe-

matical science I

.

The paper in which, more than a hundred years ago, Canon Moseleyf

gave a simple mathematical account, on fines fike tfies^, of the

spiral forms of univalve shells, is one of the classics of Natural

History. But other students before, and sometimes long before,

him had begun to recognise the same simpficity of form and

structure. About the year 1818 Reinecke had declared Nautilus

to be a well-defined geometrical figure, whose chambers followed

* For a discussion of this idea, and of the views of Bacon and of J. S. Mill, see

J. M. Keynes, op. cit. p. 271.

t On the employment of mathematical modes of investigation in the determina-

tion of organic forms^ in Anatomical Memoirs, ii, p. 205, 1868 (posthumous

pubhcation).

X The Rev. Henry Moseley (1801-1872), of St John's College, Cambridge,

Canon of Bristol, Professor of Natural Philosophy in King's College, London, was

a man of great and versatile ability. He was father of H. N. Moseley, naturalist

on board the Challenger and Professor of Zoology in Oxford; and he was grand-

father of H. G. J. Moseley (1887-1915)—Moseley of the Moseley numbers—whose

death at Gallipoli, long ere his prime, was one of the major tragedies of the Four

Years War.
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one another in a constant ratio or continued proportion*; and

Leopold von Buch and others accepted and even developed the

idea.

Long before, Swammerdam had grasped with a deeper insight

the root of the whole matter; for, taking a few diverse examples,

such as Helix and Spirula, he shewed that they and all other spiral

shells whatsoever were referable to one common type, namely to

that of a simple tube, variously curved according to definite mathe-

matical laws; that all manner of ornamentation, in the way of

spines, tuberosities, colour-bands and so forth, might be superposed

upon them, but the type was one throughout and specific differences

were of a geometrical kind. "Omnis enim quae inter eas anim-

advertitur differentia ex sola nascitur diversitate gyrationum:

quibus si insuper externa quaedam adjunguntur ornamenta pin-

narum, sinuum, anfractuum, planitierum, eminentiarum, profundi-

tatum, extensionum, impressionum, circumvolutionum, colorumque

:

. . . tunc deinceps facile est, quarumcumque Cochlearum figuras

geometricas, curvosque, obliquos atque rectos angulos, ad unicam

omnes speciem redigere : ad oblongum videhcet tubulum, qui

vario modo curvatus, crispatus, extrorsum et introrsum flexus,

ita concrevitf."

Nay more, we may go back yet another hundred years and find

Sir Christopher Wren contemplating the architecture of a snail-shell,

and finding in it the logarithmic spiral. For AValhsf, after defining

and describing this curve with great care and simplicity, tells us

that Wren not only conceived the spiral shell to be a sort of cone

or pyramid coiled round a vertical axis, but also saw that on the

magnitude of the angle of the spire depended the specific form of

the shell: "Hanc ipsam curvam . . . fcontemplatus est Wrennius

noster. Nee tantum curvae longitudinem, partiumque ipsius, et

* J. C. M. Reinecke, Maris protogaei Nautilos, etc., Coburg, 1818, p. 17: "In

eius forma, quae canalis spiram convoluti formam et proportiones simul sub-

ministrat, totius testae forma quoddammodo data est. Restaret solum scire,

quota cujusque anfractus pars sequent! inclusa^it, ut testam geometrice construere

possimus." Cf. Leopold von Buch, Ueber die Ammoniten in den alteren Gebirgs-

schichten, Ahh. Berlin. Akad., Phys. Kl. 1830, pp. 135-158; Ann. Sc. Nat. xxvin,

pp. 5-43, 1833; cf. Elie de Beaumont, Sur I'enroulement des Ammonites, Soc.

Philom., Pr. verb. 1841, pp. 45-4^.

t Biblia Naturae sive Historia Insectorum, Leydae,.1737, p. 152.

X Job. Wallis, Tractatus duo, de Cydoide, etc., Oxon., 1659, pp. 107, 108.
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magnitudinem adjacentis plani; sed et, ipsius ope, Limacum et

Conchiliorum domunculos metitur. Existimat utique, magna veri-

similitudine, domunculos hosce non alios esse quam Pjrramides

convolutas: quarum Axis sit, istiusmodo Spiralis: non quidem in

piano jacens, sed sensim in convolutione (circa erectum axim)

assurgens: pro variis autem curvae, sive ad rectam circumductam

sive ad subjacens planum, " angulis, variae Conchiliorum formae

enascantur. Atque hac hjrpothesi, mensurata Pyramide, metitur

etiam ea conchiliorum spatia."

For some years after the appearance of Moseley's paper, a number

of writers followed in his footsteps, and attempted in various ways

to put his conclusions to practical use. For instance, d'Orbigny

^— ^—^^-^^^ '''•
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ako, though somewhat roughly, be determined. For instance, in

Terebra dimidiata the apical angle was found to be 13°, the sutural

angle 109°, and so forth.

It was at once obvious that, in such a shell as is represented in

Figs. 369 and 375 the entire outUne (always excepting that of

the immediate neighbourhood of the mouth) could be restored from

a broken fragment. For if we draw our tangents to the cone, it

follows from the symmetry of the figure that we can continue the

projection of the sutural hne, and so mark off the successive whorls,

by simply drawing a' series of consecutive parallels, and by then

filling into the quadrilaterals so marked off a series of curves similar

to one another, and to the whorls which are still intact in the broken

shell. But the use of the hehcometer soon shewed that it was

by no means universally the case that one and the same cone was

tangent to all the turbinate whorls; in other words, there was not

always one specific apical angle which held good for the entire

system. In the great majority of cases, it is true, the same tangent

touches all the whorls, and is a straight Hne. But in others, as in

the large Cerithium nodosum, such a hne is sKghtly concave to the

axis of the shell; and in the short spire of Doliumj for instance,

the concavity is marked, ^nd the apex of the spire is a distinct

cusp. On the other hand, in Pupa and Clausilia the conmion

tangent is convex to the axis of the shell.

So also is it, as we shall presently see, among the Ammonites:

where there are some species in which the ratio of whorl to whorl

remains, to all appearance, perfectly constant; others in which

it gi^dually though only shghtly increases; and others again in

which it slightly and gradually falls away. It is obvious that,

among the manifold possibihties of growth, such conditions as

these are very easily conceivable. It is much more remarkable

that, among these shells, the relative velocities of growth in various

dimensions should be as constant as they are than that there

should be an occasional departure from perfect regularity. In these

latter cases the logarithmic law of growth is only approximately

true. The shell is no longer to be represented simply as a cone which

has been rolled up, but as a cone which (while rolling up) had grown

trumpet-shaped, or conversely whose mouth had narrowed in, and

which in longitudinal section is a curvilinear instead of a rectihnear
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triangle. But all that has happened is that a new factor, usually

of small or all but imperceptible magnitude^ has been introduced

into the case ; so that the ratio, log r = 6 log a, is no longer con-

stant but varies shghtly, and in accordance with some simple law.

Some ' writers, such as Naumann* and Grabau, maintained that

the moUuscan spiral was no true logarithmic spiral, but differed

from it specifically, and they gave it the name of Conchospiral.

They said that the logarithmic spiral originates in a mathematical

point, while the molluscan shell starts with a Httle embryonic, shell,

or central chamber (the "protoconch" of the conchologists), around

which the spiral is subsequently wrapped. But this need not affect

the logarithmic law of the shell as a whole ; indeed we have already

allowed for it by writing our equation in the form r = ma^. And

Grabauf, while he clung to Naumann's conchospiral against

Moseley's logarithmic spiral, confessed that they were so much ahke

that ordinary measurements would seldom shew a difference between

them.

There would seem, by the way, to be considerable confusion in the books

with regard to the so-called "protoconch." In many cases it is a definite

structure, of simple form, representing the more or

less globular embyyonic shell before it began to

elongate into its conical or spiral form. But in

many cases what is described as the "protoconch"

is merely an empty space in the middle of the spiral

coil, resulting from the fact that the actual spiral

.shell must have some magnitude to begin with, and

that we cannot follow it down to its vanishing point

in infinity. For instance, in the accompanying

figure, the large space a is styled the protoconch,

but it is the little bulbous or hemispherical chamber

within it, at the end of the spire, which is the real

beginning of the tubular shell. The form and mag-

nitude of the spa^ce a are determined by the "angle of retardation," or ratio

of rate of growth between the inner and outer curves of the spiral shell. They

Fig. 376.

* C. F. Naumann, Beitrag zur Konchyliometrie, Poggend. Ann. l, p. 223, 1840;

Ueber die Spiralen der Ammoniten, ibid, li, p. 245, 1840; ibid, liv, p. 541, 1845; etc.

(See also p. 755.) Cf. also Lehmann, Die von Seyfriedsche Konchyliensammlung

und das Windungsgesetz von einigen Planorben, Constanz, 1855.

f A. H. Grabau, Ueber die Naumannsche Conchospirale, und ihre Bedeutung

fiir die Conchyliometrie, Inauguraldiss., Leipzig, 1872; Ueber die Spiralen der

Conchylien, etc., Leipzig Progr. No. 502, 1880; cf. Sb. naturf. Gesellsch. Leipzig,

1881, pp. 23-32.
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are independent of the shape and size of the embryo, and depend only (as we
shall see better presently) on the direction and relative rate of growth of the

double contour of the shell*.

rd0

Now that we have dealt, m a. general way, with some of the more

obvious properties of the equiangular or logarithmic spiral, let us

consider certain of them a httle more particularly, keeping in view

as our chief object of study the range of variation of the molluscan

shell.

There is yet another equation to the logarithmic

spiral, very commonly employed, and without the

help of which we cannot get far. It is as follows

:

This follows directly from the fact that the angle

a (the angle between the radius vector and the

tangent to the curve) is constant.

For then,

tan a (= tan
(f>)
= rdd/dr;

therefore dr/r = dO cot a,

and, integrating, log r = ^ cot a.

or
Fig. 377.

It is easy to see (we might indeed have noted it before) that the

logarithmic spiral is but a plotting in polar coordinates of increase

by compound interest. For if A be the "amount" of £1 in one year

(A = 1 + a, where a is the rate of interest), and PA the amount

of P in one year, then the whole amount, M, in t years is M = PA^\

this, provided that interest is payable once a year. But, as we are

taught by algebra, and as we have seen in our study of growth,

this formula becomes Pe"* when the intervals of time between the

payments of interest decrease without limit, that is to say, wh^n we

may consider growth to be continuous. And this formula PeP-^ is

precisely that of our logarithmic spiral, when we represent the time

* J. F. Blake (cf. infra, p. 793) says of Naumann's formula: "By such a

modification he hoped to bring the measurements of actual shells more into

harmony with calculation. The errors of observation, however, are always greater

than this change would correct—if founded on fact, which is doubtful; and all

practical advantage is lost by the compUcation of the equations."
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by a vector angle d, and when for a, the particular rate of interest

in the cas.e, we write cot a, the constant measure of growth of the

particular spiral.

As we have seen throughout our preliminary discussion, the two

most important constants (or "specific Characters," as the naturalist

would say) in an equiangular or logarithmic spiral are (1) the magni-

tude of the angle of the spiral, or "constant angle" a, and (2) the

rate of increase of the radius vector for any given angle of revolution, 6.

But our two magnitudes, that of the constant angle and that of the

ratio of the radii or breadths of whorl, are directly related to one

another, so that we may determine either of them by measurement

and calculate the other.

Fig. 378.

In any complete spiral, such as that, of Nautilus, it is (as we

have seen) easy to measure any two radii (r), or the breadths in

a radial direction of any two whorls* (If). We have then merely

to apply the formula

^"+1 ^ g^cota
W.

or
«+l ^ g^cota

which we may simply write r = e^^°*", etc., when one radius or whorl

is regarded, for the purpose of comparison, as equal to unity.

Thus, in Fig. 378, OC/OE, or EF/BD, or DC/'EF, being in

each case radii, or diameters, at right angles to one another, are

-
*

all equal to e^"^" ". While in like manner, EO/OF, EG/FH, or

GO/HO, all equal e^^o^a. ^nd BC/BA, or CO/OB = e2^cota^
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As soon, then, as we have prepared tables for these values, the

determination of the constant angle a in a particular shell becomes

a very simple matter.

A complete table would be cumbrous, and it will be sufficient

to deal with the simple case of the ratio between the breadths of

adjacent, or immediately succeeding, whorls.

Here we have r = e27rcota^ qp log/ = log e x 27r x cot a, from

which we obtain the following figures*:

The shape of a nautiloid spiral

Ratio of breadth of each



792 THE EQUIANGULAR SPIRAL [ch.

angles the apparent form of the spiral is greatly altered, and the

very fact of its being a spiral soon ceases to be apparent (Figs. 379,

380). Suppose one whorl to be an inch in breadth, then, if the

angle of the spiral were 80°, the next whorl would (as we have just

seen) be about three inches broad; if it were 70°, the next whprl

would be nearly ten inches, and if it were 60°, the next whorl would

be nearly four feet broad. If the angle were 28°, the next whorl

would be a mile and a half in breadth; and if it were 17°, the next

would be spme 15,000 miles broad.

In other words, the spiral shells of gentle curvature, or of small

constailt angle, such as Dentalium or Cristellaria, are true equi-

angular spirals, just as are those of Nautilus or Rotalia: from

Fig. 379. Fig. 380.

which they differ only in degree, in the magnitude of an angular

constant. But this diminished magnitude of the angle causes the

spiral to dilate with such immense rapidity that, so to speak,

it never comes 'round; and so, in such a shell as Dentalium, we

never see but a small portion of a single whorl.

We might perhaps be inclined to suppose that, in such a shell as Dentalium^

the lack of a visible spiral convolution was only due to our seeing but a small

portion of the curve, at a distance from the pole, and when, therefore, its

curvature had already greatly diminished. That is to say we might suppose

that, however small the angle a, and however rapidly the whorls accordingly

increased, there would nevertheless be a manifest spiral convolution in the

immediate neighbourhood of the pole, as the starting point of the curve.

But it is easy to see that it is not so. It is not that there cease to be con-

volutions of the, spiral round the pole when a is a small angle ; on the contrary,

there are infinitely many, mathematically speaking. But as a diminishes,

and cot a increases towards infinity, the ratio between the breadth of one

whorl and the next increases very rapidly. Our taTble shews us that even

when a is no less than 40°, and our shell stiU looks strongly curved, one whorl

is a thousandt'i part of the breadth of the next, and a thousandfold that
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of the one before ; we cannot expect to see either ofthem under the materialised

conditions of the actual shell. Our shells of small constant angle and gentle

curvature, such as Dentalium, are accordingly as much as we can ever expect

to see of their respective spirals.

The spiral whose constant angle is 45° is both a simple case and

a mathematical curiosity; for, since the tangent of 45° is unity,

we need merely write r = e^\ which is as much as to say that the

natural logarithms of the radii give us, without more ado, the

vector angles. In this spiral the ratio between the breadths of

two consecutive whorls becomes r = e^^ = e2x3-i4i6_ Reducing this

from Naperian to common logs, we have log r = 2-729; whicH tells

us (by our tables) that the radius vector is multiphed about 535J
times after a whole polar revolution; it is doubled after turning

through a polar angle of less than 40°. Spirals of so low an angle

as 45° are common enough in tooth and claw, but rare among

molluscan shells; but one or two of the more strongly curved

Dentaliums, like D. elejphantinum, come near the mark. It is not

easy to determine the pole, nor to measure the constant angle, in

forms like these.

Let us return to the problem of how to ascertain, by direct

measurement, the spiral angle of any particular shell. The method

aL-eady employed is only applicable to complete spirals, that is to

say to those in which the angle of the spiral is large, and further-

more it is inapplicable to portions, or broken fragments, of a shell.

In the case of the broken fragment, it is plain that the determination

of the angle is not merely of theoretic interest; but may be of great

practical use to the conchologist as the one and only way by which

he may restore the outline of the missing portions. We have a con-

siderable choice of methods, which have been summarised by, and

are partly due to, a very careful student of the Cephalopoda, the

late Rev. J. F. Blake*.

(1) When an equiangular spiral rolls on a straight line, the pole

traces another straight line at an ^ngle to the first equal to the

complement of the constant angle of the spiral; for the contact

point is the instantaneous centre of the rotational movement, and

the line joining, it to the pole of the spiral is normal to the roulette

path of that point. But the difficult^ of determining the pole

* On the measurement of the curves formed by Cephalopods and other MoUusks,

Phil. Mag. (5), vi, pp. 241-263, 1878.
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(which is indeed asymptotic) makfes this of Httle use as a method of

determining the constant angle. It is, however, a beautiful property

of the curve, and all the more interesting that Clerk Maxwell dis-

covered it when he was a boy*.

(2) The following method is useful and easy when we have a

portion of a single whorl, such as to shew both its inner and its

outer edge. A broken whorl of an Ammonite, a curved shell such

as Dentalium, or a horn of similar form to the latter, will fall under

this head. We have merely to draw a tangent,

GEH, to the outer whorl at any point E; then

draw to the inner whorl a tangent parallel to GEH,
touching the curve in some point F. The straight

hne joining the points of contact, EF, must

evidently pass through the pole : and^ accordingly,

the angle GEF is the angle required. In shells

which bear longitudinal striae or other ornaments,

any pair of these will suffice for our purpose,

instead of thfe actual boundaries of the whorl.

But it is obvious that this method will be apt to

fail us when the angle a is very small; and

when, consequently, the points E and F are very

remote.

(3) In shells (or horns) shewing rings or other transverse

ornamentation, we may take it that these ornaments are set at

Fig. 381.

Fig. 382. An Ammonite, to

shew corrugated surface-

pattern.

* Clerk Maxwell, On the theory of rolling curves. Trans. B.S.E. xvi, pp. 519-

540, 1849; Sci. Papers, i, pp. 4-29.
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a constant angle to the spire, and therefore to the radii. The angle

(6) between two of them, as AC, BD, is therefore equal to the

angle 9 between the polar radii from A and B, or from C and D;

and therefore BD/AC = e^cota^ which gives us the angle a in terms

of known quantities.

(4) If only the outer edge be available, we have the ordinary-

geometrical problem—given an arc of an equiangular spiral, to find

its pole and spiral angle. The methods we may employ depend

(i) on determining directly the position of the pole, and (ii) on

determining the radius of curvature.

The first method is theoretically simple, but difficult in practice;

for it requires great accuracy in determining th'fe points. Let AD,

DB be two tangents drawn to the

curve. Then a circle drawn through

the points A, B, D will pass through

the pole 0, since the angles OAT>,

QBE (the supplement of OBD) are

equal. The point may be deter-

mined by the intersection of two

such circles; and the angle DBO is

then the angle, a, required.

Or we may determine graphically, ' p- ^^
at two points, the radii of curvature

P1P2. Then, if s be the length of the arc between them (which may

be determined with fair accuracy by rolling the margin of the shell

along a ruler),
cot a = (pi

— P2)is.

The following method*, given by Blake, will save actual determination of

the radii of curvature.

Measure along a tangent to the curve the distance, AC, at which a certain

small offset, CD, is made by the curve; and from another point B, measure

the distance at which the curve makes an equal offset. Then, calling the

offset jLt; the arc AB, s; and AC, BE, respectively x^, x^, we have

a; 2^_ 2

Pj_
= ^

, approximately,
/^

and cota =
2ixs

Of all these methods by which the mathematical constants, or

specific characters, of a given spiral shell ipay be determined, the

* For an example of this method, see Blake, loc. cit. p. 251.
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only one of which much use has been made is that which Moseley

first employed, namely, the simple method of determining the

relative breadths of the whorl at distances separated by some

convenient vectorial angle such as 90°, 180°, or 360°.

Very elaborate measurements of a number of Ammonites have

been made by Naumann*, by Grabau, by Sandberger f, and by

Miiller, among which we may choose a couple of cases for considera-

tion f. In the following table I have taken a portion of Grabau's

Ammonites intuslabiatus

Ratio of breadth of

Ith of whorls
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determinations of the breadth of the whorls in Ammonites (Arcestes)

intuslabiatus; these measurements Grabau gives for every 45° of

arc, but I have only set forth successive whorls measured along

one diameter on both sides of the pole. The ratio between alternate

measurements is therefore the same ratio as Moseley adopted,

namely the ratio of breadth between contiguous whorls along a

radius vector. I have then added to these observed values the

corresponding calculated values of the angle a, as obtained from

our usual formula.

There is considerable irregularity in the ratios derived from these

measurements, but it will be seen that this irregularity only implies

a variation of the angle of the spiral between about 85° and 87°;

and the values fluctuate pretty regularly about the mean, which

is 86° 15'. Considering the difficulty of measuring the whorls,

especially towards the centre, and in particular the difficulty of

determining with precise accuracy the position of the pole, it is

clear that in such a case as this we are not justified in asserting that

the law of the equiangular spiral is departed from.

Ammonites tornatus
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that of a cone with shghtly curving sides : in which, that is to say,

there is a sHght acceleration of growth in a transverse as compared

with the longitudinal direction.

In a tubular spiral, whether plane or hehcoid, the consecutive

whorls may either be (1) isolated and remote from one another;

or (2) they may precisely meet, so that the outer border of one

and the inner border of the next just coincide; or (3) they may
overlap, the vector plane of each outer whorl cutting that of its

immediate predecessor or predecessors.

Looking, as we have done, upon the spiral shell as being essentially

a cone roUed up*, it is plain that, for a given spiral angle, intersection

or non-intersection of the successive whorls will depend upon the

apical angle of the original cone. For the wider the cone, the more

will its inner border tend to encroach on the preceding whorl. But

it is also plain that the greater the apical angle of the cone, and the

broader, consequently, the cone itself, the greater difference will

there be between the total lengths of its inner and outer borders.

And, since the inner and outer borders are describing precisely

the same spiral about the pole, we may consider the inner border

as being retarded in growth as compared with the outer, and as

being always identical with a smaller and earUer part of the latter.

If A be the ratio of growth between the outer and the inner curve,

then, the outer curve being represented by

r = ae^ootcc^

the equation to the inner one will >^e

/ = aAe^cota^

or r' = ae^^-y^^^^"",

* To speak of a cone "rolling up," and becoming a nautiloid spiral by doing so,

is a rough and non-mathematical description; nor is it easy to see how a cone of

wide angle could roll up, and yet remain a cone. But if (i) the centre of a sphere

move along a straight line and its radius keep proportional to the distance the

centre has moved, the sphere generates as its envelope a circular cone of which

the straight line is the axis; and so, similarly, if (ii) the centre of a sphere move
along an equiangular spiral and its radius keep proportional to the arc-distance

along the spiral back to the pole, the sphere generates as its envelope a self-similar

shell-surface, or nautiloid spiral.
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and y may then be called the angle of retardation, to which the

inner curve is subject by virtue of its slower rate of growth.

Dispensing with mathematical formulae, the several conditions

may be illustrated as follows

:

In the diagrams (Fig. 385), OF-^F^F^, etc. represents a radius,

on which P^, F^, Pg are the points attained by the outer border

of the tubular shell after as many entire consecutive revolutions.

And Pi', P2', P3' are the points similarly intersected by the inner

border ; OFjOF' being always = A, which is the ratio of growth,

or
'

' cutting-down factor.
'

' Then, obviously, ( 1 ) when OP^ is less than

Fig. 385.

OP2' the whorls will be separated by an interspace (a); (2) when

OF^ = OP2' they will be in contact (6), and (3) when OF^ is greater

than OF^ there will be a greater or less extent of overlapping,

that is to say of concealment of the surfaces of the earher by the

later whorls (c). And as a further case (4), it is plain that if A be

very large, that is to say if OF-^ be greater, not only than OF^

but also than OP3', OP4', etc., we shall have complete, or all but

complete, concealment by the last formed whorl of the whole of

its predecessors. This latter condition is completely attained in

Nautilus pompilius, and approached, though not quite attained, in

N. umbilicatus] and the difference between these two forms, or

"species," is constituted accordingly by a difference in the value

of A. (5) There is also a final case, not easily distinguishable
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externally from (4), where P' lies on the opposite side of the radius

vector to P, and is therefore imaginary. This final condition is

exhibited in Argonauta.

The Hmiting values of A are easily

ascertained.

In Fig. 386 we have portions of

two successive whorls, whose corre-

sponding points on the same radius

vector (as R and R) are, therefore,

^^*
' at a distance apart corresponding to

277-. Let r and r' refer to the inner, and R, R' to the outer sides of

the two whorls. Then, if we consider

it follows that R' = ae<^+2;r) cot a^

and r' = Aae^^+^^^^^o*^ = j^g(^f27r-7)cota_

Now in the three cases (a, b, c) represented in Fig. 385, it is

plain that r' = R, respectively. That is to say,

Xae^0+2n)COta j ae^cota^

and Ae^^^ota | i^

The case in which Ae^'^^^*'^ = 1, or — log A = 277- cot a log e, is

the case represented in Fig. 385, b: that is to say, the particular

case, for each value of a, where the consecutive whorls just touch,

without interspace or overlap. For such cases, then, we may

tabulate the values of A as follows:

Cdiistaiit angle a
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consecutive whorls if the rate of growth of the inner border of the

tube be a small fraction—a tenth or a twentieth—of that of the

outer border. In spirals whose con-

stant angle is 80°, contact is attained

when the respective rates of growth

are, approximately, as 3 to 1; while

in spirals of constant angle from about

85° to 89°,contact is attained when the

rates of growth are in the ratio of from

about f to j%.

If on the other hand we have, for

any given value of a, a value of A

greater or less than the value given

in the above table, then we have,

respectively, the conditions of separa-

tion or ofoverlap which are exempUfied

in Fig. 385, a and c. And, just as we

have constructed this table for the

particular case of simple contact, so we could construct similar tables

for various degrees of separation or of overlap.

For instance, a case which admits of simple solution is that in

which the interspace between the whorls is everywhere a mean pro-

portional between the breadths of the whorls themselves (Fig. 387).

In this case, let us call OA = R, OC = R^, and OB = r. We then

have

Fig. 387.

i^2=OC = ae(^+2'^>^^*^

And r2= (1/A)2 .

€2^«0t«,

whence, equating. 1/A = eTTCota

* It has been pointed out to me that it does not follow at once and obviously

that, because the interspace AB i& & mean proportional between the breadths of

the adjacent whorls, therefore the whole distance OB is a mean proportional

between OA and OC. This is a corollary which requires to be proved; but the

proof is easy..
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The corresponding values of A are as follows

:

Ratio (\) of rates of growth of outer and inner
border, such as to produce a spiral with interspaces

between the wliorls, the breadth of which
intei-spaces is a mean proportional between the

Constant angle (a) breadths of the whorls themselves

90° 1-00 (imaginary)

89 0-95

88 0-89

87 0-85

86 0-81

85 0-76

80 0-57

75 0-43

70 0-32

65 0-23

60 018
55 013
50 0090
45 0-063

40 0042
35 0026
30 0016 .

As regards the angle of retardation, y, in the formula

/ = Ae^^o*«, or / = e(^-^)cota^

and in the case

r' = e(2^-y)cota^ ^j. _ log A - (277 - y) cot a,

it is evident that when y = 27t, that will mean that A = 1. In

other words, the outer and inner borders of the tube are identical,

and the tube is constituted by one continuous hne.

When A is a very small fraction, that is to say when the rates

of growth of the two borders of the tube are very diverse, then

y wfll tend towards infinity—tend that is to say towards a condition

in which the inner border of the tube never grows at all. This

condition is not infrequently approached in nature. I take it that

Cyfraea is such a case. But the nearly parallel-sided cone of

Dentalium, or the widely separated whorls of Lituites, are cases

where A nearly approaches unity in the one case, and is still large

in the other, y being correspondingly small ; while we can easily find

cases where y is very large, and A is a small fraction, for instance

in Haliotis, in Calyptraea, or in Gryphaea.

For the purposes of the morphologist, thoji, the main result of

this last general investigation is to shew that all the various types

of ''open" and "closed" spirals, all the various degrees of separation
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or overlap of the successive whorls, are simply the outward ex-

pression of a varying ratio in the rate of growth of the outer as

compared with the inner border of the "tubular shell.

The foregoing problem of contact, or intersection, of successive

whorls is a very simple one in the case of the discoid shell but

a more complex one in the turbinate. For in the discoid shell

contact will evidently take place when the retardation of the inner

as compared with the outer whorl is just 360°, and the shape of

the whorls need not be considered.

As the angle of retardation diminishes from 360°, the whorls stand

further and further apart' in an open coil; as it increases beyond 360°,

they overlap more and more ; and when the angle of retardation is

infinite, that is to say when the true inner edge of the whorl does

not grow at all, then the shell is said to be completely involute. Of

this latter condition we have a striking example in Argonauta, and

one a Httle more obscure in Nautilus pompilius.

In the turbinate shell the problem of contact is twofold, for v.\,

have to deal with the possibihties of contact on the same side of

the axis (which is what we have dealt with in the discoid) and also

with the new possibiHty of contact or mtersection on the opposite

side; it is this latter case which will .determine the presence or

absence of an open umbilicus. It is further obvious that, in the

case of the turbinate, the question of contact or no contact will

depend on the shape of the generating curve ; and if we take the

simple case where this generating curve may be considered as an

eUipse, then contact will be found to depend on the angle which

the major axis of this elhpse makes with the axis of the shell. The

question becomes a compHcated one, and the student will find it

treated in Blake's paper already referred to.

When one whorl overlaps another, so that the generating curve

cuts its predecessor (at a distance of 27r) on the same radius vector,

the locus of intersection will follow^ a spiral fine upon the shell,

whjch is called the "suture" by conchologists. It is one of that

ensemble of spiral lines in space of which, as we have seen, the

whole shell may be conceived to be constituted ; and we might call

it a "contact-spiral," or "spiral of intersection." In discoid shells,

such as an Ammonite or a Planorbis, or in Nautilus umbilicatus,

there are obviously two such contact-spirals, one on each side of
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the shell, that is to say one on each side of a plane perpendicular

to the axis. In turbinate shells such a condition is also possible,

but is somewhat rare. We have it for instance in Solarium per-

spectivum, where the one contact-spiral is visible on the exterior of

Fig. 388. Solarium perspectivum.

the shell, and the other lies internally, winding round the open

cone of the umbihcus*; but this second contact-spiral is usually

imaginary, or concealed within the whorls of the turbinated shell.

Fig. 389. Haliotis tuberculata L. ; the ormer,

or ear shell.

Fig. 390. Scalaria

pretiosa L. ; the

wentletrap. From
Cooke's Spirals.

Again, in Haliotis, one of the contact-spirals is non-existent, because

of the extreme obUquity of the plane of the generating curve. In

* A beautiful construction: stupendum Naturae artijicium, Linnaeus.
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Scalaria pretiosa and in Spirula* there is no contact-spiral, because

the growth of the generating curve has been too slow in comparison

with the vector rotation of its plane. In Argonauta and in Cypraea

there is no contact-spiral, because the growth of the generating

curve has been too quick. Nor, of course, is there any contact-

spiral in Patella or in Dentalium, because the angle a is too small

Fig. 392. Turhinella napus

Lam.; an Indian chank-

shell. From Chenu.

Fig. 391. Thatcheria mirabilis Angas;

from a radiograph by Dr A. Miiller.

ever to give us a complete revolution of the spire. Thatcheria

mirabilis is a peculiar and beautiful shell, in which the outhne of

the Up is sharply triangular, instead of being a smooth curve : with

the result that the apex of the triangle forms a conspicuous "gene-

rating spiral", which winds round the shell and is more conspicuous

than the suture itself.

In the great majority of hehcoid or turbinate shells the innermost

* "It [Spirula] is curved so as its roundness is kept, and the Parts do not touch

one another": R. Hooke, Posthumoics Works, 1745, p. 284.
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or axial portions of the whorls tend to form a soHd axis or

"columella"; and to this is attached the columellar muscle which

on the one hand withdraws the animal within its shell, and on the

other hand provides the controlhng force or trammel, by which (in

the gastropod) the growing shell is kept in its spiral course. This

muscle is apt to leave a winding groove upon the columella (Fig. 373)

;

now and then the muscle is spht into strands or bundles, and then

it leaves parallel grooves with ridges or pleats between, and the

number of these folds or pleats may vary with the species, as in the

Volutes, or even with race or locahty. Thus, among the curiosities

of conchology, the chank-shells on the Trincomah coast have four

columellar folds or ridges; but all those from Tranquebar, just north

of Adam's Bridge, have only three (Fig. 392)*.

The various forms of straight or spiral shells among the Cephalo-

pods, which we have seen to be capable of complete definition by

the help of elementary mathematics, have received a very com-

phcated descriptive nomenclature from the palaeontologists. For

instance, the straight cones are spoken of as orthoceracones or

bactriticories, the loosely coiled forms as gyroceracones or mimo-

ceracones, the more closely coiled shells, in which one whorl overlaps

the other, as nautilicones or ammoniticones, and so forth. In such

a series of forms the palaeontologist sees undoubted and unquestioned

evidence of ancestral descent. For instance We read in Zittel's

Palaeontologyf :
" The bactriticone obviously represents the primitive

or primary radical of the Ammonoidea, and the mimoceracone the

next or secondary radical of this order "
; while precisely the opposite

conclusion was drawn by Owen, who supposed that the straight

chambered shells of such fossil Cephalopods as Orthoceras had been

produced by the gradual unwinding of a coiled nautiloid shell {.

The mathematical study of the forms of shells lends no support to these

* Cf. R. Winckworth, Proc. Malacol Soc. xxiii, p. 345, 1939.

t English edition, 1900, p. 537. The chapter is revised by Professor Alpheus

Hyatt, to whom the nomenclature is largely due. For a more copious terminology,

see Hyatt, Phytogeny of an Acquired Characteristic, 1894, p. 422 seq. Cf. also

L. F. Spath, The evolution of the Cephalopoda, Biol. Reviews, viii, pp. 418-462,

1933 .

X Th is latter conclusion is adopted by Willey, Zoological Results, 1902, p. 747.

Cf. also Graham Kerr, on Spirula: Dana Reports, No. 8, Copenhagen, 1931.
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or any stichlihe phylogenetic hypotheses*. If we have two shells

in which the constant angle of the spire be respectively 80° and

60°, that fact in itself does not at all justify an assertion that the

one is more- primitive, more ancient, or more "ancestral" than the

other. Nor, if we find a third in which the angle happens to be

70°, does that fact entitle us to say that this shell is intermediate

between the other two, in time, or in blood relationship, or in

any other sense whatsoever save only the strictly formal and

mathematical one. For it is evident that, though these particular

arithmetical constants manifest themselves in visible and recog-

nisable differences of form, yet they are not necessarily more

deep-seated or significant than are those which manifest themselves

only in difference of magnitude; and the student of phylogeny

scarcely ventures to draw conclusions as to the relative antiquity

of two allied organisms on the ground that one happens to be

bigger or less, or longer or shorter, than the other.

At the same time, while.it is obviously unsafe to rest conclusions

upon such features as these, unless they be strongly supported

and corroborated in other ways—for the simple reason that there

is unlimited room for coincidence, or separate and independent

attainment of this or that magnitude or numerical ratio—yet on

the other hand it is certain that, in particular cases, the evolution

of a race has actually involved gradual increase or decrease in

some one or more numerical factors, magnitude itself included

—

that is to say increase or decrease in some one or more of the

actual and relative velocities of growth. When we do meet with

a clear and unmistakable series of such progressive magnitudes or

ratios, manifesting themselves in a progressive series of ''aUied"

forms, then we have the phenomenon of "orthogenesis."' For

orthogenesis is simply that phenomenon of continuous Unes or

series of form (and also of functional or physiological capacity),

* Phylogenetic speculation, fifty years ago the chief preoccupation of the

biologist, has had its caustic critics. Cf. {int. al.) Rhumbler, in Arch. f. Entw.

Mech. VII, p. 104, 1898: " Phylogenetische Speculationen . . , werden immer auf

Anklang bei den Fachgenossen rechnen dlirfen, sofern nicht ein anderer Fachgenosse

auf demselben Gebiet rait gleicher Kenntniss der Dinge und mit gleicher Scharfainn

zufallig zu einer anderen Theorie gekommen ist. . . .Die Richtigkeit 'guter' phylo-

genetischer Schliisse lasst sich im schlimmsten Falle anzweifeln, aber direkt

widerlegen lasst sich in der Regel«iicht."
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which was the foundation of the Theory of Evolution, aUke to

Lamarck and to Darwin and Wallace; and which we see to exist

whatever be our ideas of the "origin of species," or of the nature

and origin of "functional adaptations." And to my mind, the

mathematical (as distinguished from the purely physical) study of

morphology bids fair to help us to recognise this phenomenon of

orthogenesis in many cases where it is not at once patent to the

eye; and, on the other hand, to warn us in many other cases that

even strong and apparently complex resemblances in form may be

capable of arising independently, and may sometimes signify no

more than the equally accidental numerical coincidences which are

manifested in identity of length or weight or any other simple

magnitudes.

I have already referred to the fact that, while in general a very

great and remarkable regularity of form is characteristic of the

molluscan shell, yet that complete regularity is apt to be departed

from. We have clear cases of such a departure in Pujpa, Clausilia

and various Bulimi, where the spire is not conical, but its -sides are

curved and narrow in.

The following measurements of three specimens of Clausilia shew

a gradual change in the ratio to one another of successive whorls, or

in other words a marked departure from the logarithmic law:

Clausilia lamellosa. (From Chr. Petersen*.)
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changes in the spiral angle may be detected even in ammonites which

present nothing abnormal to the eye. But let us suppose that the

spiral angle increases somewhat rapidly; we shall then get a spiral

with gradually narrowing whorls, which condition is characteristic of

Oekotraustes, a subgenus of Ammonites. If on the other hand, the

angle a gradually diminishes, and even falls away to zero, we shall

have the spiral curve opening out, as it does in Scaphites, Ancyloceras

Fig. 393. An ammonitoid shell (Macroscaphites) to shew change of

curvature.

and Lituites, until the spiral coil is replaced by a spiral curye so

gentle as to seem all but straight. Lastly, there are a few cases,

such as BelleropJion expansus and some Goniatites, where the outer

spiral does not perceptibly change, but the whorls become more

"embracing" or the whole shell more involute. Here it is the

angle of retardation, the ratio of growth between the outer and

inner parts of the whorl, which undergoes a gradual change.

In order to understand the relation of a close-coiled shell to its

straighter congeners, to compare (for example) an Ammonite with

an Orthoceras, it is necessary to estimate the length of the right

cone which has, so to speak, been coiled up into the spiral shell. Our

problem is, to find the length of a plane equiangular spiral, in

terms of the radius and the constant angle a. Then, if OP be a

radius vector, OQ a line of reference perpendicular to OP, and

PQ a tangent to the curve, PQ, or sec a, is equal in length to the

spiral arc OP. In other words, the arc measured from the pole is

equal to the polar tangent*. And this is practically obvious: for

* Descartes made this discovery, and records it in a letter to Mersenne, 1638.

The equiangular spiral was thus the first transcendental curve to be "rectified."
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PP'/PR' = dsjdr = sec a, and therefore sec a = sjr, or the ratio of

arc to radius vector.

Fig. 394.

Accordingly, the ratio of I, the total length, to r, the radius

vector up to which the total length is to be measured, is expressed

by a simple table of secants ; as follows

:

a
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Accordingly, we see that (1), when the constant angle of the

spiral is small, the shell (or for that matter the tooth, or horn or

claw) is scarcely to be distinguished from a straight cone or cylinder;

and this remains pretty much the case for a considerable increase of

angle, say from 0° to 20° or more; (2) for a considerably greater

increase of the constant angle, say to 50° or rnore, the shell would

still only have the appearance of a gentle curve; (3) the charac-

teristic close coils of the Nautilus or Ammonite would be typically

represented only when the constant angle lies within a few degrees

on either side of about 80°. The coiled up spiral of a Nautilus,

with a constant angle of about 80°, is about six times the length

of its radius vector, or rather more than three times its own

diameter ; while that of an Ammonite, with a constant angle of, say,

from 85° to 88°, is from about six to fifteen times as long as its own

diameter. And (4) as we approach an angle of 90° (at which point

the spiral vanishes in a circle), the length of the coil increases with

enormous rapidity. Our spiral would soon assume the appearance

of the close coils of a Nummuhte, and the successive increments

of breadth in the successive whorls would become inappreciable to

the eye.

The geometrical form of the shell involves many other beautiful

properties, of great interest to the mathematician but which it is

not possible to reduce to such simple expressions as we have been

content to use. For instance, we may obtain an equation which

shall express completely the surface of any shell, in terms of polar

or of rectangular coordinates (as has been done by Moseley and

by Blake), or in Hamiltonian vector notation*. It is likewise pos-

sible (though of little interest to the naturalist) to determine the

area of a conchoid al surface or the volume of a conchoidal solid,

and to find the centre of gravity of either surface or solid f. And
Blake has further shewn, with considerable elaboration, how we may
deal with the symmetrical distortion due to pressure which fossil

shells are often found to have undergone, and how we may re-

constitute by calculation their original undistorted form—a problem

which, were the available methods only a Kttle easier, would be

* Cf. H. W. L. Hime's Outlines of Quaternions, 1894, pp. 171-173.

t See Moseley, op. cit. p. 361 seq. Also, for more complete and elaborate treat-

ment, Haton de la Goupilliere, op. cit. 1908, pp. 5-46, 69-204.
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very helpful to the palaeontologist; for, as Blake himself has shewn,

it is easy to mistake a symmetrically distorted specimen of (for

instance) an Ammonite for a new and distinct species of the same

genus. But it is evident that to deal fully with the mathematical

problems contained in, or suggested by, the spiral shell, would require

a whole treatise, rather than a single chapter of this elementary book.

Let us then, leaving mathematics aside, attempt to summarise, and

perhaps to extend, what has been said about the general possibilities

of form in this class of organisms.

The univalve shell: a summary

The surface of any shell, whether discoid or turbinate, may be

imagined to be generated by the revolution about a fixed axis of

a closed curve, which, remaining always geometrically similar to

itself, increases its dimensions continually: and, since the scale of

the figure increases in geometrical progression while the angle

of rotation increases in arithmetical, and the centre of similitude

remains fixed, the curve traced in space by corresponding points

in the generating curve is, in all such cases, an equiangular spiral. In

discoid shells, the generating figure revolves in a plane perpendicular

to the axis, as in the Nautilus, the Argonaut and the Ammonite. In

turbinate shells, it follows a skew path with respect to the axis of

revolution, and the curve in space generated by any given point makes

a constant angle to the axis of the enveloping cone, and partakes,

therefore, of the character of a helix, as well as of a logarithmic spiral.;

it may be strictly entitled a helico-spiral. Such turbinate or helico-

spiral shells include the snail, the periwinkle and all the common
typical Gastropods.

When the envelope of the shell is a right cone—and it is seldom far from

being so—then our helico-spiral is a loxodromic curve, and is obviously

identical with a projection, parallel with the axis, of the logarithmic spiral

of the base. As this spiral cuts all radii at a constant angle, so its orthogonal

projection on the surface intersects all generatrices, and consequently all

parallel circles, under a constant angle* this being the definition of a loxodromic

curve on a surface of revolution. Guido Grandi describes this curve for the

first time in a letter to Ceva, printed at the end of his Demonstratio theorematum

Hugenianorum circa. . .logarithmicam lineam, 1701 *.

* See R. C. Archibald, op. cit. 1918. Ohvier discussed it again {Rev. de geom.

descriptive, 1843) calling it a "conical equiangular" or "conical logarithmic"
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The generating figure may be taken as any section of' the shell,

whether parallel, normal, or otherwise incHned to the axis. It is very

commonly assumed to be identical with the mouth of the shell; in

which case it is sometimes a plane curve of simple form ; in other and

more numerous cases, it becomes compHcated in form and its boun-

daries do not he in one plane: but in such cases as these we may
replace it by its "trace," on a plane at some

definite angle to the direction of growth, for

instance by its form as it appears in a section

through the axis of the helicoid shell. The

generating curve is of very various shapes.

It is circular in Scalaria or Cyclostoma, and

in Spirula ; it may be considered as a segment

of a circle in Natica or in Planorbis. It is

triangular in Conus or Thatcheria, and

rhomboidal in Solarium or Potamides. It

is very commonly more or less elliptical : the

long axis of the ellipse being parallel to the

axis of the shell in Oliva and Cypraea; all

but perpendicular to it in many Trochi ; and

oblique to it in many well-marked cases,^such

as Stomatella, Lamellaria, Sigaretus halio-

toides (Fig. 396) and Haliotis. In Nautilus

pomjpilius it is approximately a semi-ellipse, Fig. 395. Section of a spiral

and in A^. umbilicatus rather more than a ^^^^^^> Triton corrugatus

Lam. jrom Woodward.
semi-ellipse, the lo'ng axis lying in both cases

perpendicular to the axis of the shell*. Its form is seldom open to

easy mathematical expression, save when it is an actual circle or

spiral. Paul Serret (Th. nouv. . .des lignes a double courbure, 1860, p. 101) called

it ""helice cylindroconique'" ; Haton de la Goupilliere calls it a '' conhelice.'" It has

also been studied by {int. at.) Tissot, Nouv. ann. de mathem. 1852; G. Pirondini,

Mathesis, xix, pp. 153-8, 1899; etc.

* In Nautilus, the "hood" has somewhat dififerent dimensions in the two
sexes, and these differences are impressed upon the shell, that is to say upon its

"generating curve." The latter constitutes a somewhat broader ellipse in the

male than in the female. But this difference is not to be detected in the young;

in other words, the form of the generating cu'rve perceptibly alters with advancing

age. Somewhat similar differences in the shells of Ammonites were long ago

suspected, by d'Orbigny, to be due to sexual differences. (Cf. Willey, Natural

Science, vi, p. 411, 1895; Zoological Results, 1902, p. 742.)
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ellipse; but an exception to this rule may be found in certain

Ammonites, forming the group " Cordati," where (as Blake points out)

the curve is very nearly represented by a cardioid, whose equation

is r = a (1 + cos 6).

When the generating curves of successive whorls cut one another,

the hne of intersection forms the conspicuous heHco-spiral or

loxodromic curve called the suture by conchologists.

The generating curve may grow slowly or quickly; its growth-

factor is very slow in Dentalium or Turritella, very rapid in Nerita,

or Pileopsis, or Haliotis or the Limpet. It may contain the axis

in its plane, as in Nautilus ; it may be parallel to the axis, as in the

majority of Gastropods; or it may be inclined to the axis, as it is in

a very marked degree in Haliotis, In fact, in Haliotis the generating

BA
Fig. 396. A, Lanydlaria perspicua; B, Sigaretus haliotoides.

After Woodward.

curve is so oblique to the axis of the shell that the latter appears

to grow by additions to one margin only (cf. Fig. 362), as in the

case of the opercula of Turbo and Nerita referred to on p. 775;

and this is what Moseley supposed it to do.

The general appearance of the entire shell is determined (apart

from the form of its generating curve) by the magnitude of three

angles; and these in turn are determined, as has been sufficiently

explained, by the ratios of certain velocities of growth. These

angles are (1) the constant angle of the equiangular spiral (a); (2) in

turbinate shells, the enveloping angle of the cone, or (taking half

that angle) the angle (p) which a tangent to the whorls makes with

the axis of the shell; and (3) an angle called the "angle of retarda-

tion" (y), which expresses the retardation in growth of the inner

as compared with the outer part of each whorl, and therefore

measures the extent to which one whorl overlaps, or the extent to

which it is separated from, another.
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The spiral angle (a) is very small in a limpet, where it is usually-

taken as =0°; but it is evidently of a significant amount,

though obscured by the shortness of the tubular shell. In

Dentalium it is still small, but sufficient to give the appearance

of a regular curve; it amounts here probably to about 30° to

40°. In Haliotis it is from about 70° to 75°; in Nautilus about

80°; and it lies between 80° and 85° or even more, in the majority

of Gastropods*.

The case of Fissurella is curious. Here we have, apparently,

a conical shell with no trace of spiral curvature, or (in other words)

with a spiral angle which approximates to 0°; but in the minute

embryonic shell (as in that of the limpet) a spiral convolution is

distinctly to be seen. It would seem, then, that what we have ^to

do with here is an unusually large growth-factor in the generating

curve, causing the shell to dilate into a cone of very wide angle,

the apical portion of which has become lost or absorbed, and the

remaining part of which is too short to show clearly its intrinsic

curvature. In the closely allied Emarginula, there is hkewise a

well-marked spiral in the embryo, which however is still manifested

in the curvature of the adult, nearly conical, shell. In both cases

we have to do with a very wide-angled cone, and with a high

retardation-factor for its inner, or posterior, border. The series is

continued, from the apparently simple cone to the complete spiral,

through such forms as Calyptraea.

The angle a, as we have seen, is not always, nor rigorously,

a constant angle. In some Ammonites it may increase with age,

the whorls becoming closer and closer; in others it may decrease

rapidly and even fall to zero, the coiled shell then straightening

out, as in Lituites and similar forms. It diminishes somewhat, also,

in many Orthocerata, which are slightly curved in youth but straight

in age. It tends to increase notably in some common land-shells,

the Pupae and Bulimi ; and it decreases in Succinea.

Directly related to the angle a is the ratio which subsists between

the breadths of successive whorls. The following table gives a few

* What is sometimes called, as by Leslie, the angle of deflection is the complement

of what we have called the spiral angle (a), or obliquity of the spiral. When the

angle of deflection is 6° 17' 41", or the spiral angle 83'' 42' 19", the radiants, or

breadths of successive whorls, are doubled at each entire circuit.
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illustrations of this ratio in particular cases, in addition to those

which we have already studied.

Ratio of breadth of consecutive whorls

Pointed Turbinates

Telescopium fuscum ... 1-14

Terebra suhulata ... ... 1-16

*Turritella terebellata ... 1-18

*Turritella imbricata... ... 1-20

Cerithium palustre ... ... 1 "22

Turritella duplicata ... ... 1-23

Melanopsis terebralis ... 1-23

Cerithium nodulosum ... 1-24

* Turritella carinata ... ... 1-25

Terebra crenulata ... ... 1-25

Terebra maculata (Fig. 397) 1-25

*Cerithium lignitarum ' ... 1-26

Terebra dimidiata 1-28

Cerithium sulcatum ... ... 1-32

Fusus longissimus ... ... 1*34

*Pleurotomaria conoidea ... 1-34

Trochus niloticus (Fig. 398) 1-41

Mitra episcopalis ... ... 1-43

Fusus antiquus ... ... 1 -50

Scalaria pretiosa ... ... 1-56

Fusus colosseus ... ... 1-71

PhasiaTvella australis ... 1-80

Helicostyla polychroa ... 2-00

Obtuse Turbinates and Discoids

Conus virgo ... ... ... 1-25

XClymenia laevigata ... ... 1-33

Conus litteratus ... ... 1*40

Conus betulinus ... ... 1-43

XClymenia arietina ... ... 1-50

%Goniatites bifer ... ... 1-50

*Helix nemoralis ... ... 1-50

*Solarium perspectivum ... 1*50

Solarium trochleare ... 1-62

Solarium magnificum ... 1-75

*Natica aperta ... ... 2-00

Euomphalus pentangulatus 2-00

Planorbis corneus ... ... 2-00

Solaropsis pellis-serpentis ... 2-00

Dolium zondtum ... ... 2-10

XGoniatites carinatus ... 2-50

*Natica glaucina ... ... 3-00

Nautilus pompilius ... 3-00

Haliotis excavatus ... ... 4-20

Hal^otis parvus ... ... 6*00

Delphinula atrata ... ... 6-00

Haliotis rugoso-plicata ... 9-30

Haliotis viridis ... ... 10-00

Those marked * from Naumann; J from Miiller; the rest from Macalisterf.

In the case of turbinate shells, we muSt take into account the

angle y^, in order to determine the spiral angle a from the ratio

of the breadths of consecutive whorls; for the short table given

on p. 791 is only applicable to discoid shells, in which the angle fi

is an angle of 90°. Our formula, as mentioned on p. 771, now

becomes
J^ _ ^27rsin/?cota

For this formula, I have worked out the following table.

f Alex. Macahster, Observations on the mode of growth of discoid and turbinated

shells, Proc. R.S. xviii, pp. 529-532, 1870; Ann. Mag. N.H. (6), iv, p 160, 1870.

Cf. also his Law of Symmetry as exemplified in animal form, Journ. B. Dublin Soc.

1869, p. 327.
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From this table, by interpolation, we may easily fill in the

approximate values of a, as soon as we have determined the apical

angle ^ and measured the ratio R\ as follows:

Turritella sp.
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save in the somewhat "produced" spire, that is to say in the com-

paratively low value of the angle p.

A variation with advancing age of ^ is common, but (as Blake

points out) it is often not to be distinguished or disentangled from

an alteration of a. Whether alone, or combined with a cKange in a,

we find it in all those many gastropods whose whorls cannot all be

touched by the same enveloping cone, and whose spire is accordingly

described as concave or convex. The former condition, as we have

Fig. 398. Trochus niloticus L.

it in Cerithium, and in the cusp-Hke spire of Cassis, Dolium and

some Cones, is much the commoner of the two*.

In the vast majority of spiral univalves the shell winds to the

right, or turns clockwise, as we look along it in the direction in which

the animal crawls and puts out its head. The thread of a carpenter's

screw (except in China) runs the same way, and we call it a "right-

handed screw." Save that it takes a right-handed movement to

* Many measurements of the linear dimensions of univalve shells have bgen

made of late years, and studied by statistical methods in order to detect local races

and other instances of variation and variability. But conchological statisticians

seem to be content with some arbitrary linear ratio as a measure of "squatness"

or the reverse; and the measurements chosen give Uttle or no help towards the

determination either of the apical or of the spiral angle. Cf, (e.g.) A. E. Boycott,

Conchometry, Proc. Malacol. Soc. xvn, p. 8, 1928; C. Price-Jones, ibid, xix,

p. 146, 1930; etc. See also G. Duncker, Methode der Variations-Statistik, Arch,

f. Entw. Mech. vm, pp. 112-183, 1899.
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drive in a "right-handed" screw, the terms right-handed and left-

handed are purely conventional; and the mathematicians and the

naturalists, unfortunately, use them in opposite ways. Thus the

mathematicians call the snail-shell or the joiner's screw kiotropic;

and Listing for one has much to say about lack of precision or even

confusion on the part of the conchologists and the botanists, from

Linnaeus downwards, in their attempts to deal with right-handed

and left-handed spirals or screws*. The convolvulus twines to the

right, the hop to the left; vine-tendrils are said to be mostly right-

handed. At any rate, Clerk Maxwell spoke of hop-spirals and vine-

^irals, trying to avoid the confusion or ambiguity of left and right.

Some climbing plants are one and some the other; and,the architect

shews httle preference, but builds his spiral staircases or twisted

columns either way. But in all these, shells and all, the spiral runs

one way; it is isotropic, while the fir-cone shews spirals running both

ways at once, and we call them heterotropic, or diadroinic.

When we find a "reversed shell," a whelk or a snail winding the

wrong way, we describe it mathematically by the simple statement

that the apical angle (^) has changed sign. Such left-handed shells

occur as a well-known but rare abnormality; and the men who

handle snails in the Paris market or whelks in Billingsgate keep

a sharp look-out for them. In rare instances they become common.

While left-handed whelks (Buccinum or Neptunea) are very rare

nowadays, it was otherwise in the epoch of the Red Crag; for

Neptunea was then extremely common, but right-handed specimens

were as rare as left-handed are today. In the beautiful genus

Ampullaria, or apple-snails, which inhabit tropical and sub-tropical

rivers, there is unusual diversity; for the spire turns to the right

in some species, and to the left in others, and again some are flat

or "discoid," with no spire at all; and there are plenty of half-way

stages, with right and left-handed spires of varying steepness or

acutenessf; in short, within the limits of this singular genus the

apical angle (y^) may vary from about ± 35° to ± 125°. But we

need not imagine that the direction of gK)wth actually changes

over from right-handed to left-handed; it is enough to suppose

* See Listing's Topologie, p. 36; and cf. Clerk Maxwell's Electricity and

Magnetism, i, p. 24.

t See figures in Arnold Lang's Comparative Anatomy (English translation),

II, p. ICl, 1902.
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that the ^ew movement along the axis has changed its direction.

For if I take a roll of tape and push the core out to one side or to

the other, or if I keep the centre of the roll fixed and push the rim

to the one side or to the other, I thereby convert the flat roll into a

hollow cone, or (in other words) a plane into a gauche spiral. Whether

we push one way or other, whether the spiral coil be plane or gauche,

positively or negatively deformed, it remains right-handed or left-

handed as the case may be ; but it does change its direction as soon

as we turn it upside down, or as soon as the animal does so in assuming

its natural attitude. The linear spirals within and without the cone

may change places but must remain congruent with one another;

for they are merely the two edges of the ribbon, and as such are

inseparable and identical twins. But of the shell itself we may
reasonably say that a^right-handed has given place to a left-handed

spiral. Of these, the one is a mirror-image of the other; and the

passing from one to the other through the plane of symmetry

(which has no "handedness*') is an operation which Listing called

perversion. The flat or discoid apple-snails are Uke our roll of tape,

which can be converted into a conical spire and perverted in one

direction or the other; and in this genus, by a rare exception, it

seems wellnigh as easy to depart one way as the other from the

plane of sjmametry. But why, in the general run of shells, all the

world over, in the past and in the present, one direction of twist is

so overwhelmingly commoner than the other, no man knows.

The phenomenon of reversal, or "sinistrality," has an interest of

its own from j:he side of development and heredity. For careful

study of certain pond-snails has shewn that dextral and sinistral

varieties appear, not one by one, but by whole broods of the one

sort or^the other; a discovery which goes some way to account

for the predominant left-handedness of Fusus amhiguus in the

Red Crag. The right-handed, or ordinary form, is found to be

"dominant" to the other; but the Mendelian heredity is of a curious

and complicated kind. For the direction of the twist appears to

be predetermined in the germ even prior to its fertilisation; and

a left-handed pond-snail will produce a brood of left-handed young

even when fertilised by a normal, or right-handed, individual*.

* See A, E. Boycott and others, Abnormal forms of Limnaea peregra . . .and their

inheritance, Phil. Trans. (B), ccxxix, p. 51, 1930; and other papers.
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The angle of retardation (y ) is very small in . Dentalium and

Patella ; it is very large in Haliotis ; it becomes infinite in Argonauta

and in Cypraea. Connected with the angle of retardation are the

various possibilities of contact or separation, in various degrees,

between adjacent whorls in the discoid shell, and between both

adjacent and opposite whorls in the turbinate. But with these

phenomena we have already dealt sufficiently.

The beautiful shell of the paper-nautilus {Argonauta argo L.) differs

in sundry ways both from the Nautilus and from ordinary univalves.

Only the female Argonaut possesses it; it is not attached to its

owner, but is (so to speak) worn loose; it is rather a temporary

cradle for the young than a true shell or bodily covering; and it

is not secreted in the usual way, but is plastered on from the outside

by two of the eight arms of the Uttle Octopus to which it belongs.

The shell shews a single whorl, or but Httle more; and the spiral

is hard to measure, for this reason. It ha« been supposed by some

to obey a law other than the logarithmi-c spiral. For my part I have

made no special study of it, nor has any one else, to my knowledge,

of recent years; but the simple fact that it conserves its shape as it

grows, or that each increment is a gnomon to the rest, is enough to

shew that this dehcate and beautiful shell is mathematically, though

not morphologically, homologous with all the others.

Of bivalve shells

Hitherto we have dealt only with univalve shells, and it is in

these that all the mathematical problems connected .with the spiral,

or hehco-spiral, configuration are best illustrated. But the case of

the bivalve shell, whether of the lamelHbranch or the brachiopod,

presents no essential difference, save only that we have here to do

with two conjugate spirals, whose two axes have a definite relation

to one another, and some independent freedom of rotatory movement

relatively to one another.

The bivalve or lamelHbranch moUusca are very different creatures

from the rest. The univalves or gastropods, hke their cousins the

cephalopods, go about their business and get their living in an

ordinary way; but the bivalves are linintelHgent, "acephalous"

animals, and imbibe the invisible plankton-food which ciliary

currents bring automatically to their mouths. There is something
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to be said for withdrawing them, as brachiopods and others have

been withdrawn, from Cuvier's great class of the Mollusca. But

whether bivalves and univalves be near relations or no is not the

question. Both of them secrete a shell, and in both the shell

grows by the successive addition of similar parts, gnomon after

gnomon; so that in both the equiangular spiral makes, and is

bound to make, its appearance. There is a mathematical analogy

between the two; but it has no more bearing on zoological classi-

fication than has the still closer Hkeness between Nautilus and the

nautiloid Foraminifera.

The generating curve is particularly well seen in the bivalve,

where it simply constitutes what we call "the outline of the shell."

It is for the most part a plane curve, but not always ; for there are

forms such as Hippopus, Tridacna and many Cockles, or Rhynchonella

and Spirifer among the Brachiopods, in which the edges of the two

valves interlock, and others, such as Pholas, Mya, etc., where they

gape asunder. In such cases as these the generating curves, though

not plafie, are still conjugate, having a similar relation, but of

opposite sign, to a median plane of reference or of projection. There

are a few exceptional cases, e.g. Area (Parallelepipedon) tortuosa, where

there is no median plane of symmetry, but the generating curve,

and therefore the outline of the shell itself, is a tortuous curve in

three dimensions.

A great variety of form is exhibited among the bivalves by these

generating curves. In many cases the curve or outline is all but

circular, as in Anomia, Sphaerium, Artemis, Isocardia] it is nearly

semicircular in Argiope; it is approximately elliptical in Anodon,

Lutraria, Orthis; it may be called semi-elliptical in Spirifer; it is

a nearly rectilinear triangle in Lithocardium, and a curvilinear

triangle in Mactra. Many apparently diverse but more or less

related forms may be shewn to be deformations of a common type,

by a simple application of the mathematical theory of "trans-

formations," which we shall have to study in a later chapter. In

such a series as is furnished, for instance, by Gervillea, Perna,

Avicula, Modiola, Mytilus, etc., a "simple shear" accounts for most,

if not all, of the apparent differences.

Upon the surface of the bivalve shell we usually see with great

clearness the "lines of growth" which represent the successive
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margins of the shell, or in other words the successive positions

assumed during growth by the growing generating curve; and we

have a good illustration, accordingly, of how it is characteristic of

the generating curve that it should constantly increase, while never

altering its geometric similarity.

Underlying these lines of growth, which are so characteristic

of a moUuscan shell (and of not a few other organic formations),

there is, then, a law of growth which we may attempt to enquire

into and which may be illustrated in various ways. The simplest

cases are those in which we can study the lines of growth on a more

or less flattened shell, such as the one valve of an oyster, a Pecten

or a Tellina, or some such bivalve mollusc. Here around an origin,

the so-called "'umbo" of the shell, we have a series of curves, some-

times nearly circular, sometimes elliptical, often asymmetrical; and

such curves are obviously not "concentric," though we are often apt

to call them so, but have a common centre of similitude. This

arrangement may be illustrated by various analogies. We might

for instance compare it to a series of waves, radiating outwards

from a point, through a medium which offered a resistance increasing,

with the angle of divergence, according to some simple law. We
may find another and perhaps a simpler illustration as follows:

In a simple and beautiful theorem, Galileo shewed that, if we

imagine a number of inclined planes, or gutters, sloping downwards

(in a vertical plane) at various angles

from a common starting-point, and if

we imagine a number of balls rolling

each down its own gutter under the

influence of gravity (and without

hindrance from friction), then, at any

given instant, the locus of all these

moving bodies is a circle passing

through the point of origin. For the

acceleration along any one of the

sloping paths, for instance AB (Fig.

400), is such that

AB = ig cos d.t^

Therefore

^ig.AB/AC.t^.

t^=2lg.AC.
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That is to say, all the balls reach the circumference of the

circle at the same moment as the ball which drops vertically from

^ toC.

Where, then, as often happens, the generating curve of the shell

is approximately a circle passing through the point of origin, we

may consider the acceleration of growth along various radiants to

be governed by a simple mathematical law, closely akin to that

simple law of acceleration which governs the movements of a faUing

body. And, mutatis mutandis, a similar definite law underlies the

cases where the generating curve is continually elliptical, or where

it assumes some more complex, but still regular and constant

form.

It is easy to extend the proposition to the particular case where

the lines of growth may be considered elliptical. In such a case

we have x^/a^ + y^jb^ = 1, where a and b are the major and minor

axes of the ellipse.

Or, changing the origin to the vertex of the figure,

x^ 2aj 1/2 ^ . . (x— a)^ y^

Then, transferring to polar coordinates, where r . cos 6 = x,

r . sin 6 = y, we have

r . cos^ 6 2 cos 6 r . sin^

which is equivalent to

2a62 cos d
r =

b^cos^d + a^sin^d'

or, simpHfying, by eliminating the sine-function,

2ab^ cos d
r =

(62_a2)cos2<9 + a2*

Obviously, in the case when a = b, this gives us the circular

system which we have already considered. For other values, or

ratios, of a and 6, and for all values of 6, we can easily construct

a table, of which the following is a sample

:
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Chords of an ellipse, whose major and minor axes {a, b)

are in certain given ratios

0°

10
20
30
40
50
60
70
80
90

a/6 = 1/3

10
101
105
1115
1-21

1-34

1-50

1-59

1-235

00

1/2

10
101
103
1065
Ml
1145
1142
101^
0-635
0-0

2/3

10
1-002

1005
1-005

0-995
0-952

0-857

0-670
0-375

0-0

1/1

1-0

0-985
0-940

0-866
0-766

0-643

0-500
0-342

0-174
0-0

3/2

10
0-948

0-820
0-666

0-505
0-372

0-258

0-163

0-078
0-0

2/1

1-0

0-902

0-695
0-495

0-342
0-232

0-152

0-092
0-045
0-0

3/1

1-0

0-793

0-485
0-289
0-178

0-113

0-071

0-042

0-020
0-0

The ellipses whicli we then draw, from the values given in the

table, are such as are shewn in Fig. 401 for the ratio a/6 = f, and

in Fig. 402 for the ratio a/6 = J ; these are

fair approximations to the actual outlines, and

to the actual arrangement of the lines of growth,

in such forms as Solecurtus or Cultellus, and in

Tellina or Psammobia. It is not difficult to in-

troduce a constant into our equation to meet the

case of a shell which is somewhat unsymmetrical

on either side of the median axis. It is a some-

what more troublesome matter, however, to

bring these configurations into relation with a

"law of growth," as was so easily done in the

case of the circular figure: in other words, to
°°

formulate a law of acceleration according to which ^^^' ^^^ •

points starting from the origin 0, and moving along radial lines,

would all lie, at any future epoch, on an ellipse passing through
;

and this calculation we n^ed not enter into.

All that we are immediately concerned with is the simple fact

that where a velocity, such as our rate of growth, varies with its

direction—varies that is to say as a function of the angular divergfence

from a certain axis—then, in a certain simple case, we get lines of

growth laid down as a system of coaxial circles, and, in some-

what less simple cases, we obtain a system of ellipses or of

other more complicated coaxial figures, which may or may not

be symmetrical on either side of the axis. Among our bivalve

mollusca we shall find the Unes of growth to be approximately circular

in, for instance, Anomia] in Lima (e.g. L. subauriculata) we have
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a system of nearly symmetrical ellipses with the vertical axis about

twice the transverse; in Solen pellucidus, we have again a system

of lines of growth which are not far from being symmetrical eUipses,

Ct 10

Fig. 402.

in which however the transverse is between three and four times

as great as the vertical axis. In the great majority of cases, we

have a similar phenomenon with the further complication of slight,

but occasionally very considerable, lateral asymmetry.

In the above account of the mathematical form of the bivalve shell, we
have supposed, for simplicity's sake, that the pole or origin of the system is

at a point where all the successive curves touch one another. But such an

arrangement is neither theoretically probable, nor is it actually the case;

for it would mean that in a certain direction growth fell, not merely to a

minimum, but to zero. As a matter of fact, the centre of the system (the

"umbo" of the conchologists) lies not at the edge of the system, but very

near to it; in other words, there is a certain amount of growth all round.

But to take account of this condition would involve more troublesome mathe-

matics, and it is obvious that the foregoing illustrations are a sufficiently near

approximation to the actual case.

In certain little Crustacea (of the genus Estheria) the carapace

takes the form of a bivalve shell, closely simulating that of a

lamellibranchiate mollusc, and bearing lines of growth in all respects

analogous to or even identical with those of the latter. The explana-

tion is very curious and interesting. In ordinary Crustacea the

carapace, like the rest of the chitinised and calcified integument, is

shed off in successive moults, and is restored again as a whole.

But in Estheria (and one or two other small Crustacea) the moult is
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incomplete: the old carapace is retained, and the new, growing up

underneath it, adheres to it like a lining, and projects beyond its

edge: so that in course of time the margins of successive old

carapaces appear as "lines of growth" upon the surface of the shell.

In this mode of formation, then (but not in the usual one), we obtain

a structure which "is partly old and partly new," and whose suc-

cessive increments are all similar, similarly situated, and enlarged

Fig. 403. Hemicardium inver-

sum Lam, From Chenu.

Fig. 405. Section of Productus

'{Strophonema) sp. From
Woods.

Fig. 404. Caprinella adversa.

After Woodward.

in a continued progression. We have, in short, all the conditions

appropriate and necessary for the development of a logarithmic

spiral; and this logarithmic spiral (though it is one of small angle)

gives its own character to the structure, and causes the little carapace

to partake of the characteristic conformation of the molluscan shell.

Among the bivalves the spiral angle (a) is very small in the

flattened shells, such as Orthis, Lingula or Anomia. It is larger,

as a rule, in the LameUibranchs than in the Brachiopods, but in

the latter it is of considerable magnitude among the Pentameri.
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Among the Lamellibranclis it is largest in such forms as Isocardia

and Diceras, and in the very curious genus Caprinella; in all of

these last-named genera its magnitude leads to the production of

a spiral shell of several whorls, precisely as in the univalves. The

angle is usually equal, but of opposite sign, in the two valves of

the LamelHbranch, and usually of opposite sign but unequal in

the two valves of the Brachiopod. It is very unequal in many

Ostreidae, and especially in such forms as Gryphaea, or in Caprinella,

which is a kind of exaggerated Gryphaea; in the cretaceous genus

Requienia, the two valves of the shell closely resemble a turbinate

gastropod with its flat calcified operculum. Occasionally it is of the

same sign in both valves (that is to say, both valves curve the same

way) as we see sometimes in Anomia, and better in Productus or

Strophonema.

It will be observed, and it may not be difficult to explain, that

the more the bivalve shell curves in the one direction the more it

curves in the other; each valve tends,to be spheroidal, or ellipsoidal,

rather than cylindroidal. The cyhndroidal form occurs, excep-

tionally, in Solen. But Pecten, Gryphaea, Terebratula are all cases

of bivalve shells where one valve is flat and the other curved from

side to side ; and the flat valve tends to remain flat in the longitudinal

direction also, while the curved valve grows into its logarithmic

spiral.

In the genus Gryphaea, an oyster-hke bivalve from the Jurassic,

the creature lay on its side with' its left valve downward, as oysters

and scallops also do; and this valve adhered to the ground while

the animal was young. The upper valve stays flat, and looks Uke

a mere operculum; but the lower or deep valve grows into a more

or less pronounced spiral. So is it also in the neighbouring genus

Pecten, where P. Jacobaeus has its under-valve much deeper and

more curved than, say, P. opercularis
',

but Gryphaea incurva is

more spirally curved than any of these, and G. arcuata has a spiral

angle very near to that of Nautilus itself. In both the spiral is a

typical equiangular one, built up of a succession of gnomonic incre-

ments, which in turn depend on a constant ratio between the

expansion of a generating figure and its rotation about a centre

of simihtude. Rate of growth is at the root of the whole matter.

