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Introduction: The
Main Problem

Prerequisites. What background is needed for reading this text? Chiefly,
a knowledge of piecewise linear topology. For many years the standard
reference in that area has been the text Introduction to Piecewise-Linear
Topology, by C. P. Rourke and B. J. Sanderson (1972), and we assume
familiarity with much of their book. To be honest, that book presumes
extensive understanding of both general and algebraic topology; as a con-
sequence we implicitly are assuming those subjects as well. In an attempt
to limit our presumptions, we specifically shall take as granted the results
from two fairly standard texts on general and algebraic topology, both by
J. R. Munkres—namely, his Topology: Second Edition (2000) and Elements
of Algebraic Topology (1984), each of which can be treated quite effectively
in a year-long graduate course.

Unfortunately, even those three texts turn out to be insufficient for all
our needs. The purpose of the initial Chapter 0, the Prequel, is to correct
that deficiency.

Basic Terminology. The notation laid out in this subsection should be
familiar to those who have read Rourke and Sanderson’s text. Neverthe-
less, we spell out the essentials needed to fully understand the forthcoming
discussion of the primary issues addressed in this book.

Here R denotes the set of real numbers and Rn denotes n-dimensional
Euclidean space, the Cartesian product of n copies of R. For 1 ≤ k < n we
regard Rk as included in Rn in the obvious way, as the subset containing all
points whose final (n− k)-coordinates are all equal to zero.

xiii



xiv Introduction: The Main Problem

We use Bn to denote the standard n-ball (or n-cell) in Rn, IntBn to
denote its interior, and Sn−1 to denote the standard (n − 1)-sphere, the
boundary, ∂Bn, of Bn. Specifically,

Bn = {〈x1, x2, . . . , xn〉 ∈ Rn | x21 + x22 + · · ·+ x2n ≤ 1},
IntBn = {〈x1, x2, . . . , xn〉 ∈ Rn | x21 + x22 + · · ·+ x2n < 1}, and

Sn−1 = ∂Bn = {〈x1, x2, . . . , xn〉 ∈ Rn | x21 + x22 + · · ·+ x2n = 1}.
We call any space homeomorphic to Bn or Sn−1 an n-cell or an (n − 1)-
sphere, respectively. The k-ball Bk is defined as a subset of Rk, but for
each k < n the inclusion Rk ⊂ Rn determines a standard k-ball Bk and a
standard (k − 1)-sphere Sk−1 in Rn as well.

All simplicial complexes and CW complexes are assumed to be locally
finite. A polyhedron is the underlying space of a simplicial complex. While
a simplicial complex K and the underlying polyhedron |K| are two differ-
ent things, we will not always maintain this distinction in our terminology.
Piecewise linear is abbreviated PL.

An n-dimensional (topological) manifold is a separable metric space in
which each point has a neighborhood that is homeomorphic to Rn. Such a
neighborhood is called a coordinate neighborhood of the point.

The Main Problem. The central topic in this text is topological embed-
dings. Formally, an embedding of one topological space X in another space
Y is nothing more than a homeomorphism of X onto a subspace of Y . The
domain X is called the embedded space and the target Y is called the am-
bient space. Two embeddings λ,λ′ : X → Y are equivalent if there exists a
(topological) homeomorphism Θ of Y onto itself such that Θ ◦ λ = λ′. The
main problem in the study of topological embeddings is:

Main Problem. Which embeddings of X in Y are equivalent?

In extremely rare circumstances all pairs of embeddings are equivalent. For
instance, if X is just a point, the equivalence question for an arbitrary
pair of embeddings of X in a given space Y amounts to the question of
homogeneity of Y , which has an affirmative answer whenever, for example,
Y is a connected manifold.

Ordinarily, then, our interest will turn to conditions under which embed-
dings are equivalent, and we will limit attention to reasonably well-behaved
spaces X and Y . Specifically, in this book the embedded space X will ordi-
narily be a compact polyhedron1 and the ambient space Y will always be a
manifold, usually a piecewise linear (abbreviated PL) manifold. If there are
embeddings of the polyhedron X in the PL manifold Y that are homotopic

1A major exception is the study of embeddings of the Cantor set.
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but not equivalent, then X is said to knot in Y . For given polyhedra X and
Y , it is often possible to identify a distinguished class of PL embeddings of
X in Y that are considered to be unknotted ; any PL embedding that is not
equivalent to an unknotted embedding is then said to be knotted.

While we do place limitations on the spaces considered, we intentionally
include the most general kinds of topological embeddings in the discussion.
Let X be a polyhedron and let Y be a PL manifold. An embedding X → Y
is said to be a tame embedding if it is equivalent to a PL embedding; the
others are called wild. For embeddings of polyhedra the Main Problem splits
off two fundamental special cases, one called the Taming Problem and the
other the (PL) Unknotting Problem.

Taming Problem. Which topological embeddings of X in Y are equivalent
to PL embeddings?

Unknotting Problem. Which PL embeddings of X in Y are equivalent?

The point is, for tame embeddings the Main Problem reduces to the
Unknotting Problem, and PL methods provide effective – occasionally com-
plete – answers to the latter. As we shall see, local homotopy properties
give very precise answers to the Taming Problem. This also means that
local homotopy properties make detection of wildness quite easy. There are
related crude measures that adequately differentiate certain types of wild-
ness, but the category of wild embeddings is highly chaotic. In fact, at the
time of this writing very little effort had been devoted to classifying in any
systematic way the wild embeddings of polyhedra in manifolds.

A closed subset X of a PL manifold N is said to be tame (or, tame as
a subspace) if there exists a homeomorphism h of N onto itself such that
h(X) is a subpolyhedron; X itself is wild if it is homeomorphic to a simplicial
complex but is not tame. Here the focus is more on the subspace X than
on a particular embedding. One can provide a direct connection, of course:
a closed subset X of a PL manifold N is tame as a subspace if and only if
there exist a polyhedron K and a homeomorphism g : K → X such that
λ = inclusion ◦ g : K → N is a tame embedding.

We say that a k-cell or (k − 1)-sphere X in Rn is flat if there exists
a homeomorphism h of Rn such that h(X) is the standard object of its
type. Generally, whenever we have some standard object S ⊂ Rn and a
subset X of Rn homeomorphic to S, we will say that X is flat if there is
a homeomorphism h : Rn → Rn such that h(X) = S. In other words, S
represents the preferred copy in Rn, and another copy in Rn is flat if it is
ambiently equivalent (setwise) to S.

Flatness Problem. Under what conditions is a cell or sphere in Rn flat?
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The problems listed above are the main ones that will occupy attention
in this text. They all can be viewed as uniqueness questions in the sense that
they ask whether given embeddings are equivalent. There are also existence
questions for embeddings, which will be studied alongside the uniqueness
questions. We identify two such: one global, the other local.

Existence Problem. Given a map f : X → Y, is f homotopic to a topo-
logical embedding or a PL embedding?

Approximation Problem. Which topological embeddings of X in Y can
be approximated by PL embeddings?

The flatness concept has a local version. A topological embedding e :
M → N of a k-dimensional manifold M into an n-dimensional manifold N
is locally flat at x ∈ M if there exists a neighborhood U of e(x) in N such
that (U,U ∩ e(M)) ∼= (Rn,Rk). An embedding is said to be locally flat if
it is locally flat at each point x of its domain. The last two problems have
local variations: for example, one can ask whether a map of manifolds is
homotopic to a locally flat embedding or whether a topological embedding
of manifolds can be approximated by locally flat embeddings.

When considering an embedding e : X → Y , the dimension of Y is called
the ambient dimension. Almost all of the examples and theorems in this
book involve embeddings in manifolds of ambient dimension three or more.
We skip dimension two because classical results like the famous Schönflies
theorem (Theorem 0.11.1) imply that no nonstandard local phenomena arise
in conjunction with embeddings into manifolds of that dimension.

While isolated examples of wild embeddings were discovered earlier, the
work of R. H. Bing in the 1950s and 1960s revealed the pervasiveness of
wildness in dimensions three and higher. His pioneering work led to a pro-
liferation of embedding results, first concentrating on dimension three, but
soon expanding to include higher dimensions as well. The subject of topo-
logical embeddings is now a mature branch of geometric topology, and this
book is meant to be a summary and exposition of the fundamental results
in the area.

Organization. As mentioned earlier, the initial Chapter 0 addresses back-
ground matters. The real beginning, Chapter 1, treats knottedness, tame-
ness and local flatness; it provides examples of knotted, PL codimension-two
sphere pairs in all sufficiently large dimensions, and it delves into the local
homotopy properties of nicely embedded objects. Chapter 2 presents the
basic examples that motivate the study and offers context for theorems to
come later; it also includes several flatness theorems that can be proved
without the use of engulfing. Engulfing – the fundamental technical tool for
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the subject – is introduced and carefully examined in Chapter 3. The re-
maining chapters strive to systematically investigate the central embedding
problems. That investigation is organized by codimension. The codimen-
sion of an embedding e : X → Y is defined by codim(e) = dimY − dimX,
the difference between the ambient dimension and the dimension of the em-
bedded space. Generally speaking, the greater the codimension the easier it
is to prove positive theorems about embeddings. Chapter 4 treats the trivial
range, the range in which the codimension of the embedded space exceeds its
dimension, where the most general theorems hold. Next, Chapter 5 moves
on to codimension three, to which many trivial-range theorems extend with
appropriate modifications. However, very few of the codimension-three the-
orems extend to codimension two, so Chapter 6 is largely devoted to the
construction of codimension-two counterexamples. In codimension one the
situation changes once more, and again there are many positive results,
which form the subject of Chapter 7. The book concludes in Chapter 8 with
a quick description of some codimension-zero results.





Chapter 0

Prequel

This Prequel sets forth – with references, but with few proofs – important
background results covered by neither Rourke and Sanderson nor Munkres.
Readers may want to briefly familiarize themselves with the contents of this
chapter and then begin their serious study with Chapter 1. Chapter 0 can be
used as a reference for topics that arise later and consulted as needed. The
prerequisites covered in this chapter should be enough to carry the reader
through the first five chapters of the book. Beyond that point, additional
deep material occasionally will be interwoven, without proof, to present a
complete picture of current developments.

0.1. More definitions and notation

The n-cube In is the n-fold product [−1, 1]n. Following Rourke and Sander-
son (1972, page 4), we consistently use I1 to denote the interval [−1, 1], but
sometimes use I to denote the interval [0, 1]. Whether I denotes [0, 1] or
[−1, 1] should be clear from the context. Of course In is homeomorphic to
Bn, so the n-cube is an n-cell. In some contexts a k-cell will also be called
a k-disk and will be denoted Dk.

Let X and Y be two spaces with base points x0 and y0, respectively.
The wedge (or wedge sum) of X and Y is the quotient of the disjoint union
X 
Y obtained by identifying x0 and y0. The wedge of X and Y is denoted
X ∨ Y and might also be called the one-point union of X and Y ; the wedge
of a finite number of circles is often called a bouquet of circles (Figure 0.1).

Upper half space Rn
+ consists of all the points in Rn whose last coordinate

is nonnegative; i.e.,

Rn
+ = {〈x1, x2, . . . , xn〉 | each xi is a real number and xn ≥ 0}.

1
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Figure 0.1. A bouquet of six circles

Note that Rk ⊂ Rn
+ if k < n.

An n-dimensional ∂-manifold (read “boundary manifold”) is a separable
metric space in which each point has a neighborhood1 that is homeomorphic
to Rn

+. We will use superscripts to denote the dimension of a manifold or a
∂-manifold. Thus the statement “Mn is a manifold” is to be interpreted to
mean that M is an n-dimensional manifold.

Let M be an n-dimensional ∂-manifold. The interior of M (denoted
IntM) consists of all points x ∈ M such that x has a neighborhood that
is homeomorphic to Rn. The boundary of M (denoted ∂M) is defined by
∂M = M � IntM .

Remark. Our use of the term ∂-manifold is somewhat nonstandard, but
we prefer it to the more awkward manifold-with-boundary. The use of the
term ∂-manifold allows us to be consistent in our use of the word manifold :
in this book a manifold always has empty boundary.

A closed manifold is a manifold that is compact and has empty boundary.
Since all our manifolds have empty boundary (by definition), there is no
difference between a closed manifold and a compact manifold.

The Invariance of Domain Theorem (Munkres, 1984, Theorem 4-36.5)
should be used to work several of the following exercises.

Exercises

0.1.1. The dimension of a manifold is well defined: two manifolds of dif-
ferent dimensions cannot be homeomorphic.

0.1.2. The dimension of a ∂-manifold is well defined.

0.1.3. Let M be an n-dimensional ∂-manifold and let y be a point in M .
If the last coordinate of h(y) is zero for one pair (U, h) in which U

1A neighborhood is not necessarily an open set. A neighborhood of the point x in the space
X is any subset U of X such that x is contained in the topological interior of U .
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is a neighborhood of y and h : U → Rn
+ is a homeomorphism, then

the last coordinate of h(y) is zero for every such pair (U, h).

0.1.4. The interior and boundary of a ∂-manifold are well defined. Specif-
ically, if M and N are ∂-manifolds and h : M → N is a topological
homeomorphism, then h(∂M) = ∂N and h(IntM) = IntN .

0.1.5. If M is an n-dimensional ∂-manifold, then ∂M is an (n − 1)-
dimensional manifold (without boundary).

0.1.6. If M and N are ∂-manifolds, then M ×N is a ∂-manifold and

∂(M ×N) = (∂M ×N) ∪ (M × ∂N).

0.2. The Seifert-van Kampen Theorem

We will assume familiarity with the fundamental group and the theory of
covering spaces. The Seifert-van Kampen Theorem relates the fundamental
group of the union of two spaces to the fundamental groups of the two
constituent pieces. The setting for the theorem posits the following data:
U1 and U2 are pathwise connected, open subsets of a space X such that
X = U1 ∪ U2 and U0 = U1 ∩ U2 are pathwise connected, x ∈ U0, φi :
π1(U0, x) → π1(Ui, x), i ∈ {1, 2}, and ψi : π1(Ui, x) → π1(X,x), i ∈ {0, 1, 2},
are the inclusion-induced homomorphisms.

Theorem 0.2.1 (Seifert-van Kampen). If H is a group and ρi : π1(Ui, x) →
H are any homomorphisms for i = 0, 1, 2 such that the diagram

π1(U1, x)
ρ1

����
��

��
��

��

π1(U0, x)

φ1

������������ ρ0 ��

φ2 ������������ H

π1(U2, x)

ρ2

������������

is commutative, then there exists a unique homomorphism σ : π1(X,x) → H
such that σψi = ρi for i = 0, 1, 2; that is, σ renders the following diagram
commutative:

π1(U1, x)
ρ1

����
��

��
��

��

ψ1

��
π1(U0, x)

φ1

������������ ψ0 ��

φ2 ������������
π1(X,x)

σ �� H

π1(U2, x)

ρ2

������������
ψ2

��
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The full theorem and proof are presented in (Munkres, 2000, §70). There
is also a thorough exposition of the theorem in (Massey, 1967, pp. 113–122)
(or (Massey, 1991, pp. 86–96)). Later in the chapter (Theorem 0.11.5) we
will prove the following addendum to 0.2.1: if φi : π1(U0, x) → π1(Ui, x) is
one-to-one for i = 1, 2, then ψi : π1(Ui, x) → π1(X,x) is also one-to-one for
i = 0, 1, 2.

As the next two examples illustrate, the Seifert-van Kampen Theorem
can often be used to gain useful information about a fundamental group
without explicitly computing the group itself.

Example 0.2.2. Examples abound where π1(X,x) is trivial despite non-
triviality of all π1(Ui, x). But the theorem immediately gives nontriviality
of π1(X,x) when one can locate a group H and pair of homomorphisms
ρi : π1(Ui, x) → H (i = 1, 2) satisfying the commutativity relationship in
the statement with either ρ1 or ρ2 nontrivial. �

Example 0.2.3. The Seifert-van Kampen Theorem can also be exploited to
detect nonabelian fundamental groups. We illustrate with a simple example,
in which each π1(Ui, x) is infinite cyclic, φ1 amounts to multiplication by 2,
and φ2 to multiplication by 3. To see why π1(X,x) can be nonabelian,
simply consider H = S3, the symmetric group on the symbols {a, b, c},
define ρ1 : π1(U1, x) ∼= Z → S3 by defining ρ1(1) to be the transposition (ab)
and ρ2 : π1(U2, x) ∼= Z → S3 by defining ρ2(1) to be the 3-cycle (abc). Then
the trivial homomorphism ρ0 fleshes out the commutative diagram, and the
presence of noncommuting elements (ab), (abc) in σ(π1(X,x)) ⊂ S3 indicates
π1(X,x) is nonabelian. A similar argument can be provided whenever φ1,
φ2 amount to multiplication by relatively prime integers greater than 1. The
Seifert-vanKampen Theorem will be used this way in the next chapter to
prove that torus knots are truly knotted. �

When the theorem is used to compute π1(X,x), it is important to bear in
mind that π1(X,x) is generated by the images of ψ1 and ψ2 (Munkres, 2000,
Theorem 9-59.1). With this additional piece of information it is relatively
easy to see that the version of the Seifert-van Kampen Theorem stated above
implies the classical version of the theorem. The classical version asserts that

π1(X,x) ∼= π1(U1, x) ∗ π1(U2, x)/N,

where π1(U1, x)∗π1(U2, x) is the free product and N is the normal subgroup
generated by elements of the form φ1(g)(φ2(g))

−1 with g ∈ π1(U0, x).

Example 0.2.4. One of the simplest, but most useful, applications of the
classical Seifert-van Kampen Theorem is to the computation of the funda-
mental group of a 2-dimensional CW complex. Let X be a CW complex that
consists of one 0-cell {x0} with 1-cells a1, a2, . . . , an attached. Then X is a
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bouquet of circles (Figure 0.1). Decompose X into open sets U1, U2, . . . , Un,
each homotopy equivalent to a circle, any two of which intersect in a fixed
contractible neighborhood of x0, and apply the theorem inductively to see
that π1(X,x0) is a free group with one generator for each of the 1-cells in X.
To be specific, let αi be the loop that goes once around ai. Then π1(X,x0)
is the free group generated by {α1, α2, . . . , αn}.

Now attach 2-cells b1, b2, . . . , bk to X to form a 2-dimensional CW com-
plex Y . Each 2-cell bi is attached via a map fi : ∂I

2 → X. We can think of fi
as representing an element of π1(X,x0), and [fi] can be written as a word βi
in α1, α2, . . . , αn. Applying the classical Seifert-van Kampen Theorem in-
ductively yields that π1(Y, x0) is isomorphic to the group with presentation
〈α1, α2, . . . , αn : β1, β2, . . . , βk〉. �

Often we will encounter subsets of manifolds that do not have the ho-
motopy type of finite CW complexes. Such sets, in general, can have more
complicated fundamental groups than those computable via the Seifert-
vanKampen Theorem.

Example 0.2.5. Let cn be the circle of radius 1/n centered at the point
〈1/n, 0〉 in R2. Each cn passes through the base point z0 = 〈0, 0〉. The
Hawaiian earring is the compact set Z = ∪∞

n=1cn (see Figure 0.2). For
each n there is a loop γn that wraps once around cn. Even though Z looks
superficially like a straightforward generalization of the X in the previous
example, the group π1(Z, z0) is not generated by {γn}. To see this, note
that the loop β : [0, 1] → Z that wraps the subinterval [1/(n + 1), 1/n]
once around cn defines an element of π1(Z, x0) that cannot be written as a
finite product of γn’s. The structure of π1(Z, z0) is surprisingly large and
complex (and interesting); a detailed description of the group can be found
in (Cannon and Conner, 2000). �

Figure 0.2. The Hawaiian earring
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0.3. The ultimate duality theorem

Homology and cohomology are powerful tools in the study of embeddings.
One reason for their usefulness is the many duality theorems they satisfy that
relate the homology/cohomology of an embedded object to the cohomol-
ogy/homology of its complement. The duality theorems found in (Munkres,
1984), which apply to triangulable homology manifolds, are not quite gen-
eral enough for our purposes, so we state the theorems to be employed. The
following basic duality theorem can be found on page 342 of (Spanier, 1966).

Theorem 0.3.1 (Duality). Let G be an abelian group, and let (A,B) be a
pair of closed subsets of the G-orientable n-manifold M . Then for all p ≥ 0
there exists a natural isomorphism

Hn−p(M �B,M �A;G)
∼=−→ Ȟp

c (A,B;G).

The group on the right is called the pth Alexander (relative) cohomol-
ogy group of (A,B) with G-coefficients and compact supports. (Throughout
this section G will denote an Abelian group.) When A and B are com-
pact, Ȟp

c (A,B;G) equals the more usual pth Alexander cohomology of the
pair (again with G-coefficients), and when, in addition, both A and B are
themselves complexes, manifolds, or absolute neighborhood retracts (to be
defined in §0.6), it equals the usual singular cohomology of the pair. A
connected n-manifold M is G-orientable if Hn

c (M ;G) ∼= G; an arbitrary
n-manifold is G-orientable if each of its components is. Every n-manifold is
Z2-orientable; those that contain a copy of MB × In−2, where MB denotes
the Möbius Band, fail to be Z-orientable.

Say that a ∂-manifold W is G-orientable if IntW is.

Corollary 0.3.2 (Poincaré-Lefschetz Duality). If W is a G-orientable n-
dimensional ∂-manifold, then Hn−p(W ;G) ∼= Hp

c (W,∂W ;G) for every p.

Proof. It follows from Collaring Theorem 2.4.10, to be proved later, that
the manifold W ′ = W ∪ ∂W × (−1, 0], obtained from the disjoint union of
W and ∂W × (−1, 0] by attaching the product ∂W × (−1, 0] to ∂W ⊂ W
along ∂W ×{0} in the obvious way, is homeomorphic to IntW and, thus, is
G-orientable. Apply the duality theorem in W ′ with A = W and B = ∂W
to obtain

Hp
c (W,∂W ;G) ∼= Hn−p(W

′ � ∂W,W ′ �W ;G)

= Hn−p(IntW ∪ ∂W × (−1, 0), ∂W × (−1, 0);G)

∼= Hn−p(IntW ;G)

∼= Hn−p(W ;G). �



0.3. The ultimate duality theorem 7

For a compact pair (A,B), there is a fundamental relationship between
the cohomology with compact supports of A � B and the unrestricted co-
homology of that pair (Spanier, 1966, p. 321):

Theorem 0.3.3. For any compact Hausdorff pair (A,B),

Ȟq
c (A�B;G) ∼= Ȟq(A,B;G).

Corollary 0.3.4. A compact, connected, n-dimensional ∂-manifold M is
G-orientable if and only if Hn(M,∂M ;G) ∼= G.

Corollary 0.3.5. If A is a locally compact Hausdorff space and B is a closed
subset of A, then

Ȟq
c (A�B;G) ∼= Ȟq

c (A,B;G).

Proof. Let A+, B+ denote the one-point compactifications of A,B, respec-
tively, with ∞ the ideal point. Then

Ȟq
c (A;G) ∼= Ȟq(A+, {∞};G) ∼= ˜̌Hq(A+;G)

and similarly for B. The Five Lemma and another application of Theorem
0.3.3 yield

Ȟq
c (A,B;G) ∼= Ȟq(A+, B+;G) ∼= Ȟq

c (A�B : G). �

Corollary 0.3.6. Every open subset of a G-orientable manifold is G-orient-
able.

Proof. If U is a connected open subset of the G-orientable manifold Mn,
thenG ∼= H0(U ;G) ∼= Ȟn

c (M,M�U ;G) by duality, and Ȟn
c (M,M�U ;G) ∼=

Hn
c (U ;G) by 0.3.5. �

Corollary 0.3.7. If S is a locally compact Hausdorff space and q ≥ 2, then

Ȟq
c (S × R;G) ∼= Ȟq−1

c (S;G).

Proof. Let S+ denote the one-point compactification of S, with ∞ the ideal
point. A Mayer-Vietoris argument shows that Ȟq(Suspension of S+;G) ∼=
Ȟq−1(S+;G) for q ≥ 2. Thus,

Ȟq
c (S × R;G) ∼= Ȟq(Suspension of S+, Suspension of ∞;G)

∼= Ȟq(Suspension of S+;G) ∼= Hq−1(S+;G)

∼= Ȟq−1(S+, {∞};G)

∼= Ȟq−1
c (S;G). �

Corollary 0.3.8. A manifold M is G-orientable if and only if M × R is
G-orientable.
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The equivalence of Alexander-Spanier cohomology with Čech cohomol-
ogy on compact spaces (Spanier, 1966, p. 319) and computation with the
latter yields:

Theorem 0.3.9 (Dimension). H i
c(S)

∼= 0 whenever i > dimS and S is
locally compact.

Corollary 0.3.10 (Local Duality). Let M be a G-orientable n-manifold,
X a closed, k-dimensional subset of M , and x ∈ X. If V is a coordinate

neighborhood of x, then H̃p(V �X;G) = 0 for 0 ≤ p ≤ n− k − 2.

Proof. Let V be a coordinate neighborhood of x. Then

Ȟn−p−1
c (X ∩ V ;G) ∼= Hp+1(V, V �X;G) ∼= H̃p(V �X;G),

the latter isomorphism coming from the long exact homology sequence of
the pair (V, V �X). All groups in this line are trivial, since n − p − 1 > k

and k = dim(X) ≥ dim(X ∩ V ). Thus H̃p(V �X;G) ∼= 0. �

One of the delicate issues that will require attention later in the book
is the question of when the homology connectivity of Corollary 0.3.10 can
be promoted to connectivity in the sense of homotopy. Dimension one is
special in that regard.

Corollary 0.3.11. If X is a k-dimensional closed subset of a connected
n-manifold M , k ≤ n − 2, then M � X is pathwise connected. Indeed,
each x ∈ X has arbitrarily small neighborhoods U such that U �X is path
connected.

Exercises

0.3.1. If Σ ⊂ Sn and Σ is homeomorphic to Sk, k < n, then

H̃i(S
n � Σ;Z) ∼=

{
Z if i = n− k − 1,

0 otherwise.

0.3.2. (Jordan Separation Theorem) If Σ ⊂ Sn and Σ is homeomorphic
to Sn−1, then Sn � Σ has exactly two components and Σ is the
topological frontier of each.

0.3.3. If X is a k-dimensional closed subset of a ∂-manifoldMn, k ≤ n−2,
then M �X is connected.

0.3.4. No manifold Mn that contains a copy of MB×In−2 (MB = Möbius
band) is Z-orientable.
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0.4. The Vietoris-Begle Theorem

Another algebraic result needed much later on is the Vietoris-Begle Map-
ping Theorem. It implies that a closed, surjective mapping for which all
point preimages are cohomologically acyclic induces isomorphisms of Čech
or Alexander cohomology. See (Spanier, 1966, p. 344) for the proof.

Theorem 0.4.1. Let f : X ′ → X be a closed surjective map between para-
compact Hausdorff spaces, and let G be an abelian group. Assume that there

is some m ≥ 0 such that ˜̌Hq(f−1(x);G) = 0 for all x ∈ X and q < m. Then

f∗ : Ȟq(X;G) → Ȟq(X ′;G)

is an isomorphism for q < m and a monomorphism for q = m.

0.5. Higher homotopy groups

Let X be a space with basepoint x0 ∈ X. For each integer n ≥ 0 there is
a group πn(X,x0), called the nth homotopy group of X with basepoint x0.
The definition of πn(X,x0) closely parallels that of the fundamental group,
only with the role of the unit interval taken over by the unit n-cube. For
that reason, throughout this section In will be used to denote [0, 1]n.

Let Fn denote the set of all maps (In, ∂In) → (X,x0). Define two maps
in Fn to be equivalent if they are homotopic relative to ∂In; i.e., f, f ′ ∈ Fn

are equivalent if there exists a homotopy Ψt : In → X between f and f ′

with Ψt(∂I
n) = {x0} for all t ∈ I. As a set, πn(X,x0) is just the set of

equivalence classes.

Define the group operation on Fn, n ≥ 1, as follows: for f, g ∈ Fn their
sum f + g ∈ Fn is the function determined by

(f + g)(t1, t2, . . . , tn) =

{
f(2t1, t2, . . . , tn) if 0 ≤ t1 ≤ 1/2

g(2t1 − 1, t2, . . . , tn) if 1/2 ≤ t1 ≤ 1.

Since the homotopy class [f + g] depends only on the classes [f ] and [g],
addition in Fn induces a well-defined addition in πn(X,x0) via [f ] + [g] =
[f + g]. One can easily verify that this makes πn(X,x0) a group; its identity
element is the class of the (only possible) constant map.

The 0-dimensional cube I0 is just a point and ∂I0 = ∅. With this
understanding the definition of the set π0(X,x0) makes sense (it consists of
the set of path components of X), but there is no group structure defined
on it. Even though π0(X,x0) does not have a group structure, we still
designate the equivalence class of the map I0 → x0 as the identity element.
This allows us to include π0(X,x0) in an important exact sequence to be
described below.
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A map ψ : (X,x0) → (Y, y0) leads to an induced homomorphism ψ# :
πn(X,x0) → πn(Y, y0) defined by ψ#([f ]) = [ψ ◦ f ]. The nth homotopy
group has the expected functoriality properties with respect to such base-
point-preserving maps of spaces. Unlike the fundamental group, however,
πn(X,x0) is always abelian when n > 1.

Application of lifting theorems such as (Munkres, 2000, Lemma 79.1)
to a covering map Θ : X ′ → X quickly yields that Θ# : πn(X

′, x) →
πn(X,Θ(x)) is an isomorphism for n > 1. Consequently, πn(X,x0) = 0 for
all n > 1 if the universal covering space of X is contractible.

Note that X is path connected if and only if π0(X,x0) = 0 and X is
simply connected if and only if both π0(X,x0) and π1(X,x0) are trivial.
There is a corresponding kind of connectivity in every dimension and it is
detected by the higher homotopy groups.

Definition. A space X is said to be k-connected, k ≥ 0, if each map
∂In+1 → X can be extended to a map In+1 → X for n = 0, 1, . . . , k.

Theorem 0.5.1. Let X be a pathwise connected space with basepoint x0.
For each k ≥ 0 the following are equivalent.

(1) X is k-connected.

(2) πn(X,x0) = 0 for n ≤ k.

(3) If K is a k-dimensional polyhedron and L is a closed subpolyhedron
of K, then any map (K,L) → (X,x0) is homotopic, rel L, to the
constant map K → x0.

Proof. Exercise 0.5.2. �

There is also a local version of connectivity, the usefulness of which will
be illustrated in the next two sections.

Definition. A space X is said to be locally connected in dimension k (ab-
breviated k-LC) if for every x ∈ X and for every neighborhood U of x in X
there exists a neighborhood V of x such that each map Sk → V extends to a
map Bk+1 → U . The space X is said to be locally k-connected (abbreviated
LCk) if X is n-LC for 0 ≤ n ≤ k.

We now define a relative homotopy group πn(X,A, x0), which is associ-
ated with a space X, a nonempty subset A of X, and a basepoint x0 ∈ A. In
order to define the relative group, it is convenient to identify In−1 with the
face In−1×{0} ⊂ ∂In and to use Jn−1 to denote the union of the remaining
faces of In (so ∂In = In−1∪Jn−1 and In−1∩Jn−1 = ∂In−1). An element of
πn(X,A, x0) is represented by a map of triples (In, In−1, Jn−1) → (X,A, x0).
Two such maps are equivalent if they are homotopic via a homotopy of
triples.
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The group operation is defined exactly as in the absolute case. The
only catch is that the coordinate tn plays a special role in the definition of
the relative homotopy group, and the definition of the sum of two equiv-
alence classes uses the coordinate t1 in an independent way. As a re-
sult, the definition of the group operation only makes sense if n ≥ 2;
π1(X,A, x0) is simply considered to be a set of equivalence classes with
no natural group structure (just like π0(X,x0)). As in the absolute case,
a continuous map ψ : (X,A, x0) → (Y,B, y0) induces a homomorphism
ψ∗ : πn(X,A, x0) → πn(Y,B, y0) defined by ψ∗([f ]) = [ψ ◦ f ].

We may identify the absolute group πn(X,x0) with the relative group
πn(X, {x0}, x0), so there is a natural (inclusion-induced) homomorphism
j∗ : πn(X,x0) → πn(X,A, x0). There is also an inclusion-induced homo-
morphism i∗ : πn(A, x0) → πn(X,x0). An element of πn+1(X,A, x0) is
represented by a map f : In+1 → X such that f(In) ⊂ A and f(Jn) = {x0}.
In particular, f(∂In) = {x0}, so f |In may be viewed as representing an el-
ement of πn(A, x0). This correspondence induces a natural homomorphism
∂ : πn+1(X,A, x0) → πn(A, x0). The homomorphism ∂ is called the bound-
ary operator because f |Jn is constant and so f |In is essentially f |∂In+1.
The three homomorphisms just described combine to form an extremely
valuable long exact sequence, the homotopy sequence of the pair (X,A) with
base point x0:

· · · −→ πn+1(X,A, x0)
∂−→ πn(A, x0)

i∗−→ πn(X,x0)
j∗−→ πn(X,A, x0) −→ · · ·

A proof of the exactness of the homotopy sequence of a pair can be found
on pages 344 and 345 of (Hatcher, 2002).

Definition. A topological pair (X,A) is said to be k-connected, k ≥ 0,
if each map (In × {0}, ∂In × {0}) → (X,A) can be extended to a map
(In+1, Jn) → (X,A) for n = 0, 1, . . . , k.

The final theorem in the section will be applied in the proof of the basic
engulfing theorem of Chapter 3.

Theorem 0.5.2. Let X be a pathwise connected space with subset A and
basepoint x0 ∈ A. For each k ≥ 0 the following are equivalent.

(1) The pair (X,A) is k-connected.

(2) πn(X,A, x0) = 0 for n ≤ k.

(3) If K is a k-dimensional polyhedron and L is a closed subpolyhedron
of K, then any map (K,L) → (X,A) is homotopic, rel L, to a map
K → A.

Proof. Exercise 0.5.4. �
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Exercises

0.5.1. Sk is (k − 1)-connected.

0.5.2. Prove Theorem 0.5.1.

0.5.3. If X is k-connected and A is (k − 1)-connected, then (X,A) is a
k-connected pair. More generally, if the inclusion-induced homo-
morphism πi(A) → πi(X) is an epimorphism for i = k and an
isomorphism for i < k, then (X,A) is a k-connected pair.

0.5.4. Prove Theorem 0.5.2.

0.5.5. πn(X,x0) is abelian provided n ≥ 2.

0.5.6. πn(X,A, x0) is abelian provided n ≥ 3. Show by example that
π2(X,A, x0) need not be abelian.

0.6. Absolute neighborhood retracts

Although many spaces considered in this text are polyhedra, there are some
situations in which more general kinds of spaces are the appropriate ones to
use. The class of ANRs is particularly relevant.

Definition. A metric space Y is an absolute retract (abbreviated AR) if for
every metric space X and for every embedding e : Y → X such that e(Y )
is a closed subset of X, there is a retraction r : X → e(Y ). We say that
Y is an absolute neighborhood retract (abbreviated ANR) if for every metric
space X and for every embedding e : Y → X such that e(Y ) is a closed
subset of X, there exist a neighborhood U of e(Y ) in X and a retraction
r : U → e(Y ).

Finite-dimensional ANRs can be characterized in terms of local con-
nectivity and finite-dimensional ARs can be characterized in terms of both
connectivity and local connectivity. Detailed proofs of the next two theorems
may be found in (Hu, 1965, Chapter V).

Theorem 0.6.1. Let Y be a separable metric space of dimension k < ∞.
Then the following are equivalent.

(1) Y is an ANR.

(2) Y is locally contractible.

(3) Y is locally k-connected.

Theorem 0.6.2. Let Y be a separable metric space of dimension k < ∞.
Then the following are equivalent.

(1) Y is an AR.

(2) Y is contractible and locally contractible.
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(3) Y is k-connected and locally k-connected.

It follows easily from Theorem 0.6.1 that every finite-dimensional poly-
hedron or CW complex is an ANR. The Hawaiian earring is not an ANR;
neither is the sine (1/x) curve (Figure 2.13).

The next theorem identifies an especially useful property of ANRs.

Theorem 0.6.3. Let Y be a compact ANR and ε a positive number. There
exists δ > 0 such that for any two maps f0,f1 : S → Y of an arbitrary space
S to Y with d(f0, f1) < δ, there is a homotopy H : S × I → Y such that
H0 = f0, H1 = f1, and diamH({s} × I) < ε for all s ∈ S.

Sketch of Proof. Embed Y in the Hilbert cube I∞ = Π∞
n=1[0, 1/n], where

it has a neighborhood U that retracts to the embedded copy Y ′ of Y . Choose
δ small enough that the straight line homotopy from f0 to f1 stays in U and
still has diameter less than ε after being retracted into Y ′. �
Theorem 0.6.4 (Estimated Homotopy Extension Theorem). Let Y be an
ANR, X a normal space, f : X → Y a map, b : Y → (0,∞] another map,
A a closed subset of X, U a neighborhood of A in X, and µ : A × I → Y
a homotopy such that µ0 = f |A and diamµ({a} × I) < b(µ(a, t)) for all
a ∈ A and t ∈ I. Then there exists a homotopy H : X × I → Y such
that H0 = f , H|A × I = µ, H({x} × I) = f(x) for all x ∈ X � U , and
diamH({x} × I) < b(H(x, t)) for all x ∈ X and t ∈ I.

Proof. Define a map F ′ on Z = (X × {0}) ∪ (A × I) ⊂ X × I as f on
X×{0} and µ on A×I. Since Y is an ANR, F ′ has an extension F : O → Y
over some neighborhood O of Z in X × I. Find an open subset V of X,
A ⊂ V ⊂ U , such that V × I ⊂ O and diamF ({v} × I) < b(F (v, t)) for all
v ∈ V and t ∈ I. Apply Urysohn’s Lemma to obtain a map η : X → [0, 1]
for which η(X � V ) = 0 and η(A) = 1. Finally, define H : X × I → Y as
H(x, t) = F (x, η(x)t). �
Corollary 0.6.5. Suppose R : Y → A is a retraction of an ANR Y to
a compact subset A, and suppose η : A × I → Y is a homotopy between
η0 = inclA and an embedding λ = η1. Then Y retracts to λ(A); moreover,
if λ moves points less than c > 0 and diamRη({a} × I) < b for all a ∈ A,
then there is a retraction R′ : Y → λ(A) such that d(R′(y), R(y)) < b + 2c
for all y ∈ Y .

Proof. The homotopy η′ = λRη(λ−1 × Id) : λ(A) × I → λ(A) satisfies
η′1 = λR|λ(A) and η′0 = Id; obviously η′1 extends to λR : Y → λ(A). �

Exercises

0.6.1. Every n-cell is an AR.
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0.6.2. Every ∂-manifold is an ANR.

0.6.3. Every polyhedron is an ANR.

0.6.4. Give an example of an ANR that is not homeomorphic to a poly-
hedron.

0.7. Dimension theory

Munkres (2000, §50) (or (1975, §7-9)) contains most, but not quite all, of
what the reader needs to know about dimension theory. This section fills in
the necessary background. All topological spaces considered in this book are
separable metric spaces, so some of the technical complications of dimension
theory for more general spaces can be avoided.

Let U be an open cover of the space X. Say order(U) ≤ k+1 if no point
of X lies in more than k+1 of the elements of U . The statement dimX ≤ k
means that for every open cover U of X there exists an open cover V of X
such that V is a refinement of U and order(V) ≤ k + 1.

A function f : X → Y defined on a metric space is an ε-mapping if
diam f−1(y) < ε for every y ∈ Y . When dimX ≤ k and ε > 0 is given,
it is a fairly simple matter to use the nerve of a cover to construct an ε-
mapping of X into a k-dimensional polyhedron (Hurewicz and Wallman,
1948, pages 67–70). Alexandroff proved that, by modifying the polyhedron,
this mapping can be made onto and that the existence of ε-mappings into
k-dimensional polyhedra characterizes compacta of dimension ≤ k. The
following result appears as Theorem V10 in (Hurewicz and Wallman, 1948).

Theorem 0.7.1 (Alexandroff). A compact metric space X has dimension
≤ k if and only if for every ε > 0 there exists an ε-mapping of X onto a
polyhedron of dimension ≤ k.

Sketch of proof. When X admits an ε-mapping φ onto a k-dimensional
polyhedron P , one can compute η > 0 such that diamφ−1(x) < ε for all
x ∈ P . By subdividing P and carefully thickening the interiors of the
various simplices of the subdivision, one can produce an open cover V of P
with order(V) ≤ k + 1 and with diamV < η for all V ∈ V. Then

U = {φ−1(V ) | V ∈ V}

is a small mesh open cover of X of order k + 1. �

If X is a subset of a PL manifold, the polyhedron can be realized as a
subcomplex of the manifold. The following corollary illustrates how we will
make use of the dimension of an arbitrary compactum and the proof is an
early indication of how local connectivity will be used in this book.
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Corollary 0.7.2. Let X be a compact subset of the PL manifold W and let
k = dimX. For every ε > 0 there exists a k-dimensional polyhedron K ⊂ W
and an onto map g : X → K such that d(x, g(x)) < ε for every x ∈ X.

Proof. Since X is compact, we can replace W with a compact ∂-manifold
W ′ that contains X in its interior. Now W ′ is an ANR, so it is n-LC
at x for every n and for every x. The compactness of W ′ together with
a Lebesgue number argument establishes the following uniform version of
local connectivity: for each nonnegative integer n and for each ε > 0 there
exists δ > 0 such that any map of ∂In into a δ-subset of W ′ extends to a
map of In into an ε-subset of W ′.

Let ε > 0 be given. Choose δk such that any map of ∂Ik into a δk-subset
of W ′ extends to a map of Ik into an (ε/2)-subset of W ′. Then recursively
choose δk−1, δk−2, . . . , δ1 such that any map of ∂Ij into a δj-subset of W ′

extends to a map of Ij into a (δj+1/2)-subset of W
′. Set δ = δ1.

By the Alexandroff Theorem there is a δ-mapping f : X → L, where
L is a compact polyhedron of dimension ≤ k. The idea is to use the local
connectivity of W ′ to construct a map h : L → W ′ that is an approximate
inverse for f . Then we can define K = h(L) and g = h ◦ f .

If d(x, x′) ≥ δ, then f(x) �= f(x′). Compactness gives a positive number
η such that d(x, x′) ≥ δ implies that the distance from f(x) to f(x′) is ≥ η
in L. Let T be a triangulation of L such that each simplex in T has diameter
< η; then diam f−1(σ) < δ for every σ ∈ T .

For each vertex v ∈ T , define h(v) to be some point in f−1(v). Let σ be
a 1-simplex in T . We have already defined h|∂σ and the choice of δ1 allows
us to extend h to σ in such a way that diamh(σ) < δ2/2. Now consider
a 2-simplex τ ∈ T . Note that h|∂τ is already defined and diamh(∂τ) <
δ2. Hence the choice of δ2 allows us to extend h to τ in such a way that
diamh(τ) < δ3/2. This process is continued inductively and results in a
map h : L → W ′ such that diamh(σ) < ε/2 for every σ ∈ T . We may
assume that h is a PL map in general position.

Define K = h(L) and define g : X → K by g(x) = h(f(x)). Fix x ∈ X.
We must check that d(x, g(x)) < ε. Locate a simplex σ ∈ T such that
f(x) ∈ σ and choose a vertex v of σ. Then

d(x, g(x)) ≤ d(x, h(v)) + d(h(v), g(x)) = d(x, h(v)) + d(h(v), h(f(x))).

Now x and h(v) are both in f−1(σ), so d(x, h(v)) < δ < ε/2. In addi-
tion, both h(v) and h(f(x)) are in h(σ), so d(h(v), h(f(x))) < ε/2. Thus
d(x, g(x)) < ε. �
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For years the classic monograph by W. Hurewicz and H. Wallman (1948)
stood as the standard dimension theory reference. The more recent book by
J. van Mill (1989) is an excellent alternative.

0.8. The Hurewicz Isomorphism Theorem and its
localization

The Hurewicz Theorem relates homotopy and homology groups. The fol-
lowing statement appears on page 394 of Spanier (1966) and on page 366 of
Hatcher (2002).

Theorem 0.8.1 (Hurewicz Isomorphism). Let X be a (k − 1)-connected
space, k ≥ 2, with x0 ∈ X. Then there is a natural isomorphism πk(X,x0) →
Hk(X).

Corollary 0.8.2. If X is 1-connected and Hi(X) ∼= 0 for 1 ≤ i ≤ k, then
πi(X,x0) ∼= 0 for i ≤ k.

There is also a useful local version of the theorem that does not appear
in any of the standard references on algebraic topology.

Theorem 0.8.3 (Local Hurewicz). Suppose V ⊂ U0 ⊂ · · · ⊂ Uk, k ≥ 2, are
open sets such that Hk(V ) → Hk(U0) is trivial and πq(Uq) → πq(Uq+1) is
trivial for 0 ≤ q ≤ k − 1. Then πk(V ) → πk(Uk) is trivial.

Proof. Consider any map α : Sk → V . As [α] = 0 in Hk(U0), there exist a
subdivision L of Sk and a singular (k + 1)-chain c = Σjnjσj carried by U0

such that Σiα#(τi) = ∂c, where {τi} denotes a collection of 1–1 simplicial

maps ∆k → L, one for each k-simplex of L, determined by some ordering
of the vertices. Let K denote a geometric realization of the finite, singular
complex determined by the {σj}; here K contains L as a subcomplex, and
α : L → V ⊂ U0 has a natural extension β : |K| → U0. Let K ′ be the
union of K and the cone on its (k − 1)-skeleton. Since πq(Uq) → πq(Uq+1)
is trivial, we can extend β over successive skeleta to a map β′ : |K ′| → Uk.
Now [Sk] is zero in Hk(K) and hence in Hk(K

′). One can easily check that
K ′ is (k − 1)-connected. By the Hurewicz Isomorphism Theorem, [Sk] = 0
in πk(K

′). Application of β confirms that [α] = 0 in πk(Uk). �

Theorem 0.8.3 is also known as the Eventual Hurewicz Theorem—see
(Ferry, 1979, Proposition 3.1) and (Quinn, 1979, Theorem 5.2).

Several applications require a relative version of the Hurewicz Theorem.
A complete statement of the relative Hurewicz Theorem must take account
of the action of π1 on the higher homotopy groups. In order to avoid that
technicality we state the relative theorem only in the simply connected case.
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The full version can be found in (Spanier, 1966, page 397) or (Hatcher,
2002, page 371).

Theorem 0.8.4 (Relative Hurewicz Isomorphism). Let (X,A) be a (k−1)-
connected pair, k ≥ 2, such that A is nonempty and simply connected. Then
for each x0 ∈ A there is a natural isomorphism πk(X,A, x0) → Hk(X,A).

0.9. The Whitehead Theorem

The Whitehead Theorem allows one to detect algebraically that a map of
complexes is a homotopy equivalence.

Theorem 0.9.1 (Whitehead). A map f : K → L between simplicial com-
plexes (or CW complexes) is a homotopy equivalence if and only if f∗ :
πn(K) → πn(L) is an isomorphism for every n.

This particular statement of the theorem can be found in (Hatcher,
2002, page 346), for example. Here is a related result that is often easier
to apply, and which follows from the Whitehead Theorem, the Relative
Hurewicz Isomorphism Theorem, and a mapping cylinder construction.

Theorem 0.9.2. A map f : K → L between 1-connected simplicial com-
plexes (or CW complexes) is a homotopy equivalence if and only if f∗ :
H∗(K;Z) → H∗(L;Z) is an isomorphism.

0.10. Acyclic complexes and contractible manifolds

As an application of the theorems in the last few sections we briefly consider
acyclic and contractible spaces.

Definition. A space X is acyclic if ˜̌H∗(X;Z) ∼= 0.

The following is an immediate consequence of the Hurewicz and White-
head Theorems.

Theorem 0.10.1. A 1-connected complex K is contractible if and only if it
is acyclic.

Example 0.10.2. There exists a compact 2-dimensional CW complex that
is acyclic but not contractible.

Proof. The classic example is the CW complex Y that has one 0-cell, two
1-cells a and b, and two 2-cells attached to the loops a5b−3 and b3(ab)−2.

The cellular chain complex for Y has the form · · · → 0 → Z2 ∂−→ Z2 → Z,

where ∂ is represented by the matrix A =

[
5 −3
−2 1

]
. Since detA = −1,

∂ is an isomorphism; hence H̃∗(Y ;Z) ∼= 0 and Y is acyclic.
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By Example 0.2.4, π1(Y ) has presentation 〈α, β : α5β−3, β3(αβ)−2〉.
Thus π1(Y ) has two generators α and β and two relations α5 = β3 = (αβ)2.
This is the well-known binary icosahedral group, so called because there is
an order-two homomorphism of π1(Y ) onto the group G of rigid motions of
the icosahedron.

In order to complete the proof we need to show that π1(Y ) is nontrivial.
We will do that by exhibiting a homomorphism of π1(Y ) onto a nonabelian
subgroup of G. To determine such a homomorphism, send α to the coun-
terclockwise rotation through 2π/5 radians about the point x indicated in
Figure 0.3 and send β to the counterclockwise rotation through 2π/3 radians
about the point y. Then αβ is the rotation through π radians about the
point z, so all three of α5, β3, and (αβ)2 represent the identity motion. As a
result, this assignment extends to a homomorphism of π1(Y ) to G. Since βα
is rotation through an angle of π radians about z′, we see that αβ �= βα. �

x

y z
z

Figure 0.3. The icosahedron

In the preceding argument it was not necessary to compute π1(Y ) explic-
itly to determine its non-triviality, but it is known that G has 60 elements,
and that the order of π1(Y ) is 120.

Example 0.10.3. There exists a compact, contractible n-dimensional ∂-
manifold in Sn, n ≥ 5, that is not a ball.

Proof. Start with an acyclic 2-complex P (such as that in the preceding
example) and embed it in Sn, n ≥ 5. Name a regular neighborhood N of P
and set M = Sn � IntN . General position considerations yield that Sn �P
is 1-connected; the same holds for M , which is a (deformation) retract of
Sn �P , since N �P ∼= ∂N × [0, 1). Like P , N is acyclic; more importantly,
so is M , by duality or a simple Mayer-Vietoris argument (it helps to know
∂N = ∂M is orientable, due to §0.3). Hence M is contractible. Note that
∂M need not be a sphere. In particular, ∂M is 1-connected if and only if P
is, for general position implies that the arrow in the line below,

π1(∂M = ∂N) ∼= π1(∂N × [0, 1)) ∼= π1(N � P ) → π1(N) ∼= π1(P ),
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represents an isomorphism. �
Historical Notes. The contractible ∂-manifold M constructed in Exam-
ple 0.10.3 is called a Newman contractible manifold . It is named after
M. H. A. Newman (1948), who was the first to describe contractible ∂-
manifolds this way. The same construction can also be carried out (topolog-
ically) in S4, but the 4-dimensional case requires more care to ensure that
M is simply connected (see (Lickorish, 2003)). No such example is possible
in S3.

Exercise

0.10.1. The homomorphism described in the last paragraph of the proof of
Example 0.10.2 is an epimorphism.

0.11. The 2-dimensional PL Schönflies Theorem

A simple closed curve in a space X is the image of a continuous one-to-
one function f : S1 → X. The classical Jordan Curve Theorem states
that any simple closed curve in R2 separates R2 into exactly two compo-
nents, with the simple closed curve being the topological frontier of each
of the complementary domains. In this form the theorem generalizes to
high dimensions—see Exercise 0.3.2. There is another, stronger form of the
Jordan Curve Theorem, called the Schönflies Theorem, unique to two di-
mensions, which provides context for many of the results in this book. In
effect, the Schönflies Theorem shows that most of the unusual phenomena to
be studied in this book are high-dimensional and do not occur in dimension
two. This section offers a short review of this key result.

Theorem 0.11.1 (Topological Schönflies). For any two simple closed curves
P1 and P2 in R2, there is a (compactly supported) topological homeomor-
phism Θ : R2 → R2 such that Θ(P1) = P2.

We will not prove the topological Schönflies Theorem. A thorough ex-
position of the proof can be found in (Moise, 1977, Chapter 9). The original
version appeared in (Schönflies, 1908).

The tools of (Rourke and Sanderson, 1972) come very close to proving
the PL variant of the theorem; we complete the proof in that special case.

Theorem 0.11.2 (PL Schönflies). For any two polygonal simple closed
curves P1 and P2 in R2, there is a (compactly supported) PL homeomor-
phism Θ : R2 → R2 such that Θ(P1) = P2.

Lemma 0.11.3. Each polygonal simple closed curve P in R2 with at least
4 vertices has a pair of nonadjacent vertices v and w for which the interior
of the segment vw misses P .
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Proof. Identify consecutive vertices v1, v2, v3 of P , and form the triangle
∆ determined by them. Impose coordinates on R2 with v1, v3 on the x-axis
and v2 below it. Let K denote the complement in P of the two segments
v1v2 and v2v3. If no point of K meets ∆, then the segment determined by
v = v1 and w = v3 obviously has the desired property. Otherwise, choose
w to have least y-coordinate among the finitely many vertices of K � {v2}
touching the 2-cell bounded by ∆ (see Figure 0.4); in this case the segment
formed by v = v2 and w works.2 �

xv

v

v

w

y

1

2

3

K

Figure 0.4. The interior of segment v2w misses P

Theorem 0.11.4. Every polygonal simple closed curve P in R2 bounds a
PL 2-cell.

Proof. By induction on the number n of vertices in P , with the initial
case n = 3 being trivial. Inductively assume the result for all polygons of
fewer than n vertices, and consider a polygon P having n vertices. Apply
Lemma 0.11.3 to form two polygonal simple closed curves J1, J2, each having
fewer than n vertices, with J1∪J2 = P ∪vw and J1∩J2 = vw; by induction,
each Ji bounds a PL 2-cell Di (i = 1, 2). If D1 ∩D2 = vw, then D1 ∪D2 is
a disk and ∂(D1 ∪D2) = P . Otherwise, one of the Ji misses the interior of
the other 2-cell Dj, for if J1 ∩ IntD2 �= ∅, then J2 ∩ IntD1 = ∅, as D1 ⊂ D2

(see Figure 0.5). Let us say J1 ∩ IntD2 = ∅ for definiteness. Let C denote
the closure of the bounded component of R2 � P . It is left to the reader
to check that there is an elementary shelling (see Rourke and Sanderson
(1972), p. 40) of D1 to C across D2. Hence, C ∼= D1 is a 2-cell. �

Proof of Theorem 0.11.2. The theorem is an immediate corollary of The-
orem 0.11.4 and the Disc Theorem of Rourke and Sanderson (1972, Theo-
rem 3.34). �

2J. W. Cannon deserves credit for this elegant argument.
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Figure 0.5. Two possibilities for J1 ∪ J2

We close the chapter with an application of Theorem 0.11.4 that fur-
nishes a promised technical improvement to the Seifert-van Kampen Theo-
rem.

Theorem 0.11.5. In the setting of Seifert-van Kampen Theorem 0.2.1,
if both φi : π1(U0, x) → π1(Ui, x), i ∈ {1, 2}, are 1-1, then so are ψi :
π1(Ui, x) → π1(X,x), i ∈ {1, 2}.

Proof. Consider a loop α : ∂I2 → U1 representing an element of π1(U1, x).
It suffices to show that if α is inessential in X, then α is inessential in U1.
Let A1 = X � U2 and A2 = X � U1, and note that A1 ∩ A2 = ∅. Given a
path homotopy h : I2 → X between α and the constant path, choose δ > 0
less than the distance in I2 between h−1(A2) and ∂I2 ∪ h−1(A1). Build a
compact PL 2-dimensional ∂-manifold M ⊂ I2 satisfying

h−1(A2) ⊂ IntM ⊂ M ⊂ N(h−1(A2); δ) ⊂ Int I2 � h−1(A1).

List the components J1, J2, . . . , Jk of ∂M . Each Jj is a PL simple closed
curve; by Theorem 0.11.4, Jj bounds a disk Dj ⊂ Int I2. Order the Jj ’s
with the innermost ones listed first – specifically, order so that s > j implies
Js ∩Dj = ∅. Since J1 is an innermost curve, ∂M ∩ IntD1 = ∅, which yields
that either D1 ⊂ M or D1∩M = J1; consequently, either h(D1)∩A1 = ∅ or
h(D1)∩A2 = ∅. This means J1 ⊂ h−1(U0) is mapped to a nullhomotopic loop
in either U2 or U1, and by hypothesis then h(J1) must be nullhomotopic in
U0. Hence, h = h0 can be modified to produce a map h1 : I

2 → X satisfying

(1) h1|I2 � IntD1 = h|I2 � IntD1

(2) h1(D1) ⊂ U0.

Repeating, we recursively produce additional maps h2, . . . , hk : I2 → X such
that for t = 1, 2, . . . , k

(3) ht|I2 � IntDt = ht−1|I2 � IntDt

(4) ht(∪t
i=1Di) ⊂ U0.

In particular, condition (3) insures that ht|∂I2 = h|∂I2. Assuming h0, h1,
. . . , ht satisfy the preceding, we observe that IntDt+1�∪t

i=1Di either misses
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M or lives in IntM , and exactly as in the initial case, either ht(Dt+1) ⊂ U1

or ht(Dt+1) ⊂ U2; in either event Jt is mapped by ht to a loop nullhomotopic
in U0, implying the existence of the required map ht+1. As ∪k

i=1(IntDi) ⊃
h−1(A2), the final map hk : I2 → X has image in U1 = X�A2, so it provides
the desired path homotopy in U1 between α and the constant path. �



Chapter 1

Tame and Knotted
Embeddings

This chapter offers an introductory exploration of tameness, knottedness,
and local flatness. A classic theorem in piecewise linear topology assures that
any cell or sphere PL embedded in Sn is flat, in the PL category, provided its
codimension is greater than two. Thus, every manifold Mm PL embedded
in a PL manifold Nn is locally flat, provided n−m > 2; indeed, even when
m = n − 1, Mn−1 is locally flat in the topological sense. §1.4 lays out two
fundamental methods, suspending and spinning, that, among other effects,
promote a knotted codimension-k object in Sn to a knotted codimension-k
object in Sn+1. The suspension operator can introduce local knotting; it
almost instantly gives examples of PL codimension-two spheres in Sn that
fail to be locally flat. In contrast, the spinning operator circumvents the
introduction of local knotting; it easily leads to examples of PL codimension-
two spheres in Sn that are locally flat but not flat.

Section 1.3 sets forth definitions of local homotopy conditions on the
complement of an embedded object. It systematically analyzes which of
them are possessed by tame and locally flat objects. Certain of these con-
ditions turn out to play an absolutely essential role much later on in the
characterization of tameness and local flatness.

1.1. Knotted and flat piecewise linear embeddings

We begin with a review of some simple examples that illustrate various ways
in which PL embeddings of polyhedra can be knotted. Later in the section

23
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we will observe that PL embeddings of cells and spheres are flat, provided
the codimension is different from two.

Let X denote the disjoint union of Sn−1 and a point. If X1 ⊃ Sn−1 is a
copy of X in Rn with the special point lying in the bounded component of
Rn�Sn−1 and X2 ⊃ Sn−1 is another copy in Rn with the special point lying
in the unbounded component of Rn � Sn−1, then X1, X2 are inequivalently
embedded in Rn. To obtain a connected polyhedron with inequivalent copies
in Rn, do something similar to the wedge of Sn−1 and a line segment (see
Figure 1.1).

Figure 1.1. Inequivalent embeddings of S1 ∨ I in R2

Links of spheres represent another basic class of examples. Regard
Sp+q+1 as the join of Sp and Sq (Rourke and Sanderson, 1972, Proposi-
tion 2.23), and let L denote the natural copies of Sp and Sq forming this
join. By elementary properties of the join, the inclusion Sp ↪→ Sp+q+1�Sq is
a homotopy equivalence, so it cannot be homotopic to a constant. Now spec-
ify disjointly embedded (p+1)- and (q+1)-cells Bp+1, Bq+1 in Sp+q+1 and
let L′ = ∂Bp+1 ∪ ∂Bq+1. This time each component of L′ is null-homotopic
in the complement of the other component, so L and L′ are inequivalent
embeddings of Sp 
 Sq. The linked and unlinked embeddings are pictured
in Figure 1.2.

Figure 1.2. Linked and unlinked 1-spheres in S3

When p = q the links constructed in the previous paragraph all have
dimension approximately half the ambient dimension. It is necessary for
the dimension of the embedded space to be at least this large because PL
embeddings of manifolds into Rn or Sn unknot in the trivial range (Rourke
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and Sanderson, 1972, Corollary 5.9). In Chapter 4 we will generalize that
result to embeddings of arbitrary polyhedra (see Theorem 4.1.1).

Standard algebraic devices, like homology and homotopy groups, pro-
vide imperfect but efficacious invariants for measuring inequivalence. If λ, λ′

are embeddings of L in K and ξ represents an element of, say, Hk(L) for
which λ∗(ξ) and λ′

∗(ξ) are intrinsically different elements of Hk(K), different
in the sense that no automorphism of Hk(K) carries one to the other, then
λ,λ′ must be inequivalent. For instance, when λ carries L = S1 homeomor-
phically onto S1×{origin} in K = S1×R2, then any embedding λ′ : L → K
equivalent to λ must send a generator of H1(L) ∼= Z to a generator of
H1(K) ∼= Z.

It is obvious from the definition that equivalent embeddings have home-
omorphic complements. Thus another way to establish inequivalence is to
employ the standard algebraic invariants to distinguish the topological types
of the complements. Knots are the classic examples. These are 1-spheres PL
embedded in S3, typically in nonstandard fashion. A deep result about 3-
manifolds, the famous Loop Theorem of Papakyriakopoulos (1957), implies
that a knot K is flat if and only if π1(S

3 �K) ∼= Z. Compared with prov-
ing the Loop Theorem, finding examples of nontrivial (= nonflat) knots is
quite easy. For example, as in (Massey, 1967), for any (p, q)-torus knot Kp,q,
where p, q are relatively prime and p > 1 < q, π1(S

3 �Kp,q) is a nonabelian
group. (Torus knots are those equivalent to a 1-sphere on the boundary of
a solid torus standardly embedded in S3.) The method of Example 0.2.3
can be used to prove that the group is not abelian (Exercise 1.1.3), thereby
confirming that Kp,q is not flat. The knot K2,3 is shown in Figure 1.3.

Figure 1.3. The trefoil knot K2,3

Knotted (n − 2)-spheres in Sn, n ≥ 4, can be constructed from the 1-
dimensional examples by suspending and spinning. Those constructions will
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be treated in §1.4. When applied to PL objects, suspending and spinning
produce PL embeddings; hence there are knotted PL (n− 2)-spheres in Sn

for every n ≥ 3.

Two is the only codimension in which PL sphere pairs can be knotted in
the topological category. The following is a minor extension of the Unknot-
ting of Sphere Pairs Theorem (Rourke and Sanderson, 1972, Theorem 7.1).

Theorem 1.1.1. For k ≤ n − 3, every PL embedded k-cell or k-sphere in
Rn or Sn is unknotted and thus flat.

Comments on the proof. Since Sn is the one-point compactification of
Rn, any PL embedding of a sphere into Rn naturally defines a PL embedding
into Sn. The ambient homeomorphism that unknots a PL k-sphere in Sn

can be chosen to fix one point, so it induces an unknotting homeomorphism
in Rn. Thus any PL k-sphere, k ≤ n− 3, in Rn is PL flat as well.

The proof for embeddings of cells is left as an exercise. �

Corollary 1.1.2. If k ≤ n − 3, then every tamely embedded k-cell or k-
sphere in Rn or Sn is flat.

The issue of whether an embedded (n − 1)-sphere Σ ⊂ Sn is flat is
known as the Schönflies Problem due to its relationship with the Schönflies
Theorem (Theorem 0.11.1). The complement Sn�Σ has two components by
the Jordan Separation Theorem (Exercise 0.3.2). The components of Sn�Σ
are called complementary domains of Σ. It is relatively easy to check that Σ
is flat if and only if the closure of each of the complementary domains is an
n-cell, so the real question is whether those complementary domain closures
are n-cells.

Assume Σ is PL embedded and consider a complementary domain U
of Σ. There are two parts to the issue of PL flatness: (1) is U a PL ∂-
manifold and (2), if so, is it a PL n-cell? If (1) has an affirmative answer,
then for x ∈ U the Weak Schönflies Theorem (Rourke and Sanderson, 1972,
Theorem 3.38) promises that U � {x} is PL homeomorphic to Sn−1 × [0, 1).
It follows automatically that U is a topological n-cell, but it does not follow
that U is a PL n-cell. Indeed, the following conjecture is still open for n ≥ 4.

PL Schönflies Conjecture. If Σ is a PL (n − 1)-sphere in Sn, then Σ
bounds two PL n-cells in Sn.

The PL Schönflies Conjecture is known to be true in dimension three.
It is also known, in all dimensions, that the closure of one complementary
domain U is a PL n-cell if the other one is (Rourke and Sanderson, 1972,
Corollary 3.13). If U is a PL ∂-manifold, then attaching a PL n-cell B to U
along Σ = ∂B produces a PL n-manifold Mn which has the homotopy type
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of Sn. When n ≥ 5, Mn will be PL homeomorphic to Sn by the PL Poincaré
Theorem (Rourke and Sanderson, 1972, p. 9); being the complement in M =
Sn of the PL n-cell B, U also will be a PL n-cell. With these results in hand,
examination of the link of a vertex shows that the PL Schönflies conjecture in
dimension n−1 implies that the closures of both complementary domains are
PL ∂-manifolds. As a consequence, a proof of the PL Schönflies conjecture in
dimension 4 would imply that the conjecture holds in all higher dimensions
as well (Rourke and Sanderson, 1972, page 47). At present, however, the
4-dimensional case is unresolved.

In §2.4 we will prove a topological Schönflies theorem. One of its corol-
laries attests that an (n − 1)-sphere in Sn is flat if the closures of its two
complementary domains are (topological) ∂-manifolds. Temporarily assum-
ing this corollary, we derive topological flatness results for PL embedded
cells and spheres in codimension one.

Theorem 1.1.3. Every PL embedded (n − 1)-sphere in Rn or Sn is topo-
logically flat.

Proof. By induction on n. Assume the result holds for dimension k − 1,
and consider a PL embedded (k− 1)-sphere Σ in Sk. Since all link pairs are
topologically standard, by induction, Σ is locally flat. Thus, the closure of
each component of Sk �Σ is a ∂-manifold. Hence, by Corollary 2.4.11, Σ is
flat, and the inductive step is established. �

A similar argument shows that any PL embedded (n − 1)-cell in Sn is
locally flat.

Theorem 1.1.4. Every locally flat (n− 1)-cell in Rn is flat.

This relies upon the following, the proof of which is left as an exercise.

Lemma 1.1.5. Suppose λ : In−1 → Rn is an embedding such that both
λ(In−2 × [0, 2/3]) and λ(In−2 × [1/3, 1]) are flat. Then λ(In−1) is flat.

Corollary 1.1.6. Every PL embedded (n−1)-cell in Rn or Sn is topologically
flat.

Historical Notes. The PL Schönflies Conjecture is known to hold for n ≤
3. For n = 2 this is Theorem 0.11.2 and for n = 3 this is a theorem due
to J. W. Alexander (1924a). The Alexander-Newman Theorem states that
the closure of one complementary domain is a PL n-cell if the other one
is (Alexander, 1930), (Newman, 1926). The proof that the PL Schönflies
Conjecture in dimension four implies the conjecture in higher dimensions
relies on the high-dimensional PL Poincaré Theorem of Smale (1961). The
proof of the Poincaré Theorem in dimension 5, which Rourke and Sanderson
leave untreated, depends on the theorem that every PL n-manifold with the
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homology of Sn, n ≥ 5, bounds some compact, contractible, PL, (n+1)-
dimensional ∂-manifold (Kervaire, 1969).

Exercises

1.1.1. The two embeddings of S1 ∨ I shown in Figure 1.1 are equivalent
in S2.

1.1.2. Let L be the link of two circles in S3 that is shown in the left half
of Figure 1.2 and let L′ be the link in the right half of the same
figure. (We will refer to L as the Hopf link and to L′ as the unlink.)
Prove that S3 �L has the homotopy type of the torus S1 ×S1 and
that S3�L′ has the homotopy type of S1∨S1∨S2. Conclude that
H1(S

3 � L) ∼= H1(S
3 � L′) but that π1(S3 � L) �∼= π1(S

3 � L′).

1.1.3. Let T 2 = S1 × S1 be the 2-torus. The standard embedding of the
torus in S3 is the one shown in Figure 1.4; it is a tame embedding
that extends to an embedding S1 × B2 → S3. A circle of the
form {point} × S1 is called a meridian and a circle of the form
S1 × {point} is called a longitude of the torus. Let p and q be two
relatively prime positive integers.
(a) Prove that there is a simple closed curve Kp,q on T 2 that is

homologous to p times a longitude plus q times a meridian.
The curve Kp,q ⊂ T 2 ⊂ S3 is called the (p, q)-torus knot.

(b) Prove that T 2 � Kp,q is an open annulus; i.e., T 2 � Kp,q
∼=

S1 × (−1, 1).
(c) Use the Seifert-vanKampen Theorem to prove that π1(S

3 �
Kp,q) has presentation 〈x, y : xp = yq〉.

(d) Prove that K1,q and Kp,1 are unknotted for every p and q.
(e) Use the method of Example 0.2.3 to prove that π1(S

3 �Kp,q)
is not abelian if p ≥ 2 and q ≥ 2.

1.1.4. Every tame k-cell in Sn or Rn is flat provided k ≤ n− 3.

1.1.5. Every tame arc in R3 is flat.

1.1.6. A PL embedding h : Sn−1 → Sn is PL unknotted if and only if the
closure of each complementary domain is a PL n-cell.

1.1.7. A topological (n−1)-sphere Σ ⊂ Sn is flat if and only if the closure
of each complementary domain is a topological n-cell.

1.1.8. Prove Lemma 1.1.5.

1.1.9. Prove Theorem 1.1.4.
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meridian longitude

Figure 1.4. The standard embedding of the torus

1.2. Tame and locally flat topological embeddings

We now turn our attention to local questions and show that, in most codi-
mensions, a PL embedding of one PL manifold in another is locally flat. The
exception is codimension two, in which PL embeddings may be locally as
well as globally knotted. Theorems 1.1.1 and 1.2.1 illustrate a general prin-
ciple of the subject: global flatness results for spheres and cells often serve
as prototypes for local flatness results regarding embeddings of manifolds.

Theorem 1.2.1. If Mm is a PL m-manifold tamely embedded in a PL
n-manifold Nn, then Mm is locally flat in Nn at each x ∈ Mm provided
n− k �= 2.

Proof. We may assume that Mm is a PL submanifold of Nn. In the case
when m ≤ n−3, the desired conclusion follows from (Rourke and Sanderson,
1972, Corollary 7.2). We must examine the inductive structure of that proof
in order to see how to extend it to codimension one. The link of a simplex σ
fromMm in (Nn,Mm) is a sphere pair of codimension n−m ≥ 3 but ambient
dimension less than n. This sphere pair is unknotted and the unknotting
homeomorphism can be extended across the join structure of the star of σ
to obtain a PL homeomorphism that flattens the associated star pair.

The proof breaks down in codimensions one and two because sphere
pairs in these codimensions are not necessarily flat in the PL sense. But, as
observed in the proof of Theorem 1.1.1, a codimension-one PL sphere pair
is topologically flat. Hence the inductive proof works in codimension one as
well, but gives only a (weaker) topological conclusion. �
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Since tameness implies local flatness for embeddings of manifolds in all
codimensions except two, we will say that an embedding e : M → N of a k-
dimensional PL manifoldM into an n-dimensional PL manifoldN , k �= n−2,
is wild at e(x) when e(M) fails to be locally flat at e(x).

As we will see in §1.4, PL embeddings can be locally knotted in codi-
mension two. It follows that a codimension-two PL embedding can fail to
be locally flat at some points. However, if N is a PL manifold and X is a
subcomplex of some triangulation, then X obviously is locally flat at each
point x ∈ X belonging to the interior of a top-dimensional simplex; hence
every tamely embedded PL manifoldX is locally flat at a dense set of points,
even in codimension two.

On the other hand, it follows from work of Kirby and Siebenmann (1977),
to be treated in more detail much later, that local flatness does not imply
tameness, not even for embedded manifolds. This is because manifolds can
fail to support PL structures and because locally flat embeddings might not
be approximable by PL embeddings. The distinctions between the concepts
of local flatness and tameness are inherently derived from the categories to
be considered – the concept of tameness belongs to the PL category and
that of flatness to the topological category.

Exercises

1.2.1. Every locally flat cell in Rn is flat.

1.2.2. Every convex n-cell in Rn is flat.

1.2.3. Every tame 1-sphere in R3 is locally flat.

1.2.4. (Transitivity of local flatness). If N3 ⊂ N2 ⊂ N1 are manifolds
with Ni+1 locally flat in Ni (i = 1, 2), then N3 is locally flat in N1.

1.2.5. If M and N are PL manifolds of dimensions n − 2 and n, respec-
tively, and e : M → N is a PL embedding, then the set of points at
which e is not locally flat is contained in the (n−4)-skeleton of M .
It follows that the dimension of the set of nonlocally flat points is
at most n−4 and every tame embedding of PL manifolds is locally
flat at a dense set of points.

1.3. Local co-connectedness properties

This section presents definitions of local homotopy conditions on the comple-
ment of an embedding. Heavy emphasis will be placed on these conditions
throughout our treatment of embeddings because of their prominent role in
the characterization of local flatness and tameness. We simply observe here
that the various local homotopy conditions are necessary for local flatness;
an overarching goal of later chapters in this book will be to prove that these
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conditions are also sufficient to guarantee local flatness or tameness. The
definitions of 1-LCC, 1-alg and locally flat will be used in the next section
and then extensively in Chapter 2; the rest of this section may be postponed
until later, and consulted when needed.

Definition. Let A denote a closed subset of the metric space X. Say that
A is locally k-co-connected in X at a ∈ A (abbreviated A is k-LCC at a)
if each neighborhood U of a in X contains a smaller neighborhood V of a
such that each map ∂Ik+1 → V �A extends to a map Ik+1 → U �A.

The “co” in this definition points to the complement of A.

When X is an n-manifold and A ⊂ X is a finite set, A is k-LCC in X
for k < n− 1 but not for k = n− 1.

In general, the k = 0 case is readily characterized: A is 0-LCC at a if
for each neighborhood U of a ∈ A there is another neighborhood V ⊂ U of
a such that V �A is contained in a path component of U �A. As indicated
in Chapter 0, duality ensures that each closed subset A of an n-manifold N
with dimA+2 ≤ n is 0-LCC in N . Unexpectedly, perhaps, even the k = −1
case has content: A is (−1)-LCC in X if and only if X � A is dense in X.
The k-LCC concept is meaningless for k < −1.

Definition. We say that A is locally k-co-connected (in X), written k-LCC,
if A is k-LCC at a for every a ∈ A. We write A is LCCk (in X) if it is i-LCC
for i = −1, 0, 1, . . . , k.

The case dimX = dimA + 2 is exceptional because then one cannot
expect A to be 1-LCC in a manifold X. The following definitions are the
appropriate ones for codimension-two manifold pairs.

Definition. Let A be a closed subset ofX. We say that A is 1-alg at a ∈ A if
each neighborhood U of a contains a smaller neighborhood V of a such that
the inclusion-induced homomorphism π1(V � A) → π1(U � A) has abelian
image. Say that A is locally homotopically unknotted (in X) at a ∈ A if A
is locally 1-alg at a and A is k-LCC at a for every k �= 1. Finally, say A is
locally homotopically unknotted if A is locally homotopically unknotted at
every a ∈ A.

The alg in the definition above stands for “abelian local groups.” In the
case of a codimension-two submanifold, the abelian image will be an infinite
cyclic subgroup.

Immediately we see that these k-LCC properties give necessary condi-
tions for local flatness. One of the major goals of later chapters in this book
is to show that they also provide sufficient conditions. Indeed, we shall learn
that almost invariably the 1-LCC condition alone implies local flatness of
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embedded submanifolds and local tameness of embedded polyhedra. The ex-
ception is codimension two, where the full force of the locally homotopically
unknotted condition is needed for the submanifold case.

Proposition 1.3.1. Suppose the manifold Mm ⊂ Nn is locally flatly em-
bedded in the n-manifold Nn.

If m < n− 2, then Mm is LCCn−m−2 in Nn.

If m = n− 1, Mn−1 is k-LCC in Nn for all k ≥ 1 but not for k = 0.

If m = n− 2, Mn−2 is locally homotopically unknotted in Nn.

Proof. Local flatness of Mm at z ∈ Mm ensures that z has arbitrarily small
neighborhoods U with (U,U ∩ Mm) pairwise homeomorphic to (Rn,Rm).
Hence,

U �Mm ≈ Rn �Rm ≈ Rm × (Rn−m � {origin}),
implying that U �Mm has the same homotopy type as Sn−m−1. �

In the Introduction we defined local flatness for embeddings of manifolds;
now we extend that definition to embeddings of ∂-manifolds.

Definition. Let e denote an embedding of an m-dimensional ∂-manifold
Mm into an n-manifold Nn. We say that e is locally flat at x ∈ Mm (and
that e(Mm) is locally flat at e(x)) if there exist a neighborhood U of e(x)
in Nn and a homeomorphism h of U onto Rn such that

(1) h(U ∩ e(Mm)) = Rm ⊂ Rn when x ∈ IntMm or

(2) h(U ∩ e(Mm)) = Rm
+ ⊂ Rn when x ∈ ∂Mm.

Taking the opposite tack, one says that e(Mm), m �= n− 2, is wild at e(x)
when it fails to be locally flat there.

For points in the interior of the ∂-manifold this definition of local flatness
agrees with the earlier one, and then Proposition 1.3.1 applies; for points on
the boundary we have the following complementary result.

Proposition 1.3.2. Let Mm be a ∂-manifold locally flatly embedded in an
n-manifold Nn and z ∈ ∂Mm. Then Mm is k-LCC in Nn at z for all k ≥ 0.

Proof. With U carefully chosen,

U �Mm ≈ Rn �Rm
+ ≈ Rm−1 × (Rn−m+1 �R1

+),

and both factors in the latter are contractible. (Rn−m+1 � R1
+ contracts to

any point of R1 �R1
+ via a straight line homotopy.) �

Definition. Let P be a polyhedron and let e : P → Nn be an embedding
of P in a topological n-manifold. The embedding e is said to be locally tame
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if for every x ∈ P there exist a PL neighborhood U of e(x) in Nn and a
homeomorphism hx : U → Rn such that hx ◦ e|e−1(U) is PL.

In the preceding definition there should be one fixed triangulation of P
and each of the maps hx ◦ e should be PL relative to that triangulation. A
straightforward general position argument yields the following result.

Proposition 1.3.3. If a p-dimensional polyhedron P is locally tamely em-
bedded in an n-manifold Nn, then P is LCCn−p−2 in Nn.

Proof. Exercise 1.3.2. �

The next result discloses the value of the Local Hurewicz Theorem.

Proposition 1.3.4. If a closed subset X of an n-manifold Nn is 1-LCC in
Nn, then X is LCCk in Nn, where k = n− dimX − 2.

Proof. The argument relies on the consequence of Duality Theorem 0.3.1
that, for any orientable open subsetW ofM and any q ≤ k, Hq(W�X;Z) →
Hq(W ;Z) is an isomorphism, since Hq+1(W,W � X;Z) ∼= Hn−q−1

c (X ∩
W ;Z) ∼= 0 and, similarly, Hq(W,W �X;Z) ∼= 0. Hence, for any coordinate
chart W , Hq(W �X;Z) ∼= 0.

Fix a neighborhood U of x ∈ X. By Corollary 0.3.10, hypothesis, and
induction on k, one can obtain neighborhoods

V ⊂ U0 ⊂ U1 ⊂ · · · ⊂ Uk−1 ⊂ Uk = U

of x, where the inclusion-induced homomorphismsHk(V �X) → Hk(U0�X)
and πq(Uq �X) → πq(Uq+1 �X) (q = 0, 1, . . . , k − 1) are all trivial. That
πk(V �X) → πk(U �X) also is trivial is then ensured by Local Hurewicz
Theorem 0.8.3. �

There is a related result for complements of codimension one manifolds
S. The proof retraces the inductive argument of 1.3.4. To obtain the trivi-
ality of Hk(V � S) → Hk(U0 � S), interpolate both a coordinate chart and
a smaller open set W that intersects S in a copy of Rn−1, since then

Hk(W,W � S;Z) ∼= Hn−k
c (W ∩ S;Z) ∼= Hn−k

c (Rn−1) ∼= 0 (k > 1).

The restriction of attention to LCC properties of S in U , rather than in Nn

itself, is simply to assure 0-LCC.

Proposition 1.3.5. Let Nn be a connected n-manifold and S a connected
(n-1)-manifold embedded in Nn as a closed subset such that Nn�S has two
components, U and V , and suppose S is 1-LCC in U = U ∪ S. Then S is
LCCk in U for all k ≥ 0.

There is also a stability result for local co-connectedness.



34 1. Tame and Knotted Embeddings

Proposition 1.3.6. Suppose Y is a locally contractible space and A ⊂ X.
Then A is k-LCC in X (respectively, is locally homotopically unknotted in
X) if and only if A × Y is k-LCC in X × Y (respectively, is locally homo-
topically unknotted in X × Y ).

Proof. Exercise 1.3.3. �

Proposition 1.3.7. Let X be a locally compact, locally contractible space
and Y a compact subset which is LCCk in X. Then for each ε > 0 and each
map f : (K,L) → (X,X �Y ) defined on a pair of simplicial complexes with
dim K ≤ k, there exists a map g : K → X � Y such that g|L = f |L and
ρ(g, f) < ε.

Proof. We treat only those A having a compact neighborhood N in X;
the general case is similar but requires more care. Given such a compact
neighborhood N , for each δ > 0 there exists η > 0 such that every map of
∂Ii, i ≤ k, into an η-subset of N �A extends to a map of Ii into a δ-subset
of X �A.

Find another neighborhood N ′ of A, N ′ ⊂ N ′ ⊂ IntN , and limit ε,
if necessary, so ε < min{d(N ′, X � N), d(A,X � N ′)}. Produce successive
positive numbers ε = δk+1 > δk > · · · > δ1 > 0 such that each map of ∂Ii

into a δi-subset of N � A extends to a map of Ii into a δi+1/3-subset of
X � A. Subdivide K using a triangulation T of such small mesh that all
images of simplices of T have diameter less than δ1/3, and let TA denote
the subcomplex consisting of all simplices whose images miss A. Note that
|TA| ⊃ |L|.

We define g to coincide with f on |TA|, and we extend g over the simplices
of T � TA in order of increasing dimension. For each vertex v ∈ T � TA, we
choose g(v) ∈ X � A within δ1/3 of f(v). For each 1-simplex τ of T � TA,
g|∂τ has been determined by this rule and its image is a δ1-subset of N �A,
so g can be extended over τ so g(τ) is a δ2/3-subset of X�A. Generally, for
each i-simplex σ of T � TA, g|∂σ will be determined with image a δi-subset
of N �A, and then g can be extended over σ so its image is a δi+1/3-subset
of X � A. The resulting map g sends K to X � A and is a satisfactory
approximation to f . �

Exercises

1.3.1. Let C be a nowhere dense subset of a metric space X and let c
be a point in C such that C is 0-LCC at c. Construct a map
µ : [0, 1] → X with µ(0) = c and C ∩ µ((0, 1]) = ∅.

1.3.2. Prove Proposition 1.3.3.

1.3.3. Prove Proposition 1.3.6 (stability of local co-connectedness).
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1.4. Suspending and spinning

There are two operations, known as suspending and spinning, that transform
embeddings of polyhedra into related higher-dimensional embeddings. In
most cases they transform PL embeddings into PL embeddings and they
transform wild or nonflat embeddings into new embeddings that are still
wild or nonflat. These operations allow us to construct examples of PL
(n− 2)-spheres in Sn that are either locally or globally knotted.

Suspending. Let K be a compact polyhedron (usually a sphere). By the
suspension of K, written Susp(K), we mean the (external) join K ∗ S0

of K with the 0-sphere S0 = {−1, 1}. The join is the union of all line
segments that join a point of S0 to a point of K (Rourke and Sanderson,
1972, pages 22–24). The points of S0 are called the suspension points. For
any A ⊂ K, K ∗ S0 naturally contains a copy of the suspension of A, and
Susp(A) is a subcomplex of Susp(K) when A is a subcomplex of K.

A
K

1

–1

Susp(K)

Susp(A)

Figure 1.5. Susp(A) is a subcomplex of Susp(K)

Note that Sn+1 = Susp(Sn), so the suspension of a subset of Sn is a
subset of Sn+1. This observation allows the definition of suspension to be
extended to spaces that are not polyhedra: If X is any subset of Sn, define
Susp(X) to be the union of all the straight line segments in Susp(Sn) that
join a point of X to one of the suspension points. Using this definition we
can speak, for example, of the suspension of a Cantor set.

Suspending converts any embedding e : K → Sn into an embedding
Susp(e) : Susp(K) → Sn+1. If e is a PL embedding, then Susp(e) is a PL
embedding; if e is a topological embedding, then Susp(e) is a topological
embedding.

Lemma 1.4.1. Let D be a subset of Sn.
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(1) If D is a d-cell, then Susp(D) is a (d+ 1)-cell.

(2) If D is a d-sphere, then Susp(D) is a (d+ 1)-sphere.

(3) Sn+1 � Susp(D) and Sn �D have the same homotopy type.

(4) If D fails to be 1-LCC at x ∈ D, then Susp(D) fails to be 1-LCC
at all points in the interior of the arc Susp({x}).

Proof. The first two parts of the lemma follow from the traditional suspen-
sion rules (Rourke and Sanderson, 1972, Proposition 2.23). Part (3) follows
from the observation that Susp(Sn)�Susp(D) ∼= (Sn�D)× (−1, 1). Use U
to denote the complement in Susp(Sn) of the two suspension points. Since
(U,U ∩ Susp(D)) is equivalent to (Sn × (−1, 1), D × (−1, 1)), the last part
follows from Proposition 1.3.6. �

Suspension preserves tameness but not necessarily local flatness, so it can
be used to construct tame embeddings that are not locally flat. Of course
such embeddings must have codimension two since Section 1.2 indicates that,
for manifolds, tameness implies local flatness in all other codimensions.

Example 1.4.2. For every n ≥ 4 there exist embeddings Sn−2 → Sn that
are piecewise linear but not locally flat.

Proof. Let K be a PL 1-sphere in S3 whose complement has nonabelian
fundamental group. For example, K could be one of the torus knots Kp,q in
S3 that were constructed in §1.1. Observe that Susp(K) is a PL 2-sphere
in S4. If B is any small convex 4-ball centered at one of the suspension
points, then B � Susp(K) ∼= (S3 � K) × [0, 1). Hence π1(B � Susp(K))
is nonabelian. Furthermore, if B2 ⊂ IntB1 are two such balls, then the
inclusion-induced map π1(B2 � Susp(K)) → π1(B1 � Susp(K)) is an iso-
morphism. It follows that Susp(K) is not 1-alg at the suspension point and
is, therefore, not locally flat at the suspension point (by Proposition 1.3.1).
Examples in higher dimensions are constructed by iterating the suspension
operation. �

The suspension operation, when applied to a globally knotted sphere,
produces a sphere that is locally knotted. Therefore suspension cannot
be used to produce higher-dimensional examples of locally flat but knotted
spheres. The second operation described in this section will rectify the failure
to preserve local flatness that is inherent in the suspension operation.

Spinning. The perspective to take for spinning is that of generalized cylin-
drical coordinates, with points of Rk+1 represented in terms of distance from
the origin and direction. Explicitly, regard Rk+1 as the quotient space

Rk+1 = ([0,∞)× Sk)/Gk = (R1
+ × Sk)/Gk,
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B

K

Susp(K)

Figure 1.6. ∂B contains a small copy of K and B ∩ Susp(K) is a cone

where Gk denotes the decomposition whose only nondegenerate element is
0 × Sk. (See §2.3 for a general review of decomposition spaces.) Taking
products with Rn−k−1, one recovers Rn as

Rn = (Rn−k−1 × R1
+ × Sk)/Gk = Rn−k

+ × Sk/R,

where R now denotes the decomposition of Rn−k
+ ×Sk whose nondegenerate

elements are the sets {x}×Sk, x ∈ Rn−k−1×{0}. This is easiest to visualize
when k = 1, for then one can imagine sweeping out Rn by rotating Rn−1

+

about its “edge” Rn−2; in case n = 3, this is the familiar process of sweeping
out R3 by rotating a half-plane about its boundary line; see Figure 1.7.

R
n-k

R
n

k

+

S

Figure 1.7. Viewing Rn as the k-spin of Rn−k
+

Similarly, upon taking one-point compactifications, one can view Sn as
the quotient space Sn = (Bn−k × Sk)/Tk, where Tk denotes the decomposi-
tion of Bn−k ×Sk into points and the k-spheres {x}×Sk, x ∈ ∂Bn−k. Here
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one should imagine holding ∂Bn−k fixed and revolving IntBn−k around Sk

to sweep out Bn; see Figure 1.8.

Bn-k

Sn

Sk

π

Figure 1.8. Viewing Sn as the k-spin of Bn−k

Let π : Bn−k × Sk → Sn = (Bn−k × Sk)/Tk denote the quotient map.
Given a subset A of Bn−k, let Spink(A) denote the image π(A×Sk). Some-
times it pays to identify the induced map χk : Sn → Bn−k, defined to
produce commutativity of the diagram below.

Bn−k × Sk

��

π �� Sn

χk=(proj)◦π−1������������

Bn−k

Definition. A map f : M → N between ∂-manifolds is said to be faithful
if f−1(∂N) = ∂M .

Lemma 1.4.3. If D is a d-cell faithfully embedded in Bn−k, then Spink(D)
is a (d + k)-sphere in Sn. Moreover, if D is locally flat in Bn−k, then
Spink(D) is locally flat in Sn. Conversely, if D fails to be 1-LCC at y ∈
IntD, then Spink(D) fails to be 1-LCC at each point of Spink({y}).

Proof. The fact that Spink(D) is a sphere is clear from the spinning con-
struction. At points of Spink(IntD), local flatness is immediate since

(Spink(IntBn−k), Spink(IntD)) ∼= (Rn−k × Sk, IntD × Sk).

At points of Spink(∂D) local flatness is a little more involved and is left as
an exercise.

To establish the converse, take x = π(y, z) ∈ Spink({y}), equate Bn−k

with π(Bn−k × {z}), and fix a neighborhood U of y in Bn−k. If Spink(D)
were 1-LCC at x, we could find a neighborhoodW of x in Spink(U) such that
every loop in W � Spink(D) would contract in Spink(U �D) = Spink(U)�
Spink(D). Choose a neighborhood V of y in Bn−k with V ×{z} ⊂ W . Then
any given loop γ in V �D would contract in Spink(U �D) via some map
ft, and χkft would show that γ contracts in U �D, a contradiction. �
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Example 1.4.4. For every n ≥ 3 there exist knotted embeddings Sn−2 → Sn

that are both piecewise linear and locally flat.

Proof. Focus on n > 3. Let (B3, D) be a PL (3, 1)-cell pair with π1(B
3�D)

nonabelian. Then by Lemma 1.4.3, Σ = Spinn−3(D) is an (n − 2)-sphere
locally flatly embedded in Sn = Spinn−3(B3), and the restriction of χk

determines a “retraction” Sn � Σ → B3 �D certifying that π1(S
n � Σ) is

also nonabelian. �

Remark. The spheres constructed in Example 1.4.4 are seen to be knot-
ted because the fundamental group of the complement is nonabelian. A PL
1-sphere in S3 is unknotted if and only if the fundamental group of its com-
plement is abelian, but in higher dimensions more subtle forms of knotting
are possible. In Chapter 6 we will construct locally flat PL (n− 2)-spheres
in Sn whose complements have abelian fundamental groups, but have non-
trivial higher homotopy groups.

Historical Notes. The construction of higher-dimensional knots by sus-
pending and spinning originated with E. Artin (1925). D. Rolfsen (1990)
has a lucid exposition of spinning and of a generalization known as “twist
spinning” that is due to E. C. Zeeman (1965).

Exercises

1.4.1. For A ⊂ Sk, Susp(A) is 1-LCC at a suspension point p ∈ S0 if and
only if π1(S

k � A) ∼= {1}. If A is a (k − 2)-sphere and π1(S
k �

A) is abelian, then Susp(A) is 1-alg at each suspension point; if
π1(S

k �A) is nonabelian, then Susp(A) is not locally flat at either
suspension point.

1.4.2. Let K be a locally flat PL (m − 2)-sphere in Sm, m ≥ 3, such
that π1(S

m � K) is nonabelian and suspend K (n − m) times to
define a PL embedding of Sn−2 into Sn. Prove that the set of
nonlocally flat points of this embedding is an (n −m − 1)-sphere.
Conclude that the dimension of the set of nonlocally flat points of
a PL embedding Mn−2 → Nn of PL manifolds can be any integer
in the range −1, . . . , n− 4. (Compare Exercise 1.2.5.)

1.4.3. If D is a d-cell faithfully and locally flatly embedded in Bn−k, then
Spink(D) is locally flat at points of Spink(∂D).

1.4.4. If A is an open, connected subset of Bn−1 such that A∩∂Bn−1 �= ∅,
then π1(Spin

1(A)) ∼= π1(A).





Chapter 2

Wild and Flat
Embeddings

To truly appreciate results about flatness, one must be keenly aware of the
existence of wildness. In this chapter we set forth a wealth of examples
of wild embeddings, beginning with two classics discovered by Antoine and
Alexander in the 1920s. Then we describe a technique involving decomposi-
tion spaces by which wild arcs in Sn are transmuted into wild arcs in Sn+1.
Toward the end of the chapter we introduce additional examples of wildly
embedded 1-, 2- and 3-cells in S3; some of them were discovered in the 1940s
by R. H. Fox and E. Artin while others were discovered in the 1960s by R.
H. Bing and his followers. The net effect is to make available examples of
wild embeddings in all possible dimensions and codimensions.

Partly for contrast, we also present several results about flat embed-
dings. All are derived by elementary methods, independent of the engulfing
techniques to be developed in subsequent chapters. The results include the
Generalized Schönflies Theorem of M. Brown confirming the flatness of any
codimension-one sphere in Sn that is locally flat, a version of work by J. C.
Cantrell assuring the flatness of a codimension-one sphere in Rn, n > 3, that
is locally flat everywhere except possibly one point and a result of V. Klee
attesting to the flatness of an arc in Rn that lies in a hyperplane.

2.1. Antoine’s necklace and Alexander’s horned sphere

Here we reproduce two fundamental, historically important examples of wild
embeddings in R3. The first is a wild embedding of the Cantor set and the
second is a wild embedding of S2. For each of them the invariant used

41
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to detect wildness is the fundamental group of the complement. Related
high-dimensional examples are constructed by suspension.

Example 2.1.1. There exists a wild Cantor set in R3.

A Cantor set in a manifold is an embedded copy of the familiar middle-
thirds Cantor set. Cantor sets are characterized as the compact, totally
disconnected metric spaces that are perfect, meaning that they have no
isolated points. The example we construct is known as Antoine’s necklace.

Remark. It is a mild but common and traditional misnomer to speak of a
Cantor set as being “wild”; strictly speaking, a Cantor set cannot be wild
because it is not an embedded polyhedron. There is a standard copy of
the Cantor set in [0, 1] ⊂ R1 ⊂ Rn, so what we really mean when we call
a Cantor set in Rn wild is that it is not flat. In the same spirit, when we
speak of “tame” Cantor sets in Rn, what we really mean is that they are
flat.

A solid torus is a ∂-manifold homeomorphic to S1×B2. Let T be a solid
torus standardly positioned in R3, and let T1, T2, T3, and T4 be solid tori
embedded in IntT as shown in Figure 2.1. (Note that (R3, T ) and (R3, Ti)
are pairwise homeomorphic.) Set A0 = T and A1 = ∪4

i=1Ti. In each Ti let
Ti1, Ti2, Ti3, Ti4 be solid tori embedded there exactly as the Ti are placed in
T . Replicate infinitely often, so that at the k-th step we have a ∂-manifold
Ak, the union of 4k (pairwise disjoint) solid tori, where each component
τ of Ak contains exactly 4 components of Ak+1, and where there exists a
homeomorphism of the triples (R3, τ, τ ∩ Ak+1) and (R3, T, A1). Arrange
these pieces so that each component τ of Ak has diameter at most εk, where
εk → 0 as k → ∞. (It is permissible to let the number of components of Ak

be larger than 4k in order to achieve small size.)

Set A = ∩kAk. Then A is a compact, totally disconnected metric space
with no isolated points. Hence, A is homeomorphic to the standard middle-
thirds Cantor set C in [0, 1] ⊂ R1 ⊂ R3. (If one wants to secure a home-
omorphism between A and C directly, without appeal to the topological
characterization of the Cantor set, one easily can show, based on the con-
struction, that A ∼= Π∞

i=1Xi, where Xi = {1, 2, 3, 4} is endowed with the
discrete topology, and exploit the related, more familiar C ∼= Π∞

i=1Si, where
each Si is a two-point set with the discrete topology.)

Proposition 2.1.2. π1(R3 �A) �= {1}.

Since π1(R3 � C) ∼= {1}, this proposition will confirm that A is wild.
The argument will be based on the following pair of technical facts.

Lemma 2.1.3. The inclusion-induced φ# : π1(∂Ti) → π1(R3 � IntA1) is
one-to-one.
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Figure 2.1. The first two stages in the construction of Antoine’s necklace

Lemma 2.1.4. The inclusion-induced φ′
# : π1(∂T ) → π1(T � IntA1) is

one-to-one.

Assuming Lemmas 2.1.3 and 2.1.4 for the moment, we complete the
proof of Proposition 2.1.2. Thicken R3 � IntA0 to an open set W0 that
admits a strong deformation retraction to R3 � IntA0. Similarly, for k ≥ 1
thicken Ak−1 � IntAk to an open set Wk that admits a strong deformation
retraction to Ak−1 � IntAk. Impose control on these thickenings to ensure
that Wk−1 ∩ Wk is naturally homeomorphic to ∂Ak × (−1, 1). Add the

components of Wk to ∪k−1
i=0Wi one at a time and apply Lemma 2.1.3 and

2.1.4 in conjunction with Theorem 0.11.5 to establish that π1(∪k−1
i=0Wi) →

π1(∪k
i=0Wi) is 1-1. It follows that Z ∼= π1(W0) → π1(R3 � A = ∪∞

i=0Wi) is
1-1. Thus, π1(R3 �A) �= {1}.

We now turn our attention to Lemmas 2.1.3 and 2.1.4. Their proofs are
based on the following claims.

Claim 2.1.5. Let J and C denote linked circles in R3, as shown in Fig-
ure 2.2. Then J is a retract of R3 � C.

C

J

Figure 2.2. Two linked circles
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Proof. Build a (round) 3-cell B containing J ∪C, and split it with a 2-cell
into two hemispherical balls BL and BR such that BR ⊃ J and BL intersects
C in a standard spanning arc. Find retractions:

(1) of R3 � C to B � C,

(2) of BL�C to ∂BL�C and, by extension, of B�C to (BR∪∂BL)�C,

(3) of the latter to BR � C, and

(4) of BR � C to J . �

A similar argument yields:

Claim 2.1.6. Let C and C ′ denote circles in R3 and E a planar disk in R3,
as shown in Figure 2.3. Then E � (C ∪ C ′) is a retract of R3 � (C ∪ C ′).

C
C

E

Figure 2.3. Three linked circles

Proof of Lemma 2.1.3. The proof of Lemma 2.1.3 is a relatively straight-
forward application of Claim 2.1.5 and is left as an exercise. �

Call a simple closed curve C a center line of a solid torus T if there
exists a homeomorphism of S1 ×B2 onto T carrying S1 × {0} onto C.

Proof of Lemma 2.1.4. Let C1 and C3 denote center lines of T1 and T3,
respectively. Find disks E2 and E4 in IntT as shown in Figure 2.4, where
Ej ∩ ∂A1 = ∂Ej ⊂ ∂Tj. Since C1 ∪E2 ∪C3 ∪E4 contains a center line of T ,
there exists a retraction

ρ : T � (C1 ∪E2 ∪ C3 ∪E4) → ∂T.

Thicken each Ej (j = 2, 4) to a 3-cell Bj such that, among other things,
Bj meets ∂Tj in an annulus and meets each of C1 and C3 in a standard arc
spanning Bj . Then Ej splits Bj into two 3-cells and the closure of ∂Bj �Tj

consists of two parallel copies, E+
j and E−

j , of Ej .

Suppose f : I2 → T � A1 with f(∂I2) ⊂ ∂T . Find a 2-dimensional PL
∂-manifold M in Int I2 such that

f−1(E2 ∪E4) ⊂ IntM ⊂ M ⊂ f−1(B2 ∪B4).
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Figure 2.4. Four linked circles

Identify the component P of I2�IntM containing ∂I2, then name the simple
closed curves Ji of P ∩M as well as the 2-cells Di ⊂ Int I2 bounded by Ji
(i = 1, . . . , k).

Fix i. There exists a j (either 2 or 4) such that f(Ji) ⊂ Bj � Ej , so
f(Ji) may be homotoped to lie entirely in either E+

j or E−
j . This homotopy

takes place inside of Bj � Ej , so it may be extended to all of I2 and we
may assume that f(Ji) is contained in either E+

j or E−
j ; to be specific let

us say f(Ji) ⊂ E+
j . The map f |Di shows that f |Ji is nullhomotopic in

R3 � (T1 ∪ T3), and Claim 2.1.6 implies that f can be redefined on Di so
that its image lies in E+

j � (C1 ∪ C3).

If this process is carried out for each i, then f will be replaced by a map
F : I2 → T � (C1 ∪E2 ∪C3 ∪E4) with F |∂I2 = f |∂I2. Now ρF reveals that
f |∂I2 is nullhomotopic in ∂T . �

This completes the construction of Antoine’s necklace. As mentioned
earlier, some variation is allowed in the number of solid tori used at each
stage of the construction: each solid torus at one stage may be replaced
by more than four solid tori at the next stage, and it is even permissible
for the number of solid tori to vary from one stage to another and from
one link to another. For this reason Antoine’s necklace can be regarded
as one specific member of a whole class of Antoine Cantor sets. There are
two conditions that must be satisfied by the construction of the objects in
this class. First, each component τ of the k-th stage ∂-manifold Ak must
be an unknotted solid torus and all the next-stage solid tori in τ must be
simply linked in a chain that winds exactly once around τ . This will ensure
that π1(R3 � A) �= {1}. The second condition is that each solid torus at
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one stage must be replaced by enough solid tori at the next stage so that
the diameters of the components of Ak approach 0 as k → ∞. This second
condition ensures that ∩∞

k=1Ak is totally disconnected and therefore a Cantor
set. Figure 2.5 shows three consecutive stages in a typical construction.

Figure 2.5. An Antoine Cantor set

Different Antoine Cantor sets may be inequivalently embedded. In fact,
varying the number of links in the Antoine construction results in an un-
countable number of different equivalence classes of embeddings of the Can-
tor set in R3 (Sher, 1968).

We now turn our attention to the construction of wild spheres.

Example 2.1.7. There exist wild 2-spheres in R3.

We will describe two different examples. The first is based on Antoine’s
necklace. Start with a round 3-cell F0 in R3 that is disjoint from A. Add a
tube F1 that connects the first 3-cell to the solid torus T . The tube is solid,
so F0 ∪ F1 is another 3-cell. Add thin tubes in T to connect F1 ∩ T to the
four components of A1; then do the same at later stages, adding 4k tubes
at stage k + 1. There should be four disjoint tubes in each component of
Ak as indicated in Figure 2.6. Define the Antoine 3-cell to be F , the union
of all the tubes together with Antoine’s necklace A, and define the Antoine
sphere to be ∂F .

It is not difficult to construct a homeomorphism from a 3-cell to F . We
will not explicitly describe that construction, although we will give some
indication of how a similar homeomorphism is constructed when we describe
Alexander’s horned sphere, below. The Antoine sphere bounds a topological
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J
F

F
F

0
1

Figure 2.6. The Antoine sphere

3-cell on the inside, but the exterior is not simply connected. In order to see
that the exterior is not simply connected, observe that F can be constructed
so that it does not intersect the loop J ⊂ R3�F shown in Figure 2.6. Since
J is homotopically essential in the complement of Antoine’s necklace, it is
homotopically essential in R3 � ∂F as well.

Note that we have not only constructed a wild 2-sphere, but have also
constructed a wild 3-cell F . Any arc in F that contains Antoine’s necklace
must be wild since the loop J represents a nontrivial loop in the complement.
Similarly any 2-cell in F that contains A must be wild. Hence we have the
following.

Example 2.1.8. There exist wild cells of dimension 1, 2, and 3 in R3.

We now construct a second wild 2-sphere in R3, the famous Alexander
horned sphere. The construction relies on a certain pillbox replacement
procedure.

Definition. A pillbox is a cylindrical 3-cell C with top disk τ and bottom
disk β containing simply linked solid tori T1 and T2, with T1 ∩ ∂C = τ and
T2 ∩ ∂C = β. (See Figure 2.7.)

Lemma 2.1.9. Let C be a pillbox, let X be a closed subset of R3 such that
X∩C = τ∪β, and let J be a 1-sphere in R3�(X∪C) as shown in Figure 2.8.
If π1(J) → π1(R3 � (X ∪ C)) is one-to-one, then π1(R3 � (X ∪ C)) →
π1(R3 � (X ∪ T1 ∪ T2)) is also one-to-one.

Proof. Use Claim 2.1.5 and the technique of proof of Lemma 2.1.4 to show
that if J is null-homotopic in R3 � (X ∪ T1 ∪ T2), then J is null-homotopic
in R3 � (X ∪ C). �



48 2. Wild and Flat Embeddings
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Figure 2.7. A pillbox

X

X

J

pillbox C

Figure 2.8. Lemma 2.1.9

To begin the construction of the horned sphere, let S1 be an unknotted
solid torus in R3. We will refer to this solid torus as the first stage in the
construction. It is obvious that π1(R3�S1) �= {1}; in fact, the loop J shown
in Figure 2.9 represents a nontrivial element of π1(R3�S1). Inside S1 identify
a pillbox C1 as indicated in Figure 2.9. Let D1 denote the complementary
3-cell in S1. Then S1 = C1 ∪D1 and C1 ∩D1 = τ1 ∪ β1, the top and bottom
of the pillbox.
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Figure 2.9. The first stage in the construction

Let T11 and T12 be the two distinguished solid tori in the pillbox C1.
Define the second stage of the construction by S2 = (S1 �C1)∪ (T11 ∪ T12).
It follows from Lemma 2.1.9 that the loop J represents a nontrivial element
of π1(R3 � S2).

S

new
pillboxes

2

Figure 2.10. The second stage in the construction

Inside T11 and T12 identify two new pillboxes C11 and C12 as indicated
in Figure 2.10. Inside each of those two pillboxes we can identify two distin-
guished solid tori. Define the third stage S3 to be the solid object obtained
from S2 by removing the two new pillboxes and replacing them with the
four solid tori just described. This construction is continued inductively,
with arrangements to ensure that the diameters of pillboxes at stage k ≥ 2
is bounded by 2−k. The process results in a nested sequence of compact
3-dimensional solids S1 ⊃ S2 ⊃ S3 ⊃ . . . . Define the Alexander 3-cell to
be the compact set B = ∩∞

i=1Si and define the Alexander horned sphere to
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be the boundary of B. Figure 2.11 shows a drawing of Alexander’s horned
sphere. Color Plates 2–4 display photographs of physical models of the first
few stages in the construction.

Figure 2.11. The Alexander horned sphere

In order to complete the proof that the horned sphere has the stated
properties, we must show two things: first, B is a topological 3-cell and
second, π1(R3�B) �= {1}. If the loop J shown in Figure 2.9 were inessential
in R3 �B, then compactness of the track of the shrinking homotopy would
provide an n such that J is inessential in R3 � Sn. But induction and
Lemma 2.1.9 show that J is essential in R3 � Sn for every n. Hence J is
essential in R3 �B.

To see that B is a 3-cell, it helps to think of it as a union rather than an
intersection. At the nth stage of the construction we have 2n−1 pillboxes,
each of which contains two distinguished solid tori. Each of these 2n solid
tori is then divided into a pillbox and a complementary 3-cell (the 3-cell
D1 at the first stage). Let Dn denote the union of the 2n−1 complementary
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3-cells at the nth stage. Inductively define B1 = D1 and Bn = Bn−1 ∪Dn.
Observe that

B = ∪∞
n=1Bn.

It is relatively simple to use the Bn to construct a homeomorphism from
a 3-cell to B. The construction is indicated in Figure 2.12, which shows the
domain of the homeomorphism. Map the large region at the bottom to D1,
map the union of the next two regions to D2, map the union of the next
four regions to D3, etc. Note that B�∪∞

n=1Bn is a Cantor set. We will call
this Cantor set the Alexander Cantor set. This completes the construction
of the Alexander horned sphere.

Figure 2.12. Construction of a homeomorphism from a 3-cell to B

Remark. It is interesting to compare the wildness of the two embeddings
of S2 that were constructed in this section. The Antoine sphere and the
Alexander horned sphere are alike in that each has one complementary do-
main whose closure is a 3-cell while the other complementary domain fails
to be simply connected. The two embeddings are also alike in that each of
them is locally flat except at the points of a Cantor set. There is, however,
a significant qualitative difference in the wildness exhibited by the two em-
beddings. In each case the Cantor set of wild points can be considered either
as a subset of the 2-sphere itself or as a subset of R3. Antoine’s necklace is
flat when considered as a subset of the Antoine sphere, but it is wild when
considered as a subset of R3. By contrast, the Alexander Cantor set is twice
flat in the sense that it is flat both as a subset of the Alexander 2-sphere
and as a subset of R3 (Exercise 2.1.3).

It is clear from the definition that local flatness is an open condition,
so the set of points at which an embedding is wild is always a closed set.
We will refer to this set as the wild set of the embedding and a point in
this set is called a wild point of the embedding. The wild set of each of the
spheres constructed in this section is a Cantor set. Later in the chapter we
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will construct wild embeddings of the 2-sphere in R3 whose wild sets are as
small as a single point or as large as the entire sphere.

High-dimensional examples are constructed by suspension.

Example 2.1.10. There exist wild cells and spheres in Sn for all n ≥ 3.

Proof. For n > 3, iteration of the suspension operator applied to the
examples constructed earlier in the section produces examples of nonflat
codimension-two and codimension-one spheres in Sn, as well as nonflat cells
in codimensions 0, 1, and 2. By Lemma 1.4.1, cells whose complements
have nontrivial fundamental groups suspend to cells with the same prop-
erty and the same codimension. As a result, the existence of wild cells and
spheres in all dimensions n ≥ 3 follows immediately from the 3-dimensional
examples. �

The wild cells constructed in Example 2.1.10 have dimensions n, n− 1,
and n−2 and are locally flat except at the points of the iterated suspension
of a Cantor set. Later in the chapter we will use other methods to construct
everywhere wild cells in Rn of all codimensions.

Historical Notes. Antoine’s necklace and the Alexander horned sphere are
named for their inventors, L. Antoine and J. W. Alexander, respectively.
The discovery of these two examples dates back to the 1920s; see (Antoine,
1921) and (Alexander, 1924b). Alexander pointed out (1924c) that An-
toine’s construction of a wild Cantor set could also be used to construct a
wild 2-sphere, as detailed in this section.

Exercises

2.1.1. Prove Lemma 2.1.3.

2.1.2. Let H be a compact, 2-dimensional ∂-manifold in R2. Show that
for each map f : H → T �A1 with f(∂H) ⊂ ∂T there exists a map
F : H → ∂T with F |∂H = f |∂H. [Hints: Show that every loop
in ∂T is null-homotopic in R3 � (Ti ∪ Ti+1 ∪ Ti+2); then show that
there exists a map f ′ : H → T � A1 such that f ′|∂H = f |∂H and
f ′(H) ∩ (E2 ∪ E4) = ∅.]

2.1.3. The Alexander Cantor set A is tame in R3. [Hint: Alter the em-
bedding of A so linear projection to the axis perpendicular to the
plane of the page in Figure 2.11 restricts to an embedding on A.]

2.1.4. Let C be a Cantor set in a connected n-manifold M . Construct an
arc α satisfying C ⊂ α ⊂ M .

2.1.5. Let C be a Cantor set in a connected n-manifold M , n > 2. Con-
struct an n-cell B satisfying C ⊂ ∂B ⊂ B ⊂ M , with C flat as a
subset of ∂B.
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2.1.6. Construct a 2-sphere in R3 such that neither complementary do-
main is simply connected.

2.1.7. Every compact, totally disconnected subset C of an n-manifold M
has a neighborhood U ⊃ C that can be embedded in Rn.

2.2. Function spaces

Several subsets of the function space C(X,Y )—the space of all continuous
functions of X to Y—will prove useful. For this discussion, one should
assume that Y admits a complete and bounded1 metric d and that C(X,Y )
is endowed with the complete metric ρ defined by

ρ(f, g) = lub{d(f(x), g(x)) | x ∈ X}.
We will be interested in the following subsets of C(X,Y ):

Surj(X,Y ) = the set of all mappings of X onto Y (the surjections);

Emb(X,Y ) = the set of all embeddings of X in Y ; and

Homeo(X,Y ) = the set of all homeomorphisms of X onto Y .

In case X and Y both are simplicial complexes, we will use CPL(X,Y ),
EmbPL(X,Y ), HomeoPL(X,Y ) and SurjPL(X,Y ) to denote the collection
of all PL mappings of the specified type. For the Main Problem to be
non-vacuous, in this notation we must have that Emb(X,Y ) is nonempty.
Correspondingly, to solve the Taming Problem, we must determine which
elements of Emb(X,Y ) are equivalent to elements of EmbPL(X,Y ), whereas
to answer the PL Unknotting Problem, we must decide which elements of
EmbPL(X,Y ) are equivalent.

Lemma 2.2.1. Let (X, dX) be a compact metric space, (Y, dY ) a complete
metric space, and C(X,Y ) the space of all continuous functions of X to Y
with metric ρ, as above. Then Surj(X,Y ) is a closed subset of C(X,Y ).
Moreover, Emb(X,Y ) and Homeo(X,Y ) are Gδ-subsets of C(X,Y ).

Proof. Showing that the complement of Surj(X,Y ) is open in C(X,Y ) is
straightforward (even when X is non-metrizable). In order to confirm that
Emb(X,Y ) is a Gδ-subset, consider the set of (1/k)-mappings

Ak = {f ∈ C(X,Y ) | diam f−1f(x) < 1/k for each x ∈ X}.
One can prove that Ak is open in the function space C(X,Y ) by producing,
for any f ∈ Ak, a corresponding η = η(f) > 0 such that dY (f(x1), f(x2)) > η
whenever x1, x2 ∈ X satisfy dX(x1, x2) ≥ 1/k. Each g ∈ C(X,Y ) with
ρ(g, f) < η/2 belongs to Ak, since then dY (g(x1), g(x2)) > 0 whenever

1Recall that if d′ is an arbitrary complete metric on Y , then the rule d(y, y′) =
min{1, d′(y, y′)} defines a complete and bounded metric on Y that is equivalent to the original in
the sense that they induce the same topology.
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dX(x1, x2) ≥ 1/k. It follows that ∩∞
k=1Ak = Emb(X,Y ) is a Gδ-set in

C(X,Y ). The Gδ-property also holds for Homeo(X,Y ) because

Homeo(X,Y ) = Surj(X,Y ) ∩ Emb(X,Y ). �

The point of Lemma 2.2.1, of course, is that these subsets all admit
complete metrics and, therefore, have the Baire property.

One should observe that ordinarily Homeo(X,Y ) fails to be closed in
C(X,Y ). Consequently, an arbitrary Cauchy sequence {hk} in Homeo(X,Y )
need not converge to a homeomorphism, although it will always converge in
C(X,Y ) to a surjection. Later we will want to know conditions under which
a Cauchy sequence of homeomorphisms does converge to a homeomorphism,
and, conveniently, one can recover appropriate conditions from the proof of
Lemma 2.2.1. Here is an all-important philosophical perspective that should
be extracted: when constructing a sequence of homeomorphisms hk : X → Y
recursively, if for each k one can impose control limiting ρ(hk+1, hk) that is
specified after h1, . . . , hk−1 and hk have all been determined, then one can
construct the entire sequence {hi} so that it converges to a homeomorphism.
The principle is embodied in the next Proposition.

Proposition 2.2.2. Let (X, dX) be a compact metric space and (Y, dY ) a
complete metric space. Suppose {hk | k = 1, 2, . . .} is a sequence of embed-
dings of X in Y and {εk | k = 0, 1, 2, . . .} is a sequence of positive numbers
such that for k > 0

(a) εk < εk−1/2;

(b) dY (hk(x1), hk(x2)) ≥ 4εk for all x1, x2 ∈ X with dX(x1, x2) ≥ 1/k,
and

(c) ρ(hk+1, hk) < εk.

Then {hk} converges in C(X,Y ) to an embedding h∞ : X → Y . Moreover,
if each hk is a homeomorphism, then so is h∞.

Proof. Exercise 2.2.1. �
Remark. Conditions (a) and (c) assure that {hk} forms a Cauchy sequence
in C(X,Y ). When (b) is added to the mix, the Conditions mimic similar
ones appearing in the proof of Lemma 2.2.1 that force all successive hk+i to
belong to the open subset Ak of C(X,Y ).

Theorem 2.2.3. If X is a compact metric space of dimension at most k,
then Emb(X,R2k+1) is a dense Gδ-subset of C(X,R2k+1).

Proof. The fact that Emb(X,R2k+1) is a Gδ-set follows from Lemma 2.2.1.
See (Munkres, 1975, Theorem 7.9.6) for a proof of density. The full theorem
may also be found on page 56 of (Hurewicz and Wallman, 1948). �
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Theorem 2.2.4. If K is a finite k-complex and M is a PL m-manifold,
2k < m, then EmbPL(K,M) is dense in C(K,M).

Proof. Munkres’s argument, which establishes density of EmbPL(K,Rm)
in C(K,Rm), can be applied in one chart at a time to give the result—see
(Rourke and Sanderson, 1972, Theorem 5.4). �

Remark. Theorem 2.2.3 is sharp. For k = 1 there are famous examples,
reproduced in Munkres, of finite 1-complexes that do not embed in R2. In
Chapter 5 we will prove the more general result that the k-skeleton of a
(2k + 2)-simplex cannot be embedded in R2k.

Exercise

2.2.1. Prove Proposition 2.2.2.

2.3. Shrinkable decompositions and the Bing shrinking
criterion

Many wild embeddings arise from decompositions: a tame embedding into
a manifold is followed by a quotient of the ambient manifold. It becomes
important then to have tools available for detecting when the quotient space
is a manifold. In this section we develop tools for that purpose.

We begin with a quick review of some basic definitions. A decomposition
G of a space X is simply a partition of X (ordinarily into closed sets). The
decomposition space (= quotient space) is the space X/G whose points are
the elements of G. There is a natural quotient map π : X → X/G and X/G
is assigned the quotient topology. (A subset U of X/G is defined to be open
if π−1(U) is open in X.) An open set V ⊂ X is said to be G-saturated if it
is the union of elements of G; thus, U ⊂ X/G is open if and only if it is the
image of a G-saturated open subset of X.

During the 1950s R. H. Bing introduced and exploited several forms
of a remarkable condition now called the Bing shrinkability criterion or
Bing shrinking criterion. It prompted a major change in decomposition
theory, shifting the focus from the decomposition space back to the source.
The need for a fresh point of view arose from the study of decomposition
maps q : S3 → Q because, even when it appeared certain that Q had to
be homeomorphic to S3, one then had no effective characterization of S3

to exploit for establishing the topological equivalence. The shrinkability
criterion aimed at realizing Q as the homeomorphic image of the known
source space, a realization achieved as the end result of manipulations in
the source on the decomposition elements.
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In its most general form, the criterion is expressed as follows: a partition
G of a space X is shrinkable if and only if the following condition is satisfied.

Shrinkability criterion. For each G-saturated open cover U of X and
each arbitrary open cover V of X there is a homeomorphism h of X onto
itself satisfying

(a) for each x ∈ X there exists U ∈ U such that x, h(x) ∈ U , and

(b) for each g ∈ G there exists V ∈ V such that h(g) ⊂ V .

In other words, the homeomorphism h must shrink elements of G to small
size, where “small” is determined by V, under an action that is limited by U .

Experience suggests that the decomposition space associated with a
shrinkable decomposition is often homeomorphic to the source space S. To
guarantee that this is true, additional restrictions, like local compactness or
complete metrizability, must be imposed on S. This section explores some
relatively coarse aspects of those restrictions. A good starting point is the
compact metric case.

Definition. Let ρ denote a complete metric on C(X,Y ), whereX and Y are
compact metric spaces. A surjection f : X → Y is a near-homeomorphism
if for each ε > 0 there exists h ∈ Homeo(X,Y ) such that ρ(h, f) < ε.

Lemma 2.3.1. Let X and Y be compact metric spaces. If f ∈ Surj(X,Y )
and h ∈ Homeo(X,X), then ρ(f, fh) = ρ(f, fh−1)

Proof. ρ(f, fh−1) = ρ(fhh−1, fh−1) = ρ(fh, f). �

Theorem 2.3.2 (Shrinkability criterion in the compact metric case). Let
X,Y be compact metric spaces and ρ a metric on C(X,Y ). Then f ∈
Surj(X,Y ) is a near-homeomorphism if and only if for each ε > 0 there
exists h ∈ Homeo(X,X) satisfying:

(a) ρ(f, fh) < ε, and

(b) diamh(f−1(y)) < ε for each y ∈ Y .

Proof. The forward implication is the easier. Fix a near-homeomorphism f
and ε > 0. By hypothesis there exists F ∈ Homeo(X,Y ) with ρ(F, f) < ε/2.
Uniform continuity of F−1 provides δ > 0 such that the image under F−1

of each δ-subset of Y has diameter less than ε. Again, there exists F ∗ ∈
Homeo(X,Y ) with ρ(F ∗, f) < min{ε/2, δ/2}. For each y ∈ Y , F ∗(f−1(y))
lies in the (δ/2)-neighborhood of y, implying that diamF ∗(f−1(y)) < δ.
Define h ∈ Homeo(X,X) as F−1F ∗. The choice of δ guarantees that h
satisfies condition (b). To see that h satisfies condition (a) as well, note
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that

ρ(f, fh) ≤ ρ(f, F ∗) + ρ(F ∗, fF−1F ∗)

< ε/2 + ρ(F (F−1F ∗), f(F−1F ∗))

= ε/2 + ρ(F, f)

< ε/2 + ε/2 = ε.

To prove the reverse implication, fix f ∈ Surj(X,Y ) satisfying shrinkabil-
ity conditions (a) and (b) and let A denote the closure in C(X,Y ) of the sub-
set consisting of all maps fh−1, where h ∈ Homeo(X,X). For n = 1, 2, . . .
define

An = {ϕ ∈ A | diamϕ−1(y) < 1/n for each y ∈ Y }.

The claim is that each An is open and dense in A. Openness follows ex-
actly as in the proof of Lemma 2.2.1. To prove denseness, we start with
ϕ ∈ A and η > 0 and produce ϕ∗ ∈ An such that ρ(ϕ, ϕ∗) < η. To do
so, first obtain fh−1, h ∈ Homeo(X,X), such that ρ(ϕ, fh−1) < η/2 and
then apply uniform continuity of h and the shrinkability criterion to obtain
another H ∈ Homeo(X,X) for which ρ(f, fH) < η/2 and diamHf−1(y)
is so small that diamhHf−1(y) < 1/n. Clearly the map ϕ∗ = fH−1h−1

satisfies diam(ϕ∗)−1(y) < 1/n for each y ∈ Y . Moreover,

ρ(ϕ, ϕ∗) = ρ(ϕ, fH−1h−1)

≤ ρ(ϕ, fh−1) + ρ(fh−1, fH−1h−1)

≤ ρ(ϕ, fh−1) + ρ(f, fH−1)

= ρ(ϕ, fh−1) + ρ(f, fH) (by Lemma 2.3.1)

< η/2 + η/2 = η.

To conclude the argument, observe that A itself is complete, being a
closed subset of the complete metric space Surj(X,Y ). By the Baire Cate-
gory Theorem, ∩nAn is dense in A, and ∩nAn ⊂ Homeo(X,Y ), as before.
Thus, f ∈ A can be approximated by homeomorphisms F ∈ ∩nAn. �

Theorem 2.3.3. Let X be a compact metric space and f ∈ Surj(X,Y ).
Then f is a near-homeomorphism if and only if, for each ε > 0, there exists
µ ∈ Surj(X,X) such that {f−1(y) | y ∈ Y } = {µ−1(x) | x ∈ X} and
ρ(f, fµ) < ε.

Proof. First assume µ ∈ Surj(X,X) satisfies {f−1(y) | y ∈ Y } = {µ−1(x) |
x ∈ X} and ρ(f, fµ) < ε < 1. Then F = fµ−1 defines a homeomorphism of
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X onto Y . Moreover, for each x ∈ X there exists x∗ ∈ µ−1(x) and

ρ(f(x), F (x)) = ρ(f(x), fµ−1(x))

= ρ(f(x), f(x∗))

= ρ(fµ(x∗), f(x∗))

≤ ρ(fµ, f) < ε.

Thus, ρ(f, F ) < ε and f is a near-homeomorphism.

Conversely, assume f is a near-homeomorphism. Given ε, 0 < ε < 1,
identify F ∈ Homeo(X,Y ) satisfying ρ(f, F ) < ε, and define µ as µ = F−1f .
Clearly then {f−1(y) | y ∈ Y } = {µ−1(x) | x ∈ X}, and

ρ(f, fµ) = ρ(f, fF−1f) = ρ(FF−1f, fF−1f) = ρ(F, f) < ε,

as required. �

Technical needs make it advantageous to impose further controls on the
shrinking process. To that end, given f ∈ Surj(X,Y ) let Nf denote the
nondegeneracy set of f , defined by

Nf =
{
x ∈ X | f−1f(x) �= {x}

}
.

Furthermore, given a closed subset C of X missing Nf , say that the induced
partition Gf = {f−1(y) | y ∈ Y } of X is shrinkable fixing C if shrinking
homeomorphisms h : X → X fulfilling the shrinkability criterion can be ob-
tained that keep each point of C fixed, and say that Gf is strongly shrinkable
if, for every closed set C ⊂ X with C ∩Nf = ∅, Gf is shrinkable fixing C.

By restricting the action on C, one can readily adapt the proof given
for Theorem 2.3.2 to establish the following, which lends itself to quick
application of shrinkability in the locally compact metric case.

Theorem 2.3.4. Suppose X is a compact metric space, f ∈ Surj(X,Y ),
and C is a closed subset of X with C∩Nf = ∅. Then f can be approximated
by homeomorphisms agreeing with f on C if and only if Gf is shrinkable
fixing C.

A mapping f : X → Y is proper if, for each compact subset C of Y ,
f−1(C) is compact. Several key results concerning near-homeomorphisms
between compact metric spaces have analogs pertaining to proper mappings
between locally compact metric spaces.

Theorem 2.3.5. Suppose (X, dX) and (Y, dY ) are locally compact metric
spaces. Then a proper, surjective mapping f : X → Y can be approximated
(in the space of maps X → Y endowed with the compact-open topology) by
homeomorphisms if for each compact subset C of Y and each ε > 0 there
exists a homeomorphism h : X → X satisfying
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(a) dY (f(x), fh(x)) < ε for each x ∈ f−1(C) ∪ h−1f−1(C), and

(b) diamhf−1(c) < ε for each c ∈ C.

Proof. Let X∗ and Y ∗ denote the one-point compactifications of X and Y ,
respectively, and f∗ : X∗ → Y ∗ the obvious extension of f . Properness of
f is equivalent to continuity of f∗. Since X and Y are locally compact and
second countable, X∗ and Y ∗ are compact metric spaces. The point is that
f can be approximated (in the compact-open topology) by homeomorphisms
if f∗ can be approximated in C(X∗, Y ∗) by homeomorphisms preserving the
points at infinity, which reduces Theorem 2.3.5 to Theorem 2.3.4. �

Historical Notes. The shrinking criterion is a profound insight of R. H.
Bing. It appeared implicitly in (Bing, 1952) and developed over time into a
general method; see (Bing, 1957a), for example, or (van Mill, 1989, §6.1).

Exercises

2.3.1. Every proper continuous mapping f : X → Y between metric
spaces is a closed mapping.

2.3.2. Let X,Y be locally compact metric (or even Hausdorff) spaces and
X∗ = X ∪ {∞}, Y ∗ = Y ∪ {∞′} their one-point compactifications.
Then f ∈ C(X,Y ) is proper if and only if the obvious extension
f∗ : X∗ → Y ∗ (where f∗(∞) = ∞′) is continuous.

2.3.3. Let C denote the Cantor set. Show that each f ∈ Surj(C,C) is a
near-homeomorphism. [Hint: any subset X ⊂ C that is both open
and closed in C is homeomorphic to C.]

2.4. Cellular sets and the Generalized Schönflies Theorem

Next we identify a crucial property possessed by the point preimages of a
near-homeomorphism of manifolds. The first application, later in the sec-
tion, will be the proof of a Generalized Schönflies Theorem. Historically this
argument was an early signal of the crucial relationship between topological
embeddings and decompositions of manifolds.

Definition. A subset X of Rn (or, more generally, of an n-manifold) is
said to be cellular if there exists a sequence {Bi} of n-cells in Rn such that
Bi+1 ⊂ IntBi and X = ∩Bi. Alternatively, a compact X ⊂ Rn is cellular if
each neighborhood U of X contains an n-cell B such that X ⊂ IntB ⊂ B ⊂
U . As yet another possibility, a compact X ⊂ Rn is cellular if and only if it
has arbitrarily small neighborhoods homeomorphic to Rn.

Cellular sets are compact and connected, but they need not be locally
connected. (Consider the sin(1/x)-continuum in R2, Figure 2.13.)
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Figure 2.13. The sin(1/x)-continuum

Definition. A map f : M → Y defined on an n-manifold M is said to be a
cellular map if f−1(y) is a nonempty cellular set in M for every y ∈ Y .

We use Cell(M,Y ) to denote the set of all cellular maps. Note that

Cell(M,Y ) ⊂ Surj(M,Y ) ⊂ C(M,Y ).

Cellular maps defined on manifolds and near-homeomorphisms are closely
linked; in fact, we will see that under various special conditions the two kinds
of maps are the same. The next theorem asserts that cellularity of point
preimages is a necessary condition for a map defined on an n-manifold to
be a near-homeomorphism. It is not, however, a sufficient condition in gen-
eral: the quotient map defining the famous dogbone space (Bing, 1957b) is
a counterexample, but that example is too specialized for treatment here.

Proposition 2.4.1. If f ∈ Surj(X,Mn) is a near-homeomorphism, Mn is
a compact n-manifold, and z ∈ Mn, then f−1(z) is cellular.

Proof. Let U be any neighborhood in X of f−1(z), find an n-cell B in Mn

satisfying z ∈ IntB ⊂ B ⊂ Mn � f(X � U), and choose ε > 0 smaller than
both d(x,Mn � B) and d(B,Mn � f(X � U)). By hypothesis there exists
F ∈ Homeo(X,Mn) with ρ(F, f) < ε/2. Then F−1(B) is an n-cell in X,
and a routine check indicates that f−1(z) ⊂ IntF−1(B) ⊂ F−1(B) ⊂ U , so
f−1(z) is cellular. �

Corollary 2.4.2. If f ∈ Surj(Mn, Y ) is a near-homeomorphism and y ∈ Y ,
then f−1(y) is cellular.

A closed subset X of a space M determines a decomposition whose
only nondegenerate element is X. We use M/X to denote the associated
decomposition space. In this special case cellularity is sufficient to imply
that the quotient map is a near-homeomorphism.
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Proposition 2.4.3. If X is a cellular subset of an n-manifold M and Q
is the quotient space M/X, then the quotient map q : M → Q is a near-
homeomorphism.

Proof. Given ε > 0, let U denote the (ε/2)-neighborhood of q(X) in Q. Ap-
ply cellularity ofX to obtain an n-cellB such thatX ⊂ IntB ⊂ B ⊂ q−1(U).
EquateB withBn, the standard n-cell; interior to B = Bn construct another
round n-cell B′ ⊃ X centered at the origin of B = Bn; radially compress
B′ very near the origin, keeping ∂B pointwise fixed, via a homeomorphism
h∗ : B → B such that diamh∗(X) < ε. By Theorem 2.3.2 or 2.3.5 the
extension of h∗ across M � B via the identity to h ∈ Homeo(M,M) shows
that q is a near-homeomorphism. �
Definition. An inverse set of a map f : X → Y is a nondegenerate point
preimage of f ; i.e., an inverse set is a set of the form f−1(y) that contains
more than one point.

Corollary 2.4.4. If U is an open subset of an n-manifold and f is a closed
map of U onto an n-cell B for which the only inverse set under f is a
cellular subset X of U , then U is an n-cell.

The topic of cellularity leads to one of the major themes of this book:
the intimate connections between decomposition theory and taming theory.
J. W. Cannon probably was the first to stress this theme explicitly, but
the connections themselves have been, or should have been, visible from the
outset, in the work dating back to the 1950s of R. H. Bing, E. E. Moise, and
M. Brown. Brown’s important Generalized Schönflies Theorem (1960), one
of the first and perhaps the most elegant flatness theorem, displays an aspect
of that connection through its dependence on decomposition methods. As
noted in §1.1, an (n− 1)-sphere Σ in Sn is flat if and only if it bounds two
n-cells. It is this observation that allows us to make the connection between
flatness of (n− 1)-spheres in Sn and certain decompositions of Sn.

Proposition 2.4.5. Let Q be an n-cell and let X be a compact subset of
IntQ. If f ∈ C(Q,Sn) has X as its only inverse set and f(IntQ) is open,
then X is cellular in Q.

Proof. Since f is one-to-one on ∂Q, f(∂Q) is an (n−1)-sphere. The inverse
set does not touch ∂Q, so the connected set f(IntQ) must be contained in
one of the two complementary domains of f(∂Q); in particular, f is not
onto. Choose a point z ∈ Sn � f(Q). Then Sn � {z} ∼= Rn, so Sn � {z} has
a radial structure centered at the point f(X).

Let U denote an open subset of IntQ containing X. Then f(U) =
f(IntQ) � f(Q � U) is an open subset of Sn. Use the radial structure
of Sn � {z} to construct a homeomorphism θ : Sn → Sn, fixed on some
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neighborhood V of f(X) and a neighborhood of z, such that θ(f(Q)) ⊂
f(U). Define F : Q → U as the identity on f−1(V ) and as f−1θf on
Q�X. Note that F is well defined, continuous, and one-to-one. Thus F is
an embedding and F (Q) is an n-cell in U that contains X in its interior. �

Proposition 2.4.6. If ψ ∈ Surj(Sn, Sn) has exactly two inverse sets, then
each of them is cellular.

Proof. Let A and B denote the inverse sets of ψ. We will show that B is cel-
lular. Let Q be an n-cell in Sn containing A∪B in its interior. Then ψ(IntQ)
is open and contains an open set U for which ψ(A) ∈ U but ψ(B) /∈ U . Use
the structure of Sn as the union of two n-cells to find θ ∈ Homeo(Sn, Sn)
such that θ(ψ(Q)) ⊂ U and θ fixes some neighborhood V of ψ(A). Define
f ∈ C(Q,Sn) as the identity on ψ−1(V ) and as ψ−1θψ on Q � A. Then
f(IntQ) is open and B is the only inverse set of f . By Proposition 2.4.5, B
is cellular. �

A similar proof establishes the following generalization.

Proposition 2.4.7. If ψ ∈ Surj(Sn, Sn) has only a finite number of inverse
sets, then f ∈ Cell(Sn, Sn).

The next theorem is the main theorem of the section.

Theorem 2.4.8 (Generalized Schönflies). If h is an embedding of Sn−1 ×
[−1, 1] in Sn, then h(Sn−1 × {0}) is flat. In particular, the closure of each
component of Sn � h(Sn−1 × {0}) is an n-cell.

Proof. Let A denote the closure of the component of Sn�h(Sn−1×{1}) that
does not contain Σ = h(Sn−1 ×{0}) and B the closure of the component of
Sn�h(Sn−1×{−1}) that does not contain Σ (see Figure 2.14). Furthermore,
let DA (respectively DB) denote the closure of that component of Sn � Σ
containing A (respectively B).

Let q : Sn−1 × [−1, 1] → Q denote the quotient mapping to the quotient
space obtained from Sn−1 × [−1, 1] by identifying the spheres Sn−1 × {±1}
to (separate) points. As Q is the suspension of Sn−1, there exists λ ∈
Homeo(Q,Sn) sending the image of Sn−1×{0} to the standard Sn−1 ⊂ Sn.
Extend the map λqh−1 from h(Sn−1×[−1, 1]) onto Sn to f ∈ Surj(Sn, Sn) by
defining f(A) = λqh−1(h(Sn−1 × {1})) and f(B) = λqh−1(h(Sn−1 × {1})).
Each of A and B is cellular (Proposition 2.4.6) and, therefore, DA and DB

are n-cells by Corollary 2.4.4. �

An (n − 1)-manifold Σ contained in an n-manifold M is said to be
bicollared if there exists an embedding h : Σ × [−1, 1] → M such that



Plate 1.  Tame sphere, Inner Mongolian black granite, 16" diameter, 
by Helaman Ferguson
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Plate 2.  Alexander horned wild sphere, bronze, by Helaman Ferguson
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Plate 3.  Alexander horned wild sphere, patina bronze, 9" diameter,
by Helaman Ferguson
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Plate 4.  Incised torus wild sphere, polished bronze, 9" diameter, 
by Helaman Ferguson
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A

B
h(S    × {+1})n-1

h(S    × {–1})n-1

Σ

Figure 2.14. Proof of the Generalized Schönflies Theorem

h(Σ× {0}) = Σ. The Generalized Schönflies Theorem can be simply para-
phrased using this terminology: every bicollared (n − 1)-sphere in Sn is
flat.

It should be clear from the examples described earlier in the chapter that
the bicollar hypothesis is necessary in the Generalized Schönflies Theorem.
The complement of any (n − 1)-sphere embedded in Sn will always have
exactly two connected components, but the closure of these complementary
domains need not be n-cells. In each of the wild examples constructed ear-
lier, one of their complementary domains was not simply connected. Later
in the chapter we will see that the closure of a complementary domain may
fail to be an n-cell even if the complementary domain itself is homeomorphic
to the interior of an n-cell.

Application of the techniques used in the proof of the Generalized Schön-
flies Theorem leads to a simple manifold structure theorem.

Proposition 2.4.9. Any compact n-manifold that can be expressed as the
union of two open n-cells is homeomorphic to Sn.

Proof. SupposeM can be expressed as the union of open sets U and V , each
homeomorphic to Rn. Name a homeomorphism f : V → Rn, and regard
the target Rn as Sn � {p}. Then f extends to F ∈ Surj(M,Sn) by setting
F (M � V ) = {p}, and F has X = M � V as its only inverse set. Since X
is contained in the interior of some n-cell Q ⊂ U , Proposition 2.4.5 implies
thatX is cellular. Finally, by Proposition 2.4.3, F is a near-homeomorphism,
implying that M is an n-sphere. �
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To complete the coverage of the Generalized Schönflies Theorem we show
that every locally flat codimension-one sphere is bicollared. It is convenient
to work with one-sided collars.

Definition. A subset C of a space X is said to be collared in X provided
there exists an embedding λ of C × [0, 1) onto an open subset of X such
that λ(c, 0) = c for all c ∈ C, and it is said to be locally collared if it can be
covered by a collection of open sets (relative to C), each of which is collared
in X. The image of λ is called a collar on C.

Theorem 2.4.10 (Collaring). The boundary ∂M of a ∂-manifold M is
collared in M .

Proof. Form a new ∂-manifold M ′ from M ∪ (∂M × [−1, 0]) by identifying
each p ∈ ∂M with 〈p, 0〉 ∈ ∂M × [−1, 0]. It has the advantage that ∂M ′,
which corresponds to ∂M × {−1}, is clearly collared in M ′.

We treat only compact ∂M . Cover ∂M by finitely many open subsets
{Wi}, each collared in M , and let Vi denote a collar on Wi in M . Inductively
build collars on ∪k

i=1Wi; the general case quickly reduces to the case k = 2.
Find Ci ⊂ Wi, closed in W1 ∪W2, such that C1 ∪ C2 = W1 ∪W2. Name a
continuous γ1 : W1 ∪W2 → [−1, 0] with γ1(C1) = −1 and γ1(W2 �W1) = 0.
After parametrizing V1 ∪ (W1 × [−1, 0]) as W1 × [−1, 1) in the natural way,
define an embedding ψ1 : M → M ′ by declaring ψ1 | M � V1 = incl, next
specifying (for w ∈ W1)

〈w, 0〉 → 〈w, γ1(w)〉 and 〈w, t〉 → 〈w, t〉 for t ∈ [1/2, 1),

and then extending linearly to prescribe correspondences between the var-
ious intervals {w} × [0, 1/2] and {w} × [γ1(w), 1/2]. A similar construc-
tion with the constant function γ2 : W1 ∪W2 → {−1} gives an embedding
ψ2 : imageψ1 → M ′ for which the composite ψ2 ·ψ1 sends M homeomorphi-
cally onto M ∪ (W1 ∪W2)× [−1, 0]. The inverse of ψ2 · ψ1 exposes a collar
on W1 ∪W2. �

A related argument shows that a closed subset C of a metric space X is
collared in X if and only if C is locally collared in X.

Corollary 2.4.11. An (n− 1)-sphere Σ in Sn is bicollared, and hence flat,
if and only if the closure of each component of Sn � Σ is a ∂-manifold.

Corollary 2.4.12. Every compact ∂-manifold in Sn bounded by an (n−1)-
sphere is an n-cell.

The following corollary of Theorems 2.4.8 and 2.4.10 is often called the
Generalized Schönflies Theorem.

Corollary 2.4.13. Every locally flat (n− 1)-sphere in Sn is flat.
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Corollary 2.4.14. The boundary of every G-orientable ∂-manifold M is
G-orientable.

Proof. Now we know M contains a copy of ∂M×R. Corollary 0.3.6 assures
that the latter isG-orientable, and Corollary 0.3.8 does the same for ∂M . �

Corollary 2.4.15. Let M be a ∂-manifold and φt : ∂M → ∂M an isotopy
such that φ0 = Id∂M . Then, for each neighborhood U of ∂M , φt extends to
an ambient isotopy Φt of M supported in U such that Φ0 = IdM .

Proof. Produce a collar λ : ∂M×[0, 1] → M on ∂M with image in U , where
λ0 = incl∂M . Then define Φ1 : M → M as the identity on M�λ(∂M×[0, 1])
and as λ(φ1−t(x), t) for λ(x, t) ∈ λ(∂M × [0, 1]). Specification of an isotopy
Φt extending φt and running from Φ0 = IdM to Φ1 is left to the reader. �

Historical Notes. The generalized Schönflies theorem was first proved by
M. Brown (1960), who developed the elegant method of shrinking cellular
sets used in the proof. Earlier B. Mazur (1959) had proved the theorem with
an additional technical hypothesis, and eventually M. Morse (1960) showed
how to remove that condition to provide an alternative proof of the theorem.

Cellularity, as an important concept, not the term itself, appeared in the
1920s with the analysis by R. L. Moore (1925) of cellular decompositions of
2-manifolds.

Collaring Theorem 2.4.10 is also due to Brown (1960). The argument
here is taken from R. Connelly (1971), who conceived the simplification of
appending an abstract collar.

Exercises

2.4.1. The three definitions of cellular set given at the beginning of the
section are equivalent.

2.4.2. A compact set X in Sn is cellular if and only if Sn �X ∼= Rn.

2.4.3. Every arc α ⊂ Rn that is locally polyhedral modulo one point is
cellular.

2.4.4. (A one-sided Schönflies theorem.) Let Σ ⊂ Sn be an embedded
(n− 1)-sphere and let U be one of its complementary domains. If
U is a ∂-manifold, then U is an n-cell.

2.4.5. Let Σ1 and Σ2 be two disjoint (n− 1)-spheres in Sn, let U1 be the
complementary domain of Σ1 that contains Σ2, and let U2 be the
complementary domain of Σ2 that contains Σ1. Define A = U1∩U2.
Prove that A� Σi

∼= Sn−1 × [0, 1).2

2In a later chapter we will make use of the annulus theorem, which asserts that A ∼= Sn−1 ×
[0, 1].
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2.5. The Klee trick

A simple, elegant application of the Tietze Extension Theorem leads to an
unknotting result for embeddings into hyperplanes.

Theorem 2.5.1. Suppose λ : C → Rn and λ′ : C → Rm are embeddings
of a compact metric space C. Then the associated embeddings e, e′ : C →
Rn × Rm, where e(c) = 〈λ(c), 0〉 and e′(c) = 〈0, λ′(c)〉, are each equivalent
to the diagonal embedding d = λ× λ′ : C → Rn × Rm.

Proof. It suffices to show that e is equivalent to d. Since Rm has the
universal extension property (Munkres, 1975, page 216), the map λ′λ−1 :
λ(C) → Rm can be extended to a map ψ : Rn → Rm. Define Ψ : Rn×Rm →
Rn × Rm as Ψ(〈x, y〉) = 〈x, y + ψ(x)〉. Clearly Ψ is continuous; indeed, it
is a homeomorphism, for the map 〈x, y〉 → 〈x, y − ψ(x)〉 acts as its inverse.
Furthermore,

Ψe(c) = Ψ(〈λ(c), 0〉) = 〈λ(c), ψ(λ(c))〉 = 〈λ(c), λ′(c)〉 = d(c),

as required. �

Corollary 2.5.2. Any two embeddings λ, λ′ of a compact metric space into
Rn are equivalent when considered as embeddings to their images in Rn ×
{0} ⊂ Rn × Rn = R2n.

Corollary 2.5.3. Every arc in Rn = Rn × {0} ⊂ Rn+1 is flat in Rn+1.

Another corollary could be listed—that every k-cell in Rn = Rn×{0} ⊂
Rn+k is flat in Rn+k—but for k > 1 this is far from best possible. In later
chapters we shall learn that all k-cells in Rn = Rn × {0} ⊂ Rn+1 are flat in
Rn+1.

Historical Notes. Theorem 2.5.1 is due to V. Klee (1955).

Exercises

2.5.1. Show that for every arc A ⊂ Rn, A× [−1, 1] is a cellular subset of
Rn × R1.

2.5.2. Suppose X × R1 is a manifold. Show that each arc of the form
{x} × [−1, 1] is cellular in X × R1.

2.5.3. Let X be a compact subset of Rn and let f : X → Rm be con-
tinuous. Show that X × {0} and the graph of f are equivalently
embedded in Rn × Rm.

2.5.4. Any arc α ⊂ Rn, n > 3, that is a countable union of points and
segments is flat. [Hint: Find a line L such that any line parallel to
L intersects α in at most one point.]
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2.6. The product of R1 with an arc decomposition

Next we turn to the construction of everywhere wild embeddings in all di-
mensions and all codimensions. The examples of wild embeddings con-
structed in §1.4 all have relatively low codimension, and a new technique is
required to produce examples in codimensions greater than two. The idea
is this: start with an arc in Sn, suspend it to produce a 2-cell in Sn+1, and
then shrink out the arcs in the levels of the suspension to produce a new arc
in Sn+1. The necessary shrinking theorem is proved in this section and the
examples will be constructed in the following section.

Let A be an arc in Rn and q : Rn → Rn/A the quotient map. Urysohn’s
Metrization Theorem assures that Rn/A is a locally compact metric space.

Theorem 2.6.1. If A is an arc in Rn, then (Rn/A)× R1 ≈ Rn+1.

Note that (Rn/A) × R1 is the same as (Rn × R1)/{A × {t} | t ∈ R}.
We intend to prove that the decomposition of Rn × R1 into points and the
arcs A × {t}, t ∈ R1, is shrinkable. To that end, name a homeomorphism
α : [0, 1] → A, and fix ε > 0. Partition [0, 1] by points {ti} with 0 = t0 < t1 <
· · · < tm+1 = 1 such that diamα([ti−1, ti+3]) < ε for i ∈ {1, 2, . . . ,m − 2}.
Expand each α([ti−1, ti]) slightly to an open subset Ui of Rn, where

Ui ∩ Uj �= ∅ if and only if |i− j| ≤ 1, and

diam(Ui ∪ Ui+1 ∪ Ui+2 ∪ Ui+3) < ε (i = 1, 2, . . . ,m− 2).

These Ui’s will supply motion controls on h ∈ Homeo(Rn+1,Rn+1) for the
Rn factor; to maintain control in the R1 direction, we identify some intervals
and related sets: for i ∈ {1, 2, . . . ,m − 1} let Ji = [i, 2m − i] and then let
Li = Ji � Int Ji+1 (i < m− 1).

According to Corollary 2.5.3, each level arc A × {t} is flat, so any one
of them can be shrunk to small size. To support our aim of shrinking all
level arcs simultaneously, Lemma 2.6.2 shows how to combine a vertical
compression with the pinching of one level arc to achieve shrinking of the
product of Ji+1 and a subarc of A. This basic move is applied finitely often
in Lemma 2.6.3 to achieve a partial shrinking of certain blocks, and these
block moves, carefully arranged, achieve the desired shrinking of the entire
family of arcs.

Lemma 2.6.2. Let Vi be a neighborhood of α([0, ti]) in Rn. Then there
exists hi ∈ Homeo(Rn+1,Rn+1) satisfying:

(1) hi | Rn+1 � (Vi × Ji) = Id,

(2) hi | α([ti, 1])× R1 = Id, and

(3) hi(α([0, ti])× Ji+1) ⊂ Ui+1 × Ji.
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Proof. By Corollary 2.5.3, A × {i + 1} is flat. One can shrink the subarc
α([0, ti])×{i+1} near the point α(ti)×{i+1} via µ ∈ Homeo(Rn+1,Rn+1)
such that

µ | Rn+1 � (Vi × Ji) = Id,

µ | α([ti, 1])× R1 = Id, and

µ(α([0, ti])× {i+ 1}) ⊂ Ui+1 × Ji.

It follows that µ−1(Ui+1 × Int Ji) ⊃ (α([0, ti])×{i+1})∪ (α(ti)× Ji+1),
so certainly there exists δ > 0 such that

µ−1(Ui+1 × Int Ji) ⊃ α([ti − δ, ti])× Ji+1).

Now one can produce υ ∈ Homeo(Rn+1,Rn+1), which compresses points of
α([0, ti])×Ji+1 into µ−1(Ui+1× Int Ji) and changes only the R1 coordinates,
subject to the restrictions

υ | Rn+1 � (Vi × Ji) = Id,

υ | α([ti, 1])× R1 = Id, and

υ(α([0, ti])× Ji+1) ⊂ µ−1(Ui+1 × IntJi).

To produce υ more explicitly, name d ∈ (0, 1) for which

µ−1(Ui+1 × IntJi) ⊃ α([0, ti])× [i+ 1, i+ 1 + d];

use Urysohn’s Lemma to define a map s : Rn → [i + 1 + d, 2m − i − 1]
sending (Rn � Vi) ∪ α([ti, 1]) to {2m− i − 1} while sending α([0, ti � δ]) to
{i + 1 + d}. Finally, define υ ∈ Homeo(Rn+1,Rn+1) as the identity above
Rn×{2m− i} and below Rn×{i+1}, with υ(〈p, 2m− i−1〉) = 〈p, s(p)〉 for
each p ∈ Rn, and with υ acting as the obvious linear homeomorphism on all
vertical intervals {p} × Ji+1 and {p} × [2m− i− 1, 2m− i]. The effect of υ
is illustrated in Figure 2.15. Note that υ is the identity in a neighborhood
of the shaded region.

Now simply define hi as µυ. Then

hi(α([0, ti])× Ji+1) = µυ(α([0, ti])× Ji+1) ⊂ µµ−1(Ui+1 × Ji) = Ui+1 × Ji,

as desired. The other requirements of Lemma 2.6.2 are easily confirmed. �

Lemma 2.6.3. There exists λ ∈ Homeo(Rn+1,Rn+1) satisfying:

(1) λ | Rn+1 � ∪m−2
i=1 (Ui × Ji) = Id,

(2) λ(α([0, ti+1])× Li) ⊂ (Ui ∪ Ui+1)× Ji−1 for i ∈ {1, 2, . . . ,m− 2},
(3) λ(α([0, tm])× Jm−1) ⊂ (Um−1 ∪ Um)× Jm−2 ⊂ (Um−1 ∪ Um)× J1.

Proof. Here λ will arise as a composition h1h2 · · ·hm−2 of homeomorphisms
from Lemma 2.6.2. To get started, obtain h1 from 2.6.2 for the neighborhood
V1 = U1 of α([0, t1]).
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Figure 2.15. The homeomorphism υ

Since h1 acts as the identity on α([t1, t2])×R1 and carries α([0, t1])×J2
into U2×J1, there exists a neighborhood V2 ⊂ U1∪U2 of α([0, t2]) such that
h1(V2 × J2) ⊂ U2 × J1. Apply Lemma 2.6.2 again with this neighborhood
V2 to obtain h2.

The iterative step repeats the pattern of the second step. After hi−1 has
been obtained, subject to the conditions

hi−1 | α([ti−1, 1])× Ji−1 = Id and

hi−1(α([0, ti−1])× Ji) ⊂ Ui × Ji−1,

determine a neighborhood Vi of α([0, ti]) in U1∪ · · ·∪Ui such that hi−1(Vi×
Ji) ⊂ Ui × Ji−1 and then apply Lemma 2.6.2 with this neighborhood Vi to
obtain hi.

The composition λ = h1h2 · · ·hm−2 is shown in Figure 2.16. In a neigh-
borhood of the shaded region, λ is the identity.

It should be obvious from the choices of Vi ⊂ U1∪· · ·∪Ui and conclusion
(1) of Lemma 2.6.2 that λ = h1h2 . . . hm−2 satisfies conclusion (1) above. In
analyzing conclusions (2) and (3), it is useful to keep in mind that U1∪· · ·∪Ui

and Ui+2 ∪ · · · ∪ Um+1 are disjoint. Due to the choices of Vi, conclusion (1)
of Lemma 2.6.2 then yields, for j ≥ i,

hi | (Uj+2 ∪ · · · ∪ Um+1)× R1 = Id and

hi | Rn × (R1 � Jj) = Id.
(*)

Since Li ⊂ R1 � Int Ji+1, the latter implies

(**) hj | Rn × Li = Id whenever i < j.
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To see why conclusion (3) holds, note that

λ(α([0, tm−2])× Jm−1) = h1h2 · · ·hm−2(α([0, tm−2])× Jm−1)

⊂ h1h2 · · ·hm−3(Um−1 × Jm−2)

⊂ Um−1 × Jm−2

by (3) of Lemma 2.6.2 and (*). In addition, by conclusion (2) of the Lemma,

λ(α([tm−2, tm])× Jm−1) = α([tm−2, tm])× Jm−1 ⊂ (Um−1 ∪ Um)× Jm−1,

and these two inclusions quickly combine to yield (3).

To verify conclusion (2), first observe that hi(α([0, ti]) × Ji) ⊂ hi(Vi ×
Ji) = Vi × Ji by conclusion (1) of Lemma 2.6.2. Then

λ(α([0, ti+1])× Li) = h1h2 · · ·hm−2(α([0, ti+1])× Li)

= h1h2 · · ·hi(α([0, ti+1])× Li) by (**)

⊂ h1h2 · · ·hi((α([0, ti])× Li) ∪ (α([ti, ti+1])× Ji))

⊂ h1h2 · · ·hi(α([0, ti])× Ji) ∪ (Ui+1 × Ji)

by (2) of Lemma 2.6.2

⊂ h1h2 · · ·hi−1(Vi × Ji) ∪ (Ui+1 × Ji) as above

⊂ h1h2 · · ·hi−2(Ui × Ji−1) ∪ (Ui+1 × Ji) by choice of Vi

= (Ui × Ji−1) ∪ (Ui+1 × Ji) by (*)

⊂ (Ui ∪ Ui+1)× Ji−1.

Why the conclusion also holds for i = 1 should be evident to anyone who
understands the preceding lines. �
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Proof of Theorem 2.6.1. Let q′ : Rn+1 = Rn × R1 → (Rn/A) × R1 be
the map q × Id. Our intention is to show that q′ is a near homeomorphism,
which will follow from Theorem 2.3.5 almost instantly, once we construct
h ∈ Homeo(Rn+1,Rn+1) satisfying

h | (Rn �N(A; ε))× R1 = Id,

h(Rn × t) ⊂ Rn × [t− ε, t+ ε], and

diamh(A× t) < 3ε for each t ∈ R1.

This will be accomplished by exploiting the structures named for Lem-
mas 2.6.2 and 2.6.3, carefully pieced together.

Formally, let k range over the integers and set

Dk = ∪m−2
i=1 Ui × [2mk + i, 2mk + 2m− i] and

D′
k = ∪m−2

i=1 Um+2−i × [2mk +m+ i, 2mk + 3m− i].

In addition, let D = ∪kDk and D′ = ∪kD
′
k; D and D′ are mirror im-

ages of each other, and act as supports for homeomorphisms obtained from
Lemma 2.6.3. A key feature is D ∩ D′ = ∅. For details in a particular
instance, consider 〈x, t〉 ∈ D0, where t ≤ m. Choose the least integer i such
that x ∈ Ui; then t ≥ i, by definition of D0. The only possible D′

k that
might contain 〈x, t〉 is D′

−1. If that were the case, note that x ∈ Um+2−j for
j = m+ 2− i, so x ∈ Um+2−j can hold only for j ∈ {m+ 2− i,m+ 1− i}.
In either situation, the definition of D′

−1 forces

t ≤ m− (m+ 1− i) = i− 1 < i,

a contradiction.

For k ∈ Z and i ∈ {1, 2, . . . ,m− 1}, define

J ′
i = ∪k[2mk + i, 2mk + 2m− i]

P ′
i = ∪k[2mk +m+ i, 2mk + 3m− i]

and for i < m− 1 let L′
i = J ′

i � IntJ ′
i+1 and Q′

i = P ′
i � IntP ′

i+1. According
to Lemma 2.6.3, there exist a homeomorphism λR for the J ′

i and L′
i and

another homeomorphism λL for the P ′
i and Q′

i, each involving translates of
the Lemma 2.6.3 homeomorphism λ to the appropriate levels, satisfying

(1) λR | Rn+1 �D = Id and λL | Rn+1 �D′ = Id;

(2) λR(α([0, ti+1])×L′
i) ⊂ (Ui∪Ui+1)×J ′

i and λL(α([tm−i, 1])×Q′
i) ⊂

(Um−i+1 ∪ Um−i+2)× P ′
i ;

(3) λR(α([0, tm]) × J ′
m−1) ⊂ (Um−1 ∪ Um) × J ′

1 and λL(α([t1, 1]) ×
P ′
m−1) ⊂ (U2 ∪ U3)× P ′

1.
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Now define h as λRλL. The resultant shrinking depends on this explicit
juxtaposition of left and right stacks. For example, if t ∈ IntL′

i then t ∈ Q′
j ,

where j = m− 1− i. Thus, by (2),

h(A× t) ⊂ λRλL(α([0, ti+1])× L′
i) ∪ λRλL(α([ti+1, 1])×Q′

j)

⊂ λR(α([0, ti+1])× L′
i) ∪ λR((Ui+3 ∪ Um−i+3)× P ′

i )

⊂ [(Ui ∪ Ui+1)× R1] ∪ [(Ui+2 ∪ Ui+3)× R1].

Of course, neither λR nor λL moves points vertically more than 2m, and
due to the disjointness of D and D′, this gives both

h(A× t) ⊂ (Ui ∪ Ui+1 ∪ Ui+2 ∪ Ui+3)× [t− 2m, t+ 2m] and

h(Rn × t) ⊂ Rn × [t− 2m, t+ 2m].
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Recall that initially the Ui’s were chosen so that the diameters of any
four consecutive ones were small. To complete this proof, rescale the R1-
coordinate with 2m < ε. �

Corollary 2.6.4. For each arc A in Sn, the suspension of the quotient space
Sn/A is homeomorphic to Sn+1.

Historical Notes. Theorem 2.6.1 is due to J. J. Andrews and M. L. Curtis
(1962). The dogbone space constructed by R. H. Bing (1959a) was the first
example of a non-manifold decomposition space X such that X × R1 is a
manifold.

2.7. Everywhere wild cells and spheres

Straightforward application of the product arc-shrinking theorem from §2.6
leads to embeddings that are wild at every point. An embedding of a man-
ifold or ∂-manifold that is not locally flat at any point is called everywhere
wild.

Example 2.7.1. For each n ≥ 3 and 0 < k < n, Sn contains an everywhere
wild k-cell.

Lemma 2.7.2. For each n ≥ 3, Sn contains a wild arc α for which Sn � α
fails to be simply connected.

Proof. Such an arc in S3 was described in Example 2.1.8. Given an arc A in
Sn−1, n > 3, with nonsimply connected complement, Corollary 2.6.4 allows
us to identify Sn with the suspension of Sn−1/A. Let α be the arc in Sn

that corresponds to the suspension of the special point in the quotient space
Sn−1/A. Then Sn � α is topologically equivalent to (Sn−1 � A) × (−1, 1),
which is not simply connected. �

The arcs α provided in the preceding lemma are everywhere wild, start-
ing in dimension four. In order to prove this, we need pinpoint information
about the way in which the complement fails to be simply connected: we
need to know that the complement of α contains loops that are very close
to α but essential in the complement, and the following condition—known
as the “cellularity criterion” because it implies cellularity for certain subsets
of manifolds, a result to be proved in the next chapter—paves the way. The
cellularity criterion is a global version of the 1-LCC condition.

Definition. A compact set X in an m-manifold M is said to satisfy the
cellularity criterion if for every open neighborhood U of X in M there exists
an open set V such that X ⊂ V ⊂ U and every map ∂I2 → V �X extends
to a map I2 → U �X.
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Lemma 2.7.3. The arc α in Lemma 2.7.2 fails to satisfy the cellularity
criterion.

Proof. Start with n = 3; let A be the wild arc in Example 2.1.8, which
contains a copy of Antoine’s necklace. The simple closed curve J shown
in Figure 2.6 is essential in the complement of A and there are related
curves just like J that link later stages of the construction. Hence every
neighborhood V of A contains a simple closed curve that is essential in
S3 �A.

We now show that if A is an arc in Sn−1 such that Sn−1 � A is non-
simply connected, then the arc α constructed from it (as in the proof of
Lemma 2.7.2) fails to satisfy the cellularity criterion. Suppose there ex-
ists a neighborhood of α such that every loop in V � α is null-homotopic
in Sn � α. A loop in Sn � α can be pushed up the product structure on
Sn � α ∼= (Sn−1 � A) × (−1, 1) into V and so the existence of V would
mean that Sn � α is simply connected. This contradicts the conclusion of
Lemma 2.7.2. �

The proof of the following lemma is left as an exercise.

Lemma 2.7.4. A compact set X ⊂ Sn satisfies the cellularity criterion in
Sn if and only if the arc corresponding to the suspension of X in Susp(Sn/X)
is 1-LCC at each interior point.

Proof of Example 2.7.1. Consider, first, the case k = 1 and n ≥ 4. By
Lemma 2.7.4, the arcs constructed in Lemmas 2.7.2 and 2.7.3 fail to be 1-
LCC at all interior points. Proposition 1.3.1 and Exercise 2.7.1 imply that
these arcs are everywhere wild.

Now assume that k > 1 and n − k > 2. By the previous paragraph,
there is an arc in Sn−k+1 that fails to be 1-LCC at each interior point. The
(k− 1)-fold suspension is a k-cell in Sn that is everywhere wild because, by
Lemma 1.4.1, it fails to be 1-LCC at each interior point.

Finally, consider the cases k = n − 2 and k = n − 1. Example 2.1.10
provides wild cells in those codimensions, but they are not everywhere wild,
since the basic examples of wild arcs and disks in R3 on which they are
based are not everywhere wild. To address this issue, in the next section we
will produce examples of everywhere wild arcs and disks in S3. Once those
examples are in place, multiple suspension to Sn yields everywhere wild cells
of dimensions n− 2 and n− 1. �

Historical Notes. The idea of exploiting the Andrews-Curtis Theorem
to produce everywhere wild embeddings is due to Brown (1967). Earlier,
W. A. Blankinship (1951) devised wild embeddings in all dimensions and
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codimensions, based on his construction of wild Cantor sets in Rn, n > 3;
his Cantor set construction will be set forth in §4.7.

Exercises

2.7.1. Let C ⊂ M be a k-cell topologically embedded in an n-manifold.
If C is nonlocally flat at every interior point, then C is nonlocally
flat at every boundary point as well.

2.7.2. Prove Lemma 2.7.4.

2.7.3. Every cellular subset of an n-manifold (n > 2) satisfies the cellu-
larity criterion.

2.7.4. If α ⊂ Sn is an arc that satisfies the cellularity criterion, then Sn�α
is contractible.

2.8. Miscellaneous examples of wild embeddings

This section offers more examples of wild embeddings in R3. These new
examples exhibit wildness that is qualitatively different from that of the
examples presented earlier in the chapter. The two original examples of
wildly embedded 2-spheres in R3, the Antoine sphere and the Alexander
horned sphere, share one property: each of them contains a Cantor set such
that the embedding is wild at every point of the Cantor set and is locally
flat at all other points. The examples in the section show that a variety of
wild sets are possible; the first examples to be presented are wild at just
one point while the later examples are wild at positive-dimensional sets.
In particular, among the later ones are some everywhere wild codimension-
one and -two cells in R3, which fill a gap in the proof of Example 2.7.1.
The section contains an outline of the proofs that the examples have the
properties indicated, but many details are left as exercises.

2.8.1. The Fox-Artin arc. The first example is an arc whose wildness
is minimal in the sense that the arc is locally flat at every point except
one and the complement of the arc is the same as that of a flat arc. The
construction begins with the basic building block shown in Figure 2.18. The
building block consists of three arcs A, B, and C embedded in a 3-cell as
indicted in the figure.

Put an infinite sequence of these building blocks together in such a way
that they converge to a point p. Include the point p and delete the first
copy of B to form the arc α pictured in Figure 2.19. This arc, known as the
Fox-Artin arc, is wild because it fails to be locally flat at the endpoint p.

The arc α is obviously locally flat and PL at every point other than p.
In order to see that α is not locally flat at p one must prove that α is not
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Figure 2.18. The basic Fox-Artin building block

p

Figure 2.19. The Fox-Artin arc

1-LCC at p. (A tame arc is 1-LCC at each of its endpoints.) The Fox-Artin
arc is not 1-LCC at p because for any small neighborhood U of p there exist
loops in U �α that cannot be shrunk to a point in a small subset of S3−α;
in fact, they cannot be shrunk to a point without going all the way over the
other end of α. A proof is sketched in the exercise below.

Notice that α is cellular (Exercise 2.4.3) and thus the complement of α
in S3 is an open 3-cell. In particular, S3 � α is simply connected, which
means that the wildness of the Fox-Artin arc is more subtle than that of
the wild arcs studied earlier, which were known to be wild because their
complements were not simply connected. One can obtain wild but cellular
embeddings in higher dimensions by suspending the Fox-Artin arc.

This example is unique to S3 in the sense that three is the only ambient
dimension in which an arc can fail to be locally flat at just a single point
(Exercise 2.5.4).

Exercise 2.8.1. This exercise contains an outline of the proof that α is not
1-LCC at p. The problem is to fill in the details in the argument. First we
need some notation. Choose a sequence D1, D2, D3, . . . of 3-cells such that
Di+1 ⊂ IntDi for each i, ∩∞

i=1Di = {p}, and Di intersects α as indicated in
Figure 2.20. Let A1, B1, and C1 be the arcs in D1 � IntD2 that correspond
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to A,B, and C, respectively, and let E1 be a flat disk in D1 � IntD2 such
that C1 ⊂ ∂E1 and ∂E1 � C1 ⊂ ∂D2 (Figure 2.20).
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Figure 2.20. A sequence of 3-cells and 2-cells

(a) Let q1, r1, and s1 be the three points at which α intersects ∂D1 and
view D1 as the cone on its boundary. Show that

D1 � (A1 ∪D2 ∪ E1 ∪B1) ∼= D1 � Cone({q1, r1, s1})
via a homeomorphism that is the identity on the boundary.

(b) Use an argument like that in the proof of Lemma 2.1.4 to prove that
the inclusion induced homomorphism π1(D1�(A1∪D2∪E1∪B1)) →
π1(D1 � (A1 ∪D2 ∪ C1 ∪B1)) is one-to-one.

(c) Combine the preceding results to show that π1(∂D1�{q1, r1, s1}) →
π1(D1 � (α ∪D2)) is one-to-one.

(d) Use an argument like that in the proof of Theorem 0.11.5 to show
that π1(∂D1 � {q1, r1, s1}) → π1(D1 � α) is one-to-one. Conclude,
in particular, that the loop J shown in Figure 2.20 is essential in
D1 � α.

(e) Observe that each Di contains a loop that is homotopic to J in
D1�α and use this observation to prove that the inclusion induced
homomorphism π1(Di � α) → π1(D1 � α) is nontrivial for every i.

(f) Prove that α is not 1-LCC at p.

2.8.2. Double Fox-Artin arcs. Variations on the Fox-Artin arc can have
interesting properties. Two that are worthy of mention are the “double
Fox-Artin arcs” shown in Figures 2.21 and 2.22.

The double Fox-Artin arc in Figure 2.21 is constructed from a doubly
infinite sequence of copies of the basic Fox-Artin building block. It is a wild
arc because it fails to be 1-LCC at both endpoints. Its complement is not
simply connected.
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Figure 2.21. A double Fox-Artin arc with nonsimply connected complement

Figure 2.22. A double Fox-Artin arc with simply connected complement

The double Fox-Artin arc shown in Figure 2.22 is the wedge of two copies
of α. The unusual feature of this second double Fox-Artin arc is that its
complement is simply connected but is not an open 3-cell. In other words,
the complement of this arc is simply connected but the arc is not cellular,
because it does not satisfy the cellularity criterion. Notice that the only
difference between the two arcs is that one of the two crossings in the center
of Figure 2.21 has been changed to produce Figure 2.22.

Exercise 2.8.2. Use the techniques of Exercise 2.8.1 to prove the following.

(a) The complement of the arc in Figure 2.21 is not simply connected.

(b) The complement of the arc in Figure 2.22 is simply connected.

(c) The arc in Figure 2.22 does not satisfy the cellularity criterion.

2.8.3. Fox-Artin spheres. The Fox-Artin arc can be used to construct
wild embeddings of spheres in S3. To do so, start with the round 1-sphere or
2-sphere and add a feeler that follows the Fox-Artin arc. This construction
is indicated in Figures 2.23 and 2.24. These embeddings are examples of
what are called weakly flat spheres. An embedding e : Sk → Sn is weakly
flat if Sn� e(Sk) ∼= Sn�Sk. Neither example is flat since each contains the
nonflat arc α. In particular, neither sphere is 1-LCC at the endpoint of the
feeler.
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Figure 2.23. The Fox-Artin 1-sphere

Figure 2.24. The Fox-Artin 2-sphere

Exercise 2.8.3.

(a) The Fox-Artin 1-sphere is not 1-alg at the exceptional point.

(b) The Fox-Artin 2-sphere is not 1-LCC at the exceptional point.

(c) The Fox-Artin 1-sphere is weakly flat.

(d) The Fox-Artin 2-sphere is weakly flat.

2.8.4. Mildly wild arcs. Not every arc that is formed by concatenating
an infinite converging sequence of polygonal blocks is wild. In fact, the arc
shown in Figure 2.25 is a tame arc.

Figure 2.25. A tame arc

Interestingly, if two such arcs are joined end-to-end, the resulting arc is
wild. An arc in S3 is said to be mildly wild if it is wild but can be written
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as the union of two flat arcs. Figure 2.26 shows an example of a mildly wild
arc.

Figure 2.26. A mildly wild arc

Exercise 2.8.4.

(a) Prove that the arc in Figure 2.25 is flat. [Hint: Find a nested
sequence B1 ⊃ B2 ⊃ . . . of 3-cells such that ∩∞

i=1Bi is the endpoint
of the arc and each Bi intersects the arc in a single point. For
each i there is an ambient homeomorphism that is the identity on
(S3 � IntBi) ∪ Bi+1 and that straightens out α ∩ (Bi � IntBi+1).
The flattening homeomorphism is a limit of a composition of such
homeomorphisms.]

(b) Prove that the arc in Figure 2.26 is not flat. [Hint: Use the Seifert-
van Kampen Theorem to prove that the arc is not 1-alg at the
wedge point.]

2.8.5. The Bing sling. The Bing sling is an example of an everywhere
wild 1-sphere Σ ⊂ R3. Moreover, any arc in Σ is an everywhere wild 1-cell.

The construction begins with the basic building block shown in Fig-
ure 2.27. The building block consists of three arcs embedded in a cylindrical
3-cell; it is nearly identical to the one used in the Fox-Artin construction,
but for historical accuracy we use this variation.

Figure 2.27. The basic building block for the Bing sling

The Bing sling arises as the intersection of a nested sequence of solid tori
T1 ⊃ T2 ⊃ · · · . The first solid torus T1 is formed from six copies of the basic
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building block fit together end-to-end in a cycle as shown in Figure 2.28.
The core of T1 is a circle J1. Inside T1 there is a distinguished simple closed
curve J2 formed by the union of the subarcs of the six blocks that constitute
T1. This simple closed curve is the center line of a second solid torus, T2,
which is composed of many copies of the basic building block placed end-
to-end along J2. Just a few of those blocks are indicated in Figure 2.28.
The subarcs of the blocks that make up T2 combine to form a simple closed
curve J3, which is the centerline of a third solid torus T3. The construction
is continued recursively and Σ is defined by

Σ = ∩∞
i=1Ti.

T
1

J
3

J
2

T
2

Figure 2.28. The Bing sling

At first glance it might appear that the intersection of the solid tori will
be a complicated continuum, but it is, in fact, a simple closed curve. To
verify this, observe that there is a homeomorphism hi from Ji to Ji+1, and
hi can be kept as close to the identity as we wish by inserting multiple copies
of the basic building block into the ith stage of the construction. Here hi
can be specified so as to send the portion of Ji in a block B from Ti into
Ji+1∩ (B∪B′), where B′ is one of the two blocks from Ti touching B. Thus
Proposition 2.2.2 shows that we can perform the construction in such a way
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that the composition of these homeomorphisms converges to an embedding
e : J1 → R3. It is not hard to see that e(J1) = Σ (Exercise 2.8.5(a)).

To prove that Σ is everywhere wild, we show that Σ fails to be 1-alg at
every point. Fix a point x ∈ Σ and a neighborhood U of x. Assume that U is
contained in the union of two of the building blocks in T1 so that homotopies
in U cannot go all the way around T1. For any smaller neighborhood V of x
there is an index i and one of the building blocks B0 that make up Ti such
that x ∈ B0 ⊂ V . Consider the loop K shown in Figure 2.29. It is clear
that K is null-homologous in B0 � Ji+1, as it bounds an orientable surface
there; thus, K represents a commutator in π1(V � Σ). If Σ were 1-alg at
x, we would be able to choose V small enough so that K is inessential in
U �Σ. In the next two paragraphs we will show that, to the contrary, K is
essential in U � Σ, so no such V exists and we can conclude that Σ is not
1-alg at x.

J
i+1

B
-2

B
-1

B
0

B
1

B
2

K

E

Figure 2.29. The loop K is linked around Ji+1

Suppose an embedding S1 → K extends to a map g : B2 → U �Σ. The
choice of U implies that g(B2) will miss at least one of the blocks in Ti, so we
can find a sequence of consecutive blocks B−n, . . . , Bn such that g(B2)∩Ti is
contained in the 3-cell A = B−n∪· · ·∪Bn and that g(B2) does not intersect
either end of A (see Figure 2.29). Put g in general position relative to ∂Ti.
Then g−1(∂Ti) will consist of a finite number of disjoint simple closed curves.
Consider one such simple closed curve C that is innermost in the sense that
no other curve is in its interior relative to B2. The interior of C (in B2)
is mapped by g either to R3 � Ji or to Ji � Σ. In either case, it follows
that g(C) does not link Ji homologically and thus is an inessential curve on
the annulus ∂A ∩ ∂Ti. Hence we can modify g so that it maps the interior
of C into ∂A ∩ ∂Ti and then push the image to one side to eliminate C
from g(B2) ∩ ∂Ti. This process can be continued inductively and results in
a new map g with the property that g(B2) ∩ ∂Ti = ∅, which means that
g(B2) ⊂ A� Σ.
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The previous paragraph shows that if K is inessential in U�Σ, thenK is
inessential in A�Σ. In this paragraph we show that K is essential in A�Σ,
which completes the proof that Σ is not 1-alg at x. An argument like that
in the construction of Antoine’s necklace (see Exercise 2.8.5(b)) establishes
that K is essential in A � Ji+1. Assume that S1 → K extends to a map
g : B2 → A � Σ. Put g in general position with respect to ∂Ti+1. Then
g−1(∂Ti+1) will consist of a finite number of simple closed curves. Since
the images of these curves do not go all the way around Ti+1, each of them
represents some multiple of the meridian of Ti+1. Let C be one of the curves.
If g(C) is inessential on ∂Ti+1, then g can be modified (as in the previous
paragraph) to eliminate that curve of intersection. Thus there must be at
least one of these curves C whose image is a nonzero multiple of the meridian
of Ti+1. But then g(C) homologically links Σ and so g(B2) ∩ Σ �= ∅.

Exercise 2.8.5.

(a) Prove that the Bing sling Σ is a simple closed curve by verifying that
the embedding e : J1 → R3 described above satisfies e(J1) = Σ.

(b) Prove that the loop K shown in Figure 2.29 is essential in A�Ji+1,
where A = B−n ∪ · · · ∪Bn. [Hint: First observe that K is essential
in B0 � Ji+1 by results established earlier in the chapter. Then
consider the inclusion of K into (B0∪B1)�Ji+1. Use an argument
like that in the proof of Lemma 2.1.4 to show that if K is inessential
in (B0 ∪ B1) � Ji+1 then K is inessential in (B0 ∪ B1) � (Ji+1 ∪
E), where E is the disk shown in Figure 2.29. Check that the
embedding of Ji+1 in (B0 ∪B1)�E is the same as the embedding
of Ji+1 in B0. Next add in B−1 and proceed inductively.]

(c) Let f : S1 → R3 � Σ be a map such that f(S1) homologically
links Σ and let F : B2 → R3 be an extension of f . Prove that
F−1(Σ) contains a Cantor set. Use this fact to give an alternative
proof that Σ is everywhere wild.

(d) Prove that Σ is homogeneously embedded; i.e., for every pair of
points x, y ∈ Σ there exists a homeomorphism h : R3 → R3 such
that h(Σ) = Σ and h(x) = y.

2.8.6. Bing’s hooked rug. Bing’s hooked rug is an example of an every-
where wild 2-sphere in R3. The wild sets of the Alexander and Antoine
spheres are Cantor sets while the wildness of the Fox-Artin sphere is con-
centrated at a single point. By contrast, the wildness of the hooked rug is
totally diffused: the embedding is wild at every point. Nevertheless, each
arc in the 2-sphere is tame. The complement of Bing’s hooked rug is not
simply connected. To the contrary, near any point of the 2-sphere one can
find a loop that is essential in the complement.
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Like the previous examples, the construction of Bing’s hooked rug is
described in two different ways. The hooked rug can be understood as the
boundary of the intersection of a nested sequence of compact ∂-manifolds;
this view is useful in proving that the example fails to be 1-LCC (and is
therefore wild). The example can also be realized as the limit of a sequence
of embeddings of the 2-sphere; this view is useful in proving that it is a
topologically embedded sphere.

The construction begins with a round 3-cell F0. Cover the surface of F0

with a sequence E1, E2, . . . , En of disks that have disjoint interiors and such
that Ei ∩ Ei+1 is an arc in the boundary of each. (Count cyclically so that
En∩E1 is also an edge of each.) Attach to each Ei a tube with a solid torus
at the end. The union of the tube and solid torus is called an eyebolt—see
Figure 2.30.

Ei

eyebolt
plug

Figure 2.30. A disk Ei with an eyebolt attached

Hook the eyebolt on Ei to the base of the eyebolt on Ei+1 and the
eyebolt on En to the base of that on E1 in a cyclic pattern as indicated in
Figure 2.31. The original ball F0 together with the union of all the eyebolts
forms a solid 3-dimensional object H1. Note that H1 consists of a 3-cell with
eyebolts attached, so H1 is a cube with handles.3 Shrink F0 slightly before
attaching the eyebolts so that H1 is contained in the interior of F0.

A plug for an eyebolt is a copy of B2× (0, 1) that cuts off the eyebolt as
shown in Figure 2.30. Remove a plug from each of the eyebolts in H1; the
resulting solid is a 3-cell F1. The 2-sphere ∂F1 is the first approximation
to Bing’s hooked rug. There is an obvious homeomorphism F0 → F1. The
distance any point is moved by this homeomorphism is at most twice the
maximum diameter of the disks E1, E2, . . . , En, so we can control the size
of this homeomorphism by controlling the number and size of the disks Ei.

3A cube with handles is the regular neighborhood in R3 of a 1-dimensional polyhedron.
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Figure 2.31. H1, the first stage in the hooked rug construction

The surface of F1 is covered by disks E′
1, E

′
2, . . . , E

′
n that have the same

boundaries as the original disks E1, E2, . . . , En. Cover each E′
i with a se-

quence of 15 (or more) disks and erect a new, smaller eyebolt on each of the
disks. Hook the eyebolts on E′

i together in a circular pattern as indicated in
Figure 2.32. Define H2 to be the union of F1 and all the second-stage eye-
bolts. Then H2 is another cube with handles. We again shrink F1 slightly
before attaching the second-stage eyebolts so that H2 ⊂ IntH1.

Figures 2.31 and 2.32 provide drawings of stage one and stage two, re-
spectively, of the hooked rug construction; Color Plates 5–6 display pho-
tographs of physical models of those same stages.

Remove plugs from each of the second-stage eyebolts to form a 3-cell F2.
Note that again there is a homeomorphism F1 → F2 and that the distance
any point is moved by this homeomorphism is at most twice the maximum
diameter of any of the disks used at the second stage. Thus we can make
the homeomorphism F1 → F2 close to the identity by simply subdividing
into more second stage disks and making the corresponding eyebolts small.

The construction is continued inductively to produce a nested sequence
H1 ⊃ H2 ⊃ H3 ⊃ . . . of cubes with handles and a sequence F0, F1, F2, . . .
of 3-cells. Define

H = ∩∞
i=1Hi

and define Bing’s hooked rug to be the boundary of H. We claim that H is
a topological 3-cell and that ∂H is an everywhere wild 2-sphere.
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Figure 2.32. The second stage in the hooked rug construction

To prove that H is a 3-cell, we observe that the construction can be done
in such a way that the homeomorphism Fi−1 → Fi is close to the identity.
While Proposition 2.2.2 does not quite apply, the same kind of proof as was
used for the Alexander horned sphere shows that the composition of these
homeomorphisms converges to an embedding h : F0 → R3. It is not difficult
to see that h maps F0 onto H (Exercise 2.8.6 (a)).

We prove that ∂H is everywhere wild by showing that H fails to be
1-LCC at each point of ∂H. Specifically, we prove that a loop in the com-
plement of H that circles the base of one of the eyebolts at stage i is essential
in the complement at each subsequent stage and therefore will be essential
in the complement of the intersection H. The small eyebolts at a later stage
are spread densely over the sphere, so there is such a loop near every point
on the limiting sphere. Thus H fails to be 1-LCC at any point of ∂H.

In order to prove the claims in the preceding paragraph we break down
the transition from Hi−1 to Hi into three steps. Start with Hi−1. Remove
a plug from each of the eyebolts in Hi−1 and replace it with a pillbox (see
definition on page 47). Call the new ∂-manifold H ′

i. Note that H ′
i is a 3-

cell with two solid handles attached for each eyebolt in Hi−1. Now shrink
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H

K

i Hi

′

′′

Figure 2.33. The three-step transition from Hi−1 to Hi

H ′
i slightly and add additional simple unlinked handles until there is one

handle for each eyebolt in Hi. These handles can be isotoped to resemble
the eyebolts that we want to add at this stage. More specifically, each
of them can be deformed to look like a tube with a bulb at the end and
with the base of one handle going straight through the bulb of the previous
handle. The ∂-manifold formed in this way is called H ′′

i and it is illustrated
in Figure 2.33. Finally, convert the handles to eyebolts by drilling a tunnel
through the bulb in each handle to create a hole for the next handle to pass
through. The resulting ∂-manifold is Hi.

Repeated application of the following lemma shows that π1(R3�H ′′
i ) →

π1(R3 �Hi) is one-to-one.

Lemma 2.8.1. Let C be a 3-cell in R3, let B1, B2, and B3 be three disjoint
disks on ∂C, let T be a solid torus in C such that T ∩ ∂C = B1, and let
S be a 3-cell in C such that S ∩ ∂C = B1 ∪ B2. Assume T and S are
linked as indicated in Figure 2.34. Let X be a closed subset of R3 such that
X ∩C = B1 ∪B2 ∪B3. If π1(∂C � (B1 ∪B2 ∪B3)) → π1(R3 � (X ∪ IntC))
is one-to-one, then π1(R3� (X ∪C)) → π1(R3� (X ∪S ∪T )) is one-to-one.
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Figure 2.34. Detail of H ′′
i → Hi

Proof. Exercise 2.8.6 (b). �

It is clear that a loop K that goes around one of the small handles of
H ′′

i is essential in R3 � H ′′
i (see Figure 2.33). By Lemma 2.8.1, K is also

essential in R3 �Hi. But then K is essential in R3 �H ′
i+1 by Lemma 2.1.9.

It is clear that any loop that is essential in R3 � H ′
i+1 is also essential in

R3�H ′′
i+1. Several applications of Lemma 2.8.1 show that K is also essential

in R3�Hi+1. Since this argument can be continued inductively, we see that
K is essential in R3�H. This completes the proof that H fails to be 1-LCC
at every point of ∂H.

As asserted earlier, every arc in ∂H is tame in R3. We will not prove
this, but in a later chapter we will develop tools that could be used to show
that every arc in ∂H is 1-alg. A complete proof that arcs in ∂H are tame
may be found in (Bing, 1961a).

Exercise 2.8.6.

(a) Prove that Bing’s hooked rug is a topological sphere by verifying
that there is an embedding h : F0 → R3 such that h(F0) = H.

(b) Prove Lemma 2.8.1.

2.8.7. The Alford sphere. Our final example is a 2-sphere in R3 whose
wild set is an arc. Its construction involves a retooling of the one just given
for Bing’s hooked rug. Instead of having the eyebolts wander all over the
sphere so as to be dense in the limit, we will erect eyebolts just along an arc
in the 2-sphere.
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Start with a round 3-cell. On its boundary identify a narrow rectangle
R with centerline L. Subdivide R into a large number of squares and then
attach an eyebolt to each of the squares. Two consecutive eyebolts should
be hooked together, but the last one should be left dangling as shown in
Figure 2.35.

R

L

xa

Figure 2.35. The first stage in the construction of the Alford sphere

Now remove a plug from each eyebolt. The resulting solid is a 3-cell
and there is a new segment L on its boundary that goes up and over each
cut eyebolt. Cover L with a sequence of much smaller squares and erect a
new sequence of smaller eyebolts, one in each of the small squares. Again
hook consecutive eyebolts together in a linear chain and leave the last one
dangling. More specifically, the second-stage eyebolts associated with the
ith disk from the first stage should be hooked together as indicated in Fig-
ure 2.36; the last second-stage eyebolt for the ith disk should be hooked to
the first second-stage eyebolt associated with the (i+1)st disk and the very
last second-stage eyebolt should be left dangling.

The process is continued inductively and the limit is a 3-cell. The bound-
ary of this 3-cell is the Alford 2-sphere SA. It is clear that SA is locally flat
at each point not on the limit arc. The limit arc γA is called the Alford arc,
and xA is used to denote the endpoint of γA near which the eyebolts are left
dangling. We prove that SA fails to be 1-LCC at each point of γA � xA, so
the wild set of SA is exactly γA. In fact, the proof shows that the Alford
arc itself fails to be 1-alg at points of γA�xA, so γA is a new example of an
everywhere wild arc.

In order to demonstrate that SA fails to be 1-LCC at points of γA � xA,
we identify a small loop near most points of γA that cannot be shrunk to a
point in a small set without hitting the Alford sphere. Specifically, let K be
a small loop in the complement of SA that circles the base of one of the ith
stage eyebolts as shown in Figure 2.37. Add a short arc α that connects the
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L

L

xA

Figure 2.36. The linking of the second stage eyebolts

end of the dangling ith-stage eyebolt to the end of L. By Lemma 2.8.1, K is
essential in the complement of the ith stage with α added. Any homotopy
that shrinks K to a point in the complement of the ith stage must therefore
intersect α and cannot be confined to a small neighborhood of a point on
γA � xA.

L

K

xA
α

Figure 2.37. The arc α

In fact, K cannot be shrunk to a point in a small subset of the comple-
ment of any subsequent stage either. In order to see this, let us say that the
construction is done in such a way that α touches the end of the dangling
eyebolt at each subsequent stage of the construction. Then the techniques
of the preceding section can be used to show that K is essential in the com-
plement of each stage with a subarc of α added. It follows that K cannot
be shrunk to a point in a small subset of the complement of SA.
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Exercise 2.8.7.

(a) Prove that the construction described above can be carried out in
such a way that the limit is an embedded 3-cell.

(b) Fill in the details of the proof that the Alford sphere is wild at
each point of the Alford arc. Prove that the Alford arc itself is an
everywhere wild embedding of [0, 1] in R3.

(c) Prove that the Alford arc is 1-LCC at one of its endpoints. [This
shows that an embedding can be 1-LCC at a wild point.]

(d) Prove that the Alford arc is cellular.

(e) Prove that the Alford construction can be modified to produce an
example of an embedding of S2 in R3 whose wild set is homeomor-
phic to any finite tree. Prove that this construction can be done in
such a way that the wild set is cellular.

(f) Prove that there are uncountably many inequivalent embeddings of
S2 in R3 by producing embeddings whose wild sets are 1-dimensional
compacta that are limits of trees.

Historical Notes. The Fox-Artin arc is one of many examples of wild
embeddings discovered by R. H. Fox and E. Artin (1948). The mildly wild
arc shown in Figure 2.26 was described by R. H. Fox and O. G. Harrold
(1962); they named such arcs Wilder arcs after R. L. Wilder, who was the
first to consider them. The Bing sling was described in (Bing, 1956). Bing’s
hooked rug appeared in (Bing, 1961a). D. Gillman (1964) revised the hooked
rug technology to produce an everywhere wild 2-sphere in R3 that bounds
a cellular 3-cell. W. R. Alford (1962) capitalized on the work of both Bing
and Gillman in developing the Alford sphere.

2.9. Embeddings that are piecewise linear modulo one point

We conclude the chapter with a flattening theorem for codimension-one
spheres in Sn. It assures that any (n − 1)-sphere in Sn, n ≥ 4, that is
piecewise linear modulo one point is flat. This contrasts with the situation
in ambient dimension three, where the Fox-Artin sphere is locally PL modulo
one point but still wild.

The promised result stands among many flattening theorems to be proved
in the text. We include it here in this preliminary chapter because its proof
stems from a marvelous argument, one that does not rely on the more elab-
orate techniques to be developed later, and because it serves as an early
indication of the fact that high-dimensional embedding phenomena differ
from those encountered in dimension three.
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To briefly describe the generalizations to be proved later, we need one
additional bit of terminology. Let Σ be an (n − 1)-sphere topologically
embedded in Sn. A subset K of Σ that is homeomorphic to either a cell
or a sphere is said to be twice flat provided it is flat when considered as a
subset of the sphere Σ and also flat when considered as a subset of Sn. In
Chapter 7 we will generalize Theorem 2.9.3 in two different ways, showing
that Σ is flat if it is locally flat modulo a twice flat Cantor set or if it is
locally flat modulo a twice flat cell of dimension not equal to n− 3.

We make no attempt to state the theorems in this section in their ulti-
mate generality since we plan to improve them later. Instead we state them
with hypotheses strong enough to minimize proof technicalities, in order to
more easily expose the pivotal ideas.

Definition. Let K be a finite simplicial complex with p ∈ |K|. A map
f : |K| → M into a piecewise linear manifoldM is said to be piecewise linear
modulo p if there exists a locally finite triangulation K ′ of the noncompact
polyhedron |K|�{p} such that each simplex of K ′ is contained in a simplex
of K and f is linear on each simplex of K ′.

We treat a special case first. The hypothesis n ≥ 4 is already needed in
this special case.

Proposition 2.9.1. Let Cn be an n-simplex. If e : Cn → Sn, n ≥ 4, is an
embedding that is piecewise linear modulo one vertex, then Sn� Int e(Cn) is
a topological n-cell.

Definition. Let (A,B) be a pair of closed subsets of the space X. Define
GA,B to be the decomposition of A × [0, 1] whose nondegenerate elements
are the arcs {x} × [0, 1] with x ∈ B. A collar of A pinched at B is an
embedding h : A × [0, 1]/GA,B → X such that h(x, 0) = x for every x ∈ A
and h(A × [0, 1]/G) is a neighborhood of A � B. In case the subset B is
clear from the context, we will simply refer to h as a pinched collar.

Lemma 2.9.2. Let (A,B) be a pair of closed subsets of the space X. If A
is locally collared in X at each point of A � B, then there is a collar of A
pinched at B.

Proof. Exercise 2.9.1. �

Proof of Proposition 2.9.1. Let Cn be an n-simplex and let e : Cn → Sn

be an embedding that is piecewise linear modulo the vertex v ∈ Cn. Let Dn

be a second n-simplex such that Cn ⊂ Dn and Cn ∩ ∂Dn = {v}. Let En be
a third n-simplex such that En ⊂ IntCn. Pick a vertex w of En and let α be
the straight line segment from w to v. We may assume that α ∩En = {w}.
(See Figure 2.38.)
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Figure 2.38. Shrink α to a point to map (Dn, En) to (Dn, Cn)

By Lemma 2.9.2, e can be extended to a topological embedding h :
Dn → Sn. Define

G = Sn � h(Cn) and F = Sn � h(En).

Generalized Schönflies Theorem 2.4.8 guarantees that F is a topological
n-cell. We will prove that G is also an n-cell by proving that G is homeo-
morphic to F .

Note that there is a map (Dn, En) → (Dn, Cn) that is the identity
on ∂Dn and whose only nondegenerate inverse set is α. This map of Dn

induces a map from F ∩h(Dn) to G∩h(Dn) that is the identity on h(∂Dn).
Extending via the identity produces a continuous map g : F → G whose
only nondegenerate inverse set is h(α).

Now h(α) is a locally flat arc by Exercise 2.5.4. Hence there is a con-
tinuous function f : F → F whose only nondegenerate inverse set is h(α).
It is easy to check that f ◦ g−1 is a well-defined homeomorphism from G
to F . �

Definition. Let Σ ⊂ Sn be a topologically embedded (n − 1)-sphere and
let p ∈ Σ. A bicollar of Σ pinched at p is an embedding

c : Sn−1 × [−1, 1]/{v} × [−1, 1] → Sn

such that c(Sn−1×{0}) = Σ and c(v, 0) = p. (Here v is a point in Sn−1 and
Sn−1 × [−1, 1]/{v} × [−1, 1] is the quotient space of Sn−1 × [−1, 1] formed
by shrinking {v} × [−1, 1] to a point.)

The following result is the main theorem in the section.

Theorem 2.9.3. If Σ ⊂ Sn, n ≥ 4, is an embedded (n − 1)-sphere and Σ
has a bicollar pinched at p ∈ Σ, where the bicollar is piecewise linear modulo
the preimage of p, then Σ is flat.

Proof. To simplify the notation, we denote Sn−1 × [−1, 1]/{v}× [−1, 1] by
Q and use v∗ to denote the point in Q corresponding to {v} × [−1, 1]. By
hypothesis, there exists an embedding c : Q → Sn such that c(v∗) = p
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and c is piecewise linear modulo v∗. Define H to be the closure of the
complementary domain of c(Sn−1×{−1}) that does not contain Σ and define
K to be the closure of the complementary domain of c(Sn−1×{1}) that does
not contain Σ. We will prove that c(Sn−1 × [−1, 0]/{v} × [−1, 0]) ∪H and
c(Sn−1 × [0, 1]/{v} × [0, 1]) ∪K are both n-cells.

Let Cn be an n-simplex in IntQ ∪ {v∗} such that v∗ is a vertex of Cn

and Cn ∩ (Sn−1 × {0}) is a flat disk; define Q′ = Q � IntCn. Figure 2.39
shows two views of the pinched bicollar with Q′ shaded in each. In the
first view, all of Q is shown with Sn−1 × {0} as its core. In the second
view, ∂Cn has been turned inside out so that only Q′ is visible. We can
choose Cn so that Q′ is PL homeomorphic to an n-simplex ∆ with the
interiors of two PL n-cells removed. Those two n-cells meet at v∗ and
are otherwise in the interior of ∆. Their boundaries are Sn−1 × {−1} and
Sn−1 × {1}. In addition, Sn−1 × {0} separates Q′ into two pinched collars,
Q− and Q+, so that Q− contains Sn−1×{−1} and Q+ contains Sn−1×{1}.
The left half of Figure 2.39 shows that we can choose Cn so that Q− is
naturally homeomorphic to Sn−1× [−1, 0]/{v}× [−1, 0] and Q+ is naturally
homeomorphic to Sn−1× [0, 1]/{v}× [0, 1]. Thus we can complete the proof
by showing that c(Q−) ∪H and c(Q+) ∪K are both n-cells.

v

S    × {1}n-1

S    × {1}n-1

S    × {0}n-1

S    × {0}n-1S    × {–1}n-1

S    × {–1}n-1*
v*

C

Q

Q
Q Q

n

C
n

∂

+ –

∆

Figure 2.39. Two different views of the bicollar

Proposition 2.9.1 implies that the closure of the complement of c(Cn) is
an n-cell. But Sn� Int c(Cn) = c(Q′)∪H ∪K, so c(Q′)∪H ∪K is an n-cell.
That is to say, sewing H and K to Q′ along Sn−1 × {−1} and Sn−1 × {1},
respectively, results in an n-cell; more specifically, if h and k are the maps
defined by h = c−1|FrH and k = c−1|FrK, then Q′ ∪h H ∪k K is an n-cell.
We will use an infinite construction to show that Q−∪hH and Q+∪k K are
also n-cells.
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Let B1, B2, B3, . . . be a sequence of n-cells such that, for each i, Bi∩Bi+1

is a flat (n − 1)-cell standardly embedded in both ∂Bi and ∂Bi+1, ∪∞
i=1Bi

is an n-cell, and there is a point q such that Bi ∩ Bj = {q} for |i − j| > 1.
Figure 2.40 shows one way to construct such a sequence by starting with
a round n-cell Bn and subdividing it via hyperplanes, any two of which
intersect B at a point q ∈ ∂Bn.

B
A

A

A

B

B
B

q

4
3

3
A4

2

2

1
1

Figure 2.40. A sequence of cells whose union is a cell

For each i, choose a flat n-cell Ai ⊂ Bi such that Ai ∩ ∂Bi = {q}. If
i is odd, define B′

i to be (Bi � IntAi) ∪h′ H; if i is even, define B′
i to be

(Bi � IntAi) ∪k′ K. The maps h′ and k′ are appropriate modifications of
h and k, respectively. As demonstrated above, B′

i ∪ B′
i+1 is an n-cell for

every odd integer i. Thus ∪∞
i=1B

′
i is an n-cell. On the other hand, there is a

homeomorphism of Q′ to itself that interchanges Sn−1×{−1} and Sn−1×{1}
and is the identity on the other component of ∂Q′. [This does not look right
in the 2-dimensional figure, but such a self homeomorphism exists as long
as n ≥ 3.] Therefore B′

i ∪ B′
i+1 is also an n-cell for i even and so ∪∞

i=2B
′
i is

an n-cell. It follows that B′
1 is an n-cell. A similar argument shows that B′

2

is an n-cell, so the proof is complete. �

Historical Notes. Theorem 2.9.3 is due to J. C. Cantrell. The statement
appeared in (Cantrell, 1963a) and the proof is contained in (Cantrell, 1963b)
and (Cantrell and Edwards, 1963). The technique of pairing off the infinite
sequence of cells in two different ways is often called the “Mazur swindle.”
Mazur (1959) (1961b) first used the technique to prove the special case of
the Generalized Schönflies Theorem in Exercise 2.9.5. Other applications
of the technique are described in (Mazur, 1964b) and (Mazur, 1966). The
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result in Exercise 2.9.4 was first proved by P. H. Doyle and J. G. Hocking
(1960).

Exercises

2.9.1. Prove Lemma 2.9.2. [Hint: The open subset A � B has an ordi-
nary collar by Theorem 2.4.10. Carefully trim this collar back to a
pinched collar.]

2.9.2. For each n ≥ 3 there exists a wild (n − 1)-sphere Σ ⊂ Sn whose
wild set is a twice flat (n− 3)-cell.

2.9.3. For each n ≥ 3 there exists a wild (n − 1)-sphere Σ ⊂ Sn whose
wild set is an (n− 2)-cell that is tame in Σ.

2.9.4. If Σ ⊂ S3 is a 2-sphere that is locally flat modulo a point p and
there is an arc A ⊂ Σ passing through p that is flat in S3, then Σ
is flat.

2.9.5. Use the technique of proof of Theorem 2.9.3 to give a new proof of
the following special case of the Generalized Schönflies Theorem:
If e : Sn−1 → Sn is a locally flat topological embedding such that
e|U is PL for some open subset U of Sn−1, then e is flat.



Chapter 3

Engulfing, Cellularity,
and Embedding
Dimension

Engulfing, a powerful piecewise linear method, has proved itself to be an
effective tool for unlocking mysteries of high-dimensional-manifolds. It is
a process by which an open subset of a manifold is adjusted, typically via
ambient isotopy, to absorb a predetermined polyhedron. Although engulfing
receives brief mention in Rourke and Sanderson (1972), its full power is not
developed there.

There are several distinct versions of engulfing, connected by a com-
mon thread. This chapter presents two basic types of engulfing theorems,
Stallings engulfing and Bryant-Seebeck engulfing. In the first of them the
hypotheses are global in nature and in the second the conditions are more
local. In the first form of engulfing one makes no effort to limit the amount
of the motion necessitated by the engulfing process, whereas in the second
form one subjects the engulfing isotopy to strict motion control. The two
theorems presented do not cover every application of engulfing—far from
it—but they illustrate the essence of the method and their statements are
sufficiently general to address many applications of interest.

The chapter also contains sample applications that demonstrate the
power and utility of the two types of engulfing theorems. The Stallings
method is employed to characterize the cellular sets in a PL manifold while
the more controlled Bryant-Seebeck method is used to explicate a notion

97



98 3. Engulfing

of dimension for compact subsets of a manifold. In both situations, engulf-
ing allows us to see that certain local fundamental group conditions detect
the well-behaved embeddings. Specifically, the cellularity criterion detects
cellular embeddings of contractible compacta and the 1-LCC condition de-
tects those embedded compacta whose topological dimension equals their
embedding dimension. The last two sections of the chapter offer a brief ex-
ploration of fractals, Menger continua and Hausdorff dimension, as well as
of their connections to embedding dimension.

3.1. Engulfing without control

This section contains a statement and proof of a basic uncontrolled engulfing
theorem. Before presenting the result itself, we strive to motivate our study
by illustrating how the ability to engulf certain polyhedra can bring insight
into the structure of the surrounding manifold.

Since engulfing is rooted in PL topology, we use the notation and ter-
minology of Rourke and Sanderson (1972) and begin with a quick review.
Let K be a simplicial complex and L a subcomplex of K. The simplicial
complement C(L,K) of L in K is the subcomplex consisting of all simplices
in K disjoint from |L|. A subcomplex L of K is called a full subcomplex if
σ ∈ K and ∂σ ⊂ L imply σ ∈ L. Note that if a given subcomplex L is not
already full, it can be made full by simply taking a derived subdivision near
L (Rourke and Sanderson, 1972, page 32). When L is full in K, then each
simplex in K is the join of a simplex in L and a simplex in C(L,K).

Consider an n-dimensional PL ∂-manifold M with triangulation T . De-
fine L to be the k-dimensional skeleton of T and define P = C(L′, T ′),
where T ′ is a derived subdivision of T and L′ is the corresponding subdi-
vision of L. It is easy to check that dimP = n − k − 1. The complex P
is called the dual (n− k − 1)-skeleton. Every simplex in T ′ is the join of a
simplex in the k-skeleton and one in the dual (n− k − 1)-skeleton.

The following simple lemma signals how to exploit this join structure to
stretch an open set containing one join factor to cover the complement of
an open set containing the other join factor. Once the lemma is proved, we
give an immediate application showing how the stretching process, in turn,
helps characterize the n-sphere.

Lemma 3.1.1 (Stretching across the join structure). Suppose K is a tri-
angulation of a PL w-manifold W , L is a finite, full subcomplex of K,
and C(L,K) is the simplicial complement of L in K. Let U and V be
neighborhoods of |L| and |C(L,K)|, respectively. Then there exists an am-
bient isotopy of W , starting at IdW and ending at h : W → W , such that
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h(U) ∪ V = W ; moreover, the isotopy can be required to fix |L ∪ C(L,K)|,
to have compact support, and to move points less than mesh(K).

Proof. Choose derived neighborhoods N1 and N2 of |L| with N1 ⊂ U and
N2 ⊃ W � V . (The join structure mentioned above ensures that N2 exists.)
The canonical isotopy between derived neighborhoods (Rourke and Sander-
son, 1972, Theorem 3.24) carries N1 onto N2 and has the required features.
In particular,

h(U) ∪ V ⊃ h(N1) ∪ V = N2 ∪ V ⊃ (W � V ) ∪ V = W. �
Proposition 3.1.2. If Mm is a compact PL m-manifold such that every fi-
nite k-dimensional polyhedron in Mm, k ≤ m/2, is contained in the interior
of an m-ball, then Mm is (topologically) homeomorphic to Sm.

Proof. Choose a triangulation T of Mm. Let p be the greatest integer less
than or equal to m/2, denoted [m/2]. Let L denote the p-skeleton of T and
C(L, T ′) the simplicial complement of L in T ′, a subdivision of T derived
near L. The crucial point is that both L and C(L, T ′) have dimension
at most p, so the hypothesis promises that each lives inside some m-cell.
Applying Lemma 3.1.1 to stretch one of these cells across the join structure
of T ′, we see that Mm can be covered by the interiors of two open m-cells.
The result follows from an application of the Generalized Schönflies Theorem
(see Proposition 2.4.9). �

Engulfing homeomorphisms typically are guided by (a finite collection
of) homotopies. The main reason there are so many different forms of en-
gulfing is that there are many different ways in which these homotopies may
be specified. The assumption in the next result about r-connectedness of
the pair (W,U) permits use of Theorem 0.5.2 to construct the necessary
homotopies.

Theorem 3.1.3 (Stallings Engulfing). Let W be a w-dimensional PL ∂-
manifold, U an open subset of W , K a complex in W of dimension k ≤ w−3
such that |K| is closed in W and |K| ∩ ∂W ⊂ U , and L a subcomplex of K
such that |L| ⊂ U and K � L is covered by a finite r-subcomplex R of K.
If (W,U) is r-connected, then |K| can be engulfed by U keeping |L| fixed;
i.e., there exists a compactly supported PL ambient isotopy ψt of W such
that ψ0 = IdW , ψ1(U) ⊃ |K| and ψt is the identity on a neighborhood of
|L| ∪ ∂W .

Before taking up the proof, we look at an important application: the
topological version of the Poincaré Theorem in high dimensions.

Theorem 3.1.4 (Weak Poincaré). Any closed PL m-manifold Mm with the
homotopy type of Sm, m ≥ 5, is homeomorphic to Sm.
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Proof. One can easily check that, for any open m-cell U in Mm, (M,U) is
(m−1)-connected (Exercises 0.5.1 and 0.5.3). The restriction tom ≥ 5 yields
[m/2] ≤ m−3, so the Stallings Engulfing Theorem promises that each finite
[m/2]-complex K in M can be engulfed in an open m-cell. Proposition 3.1.2
does the rest. �

Remark. The weakness of 3.1.4 is its merely topological conclusion, despite
the PL data in the hypothesis. We cannot prove the existence of a PL
homeomorphism with the present techniques due to the reliance upon the
Generalized Schönflies Theorem in this proof of Proposition 3.1.2.

We use the notation K ↘ L to indicate that K collapses to L.

Lemma 3.1.5 (Shadow Building). Given subpolyhedra L and Σ of a poly-
hedron K such that K ↘ L, there exists another subpolyhedron L′ of K such
that

Σ ⊂ L′,

K ↘ L′ ↘ L, and

dim(L′ � L) ≤ dimΣ + 1.

Definition. The polyhedron L′ is called the shadow of Σ under the collapse
K ↘ L.

Proof. The existence of L′ is proved in item (5) on page 40 of Rourke and
Sanderson (1972). The proof is by induction on the number of elementary
collapses in the collapse K ↘ L. In the case of one elementary collapse,
the shadow can be regarded rather literally as the shadow of Σ under the
projection of the n-cube onto the bottom codimension-one face (see (Rourke
and Sanderson, 1972), pp. 39–40). Rourke and Sanderson reserve the term
“shadow” for that special case and use the term “trail” for the general
case. �

Recall (Rourke and Sanderson, 1972, page 60) that the singular set of a
piecewise linear map f is defined as

S(f) = Cl({x in the domain of f | f−1f(x) �= {x}}),

where Cl denotes closure. It should be clear that the singular set of a PL
map is a subpolyhedron of the domain.

Corollary 3.1.6. If K is a compact polyhedron in a PL n-manifold Mn

and the inclusion map incl : K → Mn is null-homotopic, then there exist
polyhedra P and Q in Mn such that K ⊂ P ↘ Q, dimP ≤ dimK + 1, and
dimQ ≤ 2 dimK − n+ 3.
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Proof. Let c(K) be the cone on K. The inclusion K ↪→ Mn extends to a
map f : c(K) → M . Shift f into general position and define Σ = S(f). Then
dimS(f) ≤ 2(dimK + 1)− n. Let L be the shadow of Σ under the collapse
c(K) ↘ point. Define P = f(c(K)) and Q = f(L). Since f |c(K)� S(f) is
one-to-one, we have P ↘ Q as needed. �

Proof of Stallings Engulfing Theorem 3.1.3. The proof proceeds by in-
duction on r. The result is obviously true for r = −1. Less trivially, the
case r = 0 quickly reduces to the special case in which R consists of a single
vertex v not in L. We may assume v ∈ IntW . The 0-connectedness of
(Wn, U) and Theorem 0.5.2 give a map g : [0, 1] → W with g(0) = v and
g(1) ∈ U . By general position, g can be approximated by a PL embedding
G : [0, 1] → IntW such that G([0, 1]) ∩ L = ∅, G(0) = v, and G(1) ∈ U .
A regular neighborhood of G(1) in U � L can be expanded to a regular
neighborhood of G([0, 1]) via an ambient isotopy ψt supported in a compact
subset of IntW �L. The extension of ψt over the rest of W via the identity
has the desired effect.

Now assume that the engulfing theorem holds for r = 0, 1, . . . , i−1, and
consider r = i ≤ w − 3. It suffices to establish the result for the case in
which R consists of a single i-simplex ∆, for by induction we can engulf
the (i − 1)-skeleton of any finite i-complex R and then engulf any number
of i-simplices, one at a time. Add to L any part of R previously engulfed
before turning to the next i-simplex.

Identify ∆ with ∆ × {0} ⊂ ∆ × [0, 1]. The i-connectedness of (W,U)
together with Theorem 0.5.2 ensures that the inclusion (∆, ∂∆) ↪→ (W,U)
extends to a map

g : (∆× [0, 1], (∂∆× [0, 1]) ∪ (∆× {1})) → (W,U).

Extend g over |L| via the identity. Assume g is PL and in general position
as a map, thus obtaining a triangulation T of the domain with respect to
which g is simplicial, is one-to-one on the simplices, and satisfies

dim(g(σ) ∩ g(τ)) ≤ dim(σ) + dim(τ)− w

for every pair of simplices σ, τ ∈ T .

Observe that L ∪ (∆ × [0, 1]) collapses to L ∪ (∂∆ × [0, 1]) ∪ ∆ × {1}.
Modify T so that the collapse can be treated as simplicial with respect to T
(any barycentric subdivision of a collapsible complex is collapsible). Then
enumerate certain simplices A1, A2, . . . , As from the triangulation T so that
for

Sj−1 = |L| ∪ (∂∆× [0, 1]) ∪ (∆× {1}) ∪A1 ∪A2 ∪ . . . Aj−1,

Sj−1∩Aj = vj ∗∂Bj where Aj = vj ∗Bj , and Sj collapses to Sj−1. This enu-
meration lists only half the simplices from T�L, namely, the top-dimensional
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simplices appearing in the sequence of simplicial collapses, not the faces
across which those collapses occur. Here each Sj admits an elementary
collapse to Sj−1; the collapse is across Aj , from Bj onto vj ∗ ∂Bj .

A

A
A

A

A

A

L L

[0,1]

1

2

3

4

5

6

∆

Figure 3.1. The collapse across ∆× [0, 1]

The proof that we can engulf g(Sj) is another inductive argument; this
time it proceeds by induction on s. Let’s first restrict slightly to the case
i ≤ w − 4. Clearly we have already engulfed g(S0) = g(|L| ∪ (∂∆× [0, 1]) ∪
(∆× {1})) by U . Inductively assume that g(Sj−1) has been engulfed by U
and let Σj = S(g) ∩Aj ; then

dim(Σj) ≤ 2(i+ 1)− w ≤ (i+ 1) + (w − 3)− w = i− 2.

The Shadow Building Lemma (3.1.5) promises an (i − 1)-subcomplex L′

of Aj containing Σj such that Aj ↘ L′ ↘ Bj . Based on the inductive
hypothesis, we can engulf g(L′ ∪ Sj−1) keeping g(Sj−1) fixed. Since g|Aj

is one-to-one, g(Sj) collapses to g(L′ ∪ Sj−1), implying that the adjusted U
can be expanded to engulf g(Sj) keeping the points of g(L′∪Aj−1) fixed. As
this completes the induction, we see we can engulf g(Ss) ⊃ g(∆× {0}) = ∆
with U .

When i = w − 3, we must be more careful, because dim(Σj) is only
limited by i−1 and the inductive hypothesis does not apply to the i-complex
L′ obtained from the Shadow Building Lemma. Instead, in this case we let
Dj−1 be the part of the (w − 3)-skeleton of T contained in Sj−1 and let
Σj = Aj ∩ S(g | Aj ∪Dj−1). Now

dim(Σj) ≤ (w − 2) + (w − 3) ≤ i− 2,

so the inductive hypothesis applies, and the rest of the proof proceeds as
above, furnishing an engulfing of, first, g(Σj) and then g(Aj), keeping g(Dj)
fixed. Ultimately, when j = s, we secure the desired engulfing of |K| ⊂
g(Ds ∪ As). �

Remark. In codimension four it is possible to engulf not only the polyhe-
dron K but also the entire track of a homotopy that pulls K into U . In
codimension three we must settle for less. In the inductive step of the proof,
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the entire image of an Aj is engulfed by U . But it is not necessarily possible
for U to hold on to that entire set at later stages in the construction. Instead
we keep g(∂Aj) in U as the engulfing progresses, which is good enough.

This subtlety is illustrated in Figures 3.2 through 3.4. None of the
figures is dimensionally accurate, but the three figures do indicate what will
actually happen. In all three the function g is suppressed. In Figure 3.2 the
first isotopy engulfs the entire track of B1 and the second isotopy engulfs
the track of B2. Part of the track of B1 is exposed by the second isotopy,
but B1 itself remains in the image of U .

U

B B

U U

1 2

Figure 3.2. The second isotopy uncovers part of the track of the first isotopy

Figure 3.3 shows how it is possible to uncover part of Aj while keeping
∂Aj in U . In the figure it is possible to engulf all of A1 and A2, but when
A3 is engulfed, part of the interior of A1 will be uncovered.

B

U

B

2

2

A2 A3

A11

1

B3

v3v

v

Figure 3.3. The third isotopy can uncover part of IntA1, but will hold
on to ∂A1

Figure 3.4 is an attempt to show how both the Bj ’s could have boundary.
In the diagram, imagine that the lower portion of U is first pushed straight
up to engulf B1 and later the left-hand portion of U is pushed left-to-right



104 3. Engulfing

to engulf Bi. The vertical isotopy will stretch U out to cover the entire
vertical slab below B1, but part of that slab will be uncovered by the later
horizontal isotopy.

U

B1

Bi

Figure 3.4. A later isotopy must uncover part of IntA1 but can hold
on to B1

The power of engulfing lies in the technique, not in any particular for-
mulation of an engulfing theorem. The theorem stated here illustrates the
technique and applies in a fairly wide variety of settings. However, it will
not apply perfectly in all the situations where we want to use it; in particu-
lar, there will not always be a single open set U such that (W,U) is highly
connected. That connectedness hypothesis guarantees the existence of ho-
motopies that pull certain polyhedra into U , and those homotopies are the
crucial ingredient for the proof. It should be noted, though, that in order
to engulf a given polyhedron K it is not enough to have one homotopy that
pulls K into U ; instead, it is necessary to pull many different polyhedra
into U . The inductive structure of the proof starts with a homotopy that
pulls a polyhedron like K into U . The image of that homotopy contains a
shadow that must also be homotoped into U . This second homotopy con-
tains a second shadow, etc. The number of additional layers of homotopies
needed is bounded by the dimension of the polyhedron to be engulfed. This
observation is made precise in the following variation of 3.1.3.

Theorem 3.1.7 (Modified Stallings Engulfing). Let Mn be an n-dimensional
PL ∂-manifold, U0 ⊂ W0 open subsets of M , K a complex in W0 of dimen-
sion k ≤ n − 3 such that |K| is closed in M and |K| ∩ ∂M ⊂ U0, and L
a subcomplex of K such that |L| ⊂ U0 and K � L is covered by a finite
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r-subcomplex R of K. Suppose

(W0, U0) ⊂ (W1, U1) ⊂ · · · ⊂ (Wk+1, Uk+1)

are pairs of open sets in M such that (|R|, |R ∩ L|) ⊂ (W0, U0) and the
inclusion-induced homomorphism πj(Wi, Ui) → πj(Wi+1, Ui+1) is trivial for
each i ≤ r and each j ≤ r. Then K can be engulfed by Ur+1 keeping L fixed
via a PL isotopy that is supported on a compact subset of Wr+1.

We end the section with another application.

Theorem 3.1.8 (Weak h-Cobordism). If (W,M0,M1) is a compact PL h-
Cobordism and dimW ≥ 5, then W�M1 is PL homeomorphic to M0×[0, 1).

Proof. Let C ′
0 ⊂ C0 be PL collars on M0 in W (Theorem 2.4.10). It suffices

to show that any compact subset C ofW�M1 can be engulfed by C0 keeping
C ′
0 fixed. Once this is established, it is a simple matter to piece together a

countable collection of closed PL collars to form the open collar that covers
all of W �M1.

Let C ′
1 ⊂ C1 be PL collars on M1 in W � C, and let Ui denote the

interior of a regular neighborhood of C ′
i in Ci. Fix a triangulation T of

W � (C ′
0 ∪ C ′

1) and identify the codimension-3 skeleton L of T and the dual
2-skeleton L′ in T ′. Since (W,Ui) is j-connected for all j, Stallings Engulfing
Theorem promises that L can be engulfed by U0 and L′ can be engulfed by
U1. That is, there exist PL ambient isotopies of W fixing ∂W and ending
in g, γ such that g(U0) ⊃ L and γ(U1) ⊃ L′, where we require g and γ to fix
C ′
0 and C ′

1 respectively. Now by stretching across the join structure of T ′,
we can obtain another PL ambient isotopy of W fixing ∂W and ending in
h, where

hg(U0) ∪ γ(U1) = W.

Applying γ−1 we obtain

γ−1hg(U0) ∪ U1 = γ−1(W ) = W.

Since C ∩U1 = ∅, it is clear that C ⊂ γ−1hg(U0), which is part of the collar
γ−1hg(C0) on M0 as required. �

Historical Notes. The concept of engulfing originated with E. C. Zeeman,
who formulated engulfing theorems in a somewhat different way than we
have. Zeeman constructed one polyhedron that contains the original com-
plex K and collapses to a subset of U—see Zeeman (1963a), for example.
Later authors thought in terms of an isotopy that stretches U out to engulf
K. Engulfing Theorem 3.1.3 is due to J. Stallings (1962b, Theorem 3.1),
and its applications presented in the section are found in the same paper
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by Stallings. In particular, Stallings first proved the Weak Poincaré The-
orem. The strong form of the theorem, in which both the hypothesis and
conclusion are PL, is due to S. Smale (1961).

Exercises

3.1.1. If Ww is a contractible PL manifold, w > 1, and S ⊂ W is a
compact PL (w−1)-manifold, then all but one component of W�S
has compact closure.

3.1.2. A noncompact space W is said to be simply connected at ∞ if for
every compact set C1 ⊂ W there is a larger compact set C2 such
that every loop in W �C2 is null-homotopic in W �C1. Prove that
every contractible PL n-manifold, n ≥ 5, that is simply connected
at ∞ is homeomorphic to Rn. [Hint: Proceed as in the proof of
the Weak h-Cobordism Theorem; fill the entire manifold with a PL
n-cell plus a sequence of collars.]

3.1.3. Two compact PL n-manifolds M0 and M1, n ≥ 4, are h-cobordant
if and only if M0 × R and M1 × R are PL homeomorphic.

3.2. Application: The cellularity criterion

This section is devoted to another valuable application of Stallings engulf-
ing. There will be many other applications later, but this one serves as a
model illustrating the power of the technique in the study of topological em-
beddings. Previously we encountered examples indicating that some wildly
embedded arcs and cells are cellular while others are not. The main theorem
in this section confirms that the fundamental group condition introduced in
Chapter 2 distinguishes the cellular embeddings from the others.

We have already seen that the cellularity criterion, defined in §2.7, is
necessary for cellularity (Exercise 2.7.3); now we will show that it is also
sufficient. Before doing that, we must address the question of which spaces
potentially could be embedded as cellular subsets of a manifold.

Lemma 3.2.1. If X is a compact, contractible subset of a PL w-manifold
W and U is a neighborhood of X in W , then there exists a neighborhood V of
X such that X ⊂ V ⊂ U and the inclusion map V ↪→ U is null-homotopic.

Proof. Name a contraction ξ : X × I → X, where ξ0 = IdX and ξ1(X) =
x0 ∈ X. Define a map f : A → U on A = (X × I)∪ (U ×{0, 1}) ⊂ U × I as

f(a) =

⎧⎪⎨⎪⎩
u if a = 〈u, 0〉
ξt(x) if a = 〈x, t〉, and

x0 if a = 〈u, 1〉.
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Then f extends to a map F : Z → U defined on some neighborhood Z of
A in U × I. Invoke compactness of X to choose a neighborhood V of X in
W such that X × I ⊂ V × I ⊂ Z. The restriction of F to V × I gives the
required homotopy. �

Corollary 3.2.2. If X is a compact, contractible subset of a PL w-manifold
W , then there exists a sequence {Qi}∞i=1 of w-dimensional, compact PL ∂-
manifolds in W such that Qi+1 ⊂ Qi, Qi+1 ↪→ Qi is null-homotopic and
X = ∩∞

i=1Qi.

This is a useful property, so we give it a name. We will learn that any
compact subset of a manifold satisfying the conclusion of Lemma 3.2.1 is
enough like a cell that it admits an embedding as a cellular subset of some
Euclidean space.

Definition. A compact set X in an ANR Y is cell-like if for each neighbor-
hood U of X in Y there exists an open subset V of Y such that X ⊂ V ⊂ U
and the inclusion V ↪→ U is null-homotopic.

Lemma 3.2.1 certifies that contractible sets are cell-like. Familiar exam-
ples like the topologist’s sine curve (Figure 2.13) show that cell-likeness is
more general than contractibility. Obviously cellular subsets of manifolds
are cell-like, but the converse sometimes fails: wild arcs in Sn with nonsim-
ply connected complements are cell-like but not cellular. Thus cell-likeness
is also more general than cellularity.

Although cellularity and cell-likeness both appear to depend on the em-
bedding of X in W , the specific embedding really is irrelevant for the latter;
Lemma 3.2.1 makes this plain for embeddings of contractible objects in man-
ifolds and a similar argument disposes of the general case (Exercise 3.2.1).
Hence cell-likeness of the compactum is invariant under embeddings into
ANRs.

We can now state the main theorem of the section.

Theorem 3.2.3 (Cellularity Criterion). Let X be a compact, cell-like subset
of a PL w-manifold W , w ≥ 5. Then X is cellular if and only if X satisfies
the cellularity criterion.

The proof relies on two lemmas that cover the two halves of the engulfing
argument.

Lemma 3.2.4. Let {Qi} denote a sequence of compact, n-dimensional PL
∂-manifolds such that Qi+1 ⊂ Qi and each inclusion Qi+1 ↪→ Qi is null-
homotopic. Let Kk be a polyhedron in Qi+k+1, where k ≤ n− 3. Then there
exists a PL n-cell Bn such that Kk ⊂ IntBn ⊂ Bn ⊂ Qi.
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Proof. This follows immediately from the Modified Stallings Engulfing The-
orem (Theorem 3.1.7). �

Lemma 3.2.5. If W is a PL w-manifold, w > 2, and X is a cell-like subset
of W that satisfies the cellularity criterion, then (W,W �X) is 2-connected.

Proof. Let p : W̃ → W be the universal cover of W and let X1 = p−1(X).

The fact that X is cell-like implies that incl : X ↪→ W can be lifted to W̃
and so each component of X1 is homeomorphic to X. That means that the
components of both X1 and its one-point compactification X∗

1 are acyclic.
Hence, Ȟ i(X∗

1 )
∼= 0 for i > 0. It follows from 0.3.3 that Ȟ i

c(X1) ∼= 0 for

i > 0. It is not difficult to see that the cellularity criterion implies W̃ �X1

is simply connected. Using this one proves the lemma by an application of
the Relative Hurewicz Theorem and Duality Theorem 0.3.1:

πk(W,W �X) ∼= πk(W̃ , W̃ �X1) ∼= Hk(W̃ , W̃ �X1) ∼= Ȟw−k
c (X1).

The last group is trivial as long as k < w. �

Proof of Cellularity Criterion Theorem 3.2.3. The necessity of the cel-
lularity criterion is Exercise 2.7.3.

For sufficiency, consider any neighborhood U of X in W . Apply Corol-
lary 3.2.2 to obtain a sequence {Qi | i = 1, . . . w − 2} of w-dimensional,
compact PL ∂-manifolds such that Qi+1 ⊂ IntQi ⊂ Qi ⊂ U and each inclu-
sion Qi+1 ↪→ Qi is null-homotopic. Let Kw−3 denote the (w−3)-skeleton of
Qw−2 and let L denote the dual 2-skeleton. By Lemma 3.2.4, Q1 contains a
PL n-cell B with IntB ⊃ Kw−3. Apply Lemma 3.2.5 and Stallings Engulf-
ing Theorem 3.1.3 to obtain a PL homeomorphism g of W such that g acts
as the identity on Q1 � Qw−2 and g(W �X) ⊃ L. Stretch across the join
structure of this triangulation of Qw−2 to further adjust g so that

IntB ∪ g(W �X) = W.

Apply g−1 to obtain

g−1(IntB) ∪ (W �X) = g−1(W ) = W.

Now clearly X ⊂ g−1(IntB). Since B ⊂ Q1 and g(Q1) = Q1, we have
g−1(B) ⊂ Q1 ⊂ U . �

Corollary 3.2.6. If X is any cell-like subset of a PL w-manifold W , w ≥ 4,
then X × {0} is a cellular subset of W × R1.

Proof. That X × {0} satisfies the cellularity criterion in W × R1 is Exer-
cise 3.2.4. �

Corollary 3.2.7. A finite-dimensional compact metric space X is cell-like
if and only if X can be embedded as a cellular subset of Rn for some n.
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Corollary 3.2.6 promises that every cell-like subset X of Rn is stably
cellular in the sense that X is cellular when considered as a subset of any
higher-dimensional Euclidean space. Restated more simply, every cell-like
subset of Rn admits a cellular embedding in Rn+1. In general, one can-
not improve on this to obtain a cellular embedding in Rn. For example, a
Newman contractible ∂-manifold Mn (Example 0.10.3) admits no cellular
embedding e in Rn: e(∂Mn) would be 0-LCC in Rn�e(IntMn) and, coupled
with the cellularity criterion, that would imply the triviality of π1(∂M

n).

One aspect of Theorem 3.2.3 worth special notice is the fact that the
proof delivers a little more than the statement advertises. The cells con-
structed in the proof are piecewise linear cells. We have defined a compact
subset of a manifold to be cellular if it is the intersection of a nested sequence
of topological cells. But any such set will satisfy the cellularity criterion and
thus the proof of Theorem 3.2.3 shows that it will be the intersection of a
nested sequence of PL cells. Consequently, the concepts “cellular by topo-
logical cells” and “cellular by PL cells” are equivalent for subsets of PL
manifolds.

Corollary 3.2.8. Let X be a finite-dimensional cell-like set and G an
Abelian group. Then Ȟq(X;G) ∼= 0 for all q > 0.

Proof. Regard X as a cellular subset of (some) Sn. Given q > 0 and a
relative (n − q)-cycle z from (Sn, Sn � X), Sn contains an n-cell C ⊃ X,
where C lies in the complement of a carrier for ∂z. Then z is null-homologous
in (Sn, Sn � C), so it follows that Hn−q(S

n, Sn �X;G) ∼= 0. Duality gives
the cohomology conclusion. �

Definition. A map f : Y → Z is said to be cell-like if each f−1(z), z ∈ Z,
is a cell-like set.

By definition, cell-like maps are surjective. Moreover, they preserve Čech
cohomology.

Proposition 3.2.9. Any proper, cell-like mapping f : X → Y between para-
compact Hausdorff spaces induces isomorphisms f∗ : Ȟk(Y ;G) → Ȟk(X;G)
for all k ≥ 0 and all G.

Proof. This is an immediate consequence of the Vietoris-Begle Theorem
(0.4.1), as cell-like sets have trivial Čech cohomology. �

Cell-like maps also enjoy a valuable approximate lifting property.

Proposition 3.2.10 (Approximate lifting of cell-like maps). Let f : Y → Z
be a proper cell-like mapping from a locally compact ANR to a metric space
Z, and let µ : K → Z be a map defined on a finite k-complex K. For each
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ε > 0 there exists a map µ̃ : K → Y such that ρ(fµ̃, µ) < ε; moreover, if L
is a subcomplex of K and µL : L → Y is a map for which fµL = µ|L, then
µ̃ can be obtained satisfying µ̃|L = µL.

Proof. Restrict attention to a compact neighborhood Z ′ ⊂ Z of f(K) and
the compact neighborhood Y ′ = f−1(Z ′) ⊂ Y of f−1(A). Identify an open
cover Uk of f(K) in Z ′ by sets of diameter less than ε/2. Use the hypothesis
that f is cell-like to find open covers Uk−1, . . . ,U1,U0 of f(K) such that, for
i = 0, 1, . . . , k − 1, Ui refines Ui+1 and for all Ui ∈ Ui, f

−1(star(Ui;Ui)) is
null-homotopic in some element of Ui+1, where

star(Ui;Ui) = {∪U ′ ∈ Ui | U ′ ∩ Ui �= ∅}.

Choose a triangulation T of K with small enough mesh that {f(σ) | σ ∈
T} refines U0. We shall produce successive extensions µi : Li → Y ′ of µL,

where Li = L ∪ T (i), such that {fµi(τ) | τ ∈ T in the domain of µi} refines
Ui.

Extend µL over the vertices of T not in L by choosing µ0(v) ∈ f−1(v).
Given a 1-simplex σ of T , we are assured of the existence of Uσ ∈ U0 such that
f(σ) ⊂ Uσ, and f−1(Uσ) ⊃ µo(∂σ) is null-homotopic in some f−1(U1), U1 ∈
U1, so µ0|∂σ can be extended to µ1 with fµ1(σ) ⊂ U1. Suppose inductively
that µi has been defined as required. Consider an (i+1)-simplex τ ∈ T . Pick
an i-dimensional face γ of τ , and find Uγ ∈ Ui such that fµi(γ) ⊂ Uγ . Check
that fµi(∂τ) ⊂ star(Uγ ;Ui). The prearrangements in place assure that µi

can be extended to µi+1 so µi+l(τ) is contained in some f−1(Uτ ), Uτ ∈ Ui+1,
for all (i+ 1)-simplices τ ∈ T .

Set µ̃ = µk. To see that fµ̃ is close to µ, look at x ∈ K and then at a
σx ∈ T for which x ∈ σx. Each of fµ̃(σx) and µ(σx) is contained in some
element of Uk, and the two elements must intersect, since the two images of
vertices of σx are identical. Hence, ρ(fµ̃(x), µ(x)) < 2 ·mesh Uk < ε. �

Approximate lifting implies that any cell-like mapping f between ANRs
induces an isomorphism of all homotopy groups (see Exercise 3.2.8). As
a result, the Whitehead Theorem yields that cell-like mappings between
simplicial complexes are homotopy equivalences; the same is true for cell-
like mappings between locally compact ANRs, since the latter all have the
homotopy type of some simplicial complex (West, 1975). Cell-like mappings
carry an even stronger property. A mapping f : X → Y is a fine homotopy
equivalence if it has a homotopy inverse g : Y → X such that, for each open
cover V of Y , fg is V-homotopic to IdY and gf is f−1(V)-homotopic to IdX ;
in other words, there is a homotopy Ψt : Y → Y between fg and IdY and
another homotopy Φt : X → X between gf and IdX such that {Ψ(y × I) |
y ∈ Y } refines V and {Φ(x × I) | x ∈ X} refines f−1(V). Approximate
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lifting also implies that cell-like mappings between ANRs are fine homotopy
equivalences. When both the domain and target are polyhedra, this follows
almost immediately from Proposition 3.2.10 (Exercise 3.2.9); in general, one
interpolates “approximations” to the ANR domain and target by polyhedra
and does similar approximate lifting of maps and homotopies, but with more
elaborate bookkeeping to account for the interpolations. Since the result is
not used here, we omit details.

Proposition 3.2.11. Every cell-like map f : X → Y between locally com-
pact ANRs is a fine homotopy equivalence.

Proposition 3.2.12. Let f : Y → Z be a proper cell-like mapping between
locally compact ANRs. Then a compact subset A of Z satisfies the cellularity
criterion in Z if and only if f−1(A) satisfies the cellularity criterion in Y .

Proof. Assume A satisfies the cellularity criterion in Z. Given a neigh-
borhood U of f−1(A), first produce a neighborhood U ′ of A such that
f−1(U ′) ⊂ U and next a smaller neighborhood V ′ of A such that loops
in V ′�A are null-homotopic in U ′�A. Then the image under f of any loop
in V = f−1(V ′) bounds a singular disk in U ′ � A. The approximate lifting
result assures that the original loop bounds a singular disk in U � f−1(A).

The proof of the other implication is left to the reader. �

Corollary 3.2.13. Every proper cell-like mapping f : M → M ′ between PL
n-manifolds, n ≥ 5, is a cellular mapping.

We conclude this section by describing an intrinsically interesting and
historically important example of a cell-like continuum in S3. Its construc-
tion clearly illustrates how a continuum can have neighborhoods that con-
tract as in Corollary 3.2.2 without the continuum itself being contractible.

The Whitehead continuum. Begin with an unknotted solid torus V0 ⊂
S3. Inside V0 embed a second solid torus V1 as indicated in Figure 3.5.
There is a homeomorphism h : V0 → V1; define Vi, i ≥ 2, recursively by
Vi = h(Vi−1). The Whitehead continuum is the compact, connected set X
defined by

X =
∞⋂
i=0

Vi.

Since Vi ↪→ Vi−1 is null-homotopic, X definitely is cell-like. As we shall
see, X does not satisfy the cellularity criterion in S3, so X is not cellular in
S3. Using the natural inclusion S3 ⊂ S4, we can consider X to be a subset
of S4, where it is cellular (Exercise 3.2.11), although Corollary 3.2.6 does
not apply.
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V

V

0

1

Figure 3.5. The first two stages in the construction of the Whitehead continuum

The complement W = S3 � X of the Whitehead continuum is known
as the Whitehead manifold. The Whitehead manifold is interesting because,
although contractible, it is not homeomorphic to R3. The assertion that X
does not satisfy the cellularity criterion is equivalent to the statement that
W is not simply connected at infinity (see Exercise 3.1.2 for the definition),
so W cannot be homeomorphic to R3.

To verify that W is contractible, write W = ∪∞
i=0Wi, where Wi = S3 �

IntVi. Since each Vi is an unknotted solid torus, Wi is also an unknotted
solid torus. The key observation is that the embedding of Wi−1 in Wi is
exactly the same as the embedding of Vi in Vi−1. To confirm this, note that
W0 is embedded in W1, the complement of V1, as indicated in Figure 3.6.
The link in Figure 3.6 is known as the Whitehead link and it is symmetric
in the sense that there is a homeomorphism of R3 interchanging the two
components. (This can easily be verified by building a model out of string.)
It follows that W0 is null-homotopic in W1 and therefore each Wi−1 is null-
homotopic in Wi. Since the image of any map Sk → W is contained in Wi

for some i, πk(W ) = 0 for every k. The Whitehead Theorem (0.9.1) implies
W is contractible.

W V0 1core ofcore of

Figure 3.6. The core of W0 and the core of V1 form a Whitehead link

Finally, we explain why the Whitehead continuum X does not satisfy
the cellularity criterion in S3. The proof is based on the following claim.

Claim 3.2.14. For i = 0, 1 the inclusion-induced homomorphism π1(∂Vi) →
π1(V0 � IntV1) is one-to-one.
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Proof. Due to the symmetry of the Whitehead link, the two inclusions are
essentially the same, so it is enough to prove this for i = 0. Compare
Figures 2.1 and 3.5. There is a four-to-one covering map from a slightly
twisted version of (T,A1) in Figure 2.1 to (V0, V1) in Figure 3.5. If a loop on
∂V0 is null-homotopic in V0 � IntV1, then the null-homotopy can be lifted
to the covering space. By the proof of Lemma 2.1.4, the lifted loop must be
trivial on ∂T and hence the original loop must be null-homotopic on ∂V0.
Thus π1(∂V0) → π1(V0 � IntV1) is one-to-one. �

Application of Theorem 0.11.5 inductively yields the following general-
ization.

Claim 3.2.15. For every pair of nonnegative integers i and j, i < j, the
inclusion-induced homomorphisms π1(∂Vi) → π1(Vi�IntVj) and π1(∂Vj) →
π1(Vi � IntVj) are one-to-one.

Further applications of Theorem 0.11.5 and compactness of I2 images
give that for every pair of nonnegative integers i and j, i ≤ j, the inclusion-
induced homomorphism π1(∂Vj) → π1(Vi � X) is one-to-one. Clearly this
last statement implies that X does not satisfy the cellularity criterion.

Historical Notes. Cellularity Criterion Theorem 3.2.3 is mainly due to D.
R. McMillan, Jr. (1964). The concept of cell-likeness had not yet entered
the nomenclature when McMillan proved his result, so he stated his theorem
only for absolute retracts, but his proof actually works for cell-like sets. The
theorem is also known to hold in dimension four by work of M. H. Freedman
(1982). The 3-dimensional case of Theorem 3.2.3 follows from (McMillan,
1964, Theorem 1′) and Perelman’s recent solution to the Poincaré Conjec-
ture.

The definition of cell-like is due to R. C. Lacher (1969), although ear-
lier McMillan singled out the contractibility of neighborhoods as the feature
essential to his proof of 3.2.3. Lacher has written an extensive survey of
cell-like sets and cell-like mappings (Lacher, 1977). W. J. R. Mitchell and
D. Repovš (1988) have a more recent survey analyzing the impact of exam-
ples constructed by A. N. Dranishnikov (1989) of cell-like, dimension-raising
mappings.

Theorem 3.2.11 about cell-like maps between ANRs being fine homotopy
equivalences is due to G. Kozlowski (unpublished manuscript) and W. Haver
(1975).

TheWhitehead manifold was first described in (Whitehead, 1935); White-
head used it to give a counterexample to his own purported proof of the
Poincaré Conjecture.
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Exercises

3.2.1. (Topological invariance of cell-likeness) SupposeX is a cell-like sub-
set of an ANR Y and e is an embedding of X in another ANR Y ′.
Then e(X) is cell-like in Y ′.

3.2.2. Let X be a compact subset of the Hilbert cube Q. Then X is
cell-like if and only if each map f : X → Y to an ANR Y is null-
homotopic.

3.2.3. A compact subset X of a manifold M is cell-like if and only if for
each neighborhood U of X there exists a neighborhood V of X such
that the images of π1(V ) in π1(U) and of H∗(V ;Z) in H∗(U ;Z) are
trivial.

3.2.4. If X is any cell-like subset of a manifold W , dimW > 1, then
X × {0} satisfies the cellularity criterion in W × R1.

3.2.5. Prove Corollary 3.2.7.

3.2.6. If e : Sn−1 → Sn, n ≥ 5, is a topological embedding such that
e(Sn−1) satisfies the cellularity criterion, then e is weakly flat. (Re-
fer to definition of weakly flat on page 78.)

3.2.7. Let e : Sn−1 → Sn be a topological embedding. If e(Sn−1) is
1-LCC, then e(Sn−1) satisfies the cellularity criterion. Show by
example that the converse is false.

3.2.8. If f : Y → Z is a cell-like mapping between ANRs, then f induces
an isomorphism f∗ : πk(X,x0) → πk(Y, f(x0)) for all k.

3.2.9. Every cell-like map f : K → L between finite polyhedra is a fine
homotopy equivalence.

3.2.10. If the map f : X → Y between metric compacta is a fine homotopy
equivalence, then dim Y ≤ dim X.

3.2.11. Prove that the Whitehead continuum X is cellular when considered
as a subset of S4.

3.2.12. Find a cellular embedding of the Whitehead continuum in S3.

3.3. Engulfing with control

In establishing that the Cellularity Criterion implies cellularity, we exercised
a partial motion control: the motion associated with the engulfing activity
was restricted to a predetermined neighborhood of the cell-like set X, but
the distance points moved was unrestricted. Next we turn to the matter of
imposing control on the amount of motion in an engulfing isotopy. The state-
ment of a general controlled engulfing theorem can be quite complicated, so
we focus initially on a special situation in which the necessary hypotheses
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are relatively simple to state. This special case, known as Bryant-Seebeck
engulfing, will be extremely useful in the remainder of the chapter. In an
appendix to this section we treat a more general theorem that can be proved
with the techniques developed here. Situations will arise much later in the
text in which this more general (and more complicated) statement is needed.

Throughout this section and the next we will use d to denote the metric
on the ambient space and ρ to denote the sup-norm on the function space.
We will use B(A; ε) to denote the ε-neighborhood of A:

B(A; ε) = {x′ | d(x, x′) < ε for some x ∈ A}.

Definition. Let A be a subset of a complete metric space Y and let ε be a
positive number. An ε-push of (Y,A) is a homeomorphism ψ ∈ Homeo(Y, Y )
for which there is an isotopy Ψt : Y → Y such that Ψ0 = IdY , Ψ1 = ψ,
ρ(Ψt, IdY ) < ε for all t ∈ [0, 1], and Ψt is supported in B(A; ε). (The last
condition means that Ψt is the identity outside a closed subset of B(A; ε).)
The isotopy Ψt is called the supporting isotopy of the push ψ.

Observation 3.3.1. If ψ is an ε-push of (Y,A), then ψ−1 is an ε-push of
(Y,A) and a 2ε-push of (Y, ψ(A)).

Theorem 3.3.2 (Bryant-Seebeck Engulfing). Let Ww be a PL w-manifold
and X ⊂ Ww a compact, x-dimensional, 1-LCC subset of Ww, x ≤ w − 3.
For each closed polyhedral subset Kk of Ww with k ≤ min{w−x− 1, w− 3}
and each ε > 0, there exists a PL ε-push ψ of (W,X) such that ψ(W �X) ⊃
K.

As stated, the theorem asserts that k-dimensional polyhedra can be
engulfed from W �X in a controlled way. But ψ−1 is an ε-push of (W,X)
such that ψ−1(K) ∩ X = ∅, so the theorem also shows that k-dimensional
polyhedra can be pushed off X in a controlled way. That is the form in
which we usually will apply it. The statement does not include the usual
engulfing feature about fixing points of K that are already in W �X since
the positive number ε regulating the push can be reduced to achieve this.

Before addressing the proof of Theorem 3.3.2, we develop some crucial
properties of LCC sets.

Lemma 3.3.3. Suppose X is a closed LCCk−1 subset of a locally compact
ANR Y , f : K → Y is a map defined on a finite k-complex K, L is a
subcomplex of K with f(L) ⊂ Y � X, and ε > 0. Then there exists a
map F : K → Y satisfying (i) F (K) ⊂ Y � X, (ii) F |L = f |L, and (iii)
ρ(F, f) < ε. Moreover, F can be obtained so that there exists an ε-homotopy
ht : K → Y such that h0 = f , h1 = F , ht|L = f |L for every t ∈ I, and
diamh(q × I) < ε for all q ∈ K.
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Proof. Local compactness of Y assures the existence of a compact neigh-
borhood C of f(K) in Y . A standard Lebesgue number argument shows
that the following uniform variant of the i-LCC properties holds near C: to
each η > 0 and i ≤ k corresponds a positive number δ = δ(η, i) > 0 such
that each map of ∂Ii into a δ-subset of B(C; δ)�X extends to a map of Ii

into an η-subset of Y �X. (Note that δ(η, i) ≤ η.)

Fix ε > 0, set δk = δ(ε/3, k), and then recursively determine δk−j =
δ(δk−j+1/3, k − j) for j = 1, . . . , k − 1. Subdivide K via a triangulation T
so that diam f(σ) < δ1/3 for every σ ∈ T . Let L′ denote the union of all
σ ∈ T with f(σ) ⊂ Y �X (clearly L′ contains a subdivision of L), and define
F |L′ = f |L′. Extend F on vertices v of T � L′ so F (v) is a point in Y �X
within δ1/3 of f(v). For 1-simplices τ of T �L′, check that diamF (∂τ) < δ1
and F (∂τ) ⊂ B(C; δ1), so F extends to a map (still called F ) sending τ into
a (δ2/3)-subset of Y �X. Assuming F defined on the (i− 1)-skeleton of T ,
i > 1, so as to send each (i − 1)-simplex into a (δi/3)-subset of Y �X, we
check that diamF (∂σ) < δi and F (∂σ) ⊂ B(C; δi) for every i-simplex σ ∈ T
and exploit the prearranged choice of δi to extend F to a map sending σ into
a (δi+1/3)-subset of Y �X. Ultimately, when i = k, this yields F : K → Y
sending k-simplices of T into (ε/3)-subsets of Y �X.

To estimate ρ(F, f), fix q ∈ K and choose σ ∈ T with q ∈ σ, as well as
a vertex v of σ. Then

d(F (q), f(q)) < d(F (q), F (v)) + d(F (v), f(v)) + d(f(v), f(q))

≤ diamF (σ) + d(F (v), f(v)) + diam f(σ)

< ε/3 + δ1/3 + δ1/3 ≤ ε.

The map F satisfies (i), (ii), and (iii). In order to achieve the additional
condition in the last sentence of the theorem statement, first apply Theo-
rem 0.6.3 to find a number ε′ ≤ min{ε, d(f(K), Y �C)} so that ε′-close maps
of K into C are ε-homotopic in Y ; then apply the preceding argument to
find an F satisfying (i), (ii), and (iii) with ε replaced by ε′. �

Lemma 3.3.4 (πi-negligibility). If X is a closed, LCCk−1 subset of a locally
compact ANR Y , then the inclusion-induced homomorphism πi(Y �X) →
πi(Y ) is an isomorphism for i < k and an epimorphism for i = k.

Proof. Any α ∈ πi(Y �X) can be represented by a map f : ∂Ii+1 → Y �X.
If α is trivial in πi(Y ), then f extends to f : Ii+1 → Y . By Lemma 3.3.3
there is a map F : Ii+1 → Y �X such that F |∂Ii+1f |∂Ii+1, and thus α is
trivial in πi(Y � X). In a similar way β ∈ πk(Y ) can be represented by a
map g : Sk → Y . Apply the last part of the statement of Lemma 3.3.3 to see
that g is homotopic to G : Sk → Y �X. It follows that πk(Y �X) → πk(Y )
is an epimorphism. �
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Lemma 3.3.5. Let Ww be a w-manifold and let X be a k-dimensional closed
subset of Ww, k ≤ w − 2, that is 1-LCC in Ww. Then X is LCCw−k−2.