Now Gryphaea, Hke some Ammonites of which we spoke before, is
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one of those cases in which not only does the form of the shell

vary, but geologists recognise, now and then, a trend, or progressive

sequence of variation, from one stratum or one "horizon" to

anotlier. In short, as time goes on, we seem to see the shell growing

thicker or widey, or more and more spirally curved, before our

eyes. What meaning shall we give, what importance should we
assign, to these changes, and what sort or grade of evolution do

they imply? Some hold that these palaeontological features are

"strictly comparable with those on which the geneticist bases his

factorial studies"; and that as such they may shew "linkage of

characters," as when "in the evolution of Gryjphaea the area of

attachment retrogresses as the arching progresses"*. These are

debatable matters. But in so far as the changes depend on mere

gradations of magnitude, they lead indeed to variety but fall short

of the full concept of evolution. For to quote Aristotle once again

(though we need not go to Aristotle to learn it) : "some things shew

increase but suffer no alteration ; because increase is one thing and

alteration is another."

The so-called "spiral arms" of Spirifer and many other Brachio-

pods are not difficult to explain. They begin as a single structure,

in the form of a loop of shelly substance,

attached to the dorsal valve of the shell,

in the neighbourhood of the hinge, and

forming a skeletal support for two cihate

and tentaculate arms. These grow to a

considerable length, coiling up within the

shell that they may do so. In Terehratula

the loop reilaains short and simple, and is

merely flattened and distorted somewhat

by the restraining pressure of the ventral

valve ; but in Spirifer, Atrypa, Athyrisand
•x / ^^^'^ Fig. 406. Skeletal loop of Terg-

many more it forms a watchsprmg coil on j,^^^^ p^^^ ^^^^^^

either side, corresponding to the close-

coiled arms of which it was the support and skeleton. In these

curious and characteristic structures we see no sign of progressive

* H. H. Swinnerton, Unit characters in fossils, Biol. Reviews, vii, pp. 321-335,

1932; of. A. E. Truman, Oeol. Mag. lix, p. 258, lxi, p. 358, 1922-24.
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growth, no successional increments, no "gnomons," no self-

similarity in the figm:e. In short it has nothing to do with a

logarithmic or equiangular spiral, but is a mere twist, or tapering

helix, and it points now one way, now another. The cases in

which the heUcoid spires point towards, or point away from, the

middle line are ascribed, in zoological classification, to particular

"families" of Brachiopods, the former condition defining (or

helping to define) the Atrypidae and the latter the Spiriferidae

Fig. 407. Spiral arms of

Spirifer.

Fig. 408. Inwardly directed

spiral arms of Atrypa.

and Athyridae. It is obvious that the incipient curvature of the

arms, and consequently the form and direction of the spirals, will

be influenced by the surrounding pressures, and these in turn by

the general shape of the shell. We shall expect, accordingly, to

find the long outwardly directed spirals associated with shells which

are transversely elongated, as Spirifer is; while the more rounded

Atrypa will tend to the opposite condition. In a few cases, as in

Cyrtina or Reticularia* where the shell is comparatively narrow but

long, and where the uncoiled basal support of the arms is long also,

the coils into which the latter grow are turned backwards, in the

direction where there is most room for them. And in the few cases

where the shell is very considerably flattened, the spirals (if they

find room to grow at all) will be constrained to do so in a discoid

or nearly discoid fashion, and this is actually the case in such

flattened forms as Koninckina or Thecidium.

The shells of Pteropods

While mathematically speaking we are entitled to look upon

the bivalve shell of the Lamellibranch as consisting of two distinct

elements, each comparable to the entire shell of the univalve, we
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have no biological grounds for such a statement ; for the shell arises

from a single embryonic origin, and afterwards becomes spHt into

portions which constitute the two separate valves. \¥e can perhaps

throw some indirect light upon this phenomenon, and upon several

other phenomena connected with shell-growth, by a consideration

of the simple conical or tubular shells of the Pteropods. The shells

of the latter are in few cases suitable for simple mathematical

investigation, but nevertheless they are of very considerable interest

in connection with our general problem. The morphology of the

Pteropods is bv no means well understood, and in speaking of them

B
Fig. 410. Diagrammatic transverse sections, or

outlines ofthe mouth, in certain Pteropod shells:

Fig. 409. Pteropod shells: ^' ^' ^^^^^''^ australis; C, C. pyramidalis;

(1) Cuvierimi columnella;
D, CMUintium; E, C. cuspidata. After Boas.

(2) Cleodora chierchiae;

(3) C. pygmaea. After Boas.

I will assume that there are still grounds for beheving (in spite of

Boas' and Pelseneer's arguments) that they are directly related to,

or may at least be directly compared with, the Cephalopoda*.

The simplest shells among the Pteropods have the form of a tube,

more or less cylindrical {Cuvierinay, more often conical (Creseis,

Clio) ; and this tubular shell (as we have already had occasion to

remark, on p. 416), frequently tends, when it is very small and

delicate, to assume the character of an unduloid. (In such a case

it is more than likely that the tiny shell, or that portion of it which

* We need not assume a close relationship, nor indeed any more than such a

one as permits us to compare the shell of a Nautilus with that of a Gastropod.
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constitutes the unduloid, lias not grown by successive increments

or ''rings of growth," but has developed as a whole.) A thickened

"rib" is often, perhaps generally, present on thef dorsal side of the

little conical shell. In a few cases (Limacina, Peraclis) the tube

becomes spirally coiled, in a normal equiangular spiral or helico-

spiral.

In certain cases (e.g. Cleodora, Hyalaea) the tube or cone is curiously

modified. In the first place, its cross-section, originally circular

or nearly so, becomes flattened or compressed dorsoventrally ; and

3 -' 4

Fig. 411. Shells of thecosome Pteropods (after Boas). (1) Cleodora cuspidata;

(2) Hyalaea trispinosa; (3) H. globulosa; (4) H. uncinata; (5) H. inflexa.

the angle, or rather edge, where dorsal and ventral walls meet,

becomes more and more drawn out into a ridge or keel. Along the

free margin, both of the dorsal and the ventral portion of the shell,

growth proceeds with a regularly varying velocity, so that these

margins, or lips, of the shell become regularly curved or markedly

sinuous. At the same time, growth in a transverse direction pro-

ceeds with an acceleration which manifests itself in a curvature of

the sides, replacing the straight borders of the original cone. In

other words, the cross-section of the cone, or what we have been

calling the generating curve, increases its dimensions more rapidly

than its di^ance from the pole.
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In the above figures, for instance in that of Cleodora cicspidata,

the markings of the shell which represent the successive edges of

the lip at former stages of growth furnish us at once with a ''graph"

'Fig. 412. Cleodora ctispidata.

of the varying velocities of growth as measured, radially, from the

apex. We can reveal more clearly the nature of these variations

in the following way, which is simply tantamount to converting our

radial into rectangular coordinates. Neglecting curvature (if any)

b c d e f g Y

X O X
Fig. 413. Curves obtained by transforming radial ordinates, as in Fig. 412, into

vertical equidistant ordinates. 1, Hyalaea trispinosa; 2, Cleodora cicspidata.

of the sides and treating the shell (for simpUcity's sake) as a right

cone, we lay off equal angles from the apex 0, along the radii Oa,

Ob, etc. If we then plot, as vertical equidistant ordinates, the
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magnitudes Oa, Oh ... OY, and again on to Oa' , we obtain a diagram

such as follows in Fig. 413: by help of which we not only see

more clearly the way in which the growth-rate varies from point

to point, but we also recognise better than before the nature of the

law which governs this variation in the different species.

Furthermore, the young shell having become differentiated into

a dorsal and a ventral part, marked off from one another by a lateral

edge or keel, and the inequality of growth being such as to cause

each portion to increase most rapidly in the median line, it follows

that the entire shell will appear to have been split into a dorsal

and a ventral plate, both connected with, and projecting from,

what remains of the original undivided cone. Putting the same

thing in other words, we may say that the generating figure^ which

Fig. 414. Development of the shell of Hyalaea (Cavolinia) tridentata Forskal:

the earlier stages being the ''' Pleuropits longifiUs'' of Troschel. After Tesch.

lay at first in a plane perpendicular to the axis of the cone, has

now, by unequal growth, been sharply bent or folded, so as to lie

approximately in two planes, parallel to .the anterior and posterior

faces of the cone. We have only to imagine the apical connecting

portion to be further reduced, and finally to disappear or rupture,

and we should have a bivalve shell developed out- of the original

simple cone.

In its outer and growing portion, the shell of our Pteropod now
consists of two parts which, though still connected together at the

apex, may be treated as growing practically independently. The

shell is no longer a simple tube, or simple cone, in which regular

inequalitiies of growth will lead to the development of a spiral ; and

this for the simple reason that we have now two opposite maxima
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of growth, instead of a maximum on the one side and a minimum
on the other side of our tubular shell. As a matter of fact, the

dorsal and the ventral plate tend to curve in opposite directions,

towards the middle line, the dorsal curving ventrally and the ventral

curving towards the dorsal side.

In the case of the Lamelhbranch or the Brachiopod, it is quite

possible for both valves to grow into more or less pronounced spirals,

for the simple reason that they are hinged upon one another; and

each growing, edge, instead of being brought to a standstill by the

growth of its opposite neighbour, is free to move out of the way,

by the rotation about the hinge of the plane in which it Hes.

But where there is no such hinge, as in the Pteropod, the dorsal

and ventral halves of the shell (or dorsal and ventral valves, if we

Fig. 415. Pteropod shells, from the side: (1) Cleodora cnspidafa; (2) Hyalaea

longirostris; (3) H. trispinosa. After Boas.

may call them so) would soon interfere with one another's progress

if they curved towards one another (as they do in a cockle),

and the development of a pair of conjugate spirals would become

impossible. Nevertheless, there is obviously, in both dorsal and

ventral valve, a tendency to the development of a spiral curve, that

of the ventral valve being paore marked than that of the larger and

overlapping dorsal one, exactly as in the two unequal valves of

Terebratula, In many cases (e.g. Cleodora cuspidata), the dorsal

valve or plate, strengthened and stiffened by its midrib, is nearly

straight, while the curvature of the other is well displayed. But

the case will be materially altered and simplified if growth be arrested

or retarded in either half of the shell. Suppose for instance that

the dorsal valve grew so slowly that after a while, in comparison

with the other, we might speak of it as being absent altogether:
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or suppose that it merely became so reduced in relative size as to

form no impediment to the continued growth of the ventral one;

the latter would continue to grow in the direction of its natural

curvature, and would end by forming a complete and coiled

logarithmic spiral. It would be precisely analogous to the spiral

shell of Nautilus, and, in regard to its ventral position, concave

towards the dorsal side, it would even deserve to be called directly

homologous with it. Suppose, on the other hand, that the ventral

valve were to be greatly reduced, and even to disappear, the dorsal

valve would then pursue its unopposed growth; and, were it to be

markedly curved, it would come to form a logarithmic spiral, concave

towards the ventral side, as is the case in the shell of Spirula*.

Were the dorsal valve to be destitute of any marked curvature (or

in other words, to have but a low spiral angle), it would form a

simple plate, as in the shells of Sepia or Loligo. Indeed, in the

shells of these latter, and especially in that of Sepia, we seem to

recognise a manifest resemblance to the dorsal plate of the Pteropod

shell, as we have it (e.g.) in Cleodora or Hyalaea ; the Httle " rostrum
"

of Sepia is but the apex of the primitive cone, and the rounded

anterior extremity has grown according to a law precisely such as

that which has produced the curved margin of the dorsal valve in

the Pteropod. The ventral portion of the original cone is nearly,

but not wholly, wanting ; it is represented by the so-called posterior

wall of the "siphuncular space." In many decapod cuttle-fishes

also (e.g. Todarodes, Illex, etc.) we still see at the posterior end of

the "pen" a vestige of the primitive cone, whose dorsal ^nargin

only has continued to grow; and the same phenomenon, on an

exaggerated scale, is represented in the Belemnites.

It is not at all impossible that we may explain on the same lines

the development of the curious "operculum" of the Ammonites.

This consists of a single horny plate (Anaptychus), or of a thicker,

more calcified plate divided into two symmetrical halves (Aptychi),

often found inside the terminal chamber of the Ammonite, and

occasionally to be seen lying in situ, as an operculum which partially

closes the mouth of the shell ; this structure is known to exist even

* Cf. Owen, "These shells [Nautilus and Ammonites] are revolutely spiral or

coiled over the back of the animal, not involute like Spirula^': Palaeontology,

1861, p. 97; cf. Memoir cm the Pearly Nautilus, 4832; also P.Z.S. 1878, p. 95.5.
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in connection with the early embryonic shell. In form the Anap-

tychus, or the pair of conjoined Aptychi, shew an upper and a lower

border, the latter strongly convex, the former sometimes shghtly

concave, sometimes shghtly convex, and usually shewing a median

projection or slightly developed rostrum. From this rostral

border the curves of growth start, and course round parallel to,

finally constituting, the convex border. It is this convex border

which fits into the free margin of the mouth of the Ammonite's

shell, while the other is appHed to and overlaps the preceding whorl

of the spire. Now this relationship is precisely what we should

expect, were we to imagine as our starting-point a shell similar to

that of Hyalaea : in which however the dorsal part of the split cone

had become separate from the ventral half, had remained fiat, and

had grown comparatively slowly, while at the same time it kept

slipping forward over the growing and coiUng spire into which the

ventral half of the original shell develops*. In short, I think there

is reason to believe, or at least to suspect, that we have in the shell

and Aptychus of the Ammonites, two portions of a once united

structure; of which other Cephalopods retain not both parts but

only one or other, one as the ventrally situated shell of Nautilus,

the other as the dorsally plated shell for example of Sepia or of

Spirula.

In the case of the bivalv-e shells of the Lamellibranchs or of the

Brachiopods, we have to deal w^ith a phenomenon precisely analogous

to the split and flattened cone of our Pteropods, save only that the

primitive cone has been split into two portions, not incompletely,

as in the Pteropod {Hyalaea), but completely, so as to forin two

separate valves. Though somewhat greater freedom is given to

growth now that the two valves are separate and hinged, yet still

the two valves oppose and hamper one another, so that in the

longitudinal direction each is capable of only a moderate curvature.

This curvature, as we have seen, is recognisable as an equiangular

spiral, but only now and then does the growth of the spiral continue

so far as to develop successive coils : as it does in a few symmetrical

forms such as Isocardia cor ; and as it does still more conspicuously

in a few others, such as Gryphaea and Caprinella, where one of the

* The case of Terebratula or of Gryphaea would be closely analogous, if the smaller

valve were less closely connected and co-articulated with the larger.
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two valves is stunted, and the growth of the other is (relatively

speaking) unopposed.

Of septa

Before we leave the subject of the molluscan shell, we have still

another problem to deal with, in regard to the form and arrangement

of the septa which divide up the tubular shell into chambers, in

the Nautilus, the Ammonite and their allies.

The existence of septa in a nautiloid shell may probably be

accounted for as follows. We have seen that it is a property of

a cone that, while growing by increments at one end only, it con-

serves its original shape : therefore the animal within, which (though

growing by a different law) also conserves its shape, will continue

to fill the shell if it actually fills it to begin with: as does a snail

or other Gastropod. But suppose that our mollusc fills a part only

of a conical shell (as it does in the case of Nautilus) ; then, unless

it alter its shape, it must move upward as it grows in the growing

con^, until it comes to occupy a space similar in form to that which

it occupied before: just, indeed, as a little ball drops far down into

the cone, but a big one must stay farther up. Then, when the

animal after a period of growth has moved farther up in the shell, the

mantle-surface continues or resumes its secretory activity, and that

portion which had been in contact with' the former septum secretes

a septum anew. In short, at any given epoch, the creature is not

secreting a tube and a septum by separate operations, but is secreting

a shelly case about its rounded body, of which case one part appears

as the continuation of the tube, and the other part, merging with it

by indistinguishable boundaries, appears as the septum*.

The various- forms assumed by the septa in spiral shells | present

us with a number of problems of great beauty, simple in their

essence, but whose full investigation would soon lead us into difficult

mathematics.

* "It has been suggested, and I think in some quarters adopted as a dogma,

that the formation of successive septa [in Nautilus] is correlated with the recurrence

of reproductive periods. This is not the case, since, according to my observations,

propagation only takes place after the last septum is formed"; Willey, Zoological

Results, 1902, p. 746.

f Cf. Henry Woodward, On the structure of camerated shells, Pop. Sci. Rev.

XI, pp. 113-120, 1872.
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We do not know how these septa are laid down in an Ammonite,

but in the Nautilus the essential facts are clear *. The septum begins

as a very thin cuticular membrane (composed of a substance called

conchjolin), which is secreted by the skin, or mantle-surface, of the

animal ; and upon this membrane nacreous matter is gradually laid

down on the mantle-side (that is to say between the animal's' body

and the cuticular membrane which has been thrown off from it),

so that the membrane remains as a thin pellicle over the hinder

surface of the septum, and so that, to begin with, th.e membranous

septum is moulded on the flexible and elastic surface of the animal,

within which the fluids of the body must exercise a uniform, or

nearly uniform pressure.

Let us think, then, of the septa as they would appear in their

uncalcified condition, formed of, or at least superposed upon, an

elastic membrane. They must follow the general law, applicable

to all elastic membranes under uniform pressure, that the tension

varies inversely as the radius of curvature ; and we come back once

more to our old equation of Laplace and Plateau, that

p = r
^r^v]

Moreover, since the cavity below the septum is practically closed,

and is filled either with air or with water, P will be constant over

the whole area of the septum. And further, we must assume, at

least to begin with, that the membrane constituting the incipient

septum is homogeneous or isotropic.

Let us take first the case of a straight cone, of circular section,

more or less like an Orthoceras ; and let us suppose that the septum

is attached to the shell in a plane perpendicular to its axis. The

septum itself must then obviously be spherical. Moreover the extent

of the spherical surface is constant, and easily determined. For

obviously, in Fig. 417, the angle LCL' equals the supplement of

the angle (LOU) of the cone; that is to say, the circle of contact

subtends an angle at the centre of the spherical surface, which is

constant, and which is equal to tt — 2/?. The case is not excluded

where, owing to an asymmetry of tensions, the septum meets the

* See Willey, op. cit., p. 749. Cf. also Bather, Shell-growth in Cephalopoda,

Ann. Mag. N.H. (6), i, pp. 298-310, 1888; ibid. pp. 421-427, and other papers by

Blake, Riefstahl, etc. quoted therein.
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side walls of the cone at other than a right angle, as in Fig. 416; and

here, while the septa still remain portions of spheres, the geometrical

construction for the position of their centres is equally easy.

If, on the other hand, the attachment of the septum to the' inner

walls of the cone be in a plane oblique to the axis, then the outhne of

the septum will be an elhpse, but its surface will still be spheroidal. If

Fig. 41fi.

the attachment of the septum be not in one plane, but forms a sinuous

line of contact with the cone, then the septum will be a saddle-shaped

surface, of great complexity and beauty. In all cases, provided only

that the membrane be isotropic, the form assumed will be precisely

that of a soap-bubble under similar conditions of attachment : that

is to say, it will be (with the usual limitations or conditions) a surface

of minimal area, and of constant mean curvature.

If our cone be no longer straight, but curved, then the septa will

by symmetrically deformed in consequence. A beautiful and in-

teresting case is afforded us by Nautilus itself. Here the outline

of the septum, referred to a plane, is approximately bounded by

two elliptic curves, similar and similarly situated, whose areas are

to one another in a definite ratio, namely as

A_^l^'l_ 4^C0ta

^a ^2^ 2

and a similar ratio exists in Ammonites and all other close-whorled

spirals, in whi^h however we cannot always make the simple
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assumption of elliptical form. In a median section of Nautilus, we

see each septum forming a tangent to the inner and to the outer

wall, just as it did in a section of the strsiight Orthoceras; but the

Fig. 418. Section of Xaufilus, shewing the contour of the septa

in the median plane.

curvatures in the neighbourhood of these two points of contact are

not identical, for they now vary inversely as the radii, drawn from

the pole of the spiral shell. The contour of the septum in this

median plane is a spiral curve—the conformal spiral transformation

of the spherical septum of the rectihnear Orthoceratite.
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But while the outline of the septum in median section is simple

and easy to determine, the curved surface of the septum in its

entirety is a very complicated matter, even in Nautilus which is

one of the simplest of actual cases. For, in the first place, since

the form of the septum, as seen in median section, is that of a

logarithmic spiral, and as therefore its curvature is constantly

Fig. 419. C&,Bi oi the mteviov oi Nautilus-, to shew the contours of

the septa at their junction with the shell-waU.

altering, it follows that, in successive transverse sections, the curva-

ture is also constantly altering. But in the case of Nautilus, there

are other aspects of the phenomenon, which we can illustrate, but

only in part, in the following simple manner. Let us imagine a ^ack

of cards, in which we have cut out of each card a similar concave

arc of a logarithmic spiral, such as we actually see in the median

section of the septum of a Nautilus. Then, while we hold the cards

together, foursquare, in the ordinary position of the pack, we have

a simple ''ruled" surface, which in any longitudinal section has the
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form of a logarithmic spiral but in any transverse section is a straight

horizontal line. If we shear or slide the cards upon one. another,

thrusting the middle cards of the pack forward in advance of the

others, till the one end of the pack is a convex, and the other a

concave, elUpse, the cut edges which combine to represent our

septum will now form a curved surface of much greater complexity

;

and this is part, but not by any means all, of the deformation

produced as a direct consequence of the form in Nautilus of the

section of the tube within which the septum has to He. The

complex curvature of the surface will be manifested in a sinuous

outline of the edge, or line of attachment of the septum to the tube,

and will vary according to the configuration of the latter. In the

case of Nautilus, it is easy to shew empirically (though not perhaps

easy to demonstrate mathematically), that the sinuous or saddle-

shaped contour of the " suture" (or line of attachment of the septum

to the tube) is such as can be precisely accounted for in this manner

;

and we may find other forms, such as Ceratites, where the septal

outline is only a httle more sinuous, and still precisely analogous

to that of Nautilus. It is also easy to see that, when the section of

the tube (or "generating curve") is more comphcated in form, when

it is flattened, grooved, or otherwise ornamented, the curvature of the

septum and the outline of its sutural attachment will become very

complicated indeed * ; but it will be comparatively simple in the "case

of the first few sutures of the young shell, laid down before any over-

lapping of whorls has taken place, and this comparative simplicity of

the first-formed sutures is a marked feature among Ammonites f.

* The "lobes" and "saddles" which arise in this manner, and on whose arrange-

ment the modern classification of the nautiloid and ammonitoid shells largely

depends, were first recognised and named by Leopold von Buch, Ann. Sci. Nat.

XXVII, xxvni, 1829.

t Blake has remarked upon the fact (op. cit. p. 248) that in some Cyrtocerata

we may have a curved shell in which the ornaments approximately run at a constant

angular distance from the pole, while the septa approximate to a radial direction;

and that "thus one law of growth is illustrated by the inside, and another by the

outside." In this there is nothing at which we need wonder. It is merely a case

where the generating curve is set very obliquely to the axis of the shell ; but where

the septa, which have no necessary relation to the mouth of the shell, take their

places, as usual, at a certain definite' angle to the walls of the tube. This relation

of the septa to the walls of the tube arises after the tube itself is fully formed,

and the obliquity of growth of the open end of the tube has no relation to the

matter.
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We have other sources of complication, besides those which are

at once .introduced by the sectional form of the tube. For instance,

th'e siphuncle, or little inner tube which perforates the septa, exercises

a certain amount of tension, sometimes evidently considerable, upon

the latter: which tension is made manifest in Spirula (and slightly

so even in Nautilus) by a dip in the septal floor where it meets the

siphuncle. We can no longer, then, consider each septum as an

isotropic surface under uniform pressure; and there may be other

structural modifications, or inequalities, in that portion of the

Fig. 420. Ammonites Sowerbyi. From Zittel.

animal's body with which the septum is in contact, and by which

it is conformed. It is hardly likely, for all these reasons, tha»t we

shall ever attain to a full and particular explanation of the septal

surfaces and their sutural outlines throughout the whole range of

Cephalopod shells; but in general terms, the problem is probably

not beyond the reach of mathematical analysis. The problem might

be approached experimentally, after the manner of Plateau's experi-

ments, by bending a wire into the complicated^form of the suture-line,

and studying the form of the liquid film which constitutes the

corresponding surface 'minimae areae.

In certain Ammonites the septal outline is further complicatec"

in another way. Superposed upon the usual sinuous outline, witl
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its "lobes" and "saddles," we have here- a minutely ramified, or

arborescent outline, in which all the branches terminate in wavy,

more or less circular arcs—looking just like the "landscape marble"

from the Bristol Rhaetic. We have no difficulty in recognising in

this a surface-tension phenomenon. The figures are precisely such

as we can imitate (for instance) by pouring a few drops of milk

upon a greasy plate, or of oil upon an alkaUne solution*; they are

what Charles Tomlinson called "cohesion figures."

Fig. 421. Suture-line of a Triassic Ammonite {Pinacoceras). From Zittel.

We must not forget that while the nautilus and the ammonite

resemble one another, and are mathematically identical in their

spiral curves, they are really very different things. The one is an

external, the other an internal shell. The nautilus occupies the

large terminal chamber of the many-chambered shell, and "Still

as the spiral grew. He left the past year's dwelling for the new."

But even the largest ammonites never contained the body of the

animal, but lay hidden, as Spirula does, deep within the substance

of the mantle. How the comphcated septa and septal outHnes of

the ammonites are produced I do not knowt.

We have very far from exhausted, we have perhaps little more

than begun, the study of the logarithmic spiral and the associated

curves which find exemplification in the multitudinous diversities

of molluscan shells. But, with a closing word or two, we must

now bring this chapter to an end.

* "The Fimbriae, or Edges, appeared on the Surface like the Outlines of some

curious Foliage. This, upon Examination of them, I found to proceed from the

Fulness of the Edges of the Diaphragms, whereby the Edges were waved or plaited

somewhat in the manner of a Ruff" (R. Hooke, op. cit.).

t In certain rare cases the complicated sutural pattern of an ammonite is found

upside down, but unchanged otherwise. Cf. Otto Haas, A case of inversion of

suture hues in Hysteroceras, Amer. Jl. of Sci. ccxxxix, p. 661, 1941.
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In the spiral shell we have a problem, or a phenomenon, of growth,

immensely simplified by the fact that each successive increment is

no sooner formed than it is fixed irrevocably, instead of remaining

in a state of flux and sharing in the further changes which the

organism undergoes. In such a structure, then, we have certain

primary phenomena of growth manifested in their original simplicity,

undisturbed by secondary and conflicting phenomena. What actually

grows is merely the lip of an orifice, where there is produced a ring

of solid material, whose form we have discussed under the name of

the generating curve ; and this generating curve grows in magnitude

without alteration of its form. Besides its increase in areal magnitude,

the growing curve has certain strictly limited degrees of freedom,

which define its motions in space. And, though we may know nothing

whatsoever about the actual velocities of any of these motions, we

do know that they are so correlated together that their relative

velocities remain constant, and accordingly the form and symmetry

of the whole system remain in general unchanged.

But there is a vast range of possibilities in regard to every one

of these factors : the generating curve may be of various forms, and

even when of simple form, such as an elhpse, its axes may be s4t

at various angles to the system; the plane also in which it lies

may vary, almost indefinitely, in its angle relatively to that of any

plane of reference in the system; and in the several velocities of

growth, of rotation and of translation, and therefore in the ratios

between all these, we have again a vast range of possibihties. We
have then a certain definite type, or group of forms, mathematically

isomorphous, but presenting infinite diversities of outward appear-

ance: which diversities, as Swammerdam said, ex sola nascuntur

diversitate gyrationum ; and which accordingly are seen to have their

origin in differences of rate, or of magnitude, and so to be, essentially,

neither more nor less than differences, of degree.

In nature, we find these forms presenting themselves with but little

relation to the character of the creature by which they are produced.

Spiral forms of certain particular kinds are common to Gastropods and

to Cephalopods, and to diverse famihes of each ; while outside the class

of molluscs altogether, among the Foraminifera and among the worms

(as in Spirorbis, Spirographis, and in the Dentalium -like shell of

Ditrupa), we again meet with similar and corresponding spirals.
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Again, we find the same forms, or forms which (save for external

ornament) are mathematically identical, repeating themselves in all

periods of the world's geological history; and we see them mixed

up, one with another, irrespective of cHmate or local conditions, in

the depths and on' the shores of every sea. It is hard indeed (to

my mind) to see in such a case as this where Natural Selection

necessarily enters in, or to admit that it has had any share what-

soever in the production of these varied conformations. Unless

indeed we use. .the term Natural Selection in a sense so wide as to

deprive it of any purely biological significance; and so recognise

as a sort of natural selection whatsoever nexus of causes suffices

to differentiate between the likely and the unlikely, the scarce and

the frequent, the easy and the hard: and leads accordingly, under

the pecuhar conditions, limitations and restraints which we call

"ordinary circumstances," one type of crystal, one form of cloud,

one chemical compound, to be of frequent occurrence and another

to be rare*.

* Cf. Bacon, Advancement of Learning, Bk. ii (p. 254) :
" Doth any give the reason,

why some things in nature are so common and in so great mass, and others so rare

and in so small quantity?"



CHAPTER XII

THE SPIRAL SHELLS OF THE FORAMINIFERA

We have already dealt in a few simple cases with the shells x)f the

Foraminifera * ; and we have seen that wherever the shell is but a

single unit or single chamber, its form may be explained in general

by the laws of surface-tension : the argument (or assumption) being

that the little mass of protoplasm which makes the simple shell

behaves as a fluid drop, the form of which is perpetuated when the

protoplasm acquires its solid covering. Thus the spherical Orbulinae

and the flask-shaped Lagenae represent drops in equilibrium, under

various conditions of freedom or constraint; while the irregular,

amoeboid body of Astrorhiza is a manifestation not of equilibrium,

but of a varying and fluctuating distribution of surface energy.

When the foraminiferal shell becomes multilocular, the same general

principles continue to hold; the growing protoplasm increases drop

by drop, and each successive drop has its particular phenomena of

surface energy, manifested at its fluid surface, and tending to confer

upon it a certain place in the system and a certain shape of its own.

It is characteristic and even diagnostic of this particular group

of Protozoa (1) that development proceeds by a well-marked alterna-

tion of rest and of activity—of activity during which the protoplasm

increases, and of rest during which the shell is formed; (2) that the

shell is formed at the outer surface of the protoplasmic organism,

and tends to constitute a continuous or all but continuous covermg

;

and it follows (3) from these two factors taken together that each

successive increment is added on outside of and distinct from its

predecessors, that the successive parts or chambers of the shell are

of different and successive ages, so that one part of the shell is always

relatively new, and the rest old in various grades of seniority.

The forms which we set together in the sister-group of Radiolaria

are very differently characterised. Here the cells or vesicles of

which each little composite organism is made up are but httle

* Cf. pp. 420, 702, etc.
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separated, and in no way walled off, from one another; the hard

skeletal matter tends to be deposited in the form of isolated spicules

or of little connected rods or plates, at the angles, the edges or the

interfaces of the vesicles; the cells or vesicles form a coordinated

and cotemporaneous rather than a successive series. In a word,

the whole quasi-fluid protoplasmic body may be likened to a little

mass of froth or foam : that is to say, to an aggregation of simul-

taneously formed drops or bubbles, whose-physical properties and

geometrical relations are very different from those of a system of

Fig. 422. Hastigerina sp.; to shew the "mouth."

drops or bubbles which are formed one after another, each solidifying

before the next is formed.

With the actual origin or mode of development of the foraminiferal

shell we are now but little concerned. The main factor is the

adsorption, and subsequent precipitation at the surface of the

organism, of calcium carbonate—the shell so formed being interrupted

by pores or by some larger interspace or "mouth" (Fig. 422), which

interruptions we may doubtless interpret as being due to unequal

distributions of surface energy. In many cases the fluid protoplasm

"picks up" sand-grains and other foreign particles, after a fashion

which we have already described (p. 702); and it cements these

together with more or less of calcareous material. The calcareous

shell is a crystalline structure, and the micro-crystals of calcium

carbonate are so set that their little prisms radiate outwards in each

chamber through the thickness of the wall—which symmetry is
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subject to corresponding modification when the spherical chambers

are more or less symmetrically deformed*.

In various ways the rounded, drop-Uke shells of the Foraminifera,

both simple and compound, have been artificially imitated. Thus,

if small globules of mercury be immersed in water in which a little

chromic acid is allowed to dissolve, as the little beads of quicksilver

become slowly covered with a crystalline coat of mercuric chromate

they assume various forms reminiscent of the monothalamic Fora-

minifera. "the mercuric chromate has a higher atomic volume than

the mercury which it replaces, and therefore the fluid contents of

the drop are under pressure, which increases with /the thickness

of the pellicle ; hence at some weak spot in the latter the contents

will presently burst forth, so forming a mouth to the little shell.

Sometimes a long thread is formed, just as in Rhabdammina linearis;

and sometimes unduloid swelhngs make their appearance on such,

a thread, just as in R. discreta. And again, by appropriate modi-

fications of the experimental conditions, it is possible (as Rhumbler

has shewn) to build up a chambered shell f.

In a few forms, such as Globigerina and its close allies, the shell

is beset during life with excessively long and dehcate calcareous

spines or needles. It is only in oceanic forms that these are present,

because only when poised in water can such delicate structures

endure; in dead shells, such as we are much more familiar with,

every trace of them is broken and rubbed away. The growth of

these long needles may be partly explained (as we have already said

on p. 675) by the phenomenon which Lehmann calls orientirte

Adsorption—the tendency for a crystalline structure to grow by

accretion, not necessarily in the outward form of a "crystal," but

continuing in any direction or orientation which has once been

impressed upon it: in this case the spicular growth is in direct

continuation of the 'radial symmetry of the micro-crystalhne

* In a few cases, according to Awerinzew and Rhumbler, where the chambers are

added on in concentric series, as in Orbitolites, we have the crystalline structure

arranged radially in the radial walls but tangentially in the concentric ones:

whereby we tend to obtain, on a minute scale, a system of orthogonal trajectories,

comparable to that which we shall presently study in connection with the structure

of bone. Cf. S. Awerinzew, Kalkschale der Rhizopoden, Z. f. w. Z. Lxxiv,

pp. 478-490, 1903.

t L. Rhumbler, Die Doppelschalen von Orbitolites und anderer Foraminiferen,

etc., Arch. f. Protistenkunde, i, pp. 193-296, 1902; and other papers. Also Die

Foraminiferen der Planktonexpedition, i, pp. 50-56, 1911.
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elements of the shell-wall. But the calcareous needles are secreted

in, or by, no less long and dehcate pseudopodia or "filopodia,"

and much has been learned since this book was written of the

molecular, or micellar, orientation of the protoplasm in such

filamentous structures; it is known that the long pseudopodia of

the Foraminifera are doubly refractive, and it follows that their

molecules are anisotropically arranged*. Whether the slender form

and asymmetrical structure of calcareous rod and protoplasmic

thread be independent phenomena, or merely two aspects of one

and the same phenomenon, is a hard question, and not one for us

to discuss. Nor can we profitably discuss (much as we should like

to know) how far these patterns of molecular structure in threads,

films and surface-pelHcles aifect the "fluidity" of the substance,

and conflict with the capillary ' forces which influence its outward

form. But we may safely say that the effects of surface-tension

on cell-form have been so plainly seen all through this book that

any counter-effects due to protoplasmic asymmetry must be

phenomena of a second order, and inconspicuous on the whole.

Over the whole surface of the shell of Globigerina the radiating

spicules tend to occur in a hexagonal pattern, symmetrically

grouped around the pores which perforate the shell. Rhumbler

has suggested that this arrangement is due to diffusion-currents,

forming little eddies about the base of the pseudopodia issuing from

the pores: the idea being borrowed from Benard, to whom is Hue

the discovery of this type or order of vortices f. In one of Benard's

experiments a thin layer of parafiin is strewn with particles of

graphite, then warmed to melting, whereupon each little sohd granule

becomes the centre of a vortex ; by the interaction of these vortices

the particles tend to be repelled to equal distances from one another,

and in the end they are found to be arranged in a hexagonal pattern J.

* Cf. W. J. Schmidt, Die Bausteine des Tierkorpers in polarisiertem Lichte,

Bonn, 1924; Ueber den Feinbau der Filopodien; insb. ihre Doppelbrechung bei

Miliola, Protoplasma, xxvii, p. 587, 1937; also D. L. Mackinnon, Optical pro-

perties of contractile organs in Heliozoa, Jl. Physiol, xxxviii, p. 254, 1909;

R. 0. Herzog, Lineare u. laminHre Feinstrukturen, Kolloidzschr. lxi, p. 280, 1932.

See, for discussion and bibliography, L. E. Picken, op. cit.

t H. Benard, Les tourbillons cellulaires, Ann. de Chimie (8), xxiv, 1901. Cf.

also the pattern of- cilia on an Infusorian, as figured by Biitschli in Bronn's

Protozoa, iii, p. 1281, 1887.

X A similar hexagonal pattern is obtained by the mutual repulsion of floating

magnets in Mr R. W. Wood's experiments, Phil. Mag. xlvi, pp. 162-164, 1898.
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The analogy is plain between this experiment and those diffusion

experiments by which Leduc produces his beautiful hexagonal

systems of artificial cells, with which we have dealt in a previous

chapter.

But let us come back to the shell itself, and consider particularly

its spiral form. That the shell in the Foraminifera should tend

towards a spiral form need not surprise us ; for we have learned that

one of the fundamental conditions of the production of a concrete

spiral is just precisely what we have here, namely the develop-

ment of a structure by means of successive graded increments

superadded to its exterior, which then form part, successively, of

a permanent and rigid structure. This condition is obviously forth-

coming in the foraminiferal, but not at all in the radiolarian, shell.

Our second fundamental condition of the production of a logarithmic

spiral is that each successive increment shall be so posited and so

conformed that its addition to the system leaves the form of the

whole system unchanged. We have now to enquire into this latter

condition; and to determine whether the successive increments, or

successive chambers, of the foraminiferal shell actually constitute

gnomons to the entire structure.

It is obvious enough that the spiral shells of the Foraminifera

closely resemble true logarithmic spirals. Indeed so precisely do

the minute shells of many Foraminifera repeat or simulate the spiral

shells of Nautilus and its allies that to the naturalists of the early

nineteenth century they were known as the Cephalopodes micro-

scopiques*, until Dujardin shewed that their little bodies comprised

no complex anatomy of organs, but consisted merely of that sUme-like

organic matter which he taught us to call "sarcode," and which

we learned afterwards from Schwann to speak of as "protoplasm."

One striking -difference, however, is apparent between the shell

of Nautilus and the little nautiloid or rotaline shells of the Fora-

minifera: namely that the septa in these latter, and in all other

chambered Foraminifera, are convex outwards (Fig. 423), whereas

they are concave outwards in Nautilus (Fig. 347) and in the rest

of the chambered molluscan shells. The reason is perfectly simple.

* Cf. Ale. d'Orbigny, Tableau methodique de la classe des Cephalopodes, Ann.
des Sci. Nat. (1), vii, pp. 245-315, 1826; Felix Dujardin, Observations nouvelles

sur les pretendus Cephalopodes microscopiques, ibid. (2), iii, pp. 108, 109, 312-315,

1835, Recherches sur les organismes inferieurs, ibid, iv, pp. 343-377, 1835; etc.
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In both cases the curvature of the septum was determined before

it became rigid, and at a time when it had the properties of

a fluid film or an elastic membrane. In both cases the actual

curvature is determined by the tensions of the membrane and the

pressures to which it was exposed. Now it is obvious that the

extrinsic pressure which the tension of the membrane has to with-

stand is on opposite sides in the two cases. In Nautilus, the pressure

to" be resisted is that produced by the growing body of the animal,

lying to the outer side of the septum, in the outer, wider portion of

the tubular shell. In the Foraminifer the septum at the time of its

formation was no septum at all ; it was but a portion of the convex

Fig. 423. Nummulina antiquior R. and V. After V. von Moller.

surface of a drop—that portion namely which afterwards became

overlapped and enclosed by the succeeding drop ; and the curvature

of the septum is concave towards the pressure to be resisted, which

latter is inside the septum, being simply the hydrostatic pressure

of the fluid contents of the drop. The one septum is, speaking

generally, the reverse of the other; the organism, so to speak, is

outside the one and inside the other; and in both cases alike, the

septum tends to assume the form of a surface of minimal area, as

permitted, or as defined, by all the circumstances of the case.

The logarithmic spiral is easily recognisable in typical cases* (and

* It is obvious that the actual outline of a foraminiferal, just as of a molluscan

shell, may depart widely from a logarithmic spiral. When we say here, for short,

that the shell is a logarithmic spiral, we merely mean that it is essentially related

to one: that it can be inscribed in such a spiral, or that corresponding points

(such, for instance, as the centres of gravity of successive chambers, or the

extremities of successive septa) will be found to lie upon such a sj)iral.
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especially where the spire makes more than one visible revolution

about the pole), by its fundamental property of continued similarity:

that is to say, by reason of the fact that the big many-chambered

shell is of just the same shape as the smaller and younger shell

—

which phenomenon is as apparent and even obvious in the nautiloid

Foraminifera, as in Nautilus itself: but nevertheless the* nature of

the curve must be verified by careful measurement, just as Moseley

determined or verified it in his original study of Nautilus (cf. p. 770).

This has accordingly been done, by various writers : and in the first

instance by Valerian von Moller, in an elaborate study of Fusulina—
a palaeozoic genus whose little shells have built up vast tracts of

carboniferous limestone in European Russia*.

In this genus a growing surface of protoplasm may be conceived

as wrapping round and round a small initial chamber, in such a way

as to produce a fusiform or ellipsoidal shell—a transverse section

of which reveals the close-wound spiral coil. The following are

measurements of the successive whorls in a couple of species of

this genus:

—

F. cylindrica Fischer F. Bocki v. Moller

Breadth (in miUimetres)

Vhofl
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by our table on p. 791) to a constant angle of about 86°, or just

such a spiral as we commonly meet with in the Ammonites (cf.

p. 796).

In Fusulina, and in some few other Foraminifera (cf. Fig. 424, A),

the spire seems to wind evenly on, with little or no external sign

of the successive periods of growth, or successive chambers of the

shell. The septa which mark off the chambers, and correspond to

retardations or cessations in the periodicity of growth, are still to be

found in sections of the shell of Fusulina, but they are somewhat

irregular and comjiaratively inconspicuous; the measurements we

have just spoken of are taken without reference to the segments or

chambers, but only with reference to the whorls, or in other words

with direct reference to the vectorial angle.

A B

Fig. 424. A, Cornuspira foliacea Phil.; B, Operculinu complatiata Defr.

The linear dimensions of successive chambers have been measured

in a number of cases. Van Iterson* has done so in various

Miliolinidae, with such results as the following:

Triloculina rotunda d'Orb.

No. of chamber 12 3 4 5 6

Breadth of chamber in /x — 34 45 61

7

142

8

182

9

246

10

319__ __ . 84 114

Breadth of chamber in /x,

calculated — 34 45 60 79 105

* G. van Iterson, Mathem. u. mikrosk.-anat. Studien iiber Blattstellungen, nebst

Betrachtungen liber den Schalenbau der MilioUnen, 331 pp., Jena, 1907.

140 187 243 319
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Here the mean ratio of breadth of consecutive chambers may be

taken as 1-323 (that is to say, the eighth root of 319/34); and the

calculated values, as given above, are based on this determination.

Again, Rhumbler has measured the linear dimensions of a number

of rotaline forms, for instance Pulvinulina menardi (Fig. 363) : in

which common species he finds the mean linear ratio of consecutive

chambers to be about 1-187. In both cases, and especially in the

latter, the ratio is not strictly constant from chamber to chamber,

but is subject to a small secondary fluctuation*.

When the linear dimensions of successive chambers are in con-

tinued proportion, then, in order that the whole shell may constitute

a logarithmic spiral, it is necessary that the several chambers should

subtend equal angles of revolution at the pole. In the case of the

Miliolidae this is obviously the case (Fig. 425); for in this family

the chambers lie in two rows (Biloculina), or three rows (Triloculina),

or in some other small number of series : so that the angles subtended

by them are large, simple fractions of the circular arc, such as

180° or 120°. In many of the nautiloid forms, such as Cyclammina

(Fig. 426), the angles subtended, though of less magnitude, are still

remarkably constant, as we may see by Fig. 427; where the angle

subtended by each chamber is made equal to 20°, and this diagram-

matic figure is not perceptibly different from the other. In some

cases the subtended angle is less constant; and in these it would

be necessary to equate the several linear dimensions with the

corresponding vector angles, according to our equation r = e^cota

It is probable that, by so taking account of variations of 6, such

variations of r as (according to Rhumbler's measurements) Pul-

vinulina and other genera appear to shew, would be found to

diminish or even to disappear.

The law of increase by which each chamber bears a constant

ratio of magnitude to the next may be looked upon as a simple

* Hans Przibram asserts that the linear ratio of successive chambers tends in

many Foraminifera to approximate to 1-26, which = V2; in other words, that

the volumes of successive chambers tend to double. This Przibram would bring

into relation with another law, viz. that insects and other arthropods tend to

moult, or to metamorphose, just when they double their weights, or increase their

linear dimensions in the ratio of 1 : V 2. (Die Kammerprogression der Foraminiferen

als Parallele zur Hautungsprogression der Mantiden, Arch. f. Entw. Meek, xxxiv,

p. 680, 1813.) Neither rule seems to me to be well grounded (see above, p. 165).
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Fig. 425. 1, 2, Miliolina pulchella d'Orb.; 3-5, M. liyinaeana d'Orb,

After Brady.

Fig. 426. Cyclammina cancellata Brady,
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consequence of the structural uniformity or homogeneity of the

orgai^ism ; we have merely to suppose (as this uniformity would

naturally lead us to do) that the rate of increase is at each instant

proportional to the whole existing mass. For if Vq, Vi, etc. be

Fig. 427. Cydammitia sp. (J>iagramniatic.)

the volumes of the successive chambers, let Fj bear a constant

proportion to Fq, so that V^ = qV^, and let Fg bear the same

proportion to the whole pre-existing volume: then

n = ? (Fo + Fi) =^ q (F„ + ?F„) = ?F„ (1 + q) and VJV^ = 1 + ?.

This ratio of 1/(1 + q) is easily shewn to be the constant ratio

running through the whole series, from chamber to chamber; and

if this ratio of volumes be constant, so also are the ratios of corre-

sponding surfaces, and of corresponding linear dimensions, provided

always that the successive increments, or successive chambers, are

similar in form.

We have still to discuss the similarity of form and the symmetry

of position which characterise the successive chambers, and which,

together with the law of continued proportionahty of size, are the

distinctive characters and the indispensable conditions of a series

of "gnomons."

The minute size of the foraminiferal shell or at least of each
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successive increment thereof, taken in connection with the fluid or

semi-fluid nature of the protoplasmic substance, is enough to suggest

that the molecular forces, and especially the force of surface-tension,

must exercise a controlling influence over the form of the whole

structure; and this suggestion, or behef, is already implied in our

statement that each successive increment of growing protoplasm

constitutes a separate drop. These "drops," partially concealed by

their successors, but still shewing in part their rounded outhnes,

are easily recognisable in the various foraminiferal shells which are

illustrated in this chapter.

Fig. 428. Orbulina imiversa d'Orb.

The accompanying figure represents, to begin with, the spherical

shell characteristic of the common, floating, oceanic Orbulina. In

the specimen illustrated, a second chamber, superadded to the first,

has arisen as a drop of protoplasm which exuded through the pores

of the first chamber, accumulated on its surface, and spread over

the latter till it came to rest in a position of equihbrium. We may
take it that this position of equilibrium is determined, at least in

the first instance, by the "law of the constant angle," which holds,

or tends to hold, in all cases where the free surface of a given Uquid

is in contact with a given sohd, in presence of another liquid or a gas.

The corresponding equations *are precisely the same as those which

we have used in discussing the form of a drop (on p. 466); though

some slight modification must be made in our definitions, inasmuch

as the consideration of snriace-tension is no longer appropriate at

the solid surfaces, and the concept of snviace-energy must take its
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place. Be that as it may, it is enough for us to observe that, in

such a case a^ ours, when a given fluid, (namely protoplasm) is in

surface contact with a solid (viz. a calcareous shell), in presence of

another fluid (sea-water), then the angle of contact, or angle by

which the common surface (or interface) of the two liquids abuts

against the solid wall, tends to be constant: and that being so, the

drop will have a certain definite form, depending {inter alia) on the

form of the surface with which it is in contact. After a period of

rest, during which the surface of our second drop becomes rigid by

calcification, a new period of growth will recur and a new drop of

protoplasm be accumulated. Circumstances remaining the same,

this new drop will meet the solid surface of the shell at the same angle

as did the former one; and, the other forces at work on the system

remaining the same, the form of the whole drop, or chamber, will

be the same as before.

According to Rhumbler, this "law of the constant angle" is

the fundamental principle in the mechanical conformation of the

foraminiferal shell, and proV-ides for the symmetry of form as well

as of position in each succeeding drop of protoplasm: which form

and position, once acquired, become rigid and fixed with the onset

of calcification. But Rhumbler's explanation brings with it its own

difficulties. It is by no means easy of verification, for on the very

complicated curved surfaces of the shell it seems to me extraordinarily

difficult to measure, or even to recognise, the actual angle of contact

:

of which angle of contact, by the way, but little is known, save only

in the particular case where one of the three bodies is air, as when

a surface of water is exposed to air and in contact with glass. It

is easy moreover to see that in many of our Foraminifera the angle

of contact, though it may be constant in homologous positions from

chamber to chamber, is by no means constant at all points along the

boundary of each chamber. In Cristellaria, for instance (Fig. 429),

it would seem to be (and Rhumbler asserts that it actually is)

about 90° on the outer side and only about 50° on the inner side

of each septal partition; in Pulvinulina (Fig. 363), according to

Rhumbler, the angles adjacent to the mouth are of 90°, and the

opposite angles are of 60°, in each chamber. For these and other

similar discrepancies Rhumbler would account by simply invoking

the heterogeneity of the protoplasmic drop: that is to say, by
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assuming that the protoplasm has a different composition and

different properties (including a very different distribution of

surface-energy), at points near to and remote from the mouth of

the shell. Whether the. differences in angle of contact be as great

as Rhumbler takes them to be, whether marked heterogeneities of

the protoplasm occur, and whether these be enough to account for

the differences of angle, I cannot tell. But it seems to me that

we had better rest content with a general statement, and that

Rhumbler has taken too precise and narrow a view.

Fig. 429. Cristellaria reniformis d'Orb

In the molecular growth of a crystal, although we must of

necessity assume that each molecule settles down in a position of

minimum potential energy, we find it very hard indeed to explain

precisely, even in simple cases and after all the labours of modern

crystallographers, why this or that position is actually a place of

minimum potential. In the case of our httle Foraminifer (just as

in the case of the crystal), let us then be content to assert that each

drop or bead of protoplasm takes up a position of minimum potential

energy, in relation to all the circumstances of the case ; and let us

not attempt, in the present state of our knowledge, to define that

position of minimum potential by reference to angle of contact or

any other particular condition of equilibrium. In most cases the

whole exposed surface, on some portion of which the drop must

come to rest, is an extremely complicated one, and the forces in-

volved constitute a system which, in its entirety, is more complicated
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still; but from the symmetry of the case and the continuity of the

whole phenomenon, we are entitled to believe that the conditions

are just the same, or .very nearly the same, time after time, from one

chamber to another : as the one chamber is conformed so will the next

tend to be, and as the one is situated relatively to the system so will

its successor tend to be situated in turn. The physical law ofminimum

potential (including also the law of minimal area) is all that we need

in order to explain, in general terms, the continued similarity of one

chamber to another; and the physiological law of growth, by which

a continued proportionality of size tends to run through the series

of successive chambers, impresses the form of a logarithmic spiral

upon this series of similar increments.

In each particular case the nature of the logarithmic spiral, as

defined by its constant angle, will be chiefly determined by the rate

of growth ; that is to say by the particular ratio in which each new

chamber exceeds its predecessor in magnitude. But shells having

the same constant angle (a) may still differ from one another in many

ways—in the general form and relative position of the chambers,

in their extent of overlap, and hence in the actual contour and

appearance of the shell; 'and these variations must correspond to par-

ticular distributions of energy within the system, which is governed

as a whole by the law of minimum potential.

Our problem, then, becomes reduced to that of investigating the

possible configurations which may be derived from the successive

symmetrical apposition of similar bodies whose magnitudes are in

continued proportion; and it is obvious, mathematically speaking,

that the various possible arrangements all come under the head of

the logarithmic spiral, together with the limiting cases which it

includes. Since the difference between one such form and another

depends upon the numerical value of certain coefficients of mag-

nitude, it is plain that any One must tend to pass into any other

by small and continuous gradations; in other words, that a classi-

fication of these forms must (like any classification whatsoever of

logarithmic spirals or of any other mathematical curves) be theoretic

or "artificial." But we may easily make such an artificial classi-

fication, and shall probably find it to agree, more or less, with the

usual methods of classification recognised by biological students of

the Foraminifera.
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Firstly we have the typically spiral shells, which occur in great

variety, and which (for our present purpose) we need hardly describe

further. We may merely notice how in certain cases, for instance

Globigerina, the individual chambers are little removed from spheres;

in other words, the area of contact

between the adjacent chambers is

small. In such forms as Cyclamynwa

and Pulvinulina, on the other hand

,

each chamber is greatly overlapped

by its successor, and the spherical

form of each is lost in a marked

asymmetry. Furthermore, in Glo-

higerina and some others we have

a tendency to the development of

a gauche spiral in space, as in so

many of our univalve molluscan

shells. The mathematical problem

of how a shell should grow, under

the assumptions which we have

made, would probably find its most

general statement in such a case as

that of Globigerina, where the whole

organism lives and grows freely

poised in a medium whose density

is little different from its ow^n.

The majority of spiral forms,

on the other hand, are plane or

discoid spirals, and we may take it

that in these cases some force has

exercised a controlling influence, so

as to keep all the chambers in a

plane. This is especially the case in

forms like Rotalia or Biscorhiiui

(Fig. 430), where the organism lives

attached to a rock or a frond of sea-weed ; for here (just as in the case

of the coiled tubes which little worms such as Serpula and Spirorbis

make, under similar conditions) the spiral disc is itself asymmetrical

its whorls being markedly flattened on their attached surfaces.

m:Wt^-

"Fig. 430. Discorbina bertheloti d'Orb.
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We may also conceive, among other conditions, the very curious

case in which the protoplasm may entirely overspread the surface

of the shell without reaching a position of equilibrium; in which

case a new shell will be formed enclosing the old one, whether

the old one be in the form of a single, solitary chamber, or have

already attained to the form of a chambered or spiral shell. This

is precisely what often happens in the case of Orbulina, when within

the spherical shell we find a small, but perfectly formed, spiral

''Globigerina*.'^

The various Miliolidae (Fig. 425) only differ from the typical

spiral, or rotaline forms, in the large angle subtended by each

chamber, and the consequent abruptness of their inclination to each

other. In these cases the outward appearance of a spiral tends to

be lost; and it behoves us to recollect, all the more, that our spiral

curve is not necessarily identical with the outline of the shell, but

is always a line drawn through corresponding points in the successive

chambers of the latter.

We reach a limiting case of the logarithmic spiral when the

chambers are arranged in a straight Line ; and the eye will tend to

associate with this limiting case the much more numerous forms in

which the spiral angle is small, and the shell only exhibits a gentle

curve with no succession of enveloping whorls. This constitutes

the Nodosarian type (Fig. 134, p. 421); and here again, we must

postulate some force which has tended to keep the chambers in

a rectilinear series : such for instance as gravity, acting on a system

of "hanging drops."

In Textularia and its allies (Fig. 431) we have a precise parallel

to the helicoid cyme of the botanists (cf. p. 767): that is to say we

have a screw translation, perpendicular to the plane of the underlying

logarithmic spiral. In other words, in tracing a genetic spiral

through the whole succession of chambers, we do so by a continuous

vector rotation through successive angles of 180° (or 120° in some

cases), while the pole moves along an axis perpendicular to the

original plane of the spiral.

Another type is furnished by the "cyclic" shells of the Orbi-

tolitidae, where small and numerous chambers tend to be added

* Cf. G. Schacko, Ueber Glohigerina-^in^chluBS bei Orbulina, Wiegmann's

Archiv, XLix, p. 428, 1883; Brady, Chall. Rep. 1884, p. 607.
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on round and round the system, so building up a circular flattened

disc. This again we perceive to be, mathematically, a hmiting case

of the logarithmic spiral; the spiral has become wellnigh a circle and
the constant angle is wellnigh 90°.

Lastly there are a certain number of Forarninifera in which,

without more ado, we may simply say that the arrangement of the

chambers is irregular, neither the law of constant ratio of magnitude

nor that of constant form being obeyed. The chambers are heaped

pell-mell upon one another, and such forms are known to naturahsts

as the Acervularidae.

A B

Fig. 431. A, Textularia trochus d'Orb. B, T. concava Karrer.

While in these last we have an extreme lack of regularity, we

must not exaggerate the regularity or constancy which the more

ordinary forms display. We may think it hard to believe that the

simple causes, or simple laws, which we have described should operate,

and operate again and again, in millions of individuals to produce

the same delicate and complex conformations. But we are taking

a good deal for granted if we assert that they do so, and in particular

we are assuming, with very little proof, the "constancy of species"

in this group of animals. Just as Verworn has shewn that the

typical Amoeba proteus, when a trace of alkali is added to the water

in which it lives, tends, by alteration of surface tensions, to protrude

the more delicate pseudopodia characteristic of A. radiosa—and

again when the water is rendered a little more alkaline, to turn

apparently into the so-called A. liTnax—so it is evident that a very

slight modification in the surface-energies concerned might tend
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to turn one so-called species into another among the Foraminifera.

To what extent this process actually occurs, we do not know.

But that this, or something of the kind, does actually occur we

can scarcely doubt. For example in the genus Peneroplis, the first

portion of the shell consists of a series of chambers arranged in

a spiral or nautiloid series; but as age advances the spiral is apt to

be modified in various ways*. Sometimes the successive chambers

grow rapidly broader, the whole shell becoming fan-shaped. Some-

times the chambers become narrower, till they no longer enfold the

earlier chambers but only come- in contact each with its immediate

predecessor: the result being that the shell straightens out, and

(taking into account the earlier spiral portion) may be described as

crozier-shaped. Between these extremes of shape, and in regard to

other variations of thickness or thinness, roughness or smoothness,

and so on, there are innumerable gradations passing one into another

and intermixed without regard to geographical distribution:

—

" wherever Peneroplides abound this wide variation exists, and nothing

can be more easy than to pick out a number of striking specimens

and give to each a distinctive name, but in no other way can they be

divided into ' species.' "f Some writers have wondered at the

peculiar variability of this particular shellj; but for all we know

of the life-history of the Foraminifera, it may well be that a great

number of the other forms which we distinguish as separate species

and even genera are no more than temporary manifestations of the

same variabiUty§.

* Cf. H. B. Brady, Challenger Rep., Foraminifera, 1884, p. 203, pi. xin.

t Brady, op. cit. p. 206; Batsch, one of the earliest writers on Foraminifera,

had already noticed that this whole series of ear-shaped and crozier-shaped shells

was filled in by gradational forms; Conchylien des Seesandes, 1791, p. 4, pi. vi,

fig. 15 a-/. See also, in particular, Dreyer, Peneroplis ; eine Studie zur biologischen

Morphologie und zur Speciesfrage, Leipzig, 1898; also Eimer und Fickert, Artbildung

und Verwandschaft bei den Foraminiferen, Tuhinger zool. Arbeiten, ni, p. 35,

1899.

X Doflein, Protozoenlcunde, 1911, p. 263: "Was diese Art veranlasst in dieser

Weise gelegentlich zu variiren, ist vorlaufig noch ganz rathselhaft."

§ In the case of Globigerina, some fourteen species (out of a very much larger

number of described forms) were allowed by Brady (in 1884) to be distinct; and

this list has been, I believe, rather added to than diminished. But these so-called

species depend for the most part on slight differences of degree, differences in the

angle of the spiral, in the ratio of magnitude of the segments, or in their area of

contact one with another. Moreover with the exception of one or two "dwarf"
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ConclvMon

If we can comprehend and interpret on some such lines as these

the form and mode of growth of the foraminiferal shell we may also

begin to understand two striking features of the group, on the one

hand the large number of diverse types or famihes which exist

and the large number of species and varieties within each, and

on the other the persistence of forms which in many cases seem to

have undergone little change or none at all from the Cretaceous or

even frorri earlier periods to the present day. In few other groups,

perhaps only among the Radiolaria, do we seem to possess so nearly

complete a picture of all possible transitions between form and

form, and of the whole branching system of the evolutionary tree

:

as though little or nothing of it had ever perished, and the whole

web of life, past and present, were as complete as ever. It leads

one to imagine that these shells have grown according to laws so

simple, so much in harmony with their material, with their environ-

ment, and with all the forces internal and external to which they

are exposed, that none is better than another and none fitter or less

fit to survive. It invites one also to contemplate.the possibility of

the lines of possible variation being here so narrow and determinate

that identical forms may have come independently into being again

and again.

While we can trace in the most complete and beautiful manner

the passage of one form into another among these httle shells, and

ascribe them all at last (if we please) to a series which starts with the

simple sphere of Orhulina or with the amoeboid body of Astrorhiza,

the question stares us in the face whether this be an "evolution"

which we have any right to correlate with historic time. The

mathematician can trace one conic section into another, and " evolve
"

for example, through innumerable graded ellipses, the circle from

the straight line: which tracing of continuous steps is a true

"evolution," though time has no part therein. It was after this

fashion that Hegel, and for that matter Aristotle himself, was an

forms, said to be limited to Arctic and Antarctic waters, there is no principle of

geographical distribution to be discerned amongst them. A species found fossil

in New Britain turns up in the North Atlantic; a species described from the West
Indies is rediscovered at the ice- barrier of the Antarctic.
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evolutionist—to whom evolution was a mental concept, involving

order and continuity in thought but not an actual sequence of events

in time. Such a conception of evolution is not easy for the modern

biologist to grasp, and is harder still to appreciate. And so it is

that even those who, like Dreyer* and like Rhumbler, study the

foraminiferal shell as a physical system, who recognise that its

whole plan and mode of growth is closely akin to the phenomena

exhibited by fluid drops under particular conditions, and who
explain the conformation of the shell by help of the same physical

principles and mathematical laws^yet all the while abate no jot

or tittle of the ordinary postulates of modern biology, nor doubt

the validity and universal applicability.of the concepts of Darwinian

evolution. For these writers the biogenetisches Grundgesetz remains

impregnable. The Foraminifera remain for them a great family

tree, whose actual pedigree is traceable to the remotest ages; in

which historical evolution has coincided with progressive change;

and in which structural fitness for a particular function (or functions)

has exercised its selective action and ensured "the survival of the

fittest." By successive stages of historic evolution we are supposed

to pass from the irregular Astrorhiza to a Rhahdammina with its

more concentrated disc; to the forms of the same genus which

consist of but a single tube with central chamber; to those where

this chamber is more and more distinctly segmented; so to the

typical many-chambered Nodosariae; and from these, by another

definite advance and later evolution to the spiral Trochamminae.

After this fashion, throughout the whole varied series of the Fora-

minifera, Dreyer and Rhumbler (following Neumayr) recognise so

many successions of related forms, one passing into another and

standing towards it in a definite relationship of ancestry or descent.

Each evolution of form, from simpler to more complex, is deemed

to have been attended by an advantage to the organism, an

enhancement of its chances of survival or perpetuation ; hence the

historically older forms are on the whole structurally the simpler;

or conversely, the simpler forms, such as the simple sphere, were

the first to come into being in primeval seas; and finally, the

gradual development and increasing comphcation of the individual

* F. Dreyer, Prinzipien der Gerustbildung bei Rhizopoden, etc., Jen. Zeitschr.

XXVI, pp. 204-468, 1892.



XII] or THE FORAMINIFERA 871

within its own lifetime is hfeld to be at least a partial recapitulation

of the unknown history of its race and dynasty*

We encounter many difficulties when we try to extend such

concepts as these to the Foraminifera. We are led for instance to

assert, as Rhumbler does, that the increasing complexity of the

shell, and of the manner in which one chamber is fitted on another,

makes for advantage; and the particular advantage on which

Rhumbler rests his argument is strength. Increase of strength, die

Festigkeitssteigerung, is according to him the guiding principle in

foraminiferal evolution, and marks the historic stages of their

development in geologic time. But in days gone by I used to see

the beach of a little Connemara bay bestrewn with millions upon

millions of foraminiferal shells, simple Lagenae, less simple Nodosariae,

more complex Rotaliae : all drifted by wave and gentle current

from their sea-cradle to their sandy grave: all lying bleached and

dead: one more delicate than another, but all (or vast multitudes

of them) perfect and unbroken. And so I am not incUned to beheve

that niceties of form affect the case very much : nor in general that

foraminiferal life involves a struggle for existence wherein breakage

is a danger to be averted, and strength an advantage to be

ensured f.

In the course of the same argument Rhumbler remarks that

Foraminifera are absent from the coarse sands and gravels J, as

Williamson indeed had observed many years ago: so averting, or

at least escaping, the dangers of concussion. But this is after all

* A difficulty arises in the case of forms (like Peneroplis) where the young shell

appears to be more complex than the old, the jfirst-formed portion being closely

coiled while the later additions become straight and simple: "die biformen Arten

verhalten sich, kurz gesagt, gerade umgekehrt als man nach dem biogenetischen

Grundgesetz erwarten sollte," Rhumbler, op. cit. p. 33, etc.

f "Das Festigkeitsprinzip als Movens der Weiterentwicklung ist zu interessant

und fiir die Aufstellung meiries Systems zu wichtig um die Frage unerortert zu

lassen, warum diese Bevorziigung der Festigkeit stattgefunden hat. Meiner

Ansicht nach lautet die Antwort auf diese Frage einfach, well die Foraminiferen

meistens unter Verhaltnissen leben, die ihre Schalen in hohem Grade der Gefahr

des Zerbrechens aussetzen; es muss also eine fortwahrende Auslese des Festeren

stattfinden," Rhumbler, op. cit. p. 22.

X
" Die Foraminiferen kiesige oder grobsandige Gebiete des Meeresbodens nicht

lieben, u.s.w.": where the last two words have no particular meaning, save only

that (as M. Aurelius says) "of things that use to be, we say commonly that they

love to be."
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a very simple matter of mechanical analysis. The coarseness or

fineness of the sediment on the sea-bottom is a measure of the

current: where the current is strong the larger stones are washed

clean, where there is perfect stillness the finest mud settles down;

and the light, fragile shells of the Foraminifera find their appropriate

place, like every other graded sediment in this spontaneous order

of levigation.

The theorem of Organic Evolution is one thing; the problem of

deciphering the lines of evolution, the order of phylogeny, the degrees

of relationship and consanguinity, is quite another. Among the

higher organisms we arrive at conclusions regarding these things

by weighing much circumstantial evidence, by dealing with the

resultant of many variations, and by considering the probability

or improbability of many coincidences of cause and effect; but

even then our conclusions are at best uncertain, our judgments are

continually open to revision and subject to appeal, and all the proof

and confirmation we can ever have is that which comes from the

direct, but fragmentary evidence of palaeontology*.

But in so far as forms can be shewn to depend on the play of

physical forces, and the variations of form to be directly due to

simple quantitative variations in these, just so far are we thrown

back on our guard before the biological conception of consanguinity,

and compelled to revise the vague canons which connect classification

with phylogeny.

The physicist explains in terms of the properties of matter, and

classifies according to a mathematical analysis, all the drops and

forms of drops and associations of drops, all the kinds of froth and

foam, which he may discover among inanimate things; and his

task ends there. But when such forms, such conformations and

configurations, occur among living things, then at once the biologist

introduces his concepts of heredity, of historical evolution, of suc-

cession in time, of recapitulation of remote ancestry in individual

growlh, of common origin (unless contradicted by direct evidence)

of similar forms remotely separated by geographic space or geologic

time, of fitness for a function, of adaptation to an environment, of

higher and lower, of " better " and " worse." This is the fundamental

* In regard to the Foraminifera, "die Palaeontologie lasst uns leider an Anfang

der Stammesgeschichte fast ganzlich im Stiche," Rhumbler, op. cit. p. 14.
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difference between the "explanations" of the physicist and those

of the biologist.

In the order of physical and mathematical complexity there is

no question of the sequence of historic time. The forces that bring

about the sphere, the cylinder or the ellipsoid are the same yesterday

and to-morrow. A snow-crystal is the same to-day as when the first

snows fell. The physical forces which mould the forms of Orbulina,

of Astrorhiza, of Lagena or of Nodosaria to-day were still the same,

and for aught we have reason to believe the physical conditions

under which they worked were not appreciably different, in that

yesterday which we call the Cretaceous epoch; or, for aught we

know, throughout all that duration of time which is marked, but

not measured, by the geological record.

In a word, the minuteness of our organism brings its conformation

as a whole within the range of the molecular forces; the laws of

its growth and form appear to lie on simple lines; what Bergson

calls* the "ideal kinship" is plain and certain, but the "material

afiihation" is problematic and obscure; and, in the end and upshot,

it seems to me by no means certain that the biologist's usual mode

of reasoning is appropriate to the case, or that the concept of con-

tinuous historical evolution must necessarily, or may safely and

legitimately, be employed.

That things not only alter but improve is an article of faith, and

the boldest of evolutionary conceptions. How far it be true -were

very hard to say; but I for one imagine that a pterodactyl flew no

less w^ell than does an albatross, and that Old Red Sandstone fishes

swam as well and easily as the fishes of our own seas.

* The evolutionist theory, as Bergson puts it, "consists above all in establishing

relations of ideal kinship, and in maintaining that wherever there is this relation of,

so to speak, logical affiliation between forms, there is also a relation of chronological

succession between the species in which these forms are materialised''^ {Creative

Evolution, 1911, p. 26). Cf. supra, p. 412.



CHAPTEPv XIII

THE SHAPES OF HORNS, AND OF TEETH OR TUSKS:
WITH A NOTE ON TORSION

We have had so much to say on' the subject of shell-spirals that we

must deal briefly with the analogous problems which are presented by

the horns of sheep, goats, antelopes and other horned quadrupeds;

and all the more, because these horn-spirals are on the whole less

symmetrical, less easy of measurement than those of the shell, and

in other ways also are less easy of investigation. Let us dispense

altogether in this case with mathematics; and be content with a

very simple account of the configuration of a horn.

There are three types of horn which deserve separate consideration

:

firstly, the horn of the rhinoceros; secondly, the horns of the sheep,

the goat, the ox or the antelope, that is to say, of the so-called

hollow-horned ruminants; and thirdly, the solid bony horns, or

"antlers," which are characteristic of the deer.