Proof. Consider a point x ∈ X and the interior V of a small open ball
containing x. By Lemma 3.3.4, V �X is simply connected, and by Corol-
lary 0.3.10, Hi(V �X) = 0 whenever i ≤ w − k − 2. The Hurewicz Isomor-
phism Theorem certifies that πi(V �X) = 0 for i ≤ w − k − 2. �

Proof of Theorem 3.3.2. Inductively assume that the theorem holds for
complexes of dimension less than k. Then, in treating the k-complex K,
subdivide so all simplices have diameter less than ε and apply the inductive
hypothesis to move the (k − 1)-skeleton off X with a small push φ. We
suppress φ, though, and simply presume that the (k − 1)-skeleton already
misses X.

List the k-simplices ∆1, . . . ,∆m of K that meet X. For i = 1, . . . ,m,
identify a slightly smaller k-simplex ∆′

i such that ∆i ∩X ⊂ Int∆′
i ⊂ ∆′

i ⊂
Int∆i. Invoke Lemma 3.3.5 and the hypothesis x ≤ w − k − 1 to confirm
that X is LCCk−1. Use Lemma 3.3.3 with a very small number η < ε/2 to
find homotopies hi : ∆′

i×I → W such that hi0 = inclusion, hi1(∆
′
i) ⊂ W�X,

hi(∆′
i×I)∩X ⊂ Int∆′

i, diamhi(∆′
i×I) < ε, and hi(∆′

i×I)∩hj(∆′
j×I) = ∅

for i �= j. After a PL approximation, the homotopy images are polyhedra
Si ⊃ ∆′

i ∪ Li, where Li = hi1(∆
′
i) ⊂ W �X.

Focus on the case k < w−3, which is a bit easier than the k = w−3 case,
since then (by application of Shadow Building Lemma 3.1.5 exactly as in the
proof of Theorem 3.1.3) each Si has a subcomplex L′

i ⊃ Li such that Si ↘ L′
i

and dim(L′
i�Li) < k. Here L′

i is the image under hi of a shadow containing
the singularities of the general position map hi. Induction again promises
an (ε/2)-push ψ of (W,X) such that ψ(W �X) ⊃ L′

i; moreover, ψ can be
constrained so strictly that it fixes all points of K � (∪i∆

′
i). Enclose the

various Si’s in pairwise disjoint sets Ui, each of diameter less than ε/2. By
the proof of the regular neighborhood theorem, we can construct a regular
neighborhood N of [K � (∪i∆

′
i)]∪ (∪iL

′
i) in ψ(W �X), a regular neighbor-

hoodN ′ of [K�(∪i∆
′
i)]∪(∪iSi) = K∪(∪iSi), and a sequence of intermediate

simplicial neighborhoods N = N0 ⊂ N1 ⊂ · · · ⊂ Nq = N ′ such that the clo-
sure of each Nj � Nj−1 is a w-ball Bj in some Ui, where Bj meets ∂Nj−1

in a (w − 1)-face. Hence there is an ambient isotopy carrying N to N ′ and
supported in ∪iUi near the balls covering N ′ �N . The end of that isotopy
is another (ε/2)-push ψ′ of (W,X), and ψ′ ◦ ψ(W �X) ⊃ K ∪ (∪iSi) ⊃ K.
Hence, ψ′ψ has all the features required in the theorem.

Finally, in case k = w − 3, analogs of the small sets Si and Ui provide
the motion control. The uncontrolled codimension-three engulfing argument
given in 3.1.3 works equally well here. One repeatedly identifies more limited
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singular sets, just as before, engulfs the shadows L′
i of those singularities, and

then uses regular neighborhoods to cover the inverses of related collapses.
As the resulting isotopies are all supported in ∪iUi, the outcome is an ε-
push. �

Appendix on Generalized Controlled Engulfing

Techniques related to those developed in the proof of Theorem 3.3.2 can
be used to prove other, even more powerful, controlled engulfing theorems.
We conclude this section with a theorem general enough for use in several
applications to come in Chapters 5 and 7. It seems efficient to deal with the
result immediately, while the proof of 3.3.2 is close at hand, rather than to
derive it later, when it is needed. We set it off in an appendix, in case the
reader prefers to move forward toward applications of 3.3.2.

The main ingredient required for controlled engulfing is a collection of
short homotopies that pull various polyhedra into an open set. In the proof
of Bryant-Seebeck engulfing, those homotopies are constructed using the 1-
LCC condition and duality (Lemma 3.3.5). The controlled engulfing theorem
of this appendix will explicitly assume the existence of the short homotopies.
Except for the motion size controls in the conclusion, the statement exactly
parallels that of Modified Stallings Engulfing Theorem 3.1.7.

The following special definition simplifies and shortens the statement of
the controlled engulfing theorem.

Definition. Let M be a PL manifold, (W,U) ⊂ (W ′, U ′) two pairs of open
subsets of M , and δ > 0. We say that r-dimensional relative polyhedra in
(W,U) can be δ-homotoped to U ′ in W ′ if for every pair (K,L) ⊂ (W,U) of
compact polyhedra with dimK ≤ r there exists a homotopy g : K× [0, 1] →
W ′ such that

(1) g0 = inclK : K → W ′,

(2) g1(K) ⊂ U ′,

(3) gt|L = inclL for every t, and

(4) diam g({x} × [0, 1]) < δ for every x ∈ K.

Due to the inductive structure of an engulfing proof, the final engulfing
isotopy will move points many times farther than any one of the individual
homotopies guiding the construction of the isotopy. An important observa-
tion regarding the proof of Theorem 3.3.2 is that the relationship between
the size of the final engulfing isotopy and the size of the homotopies used to
construct it is mainly determined by the number of homotopy layers built
up in the course of the inductive construction. Thus, in the presence of a
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uniform bound on the motion of the homotopies, the motion control is inde-
pendent of both the ambient manifold itself and the particular polyhedron
to be engulfed; it is dependent solely on the dimension of that polyhedron.

Lemma 3.3.6. Let σ be an r-simplex and pσ : σ × I → σ the obvious
projection. For any two i-simplices τ, τ ′ ⊂ σ × I, i < r, such that Int τ ∩
Int τ ′ = ∅ and pσ(τ) = pσ(τ

′) and for any ε > 0, there exists a PL ε-
homeomorphism θ : σ× I → σ× I fixing τ ∪ ∂τ ′ and supported near τ ′ such
that pσθ(τ) ∩ pσθ(τ

′) = pσ(∂τ).

Proof. Figure 3.7 suggests how to adjust τ ′ to achieve this, simply by shift-
ing the barycenter of τ ′ off pσ(τ)× I. �

0

1

σp

τ

τ

θ

θ(τ)=τ

θ(τ )

θ(τ )(τ)
σp

σ

Figure 3.7. Modifications to eliminate coincident projections

Theorem 3.3.7 (Generalized Controlled Engulfing). Let δ denote a fixed
positive number, M an n-dimensional PL ∂-manifold, (W0, U0) a pair of
open subsets of M , K a complex in W0 of dimension k ≤ n − 3 such that
|K| is closed in Mn and |K|∩∂M ⊂ U0, and L a subcomplex of K such that
|L| ⊂ U0 and K � L is covered by a finite r-subcomplex R of K. Suppose

(W0, U0) ⊂ (W1, U1) ⊂ · · · ⊂ (Wr+1, Ur+1)

are pairs of open sets in M such that r-dimensional relative polyhedra in
(Wi, Ui) can be δ-homotoped to Ui+1 in Wi+1, 0 ≤ i ≤ r, and (|R|, |R∩L|) ⊂
(W0, U0). Then K can be engulfed by Ur+1, keeping L fixed, via a PL ε-push
of (M,Ur+1) compactly supported in Wr+1 ∩ IntM , where ε = (r + 2)δ.

Proof. This is proved by induction on r. We can assume no simplex of R
meets ∂M , by first subdividingK so all simplices that do touch ∂M actually
lie in U0, then deleting those simplices from R while adding both them and
all their faces to L. From here on we treat M as a boundaryless manifold,
with the understanding that compactly supported pushes there extend via
the identity over ∂M when ∂M is restored.
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First, in all cases except r = n−3, just as in the proof of Theorem 3.1.3,
we show that the entire image of an appropriate homotopy g : R×[0, 1] → W1

pulling R into U1 can be engulfed by Ui+r+1 via a PL ε′-push compactly
supported in Wi+r+1 and fixing L, where ε′ = (r + 1)δ. The initial r = 0
step is readily obtained. Assume this controlled engulfing can always be
accomplished for complexes of dimension less than s ≤ n− 4, and consider
a finite s-complex R with (|R ∪ L|, |L|) ⊂ (Wi, Ui), 0 ≤ i ≤ r − s. The
hypothesis promises a δ-homotopy g : R → Wi+1 such that g0 = inclR, gt
fixes R ∩ L and g1(R) ⊂ Ui+1. Put g in general position (rel R ∩ L), both
internally and with respect to how its image intersects L, so that Sg, its
singular set, and g−1(L)� ((R ∩ L)× I) have dimension at most

(s+ 1) + (n− 3)− n ≤ s− 2.

Name a triangulation T of R such that (1) diam g(γ×I) < δ for all simplices
γ ∈ T and (2) Sg ∪g−1(L) is contained in T (s−2)×I, where, as usual, T (s−2)

denotes the (s−2)-skeleton of T . Induction, applied to g(T (s−2)×I) ⊂ Wi+1,
yields an sδ-push ψ, fixing L ∪ g1(K) and compactly supported in Wi+s+1,
such that

ψ(Ui+s+1) ⊃ g(T (s−2) × I) ∪ g0(R).

Let C denote the complement of T (s−2) in R � L. Here g embeds C × I,
since (C × I) ∩ Sg = ∅; moreover, by choice of T (s−2), g(C × I) misses

L ∪ g(T (s−2) × I). Hence, by (Rourke and Sanderson, 1972, Lemma 3.25)
one can produce another push ψ′ in M , compactly supported in Wi+1 and
fixing L ∪ g((R× {1}) ∪ (T (s−2) × I)), such that

ψ′ψ(Ui+s+1) ⊃ g(T × I) = g(R× I).

This ψ′ can be realized as the composition of two δ-pushes, the first sup-
ported in pairwise disjoint δ-sets near ∪τg(τ × I), indexed by the (s − 1)-
simplices τ ∈ T , and the second in pairwise disjoint δ-sets near ∪σg(σ × I),
indexed by s-simplices σ ∈ T . The first portion of the push ψ′ expands
ψ(Ui+s+1) to cover g(T (s−1)× I) and the second portion expands further to
cover the entire g(R× I). With extra care during the expansion associated
with (s − 1)-simplices τ , one can force ψ′ to be a δ-push, not merely a 2δ-
push, by insisting that the motion near g(τ × I) be close to all g(σ × I) for
which τ is a face of σ. Then ψ′ψ is an (s+ 1)δ-push that engulfs g(R× I)
subject to all the required inductive constraints. This completes the proof
of the inductive step (r ≤ n− 4).

Remark. The extra care to assure that ψ′ is a δ-push, not merely a 2δ-
push, is not ultimately crucial, provided one is willing to tolerate essentially
double the motion of the composite push ψ′ψ.
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Now we turn to the r = n− 3 case, which stands apart from the others,
in that we cannot engulf the entire image of the homotopy, for the usual
reasons. Consider a finite relative (n−3)-complex (|R∪L|, |L|) in (W0, U0).
Find a δ-homotopy g : R× I → W1, as before, such that g0 = inclR, gt fixes
R ∩ L and g1(R) ⊂ U1.

The key to successful completion of the argument involves exceedingly
meticulous general position considerations imposed on g. Put g in general
position so that its singular set Sg has dimension at most

(n− 2) + (n− 2)− n ≤ n− 4

and the preimage STP under g of all triple points of g((R�L)× I)—points
having at least three preimages—has dimension at most 3(n−2)−2n ≤ n−6.
In addition, adjust to locate an (n − 5)-polyhedron P ⊂ K × I such that
the projection of Sg � P ⊂ K × I to R is 1-1. Again name a small mesh
triangulation T of R so diam g(γ × I) < δ for all γ ∈ T and

P ∪ STP ∪ S′
g ∪ (g−1(L)� (R ∩ L)× I) ⊂ T (n−5) × I,

where S′
g is the reduced singular set consisting of all preimages of singular-

ities arising from g(σ), g(σ′) for which dimσ + dimσ′ < 2(n− 2).

We modify the (n − 4)-skeleton of T slightly to obtain a collection of

small PL (n − 4)-cells τ in R, with each ∂τ covered by T (n−5), each diam
g(τ × I) < δ, and g|(∪τ Int τ) × I an embedding. The modifications occur
only for those (n−4)-simplices γ ∈ T for which (Int γ×I)∩Sg �= ∅; then γ is
replaced by two (n−4)-cells τ, τ ′, where ∂γ = ∂τ = ∂τ ′, g|(Int τ ∪ Int τ ′)×I
is an embedding and τ ∪ τ ′ bounds a small (n− 3)-cell Cγ containing γ such
that diam g(Cγ × I) < δ. Two such Cγ , Cγ′ are allowed to intersect only
at ∂γ ∩ ∂γ′. Furthermore, for (n − 3)-simplices σ ∈ T , the closure of each
σ�∪γCγ should be a PL (n−3)-cell. As a result, the closures C1, C2, . . . , Ct

of components of R� (T (n−5) ∪ (∪ττ)) are small PL (n− 3)-cells such that,
for each i, diam g(Ci × I) < δ and g(IntCi × I) meets at most one other
g(IntCj × I), j �= i.

Now application of the n − 4 case to g(T (n−5) × I) ⊂ W1 yields an
(n − 3)δ-push ψ, fixing L ∪ g1(R) and compactly supported in Wn−2, such

that ψ(Un−2) ⊃ g(T (n−5) × I) ∪ g1(R). We can ambiently expand ψ(Un−2),
fixing L ∪ g(T (n−5) × I) ∪ g1(R), along the various g(τ × I) via a δ-push ψ′

to achieve

ψ′ψ(Un−2) ⊃ g((T (n−5) ∪ (∪ττ))× I) ∪ g1(R)

and follow that with further expansions (still denoted as ψ′) along g(Ci× I)
to achieve

ψ′ψ(Un−2) ⊃ g((T (n−5) ∪ (∪ττ))× I) ∪ g0(R) ⊃ R.
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Figure 3.8. Modifications of the triangulation T

As g(R × I) ⊂ W1, ψ
′ can be obtained with compact support in W1. The

collection of further expansions along the Ci might change things by nearly
2δ, since any given point could be moved near the union of at most two
intersecting g(Ci × I). The bound on that motion cannot be reduced to
δ itself. However, by insisting that the support of the initial adjustments
along g(τ × I) be very close to all g(Ci× I) where τ ⊂ ∂Ci, just as was done
in the cases r ≤ n− 4, one can obtain ψ′ as a 2δ-push instead of a 3δ-push.
Then ψ′ψ is a (n− 1)δ-push having compact support in Wn−2. �

Historical Notes. Bryant-Seebeck engulfing and its applications were de-
veloped by Bryant and Seebeck in a series of papers written in the late 1960s
(see Bryant and Seebeck (1968a), (1968b), (1968c), and (1970)) as well as
Bryant (1969).

There are other forms of controlled engulfing. The theorem in the ap-
pendix imposes the condition that no point moves more than a fixed amount
under the relevant homotopies; another way in which to impose control is
to specify in advance a collection of tracks along which points may move. A
“radial” engulfing theorem is one in which the tracks of certain homotopies
are identified and then an engulfing isotopy is constructed having the prop-
erty that the movement of each point is confined to a small neighborhood of
a limited number of those tracks. Bryant-Seebeck engulfing is a particular
case in which the specified homotopies have short tracks.

The first radial engulfing theorem is due to E. H. Connell (1963), who
used the technique to approximate stable homeomorphisms of Rn; stable
homeomorphisms are touched upon in §8.8. In Connell’s theorem the tracks
literally are radial. Connell proved a codimension-four theorem, which Bing
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(1963) later improved to codimension three. Radial engulfing theorems are
surveyed in Bing (1968) and (1975).

Exercises

3.3.1. Verify Observation 3.3.1.

3.3.2. Every cell-like LCC1 subset X of an ANR Y satisfies the cellularity
criterion.

3.3.3. Let X be a compact subset of a locally compact ANR Y . Then
{F ∈ C(Ik, Y ) | F (Ik) ∩X = ∅} is dense in C(Ik, Y ) if and only if
X is LCCk in Y .

3.3.4. Let X be a compact LCCk subset of a locally compact ANR Y ,
f : K → Y a map defined on a k-complex K, U an open subset of
K, and ε > 0. Then there exists a map F : K → Y such that (i)
F |K � U = f |K � U , (ii) ρ(F, f) < ε and (iii) F (U) ∩X = ∅.

3.4. Application: Embedding dimension

A major theme of this book is that π1 conditions detect many useful proper-
ties of embeddings. We have already seen, earlier in this chapter, that a π1
condition on neighborhoods distinguishes cellular embeddings from noncel-
lular ones. Next we use the Bryant-Seebeck engulfing to prove that a local
π1 condition implies that a compactum has neighborhoods with a simple
local PL structure. The ultimate goal is to prove that 1-LCC embeddings
of polyhedra are tame and that 1-LCC embeddings of compacta behave in
many ways like PL embeddings of polyhedra. The results in this section
represent the first step in that direction and also serve to illustrate how the
controlled engulfing theorem is used.

In order to define embedding dimension we must review some definitions
and constructions related to mapping cylinders.

Definition. Let f : A → B be a map. The mapping cylinder of f , denoted
Map(f), is the quotient space obtained from the disjoint union (A×[0, 1])
B
under identification of each point 〈a, 1〉 ∈ A× [0, 1] with f(a) ∈ B. Standard
practice identifies A and B with the images of A× 0 and B, respectively, in
Map(f).

In case K and L are polyhedra and f : K → L is a PL map, the mapping
cylinder Map(f) is a polyhedron. Care must be taken, though, with how
it is triangulated. In general it is not possible to triangulate K × [0, 1] in
such a way that the quotient map K × [0, 1] 
 L → Map(f) is PL. The
impossibility is evident whenever f is degenerate on some simplex; there is
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A×{0}

B

Map(f)

Figure 3.9. The mapping cylinder of f : A → B

no impediment to producing such a triangulation when K is compact and
f is injective.

Rather than triangulating K × [0, 1] and L separately and pasting them
together, we will define a simplicial version of the complete mapping cylin-
der. Start with triangulations T of K and S of L such that f is simplicial
relative to T and S. The simplicial mapping cylinder associated with T
and S is a simplicial complex whose underlying space is homeomorphic to
Map(f); it contains S and the first barycentric subdivision of T as subcom-
plexes. For each vertex v ∈ T , triangulate Map(f |v) = {v} × [0, 1] ∪ L so
that {v} × [0, 1] is a 1-simplex. Given a simplex σ ∈ T , we may assume in-
ductively that the simplicial mapping cylinder structure on Map(f |∂σ) has
already been defined. Triangulate Map(f |σ) as the cone on Map(f |∂σ)∪f(σ)
from the barycenter of σ as illustrated in Figure 3.10. The simplicial map-
ping cylinder of f consists of S plus the union over all simplices in T of these
partial mapping cylinders. Whenever f : K → L is PL we will assume that
Map(f) is triangulated as a simplicial mapping cylinder.

a

f(a)
f(c)=f(b)

c

b

Figure 3.10. The simplicial mapping cylinder of a linear map from a
2-simplex onto a 1-simplex

Definition. Let N be a regular neighborhood of the polyhedron K in the
PL manifold M . Say that N is an ε-regular neighborhood of K if there exist
a PL map r : ∂N → K and a PL homeomorphism H : Map(r) → N such
that H(z, 0) = z for every z ∈ ∂N , H|K = Id, and diamH({z} × [0, 1]) < ε
for every z ∈ ∂N .
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The regular neighborhoods constructed by Rourke and Sanderson (1972)
are ε-regular neighborhoods. Since they neither explicitly state nor prove
that fact, we include a proof here.

Lemma 3.4.1. If K is a compact polyhedron in the PL manifold M , then
K has an ε-regular neighborhood for every ε > 0.

Proof. Take a triangulation T of M that includes a triangulation of K as
a full subcomplex. Each simplex in the simplicial neighborhood N(K,T ) is
the join of a simplex in K with one that is disjoint from K. Thus each point
z ∈ Int |N(K,T )| �K can be written uniquely as z = tx + (1 − t)y, where
x ∈ K, y ∈ FrN , and 0 < t < 1. The map r : Int |N(K,T )| → K defined by
r(z) = x if z /∈ K and r(z) = z if z ∈ K is a retraction. Let N = N(K,T ′)
be the simplicial neighborhood of K in a first derived subdivision T ′ of T .
Then N is a regular neighborhood of K by the Simplicial Neighborhood
Theorem (Rourke and Sanderson, 1972, Theorem 3.11). It is easy to check
that N = Map(r|∂N).

Note that r as defined in the previous paragraph is not a piecewise
linear map. But pseudo-radial projection (Rourke and Sanderson, 1972, pp.
20–21) can be used to replace r|∂N with a PL map that is linear on each
simplex of T ′|∂N . If mesh(T ) < ε, then each fiber has diameter less than
ε because the fiber is contained in a simplex of T . Hence N is an ε-regular
neighborhood. �

We are now ready for the fundamental definition.

Definition. A compact subset S of a PL manifold W is said to have embed-
ding dimension ≤ k, abbreviated demX ≤ k, if for every ε > 0 there exist
a k-dimensional polyhedron K ⊂ W and an ε-regular neighborhood N of K
such that X ⊂ IntN ⊂ N ⊂ B(X; ε). Say that X has embedding dimension
equal to k, abbreviated as demX = k, if demX ≤ k and demX � k − 1.

The embedding dimension is also called the dimension of embedding or
simply “demension.” It is, as the name suggests, a property of the em-
bedding rather than a topological property of the compactum itself. Two
familiar Cantor sets in R3 highlight this dependence on the embedding.

Example 3.4.2. If C is the standard (middle-thirds) Cantor set in R3 and
A is Antoine’s necklace, then demC = 0 while demA = 1.

Proof. That demC = 0 is Exercise 3.4.1. The construction of Antoine’s
necklace assures A has arbitrarily close neighborhoods that are regular
neighborhoods of a finite union of circles. Hence demA ≤ 1. Since A is
not flat, demA �= 0 (Exercise 3.4.1), so demA = 1. �
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Even though demX does not necessarily equal dimX, standard dimen-
sion theory facts show that the embedding dimension is bounded below by
the topological dimension.

Theorem 3.4.3. If X is a compact subset X of the PL manifold W , then
dimX ≤ demX.

Proof. This follows immediately from Alexandroff’s Theorem (0.7.1) on
approximation of compact metric spaces by polyhedra. �

Another effective way to interpret embedding dimension involves general
position. If demX ≤ k, then X has the general position properties of a k-
dimensional polyhedron and conversely. That observation is recorded in the
next theorem.

Theorem 3.4.4. A compact subset X of a PL w-manifold Ww satisfies
demX ≤ k if and only if for every subpolyhedron P of Ww with dimP ≤
w − k − 1 and for every ε > 0 there exists a PL ε-push ψ of (W,X) such
that ψ(X) ∩ P = ∅.

Corollary 3.4.5. A compact subset X of a PL w-manifold Ww satisfies
demX ≤ k if and only if, for every ε > 0 and every (w−k−1)-dimensional
polyhedron L in Ww, there exists an ε-push ψ of (Ww, X ∩ L) such that
ψ(L) ∩X = ∅.

Corollary 3.4.6. If X is a compact subset of the PL manifold Ww and
demX ≤ w − 3, then X is LCC1 in Ww.

Corollary 3.4.7. If X and Y are compact subsets of the PL manifold Ww

and demX + demY < w, then for every ε > 0 there exists an ε-push ψ of
(Ww, X ∩ Y ) such that ψ(X) ∩ Y = ∅.

Proof. Exercise 3.4.2. �

The main result of the section is the following powerful converse to
Corollary 3.4.6. Its LCC1 hypothesis suggests—quite accurately, it turns
out, but that is not a concern at the moment—that dimX ≤ w − 3.

Theorem 3.4.8. If X is a compact subset of the PL w-manifold W , w ≥ 5,
and X is LCC1 in W , then demX ≤ dimX.

Proof. Assume dimX ≤ k. We will prove that demX ≤ k. Let ε > 0 be
given.

Assume first that k ≥ 2. Choose a PL ∂-manifold neighborhood M
of X such that M is contained in the ε-neighborhood of X and let T be
a triangulation of M that has mesh less than ε/9. Define L to be the k-
skeleton of T . Take a barycentric subdivision T ′ and define P to be the
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simplicial complement of L in T ′. Then each simplex in T ′ is the join of a
simplex in L and a simplex in P , so dimP = w−k−1 and there is a natural
join structure between P and L (see the remarks at the beginning of §3.1).
Take N to be the simplicial neighborhood of L in the second barycentric
subdivision T ′′; note that N is an (ε/9)-regular neighborhood of L.1

By Bryant-Seebeck engulfing (Theorem 3.3.2) there is an (ε/9)-push ψ
of (W,X) such that ψ(P ) ∩X = ∅ and the support of ψ is in IntM . Every
simplex in T ′ is the join of one in L′ and one in P , so we can use the join
structure to define a second push φ such that φ(ψ(N)) ⊃ X. Now φ is a push
across the image of the join structure under ψ, so φ will be an (ε/3)-push.
Originally N was an (ε/9)-regular neighborhood, but it was stretched by the
(4ε/9)-push φ ◦ ψ, so now it is an ε-regular neighborhood of K = φ(ψ(L)).
Since K is k-dimensional and ε was arbitrary, this shows that demX ≤ k.

The cases k = 0 and k = 1 are more difficult because in those cases
we do not have w − k − 1 ≤ w − 3 and therefore cannot engulf the dual
(w − k − 1)-skeleton. To prove the theorem in those cases we must use an
additional ad hoc argument that is itself a miniature version of the proof of
the engulfing theorem. We present an outline of the argument that omits
some of the details regarding the size controls.

Consider k = 1 and w ≥ 6. By Corollary 0.7.2 there is a compact
1-dimensional polyhedron K ⊂ W and a map f : X → K such that
d(x, f(x)) < ε for every x ∈ X. Since K is an ANR, the map f may be ex-
tended to a neighborhood U of X; we may also assume (by Theorem 0.6.3)
that f : U → K is ε-homotopic to the inclusion U ↪→ W . By the part of the
theorem already proved we know that demX ≤ 2, so for every δ > 0 there
exists a 2-dimensional polyhedron P and a δ-regular neighborhood N of P
such that X ⊂ IntN ⊂ N ⊂ U . The map f |P : P → K is ε-homotopic in W
to the inclusion P ↪→ W . Take a PL approximation to this homotopy and
put it in general position. Then the singular set will have dimension 0 and
its shadow will be 1-dimensional. Let K+ be the 1-dimensional polyhedron
consisting of K plus this shadow. Then the track of the homotopy collapses
to K+, so P can be engulfed with a regular neighborhood of K+. A stretch
across the mapping cylinder structure of N engulfs all of N , and therefore
also X, into a regular neighborhood of K+. The same kinds of controls that
were placed on the motions in the proof of Bryant-Seebeck engulfing work
here.

The case k = 1 and w = 5 is the hardest. We cannot proceed as in the
last paragraph because this time the singular set will be 1-dimensional and
its shadow 2-dimensional. Use Corollary 0.7.2 and Theorem 0.6.3 as above

1In order to avoid excessive wordiness, we are not distinguishing between a simplicial complex
and its underlying polyhedron.
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to find a 1-dimensional polyhedron K, a neighborhood U of X, and a map
f : U → K such that f : U → K is ε-homotopic to the inclusion U ↪→ W .
Again use the fact that the theorem has already been proved for k ≥ 2 to find
a 2-dimensional polyhedron P and an ε-regular neighborhood N of P such
that X ⊂ IntN ⊂ N ⊂ U . Let H : P × [0, 1] → W be an ε-homotopy such
that H(P×1) ⊂ K. Put H in general position, keeping H|P×1 fixed. Then
H(P (1)× [0, 1)) will be embedded in W �K, where P (1) is the 1-skeleton of

P . Hence K ∪H(P (1)× [0, 1)) ↘ K, so a regular neighborhood of K can be

stretched out to cover H(P (1) × [0, 1)). Now proceed as in the proof of an
engulfing theorem to use the track of H to engulf the 2-simplices of P , one
at a time. The only difference between this proof and the earlier one is that
the 1-dimensional shadows that appear are not engulfed by induction, but
are simply added to K to build a larger 1-dimensional polyhedron K+. A
regular neighborhood of K+ can be stretched out to engulf P . A push across
the mapping cylinder structure of N stretches the regular neighborhood of
K+ out to cover all of N and therefore also all of X.

Finally, suppose k = 0 and w ≥ 5. First use the k = 1 case of the
proof to see that demX ≤ 1. There is a small map of a neighborhood U
of X to a 0-dimensional polyhedron K (Corollary 0.7.2). Using the k = 1
case of the theorem we can find a 1-dimensional polyhedron P and a regular
neighborhood N of P such that X ⊂ IntN ⊂ N ⊂ U . This time the track
of the homotopy of P can be embedded and so it is easy to use it to engulf
P with a neighborhood of K. �

In codimensions one and two the 1-LCC hypothesis is not needed for
showing demX ≤ dimX.

Theorem 3.4.9. If X is a compact subset of the PL w-manifold Ww, w ≥ 4,
and dimX = w − 2, then demX = dimX.

Proof. By Corollary 0.3.11, X is 0-LCC. Hence, Lemma 3.3.3 implies that
1-dimensional polyhedra can be homotoped off X. As long as n ≥ 4, this
allows 1-dimensional polyhedra to be engulfed by the complement of X, and
so the proof of Theorem 3.4.8 shows that demX ≤ w − 2. �

Theorem 3.4.10. If X is a compact subset of the PL w-manifold Ww and
dimX = w − 1, then demX = dimX.

Proof. The fact that X contains no open subset of W means that points
can be engulfed in the complement of X. Again the proof of Theorem 3.4.8
applies to show demX ≤ w − 1. �

The following theorem summarizes the last few results and clarifies the
relationship between dimension and demension.
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Theorem 3.4.11 (Relationship between dimension and demension). Let X
be a compact subset of the PL w-manifold Ww.

1. If dimX ≥ w − 2 and w �= 3, then demX = dimX.

2. If dimX ≤ w − 3 and w �= 4, then either
(a) demX = dimX and X is LCC1, or
(b) demX = w − 2 and X is not 1-LCC.

A significant aspect of Theorem 3.4.8 is that its hypothesis is topological
while its conclusion is piecewise linear. This observation suggests that the
definition of embedding dimension can be formulated using either PL or
topological regular neighborhoods. Combining this with Theorem 3.4.4 gives
a total of four equivalent conditions, any one of which could be used as the
definition of embedding dimension. Before stating the four conditions we
spell out what is meant by a topological regular neighborhood.

Definition. Let M be a manifold and let X be a closed subset of M . A
neighborhood N of X in M is a mapping cylinder neighborhood of X if N is
a ∂-manifold and N is homeomorphic to Map(r) for some map r : ∂N → X.
It is required that the homeomorphism

H : Map(r) = (∂N × [0, 1] 
X)/{〈z, 1〉 ∼ r(z)} → N

be natural in the sense thatH(z, 0) = z for each z ∈ ∂N and thatH|X = Id.
The neighborhood is called an ε-mapping cylinder neighborhood if for every
z ∈ ∂N we have diamH({z} × [0, 1]) < ε.

Theorem 3.4.12 (Alternative definitions of embedding dimension). If X
is any compact subset of the PL n-manifold Mn, n ≥ 5, and k ≤ n, then
the following conditions are equivalent.

1. For every ε > 0 there exists an ε-regular neighborhood N of a k-
dimensional polyhedron K such that X ⊂ IntN ⊂ N ⊂ B(X; ε).

2. For every ε > 0 and for every subpolyhedron P of M with dimP ≤
n− k− 1 there exists a PL ε-push ψ of (M,X) with ψ(X)∩P = ∅.

3. For every ε > 0 and for every subpolyhedron P of M with dimP ≤
n − k − 1 there exists a topological ε-push ψ of (M,X) such that
ψ(X) ∩ P = ∅.

Moreover, if k ≤ n− 3, then these three conditions are equivalent to:

4. For every ε > 0 there exists an ε-mapping cylinder neighborhood N
of a k-dimensional, 1-LCC compactum K such that X ⊂ IntN ⊂
N ⊂ B(X; ε).

Historical Notes. The concept of embedding dimension is implicit in work
of Bryant, (1969) and (1971a), but the property was first formally identified
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and systematically studied by M. A. Štan′ko (1969). Edwards (1975b) pro-
vided an exposition in which he extended the theory of embedding dimension
to σ-compact subsets of a manifold.

The restrictionw �= 3 is necessary in Part 1 of Theorem 3.4.11; McMillan-
Row (1969) and H. Bothe (1964) have constructed an example of a com-
pactum X ⊂ R3 such that dimX = 1 but demX = 2. The example is
a version of the Menger universal 1-dimensional continuum in R3 that is
constructed by removing knotted tunnels instead of straight ones.

The mistake of thinking that the retraction r in the proof of Lemma 3.4.1
is PL is the “standard mistake” of (Rourke and Sanderson, 1972) and (Zee-
man, 1963a). Further information on simplicial mapping cylinders may be
found in (Hatcher, 2002) and (Bryant, 2002).

Exercises

3.4.1. A Cantor set X ⊂ Rn is flat if and only if demX = 0.

3.4.2. Prove Corollary 3.4.7.

3.4.3. If X is a compact subset of the PL manifold Ww, w ≥ 5, then
demX = demh(X) for any h ∈ Homeo(W,W ).

3.4.4. If X is a compact subset of the PL manifold Ww and Y ⊂ X is
compact, then demY ≤ demX.

3.4.5. Let (X,Y ) be a compact pair such that 2 dimX + 1 ≤ n and f :
X → Rn a map such that f |Y is an embedding with dem f(Y ) =
dimY . Then f can be approximated by an embedding F such that
demF (X) = dimX and F |Y = f |Y . [Hint: the usual embedding
of X into Rn, as defined in either (Hurewicz and Wallman, 1948)
or (Munkres, 2000), has the correct embedding dimension.]

3.4.6. Let X be a polyhedron topologically embedded in the PL manifold
W , w ≥ 5. If X is locally tame, then demX = dimX.

3.5. Embeddings of Menger continua

Here we aim to present a collection of examples of k-dimensional compacta
in Rn that are ambiently universal for the class of all compacta in Rn of
embedding dimension ≤ k; in other words, for any compact X ⊂ Rn with
demX ≤ k, there exists a self-homeomorphism of Rn sending X into the
universal space.

It pays to start off with some notation and terminology. As before,
we let I = [0, 1] and we use Cn = [0, 1] × · · · × [0, 1] ⊂ Rn to denote the
standard n-cube. More generally, if I1, . . . , In are closed intervals, we will
call Q = I1×· · ·× In an n-cube (even though the intervals may be of widely
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varying lengths). A face of Q is a subset of the form f = f1 × · · · × fn
where each fj is either an endpoint of Ij or equal to all of Ij . Since there
are three choices for each fj , Q has exactly 3n (nonempty) faces. A face is
k-dimensional if and only if precisely k of the fj are equal to Ij. Thus there

are exactly
(n
k

)
2n−k faces of dimension k. The union of all the k-dimensional

faces is called the k-skeleton of Q.

Construction of the Menger Continua. For each pair of integers n
and k, 0 ≤ k ≤ n, we construct a Menger continuum Mk

n of dimension k
in Rn. The construction of Mk

n is inductive. We begin by defining T0 to
be the trivial subdivision of I; i.e., T0 = {{0}, {1}, [0, 1]}. At the jth stage
of the construction, Tj is a subdivision of I into precisely 3j subintervals.
We define Tj+1 to be the subdivision of I that is obtained by subdividing
each interval of Tj into three subintervals of equal length. Then Tj+1 is a
subdivision of I into 3j+1 subintervals and its n-fold self-product induces
a subdivision Tn

j+1 of In into 3(j+1)n subcubes. Define P0 = In and define
Pj+1 to be the union of all subcubes of Tn

j+1 that lie in Pj and intersect the
k-skeleton of Pj . The k-dimensional Menger continuum in Rn is defined by

Mk
n =

∞⋂
j=0

Pj .

Several examples of Menger continua of various dimensions are shown in
Figures 3.11–3.13.

Figure 3.11. The standard Menger continuum M0
2 , which is a Cantor set

Modified Menger continua. The reason for defining the subdivisions Tj

recursively in the preceding construction (rather than simply defining Tj

to be the subdivision of I into 3j subintervals of equal length) is to allow
ourselves the freedom to modify the construction later. Whenever we use
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Figure 3.12. The standard Menger continuum M1
2 , commonly known

as the “Sierpiński carpet”

Figure 3.13. The standard Menger continuum M1
3 , commonly called

the “Menger sponge”

subintervals of equal length, as we did above, we refer to the continuum
constructed as a standard Menger continuum and denote it by Mk

n .

In this section and the next we will want to modify the construction
to allow for the possibility of intervals of different lengths. In this way we
will produce Menger-like continua having additional useful properties. In
the more general case, the only restriction on the subdivisions Tj is that
the length of each interval in Tj+1 must be less than half the length of the
interval in Tj that contains it. When we use subintervals of varying lengths,
we will refer to the continuum constructed as a modified Menger continuum

and will denote it by M̃k
n .
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In the forthcoming proof of Theorem 3.5.1, we will make the middle
interval very short and the other two intervals correspondingly longer. This
will result in a modified Menger continuum that is relatively fat and able to
absorb other compact subsets of Rn. In the next section we will do exactly
the opposite: we will make the middle interval very long and the other
two much shorter. This will result in a modified Menger continuum that is
relatively thin so that its Hausdorff dimension is minimized.

Every modified Menger continuum M̃k
n is equivalent to Mk

n in the strong
sense of there being an isotopy h : Rn× [0, 1] → Rn such that h has compact

support, h0 = IdM and h1(M̃
k
n) = Mk

n . Proposition 3.5.2 spells out the
construction of a modified Menger continuum in more detail and establishes
this equivalence.

Definition. Let Q = I1×· · ·×In be an n-cube and let f be a k-dimensional
face of Q. Then f = f1 × · · · × fn with fj = Ij for exactly k distinct values
of j and fj an endpoint of Ij otherwise. The dual face associated with f is

f̂ = f̂1 × · · · × f̂n defined by f̂j = Ij if fj �= Ij and f̂j is the midpoint of Ij
otherwise. It is clear that f̂ is an (n − k)-cube. The union of all the dual
(n− k)-cubes is called the dual (n− k)-skeleton of Q.

Embedding dimension of Menger continua. At each stage of the con-
struction of the Menger continuum we keep all the subcubes that intersect
the k-skeleton of the previous stage and discard the others. Another way to
describe this construction is to say that we remove the interior of the union
of all the cubes that intersect the dual (n− k − 1)-skeleton of the previous
stage. As a result it is easy to push (n − k − 1)-dimensional polyhedra off
Mk

n and so we see that demMk
n ≤ k. Since the k-skeleton of In is a subset

of Mk
n , we have dimMk

n ≥ k. Hence dimMk
n = demMk

n = k.

Universality of the Menger continua. The Menger continua were origi-
nally constructed to serve as examples of (compact) universal n-dimensional
spaces. They are universal in the sense that every n-dimensional separable
metric space can be embedded in Mn

2n+1. Our next theorem generalizes that

result (at least for compacta) by showing that Mk
n is ambiently universal for

compact subspaces of Rn having embedding dimension ≤ k. An approxima-
tion theorem treated in Chapter 5 will give the stronger conclusion that Mk

n

is universal for all k-dimensional compact subsets of Rn.

Theorem 3.5.1. Let X be a compact subset of Rn and let k be an integer
with k ≤ n. Then demX ≤ k if and only if there is an ambient isotopy of
Rn, with compact support, that moves X into Mk

n .

The idea is to build a modified Menger continuum containing X and
then to show that all modified Menger continuum are ambient isotopic to a
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standard one. We begin by proving the equivalence of modified and standard
Menger continua.

Proposition 3.5.2. If M̃k
n is any modified Menger continuum in Rn, then

there exists an isotopy h : Rn× [0, 1] → Rn such that h0 = Id, h has compact

support and h1(M̃
k
n) = Mk

n .

Proof. We use the same notation as in the construction of Mk
n : Tj denotes

the subdivision of I into 3j intervals of equal length; Tn
j is the corresponding

subdivision of In into 3jn cubes; P0 = In; and Pj is the union of all subcubes
in Tn

j which lie in Pj−1 and intersect the k-skeleton of Pj−1. The modified

Menger continuum M̃k
n is also defined by a sequence {T̃j} of subdivisions

of I. It begins with T̃0 = T0 and each T̃j+1 is a subdivision of T̃j . In the

inductive step of the construction, each interval in T̃j is replaced by three

subintervals in T̃j+1. The choice of subintervals is arbitrary, except for the

restriction that the middle interval in T̃j+1 must contain the midpoint of the

corresponding interval in T̃j . It follows that the length of each interval in

T̃j is less than 1/2j . As before, we use T̃n
j to denote the subdivision of In

into 3jn cubes that is induced by T̃j . Define P̃0 = In and define P̃j to be the

union of all the cubes in T̃n
j which intersect the k-skeleton of P̃j−1. Finally,

M̃k
n = ∩∞

j=0P̃j .

For each j, there is a linear isomorphism φj : T̃j → Tj . The isomorphism
φj induces a PL homeomorphism gj : I → I. Since mesh Tj < 3−j and mesh

T̃j < 2−j , g = limj→∞ gj defines a homeomorphism of I to itself. The n-fold

product of g defines a homeomorphism f : In → In such that f(M̃k
n) = Mk

n .

In order to complete the proof we must show that f can be realized by an
ambient isotopy with compact support. First notice that gj can be extended
via the identity to all of R. In addition, there is a 1/2j isotopy from gj−1 to
gj. (Take g0 to be the identity.) Thus there is an isotopy F : R× [0, 1] → R
such that F0 = Id, Ft is the identity outside I for each t, and F1 = g. We
use F to define an isotopy G of Rn. On R× In−1, Gt = Ft× Id. Let N be a
collar neighborhood of In−1 in Rn−1. We extend Gt to R×N in such a way
that Gt|R × ∂N = Id by using less and less of the isotopy Ft as we move
along the collar away from In−1. Extend Gt via the identity to all of Rn.
Notice that G is an ambient isotopy from G0 = Id to some homeomorphism
G1 : Rn → Rn with the properties that G1 changes only the first coordinates
of points in Rn and equals g on the first coordinate of In.

Finally, to obtain the isotopy in the conclusion of the Proposition, we
first do the isotopy G, then do an analogous isotopy that changes second
coordinates, then third coordinates and so forth through the nth coordinate.
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This succession of isotopies, strung together, forms the isotopy that moves

M̃k
n to Mk

n . �

Proof of Theorem 3.5.1. If such an isotopy ht exists, then demX =
demh1(X) ≤ demMk

n = k. Conversely, suppose demX ≤ k. The strategy
of the proof is this: construct simultaneously a modified Menger contin-

uum M̃k
n and an ambient isotopy of X into M̃k

n . This will suffice because

Proposition 3.5.2 then provides a further isotopy of Rn that pushes M̃k
n to

Mk
n .

Now consider a compactum X ⊂ Rn with demX ≤ k. We may assume

that X ⊂ Int In. Let T̃0 denote the trivial subdivision of I. Since demX ≤
k, there is a small PL homeomorphism h1 : Rn → Rn, fixed outside In, that
shifts X off the dual (n− k − 1)-skeleton of In (Theorem 3.4.4). Choose a

subdivision T̃1 of I into three intervals with the middle interval very short
and centered about the midpoint of I. Just how short the middle interval
should be is determined by the distance from h1(X) to the dual (n−k− 1)-

skeleton of In. As before, let T̃n
1 denote the collection of n-dimensional cubes

in In formed by taking products of intervals in T̃1. A cube Q ∈ Tn
1 misses

the k-skeleton of In if and only if it is a product of intervals that include at
least k+1 short intervals. This means it is completely contained in a small
neighborhood of a dual cell of dimension ≤ n−k−1. We choose the middle

interval in T̃1 to be so short that h1(X) misses the union of all such cubes.

In this way we construct T̃1 so that h1(X) is completely contained in Int P̃1,

where P̃1 denotes the union of all parallelepipeds in T̃n
1 that intersect the

k-skeleton of In.

Next use Theorem 3.4.4 again to find a PL homeomorphism h2 fixed

outside P̃1 and shifting h1(X) off the dual (n − k − 1)-skeleton of every n-

cube in T̃n
1 . Then find a subdivision T̃2 of I that subdivides each interval of

T̃1 into three subintervals and makes the middle one so short that no n-cube
in T̃n

2 intersects both the dual (n−k−1)-skeleton of P̃1 and h2(h1(X)). Let

P̃2 denote the union of all the n-cubes of T̃n
2 that lie in P̃1 and intersect the

k-skeleton of P̃1. This procedure is continued inductively and results in a

modified Menger compactum M̃k
n .

At the jth stage of the construction we must choose a homeomorphism
hj. We have the freedom to make that homeomorphism as close to the
identity as we like, with the closeness possibly depending on the choice
of homeomorphism at the previous stage. As a result we can choose the
homeomorphisms hj in such a way that the sequence {hj ◦ hj−1 ◦ · · · ◦ h1}
converges to a homeomorphism (Proposition 2.2.2). If

h = lim
j→∞

hj ◦ hj−1 ◦ · · · ◦ h1,
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Figure 3.14. This modified Menger curve M̃1
2 is relatively fat so that

it can easily absorb 1-dimensional compacta

then h(X) ⊂ M̃k
n . Since there is a short isotopy from hj ◦ hj−1 ◦ · · · ◦ h1 to

hj+1 ◦ hj ◦ · · · ◦ h1, the homeomorphism h is isotopic to the identity. �

Historical Notes. K. Menger (1926) originally constructed Mk
n as an ex-

ample of a universal n-dimensional space. He described the space and con-
jectured that Mk

n should be universal for k-dimensional subsets of Rn, but
he did not supply a proof. The first complete proof of the universality
of Mn

2n+1 for n-dimensional separable metric spaces is due to S. Lefschetz
(1931). Theorem 3.5.1 and the stronger version to be proved later are due
to M. A. Štan′ko (1971b).

3.6. Embedding dimension and Hausdorff dimension

Anyone who reads popular accounts of the theory of fractals, such as (Man-
delbrot, 1982), will notice a resemblance between the Menger continua in
the previous section and fractals. The superficial resemblance hints at some-
thing deeper. There is a meaningful relationship between wildly embedded
compacta and fractals, and there is also a close connection between the
embedding dimension of a compactum and its Hausdorff dimension. This
section offers a digression exploring those connections. The results will not
be used in the sequel, so the entire section may be omitted without serious
consequence.

In order to proceed, it is necessary to have some understanding of Haus-
dorff dimension. We cannot develop a complete exposition of the theory
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of Hausdorff dimension and fractals, but we attempt to include enough in-
formation so that the reader has some grounding in the relationships being
discussed.

Hausdorff dimension is defined for any separable metric space X. It
depends on the metric for X and is not a topological invariant. In most cases
we will not specify an explicit metric but will consider only subsets X ⊂ Rn

and will treat the standard Euclidean metric inherited from Rn. We use U
to denote a countable cover of X (not necessarily by open sets), diamU to
denote the diameter of U ∈ U and meshU to denote sup{diamU | U ∈ U}.

Definitions. Suppose X is a separable metric space. Let p be a real number
in the range 0 ≤ p < ∞ and let ε > 0. First define

mp,ε(X) = inf

{∑
U∈U

(diamU)p

∣∣∣∣∣ U a countable cover of X,meshU < ε

}
.

(Of course mp,ε(X) = ∞ is possible.) Next define the Hausdorff p-measure
of X by

mp(X) = sup{mp,ε(X) | ε > 0}.
For each p and n, mp is a countably additive measure on the Borel sets in Rn

(see (Edgar, 1990, pp. 135 and 147) or (Keesling, 1986, Theorem 2.2)). For
a fixed X, mp(X) is a monotonically decreasing function of p. In fact, if
mp(X) < ∞ for some p, then mq(X) = 0 for all q > p (see (Hurewicz and
Wallman, 1948, Theorem VII.1.B) or (Federer, 1969, p. 171)). This last fact
makes the following definition reasonable: the Hausdorff dimension of X is
defined by

dimhX = inf{p | mp(X) = 0}.
A compactum X ⊂ Rn is said to be a fractal if its Hausdorff dimension is
greater than its topological dimension, i.e., if dimhX > dimX.

Remark. The definition of fractal is analogous to the following fact about
polyhedra, which will be proved over the course of the next two chapters: a
codimension-three polyhedron X ⊂ Rn is wild if and only if its embedding
dimension is greater than its topological dimension; i.e., X is a fractal if and
only if demX > dimX.

Examples. Let C denote the standard middle-thirds Cantor set in R1. It
is easy to compute the Hausdorff dimension of C using standard techniques.
(See (Edgar, 1990) or (Keesling, 1986), for example.) The result of the
computation is dimhC = log 2/ log 3. Thus dimh C > dimC = 0 and C is
a fractal. If C ′ is the Cantor set in R1 constructed by removing “middle-
halves” rather than middle-thirds, then dimhC

′ = 1/2. Since C and C ′ are
equivalently embedded, we see that Hausdorff dimension is not an invariant
of the embedding class.
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The Cantor set is a special case of a Menger continuum, namely, C =
M0

1 . In general, the standard k-dimensional Menger continuum in Rn satis-
fies

dimhM
k
n =

logF (n, k)

log 3
,

where F (n, k) is the number of faces of dimension ≤ k in the n-dimensional
cube. Since the n-cube has 3n faces, it is clear that 3k < F (n, k) < 3n

(assuming k < n). Thus k < dimhM
k
n < n and every standard Menger

continuum is a fractal. In Lemma 3.6.9 we will explain how to vary the
construction of the Menger continuum in such a way as to produce a modified

Menger continuum M̃k
n which has dimh M̃

k
n = k and is therefore not a fractal.

In order to accomplish this it is necessary to subdivide the cubes faster and
faster as the construction proceeds. Since the modified Menger continuum

M̃k
n constructed in Lemma 3.6.9 is equivalent by ambient isotopy to the

standard Menger continuum Mk
n (Proposition 3.5.2), the property of being

a fractal is also not an invariant of the embedding class.

Antoine’s necklace A ⊂ R3 satisfies dimhA ≥ 1 and so it too is a fractal.
The precise value of dimhA depends on the number of solid tori used at
each stage in the construction and on the exact thicknesses of the solid tori.
(See (Rushing, 1992) for details.)

The main purpose of this section is to explore connections among Haus-
dorff measure, Hausdorff dimension, and embedding dimension. Theorem
3.6.1 exposes the basic relationship between Hausdorff measure and em-
bedding dimension, while Theorem 3.6.2 exposes the relationship between
Hausdorff dimension and embedding dimension. An immediate consequence
is that any codimension-three compactum that is not 1-LCC is a fractal.

Theorem 3.6.1. If X is a compact subset of Rn and k is a nonnegative
integer such that mk+1(X) = 0, then dem(X) ≤ k.

Theorem 3.6.2. If X is a compact subset of Rn, then demX ≤ dimh φ(X)
for every homeomorphism φ : Rn → Rn. Furthermore, there exists some
homeomorphism φ : Rn → Rn such that demX = dimh φ(X).

Corollary 3.6.3. If X is a compactum in Rn such that dimX ≤ n− 3 and
X is not 1-LCC, then X is a fractal.

It follows from Theorems 3.6.2 and 3.4.11 that the Hausdorff dimension
of any compactum that does not satisfy the 1-LCC condition must be in the
interval [n − 2, n]. For each real number r in that range, Rushing (1992)
constructs an example of a wildly embedded Cantor set in Rn that has
Hausdorff dimension equal to r.

It is not the case, however, that every codimension-three fractal fails to
be 1-LCC. To the contrary, for every real number in the interval [0, n], it
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is relatively easy to construct a tame Cantor set in Rn that has that real
number as its Hausdorff dimension. (See Rushing (1992), Example 1.)

Before addressing Theorems 3.6.1 and 3.6.2 we state three properties of
measure that will be needed. The first property is a quick consequence of
the definitions, so we will include a proof. It indicates that measure 0 is a
PL invariant.

Lemma 3.6.4. Suppose P and Q are polyhedra, X ⊂ P , and f : P → Q is
a PL map. If mp(X) = 0 for some p, then mp(f(X)) = 0.

Proof. Suppose first that P = ∆ is a simplex and f : ∆ → Q is a linear
map. Then f is a Lipschitz map; i.e., there exists a real number L > 0 such
that d(f(x), f(y)) ≤ L · d(x, y) for all x and y in ∆. It is clear from the
definition of measure that mp(f(X)) ≤ Lp ·mp(X) for every X ⊂ ∆. Thus
mp(X) = 0 implies mp(f(X)) = 0 in this special case. The general case
follows from the special case along with the countable additivity of mp. �

The next two properties are intuitively plausible, but supplying rigorous
proofs would lead us too far afield. As a result we merely state them without
proof and refer the reader to (Federer, 1969) for details. Lemma 3.6.5, a
product theorem for Hausdorff measure, is a restatement of (Federer, 1969,
Theorem 2.10.45). If X and Y are metric spaces, then we assume that X×Y
is given the metric defined by

d2(〈x1, y1〉, 〈x2, y2〉) = d2X(x1, x2) + d2Y (y1, y2).

Lemma 3.6.5. Suppose n is a nonnegative integer and A is a metric space.
If mk(A) < ∞ for some k, then there exists a number c such that

mk+n(A×B) = cmk(A)mn(B)

for every B ⊂ Rn.

Corollary 3.6.6. If P is a p-dimensional polyhedron and mq(X) = 0, then
mq+p(X × P ) = 0.

Proof. Let ∆ be a simplex of P . Since ∆ is isometric to a compact subset
of Rp, Lemma 3.6.5 gives mq+p(X ×∆) = mq(X)mp(∆) = 0. The corollary
then follows from the countable additivity of mq+p. �

The third property is a slice theorem for Hausdorff measure. A special
case of (Federer, 1969, 2.10.27), it is a consequence of the fact that the
measure of a set can be calculated by integrating the measures of the cross-
sections.
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Lemma 3.6.7. Suppose n and k are nonnegative integers, P is a polyhedron,
and D is a subset of Rn × P . For each x ∈ Rn, define

Dx = {y ∈ P | 〈x, y〉 ∈ D}.
If mk(D) = 0, then mk−n(Dx) = 0 for almost all x ∈ Rn. In particular, if
mn(D) = 0, then Dx = ∅ for almost all x ∈ Rn.

The following lemma provides the main step in the proof of Theo-
rem 3.6.1.

Lemma 3.6.8. Suppose P is a compact p-dimensional polyhedron in Bn

and X ⊂ Bn is compact with mq(X) = 0. If p+ q ≤ n, then for every ε > 0
there exists a PL homeomorphism h : Bn → Bn such that

(1) h(x) = x for every x ∈ ∂Bn,

(2) d(x, h(x)) < ε for every x ∈ Bn, and

(3) h(P ) ∩X ∩ IntBn = ∅.

Proof. For each fixed z ∈ IntBn, define hz : Bn → Bn by the formula
hz(y) = y + (1− ‖y‖)z (where ‖y‖ denotes the norm of y). Note that hz is
the PL homeomorphism that is fixed on ∂Bn, moves 0 to z, and is extended
conewise. It suffices to show that hz satisfies conclusion (3) for almost all
z ∈ IntBn.

Let P ′ = P ∩ IntBn and define ψ : IntBn × P ′ → IntBn × P ′ by
ψ(z, y) = 〈hz(y), y〉. Then it is not too difficult to check that ψ is a PL
embedding. In fact, ψ : IntBn × P ′ → ψ(IntBn × P ′) has a two-sided
inverse defined by the formula

ψ−1(z, y) =

〈
z − y

1− ‖y‖ , y
〉
.

By Corollary 3.6.6, mp+q(X×P ′) = mq(X)mp(P
′) = 0. As a result, mn(X×

P ′) = 0. Let D = ψ−1(X × P ′). By Lemma 3.6.4, mn(D) = 0. Hence
Lemma 3.6.7 gives Dz = ∅ for almost all z ∈ Bn.

Suppose X ∩ hz(P
′) �= ∅ for some z ∈ IntBn. Then there exists x ∈ X

and y ∈ P ′ such that x = hz(y). Thus 〈x, y〉 = ψ(z, y) and so 〈z, y〉 ∈ D; in
other words, Dz �= ∅. It follows that X ∩ hz(P

′) = ∅ for almost all z. �

Proof of Theorem 3.6.1. SupposeX ⊂ Rn is compact andmk+1(X) = 0.
Let p = n − k − 1. It suffices to prove the following: For every compact
p-dimensional polyhedron P in Rn and for every ε > 0 there exists a home-
omorphism h : Rn → Rn such that d(x, h(x)) < ε for every x ∈ Rn and
h(P ) ∩X = ∅.

Suppose P is such a polyhedron. Specify a triangulation T of Rn so P
underlies a subcomplex, and let v1, . . . , v� denote the vertices of T in P . For
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each i, set Ci = star(vi, T ). Fix a PL homeomorphism φi : Ci → Bn. By
applying Lemma 3.6.8, we can find a PL homeomorphism h1 : Bn → Bn

arbitrarily close to the identity such that h1|∂Bn = Id and h1(φ1(P ∩C1))∩
φ1(X ∩ C1) ∩ IntBn = ∅. Choose h1 so close to the identity that if g1 =
φ−1
1 h1φ1, then d(x, g1(x)) < ε/2 for every x ∈ C1. Extend g1 via the identity

to a PL homeomorphism of all of Rn. Notice that P ∩X ⊂ ∪i≥1 IntCi, but
g1(P ) ∩X ⊂ ∪i≥2 IntCi.

Now consider X and g1(P ). Apply Lemma 3.6.8 again to produce a
PL homeomorphism g2 : Rn → Rn such that d(x, g2(x)) < ε/4, g2|(Rn �
IntC2) = Id, and g2(g1(P )) ∩X ∩ IntC2 = ∅. Since g2|(C1 � IntC2) = Id,
g2(g1(P )) ∩X ⊂ ∪i≥3 IntCi. This process is continued inductively through
C�. The result is a homeomorphism h = g� ◦ · · · ◦ g1, which satisfies the
conclusion of the theorem. �

Turning toward the proof of Theorem 3.6.2, we need a modified Menger
continuum that is extremely thin in order to minimize its Hausdorff dimen-
sion.

Lemma 3.6.9. For each k ≤ n there is a modified Menger continuum M̃k
n

in Rn such that dimh M̃
k
n = k.

Proof. We first describe the construction of a specific modified Menger

continuum M̃k
n and then prove that it has the correct Hausdorff dimension.

Begin, as before, with T0, the trivial subdivision of I. Define T1 to be the
subdivision of I into three subintervals, the first and last having length 1/4
and the middle interval having length 1/2. In general, Tj is constructed
from Tj−1 as follows: given an interval J ∈ Tj−1, subdivide J into three
subintervals, the first and last having length (1/22)(1/23) · · · (1/2j+1) and
the middle interval filling the rest of J . Let Tn

j be the collection of all
subcubes of In obtained by taking products of intervals in Tj . As before,
P0 = In and Pj is the union of all cubes in Tn

j that are contained in Pj−1

and intersect the k-skeleton of Pj−1. Define M̃k
n = ∩∞

j=1Pj .

To complete the proof of Lemma 3.6.9 we must show that dimh M̃
k
n ≤ k.

The proof is quite technical because it is derived directly from the definition

of Hausdorff dimension. We will construct a sequence {Uj} of covers of M̃k
n

such that

lim
j→∞

∑
U∈Uj

(diamU)p = 0

for every p > k. A quick review of the definitions at the beginning of this
section shows that this will suffice.

Let S1 be the partition of I into 4 intervals of length 1
4 and let S2 be

the partition of I into 32 intervals of length 1
4 ·

1
8 = 1

32 . In general, let Sj be
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the partition of I obtained by partitioning each interval of Sj−1 into 2j+1

subintervals of equal length. Define Sn
j to be the collection of n-dimensional

cubes obtained by taking products of intervals in Sj and define Uj to be the
covering of Pj consisting of all the cubes in Sn

j that are contained in Pj .
Since the lengths of the intervals in Tj are all multiples of the length of an
interval in Sj , each cube in Tn

j is the union of cubes in Sn
j . Hence Uj exactly

covers Pj and, in addition, Uj covers M̃k
n .

Figure 3.15. The cover U2 of M̃1
2 . The small squares are the cubes in

S2
2 ; one “cube” of T 2

2 is shaded

We now find an upper bound for
∑

U∈Uj
(diamU)p. To accomplish this

we compute the diameter of each cube in Uj and get an upper bound on the
number of cubes in Uj . If U is a cube in Uj , then each edge of U has length

2−22−3 · · · 2−(j+1) = 2−j(j+3)/2.

Hence the diameter of U is
√
n2−j(j+3) = n1/22−j(j+3)/2.

The number of cubes in U1 that intersect one of the k-dimensional faces
of In is 4k. Let r be the number of k-dimensional faces of an n-cube. Since
a cube can intersect more than one k-dimensional face, the total number of
cubes in U1 is strictly less than 4kr. Fix a cube Q in U1 and let Q′ be a cube
in U2 such that Q′ ⊂ Q. Then Q′ intersects the k-skeleton of P1, so Q′ must
intersect one of the k-dimensional faces of Q. Thus the number of cubes in
U2 that are contained in Q is less than 8kr. Continuing inductively, we see
that the total number of cubes in Uj is less than

4kr8kr · · · 2(j+1)kr = 2j(j+3)k/2rj .



3.6. Embedding dimension and Hausdorff dimension 143

Therefore∑
U∈Uj

(diamU)p < 2j(j+3)k/2rj
(
n1/22−j(j+3)/2

)p
= np/2

(
r2(k−p)(j+3)/2

)j
.

Since p > k, the last quantity approaches 0 as j approaches ∞. �

Proof of Theorem 3.6.2. Let X be a compact subset of Rn. If dimhX =
k, then by definition mk+1(X) = 0. Hence demX ≤ k = dimhX by
Theorem 3.6.1. But demX is invariant under homeomorphisms of Rn, so
demX = demφ(X) ≤ dimh φ(X) for every homeomorphism φ : Rn → Rn.

Now suppose k = demX. Let M̃k
n be as in Lemma 3.6.9. By Theo-

rem 3.5.1 and Proposition 3.5.2, there exists a homeomorphism φ : Rn → Rn

such that φ(X) ⊂ M̃k
n . Thus dimh φ(X) ≤ dimh M̃

k
n = k = demX. By

the previous paragraph we have demX ≤ dimh φ(X), so dimh φ(X) =
demX. �

Historical Notes. Hausdorff dimension was originally defined by Hausdorff
(1919). It is also defined on page 107 of (Hurewicz and Wallman, 1948).
More recent expositions of Hausdorff dimension may be found in (Edgar,
1990), (Federer, 1969), and (Keesling, 1986). The term “fractal” was coined
by B. B. Mandelbrot (1982).

Theorem 3.6.1 is due to J. Luukkainen and J. Väisälä (1977); Theo-
rem 3.6.2 is due to Väisälä (1979). Theorem 3.6.1 should be viewed as
a geometric version of (Hurewicz and Wallman, 1948, Theorem VII.3).
Lemma 3.6.7 is a generalization of (Hurewicz and Wallman, 1948, Theo-
rem VII.2.A). The examples mentioned on page 137 are included in most
standard works on the subject of Hausdorff dimension and even appear in
Hausdorff’s original work (1919).





Chapter 4

Trivial-range
Embeddings

The trivial range relative to dimension n comprises all dimensions k for
which 2k + 2 ≤ n. In that dimension range one can derive the strongest
embedding and unknotting theorems.

This chapter presents two fundamental results regarding trivial range
embeddings: a taming theorem for embeddings of polyhedra and an un-
knotting theorem for embeddings of compacta. The first asserts that 1-LCC
embeddings of polyhedra are tame and the second that homotopic 1-LCC
embeddings of compacta are equivalent by ambient isotopy, provided, in
both cases, that the dimension of the embedded object is in the trivial
range relative to the ambient dimension. The techniques developed to prove
the first result set the stage for similar investigations in later chapters; for
instance, in Chapter 5 we will see that there is a similar taming theorem for
codimension-three embeddings, and in subsequent chapters that there are
some appropriate generalizations to codimensions two and one. Examples of
linking in Chapter 1 show that the unknotting theorem does not generalize
to smaller codimensions, at least not without additional hypotheses.

The taming and unknotting theorems in this chapter demonstrate once
more the power of the 1-LCC property. For that reason it includes, near the
end, a section(§4.6) describing ways in which the 1-LCC property can be de-
tected. The chapter concludes with new examples of wildness in dimensions
greater than three that stem from the existence of wild Cantor sets there.

145
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4.1. Unknotting PL embeddings of polyhedra

According to (Rourke and Sanderson, 1972, Corollary 5.9), homotopic PL
embeddings of a compact k-manifold into an n-manifold in the trivial range
are unknotted in a strong sense: they are PL ambient isotopic. The primary
aim of this section is to derive a similar unknotting theorem for embeddings
of polyhedra, not merely of manifolds, and to impose controls limiting the
amount of motion. Theorem 4.1.1, the most general version of these un-
knotting results, provides adequate control for our needs. When 2k+2 < n
it is possible to develop even better control, and Proposition 4.1.3 does so
in a form that is obviously optimal for embeddings in that slightly more
restricted range.

Theorem 4.1.1 (Unknotting PL embeddings in the trivial range). Let K be
a finite simplicial k-complex, M a PL n-manifold with 2k+2 ≤ n, λ0 and λ1

two PL embeddings of K in M , b a positive number, and µ : K × I → M a
homotopy between λ0 and λ1 such that diamµ(y×I) < b for all y ∈K. Then
there exists a compactly supported PL isotopy Θ : M × I → M such that
Θ0 = IdM and Θ1λ0 = λ1; moreover, Θ can be regulated so diamΘ(z× I) <
2(k + 1) · b, for all z ∈ M .

Familiar examples like linked versus unlinked k-sphere pairs in S2k+1,
mentioned is §1.1, illustrate sharpness of the dimension restrictions in The-
orem 4.1.1. Its proof involves two key steps, one detailing the fundamental
move (Lemma 4.1.2), and the other imposing motion controls on a concate-
nation of fundamental moves.

Two k-dimensional complexes K1,K2 in a PL-manifold M are said to
differ by a cellular move if there exists a PL embedded (k + 1)-cell D in M
that meets K1,K2 in complementary faces of ∂D (i.e., |Ki| ∩D = |Ki| ∩ ∂D
is a k-cell βi, where β1∪ β2 = ∂D and β1∩β2 = ∂β1 = ∂β2) and |K1|�D =
|K2|�D. Rourke and Sanderson demonstrate the usefulness of this concept
for PL embedded manifolds; the next result establishes an analog of their
Proposition 4.15 for polyhedra.

Lemma 4.1.2 (Cellular Move). Suppose K1 and K2 are PL k-complexes
in a PL n-manifold M , k ≤ n − 3, that differ by a cellular move across
a PL (k + 1)-cell D, and suppose N is a subcomplex of M containing a
neighborhood of D � ∂(|K1| ∩ ∂D). Then there exists a PL isotopy of M
carrying |K1| to |K2| and fixing all points of M � |N |.

Proof. In this argument N(A, T ) denotes the simplicial neighborhood of A
in the simplicial complex T .

Restrict N so |N ∩ Ki| = D ∩ |Ki|. Choose a triangulation T of M
containing D, N , and Ki(i = 1, 2) as full subcomplexes, and let T ′ denote
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its first barycentric subdivision. Set D# = Cl(D � N(∂(D ∩ |K1|), T ′)).
Check that D# is another (k + 1)-cell, as it is just the complement in D of
a collar on A ⊂ ∂D, where A ∼= Sk−1 × I equals a regular neighborhood of
∂(D ∩ |K1|) in ∂D. Use J to denote the subcomplex of T ′ carried by D#.
One can easily confirm that J is full in T ′.

It follows from the Simplicial Neighborhood Theorem (Rourke and Sander-
son, 1972, 3.11) that B = N(D#, T ′) ⊂ |N | is a regular neighborhood of
D# and, hence, is an n-ball. Clearly, D ⊂ B, D ∩ ∂B = ∂(D ∩ |K1|), and
B∩|K1∪K2| = ∂D. (See Figure 4.1.) This means that each (B,B∩|Ki|) is
an (n, k)-ball pair (i = 1, 2), which is unknotted by (Rourke and Sanderson,
1972, Theorem 7.1). As a result, there exists an isotopy of B to itself fixing
∂B and carrying B ∩ |K1| onto B ∩ |K2|, which extends via the identity to
the desired isotopy of M . �

K

K

B

B

D#

1

2

Figure 4.1. (B,B ∩ |K1|) and (B,B ∩ |K2|) are both unknotted ball pairs

Proposition 4.1.3. Let K be a finite simplicial complex of dimension k,
M a PL n-manifold with 2k + 2 < n, λ0 and λ1 two PL embeddings of K
in M , b a positive number, and µ : K × I → M a homotopy between λ0 and
λ1 such that diamµ(y× I) < b for all y ∈ K. Then there exists a compactly
supported PL isotopy Φ : M × I → M such that Φ0 = IdM , Φ1λ0 = λ1, and
diamΦ(z × I) < b, for all z ∈ M .

Proof. Perform a general position adjustment of λ1, if necessary, to make
its image disjoint from that of λ0. The special dimension restriction allows
approximation of µ by a PL general position embedding Ω : K × I → M
with Ω0 = λ0 and Ω1 = λ1. Subdivide the triangulation of K with such
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small mesh that diamΩ(σ × I) < b for each σ ∈ K. As Ω(σ × I) is a PL
cell, its regular neighborhoods are n-balls; for each k-simplex σ specify an
open set Uσ

∼= Rn with Ω(σ×I) ⊂ Uσ and diamUσ < b. Recursively, for the
various τ ∈ K choose open sets Uτ ⊃ Ω(τ × I) with Uτ

∼= Rn and Uτ ⊃ Uγ

whenever γ is a face of τ . This can be done so that Uτ ∩Uγ �= ∅ if and only
if τ ∩ γ �= ∅.

Claim. There exists a PL isotopy Φ : M × I → M starting at the identity,
carrying λ0(K) to λ1(K), and moving points so that for each z ∈ M for
which Φ(z × I) �= {z} there is a τ ∈ K such that Φ(z × I) ⊂ Uτ .

The claim is proved by induction on k, and the k = 0 case is routine. We
assume Ψ is an isotopy carrying the (k−1)-skeleton of λ0(K) to that of λ1(K)
in such a way that the track of any point moved under Ψ is contained in
some Uτ , τ ∈ K(k−1). Due to nesting features of {Uγ}, Ψ1λ0(σ)∪λ1(σ) ⊂ Uσ

for each k-simplex σ ∈ K. Adjust Ψ1λ0(σ) to make Ψ1λ0(σ) ∪ λ1(σ) be a
k-sphere, which then is unknotted in Uσ (Rourke and Sanderson, 1972, The-
orem 7.1). General position ensures Ψ1λ0(σ), λ1(σ) differ by a cellular move
across a (k + 1)-cell Dσ ⊂ Uσ satisfying IntDσ ∩ (Ψ1λ0(K) ∪ λ1(K)) = ∅.
Upon making another general position adjustment we can assume the Dσ’s
have pairwise disjoint interiors, after which we specify pairwise disjoint sub-
complexes Nσ of M , where Dσ ⊂ Nσ ⊂ Uσ and Nσ contains a neighborhood
of Dσ � λ1(∂σ). Multiple application of the Cellular Move Lemma (4.1.2)
yields an isotopy Ψ′ supported in ∪Nσ and carrying Ψ1λ0(K) to λ1(K). It
follows that, if z ∈ M is nonstationary under the isotopy Φ = Ψ′Ψ, then
there exists σ ∈ K with Φ(z × I) ⊂ Uσ. This completes the proof of the
Claim and of Proposition 4.1.3 as well. �
Proposition 4.1.4. Let K be a finite simplicial complex of dimension k, M
a PL n-manifold with 2k+2 ≤ n, b a positive number and Ω : K×I → M a
PL embedding such that diamΩ(y × I) < b for all y ∈ K. Then there exists
a compactly supported PL isotopy Θ : M × I → M such that Θ0 = IdM ,
Θ1Ω0|K = Ω1|K, and diamΘ(z × I) < (k + 1) · b for all z ∈ M .

Proof. Specify a triangulation T of K with diamΩ(σ× I) < b when σ ∈ T .
For i = 0, 1, . . . , k let Ai denote the union of all Ω(St(βτ , T

′′) × I), where
βτ denotes the barycenter of an i-simplex τ ∈ T , and St(βτ , T

′′) denotes its
star in T ′′, a second derived subdivision of T . Again observe that regular
neighborhoods of Ω(St(βτ , T

′′)×I), being collapsible, are n-balls. Construct
an open set Wi ⊃ Ai, each component of which is PL equivalent to Rn and
has diameter less than b.

We claim that there exists a PL isotopy Ψ0 : M × I → M supported
in W0 such that Ψ0

1Ω0|A0 = Ω1|A0. Actually, Ψ0 arises from a sequence
of such isotopies, one to transport Ω0(L ∩ A0) to Ω1(L ∩ A0), where L
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denotes the (k−1)-skeleton of T ′′, and the others indexed by the k-simplices
σ in A0 (regarded as a subcomplex of T ′′). Proposition 4.1.3 promises a
PL isotopy Φ : M × I → M supported in W0 such that Φ0 = IdM and
Φ1Ω0|L ∩ A0 = Ω1|L ∩ A0; the methodology allows for strict regulation
ensuring that ΦtΩ(Ai × I) ⊂ Wi for all i and all t ∈ I. Applying general
position, we assume Φ1(Ω0(K)) ∩ Ω1(K) = Ω1(L). Consider a typical k-
sphere Σ =Φ1Ω0(σ) ∪ Ω1(σ), σ ∈ A0 : as before, being unknotted in (a
component of)W0 (Rourke and Sanderson, 1972), Σ bounds a PL (k+1)-cell
Dσ ⊂ W0. Although we cannot make the various Dσ be pairwise disjoint,
we have enough room to perform a general position alteration on IntDσ

yielding Dσ ∩ Φ1Ω0(K) ∪ Ω1(K) = Σ = ∂Dσ and IntDσ ∩ Φ1Ω(L× I) = ∅.
Thicken Dσ to a simplicial complex Nσ with

Nσ ∩ [Φ1Ω0(K) ∪ Ω1(K) ∪ Φ1Ω(L× I)] = ∂Dσ

and with Dσ � ∂(Dσ ∩ Ω1(K)) ⊂ IntNσ ⊂ W0. Use Lemma 4.1.2 to move
Φ1Ω0(σ) to Ω1(σ) via an ambient isotopy supported in Nσ, keeping other
points of Φ1(Ω0(K)∪Ω(L× I)) in place. After some portion P of Φ1Ω0(A0)
has been moved to Ω1(A0), P can be left fixed under repetitions of the
procedure, simply by general positioning subsequent Dσ′ off P and choos-
ing support Nσ′ for the next portion of the isotopy with P ∩ IntNσ′ = ∅.
The choice of W0 ensures that the track of any point moved under Ψ0 has
diameter less than b.

In exactly the same way, there exist PL isotopies Ψ1, . . . ,Ψk of M sup-
ported in W1, . . . ,Wk, respectively, such that

Ψi
1Ψ

i−1
1 · · ·Ψ0

1Ω0|Ai = Ω1|Ai,

where Ψi is fixed on Ψi−1
1 · · ·Ψ0

1Ω0(Aj) = Ω1(Aj), j < i, and where

ΨiΨi−1 · · ·Ψ0Ω((L ∩Aj)× I) ⊂ Wj , j > i.

Reparametrize these isotopies so Ψi acts only during the t interval [i/(k+
1), (i+1)/(k+1)] (i.e., Ψi

t equals the identity when t < i/(k+1) and equals
Ψi

1 when t > (i + 1)/(k + 1)). The composite isotopy Θ = ΨkΨk−1 . . .Ψ0

carries Ω0 to Ω1. Moreover, the track of any z ∈ M under Θ has diameter
less than (k + 1)(b), since

Θ({z} × I) ⊂
Ψ0({z} × I) ∪Ψ1(Ψ0

1(z)× I) ∪ · · · ∪Ψk(Ψk−1
1 Ψk−2

1 · · ·Ψ0
1(z)× I),

and each of the tracks in this (connected) union has diameter less than b. �

Let K be a compact k-dimensional polyhedron and M an n-dimensional
PL manifold. In case 2k+2 ≤ n, a general position map µ : K×I → M will
not quite be an embedding. But the singular set of µ will be simple: it will
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consist of a finite number of double points, all of them in K × (0, 1). The
next two lemmas show how to simplify the singular set even more, so that
µ is replaced by a map that embeds each of K × [0, 1/2] and K × [1/2, 1].

In the remainder of this section we use proj to denote the projection
K × I → K.

Lemma 4.1.5. Let σ be a k-simplex and let Ξ be a finite subset of Intσ ×
(0, 1). Then there exists ψ ∈ HomeoPL(σ×I, σ×I) such that ψ|∂(σ×I) = Id
and proj ◦ ψ | Ξ is one-to-one.

Proof. Consider z = 〈x,t〉, z′ = 〈x,t′〉 ∈ Ξ. Choose z∗ = 〈x∗,t〉 ∈ σ × I,
x∗ �= x, and define ψ ∈ HomeoPL(σ × I, σ × I) to be the linear extension
of the function sending z to z∗ and fixing ∂(σ × I) pointwise. When z∗ is
sufficiently close to z, the singular set of proj ◦ ψ | Ξ is a subset of that of
proj | Ξ, and clearly proj ◦ψ(z) �= proj ◦ψ(z′) (see Figure 4.2). This process
is continued until all multiple points have been eliminated. �

I

z

z

σ

ψ(z )

ψz* =    (z)

Figure 4.2. Proof of Lemma 4.1.5

Lemma 4.1.6. Let K be a finite k-complex, M a PL n-manifold, 2k+2 = n,
and µ : K×I → M a PL general position map such that Sµ, the singular set
of µ, consists only of double point singularities and that proj : K × I → K
restricts to an injection on Sµ. Then there exists κ ∈ HomeoPL(K×I,K×I)
such that κ|K × {0, 1} = Id, proj ◦ κ = proj, and both µκ|K × [0, 1/2] and
µκ|K × [1/2, 1] are PL embeddings.

Proof. Impose a triangulation T on K with Sµ ∩ (T (k−1)× I) = ∅ and with
small enough mesh that no σ × I, σ ∈ T , contains more than one point of
Sµ. Write Sµ as {p1, q1, . . . , pt, qt} where µ(pi) = µ(qi), for i = 1, . . . , t. By
a sequence of vertical conewise adjustments, like the horizontal adjustments
described in Lemma 4.1.5, specify κ ∈ HomeoPL(K × I,K × I) such that
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κ|(K × {0, 1}) ∪ (T (k−1) × I) = Id, proj ◦ κ = proj, κ(pi) ∈ K × {1/4} and
κ(qi) ∈ K × {3/4}. �

Proof of Theorem 4.1.1. Approximate µ by a general position map hav-
ing at worst double point singularities, with Sµ ⊂ K × (0, 1). Choose
a triangulation T of K so that diamµ(σ × I) < b for all σ ∈ T and
proj(Sµ)∩T (k−1) = ∅. Apply 4.1.5 to ensure proj : K×I → K restricts to a
1-1 map on Sµ, and identify a PL homeomorphism κ : K×I → K×I fulfill-
ing the conclusions of 4.1.6. Two applications of Proposition 4.1.4—guided
by µκ | K× [0, 1/2] and µκ | K× [1/2, 1], respectively—provide PL isotopies
Θ,Θ′ : M × I → M for which Θ0 = IdM , Θ1λ0(z) = µκ(z×{1

2}), Θ′ = IdM ,

Θ′
1(µκ(z × {1

2})) = µκ(z × {1}) = λ1(z), diamΘ(x × I) < (k + 1)(b), and
diamΘ′(x× I) < (k + 1)(b). As in 4.1.4 modify the t parameter to have Θ
be constant on the interval [1/2, 1] and to have Θ′ act as the identity on the
interval [0, 1/2]; now the composite isotopy Θ′ ◦Θ moves λ0 to λ1 with the
prescribed control. �
Corollary 4.1.7. Let M denote either a compact PL n-manifold or Rn. For
every ε > 0 there exists δ > 0 such that, given any two embeddings λ, λ′ ∈
EmbPL(K,M) of a finite k-complex K, 2k + 2 ≤ n, for which ρ(λ′, λ) < δ,
there is an ε-push ψ of (M,λ(K)) with ψλ = λ′.

Proof. Set b = ε/2(k + 1). For any compact manifold M there exists δ > 0
such that any two δ-close maps into M are b-homotopic; the same obviously
holds for Rn. �
Corollary 4.1.8. Let λ : K → M be a PL embedding of a finite simplicial
k-complex K in a PL n-manifold M , 2k + 2 ≤ n. For every ε > 0 there
exists δ > 0 such that, given any λ′ ∈ EmbPL(K,M) for which ρ(λ′, λ) < δ,
there is an ε-push ψ of (M,λ(K)) with ψλ = λ′.

Historical Notes. Gugenheim (1953) established a global version of The-
orem 4.1.1 without motion control. Bing and Kister exploited a technical
device called ratio-changing general position to prove Proposition 4.1.4 (for
M = Rn) with stricter motion control than is developed here.

Exercise

4.1.1. If K is any k-complex (k > 2), EmbPL(K,R2k) fails to be dense in
C(K,R2k). [Hint: first do this for the disjoint union of two k-cells.]

4.1.2. Let K be a finite k-complex and f : K × I → M a map to a
PL (2k + 2)-manifold. Then f can be approximated by a PL map
F : K × I → M such that Ft is an embedding for all t ∈ I.

4.1.3. LetX be a compact k-dimensional space and let g : X×I → M be a
map to a PL n-manifold, n ≥ 2k+2. Then g can be approximated
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by a map G : X × I → M such that Gt is a 1-LCC embedding
for all t ∈ I. Moreover, if gt is already a 1-LCC embedding for
t ∈ C, where C is a closed subset of I, then G can be obtained
with G|X × C = g|X × C.

4.2. Spaces of embeddings and taming of polyhedra

The proofs of both the taming theorem and the unknotting theorem require
an ambient isotopy that moves one embedding to another. The two proofs
exploit a remarkable common construction that achieves this goal in an indi-
rect way. Rather than moving the first embedding directly to the second, the
argument trades on a back-and-forth process that gradually moves the two
embeddings closer and closer to each other; in the limit each of the original
embeddings is pushed to a common limiting embedding. This section lays
out the technical details of that construction. The theorems in this section
will be applied in the next two sections to derive the advertised taming and
unknotting theorems.

Throughout this section M will denote a PL n-manifold endowed with
a bounded, complete metric d, and X will denote a compact subset of M .
The object of study will be the embedding space Emb(X,M), under the sup-
norm metric ρ. Our central concern will be to understand which elements
of Emb(X,M) are equivalent under ambient homeomorphism.

Definition. A subset Λ of Emb(X,M) is solvable if to each ε > 0 there
corresponds δ > 0 such that given any λ, λ′ ∈ Λ with ρ(λ, λ′) < δ, there is
an ε-push ψ of (M,λ(X)) satisfying ψλ = λ′.

Here the ordering of λ,λ′ carries mild formal significance, for by Obser-
vation 3.3.1, ψ−1 carries λ′ back to λ and ψ−1 is an ε-push of (M,λ(X)) but
perhaps at best a 2ε-push of (M,λ′(X)).

The solvability of a space of embeddings assures a uniform local path
connectedness. For finite k-complexes K, 2k+2 ≤ n, a rephrasing of Corol-
lary 4.1.7 promises that EmbPL(K,Rn) is a (dense and) solvable subset of
Emb(K,Rn) and, similarly, for compact PL n-manifolds M , EmbPL(K,M)
is a (dense and) solvable subset of Emb(K,M).

Remark. Although Emb(K,Rn) is pathwise connected, it is definitely not
the case that any two of its elements are equivalent via an ambient isotopy.
The existence of wildly embedded k-cells makes the impossibility of ambient
equivalence transparent.

Here is a statement of the principal result. Meaningful technical varia-
tions appear toward the end of the section.
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Theorem 4.2.1. Let M denote a manifold endowed with a complete metric
d and let X be a compact subset of M . The union of any two dense, solvable
subsets of Emb(X,M) is dense and solvable.

Lemma 4.2.2. Let ϕ be an ε-push of (M,X) and let ψ be an η-push of
(M,ϕ(X)) realized by the isotopy Ψt. Then Ψtϕ is supported in the (ε+ η)-
neighborhood of X and ρ(Ψtϕ, ϕ) < η for all t ∈ [0, 1].

Proof. Obviously ϕ(X) ⊂ B(X; ε), so B(ϕ(X); η) ⊂ B(X; ε+η), indicating
that the support of Ψtϕ resides in the (ε + η)-neighborhood of X. That
ρ(Ψtϕ, ϕ) < η holds is elementary. �

Corollary 4.2.3. For i = 1, 2, . . . , r, let εi denote a positive number and
let ψi ∈ Homeo(M,M) be an εi-push of (M,ψi−1 · · · · · ψ1(X)), with Ψr

t the
εr-isotopy realizing the push ψr. Then the isotopy Φt = Ψr

t ·ψr−1 · · · · ·ψ1 is
supported in the (ε1+ε2+· · ·+εr)-neighborhood of X and ρ(Φt, ψr−1·· · ··ψ1) <
εr for all t ∈ [0, 1].

Corollary 4.2.4. Assume

(1) {ε1, ε2, . . .} is an infinite sequence of positive numbers such that the series
Σiεi converges to S, and

(2) {ψ1, ψ2, . . .} is an infinite sequence of homeomorphisms of M such that
ψ1 is an ε1-push of (M,X) and for i > 1, ψi is an εi-push of (M,ϕi−1(X)),
where ϕi−1 = ψi−1 · · · · · ψ2 · ψ1.

Then the sequence {ϕ1, ϕ2, . . .} converges in C(M,M) to g ∈ Surj(M,M)
with ρ(g, IdM ) < S, and g acts as the identity on M �B(X;S).

Proof. Repeated application of Corollary 4.2.3 yields

ρ(ϕi, ϕj) < εi+1 + εi+2 + · · ·+ εj

for i < j. Convergence of the infinite series Σiεi ensures that {ϕi} is a
Cauchy sequence in Homeo(M,M) ⊂ Surj(M,M), so {ϕi} converges to
some g ∈ Surj(M,M) by completeness. �

Lemma 4.2.5. Under the hypotheses of Corollary 4.2.4, there exists a map
Φ : M × [0, 1] → M such that Φ0 = IdM , Φ1 is the map g ∈ Surj(M,M)
from the conclusion of Corollary 4.2.4, and for all t ∈ [0, 1), Φt is an S-push
of (M,X). Moreover, when g is one-to-one, g also is an S-push of (M,X)
and Φt is the associated isotopy.

Proof. Let {ψ1, ψ2, . . . , ψr, . . .} be the infinite sequence of εr-pushes and let
{Ψ1

t ,Ψ
2
t , . . . ,Ψ

r
t , . . .} be the associated sequence of isotopies realizing these

pushes. Let

Φr
t = Ψr

t · ψr−1 · · · · · ψ1 = Ψr
t ·Ψr−1

1 · · · · ·Ψ1
1.
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Corollary 4.2.4 ensures that the sequence {Φ1
1,Φ

2
1,Φ

3
1, . . .} converges to a

map g ∈ Surj(M,M). For t ∈ [0, 1) choose r ∈ Z+ with t ∈ [(r−1)/r, r/(r+
1)], express t as s · (r − 1)/r + (1 − s)(r/(r + 1)), s ∈ [0, 1], and define
Φ : M × [0, 1] → M as

Φ(z, t) = Φr
s(z) for t < 1 and

Φ(z, 1) = g(z).

Continuity of Φ stems from the uniform convergence of

{Φr
t(r) | t(r) ∈ [0, 1], r = 1, 2, . . .}.

The other features required of Φ follow from Corollary 4.2.4. �

The function Φ in Lemma 4.2.5 is usually called a pseudo-isotopy of M .
To be precise, a pseudo-isotopy of M is a continuous function Φ : M ×
[0, 1] → M such that Φ0 = IdM , Φt ∈ Homeo(M,M) for every t < 1, and
Φ1 ∈ Surj(M,M).

For the most potent applications of Lemma 4.2.5, one should recall the
conditions listed in Proposition 2.2.2 under which a sequence of homeomor-
phisms like {ϕ1, ϕ2, . . .} converges to a homeomorphism.

Proof of Theorem 4.2.1. Let Λ and Λ′ be two dense, solvable subsets of
Emb(X,M). Clearly Λ ∪ Λ′ is dense in Emb(X,M), so the real issue is
solvability. To each ε > 0 there corresponds δ(ε) ∈ (0, ε) satisfying the
condition defining solvability of Λ; symmetrically, to each ε′ > 0 there cor-
responds δ′(ε′) ∈ (0, ε′) from the condition defining solvability of Λ′. Fix
ε > 0. Choose δ(ε/6) for Λ, choose δ′(ε/6) for Λ′, and set

δ = min{δ(ε/6), δ′(ε/6)}.

We will show that any two elements of Λ ∪ Λ′ that are δ-close to each
other are equivalent via an ε-push.

Consider λ, λ′ ∈ Λ ∪ Λ′ with ρ(λ, λ′) < δ. If λ, λ′ ∈ Λ or if λ, λ′ ∈ Λ′,
existence of the ε-push follows immediately from the preceding choice of δ,
based on the solvability of Λ and Λ′ themselves. Assume then that λ ∈ Λ
and λ′ ∈ Λ′.

We will construct:

• a sequence {λ0 = λ, λ1, λ2, . . .} of elements of Λ;

• a sequence {λ′
0 = λ′, λ′

1, λ
′
2, . . .} of elements of Λ′;

• two sequences {ψ1, ψ2, ψ3, . . .} and {ψ′
1, ψ

′
2, ψ

′
3, . . .} of elements of

Homeo(M,M); and

• two sequences {ε0, ε1, ε2, . . .} and {ε′0, ε′1, ε′2, . . .} of positive real
numbers.
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For notational convenience, associated with the sequences {ψ1, ψ2, ψ3, . . .}
and {ψ′

1, ψ
′
2, ψ

′
3, . . .} from Homeo(M,M) will be two additional sequences

{ϕ1, ϕ2, ϕ3, . . .} and {ϕ′
1, ϕ

′
2, ϕ

′
3, . . .} from Homeo(M,M) defined by:

ϕi = ψi · ψi−1 · · · · · ψ1 and ϕ′
i = ψ′

i · ψ′
i−1 · · · · · ψ′

1.

The sequences from Λ and Λ′ will be Cauchy sequences (with distances
between successive elements limited by the sequences of positive numbers)
that converge in Emb(X,M), and the sequences {ϕi} and {ϕ′

i} also will be
Cauchy sequences that converge in Homeo(M,M) to (ε/3) pushes ξ and ξ′

of (M,λ(X)) and (M,λ′(X)), respectively. The crucial additional feature is
to interweave these arrangements to obtain ξ · λ = ξ′ · λ′.

Specifically, these sequences will be constructed subject to the following
conditions:
(1) ρ(λi, λ

′
i−1) < δ′(ε′i−1) < ε′i−1 (1′) ρ(λ′

i, λi) < δ(εi)
(2) ρ(λi, λi−1) < δ(εi−1) < εi−1 (2′) ρ(λ′

i, λ
′
i−1) < δ′(ε′i−1)

(3) ψiλi−1 = λi (3′) ψ′
iλ

′
i−1 = λ′

i

(4) ψi is an εi−1-push of (M,λi−1(X)) (4′) ψ′
i is an ε′i−1-push of (M,λ′

i−1(X))
(5) 2εi < εi−1 and ε0 = ε/6 (5′) 2ε′i < ε′i−1 and ε′0 = ε/6
(6) 4εi < d(ϕi(z), ϕi(z

′)) for all z, z′ (6′) 4ε′i < d(ϕ′
i(z), ϕ

′
i(z

′)) for all z, z′

∈ M satisfying d(z, z′) ≥ 1/i ∈ M satisfying d(z, z′) ≥ 1/i.

To begin, set λ0 = λ, λ′
0 = λ′, and ε0 = ε/6 = ε′0. Condition (1′) holds

for i = 0 because

ρ(λ0, λ
′
0) = ρ(λ, λ′) < δ ≤ δ(ε/6) = δ(ε0).

The second parts of conditions (5) and (5′) also hold, but no other conditions
make sense yet at this preliminary stage.

Assume that for each of these sequences all terms subscripted by j,
0 ≤ j < i, have been found subject to conditions (1) through (6) and (1′)
through (6′).

Step i. As Λ is dense in Emb(X,M), choose λi ∈ Λ such that

ρ(λi, λ
′
i−1) < min{δ′(ε′i−1), δ(εi−1)− ρ(λi−1, λ

′
i−1)}.

Then not only do we have ρ(λi, λ
′
i−1) < δ′(ε′i−1), but also

ρ(λi, λi−1) ≤ ρ(λi, λ
′
i−1) + ρ(λ′

i−1, λi−1)

< (δ(εi−1)− ρ(λi−1, λ
′
i−1)) + ρ(λ′

i−1, λi−1)

= δ(εi−1),

fulfilling conditions (1) and (2) for i. Since ρ(λi, λi−1) < δ(εi−1), the solv-
ability of Λ provides an εi−1-push ψi of (M,λi−1(X)), where ψi · λi−1 = λi;
this yields conditions (3) and (4) for this case. Choose εi satisfying condi-
tions (5) and (6) to complete Step i.
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Step i′. By condition (1) from Step i, we have ρ(λi, λ
′
i−1) < δ′(ε′i−1). As Λ′

is dense in Emb(X,W ), we can choose λ′
i ∈ Λ′ satisfying

ρ(λ′
i, λi) < min{δ(εi), δ′(ε′i−1)− ρ(λi, λ

′
i−1)}.

Then not only do we have ρ(λ′
i, λi) < δ(εi), but also

ρ(λ′
i, λ

′
i−1) ≤ ρ(λ′

i, λi) + ρ(λi, λ
′
i−1)

< (δ′(ε′i−1)− ρ(λi, λ
′
i−1)) + ρ(λi, λ

′
i−1)

= δ′(ε′i−1),

yielding conditions (1′) and (2′) for i. Since ρ(λ′
i, λ

′
i−1) < δ′(ε′i−1), the

solvability of Λ′ provides an ε′i−1-push ψ′
i of (M,λ′

i−1(X)) with ψ′
i ·λ′

i−1 = λ′
i,

which takes care of conditions (3′) and (4′) for this case. Finally, choose ε′i
satisfying conditions (5′) and (6′) to complete Step i′.

Now conditions (1) through (6) and (1′) through (6′) are all fulfilled
for this choice of i. The six sequences are constructed recursively in this
manner.

λ=λ0

1

1

1

2

λ =λ0

0

0

δ(ε )=δ(ε/6)

δ (ε )=δ (ε/6)

λ

λ

λ

δ(ε )

1δ (ε )

Figure 4.3. Solvability of Λ ∪ Λ′ in the function space Emb(K,M)
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Conditions (5) and (5′) guarantee both Σiεi < ε/3 and Σiε
′
i < ε/3.

Since ψi can be realized by an εi−1-push of (M,λi−1(X)), Proposition 2.2.2
and Lemma 4.2.5 imply that the sequence {ϕ1, ϕ2, . . .} converges uniformly
to ξ ∈ Homeo(M,M) which can be realized by an (ε/3)-push of (M,λ(X)).
Similarly, the sequence {ϕ′

1, ϕ
′
2, . . .} converges uniformly to ξ′ ∈ Homeo(M,M)

which can be realized by an (ε/3)-push of (M,λ′(X)).

It follows from the definitions of ϕi, ϕ
′
i and conditions (3) and (3′) that

ϕiλ = ψiϕi−1λ = λi and ϕ′
iλ

′ = ψ′
iϕ

′
i−1λ

′ = λ′
i. Thus, by condition (1′),

ρ(ϕiλ, ϕ
′
iλ

′) < δ(εi−1). Since εi−1 → 0, δ(εi−1) → 0 as well, and therefore

ξ · λ = lim
i→∞

ϕiλ = lim
i→∞

ϕ′
iλ

′ = ξ′ · λ′.

Since ξ′ is an (ε/3)-push of (M,λ′(X)), Observation 3.3.1 indicates
that (ξ′)−1 can be realized as a (2ε/3)-push of (M, ξ′λ′(X)) = (M, ξλ(X)),
and Lemma 4.2.2 promises that (ξ′)−1 · ξ can be realized as an ε-push of
(M,λ(X)). Since (ξ′)−1ξλ = λ′, Λ ∪ Λ′ is solvable. �

Our first application of Theorem 4.2.1 localizes tameness. The ε in the
terminology “ε-tame”, introduced below, does not stand for one positive
number but for the phrase, “ for every ε > 0 there exists . . . ”.

Definition. Let λ : K → M be an embedding of a complex in a PL man-
ifold. Say that λ is ε-tame if for every ε > 0 there exists an ε-push ψ of
(M,λ(K)) with ψλ ∈ EmbPL(K,M).

It is obvious that ε-tame implies tame; Theorem 4.2.1 yields a trivial
range converse.

Corollary 4.2.6. Let M be a compact PL n-manifold, K a finite k-complex
where 2k + 2 ≤ n, θ ∈ EmbPL(K,M), and h ∈ Homeo(M,M). Then hθ is
ε-tame.

Proof. Write Λ = EmbPL(K,M) and Λ′ = h(EmbPL(K,M)) = {h ·λ | λ ∈
EmbPL(K,M)}. As Λ and Λ′ are solvable, dense subsets of Emb(K,M),
Theorem 4.2.1 assures that Λ ∪ Λ′ is solvable. Given ε > 0, apply density
of Λ to obtain λ ∈ Λ close to hθ ∈ Λ′ and then use solvability of Λ ∪ Λ′ to
obtain an ε-push ψ of (M,hθ(K)) with ψhθ = λ. �

Corollary 4.2.7 (Tame Implies ε-Tame). Let M be a compact PL n-manifold,
K a finite k-complex where 2k+2 ≤ n, and f ∈ Emb(K,M) a tame embed-
ding. Then f is ε-tame.

Proof. If f is tame, then there exists g ∈ Homeo(M,M) such that gf ∈
EmbPL(K,M). Appeal to Corollary 4.2.6 with θ = gf and h = g−1. �
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The remainder of the section consists of some mild but extremely use-
ful generalizations of Theorem 4.2.1. Among the applications will be the
extension of Corollary 4.2.7 to non-compact manifolds M .

Definition. Say that a subset Λ of Emb(X,M) is locally solvable if for each
λ ∈ Λ and ε > 0 there exists δ = δ(λ, ε) > 0 such that given any λ′ ∈ Λ with
ρ(λ, λ′) < δ, there is an ε-push ψ of (M,λ(X)) satisfying ψλ = λ′.

For non-compact PL manifolds M and trivial range finite complexes K,
EmbPL(K,M) is a locally solvable subset of Emb(K,M).

Theorem 4.2.8. Suppose Λ and Λ′ are dense, locally solvable subsets of
Emb(X,M). Then Λ∪Λ′ is a dense and locally solvable subset of Emb(X,M).

Proof. The argument supplied for Theorem 4.2.1 essentially gives this lo-
calized version. The minor adjustments needed mostly occur at the outset.
Given some f ∈ Λ ∪ Λ′ and ε > 0, assume f = λ = λ0 ∈ Λ. Of course, any
λ∗ ∈ Λ within δ(λ, ε/6) can be obtained from λ as the end of an ε-push, so
examine instead any λ′ = λ′

0 ∈ Λ′ for which ρ(λ0, λ
′
0) < δ(λ0, ε/6). Repeat

the earlier argument, using the localized δ(λi, εi) and δ′(λ′
i, ε

′
i), as bounds

on the distance to the choices of later λi+1 and λ′
i+1. �

The equivalence of tame and ε-tame for non-compact M now follows, as
before.

Corollary 4.2.9 (Tame Implies ε-Tame). Let M be a PL n-manifold, K a
finite k-complex where 2k + 2 ≤ n, and f ∈ Emb(K,M) a tame embedding.
Then f is ε-tame.

Definition. A subset E of Emb(X,M) is full if E is invariant under the
action of Homeo(M,M); i.e., ψ(E) = E for all ψ ∈ Homeo(M,M).

Example 4.2.10. For compact spaces X, the space of all 1-LCC embeddings
of X in M is a full subset of Emb(X,M). However, if K is a k-complex,
k > 0, EmbPL(K,M) is not full in Emb(K,M).

Theorem 4.2.11 (Local Solvability Criterion). Suppose Λ is a full, dense
subset of Emb(X,M) satisfying:

(∗) for each λ ∈ Λ and ε > 0 there exists δ = δ(λ, ε) > 0 such that for
all λ′ ∈ Λ with ρ(λ′, λ) < δ and for all η > 0, there exists an ε-push
ϕ of (M,λ(X)) with ρ(ϕλ, λ′) < η.

Then Λ is locally solvable; moreover, if δ(λ, ε) in (∗) depends only on ε, then
Λ is solvable.

Proof. Repeat the proof of Theorem 4.2.8. Start with λ = λ0 ∈ Λ and a
λ′ = λ′

0 ∈ Λ nearby. Instead of choosing some λ1 ∈ Λ close to λ′
0, use (∗)
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to obtain λ1 ∈ Emb(X,M) close to λ′
0 to which λ0 can be ε0-pushed. Here

λ1 will belong to Λ, due to hypothesized fullness of Λ. Such replacement
of a chosen element—say the λi near λ′

i−1 or the λ′
i near λi—by one to

which the earlier element (λi−1 or λ′
i−1) can be pushed, with control, is the

modification required. �
Historical Notes. The first to observe the usefulness of dense, solvable sub-
sets were T. Homma (1962) and H. Gluck (1963). Homma deserves credit
for the meshing of structures idea central to the proof of Theorem 4.2.1;
Gluck introduced the solvability terminology and extended its applications.
J. Dancis (1970) localized the concept. Ultimately Homma obtained a re-
sult comparable to Corollary 4.2.6; Gluck, as well as C. Greathouse (1963),
showed that locally tame embeddings in the trivial range are ε-tame (Corol-
lary 4.2.4).

Exercises

4.2.1. The existence of a dense, solvable subset implies Emb(X,M) is
uniformly locally pathwise connected.

4.2.2. Suppose Λ ⊂ Emb(X,M) is solvable and Λ′ ⊂ Emb(X,M) satisfies:
for each λ′ ∈ Λ′ and each ε > 0 there is an ε-push ψ of (M,λ′(X))
with ψλ′ ∈ Λ. Then Λ ∪ Λ′ is solvable.

4.2.3. Prove Theorem 4.2.8.

4.2.4. Prove Theorem 4.2.11.

4.3. Taming 1-LCC embeddings of polyhedra

This section relies upon Bryant-Seebeck engulfing methods to establish the
fundamental 1-LCC characterization of tameness for trivial range embed-
dings of polyhedra. The following central pushing lemma will also prove
useful in the next section.

Lemma 4.3.1. Let X be a k-dimensional compactum 1-LCC embedded in
a PL n-manifold M , n ≥ 5, 2k + 2 ≤ n. Then for every ε > 0 there exists
δ > 0 such that, for any f ∈ C(X,M) with ρ(f, inclX) < δ and for any
η > 0 there exists an ε-push ψ of (M,X) such that ρ(ψ|X, f) < η.

Proof. The strategy is to extend f to a neighborhood of X, use the the-
ory of embedding dimension to find a smaller neighborhood whose spine
is a k-dimensional polyhedron, and then apply the unknotting theorem for
polyhedra to that spine. While the strategy is simple, its implementation
requires careful choices of neighborhoods.

Let ε > 0 be given. First use Theorem 0.6.3 to choose δ > 0 such
that any map within δ of inclX : X → M is (ε/4(k + 1))-homotopic to
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inclX . Then specify f ∈ C(X,M) with ρ(f, inclX) < δ, and let η be another
positive number, as in the statement of the lemma.

Since M is an ANR, f can be extended to a neighborhood of X. Fix
both a compact PL ∂-manifold W such that X ⊂ IntW ⊂ W ⊂ M and
an extension F : W → M . Make W so close to X so that ρ(F, inclW ) < δ.
Choose a number ζ ∈ (0, ε/2) such that if x, x′ ∈ W and d(x, x′) < ζ, then
d(F (x), F (x′)) < η/3. Now the two conditions 2k + 2 ≤ n and n ≥ 5 imply
k ≤ n − 3, so Theorem 3.4.8 shows that demX ≤ k. Hence there exist
a k-dimensional polyhedron K and a ζ-regular neighborhood N of K such
that X ⊂ IntN ⊂ N ⊂ IntW . Let r : N → K be the ζ-retraction of N to
the spine K.

Let F ′ : K → M be a PL general position approximation to F |K.
Take such a close approximation that ρ(F ′, F |K) < η/3 and we still have
ρ(F ′, inclK) < δ. By Theorem 4.1.1 and the choice of δ, there is an (ε/2)-
push φ of (M,X) such that φ|K = F ′. Choose γ > 0 such that if x, x′ ∈ W
and d(x, x′) < γ, then d(φ(x), φ(x′)) < η/3. Let θ be an isotopy that
squeezes the regular neighborhood N so close to K that d(θ(x), r(x)) < γ
for each x ∈ N . We can extend θ over all of M to obtain θ as a ζ-push of
(M,X).

Define ψ = φ ◦ θ. Note that ψ is an (ε/2 + ζ)-push and ζ < ε/2, so ψ is
an ε-push of (M,X). Pick x ∈ X. Then

d(ψ(x), f(x)) = d(φθ(x), f(x))

≤ d(φθ(x), φr(x)) + d(φr(x), F r(x)) + d(Fr(x), f(x))

= d(φθ(x), φr(x)) + d(F ′r(x), F r(x)) + d(Fr(x), F (x))

< η/3 + η/3 + η/3 = η.

Hence ρ(ψ|X, f) < η and the proof is complete. �

The lemma promptly implies the pivotal tameness characterization.

Theorem 4.3.2 (1-LCC Taming). If K is a finite k-complex, M is a PL
n-manifold, n ≥ 5, 2k+2 ≤ n, and λ : K → M is a 1-LCC embedding, then
λ is ε-tame.

Proof. Consider Λ = {λ : K → M | λ is a 1-LCC embedding}. By Theo-
rem 4.2.11, Λ is locally solvable. Since EmbPL(X,M) is a dense subset of
Λ, each λ ∈ Λ admits an ε-push to a PL embedding. �

Corollary 4.3.3. Suppose M is a PL n-manifold, n ≥ 5, and λ : K → M
is an embedding of a finite k-complex K, 2k+2 ≤ n, such that dem(λ(K)) <
n− 2. Then λ(K) is ε-tame.
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Corollary 4.3.4. Suppose M is a PL n-manifold, n ≥ 5, and λ : K → M
is an embedding of a finite k-complex, 2k + 2 ≤ n. Then λ(K) is tame if
and only if dem(λ(K)) = k.

Corollary 4.3.5. Every locally tame embedding of a finite k-complex K in
a PL n-manifold, n ≥ 5 and 2k + 2 ≤ n, is ε-tame.

Corollary 4.3.6. Suppose M is a PL n-manifold, n ≥ 5, K is a finite
k-complex with 2k + 2 ≤ n, λ0, λ1 ∈ Emb(K,M) whose images are 1-LCC
embedded in M , and ft : K → M is a homotopy between λ0, λ1 satisfying
ρ(ft, f0 = λ0) < b for some b > 0. Then there exists a 2(k + 1)b-push ψ of
(M,λ0(K)) such that ψλ0 = λ1.

Proof. Compactness yields b′ ∈ (0, b) for which ft is a b′-homotopy. Set
ζ = (b − b′)/3. Theorem 4.3.2 promises ζ-pushes ϕi of (M,λi(K)) with
ϕiλi PL (i = 0, 1), and Theorem 4.1.1 yields a 2(k + 1)(2ζ + b′)-push Θ of
(M,ϕ0λ0(K)) such that Θϕ0λ0 = ϕ1λ1. Put ψ = ϕ−1

1 Θϕ0. �

Corollary 4.3.7. For n ≥ max{5, 2k + 2}, any two 1-LCC embeddings of
a finite k-complex K in Rn or Sn are ambient isotopic.

4.4. Unknotting 1-LCC embeddings of compacta

We now turn to unknotting theorems for compacta. They present further
evidence to reinforce the contention that 1-LCC compacta behave very much
like polyhedra. There are both a local and a global unknotting result; the
proofs are short because all the groundwork already has been laid in the two
preceding sections.

Theorem 4.4.1 (Local Solvability for 1-LCC Compacta). Suppose X is a
compact, k-dimensional space and M is a PL n-manifold, where n ≥ 5 and
2k + 2 ≤ n. Then the collection of all 1-LCC embeddings λ : X → M is a
dense and locally solvable subset of Emb(X,M).

Proof. Density is treated in Exercise 3.4.5. Local solvability is assured by
Lemma 4.3.1 and Theorem 4.2.11. �

Theorem 4.4.2. Suppose X is a compact, k-dimensional space and M is
a PL n-manifold, where n ≥ 5 and 2k + 2 ≤ n. If λ0, λ1 : X → M are
two topological embeddings whose images are 1-LCC in M and ft : X → M
is a homotopy between λ0 and λ1, then there exists a compactly supported
ambient isotopy Ψ of M such that Ψ0 = IdM and Ψ1λ0 = λ1.

Proof. By Theorem 3.4.8 we have demλ0(X) = demλ1(X) = k. Thus
Theorem 3.4.7 allows us to adjust λ1 so that λ0(X) ∩ λ1(X) = ∅. Focus on
the 2k + 3 ≤ n case. Since f |X × ∂I is an embedding and 2(k + 1) < n,
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f : X × I → M can be approximated by an embedding F that agrees with
f on X × ∂I (see Exercise 3.4.5). The approximation can be done in such a
way that dem(F (X × I)) = k + 1 (see Exercise 3.4.5).

Now Theorem 4.4.1 yields that the set S of all t ∈ [0, 1] for which there
exists a compactly supported ambient isotopy Φ of M , starting at IdM , such
that Φ1λ0 = Ft is both open and closed in [0,1], implying that S = [0, 1],
and completing the proof of the 2k + 2 < n case.

The extreme case 2k + 2 = n can be handled in almost the same way.
The only change is to use Exercise 4.1.3 for obtaining an approximation of
f : X × I by a map F : X × I → M such that F |X × ∂I = f |X × ∂I and
Ft is an embedding with 1-LCC image for all t ∈ I. �
Corollary 4.4.3. For n ≥ max{5, 2k+2}, any two 1-LCC embeddings of a
compact, k-dimensional metric space X in Rn or Sn are ambient isotopic.

Corollary 4.4.4. Let X be a k-dimensional compactum topologically em-
bedded in a PL n-manifold M , n ≥ max{5, 2k + 2}. Then there exist a
1-LCC embedding λ : K → M and a pseudo-isotopy θt of M such that
θ1λ = inclK : K → M .

The definition of pseudo-isotopy was given on page 154.

Historical Notes. J. L. Bryant and C. L. Seebeck, III, developed the tech-
niques reproduced in §4.3 and §4.4. They proved Theorem 4.3.3 in (Bryant
and Seebeck, 1969). At the same time they also established Theorem 4.4.2
for compact absolute retracts. Later Bryant (1969) (1971a) generalized this
trivial range unknotting theorem to arbitrary compacta.

4.5. Chart-by-chart analysis of topological manifolds

Operating in manifolds with PL (or Differentiable) structure is a great con-
venience. The PL structure allows one to make simplifying general position
adjustments globally and, after that, to exploit powerful tools such as en-
gulfing. Many standard results about embeddings in PL manifolds also hold
for embeddings in topological manifolds; the more general setting simply de-
mands extra effort. Progress comes about by covering the target with charts
admitting PL structures and then by improving the situation one chart at
a time.

The following illustrates an elementary procedure.

Proposition 4.5.1. If K is a finite k-complex and Mn is a topological n-
manifold, 2k + 1 ≤ n, then every map f : K → M can be approximated by
an embedding.

Proof. Relative general position methods readily give:
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Lemma 4.5.2. Under the hypotheses of 4.5.1, let U be an open subset of
Mn with a PL structure, f : K → Mn a map and ε > 0. Then there exists
a map g : K → Mn satisfying (i) g|K � f−1(U) = f |K � f−1(U), (ii)
gf−1(U) ⊂ U, (iii) ρ(g, f) < ε and (iv) g|f−1(U) is 1-1.

Produce a sequence of n-balls C1, C2, . . . covering Mn, where each Ci is
contained in a Euclidean chart Ui ≈ Rn. For i,m = 1, 2, . . . let

Am
i = {g ∈ C(K,Mn) | diam g−1(c) < 1/m for all c ∈ Ci}.

It is easy to check that Am
i is an open subset of C(K,Mn); by Lemma 4.5.2

it is also a dense subset. Thus
⋂

i,mAm
i consists of embeddings, and they

are dense in C(K,Mn). �

Corollary 4.5.3. Every map from a k-dimensional, compact metric space
into a topological n-manifold, 2k + 1 ≤ n, can be approximated by an em-
bedding.

4.6. Detecting 1-LCC embeddings

The tameness and unknotting results of §4.3 and §4.4 impart substantial
inducements for seeking conditions under which embeddings are 1-LCC.
This section presents a variety of such conditions. Surprisingly, perhaps,
none imposes trivial range restrictions. This has more potential than one
has a right to expect at this juncture. Although the immediate applications
do occur with trivial range limitations, in the next chapter we shall prove
that comparable controlled 1-LCC taming theorems and related 1-LCC local
unknotting theorems hold up to codimension three.

Being LCC1 is a hereditary property in codimension three.

Proposition 4.6.1. If X is a k-dimensional space LCC1 embedded as a
closed subset of an n-manifold Mn, k ≤ n − 3, and Y is a closed subset of
X, then Y is LCC1 in Mn.

Proof. Given a neighborhood U of y ∈ Y , the hypotheses about X being
LCC1 promises a neighborhood V of y such that loops in V �X are inessen-
tial in U�X. Since any loop in V �Y is homotopic there to a loop in V \X,
the result follows. �

Theorem 4.6.2. Suppose X is a k-dimensional space embedded in an n-
manifold Mn as a closed subset, k ≤ n − 3, and Y is a closed subset of X
such that Y is LCC1 in Mn and X is LCC1 in Mn at each point of X�Y .
Then X is LCC1 in Mn.

Proof. Given a neighborhood U of x ∈ X, find a smaller neighborhood V
of x such that π1(V ) → π1(U) is trivial. Take any loop f : ∂I2 → V � X
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and extend it to a map F1 : I2 → U . Make successive applications of π1-
negligibility (Lemma 3.3.4), first for the 1-LCC subset Y ∩U of U and then
for the 1-LCC subset X∩(U�Y ) of U�Y , to obtain maps F2 : I

2 → U�Y
and F3 : I

2 → U �X, both agreeing with f on ∂I2. �

Let A be a closed subset of the polyhedron (respectively, manifold) P
topologically embedded in a PL manifold M . We say that P is locally tame
(respectively, locally flat) modulo A provided P is locally tame (respectively,
locally flat) at all points of P �A.

Corollary 4.6.3. If P is a p-dimensional polyhedron topologically embedded
in the PL n-manifold Mn as a closed subset, p ≤ n− 3, and C is a closed,
countable subset of P such that P is locally tame in Mn modulo C, then P
is 1-LCC in Mn. Hence, P is ε-tame provided 2p+ 2 ≤ n and n ≥ 5.

Corollary 4.6.4. Suppose P is a p-dimensional polyhedron topologically
embedded in the PL n-manifold Mn as a closed subset, p ≤ n− 3, and K is
a k-dimensional polyhedron tamely embedded in Mn, k ≤ n − 3, such that
P is locally tame in Mn modulo P ∩K. Then P is 1-LCC in Mn.

Proof. Since it is tame, K is 1-LCC in Mn, by Proposition 1.3.3; Proposi-
tion 4.6.1 assures that P ∩K is 1-LCC as well. Another application of 1.3.3
gives that P � (P ∩K) is 1-LCC. �

Corollary 4.6.5. Suppose B1 and B2 are k-cells in Rn, 2k + 2 ≤ n, such
that B1 ∩ B2 = ∂B1 = ∂B2, where B1 is flat and B2 is locally flat modulo
∂B2. Then B1 ∪B2 is a flat k-sphere.

Corollary 4.6.6. If B is a k-cell in Rn, 2k+2 ≤ n, that can be expressed as
a union of k-cells B1 and B2, where B1 is flat and B2 is locally flat modulo
B1 ∩B2, then B is flat.

Lemma 4.6.7. Let X be a closed, (n − 2)-dimensional subset of a PL n-
manifold M , n ≥ 4. Then X contains a 0-dimensional Fσ-set F such that
all compact subsets of X � F are 1-LCC.

Proof. Consider the 2-skeleton K of some triangulation of M , and let Li

denote the 1-skeleton of a subdivision K(i) of K such that mesh(K(i)) < 1/i.
Fix ε > 0. Since X is (n − 2)-dimensional, it is 0-LCC, so Lemma 3.3.3
yields a small homotopy that pushes L1 off X; Theorem 4.1.1 transforms
that homotopy into an (ε/2)-push of M . Next push L2 off X with an (ε/4)-
homeomorphism that is fixed on the image of L1. With repeated application
of this process, adjust the various Li via a sequence of homeomorphisms of
M so that they miss X. Imposing the controls of Proposition 2.2.2 forces the
sequence to converge to an ε-homeomorphism h : M → M with h(∪Li)∩X =
∅. Then h(K) ∩X is 0-dimensional, since h(K) ∩X ⊂ h(K � ∪Li).
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By naming a sequence Kj of 2-skeleta of triangulations Tj of M with
meshTj < 1/j, and then adjusting each Kj as above via a homeomorphism
of M moving points less than 1/j to make its intersection Fj with X be
0-dimensional, we produce an Fσ set F = ∪Fj ⊂ X.

Consider any compact subset C of X � F . A small loop in the com-
plement of C is null-homotopic in a small subset of M . The track of that
homotopy can be pushed into the 2-skeleton of a fine triangulation. The
homeomorphisms constructed earlier in the proof move the 2-skeleton so
that its intersection with X is contained in F ; in particular, the adjusted
2-skeleton misses C. Hence the loop is null-homotopic in a small subset of
M � C and thus C is 1-LCC. �

Theorem 4.6.8. Each 2-cell D in a PL n-manifold Mn, n ≥ 5, contains
tame arcs. Specifically, for each embedding λ : I → D with λ(I) ∩ ∂D ⊂
λ(∂I) and ε > 0, there exists θ ∈ Homeo(D,D) such that ρ(θ, IdD) < ε and
θλ(I) is tame in Mn.

Proof. To do this, one produces θ ∈ Homeo(D,D) so that θλ(I) misses
the Fσ-subset F of D provided by Lemma 4.6.7. Tameness is ensured by
Theorem 4.3.2. �

Proposition 4.6.9. Each (n−3)-dimensional closed subset C of an (n−1)-
hyperplane in Rn is 1-LCC in Rn.

Proof. Assume C ⊂ Rn−1, and express Rn � C as U+ ∪ U−, where

U+ = [Rn−1 × (0,∞)] ∪ [(Rn−1 � C)× (−∞,∞)],

U− = [Rn−1 × (−∞, 0)] ∪ [(Rn−1 � C)× (−∞,∞)].

Since U+, U− both are contractible and U+ ∩ U− = (Rn−1 � C)× (−∞,∞)
is connected, the Seifert-van Kampen Theorem indicates that Rn � C is
1-connected. Localization of this argument is routine. �

Corollary 4.6.10. Each finite k-complex embedded in an (n−1)-hyperplane
in Rn, 2k + 2 ≤ n and n ≥ 5, is tame in Rn.

Corollary 4.6.11. Any two embeddings λ1, λ2 : X → Rn−1 ⊂ Rn of a
k-dimensional compactum X, 2k + 2 ≤ n and n ≥ 5, are equivalent as
embeddings into Rn.

The next result generalizes Theorem 4.6.9 considerably.

Theorem 4.6.12. Suppose X is a k-dimensional closed subset of Rn+1 =
Rn ×R1, k ≤ n− 2, and E is a dense subset of R such that, for each t ∈ E,
X ∩ (Rn × t) is 1-LCC in Rn × t. Then X is 1-LCC in Rn+1.

The proof of Theorem 4.6.12 is based on two lemmas.
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Lemma 4.6.13. Under the hypotheses of Theorem 4.6.12 each map g :
I2 → Rn × {t} can be approximated, arbitrarily closely, by a map g′ : I2 →
Rn+1 � X; moreover, if g(∂I2) ∩ X = ∅, then approximations g′ can be
obtained such that g′ | ∂I2 = g | ∂I2.

Proof. When t ∈ E see Lemma 3.3.3; in general, translate via a homotopy
to put the image of g in such a special level. �

Lemma 4.6.14. Under the hypotheses of Theorem 4.6.12, suppose f : D =
I × [r, r′] → Rn ×R1 is a map such that f(∂D) ∩X = ∅, f sends each level
I×s ⊂ I×[r, r′] to a level Rn×t(s) of Rn+1, and f is “vertical” on ∂I×[r, r′]
in the sense that to x ∈ ∂I corresponds z ∈ Rn with f(〈x, s〉) = 〈z, t(s)〉 for
all s ∈ [r, r′]. Then for each neighborhood U of f(D) there exists a map
g : D → Rn+1 such that g|∂D = f |∂D and g(D) ⊂ U �X.

Proof. Choose ε > 0 with B(f(D); 2ε) ⊂ U and B(f(∂D); ε) ⊂ U �X. For
notational simplicity, let fs : I → Rn be the composite map

I −−−−→ I × s
f |I×s−−−−→ Rn+1 = Rn × R1 proj−−−−→ Rn (s ∈ [r, r′]).

Since dimX ≤ n−2, there exists a map αs : I → Rn such that αs|∂I = fs|∂I,
ρ(αs, fs) < ε, and X ∩ (αs(I)× t(s)) = ∅; at the endpoints, take αr = fr and
αr′ = fr′ . There exists δ(s) > 0 such that X∩B(αs(I)×t(s); 2δ(s)) = ∅ and
ρ(fz, αs) < ε for all z ∈ [t(s)δ(s), t(s)+δ(s)]∩[r, r′]. Let λ > 0 be a Lebesgue
number for the associated cover {(t(s)−δ(s), t(s)+δ(s)) | s ∈ [r, r′]} of [r, r′].
Specify numbers

r(0) = r < r(1) < · · · < r(m) = r′

with r(i) − r(i − 1) < λ(i = 1, . . . ,m) and r(i) ∈ ϕ(i = 1, . . . ,m − 1).
This yields maps αi = αr(i) : I → Rn satisfying αi|∂I = fr(i)|∂I, α0 = fr,
αm = fr′ and

αi(I)× [r(i), r(i+ 1)] ⊂ B(f(D); ε)�X ⊂ U �X.

For i = 1, 2, . . . ,m, αi−1(I) ∪ αi(I) ⊂ B(fr(i)(I); ε). The straight line
homotopy between αi−1 and αi gives a singular disk in B(fr(i)(I); ε), which
includes naturally as a singular disk D′

i in U ∩ (Rn × t(r(i))). Regard D′
i as

the image of a map βi : I
2 → Rn×t(r(i)), and (1 ≤ i < m) use Lemma 4.6.13

to approximate βi by β′
i : I

2 → U �X with β′
i|∂I2 = βi|∂I2. Set D′′

i equal
to the image of β′

i (0 < i < m) and D′′
m = D′

m. Now it should be clear that
f |∂D is null-homotopic in

(∪m−1
i=0 αi(I)× [r(i), r(i+ 1)]) ∪ (∪m

i=1D
′′
i ) ⊂ U �X,

as required. �
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Proof of Theorem 4.6.12. The proof rests on approximating small loops
in Rn+1 � X by polygonal curves comprised of segments parallel to either
the Rn or the R1 coordinate factor and on representing the result as a finite
product of loops, each bounding singular disks satisfying the hypothesis of
either Lemma 4.6.13 or Lemma 4.6.14, where the union of all these singular
disks is small. The details are left as an exercise. �
Theorem 4.6.15. If C is a closed, (n−2)-dimensional subset of Rn, n > 2,
then each (k− 1)-dimensional compactum X ⊂ C×Rk ⊂ Rn×Rk is 1-LCC
in Rn+k = Rn × Rk.

Proof. Starting with an arbitrary neighborhood U of x ∈ X ⊂ C × Rk,
restrict U , if necessary, to a basic neighborhood of the form U = U ′ ×U ′′ ⊂
Rn × Rk, where U ′′ ⊂ Rk is contractible. Express x as 〈z′, z′′〉 ∈ Rn × Rk.
Since dim(X ∩ (z′ × U ′′)) ≤ k − 1 < dimU ′′, there exists y′′ ∈ U ′′ with
〈z′, y′′〉 /∈ X. Now choose a contractible neighborhood W ′ ⊂ U ′ ⊂ Rn of z′

such that (W ′ × y′′) ∩X = ∅.
To see that V = W ′ × U ′′ is an appropriate smaller neighborhood of x

fulfilling the definition of 1-LCC, consider a map f : ∂I2 → V � X, and
express f as a product f1×f2 of coordinate functions. Compute the distance
η between f(∂I2) and X. Since dimC ≤ n − 2, there is an η-homotopy
Ft : ∂I

2 → W ′ between f1 and a map g1 : ∂I
2 → W ′ with g1(∂I

2) ⊂ W ′�C;
then the product Ft×f2 serves as a homotopy in V �X between f1×f2 and
g1 × f2. Next, f2 is homotopic in U ′′ to the constant mapping g2 to y′′; the
product of g1 with the latter homotopy has image in (W ′�C)×U ′′ ⊂ V �X.
Finally, the image of g1 × g2 lives in W ′ × y′′, so g1 × g2 is null-homotopic
in W ′ × y′′ ⊂ V � X. The net effect is a null-homotopy of f in V � X ⊂
U �X. �
Theorem 4.6.16. Suppose C is a closed, (n−3)-dimensional subset of Rn,
and K ⊂ C × Rk ⊂ Rn × Rk is homeomorphic to a finite k-complex. Then
K is 1-LCC in Rn+k = Rn × Rk.

The proof, which is similar to that of Theorem 4.6.15, is left as an
exercise.

Theorem 4.6.17. If K is a finite k-complex and M is an n-manifold,
k ≤ n − 3, then most embeddings of K in M are 1-LCC; i.e., the 1-LCC
embeddings form a dense, Gδ-subset of Emb(K,M).

Proof. Specify a countable collection of maps f1, f2, ... that form a dense
subset of C(I2,M). For j = 1, 2, ..., define Oj to be the collection of all
λ ∈ Emb(K,M) such that there exists f ′

j ∈ C(I2,M) with ρ(f ′
j, fj) < 1/j

and f ′
j(I

2) ∩ λ(K) = ∅. It is easy to see that Oj is a dense, open subset of

Emb(K,M) and that every λ ∈ ∩jOj is a 1-LCC embedding. �
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Corollary 4.6.18. If K is a finite k-complex and M is a PL n-manifold,
2k + 2 ≤ n, then most embeddings of K in M are tame.

We conclude the section by relating the 1-LCC property of embeddings
to a property of maps.

Definition. A compact set C ⊂ Y has Property 1-UV if for each open set
U ⊃ C there exists an open set V such that C ⊂ V ⊂ U , and each map
∂I2 → V extends to a map I2 → U . As usual, f ∈ C(Y, S) is a 1-UV map
if f−1(s) has Property 1-UV for each s ∈ S.

In some contexts we will emphasize the ambient space Y and say “C has
Property 1-UV in Y ,” but usually Y will not be mentioned. This is justified
by Exercise 4.6.5, which shows that Property 1-UV is a topological property
and does not depend on the embedding.

The following theorem demonstrates the fundamental connection be-
tween Property 1-UV for maps and the 1-LCC property for embeddings
whose images have mapping cylinder neighborhoods. Examples developed
in §7.11 will reveal that wildly embedded objects can possess manifold map-
ping cylinder neighborhoods — such objects, of course, are not 1-LCC and
the maps that determine the mapping cylinders fail to be 1-UV.

Theorem 4.6.19. Suppose M is a compact manifold and f : M → X is a
map such that 2+dimX ≤ dimM and Map(f) is a ∂-manifold. Then X is
LCC1 in Map(f) if and only if f is 1-UV.

Proof. Assume f is a 1-UV map. As dim(Map(f)) ≥ dimX + 3, X must
be both (-1)-LCC and 0-LCC in Map(f). To check that it is also 1-LCC, let
W be a neighborhood in Map(f) of x ∈ X. Let q : M × [0, 1]∪X → Map(f)
denote the mapping cylinder quotient map. Find a neighborhood U in M of
f−1(x) and t ∈ (0, 1) such that q(U×(t, 1)) ⊂ W . Since f−1(x) has Property
1-UV, it has a neighborhood V ⊂ U such that loops in V are null-homotopic
in U . The reader should confirm that q((V × (t, 1))∪ (X � f(M � V ))) is a
neighborhood W ′ of x in Map(f). Clearly each map µ : ∂I2 → W ′ �X =
q(V ′ × (t, 1)) is null-homotopic in q(U × (t, 1)) ⊂ W �X.

The proof of the other implication is left as an exercise. �

Historical Notes. Corollaries 4.6.5 and 4.6.6, as well as their generaliza-
tions beyond the trivial range, were proved by A. V. Černavskĭı (1965) via
an elegant straightening technique. Corollary 4.6.6 represents an example of
what Rushing called a “β-statement,” a set of results about unions of cells
comprehensively analyzed in (Rushing, 1972, Section 5.2). In this book the
β-statements, as well as related γ-statements, receive less prominent treat-
ment, as consequences of the 1-LCC characterization of flatness/tameness.
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Theorem 4.6.8 was proved by Seebeck (1971); earlier, Bing (1962b) had
shown that all disks embedded in 3-manifolds contain many tame arcs, and
then Sher (1971) did the same for disks embedded in 4-manifolds. In con-
trast, examples of wildly embedded cells containing no tame 2-cells what-
soever were constructed by Daverman (1975). Corollary 4.6.10 about poly-
hedra embedded in hyperplanes was originally proved by Bing and Kister
(1964); Gillman found counterexamples to unknotting of arbitrary polyhedra
in hyperplanes (1967). Theorem 4.6.12 was proved by Bryant (1971b). The-
orems 4.6.15 and 4.6.16 were proved by Daverman (1973a). Theorem 4.6.19
is part of the folklore of the subject.

Exercises

4.6.1. If Q is a compact (n − 2)-manifold in an (n − 1)-dimensional hy-
perplane in Rn, then Q is 1-alg in Rn.

4.6.2. Fill in the details in the proof of Theorem 4.6.12.

4.6.3. Suppose X is a k-dimensional closed subset of Rn+1 = Rn × R1,
k ≤ n− 2, such that for each t ∈ R1 and each ε > 0 there exists an
ε-push ψ of (Rn+1, X) with ψ(X)∩ (Rn × t) LCC1 in Rn × t. Then
X is LCC1 in Rn+1.

4.6.4. Prove Theorem 4.6.16.

4.6.5. (Topological invariance of Property 1-UV) Suppose X is a compact
subset of an ANR Y such that X has Property 1-UV in Y and e is
an embedding of X into another ANR Y ′. Then e(X) has Property
1-UV in Y ′.

4.6.6. If f : M → X is a map from a compact manifold M onto a com-
pactum X such that Map(f) is a ∂-manifold with ∂Map(f) = M
and X is LCC1 in Map(f), then f is a 1-UV map.

4.6.7. If f : Mn → Nn, n ≥ 5, is a map between compact PL n-
manifolds such that Map(f) is an (n + 1)-dimensional ∂-manifold
and ∂Map(f) is the disjoint union ofMn and Nn, then f is cellular.

4.7. More wild embeddings

Example 4.7.1. There exists a wild Cantor set in Rn, n ≥ 3, with non-
simply connected complement.

We will produce a wild Cantor set in R4; examples in higher dimensions
can be constructed by a straightforward generalization of the process.

That process builds on the construction of Antoine’s Necklace, the wild
Cantor set with non-simply connected complement in R3 given as Exam-
ple 2.1.1. The starting point for Antoine’s Necklace is a solid torus A0

∼=
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S1 × B2. Treat A0 as a subset of Int R3
+, so it can be spun to produce

B0 = Spin1(A0) ⊂ Spin1(R3
+) ≈ R4. Inside B0 we will spin the Antoine

construction twice to produce a collection of small copies of B0 with useful
π1 features.

Name a homeomorphism g : A0 × S1 → B0. Insert multiple solid tori
T1, T2, . . . , Tk(1) in IntA0, arranged in linked fashion just as in Figure 2.1,

with each Ti small enough that diam g(Ti × s) < 1/4 for all s ∈ S1, and set
B1 = g(∪iTi × S1).

Equate each Ti×S1 with [S1×B2×S1]i. Interchanging the roles of the
two S1 factors, choose solid tori T ′

1, T
′
2, . . . , T

′
k(2) ⊂ B2 × S1, again arranged

in linked fashion just as in Figure 2.1, only now with each T ′
j chosen small

enough that diam g([S1×T ′
j ]i) < 1/2 for all i, j. Set B2 = ∪ig(∪j[S

1×T ′
j ]i).

Iterate the two-step process, producing a nested, decreasing sequence of
compact ∂-manifolds B0, B1, B2, . . . , B2k−1, B2k, . . . , where for each compo-
nent C of each Bi there exist a homeomorphism gC : S1×B2×S1 → C and
a collection of solid tori τ1, . . . , τk(i) situated in S1×B2 according to the An-

toine linking pattern of Figure 2.1, so C ∩Bi+1 = gC(∪jτj × S1). Moreover,
repeating the methodology of decreasing sizes first in one S1 direction, then
the other, carry out these constructions in such a way that all components
of B2k have diameter at most 1/2k. The Cantor set of interest is A = ∩iBi.

Some additional terminology will streamline the analysis of π1(R4 �A).

Definition. Let W be a ∂-manifold and H ⊂ R2 a compact, 2-dimensional
∂-manifold. A faithful map f : H → W is said to be interior essential,
or, more simply, I-essential if there exists no map F : H → ∂W such that
F |∂H = f |∂H; otherwise, f is interior inessential. Moreover, W is said to
have the interior inessential property if every such faithful map f : H → W
is interior inessential.

Remark. If a connected ∂-manifold W has the interior inessential property,
clearly then ∂W also must be connected and π1(∂W ) → π1(W ) must be one-
to-one.

Lemma 4.7.2. Suppose the n-manifold W contains ∂-manifolds W0 and
W1, each of which is closed in W , such that W0 is connected, W = W0∪W1,
W0 ∩W1 = ∂W0 = ∂W1 and W1 has the interior inessential property. Then
π1(W �W1) → π1(W ) is one-to-one.

An appropriate, relevant model to have in mind would be the manifolds
W = R3 �A1,W0 = R3 � IntA0 and W1 = A0 �A1 from Figure 2.1.

Proof. Consider a map f : I2 → W with f(∂I2) ⊂ W �W1. First focus on
the case where W1 is a PL subset of W , and assume f is in general position
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with respect to W1. Then f−1(W1) is a compact, 2-dimensional ∂-manifold
in Int I2, and the interior inessential property promises a map F : I2 → W0

such that the restrictions of F and f agree on I2�f−1(IntW1). Use a collar
on ∂W1 = ∂W0 in W0 to adjust F slightly by sliding the image off W1.

The same process can be used in the general case, outside the PL situa-
tion, by covering f−1(W1) with a compact ∂-manifold H ⊂ Int I2 that maps
under f into a small collared neighborhood of W1, and then by exploiting
the crucial property to send all of such H into the collar on ∂W1 without
any change on I2 � IntH. �

Repeated application of the same argument yields:

Lemma 4.7.3. Suppose W0,W1,W2, . . . are ∂-manifolds and closed subsets
of the n-manifold W such that W0 is connected, ∪iWi = W , Wi ∩ Wj �= ∅
if and only if |i − j| ≤ 1, Wi ∩Wi+1 ⊂ ∂Wi ∩ ∂Wi+1, ∂W0 ⊂ ∂W1, ∂Wi =
∂Wi ∩ (∂Wi−1 ∪ ∂Wi+1) (i > 0), and Wi �Wi+1 has the interior inessential
property. Then π1(W0 �W1) → π1(W ) is one-to-one.

Returning to the analysis of π1(R4 � A), we apply Lemma 4.7.3 with
W = R4 �A,W0 = R4 � IntB0 and Wi = Bi−1 � IntBi for i > 0. It follows
from Exercise 2.1.2 that A0 �A1 has the interior inessential property. By a
straightforward argument (A0 � A1) × S1 possesses the same property. In
other words, B0 �B1 has it and, by construction, so does Bi � Bi+1. Note
for the record that π1(R4 �B0) �= 1, since

H1(R4 �B0) ∼= H3
c (R

4, B0) ∼= H2(B0) ∼= Z.

By Lemma 4.7.3, π1(W0 � W1 = R4 � B0) injects in π1(W = R4 � A), so
the latter is non-trivial.

Remark. If X is the wild Cantor set in Rn of Example 4.7.1, then for every
ε > 0 there exists an ε-push φ of (Rn, X) such that φ(X)∩X = ∅. Cover X
by a compact PL n-manifold S with small components, each homeomorphic
to S1 × · · · × S1 × B2, and push each component close to but just outside
itself.

Question. Does every wild Cantor set in Rn admit an ε-push off itself?

Example 4.7.4. There exists a wild k-cell γk in Rn, 2 ≤ k ≤ n and n ≥ 4,
with non-simply connected complement that is locally flat modulo a Cantor
set A flatly embedded in ∂γk.

The construction of the Antoine 3-cell in R3 (see Example 2.1.7) serves
as a model for producing a wild n-cell γn containing the wild Cantor set
A of Example 4.7.1 as a flat subset of its boundary. Insist that γn avoids
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some loop J that is homotopically essential in Rn � A to insure the non-
simple connectedness of Rn�γn. The other γk arise as standardly embedded
subsets of ∂γn.

Example 4.7.5. There exists a wild k-sphere Σk in Rn, 1 ≤ k < n and
n ≥ 4, with non-simply connected complement that is locally flat modulo a
Cantor set A flatly embedded in Σk.

Historical Notes. The wild Cantor set of Example 4.7.1 was developed by
W. A. Blankinship (1951).

For n > 3, McMillan (1978) produced a wild arc α in a PL n-manifold
having no neighborhood that embeds in Rn. D. G. Wright (1977) used α
to prove that some arc in Rn cannot be pushed off itself. Wright’s example
contrasts with the unsolved question preceding Example 4.7.4 about pushing
Cantor sets off themselves.

Exercises

4.7.1. If S is a manifold andW is a ∂-manifold with the interior inessential
property, then S ×W has the interior inessential property.

4.8. Even more wild embeddings

The crux of this section is a construction procedure for ramifying the wild-
ness of certain Cantor sets, like the Antoine and Blankinship examples. The
procedure turns out a Cantor set’s worth of Cantor sets, each one wildly em-
bedded just like its prototype; it gives rise to examples of embedded k-cells
K in Rn (2 < k < n) containing 2-cells D such that all disks D′ in K suf-
ficiently close to D are wildly embedded in Rn. In contrast, Theorem 4.6.8
assures that 2-cells in Rn contain many tame arcs, but soon we will see that
3-cells need not contain many tame disks. This construction procedure will
be revisited in §7.10 to delineate wild phenomena in codimension one.

Let X denote a Cantor set. A sequence S = {Yi | i = 1, 2, . . .} is called
an abstract defining sequence for X if (1) each Yi is a finite set consisting
of pairwise disjoint, nonvoid, compact subsets of X, (2) the union of the
elements of each Yi equals X, (3) Yi+1 refines Yi for each i and (4) di → 0
as i → ∞, where di denotes the diameter of the largest element of Yi. Then
we go on to call {Yi} a special abstract defining sequence for X if (1) {Yi}
is a defining sequence for X, (2) Y1 has cardinality k(0) > 1 and every
element of Y1 contains exactly k(0) elements of Y2 and (3) for each positive
integer m there is an integer k(m) > 1 such that every element of Y2m

contains exactly k(m) elements of Y2m+1 and, likewise, every element of
Y2m+1 contains exactly k(m) elements of Y2m+2.
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Given a special abstract defining sequence S = {Yi} for X, we say that
A ⊂ X is admissible with respect to S if A is nonvoid and compact and,
whenever j > 0 is an odd integer, Y ∈ Yj meets A and Y ′ ∈ Yj+1 satisfies
Y ′ ⊂ Y , then Y ′ ∩ A �= ∅. In such an X the rich collection of admissible
subsets submits to a notable mixing feature.

Lemma 4.8.1 (Mixing). Let X be a Cantor set equipped with a special
defining sequence S = {Yi}. Then there exists a mixing homeomorphism
τ : X → X such that, for any two admissible subsets A,A′ of Xwith respect
to S , τ(A) ∩A′ �= ∅.

Proof. Label the elements of Y1 as Y1, Y2, . . . , Yk(0), and label those of Y2

as Yj(1),j(2), where 1 ≤ j(i) ≤ k(0), and where each Yj(1),j(2) is a sub-
set of Yj(1). Generally, label the elements of Yi as Yj(1),j(2),...,j(i), where
1 ≤ j(i) ≤ k(m) when i ∈ {2m + 1, 2m}, with the understanding that
Yj(1),j(2),...,j(i) ⊂ Yj(1),j(2),...,j(i−1). Then each x ∈ X can be uniquely la-
belled as x = 〈j(1), j(2), . . . , j(i), . . . 〉 by the rule

x = 〈j(1), j(2), . . . , j(i), . . . 〉 if and only if {x} = ∩∞
i=1Yj(1),j(2),...,j(i).

Using this representation, define the mixing homeomorphism τ : X → X
as the infinite transpose sending x = 〈j(1), j(2), . . . , j(2m − 1), j(2m), . . .〉
to 〈j(2), j(1), . . . , j(2m), j(2m − 1), . . .〉. A salient point is that τ simply
permutes the elements of Y2m for eachm ≥ 1, from which it follows routinely
that the function τ is a homeomorphism.

Now consider admissible subsets A,A′ of X. We must show that τ(A)
meets A′. It suffices to prove that for each m ≥ 1 some Y ∈ Y2m meets both
τ(A) and A′. This is done by induction. To get started, note there exist
r(1), s(1) ∈ {1, . . . , k(0)} such that A ∩ Yr(1) �= ∅ �= A′ ∩ Ys(1). By definition
of admissibility,

A ∩ Yr(1),s(1) �= ∅ �= A′ ∩ Ys(1),r(1),

and τ(Yr(1),s(1)) = Ys(1),r(1) by the definition of τ . Essentially the same
argument disposes of the inductive step. �

Turning to Cantor sets embedded in manifolds, let S = {Mi} be a
sequence where each Mi consists of finitely many compact connected, n-
dimensional ∂-manifolds PL embedded in Sn, no two of which intersect,
and let |Mi| = ∪{M | M ∈ Mi}. Such a sequence S is called a geometric
defining sequence for a Cantor set X ⊂ Sn if |Mi+1| ⊂ Int |Mi|, ∩i|Mi| = X,
and each element of each Mi contains a point of X. Associated with any
geometric defining sequence {Mi} for X is an abstract defining sequence
{Yi}, where

Yi = {M ∩X | M ∈ Mi}.



174 4. Trivial-range Embeddings

Furthermore, we call such a sequence {Mi} a special (geometric) defining
sequence if (1) for i ≥ 1 eachM ∈ Mi is the product of some (n−2)-manifold
with B2 and (2) the abstract defining sequence {Yi} forX is special. We will
say that a special geometric defining sequence S = {Mi} for a Cantor set
has the interior inessential property if |Mi| � |Mi+1| has that property for
each integer i > 0 and that S has the strong interior inessential property
if, in addition, for each m ≥ 0, each component M ∈ M2m+1 and each
component M ′ ∈ M2m+2 with M ′ ⊂ M , M �M ′ has the interior inessential
property.

Lemma 4.8.2. Let W ′,W ′′ be ∂-manifolds such that W ′ ∩ W ′′ = ∂W ′′ is
a union of components of ∂W ′, and suppose W ′ � ∂W ′′ has the interior
inessential property. Then each I-essential map f : H → W ′ ∪W ′′ defined
on a disk with holes H satisfies not only that f(H) ∩ W ′′ �= ∅ but also,
if f−1(W ′′) is a ∂-manifold, then for some component H ′′ of f−1(W ′′),
f |H ′′ : H ′′ → W ′′ is I-essential.

The argument is straightforward. The lemma immediately applies to each
component C of each Bi in the defining sequence for the Blankinship Cantor
set to assure that for each I-essential map f : H → C, f(H) ∩Bi+1 �= ∅.
Corollary 4.8.3. If S = {Mi} is a special defining sequence for a Cantor
set X and S has the interior inessential property, then for each pair of
positive integers {i, k}, |Mi|� |Mi+k| has the interior inessential property.

In Cantor sets determined by a class of special geometric defining se-
quences, admissible subsets arise for geometric reasons: all singular disks
bounded by certain loops contain admissible subsets.

Proposition 4.8.4. Suppose S = {Mi} is a special geometric defining se-
quence for a Cantor set X ⊂ Sn, where S has the strong interior inessential
property, and suppose f : ∂I2 → Sn�|M1| is a homotopically essential map.
Then for each map F : I2 → Sn extending f , F (I2) contains an admissible
subset of X.

Proof. Given an extension F of f , adjust F slightly, without introducing
any new preimages of points of X, to put F (I2) in general position with
respect to the boundary of each |Mi|, thereby assuring that all components
of F−1(|Mi|) are disks with holes. Then for i = 1, 2, . . . let Ai denote the
union of all components H of F−1(|Mi|) for which F |H is I-essential. It is a
direct consequence of Lemma 4.8.2 and the relevant definitions that F (∩iAi)
is an admissible subset of X. �
Proposition 4.8.5. For n ≥ 3 there exists a Cantor set Xn in Sn having
a special geometric defining sequence S = {Mi} with the strong interior
inessential property.
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Proof. Recall the construction of Antoine’s necklace in S3 and of Blankin-
ship’s Cantor set in Sn, n > 3. Each is determined by means of a special
geometric defining sequence {Ti | i = 0, 1, 2, . . .} with the interior inessential
property; moreover, for all i ≥ 0 there exists an integer k(i) > 1 such that
each T ∈ Ti contains exactly k(i) elements of Ti+1 and all such T are the
product of the (n−2)-dimensional torus S = S1×· · ·×S1 with B2. Assume
that the initial stage T0 consists of a single copy of S ×B2.

First, define M1 = T1. For each T ∈ T1 = M1 specify a PL homeomor-
phism ΦT : S×B2 → T , choose k(0) pairwise disjoint disks B1, . . . , Bk(0) in

IntB2, and let

M2 = {ΦT (S ×Bi) | T ∈ M1 and 1 ≤ i ≤ k(0)}.
Thus, each M ∈ M2 is a slightly shrunken version of some T ∈ T1 = M1;
furthermore, T � M retracts to ∂T , so T � M has the interior inessential
property. Name a PL homeomorphism φi : B

2 → Bi for each i. Choose an
index t(1) > 1 such that for each T ∈ T1 and each T ′ ∈ Tt(1) contained in
T , diamφT (Id× φi)(T

′) < 1/2. Set

M3 = {ΦT (Id× φi)(T
′) | T ∈ T1, T

′ ∈ Tt(1), T
′ ⊂ T and 1 ≤ i ≤ k(0)}.

Let k(1) be the number of elements from M3 contained in any M ∈ M2.
Again, for each T ∈ M3 specify a PL homeomorphism ΦT : S × B2 → T ,
choose k(1) pairwise disjoint disks B1, . . . , Bk(1) in IntB2 and set

M4 = {ΦT (S ×Bi) | T ∈ M3 and 1 ≤ i ≤ k(1)}.

B2

B2

B1

B3

Figure 4.4. The ramification step inside an odd-numbered stage

Continue in this manner, determining a sequence of integers 1 = t(0) <
t(1) < t(2) < · · · such that for each M ∈ M2m, m ≥ 1, the pair (M,M ∩
|M2m+1|) is homeomorphic to (T, T ∩ |Tt(m)|) for some (all) T ∈ Tt(m−1).
This causes |M2m| � |M2m+1| to have the interior inessential property, by
Corollary 4.8.3. Choose the t(m) to assure, in addition, that diameters of
elements of M2m+1 tend to 0 as m → ∞. Each M ∼= S ×B2 ∈ M2m+1 then
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should contain a fixed number k(m) of slightly shrunken parallel copies
equivalent to S × Bi in M2m+2, where k(m) also equals the number of
components of T ∩ |Tt(m)| for (all) T ∈ Tt(m−1). This guarantees, given
m ≥ 0, M ∈ M2m+1 and M ′ ∈ M2m+2 with M ′ ⊂ M , that M � M ′ has
the interior inessential property, since it retracts to ∂M . Of course, this
means that |M2m+1|� |M2m+2| has the interior inessential property for all
m ≥ 0. Moreover, S = {Mi} is a special defining sequence for a Cantor set
Xn = ∩mMm ⊂ Sn, and S has the strong interior inessential property. �

Figure 4.5. One stage beyond the ramification step

Subsequently we refer to this replication at even stages of multiple
shrunken copies of elements from some original stage as the ramification
step.

Corollary 4.8.6. Let Xn ⊂ Sn denote the Cantor set of Proposition 4.8.5.
There exists a loop f : ∂I2 → Sn � |M1| for which the image of every
extension F : I2 → Sn contains a subset of Xn admissible with respect to
S .

Proof. Here f can be any homotopically nontrivial loop in Sn� |M1|; loops
that homologically link |M1| do exist (by Alexander duality, as in the proof
of Lemma 4.7.3). Proposition 4.8.4 attests that the image of any singular
disk bounded by f contains an admissible subset of Xn. �

Definition. Two Cantor sets X and X ′ equipped with special abstract or
geometric defining sequences {Mi} and {M ′

i}, respectively, are compatible
if for each m ≥ 0 the number k(m) of elements from Mj+1 contained in any
M ∈ Mj equals the number k′(m) of those from M ′

j+1 in any M ′ ∈ M ′
j ,

for j = 2m, 2m+ 1. In this setting one should regard both M0 and M ′
0 as

consisting of a single ∂-manifold.
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Remark. If the Cantor sets X and X ′ are equipped with compatible special
abstract or geometric defining sequences, Mixing Lemma 4.8.1 clearly applies
to provide a homeomorphism τ : X → X ′ mixing their admissible subsets.

Lemma 4.8.7. For n ≥ 4 there exist Cantor sets Xn−1 ⊂ Sn−1 and Xn ⊂
Sn equipped with compatible special geometric defining sequences, each with
the strong interior inessential property.

Proof. Given a Cantor set Z ⊂ Sk having a special geometric defining
sequence {Mi}, we describe how to add exactly one element of Mi+1 inside
a preassigned element M ′ of Mi without changing Mj , j ≤ i. Choose
M ∈ Mi+1 with M ⊂ M ′. By hypothesis M is topologically S ×B2, where
S is a compact (k − 2)-manifold. Select disjoint disks B1 and B2 in IntB2

and define

M ∗
i+1 = {M∗ ∈ Mi+1 | M∗ �= M} ∪ {S ×B1} ∪ {S ×B2}.

Name a first-coordinate preserving homeomorphism he : S × B2 → S × Be

(e = 1, 2). Then, for j > i+ 1, define

M ∗
j = {M∗ ∈ Mj | M∗ ∩M = ∅} ∪

{he(M∗) | M∗ ∈ Mj ,M
∗ ⊂ M, and e = 1, 2},

and for j ≤ i define M ∗
j = Mj . Then {M ∗

i } is a special geometric defining

sequence for another Cantor set Z∗ ⊂ Sk. We will refer to this procedure as
the supplementation step. Although qualitatively similar to the replication
step, it is directed toward a different purpose.

Note that diameters of elements of M ∗
i+1 are bounded by those of Mi+1.

Note also that if |Mj |� |Mj+1| has the interior inessential property for each
j ≥ 1, then the same holds for the modified defining sequence {M ∗

j }; all
cases except for j = i are completely obvious, and there

|M ∗
i |� |M ∗

i+1| = |Mi|� |M ∗
i+1|

is boundary-preserving equivalent to a subset of |Mi|� |Mi+1|, from which
the property readily follows.

The construction itself repeats that of Lemma 4.8.5, with the addition
of multiple applications of the supplementation step to make the elements
at any given even stage (including the initial stage 0) contain the same
number of elements at the next stage. Start with special geometric defining
sequences {Mi} and {Ni} for Cantor sets in Sn−1 and Sn, respectively, with
the interior essential property. Assume that the diameter of each element
of M1 ∪ N1 is less than 1, and let k(0) be the maximum cardinality of
M1,N1. Add elements to the smaller of M1,N1, using the supplementation
procedure, so both have cardinality k(0), and let R1 and S1 denote the
resulting first stages. Now do a ramification step, determining R2 and S2,
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so that each R ∈ R1 contains exactly k(0) elements of R2, each a slightly
shrunken copy of R, and the same for S1,S2. Ramification further modifies
{M ∗

i } and {N ∗
i }, of course. To assure the eventual outputs are Cantor sets,

choose t(1) > 2 such that each element of the further modified M ∗
t(1)∪N ∗

t(1)

has diameter less than 1/2. Find k(1) > 2 such that elements of R2, S2

contain at most k(1) elements of M ∗
t(1), N ∗

t(1), respectively. Add elements

as needed via the supplementation step to determine R3,S3 such that each
R ∈ R2 contains exactly k(1) elements of R3, and similarly for S ∈ S2.
Ramify to produce R4 and S4. Generally, at odd stages, go deep into
the modified defining sequences to pick out a stage where the components
have small diameter, and supplement to obtain uniformity in the number of
elements at that stage of the two sequences in any element of the preceding
stage; at even stages, ramify. The resulting {Ri} and {Si} are compatible,
special defining sequences for Cantor sets in Sn−1 and Sn, each satisfying
the strong interior inessential property. �

Example 4.8.8. For 3 ≤ k < n there exist a k-cell K ⊂ Rn and a 2-cell
D ⊂ K such that, for any homeomorphism θ : K → K sufficiently close to
Id : K → K, θ(D) is wildly embedded in Rn.

Using Lemma 4.8.7 we find Cantor sets X and X ′ in IntBk and Sn,
respectively, with compatible special defining sequences, each of which pos-
sesses the strong interior inessential property. Applying Mixing Lemma 4.8.1
we obtain a homeomorphism τ : X → X ′ mixing their admissible subsets.
Let γ denote a loop outside the first stage, T1, of the defining sequence
for X ′, with γ homotopically essential in Sn � |T1|. There exists an em-
bedding e : Bk → Rn � γ such that e|X = τ and e(Bk) is locally flat
modulo e(X) = X ′ (this possibly could have been established, using much
greater care with the methods for Exercise 2.1.5, but we use other methods
to flesh out this claim in the conclusion of this section, culminating in Corol-
lary 4.8.12). It is possible to position X in K so that the boundary of some
2-cell D ⊂ K misses the first stage, S1, of the special defining sequence for
X and is homotopically essential in K � |S1|.

Under any sufficiently small adjustment θ : K → K, eθ(D) will be wild;
it cannot have simply connected complement. With control on θ, θ(∂D)
will still be homotopically essential in K � |T1|, so θ(D) will contain an
admissible subset A of X, by Proposition 4.8.4. Similarly, the image of any
contraction of the loop γ in Sn must contain an admissible subset A′ of X ′.
The mixing properties of e|X = τ : X → X ′ assure that e(A) ∩ A′ �= ∅;
as a result, π1(S

n � eθ(D)) �= {1}, so eθ(D) is wild. This completes the
description of Example 4.8.8.
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Lemma 4.8.9. Let C be a compact 0-dimensional subset of the unit interval
I and let λ : I2 → Bn, n ≥ 5, be an embedding such that λ(I2) ∩ ∂Bn =
λ(I × {0}) and λ(I2) is 1-LCC in IntBn. Then the decomposition G of Bn

into the arcs {λ(c × I) | c ∈ C} and the singletons from Bn � λ(C × I) is
shrinkable.

Proof. Consider any neighborhood W of λ(C × I) ⊂ Bn and any ε > 0.
Determine an open set U ⊃ λ(C × {0}) having components of diameter
less than ε. Regard W as the preimage of a small open neighborhood of the
image of λ(C×I) in Bn/G. Hence, to confirm shrinkability of G, it suffices to
obtain an engulfing homeomorphism Φ : Bn → Bn, fixed on ∂Bn∪(Bn�W ),
such that U ⊃ Φλ(C× I). Cover C by a compact 1-manifold with boundary
K in I such that λ(K × I) ⊂ W and λ(K ×{0}) ⊂ U . As λ(K × (0, 1]) is 1-
LCC in IntBn, it is locally flat there. Consequently, one can push λ(K× I)
from the λ(K ×{1}) end toward the λ(K ×{0}) end and into W ∩U , while
keeping points of ∂Bn ∪ (Bn �W ) fixed throughout. �
Lemma 4.8.10. Let X denote a Cantor set in an m-cell K, 1 ≤ m. Then
for n > m there exists an embedding e : K → Bn such that e(K) ∩ ∂Bn =
e(X) is a flat Cantor set in ∂Bn and e(K) is locally flat in IntBn at each
point of e(K �X).

Proof. When n ≥ m + 2, start with a standard (flat) embedding e : K →
∂Bn and adjust, pushing the image of K � X into IntBn, keeping e(X)
fixed. Then e(X) is flat in ∂Bn by the Klee trick (Corollary 2.5.3).

The case n = m+1 requires more care, since the Klee trick does not ap-
ply. For simplicity we treat only the cases n ≥ 5; the other low-dimensional
cases require extra effort. Let B′ be another round n-cell in IntBn, centered
at the origin, and let θ : K → ∂B′ be an embedding. Find an embedding
λ : I2 → Bn � IntB′ such that λ(I2) ∩ ∂Bn = λ(I × {0}), λ(I2) ∩ ∂B′ =
λ(I × {1}), λ(I × {0}) is flat in ∂Bn and λ(C × {1}) = θ(X), where C ⊂ I
denotes the standard Cantor set in I. By taking a general position approxi-
mation rel λ(I×{1}), if necessary, we may assume that λ is 1-LCC in Bn at
points of I × [0, 1). Then λ is 1-LCC at all points of I2, by Corollary 4.6.4.
According to Lemma 4.8.9 the decomposition G of Bn into points and the
arcs λ(c× I), c ∈ C, is shrinkable, so there is a map µ : Bn → Bn realizing
G. Note that µ : ∂Bn → ∂Bn is a homeomorphism, µ|θ(K) is 1-1 and
µθ(K) is locally flat mod µλ(C × {1}). The embedding e = µθ : K → Bn

has the required properties, as e(X) = µλ(C×{1}) = µλ(C×{0}) is flat in
∂Bn. �
Proposition 4.8.11. Let X be a Cantor set tamely embedded in the bound-
ary of an n-cell B, X ′ a Cantor set in a connected n-manifold M , and
h : X → X ′ a homeomorphism. Then there exists an embedding e : B → M
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such that e|X = h; moreover, given any e′ : B → M with ε′(X) = X ′, there
exists such an embedding e with e(B) = e′(B) and e|X = h.

Proof. We consider only n ≥ 6; the result is true in the other dimensions.

Methods from Chapter 2 (Exercise 2.1.5) promise an embedding e′ : B →
M such that e′(X) = X ′. Then h−1e′|X : X → X is a homeomorphism.
Corollary 4.4.3 gives an ambient isotopy Ψt : ∂B → ∂B such that Ψ0 = Id∂B
and Ψ1|X = h−1e′|X. Determine a collar Λ : ∂B × [0, 1] → B on ∂B in
B, parameterized so that Λ(∂B × [0, 1)) ⊂ IntB and Λ1 = Id∂B . Define
ψ : B → B as the identity outside the collar and essentially as Ψt on
Λ(∂B × t). Then e = e′ψ−1 has the desired properties. �

Corollary 4.8.12. Let X be a Cantor set in an m-cell K, X ′ a Cantor set
in a connected n-manifold M , where n > m, and h : X → X ′ a homeomor-
phism. Then there exists an embedding e : K → M such that e|X = h and
e(K) is locally flat mod e(X).

Proof. Use Lemma 4.8.10 to embed K nicely in Bn, with the image of X
tame in ∂Bn, and apply Proposition 4.8.11. �

Historical Notes. The ramification process was introduced in (Daverman,
1973c) in order to describe wildly embedded cells containing few tame disks.
A later construction (Daverman, 1975) gave wildly embedded cells contain-
ing no tame disks whatsoever.

Exercises

4.8.1. Let X denote a Cantor set. For n ≥ 3 there exists an embedding
λ : X ×X → Rn such that λ(X×{x}) is wildly embedded for each
x ∈ X; moreover, given x, x′ ∈ X there exists a homeomorphism
θx,x′ : Rn → Rn such that θx,x′λ(X × {x}) = λ(X × {x′}).



Chapter 5

Codimension-three
Embeddings

Next, moving beyond the trivial range, we launch an investigation of em-
beddings for which the codimension is relatively small. There are two ways
in which the trivial range is special: first, continuous maps can be approx-
imated by embeddings and, second, tame embeddings unknot—specifically,
if X is a k-dimensional compactum and M is an n-dimensional PL mani-
fold, then any map of X into M is homotopic to an embedding provided
n ≥ 2k+1 and any two homotopic 1-LCC embeddings of X in M are ambi-
ent isotopic provided n ≥ 2k+2. The chapter contains examples which show
that the dimension restrictions in these results are sharp and that neither
of them generalizes completely to lower codimensions.

The basic trivial-range theorems regarding embeddings of polyhedra do
generalize to codimension three provided suitable hypotheses are added. In
most cases it is necessary to assume some degree of connectivity before a
trivial-range theorem can be promoted to codimension three. The general
pattern of the proofs is that a straightforward attempt to generalize the
trivial-range proof runs into an obstruction in the form of a singular set for
a certain map. The connectivity hypotheses are used to replace the singular
set with a different one. This new singular set has lower dimension than
the original provided the codimension of the embedding is at least three; an
inductive argument eliminates the singular set altogether.

The chapter also includes proofs that it is possible to tame all 1-LCC
codimension-three embeddings of polyhedra and that it is possible to ap-
proximate any topological embedding of a codimension-three compactum

181
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with 1-LCC embeddings. These last two results are completely general and
require no special hypotheses.

5.1. Constructing PL embeddings of polyhedra

The first question considered is that of existence: under what conditions is
a map homotopic to an embedding? This section contains some answers for
maps of polyhedra and the next section takes up the problem for maps of
manifolds. We begin with an example which shows that it is not possible
to improve the dimension restriction n ≥ 2k + 1 in the classical embedding
theorem.

Example 5.1.1. There is no topological embedding of Kk, the k-skeleton of
the (2k + 2)-simplex, into R2k.

The statement of this example is widely known, but the details of the
proof are not easily found in the literature. We will include, therefore, a
complete exposition of the proof. It requires some new terminology and a
few preliminary lemmas.

Definition. A compact metric space X is an absolute self-intersector in Rm

provided there exists no continuous function f from cX, the cone over X,
to Rm with f |X one-to-one and f−1f(X) = X.

If a compact metric space X embeds in Rm, then clearly cX embeds in
Rm+1; in other words, no absolute self-intersector in Rm+1 can be embedded
in Rm. We will show that the K of Example 5.1.1 cannot be embedded in
R2k by showing that K is an absolute self-intersector in R2k+1. In fact we
will establish the following stronger result: For each map f : cK → R2k+1

there are disjoint simplices σ, τ ⊂ K and points a ∈ σ, b ∈ cτ such that
f(a) = b.

Define L(K) ⊂ cK × cK to be the collection of all ordered pairs 〈a, b〉
such that at least one of a and b lies in K and there exist disjoint simplices σ
and τ in K such that a ∈ cσ and b ∈ cτ . Two points in L(K) that differ only
in the order of their coordinates are said to symmetrically situated in L(K).
Given f : cK → R2k+1, define an associated map Ψf : L(K) → R2k+1 by
Ψf (a, b) = f(a)− f(b). The following lemma is obvious.

Lemma 5.1.2. If the origin 0 lies in Ψf (L(K)) for every f ∈ C(cK,R2k+1),

then K is an absolute self-intersector in R2k+1.

Before we can take the next step in the proof of Example 5.1.1, we need to
specify K more precisely. Let T 2k+2 be a (2k+2)-simplex that is the convex
hull of vertices {v0, v1, . . . , v2k+2} in R2k+2. The vertices {v0, v1, . . . , v2k+2}
can be thought of as vectors and chosen to have the following properties.
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(1)
∑2k+2

i=0 vi = 0 (so the origin 0 is the centroid of T ), and

(2) no proper subset of the vertices of T 2k+2 is linearly dependent.

Observe that conditions (1) and (2) together imply that
∑2k+2

i=0 λivi = 0 if
and only if λi = constant.

The complex K is defined to be the k-dimensional skeleton of T 2k+2;
i.e., K is the union of all faces of T 2k+2 that have dimension ≤ k. The
antipodal map is the map α : R2k+2 → R2k+2 defined by α(x) = −x. Two
points x, y ∈ R2k+2 are said to be antipodal points if y = α(x).

Define U(K) to be the complex consisting of all simplices of the form
σ ∗ α(τ), where σ and τ are disjoint simplices in K, α(τ) is the image of τ
under the antipodal map, and “∗” denotes join. Since the vertices of σ∪τ are
linearly independent, the vertices of σ ∪ α(τ) are also linearly independent.
Consequently each simplex σ ∗α(τ) of U(K) is realized geometrically as the
convex hull of σ ∪ α(τ) and 0 /∈ σ ∗ α(τ). Furthermore, each point of x in
σ ∗ α(τ) satisfies the following condition.

(∗) x can be written as a linear combination x =
∑2k+2

i=0 λivi in which
at most k + 1 of the coefficients {λi} are positive, at most k + 1 of

the coefficients {λi} are negative, and
∑2k+2

i=0 |λi| = 1.

Lemma 5.1.3. Each point x ∈ R2k+2 can have at most one representation
of the form (∗).

Proof. Suppose
∑2k+2

i=0 λivi =
∑2k+2

i=0 µivi are two representations satisfy-
ing condition (∗). Reorder the vertices so that λ0 ≥ λ1 ≥ · · · ≥ λ2k+2. As

observed above, the fact that
∑2k+2

i=0 (λi − µi)vi = 0 implies that there is
a constant c such that λi − µi = c. Thus the {µi} also form a decreasing
sequence. Combining this fact with condition (∗) yields µk+1 = λk+1 = 0.
Since {v0, v1, . . . , v2k+2}� {vk+1} is a linearly independent set, we can con-
clude that µi = λi for every i. �

Lemma 5.1.3 implies that the entire complex U(K) is realized geometri-
cally as the set of points in R2k+2 that satisfy (∗). Note that α(σ ∗ α(τ)) =
α(σ) ∗ τ ⊂ U(K), so α restricts to an involution of U(K).

Lemma 5.1.4. U(K) is homeomorphic to S2k+1 via a map θ : U(K) →
S2k+1 that preserves antipodal points.

Proof. Since 0 /∈ U(K), radial projection from the origin in R2k+2 provides
a continuous map from U(K) to S2k+1 that preserves antipodal points. We
will prove that this map is a homeomorphism by showing that each ray from
the origin intersects U(K) in exactly one point.
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Let u be a unit vector in R2k+2. The vectors {vi} span R2k+2, so u =∑2k+2
i=0 λivi for some {λi}. Reorder the vertices so that λ0 ≥ λ1 ≥ · · · ≥

λ2k+2. Since
∑2k+2

i=0 vi = 0, we can write

u =
2k+2∑
i=0

λivi − λk+1

2k+2∑
i=0

vi =
2k+2∑
i=0

(λi − λk+1)vi.

Define ν =
∑2k+2

j=0 |λj − λk+1| and define µi = (λi − λk+1)/ν for each i.

Then (1/ν)u =
∑2k+2

i=0 µivi satisfies condition (∗), so the ray from the origin
through u intersects U(K) at (1/ν)u.

The proof that the ray from the origin through u intersects U(K) in at
most one point is essentially the same as the proof of Lemma 5.1.3. �

Lemma 5.1.5. U(K) is homeomorphic to L(K) via a PL map φ : L(K) →
U(K) that sends symmetrically situated points to antipodal points.

Proof. Any point in L(K) can be uniquely written in the form

(λa+ (1− λ)c, µb+ (1− µ)c),

where a and b lie in disjoint simplices of K, 0 ≤ λ, µ ≤ 1, and at least one
of λ and µ is 1. Define φ by

φ(λa+ (1− λ)c, µb+ (1− µ)c) =

{
(1− 1

2µ)a+
1
2µα(b) if λ = 1

1
2λa+ (1− 1

2λ)α(b) if µ = 1.

It is easy to check that φ has the desired properties. �

Proof of Example 5.1.1. As noted above, it suffices to show that K is an
absolute selfintersector for R2k+1. Let f : cK → R2k+1 be a continuous map.
Then Ψf ◦ φ−1 ◦ θ−1 defines a map from S2k+1 to R2k+1. The Borsuk-Ulam
Theorem (Munkres, 1984, Theorem 68.6) implies that there exist antipodal
points in S2k+1 that have the same image in R2k+1. By the properties of
φ and θ specified in Lemmas 5.1.4 and 5.1.5, this means that there are
symmetrically situated points 〈a, b〉 and 〈b, a〉 in L(K) such that Ψf (a, b) =
Ψf (b, a). But Ψf (a, b) = −Ψf (b, a) for every 〈a, b〉 ∈ C(K), so Ψf (a, b) = 0
and thus K is an absolute selfintersector by Lemma 5.1.2. �

Even though a map of a polyhedron need not be homotopic to an em-
bedding, it is often possible to improve a map within its homotopy class.
Consider, for example, a compact, connected 1-dimensional polyhedron K.
In general it will not be possible to embed K in R2. But if we form a quo-
tient polyhedron K ′ by shrinking out a maximal tree in K, then the new
polyhedron K ′ is just a finite wedge of circles and can be embedded in R2.
The next theorem generalizes that simple idea. It asserts that, given certain
homotopy conditions, a map of a polyhedron is homotopic to an embedding
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“up to simple-homotopy type.” Before stating the theorem we must define
the terms used.

Definition. Let K and L be simplicial complexes. A simple-homotopy
equivalence from K to L is a finite sequence of collapses and expansions
that begins at K and ends at L. More specifically, say that K is simple-
homotopy equivalent to L if there exists a sequence

K = K0 ↗ K1 ↘ K2 ↗ · · · ↘ Km = L

in which each arrow represents a simplicial expansion or collapse. (An ex-
pansion is the inverse of a collapse.)

It is clear that simple-homotopy equivalence implies homotopy equiva-
lence; the converse is true for some fundamental groups but not for others.

Definition. A map f : K → L is said to be r-connected if f induces
isomorphisms πi(K) → πi(L) for i < r and a surjection πr(K) → πr(L).

We can now state the basic embedding theorem.

Theorem 5.1.6 (Embedding up to simple-homotopy type). Let
f : Kk → Mn be a map of a compact polyhedron into a PL manifold such
that

(1) k ≤ n− 3 and

(2) f is (2k − n+ 1)-connected.

Then there exist a subpolyhedron L ⊂ M and a simple-homotopy equivalence
g : K → L such that g and f are homotopic in M .

Corollary 5.1.7. Any compact, r-connected, k-dimensional polyhedron is
simple-homotopy equivalent to a subpolyhedron of R2k−r, k − r ≥ 3.

Remark. Corollary 5.1.7 is true when the restriction k − r ≥ 3 is reduced
to k ≥ r. Special ad hoc arguments are needed for the additional cases.

The proof of Theorem 5.1.6 requires some technical facts about mapping
cylinders. Let f : K → L be a PL map. Subdivide so that f is simplicial
and triangulate Map(f) as a simplicial mapping cylinder. We claim that
Map(f) ↘ L. This follows from the inductive construction of the simplicial
mapping cylinder on page 124, since for each simplex σ ⊂ K, we know by
induction that Map(f |∂σ) ↘ L and the cone on a collapsible set collapses
to its base (Rourke and Sanderson, 1972, Example (3), page 40).

For any subpolyhedron K0 of K we define the reduced mapping cylinder,
Map(f,K0), to be the quotient space formed from Map(f) by shrinking
each of the fibers {x} × [0, 1], x ∈ K0, to a point. As usual, we identify
K with K × {0} and consider K to be a subset of Map(f,K0). Just as in



186 5. Codimension-three Embeddings

the unreduced case, a simplicial structure on Map(f,K0) may be defined
inductively and Map(f,K0) ↘ L.

KK

K

f(K )
L

Map(f)

L

Map(f,K )
quotient

0

0

0

Figure 5.1. The mapping cylinder and the reduced mapping cylinder

The retraction πf : Map(f,K0) → L that maps each {x} × [0, 1] to
f(x) for x ∈ K and is the identity on L is called the mapping cylinder
retraction. Note that πf is a quotient map. In case P is a polyhedron
such that Map(f,K0) ⊂ P , the quotient map may be extended over the
domain P . We use P/f to denote the quotient space whose points are{

π−1
f (x) | x ∈ L

}
∪
{
{x} | x ∈ P �Map(f,K0)

}
.

Lemma 5.1.8. If K, L, and P are compact polyhedra, f : K → L is a PL
map, and Map(f) ⊂ P , then the quotient map q : P → P/f is a simple-
homotopy equivalence.

Sketch of proof. Let E = P/f . It is clear that Map(q) ↘ E; the proof
is completed by showing that Map(q) ↘ P as well. Note that Map(πf ) ⊂
Map(q). Since q is one-to-one on P � Map(f), we have Map(q) ↘ P ∪
Map(πf ). Furthermore, the fact that Map(f) ↘ L means that Map(πf ) ↘
L× [0, 1]∪Map(f). Hence Map(q) ↘ P ∪Map(πf ) ↘ P ∪L× [0, 1] ↘ P . �

K
P

E

Map(π )

Map(f)

Map(q)

L

f

Figure 5.2. Proof of Lemma 5.1.8

Lemma 5.1.9. If f : K → L is r-connected, A is an r-dimensional polyhe-
dron, and B is a subpolyhedron of A, then any map (A,B) → (Map(f),K)
is homotopic rel B to a map into K.
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Proof. The lemma follows from Exercise 5.1.1 and Theorem 0.5.2. �

We use S(f) to denote the singular set of the map f (see page 100).

Lemma 5.1.10. Suppose f : K → M is a PL map of a compact polyhedron
into a PL manifold, s = dimS(f), and f is (s + 1)-connected. Then there
exist compact polyhedra P ⊃ K and L ⊃ f(K), and PL maps φ1 : P → K,
φ2 : P → L, and g : L → M such that

(1) φ1 and φ2 are simple-homotopy equivalences,

(2) g extends the inclusion f(K) ↪→ M ,

(3) dim(L� f(K)) ≤ s+ 2, and

(4) the diagram

P
φ2−−−−→ L

φ1

⏐⏐� ⏐⏐�g

K −−−−→
f

M

commutes up to homotopy.

Proof. Let f : K → M be as in the lemma.

S(f)

K

f

f(K)

Figure 5.3. The singular set in the domain and range

Define f̄ = f |S(f) : S(f) → f(S(f)). Note that Map(f̄) ⊂ Map(f)
and dim(Map(f̄)) = s + 1. By Lemma 5.1.9 there exists a PL homotopy
ht : Map(f̄) → Map(f) such that h0 is the inclusion, ht|S(f) × {0} is the
inclusion for every t, and h1(Map(f̄)) ⊂ K×{0}. Define P = Map(h̄, S(f)),
where h̄ : Map(f̄) → K is defined by h1(x) = 〈h̄(x), 0〉. There is a natural
map ψ : P → Map(f) defined by ψ(x, t) = ht(x) for 〈x, t〉 ∈ Map(f̄)× [0, 1]
and ψ(x) = 〈x, 0〉 for x ∈ K.

The map φ1 is simply the mapping cylinder retraction Map(h̄, S(f)) →
K. Define L to be the quotient polyhedron of P formed by collapsing out the
fibers of Map(f̄). The map φ2 is the projection map from P to the quotient
space L. (See Figure 5.4.) Since there is a natural PL homeomorphism
from φ2(K) to f(K), we can identify the two and consider f(K) to be a
subset of L. Finally, g is defined by g(x) = x for x ∈ φ2(K ∪ Map(f̄))
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K L

1 2

P

Map(f)

φ φ

f

Figure 5.4. The reduced mapping cylinder of h̄ is the intermediate
space in the simple-homotopy equivalence

and g(x) = πfψφ
−1
2 (x) for x ∈ L � φ2(K ∪ Map(f̄)). It is clear that φ1

is a simple-homotopy equivalence; φ2 is a simple-homotopy equivalence by
Lemma 5.1.8. �

Proof of Theorem 5.1.6. Define K1 = K and f1 = f . First shift f1 into
general position to obtain dimS(f1) ≤ 2k−n. By Lemma 5.1.10 there exist
a polyhedron K2 and a map f2 : K2 → M such that K2 is simple-homotopy
equivalent to K1, K2 ⊃ f1(K1), f2 extends the inclusion f1(K1) ↪→ M , and
dim(K2 � f1(K1)) ≤ 2k − n + 2. (K2 is the L in the conclusion of the
lemma.) Shift f2 into general position, keeping f1(K1) fixed, so we have
dimS(f2) ≤ k + (2k − n+ 2)− n ≤ 2k − n− 1 (since k ≤ n− 3). Thus one
application of the lemma has lowered the dimension of the singular set by 1.

Next apply Lemma 5.1.10 to f2 : K2 → M . This gives a polyhedron
K3 and a map f3 : K3 → M such that K3 is simple-homotopy equivalent
to K2, K3 ⊃ f2(K2), f3 extends the inclusion f2(K2) ↪→ M , and dim(K3 �
f2(K2)) ≤ 2k − n+ 1. Again shift f3 into general position, keeping f2(K2)
fixed, so dimS(f3) ≤ k + (2k − n + 1) − n ≤ 2k − n − 2. Hence, two
applications of the lemma have reduced the dimension of the singular set by
2. The process is continued until the singular set is empty. �

Historical Notes. Example 5.1.1 is due to E. R. van Kampen (1932) and
A. Flores (1934). The proof presented in the section is based on those in
(Flores, 1934) and (Grünbaum, 1970). Other expositions of the proof may
be found in (Matoušek, 2003) and (Grünbaum, 2003). A. Shapiro (1957)
developed an obstruction theory for embeddings of polyhedra in Euclidean
space.
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Theorem 5.1.6 and its corollary are contained in unpublished work of
Stallings (1965a). An alternate proof of Theorem 5.1.6 is included in (Hud-
son, 1969a, Chapter XII).

The book by M. Cohen (1973) is a rich source of further information
regarding simple-homotopy theory. In particular, additional detail on the
proof of Lemma 5.1.8 may be found in (Cohen, 1973, §5).

Bing’s house with two rooms (Exercise 5.1.2) was described by Bing
(1964) as part of a construction of a nonshellable triangulation of B3. The
name “dunce hat” (Exercise 5.1.3) was introduced by Zeeman (1964).

Exercises

5.1.1. Let f : K → L be a map and identify K with the subset K × {0}
of Map(f). Prove that the map f is r-connected if and only if the
pair (Map(f),K) is r-connected.

5.1.2. Bing’s house with two rooms is the 2-dimensional polyhedron con-
structed as follows. Start with the surface of a cube. Add a hori-
zontal floor that separates an upper room from a lower room. Make
a passageway through the upper room into the lower room by cut-
ting a hole in the floor and a hole in the ceiling of the upper room
and connecting the two holes with a cylinder. Construct a similar
passageway through the lower room into the upper room. For each
passageway, add a panel that connects the passageway to an adja-
cent wall. The finished house is shown in Figure 5.5. Prove that
Bing’s house with two rooms is simple-homotopy equivalent to a
point but is not collapsible.

Figure 5.5. Bing’s house with two rooms

5.1.3. The dunce hat is the space formed by identifying the three edges
of a triangle as indicated in Figure 5.6. Prove that the dunce hat
is simple-homotopy equivalent to a point but is not collapsible.
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Figure 5.6. The topological dunce hat

5.2. Constructing PL embeddings of manifolds

An essential ingredient in the proof of Theorem 5.1.6 was the mapping cylin-
der construction of Lemma 5.1.10. Since it was necessary to shrink out some
of the fibers of the mapping cylinder, the topological type of the polyhe-
dron K was changed during the construction. The result was an embedding
of K only up to simple-homotopy type, rather than an actual PL embedding
of K. In case the domain of the continuous map is a manifold, however, this
shrinking can be done without changing the topological type of the domain.
Thus the techniques of the previous section can be retooled to establish PL
embedding theorems in the manifold setting. Of course the same connectiv-
ity hypotheses are still needed, but the conclusions are much stronger.

Theorem 5.2.1 (Existence of PL Embeddings). Let f : Qk → Mn be a
map from a compact PL manifold Q into a PL manifold M . If

(1) k ≤ n− 3, and

(2) f is (2k − n+ 1)-connected,

then f is homotopic to a PL embedding.

Corollary 5.2.2. Let f : Qk → Mn be a map from a compact PL manifold
Q into a PL manifold M . If

(1) k ≤ n− 3,

(2) Q is (2k − n)-connected, and

(3) M is (2k − n+ 1)-connected,

then f is homotopic to a PL embedding.

Corollary 5.2.3. Any closed, r-connected, k-dimensional PL manifold can
be PL embedded in R2k−r, k − r ≥ 3.

In particular, any connected manifold of dimension k can be embedded
in R2k. By contrast, Example 5.1.1 shows that a connected polyhedron of
dimension k might not be embeddable in R2k.
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Corollary 5.2.4. If Mn is an r-connected PL n-manifold, then any element
of πk(M) can be represented by a PL embedded k-sphere provided that k ≤
1
2(n+ r − 1).

Before taking up the theorem, let us look at some examples. The next
two examples show that the connectivity conditions in Theorem 5.2.1 are
sharp and cannot be improved. In the first example f fails to induce a
monomorphism on π2k−n = π1. In the second example f fails to induce an
epimorphism on π2k−n+1 = π1.

Example 5.2.5. If k is a power of 2, then there is no topological embedding
of RPk in R2k−1. Moreover, there is no subpolyhedron of R2k−1 that has the
homotopy type of RPk.

Sketch of proof. The fact that RPk cannot be embedded inR2k−1 is proved
by computing Stiefel-Whitney classes—see (Milnor and Stasheff, 1974, pages
120 and 50). If there were a subpolyhedron of R2k−1 with the homotopy type
of RPk, then Theorem 5.2.1 would give an embedding of RPk in a regular
neighborhood. �

Example 5.2.6. Let f : Sk → R2k be a PL immersion with exactly one
transverse double point and let M be a regular neighborhood of f(Sk) in R2k.
Then f is not homotopic to a topological embedding in M . Moreover, there
is no subpolyhedron L of M such that f is homotopic in M to a homotopy
equivalence from Sk onto L.

Proof. We begin by constructing the map f . Write Sk as Sk = Bk
0∪(Sk−1×

I) ∪ Bk
1 , where Bk

0 and Bk
1 are k-cells and the three pieces have disjoint

interiors. Map Bk
0 and Bk

1 onto two transverse linear k-cells that span B2k.
Then extend to a map f of all of Sk that embeds Sk−1 × I in the closure
of R2k � B2k. One way to construct the extension is to view the sphere
∂B2k as the join ∂Bk

0 ∗ ∂Bk
1 and embed Sk−1 × I in ∂B2k as the diagonal⋃

{{x} ∗ {h(x)} | x ∈ ∂Bk
0}, where h : ∂Bk

0 → ∂Bk
1 is a PL homeomorphism.

(The existence of the extension also follows from Theorem 5.2.8, below.)
Note that the preimage under f of the origin consists of two points and that
f is otherwise one-to-one.

Now let α denote an arc in Sk connecting the two preimages of the origin
in R2k. Then f(α) is a simple closed curve and the regular neighborhood M
of f(Sk) in R2k consists of a tubular neighborhood of f(α) together with a
regular neighborhood of a k-dimensional disk that is attached to the neigh-
borhood of f(α) in a homotopically inessential way. Hence the universal

cover M̃ consists of R1 × B2k−1 with a sequence of thickened k-disks at-

tached. There is a sequence of lifts fi : S
k → M̃ of f such that each fi is an
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f

B2k

Sk-1×[0,1]

Bk
0

Bk
1

f(Bk )1

f(Bk )0

Figure 5.7. An immersion of Sk in R2k

embedding and fi(S
k) intersects fi+1(S

k) in a single point. The intersection
number of fi(S

k) and fi+1(S
k) is ±1.

Suppose f is homotopic to a topological embedding e : Sk → M . Then

there exists a sequence of lifts ei : S
k → M̃ with ei homotopic to fi. Since

e is an embedding, each ei is an embedding and ei(S
k) ∩ ej(S

k) = ∅ for

i �= j. Thus the intersection number of ei(S
k) and ei+1(S

k) is zero. But this
contradicts the fact that the intersection number of spheres in the middle
dimension is a homotopy invariant—see (Freedman and Quinn, 1990, §1.7),
(Wall, 1999, page 46), or (Rourke and Sanderson, 1972, page 68). �

The remainder of this section will be devoted to the proof of Theo-
rem 5.2.1. The proof given here is only valid in the range k ≤ (2/3)n − 1
(the “metastable range”). The full codimension-three proof is so technically
complicated that it is not appropriate for inclusion in this text. Since our
proof of Theorem 5.2.1 is not valid in codimension three, we will give a
separate proof covering all cases of Corollary 5.2.2.

We need a lemma that will allow us to shrink out the fibers of a mapping
cylinder embedded in a PL manifold. Suppose f : K → L is a PL map,
K0 ⊂ K is a subpolyhedron, πf : Map(f,K0) → L is the mapping cylinder
retraction,M is a PL manifold, and h : Map(f,K0) → M is a PL embedding.
We use M/h to denote the quotient space of M whose points are{

h(π−1
f (x)) | x ∈ L

}
∪
{
{x} | x ∈ M � h(Map(f,K0))

}
.

By Lemma 5.1.8, we know that the quotient map M → M/h is a simple-
homotopy equivalence. In case M is a manifold, we can reach a much
stronger conclusion. The proof of the following lemma will be postponed
until the next section where we will address several related technical issues.

Lemma 5.2.7. Let f : K → L be a PL map of compact k-dimensional
polyhedra, let K0 be a subpolyhedron of K, let M be a PL n-manifold, and
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let h : Map(f,K0) → M be a PL embedding. If 2k + 3 ≤ n, or else K0 = ∅
and either n ≤ 3 or k ≤ n− 4, then M/h ∼= M .

Proof of Theorem 5.2.1 for the case k ≤ (2/3)n− 1. Let f : Qk → Mn

be a map from a compact PL manifold into a PL manifold. Shift f into gen-
eral position and define f̄ = f |S(f) : S(f) → f(S(f)). Then dim(S(f)) ≤
2k − n, so dim(Map(f̄)) ≤ 2k − n + 1. As in the proof of Lemma 5.1.10,
the connectivity of f implies that the inclusion S(f) ↪→ Q extends to a
map h : Map(f̄) → Q. If we put h in general position, then dim(S(h)) ≤
2(2k−n+1)−k = 3k− 2n+2. The hypothesis k ≤ (2/3)n− 1 implies that
S(h) = ∅, so h is an embedding.

We use notation similar to that in the proof of Lemma 5.1.10. In partic-
ular, let P = Map(h, S(f)), let L be the quotient of P obtained by shrinking
out the fibers of Map(f̄) and let φ : P → L be the quotient map. There is
a natural PL homeomorphism from φ(Q) to f(Q), so we identify φ(Q) ⊂ L
with f(Q) ⊂ M . As in the proof of Lemma 5.1.10, there is a map g : L → M
that extends the inclusion f(Q) ↪→ M . Shift g into general position; then
dimS(g) ≤ k + (2k − n + 2) − n = 3k − 2n + 2 ≤ −1, so g is an embed-

ding. Define P ′ = P �Q and L′ = L� f(Q). Since h is an embedding,
P ′ is a product. Thus we can reverse the [0, 1] coordinates and view P ′ as
Map(h−1, S(f)). Similarly, we can view L′ as Map(f |h(Map(f̄)), S(f)). Let
g′ = g|L′.

The two conditions k ≤ n− 3 and k ≤ (2/3)n− 1 combine to show that
either k ≤ 3 or dim(Map(f̄)) ≤ k − 3. Thus Lemma 5.2.7 applies and we
can conclude that Q/h ∼= Q. The same two conditions combine to show that
2 dim(Map(f̄))+3 ≤ n, so the lemma applies again to give M/g′ ∼= M . The
proof of the theorem is completed by observing that f induces an embedding
of Q/h into M/g′. Since Q/h ∼= Q and M/g′ ∼= M , this gives an embedding
of Q in M . �

As noted earlier, our proof of Theorem 5.2.1 is valid only in the range
k ≤ (2/3)n − 1, which is known as the metastable range. The complicated
technical difficulties encountered in the proof of the codimension-three case
of Theorem 5.2.1 do not arise in the proof of Corollary 5.2.2. For complete-
ness we include a separate proof of the general case of that Corollary. It
is essentially the same as the proof of (Rourke and Sanderson, 1972, Theo-
rem 7.12).

Proof of Corollary 5.2.2. Let S = S(f), the singular set of f . The objec-
tive of the proof is to construct collapsible polyhedra C ⊂ Q and D ⊂ IntM
such that S ⊂ IntC and f−1(D) = C. Once we have C and D, the proof is
easily completed since regular neighborhoods of C and D are PL balls. The
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embedding in the conclusion of the theorem is defined to agree with f on
the complement of a regular neighborhood N of C and is defined to map N
conewise into a regular neighborhood of D.

Assume f is in general position, so dimS ≤ 2k − n. Engulfing Theo-
rem 3.1.3 implies that there exists a PL ball B1 that contains S in its interior.
Since B1 is collapsible, we can use Shadow Building Lemma 3.1.5 to find a
collapsible polyhedron C1 ⊂ B1 such that S ⊂ C1 and dimC1 ≤ 2k− n+1.
Applying the engulfing theorem again gives a PL ball B′

1 such that f(C1) ⊂
IntB′

1 and applying the shadow building lemma again yields a collapsible
polyhedron D1 in B′

1 such that f(C1) ⊂ D1 and dimD1 ≤ 2k − n + 2.
Now C1 and D1 are collapsible, but they are not the collapsible polyhedra
needed because f−1(D1) might not equal C1; the best we can say is that

C1 ⊂ f−1(D1). Write f−1(D1) = C1 ∪ E1 with E1 = f−1(D1)� C1; note
that dimE1 ≤ (2k − n+ 2) + k − n ≤ 2k − n− 1.

Apply the engulfing theorem once more to engulf C1 ∪ E1 with B1.
This gives a PL ball B2 ⊂ Q such that C1 ∪ E1 ⊂ IntB2. By Shadow
Building Lemma 3.1.5 there is a collapsible polyhedron C2 such that B2 ↘
C2, C1 ∪E1 ⊂ C2, and dim(C2 �C1) ≤ 2k − n. The engulfing theorem and
the shadow building lemma combine to give another collapsible polyhedron
D2 ⊃ D1 such that f(C2) ⊂ D2 and dim(D2�D1) ≤ 2k−n+1. If we define
E2 by f−1(D2) = C2 ∪ E2, we find that dimE2 ≤ 2k − n− 2.

This construction is continued inductively until the dimension of Em is
negative. Then Em = ∅ and f−1(Dm) = Cm so the proof is complete. �

The proof above makes it particularly clear why codimension three is
so special for the engulfing arguments used in this chapter. Several of the
proofs yet to come involve just this sort of inductive argument. A singular
set is identified at each stage of the proof; this set is thought of as an
“error term” (the Ei in the proof above). A shadow is constructed in the
domain and a shadow of the shadow is constructed in the range. The double
shadow building increases dimension by two, but then the double shadow
is intersected with a codimension-three polyhedron to reduce the dimension
by three. The net effect is that the dimension of the error term is reduced
by one and progress is made toward elimination of the error.

In applications of the embedding theorem, it is often necessary to have a
relative version of the theorem. The relative version of Theorem 5.2.1 does
not follow from the absolute one, but the proof can be modified to fit the
relative case. We leave the required modifications as an exercise.

Definition. An embedding λ : Q → M of ∂-manifolds is called faithful if
λ−1(∂M) = ∂Q.
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Theorem 5.2.8. Let f : Qk → Mn be a map of a compact PL ∂-manifold Q
into a PL ∂-manifold M such that f |∂Q is a PL embedding of ∂Q into ∂M .
If

(1) k ≤ n− 3,

(2) Q is (2k − n)-connected, and

(3) M is (2k − n+ 1)-connected,

then f is homotopic, keeping ∂Q fixed, to a faithful PL embedding.

Historical Notes. The first embedding theorem beyond the trivial range
is due to H. Whitney (1944a). Whitney used his famous “Whitney Trick”
to prove that any smooth n-manifold can be smoothly embedded in R2n.
Whitney’s technique suffices to prove Theorem 5.2.1 in case n = 2k; see
Rourke and Sanderson (1972), Theorems 5.5 and 5.12. The next step is
due to Penrose, Whitehead, and Zeeman (Penrose et al., 1961), who essen-
tially proved Corollary 5.2.3. (They did not at that time have the Poincaré
Conjecture available to them, so they did not state the theorem in its full
generality.) Corollary 5.2.2 is due to M. C. Irwin (1965); proofs can also be
found in (Rourke and Sanderson, 1972) and (Hudson, 1969a).

J. F. P. Hudson, (1966b) and (1967), proved Theorem 5.2.1 with the
additional hypothesis that Q is (3k − 2n + 2)-connected. The general case
follows from (Stallings, 1965a, Theorem 4.1) ( = our Theorem 5.1.6) along
with (Wall, 1970, Corollary 11.3.4). The simply connected case of (Wall,
1970, Corollary 11.3.4) is usually attributed to Browder, Casson, and Sulli-
van, although they did not publish proofs.

It is tempting to think that the metastable-range proof of Theorem 5.2.1
could be pushed through to codimension three by exploiting the kind of in-
ductive argument that was used in the proof of Theorem 5.1.6. A straight-
forward attempt at generalization runs into difficulties, however. The basic
reason for the complication is the fact that a singular image of the mapping
cylinder does not have a natural collapse associated with it. Despite the
problems encountered, the proof can be made to work. H. W. Berkowitz
and J. Dancis (1970a) have a fairly elementary argument that pushes the
proof to the (3/4)-range. The idea is that, in the (3/4)-range, the singulari-
ties of the retraction of the mapping cylinder to Q are simple enough that the
collapsible sets can be amalgamated into slightly more complicated collapsi-
ble sets. Eventually Bryant (1990) worked out all the technical machinery
needed to make the argument work in codimension three.

Exercise

5.2.1. Prove Theorem 5.2.8.
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5.3. Unknotting PL embeddings of manifolds

We next turn our attention to the Unknotting Problem: under what condi-
tions are two homotopic maps ambiently isotopic? The case of manifolds is
considered in this section; polyhedra are considered in the next. Rourke and
Sanderson (1972) prove unknotting for PL ball pairs and PL sphere pairs in
codimension three. In this section we extend those results to PL embeddings
of more general PL manifolds. Later in the chapter we will generalize fur-
ther to the case of 1-LCC topological embeddings of manifolds. While the
main theorems stated in this section apply only to manifolds, much of the
technical machinery developed here will be useful in the following section
when we take up the problem of unknotting polyhedra.

Let us begin with a statement of the unknotting theorem.

Theorem 5.3.1 (Unknotting PL Embeddings). Let λ0, λ1 : Qk → Mn be
homotopic PL embeddings of a compact PL manifold Q into a PL mani-
fold M . If

(1) k ≤ n− 3,

(2) Q is (2k − n+ 1)-connected, and

(3) M is (2k − n+ 2)-connected,

then there exists compactly supported PL isotopy Φt : M → M such that
Φ0 = IdM and λ1 = Φ1 ◦ λ0.

The following examples show that the connectivity conditions in this
unknotting theorem are best possible. The first of them shows that the hy-
pothesis on the domain is sharp, while the second shows that the hypothesis
on the range is sharp.

Example 5.3.2. S0 × Sk knots in S2k+1.

Proof. Consider one embedding whose image consists of two k-spheres that
bound disjoint (k+1)-cells and a second embedding whose image is the union
of the two factors in the join structure S2k+1 = Sk∗Sk. The two embeddings
are indicated in Figure 5.8. The embeddings are not equivalent because each
k-sphere of the first embedding is null-homologous in the complement of the
other while in the second embedding that is not the case. �

Example 5.3.3. Sk knots in S1 × S2k.

Proof. Start with two simply linked k-spheres in [0, 1] × B2k ⊂ S1 × S2k.
Construct an embedding e : Sk → S1×S2k by connecting the two k-spheres
with a tube that runs around the S1 factor of S1×S2k as shown in Figure 5.9.
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Sk×{–1} Sk×{+1} Sk×{–1} Sk×{+1}

Figure 5.8. Two inequivalent embeddings of S0 × Sk in S2k+1

Then e is not equivalent to an embedding that extends to a map of Bk+1;
the proof is left as Exercise 5.3.1. �

S B1 2k×

B2k

e(S )k

Figure 5.9. A knotted embedding e : Sk → S1 ×B2k ⊂ S1 × S2k

There is also a connected version of Example 5.3.2. It necessarily fails
to be simply connected.

Example 5.3.4. S1 × Sk knots in S2k+2.

Proof. Begin with a pair of linked k-spheres in the equator S2k+1 of S2k+2.
Use the fact that the equator is bicollared to extend to an embedding of S0×
Sk × [−1, 1] into S2k+1 × [−1, 1] ⊂ S2k+2 that preserves the last coordinate.
Then add an annulus [0, 1] × Sk in each of the levels S2k+1 × {−1} and
S2k+1 × {+1} to complete the embedding of S1 × Sk. (The annuli are
constructed in the same way as in Example 5.2.6.) The resulting embedding
f : S1 × Sk → S2k+2 is illustrated in Figure 5.10.

In order to prove that f is knotted we introduce a special ad hoc invari-
ant. For each point x ∈ S1, let Sx = f({x} × Sk). Choose three distinct
points a, b, c ∈ S1 such that Sa, Sb, and Sc bound PL embedded (k+1)-cells
A,B, and C in S2k+2 that intersect f(S1×Sk) only along their boundaries.
Shift A,B, and C into general position; then any two of them will intersect
in a finite number of points. Let AB denote the number of points in A∩B,
counted modulo two, and define BC and AC in a similar way. The invariant
k(f, a, b, c) is defined by k(f, a, b, c) = AB +BC +AC (mod 2).
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+1

–1

0 product

Figure 5.10. A knotted S1 × Sk in S2k+2

We claim that k(f, a, b, c) depends only on f, a, b, and c and is indepen-
dent of the particular (k + 1)-cells A, B, and C. Let [bc] denote the closed
interval from b to c in S1 that does not contain a. Note that AB + AC
is equal to the homological linking number of Sa with the (k + 1)-sphere
B∪f([bc]×Sk)∪C. It follows that AB+AC is independent of the particular
spanning disk A that is used and thus k(f, a, b, c) does not depend on A. The
invariant k(f, a, b, c) is defined for any PL embedding f : S1 × Sk → S2k+2

and any a, b, c ∈ S1 as long as A, B, and C with the required properties
exist. (It can be shown that they always exist—see Exercise 5.3.2.)

For the embedding f of the example, choose a, b, and c so that Sa is
one of the k-spheres in the equator, Sb is at the (+1)-level, and Sc is at the
(−1)-level, as indicated in Figure 5.11. Let B be the (k + 1)-cell obtained
by coning Sb from a point above the (+1)-level and let C be a similar cone
below. There is an annulus in the 0-level between Sa and the sphere S′

a

shown in Figure 5.11; the annulus is disjoint from f(S1 × Sk) except where
it intersects along Sa. (Use one-half of the annulus that forms part of the
sphere in the (±1)-levels.) Let A consist of this annulus together with a
vertical annulus from S′

a straight up to the (1 + ε)-level and a (k + 1)-cell
in the (1 + ε)-level. Since Sa simply links B ∪ f([bc]× Sk) ∪ C, we see that
k(f, a, b, c) = 1.

On the other hand, if e : S1×Sk → S2k+2 is any embedding that extends
to S1 × Bk+1, then k(e, a, b, c) = 0 for every a, b, c ∈ S1. (See Figure 5.11.)
It follows that f and e are not equivalent embeddings. Thus S1 × Sk knots
in S2k+2. �

The proof of Theorem 5.3.1 involves two results about concordances
that are of independent interest. In the remainder of this section we use I
to denote the closed unit interval [0, 1].



5.3. Unknotting PL embeddings of manifolds 199

B

C

S

S

S

a
Sa

Sa

b

Sb

c

Sc

Figure 5.11. Calculation of k(f, a, b, c) and k(e, a, b, c)

Definition. Let λ0, λ1 : Kk → Mn be two PL embeddings of a compact
polyhedron K into a PL manifold M . A concordance from λ0 to λ1 is an
embedding Φ : K × I → M × I such that

(1) Φ(x, 0) = 〈λ0(x), 0〉 for every x ∈ K,

(2) Φ(x, 1) = 〈λ1(x), 1〉 for every x ∈ K, and

(3) Φ(K × (0, 1)) ⊂ Int(M × I).

Two embeddings λ0 and λ1 are concordant if there exists a concordance Φ
from λ0 to λ1. The embeddings are PL concordant if Φ is a PL embedding.

Theorem 5.3.5 (Existence of Concordances). Let λ0, λ1 : Q
k → Mn be ho-

motopic PL embeddings of a compact PL manifold Q into a PL manifold M .
If

(1) k ≤ n− 3,

(2) Q is (2k − n+ 1)-connected, and

(3) M is (2k − n+ 2)-connected,

then λ0 and λ1 are PL concordant.

Proof. The fact that λ0 and λ1 are homotopic implies that there exists a
continuous map φ : Q × I → M × I such that φ(x, 0) = 〈λ0(x), 0〉 and
φ(x, 1) = 〈λ1(x), 1〉 for every x ∈ Q. An application of Theorem 5.2.8 to the
map φ gives the required PL embedding Φ : Q× I → M × I. �

Theorem 5.3.6 (Concordance Implies Unknotting). Suppose λ0, λ1 : K
k →

Mn are PL concordant embeddings of a compact polyhedron K into a PL n-
manifold M . If
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(1) k ≤ n− 3, and

(2) M is simply connected,

then there exists a PL homeomorphism h : M → M such that λ1 = h ◦ λ0.

The proof of Theorem 5.3.6 requires a technical result on neighborhoods
of embedded products which assures that the concordance extends to an em-
bedding of a product neighborhood. The proof of the Product Neighborhood
Theorem is quite complicated and is linked to the proofs of several other
technical results that will be needed in the next section. Before addressing
those issues we first complete the proofs of Theorems 5.3.6 and 5.3.1.

Proof of Theorem 5.3.6. We may assume that n ≥ 5. Let Φ : K × I →
M × I be a PL concordance from λ0 to λ1. By Product Neighborhood
Theorem 5.3.9 (below), there is a neighborhood N of Φ(K × I) in M , a PL
∂-manifold P ⊃ K, and a PL homeomorphism f : P × I → N such that

(1) f(P × {0}) is a regular neighborhood of Φ(K × {0}) in M × {0},
(2) f(P × {1}) is a regular neighborhood of Φ(K × {1}) in M × {1},
(3) f(P × (0, 1)) ⊂ M × (0, 1), and

(4) f(x, t) = Φ(x, t) for every 〈x, t〉 ∈ K × I.

Define W = M × [0, 1]�N , N0 = h(P × {0}) and N1 = h(P × {1}).
ThenW is a cobordism-with-boundary fromM0 = M×{0}�IntN0 toM1 =
M×{1}�IntN1. Since k ≤ n−3, each ofW,M0, andM1 is simply connected.
Further, Duality Theorem 0.3.1 gives Hi(W,M0) ∼= Hn+1−i(N,N0) = 0 for
every i. Hence we may apply the Relative h-Cobordism Theorem (Rourke
and Sanderson, 1972, Theorem 6.18) to conclude that the product structure
on ∂N � (IntN0 ∪ IntN1) from ∂N0 to ∂N1 can be extended to a product
structure on W . This product structure defines the PL homeomorphism h
in the conclusion of the theorem. �

Proof of Theorem 5.3.1. Theorem 5.3.1 follows immediately from Theo-
rems 5.3.5 and 5.3.6. �

The next three theorems will all be proved together. Note that the
existence of non-locally flat codimension-two PL embeddings means that
the codimension restriction in each of the three theorems is necessary. In
§5.4 we will need relative versions of the three theorems that include more
technical hypotheses and conclusions. For now we present only the absolute
versions because that is all we need to complete the proof of Unknotting
Theorem 5.3.1 and because the structure of the proofs can be seen more
clearly in this relatively simple setting.
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Definition. A map f : (X,A) → (Y,B) of pairs is said to be faithful if
f−1(B) = A.

Let K be a polyhedron and let cK be the cone on K. We identify K
with the base of the cone. We also identify Bn with the cone on Sn−1. This
allows us to consider cK to be a subset of Bn whenever K ⊂ Sn−1.

Theorem 5.3.7 (Cone Unknotting). If K is a compact, k-dimensional sub-
polyhedron of Sn−1, k ≤ n − 4, and e : (cK,K) → (Bn, Sn−1) is a faith-
ful PL embedding such that e|K = inclK , then there exists a PL isotopy
ψt : Bn → Bn such that ψ0 = Id, ψt|∂Bn = inclusion for every t, and
ψ1 ◦ e = inclK .

Definition. Let K be a polyhedron and let M be a PL ∂-manifold. A
PL embedding g : K × I → M is locally flat at 〈x, t〉 ∈ K × I if there
exists a neighborhood U of g(x, t) in M such that U ∼= V × [a, b] via a
homeomorphism that extends the product structure on g(K × [a, b]).

Theorem 5.3.8 (Local Flatness). If K is a compact k-dimensional polyhe-
dron, M is an n-dimensional PL ∂-manifold, k ≤ n−4, and g : (K×I,K×
∂I) → (M,∂M) is a faithful PL embedding, then g is locally flat at 〈x, t〉 for
every 〈x, t〉 ∈ K × I.

Definition. Assume K is a compact polyhedron, M is a PL ∂-manifold,
and g : (K × I,K × ∂I) → (M,∂M) is a faithful PL embedding. A regular
neighborhood N of g(K × I) in M is said to meet the boundary regularly if
N ∩ ∂M = N0 ∪N1, where N0 ∩N1 = ∅ and Ni is a regular neighborhood
of g(K × {i}) in ∂M for i = 0, 1.

If T is a triangulation of M that contains a triangulation of g(K× [0, 1])
as a full subcomplex, then the simplicial neighborhood of g(K × [0, 1]) in a
derived subdivision T ′ is a regular neighborhood that meets the boundary
regularly. A regular neighborhood that meets the boundary regularly is just
a special case of the regular neighborhoods in a pair that are described in
(Rourke and Sanderson, 1972, pages 52–54).

Theorem 5.3.9 (Product Neighborhood). Let M be an n-dimensional ∂-
manifold, let K be a compact k-dimensional polyhedron, k ≤ n − 4, let
g : (K × I,K × ∂I) → (M,∂M) be a faithful PL embedding, and let N be a
regular neighborhood of g(K× I) in M that meets ∂M regularly. If N ∩∂M
is the disjoint union of N0 and N1 where N0 is a regular neighborhood of
g(K × {0}), then there exists a PL homeomorphism λ : N0 × I → N such
that λ(x, 0) = 〈x, 0〉 for every x ∈ N0 and λ(g(x, 0), t) = g(x, t) for every
〈x, t〉 ∈ K × I.
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As mentioned above, the three theorems just stated are linked in one
large inductive proof. In order to describe the structure of the proof suc-
cinctly, we make the following abbreviations.

CU(n) = Cone Unknotting Theorem 5.3.7 in dimension n
LF(n) = Local Flatness Theorem 5.3.8 in dimension n
PN(n) = Product Neighborhood Theorem 5.3.9 in dimension n

We will prove that CU(n − 1) ⇒ LF(n) ⇒ PN(n) ⇒ CU(n). Since the
theorems are all easily seen to be true for n ≤ 4, this suffices to prove all
three theorems in all dimensions. The one catch is that the PN(n) ⇒ CU(n)
step uses the h-Cobordism Theorem and is therefore valid only for n ≥ 6.
We will plug that gap in the inductive proof by giving a separate ad hoc
proof that PN(5) ⇒ CU(5).

PN(n) ⇒ CU(n), n ≥ 6. Let e : (cK,K) → (Bn, Sn−1) be a faithful PL
embedding such that e|K is the inclusion. We may assume that e maps
the cone point of cK to the origin of Bn. Choose a small convex PL n-cell
neighborhood C of the origin in Bn such that D = e−1(C) is a subcone of
cK and e|D : D → C is a cone map.

The radial structure of Bn determines a product structure on Bn �
IntC ∼= Sn−1 × I in which Sn−1 is identified with Sn−1 × {0}. We can also
identify cK �D with K × I. Thus e determines a faithful PL embedding
g : (K × I,K × ∂I) → (Sn−1 × I, Sn−1 × ∂I) such that g(x, 0) = 〈x, 0〉 for
each x ∈ K and g(K × {1}) ⊂ Sn−1 × {1}. We will prove the existence
of a homeomorphism φ : Sn−1 × I → Sn−1 × I such that φ|Sn−1 × {0} =
inclusion and φ(g(x, t)) = 〈x, t〉 for each 〈x, t〉 ∈ K × I. Once such a home-
omorphism has been found, it can be extended conewise to C to produce
a homeomorphism Φ : Bn → Bn such that Φ ◦ e = inclusion. The iso-
topy ψt connecting the identity to Φ is the Alexander isotopy (Rourke and
Sanderson, 1972, Proposition 3.22).

It remains to construct φ. By PN(n), g(K × I) has a product neigh-
borhood N . The relative h-Cobordism Theorem can be applied exactly as
in the proof of Theorem 5.3.6 to extend the product structure on N to a
product structure on all of Sn−1× I. The homeomorphism φ is the one that
takes this new product structure to the standard product structure. �

PN(5) ⇒ CU(5). LetK be a compact 1-dimensional subpolyhedron of S4.
As in the proof of the n ≥ 6 case, it suffices to prove the following: if
g : (K × I,K × ∂I) → (S4 × I, S4 × ∂I) is faithful PL embedding such that
g(x, 0) = 〈x, 0〉 for every x ∈ K and g(K×{1}) ⊂ S4×{1}, then there exists
a homeomorphism φ : S4× I → S4× I such that φ|S4×{0} = inclusion and
φ(g(x, t)) = 〈x, t〉 for each 〈x, t〉 ∈ K × I.
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We claim that there is a PL homeomorphism h : S4 × I → S4 × I such
that h|S4 × ∂I = Id and S4 × I ↘ S4 ×{0}∪ hg(K × I). Let us assume the
claim for now and complete the proof. Let C be a short collar on S4×{0} in
S4 × I. By PN(5), hg(K × I) has a product neighborhood N in S4 × I that
meets the boundary regularly. We can arrange that the product structures
on C and N are compatible where they overlap (use Rourke and Sanderson
(1972), Addendum 4.21, if necessary) and, after trimming N slightly, we can
construct a homeomorphism of pairs φ1 : (S

4×I,K×I) → (C∪N, hg(K×I))
such that φ1(x, t) = hg(x, t) for each 〈x, t〉 ∈ K× I. By the claim, S4× I ↘
S4 × {0} ∪ hg(K × I) and so the Uniqueness of Regular Neighborhoods
Theorem supplies a second homeomorphism φ2 : C ∪N → S4× I that is the
identity on S4 × {0} ∪ hg(K × I); the composition φ = φ−1

1 ◦ φ−1
2 ◦ h is the

homeomorphism needed to complete the proof.

In order to prove the claim, we begin by shifting g into general position
and taking the shadow of its image:

Σ = Sh(g(K × I)) = {〈x, s〉 ∈ S4 × I | 〈x, t〉 ∈ g(K × I) for some t ≥ s}.

Let π : S4 × I → S4 × {0} be the projection map. By general position,
we know that the singular set of π ◦ g consists of a finite number of double
points each of which is in the interior of σ× I, where σ is a 1-simplex in K.
A small adjustment will ensure that no two of the double points lie on the
same vertical fiber in K × I. For each of these double points, we wish
to push the lower point of intersection off the shadow of the upper point.
More specifically, let us suppose that 〈y, a〉, 〈z, b〉 are points in K × I such
that πg(y, a) = πg(z, b). Subdivide so that y and z are in the interiors of
distinct 1-simplices of K. There exists x ∈ S4 such that g(y, a) = 〈x, t〉
and g(z, b) = 〈x, s〉 with, say, s < t. Let α be a path in Σ that is below
g({x} × [a, 1]), above πg({x} × [a, 1]), and joins g(z, b) to a point below
g(y, 1). Push g({z}×I) along this path and off the end of Σ as illustrated in
Figure 5.12. This move is accomplished by a homeomorphism hz of S4 × I
such that hzg differs from g only on the interior of the 1-simplex containing z.

g({y}×I)

πg({y}×I)

g({z}×I)

Σ Σ

α

hg({z}×I)

h

g(y,1)

x

Figure 5.12. Push g({z} × I) off the end of Σ
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Let h be the homeomorphism of S4× I that accomplishes all the pushes
described in the previous paragraph. Observe that π|hg(K × I) is one-to-
one. The shadow of each i-simplex in hg(K × I) is a convex (i + 1)-cell in
S4 × I and these cells have disjoint interiors. We can collapse S4 × I to
S4 ×{0}∪ hg(K × I) in two stages. First, collapse straight down to achieve
S4×I ↘ S4×{0}∪Sh(hg(K×I)). Then collapse S4×{0}∪Sh(hg(K×I)) to
S4×{0}∪hg(K×I) by collapsing out one of the convex cells at a time. The
collapse K×I ↘ K×{0} serves as a guide for the collapse of Sh(hg(K×I)):
when a simplex σ in K×I is collapsed across a face τ , we collapse the convex
cell below σ across the face below τ . �

CU(n− 1) ⇒ LF(n). Let g : Kk × [0, 1] → Mn be as in the statement of
LF(n). Pick a point 〈x0, t0〉 ∈ K × [0, 1]. Assume, first, that 0 < t0 < 1.
Choose triangulations T of K × [0, 1] and S of M relative to which g is
simplicial and g(K× [0, 1]) is full. We may further assume that both 〈x0, t0〉
and g(x0, t0) are vertices and that D = St(〈x0, t0〉, T ′), the star of 〈x0, t0〉 in
a first derived subdivision T ′ of T , can be written as D = Da × [a, b], where
Da is a cone neighborhood of 〈x0, a〉 ∈ K × {a} and 0 ≤ a < t0 < b ≤ 1.
Let C = St(g(x0, t0), S

′). Since M is a PL manifold, C is an n-cell. Observe
that D has a natural cone structure as a cone from 〈x0, t0〉 and that C is a
cone from g(x0, t0); furthermore, g|D : D → C is a cone map.

D

C

C

g
0 0(x ,y )

0(x ,a)

0(x ,b)

a

a

a

va

v
b

Fr(D )×[a,b]

aD = D ×[a,b]

ag(Fr(D )×[a,b])

Figure 5.13. The neighborhoods C and D in the proof of CU(n− 1) ⇒ LF(n)

Let va = g(x0, a) and vb = g(x0, b). The star of va in ∂C is a PL
(n − 1)-cell neighborhood Ca of va in ∂C such that Ca is a cone from va.
Furthermore, g−1(Ca) = Da × {a} and g|Da × {a} : Da × {a} → Ca is a
cone map. By CU(n−1), C ′

a = ∂C � Ca has a cone structure C ′
a
∼= vb ∗∂Ca

such that the embedding

g|(FrDa × [a, b]) ∪ (Da × {b}) : (FrDa × [a, b]) ∪ (Da × {b}) → C ′
a

is a cone on g|FrDa × {a} in this structure. Thus ∂C has a double cone
structure extending the double cone structure on FrD = (Da × {a, b}) ∪
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(FrDa× [a, b]). Hence there is a PL homeomorphism φ : ∂C → ∂(Ca× [a, b])
such that φ(y) = 〈y, a〉 for each y ∈ Ca and φ(g(x, t)) = 〈g(x, a), t〉 for each
〈x, t〉 ∈ FrD = (Da × {a, b}) ∪ (FrDa × [a, b]). Extend φ conewise to a
homeomorphism φ : C → Ca × [a, b]. Then φ(g(x, t)) = 〈g(x, a), t〉 for every
〈x, t〉 ∈ D, so the proof is complete for the case in which 0 < t0 < 1.

In case t0 = 0, the only change that must be made in the proof is that
a = t0 = 0. In case t0 = 1, we simply take b = t0 = 1. �

The proof of LF(n) ⇒ PN(n) requires a lemma that allows an isotopy of
an embedded product to be extended to an ambient homeomorphism. After
confirming PN(n), we will use it to establish a much more general covering
isotopy theorem.

Lemma 5.3.10. Assume LF(n). If K is a compact k-dimensional polyhe-
dron, M is an n-dimensional PL ∂-manifold, k ≤ n−4, g : (K×I,K×∂I) →
(M,∂M) is a faithful PL embedding, and 0 < a < b < 1, then there exists
a PL homeomorphism h : I → I such that h|∂I = incl∂I and h(a) = b and
there exists a PL homeomorphism φ : M → M such that φ|∂M = incl∂M
and φ(g(x, t)) = g(x, h(t)) for every 〈x, t〉 ∈ K × I.

Proof. Use LF(n) to cover g(K× [0, 1]) with product neighborhoods. Find
a triangulation T of K and a partition 0 = t0 < t1 < · · · < tm = 1 such
that g(σ × [ti, ti+1]) is contained in the interior of one of these product
neighborhoods for every σ ∈ T and for every i. We may assume that there
exist i and j such that a = ti and b = tj . It suffices to prove that the ti-level
can be moved to the ti+1-level. In order to simplify notation let us assume
that a = ti and b = ti+1.

Pick a vertex v ∈ K and a product neighborhood U of g({v} × [a, b]).
Define f1 to be a homeomorphism of g({v}× I) that moves g(v, a) to g(v, b)
and is the identity outside a compact subset of U ∩ g({v} × I). Use the
cone structure on a neighborhood of v in K to extend f1 to g(K × I) and
then use the product structure on U to extend f1 to U in such a way that
f1 reduces to the identity outside a close neighborhood of g({v} × I) and
preserves fibers of g(K×I). Do this for each vertex of K, working in disjoint
neighborhoods, and extend f1 via the identity to a homeomorphism of all
of M .

Next consider a 1-simplex σ ∈ T . Let f2 be a homeomorphism of g(σ×I)
that moves f1g(σ× {a}) to g(σ× {b}). Extend f2 to g(K × I) by using the
join structure on star(σ, T ), then to a product neighborhood of g(σ× [a, b]),
and then to all of M via the identity. Figure 5.14 illustrates the combined
action of f1 and f2.
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1

Figure 5.14. In this diagram K consists of two 1-simplices σ1 and σ2;
the a-level is moved to the b-level in two steps

This process is continued inductively, moving up through the skeleta of
increasing dimension. The final homeomorphism φ is the composition of the
various fi. Care should be taken in the construction of the fi to ensure that
there is one PL homeomorphism h : I → I such that φ(g(x, t)) = g(x, h(t))
for every 〈x, t〉 ∈ K × I. �

LF(n) ⇒ PN(n). Let g : (Kk × I,K × ∂I) → (Mn, ∂Mn), k ≤ n − 4,
be a faithful PL embedding into a PL ∂-manifold and let N be a regular
neighborhood of the image that meets ∂M regularly. Define M+ to be
the ∂-manifold obtained from M by adding an exterior collar. Use the
product structure on the collar to extend g to a faithful PL embedding
g : (K × [−2, 2],K × {−2, 2}) → (M+, ∂M+) as illustrated in Figure 5.15.

M M
N

g(K×{-2})

g(K×{-1})

g(K×{0})

g(K×{2})

g(K×{1})

g(K×I)

N ×[-1,0]0

+
collar

Figure 5.15. Add a collar to form M+ and extend to g : K × [−2, 2] → M+
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Since N meets ∂M regularly, N ∩∂M is a disjoint union N0∪N1, where
Ni is a regular neighborhood of g(K × {i}) in ∂M . Let N0 × [−1, 0] be a
product neighborhood of g(K × [−1, 0]) in the inner half of the collar. (See
Figure 5.15.) Two applications of Lemma 5.3.10 yield a PL homeomorphism
φ : M+ → M+ that slides g(K × [−1, 0]) to g(K × I). The ∂-manifold
P = φ(N0× [−1, 0]) is almost the neighborhood we seek: P has the required
product structure, but it is not necessarily a neighborhood of g(K × I) in
M because φ(N0 × ∂[−1, 0]) may not match up correctly with ∂M . We will
provide an argument involving collars to correct this deficiency.1

Observe that there is a collar c : N0 × [0, 1] → N and a number ε > 0
such that c(g(x, 0), t) = g(x, t) for every 〈x, t〉 ∈ K × [0, ε]. This observation
is proved using the fact that LF(n) gives local collars and these local collars
can be amalgamated into a global collar using the same argument as in
Theorem 2.4.10. The details are worked out in (Rourke and Sanderson,
1972, Theorem 4.5 and Addendum 4.21).

Let T be a triangulation of M+ that contains triangulations of N and P
as subcomplexes and contains a triangulation of g(K × I) as a full subcom-
plex. Subdivide T so that N(N0, T )∩ c(N0× [0, 1]) = c(N0× [0, δ]) for some
positive number δ. Subdivide further so that, in addition, the projection
N0 × [0, δ] → N0 and the restricted collar c : N0 × [0, δ] → M are simplicial
relative to T . Let T ′ be a subdivision of T derived near g(K×I); i.e., T ′ is a
derived subdivision obtained from T by adding a new vertex in the interior
of each simplex that intersects g(K×I) but is not contained in g(K×I). The
vertices in T ′�T can be chosen in such a way that P ′ = N(g(K×I), T ′)∩P
is a subproduct of P ; specifically, if B0 = N(g(K×{0}), T ′)∩∂P , then there
is a homeomorphism λ′ : B0 × I → P ′ such that λ′(g(x, 0), t) = g(x, t) for
every 〈x, t〉 ∈ K × I. Define N ′ = N(g(K × I), T ′) ∩N .

The proof is completed by removing a small collar from P ′ and replacing
it with a collar from N ′. The result is a new ∂-manifold that is a product and
is a regular neighborhood of g(K×I) inM . Define A0 = N(g(K×{0}), T ′)∩
∂N ′, A1 = N(g(K × {0}), T ′) ∩N ′, and B1 = N(g(K × {0}), T ′) ∩ P ′. By
construction there is a product structure A1

∼= A0 × [0, δ] that extends the
product structure on g(K× [0, δ]) and there is also a product structure B1

∼=
B0× [0, δ] that extends the product structure on g(K× [0, δ]). Furthermore,
P ′ �B1 has a product structure P ′ �B1

∼= B0 × [δ, 1] that extends the
product structure on g(K × [δ, 1]).

1The proof of the theorem could be completed quickly if we were to make use of the theory
of relative regular neighborhoods (Cohen, 1969). In particular, LF(n) can be used to verify that
each of N and P is a relative regular neighborhood in M+ of g(K × I) mod g(K × ∂I) and so
the uniqueness theorem for relative regular neighborhoods (Cohen, 1969, Theorem 3.1) implies
that there is a PL homeomorphism of P to N that fixes g(K × I). We supply the alternative
proof utilizing collars because we are using (Rourke and Sanderson, 1972) as our reference for PL
topology and Rourke and Sanderson do not consider relative regular neighborhoods.
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Consider P ′′ = P ′ �B1 ∪ A1. Each piece of P ′′ is a product, but we
cannot quite claim that the union is a product because A0 × {δ} does
not exactly match λ′(B0 × {δ}). The product structures define projections
P ′ �B1 → B0×{δ} and A1 → A0×{δ}. Choose a regular neighborhood C0

of g(K×{δ}) in ∂A1∩∂B1 (which we are identifying with B0×{δ}∩A0×{δ}).
Define P ′′′ to be the union of the preimages of C0 under these two projec-
tion maps. Then P ′′′ has a product structure that extends the product
structure on g(K × I) and the 0-level of this product structure is a regular
neighborhood of g(K × {0}) in ∂M .

Make a similar modification near g(K × {1}). The result is a regu-
lar neighborhood P ∗ of g(K × I) in M that meets ∂M regularly and has a
product structure that extends the product structure on g(K×I). It follows
from the uniqueness of regular neighborhoods of pairs (Rourke and Sander-
son, 1972, Theorem 4.11) that there is a PL homeomorphism P ∗ ∼= N that
is the identity on g(K×I), so N also has the required product structure. �

Remark. The proof of LF(n) ⇒ PN(n) does not require that g(K × I)
have codimension three, only that it be locally flat. As a result, the product
neighborhood theorem is valid in any codimension provided PL local flatness
is assumed as a hypothesis. This observation will be used in the proof of
Lemma 5.2.7, below.

We conclude this section with two applications of Product Neighborhood
Theorem 5.3.9: first a proof of Shrinking Lemma 5.2.7 and then a general
Covering Isotopy Theorem. These two applications serve to illustrate the
power of the tools we have developed.

Lemma 5.3.11. If f : K → L is a PL map of compact polyhedra and K0 is a
subpolyhedron of K, then there exists a quotient map q : Map(f) → Map(f)
that preserves fibers in the sense that q({x} × I) = {x} × I for each x ∈ K
and whose only nontrivial point preimages are sets of the form {x}× [1/2, 1]
for x ∈ K0. Furthermore, q|K ∪L = Id and if U is any neighborhood of K0

in K, then q can be constructed so that q|(K � U)× I is the identity.

Proof. Let µ : K → [1/2, 1] be a continuous PL map such that µ(K�U) =
1/2, µ(K0) = 1, and µ(x) < 1 for every x ∈ K � K0. For each x ∈ K,
define λx : [0, 1] → [0, 1] to be the map such that λx(0) = 0, λx(1/2) = µ(x),
λx(1) = 1, and λx is linear on each of [0, 1/2] and [1/2, 1]. Then define
q : Map(f) → Map(f) by q(x, t) = 〈x, λx(t)〉 for 〈x, t〉 ∈ K × [0, 1] and
q(y) = y for y ∈ L. It is easy to check that q has the required properties. �

Proof of Lemma 5.2.7. Let f : K → L be a PL map of a compact k-
dimensional polyhedron K into a polyhedron L, let M be a PL n-manifold,
and let h : Map(f,K0) → M be a PL embedding. Assume, first, thatK0 = ∅
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and k ≤ n− 4. Let T be a triangulation of M that contains a triangulation
of h(Map(f)) as a full subcomplex and take the barycentric subdivision T ′

of T . Define N1 to be the simplicial neighborhood of h(L) in T ′. Note that
N1 is a mapping cylinder neighborhood of h(L).

The triangulation T can be chosen so that N1 ∩ h(Map(f)) is the image
of K × [1− ε, 1] 
L for some small positive number ε and the two mapping
cylinder retractions agree on the overlap. Now h embeds K × [0, 1 − ε] in
M � IntN1. By taking a simplicial neighborhood of h(K × [δ, 1 − ε]) in
T ′|(M � IntN1) for some δ > 0, we can construct a PL ∂-manifold N2 such
that h|K× [0, 1− ε] : (K× [0, 1− ε],K×∂[0, 1− ε]) → (N2, ∂N2) is a faithful
embedding. By PN(n) we may assume that N2 is a product neighborhood
of h(K × [0, 1− ε]).

Let N = N1 ∪N2. Note that N has the structure of a mapping cylinder
associated with a map ∂N → h(L) and that it contains h(Map(f)) as a sub-
mapping cylinder. Add an exterior collar to N to form N+. Then N+ is also
a mapping cylinder neighborhood of h(L) and it can be reparametrized so
that h(Map(f)) corresponds to K×[1/2, 1]. An application of Lemma 5.3.11
gives a homeomorphism N+ → N+/h that is the identity on ∂N+. This
homeomorphism extends via the identity to a homeomorphism M → M/h.

In case n ≤ 3 and k is unrestricted, LF(n) does not apply. But in low
ambient dimensions the local flatness of PL embeddings is automatic, so the
proof above still works.

Now suppose K0 �= ∅. Observe that Map(f,K0) is naturally homeomor-
phic to a subset of Map(f). The hypothesis 2 dim(Map(f))+1 ≤ n allows us
to extend h to an embedding of all of Map(f). The proof then proceeds as
above, except that Lemma 5.3.11 must be replaced by a lemma that shrinks
out only those fibers of Map(f) still present in Map(f,K0). �
Definition. LetK be a polyhedron and let λ : K×I → M be an embedding
of K × I into M . An isotopy φt : λ(K × I) → λ(K × I) is said to preserve
fibers if φt(λ({x} × I)) = λ({x} × I) for every x ∈ K and every t ∈ I.

Definition. Assume X ⊂ Y and φ : X × I → X is an isotopy. An isotopy
Φ : Y × I → Y is said to cover φ if Φ|X × I = φ. If φ0 = IdX , then it is
required that Φ0 = IdY as well.

There is a minor distinction between “isotopy extension” and “covering
isotopy.” We speak of extending an isotopy φ : X × I → Y of X in Y to an
isotopy φ̃ : Z × I → Y , where Z ⊃ X. We use the terminology covering an
isotopy when the given isotopy φ is an isotopy of X in itself rather than an
isotopy of X in Y . In that case we “cover” φ with an ambient isotopy.

As usual, we are using φt to denote the homeomorphism of X defined
by φt(x) = φ(x, t).
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Theorem 5.3.12 (Covering Isotopy). Let M be an n-dimensional PL man-
ifold, K a compact k-dimensional polyhedron, k ≤ n−4, and λ : K×I → M
a PL embedding. If φt is any fiber preserving PL isotopy of λ(K × I) such
that φt|λ(K × ∂I) = inclusion, then there exists a PL isotopy Φt of M that
covers φt. Furthermore, if ε > 0 is specified, then it is possible to construct
Φt in such a way that for each y ∈ M either Φt(y) = y for every t, or there
exists one x ∈ K such that the path Φt(y) is contained in the ε-neighborhood
of λ({x} × I).

Proof. The idea is to find a product neighborhood N of λ(K × I) and
then to use the mapping cylinder and product structures of N for extending
φt over N . The extension can be tapered off along the mapping cylinder
structure to make it the identity on the boundary of N , and then it can be
extended via the identity to all of M . The plan is simple, but executing it
requires careful specification of several functions.

Begin by constructing an n-dimensional PL ∂-manifold N ⊂ M such
that λ is a faithful embedding of (K× I,K×∂I) in (N, ∂N). By PN(n), we
may assume that there is a regular neighborhood N0 of λ(K × {0}) in ∂N
and a PL homeomorphism h : N0 × I → N such that h(x, 0) = x for every
x ∈ N0 and h(λ(x, 0), s) = λ(x, s) for each x ∈ K and s ∈ I. Since N0 is
a regular neighborhood of λ(K × {0}), it can be identified with Map(r) for
some PL map r : ∂N0 → λ(K × {0}). Thus each point in N0 � λ(K × {0})
can be specified as 〈x, u〉, where x ∈ ∂N0 and u ∈ [0, 1), and each point
in N � λ(K × I) has the form h(〈x, u〉, s) with s ∈ I. Define a function
µ : K × I × I → [−1, 1] by φt(λ(x, s)) = λ(x, s + µ(x, s, t)). (The function
µ simply measures how far along the fiber λ({x} × I) the point λ(x, s) is
moved by φt.) We then can define Φt : N → N by

Φt(h(〈x, u〉, s)) = h(〈x, u〉, s+ µ(r(x), s, ut))

for any point h(〈x, u〉, s) ∈ N � λ(K × I) and Φt|λ(K × I) = φt. It is easy
to check that Φ0 = Id, Φt|∂N0 × I = Id, and that Φt is a homeomorphism
for each t. The fact that φt|λ(K × ∂I) = Id implies that Φt|N0 × ∂I = Id,
so Φt|∂N = Id. Therefore Φt can be extended via the identity to all of M .

The uniform continuity of h implies the existence of a number δ > 0 such
that if d(x1, x2) < δ, then d(h(x1, s), h(x2, s)) < ε for every x1, x2 ∈ N0 and
for every s ∈ I. The last condition in the theorem is achieved by trimming
N0 so that d(x, r(x)) < δ for every x ∈ N0. �

Historical Notes. Theorem 5.3.1 is due to Zeeman, (1960) and (1963a),
and is known as Zeeman’s Unknotting Theorem. Hudson (1966b) proved a
different version of the unknotting theorem. The Concordance Implies Un-
knotting Theorem (Theorem 5.3.6) is due to Hudson, (1966a) and (1970),
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who proves the much stronger statement: concordance implies ambient iso-
topy. Hudson’s theorem is valid without the simply connected hypothesis.
Examples 5.3.2 and 5.3.4 come from (Zeeman, 1963a); Zeeman attributes
Example 5.3.2 to Irwin and Example 5.3.4 to Hudson. Examples 5.3.2
and 5.3.3 are obviously generalizations of the familiar Hopf and Whitehead
links in R3.

The Cone Unknotting Theorem (Theorem 5.3.7) is due to W. B. R. Lick-
orish (1965), while the Product Neighborhood Theorem (Theorem 5.3.9) is
due to Lickorish and Siebenmann (1969). The fact that CU(n−1) is needed
to prove PN(n) was pointed out by Edwards (1975a), who also outlined
the inductive proof CU(n − 1) ⇒ LF(n) ⇒ PN(n) ⇒ CU(n). Both Licko-
rish (1965) and Edwards (1975a) base their proofs of the Cone Unknotting
Theorem on “sunny collapsing,” which is a technique introduced by Zeeman
(1963b) to prove the unknotting of ball pairs theorem and later reinterpreted
by Hudson (1969b) as a way to factor collapses.

Exercises

5.3.1. Prove that the embedding e in Example 5.3.3 is knotted in the
sense that e(Sk) does not bound a (k + 1)-cell in S1 × S2k.

5.3.2. Let f : S1 × Sk → S2k+2 be a PL embedding.
(a) For every a ∈ S1 there exists a PL (k+1)-cellA such that ∂A =

f({a}×Sk) and IntA∩f(S1×Sk) = ∅. [Hint: Use the Whitney
Lemma (Rourke and Sanderson, 1972, Theorem 5.12). You
may need to introduce additional points of intersection first.]

(b) The invariant k(f, a, b, c) of Example 5.3.4 is defined for every
a, b, c ∈ S1 and depends only on f .

5.3.3. Use the Product Neighborhood Theorem to give a new proof of
Trivial Range Unknotting Theorem 4.1.1.

5.4. Unknotting PL embeddings of polyhedra

Polyhedra do not unknot as readily as manifolds. In particular, the connec-
tivity conditions of the previous section do not suffice to assure unknotted-
ness of embedded polyhedra, as the following example illustrates.

Example 5.4.1. If K is the polyhedron obtained by connecting two disjoint
copies of Sk with an arc, then K can be knotted in S2k+1.

Proof. The example is obtained from the knotted embedding of Sk × S0

in Example 5.3.2 by connecting the two components with an arc. If the
embedding of the polyhedron could be unknotted, then the embedding of
Sk × S0 could be unknotted. See Figure 5.16. �
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Figure 5.16. An unknotted pair of eyeglasses and a knotted pair

The example shows that we cannot expect to derive a global unknotting
theorem for embedded polyhedra comparable in strength to the theorems
in the previous section for embedded manifolds. Instead we will add the
hypothesis that the PL embeddings to be unknotted are both close to some
specified topological embedding. The topological embedding serves as a
template that rectifies the potential global knotting of the embeddings con-
sidered. When the existence of this template embedding is assumed, no
connectivity conditions are required.

Theorem 5.4.2 (Unknotting Close Polyhedra). Let e : Kk → Mn be a
topological embedding of a compact polyhedron K into a PL manifold M with
k ≤ n− 3. For every ε > 0 there exists a δ > 0 such that if λ0, λ1 : K → M
are two PL embeddings each pointwise within δ of e, then there is a PL ε-push
ψ of (M, e(K)) such that λ0 = ψ ◦λ1. Moreover, if K0 is a subpolyhedron of
K for which λ0|K0 = λ1|K0, then the supporting isotopy Ψt can be chosen
so that Ψt|λ1(K0) = inclusion for every t.

Example 5.4.3. Theorem 5.4.2 fails without the topological embedding e.

Proof. For every ε > 0, it is possible to construct the nonequivalent embed-
dings of Example 5.4.1 so that the distance between them is less than ε. �
Example 5.4.4. Theorem 5.4.2 fails if the domain is a codimension-three
compactum rather than a polyhedron.

Proof. For example, let X be the compactum constructed by stringing
together a null-sequence of k-spheres along an arc. The obvious embedding
of X into S2k+1 can be arbitrarily closely approximated by embeddings of
the sort illustrated in Figure 5.17. �

The proof of Theorem 5.4.2 is based on two somewhat more technical
results: an engulfing theorem and an unknotting theorem for embeddings in
a regular neighborhood. Those two results are stated next.

Theorem 5.4.5. Let K be a compact k-dimensional polyhedron and let
e : K → M be a topological embedding of K into an n-dimensional PL
manifold, n ≥ k + 3. For every ε > 0 there exists a δ > 0 such that if
λ0, λ1 : K → M are two PL embeddings within δ of e and N0 is any regular
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...

...

Figure 5.17. A compactum and a nearby knotted version

neighborhood of λ0(K) in M , then there exists a PL ε-push ψ of (M, e(K))
such that ψ(λ1(K)) ⊂ N0. Moreover, if K0 is a subpolyhedron of K and
λ0|K0 = λ1|K0, then ψt can be chosen so that ψt|λ1(K0) = inclusion for
every t.

Proof. This is a standard engulfing argument. The existence of the nec-
essary short homotopies follows from Corollary 0.6.5. The existence of the
ε-push is confirmed by an application of Generalized Controlled Engulfing
Theorem 3.3.7. �

Remark. It is in the proof of Theorem 5.4.5 that the template embedding e
is needed. Because e is known at the outset, we can use Corollary 0.6.5 to
specify an arbitrarily long but finite sequence of neighborhoods of e(K) such
that for each neighborhood there is a short homotopy through the previous
neighborhood into λ0(K). The key fact is that the neighborhoods themselves
can be specified first, before the particular PL embeddings λ0 and λ1 are
known. If the embedding e were determined at the same time as λ0 and λ1,
we still would be able to find the first of the required homotopies, but there
would be no way to obtain the others.

Definition. Let K be a compact polyhedron. An abstract regular neigh-
borhood of K is any compact PL ∂-manifold N such that K ⊂ IntN and
N ↘ K. The retraction r : N → K induced by the mapping cylinder struc-
ture of N is called a contractible retraction because the point preimages
under r are contractible subsets of N .

Theorem 5.4.6 (Unknotting in a Regular Neighborhood). Let K be a com-
pact k-dimensional polyhedron and let n be an integer with n ≥ k + 3. For
every ε > 0 there exists a δ > 0 such that if N is any n-dimensional ab-
stract regular neighborhood of K with contractible retraction r : N → K and



214 5. Codimension-three Embeddings

λ : K → IntN is a PL embedding such that ρ(r ◦ λ, IdK) < δ, then there
exists a PL isotopy ψt : N → N such that

(1) ψ0 = IdN ,

(2) ψt|∂N = Id∂N for every t,

(3) ρ(r ◦ ψt, r) < ε for every t, and

(4) ψ1 ◦ λ = IdK .

Moreover, if K0 is any subpolyhedron of K such that λ|K0 = inclusion, then
ψt can be constructed so that ψt|K0 = inclusion for every t.

Remark. It is critically important to note that the number δ in Theo-
rem 5.4.6 depends only on K, n, and ε and is independent of the particular
abstract regular neighborhood N .

The proof of Theorem 5.4.6 will occupy most of the remainder of this
section. For now let us see how it implies Theorem 5.4.2.

Proof of Theorem 5.4.2. Let ε > 0 and e : K → M be given. Choose
δ1 > 0 to satisfy the conclusion of Theorem 5.4.6 with input ε/2. (Use the
metric on K determined by considering e(K) to be a subspace of M .) Then
choose δ > 0 to satisfy the conclusion of Theorem 5.4.5 with input δ1/4.

Now consider PL embeddings λ0, λ1 : K → M as in the theorem. Take a
close regular neighborhood N0 of λ0(K) with collapsible retraction r : N0 →
λ0(K) such that the distance (in M) from x to r(x) is less than δ. By the
choice of δ there is a δ1/8-push ψ1 such that ψ1(λ1(K)) ⊂ N0. It is easy to
check that the distance from λ0 to r ◦ ψ1 ◦ λ1 is less than δ1 (as measured
in e(K)). The choice of δ1 guarantees the existence of an (ε/2)-push from
ψ1 ◦ λ1 to λ0. The concatenation of the two pushes is the push we need.

If K0 is a subpolyhedron of K for which λ0|K0 = λ1|K0, then both
Theorem 5.4.6 and Theorem 5.4.5 allow λ1(K0) to be kept fixed. Hence the
final push will keep λ1(K0) fixed as well. �

We turn now to the proof of Unknotting in a Regular Neighborhood
Theorem 5.4.6. The proof consists of four parts.

Step 1: The polyhedron K is subdivided into cones that fit together
nicely and for which there is a corresponding handle decomposition
of the abstract regular neighborhood N .

Step 2: A slicing theorem allows the embedded polyhedron to be
adjusted so that the frontiers of the cones are mapped setwise into
the boundaries of the corresponding handles of N .

Step 3: The (n−1)-dimensional case of the Unknotting in a Regular
Neighborhood Theorem is applied in the boundaries of the handles
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to make the frontiers of the cones pointwise match the correspond-
ing subsets of K.

Step 4: The Cone Unknotting Theorem is applied to straighten out
the embedding on the interiors of the cones.

Step 3 is really a double induction: the frontiers of the cones are straight-
ened out inductively (first the frontiers of the cones in the 0-handles, then
those in the 1-handles, etc.) and each frontier is straightened by applying a
lower-dimensional case of the theorem itself. When the frontiers of the cones
in the i-handles are straightened, the frontiers of those in the (i−1)-handles
have already been straightened and it is necessary to keep them fixed. For
this reason all the results in the remainder of this section must be stated
and proved for pairs of polyhedra. This adds considerable complexity to the
statements of the various lemmas, but it is an unavoidable consequence of
the overall structure of the proof of the unknotting theorem. We proceed
by stating relative versions of the technical tools from the previous section.

Theorem 5.4.7 (Relative Cone Unknotting). Let K be a compact k-dimen-
sional polyhedron and let L be a subpolyhedron with dimL ≤ k−1. If the pair
(K,L) is faithfully contained in (Bn, ∂Bn), n ≥ k + 3, and e : (cK,K) →
(cBn, Bn) is a faithful PL embedding such that e−1(c∂Bn, ∂Bn) = (cL, L)
and e|K ∪ cL = incl, then there exists a PL homeomorphism φ : cBn → cBn

such that φ|Bn ∪ c∂Bn = Id and φ ◦ e = inclcK .

Definition. Suppose (K,L) is a pair of compact polyhedra, (Q,W ) is a
pair of PL ∂-manifolds such that W is a codimension-zero submanifold of
∂Q, the pair (K × I, L× I) is faithfully contained in (Q,W ), and

(K × I) ∩ (∂Q� IntW ) = K × ∂I.

A regular neighborhood pair (N,M) of (K × I, L× I) in (Q,W ) is said to
meet the boundary regularly if it is possible to write N ∩ (∂Q � IntW ) =
N0 
N1 and M ∩ (∂Q� IntW ) = M0 
M1 in such a way that (Ni,Mi) is
a regular neighborhood pair for (K ×{i}, L×{i}) in (∂Q� IntW,∂W ) and
(M,M0∪M1) is a regular neighborhood of (L× I, L×∂I) in (W,∂W ). (See
Figure 5.18.)

Theorem 5.4.8 (Relative Product Neighborhood). Let K, L, Q, W , M , N ,
M0, M1, N0, and N1 be as in the definition above, where dimL ≤ dimK−1
and dimK ≤ dimQ− 4. Then there exists a PL homeomorphism φ : N0 ×
I → N such that φ(M0 × I) = M , φ(N0 × {1}) = N1, φ(M0 × {1}) = M1

and φ|(N0 × {0}) ∪ (K × I) = Id.

Theorems 5.4.7 and 5.4.8 are proved in the same way as are their ab-
solute counterparts in §5.3. In particular, the Relative Cone Unknotting
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Figure 5.18. In this figure Q is the solid cylinder, W consists of the
vertical walls of the cylinder, K is a segment, L is an endpoint of K,
and M is the shaded rectangle

Theorem follows from the Relative Product Neighborhood Theorem by es-
sentially the same argument as in the absolute case. The Relative Cone
Unknotting Theorem in ambient dimension n − 1 implies a Relative Lo-
cal Flatness Theorem in ambient dimension n which, in turn, implies the
Relative Product Neighborhood Theorem by the same argument as in §5.3.
The following Relative Covering Isotopy Theorem is a consequence of the
Relative Product Neighborhood Theorem.

Theorem 5.4.9 (Relative Covering Isotopy). Let K be a compact k-dimen-
sional polyhedron, let L be a subpolyhedron with dimL ≤ k − 1, and let M
be an n-dimensional PL ∂-manifold, k ≤ n − 4. If λ : (K × R, L × R) →
(M,∂M) is a faithful PL embedding and φt : λ(K×R) → λ(K×R) is a fiber
preserving isotopy with compact support, then there exists an ambient isotopy
Φt of M that covers φt and also has compact support. If φt|λ(L× R) = Id,
then Φt|∂M = Id. Furthermore, if ε > 0 is specified, then it is possible
to construct Φt in such a way that for each y ∈ M either Φt(y) = y for
every t or there exists one x ∈ K such that the path Φt(y) is contained in
the ε-neighborhood of λ({x} × R).

Proof. There is a compact interval J such that the support of every φt

is contained in λ(K × J). Find a PL ∂-manifold M1 ⊂ M such that
M1 ∩ λ(K ×R) = λ(K × J) and λ|K × J : (K × J,K × ∂J) → (M1, ∂M1) is
faithful. The proof of Covering Isotopy Theorem 5.3.12, with the absolute
Product Neighborhood Theorem replaced by the Relative Product Neigh-
borhood Theorem, gives an isotopy of M1 that covers φt|λ(K × J). Extend
via the identity to construct the required isotopy of M . �

We are now ready for the Slicing Lemma. In the statement of the Slicing
Lemma there are several projection maps. We use π to denote the projec-
tions π : M × R → R and π : K × [−1, 1] → [−1, 1] ⊂ R, while we use πM
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to denote the projection πM : M × R → M . We make the following ad hoc
definition in order to simplify the statement of the theorem.

Definition. A map f : K × [−1, 1] → M × R is sliced if f(K × [−1, 0)) ⊂
M × (−∞, 0), f(K × {0}) ⊂ M × {0}, and f(K × (0, 1]) ⊂ M × (0,∞).

Theorem 5.4.10 (Slicing Lemma). Let (K,L) be a pair of compact poly-
hedra with dimK = k and dimL ≤ k − 1 and let M be an n-dimensional
PL ∂-manifold, n ≥ k + 3. For every ε > 0 there exists a δ > 0 such
that if λ : (K × [−1, 1], L × [−1, 1]) → (M × R, ∂M × R) is a faithful
PL embedding such that f |L × [−1, 1] : L × [−1, 1] → ∂M × R is sliced
and d(π(λ(w)), π(w)) < δ for every w ∈ K × [−1, 1], then there exists
a PL isotopy ψt of M × R such that ψ0 = Id, ψt|∂M × R = Id, and
ψ1λ : K × [−1, 1] → M × R is sliced.

For every η > 0, ψt can be constructed to have the following additional
property: For each z ∈ M × R, either the path ψt(z) is constant or there
exists one x ∈ K such that the entire path ψt(z) lies in Nη(πM (λ({x} ×
[−ε, ε]))) × [−ε, ε], where Nη denotes the η-neighborhood in M . Moreover,
if K0 is a subpolyhedron of K such that λ(x, t) = 〈πMλ(x, 0), t〉 for every
〈x, t〉 ∈ K0× [−1, 1], then ψt can be constructed so that ψt|λ(K0× [−1, 1]) =
inclusion.

The Slicing Lemma has an interesting corollary regarding stability of
embeddings. The proof of the corollary is left as an exercise.

Corollary 5.4.11 (Stability of Embedding). Let K be a compact k-dimen-
sional polyhedron and let M be an n-dimensional compact PL manifold,
n ≥ k + 3. Then K can be PL embedded in M if and only if K × R can be
properly PL embedded in M × R.