The horn of the rhinoceros presents no difficulty. It is physio-

logically equivalent to a mass of consolidated hairs, and, like ordinary

hair, it consists of non-living or "formed" material, continually

added to by the living tissues at its base. In section the horn is

elliptical, with the long axis fore-and-aft, or in some species nearly

circular. Its longitudinal growth proceeds with a maximum velocity

anteriorly, and a minimum posteriorly; and the ratio of these

velocities being constant, the horn curves into the form of a loga-

rithmic spiral in the manner that we have already studied. The

spiral is of small angle, but in the longer-horned species, such as

the great white rhinoceros (Ceratorhinus), the spiral curvature is

distinctly recognised. As the horn occupies a median position on

the head—a position, that is to say, of symmetry in respect to the

field of force on either side—there is no tendency towards a lateral

twist, and the horn accordingly develops as a plane logarithmic

spiral. When two median horns coexist, the hinder one is much
the smaller of the two: which is as much as to say that the force,
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or rate, of growth diminishes as we pass backwards, just as it does

within the limits of the single horn. And accordingly, while both

horns have essentially the same shape, the spiral curvature is less

manifest in the second one, by the mere reason of its shortness.

The paired horns of the ordinary hollow-horned ruminants, such

as the -sheep or the goat, grow under conditions which are in some

respects similar, but which differ in other and important respects

from the conditions under which the horn grows in the rhinoceros.

As regards its structure, the entire horn now consists of a bony core

with a covering of skin ; the inner, or dermal, layer of the latter is

richly supplied with nutrient blood-vessels, while the outer layer,

or epidermis, develops the fibrous or chitinous material, chemically

and morphologically akin to a mass of cemented or consolidated

hairs, which constitutes the " sheath" of the horn. A zone of active

growth at the base of the horn keeps adding to this sheath, ring

by ring, and the specific form of this annular zone may be taken

as the "generating curve" of the horn*. Each horn no longer

lies, as it does in the rhinoceros, in the plane of symmetry of the

animal of which it forms a part; and the limited field of force con-

cerned in the genesis and growth of the horn is bound, accordingly,

to be more or less laterally asymmetrical. But the two horns are

in symmetry one with another; they form "conjugate" spirals, one

being the "mirror-image" of the other. Just as in the hairy coat

of the animal each hair, on either side of the median "parting,"

tends to have a certain definite direction of its owji, inclined away

from the median axial plane of the whole system, so is it both with

the bony core of the horn and with the consolidated mass of hairs

or hair-like substance which constitutes its sheath; the primary axis

of the horn is more or less inclined to, and may even be nearly

perpendicular to, the axial plane of the animal.

The growth of the horny sheath is not continuous, but more or

less definitely periodic : sometimes, as in the sheep, this periodicity

is particularly well-marked, and causes the horny sheath to be com-

* In this chapter we keep to Moseley's way of regarding the equiangular spiral

in space, of shell or horn, as generated by a certain figure which (a) grows, (6) revolves

about an axis, and (c) is translated along or parallel to the said axis, all at certain

appropriate and specific velocities. This method is simple, and even adequate,

from the naturalist's point of view; but not so, or much less so, from the mathe-

matician's, as we have found in the last chapter (p. 782).
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posed of a series of all but separate rings, which are supposed to be

formed year by year, and so to record the age of the animal*.

Just as Moseley sought for the true generating curve in the orifice,

or "lip," of the moUuscan shell, so we begin by assuming that

in the spiral horn the generating curve corresponds to the lip or

margin of one of the horny rings or annuli. This annular margin,

or boundary of the ring, is usually a sinuous curve, not lying in

a plane, but such as would form the boundary of an anticlastic

surface of great complexity: to the meaning and origin of which

phenomenon we shall return presently. But, as we have already

seen in the case of the molluscan shell, the complexities of the Up

itself, or of the corresponding lines of growth upon the shell, need

Fig. 432. The Argali sheep; Ovis Ammon. From Cook's

Spirals in Nature and Art.

not concern us in our study of the development of the spiral:

inasmuch as we may substitute for these actual boundary lines,

their "trace," or projection on a plane perpendicular to the axis—in

other words the simple outline of a transverse section of the whorl.

In the horn, this transverse section is often circular or nearly so,

as in the oxen and many antelopes: it now and then becomes of

* Cf. R. S. Hindekoper, On the Age of the Domestic Animals, Philadelphia and

London, 1891, p. 173. In the case of the ram's horn, the assumption that the rings

are annual is probably justified. In cattle they are much less conspicuous, but

are sometimes well-marked in the cow; and in Sweden they are then called

"calf-rings," from a belief that they record the number of offspring. That is

to say, the growth of the horn is supposed to be retarded during gestation, and to

be accelerated after parturition, when superfluous nourishment seeks a new outlet.

(Cf. Lonnberg, P.Z.S. 1900, p. 689.)



XIII] OF SHEEP AND GOATS 877

somewhat complicated polygonal outline, as in a highland ram ; but

in many antelopes, and in most of the sheep, the outline is that of

an isosceles or sometimes nearly equilateral triangle, a form which

is typically displayed, for instance, in Ovis Ammon. The horn in

this latter case is a trihedral prism, whose three faces are (1) an

upper, or frontal face, in continuation of the plane of the frontal

bone; (2) an outer, or orbital, starting from the upper margin of

the orbit; and (3) an inner, or nuchal, abutting on the parietal

bone*. Along these three faces, and their corresponding angles or

edges, we can trace in the fibrous substance of the horn a series of

homologous spirals, such as w^e have called in a preceding chapter

the ''ensemble of generating spirals" which define or constitute the

surface.

The case of the horn differs in ways of its own from that of

the molluscan shell. For one thing, the horn is always tubular

—

its generating curve is actually, as well as theoretically, a closed

curve; there is no such thing as "involution," or the wrapping of

one whorl within another, or successive intersection of the generating

curve. Again, while the calcareous substance of the shell is laid

down once for all, fixed and immovable, there is reason to believe

that the young horn has, to begin with, a certain measure of flexi-

bility, a certain freedom, even though it be slight, to bend or fold

or wrinkle. And this being so, while it is no harder in the horn

than in the shell to recognise the general field of force or general

direction of growth, the actual conditions are somewhat more

complex.

In some few cases, of which the male musk ox is- one of the most

notable, the horn is not developed in a continuous spiral curve. It

changes its shape as growth proceeds; and this, as we have seen,

is enough to show that it does not constitute a logarithmic spiral.

The reason is that the bony exostoses, or horn-cores, about which

the horny sheath is shaped and moulded, neither grow continuously

nor even remain of constant size after attaining their full growth.

But as the horns grow heavy the bony core is bent downwards by
their weight, and so guides the growth of the horn in a new direction.

Moreover as age advances, the core is further weakened and to

a great extent absorbed: and the horny sheath or horn proper,

* Cf. Sir V. Brooke, On the large sheep of the Thian Shan, P.Z.S. 1875, p. 511.
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deprived of its support, continues -to grow, but in a flattened curve

very different from its original spiral*. The chamois is a somewhat

analogous case. Here the terminal, or oldest, part of the horn is

curved; it tends to assume a spiral form, though from its com-

parative shortness it seems merely to be bent into a hook. But

later on the bony core within, as it grows and strengthens, stiffens

the horn and guides it into a straighter course or form. The same

phenomenon of change of curvature, manifesting itself at the time

when, or the place where, the horn is freed from the support of the

internal core, is seen in a good many other antelopes (such- as the

Fig. 4.33. Diagram of ram's horns, a, frontal; h, orbital; c, nuchal surface.

After Sir Vincent Brooke, from P.Z.S.

hartebeest) and in many buffaloes; and the cases where it is most

manifest appear to be those where the bony core is relatively short,

or relatively weak. All these illustrate the cardinal difference

between the growth of the horn and that of the bone below: the

one dead, the other alive; the one adding and retaining its successive

increments, the other mobile, plastic, and in eontinual flux through-

out.

But in the great majority of horns we have no difficulty in

recognising a continuous logarithmic spiral, nor in correlating it

with an unequal rate of growth (parallel to the axis) on two

opposite sides of the horn, the inequality maintaining a constant

ratio as long as growth proceeds. In certain antelopes, such as the

gemsbok, the spiral angle is very smafl, or in other words the horn

* Cf. E. Lonnberg, On the structure of the musk ox, P.Z.S. 1900, pp. 686-718.
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is very nearly straight; in other species of the same genus OryXy

such as the Beisa antelope and the Leucoryx, a gentle curve (not

unlike though generally less than that of a Dentalium shell) is

evident; and the spiral angle, according to the few measurements

I have made, is found to measure from about >20° to nearly 40°.

In some of the large wild goats, such as the Scinde wild goat, we have

Fig. 484. Head of Arabian wild goat, Capra sinaitica.

After Sclater, from P.Z.S.

a beautiful logarithmic spiral, with a constant angle of rather less

than 70°; and we may easily arrange a series of forms, such for

example as the Siberian ibex, the moufflon, Ovis Ammon, etc., and

ending with the long-horned Highland ram: in which, as we pass

from one to anothei', we recognise precisely homologous spirals with

an increasing angular constant^ the spiral angle being, for instance,

about 75° or rather less in Ovis Ammon, and in the Highland ram

a very little more. We have already seen that in the neighbourhood

of 70° or 80° a small change of angle makes a marked difference in
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the appearance of the spire ; and we know also that the actual length

of the horn makes a very striking difference, for the spiral becomes

especially conspicuous to the eye when horn or shell is long enough

to shew several whorls, or at least a considerable part of one entire

convolution.

Even in the simplest cases, such as the wild goats, the spiral is

never a plane but always a gauche spiral : in greater or less degree

there is always superposed upon the plane logarithmic spiral a helical

spiral in space. Sometimes the latter is scarcely apparent, for the

horn (though long, as in the said wild goats) is not nearly long

enough to shew a complete convolution : at other times, as in the

ram, and still better in many antelopes such as the koodoo, the

corkscrew curve of the horn becomes its most characteristic feature.

So we may study, as in the molluscan shell, the helicoid component

of the spire—in other words the variation in what we have called

(on p. 816) the angle j^. This factor it is which, more than the

constant angle of the logarithmic spiral, imparts a characteristic

appearance to the various species of sheep, for instance to the various

closely allied species of Asiatic wild sheep, or Argali. In all of'these

the constant angle of the logarithmic spiral is very much the same,

but the enveloping angle of the cone differs greatly. Thus the long

drawn out horns of Ovis Poli, four feet or more from tip to tip,

diifer conspicuously from those of Ovis Ammon or 0. hodgsoni, in

which a very similar logarithmic spiral is wound (as it were) round

a much blunter cone.

Let us continue to dispense with mathematics, for the mathe-

matical treatment of a gauche spiral is never very simple, and let

us deal with the matter by experiment. We have seen that the

generating curve, or transverse section, of a typical ram's horn is

triangular in form. Measuring (along the curve of the horn) the

length of the three edges of the trihedral structure in a specimen of

Ovis Ammon, and calling them respectively the outer, inner, and

hinder edges (from their position at the base of the horn, relatively

to the skull), I find the outer edge to measure 80 cm., the inner

74 cm., and the posterior 45 cm. ; let us say that, roughly, they are

in the ratio of 9:8:5. Then, if we make a number of little

cardboard triangles, equip each with three httle legs (I make them

of cork), whose relative lengths are as 9:8:5, and pile them up
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and stick them all together, we straightway build up a curve ol

double curvature precisely analogous to the ram's horn: except

only that, in this first approximation, we have not allowed for the

gradual increment (or decrement) of the triangular surfaces, that is

to say, for the tapering of the horn due to the magnification of the

generating curve.

In this case then, and in most other trihedral or three-sided horns,

one of the three components, or three unequal velocities of growth,

is of relatively small magnitude, but the other two are nearly equal

one to the other; it would involve but little change for these latter

to become precisely equal; and again but little to turn the balance

of inequality the other way. But the immediate consequence of

this altered ratio of growth would be that the horn would appear to

wind the other way, as it does in the antelopes, and also in certain

goats, e.g. the markhor, Capra falconeri.

For these two' opposite directions of twist Dr Wherry has suggested a

convenient nomenclature. When the horn winds so that we follow it from
base to apex in the direction of the hands of a watch, it is customary to call

it a "left-handed" spiral. Such a spiral we have in the horn on the left-hand

side of a ram's head. Accordingly, Dr Wherry calls the condition homonymous,

where, as in the sheep, a right-handed spiral is on the right side of the head,

and a left-handed spiral on the left sid,e ; while he calls the opposite condition

heteronymmis, as we have it in the antelopes, where the right-handed twist

is on the left side of the head, and the left-handed twist on the right-hand side.

Among the goats, we may have either condition. Thus the domestic and
most of the wild goats agree with the sheep; but in the markhor the twisted

horns are heteronymous, as in the antelopes. The difference, as we have

seen, is easily explained; and (very much as in the case of our opposite spirals

in the apple-snail, referred to on p. 820) it has no very deep importance

Summarised then in a very few words, the argument by which

we account for the spiral conformation of the horn is as follows

:

The horn elongates by dint of continual growth within a narrow

zone, or annulus, at its base. If the rate of growth be identical on

all sides of this zone, the horn will "grow straight; if it be greater

on one side than on the other, the horn will become curved; and

it probably will be greater on one side than on the other, because

each single horn occupies an unsymmetrical field with reference to

the plane of symmetry of the animal. If the maximal and minimal

velocities of growth be precisely at opposite sides of the zone of
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growth, the resultant spiral will be a plane spiral ; but if they be not

precisely or diametrically opposite, then the spiral will be a gauche

spiral in space ; and it is by no means likely that the maximum and

minimum will occur at precisely opposite ends of a diameter, for no

such plane of symmetry is manifested in the field of force to which

the growing annulus corresponds or appertains.

Now we must carefully remember that the rates of growth of which

we are here speaking are the net rates of longitudinal increment, in

which increment the activity of the living cells in the zone of growth

at the base of the horn is only one (though it is the fundamental)

factor. In other words, if the horny sheath were continually being

added to with equal rapidity all round its zone of active growth.

Fig. 4,*i5. Marco Polo's sheep: Ovis FoU. From Cook.

but at the same time had its elongation more retarded on one side

than the other (prior to its complete solidification) by varying degrees

of adhesion or membranous attachment to bhe bony core within,

then the net result would be a spiral curve precisely such as would

have arisen from initial inequalities in the rate of growth itself. It

seems probable that this is an important factor, and sometimes even

the chief factor in the case. The same phenomenon of attachment

to the bony core, and the consequent friction or retardation with

which the sheath slides over its surface, will lead to various subsidiary

phenomena: among others to the presence of transverse folds or

corrugations upon the horn, and to their unequal distribution upon its

several faces or edges. And while it is perfectly true that nearly all

the characters of the hotn ca n be accounted for by unequal velocities
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of longitudinal growth upon its different sides, it is also plain that the

actual field of force is a very complicated one indeed. For example,

we can easily see (at least in the great majority of cases) that the

direction of growth of the horny fibres of the sheath is by no means

parallel to the axis of the core within; accordingly these fibres will

tend to wind in a system of helicoid curves around the core, and not

only this hehcoid twist but any other tendency to spiral curvature

on the part of the sheath will tend to be opposed or modified by the

resistance of the core within. On the other hand living bone is a

very plastic structure, and yields easily though slowly to any forces

tending to its deformation; and so, to a considerable extent, the

bony core itself will tend to be modelled by the curvature which the

Fig. 43(5. Head of Ovis Ammon, shewing St Venant's curves.

growing sheath assumes, and the final result will be determined by

an equilibrium between these two systems.

While it is not very safe, perhaps, to lay down any general rule

as to what horns are more and what are less spirally curved, I think

it may be said that, on the whole, the thicker the horn the greater

is its spiral curvature. It is the slender horns, of such forms as

the Beisa antelope, which are gently curved, and it is the robust

horns of goats or of sheep in which the curvature is more pronounced.

Other things being the same, this is what we should expect to find

;

for it is where the transverse section of the horn is large that we may
expect to find the more marked differences in the intensity of the

field of force, whether of active growth or of retardation, on opposite

sides or in different sectors thereof.
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But there is yet another and a very remarkable phenomenon

which we may discern in the growth of a horn when it takes the

form of a curve of double curvature^ namely, an effect of torsional

strain; and this it is which gives rise to the sinuous " lines of growth,"'

or sinuous boundaries of the separate horny rings, of which we have

already spoken. It is not at first sight obvious that a mechanical

strain of torsion is necessarily involved in the growth of the horn.

In our experimental illustration (p. 880), we built up a twisted coil of

separate elements, and no torsional strain attended the development

of the system. So would it be if the horny sheath grew by successive

annular increments, free save for their relation to one another and

having no attachment to the 'Solid core within. But as a matter

of fact there is such an attachment, by subcutaneous connective

tissue, to the bony core; and accordingly a torsional strain will be

set up in the growing horny sheath, again provided that the forces

of growth therein be directed more or less obliquely to the axis of

the core; for a -'couple" is thus introduced, giving rise to a strain

which the sheath would not experience were it free (so to speak)

to shp along, impelled only by the pressure of its own growth from

below. And furthermore, the successive small increments of the

growing horn (that is to say, of the horny sheath) are not instan-

taneously converted from living to solid and rigid substance; Init

there is an intermediate stage, probably long-continued, during

which the new-formed horny substance in the neighbourhood of the

zone of active growth is still plastic and capable of deformation.

Now we know, from the celebrated experiments of St Venant*,

that in the torsion of an elastic body, other than a cylinder of

circular section, a very remarkable state of strain is introduced. If

the body be thus cylindrical (whether solid or hollow), then a twist

leaves each circular section unchanged, in dimensions and in figure.

But in all other cases, such as an elliptic rod or a prism of any

particular sectional form, forces are introduced which act parallel

to the axis of the structure, and which warp each section into a

complex " anticlastic " surface. Thus^ in the case of a triangular and

St Venant, De la torsion ties prismes, avec des considerations sur leur flexion,

etc., Mem. des Savants J'jtrangers, Paris, xiv, pp. 233-560, 1856. Karl Pearson

dedicated part of his History of the Theory of Elasticity to the memory of this

ingenious and original man. For a modern account of the subject see Love's

Elasticity (2nd ed.), chaj), xiv.
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e(|uilateral prism, such as is shewn in section in Fig. 437 A, if the part

of the rod represented in the section be twisted by a force acting

in the direction of the arrow, then the originally plane section will

be warped as indicated in the diagram—where the full contour-lines

represent elevation above, and the dotted lines represent depression

below, the original level. On the external surface of the prism,

then," contour-lines which were originally parallel and horizontal

will be found warped into sinuous curves, such that, on each of the

three faces, the curve will be convex upwards on one half, and

concave upwards on the other half of the face. The ram's horn,

and still better that of Ovis Ammon, is comparable to such a prism,

A Fig. 437.

save that in section it is not quite equilateral, and that its three

faces are not plane. The warping is therefore not precisely identical

on the three faces of the horn; but, in the general distribution of

the curves, it is in complete accordance with theory*. Similar

anticlastic curves ?ire well seen in many, antelopes; but they are

conspicuous by their absence in the cylindrical horns of oxen.

The better to illustrate this phenomenon, the nature of which is

indeed obvious enough from a superficial examination of the horn,

I made a plaster cast of one of the horny rings in a horn of Ovis

Arnmon, so as to get an accurate pattern of its sinuous edge : and

then, filling the mould up -with wet clay, I modelled an anticlastic

* The case of a thin conical shell under torsion is more complicated than either

that of the cylinder or of a prismatic rod ; and the more tapering, horns doubtless

deserve further study from this point of view. Cf. R. V. Southwell, On the torsion

of conical shells, Proc. R.S. (A), clxiii, pp. 337-355, 1937.
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surface, such as to correspond as nearly as possible with the sinuous

outhne*. Finally, after making a plaster oast of this sectional

surface, I drew its contour-lines (as shewn in Fig. 437 B) with the

help of a simple form of spherometer. It will be seen that in great

part this diagram is precisely similar to St Venant's diagram of the

•cross-section of a twisted triangular prism; and this is especially

the case in the neighbourhood of the sharp angle of our prismatic

section. That in parts the diagram is somewhat asymmetrical is

not to be wondered at: and (apart from inaccuracies due to the

somewhat rough means by which it was made) this asymmetry can

be sufficiently accounted for by anisotropy of the material, by

inequalities in thickness of different parts of the horny sheath, and

especially (I think) by unequal distributions of rigidity due to the

presence of the smaller corrugations of the horn. It is on account

of these minor corrugations that in such horns as the Highland

ram's, where they are strongly marked, the main St Venant effect

is not nearly so well shewn as in smoother horns, such as those of

Ovis Ammon and its congeners f.

The distribution of forces which manifest themselves in the

growth and configuration of a horn is no simple nor merely super-

ficial matter. One thing is coordinated with another; the direction

of the axis of the horn, the form of its sectional boundary, the

specific rates of growth in the mean spiral and at various parts

of its periphery—all' these play their parts, controlled in turn by

the supply of nutriment which the character of the adjacent tissues

and the distribution of the blood-vessels combine to determine.

To suppose. that this or that size or shape of horn has been pro-

duced or altered, acquired or lost, by Natural Selection, whensoever

one type rather than another proved serviceable for defence or

attack or any other purpose, is an hypothesis harder to define and

to substantiate than some imagine it to be.

There are still one or two small matters to speak of before we leave

these spiral horns. It is the way of sportsmen to keep record of big

game by measuring the length along the curve of the horn and

the span from tip to tip. Now if we study such measurements (as

* This is not difficult to do, with considerable accuracy, if the clay be kept

well wetted or semi-fluid, and the smoothing be done with a large wet brush.

t The curves are well shewn in most of Sir V. Brooke's figures of the various

species of Argali, in the paper quoted above, on p. 877.
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they may be found in Mr Rowland Ward's book*), we shall soon

see that the two measurements do not tally one with the other:

but that a pair of horns, the longer when measured along the curve,

may be the shorter from tip to tip, and vice versa. We might set

this down to mere variability of form, but the true reason is simpler

still. If the axes of the two horns stood straight out, at right angles

to the median plane, then growth in length and in width of span

would go on together. But if the two horns diverge at any lesser

angle, then as the horns grow their spiral curvature will tend to

bring their tips nearer and farther apart alternately.

There is one last, but not least curious property to be seen in

a ram's horns. However large and heavy the horns may be—and

in Ovis Poll 50 or 60 lb. is no unusual weight for the pair to grow to

—

the ram carries them with grace and ease, and they neither endanger

his poise nor encumber his movements. The reason is that head

and horns are very perfectly balanced, in such a way that no bending

moment tends to turn the head up or down about its fulcrum in

the atlas vertebra ; if one puts two fingers into the foramen magnum
one may lift up the heavy skull, and find it hang in perfect equili-

brium. Moreover, the horns go on growing, but this equipoise is

never lost nor changed ; for the centre of gravity of the logarithmic

spiral remains constant. There are other cases where heavy horns,

well balanced as they doubtless are, yet visibly affect the set and

balance of the head. The stag carries his head higher than a horse,

and an Indian buffalo tilts his muzzle higher than a cow.

A further note upon torsion

The phenomenon of torsion, to which we have been thus intro-

duced, opens up many wide questions in connection with form. Some

of the associated phenomena are admirably illustrated in the case

of climbing plants ; but we can only deal with these still more briefly

and parenthetically. The subject has been elaborately dealt with

not only in Darwin's books f, but also by a great number of

earlier and later writers. In "twining" plants, which constitute

the greater number of "climbers," the essential phenomenon is a

tendency of the growing shoot to revolve about a vertical axis

—

* Records of Big Game, 9th edition, 1928.

t Climbing Plants, 1865 (2nd ed. 1875); Power of Movement in Plants, 1880.
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a tendency long ago discussed by de Candolle and investigated by

Palm, H. von Mohl and Dutrochet*. This tendency to revolution

—

circumvolution, as Darwin calls it, revolving nutation, as Sachs puts

it—is very closely comparable to the process by which an antelope's

horn (such as the koodoo's) acquires its spiral twist, and is due, in like

manner, to inequahties in the rate of growth of the growing stem

:

with this difference between the two, that in the antelope's horn

the zone of active growth is confined to the base of the horn, while

in the climbing stem the same phenomenon is at work throughout

the whole length of the growing structure. This growth is in the

main due to "turgescence," that is to the extension, or elongation,

of ready-formed cells through the imbibition of water ; it is a phe-

nomenon due to osmotic pressure. The particular stimulus to which

these movements (that is to say, these inequalities of growth) have

been ascribed can hardly be discussed here; but it was hotly

debated fifty years ago and for many years thereafter, the point

at issue being no other than whether direct physical causation, or

the Darwinian concept of fitness or adaptation, should be invoked

as an "explanation" of biological phenomena. The old Natur-

philosophie had been inclined to look for spirals everywhere, and to

attribute them to very simple causes: "Man wird nicht gross irren"

(said Okenf) "wenn man sagt, alle Pflanzen entstehen als Spirale,

und zwar weil sie feststehen und ein End gegen die Sonne kehren,

die taglich einen Spiralgang um sie ihacht, u.s.w." When de

Candolle saw a shoot curve under the influence of light (by helio-

tropism, as we are told to call it), he was content to regard the

curvature as the result of difi'erent rates of growth on one side

or other of the shoot, and these in turn as the direct result of

differences of illumination. But by the Darwins, father and son,

and by Sachs and by the Wiirzburg school, the curvature was

ascribed to "irritability," a "stimulus" on one side of the shoot

being followed by a "motor-reaction" on the other. The curvature

was thus taken to be a "response" to external stimuli (such as light

and gravity); and stimulus and response were supposed to have

* Palm, Ueber das Winden der Pflanzen, 1827; H. von Mohl, Bau und Windert

der Ranken, etc., 1827; R. H. J. Dutrochet, Sur la volubilite des tiges de certains

vegetaux, et sur la cause de ce phenomene, Ann. Sc. Nat. {Bot.), ii, pp. 156-167,

1844, and other papers,

t Isis, I, p. 222, 1817.
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evolved together in the course of ages, to bring about something

more and more fitted for survival in the struggle for existence.

They were, in short, of the nature of acquired habits, rather than

physical phenomena. But there was no gainsaying the fact that the

immediate cause of curvature was inequahty of growth on opposite

sides*.

A simple stem growing upright in the dark, or in uniformly diffused

light, would be in a position of equilibrium to a field of force radially

symmetrical about its vertical axis. But this complete radial sym-

metry will not often occur; and the radial anomalies may be such

as arise intrinsically from structural pecuHarities in"the stem itself,

or externally to it by reason of unequal illumination or through

various other locahsed forces. The essential fact, so far as we are

concerned, is that in twining plants we have a very marked tendency

to inequahties in longitudinal growth on different aspects of the

stem^a tendency which is but an exaggerated manifestation of one

which is more or less present, under certain conditions, in all plants

whatsoever. Just as in the case of the ruminants' horns so we find

here that this inequality may be, so to speak, positive or negative,

the maximum lying to the one side or the other of the twining stem

;

and so it coiftes to pass that some climbers twine to the one side

and some to the other : the hop and the honeysuckle following the

sun, and the field-convolvulus twining in the reverse direction ; there

are also some, like the woody nightshade (/So/ai<Mm Dulcamara), which

twine indifferently either way.

Together with this circumnutatory movement, there is very

generally to be seen an actual torsioyi of the twining stem—a twist,

that is to say, about its own axis; and Mohl made the curious

observation, confirmed by Darwin, that when a stem twines around

a smooth cylindrical stick the torsion does not take place, save

'only in that degree which follow^ as a mechanical necessity from

the spiral winding": but that stems which had cHmbed around

a rough stick were all more or less; and generally much, twisted.

Here Darwin did not refrain from introducing that teleological argu-

ment which pervades his whole train of reasoning: "The stem,"

he says, "probably gains rigidity by being twisted (on the same

* On the whole controversy, see F. P. Blackman's obituary notice of Francis

Darwin in Proc. R.8. (B), ex, 1932.
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principle that a much twisted rope is stiffer than a slackly twisted

one), and is thus indirectly benefited so as to be able to pass over

inequalities in its spiral ascent, and to carry its own weight when

allowed to revolve freely." The mechanical explanation would

appear to be very simple, and such as to render the teleological

hypothesis unnecessary. In the case of the roughened support,

there is a temporary adhesion or "clinging" between it and the

growing stem which twines around it; and a system of forces is

thus set up, producing a "couple," just as it was in the case of the

ram's or antelope's horn through direct adhesion of the bony core

to the surrounding sheath. The twist is the direct result of this

couple, and it disappears when the support is so smooth that no

such force comes to be exerted.

Another important class of climbers includes the so-called "leaf-

climbers." In these, some portion of the leaf, generally the petiole,

sometimes (as' in the fumitory) the elongated midrib, curls round

a support; and a phenomenon of like nature occurs in many, though

not all, of the so-called "tendril-bearers." Except that a different

part of the plant, leaf or tendril instead of stem, is concerned in the

twining process, the phenomenon here is strictly analogous to our

former case ; but in the resulting helix there is, as a rul^, this obvious

difference, that, while the twining stem, for instance of the hop,

makes a slow revolution about its support, the typical leaf-climber

makes a close, firm coil: the axis of the latter is nearly perpendicular

and parallel to the axis of its support, while in the twining stem the

angle between the two axes is comparatively small. Mathematically

speaking, the difference merely amounts to this, that the component

in the direction of the vertical axis is large in the one case, and the

corresponding component is small, if not absent, in the other; in

other words, we have in the climbing stem a considerable vertical

component, due to its own tendency to grow in height, while this

longitudinal or vertical extension of the whole system is not apparent,

or little apparent, in the other cases. But from the fact that the

twining stem tends to run obliquely to its support, and the coiling

petiole of the leaf-climber tends to run transversely to the axis of

its support, there immediately follows this marked difference, that

the phenomenon of torsion, so manifest in the former case, will be

absent in the latter.
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There is one other phenomenon which meets us in the twining

and twisted stem, and which is doubtless illustrated also, though

not so well, in the antelope's horn; it is a phenomenon which forms

the subject of a second chapter of St Venant's researches on the

effects of torsional strain in elastic bodies. We have already seen

how one effect of torsion, in for instance a prism, is to produce

strains parallel to the axis, elevating parts and depressing other

parts of each transverse section. But m addition to this, the same

torsion has the effect of materially altering the form of the section

itself, as we may easily see by twisting a square or oblong piece of

india-rubber. If we start with a cylinder, such as a round piece

of catapult india-rubber, and twist it on its own long axis, we have

already seen that it suffers no other distortion; it still remains

a cyhnder, that is to say, it is still in section everywhere circular.

But if.it be of any other shape than cylindrical the case is different,

for now the sectional shape tends to alter under the strain of torsion.

Thus, if our rod be eUiptical m section to begin with, it will, under

torsion, become a more elongated ellipse ; if it be square, its angles

will become more prominent and its sides will curve inwards, till at

length the square assumes the appearance of a four-pomted star

with rounded angles. Furthermore, looking at the results of this

process of modification, we find experimentally that the resultant

figures are more easily twisted, less resistant to torsion, than were

those from which we evolved them; and this is a very curious

physical or mathematical fact. So a cylinder, which is especially

resistant to torsion, is very easily bent or flexed; while projecting

ribs or angles, such as an engineer makes in a bar or pillar of iron

for the purpose of increasing its resistance to bending, actually make

it much weaker than before (for the same amount of metal per unit

length) in the way of resistance to torsion.

In the hop itself, and in a very considerable number of other

twining and twisting stems, the ribbed or channelled form of the

stem is a conspicuous feature. We may safely take it, (1) that such

stems are especially susceptible of torsion; and (2) that the effect

of torsion will be to intensify any such peculiarities of sectional

outline which they may possess, though not to initiate them in an

originally cylindrical structure. In the leaf-climbers the case does

not present itself, for there, as we have seen, torsion itself is not,
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or is very slightly, manifested. There are very distinct traces of

the phenomenon in the horns of certain antelopes, but the reason

why it is not a more conspicuous feature of the antelope's horn or

of the ram's is apparently a very simple one: namely, that the

presence of the bony core within tends to check that deformation

which is perpendicular, while it pfermits that which is parallel, to

the axis of the horn.

Uf deer's antlers

But let us return to our subject of the shapes of horns, and con-

sider briefly our last class of these structures, namely the bony

antlers of the elk and deer*. The problems which these present to

us are very different from those which we have had to do with in

the antelope or the sheep.

With regard to its structure, it is plain that the bony antler corre-

sponds, upon the whole, to the bony core of the antelope's horn;

while in place of the hard horny sheath of the latter, we have the

soft "velvet," which every season covers the new growing antler,

and protects the large nutrient blood-vessels by help of which the

antler grows
-f.

The main difference hes in the fact that in the

one case the bony coTe, imprisoned within its sheath, is. rendered

incapable of branching and incapable also of lateral expansion, and

the whole horn is only permitted to grow in length while retaining

a sectional contour that is identical with (or but little altered from)

that which it possesses at its growing base : but in the antler on the

other hand no such restraint is imposed, and the living, growing

fabric of bone is free to expand into a broad flat plate over which

the blood-vessels run. In the immediate neighbourhood of the main

blood-vessels growth will be most active, in the interspaces between

it may wholly fail: with the result that we may have great notches

cut out of the flattened plate, or may at length find it reduced to the

* For an elaborate study of antlers, see A. Rorig, Arch. f. Entw. Mech. x,

pp. 525-644, 1900; xi, pp. 65-148, 225-309, 1901; C. Hoffmann, Zur Morpholdgie

der rezenten Hirsche, 75 pp., 23 pis., 1901; also Sir V^ictor Brooke, On the

classification of the Cervidae, P.Z.S. 1878, pp. 883-928. For a discussion of the

development of horns and antlers, see H. Gadow, P.Z.S. 1902, pp. 206-222, and
works quoted therein.

t Cf. L. Rhumbler, Ueber die Abhangigkeit des Geweihwachsturas der Hirsche,

speziell des Edelhirsches, vom Verlauf der Blutgefasse im Kalbengeweih, Zeitsckr.

f. Forst. und Jagdwesen, 1911, pp. 295-314,
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form of a simple branching structure. The main point is that the

"horn" is essentially an axial rod^ while the "antler" is essentially

an outspread sicrface*. In other words, the whole configuration

of an antler is more easily understood by conceiving it as a plate

or a surface, more and more notched and scolloped till but a slender

skeleton remains, than to look upon it the other way, namely as an

axial stem (or beam) giving off branches (or tines), the interspaces

between which latter may sometimes fill up to form a continuous

surface.

Fig. 438. Antlers of Swedish elk.. After Lonnberg, from P.Z.S.

In a sense it matters very little whether we regard the broad

plate-like antlers of the elk or the slender branching antlers of the

stag as the more primitive type;, for we are not concerned here

with questions of hypothetical phylogeny, and even from the

mathematical point of view it makes little or no difference whether

we describe the plate as constituted by the interconnection of

branches, or the branches as derived by the notching or incision

* The fact that in one very small deer, the little South American Coassus, the

antler is reduced to a simple short spike, does not preclude the general distinction

which I have drawn. In Coassus we have the beginnings of an antler, which has

not yet manifested its tendency to expand; and in the many allied species of the

American genus Cariacus, we find the expansion manifested in various sim,ple

modes of ramification or bifurcation.
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of a plate. The important point for us is to recognise that

(save for occasional slight irregularities) the branching system in

the one conforms essentially to the curved plate or surface which we

see plainly in the other. In short the arrangement of the branches

is more or less comparable to that of the veins in a leaf, or to that of

the blood-vessels as they course over the curved surface of an organ.

It is a process of ramification, not, like that of a tree, in various

planes, but strictly limited to a single surface. And just as the

veins within a leaf are not necessarily confined (as they happen to

Fig. 439. Head and antlers of the Indian swamp-deer (Cervus Duvaureli).

After Lydekker, from P.Z.S.

be in most ordinary leaves) to a plane surface, but, as in the petal

of a tulip or the capsule of a poppy, may have to run their course

within a curved surface, so does the analogy of the leaf lead us

directly to the mode of branching which is characteristic of the antler.

The surface to which the branches of the antler tend to be confined

is a more or less spheroidal, or occasionally an ellipsoidal one; and

furthermore, when we inspect any well-developed pair of antlers,

such as those of a red deer, a sambur or a wapiti, we have no difficulty

in seeing that the two antlers make up between tliem a single surface,
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and constitute a symmetrical figure, each half being the mirror-image

of the other. It is what the ghillies call the "cup of the antler".

To put the case in another way, a pair of antlers (apart from

occasional slight irregularities) tends to constitute a figure such that

we could conceive an elastic sheet stretched over or round the entire

system, and to form one continuous and even surface; and not

only would the surface curvature be on the whole smooth and even,

but the boundary of the surface would also tend to be an even curve

:

that is to say the tips of all the tines would approximately have

their locus in a continuous curve.

It follows from this that if we want to make a simple model of

a set of antlers, we shall be very greatly helped by taking some

appropriate spheroidal surface as our groundwork or scaffolding.

The best form of surface is a matter for trial and investigation in

each particular case ; but even in a sphere, by selecting appropriate

areas thereof, we can obtain sufficient varieties of surface to meet all

ordinary cases. With merely a bit of sculptor's clay or plasticine,

we should be put hard to it to model the horns of a wapiti or a

reindeer* but if we start with an orange (or a round florence flask)

and lay our little tapered rolls of plasticine upon it, in simple natural

curves, it is surprising to see how quickly and successfully we can

imitate one type of antler after another. In either case, we. shall be

struck by the fact that our model may vary in its mode of branching

within very considerable limits, and yet look perfectly natural; for

the same wide range of variation is characteristic of the natural

antlers themselves. As Sir V. Brooke says (op, cit. p. 892), "No
two antlers are ever exactly alike; and the variation to which the

antlers are subject is so great that in" the absence of a large series

they would be held to be indicative of several distinct species*."

But all these many variations lie within a limited range, for they are

all subject to our general rule that the entire structure is essentially

confined to a single curved surface. A sheet of stiff paper makes

an even simpler model. Fold it in two; cut a deer's head out of

the double sheet, and leave a large oval where the antlers are to be;

cut a few notches in this oval leaf, for the spaces between the tines

(Fig. 440). The likeness to a pair of antlers seems remote to begin

* Cf. also the immense range of variation in elks' horns, a,s described by

Lonnberg, P.Z..S'. ir, pp. 352-360, 1902.
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with ; but it is wonderfully improved as we separate the two antlers

and give a twist to each, turning antler, tines and all, into the

appropriate curved or twisted surface.

It is probable that in the curvatures both of the beam and of its

tines, in the angles by which these latter meet the beam, and in

the contours of the entire system, there are involved many elegant

mathematical problems with which we cannot attempt to deal.

Nor must we attempt meanwhile to enquire into the physical

meaning or origin of these phenomena, for as yet the clue seems to

be lacking and we should only heap one hypothesis upon another.

That there is a complete contrast of mathematical properties be-

tween the horn and the antler is the main lesson with which, in the

meantime, we must rest content.

A ---^ B

Fig. 44(T. Diagrams of antlers, before twisting into shape.

A, Red-deer; B, Swamp-deer.

Of teeth, and of beak mid clciw

In a fashion similar to that manifested in the shell or the horn,

we find the equiangular spiral to be implicit in a great many other

organic structures where the phenomena of growth proceed in a

similar way: that is to say, where about an axis there is some

asymmetry leading to unequal rates of longitudinal growth, and

where the structure is of such a kind that each new increment is

added on as a permanent and unchanging part of the entire con-
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formation. Nail and claw, beak and tooth, all come under this

category. The logarithmic spiral always tends to manifest itself in

such structures as these, though it usually only attracts our attention

in elongated structures, where (that is to say) the radius vector has

described a considerable angle. When the canary-bird's claws grow

long from lack of use, or when the incisor tooth of a rabbit or a rat

grows long by reason of disease or of injury of the opponent tooth

against which it was wont to bite*, we know that the tooth or claw

tends to grow into a spiral curve, and we speak of it as a mal-

formation! . But there has been no fundamental change of form,

only an abnormal increase in length; the elongated tooth or

claw has the selfsame curvature which it had when it was short,

but the spiral becomes more and more manifest the longer it grows.

It is only natural, but nevertheless it is curious to see, how

closely a rabbit's abnormally overgrown teeth come to resemble

the tusks of swine or elephants, of which the normal state is one

of hypertrophy. A curiously analogous case is that of the New
Zealand Huia bird, in which the beak of the male is comparatively

short and straight, while that of the female is long and curved;

it is easy to see that there is a shght but identical curve also in the

beak of the male, and that the beak of the female shews nothing

but an extension or prolongation of the same. In the case of the

more curved beaks, such as those of an eagle or a parrot, we may,

if we please, determine the constant angle of the logarithmic spiral,

just as we have done in the case of the Nautilus shell; and here

again, as the bird grows older or the beak longer, the spiral nature

of the curve becomes more and more apparent, as in the hooked

beak of an old eagle, or in the great beak of a hyacinthine macaw.

Let us glance at one or two instances to illustrate the spiral

curvature of teeth.

* Cf. John Hunter, Natural History of the Human Teeth (3rd ed.), 1808, p. 110:

"Where a tooth has lost its opposite, it will in time become really so much longer

than the rest as the others grow shorter by abrasion". Cf. James Murie, Notes

on some diseased dental conditions in animals, Tr. Odontol. Soc. 1867-8, pp. 37-69,

257-298. We now know that a Coenurus-cjat in a rabbit's masseter muscle may

twist the jaw sideways, so that the incisors fail to meet, and grow accordingly:

H. A. Baylis, Trans. B. Soc. Trop. Medicine, xxxiii, p. 4, 1939.

t See Professor W. C. Mcintosh's paper on "Abnormal teeth in certain mammals,

especially in the rabbit," Trans. B.S.E. lvi, pp. 333-407, for a large collection of

instances admirably illustrated.



898 THE SHAPES OF TEETH [ch.

A dentist knows that every tooth has a curvature of its own,

and that in pulHng the tooth he must follow the direction of the

curve; but in an ordinary tooth this curvature is scarcely visible,

and is least so when the diameter of the tooth is large compared

with its length. In simple, more or less conical teeth, such as those

of the dolphin, and in the more or less similarly shaped canines

and incisors of mammals in general, the curvature of the tooth is

particularly well seen. We see it in the little teeth of a hedgehog,

and in the canines of a dog or a cat it is very obvious indeed. When
the great canine of the carnivore becomes still further enlarged

or elongated, as in Machairodus, it grows into the strongly curved

sabre-tooth of that extinct tiger; and- the boar's canine grows into

the spiral tusk of wart-hog or babirussa. In rodents, it is the incisors

which undergo elongation ; their rate of growth differs, though but

slightly, on the two sides of the axis, and by summation of these

slight differences in the rapid growth of the tooth an unmistakable

logarithmic spiral is gradually built up; we see it admirably in

the beaver, or in the great ground-rat Geornys. The elephant is a

similar case, save that the tooth or tusk remains, owing to com-

parative lack of wear, in a more perfect condition. In the rodent

(save only in those abnormal cases mentioned on the last page)

the tip, or first-formed part of the tooth wears away as fast as it is

added to from behind; and in the grown animal, all those portions

of the tooth near to the pole of the logarithmic spiral have long

disappeared. In the elephant, on the other hand, we see, practically

speaking, the whole unworn tooth, from point to root; . and its

actual tip nearly coincides with the pole of the spiral. If we
assume (as with no great inaccuracy we may do) that the tip

actually coincides with the pole, then we may very easily con-

struct the continuous spiral of which the existing tusk constitutes

a part; and by so doing, we see the short, gently curved tusk

of our ordinary elephant growing gradually into the spiral tusk

of the mammoth. No doubt, just as in the case of our molluscan

shells, we have a tendency to variation, both individual and specific,

in the constant angle of the spiral ; some elephants, and some species

of elephant, undoubtedly have a higher spiral angle than others.

But in most cases, the angle would seem to be such that a spiral

configuration would become very manifest indeed if only the tusk
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pursued its steady growth, uiiclianged otherwise in form, till it

attained the dimensions which we meet with in the mammoth. In a

species such as Mastodon angustidens, or M. arvernensis, the specific

angle is low and the tusk comparatively straight ; but the American

mastodons and the existing species of elephant have tusks which do

not differ appreciably, except in size, from the great spiral tusks of

the mammoth, though from their comparative shortness the spiral

is httle developed and only appears to the eye as a gentle curve.

Wherever the tooth is very long indeed, as in the mammoth or the

beaver, the effect of some slight and all but inevitable lateral

asymmetry in the rate of growth begins to shew itself: in other

words, the spiral is seen to lie not absolutely in a plane, but to be

a gauche curve, like a twisted horn. We see this condition very

well in the huge canine tusks of the babirussa; it is a conspicuous

feature in the mammoth, and it is more or less perceptible in any

large tusk of the ordinary elephants.

The simplest of mammaUan teeth are, Uke those of reptiles, conical

bads which spring by single roots from a common origin: much as

the pinnules of a compound leaf spring from a common petiole.

A dolphin's teeth are typical of what .Cope* called a haplodont

dentition; a sloth's (whether degenerate or no) are no further

advanced ; canines remain unaltered throughout the mammaha, and

incisors vary little save for some flattening due to crowding in a

foreshortened jaw. Like the leaf and its pinnules, the tooth-germ

buds and branches in endless ways; and we have no criterion of

comparison (nor any right to expect it) between the individual

cusps of a dog's, an elephant's and a horse's teeth, any more than

between the several pinnules, cusps or leaflets of a rose, a maple

and a horse-chestnut. The tooth-buds remain apart or coalesce in

various numbers and degrees ; and croWding, abrasion and mechanical

pressure play a large part in the final arrangement and conformation f.

The dolphin's teeth, used only for prehension, do not impinge

on one another, and stay sharp accordingly ; those of the carnivores

* E. D. Cope, On the homologies and origin of the types of molar teeth in mam-
malian dentition, Pr. Ac. N. S. Philad. xxv, p. 371, 1873; Journ. Ac. N. S. Philad.

(c), vm, pp. 71-89, 1874.

t Cf. J. A. Ryder, Mechanical genesis of tooth forms, Pr. Ac. N. S. Philad.

1878, pp. 45-80.
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interlock, rather than meet and oppose* ; in herbivorous animals the

molars grind one against another, and wear their crowns away.

The teeth of ungulates have been studied with especial care by the

palaeontologists on the basis of Cope's well-known tritubercular

theory, and one is greatly daring who ventures to deal with them

in a different wayj. The case is neither plain nor easy. We are

accustomed to speak of a "tooth" as a single unit, however com-

plicated it may be ; but we may err in doing so, and we encounter

other difficulties in studying teeth whose crowns are worn away,

and in interpreting the "patterns" which successive stages of wear

and tear expose.

The elephant's molar is manifestly composite. We see on its

worn surface a long succession of "enamel ridges," each marking

a narrow ring or island, lying transversely, filled with dentine, sur-

rounded by interstitial cement, and with a root or roots of its own.

The molars develop one after another during the animal's lifetime;

and each consists, to begin with, of so many separate island-elements,

not yet cemented together nor worn down, each with its own roots,

its own covering of enamel and its own transversely cuspidate crown.

These are true dental units, the primitive individual "teeth", corre-

sponding to the still simpler teeth of the dolphin ; and they illustrate,

and go far to confirm the view that the molar tooth is formed, both

here and elsewhere, by "concrescence "J. These rudimenta dentium,

as old Patrick Blair called them, or denticules as Owen did, soon

fuse together, and begin to wear down as soon as the great composite

tooth rolls forward and emerges from the gum. As each denticule

begins to wear away, it first appears as a transverse row of separate

rings, the so-called column^, which represent the cusps of the original

crown and vary in size, number and proportion with the species.

* This is precisely what Aristotle means when he describes the dog's teeth as

carcharodont, br sharklike, i.e. interlocking

—

Kapxcpobovra yap €<ttlu 6aa eTraXXdrrei

TOLS 686uTai Ta<r o^eTs, H.A., ii, 501 a 18.

t See E. D. Cope, loc. cit. and H. F. Osborn, passim. Cf. also W. K. Gregory,

A half century of trituberculy, Proc. Am. Phil. Soc. lxxiii, pp. 169-317, 1934, who

says that "even the most complex molar patterns of the Ungulates are referable

to the trituberculate type, in strict accord with the steps postulated by Cope and

Osborn."

J A view held by Gaudry, Giebel, Kiikental and others, but stoutly opposed by

Cope and Osborn, who see in the molar tooth a single unit, complicated by "dif-

ferentiation".
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These columns soon fuse and vanish as the cusps wear down; and

each denticule now appears as a continuous ring of enamel, within

Fig. 441,

b c

Abnormal incisor teeth: a, b, of rabbit; c, of beaver.

After Mcintosh.

which the dentine is exposed and around which the cement accumu-

lates*. A single great molar is made up of nearly a dozen of these

Fig. 442. A dental unit, or element of the composite molar tooth, of an Indian
elephant. It consists of five "columns", terminating in yet unworn "cusps".

* See Blair's Osteographia elephantma, 1713, Tab. ni, 19; also the figures in

F. van Gaver's :6tude de la tete d'un jeune Elephant d'Asie, Ann. Mus. Marseille,

XX, 1925, Cf. also L. Bolk, Zur Ontogenie des Elefantengebisses, Odontologische

Studien, ni, Leipzig, 1919.
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elements in the African, and of twice as many (twice as much
flattened or compressed) in the Indian elephant; in the mastodon

they are much fewer and much larger, and their great tuberculated

crowns never wholly wear away. In an old but admirable paper

on the Indian elephant*, Mr John Corse says: "The number of

teeth of w^hich a grinder is composed varies from four to twenty-

three, according as the elephant advances in years; so that a

grinder, or case of teeth, in full-grown elephants, is more than

sufficient -to fill one side of the mouth.... The same number of

laminae generally fills the jaw of a young or of an old elephant;

and from three till fifty years there are from ten to twelve teeth or

laminae in use, in each side of either jaw, for the mastication of

the food."

The molar teeth of a mouse, a hare or a capybara are Hkewise

composite structures; they shew, precisely after the fashion of the

elephant, successive narrow annular islands of enamel, with dentine

within and cement between, all in varying degrees of independence

or coalescence I

.

The molars of a hippopotamus are composite but to a less degree

;

his upper molars have each two pair of roots, the last molar one

root more. A block of dentine lying transversely to the jaw, with

a pair of roots below and a pair of enamel-covered cusps above, is the

unit of dentition, and is analogous to the young toothlet of the

elephant.

In the horse and its kind the teeth are long and deeply sunk in

the jaw, very much as in a rabbit or hare. Their length is made

up not of root but of elongated crown, in which the deep valleys

between the once high cusps are filled or flooded with cement; and

these long crowns are soon worn down to an all but level surface,

* J. Corse, Observations on the different species' of Asiatic elephant, and their

mode of dentition, Phil. Trans. 1799, pp. 205-236; and cf. Owen's Comp. Anat.

m, p. 361.

t The elephant (in my opinion) shews its likeness or affinity to the rodents

throughout its whole anatomy, the metaoromial process of its scapula being one

conspicuous indication. Hyrax and Elephas are two isolated forms lying near the

common origin of ungulates and rodents; the one lying rather to the ungulate

side, the other to the rodent side, of the vague and indefinable border-line. On
the relation of the rodent's dentition to the elephant's (a view strongly opposed

by Dr \V. K. Gregory), see M. Friant, Contribution a Tetude. . .des dents jugales

chez les Mammiferes, Bull. Mus. Hist. Nat. i, pp. 1-132, 1933.
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in which the enamel-layer which covered the hills and lined the

valleys is seen in sectional contour. A horse's incisor is the simplest

case. On its worn surface we see an inner ring of enamel concentric

with the enamel of the outer edge or surface of the tooth; cement

fills up the inner ring, and dentine the space between. The tip of

the tooth has sunk down, or been tucked in, till it forms a cement-

filled lake on the top of the hill; the lake narrows in, and at last

vanishes as the horse grows old and the tooth wears down; in the

"aged" horse we see the "mark" no more. To recognise this lake

or pit in the simple contours of the young incisor is an easy matter

;

but in the abraded molar the enamel-layer which once covered all

its ups and downs forms a contour-line, or "curve of level," of great

complexity. This contour-line alters as the levels change, and varies

from one tooth to the next and from one year to another, so long as

wear and tear continue. The geographer reads the lie of the land,

with all its ups and downs, from a many-contoured map*, but the

worn tooth shews us only one level and one contour at a time ; we

must eke out its scanty evidence by older and younger teeth in other

phases or degrees of wear. The " pattern " of a horse's molar tooth is

indeed so closely akin to a map-maker's contours that some of the

terms he uses may be useful to us. He speaks, for instance, of ridge-

lines and course-lines, lignes defaite and lignes de thalweg; of a gap,

or lowland way between two hills, in contrast to a col or saddle at

the summit of a mountain-pass; or of a gorge, which is a narrow

steep-sided valley; or a scarp, which is a long steep-faced hillside.

We must take care all the while to see which side of our contour-line

is positive or negative—on which side the ground slopes up and on

which down. In our tooth we find that every enamel-contour has

dentine on the one side and more or less cement on the other; the

dentine belongs to the closed interior of the tooth itself, and on the

other side of the enamel-line are spaces open to the world.

In a horse's molar we see the sinuous contours of two small lakes,

remains of the two valleys which lay between the three transverse

ridges of the compound tooth; and outside the enamel-edges of

* Contour-lines or horizontals, as some geographers prefer to call them, were

invented by Buache, in 1752. These are discussed by Cayley, On contours and
slope-lines, Phil. Mag. xvni, pp. 294-8, 1859; and by Clerk Maxwell, On hills and
dales, ibid, xl, pp. 421-7, 1870.
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these contoured lakes is the dentinal substance of the tooth, sur-

rounded again by the outer covering of enamel. The space between

the outer and the inner contours is narrowed in each case at a

certain point, suggesting a "col"; while it broadens out at other

places, suggesting the former sites of cusps or hills. In neighs

bouring sections (B, C) we rise above the level of the cols, find a

way open to the valleys, and see the separate transverse mountain-

ranges (or lophs) of which the tooth is composed. The general plan

Fig. 444. Upper molar teeth of elephants. A, E. meridionalis (Pliocene), largest

of elephants. B, Indian, and C, African elephants.

of this tooth is characteristic of the Perissodactyles ; but the varying

steepness of the hills, the depth of the valleys, and the amount of

abrasion or erosion, lead to an infinite variety of patterns, varying

with the species, with the age of the animal, and with the order

of succession of the particular tooth ; and so rendering it (as Osborn

says) "one of the most difficult objects to define and describe in

the whole field of vertebrate palaeontology*."

In Elasmotherium the hillsides are ridged and channelled, and

their contours folded or sinuous accordingly. In Rhinoceros broad

gaps replace the narrow cols, and certain jutting crags figure on

* H. F. Osborn, Equidae of the Oligocene, etc., Mem. Amer. Mus. of N.H. (n.s.)

n, p. 3, 1918.
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the contour-lines as the so-called crochet and anticrochet. In Anchi-

therium, erosion goes no farther than the summits of the several

cusps or hill-tops.

These, to my thinking, are the few and simple lines on which we
may study the architecture of the Perissodactyle tooth. But to say

how far we may rely on the innumerable minor differences of pattern

Fig. 445 A. Third upper molar of a horse, a, the ecioloph, with its three styles,,

separated by two indents (Owen); b, three transverse ridges, the protoloph, mesoloph

and metaloph (Osborn); c, c', two lakes, valleys or fossettes ; d, d', what Owen calls

the entries of the valleys; x, x' , cols, where a less worn tooth would shew open roads

or passes; 'o, o, cusps or conules, the sites of worn-down hills or hillocks.

B C
Fig. 445 B and C. The same tooth, but younger and less worn

down than A. Diagrammatic.

as evidence of blood-relationship and evolutionary descent is quite

another story, and deserves much more anxious consideration*.

* In the vast literature of mammalian dentition the foUowing are conspicuous:

R. Owen, Odontography, 1845; L. Riitimeyer, Zur Kenntniss der fossilen Pferde,

und zu einer vergl. Odontographie der Hufthiere, Verh. Naturf. Ges. Basel, iii,

1963; W. Leche, Zur Entwicklungsgeschichte des Zahnsystems der Saugetiere,

Bibl. Zool. 1894-5, 160 pp.; E. D. Cope, On the trituberculate type of molar tooth

in the Mammalia, Proc. Amer. Philos. Sac. xxi, pp. 324-326, 1885; W. K. Gregory,

A half-century of trituberculy, ibid. Lxxiii, pp. 161-317, 1934.
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The "horn" or tusk of the narwhal is a very remarkable and

a very anomalous thing. It is the only tooth in the creature's head

to come to maturity; it grows to an immense and apparently

Kg. 446. Enamel patterns (diagrammafic) of certain fossil Equidae.

A, Protohipptcs ; B, Hyohippus; C, Neohipptis.

unwieldy size, say to eight or even nine feet long; it never curves

nor bends, but grows as straight as straight can be—a very singular

and exceptional thing; it looks as though it were twisted, but really

Fig. 447. Enamel pattern (diagrammatic) of the upper molar teeth of Rhinoceros.

The back-tooth (to the right-hand side) is the least worn, and its contour-line lies

at the highest level.

carries on its straight axis a screw of several contiguous low-pitched

threads; and (last and most anomalous thing of all) when, as

happens now and then, two tusks are developed instead of one, one

on either side, these two do not form a conjugate or symmetrical

pair, they are not mirror-images of one another, but are identical

screws, with both threhds running the same way*.

* The male narwhal carries the horn, the female being tuskless; but the whalers

say that the rare two-horned specimens are ull females. A famous two-horned

skull in the Hamburg Museum is known to have belonged to a pregnant female.

It was brought home in 1684, and is one of the oldest museum specimens in the

world; the tusks measure 242 and 236 cm. During my thirty years' close

acquaintance with the Dundee whalers, only four two-horned narwhals passed

through my hands. Bateson {Problems of Genetics, 1913, p. 44) makes the curious

remark that "the Narwhal's tusks, in being both twisted in the same direction,

are highly anomalous, and are comparable with pairs of twins."
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All ordinary teeth, as we have seen, have their own natural

curvature, less or more, which becomes more manifest and con-

spicuous the longer, they grow. We cannot suppose that the field

of force (internal and external) in which the narwhal's tusk develops

is so simple and uniform as to allow it to grow in perfect symmetry,

year after year, without the least bias or intention toward either

side ; we must rather suppose that the resistances which the growing

tusk encounters average out and cancel one another, and leave no

one-sided resultant. The long, straight, tapering tooth is commonly

said to have a "spiral twist," but there is no twist at all; the ivory

is straight-grained and uniform, through and through. The tusk,

in short, is a straight, right-handed, low-pitched screw or helix, with

several threads; which threads, in the form of alternate grooves

and ridges, wind evenly and continuously from one end of the tusk

to the other, even extending to its root, deep-set in the socket or

alveolus of the upper jaw.

How this composite spiral thread is formed is quite unknown.^

We have just seen that it is not due to any twisting of the dentinal

axis of the tooth. That it is uniform and unbroken from end to

end shews that the tooth somehow fashions it as a whole ; and that

it extends deep down within the alveolus is enough to shew that it

is not impressed or graven on the tooth by any external agency.

We note, as a minor feature, that the several grooves or ridges which

constitute the composite thread have their individual or accidental

differences; a broader or a narrower groove continues unchanged

and recognisable from one end of the tooth to the other; in other

words, whatever makes each ridge or groove goes on acting in the

selfsame way, as long as growth goes on. A screw is made, in

general, by compounding a translatory with a rotatory motion, and

by bringing the latter into relation with the mould or matrix by

which the thread is fashioned or imposed; and I cannot see how

to avoid believing that the narwhal's tooth must revolve in like

manner, very slowly on its longitudinal axis, all the while it grows

—

however strange, anomalous and hard to imagine such a mode of

growth may be. We know that the tooth grows throughout life in

its longitudinal direction, the open root and "permanent pulp"

accounting for this ; and only by a simultaneous and equally con-

tinuous rotation (so far as I can see) can we account for the perfect
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straightness of the tusk, for the grooving or "rifling" of the surface

accompanied by no internal twist, for the extension of that rifling

to the alveolar portion of the tusk within the jaw, and for the fact

that the several associate grooves and ridges preserve their individual

character as they pass along and wind their way around. A very

slow rotation is all we need demand—say four or five complete

revolutions of the tusk in the whole course of a lifetime.

The progress of a whale or dolphin through the water may be

explained as the reaction to a wave which is caused to run from

head to tail, the creature moving ' through the water somewhat

slower than the wave travels. The same is true, so far, of a fish;

but the w^ave tends to be in one plane in the fish, the dorsal and

ventral fins helping to keep it so; while in the dolphin it may be

said to be "circularly polarised," or resoluble into two oscillations in

planes normal to one another, and caused by tail and tail-end swishing

around in circular orbits which alter in phase from one transverse

section to another. Just as in the case of a screw-propeller, or as

in a torpedo (where it is specially corrected or compensated), this

mode of action entails a certain waste of energy; it comes of the

development of a "harmful moment," which tends to rotate the

body about its axis, and to screw the animal along its course. A
slight left-handed curvature of the dolphin's tail goes some little

way towards correcting this tendency. M. Shuleikin's study of the

kinematics of the dolphin *—a fine piece of work both on its experi-

mental and its theoretical side—shows the dolphin to be a better

swimmer than the fish, inasmuch as its speed of progression comes

nearer to the velocity of the wave which is propagated along its

body; the so-called "step," or fraction of the body-length travelled

in a single period, is found to be about 0-7 in the dolphin, against

0-57 in a fast-swimming fish (tunny or mackerel).

Shuleikin makes the curious remark that the asymmetry of the

skull (discernible in all Cetacea), which in the dolphin shews a screw-

twist with a pitch about equal to the length of the body, acts as

a compensatory check to the screw-component in the creature's

movement of progression, and that "the till now obscure purpose

* Wassilev Shuleikin, Kinematics of a dolphin (Russian), Bull. Acad. Sci. U.R.S.S.

{CI. sci. math, et phys.), 1935, pp. 651-671; also, Dynamics, external and internal,

of a fish, ibid. 1934, pp. 1151-1186. On the latter subject see James Gray,

Crobnian Lecture, 1940, and other papers.



910 THE SHAPES OF TEETH [ch.

of the skull's asymmetry" is accordingly explained. I should put

this differently, and suggest that this counter-spirality of the skull,

is the direct result of the spiral component in locomotion. It implies,

I take it, a lagging and incomplete response in the fore-part of the

body to the rotatory impulse of the pai ts behind : or, in the plain

words of the engineer, a torque of inertia. •

This tendency, dimly seen in the dolphin's skullj is clearly demon-

strated in the narwhal's "horn," and gives a complete explanation

of its many singularities-. The narwhal and its horn are joined

together, and move together as one piece—nearly, but not quite!

Stiif, straight and heavy, the great tusk has its centre of inertia

well ahead of the animal, and far from the driving impulse of its

tail. At each powerful stroke of the tail the creature not only darts

forward, but twists or slews all of a sudden to one side; and the

heavy horn, held only by its root, responds (so to speak) with

difficulty. For at its slender base the "couple", by which it has

to follow the twisting of the body, works at no small disadvantage.

A "torque of inertia" is bound to manifest itself. The horn does

not twist round in perfect synchronism with the animal; but the

animal (so to speak) goes slowly, slowly, little by little, round its

own horn! The play of motion, the lag, between head and horn

is sUght indeed; but it is repeated with every stroke of the tail.

It is felt just at the growing root, the permanent pulp, of the tooth;

and it puts a strain, or exercises a torque, at the very seat, and during

the very process, of calcification.

Suppose that at every sweep of the tail there be a lag of no more

than a fifth part of a second of arc* between the rotation of the

tusk and of the body, that small amount would amply suffice to

account, on a rough estimate of the age and of the activity of the

animal, for as many turns of the screw as a fair-sized tusk is found

to exhibit.

According to this explanation, or hypothesis, the slow rotation

of the tusk corrects all tendency to flexure or curvature in one

direction or another ; the grooves and ridges which constitute th6

"thread" of the screw are the result of irregularities or inequalities

within the alveolus, which "rifle" the tusk as it grows; and the

* Or say a hundred-thousandth part of the angle subtended by a minute on the

clock.
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identity of direction in the two horns of a pair is at once accounted

for.

Beautiful as the spiral pattern of the tusk is, it obviously falls

short, in regularity and elegance, of what we find, for instance, in

a long tapering Terebra or Turritella, or any other spiral gasteropod

shell. In the narwhal we have, as we suppose, only a general and

never a precise agreement between rate of torsion and rate of growth

;

for these two velocities—of translation and rotation—are separate

and independent, and their resultant keeps fairly steady but no

more. In the snail-shell, on the other hand, actual tissue-growth

is the common cause of both longitudinal and torsional displace-

ments, and the resultant spiral is very perfect and regular.

Before we leave the teeth, let us note that their extreme tightness

in their sockets is a remarkable thing. A thin "periodontal mem-
brane," less than 0-25 mm. thick, fills up the space between tooth and

socket ; and this membrane, elastic, homogeneous and incompressible,

is analogous to the thin layer of viscous liquid dealt with in modern
theories of lubrication. The equilibrium of the system, the tightness

of the fit, the displacement of the tooth under given forces, and

the conditions of stress and strain in the membrane, are all open to

mathematical treatment ; distributions of pressure can be assigned

to the tooth, a centre of rotation can be found, a critical load can

be approximately determined, and the pressures calculated at various

points. If the membrane thickens, the tooth loosens; its freedom

of movement or range of displacement varies with the cube of the

thickness of the membrane, and is at most exceedingly small*.

* J. L. Synge, The tightness of the teeth, etc., Phil. Trans. (A), ccxxxi, pp. 435-

477, 1933.



CHAPTER XIV

ON LEAF-ARRANGEMENT, OR PHYLLOTAXIS

The beautiful configurations produced by the orderly arrangement

of leaves or florets on a stem have long been an object of admiration

and curiosity; and not the least curious feature of the case is the

limited, even the small number of possible arrangements which we
observe and recognise. Leonardo da Vinci would seem, as Sir Theodore

Cook tells us, to have been the first to record his thoughts upon this

subject; but the old Greek and Egyptian geometers are not likely

to have left unstudied or unobserved the spiral traces of the leaves

upon a palm-stem, or the spiral order of the petals of a lotus or the

florets in a sunflower. For so, as old Nehemiah Grew says, "from

the contemplation of Plants, men might first be invited to Mathe-

matical Enquirys*."

The spiral leaf-order has been regarded by many learned botanists

as involving a fundamental law of growth, of the deepest and most

far-reaching importance; while others, such as Sachs, have looked

upon the whole doctrine of " phyllotaxis " as "a sort of geometrical

or arithmetical playing with ideas," and "the spiral theory as a

mode of view gratuitously introduced into the plant." Sachs even

went so far as to declare this doctrine to be "in direct opposition

to scientific investigation, and based upon the idealism of the

Naturphilosophie "—the mystical biology of Oken and his school.

The essential facts of the case are not difficult to understand;

but the theories built upon them are so varied, so conflicting, and

sometimes so obscure, that we must not attempt to submit them

to detailed analysis and criticism. There are said to be two chief

ways by which we may approach the question, according to whether

we regard as the more fundamental and typical, one or other of

two chief modes in which the phenomenon presents itself. That is

to say, we may hold that the phenomenon is displayed in its essential

* N. Grew, The Anatomy of Plants, 1682, p. 152.



ON LEAF-ARRANGEMENT 913CH. XIV]

simplicity . by the corkscrew spirals, or helices, which mark the

position of the leaves on a cylindrical stem or tapering fir-cone ; or, on

Fig. 448. A giant sunflower, Helianthus maximus. From H. A. Naber,

after M. Brocard.

the other hand, we may be more attracted by, and may regard as of

greater importance, the spirals traced by the curving rows of florets

in the discoidal inflorescence of a sunflower. Whether one way or
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the other be the better, or even whether one be not positively correct

and the other radically wrong, has been vehemently debated ; but as

a matter of fact they are, both mathematically and biologically,

inseparable and even identical phenomena. For the face of the

sunflower is but a shortened stem, and the curves upon its

Fig. 449. A cauliflower, its composite inflorescence shewing spiral patterns

of the first and second order.

surfaces are but the projection on a plane of a more elongated

inflorescence.

We speak, as botanists are wont to do, of these spirals of sunflower,

cauliflower and the rest as logarithmic spirals, but not without

hesitation. They doubtless resemble the logarithmic or equiangular

spiral, but different spirals may look much alike; and these are

ill-suited to the careful admeasurement and rigorous verification
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which Moseley gave to the spirals of his moUuscan shells*. But in

the sunflower, to judge by the eye, the spirals remain self-similar

as they grow; each fresh increment forms, or seems to form, a

gnofnon to what went before ; each new floret falls into hne as part

of a continuous and self-§imilar curve : and this goes a long way to

justify our use of the famihar term logarithmic, or equiangular spiral.

But the leaf-arrangement or the inflorescence are far less simple

than the shell. The shell grew as one continuous and indivisible

whole; its tip is the oldest part, it remains the smallest part, and

the spiral tube expands continuously as it goes on. But each floret

of the sunflower has its own separate and individual growth; the

oldest is also the largest, and the youngest is the least; and as

younger and younger florets are added on, the spiral advances in

the direction of its own focus, or its own httle end. And the con-

ditions may be less simple still in other cases, as in the fir-cone

itself.

The spiral tesselation of th-e fir-cone was carefully studied in the

middle of the eighteenth century by the celebrated Bonnet, with the

help of Calandrini the mathematician. Memoirs pubHshed about 1835,

by Schimper and Braun, greatly amphfied Bonnet's investigations,

and introduced a nomenclature which still holds its own in botanical

textbooks. Naumann and the brothers Bravais are among those

who continued the investigation in the years immediately following,

and Hofmeister, in 1868, gave an admirable account and summary

of the work of these and many other writers |.

* Thus Dr A. H. Church, in his Interpretation of Phyllotaxis Phenomena, 1920,

p. 3, begins by saying that "angular measurements on actual plant-specimens. .

.

can never hope to come within a range of accuracy admitting of an error of less

than half a degree, while precise mathematical theory soon begins to tabulate

minutes and seconds."

f Besides papers referred to below, and many others quoted in Sachs's Botany

and elsewhere, the following are important: Alex. Braun, Vergl. Untersuchung

liber die Ordnung der Schuppen an den Tannenzapfen, etc., Nova Acta Acad. Car.

Leop. XV, pp. 199-401, 1831; C. F. Schimper's Vortrage iiber die Moglichkeit

eines wissenschaftlichen Verstandnisses der Blattstellung, etc., Flora, xvui,

pp. 145-191, 737-756, 1835; C. F. Schimper, Geometrische Anordnung der um
eine Achse peripherischen Blattgebilde, Verhandl. Schweiz. Ges. 1836, pp. 113-117;

L. and A. Bravais, Essai sur la disposition des feuiUes curviseriees, Ann. Sci. Nat.

(2), VII, pp. 42-110, 1837; Sur la disposition symetrique des inflorescences,

ibid. pp. 193-221, 291-348, vni, pp. 11^2, 1838; Sur la disposition generale des

feuilles rectiseriees, ibid, xn, pp. 5-41, 65-77, 1839; Memoire sur la disposition

geometrique des feuilles et des inflorescences, Paris, 1838; Zeising, Normalverhdltnisa
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The surface of a pine-cone shews a crowded assemblage of woody

scales, close-packed and pressed together in such a way that each

has a quadrangular, rhomboidal form*. Each scale forms part of,

and marks the intersection of, two hnear series; these run upwards

in a spiral course, one in one direction and one in the other, and

are called accordingly diadromous si^iials. In the little cones of the

Scotch Fir (Pinus silvestris), the whose assemblage of scales may be

looked on as forming five linear series, or spiral bands, running side

by side the one way, or as eight such series running the other. But

these two sets are far from being all the spirals which we can trace

upon the cone. Sometimes the packing is closer still, especially if

the cone be long and slender. Then each scale tends to come in

contact with six others, and so to become roughly hexagonal; we

recognise a third spiral series besides the other two, and this new

series is found to consist of thirteen rows. But let us disregard for

the moment this perplexing phenomenon of a cone composed of so

many series of scales, five, eight or thirteen in number as we happen

to look at them ; and try to find a single series in which every scale

takes part. We are in no way limited to the fir-cone, which is a

somewhat special case; but may consider, in a very general way,

the case of any leafy stem.