The proof of Slicing Theorem 5.4.10 is based on shadow building tech-
niques. Let us clarify what is meant by a shadow in this context. Assume
K is a polyhedron and M is a ∂-manifold. For X ⊂ K × [−1, 1], define the
shadow of X by

Sh(X) = {〈x, s〉 ∈ K × [−1, 1] | 〈x, t〉 ∈ X for some t ≥ s}.
For Y ⊂ M ×R the shadow of Y , Sh(Y ), is defined similarly. Note that the
same notation is used for shadows in either setting.

If C ⊂ K × [−1, 1] is a subpolyhedron such that C ⊃ K × [−1, 0] and
Sh(C) = C, then C has a regular neighborhood N in K × [−1, 1] whose
frontier intersects each vertical fiber {x}× [−1, 1] in exactly one point. Such
a PL neighborhood will be called vertically simple. Given any neighborhood
U of C in K × [−1, 1], there is a vertically simple regular neighborhood N
of C such that C ⊂ N ⊂ U . Vertically simple neighborhoods of subsets of
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M×R are defined similarly. A subsetD ofM×R such thatD ⊃ M×(−∞, 0]
and Sh(D) = D has close vertically simple regular neighborhoods in M ×R
(see Figure 5.19).

N

M

D

–1

0

+1

Figure 5.19. N is a vertically simple neighborhood of D

Proof of Theorem 5.4.10. Let us first consider the case in which L, ∂M ,
and K0 are all empty. The idea of the proof is to construct subpolyhedra C
of K × [−1, 1] and D of M × (−∞, 1] satisfying the following conditions.

(1) C = Sh(C) and C ⊃ K × [−1, 0],

(2) D = Sh(D) and D ⊃ M × (−∞, 0],

(3) C = λ−1(D),

(4) C �K × [−1, 0] ⊂ K × (0, δ1) for some small number δ1 > 0, and

(5) D �M × (−∞, 0] ⊂ Nε(λ(K × [−1, 1]) ∩M × {0}).
Once the polyhedra C and D have been constructed, it is quite easy to

obtain the isotopy ψt needed to complete the proof. Triangulate K× [−1, 1]
and M × R compatibly and then take a derived subdivision of each so that
the simplicial neighborhood N1 of C in K × [−1, 1] is a vertically simple
regular neighborhood and so that N = λ(N1) is the simplicial neighborhood
of D in M × R. Choose a nearby vertically simple neighborhood N ′ of D.
There is a fiber preserving isotopy of K × [−1, 1[ that pushes K × {0} to
∂N1. By Theorem 5.4.9 this isotopy is covered by an isotopy of M ×R that
pushes λ(K × {0}) into the boundary of N . There is a second isotopy of
M×R that pushes N to N ′ and keeps D fixed and there is a vertical isotopy
of M ×R that takes the boundary of N ′ to M × {0}. The concatenation of
the three isotopies is the isotopy ψt of the conclusion of the theorem. The
motion in Theorem 5.4.9 can be kept arbitrarily near to fibers of λ and the
other isotopies are both small in M ×R, so the final isotopy satisfies the size
constraints specified in the theorem.

In order to complete the proof of the special case of the theorem it
remains only to construct C and D. The construction involves the back and
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D
C

K×{0}

K×{+1}

K×{–1}

λ(K×[–1,1])

M×{0}

M×{–1}λ

N=λ(N )
N1

1

λ (N )-1

Figure 5.20. In this figure, λ(K × (0, 1]) ∩M × (−∞, 0] consists of a
single point.

forth inductive shadow building that is common to most codimension-three
engulfing proofs. To begin the induction, shift λ into general position and
define C0 = Sh(λ−1(M × (−∞, 0]))∪K× [−1, 0] and D0 = Sh(λ(C0))∪M ×
(−∞, 0]. In general, we must expect that dimC0 = k + 1.

The next step is to shift λ into general position again, this time keeping
C0 fixed, and then define C1 = C0∪Sh(λ−1(D0)) and D1 = D0∪Sh(λ(C1)).
Note that dim(C1 � C0) ≤ k. Now shift λ into general position once
more, keeping C1 fixed, and define C2 = C1 ∪ Sh(λ−1(D1)) and D2 =
D1 ∪ Sh(λ(C2)). Then dim(C2 � C1) ≤ k − 1, so the induction is under
way. It results, after k steps, in the polyhedra C and D that we need.

In case L and ∂M are nonempty, we must take care to ensure that
C ∩ (L × [−1, 1]) = L × [−1, 0] and D ∩ (∂M × R) = ∂M × (−∞, 0]. If
that is done, then the isotopy ψt will be the identity on ∂M ×R. Finally, if
K0 �= ∅, the same proof still works. We merely need to add the requirement
that λ(K0×[−1, 1]) be kept fixed when the embedding is shifted into general
position in IntM × R. Then, for each i, Ci ∩ (K0 × (0, 1]) = ∅ and Di ∩
(λ(K0 × (0, 1]) = ∅, so the isotopy constructed will leave λ(K0 × [−1, 1])
fixed. �

Next we generalize the definition of abstract regular neighborhood to
the case of pairs. Using the expanded terminology we can state the relative
version of the Unknotting in a Regular Neighborhood Theorem that will
form the basis for the inductive proof.

Definition. Let (K,L) be a pair of compact polyhedra. An n-dimensional
abstract regular neighborhood of (K,L) is a PL ∂-manifold pair (Nn,Mn−1)
such that M ⊂ ∂N , L = K∩∂N , (K,L) ⊂ (IntN ∪IntM, IntM), and there
exists a contractible retraction r : N → K for which r|M is a contractible
retraction of M to L.
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Figure 5.21 shows an example of an abstract regular neighborhood of a
pair. Observe that M = r−1(L) ∩ ∂N is not required.

N

M

K

L

Figure 5.21. An abstract regular neighborhood of the pair (K,L)

Theorem 5.4.12 (Unknotting in a Regular Neighborhood of a Pair). Let
(K,L) be a compact polyhedral pair with dimK = k ≤ n − 3 and dimL ≤
k − 1. For every ε > 0 there exists a δ > 0 such that if (N,M) is any
n-dimensional abstract regular neighborhood of (K,L) with contractible re-
traction r : N → K and λ : (K,L) → (IntN ∪ IntM, IntM) is a faithful PL
embedding such that λ|L = IdL and ρ(r ◦λ, IdK) < δ, then there exists a PL
isotopy ψt : (N,M) → (N,M) such that

(1) ψ0 = IdN ,

(2) ψt|∂N = Id∂N for every t,

(3) ρ(r ◦ ψt, r) < ε for every t, and

(4) ψ1 ◦ λ = IdK .

Moreover, if P is any subpolyhedron of K such that λ|P = inclP , then ψt

can be constructed so that ψt|P = inclP for every t.

It is clear that Theorem 5.4.6 is a special case of Theorem 5.4.12, so it
suffices to prove the latter.

The handle-like decomposition. As indicated earlier, the proof of The-
orem 5.4.12 uses a decomposition of K into cones. We now construct that
decomposition. The process is based on the standard construction of a han-
dle decomposition of a PL manifold from a second derived subdivision and
the cones constructed in the polyhedron K share many of the properties of
the handles in a handle decomposition of a manifold. For this reason we
will refer to the decomposition as a handle-like decomposition of K. The
background for the construction is the material on pages 81–83 of (Rourke
and Sanderson, 1972).

Let ε > 0 and the compact polyhedral pair (K,L) be given. Fix a trian-
gulation T of K. Subdivide if necessary so that T restricts to a triangulation
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of L. For each σ ∈ T , let σ̂ denote the barycenter of σ. Let T ′′ denote the
second barycentric subdivision of T . Define Hσ to be the underlying poly-
hedron of the star of σ̂ in T ′′ and define Gσ to be the intersection with L;
i.e., Hσ = St(σ̂, T ′′) and, in case σ ⊂ L, Gσ = St(σ̂, T ′′|L). We may assume
that the mesh of T is small enough that diamHσ < ε/2 for every σ ∈ T .

The decomposition {Hσ} of the polyhedron K is like a handle decom-
position in that the Hσ cover K, each Hσ is a cone, and Hσ ∩ Hτ = ∅
whenever dimσ = dim τ and σ �= τ . There is a natural PL homeomorphism
φ : Hσ → σ × (σ̂ ∗ Lk(σ, T )). In case σ ⊂ L, φ is a homeomorphism of pairs

φ : (Hσ, Gσ) ∼= (σ × (σ̂ ∗ Lk(σ, T )), σ × (σ̂ ∗ Lk(σ, T |L))).

We use φ to identify the following subsets of Hσ (see Figure 5.22).

Aσ = φ−1(σ × (Lk(σ, T ))),

Bσ = φ−1(∂σ × (σ̂ ∗ Lk(σ, T ))),
Cσ = φ−1(∂σ × (Lk(σ, T ))) = Aσ ∩Bσ, and

Dσ = φ−1(σ × (Lk(σ, T |L))) (in case σ ⊂ L).

σ

σ

σ

σ

σ

Lk(σ,T)

A

B σB

σD
σG

σCσC

σH

Figure 5.22. The figure on the left shows the portion of Hσ that is
contained in one simplex of St(σ, T ); the right-hand figure shows how
several such pieces combine to form Hσ ⊂ St(σ, T ).

Let us define

Hi =
⋃

{Hσ | dimσ = i} and Gi =
⋃

{Gσ | dimσ = i}.

Define Ai, Bi, and Ci similarly. Then define Ki = ∪{Hj | j ≤ i} and
Li = ∪{Gj | j ≤ i}. Observe that K0 ⊂ K1 ⊂ · · · ⊂ Kk = K and
L0 ⊂ L1 ⊂ · · · ⊂ Lk−1 = L. The essential properties of the handle-like
decompositions {Hσ}, {Gσ} and the filtrations {Ki}, {Li} are as follows.
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(1) Each Hσ and each Gσ is a cone; in particular, Hσ = σ̂ ∗ Lk(σ̂, T ′′)
and Gσ = σ̂ ∗ Lk(σ̂, T ′′|L).

(2) FrHσ = Lk(σ̂, T ′′) = Aσ ∪Bσ. (Here Fr denotes the frontier in K.)

(3) FrKi−1 = (FrKi �Ai) ∪Bi.

(4) (Ki,FrKi, Li) = (Ki−1,FrKi−1 �Bi, Li−1) ∪ (Hi, Ai, Gi).

(5) (Bi, Ci, Di) = (Ki−1,FrKi−1 �Bi, Li−1) ∩ (Hi, Ai, Gi).

(6) The pair (Bi, Ci∪Di) is collared in (Ki−1,FrKi−1 �Bi∪Li−1) and
in (Hi, Ai ∪Gi) and is, therefore, bicollared in (Ki,FrKi ∪ Li).

Next we state a lemma that formalizes the inductive step in the proof of
Theorem 5.4.12. The lemma says, roughly, that if K can be split into two
pieces in such a way that the intersection of the two pieces is collared in each,
then there exist a corresponding decomposition of N and an isotopy that
pushes λ restricted to the intersection of the two pieces back to the identity
and pushes λ restricted to each piece into the appropriate part of N .

Lemma 5.4.13. Assume Theorem 5.4.12 in ambient dimension n− 1 and
let (K,L) be a compact polyhedral pair with dimL ≤ dimK − 1 ≤ n − 4.
Suppose (K,L) can be written as (K,L) = (K1, L1) ∪ (K2, L2), where K1

and K2 are subpolyhedra of K and Li = L ∩ Ki, in such a way that the
intersection (K0, L0) = (K1 ∩K2, L1 ∩L2) is bicollared in (K,L). Then for
every ε > 0 there exists a δ > 0 such that, given

(1) an n-dimensional abstract regular neighborhood (N,M) of (K,L)
with contractible retraction r : N → K, and

(2) a faithful PL embedding λ : (K,L) → (N,M) such that λ|L = inclL
and ρ(r ◦ λ, IdK) < δ,

there exist

(3) a regular neighborhood (N ′,M ′) of (K,L) in (N,M) and a con-
tractible retraction r′ : N ′ → K arbitrarily close to r|N ′ such that
(a) λ(K) ⊂ M ′,
(b) (N0,M0) = ((r′)−1(K0), (r

′|M)−1(L0)) is an abstract regular
neighborhood of (K0, L0), and

(c) (Ni,Mi) = ((r′)−1(Ki), N0 ∪ (r′|M)−1(Li)), i = 1, 2, is an
abstract regular neighborhood of (Ki,K0∪Li), with contractible
retractions induced by r′, and

(4) a PL isotopy ψt of N such that
(a) ψ0 = IdN ,
(b) ψt|∂N = Id∂N ,
(c) ρ(rψt, r) < ε,
(d) ψ1λ|K0 = inclK0 , and
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(e) ψ1λ|Ki is a faithful embedding of (Ki,K0 ∪L0) into (Ni, ∂Ni)
for i = 1, 2.

Furthermore, if P is a subpolyhedron of K such that P0 = P∩K0 is bicollared
in K compatibly with (K0, L0) in (K,L) and if λ|P = IdK , then ψt may be
chosen in such a way that ψt|P = inclP .

Proof of Theorem 5.4.12. Let λ : (K,L) → (N,M) be as in the state-
ment of the theorem. Lemma 5.4.13 will be used to successively adjust the
following polyhedra.

(Kk, Lk) = (Kk−1, Lk−1) ∪ (Hk, Gk)

(Kk−1,FrKk−1 ∪ Lk−1) = (Kk−2,FrKk−2 �Bk−1 ∪ Lk−2)

∪ (Hk−1, Ak−1 ∪Gk−1)

...

(K1,FrK1 ∪ L1) = (H0,FrK0 �B1 ∪G0) ∪ (H1, A1 ∪G1).

Even though Lemma 5.4.13 will be used to adjust Kk first, then Kk−1, . . . ,
and finally K1, the lemma must actually be applied in reverse order so that
all of the ε’s and δ’s are chosen before the first adjustment is made. Let ε be
the positive number given in the statement of Theorem 5.4.12 and use ε/4 as
the input for the application of Lemma 5.4.13 to the last pair of polyhedra
listed. The δ that results from this application of the lemma becomes the
ε for the application of the lemma to the preceding polyhedra, and so on.
The δ of the conclusion of Theorem 5.4.12 is the δ that results from the final
application of Lemma 5.4.13 to (Kk, Lk). [Note that Lk = Lk−1 and that
Gk = ∅.] The relationship between ε and δ in Lemma 5.4.13 depends only
on the polyhedra involved and does not depend on the particular abstract
regular neighborhoods or embeddings. Since we have identified all the Ki

and Li before the beginning of this proof, it is possible to choose the ε’s and
δ’s in this way.

Now suppose (N,M), r : N → K, and λ : K → N are as in Theo-
rem 5.4.12 with δ chosen as in the preceding paragraph. Apply Lemma 5.4.13
to (K,L) = (Kk, Lk) = (Kk−1, Lk−1) ∪ (Hk, Gk) to obtain a new regular
neighborhood N ′, a new contractible retraction r′ : N ′ → K, and the PL
isotopy ψt. Define (Nk−1,Mk−1) = ((r′)−1(Kk−1), (r

′)−1(FrKk−1 ∪ Lk−1)).
Observe that N ′ �Nk−1 consists of a finite number of n-cells Nσ, one for
each k-simplex σ ⊂ K, and that ψ1 ◦ λ|Hσ : Hσ → Nσ is a faithful PL
embedding that is the identity on FrHσ. Next apply Lemma 5.4.13 to
(Kk−1, Lk−1), decomposed as above, along with the regular neighborhood
(Nk−1,Mk−1) and the PL embedding ψ1 ◦ λ|Kk−1. The result is a smaller
regular neighborhood and new PL isotopy. Restrict to Kk−2 and apply the
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lemma again. Continue this process, successively applying the lemma to the
polyhedra listed at the beginning of this proof.

After all the applications of the lemma have been completed, λ has been
isotoped to a new PL embedding of K. In addition, for each simplex σ ⊂ K
we have identified an abstract regular neighborhood (Nσ,Mσ) of (Hσ, Gσ)
such that the various Nσ have disjoint interiors. If we let λσ denote the
restriction of the new embedding to Hσ, then λσ : (Hσ,FrHσ ∪ Gσ) →
(Nσ,Mσ) is a faithful PL embedding with λσ|FrHσ ∪ Gσ = Id. We can
therefore apply Relative Cone Unknotting Theorem 5.4.7 to each ball-cone
pair (Nσ, Hσ) to unknot λσ by an ambient isotopy that is the identity on
∂Nσ ∪Gσ. The size of this last isotopy is limited by the size of the Hσ, so
it is small when measured in K. Since the Nσ have disjoint interiors we can
unknot all the Hσ at once to isotope λ back to the identity. �

This leaves only the proof of Lemma 5.4.13. The conclusion of the
lemma asserts the existence of a new abstract regular neighborhood N ′ and
the existence of the PL isotopy ψt. The next proof shows that we really only
need to construct N ′; then the existence of ψt will follow from the Slicing
Lemma and the inductive hypothesis.

Proof of Lemma 5.4.13. Given K = K1 ∪ K2 as in the statement of
Lemma 5.4.13, apply Lemma 5.4.14, below, to replace N with an abstract
regular neighborhood N ′ that is a product N0×R near K0 = K1∩K2. Then
use Slicing Theorem 5.4.10 to adjust λ so that K0 is mapped setwise into
N0. Finally, apply the inductive hypothesis in N0 to isotope λ|K0 to the
identity. The isotopy can be extended to N ′ using the product structure.

Given ε > 0, the inductive hypothesis provides a δ0 > 0 so that if
ρ(λ|K0, incl) < δ0, then the isotopy of N0 is limited in size by ε. Use δ0 as
the ε in the Slicing Lemma to obtain a second δ. This δ can serve as the δ of
the conclusion of Lemma 5.4.13 because the adjustment in Lemma 5.4.14 can
be made arbitrarily small, independent of any other size considerations. �

Lemma 5.4.14. Let (K,L), (N,M), r : N → K, and λ : K → N be as
in the statement of Lemma 5.4.13. Assume that the bicollar on (K0, L0) is
realized by the inclusion (K0× [−2, 2], L0× [−2, 2]) ⊂ (K,L). Then for every
η > 0 there exist

(1) an abstract regular neighborhood (N ′,M ′) of (K,L) and a con-
tractible retraction r′ : N ′ → K such that
(a) (λ(K), λ(L)) ⊂ (N ′,M ′),
(b) ρ(r′, r|N ′) < η, and
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(c) (N0,M0) = ((r′)−1(K0), (r
′|M ′)−1(L0)) is an abstract regu-

lar neighborhood of (K0, L0) with contractible retraction r0 =
r′|N0, and

(2) a PL homeomorphism

φ : ((r′)−1(K0×[−1, 1]), (r′|M ′)−1(L0×[−1, 1])) → (N0×[−1, 1],M0×[−1, 1])

such that
(a) φ|N0 ∪K0 × [−1, 1] = Id, and
(b) r′|(r′)−1(K0 × [−1, 1]) = (r0 × Id) ◦ φ.

Proof. We begin by constructing a regular neighborhood N ′ that contains
the required bicollar. We will then modify the initial regular neighborhood
so that the other conclusions of the lemma are satisfied as well.

Let T be a triangulation of N that contains K as a full subcomplex.
Subdivide so that, for some small positive number γ, K0 × [−1− 2γ, 1+ 2γ]
is a subcomplex and there are no vertices in either K0 × (−1 − 2γ,−1)
or K0 × (1, 1 + 2γ). Define (N ′,M ′) to be (N(K,T ′), N(L, T ′|M)), the
simplicial neighborhoods of K and L in a first derived subdivision of T , and
let q : N ′ → K be an associated contractible retraction. We may assume
that q is simplicial relative to T ′ and, by appropriate choice of the derived
subdivision T ′, we can arrange that q is arbitrarily close to the identity.

Define subpolyhedra Q and P of N ′ and M ′ by

(Q,P ) = (q−1(K0 × [−1− γ, 1 + γ]), (q|M)−1(L0 × [−1− γ, 1 + γ])).

Observe that Q ∩ K = K0 × [−1 − γ, 1 + γ], Q is a PL ∂-manifold that
collapses to K0× [−1−γ, 1+γ], and (q|Q)−1(K0×{−1−γ}) ⊂ ∂Q.2 Define

(Q0, P0) = ((q|Q)−1(K0 × {−1− γ}), (q|P )−1(L0 × {−1− γ})).

It follows from the Simplicial Neighborhood Theorem (Rourke and Sander-
son, 1972, Theorem 3.11) that (Q0, P0) is a regular neighborhood pair in
(∂Q, ∂P ). By Relative Product Neighborhood Theorem 5.4.8, there is a
homeomorphism

ξ : (Q0 × [−1− γ, 1 + γ], P0 × [−1− γ, 1 + γ]) → (Q,P )

such that ξ(x,−1 − γ) = x for each x ∈ Q0 and ξ|K0 × [−1 − γ, 1 + γ] =
inclusion.

Let θ : [1, 1 + γ] → [−1 − γ, 1 + γ] be the linear homeomorphism with
θ(1 + γ) = 1 + γ and define θ̄ : K0 × [−1 − γ, 1 + γ] → K0 × [1, 1 + γ] by

2The reason Q is a ∂-manifold is that we have arranged for there to be no vertices in the
preimage of either −1−γ or 1+γ. As a result, the frontier of Q is collared. Values such as −1−γ
and 1 + γ are called regular values of the projection onto the interval.
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θ̄(x, t) = 〈x, θ−1(t)〉. Then define r′ : N ′ → K by

r′(z) =

⎧⎪⎨⎪⎩
q(z) if z ∈ N ′ �Q

〈q(x), t〉 if z = ξ(x, t) and − 1− γ ≤ t ≤ 1

θ̄qξ(x, θ(t)) if z = ξ(x, t) and 1 ≤ t ≤ 1 + γ

Define (N0,M0) = ((r′)−1(K0 × {0}), (r′|M ′)−1(L0 × {0})) and define φ :
N0 × [−1, 1] → ξ(Q0 × [−1, 1]) by φ(y, t) = ξ(x, t), where x ∈ N0 and
y = ξ(x, 0). Then φ and N0 satisfy all parts of Conclusion 2 of the lemma.
In addition, Conclusion 1(c) is satisfied. To achieve Conclusion 1(b), simply
restrict to a tighter neighborhood of K0 × [−2, 2].

To achieve Conclusion 1(a) we use the mapping cylinder structure of N
to stretchN ′ out to cover λ(K). Note thatN = Map(r|∂N) = ∂N×[0, 1)∪K
and that r simply collapses out the mapping cylinder fibers. Choose numbers
a and b, 0 < a < b < 1, so that λ(K) ⊂ ∂N×(a, 1]∪K and ∂N× [b, 1)∪K ⊂
IntN ′. Let ζ : N → N be the homeomorphism that slides the a-level of
the mapping cylinder down the mapping cylinder fibers to the b-level and
keeps ∂N ∪ K fixed. Replace N ′ with N ′′ = ζ−1(N ′) and replace r′ with
r′′ = r′ζ|N ′′. Since rζ = r we have

ρ(r′′, r|N ′′) = ρ(r′ζ|N ′′, r|N ′′) = ρ(r′ζ|N ′′, rζ|N ′′) = ρ(r′, r|N ′) < η.

This completes the proof. �

Historical Notes. Theorem 5.4.2 is due to Edwards (1975b). The first un-
knotting theorem beyond the trivial range was proved by Černavskĭı (1965);
his result is similar to Theorem 5.4.2 except that the template embedding e
is a PL embedding and the dimension k of the embedded polyhedron is in the
metastable range relative to the ambient dimension n; i.e., k ≤ (2/3)n− 1.
Later Miller (1970) derived a similar theorem for k ≤ n − 3 and e a PL
embedding of a PL manifold while Connelly (1970a) (1970b) developed a
codimension-three theorem in which e is a PL embedding of a compact
polyhedron. Bryant and Seebeck (1970) proved the theorem in codimension
three with e a topological embedding of a PL manifold.

Engulfing Theorem 5.4.5 is due to Bryant and Seebeck (1968a), (1968b),
and (1970).

Exercise

5.4.1. Prove Corollary 5.4.11 (Stability of Embedding).

5.4.2. Let e : Kk → Mn be a topological embedding of a compact poly-
hedron K into a PL manifold M with k ≤ n− 3. Prove that there
is a PL embedding λ : K → M and a pseudo-isotopy Φt : M → M
such that Φ1 ◦ λ = e.
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5.5. 1-LCC approximation of embeddings of compacta

Approximation is a recurring theme in the theory of topological embed-
dings. The ability to approximate a given embedding by one that is nicer
in some way is often useful, and sometimes necessary. Over the course of
the next four sections we will prove three codimension-three approximation
theorems. The first, proved in what immediately follows, applies to arbi-
trary compacta. The second, tackled in §5.6, gives PL approximations to
topological embeddings of manifolds. The third, building on the second and
laid out in §5.8, provides PL approximations to topological embeddings of
polyhedra.

We begin with the problem of approximating embeddings of compacta.
In that case we must first decide what we mean by a “nice” embedding.
Results about embedding dimension presented in Chapter 3 justify defining
1-LCC embeddings of codimension-three compacta to be tame. We prove
that every topological embedding of a codimension-three compactum can be
approximated by a tame embedding.

Theorem 5.5.1 (1-LCC Approximation). Let X be a compact subset of an
n-manifold Mn with dimX ≤ n − 3. Then for each ε > 0 there exists a
1-LCC embedding λ ∈ Emb(X,M) ε-close to the inclusion X → Mn.

Throughout §5.5 we use I1 = [−1, 1] ⊂ R and In = [−1, 1]n ⊂ Rn. For

δ > 0 we use δIn to represent [−δ, δ]n and În to represent 2In, an often-used
special case. We also employ 0 in conjunction with sets A ⊂ Rk to denote
the (n− k)-tuple of zeroes, so A× 0 ⊂ Rn.

In addressing 5.5.1 we assume n > 5, since the result obviously holds for
n ≤ 5 (see Exercise 3.4.5).

Consider a countable dense subset {κi} of C(I2,M); without loss of
generality, each κi is a locally flat embedding. Note that any closed subset
of M�∪iκi(I

2) is LCC1 (see Exercise 3.3.3). This suggests a strategy, which
we will pursue, striving to reembed X in M � ∪iκi(I

2). To that end, the
central issue is the following:

Lemma 5.5.2 (Fundamental lemma). Suppose X is a closed subset of Rn,
dimX ≤ n − 3, such that X ∩ (∂I2 × In−2) = ∅ and ε > 0. Then there
exists g ∈ Emb(X,Rn) such that ρ(g, inclX) < ε, g(x) = x for x ∈ X � In,
g(X ∩ In) ⊂ In, and g(X) ∩ (I2 × 0) = ∅.

The argument depends upon an elementary, direct manipulation, strik-
ingly unusual in that the first of infinitely many stages to the process re-
moves the image from I2 × 0 at the expense of introducing singularities.
Later stages, trading on essentially the same manipulation, shrink diam-
eters of these singularities (measured in the domain) and ultimately, on
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passage to the limit, rectify the problem. The construction requires the fol-
lowing ad hoc definition. Call a map g : X → Rn a nice immersion if there
exists a finite collection D1, D2, . . . , Dr of pairwise disjoint n-cells in Rn,
each factoring as Dj = D2

j ×Dn−2
j , and if g can be represented as a union

g = g1 ∪ g2 of two embeddings gi : Ui → Rn (i = 1, 2), where X = U1 ∪ U2

with U1 = X�g−1
2 (∪Dj) and U2 = X�g−1

1 (∪Dj) representing open subsets
of X, and

g1(U1) ∩ (∪j∂D
2
j ×Dn−2

j ) = ∅ = g2(U2) ∩ (∪jD
2
j × ∂Dn−2

j ).

In particular, the 2-to-1 map g is an immersion, and the image of its singular
set lives in ∪Dj ; these cells D1, . . . , Dr are called the singularity cells of g.
If, in addition, both diamDj < ε and diam g−1(Dj) < ε for all j, g is called
a nice ε-immersion.

Fundamental Construction. In the setting of Fundamental Lemma 5.5.2,
n > 5, there exists g ∈ C(X,Rn) such that ρ(g, inclX) < ε, g(x) = x for
x ∈ X� In, g(X ∩ In) ⊂ In, g(X)∩ (I2×0) = ∅ and g is a nice ε-immersion
of X into Rn � (I2 × 0) whose singularity n-cells lie in Int(In)� (I2 × 0).

Proof. First we reduce to the case ε = ∞. Partition I2 × 0 by a fine, 1-
dimensional grid L ⊂ I2 × 0 into finitely many squares {I2j × 0} for which

both diam I2j × 0 < ε and diam e−1(I2j × 0) < ε. By Theorem 3.4.7 we can

assume e(X) misses L = ∪∂I2j × 0. Choose δ > 0 so small that, for each j,

diam(I2j ×δIn−2) < ε and X∩(∂I2j ×δIn−2) = ∅. Now apply the ε = ∞ case

to each n-cell I2j × δIn−2, compile the outcomes, and note that the result
solves the ε-controlled problem.

Turn now to the ε = ∞ case. A crucial beginning step is to produce a
connected, orientable surface (= 2-dimensional ∂-manifold) M2 ⊂ In � X
such that M2 ∩ ∂In = ∂M2 = ∂I2 × 0. This depends upon the consequence
of Alexander Duality that ∂I2 × 0 is null-homologous in In �X and on:

Lemma 5.5.3. If e : ∂∆2 → Y is an embedding of a simple closed curve
∂∆2 such that e∗ : H1(∂∆

2;Z) → H1(Y ;Z) is trivial, then e(∂∆2) bounds
a singular, orientable surface in Y ; that is, there exists a map β : S → Y ,
defined on a compact, orientable surface S such that β|∂S : ∂S → e(∂∆2) ⊂
Y is injective.

Proof. Here is a sketch, which fleshes out and slightly improves upon the
Geometric Interpretation of Homology in (Rourke and Sanderson, 1972)[pp.
98-99] for the 2-dimensional case. Use ∆2 to represent the standard source
2-simplex for 2-dimensional singular homology; regard ∆2 as the convex hull
of vertices v0, v1, v2, and use ξi : [0, 1] → ∆2 to represent the obvious linear
embedding onto the edge of ∆2 spanned by the two vertices other than vi.
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By hypothesis there exists a singular 2-chain c = ε1f1 + · · · εNfN , where
εi ∈ {−1, 1} and fi : ∆2 → Y is continuous, and where ∂c is the 1-cycle
e#(ξ0 − ξ1 + ξ2). Let Σ represent the disjoint union of copies σ1, . . . , σN of
∆2. Treat fi as defined on σi, thereby equipping Σ with a map f : Σ → Y
determined componentwise. Identify the edges of Σ in pairs, insofar as
possible, gluing ξi([0, 1]) ⊂ σk to (at most one) ξj([0, 1]) ⊂ σm if (−1)iεi =
−(−1)jεj and fiξi = fjξj . The resulting identification space is a pinched
surface PS—a space that is a 2-manifold with boundary except possibly at
the images of the vertices of Σ. The compatibility condition along edges
assures that f determines a map β′ : PS → Y . Each exceptional point
w of PS has a small closed neighborhood Nw equivalent to the cone over
Lw, a finite union of arcs and closed curves. Cut out each Nw, and along
each component C of Lw abstractly attach a cone over C. The result is
a surface S, and the obvious cone-preserving map ν : S → PS leads to a
map β = β′ν : S → Y . A fixed orientation on ∆2 produces global coherent
orientations on Σ, PS and, most importantly, S. By the pairing requirement,
each point of e(∂I2) must be the image under β of exactly one point from
∂S. �

In the setting at hand we adjust the singular surface to an embedded
2-cell-with-handles M2 ⊂ In � X. Since n ≥ 6, M2 is ambient isotopic
in Rn to a copy standardly embedded in I3 × 0. Hence, we regard M2 as
being obtained from I2 by attaching a finite number of unknotted, pairwise
unlinked 1-handles

{H3
j = B1

j ×B2
j | 1 ≤ j ≤ r}

lying in I3; that is, M2 = [(I2×{0})∪ (∪j(B
1
j ×∂B2

j ))]�∪j(∂B
1
j × IntB2

j ).

Here we presume I2 ∩H3
j = ∂B1

j ×B2
j .

At this stage our goal is to define, for each elongated handle H3,+
j ,

described below, a reembedding ψj : H
3,+
j → I2 × [−1, 0) beneath I2 × {0},

as suggested by Figure 5.25, and then to extend this to an embedding Ψj :

H3,+
j × µIn−3 → In � I2 × 0, as suggested in Figure 5.25.

We begin by spelling out precise structure for the handles of M2. Much
of this data is best understood by viewing Figure 5.23. For each j, let C2

j be

a 2-cell in (−1, 1)×{0}×(−1, 1) ⊂ R3 such that C2
j = A2

j∪D2
j ∪F 2

j ∪G2
j∪H2

j

is the union of five 2-cells as shown in Figure 5.23(a), where

C2
j ∩ (−1, 1)× {0} × {0} = (D2

j ∪H2
j ) ∩ (A2

j ∪ F 2
j ∪G2

j).

Suppose that (F 2
j ∪ G2

j ∪ H2
j , H

2
j ) ≈ (Î1 × I1, I2) in such a manner that

(F 2
j ∪G2

j∪H2
j )∩(I1×{0}×{0}) corresponds to ∂B1

j×I1,H2
j ∩D2

j toB
1
j×{−1},

and (F 2
j ∪G2

j )∩A2
j to (Î1� Int(I1j )×{−1}. Elongate H2

j by defining H2,+
j =
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H2
j ∪ F 2

j ∪G2
j and let ξH2,+

j ⊂ H2
j be the subset corresponding to ∂Î1 × I.

We can suppose that H3
j = H2

j × [−ξ, ξ] for some ξ > 0 ([−ξ, ξ] is really the

second factor in I×[−ξ, ξ]×I ⊂ I3), with B2
j ⊂ H3

j = B1
j ×B2

j corresponding

to [−ξ, ξ] × I and X ∩ (C2
j × [−ξ, ξ]) ⊂ E2

j × (−ξ, ξ) ∪ Int(D2
j × [−ξ, ξ]),

where E2
j is the open core of H2,+

j corresponding to B1,+
j × (−1, 1). Define

H3,+
j = H2,+

j × [−ξ, ξ]. Choose µ > 0 so small that

X ∩ (C2
j × [−ξ, ξ]× µIn−3)

⊂ [(E2
j × (−ξ, ξ)) ∪ (Int(D2

j )× [−ξ, ξ))]× µIn−3.

Define Dn
j = D2

j × [−ξ, ξ] × µIn−3 and let Dn−2
j correspond to the factor

[−ξ, ξ] × µIn−3 in Dn
j . We assume that the cells {C2

j × [−ξ, ξ] × µIn−3}
are pairwise disjoint. The immersion g is obtained simply by pushing the
handles H3

j underneath I2 × {0} in I3 and by tapering the push in the

µIn−3 direction. Specifically, let Φj,s be an isotopy of H2,+
j in C2

j , fixed on

∂C2
j ∩H2,+

j , such that Φj,0 = identity and

Φj,1(H
2,+
j ) ⊂ A2

j ∪ F 2
j ∪G2

j � (I × {0} × {0}).

Let ψj,s = Φj,s × Id[−ξ,ξ] : H
3,+
j → C2

j × [−ξ, ξ] and let ϕs = ∪jψj,s be the
disjoint union of these isotopies. Let the embedding

Ξ : ∪jH
3,+
j × µIn−3 → In

be the natural extension of ϕ1 given by

Ξ| ∪j H
3,+
j × {w} = ϕ1−‖w‖/µ : ∪jH

3,+
j × {w} → I3 × {w}

for each w ∈ µIn−3, where ‖ w ‖ is the maximum-of-coordinates norm.

(a) (b)

2
jD

2
jD

2
jD 2

jF2
jC 2

jA

2
jA

I 2×

× ×

{0}

{0}

2
jG

2
jH

2
jF

×[-ξ,ξ]2
jH

3
jH =

=

×[-ξ,ξ]2,+
jH

2,+
jH

3,+
jH =

(-1,1)

×{0}×{0}(-1,1)

(-1,1)

∪ 2
jG∪∪ 2

jH∪

Figure 5.23. The handle structures
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I 2

2

×{0}

I 2×{0}

3,+
jH

1U X

2g(U )= 2Ξ(U )

1 1g(U )= U 

Before: the inclusion of X After: the immersion g

∪

U X

∪

Figure 5.24. The immersion g

I 2

I
n-3

I 2

I 2

3rd coord

1st,2nd coords

direction

H   × µI 

× [-ξ,ξ]

3,+
j

Φ(H   × µI) 3,+
j

3
jH

2
jD

Figure 5.25. A thickened handle and its re-embedding

Let W = X ∩ (∪jH
3
j × µIn−3) and define g : X → Rn as Ξ on W and

as the inclusion elsewhere. Then g is the desired nice immersion, being the
union of the embeddings g|U1 and g|U2, where U1 = X � W and U2 =
(X � ∪jD

n
j ) ∪W . The singularity cells {Dn

j } can be compressed slightly to

miss I2 × 0. �
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Proof of Fundamental Lemma 5.5.2. This involves repeated application
of the Fundamental Construction. Choose a sequence of positive num-
bers ε0, ε1, . . . with Σεi < ε. The idea is to construct a sequence g0 =
inclX , g1, g2, . . . of maps X → Rn, where each gi(i > 0) is a nice εi-immersion
whose singularity cells lie in Rn�I2×0, gi(x) = x for x �∈ In, gi(X∩In) ⊂ In,
and ρ(gi, gi−1) < εi. The immersion gi+1 will be obtained from gi using the
Fundamental Construction to remove the singularities of gi, at the expense
of introducing new singularities for gi+1, but paying off by significantly re-
ducing their size. The map g = limi→∞ gi will be the desired embedding.

Figure 5.26 suggests all the 2-cells-with-handles {M2} constructed amidst
the countable number of applications of the Fundamental Construction em-
ployed in this argument. The gi’s reembed the solid handles of this collection
of M2’s, pulling them down along the spanning membranes. As we shall see
later, one could regard the entire collection of M2’s as being constructed
first and then the reembeddings gi performed all at once, but the inductive
proof given here offers the advantage of brevity.

1st stage membrane

2nd stage membranes

3rd stage membranes

2nd stage 3
jH{      }

Figure 5.26. The first three membrane stages

To start, apply the Fundamental Construction to g0 = inclX to obtain
a nice ε1-immersion g1 within ε0 of g0. (Reminder: the image of g0 misses
I2×0; the purpose of the succeeding gi is to convert g0 from an immersion to
an embedding.) Generally, given gi, let Di = {Dj = D2

j ×Dn−2
j } denote its

collection of singularity n-cells. Then obtain gi+1 by altering gi on g−1
i (∪Dj)

as follows. Suppose gi,1 : U1 → Rn and gi,2 : U2 → Rn are the promised
embeddings with gi = gi,1 ∪ gi,2. Apply the Fundamental Construction

separately (with ε = εi+1) to each of the embeddings gi,1|g−1
i,1 (Dj), j ∈ Ji, to

move them off ∪{D2
j × 0) : j ∈ Ji} and amalgamate the results as a nice

εi+1-immersion hi,1 : U1 → Rn. Thus, hi,1(U1)∩(D2
j ×0) = ∅ for each j ∈ Ji,

and the singularity n-cells in Di+1 (which arise in the construction of hi,1)
lie in ∪(Int(Dn

j ) �D2
j × 0). Let hi,2 : U2 → Rn be an embedding resulting
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from gi,2 by compressing each image set gi,2(U2) ∩ Dj toward D2
j × 0 by

sliding along the Dn−2
j factor, keeping ∂Dj fixed, to make

hi,2(U2 � U1) ∩ (hi,1(U1) ∪ ∪Di+1) = ∅.
Then gi+1 = hi,1 ∪ hi,2 is the next nice immersion in the sequence. Its
associated singularity cells, which form Di+1, are subsets of the interiors of
the members of Di. For A ⊂ X let D(A, i) denote

∪{Dj : Dj is a singularity n-cell of gi such that A ∩ g−1
i (Dj) �= ∅}.

Then g(A) ⊂ gi(A ∪ D(A, i)). To show g is an embedding, suppose B is
closed in X and x ∈ X � B. Choose r so large that 2εr < dX(x,B), which
by diameter restrictions on the singularity cells yields

(gr(B) ∪D(B, r)) ∩ (gr(x) ∪D({x}, r)) = ∅,
implying g(x) /∈ g(B). �

Proof of Theorem 5.5.1. Let {D2
i } be a collection of PL embedded 2-

cells in Rn representing a dense subset of C(I2,Rn), and let ϕj : Rn → Mn

be a collection of coordinate neighborhoods that covers Mn. Reindex the
collection {ϕj(D

2
i )}i,j as {Tk : k = 1, 2, . . .}, and define

Ak = {g ∈ Emb(X,Mn) | g(X) ⊂ Mn � Tk}.
By Fundamental Lemma 5.5.2, each Ak is (open and) dense in Emb(X,Mn);
hence, inclX : X → Mn can be ε-approximated by λ ∈ ∩kAk. Since λ(X) ∩
ϕj(D

2
i ) = ∅ for all i, j, it follows that λ is a 1-LCC embedding. �

The 1-LCC re-embedding theorem allows us to complete the proof of
the universality of the Menger continuum Mk

n for k-dimensional compact
subsets of Rn.

Corollary 5.5.4. Every compact, k-dimensional subset X of Rn admits an
embedding in Mk

n .

Proof. When k ≤ n − 3, which is the central issue, Theorem 5.5.1 gives a
1-LCC embedding h : X → Rn. The image has embedding dimension k. By
Theorem 3.5.1 h(X) can be pushed into Mk

n . When k ≥ n − 2, dimX =
demX is automatic, so Theorem 3.5.1 applies directly to X itself. �

At this point we are about to undertake the usual step of presenting an
alternate proof of the Fundamental Lemma. This is not intended to devalue
the one just completed, which is ingenious, direct and appealing; moreover,
it has the benefit of providing an introduction to a collection of objects
about to be defined in a fairly abstract manner. The alternate proof has
its own benefits, presenting techniques that will be reapplied in §7.7 toward
proving a Locally Flat Approximation Theorem concerning codimension one
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manifolds. Since that argument will place considerable demands on the
reader, it seems advantageous to present some of its key ideas in a less
complicated setting.

Štan′ko Move. The basic move—kin to the nice immersion of 5.5.2—is
described in terms of a specific homeomorphism of the n-cube În = [−2, 2]n.

Certain subsets of Î2 are prominently featured (see Figure 5.27):

A = [−2, 2]× [−2, 2]� (−1
2 ,

1
2)× (−1

2 ,
1
2) ⊂ Î2;

B = [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] ⊂ Î2;

C = [54 ,
7
4 ]× [−2, 2] ⊂ Î2;

D = [−1, 1]× [−1, 1] ⊂ Î2;

e = [1, 2]× {0} ⊂ Î2.

A

A

B
D

C

e

Figure 5.27. The standard template (A,B,C,D, e) ⊂ Î2

Now let n ≥ 3 and consider the sets A = A × În−2, B = B × În−2,
C = C × [−1, 1]× În−3, D = D × 0 ⊂ În and e× Î = e× Î × 0 ⊂ În. Here

A ∪ B = În and B ∩ C = ∅. In the n = 3 case B and C may be viewed
as disjoint 1-handles cutting through Î3 in orthogonal directions. The basic
Štan′ko move restricted to Î3 simply will pull C × [−1, 1] = C ∩ Î3 through

B × [−2, 2] = B ∩ Î3.

The specific homeomorphism Φn : În → În mentioned above is fixed
on ∂În and shifts the set C relative to B in the following way: define an
isotopy φ : Î × [0, 1] → Î of Î which, for t ∈ [0, 1], fixes −2 and 2, shifts the
segment [5/4, 7/4] 3t units to the left and is linear on the segments [−2, 5/4]

and [7/4, 2]. Then, for an arbitrary point 〈s, t〉 ∈ Î × În−1 = În, set

Φn(s, t) =

{
〈φ(s, 1), t〉 if ‖ t ‖∈ [0, 1], and

〈φ(s, 2− ‖ t ‖), t〉 if ‖ t ‖∈ [1, 2],

where ‖ t ‖ is the maximum-of-coordinates norm. The case n = 2 is pictured
in Figure 5.28. We note the following:
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(i) Φn(C × [−1, 1]× [−1, 1]n−3) ⊂ Φ2(C)× [−1, 1]× În−3 ⊂ În � B,
(ii) Φn(C ) ∩ B �= ∅ if n > 3.

A

B
D

e

Φ(C)2

Figure 5.28. The action of Φ2 on C

The basic move is determined using Φn as follows. Suppose X is a
closed subset of an n-manifold M and α : În → M is an embedding such
that α−1(X) ⊂ B ∪ C . Then the map ν : X → M defined as

ν(x) =

{
α ◦ Φn(x) ◦ α−1(x) if x ∈ α(C )

x otherwise

is a basic Štan′ko move. When n ≤ 3 ν is a re-embedding of X because of (i)
above; however, for n > 3 the map ν will be an immersion, not injective, in
general, because of (ii). Nevertheless, in both cases the basic Štan′ko move
may undo some linking in X.

We will summarize the above information as a symbol (A,B,C,D, e)
called a template. We will use the (+) symbol to denote finite disjoint
topological union; accordingly, a disk (+) is a space having finitely many
components, each of which is a disk. This allows us to describe constructions
easily, component by component, and to economize with notation. Eventu-
ally we will expand all template data by the (+) convention to admit a host
of templates and associated homeomorphisms Φn : A ∪ B → A ∪ B. This
means of course that a replica of Φn acts upon each component of A ∪ B.

We turn next to the structures that will guide the embeddings of tem-
plates for basic moves.

Semi-capped surfaces and Štan′ko complexes. Let D denote an ori-
ented PL disk; let L1, . . . , Lk and L′

1, . . . L
′
k denote compatibly oriented,

pairwise disjoint subdisks of IntD irreducibly joined in pairs by mutually
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exclusive PL arcs γ1, . . . , γk in IntD, where ∂γj ⊂ Lj ∪ L′
j for each j; let

θ : L1 ∪ · · · ∪ Lk → L′
1 ∪ · · ·L′

k

denote an orientation-reversing homeomorphism sending the point γj∩Lj to
γj ∩L′

j for j = 1, . . . , k. Let D∗ denote the identification space D/θ, called a

semi-capped surface. Set E = L1∪· · ·∪Lk∪L′
1∪· · ·∪L′

k and Γ = γ1∪· · ·∪γk.
We will refer to such data as a Delta structure ∆ = (D,E,Γ), with the
identification map (∗) : D → D∗ implicitly understood. The image disks
E∗ = (∗)(E) and simple closed curves Γ∗ = (∗)(Γ) will play essential roles.

D D

L L
1

11

L L
k k

k

(*)

*

E * *

γ

γ
′

L L
2

22

γ
′

′

Γ

Figure 5.29. A Delta structure ∆

A branching system is a system (∆, q) : ∆0 → ∆1 → ∆2 → · · · where
each ∆i is a Delta structure (+)∆i = (Di, Ei,Γi) and for each i ≥ 0 there is
a PL homeomorphism q(i) : Γ∗

i → ∂D∗
i+1. The identification space

C(∆, q) = D∗
0 
q(0) 
D∗

1 
q(1) 
D∗
2 
q(2) · · ·

is called a Štan′ko complex. Generally, we identify each D∗
i with its image

in C(∆, q). Then we take Γ∗
i = ∂D∗

i+1, suppress the homeomorphisms q(i),
shorten (∆, q) to ∆ and, similarly, shorten C(∆, q) to C(∆). We combine
the various identifications (∗) : Di → D∗

i into a single map

(∗) : D0 
D1 
 · · · (disjoint union) → C(∆) = D∗
0 ∪D∗

1 ∪ · · · .

The semi-capped surfaces D∗
i will serve as precursors of what were called

membranes in the first proof of the Fundamental Lemma. Analogs to mem-
branes will arise by transmuting D∗

i via surgery on E∗
i —thickening those 2-

cells to a disjoint union of 3-cells ψ(E∗
i ×I), where (D∗

i �IntE∗
i )∩ψ(E∗

i ×I) =
ψ(∂E∗

i × I), removing the thickened 2-cells and replacing with ψ(E∗
i × ∂I).

The thickened 3-cells φ(E∗
i × I) will act like solid handles (the H3

j ) attached
to that membrane.
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q(0)

q(0)

q(1)

q(1)

q(1)

D*0
D*

1

D*
2

Figure 5.30. A branching system (∆, q)

Figure 5.31. A Štan′ko complex C(∆)

Theorem 5.5.5 (Štan′ko Complex Embedding Theorem). Suppose X is
a closed, (n − 3)-dimensional subset of Rn such that X ∩ (I2 × 0) is a 0-
dimensional subset of Int(I2 × 0), and suppose ε > 0. Let F denote the
obvious embedding D0 = I2 → I2 × 0 ⊂ Rn. Then there exists a branching
system ∆ : ∆0 → ∆1 → ∆2 → · · · , with D0 of ∆0 = (D0, E0,Γ0) equal to
I2, and there exists a PL embedding h : C(∆) → Rn satisfying:

(1) h(C(∆)� IntE∗) ⊂ Rn �X,

(2) h(D∗
i ∪D∗

i+1 ∪D∗
i+2 ∪ · · · ) ⊂ B(X; ε/2i−1) for i > 0,

(3) ρ(h ◦ (∗)|D0, F ) < ε,

(4) h ◦ (∗)|∂D0 = F |(∂D0 = ∂I2),
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(5) diamh(Pi) < ε/2i for i > 0 and each component Pi of D
∗
i ∪ E∗

i−1.

The Embedding Theorem is a relatively straightforward consequence of
iterated applications of the following lemma.

Lemma 5.5.6. Suppose X as in Theorem 5.5.5 and G : (D, ∂D) → (Rn,Rn�
X) is a PL embedding of pairs, where D is an oriented disk, and δ > 0. Then
there exist a Delta structure ∆ = (D,E,Γ) and a PL embedding h : D∗ → Rn

satisfying:

(1′) h(D∗ � IntE∗) ⊂ Rn �X,

(2′) h(E∗) ⊂ B(X; δ),

(3′) ρ(h ◦ (∗)|D,G) < δ,

(4′) h ◦ (∗)|∂D = G|∂D, and

(5′) diamh(K) < δ for each component K of E∗ or Γ∗.

Proof. Impose a triangulation T onD with mesh so small that diamG(σ) <
δ/2 for all σ ∈ T . Adjust G, fixing G|∂D, so the image of the 1-skeleton
misses X (Theorem 3.4.7).

For each 2-simplex σ ∈ T and neighborhood Uσ of G(σ), G(∂σ) is null
homologous in Uσ �X. Lemma 5.5.3 assures the existence of an orientable
disk-with-handles Qσ bounded by ∂σ as well as a continuous extension hσ :
Qσ → Rn � X of G|∂σ that sends Qσ to a set of diameter less than δ/2.
When G(σ) ∩X = ∅, insist that Qσ = σ and hσ = G|σ.

In the interior of each Qσ identify complete sets Γσ,Γ
′
σ of handle curves:

i.e., Γσ (resp. Γ′
σ) is a finite union of mutually exclusive simple closed curves,

each meeting Γ′
σ (resp. Γσ) transversely in a single point, with Γσ and Γ′

σ

maximal collections with respect to these properties. Of course, should G(σ)
miss X, then Γσ = ∅ = Γ′

σ.

For each σ ∈ T (2) there exist a finite disjoint union Eσ of disks having
boundary Γ′

σ (with Eσ = ∅ if and only if Γ′
σ = ∅) and a continuous extension

h : Eσ → Rn of G|∂σ taking each component of Eσ to a set of diameter less
than δ/2. Here h(Eσ) ∩X �= ∅ is permitted, of necessity. Define

D∗ = |T (1)| ∪ [∪σ(Qσ ∪ Eσ)], E∗ = ∪σEσ, Γ∗ = ∪σΓσ.

It should be obvious that D∗ is the semi-capped surface of a Delta structure
∆ = (D,E,Γ), where (∗)| |T (1)| = G| |T (1)| and (∗):σ → Qσ ∪Eσ. The map

h : D∗ → Rn can be approximated, rel |T (1)|, by a PL embedding satisfying
Conditions (1′) – (5′). �

Proof of Embedding Theorem 5.5.5. Lemma 5.5.6 provides both a Delta
structure ∆0 = (D0, E0,Γ0), where D0 = I2, and a PL embedding h : D∗

0 →
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Rn satisfying, for f0 = inclusion : (D0 = I2) → Rn, the j = 0 case of the
following conditions:

(1j) h(D∗
j � IntE∗

j ) ⊂ Rn �X,

(2j) h(E∗
j ) ⊂ B(X; ε/2j+2),

(3j) ρ(h ◦ (∗)|Dj, fj) < ε/2j+2,

(4j) h ◦ (∗)|∂Dj = fj |∂Dj, and

(5j) diamh(K) < ε/2j+3 for each component K of E∗
j or Γ∗

j .

Assume inductively that ∆0 → · · · → ∆i−1, fj : Dj → Rn and a PL
embedding h : D∗

0∪· · ·∪D∗
i−1 → Rn have been obtained satisfying (1j)−(5j)

for each j ∈ {0, . . . , i− 1} as well as

(6j) diam fj(K
′) < ε/2j+2 for j > 0 and each component K ′ of Dj ,

and

(7j) for 0 ≤ k < j, h(D∗
k) has a neighborhood Uk such that diamh(γ) <

d(h(γ), Uk) for all components γ of Γ∗
j .

(Condition (70) is vacuous.) For each component γ of Γ∗
i−1, let D(γ) denote

an abstract disk with boundary γ. By (5i−1), diamh(γ) < ε/2i+2, so we have
a continuous extension fi(γ) : D(γ) → Rn of h|γ, the image of which has
diameter less than ε/2i+2, yielding (6i); moreover, we require that fi(γ)(Dγ)

lie very near the convex hull of h(γ), so fi(γ)(Dγ)∩Uk = ∅ for 0 ≤ k ≤ i−2,
by (7i−1). Set Di = ∪γD(γ) and define fi on Di as fi = ∪γfi(γ); obviously
this gives (6i). Assume fi is a PL embedding, in general position with respect
to h(D∗

0 ∪ · · · ∪D∗
i−1). Let D

−
i denote a slightly smaller finite union of disks

in IntDi, where IntD
−
i ⊃ f−1

i (X). Choose δ > 0 less than the distance from

fi(D
−
i ) to U0 ∪ · · · ∪Ui−2 ∪ h(D∗

i−1). Set Ui−1 = B(h(D∗
i−1); δ/3). Again by

Lemma 5.5.6, applied with positive number δ′ = {δ/3, ε/2i+3}, there exist a
Delta structure (+) ∆i = (Di, Ei,Γi) and a PL embedding h|D∗

i : D∗
i → Rn

satisfying (1i) – (5i). A standard general position adjustment of h|D∗
i assures

that h is 1-1 on D∗
0 ∪ · · · ∪D∗

i . Checking that (7i) holds as well is routine.
This completes the inductive construction of

∆ : ∆0 → ∆1 → ∆2 → · · · and h : C(∆) → Rn.

Conditions (1), (3) and (4) of the Embedding Theorem obviously hold
here. For each component P ∪Q of D∗

i ∪ E∗
i−1 (i ≥ 1), P ⊂ D∗

i , Q ⊂ E∗
i−1,

we have

diamh(P ) ≤ 2ρ(h ◦ (∗)|P, fi|P ) + diam fi(P ) < 3ε/2i+2

by (3i) and (6i), and diamh(Q) < ε/2i+2 by (5i−1); thus (5) is satisfied.
Also, for i ≥ 1, d(h(P ), X) < ε/2i+1 by (2i−1), since h(P ) ∩ h(E∗

i−1) �=
∅. But diamh(P ) < ε/2i, so h(P ) ⊂ B(X; ε/2i−1), and (2) is satisfied.
This yields, in conjunction with (1k), that no sequence from h(C(∆)�D∗

k)
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can have a limit point in h(IntD∗
k � IntE∗

k); moreover, no sequence from
h(C(∆) � IntE∗

k) can have a limit point in h(IntE∗
k) by (7j), j ≥ k + 1.

Hence, h is an embedding. �

Lemma 5.5.7. Let C(∆) denote a Štan′ko complex PL embedded in a con-
nected PL n-manifold M , n ≥ 5, and let Z denote a compact subset of C(∆).
Then Z is contained in a collapsible finite 2-dimensional subpolyhedron P+

of M , where P+ PL embeds in I3.

Proof. Find an integer N ≥ 0 such that Z ⊂ D∗
0 ∪ · · · ∪D∗

N , and set

f = (∗)|∂DN+1 : ∂DN+1 → ∂D∗
N+1 = ΓN+1.

Each component of the identification space P = (D∗
0 ∪ · · · ∪D∗

N ) ∪f DN+1

is collapsible and embeds in I3. Also, P admits an obvious map to M .
Join the components of P by a wedge of arcs to obtain a single collapsible
complex P+. Since M is connected and n ≥ 5, P+ admits an embedding in
M for which the image contains (D∗

0 ∪ · · · ∪D∗
N ) ⊃ Z. �

Lemma 5.5.8 (Unknotting). Suppose C(∆) is a Štan′ko complex PL em-
bedded in a connected PL n-manifold M (n ≥ 6) and Z is a compact
subset of C(∆). Then there exist a PL 3-cell Y 3

Z and a PL embedding

ψ : Y 3
Z × În−3 → M such that Z ⊂ ψ(Y 3

Z × 0).

Proof. By Lemma 5.5.7, M contains a PL embedded, collapsible finite 2-
complex P+ ⊃ Z. Name a regular neighborhood B of P+. Being collapsible,
B is an n-ball, and P+ ⊂ B ≈ In can be regarded as P+ ⊂ I3×0, since P+

does embed in I3 and any two PL embeddings of P+ in Int In are ambient
isotopic. �

Second Proof of Fundamental Lemma 5.5.2. We take ∆ and h from
the conclusion of the Štan′ko Complex Embedding Theorem and then iden-
tify C(∆) with h(C(∆)) via the homeomorphism h. Recall the combined
identification map

(∗) : D0 
D1 
 · · · → C(∆) = D∗
0 ∪D∗

1 ∪ · · · = h(C(∆)) ⊂ Rn.

For each i > 0 we identify that Di associated with the Delta structure
(+)∆i =(∆i, Ei,Γi) with the Di from the template (+)(Ai, Bi, Ci, Di, ei) in
such a manner that Ei∪Γi ⊂ IntBi and (Di∩ei)∗ = D∗

i ∩E∗
i−1 ⊂ C(∆) ⊂ Rn.

That X ∩ C(∆) ⊂ ∪iE
∗
i ⊂ ∪iB

∗
i deserves heavy emphasis.

By Unknotting Lemma 5.5.8 there exist a regular neighborhood Ni of
D∗

i ∪E∗
i−1 in C(∆), a PL 3-cell Yi and a PL product structure Yi×În−3 ⊂ Rn

such that Ni ⊂ Yi = Yi × {0} ⊂ Yi × În−3 ⊂ Rn. For each i > 0 we will use

the sets D∗
i ∪ E∗

i−1 ⊂ Ni and the product structure Î3 × În−3 to construct
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an embedding αi : Î
n = Ai ∪ Bi → Rn suitable for use in a basic Štan′ko

move. The embedding αi will be constructed in three steps.

Step 1: Constructing αi on (Ai × {0}) ∪ (ei × Î) ⊂ Î3. Define αi on
(Ai∩Di)×{0} as (∗)|(Ai∩Di)×{0}. Since (Di∩ ei)

∗ = D∗
i ∩E∗

i−1, we may

extend αi to carry ei × Î onto E∗
i−1, with

X ∩ E∗
i−1 ⊂ αi[

(
5

4
,
7

4

)
× {0} × (−1, 1)] ⊂ αi(ei × Î).

This embedding, in turn, can be extended to the remainder of Ai×{0} ⊂ Î3

so as to take (Ai � (Di ∪ ei))× {0} into the intersection of Rn �C(∆) with
the (ε/2i)-neighborhood (component by component) of D∗

i ∪ E∗
i−1, so that

X ∩ αi(Ai × {0} ∪ ei × Î) ⊂ αi[

(
5

4
,
7

4

)
× {0} × (−1, 1)] ⊂ αi(Ci × (−1, 1)).

We require the sets αi[(Ai × {0}) ∪ (ei × Î)] to be pairwise disjoint.

Remark. In Steps 2 and 3 we extend the definition of αi to Ai and to
Bi. In doing so, certain basic precautions should be taken. They are:

(1) each component of Im(Ai ∪ Bi) has diameter less than ε/2i;

(2) of the sets [ImD0∩A0], [ImB0], [ImA1, ImA1], [ImB1, ImB1], [ImA2,
ImA2], [ImB2, ImB2], . . . , only the ones listed in the same or adjacent
square brackets can intersect.

Step 2. Constructing αi|Ai. Recall that Ai equals Ai × Î × În−3. Since
αi(Ai × {0}) is bicollared in Yi × 0, it is clearly possible to extend αi over

Ai × Î , taking each fiber {a} × Î to a bicollar fiber αi(a) × Î in Yi × 0.

Then one can extend αi to all of Ai × Î × În−3 by sending 〈a, t〉 × În−3 to

αi(a, t)× În−3 in the natural way. By shortening the bicollar fibers and the

În−3 fibers of Yi × În−3, if necessary, we can protect conditions (1) and (2)
of the preceding Remark and insist upon the following:

(3) X ∩ αi(Ai) ⊂ αi(Ci);

(4) αi(Ai ∩ Φn(Ci)) ⊂ Rn � C(∆).

(Condition (4) can be obtained because αi can be extended over Ai so
αi(Ai) ∩ C(∆) ⊂ αi(Ai × [−2, 2]× 0) ∩ C(∆) ⊂ Ni ⊂ Yi × 0 and

αi([Ai � (Di ∪ ei)]× [−2, 2]× 0) ∩ C(∆) = ∅;

then the image of the portion of Ai∩Φn(Ci) in Ai× [−2, 2]×0 misses C(∆),
and clearly the image of the rest of Ai ∩ Φn(Ci) does the same, as it lies in

αi(Ai × [−2, 2]× (În−3 � 0)) ⊂ Yi × (În−3 � 0) ⊂ Rn �Ni.)

Step 3. Constructing αi|Bi. The embedding αi|Ai ∩ Bi has already
been defined. So has αi+1|Ai+1, and the latter is of crucial importance
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for (5) and (6) below. The process which extends αi over the rest of Bi

runs as follows. Cut B∗
i apart via surgery along E∗

i in Yi × 0 to obtain an
embedding of Bi in Yi × 0. Insist that the images of all modifications lie
very close to αi+1(Ci+1). Use a bicollar on the embedded Bi in Yi and the

product structure Yi × În−3 to extend the embedding, fiber by fiber, to Bi.
One must keep the embedded Bi very close to B∗

i and must use very short

bicollar fibers and În−3 fibers (except near αi(Ai ∩ Bi), where such fibers
have already been chosen) not only to ensure conditions (1) and (2) of the
Remark preceding Step 2, but also to obtain the following:

(5) X ∩ αi(Bi) ⊂ αi+1(Ci+1);

(6) αi(Bi) ∩ αi+1(Ai+1 ∩ Φn(Ci+1)) = ∅;
(7) αi(Bi ∩ Φn(Ci)) ⊂ Rn � C(∆).

Condition (5) can be obtained since αi+1(Ci+1) is a neighborhood of IntE∗
i ⊃

X ∩ B∗
i in Rn. Condition (6) can be obtained because B∗

i+1 ⊂ C(∆) while
αi+1(Ai+1 ∩Φn(Ci+1)) ⊂ Rn �C(∆) by (4). Condition (7) is automatic for
small fibers by the definition of Φn.

Finally, to define the infinite Štan′ko move on X, which provides the
re-embedding of X and establishes the Fundamental Lemma, set

g′(x) =

{
αi ◦ Φn(x) ◦ α−1

i (x) if x ∈ X ∩ αi(Ci)

x otherwise.

The continuity of g′ is easy to verify, since the various αi(C ) are pairwise
disjoint and their component diameters tend to 0 as i → ∞. Note that the
set g′(X ∩ αi(Ci)) lies in αiΦn(Ci). The sets αiΦn(Ci) and αjΦn(Cj) miss
one another if j �= i− 1, i, i+ 1. Moreover, αiΦn(Ci) ∩ αi+1Φn(Ci+1) lies in
αi(Bi ∩Φn(Ci))∩ αi+1(Ai+1 ∩Φn(Ci+1)) by (2), and the latter intersection
is empty by (6). Consequently, g′ is injective. Since it has compact support,
g′ is an embedding; moreover, ρ(g′, inclX) < ε by (1).

Among the Ai ∪ Bi, only the image of A1 ∪ B1 meets D∗
0, and there

D∗
0 ∩ α1(Î

n) ⊂ B∗
0 , by initial prearrangement. Moreover, X ∩ D∗

0 ⊂ E∗
0 ⊂

α1(C1), and

D∗
0 ∩ g′(X) = B∗

0 ∩ λ(X ∩ α1(C1)) ⊂ B∗
0 ∩ α1(A1 ∩ Φn(C1)) = ∅,

by (6) and the requirement that B∗
0 ∩ α1(B1) = ∅. To conclude, one can

approximate (∗) : D0 → Rn, rel ∂D0, by a PL embedding ψ. (Here ψ might
be α0|D0, had α0 been defined.) Then one can produce a controlled ambient
isotopy transforming ψ to the inclusion D0 → Rn. The end of that ambient
isotopy provides a further adjustment g to g′, where g(X)∩(I2×0) = ∅. �

The real secret to the success of this argument is the insistence that
all the αj |Aj be defined before doing so for any of the αi|Bi; this means,
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quite specifically, that αi+1 is prescribed on Ci+1 before any consideration
is given to the definition of αi on Bi. In effect, αi+1(Ci+1) then determines
a neighborhood of IntE∗

i from which X will be cleared away and it frees up
desirable space for αi(Bi).

Historical Notes. Štan′ko (1971a) gave the first proof of Theorem 5.5.1
and developed the key ideas. He used it to confirm that the Menger k-
dimensional compactum in Rn contains a copy of each k-dimensional com-
pactum that does embed in Rn (1971b). Edwards (1975b) reformulated
Štan′ko’s argument in the more familiar language of immersions, imitated
here, and extended it to embeddings of σ-compacta. The second proof of the
Fundamental Lemma is modelled on a related codimension-one argument in
(Ancel and Cannon, 1979).

Exercises

5.5.1. If X is a cell-like subset of a PL n-manifold Mn, dimX ≤ n − 3,
then X can be embedded in Rn.

5.5.2. If C(∆) is a branching system and k ≥ 0 is an integer, then ∂D0 is
null-homotopic in [(D∗

0 ∪ · · · ∪D∗
k)� E∗] ∪D∗

k+1.

5.6. PL approximation of embeddings of manifolds

Having twice demonstrated that embeddings of codimension-three compacta
can be approximated by 1-LCC embeddings, we now return to the PL cat-
egory, where the new aim is to establish that codimension-three topological
embeddings of PL manifolds can be approximated by PL embeddings. The
issue will be addressed in the noncompact setting, which is particularly
meaningful because a PL approximation theorem for noncompact manifolds
will be an absolutely necessary ingredient later in the chapter when deriving
a PL approximation theorem for embeddings of compact polyhedra.

Theorem 5.6.1. Let h : Q → M be a topological embedding of the k-
dimensional PL ∂-manifold Q into an n-dimensional PL manifold M , k ≤
n − 3. For every continuous function ε : Q → (0,∞) there exists a PL
embedding h′ : Q → M such that d(h(x), h′(x)) < ε(x) for every x ∈ Q.

Most of the section will be devoted to producing PL approximations to
embeddings of cells in Rn.

Proposition 5.6.2. Let h : Dk → Rn be a topological embedding of the
k-cell Dk into Rn, k ≤ n− 3. For every positive number ε there exists a PL
embedding h′ : Dk → Rn such that d(h(x), h′(x)) < ε for every x ∈ Dk.
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The proof involves a complicated construction that will be described
below. With the tools at hand the proof that the special case of k-cells in
Rn implies the general case is comparatively simple, however, so we dispose
of that matter at the outset. The idea is to decompose Q into handles, to
thicken the handles slightly so that they overlap, to approximate h on each
of the thickened handles using Proposition 5.6.2, and then to push these ap-
proximations together where they overlap using Unknotting Theorem 5.4.2.

Proof of Theorem 5.6.1. Let H be a handle decomposition of Q. We
may assume the handles are small enough that for each handle H ∈ H ,
h(H) is contained in a chart in M which is PL homeomorphic to Rn. Define
Qi = ∪{H ∈ H | index(H) ≤ i}. We will prove by induction on i that h|Qi

can be approximated arbitrarily closely by PL embeddings.

First consider the case i = 0. For each 0-handle H0
j ∈ H , define εj =

min{ε(x) | x ∈ H0
j }. Make εj smaller, if necessary, so the εj-neighborhood

of h(H0
j ) is disjoint from the ε�-neighborhood of h(H0

� ) whenever H
0
j �= H0

� .

Then apply Proposition 5.6.2 to construct a PL embedding hj : H0
j →

M within εj of h|H0
j . The union of the PL embeddings hj defines a PL

embedding h′ : Q0 → M that is an ε(x)-approximation to h|Q0.

Now consider the general case. To simplify notation, let A = Qi−1, let
B denote a regular neighborhood in Qi of the union of the i-handles, and
let C = A ∩ B. Observe that the i-handles are pairwise disjoint, so each
component of C is compact. Let ε′ : A ∪ B → (0,∞) be a continuous map
such that

(1) ε′(x) < (1/2)ε(x) for every x,

(2) x ∈ A�B implies ε′(x) < (1/2)d(x,B �A), and

(3) x ∈ B �A implies ε′(x) < (1/2)d(x,A�B).

For each component Cj of C, define ε′j = min{ε′(x) | x ∈ Cj}. We may

assume that the ε′j-neighborhood of Cj is disjoint from the ε′�-neighborhood
of C� for Cj �= C�. Apply Unknotting Theorem 5.4.2 to each component Cj

of C to produce δj > 0 such that if λ0 and λ1 are two PL embeddings of Cj

that are within δj of h|Cj , then there is a PL (ε′j/2)-push ψt of (M,h(Cj))

such that ψ1λ0 = λ1. Let δ : A ∪ B → (0,∞) be a continuous function
such that δ(x) < δj whenever x ∈ Cj . Reduce δ, if necessary, to achieve
δ(x) < ε(x)/2 for each x ∈ A ∪B.

Induction provides a PL embedding λ0 : A → M with d(λ0(x), h(x)) <
δ(x) for each x ∈ A. The i = 0 case (proved above) gives a PL embedding
λ1 : B → M such that d(λ1(x), h(x)) < δ(x) for each x ∈ B. By the
choice of δ (and hence by Theorem 5.4.2), there exists a PL (ε′/2)-push ψt of
(M,h(C)) such that ψ1λ0|C = λ1|C. Define a PL embedding h′ : A∪B → M
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by

h′(x) =

{
ψ1(λ0(x)) if x ∈ A

λ1(x) if x ∈ B.

It is easy to check that h′ is a PL embedding and that d(h(x), h′(x)) < ε(x)
for every x ∈ Qi = A ∪B. �

Throughout this section we use Dk to denote the k-cell [0, 1]k. Assume
for the remainder of the section that h : Dk → Rn is a fixed topological
embedding of Dk into Rn and that k ≤ n− 3. We will prove that h can be
approximated by PL embeddings. The strategy is to start with a thin k-cell
that approximates h on a proper face of Dk and then to use the methods of
controlled engulfing to stretch this thin k-cell out until it approximates all
of h(Dk). Since the face is proper, we need only codimension-four engulfing
techniques. The process employed in this section is, in a sense, the opposite
of the standard engulfing argument: instead of using the inverse of a collapse
to expand an open set out to cover something, we will use the collapse itself
to stretch a subpolyhedron in a controlled way. It will be clear to the
reader that the techniques used here are based on the methods of controlled
engulfing, but they are sufficiently different from the usual techniques that
they must be developed from first principles and are not consequences of
the controlled engulfing theorem stated earlier.

We will describe the basic construction in the simplest possible setting
initially. After the details of the construction have been mastered we will
make several observations about how the same construction could also be
accomplished in other settings.

Three homotopies. Three special homotopies will be useful in the proof
that follows: the first is a strong deformation retraction of a neighborhood
of h(Dk) to h(Dk), the second is a homotopy of Dk to a face, and the third
combines these two motions.

Fix an integer j, 1 ≤ j ≤ k. As usual, we identify Dj with the subset
Dj = Dj × 0 ⊂ Dk. Thus the given embedding h : Dk → Rn induces
an embedding h|Dj : Dj → Rn for each j ≤ k. Since h(Dj) is an ANR,
there exist a neighborhood Uj of h(Dj) and a retraction rj : Uj → h(Dj).
We may assume that d(x, rj(x)) ≤ 1/2 for every x ∈ Uj . As the ambient
manifold is Rn, we have the straight line homotopy connecting rj to the
identity; we want to parametrize this homotopy in a particular way. For a
fixed x, define λj(x, t) to be the linear function of R such that λj(x, 0) = 0

and λj(x, d(x, r
j(x))) = 1. Define a deformation retraction rjt : Uj → M by

rjt (x) =

{
(1− λj(x, t))x+ λj(x, t)r

j(x) if 0 ≤ t ≤ d(x, rj(x)),

rj(x) if d(x, rj(x)) ≤ t ≤ 1.
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Observe that rjt moves x to rj(x) at unit speed during the time interval
[0, d(x, rj(x))] and then keeps x stationary.

Let θjt : D
j → Dj be the homotopy defined by

θjt (x1, . . . , xj , 0, . . . , 0) =

{
〈x1, . . . , xj , 0, . . . , 0〉 if 0 ≤ t ≤ xj ,

〈x1, . . . , xj−1, t, 0, . . . , 0〉 if xj ≤ t ≤ 1.

The homotopy θjt deforms Dj in the jth direction to the face xj = 1. Its
action is rather like raising a window shade: a point 〈x1, . . . , xj〉 does not
move as long as t ≤ xj and then it is raised linearly to the xj = 1 level. (Even
though the window shade analogy helps to gain an intuitive understanding

of what the homotopy θjt does, be warned that it will be convenient to draw
the diagrams in this section with the 0-level at the top and the 1-level at
the bottom—so the window is upside down.)

For a fixed x ∈ Uj , let µ(j, x, t) be the linear function of t such that

µ(j, x, d(x, rj(x))) = 0 and µ(j, x, 1) = 1. Define ψj
t : Uj → M by

ψj
t (x) =

{
rjt (x) if 0 ≤ t ≤ d(x, rj(x)),

h ◦ θjµ(j,x,t) ◦ h
−1 if d(x, rj(x)) ≤ t ≤ 1.

The homotopy ψj
t simultaneously squeezes Uj to h(D

j) and deforms h(Dj) to
the image of the face xj = 1. Each point x uses the time interval [0, rj(x)] to
move into hj(D

j) and then uses the remaining time to move through h(Dj)
to the image of the face xj = 1.

The basic construction. The basic construction starts with a polyhedron
and ends with a second, larger polyhedron containing the first and collapsing
toward a face of h(Dk). Throughout the construction, j ≤ k is fixed.

Specify an integer p in the range 1 ≤ p < j and a neighborhood Vp ⊂ Uj

of h(Dj). Choose a sequence of neighborhoods V0 ⊂ V1 ⊂ · · · ⊂ Vp−1 ⊂ Vp

of h(Dj) such that ψj
t (Vi) ⊂ Vi+1. Let P1 ⊂ V0 be a compact polyhedron

of dimension ≤ p. Define f1 : P1 × [0, 1] → V1 by f1(x, t) = ψj
t (x). Put

f1 in general position and let P2 = f1(Sh(S(f1))). (Here S(f1) denotes the
singular set of f1 and Sh(S(f1)) is the shadow of S(f1) under the vertical
collapse P1×[0, 1] ↘ P1×{1}; refer to page 100 for the definitions of singular
set and shadow.) Define C1 = f1(P1 × [0, 1]) and E1 = f1(P1 × {1}). Note
that P1 ⊂ C1, dimC1 ≤ p+ 1 ≤ j, dim(P2) ≤ 2(p+ 1)− n+ 1 ≤ p− 1 and
C1 ↘ P2 ∪ E1 (see Figure 5.32).

Identify P2 ⊂ C1 with P2 ×{0} ⊂ P2 × [0, 1] and consider the identifica-
tion space C1∪(P2× [0, 1]). Observe that the collapse C1 ↘ P2∪E1 extends
to a collapse

(∗) C1 ∪ (P2 × [0, 1]) ↘ E1 ∪ (P ′
2 × [0, 1]) ∪ (P2 × {1}),
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S(f )

P ×{0}

f
2

1

1

P ×{1}1

P ×[0,1]1 C = f (P ×[0,1])1 1 1

1

1 P

E

Figure 5.32. In this figure S(f1) consists of one pair of double points

where P ′
2 = P2 ∩E1 (see Figure 5.33). Define f2 : C1 ∪ (P2 × [0, 1]) → V2 by

f2(y) =

{
y if y ∈ C1

ψj
t (x) if y = 〈x, t〉 ∈ P2 × [0, 1].

Shift f2 into general position and define P3 = f2(Sh(S(f2))), where Sh(S(f2))
denotes the shadow of S(f2) under the collapse (∗). By general position,
dim(P3) ≤ (p + 1) + p − n + 1 ≤ p − 2. Define C2 = f2(C1 ∪ (P2 × [0, 1]))
and E2 = f2(E1 ∪ (P ′

2 × [0, 1]) ∪ (P2 × {1})); then C2 ↘ P3 ∪E2.

f2

C  ∪ P ×[0,1]1 2

P ×[0,1]2
2

3

C = f (C ∪P ×[0,1])2 2 21

2

P

E

1E
P2

P2

 

P ×{1}

Figure 5.33. In this figure f2 is an embedding except for one point
where f2(C1) meets f2(P2 × [0, 1])

This process is continued inductively. At the ith step we identify Pi ⊂
Ci−1 with Pi × {0} ⊂ Pi × [0, 1] and define fi : Ci−1 ∪ (Pi × [0, 1]) → Vi to

be the inclusion on Ci−1 and ψj
t on Pi × [0, 1]. Shift fi into general position

and let Pi+1 = fi(Sh(S(fi))), where this time Sh(S(fi)) is the shadow under
the collapse Ci−1 ∪ (Pi × [0, 1]) ↘ Ei−1 ∪ (P ′

i × [0, 1]) ∪ (Pi × {1}) and
P ′
i = Pi ∩ Ei−1. Define

Ci = fi(Ci−1 ∪ (Pi × [0, 1]) and Ei = fi(Ei−1 ∪ (P ′
i × [0, 1]) ∪ (Pi × {1})).
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Note that dimPi+1 ≤ p− i and Ci ↘ Pi+1 ∪Ei.

The construction terminates after p steps. Specifically, dimS(fp−1) ≤ 0
and dimPp ≤ 1, so fp : Cp−1 ∪ (Pp × [0, 1]) → Vp is an embedding. The end
result of the construction is a pair of polyhedra

C = Cp = fp(Cp−1 ∪ (Pp × [0, 1])) and

E = Ep = fp(Ep−1 ∪ (P ′
p × [0, 1]) ∪ (Pp × {1}))

such that P1 ⊂ C and C ↘ E.

The following lemma summarizes the essential properties of C and E.
As in §3.3, we use B(A; ε) to denote the ε-neighborhood of a set A.

Lemma 5.6.3. For every ε > 0 there exists δ > 0 such that if P is any com-
pact polyhedron in B(h(Dj); δ) with dimP < j, then there exist a compact
polyhedron C ⊃ P with dimC = dimP + 1 and a compact subpolyhedron
E ⊂ C such that

(1) C ⊂ B(h(Dj); ε),

(2) E ⊂ B(h(Dj−1 × {1}); ε), and
(3) C ↘ E.

Furthermore, if N is a regular neighborhood E, then there exists a PL isotopy
Φt of Rn such that

(4) Φ0 = Id,

(5) Φ1(C) ⊂ N , and

(6) Φt|E ∪ (Rn �B(h(Dj); ε)) = inclusion.

Proof. Given ε > 0, begin the construction above by making sure that
Vp ⊂ B(h(Dj); ε). Then choose δ so that B(h(Dj); δ) ⊂ V0 and so that
E ⊂ B(h(Dj−1 × {1}); ε). The first part of the lemma simply lays out the
properties of the sets constructed above. The existence of Φt follows from
regular neighborhood theory (Rourke and Sanderson, 1972, Chapter 3). �

Next we will examine the basic construction more carefully and will
see how to impose controls on C and E that make the ambient isotopy Φt

approximate the homotopy ψj
t . The control is imposed in two steps. First

we will show how to make the collapse, and hence the ambient isotopy, follow
the fibers of h(Dj). We picture these fibers as vertical, so making the isotopy
closely follow the fibers means that it is tightly controlled in the horizontal
directions. Later, in the second step, we will impose controls in the vertical
direction as well.
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Horizontal control. A fiber of h(Dj) is a set of the form

F = F j(x1, . . . , xj−1) = h({〈x1, . . . , xj−1〉} × [0, 1])

for some fixed 〈x1, . . . , xj−1〉 ∈ Dj−1. The following elementary lemma
asserts that if two fibers ever come close, then they are always close.

Lemma 5.6.4. For every ε > 0 there exists δ > 0 such that if F1 and F2

are two fibers of h(Dj) and B(F1; δ) ∩B(F2; δ) �= ∅, then F2 ⊂ B(F1; ε).

Proof. Let ε > 0 be given. Use the uniform continuity of h to choose η > 0
such that if x, x′ ∈ Dj and d(x, x′) < η, then d(h(x), h(x′)) < ε. Then use
the uniform continuity of h−1 to choose δ > 0 such that if y, y′ ∈ h(Dj) and
d(y, y′) < 2δ, then d(h−1(y), h−1(y′)) < η. It is routine to check that this δ
works. �

Definition. An isotopy Φt of Rn is said to be ε-parallel to fibers of h(Dj)
if for each y ∈ Rn, either Φt(y) = y for every t ∈ [0, 1] or there exists one
fiber F of h(Dj) such that {Φt(y) | 0 ≤ t ≤ 1} ⊂ B(F ; ε).

Lemma 5.6.5. The choice of δ > 0 in Lemma 5.6.3 may be refined to allow
the isotopy Φt to be constructed to have the following additional property:

(7) Φt is ε-parallel to fibers of h(Dj).

Proof. Given ε > 0 and p = dimP , apply Lemma 5.6.4 repeatedly to choose
δ > 0 having the property that if Ω is a path such that

Ω ⊂ B(F1; δ) ∪B(F2; δ) ∪ · · · ∪B(Fp; δ)

for some fibers F1, F2, . . . , Fp of h(Dj), then Ω ⊂ B(F1; ε). We will assume
that the δ of Lemma 5.6.3 satisfies this additional condition and prove that
Φt can be constructed to be ε-parallel to fibers of h(Dj).

The collapse C ↘ E of Lemma 5.6.3 is composed of the collapses

f1(P1 × [0, 1]) ↘ E1 ∪ P2 ⊂ E1 ∪ f2(P2 × [0, 1])

↘ E2 ∪ P3 ⊂ E2 ∪ f3(P3 × [0, 1]) ↘ E3 ∪ P4 ⊂ · · · .
Each of these collapses, in turn, is the image under fi of a vertical collapse
in Pi × [0, 1]. Just as in the proof of the Controlled Engulfing Theorem,
it is convenient to think of the inverse isotopy ξt = Φ−1

t , which expands a
regular neighborhood of E to a regular neighborhood of C. The isotopy ξt
is determined by the inverses of the collapses listed above.

Pick an integer i and consider (the inverses of) the collapses that take
place in fi(Pi × [0, 1]). First a neighborhood of E is pushed out to cover
fi({v} × [0, 1]) for each vertex v ∈ Pi, then it is pushed farther to cover
fi(σ × [0, 1]) for each 1-simplex σ ⊂ Pi, and so forth. We can choose the
neighborhood Vp at the beginning of the construction in such a way that
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for each x ∈ Pi there exists a fiber F of h(Dj) such that fi({x} × [0, 1]) ⊂
B(F ; δ/2). We can then triangulate Pi so that for each simplex σ ⊂ Pi there
is a fiber F of h(Dj) such that fi(σ × [0, 1]) ⊂ B(F ; δ). Identify disjoint
neighborhoods of the various fi({v} × [0, 1]), where v is a vertex of Pi, and
confine the motion involved in pushing out to cover fi({v} × [0, 1]) to these
neighborhoods. In this way we can expand out to cover all the vertices
with a motion that is δ-parallel to fibers of h(Dj). Next expand out to
cover fi(σ× [0, 1]) for each 1-simplex σ ⊂ Pi. Since the boundaries of the 1-
simplices have already been covered, we can use regular neighborhood theory
to expand to cover the remaining parts of the various fi(σ×[0, 1]) by motions
that are confined to disjoint sets, one for each 1-simplex σ (Rourke and
Sanderson, 1972, Lemma 3.25 and Theorem 3.26). Because the supporting
sets are disjoint, the entire motion needed to cover the 1-simplices is δ-
parallel to fibers. The process is continued, working up the skeleta.

It would appear that the combined motion determined by all the col-
lapses in fi(Pi× [0, 1]) could move each point through the neighborhoods of
p different fibers. But in fact we can exercise enough care so that the mo-
tion involved in expanding out to cover fi(Pi × [0, 1]) is δ-parallel to fibers.
In order to accomplish this level of control, the open sets associated with
fi(σ× [0, 1]), for σ a simplex in Pi, must be chosen in such a way that if the
open sets associated with two simplices intersect, then one of the simplices is
a face of the other. If the open sets are chosen that way, then the combined
motion associated with all the collapses in fi(Pi× [0, 1]) will be δ-parallel to
fibers of h(Dj). (Note that this is exactly the kind of control achieved in the
proof of the codimension-four case of Controlled Engulfing Theorem 3.3.7.)

In order to isotope a neighborhood of E to a neighborhood of C, we
must push across polyhedra of the form fi(Pi × [0, 1]) for i = p, p− 1, . . . , 1.
By the previous paragraph, each of the associated isotopies moves δ-parallel
to fibers of h(Dj). The combined motion will have the property that each
point that is moved at all is moved in the union of p sets of the form B(F ; δ).
The choice of δ guarantees that the combined motion is ε-parallel to fibers.

The result of this construction is an isotopy ξt that is ε-parallel to fibers
of h(Dj) and moves a regular neighborhood N of E to a regular neighbor-
hood of C. The isotopy Φt of the conclusion is ξ1−t, the reverse isotopy. �

Vertical control. We now turn our attention to control in the vertical
direction. We will modify the isotopy Φt so that its motion in the vertical

direction approximates that of the homotopy θjt . In order to accomplish this
we will split each of the elementary collapses that make up C ↘ E into a
sequence of small collapses, then will rearrange their order and, finally, will
adjust the timing of those small collapses.
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Lemma 5.6.6. The choice of δ > 0 in Lemmas 5.6.3 and 5.6.5 may be
further refined so the isotopy Φt to be constructed has the following additional
properties for each t:

(8) Φt(C) ⊂ B(h(Dj−1 × [t, 1]); ε), and

(9) Φt|(Rn �B(h(Dj−1 × [0, t]); ε)) = inclusion.

Proof. Begin by choosing a number γ > 0 such that if |s − t| < (j − 1)γ,
then h(Dj−1 × {s}) ⊂ B(h(Dj−1 × {t}); ε). Choose η1 > 0 such that

B(h(Dj−1 × [0, t]); η1) ∩B(h(Dj−1 × [t+ γ, 1]); η1) = ∅

for every t ∈ [0, 1− γ]. Then choose η2, 0 < η2 ≤ η1/2, such that if ψj
s(x) ∈

B(h(Dj−1× [0, t]); 2η2) for some s, t, x, then ψj
s′(x) ∈ B(h(Dj−1× [0, t]); η1)

for every s′ ≤ s. Finally, choose δ > 0 so that ψj
t (x) ∈ B(h(Dj−1× [t, 1]); η2)

for every x ∈ B(h(Dj); δ) and for every t ∈ [0, 1]. We will assume that the δ
in the proofs of Lemmas 5.6.3 and 5.6.5 satisfies this additional restriction
and prove that we can obtain conclusions (8) and (9) while maintaining the
earlier conclusions.

In the construction thus far, it has not been necessary to specify the time
parameter in Φt precisely. The isotopy Φt is the concatenation of a sequence
of isotopies, each of which corresponds to one of the elementary expansions
that make up the expansion from E to C. It is assumed that the interval
0 ≤ t ≤ 1 is subdivided into disjoint subintervals and that the isotopies
corresponding to the various elementary collapses are performed, one at a
time, on these disjoint subintervals. The order in which the isotopies are
run corresponds to the order of the expansions, which is the reverse of the
order of the collapses. We can think of the collapses as happening at discrete
times during the interval 0 ≤ t ≤ 1 and of the isotopies as taking place in
the intervening subintervals. We have some freedom to rearrange the order
of these collapses; we must just make certain that any simplex that could
obstruct the collapse across a given face is collapsed out before the collapse
across that face. We intend to take advantage of this flexibility to adjust
the timing of the collapses and alter the corresponding isotopy Φt.

Fix an integer i and consider the collapse fi(Pi × [0, 1]) ↘ Pi+1 ∪ Ei.
This collapse is made up of a sequence of collapses of the form

(∗∗) fi(σ × [0, 1]) ↘ fi(∂σ × [0, 1] ∪ σ × {1})

(or of the form fi(σ×[0, 1]) ↘ fi(∂σ×[0, 1]∪(Sh(S(fi))∩(σ×[0, 1]))) in case
fi(Intσ × [0, 1] ∩ S(fi) �= ∅). Choose a triangulation for Pi and a positive
integer m such that diam fi(σ × [�/m, (�+ 1)/m]) < η2 for every simplex σ
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in Pi and for every �. Then replace the collapse (∗∗) by the sequence

fi(σ × [0, 1]) ↘ fi(∂σ × [0, 1] ∪ σ × [1/m, 1])

↘ fi(∂σ × [0, 1] ∪ σ × [2/m, 1])

...

↘ fi(∂σ × [0, 1] ∪ σ × {1}).

This subdivides the single collapse (∗∗) into a sequence of m collapses, each
of which is supported on a set of diameter < η2. The total isotopy Φt is
unchanged by this modification, but it is broken up into the concatenation
of a large number of smaller pushes.

Subdivide every collapse in fi(Pi × [0, 1]) as described in the previous
paragraph and consider the portion of the isotopy Φt that corresponds to
the collapses in fi(Pi× [0, 1]). We wish to reorder the timing of the collapses
so that the collapse fi(σ × [�/m, (�+ 1)/m]) ↘ fi(∂σ × [�/m, (�+ 1)/m]) ∪
fi(σ × {(�+ 1)/m}) is done just as soon as possible after the first time t at
which the condition

(‡) fi(σ × [�/m, (�+ 1)/m]) ∩B(h(Dj−1 × [t, 1]); η2) = ∅

is satisfied. Fix one such collapse of fi(σ × [�/m, (� + 1)/m]) and let t0
be the smallest t for which the condition (‡) is satisfied. If possible, per-
form the isotopy associated with this collapse immediately after time t0.
The isotopy should be performed during the time interval in which the cell
fi(σ × [�/m, (� + 1)/m]) is contained in B(h(Dj−1 × [t0, 1]); 2η2). If this
prescription results in two or more isotopies being performed at the same
time, then subdivide the time interval more finely and perform the isotopies
on disjoint subintervals. Any collapses for which (‡) is never satisfied should
be performed at the very end.

There are two reasons why the construction just described might not
be possible. One is that a higher-dimensional simplex in the same level
fi(Pi × [�/m, (�+ 1)/m]) does not yet satisfy (‡). Another is that simplices
at higher levels may not yet have been collapsed out. If σ is the face of
a simplex τ and fi(τ × [�/m, (� + 1)/m]) has not already been collapsed
because it does not yet satisfy condition (‡), wait until it does satisfy the
condition. Since diam fi(τ × [�/m, (�+ 1)/m]) < η2, performing the isotopy
of fi(σ×[�/m, (�+1)/m]) at that later time will be soon enough. If simplices
above fi(σ × [�/m, (� + 1)/m]) (i.e., with smaller second coordinate) have
not yet been collapsed out, collapse them first. The choice of η2 ensures that
these collapses will take place in B(h(Dj−1 × [0, t]); η1).

When the collapses are reordered as prescribed in the last two para-
graphs, they determine a PL isotopy φi

t having the following properties:
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(8i) φi
t(fi(Pi × [0, 1])) ⊂ Pi+1 ∪B(h(Dj−1 × [t, 1]); η1), and

(9i) φi
t|(Rn �B(h(Dj−1 × [0, t]); η1)) = inclusion.

Condition (8i) is clearly satisfied for t = 0. A point in the slice fi(Pi ×
[j/m, (j+1)/m]) moves as soon as it is outside B(h(Dj−1× [t, 1]); η2) and it
keeps moving until its image is either in Pi+1 or in B(h(Dj−1× [t, 1]); η1), so
condition (8i) is satisfied at later times as well. In order to verify condition
(9i), observe that a point x is not moved by φi

t unless x is outsideB(h(Dj−1×
[t, 1]); η2). Since the entire construction takes place within B(h(Dj); η1),
it must be the case that any movement of x before time t takes place in
B(h(Dj−1 × [0, t]); η1).

Now we would like to define Φt as the isotopy obtained by running all of
the isotopies φi

t simultaneously. This will not quite work because the faces
we want to collapse across may not yet be free when we get to them. In
order to remedy this, we first start running φ1

t , then start φ2
t after a lag of

t = γ, then start φ3
t with a time lag of t = 2γ, etc. This works because the

choice of η1 ensures that any simplex in fi(Pi× [0, 1]) is collapsed out before
a simplex in fi+1(Pi+1 × [0, 1]) that is attached to it must be collapsed. By
subdividing the time interval and running the individual pieces of φi

t more
quickly, if necessary, we may assume that only one isotopy is running at
any particular time. Define Φt to be the isotopy obtained by combining
the φi

t with the delays. The choice of γ guarantees that Φt will satisfy
conclusions (8) and (9). None of the conclusions of Lemma 5.6.3 is affected
by the modifications made above. The path Φt(y) remains unchanged, even
though it is parametrized differently, so the new Φt still moves ε-parallel to
fibers. Thus all of conclusions (1) through (9) are now satisfied by Φt. �

Tightness control. We must place one more form of control on the iso-
topy Φt; we will confine its action to tighter and tighter neighborhoods of
C. More specifically, we momentarily stop the action of Φt after some of the
collapses have been performed and the isotopy associated with those col-
lapses has been determined and then restrict subsequent motion to a closer
neighborhood of C. The main point of the next lemma is that the polyhedra
C and E can be specified first, then the collapses and their timing can all
be completely determined, and finally the isotopy Φt can be specified.

Setting. Let C, E, and Φt be as in the proof of Lemma 5.6.6 and assume the
collapse C ↘ E has been subdivided so as to coincide with the action of Φt

as described in that proof. Pick a finite number of intermediate polyhedra
C = C0 ⊃ C1 ⊃ · · · ⊃ Cm = E so that the collapse C ↘ E is subdivided
as C0 ↘ C1 ↘ . . . ↘ Cm. Define t� to be the instant at which all the
subisotopies associated with the collapses in C ↘ C� are completed.
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Lemma 5.6.7. Assume the setting above. Let W0 ⊃ W1 ⊃ · · · ⊃ Wm be a
sequence of regular neighborhoods of C. The isotopy Φt can be constructed
so that, for each � ≥ 0, it has the following additional properties:

(10) Φt|C� = incl for t ≤ t�, and

(11) the support of Φt, t ≥ t�, is contained in Φt�(W�).

Moreover, the regular neighborhood W� can be chosen after the initial isotopy
{Φt | 0 ≤ t ≤ t�} has been determined.

Proof. The isotopy Φt is constructed as the concatenation of a sequence of
isotopies, each associated with one of the elementary collapses that make up
C ↘ E. An elementary collapse has the form σ× [a, b] ↘ ∂σ× [a, b]∪σ×{b}
and the associated isotopy is obtained by applying the Regular Neighbor-
hood Theorem for Pairs (Rourke and Sanderson, 1972, Theorem 4.11). The
advantage of applying the theorem for pairs is that it supplies an isotopy
that preserves σ × [a, b] setwise: the part of the isotopy Φt associated with
this elementary collapse squeezes σ × [a, b] into a region like the shaded re-
gion D shown in Figure 5.34 and keeps ∂σ× [a, b]∪σ×{b} fixed. Hence the
composite isotopy can be chosen to satisfy conclusion (10). All subsequent
motion is controlled by a subset of the image of C under the isotopy so far.
Thus we are free to choose a tighter regular neighborhood of C at this stage
of the construction of Φt and to confine all further movement to the image
of this neighborhood. �

σ×{a}

σ×{b}

σ×[a,b]

D

Figure 5.34. The collapse σ× [a, b] ↘ ∂σ× [a, b]∪ σ×{b} determines
an isotopy that moves σ × [a, b] to D

This completes our description of the basic construction. It will be
convenient to have a name for the polyhedra we have constructed.

Definition. A (j, ε)-collapse is a pair of compact polyhedra (C,E) for which
there is a PL isotopy Φt such that C,E,Φt satisfy all the conclusions of
Lemmas 5.6.3, 5.6.5, 5.6.6, and 5.6.7.

The entire construction is summarized in the following proposition.
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Proposition 5.6.8. Fix j ≤ k. For every ε > 0 there exists a δ > 0 such
that if P is a compact polyhedron in B(h(Dj); δ) and dimP < j, then there
exists a (j, ε)-collapse (C,E) such that P ⊂ C and dimC ≤ dimP + 1.

We state two sample corollaries. One illustrates how to find maps into
the boundary of a regular neighborhood of a collapse and the other illustrates
how to enlarge a collapse to include a specified polyhedron.

Corollary 5.6.9. For every j ≤ k and for every ε > 0 there exist a
(j, ε)-collapse (C,E), an ε-regular neighborhood W of C, and a PL map
g : Dj−1 → ∂W such that ρ(g, h|Dj−1) < ε.

Proof. Let γ > 0 be a number such that diam(h({x} × [0, γ])) < ε/5 for
every x ∈ Dj−1. Choose η > 0 so that for every x ∈ Dj−1,

B(h({x} × [0, 1]); η) ∩B(h(Dj−1 × [0, γ]); η) ⊂ B(h({x} × [0, γ]); ε/5),

and so that

B(h(Dj−1 × {0}); η) ∩B(h(Dj−1 × [γ, 1]); η) = ∅.
Let δ be the δ given by Proposition 5.6.8 with input η. We may assume that
η < ε/5 and δ < ε/5.

Take P = f(Dj−1), where f : Dj−1 → Rn is a PL map such that
ρ(f, h|Dj−1) < δ. By the choice of δ, there exists a (j, η)-collapse (C,E)
with P ⊂ C. Let W and W0 ⊂ IntW be a pair of δ-regular neighborhoods
of C. Then W � IntW0 has a δ-product structure W � IntW0

∼= ∂W × [0, 1].
Lemma 5.6.7 allows us to construct the isotopy Φt so that Φt|∂W is the
inclusion and Φγ(W0) ⊂ B(h(Dj−1 × [γ, 1]); η). The choice of γ and η
ensure that d(Φγ(x), x) < 3ε/5 for every x and P ∩ Φγ(W0) = ∅. The δ-
product structure on W � IntW0 has been stretched out to a 4ε/5-product
structure on W � Φγ(W0). This product structure can be used to define a
projection π : W � Φγ(W0) → ∂W . Then g = π ◦ f : Dj−1 → ∂W satisfies
ρ(g, h|Dj−1) < ε and the proof is complete. �

Corollary 5.6.10. For every j ≤ k and for every ε > 0 there exists a δ > 0
such that if (C,E) is a (j, δ)-collapse and L ⊂ B(h(Dj); δ) is a compact
polyhedron with dimL < j, then there exists a (j, ε)-collapse (C∗, E∗) such
that C ∪ L ⊂ C∗. Moreover, if 0 < γ < 1 and L ⊂ B(h(Dj−1 × [γ, 1]); δ),
then C �B(h(Dj−1 × [γ, 1]); ε) = C∗ �B(h(Dj−1 × [γ, 1]); ε).

Proof. Given ε > 0, choose δ > 0 exactly as in the proof of the proposition.
Let (C,E) and L be as in the statement of the corollary. Triangulate Rn

so that C,E, and L correspond to subcomplexes. Then any simplex of L
whose interior intersects C is already contained in C, so it may be omitted
from L. With those simplices omitted, dim(L ∩ C) < dimL. Define L∗ =
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L ∪ Sh(L ∩ C), where Sh(L ∩ C) is the shadow of L ∩ C under the collapse
C ↘ E. Observe that dimL∗ = dimL and that C ∪L∗ ↘ E ∪L∗. Thus the
entire construction can be started over again by attaching a homotopy of L∗

to C, shifting the union into general position, and then considering a new
singular set. The end result of the construction is a (j, ε)-collapse (C∗, E∗)
having the required properties. �

We are now ready to begin exploiting the construction to prove Proposi-
tion 5.6.2. The next proposition demonstrates how the existence of a (k, ε)-
collapse can be utilized to construct a PL embedding that approximates h.
It is worth observing that the hypotheses of Proposition 5.6.11 are just a
little stronger than the conclusions of Corollary 5.6.9.

Proposition 5.6.11. For every j ≤ k and for every ε > 0 there exists a
δ > 0 such that if

(1) (C,E) is a (j, δ)-collapse,

(2) W is a δ-regular neighborhood of C, and

(3) g : Dj−1 → ∂W is a PL embedding with ρ(g, h|Dj−1) < δ,

then there exists a PL embedding h′ : Dj → W such that ρ(h′, h|Dj) < ε.

Proof. First choose γ > 0 so that diam(h({x} × [t, t+ γ])) < ε/3 for every
x ∈ Dj−1 and for every t ∈ [0, 1 − γ]. We may assume that γ = 1/m for
some integer m. Next choose η > 0 so that

B(h({x} × [0, 1]); η)∩B(h(Dj−1 × [t, t+ γ]); η) ⊂ B(h({x} × [t, t+ γ]); ε/3)

for every x ∈ Dj−1 and for every t ∈ [0, 1 − γ]. Let δ be the δ given by
Proposition 5.6.8 with inputs j and ε = η.

Assume C,E, W , and g are as in the statement of the proposition.
Adjust the timing of the collapses in C ↘ E and the isotopy Φt so that
no collapse takes place at the instant �γ = �/m for any integer � and that
none of the associated isotopies is in progress at any of those times. Pick
intermediate polyhedra C = C0 ⊃ C1 ⊃ · · · ⊃ Cm = E so that the collapse
C ↘ E is subdivided as C0 ↘ C1 ↘ . . . ↘ Cm and so that for each � the
collapse C� ↘ C�+1 includes all the collapses that take place during the time
subinterval [�γ, (�+ 1)γ].

Let W0 = W and choose a sequence W0 ⊃ W1 ⊃ · · · ⊃ Wm of tighter
regular neighborhoods of C such that W� � IntW�+1 has a short collar
structure for each �. Use this collar structure to extend g to a PL em-
bedding g′ : Dj → W0 � IntW� so that g′(x, 0) = g(x) for each x ∈ Dj−1,
g′(Dj−1 × [�/m, (�+ 1)/m]) ⊂ W� � IntW�+1, and diam g′({x} × [0, 1]) < δ
for each x ∈ Dj−1.
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Let Φt, 0 ≤ t ≤ γ, be a PL isotopy constructed in accordance with Propo-
sition 5.6.8 so Φt|∂W0 is the inclusion. Lemma 5.6.7 allows us to replace W1

with a tighter regular neighborhood so that Φγ(W1) ⊂ B(h(Dj−1× [γ, 1]); η)
and to construct the rest of Φt with support in Φγ(W1). Now construct Φt

for γ ≤ t ≤ 2γ and use Lemma 5.6.7 to replace W2 with a tighter neighbor-
hood satisfying Φ2γ(W2) ⊂ B(h(Dj−1 × [2γ, 1]); η). Continue this process
until the entire isotopy Φt has been defined.

A key observation is that

Φ1(W� � IntW�+1) ⊂ B(h(Dj−1 × [�γ, (�+ 1)γ]); η)

for each �. Thus the choice of η guarantees that the PL embedding h′ =
Φ1 ◦ g′ : Dj → W satisfies ρ(h′, h|Dj) < ε. �

There is a gap between Corollary 5.6.9 and Proposition 5.6.11. Notice,
however, that the two results combine to prove the codimension-three ap-
proximation theorem in dimension n = 2k. In that case, general position
allows the map g given by Corollary 5.6.9 to be approximated by a PL em-
bedding and the approximation serves as the embedding required for the
hypothesis of Proposition 5.6.11. Hence the construction described thus
far allows us to advance the approximation theorem one step beyond the
trivial range. This idea will be utilized to give an inductive proof of Propo-
sition 5.6.2 in codimension three. Before we are in a position to complete
this inductive argument we must make several observations about how the
basic construction can be made to work in a more general setting.

The first step is to observe that the construction in the section can be
done in a subset of Rn. Assume that S is an s-dimensional PL submanifold
of Rn, j ≤ s − 3, and P is a subpolyhedron of S with dimP < j. A (j, ε)-
collapse in S is a pair (C,E) ⊂ S satisfying all the conditions in the original
definition of (j, ε)-collapse except that the isotopy Φt operates on S rather
than on all of Rn. It is also understood that any neighborhoods appearing
in the construction are to be neighborhoods in S rather than in Rn. A
crucial observation is that the same construction can be used to construct a
(j, ε)-collapse in S provided S contains the necessary homotopies. The next
definition specifies what is required of the homotopies.

Definition. Let S be a PL submanifold of Rn and let P be a subpolyhedron
of S. A (j, ε)-homotopy of P in S is a homotopy ft : P → S such that

f0 = incl and d(ft(x), ψ
j
t (x)) < ε for every x ∈ P and for every t ∈ [0, 1].

The statement of Proposition 5.6.8 could be changed to say that for every
ε > 0 there exists a δ > 0 such that a (j, ε)-collapse can be constructed in S
provided S contains a (j, δ)-homotopy of P for every polyhedron P ⊂ S with
dimP < j. Unfortunately we will not be able to construct submanifolds S
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that satisfy such a strong hypothesis. Instead we will identify a polyhedron
P ⊂ S for which a (j, δ)-homotopy is required, and then we will replace S
with a different submanifold S∗ of Rn such that S∗ contains the necessary
homotopy.

Definition. Fix j < k and s ≥ j + 3. Assume that for each ε > 0 there
is a collection Sε of s-dimensional PL submanifolds of Rn such that S ⊂
B(h(Dj+1); ε) for each S ∈ Sε. We say that {Sε}ε>0 has the (j, ε, δ)-
homotopy property if for each ε > 0 there exists a δ > 0 such that if S ∈ Sδ

and L is a polyhedron in S ∩B(h(Dj); δ) with dimL < j, then there exists
SL ∈ Sε such that SL ∩B(h(Dj); δ) = S ∩B(h(Dj); δ) and SL contains the
track of a (j, ε)-homotopy of L.

Lemma 5.6.12. Fix j < k and s ≥ j + 3. Assume {Sε}ε>0 is a collection
of s-dimensional PL submanifolds of Rn such that {Sε}ε>0 has the (j, ε, δ)
homotopy property. For every ε > 0 there exists a δ > 0 such that if S ∈ Sδ,
(C,E) is a (j, δ)-collapse in S, and L ⊂ S is a compact polyhedron with
dimL < j, then there exists S∗ ∈ Sε and a (j, ε)-collapse (C∗, E∗) ⊂ S∗

such that C ∪ L ⊂ C∗.

Proof. This lemma, a more elaborate version of Corollary 5.6.10, can be
proved in essentially the same fashion. The basic construction described
earlier in the section can be carried out in this setting because it really only
required the existence of (j, δ)-homotopies for its success. Each time a poly-
hedron is identified and a homotopy of that polyhedron into a neighborhood
of h(Dj−1×{1}) is required, use the hypothesis of the lemma to replace the
manifold S with a new manifold S∗ that contains the track of the required
homotopy. Since it is possible to anticipate how often this must be done, it
is possible to choose the δ > 0 required. Otherwise the proof is the same as
the earlier one. �

Definition. A tower of ε-collapses of height m consists of sequences

(Ck, Ek), (Ck−1, Ek−1), . . . , (Ck−m, Ek−m) and Wk,Wk−1, . . . ,Wk−m

such that

(1) (Ck, Ek) is a (j, ε)-collapse in Rn,

(2) Wk is an ε-regular neighborhood of Ck in Rn,

(3) (Cj, Ej) is a (j, ε)-collapse in ∂Wj+1 for j < k,

(4) Wj is an ε-regular neighborhood of Cj in ∂Wj+1 for j < k, and

(5) there is a PL map g : Dk−m−1 → ∂Wk−m with ρ(g, h|Dk−m−1) < ε.

Proposition 5.6.13. For every ε > 0 and for every m there is tower of
ε-collapses of height m.
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Proof. The proof is by induction on m. Corollary 5.6.9 is the m = 0 case.
Assume that towers of ε-collapses of height m − 1 exist for every ε > 0.
Start with a tower of height m − 1 and raise its height to height m by
adding the top level Ck−m = Ek−m = Wk−m = ∅. Conditions (1) through
(4) of the definition of tower of ε-collapses are satisfied in this simple way. To
complete the proof we must modify the entire tower so that it admits a map
gm : Dk−m−1 → ∂Wk−m as required in part (5) of the definition. It suffices
to construct the tower so that there is a map g′m : Dk−m−1 → Ck−m because
the technique of the second paragraph of the proof of Corollary 5.6.9 can be
used to push the image of g′m out to the boundary of a regular neighborhood
of Ck−m.

Induction provides a map gm−1 : Dk−m → ∂Wk−m+1. The proof is
completed by enlarging Ck−m so that it contains gm−1(D

k−m−1 × {0}).
Lemma 5.6.12 allows this to be done, provided the necessary homotopies
exist. The homotopies are provided by Lemma 5.6.14, which will be proved
next. �

Lemma 5.6.14. Fix m ≤ k. For every ε > 0 there exists a δ > 0 such that if
(Ck, Ek), . . . , (Ck−m+1, Ek−m+1); Wk, . . . ,Wk−m+1 is a tower of δ-collapses
of height m − 1 and L ⊂ ∂Wk−m+1 ∩ B(h(Dk−m); δ) is a compact polyhe-
dron with dimL < k−m, then there exists (C∗

k , E
∗
k), . . . , (C

∗
k−m+1, E

∗
k−m+1);

W ∗
k , . . . ,W

∗
k−m+1, a tower of ε-collapses of height m− 1, such that

(1) Cj ⊂ C∗
j for every j,

(2) C∗
k−m+1 ∩B(h(Dk−m); δ) = Ck−m+1 ∩B(h(Dk−m); δ), and

(3) C∗
k−m+1 contains the image of a (k −m, ε)-homotopy of L.

Proof. The proof is by induction on m. Consider, first, the case m = 1. A
tower of height 0 is just a (k, δ)-collapse (C,E) in Rn together with a regular
neighborhood W of C and a map g : Dk−1 → ∂W . Let L be a compact
polyhedron with dimL < k − 1. Consider the homotopy f : L × [0, 1] →
Rn that consists of the concatenation of the following homotopies: first
the retraction of W to C, then the homotopy induced by the first part of
the collapse that moves L near to h(Dk−1 × {γ}) for some γ > 0, then
a retraction of a neighborhood of h(Dk−1 × {γ}) to h(Dk−1 × {γ}), and
finally the homotopy θk−1 × {γ}. This composite homotopy pushes L into
h(Dk−2 × {1} × {γ}). Choose γ small enough so that the homotopy is a
(k − 1, ε)-homotopy. The first two parts of the homotopy are contained in
W but the last two parts will likely stray out of W . By Corollary 5.6.10,
we can replace C with a collapse C∗ containing the track of the homotopy.
The technique of the second paragraph of the proof of Corollary 5.6.9 can
be used to push the track of the homotopy out to the boundary of a regular
neighborhood of C∗.
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The proof of the inductive step is exactly the same except that the
inductive hypothesis is applied in place of Corollary 5.6.10. �

Proof of Proposition 5.6.2. If 2k < n, then the proposition follows from
general position. Otherwise choose m = 2k − n and let ε0 be the given
positive number ε. Then apply Proposition 5.6.11 a total of m + 1 times.
The first time Proposition 5.6.11 is applied, take the j and ε of the hypothesis
to be k and ε0; define ε1 to be the δ of the conclusion. The second time
Proposition 5.6.11 is applied, take the j and ε of the hypothesis to be k − 1
and ε1; define ε2 to be the δ of the conclusion. This pattern is continued in
the obvious way. Use Proposition 5.6.13 to build a tower of εm+1-collapses
of height m. The map g : Dk−m−1 → ∂Wk−m associated with the top layer
of the tower may be approximated by a PL embedding hk−m using general
position and the choice of m. The choice of εk−j allows us to find PL
embeddings hj : D

j → ∂Wj+1 for progressively larger j. The PL embedding

hk : Dk → Rn is the approximation we seek. �

Historical Notes. T. Homma (1966), (1968) was the first to prove a PL
approximation theorem above the trivial range. Homma’s theorem has a
complicated statement and at first it was not clear in what generality his
technique might apply. Berkowitz (1971) found a counterexample to part of
the technique in codimension three and it was agreed that Homma’s proof
of the approximation theorem is only valid for embeddings of manifolds in
the (2/3)-range (i.e., k ≤ (2/3)n, also called the metastable range). Later
Berkowitz and Dancis (1970a) extended Homma’s technique to approximate
embeddings of manifolds in the (3/4)-range.

Miller (1972) introduced a completely new technique that proved the PL
approximation theorem for manifolds in codimension three. The proofs of
Proposition 5.6.2 and Theorem 5.6.1 in the text are based on the proofs in
(Miller, 1972). Bryant (1972) used Miller’s approximation theorem for em-
beddings of manifolds to prove a PL approximation theorem for codimension-
three embeddings of polyhedra; Bryant’s proof will be presented in §5.8.
Eventually Bryant (1990) developed the necessary technical machinery that
allowed a modification of Homma’s technique to succeed in codimension
three. Theorem 5.6.1 was also announced by Černavskĭı (1969a), (1969b),
(1970).

The construction that was used to PL approximate topological embed-
dings of codimension-three cells can be made to work to PL approximate
topological embeddings of codimension-two cells (Venema, 1987). Exam-
ples described in the next chapter demonstrate that it is not possible to
approximate PL embeddings of arbitrary manifolds in codimension two.
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5.7. Taming 1-LCC embeddings of polyhedra

§5.5 established that the 1-LCC embeddings of a codimension-three com-
pactum X are dense in Emb(X,M). We now investigate other ways in
which 1-LCC embeddings are nice. The most prominent and useful result
asserts that a 1-LCC embedding of a codimension-three polyhedron K is
tame. Establishing this fact is accomplished in two steps. In this section
a proof is provided under the additional hypothesis that the PL embed-
dings, EmbPL(K,M), are dense in Emb(K,M). This intermediate result
has immediate consequences for 1-LCC embeddings of PL manifolds, since
Theorem 5.6.1 shows that the PL embeddings of manifolds are dense. In
the next section this intermediate step is exploited in an inductive argument
confirming that the extra assumption always holds, thereby yielding both
the full strength codimension-three taming theorem and the PL approxima-
tion theorem at the same time.

Theorem 5.7.1 (Codimension-three 1-LCC taming). Suppose K is a com-
pact k-dimensional polyhedron and Mn is a PL n-manifold, where k ≤ n−3
and n ≥ 5, such that EmbPL(K,Mn) is a dense subset of Emb(K,Mn).
Then each 1-LCC topological embedding e : Kk → Mn is ε-tame.

Corollary 5.7.2. Every 1-LCC topological embedding Ik → Mn of a k-cell
in a PL n-manifold Mn, k ≤ n− 3 and n ≥ 5, is ε-tame.

Corollary 5.7.3. Every 1-LCC topological embedding Qk → Mn of a com-
pact, PL k-manifold in a PL n-manifold Mn, k ≤ n−3 and n ≥ 5, is ε-tame
and thus locally flat.

Corollary 5.7.4. Let f, g : Qk → Mn be homotopic, 1-LCC topological
embeddings of a compact PL q-manifold into a PL n-manifold such that

(1) k ≤ n− 3

(2) Qk is (2k − n+ 1)-connected, and

(3) Mn is (2k − n+ 2)-connected.

Then f and g are ambient isotopic.

Corollary 5.7.5. Any embedding of the k-sphere or k-cell into a PL n-
manifold, k ≤ n− 3, that is locally flat modulo a flat cell or sphere is locally
flat.

Proof. The image is 1-LCC by Theorem 4.6.2. �

The proof of Theorem 5.7.1 is based on two lemmas.

Lemma 5.7.6 (Engulfing lemma). Under the hypotheses of Theorem 5.7.1,
suppose K is 1-LCC embedded in M and ε > 0. Then there exists δ > 0
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such that for each embedding λ : K → M within δ of the inclusion and for
each open set U ⊃ λ(K), there exists an ε-push ϕ of (M,K) with ϕ(K) ⊂ U .

Proof. The proof is almost exactly the same as that of Theorem 5.4.5.
Since K is 1-LCC, demK = k (Theorem 3.4.8). Thus, for each η > 0,
K has a neighborhood N such that N is an η-regular neighborhood of a
k-dimensional polyhedron K ′. The idea is to engulf K ′ with U and then
to use the product structure on N � K ′ to cover N ⊃ K. The required
homotopies are supplied by Corollary 0.6.5. An application of Generalized
Controlled Engulfing Theorem 3.3.7 completes the proof. �

Lemma 5.7.7. Under the hypothesis of Theorem 5.7.1, suppose K is 1-
LCC embedded in M and ε > 0. Then there exists δ > 0 such that for each
embedding λ : K → M within δ of the inclusion and for any η > 0 there
exists an ε-push ψ of (M,K) with ρ(ψ|K,λ) < η.

Proof. For an arbitrary positive number γ let E(γ), the engulfing con-
straint, and P (γ), the pushing constraint, be the positive numbers corre-
sponding to K and γ given by Lemma 5.7.6 and Theorem 5.4.2, respectively.

Given ε > 0, let δ = P (ε/2). Consider an embedding λ : K → M within
δ of incl : K ↪→ M . Fix η > 0. Apply density of EmbPL(K,M) to produce a
PL embedding F : K → M very close to λ. It suffices to determine an ε-push
ψ of (M,K) with ρ(ψ|K,F ) < η, for then ψ|K will be close to λ as well.
Compute η′ > 0 such that if x and x′ are points in K with d(x, x′) < 2η′,
then d(F (x), F (x′)) < η. Set

δ′ = min{δ, η′, E(η′), E(ε/2)}.

Specify a PL embedding G : K → M not just within δ′ of incl but so close
that d(F (x), F (x′)) < η whenever d(G(x), G(x′)) < 2η′.

Since F andG are P (ε/2)-approximations of incl, there exists a PL (ε/2)-
push ϕ of (M,K) such that ϕG = F . In addition, G(K) has a neighborhood
U such that z, z′ ∈ U and d(z, z′) < 2η′ imply d(ϕ(z), ϕ(z′)) < η.

In light of the choice of δ′, there is a PL min{η′, ε/2}-push ϕ′ of (M,K)
such that ϕ′(K) ⊂ U . Define ψ as ϕϕ′. For x ∈ K clearly d(G(x), ϕ′(x)) <
2η′, and hence

d(λ(x), ψ(x)) ≈ d(F (x), ψ(x)) = d(ϕG(x), ϕϕ′(x)) < η

since G(x), ϕ′(x) ∈ U . This shows ψ to be the desired ε-push of (M,K). �

Remark. Observe that the hypothesis regarding denseness of the PL em-
beddings was employed in the proof of Lemma 5.7.7 but not in that of
Lemma 5.7.6.
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Proof of Theorem 5.7.1. Let Λ = EmbPL(K,M) and

Λ′ = {λ : K → M | λ is a 1-LCC embedding}.

By hypothesis Λ is dense in Emb(K,M), and by Theorem 5.4.2 it is locally
solvable. Lemma 5.7.7 and Theorem 4.2.11 ensure that Λ′ ⊃ Λ is locally
solvable. Hence, each λ′ ∈ Λ′ is ε-tame. �

Historical Notes. Bryant and Seebeck (1970) developed the techniques
reproduced in this section and proved a result even stronger than Theo-
rem 5.7.1.

5.8. PL approximation of embeddings of polyhedra

We are now ready to tackle the approximation theorem for topological em-
beddings of codimension-three polyhedra.

Theorem 5.8.1 (Approximating codimension-three polyhedra). Let e :
Kk → Mn be a topological embedding of a (not necessarily compact) k-
dimensional polyhedron K into a PL n-manifold M , k ≤ n − 3, and let ε :
K → (0,∞) be continuous. Then there exists a PL embedding e′ : K → M
such that d(e(x), e′(x)) < ε(x) for every x ∈ K. Moreover, if e is already PL
on some subpolyhedron K0 of K, then e′ can be chosen so that e′|K0 = e|K0.

The last part of the theorem follows easily from the first part: simply
take a close PL approximation e′ with no regard to fixing K0 and then use
Unknotting Theorem 5.4.2 to push e′|K0 back to e|K0. As a result, we need
not mention the “moreover” statement again.

Once Approximation Theorem 5.8.1 has been established, the hypothesis
that EmbPL(K,Mn) is a dense subset of Emb(K,Mn) can be removed from
all the theorems in the preceding section. In particular, the taming theorem
can be restated as follows.

Corollary 5.8.2 (Codimension-three taming). If K is a compact k-dimen-
sional polyhedron and Mn is a PL n-manifold, k ≤ n − 3 and n ≥ 5, then
each 1-LCC topological embedding e : Kk → Mn is ε-tame.

Corollary 5.8.3. For K and Mn as in Corollary 5.8.2, most embeddings
of K in Mn are tame.

Proof. See Theorem 4.6.17. �

As usual, the taming theorem can be used to prove flattening theorems
for cells and spheres. In each of the next two corollaries, the 1-LCC hypoth-
esis is verified by an application of Theorem 4.6.2.
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Corollary 5.8.4. If Σ is a k-sphere in Sn, k ≤ n − 3, n ≥ 5, and Σ is
locally flat modulo a cell or sphere that is flat in Sn, then Σ is flat.

Corollary 5.8.5. If B is a k-cell in Rn, k ≤ n − 3, n ≥ 5, that can be
expressed as a union of k-cells B1 and B2, where B1 is flat and B2 is locally
flat modulo B1 ∩B2, then B is flat.

Combining Corollary 5.8.2 with Unknotting Theorem 5.4.2 yields a new
unknotting theorem.

Corollary 5.8.6 (Unknotting 1-LCC embeddings of polyhedra). Let e :
Kk → Mn be a topological embedding of a compact k-dimensional polyhedron
K into an n-dimensional PL manifold M with k ≤ n − 3 and n ≥ 5. For
every ε > 0 there exists a δ > 0 such that if λ0, λ1 : K → M are two 1-LCC
topological embeddings, each pointwise within δ of e, then there is an ε-push
ψ of M such that λ1 = ψ ◦ λ0.

Another interesting corollary assures that any two PL embeddings that
are topologically equivalent are in fact PL equivalent. The next result is a
taming theorem in the sense that it asserts that the isotopy between two PL
embeddings can be “tamed.”

Corollary 5.8.7 (Topological equivalence implies PL equivalence). Suppose
K is a compact k-dimensional polyhedron, Mn is a PL n-manifold, k ≤ n−3,
and λ0, λ1 : K → M are two PL embeddings. If λ0 and λ1 are equivalent via
a topological isotopy of M , then λ0 and λ1 are equivalent via a PL isotopy
of M .

Proof. Let ψt : M → M be a topological isotopy such that ψ0 = Id and
ψ1λ0 = λ1. Define S to be the set of all t ∈ [0, 1] such that for every η > 0
there exists a PL isotopy φs : M → M with φ0 = IdM and ρ(φ1λ0, ψtλ0) < η.

Obviously 0 ∈ S. Let t0 ∈ S. Apply Theorem 5.4.2 to ψt0λ0 with ε = 1
to produce a number δ > 0. There exists γ > 0 such that ρ(ψtλ0, ψt0λ0) < δ
whenever |t0−t| < γ. Every t with |t0−t| < γ is in S because Theorem 5.8.1
allows us to approximate ψtλ0 with a PL embedding; then the fact that
t0 ∈ S allows us to find a PL isotopy that pushes λ0 to a PL approximation
of ψt0λ0 and Theorem 5.4.2 allows us to push it the rest of the way to the
PL approximation to ψtλ0. Thus S is open. The proof that S is closed is
similar. If t0 ∈ S, then there is a t ∈ S that is near to t0. Hence there is a
PL isotopy that pushes λ0 very close to ψtλ0 and then another small push
by Theorem 5.4.2 taking the adjusted λ0 to a PL approximation to ψt0λ0.