Starting from some given level and proceeding upwards, let us

mark the position of some one leaf (A) upon the cylindrical stem.

der chemischen und morphologischen Proportionen, Leipzig, 1856; C. F. Naumann,
Ueber den Quincunx als Gesetz der Blattstellung bei Sigiilaria, etc., Neues Jahrb.

f. Miner. 1842, pp. 410-417; T. Lestiboudois, Phyllotaxie anatomique, Paris, 1848;

G. Henslow, Phyllotaxis, or the arrangement of leaves according to mathematical
laws, Jl. Victoria Inst, vi, pp.- 129-140, 1873; On the origin of the prevailing

systems of Phyllotaxis, Tr. Linn. Soc. (Bot.), i, pp. 37-45, 1880. J. Wiesner,

Bemerkungen xiber rationale und irrationale Divergenzen, Flora, Lvin, pp. 113-115,

139-143, 1875; H. Airy, On leaf arrangement, Proc. B.S. xxi, p. 176, 1873;

S. Schwendener, Mechanische Theorie der Blattstellungen, Leipzig, 1878; F. Delpino,

Causa mecca'nica della filotasse quincunciale, Genova, 1880; Teoria generate di

Filotasse, ibid. 1883; S. Giinther, Das mathematische Grundgesetz im Bau des

Pflanzenkorpers, Kosmos, iv, pp. 270-284, 1879; F. Ludwig, Wichtige Abschnitte
aus der mathematischen Botanik, Zeitschr. f. truithem. u. naturw. Unterricht, xiv,

p. 161, 1883; Weiteres iiber Fibonacci-Kurven und die numerische Variation der

gesammten Bluthenstande der Kompositen, Botan. Chit, lxviii, p. 1, 1896; Alex.

Dickson, Phyllotaxis of Lepidodendron and Knossia, Jl. Bot. ix, p. 166, 1871. For
a historical account of the earlier literature, see Casimir de Candolle's Considerations

generates sur Vetude de la phyllotaxie, Geneve, 1881.
* Cf. supra, p. 515.
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Another, and a younger leaf (B) will be found standing at a certain

distance around the stem, and a certain distance along the stem,

from the first. The former distance may be expressed as a fractional

"divergence" (such as two-fifths of the circumference of the stem)

as the botanists describe it, or by an "angle of azimuth" (such as

(f)
= 144°) as the mathematician would be more likely to state it.

The position of B relatively to A may be determined, not only by

this angle (/>, in the horizontal plane, but also by an angle of slope {6),

or merely by linear distance from its basal plane; for the height of

B above the level of ^, in comparison with the diameter of the

cylinder, will obviously make a great difference in the appearance of

the whole system. But this matter botanical students have not

concerned themselves with ; in other words, their studies have been

limited (or mainly limited) to the relation of the leaves to one ailother

in azimuth—in other words, to the angle ^ and its multiples.

Whatever relation we have found between A and B, let precisely

the same relation subsist between B and C: and so on. Let the

growth of the system, that is to say, be continuous and uniform;

it is then evident that we have the elementary conditions for the

development of a simple cyhndrical helix; and this "primary helix"

or "genetic spiral" we can now trace, winding round and round the

stem, through A, B,C, etc. But if we can trace such a helix through

A, B, C, it follows from the symmetry of the system, that we have

only to join A to some other leaf to trace another spiral helix, such,

for instance, as ^, C, E, etc.
;

parallel to which will run another and

similar one, namely in this case B, D, F, etc. And these spirals

will run in the opposite direction to the spiral ABC*.

In short, the existence of one helical arrangement of points im-

plies and involves the existence of another and then another helical

pattern, just as, in the pattern of a wall-paper, our eye travels from

one linear series to another.

A modification of the helical system will be introduced when,

instead of the leaves appearing, or standing, in singular succession,

w^ get two or more appearing simultaneously upon the same level.

If there be two such, then we shall have two generating spirals

* For the spiral ACE to be different from ABC, the angle of divergence, or angle

of azimuth for one step, must exceed 90°, so that the nearer way from ^ to C is

backwards; otherwise the spiral ACE is ABCDE, or ABC over again.
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precisely equivalent to one another; and we may call them A, B, C,

etc., and A', B', C\ and so on. These are the cases which we call

"whorled" leaves; or in the simplest case, where the whorl consists

of two opposite leaves only, we call them *' decussate."

Among the phenomena of phyllotaxis, two points in particular

have been found difficult of explanation, and have aroused dis-

cussion. These are (1), the presence of the logarithmic spirals such

as we have already spoken of in the sunflower; and (2) the fact

that, as regards the number of the helical or spiral rows, certain

numerical coincidences are apt to recur again and again, to the

exclusion of others, and so to become characteristic features of the

phenomenon.

As to the first of these, we have seen that the curves resemble,

and sometimes closely resemble, the logarithmic spiral; but that

they are, strictly speaking, logarithmic is neither proved nor capable

of proof. That they appear as spiral curves (whether equable or

logarithmic) is then a mere matter of mathematical "deformation."

The stem which we have begun to speak of as a cyhnder is not

strictly so, inasmuch as it tapers off towards its summit. The

curve which winds evenly around this stem is, accordingly, not a

true helix, for that term is confined to the curve which winds evenly

around the cylinder : it is a curve in space which (like the spiral curve

we have studied in our turbinate shells) partakes of the characters of

a helix and of a spiral, and which is in fact a spiral with its pole

drawn out of its original plane by a force acting in the direction of

the axis. If we imagine a tapering cylinder, or cone, projected by

vertical projection on a plane, it becomes a circular disc; and a

helix described about the cone becomes in the disc a spiral described

about a pole which corresponds to the apex of our cone. In like

manner we may project an identical spiral in space upon such surfaces

as (for instance) a portion of a sphere or of an ellipsoid ; and in all

these cases we preserve the spiral configuration, which is the more

clearly brought into view the more we reduce the vertical component

by which it was accompanied. The converse is equally true, and

equally obvious, namely that any spiral traced upon a circular disc

or spheroidal surface will be transformed into a corresponding spiral

helix when the plane or spheroidal disc is extended into an elongated
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cone approximating to a cylinder. This mathematical conception is

translated, in botany, into actual fact. The fir-cone may be looked

upon as a cylindrical axis coiltracted at both ends, until it becomes

approximately an ellipsoidal solid of revolution, generated about

the long axis of the ellipse ; and the semi-ellipsoidal capitulum of the

teasel, the more or less hemispherical one of the thistle, and the

flattened but still convex one of the sunflower, are all beautiful and

successive deformations of what is typically a long, conical, and all

but cylindrical stem. On the other hand, every stem as it grows

out into its long cylindrical shape is but a deformation of the little

spheroidal or ellipsoidal or conical surface which was its forerunner

in the bud.

This identity of the helical spirals around the stem with spirals

projected on a plane was clearly recognised by Hofmeister, who was

accustomed to represent his diagrams of leaf-arrangement either in

one way or the other, though not in a strictly geometrical projection*.

According to Mr A. H. Church f, who has dealt carefully and

elaborately with the whole question of phyllotaxis, the spirals such

as we see in the disc of the sunflower have a far greater importance

and a far deeper meaning than this brief treatment of mine would

accord to them : and Sir Theodore Cook, in his book on the Curves

of Life, adopted and helped to expound and popularise Mr Church's

investigations.

Mr Church, regarding the problem as one of "uniform growth,"

easily arrives at the conclusion that, if this growth can be conceived

as taking place sjnnmetrically about a central point or "pole," the

uniform growth would then manifest itself in logarithmic spirals,

including df course the limiting cases of the circle and straight line.

With this statement I have Httle fault to find; it is in essence

identical with much that I have said in a previous chapter. But

other statements of Mr Church's, and many theories woven about

them by Sir T. Cook and himself, I am less able to follow. Mr
Church tells us that the essential phenomenon in the sunflower disc

is a series of orthogonally intersecting logarithmic spirals. Unless

I wholly misapprehend Mr Church's meaning, I should say that this

* Allgemeine Morphologie der Gewdchse, 1868, p. 442, etc.

t Relation of Phyllotaxis to Mechanical Laws, Oxford, 1901-1903; cf. Ann. Bot,

XV, p. 481, 1901.
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is very far from essential. The spirals intersect isogonally, but

orthogonal intersection would be only one particular case, and in all

probability a very infrequent one, in the intersection of logarithmic

spirals developed about a common pole. Again on the analogy of

the hydrodynamic lines of force in certain vortex movements, and of

similar lines of force in certain magnetic phenomena, Mr Church

proceeds to argue that the energies of life follow lines comparable

to those of electric energy, and that the logarithmic spirals of the

sunflower are, so to speak, lines of equipotential*. And Sir T. Cook

remarks that thife "theory, if correct, would be fundamental for all

forms of growth, though it would be more easily observed in plant

construction than in animals." But the physical analogies are remote,

and the deductions I am not able to follow.

Mr Church sees in phyllotaxis an organic mystery, a something

for which we are unable to suggest any precise cause : a phenomenon

which is to be referred, somehow, to waves of growth emanating

from a centre, but on the other hand not to be explained by the

division of an apical cell, or any other histological factor. As Sir

T. Cook puts it, "at the growing point of a plant where the new

members are being formed, there is simply nothing to see.''

But it is impossible to deal satisfactorily, in brief space, either

with Mr Church's theories, or my own objections to themj*. Let

it suffice to say that I, for my part, see no subtle mystery in the

matter, other than what lies in the steady production of similar

growing parts, similarly situated, at similar successive intervals of

time. If such be the case, then we are bound to have in consequence

* "The proposition is that the genetic spiral is a logarithmic spiral, homologous

with the line of current-flow in a spiral vortex ; and that in such a system the

action of orthogonal forces will be mapped out by other orthogonally intersecting

logarithmic spirals—the ' parastichies
'

" ; Church, op. cit. i, p. 42.

t Mr Church's whole theory, if it be not based upon, is interwoven with, Sachs's

theory of the orthogonal intersection of cell-walls, and the elaborate theories of

the symmetry of a growing point or apical cell which are connected therewith.

According to Mr Church, "the law of the orthogonal intersection of cell-walls at

a growing apex may be taken as generally accepted" (p. 32); but I have taken

a very different view of Sachs's law, in the eighth chapter of the present book.

With regard to his own and Sachs's hypotheses, Mr Church .makes the following

curious remark (p. 42) : "Nor are the hypotheses here put forward more imaginative

than that of the paraboloid apex of Sachs which remains incapable of proof, or his

construction for the apical cell of Pteris which does not satisfy the evidence of his

own drawings."
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a series of symmetrical patterns, whose nature will depend upon the

form of the entire surface. If the surface be that of a cylinder, we

shall have a system, or systems, of spiral helices: if it be a plane

with an infinitely distant focus, such as we obtain by "unwrapping"

our cylindrical surface, we shall have straight lines; if it be a plane

containing the focus within itself, or if it be any other symmetrical

surface containing the focus, then we shall have a system of loga-

rithmic spirals. The appearance of these spirals is sometimes spoken

of as a "subjective" phenomenon, but the description is inaccurate:

it is a purely mathematical phenomenon, an inseparable secondary

result of other arrangements which we, for the time being, regard

as primary. When the bricklayer builds a factory chimney, he lays

his bricks in a certain steady, orderly way, with no thought of the

spiral patterns to which this orderly sequence inevitably leads, and

which spiral patterns are by no means "subjective." The designer

of a wall-paper not only has no intention of producing a pattern of

criss-cross lines, but on the contrary he does his best to avoid them

;

nevertheless, so long as his design is a symmetrical one, the criss-cross

intersections inevitably come. And as the train carries us past an

orchard we see not one single symmetrical configuration, but a

multiplicity of collineations among the trees.

Let us, however, lea'C^e this discussion, and return to the facts of

the case.

Our second question, which relates to the numerical coincidences

so familiar to all students of phyllotaxis, is not to be set and

answered in a word.

Let us, for simplicity's sake, avoid consideration of simultaneous

or whorled leaf origins, and consider only the more frequent cases

where a single "genetic spiral" can be traced throughout the 'entire

system.

It is seldom that this primary, genetic spiral catches the eye, for

the leaves which immediately succeed one another in this genetic

order are usually far apart on the circumference of the stem, and it

is only in close-packed arrangements that the eye readily apprehends

the continuous series. Accordingly in such a case as a fir-cone, for

instance, it is certain of the secondary spirals or " parastichies

"

which catch the eye ; and among fir-cones, we can easily count these,
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and we find them to be on the whole very constant in number,

according to the species.

Thus in many cones, such as those of the Norway spruce, we can

trace five rows of scales winding steeply up the cone in one direction,

and three rows winding less steeply the other way ; in certain other

species, such as the common larch, the normal number is eight rows

in the one direction and five in the other; while in the American

larch we have again three in the one direction and five in the other.

It not seldom happens that two arrangements grade into one another

on different parts of one and the same cone. Among other cases

in which such spiral series are readily visible we have, for instance,

the crowded leaves of the stone-crops and mesembryanthemums, and

(as we have said) the crowded florets of the composites. Among
these we may find plenty of examples in which the numbers of the

serial rows are similar to those of the fir-cones ; but in some cases,

as in the daisy and others of the smaller composites, we shall be

able to trace thirteen rows in one direction and twenty-one in the

other, or perhaps twenty-one and thirty-four; while in a great big

sunflower we may find (in one and the same species) thirty-four and

fifty-five, fifty-five and eighty-nine, or even as many as eighty-nine

and one hundred and forty-four. On the other hand, in an ordinary

" pentamerous " flower, such as a ranunculus, we may be able to

trace, in the arrangement of its sepals, petals and stamens, shorter

spiral series, three in one direction and two in the other; and the

scales on the little cone of a Cypress shew the same numerical

simplicity. It will be at once observed that these arrangements

manifest themselves in connection with very different things, in the

orderly interspacing of single leaves and of entire florets, and among

all kinds of leaf-like structures, foliage-leaves, bracts, cone-scales,

and the various parts or members of the flower. Again we must

be careful to note that, while the above numerical characters are

by much the most common, so much so as to be deemed "normal,"

many other combinations are known to occur.

The arrangement, as we have seen, is apt to vary when the entire

structure varies greatly in size, as in the disc of the sunflower. It

is also subject to less regular variation within one and the same

species, as can always be discovered when we examine a sufficiently

large sample of fir-cones. For instance, out of 505 cones of the
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Norway spruce, Beal* found 92 per cent, in which the spirals were

in five and eight rows ; in 6 per cent, the rows were four and seven,

and in 4 per cent, they were four and six. In each case they were

nearly equally divided as regards direction ; for instance, of the 467

cones shewing the five-eight arrangement, the five-series ran in

right-handed spirals in 224 cases, and in left-handed spirals in 243.

Omitting the "abnormal" cases, such as we have seen to occur

in a small percentage of our cones of the spruce, the arrangements

which we have just mentioned may be set forth as follows (the

fractional number used being simply an abbreviated symbol for the

number of associated helices or parastichies which we can count

running in the opposite directions): 2/3, 3/5, 5/8, 8/13, 13/21, 21/34,

34/55, 55/89, 89/144. Now these numbers form a very interesting

series, which happens to have a number of curious mathematical

properties
"f.

We see, for instance, that the denominator of each

* Amer. Naturalist, vn, p. 449, 1873.

t This celebrated series corresponds to the continued fraction 1+1 etc.,

1 +
and converges to 1-618..., the numerical equivalent of the sectio divina, or

''Golden Mean." The series of numbers, 1, 1, 2, 3, 5, 8, ..., of which each is the

sum of the preceding two, was used by Leonardo of Pisa (c. 1170-1250), nicknamed

Fi Bonacci, or films bonassi, in his Liber Abbaci, a work dedicated to magister

mens, summus philosophus, Michael Scot {Scritti, i, pp. 283-284, 1857). This learned

man was educated in Morocco, where his father was clerk or dragoman to Pisan

merchants; and he is said to have been the first to bring the Arabic numerals, or

" novem figurae Indorum,'' into Europe. The Fibonacci numbers were first so-caUed

by Eduard Lucas, Bollettino di Bibliogr. e Storia dei Sci. Matem. e Fis. x, p. 129, 1877.

The general expression for the series

V^Y (\-V5\
^^{(^T-C~)"l'

was known to Euler and to Daniel Bernoulli {Coram. Acad. Sci. Imp. Petropol.

1732, p. 90), and was rediscovered by Binet, C.E. xviii, p. 563, 1843; xix, p. 939,

1844) and by Lame, ibid, xix, p. 867, after whom it is sometimes called Lame's

series. But the Greeks were familiar with the series 2, 3: 5, 7 : 12, 17, etc.; which

converges to V2, as the other does to the Golden Mean ; and so closely related are

the two series, that it seems impossible that the Greeks could have known the one

and remained ignorant of the other. (See a paper of mine, on "Excess and Defect,

etc.," in Mind, xxxviii. No. 149, 1928.)

The Fibonacci (or Lame) series was well known to Kepler, who, in his paper

De nive sexangula (1611, cf. supra, p. 695), discussed it in connection with the form

of the dodecahedron and icosahedron, and with the ternary or quinary symmetry of

the flower. (Cf. F. Ludwig, Kepler iiber das Vorkommen der Fibonaccireihe im

Pflanzenreich, Bot. Centralbl. lxviii, p. 7, 1896.) Professor William Allman,

Professor of Botany in Dublin (father of the historian of Greek geometry).
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fraction is the numerator of the next; and further, that each suc-

cessive numerator, or denominator, is the sum of the preceding two.

Our immediate problem, then, is to determine, if possible, how these

numerical coincidences come about, and why these particular numbers

should be so commonly met with as to be considered "normal" and

characteristic features of the general phenomenon of phyllotaxis. The

following account is based on a short paper by Professor P. Gr. Tait*.

Of the two following diagrams, Fig. 450 represents the general

case, and Fig. 451 a particular one, for the sake of possibly greater

simplicity. Both diagrams represent a portion of a branch, or fir-

cone, regarded as cylindrical, and unwrapped to form a plane surface.

A, a, at the two ends of the base-line, represent the same initial

leaf or scale; is a leaf which can be reached from ^ by m steps

O

Fig. 450.

in a right-hand spiral (developed into the straight line AO), and by

n steps from a in a left-handed spiral aO. Now it is obvious in our

fir-cone, that we can include all the scales upon the cone by taking

so many spirals in the one direction, and again include them all by so

speculating on the same facts, put forward the curious suggestion that the cellular

tissue of the dicotyledons, or exogens, would be found to consist of dodecahedra,

and that of the monocotyledons or endogens of icosahedra {On the mathematical

connection between the parts of vegetables: abstract of a Memoir read before the

Royal Society in the year 1811 (privately printed, n.d.). Cf. De Candolle, Organo-

genie vegetale, i, p. 534. See also C. E. Wasteels, Over de Fibonaccigetalen,

Me Natuur. Congres, Antwerpen, 1899, pp. 25-37; R. C. Archibald, in Jay
Hambidge's Dynawfc Fiymmetry, 1920, pp. 146-157; and, on the many mathematical

properties of the series, L. E. Dickson, Theory of Numbers, i, pp. 393-411. 1919.

Of these famous and fascinating numbers a mathematical, friend writes to me:
"All the romance of continued fractions, linear recurrence relations, surd approxi-

mations to integers and the rest, lies in them, and they are a source of endless

curiosity. How interesting it is to see them striving to attain the unattainable,

the golden ratio, for instance; and this is only one of hundreds of such relations."

* Proc. R.S.E. vn, p. 391, 1872.
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many in the other. Accordingly, in our diagrammatic construction,

the spirals AO and aO must, and always can, be so taken that m
spirals parallel to aO, and n spirals parallel to AO, shall separately

include all the leaves upon the stem or cone.

If m and n have a common factor, I, it can easily be shewn that

the arrangement is composite, and that there are I fundamental,

or genetic spirals, and I leaves (including A) which are situated

Fig. 451.

exactly on the line. Aa. That is to say, we have here a whorled

arrangement, which we have agreed to leave unconsidered in favour

of the simpler case. We restrict ourselves, accordingly, to the cases

where there is but one genetic spiral, and when therefore m and n

are prime to one another.

Our fundamental, or genetic, spiral, as we have seen, is that which

passes from A (or a) to the leaf which is situated nearest to the

base-line Aa. The fundamental spiral will thus be right-handed

(A, P, etc.) if F, which is nearer to A than to a, be this leaf—left-

handed if it be jo. That is to say, we make it a convention that we
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shall always, for our fundamental spiral, run round the system, from

one leaf to the next, hy the shortest way.

Now it is obvious, from the symmetry of the figure (as further

shewn in Fig. 451),- that, besides the spirals running along AO and

aO, we have a series running/rom the steps on aO to the steps on ^0.

In other words we can find a leaf (S) upon AO, which, like the leaf 0,

is reached directly by a spiral series from A and from a, such that

aS includes n steps, and AS (being part of the old spiral fine AO)

now includes m — n steps. And, since m and n are prime to one

another (for otherwise the system would have been a composite or

whorled one), it is evident that we can continue this process of

convergence until we come down to a 1, 1 arrangement, that is to

say to a leaf which is reached by a single step, in opposite directions

from A and from a,, which leaf is therefore the first leaf, next to A,

of the fundamental or generating spiral.

If our original lines along AO and aO contain, for instance, 13

and 8 steps respectively (i.e. m = 13, n= 8), then our next series,

observable in the same cone, will be 8 and (13 — 8) or 5; the next

5 and (8 — 5) or 3; the next 3, 2; and the next 2, 1 ; leading to the

ultimate condition of 1, 1. These are the very series which we have

found to be common, or normal; and so far as our investigation

has yet gone, it has proved to us that, if one of these exists, it entails,

ipso facto, the presence of the rest.

In following down our series, according to the above construction,

we have seen that at every step we have changed direction, the

longer and the shorter sides of our triangle changing places every

time. Let us stop for a moment, when we come to the 1, 2 series,

or AT, aT of Fig. 451. It is obvious that there is nothing to prevent

us making a new 1, 3 series if we please, by continuing the generating

spiral through three leaves, and connecting the leaf so reached

directly with our initial one. But in the case represented in Fig. 451,

it is obvious that these two series {A, 1, 2, 3, etc., and a, 3, 6, etc.)

will be running in the same direction; i.e. they will both be right-

handed, or both left-handed spirals. The simple meaning of this

is that the third leaf of the generating spiral was distant from our

initial leaf by more than the circumference of the cyhndrical stem;

in other words, that there were more than two, but less than three

leaves in a single- turn of the fundamental spiral.
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Less tnan two there can obviously never be. When there are

exactly two, we have the simplest of all possible arrangements,

namely that in which the leaves are placed alternately on opposite

sides of the stem. When there are more than two, but less than

three, we have the elementary condition for the production of the

series which we have been considering, namely 1, 2; 2, 3; 3, 5, etc.

To put the latter part of this argument in more precise language,

let us say that: If, in our descending series, we come to steps 1

and t, where t is determined by the condition that 1 and t + 1 would

give spirals both right-handed, or both left-handed; it follows that

there are less than t + 1 leaves in a single turn of the fundamental

spiral. And, determined in this manner, it is found in the great

majority of cases, in fir-cones, and a host of other examples of

phyllotaxis, that t= 2. In other words, in the great majority of

cases, we have what corresponds to an arrangement next in order

of simphcity to the simplest case of all : next, that is to say, to the

arrangement which consists of opposite and alternate leaves.

"These simple considerations," as Tait says, "explain completely

the so-called mysterious appearance of terms of the recurring series

1, 2, 3, 5, 8, 13, etc.* The other natural series, usually but mis-

leadingly represented by convergents to an infinitely extended

continuous fraction, are easily explained, as above, by taking ^ = 3,

4, 5, etc., etc." Many examples of these latter series have been

recorded, as more or less rare abnormalities, by Dickson f and other

writers.

We have now learned, among other elementary facts, that wherever

any one system of spiral steps is present, certain others invariably

and of necessity accompany it, and are definitely related to it. In

any diagram, such as Fig. 451, in which we represent our leaf-

arrangement by means of uniform and regularly interspaced dots,

we can draw one series of spirals after another, and one as easily

* The necessary existence of these recurring spirals is also proved, in a somewhat

different way, by Leslie Ellis, On the theory of vegetable spirals, in Mathematical

and other Writings, 1863, pp. 358-372. Leslie Ellis, Whewell's brother-in-law, was

a man of great originahty. He is best remembered, perhaps, for his views on the

Theory of Probabilities (cf. J. M. Keynes, Treatise an Probabilities, 1921, p. 92),

and for his association with Stebbing as editor of Bacon.

t Proc. R.S.E. vn, p. 397, 1872; Trans. E.S.E. xxvi, pp. 505-520, 1872.
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as another. In a fire-cone one particular series, or rather two

conjugate series, are always conspicuous, but the related series may

be sought and found with httle difficulty. The spruce-fir is com-

monly said to have a phyllotaxis of 8/13; but we may count still

Fig. 452.

steeper and nearly vertical rows of scales to the number of 13/21;

and if we take pains to number all the scales consecutively, we may
find the lower series, 5/8, 3/5, and even 1/2, with ease and certainty.

The phenomenon is illustrated by Fig. 452, a-d. The ground-plan

of all these diagrams is identically the same. The generating spiral
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in each case represents a divergence of 3/8, or 135° of azimuth; and

the points succeed one another at the same successional distances

parallel to the axis. The rectangular outhnes, which correspond to

the exposed surface of the leaves or cone-scales, are of equal area,

and of equal number. Nevertheless the appearances presented by
these diagrams are very different; for in one the eye catches a 5/8

arrangement, in another a 3/5 ; and so on, down to an arrangement

of 1/1. The mathematical side of this very curious phenomenon

I have not attempted to investigate. But it is quite obvious that,

in a system within which various spirals are imphcitly contained,

the conspicuousness of one set or another does not depend upon

angular divergence. It depends on the relative proportions in length

and breadth of the leaves themselves; or, more strictly speaking,

on the ratio of the diagonals of the rhomboidal figure by which

each leaf-area is circumscribed. When, as in the fir-cone, the scales

by mutual compression conform to these rhomboidal outlines, their

inclined edges at once guide the eye in the direction of some one

particular spiral; and we shall not fail to notice that in such cases

the usual result is to give us arrangements corresponding to the

middle diagrams in Fig. 452, which are the configurations in which

the quadrilateral outhnes approach most nearly to a rectangular

form, and give us accordingly the least possible ratio (under the

given conditions) of sectional boundary-wall to surface area.

The manner in which one system of spirals may be caused to

slide, so to speak, into another, has been ingeniously demonstrated

by Schwendener on a mechanical model, consisting essentially of

a framework which can be opened or closed to correspond with one

another of the above series of diagrams*.

The same curious fact, that one Fibonacci series leads to, or

involves the rest, is further shewn, in a very simple way, in the

following diagrammatic Table (p. 930). It shews, in the first

instance, the numerical order of the scales on a fir-cone, in so-called

5/8 phyllotaxis; that is to say, it represents the cone unwrapped,

with the two principal spirals lying along the axes of a rectangular

system. Starting from 0, the abscissae increase by 5, the ordinates

by 8; or, in other words, any given number m = bx + d>y\ it is

* A common form of pail-shaped waste-paper basket, with wide rhomboidal

meshes of cane, is well-nigh as good a model as is required.
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by which it may be easily determined); and the very fact that it

does not so enter shews it to be essentially unimportant. The

determination of so-called ''orthostichies," or precisely vertical suc-

cessions of leaves, is also unimportant. We have no means, other

than observation, of determining that one leaf is vertically above

another, and spiral series such as we have been dealing with will

appear, whether such orthostichies exist, whether they be near or

remote, or whether the angle of divergence be such that no precise

vertical superposition ever occurs. And lastly, the fact that the

successional numbers, expressed as fractions, 1/2, 2/3, 3/5, represent

a convergent series, whose final term is equal to 0-61803..., the sectio

aurea or "golden mean" of unity, is seen to be a mathematical

coincidence, devoid of biological significance; it is but a particular

case of Lagrange's theorem that the roots of every numerical equation

of the second degree can be expressed by a periodic continued frac-

tion. The same number has a multitude of curious arithmetical

properties. It is the final term of all similar series to that with

which we have been dealing, such for instance as 1/3, 3/4, 4/7, etc.,

or 1/4, 4/5, 5/9, etc. It is a number beloved of the circle-squarer,

and of all those who seek to find, and then to penetrate, the secrets

of the Great Pyramid. It is deep-set in the regular pentagon and

dodecahedron, the triumphs of Pythagorean or Euclidean geometry.

It enters (as the chord of an angle of 36°) into the thrice-isosceles

triangle of which we have spoken on p. 762 ; it is a number which

becomes (by the addition of unity) its own reciprocal—its properties

never end. To Kepler (as Naber tells us) it was a symbol of Creation,

or Generation. Its recent application to biology and art-criticism

by Sir Theodore Cook and others is not new. Naber' s book, already

quoted, is full of it. Zeising*, in 1854, found in it the key to all

* A. Zeising, Neue Lehre von der Proportion des menschlichen Korpers aus einem

bisher unerkannt gebliebenen die game Natur und Kunst durchdringenden morpho-

logischen Grundgesetze entwickelt, Leipzig, 1854, 457 pp.; ibid. Deutsche Viertel-

jahrsschrift, 1868, p. 261; also, posthumously, Der Goldene Schnitt, Leipzig, 1884,

24 pp. Cf. S. Gunther, Adolph Zeising als Mathematiker, Ztschr. f. Math. u.

Physik. {Hist. Lit. Abth.), xxi, pp. 157-165, 1876; also F. X. PfeiflFer, Die Propor-

tionen des goldenen Schnittes an den Blattern u. Stengelen der Pflanzen, Ztschr.

f. math. u. naturw. Unterricht, xv, pp. 325-338, 1885. For other references, see

R. C. Archibald, op. cit. Among modern books on similar lines, the following

are curious, interesting and beautiful (whether we agree with them or not): Jay

Hambidge, Dynamic Symmetry, Yale, 1920; C. Arthur Coan, Nature's Harmonic

Unity, New York, 1912.
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morphology, and the same writer, later on, declared it to dominate

both architectm^e and music. But indeed, to use Sir Thomas

Browne's words (though it was of another number that he spoke):

"To enlarge this contemplation into all the mysteries and secrets

accommodable unto this number, were inexcusable Pythagorisme."

That this number has any serious claim at all to enter into the

biological question of phyllotaxis seems to depend on the assertion,

.first made by Chauncey Wright*, that, if the successive leaves

of the fundamental spiral be placed at the particular azimuth which

divides the circle in this "sectio aurea," then no two leaves will

ever be superposed f; and thus we are said to have "the most

thorough and rapid distribution of the leaves round the stem, each

new or higher leaf falling over the angular space between the two

older ones which are nearest in direction, so as to divide it in the

same ratio (K), in which the first two or any two successive ones

divide the circumference. Now 5/8 and all successive fractions

differ inappreciably from Z." To this view there are many simple

objections. In the first place, even 5/8, or 0-625, is but a moderately

close approximation to the "golden mean"; and furthermore,

the arrangements by which a better approximation is got, such as

8/13, 13/21, and the very close approximations such as 34/55, 55/89,

89/144, etc., are comparatively rare, while the much less close

approximations of 3/5 or 2/3, or even 1/2, are extremely common.

Again, the general type of argument such as that which asserts

that the plant is "aiming at" something which we may call an

"ideal angle" is one which cannot commend itself to a plain student

of physical science : nor is the hypothesis rendered more acceptable

when Sir T. Cook qualifies it by telHng us that "all that a plant

can do is to vary, to make blind shots at constructions, or to

' mutate ' as it is now termed : and the most suitable of these con-

structions will in the long run be isolated by the action of Natural

Selection." Thirdly, we must not suppose the Fibonacci numbers

On the uses and origin of the arrangement of leaves in plants, Mem. Amer.

Acadfix, p. 380, 1871, Cambridge, Mass. Cf. J. Wiesner, Ueberdie Beziehungen der

Stellungsverhdltnisse der Laubbldtter zur Beleuchtung, Wien, 1902.

t This is what Ruskin spoke of as " the vacant space " ; Mod. Painters, v, chap, vi,

p. 44, 1860. Leonardo had in like manner explained the leaf-arrangement as

serving to let air pass between the leaves, keep one from overshadowing another,

and let rain-drops fall from the one leaf to the one below.
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to liave any exclusive relation to the Golden Mean; for arithmetic

teaches us that, beginning with any two numbers whatsoever, we are

led by successive summations toward one out. of innumerable series

of numbers whose ratios one to another converge to the Golden

Mean*. Fourthly, the supposed isolation of the leaves, or their most

complete "distribution to the action of the surrounding atmosphere"

is manifestly very little affected by any conditions which are confined

to the angle of azimuth. For if it be (so to speak) Nature's object

to set them farther apart than they actually are, to give them freer

exposure to the air or to the sunlight than they actually have, then

it is surely manifest that the simple way to do so is to elongate

the axis, and to set the leaves farther apart, lengthways on the

stem. This has at once a far more potent effect than any nice

manipulation of the "angle of divergence."

Lastly, and this seems the simplest, the most cogent and most

unanswerable objection of them all, if it be indeed desirable that

no leaf should be superimposed above another, the one condition

necessary is that the common angle of azimuth should not be a

rational multiple of a right angle—should not be equivalent to

—
I

-
j

. One irrational angle is as good as another : there is no

special merit in any one of them, not even in the ratio divina. We
come then without more ado to the conclusion that while the

Fibonacci series stares us in the face in the fir-cone, it does so for

mathematical reasons; and its supposed usefulness, and the hypo-

thesis of its introduction into plant-structure through natural

selection, are matters which deserve no place in the plain study

of botanical phenomena. As Sachs shrewdly recognised years ago,

all such speculations as these hark back to a school of mystical

idealism.

* Thus, instead of beginning with 1, 1, let us begin 1, 7. The summation-series

is then 1, 7, 8, 15, 23, 38, 61, 99, 160, 259, ..., etc.; and 99/160=0-618... and
259/160= 1-619...; and so on. But after all, the old Fibonacci numbers are not

far away. For we may write the new series in the form

:

7 (0, 1, 1, 2, 3, 5, 8, ...)

+ 1 (1,0, 1, 1,2,3,5,'...).



CHAPTER XV

ON THE SHAPES OF EGGS, AND OF CERTAIN OTHER
HOLLOW STRUCTURES

The eggs of birds and all other hard-shelled eggs, such as those of

the tortoise and the crocodile, are simple solids of revolution ; but

they differ greatly in form, according to the configuration of the

plane curve by the revolution of which the egg is, in a mathematical

sense, generated. Some few eggs, such as those of the owl, the

penguin, or the tortoise, are spherical or very nearly so; a few more,

such as the grebe's, the cormorant's or the pelican's, are approxi-

mately ellipsoidal, with symmetrical or nearly symmetrical ends,

and somewhat similar are the so-called "cylindrical" eggs of the

megapodes and the sand-grouse; the great majority, like the hen's

egg, are " ovoid," a little blunter at one end than the other ; and some,

by an exaggeration of this lack of antero-posterior symmetry, are

blunt at one end but characteristically pointed at the other, as is

the case with the eggs of the guillemot and puffin, the sandpiper,

plover and curlew. It is an obvious but by no means negligible fact

that the egg, while often pointed, is never flattened or discoidal;

it is a prolate, but never an oblate, spheroid. Its oval outhne has

one maximal and two minimal radii of curvature, one minimum being

less than the other. The evolute to a curve often emphasises, even

exaggerates, its features ; and the evolutes to a series of eggs (i.e.

to their generating curves) are more conspicuously different than

the eggs themselves (Fig. 453)*.

The careful study and collection of birds' eggs would seem to have

begun with the Coujit de Marsiglil, the same celebrated naturalist

* Cf. A. Mallock, On the shapes of birds' eggs. Nature, cxvi, p. 311, 1925. The
evolute may be easily if somewhat roughly drawn by erecting perpendiculars on

a sufficient nunrber of tangents to the curve. The .evolute then appears as an

envelope, the perpendiculars all being tangents to it.

t De avibus circa aquas Danubii vagantihus et de ipsarum nidis (Vol. v of the

Danubius Panonico-Mysicus), Hagae Com. 1726. Count Giuseppi Ginanni, or

Zinanni, came soon afterwards with his book Delle uove e dei nidi degli uccelli,

Vcnezia, 1737.
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who first studied the "flowers" of the coral, and who wrote the

Histoire physique de la mer; and the specific form as well as the

colour and other attributes of the egg have been again and again

discussed, and not least by the many dilettanti naturalists of the

• eighteenth century who soon followed in Marsigli's footsteps*.

We need do no more than mention Aristotle's belief, doubtless

old in his time, that the more pointed egg produces the male chicken,

and the blunter egg the hen ; though this theory survived into modern

times t and still lingers on (cf. p. 943). Several naturahsts, such as

Giinther (1772) and Biihle (1818), have taken the trouble to disprove

it by experiment. A more modern and more generally accepted

^ A .A-

a b c d e

Fig. 453. Typical forms of birds' eggs: from A. Mallock.

The figures below are pinhole photographs of the eggs. The upper figures (drawn

to a uniform scale) shew the generating curves and their evolutes.

a Green plover. c Crow. e Kingfisher.

b Humming-bird. d Pheasant. / Owl.

explanation has been that the form of the egg is in direct relation

to that of the bird which has to be hatched within—a view that

would seem to have been first set forth by Naumann and Biihle,

in their great treatise on eggs J, and adopted by Des Murs§ and

many other well-known writers.

In a treatise by de Lafresnaye||, an elaborate comparison is made

* But Sir Thomas Browne had a collection of eggs at Norwich in 1671, according

to Evelyn.

f Cf. Lapierre, in Buffon's Histoire Naturelh, ed. Sonnini, 1800.

% Eier der Vogel Deutschlands, 1818-28 (cit. Des Murs, p. 36).

§ Traite dVologie, 1860.

II
F. de Lafre.snaye, Comparaison des ceufs des oiseaux avec leurs squelettes,

comme seul moyen de reconnaitre la cause de leurs differentes formes. Rev. Zool.

1845, pp. 180-187, 239-244.
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between the skeleton and the egg of various birds, to shew, for

instance, how those birds with a deep-keeled sternum laid rounded

eggs, which alone could accommodate the form of the young.

According to this yiew, that "Nature had foreseen*" the form

adapted to and necessary for the growing embryo, it was easy to.

correlate the owl with its spherical egg, the diver with its elhptical

one, and in like manner the round egg of the tortoise and the

elongated one of the crocodile, with the shape of the creatures which

had afterwards to be hatched therein. A few writers, such as

Thienemannf, looked at the same facts the other way, and asserted

that the form of the egg was determined by that of the bird by

which it was laid and in whose body it had been conformed.

In more recent times, other theories, based upon the principles

of Natural Selection, have been current and very generally accepted

to account for these diversities of form. The pointed, conical egg

of the guillemot is generally supposed to be an adaptation, advan-

tageous to the species in the circumstances under which the egg

is laid; the pointed egg is less apt than a spherical one to roll off

the narrow ledge of rock on which this bird is said to lay its solitary

egg, and the more pointed the egg, so niuch the fitter and hkeher is

it to survive. The fact that the plover or the sandpiper, breeding

in very different situations, lay eggs that are also conical, ehcits

another explanation, to the effect that here the conical form permits

the many large eggs to be packed closely under the mother bird J.

Whatever truth there be in these apparent adaptations to existing

circumstances, it is oiily by a very hasty logic that we can accept

them as a vera causa, or adequate explanation of the facts ; and it is

obvious that in the bird's egg we have an admirable case for direct

investigation of the mechanical or physical significance of its form§.

* Cf. Des Murs, p. 67: "Elle devait encore penser au moment ou ce germe

aurait besoin de I'espace necessaire a son accroissement, a ce moment ou . . . il devra

remplir exactement I'intervalle circonscrit par sa fragile prison, etc."

f F. A. L. Thienemann, Syst. Darstellung der Fortpflanzung der Vogel Europas,

Leipzig, 1825-38.

X Cf. Newton's Dictionary of Birds, 1893, p. 191 ; Szielasko, Gestalt der Vogeleier,

Journ. f. Ornith. Lm, pp. 273-297, 1905.

§ Jacob Steiner suggested a Cartesian oval, r + mr' — c, as a general formula

for all eggs (cf. Fechner, Ber. sacks. Ges. 1849, p. 57); but this formula (which

fails in such a case as the guillemot) is purely empirical, and has no mechanical

foundation.
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Of all the many naturalists of the eighteenth and nineteenth

centuries who wrote on the subject of eggs, only two (so far as

I am aware) ascribed the form of the egg to direct mechanical

causes. Giinther*, in 1772, declared that the more or less rounded

or pointed form of the egg is a mechanical consequence of the

pressure of the oviduct at a time when the shell is yet unformed

or unsolidified ; and that accordingly, to explain the round egg of

the owl or the kingfisher, we have only to admit that the oviduct

of these birds is somewhat larger than that of most others, or

less subject to violent contractions. This statement contains, in

essence, the whole story of the mechanical conformation of the egg.

A hundred and twenty years after, Dr J. Ryder of Philadelphia

gave, as near as may be, the same explanation f.

Let us consider, very briefly, the conditions to which the egg is

subject in its passage down the oviduct.

(1) The "egg," as it enters the oviduct, consists of the yolk only,

enclosed in its vitelHne membrane. As it passes down the first

portion of the oviduct the white is gradually superadded, and

becomes in turn surrounded by the "shell-membrane." About this

latter the shell is secreted, rapidly and at a late period: the egg

having meanwhile passed on into a wider portion of the oviducal

tube; called (by loose analogy, as Owen says) the "uterus." Here

'the egg assumes its permanent form, here it ultimately becomes

rigid, and it is to this portion of the oviduct that our argument

principally refers.

(2) Both the yolk and the entire egg tend to fill completely their

respective membranes, and, whether this be due to growth or

imbibition on the part of the contents or to contraction on the part

of the surrounding membranes, the resulting tendency is for both

yolk and egg to be, in the first instance, spherical, unless or until

distorted by external pressure.

(3) The egg is subject to pressure within the oviduct, which is

an elastic, muscular tube, along the walls of which pass peristaltic

* F, C. Giinther, Sammlung von Nestern und Eyern verschiedener Vogel, Niirnb.

1772. Cf. also Raymond Pearl, Morphogenetic activity of the oviduct, J. Exp. Zool.

VI, pp. 339-359, 1909. -

t J. Ryder, The mechanical genesis of the form of the fowl's egg, Proc\ Amer.

Philosoph. Soc. Philadelphia, xxxi, pp. 203-209, 1893; cf. A. S. Packard,

Inheritance of acquired characters, 'Proc. Amer. Acad. 1894, p. 360.
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waves of contraction. These muscular contractions hiay be de-

scribed as the contraction of successive annuli of muscle, giving

annular (or radial) pressure to successive portions of the egg ; they

drive the egg forward against the frictional resistance of the tube,

while tending at the same time to distort its form. While nothing

is known, so far as I am aware, of the muscular physiology of the

oviduct, it is well known in the case of the intestine that the presence

of an obstruction leads to the development of violent contractions

in its rear, which waves of contraction die away, and are scarcely

if at all propagated in advance of the obstruction ; indeed in normal

intestinal peristalsis a wave of relaxation travels close ahead of the

wave of constriction.

(4) The egg is, to all intents and purposes, a solid of revolution

;

in other words, its transverse sections are all but perfect circles,

sd nearly perfect that, chucked in the lathe, an egg "runs true."

This may be taken to shew that the direct pressure of the oviduct,

whether elastic or muscular,* is large compared with the weight of

the egg. Even in ostrich eggs, where if anywhere gravitational

deformation should be found, the greatest and least equatorial

diameters do not differ by 1 per cent., and sometimes by less than

one part in a thousand*.

(5) It is known by observation that a hen's egg is always laid

blunt end foremost f.

(6) It can be shewn, at least as a very common rule, that those

eggs which are most unsjnnmetrical, or most tapered off posteriorly,

are also eggs of a large size relatively to the parent bird. The

guillemot is a notable case in point, and so also are the curlews,

sandpipers, phaleropes and terns. We may accordingly presume

that the more pointed eggs are those that are large relatively to

the tube or oviduct through which they have to pass, or, in other

words, are those which are subject to the greatest pressure while

* Cf. Mailock, op. cit.

t This was known to Albertus Magnus, though his explanation was wrong,

"Ova autem habentia duos colores non sunt oranino penitus rotunda, sed ex una

parte sunt acuta habentia angulum sphericum acutum, sicut sunt composita ex

duobus seraispheris, in una parte extensis ad angulum acutum et in alia parte

sphericis noo extensis in loco ubi est polus ovi. . . . Et in exitu ovi acutus angulus

exit uliimo, eo quod ipse porrectus est ad interiora matricis versus parietem ubi

ovum cum matrice continuatur in sui generatione" {De animalibas, lib. xvii,

tract. 1, c. 3).
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being forced along. So general is this relation that we may go still

further, and presume with great plausibihty in the few exceptional

cases (of which the apteryx is the most conspicuous) where the egg

is relatively large though not markedly unsymmetrical, that in these

cases the oviduct itself is in all probability large (as Giinther had

suggested) in proportion to the size of the bird. In the case of the

common fowl we can trace a direct relation between the size and

shape of the egg, for the first eggs laid by a young pullet are usually

smaller, and at the same time are much more nearly spherical than the

later ones ; and, moreover, some breeds of fowls lay proportionately

smaller eggs than others, and on the whole the former eggs tend to

be rounder than the latter*.

We may now proceed to enquire more particularly how the form

of the egg is controlled by the pressures to which it is subjected.

The egg, just prior to the formation of the shell, is, as we have

seen, a fluid body, tending to a spherical shape and enclosed within

a membrane.

Our problem, then, is: Given an incompressible fluid, contained

in a deformable capsule, which is either (a) entirely inextensible, or

(6) slightly extensible, and which is placed in a long elastic tube the

walls of which are radially contractile, to determine the shape under

some given distribution of pressure. We may assume, at least to

begin with, that the shell-membrane is homogeneous and isotropic

—

uniform in all parts and in all directions.

If the capsule be spherical, inextensible, and completely filled

with the fluid, absolutely no deformation can take place. The few

eggs that are actually or approximately spherical, such as those of

the tortoise or the owl, may thus be alternatively explained as cases

where little or no deforming pressure has been applied prior to the

solidification of the shell, or else as cases where the capsule was so

* In so far as our explanation involves a shaping or moulding of the egg by

the uterus or oviduct (an agency supplemented by the proper tensions of the

egg), it is curious to note that this is very much the same as that old view of

Telesius regarding the formation of the embryo {De rerum natura, vi, cc. 4 and 10),

which he had inherited from Galen, and of which Bacon speaks {Nov. Org. cap. .50;

cf. Ellis's note). Bacon expressly remarks that "Telesius should have been able

to shew the like formation in the shells of eggs." This old theory of embryonic

modelling survives in our usage of the term "matrix" for a "mould."
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little capable of extension and so completely filled as to preclude the

possibility of deformation.

If the capsule be not spherical, but be inextensible, then only such

deformation can take place as tends to make the shape more nearly

spherical; and as the surface area is thereby decreased, the envelope

must either shrink or pucker. In other words, an incompressible

fluid contained in an inextensible envelope cannot be deformed

without puckering of the envelope.

But let us next assume, as the condition by which this result

may be avoided, that the envelope is to some extent extensible and

that deformation is so far permitted. It is obvious that, on the

presumption that the envelope is only moderately extensible, the

whole structure can only be distorted to a moderate degree away

from the spherical or spheroidal form.

At all points the shape is determined by the law of the distribution

of radial pressure withih the given region of the tube, surface friction

helping to maintain the egg in position. If the egg be under

pressure from the oviduct, but without any marked component

either in a forward or backward direction, the egg will be compressed

in the middle, and will tend more or less to the form of a cylinder

with spherical ends. The eggs of the grebe, cormorant, or crocodile

may be supposed to receive their shape in such circumstances.

When the egg is subject to the peristaltic contraction of the

oviduct during its formation, then from the nature and direction of

motion of the peristaltic wave the pressure will be greatest some-

where behind the middle of the egg; in other words, the tube is

converted for the time being into a more conical form, and the

simple result follows that the anterior end of the -egg becomes the

broader and the posterior end the narrower.

The peristalsis of the oviduct thus plays a double part, in pro-

pelling the' egg down the oviduct and in impressing on it its ovoid

form; but the whole process is a very slow one, for the hen's oviduct

is only a few inches long, and the egg is some ten or twelve hours

upon its way. We shall consider presently certain shells which

may be regarded as so many drops or vesicles deformed by gravity;

that is a statical problem. Compared with it the problem of the

egg is a dynamical one; and yet it becomes a quasi-statical one,

because the action is so very slow. It is an action without lag
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and without momentum; and the question, common in dynamical

problems, of the relation between the period of the appHcation of

the force and the free period of response or adjustment to it need

not concern us at all.

Again, the case of the egg is somewhat akin to a hydrodynamical

problem ; for as it lies in the oviduct we may look on it as a stationary

body round which waves are flowing, with the same result as when

a body moves through a fluid at rest. Thus we may treat it as a

hydrodynamical problem, but a very simple one—simphfied by the

absence of all eddies and every form of turbulence; and we come

to look on the egg as a streamlined structure, though its streamlines

are of a very simple kind.

The mathematical statement of the case begins as follows:

In our egg, consisting of an extensible membrane filled with an

incompressible fluid and under external pressure, the equation of

the envelope is ;p„ + T (1/r + \jr') = P, where p^ is the normal

component of external pressure at a point where r and r' are the

radii of curvature, T is the tension of the envelope, and P the

internal fluid pressure. This is simply the equation of an elastic

surface where T represents the coefficient of elasticity; in other

words, a flexible elastic shell has the same mathematical properties

as our fluid, membrane-covered egg. And this is the identical

equation which we have already had so frequent occasion to employ

in our discussion of the forms of cells; save only that in these

latter we had chiefly to study the tension T (i.e. the surface-tension

of the senii-fluid cell) and had little or nothing to do with the factor

of external pressure (^„), which in the case of the egg becomes of

chief importance.

To enquire how an elastic sphere or spheroid will be deformed

in passing down a peristaltic tube is an ill-defined and indeterminate

problem ; but we can study the effect produced in the shape of any

particular egg, and so far infer the forces which have been in action.

We need only study a single meridian of the egg, inasmuch as we
have found it to be a solid of revolution. At successive points

along this meridian, let us determine the amount of curvature, that

is to say the principal radii of curvature, in latitude and longitude,

in the Gaussian formula P = pn + T (1/r 4- l/r') : or, as we may write

it if we have any reason to doubt the uniformity or isotropy of the
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membrane, Tjr + T'jr'. The sum ofthese curvatures varies from point

to point; the internal or hydrodynamical pressure, P, is constant; and

therefore the external pressure, jo„, varies from point to point with

the curvature, and is a direct function of the shape of the egg.

Some few eggs, such as the owl's and the kingfisher's, are so nearly

spherical that we are apt to speak of them as spheres ; but they are

all prolate more or less, and no egg is so nearly circular in meridional

section as all eggs are in their circles of latitude. When the egg is

all but spherical that shape may be due (as we have seen) to various

causes : to a relatively, small size of the egg, allowing it to descend

the tube under a minimum of peristaltic pressure; perhaps to an

unusually strong shell-membrane, resistant of deformation; in

general terms, to a possible diminution of j?„ , or a possible increase

of T. But all eggs have approximately spherical ends, and the

big anterior end of the large conical eggs of plover or curlew or

guillemot is conspicuously so. Here the egg projects into the wide

cavity of the uncontracted oviduct, external or peristaltic pressure

does not exist, the shell-membrane has to resist internal pressure

without further external support, and the resultant spherical cur-

vature is an indication of the uniformity, or isotropy, of the mem-
brane. The lesser of the two spherical ends, that is to say the

posterior end, has by much the greater curvature, and the tension

there is correspondingly great. It would seem that the membrane

ought to be thicker or stronger at this pointed end than elsewhere,

but it is not known to be so. In any case, it is just here, in this

presumably weakest part, that we are most apt to find the irregulari-

ties and deformities of misshapen eggs.

Within the egg lies the yolk, and the yolk is invariably spherical

or very nearly so, whatever be the form of the entire egg. The

reason is simple, and lies in the fact that the fluid yolk is itself

enclosed within another membrane, between which and the shell-

membrane Hes the fluid albumin, which transmits a uniform hydro-

static pressure to the yolk*. The lack of friction between the yolk-

membrane and the white of the egg is indicated by the well-known

fact that the "germinal spot" on the surface of. the yolk is always

* In like manner, the cell-nucleus is "usually globular, except in certain

specialised tissues, or when it degenerates" (Darlington). Whether it possesses

a membrane is matter in dispute, but it at all events possesses a surface, with

a phase-difference between it and the surrounding cytoplasm. Cf. above, p. 295.
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found uppermost, however we may place and wherever we may open

the egg ; that is to say, the yolk easily rotates within the egg, bringing

its lighter pole uppermost.

In its passage down the oviduct the egg is not merely thrust but

also screwed along; and its spiral course leaves traces on wellnigh

all its structure save the shell. When we have broken the shell of

a hard-boiled egg the shell-membrane below peels off in spiral strips,

and even the white tends to flake off in layers, spirally. In the

fresh unboiled egg two knotted cords—the treadles or chalazae—are

connected with the yolk, and lie fore-and-aft of it, loose in the

albimien. These represent the free ends of a yolk-membrane, which

got caught in the constricted oviduct while the yolk between them

was being screwed along: very much as we may wrap an apple in

a handkerchief, hold the two ends fast, and twirl the apple round.

These, then, are the general principles involved in, and illustrated

by, the configuration of an egg ; and they take us as far as we can

safely go without actual quantitative determination, in each par-

ticular case, of the forces concerned*.

In certain cases among the invertebrates, we again find instances

of hard-shelled eggs which have obviously been moulded by the

oviduct, or so-called "ootype," in which they have lain: and not

merely in such a way as to shew the effects of peristaltic pressure

upon a uniform elastic envelope, but so as to impress upon the

egg the more or less irregular form of the cavity within which it

had been for a time contained and compressed. , After this fashion

is explained the curious form of the egg in Bilharzia (Schistosoma)

haematobium, a formidable parasitic worm to which is due a disease

wide-spread in Africa and Arabia, and an especial scourge of the

Mecca pilgrims. The egg in this worm is provided at one end with

a little spine, which is explained as having been moulded within a

little funnel-shaped expansion of the uterus, just where it communi-

cates with the common duct leading from the ovary and yolk-gland.

Owing to some anatomical difference in the uterus, the httle

* It is a common but unfounded belief among poultry-men that shape and size

are related to the sex of the egg, the longer eggs producing mostly male chicks.

That there is no such correlation between sex on the one hand and weight, length

or shape on the other, has been clearly demonstrated. Cf. M. A. Jull and J. P.

Quinn, Journ. Agr. Research, xxix, pp. 195-201, 1924.
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spine may be at the end or towards the side of the egg : and this

-visible difference has led to the recognition of a new species, S.

mansoni*. In a third species, S. japonicum, the egg is described

as bulging into a so-called "calotte," or bubble-like convexity at

the end opposite to the spine. This, I think, may, with very httle

doubt, be ascribed to hardening of the egg-shell having taken place

just at the time when partial relief from pressure was being

experienced by the egg in the neighbourhood of the dilated orifice

of the oviduct.

This case of Bilharzia is not, from our present point of view, a

very important one, but nevertheless it is interesting. It ascribes

to a mechanical cause a curious pecuUarity of form ; and it shews, by

reference to this mechanical principle, how two simple mechanical

modifications of the same thing may not only seem very different

to the systematic naturaUst's eye, but may actually lead to the

recognition of a new species, with its own geographical distribution,

and its own pathogenic characteristics.

On the form of sea-urchins

As a corollary to the problem of the bird's egg, we may consider

for a moment the forms assumed by the shells of the sea-urchins.

These latter are commonly divided into two classes—the Regujar

and the Irregular Echinids. The regular sea-urchins, save in sHglit

details which do not affect our problem, have a complete axial

symmetry. The axis of the animal's body is vertical, with mouth

below and the intestinal outlet above; and around this axis the

shell is built as a symmetrical system. It follows that in horizontal

section the shell is everywhere circular, and we need only consider

its form as seen in vertical section or projection. The irregular

urchins (very inaccurately so-called) have the anal extremity of

the body removed from its central, dorsal situation; and it follows

that they have now a single plane of symmetry, about which the

organism, shell and all, is bilaterally symmetrical. We need not

concern ourselves in detail with the shapes of their shells, which

may be very simply interpreted, by the help of radial coordinates,

as deformations of the circular or "tegular" type.

* L. W. Sambon, Proc. Zool. Soc. 1907 (i), p. 283; also in Journ. Trop. Med. and

Hygiene, Sept. 15, 1926.
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The sea-urchin shell consists of a membrane, stiffened into rigidity

by calcareous deposits, which constitute a beautiful skeleton of

separate, neatly fitting "ossicles." The rigidity of the shell is more

apparent than real, for the entire structure is, in a sluggish way,

plastic ; inasmuch as each Httle ossicle is capable of growth, and the

entire shell grows by increments to each and all of these multi-

tudinous elements, whose individual growth involves a certain

amount of freedom to move relatively to one another ; in a few cases

the ossicles are so little developed that the whole shell appears

soft and flexible. The viscera of the animal occupy but a small

part of the space within the shell, the cavity being mainly filled by

a large quantity of watery fluid, whose density must be very near

to that of the external sea-water.

Apart from the fact that the sea-urchin continues to grow, it

is plain that we have here the same general conditions as in the

egg-shell, and that the form of the sea-urchin is subject to a similar

equihbrium of forces. But there is this important difference, that

an external muscular pressure (such as the .oviduct administers

during the consolidation of the egg-shell) is now lacking. In its

place we have the steady continuous influence of gravity, and there

is yet another force which in all probability we require to take into

consideration.

While the sea-urchin is alive, an immense number of delicate

"tube-feet," with suckers at their tips, pass through minute pores

in the shell, and, like so many long cables, moor the animal to the

ground. They constitute a symmetrical system of forces, with one

resultant downwards, in the direction of gravity, and another out-

wards in a radial direction ; and if we look upon the shell as originally

spherical, both will tend to depress the sphere into a flattened cake.

We need not consider the radial component, but may treat the

case as that of a spherical shell symmetrically depressed under the

influence of gravity. This is precisely the condition which we have

to deal with in a drop of liquid lying on a plate ; the form of which

is determined by its own uniform surface-tension, plus gravity,

acting against the internal hydrostatic pressure. Simple as this

system is, the full mathematical investigation of the form of a drop

is not easy, and we can scarcely hope that the systematic study

of the Echinodermata will ever be conducted by methods based
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on Laplace's diiferential equation*; but we have little difficulty in

seeing that the various forms represented in a series of sea-urchin

shells are no other than those which we may easily and perfectly

imitate in drops.

In the case of the drop of water (or of any other particular liquid)

the specific surface-tension is always constant, and the pressure

varies inversely as the radius of curvature; therefore the smaller

the drop the more nearly is it able to conserve the spherical form,

and the larger the drop the more does it become flattened under

gravityf. We can imitate this phenomenon by using india-rubber

balls filled with water, of different sizes ; the httle ones will remain

very nearly spherical, but the larger will fall down "of their own
weight," into the form of more and more flattened cakes; and we

see the same thing when we let drops of heavy oil (such as the

orthotoluidene spoken of on p. 370) fall through a tall column of

water, the httle ones remaining round, and the big ones getting

more and more flattened as they sink. In the case of the sea-urchin,

the same series of forms may be assumed to occur, irrespective of

size, through variations in T, the specific tension, or "strength"

of the enveloping shell. Accordingly we may study, entirely from

this point of view, such a series as the following (Fig. 454). In

a very few cases, such as the fossil Paheechinus, we have an

approximately spherical shell, that is to say a shell so strong that

the influence of gravity becomes negligible as a cause of deformation,

just as (to compare small things with great) the surface tension of

mercury is so high that small drops of it seem perfectly spherical {.

The ordinary species of Echinus begin to display a pronounced

depression, and this reaches its maximum in such soft-shelled flexible

forms as Phormosoma. On the general question I took the oppor-

Cf. Bashforth and Adams, Theoretical Forms of Drops, etc., Cambridge, 1883.

t The drops must be spherical, or very nearly so, to produce a rainbow. But the

bow is said to be always better defined near the top than down below; which seems

to shew that the lower and larger raindrops are the less perfect spheres. (Cf.

T. W. Backhouse, Symons's M. Met. Mag. 1879, p. 25.) For the small round
droplets in the cloud tend to cannon off one another, and remain small and spherical.

But when there comes a diflference of potential between cloud and cloud, or be-

tween earth and sky, then the spherules become distorted, one droplet coalesces

with another, and the big drops begin to fall.

X Cf. A. Ferguson, On the theoretical shape of large bubbles and drops, Phil. Mag.

(6), XXV, pp. 507-520, 1913.
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tunity of consulting Mr C. R. Darling, who is an acknowledged

expert in drops, and he at once agreed"with me that such forms as are

represented in Fig. 454 are no other than diagrammatic illustrations

of various kinds of drops, "most of which can easily be reproduced

in outline by the aid of liquids of approximately equal density to

water, although some of them are fugitive." He found a difficulty

in the case of the outline which represents Asthenosoma, but the

reason for the anomaly is obvious; the flexible shell has flattened

Fig. 454. Diagrammatic vertical outlines of various sea-urchins: A, Palaeechinus;

B, Echinus acutits; C, Cidaris; D, D', Coelopleurus; E, E', Genicopatagus

;

F, Phormosoma liiculenter ; G, P. tenuis; H, Asthenosoma; I, Urechinus.

down until it has come in contact with the hard skeleton of the jaws,

or " Aristotlci's lantern," within, and the curvature of the outline

is accordingly disturbed. The elevated, conical shells such as those

of Urechinus and Coelopleurus evidently call for some further ex-

planation; for there is here some cause at work to elevate, rather

than to depress the shell. Mr Darling tells me that these forms

"are nearly identical in shape with globules I have frequently

obtained, in which, on standing, bubbles of gas rose to the summit

and pressed the skin upwards, without being able to escape." The

same condition may be at work in the sea-urchin; but a similar
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tendency would also be manifested by the presence in the upper

part of the shell of any accumulation of substance Hghter than water,

such as is actually present in the masses of fatty, oily eggs.

On theform and branching of blood-vessels

Passing to what may seem a very different subject, we may
investigate a number of interesting points in connection with the

form and structure of the blood-vessels, and we shall find ourselves

helped, at least in the outset, by the same equations as those we

have used in studying the egg-shell.

We know that the fluid pressure (P) within the vessel is balanced

by (1) the tension (T) of the wall, divided by the radius of curvature,

and (2) the external pressure (pn), normal to the wall: according to

our formula

P = y„+r(l/r+l//).

If. we neglect the external pressure, that is to say any support

which may be given to the vessel by the surrounding tissues, and

if we deal only with a cylindrical vein or artery, this formula

becomes simpUfied to the form P = T/R. That is to say, under

constant pressure, the tension varies as the radius. But the tension,

per unit area of the vessel, depends upon the thickness of the wall,

that is to say on the amount of membranous and especially of

muscular tissue of which it is Qomposed. Therefore, so long as the

pressure is constant, the thickness of the wall should vary as the

radius, or as the diameter, of the blood-vessel.

But it is not the case that the pressure is constant, for it

gradually falls off, by loss through friction, as we pass from the

large arteries to the small; and accordingly we find that while, for

a time, the cross-sections of the larger and smaller vessels are

symmetrical figures, with the wall-thickness proportional to the size

of the tube, this proportion is gradually lost, and the walls of the

small arteries, and still more of the capillaries, become exceedingly

thin, and more so than in strict proportion to the narrowing of the

tube.

In the case of the heart we have, within each of its cavities, a

pressure which, at any given moment, is constant over the whole wall-

I
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area, but the thickness of the wall varies very considerably. For

instance, in the left ventricle the apex is by much the thinnest por-

tion, as it is also that with the greatest curvature. We may assume,

therefore (or at least suspect), that the formula, ^ (1/r + 1/r') = C,

holds good ; that is to say, that the thickness {tj of the wall varies

inversely as the mean curvature. This may be tested experimentally,

by dilating a heart with alcohol under a known pressure, and then

measuring the thickness of the walls in various parts after the whole

organ has become hardened. By this means it is found that, for

each of the cavities, the law holds good with great accuracy*.

Moreover, if we begin by dilating the right ventricle and then dilate

the left in like manner, until the whole heart is equally and sym-

metrically dilated, we find (1) that we have had to use a pressure

in the left ventricle from six to seven times as great as in the right

ventricle, and (2) that the thickness of the walls i» just in the same

proportion f.

Many problems of a hydrodynamical kind arise in connection

with the flow of blood through the blood-vessels; and while these

are of primary importance to the physiologist they interest the

morphologist in so far as they bear on questions of structure and form.

As an example of such mechanical problems we may take the con-

ditions which go to determine the manner of branching of an artery,

or the angle at which its branches are given off; for, as John Hunter

said J, "To keep up a circulation sufficient for the part, and no more,

Nature has varied the angle of the origin of the arteries accordingly."

This is a vastly important theme, and leads us a deal farther than

does the problem, petty in comparison, of the shape of an egg. For

the theorem which John Hunter has set forth in these simple words

is no other than thaf " principle of minimal work" which is funda-

mental in physiology, and which some have deemed the very criterion

* R. H. Woods, On a physical theorem applied to tense membranes, Journ.

of Anat. and Phys. xxvi, pp. 362-371, 1892. A similar investigation of the

tensions in the uterine wall, and of the varying thickness of its muscles, was
attempted by Haughton in his Animal Mechanics, 1873, pp. 151-158.

t This corresponds with a determination of the normal pressures (in systole)

by Knohl, as being in the ratio of 1 : 6-8.

% Essays, edited by Owen, i, p. 134, 1861. The subject greatly interested Keats.

See his Notebook, edited by M. B. Forman, 1932, p, 7; and cf. Keats as a Medical

Student, by Sir Wm Hale-White, in Guy's Hospital Reports, lxxiii, pp. 249-262,

1925.
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of "organisation*." For the principle of Lagrange, the "principle

of virtual work," is the key to physiological equilibrium, and

physiology itself has been called a problem in maxima and minima f.

This principle, overflowing into morphology, helps to bring the

morphological and the physiological concepts together. We have

dealt with problems of maxima and minima in many simple con-

figurations, where form alone seemed to be in question; and we

meet with the same principle again wherever work has to be done

and mechanism is at hand to do it. That this mechanism is the

best possible under all the circumstaaces of the case, that its work

is done with a maximum of efiiciency and at a minimum of cost,

may not always lie within oui; range of quantitative demonstration,

but to believe it to be so is part of our common faith in the perfection

of Nature's harndiwork. All the experience and the very instinct of

the physiologist tells him it is true ; he comes to use it as a postulate,

or meihodus inveniendi, and it does not lead him astray. The dis-

covery of the circulation of the blood was implicit in, or followed

quickly after, the recognition of the fact that the valves of heart

and veins are adapted to a one-way circulation ; anA we may begin

likewise by assuming a perfect fitness or adaptation in all the minor

details of the circulation.

As part of our concept of organisation we assume that the cost

of operating a physiological system is a minimum, what we mean

by cost being measurable in calories and ergs, units whose dimensions

are equivalent to those of work. The circulation teems with illustra-

tions of thi^ great and cardinal principle. " To keep up a circulation

sufiicient for the part and no more" Nature has not only varied the

angle of branching of the blood-vessels to suit her purpose, she has

regulated the dimensions of every branch and stem and twig and

capillary; the normal operation of the heart is perfection itself,

even the amount of oxygen which enters and leaves the capillaries

is such that the work involved in its exchange and transport is

a minimum. In short, oxygen transport is the main object of the

circulation, and it seems that through all the trials and errors of

* Cf. Cecil D. Murray, The physiological principle ofminimal work, in the vascular

system, and the cost of blood-volume, Proc. Acad. Nat. Sci. xii, pp. 207-214, 1926;

The angle of branching of the arteJries, Journ. Gen. Physiol, ix, pp. 835-841, 1926;

On the branching-angles of trees, ibid, x, p. 72;'), 1927.

t By Dr F. H. Pike, quoted by C. D. Murray.
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growth and evolution an efficient mode of transport has been attained.

To prove that it is the very best of all possible modes of transport

may be beyond our powers and beyond our needs; but to assume

that it is perfectly economical is a sound working hypothesis*. And
by this working hypothesis we seek to understand the form and

dimensions of this structure or that, in terms of the work which it

has to do.

The general principle, then, is that the form and arrangement

of the blood-vessels is such that the circulation proceeds with a

minimum of effort, and with a minimum of wall-surface, the latter

condition leading to a minimum of friction and being therefore

included in the first. What, then, should be the angle of branching,

such that there shall be the least possible loss of energy in the course

of the circulation? In order to solve this problem in any particular

case we should obviously require to know (1) how the loss of energy

depends upon the distance travelled, and (2) how the loss of energy

varies with the diameter of the vessel. The

loss of energy is evidently greater in a

narrow tube than in a wide one, and greater,

obviously, in a long journey than a short.

If the large artery, AB, gives off a com-

paratively narrow branch leading to P
(such as CP, or DP), the route ACP is

evidently shorter than ADP, but on the

other hand, by the latter path, the blood has

tarried longer in the wide vessel ^B, and has
'^

^. ^g
had a shorter course in the narrow branch.

The relative advantage of the two paths will depend on the loss

of energy in the portion CD, as compared with that in the alternative

portion CD', the one being short and narrow, the other long and

wide. If we ask, then, which factor is the more important, length

* Cf. A. W. Volkmann, Die Haemodynamik nach Verauchen, Leipzig, 1850

(a work of great originality); G. Schwalbe, Ueber. . .die Gestaltung des Arterien-

systems, Jen. Zeitschr. xii, p. 267, 1878; W. Hess, Eine mechanischbedingte Gesetz-

massigkeit im Bau des Blutgefasssystems, A.f. Entw. Me'ch. xvi, p. 632, 1903 ; Ueber

die peripherische Reguiierung der Blutzirkulation, Pfluger's Archiv, CLXvm, pp.

439-490, 1917; R. Thoma, Die mittlere Durchflussmengen der Arteriert des

Menschen ais Funktion des Gefassradius, ibid, clxxxix, pp. 282-310, cxcra,

pp. 385-406, 1921-22; E. Blum, Querschnittsbeziehungen zwischen Stamm u. Asten

im Arteriensystem, ibid, clxxv, pp. 1-19, 1919.
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or width, we may safely take it that the question is one of degree

;

and that the factor of width will become the more important of

the two wherever artery and branch are markedly unequal in size.

In other words, it would seem that for small branches a large angle

of bifurcation, and for large branches a small one, is always the

better. Roux has laid down certain rules in regard to the branching

of arteries, which cojrespond with the general conclusions which we

have just arrived at. The most important of these are as follows:

(1) If an artery bifurcates into two equal branches, these branches

come off at equal angles to the main stem. (2) If one of the two

branches be smaller than the other, then the main branch, or

continuation of the original artery, makes with the latter a smaller

angle than does the smaller or "lateral" branch. And (3) all

branches which are so small that they scarcely seem to weaken or

diminish the main stem come off from it at a large angle, from

about 70° to 90°.