Since S is open, closed, and nonempty we have S = [0, 1] and can con-
clude that 1 ∈ S. One final application of Theorem 5.4.2 yields the desired
conclusion. �
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The proof of Approximation Theorem 5.8.1 is linked in an inductive
argument with the proof of a taming theorem. The taming theorem involved
is closely related to the taming theorems of §5.7, but it incorporates more
specialized hypotheses and conclusions. We need some new terminology in
order to state it.

Recall that a subset L of a polyhedron K is a subpolyhedron of K if
there is a triangulation T of K such that L is the underlying polyhedron
of some subcomplex of T ; in particular, L is a closed subset of K. We say
that a map f : K → M is PL on the open subset K � L if there is a locally
finite subdivision of T |K � L relative to which f |(K � L) is simplicial. A
map f : K → M is called almost PL if there exists a subpolyhedron L ⊂ K
such that f is PL on L and f is PL on K � L.

Theorem 5.8.8 (Taming almost PL embeddings). Suppose K is a compact
k-dimensional polyhedron, L is a subpolyhedron of K, and Mn is a PL n-
manifold, where k ≤ n − 3 and n ≥ 5. If e : K → M is a topological
embedding such that e|L and e|K�L are both PL, then for every ε > 0 there
exists an ε-push ϕ of (M, e(K)) with supporting isotopy Φ : M × [0, 1] → M
such that

(1) ϕe : K → M is PL,

(2) Φte|L = e|L for every t, and

(3) Φ|(M � e(L))× [0, 1] is PL.

To describe the logical structure of the proofs of Theorems 5.8.1 and 5.8.8
succinctly, we exploit the following abbreviations.

Approx(n) = Approximation Theorem 5.8.1 in ambient dimension n
Taming(n) = Taming Theorem 5.8.8 in ambient dimension n

We will prove Approx(n) ⇒ Taming(n) and Taming(n− 1) ⇒ Approx(n).

The proof that Approx(n) ⇒ Taming(n) follows the same outline as the
proof of Theorem 5.7.1, but care must be taken to nail down the additional
conclusions of Theorem 5.8.8. The next lemma replaces Lemma 5.7.6 in the
argument.

Lemma 5.8.9. Suppose K is a compact k-dimensional polyhedron, L is a
subpolyhedron of K, Mn is a PL n-manifold, k ≤ n − 3 and n ≥ 5, and
e : K → M is an embedding that is PL on both L and on K � L. For every
ε > 0 there exists a δ > 0 such that for each embedding λ : K → M with
ρ(e, λ) < δ and λ|L = e|L, and for each open set U ⊃ λ(K), there exists an
ε-push ψ of (M,K) with ψe(K) ⊂ U and ψ|L = inclL.

Proof. The proof is just like those of Lemma 5.7.6 and Theorem 5.4.5. The
objective is to engulf e(K) with U . Corollary 0.6.5 supplies the required
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homotopies. Even though e(K) is an infinite polyhedron, the part of e(K)
that is not already contained in U is covered by a finite polyhedron, so
Generalized Controlled Engulfing Theorem 3.3.7 applies. �

Proof that Approx(n) ⇒ Taming(n). Assume Theorem 5.8.1 in ambi-
ent dimension n. First observe that this assumption, when combined with
the proof of Lemma 5.7.7, yields a stronger version of Lemma 5.8.9. Specif-
ically, for each η > 0, the ε-push ψ in the conclusion of 5.8.9 can be chosen
so that the condition ψe(K) ⊂ U is replaced by the stronger condition
ρ(ψe, λ) < η. The proof of Taming Theorem 5.8.8 is then completed by
means of essentially the same argument as that in the proof of Theorem 5.7.1.
That proof was an application of Theorem 4.2.8; however, Theorem 4.2.8 as
stated does not include provisions for conclusions (2) and (3) of the present
theorem. Thus we will outline the proof of Theorem 4.2.8 for this special
case and indicate how conclusions (2) and (3) are obtained.

Let N1, N2, . . . be a sequence of PL neighborhoods of L in K such that
Ni+1 ⊂ IntNi and ∩∞

i=1Ni = L. Define Pi = L ∪ (K � IntNi). Start with
a PL approximation λ : K → M that agrees with e on P1. Construct
sequences of small pushes {ψi}∞i=1 and {ψ′

i}∞i=1 of (M, e(K)) that satisfy

• ψ = limi→∞ ψi · · ·ψ1 and ψ′ = limi→∞ ψ′
i · · ·ψ′

1 are (ε/3)-pushes of
(M, e(K)),

• ψλ = ψ′e,

• ψi · · ·ψ1λ|Pi = ψ′
i · · ·ψ′

1e|Pi,

• the supporting isotopies for ψi+1 and ψ′
i+1 are fixed on ψi · · ·ψ1λ|Pi,

and

• each point of M � e(L) has a neighborhood that is moved by at
most a finite number of the supporting isotopies.

The push ψi is obtained by an application of Unknotting Theorem 5.4.2
and the push ψ′

i is obtained by an application of Lemma 5.7.7, strengthened
as described at the beginning of this proof. Those two theorems provide
the controls specified above. The homeomorphism ϕ = ψ−1ψ′ is the ε-push
required for the conclusion of the theorem. In particular, the fact that
each point of M � e(L) has a neighborhood that is moved by at most a
finite number of the pushes implies that the supporting isotopy Φ is PL on
(M � e(L))× [0, 1]. �

The proof that Taming(n−1) ⇒ Approx(n) requires a number of techni-
cal lemmas. Several of them are counterparts to familiar results or to results
already proved earlier in the text, but the statements and proofs must be
modified somewhat to fit a noncompact setting.
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Lemma 5.8.10. Let Mn be a compact PL ∂-manifold and let f : Bk →
IntM , k ≤ n − 3, be a topological embedding such that f | IntBk is PL.
Triangulate M�f(∂Bk) so that for each ε > 0 there are only a finite number
of simplices of diameter greater than ε and define V to be the simplicial
neighborhood of f(IntBk) in the second derived subdivision. Then V = V ∪
f(∂Bk) and there exists an extension of f to a homeomorphism h : Bn → V
such that h|Bn � ∂Bk is PL.

Proof. Exercise 5.8.1. �

Notation. The following notation will be assumed for the remainder of the
section. Let K be a (not necessarily compact) k-dimensional polyhedron.
Fix a triangulation T of K and let σ ∈ T be a simplex with dimσ ≤ k − 1.
Define

S = | St(σ, T )|, the underlying polyhedron of the star of σ in T ,

L = |Lk(σ, T )|, the underlying polyhedron of the link of σ in T ,

FrS = the frontier of S in K,

IntS = S � FrS, and

σ̂ = barycenter of σ.

Observe that FrS naturally decomposes as FrS = ∂σ ∗ L, the join of ∂σ to
L, while S can be decomposed as a join in two different ways. On the one
hand, S has a cone structure S = σ̂ ∗ FrS. On the other hand, S = σ ∗ L.
This latter join structure allows us to write IntS� Intσ = Intσ×L× (0, 1)
and to define a natural projection map π : IntS → Intσ. If P ⊂ IntS
is a subpolyhedron, we use Sh(P ) to denote the shadow of P under the
projection π.

Let P ⊂ IntS be a polyhedron such that P ↘ Intσ. In order to simplify
the statement of the next lemma we make the following ad hoc definition: a
regular neighborhood U of P in IntS is a nice neighborhood if U = U ∪ ∂σ
and each of the open intervals in the product structure IntS � Intσ =
Intσ × L× (0, 1) intersects FrU in exactly one point.

Lemma 5.8.11. There exists a neighborhood N of Intσ in IntS such that
for any neighborhood N ′ of Intσ with N ′�∂σ ⊂ N , any polyhedron P in N ′,
any nice neighborhood U ⊂ N ′ of Intσ, and any nice neighborhood U ′ ⊂ N ′

of Sh(P ) ∪ Intσ, there is a PL homeomorphism F : IntS → IntS such
that F (U) = U ′, F | IntS � N = Id, and F extends via the identity to a
homeomorphism F : S → S.

Proof. Simply push away from σ using the join structure described above.
Choose N so that the distance a point is allowed to move approaches 0 as
the point approaches ∂σ. (See Figure 5.35.) �
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σ

σL
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Fr S

Int S

P

P

Sh(P)

N

Figure 5.35. Use the join structure S = σ ∗L to push a neighborhood
U of σ out to cover Sh(P ) while keeping S �N fixed

Lemma 5.8.12. Suppose f : S → M is an embedding into a PL n-manifold
M such that f | IntS � Intσ is PL. For every δ : IntS → (0,∞) and for
every neighborhood N of Intσ in IntS there exists a PL general position
map g : IntS → M such that

(1) g| IntS �N = f | IntS �N ,

(2) g| Intσ is a PL embedding,

(3) d(f(x), g(x)) < δ(x) for every x ∈ IntS, and

(4) S(g) ⊂ N .

Proof. Use Estimated Homotopy Extension Theorem 0.6.4 to obtain η :
Intσ → (0,∞) so that if g : Intσ → M is any map with d(f(x), g(x)) < η(x),
then g is δ(x)-homotopic to f | Intσ. Since Intσ is a manifold, we may apply
Theorem 5.6.1 to find a PL embedding g : Intσ → M that is an η(x)-
approximation to f | Intσ. The choice of η allows g to be extended to a
neighborhood of Intσ in such a way that the extension agrees with f on the
boundary of the neighborhood. Then g may be further extended, via f , to
all of IntS. �

Lemma 5.8.13. Suppose f : S → M is an embedding into a PL n-manifold
M , k ≤ n−3, such that f | IntS� Intσ is PL. For every ε : M → (0,∞) and
for every neighborhood N of Intσ in IntS there exists δ : IntS → (0,∞) such
that if g : IntS → M is a PL general position map satisfying the conclusions
of Lemma 5.8.12, then there exist polyhedra C ⊂ IntS and D ⊂ M such
that

(1) Intσ ∪ S(g) ⊂ C,

(2) C = Sh(C) ⊂ N ,

(3) g(C) = D ∩ g(IntS), and

(4) D ↘ g(Intσ).
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Moreover, if W is a regular neighborhood of D and V and V ′ are simpli-
cial neighborhoods of g(Intσ) and D, respectively, in the second barycentric
subdivision of W , then there exists a PL homeomorphism F : M � g(∂σ) →
M � g(∂σ) such that

(5) F (V ) = V ′,

(6) d(x, F (x)) < ε(x) for every x,

(7) F |M �W = incl, and

(8) F extends via the identity to a (topological) homeomorphism of M .

Proof. This proof utilizes the familiar codimension-three shadow-building
construction that has been employed several times before in this chapter.
Except for the compactness issue, the construction is the same as the basic
construction in §5.6 and it is also quite similar to the construction in the
proof of Slicing Theorem 5.4.10. Since the proof is so much like those earlier
proofs, we will merely outline the argument and trust that the reader can
fill in the details.

Given ε, apply Corollary 0.6.5 to find a sequence of neighborhoods of
f(Intσ) that ε-deform to g(Intσ). Choose δ small enough so that any g
satisfying the conclusions of Lemma 5.8.12 will have its image in the smallest
of these neighborhoods. Also require that δ(x) → 0 as x → f(∂σ). Shrink
N , if necessary, so that it satisfies the conclusions of Lemma 5.8.11. Let
g be as in Lemma 5.8.12 and throw g| IntN into general position keeping
g| IntS � IntN fixed.

To start the construction, let C1 = Intσ ∪ Sh(S(g)). By the choice of δ
there is a small homotopy θ1t : g(C1) → M such that θ10 = incl, θ1t |g(Intσ) =
incl for every t, and θ11(C1) ⊂ g(Intσ). Let B1 be the quotient space of
g(C1) × [0, 1] obtained by shrinking all arcs of the form {x} × [0, 1], x ∈
g(Intσ), to points and also identifying each point 〈x, 1〉 with 〈θ11(x), 1〉 for
x ∈ g(C1) � g(Intσ). Another way to understand B1 is to think of it as
the reduced mapping cylinder Map(θ11, g(Intσ)); this view requires that we
consider g(Intσ) to be the range of θ11. Observe that B1 ↘ g(Intσ). The
homotopy θ1t determines a map Θ1 : B1 → M . Put Θ1 in general position,
keeping g(C1) ∪ g(Intσ) fixed. Define D1 = Θ1(B1). Conditions (1) and
(2) are satisfied by C1 and D1, but conditions (3) and (4) probably are not.
The set E1 = (D1∩g(IntS))∪S(Θ1) represents the error: if E1 were empty,
then conditions (3) and (4) would be satisfied. The dimension of E1 is at
most 2k− n+2 ≤ n− 4. As usual in a proof of this sort, the objective is to
reduce the dimension of the error term and eventually eliminate it.

Define C2 = C1 ∪ Sh(g−1(D1 ∩ g(IntS))). By the choice of δ there is
a homotopy θ2t : g(C2) ∪ Sh(S(Θ1)) → M that pushes g(C2) ∪ Sh(S(Θ1))
into g(Intσ). (Here Sh(S(Θ1)) denotes the shadow of the singular set of
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Θ1 under the collapse B1 ↘ g(Intσ).) Define B2 = B1 ∪Map(θ21, g(Intσ))
and let Θ2 : B2 → M be the map induced by θ2t . Put Θ2 in general
position, keeping B1 fixed, and define D2 = Θ2(B2). The new error term
is E2 = (D2 ∩ g(IntS)) ∪ S(Θ2), which has dimension at most n − 5. The
construction is continued inductively until the error term is empty.

The output of this construction is a pair of polyhedra, C and D, that
satisfy conclusions (1) through (4). The existence of the homeomorphism
F follows from regular neighborhood theory. It is the composition of a
sequence of homeomorphisms, one for each of the elementary collapses in
D ↘ g(Intσ). Since there are infinitely many such collapses, we must be
careful to make sure that each point of M � f(∂σ) is moved only a finite
number of times. The “horizontal control” of §5.6 provides exactly what is
needed to accomplish this. Finally, the fact that δ(x) → 0 as x → f(∂σ)
allows us to reach conclusion (8). �

The last lemma of this section will supply the inductive step in the proof
of Taming(n− 1) ⇒ Approx(n).

Lemma 5.8.14. Assume Taming(n− 1). Suppose f : S → M is an embed-
ding into a PL n-manifold M , k ≤ n − 3, such that f | IntS � Intσ is PL.
For every ε : IntS → (0,∞) and for every neighborhood N of Intσ in IntS
there exists an embedding f ′ : S → M such that

(1) f ′|L ∪ (S �N) = f |L ∪ (S �N),

(2) f ′| IntS is PL, and

(3) d(f(x), f ′(x)) < ε(x) for every x ∈ IntS.

Proof. Given ε, choose δ according to Lemma 5.8.13. Let g : IntS → M be
as in the conclusion of Lemma 5.8.12. We may assume that g extends via f
to all of S. We will also call this extension g. Let C and D be the associated
polyhedra given by Lemma 5.8.13. Choose nice regular neighborhoods U of
Intσ and U ′ of C. Choose U so that U is a compact polyhedron that
is a cone from σ̂. By Lemma 5.8.11 there is a small PL homeomorphism
F1 : IntS → IntS such that F1(U) = U ′ and F1 extends via the identity to
all of S.

Let V ′ be a close regular neighborhood of D in M � g(∂σ). We may
assume that g(U ′) = V ′∩g(IntS) by first finding triangulations in which g is
simplicial and then defining U ′ and V ′ to be second derived neighborhoods
relative to those triangulations. (The derived subdivision can be chosen
so that U ′ is still a nice neighborhood of C.) Take V to be the simplicial
neighborhood of g(Intσ) in a second derived subdivision of M � g(∂σ).

Let j = dimσ and fix a PL homeomorphism φ : σ → Bj . By Lemma
5.8.10 there is a homeomorphism h : Bn → V such that h|Bj = gφ−1
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and h|Bn � ∂Bj is PL. The choice of δ yields a PL homeomorphism F2 :
M � f(∂σ) → M � f(∂σ) such that F2(V ) = V ′. We may assume that F2

extends via the identity to a homeomorphism of all of M .

Consider the map

H = h−1F−1
2 gF1|U : U → Bn.

Observe that H(FrU) ⊂ ∂Bn and that H|FrU is one-to-one. We wish to
replace H with an embedding φ̄ : U → B that agrees with H on FrU , and
is PL on IntU . Both H|∂σ = h−1g|∂σ = φ|∂σ and H|FrU � ∂σ are PL,
so Taming(n− 1) applies to the embedding H|FrU : FrU → ∂Bn. Use the
resulting isotopy to extend H|FrU to an embedding φ̄ of a collar on FrU
in U onto a collar of ∂Bn � ∂Bj in Bn. The collar on FrU is pinched along
∂σ and should be chosen so that the remainder of U is a cone from σ̂ on the
inside boundary component. The collar on ∂Bn � ∂Bj should be chosen so
that the inside boundary is a PL (n−1)-sphere that intersects ∂Bn precisely
in ∂Bj and whose interior is convex. Since φ̄ is PL on the inside boundary
of the collar, it can be extended to the remainder of U by defining φ̄(σ̂) = 0
and extending conewise.

Define f ′ : S → M by

f ′(x) =

{
F−1
2 gF1(x) if x ∈ S � U

hφ̄(x) if x ∈ U.

This embedding has the required properties. �

Proof that Taming(n− 1) ⇒ Approx(n). Let e : Kk → Mn be a topo-
logical embedding of a k-dimensional polyhedron K into a PL n-manifold
M , k ≤ n− 3, and let ε : K → (0,∞) be continuous. Fix a triangulation T
of K such that diam e(τ) < (1/2)ε(x) for every τ ∈ T and for every x ∈ τ .
We will construct a PL embedding e′ so that e′(τ) ⊂ B(e(τ); diam e(τ)) for
each τ ∈ T ; then the choice of T will yield that d(e(x), e′(x)) < ε(x) for
every x ∈ K.

For each i ≤ k, let Ki = |T (i)| denote the underlying polyhedron of the
i-dimensional skeleton of T . We prove by downward induction on i that e
can be approximated by topological embeddings f such that f |K � Ki is
PL. The base case i = k − 1 follows from an application of Approximation
Theorem 5.6.1 to e| Int τ for each k-simplex τ . More specifically, apply
Theorem 5.6.1 using a function ε′ : Int τ → (0,∞) with the property that
ε′(x) approaches 0 very rapidly as x approaches ∂τ . In that case, the function
defined to be the PL approximation on the interior of each k-simplex and e
on Kk−1 will be a topological embedding.

If f : K → M is a topological embedding that is PL on K � Ki,
Lemma 5.8.14 can be used to modify f near each i-simplex to produce
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an approximation f ′ that is PL on K �Ki−1. This completes the inductive
proof. �

Historical Notes. Theorem 5.8.1 and its proof are due to Bryant (1972).
Theorem 5.8.8 was announced by J. Cobb (1968); the proof here is based
on that in an appendix to (Bryant, 1972). The 4-dimensional case of The-
orem 5.8.8 is due to Cantrell (1964); Bryant (1966a), (1966b) and Dancis
(1966) proved it for embeddings in the trivial range; Rushing (1969) then
did the same for the metastable range.

Exercises

5.8.1. Prove Lemma 5.8.10. [Hint: Start in the middle of f(Bk) and
use Product Neighborhood Theorem 5.3.9 to define the homeomor-
phism on concentric rings.]

5.8.2. For k ≥ 4 there exists a finite, collapsible k-complex that admits
no embedding in a (2k − 1)-manifold.

5.8.3. Suppose K is a finite k-complex topologically embedded in a PL
n-manifold M , k ≤ n − 3. Then there exist a PL embedding λ :
K → M and a pseudo-isotopy Φt : M → M such that Φ0 = IdM
and Φ1λ = inclK .



Chapter 6

Codimension-two
Embeddings

Topological embeddings behave quite differently in codimension two than
they do in any other codimension. Very few of the codimension-three results
of Chapter 5 translate directly to codimension two. In particular, there is no
general unknotting theorem in codimension two and there are no generally
applicable theorems on existence of PL embeddings or on approximation of
topological embeddings. As a result, this chapter is largely devoted to the
construction of examples that illustrate these phenomena.

A major theme of the chapter is that, in contrast with the situation
in all other codimensions, the fundamental group is not a powerful enough
invariant to detect either knotting or wildness in codimension two. We will
illustrate this with examples of locally flat piecewise linear embeddings of
spheres that are knotted even though their complements have good funda-
mental groups and with examples of topological embeddings of manifolds
that are wild even though their complements have good local fundamen-
tal groups. Positive theorems require additional hypotheses on the higher
homotopy groups. For example, we prove that a locally flat embedding of
the (n − 2)-sphere in Sn is flat provided all the homotopy groups of the
complement are standard.

The invariants used to detect codimension-two knotting and wildness
are based on the homology of an infinite cyclic cover of the complement.
These same invariants detect the fact that certain highly connected maps
are not homotopic to embeddings and that certain topological embeddings
cannot be approximated by PL embeddings. The chapter is self-contained

273
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in the sense that it includes a complete description of the invariants and a
thorough verification of the necessary algebraic properties.

6.1. Piecewise linear knotting and algebraic unknotting

We begin the study of codimension two by revisiting the global knotting
of PL spheres. We construct locally flat PL spheres that are knotted even
though their complements have infinite cyclic fundamental groups; these
examples are the first indication that codimension-two knotting is too subtle
to be detected by π1 alone. In the light of those examples we reexamine the
codimension-two unknotting theorem for locally flat PL sphere pairs to see
how the algebraic hypotheses can be sharpened. The section concludes with
an example which reveals that topological equivalence and PL equivalence
are not the same for PL embeddings in codimension two.

Example 6.1.1. For each integer k, 1 ≤ k < n/2, there is an embedding
φ : Sn−2 → Sn such that

(1) φ is locally flat and PL,

(2) πi(S
n − φ(Sn−2)) ∼= πi(S

1) for i < k, but

(3) πk(S
n − φ(Sn−2)) � πk(S

1).

The previous chapter establishes that if two codimension-three embed-
dings are both close to a model embedding, then they are equivalent via
a short ambient isotopy (Theorem 5.4.2). There is no such result in codi-
mension two. In fact, once the embeddings of Example 6.1.1 have been
constructed, it is quite easy to see that they can be made arbitrarily close
to the inclusion.

Addendum. Given ε > 0, the embedding φ in Example 6.1.1 can be con-
structed so that d(x, φ(x)) < ε for every x ∈ Sn−2.

The invariant used to detect knottedness in this section is the homology
of the infinite cyclic cover of the knot complement, sometimes called the
Alexander invariant. Before beginning the construction of the example we
briefly describe the homology groups of the cover and an associated long
exact sequence. Later in the chapter we will study these algebraic objects
in more detail and will develop additional invariants from them.

The homology groups of a cover. In what follows it is important to
distinguish the ring of integers from the infinite cyclic multiplicative group;
we will use Z to denote the former and J to denote the latter. The distinc-
tion becomes most effective when the spaces considered have infinite cyclic
fundamental groups and simultaneously we must deal with the integers as
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coefficients in homology groups. We will consistently use the notation J
when referring to the fundamental group. We write J multiplicatively and
use t to denote a generator of J; thus

J = { tj | j = 0,±1,±2, . . . }.
Let R be a ring and let R[J] denote the group ring. The elements of R[J]
are Laurent polynomials in t with coefficients in R; thus

R[J] =
{ m∑

i=−m

qit
i

∣∣∣∣ m ∈ N, qi ∈ R

}
.

In this section we will use R = Z while in later sections of the chapter we
will use R = Q.

Let X be a connected CW complex with π1(X) ∼= J, let X̃ denote the

universal cover of X, and let p : X̃ → X denote the covering projection.
Fix a cell structure on X and lift the cells of X via p to determine a corre-

sponding cell structure on X̃. Note that J acts on X̃ as the group of deck

transformations, so it is natural to think of Ck(X̃;Z), the group of cellular

k-chains on X̃, as a module over Z[J]. It is a free Z[J]-module with one
generator for each k-cell in X. For this reason we use Ck(X;Z[J]) to de-

note Ck(X̃;Z). The module structure on C∗(X;Z[J]) induces a Z[J]-module

structure on H∗(X̃;Z). When we wish to emphasize this module structure

we denote H∗(X̃;Z) by H∗(X;Z[J]). Using this notation we can state the

Hurewicz Theorem as follows: if π1(X) ∼= J and H̃i(X;Z[J]) = 0 for i ≤ k−1,
then πi(X) = 0 for 2 ≤ i ≤ k − 1 and πk(X) ∼= Hk(X;Z[J]).

Remark. The groups H∗(X;Z[J]) defined in the preceding paragraph are
known as homology groups of X with local coefficients. While we will not
make use of cohomology with local coefficients, it is worth noting that it
is possible to extend the definitions above to that context as well. Use
Ck(X;Z[J]) to denote the group HomZ[J](Ck(X;Z[J]),Z[J]) and assume that

X is a finite complex. Then Ck(X;Z[J]) is finitely generated over Z[J],
so a cochain in Ck(X;Z[J]) corresponds to a cochain in Ck(X̃;Z) that is

nonzero on at most a finite number of cells. Hence H∗(X;Z[J]) ∼= H∗
c (X̃;Z),

the cohomology group with compact supports (Hatcher, 2002, Proposi-
tion 3H.5). In this notation, Poincaré-Lefschetz duality simply states that
Hk(X;Z[J]) ∼= Hn−k(X, ∂X;Z[J]) whenever X is a compact orientable n-
dimensional ∂-manifold with π1(X) ∼= J.

The Milnor sequence. There is a very useful long exact sequence associ-
ated with the universal cover of a space whose fundamental group is infinite
cyclic. To construct it, one must examine the sequence

(∗) 0 → C∗(X;Z[J]) t−1−−→ C∗(X;Z[J])
p∗−→ C∗(X;Z) → 0.
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Theorem 6.1.2. The sequence (∗) is a short exact sequence of chain com-
plexes.

Proof. It is clear that t− 1 is a monomorphism and that p∗ is an epimor-
phism. In addition, p∗((t − 1)(c)) = p∗(c) − p∗(c) = 0, so p∗ ◦ (t − 1) = 0.
An element of c ∈ C∗(X;Z[J]) has the form c =

∑
i qi(t)σi, where qi(t) ∈

Z[J] and σi is a cell in X. Note that p∗(
∑

i qi(t)σi) =
∑

i qi(1)σi. Thus
p∗(

∑
i qi(t)σi) = 0 implies that qi(1) = 0 and consequently t − 1 divides

qi(t). Hence p∗(
∑

i qi(t)σi) = 0 implies that
∑

i qi(t)σi is in the image of
t− 1. �

The sequence (∗) gives rise to the long exact sequence

(∗∗) · · · → Hk+1(X;Z)
p∗−→ Hk(X;Z[J]) t−1−−→ Hk(X;Z[J])

p∗−→ Hk(X;Z) → · · ·

of homology groups. The exactness of (∗∗) is a standard consequence of the
Zig-zag Lemma ((Munkres, 1984, Lemma 24.1) or (Hilton and Stammbach,
1971, Theorem IV.2.1)).

We will refer to the sequence (∗∗) as a Milnor sequence. The name is
chosen because of the important role the sequence plays in the fundamental
paper (Milnor, 1968). The sequence (∗∗) is also known in other contexts
as the Wang Sequence. (See, for example, (Spanier, 1966, p. 456) or (Hu,
1959, p. 282).)

The construction of Example 6.1.1, as well as that of other examples in
the chapter, is described in terms of handle theory. The handle-theoretic
terminology employed is consistent with that of (Rourke and Sanderson,
1972, Chapter 6).

Construction of Example 6.1.1. The case k = 1 was covered in Chap-
ter 1, with its examples of knotted 1-spheres in S3 whose complements have
nonabelian fundamental groups. Higher-dimensional examples (with n > 3
and k = 1) are constructed by spinning the 3-dimensional ones.

Assume k > 1. Let (Bn+1, Bn−1) denote the standard unknotted ball
pair and let B∗ = Bn+1 � Bn−1. Then π1(∂B

∗) = J and Hj(∂B
∗;Z[J]) = 0

for j > 1. Let M1 be the manifold obtained by attaching a trivial k-handle
to Bn+1 along ∂B∗; that is, M1 is the identification space M1 = Bn+1∪h(k),
where h(k) = Bk × Bn−k+1 and (∂Bk) × Bn−k+1 is identified with a thin
tubular neighborhood of an unknotted (k−1)-sphere in ∂B∗. In case k = 2,
this attaching (k − 1)-sphere should be inessential in ∂B∗. Define M∗

1 =
M1 �Bn−1.

We now compute Hj(∂M
∗
1 ;Z[J]) for 1 ≤ j ≤ k. For j < k, general

position shows that any singular j-sphere in ∂M∗
1 can be homotoped off

the belt sphere {0} × ∂Bn−k+1 in ∂M∗
1 and thence off the handle h(k).
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h
(k)

{0} × ∂Bn-k+1

B
n-1

B
n+1

Figure 6.1. A trivial k-handle attached to an (n+ 1, n− 1)-ball pair

General position, together with the requirement that k < n/2, shows that

πj(∂B
∗ � h(k)) = 0 for 1 < j < k. So we have that π1(∂M

∗
1 ) = J and

πj(∂M
∗
1 ) = Hj(∂M

∗
1 ;Z[J]) = 0 for 2 ≤ j < k. Furthermore, we have added

a generator to Hk(∂M
∗
1 ;Z[J]), so Hk(∂M

∗
1 ;Z[J]) is naturally identified with

Z[J].
Let α denote a Z[J]-generator of Hk(∂M

∗
1 ;Z[J]) and let Σ denote a

locally flat PL k-sphere in ∂M∗
1 that represents the element (2 − t)α in

Hk(∂M
∗
1 ;Z[J]). The k-sphere Σ is pictured schematically in Figure 6.2.

Now define M2 to be the manifold obtained by attaching a (k + 1)-handle

to M1 along Σ. Thus M2 is the identification space M1 ∪ h(k+1) where
h(k+1) = Bk+1 ×Bn−k and ∂Bk+1 ×Bn−k is identified with a small regular
neighborhood of Σ in ∂M∗

1 . As before, use M∗
2 to denote M2 �Bn−1.

B n+1

h
(k)

−

t

α αα

Σ

B
n-1

Figure 6.2. Σ is the attaching sphere for the (k + 1)-handle
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We next observe that, while M∗
2 is a complicated space, M2 is simply an

(n+ 1)-ball. The reason for this is the fact that

M2 = Bn+1 ∪ h(k) ∪ h(k+1)

and the two handles algebraically and geometrically cancel each other. Thus
there is a homeomorphism g : M2 → Bn+1. Identify Sn−2 with ∂Bn−1 ⊂
∂M2. The embedding φ we seek is simply

φ = g | Sn−2 : Sn−2 → ∂Bn+1 = Sn.

In order to complete the construction, we must check that Sn�φ(Sn−2) ∼=
∂M∗

2 has the correct homotopy groups. First note that Hj(∂M
∗
2 ;Z[J]) =

Hj(∂M
∗
1 ;Z[J]) for j < k because adding the (k + 1)-handle h(k+1) does not

change homology in dimensions below k. Then note that the addition of
the (k + 1)-handle adds a relation to Hk; the relation is represented by
the sphere Σ. Thus Hk(∂M

∗
2 ;Z[J]) ∼= Z[J]/(2 − t) and an application of

the Hurewicz Theorem shows that πk(S
n � φ(Sn−2)) ∼= Z[J]/(2− t). Since

Z[J]/(2− t) �= 0, this completes the proof. �

Remark. A slice knot is a PL (n − 2)-sphere in Sn that bounds a locally
flat PL (n−1)-ball in Bn+1. It is clear from the construction that the knots
in Example 6.1.1 are slice knots whenever k ≥ 2.

Proof of the Addendum to Example 6.1.1. Let D be a small PL ball
in Sn that intersects φ(Sn−2) in a standard (n − 2)-cell and define C =
Sn � IntD. Choose a second small PL ball B such that B ∩ Sn−2 is a
standard (n − 2)-cell. Cut out the pair (B,B ∩ Sn−2) and replace it with
(C,C ∩ φ(Sn−2)) to construct a PL embedding of Sn−2 into Sn that is
very close to the identity, but has complement homeomorphic to that of
φ(Sn−2). �

In Example 6.1.1, the first nonstandard homotopy group appears in di-
mension k for some k < n/2. The next two theorems are positive results
which show that this must always hold: if all homotopy groups below the
middle dimension are standard, then the sphere must be unknotted. We
consider only the PL case in this section; the topological case will be inves-
tigated in subsequent sections of the chapter.

Theorem 6.1.3 (PL Unknotting). Let h : Sn−2 → Sn be a locally flat PL
embedding, n ≥ 6, such that πi(S

n � h(Sn−2)) ∼= πi(S
1) for every i < n/2.

Then there is a PL homeomorphism g : Sn → Sn such that g(h(Sn−2)) =
Sn−2.

Theorem 6.1.3, as stated, asserts only a weak form of unknotting in which
g(h(Sn−2)) = Sn−2 setwise. However it follows routinely from (Rourke and
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Sanderson, 1972, Proposition 4.18) that the conclusion can be strengthened
to assure that g ◦ h : Sn−2 → Sn is pointwise equal to the inclusion.

Theorem 6.1.3 is a high-dimensional result—the full PL Unknotting The-
orem is not known to hold in dimension four. It is known that a locally flat
PL 2-sphere in S4 is topologically flat provided its complement has the ho-
motopy type of S1 (Freedman and Quinn, 1990), but it is unknown whether
such a sphere is PL unknotted. As a result, we cannot prove that a PL
embedding Sn−2 → Sn, n ≥ 5, that is topologically locally flat is locally
flat in the PL sense. We will not address that subtle issue in this chapter;
whenever the terms “PL” and “locally flat” are used together we will assume
that the embedding is locally flat in the PL sense.

Theorem 6.1.3 is the same as the codimension-two unknotting theorem
in (Rourke and Sanderson, 1972), except that the hypotheses are stated in
an apparently weaker form. The next proposition promises that any knot
Σ satisfying the hypotheses of Theorem 6.1.3 is algebraically unknotted ; i.e.,
πi(S

n�Σ) ∼= πi(S
n�Sn−2) for every i. This follows from Poincaré duality in

case n is odd, but a delicate argument is needed to show that the homology
vanishes in the middle dimension when n is even. We restrict attention to
n ≥ 6 so we can use handle theory to simplify the approach.

Proposition 6.1.4 (Algebraic Unknotting). Let h : Sn−2 → Sn be a locally
flat PL embedding, n ≥ 6. If πi(S

n � h(Sn−2)) ∼= πi(S
1) for every i < n/2,

then Sn � h(Sn−2) has the homotopy type of S1.

Proof. Define k = �n−1
2 �, the greatest integer less than or equal to (n−1)/2,

and Σ = h(Sn−2). Let C1 be a small n-cell such that (C1, C1 ∩ Σ) ∼=
(Bn, Bn−2) and let C2 be a regular neighborhood of Σ�IntC1 in Sn�IntC1.
Then (C2, C2 ∩ Σ) is an unknotted ball pair by (Rourke and Sanderson,
1972, Corollary 4.14)1. Define N = C1 ∪C2 and X = Sn� IntN . Note that
C1 ∩ C2 = ∂C1 ∩ ∂C2

∼= B2 × Sn−3. Furthermore,

∂Ci � ∂Cj
∼= S1 ×Bn−2

for (i, j) = (1, 2) and (2, 1). Hence ∂N can be expressed as the union of
two copies of S1×Bn−2 sewn together along their boundaries. Any singular
sphere in ∂N of dimension less than n − 2 can be homotoped off one copy
of S1 ×Bn−2 and into a regular neighborhood of the other. Thus πi(∂N) is
trivial for 2 ≤ i ≤ n − 3. Furthermore, the S1 factor of ∂N homologically
links Σ, so π1(∂N) = J. Therefore πi(∂N) ∼= πi(S

1) for 1 ≤ i ≤ k.

Now X is a strong deformation retract of Sn � h(Sn−2), so π1(X) = J
and πi(X) = 0 for 2 ≤ i ≤ k. It follows that (X, ∂X) is a k-connected

1Rourke and Sanderson state the local flatness hypothesis on the bottom of page 51 and it
is assumed throughout the remainder of Chapter 4.
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pair. If we treat X as a cobordism based on ∂X and consider a handle
decomposition of that cobordism, then we can cancel all handles of index
≤ k by standard handle cancellation techniques. (See Rourke and Sanderson
(1972), Theorems 6.13, 6.15, and 6.16.) Thus the dual handle decomposition
has no handles of index n − k or greater, which means that X has the
homotopy type of a finite CW complex of dimension n − k − 1. Hence we
have Hi(X;Z[J]) = 0 for 1 ≤ i ≤ k and for i ≥ n− k.

In case n is odd, we haveHi(X;Z[J]) = 0 for every i ≥ 1, so the universal

cover X̃ is contractible and the proof is complete in that case.

Suppose, then, that n is even. We already know that H̃i(X;Z[J]) = 0 for
i �= n/2 = k+1. To complete the proof we must show thatHk+1(X;Z[J]) = 0
as well. Since X has the homotopy type of a CW complex of dimension

n− k − 1 = k + 1, the cellular chain complex of X̃ has the form

0 → Ck+1(X;Z[J]) → Ck(X;Z[J]) → · · · .

It follows that Hk+1(X;Z[J]) is a submodule of the finitely generated free
Z[J]-module Ck+1(X;Z[J]). The Milnor Sequence

· · ·Hk+2(X;Z) → Hk+1(X;Z[J]) t−1−−→ Hk+1(X;Z[J])
p∗−→ Hk+1(X;Z) ∼= 0

shows that the homomorphism (t − 1) : Hk+1(X;Z[J]) → Hk+1(X;Z[J]) is
onto. Hence every element of Hk+1(X;Z[J]) is divisible by arbitrarily high
powers of (t−1). The only element of a free Z[J]-module with this property
is 0, so Hk+1(X;Z[J]) = {0}. Hence Sn � h(Sn−2) is aspherical, and an
application of the Whitehead Theorem completes the proof. �

Proof of Theorem 6.1.3. Let h : Sn−2 → Sn be an embedding satisfying
the hypotheses of the theorem. Then Sn � h(Sn−2) has the homotopy type
of S1 by Proposition 6.1.4. Hence the theorem follows from (Rourke and
Sanderson, 1972, Theorem 7.6). �

Remark. It should be noted that (Rourke and Sanderson, 1972) does
not contain a complete proof of the codimension-two unknotting theorem.
Rourke and Sanderson’s argument is based on two results they do not prove.
The first is the s-cobordism Theorem and the second is the fact that the
Whitehead group of the integers, Wh(Z), is trivial. In the next section we
will give a complete proof of a topological version of the unknotting theorem
that is independent of those results.

The final example in the section illustrates another way in which codimen-
sion-two embeddings differ from those in codimension three: two PL embed-
dings can be topologically equivalent but PL inequivalent. This contrasts
with Corollary 5.8.7.
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Example 6.1.5. For n ≥ 5 there exist PL embeddings h1, h2 : Sn−2 → Sn

such that h1 and h2 are topologically equivalent but not PL equivalent. More
precisely, there is a topological homeomorphism g : Sn → Sn such that gh1 =
h2 but there is no PL homeomorphism g′ : Sn → Sn with g′h1(Sn−2) =
h2(S

n−2). Furthermore, the topological homeomorphism g can be made PL
on h1(S

n−2) and on Sn � {p}, where p ∈ h1(S
n−2).

Construction of Example 6.1.5. The construction of Example 6.1.5 re-
quires ingredients that are beyond the scope of this book. In particular,
it requires the existence of a group π with two properties: the Whitehead
group of π must be nontrivial and π must be the fundamental group of
the complement of a locally flat PL (n − 3)-sphere in Sn−1. The group
π = J × G, where G is the binary icosahedral group of order 120, is such
a group. The fact that Wh(π) �= 0 follows from (Siebenmann and Sondow,
1966/1967, Lemma 2.4). The five-twist spin of the trefoil knot is an exam-
ple of a locally flat PL 2-sphere in S4 whose complement has fundamental
group π (Zeeman, 1965). Higher-dimensional examples are obtained by (un-
twisted) spinning of the 4-dimensional example (see Exercise 1.4.4). We will
assume those two results and sketch the remainder of the construction.

Fix n ≥ 6. Let K ⊂ Sn−1 be a locally flat PL (n − 3)-sphere such
that π1(S

n−1 � K) = π and let τ be a nonzero element of Wh(π). Define
(W0,M0) = (Sn−1 × [0, 1],K × [0, 1]). Then construct a second cobordism
(W1,M1) by attaching handles to (W0,M0) using τ . To be more specific,
find an m×m matrix over Z[π] that represents τ ; attach m trivial 2-handles
to W0 along (Sn−1�K)×{1} and then attach an equal number of 3-handles
in such a way that τ represents the intersection matrix between the 2- and
3-handles; define W1 to be W0 plus these handles and define M1 to be the
image of M0 under the inclusion map W0 ↪→ W1. Because W0 is simply
connected and the Whitehead group of the trivial group is trivial, we see
that W1

∼= W0. On the other hand, W1 � M1 is a nontrivial cobordism
based on Sn−1 � K whose Whitehead torsion is τ . As a result there is no
PL homeomorphism (W0,M0) ∼= (W1,M1).

For i = 0, 1, define (Sn,Σi) to be the PL sphere pair obtained by capping
the two ends of (Wi,Mi) with cones. Note that each Σi is a PL (n − 2)-
sphere in Sn with exactly two non-locally flat points and that Σ0 is just the
suspension of K. We will show that Σ0 and Σ1 have the properties specified
in the example.

Suppose there did exist a PL homeomorphism g′ : (Sn,Σ0) → (Sn,Σ1).
Then g′ would necessarily map the two non-locally flat points of Σ0 to the
non-locally flat points of Σ1. Excising a cone about each of the non-locally
flat points would result in a PL homeomorphism (W0,M0) ∼= (W1,M1).
Hence we can conclude that no PL homeomorphism g′ exists.
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Now we show that there does exist a topological homeomorphism g :
(Sn,Σ0) → (Sn,Σ1). Let (∂+W1, ∂+M1) and (∂−W1, ∂−M1) denote the
standard and nonstandard boundary components of (W1,M1), respectively.
Attach a half-open collar (∂−W1 × [0, 1), ∂−M1 × [0, 1)) to the cobordism
(W1,M1) to form (W+

1 ,M+
1 ). By Collaring Theorem 2.4.10,

(W+
1 ,M+

1 ) ∼= (W1 � ∂−W1,M1 � ∂−M1)

and by Weak h-Cobordism Theorem 3.1.8,

(W1 � ∂−W1,M1 � ∂−M1) ∼= (∂+W1 × [0, 1), ∂+M1 × [0, 1)).

One-point compactification then shows that the space obtained by attach-
ing a cone to (W1,M1) along (∂−W1, ∂−M1) is homeomorphic to the cone
on (∂+W1, ∂+M1). It follows that the topological homeomorphism g ex-
ists. Since the homeomorphisms provided by the Collaring Theorem and
the Weak h-Cobordism Theorem are both PL, g is PL in the complement
of a point. A little extra care makes g|Σ0 PL as well.

This completes the construction of the example in case n ≥ 6. The
5-dimensional case requires some modification in the construction of W1;
details may be found in (Siebenmann and Sondow, 1966/1967). �
Historical Notes. A special case of Example 6.1.1 appears as Theorem V in
(Kervaire, 1965a), where the special case is attributed to Stallings. The gen-
eralized example is described by D. W. Sumners in (1970); see also (Sumners,
1966). Knots with fundamental group J can also be constructed by plumb-
ing techniques—see (Rolfsen, 1990, §7F). M. Kervaire (1965a), (1965b) gives
conditions which characterize the groups that can be fundamental groups of
locally flat PL (n−2)-spheres in Sn, n ≥ 5. The conditions in Exercise 6.1.1
are sufficient, but not necessary.

Theorem 6.1.3 is known as Levine’s Unknotting Theorem. J. Levine
(1965) does not state the theorem in this form, but the statement given
here is what he actually proves in (Levine, 1965). Our statement can be
found on page 74 of (Kervaire and Weber, 1978) where it is attributed to
Levine. The 5-dimensional case was first announced in (Wall, 1965b) and a
complete proof appears in (Wall, 1970, §16). The 5-dimensional theorem was
also proved independently by J. L. Shaneson (1968). The 3-dimensional case
is the classical Dehn’s Theorem, which is a consequence of Dehn’s Lemma
(Papakyriakopoulos, 1957). It is not known whether Theorem 6.1.3 is valid
in dimension 4, although a weak version of the 4-dimensional theorem,
with a topological conclusion, is known (Freedman and Quinn, 1990, Theo-
rem 11.7A).

Algebraic Unknotting (Proposition 6.1.4) is implicit in (Levine, 1965).
Another proof, based on (Wall, 1966), may be found in (Hirschhorn and Rat-
cliffe, 1980). The 4-dimensional case is attributed to A. Kawauchi (1974a).
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Other proofs of the 4-dimensional case appear in (Swarup, 1975, Remark 3),
(Freedman and Quinn, 1990, Proposition 11.6C(1)), and Exercise 6.5.1.

Example 6.1.5 is taken from (Siebenmann and Sondow, 1966/1967). A
similar construction may be found in (Stallings, 1965a, §4). Siebenmann and
Sondow construct an infinite family of embeddings that are all topologically
equivalent but pairwise PL distinct. The last part of the argument in the
construction of Example 6.1.5 can also be completed using the inverse of τ
in the Whitehead group and the Mazur swindle (§2.9) in place of the Weak
h-Cobordism Theorem.

Exercises

6.1.1. Let π be a finitely presented group of deficiency one and weight
one.2 Prove that for each n ≥ 5 there is a locally flat embedding
h : Sn−2 → Sn such that π1(S

n � h(Sn−2)) ∼= π. [Hint: Start with
Bn+1. Attach one 1-handle to Bn+1 for each generator of π and
attach a 2-handle corresponding to each relation. Attach a final
2-handle along a weight element. Prove that the boundary of the
resulting manifold is homeomorphic to Sn and that the belt sphere
of the final handle is the desired (n− 2)-sphere.]

6.1.2. Let p(t) ∈ Z[J] be a polynomial with p(1) = ±1. Prove that for
each n ≥ 5 and for each k, 2 ≤ k < n/2, there exists a locally flat
PL embedding h : Sn−2 → Sn such that πi(S

n�h(Sn−2)) ∼= πi(S
1)

for i < k and πk(S
n � h(Sn−2)) ∼= Z[J]/(p(t)).

6.1.3. Prove the n = 3 and n = 5 cases of Theorem 6.1.4.

6.1.4. TheHauptvermutung3 is the conjecture that two topologically home-
omorphic polyhedra are PL homeomorphic. Use a construction like
that in Example 6.1.5 to produce compact counterexamples to the
Hauptvermutung.

6.2. Topological flattening and algebraic knotting

Next we consider topological embeddings in codimension two. We give a
complete proof of a topological version of the codimension-two unknotting
theorem that is based on Stallings engulfing. As part of the argument we
prove several other results of independent interest. Foremost among them
are the monotone union theorem and an unknotting theorem for embeddings
of Rn−2 in Rn. The monotone union theorem states that any manifold that

2A group has deficiency one if it has a presentation in which the number of generators exceeds
the number of relations by one. A group π has weight one if there is one element z ∈ π whose
normal closure is π. Such an element z is called a weight element.

3At one time the Hauptvermutung was the “main conjecture” of geometric topology.
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can be written as a monotone union of n-cells is homeomorphic to Rn; we
prove a relative version of the theorem.

Theorem 6.2.1 (Topological flattening). Let h : Sn−2 → Sn be a locally
flat topological embedding, n ≥ 5, such that Sn � h(Sn−2) has the homotopy
type of S1. Then there is a topological homeomorphism g : Sn → Sn such
that g(h(Sn−2)) = Sn−2.

The hypothesis about Sn � h(Sn−2) having the homotopy type of S1

could be replaced by the weaker algebraic hypotheses of Theorem 6.1.3, but
extension of the algebraic unknotting principle to the locally flat topologi-
cal category requires rather delicate algebraic arguments that we prefer to
omit. While the algebraic unknotting principle does extend to locally flat
topological embeddings, the principle definitely does not extend to general
topological embeddings. Later in the section we will present a collection of
examples exhibiting a new kind of wildness; they disclose that the first non-
standard homotopy group of the complement of a topologically embedded
sphere can appear in any dimension up to n− 2.

We begin the proof of Theorem 6.2.1 by removing a point from h(Sn−2)
to form an embedded copy of Rn−2 in Rn. This leads us to consider the
problem of unknotting embeddings of Rn−2 in Rn.

Definition. Suppose Y is a closed subset of Rn such that Y is homeomor-
phic to Rn−2. Say that Y is unraveled at infinity if for every compact subset
K of Rn there exists a second compact subset D with K ⊂ D ⊂ Rn such
that the pair (Rn � Y,Rn � (Y ∪D)) is 2-connected.

It is easy to see that Y is unraveled at infinity if π2(Rn � Y ) = 0 and
for every compact subset K of Rn there exists a second compact subset D
with K ⊂ D ⊂ Rn such that the usual inclusion induced homomorphism
π1(Rn � (Y ∪D)) → π1(Rn � Y ) is an isomorphism.

Proposition 6.2.2. If h : Rn−2 → Rn is a locally flat, proper, topological
embedding such that Rn�h(Rn−2) has the homotopy type of S1 and h(Rn−2)
is unraveled at infinity, then h(Rn−2) is flat.

Proof of Theorem 6.2.1. Pick x0 ∈ h(Sn−2). Set Σ = h(Sn−2) and Σ− =
Σ � {x0}. Stereographic projection from x0 gives a homeomorphism H :
Sn � {x0} → Rn and H|(Σ−) is a proper embedding of Σ− ∼= Rn−2 into Rn.
Since Rn � H(Σ−) ∼= Sn � Σ, we see that Rn � H(Σ−) has the homotopy
type of S1. Furthermore, local flatness of Σ at x0 means that there exist
arbitrarily small neighborhoods U of x0 such that (U,U ∩Σ) ∼= (Rn,Rn−2).
Note that π1(U � Σ) → π1(S

n � Σ) is an isomorphism, so Exercise 0.5.3
implies that (Sn � Σ, U � Σ) is 2-connected. Taking complements, one
obtains arbitrarily large compact subsets K = H(Sn � U) of Rn such that
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(Rn �H(Σ−),Rn � (K ∪H(Σ−)) is 2-connected and H(Σ−) is unraveled at
infinity. Proposition 6.2.2 shows that there is a homeomorphism g : Rn →
Rn such that g(H(Σ−)) = Rn−2. The map H−1 ◦ g ◦ H : Sn � {x0} →
Sn � {x0} extends via the identity to a homeomorphism of Sn that moves
Σ to a flat (n− 2)-sphere. �

We now turn our attention to the proof of Proposition 6.2.2. The proof is
based on engulfing and a relative version of the “Monotone Union Theorem.”
Before stating that relative result we must extend some standard notation.
Suppose k < n. As usual we identify Rk with the subspace Rk × 0 of
Rn and Bk with the subset Bk × 0 of Bn. Suppose (B1, A1) ⊂ (B2, A2)
are unknotted (n, k)-ball pairs. This means that for each i = 1, 2 there
is a homeomorphism hi : (Bi, Ai) → (Bn, Bk). We use IntBi to denote
the interior of Bi and IntAi = Ai ∩ IntBi. We say that C1 is a collar
of (B1, A1) in (B2, A2) if C1 ⊂ IntB2, C1 ∩ B1 = ∂B1, and there exists
a homeomorphism φ : ∂B1 × [0, 1) → C1 such that φ(x, 0) = x for each
x ∈ ∂B1 and φ(∂A1 × [0, 1)) ⊂ A2.

The basic move in the proof of the Monotone Union Theorem is the push
described in the following lemma.

Lemma 6.2.3. Assume k < n, (B1, A1) ⊂ (B2, A2) are unknotted (n, k)-
ball pairs, and C1 is a collar of (B1, A1) in (B2, A2). For every compact set
K ⊂ IntB2 there exists a homeomorphism g : B2 → B2 such that

(1) g|B1 is the identity,

(2) g(B1 ∪ C1) ⊃ K, and

(3) g(C1 ∩A2) ⊂ A2.

Proof. Pick x0 ∈ IntA1 and a small neighborhood U ⊂ IntB1 of x0 that is
round relative to the structure on B2. There exists a radially compressing
homeomorphism ρ : B2 → B2 such that ρ(B1) ⊂ U and the support of
ρ is contained in a compact subset of B1 ∪ C1; this compression is radial
with respect to the radial structure of B1 ∪ C1

∼= Rn. There is also a
stretching homeomorphism σ : B2 → B2 such that σ|U is the identity and
σ(B1∪C1) ⊃ K∪B1∪C1; this stretch is radial with respect to the structure
on IntB2

∼= Rn. Finally, define g = ρ−1 ◦ σ ◦ ρ. It is easy to check that g
has the desired properties. �

Theorem 6.2.4 (Relative Monotone Union). Fix k < n. If {(Bi, Ai)}∞i=1

is a sequence of unknotted (n, k)-ball pairs such that for each i, (Bi, Ai) ⊂
Int(Bi+1, Ai+1), then ∪∞

i=1(Bi, Ai) ∼= (Rn,Rk).

Proof. Let (M,Y ) = ∪∞
i=1(Bi, Ai). Begin by choosing a collared (n, k)-ball

pair (B0, A0) ⊂ Int(B1, A1) and a collar C0 of (B0, A0) in (B1, A1). There
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Figure 6.3. Proof of Lemma 6.2.3

exists a homeomorphism φ : ∂B0 × [0, 1) → C0 such that φ(x, 0) = x for
each x ∈ ∂B0 and φ(∂A0 × [0, 1)) ⊂ A1. Split C0 into a sequence C1, C2, . . .
of collars by defining Ci = φ(∂B0 × [(i− 1)/i, i/(i+ 1))). By Lemma 6.2.3
there is a homeomorphism g1 : M → M such that g1|B0 is the identity,
g1(B0 ∪ C1) ⊃ B1, the support of g1 is contained in B2, and g1(A2) ⊂ A2.
Inductively applying Lemma 6.2.3 gives a sequence of homeomorphisms gi :
M → M such that gi is the identity on gi−1 ◦ · · · ◦ g1(B0 ∪C1 ∪ · · · ∪Ci−1),
gi ◦ · · · ◦ g1(B0 ∪ C1 ∪ C2 ∪ · · · ∪ Ci) ⊃ Bi, the support of gi is contained in
Bi+1, and gi(Ai+1) ⊂ Ai+1. Define G = limi→∞ gi ◦ · · · ◦ g1|B0 ∪ C0. Then
G defines a homeomorphism from (B0 ∪C0, (B0 ∪C0)∩ Y ) ∼= (Rn,Rk) onto
(M,Y ), so the proof is complete. �

In order to use the Monotone Union Theorem to prove Proposition 6.2.2,
we must produce n-cells that cover large compact subsets of Rn and intersect
h(Rn−2) standardly. To do so we will take a small n-cell that intersects
h(Rn−2) standardly and stretch it out to cover a specified compact set K.
This stretch is accomplished in two stages: first the n-cell is stretched out
along h(Rn−2) to cover K ∩ h(Rn−2) and then the image cell is stretched
via engulfing to cover the rest of K. The next two lemmas use a topological
version of shelling (Rourke and Sanderson, 1972, Theorem 3.26) to stretch
along h(Rn−2).

Lemma 6.2.5. Suppose M is an n-manifold, Y is a closed subset of M , and
U is an open subset of M such that (U,U ∩ Y ) ∼= (Rn,Rn−2). If g : Y → Y
is a homeomorphism such that the support of g is contained in a compact
subset of U ∩ Y , then there exists a homeomorphism G : M → M such that
G|Y = g and G|(M � U) is the identity.

Proof. Fix a homeomorphism H : (U,U ∩ Y ) → (Rn,Rn−2). Define g′ :
Rn−2 → Rn−2 by g′(x) = H(g(H−1(x))). Then g′ is a homeomorphism with
compact support so there exists an (n − 2)-cell C in Rn−2 such that the



6.2. Topological flattening and algebraic knotting 287

support of g′ is contained in the interior of C. Define

S = 0× S1 ⊂ Rn−2 × R2 = Rn,

and let C ∗S ⊂ Rn denote the join of C and S. By (Rourke and Sanderson,
1972, Proposition 2.23), C ∗S is an n-cell. Extend g′ over S via the identity
and then over C ∗ S to a homeomorphism G′ : C ∗ S → C ∗ S using the
join operator. Note that G′|∂(C ∗ S) is the identity. Hence G = H−1 ◦
G′ ◦ H extends via the identity to a homeomorphism of M . This is the
homeomorphism G we seek. �

Lemma 6.2.6. Suppose M is an n-manifold, h : Rn−2 → M is a proper,
locally flat topological embedding and Y = h(Rn−2). For every compact
subset K of Y there exists an open subset V of M such that K ⊂ V and
(V, V ∩ Y ) ∼= (Rn,Rn−2).

Proof. Choose a rectilinear cube Q in Rn−2 large enough that h(Q) ⊃
K. Use local flatness of h to cover Y with open sets {Uα} for which
(Uα, Uα ∩ Y ) ∼= (Rn,Rn−2), and let δ be a Lebesgue number for the open
cover {h−1(Uα)} of Q. Write Q = Q1 ∪ Q2 ∪ · · · ∪ Qm, where each Qi is
a cube of diameter less than δ, Q1 ∪ · · · ∪ Qi is an (n − 2)-cell for each i,
and (Q1 ∪ · · · ∪ Qi) ∩ Qi+1 is an (n − 3)-cell for each i. Then for each i
there is a homeomorphism gi : Rn−2 → Rn−2 such that gi(Q1 ∪ · · · ∪Qi) =
Q1 ∪ · · · ∪Qi+1 and the support of gi is contained in a small neighborhood
of Qi+1. We may assume that the support of gi has diameter less than
δ. As a result there is a Uα such that the support of gi is contained in
h−1(Uα). By Lemma 6.2.5, each h ◦ gi ◦ h−1 extends to a homeomorphism
Gi : Rn → Rn. Select a Uβ containing h(Q1). Then Gk ◦ · · · ◦ G1(Uβ) has
the desired properties. �

Lemma 6.2.7. Let h : Rn−2 → Rn be a proper, locally flat, topological
embedding and let Y = h(Rn−2). If Rn�Y has the homotopy type of S1 and
Y is unraveled at infinity, then for every compact subset K of Rn there exists
an open subset U of Rn such that K ⊂ U and (U,U ∩ Y ) ∼= (Rn,Rn−2).

Proof. Since Y is unraveled at infinity, there is a compact subset D of
Rn such that K ⊂ D and (Rn � Y,Rn � (Y ∪ D)) is 2-connected. By
Lemma 6.2.6, there is an open subset V of Rn such that D ∩ Y ⊂ V ∩ Y
and (V, V ∩ Y ) ∼= (Rn,Rn−2). The idea of the proof is to use engulfing
to stretch V out to cover all of D (and hence all of K); more specifically,
we will engulf a 2-skeleton with a neighborhood of infinity and engulf the
dual (n−3)-skeleton with V . Special care is required because the polyhedra
involved are not compact.

Choose a homeomorphism λ : (Rn,Rn−2) → (V, V ∩Y ). Since λ−1(D∩Y )
is compact, there exists a round n-ball B1 in Rn of sufficiently large radius
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that λ−1(D∩Y ) ⊂ IntB1. Define C1 = λ(B1) and C2 = λ(B2), where B2 is
a concentric ball that contains B1 in its interior. The relationship between
these sets is illustrated schematically in Figure 6.4.

D

V

C

C

Y

R
n

1

2

Figure 6.4. Proof of Lemma 6.2.7

Fix a triangulation T of Rn � Y . We may assume that T is locally
finite and that for each ε > 0 there are only finitely many simplices in T of
diameter greater than ε. Refine T so that, for any simplex σ ∈ T , σ∩C1 �= ∅
implies σ ⊂ IntC2 and σ ∩ C2 �= ∅ implies σ ⊂ V .

Define P to be the union of all simplices σ ∈ T such that dimσ ≤ 2 and
σ∩(Rn�IntC1) �= ∅. Note that only a finite number of the simplices in P will
intersect D since T is locally finite and D� IntC1 is compact. By Stallings
engulfing (Theorem 3.1.3), there is a homeomorphism φ1 : Rn�Y → Rn�Y
such that P ⊂ φ1(Rn � (Y ∪D)) and φ1|(Rn � (Y ∪ E)) is the identity for
some compact subset E of Rn � Y . We may assume E to be large enough
that D ⊂ C2 ∪E.

Let P+ be the union of P and all simplices of T (regardless of dimension)
that do not intersect E ∪D. Note that P+ ⊂ φ1(Rn � (Y ∪D)) since all the
simplices of P+ � P just added are already outside of D and are not moved
by φ1. Define L to be the dual polyhedron of P+; i.e., L is the simplicial
complement of P+ in the first barycentric subdivision T ′ of T .

Every simplex τ ∈ T ′ such that τ ⊂ L and τ ∩(Rn�C2) �= ∅ is contained
in a simplex σ ∈ T that is disjoint from C1. Since the 2-skeleton of σ is
contained in P+, dim τ ≤ n − 3. Hence L � C2 is (n − 3)-dimensional.
Furthermore, P+ contains all simplices of T that do not intersect D ∪E, so
every simplex in L is contained in a simplex of T that intersects either D
or E. Any simplex that intersects D but not E must intersect C2 and is
therefore completely contained in V . Hence L � V is covered by the finite
complex consisting of all simplices in T (and their faces) that intersect E.

Since π1(V � (Y ∪ C2)) ∼= J ∼= π1(Rn � (Y ∪ C2)) and both groups are
generated by a circle that is the homology dual to Y , the inclusion induced
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homomorphism π1(V � (Y ∪ C2)) → π1(Rn � (Y ∪ C2)) is an isomorphism.
All higher homotopy groups are zero, so (Rn � (Y ∪ C2), V � (Y ∪ C2))
is (n − 3)-connected. Thus we can apply Stallings engulfing to obtain a
homeomorphism φ2 : Rn� (Y ∪C2) → Rn� (Y ∪C2) with compact support
such that φ2(V � (Y ∪ C2)) ⊃ L� C2. Because it has compact support, φ2

extends via the identity to Rn � Y . The extended homeomorphism still has
compact support and also satisfies φ2(V � Y ) ⊃ L.

Because P+ and L are dual polyhedra, there exists a push across the
join structure, θ : Rn�Y → Rn�Y such that Rn�Y = φ1(Rn� (Y ∪D))∪
θ(φ2(V �Y )). Since φ1, φ2 have compact support, they can be extended via
the identity to all of Rn. In addition, the fact that the simplices of T near
Y have small diameter means that θ can also be extended via the identity
to Rn. The extended homeomorphisms satisfy

Rn = φ1(Rn �D) ∪ θ(φ2(V )),

so U = φ−1
1 (θ(φ2(V ))) fulfills the requirements of the conclusion of the

lemma. �

Proof of Proposition 6.2.2. Proposition 6.2.2 follows almost immediately
from Theorem 6.2.4 and Lemma 6.2.7. Write Rn as the ascending union of a
countable collection of compact sets K1 ⊂ K2 ⊂ · · · with ∪∞

i=1Ki = Rn.
By Lemma 6.2.7, there exists an open set U1 such that U1 ⊃ K1 and
(U1, U1 ∩ Y ) ∼= (Rn,Rn−2). Choose a compact ball B1 ⊂ U1 such that
(B1, B1 ∩ Y ) ∼= (Bn, Bn−2) and B1 is large enough to contain K1. Apply
Lemma 6.2.7 again to find U2 such that U2 ⊃ B1 ∪K2 and (U2, U2 ∩ Y ) ∼=
(Rn,Rn−2). Cut U2 back to a compact ball B2 such that IntB2 ⊃ B1 ∪K2

and (B2, B2 ∩ Y ) ∼= (Bn, Bn−2). This process is continued inductively to
produce an infinite sequence B1 ⊂ B2 ⊂ · · · such that {(Bi, Bi∩Y )} satisfies
the hypotheses of Theorem 6.2.4. �

In Proposition 6.2.2 the only hypothesis at infinity is about being un-
raveled there, which is merely a π1 condition. This means that it is not
necessary to assume that the topological embedding in Theorem 6.2.1 is lo-
cally flat at every point; it suffices to assume that the embedding is locally
flat at every point but one and that it has good local π1 at the exceptional
point. The following statement makes that observation precise; its proof
is essentially the same as that of Theorem 6.2.1, except for using Modified
Stallings Engulfing to engulf 2-complexes.

Proposition 6.2.8. Let h : Sn−2 → Sn, n ≥ 5, be a topological embedding
that is locally flat except possibly at one point x0 ∈ h(Sn−2). If Sn�h(Sn−2)
has the homotopy type of S1 and h(Sn−2) is 1-alg at x0, then there is a
topological homeomorphism g : Sn → Sn such that g(h(Sn−2)) = Sn−2.
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Proof. Exercise 6.2.1. �

We conclude the section with an example demonstrating that the alge-
braic unknotting principle (Proposition 6.1.4) does not extend to topologi-
cal embeddings: in the topological category the first nonstandard homotopy
group of the complement of a knot can occur in any dimension up to n− 2.

Example 6.2.9. For each k, 1 < k ≤ n − 2, there is a (wild) topological
embedding h : Sn−2 → Sn such that

(1) h is locally flat and PL except at one point,

(2) πi(S
n � h(Sn−2)) ∼= πi(S

1) for i < k, but

(3) πk(S
n � h(Sn−2)) �= {0}.

Construction of Example 6.2.9. The construction consists of two parts.
First, we construct an open subset W of Sn that has the unusual homotopy
properties necessary to be the complement of the knot we seek. Second, we
explain how to reembed W in Sn so that Sn �W is a topological (n − 2)-
sphere.

Pursuing that strategy, we begin with W . The reader may find it helpful
to note the parallel between the construction of W and the construction of
the Whitehead manifold in Chapter 3. Since k ≥ 2, π1(W ) must be infinite
cyclic. In addition, W must have πi(W ) = 0 for 1 < i < k andHk(W ;Z) = 0
but πk(W ) �= 0. Since we are working in the topological category we can
use an infinite construction to accomplish this. We will construct W as an
ascending union W1 ⊂ W2 ⊂ W3 ⊂ · · · of compact PL ∂-manifolds in Sn.
Each Wm will be a regular neighborhood of a copy of Sk ∨ S1. (Recall that
Sk ∨ S1 denotes the wedge, or one point union, of Sk and S1.)

Choose a standard unknotted copy A2 ∨B2 of Sk ∨S1 in Sn and let W2

be a regular neighborhood of A2 ∨B2. Notice that π1(W2) ∼= J. The groups
πi(W2) are all trivial for 1 < i < k and πk(W2) is naturally isomorphic to
Z[J]. Inside W2 we embed a second copy, A1, of S

k. Choose the embedding
in such a way that A1 consists of two disjoint parallel copies of A2 connected
by a tube that goes around B2. (Here we need k < n− 1.) The connection
should be made in such a way that A1 represents the element t − 1 in
πk(W2) ∼= Z[J]. We also make sure that A1 is unknotted in Sn. Let B1 be
a circle in W2 such that B1 is parallel to B2 and A1 ∨ B1 is unknotted in
Sn; in fact, let us just say that B1 = B2. Define W1 to be a thin regular
neighborhood of A1 ∨B1 in IntW2.

Having defined W1 ⊂ IntW2, we proceed to define W . Both A1∨B1 and
A2 ∨B2 are unknotted in Sn, so there is an isotopy ht : S

n → Sn, 0 ≤ t ≤ 1,
with h0 = Id and h1(W1) = W2. We recursively define Wm,m ≥ 3, by
Wm = h1(Wm−1) and define W = ∪∞

m=1Wm. It is obvious that π1(W ) = J
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and πi(W ) = 0 for 1 < i < k. In addition, the inclusion W1 ↪→ W2 induces
the trivial homomorphism on Hk, so Hk(W ;Z) = 0. We claim that the
generator of πk(W1) represents a nonzero element of πk(W ). If not, this
generator would be null-homotopic in Wm for some m. But the generator of
πk(W1) goes to (t− 1)m−1 times the generator of πk(Wm) ∼= Z[J] and thus
does not represent the zero element in that group. Thus we have constructed
an open subset of Sn with the properties needed for our example; it remains
only to show how to make arrangements so that W is the complement of a
topological knot.

Define Vm = Sn � IntWm. Then Sn � W = ∩∞
m=1Vm and V1 ⊃ V2 ⊃

V3 ⊃ · · · . Now Wm collapses to Am ∨ Bm and Am ∨ Bm is an unknotted
copy of Sk ∨ S1, so Vm is a regular neighborhood of a polyhedron Cm ∨Dm

with Cm
∼= Sn−k−1 and Dm

∼= Sn−2. Figure 6.5 shows the relationships
between A2, B2, C2, and D2.

C D

2 2

22

A B

Figure 6.5. The embedding of (A2 ∨B2) ∪ (C2 ∨D2)

Since Bm = Bm+1, we may assume that Dm = Dm+1. We need to
understand how Cm+1 ∨Dm+1 is embedded in Vm. We concentrate on the
case m = 1. Figure 6.6 shows the way in which C2 and D2 are situated in
V1 (which is the complement of a regular neighborhood of A1 ∨B1).
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Figure 6.6. The embedding of A1 ∨B1 in the complement of C2 ∨D2

In Figure 6.7 we see what C2 ∨ D2 looks like after we have performed
an isotopy that straightens out A1 ∨ B1. As one would expect, D2 = D1

while C2 consists of two copies of C1 joined by a tube that winds around
D2. Since the tube can be made very small, we can arrange things so that
C2 lies in a close regular neighborhood of C1.
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A B

C D2 2

1 1

Figure 6.7. The embedding of C2 ∨D2 in the complement of A1 ∨B1

Perform an isotopy in each of the regular neighborhoods Vm that makes
Cm+1 lie in a close regular neighborhood of Cm. Then Sn�W = ∩∞

m=1Vm =
C ∨D, where D = D1 is a locally flat PL (n− 2)-sphere, C = ∩∞

m=1N(Cm),
and each N(Cm) is a regular neighborhood of Cm. Furthermore, each Cm+1

is a codimension-3 subpolyhedron of Sn and Cm+1 is null homotopic in
N(Cm). It follows that C is a cellular set (by Theorem 3.2.3 in case n �= 4
or (Freedman and Quinn, 1990) in case n = 4) so we can shrink it to a point;
i.e., there is a map f : Sn → Sn whose only nondegenerate point inverse is
C. The topological knot we are looking for is just f(D) = f(C ∪D). �

So far we have only examined the global homotopy properties of the
sphere in Example 6.2.9; it has unusual local homotopy properties as well
and they will be investigated in the next section.

Historical Notes. Theorem 6.2.1 is due to Stallings (1963). The theorem
is valid in dimensions 3 and 4 as well. In dimension 3, Theorem 6.2.1
follows from Theorem 6.1.3 because every locally flat simple closed curve is
equivalent to a PL one (Bing, 1954). In dimension 4 the result follows from
(Freedman and Quinn, 1990, Theorem 11.7A).

The (nonrelative) monotone union theorem is due to M. Brown (1961).
Brown proves the theorem for a monotone union of open n-cells. Since we
only need the version for a monotone union of closed n-cells, that is what
we prove; this allows us to omit one step in the proof. The relative version
of the monotone union theorem was observed by Stallings (1963).

Proposition 6.2.8 can also be proved in dimensions n ≤ 4. To do this in
dimension n = 3, one would first apply (Boyd and Wright, 1973) or (Cannon,
1973a) to conclude that the simple closed curve is locally flat and then
apply (Bing, 1954) to conclude that it is equivalent to a PL simple curve.
After that one can apply the 3-dimensional case of Theorem 6.1.3. The
4-dimensional case follows from the work of Freedman and Quinn (1990).

A special case of Example 6.2.9 first appeared in (Liem and Venema,
1993) and the general case appeared in (Venema, 1995). Extension of alge-
braic unknotting to the locally flat topological category is based on a gener-
alization of Milnor Duality (Theorem 6.5.13) to noncompact manifolds—see
(Venema, 1995).
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Exercise

6.2.1. Prove Theorem 6.2.8.

6.3. Local flatness and local homotopy properties

As we have seen in earlier chapters, even PL embeddings can fail to be lo-
cally flat in codimension two. This section contains a number of examples
that localize the phenomena described in the last two sections and illustrate
various ways in which codimension-two embeddings can be locally knotted
or wild. All the examples of codimension-two non-local flatness described
in previous chapters have the property that the local knotting or wildness
is detected by the failure of the 1-alg condition; the examples in this section
reveal that the 1-alg condition alone is not sufficient to guarantee local flat-
ness. This means that codimension two is the only codimension in which a
local π1 condition does not imply local flatness. On the positive side, the
section contains the statement of a theorem asserting that a codimension-
two embedding that is locally homotopically unknotted is locally flat. The
section explores the range of possibilities between the extremes of assum-
ing local homotopy information only in dimension one and assuming it in
all dimensions. It ends with a demonstration that most codimension-two
embeddings fail to be locally flat.

Example 6.3.1. Take a locally flat PL embedding of the (n−3)-sphere into
Sn−1, constructed as in Example 6.1.1 with k > 1, and suspend it; the result
is a PL embedding of the (n − 2)-sphere in Sn. If Σn−2 ⊂ Sn is such an
embedded (n−2)-sphere, then Σ is locally flat except at the two suspension
points and at each of those points Σ is 1-alg and i-LCC for 1 < i < k.
However, Σ fails to be k-LCC at the suspension points and therefore is not
locally flat. It is possible to construct a PL example of this kind for each k
in the range 1 < k < (n− 1)/2. �

The following consequence of the global theorems in §6.1 indicates that
the bound on k in Example 6.3.1 is sharp.

Theorem 6.3.2. Let f : Qn−2 → Mn be a PL embedding of a PL (n− 2)-
manifold Q into the PL n-manifold M . If f(Q) is 1-alg and k-LCC for
2 ≤ k < (n− 1)/2 at every point of f(Q), then f is (PL) locally flat.

Proof. Exercise 6.3.1. �

In the topological category the first nonstandard local homotopy group
can occur in a slightly higher dimension. We offer two different kinds of
examples of this phenomenon.



294 6. Codimension-two Embeddings

Example 6.3.3. Fix k, 1 < k < n/2, and select a codimension-two sphere
Σ0 ⊂ Sn that satisfies the conclusions of Example 6.1.1. Take an infinite
sequence of disjoint copies Σ1,Σ2,Σ3, . . . of Σ0 converging to some point
p ∈ Sn such that limi→∞ diamΣi = 0. For each i, remove a small (n − 2)-
cell from each of Σi and Σi+1 and connect the two punctured spheres with
a PL tube (a copy of Sn−3 × [0, 1]). Form a single (n − 2)-sphere Σ from
the union of all the punctured spheres, all the tubes, and {p}. Notice that
Σ is not PL, but that it can be made locally PL and locally flat at every
point other than p. At the point p, Σ is 1-alg and i-LCC for 1 < i < k.
Again Σ is not k-LCC at p and thus is not locally flat at p. (Proofs of these
assertions are outlined in the exercises at the end of the section.) It follows
that Σ is wildly embedded despite being 1-alg at every point. It is possible
to construct an example of this kind for each k in the range 1 < k < n/2. �

1

2
3

p

Σ

Σ

Σ

Figure 6.8. The sphere of Example 6.3.3

Example 6.3.4. Fix k, 1 < k ≤ n−2, and let Σ0 ⊂ Sn be the corresponding
codimension-two sphere of Example 6.2.9. By construction, Σ0 is PL and
locally flat at every point but one. At the exceptional point Σ0 fails to
be k-LCC and fails to be (n − k − 1)-LCC, but is 1-alg and i-LCC for
1 < i < min{k, n − k − 1}. Those claims will be proved below. Observe
that, regardless of the value of k, the embedding fails to be i-LCC for some
i in the range 1 < i < n/2.

Assume all the notation in the construction of Example 6.2.9. To see
that Σ0 fails to be k-LCC at the exceptional point, observe that any k-sphere
that simply links Cm is homotopic to Am. The proof of the example shows
that Am is essential in W . Since there are such spheres in any neighborhood
of the point f(C), f(D) is not k-LCC at f(C).

To see that Σ0 is not (n− k− 1)-LCC at the exceptional point, observe
that an (n − k − 1)-sphere parallel to C2 is essential in the complement of
A1 ∪D1. This becomes clear when one considers the universal cover of W ,

since a parallel copy of C2 lifts to a sphere Ĉ2 that is homologically linked

with each of two consecutive lifts Â1 and t(Â1) of A1 (see Figure 6.9). Thus
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it is impossible to shrink C2 to a point in W � (A1 ∪D1). A similar proof
shows that for every m an (n−k−1)-sphere parallel to Cm is essential in the
complement of A1 ∪D1 and is therefore essential in a deleted neighborhood
of f(D). Since there are such spheres in any neighborhood of the point
f(C), f(D) is not (n− k − 1)-LCC at f(C).

C

1

2

A

B
∼

1 t(A ) 1 
2 t (A ) 1 1 

-1 t  (A ) 

Figure 6.9. In the universal cover of W

Fix a positive integer m and decompose Vm into Um ∪ Hm, where Um

is a regular neighborhood of Cm and Hm is an (n − 2)-handle attached
to Um. Consider a map g : Si → U � Σ0, 1 < i < min{k, n − k − 1}.
Since πi(W ) = {0}, g is null homotopic in W . General position allows the
track of the homotopy to be pushed off Am ∨ Bm and into Vm � D. But
demC = k, so the track of the homotopy can be pushed off C as well; thus
g is null homotopic in Vm � C ∪ D. By general position we can push the
track of the homotopy off the cocore of Hm and conclude that g is null-
homotopic in Um � Σ0. Since the exceptional point of f(D) has arbitrarily
small neighborhoods of the form f(Um), we can conclude that f(D) is i-LCC
at f(C). A similar proof shows that f(D) is 1-alg at f(C). �

The next two theorems are positive results that give local analogs of Al-
gebraic Unknotting Theorem 6.1.4 and Topological Flattening Theorem 6.2.1.
The proofs of both theorems require techniques that go beyond those ex-
pounded in this book, so the proofs are omitted. The statements are in-
cluded to complete the picture of local flatness in codimension two.

Theorem 6.3.5. Let f : Qn−2 → Mn be a topological embedding of an
(n − 2)-manifold Q into the PL manifold M . If f(Q) is 1-alg and k-LCC
for 2 ≤ k < n/2 at every point of f(Q), then f(Q) is locally homotopically
unknotted at every point of f(Q).

Theorem 6.3.6. Let f : Qn−2 → Mn be a topological embedding of an
(n− 2)-manifold Q into an n-manifold M . If f(Q) is locally homotopically
unknotted at each of its points, then f is a locally flat embedding.



296 6. Codimension-two Embeddings

The two theorems combined show that if a codimension-two embedding
is not locally flat, then there must be points at which it either fails to
be 1-alg or fails to be i-LCC for some i in the range 1 < i < n/2. Note,
however, that Theorem 6.3.5 does not assert that if an embedding is 1-alg at
a point p and i-LCC for i in the range 1 < i < n/2 at the same point p, then
the embedding is locally homotopically unknotted at p. In order to conclude
that the embedding is locally homotopically unknotted at a particular point,
it is necessary for the local homotopy conditions to be satisfied at every
point of the manifold (or at least at every point in a neighborhood of the
original point). The last example in the section illustrates this subtle issue
by showing that it is possible for the first nonstandard local homotopy group
at a single point to occur in any dimension up to n−2. That cannot happen
at an isolated wild point, however; there must be other nearby wild points
at which the local homotopy groups go bad in lower dimensions.

Example 6.3.7. Let Σ0 ⊂ Sn be the codimension-two sphere of Exam-
ples 6.2.9 and 6.3.4. Apply the same infinite connected sum construction
to Σ0 as was used in Example 6.3.3. The resulting (n − 2)-sphere has a
distinguished point p at which it is 1-alg and i-LCC for 1 < i < k but not
k-LCC. The proofs of these assertions are essentially the same as those of
the corresponding assertions regarding Example 6.3.3 since those proofs use
only the global homotopy properties of the complement. It is possible to
construct an example of this kind for each k in the range 1 < k ≤ n − 2.
Observe that Σ has a sequence of non-locally flat points converging to p
and that at each of those points the embedding fails to be both k-LCC and
(n− k − 1)-LCC. One of k and n− k − 1 is less than n/2 regardless of the
value of k. �

Unlike what occurs in other codimensions (see Theorem 4.6.17 and Ex-
ercise 7.9.3), local flatness is not the dominant characteristic of embeddings
in codimension two, not even for embeddings of spheres in spheres.

Proposition 6.3.8. It is not true that most embeddings of Sn−2 in Sn are
locally flat; that is, Emb(Sn−2, Sn) contains no dense Gδ-subset of locally
flat embeddings.

Proof. Suppose to the contrary that V1 ⊃ V2 ⊃ · · · are dense, open subsets
of Emb(Sn−2, Sn) and each λ ∈ Λ =

⋂∞
j=1 Vj is locally flat. Note that Λ is

a Baire space.

Given λ ∈ Emb(Sn−2, Sn), we use rankλ(Sn−2) to denote the minimum
number of generators required for π1(S

n � λ(Sn−2)). Work of Fox (1950),
coupled with the spin construction of §1.4, assures that Sn (n ≥ 3) contains
locally flatly embedded codimension-two spheres of arbitrarily large (finite)
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rank. For r = 1, 2, . . ., let Wr consist of all λ ∈ Emb(Sn−2, Sn) for which
rank λ(Sn−2) ≥ r.

Each Wr ∩ Λ is an open subset of Λ. Every locally flat embedding λ
has a neighborhood Nλ homeomorphic to Sn−2 × B2 such that π1(S

n �
IntNλ) ∼= π1(S

n�λ(Sn−2)). (Look ahead to Theorem 6.8.1, which promises
that λ(Sn−2) has a disk bundle neighborhood; even when n = 4 the only
possible disk bundle neighborhood in S4 is the product bundle.) Consider
λ′ ∈ Wr for which λ′ : Sn−2 → Nλ is a homotopy equivalence. Then the
inclusion induced π1(∂Nλ) → π1(Nλ � λ′(Sn−2)) has a left inverse since
π1(∂Nλ) ∼= Z ∼= H1(∂Nλ;Z) and H1(∂Nλ;Z) → H1(Nλ � λ′(Sn−2);Z) is an
isomorphism, by duality. It is a straightforward consequence of the Seifert-
van Kampen Theorem that π1(S

n�λ′(Sn−2)) retracts to π1(S
n� IntNλ) ∼=

π1(S
n � λ(Sn−2)). Thus, rank λ′(Sn−2) ≥ rank λ(Sn−2) ≥ r.

In addition, each Wr ∩ Λ is dense in Λ. Any locally flat embedding
can be approximated by one with large rank, simply by replacing a small,
standard ball pair with a knotted ball pair of large rank (here the boundary
of the knotted pair must be standard, to match up properly). Again the
Seifert-van Kampen Theorem yields that the fundamental group of the newly
constructed knot complement retracts to that of the replacing ball pair,
which assures large rank. Density of Λ in Emb(Sn−2, Sn) implies Wr ∩ Λ is
dense in Λ.

The Baire Category Theorem promises that Λ′ =
⋂∞

r=1Wr �= ∅. For
each λ ∈ Λ′ we have rank λ(Sn−2) ≥ r for all integers r, so λ must be wildly
embedded, which is impossible. �

There are two possible explanations for Proposition 6.3.8. It might be
that in a given dimension n there are wild codimension-two spheres that
cannot be approximated by locally flat embeddings; indeed, §6.6 provides
examples of embeddings Qn−2 → Sn, where Qn−2 is non-simply connected
and compact and n = 4 or n ≥ 6, that cannot approximated by locally
flat ones. However, if all embeddings Sn−2 → Sn can be approximated by
locally flat ones, for some choice of n, then in fact most of them are wild,
by an argument similar to the above.

Historical Notes. Theorem 6.3.6 is due to Chapman (1979). Theorem 6.3.5
appears in (Venema, 1997). The argument for Proposition 6.3.8 is essentially
due to Milnor (1964), who proved that most knots in S3 are wild.

Exercises

6.3.1. Prove Theorem 6.3.2.

6.3.2. If the (n − 1)-manifold Qn−1 is a closed subset of the n-manifold
Mn, then Qn−1×{0} is locally homotopically unknotted inMn×R.
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6.3.3. Show that most embeddings of S1 in S3 are wild.

In the following exercises, Σ ⊂ Sn denotes the (n−2)-sphere of Example 6.3.3
and all the notation of that example is assumed. Let B1 ⊃ B2 ⊃ . . .
be a nested sequence of concentric round n-balls centered at p such that
∩jBj = {p}. We will assume that ∂Bj cuts across the tube connecting Σj

to Σj+1 so that, for every j, Σj ⊂ Bj � Bj+1 and (∂Bj , ∂Bj ∩ Σ) is an
unknotted PL (n− 1, n− 3)-sphere pair.

6.3.4. Prove that π1(Bj�Σ) ∼= J for every j and that the inclusion induced
homomorphism π1(Bj+1 �Σ) → π1(Bj �Σ) is an isomorphism for
every j. Conclude that Σ is 1-alg at p.

By Exercise 6.3.4, the homology of Bj�Σ with coefficients in Z[J] is defined
and the universal cover of Bj+1 � Σ is naturally identified with a subset of
the universal cover of Bj � Σ.

6.3.5. Prove that Hi(Bj � Σ;Z[J]) = 0 for 1 < i < k and for every j.
Conclude that Σ is i-LCC at p for 1 < i < k.

6.3.6. Prove that Hk(Bj � Σ;Z[J]) �= 0 and that the inclusion induced
homomorphism Hk(Bj+1 � Σ;Z[J]) → Hk(Bj � Σ;Z[J]) is one-to-
one for every j. Conclude that Σ is not k-LCC at p.

6.4. The homology of an infinite cyclic cover

This section is devoted to the study of the homology of an infinite cyclic
cover. The Alexander polynomial, which is the invariant to be used in the
remainder of the chapter, is defined and methods for its computation are
developed. The emphasis in the section is on geometry; the more technical,
algebraic properties of the Alexander polynomial will be examined in the
next section. The example calculations that are included will be needed
later in the chapter.

Let us begin by generalizing the definitions of §6.1. Assume X is a
connected (possibly infinite) CW complex and γ : π1(X) → J is an epi-
morphism. The infinite cyclic cover of X determined by γ is the connected

(regular) covering space p : X̃ → X such that p∗(π1(X̃)) = ker γ ⊂ π1(X).
The existence of a unique connected regular covering space with this prop-
erty is a standard fact from elementary topology—see (Munkres, 2000, The-
orems 82.1 and 79.2), for example. A different construction of the infinite
cyclic cover is indicated in Exercise 6.4.1.

The group of deck transformations (or covering transformations) of X̃

is isomorphic to π1(X)/p∗(π1(X̃)) ∼= J. As before, we use t to denote a
generator of J. We also use the same symbol t to denote both the associated
deck transformation and the induced homomorphisms on the homotopy and



6.4. The homology of an infinite cyclic cover 299

homology groups of X̃. It is usually clear from the context which of these
objects t denotes, so the fact that the symbol t serves multiple purposes
should not cause undue confusion.

Throughout this section and the next three, we use coefficients in Q, the
field of rational numbers, for most homology and cohomology groups. We
use Λ to denote the group ring Q[J]; thus

Λ =

{ m∑
i=−m

qit
i

∣∣∣∣ m ∈ N, qi ∈ Q
}
,

the ring of Laurent polynomials in t with coefficients in Q. It is easy to
see that the units in Λ are exactly the monomials. We use the symbol
.
= to indicate that two elements of Λ are equal up to multiplication by a
unit. Since Q is a field, Λ is a principal ideal domain.4 An important
consequence is the following fact: if A is a finitely generated module over Λ
and B is a submodule of A, then B is finitely generated over Λ (Hungerford,
1974, Corollary IV.6.2). Any module over Λ is also a vector space over Q.

Just as before, the cellular chain complex C∗(X̃;Q) and the homology

groupsH∗(X̃;Q) have natural Λ-module structures; when we wish to empha-
size this structure we denote them by C∗(X; Λ) and H∗(X; Λ), respectively.

Example 6.4.1. If X = S1∨S2 and γ : π1(X) → J is an isomorphism, then

X̃ is a line with an infinite number of 2-spheres attached. (See Figure 6.10, in

which Ŝ2 is a particular lift of S2.) Thus H2(X;Q) ∼= Q and H2(X; Λ) ∼= Λ.

Note that H2(X; Λ) = H2(X̃;Q) is infinite-dimensional as a vector space
over Q.

1

S

S
∼

2t(S ) 22t (S )2 2-1t  (S )

Figure 6.10. An infinite cyclic cover of S1 ∨ S2

The Milnor sequence. As with Z coefficients, there is a Milnor sequence

· · · → Hk(X; Λ)
t−1−−→ Hk(X; Λ)

p∗−→ Hk(X;Q) → Hk−1(X; Λ) → · · · ,
which relates the homology of the covering space to that of the base space.
This sequence is exact; the proof of exactness is precisely the same as before.

4This and other algebraic properties of Λ will be discussed in the next section.
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The order of a module. Any finitely generated Λ-module B can be writ-
ten as a sum of cyclic submodules:

B ∼=
Λ

(p1(t))
⊕ · · · ⊕ Λ

(pn(t))

(Hungerford, 1974, Theorem IV.6.12). By analogy with finite abelian groups,
the product p1(t) · · · pn(t) is called the order of B and the ideal in Λ gen-
erated by p1(t) · · · pn(t) is called the order ideal of B. The order ideal is
denoted by O(B). Note that O(B) is a subset of Λ.

While the definition of order is intuitively simple, it is not always easy
to apply directly because the modules we encounter may not be presented
as sums of cyclic modules. To facilitate computations we give an alternative
approach to the definition of order.

AssumeB is a finitely generated Λ-module. Name a finite set {x1, . . . , xn}
of generators for B and then form the free Λ-module Fn generated by
{x1, . . . , xn}. Let K be the kernel of the natural Λ-homomorphism φ :
Fn → B defined by φ(xn) = xn. Since Λ is a principal ideal domain, K will
also be a finitely generated Λ-module; let {y1, . . . , ym} be a generating set
for K. Define an m × n matrix P = (bij) by yi =

∑n
j=1 bijxj . The matrix

P is called a presentation matrix for B.

Definition. Let B be a finitely generated Λ-module and let P be a pre-
sentation matrix for B. The order ideal of B is defined to be the ideal
O(B) in Λ generated by all the n× n minors of P provided n ≤ m. Define
O(B) = {0} in case n > m. A generator of O(B) is called the order of B.

In most cases of interest, the presentation matrix P is square and O(B)
is the principal ideal generated by detP . If B is written as

B ∼=
Λ

(p1(t))
⊕ · · · ⊕ Λ

(pn(t))
,

then the diagonal matrix with the polynomials pi(t) on the diagonal is a
presentation matrix. Thus the following proposition shows both that the
order is well defined and that the second definition of order ideal agrees
with the first.

Proposition 6.4.2. The order ideal O(B) is well defined; i.e., O(B) de-
pends only on B and does not depend on the particular presentation matrix
that is used to describe B. The order of B is well defined up to multiplication
by a unit.

Sketch of proof. This is a fairly standard algebraic argument. One ap-
proach is to write down a set of operations that may be performed on the
presentation matrix and then to prove that any two presentation matri-
ces differ at most by a finite sequence of these operations and that the
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operations do not change the order ideal. The details of this argument
may be found in (Zassenhaus, 1958, Chapter III) or (Crowell and Fox,
1977, Theorem VII.4.2); see also (Rolfsen, 1990, Theorem 8B1). Another
approach is to use the first definition of order along with the Jordan-Hölder
Theorem for modules (Hungerford, 1974, Theorem VIII.1.10)—see (Milnor,
1968, §1). �

Corollary 6.4.3. If B1, B2, and B3 are finitely generated Λ-modules such
that B1 = B2 ⊕ B2, then the order of B1 is the product of the orders of B2

and B3.

Recall that any finitely generated Λ-module B naturally decomposes as
B = T ⊕F , where T is a torsion module and F is a free module over Λ. This
decomposition is unique (Hungerford, 1974, Theorem IV.6.6). The following
lemma records some useful relationships between this decomposition and the
order ideal.

Lemma 6.4.4. Let B be a finitely generated Λ-module decomposed into
torsion and free parts as B = T ⊕ F .

(1) O(B) = Λ if and only if B = {0}.
(2) O(B) = {0} if and only if F �= {0}.
(3) O(B) �= {0} if and only if B = T .

Proof. Exercise 6.4.3. �

The Alexander polynomial. We come now to the most important defi-
nition in the section—that of the Alexander polynomial. It is the invariant
that will be used in §6.6 and §6.7 to verify that the codimension-three ap-
proximation and existence theorems do not extend to codimension two.

Assume γ : π1(X) → J is an epimorphism and that H1(X̃;Q) is finitely

generated over Λ. Decompose H1(X̃;Q) into its torsion and free parts:

H1(X̃;Q) = T1(X̃;Q)⊕ F1(X̃;Q).

The module T1(X̃;Q) is called the torsion submodule of H1(X̃;Q). The
advantage of working with the torsion submodule is that its order is always
nonzero.

Definition. Suppose γ : π1(X) → J is an epimorphism and that H1(X̃;Q)
is finitely generated over Λ. The Alexander polynomial A(X, γ; t) of the pair

(X, γ) is defined to be a generator of the order ideal O(T1(X̃;Q)).

By Proposition 6.4.2, A(X, γ; t) is well-defined up to a product with

units. Since we have used only the torsion submodule of H1(X̃;Q) in the
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definition, A(X, γ; t) is never zero (Lemma 6.4.4, Part 3). We also have

A(X, γ; t)
.
= 1 if and only if T1(X̃;Q) = {0} (Lemma 6.4.4, Part 1).

Several useful properties of the Alexander polynomial will be developed
in the next section. In the remainder of this section we explain how to
calculate A(X, γ; t) for a special class of spaces X and epimorphisms γ. The
spaces in which we are interested are 3-dimensional ∂-manifolds associated
with a link in S3; their definitions come next.

Construction of the spaces E(L) and M(L). Suppose L = {�1, . . . , �k}
is a k-component oriented PL link in S3 having the property that the ho-
mological linking number lk(�i, �j) is 0 for i �= j. For each component �i,
choose a meridian µi and a longitude λi. The meridian is simply a small
unknotted circle that links �i once and the longitude is a curve that is par-
allel to �i and satisfies lk(�i, λi) = 0. The meridian should be oriented so
that lk(µi, �i) = +1. Both µi and λi lie on the boundary of a regular neigh-
borhood Ni of �i and intersect in a single point. (See Figure 1.4.) We will
assume that the neighborhoods {Ni} are pairwise disjoint. Let E(L) denote
the exterior of L and let M(L) denote the manifold obtained from S3 by
surgery on L. Specifically,

E(L) = S3 � ∪k
i=1Ni,

and M(L) is the manifold constructed by removing the neighborhoods Ni

from S3 and then sewing them back in with the meridians and longitudes
interchanged. There is a natural inclusion E(L) ↪→ M(L).

Definition of the epimorphism γm. Observe that H1(E(L);Z) is the
free abelian group with {µi} as generators. Because lk(�i, �j) = 0 for i �= j,
each longitude λi is null homologous in E(L). Hence the inclusion induced
homomorphism H1(E(L);Z) → H1(M(L);Z) is an isomorphism. For each
m, 1 ≤ m ≤ k, define an epimorphism γm : π1(M(L)) → J by γm(µi) = t
for i ≤ m and γm(µi) = 1 for i > m. The epimorphism γm is uniquely de-

termined by the orientations on {µi}. We use M̃m(L) to denote the infinite

cyclic cover of M(L) determined by γm and Ẽm(L) to denote the infinite
cyclic cover of E(L) determined by γm|E(L). (If γ : π1(X) → J is a ho-
momorphism and Y ⊂ X, then γ|Y denotes the composite homomorphism

π1(Y ) → π1(X)
γ−→ J.) Again there is a natural inclusion Ẽm(L) ↪→ M̃m(L).

Construction of the covering spaces Ẽm(L) and M̃m(L). We give a

geometric description of the covering spaces Ẽm(L) and M̃m(L). For sim-
plicity we begin with the case m = k. Find a connected, bicollared PL
surface Σ ⊂ E(L) such that ∂Σ = λ1 ∪ · · · ∪ λk. Such a surface is called
a Seifert surface for the link. A good way to construct one is to find a PL
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map f : E(L) → S1 that induces γk on π1(E(L)) and define Σ to be the
preimage under f of a regular point. Alternatively, the Seifert Algorithm
(Rolfsen, 1990, Theorem 5A4) can be used to construct Σ. The surface Σ
is homeomorphic to a disk with strips attached and can be pictured as in
Figure 6.12.

Thicken Σ along a bicollar in E(L) to form a handlebody C. Choose C
in such a way that, for each i ≤ k, C∩Ni is a bicollar of λi in ∂Ni ⊂ ∂E(L).

Split E(L) open along Σ to form E′(L). Specifically, E′(L) = E(L)� C.
Then ∂C ∩ ∂E′(L) consists of two copies, Σ+ and Σ−, of Σ and there is a
PL homeomorphism H : Σ × [−1, 1] → C such that H(Σ × {−1}) = Σ−,

H(Σ × {0}) = Σ, and H(Σ × {1}) = Σ+. Define Ẽk(L) to be the space
obtained from the disjoint union of E′(L) × J and C × J by making the
following identifications: for each x ∈ Σ−, identify the point 〈x, tn〉 in C × J
with the corresponding point in E′(L)× J and for each x ∈ Σ+, identify the
point 〈x, tn〉 in C × J with 〈x, tn+1〉 in E′(L)× J. We will use the notation

tnx for the pair 〈x, tn〉. See Figure 6.11 for a schematic diagram of Ẽk(L).

C

E (L)

t(C) t (C)-1

-1

t  (C)-2t  (C)

t(E (L)) t (E (L))t  (E (L))

2

2

Σ

Figure 6.11. The cyclic cover Ẽk(L)

The space Ẽk(L) could have been constructed from just E′(L) × J by
making identifications of the form tnx− = tn+1x+ for each x ∈ Σ. The
reason a copy of C is inserted between consecutive copies of E′(L) is to

ensure that there is an obvious covering map p : Ẽk(L) → E(L) and to
facilitate the use of a Mayer-Vietoris sequence in the computation of the
homology.

Observe that a loop α in E(L) is in ker γk if and only if the homological
intersection number α ·Σ is zero. Since loops α with α ·Σ = 0 are precisely

the loops that lift to closed loops in Ẽk(L), we see that Ẽk(L) is the covering
space corresponding to ker γk.

To construct Ẽm(L) for m < k, begin by finding a Seifert surface Σ for
the partial link {�1, . . . , �m}. Because lk(�i, �j) = 0 for i �= j, it is possible
to add handles to Σ so that Σ ∩ Ni = ∅ for i > m. Construct the cover
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corresponding to Σ exactly as above and then remove the interiors of all the

lifts of Ni, i > m. The resulting space is Ẽm(L).

Now ∂Ni lifts to a copy of S1 ×R1 in ∂Ẽm(L) in case i ≤ m and it lifts

to ∂Ni × J in case i > m. To construct M̃m(L) from Ẽm(L), attach a copy
of B2 × R1 to the preimage of each ∂Ni for which i ≤ m and attach Ni × J
to the preimage of each ∂Ni for which i > m. The resulting space is the

infinite cyclic cover M̃m(L).

Computation of H1(Ẽk(L);Q). Assume m = k. The Seifert surface Σ
consists of a disk with s strips attached. For each i = 1, . . . , s, let ai denote
the curve on Σ that runs from a base point to the strip, follows the centerline
of the strip and then returns to the base point (see Figure 6.12). The curves
{a1, . . . , as} form a basis for H1(Σ;Q). Let a+i and a−i denote the copies of
ai on Σ+ and Σ−, respectively. For each i, also choose a curve αi in E′(L)
that simply links the ith strip as indicated in Figure 6.12.

a1

a2 a3

1
2

3

Σ

α
α α

Figure 6.12. The Seifert surface Σ

By duality, {α1, . . . , αs} forms a basis for H1(E
′(L);Q). Each αi can

be (uniquely) lifted to a curve α̃i in E′(L) × {1} and the set {α̃1, . . . , α̃s}
freely generates H1(E

′(L)× J;Q) as a module over Λ. Every loop in Ẽk(L)
is homologous to one that misses the preimage of Σ, so the lifts {α̃1, . . . , α̃s}
also generate H1(Ẽk(L);Q) as a module over Λ. But they do not freely

generate H1(Ẽk(L);Q) since there are relations that are introduced by the
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identifications. Specifically, for each i, 1 ≤ i ≤ s, there is a relation of the
form a+i = ta−i . The fact that the relations have this form is intuitively
clear since inserting a copy of C between two adjacent copies of E′(L) has

the effect of identifying a+i with a−i . The proof that H1(Ẽk(L);Q) has a

presentation with generators {α̃1, . . . , α̃s} and relations of the form a+i = ta−i
can be made precise using a Mayer-Vietoris argument (Rolfsen, 1990, §6B
and §8C) or an abelianized version of the Seifert-van Kampen Theorem
(Burde and Zieschang, 1985, Theorem 8.8).

The Seifert and Alexander matrices. In case m = k, the Alexander
polynomial can be computed as the determinant of a matrix. Let x ∈
H1(E

′(L);Q). We wish to express x in terms of the basis {α1, . . . , αs}.
Since lk(ai, αj) = δij , x is homologous to the sum

∑s
j=1 lk(x, aj)αj . If we

set x = ai, the relation a−i = ta+i becomes

s∑
j=1

lk(a−i , aj)α̃j = t ·
s∑

j=1

lk(a+i , aj)α̃j .

Let V = (vij) be the matrix defined by vij = lk(a+i , aj); the matrix V is
called a Seifert matrix. Now lk(a−i , aj) = lk(ai, a

+
j ) = lk(a+j , ai) = vji, so

the relation can be rewritten as

s∑
j=1

vjiα̃j = t ·
s∑

j=1

vijα̃j .

In other words, the matrix P = V T − tV is a presentation matrix for

H1(Ẽk(L);Q). The matrix P is called an Alexander matrix. Since P is

square, detP is a generator for O(H1(Ẽk(L);Q)). Hence A(E(L), γk; t)
.
=

det(V T − tV ) whenever detP �= 0. This will be the case for all the examples
we consider in the remainder of the section.

The basis used in the previous paragraph is not always the most con-
venient. Suppose {a′i} is another basis for H1(Σ;Q). Let C = (cij) be the
change of basis matrix defined by a′i =

∑s
j=1 cijaj . We will assume that

the cij are all integers so that each a′i is represented by a loop on Σ. Let

V ′ = (v′ij) be the Seifert matrix v′ij = lk(a′i
+, a′j). Then V ′ = CV CT , so

det(V ′T − tV ′)
.
= det(V T − tV ) (because detC is a constant and therefore

a unit in Λ). As a result we may use the Seifert matrix associated with any
basis for H1(Σ;Q) when computing A(E(L), γk; t), provided each element
of the basis is represented by a loop on Σ.

There is a simple relationship between A(E(L), γk; t) and A(M(L), γk; t),
which is exposed in the next lemma.
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Lemma 6.4.5. A(E(L), γk; t) is divisible by (t− 1)k−1. If H1(Ẽk(L);Q) =

T1(Ẽk(L);Q), then A(M(L), γk; t)
.
= A(E(L), γk; t)/(t− 1)k−1.

Proof. Here we will supply a simple geometric proof of the first part of the
lemma. We will postpone the proof of the second part, which requires more
algebraic preliminaries, until the next section.

By the classification theorem for compact, orientable surfaces, the Seifert
surface Σ is homeomorphic to the surface obtained from S2 by cutting out k
holes and attaching a finite number of handles. Such a surface is represented
in Figure 6.13 as a disk with strips attached. There are exactly (k−1) strips
like those shown on the left while the number of pairs of additional strips
depends on the particular Seifert surface used. The diagram shows only an
abstract picture of the surface itself and does not indicate the way in which
the surface is embedded in S3. In reality the handles will be twisted, knotted,
and entangled with each other. Despite that limitation, the diagram does
enable us to make the following observation: for i ≤ k−1 and for j arbitrary,
lk(a+i , aj) = lk(a−i , aj). Hence vij = vji and pji = (1 − t)vji, where pji is
an entry in the ith column of the Alexander matrix P , i ≤ k − 1. Thus
(1− t) divides each of the first (k−1) columns of P and the first part of the
conclusion of the lemma follows. �

a
1 a

k-1
a

k
ak+1 as

Figure 6.13. An abstract Seifert surface

We are now ready for some calculations. In the following examples we
compute the Alexander polynomials that will be needed in the remainder
of the chapter. To foreshadow what lies ahead, Examples 6.4.6 and 6.4.7
as well as Exercise 6.4.5 are required in the construction of a topological
embedding that cannot be approximated by PL embeddings (§6.6) while
Example 6.4.8 is needed in the construction of a homotopy equivalence that
is not homotopic to an embedding (§6.7).

Example 6.4.6. If L is the link pictured in Figure 6.14, then

A(M(L), γ3; t)
.
= (t− 1)2(2− 3t+ 2t2).
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a
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c

1
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a

2a

3a

Figure 6.14. The Matsumoto link L and a Seifert surface for L

To compute A(E(L), γ3; t) we use the Seifert surface Σ shown in Fig-
ure 6.14. As a basis for H1(Σ;Q) we choose the curves {a1, . . . , a6}, where
ai is the loop that goes clockwise around the region labeled i. Just a1, a2,
and a3 are shown in order to avoid cluttering up the picture. Despite the
way they are drawn, the ai intersect each other at the crossing points of
the link (where there is a twist in the Seifert surface). The Seifert matrix
corresponding to this basis is

V =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 −1 −1 1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 −1 1 0
0 0 0 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

A routine computation5 shows that A(E(L), γ3; t)
.
= (t − 1)4(2 − 3t + 2t2).

By Lemma 6.4.5 we have A(M(L), γ3; t)
.
= (t− 1)2(2− 3t+ 2t2). �

Example 6.4.7. If L is the link of Example 6.4.6 and �1 is the middle
component, then

A(M(L), γ1; t)
.
= (t− 1)2.

Label the middle component c and label the other two components a
and b. The link can be redrawn as in Figure 6.15. Using the shaded disk as Σ,

one can view the covering space Ẽ1(L) as in Figure 6.16; it consists of R1×B2

with regular neighborhoods of each of the curves tna and tnb removed. Each

such neighborhood is a solid torus. Observe that H1(Ẽ1(L);Q) ∼= Λ ⊕ Λ.
The generators are α and β, where α is a meridian of a and β is a meridian
of b.

5A computer algebra system such as Mathematica is helpful.
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a

1

2 3

4

c
b

Figure 6.15. A different picture of the link L
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ta
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1

2 3

4

1

2 3

4

c tc t ct  c-1

t  a-1

2

t a2

Figure 6.16. The infinite cyclic cover of the complement of L

To construct M̃1(L) we must attach a copy of B2 × R1 to the outside

of Ẽ1(L) and then sew the solid tori corresponding to a and b back in with
longitudes and meridians interchanged. Sewing in the b torus introduces
the relation α − tα = 0 and sewing in the a torus introduces the relation

β − tβ + t−1α+ tα = 0. Thus H1(M̃1(L);Q) has presentation matrix

P =

(
1− t 0
t−1 + t 1− t

)
and A(M(L), γ1; t) = (t− 1)2. �

Example 6.4.8. If L1, L2, . . . is the sequence of two-component links shown
in Figure 6.17, then

A(M(Ln), γ2; t)
.
= (t− 1)2n.

Using the surface and basis {a1, a2, a3} shown on the left in Figure 6.18,
we obtain the Seifert matrix

V1 =

⎛⎝ −1 1 0
0 1 −1
0 −1 0

⎞⎠
for L1. Hence A(E(L1), γ2; t)

.
= det(V T

1 − tV1)
.
= (t− 1)3.
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Figure 6.17. The links L1, L2, and L3

L2

a5

a4
a3

a2

a1

L1

a3

a2
a1

Figure 6.18. Seifert surfaces for L1 and L2

The surface shown on the right in Figure 6.18 and the basis {a1, . . . , a5}
indicated in the figure yield the following Seifert matrix for L2.

V2 =

⎛⎜⎜⎜⎜⎝
−1 1 0 0 0
0 0 −1 0 0
0 −1 0 1 0
0 0 0 1 −1
0 0 0 −1 0

⎞⎟⎟⎟⎟⎠ .

Thus A(E(L2), γ2; t)
.
= det(V T

2 − tV2)
.
= (t− 1)5.

Observe that Li+1 has one more loop at the bottom than does Li and
there is one crossing change from Li to Li+1. Based on that observation we
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obtain the recursive relationship

Vn+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
V ′
n

0 0
...

...
0 0
1 0

0
1 −1

−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where V ′
n is the matrix obtained from Vn by replacing the 1 in position

(2n, 2n) by a 0. Induction gives

A(E(Ln), γ2; t)
.
= det(V T

n − tVn)
.
= (t− 1)2n+1.

It follows from Lemma 6.4.5 that A(M(Ln), γ2; t)
.
= (t− 1)2n. �

Historical Notes. Many of the ideas in this section and the next have
their roots in the beautiful paper of Milnor (1968) and in the earlier paper
by R. C. Blanchfield (1957).

Our approach to the definition of the Alexander polynomial is based on
work of Kawauchi (1975), (1977), (1980). In particular, we have followed
Kawauchi in defining the Alexander polynomial to be the order of the torsion

part of H1(X̃;Q). Many authors define A(X, γ; t) using all of H1(X̃;Q), not
just the torsion submodule, so that A(X, γ; t) = 0 is possible. For exam-
ple, that is the approach taken by Rolfsen (1990). Additional information
about computing Alexander polynomials can be found in (Kawauchi, 1996),
(Rolfsen, 1990), (Burde and Zieschang, 1985), and (Crowell and Fox, 1977).

The first part of Lemma 6.4.5 is due to G. Torres (1953), (1954) and
F. Hosokawa (1958). A proof of the complete lemma may be found in
(Kawauchi, 1977, Theorem 3.13).

Exercises

6.4.1. Let X be a connected CW complex and let γ : π1(X) → J be
an epimorphism. Suppose f : X → S1 is a continuous map that
induces γ in the sense that f∗ = γ : π1(X) → π1(S

1) = J. Let
e : R1 → S1 be the universal covering map e(r) = exp(2πir).

Prove that X̃, the infinite cyclic cover of X determined by γ, is the
pull-back of the following diagram.

R1⏐⏐�e

X
f−−−−→ S1
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Specifically, prove that X̃ = {〈x, r〉 ∈ X × R1 | f(x) = e(r)}
together with p : X̃ → X defined by p(x, r) = x is a covering space

and that p∗(π1(X̃)) = ker γ ⊂ π1(X). (X̃ is given the subspace
topology it inherits from X × R1.) Show, in addition, that J acts

on X̃ according to the rule t · 〈x, r〉 = 〈x, r + 1〉.
6.4.2. Let X = S1 ∨ S1 and let a1, a2 be the two generators of π1(X)

corresponding to the two copies of S1. Define γ1 : π1(X) → J
to be the epimorphism that takes a1 to t and a2 to 1; define γ2 :
π1(X) → J to be the epimorphism that takes both of the generators
to t. Find (i.e., draw a picture of) the infinite cyclic covers of X
determined by γ1 and γ2.

6.4.3. Prove Lemma 6.4.4.

6.4.4. Show that A(E(L), γk; t) is symmetric in t; i.e., A(E(L), γk; t)
.
=

A(E(L), γk; t
−1).

6.4.5. Let L be the Borromean rings, the link shown in Figure 6.19. (Note
that the link is symmetric, so it makes no difference which compo-
nent is labeled �1.) Compute A(E(L), γi; t) and A(M(L), γi; t) for
i = 1, 2, and 3. [Answer: A(M(L), γi; t)

.
= (t− 1)2 for every i.]

Figure 6.19. The Borromean rings

6.5. Properties of the Alexander polynomial

The proofs in the remainder of the chapter are based on arguments involving
the Alexander polynomial. In order to use this tool effectively, we must first
master some of its technical aspects. The various algebraic properties of the
Alexander polynomial that will be required are collected in this section.

First we need a deeper understanding of the algebraic structure of Λ
itself. The next several results are elementary, but we include proofs because
the results are not part of the standard algebra literature. Note that Λ =
Q[t, t−1] contains Q[t], the ring of polynomials over Q, as a subring. We will
refer to polynomials in Q[t] as ordinary polynomials in order to distinguish
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them from the Laurent polynomials. Any nonzero Laurent polynomial p(t)
can be written as p(t) = tkp̃(t), where k ∈ Z, p̃(t) is an ordinary polynomial,
and p̃(0) �= 0. The degree of p(t) is defined to be the ordinary degree of p̃(t).

Lemma 6.5.1. Λ is a principal ideal domain.

Proof. Degree defines an integer-valued norm on Λ that gives Λ the struc-
ture of a Euclidean domain. Hence Λ is a principal ideal domain (Hunger-
ford, 1974, Theorem III.3.9). �

Many familiar results regarding ordinary polynomials over a field are
also true of Laurent polynomials. The next proposition is such a result.

Proposition 6.5.2. For any nonzero Laurent polynomial p(t),

dimQ(Λ/(p(t))) = deg p(t).

Proof. Since tk is a unit in Λ, we may assume that p(t) is an ordinary
polynomial with p(0) �= 0. Let s = deg p(t). If s = 0, then p(t) is a unit and
Λ/(p(t)) = {0}. Thus we may assume s > 0.

We claim that {1, t, t2, . . . , ts−1} is a basis for Λ/(p(t)). It is clear that
{1, t, t2, . . . , ts−1} is linearly independent over Q since no polynomial of de-
gree less than s can be written as a multiple of p(t). In order to show that
{1, t, t2, . . . , ts−1} spans Λ/(p(t)) we will show that any f(t) ∈ Λ can be
expressed as f(t) = q(t)p(t)+r(t), where r(t) is an ordinary polynomial and
deg r(t) < s. Then f(t) = r(t) in the factor ring Λ/(p(t)), so the proof will
be complete.

First write f(t) = f1(t) + f2(t
−1), where each of f1(t) and f2(t) is an

ordinary polynomial. The division algorithm for polynomials over a field
shows that f1(t) can be expressed in the required form (Hungerford, 1974,
Theorem V.1.6(iv)). Apply the division algorithm to t−(s−1)f2(t

−1) and
t−sp(t), both of which are ordinary polynomials in t−1. The result is

t−(s−1)f2(t
−1) = q(t−1)t−sp(t) + r1(t

−1),

where q and r1 are ordinary polynomials and deg r1 ≤ s − 1. Multiply by
ts−1 to get

f2(t
−1) = t−1q(t−1)p(t) + r2(t),

where r2(t) = ts−1r1(t
−1) is an ordinary polynomial of degree ≤ s− 1. The

last displayed equation shows that f2(t
−1) is equal to r2(t) in the factor ring

Λ/(p(t)). This completes the proof of the proposition. �

The proposition indicates, in particular, that dimQ(Λ/(p(t))) is finite
when p(t) �= 0. Combining that information with Lemma 6.4.4, Part 3,
yields the following corollary.
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Corollary 6.5.3. If B is a finitely generated Λ-module, then O(B) �= {0}
if and only if dimQ(B) < ∞.

The next corollary helps explain the relevance of Proposition 6.5.2 to
the study of Alexander polynomials.

Corollary 6.5.4. If γ : π1(X) → J is an epimorphism and H1(X̃;Q) is

finitely generated over Λ, then deg(A(X, γ; t)) = dimQ(T1(X̃;Q)).

The following proposition is a generalization of Corollary 6.4.3.

Proposition 6.5.5. If B1, B2, and B3 are finitely generated Λ-modules
such that B1 = B2/B3 and qi(t) is the order of Bi, then q2(t)

.
= q1(t)q3(t).

Proof. If q1(t) = 0, then the Λ-free part of B1 is nonzero by Lemma 6.4.4,
Part 2. Hence the free part of B2 is nonzero and q2(t) = 0. If the free
part of B3 is nonzero, then the free part of B2 must also be nonzero. Thus
q3(t) = 0 implies q2(t) = 0. If the free part of B2 is nonzero, then the free
part of either B3 or B1 must be nonzero. Hence q2(t) = 0 implies that
either q1(t) = 0 or q3(t) = 0. These observations show that the result holds
if qi(t) = 0 for any i. We may therefore assume that qi(t) �= 0 for every i. It
follows that each Bi is a torsion module.

Let {x1, . . . , xn} be a generating set for B3. Since B3 is a torsion module,
we may assume that this generating set corresponds to a square presentation
matrix P3. In the same way, let {ỹ1, . . . , ỹm} be a generating set for B1 that
corresponds to a square presentation matrix P1. For each j, 1 ≤ j ≤ m,
choose yj ∈ B2 such that ỹj = yj+B3. Observe that {x1, . . . , xn, y1, . . . , ym}
is a generating set for B2. Each row of P1 corresponds to a combination of
{ỹj} that is zero in B1. Hence the corresponding combination of {yj} is in
B3 and can be written as a combination of {xi}. Thus there is a matrix P2

of the form

P2 =

(
P3 0
X P1

)
in which each row represents a combination of {x1, . . . , xn, y1, . . . , ym} that
is zero in B2. It is not difficult to see that P2 is a presentation matrix for B2.
Since qi(t)

.
= det(Pi), this completes the proof. �

Now we are ready to begin applying the algebraic results just obtained
to the study of Alexander polynomials. The proofs in the next two sections
depend crucially on the fact that homology cobordisms preserve certain
essential features of the Alexander polynomial. We should clarify what is
meant by cobordism in this context.

Definition. Suppose M1 and M2 are n-manifolds and that γ1 : π1(M1) → J
and γ2 : π1(M2) → J are epimorphisms. We say that (M1, γ1) is homology
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cobordant to (M2, γ2) if there exist an (n + 1)-dimensional ∂-manifold W
whose boundary is the disjoint union of M1 and M2 and an epimorphism
γ : π1(W ) → J such that γi = γ|Mi and each of the inclusions Mi ↪→ W
induces an isomorphism on homology (with Z coefficients).

One of the features that is preserved is the number of factors of t − 1.
It is convenient to give that number a name.

Definition. Suppose X is a connected CW complex, that γ : π1(X) → J
is an epimorphism, and that H1(X̃;Q) is finitely generated over Λ. Write
A(X, γ; t) = (t − 1)kB(t), where B(1) �= 0 and k ≥ 0. The integer k =
k(X, γ) is the Kawauchi invariant of the pair (X, γ).

The Kawauchi invariant can be defined this way since A(X, γ; t) �= 0.
The following theorem, one of two major results in the section, attests that
the Kawauchi invariant is preserved by homology cobordism. It is a key
ingredient in the construction of an extraordinary homotopy equivalence
later in the chapter.

Theorem 6.5.6. Suppose M1 and M2 are compact PL n-manifolds and
γ1 : π1(M1) → J and γ2 : π1(M2) → J are epimorphisms. If (M1, γ1)
is homology cobordant to (M2, γ2) via a compact PL ∂-manifold W , then
k(M1, γ1) = k(M2, γ2).

The statement of Theorem 6.5.6 has the advantage of being brief and
simple to understand, but in later applications we will not always have
at hand the full force of a homology cobordism. Lemma 6.5.11, below,
spells out precisely the technical hypotheses required for reaching the de-
sired conclusion; in our main application we will appeal directly to that
lemma rather than to Theorem 6.5.6. In that connection it is worth observ-
ing that the compactness hypotheses in the preceding theorem imply that

each of H∗(M̃1;Q), H∗(M̃2;Q), H∗(W, M̃1;Q), and H∗(W, M̃2;Q) is finitely
generated as a module over Λ.

As a first step toward the proof of Theorem 6.5.6 we will verify that

k(X, γ) is equal to the Q-dimension of a certain submodule of H1(X̃;Q).

Definition. For any Λ-module C, the (t − 1)-primary submodule of C is
defined to be

C(t−1) = {x ∈ C | (t− 1)mx = 0 for some m ≥ 0 } .

Assume C is finitely generated over Λ. Then it has a decomposition of
the form

C ∼=
Λ

(p1s1)
⊕ · · · ⊕ Λ

(pnsn)
,
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in which each pi is a prime polynomial in Λ and si is a positive integer
(Hungerford, 1974, Theorem IV.6.12). Such a decomposition is called the
primary decomposition of C. The (t − 1)-primary submodule C(t−1) is the
direct sum of all the factors for which pi

.
= t − 1. It therefore follows from

Proposition 6.5.2 that C(t−1) is finite-dimensional as a vector space over Q
whenever C is finitely generated as a module over Λ.

Lemma 6.5.7. If X̃ is an infinite cyclic cover of X corresponding to γ and

H1(X̃;Q) is finitely generated over Λ, then

k(X, γ) = dimQ

(
H1(X̃;Q)(t−1)

)
.

Proof. Observe that H1(X̃;Q)(t−1) ⊂ T1(X̃;Q) and that H1(X̃;Q)(t−1) =

T1(X̃;Q)(t−1). Let

T1(X̃;Q) ∼=
Λ

(p1s1)
⊕ · · · ⊕ Λ

(pnsn)

be a primary decomposition of T1(X̃;Q). Then dimQ(H1(X̃;Q)(t−1)) equals
the sum of the si for which pi

.
= t − 1. Since that sum is also equal to

k(X, γ), the proof is complete. �

Let C be a Λ-module. Multiplication by t−1 defines a Λ-homomorphism
from C to C, viz. t−1 : C → C defined by (t−1)(x) = tx−x. The following
proposition sets forth another algebraic property of Λ-modules that will be
useful in the remainder of the chapter.

Proposition 6.5.8. If C is a finitely generated Λ-module and t−1 : C → C
is onto, then C(t−1) = {0} and C is finite-dimensional as a vector space
over Q.

Proof. It is clear that x ∈ C(t−1) if and only if (t − 1)x ∈ C(t−1); hence
(t − 1)(C(t−1)) ⊂ C(t−1). The fact that t − 1 : C → C is onto implies that
(t− 1)|C(t−1) : C(t−1) → C(t−1) is also onto. Thus (t− 1)m|C(t−1) : C(t−1) →
C(t−1) is onto for every m. But C(t−1) is finitely generated over Λ, so there
exists an integer m such that (t− 1)my = 0 for every y ∈ C(t−1). It follows
that C(t−1) = {0}.

Now C can be decomposed into free and torsion submodules. Since
t − 1 is onto, each element of C can be divided by arbitrarily high powers
of t − 1. But the only element of a free module possessing that property
is 0. Therefore the free part of C is {0} and C is finite-dimensional by
Corollary 6.5.3. �
Corollary 6.5.9. Let p : Ỹ → Y be an infinite cyclic cover of the poly-
hedron Y and let A ⊂ Y be a subpolyhedron. If Hq(Y,A;Q) = {0} and

Hq(Ỹ , p−1(A);Q) is finitely generated over Λ, then
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(1) t− 1 : Hq(Ỹ , p−1(A);Q) → Hq(Ỹ , p−1(A);Q) is onto,

(2) Hq(Ỹ , p−1(A);Q)(t−1) = {0}, and
(3) Hq(Ỹ , p−1(A);Q) is finite-dimensional over Q.

Proof. It follows from the Milnor sequence

Hq(Ỹ , p−1(A);Q)
t−1−−→ Hq(Ỹ , p−1(A);Q)

p∗−→ Hq(Y,A;Q) = 0

that t − 1 : Hq(Ỹ , p−1(A);Q) → Hq(Ỹ , p−1(A);Q) is onto, so Proposi-
tion 6.5.8 applies. �

Lemma 6.5.10. Suppose A
α−→ B

β−→ C
γ−→ D is an exact sequence of Λ-

modules and Λ-homomorphisms. If t − 1 : A → A is onto, B is finitely
generated over Λ, and D(t−1) = {0}, then B(t−1)

∼= C(t−1).

Proof. It is clear that β(B(t−1)) ⊂ C(t−1), so we will show that β|B(t−1) :
B(t−1) → C(t−1) is an isomorphism.

Since B is finitely generated over Λ, there exists one number n such that
(t− 1)nw = 0 for every w ∈ B(t−1). Suppose x ∈ B(t−1) and β(x) = 0. By
exactness there exists y ∈ A such that α(y) = x. Since t−1 : A → A is onto,
there exists z ∈ A such that y = (t− 1)nz. Thus x = α(y) = (t − 1)nα(z).
Since x ∈ B(t−1), this last equation implies that α(z) ∈ B(t−1). Hence
(t− 1)nα(z) = 0. It follows that x = 0 and so β|B(t−1) is one-to-one.