We may follow Hess in a further investigation of the phenomenon.

Let AB be an artery, from which a branch has to be given off so

as to reach P, and let ACP, ADP, etc.,

be alternative courses which the branch

may follow: CD, DE, etc., in the

diagram, being equal distances (= I)

along AB. Let us call the angles PCD,
PDE, Xi, X2, etc.: and the distances

CD', DE', by which each branch exceeds

the next in length, we shall call li,l2, etc.

Now it is evident that, of the courses

shewn, ACP is the shortest which the

blood can take, but it is also that by

which its transit through the narrow

branch is the longest. We may reduce

its transit through the narrow branch

more and more, till we come to CGP, or

rather to a point where the branch comes

off at right angles to the main stem ; but

in so doing we very considerably increase the whole distance

travelled. We may take it that there will be some intermediate point

which will strike the balance of advantage.

Fig. 456.
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Now it is easy to shew that if, in Fig. 456, the route ADP and

AEP (two contiguous routes) be equally favourable, then any other

route on either side of these, such as ACP or AFP, must be less

favourable than either. Let ADP and AEP, then, be equally

favourable; that is to say, let the loss of energy which the blood

suffers in its passage along these two routes be equal. Then, if

we make the distance DE very small, the angles Xg and x^ are nearly

equal, and may be so treated. And again, if DE be very small,

then DE'E becomes a right angle, and I2 (or DE') = I cos Xg. But

if L be the loss of energy per unit distance in the wide tube AB,

and U be the corresponding loss of energy in the narrow tube DP,

etc., then IL = I2L' , because, as we have assumed, the loss of energy

on the route DP is equal to that on the whole route DEP. Therefore

IL = IL cos Xg, and cos x^ = LjU . That is to say, the most favour-

able angle of branching will be such that the cosine of the angle is

equal to the ratio of the loss of energy which the blood undergoes,

per unit of length, in the main vessel, as compared with that which

it undergoes in the branch. The path of a ray of light from one

refractive medium to another is an analogous but much more famous

problem; and the analogy becomes a close one when we look upon

the branching artery as the special case of "grazing incidence."

After thus dealing with the most suitable angle of branching,

we have still to consider the appropriate cross-section of the branches

compared with the main trunk, for instance in the special case where

a main artery bifurcates into two. That the sectional area of the two

branches may together equal the area of the parent trunk, it is (of

course) only necessary that the diameters of trunk and branch should

be as\/2 : 1, or (say) as 14 : 10, or (still more roughly) as 10 : 7; and

in the great vessels, this simple ratio comes very nearly true. We
have, for instance, the following measurements of the common ihac

arteries, into which the abdominal aorta subdivides:

Internal diameter of abdominal arteries*

Aorta abdom. (mm.)
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But the increasing surface of the branches soon means increased

friction, and a slower pace of the blood travelling through; and
therefore the branches must be more capacious than at first appears.

It becomes a question not of capacity but of resistance; and in

general terms the answer is that the ratio of resistance to cross-

section shall be equal in every part of the system, before and after

bifurcation, as a condition of least possible resistance in the whole

system; the total cross-section of the branches, therefore, must be

greater than that of the trunk in proportion to the increased

resistance.

An approximate result, familiar to students of hydrodynamics, is

that the resistance is a minimum, and the condition an optimum, when
the cross-section of the main stem is to the sum of the cross-sections

of the branches as 1 : ^2, or 1 : 1-26. Accordingly, in the case of

a blood-vessel bifurcating into two equal branches, the diameter

of each should be to that of the main stem (approximately) as

J
1-26
-^-il, or (say) 8: 10.

While these statements are so far true, and while they undoubtedly

cover a great number of observed facts, yet it is plain that, as in

all such cases, we must regard them not as a complete explanation,

but as factors in a complicated phenomenon : not forgetting that

(as one of the most learned of all students of the heart and arteries,

Dr Thomas Young, said in his Croonian lecture*) all such questions

as these, and all matters connected with the muscular and elastic

powers of the blood-vessels, "belong to the most refined departments

of hydrauhcs"; and Euler himself had commented on the "in-

* On the functions of the heart and arteries, Phil. Trans. 1809, pp. 1-31,

of. 1808, pp. 164-186; Collected Works, i, pp. 511-534, 1855. The same lesson is

conveyed by all such work as that of Volkmann, E. H. Weber and Poiseuille.

Cf. Stephen Hales's Statical Essays, ii, Introduction: "Especially considering

that they [i.e. animal Bodies] are in a manner framed of one continued Maze of

innumerable Canals, in which Fluids are incessantly circulating, some with great

Force and Rapidity, others with very different Degrees of rebated Velocity:

Hence, etc." Even Leonardo had brought his knowledge of hydrodynamics to

bear on the valves of the heart and the vortex-like eddies of the blood. Cf.

J. Playfair McMurrich, L. da Vinci, the Anatomist, 1930, p. 165; etc. How com-

plicated the physiological aspect of the case becomes may be judged by Thoma's
papers quoted above.
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superable difficulties" of this sort of problem*. Some other

explanation must be sought in order to account for a phenomenon

which particularly impressed John Hunter's mind, namely the

gradually altering angle at which the successive intercostal arteries

are given off from the thoracic aorta: the special interest of this

case arising from the regularity and symmetry of the series, for

"there is not another set of arteries in the body whose origins are

so much the same, whose offices are so much the same, whose dis-

tances from their origin.to the place of use, and whose uses [? sizes] f
are so much the same."

The mechanical and hydrodynamical aspect of the circulation

was as plain to John Hunter's mind as it had been to William

Harvey or to Stephen Hales, or as it was" afterwards to Thomas

Young; but it was not always plain to other men. When a turtle's

heart has been removed from its body, the blood may still be seen

moving in the capillaries for some short while thereafter; and

Haller, seeing this, "attributed it to some unknown power which

he conceived to be exerted by the solid tissues on the blood and also

by the globules of the blood on each other; to which power, until

further investigation should elucidate its nature, he gave the name

of attraction'' So said WilHam Sharpey, the father of modern

Enghsh physiology; and Sharpey went on to say that "many
physiologists accordingly maintain the existence of a peculiar pro-

pulsive power in the coats of the capillary vessels different from

contractility, or that the globules of the blood are possessed of the

power of spontaneous motion." Alison, great physician and famous

vitalist, "extended this view, in so far as he regards the motion

of the blood in the capillaries as one of the effects produced by what

he calls vital attraction and repulsion, powers which he conceives

to be general attributes of hving matter." But Sharpey's own
clear insight so far overcame his faith in Alison that he found it

"not impossible that a certain degree of agitation might be occa-

sioned in the blood by the elastic resilience of the vessels reacting

on it, after the distending force of the heart has been withdrawn";

and, in short, that the evidence in the case did not "warrant the

* In a tract entitled Principia pro motu sanguinis per arterias determinando

Op. posth. XI, pp. 814-823, 1862.

f "Sizes" is Owen's editorial emendation, which seems amply justified.
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assumption of a peculiar power acting on the blood, of whose

existence in the animal economy we have as yet no other evidence *,"

Sir Charles Bell, whose anatomical skill was great but his mathe-

matical insight small, drew the conclusion, of no small historic

interest, that "the laws of hydraulics, though illustrative, are not

strictly applicable to the explanation of the circulation of the blood,

nor to the actions of the living frame." He goes on to say:

*' Although \^e perceive admirable mechanism in the heart, and in

the adjustment of the tubes on hydraulic principles: and although

the arteries and veins have form, calibre and curves suited^ to the

conveyance of fluid, according to our knowledge of hydraulic engines:

yet the laws of life, or of physiology, are. essential to the explanation

of the circulation of the blood. And this conclusion we draw, not

only from the extent and minuteness of the vessels, but also from

the peculiar nature of the blood itself. Life is in both, and a mutual

influence prevails f." This peculiar form of vitalism savours more

of Bichat and the French school than of the teaching of John

Hunter or Thomas Young. It is precisely that idea of "organic

control" or "organic coordination," which the physiologists are

always reluctant to accept, always unwilling to abandon: which

is said to be inherent in every process or operation of the body, and

to differentiate biology from all the physical sciences : and of which

in our own day Haldane has been the chief and great protagonist.

But it is a subject with which this book is not concerned.
,

To conclude, we may now approach the question of economical

size of the blood-vessels in a broader way. They must not be too

small, or the work of driving blood through them will be too great;

* See Sharpey's article on Cilia, in Todd's Cyclopaedia, i, p. 637, 1836; also

Allen Thomson's admirable article on the Circulation, ibid. p. 672. Alison's views

were based not only on Haller, but largely on Dr James Black's Essay on the

Capillary Circulation, London, 1825.

t Practical Essays, 1842, p. 88. When Sir Charles Bell declared that hydraulic

principles were not enough, but that "the laws of life" were needed to explain the

circulation of the blood, he was right from his point of view. He was slow to see,

and unwilling to admit, that hydrodynamical principles suffice to explain a large,

essential part of the problem ; but as a physiologist he had every reason to know
that that part was not the whole. He may have had many things in mind: the

arrest of the circulation in inflammation, as we see it in a frog's web ; that a cut

artery bleeds to death while a torn one does not bleed at all; that blood does not

coagulate when stagnant within its own vessels—a fact which, as John Hunter said,

"has ever appeared to me the most interesting fact in physiology."
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they must not be too large, or they will hold more blood than is

needed—and blood is a costly thing. We rely once more on

Poiseuille's Law*, which tells us the amount of work done in causing

so much fluid to flow through a tube against resistance, the said

resistance being measured by the viscosity of the fluid, the coefficient

of friction and the dimensions of the tube; but we have also to

account for the blood itself, whose maintenance requires a share

of the bodily fuel, and whose cost per c.c. may (in theory at least)

be expressed in calories, or in ergs per day. The total cost, then,

of operating a given section of artery will be measured by (1) the

work done in overcoming its resistance, and (2) the work, done

in providing blood to fill it; we have come again to a differential

equation, leading to an equation of maximal -efficiency. The general

result! is as follows: it can be made a quantitative one by intro-

ducing known experimental values. Were blood a cheaper thing

than it is we might expect all arteries to be uniformly larger than

they are,, for thereby the burden on the heart (the flow remaining

equal) would be greatly reduced—thus if the blood-vessels were

doubled in diameter, and their volume thereby quadrupled, the

work of the heart would be reduced to one-sixteenth. On the other

hand, were blood a scarcer and still costlier fluid, narrower blood-

vessels would hold the available supply; but a larger and stronger

heart would be needed to overcome the increased resistance.

* Owing to faulty determination of the fall of pressure in the capillaries,

Poiseuille's equation used to be deemed inapplicable to them ; but Krogh's recent

work removes, or tends to remove, the inconsistency {Anatomy and Physiology of

the Capillaries, Yale University Press, 1922).

t Cf. C. D. Murray, op. cit. p. 211.



CHAPTER XVI

ON FORM AND MECHANICAL EFFICIENCY

There is a certain large class of morphological problems of which

we have not yet spoken, and of which we shall be able to say but

Uttle. Nevertheless they are so important, so full of deep theoretical

significance, and so bound up with the general question of form

and its determination as a result of growth, that an essay on

growth and form is bound to take account of them, however im-

perfectly and briefly. The phenomena which I have in mind are

just those many cases where adaptation in the strictest sense is

obviously present, in the clearly demonstrable form of mechanical

fitness for the exercise of some particular function or action which

has become inseparable from the life and well-being of the organism.

When we discuss certain so-called "adaptations" to outward

circumstance, in the way of form, colour and so forth, we are often

apt to use illustrations convincing enough to certain minds but

unsatisfying to others—in other words, incapable of demonstration.

With regard to coloration, for instance, it is by colours "cryptic,"

"\Yarning," "signalling," "mimetic," and so on*, that we prosaically

expound, and slavishly profess to justify, the vast AristoteUan

synthesis that Nature makes all things with a purpose and "does

nothing in vain." Only for a moment let us glance at some few

instances by which the modern teleologist accounts for this or that

manifestation of colour, and is led on and on to beUefs and doctrines

to which it becomes more and more difficult to subscribe.

Some dangerous and mahgnant animals are said (in sober earnest)

to wear a perpetual war-paint, in order to "remind their enemies

that they had better leave them alonef." The wasp and the hornet,

* For a more elaborate classification, into colours cryptic, procryptic, anti-

cryptic, apatetic, epigamic, sematic, episematic, aposematic, etc., see Poulton's

Colours of Animals (Int. Scientific Series, Lxvin, 1890; cf. also R. Meldola,

Variable protective colouring in insects, P.Z.S. 1873, pp. 153-162; etc. The subject

is well and fully set forth by H. B. Cott, Adaption coloration in Animals, 1940.

t Dendy, Evolutionary Biology, 1912, p. 336.
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in gallant black and gold, are terrible as an army with banners;

and the Gila Monster (the poison-lizard of the Arizona desert) is

splashed with scarlet—its dread and black complexion stained with

heraldry more dismal. But the wasp-Hke livery of the noisy, idle

hover-flies and drone-flies is but stage armour, and in their tinsel

suits the little counterfeit cowardly knaves mimic the fighting crew.

The jewelled splendour of the peacock and the humming-bird,

and the less effulgent glory of the lyre-bird and the Argus pheasant,

are ascribed to the unquestioned prevalence of vanity in the one sex

and wantonness in the other*.

The zebra is striped that it may graze unnoticed on the plain, the

tiger that it may lurk undiscovered in the jungle; the banded

Chaetodont and Pomacentrid fishes are further bedizened to the

hues of the coral-reefs in which they dwell f- The tawny lion is

yellow as the desert sand; but the leopard wears its dappled hide

to blend, as it crouches on the branch, with the sun-flecks peeping

through the leaves.

The ptarmigan and the snowy owl, the arctic fox and the polar

bear, are white among the snows; but go he north or go he south,

the raven (Uke the jackdaw) is boldly and impudently black.

The rabbit has his white scut, and sundry antelopes their piebald

flanks, that one timorous fugitive may hie after another, spying the

warning signal. The primeval terrier or colHe-dog had brown spots

over his eyes that he might seem awake when he was sleeping J

:

so that an enemy might let the sleeping dog lie, for the singular

reason that he imagined him to be awake. And a flock of flamingos,

* Delight in beauty is one of the pleasures of the imagination; there is no
limit to its indulgence, and no end to the results which we may ascribe to its

exercise. But as for the particular "standard of beauty" which the oird (for

instance) admires and selects (as Darwin says in the Origin, p. 70, edit. 1884),

we are very much in the dark, and we run the risk of arguing in a circle ; for wellnigh

all we can safely say is what Addison says (in the 412th Spectator)—that each different

species "is most aflFected with the beauties of its own kind, . . ,Hinc merula in nigro

86 oblectat nigra marito; . . .hinc noctua tetram Canitiem alarum et glaucos miratur

ocellos."

t Cf. T. W. Bridge, Cambridge Natural History (Fishes), vn, p. 173, 1904; also

K. V. Frisch, Ueber farbige Anpassung bei Fische, Zool. Jahrh. {Abt. Allg. ZooL),

xxxn, pp. 171-230, 1914. But Reighard, in what Raymond Pearl calls "one of

the most beautiful experimental studies of natural selection which has ever been

made," found no relation between the colours of coral-reef fishes and their elimination

by natural enemies {Carnegie Inst. Publication 103, pp. 257-325, 1908).

} Nature, L, p. 672; u, pp. 33, 57, 533, 1894-95.
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wearing on rosy breast and crimson wings a garment of in-

visibility, fades away into the sky at dawn or sunset like a cloud

incarnadine*.

To buttress the theory of natural selection the sa'me instances

of "adaptation" (and many more) are used, as in an earher but not

distant age testified to the wisdom of the Creator and revealed to

simple piety the immediate finger of God. In the words of a certain

learned theologian f, ''The free use of final causes to explain what

seems obscure was temptingly easy-. . . . Hence the finalist was often

the man who made a liberal use of the ignava ratio, or lazy argument:

when you failed to explain a thing by the ordinary process of

causahty, you could 'explain' it by reference to some purpose of

nature or of its Creator. This method lent itself with dangerous

facility to the well-meant endeavours of the older theologians to

expound and emphasise the beneficence of the divine purpose."

Mutatis mutandis, the passage carries its plain message to the

naturahst.

The fate of such arguments or illustrations is always the same.

They attract and captivate for awhile; they go to the building of

a creed, which contemporary orthodoxy % defends under its severest

penalties: but the time comes when they lose their fascination,

they somehow cease to satisfy and to convince, their foundations

* They are "wonderfully fitted for 'vanishment' against the flushed, rich-

coloured skies of early morning and evening. . .their chief feeding -times " ; and

"look like a real sunset or dawn, repeated on the opposite side of the heavens

—

either east or west as the case may be" (Thayer, Concealing-coloration in the Animal

Kingdom, New York, 1909, pp. 154-155). This hypothesis, like the rest, is not

free from difficulty. Twilight is apt to be short in the homes of the flamingo;

moreover, Mr Abel Chapman watched them on the Guadalquivir feeding by day, as

I also have seen them at Walfisch Bay.

f Principal Galloway, Philosophy of Religion, 1914, p. 344.

J Professor D. M. S. Watson, addressing the British Association in 1929 on

Adaptation, parted company with what I had called contemporary orthodoxy in

1917. Speaking of such morphological differences as "have commonly been

assumed to be of an adaptive nature," he said: "That these structural diflferences

are adaptive is for the most part pure assumption. . . .There is no branch of zoology

in which assumption has played a greater part, or evidence a less part, than in

the study of such presumed adaptations.
'

' Hume, in his Dialogue concerning Natural

Religion, shewed similar caut-ion: "Steps ofa stair are plainly constructed that human
legs may use them in mounting; and this inference is certain and infallible. Human
legs are also contrived for walking and mounting ; and this inference, I allow, is not

altogether so certain."
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are discovered to be insecure, and in the end no man troubles to

controvert them*.

But of a very different order from all such "adaptations" as

these are those very perfect adaptations of form which, for instance,

fit a fish for swimming or a bird for flight. Here we are far above

the region of mere hypothesis, for we have to deal with questions

of mechanical efficiency where statical and dynamical considerations

can be appHed and established in detail. The naval architect learns

a great part of his lesson from the stream-lining of a fish|; the

yachtsman learns that his sails are nothing more than a great bird's

wing, causing the slender hull to fly along % ; and the mathematical

study of the stream-lines of a bird, and of the principles underlying

the areas and curvatures of its wings and tail, has helped to lay the

very foundations of 'the modern science of aeronautics.

We know, for example, how in strict accord with theorv i\t was

George Cayley who explained it first) the wing, whether of bird or

insect, stands stiff along its "leading edge," like the mast before the

sail; and how, conversely, it thins out exquisitely fine along its rear

or "trailing edge," where sharp discontinuity favours the formation

of uplifting eddies. And pQ see how, alike in the flying wing, in

the penguin's swimming wing and in the whale's flipper, the same

design of stiff fore-edge and thin fine trailing edge, both curving away

evenly to meet at the tip, is continually exemphfied.

We learn how lifting power not only depends on area but has

a linear factor besides, such that a long narrow wing is more stable

and effective both for speedy and for soaring flight than a short

and broad one of equal area ; and how in this respect the hawkmoth

differs from the butterfly, the swallow from the thrush. We are

taught how every wing, and every kite or sail, must have a certain

* The influence of environment on coloration is one thing, and the hypothesis

of protective colouring is quite another. That arctic animals are often white,

and desert animals sandy-hued or isabelline, are simple and undisputed facts;

but such field-naturalists as Theodore Roosevelt, Selous (in his African Nature

Notes), Buxton {Animal Life in Deserts), and Abel Chapman {Savage Sudan, and

Retrospect) reject with one accord the theory of colour-protection.

t No creature shews more perfect stream-lining than a fur-seal swimming.

Every curve is a continuous curve, the very ears and eye-slits and whiskers falling

into the scheme, and the flippers folding close against the body.

J Cf. Manfred Curry, Yacht Racing, and the Aerodynamics of Sails, London,

1928.
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amount of arch* or "belly," slight in the rapid fliers, deeper in the

slow, flattened in the strong wind, bulging in the gentler breeze;

and how advantageous is all possible stiffening of sail or wing, and

why accordingly the yachtsman inserts "battens" and the Chinaman

bamboos in his sail. We are shewn by Lilienthal himself how a

powerful eddy, the so-called "ram," forms under the fore-edge, and

is sometimes caught in a pocket of the bird's under wing-coverts

and made use of as a forward drive.

We have lately learned how the gaps or slots between the primary

wing-feathers of a crow, and a slight power of the wing-feathers

to twist, like the slats of a Venetian blind, play their necessary

1

Fig. 457. Ligaments in a swan's wing. 1, 2, 3, remiges; A, B, longitudinal

ligaments, with their oblique branches; C, small subcutaneous ligaments.

From Marey, after Pettigrew.

part under certain conditions in the perfect working of the machine.

Nothing can be simpler than the mechanism by whi(!h all this -is

done. Delicate Ugaments run along the base of the wing from

feather to feather, and send a branch to every quill (Fig. 457); by

these, as the wing extends, the quills are raised into their places,

and kept at their due and even distances apart. Not only that, but

every separate ligamentous strand curls a httle way round its feather

where it is inserted into it; and thereby the feather is not only

elevated into its place, but is given the little twist which brings it

to its proper and precise obliquity.

* On the curvatura veli, cf. J. Bernoulli, Acta Ertidit. Lips. 1692, p. 202. Studied

also by Eiffel, Resistance de Vair et Vaviation, Paris, 1910.
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All this is part of the automatic mechanism of the wing, than which

there is nothing prettier in all anatomy. ' The triceps muscle, massed

on the shoulder, extends the elbow-j oint in the usual way. But another

muscle (a long flexor of the wrist) has its origin above the elbow and

its insertion below the wrist. It passes over two j oints ; it is what

German anatomists call a zweigelenkiger Muskel. It transmits to the

one joint the movements of the other; and in birds of powerful flight

it becomes less and less muscular, more and more tendinous, and so

more and more completely automatic. The wing itself is kept hght;

its chief muscle is far back on the shoulder ; a contraction of that re-

mote muscle throws the whole wing into gear. The little ligaments we
have been speaking of are so linked up with the rest of the mechanism

that we have only to hold a bird's wing by the arm-boue and extend

its elbow-joint, to see the whole wing spring into action, with every

joint extended, and every feather tense and in its place*.

Again on the fore-edge of the wing there lies a tiny mobile " thumb,"

whose little tuft of stiff, strong feathers forms the so-called "bastard

wing." We used to look on it as a "vestigial organ," a functionless

rudiment, a something which from ancient times had "lagged

superfluous on the stage"; until a man of genius saw that it was

just the very thing required to break the leading. vortices, keep the

flow stream-lined at a larger angle of incidence than before, and

thereby help the plane to land. So he invented, to his great profit

and advantage, the "slotted wing."

We learn many and many another interesting thing. How a

stiff "comb" along the leading edge, a broad soft fringe along

the trailing edge (the fringe acting as a damper and preventing

"fluttering"), and a soft, downy upper surface of the wing, all help

as silencers, and give the owl her noiseless flight. How the wing-

loading of the owls is lower than in any other birds, lower even

than in the eagles; and how owl and eagle have power to spare to

carry easily their prey of mouse or mountain-hare. How the deep

terminal wing-slots aid the heavy rook or heron in their slow

* The mole's forelimb has a somewhat similar action, by which, as the arm and

hand are pulled violently backward, the claws are powerfully and automatically

flexed for digging. The "suspensory ligament " of the horse, which is, or was, a short

flexor of the digit, is an analogous mechanism. See a paper of mine On the nature and

action of certain ligaments, Journ. of Anat. and Physiol, xviii, pp. 406-410, 1884.
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flapping flight ; how the sea-gull does not need them, for his load is

lighter and his wings move slowly. There is never a discovery

made in the theory of aerodynamics but we find it adopted already

by Nature, and exemplified in the construction of the wing*.

We may illustrate some few of the principles ijivolved in the con-

struction of the bird's wing with a half-sheet of paper, whose laws,

as it planes or glides downwards, Clerk Maxwell explained many

years ago|.

To improve this first and roughest of models, we see that its

leading edge had better be as long as possible, and that sharp

1
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wing, all with so much waste of energy*. In short the broad wing

is less efficient than the narrow; and on either side of our sheet

of paper we may cut out a portion whiph is useless and in the way

:

for the same reasons we may.cut out the middle part of the tail,

which also is doing more harm than goodf.

Hard as the problem is, and harder as it becomes, we may venture

on. In aeronautics, as in hydrodynamics, we try to determine the

resistances encountered by bodies of various shapes, moving through

various fluids at various speeds; and in so doing we learn the

enormous, the paramount importance of "stream-lining." There

would be no need for stream-lining in a "perfect fluid," but in air or

water it makes all the difference in the world. Stream-lining impHes

a shape round which the medium streams so smoothly that resistance

is at last practically nil; there only remains the slight "skin-

friction," which can be reduced or minimised in various ways. But

the least imperfection of the stream-lining leads to whirls and

"pockets" of dead water or dead air, which mean large resistance

and waste of energy. The converse and more general problem soon

emerges, of how in natural objects stream-lining comes to be; and

whether or no the more or l^ss stream-lined shape tends to be

impressed on a deformable or plastic body by its own steady motion

through a fluid J. The principle of least action, the "loi de repos,"

is enough to suggest that the stream will tend to impress its stream-

lines on the plastic body, causing it to yield or "give," until it ends

by ofl'ering a minimum of resistance; and experiment goes some

way to support the hypothesis. A bubble of mercury, poised in

a tube through which air is blown, assumes a stream-lined shape,

in so far as the forces due to the moving current avail against the

* This is why "slotting" so improves the broad wing of the crow. See on this

and other matters, R. R. Graham's papers on Safety devices in the wings of

birds, in British Birds, xxiv, 1930.

t Pettigrew shewed long ago {Tr. R.S.E. xxvi, p. 361, 1872) that the wing-area

(in insects) "is usually greatly in excess of what is absolutely required for flight,"

and that the posterior or traihng edge could be largely trimmed away without the

power of flight being at all diminished. We see how in the swallow this trailing edge

is "trimmed away" till a bare minimum is left, and how (at least for a certain kind

of flight) the wing is thereby greatly improved.

X Cf. Enoch Farrer, The shape assumed by a deformable body immersed in

a moving fluid, Journ. Franklin Inst. 1921, pp. 737-756; also Vaughan Cornish,

on Waves of Sand and Snow.
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other forces of restraint. We have seen how the egg is automatically

stream-lined, after a simple fashion, by the muscular pressure which

drives it on its way. The contours of a snowdrift, of a wind-

swept sand-dune, even of the flame of a lamp, shew endless

illustrations of stream-lines or eddy-curves which the stream itself

imposes, and which are oftentimes of great elegance and complexity.

Always the stream tends to mould the bodies it streams over,

facilitating its own flow; and the same principle must somehow

come into play, at least as a contributory factor, in the making of

a fish or of a bird. But it is obvious in both of these that even

though the stream-lining be perfected in the individual it is also

an inheritance of the race ; and the twofold problem of accumulated

inheritance, and of perfect structural adaptation, confronts us once

again and passes all our understanding*.

When, after attempting to comprehend the exquisite adaptation

of the swallow or the albatross to the navigation of the air, we try

to pass beyond the empirical study and contemplation of such per-

fection of mechanical fitness, and to ask how such fitness came to

be, then indeed we may be excused if we stand wrapt in wonderment,

and if our minds be occupied and even satisfied with the conception

of a final cause. And yet all the while, with no loss of wonderment

nor lack of reverence, do we find ourselves constrained to believe

that somehow or other, in dynamical principles and natural law,'

there lie hidden the steps and stages of physical causation by which

the material structure was so shapen to its endsf.

The problems associated with these phenomena are difficult at

every stage, even long before we approach to the unsolved secrets

of causation ; and for my part I confess I lack the requisite know-

ledge for even an elementary discussion of the form of a fish, or of

an insect, or of a bird. But in the form of a bone we have a problem

* Mechanical perfection has often little to do with immunity from accident or

with capacity to survive. Legs and wings of locust or mayfly are indescribably

perfect for their brief spell of life and narrow sphere of toil; but they may be torn

asunder in a moment, and whole populations perish in an hour. Careful of the

type, but careless of the single life, Nature seems ruthless and indiscriminate

in the sacrifice of these little lives.

t Cf. Professor Flint, in his Preface to Affleck's translation of Janet's Catises

finales: "We are, no doubt, still a long way from a mechanical theory of organic

growth, but it may be said to be the quaesitum of modern science, and no one

can say that it is a chimaera."
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of the same kind and order, so far simplified and particularised that

we may to some extent deal with it, and may possibly even find,

in our partial comprehension of it, a partial clue to the principles

of causation underlying this whole class of phenomena.

Before we speak of the form of a bone, let us say a word about

the mechanical properties of the material of which it is built*, in

relation to the strength it has to manifest or the forces it has to

resist: understanding always that we mean thereby the properties

of fresh or living bone, with all its organic as well as inorganic

constituents, for dead, dry bone is a very different thing. In all

the structures raised by the engineer, in beams, pillars and girders

of every kind, provision has to be

made, somehow or other, for strength

of two kinds, strength to resist com-

pression or crushing, and strength to

resist tension or pulling asunder. The

evenly loaded column is designed with

a view to supporting a downward

pressure^ the wire-rope, like the tendon
^^'

of a muscle, is adapted only to resist a tensile stress ; but in many or

most cases the two functions are very closely inter-related and com-

bined. The case of a loaded beam is a familiar one; though, by the

way, we are now told that it is by no means so simple as it looks, and

indeed that "the stresses and strains in this. log of timber are so

complex that the problem has not yet been solved in a manner that

.reasonably accords with the known strength of the beam as found

by actual experiment!." However, be that as it may. we know,

roughly, that when the beam is loaded in the middle and supported

at both ends, it tends to be bent into an arc. in which condition

its lower fibres are being stretched, or are undergoing a tensile

* Cf. Sir Donald MacAlister, How a bone is built, Engl. III. Mag. 1884,

t Professor Claxton Fidler, On Bridge Construction, p. 22 (4th ed.), 1909; cf.

{int. al.) Love's Elasticity, p. 20 {Historical Introduction), 2nd ed., 1906, where the

bending of the beam, and the distortion or warping of its cross-section, are studied

after the manner of St Venant, in his Memoir on Torsion (1855). How complex the

question has become may be judged from such papers as Price, On the structure

of wood in relation to .its elastic properties, Phil. Trans. (A), ccvni, 1928; or

D. B. Smith and R. V. Southwell, On the stresses induced by flexure in a deep

rectangular beam, Proc. U.S. (A), cXLiii, pp. 271-285, 1934.
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stress, while its upper fibres are undergoing compression. It follows

that in some intermediate layer there is a "neutral zone," where

the fibres of the wood are subject to no stress of either kind.

The phenomenon of a compression-member side by side with a tension-

member may be illustrated in many simple ways. Ruskin (in Deucalion)

describes it in a glacier. He then bids us warm a stick of sealing-wax and

bend it in a horseshoe: "you will then see, through a lens of moderate power,

the most exquisite facsimile of glacier fissures produced by extension on its

convex surface, and as faithful an image of glacier surge produced by com-

pression on its concave side." A still more beautiful way of exhibiting the

distribution of strain is to use gelatin, into which bubbles of gas have been

.introduced with the help of sodium bicarbonate. A bar of such gelatin, when

bent into a hoop, shews on the one side the bubbles elongated by tension and

on the other those shortened by compression*.

In like manner a vertical pillar, if unevenly loaded (as for in-

stance the shaft of our thigh-bone normally is), will tend to bend,

and so to endure compression on its concave, and tensile stress

upon its convex side. In many cases it is the business of the

engineer to separate out, as far as possible, the pressure-lines from

the tension-lines, in order to use separate modes of construction,

or even different materials for each. In a suspension-bridge, for

instance, a great part of the fabric is subject to tensile strain only,

and is built throughout of ropes or wires; but the massive piers

at either end of the bridge carry the weight of the whole structure

and of its load, and endure all the "compression-strains" which

are inherent in the system. Very much the same is the case in

that wonderful arrangement of struts and ties which constitute, or

complete, the skeleton of an animal. The "skeleton," as we see it

in a Museum, is a poor and even, a misleading picture of mechanical

efficiencyf. From the engineer's point of view, it is a diagram

shewing all the compression-lines, but by no means all the

tension-lines of the construction; it shews all the struts, but few

of the ties, and perhaps we might even say none of the principal

* Cf. Emil Hatschek, Gestait und Orientirung von Gasblasen in Gelen, KoUoid-

Ztschr. XV, pp. 226-234, 1914.

t In preparing or "macerating" a skeleton, the naturalist nowadays carries

on the process till nothing is left but the whitened bones. But the old anatomists,

whose object was not the study of "comparative morphology" but the wider

theme of comparative physiology, were wont to macerate by easy stages; and in

many of their most instructive preparations the ligaments were intentionally left

in connection with the bones, and as part of the "skeleton."
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ones; it falls all to pieces unless we clamp it together, as ])est we

can, in a more or less clumsy and immobilised way. But in life,

that fabric of struts is surrounded and interwoven with a compli-

cated system of ties
—

"its living mantles jointed strong, With

ghstering band and silvery thong*": ligament and membrane,

muscle and tendon, run between bone and bone; and the beauty

and strength of the mechanical construction he not in one part or

in another, but in the harmonious concatenation which all the parts,

soft and hard, rigid and flexible, tension-bearing and pressure-bearing,

make up together j*.

However much we may find a tendency, whether in Nature or

art, to separate these two constituent factors of tension and com-

pression, we cannot do so completely ; and accordingly the engineer

seeks for a material which shall, as nearly as possible, offer equal

resistance to both kinds of strainJ.

From the engineer's point of view, bone may seem weak indeed

;

but it has the great advantage that it is very nearly as good for a tie

as for a strut, nearly as strong to withstand rupture, or tearing asunder,

as to resist crushing. The strength of timber varies with the kind,

but it always stands up better to tension than to compression, and

wrought iron, with its greater strength, does much the same; but

in cast-iron there is a still greater discrepancy the other way, for it

makes a good strut but a very bad tie indeed. Mild steel, which has

displaced the old-fashioned wrought iron in all engineering construc-

tions, is not only a much stronger material, but it also possesses,

like- bone, the two kinds of strength in no very great relative dis-

proportion §.

* See Oliver Wendell Holmes' Anatomist's Hymn.

t In a few anatomical diagrams, for instance in some of the drawings in

Schmaltz's Atlas der Anatomie des Pferdes, we may see the system of "ties"

diagrammatically inserted in the figure of the skeleton. Cf. W. K. Gregory, On the

principles of quadrupedal locomotion, Ann. N. Y. Acad, of Sciences, xxii, p. 289,

1912.

X The strength of materials is not easy to discuss, and is still harder to tabulate.

The wide range of qualities in each material, in timber the wide differences according

to the direction in which the block is cut, and in all cases the wide difference between

yield-point and fracture-point, are some of the difficulties in the way of a succinct

statement.

§ In the modern device of "reinforced concrete," blocks of cement and rods

of steel are so combined together as to resist both compression and tension in

due or equal measure.
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When the engineer constructs an iron or steel girder, to take

the place of the primitive wooden beam, we know that he takes

advantage of the elementary principle we have spoken of, and saves

weight and economises material by leaving out as far as possible

all the middle portion, all the parts in the neighbourhood of the

"neutral zone"; and in so doing he reduces his girder to an upper

and lower "flange," connected together by a "web," the whole

resembling, in cross-section, an I or an I .

But it is obvious that, if the strains in the two flanges are to

be equal as well as opposite, and if the material be such as cast-iron

or wrought-iron, one or other flange must be made much thicker

than the other in order that they may be equally strong* ; and if at

times the two flanges have, as it were, to change places, or play

each other's parts, then there must be introduced a margin of

safety by making both flanges thick enough to meet that kind of

stress in regard to which the material happens to be weakest.

There is great economy, then, in any material which is, as nearly

as possible, equally strong in both ways; and so we see that, from

the engineer's or contractor's point of view, bone is a good and

suitable material for purposes of construction.

The I or the H-girder or rail is designed to resist bending in one

particular direction, but if, as in a tall pillar, it be necessary to

resist bending in all directions alike, it is obvious that the tubular

or cylindrical construction best meets the case; for it is plain that

this hollow tubular pillar is but the I-girder turned round every

way, in a "solid of revolution," so that on any two opposite sides

compression and tension are equally met and resisted, and there is

now no need for any substance at all in the way of web or "filHng"

within the hollow core of the tube. And it is not only in the

supporting pillar that such a construction is useful ; it is appropriate

in every case where stiffness is required, where bending has to be

resisted. A sheet of paper becomes a stiff rod when you roll it up,

and hollow tubes of thin bent wood withstand powerful thrusts in

aeroplane construction. The long bone of a bird's wing has Httle

or no weight to carry, but it has to withstand powerful bending

* This principle was recognized as soon as iron came into common use as a

structural material. The great suspension bridges only became possible, in Telford's

hands, when wrought iron became available.
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moments; and in the arm-bone of a long-winged bird, such as

an albatross, we see the tubular construction manifested in its

perfection, the bony substance being reduced to a thin, perfectly

cylindrical, and almost empty shell*. The quill of the bird's

feather, the hollow shaft of a reed, the thin tube of the wheat-

straw bearing its heavy burden in the ear, are all illustrations which

Gahleo used in his account of this mechanical principle f; and the

working of his practical mind is exemplified by this catalogue of

varied instances w^hich one demonstration suffices to explain.

The same principle is beautifully shewn in the hollow body and

tubular limbs of an insect or a crustacean ; and these complicated

and elaborately jointed structures have doubtless many constructional

lessons to teach us. We know, for instance, that a thin cylindrical

tube, under bending stress, tends to flatten before it buckles, and

also to become "lobed" on the compression side of the bend; and

we often recognise both of these phenomena in the joints of a

crab's legj.

Two points, both of considerable importance, present themselves

here, and w^e may deal with them before we go further on. In the

first place, it is not difficult to see that in our bending beam the

stress is greatest at its middle ; if we press our walking-stick hard

against the ground, it will tend to snap midway. Hence, if our

cylindrical column be exposed to strong bending stresses, it will

be prudent and economical to make its walls thickest in the middle

and thinning off gradually towards the ends; and if we look at

a longitudinal section of a thigh-bone, we shall see that this is just

what Nature has done. The presence of a "danger-point" has been

avoided, and the thickness of the walls becomes nothing less than

* Marsigli (op. cit.) was acquainted with the hollow wfng-bones of the pelican;

and Bulfon deals with the whole subject in his Discours sur la nature des oiseaux.

f Galileo, Dialogues concerning Two New Sciences (1638). Crew and Salvio's

translation. New York, 1914, p. 150; Opere, ed. Favaro, viii, p. 186. (According

to R, A. Millikan, "we owe crur present day civilisation to Galileo.") Cf. Borelli,

De Motu Animaliiim, i, prop, clxxx, 168.5. Cf. also P. Camper. La structure des

OS dans les oiseaux, 0pp. in, p. 459, ed. 1803; A. Rauber, Gahleo iiber Knochen-

formen, Morphol. Jahrb. vii, pp. 327, 328, 1881; Paolo Enriques, Delia economia

di sostanza nelle osse cave, Arch. f. Entw. Mech. xx, pp. 427-465, 1906. Galileo's

views on the mechanism of the human body are also discussed by 0. Fischer, in his

article on Physiologische Mechanik, in the Encycl. d. mathem. Wissenschaften, 1904.

X Cf. L: G. Brazier, On the flexure of thin cylindrical shells, etc., Proc. R.S. (A),

cx^^, p. 104, 1927.
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a diagram, or "graph," of the bending-moments from one point to

another along the length of the bone.

The second point requires a Uttle more explanation. If we

imagine our loaded beam to be supported at one end only (for

instance, by being built into a wall), so as to form what is called

H i
j

a "bracket" or "cantilever," then we can

see, without much difficulty, that the lines of

stress in the beam run somewhat as in the

accompanying diagram. Immediately under

the load, the "compression-lines " tend to run
^ vertically downward, but where the bracket is

^^'
' fastened to the wall there is pressure directed

horizontally against the wall in the lower part of the surface of

attachment; and the vertical beginning and the horizontal end of

these pressure-lines must be continued into one another in the form

of some even mathematical curve—which, as it happens, is part

of a parabola. The tension-lines are identical in form with the

compression-lines, of which they constitute the "mirror-image";

and where the two systems , intercross they do so at right angles,

or "orthogonally" to one another. Such systems of stress-lines as

these we shall deal with again; but let us take note here of the

important though well-nigh obvious fact, that while in the beam

they both unite to carry the load, yet it is often possible to weaken

one set of lines at the expense of the other, and in some cases to do

altogether away with one set or the other. For example, when we

replace our end-supported beam by a curved bracket, bent upwards

or downwards as the case may be, we have evidently cut away

in the one case the greater part of the tension-hnes, and in the

other the greater part of the compression-hnes. And if instead of

bridging a stream with our beam of wood we bridge it with a rope,

it is evident that this new construction contains all the tension-hnes,

but none of the compression-hnes of the old. The biological interest

connected with this principle Hes chiefly in the mechanical construc-

tion of the rush or the straw, or any other typically cylindrical

stem. The material of which the stalk is constructed is very weak

,to withstand compression, but parts of it have a very great tensile

strength. Schwendener, who was both botanist and engineer, has

elaborately investigated the factor of strength in the cylindrical
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stem, which Gahleo was the first to call attention to. Schwendener*

shewed that its strength was concentrated in the little bundles of

"bast-tissue," but that these bast-fibres had a tensile strength per

square mm. of section not less, up to the limit of elasticity, than

that of steel-wire of such quality as was in use in his day.

For instance, we see in the following table the load which various

fibres, and various wires, were found capable of. sustaining, not

up to the breaking-point but up to the "elastic Hmit," or point

beyond which complete recovery to the original length took place

no longer after release of the load.
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as the other. And then Schwendener proceeds to shew, in many
beautiful diagrams, the various ways in which these strands of strong

tensile tissue are arranged in various stems : sometimes, in the simpler

cases, forming numerous small bundles arranged in a peripheral

ring, not quite at the periphery, for a certain amount of space has

to be left for living and active tissue; sometimes in a sparser ring

of larger and stronger bundles; sometimes with these bundles

further strengthened by radial balks or ridges; sometimes with all

the fibres set close together in a continuous hollow cylinder. In

the case figured in Fig. 461, Schwendener

calculated that the resistance to bending

was at least twenty-five times as great as

it would have been had the six main

bundles been brought close together in a

solid core. In many cases the centre of

the stem is altogether empty ; in all other

cases it is filled with soft tissue, suitable

for various functions, but never such as

to confer mechanical rigidity. In a tall

Fig. 461.
conical stem, such as that of a palm-tree,

we can see not only these principles in the construction of the

cylindrical trunk, but we can observe, towards the apex, the bundles

of fibre curving over and intercrossing orthogonally with one another,

exactly after the fashion of our stress-lines in Fig. 460; but of

course, in this case, we are still dealing with tensile members, the

opposite bundles taking on in turn, as the tree sways, the alternate

function of resisting tensile strain*.

* For further botanical illustrations, see {int. al.) R. Hegler, Einfiuss der Zug-

kraften auf die Festigkeit und die Ausbildung meehanischer Gewebe in Pflanzen,

SB. sacks. Ges. d. Wiss. 1891, p. 638; Einfluss des mechanischen Zuges auf das

Wachstum der Pflanze, Cohn's Beitrdge, vi, pp. 383-432, 1893; 0. M. Ball, Einfluss

von Zug auf die Ausbildung der Festigkeitsgewebe, Jakrb. d. wiss. Bot. xxxix,

pp. 305-341, 1903; L. Kny, Einfluss von Zug und Druck auf die Richtung der

Scheidewande in sich teilenden Pflanzenzellen, Ber. d. hot. Gesellsch. xiv, pp. 378-

391, 1896; Sachs, Mechanomorphose und Phylogenie, Flora, Lxxvin, 1894; of. also

Pfliiger, Einwirkung der Schwerkraft, etc., uber die Richtung der ZeUtheilung,

Archiv, xxxiv, 1884; G. Haberlandt's Physiological Plant Anatomy, tr. by Montagu
Drummond, 1914, pp. 1.50-213. On the engineering side of the case, see Angus R.

Fulton, Experiments to show how failure under stress occurs in timber, etc., Trans.

R.S.E. XLViii, pp. 417-440, 1912; Fulton shews {int. a/.) that "the initial cause of

fracture in timbers lies in the medullary rays."
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The Forth Bridge, from which the anatomist may learn many
a lesson, is built of tubes, which correspond even in detail to the

structure of a cylindrical branch or stem. The main diagonal struts

are tubes twelve feet in diameter, and withm the wall of each of

these lie six T-shaped "stiffeners," corresponding precisely to the

fibro-vascular bundles of Fig. 461 ; in the same great tubular struts

the tendency to "buckle" is resisted, just as m the jointed stem of

a bamboo, by "stiffening rings," or perforated diaphragms set

twenty feet apart within the tube. We may draw one more curious,

albeit parenthetic, comparison. An engineering construction, no

less than the skeleton of plant or animal, has to grow; but the

living thing is in a sense complete during every phase of its existence

while the engineer is often hard put to it to ensure sufficient strength

in his unfinished and imperfect structure. The young twig stands

more upright than the old, and between winter and summer the

weight of leafage affects all the curving outlines of the tree. A
slight upward curvature, a matter of a few inches, was deliberately

given to the great diagonal tubes of the bridge during their piecemeal

construction; and it was a triumph of engineering foresight to see

how, like the twig, as length and weight increased, they at last came

straight and true.

Let us now come, at last, to the mechanical structure of bone,

of which we find a well-known and classical illustration in the

various bones of the human leg. In the case of the tibia, the bone

is somewhat widened out aboVe, and its hollow shaft is capped by

an almost flattened roof, on which the weight of the body directly

rests. It is obvious that, under these circumstances, the engineer

would find it necessary to devise means for supporting this flat roof,

and for distributing the vertical pressures which impinge upon it

to the cylindrical walls of the shaft.

In the long wing-bones of a bird the hollow of the bone is empty,

save for a thin layer of living tissue lining the cylinder of bone;

but in our own bones, and all weight-carrying bones in general, the

hollow space is filled with marrow, blood-vessels and other tissues;

and amidst these living tissues lies a fine lattice-work of little

interlaced "trabeculae" of bone, forming the so-called "cancellous

tissue." The older anatomists were content to describe this can-
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cellous tissue as a sort of spongy network or irregular honeycomb *

;

but at length its orderly construction began to be perceived, and

attempts were made to find a meaning or "purpose" in the arrange-

ment. Sir Charles Bell had a glimpse of the truth when he asserted f

that "this minute lattice-work, or the cancelli which constitute

the interior structure of bone, have still reference to the forces

acting on the bone"; but he did not succeed in shewing what these

forces are, nor how the arrangement of the cancelli is related to them.

Jeffries Wyman, of Boston, came much nearer to the truth in

a paper long neglected and forgotten {. He gives the gist of the

whole matter in two short paragraphs: "1. The cancelli of such

bones as assist in supporting the weight of the body are arranged

either in the direction of that weight, or in such a manner as to

support and brace those cancelli which are in that direction. In

a mechanical point of view they may be regarded in nearly all these

bones as a series of 'studs' and 'braces.' 2. The direction of these

fibres in some of the bones of the human skeleton is characteristic

and, it is believed, has a definite relation to the erect position which

is naturally assumed by man alone." A few years afterwards the

story was told again, and this time with convincing accuracy. It

was shewn by Hermann Meyer (and afterwards in greater detail by

Julius Wolff and others) that the trabeculae, as seen in a longitudinal

section of the femur, spread in beautiful curving lines from the head

to the hollow shaft of the bone ; and that these linear bundles are

crossed by others, with so nice a regularity of arrangement that

each intercrossing is as nearly as possible an orthogonal one: that

is to say, the one set of fibres or cancelli cross the other everywhere

at right angles. A great engineer. Professor Culmann of Zurich,

to whom by the way we owe the whole modern method of "graphic

statics," happened (in the year 1866) to come into his colleague

Meyer's dissecting-room, where the anatomist was contemplating

* Sir John Herschel described a bone as a "framework of the most curious

carpentry: in which occurs not a single straight line nor any known geometrical

curve, yet all evidently systematic, and constructed by rules which defy our

research" (On the Study of Natural Philosophy, 1830, p. 203).

f In Animal Mechanics, or Proofs of Design in the Animal Frame, 1827.

X Animal mechanics : on the cancellated structure of spme of the bones of the

human body, Boston Soc. of Nat. Hist. 1849. Reprinted, together with Sir C. Bell's

work, by^ Morrill Wyman, Cambridge, Mass., 1902.

i
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the section of a bone*. The engineer, who had been busy designing
a new and powerful crane, saw in a moment that the arrangement
of the bony trabeculae was nothing more nor less than a diagram
of the lines of stress, or directions of tension and compression, in

the loaded structure: in short, that Nature was strengthening the
bone in precisely the manner and directioi^ in which strength was
required; and he is said to have cried out, "That's my crane!"

Fig. 462. Head of the human femur in section. After Schafer, from
a photo by Professor A. Robinson.

In the accompanying diagram of Culmann's crane-head, we recognise

a simple modification, due entirely to the curved shape of the

structure, of the still simpler Hues of tension and compression which

we have already seen in our end-supported beam, as represented

in Fig. 460. In the shaft of the crane the concave or inner side,

* The first metatarsal, rather than the femur, is said to have been the bone
which Meyer was demonstrating when Culmann first recognised the orthogonal
intercrossing of the cancelli in tension and compression; cf. A. Kirchner, Architektur
der Metatarsalien des Menschen, Arch. f. Entw. Mech. xxiv, pp. 539-^16, 1907.
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overhung by the loaded head, is the "compression-member"; the

outer side is the "tension-member"; the pressure-Unes, starting

from the loaded surface, gather themselves together, always in the

direction of the resultant pressure, till they form a close bundle

running down the compressed side of the shaft : while the tension-

lines, running upwards along the opposite side of the shaft, spread

out through the head, orthogonally to, and linking together, the

system of compression-lines. The head of the femur (Fig. 462) is

Fig. 463. Crane-head and femur. After Culmann and J. Wolff.

a little more complicated in form and a little less symmetrical than

Culmann's diagrammatic crane, from which it chiefly differs in the

fact that its load is divided into two parts, that namely which is

borne by the head of the bone, and that smaller portion which

rests upon the great trochanter ; but this merely amounts to saying

that a notch has been cut out of the curved upper surface of the

structure, and we have no difficulty in seeing that the anatomical

arrangement of the trabeculae follows precisely the mechanical

distribution of compressive and tensile stress or, in other words,

accords perfectly with the theoretical stress-diagram of the crane.
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The lines of stress are bundled close together along the sides of

the shaft, and lost or concealed there- in the substance of the solid

wall of bone; but in and near the head of the bone, a peripheral

shell of bone does not suffice to contain them, and they spread out

through the central mass in the actual concrete form of bony

trabeculae*.

Mutatis mutandis, the same phenomenon may be traced in any

other bone which carries weight and is liable to flexure; and in

the OS calcis and the tibia, and more or less in all the bones of the

lower limb, the arrangement is found to be very simple and clear.

Thus, in the os calcis, the weight resting on the head of the bone

has to be transmitted partly through the backward-projecting heel

to the ground, and partly forwards through its articulation with

* Among other works on the mechanical construction of bone see: Bourgery,

Traite de Vanatomie {I. Osteologie), 1832 (with admirable illustrations of trabecular

structure); L. Fick, Die Ursachen der Knochenformen, Gottingen, 1857; H. Meyer,

Die Architektur der Spongiosa, Arch. f. Anat. und Physiol, xlvii, pp. 615-628,

1867; Statik u. Mechanik des menschlichen Knochengeriistes, Leipzig, 1873; H. Wolfer-

mann, Beitrag zur K. der Architektur der Knochen, Arch. f. Anat. und Physiol.

1872, p. 312; J. Wolff, Die innere Architektur der Knochen, Arch. f. Anat. und

Phya. L, 1870; Das Gesetz der Transformation bei Knochen, 1892; Y. Dwight,

The significance of bone-architecture, Mem. Boston Soc. N.H. iv, p. 1, 1886;

V. von Ebner, Der feinere Bau der Knochensubstan^, Wiener Bericht, Lxxn, 1875;

Anton Rauber, Elastizitdt und Festigkeit der Knochen, Leipzig, 1876; 0. Meserer,

EUlsI. u. Festigk. d. menschlichen Knochen, Stuttgart, 1880; Sir Donald MacAlister,

How a bone is buil^, English Illustr. Mag. 1884, pp. 640-649; Rasumowsky,

Architektonik des Fussskelets, Int. Monatsschr. f. ^na<. .1889, p. 197; Zschokke,

Weitere Unters. uher das Verhdltnis der Knochenhildung zur Statik und Mechanik

des Vertehratenskelets, Ziirich, 1892; W. Roux, Ges. Ahhandlungen uher Entuncklungs-

mechanik der Organismen, Bd. I, Funktionelle Anpassung, Leipzig, 1895; J. Wolff,

Die Lehre von der funktionellen Knochengestalt, Virchow's Archiv, clv, 1899;

R. Schmidt, Vergl. anat. Studien liber den mechanischen Bau der Knochen und

seine Vererbung, Z. f. w. Z. lxv, p. 65, 1899; B. Solger, Der gegenwartige Stand

der Lehre von der Knochenarchitektur, in Moleschott's Unters. z. Naturlehre des

Menschen. xvi, p. 187, 1899; H. Triepel, Die Stossfestigkeit der Knochen, Arch,

f. Anat. und Phys. 1900; Gebhardt, Funktionellwichtige Anordnungsweisen der

feineren und" groberen Bauelemente des Wirbelthierknochens, etc. Arch. f. ErUw.

Mech. 1900-10; Revenstorf, Ueber die Transformation der Calcaneus-architektur.

Arch. f. Entw. Mech. xxiii, p. 379, 1907; H. Bernhardt, Vererbung der inneren

Knochenarchitektur beim Menschen, und die Teleologie bei J. Wolff, Inaug. Diss.,

Miinchen, 1907; Herm. Triepel, Die trajectoriellen Structuren (in Einf. in die

Physikalische Anatomie, 1908); A. F. Dixon, Architecture of the cancellous tissue

forming the upper end of the femur, Journ. Anai. and Phys. (3), xliv, pp. 223-230,

1910; A. Benninghoff, Ueber Leitsystem der Knochencompacta ; Studien zur

Architektur der Knochen, Beitr. z. Anat. funktioneller Systeme, i, 1930.
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the cuboid bone, to the arch of the foot. We thus have, very much
as in a triangular roof-tree,, two compression-members sloping apart

from one another; and these have to be bound together by a "tie"

or tension-member, corresponding to the third, horizontal member
of the truss.

It is a simple corollary, confirmed by observation, that the

trabeculae have a very different distribution in animals whose

actions and attitudes are materially different, as in the aquatic

mammals, such as the beaver and the seal*. And in much less

extreme cases there are lessons to be learned from a study of the

Fig, 464. Diagram of stress-lines in the human foot. From
Sir D. MacAlister, after H. Meyer.

same bone in different animals, as the loads alter in direction and

magnitude. The gorilla's heelbone resembles man's, but the load

on the heel is much less, for the erect posture is imperfectly achieved

:

in a common monkey the heel is carried high, and consequently

the direction of the trabeculae is still more changed. The bear

walks on the sole of his foot, though less perfectly than does man,

and the lie of the trabeculae is plainly analogous in the two; but

in the bear more powerful strands than in the os calcis of man
transmit the load forward to the toes, and less of it through the

heel to the ground. In the leopard we see the full effect of tip-toe,

or digitigrade, progression. The long hind part (or tuberosity) of

* Cf. G. de M. Rudolf, Habit and the architecture of the mammalian femur,

Jovrn. Anatomy, lvi, pp. 139-146, 1922.
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the heel is now more a mere lever than a pillar of support; it is

little more than a stiffened rod, with compression-members and

tension-members in opposite bundles, inosculating orthogonally at

the two ends*.

In the bird the small bones of the hand, dwarfed as they are in

size, have still a deal to do in carrying the long primary flight-

feathers, and in forming a rigid axis for the terminal part of the

wing. The simple tubular construction, which answers well for

the long, slender arm-bones, does not suffice where a still more

efficient stiffening is required. In all the mechanical^ide of anatomy

Fig. 465. Metacarpal bone from a vulture's wing; stiffened after the manner
of a Warren's truss. From 0. Prochnow, Formenkunst der Natur,

nothing can be more beautiful than the construction of a vulture's

metacarpal bone, as figured here (Fig. 465). The engineer sees in

it a perfect Warren's truss, just such a one as is often used for a main

rib in an aeroplane. Not only so, but the bone is better than the

truss; for the engineer has to be contefit to set his V-shaped struts

all in one plane, while in the bone they are put, with obvious but

inimitable advantage, in a three-dimensional configuration.

So far, dealing wholly with the stresses and strains due to tension

and compression, we have omitted to speak of a third very im-

portant factor in the engineer's calculations, namely what is known

as "shearing stress." A shearing force is one which produces

* Cf. Fr. Weidenreich, Ueber formbestimmende Ursachen am Skelett, und die

Erblichkeit der Knochenform, Arch. f. Entw. Mech. li, pp. 438-481, 1922.
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"angular distortion" in a figure, or (what comes to the same thing)

which tends to cause its particles to slide over one another, A
shearing stress is a somewhat complicated thing, and we must try-

to illustrate it (however imperfectly) in the simplest possible way.

If we build up a pillar, for instance, of flat horizontal slates, or of

a pack of cards, a vertical load placed upon it will produce com-

pression, but will have no tendency to cause one card to slide, or

shear, upon another; and in like manner, if we make up a cable

of parallel wires and, letting it hang vertically, load it evenly with

Fig. 466. Trabecular structure of the os calcis. From MacAIister.

a weight, again the tensile stress produced has no tendency to cause

one wire to slip or shear upon another. But the case would haye

been very different if we had built up our pillar of cards or slates

lying obliquely to the lines of pressure, for then at once there would

have been a tendency for the elements of the pile to slip and shde

asunder, and to produce what the geologists call "a fault" in the

structure.

Somewhat more generally, if AB be a bar, or pillar, of cross-section a

under a direct load P, giving a direct and uniformly distributed stress per unit

area =p, then the whole pressure P=pa. Let CD be an oblique section,

inclined at an angle 6 to the cross-section ; the pressure on CD will evidently

be =pa cos 6. But at any point in CD, the pressure P may be resolved into

the shearing force Q acting along CD, and the direct force N perpendicular to

i t : where N = P cos 6 = pa cos 6, and ^ =P sin ^ =^a sin 6. The shearing force
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Q upon CD = q . area of CD, which is = g . a/cos 6. Therefore qa/cos 6=pa sin By

therefore q=p sin 6 cos 6= ^p sin 2^. Therefore when sin 20= 1, that is, when
6= 45°, g is a maximum, and =p/2; and when sin 20 = 0, that is when = 0° or

90°, then q vanishes altogether.

This is as much as to say, that under this form of loading there is

no shearing stress along or perpendicular to the lines of principal

stress, or along the Unes of maximum compression or tension; but

shear has a definite value on all other planes, and a maximum value

when it is inclined at 45° to the cross-section. This may be further

illustrated in various simple ways. When
we submit a cubical block of iron to

compression in the testing machine, it

does not tend to give way by crumbling

all to pieces, but always disrupts by

shearing, and along some plane approxi-

mately at 45° to the axis of compression

;

this is known as Coulomb's 'Theory of

Fracture, and, while subject to many
qualifications, it is still an important

first approximation to the truth. Again,

in the beam which we have already con-

sidered under a bending moment, we

know that if we substitute for it a pack of cards, they will be strongly

sheared on one another ; and the shearing stress is greatest in the

"neutral zone," where neither tension nor compression is manifested:

that is to say in the Hne which cuts at equal angles of 45° the

orthogonally intersecting lines of pressure and tension.

In short we see that, while shearing stresses can by no means

be got rid of, the danger of rupture or breaking-down under shearing

stress is lessened the more we arrange the materials of our con-

struction along the pressure-lines and tension-lines of the system;

for along these lines there is no shear*.

To apply these principles to the growth and development of

our bone, we have only to imagine a little trabecula (or group of

trabeculae) being secreted and laid down fortuitously in any direction

within the substance of the bone. If it lie in the direction of one of

the pressure-lines, for instance, it will be in a position of comparative

Fig. 467.

It is also obvious that a free surface is always a region of zero-shear.
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equilibrimn, or minimal disturbance ; but if it be inclined obliquely

to the pressure-lines, the shearing force will at once tend to act

upon it and move it away. This is neither more nor less than what

happens when we comb our hair, or card a lock of wool : filaments

lying in the direction of the comb's path remain where they were

;

but the others, under the influence of an obUque component of

pressure, are sheared out of their places till they too come into

coincidence with the Unes of force. So straws show how the wind

blows—or rather how it has been blowing. For every straw that

lies askew to the wind's path tends to be sheared into it; but as

soon as it has come to lie the way of the wind it tends to be

disturbed no more, save (of course) by a violence such as to hurl

it bodily away.

In the biological aspect of the case, we must always remember

that our bone is not only a living, but a highly plastic structure;

the httle trabeculae are constantly being formed and deformed,

demohshed and formed anew. Here, for once, it is safe to say that

"heredity" need not and cannot be invoked to account for the

configuration and arrangement of the trabeculae: for we can see

them at any time of hfe in the making, under the direct action

and control of the forces to which the system is exposed. If a bone

be broken and so repaired that its parts lie somewhat out of their

former place, so that the pressure- and tension-lines have now a new

distribution, before many weeks are over the trabecular system will

be found to have been entirely remodelled, so as to fall into line

with the new system of forces. And as Wolff pointed out, this

process of reconstruction extends a long way off from the seat of

injury, and, so cannot be looked upon as a mere accident of the

physiological process of healing and repair; for instance, it may
happen that, after a fracture of the shaft of a long bone, the

trabecular meshwork is wholly altered and reconstructed within the

distant extremities of the bone. Moreover, in cases of transplantation

of bone, for example when a diseased metacarpal is repaired by

means of a portion taken from the lower end of the ulna, with

astonishing quickness the plastic capabilities of the bony tissue are

so manifested that neither in outward form nor inward structure

can the old portion be distinguished from the new.

Herein then lies, so far as we can discern it, a great part at least
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of the physical causation of what at first sight strikes us as a purely

functional adaptation: as a phenomenon, in other words, whose

physical cause is as obscure as its final cause or end is apparently

manifest.

Partly associated with the same phenomenon, and partly to be

looked upon (meanwhile at least) as a fact apart, is the very im-

portant physiological truth that a condition of strain, the result

of a stress, is a direct stimulus to growth itself. This indeed is no

less than one of the cardinal facts of theoretical biology. The soles

of our boots wear thin, but the soles of our feet grow thick, the

more we walk upon them: for it would seem that the living cells

are "stimulated" by pressure, or by what we call "exercise," -to

increase and multiply. The surgeon knows, when he bandages a

broken limb, that his bandage is doing something more ^an merely

keeping the parts together: and that the even, constant • pressure

which he skilfully applies is a direct encouragement of growth and

an active agent in the process of repair. In the classical experiments

of Sedillot*, the greater part ef the shaft of the tibia was excised

in some young puppies, leaving the whole weight of the body to

rest upon the fibula. The latter bone is normally about one-fifth

or sixth of the diameter of the tibia ; but under the new conditions,

and under the "stimulus" of the increased load, it grew till it was

as thick or even thicker than the normal bulk of the larger bone.

Among plant tissues this phenomenon is very apparent, and in

a somewhat remarkable way; for a strain caused by a constant or

increasing weight (such as that in the stalk of a pear while the pear

is growing and ripening) produces a very marked increase of strength

without any necessary increase of bulk, but rather by some histo-

logical, or molecular, alteration of the tissues. Hegler, Pfeifer, and

others have investigated this subject, by loading the young shoot

of a plant nearly to its breaking point, and then redetermining the

breaking-strength after a few days. Some young shoots of the

sunflower were found to break with a strain of 160 gm.; but when

loaded with 150 gm., and retested after two days, they were able

to support 250 gm. ; and being again loaded with something short

* Sedillot, De I'influence des fonctions sur la structure et la forme des organes,

C.R. Lix, p. 539, 1864; ef. lx, p. 97, 1865; Lxvm, p. 1444, 1869.
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of this, by next day they sustained 300 gm., and a few days later

even 400 gm.*

The kneading of dough is an analogous phenomenon. The

viscosity and perhaps other properties of the stuff are affected by

the strains to which we have submitted it, and may thus be said

to depend not only on the nature of the substance but on its

history f . It is a long way from this simple instance, but we stretch

across it easily in imagination, to the experimental growth of a

nerve-fibre within a mass of clotted lymph : where, when we draw

out the clot in one direction or another we lay down traction-lines,

or tension-lines, and make of them a path for growth to follow J.

Such experiments have been amply confirmed, but so far as I am
aware we do not know much more about the matter: we do not

know, for instance, how far the change is accompanied by increase

in number of the bast-fibres, through transformation of other tissues

;

or how far it is due to increase in size of these fibres; or whether

it be not simply due to strengthening of the original fibres by some

molecular change. But I should be much inclined to suspect that

this last had a good deal to do with the phenomenon. We know
nowadays that a railway axle, or any other piece of steel, is weakened

by a constant succession of frequently interrupted strains; it is

said to be "fatigued," and its strength is restored by a period

of rest. The converse effect of continued strain in a uniform direc-

tion may be illustrated by a homely example. The confectioner

takes a mass of boiled sugar or treacle (in a particular molecular

condition determined by the temperature to which it has been

raised), and draws the soft sticky mass out into a rope; and then,

folding it up lengthways, he repeats the process again and again.

At first the rope is pulled out of the ductile mass without difficulty

;

but as the work goes on it gets harder to do, until all the man's

force is used to stretch the rope. Here we have the phenomenon

* Op. (it. Hegler's results are criticised by 0. M. Ball, Einfluss von Zug aiif die

Ausbildung der Festigungsgewebe, Jb. d. wiss. Botanik, xxxix, pp. 305-341, 1903,

and by H. Keller, Einfluss von Belastung und Lage auf-die Ausbildung des Gewebes
in Fruchtstielen, Inaug. Diss. Kiel, 1904.

t Cf. R. K. Schofield and G. W. S. Blair, On dough, Proc. R.S. (A), cxxxviii,

p. 707; cxxxix, p. 557, 1932-33; also Nadai and Wahl's Plasticity, 1931. For
analogous properties of hairs and fibres, see Shorter, Journ. Textile Inst, xv,

1824; etc.

X Cf. Ross Harrison's Croonian Lecture, 1933.
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of increasing strength, following mechanically on a rearrangement

of molecules, as the original isotropic condition is transmuted more

and more into molecular asymmetry or anisotropy; and the rope

apparently "adapts itself" to the increased strain which it is called

on to bear, all after a fashion which at least suggests a parallel to

the increasing strength of the stretched and weighted fibre in the

plant. For increase of strength by rearrangement of the particles

we have already a rough illustration in our lock of wool or hank

of tow. The tow will carry but little weight while its fibres are

tangled and awry: but as soon as we have carded or "hatchelled"

it out, and brought all its long fibres parallel and side by side, we

make of it a strong and useful cord*.

But the lessons which we learn from dough and treacle are

nowadays plain enough in steel and iron, and become immensely

more important in these. For here again plasticity is associated

with a certain capacity for structural rearrangement, and increased

strength again results therefrom. Elaborate processess of rolling,

drawing, bending, hammering, and so on, are regularly employed to

toughen and strengthen the material. The "mechanical structure"

of solids has become an important subject. And when the engineer

talks of repeated loading, of elastic fatigue, of hysteresis, and other

phenomena associated with plasticity and strain, the physiological

analogues of these physical phenomena are perhaps not far away.

In some such ways as these, then, it would seem that we may
coordinate, or hope to coordinate, the phenomenon of growth with

certain of the beautiful structural phenomena which present them-

selves to our eyes as "provisions," or mechanical adaptations f, for

the display of strength where strength is most required. That is

to say the origin, or causation, of the phenomenon would seem to

lie partly in the tendency of growth to be accelerated under strain

:

and partly in the automatic effect of shearing strain, by which it

tends to displace parts which grow obliquely to the direct lines of

tension and of pressure, while leaving those in place which happen

to he parallel or perpendicular to those lines : an automatic effect

* Cf. Sir Charles Bell's Animal Mechanics, chap, v, "Of the tendons compared

with cordage."

f So P. Enriques (op. cit. supra, p. 5), writing on the economy of material in the

construction of a bone, admits that "una certa impronta di teleologismo qua e la

e rimasta, mio malgrado, in questo scritto."
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which we can probably trace as working on all scales of magnitude,

and as accounting therefore for the rearrangement of minute particles

in the metal or the fibre, as well as for the bringing into Hne of

the fibres within the plant, or of the trabeculae within the bone.

But we may now attempt to pass from the study of the individual

bone to the much wider and not less beautiful problems of mechanical

construction which are presented to us by the skeleton as a whole.

Certain problems of this class are by no means neglected by writers

on anatomy, and many have been/ handed down from Borelli, and

even from older writers. For instance, it is an old tradition of

anatomical teaching to point out in the human body examples of

the three orders of levers * ; again, the principle that the limb-bones

tend to be shortened in order to support the weight of a very heavy

animal is well understood by comparative anatomists, in accordance

with Euler's law, that the weight which a column liable to flexure

is capable of supporting varies inversely as the square of its length

;

and again, the statical equilibrium of the body, in relation foi

instance to the erect posture of man, has long been a favourite theme

of the philosophical anatomist. But the general method, based

upon that of graphic statics, to which we have been introduced in

our study of a bone, has not, so far as J know, been apphed to the

general fabric of the skeleton. Yet it is plain that each bone plays

a part in relation to the whole body, analogous to that which a little

trabecula, or a little group of trabeculae, plays within the bone

itself: that is to say, in the normal distribution of forces in the

body the bones tend to follow the lines of stress, and especially

the pressure-Hnes. To demonstrate this in a comprehensive way
would doubtless be difficult ; for we should be dealing with a frame-

work of very great complexity, and should have to take account of

* E.g. (1) the head, nodding backwards and forwards on a fulcrum, represented

by the atlas vertebra, lying between the weight and the power; (2) the foot, raising

on tip-toe the weight of the body against the fulcrum of the ground, where the

weight is between the fulcrum and the power, the latter being" represented by the

tendo Achillis; (3) the arm, lifting a weight in the hand, with the power (i.e. the

biceps muscle) between the fulcrum and the weight. (The second case, by the way,

has been much disputed; cf. Haycraft in Scha,{eT'B Textbook of Physiology, 1900,

p. 251.) Cf. (int. al.) G. H. Meyer, Statik u. Mechanik der menschlicken Knochen-

geriiste, 1873, pp. 13-25.
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a great variety of conditions*. This framework is complicated as

we see it in the skeleton, where (as we have said) it is only, or chiefly,

the struts of the whole fabric which are represented ; but to under-

stand the mechanical structure in detail, we should have to follow

out the still more complex arrangement of the ties, as represented

by the muscles and ligaments, and we should also require much
detailed information as to the weights of the various parts and as

to the other forces concerned. Without these latter data we can

only treat the question in a preUminary and imperfect way. But,

to take once again a small and simplified part of a big problem,

let us think of a quadruped (for instance, a horse) in a standing

posture, and see whether the methods and terminology of the

engineer may not help us, as they did in regard to the minute

structure of the single bone. And let us note in passing that the

"standing posture," whether on two legs or on four, is no very

common thing; but is (so to speak), with all its correlated anatomy,

a privilege of the few.