Fix y ∈ C(t−1). Then γ(y) ∈ D(t−1) = {0}. Hence there exists x ∈ B
such that β(x) = y. Since y ∈ C(t−1), there exists anm such that (t−1)my =
0. Hence β((t− 1)mx) = (t− 1)mβ(x) = (t− 1)my = 0. By exactness there
is z ∈ A such that α(z) = (t − 1)mx. The fact that t − 1 : A → A is
onto means that there exists w ∈ A such that z = (t− 1)mw. It follows that
(t−1)mx = α(z) = (t−1)mα(w) and thus (t−1)m(x−α(w)) = 0. Therefore
(x−α(w)) ∈ B(t−1). Furthermore β(x−α(w)) = β(x)−β(α(w)) = β(x) = y.
Hence β|B(t−1) is onto. �

Lemma 6.5.11. Let X ⊂ Y be polyhedra and let γ : π1(Y ) → J be a

homomorphism such that γ|X is onto. If both H1(X̃;Q) and H1(Ỹ , X̃;Q)
are finitely generated over Λ and H1(Y,X;Q) = {0} = H2(Y,X;Q), then
k(Y, γ) = k(X, γ|X).

Proof. The Milnor sequence shows that t− 1 : Hi(Ỹ , X̃;Q) → Hi(Ỹ , X̃;Q)

is onto for i = 1, 2. Corollary 6.5.9 gives H1(Ỹ , X̃;Q)(t−1) = {0}. An
application of Lemma 6.5.10 to the exact sequence

H2(Ỹ , X̃;Q) → H1(X̃;Q) → H1(Ỹ ;Q) → H1(Ỹ , X̃;Q)

establishes that H1(X̃;Q)(t−1)
∼= H1(Ỹ ;Q)(t−1), and Lemma 6.5.7 yields the

desired conclusion. �
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Proof of Theorem 6.5.6. The theorem follows from two applications of
Lemma 6.5.11. �

The next result furnishes an elementary but useful condition under which
the Kawauchi invariant dies.

Proposition 6.5.12. Assume X is connected and γ : π1(X) → J is an

epimorphism such that H1(X̃;Q) is finitely generated over Λ. If H1(X;Q) ∼=
Q, then k(X, γ) = 0.

Proof. Consider the Milnor Sequence

H1(X̃;Q)
t−1−−→ H1(X̃;Q)

α−→ H1(X;Q)
β−→ H0(X̃;Q)

t−1−−→ H0(X̃;Q).

Each of the last three terms in the sequence is isomorphic to Q, and the final
homomorphism is zero. This means that β is onto. But every epimorphism

of Q is an isomorphism, so α = 0. Hence t − 1 : H1(X̃;Q) → H1(X̃;Q)
is onto, so Corollary 6.5.9 and Lemma 6.5.7 combine to give the desired
conclusion. �

The proofs in the remainder of the section depend on a special form
of duality that applies to infinite cyclic covers. This specialized duality is
known as Milnor duality.

Theorem 6.5.13 (Milnor Duality). Let W be a compact, connected, n-

dimensional PL ∂-manifold and let p : W̃ → W be an orientable infinite

cyclic cover. If H∗(W̃ , ∂W̃ ;Q) is finitely generated as a vector space over Q,
then for each q ≥ 0 the cup product induces a dual pairing

�: Hq−1(W̃ , ∂W̃ ;Q)×Hn−q(W̃ ;Q) −→ Hn−1(W̃ , ∂W̃ ;Q) ∼= Q.

Moreover, if x ∈ Hq−1(W̃ , ∂W̃ ;Q) and y ∈ Hn−q(W̃ ;Q), then

(tx) � (ty) = t(x � y) = x � y.

Let A, B, and C be finite-dimensional vector spaces over Q with C ∼= Q.
Recall (Munkres, 1984, page 400) that a bilinear function f : A × B → C
is called a dual pairing if dimA = dimB and there exist bases {a1, . . . , am}
for A and {b1, . . . , bm} for B such that f(ai, bj) = δijγ, where γ is the
multiplicative identity in C. Obviously the existence of a dual pairing means
that A and B are isomorphic. The fact that the cup product induces a
pairing implies the existence of additional structure that will be exploited
in forthcoming applications.

One form of the Poincaré-Lefschetz Duality Theorem states that if W is
a compact orientable n-dimensional ∂-manifold, then for each q ≥ 0 the cup
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product induces a dual pairing6

Hq(W,∂W ;Q)×Hn−q(W ;Q)
�−→ Hn(W,∂W ;Q) ∼= Q.

Hence Duality Theorem 6.5.13 can be paraphrased as saying that an infinite
cyclic cover of a compact n-dimensional manifold has the duality properties
of a compact (n−1)-dimensional manifold (provided the finiteness hypothe-
ses are satisfied). It is helpful to think of the infinite cyclic cover as being
homologically like a compact (n− 1)-dimensional manifold crossed with R1.
In order to make the relationship with ordinary Poincaré duality more trans-
parent, we restate the result:

Corollary 6.5.14. Let W and W̃ be as in the statement of Theorem 6.5.13.
Then for each q ≥ 0,

Hq(W̃ , ∂W̃ ;Q) ∼= Hn−q−1(W̃ ;Q) and Hq(W̃ , ∂W̃ ;Q) ∼= Hn−q−1(W̃ ;Q).

This restatement is a corollary of the theorem due to the use of field co-

efficients. Even though we have only assumed that Hq(W̃ , ∂W̃ ;Q) is finitely
generated, it follows from the existence of the pairing in Theorem 6.5.13 that

H∗(W̃ ,Q) is also finitely generated over Q. Thus Hi(W̃ ;Q) ∼= H i(W̃ ;Q) and

Hi(W̃ , ∂W̃ ;Q) ∼= H i(W̃ , ∂W̃ ;Q) for every i (Munkres, 1984, Corollary 53.6).
We illustrate the utility of Corollary 6.5.14 by using it to complete the proof
of Lemma 6.4.5.

Proof of Lemma 6.4.5, Part 2. Let L, E(L), M(L), γk, Ẽk(L), M̃k(L),

and M(L)� E(L) = N1 ∪ · · · ∪Nk be as in §6.4.
By hypothesis H1(Ẽk(L);Q) is finite-dimensional over Q. In addition,

Hq(Ẽk(L);Q), q ≥ 2, is finite-dimensional over Q by the Milnor sequence

and Lemma 6.5.8. Each ∂Ni lifts to a copy ∂Ñi of S
1 × R1 in Ẽk(L), so

H1(∂Ẽk(L)) ∼= ⊕k
i=1H1(∂Ñi) ∼= Qk ∼= [Λ/(t− 1)]k

and Hq(∂Ẽk(L);Q) = 0 for q ≥ 2. Thus H∗(∂Ẽk(L);Q) is finite-dimensional

over Q. Since both H∗(Ẽk(L);Q) and H∗(∂Ẽk(L);Q) are finite-dimensional,

we can conclude from the exact sequence of the pair (Ẽk(L), ∂Ẽk(L)) that

H∗(Ẽk(L), ∂Ẽk(L);Q) is finite-dimensional over Q. Hence Corollary 6.5.14
applies to give

H2(Ẽk(L);Q) ∼= H0(Ẽk(L), ∂Ẽk(L);Q) ∼= {0}
and

H2(Ẽk(L), ∂Ẽk(L);Q) ∼= H0(Ẽk(L);Q) ∼= Q ∼= Λ/(t− 1).

6The formulation of Poincaré duality in terms of cup products and field coefficients is ex-
plained in (Hatcher, 2002, pp. 249–251). If Z coefficients are used, it is necessary to factor out
the torsion (Hatcher, 2002, Proposition 3.38) (Munkres, 1984, Theorem 68.1).
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The following represents a portion of the exact sequence of the pair

(Ẽk(L), ∂Ẽk(L)).

H2(Ẽk(L)) → H2(Ẽk(L), ∂Ẽk(L)) → H1(∂Ẽk(L))
α−→ H1(Ẽk(L))

(All homology groups are assumed to have coefficients in Q.) Exactness
implies that Im(α) ∼= [Λ/(t− 1)]k/[Λ/(t− 1)], so Proposition 6.5.5 indicates
that the order of Im(α) is (t− 1)k−1.

For each i, the generator of π1(Ni) is taken by γk to t ∈ J, so the preimage

of Ni in M̃k(L) is Ñi
∼= B2 ×R1. Hence H1(∪k

i=1Ñi;Q) ∼= ⊕k
i=1H1(Ñi;Q) =

{0}. By exactness of the following Mayer-Vietoris sequence

H1(∂Ẽk(L);Q)
α⊕0−−→ H1(Ẽk(L);Q)⊕

(
H1(∪k

i=1Ñi;Q)
)
→ H1(M̃k(L);Q) → 0

we haveH1(M̃k(L);Q) ∼= H1(Ẽk(L);Q)/ Im(α). The conclusion of the lemma
follows from the previous paragraphs and Proposition 6.5.5. �

Milnor duality has many other applications; e.g., it can be used to give
a new proof of algebraic unknotting that is valid in all dimensions, including
dimension four—see Exercise 6.5.1.

The following notation will be used throughout the proof of the duality
theorem. Let W be a compact, connected, n-dimensional PL ∂-manifold

and let p : W̃ → W be an infinite cyclic cover. Choose K to be a compact,

connected PL ∂-manifold contained in W̃ such that p(K) = W . Then

W̃ =
⋃
j∈Z

tj(K).

For each integer r, define

Nr =
⋃
j≥r

tj(K) and N ′
r =

⋃
j≤−r

tj(K).

Note that

Hq
c (W̃ , ∂W̃ ;Q) = lim

r→∞
Hq(W̃ , ∂W̃ ∪Nr ∪N ′

r;Q).

Lemma 6.5.15. If Hj(W̃ , ∂W̃ ;Q) is finitely generated over Q for q − 2 ≤
j ≤ q, then the coboundary operator induces a natural isomorphism

φ : Hq−1(W̃ , ∂W̃ ;Q)
∼=−→ Hq

c (W̃ , ∂W̃ ;Q).
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Proof. First observe that Hj(∂W̃ ∪N0, ∂W̃ ;Q) is finitely generated over Q
for q − 2 ≤ j ≤ q. This follows from the Mayer-Vietoris sequence

Hj(∂W̃ ∪ (N0 ∩N ′
0), ∂W̃ ;Q)

→ Hj(∂W̃ ∪N0, ∂W̃ ;Q)⊕Hj(∂W̃ ∪N ′
0, ∂W̃ ;Q)

→ Hj(W̃ , ∂W̃ ;Q)

since N0 ∩ N ′
0 is a compact polyhedron. Next consider the exact sequence

of the triple (W̃ , ∂W̃ ∪N0, ∂W̃ ):

Hj(W̃ , ∂W̃ ;Q) → Hj(W̃ , ∂W̃ ∪N0;Q) → Hj−1(∂W̃ ∪N0, ∂W̃ ;Q).

The first term is finitely generated by hypothesis and the last one is finitely

generated by the observation above. Hence Hj(W̃ , ∂W̃ ∪ N0;Q) is finitely
generated for q − 1 ≤ j ≤ q.

Since Hj(W̃ , ∂W̃ ∪ N0;Q) is finitely generated, there exists s > 0 such
that the inclusion induced homomorphism

Hj(∂W̃ ∪N−s, ∂W̃ ∪N0;Q) → Hj(W̃ , ∂W̃ ∪N0;Q)

is onto. It follows from the exact sequence of the triple (W̃ ,N−s∪∂W̃ ,N0∪
∂W̃ ) that the inclusion induced homomorphism

Hj(W̃ , ∂W̃ ∪N0;Q) → Hj(W̃ , ∂W̃ ∪N−s;Q)

is the zero homomorphism. Translating by tr+s gives

Hj(W̃ , ∂W̃ ∪Ns+r;Q)
0−→ Hj(W̃ , ∂W̃ ∪Nr;Q).

Hence the dual cohomology homomorphisms have the following property:
For j = q−1 and j = q there exists an s > 0 such that the inclusion induced
homomorphism

Hj(W̃ , ∂W̃ ∪Nr;Q) −→ Hj(W̃ , ∂W̃ ∪Ns+r;Q)

is zero for every r. A similar proof shows

Hj(W̃ , ∂W̃ ∪N ′
r;Q)

0−→ Hj(W̃ , ∂W̃ ∪N ′
s+r;Q).

The conclusion of the lemma now follows by taking a limit with respect
to r in the Mayer-Vietoris sequence

Hq−1(W̃ , ∂W̃ ∪Nr;Q)⊕Hq−1(W̃ , ∂W̃ ∪N ′
r;Q)

→ Hq−1(W̃ , ∂W̃ ;Q)
δ−→ Hq(W̃ , ∂W̃ ∪Nr ∪N ′

r;Q)

→ Hq(W̃ , ∂W̃ ∪Nr;Q)⊕Hq(W̃ , ∂W̃ ∪N ′
r;Q).

�
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Proof of Theorem 6.5.13. By Poincaré-Lefschetz Duality (Corollary 0.3.2)
and Lemma 6.5.15 we have

Hn−q(W̃ ;Q) ∼= Hq
c (W̃ , ∂W̃ ;Q) ∼= Hq−1(W̃ , ∂W̃ ;Q),

so Hn−q(W̃ ;Q) is finitely generated over Q. Thus Hn−q(W̃ ;Q) is dual to

Hn−q(W̃ ;Q) and the cup product induces a dual pairing

Hq
c (W̃ , ∂W̃ ;Q)×Hn−q(W̃ ;Q)

�−→ Hn
c (W̃ , ∂W̃ ;Q).

Lemma 6.5.15 allows us to replace the first term by Hq−1(W̃ , ∂W̃ ;Q) and

the third one by Hn−1(W̃ , ∂W̃ ;Q). Explicitly, we have the following com-
mutative diagram:

Hq−1(W̃ , ∂W̃ ;Q)×Hn−q(W̃ ;Q)
�−−−−→ Hn−1(W̃ , ∂W̃ ;Q)

φ×Id

⏐⏐� ⏐⏐�φ

Hq
c (W̃ , ∂W̃ ;Q)×Hn−q(W̃ ;Q)

�−−−−→ Hn
c (W̃ , ∂W̃ ;Q).

The bottom arrow is a dual pairing by ordinary Poincaré-Lefschetz duality
and the vertical arrows are isomorphisms by Lemma 6.5.15, so the top arrow
is also a dual pairing.

Let x ∈ Hq−1(W̃ , ∂W̃ ;Q), y ∈ Hn−q(W̃ ;Q), and z ∈ H0(W̃ ;Q). Since

W̃ is connected, H0(W̃ ;Q) ∼= Q and tz = z; thus

φ(t(x � y))(z) = t(φ(x � y))(z) = φ(x � y)(tz) = φ(x � y)(z).

But φ is an isomorphism, so we can conclude that t(x � y) = x � y. �

In our main application of Milnor duality, W will be a 4-dimensional
∂-manifold and we will want to apply the duality result to both W itself
and to ∂W even though ∂W is not connected. The following addendum
spells out the relationship between the two pairings.

Addendum to Theorem 6.5.13. Assume n = 2m, p : W̃ → W is induced
by the epimorphism γ : π1(W ) → J, and ∂W has two components M1 and
M2 such that the restricted homomorphism γ|Mj is an epimorphism for
j = 1, 2. Then the cup product induces a dual pairing

Hm−1(∂W̃ ;Q)×Hm−1(∂W̃ ;Q)
�−→ Q,

which is compatible with the pairing

Hm(W̃ , ∂W̃ ;Q)×Hm−1(W̃ ;Q)
�−→ H2m−1(W̃ , ∂W̃ ;Q) ∼= Q

of the theorem in the following sense: If

Hm−1(W̃ ;Q)
i∗−→ Hm−1(∂W̃ ;Q)

δ−→ Hm(W̃ , ∂W̃ ;Q)
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is part of the exact sequence of the pair (W̃ , ∂W̃ ), x ∈ Hm−1(W̃ ;Q), y ∈
Hm−1(∂W̃ ;Q), and z ∈ H2m−1(W̃ , ∂W̃ ;Q), then

(δ(y) � x)(z) = (y � i∗(x))(∂z).

Proof of the Addendum. Let M̃j = p−1(Mj). Since H∗(W̃ , ∂W̃ ;Q) is

finitely generated over Q, the proof of Theorem 6.5.13 shows that H∗(W̃ ;Q)
is finitely generated as well. It follows from the exact sequence of the pair

(W,∂W ) that H∗(∂W̃ ;Q) is finitely generated. As H∗(∂W̃ ;Q) is naturally

isomorphic to H∗(M̃1;Q) ⊕ H∗(M̃2;Q), each H∗(Mj ;Q) must be finitely

generated. Thus Theorem 6.5.13 applies to the restricted cover M̃j → Mj

and the cup product induces a pairing

Hm−1(M̃j ;Q)×Hm−1(M̃j ;Q)
�−→ H2m−2(M̃j ;Q) ∼= Q.

Now Hm−1(∂W̃ ;Q) ∼= Hm−1(M̃1;Q) ⊕Hm−1(M̃2;Q) and the two sub-
spaces are orthogonal relative to the cup product, so the two separate pair-
ings combine to produce a dual pairing

Hm−1(∂W̃ ;Q)×Hm−1(∂W̃ ;Q)
�−→ Q.

Naturality of cup products implies that the diagram

Hm−1(W̃ ;Q)
i∗−−−−→ Hm−1(∂W̃ ;Q)

δ−−−−→ Hm(W̃ , ∂W̃ ;Q)⏐⏐��x

⏐⏐��i∗(x)

⏐⏐��x

H2m−2(W̃ ;Q) −−−−→ H2m−2(∂W̃ ;Q)
δ−−−−→ H2m−1(W̃ , ∂W̃ ;Q)

is commutative (Munkres, 1984, Exercise 48.2), so

(δ(y) � x)(z) = δ(y � i∗(x))(z) = (y � i∗(x))(∂z)

for each y ∈ Hm−1(∂W̃ ;Q), and z ∈ H2m−1(W̃ , ∂W̃ ;Q). �

The next theorem, which is the second major result of the section, spec-
ifies another way in which the structure of the Alexander polynomial is
preserved by homology cobordism. It is a generalization of the familiar fact
that the Alexander polynomial of a slice knot in S3 has the form f(t)f(t−1)
(Rolfsen, 1990, Theorem 8.20).

Theorem 6.5.16. Suppose M1 and M2 are compact connected 3-manifolds
and that γ1 : π1(M1) → J and γ2 : π1(M2) → J are epimorphisms such

that H1(M̃1;Q) and H1(M̃2;Q) are finitely generated as vector spaces over
Q. If (M1, γ1) is homology cobordant to (M2, γ2) via a compact orientable
∂-manifold, then there exists a polynomial f(t) ∈ Λ such that

A(M1, γ1; t)A(M2, γ2; t)
.
= f(t)f(t−1).
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Proof. Let W be a compact, oriented, 4-dimensional ∂-manifold that ex-
hibits the homology cobordism from M1 to M2 and let γ : π1(W ) → J be the

associated epimorphism extending γ1 and γ2. Let p : W̃ → W be the infinite

cyclic cover determined by γ and define M̃1 = p−1(M1) and M̃2 = p−1(M2).

Step 1: H∗(∂W̃ ;Q) is finitely generated over Q. First see that H∗(M̃1;Q) is

finitely generated over Q. This is so because H0(M̃1;Q) ∼= Q and H1(M̃1;Q)
is finitely generated by hypothesis. Ordinary Poincaré duality shows that

Hq(M̃1;Q) ∼= H3−q
c (M̃1;Q). For q ≥ 2 Lemma 6.5.15 yields H3−q

c (M̃1;Q) ∼=
H2−q(M̃1;Q) and it follows that

Hq(M̃1;Q) ∼= H2−q(M̃1;Q) ∼= H2−q(M̃1;Q)

is finitely generated over Q. In the same way, H∗(M̃2;Q) is finitely generated

over Q. Consequently H∗(∂W̃ ;Q) ∼= H∗(M̃1;Q) ⊕ H∗(M̃2;Q) is finitely
generated over Q.

Step 2: H∗(W̃ ;Q) and H∗(W̃ , ∂W̃ ;Q) are both finitely generated over Q.
Consider the exact sequence

Hq(∂W̃ ;Q) → Hq(W̃ ;Q) → Hq(W̃ , ∂W̃ ;Q) → Hq−1(∂W̃ ;Q).

The first and last terms are finitely generated by the previous paragraph.

The inclusion-induced homomorphism Hq(W̃ ;Q) → Hq(W̃ , ∂W̃ ;Q) can be

factored throughHq(W̃ , M̃1;Q), which is finitely generated by Corollary 6.5.9.

Hence the image of Hq(W̃ ;Q) → Hq(W̃ , ∂W̃ ;Q) is finitely generated. It fol-

lows that Hq(W̃ , ∂W̃ ;Q) is finitely generated over Q. But then Hq(W̃ ;Q)
is trapped between two finitely generated terms in the exact sequence and
is itself finitely generated over Q.

Step 3: Apply Duality Theorem 6.5.13 and its Addendum. Steps 1 and 2

allow the application of Duality Theorem 6.5.13 and its Addendum to W̃

and ∂W̃ . Hence the cup product operation induces dual pairings

H1(∂W̃ ;Q)×H1(∂W̃ ;Q)
�−→ Q

and

H2(W̃ , ∂W̃ ;Q)×H1(W̃ ;Q)
�−→ H3(W̃ , ∂W̃ ;Q) ∼= Q.

The exact sequence

H1(W̃ ;Q)
i∗−→ H1(∂W̃ ;Q)

δ−→ H2(W̃ , ∂W̃ ;Q)

relates these pairings as explained in the addendum.

Before taking the next step in the proof, we need a definition. The
orthogonal complement of a subspace A of H1(∂W ;Q) is the set

A⊥ = {y ∈ H1(∂W ;Q) | y � a = 0 for every a ∈ A}.

Observe that dimQA+ dimQA⊥ = dimQ(H
1(∂W̃ ;Q)).
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Step 4: The subspace Im i∗ is self-orthogonal. Suppose (y � i∗(x))(∂z) = 0

for every x ∈ H1(W̃ ;Q) and for every z ∈ H3(W̃ , ∂W̃ ;Q). Then, by the

addendum, (δ(y) � x)(z) = 0 for every x ∈ H1(W̃ ;Q) and for every z ∈
H3(W̃ , ∂W̃ ;Q). Because the pairing is nonsingular, δ(y) = 0, which, in turn,
means that y ∈ Im i∗. Hence (Im i∗)⊥ ⊂ Im i∗. Elementary linear algebra
then shows that (Im i∗)⊥ = Im i∗ and

dimQ(Im i∗) =
1

2
dimQ(H

1(∂W̃ ;Q))

= dimQ(H
1(∂W̃ ;Q)/ Im i∗)

= dimQ(Im δ).

In particular, Im i∗ is isomorphic (as a vector space) to H1(∂W̃ ;Q)/ Im i∗.
Furthermore, the proof above shows that the cup product induces a nonsin-
gular pairing

Im i∗ ×H1(∂W̃ ;Q)/ Im i∗
�−→ Q.

Step 5: Relate the action of t to the cup product. Let x, y ∈ H1(∂W̃ ;Q).
By the “moreover” part of Duality Theorem 6.5.13,

tx � y = tx � t · t−1y = t(x � t−1y) = x � t−1y.

Combining that fact with the Q-linearity of the cup product yields f(t)x �
y = x � f(t−1)y for every f(t) ∈ Λ.

Step 6: Show that if f(t) is the order of Im i∗, then f(t−1) is the order

of H1(∂W̃ ;Q)/ Im i∗. Let f(t) be the order of Im i∗ and g(t) the order of

H1(∂W̃ ;Q)/ Im i∗. Fix y ∈ H1(∂W̃ ;Q)/ Im i∗. Then for every x ∈ Im i∗,

x � (f(t−1)y) = (f(t)x) � y = 0,

and the nonsingularity of the pairing implies f(t−1)y = 0. Thus g(t)|f(t−1).
But Proposition 6.5.2 gives

deg(g(t)) = dimQ(H
1(∂W̃ ;Q)/ Im i∗) = dimQ(Im i∗) = deg(f(t)),

so g(t)
.
= f(t−1).

Step 7: Since H1(∂W̃ ;Q) ∼= H1(M̃1;Q)⊕H1(M̃2;Q), application of Corol-
lary 6.4.3 and Proposition 6.5.5 completes the proof of the theorem. �

Historical Notes. Theorems 6.5.6 and 6.5.16 are both due to Kawauchi
(1978), (1980). The invariant used in Theorem 6.5.6 is named for Kawauchi
because of the prominent role this particular invariant played in (Kawauchi,
1980). Duality Theorem 6.5.13 is due to Milnor (1968). Kawauchi (1974b),
(1977) has generalized this result; some of Kawauchi’s work is based on
earlier work of Levine, (1966) and (1969).
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Exercises

6.5.1. Use Milnor duality to give a proof of the algebraic unknotting prin-
ciple (Proposition 6.1.4) that is valid in all even dimensions, includ-
ing dimension four.

6.5.2. Prove that the hypothesis H1(Ẽk(L);Q) = T1(Ẽk(L);Q) in the
second part of Lemma 6.4.5 is always satisfied in case L is a knot
(i.e., if k = 1).

6.6. A topological embedding that cannot be approximated
by PL embeddings

Both PL approximation and locally flat approximation fail in codimension
two. In this section we construct an example of a topological embedding
of the 2-torus T 2 = S1 × S1 into S4 that cannot be approximated by PL
embeddings. Later in the chapter we will see that this topological embedding
is so wild that it also cannot be approximated by locally flat embeddings.

Example 6.6.1. There exist a compact PL ∂-manifold N ⊂ S4 and a topo-
logical embedding g : T 2 → N of the 2-torus T 2 in N such that g is a homo-
topy equivalence but g is not homotopic in N to a PL embedding. Hence g
cannot be approximated by PL embeddings.

The particular example also shows that the codimension-three theorem
about highly connected maps between manifolds being homotopic to PL
embeddings (Theorem 5.2.1) fails in codimension two. In the next section
we will see even more dramatic examples of this failure. There the manifolds
are simply connected and have arbitrary dimension (although the target is
non-compact, unlike in 6.6.1) while the map between them is a homotopy
equivalence that is homotopic to no embedding whatsoever.

In this section and the next we will provide counterexamples to the ba-
sic approximation and existence of embedding results in codimension two,
but we will not do a systematic study of conditions under which embed-
dings exist. It should be pointed out, however, that such a study can be
carried out, at least if one restricts attention to the compact case. In par-
ticular, the following problem has been studied extensively by many au-
thors: if f : Qn−2 → Mn is a homotopy equivalence from a compact PL
(n − 2)-manifold Q to a compact n-dimensional PL ∂-manifold M , then is
f homotopic to a locally flat PL embedding? Cappell and Shaneson (1974),
(1976), and (1977), Kato (1970), Kato and Matsumoto (1972), and Mat-
sumoto (1973), (1975a), (1975b), and (1979b) have developed codimension-
two ambient surgery theories that answer this question in case n ≥ 6. There
is an obstruction that lives in a surgery group associated with a certain
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cyclic extension of π1(M). The obstruction vanishes if and only if f is
homotopic to a locally flat PL embedding. It is interesting to note that,
in case M is simply connected, the obstruction group is the same as the
knot cobordism group and so a (not necessarily locally flat) PL embedding
always exists (Kato and Matsumoto, 1972, Theorem A) or (Cappell and
Shaneson, 1976, Theorem 6.1). In case n is odd, the obstruction group is
the same as the ordinary surgery obstruction group (Kato and Matsumoto,
1972, Theorem C) or (Matsumoto, 1973, Theorem 5.11 (i)) and again a
(possibly nonlocally flat) embedding always exists provided both Q and M
are orientable (Cappell and Shaneson, 1976, Theorem 6.1).

One consequence of the results just quoted is that it will be difficult
to find a counterexample to PL approximation in odd dimensions. If f :
Qn−2 → Mn, n odd, is a topological embedding and f(Q) is contained
in a compact PL ∂-manifold neighborhood P such that f(Q) ↪→ P is a
homotopy equivalence, then f is at least homotopic to a PL embedding in
P . It is not known whether topological embeddings of odd-dimensional PL
manifolds can be PL approximated in general; any counterexample would
either have to be so wild that its image cannot be homotopically captured in
a PL neighborhood or would require an invariant sensitive enough to register
that the embedding cannot be closely approximated by PL embeddings even
though it is homotopic to one.

The even-dimensional situation is clearer: high-dimensional embeddings
that cannot be approximated by PL embeddings arise upon taking Cartesian
products of our 4-dimensional example with CP2.

Addendum (to Example 6.6.1). Let Q denote a finite product of copies
of CP2. The topological embedding g × IdQ : T 2 × Q → N × Q cannot be
approximated by PL embeddings.

We do not prove this addendum, as it requires much deeper techniques
than those developed here. In order to address it, one would start by using
the obstruction theory of Matsumoto et al., mentioned in the last section, to
prove that the topological embedding g in Example 6.6.1 cannot be approxi-
mated by PL embeddings. That entails showing that the embedding g corre-
sponds to a nonzero element of the 4-dimensional obstruction group (which
is done in (Matsumoto, 1975a)). The addendum is then a consequence of
the periodicity of the obstruction groups (Matsumoto, 1973, Theorem 5.12).

The following definition plays a central role in the geometric construc-
tions of this section.

Definition. For any map f : X → X, the mapping torus of f is the iden-
tification space T (f) = X × [0, 1]/ ∼, where the identification ∼ is defined
by 〈x, 0〉 ∼ 〈f(x), 1〉 for every x ∈ X.
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Construction of the ∂-manifold N . Start with the solid torus S1 ×B2.
Let Γ0 be the centerline S1 ×{0} and let Γ1 be the curve in S1 ×B2 that is
drawn in Figure 6.20.

D

S1

1

×B 2

Γ

Figure 6.20. The curve Γ1

Choose a regular neighborhood R1 of Γ1 in S1 ×B2 and an orientation-
preserving homeomorphism f : S1 × B2 → R1. The homeomorphism f
should be chosen in such a way that f maps Γ0 to Γ1 and f maps each
of the boundary circles S1 × {∗} to a longitude of R1 having homological
linking number 0 with Γ1. Then N is defined to be the mapping torus of f .

It is clear that N is a compact, 4-dimensional PL ∂-manifold. Since
Γ1 is homotopic to Γ0 in S1 × B2, N has the homotopy type of T 2. Note
that it is possible to construct N as a PL subset of R4. The basic reason is
that Γ1 is the unknot when considered as a subset of R3. We can use the
unknotting isotopy to find a level-preserving embedding of S1 × B2 × [1, 2]
into R3 × [1, 2] ⊂ R4 whose image intersects R3 ×{2} in a round solid torus
and intersects R3 × {1} in R1 × {1}. The union of this embedded copy of
S1 × B2 × [1, 2] with S1 × B2 × [0, 1] is the heart of N . To complete the
embedding of N , swing the bottom solid torus S1 × B2 × {0} through a
circle of large radius in R4 until it matches S1 × B2 × {2}. This completes
a PL embedding of N into R4 (and hence into S4). �

The important properties of the example are spelled out in the next two
theorems.

Theorem 6.6.2. There exists a topological embedding g : T 2 → N such that
g is a homotopy equivalence.

Theorem 6.6.3. There exists no PL embedding h : T 2 → N such that h is
a homotopy equivalence.

Since any close approximation to the homotopy equivalence g must also
be a homotopy equivalence, it will follow that g cannot be approximated
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by PL embeddings. We will prove Theorem 6.6.2 directly by constructing
the topological embedding. Of course the proof of the nonexistence of a PL
embedding that is asserted in Theorem 6.6.3 requires the use of an algebraic
invariant. As indicated earlier, the algebraic invariant will be the Alexander
polynomial.

Proof of Theorem 6.6.2. It suffices to construct an annulus A ⊂ S1 ×
B2 × [0, 1] such that A ∩ ∂(S1 ×B2 × [0, 1]) = ∂A and the two components
of ∂A are ∂+A = Γ1 × {1} and ∂−A = Γ0 × {0}. In the next paragraph we
describe a “shift-spin” construction used to build A.

...

[0,1]×B2 [1,2]×B2 [2,3]×B2

C

J1 J2 J3

J0

Figure 6.21. The 3-cell C contains a wild Fox-Artin arc

Cut the solid torus S1×B2 open along the disk D shown in Figure 6.20
to form [0, 1] × B2. The disk D intersects Γ1 in three points and Γ1 is cut
into three arcs in [0, 1] × B2. We use J0 to denote their union. Let C be
the one-point compactification of ∪∞

i=0

(
[i, i+ 1]×B2

)
= [0,∞)×B2. Note

that C = ([0,∞)×B2) ∪ {∞} is the 3-cell pictured in Figure 6.21.

Let Ji denote the translate of J0 in [i, i+1] and let J = (∪∞
i=0Ji)∪{∞} ⊂

C. Then J is the union of two arcs, one of which is a Fox-Artin arc. Let
τ : C → C be the map that translates each point one unit to the right; i.e.,
τ(r, x) = 〈r+1, x〉 and τ(∞) = ∞. Now let T = T (τ) be the mapping torus
of τ . Note that τ is a very simple map of C to C and T is homeomorphic
to S1 × B2 × [0, 1]. Furthermore, τ(J) ⊂ J and A = T (τ |J) ⊂ T (τ) = T is
an annulus. As shown in the schematic diagram Figure 6.22, one boundary
component of A is a copy of Γ1 and the other boundary component of A is
a copy of Γ0.

Note that A is locally flat except along the boundary component ∂−A.
The embedding g is constructed by identifying the two boundary compo-
nents of A and hence g(T 2) has a circle of wild points. �

The proof of Theorem 6.6.3 is based on the calculation of certain Alexan-
der polynomials. In order to facilitate those calculations we give an alternate
description of N , this time using a handle decomposition rather than the
mapping torus structure. There is a useful geometric notation that is used
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∂+
A

∂-A

Figure 6.22. A schematic diagram of part of T

to describe ∂-manifolds formed by attaching handles to B4. The handle
decomposition itself is described by a link diagram in S3 while homeomor-
phisms of the associated ∂-manifold are described via a set of operations on
the diagrams. This method of studying 4-dimensional ∂-manifolds is known
as the “link calculus” of Kirby, or simply the “Kirby calculus.” Before
describing the Kirby calculus itself, let us review handle decompositions of
4-dimensional ∂-manifolds. Handle decompositions in this dimension require
special care because there is an issue of framing.

Manifolds constructed by attaching handles to B4. Suppose � is a PL
loop in S3. We say that the ∂-manifold W is obtained from B4 by attaching
a 2-handle along � if

W = B4 ∪f (B2 ×B2),

where f is a homeomorphism from (∂B2)×B2 onto a regular neighborhood
of � in S3 = ∂B4 and f(∂B2×{0}) = �. The core of the 2-handle is B2×{0}
and the cocore is {0}×B2. The framing of the handle is lk(f(∂B2×{p}), �)
for some p �= 0. We will be interested only in the case in which the framing
is zero. In that case any one of the curves f(∂B2×{p}), p ∈ ∂B2, is called a
longitude for �, while any one of the curves f({p}×∂B2), p ∈ ∂B2, is called
a meridian of �. If L is a link in S3, we can similarly define the ∂-manifold
obtained from B4 by attaching one 2-handle to B4 along each component
of the link (with zero framing). In case � is the unknot, we can also use � to
remove a 2-handle from B4. This operation is performed as follows: Start
with a PL 2-disk D2 ⊂ S3 that has � as its boundary. Push the interior of
D2 into IntB4 and then remove a relative regular neighborhood of the new
disk from B4. Note that the ∂-manifold obtained by removing a 2-handle
from B4 is homeomorphic to the ∂-manifold obtained by adding a 1-handle
to B4.

The Kirby calculus. Consider a handle decomposition of a compact, con-
nected, 4-dimensional ∂-manifold that has just one 0-handle and no handles
of dimension greater than two. Such a handle decomposition can be de-
scribed via a link in S3. Each 1-handle is represented by an unknotted
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circle with a dot on it. This dotted circle is the boundary of a disk that
is removed from B4; as observed above, removing a 2-handle from B4 is
equivalent to adding a 1-handle to B4. Each 2-handle is represented by a
loop that is labeled with an integer. The integer indicates the framing of
the 2-handle that is to be attached along the curve. Such link diagrams can
then be manipulated by isotopy of the link, handle slides, and the birth or
death of (1,2)-handle pairs. The various operations on the diagrams cor-
respond to homeomorphisms of the ∂-manifold. This method of describing
4-dimensional ∂-manifolds and their homeomorphisms is called the Kirby
calculus.

Second construction of the ∂-manifold N . Let us describe N using a
Kirby diagram. The construction of N again starts with S1 × B2 × [0, 1],
which is now understood as the union of a 0-handle and a 1-handle. Then
the curve Γ0 in the 0-level is identified with the curve Γ1 in the 1-level.
This can be accomplished in two stages: First add a 1-handle to identify
one point of Γ0 with a point of Γ1 and then attach a 2-handle to complete
the identification. Figure 6.23 shows the Kirby calculus diagram for N
(cf. Figure 6.14). The two circles on the left and right represent 1-handles
and the curve in the middle is the attaching curve for the 2-handle. Note
that the attaching curve for the 2-handle is a band sum of Γ0 and Γ1 and
that it is unknotted when considered as a subset of S3. �

0

Figure 6.23. A Kirby diagram of N

Proof of a special case of Theorem 6.6.3. We begin the proof of The-
orem 6.6.3 by showing that there can be no locally flat PL embedding that
is a homotopy equivalence. The added complications associated with non-
locally flat points will be faced later.

Suppose there exists a locally flat PL embedding h : T 2 → N such that
h is a homotopy equivalence. We may assume that h(T 2) ⊂ IntN . Let P
be a regular neighborhood of h(T 2) in IntN . Since h is a homotopy equiv-
alence, N � P is a homology cobordism from ∂N to ∂P . We will calculate
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Alexander polynomials of ∂N and ∂P and then apply Theorem 6.5.16 to
obtain a contradiction.

Let L denote the link in Figure 6.23. The boundary of the manifold
obtained by adding a 2-handle along an unknotted curve on ∂B4 is the
same as the boundary of the manifold obtained by removing a 2-handle
from the interior of B4. Therefore ∂N ∼= M(L), where M(L) is the 3-
manifold associated with L that was described in §6.4. By Example 6.4.6,
A(∂N, γ3; t)

.
= (t− 1)2(2− 3t+ 2t2).

Now h(T 2) has a handle decomposition consisting of one 0-handle, two
1-handles, and a 2-handle. Because h is locally flat, this handle decompo-
sition induces a handle decomposition of P (Rourke and Sanderson, 1972,
Corollary 4.14). A Kirby diagram of P is shown in Figure 6.24. Hence
A(∂P, γ3; t)

.
= (1− t)2 by Exercise 6.4.5.

Since N � P is a homology product and both γ3|π1(∂M) and γ3|π1(∂P )
send all three homology generators to t, γ3 may be extended to an epimor-
phism π1(N � P ) → J. Hence Theorem 6.5.16 implies that there exists a
polynomial f(t) ∈ Λ such that A(∂N, γ3; t) · A(∂P, γ3; t) .

= f(t)f(t−1). But
this is impossible since the number of irreducible factors in f(t)f(t−1) is
even while the number of irreducible factors in A(∂N, γ3; t) · A(∂P, γ3; t) .

=
(t− 1)4(2− 3t+ 2t2) is five. �

0

Figure 6.24. A Kirby diagram of P

In order to complete the proof of the general case of Theorem 6.6.3, we
must analyze the regular neighborhood of a PL torus with nonlocally flat
points. We will amalgamate all the nonlocally flat points into one and then
find a decomposition of a regular neighborhood of h(T 2) that is just like
the handle decomposition in the preceding proof except that the 2-handle is
replaced by a more complicated object.

Lemma 6.6.4. If h : T 2 → S4 is a PL embedding, then for every neighbor-
hood U of h(T 2) there exists a PL embedding h′ : T 2 → U such that h′ is
homotopic to h in U and h′ is locally flat except possibly at one point.

Proof. Suppose h : T 2 → S4 is a PL embedding. Since h has codimension
two, there may be points at which h is not locally flat. It is easy to see from
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the PL structure that h(T 2) will be locally flat at every point that is not
a vertex; hence there are at most a finite number of non-locally flat points.
Choose a PL arc α ⊂ T 2 such that α runs through all the vertices at which
h is not locally flat. Shrink α to a point in the domain and shrink h(α)
to a point in the range; this results in a new PL embedding h′ : T 2 → S4

such that h′ has only one point at which it is not locally flat. Furthermore,
h′(T 2) can be realized in any arbitrarily small neighborhood of h(T 2) and
h′ is homotopic to h in this neighborhood. �

Structure of a neighborhood of h(T 2). Let h : T 2 → S4 be a PL
embedding and let P be a regular neighborhood of h(T 2). By Lemma 6.6.4,
we may assume that there is a vertex v of T 2 such that h is locally flat
modulo v. Let D be a small 2-cell neighborhood of h(v) in h(T 2). Define C
to be the preimage ofD under the regular neighborhood collapse P ↘ h(T 2).
Then C is a 4-cell, A = P � C collapses to S1∨S1, and A∩C = ∂A∩∂C ∼=
S1 × B2. So P can be constructed as follows: start with a 4-ball; add two
1-handles (to form A); then attach a 4-cell C by identifying a solid torus in
the boundary of A with a solid torus in the boundary of C. The attaching
solid torus will always be embedded in ∂A in the same standard way: it
will be a regular neighborhood of a commutator of the two 1-handles. The
defining curves for the two 1-handles together with the core of the attaching
solid torus will form the Borromean rings (Figure 6.24). In ∂C, which is
homeomorphic to S3, the core of the solid torus will represent some knot κ.
Since this knot κ determines the PL homeomorphism type of P , let us say
that P has knot type κ.

Structure of the boundary of a neighborhood of h(T 2). Suppose P
has knot type κ. Let LBR denote the Borromean rings. The boundary of P
can be constructed as follows: start with S3, remove disjoint tubular neigh-
borhoods of the three components of LBR, sew two of the neighborhoods
back in with longitudes and meridians interchanged, and then sew in the
exterior of κ in place of the third (again with meridian and longitude in-
terchanged). Another way to construct ∂P is to start with M(LBR) and
then cut out a solid torus in M(LBR) and replace it with E(κ), the exterior
of κ. Let us use µ to denote the meridian of the third component of the
Borromean rings. It is one of the generators of H1(∂P ;Q) ∼= Q3.

Proposition 6.6.5. Suppose h : T 2 → S4 is a PL embedding and P is a
regular neighborhood of h(T 2). Then there exists a polynomial ∆(t) ∈ Λ
such that A(∂P, γ; t) = (t − 1)2∆(t) for every γ : π1(∂P ) → J satisfying
γ(µ) = t.
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Proof. Suppose P has knot type κ. Regarding κ as a link of one component,
we have the epimorphism γ1 : π1(S

3 − κ) → J that was described in §6.4.
Define ∆(t) = A(E(κ), γ1; t).

Let γ : π1(∂P ) → J be an epimorphism with γ(µ) = t and let LBR

denote the Borromean rings. Now ∂P is formed by removing from M(LBR)
a solid torus that has µ as a meridian and replacing it with E(κ). As a

result, the covering space ∂̃P is constructed from M̃(LBR) by removing a

copy of B2 × R1 and replacing it with Ẽ(κ). Let us use B̃ to denote the

complement of IntB2 × R1 in ∂̃P . We have a Mayer-Vietoris sequence

H1(S
1 × R1)

α−→ H1(B̃)⊕H1(Ẽ(κ)) → H1(∂̃P ) → H̃0(S
1 × R1) ∼= 0

in which α is the zero homomorphism. (Q coefficients are assumed.) Thus

H1(∂̃P ;Q) ∼= H1(B̃;Q)⊕H1(Ẽ(κ);Q)

and the conclusion of the proposition follows from Exercise 6.4.5. �

Proof of the general case of Theorem 6.6.3. Suppose there exists a PL
embedding h : T 2 → N with h a homotopy equivalence. We may as-
sume that h(T 2) ⊂ IntN . Let P be a regular neighborhood of h(T 2)
in IntN . As before, N � P is a homology cobordism from ∂N to ∂P .
From Examples 6.4.6 and 6.4.7 we know that there exist epimorphisms
γ1, γ3 : π1(∂N) → J such that A(∂N, γ1; t)

.
= (t − 1)2 and A(∂N, γ3; t)

.
=

(t− 1)2(2− 3t+ 2t2). Since N � P is a homology product, both γ1 and γ3
extend to N � P . By Theorem 6.5.16, there exists f1(t), f3(t) ∈ Λ such that

A(∂N, γ1|∂N ; t)A(∂P, γ1|∂P ; t)
.
= f1(t)f1(t

−1)

and

A(∂N, γ3|∂N ; t)A(∂P, γ3|∂P ; t)
.
= f3(t)f3(t

−1).

Both γ1 and γ3 map µ to t, so Proposition 6.6.5 implies that there exists
∆(t) ∈ Λ such that A(∂P, γ1|∂P ; t)

.
= (t− 1)2∆(t)

.
= A(∂P, γ3|∂P ; t). Com-

bining all this information gives

(2− 3t+ 2t2)f1(t)f1(t
−1)

.
= f3(t)f3(t

−1).

But this is impossible because (2− 3t+ 2t2) is irreducible over Q. �

Historical Notes. The spineless 4-dimensional ∂-manifold in Example 6.6.1
first appeared in (Matsumoto, 1975a) and is usually called the Matsumoto
manifold. The curve Γ1 ⊂ S1 ×B2 is called the Mazur curve because it had
been used earlier by Mazur (1961a) to construct an interesting contractible,
4-dimensional ∂-manifold. The proof that the Matsumoto manifold has no
PL spine is based on a similar argument of Kawauchi (1980), (1978). The
curve Γ2 in Exercise 6.6.1 is called the “false Mazur curve” (Matsumoto,
1975a).
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The shift-spin construction is due to C. Giffen (1977). The diagrams
of the Giffen annulus used in the section come from (Eaton, 1977) and
(Daverman, 1986). The Kirby calculus of links is described in (Kirby, 1978)
and (Kirby, 1989). Another good reference is (Gompf and Stipsicz, 1999).

Exercises

6.6.1. Suppose the 4-dimensional ∂-manifold N of Example 6.6.1 is con-
structed using the curve Γ2 shown in Figure 6.25 in place of Γ1.
Construct a locally flat PL embedding of T 2 into this new manifold
that is a homotopy equivalence. [This shows that the Alexander
polynomial detects rather subtle features of Γ1 since Γ1 and Γ2

appear at first glance to have the same properties.]

S1

2

×B 2

Γ

Figure 6.25. The curve Γ2

6.6.2. Prove that the topological embedding constructed in the proof of
Theorem 6.6.2 fails to be 1-alg at each point of the exceptional
circle.

6.6.3. Prove that any PL embedding of a connected surface into a PL 4-
manifold can be pointwise approximated by a PL embedding that
has at most one nonlocally flat point.

6.7. A homotopy equivalence that is not homotopic to an
embedding

This section contains examples which show that a highly connected map of
manifolds need not be homotopic to any embedding whatsoever in codimen-
sion two. Thus the codimension-three results on existence of embeddings do
not carry over to codimension two. Quite obviously the first dimension in
which such examples can occur is ambient dimension four; hence our basic
example is 4-dimensional. We begin with a statement of its properties.
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Example 6.7.1. There exist an open subset W of S4 and a map f : S2 → W
such that

(1) f is a homotopy equivalence, but

(2) f is not homotopic to a topological embedding.

The example shows that the codimension-three existence of embeddings
theorem (Theorem 5.2.1) fails in codimension two. In fact, it fails in the
strongest possible way: there is no topological embedding, not even a wild
one. The proof of the PL case also shows that there is no homotopy equiv-
alence to a compact subpolyhedron of W , so the codimension-three em-
bedding up to simple-homotopy type result (Theorem 5.1.6) also fails in
codimension two.

High-dimensional examples are constructed by taking Cartesian prod-
ucts with spheres.

Addendum. The map f×Id : S2×Sm → W×Sm ⊂ S4+m is not homotopic
to a topological embedding if m ≥ 2.

The manifolds W (L) and W0(L). Let L = {�1, �2} be a two-component
link in S3, with �2 the unknot, such that lk(�1, �2) = 0. We will associate
two different 4-dimensional ∂-manifolds with L. The first, denoted W (L), is
the manifold obtained by attaching two 2-handles to B4 along L using zero
framings. The second, denoted W0(L), is obtained by attaching a 2-handle
to B4 along �1 (with zero framing) and then using the unknot �2 to remove a
2-handle from B4. Figure 6.26 shows Kirby diagrams for W (L) and W0(L)
in case L is the Whitehead link.

W(L) W (L)

0
0

0

0

Figure 6.26. Kirby diagrams of W (L) and W0(L)

While W (L) and W0(L) are very different, they share the same bound-
ary. In fact the common boundary is the manifold M(L) studied in §6.4.

Lemma 6.7.2. ∂W (L) ∼= ∂W0(L) ∼= M(L).

Proof. Both ∂W (L) and ∂W0(L) can be constructed from S3 as follows:
First remove a regular neighborhood N(L) of L from S3. Note that N(L) is
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the disjoint union of two solid tori. Second, sew the two components of N(L)
back in, but with the longitudinal and meridional curves interchanged. �

There is another simple relationship between W (L) and W0(L).

Lemma 6.7.3. There is a natural inclusion of W0(L) ⊂ W (L) and

W (L)�W0(L) ∼= S2 ×B2.

Proof. The natural inclusion comes from the fact that W0(L) is formed by
removing a 2-handle from B4 while W (L) is formed by attaching a 2-handle
to B4 along the very same curve. The two 2-handles fit together to form a
copy of S2×B2. The union of the core of the 2-handle and the disk removed
from B4 is a locally flat PL 2-sphere Σ. This is illustrated in Figure 6.27. �

W(L) W (L)0

Σ

Figure 6.27. W0(L) is a subset of W (L)

Since W (L) is built by attaching two 2-handles to B4, it is easy to see
that H1(W (L);Z) = 0, and H2(W (L);Z) ∼= Z ⊕ Z. Because lk(�1, �2) =
0 and �2 is unknotted, �1 is homotopically inessential in S3 � �2. Hence
H1(W0(L);Z) ∼= Z, and H2(W0(L);Z) ∼= Z.

The noncompact manifold W of Example 6.7.1 will be constructed as a
union of the compact ∂-manifolds W0(Ln), where the links {Ln} are the two
component links of Example 6.4.8. We label the components of Ln so that
Ln = �n1 ∪ �n2 and �n2 is the round component at the bottom in Figure 6.17.
The next proposition explains how to correctly nest the ∂-manifoldsW0(Ln)
in S4.

Proposition 6.7.4. The manifolds W0(Ln) can be constructed ambiently in
S4 so that

(1) W0(Ln) ⊂ IntW0(Ln+1) ⊂ W0(Ln+1) ⊂ S4,

(2) the inclusion induced homomorphism π1(W0(Ln)) → π1(W0(Ln+1))
is trivial, and
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(3) the inclusion induced homomorphism H2(W0(Ln)) → H2(W0(Ln+1))
is an isomorphism.

Proof. We proceed inductively to show that W0(Ln) can be constructed
as in the statement of the proposition. Let us begin with W0(L1). Notice
that each component of L1 is an unknotted curve in S3. Thus we can
take B4 ⊂ S4, remove a neighborhood of a disk bounded by �12 to form
the 1-handle, and then realize the 2-handle by adding a neighborhood of a
disk in S4 � IntB4 that has �11 as its boundary. This construction gives an
embedding of W0(L1) in S4.

Next we explain how to attach a 1-handle and a 2-handle to W0(L1)
in S4 to form W0(L2). First thicken W0(L1) by adding a small collar to
its boundary in S4. Then add a 1-handle to W0(L1) by removing a neigh-
borhood of a disk whose boundary is the curve m2 shown in Figure 6.28.
The neighborhood should be entirely contained in the collar so that the new
manifold contains W0(L1) in its interior.

Now attach a 2-handle along the curve m1 that is also shown in Fig-
ure 6.28. This can be done ambiently in S4 because �11∪m1 is the unlink on
∂B4: we find a smooth disk in S4� IntW0(L1) that has m1 as its boundary
and add a neighborhood of that disk to our manifold. The result is the
addition of a 2-handle along m1 with zero framing.

We claim that the manifoldW0(L1) ∪ (1-handle) ∪ (2-handle) is actually
homeomorphic to W0(L2). In order to see this, we will cancel the (1,2)-
handle pair represented by (�12,m1). Before cancelling, we perform some
handle slides to simplify the picture. First take the lower strand of �11 as it
passes through �12 and slide it across the 2-disk on ∂W0(L1) that �

1
2 bounds.

As shown in the center diagram of Figure 6.28, this frees the strand of �11
from m1 at the expense of adding a full twist to �11.

m

m2 m2

1 m1

1
1

1
2

� 1
1�

1
2�

�
1
2�

2
2�

Figure 6.28. First do a handle slide and then cancel a pair of handles

Next slide the 2-handle represented by �11 off the 1-handle represented
by �12. This is accomplished by twice sliding the 2-handle attached to �11 over
the new 2-handle attached along m1. We do one handle slide for each of the
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two strands of �11 that pass through �12. This leaves �
1
2 and m1 linked to each

other, but to nothing else. Thus we can remove the cancelling (1,2)-handle
pair that they represent from our picture. The result is shown on the right
in Figure 6.28.

Now the new link is isotopic to L2 so the new manifold actually is
W0(L2). All the constructions were done ambiently, hence we haveW0(L1) ⊂
W0(L2) ⊂ S4. Since �21 is an unknotted curve, the construction can be con-
tinued inductively in order to prove the proposition. �

Construction of the example. We can now define the manifoldW needed
for Example 6.7.1:

W =

∞⋃
n=1

W0(Ln).

It follows from Proposition 6.7.4 thatW ⊂ S4 and thatW has the homotopy
type of S2. The argument about there being no topological embedding of S2

into W that is also a homotopy equivalence will occupy the remainder of this
section. It will be based on properties of the Alexander polynomial and the
Kawauchi invariant developed earlier. The next theorem and its corollary
explain the relevance of the Kawauchi invariant to the present situation. For
now we will prove only the PL case; later we will generalize the theorem to
the topological case.

Theorem 6.7.5. Suppose L = {�1, �2} is a two-component link in S3 such
that lk(�1, �2) = 0 and �2 is the unknot. If the standard generators of
H2(W (L);Z) can be represented by disjoint PL embedded 2-spheres, then
k(M(L), γ2) = 0.

Remark. It is easy to see that each individual element of the standard ba-
sis for H2(W (L);Z) can be represented by a PL embedded 2-sphere. For
example, associated with �i there is a natural PL 2-sphere Ci in W (L); it
consists of B2 × {0}, the core of the 2-handle, together with the cone from
�i to the center of B4. The two 2-spheres intersect (nontransversely) in a
single point. Because lk(�1, �2) = 0, the algebraic intersection number of
the homology classes, [C1] · [C2], is zero. This fact suggests that it should
be possible to geometrically separate the two 2-spheres. Despite this alge-
braic evidence, the 2-spheres cannot in general be separated. The Kawauchi
invariant is sensitive enough to detect this.

The following corollary combines Lemma 6.7.3 and Theorem 6.7.5. If
one PL 2-sphere can be found in W0(L) ⊂ W (L), then the sphere Σ of
Lemma 6.7.3 can serve as the second PL 2-sphere in W (L). The corollary
will be used to prove that it is not possible to find a PL embedding of the
2-sphere into the manifold W that is a homotopy equivalence.
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Corollary 6.7.6. Suppose L = {�1, �2} is a two-component link in S3

such that lk(�1, �2) = 0 and such that �2 is the unknot. If the genera-
tor of H2(W0(L);Z) can be represented by a PL embedded 2-sphere, then
k(M(L), γ2) = 0.

Proof of Theorem 6.7.5. Assume Σ1 and Σ2 are disjoint PL embedded
2-spheres representing the standard generators of H2(W (L);Q). We may
assume that Σ1 and Σ2 are contained in the interior of W (L). Let N1 and
N2 be disjoint regular neighborhoods of Σ1 and Σ2, respectively, in IntW (L).

Define N = N1 ∪N2 and Y = W (L)�N .

We claim that Hj(Y, ∂W (L);Q) = 0 = Hj(Y, ∂N ;Q) for j = 1, 2. An
application of excision yields Hj(Y, ∂N ;Q) ∼= Hj(W (L), N ;Q), so the fact
that Hj(Y, ∂W (L);Q) = 0 for j = 1, 2 follows from the exact sequence
of the pair (W (L), N). By Alexander duality we have Hj(Y, ∂W (L);Q) ∼=
H4−j(W,N ;Q); hence the cohomology sequence of the same pair shows that
Hj(Y, ∂W (L);Q) = 0 for j = 1, 2.

Let γ : π1(∂W (L)) → J be the epimorphism γ2 defined in §6.4. The
previous paragraph allows us to uniquely extend γ to γ : π1(Y ) → J. By
Lemma 6.5.11 we have k(∂W (L), γ|∂W (L)) = k(Y, γ) = k(∂N, γ|∂N). Thus
the proof will be completed by showing that k(∂N, γ|∂N) = 0.

An application of Alexander duality yields H1(S4 �Ni;Q) ∼= Q, so the
Mayer-Vietoris sequence

H2(S
4;Q) → H1(∂Ni;Q) → H1(Ni;Q)⊕H1(S4 �Ni;Q) → H1(S

4;Q)

shows that H1(∂Ni;Q) ∼= Q. Proposition 6.5.12 gives k(∂Ni, γ) = 0. The

fact that Hi(∂Ñ ;Q) ∼= H1(∂Ñ1;Q) ⊕ H1(∂Ñ2;Q) implies k(∂N, γ) = 0 as
well. �

Remark. The ∂-manifold Y in the last proof does not provide a homology
cobordism between ∂W (L) and N because N is not connected. It would be
possible to make N ↪→ Y a homology equivalence by connecting N1 and N2

with a tube in Y ; we choose not to do that, however, because it makes the
calculation of k(∂N, γ) more difficult and the proof does not require the full
strength of a homology cobordism.

Proof of the PL case of Example 6.7.1. Suppose f were homotopic to
a PL embedding g : S2 → W . By compactness of g(S2), there would exist
an n such that g(S2) ⊂ W0(Ln). Thus the generator of H2(W0(Ln);Z)
would be represented by a PL embedded 2-sphere. By Corollary 6.7.6, this
would mean that k(M(Ln), γ2) = 0. But in Example 6.4.8 it was found that
k(M(Ln), γ2) = 2n. �
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Proof of the PL case of the Addendum. Note that W ⊂ R4 and R4 ×
Sm can be embedded in Sm+4, so we may assume W×Sm ⊂ Sm+4. Suppose
f × id is homotopic to a PL embedding g : S2 × Sm → W × Sm. By
compactness there must exist an n such that g(S2×Sm) ⊂ IntW0(Ln)×Sm.
Let N1 and N2 be disjoint regular neighborhoods of g(S

2×Sm) and the core

of (W (Li)�W0(Li))×Sm ∼= S2×Sm×B2, respectively, in IntW (Ln)×Sm

and define N = N1 ∪N2. To simplify the notation in the rest of the proof,
we use M to denote W (Ln)× Sm and Y to denote M � IntC. Notice that
∂Y is the disjoint union of ∂M and ∂C.

As in the proof of Theorem 6.7.5, above, we claim thatHj(Y, ∂M ;Z) = 0
and Hj(Y, ∂C;Z) = 0 for j = 1, 2. Excision, Alexander duality, and the
exact sequence of the pair (M,N) combine to yield this conclusion in exactly
the same way as in the previous proof. Note that a little extra care is needed
in case m = 2 since then there are extra terms in H2(N ;Q) and H2(M ;Q).

We now define γ : π1(Y ) → J. Since ∂M = (∂M(Li)) × Sn−4, we may
define γ|∂M to be the composition of the homomorphism induced by the
projection ∂M → ∂M(Li) and the homomorphism γ2 : π1(∂M(Li)) → J
that was defined in §6.4 (and used in the proof of the 4-dimensional case).
By the preceding paragraph, γ|∂M extends uniquely to γ : π1(Y ) → J. Also
using the preceding paragraph, along with Lemma 6.5.11, we see that

k(∂M, γ|∂M) = k(Y, γ) = k(∂N, γ|∂N).

But k(∂M, γ|∂M) = 2n (by Example 6.4.8) and k(∂N, γ|∂N) = 0; this
contradiction shows that no PL embedding g can exist. The fact that
k(∂N, γ|∂N) = 0 is demonstrated exactly as in the proof of the 4-dimensional
case. The fact that k(∂M, γ|∂M) = 2n follows from the observation that
the infinite cyclic cover of ∂M associated with γ is simply the Cartesian
product of the cover of ∂W0(Ln) with Sm. Since m ≥ 2, the Sm factor does
not contribute anything to the first homology. �

The remainder of the section is devoted to a proof of the topological case
of Example 6.7.1. The reader who is interested only in the PL case could
omit this material. The topological case of Example 6.7.1 follows from the
next theorem, which is a topological version of Corollary 6.7.6. It would also
be possible to prove a topological version of Theorem 6.7.5, but that would
involve even more technical detail and we have no need for the more general
theorem. Once Theorem 6.7.7 is established, the proof of the 4-dimensional
topological case of Example 6.7.1 is completed in exactly the same way as
was the proof of the 4-dimensional PL case.

Theorem 6.7.7. Suppose L = {�1, �2} is a two-component link in S3 such
that lk(�1, �2) = 0 and �2 is the unknot. If the standard generator of the
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homology group H2(W0(L);Z) can be represented by a topologically embedded
2-sphere, then k(M(L), γ2) = 0.

Suppose g : S2 → W0(L) is a topological embedding representing the
standard generator of H2(W0(L);Z). Let us use X to denote the set g(S2).
For the remainder of this section, all homology groups are assumed to have
coefficients in Q.

Note that X is an ANR. Since X is homeomorphic to S2 there exists a
sequence of connected neighborhoodsN1, N2, . . . ofX in IntW0(L) satisfying
the following conditions.

(1) Nj+1 ⊂ IntNj for each j ≥ 1.

(2) ∩∞
j=1Nj = X.

(3) The inclusion induced homomorphism Hk(Nj+1) → Hk(Nj) is zero
for k �= 0 or 2.

(4) If αj : H2(Nj+1) → H2(Nj) denotes the inclusion induced homo-
morphism, then Imαj

∼= Q.

The fact that the inclusion map X ↪→ W is a homotopy equivalence allows
us to impose one more requirement on the neighborhoods.

(5) If βj : H2(Nj) → H2(W ) denotes the inclusion induced homomor-
phism, then βj | Imαj : Imαj → H2(W ) is an isomorphism.

We will use α′
j and β′

j to denote the inclusion induced homomorphisms

α′
j : H1(Nj+1 � X) → H1(Nj � X) and β′

j : H1(Nj � X) → H1(W � X).

Recall that W0(L) is constructed from B4 by attaching a 1-handle and a 2-
handle. Let us denote the boundary of the cocore of the 2-handle by bi. Note
that bi is a loop on ∂W0(L) ⊂ W �X and that bi bounds a disk ci ⊂ W0(L).
The pair (ci, bi) represents a generator of H2(W0(L), ∂W0(L)) ∼= Q.

Lemma 6.7.8. If α′
j and β′

j are as above, then Imα′
j
∼= Q and β′

j | Imα′
j :

Imα′
j → H1(W�X) is an isomorphism. Moreover, bi represents a generator

of H1(W �X).

Proof. Since Nj is a subset of S4 we see that the inclusion induced homo-
morphism H2(Nj � X) → H2(Nj) is onto. Thus the long exact sequence
of the pair (Nj, Nj �X) shows that H2(Nj) → H2(Nj , Nj �X) is the zero
homomorphism. Now consider the following commutative diagram.
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H2(Nj+1)
0−−−−−→ H2(Nj+1, Nj+1 �X)

∂j+1−−−−−→ H1(Nj+1 �X) −−−−−→ H1(Nj+1)
⏐⏐� ∼=

⏐⏐�
⏐⏐�α′

j

⏐⏐�0

H2(Nj)
0−−−−−→ H2(Nj , Nj �X)

∂j−−−−−→ H1(Nj �X) −−−−−→ H1(Nj)
⏐⏐� ∼=

⏐⏐�
⏐⏐�β′

j

⏐⏐�

H2(W )
0−−−−−→ H2(W,W �X)

∂−−−−−→∼=
H1(W �X) −−−−−→ H1(W ) = 0

The vertical arrows in the second column are isomorphisms by excision.
Each group in the second column is isomorphic to Ȟ2(X) ∼= Q by Alexander
duality. An easy diagram-chasing argument shows that Imα′

j = Im ∂j ∼= Q.

Essentially the same argument shows that Imβ′
j◦α′

j = Im ∂ = H1(W�X) ∼=
Q. Since every onto homomorphism Q → Q is an isomorphism, we have that
β′
j| Imα′

j : Imα′
j → H1(W �X) is an isomorphism.

Since X ↪→ W and W0(L) ↪→ W induce isomorphisms on Ȟ2, X ↪→
W0(L) does as well. Thus, the horizontal arrow in the lower left corner of
the following diagram is an isomorphism.

H2(W0(L), ∂W0(L)) −−−−→ H2(W0(L),W0(L)�X)
∼=−−−−→ H2(W,W �X)

∼=
⏐⏐� ⏐⏐�∼=

⏐⏐�∼=

H2(W0(L))
∼=−−−−→ Ȟ2(X) Ȟ2(X)

The second arrow in the top row is an isomorphism by excision. The vertical
arrows are the Alexander and Poincaré duality isomorphisms. The diagram
commutes by naturality of duality. Since (ci, bi) represents a generator of
H2(W0(L), ∂W0(L)), it also represents a generator of H2(W,W �X). But
∂ : H2(W,W � X) → H1(W � X) is an isomorphism, so bi represents a
generator of H1(W �X). �

We now turn our attention to W (L). Let Σ denote the PL 2-sphere

which is the core of W (L)�W0(L). Again, in order to simplify notation,
we use M to denote W (L). Let A be a PL ray in M that starts at a point
of Σ and converges to X. Choose A in such a way that A∩Σ consists of one
point and A∩X = ∅. Further, choose A so that, for each j, A intersects ∂Nj

transversely in exactly one point. In this way we form a compact, connected
set C = X ∪A∪Σ. By taking the union of Nj with a regular neighborhood
of (A � IntNj) ∪ Σ we can form a connected neighborhood Pj of C in M .
The sequence of neighborhoods {Pj} satisfies the following conditions.

(1) Pj+1 ⊂ IntPj for each j ≥ 1.

(2) ∩∞
j=1Pj = C.
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(3) The inclusion induced homomorphism Hk(Pj+1) → Hk(Pj) is zero
for k �= 0 or 2.

(4) If φj : H2(Pj+1) → H2(Pj) denotes the inclusion induced homo-
morphism, then Imφj

∼= Q⊕Q.

(5) If ψj : H2(Pj) → H2(M) denotes the inclusion induced homomor-
phism, then ψj | Imφj : Imφj → H2(M) is an isomorphism.

The last three conditions are achieved with the aid of a Mayer-Vietoris
sequence.

Lemma 6.7.9. For every j and for every k, the inclusion induced homo-
morphism Hk(M,Pj+1) → Hk(M,Pj) is zero.

Proof. In case k �= 2 or 3, the conclusion follows immediately from the
following commutative diagram.

0 = Hk(M) −−−−→ Hk(M,Pj+1) −−−−→ H̃k−1(Pj+1)∥∥∥ ⏐⏐� ⏐⏐�0

0 = Hk(M) −−−−→ Hk(M,Pj) −−−−→ H̃k−1(Pj)

In case k = 2, the argument is nearly the same but we must extend the
diagram one place to the left. We use the fact that ψj is onto, by Property
(5) above.

H2(Pj+1)
ψj+1−−−−→ H2(M) −−−−→ H2(M,Pj+1) −−−−→ H1(Pj+1)⏐⏐� ∥∥∥ ⏐⏐� ⏐⏐�0

H2(Pj)
ψj−−−−→ H2(M)

0−−−−→ H2(M,Pj)
1-1−−−−→ H1(Pj)

Finally, in case k = 3, the argument is a little more delicate. Let θj de-
note the inclusion induced homomorphism θj : H3(M,Pj+1) → H3(M,Pj).
We have the following commutative diagram:

0 = H3(M) −−−−→ H3(M,Pj+1)
∂j+1−−−−→ H2(Pj+1)

ψj+1−−−−→ H2(M)∥∥∥ θj

⏐⏐� ⏐⏐�φj

∥∥∥
0 = H3(M) −−−−→ H3(M,Pj)

∂j−−−−→ H2(Pj)
ψj−−−−→ H2(M)

For any x ∈ H3(M,Pj+1), ψj∂jθj(x) = 0, so ψjφj∂j+1(x) = 0. But Property
(5) implies that ψj | Imφj is monic. Hence φj∂j+1(x) = 0. By commutativity
of the diagram we have ∂jθj(x) = 0. Exactness of the bottom row assures
that ∂j is a monomorphism, so θj(x) = 0. �

Lemma 6.7.10. H∗(M � C, ∂M) = 0.
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Proof. Let M0 denote the manifold obtained from M by deleting a small
open collar on ∂M . Alexander duality gives

Hk(M � C, ∂M) ∼= Hk(M � C,M �M0) ∼= Ȟ4−k(M0, C) ∼= Ȟ4−k(M,C).

Now the definition of Čech cohomology gives

Ȟ4−k(M,C) = lim
j→∞

H4−k(M,Pj).

Hence the conclusion follows from Lemma 6.7.9 and the Universal Coefficient
Theorem for Cohomology (see (Munkres, 1984, Theorem 53.1), for example).

�

Define γ : π1(∂M) → J to be the epimorphism γ2 described in §6.4.
Lemma 6.7.10 allows γ to be uniquely extended to π1(M � C). Let p :

M̃ � C → M �C denote the associated infinite cyclic cover. Recall that for
each pair of polyhedra (K,L) in M �C, we use the notation Hk(K,L; Λ) as
a shorthand for the homology group Hk(p

−1(K), p−1(L);Q).

Lemma 6.7.11. For each j ≥ 1, the inclusion induced homomorphism

aj : H1(Nj+1 � C; Λ) → H1(Nj � C; Λ)

satisfies

aj(H1(Nj+1 � C; Λ)) ⊂ (t− 1)(H1(Nj � C; Λ)).

Proof. The only difference between C ∩ Nj and X ∩ Nj is A ∩ Nj , which
is a 1-dimensional polyhedron, so removing A ∩Nj from the 4-dimensional
manifold Nj has no effect on the first homology group. It therefore fol-
lows from Lemma 6.7.8 that, for the inclusion induced homomorphism α′′

j :

H1(Nj+1 � C;Q) → H1(Nj � C;Q), Imα′′
j
∼= Q. It also follows from the

last statement in Lemma 6.7.8 that p−1(Nj � C) is connected for each j,
so H0(Nj � C; Λ) = H0(p

−1(Nj � C);Q) ∼= Q. Consider the following com-
mutative diagram in which each row is a portion of a Milnor sequence. (In
order to keep the lengths of the rows in the diagram down to a manageable
size, we use N ′

j = Nj � C and N ′
j+1 = Nj+1 � C.)

H1(N ′
j+1; Λ)

t−1−−−→ H1(N ′
j+1; Λ)

pj+1−−−→ H1(N ′
j+1;Q)

δj+1−−−→ H0(N ′
j+1; Λ)

t−1−−−→
0

H0(N ′
j+1; Λ)

aj

⏐⏐� aj

⏐⏐�
⏐⏐�α′′

j

⏐⏐�∼=
⏐⏐�∼=

H1(N ′
j ; Λ)

t−1−−−→ H1(N ′
j ; Λ)

pj−−→ H1(N ′
j ;Q)

δj−−→ H0(N ′
j ; Λ)

t−1−−−→
0

H0(N ′
j ; Λ)

Exactness of the top row implies that δj+1 is an epimorphism. Thus
δjα

′′
j is epic and so δj | Imα′′

j is an epimorphism from Imα′′
j to H0(Nj �

C; Λ). By the previous paragraph, each of these groups is isomorphic to Q.
Since all epimorphisms Q → Q are isomorphisms, we see that δj | Imα′′

j is a

monomorphism. Now the composition δjpjaj is zero, so δjα
′′
j pj+1 = 0. The
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previous two sentences together imply that α′′
j pj+1 = 0. Thus pjaj = 0 and

so Im aj ⊂ ker pj = Im(t− 1). �

Lemma 6.7.12. The inclusion induced homomorphisms

bj : H1(Pj+1 � C; Λ) → H1(Pj � C; Λ)

and

cj : H1(M � C,Pj+1 � C; Λ) → H1(M � C,Pj � C; Λ)

satisfy

bj(H1(Pj+1 � C; Λ)) ⊂ (t− 1)(H1(Pj � C; Λ))

and

cj(H1(M � C,Pj+1 � C; Λ)) ⊂ (t− 1)(H1(M � C,Pj � C; Λ)).

Proof. The fact about bj follows from Lemma 6.7.11 and a Mayer-Vietoris
sequence argument. By Lemma 6.7.9 and excision, the inclusion induced ho-
momorphism H1(M�C,Pj+1�C;Q) → H1(M�C,Pj�C;Q) is zero. Thus
the second part of the Lemma can be seen from the following commutative
diagram in which each row is a Milnor sequence.

H1(M � C,Pj+1 � C,Λ)
t−1−−→ H1(M � C,Pj+1 � C,Λ) −→ H1(M � C,Pj+1 � C;Q)

⏐⏐�
⏐⏐�cj

⏐⏐�0

H1(M � C,Pj � C,Λ)
t−1−−→ H1(M � C,Pj � C,Λ) −→ H1(M � C,Pj � C;Q) �

Proof of Theorem 6.7.7. We are assuming that the topological embed-
ding g exists and, from this assumption, wish to derive a contradiction. In
view of Lemma 6.7.10, we may apply Lemma 6.5.10 to the pair (M�C, ∂M).
ThusH1(M�C; Λ)(t−1)

∼= H1(∂M ; Λ)(t−1). In particular, H1(M�C; Λ)(t−1)

is finitely generated as a Λ-module. We will derive our contradiction by prov-
ing that H1(M �C; Λ)(t−1) = {0}. By Proposition 6.5.8, it suffices to show
that (t − 1) : H1(M � C; Λ) → H1(M � C; Λ) is onto, which will follow
from an elementary homological algebra argument involving the following
diagram:

H1(Pj+2 � C; Λ) −→ H1(M � C; Λ)
fj+2−−−→ H1(M � C,Pj+2 � C; Λ) −→ H̃0(Pj+2 � C) = 0

⏐⏐�
∥∥∥

⏐⏐�cj+1

⏐⏐�

H1(Pj+1 � C; Λ)
ej+1−−−→ H1(M � C; Λ)

fj+1−−−→ H1(M � C,Pj+1 � C; Λ) −→ H̃0(Pj+1 � C) = 0

bj

⏐⏐�
∥∥∥

⏐⏐�
⏐⏐�

H1(Pj � C; Λ)
ej−−→ H1(M � C; Λ) −→ H1(M � C,Pj � C; Λ) −→ H̃0(Pj � C) = 0

For the sake of completeness we include details. Let fj+2, fj+1, ej+1,
and ej be the indicated homomorphisms in the diagram. Choose x ∈
H1(M �C; Λ). We must produce u ∈ H1(M �C; Λ) such that x = (t− 1)u.
By Lemma 6.7.12, there exists y ∈ H1(M � C,Pj+1 � C; Λ) such that
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cj+1fj+2(x) = (t − 1)y. Hence fj+1(x) = (t − 1)y. By exactness, fj+1

is onto, so there exists z ∈ H1(M � C; Λ) for which fj+1(z) = y. Now

fj+1(x− (t− 1)z) = fj+1(x)− (t− 1)fj+1(z) = 0,

so there is some w ∈ H1(Pj+1 � C; Λ) such that ej+1(w) = x − (t − 1)z.
Finally, another application of Lemma 6.7.12 gives v ∈ H1(Pj � C; Λ) such
that bj(w) = (t − 1)v. It is simple to check that u = z + ej(v) satisfies
x = (t− 1)u. �
Historical Notes. The manifold in Example 6.7.1 was originally constructed
in (Matsumoto and Venema, 1979), where it is shown that f is not homo-
topic to any PL embedding. The extension to high dimensions is in (Venema,
1998). The first proof that f is not homotopic to any topological embedding
is found in (Liem et al., 1998). Other proofs of the topological case of the
4-dimensional example are found in (Matsumoto, 1979a), (Kojima, 1983),
and (Ohkawa, 1982). Theorem 6.7.5 is due to Kawauchi (1980).

Exercise

6.7.1. Prove the topological case of the Addendum to Example 6.7.1.

6.8. Disk bundle neighborhoods and taming

In this final section of the chapter we state two fundamental theorems and
point out some of their consequences. We will not prove either of them
but include statements in order to round out our study of codimension-two
embeddings. The theorems have significant implications for taming and
approximation.

The first theorem asserts that locally flat topological embeddings in
codimension two have nice neighborhoods.

Definition. Let Q be a k-dimensional manifold topologically embedded in
the n-manifold M . A disk bundle neighborhood for Q is a closed ∂-manifold
neighborhood N of Q in M such that there is a retraction r : N → Q for
which r−1(x) ∼= Bn−k for each x ∈ Q and such that N is locally a product.

The last part of the definition means that for each x ∈ Q there is a
neighborhood U of x in Q and a homeomorphism hU : r−1(U) → U ×Bn−k

such that r|r−1(U) = π ◦hU , where π : U ×Bn−k → U is the projection. As
a result, one can assume that hU (r

−1(U) ∩Q) = U × 0.

One of the few ways in which codimension-two embeddings are better
behaved than codimension-three embeddings is that locally flat submanifolds
always have disk bundle neighborhoods in codimension two. The same is
true in codimension one: locally flat, codimension-one embeddings have disk
bundle (or, more descriptively, arc bundle) neighborhoods.
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Theorem 6.8.1 (Existence of Normal Bundles). Every locally flat topolog-
ical (n− 2)-manifold in an n-manifold has a disk bundle neighborhood.

This theorem contrasts sharply with known examples in codimension
three. For example, (Hirsch, 1968) presents examples of PL embeddings of
PL 4-manifolds in S7 and PL embeddings of S4 into a PL 7-manifold that
have no topological disk bundle neighborhoods.

The next theorem addresses the questions of existence and uniqueness
of PL manifold structures on topological manifolds. Although really a
codimension-zero theorem, it is included here because of its important con-
sequences for codimension-two embeddings.

Theorem 6.8.2 (PL Structure). Let Mn be a topological manifold of dimen-
sion n ≥ 5 and let C be a closed subset of M such that some neighborhood
of C has a PL structure.

(1) If H4(M,C;Z2) = 0, then there is a PL structure on M that agrees
with the given structure near C.

(2) Given one PL structure on M that agrees with the given structure
near C, the isotopy classes of PL structures on M that agree with
the given one near C are in one-to-one correspondence with the
elements of H3(M,C;Z2).

We present two applications of these theorems to codimension-two em-
beddings.

Corollary 6.8.3 (Codimension-two Taming). Suppose h : Qn−2 → Mn

is a locally flat topological embedding of a PL (n − 2)-manifold Q into the
PL n-manifold M (n ≥ 5). If H3(Q;Z2) = 0, then h is isotopic to a PL
embedding.

Proof. Let N be a disk bundle neighborhood of h(Q) in M . The open
manifold IntN has two PL structures: one that is induced from the PL
structure onQ and the local product structure onN , and one it inherits as an
open subset of M . By Theorem 6.8.2, Part 2, there is an isotopy that pushes
the former to the latter. This isotopy pushes h to a PL embedding. �

Corollary 6.8.4 (No locally flat approximation). The topological embedding
g in Example 6.6.1 cannot be approximated by locally flat embeddings.

Proof. If g could be approximated by locally flat embeddings, then the
embedding g×Id in the Addendum to Example 6.6.1 could be approximated
by locally flat embeddings. But, by Corollary 6.8.3 above, this would make
g × Id approximable by PL embeddings, contradicting the addendum. �
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We close with one final application of the PL Structure Theorem. It does
not relate specifically to codimension-two embeddings, but will be important
in later chapters.

Theorem 6.8.5 (PL Product Structure). A topological manifold Mn, n ≥
5, has a PL structure if and only if M×R has a PL structure. Furthermore,
any given PL structure on M ×R can be realized as the product of some PL
structure on M with the obvious structure on R.

Historical Notes. Theorem 6.8.1 was first stated by Kirby (1970). A cor-
rected proof appears in (Kirby and Siebenmann, 1975). Theorem 6.8.2 is
also due to Kirby and Siebenmann; it was first announced in (Kirby and
Siebenmann, 1969). The statement quoted here is taken from (Kirby and
Siebenmann, 1971). Details of the proof may be found in (Kirby and Sieben-
mann, 1977). The simply connected case of Theorem 6.8.5 was originally
proved by W. Browder (1965).



Chapter 7

Codimension-one
Embeddings

The optimal codimension-one results arise in the topological category and,
for the most part, involve embeddings of codimension-one manifolds, not
complexes, in manifolds. Among the positive aspects, which revolve more
around local flatness than around PL approximation or ε-tameness, there
are three prominent results. The first, developed in §7.3, is a local unknot-
tedness theorem for locally flat approximations to a given embedding: any
two sufficiently close, locally flat approximations to a given topological em-
bedding of a compact codimension-one manifold are ambient isotopic, with
suitable controls on the isotopy. The second, treated in §7.5 and §7.6, is the
characterization of locally flat embeddings of codimension-one manifolds in
terms of the 1-LCC condition. The third is the locally flat approximation
theorem for manifold embeddings, covered in §7.7.

In addition, §7.1 lays out some elementary separation criteria for codimen-
sion-one embedded manifolds. §7.4 presents (a statement of) Edwards’s
Cell-like Approximation Theorem, and makes preparations for later appli-
cation of that result. §7.8 touches lightly upon codimension-one analogs of
the Kirby-Siebenmann obstruction theory, the codimension-two version of
which appears in §6.8. §7.9 presents conditions under which an embedding
is 1-LCC. §7.10 treats sewings of crumpled cubes; it gives conditions un-
der which prescribed wildness on two sides of a codimension-one manifold
can be welded together in an n-manifold, and along the way it gives some
additional examples of wild codimension-one embeddings. §7.11 presents
an example of a wildly embedded codimension-one sphere with a manifold
mapping cylinder neighborhood, and it establishes that codimension-one

349
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embedded manifolds with such mapping cylinder neighborhoods are locally
flat if they satisfy an additional freeness condition.

As the chapter progresses, it brings to bear several major theorems whose
proofs are beyond the scope of this work. These include: local contractibility
of the group of homeomorphisms of a compact manifold in §7.4, the Cell-like
Approximation Theorem in §7.4, and the Annulus Theorem in §7.5.

7.1. Codimension-one separation properties

Codimension-one submanifolds locally separate their supermanifolds. Global
separation can depend on subtler issues. This section explores how (co)homo-
logical data affect global separation.

Proposition 7.1.1. If M is a connected n-manifold and S is a connected
(n− 1)-manifold embedded in M as a closed subset, then M � S has either
one or two components. If S separates M and M ′ is any connected man-
ifold neighborhood of S in M , then S also separates M ′. If, in addition,
H1(M ;Z2) ∼= 0, then M � S has two components.

Proof. The first statement follows from exactness of the sequence

H1(M,M � S;Z2) → H̃0(M � S;Z2) → H̃0(M ;Z2) ∼= 0

and the duality-based isomorphism H1(M,M �S;Z2) ∼= Hn−1
c (S;Z2) ∼= Z2.

If M ′ is a connected manifold neighborhood of S in M , then the first vertical
arrow in the diagram

Z2
∼= H1(M

′,M ′ � S;Z2) −−−−→ H̃0(M
′ � S;Z2) −−−−→ H̃0(M

′;Z2) ∼= 0

∼=
⏐⏐� ⏐⏐�

Z2
∼= H1(M,M � S;Z2) −−−−→ H̃0(M � S;Z2) −−−−→ H̃0(M ;Z2) ∼= 0

is an isomorphism by excision. When H̃0(M � S;Z2) ∼= Z2, commutativity

and exactness force H̃0(M
′ � S;Z2) ∼= Z2 as well. In case H1(M ;Z2) ∼= 0,

the extended sequence

0 ∼= H1(M ;Z2) → H1(M,M � S;Z2) → H̃0(M � S;Z2) → H̃0(M ;Z2) ∼= 0

allows us to conclude that M � S has exactly two components. �

Definitions. A connected (n − 1)-manifold S in an n-manifold M is two-
sided (in M) if S has a connected neighborhood NS such that NS � S is
disconnected; otherwise S is one-sided. Generally, a disconnected (n − 1)-
manifold in M is two-sided there if each of its components is.

Proposition 7.1.1 assures that all compact, codimension-one submani-
folds separate Sn and, hence, are two-sided.
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Corollary 7.1.2. Every (n− 1)-manifold S in an n-manifold M is locally
two-sided; that is, each s ∈ S has arbitrarily small connected neighborhoods
Ns such that Ns�S has two components. Hence, if S itself is two-sided and
U is one of the sides, then S is 0-LCC in U .

Proof. In any coordinate neighborhood W of s, take Ns ⊂ W as a con-
nected neighborhood of s such that Ns ∩ S equals the component of W ∩ S
containing s. �

Lemma 7.1.3. Let M denote an orientable n-manifold and let S be a con-
nected (n− 1)-manifold embedded in M as a closed subset. Then S is two-
sided if and only if it is orientable.

Proof. Consider a connected neighborhood NS of S, where NS � S is dis-
connected if and only if S is two-sided. Produce a smaller neighborhood N ′

of S that deformation retracts to S in NS . A look at the Mayer-Vietoris se-
quence for NS = (NS�S)∪N ′ reveals that H1(NS�S)⊕H1(N

′) → H1(NS)
is surjective. Note that the image of H1(N

′) in H1(NS) coincides with that
of H1(S).

When S is two-sided, incl∗ : H1(NS � S;Z) → H1(NS ;Z) is surjective:
each loop in S is homotopic in NS to an approximating loop in NS � S on
either side, by the preceding lemma; when S is one-sided, the square of any
loop in S is homotopic to one in NS � S. Thus, the cokernel of incl∗ is
a torsion group. Read off the (non)separation conclusions from the exact
sequence:

0 → Torsion → H1(NS , NS � S;Z) → H̃0(NS � S;Z) → 0

and the duality isomorphism Hn−1
c (S;Z) ∼= H1(NS , NS � S;Z). �

Corollary 7.1.4. Suppose M is a connected, orientable n-manifold and
N ⊂ M is a compact, connected, nonorientable (n − 1)-manifold. Then
M �N is connected.

Corollary 7.1.5. Let M be an n-manifold with H1(M ;Z2) ∼= 0. If the
(n− 1)-manifold S embeds in M as a closed subset, then S is orientable.

Lemma 7.1.6. Let M be a connected n-manifold and let S ⊂ M be a
connected (n−1)-manifold embedded in M as a closed subset. Then S sepa-
rates M if and only if the inclusion-induced homomorphism Hn−1

c (M ;Z2) →
Hn−1

c (S;Z2) is trivial.
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Proof. This follows from examination of:

Hn−1
c (M ;Z2) −−−−→ Hn−1

c (S;Z2) ∼= Z2⏐⏐�∼=
⏐⏐�∼=

H1(M ;Z2) −−−−→ H1(M,M � S;Z2) −−−−→ H̃0(M � S;Z2) → 0. �
Corollary 7.1.7. If M is an n-manifold and S is an (n − 1)-manifold
embedded in M as a closed subset, where H1(S;Z2) ∼= 0, then S is two-sided
in M .

Proof. Reduce to the case in which S is connected, and let U be a connected
neighborhood of S that strong deformation retracts to S in M . Inspection
of the diagram (Z2 coefficients throughout)

H1(U) −−−−→ H1(U,U � S)
∼=−−−−→ Hn−1

c (S)⏐⏐�0

⏐⏐�∼=
⏐⏐�Id∗S

H1(M) −−−−→ H1(M,M � S)
∼=−−−−→ Hn−1

c (S)

yields that H1(U) → H1(U,U � S) is trivial. By duality, Hn−1
c (U) →

Hn−1
c (S) is trivial, and 7.1.6 applies. �

Corollary 7.1.8. Given a compact two-sided (n− 1)-manifold S in the n-
manifold M , there exists ε > 0 such that for any embedding λ : S → M
within ε of inclS, λ(S) is 2-sided in M .

Proof. Identify a neighborhood US of S such that each component of S
separates the relevant component of US . When λ, inclS : S → US are
homotopic, Hn−1

c (US ;Z2) → Hn−1(λ(S);Z2) can be factored through the
trivial homomorphism Hn−1

c (US ;Z2) → Hn−1(S;Z2). �

Corollary 7.1.9. Given a compact two-sided (n− 1)-manifold S in the n-
manifold M and a neighborhood U of S, there exists ε > 0 such that for
any two disjoint embeddings λ0, λ1 : S → M within ε of inclS, U contains a
compact subset C with λ0(S) ∪ λ1(S) as its frontier.

Example 7.1.10. Let θ : S′ → S be a 2-1 covering map between compact,
connected (n−1)-manifolds. Then W = Map(θ) is a compact n-dimensional
∂-manifold containing S as a one-sided subset of IntW, and every embedding
λ : S → IntW homotopic to inclS satisfies λ(S) ∩ S �= ∅.

Proof. Consider any λ : S → W homotopic to inclS : S → W ; clearly
λ induces an isomorphism at the π1-level. By definition of the mapping
cylinder, ∂W ∼= S′ is a strong deformation retract of W � S. Accordingly,
if λ(S) were disjoint from S, λ# : π1(S) → π1(W ) would factor through
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π1(∂W = S′) → π1(W ) ∼= π1(S), an impossibility, as the latter homomor-
phism fails to be surjective. �

Proposition 7.1.11. Let M denote a connected n-manifold, S a connected
(n− 1)-manifold embedded in M as a closed and separating subset, and U a
component of M � S. Then for each s ∈ S and neighborhood N of s, there
exists a neighborhood N ′ ⊂ N of s such that

incl∗ : Hk(N
′ ∩ U ;Z) → Hk(N ∩ U : Z)

is trivial for all k > 0. Furthermore, if S is 1-LCC in U , then S is k-LCC
in U for all k ≥ 0.

Proof. Being an ANR, U is locally contractible. Hence, given a neigh-
borhood N of s ∈ S, one can find a smaller neighborhood N ′ such that
incl∗ : Hk(N

′ ∩ U) → Hk(N ∩ U) is trivial for all k > 0 (Z coefficients
throughout this argument). We will show that when N is chosen so its
intersection with S is contractible, then incl∗ : Hk(N ∩ U) → Hk(N ∩ U)
will be an isomorphism (k > 0), which will give that incl∗ : Hk(N

′ ∩ U) →
Hk(N ∩ U) is trivial. Inspection of the long exact sequence for (N,N � S)
and duality yields Hk(N,N � S) ∼= Hn−k

c (N ∩ S) ∼= 0 for k > 1, from
which it follows that incl∗ : Hk(N � S) → Hk(N) is an isomorphism when
k > 1. Diagram chasing assures the same holds true for k = 1, because

H1(N,N � S) ∼= Hn−1
c (N ∩ S) ∼= Z, so H1(N,N � S) → H̃0(N � S) is

an isomorphism. Let V denote the other component of M � S. Clearly
Hk(N � S) ∼= Hk(N ∩ U) ⊕Hk(N ∩ V ). A straightforward Mayer-Vietoris
argument gives that

Hk(N) ∼= Hk(N ∩ U)⊕Hk(N ∩ V ) (k > 0).

Naturality assures that incl∗ : Hk(N ∩U) → Hk(N ∩U) is an isomorphism.

Note that S is 0-LCC in U by Corollary 7.1.2. When it is also 1-LCC
there, application of the local Hurewicz Theorem 0.8.3 confirms that S is
k-LCC in U for all k ≥ 2. �

Exercise

7.1.1. SupposeM is a connected n-manifold and S ⊂ M is a closed (n−1)-
manifold such that M �S is connected. For each αS ∈ π1(S) there
exists α′ ∈ π1(M �S) such that (inclM�S)#(α

′) = 2 · (inclS)#(αS).

7.2. The 1-LCC characterization of local flatness for collared
embeddings

For a compactum in the trivial dimension range, being 1-LCC embedded im-
plies it admits an ε-push into its complement. An analog holds for two-sided
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1-LCC embeddings of manifolds in codimension one. This new 1-LCC push-
off result warrants close attention, as it presents a pivotal codimension-one
technique in relatively simple form. The same technique will reappear with
more intricate variations in subsequent sections. As a peripheral benefit,
the push-off result quickly leads to the 1-LCC characterization of local flat-
ness for codimension-one submanifolds collared on one side. The full 1-LCC
characterization of local flatness is treated in §7.6.

Proposition 7.2.1 (1-LCC push-off). Suppose M is a connected PL n-
manifold, n ≥ 5, and S is a compact, connected, two-sided (n− 1)-manifold
1-LCC embedded in M , where M�S has two components, U+ and U−. Then
for each ε > 0 there exists an ε-push ψ of (M,S) such that ψ(S) ⊂ U+.

Proof. Apply Generalized Controlled Engulfing Theorem 3.3.7 for the given
integer n and for r = n − 3 to obtain δ > 0 corresponding to ε/3. After
noting that both U+ and U− are neighborhood retracts, successively choose
open neighborhoods W+

n−2 ⊃ W+
n−3 ⊃ · · · ⊃ W+

1 ⊃ W+
0 of U+ for which

there exist strong deformation retractions of W+
i to U+ in W+

i+1, i < n− 2,
that move points less than δ and that never move any point of U− into U+.
Require, in addition, thatW+

n−2∩U− ⊂ B(S; ε). Choose open neighborhoods

W−
3 ⊃ W−

2 ⊃ W−
1 ⊃ W−

0 of U− with analogous properties, where W−
3 ∩

U+ ⊂ B(S; ε).

S

S

U

U

M

+

Figure 7.1. The two sides of S in M

Find a compact PL neighborhood P of S in W+
0 ∩ W−

0 . Let C+ =
Cl(U+�P ) and C− = Cl(U−�P ). Subdivide to obtain a triangulation T of
P with meshT < ε/3, and let K denote the (n−3)-skeleton of T . In T ′, the
first barycentric subdivision of T , let K ′ denote the simplicial complement
of (the subdivided) K ∪F , where F denotes the frontier of P . Note that by
the special restrictions on the strong deformation retractions of W+

i to U+
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spelled out in the preceding paragraph, every relative (n − 3)-complex in
(W+

i � C+, U+ � C+) admits a δ-deformation ranging through W+
i+1 � C+,

first to U+�C+, and then into U+�C+ by Lemma 3.3.3 (Proposition 7.1.11
assures that S is LCCn in U+).

Now by Theorem 3.3.7 there exists an (ε/3)-isotopy φ+ of M � C+

compactly supported in W+
n−2 � C+ such that φ+(U+ � C+) ⊃ K � C+;

extend via the identity on C+ to a new push, still denoted as φ+, such that
φ+(U+) ⊃ K. Use the same procedure to obtain an (ε/3)-isotopy φ− of
M supported in W−

3 � C− such that φ−(U−) ⊃ K ′. Stretch across the join
structure of T via a third (ε/3)-push θ of (M,S) supported in P ⊂ W+

0 ∩W−
0

such that

φ+(U+) ∪ θφ−(U−) = C+ ∪ P ∪ C− = M.

Apply φ−1
+ and note that

U+ ∪ φ−1
+ θφ−(U−) = φ−1

+ (M) = M.

As all three pushes are supported in W+
n−2 ∩W−

3 ⊂ B(S; ε), ψ = φ−1
+ θφ− is

an ε-push of (M,S). Most importantly, ψ(S) ⊂ U+, since obviously ψ(S) is
disjoint from ψ(U−). �

P

S

C

C

M

+

Figure 7.2. The PL neighborhood P of S.

Lemma 7.2.2 (Collar Sliding). Suppose S is a manifold and λ : S×[0, 1] →
S × [0, 1] is an embedding such that λ|S × 0 = inclS×0. Then there exists a
homeomorphism h : S×I → S×[0, 1]�λ(S×[0, 12)) such that h(s, 0) = λ(s, 12)
and h(s, 1) = 〈s, 1〉. Moreover, if each λ({s} × [0, 1]), s ∈ S, is within δ > 0
of s× [0, 1], then h(S × I) ⊂ B(s× I; 2δ) for all s.

Proof. Extend λ to an embedding of S× [−1, 1] in S× [−1, 1] via the Iden-
tity on S × [−1, 0]. Let φ denote the piecewise linear self-homeomorphism
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of [−1, 1] fixing the endpoints, sending 0 to 1
2 and acting linearly on the

complementary subintervals. The self-homeomorphism λ(IdS × φ)λ−1 de-
fined on λ(S× [−1, 1]) extends to a self-homeomorphism Φ of S× [−1, 1] via
the identity on the complement of λ(S × [−1, 1]), and Φ restricts to give a
homeomorphism h : S × I → S × [−1, 1] � λ(S × [−1, 12)). When δ bounds
the motion in the S direction under λ, then for any point 〈s, t〉 ∈ S × I
moved by h, 〈s, t〉 = λ(s′, t′) where dS(s, s

′) < δ, and

h(s, t) ∈ λ(s′ × I) ⊂ B(s′ × I; δ) ⊂ B(s× I; 2δ).

�

1
2

h(s   I)×

λ(S    )×
λ(S   1)×

S   -1×

S   0×

S   1× 〈s,1

〈s,0

〈

〈

Figure 7.3. A special S × I product structure

Remark. If S × I is a PL manifold and λ is a PL collar, then h is a PL
embedding.

Theorem 7.2.3. Suppose M is a PL n-manifold, n ≥ 5, and S is a compact
(n− 1)-manifold in M such that S is two-sided and 1-LCC embedded. If S
has a collar on one side, then S is bicollared.

Proof. Name a collar c : S × I → M on one side of S. Assume both S
and M to be connected and M a small enough neighborhood of S that
M � S has two components, with U denoting the one missing the image
of c. For i = 1, 2, . . . use Proposition 7.2.1 to obtain a (1/6i)-push ψi of
(M,S) such that ψi(S) ⊂ U and ψi fixes c(S× [ui, 1]), where {ui ∈ (0, 1]}∞i=1

is a sequence decreasing to 0 and diam c(s × [0, ui]) < 1/6i for all s ∈ S.
Do this so ψi+1c(S × I) ⊂ ψic(S × (0, 1]) for all i. Then choose ti ∈ (0, ui)
such that ψic(S × (ti, 1]) ⊃ ψi+1c(S × I), and declare ei : S → U to be the
embedding sending s ∈ S to ψic(s × ti). For notational simplicity, require
{ti}i≥1 to be a strictly decreasing sequence. According to Lemma 7.2.2, the
region Ri bounded by ei and ei+1 is a product S × [ti+1, ti], the arc fibers
of which have diameter less than 1/i, since (by the proof of the Lemma)
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these arc fibers live in some ψic(s × [ti, ui]) plus the union of intersecting
arcs ψi+1c(s

′ × [ti+1, ui]). Thus, S ∪ (∪iRi) is a collar on S in U . �

2

11

1

c(S   1)×

c(S   0)×

c(S   u )×
2c(S   u )×

S

R

R

U

e (S)

2e (S)

3e (S)

Figure 7.4. The collar on S in U

Historical Notes. Proposition 7.2.1 and a strengthened Theorem 7.2.3—
namely, a 1-LCC local flatness theorem for codimension-one manifolds that
can be approximated by locally flat embeddings—were developed in (See-
beck, 1970).

Exercises

7.2.1. Suppose M is a connected PL n-manifold, n ≥ 5, S is a compact,
connected (n−1)-manifold that separatesM , and U is a component
of M � S. Then for each ε > 0 there exists δ > 0 such that,
for any (n − 3)-complex pair (K,L) ⊂ (U ∪ B(S; δ), U) and any
neighborhood O of S, there is a compactly supported ε-push ψ of
(M,S) such that ψ(U∪O) ⊃ K and ψ|(U�O)∪L = Id|(U�O)∪L.

7.2.2. Let c0, c1 : ∂W×I → W be collars on the boundary of a ∂-manifold
W , with c0(∂W × I) ⊂ c1(∂W × I) and diam ci(w × I) < ε for all
w ∈ ∂W , i = 0, 1. Then there exists a homeomorphism

h : ∂W × I → c1(∂W × I)� c0(∂W × [0,
1

2
))

such that diamh(w × I) < 2ε for all w ∈ ∂W .

7.2.3. Let W be a ∂-manifold such that ∂W is compact and for every
compact subset C of W there is a collar c : ∂W × I → W such that
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C ⊂ c(∂W × I). Then W ∼= ∂W × [0,∞). Moreover, if W and the
collars are PL, then W is PL homeomorphic to ∂W × [0,∞).

7.3. Unknotting close 1-LCC embeddings of manifolds

Throughout §7.3, S will denote a PL (n − 1)-manifold topologically em-
bedded as a two-sided subset of the PL n-manifold M . The main result,
Theorem 7.3.1, assures that any two locally flat approximations to S in
M are ambient isotopic under a controlled push of (M,S). It is an exact
analog for manifolds of Codimension-three Unknotting Theorem 5.4.2; the
codimension-three result cannot be extended to a local unknotting theorem
for (n − 1)-complexes in M , however, since such an extension is known to
fail for codimension-two manifolds. En route to establishing 7.3.1, we will
show in Theorem 7.3.11 that any two disjoint locally flat approximations
cobound an embedded product S × I with short I-factor.

Theorem 7.3.1 (Local Unknotting for Embeddings of Manifolds). Let S
denote a compact PL (n − 1)-manifold topologically embedded in a PL n-
manifold Mn, n ≥ 5, as a two-sided subset. Given ε > 0 there exists δ > 0
such that, for any two locally flat embeddings λ0, λ1 of S in Mn within δ of
the inclusion, there exists an ε-push θt of (M

n, S) such that θ1λ0 = λ1.

The proof, which occupies the rest of this section, also depends heavily
upon the following result of Edwards and Kirby (1971).

Theorem 7.3.2 (Local Contractibility). Given a compact manifold S and
ε > 0, there exists δ > 0 such that if Λ : S × [−1, 1] → S × [−2, 2] is an em-
bedding within δ of the inclusion, then there is an isotopy Φt : S× [−1, 1] →
S× [−2, 2] such that Φ0 = Λ, Φ1|S×{0} = inclS×{0}, ρ(Φt, inclS×[−1,1]) < ε
and Φt|S × {±1} = Λ|S × {±1} for each t ∈ I.

As an immediate consequence of 7.3.2, one can define an ambient isotopy
Φ′
t on S × [−2, 2] as Φ′

t = ΦtΛ
−1 on Λ(S × [−1, 1]) and as the identity else-

where. Clearly Φ′
0 = Id, Φ′

1Λ0 = inclS×{0} and ρ(Φ′
t, Id) < 2ε. Application

of (Φ′
1)

−1 to S × I → S × [−2, 2] implies:

Corollary 7.3.3. Given a compact manifold S and ε > 0, there exists δ > 0
such that if Λ : S × [−1, 1] → S × [−2, 2] is an embedding within δ of the
inclusion, then there is an embedding λ : S × I → S × [−2, 2] such that
λ(s, 0) = 〈s,−2〉, λ(s, 1) = Λ0(s), and λ(s × I) is within ε of {s} × [−2, 0]
for each s ∈ S.

Corollary 7.3.4. Given a compact manifold S and ε > 0, there exists
δ > 0 such that if Λ : S × [−1, 1] → S × [−2, 2] is an embedding within δ
of the inclusion and Λ0(S) ∩ (S × [0, 2]) = ∅, then there is an embedding
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h : S × I → S × [−2, 2] such that h(s, 0) = Λ0(s), h(s, 1) = 〈s, 0〉, and
h(s× I) is within ε of 〈s, 0〉 for each s ∈ S.

Proof. This follows from Corollary 7.3.3 and Corollary 7.2.2, and from the
consequence of the latter that

h(s× I) ⊂ B(s× [−2, 2]; 2δ) ∩ (S × [−δ, 0]). �
Lemma 7.3.5. Let Y be a locally compact ANR, C ⊂ Y a compact ANR,
and W ⊂ Y a neighborhood of C. For each δ > 0 there exist η > 0 and a
neighborhood W ′ of C such that, given any embedding e : C → W ′ within η
of inclC , W

′ admits a strong deformation retraction µt : W
′ → W to e(C)

that moves points less than δ.

Proof. Determine a compact neighborhood W ′ ⊂ W of C that admits a
(δ/2)-retraction to C, and find η > 0 such that any embedding e : C → Y
within η of inclC is (δ/2)-homotopic to inclC in W ′. An application of
the Estimated Homotopy Extension Theorem (Corollary 0.6.5) secures a
δ-retraction Re : W ′ → e(C). Properties of ANRs allow prearrangements
yielding that Re, inclW ′ : W ′ → W are δ-homotopic. �

For the next several lemmas, assume that S and M are manifolds satis-
fying the hypotheses of Theorem 7.3.1.

Lemma 7.3.6. Given ε > 0, there exists η > 0 such that for every pair
λ0, λ1 : S → M of locally flat embeddings within η of inclS, there is an
ε-push ψ of (M,S) such that ψ(λ0(S)) ∩ λ1(S) = ∅.

Proof. Assume S to be connected and WS to be a connected neighborhood
of S such that WS�S has two components, U+ and U−. Just as in the proof
of Proposition 7.2.1, apply Generalized Controlled Engulfing Theorem 3.3.7
for the given integer n and r = n − 3 to obtain δ > 0 corresponding to ε/3
there. As before, choose open neighborhoods W+

n−2 ⊃ W+
n−3 ⊃ · · · ⊃ W+

1 ⊃
W+

0 of U+ such that not only do there exist strong deformation retractions

ofW+
i to U+ inW+

i+1 (i = 0, 1, . . . , n−3) moving points less than δ and never
moving any point of U− into U+, but also (by Lemma 7.3.5) that there exists
ηi > 0 such that for any embedding λ : S → W+

i within ηi of incl : S → W+
i

there is a strong deformation retraction of W+
i to λ(S) in W+

i+1 moving

points less than δ. Require, in addition, that W+
n−2 ∩ U− ⊂ B(S; ε) ⊂ WS .

Determine open neighborhoodsW−
3 ⊃ W−

2 ⊃ W−
1 ⊃ W−

0 of U− and positive
numbers η∗2 , η

∗
1 , η

∗
0 with analogous properties, where W−

3 ∩ U+ ⊂ B(S; ε).

Choose a compact PL neighborhood P of S in W+
0 ∩W−

0 , and impose
on P a small mesh triangulation T with specified (n − 3)-skeleton K and
simplicial complement K ′ of K ∪ F (F denoting the frontier of P ) in the
dual 2-skeleton, as in 7.2.1. Set η = min{ηi, η∗j , d(S,M � P )}. Let C+ =
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U
U

M

+0
1

1λ (S)

0λ (S)

Figure 7.5. The setup for obtaining disjoint approximations.

Cl(U+�P ) and C− = Cl(U−�P ), as before. Given locally flat embeddings
λ0, λ1 : S → M within η of inclS , let U

1
+ denote the component ofWS�λ1(S)

containing C+ and U0
− the component of WS�λ0(S) containing C−. (Use of

U1
+ and U0

− represents the most significant change from the proof of Theorem

7.2.1.) Observe that any relative (n−3)-complex in (W+
i �C+, U

1
+�C+) is

δ-homotopic in (W+
i+1 �C+, U

1
+ �C+) to a complex mapped into U1

+ �C+.

Similarly, any relative 2-complex in (W−
i �C+, U

0
− �C−) is δ-homotopic in

(W−
i+1�C−, U0

−�C−) to a complex mapped into U0
−. Hence, Theorem 3.3.7

promises an (e/3)-push φ+ of (M,S) compactly supported in W+
n−2 � C+

such that φ+(U
1
+) ⊃ K, and it promises a second (e/3)-push φ− of (M,S)

compactly supported inW−
3 �C− such that φ−(U0

−) ⊃ K ′. Then there is also
a third (ε/3)-push θ supported in P—the stretch across the join structure
of P—such that

φ+(U
1
+) ∪ θφ−(U

0
−) ⊃ C+ ∪ P ∪ C− = WS .

Letting ψ = φ−1
+ θφ−, one sees that ψ is an ε-push of (M,S) and ψ(λ0(S)) ⊂

U1
+, so ψ(λ0(S)) ∩ λ1(S) = ∅, as desired. �

Given two disjoint embeddings λ0, λ1 of a codimension-one manifold in
a manifold M , we use [λ0, λ1] to denote the unique compact region, if such
a region exists, having the union of these images as frontier; if λ0, λ1 are
disjoint close approximations to a two-sided codimension-one manifold S in
M , we use the same symbolism [λ0, λ1] to denote the compact region near
S their images cobound; the existence of such a compact region is assured
by Corollary 7.1.9.
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Lemma 7.3.7. Given ε > 0, there exists η > 0 such that for every pair
λ0, λ1 : S → M of disjoint embeddings within η of inclS, there are strong
ε-deformations of [λ0, λ1] onto λ0(S) and λ1(S), respectively.

Proof. Let WS be a connected neighborhood of S in M that is separated
by S. Reduce WS so it admits an (ε/6)-retraction to S. Apply Corol-
lary 7.1.9 and Lemma 7.3.5 to produce δ1 > 0 such that, for any embed-
ding λ : S → M within δ1 of inclS , λ(S) separates WS and WS admits
an (ε/3)-retraction WS → λ(S). In the presence of two δ1-approximations
λ0, λ1 : S → WS to inclS with disjoint images, we have an (ε/3)-retraction
R : WS → [λ0, λ1] sending one of the components of WS � [λ0, λ1] to
λ0(S) and sending the other to λ1(S). Next, find a compact neighbor-
hood W ′ ⊂ WS of S and δ2 > 0 such that any two maps f, f ′ : W ′ → WS

δ2-close to incl : W ′ → WS are ε/3-homotopic in WS . Set δ = min{δ1, δ2}.
Finally, repeat the initial procedure to find η ∈ (0, δ) such that, for any
embedding λ : S → M within η of inclS , λ(S) ⊂ W ′ ⊂ WS (so it separates
both W ′ and WS) and W ′ admits a δ2-retraction W ′ → λ(S). Hence, if
λ0, λ1 : S → M are two disjoint embeddings within η of inclS , there is a
homotopy µt : [λ0, λ1] → WS such that µ0 = incl[λ0,λ1], µt is constant on,
say, λ0(S), µ1 is a δ-retraction to λ0(S) and µt moves points less than ε/3.
Then Rµt functions as a strong ε-deformation of [λ0, λ1] to λ0(S). �

Lemma 7.3.8. Given ε > 0, there exists δ > 0 such that for each pair
λ0, λ1 : S → M of disjoint, locally flat embeddings within δ of inclS, each
neighborhood U of [λ0, λ1]� λ1(S), and each neighborhood O of λ1(S) there
is an ε-push ψ of (M,S) fixed on λ1(S)∪(M�U) such that ψ([λ0, λ1]) ⊂ O.

Proof. For the given integer n and positive number ε apply Theorem 3.3.7
to get ε′ > 0 such that whenever one is provided with enough ε′-homotopies
of (n − 3)-complexes in any PL n-manifold N , then one also has an (ε/3)-
isotopy of N engulfing such a complex. Then use Lemma 7.3.7 to obtain
δ > 0 corresponding to ε′ > 0 with the properties mentioned there. Assume
δ to be sufficiently small that images of δ-approximations to inclS separate
small neighborhoods of S.

Consider any two locally flat δ-approximations λ0, λ1 with disjoint im-
ages. As an aid, name another locally flat embedding λ∗

0 of S into a bicollar
on λ0(S) in U , with λ∗

0 very close to λ0 and [λ∗
0, λ1] properly containing

[λ0, λ1]. Let W denote the interior of [λ∗
0, λ1]. We will produce an ε-push

of (M,S) moving [λ0, λ1] into O by obtaining an appropriate, compactly
supported isotopy of W .

Find a PL ∂-manifold P such that P is closed in W , P ∪ λ1(S) ⊃
[λ0, λ1] and ∂P ∩ λ0(S) = ∅. Impose a triangulation T on P having mesh
less than ε/3, with diameters of simplices going to 0 as simplices approach
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λ1(S), and let K denote the (n− 3)-skeleton of P . Since W is the union of
[λ′

0, λ
′
1] where λ′

0 varies over close approximations to λ∗
0, and λ′

1 varies over
close approximations to λ1 in W , Lemma 7.3.7 promises the existence of
ε′-homotopies deforming (n − 3)-complexes into OW = O ∩W . Controlled
Engulfing Theorem 3.3.7 provides a compactly supported (ε/3)-isotopy φ+

of W to itself such that φ+(OW ) ⊃ K.

λ (S) * 

* 

0 

λ (S) * 
0 

λ (S) 0 

λ (S) 0 

λ (S) 1 

λ (S) 0 ˜ 

W

W

P

∂P

O
W

U
W

Figure 7.6. Guides for engulfing [λ0, λ1] by OW .

Let UW denote W � [λ0, λ1] = Int[λ∗
0, λ0] and let Sppt+ denote the sup-

port of φ+. The extra wrinkle in this argument is the observation that,
since only a finite part of P extends outside OW , P contains a finite sub-
complex P ∗ such that P ∗ ⊃ (P �OW )∪Sppt+. Let K

′ denote the simplicial

complement of K ∪P � P ∗ (subdivided) in the first barycentric subdivision

of T |P ∗. Find another locally flat approximation λ̃0 to λ0 in W such that

[λ̃0, λ1] properly contains [λ0, λ1] and P ⊃ [λ̃0, λ1]�λ1(S). Let W̃ represent

the interior of [λ̃0, λ1] and ŨW = UW ∩ W̃ ; note that W̃ ⊂ P ⊂ W . Again

there are ε′-homotopies deforming any relative 2-complex in (W̃ , ŨW ) into

ŨW , so there exists a compactly supported isotopy φ− : W̃ → W̃ moving

points less than ε/3 such that φ−(ŨW ) ⊃ K ′ ∩ W̃ . Extend via the identity

on W � W̃ to regard φ− as defined on all of W , with φ−(UW ) ⊃ K ′ and
with φ− fixed on W � P ⊂ UW . Exploit the usual stretch across the join
structure of P ∗ to produce a third (ε/3)-push θ, compactly supported in P ∗,
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such that φ+(OW ) ∪ θφ−(UW ) ⊃ P ∗. Then

W ⊃ φ+(OW ) ∪ θφ−(UW ) ⊃ (P � P ∗) ∪ P ∗ ∪ (W � P ) = W.

Now for ψ = (φ+)
−1θφ− we have OW ∪ ψ(UW ) = W and ψ([λ0, λ1]) ∩

ψ(UW ) = ∅. Thus ψ extends via the identity over M �W to an ε-push of
(M,S) such that O ⊃ OW ⊃ ψ([λ0, λ1]). �

As a routine consequence of Lemmas 7.3.6 and 7.3.8 we obtain:

Lemma 7.3.9. Given ε > 0, there exists η > 0 such that for each pair
λ0, λ1 : S → M of locally flat embeddings within η of inclS and each bicollar
g : S × [−1, 1] → M on λ1(S), there is an ε-push ψ of (M,S) such that
ψ(λ0(S)) ⊂ g(S × (0, 1)).

Lemma 7.3.10. Given n ≥ 5, a compact PL (n−1)-manifold S, and δ > 0,
there exists η > 0 such that every locally flat embedding λ : S × {0} →
S × [−2, 2] within η of inclS×{0} extends to an embedding Λ : S × [−1, 1] →
S × [−2, 2] within δ of inclS×[−1,1].

Proof. Apply Lemma 7.3.8 for the inclusion S × {0} ↪→ S × [−2, 2] and
positive number δ/4 to obtain η′ > 0. Choose a large integer k > 0 such
that 2/k < η′ and set η = 1/k.

Consider a locally flat embedding λ : S × {0} → S × [−2, 2] within η of
inclS×{0}. Extend λ to an embedding g : S× [−1, 1] → S× (−η, η) such that
g(s × [−1, 1]) ⊂ B(〈s, 0〉; η) for all s ∈ S. Arrange the parameterization of
the bicollar determined by g so that g(S × {1}) separates g(S × {0}) from
S × {2}.

For i = 0, 1, 2, ..., k, set t(i) = (k − i)/k. The initial choice of η′ assures
the existence of a controlled (δ/4)-push of (S × [−2, 2], S × {0}) moving
g(S×{±t(i)}) very close to S×{±η}. These pushes will be followed by large
moves that change only the [−2, 2] coordinates and effect a precise shuffle
repositioning each g(S × {±t(i)}) very close to S × {±t(i)} (respecting ±
signs).

Use κ : S×{0} → S×{η} ⊂ S×[−2, 2] to denote the obvious embedding,
and let gt denote the embedding sending 〈s, 0〉 to g(s, t). Note that both κ
and gt are within 2η = 2/k < η′ of inclS×{0}. Thus, Lemma 7.3.8 provides a
(δ/4)-homeomorphism Ψ′

1 of S× [−2, 2] to itself fixed outside a small neigh-
borhood of [gt(1), κ]—in particular, fixed on g(S × [−1, t(2)])—and moving
g(S ×{t(1)}) into S × (η/2, η). Follow Ψ′

1 by another homeomorphism that
changes only [−2, 2] coordinates, fixes Ψ′

1g(S× [−1, t(2)]) = g(S× [−1, t(2)])
and moves Ψ′

1g(S × {t(1)}) into S × [t(1), 1]. Call the composite Ψ1. Re-
peat, obtaining homeomorphisms Ψ2,Ψ3, ...,Ψk−1 of S × [−2, 2] to itself
that change S coordinates by less than δ/4 and satisfy Ψig(S × {t(i)}) ⊂
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S×[t(i), t(i−1)]. Restrict supports so that the composite Ψ = Ψk−1 · · ·Ψ2Ψ1

satisfies Ψ(g(S × {t(i)})) ⊂ S × [t(i), t(i − 1)]. Also require if a point of
g(S × [−1, 1]) is fixed by Ψ1, ...,Ψj but moved by Ψj+1, then its image can
be moved by Ψj+2 but cannot be moved by subsequent Ψi. Define Ψ by
exactly the same process for the other side of the bicollar. One can see
that Ψg : S × [−1, 1] → S × [−2, 2] changes second coordinates by less than
2/k < η′ < δ/4. Since Ψg changes first coordinates less than δ/2, Λ = Ψg is
δ-close to inclS×[−1,1]. �

Remark. Lemma 7.3.10 is one place in this section where the hypothe-
sis about the codimension-one submanifold S being PL plays a role in the
argument, simply by assuring that S × [−2, 2] is PL.

Theorem 7.3.11. Let S denote a compact PL (n−1)-manifold topologically
embedded in a PL n-manifold Mn, n ≥ 5, as a two-sided subset and let
ε be a positive number. Then there exists δ > 0 such that for any two
locally flat embeddings λ0, λ1 of S in Mn within δ of the inclusion, where
λ0(S) ∩ λ1(S) = ∅, there exists an embedding Λ : S × [0, 1] → M such that
Λ0 = λ0, Λ1 = λ1 and diamΛ(s× [0, 1]) < ε for all s ∈ S.

Proof. Once the constraint δ is in place and we get to the locally flat
approximations, we will extend λ1 to an embedding g : S × [−2, 2] → M
for which the fiber arcs g(s× [−2, 2]), s ∈ S, have small images. The image
bicollar will play the role of S × [−2, 2] in Lemma 7.3.10. The plan is to
produce a controlled push ψ of (M,S) that, in spirit, moves λ0(S) into
g(S× (−1, 0)) extremely close to λ1. There will be an obvious short product
structure on something like [λ0, ψλ0], Lemma 7.3.10 will provide a short
product structure on [ψλ0, λ1], and these two pieces will fit together as a
short product structure on [λ0, λ1].

The crucial issue is size control; it is somewhat delicate due to the need
to pass back and forth between the abstract product space S × [−2, 2],
where Lemma 7.3.10 applies, and its image under g, where we must op-
erate. To highlight the distinction we use dM to denote a metric on M
and d to denote both the restriction of dM to S and the product metric on
S × [−2, 2]. Here are rules for obtaining the required δ. Set δ1 = ε/15.
Apply Corollary 7.3.4 for S and ε/15 (= δ1) to obtain δ2 > 0. Take
η1 > 0 to be the positive number corresponding to S and δ2 promised in
Lemma 7.3.10. Set δ3 = min{δ1, η1/6} > 0, and take δ4 to be a positive
number promised by Lemma 7.3.8 with ε replaced by min{ε/3, δ3}. Finally,
let δ = min{δ1, δ2, δ3, δ4/3}.

Consider disjoint, locally flat embeddings λ0, λ1 : S → M within δ of
inclS . Assume δ to be small enough that each λj(S) is two-sided (Corol-
lary 7.1.8). Specify an embedding g : S × [−2, 2] → M with g0 = λ1,
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diam g(s × [−2, 2]) < δ for all s ∈ S, and g(S × [−2, 2]) ∩ λ0(S) = ∅.
For definiteness, parameterize so g(S × {−2}) ⊂ [λ0, λ1]. Note that, since
ρ(λ1, inclS) < δ ≤ δ1 = ε/15,

x, y ∈ S, d(x, y) < δ1 ⇒ dM (λ1(x), λ1(y)) < 3ε/15.

As a result,

x′, y′ ∈ S × [−2, 2], d(x′, y′) < δ1 ⇒ dM (g(x′), g(y′)) < ε/3.

This means that for any embedded S × I in S × [−2, 2] for which fiber arcs
have diameter less than δ1, the image fiber arcs under g have diameter less
than ε/3.

Let c : S × [0, 2] → M be an embedding that determines a collar on
λ0(S) in M � g(S × [−2, 2]), where c0 = λ0, diam c(s× [0, 2]) < δ for all s,
and c1 separates the two boundary components of [λ0, λ1]. Set λ

′
0 = c1.

The choice of δ ≤ δ3 ensures that

x, y ∈ λ1(S), dM (x, y) < 4δ3 ⇒ d(λ−1
1 (x), λ−1

1 (y)) < 6δ3 ≤ η1.

Find a neighborhood O ⊂ g(S × (−1, 1)) of λ1(S) so small that

x, y ∈ O, dM (x, y) < 4δ3 ⇒ d(g−1(x), g−1(y)) < η1.

Note that ρM (λ′
0, inclS) < 2δ, yielding ρM (λ′

0, λ1) < 3δ ≤ δ4. Applying
Lemma 7.3.8 to [λ′

0, λ1], we obtain a δ3-push ψ of (M,S) which is fixed on
λ0(S)∪λ1(S) and satisfies ψ([λ′

0, λ1]) ⊂ O�g(S× [0, 2]). Then ψc(S× [0, 1])
provides an S×I structure on [λ0, ψλ

′
0] for which the fiber arcs have diameter

less than δ + 2δ3 ≤ 3δ3 ≤ 3δ1 < ε/3. Moreover,

ρM (ψλ′
0, λ1) ≤ ρM (ψλ′

0, λ
′
0) + ρM (λ′

0, λ1) < δ3 + 3δ ≤ 4δ3.

Thus, for s ∈ S = S ×{0} ⊂ S × [−2, 2], d(g−1ψλ′
0(s), s) < η1 by the choice

of O. Lemma 7.3.10 promises an embedding

Λ : S × [−1, 1] → S × [−2, 2]

within δ2 of the inclusion, where Λ0 = g−1ψλ′
0. Here Λ0(S)∩ (S× [0, 2]) = ∅,

so Corollary 7.3.4 assures the existence of an (ε/15 = δ1)-product structure
on [g−1ψλ′

0, inclS×0], and its image under g is an (ε/3)-product structure on
[ψλ′

0, λ1], as desired. �

Proof of Theorem 7.3.1. First apply Theorem 7.3.11 with positive num-
ber ε/2 to obtain δ ∈ (0, ε/2), and next apply Lemma 7.3.8 with δ/2 to obtain
η ∈ (0, δ/2). Given two locally flat η-approximations λ0, λ1 to inclS , use 7.3.8
to produce a (δ/2)-push φ of (M,S) moving λ0(S) off λ1(S). Then φλ0, λ1

are disjoint δ-approximations to inclS , so Theorem 7.3.11 yields an (ε/2)-
push ψ of (M,S) supported close to [φλ0, λ1] and sending φλ0 to λ1. �
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Corollary 7.3.12. Suppose M is a connected PL n-manifold, n ≥ 5, S
is a compact, connected, PL (n − 1)-manifold that separates M , and U is
a component of M � S. Then S is collared in U if and only if S can be
pointwise approximated by locally flat embeddings in U .