Standing four-square upon its fore-legs and hind-legs, with the

weight of the body suspended between, the quadruped at once

suggests to us the analogy of a bridge, carried by its two piers.

And if it occurs to us, as naturalists, that we never look at a

standing quadruped without contemplating a bridge, so, conversely,

a similar idea has occurred to the engineer ; for Professor Fidler,

.

in this Treatise on Bridge-Construction, deals with the chief descrip-

tive part of his subject under the heading of "The Comparative

Anatomy of Bridges"]"." The designation is most just, for in

studying the various types of bridge we are studying a series of

well-planned skeletons %] and (at the cost of a little pedantry)

* Our problem is analogous to Thomas Young's problem of the best disposition

of the timbers in a wooden ship {Phil. Trans. 1814, p. 303). He was not long of

finding that the forces which act upon the fabric are very numerous and very

variable, and that the best mode of resisting them, or best structural arrangement

for ultimate strength, becomes an immensely complicated problem.

f By a bolder metaphor Fontenelle said of Newton that he had "fait I'anatomie

de la lumiere."

X In like manner. Clerk Maxwell could not help employing the term "skeleton"

in defining the mathematical conception of a "frame," constituted by points and
their interconnecting lines : in studying the equilibrium of which, we consider its

different points as rnutually acting on each other with forces whose directions are

those of the lines joining each pair of points. Hence (says Maxwell), "in order to

exhibit the mechanical action of the frame in the most elementary manner, we may
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we might go even .further, and study (after the fashion of the

anatomist) the "osteology" and "desmology" of the structure, that

is to say the bones which are represented by "struts," and the

Hgaments, etc., which are represented by "ties." Furthermore

after the methods of the comparative anatomist, we may classify

the families, genera and species of bridges according to their dis-

tinctive mechanical features, which correspond to certain definite

conditions and functions.

Fig. 468. Skeleton of an American bison. (An unusually weU-mounted skeleton,

of American workmanship, now in the Anatomical Museum of Edinburgh

University.)

In more ways than one, the quadrupedal bridge is a remarkable

one; and perhaps its most remarkable peculiarity is that it is a

jointed and flexible bridge, remaining in equilibrium under con-

siderable and sometimes great modifications of its curvature, such

as we see, for instance, when a cat humps or flattens her back.

The fact thsit flexibility is an essential feature in the quadrupedal

draw it as a skeleton, in which the different points are joined by straight lines,

and we may indicate by numbers attached to these lines the tensions or com-

pressions in the corresponding pieces of the frame" {Trans. R.S.E. xxvi, p. 1,

1870). It follows that the diagram so constructed represents a "diagram of

forces," in this limited sense that it is geometrical as regards the position and

direction of the forces, but arithmetical as regards their magnitude. It is to just

such a diagram that the animal's skeleton tends to approximate.
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bridge, while it is the last thing which an engineer desires and

the first which he seeks to provide against, will impose certain

important limiting conditions upon the design of the skeletal fabric.

But let us begin by considering the quadruped at rest, when he

stands upright and motionless upon his feet, and when his legs

exercise no function save only to carry the weight of the whole

body. So far as that function is concerned, we might now perhaps

compare the horse's legs with the tall and slender piers of some

railway bridge; but it is obvious that these jointed legs are ill-

adapted to receive the horizontal thrust of any arch that may be

placed atop of them. Hence it follows that the curved backbone

of the horse, which appears to cross like an arch the span between

his shoulders and his flanks, cannot be regarded as an arch, in the

Fig. 469. a, tied arch; b, bowstring girder.

engineer's sense of the word. It resembles an arch in form, but

not in function, for it cannot act as an arch unless it be held back

at each end (as every arch is held back) by ahutinents capable of

resisting the horizontal thrust; and these necessary abutments are

not present in the structure. But in various ways the engineer

can modify his superstructure so as to supply the place of these

external reactions, which in the simple arch are obviously indis-

pensable. Thus, for example, we may begin by inserting a straight

steel tie, AB (Fig. 469), uniting the ends of the curved rib AaB\

and this tie will supply the place of the external reactions, converting

the structure into a "tied arch," such as we may see in the roofs

of many railway stations. Or we may go on to fill in the space

between arch and tie by a "web-system," converting it into what

the engineer describes as a "parabolic bowstring girder" (Fig. 4696).

In either case, the structure becomes an . independent "detached
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girder," supported at each end but not otherwise fixed, and con-

sisting essentially of an upper compression-member, AaB, and a

lower tension-member, AB. But again, in the skeleton of the

quadruped, the necessary tie, AB, of the simple bow-girder is not to

be found ; and it follows that these comparatively simple types of

bridge do not correspond to, nor do they help us to understand,

the type of bridge which Nature has designed in the skeleton of the

quadruped. Nevertheless if we try to look, as an engineer would

look, at the actual design of the animal skeleton and the actual

distribution of its load, we find that the one is most admirably

adapted to the other, according to the strict principles of engineering

construction. The structure is not an arch, nor a tied arch, nor

a bowstring girder: but it is strictly and beautifully comparable

to the main girder of a double-armed cantilever bridge.

Fig. 470. A two-armed cantilever of the Forth Bridge. Thick lines, com-

pression-members (bones); thin lines, tension-members (ligaments).

Obviously, in our quadrupedal bridge, the superstructure does

not terminate (as it did in our former diagram) at the two points

of support, but it extends beyond them, carrying the head at one

end and sometimes a heavy tail at the other, upon projecting arms

or "cantilevers."

In a typical cantilever bridge, such as the Forth Bridge (Fig. 470),

a certain simplification is introduced. For each pier carries, in this

case, its own double-armed cantilever, linked by a short connecting

girder to the next, but so jointed to it that no weight is transmitted

from one cantilever to another. The bridge in short is cut into

separate sections, practically independent of one another; at the

joints a certain amount of bending is not precluded, but shearing

strain is evaded; and each pier carries only its own load. By

this arrangement the engineer finds that design and construction

are alike simplified and faciUtated. In the horse or the ox, it is
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obvious that the two piers of the bridge, that is to say the fore-legs

and the hind-legs, do not bear (as they do in the Forth Bridge)

separate and independent loads, but the whole system forms a

continuous structure. In this case, the calculation of the loads

will be a little more difficult and the corresponding design of the

structure a Httle more complicated. We shall accordingly simplify

our problem very considerably if, to begin with, we look upon the

quadrupedal skeleton as constituted of two separate systems, that

is to say of two balanced cantilevers, one supported on the fore-legs

and the other on the hind; and we may deal afterwards with the

fact that these two cantilevers are not independent, but are bound

up in one common field of force and plan of construction.

In both horse and ox it is plain that the two cantilever systems

into which we may thus analyse the quadrupedal bridge are unequal

in magnitude and importance. The fore-part of the animal is much

bulkier than its hind-quarters, and the fact that the fore-legs carry,

as they so evidently do, a greater weight than the hind-legs has

long been known and is easily proved ; we have only to walk a horse

on to a weigh-bridge, weigh fijst his fore-legs and then his hind-legs,

to discover that what we may call his front half weighs a good deal

more than what is carried on his hind feet, say about three-fifths

of the whole weight of the animal.

The great (or anterior) cantilever then, in the horse, is constituted

by the heavy head and still heavier neck on one- side of that pier

which is represented by the fore-legs, and by the dorsal vertebrae

carrying a large part of the weight of the trunk upon the other

side; and this weight is so balanced over the fore-legs that the

cantilever, while "anchored" to the other parts of the structure,

transmits but little of its weight to the hind-legs, and the amount

so transmitted will vary with the attitude of tne head and with

the position of any artificial load*. Under certain conditions, as

when the head is thrust well forward, it is evident that the hind-legs

will be actually relieved of a portion of the comparatively small

load which is their normal share.

* When the jockey, crouches over the neck of his race-horse, and when Tod
Sloan introduced the "American seat," the avowed object in both cases is to relieve

the hind-legs of weight, and so leave them free for the work of propulsion. On
the share taken by the hind-limbs in this latter duty, and other matters, cf.

Stillman, The. Tlnrne, in Motion, 1882, p. 69.
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But here we pass from the, statical problem to the dynamical,

from the horse at rest to the horse in motion, from the observed

fact that weight lies mainly over the fore-legs to the question of

what advantage is gained by such a distribution of the load. Taking

the hind-legs as the main propulsive agency, as we may now safely

do, the moment of propulsion is about the hind-hooves; then (as we

see in Fig. 471) we may take the weight, W = A sin a, and the

W H
propulsive force, f= A cos a, and -y = y, WL = fH being the

balanced condition. From the statical point of view the load must

balance over the fore-legs; from the dynamical point of view it

might well lie even farther forward. And when the jockey crouches

Fig. 471.

over the horse's neck, and when Tod Sloan introduced the " American

seat," both shew a remarkable, though perhaps unconscious, insight

into the dynamical proposition.

Our next problem is to discover, in a rough and approximate

way, some of the structural details which the balanced load upon

the double cantilever will impress upon the fabric.

Working by the methods of graphic statics, the engineer's task is,

in theory, one of great simplicity. He begins by drawing in outline

the structure which he desires to erect; he calculates the stresses

and bending-moments necessitated by the dimensions and load on

the structure; he draws a new diagram representing these forces,

and he designs and builds his fabric on the lines of this statical

diagram. He does, in short, precisely what we have seen nature

doing in the case of the bone. For if we had begun, as it were.
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by blocking out the femur roughly, and considering its position

and dimensions, its means of support and the load which it has to

bear, we could have proceeded at once to draw the system of

stress-lines which must occupy that field of force : and to precisely

B
Fig. 472. A, Span of proposed bridge. B, Stress diagram, or diagram

of bending-moments*.

those stress-lines has Nature kept in the building of the bone, down

to the minute arrangement of its trabecular

The essential function of a bridge is to stretch across a certain

span, and carry a certain definite load; and this being so, the chief

XfJwTX

Fig. 473. The bridge construnted, as a parabolic girder.

problem in the designing of a bridge is to provide due resistance

to the "bending-moments" which result from the load. These

bending-moments will vary from point to point along the girder,

* This and the following diagrams are borrowed and adapted from Professor

Fidler's Bridge Construction. We may reflect with advantage on Clerk Maxwell's

saying that "the use of diagrams is a particular instance of that method of symbols

which is so powerful an aid in the advancement of science" ; and on his explanation

that "a diagram differs from a picture in this respect that in a diagram no attempt

is made to represent those factors of the actual material system which, are not the

special objects of our study."
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and taking the simplest case of a uniform load, whether supported

at one or both ends, they will be represented by points on a parabola.

If the girder be of uniform depth and section, that is to say if its

two flanges, respectively under tension and compression, be equal

and parallel to one another, then the stress upon these flanges will

vary as the bending-moments, and will accordingly be very severe

in the middle and will dwindle towards the ends. But if we make

the dejpih of the girder everjrwhere proportional to the bending-

moments, that is to say if we copy in the girder the outlines of the

bending-moment diagram, then our design will automatically meet

the circumstances of the case, for the horizontal stress in each flange

will now be uniform throughout the length of the girder. In short.
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diagram in the other*. Now all this is but the modern rendering

of one of Galileo's most famous propositions. In the Dialogue which

we have already quoted more tlfan oncef, Sagredo says "It would

be a fine thing if one could discover the proper shape to give a solid

in order to make it equally resistant at every point, in which case

a load placed at the middle would not produce fracture more easily

I

Fig. 475.

than if placed at any other point J." And Gahleo (in the person

of Salviati) first puts the problem into its more gen'eral form; and

then shews us how, by giving a parabolic outline to our beam, we

have its simple and comprehensive solution. It was such teaching

as this that led R. A. Millikan to say that "we owe our present-day

civilisation to Galileo."

* The method of constructying reciprocal diagrams, of which one should represent

the outlines of a frame and the other the system of forces necessary to keep it

in equilibrium, was first indicated in Culmann's Graphische Statik; it was greatly

developed soon afterwards by Macquorn Rankine (Phil. Mag. Feb, 1864, and

Applied Mechanics, passim), to whom the application of the principle to engineering

practice is mainly due. See also Fleeming Jenkin, On the practical application

of reciprocal figures to the calculation of strains in framework, Trans. R.S.E.

XXV, pp. 441^48, 1869; and Clerk Maxwell, ibid, xxvi, p. 9, 1870, and Phil. Mag.

April 1864.

t Dialogues concerning Two New Sciences (1638); Crew and Salvio's translation

p. 140 seq.

X As in the great case of the Eiffel Tower, supra, p. 29.
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In the case of our cantilever bridge, we shew the primitive girder

in Fig. 475, A, with its bending-moment diagram (B); and it is

evident that, if we turn this diagram upside down, it will still be

illustrative, just as before,, of the bending-moments from point

to point: for as yet it is merely a diagram, or graph, of relative

magnitudes.

To either of these two stress diagrams, direct or inverted, we

may fit the design of the construction, as in Figs. 475, C and 476.

Fig. 476.

Now in different animals the amount and distribution of the

load differ so greatly that we can expect no single diagram, drawn

from the comparative anatomy of bridges, to apply equally well to

all the cases met with in the comparative anatomy of quadrupeds;

but nevertheless we have already gained an insight into the general

principles of "structural design" in the quadrupedal bridge.

. In our last diagram the upper member of the cantilever is under

tension; it is represented in the quadruped by the ligamentum nuchae

on the one side of the cantilever, and by the supraspinous ligaments

of the dorsal vertebrae on the other. The compression-member

is similarly represented, on both sides of the cantilever, by the

vertebral column, or rather by the bodies of the vertebrae; while

the web, or "filling," of the girders, that is to say the upright or

sloping members which extend from one flange to the other, is

represented on the one hand by the spines of the vertebrae, and on

the other hand by the obli(|ue interspinous ligaments and muscles

—

that is to say, by compression-members and tension-members

inclined in opposite directions to one another. The high spines over

the quadruped's withers are no other than the high sisruts which

rise over the supporting piers in the parabolic girder, and correspond

to the position of the maximal bending-moments. The fact that

these tall vertebrae of the withers usually slope backwards, some-
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times steeply, in a quadruped, is easily and obviously explained*.

For each vertebra tends to act as a "hinged lever," and its spine,

acted on by the tensions transmitted by the ligaments on either side,

takes up its position as the diagonal of the parallelogram of forces

to which it is exposed.

It happens that in these comparatively simple types of cantilever

bridge the whole of the parabolic curvature is transferred to one

or other of the principal members, either the tension-member or

the compression-member as the case may be. But it is of course

equally permissible to have both members curved, in opposite

directions. This, though not exactly the case in the Forth Bridge,

is approximately so; for here the main compression-member is

curved or arched, and the main tension-member slopes downwards

on either side from its maximal height above the piers. In short,

the Forth Bridge (Fig. 470) is a nearer approach than either of

the other bridges which we have illustrated to the plan of the

quadrupedal skeleton; for the main compression-member almost

exactly recalls the form of the backbone, while the main tension-

meraber, though not so closely similar to the supraspinous and

nuchal ligaments, corresponds to the plan of these in a somewhat

simplified form.

We may now pass without difficulty from the two-armed canti-

lever supported on a single pier, as it is in each separate section of the

Forth Bridge, or as we have imagined it to be in the fore-quarters

of a horse, to the condition which actually exists in a quadruped,

when a two-armed cantilever has its load distributed over two

separate piers. This is not precisely what an engineer calls a

"continuous" girder, for that term is applied to a girder which,

as a continuous structure, has three supports and crosses two or more

spans, while here there is only one. But nevertheless, this girder

* The form and direction of the vertebral spines have been frequently and

elaborately described; cf. (e.g.) H. Gottlieb, Die Anticlinie der Wirbelsaule der

Saugethiere, Morphol. Jahrb. lxix, pp. 179-220, 1915, and many works quoted

therein. According to Morita, Ueber die Ursachen der Richtung und Gestalt der

thoracalen Dornfortsatze der 8augethierwirbelsaule {ibi cit. p. 201), various changes

take place in the direction or inclination of these processes in rabbits, after section

of the interspinous ligaments and muscles. These changes seem to be very much
what we should expect, on simple mechanical grounds. See also 0. Fischer,

Theoretische Grundlagen fur eine Mechanik der lebenden Korper, Leipzig, 1906,

pp. X, 372.
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is effectively continuous from the head to the tip of the tail; and

at each point of support (A and 5) it is subjected to the negative

bending-moment due to the overhanging load on each of the

projecting cantilever arms AH and BT. The diagram of bending-

moments will (according to the ordinary conventions) lie below the

base line (because the moments are negative), and must take some

such forfn as that shewn in the diagram : for the girder must suffer

its greatest bending stress not at the centre, but at the two points

of support A and 5, where the moments are measured by the

vertical ordinates. It is plain that this figure only differs, from

a representation of two independent two-armed cantilevers in the

fact that there is no point midway in the span where the bending-

moment vanishes, but only a region between the two piers in which

it tends' to diminish.

H A B T
Fig. 477. Two-armed cantilever and its stress diagram.

The diagram effects a graphic summation of the positive and

negative moments, but its form may assume various modific^ttions

according to the method of graphic summation which we choose

to adopt; and it is obvious also that the form of the diagram

rriay assume many modifications of detail according to the actual

distribution of the load. In all cases the essential points to be

observed are these: firstly that the girder which is to resist the

bending-moments induced by the load must possess its two principal

members—an upper tension-member or tie, represented by ligament

(whose tension doubtless varies along its length), and a lower

compression-member represented by bone: these members being

united by a web represented by the vertebral spines with their

interspinous ligaments, and being placed one above the other in

the order named because the moments are negative; secondly we

observe that the depth of the web, or distance apart of the principal
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members—that is to say the height of the vertebral spines—must

be proportional to the bending-moment at each point along the

length of the girder.

In the case of an animal carrying most oi his weight upon his

fore-legs, as the horse or the ox do, the bending-moment diagram

will be unsymmetrical, after the fashion of Fig. 478, the precise form

depending on the distribution of weights and distances.

7a/7 Head

Fig. 478. Stress-diagram of horse's backbone.

On the other hand the Dinosaur, with his light head and enormous

tail would give us a moment-diagram with the opposite kind of

asymmetry, the greatest bending stress being now found over the

haunclies, at B (Fig. 479). A glance at the skeleton of Diplodocus

will shew us the high vertebral spines over the loins, in precise

correspondence with the requirements of this diagram: just as in

the horse, under the opposite conditions of load, the highest vertebral

spines are those of the withers, that is to say those of the posterior

cervical and anterior dorsal vertebrae.

We have now not only dealt with the general resemblance, both

in structure and in function, of the quadrupedal backbone with its

associated ligaments to a double-armed cantilever girder, but we

have begun to see how the characters of the vertebral system must

differ in different quadrupeds, according to the conditions imposed

by the varying distribution of the load : and in particular how the

height of the vertebral spines which constitute the web will be

in a definite relation, as regards magnitude and position, to the

bending-moments induced thereby. We should require much de-

tailed information as to the actual weights of the several parts of

the body before we could follow out quantitatively the mechanical

efficiency of each type of skeleton; but in an approximate way

what we have already learnt will enable us to trace many interesting

correspondences between structure and function in this particular

part of comparative anatomy. We must, however, be careful to

note that the great cantilever system is not of necessity constituted
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by the vertebral column and its ligaments alone, but that the pelvis,

firmly united as it is to the sacral vertebrae, and stretching back-

wards far beyond the acetabulum, becomes an intrinsic part of the

system ; and heljnng (as it does) to carry the load of the abdominal

viscera, it constitutes a great portion of the posterior cantilever arm,

or even its chief portion in cases where the size and weight of the

tail are insignificant, as is the case in the majority of terrestrial

mammals.

Tail Head

Fig. 479. Stress-diagram of backbone of Dinosaur.

We may also note here, that just as a bridge is often a " combined"

or composite structure, exhibiting a combination of principles in

its construction, so in the quadruped we have, as it were, another

girder supported by the same piers to carry the viscera; and con-

sisting of an inverted parabolic girder, whose compression-member

is again consti'tuted by the backbone, its tension-member by the

line of the sternum and the abdominal muscles, while the ribs and

intercostal muscles play the part of the web or filling.

A very few instances must suffice to illustrate the chief variations

in the load, and therefore in the bending-moment diagram, and

therefore also in the plan of construction, of various quadrupeds.

But let us begin by setting forth, in a few cases, the actual weights

which are borne by the fore-limbs and the hind-limbs, in our

quadrupedal bridge*.
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It will be observed that in all these animals the load upon the

fore-feet preponderates considerably over that upon the hind, the

preponderance being rather greater in the elephant than in the horse,

and markedly greater in the camel and the llama than in the other

two. But while these weights are helpful and suggestive, it is

obvious that they do not go nearly far enough to give us a full

insight into the constructional diagram to which the animals are

conformed. For such a purpose we should require to weigh the

total load, not in two portions but in many; and we should also

have to take close account of the general form of the animal, of

the relation between that form and the distribution of the load,

and of the actual directions of each bone and ligament by which

the forces of compression and tension >were transmitted. All this

lies beyond us for the present; but nevertheless we may consider.

Tail Head

Fig. 480. Stress-diagram of Titanotheriuni.

very briefly, the principal cases involved in our enquiry, of which

the above animals form a partial and preliminary illustration.

(1) Wherever we have a heavily loaded anterior cantilever arm,

that is to say whenever the head and neck represent a considerable

fraction of the whole weight of the body, we tend to have large

bending-moments over the fore-legs, and correspondingly high spines

over the vertebrae of the withers. This is the case in the great

majority of four-footed terrestrial animals, the chief exceptions

being found in animals with comparatively small heads but large

and heavy tails, such as the anteaters or the Dinosaurian reptiles,

and also (very naturally) in animals such as the crocodile, where

the " bridge " can scarcely be said to be developed, for the long heavy

body sags down to rest upon the ground. The case is sufficiently

exemplified by the horse, and still more notably by the stag, the ox,

or the pig. It is illustrated in the skeleton of a bison (Fig. 468), or
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in the accompanying diagram of the conditions in the great extinct

Titanotherium.

(2) In the elephant and the camel we have similar conditions,

but slightly modified. In both cases, and especially in the latter,

the weight on the fore-quarters is relatively krge ; and in both cases

the bending-moments are all the larger, by reason of the length

and forward extension of the camel's neck and the forward position

of the heavy tusks of the elephant. In both cases the dorsal spines

are large, but they do not strike us as exceptionally so; but in

both cases, and especially in the elephant, they slope backwards

in a marked degree. Each spine, as already explained, must in all

cases assume the position of the diagonal in the parallelogram of

forces defined by the tensions acting on it at its extremity; for it

constitutes a "hinged lever," by which the bending-moments on

either side are automatically balanced ; and it is plain that the more

the spine slopes backwards the more it indicates a relatively large

strain thrown upon the great ligament of the neck, and a relief

of strain upon the more directly acting, but weaker, Hgaments of

the back and loins. In both cases, the bending-moments . would

seem to be more evenly distributed over the region of the back than,

for instance, in the stag, with its light hind-quarters and heavy load

of antlers: and in bo^h cases the high "girder" is considerably

prolonged, by an extension of the tall spines backwards in the

direction of the loins. When we come to such a case as the mam-
moth, with its immensely heavy and immensely elongated tusks,

we perceive at once that the bending-moments over the fore-legs

are now very severe; and we see also that the dorsal spines in this

region are. much more conspicuously elevated than in the ordinary

elephant.

(3) In the case of the giraffe we have, without doubt, a very

heavy load upon the fore-legs, though no weighings are at hand

to define the ratio; but as far as possible this disproportionate

load would seem to be relieved by help of a downward as well as

backward thrust, through the sloping back to the unusually low

hind-quarters. The dorsal spines of the vertebrae are very high

and strong, and the whole girder-system very perfectly formed. The

elevated rather than protruding position of the head lessens the

anterior bending-moment as far as possible, but it leads to a strong
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compressional stress transmitted almost directly downwards through

the neck: in correlation with which we observe that the bodies of

the cervical vertebrae are exceptionally large and strong, and steadily

increase in size and strength from the head downwards.

(4) In the kangaroo, the fore-limbs are entirely relieved of theii*

load, and accordingly the tall spines over the withers, which were so

conspicuous in all heavy-headed quadrupeds, have now completely

vanished. The creature has become bipedal, and body and tail

form the extremities of a single balanced cantilever, whose maximal

bending-moments are marked by strong, high lumbar and sacral

vertebrae, and by iliac bones of peculiar form, of exceptional strength

and nearly upright position.

Precisely the same condition is illustrated in the Iguanodon, and

better still by reason of the great bulk of the creature and of the

heavy load which falls to be supported by the great cantilever and

by the hind-legs which form its piers. The long heavy body and

neck require a balance-weight (as in the kangaroo) in the form* of

a long heavy tail; and the double-armed cantilever, so constituted,

shews a beautiful parabolic curvature in the graded heights of the

whole series of vertebral spines, which rise to a maximum over the

haunches and die away slowly towards the neck and towards the

tip of the tail.

(5) In the case of some of the great American fossil reptiles such

as Diplodocus, it has always been a more or less disputed question

whether or not they assumed, like Iguanodon, an erect, bipedal

attitude. In all of them we see an elongated pelvis, and, in still

more marked degree, we see elevated spinous processes of the

vertebrae over the hind-limbs ; in all of them we have a long heavy

tail, and in most of them we have a marked reduction in size and

weight both of the fore-limb and of the head itself. The great size

of these animals is not of itself a proof against the erect attitude;

because it might well have been accompanied by an aquatic or

partially submerged habitat, and the crushing stress of the creature's

huge bulk proportionately relieved. But we must consider each

such case in the whole light of its own evidence ; and it is easy to

see that, just as the quadrupedal mammal may carry the greater

part but not all of its w^eight upon its fore-limbs, so a heavy-tailed

reptile may carry the greater part upon its hind-limbs, without
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this process going so far as to relieve its fore-limbs of all weight

whatsoever. This would seem to be the case in such a form as

Diplodocus, and also, in Stegosaurus, whose restoration by Marsh

is doubtless substantially correct*. The fore-limbs, though com-

paratively small, are obviously fashioned for support, but the weight

which they have to tarry is far less than that which the hind-limbs

bear. The head is small and the neck short, while on the other hand

the hind-quarters and the tail are big and massive. The backbone

bends into a great double-armed cantilever, culminating over the

pelvis and the hind-limbs, and here furnished with its highest and

strongest spines to separate the tension-member from the com-

Fig. 481. Diagram of Stegosaurus. *

pression-member of the girder. The fore-legs form a secondary

supporting pier to this great continuous cantilever, the greater part

of whose weight is poised upon the hind-limbs alone.

(6) In the slender body of a weasel, neither head nor tail is such

as to form an efficient cantilever; and though the lithe body is

arched in active exercise, our parallel of the bridge no longer works

well. What else to compare it with is far from clear; but the

mechanism has some resemblance (perhaps) to an elastic spring.

Animals of this habit of body are all small; their bodily weight

is a light burden, and gravity becomes an ineffectual force,

* This pose of Diplodocus, and of other Sauropodous reptiles, has been much
discussed. Cf. {int. al.) 0. Abel, Ahh. k. k. zool. hot. Ges. Wien, v, 1909-10 (60 pp.);

Tornier, SB. Ges. Naturf. Fr. Berlin, 1909, pp. 193-209; 0. P. Hay, Amer. Nat.

Oct. 1908; Tr. Wash. Acad. Sci. xlii, pp. 1-25, 1910; Holland, Amer. Nat. May
1910, pp. 259-283; Matthew, ibid. pp. 547-560; C. W. Gilmore [Restoration of

Stegosaurus), Pr. U.S. Nat. Miiseum, 1915.
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(7) An abnormal and very curious case is that of the sloth, which

hangs by hooked hands and feet, head downwards, from high

branches in the Brazilian forest. The vertebrae are unusually

numerous, they are all much alike one to another, and (as we might

well suppose) the whole pensile chain of vertebrae hangs in what

closely approximates to a catenary curve*.

(8) We find a highly important corollary in the case of aquatic

animals. For here the eifect of gravity is neutralised; we have

neither piers nor cantilevers; and we find accordingly in all aquatic

mammals of whatsoever group—whales, seals or sea-cows—that

the high arched vertebral spines over the withers, or corresponding

structures over the hind-limbs, have both entirely disappeared.

But in the whale or dolphin (and not less so in the aquatic bird),

stiffness must be ensured in order to enable the muscles to act against

the resistance of the water in the act of swimming; and accordingly

Nature must provide against bending-moments irrespective of

gravity. In the dolphin, at any rate as regards its tail-end, the

conditions will be not very different from those of a column or

beam with fixed ends, in which, under deflection, there will be two

points of contrary flexure, as at C, D, in Fig. 482.

Here, between C and D we have a varying bending-moment,

represented by a continuous curve with its maximal elevation mid-

way between the points of inflection.

And correspondingly, in our dolphin,

we have a continuous series of high

dorsal spines, rising to a maximum
about the middle of the animal's

body, and falling to nil at some distance from the end of the tail. It

is their business (as usual) to keep the tension-member, represented by

the strong supraspinous hgaments, wide apart from the compression-

member, which is as usual represented by the backbone itself. But

in our diagram we see that on the farther side of C and D we have a

negative curve of bending-moments, or bending-moments in a contrary

direction. Without enquiring how these stresses are precisely met

A hmvy cord, or a cord carrying equal weights for equal distances along its

line, hangs in a catenary: imagine it frozen and inverted, and we have an arch,

carrying Ihe same sort of load, and under compression only. On the other hand,

a flexible cable (itself of neghgible weight), carrying a uniform load along the line

of its horizontal projection, hangs in the form of a parabola.
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towards the dolphin's head (where the coalesced cervical vertebrae

suggest themselves as a partial explanation), we see at once that

towards the tail they are met by the strong series of chevron-bones,

which in the caudal region, where tall dorsal spines are no longer

needed, take their place below the vertebrae, in precise correspondence

with the bending-moment diagram. In many cases other than these

aquatic ones, when we have to deal with animals with long and

heavy tails (like the Iguanodon and the kangaroo of which we have

already spoken), w^e are apt to meet with similar, though usually

shorter chevron-bones; and in all these cases we may see without

difficulty that a negative bending-moment in the vertical direction

has to be resisted or controlled.

In the dolphin we may find an illustration of the fact that not

only is it necessary to provide for rigidity in the vertical direction

but often also in the horizontal, where a tendency to bending must be

resisted on either side. This function is effected in part by the ribs

with their associated muscles, but they extend but a little way and

their efficacy for this purpose can

be but small. We have, however,

behind the region of the ribs and

on either side of the backbone

a strong series of elongated and

flattened transverse processes,

forming a web for the support

of a tension-member in the usual

form of Hgament, and so playing

a part precisely analogous to that

performed by the dorsal spines in

the same animal. In an ordinary

fish, such as a cod or a haddock,

we see precisely the same thing:

the backbone is stiffened by the indispensable help of its three series

of ligament-connected processes, the dorsal and the two transverse

series ; but there are no such stiffeners in the eel. When we come to

the region of the tail, where rigidity gives place to lateral flexibility,

the three stiffeners give place to two—the dorsal and haemal s|)ines

of the caudal vertebrae. And here we see that the three series of

processes, or struts, tend (when all three are present) to be arranged

Fig. 483. a, dorsal and b, caudal

vertebrae of haddock.
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well-nigh at equal angles, of 120°, with one another, giving the

greatest and most uniform strength of which such a system is

capable. On the other hand, in a flat fish, such as a plaice, where

from the natural mode of progression it is necessary that the back-

bone should be flexible in one direction while stiffened in another,

we find the whole outline of the fish comparable to that of a double

bowstring girder, the compression-member being (as usual) the

backbone itself, the tension-member on either side being constituted

by the interspinous ligaments and muscles, while the web or filUng

is very beautifully represented by the long and evenly graded neural

and haema) spines, which spring symmetrically up and down from

each individual vertebra.

In the skeleton of the flat fishes, the web of the otherwise perfect

parabolic girder has to be cut away and encroached on to make room'

for the viscera. When the body is long and the vertebrae many,

as in the sole, the space required is small compared with the length

of the girder, and the strength of the latter is not much impaired.

In the shorter, rounder kinds with fewer vertebrae, like the turbot,

the visceral cavity is large compared with the length of the fish,

and its presence would seem to weaken the girder very seriously.

But Nature repairs the breach by framing in the hinder part of the

space with a strong curved bracket or angle-iron, which takes the

place very efl5.ciently of the bony struts which have been cut away.

The main result at which we have now arrived, in regard to the

construction of the vertebral column and its associated parts, is

that we may look upon it as a certain type of girder, whose depth

is everywhere very nearly proportional to the height of the corre-

sponding ordinate in the diagram of moments: just as it is in a girder

designed by a modern engineer. In short, after the nineteenth or

twentieth century engineer has done his best in framing the design

of a big cantilever, he may find that some of his best ideas had, so

to speak, been anticipated ages again the fabric of the great saurians

and the larger mammals.

But it is possible that the modern engineer might 4)e disposed to

criticise the skeleton girder at two or three points ; and in particular

he might think the girder, as we see it for instance in Diplodocus or

Stegosaurus, not deep enough for carrying the animal's enormous
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weight of some twenty tons. If we adopt a much greater depth

(or ratio of depth to length) as in the modern cantilever, we shall

greatly increase the strength of the structure ; but at the same time

we should greatly increase its rigidity, and this is precisely what, in

the circumstances of the case, it would seem that Nature is bound

to avoid. We need not suppose that the great saurian was by any

means active and limber; but a certain amount of activity and

flexibility he was bound to have, and in a thousand ways he would

find the need of a backbone that should hQ flexible as well as strong.

Now this opens up a new aspect of the matter and is the beginning

of a long, long story, for in every direction this double requirement

of strength and flexibility imposes new conditions upon the design.

To represent all the porrelated quantities we should have to construct

not only a diagram of moments but also a diagram of elastic

deflection and its so-called ''curvature"; and the engineer would

want to know something more about the material of the ligamentous

tension-member—its flexibility, its modulus of elasticity in direct

tension, its elastic limit, and its safe working stress.

In various ways our structural problem is beset by "limiting

conditions." Not only must rigidity be associated with flexibility,

but also stability must be ensured in various positions and attitudes

;

and the primary function of support or weight-carrying must be

combined with the provision of points d'appui iot the muscles con-

cerned in locomotion. We canr^ot hope to arrive at a numerical

or quantitative solution of this complicate problem, but we have

found it possible to trace it out in part towards a qualitative solution.

And speaking broadly we may certainly say that in each case the

problem has been solved by Nature herself, very much as she solves

the difficult problems of minimal areas in a system of soap-bubbles

;

so that each animal is fitted with a backbone adapted to his own

individual needs, or (in other words) corresponding to the mean

resultant of the many stresses to which as a mechanical system it

is exposed.

The mechanical construction of a bird is a more elaborate aff'air

than a quadruped's, inasmuch as it has a double part to play, the

bird's whole weight being borne now by its legs and now by its wings.

As it stands on the ground our bird is a balanced cantilever, carried
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on two legs as on a pier, the cantilever being constituted by the

pelvic bones, drawn out fore and aft and firmly welded to a long

stretch of vertebral column. The centre of gravity is kept in a line

passing through the acetabulum^, and the long toes help to preserve

an unstable but well-adjusted equilibrium . One arm of the cantilever

carries head, neck and wings, the other, the shorter arm, carries the

abdomen; but the whole weight of the viscera hangs in the abdomen
as in a bag, and on the other hand head and neck are kept small and
light, and their purchase on the fulcrum is under constant modifica-

tion and control. A stork or a heron is continually balancing itself;

Fig. 484. Pelvis oi Apteryx. The line AB is vertical, or nearly so,

in the standing posture of the bird.

as the beak is thrust forward a leg stretches back, as the bird walks

along its whole body sways in keeping. No less elegant is the

perfect balance of the same birds at rest—the heron standing on

one leg, even on a tree top, the flamingo also on one long leg,

with its neck close coiled and its head tucked amongst the

feathers.

The approximately parabolic form of the great pelvic cantilever

is best seen in the ostrich and other running birds, but more

commonly the strength of the cantilever is got in other ways.

Usually, as in the fowl, it consists of a thin shell of bone curved

over like the bonnet of a motor car and stiffened, or "cambered," by
ridges converging on the acetabulum. A doubled sheet of paper,

cut roughly to the shape of the pelvis and then pinched up into folds
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on either side, as in Fig. 485, will serve as a model of the skeletal

cantilever and shew how its limp surface is stiffened by the

folds.

Save in the ostrich, and a few other flightless birds, the breast-bone

or sternum is a broad, flat bone, produced into a deep, descending

ridge or "keel," Very .firmly fixed to the sternum on either side

is a short strong bone, the coracoid; attached to it again, and

bending backwards over the ribs, is the scapula; and at the junction

of scapula and coracoid is the socket, or glenoid cavity, for the

wing. The clavicles, fused into a "merry-thought," run from near

the glenoid cavity to the front end of the keel; in strong-flying

birds they are stout and curved, and a continuous curve sweeps

Fig. 485. Rough paper model of a fowl's pelvis.

round from scapula to sternal keel. The keel is commonly explained

as necessary to give space enough for the attachment of the muscles

of flight, but this explanation is inadequate, even untrue; for one

thing, the great pectoral muscle springs from the edge, not from

the broad surface of the keel. The keel is essentially a flange, and,

as in a piece of T iron, adds immensely to the strength and stiffness

of the construction*; that it tends to give the fibres of the muscle

more stretch and play, and a straighter pull on the arm-bone to

which they run, is a secondary advantage. Strong as they are, these

bones are exquisitely light and thin. A great frigate-bird, with a 7-foot

span of wings, weighs a little over a couple of pounds, and all its

bones weigh about four ounces. The bones weigh less than the

feathers |.

T irons, if I am not mistaken, were among the many inventions of Robert

Stephenson, in his construction of the Menai tubular bridge a hundred years ago.

t Cf. R. C. Murphy, Natural History, Oct. 1939.
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While the bird stands/on the ground its backbone is, as in ourselves,

its skeletal axis, and it, including the great cantilever associated with

Fig. 485. a, Sternum and shoulder-girdle of a skua gull, b, section of do., through
the hne AB. St, sternum; Ca, its carina or keel; Co, coracoid bone; Sc,

scapula; F, merry-thought or furcula.

it, carries, and transmit^ to the legs, the whole weight of the body.

But as soon as a bird spreads its wings and rests upon the air, legs,

Fig. 487. A flying bird. Sternum, shoulder-girdle and wings combine to

support the body; and all the rest lies as a dead weight thereon.

backbone, cantilever and all become merely so much weight to be

carried; and the whole rests, as on a floor, on the strong, stiff

platform made of sternum and shoulder-girdle, which the wings (so
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to speak) take hold of and support, and which is now, mechanically

speaking, the axis of the body. The bird has two points of suspension,

which it uses alternately: the one through the two acetabula, the

other through the glenoid cavities and the outstretched wings.

Glenoid cavity and acetabulum are but a little way apart, and the

bird swings its weight over from one to the other easily and smoothly.

At first sight it seems a curious feature of the bird's skeleton that

breast-bone, shoulder-girdle, wings and all are but very slightly

attached to the rest of the body, and to what we look on, usually,

as its main axis of support ; the only skeletal attachment is by the

framework of the ribs, and these are sUght and slender. The fact

is that the two skeletal axes, the backbone and the breast-bone, have

their separate and independent roles, and each is but loosely connected

with the other.

Fig. 488. Diagram of a continuous girder.

The curvature of the bird's neck is very beautiful: one curve

leads on to another; and indeed the bird's whole axial skeleton,

from head to tail, is one even and continuous curve. Where a

bridge crosses the gap between two piers, it sags as the load passes

over; where successive girders cross successive gaps, each sags in

its turn under the travelHng load. But suppose one continuous

girder to cross two gaps; it bends in a more complicated way, and
one half tends to bend up while the other is sagging down. We
cannot analyse the whole field of force to which the bird is subject,

but we reahse that it is a continuous field, in which what the engineer

calls a "continuous girder" has its great part to play. The
continuous girder is apt to sag and bend and sway in an erratic

fashion unless its ends be firm and secure, and the bird's head must,

of necessity, be under some analogous control; the semicircular

canals are the potent factors in equilibrmm, and the bird "keeps
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a level head " by their help and guidance. Then, between the level

of the skull and the level of the great pelvic cantilever a continuous

field of force governs and defines the S-shaped curvature. Man's

vertebral column shews, mutatis mutandis, the same phenomenon

of continuous but alternating curvature. The dorsal region is, of

necessity, concave towards the cavity of the chest, and as a simple

consequence the cervical and lumbar regions curve the other way.

The typically aquatic birds, such as swim under water as

penguins and divers do, have characteristic features and adaptations

of their own. Just as the cantilever girder becomes obsolete in the

aquatic mammal so does it tend to weaken and disappear in the

aquatic bird. There is a marked contrast between the high-arched

strongly built pelvis in the ostrich or the hen, and the long, thin,

comparatively straight and apparently weakly bone which represents

it in a diver, a grebe or a penguin. Wings large enough foi; air

would be an obstruction under water, and small wings are enough

;

for they have to produce thrust only, not Uft, and the former is

but a small fraction of the latter load. The feet also are now mainly

concerned with the same forward thrust, and we begin to see how

the long narrow pelvis gives just the point d^appui which that

thrust requires.

The woodcock, as ornithologists are aware, shews us an osteological paradox,

which is commonly described by saying that this bird's ear is in front of its

eye ! If we hold a woodcock's skull level, beak and all, this indeed seems to

be the case, but no woodcock does so. Standing or flying, the woodcock

holds its beak pointing downwards, and its skull is then level, like that of

other birds ; in other words, its beak is not in a line with the basi-cranial axis,

as a guillemot's is, but bends sharply downwards. When the axis of the skull

is horizontal, the beak points downwards at an angle of nearly 60°, and the

auditory aperture is then as much behind the eye as in other birds.

There is a certain other principle much to the fore in the con-

struction of the skeleton, well known to the designer of a hydroplane

or "flying boat," and not wholly neglected by the bridge-building

engineer; it is the principle of non-rigid, flexible or elastic stability*.

A homely comparison between a basket and a tin-can tells us in

a moment what it means, and shews us some at least of its peculiar

advantages. This method of construction helps to distribute the load,

* India-rubber has great elastic stability. It is not compressible, but is almost as

incbmpressible as water itself, as J. D. Forbes discovered a century ago.
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bridges over points or areas where pressure might be unduly con-

centrated or confined, adapts itself to a sudden impact or concentrated

stress, helps to lessen or to guard against shock, and imparts to the

whole structure a quality which we may call, for short, resiliency.

The engineer finds it easiest of attainment when his principal

members are in tension; hence elastic movement and resilience are

apt to be conspicuous in a suspension-bridge. One way and another,

resihence shews to perfection in a bird. The S-shaped curve of the

neck carrying the Hght weight of the head, the zig-zag flexures of

the legs bearing the balanced burden of the body, the supple basket

Fig. 489.. A woodcock's skull, in (or nearly in) the natural attitude. A, B, the

baMS cranii; E, auditory meatus; 0, orbit; Q, quadrate bone.

of the ribs, each rib in two halves one flexed on the other, all these

are such as to make the whole framework act like an elastic spring,

absorbing every shock as the bird lights on or rises from the ground.

Bird, beast and man exhibit this resilience, each in its degree;

a springy step is part of the joy of youth, and its loss is one of the

first infirmities of age.

Nature's engineering is marvellous in our eyes, and our finest

work is narrow in scope and clumsy in execution compared to her

construction and design. But following her example, wittingly or

unwittingly, our own problems evolve and our ambitions enlarge

towards the conception of an "organised structure." In such
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triumphs of modern mechanism as a torpedo, a racing aeroplane,

a high-speed railway-train, the whole construction is knit together

in a new way. It finds its streamlined outline in what seems to

be a simple and natural way; it is solid and robust, it is graceful

as well as strong; it is no longer a bundle of parts, it has become

an organic whole : its likeness, even its outward likeness, to a living

organism has becorne patent and clear.

Throughout this short discussion of the principles of construction,

we see the same general principles at work in the skeleton as a whole

as we recognised in the plan and construction of an individual

bone. That is to say, we see a tendency for material to be laid

down just in the lines of stress, and so to evade thereby the

distortions and disruptions due to shear. In these phenomena

there lies a definite law of growth, whatever its ultimate expression

or explanation may come to be. Let us not press either argument

or hypothesis too far: but be content to see that skeletal form, as

brought about by growth, is to a very large extent determined by

mechanical considerations, and tends to manifest itself as a diagram,

or reflected image, of mechanical stress. If we fail, owing to the

immense complexity of the case, to unravel all the mathematical

principles involved in the construction of the skeleton, we yet gain

something, and not a little, by applying this method to the famihar

objects of anatomical study: ohvia conspicimus, nubem pellente

tnathesi*.

Before we leave this subject of mechanical adaptation, let us

dwell once more for a moment upon the considerations which arise

from our conception of a field of force, or field of stress, in which

tension and compression (for instance) are inevitably combined, and

are met by the materials naturally fitted to resist them. It has

been remarked over and over again how harmoniously the whole

organism hangs together, and how throughout its fabric one part

is related and fitted to another in strictly functional correlation.

But this conception, though never denied, is sometimes apt to be

forgotten in the course of that process of more and more minute

* The motto was Macquorn Rankine's, \vl 1857; cf. Trans. R.S.K. xxvi, p. 715,

1872.
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dnalysis by which, for simpUcity's sake, we seek to unravel the

intricacies of a complex organism.

As we analyse a thing into its parts or into its properties, we tend

to magnify these, to exaggerate their apparent independence, and

to hide from ourselves (at least for a time) the essential integrity

and individuality of the composite wh^le. We divide the body into

its organs, the skeleton into its bones, as in very much the same

fashion we make a subjective analysis of the mind, according to

the teachings of psychology, into component factors : but we know
very well that judgment and knowledge, courage or gentleness,

love or fear, have no separate existence, but are somehow mere

manifestations, or imaginary coefficients, of a most complex integral.

And likewise, as biologists, we may go so far as to say that even

the bones themselves are only in a limited and even a deceptive

sense, separate and individual things. The skeleton begins as a

continuum, and a continuum it remains all life long. The things

that link bone with bone, cartilage, ligaments, membranes, are

fashioned out of the same primordial tissue, and come into being

pari passu with the bones themselves. The entire fabric has its

soft parts and its hard, its rigid and its flexible parts; but until we

disrupt and dismember its bony, gristly and fibrous parts one from

another, it exists simply as a "skeleton," as one integral and

individual whole.

A bridge was once upon a time a loose heap of pillars and rods

and rivets of steel. But the identity of these is lost, just as if they

were fused into a solid mass, when once the bridge is built; their

separate functions are only to be recognised and analysed in so far

as we can analyse the stresses, the tensions and the pressures, which

affect this part of the structure or that; and these forces are not

themselves separate entities, but are the resultants of an analysis

of the whole field of force. Moreover wJien the bridge is broken it

is no longer a bridge, and all its strength is gone. So is it precisely

with the skeleton. In it is reflected a field of force: and keeping

pace, as it were, in action and interaction with this field of force, the

whole skeleton and every part thereof, down to the minute intrinsic

structure of the bones themselves, is related in form and in position

to the lines of force, to the resistances it has to encounter; for by

one of the mysteries of biology, resistance begets resistance, and
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where pressure falls there growth springs up in strength to meet it.

And, pursuing the same train of thought, we see that all this is true

not of the skeleton alone but of the whole fabric of the body. Muscle

and bone, for instance, are inseparably associated and connected;

they are moulded one with another ; they come into being together,

and act and react together*. We may study them apart, but it

is as a concession to our weakness and to the narrow outlook of

our minds. We see, dimly perhaps but yet with all the assurance

of conviction, that between muscle and bone there can be no change

in the one but it is correlated with changes in the other; that

through and through they are linked in indissoluble association;

that they are only separate entities m this limited and suboi'dinate

sense, that they are parts of a whole which, when it loses its com-

posite integrity, ceases to exist.

The biologist, as well as the philosopher, learns to recognise that

the whole is not merely the sum of its parts. It is this, and much

more than this. For it is not a bundle of parts but an organisation

of parts, of parts in their mutual arrangement, fitting one with

another, in what Aristotle calls "a single and indivisible principle

of unity "
; and this is no merely metaphysical conception, but is in

biology t])e fundamental truth which lies at the basis of Geoffroy's

(or Goethe's) law of "compensation," or "balancement of growth,"

Nevertheless Darwin found no difficulty in believing that "natural

selection will tend in the long run to reduce any part of the organisa-

tion, as soon as, through changed habits, it becomes superfluous:

without by any means causing some oth^r part to be largely developed

in a corresponding degree. And conversely, that natural selection

may perfectly well succeed in largely developing an organ without

requiring as a necessary compensation the reduction of some ad-

joining partf " This view has been developed into a doctrine of

the "independence of single characters" (not to be confused with

the germinal "unit characters" of Mendelism), especially by the

palaeontologists. Thus Osborn asserts a "principle of hereditary

correlation," combined with a "principle of hereditary separability

^

* John Hunter was seldom wrong; but I cannot believe that he was right when

he said {Scientific Works, ed. Owen, i, p. 371), "The bones, in a mechanical view,

appear to be the first that are to be considered. We can study their shape,

connections, number, uses, etc., without considering any other part of the body.''

t Origin of Species, 6th ed. p. 118.
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whereby the body is a colony, a mosaic, of single individual and

separable characters*." I cannot think that there is more than

a very small element of truth in this doctrine. As Kant said, "die

Ursache der Art der Existenz bei jedem Theile eines lebenden

Korpers ist im Ganzen enthalten.'" And, according to the 'trend or

aspect of our thought, we may look upon the coordinated parts,,

now as related and fitted to the end orfunction o/the whole, and now

as related to or resulting from the physical causes inherent in the

entire system of forces to which the whole has been exposed, and

under whose influence it has come into being f.

In John Hunter's day the anatomist studied every bone of the

skeleton in its own place, in order to discover its useful purpose and

understand its mechanical perfection. The morphologist of a hun-

dred years later preferred to study an isolated bone from many
animals, collar-bones or shoulder-blades by themselves, apart from

the field of force in which their work was done, in the search for

signs of blood-relationship and common ancestry. Truth lies both

ways; immediate use and old inheritance are blended in Nature's

handiwork as in our own. In the marble columns and architraves

of a Greek temple we still trace the timbers of its wooden prototype,

and see beyond these the tree-trunks of a primeval sacred grove;

roof and eaves of a pagoda recall the sagging mats which roofed an

* Amer. Naturalist, April, 1915, p. 198, etc. Cf. infra, p. 1036.

t Drie.sch saw in "Entelechy" that something which differentiates the whole

from the sum of its parts in the case of the organism: "The organism, we know,

is a system the single constituents of which are inorganic in themselves; only the

whole constituted by them in their typical order or arrangement owes its specificity

to 'Entelechy'" {Gijford Lectures, 1908, p. 229): and I think it could be shewn

that many other philosophers have said precisely the same thing. So far as the

argument goes, I fail to see how this Entelechy is shewn to be peculiarly or

specifically related to the living organism. The conception (at the bottom of

General Smuts's 'Holism'') that the whole is always something very different from

its parts is a very ancient doctrine. The reader will perhaps remember how,

in another vein, the theme is treated by Martinus Scriblerus (Huxley quoted it

once, for his own ends): "In every Jack there is a meat-roasting Quality, which

neither resides in the fly, nor in the weight, nor in any particular wheel of the Jack,

but is the result of the whole composition; etc., etc." Indeed it was at that very

time, in the early eighteenth century, that the terms organism and organisation were

coming into use, to connote that harmonious combination of parts "qui conspirent

toutes ensembles a produire cet efFet general que nous nommons la vie" (Buffon).

Cf. Ch. Robin, Recherches sur Torigine et le sens des termes organisme et organisation,

Jl. de VAnat. lx, pp. l-.'i.^, 1880.
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earlier edifice; Anglo-Saxon land-tenure influences the planning of

our streets, and the cliff-dwelling and the cave-dwelling linger on

in the construction of our homes! So we see enduring traces of

the past in the living organism—landmarks which have lasted on

through altered functions and altered needs ; and yet at every stage

new needs are met and new functions effectively performed.

When we consider (for instance) the several bones in a fish's

shoulder-girdle—clavicle, supra-clavicle, post-clavicle, post-temporal

and so on—and recognise these in this fish or that under countless

minor transformations, we have something which is not only wide-

Fig. 490. Skeleton of moonfish, Vomer sp. From L. Agassiz.

spread but is rooted in antiquity, and whose full significance seems

beyond our reach. But take the skeleton of some particular fish, a

moonfish or a John Dory will do very well, and look at its shoulder-

girdle from the mechanical point of view. It is a deal more than is

needed for the support of the small, weak pectoral fin; but another

function, and its perfect adaptation for that function, are not hard to

see. The flattened body of the fish is built (as we have seen also in the

plaice) on the plan of a parabolic girder; but out of this girder a

great gap has had to be cut, to hold the viscera. The great shoulder-

girdle serves to strengthen and complete the girder, to bind its

upper and lower members together, and to compensate for the part
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which has been taken away^^ It fulfils this function by various

means; by the way in which the two sides of the girdle are conjoined

into a single arch ; by its strong attachment to the head, and again

to the pelvis, and through the latter to the chain of ossicles which

bound or constitute the abdominal border of the fish ; and a large

part of the stress upon the shoulder-girdle proper is taken up, or

relieved, by the strong post-clavicular bones, which form a supple-

mentary arch running downwards from the clavicle (just where it

begins to incline forward), straight to the ventral border, to be

firmly attached there to the ventral ossicles. Similarly we notice

at the hinder border of the abdominal cavity, a strong curved bone

running from the anterior part of the ventral fin to a solid attach-

ment with the vertebral column, stiffening the ventral part, and

helping the shoulder-girdle to restore full strength to the girder

after it had been reduced, so to speak, to the brink of inevitable

collapse. The skull itself is not only streamlined with the rest of the

body, but is an intrinsic part of the whole engineering construction.

The lines of stress run simply and clearly through the skeleton, and

a bone can no longer teach us its full and proper lesson after we have

taken it apart. To look on the hereditary or evolutionary factor

as tlie guiding principle in morphology is to give to that science

a one-sided and fallacious simplicity*.

It would seem to me that the mechanical principles and phenomena

which we have dealt with in this chapter are of no small importance

to the morphologist, all the more when he is inclined to direct his

study of the skeleton exclusively to the problem of phylogeny ; and

especially when, according to the methods of modern comparative

morphology, he is apt to take the skeleton to pieces, and to draw

from the comparison of a series of scapulae, humeri, or individual

vertebrae, conclusions as to the descent and relationship of the

animals to which they belong.

It would, I dare say, be an exaggeration to see in every bone

nothing more than a resultant of immediate and direct physical or

mechanical conditions ; for to do so would be to deny the existence,

* The extreme evolutionary, or phylogenetic, aspect of morphology was being

questioned even forty years ago. "Where we once thought we detected relation-

ships we now know we were often being misled, and the old-time supposition

that mere community of structure is necessarily an index of community of origin

has gone to the wall" (G. B. Howes, in Nature, Jan. 10, 1901).
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in this connection, of a principle of heredity. And though I have

tried throughout this book to lay emphasis on the direct action of

causes other than heredity, in short to circumscribe the employment

of the latter as a working hypothesis in morphology, there can still

be no question whatsoever but that heredity is a vastly important

as well as a mysterious thing ; it is one of the great factors in biology,

however we may attempt to figure to ourselves, or howsoever we

may fail even to imagine, its underlying physical explanation. But

I maintain that it is no less an exaggeration if we tend to neglect

these direct physical and mechanical modes of causation altogether,

and to see in the characters of a bone merely the results of variation

and of heredity, and to trust, in consequence, to those characters

as a sure and certain and unquestioned guide to affinity and phylo-

geny. Comparative anatomy has its physiological side, which filled

men's minds in John Hunter's day, and in Owen's day; it has its

classificatory and phylogenetic aspect, which all but filled men's

minds in the early days of Darwinism; and we can lose sight of

neither aspect without risk of error and misconception.

It is certain that the question of phylogeny, always difficult,

becomes especially so in cases where a great change of physical or

mechanical conditions has come about, and where accordingly the

former physical and physiological constraints are altered or removed.

The great depths of the sea differ from other habitations of the

living, not least in their eternal quietude. The fishes which dwell

therein are quaint and strange; their huge heads, prodigious jaws,

and long tails and tentacles are, as it were, gross exaggerations of

the common and conventional forms. We look in vain for any

purposeful cause or physiological explanation of these enormities;

and are left under a vague impression that life has been going on

in the security of all but perfect equilibrium, and that the resulting

forms, liberated from many ordinary constraints, have grown with

unusual freedom*.

To discuss these questions at length would be to enter on a

discussion of Lamarck's philosophy of biology, and of many other

things besides. But let us take one single illustration. The affinities

of the whales constitute, as will be readily admitted, a very hard

problem in phylogenetic classification. We know now that the

* Cf. supra, p. 423.
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extinct Zeuglodons are related to the old Creodont carnivores, and

thereby (though distantly) to the seals*; and it is supposed, but it

is by no means so certain, that in turn they are to be considered

as representing, or as allied to, the ancestors of the modern toothed

whales t. The proof of any such a contention becomes, to my
mind, extraordinarily difficult and complicated ; and the arguments

commonly used in such cases may be said (in Bacon's phrase) to

allure, rather than to extort assent. Though the Zeuglodons were

aquatic animals, we do not know, and we have no right to suppose

or to assume, that they swam after the fashion of a whale (any

more than the seal does), that they dived like a whale, or leaped

like a whale. But the fact that the whale does these things, and

the way in which he does them, is reflected in many parts of his

skeleton—perhaps more or less in all: so much so that the lines

of stress which these actions impose are the very plan and working-

diagram of great part of his structure. That the Zeuglodon has

a scapula Hke that of a whale is to my mind no necessary argument

that he is akin by blood-relationship to a whale: that his dorsal

vertebrae are very different from a whale's is no conclusive argument

that such blood-relationship is lacking. The former fact goes a long

way to prove that he used his flippers very much as a whale does;

the latter goes still farther to prove that his general movements

and equilibrium in the water were totally different. The whale

may be descended from the Carnivora, or might for that matter,

as an older school of naturalists believed, be descended fropa the

Ungulates; but whether or no, we need not expect to find in him

the scapula, the pelvis or the vertebral column of the lion or of the

cow, for it would be physically impossible that he could live the life

he does with any one of them. In short, when we hope to find the

missing links between a whale and his terrestrial ancestors, it must

be not by means of conclusions drawn from a scapula, an axis, or

* See {int. al.) my paper On the affinities oi Zeuglodon in Studies from the Museum

of University College, Dundee, 1889.

t "There can be no doubt that Fraas is correct in regarding this type (Procetus)

as an annectant form between the Zeuglodonts and the Creodonta, but. although

the origin of the Zeuglodonts is thus made clear, it still seems to be by no means

so certain as that author beheves, that they may not themselves be the ancestral

forms of the Odontoceti" (Andrews, Tertiary Vertebrata of the Fayum, 1906,

p. 235).

i
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even from a tooth, but by the discovery of forms so intermediate

in their general structure as to indicate an organisation and, ipso

facto, a mode of life, intermediate between the terrestrial and the

Cetacean form. There is no vahd syllogism to the effect that A
has a flat curved scapula like a seal's, and B has a fl.a,t curved

scapula like a seal's : and therefore A and B are related to the seals

and to each other; it is merely a flagrant case of an "undistributed

middle." But there is validity in an argument that B shews in

its general structure, extending over this bone and that bone,

resemblances both to A and to the seals : and that therefore he may
be presumed to be related to both, in his hereditary habits of life

and in actual kinship by blood. It is cognate to this argument that

(as every palaeontologist knows) we find clues to affinity more

easily, that is to say with less confusion and perplexity, in certain

structures than in others. The deep-seated rhythms of growth

which, as I venture to think, are the chief basis of morphological

heredity, bring about similarities of form which endure in the

absence of conflicting forces ; but a new system of forces, introduced

by altered environment and habits, impinging on those particular

parts of the fabric which he within this particular field of force, will

assuredly not be long of manifesting itself in notable and inevitable

modifications of form. And if this be really so, it will further

imply that modifications of form will tend to manifest themselves,

not so much in small and isolated phenomena, in this part of the

fabric or in that, in a scapula for instance or a humerus : but rather

in some slow, general, and more or less uniform or graded modifica-

tion, spread over a number of correlated parts, and at times

extending over the whole, or over great portions, of the body.

Whether any such general tendency to widespread and correlated

transformation exists, we shall attempt to discuss in the following

chapter.



CHAPTER XVII

ON THE THEORY OF TRANSFORMATIONS, OR THE
COMPARISON OF RELATED FORMS

In the foregoing chapters of this book we have attempted to study

the inter-relations of growth and form, and the part which the

physical forces play in this complex interaction; and, as part of

the same enquiry, we have tried in comparatively simple cases

to use mathematical methods and mathematical terminology to

describe and define the forms of organisms. We have learned in so

doing that our own study of organic form, which we call by Goethe's

name of Morphology, is but a portion of that wider Science of Form
wtjch deals with the forms assumed by matter under all aspects

and conditions, and, in a still wider sense, with forms which are

theoretically im^aginable.

The study of form may be descriptive merely, or it may become

analytical. We begin by describing the shape of an object in the

simple words of common speech : we end by defining it in the precise

language of mathematics; aild the one method tends to follow the

other in strict scientific order and historical continuity. Thus, for

instance, the form of the earth, of a raindrop or a rainbow, the

shape of the hanging chain, or the path of a stone thrown up into

the air, may all be described, however inadequately, in common
words ; but when we have learned to comprehend and to define the

sphere, the catenary, or the parabola, we have made a wonderful

ai^d perhaps a manifold advance. The mathematical definition of

a "form" has a quahty of precision which was^ quite lacking in our

earlier stage of mere description; it is expressed in few words or

in still briefer symbols, and these words or symbols are so pregnant

with meaning that thought itself is economised; we are brought

by means of it in touch with Galileo's aphorism (as old as Plato, as

old as Pythagoras, as old perhaps as the wisdom of the Egyptians),

that "the Book of Nature is written in characters of Geometry*."

Cf. Plutarch, Symp. viii, 2, on the meaning of Plato's aphorism ("if it actually

was Plato's"): ttwj HXdrufv iXeye t6v d^bv ad yeuifxeTpe'tv.
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We are apt to think of mathematical definitions as too strict and

rigid for common use, but their rigour is combined with all but

endless freedom. The precise definition of an ellipse introduces us

to all the elHpses in the world; the definition of a "conic section"

enlarges our concept, and a "curve of higher order" all the toore

extends our range of freedom*. By means of these large limitations,

by this controlled and regulated freedom, we reach through mathe-

matical analysis to mathematical synthesis. We discover homologies

or identities which were not obvious before, and which our descrip-

tions obscured rather than revealed : as for instance, when we learn

that, however we hold our chain, or however we fixe our bullet, the

contour of the one or the path of the other is always mathematically

homologous.

Once more, and this is the greatest gain of all, we pass quickly and

easily from the mathematical concept of form in its statical aspect to

form in its dynanncal relations: we rise from the conception of

form to an understanding of the forces which gave rise to it; and

in the representation of form and in the comparison of kindred

forms, we see in the one case a diagram of forces in equihbrium,

and in the other case we discern the magnitude and the direction

of the forces which have sufficed to convert the one form into the

other. Here, since a change of material form is only effected by

the movement of matter |, we have once again the support of the

schoolman's and the philosopher's axiom, Ignorato motu, ignoratur

Natural'

* So said Gustav Theodor Fechner, the author of Fechner's Law, a hundred
years ago. (Ueber die mathematische Behandlung organischer Gestalten und
Processe, Berichte d. k. sacks. Gesellsch., Maih.-phys. CI., Leipzig, 1849, pp. 50-64.)

Fechner's treatment is more purely mathematical and less physical in its scope and
bearing than ours, and his paper is but a short one, but the conclusions to which
he is led differ Uttle from our own. Let me quote a single sentence which, together

with its context, runs precisely on Aie lines which we have followed in this book

:

"So ist also die mathematische Bestimmbarkeit im Gebiete des Organischen ganz
eben so gut vorhanden als in dem des Unorganischen, und in letzterem eben solchen

oder aquivalenten Beschrankungen unterworfen als in ersterem ; und nur sofern die

unorganischen Formen und das unorganische Geschehen sich einer einfacheren

Gesetzlichkeit mehr nahern als die organischen, kann die Approximation im
unorganischen Gebiet leichter und weiter getrieben werden als im organischen.

Dies ware der ganze, sonach rein relative, Unterschied." Here, in a nutshell, is

the gist of the whole matter.

t "We can move matter, that is all we can do to it" (Oliver Lodge).
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There is yet another way—we learn it of Henri Poincare—to regard

the function of mathematics, and to reahse why its laws and its

methods are hound to underlie all parts of physical science. Every

natural phenomenon, however simple, is really composite, and every

visible action and effect is a summation of countless subordinate

actions. Here mathematics shews her pecuUar power, to combine

and to generahse. The concept of an average, the equation to

a curve, the description of a froth or cellular tissue, all come within

the scope of mathematics for no other reason than that they are

summations of more elementary principles or phenomena. Growth

and Form are throughout of this composite nature; therefore the

laws of mathematics are bound to underlie them, and her methods

to be peculiarly fitted to interpret them.

In the morphology of living things the use of mathematical

methods and symbols has made slow progress ; and there are various

reasons for this failure to employ a method whose advantages are

so obvious in the investigation of other physical forms. To begin

with, there would seem to be a psychological reason, lying in the

fact that the student of living things is by nature and training an

observer of concrete objects and phenomena and the habit of mind

which he possesses and cultivates is alien to that of the theoretical

mathematician. But this is by no means the only reason; for in

the kindred subject of mineralogy, for instance, crystals were still

treated in the days of Linnaeus as wholly within the province of

the naturalist, and were described by him after the simple methods

in use for animals and plants: but as soon as Haiiy shewed the

application of mathematics to the description and classification of

crystals, his methods were immediately adopted and a new science

came into being.

A large part of the neglect and suspicion of mathematical methods

in organic morphology is due (as we have partly seen in our opening

chapter) to an ingrained and deep-seated belief that even when we

seem to discern a regular mathematical figure in an organism, the

sphere, the hexagon, or the spiral which we so recognise merely

resembles, but is never entirely explained by, its mathematical

analogue ; in short, that the details in which the figure differs from

its mathematical prototype are more important and more interesting
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than the features in which it agrees; and even that the pecuUar

aesthetic pleasure with which we regard a living thing is spmehow

bound up with the departure from mathematical regularity which

it manifests as a peculiar attribute of life. This view seems to me

to involve a misapprehension. There is no such essential difference

between these phenomena of organic form and those which are

manifested in portions of inanimate matter*. The mathematician

knows better than we do the value of an approximate resultf. The

child's skipping-rope is but an approximation to Huygens's catenary

curve—but in the catenary curve lies the whole gist of the matter.

We may be dismayed too easily by contingencies which are nothing

short of irrelevant compared to the main issue ; there is a jyrinciple

'

of negligibility. Someone has said that if Tycho Brahe's instruments

had been ten times as exact there would have been no Kepler, no

Newton, and no astronomy.

If no chain hangs in a perfect catenary and no raindrop is a perfect

sphere, this is for the reason that forces and resistances other than

the main one are inevitably at work. The same is true of organic

form, but it is for the mathematician to unravel the conflicting

forces which are at work together. And this process of investigation

may lead us on step by step to new phenomena, as it has done

in physics, where sometimes a knowledge of form leads us to the

interpretation of forces, and at other times a knowledge of the forces

at work guides us towards a better insight into form. After the

fundamental advance had been made which taught us that the world

* M, Bergson repudiates, with peculiar confidence, the appHcation of mathe-

matics to biology; cf. Creative Evolution, p. 21, "Calculation touches, at most,

certain phenomena of organic destruction. Organic creation, on the contrary,

the evolutionary phenomena which properly constitute life, we cannot in any way
subject to a mathematical treatment." Bergson thus follows Bichat: "C'est

peu connaitre les fonctions animales que de vouloir les soumettre au moindre

calcul, parceque leur instabUite est extreme. Les phenomenes restent toujours

les memes, et c'est ce qui nous importe; mais leurs variations, en plus ou en moins,

sont sans nombre" (La Vie et la Mort, p. 257).

t When we make a 'first approximation' to the solution of a physical problem,

we usually mean that we are solving one part while neglecting others. Geometry

deals with pure forms (such as a straight line), defined by a single law; but these

are few compared with the mixed forms, like the surface of a polyhedron, or a

segment of a sphere, or any ordinary mechanical construction or any ordinary

physical phenomenon. It is only in a purely mathematical treatment of physics

that the "single law" can be dealt with alone, and the approximate solution

dispensed with accordingly.
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was round, Newton shewed that the forces at work upon it must

lead to its being imperfectly spherical, and in the course of time its

oblate spheroidal shape was actually verified. But now, in turn,

it has been shewn that its form is still more complicated, and the

next step is to seek for the forces that have deformed the oblate

spheroid. As Newton somewhere says, "Nature dehghts in trans-

formations."

The organic forms which we can define more or less precisely

in mathematical terms, and afterwards proceed to explain and to

account for in terms of force, are of many kinds, as we have seen;

but nevertheless they are few in number compared with Nature's

all but infinite variety. The reason for this is not far to seek.

The living organism represents, or occupies, a field of force which

is never simple, and which as a rule is of immense complexity. And

just as in the very simplest of actual cases we meet with a departure

from such symmetry as could only exist under conditions of ideal

simplicity, so do we pass quickly to cases where the interference of

numerous, though still perhaps very simple, causes leads to a recultant

complexity far beyond our powers of analysis. Nor must we foi*get

that the biologist is much more exacting in his requirement^, as

regards form, than the physicist; for the latter is usually content

with either an ideal or a general description of form, while the

student of living things must needs be specific. Material things,

be they living or dead, shew us but a shadow of mathematical

perfection*. The physicist or mathematician can give us perfectly

satisfying expressions for the form of a wave, or even of a heap

of sand ; but we never ask him to define the form of any particular

wave of the sea, nor the actual form of any mountain-peak or hill.

In this there lies a certain justification for a saying of Minot's, of the

greater part of which, nevertheless, I am heartily inclined to disapprove.

"We biologists," he says, "cannot deplore too frequently or too emphatically

the great mathematical delusion by which men often of great if limited ability

have been misled into becoming advocates of an erroneous conception of

accuracy. The delusion is that no science is accurate imtil its results can be

expressed mathematically. The error comes from the assumption that

mathematics can express complex relations. Unfortunately mathematics

have a very limited scope, and are based upon a few extremely rudimentary

* Cf. Haton de la GoupiUiere, op. cit.: "On a souvent I'occasion de saisir dans

la nature un reflet des formes rigoureuses qu'etudie la geometrie,"
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experiences, which we make as very little children and of which no adult has

any recollection. The fact that from this basis men of genius have evolved

wonderful methods of dealing with numerical relations should not blind us

to another fact, namely, that the observational basis of mathematics is,

psychologically speaking, very minute compared with the observational basis

of even a single minor branch of biology. . . . While therefore here and there

the mathematical methods may aid us, we need a kind and degree of accuracy

of which mathematics is absolutely incapable. . . . With human minds constituted

as they actually are, we cannot anticipate that there will ever be a mathe-

matical expression for any organ or even a single cell, although formulae will

continue to be useful for dealing now and then with isolated details..."

{op. cit. p. 19, 1911). It were easy to discuss and criticise these sweeping

assertions, which perhaps had their origin and parentage in an obiter dictum

of Huxley's, to the effect that "Mathematics is that study which knows nothing

of observation, nothing of experiment, nothing of induction, nothing of

causation" {cit. Cajori, Hist, of Elem. Mathematics, p. 283). But Gauss,

"rex mathematicorum," called mathematics "a science of the eye"; and

Sylvester assures us that "most, if not all, of the great ideas of modem
mathematics have had their origin in observation" {Brit. Ass. Address, 1869,

and Laws of Verse, p. 120, 1870.

Reaumur said the same thing two hundred years ago {Mem. i, p. 49, 1734).

Maupertuis, he said, was both naturalist and mathematician; and all his

mathematics "n'ont en rien affaibli son gout pour les insectes, personne

peut-etre n'a plus d'amour pour eux." He goes on to say: "L'esprit

d'observation qu'on regarde comme le ' caractere d'esprit essentiel aux

naturalistes, est egalement necessaire pour faire des progres en quelque science

que ce soit. C'est I'esprit d'observation qui fait appercevoir ce qui a

echappe aux autres, qui fait saisir des rapports qui sont entre des choses

qui semblent differentes, ou qui fait trouver les differences qui sont entre

celles qui paroissent semblables. On ne resoud les problemes les plus epineux

de Geometric qu'apres avoir S9u observer des rapports, qui ne se decouvrent

qu'a un esprit penetrant, et extremement attentif. Ce sont des observations

qui mettent en etat de resoudre les problemes de physique comme ceux

d'histoire naturelle, car I'histoire natureUe a ses problemes a resoudre, et

elle n'en a meme que trop qui ne sont pas resolus." It is in a deeper sense

than this, however, that the modem physicist looks on mathematics as an

"empirical" science, and no longer a matter of pure intuition, or "reine

Anschauung." Cf. Max Bom, on Some philosophical aspects of modem
physics, Proc. R.S.E. Lvn, pp. 1-18, 1936..

For one reason or another there are very many organic forms which

we cannot describe, still less define, in mathematical terms: just as

there are problems even in physical science beyond the mathematics

of our age. We never even seek for a formula to define this fish or

that, or this or that vertebrate skull. But we may already use

mathematical language to describe, even to define in general terms,
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the shape of a snail-shell, the twist of a horn, the outline of a leaf,

the texture of a bone, the fabric of a skeleton, the stream-lines of

fish or bird, the fairy lace-work of an insect's wing. Even to do

this we must learn from the mathematician to ehminate and to

discard; to keep the 'type in mind and leave the single case, with

all its accidents, alone ; and to find in this sacrifice of what matters

little and conservation of what matters much one of the pecuUar

excellences of the method of mathematics*.

In a very large part of morphology, our essential task lies in the

comparison of related forms rather than in the precise definition

of each; and the deformation of a complicated figure may be a

phenomenon easy of comprehension, though the figure itself have

to be left unanalysed and undefined. This process of comparison,

of recognising in one form a definite permutation or deformation of

another, apart altogether from a precise and adequate understanding

of the original "type" or standard of comparison, Hes within the

immediate province of mathematics, and finds its solution in the

elementary use of a certain method of the mathematician. This

method is the Method of Coordinates, on which is based the Theory

of Transformations f.

I imagine that when Descartes conceived the method of co-

ordinates, as a generalisation from the proportional diagrams of the

artist and the architect, and long before the immense possibilities

of this analysis could be foreseen, he had in mind a very simple

purpose ; it was perhaps no more than to find a way of translating

the form of a curve (as well as the position of a point) into numbers

and into words. This is precisely what we do, by the method of

coordinates, every time we study a statistical curve ; and conversely,

we translate numbers into form whenever we "plot a curve," to

illustrate a table of mortality, a rate of growth, or the daily variation

of temperature or barometric pressure. In precisely the same way

* Cf. W. H. Young, The mathematical method and its limitations, Congresso

dei Matematici, Bologna, 1928.

f The mathematical Theory of Transformations is part of the Theory of Groups,

of great importance in modern mathematics. A distinction is drawn between

Substitution-groups and Transformation-groups, the former being discontinuous,

the latter continuous—in such a way that within one and the same group each

transformation is infinitely little different from another. The distinction among

biologists between a mutation and a variation is curiously analogous.
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it is possible to inscribe in a net of rectangular coordinates the

outline, for instance, of a fish, and so to translate it into a table of

numbers, from which again we may at pleasure reconstruct the

curve.

But it is the next step in the employment of coordinates which

is of special interest and use to the morpnologist ; and this step

consists in the alteration, or deformation, of our system of coordinates,

and in the study of the corresponding transformation of the curve

or figure inscribed in the coordinate network.

Let us inscribe in a system of Cartesian coordinates the outUne

of an organism, however complicated, or a part thereof: such as

a fish, a crab, or a mammalian skull. We may now treat this

complicated figure, in general terms, as a function of x, y. If we

submit our rectangular system to deformation on simple and

recognised lines, altering, for instance, the direction of the axes,

the ratio of xjy, or substituting for x and y some more complicated

expressions, then we obtain a new system of coordinates, whose

deformation from the original type the inscribed figure will precisely

follow/ In other words, we obtain a new figure which represents

the old figure under a more or less homogeneous strain, and is

a function of the new coordinates in precisely the same way as the

old figure was of the original coordinates x and y.

The problem is closely akin to that of the cartographer who

transfers identical data to one projection or another*; and whose

object is to secure (if it be possible) a complete Correspondence,

in each small unit of area, between the one representation and the

other. The morphologist will not seek to draw his organic forms

in a new and artificial projection; but, in the converse aspect of

the problem, he will enquire whether two different but more or less

obviously related forms can be so analysed and interpreted that

each may be shewn to be a transformed representation of the other.

This once demonstrated, it will be a comparatively easy task (in all

probability) to postulate the direction and magnitude of the force

capable of effecting the required transformation. Again, if such

a simple alteration of the system of forces can be proved adequate

to meet the case, we may find ourselves able to dispense with many

* Cf. (e.g.) Tissot, Memoire sur la representation des surfaces, et les projections

des cartes geographiques, Paris, 1881.
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widely current and more complicated hypotheses of biological

causation. For it is a maxim in physics that an effect ought not

to be ascribed to the joint operation of many causes if few are

adequate to the production of it : Frustra fit per plura, quod fieri

potest per pauciora.

We might suppose that by the combined action of appropriate

forces any material form could be transformed into any other: just

as out of a "shapeless" mass of clay the potter or the sculptor

models his artistic product; or just as we attribute to Nature herself

the power to effect the gradual and successive transformation of

the simple germ into the complex organism. But we need not

let these considerations deter us from our method of comparison

of related forms. We shall strictly limit ourselves to cases where

the transformation necessary to effect a comparison shall be of

a simple kind, and where the transformed, as well as the original,

coordinates shall constitute an harm<5ni6us and more or less sym-

metrical system. We should fall into deserved and inevitable

confusion if, whether by the mathematical or any other method,

we attempted to compare organisms separated far apart in Nature

and in zoological classification. We are limited, both by ourmethod

,
and by the whole nature of the case, to the comparison of organisms

such as are manifestly related to one another and belong to the same

zoological class. For it is a grave sophism, in natural history as in

logic, to make a transition into another kind*.

Our enquiry lies, in short, just within the limits which Aristotle

himself laid down when, in defining a "genus," he shewed that

(apart from those superficial characters, such as colour, which he

called "accidents") the essential differences between one "species"

and another are merely differences of proportion, of relative mag-

nitude, or (as he phrased it) of "excess and defect." "Save only

for a difference in the way of excess or defect, the parts are identical

in the case of such animals as are of one and the saiiie genus ; and

by ' genus ' I mean, for instance, Bird or Fish." And again :
" Within

the limits of the same genus, as a general rule, most of the parts

exhibit differences ... in the way of multitude or fewness, magnitude

* The saying heterogenea comparari non possunt is discussed by Coleridge in his

Aids to Reflexion.



XVII] THE COMPARISON OF RELATED FORMS 1035

or parvitude, in short, in the way of excess or defect. For 'the

more' and 'the less' may be represented as 'excess' and * defect'*."

It is precisely this difference of relative magnitudes, this Aristotelian

"excess and defect" in the case of form, which our coordinate

method is especially adapted to analyse, and to reveal and demon-

strate as the main cause of what (again in the Aristotelian sense)

we term "specific" differences.

The appUcability of our method to particular cases will depend

upon, or be further Hmited by, certain practical considerations or

qualifications. Of these the chief, and indeed the essential, con-

dition is, that the form of the entire structure under investigation

should be found to vary in a more or less uniform manner, after the

fashion of an approximately homogeneous and isotropic body. But

an imperfect isotropy, provided always that some "principle of

continuity" run through its variations, will not seriously interfere

with our method ; it will only cause our transformed coordinates

to be somewhat less regular and harmonious than are those, for

instance, by which the physicist depicts the motions of a perfect

fluid, or a theoretic field of force in a uniform medium.

Again, it is essential that our structure vary in its entirety, or

at least that " independent variants " should be relatively few. That

independent variations occur, that localised centres of diminished

or exaggerated growth will now and then be found, is not only

probable but manifest; and they may even be so pronounced as to

appear to constitute new formations altogether. Such independent

variants as these Aristotle himself clearly recognised: "It happens

further that some have parts which others have not; for instance,

some [birds] have spurs and others not, some have crests, or combs,

and others not; but, as a general rule, most parts and those that

go to make up the bulk of the body are either identical with one

another, or differ from one another in the way of contrast and of

excess and defect. For ' the more ' and ' the less ' may be represented

as 'excess' or ' defect '|."

If, in the evolution of a fish, for instance, it be the case that its

* Historia Animalium i, 1.

•j; Aristotle's argument is even more subtle and far-reaching; for the diflferences

of which he speaks are not merely those between one bird and another, but between

them all and the very type itself, or Platonic "idea" of a bird.
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several and constituent parts—head, body and tail, or this fin

and that fin—represent so many independent variants, then our

coordinate system will at once become too complex to be intelligible

;

we shall be making not one comparison but several separate com-

parisons, and our general method will be found inapplicable. Now
precisely this independent variability of parts and organs—here,

there, and everywhere within the organism—would appear to be

implicit in our ordinary accepted notions regarding variation; and,

unless I am greatly mistaken, it is precisely on such a conception of

the easy, frequent, and normally independent variability of parts that

our conception of the process of natural selection is fundamentally

based. For the morphologist, when comparing one organism with

another, describes the differences between them point by point, and

"character" by "character*." If he is from time to time con-

strained to admit the existence of "correlation" between characters

(as a hundred years ago Cuvier first shewed the way), yet all the

while he recognises this fact of correlation somewhat vaguely, as

a phenomenon due to causes which, except in rare instances, he can

hardly hope to trace ; and he falls readily into the habit of thinking

and talking of evolution as though it had proceeded on the lines of

his own descriptions, point by point, and character by character f.

With the "characters" of Mendelian genetics there is no fault

to be found; tall and short, rough and smooth, plain or coloured

are opposite tendencies or contrasting qualities, in plain logical

contradistinction. But when the morphologist compares one animal

with another, point by point or character by character, these are

too often the mere outcome of artificial dissection and analysis.

Rather is the living body one integral and indivisible whole, in

* Cf. supra, p. 1020.

t Cf. H. F. Osbom, On the origin of single characters, as observed in fossil

and living animals and plants, Amer. Nat. xlix, pp. 193-239, 1915 (and other

papers); ibid. p. 194, "Each individual is composed of a vast number of somewhat

similar new or old characters, each character has its independent and separate

history, each character is in a certain stage of evolution, each character is correlated

with the other characters of the individual The real problem has always been

that of the origin and development of characters. Since the Origin of Species

appeared, the terms variation and variability have always referred to single

characters; if a species is said to be variable, we mean that a considerable

number of the single characters or groups of characters of which it is composed are

variable," etc.
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wEich we cannot find, when we come to look for it, any strict

dividing line even between the head and the body, the muscle and

the tendon, the sinew and the bone. Characters which we have

differentiated insist on integrating themselves again; and aspects

of the organism are seen to be conjoined which only our mental

analysis had put asunder. The coordinate diagram throws into

rehef the integral solidarity of the organism, and enables us to see

how simple a certain kind of correlation is which had been apt to

seem a subtle and a complex thing.

But if, on the other hand, diverse and dissimilar fishes can be

referred as a whole to identical functions of very different coordinate

systems, this fact will of itself constitute a proof that variation has

proceeded on definite and orderly line?, that a comprehensive "law

of growth" has pervaded the whole structure in its integrity, and

that some more or less simple and recognisable system of forces

has been in control. It will not only shew how real and deep-seated

is the phenomenon of "correlation," in regard to form, but it will

also demonstrate the fact that a correlation which had seemed too

complex for analysis or comprehension is, in many cases, capable of

very simple graphic expression. This, after many trials, I believe to

be in general the case, bearing always in mind that the occurrence of

independent or localised variations must sometimes be considered.

We are deahng in this chapter with the forms of related organisms, in order

to shew that the differences between them are as a general rule simple and

symmetrical, and just such as might have been brought about by a slight and

simple change in the system of forces to which the living and growing organism

was exposed. Mathematically speaking, the phenomenon is identical with one

met with by the geologist, when he finds a bed of fossils squeezed flat or other-

wise symmetrically deformed by the pressures to which they, and the strata

which contain them, have been subjected. In the first step towards fossilisation,

when the body of a fish or shellfish is silted over and buried, we may take it

that the wet sand or mud exercises, approximately, a hydrostatic pressure

—

that is to say a pressure which is uniform in all directions, and by which the

form of the buried object will not be appreciably changed. As the strata

consolidate and accumulate, the fosail Organisms which they contain will

tend to be flattened by the vast superincumbent load, just as the stratum

which contains them will also be compressed and will have its molecular

arrangement more or less modified*. But the deformation due to direct

vertical pressure in a horizontal stratum is not nearly so striking as are the

deformations produced by the oblique or shearing stresses to which inclined

* Cf. Sorby, Quart. Journ. Geol. Soc. (Proc), 1879, p. 88.



1038 THE THEORY OF TRANSFORMATIONS [ch.

and folded strata have been exposed, and by which their various "dislocations
"

have been brought about. And especially in mountain regions, where "these

dislocations are especially numerous and complicated, the contained fossils

are apt to be so curiously and yet so symmetrically deformed (usually by a

simple shear) that they may easily be interpreted as so many distinct and
separate "species*." A great number of described species, and here and
there a new genus (as the genus Ellipsolithes for an obliquely deformed

Goniatite or Nautilus), are said to rest on no other foundation f.

Ifwe begin by drawing a net of rectangular equidistant coordinates

(about tlie axes x and y), we may alter or deform; this network in

various ways, several of which are very simple indeed. Thus (1) we

may alter the dimensions of our system, extending it along one or

/
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in the original "Cartesian" net will now, after extension in the

^/-direction, be found elongated into an ellipse. In elementary

mathematical language, fo;- the original x and y we have substituted

iCj and c?/i , and the equation to our original circle, x^ ^ ip' = a^,

becomes that of the ellipse, x^ + c^yx ^ ^^•

If I draw the cannon-bone of an ox (Fig. 493, A), for instance,

within a system of rectangular coordinates, and then transfer the

same drawing, point for point, to a system in which for the x of

the original diagram we substitute x' = 2x/3, we obtain a drawing

(B) which is a very close approximation to the cannon-bone of the

sheep. In other words, the main (and perhaps the only) difference

r
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method of deformation is a common one, and will often be of use

to us in our comparison of organic forms.

Fig. 495.

Fig. 496.

(3) Our third type is the "simple shear," where the rectangular

coordinates become "obHque," their axes being inclined to one

another at a certain angle oj. Our original rectangle now becomes

such a figure as that of Fig. 496. The system may now be described

in terms of the oblique axes X, Y; or may be directly referred

to new rectangular coordinates f, rj by the simple transposition

X = i — 7) cot oj, y = r] cosec co.

Fig. 497.

(4) Yet another important class of deformations may be repre-

sented by the use of radial coordinates, in which one set of lines are
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represented as radiating from a point or "focus," while the other

set are transformed into circular arcs cutting the radii orthogonally.

These radial coordinates are especially apphcable to cases where

there exists (either within or without the figure) some part which

is supposed to suffer no deformation ; a simple illustration is afforded

by the diagrams which illustrate the flexure of a beam (Fig. 497).

In biology these coordinaites will be especially applicable in cases

where the growing structure includes a "node," or point where

growth is absent or at a minimum; and about which node the rate

of growth may be assumed to increase symmetrically. Precisely

Fig. 498.

such a case is furnished us in a leaf of an ordinary dicotyledon.

The leaf of a typical monocotyledon—such as a grass or a hyacinth,

for instance—grows continuously from its base, and exhibits no

node or "point of arrest." Its sides taper off gradually from its

broad base to its slender tip, according to some law of decrement

specific to the plant; and any alteration in the relative velocities

of longitudinal and transverse growth will merely make the leaf

a little broader or narrower, and will effect no other conspicuous

alteration in its contour. But if there once come into existence

a node, or "locus of no growth," about which we may assume

growth—which in the hyacinth leaf was longitudinal and trans-

verse—to take place radially and transversely to the radii, then we
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shall soon see the sloping sides of the hyacinth leaf give place to

a more typical and "leaf-like" shape. If we alter the ratio between

the radial and tangential velocities of growth—in other words, if we

increase the angles between corresponding^radii—we pass successively

through the various configurations which the botanist describes as

the lanceolate, the ovate, and the cordiform leaf. These successive

changes may to some extent, and in appropriate cases, be traced as

the individua,l leaf grows to maturity ; but as a much more general

rule, the balance of forces, the ratio between radial and tangential

velocities of growth, remains so nicely and constantly balanced that

the leaf increases in size without conspicuous modification of form.

It is rather what we may call a long-period variation, a tendency for

the relative velocities to alter from one generation to another, whose

result is brought into view by this method of illustration.

There are various corollaries to this method of describing the form

of a leaf which may be here alluded to. For instance, the so-called

A unsymmetrical leaf* of a begonia,

in which one side of the leaf may be

merely ovate while the other has a

cordate outhne, is seen to be really

a case of unequal, and not truly

asymmetrical, growth on either side

of the midrib. There is nothing

more mysterious in its conformation

than, for instance, in that of a forked

twig in which one limb of the fork

has grown longer than the other.

The case of the begonia leaf is of

sufficient interest to deserve illus-

tration, and in Fig. 499 I have

outlined a leaf of the large Begonia

daedalea. On the smaller left-hand

Fig. 499 Begonia daedalea. ^^^^ ^f ^he leaf I have taken at

random three points a, 6, c, and have measured the angles, AOa, etc.,

* Cf. Sir Thomas Browne, in The Garden of Cyrus: "But why ofttimes one

side of the leaf is unequal! unto the other, |is in Hazell and Oaks, why on either

side the master vein the lesser and derivative channels stand not directly opposite,

not at equall angles, respectively unto the adverse side, but those of one side do

often exceed the other, as the Wallnut and many more, deserves another enquiry."
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which the radii from the hilus of the leaf to these points make with

the median axis. On the other side of the leaf I have marked the

points a\ h\ c', such that the radii drawn to this margin of the leaf

are equal to the former, Oa' to Oa, etc. Now if the two sides of the

leaf are mathematically similar to one another, it is obvious that

the respective angles should be in continued proportion, i.e. as AOa
is to AOa', so should AOh be to AOh'. This proves to be very

nearly the case. For I have measured the three angles on one side,

and one on the other, and have then compared, as follows, the

calculated with the observed values of the other two

:

AOa AOb AOc AOa' AOh' AOc'

Observed values 12° 28-5° 88° — — 157°

Calculated „ — — — 21-5° 5M° —
Observed „ — — — 20 52 —
The agreement is very close, and what discrepancy there is may

be amply accounted for, firstly, by the slight irregularity of the

sinuous margin of the leaf; and secondly, by the fact that the true

axis or midrib of the leaf is not straight but shghtly curved, and

therefore that it is curvilinear and not rectihnear triangles which

we ought to have measured. When we understand these few points

regarding the peripheral curvature of the leaf, it is easy to see that

its principal veins approximate closely to a beautiful system of

isogonal coordinates. It is also obvious that we can easily pass,

by a process of shearing, from those cases where the principal veins

start from the base of the leaf to those where they arise successively

from the midrib, as they do in most dicotyledons.

It may sometimes happen that the node*, or "point of arrest,"

is at the upper instead of the lower end of the leaf-blade; and

occasionally there is a node at both ends. In the former case,

as we have it in the daisy, the form of the leaf will be, as it were,

inverted, the broad, more or less heart-shaped, outhne appearing

at the upper end, while below the leaf tapers gradually downwards

to an ill-defined base. In the latter case, as in Dionaea, we obtain

a leaf equally expanded, and similarly ovate or cordate, at both

ends. We may notice, lastly, that the shape of a solid fruit, such

as an apple or a cherry, is a solid of revolution, developed from

similar curves and to be explained on the same principle. In the

* "Node," in the botanical, not the mathematical, sense.



1044 THE THEORY OF TRANSFORMATIONS [ch.

cherry we have a "point of arrest" at the base of the berry, where

it joins its peduncle, and about this point the fruit (in imaginary

section) swells out into a cordate outhne ; while in the apple we have

two such well-marked points of arrest, above and below, and about

both of them the same conformation tends to arise. The bean and

the human kidney owe their "reniform" shape to precisely the

same phenomenon, namely, to the existence of a node or "hilus,"

about which the forces of growth are radially and symmetrically

arranged. When the seed is small and the pod roomy, the seed

may grow round, or nearly so, like a pea ; but it is flattened and

bean-shaped, or elliptical like a kidney-bean, when compressed

within a narrow and elongated pod. If the original seed have any

simple pattern, of the nature for instance of meridians or parallels

of latitude, it is easy to see how these will suffer a conformal trans-

formation, corresponding to the deformation of the sphere*.

We might go farther, and farther than we have room for here,

to illustrate the shapes of leaves by means of radial coordinates,

and even to attempt to define them by polar equations. In* a

former chapter we learned to look upon the curve of sines as an

easy, gradual and natural transition—perhaps the simplest and most

natural of all—from minimum to corresponding maximum, and so

on alternately and continuously; and we found the same curve

going round like the hands of a clock, when plotted on radial co-

ordinates and (so to speak) prevented from leaving its place. Either

way it represents a "simple harmonic motion." Now we have just

seen an ordinary dicotyledonous leaf to have a "point of arrest,"

or zero-growth in a certain direction, while in the opposite direction

towards the tip it has grown with a maximum velocity. This

progress from zero to maximum suggests one-half of the sine-curve

;

in other words, if we look on the outline of the leaf as a vector-

diagram of its own growth, at rates varying from zero to zero in

a complete circuit of 360°, this suggests, as a possible and very

simple case, the plotting of r = sin ^/2. Doing so, we obtain a

curve (Fig. 500) closely resembling what the botanists call a reniform

(or kidney-shaped) leaf, that is to say, with a cordate outline at the

base formed of two "auricles," one on either side, and then rounded

* Vide supra, p. 524.
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off with no projecting apex*. The ground-ivy and the dog-violet

(Fig. 501) illustrate such a leaf; and sometimes, as in the violet,

the veins -of the leaf show similar curves congruent with the outer

edge. Moreover the violet is a good example of how the reniform

leaf may be drawn out more and more into an acute and ovate

form.

From sin^/2 we may proceed to any other given fraction of ^,

and plot, for instance, r = sin 5^/3, as in Fig. 502 ; which now no

longer represents a single leaf but has become a diagram of the

Fig. 501. Violet leaf.

Fig. 500. Curve resembling the out-

line of a reniform leaf: r=:8in^/2.

five petals of a pentamerous flower. Abbot Guido Grandi, a Pisan

mathematician of the early eighteenth century, drew such a curve

and pointed out its botanical analogies ; and we still call the curves

of this family "Grandi's curvesj*."

The gamopetalous corolla is easily transferred to polar coordinates,

in which the radius vector riow consists of two parts, the one a

constant, the other expressing the amplitude (or half-amplitude) of

the sine-curve ; we may write the formula r = a + b cos nO. In

Fig. 503 w ^ 5 ; in this figure, if the radius of the outermost circle

be taken as unity, the outer of the two sinuous curves has a:b as

* Fig. 500 illustrates the whole leaf, but only shows one-half of the sine-curve.

The rest is got by reflecting the moiety already drawn in the horizontal axis

(^=7r/2).

t Dom. Guido Grandus, Flores geometrici ex rhodonearum et cloeliarum curvarum

descriptione resultantes . . . , Florentiae, 1728. Cf. Alfred Lartigue, Biodynamique

generale, Paris, 1930—a curious but eccentric book.
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9:1, and the inner curve as 3 : 1 ; while the five petals become separate

when a = b, and the formula reduces to r = cos^ — .

z

In Fig. 504 we have what looks like a first approximation to a

horse-chestnut leaf. It consists of so many separate leaflets, akin

to the five petals in Fig. 503; but these are now inscribed in (or

have a locus m) the cordate or reniform outline of Fig. 500. The

new curve is, in short, a composite one; and its general formula is

r = sin 612. sin nd. The small size of the two leaflets adjacent to

the petiole is characteristic of the curve, and helps to explain the

development of "stipules."

Fig. 502. Grandi's curves based on

r= sin5^, and illustrating the five

petals of a simple flower.

Fig. 503. Diagram illustratinga corolla

of five petals, or of five lobes, are

based on the equation r = a + b cos 6.

In this last case we have combined one curve with another, and

the doing so opens out a new range of possibilities. On the outhne

of the simple leaf, whether ovate, lanceolate or cordate, we may
superpose secondary sine-curves of lesser period and varying ampli-

tude, after the fashion of a Fourier series ; and the results will vary

from a mere crenate outline to the digitate lobes of an ivy-leaf, or

to separate leaflets such as we have just studied in the horse-chestnut.

Or again, we may inscribe the separate petals of Fig. 505 within a

spiral curve, equable or equiangular as the case may be ; and then,

continuing the series on and on, we shall obtain a figure resembling

the clustered leaves of a stonecrop, or the petals of a water-lily or

other polypetalous flower.
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Most of the transformations which we have hitherto considered

(other than that of the simple shear) are particular cases of a general

transformation, obtainable by the method of conjugate functions

and equivalent to the projection of the original figure on a new

plane. Appropriate transformations, on these general lines, provide

for the cases of a coaxial system where the Cartesian coordinates

are replaced by coaxial circles, or a confocal system in which they

are replaced by confocal ellipses and hyperbolas.

Fig. 504. Outline of a compound leaf,

like a horse-chestnut, based on a

composite sine-curve, of the form

r = sin 012 . sin nd.

Fig. 505.

Yet another curious and important transformation, belonging to

the same class, is that by which a system of straight lines becomes

transformed into a conformal system of logarithmic spirals: the

straight line Y — AX = c corresponding to the logarithmic spiral

^ — ^ log r = c (Fig. 505). This beautiful and simple transforma-

tion lets us at once convert, for instance, the straight conical shell

of the Pteropod or the Orthoceras into the logarithmic spiral of the

Nautiloid; it involves a mathematical symbolism which is but a

slight extension of that which we have employed in our elementary

treatment of the logarithmic spiral.

These various systems of coordinates, which we have now briefly

considered, are sometimes called "isothermal coordinates," from the

fact that, when employed in this particular branch of physics, they

perfectly represent the phenomena of the conduction of heat, the
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contour lines of equal temperature appearing, under appropriate

conditions, as the orthogonal lines of the coordinate system. And
it follows that the "law of growth" which our biological analysis

by means of orthogonal coordinate systems presupposes, or at

least foreshadows, is one according to which the organism grows or

develops along stream-lines, which may be defined by a suitable

mathematical transformation.

When the system becomes no longer orthogonal, as in many
of the following illustrations—for instance, that of Orthagoriscus

(Fig. 526)—then the transformation is no longer within the reach

of comparatively simple mathematical analysis. Such departure

from the typical symmetry of a "stream-line" system is, in the

first instance, sufficiently accounted for by the simple fact that

the developing organism is very far from being homogeneous and

isotropic, or, in other words, does not behave like a perfect fluid.

But though under such circumstances our coordinate systems may
be no longer capable of strict mathematical analy'sis, they will still

indicate graphically the relation of the new coordinate system to

the old, and conversely will furnish us with some guidance as to

the "law of growth," or play of forces, by which the transformation

has been effected.

Before we pass from this brief discussion of transformations in

general, let us glance at one or two cases in which the forces applied

are more or less intelligible, but the resulting transformations are,

from the mathematical point of view, exceedingly compHcated.

The "marbled papers" of the bookbinder are a beautiful illustra-

tion of visible "stream-lines." On a dishful of a sort of semi-liquid

gum the workman dusts a few simple lines or patches of colouring

matter; and then, by passing a comb through the Hquid,.he draws

the colour-bands into the streaks, waves, and spirals which con-

stitute the marbled pattern, and which he then transfers to sheets

of paper laid down upon the gum. By some such system of shears,

by the effect of unequal traction or unequal growth in various

directions and superposed on an originally simple pattern, we may
account for the not dissimilar marbled patterns which we recognise,

for instance, on a large serpent's skin. But it must be remarked, in

the case of the marbled paper, that though the method of application
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of the forces is simple, yet in the aggregate the system of forces

set up by the many teeth of the comb is exceedingly complex, and

its complexity is revealed in the complicated "diagram of forces"

which constitutes the pattern.
'

To take another and still more instructive illustration. To turn

one circle (or sphere) into two circles (or spheres) would be, from

the point of view of the mathematician, an extraordinarily difficult

transformation; but, physically speaking, its achievement may be

extremely simple. The little round gourd grows naturally, by its

symmetrical forces of expansive growth, into a big, round, or some-

what oval pumpkin or melon*. But the Moorish husbandman ties a

rag round its middle, and the same forces of growth, unaltered save

for the presence of this trammel, now expand the globular structure

into two superposed and connected globes. And again, by varying

the position of the encircling band, or by applying several such

ligatures instead of one, a great variety of artificial forms of "gourd"

may be, and actually are, produced. It is clear, I think, that we

may account for many ordinary biological processes of development

or transformation of form by the existence of trammels or lines

of constraint, which limit and determine the action of the expansive

forces of growth that would otherwise be uniform and symmetrical.

This case has a close parallel in the operations of the glass-blower,

to which we have already, more than once, referred in passing f.

The glass-blower starts his operations with a tube, which he first

closes at one end so as to form a hollow vesicle, within which his

blast of air exercises a uniform pressure on all sides ; but the spherical

conformation which this uniform expansive force would naturally

tend to produce is modified into all kinds of forms by the trammels

or resistances set up as the workman lets one part or another of

his bubble be unequally heated or cooled. It was Oliver Wendell

* Analogous structural differences, especially in the fibrovascular bundles, help

to explain the differences between (e.g.) a smooth melon and a cantelupe, or between

various elongate, flattened and globular varieties. These breed true to type, and

obey, when crossed, the laws of Mendelian inheritance. Cf. E. W. Sinnett, Inherit-

ance of fruit-shape in Cucurbita, Botan. Gazette, lxxiv, pp. 95-103, 1922, and other

papers.

t Where gourds are common, the glass-blower is still apt to take them for

a prototype, as the prehistoric potter also did. For instance, a tall, annulated

Florence oil-flask is an exact but no longer a conscious imitation of a gourd which

has been converted into a bottle in the manner described.
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Holmes who first shewed this curious parallel between the operations

of the glass-blower and those of Nature, when she starts, as she so

often does, with a simple tube*. The alimentary canal, the arterial

system including the heart, the central nervous system of the

vertebrate, including the brain itself, all begin as simple tubular

structures. And with them Nature does just what the glass-blower

does, and, we might even say, no more than he. For she can expand

the tube here and narrow it there; thicken its walls or thin them;

blow off a lateral offshoot or caecal diverticulum; bend the tube,

or twist and coil it; and infold or crimp its walls as, so to speak,

she pleases. Such a form as that of the human stomach is easily

explained when it is regarded from this point of view ; it is simply

an ill-blown bubble, a bubble that has been rendered lopsided

by a trammel or restraint along one side, such as to prevent its

symmetrical expansion—such a trammel as is produced if the glass-

blower lets one side of his bubble get cold, and such as is actually

present in the stomach itself in the form of a muscular band.

The Florence flask, or any other handiwork of the glass-blower,

is always beautiful, because its graded contours are, as in its living

analogues, a picture of the graded forces by which it was conformed.

It is an example of mathematical beauty, ofwhich the machine-made,

moulded bottle has no trace at all. An alabaster bottle is different

again. It is no longer an unduloid figure of equilibrium. Turned

on a lathe, it is a solid of revolution, and not without beauty ; but

it is not near so beautiful as the blown flask or bubble.

The gravitational field is part of the complex field of force by

which the form of the organism is influenced and determined. Its

share is seldom easy to define, but there is a resultant due to gravity

in hanging breasts and tired eyelids and all the sagging wrinkles

of the old. Now and then we see gravity at work in the normal

construction of the body, and can describe its effect on form in

a general, or qualitative, way. Each pair of ribs in man forms

a hoop which droops of its own weight in front, so flattening the

chest, and at the same time twisting the rib on either hand near its

point of suspension f. But in the dog each costal hoop is dragged

* Cf. Elsie Venner, chap. ii.

t See T. P. Anderson Stuart, How the form of the thorax is partly determined

by gravitation, Proc. R.S. xlix, p.l43, 1891.
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straight downwards, into a vertical instead of a transverse ellipse,

and is even narrowed to a point at the sternal border.

We may now proceed to consider and illustrate a few permutations

or transformations of organic form, out of the vast multitude which

are equally open to this method of enquiry.

We have already compared in a preliminary fashion the metacarpal

or cannon-bone of the ox, the sheep, and the giraffe (Fig, 493); and

we have seen that the essential difference in form between these

three bones is a matter of relative length and breadth, such that,

if we reduce the figures to an identical standard of length (or identical

values of y), the breadth (or value of x) will be approximately

two-thirds that of the ox in the case of the sheep and one-third

that of the ox in the case of the giraffe. We may easily, for the

sake of closer comparison, determine these ratios more accurately,

for instance, if it be our purpose to compare the different racial

varieties within the limits of a single species. And in such cases,

by the way, as when we compare with one another various breeds

or races of cattle or of horses, the ratios of length and breadth in

this particular bone are extremely significant*.

If, instead of limiting ourselves to the cannon-bone, we inscribe

the entire foot of our several Ungulates in a coordinate system, the

same ratios of x that served us for the cannon-bones still give us

a first approximation to the required comparison; but even in the

case of such closely allied forms as the ox and the sheep there is

evidently something wanting in the comparison. The reason is that

the relative elongation of the several parts, or individual bones, has

not proceeded equally or proportionately in all cases ; in other words,

that the equations for x will not suffice without some simultaneous

modification of the values of y (Fig. 506). In such a case it may be

found possible to satisfy the varying values of y by some logarithmic

* This significance is particularly remarkable in connection with the develop-

ment of speed, for the metacarpal region is the seat of very important leverage

in the propulsion of the body. In a certain Scottish Museum there stand side by

side the skeleton of an immense carthorse (celebrated for having drawn all the

stones of the Bell Rock Lighthouse to the shore), and a beautiful skeleton of

a racehorse, long supposed to be the actual skeleton of Eclipse. When I was
a boy my grandfather used to point out to me that the cannon-bone of the little

racer is not only relatively, but actually, longer than that of the great Clydesdale.
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or other formula ; but, even if that be possible, it will probably be

somewhat difficult of discovery or verification in such a case as the

present, owing to the fact that we have too few well-marked points

of correspondence between the one object and the other, and that

especially along the shaft of such long bones as the cannon-bone

of the ox, the deer, the llama, or the giraffe there is a complete lack

of easily recognisable corresponding points. In such a case a brief

tabular statement of apparently corresponding values of y, or of

those obviously corresponding values which coincide with the

boundaries of the several* bones of the foot, will, as in the following

example, enable us to dispense with a fresh equation.

y (Ox)
y' (Sheep)
y" (Giraffe)

b

27
19

10

42
36
24

100
100
100

This summary of values of y' , coupled with the equations for the

value of X, will enable us, from any drawing of the ox's foot, to con-

struct a figure of that of the sheep or of the giraffe with remarkable

accuracy.

^n

i

100

Sheep Giraffe 100

Fig. 506. Fig. 507.

That underlying the varying amounts of extension to which the

parts or segments of the limb have been subject there is a law,

or principle of continuity, may be discerned from such a diagram

as the above (Fig. 507), where the values of y in the case of the ox

are plotted as a straight line, and the corresponding values for the
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sheep (extracted from the above table) are seen to form a more or

less regular and even curve. This simple graphic result implies

the existence of a comparatively simple equatiqn between y

and y'.

An elementary application of the principle of coordinates to the

study of proportion, as we have here used it to illustrate the varying

proportions of a bone, was in common use in the sixteenth and

seventeenth centuries by artists in their study of the human form.

The method is probably much more ancient, and may even be

classical*; it is fully described and put in practice by Albert Diirer

in his Geometry, and especially in his Treatise on Proportio7f\ . In

this latter work, the manner in which the human figure, features,

and facial expression are all transformed and modified by slight

variations in the relative magnitude of the parts is admirably and

copiously illustrated (Fig. 508).

:^Z3t

Fig. 508. (After Albert Durer.)

In a tapir's foot there is a striking difference, and yet at the same

time there is an obvious underlying resemblance, between the middle

toe and either of its unsymmetrical lateral neighbours. Let us

take the median terminal phalanx and inscribe its outline in a net

of rectangular equidistant coordinates (Fig. 509, a). Let us then

make a similar network about axes which are no longer at right

angles, but inclined to one another at an angle of about 50° (h).

* Cf. Vitruvius, ni, 1.

t Les quatres livres d'Albert Diirer de la proportion des parties et pourtraicts des

corps humains, Arnheim, 1613, folio (and earlier editions) . Cf. also Lavater,

Essays on Physiognomy, iii, p. 271, 1799; also H. Meige, La geometrie des visages

d'apres Albert Diirer, La Nature, Dec. 1927. On Diirer as mathematician, cf.

Cantor, ii, p. 459; S. Giinther, Die geometrische Ndherungsconstructione Albrecht

DUrers, Ansbach, 1866; H. Staigmuller, Diirer als Mathematiker, Stuttgart, 1891.
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If into this new network we fill in, point for point, an outline

precisely corresponding to our original drawing of the middle toe,

we shall find that we have already represented the main features

of the adjacent lateral one. We shall, however, perceive that our

new diagram looks a httle too bulky on one side, the inner side, of

the lateral toe. If now we substitute for our equidistant ordinates,
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Diirer was acquainted with these oblique coordinates also, and I

have copied two illustrative figures from his book*.

In Fig. 511 I have sketched the common Copepod Oiihona nana,

and have inscribed it in a rectangular net, with abscissae three-fifths

the length of the ordinates. Side by side (Fig. 512) is drawn a very

different Copepod, of the genus Sapphirina ; and about it is drawn

a network such that each coordinate passes (as nearly as possible)

through points corresponding to those of the former figure. It will

be seen that two differences are apparent. (1) The values of y

in Fig. 512 are large in the upper part of the figure, and diminish

Fig. 511. Oithona nana. Fig. 512. Sapphirina.

rapidly towards its base. (2) The values of x are very large in the

neighbourhood of the origin, but diminish rapidly as we pass towards

either side, away from the median vertical axis; and it is probable

that they do so according to a definite, but somewhat complicated,

* It was these very drawings of Diirer's that gave to Peter Camper his notion

of the "facial angle." Camper's method of comparison was the very same as ours,

save that he only drew the axes, without filling in the network, of his coordinate

system ; he saw clearly the essential fact, that the skull varies as a whole, and that

the "facial angle" is the index to a general deformation. "The great object was to

shew that natural differences might be reduced to rules, of which the direction of

the facial line forms the norma or canon ; and that these directions and inclinations

are always accompanied by correspondent form, size and position of the other

parts of the cranium," etc.; from Dr T. Cogan's preface to Camper's work On the,

Connexion between the Science of Anatomy and the Arts of Drawing, Painting and

Sculpture (1768?), quoted in Dr R. Hamilton's Memoir of Camper, in lAves of

Eminent Naturalists (Nat. Libr.), Edinburgh, 1840. See also P. Camper, Dissertation

sur les differences reelles que presentent les Traits du Visage chez les hommes de

differents pays et de differents ages, Paris, 1791 {op. posth.); cf. P. Topinard, ]6tudes

8ur Pierre Camper, et sur Tangle facial dit de Camper, Bev. d'Anthropol. n. 1874.
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ratio. If, instead of seeking for an actual equation, we simply

tabulate our values of x and y in the second figure as compared with

the first (just as we did in comparing the feet of the Ungulates),

we get the dimensions of a net in which, by simply projecting the

figure of Oithona, we obtain that of Sapphirina without further

trouble, e.g.:

X (Oithona)

x' {Sapphirina)
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the carapace conforms to a triangular diagram, more or less curvi-

linear, as in Fig. 513, 4, which represents the genus Paralomis. Here

we can easily see that the posterior border is transversely elongated

as compared with that of Geryon, while at the same time the anterior

,

^

Fig. 513. Carapaces of various crabs. I, Geryon; 2, Corystes; 3, Scyramathia;

4, Paralomis; 5, Lupa; 6, Chorinus.

part is longitudinally extended as compared with the posterior.

A system of slightly curved and converging ordinates, with ortho-

gonal and logarithmically interspaced abscissal hues, as shewn in

the figure, appears to satisfy the conditions.

In an interesting series of cases, such as the genus Chorinus, or

Scyramathia, and in the spider-crabs generally, we appear to have
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just the Qonverse of this. While the carapace of these crabs presents

a somewhat triangular form, which seems at first sight more or less

similar to those just described, we soon see that the actual posterior

border is now narrow instead of broad, the broadest part of the

carapace corresponding precisely, not to that which is broadest in

Paralomis, but to that which was broadest in Geryon; while the

most striking difference from the latter Hes in an antero-posterior

lengthening of the forepart of the carapace, culminating in a great

elongation of Ihe frontal region, with its two spines or "horns."

The curved ordinates here converge posteriorly and diverge widely

in front (Fig. 513, 3 and 6), while the decremental interspacing of

the abscissae is very marked indeed.

We put our method to a severer test when we attempt to sketch

an entire and compHcated animal than when we simply compare

corresponding parts such as the carapaces of various Malacostraca,

or related bones as in the case of the tapir's toes. Nevertheless, up

to a certain point, the method stands the test very well. In other

words, one particular mode and direction of variation is often (or

even usually) so prominent and so paramount throughout the entire

organism, that one comprehensive system of coordinates suffices to

give a fair picture of the actual phenomenon. To take another

illustration from the Crustacea, I have drawn roughly in Fig. 514, 1

a little amphipod of the family Phoxocephalidae (Harpinia sp.).

Deforming the coordinates of the figure into the curved orthogonal *

system in Fig. 514, 2, we at once obtain a very fair representation of

an alhed genus, belonging to a different family of amphipods, namely

Stegocephalus. As we proceed further from our type our coordinates

will require greater deformation, and the resultant figure will usually

be somewhat less accurate. In Fig. 514, 3 I shew a network, to

which, if we transfer our diagram of Harpinia or of Stegocephalus,

we shall obtain a tolerable representation of the aberrant genus

Hyperia'f, with its narrow abdomen, its reduced pleural lappets, its

great eyes, and its inflated head.

* Similar coordinates are treated of by Lame, Lemons sur les coordonnees curvilignes,

Paris, 1859.

t For an analogous, but more detailed comparison, see H. Mogk, Versuch einer

Formanalyse bei Hyperiden, Int. Rev. d. ges. Hydrobiol., etc., xiv, pp. 276-311,

1923; xvn, pp. 1-98, 1926.
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The hydroid zoophytes constitute a "polymorphic" group, within

which a vast number of species have already been distinguished;

and the labours of the systematic naturahst are constantly adding

to the number. The specific distinctions are for the most part

based, not upon characters directly presented by the living animal,

but upon the .form, size and arrangement of the little cups, or

"calycles," secreted and inhabited by the little individual polyps

Fig. 514. 1, Harpinia plumosa Kr.; 2, Stegocephalus infiatus Kr.;

3, Hyperia galha.

which compose the compound organism. The variations, which are

apparently infinite, of these conformations are easily seen to be

a question of relative magnitudes, and are capable of complete

expression, sometimes by very simple,'sometimes by somewhat more

complex, coordinate networks.

For instance, the varying shapes of the simple wineglass-shaped

cups of the Campanularidae are at once sufficiently represented and

compared by means of simple Cartesian coordinates (Fig. 515). In

the two allied famihes of Plumulariidae and Aglaopheniidae the
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calycles are set unilaterally upon a jointed stem, and small cup-like

structures (holding rudimentary polyps) are associated with the

large calycles in definite number and position. These small calycuh

IVWIl/W
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The comparative smoothness of denticulation of the margin of the

calycle, and the number of its denticles, constitutes an independent

variation, and requires separate description; we have already seen

(p. 391) that this denticulation is in all probability due to a par-

ticular physical cause.

Among countless other invertebrate animals which we might

illustrate, did space and time permit, we should find the bivalve

molluscs shewing certain things extremely well. If we start with

a more or less oblong shell, such as Anodon or Mya or Psammobia,

we can see how easily it may be transformed into a more circular

or orbicular, but still closely related form; while on the other hand

a simple shear is well-nigh all that is needed to transform the

oblong Anodon into the triangular, pointed Mytilus, Avicula or

Pinna. Now suppose we draw the shell of Anodon in the usual

rectangular coordinates, and deform this network into the corre-

sponding oblique coordinates of Mytilus, we may then proceed to

draw within the same two nets tEe anatomy of the same two molluscs.

Then of the two adductor muscles, coequal in Anodon, one becomes

small, the other large, when transferred to the oblique network of

Mytilus ; at the same time the foot becomes stunted and the siphonal

aperture enlarged. In short, having "transformed" one shell into

the other we may perform an identical transformation on their

contained anatomy : and so (provided the two are not too distantly

related) deduce the bodily structure of the one from our knowledge

of the other, to a first but by no means negligible approximation.

Among the fishes we discover a great variety of deformations,

some of them of a very simple kind, while others are more striking

and more unexpected. A comparatively simple case, involving a

simple shear, is illustrated by Figs. 517 and 518. The one represents;

within Cartesian coordinates, a certain little oceanic fish known as

Argyropelecus Olfersi. The other represents precisely the same out-

line, transferred to a system of oblique coordinates whose axes are

inclined at an angle of 70° ; but this is now (as far as can be seen on

the scale of the drawing) a very good figure of an allied fish, assigned

to a different genus, under the name of Sternoptyx diaphana. The

deformation illustrated by this case of Argyropelecus is precisely

analogous to the simplest and commonest kind of deformation to
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which fossils are subject (as we have "seen on p. 811) as the result

of shearing-stresses in the solid rock.

Fig. 519 is an outUne diagram of a typical Scaroid fish. Let us

deform its rectihnear coordinates into a system of (approximately)

coaxial circles, as in Fig. 520, and then filling into the new system.

Fig. 517. Argyropelecua Olfersi. Fig. 518. Stemoptyx diaphana.

space by space and point by point, our former diagram of Scarus,

we obtain a very good outline of an allied fish, belonging to a neigh-

bouring family, of the genus Pomacanihus. This case is all the more

interesting, because upon the body of our Pomacanihus there are

striking colour bands, which correspond in direction very closely

Fig. 519. Scarus sp. Fig. 520. Pomacanihus.

to the lines of our new curved ordinates. In like manner, the still

more bizarre outUnes of other fi.shes of the same family of Chaetodonts

will be found to correspond to very slight modifications of similar

coordinates; in other words, to small variations in the values of

the constants of the coaxial curves.

In Figs. 521-524 I have represented another series of Acantho-

pterygian fishes, not very distantly related to the foregoing. If we
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start this series with the figure of Polyprion, in Fig. 521, we see that

the outlines of Pseudopriacanthus (Fig. 522) and of Sebastes or

Scorpaena (Fig. 523) are easily derived by substituting a system

Fig. 521. Polyprion. Fig. 522. Pseudopriacanthus alius.

of triangular, or radial, coordinates for the rectangular ones in which

we had inscribed Polyprion. The very curious fish Antigonia capros,

an oceanic relative of our own boar-fish, <Jonforms. closely to the

peculiar deformation represented in Fig. 524.

Fig. 523. Scorpaena sp. Fig. 524. Antigonia capros.

Fig. 525 is a common, typical Diodon or porcupine-fish, and in

Fig. 526 I have deformed its vertical coordinates into a system of

concentric circles, and its horizontal coordinates into a system of

curves which, approximately and provisionally, are made to resemble
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a system of hyperbolas *. The old outline, transferred in its integrity

to the new network, appears as a manifest representation of the

closely alUed, but very different looking, sunfish, Orthagoriscus mola.

This is a particularly instructive case of deformation or transforma-

tion. It is true that, in a mathematical sense, it is not a perfectly

satisfactory or perfectly regular deformation, for the system is no

Fig. 525. Diodon. Fig, 526. Orthagoriscus.

longer isogonal; but nevertheless, it is symmetrical to the eye, and

obviously approaches to an isogonal system under certain conditions

of friction or constraint. And as such it accounts, by one single

integral transformation, for all the apparently separate and distinct

external differences between the two fishes. It leaves the pa-rts

* The coordinate system of Fig. 526 is somewhat different from that which

I first drew and published. It is not unlikely that further investigation will

further simplify the comparison, and shew it to involve a still more symmetrical

system.
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near to the origin of the system, the whole region of the head, the

opercular orifice and the pectoral fin, practically unchanged in form,

size and position; and it shews a greater and greater apparent

modification of size and form as we pass from the origin towards

the periphery of the system.

In a word, it is sufficient to account for the new and striking

contour iri all its essential details, of rounded body, exaggerated

dorsal and ventral fins, and truncated tail. In like manner, and

using precisely the same coordinate networks, it appears to me
possible to shew the relations, almost bone for bone, of the skeletons

of the two fishes; in other words, to reconstruct the skeleton of

the one from our knowledge of the skeleton of the other, under

the guidance of the same correspondence as is indicated in their

external configuration.

The family of the crocodiles has had a special interest for the

evolutionist ever since Huxley pointed out that, in a degree only

second to the horse and its ancestors, it furnishes us with a close

and almost unbroken series of transitional forms, running down

in continuous succession from one geological formation to another.

I should be inclined to transpose this general statement into other

terms, and to say that the Crocodilia constitute a case in which,

with unusually little complication from the presence of independent

variants, the trend of one particular mode of transformation is

visibly manifested. If we exclude meanwhile from our comparison

a few of the oldest of the crocodiles, such as Belodon, which differ

more fundamentally from the rest, w^e shall find a long series of

genera in which we can refer not only the changing contours of the

skull, but even the shape and size of the many constituent bones

and their intervening spaces or "vacuities," to one and the same

simple system of transformed coordinates. The manner in which

the skulls of various Crocodilians differ from one another may be

sufficiently illustrated by three or four examples.

Let us take one of the typical modern crocodiles as our standard

of form, e.g. C. porosus, and inscribe it, as in Fig. 527, a, in the

usual Cartesian coordinates. By deforming the rectangular network

into a triangular system, with the apex of the triangle a little way

in front of the snout, as in b, we pass to such a form as C. americanus.
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By an exaggeration of the same process we at once get an approxima-

tion to the form of one of the sharp-snouted, or longirostrine,

crocodiles, such as the genus Tomistoma; and, in the species figured,

the obUque position of the orbits, the arched contour of the occipital

border, and certain other characters suggest a certain amount of

curvature, such as I have represented in the diagram (Fig. 527, b),

on the part of the horizontal coordinates. In the still more elongated

skull of such a form as the Indian Gavial, the whole skull has under-

gone a great longitudinal extension, or, in other words, the ratio

of x/y is greatly diminished ; and this extension is not uniform, but

is at a maximum in the region of the nasal and maxillary bones.
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the diagram of this sktill we select a number of points obviously

corresponding to points where our rectangular coordinates intersect

particular bones or other recognisable features in our typical

crocodile, we shall easily discover that the Hues joining these points

in Notosuchus fall into such a coordinate network as that which

is represented in Fig. 527, c. To all intents and purposes, then, this

not very complex system, representing one harmonious "deforma-

tion," accounts for all the differences between the two figures, and is

sufficient to enable one at any time to reconstruct a detailed drawing,

bone for bone, of the skull of Notosuchus from the model furnished

by the common crocodile.
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of the bone in harmony with the general coordinate network which

is suggested by our comparison of the two entire pelves; and I

venture to think that the result is more natural in appearance, and

more hkely to be correct than was Marsh's conjectural restoration.

It would seem, in fact, that there is an obvious field for the employ-

ment of the method of coordinates in this task of reproducing missing

2 I

Fig. 529. Shoulder-girdle of Cryptocleidus. a, young; 6, adult.

portions of a structure to the proper scale and in harmony with

related types. To this subject we shall presently return.

In Fig. 529, a, b, I have drawn the shoulder-girdle of Cryptocleidus,

a Plesiosaurian reptile, half-grown in the one case and full-grown

in the other. The change of form during growth in this region of

the body is very considerable, and its nature is well brought out

l^ --^,0
2.

Fig. 530. Shoulder-girdle of Ichthyosaurus.

by the two coordinate systems. In Fig. 530 I have drawn the

shoulder-girdle of an Ichthyosaur, referring it to Cryptocleidus as

a standard of comparison. The interclavicle, which is present in

Ichthyosaurus, is minute and hidden in Cryptocleidus] but the

numerous other diiferences between the two forms, chief among

which is the great elongation in Ichthyosaurus of the two clavicles,

are all seen by our diagrams to be part and parcel of one general

and systematic deformation.
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Before we leave the group of reptiles we may glance at the very

strangely modified skull of Pteranodon, one of the extinct flying

reptiles, or Pterosauria. In this very curious skull the region of

the jaws, or beak, is greatly elongated and pointed; the occipital

bone is drawn out into an enormous backwardly directed crest ; the

posterior part of the lower jaw is similarly produced backwards;

the orbit is small; and the quadrate bone is strongly inclined down-

wards and forwards. The whole skull has a configuration which

stands, apparently, in the strongest possible contrast to that of

a more normal Ornithosaurian such as Dimorphodon. But i£ we

inscribe the latter in Cartesian coordinates (Fig. 531, a), and refer

/
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are actually known to exist, in other words, of reconstructing the

transitional stages through which the course of evolution must have

successively travelled if it has brought about the change from some

ancestral type to its presumed descendant. Some years ago

I sent my friend, Mr Gerhard Heilmann of Copenhagen, a few of
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the corresponding coordinates of the very different pelvis of Apatornis

are represented in Fig. 533. In Fig. 534 the outUnes of these two

6 7 8 cj

Fig. 534. The coordinate systems of Figs. 532 and 533, with three

intermediate systems interpolated.

coordinate systems are superposed upon one another, and those

of three intermediate and equidistant coordinate systems are

interpolated between them. From each of these latter systems,

/ 7 i '- s 6 r 9 9

Fig. 535. The first intermediate coordinate network, with its

corresponding inscribed pelvis.

SO determined by diredt interpolation, a complete coordinate diagram

is draw^n, and the corresponding outline of a pelvis is found from

each of these systems of coordinates, as in Figs. 535, 536. Finally,
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in Fig. 537 the complete series is represented, beginning witli the

known pelvis of Archaeopteryx, and leading up by our three inter-

mediate hj^othetical types to the known pelvis of Apatornis.

Among mammalian skulls I will take two illustrations only, one

drawn from a comparison of the human skull with that of the

higher apes, and another from the group of Perissodactyle Ungulates,

the group which includes the rhinoceros, the tapir, and the horse.

Fig. 536. The second and third intermediate coordinate networks,

with their corresponding inscribed pelves.

Let US begin by choosing as our type the skull of Hyrachyus

agrarius Cope, from the Middle Eocene of North America, as figured

by Osborn in his Monograph of the Extinct Rhinoceroses* (Fig. 538).

The many other forms of primitive rhinoceros described in

the monograph differ from Hyrachyus in various details—in the

characters of the teeth, sometimes in the number of the toes, and

so forth; and they also differ very considerably in the general

appearance of the skull. But these differences in the conformation

* Mem. Amer. Mies, of Nat. Hist, i, in, 1898.
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of the skull, conspicuous as they are at first sight, will be found

easy to bring under the conception of a simple and homogeneous

transformation, such as would result from the application of some not

very comphcated stress. For instance, the corresponding coordinates

of Aceratherium tridactylum, as shewn in Fig. 539, indicate that the

Fig, 537, The pelvis of Archaeopteryx and of Apatornis, with three

transitional types interpolated between them.

essential difference between this skull and the former one may be

summed up by saying that the long axis of the skull of Aceratherium

has undergone a slight double curvature, while the upper parts of

the skull have at the same time been subject to a vertical expansion,

or to growth in somewhat greater proportion than the lower parts.

Precisely the same changes, on a somewhat greater scale, give us

the skull of an existing rhinoceros.
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Among the species of Aceratherium, the posterior, or occipital,

view of the skull presents specific differences which are perhaps

more conspicuous than those furnished by the side view; and these

I

Fig. 538, Skull of Hyrachyus agmrius. After Osborn.

differences are very strikingly brought out by the series of conformal

transformations which I have represented in Fig. 540. In this case

it will perhaps be noticed that the correspondence is not always

quite accurate in small details. It could easily have been made

Fig. 539. Skull of Aceratherium tridactylum. After Osborn.

much more accurate by giving a slightly sinuous curvature to certain

of the coordinates. But as they stand, the correspondence indicated

is very close, and the simplicity of the figures illustrates all the

better the general character of the transformation.
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By similar and not more violent changes we pass easily to suca

allied forms as the Titanotheres (Fig, 541); and the well-known

series of species of Titanotherium, by which Professor Osborn has

JFig. 540. Occipital view of the skulls of various extinct rhinoceroses

(Aceratherium spp.). After Osborn.

illustrated the evolution of this genus, constitutes a simple and

suitable case for the application of our method.

But our method enables us to. pass over greater gaps than these,

and to discern the general, and to a very large extent even the

Fig. 541. Titanotherium rohiLstum. Fig. 542. Tapir's skull.

detailed, resemblances between the skull of the rhinoceros and those

of the tapir or the horse. From the Cartesian coordinates in which

we have begun by inscribing the sfcull of a primitive rhinoceros,

we pass to the tapir's skull (Fig. 542), firstly, by converting the
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rectangular into a triangular ;ietwork, by which we represent the

depression of the anterior and the progressively increasing elevation

of the posterior part of the skull; and secondly, by giving to

the vertical ordinates a curvature such as to bring about a certain

longitudinal compression, or condensation, in the forepart of the

skull, especially in the nasal and orbital regions.

The conformation of the horse's skull departs from that of our

primitive Perissodactyle (that is to say our early type of rhinoceros,

Hyrachyus) in a direction that is nearly the opposite of that taken

by Titanotherium and by the recent species of rhinoceros. For we
perceive, by Fig. 543, that the horizontal coordinates, which in these

latter cases become transformed into curves with the concavity

Fig. 543. Horse's skull.

upwards, are curved, in the case of the horse, in the opposite direc-

tion. And the vertical ordinates, which are also curved, somewhat

in the same fashion as in the tapir, are very nearly equidistant,

instead of being, as in that animal, crowded together anteriorly.

Ordinates and abscissae fol-m an oblique system, as is shewn in the

figure. In this case I have attempted to produce the network

beyond the region which is actually required to include the diagram

of the horse's skull, in order to shew better the form of the general

transformation, with a part only of which we have actually to deal.

It is at first sight not a little surprising to find that we can pass, by

a cognate and even simpler transformation, from our Perissodactyle

skulls to that of the rabbit ; but the fact that we can easily do so is

a simple illustration of the undoubted affinity which exists between

the Rodentia, especially the family of the Leporidae, and the more

primitive Ungulates. For my part, I would go further; for I think
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there is strong reason to believe that the Perissodactyles are more

closely related to the Leporidae than the former are to the other

Ungulates, or than the Leporidae are to the rest of the Rodentia.

Be that as it may, it is obvious from Fig. 544 that the rabbit's skull

Fig. 544. Rabbit's skuU.

conforms to a system of coordinates corresponding to the Cartesian

coordinates in which we have inscribed the skull of Hyrachyus, with

the difference, firstly, that the horizontal ordinates of the latter are

Fig. 545. A, outline diagram of the Cartesian coordinates of the skull of Hyra-

cotherium or Eohippus, as shewn in Fig. 546, A. H, outline of the corresponding

projection of the horse's skull. B-G, intermediate, or interpolated, outlines.

transformed into equidistant curved lines, approximately arcs of

circles, with their concavity directed downwards ; and secondly, that

the vertical ordinates are transformed into a pencil of rays approxi-
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9 10

Fig. 546. A, skull oi Hymcotherium, from the Eocene, after W. B. Scott; H, skull

of horse, represented as a coordinate transformation of that of Hyracotherium,
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and to the same scale of magnitude; B-G, various artificial or imaginary-

types, reconstructed as intermediate stages between A and H; M, skull of

Mesohippus, from the Oligocene, after Scott, for comparison with C; P, skull

of Protohippus, from the Miocene, after Cope, for comparison with E; Pp,

lower jaw of Protohippus placidits (after Matthew and Gidley), for comparison

with F; Mi, Miohippus (after Osborn), Pa, Parahipptis (after Peterson),

shewing resemblance, but less perfect agreement, with C and D.
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mately orthogonal to the circular arcs. In short, the configuration

of the rabbit's skull is derived from that of our primitive rhinoceros

by the unexpectedly simple process of submitting the latter to a

strong and uniform flexure in the downward direction (cf. Fig. 538,

p. 1074). In the case of the rabbit the configuration of the individual

bones does not conform quite so well to the general transformation

as it does when we are comparing the several Perissodactyles one

with another; and the chief departures from conformity will be

found in the size of the orbit and in the outline of the immediately

surrounding bones. The simple fact is that the relatively enormous

eye of the rabbit constitutes an independent variation, which cannot

be brought into the general and fundamental transformation, but

must be dealt with separately. The enlargement of the eye, like

the modification in form and number of the teeth, is a separate

phenomenon, which supplements but in no way contradicts our

general comparison of the skulls taken in their entirety.

Before we leave the Perissodactyla and their allies, let us look

a little more closely into the case of the horse and its immediate

relations or ancestors, doing so with the help of a set of diagrams

which I again owe to Mr Gerard Heilmann*. Here we start afresh,

with the skull (Fig. 546, A) of Hyracotherium (or Eohijypus), inscribed

in a simple Cartesian network. At the other end of the series (H)

is a skull of Equus, in its own corresponding network; and the

intermediate stages (B-G) are all drawn by direct and simple inter-

polation, as in Mr Heilmann's former series of drawings of Archaeop-

teryx and Apatornis. In this present case, the relative magnitudes

are shewn,, as well as the forms, of the several skulls. Alongside

of these reconstructed diagrams are set figures of certain extinct

"horses" (Equidae or Palaeotheriidae), and in two cases, viz. Meso-

hippus and Protohippus (M, P), it will be seen that the actual

fossil skull coincides in the most perfect fashion with one of the

hypothetical forms or stages which our method shews to be implicitly

involved in the transition from Hyracotherium to Equus f. In a third

case, that of Parahippus (Pa), the correspondence (as Mr Heilmann

* These and also other coordinate diagrams will be found in Mr G. Heilmann's

beautiful and original hook Fuglenes Afstamning, 398 pp., Copenhagen, 1916; see

especially pp. 368-380.

t Cf. Zittel, Grundziige d. Palaeontologie, 1911, p. 463.
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points out) is by no means exact. The outline of this skull comes

nearest to that of the hypothetical transition stage D, but the "fit"

is now a bad one ; for the skull of Parahippus is evidently a longer,

straighter and narrower skull, and differs in other minor characters

besides. In short, though some writers have placed Parahippus in

the direct line of descent between Equus and Eohippus, we see at

once that there is no place for it there, and that it must, accordingly,

represent a somewhat divergent branch or offshoot of the Equidae*.

It .may be noticed, especially in the case of Protohippus (P), that

the configuration of the angle of the jaw does not tally quite so

accurately with that of our hypothetical diagrams as do other parts

of the skull. As a matter of fact, this region is somewhat variable,

in different species of a genus, and even in different individuals of

the same species; in the small figure (Pp) of Protohippus placidus

the correspondence is more exact.

In considering this series of figures we cannot but be struck,

not only with the regularity of the succession of "transformations,"

but also with the slight and inconsiderable differences which separate

each recorded stage from the next, and even the two extremes of

the whole series from one another. These differences are no greater

(save in regard to actual magnitude) than those between one human
skull and another, at least if we take into account the older or

remoter races ; and they are again no greater, but if anything less,

than the range of variation, racial and individual, in certain other

human bones, for instance the scapula f.

The variability of this latter bone is great, but it is neither sur-

prising nor peculiar; for it is linked with all the considerations of

* Cf. W. B. Scott (Amer. Journ. of Science, XLVin, pp. 335-374, 1894), "We
find that any mammalian series at all cojnplete, such as that of the horses, is

remarkably continuous, and that the progress of discovery is steadily filling up
what few gaps remain. So closely do successive stages follow upon one another

that it is sometimes extremely difficult to arrange them all in order, and to

distinguish clearly those members which belong in the main line of descent, and
those which represent incipient branches." Some phylogenies actually suffer from
an embarrassment of riches."

t Cf. T. Dwight, The range of variation of the human scapula, Amer. Nat.

XXI, pp. 627-638, 1887. Cf. also Turner, Challenger Rep. xlvii, on Human Skele-

tons, p. 86, 1886: "I gather both from my own measurements, and those of other

observers, that the range of variation in the relative length and breadth of the

scapula is very considerable in the same race, so that it needs a large number of

bones to enable one to obtain an accurate idea of the mean of the race."
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mechanical efficiency and functional modification which we dealt

with in our last chapter. The scapula occupies, as it were, a focus

in'a very important field of force ; and the lines of force converging

on it will be very greatly modified by the varying development of

Fig. 547. Human scapulae (after Dwight). A, Caucasian; B, Negro;

C, North American Indian (from Kentucky Mountains).

the muscles over a large area of the body and of the uses to which

they are habitually put.

Let us now inscribe in our Cartesian coordinates the outline of

a human skull (Fig. 548), for the purpose of comparing it with the

skulls of some of the higher apes. We know beforehand that the

main differences between the human and the simian types depend

12 3 4 5
Fig. 548. Human skull.

upon the enlargement or expansion of the brain and braincase in

man, and the relative diminution or enfeeblement of his jaws.

Together with these changes, the "facial angle" increases from an

oblique angle to nearly a right angle in man, and the configuration

of every constituent bone of the face and skull undergoes an altera-
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tion. We do not know to begin with, and we are not shewn by the

ordinary methods of comparison, how far these various changes

form part of one harmonious and congruent transformation, or

whether we are to look, for instance, upon the changes undergone

by the frontal, the occipital, the maxillary, and the mandibular

Fig. 549. Coordinates of chimpanzee's skull, as a projection of

the Cartesian coordinates of Fig. 548.

regions as a congeries of separate modifications or independent

variants. But as soon as we have marked out a number of points

in the gorilla's or chimpanzee's skull, corresponding with those which

our coordinate network intersected in the human skull, we find that

these corresponding points may be at once linked up by smoothly

curved lines of intersection, which form a new system of coordinates

Fig. 550. Skull of chimpanzee. Fig. 551. of baboon.

and constitute a simple "projectipn" of our human skull. The
network represented in Fig. 549 constitutes such a projection of

the human skull on what we may call, figuratively speaking, the

"plane" of the chimpanzee; and the full diagram in Fig. 550

demonstrates the correspondence. In Fig. 551 I have shewn the

similar deformation in the case of a baboon, and it is obvious that

the transformation is of precisely the same order, and differs only
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in an increased intensity or degree of deformation* . These anthropoid

skulls, then, which we can transform one into another by a "con-

tinuous transformation," are admirable examples of what Listing

called "topological similitude."

In both dimensions, as we pass from above downwards and from

behind forwards, the corresponding areas of the network are seen

to increase in a gradual and approximately logarithmic order in the

lower as compared with the higher type of skull; and, in short,

it becomes at once manifest that the modifications of jaws, brain-case,

and the regions between are all portions of one continuous and

integral process. It is of course easy to draw the inverse diagrams,

by which the Cartesian coordinates of the ape are transformed into

curvilinear and non-equidistant coordinates in manf.

From this comparison of the gorilla's or chimpanzee's with the

human skull we realise that an inherent weakness underlies the

anthropologist's method of comparing skulls by reference to a small

number of axes. The most important of these are the "facial '"and

" basicranial " axes, which include between them the "facial angle."

But it IS, in the first place, evident that these axes are merely the

principal axes of a system of coordinates, and that their restricted

and isolated use neglects all that can be learned from the filling in

of the rest of the coordinate network. And, in the second place, the

"facial axis," for instance, as ordinarily used m the anthropological

comparison of one human skull with another, or of the human skull

with the gorilla's, is in all cases treated as a straight line; but our

investigation has shewn that rectilinear axes only meet the case in

the simplest and most closely related transformations ; and that, for

instance, in the anthropoid skull no rectilinear axis is homologous

* The empirical coordinates which I have sketched in for the chimpanzee as a

conformal transformation of the Cartesian coordinates of the human skull look as

if they might find their place in an equipotential elliptic field. They are indeed

closely analogous to some already figured by MM. Y. Ikada and M. Kuwaori,

Some conformal representations by means of the elliptic integrals, Sci. Papers

Inst. Phys. Research, Tokyo, xxvi, pp. 208-215, 1936: e.g. pi. xxxi&.

t Speaking of "diagrams in pairs," and doubtless thinking of his own "reciprocal

diagrams," Clerk Maxwell says (in his article Diagrams in the Encyclopaedia Britan-

nica): "The method in which we simultaneously contemplate two figures, and

recognise a correspondence between certain points in the one figure and certain

points in the other, is one of the most powerful and fertile methods hitherto known
in science. . . .It is sometimes spoken of as the method or principle of duality."
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with a rectilinear axis in a man's skull, but what is a straight line

in the one has become a certain definite curve in the other.

Mr Heilmann tells me that he has tried, but without success,

to obtain a transitional series between the human skull and some

prehuman, anthropoid type, which series (as in the case of the

Equidae) should be found to contain other known types in direct

linear sequence. It appears impossible, however, to obtain such a

series, or to pass by successive and continuous gradations through

such forms as Mesopithecus, Pithecanthropus, Homo neanderthalensis,

and the lower or higher races of modern man. The failure is not

the fault of our method. It merely indicates that no one straight

line of descent, or of consecutive transformation, exists; but on

the contrary, that among human and anthropoid tjrpes', recent and

extinct, we have to do with a complex problem of divergent, rather

than of continuous, variation. And in like manner, easy as it is to

correlate the baboon's and chimpanzee's skulls severally with that

of man, and easy as it is to see that the chimpanzee's skull is much
nearer to the human type than is the baboon's, it is also not difficult

to perceive that the series is not, strictly speaking, continuous, and

that neither of our two apes lies precisely on the same direct line

or sequence of deformation by which we may hypothetically connect

the other with man.

After easily transforming our coordinate diagram of the human
skull into a corresponding diagram of ape or of baboon, we may
effect a further transformation of man or monkey into dog no less

easily; and we are thereby encouraged to believe that any two

mammalian skulls may be compared with, or transformed into, one

another by this method. There is something, an essential and

indispensable something, which is common to them all, something

which is the subject of all our transformations, and remains invariant

(as the mathematicians say) under them all. In these transforma-

tions of ours every point may change its place, every line its

curvature, every area its magnitude; but on the other hand every

point and every hne continues to exist, and keeps its relative order

and position throughout all distortions and transformations. A series

of points, a, 6, c, along a certain line persist as corresponding points

a', h\ c\ however the line connecting them may lengthen or bend;

and as with points, so with lines, and so also with areas. Ear,
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eye and nostril, and all the other great landmarks of cranial anatomy,

not only continue to exist but retain their relative order and position

throughout all our transformations.

We can discover a certain invariance, somewhat more restricted

than before, between the mammahan skull and that of fowl, frog

or even herring. We have still something common to them all;

and using another mathematical term (somewhat loosely perhaps)

we may speak of the discriminant characters which persist unchanged,

and continue to form the subject of our transformation. But the

method, far as it goes, has its limitations. We cannot fit both

beetle and cuttlefish into the same framework, however we distort

it; nor by any coordinate transformation can we turn either of

them into one another or into the vertebrate type. They are

Fig. 552. Skull of dog, compared with the human .skull of Fig. 548.

essentially different; there is nothing about them which can be

legitimately compared. Eyes they all have, and mouth and jaws;

but what we call by these names are no longer in the same order

or relative position; they are no longer the same thing, there is no

invariant basis for transformation. The cuttlefish eye seems as

perfect, optically, as our own ; but the lack of an invariant relation

of position between them, or lack of true homology between them
(as we naturalists say), is enough to shew that they are unrelated

things, and have come into existence independently of one another.

As a final illustration I have drawn the outline of a dog's skull

(Fig. 552), and inscribed it in a network comparable with the Car-

tesian network of the human skull in Fig. 548. Here we attempt to

bridge over a wider gulf than we have crossed in any of our former

comparisons. But, nevertheless, it is obvious that our method still

holds good, in spite of the fact that there are various specific

differences, s.uch as the open or closed orbit, etc., which have to be
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separately described and accounted for. We see that the chief

essential differences in plan between the dog's skull and the man's

lie in the fact that, relatively speaking, the former tapers away in

front, a triangular taking the place of a rectangular conformation;

secondly, that, coincident with the tapering off, there is a progressive

elongation, or pulling out, of the -whole forepart of the skull; and

lastly, as a minor difference, that the straight vertical ordinates of

the human skull become curved, with their convexity directed for-

wards, in the dog. While the net result is that in the dog, just as

in the chimpanzee, the brain-pan is smaller and the jaw^s are larger

than in man, it is now conspicuously evident that the coordinate

network of the ape is by no means intermediate between those which

fit the other two. The mode of deformation is on different Hnes;

and, while it may be correct to say that the chimpanzee and the

baboon are more brute-like, it would be by no means accurate to

assert that they are more dog-like, than man.

In this brief account of coordinate transformations and of their

morphological utility I have dealt with plane coordinates only, and

have made no mention of the less elementary subject of coordinates

in three-dimensional space. In theory there is no difficulty what-

soever in such an extension of our method; it is just as easy to refer

the form of our fish or of our skull to the rectangular coordinates

X, y, z, or to the polar coordinates ^, rj, ^, as it is to refer their plane

projections to the two axes to which our investigation has been

confined. And that it w^ould be advantageous to do so goes w^ithout

saying, for it is the shape of the sohd object, not that of the mere

drawing of the object, that we want to understand; and already

we have found some of our easy problems in solid geometry leading

us (as in the case of the form of the bivalve and even of the univalve

shell) quickly in the direction of coordinate analysis and the theory

of conformal transformations. But this extended theme I have not

attempted to pursue, and it must be left to other times, and to other

hands. Nevertheless, let us glance for a moment at the sort of simple

cases, the simplest possible cases, with which such an investigation

might begin; and we have found our plane coordinate systems so

easily and effectively applicable to certain fishes that we may seek

among them for our first and tentative introduction to the three-

dimensional field.
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It is obvious enough that the same method of description and

analysis which we have appUed to one plane, we may apply to

another: drawing by observation, and by a process of trial and

error, our various cross-sections arid the coordinate systems which

seem best to correspond. But the new and important problem

which now emerges is to correlate the deformation or transformation

which we discover in one plane with that which we have observed in

another: and at length, perhaps, after grasping the general prin-

ciples of such correlation, to forecast approximately what is likely

to take place in the third dimension when we are acquainted with

two, that is to say, to determine the values along one axis in terms

of the other two.

Let us imagine a common "round" fish, and a common "flat"

fish, such as a haddock and a plaice. These two fishes are not as

nicely adapted for comparison by means of plane coordinates as

some which we have studied, owing to the presence of essentially

unimportant, but yet conspicuous differences in the position of the

eyes, or in the number of the fins—that is to say in the manner in

which the continuous dorsal fin of the plaice appears in the haddock

to be cut or scolloped into a number of separate fins. But speaking

broadly, and apart from such minor differences as these, it is manifest

that the chief factor in the case (so far as we at present see) is simply

the broadening out of the plaice's body, as compared with the

haddock's, in the dorso-ventral direction, that is to say, along the

y axis; in other words, the ratio x/y is much less (and indeed little

more than half as great) in the haddock than in the plaice. But

we also recognise at once that while the plaice (as compared with

the haddock) is expanded in one direction, it is also flattened, or

thinned out, in the other: y increases, but z diminishes, relatively

to X. And furthermore, we soon see that this is a common or even

a general phenomenon. The high, expanded body in our Antigonia

or in our sun-fish or in a John Dory is at the same time flattened

or compressed from side to side, in comparison with the related

fishes which we have chosen as standards of reference or comparison

;

and conversely, such a fish as the skate, while it is expanded from

side to side in comparison with a shark or dogfish, is at the same

time flattened or depressed in its vertical section. We hasten to

enquire whether there be any simple relation of magnitude dis-
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cernible between these twin factors of expansion and compression;

and the very fact that the two dimensions of breadth and depth

tend to vary inversely assures us that, in the general process

of deformation, the volume and the area of cross-section are less

affected than are those two linear dimensions. Some years ago,

when I was studying the weight-length coefficient in fishes (of which

we have already spoken in chapter iii), that is to say the coefficient

k in the formula W = kL^, I was not a Httle surprised to find that k

(let us call it in this case ki) was all but identical in two such different

looking fishes as the haddock and the plaice: thus indicating that

these two fishes have approximately the same voluyne when they

are equal in length ; or, in other words, that the extent to which the

plaice has broadened is just about compensated for by the extent

to which it has also got flattened or thinned. In short, if we might

conceive of a haddock being transformed directly into a plaice,

a very large part of the change would be accounted for by supposing

the round fish to be "rolled out" into the flat one, as a baker rolls

a piece of dough. This is, as it were, an extreme case of the halance-

ment des organes, or "compensation of parts."

We must not forget, while we consider the "deformation" of

a fish, that the fish, like the bird, is subject to certain strict limita-

tions of form. What we happen to have found in a particular

case was observed fifty yearg ago, and brought under a general rule,

by a naval engineer studying fishes from the shipbuilder's point of

view. Mr Parsons * compared the contours and the sectional areas

of a number of fishes and of several whales ; and he found the sec-

tional areas to be always very much the same at the same proportional

distances from the front end of the body|. Increase in depth was

balanced (as we also have found) by diminution of breadth; and

the magnitude of the "entering angle" presented to the water by

the advancing fish was fairly constant. Moreover, according to

Parsons, the position of the greatest cross-section is fixed for all

species, being situated at 36 per cent, of the length behind the

* H. de B. Parsons, Displacements and area-curves of fish, Trans. Amer. Soc.

of Mechan. Engineers, ix, pp. 679-695, 1888.

t That is to say, if the areas of cross-section be plotted against their distances

from the front end of the body, the results are very much alike for all the species

examined. See also Selig Hecht, Form and growth in fishes, Journ. Morph.

xxvn, pp. 379-400, 1916.
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snout. We need not stop to consider such extreme cases as the eel

or the globefish (Diodon), whose ways of propulsion and locomotion

are materially modified. But it is certainly curious that no sooner

do we try to correlate deformation in one direction with deformation

in another, than we are led towards a broad generalisation, touching

on hydrodynamical conditions and the limitations of form and

structure which are imposed thereby.

Our simple, or simplified, illustrations carry us but a little way,

and only half prepare us for much harder things. But interesting

as the whole subject is we must meanwhile leave it alone ; recognising,

however, that if the difiiculties 'of description and representation

could be overcome, it is by means of such coordinates in space that

we should at last obtain an adequate and satisfying picture of the

processes of deformation and the directions of growth.

A Note on Pattern

We have had so much to do with the study of Form that pattern

has been wellnigh left out of the account, although it is part of

the same story. Like any other aspect of form, pattern is correlated

with growth, and even determined by it. A feather, for example,

which is equally and equidistantly striped to begin with, may have

this simple striping transformed into a more complex pattern by

the unequal hut.graded elongation of the feather. We need not go

farther than the zebra for a characteristic pattern of stripes, nor

need we seek a better illustration of how a common pattern may
vary in related species.

A zebra's stripes may be broad or narrow, uniform or alternately

dark and pale—these are minor or secondary diversities; but the

pattern of the stripes shews more conspicuous differences than these,

though the differences remain of a simple kind. A zebra's stripes

fall into several series. One set covers the neck, including the mane,

and extends backwards over the body and forwards on to the face;

and these "body-stripes" are all that the extinct Quagga possessed.

On the head they are interrupted by the ears and eyes, and end at a

definite vertex on the forehead: from which, however, they run

down the face in pairs, of which the first pair of all may jr may not

coalesce into a single median stripe (Fig. 553). A second series

runs up the foreleg, and where it meets the body we have the
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problem of how best to fit the horizontal leg-stripes and the vertical

body-stripes together. There is only one way. A pair of body-

stripes diverge apart and the upper leg-stripes fit in between-,

becoming at the same time chevron-shaped so as to adapt them-

selves to the space they have come to occupy. The stripes of the

forelegs, and their manner of fitting on to the body-stripes, vary

very little in the several species or varieties.

A third series of stripes ascends the hindlegs, in a fashion iden-

tical to begin with for all, but open to modification where these

leg-stripes spread over the hauncljes; for here there hiay be great

Fig. 553. Zebra's head, to shew how the body-stripes

extend to the face. From A. Rzasnicki.

differences in the extent to which the leg-stripes compete with and

interfere with, or (so to speak) encroach upon, the stripes of the

body. Tne typical Equus zebra is easily recognised by the so-called

"gridiron" on its rump; this is a dorsal continuation of the body-

stripes, extending to the tail, but sharply cut off on either side by

the stripes ascending from the leg (Fig. 554, C). In Burchell's zebra

the hindleg-stripes encroach still farther on the body, and even

reach up to the rump, so that the " gridiron is entirely cut away*.

* Ward's zebra and Grant's zebra are varieties of Equus zebra, the former with

a very strong "gridiron," the latter with a mere vestige of the same: which is as

much as to say that the leg-stripes encroach little in the one, and much in the

other, on the hindmost body-stripes. Chapman's zebra is a form of E. Burchelli,

with well-striped legs and faint intermediate striping. Cf. W. Ridgeway, on The

differentiation of the three species of Zebra, P.Z.S. 1909, pp. 547-563; also {int. al)

Adolf Rzasnicki, Zebry, Warsaw, 1931.
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In the Abyssinian Equus Grevyi, all the stripes are very numerous,

narrow and close-set. The body-stripes refuse, as it were, to be

encroached on or obliterated by those of the hindlegs ; which latter

are merely intercalated between them, chevron fashion, wedging

Fig. 554. Zebra patterns. A, B, Equus Burchelli; C, E. zebra; D, E. Grevyi.

in between the body-stripes as the foreleg-stripes are wont to do.

It follows that in the middle of the haunch, over the region of the

hip-joint, there is in this species a characteristic "focus," where the

leg-stripes fit in between the lumbar and the caudal sections of the

body-stripes. We may now add, as a fourth and last series, common

to all kinds, the few stripes which surround the lips on either side,

and wedge in between the stripes upon the face.

Conclusion

There is one last lesson which coordinate geometry helps us to

learn; it is simple and easy, but very impprtant indeed. In the

study of evolution, and in all attempts to trace the descent of the

animal kingdom, fourscore years' study of the Origin of Species

has had an unlooked-for and disappointing result. It was hoped
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to begin with, and within my own recollection it was confidently

believed, that the broad lines of descent, the relation of the main

branches to one another and to the trunk of the tree, would soon

be settled, and the lesser ramifications would bp unravelled bit

by bit and later on. But things have turned out otherwise. We
have long known, in more or less satisfactory detail, the pedigree of

horses, elephants, turtles, crocodiles and some few more; and our

conclusions tally as to these, again more or less to our satisfaction,

with the direct evidence of palaeontological succession. But the

larger and at first sight simpler questions remain unanswered; for

eighty years' study of Darwinian evolution has not taught us how

birds descend from reptiles, mammals from earlier quadrupeds,

quadrupeds from fishes, nor vertebrates from the invertebrate stock.

The invertebrates themselves involve the selfsame difficulties, so

that we do not know the origin of the echinoderms, of the molluscs,

of the coelenterates, nor of one group of protozoa from another.

The difficulty is not always quite the same. We may fail to find

the actual links between the vertebrate groups, but yet their re-

semblance and their relationship, real though indefinable, are plain

to see; there are gaps between the groups, but we can see, so to

speak, across the gap. On the other hand, the breach between

vertebrate and invertebrate, worm and coelenterate, coelenterate

and protozoon, is in each case of another order, and is so wide that

we cannot see across the intervening gap at all.

This failure to solve the cardinal problem of evolutionary biology

is a very curious thing; and we may well wonder why the long

pedigree is subject to such breaches of continuity. We used to be

told, and were content to believe, that the old record was of necessity

imperfect—we could not expect it to be otherwise; the story was

hard to read because every here and there a page had been lost or

torn away, like some hiatus valde deflendus in an ancient manuscript.

But there is a deeper reason. When we begin to draw comparisons

between our algebraic curves and attempt to transform one into

another, we find ourselves limited by the very nature of the case

to curves having some tangible degree of relation to oner another;

and these "degrees of relationship" imply a classification of mathe-

matical forms, analogous to the classification of plants or animals

in another part of the Systema Naturae.
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Ah algebraic curve has its fundamental formula, which defines

the family to which it belongs; and its parameters, whose quantita-

tive variation admits of infinite variety within the limits which

the formula prescribes. With some extension of the meaning of

parameters, we may say the same of the families, or genera, or other

classificatory groups of plants and animals. We cross a boundary

every time we pass from family to family, or group to group. The

passage is easy at first, and we are led, along definite lines, to more

and more subtle and elegant comparisons. But we come in time

to forms which, though both may still be simple, yet stand so far

apart that direct comparison is no longer legitimate. We never

think of "transforming" a helicoid into an ellipsoid, or a circle into

a frequency-curve. So it is with the forms of animals. We cannot

transform an invertebrate into a vertebrate, nor a coelenterate into

a worm, by any simple and legitimate deformation, nor by anything

short of reduction to elementary principles.

A "principle of discontinuity," then, is inherent in all our classifi-

cations, whether mathematical, physical or biological; and the

infinitude of possible forms, always limited, may be further reduced

and discontinuity further revealed by imposing conditions—as, for

example, that our parameters must be whole numbers, or proceed

by quanta, as the physicists say. The lines of the spectrum, the six

families of crystals, Dalton's atomic law, the chemical elements

themselves, all illustrate this principle of discontinuity. In short,

nature proceeds from one type to another among organic as well as

inorganic forms; and these types vary according to their own

parameters, and are defined by physico-mathematical conditions of

possibility. In natural history Cuvier's "types" may not be per-

fectly chosen nor numerous enough, but types they are; and to seek

for stepping-stones across the gaps between is to seek in vain, for

ever.

This is no argument against the theory of evolutionary descent.

It merely states that formal resemblance, which we depend on as

our trusty guide to the affinities of animals within certain bounds or

grades of kinship and propinquity, ceases in certain other cases to

serve us, because under certain circumstances it ceases to exist. Our

geometrical analogies weigh heavily against Darwin's conception of

endless small continuous variations; they help to show that dis-
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continuous variations are a natural thing, that "mutations"—or

sudden changes, greater or less—are bound to have taken place, and

new "types " to have arisen, now and then. Our argument indicates,

if it does not prove, that such mutations, occurring on a com-

paratively few definite lines, or plain alternatives, of physico-

mathematical possibility, are likely to repeat themselves: that the

"higher" protozoa, for instance, may have sprung not from or

through one another, but severally from the simpler forms ; or that

the worm-type, to take another example, may have come into being

again and again.



EPILOGUE

I N the beginning of this book I said that its scope and treatment

were of so prefatory a kind that of other preface it had no need;

and now, for the same reason, with no formal and elaborate con-

clusion do I bring it to a close. The fact that I set little store by-

certain postulates (often deemed to be fundamental) of our present-

day biology the reader will have discovered and I have not

endeavoured to conceal. But it is not for the sake of polemical

argument that I»have written, and the doctrines which I do not

subscribe to I have only spoken of by the way. My task is finished

if I have been able to shew that a certain mathematical aspect of

morphology, to which as yet the morphologist gives little heed, is

interwoven with his problems, complementary to his descriptive

task, and helpful, nay essential, to his proper study and com-

prehension of Growth and Form. Hie artem remumque repono.

And while I have sought to shew the naturalist how a few mathe-

matical concepts and dynamical principles may help and guide him,

I have tried to shew the mathematician a field for his labour—a field

which few have entered and no man has explored. Here may be

found homely problems, such as often tax the highest skill of the

mathematician, and reward his ingenuity all the more for their

trivial associations and outward semblance of simplicity. Haec utinam

excolant, utinam exhauriant, utinam aperiant nobis Viri mathematice

docti*.

That I am no skilled mathematician I have had little need to

confess. I am "advanced in these enquiries no farther than the

threshold"; but something of the use and beauty of mathematics

I think I am able to understand. I know that in the study of

material things, number, order and position are the threefold clue

to exact knowledge ; that these three, in the mathematician's hands,

furnish the "first outlines for a sketch of the Universe"; that by

square and circle we are helped, like Emile Verhaeren's carpenter,

to conceive "Les lois indubitables et fecondes Qui sont la regie et

la clarte du monde."

For the harmony of the world is made manifest in Form and

* So Boerhaave, in his Oratio de Usu Ratiocinii Mechanici in Medicina (1703).
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Number, and the heart and soul and all the poetry of Natural

Philosophy are embodied in the concept of mathematical beauty.

A greater than Verhaeren had this in mind when he told of "the

golden compasses prepared In God's eternal store." A greater than

Milton had magnified the theme and glorified Him "that sitteth

upon the circle of the earth," saying: He hath measured the waters

in the hollow of his hand, and meted out heaven with the span,

and comprehended the dust of the earth in a measure.

, Moreover, the perfection of mathematical beauty is such (as Colin

Maclaurin learned of the bee), that whatsoever i& most beautiful

and regular is also found to be most useful and excellent.

Not only the movements of the heavenly host must be

determined by observation and elucidated by mathematics, but

whatsoever else can be expressed by number and defined by

natural law. This is the teaching of Plato and Pythagoras, and

the message of Greek wisdom to mankind. So the living and

the dead, things animate and inanimate, we dwellers in the world

and this world wherein we dwell—Travra ya fxav ra yiyvcoGKo^eva—
are bound alike by physical and mathematical law. " Conterminous

with space and coeval with time is the kingdom of Mathematics;

within this range her dominion is supreme ; otherwise than according

to her order nothing can exist, and nothing takes place in contradiction

to her laws." So said, some sixty years ago, a certain mathe-

matician* ; and Philolaus the Pythagorean had said much the same.

But with no less love and insight has the science of Form and

Number been appraised in our own day and generation by a very

great Naturalist indeedf—by that old man eloquent, that wise

student and pupil of the ant and the bee, who died while this book

was being written ; who in his all but saecular Hfe had tasted of the

firstfruits of immortality; who curiously conjoined the wisdom

of antiquity with the learning of today; whose Proven9al verse

seems set to Dorian music; in whose plainest words is a sound

as of bees' industrious murnmr; and who, being of the same

blood and marrow with Plato and Pythagoras, saw in Number le

comment et le pourquoi des choses, and found in it la clef de voute de

V Univers.

* William Spottiswoode, in his presidential address to the' British Association at

Dublin in 1878. t Henri Fabre.
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Ascidia 483
Ashby, Eric 129

Ashworth, J. H. 244
Asparagus 553
Assheton, R. 561

Astbury, W. T. 403, 670, 743

Asterias 559
Asterolepis 517
Asters 299
Asthenosoma 947
Astrolampra 618
Astrorhiza 703
Astrosclera 672
Atkins, D. 71

Atrypa 832
Auerbach, F. 14

Aulacantha 699
Aulastrura 711

Aulonia 708, 737
Aurelia 205
Ausonius 527
Autocatalysis 256
Auxin 262, 281
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Avicula 1061

Awerinzew, S.

Axolotl 265
Azolla 67

85:

Babak, E. 56, 265
Baboon, skull of 1083
Bacillus 64
Backhouse, T. W. 353, 946
Backman, Gustav 98, 108, 115, 157
Bacon, Francis 1, 58, 79, 81, 255, 341,

376, 384, 849, 939; Roger 1, 8
Baer, K. E. von 3, 11, 83, 86, 286
Baillanger, J. 189
Balfour, F. M. 85, 568
Ball, 0. M. 974, 986
Balls, W. L. 746
Baltzer, Fr. 514, 753
Bambeke, C. van 17

Bamboo, growth of 29, 159, 217
Bantam fowl 117
Barclay, John 544
Barcroft, Joseph 249
Barfurth, E. 168
Barlow, W. 348
Barr, A. 26
Barratt, J. O. W. 495
Barrow, S. 487
Barry, Martin 341
Bartholinus, E. 527, 541, 695
Basalt 520
Basil, St 527
Bast-fibres, strength of 973
Baster, Job 271
Bateson, WQliam 208, 212, 340, 907
Bather, F. A. 941
Batsch, A. J. G. C. 868
Baudrimont, A. 243
Baurmann, M. 304
Baylis, H. A. 897
Bayliss, W. M. 264, 328
Beam, loaded 967
Bean, growth of 191

Beaumont, Elie de 785
Becher, A. 210; S. 687
Bechhold, H. 665
Beebe, W. 424
Bee's cell 525, etc.

Begonia, leaf of 1042; raphides in 646
Beijer, J. J. 480
Beilby layer 493
Belar, K. 307
Belcher, Sir E. 411
Belehradek, J. 221, 232
Belemnites 858
Bell, Sir Charles 51, 956, 976, 987
Bellerophon 809
Belodon 1065
Benard, H. 418, 500, 853
Benedict, Fr. G. 205, 241

Bennett, A. 115,161; G. T. 121,385,
536, 610, 763, 783

Benninghoff, A. 979
Bentlev, W. A., and W. J. Humphreys

4n, 696
Benton, J. R. 387
Berezowsky, A. 62
Berg, W. F. 304, 333, 661
Berger, C. A. 243
Bergmann, H. von 34, 35
Bergson, Henri 9, 193, 412, 873, 1029;

Joseph 131
Berkeley, George 24
Bermuda life-plant 275
Bernal, J. D. 303, 488
Bernard, Claude 2, 4, 5, 249, 256
Bernhardt, H. 979
Bernoulli, Daniel 923; James 89, 118,

755, 767, 961; John 37, 82
Bernstein, Julius, 361
Berthelot, M. 464
Berthqld, G. 12, 475, 482, 567, 571,

578, 593, 758
Bertholf, L. M. 54
Berzelius, J. J. 255
Bethe, A. 441
Beudant, F. S. 661
Bezold, W. 393
Bialaszewicz, K., 226, 229, 245
Bichat, Xavier 11, 97, 249, 956, 1029
Bidder, George 507
Biedermann, W. 664
Bilharzia, egg of 943
Biloculina, 858
Biometrics 119
Birds, flight of 41; skeleton of 1011;

toothed 1070
Bishop, John 40
Bison, 990
Bivalve shells 822
Bjerknes, V. 46, 59, 325
Black, James 956
Blackman, F. F. 217, 224, 289; V. H.

153, 154, 220
Blackwall, J. 387
Blair, G. W. S. 986; Patrick 900
Blake, J. F. 789, 793, 845, 1038
Bliss, G. A. 382
Blochmann, Fr. 653
Blood-corpuscles, form of 435; size of

60, 69
Blood-vessels 948
Blowfly, speed of 162
Blum, E. 951
Boas, Fr. 125, 130, 416
Bodo 383, 432
Boerhaave, Hermann 2, 604, 1096
Boggild, O. B. 656
Bogorrow, B. G. 219
Bohn, C. 245
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Bohr, Nils 54
Boltzmann, Ludwig 19, 356
Bolk, L. 901
Bonanni, F. 499, 544
Bonaventure, St 19

Bone, structure of 975 seq.

Bonneson, T. 382, 566
Bonnet, Charles 271, 275, 382, 543, 915
Borelli, J. A. 11, 12, 36, 48, 82, 356,

970, 988
Born, Max 1031
Boscovich, Father R. J. 13, 93, 286,

346, 531
Bose, J. C. 171

Bothriolepis 517
Bottazzi, F. 243
Bottomley, W. B. 262
Boundary layer 449
Bourgery, J. M. 979
Bourrelet, Plateau's 475, 710
Boveri, Th. 63, 275, 300
Bowditch, H. P. 63, 125, 275, 299, 306
Bower, F. 0. 640
Bowman, J. H. 662
Boycott, A. E. 64, 819, 822
Boyer, Carl B. 346
Boyle, Robert 7, 370
Brachiopods, 831
Bradford, S. C. 302
Brady, H. B. 700, 868
Bragg, Sir W. E. 348
Brahe, Tycho 11

Brain, growth of 186-189; weight of 180
Branchipus 559
Brandt, A. 188
Brauer, A. 314
Braun, A. 915
Bravais, L. and A. 237, 767, 915
Brazier, L. G. 970
Bredig, G. 311
Breeder, G. M. 50
Breton, E. le 60, 162
Brewster, Sir David 358, 549, 569, 656
Bridge, T. W. 959
Bridge-construction 989
Bridgeman, P. W. 26
Briggs, C. E. 158
Brinckmann, R. 457
Brindley, H. H. 208, 212
Brine-shrimps 253
Brobdignag 24
Brody, 8. 141

Broglie, Louis de 74
Brooke, Sir Vincent 877, 892, 895
Brougham, Lord 537, 544
Brown, A. W. 113; H. T. 627; Robert

73, 75, 341 ; Samuel 255
Browne, Sir Thomas 495, 725, 932, 935
Brownian movement 75
Brownlee, John 76, 144

Brucke, C. 290, 344
Bruckner, Max 598
Brunswick, 459
Bryan, G. H. 44
Bryophyllum, regeneration of 275
Bubbles 350 seq., 468
Buch, Leopold von 785, 845
Buddenbroek, W. 756
BufiFon 100, 536, 543, 970, 1020
Bulimus 808
Bull, A. J. 565
BuUen, A. H. R. 72
Bullfrog, growth of 264
Bunting, Martha 559
Burnet, John 759
Burr, Malcolm 216
Burton, E. F. 460
Butler, Samuel 6

Biitschli, C. 300, 330, 359, 361. 665,

667, 853
Biittel-Reepen, H. von 540
Buxton, P. A. 961
Byk, A. 652

Cajori, Florian 135, 1031
Calandrini, G. L. 915
Calanus 219
Calcospherites 655
Calkins, L. A. 108, 184
Callimitra 712
Callitharanion, spores of 631
Caiman, W. T. 278
Calvert, P. P. 165, 214
Calymene 707
Calyptraea 802, 815
Cambium 480, 503
Camel 1002
Camerer, W. 108
Campanularia 391, 422, 634, 1060
Campbell, D. H. 593
Camphor 361
Camptosaurus 1067
Campylodiscus 434
Cannon, H, Graham 293, 316, 325
Cannon-bone 1039
Cantilever 972, etc.

Cantor, Moritz 1053
Capillarity 465, etc.

Caprella 1056
Caprinella 829
Carcinus 463
Carey, E. J. 744
Cariacus 893
Ckrlier, E. W. 360
Carlson, T. 153

Carnot, Sadi 9, 464, 507, 752
Carnoy, J. B. 707
Carp, growth of 180
Carpenter, W. B. 73, 704; E. 654
Carradini, G. 361
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Cariuccio, E. 544
Caryocinesis / 299, 304
Cassini, Dominic 528, 695
Castagna 579
Castillon 530
Catalan, E. C. 735
Catalytic action 255
Catenoid 369
Cauliflower 914
Cayley, Arthur 318, 609; Sir George

49, 612, 961
Celestite 699
Cell-size, fixed 60
Cell-theory 287, 341
Cells, collared 429; stellate 547
Cenosphaera 710
Centres of force 2^6
Centrosome 299, 306
Cephalopods, eggs of 602
Ceratites 845
Ceratophyllura, growth of 193
Cerebratulus, egg of 323
Cerithium 787
Cesaro, G. 526, 544
Chabry, L. 37, 483, 648
Chaetopeltis 593
Chaetopterus, egg of 338
Chambers, Robert 302, 306, 326, 335,

363, 388, 434
Chancourtois, A. E. B. 565
Chandra, Krishna 504
Chank sheU 805
Chapman, Abel 45, 960
Chara 479
Characters, biological 1019, 1036
Chelyosoma 517
Chermak, P. 393
Child, C. M. 282
Chilomonas 225
Chimpanzee, skull of 1083
Chladni, E. F. F. 472, 719
Chlamydomyxa 700
Chodat, R. 115, 256
Chondriosomes 455
Chorinus 1057
Chossat, Ch. 189
Christison, Sir R. 235
Chromatin 296, 305
Chromosomes 338
Chromulina 422
Chrysaora 248
Church, A. H. 915, 919
Chydorus 214
Chytridia 462
Cicada 613
Cicero 92
('icinnus 767
Cilia 406
Ciliate infusoria 425
Circoporus 72U

Cladocarpus 1060
Cladocera 165, 506
Cladonema 397
Claparede, E. R. 656
Clathrulina 710
Claus, F. 506
Clausilia 758, 808
Clausius, R. 11, 358
Cleland, John 5

Cleodora 833
Clusters, globular star 68
Clytia 1060
Coan, C. A. 765, 931
Coassus 893
Codonella 408
Codosiga 429
Coe, W: B. 324
Cogan, Dr T. 1055
Cohen, Ernst 266
Cohesion figures 723, 847
Cole, William 744
Coleridge, S. T. 1034
Collar-cells 429
CoUosphaera 697
Colman, S. 765
Colpodium 257
Comoseris 514
Compositae 930
Conchospiral 788
Conidiophore 479
Conklin, E. G. 5, 60, 293, 483, 487, 557,

601
Contour lines 904
Contractile vacuole 426
Conus 813, 922
Cooke, Sir T. A. 749, 912, 919, 931
Coordinates 1032, etc.

Cope, E. D. 517, 899, 906
Copernicus 1

1

Coplans, Myer 151

Corals 512-514, 621-624
Cordylophora 397
Cornea of insect 511
Cornevin, Charles 201
Cornish, Vaughan 965
Cornuspira 857
Corpora Arantii 472
Correns, C. 743
Corse, John 903
Corystes 1057
CV)tes, Roger 755
Cotton, A. 651
Coulomb, C. A. 983
Cowell, J. W. 100
Oeodonta 1024
Crepidula 60, 487, 557
Creseis 833
Crew, F. E. A. 108
Cristellaria 766, 792, 863
Crocodile 1065
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Crocus, growth of 171

Crookes, Sir Wm. 51

Crozier, W. J. 198, 221

Crum Brown, Alexander 1

Cryptocleidus 1068
Ctenophora 624
Cube, partition of a 567
Cuboctahedron 734
('ucurbita 1049
(Julmann, Prof. C. 976, 997
Curry, Manfred, 961

Curves, of distribution 135; of error

131; of frequency 119; of growth
95; logistic 147; multimodal 135

Cushman, J. A. 510
Cuvier, G. 1036, 1094
Cuvierina 416, 833
Cyamus 1056
Cyathophyllum 512
Cycas 516
Cyclammina 859
Cyclol 737
Cyclommatus 209
Cyclostoma 813
Cylinder 369
Cymose inflorescence 767

Cynthia 601
Cypraea 802, 805
Cystolithmus 647
Cytoplasm 347

Daday de Dees, E. von 253
Daffner, Fr. 233
Dakin, W. J. 336
Dalcq, A. 303
D'Alembert, Jean le R. 89
DalyeU, Sir John G. 274
D'Ancona, Umberto 159, 196, 274

Dandolo, Count Vincentzio 163

Danilewsky, B. 262
Dannevig, Alf. 180
Daphnia 253, 506
Darboux, G. 382
Darling, C. R. 370, 416
DarUngton, C. D. 305, 310, 347, 947
D'Arsonval, A. 449
Darwin, Charles 5, 86, 537-541, 664,

704, 887-889, 959, 1019, 1094

Dastre, A. 268
Davenport, C. V. 83, 243, 245, 360
Davies, G. R. 156; R. A. 35
Dawes, Ben 253
Dawson, J. A. 434
De Bary, A. 345
De Candolle, A. 546; A. P. 29; Casimir

916
Deep-sea fishes 423
De Heen, P. 502
Dehler, Adolf 438
Dehrael. G. 83

Delage, Yves 270
Delaunay, C. E. 368
Delisle, M. 40
DeUinger, O. P. 361
Delpino, F. 916
Democritus 6
De Morgan, Augustus 9, 24, 733
Dendy, Arthur 269, 658, 671, 690, 693
Dentalium 792, 805
Dentine 657
Deropyxis 422
Descartes, Rene 4, 7, 321, 733, 754, 809
Desch, C. H. 554
Desmids 579
Des Murs, 0. 935
Devaux, H. 69, 72, 464
Deviation, standard 119
De Vries, H. 217
Dexippus 164
Diagrams 136; reciprocal 997
Diakonow, D. M. 212
Diatoms 510
Dickson, A. 916; H. 241;L. E. 924
Dicquemare, J. F. 271
Dictyocha 717
Dictyota 479
Dietz, J. F. G. 98
Difflugia 422, 702, 705
Diffraction plates 510
Dimensions 23

Dimorphism 212
Dimorphodon 1069
Dinenympha 433
Dinobryon 408
Dinosaurs 1002, 1067
Diodon 1064, 1090
Dionaea 1043
Diplodocus 1001, 1005, 1009
Disc, segmentation of a 594
Discontinuity, principle of 1094
Discorbina 865
Distephanus 718
Ditrupa 848
Dixon, A. F. 979; H. H. 65, 238;

K. R. 438
Dobell, CUfford 339, 341, 433, 456
Dodecahedron 526, 545
Doflein, F. J. 75, 410, 429, 868, 899

Dog, skuU of 211, 1087; weight of 187

Dolium 780, 787
Dolphin, skeleton of 1007
Donaldson, H. H. 188

Doncaster, L. 316, 344
Donnan equilibrium 438, 463

Dowding, E. S. 462
Dorataspis 727, 738
D'Orbigny, Alcide 786, 854, 1038

Douglas, Jesse 382
Douglass, A. E. 235, 239

Dragonfly 476, 611
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Draper, J. W. 422; R. L. 115
Dreyer, Fr. 671, 682, 707, 868, 870
Driesch, Hans 5, 60, 287, 483, 490, 602
Dromia 441
Drops 59, 467, 850, 946
Drosophila 155, 231
Drzwina, Anna 245
Duarte, A. J. 164
Du Bois Reymond, Emil 1, 189, 352,

444
Duckweed 263
Duclaux, J. 254
Dudich, E. 209
Duerden, J. E. 654, 749
Dujardin, F. 17, 18, 415, 854
Duke-Elder, 8ir W. S. 304
Du Monceau, Duhamel 325
Dumortier, B. 312
Dunan, Charles 9

Duncan, P. Martin 621
Duncker, G. 199, 819
Dupres, Athanase 446
Durbin, Marion L. 271

Diirer, Albrecht 83, 89, 190, 372, 1053
Duthie, E. S. 546
Dutrochet, R. J. H. 361, 888
Dwight, T. 979, 1081

Dyar, H. J. 164
Dye, W. D. 510

Earwig, dimorphism in 212
Ebner, V. von 679, 979
Echinoderm larvae 626
Echinus 229, 602, 946
Ectoplasm 359
Edgerton, H. E. 390
Edgeworth, F. H. 76
Eel, growth of 169, 170
Efficiency, index of 153
Eggs of birds 934
Eidmann, W. 264
Eiffel tower 29, 961, 997
Eimer, Th. 868
Einstein, Albert 74, 76
P^lasmotherium 905
Elastic curve 374
Elderton, Sir W. Palin 90, 98
Elephant 203, 900, 905, 1004
Eleutheria 619
Elk, antlers of 892
EllipsoHthes 1038
Ellis, M. M. 276; R. Leslie 5, 123,

532, 927
Elodea 509
Elsasser, Th. 55
Emarginula 815
Emmel, V. E. 275
Empedocles 12

Enchelys 257
Enestrom, G. 566

Engelmann, T. VV. 368
Enriques, Paolo 4, 61, 93, 970, 987
Entelechy 5, 1020
Entosolenia 682
Entrophy 1

1

Enzyme 264
Eohippus 1077
Epeira 386
Ephyra 205
Epicurus 6, 76
Epidermis 493
Epilobium, pollen of 631
Epithelium 507
Equiangular spiral 748, etc.

Equisetum 460, 742
Erica 631
Eriocheir 250
Errera, Leo 53, 64, 222, 363, 482, 568
Erythrotrichia 580, 623
Estheria 828
Ethmosphaera 708, 710
Euastrum 364
Eucharis 624
EucUd 759
Euglypha 316
Eulaha 664
Euler, Leonard 4, 27, 250, 356, 529,

609, 732
Eunicea, spicules of 657
Euphorbia 554
Euplectella 698
Euryale 61

Euryhaline 423
Eurypterus 517
Eustomias 423
Evelyn, John 935
Ewart, A. J. 29, 449
Excess and defect 1035
Exner, Sigraund 74

Fabre, J. H. 93, 1097
Facial angle 1055
Fairy.flies 47
Faraday, Michael 286, 292, 297, 510,

6'61, 719
Farr, Wm. 155
Farrea 689
Farrer, Enoch 965
Faure-Fremiet, E. 108, 232
Favaro, A. 774
Favosites 512
Fechner, G. T. 936, 1027
Fedorow, E. S. von 348, 552, 662, 7.34

Fehlmg, H. 246
Ferguson, A. 946
Fermat Pierre de 4, 356
Fessard and Laufer 90, 98
Festuca 507
Fezzan worms 251

Fibonacci 923



1104 INDEX
Fick, L. 979
Fickert, C. 868
Fiddler crabs 206, 210

Fidler, T. Claxton 967, 990
Filter-passers 65
Final cause 4
Fischel, Alfred 184

Fischer, P^mU 651; Hugo 631; M. H.

327; Otto 970, 999
Fishes, age of 176; eggs of 135; form

of 1061

Fissurella 815
FitzGerald, G. F. 288, 449, 510, 675, 719

Fixed cell-size 103

FlageUum 407, 506
Flamingo 23, 960
Fleming, R. M. 107, 125

Flemming, W. 296, 300, 304, 306, 314

Flight 41

FUnt, Prof. R. 966
Florideae 639
Flower, Stanley F. 172

Flugel, G. 72

Fluid crystals 437
Fokker, A. P. 669

Fol, Hermann 299, 303, 335, 337

FoUiculina 409
Fontenelle, B. le B. de 530, 989

Foot-and-mouth disease 65

Foraminifera 850
Ford, E. 191

Fordham, M. G. C. 336

Forficula 212
Forth Bridge 975, 992

Foster, Michael 321

Fourier, J. B. G. 8

Fox, Munro 242

Fraas, E. 1024
Fraenkel, G. 35
Frankenberger, W. 256

Eraser, J. H. 167

Frazee, O. E. 282
Fredericq, Leon 255
Frequency, curve of 119

Frey-Wissling, A. 302, 347

Friant, M. 903
Frog, egg of 584, 603, 606; growth of

226
Froth or foam 432, 454, 482

Froude, W. 31, 33

Fucus 576
Fujiyama 121

Fulton, Angus R. 974
Fundulus 245, 323
Furchgott, R. F. 438
FusuUna 856
Fusus 818

Galathea 439
Galen 4, 704, 939

Galiani, Abbe 19

Galileo 9, 11, 12, 20, 27, 36, 152, 346,

650, 825, 970, 997, 1026
Gallardo, A. 293
Galloway, Principal G. 960
GaUs 265
Galton, Fr. 119, 120, 135, 158
Gamble, F. A. 695
Ganglion-cells, size of 61

Gans, R. 75
Garreau, Dr 929
Gaertner, R. 201
Gastrula 560
Gaudry, Albert 900
Gauss, K. S. 121, 132, 354, 609, 1031

Gaver, F. von 901

Gavial 1065
Gebhart, W. 664, 979
Generation-time 153

Geodesies 741, etc.

Geoffroy 8t Hilaire, E. de 1019
Gerdy, P. N. 491, 745
Geryon, 299, 1057
Gestaltungskraft 731

Ghetto, A. 539
Giard, Alfred 286
Giardina, Andrea 330
Gibbs, Willard 356, 362, 471, 714, 719,

733
Gila monster 959
Gilmore, C. W. 1008
Gilson, E. 19

Giraffe 1004, 1051

Girders 991, etc.; continuous 1014;
parabolic 1009

Glaisher, James 411;J. W. L. 531,536
Glaser, Otto 246
Glassblower 744, 1049
Gley, E. 264, 268
Globigerina 365, 387, 675, 700, 750,

853
Glock, W. S. 235
Gnomon 759-766
Goblet cells 546
Goebel, K. von 58, 546, 643
Goethe 2, 29, 62, 344, 1019, 1026

Goetsch, W. 155
Golden mean 923, 932
Goldfish 198
Goldschmidt, R. 187, 466
Goldstein, W. C. 516
Golgi bodies 727
Golightly, W. H. 219
Gompertz, Benjamin 156

Goniatites 809
Goniodoma 738
Gonium 614
Gonothyraea 1060
Goodsir, John 286, 341, 456, 697, 751,

767
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Gordon, Isabella 625
Gorilla 186
Goringe, C. 202
Gortner, R. A. 248
Gott, J. P. 391
Gottlieb, H. 999
Gough, A. 436
Goupilliere, Haton de la 750, 778, 1030
Gourd, form of 1049
Gow, H. Z. 295
Grabau, A. H. 788, 796
Gradients, 193

Graham, A. 505; Michael 179, 183,

346, 666; Thomas 292
Grandi, Guido 812, 1045
Grant, Kerr 418
Graphic statics 976
Grassi, G. B. 170

Graunt, John 98
Gravis, A. 930
Gray, Asa 223; James 156, 221, 228,

243, 246, 306, 323, 335, 344, 407,

450, 462, 587, 909
Greenhill, Sir A. G. 26, 28. 44
Greenwood, Major 132
Gregory, J. W. 219; R. P. 63; W. K.

900, 966, 969
Greville, R. K. 617
Grew, Nehemiah 341, 482, 545, 912
Gromia, 387, 415, 700
Gryphaea^ 802, 830
Gudernatsch, J. S. 264
Guillemot, egg of 936
Guineapig 115
Gulliver, G. 61
Gulliver's Travels 22
Giinther, F. C. 937; S. 916-, 931, 1053
Gurney, R. 165
Gurwitsch, A. 328, 455

Haberlandt, 0. 262
Habermehl, K. 483
Hacker, V. 695, 698
Haddock 1008, 1088
Haeckel, Ernst 690
Haeusler, Rudolf 419
Haldane, J. B. S. 158; J. S. 956
Hale White, Sir WiUiam 949
Hales, Stephen, 88, 191, 955
Halibut 180
Haliotis 765, 802, 804, 813, 815, 822
Hall, C. E. 236
Haller, A. von 2, 82, 88, 93, 97, 184,

•271, 279, 532, 956
HaUey, E. 755
Halobates 67
Halosphaera. 406
Hamai, Ikuso 167, 177
Hambidge, Jay 755, 924, 931
Hamburger, H. J. 437

Hamilton, R. 1055; Sir W. Rowan 356
Hammett, D. W. 206
Hankin, E. H. 46, 50
Hanstein, Johannes 494, 593
Hardesty, Irving 61

Hardy, Sir W. B. 73, 303, 304, 322
Hargenvilliers, M. 100
Harmozome 264
Harpa 780
Harper, R. A. 615
Harpinia 1059
Harris, J. 203
Harrison, Ross 986
Harting, P. 653
Hartog, M. 293, 514
Hartridge, H. 436--

Harvey, E. N. and H. W. 322; W. 12,

955
Hasikura 411
Hastigerina 675, 851
Hatai, S. 256, 262
Hatano, T. 241
Hatchett, Chai'les 653 .

Hatschek, Emil 395, 437, 562, 681
Haughton, Samuel 544, 949
Haushofer, M. 147

Hauy, R. J. 526, 1028
Hawkins, H. L. 505
Hay, O. P. 1008
Haycraft, J. B. 360, 988
Headley, F. W. 44
Heart, growth of 186; muscles of 743
Heath, Sir T. L. 762
Heaviside,..0. 24
Hecht, Selig 199, 206, 1089
Hedges, E. S. 661
Heel bone 982
Hegel, G. W. S. 5

Hegler, R. 974, 985
Heidenhain, M. 85, 361
Heilbronn, L. V. 232, 328, 350
Heilmann, Gerard 1080
Hele-Shaw, H. S. 774
Helianthus 913
Helicina 777
Helicometer 786
Heliolites 513
Heliozoa 465
Heilmann, G." 411
Helmholtz, H. von 2, 10, 12, 42, 393
Hemicardium 829
Hemmingsen, Axel M. 133
Henderson, L. H. 254; L. J. 27; W. P.

510
Henle, F. G. J. 73
Hennessy, H. 532
Henslow, G. 916, 930
Heredity 284, etc.

Hero of Alexandria 527, 759, 761

Heron-AUen, E. 649, 704, 786
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Herpetomonas 431
Herrera, A. L. 649
Herring, growth of 181, 183
Herschel, Sir John 2, 24, lo7, 266,

976
Hertwig, C. 306; G. and P. 221 ; 0. 85,

226, 344, 605; R. 60, 229, 456
Hertzog, R. 0. 858
Hesse, W. 952
Heterogony 205, 209, 279
Heterophyilia 621
Hexactinellids 662, 688
Heymons, R. 254
Heyn, A. M. J. 243
Hexagonal symmetry 496, 499, 507, etc.

Hickson, S. J. 657
Hilb0rt, David 382
HiU, A. V. 248, 438, 449; F. J. 72;

John 545
Hime, H. W. L. 811
Hindekoper, R. S. 876
Hippopus 219, 824
Hirata, M. 525
His, W. 83, 84, 85, 111
Hobbes, Thomas 290
Hober, R. 250, 304
Hofbauer, C. 180
Hoffmann, C. 892; H. 21, 217
Hofmeister, F. 171, 344, 358, 387, 481,

915, 919
Hogben, Lancelot 98, 147
Hogue, Mary J. 363
Holism 1020
Holland, R. H. 260; W. J. 1006
Holmes, Eric 265; 0. W. 969, 1050
Holothurians 677, 718
Hooke, Robert 341, 348, 351, 358, 482,

512, 545, 805
Hooker, R. H. 217
Hookham's crystals 659
Hop, growth of 238, spirals of 820,

891
Hormones 263
Horns 874
Horse, skull of 1076; teeth of 904-6
Horse-chestnut, leaf of 1047
Houssay, F. 774
Howes, G. B. 1022
Hubbs, L. 170
Huia bird 897
Hukusina, H. 523
Hull, C. H. 98
Hultmann, F. W. 544
Humboldt, A. von 73, 251
Hume, David 49, 123, 143, 960
Hunter, John 266, 544, 897, 949, 955,

1020
Huntingdon, E. 240
Huxley, Julian S. 206; T. H. 17, 1020,

1031, 1065

Huygens, Chr. 609, 1029
Hyacinth 628
Hyalaea 833
Hyaloneraa 677
Hyatt, Alfred 806
Hyde, Ida H. 243, 293, 323, 332
Hydra 282, 294, 382
Hydractinia 559
Hyperia 1069
Hypodermis 506
Hyrachyus 1072, 1074
Hyracotherinm 1080
Hyrax 903

Ichthyosaurus 1068
Icosahedron 724, 735
Iguanodon 1005
Ikada, Y. 1084
Imbert, A. 449
Inachus, sperm -cells of 440
Index, ponderal 195
Indol-acetic acid 263
Infusoria, ciliate 296, 743
Insect-eye 510, 512
Insulin 264
Intussusception 347
Inulin 665
Ionic regulation 463
Irvine, Robert 648, 669
Isely, L. 768
Ishikawa, C. 339
Isocardia 839
Isoperimetrical problems 566^

Jackson, C. H. 110, 184
Jacob, Captain 544
Jaeger, F. M. 357
Jamin, J. C. 651
Janet, Paul 6

Janisch, E. 221

Japp, F. R. 651
Jeffreys, Harold 505
Jenkin, C. F. 679, 997
Jenkinson, J. W. 191, 746
Jennings, H. F. 361, 746^ Vaughan 656
Jensen, Boyson 263, 360
Johansen, A. C. 229
Johnson, E. N. 649; Dr Samiiel 2, 90,

92, 184
Johnstone, J. 189
Joly, John 14, 92, 238
Jonquieres, Alfred de 733
Jorgensen, E. 617
Jost, L. 222, 483
Juncus, pith of 546
Jungermannia 638
Juhn, Mary 267
JuU, M. A. 943
Jurine, Louis 11

Just, E. 335
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Kagi, Nobumasa 165
Kahlenberg, Louis 457
Kangaroo 1005
Kant, Immanuel 1, 4, 21, 1020
Kappers, J. Ariens 186, 264
Kapteyn, J. C, 133

Keats, John 949
Keill, James 11

Keller, H. 986
KeUieott, W. E. 187
Kellner, G. W. 21

Kelvin 2, 14, 19, 26, 35, 137, 348, 548,

551, 690
Kent, W. SavUle 406, 408, 433
Kepler, J. 9, 284, 526, 528, 695, 724,

731, 923, 931

Kerr, Sir J. Graham 806
Keynes, J. M. 89, 121, 784, 927
Kidney-beans 524
Kielmeyer, C. F. von 79
Kienitz-GerlofiF, F. 481, 595, 639
Kieser, D. C. 532, 545
Kirby and Spence 36

Kircher, Athanasius 45, 977
Kirch hofif, G. 393
Kirkman, T. P. 597
Kirkpatrick, R. 671
Kitching, J. A. 295
Klatt, B. 189
Klebs, G. 482
Klein, Felix 2

Klem, Alfred 153
Klugel, G. S. 531, 538, 544
Knoll, Philipp 949
Kooh, G. von 218
Koehler, R. 687
Koenig, Samuel 529
Kofoid, C. A. 431
Kogl and Kostermans 263
Koller, Wilding 59
KoUi {or CoUey), R. A. 64
Kolliker, A. von 647
Kollmann, M. 300
Koltzoff, N. K. 81, 428, 701
Konungsberger, W. J. 170
Koppen, Vladimir 217, 222
Korotneff, A. 602
Kostitzin, V. H. 146, 159

Kraus, W. 72
Kreusler, G. A. von 154

Krizensky, J. 265, 273
Krogh, A. 221, 229, 246, 956
Kuenen, D. J. 251

Kuhl, Willi 216
Kuhn, A. 54
Kiihne, W. 346, 388
Kukenthal, Willy 900
Krister, E. 663
Kuwada, Y. 305
Kuwana, Z. 163

Kuwaori, M. 1084

Lafay, A. 502
Lafresnaye, F. de 985
Lagena 414, 564
Lagrange, J. L. 27, 356, 931, 950
Lalanne, L. 544
Lamarck, J. B. de 808, 1023
Lamarle, E. 486, 497, 559, 595, 714
Lamb, A. B. 293, 324
Lame, Gabriel 923, 1058
Lamellaria 813
Lammel, R. 196
Lamy's theorem 468
Lanchester, F. W. 26, 31, 41, 44, 45
Langmuir, Irving 72, 449, 464
Lankester, Sir E. Ray 5, 412, 704
Lapierre 935
Laplace, P. S. de 1, 70, 89, 121, 354,

368
Larmor, Sir Joseph 14, 347, 380, 41^^

Lartigues, Alfred de 751, 1045
Latrunculia 690
Laue effect 670
LavPter, J. C. 1053
Lavoisier, A. L. 11, 348
Law, Borelli's 36, 37; Brandt's 727;

Bergmann's 35; Brooks's 165;

Errera's 482;Euler's 733;Froude's
31, 33; Gibbs-Thomson 451; Hert-
wig's 306, 328; Kielmeyer's 79;

Lamarle's 487; Liebig's 153;

Maupertuis's 356; Miiller's 725;

Stokes's 71; Van't HoflF's 221;
Verhulst-Pearl 141; Weber's 133;

Wolff's 3, 79, 285
Lea, Einar 182; Rosa M. 183

Leaves, forms of 1041

Leblond, E. 328
Le Breton, E. 34, 60, 162

Le Chatelier, Louis 445
Leche, W. 906
Ledingham, J. C. G. 248, 360
Leduc, Stephane 283, 297, 324, 501,

649
Leeuwenhoek, A. van 60, 180, 358, 512
Leger, L. 653
Le Hello, P. 37
Lehmann, O. 437, 563, 675, 788, 852
Leibniz, G. W. von 4, 6, 290, 356,

609
Leidenfrost, J. G. 446
Leidy, J. 433, 707
Leineraann, K. 512
Leitch, I. 223
Leitgeb, H. 481

Lemna 67, 263
Lendenfeld, R. 46
Lengerich, Hans 619
Length-weight coefficient 194, 1089
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Leonardo da Vinci 1, 912, 932, 954
Leonardo of Pisa 923
Lepidesthes 505
Lepidopus 1038
Leptocephalus 169
Lesage, G. L. 26
Lesbia 267
Leslie, Sir John 294, 751, 770, 815
Lesqueureusia 706
Lestiboudois, T. 916
Levers, orders of 988
Levi, G. 2, 60, 62
Lewis, C. M. 447; F. T. 58, 357, 517,

551, 774
L'Heritier, P. L. 162
Lhuiller, S. A. J. 530, 536
Liebig, G. W. 2, 153

Liesegang's rings 659
Light, pressure of 337
Lilienthal Otto 41, 43, 961, 964
Lillie, F. R. 5, 268, 275, 337, 558;

R. S. 288, 314, 322, 331, 649
Lilliput 22
Lima 827
Limnaea 312
Limpet 177
Lines of force 294; of growth 825
Lingelsheim, A. 667
Lingula 412
Linnaeus 144, 735, 804, 964, 1028
Lmsser, C. 217
Lippmann, Gabriel 121, 464
Lister, J. J. 671
Listing, J. G. 609, 820
Lith 488
Lithocardium 824
Lithocubus 715
Lithostrotion 512, 513
Lituites 802, 809
Livi, R. 194
Lloyd, LI. 219
Lobatschevsky, N. 11

Lobster 162, 278
Locust 164
Loddigesia 267
Lodge, Oliver 288, 1027
Loeb, J. 230, 245, 250, 256, 266, 276,

287, 330, 335, 626
Loewy, A. 450
Logarithmic spiral 1047, etc.

Logistic curve 145
Lo Monaco, Domenico 163
Lonnberg, E. 876, 878, 893, 895
Loria, Gino 368, 755
Lotka, A. J. 11, 19, 76, 143, 158,

2a5
Lotze, R. H. 83
Lucanus 208
Lucas, Eduard 609, 923; F. A. 271
Luciani, Luigi 163

Lucretius 6, 76, 163, 183, 270, 290, 740
Ludwig, Carl G. 341; F. 916; W.

747
Lumbri cuius 275
Lunar influence 242
Lund, E. J. 280
Lupa 1057
Lupine, growth of 159,' 223
Luyten, W. J. 121

Lychnocanna 721
Lyon, C. J. 240
Lyons, C. G. 72

Macalister, Alexander 816; Sir Donald
967 979

MacaUum, A. B. 447, 458, 629; J. B.
745

McClement, W. D. 65
McCoy, Frederick 621
Macdonald, J. 29
McDougal, D. T. 235, 237, 241
MacDowall, E. C. 162
Mach, Ernst 4, 9, 357
Machairodus, teeth of 898
Mcintosh, W. C. ^97
McKendrick, J. G. .151, 341
Mackinnon, D. L. 431, 853
Mackintosh, N. 176
Macky, W. A. 435
Maclagan, D. Stewart 155
Maclaurin, Colin 25, 530, 1096
McMurrich, J. Playfair 239, 954
Macrocheira 52
Macroscaphites 809
Mactra 125, 177
Magnan, A. 45
Maier, H. N. 434
Maize, growth of 224, 247, 471
Malaria equations 146
Mall, F. P. 745
Mallock, A. 235, 238, 934 .

Malpighi, Marcello 341
Maltaux, Mile 225
Malthus, T. R. 143

Maraldi, J. P. 528, 695; angle of 498,
682, 712, 720

xMarbled papers 1048
Marriott, R. H. 350
Marsh, 0. C. 1067
Marshall, E. K. 248
Marsigli, Comte L. F. de 934, 971
Martin, C. H. 431; L. 525
Mason, C. W. 55
Massart, J. 225
Mast, S. 0. 359
Mastodon 899
Matthew, A. 1006
Matthews, A. P. 280, 444, 455
Maupertuis, P. L. M. de 4, 6, 7, 356,

1031
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Maxwell, J. Clerk 12, 14, 26, 64, 71, 75,

136, 291, 354, 368, 374, 378, 465,

467, 609, 794, 820, 964, 989, 997,

1084
Mayer, A. 356
Mean sea level 137

Medawar, P. B. 156

Medusochloris 397
Medusoid 120, 396, 619
Medvedewa, Mme 251

Meek, A. 169, 198

Megusar, F. 165
Meige, H. 1053
Melanehthon, Philip 5

Meldola, R. 958
Melipona 525, 539
MeUanby, Kenneth 220
Melo 779
Melobesia 646
Melssens, L. H. F. 451, 482
Mensbrugghe, G. van der 361, 475, 579
Meredith, H. V. 113

Merke, E. 678
Merrill, Margaret 101

Mersenne, Marin 754, 809
Mesooarpus 460
Mesohippus 1079
Metzger, E. B. 553
Meves, F. 293, 438, 455
Meyer, Arthur 665; G. H. 12, 988;

Hermann 976, 979
MiceUae 347, 747
Miehaelis, L. 449
Mieseher, J. 339
Miliolina 859
Mill, J. S. 9
Millikan, R. A. 74, 970, 997
MiUer, W. J. 32
Milner, R. S. 447
Milton, John 1097
Mimicry 958
Minchin, E. A. 430, 679
Miner, J. R. 158
Minimum, Law of 153
Minkowski, Hermann 566
Minnow 117, 133

Minot, C. S. 61, 110, 141, 1030
Miohippus 1079
Mitchell, Sir P. Chalmers 1002
Mitochondria 296, 455
Mitosis 300
Mitra 143
Mobius, K. 684; M. 341

Mogk, H. 1058
Mohl, H. von 888
Moina 231
Mole, forelimb of 963
Mole-cricket, chromosomes of 315
Moller, V. von 856
Monad 435; monadology 7

Monnier, A- 115, 256; Denis 649
Monolayers 352, 464
Montbeliard, P. G. de 100
Moonfish 1021
Moore, A. R. 347
Morey, S. 422
Morgan, T. H. 262, 271, 275, 279, 340
Morita 999
Morosow, A. W. 666
Morse, Max 265
Mortality, curve of 178
Moseley, H. 12, 661, 770, 784, 811,

876; H. G. J. 784; H. N. 784
Moss, gemma of 595, 638
MouiUard, L. P. 46, 205
Mouse, growth of 161

Moving average 239
Mrazek, A. 327
Mucor, sporangium of 479
Mud, cracks in 516
Mullen hof, K. von 42, 540
Miiller, Fritz 3; Johannes 73, 697, 725
MuUet 179
Mummery, J. H. 657
Munro, H. 512
Murie, James 897
Murex 180, 781

Murray, C. D. 950, 957; H. A. 243
Musk ox, horns of 877
Mutations 1095
Myers, J. E. 661

Mymaridae 47
Myonemes 701

Mytilus 1061

i Mj'xomycetes 346

Naber, H. A. 762
Nageh, C. 242, 289, 347, 359, 387, 403,

631, 747
Nakaya, U. 411
Napier, James R. 32; of Merchiston

68
Narwhal 907
Nassellaria 712
Natica 613
Naumann, C. F. 788, 796, 916
Nautilus 749, 765, 813, 840, 843, 855,

1047
Necturus 265
Needham, Joseph 79, 98, 108, 141, 268
Negligibility, principle of 1029
Neottia, pollen of 488, 631

Nereis, egg of 558, 633
Neumayr, M. 870
Newell, H. F. 395
Newton, Sir Isaac 1, 6, 9, 11, 20, 55,

284, 288, 755, 989
Nicholson, H. A. 621; J. W. 690
Niclas, P. 755
Nielson, N. 263
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Nino, el 220
Noboru Abe 167
Nodoid 369, 425
Nodosaria 421
Noll, Fritz 154
Norman, A. M. 704
Norris, Richard 437
Northrop, J. H. 230
Nostoc 477, 493
Notosuchus' 1065
Nuclear spindle 299
Nummulite 811, 855
Niissbaum, M. 343

Oak, an ancient 240
Odontoceti 1024
Odquist, G. 328
Oedogonium 487
Ogilvie-Gordon, M. M. 654
Oithona 1055
Okada, Y. K. 61
Oken, L. 5, 546, 751 888, 912, 1023
Okuso Hamai 167
Olivier, Theodore 812
Oljhovikov, M. A. 241
Onslow, H. 55
Onthophagus 214
Operculina 857
Operculum of gastropods 774
Ophiurid larvae 626
Oppel, A. 184
Orbitolites 360, 852
Orbulina 88, 376, 861
Ord, W. M. 653
Ornithosaurians 1069
Orthagoriscus 1048, 1064
Orthoceras 765, 809, 841, 1047
Orthogenesis 807
Orthotoluidene 370
Orton, J. H. 165, 177
Osborne, H. F. 147, 900, ^05, 1019,

1036, 1072
Oscillatoria 477
Osmosis 18, 243, etc.

Osmunda 63 1, 640
Ostracoda, 165
Ostraea 165, 219
Ostrich 47, 264, 1011
Ostwald, Wilhelm 74, 171, 256, 658;

Wolfgang 162, 253, 327, 450
Otoliths 666
Ottestad, Per 153, 154
Overbeck, A. 393, 423
Ovis Ammon, Poli etc, 882
Owen, Sir R. 29, 290, 806, 838, 900, 906,

949, 955
Ox, growth of 201
Oxyotes 662

Pacioli, Luca 89

Packard, A. S. 937
Pai, Kesava 151
Palaeechinus 946
Palm 888
Paludina 777
Pander, C. H. 83
Pangenesis 788
Pantin, C. J. 359; F. A. 254
Paphia 177
Papilio 664
Papillon, Femand 14
Parabolic girder 995
Paralomis 1057
Paramoecium 425
Parker, A. S. 260; G. H. 172; S. L.

155
Parr, Old 132
Parsons, H. de B. 1089
Partitions, theory of 609
Pascal, Blaise 2, 11

Pascher, A. 398, 632
Passiflora, pollen of 631
Pasteur, L. 650
Patella 167, 805
Pattern, 1090
Pauli, W. 360, 656, 669
Paulian, Rene 215
Peari, Raymond 118, 149, 155, 158,

186, 193, 937, 959
Pearsall, W. H. 223
Pearse, H. L. 263
Pearson, G. A. 236; Kari 60, 119, 125,

166, 190, 884
Peas, growth of 223
Pecten 830
Peddie, William 318, 561
Pellew, Ann 502
Pellia, spores of 478
Pelseneer, Paul 833
Pendulum 39
Peneroplis 868
Penguin 1015
Penicillinm 244
Penrose, M. 449
Periblem 494
Peridinium 487, 615, 738
Periploca, pollen of 631
Permeability, magnetic 311
Perrin, J. 9, 74
Peter, Kari 221, 229
Peters, R. A. 257
Petersen, Chr. 758, 796, 808; C. J. G.

177
Petsch, T. 29
Pettersson, Otto 240
Pettigrew, J. B. 744, 995
Petty, Sir William 90, 98
Pfeffer, W. 159, 222, 335, 336, 440, 627,

985
Pfeiffer, F. X. 931; N. 241
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Pfluger, E. 974
Phagocytosis 360
Phascura 642
Phase-beauty 194
Phasianella 772, 816
Phatnaspis 728
Philip, H. F. 48
Philipsastraea 514
Philolaus, 1097
Phormosoma 947
Phractaspis 730
Phvllophorus 718
Phyllotaxis 912
Phylogeny 340, 413, etc.

Picken, L. E. R. 404
Pike, F. H. 950
Pileopsis 814
Pinaeoceras 817
Pine-cone 515, 916
Pinna 1061
Pirondin?, G. 813
Pisum 223
Pith of rush 547
Pithecanthropus 1085
Pituitary body 264
Placuna 166

'

Plaice 195, 213, 229, 1088
Planaria 282
Planck, Max 21

Planorbis, 803, 813, 816
Plateau, Felix 38, 385; Joseph 71,

332, 351, 368, 373, 398, 465, 475,

496, 549, 563, 596, 712, 710
Plato 2, 152, 695, 724, 1026, 1097
Platonic bodies 724, 734
Plerome 464
Pleurocarpus 460
Pleurotomaria 777
Pliny 527, 749
Plutarch 1026
Pluteus larva 648
Podocoryne 559
Podocyrtis 718, 721

Poincare, Henri 21, 108, 284, 1028
PoiseuiUe, J. L. M. 956
Poisson, S. D. 89, 118
Polar furrow, 487
Polarity, morphological 280
Polistes 488, 526
Political arithmetic 90
Pollen 67, 630
Polyhalite 667
Polyhedra 550, 732, etc.

Polyprion 1063
Polyspecmy 335
Polytrichum 576
Poraacanthus 1062
Ponder, Eric 436, 438
Ponderal index 194

Pony, Shetland 268

Popoff, M. 60, 456
Poppy seed 564
Population 142
Porcelain, crackles in 523
Porchet, M. S. 256
Portier, Paul 248
Potamides 813
Potassium 459
Potter's wheel 392
Pottery, Roman 415
Potts, R. 246
Pouchet, G. 648
Poulton, Sir E. B. 958; E. P. 95
Powell, B. 544
Prenant, A. 293, 299, 323, 456, 459;

Marcel 670
Preston, F. W. 521; R. D. 403, 743
Price, A. T. 967
Price-Jones, C. 819
Priestley, J. M. 223, 471, 480, 495
Pringsheim, N. 601
Prismatium 718
Probability, theory of 20, 118, 136
Procetus 1024
Productus 829
Protococcus 80, 406, 477
Protohippus 1080
Przibram, Hans 165, 194, 216, 275,

278, 360, 858; Karl 75, 76
Psammobia 1061
Pseudopriacanthus 1063
Pteranodon 1069
Pteridophora 267
Pteris, antheridia of 643
Pteropods 832
Pucraria 159

Puget, M. 512
Pulvinulina 750, 766, 858, 863
Pupa 808
Purkinje, J. E. 290
Putter, A. 56, 222, 360, 747
Pyrosoma, egg of 602
Pythagoras 2, 759, 1026, 1097

Quadrant, bisection of 580
Quadrula 702
Quagga 1090
Quastel, J. H. 449
Quekett, J. T. 654
QuetelH>r A. 89, 95, 136
Quincke, H. H. 322, 'S31, 359, 418, 447,

502, 579, 659
Quirang, D. P. 203

Rabbit, growth of 117, 187; skull of
1077

Rabelais 5

Rabl, K. 60, 487
Radau, M. 38
Radiolaria 694
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Rado, Tibor 382
Rainey, George 10, 653
Ram, horns of 878
Raman, 8ir C. V. 656
Rameau and Sarrus 33

Rammer, W. 165

Ramsden, W. 451

Ramulina 413
Ranella 781

Rankine, W. J. Macquorn 355, 755,

997, 1017
Ransom's waves 294
Ranzio, Silvio 242
Raphides 646
Rashevsky, N. 70, 333
Rasumowsky, V. I. 979
Rauber, A. 490, 604, 633, 970, 979

Ray, John 4

Rayleigh, Lord 26, 55, 69, 72, 304,

380, 398, 418, 449, 469, 502, 510,

659
Read, L. J. 149

Reaumur, R. A. de 12, 162, 271, 528,

684, 781, 1031

Redwood, growth of 237
Reed, H. S. 260
Regan, C. Tate 423
Regeneration 271

Reichenbach, Hans 123

Reichert, C. B. 290
Reid, E. Waymouth 437

Reighart, J, E. 959
Reindeer beetle 209
Reinecke, J. C. M. 785
Reinke, J. 481, 576
Relay crystals 663
Remak, Robert 341, 456
Reusch, B. 55
Revenstorf 979
Reymond, Du Bois 73

Rhabdammina 870
Rheophax 422
Rhinoceros 807, 874, 905
Rhode, von 194

Rhumbler, L. 293, 301, 419, 506, 704,

807, 852, 863, 871, 892

Riccia 593, 677
Rice, J. 400
Richards, 0. W. 153

Richardson, G. M. 650
Richet, Charles 34
Richtmeyer, F. K. 54
Rideal, E. K. 72, 437
Ridgeway. Sir W. 1091

Riemann, B. 609
Ripples 510
Rissoa 565
Rivularia 477
Robb, R. C. 187

Robert, A. 483, 556, 568, 601

Robertson, Muriel 43; R. 162; T. B.

113, 130, 257, 331
Robin, Ch. 1020
Robinson, Wilfred 746
Roederer, J. B. 98
Rohrig, A. 437, 892 ,

Rollefson, Gunner 179
Rolleston, G. 206
Roosevelt, Th. 961
Rorqual, Sibbald's 69, 173
Rose, Gustav 654
Ross, Ronald 146, 158

Rotalia 365, 792, 865
Rouleaux of blood-corpuscles 439
Roulettes 368
Roux, W. 12, 84, 287, 337, 584, 607,

952
Rudolf, G. de M. 980
Runge, F. F. 659
Runnstrom, J. 438
Rusconi, M. 487
Ruskin, John 661, 932
Russell, E. S. 167
Russow, 110
Rutherford, Lord 286
Rutimeyer, L. 906
Rvder, J. A. 330, 360, 899, 937
Rzasnicki, Adolf 1091

Sachs, J. 60, 63, 115, 222, 344, 933, 974
Sachs's rule 450, 475, 567, 601

Sagrina 422
St Ange, G. J. Martin 243
St Loup, R. 162

St Venant, Barre de 884, 891, 967
SaUsbury, E. J. 217
Salpingoeca 408
Salvia, hairs of 488
Salvinia 601

Sambon, L. W. 944
Samec, M. 656, 669
Samter, M. and Heymons 254
Sandberger, G. 796
Saponin 446
Sapphirina 1055
Sarcode 18

Sasaki, Kichiro 198, 301

Saunders, A. M. Carr 148
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