Corollary 7.3.13. Suppose M is a PL n-manifold, n ≥ 5, and S is a
compact PL (n− 1)-manifold 1-LCC embedded in M as a two-sided subset.
Also suppose S can be pointwise approximated by locally flat embeddings.
Then S is bicollared.

Proof. 1-LCC Pushoff Proposition 7.2.1 indicates that S can be pointwise
approximated by locally flat embeddings on either side. �

Historical Notes. The results of this section, as well as the entire approach,
again are due to (Seebeck, 1970).

Edwards and Kirby were not alone in addressing local contractibility of
the manifold homeomorphism group. Černavskĭı (1969c) had an indepen-
dent, possibly earlier, proof of the main result.

Exercises

7.3.1. Prove Corollary 7.3.12. [Hint: See the proof of Theorem 7.2.3.]

7.3.2. Suppose M is a PL n-manifold (n ≥ 5) and S ⊂ M a PL (n− 1)-
manifold that is one-sided and 1-LCC embedded in M . Suppose
also that S can be pointwise approximated by locally flat embed-
dings. Then S has an I-bundle neighborhood.

7.3.3. Suppose M is a PL n-manifold, n ≥ 5, and S is a closed, PL (n−1)-
manifold topologically embedded in M as a two-sided subset. Then
S is ε-tame if and only if it is 1-LCC and it can be pointwise
approximated by PL embeddings.

7.4. The Cell-like Approximation Theorem

At this juncture we begin to make use of Edwards’s Cell-like Approximation
Theorem, stated below. Many methods found in its proof have already been
employed in this book, and others are completely accessible to all readers.
Nevertheless, we omit the rather lengthy argument and refer readers to
(Edwards, 1980) or the more complete exposition in (Daverman, 1986).

Theorem 7.4.1 (Cell-like Approximation). A proper, surjective, cell-like
mapping f : Mn → X defined on an n-manifold Mn, n ≥ 5 is a near-
homeomorphism if and only if X is a finite-dimensional space with the Dis-
joint Disks Property.
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Definition. A metric space X has the Disjoint Disks Property, abbreviated
as DDP, if for every pair of maps f1, f2 : I2 → X and for every ε > 0
there exist maps F1, F2 : I2 → X such that ρ(Fi, fi) < ε (i = 1, 2) and
F1(I

2) ∩ F2(I
2) = ∅.

Corollary 7.4.2. Every cell-like map f : Mn → Nn between n-manifolds,
n ≥ 5, is a near-homeomorphism. Specifically, if ε : Nn → (0,∞) is
continuous, then there exists a homeomorphism g : Mn → Nn such that
ρ(g(x), f(x)) < ε(x) for all x ∈ Mn.

Corollary 7.4.3. Let f : Mn → Nn be a cell-like map between n-manifolds,
n ≥ 5, C a closed subset of Nn such that f |f−1(C) is 1-1, and ε : Nn →
[0,∞) a continuous function such that ε−1(0) = C. Then there exists a
homeomorphism g : Mn → Nn satisfying ρ(g(x), f(x)) < ε(x) for all x ∈
Mn � f−1(C) and g|f−1(C) = f |f−1(C).

The intent for the remainder of §7.4 is to develop conditions, for later
use, under which a cell-like image of a manifold has the DDP. In support of
that aim, the immediate issue is to prove that such a cell-like image is an
ANR provided it is finite dimensional.

Proposition 7.4.4. Suppose p : Y → X is a closed, cell-like mapping
defined on a locally compact ANR Y , (K,L) is a pair of finite simplicial
complexes, µ : K → X is a map, ν : L → Y is a map such that pν = µ|L
and ε > 0. Then there exists a map µ̃ : K → Y with µ̃|L = ν and there
exists a homotopy Ht : K → X such that H0 = pµ̃, H1 = µ, Ht|L = µ|L
and ρ(Ht, µ) < ε for all t ∈ I.

The preceding proposition supplements Approximate Lifting Proposi-
tion 3.2.10. The next lemma serves as the principal tool, and its proof
retraces the one given for 3.2.10.

Lemma 7.4.5. Under the hypothesis of Proposition 7.4.4, there exists δ > 0
such that, for any two maps α0, α1 : K → Y extending ν with ρ(pαe, µ) < δ
for e = 0, 1, there is a homotopy ht : K → Y such that he = αe and, for all
t ∈ I, ht|L = ν and ρ(pht, µ) < ε.

With Lemma 7.4.5 in hand, the derivation of Proposition 7.4.4 proceeds
like the one showing why every non-isolated point in a locally connected
complete metric space can be joined via a path to another point nearby.
One constructs a sequence of lifts αi : K → Y such that not only do the
images pαi converge to µ but also successive images are connected via shorter
and shorter homotopies, by Lemma 7.4.5.

Corollary 7.4.6. Suppose p : Y → X is a closed, cell-like mapping defined
on a locally compact ANR Y , W is an open subset of X, w ∈ p−1(W ) and
i ≥ 0. Then p∗ : πi(p−1(W ), w) → πi(W, p(w)) is an isomorphism.
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Corollary 7.4.7. If p : Y → X is a closed, cell-like mapping defined on a
locally compact ANR Y , then X is LCk for all integers k ≥ 0.

In light of Theorem 0.6.1, we also have:

Corollary 7.4.8. If p : Y → X is a closed, cell-like mapping from a locally
compact ANR to a finite-dimensional metric space X, then X is an ANR.

Lemma 7.4.9. If Y is a locally compact ANR satisfying the DDP, then
every map g : N2 → Y defined on a compact 2-dimensional ∂-manifold
N2 can be approximated by embeddings. Moreover, if S ⊂ Y is a closed
set that has empty interior and is 0-LCC in Y , then each g : N2 → Y
can be approximated by an embedding λ : N2 → Y such that S ∩ λ(N2) is
0-dimensional.

Proof. Find a countable collection {(Di, Ei)}∞i=1 of disjoint 2-cell pairs that
separate points of N2—that is to say, for any two points x, x′ ∈ N2, there
exists an integer i ≥ 1 such that x ∈ Di and x′ ∈ Ei. In the space C(N2, Y )
of continuous functions from N2 to Y , let

Oi = {f ∈ C(N2, Y ) | f(Di) ∩ f(Ei) = ∅}.

Clearly Oi is open in C(N2, Y ). By the DDP and Estimated Homotopy
Extension Theorem 0.6.4, each f ∈ C(N2, Y ) can be approximated by some
f ′ ∈ C(N2, Y ) such that f ′(Di) ∩ f ′(Ei) = ∅; in other words, Oi is dense
in C(N2, Y ). The Baire Category Theorem assures that each f ∈ C(N2, Y )
can be approximated by λ ∈ ∩iOi, an embedding.

Let S denote a closed 0-LCC subset of Y . Choose triangulations T1, T2, . . .
of I2 with meshTi < 1/i. Let Li denote the 1-skeleton of Ti and

O′
i = {f ∈ Oi | f(Li) ∩ S = ∅}.

Since S is 0-LCC in Y , O′
i is an open dense subset of C(N2, Y ). Each

λ ∈ ∩iO
′
i is an embedding for which λ(N2) ∩ S ⊂ λ(N2 � ∪iLi), a 0-

dimensional set. �

A similar argument yields:

Lemma 7.4.10. Suppose the space X is a union of locally compact ANRs
Y1 and Y2, each Yi is a closed subset of X and has the DDP, S = Y1 ∩ Y2

has empty interior and is 0-LCC in Yi, and any two maps fi : I2 → Yi

can be approximated, arbitrarily closely, by maps Fi : I2 → Yi such that
F1(I

2) ∩ F2(I
2) = ∅. Then S contains disjoint, 0-dimensional, σ-compact

subsets Z1, Z2 such that any map from a compact 2-dimensional ∂-manifold
N2 to Yi can be approximated by a map gi : N

2 → Yi with gi(N
2) ∩ S ⊂ Zi.
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Lemma 7.4.11. Let p : M → X be a closed, cell-like mapping from a
connected n-manifold M onto a metric space X that contains a connected
(n − 1)-manifold S as a closed subset, where X � S is disconnected. Then
X�S has precisely two components, and S is 0-LCC in the closure of each.

Proof. Proposition 3.2.9 promises that p induces a cohomology isomor-
phism p∗ : Hn−1

c (S;Z2) ∼= Z2 → Hn−1
c (p−1(S);Z2). The duality methods

of §7.1 assure that p−1(S) separates M into at most two components, so it
must separate into exactly two components, for otherwise X � S would be
connected. Hence, X � S has exactly two components. Localization yields
the 0-LCC conclusion. �

Proposition 7.4.12. Let p : M → X be a cell-like map from an n-manifold
M onto an ANR X that contains a connected (n − 1)-manifold S, n ≥ 5,
as a closed subset, where X � S is the disjoint union of components U1, U2

such that each U j satisfies the Disjoint Disks Property and, moreover, any

two maps fj : I2 → U j can be approximated, arbitrarily closely, by maps

Fj : I
2 → U j such that F1(I

2)∩F2(I
2) = ∅. Then X has the Disjoint Disks

Property and p is a near-homeomorphism.

Proof. Apply Lemma 7.4.10 to obtain disjoint 0-dimensional σ-compact
sets Z1, Z2 ⊂ S such that any map from a compact 2-dimensional ∂-manifold
N2 to U j can be approximated by a map g : N2 → U j with g(N2)∩S ⊂ Zj .

Since S is an ANR there exists a neighborhood V of S in X and a
retraction r : V → S. Define retractions rj : V ∪ Uj → U j by rj |U j = incl
and rj |V � Uj = r|V � Uj . Choose a neighborhood V ′ of S so that r|V ′ is
homotopic to the inclusion in V . Choose a third neighborhood V ′′ of S so
that the closure of V ′′ is contained in V ′. By the proof of the Estimated
Homotopy Extension Theorem (Theorem 0.6.4) there is a map r′ : X → X
such that r′|V ′′ = r|V ′′, r′|X�V = incl, and r′(V ) ⊂ V . Define r′′ : X → X
by r′′|U j = rir

′|U j ; then r′′|S = incl, r′′(V ′′) ⊂ S, and r′′(U j) = U j .
Observe that r′′ can be made arbitrarily close to the identity.

Given maps f1, f2 : I2 → X, choose compact ∂-manifolds Ai ⊂ I2 such
that f−1

i (S) ⊂ Ai ⊂ f−1
i (V ′′). Define f ′

i = r′′fi. Then f ′
i(Ai) ⊂ S and

each component of I2 � Ai is mapped by f ′
i into either U1 or U2. Add the

components that are mapped to U1 to Ai and define Bi to be the union
of the closures of the remaining components. Then Ai and Bi are compact
boundary submanifolds of I2 that satisfy the following conditions.

(1) Ai ∪Bi = I2,

(2) Ai ∩Bi ⊂ ∂Ai ∩ ∂Bi, and

(3) f ′
i(Ai) ⊂ U1 and f ′

i(Bi) ⊂ U2.

Since S is a PL manifold, we can make a further adjustment so that
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(4) f ′
i(Ai ∩Bi) ⊂ S � (Z1 ∪ Z2) and

(5) f ′
1(A1 ∩B1) ∩ f ′

2(A2 ∩B2) = ∅.
Invoking the hypothesis that Ui has the DDP, one can obtain further ap-
proximations f ′′

i to f ′
i satisfying analogs of conditions (1)–(5), as well as

(6) f ′′
i |Ai ∩Bi = f ′

i |Ai ∩Bi,

(7) f ′′
i (Ai) ⊂ U1 and f ′′

i (Bi) ⊂ U2, and

(8) f ′′
1 (A1) ∩ f ′′

2 (A2) = ∅ = f ′′
1 (B1) ∩ f ′′

2 (B2).

Then by choice of Z1, Z2 one can produce yet another set of approximations
Fi satisfying the analogs of (1)–(8), as well as

(9) S ∩ (F1(IntA1) ∪ F2(IntA2)) ⊂ Z1 and

(10) S ∩ (F1(IntB1) ∪ F2(IntB2)) ⊂ Z2.

It follows from the prearranged (see (4) and (6))

Z1 ∩ Z2 = ∅ = (Z1 ∪ Z2) ∩ (F1(A1 ∩B1) ∪ F2(A2 ∩B2))

that F1(I
2) ∩ F2(I

2) = ∅. �

Corollary 7.4.13. Let p : M → X be a cell-like map defined on an n-
manifold M , n ≥ 5, onto a metric space X containing an (n− 1)-manifold
S embedded in M as a closed, 1-LCC subset, where X�S is an n-manifold.
Then X is an n-manifold and p is a near-homeomorphism.

Proof. Since S locally separates X and the desired conclusion is local, it
suffices to consider the case where X and S are connected and X � S has
two components, U1 and U2. As S is LCC1 in U i = S ∪ Ui (i ∈ {1, 2})
and Ui is an n-manifold, U i has the DDP and the hypotheses of 7.4.12 are
satisfied. �

Proposition 7.4.14. Let p : Sn → X be a cell-like map onto a metric space
X that contains an (n−1)-sphere S, n ≥ 5, and X�S is the disjoint union
of components U, V where U = A embeds in Sn and V = B is an n-cell.
Then X has the Disjoint Disks Property and p is a near-homeomorphism.

Proof. As in Proposition 7.4.12, given maps f1, f2 : I2 → X, for ε > 0
and i = 1, 2 produce ε-approximations f ′

i to fi and ∂-manifolds Ai, Bi in I2

satisfying

(1) I2 = Ai ∪Bi,

(2) Ai ∩Bi = ∂Ai ∩ ∂Bi,

(3) f ′
1(A1) ∪ f ′

2(A2) ⊂ A and f ′
1(B1) ∪ f ′

2(B2) ⊂ B, and

(4) f ′
1(B1) ∩ f ′

2(B2) = ∅ (since B is an n-cell).

Temporarily regard A as a subset of Sn. Identify a neighborhoodW of A
and retraction R : W → A such that R(W �A) ⊂ BdA = S. Restrict W so
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R moves points less than ε. Then approximate f ′
i |Ai → A ⊂ Sn by gi : Ai →

W , with gi ε-close to f ′
i , gi|Ai ∩Bi = f ′

i |Ai ∩Bi, and g1(A1) ∩ g(A2) = ∅.
Once again treating A as a subset of X, exploit the n-cell structure of

B to adjust Rgi to a map g′i : Ai → X such that ρ(g′i, gi) < ε, g′i|g−1
i (A) =

g′i|g−1
i (A) and g′i(g

−1
i (W�A)) ⊂ IntB. Define Fi : I

2 → X as Fi|Ai = g′i and
Fi|Bi = f ′

i |Bi. Note ρ(Fi, fi) < 4ε. Intersections between F1(I
2) and F2(I

2)
occur at points of F1(A1) ∩ F2(A2) ∩ IntB or of Fi(Ai) ∩ Fj(Bj) ⊂ IntB,
i �= j, and can be removed easily by general position. Hence, X has the
DDP. �

Historical Notes. R. D. Edwards outlined a proof of the Cell-like Ap-
proximation Theorem in his ICM 1978 article (Edwards, 1980). Details
of Edwards’s proof for n ≥ 6 are presented in (Daverman, 1986); the 5-
dimensional case is treated in (Daverman and Halverson, 2007). Corol-
lary 7.4.2 is originally due to L. C. Siebenmann (1972); its analog in dimen-
sion n = 3 was done by S. Armentrout (1971) and in dimension n = 4 by
M. H. Freedman and F. S. Quinn (1990).

Cannon (1978), (1979) introduced the Disjoint Disks Property and early
on he conjectured its fundamental role for the Cell-like Approximation The-
orem.

The hypothesis about finite-dimensional-image in the Cell-like Approx-
imation Theorem is a necessary one. A. N. Dranishnikov (1989) established
the existence of a cell-like map on a 3-dimensional compactum with infinite-
dimensional image; this automatically gave a dimension-raising cell-like map
defined on Sn, n ≥ 7. Improving upon Dranishnikov’s example slightly, J.
Dydak and J. J. Walsh (1993) produced dimension-raising cell-like maps on
2-dimensional compacta and, hence, on S5. In contrast, work of G. Kozlowski
and J. J. Walsh (1983) certifies that cell-like maps defined on 3-manifolds
have 3-dimensional images.

Exercise

7.4.1. If Y is a locally compact ANR with the DDP, then each map f :
I2 → Y can be approximated by a 1-LCC embedding.

7.5. Determining n-cells by embeddings of Mn−1
n in Sn

The combined aim of this section and the next is to characterize local flatness
of codimension-one manifold embeddings in terms of the 1-LCC condition.
Taking a step in that direction, this section establishes (Corollary 7.5.10)
that, given an (n− 1)-sphere Σ ⊂ Sn and component W of Sn �Σ, W is an
n-cell if and only if there is an embedded Menger continuum e(Mn−1

n ) in Sn

with Σ ⊂ e(Mn−1
n ) ⊂ W . Rounding this out, the next section demonstrates
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that for any 1-LCC embedded (n − 1)-sphere Σ ⊂ Sn and complementary
domain W , there exists such an embedding e : Mn−1

n → W .

A secondary goal of the section at hand is a positional characterization
of the (n − 1)-dimensional Menger space in Sn. To that end, we present
an ad hoc definition of objects called S-curves, which include the standard
Menger space Mn−1

n , and ultimately (Theorem 7.5.7) we show that any two
such S-curves are homeomorphic. This topological analysis of Mn−1

n is not
essential to the primary purpose: all the lemmas developed in this section
lead to 7.5.7 and can be ignored, provided one broadens Theorem 7.5.8 (using
the same proof presented here) to detect the n-cell though embeddings of
arbitrary S-curves in Sn, not simply through embedded copies of Mn−1

n .

The starting point is an elementary result from decomposition theory.
A sequence of sets X1, X2, . . . in a metric space is called a null sequence if
diamXi → 0 as i → ∞.

Proposition 7.5.1 (Null sequence decompositions into flat n-cells). Let
B1, B2, . . . be a null sequence of pairwise disjoint, flat n-cells in Sn, U an
open subset of Sn containing ∪iBi, and G the decomposition of Sn having
the sets Bi as nondegenerate elements. Then G is shrinkable fixing Sn �U .
In particular, there exists a surjective map f : Sn → Sn such that the
nondegenerate point preimages of f are the cells B1, B2, . . . and f |Sn�U =
Id.

Proof. Consider any nondegenerate g0 ∈ G. Since g0 is flat, regard it as
the standard ball of radius 1 centered at O in Rn = Sn�{∞}. Given δ > 0,
restrict further, if necessary, so B(g0; δ) ⊂ U and let k denote the smallest
positive integer such that kδ/3 > 1. We will produce a homeomorphism
Θ : Sn → Sn such that

(a) Θ|Sn �B(g0; δ) = Id,
(b) diamΘ(g0) < δ, and
(c) for g ∈ G either diamΘ(g) < δ or Θ(g) = g.

The homeomorphism Θ will be expressed as a composition Θ = θk−1 · · · θ1,
of k − 1 homeomorphisms, where each θj moves points less than δ/3 and
compresses θj−1 · · · θ1(g0) radially into the ball of radius (k − j)δ/3.

Using the nullity of the nondegenerate elements, require θ1 to be the
identity outside an open set U1 ⊂ U so near g0 that all g ∈ G meeting U1

have diameter less than δ/3. Similarly, after θj−1, . . . , θ1 have been defined,
require θj to be the identity outside an open set Uj ⊂ Uj−1 so close to
θj−1 · · · θ1(g0) that, for any other g ∈ G whose image under θj−1 · · · θ1 meets
Uj , diam θj−1 · · · θ1(g) < δ/3.

For i = −1, 0, 1, . . . , k, set αi = (k − i)/k. Each θj can be defined so
as to have similar effect on all rays R emanating from O: there will be a
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positive number ξj ∈ (αj−1, αj−2) such that the segment of R of length ξj
based at O lies in Uj . There will be four special points on R: the points
Pj, Qj , Sj , Tj at distances αj+1, αj , αj−1, ξj, respectively, from O; θj will
move only those points between Pj and Tj , will send Sj to Qj and will be
linear on the intervals [Pj , Sj ] and [Sj , Tj ]. Thus, each θj will move points

at most 1/k < δ/3 and will compress B(O;αj−1) to B(O;αj).

0

P
Q

S

Tj

j
j

j

R

Figure 7.7. The action of θj on R

Accordingly, for g ∈ G, g �= g0, and j ∈ {2, 3, . . . , k−1}, either θj · · · θ1(g)
= θj−1 · · · θ1(g) or diam θj · · · θ1(g) < δ; moreover, if after the jth com-
pression, diam θj · · · θ1(g) ≥ δ/3, then diam θj · · · θ1(g) < δ and Θ(g) =
θj · · · θ1(g). Finally, since αk−1 = 1/k < δ/3 and

Θ(g0) = θk−1 · · · θ1(g0) = B(O;αk−1) ⊂ B(O; δ/3),

Θ shrinks g0 to sufficiently small size. By construction Θ moves no point of
Sn � U1.

Upon performing this shrinking in pairwise disjoint neighborhoods of
each of the finitely many large n-cells in the collection G, we see that G
itself is shrinkable fixing Sn � U. �

Remark. While the statement and proof of the last result are elementary,
they are still quite delicate. For example, a decomposition into points and a
null sequence of cellular arcs need not be shrinkable (Daverman and Walsh,
1982).

Corollary 7.5.2. If B1, B2, . . . is a null sequence of pairwise disjoint, flat
n-cells in the interior of Bn and G is the decomposition of Bn having the
sets Bi as nondegenerate elements, then the decomposition space Bn/G is
an n-cell. Furthermore, if Gm is the decomposition of the ∂-manifold Dn

m =
Bn � ∪m

i=1 IntBi having Bm+1, Bm+2, . . . as nondegenerate elements, then
the associated decomposition space is homeomorphic to Dn

m.

Proof. Regard Dn
m as a subset of Sn. Apply Proposition 7.5.1 and Theo-

rem 2.3.4 with U = IntDn
m. �
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We will make use, without proof, of the fundamental Annulus Theorem.
This will be discussed more extensively in §8.8.

Theorem 7.5.3 (Annulus Theorem). Let B′ denote a flat n-cell in the
interior of an n-cell B (n > 4). Then B � IntB′ is homeomorphic to
Sn−1 × I.

Let B1, . . . , Bk be pairwise disjoint, flat n-cells in the interior of an n-
cell B. The ∂-manifold B � ∪i IntBi is called an n-cell with k holes. The
∂-manifold Dn

m of Corollary 7.5.2 is a relevant example of an n-cell with m
holes.

Corollary 7.5.4 (Generalized Annulus Theorem). If B∗ and C∗ are n-cells
with k holes, n > 4, then every homeomorphism h from a component of ∂B∗

to a component of ∂C∗ extends to a homeomorphism H : B∗ → C∗.

The proof is an exercise.

Definition. An (n − 1)-dimensional Sierpiński curve is a compact metric
continuum X which admits an embedding h in Sn such that the components
of Sn �h(X) form a null sequence U1, U2, . . . satisfying: (1) each Sn �Ui is
an n-cell, (2) U i ∩ U j = ∅ whenever i �= j, and (3) ∪iUi = Sn. For brevity
we will say that a compact continuum X ′ ⊂ Sn is an S-curve if it is the
image of an embedding h : X → Sn, where X satisfies conditions (1)–(3).

The prototypical S-curve is the standard Menger space Mn−1
n . The

immediate goal is to prove that any two such S-curves are topologically
equivalent.

Lemma 7.5.5. If X is an (n−1)-dimensional S-curve in Sn, then for each
ε > 0 there is an embedding e : X → Sn such that ρ(e, inclX) < ε and the
components of Sn � e(X) are bounded by flat (n− 1)-spheres.

Proof. For any component U of Sn �X, Sn � U is an n-cell which can be
re-embedded in its own interior so the image of ∂(Sn�U) is bicollared and,
hence, flat. It follows almost automatically that the image of X under this
re-embedding is an S-curve. The re-embedding can be controlled to move
points only a short distance and to have support very close to U . Infinite
repetition, with increasingly strict motion controls, yields the lemma. �

Definitions. Say that an (n− 1)-dimensional S-curve X ⊂ Sn is special if
each of the components of Sn �X is bounded by a flat sphere. Let X be a
special (n−1)-dimensional S-curve in Sn and U0, U1, U2 . . . the components
of Sn�X. A subdivision of X is a division of X into a finite number of such
S-curves, brought about by taking a simplicial subdivision T of the compact
∂-manifold R obtained by adding to X all but a finite number U0, . . . , Um of
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its complementary domains in such a way that the (n− 1)-skeleton of T lies
entirely in X, contains the boundary of R, and does not meet the boundary
of any component of Sn�X other than U0, . . . , Um. The intersection of the
n-cells of T with X gives a collection of (n− 1)-dimensional S-curves. The
subdivision is said to have mesh less than ε if each n-cell in T has diameter
less than ε.

Lemma 7.5.6. Suppose X and Y are special (n− 1)-dimensional S-curves
in Sn (n �= 4), U and V are components of Sn�X and Sn�Y , respectively,
h is any homeomorphism of BdU onto BdV , and ε > 0. Then there exist ε-
subdivisions of X and Y whose (n−1)-dimensional skeleta correspond under
a homeomorphism h′ that extends h.

Proof. List the components U0 = U,U1, U2, . . . of Sn � X and, similarly,
the components V0 = V, V1, V2, . . . of Sn � Y . Choose an integer m >
0 such that all Ui and Vi, i > m, have diameter less than ε. Form the
decomposition space AX of Sn � ∪m

i=0Ui determined by the nondegenerate

elements Um+1, Um+2, . . . and, similarly, the decomposition space AY of
Sn � ∪m

i=0Vi determined by V m+1, V m+2, . . . . Let πX : Sn � ∪m
i=0Ui → AX

and πY : Sn � ∪M
i=0V i → AY denote the associated decomposition maps.

Here AX and AY are n-cells with holes—an equal number of holes, by design.
Corollary 7.5.4 assures that the homeomorphism πY h(πX)−1 : πX(BdU) →
πY (BdV ) extends to a homeomorphism H : AX → AY .

For each δ > 0 there exists a simplicial triangulation T of W ′ of mesh
less than δ whose (n− 1)-skeleton Σ intersects none of the countably many
points having nondegenerate preimages under either HπX or πY . Then the
sets K = (HπZ)

−1(Σ) and K ′ = (πY )
−1(Σ) each correspond in 1-1 fashion

with Σ. Moreover, when σ is an n-simplex of T , then (πY )
−1(∂σ) ⊂ Y and

(HπX)−1(∂σ) ⊂ X are flat (n− 1)-spheres in Sn, by Corollary 7.4.3 to the
Cell-like Approximation Theorem; as a result, K and K ′ effect subdivisions
of X and Y , respectively. Since point preimages under HπX and πY have
diameter less than ε, one can choose T of sufficiently small mesh that K and
K ′ have mesh less than ε. The desired homeomorphism h′ : K → K ′ can be
defined as the restriction of (πY )

−1HπX . �

Theorem 7.5.7. Any two (n− 1)-dimensional S-curves in Sn are homeo-
morphic.

Proof. Consider any two special S-curves X and Y in Sn. For i = 1, 2, . . .
Lemma 7.5.6 promises an embedding ei : X → B(Y ; 1/i) such that Y ⊂
B(ei(X); 1/i). These embeddings submit to controls ensuring that {ei}
forms a Cauchy sequence. Moreover, given any two points x1, x2 ∈ X there
exist disjoint n-cells C1, C2 ⊂ Sn such that ej(x1) ∈ C1 and ej(x2) ∈ C2 for
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sufficiently large j. Hence, the sequence {ei} converges to a homeomorphism
X → Y . �

Theorem 7.5.8. Let e denote an embedding of the (n − 1)-dimensional
Menger space Mn−1

n into Sn (n ≥ 5) and V a component of Sn � e(Mn−1
n ).

Then Sn � V is an n-cell.

Proof. List the components U1, U2, . . . of Sn � Mn−1
n and also the com-

ponents V = V1, V2 . . . of Sn � e(Mn−1
n ). Choose these indices so that

BdVi = e(BdUi) for each i.

Every V i is contractible, since it is a simply connected, homologically
trivial (by duality) ANR.

Examine the decompositions G and G′ of Sn � U1 and Sn � V1 having
U2, U3, . . . and V 2, V 3, . . . as their respective nondegenerate elements. Both
G and G′ are cell-like, upper semicontinuous decompositions; the nondegen-
erate elements of G form a null sequence of flat n-cells in the interior of the
n-cell Sn � U1. Let ϕ : Sn � U1 → A and ϕ′ : Sn � V1 → A′ denote the as-
sociated decomposition maps. Obviously there is a unique homeomorphism
e′ : A → A′ such that the following diagram is commutative:

Mn−1
n

⊂−−−−→ Sn � U1
ϕ−−−−→ A⏐⏐�e

⏐⏐�e′

e(Mn−1
n )

⊂−−−−→ Sn � V1
ϕ′

−−−−→ A′

By Corollary 7.5.2, A is an n-cell, so A′ is an n-cell as well. A minor
modification of Corollary 7.4.3 provides a homeomorphism Φ′ : Sn�V1 → A′

that agrees with ϕ′ on BdV1. Hence, S
n � V1 is also an n-cell. �

Corollary 7.5.9. For any embedding e : Mn−1
n → Sn (n ≥ 5) of the (n−1)-

dimensional Menger space, e(Mn−1
n ) is an S-curve.

Corollary 7.5.10. Let λ : ∂In → Sn (n ≥ 5) be an embedding and W a
component of Sn � λ(∂In). Then W is an n-cell if and only if λ can be
extended to an embedding Λ : Mn−1

n → W .

Historical Notes. The positional characterization of Sierpiński curves in
Sn presented in Theorem 7.5.7 is due to Cannon (1973b), who based his
argument on that given by G. T. Whyburn for the 2-dimensional case.

The proof of the Annulus Conjecture was a sweeping breakthrough, by
Kirby (1969); the key idea, usually referred to as the torus trick, had pro-
found implications, including the deep analysis of PL and DIFF structures
of manifolds (Kirby and Siebenmann, 1977). More about the momentous
importance of tori comes up in Chapter 8.
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Proposition 7.5.1, in more general form, was proved by R. J. Bean (1967),
who credited Bing for the technique.

Exercises

7.5.1. Let G denote an upper semicontinuous decomposition of an n-
dimensional ∂-manifold N such that for each nondegenerate el-
ement g0 ∈ G and each ε > 0 there exists an n-cell B with
g0 ⊂ B ⊂ B(g0; ε), where all nondegenerate elements of G that
meet B lie in IntB. Then G is shrinkable.

7.5.2. Show that every homeomorphism between two special S-curves in
Sn extends to a homeomorphism of Sn.

7.5.3. Prove Corollary 7.5.4.

7.6. The 1-LCC characterization of local flatness

All the groundwork now has been laid for the foundational characterization,
in Theorem 7.6.1 below, of locally flat codimension-one manifold embed-
dings in terms of the 1-LCC condition. The initial steps reduce the issue to
the 1-LCC characterization of flat codimension-one spheres in Sn, which is
treated in Theorem 7.6.5; its proof, in turn, capitalizes on the Menger space
technology of the preceding section (Corollary 7.5.10).

Theorem 7.6.1. Every 1-LCC embedding of an (n − 1)-manifold S in an
n-manifold M (n ≥ 5) is locally flat.

No hypothesis about M being PL is needed here; all constructions can
be localized to Euclidean patches in M .

The indispensable tool is the following Bubble Lemma. Its proof retraces
that of 1-LCC Push-off Proposition 7.2.1, using infinite controlled engulfing.

Lemma 7.6.2 (Bubble Lemma). Suppose S is an (n − 1)-manifold in a
connected PL n-manifold M (n ≥ 5), D ⊂ S is an (n−1)-cell such that S is
1-LCC at each point of IntD, U is a component of M � S and ε : IntD →
(0, 1) is a continuous function. Then there exists a 1-LCC embedding e :
IntD → U such that d(s, e(s)) < ε(s) for all s ∈ IntD.

Proof. The embedding e will be ψ| IntD, where ψ is a controlled push
of M such that ψ(IntD) ⊂ U and ψ|∂D = incl∂D. The existence of this
ψ stems from an engulfing program establishing that infinite codimension-
three complexes near IntD can be pushed into a preassigned component of
M � S.

Determine a small connected neighborhood W of IntD such that W
intersects S at IntD, and let W+ be a component of W �D. The claim is
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that, for k ≤ n− 3 and a sufficiently small neighborhood W ′ ⊂ W of IntD,
any infinite k-complex in W ′ admits a controlled push ϕ into W+, where
ϕ|M �W = incl|M �W . To complete the argument, one works with a PL
neighborhood N of IntD in W ′, pushes the (n − 3)-skeleton of N to one
side of W �D, pushes the dual 2-skeleton of N to the other side of W �D,
and stretches across the join structure of N to obtain ψ, just as in 7.2.1. Of
course, controls on the pushes and, more automatically, on the stretch are
necessary to assure that all three adjustments operating in W extend over
the rest of M via the Identity.

One way to nail down the engulfing claim is to produce ∂-manifolds A
and B whose interiors cover IntD and whose components are compact, and
then to use the usual controlled engulfing methodology, applied component
by component, to obtain that complexes near either A or B can be pushed
into W+ with control. Given a k-complex K in W ′, express it as a union of
closed subpolyhedra KA and KB, where KA,KB are near A,B, respectively.
PushKA intoW ′ with enough control that image ofKB is still near B. Then
push that image into W ′, fixing the image of KA. Details are left to the
reader. �

Lemma 7.6.3. Suppose the (n − 1)-sphere Σ ⊂ Sn is the union of two
(n − 1)-cells D and D′ such that ∂D = D ∩D′ = ∂D′, D is 1-LCC in Sn

and IntD′ is 1-LCC in Sn. Then Σ is 1-LCC in Sn.

Proof. Focus on s ∈ ∂D; the conclusion is obvious for other points of Σ.
Given any neighborhood N1 of s, find a smaller neighborhood N2 such that
N2 ∩ (D′ � D) is simply connected (and connected). Use the hypothesis
about D being 1-LCC in Sn to locate another neighborhood N3 ⊂ N2 such
that all loops in N3 �D are null-homotopic in N2 �D.

Hence, each loop f : ∂I2 → N3�Σ extends to a map F1 : I
2 → N2�D.

Let Z denote the component of I2�(F1)
−1(D′) containing ∂I2. SinceD′∩N2

is an ANR, F1|FrZ extends to a map sending a small neighborhood of FrZ
in I2 � Z into D′ ∩N2. Thus, there exist a compact, connected ∂-manifold
Q, ∂I2 ⊂ Z ⊂ Q ⊂ I2, and map F2 : Q → N2 �D such that F2|Z = F1|Z
and F2(Q � Z) ⊂ N2 ∩ (D′ � D). The connectedness of Q implies each
component of I2 �Q is bounded by a simple closed curve, so by the simple-
connectedness of N2 ∩ (D′ �D), F2|Z extends to a map F3 : I2 → N2 �D
with (F3)

−1(Σ) = I2 � Z.

As N2∩D′ is two-sided in N2 (Corollary 7.1.7), choose a connected open
set UD′ such that N2 ∩D′ ⊂ UD′ ⊂ N2 and UD′ �D′ has two components;
N2 ∩ D′ is LCC1 in the closure (rel N2) of each of these components, by
Proposition 7.1.11. Cover (F3)

−1(D′) by another compact ∂-manifold Q′ ⊂
(F3)

−1(UD′) ∩ Int I2.
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We claim that the image of each component C of Q′ under F3 meets the
closure of only one component of UD′ �D′. To examine that image, let Zc

denote I2 � Z. By duality,

Ȟ1(Zc) ∼= H1(Int I
2, IntZ) ∼= H̃0(IntZ) ∼= 0.

Since Zc splits into the disjoint union of the compact sets Zc∩C and Zc�C,
Ȟ1(Zc ∩ C) ∼= 0. Consequently,

0 ∼= Ȟ1(Zc ∩ IntC) ∼= H1(IntC, IntC � Zc) → H̃0(IntC � Zc) → 0,

so IntC �Zc is connected, and its image under F3 meets exactly one of the
components of UD′ � D′. Applying Lemma 3.3.3 to F3|C for each C, we
obtain a map F4 : I2 → N2 � Σ such that F4|I2 � Q′ = F3|I2 � Q′ (and
F4(C) ⊂ UD′ �D′); in particular, F4|∂I2 = f . �
Corollary 7.6.4. Suppose S is an (n− 1)-manifold 1-LCC embedded in an
n-manifold M (n ≥ 5) and s ∈ S. Then there exist a neighborhood Ns of s
in M and a 1-LCC embedded (n− 1)-sphere Σ ⊂ Ns such that Ns ≈ Rn and
Σ ∩ S contains a neighborhood of s in S.

As a result, Theorem 7.6.1 reduces to the following:

Theorem 7.6.5. An (n− 1)-sphere Σ in Sn (n ≥ 5) is flat if and only if it
is 1-LCC embedded.

Proof. Let λ : ∂In → Σ be a homeomorphism and W a component of
Sn � Σ. The goal will be to extend λ to an embedding e : Mn−1

n → W and
to apply Corollary 7.5.10.

Let κ = {k1, k2, . . . } be a sequence of integers, ki ≥ 3. Associated with
κ is an (n− 1)-dimensional S-curve, Xκ, constructed in a manner modelled
on that of Mn−1

n in §3.5. Let T0 be the trivial subdivision of I, just as in
that construction. Let T1 be the subdivision of I into k1 subintervals of
equal length. Assuming Tj to be a subdivision of I into intervals of equal
length 1/k1 · · · kj , let Tj+1 denote the subdivision obtained by sectioning
each interval of Tj into kj+1 subintervals of equal length. As a result, Tj+1

induces a subdivision Tn
j+1 of In into a multitude of isometric subcubes. Set

P0 = In and let Pj+1 denote the union of all n-dimensional subcubes of Tn
j+1

that lie in Pj and intersect its (n − 1)-skeleton Lj (as determined by Tn
j ).

Then Xκ = ∩jPj .

By definition Xκ = Mn−1
n in the special case κ = {3, 3, 3, . . . }.

For j = 1, 2, . . . there exists a retraction rj : Pj → Lj−1 (since Pj fills
no n-cube of Tn

j−1), where rj moves no point more than dj−1, the diameter
of the n-cubes from Tn

j−1.

The proofs of the next two results are based on routine inverse limit
arguments.
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Lemma 7.6.6. The inverse limit of the sequence {Lj , rj |Lj} is Xκ.

Lemma 7.6.7. Suppose {Lj, rj |Lj} as above, and suppose {λj : Lj → Sn}
is a sequence of embeddings such that λj+1|Lj = λj for all j ≥ 1. Suppose
also that for each ε > 0 there exists an index mε such that diam λj(∂σ) < ε
for all j ≥ mε and all n-cells σ ⊂ Pj in Tn

j . Then there exists an embedding

Λ : Xκ → Sn such that Λ|Lj = λj for all j ≥ 0.

Continuing with the proof of 7.6.5, we choose an integer k1 ≥ 3 such
that, for the subdivision T1 of I into k1 intervals of equal length and Tn

1 the
associated subdivision of In determined by the product of n copies of T1, we
have diam λ(σ ∩ L0) < 1/(3n−1 · 2) = δ1 for all σ ∈ Tn

1 . Order the n-cubes

σ1, σ2, . . . , σm(1) of T
n
1 in P1 so that ∂σi∩Li−1

0 is a PL (n−1)-cell Ei, where

Li−1
0 = L0 ∪ ∪i−1

t=1∂σt. We will apply Lemma 7.6.2 recursively to extend λ

to an embedding λ : Li
0 → W such that diamλ(∂σi) < 1/2 for all σi. In

addition, we will have assured that λ(Ei) is 1-LCC, so λ(∂σi) will be 1-LCC
by Lemma 7.6.3. At the end of the process, when i = m(1), we will have an
embedding λ1 : L1 → W with λ1(∂σi) being a 1-LCC embedded sphere and
diamλ1(∂σi) < 1/2 for i = 1, 2, . . . ,m(1).

For the promised assurance that λ(Ei) is 1-LCC, we will employ the
following variation on Lemma 7.6.3. The proof is an exercise.

Lemma 7.6.8. Suppose the (n−1)-cell E ⊂ Sn is the union of two (n−1)-
cells E′ and E′′ such that E′ ∩E′′ is an (n− 2)-cell in the boundary of each,
E is 1-LCC in Sn and E � E′ is 1-LCC in Sn. Then E is 1-LCC in Sn.

The recursive process runs as follows. Start with S0 = λ(∂In). We
produce (n − 1)-spheres Si (i = 1, . . . ,m(1)) and extensions of λ over Li

so Si ⊂ λ(Li) using the Bubble Lemma. It gives approximations λ| IntEi

by new 1-LCC embeddings λ′
i with image very close to λ(Ei); since each

∂σi � IntEi is a PL (n − 1)-cell E′
i, λ|∂E′

i extends to a homeomorphism
(still called λ) of E′

i to the closure of λ′
i(IntEi). The sphere Si is obtained

from Si−1 by replacing λ(Ei) with λ(E′
i) = λi(E

′
i). Let Wj denote the

component of Sn � Sj contained in W . In the successive applications of
the Bubble Lemma require that λ′

i(Ei) ⊂ Wi. Inductively assuming that
λ(Li−1)∩Wi−1 = ∅, we see that λ|Li = Li−1 ∪E′

i is 1-1 and λ(Li)∩Wi = ∅,
as required.

To control sizes of the λ(σj), one can partition the cubes σi into n
pairwise disjoint groups. Begin with the cubes from the first group, proceed
to those in the second group, and so on. One way to obtain an acceptable
grouping is to insist that k1 be odd and to partition the intervals of T1

into two pairwise disjoint groups, designated as black and white, with the
two intervals containing the endpoints of I being black. The first group
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of cubes from Tn
1 consists of all products of black intervals; generally, the

jth group (j > 1) consists of all n-cubes from Tn
1 expressed as a product

involving exactly j − 1 white intervals. There are exactly n such groups,
not n+1, since no product determined by n white intervals meets L0. When
using the Bubble Lemma with the first group, insist that diamλ(σi) <
1/(3n−1 ·2) = δ1. Consequently, when treating cubes from the second group,
we see that λ(Ei) has diameter at most 3δ1, and we can extend λ over E′

i

so diamλ(σi) < 3δ1. Each time we progress from one group to the next the
diameters of the λ(Ei) can triple. Thus, at the end, the extension λ satisfies
diamλ(σi) < 3n−1 · δ1 = 1/2 for all i.

σ1

1

σ8

σ6

σ5 σ7

σ4

σ2 σ3

λ(E )

5λ(E )

2λ(E )

3λ(E )

4λ(E )

6λ(E )

7λ(E )

8λ(E )′

′

′

′

Figure 7.8. P1 and λ(L1) for n = 2, k1 = 3

The next step simply repeats this procedure, except that the role of
λ|∂In now is taken over successively by λ1|∂σi, and the role of W by the
component of Sn � λ(∂σi) contained in W . Critical size control is imposed
by choosing an integer k2 ≥ 3 such that for the subdivision T2 of I into k1k2
intervals of equal length and Tn

1 the associated iterated product subdivision
of In, we have diamλ1(σ ∩ L1) < 1/(3n−1 · 4) for all σ ∈ Tn

2 . Fix an n-
cube Cj of Tn

1 in P1 and order the n-cubes σ1, σ2, . . . , σm(2) of T
n
2 in Cj so

that ∂σi ∩CjL
i−1
1 is an (n− 1)-cell, where CjL

i−1
1 = ∂Cj ∪ ∪i−1

t=1∂σi. Apply

Lemma 7.6.2 to extend λ1 to an embedding λ1 : CjL
i
1 → V such that each

λ1(∂σi) is a 1-LCC embedded (n− 1)-sphere of diameter less than 1/4. At
the end of the second stage of this process we have an extension of λ1 to an
embedding λ2 : L2 → V such that λ2(∂σ) is a 1-LCC embedded sphere of
diameter less than 1/4 for all n-cubes σ ⊂ P2 from Tn

2 .

Continue in the same way, thereby generating infinite sequences κ =
{k1, k2, k3, . . . } of positive integers, with each ki ≥ 3, {T1, T2, T3, . . . } of
subdivisions of I, with Ti determining k1k2 · · · ki equal length subintervals,
and {λi : Li → W} of embeddings such that λi+1|Li = λi and, for each
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n-cube σ ⊂ Pi from Tn
i , λi(σ) is a 1-LCC embedded sphere of diameter less

than 1/2i.

Lemma 7.6.7 furnishes an embedding Λ : Xκ → W of the associated S-
curve Xκ such that Λ|∂In = λ|∂In. By Theorem 7.5.7, Xκ is topologically
equivalent to the standard Menger space Mn−1

n , and then Corollary 7.5.10
assures that W is an n-cell. Finally, since W could be either component of
Sn � Σ, Σ is flat. �
Corollary 7.6.9. Every 1-LCC embedding of an (n − 1)-dimensional ∂-
manifold S in an n-manifold M (n ≥ 5) is locally flat.

Proof. The Bubble Lemma and Lemma 7.6.3 indicate any sufficiently small
(n−1)-disk D in S lies on a 1-LCC embedded (n−1)-sphere ΣD that lives in
a coordinate chart of M , and D can be assumed to be standardly embedded
in ΣD. �
Corollary 7.6.10. Every (n− 1)-cell E ⊂ Sn as in Lemma 7.6.8 is flat.

Corollary 7.6.11. An (n− 1)-cell E in Sn (n ≥ 5) is flat if and only if E
is 1-LCC at points of IntE and ∂E is locally homotopically unknotted.

Historical Notes. The approach to Theorem 7.6.1 presented here was de-
veloped by Černavskĭı (1973). Another argument was given by Daverman
(1973b).

The 3-dimensional analogs of the main results of this section were de-
veloped by Bing (1961b), and the 4-dimensional analogs were produced by
Freedman and Quinn (1990).

On a topic related to Corollary 7.6.10, Černavskĭı (1967) showed the
union of two locally flat (n−1)-cells that intersect in an (n−2)-cell standardly
embedded in the boundary of each to be flat itself, and Kirby (1968b) did the
same for n = 4. Earlier, P. H. Doyle (1960) established the 3-dimensional
version. More recently, Černavskĭı (2006) provided a new proof of the result.

Exercises

7.6.1. Show that if σi ∈ Tn
1 in the proof of 7.6.5 belongs to the (j + 1)st

group and contains no point with coordinate 0 or 1, then Ei is
congruent to a rescaled version of [Ij ∪ (∂Ij × I)]× In−j.

7.6.2. Prove Lemma 7.6.8.

7.6.3. Prove Corollary 7.6.11.

7.7. Locally flat approximations

Theorem 7.7.1 (Locally Flat Approximation). Let M be an n-manifold
(n ≥ 5), Q an (n − 1)-manifold topologically embedded in M as a closed
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subset and ε : Q → (0, 1) a continuous function. Then there exists a locally
flat embedding λ : Q → M such that ρ(λ(q), q) < ε(q) for all q ∈ Q.

To establish this foundational result, we will follow the lead of Ancel and
Cannon (1979) who exploited a notion of embedding relation originally in-
troduced in (Cannon, 1975). Embedding relations involve considerable new
terminology, which will be laid out in what immediately follows, to provide
context for statements of some forthcoming rather technical results. The
conclusion of this section contains a brief appendix in which basic proper-
ties of embedding relations are developed.

A relation R : X → Y is simply a subset of X × Y whose projection to
the first factor is surjective; in other words, R is a multi-valued function.
Its image R(X) has the usual meaning, and its inverse R−1 : R(X) → X
is the relation {〈y, x〉 ∈ R(X) × X | 〈x, y〉 ∈ R}. A relation R : X →
Y is continuous if for each closed subset C of Y , R−1(C) is closed in X
(expecting inverses of open sets to be open would be unreasonable), and it
is an embedding relation if any two of its point images are disjoint.

For simplicity, assume that all spaces are locally compact, separable
and metrizable. A relation R : X → Y is proper if both R and R−1 are
continuous with compact point images.

Given a metric space (X, d) and ε > 0, (ε) denotes the relation (ε) : X →
X defined as {〈x, y〉 ∈ X ×X | d(x, y) < ε}. When such expressions appear
as terms in a composition of relations, we occasionally omit the parentheses
to shorten the formulae. It should be noted that, if R : X → Y is a relation,
even when the metric on X×Y is, say, the sum of the metrics on its factors,
(ε) ◦R ⊂ X × Y is not identical to the ε-neighborhood of R but, instead, is
a subset. Also, given two functions f, f ′ : Y → X, ρ(f, f ′) < ε if and only if
f ′ ⊂ (ε) ◦ f as relations.

A relation R : X → Y is 1-LCC if for each x ∈ X and neighborhood U
of R(x) in Y there exists a neighborhood V ⊂ U of R(x) such that loops in
V � ImR are null-homotopic in U � ImR. Quite obviously, when R is an
embedding relation, R(X) is closed in Y and π : Y → Y/R is the quotient
map determined by the decomposition of Y into singletons from Y �R(X)
and the sets {R(x) | x ∈ X}, then R is 1-LCC if and only if πR(X) (which
is an embedded copy of X) is a 1-LCC subset of Y/R, in the usual sense.

A cell-like embedding relation is a proper embedding relation R : X → Y
from a locally compact metric space X to an ANR Y such that the point
images under R are non-empty, disjoint, cell-like sets. By definition, con-
tinuous embedding relations between compact ANRs are necessarily proper
if point images are cell-like. Our attention will focus on cell-like embedding
relations R : Sn−1 → Sn; it follows easily that then R(Sn−1) is compact



384 7. Codimension-one Embeddings

and R−1 : R(Sn−1) → Sn−1 is a genuine cell-like mapping. It is perfectly
appropriate to regard a cell-like embedding relation simply as the inverse of
a cell-like mapping. Approximation of one embedding relation by another
permits the domain of the inverse cell-like map to change, in a controlled
way, while preserving the target. In the strategy employed here, given a
cell-like embedding relation R : Sn−1 → Sn, one will find a better approx-
imating relation R′; the associated image R′(Sn−1) then will be close, in a
reasonably rich sense, to R(Sn−1) and both images will admit cell-like maps
(R−1 and (R′)−1) to Sn−1. Ultimately, upon passage to a limit, the resulting
cell-like embedding relation will admit an approximating 1-LCC embedding
of Sn−1, which will be flat, by Theorem 7.6.1.

In partial compensation for the introduction of unfamiliar concepts, we
will address only the most familiar case of 7.7.1: an embedding of the (n−1)-
sphere in Sn. Restated in the language of embedding relations, the precise
aim of §7.7 is to establish the following 1-LCC variation of Theorem 7.7.1.

Theorem 7.7.2 (1-LCC Approximation of Relations). Suppose R : Sn−1 →
Sn (n ≥ 5) is a cell-like embedding relation and L is a neighborhood of
R in Sn−1 × Sn. Then L contains a 1-LCC cell-like embedding relation
R′ : Sn−1 → Sn.

Given a cell-like embedding relation R : Sn−1 → Sn, we will denote by
πR : Sn → Sn/R the quotient map associated with the decomposition of Sn

into the sets R(x), x ∈ Sn−1, and the singletons of Sn�R(Sn−1). A central
difficulty is that, generally, Sn/R need not be a manifold.

Corollary 7.7.3. Under the hypotheses of Theorem 7.7.2, L contains a
locally flat embedding λ : Sn−1 → Sn.

Proof. Given R : Sn−1 → Sn and L, use 7.7.2 to obtain a 1-LCC embedding
relation R′ : Sn−1 → Sn in L. Find ε > 0 such that the ε-neighborhood
Nε of R′ is a subset of L. Proposition 7.4.13 assures that Sn/R′ has the
DDP and, hence, in view of the Cell-like Approximation Theorem, that the
decomposition induced by R′ is shrinkable. Choose δ > 0 such that

(π′)−1 ◦ (δ) ◦ (πR′) ⊂ Nε,

where π′ : Sn → Sn/R′ is the decomposition map, and apply Theorem 2.3.3
to obtain a map µ : Sn → Sn realizing that decomposition—in other words,
µ satisfies

{µ−1(s) | s ∈ Sn} = {(π′)−1(x) | x ∈ Sn/R′}
—and require ρ(π′µ, π′) < δ as well. It follows that λ = µR′ ⊂ Nε ⊂ L is an
embedding and a 1-LCC approximation to R. Hence, λ(Sn−1) is (locally)
flat, by Theorem 7.6.1. �
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Application of Corollary 7.7.3 to an arbitrary embedding λ′ : Sn−1 → Sn

and to the neighborhood L = (ε) ◦ λ′ in Sn−1 × Sn immediately yields
Theorem 7.7.1 for codimension-one spheres in Sn.

Lemma 7.7.4. For any cell-like embedding relation R : Sn−1 → Sn, ImR
separates Sn into two components.

Proof. By Proposition 3.2.9, R(Sn−1) has the Čech cohomology of Sn−1.
Repeat the analysis given in Proposition 7.1.1. �

Let f : ∂I2 → Sn � ImR be a loop, and let f∗ : I2 → Sn/R be a
map extending πR ◦ f such that Im f∗ misses one of the complementary
domains of the (n − 1)-sphere Im(πR ◦ R) in Sn/R. Then the relation

F̂ = π−1
R ◦f∗ : I2 → Sn is called an R-disk bounded by f . In the proof of the

1-LCC Approximation Theorem of Relations we shall show that every such
loop f near a point image of R bounds a “small” R-disk F̂ . That notion of
smallness is measured as R-diameter, where the R-diameter of a set X ⊂ Sn

is defined as

R- diam(X) = inf{ε > 0 | for some s ∈ Sn−1, X ⊂ ε ◦R ◦ ε(s)};

for simplicity, we also define R-diam(F̂ ) = R-diam(Im F̂ ).

Lemma 7.7.5 (Basic Lemma). Suppose R : Sn−1 → Sn (n ≥ 5) is a cell-like

embedding relation, F̂ : I2 → Sn is an R-disk, and L,O are neighborhoods
of R, F̂ , respectively. Then L contains a cell-like embedding relation R′′′ :
Sn−1 → Sn and O contains a continuous function F ∗ : I2 → Sn such that
R′′′(Sn−1) ∩ F ∗(I2) = ∅.

Proof that Basic Lemma 7.7.5 implies Theorem 7.7.2. For purposes
of this argument, given two relations L′, L′′ : Sn−1 → Sn, we will say that
L′ is slice-trivial in L′′ if L′ ⊂ L′′ and L′(s) is null-homotopic in L′′(s) for
each s ∈ Sn−1.

Let f1, f2, . . . : S
1 → Sn denote a countable set of embeddings dense in

the space of all loops in Sn.

Set R0 = R and let L0 ⊂ L be a compact neighborhood of R0. Assume
inductively that cell-like embedding relations R0, . . . , Ri−1 : Sn−1 → Sn,
compact neighborhoods L0 ⊃ R0, · · · , Li−1 ⊃ Ri−1 in Sn−1 × Sn, and con-
tinuous functions F1, . . . , Fi−1 : I

2 → Sn bounded by f1, . . . , fi−1 have been
determined satisfying the following four conditions for j = 0, 1, . . . , i− 1:

(1j) Rj ⊂ IntLj ⊂ Lj ⊂ (1/j) ◦Rj ◦ (1/j);
(2j) Lj is slice-trivial in Lj−1;

(3j) L−1
j ◦ Lj ⊂ (1/j) (the j = 0 case is vacuous); and
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(4j) if fj bounds an Rj−1-disk and if

εj = inf{Rj−1- diam(F̂ ) | F̂ is an Rj−1-disk bounded by fj},
then Rj−1- diam(ImFj) < 2εj and ImLj ∩ ImFj = ∅.

Choose Ri, Li and Fi as follows. In case fi bounds an Ri−1-disk and
εi is the infimum defined in (4i), an easy consequence of the Basic Lemma
gives a cell-like embedding relation (Ri : Sn−1 → Sn) ⊂ IntLi−1 and a
continuous function Fi : I

2 → Sn bounded by fi such that ImRi∩ ImFi = ∅
and Ri−1-diam(ImFi) < 2εi. That Condition (4i) holds is obvious. There is
a compact neighborhood Li of Ri in IntLi−1 ∩ [(1/i) ◦ Ri ◦ (1/i)] by (5) in
the Appendix on Continuous Relations; with this choice of Li, (1i) will be
satisfied. Condition (2i) can be obtained using (9) of the Appendix. Since
R−1

i ◦ Ri = Id ⊂ (1/i), Condition (3i) can be obtained by Composition
Theorem (6) of the Appendix.

In the other case, where fi bounds no Ri−1-disk, Condition (4i) is vacu-
ous; one then can take Ri = Ri−1, Fi arbitrary and Li satisfying (1i)− (3i),
in order to complete the inductive step.

Define R′ : Sn−1 → Sn as R′ = ∩∞
i=0Li. We claim that R′ is a 1-LCC

cell-like embedding relation. Clearly it is contained in L0 ⊂ L and clearly
ImR′ ∩ ImFi = ∅ for all i such that fi bounds an Ri−1-disk.

(i) R′ is a proper relation. Being an intersection of compact sets, R′

itself is compact and, thus, proper, by (5) in the Appendix.

(ii) R′ is cell-like. For each x ∈ Sn−1, R′(x) has a neighborhood system
L0(x) ⊃ L1(x) ⊃ · · · , with Li(x) compact, nonvoid, and contractible in
Li−1(x), by (2i). As a result, R′(x) = ∩iLi(X) is cell-like.

(iii) R′ is 1-1. Indeed,

(R′)−1 ◦R′ ⊂ ∩i(L
−1
i ◦ Li) ⊂ ∩i(1/i) = IdSn−1 ;

hence, point images under R′ are disjoint.

Consequently, R′ is a cell-like embedding relation. Showing it to be
1-LCC is the only remaining issue.

(iv) R′ is 1-LCC. Consider any point x ∈ Sn−1 and any neighborhood
U of R′(x) in Sn. The task ahead is to find a neighborhood V of R′(x) in
U ⊂ Sn such that loops in V � ImR′ are null-homotopic in U � ImR′.

We rely on (6) of the Appendix again to supply technical estimates.
Since

U ⊃ R′(x) = (Id ◦R′ ◦ Id) ◦ (Id ◦R′−1 ◦ Id) ◦ (Id ◦R′ ◦ Id)(x),
Composition Theorem (6) assures the existence of an α > 0 and an integer
I > 0 satisfying:

(1) U ⊃ (2α ◦ LI ◦ 2α) ◦ (2α ◦ L−1
I ◦ 2α) ◦ (α ◦R′ ◦ α)(x).



7.7. Locally flat approximations 387

Set β = α/2 and choose an integer J > 2/α. Then i > J implies

(2) β ◦R′ ◦ β(x) ⊂ (α/2) ◦ Li−1 ◦ (α/2)(x)
⊂ (α/2) ◦ [(α/2) ◦Ri−1 ◦ (α/2)] ◦ (α/2)(x), by (1i−1)

= α ◦Ri−1 ◦ α(x).
Having chosen α, β, I, and J , we specify an (n− 1)-cell neighborhood D

of x in Sn−1 ∩ β(x), a compact neighborhood V ′ of R′(x) in β ◦ R′ ◦ β(x)
intersecting ImR′ only in R′(IntD) and a compact neighborhood V of R′(x)
which contracts in V ′ (recall that R′(x) is cell-like).

We show that each loop f : S1 → Sn in V �ImR′ contracts in U�ImR′.
Pick K >Max{I, J} so large that, when i > K,

(3) Ri−1(D) ⊂ β ◦R′ ◦ β(x),
(4) Ri−1(S

n−1 � IntD) ∩ V ′ = ∅, and
(5) Im f ∩ ImRi−1 = ∅.

Using (5) and the density of {fi}, pick i > K such that the loop fi is
homotopic to f in V � Im(R′ ∪ Ri−1). We now explain why the associated
extension Fi : I2 → Sn given by (4i) has image in U � ImR′, which will
complete the proof.

Since V contracts in V ′, f admits a continuous extension g : I2 → V ′.
Let π denote the decomposition map Sn → Sn/Ri−1 associated with Ri−1,
and identify Sn−1 with its image under the embedding π ◦ Ri−1. The set
π ◦ f(S1) lies in one of the two components of (Sn/Ri−1) � Sn−1, and the
set π ◦ g(I2) intersects Sn−1 only in the (n − 1)-cell π ◦ Ri−1(D) by (4).
By the Tietze Extension Theorem, there is a continuous function f∗ : I2 →
Sn−1/Ri−1 extending π ◦f , the image of which lies in π ◦g(I2)∪π ◦Ri−1(D)
and misses one component of (Sn/Ri−1)�Sn−1, namely, the component not
containing f(S1).

The relation F̂ = π−1 ◦ f∗ : I2 → Sn is an Ri−1-disk bounded by f .
Since Im f∗ ⊂ π ◦ g(I2) ∪ π ◦Ri−1(D), it follows that

Im F̂ ⊂ g(I2) ∪Ri−1(D) ⊂ β ◦R′ ◦ β(x)
(by (3) and the choice of V ′ ⊃ g(I2)). But β ◦ R′ ◦ β(x) ⊂ α ◦ Ri−1 ◦ α(x)
(by (2)). Hence, by definition of Ri-diam(F̂ ) and rules governing the choice
of Fi, Fi is a singular disk in Sn � Li bounded by fi and lying, for some
y ∈ Sn−1, in the set (2α)◦Ri−1◦(2α)(y), by (4i−1). The only issue remaining
is to show that 2α ◦Ri−1 ◦ 2α(y) ⊂ U .

Since ImFi ⊂ α ◦R′ ◦ α(x) ∩ (2α) ◦Ri−1 ◦ (2α)(y) and is nonempty, we
have ImFi contained in

(2α) ◦Ri−1 ◦ (2α)(y) ⊂ [(2α) ◦Ri−1 ◦ (2α)][(2α) ◦R−1
i−1 ◦ (2α)][α ◦R′ ◦α](x),

and this latter set lies in U , by (1). �
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Before proceeding it might be beneficial to review the extensive collection
of definitions and notation from §5.5 concerning Štan′ko moves, the template
(A,B,C,D, e) in Î2, the n-dimensional expansions

A = A× În−2, B = B × În−2, C = C × [−1, 1]× În−3,

the 2-cells D = D × 0 ⊂ În and e× Î = e× {0} × Î × 0 ⊂ În, semi-capped
surfaces, Delta structures, branching systems, Štan′ko complexes, and the
special homeomorphism Φn : În → În.

Here is the setting for the Basic Lemma, the proof of which occupies most
of the remainder of this section. All this data and notation is presumed to
be in place until the completion of that proof.

R : Sn−1 → Sn, a cell-like embedding relation, with associated cell-like
decomposition map: π = πR : Sn → Sn/R;

(F̂ = π−1 ◦ f∗) : I2 → Sn, an R-disk with f∗ : I2 → Sn/R a continuous

function and with F̂ |∂I2 an embedding;

L, a neighborhood of R in Sn−1 × Sn;

O, a neighborhood of F̂ in I2 × Sn.

We identify Sn−1 with Im(π◦R) via the homeomorphism π◦R : Sn−1 →
Im(π ◦R) so that R = π−1|Sn−1, and we also make use of the notation:

W , a component of Sn/R� Sn−1 containing f∗(∂I2);

L0, a neighborhood of π−1 in Sn/R×Sn whose restriction to Sn−1 is L.

Anticipating the verifications to be made near the end of the proof of
the Basic Lemma, we now impose certain essential controls using the Com-
position Theorem (6): since

[Id ◦ Id ◦ π−1 ◦ IdSn/R ◦ π ◦ Id ◦ Id] ◦ Id ◦ π−1 = π−1 ⊂ L0

(where all unsubscripted “Id” denote Id : Sn → Sn), and since

Id ◦ π−1 ◦ IdSn/R ◦ f∗ = F̂ ⊂ O,

there is an ε > 0 such that

(S†) (ε ◦ ε ◦ π−1 ◦ (2ε) ◦ π ◦ ε ◦ ε) ◦ ε ◦ π−1 ⊂ L0 and

(S‡) ε ◦ π−1 ◦ ε ◦ f∗ ⊂ O.

Theorem 7.7.6 (Štan′ko Complex Mapping). For each ε > 0 there exist a
branching system ∆ : ∆0 → ∆1 → ∆2 → · · · , with D0 of ∆0 = (D0, E0,Γ0)
equal to I2, and a continuous function h : C(∆) → Sn/R satisfying:

(1) h(C(∆)� IntE∗) ⊂ W ⊂ Sn/R� Sn−1,

(2) h(D∗
i ∪D∗

i+1 ∪D∗
i+2 ∪ · · · ) ⊂ B(Sn−1; ε/2i−1) for i > 0,

(3) ρ(h ◦ (∗)|D0, f
∗) < ε,

(4) h ◦ (∗)|∂D0 = f∗|(∂D0 = ∂I2),
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(5) diamh(Pi) < ε/2i for i > 0 and each component Pi of D
∗
i ∪ E∗

i−1.
In addition, the map h may be chosen so there exists a PL injective map
h′ : C(∆) → Sn with π ◦ h′ = h.

Remark. Unlike the output of the related codimension-three Štan′ko Em-
bedding Theorem (5.5.5), h′ need not be a homeomorphism: a sequence
{x1, x2, x3, . . . | xi ∈ h′(D∗

i )} can accumulate at a point of h′(E∗
0), causing

(h′)−1 to be discontinuous. An example will be provided later, in §7.10, of an
actual embedding R : Sn−1 → Sn and disjoint simple closed curves J1 and J2
in π−1(W ) such that for every singular disk D1 in Cl(π−1(W )) bounded by

J1 and every singular disk D2 in Sn bounded by J2, D1∩D2 �= ∅. If F̂ would
be an R-disk sending ∂D homeomorphically onto J1 and if J2 would bound
a component of h(E∗

i ), then points of h′(C(∆)�E∗) necessarily would accu-
mulate at h′(IntE∗

i ). This possibility accounts for a thickening procedure to

be employed later, in Štan′ko Complex Embedding Theorem 7.7.8, and, to
a large extent, for the prolonged diversion through the realm of embedding
relations. To establish the Embedding Theorem we will employ a carefully
constructed cell-like embedding relation R′ : Sn → Sn, will replace R by
R′ ◦R, and will obtain a PL embedding of C(∆) → Sn for the modified R.

As in §5.5, the Mapping Theorem is a consequence of iterated applica-
tions of the following, which in turn is simply a variation on Lemma 5.5.6
for the slightly more general context to be faced.

Lemma 7.7.7. Suppose g : (D, ∂D) → (W,W ) is a map of pairs, where D
is a disk, and δ > 0. Then there exist a Delta structure ∆ = (D,E,Γ) and
a map f : D∗ → W satisfying:

(1′) f(D∗ � IntE∗) ⊂ W ,

(2′) f(E∗) ⊂ B(Sn−1; δ),

(3′) ρ(f ◦ (∗)|D, g) < δ,

(4′) f ◦ (∗)|∂D = g|∂D, and

(5′) diam f(P ) < δ for each component P of E∗ or Γ∗.

Proof. Being the finite-dimensional image of Sn under a cell-like map, Sn/R
is an ANR (Corollary 7.4.8). Since W is a closed subset of Sn/R bounded
by the (n− 1)-sphere πR(Sn−1), W is also an ANR.

Claim: each s ∈ πR(Sn−1) has arbitrarily small pairs of neighbor-
hoods N ′ ⊂ N such that H1(N

′ ∩ W ;Z) → H1(N ∩ W ;Z) is trivial.
Given N with N ∩ πR(Sn−1) contractible, choose N ′ ⊂ N with incl :
N ′ → N homotopically trivial; by Proposition 3.2.9 it suffices to show that
H1(π

−1(N ′ ∩ W );Z) → H1(π
−1(N ∩ W );Z) is trivial, and that property

holds just as in the proof of Proposition 7.1.11.
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Hence, there exist positive numbers α < β < η < δ/4 such that

(η) η-loops in W bound singular (δ/4)-disks in W ,

(β) β-loops in W bound singular, orientable disks with handles of diam-
eter less than η in W (recall Lemma 5.5.3), and

(α) any two points of W within α of each other are joined by (β/2)-arcs
in W .

TriangulateD with mesh so small that the image under g of each simplex
has diameter less than α, and let D(0), D(1) and D(2) denote the successive
skeleta of this triangulation. Since g(∂D) ⊂ W we may define f on ∂D as

g|∂D and define f for any other vertex v of D(0) as a point in W so close
to g(v) that vertices of the same simplex have images in W within α of one
another and within α of their image under f .

Apply (α) to extend f over |D(1)| so that the image of each 1-simplex
lies in W and has diameter less than β/2.

Apply (β) for each σ ∈ D(2) to obtain an orientable disk-with-handles
Qσ bounded by ∂σ and a continuous extension fσ : Qσ → W of f |∂σ sending
Qσ to a set of diameter less than η.

In the interior of each Qσ identify complete sets Γσ,Γ
′
σ of handle curves,

as before.

By (η) there exists for each σ ∈ D(2) a finite disjoint union Eσ of disks
whose boundaries equal Γ′

σ and whose interior points have no intersection
with ∪σQσ as well as a continuous extension f : Eσ → W taking each
component of Eσ to a set of diameter less than δ/4. Define

D∗ = |D(1)| ∪ [∪σ(Qσ ∪ Eσ)], E∗ = ∪σEσ, Γ∗ = ∪σΓσ.

It should be clear that D∗ is the semi-capped surface of a Delta structure
∆ = (D,E,Γ), where (∗)| |D(1)| = Id and (∗):σ → Qσ ∪ Eσ. Clearly f as
defined on D∗ satisfies (1′), (3′), (4′) and (5′). If (2′) is not already satisfied,
it can only stem from the presence of a component of E∗ ∪ Γ∗ whose image
misses Sn−1; the preimage of such a component should simply be deleted
from E and Γ. �

Proof of Mapping Theorem 7.7.6. Choose a sequence δ0 > δ1 > · · · of
positive numbers such that

(i) 4δi < ε/2i for i ≥ 0 and

(ii) δi+1-loops in W bound singular δi-disks in W .

Lemma 7.7.7 provides a Delta structure ∆0 = (D0, E0,Γ0), where D0 = I2,
plus a continuous function h : D∗

0 → W satisfying the conditions below for
j = 0, where f0 = f |D0:

(1j) h(D∗
j � IntE∗

j ) ⊂ W ,



7.7. Locally flat approximations 391

(2j) h(E∗
j ) ⊂ B(Sn−1; δj+1),

(3j) ρ(h ◦ (∗)|Dj, fj) < δj+1,

(4j) h ◦ (∗)|∂Dj = fj |∂Dj, and

(5j) diamh(P ) < δj+2 for each component P of E∗
j or Γ∗

j .

Assume inductively that ∆0 → · · · → ∆i−1, fj : Dj → W and

h|D∗
0 ∪ · · · ∪D∗

i−1 : D
∗
0 ∪ · · · ∪D∗

i−1 → W

have been obtained satisfying (1j)–(5j) for each j ∈ {0, . . . , i − 1}. For
each component γ of Γ∗

i−1, let D(γ) be a disk with boundary γ. By (5i−1),
diamh(γ) < δi+1, so (ii) assures the existence of a continuous extension
fi(γ) : D(γ) → W of h|γ, the image of which has diameter less than δi. Set
Di = ∪γD(γ) and define fi on Di as fi = ∪γfi(γ). By Lemma 7.7.7 there

exist a Delta structure (+) ∆i = (Di, Ei,Γi) and a map h|D∗
i : D∗

i → W
satisfying (1i)–(5i). This completes the inductive construction of

∆ : ∆0 → ∆1 → ∆2 → · · · and h : C(∆) → Sn/R.

Conditions (1), (3) and (4) of the Mapping Theorem obviously hold here.
For each component P ∪ Q of D∗

i ∪ E∗
i−1 (i ≥ 1), P ⊂ D∗

i , Q ⊂ E∗
i−1, we

have

diamh(P ) ≤ 2ρ(h ◦ (∗)|P, fi|P ) + diam fi(P ) < 3δi

and diamh(Q) < δi+1; thus, diamh(P ∪Q) < 4δi < ε/2i and (5) is satisfied.
Also, for i ≥ 1, d(h(P ), Sn−1) ≤ ε/2i, by (2i−1), since h(P ) ∩ h(E∗

i−1) = ∅.
But diamh(P ) < ε/2i, so h(P ) ⊂ B(Sn−1; ε/2i−1), and (2) is satisfied. �

Theorem 7.7.8 (Štan′ko Complex Embedding). Let ∆, h and h′ be as in
the conclusion of Mapping Theorem 7.7.6. Then the ε-neighborhood of Id :
Sn → Sn contains a cell-like embedding relation R′ : Sn → Sn such that
there is a PL embedding h′′ : C(∆) → Sn with (R′)−1 ◦ h′′ = h′.

Proof. In view of Conditions (1) and (2) of the Mapping Theorem, the
function (h′)−1|h′(C(∆)) is already continuous except possibly at points
of h′(Int(E∗

0 ∪ E∗
1 ∪ · · · )). We will split Sn apart in stages, starting with

h′(IntE∗
0), to provide enough room to isolate h′′(IntE∗

0) = h′(IntE∗
0) from

h′′(C(∆)�E∗
0). This will make (h′′)−1 continuous at points of h′′(IntE∗

0). It-
eration of the splitting will accomplish the same goal at images of E∗

1 , E
∗
2 , . . .

and will complete the proof of this Embedding Theorem.

The basic splitting move is the inverse of a simple collapsing map. Define
r : Î2 → [0, 1] as r(x) = (1/4) · d(x, ∂Î2) ∈ [0, 1/2] and set

Î2 ×r Î
n−2 = ∪{x× [r(x) · În−2] | x ∈ Î2} ⊂ Î2 × În−2 ⊂ În.

Note that Î2 ×r În−2 is a closed neighborhood of Int Î2 × 0 in În. Let
ψ : Î2 ×r Î

n−2 → Î2 × 0 denote projection to the first factor. Define a map
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Ψ : În → În extending ψ, fixed on ∂In, sending each x × În−2 onto itself,
and having as its nondegenerate point preimages precisely the nondegenerate
point preimages of ψ. The relation Ψ−1 is called the basic splitting relation.

I
n-2
ˆ

I
n-2
ˆ

I
2
ˆ

I
2
ˆ

I
2
ˆ ×

×

r

0

Figure 7.9. The basic splitting relation Ψ−1

For each component E of h′(E∗
0) there is a PL embedding PE : Î2 ×

În−2 → Sn taking Î2 × 0 onto E and taking each fiber x × În−2 onto a
very small set. The embeddings {PE | E ⊂ h′(E∗

0)} should be chosen with
disjoint images. Define R : Sn → Sn splitting Sn along h′(E∗

0) by the
formula

R0(x) =

{
PEΨ

−1P−1
E (x) if x ∈ PE(Î

n)

x if x �∈ ∪EPE(Î
n).

The restriction on În−2 fiber size assures that R0 lives in the ε-neighborhood
(ε) of the relation Id : Sn → Sn. Define h0 : C(∆) → Sn as

h0(x) =

{
h′(x) if x ∈ E∗

0

R0 ◦ h′(x) if x �∈ E∗
0 .

Then h0 is PL and injective, R−1
0 ◦h0 = h′, and h−1

0 |h0(C(∆)) is continuous
at the points of h0(E

∗
0). Choose a compact neighborhood N0 of R0 in (ε)

slice-trivial in (ε), with N−1
0 ◦N1 ⊂ (1).

In the same manner choose R1 : Sn → Sn splitting Sn along h0(E
∗
1),

fixing R0 ◦ h′(D∗
0), and satisfying R1 ◦R0 ⊂ IntN0. Define h1 : C(∆) → Sn

by

h1(x) =

{
h0(x) if x ∈ E∗

1

R1 ◦ h0(x) if x �∈ E∗
1 .

Choose a compact neighborhood N1 of R1 ◦ R0 in IntN0, slice-trivial in
IntN0, with N−1

1 ◦N1 ⊂ (1/2).
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In general, have Ri split Sn along hi−1(E
∗
i ), fixing Ri−1 ◦ · · · ◦ R0 ◦

h′(D∗
i−1), and satisfyingRi◦Ri−1◦· · ·◦R0 ⊂ IntNi−1. Define hi : C(∆) → Sn

as

hi(x) =

{
hi−1(x) if x ∈ E∗

i

Ri ◦ hi−1(x) if x �∈ E∗
i .

Again choose a compact neighborhood Ni of Ri ◦ · · · ◦R0 in IntNi−1, slice-
trivial in IntNi−1, with N−1

i ◦Ni ⊂ (1/(i+ 1)).

Finally, define R′ as [R′ = ∩iNi] : S
n → Sn. Just as in the proof of the

1-LCC Approximation Theorem, R′ is a cell-like embedding relation. Define
h′′ : C(∆) → Sn as h′′ = ∪i(hi|D∗

i ). That h′′ is the embedding required in
this Embedding Theorem is easily confirmed. �

Theorem 7.7.9 (Unknotting). Suppose C(∆) is a Štan′ko complex PL em-
bedded in a PL n-manifold M (n ≥ 5) and Z is a compact subset of C(∆).
Then there exist a PL 3-cell Y 3

Z and a PL embedding ψ : Y 3
Z × In−3 → M

such that Z ⊂ ψ(Y 3
Z × 0).

Proof. All but the case n = 5 is covered by Lemma 5.5.8. By Lemma 5.5.7
Z is contained in some PL-embedded, collapsible, finite 2-complex in M .
According to (Price, 1966), any two homotopic PL embeddings of a col-
lapsible finite k-complex in M are ambient isotopic provided n ≥ 2k+ 1, so
the remaining n = 5 case follows like the others. �

Proof of Basic Lemma 7.7.5. Take ∆, h and h′ from the conclusion of
Štan′ko Complex Mapping Theorem 7.7.6, and then take the relation R′ and
the embedding h′′ from the conclusion of the Embedding Theorem 7.7.8.
Identify C(∆) with h′′(C(∆)) via the homeomorphism h′′. Recall the com-
bined identification map

(∗) : D0 
D1 
 · · · → C(∆) = D∗
0 ∪D∗

1 ∪ · · · = h′′(C(∆)) ⊂ Sn.

For i ≥ 0 identify that Di associated with the Delta structure (+)∆i =
(∆i, Ei,Γi) with the Di from the template (+)(Ai, Bi, Ci, Di, ei) in such a
manner that Ei ∪ Γi ⊂ IntBi and (Di ∩ ei)

∗ = D∗
i ∩ E∗

i−1 ⊂ C(∆) ⊂ Sn.
Keep in mind that Im(R′ ◦R) ∩ C(∆) ⊂ ∪iE

∗
i ⊂ ∪iB

∗
i .

By Unknotting Theorem 7.7.9 there exist a regular neighborhood Ni

of D∗
i ∪ E∗

i−1 in C(∆), a PL 3-manifold Yi and an embedded PL product

Yi × În−3 ⊂ Sn such that Ni ⊂ Yi = Yi × 0 ⊂ Yi × În−3 ⊂ Sn. For i > 0
we will use the sets D∗

i ∪E∗
i−1 ⊂ Ni and the product structure Î3 × În−3 to

construct an embedding αi : Î
n = Ai ∪ Bi → Sn suitable for use in a basic

Štan′ko move. The αi’s will be constructed in three steps, which proceed
exactly like those of the second proof of Fundamental Lemma 5.5.2, only
with X replaced throughout by Im(R′ ◦R). Those steps are not reproduced
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here, but the properties of these αi are listed below for easy reference later
on in the verification steps:

(1) Im(Ai ∪ Bi) ⊂ B(D∗
i ∪E∗

i−1; ε/i) (component by component);

(2) of the sets in the list

[D∗
0 ∩A∗

0], [B
∗
0 ], [A

∗
1, ImA1], [B

∗
1 , ImB1], [A

∗
2, ImA2], [B

∗
2 ,B2], . . . ,

only the ones in the same or adjacent square brackets can intersect,

(3) X ∩ αi(Ai) ⊂ αi(Ci);

(4) αi(Ai ∩ Φn(Ci)) ⊂ Sn � C(∆).

(5) Im(R′ ◦R) ∩ αi(Bi) ⊂ αi+1(Ci+1);

(6) αi(Bi) ∩ αi+1(Ai+1 ∩ Φn(Ci+1)) = ∅;
(7) αi(Bi ∩ Φn(Ci)) ⊂ Sn � C(∆).

With the embeddings αi all in place, we define the infinite Štan′ko move
that leads to the desired cell-like embedding relation and establishes the
Basic Lemma. Set

R′′(x) =

{
αi ◦ Φn(x) ◦ α−1

i (x) if x ∈ αi(Ci) ∩ Im(R′ ◦R)

x otherwise,

and note that R′′ is a function. The cell-like embedding relation R′′′ :
Sn−1 → Sn whose existence is posited in the statement of the Basic Lemma
is given by R′′′ = R′′ ◦ R′ ◦ R, and the continuous function F ∗ : I2 →
Sn � ImR′′′ named there is given by F ∗ = (∗)|(I2 = D0).

Verification that R′′′ and F ∗ have the desired properties is a lengthy
process. Each of the verification items labelled (Vi) below opens with a
statement of what it confirms. The first of them is a technical calculation
ultimately used for showing that R′′′ ⊂ L, that R′′′ is proper and that R′′′

is cell-like.

(V1) If 〈x, y〉 ∈ R′ ◦R and 〈x,R′′y〉 ∈ R′′′�∪i<N [Sn−1× Intαi(Ai∪Bi)]
then

〈x,R′′y〉 ∈ (ε/N) ◦ [R′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1] ◦ (ε/N) ◦ [R′ ◦R].

It suffices to check the case where R′′(y) �= y, and that is done by finding
points y1, y2 ∈ Sn such that

〈x, y〉 ∈ R′ ◦R, y1 ∈ (ε/N)(y),

y2 ∈ R′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1(y1), and R′′(y) ∈ (ε/N)(y2).

By construction of R′′ there exist an integer j ≥ N and a component P
of αj(Aj ∪ Bj) containing both y and R′′(y). Let Q be the component of
D∗

j ∪ E∗
j−1 intersecting P . By (1), P ⊂ (ε/j)(Q). Thus, there exist points

y1, y2 ∈ Q satisfying y1 ∈ (ε/j)(y) and R′′(y) ⊂ (ε/j)(y2) ⊂ (ε/N)(y2).
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Since h(Q) = π ◦ (R′)−1(Q) has diameter less than ε/j by Conclusion (5) of
7.7.6, y2 ∈ R′′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1(y1).

(V2) R′′′ ⊂ L. By (V1) with N = 1,

R′′′ ⊂ ε ◦ [R′ ◦ π−1 ◦ ε ◦ π ◦ (R′)−1] ◦ ε ◦ [R′ ◦R]

and the latter set lies in L0, by Condition (S†) of the setting for the Basic
Lemma. Since L0|Sn−1 = L,R′′′ ⊂ L.

(V3) R′′′ is proper. It suffices to show thatR′′′ is compact. Let 〈x1, R′′y1〉,
〈x2, R′′y2〉, . . . be a sequence in R′′′. Passing to a subsequence, if necessary,
we see that it suffices to address two cases.

Case 1. The points y1, y2, . . . all lie in αiAi for some fixed index i. Since
R′′| [αiAi ∩ Im(R′ ◦ R)] is continuous, 〈x1, R′′y1〉, 〈x2, R′′y2〉, . . . all belong
to the compact set

[(R′ ◦R)−1, R′′][αiAi ∩ Im(R′ ◦R)] ⊂ [(R′ ◦R)−1, R′′] Im(R′ ◦R) ⊂ R′′′.

Hence, the points cluster in R′′′.

Case 2. For each integerN > 0, only finitely many of the points y1, y2, . . .
lie in ∪i<N IntαiAi. Then the intersection of the sequence {〈xi, R′′yi〉}∞i=N

with the set ZN = R′′′ − ∪i<N [Sn−1 × Intαi(Ai ∪ Bi)] is contained in the
portion of

(ε/N) ◦ [R′ ◦ π−1 ◦ (ε/N) ◦ π ◦ (R′)−1] ◦ (ε/N) ◦ [R′ ◦R|
outside ∪i<N [Sn−1× Intαi(Ai∪Bi)] and is nonempty for each such N . The
intersection of the Zn (over all N ≥ 1) equals

R′ ◦R� ∪∞
i=1[S

n−1 × Intαi(Ai ∪ Bi)],

which is a compact subset of R′′′. It follows easily that the points cluster at
a point of R′′′. We conclude that R′′′ is compact and, thus, proper.

(V4) R′′′ is injective. Since R′ ◦ R is injective, it suffices to show that
R′′ is injective. We have

Im(R′ ◦R) = [Im(R′ ◦R)� ∪i Imαi] ∪ [Im(R′ ◦R) ∩ (α1C1 ∪ α2C2 ∪ · · · )]
by conditions (3) and (5). The set R′′[Im(R′ ◦ R) ∩ αiCi] lies in αiΦn(Ci).
The sets αiΦn(Ci) and αjΦn(Cj) miss one another if j �= i − 1, i, i + 1, by
(2). Intersections of the form αiΦn(Ci) ∩ αi+1Φn(Ci+1) lie in

αi(Bi ∩ ΦnCi) ∩ αi+1(Ai+1 ∩ ΦnCi+1)

by (2) and the latter intersection is empty by (6). Thus R′′′ is injective.

(V5) R′′′ has nonempty point images. This follows immediately, since
R′′ is a function and R′ ◦R has nonempty point images.

(V6) F ′ ⊂ O. We have F ∗ = (∗)|I2 = h′′(∗)|(I2 = D0), and

h′′|D∗
0 ⊂ R′ ◦ π−1 ◦ h ⊂ R′ ◦ π−1 ◦ ε ◦ f∗ ⊂ ε ◦ π−1 ◦ ε ◦ f∗ ⊂ O
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by definition of h′′, limits on the distance between h and f∗, limits on the
motion of R′, and Condition (S‡) of the Setting.

(V7) ImF ∗ ∩ ImR′′ = ∅. Here we have

ImF ∗ ∩ Im(R′ ◦R) ⊂ E∗
0 ⊂ α1C1;

C(∆) ∩R′′(α1C1 ∩ Im(R′ ◦R)) = ∅; and

R′′(αiCi ∩ Im(R′ ◦R)) ∩ ImF ∗ = ∅ for i > 1,

since αi(Ai ∪ Bi) ∩ ImF ∗ = ∅ for i > 1. Disjointness of the two images
follows from these three observations.

(V8) R′′′ is cell-like. Consider any x ∈ Sn−1 and X = R′ ◦ R(x). If X
meets only finitely many of the sets αiAi, then R′′|X is a re-embedding of
X, so R′′(X) is also cell-like. Assume then that X meets infinitely many of
the αiAi. Let Ui denote the union of the components of αiAi intersecting
X, Vi the union of the components of αi(Ai ∪ Bi) intersecting Ui, and
Xi = X∩αiAi. There clearly exist homotopies Hi : Ui× [0, 1] → Sn starting
at the inclusion, fixing FrUi and having images in Vi such thatHi(−, 1)|Xi =
R′′|Xi. By the same calculation performed in (V1), VN ∪ VN+1 ∪ · · · is
contained in

(ε/N)◦R′◦π−1◦(ε/N)◦π◦(R′)−1◦(ε/N)◦R′◦R(x)�∪i<N [Sn−1×Intαi(Ai∪Bi)].

It follows from the Composition Theorem that, as N → ∞, the various sets
named immediately above converge uniformly to the compact set

X � ∪∞
i=1 Intαi(Ai ∪ Bi) ⊂ R′′(X).

ThusX,U1, U2, . . . , H1, H2 . . . satisfy the hypotheses of Lemma 7.7.10 below,
application of which will establish that R′′(X) is cell-like and will complete
the proof of the Basic Lemma. �

Suppose given the following: a cell-like continuum X in Sn; pairwise
disjoint compact subsets U1, U2, . . . in Sn; X− = X�∪∞

i=1 IntUi; a sequence
{εi} of positive numbers, with εi → 0; and a collection of homotopies Hi :
Ui × [0, 1] → Sn starting at the identity, moving only points of IntUi and
having image in B(X−; εi). Define a function f : X → Sn as f |X− = inclX−

and f |X ∩ Ui = Hi(−, 1).

Lemma 7.7.10. If f is injective, then f(X) is cell-like.

Remark. Even if it is injective, f need not be a homeomorphism.

Proof. Consider x1, x2, . . . ∈ X. If infinitely many xi belong to one of the
sets Ai = (X∩Ui)∪X−, then the sequence f(x1), f(x2), . . . clusters at some
point of f(Ai), since f |Ai is continuous. On the other hand, if none of the
Ai contains infinitely many points of {x1, x2, . . . }, then we can assume that
xi ∈ IntUj(i), where j(1) < j(2) < · · · . Hence f(xi) ∈ B(X−; εj(i)) for each
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U
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f(X)
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3

Figure 7.10. An injective f which is not a homeomorphism

i, and so f(x1), f(x2), . . . clusters at some point of X− ⊂ f(X). This yields
that f(X) is compact.

As an aid to showing f(X) is cell-like, for each positive integer N define
a map µN : Sn → Sn as the inclusion on Sn � ∪N

i=1 IntUi and as Hi(−, 1)
on IntUi, i = 1, . . . , N . Similarly, define another collection of maps µ̂N :
f(X) → Sn as inclusion on f(X)�f(∪N

i=1 IntUi) and as [Hi(−, 1)|X∩Ui]
−1

on f(X ∩ Ui). The injectivity of f assures that each µ̂N is well-defined and
continuous.

Given an arbitrary neighborhood U of f(X), choose an integer N so
large that i > N implies Hi(Ui × [0, 1]) ⊂ U . As a consequence,

µN (X ∩ Ui) = H(X ∩ Ui, 0) ⊂ Hi(Ui, 0) ⊂ U for all i > N,

and

µN (X ∩ Ui) = H(X ∩ Ui) = f(X ∩ Ui) ⊂ U for i = 1, 2, . . . , N.

Hence, µN (X) ⊂ U . The map (Id, µN ) : Sn → Sn × Sn sends X into
Sn × U . Since (Id, µN )(X) is cell-like, being homeomorphic to X, there is
a neighborhood V of (Id, µN)(X) that is contractible in Sn × U . In turn,
there is another neighborhood W of X in Sn such that (Id, µN )(W ) ⊂ V .

Choose an integer M > N so large that i > M implies Hi(Ui × [0, 1]) ⊂
W. As above, µ̂M (f(X)) ⊂ W .

Using π2 : Sn × Sn → Sn to denote projection to the second factor,
consider the continuous function

µN ◦ µ̂M = π2 ◦ (Id, µN ) ◦ µ̂M : f(X) → Sn.

It is null homotopic in U , since (Id, µN )◦µ̂M (f(X)) ⊂ (Id, µN )(W ) ⊂ V and
V is null homotopic in π−1

2 (U). But inclf(X) and µN ◦ µ̂M are homotopic in
U via the homotopy that fixes f(X ∩ Ui) for i �∈ {N + 1, . . . ,M} and that
moves f(X ∩Ui) to X ∩Ui by the reverse of the homotopy Hi(−, t)|(X ∩Ui)
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in the other finite set of cases. Thus, f(X) is cell-like, as it is null homotopic
in an arbitrary neighborhood U . �
Theorem 7.7.11. Let R : Sn−1 → Sn be a cell-like embedding relation and
π : Sn → Sn/R the associated decomposition map. Let C denote the closure
of one of the components of Sn/R � π ◦ R(Sn−1), T : C → Sn a cell-like
embedding relation, and L a neighborhood of T . Then L contains a 1-LCC
cell-like embedding relation T ′′′ : C → Sn.

Proof. The argument is a fairly straightforward repetition of the one just
given for Theorem 7.7.2, except that in this setting the focus rests on loops
lying toward only one specific side of the sequence of cell-like embedding
relations. Here π−1 : Sn/R → Sn restricts to a cell-like embedding rela-

tion R̂ : C → Sn. One needs an analog of Basic Lemma 7.7.5 for R̂-disks
that meet Im R̂ only at points of R̂(BdC). Given a countable dense col-
lection {fi : S1 → Sn} of embedded loops in Sn, as in the proof that
7.7.5 implies 7.7.2, the adapted Basic Lemma gives rise to a sequence of
cell-like embedding relations R̂i : C → Sn, neighborhoods Li of R̂i and
controlled mappings Fi : I

2 → Sn such that Im R̂i ∩ ImFi = ∅ as before,
unless fi(S

1) ∩ R̂i−1(IntC) �= ∅, in which case R̂i = R̂i−1 and Fi, which is
essentially irrelevant, is chosen arbitrarily. �
Corollary 7.7.12. Let R : Sn−1 → Sn be a cell-like embedding relation and
let π : Sn → Sn/R be the associated decomposition map. Suppose C is the
closure of one of the components of Sn/R�π ◦R(Sn−1) and π ◦R(Sn−1) is
1-LCC in C. Then C is an n-cell.

Proof. Let T ′′′ : C → Sn denote the 1-LCC cell-like embedding relation
promised by Theorem 7.7.11, and use π′′′ to denote the quotient map for
the decomposition of Sn whose elements are {T ′′′(x) | x ∈ C} and the
singletons from Sn � ImT ′′′. Here the frontier of π′′′T ′′′(C) in Sn/T ′′′ is the
1-LCC embedded (n−1)-sphere π′′′T ′′′(BdC), so Proposition 7.4.13 assures
that Sn/T ′′′ is the n-sphere. Furthermore, being 1-LCC, π′′′T ′′′(BdC) is
flatly embedded, so π′′′T ′′′(C) ∼= C is an n-cell. �
Corollary 7.7.13. If λ : Sn−1 → Sn is an embedding, n ≥ 5, and C is
the closure of one of the components of Sn � λ(Sn−1) such that λ(Sn−1) is
1-LCC in C, then C is an n-cell.

Theorem 7.7.14. Let λ : Sn−1 → Sn be an embedding, n ≥ 5, C the closure
of one of the components of Sn � λ(Sn−1), and ε > 0. Then there exists an
embedding λ′ : C → Sn such that ρ(λ′, inclC) < ε and Cl(Sn � λ′(C)) is an
n-cell.

Proof. Apply Theorem 7.7.11 to obtain a 1-LCC embedding relation T ′′′ :
C → Sn in the ε-neighborhood of inclC : C → Sn. Form the associated
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decomposition G into the sets {T ′′′(x) | x ∈ C} and the singletons from
Sn � ImT ′′′, and let C ′ denote the closure of the component of Sn/G not
containing the image of T ′′′(IntC). Corollary 7.7.12 indicates that C ′ is an
n-cell. Proposition 7.4.14 yields that Sn/G is topologically Sn. Hence,
Sn ∼= Sn/G is expressed as the union of a copy of C and the n-cell C ′,
where C ∩ C ′ = ∂C ′. Obtaining this reembedded copy of C pointwise close
to C itself comes about by a controlled shrinking of G , as in the proof of
Corollary 7.7.3. �

The Locally Flat Approximation Theorem (7.7.1) combines with Corol-
lary 7.6.11 to give

Corollary 7.7.15. A locally homotopically unknotted (n − 2)-sphere Σ in
Sn (n ≥ 5) is flat if and only if Σ bounds an (n− 1)-cell E ⊂ Sn.

As another consequence of 7.7.1, local issues about codimension-one
embeddings involving manifolds reduce to problems about embeddings of
(n− 1)-spheres in Sn.

Theorem 7.7.16. Suppose n ≥ 5, Q is an (n−1)-manifold embedded in an
n-manifold M as a closed subset, and q ∈ Q. Then there exist an (n − 1)-
sphere Σ in Sn, a neighborhood Nq of q in M , and an embedding e : Nq → Sn

such that e(Nq ∩Q) ⊂ Σ.

Proof. Exploiting coordinate charts in M , we can simplify the setting so
that q ∈ Q ⊂ Rn ⊂ Sn. Fix an (n− 1)-cell B with q ∈ IntB ⊂ B ⊂ Q, and
choose a neighborhood U of q in Sn for which Q ∩ U ⊂ IntB. According to
Theorem 7.7.1 we can assume that Q is locally flat at each point of Q� U.
Here ∂B is flat (Corollary 7.7.15). Thus we can assume that ∂B is the
standard (n − 2)-sphere in Sn and that a collar C on ∂B in B lies in the
standard copy of Sn−1 ⊂ Sn.

Consider the universal cover p : E → Sn � ∂B; E is homeomorphic to
IntBn−1 × R in such a way that p(IntB × {0}) ⊂ Sn−1. Lift IntB to the
universal cover E via λ : IntB → E with the collar C on ∂B mentioned
earlier going into, say, IntBn−1 × {0}, and extend λ to a lift λ′ : N → E
defined on some neighborhood N of IntB for which N ∩Q = IntB. Find an
embedding h of the universal cover into a neighborhood of p(IntBn−1×{0})
such that pλ(x) = pλ′(x) = x for all x ∈ C and h(E)∩Sn−1 = p(IntB×{0}).
Then

Σ = hλ′(B) ∪ (Sn−1 � p(IntB × {0}))
is an (n− 1)-sphere in Sn and e = hλ′ embeds the neighborhood N of q in
the required way. �
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Appendix on Embedding Relations

Standard results about continuous relations that carry over from the
function setting are:

(1) If R : X → Y and S : Y → Z are continuous, then S ◦R : X → Z is
continuous.

(2) If R : X → Y is continuous with compact point images and C ⊂ X
is compact, then R(C) is compact.

(3) If R : X → Y is continuous with nonempty, connected point images
and C ⊂ X is connected, then R(C) is connected.

For simplicity we assume all spaces under consideration to be locally
compact, separable metric spaces. The relations most useful in geometric
topology are the proper relations—recall that a relation R : X → Y is proper
if both R and R−1 are continuous with compact point images. The equiva-
lent but asymmetric defining property usually ascribed is the following:

(4) A relation R : X → Y is proper provided R is continuous with com-
pact point images and the inverse of each compact subset of Y is compact.

The basic results on proper relations are:

(5) A proper relation R : X → Y is a closed subset of X × Y . Each
neighborhood of R in X × Y contains a proper neighborhood N : X → Y
of R in X × Y . Each closed subset of a proper relation is a proper relation.

(6) Composition Theorem. Suppose R : X → Y and S : Y → Z are
relations where R−1 and S both are continuous with compact point images
and U is a neighborhood of S ◦R in X×Z. Then there exist neighborhoods
V of R in X × Y and W of S in Y × Z such that W ◦ V ⊂ U .

Proof. Fix y ∈ Y and observe that the (possibly empty) compact set
R−1(y)× S(y) lies in U , since

U ⊃ S ◦R = S ◦ IdY ◦R = (R−1 × S)(IdY ).

There exist open neighborhoods By of R−1(y) in X and Cy of S(y) in Z such
that By × Cy ⊂ U . Continuity of R−1 and S gives an open neighborhood
Ay of y such that R−1(Ay) ⊂ By and S(Ay) ⊂ Cy.

The paracompactness of Y assures the existence of a precise, locally
finite, open refinement {A′

y | y ∈ Y } of the open cover {Ay | y ∈ A} that
covers Y and satisfies Cl(A′

y) ⊂ Ay for each y ∈ Y . Define V : X → Y

and W : Y → Z by the formulae V −1(y) = ∩{By(0) | y ∈ Cl(A′
y(0))} and

W (y) = ∩{Cy(0) | y ∈ Cl(A′
y(0))}. �
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(7) Corollary. If R : X → Y and S : Y → Z are continuous with
compact point images and U is a neighborhood of S ◦R in X×Z, then there
is a neighborhood V of R in X × Y such that S ◦ V ⊂ U .

Proof. Choose compact sets X1, X2, . . . whose interiors cover X. The re-
lations R|Xi : Xi → Y are proper by (4). Accordingly, by the Composition
Theorem, there exist neighborhoods Vi of R|Xi in Xi × Y with S ◦ Vi ⊂ U ,
and V = ∪iVi satisfies the requirements of the Corollary. �

The characteristic feature of cell-like embedding relations is that, by and
large, they can be approximated by continuous functions.

(8) Continuous Approximation Theorem. Suppose R : X → Y is a
continuous cell-like embedding relation from a finite-dimensional space X to
an ANR Y . Then each neighborhood of R in X × Y contains a continuous
function from X to Y .

See (Cannon, 1975) for a proof. The Continuous Approximation Theo-
rem is not used in this book.

(9) Slice Triviality Theorem. Suppose R : X → Y is a continuous
relation with cell-like point images and L′′ : X → Y is a neighborhood of
R. Then there exists another neighborhood L′ of R such that L′ ⊂ L′′ and
x ∈ X implies L′(x) contracts in L′′(x).

Proof. For each x ∈ X find an open setW ⊃ R(x) in Y and a neighborhood
V of x such that V × W ⊂ L′′. Cell-likeness of R(x) leads to another
Wx ⊃ R(x) that contracts in W . Moreover, x has a neighborhood Ux ⊂ V ,
such that R(x′) ⊂ Wx for all x′ ∈ Ux. In case X is compact, corresponding
to the open cover U = {Ux × Wx | x ∈ X} of R is a δ > 0, a kind of
Lebesgue number for U , such that for the δ-neighborhood L′ of R ⊂ X × Y
and for arbitrary x ∈ X, some Uz ×Wz ∈ U contains {x} × L′(x). Hence,
L′(x) ⊂ Wz contracts in L′′(x). The general case (X locally compact) is left
to the reader. �

Historical Notes. There are other approaches to the Locally Flat Ap-
proximation Theorem. Cannon, Bryant and Lacher (1979) performed mul-
tiple grope replacements in M , changing it to ANR homology n-manifold
Y equipped with a cell-like map p : Y → M and a 1-LCC embedding
λ : Q → Y of the given (n − 1)-manifold Q such that Y � λ(S) is an n-
manifold and pλ = inclQ. Either work of S. Ferry (1979) or application of
Quinn’s Index Theorem (see §8.5) yields that Y actually is an n-manifold.
Upon approximating p by a homeomorphism (Corollary 7.4.2), one obtains
a 1-LCC approximation hλ(Q) to Q.

Ferry (1992) provided another argument for the Locally Flat Approxi-
mation Theorem which combines surgery below the middle dimension with
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an application of his α-Approximation Theorem, a topic treated briefly in
Chapter 8.

As an alternative, in case Q of Theorem 7.7.1 is two-sided, let C+, C−
denote the closures of the components of M � Q. Form a new space M∗

from C + 
 (Q × [−1, 1]) 
 C− by identifying each 〈q,−1〉 with q ∈ C−
and, similarly, identifying each 〈q,+1〉 with q ∈ C+. By (Quinn, 1987) M∗

is the cell-like image of an n-manifold, and quite obviously it satisfies the
Disjoint Disks Property, so M∗ itself is an n-manifold. Moreover, there is
an evident cell-like map p : M∗ → M that sends each arc q × [−1, 1] to
q; approximating p by a homeomorphism, one notices that the image of
Q×{0} ⊂ Q× [−1, 1] ⊂ M∗ is a bicollared approximation to the original Q.

L. L. Lininger (1965) and N. Hosay (1963) independently proved the
3-dimensional version of Theorem 7.7.11 for embeddings T : C → Sn; Dav-
erman (1977), (1987) did the same in higher dimensions.

Exercises

7.7.1. Suppose Σn−2 ⊂ Sn is a locally flat (n − 2)-sphere that bounds a
topologically embedded (n− 1)-cell B ⊂ Sn, n ≥ 5. Then Σn−2 is
flat.

7.7.2. If R : X → Sn is a 1-LCC cell-like embedding relation defined on
the compact, k-dimensional space X, where k ≤ n − 3 and n ≥ 5,
then the decomposition of Sn into points of Sn� ImR and the sets
{R(x) | x ∈ X} is shrinkable.

7.8. Kirby-Siebenmann obstruction theory

The PL Structure Theorem 6.8.2 of Kirby and Siebenmann has crucially
important consequences in codimension one, just as it does in codimension
two.

Say that an embedding ϕ : Qn−1 → Mn of one PL manifold in another
is PL locally flat if ϕ is PL and if all link pairs in (Mn, ϕ(Qn−1)) are PL
standard pairs.

Corollary 7.8.1 (Codimension-One Taming). Suppose Qn−1 is a PL (n−
1)-manifold such that H3(Qn−1;Z2) = 0, h : Qn−1 → Mn is a locally flat
topological embedding of Qn−1 into a PL n-manifold Mn, n ≥ 5, and ε > 0.
Then h is ambient isotopic to a PL locally flat embedding via an ε-isotopy
of Mn.

The proof coincides with that for the codimension-two taming result
(Corollary 6.8.3).
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Corollary 7.8.2. If Qn−1 is a PL (n − 1)-manifold, n ≥ 5, such that
H3(Qn−1;Z2) �= 0, then there exist a PL n-manifold Mn and a locally flat
embedding h : Qn−1 → Mn that is not ambient isotopic to a PL locally flat
embedding.

Proof. The Product Structure Theorem promises a PL structure on Mn =
Qn−1 ×R not compatible with the obvious product structure on Qn−1 ×R.
If there were a PL locally flat embedding Qn−1 → Mn isotopic to Qn−1 →
Qn−1 × {0}, then an open PL bicollar on the image could be expanded to
produce a PL homeomorphism Qn−1 × R → Mn. �

Locally Flat Approximation Theorem 7.7.1 then leads to a PL Approxi-
mation Theorem for the PL manifolds with trivial Z2-cohomology in dimen-
sion 3.

Corollary 7.8.3 (Codimension-One PL Approximation). Suppose Qn−1 is
a PL (n−1)-manifold such that H3(Qn−1;Z2) = 0, and suppose h : Qn−1 →
Mn is a topological embedding of Qn−1 into a PL n-manifold Mn, n ≥ 5.
Then h can be approximated, arbitrarily closely, by PL locally flat embed-
dings.

7.9. Detecting 1-LCC embeddings

§4.6 presents conditions for detecting 1-LCC embeddings of codimension-
three compacta. This section does the same for embeddings of codimension-
one manifolds. Among the conditions covered are local flatness modulo
certain twice-flat subsets (Theorem 7.9.2), singular regular neighborhoods
(Theorem 7.9.8), and a local spanning property (Theorem 7.9.15).

Here is a slight strengthening of an observation appearing earlier in the
proof that 7.7.5 implies 7.7.2.

Lemma 7.9.1. Let β denote an (n−1)-cell in an n-manifold Mn, f : I2 →
Mn a map such that f(∂I2) ∩ β = ∅, and Z the component of I2 � f−1(β)
containing ∂I2. Then there exists a map g : I2 → Mn such that g|Z = f |Z
and g(I2 � Z) ⊂ β; moreover, g can be obtained so that g(I2 � Z) ∩ ∂β ⊂
f(I2) ∩ ∂β.

Proof. This follows using the Tietze Extension Theorem to extend

f |Z ∩ (I2 � Z) : Z ∩ (I2 � Z) → β

to a map I2 � Z → β. For the strengthened conclusion, simply apply the
result using an (n − 1)-cell β′ ⊂ β such that β′ ⊃ f(I2) ∩ β and β′ ∩ ∂β =
f(I2) ∩ ∂β. �
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Theorem 7.9.2. Suppose Σn−1 is an (n−1)-manifold embedded as a closed
subset of an n-manifold Mn and X is a closed subset of Σn−1 such that
Σn−1 is 1-LCC in Mn at each point of Σn−1 � X and X is LCC1 in both
Σn−1 and Mn. Then Σn−1 is 1-LCC in Mn.

Proof. Start with s ∈ Σn−1 and ε > 0. Identify an (n− 1)-cell β in Σ with
s ∈ Intβ ⊂ β ⊂ B(s; ε), and then choose a simply connected neighborhood
Ws ⊂ B(s; ε) with Ws∩Σn−1 ⊂ β. Given any loop f : ∂I2 → Ws�Σ, extend
f to F : I2 → Ws. Since X is LCC1 in Mn, Lemma 3.3.3 assures that F can
be approximated by a map F ∗ : I2 → Ws�X such that F ∗|∂I2 = F |∂I2 = f.
Let H denote the component of I2 � (F ∗)−1(Σ) containing ∂I2, and note
that F ∗(H)∩X = ∅. Apply Lemma 7.9.1 to obtain a map g : I2 → F ∗(H)∪β
such that g|H = F ∗|H and g(I2�H) ⊂ β. Since X is also LCC1 in Σn−1, a
mild extension of Lemma 3.3.3 assures that g can be approximated by a map
g∗ : I2 → F ∗(H)∪β such that g∗|H = g|H = F ∗|H and g∗(I2�H) ⊂ β�X.
Note that g∗(I2) ⊂ (F ∗(H)∪β)�X ⊂ B(s; ε). Now g∗ can be approximated
by a map g : I2 → B(S; ε) � Σn−1 with g|∂I2 = g∗|∂I2 = f , since Σn−1 is
1-LCC at points of Σn−1 ∩ g∗(I2). �

Corollary 7.9.3. If the (n − 1)-sphere Σn−1 ⊂ Sn, n ≥ 5, is locally flat
modulo a finite set, then Σn−1 is flat.

Corollary 7.9.4. If the (n−1)-sphere Σn−1 ⊂ Sn ≥ 5, is locally flat modulo
a twice-flat k-cell or k-sphere, k ≤ n− 4, then Σn−1 is flat.

Remark. Suspensions of examples like the Fox-Artin 2-sphere in S3 (§2.8.3)
indicate that Corollary 7.9.4 fails when k = n− 3.

Definition. Let Σn−1 denote an (n− 1)-sphere topologically embedded in
Sn and C ⊂ Σn−1 a Cantor set. Extending a previous definition for cells
and spheres in Σn−1, we say that C is twice flat if it is flat as a subset of
both Σn−1 and Sn.

Corollary 7.9.5. If the (n − 1)-sphere Σn−1 ⊂ Sn, n ≥ 5, is locally flat
modulo a twice-flat Cantor set, then Σn−1 is flat.

Definition. Let Σ denote a connected (n − 1)-manifold topologically em-
bedded in an n-manifold M as a closed, separating subset, and let U denote
a component of M � Σ. We say that Σ can be homeomorphically approxi-
mated from U if for each ε > 0 there exists an embedding λε : Σ → U ⊂ M
such that ρ(λε, inclΣ) < ε.

Theorem 7.9.6. Let Σ denote a connected (n − 1)-manifold topologically
embedded in an n-manifold M as a closed, separating subset, and let U
denote a component of M �Σ such that Σ can be homeomorphically approx-
imated from U . Then Σ is 1-LCC embedded in U .
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The proof is an exercise. Here there is no need to restrict n.

Corollary 7.9.7. Let Σ denote a connected (n − 1)-manifold topologically
embedded in an n-manifold M as a closed, separating subset. Then Σ is
locally flat in M if and only if it can be homeomorphically approximated
from each component of M � Σ.

Definition. Let Q denote a connected (n − 1)-manifold topologically em-
bedded in an n-manifold M as a closed, separating subset, and let U denote
a component of M � Q. We say that Q is singularly collared in U if there
exists a map µ : Q× [0, 1] → U such that µ0 = inclQ and µ(Q× (0, 1]) ⊂ U .

Theorem 7.9.8. Suppose Q is a connected (n − 1)-manifold topologically
embedded in a connected n-manifold M as a closed, separating subset, and
suppose U is a component of M �Q such that Q is singularly collared in U .
Then Q is 1-LCC in U .

The argument for 7.9.8 hangs on the notion of degree for maps between
(orientable) manifolds, on a result about degree being locally determined
relative to the target, and on another result that degree-one maps induce
epimorphisms of fundamental groups.

Definitions. An orientation of a connected, orientable n-manifold U is a
choice of generator ofHn

c (U ;Z). Given connected n-manifolds U, V equipped
with orientations γU , γV , respectively, the degree of a proper map f : U → V
is the integer d such that f∗(γV ) = d · γU . Functorial properties assure that
the degree of a composite (of proper mappings) is the product of degrees.

Lemma 7.9.9. Suppose f : M → N is a proper map between connected,
oriented n-manifolds and V is a connected open subset of N such that U =
f−1(V ) is connected. Then the degree of f equals the degree of f |U , provided
U, V are oriented with the orientations obtained by restriction from M,N ,
respectively.

Proof. Let ρU : Hn
c (U ;Z) → Hn

c (M ;Z) and ρV : Hn
c (V ;Z) → Hn

c (N ;Z)
denote the isomorphisms induced by extension. Equality of the degrees
follows immediately from the commutativity of

Hn
c (U ;Z)

(f |U)∗←−−−− Hn
c (V ;Z)

∼=
⏐⏐�ρU ∼=

⏐⏐�ρV

Hn
c (M ;Z)

f∗
←−−−− Hn

c (N ;Z),

together with the prescription that the vertical isomorphisms preserve pre-
ferred orientations. �
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Corollary 7.9.10. Every proper, non-surjective mapping f : M → N be-
tween orientable n-manifolds has degree 0.

Proof. Properness implies that f(M) is closed in N . Applying the analysis
of 7.9.9 to a connected open subset V of N � f(M), observe that f∗ factors
through the trivial group Hn

c (∅;Z). �

Lemma 7.9.11. Suppose f : M → N is a proper map between connected,
oriented n-manifolds, V is a connected open subset of N , U1, U2 . . . are the
components of f−1(V ), and f |Ui : Ui → V has degree di (i = 1, 2, . . .). Then
di = 0 for all but finitely many values and the degree of f equals Σidi.

Proof. We re-employ the notation from the preceding lemma and examine
the diagram:

Hn
c (f

−1(V );Z)
(f |)∗←−−−− Hn

c (V ;Z)⏐⏐�ρ ∼=
⏐⏐�ρV

Hn
c (M ;Z)

f∗
←−−−− Hn

c (N ;Z).

As above, choices of orientations for M,N give rise to preferred generators
γV of Hn

c (V ;Z) and γi for Hn
c (Ui;Z). Here, by hypothesis (f |Ui)

∗ sends
γV to di · γi ∈ Hn

c (Ui;Z). For v ∈ V , at most finitely many components
of f−1(V ) meet f−1(v), by properness, and Corollary 7.9.10 attests that
di = 0 for those Ui that do not surject to V . Moreover, Hn

c (f
−1(V );Z) ∼=

Hn
c (∪Ui;Z) ∼= ⊕iH

n
c (Ui;Z), so the image of γV under the homomorphism

in the upper row is ξ = Σi(di · γi). Under the extension ρ : Hn
c (∪iUi;Z) →

Hn
c (M), we see that ρ(ξ) = (Σidi) ·γM , since each γi is sent to the preferred

orientation class γM ∈ Hn
c (M ;Z) via the extension ρ. �

Lemma 7.9.12. Let p denote a positive integer. If θ : M̃ → M is a p-fold
covering map between oriented PL n-manifolds, then the degree of θ is ±p.

Proof. This widely known result typically is based on other definitions of
orientability. In the context at hand, the usual diagram

Hn
c (V ;Z)

(h|V )∗←−−−− Hn
c (V ;Z)

∼=
⏐⏐�ρV ∼=

⏐⏐�ρV

Hn
c (M ;Z) h∗=Id∗←−−−− Hn

c (M ;Z)

reveals that, given a homeomorphism h : M → M properly homotopic to
IdM and open subset V such that h(V ) = V , h|V must be orientation
preserving. Let V ⊂ M denote the interior of a PL n-cell evenly covered
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by θ, U1, . . . , Up the components of θ−1(V ), and εi the degree of θ|Ui :
Ui → V . Since θ|Ui is a homeomorphism, εi = ±1. Should there be a
pair {εi, εj} with εi = −εj , then just as in (Rourke and Sanderson, 1972,

p. 44ff) an isotopy M̃ → M̃ carrying Ui to Uj could be used to produce
a homeomorphism h : M → M properly isotopic to IdM whose restriction
to V reverses orientations. Consequently, Lemma 7.9.11 implies that θ has
degree p · ε1 = ±p. �

Lemma 7.9.13. Any proper map f : M → N between connected, oriented,
PL n-manifolds of degree ±1 induces an epimorphism f∗ : π1(M) → π1(N).

Proof. Suppose to the contrary that f∗(π1(M)) �= π1(N). Construct the

covering space θ : Ñ → N corresponding to f∗(π1(M)). Then f lifts to a

map f̃ : M → Ñ such that f = θf̃ . Localization as in Lemma 7.9.9 assures
that f is surjective, for otherwise it would have degree 0.

It can be easily shown that f̃ is a proper mapping. When θ is a p-fold

covering, p < ∞, both θ and f̃ are proper. By Lemma 7.9.12 |degree(f̃)| =
[π1(N) : f∗(π1(M))] > 1. But this is impossible, as it would yield 1 =

|degree(f)| = |degree(θ)| · |degree(f̃)| > 1.

We conclude by explaining why θ must be a finite-sheeted cover. Adjust-
ing f via a proper homotopy, we can assume that for some small open set
V in N , f |f−1(V ) is PL. Let V ′ denote the interior of an n-simplex σ in V
whose preimage under f consists of finitely many n-simplices, each mapped

homeomorphically to σ. If θ were infinite-sheeted, f̃ would have degree 0, as
it could not be onto. Let U1, . . . , Uk denote the components of f−1(V ′) and
εi the degree of f |Ui : Ui → V ′. The collection {U1, . . . , Uk} is partitioned

into finitely many subcollections corresponding to the preimages under f̃ of
the various components V ∗ of θ−1(V ′). Over each subcollection the various

degrees of the restricted f̃ sum to 0, by Lemma 7.9.11. Upon composing

θ and f̃ , we obtain ε1 + · · · + εk = 0, yielding degree(f) = 0, contrary to
hypothesis. �

Proof of Theorem 7.9.8. Focus on a point q ∈ Q. In light of Corol-
lary 7.7.16, we can transfer to the setting in which there are an embedding
λ : Nq → Sn defined on some neighborhood Nq of q in M and an (n − 1)-
sphere Σ in Sn with λ(Nq∩Q) ⊂ Σ. Let U ′ denote the component of Sn�Σ
containing points of λ(Nq ∩ U) arbitrarily close to s = λ(q). It will suffice
to prove that U ′ is 1-LC at s.

Fix ε > 0. As Q is singularly collared in U , there exist a small (n−1)-cell
D on Σ with s ∈ IntD and a map µ : D × [0, 1] → B(s; ε) ∩ U ′ such that
µ0 = inclD and µ(D × (0, 1]) ⊂ U ′.
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Lemma 7.9.14. In the setting above, U ′ contains an open subset W such
that IntD ⊂ W ⊂ f(D × [0, 1]).

Proof. Use µ to produce a map h of Σ × [0, 1] to Σ ∪ µ(D × [0, 1]) ⊂ Sn

such that h(z, 0) = z for all z ∈ Σ, h(z′, t) = z′ for all z′ ∈ Σ � IntD,
and h(IntD × {t}) ∩ Σ = ∅ for all t > 0. Define W as the intersection of
U ′ and the component of Sn � h1(Σ) that contains IntD. We show that
W ⊂ µ(D × [0, 1]).

Suppose to the contrary that there exists

w ∈ W � µ(D × [0, 1]) ⊂ W � h(Σ× [0, 1]).

Choose z0 ∈ Ns � U ′ and regard Sn � {z0} as Rn. As in (Hurewicz and
Wallman, 1948), for x �= z0 let πx denote the radial map of Rn � {x} =
Sn � {x, z0} onto the unit (n − 1)-sphere centered at x. Then πwh0 and
πwh1 are homotopic maps of Σ to Sn−1. For any y ∈ Sn �U ′ we see that w
and y belong to different components of Sn � h(Σ× {0}) and belong to the
same component of Sn�h(Σ×{1}). This leads to the desired contradiction,
because according to Theorem VI.10 of (Hurewicz andWallman, 1948), πwh0
is an essential map and πwh1 is an inessential map. �

Continuing with the proof of Theorem 7.9.8, apply Lemma 7.9.14 to
obtain the promised connected open subset W of U ′ such that

IntD ⊂ W ⊂ µ(D × [0, 1]) ⊂ B(s; ε).

Identify the component Y of µ−1(W ) containing IntD × {0}. Set WU =
W ∩ U ′, YU = Y ∩ µ−1(WU ), and µU = µ|YU . It follows immediately that
µU : YU → WU is a proper map between (orientable) n-manifolds, which
implies that the degree of µU is defined. We shall prove that µU has degree
±1.

By Theorem 7.7.14 we can assume that U ′ is embedded in Sn with an
n-cell as its complement. Hence, µU extends to a map

µ̃ : YU ∪ (IntD × (−1, 0]) → Sn

with µ̃| IntD × (−1, 0] an embedding into Sn � U ′ such that

µ̃(IntD × (−1, 0]) ∩ Σ = µ̃(IntD × {0}).
It follows that µ̃ is a proper mapping between orientable n-manifolds. Since
the image obviously contains the connected open subset µ̃(IntD × (−1, 0))
over which µ̃ is a homeomorphism, Lemma 7.9.9 assures that µ̃ and µU have
degree ±1.

As a result, µU induces an epimorphism at the fundamental group level
(Lemma 7.9.13). To each loop α in WU corresponds a loop α′ in YU with
(µU )∗([α′]) = [α]. Since α′ is contractible in IntD × (0, 1], α is contractible
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in µ(IntD × (0, 1]) ⊂ B(s; ε) ∩ U ′. Hence, U ′ is 1-LC at s, and Q is 1-LCC
in U . �

Definition. Suppose Q is an (n−1)-manifold topologically embedded in an
n-manifold M as a closed subset, and suppose U is a component of M �Q.
We say that Q can be locally spanned from U if, for each neighborhood Nq of

each q ∈ Q, there exist (n− 1)-cells B ⊂ Q and D ⊂ U such that s ∈ IntB,
D ∩Q = ∂B, and B ∪D ⊂ Nq.

Theorem 7.9.15. Suppose Σ is a connected (n− 1)-manifold topologically
embedded in a connected n-manifold M as a closed, separating subset, and
suppose U is a component of M �Σ such that Σ can be locally spanned from
U . Then Σ is 1-LCC in U .

Proof. Consider a map f of ∂I2 into a small subset of U . Extend f to a map
F of I2 into a small subset of U . In view of the locally spanned condition,
we determine a finite collection of very small (n − 1)-cells B1, ..., Bk in Σ
whose interiors cover Σ ∩ F (I2), and corresponding (n − 1)-cells D1, ..., Dk

in U such that Di ∩ Σ = ∂Bi and Di ∩ f(∂I2) = ∅ for each i. Application
of Lemma 7.9.1 yields a new map F1 : I2 → U with small image contained
in F (I2) ∪D1 � IntB1 and with F1|∂I2 = F |∂I2 = f , where in particular
F1(I

2)∩∂B1 ⊂ F (I2)∩∂B1. Consequently, F1(I
2)∩Σ ⊂ F (I2)∩(Σ�IntB1).

Another k − 1 applications of Lemma 7.9.1 yield a new map Fk : I2 → U
with small image in (F (I2)∪ (∪iDi))�Σ and Fk|∂I2 = F |∂I2 = f. The key
is that, once a point of Σ is removed from the image of Fi, it reappears in
none of the succeeding images. �

Corollary 7.9.16. An (n− 1)-sphere Σ in Sn is 1-LCC if and only if Σ is
locally spanned from each component of Sn � Σ.

Corollary 7.9.17. An (n− 1)-sphere Σ in Sn, n ≥ 5, is flat if and only if
Σ is locally spanned from each component of Sn � Σ.

Historical Notes. The distinction between the cases n = 3 and n > 3 of
codimension-one embeddings was first displayed by J. C. Cantrell’s doctoral
dissertation, ultimately refined into the result about (n− 1)-spheres in Sn,
n > 3, necessarily being flat if they are locally flat modulo a single point.
Key ideas appeared in the treatment of Theorem 2.9.3. Corollary 7.9.3 is a
mild generalization. Kirby (1968a) provided an elegant geometric construc-
tion to establish Corollary 7.9.5 for all n > 3.

For embeddings in 3-manifolds flatness results emerged in an order rather
opposite to those in high dimensions. Bing’s original flattening theorem
(1959b) was the low-dimensional version of Corollary 7.9.7. Later he used it
to show that a surface in a 3-manifold is locally flat if it is 1-LCC embedded
(Bing, 1961b).
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J. Hempel (1964) showed that a compact 2-manifold in S3 which is singu-
larly collared on both sides is 1-LCC embedded; Daverman (1976) developed
the argument used here for Theorem 7.9.8 that works in all ambient dimen-
sions; Bryant and Lacher (1975) independently obtained the same result and
generalizations to other codimensions as well.

P. Olum (1953) proved that maps of degree 1 between connected ori-
ented n-manifolds induce epimorphisms at the π1 level. D. B. A. Epstein
(1966) introduced a valuable geometric notion of degree; he showed that a
proper map : M → N between connected, oriented n-manifolds has degree
p if and only if p is the minimum integer such that, for some map g prop-
erly homotopic to f and small open n-cell V ⊂ N , g−1(V ) has exactly p
components, on each of which g restricts to a homeomorphism.

A singular regular neighborhood can be regarded as the image of a ho-
motopy of a codimension-one manifold S that instantly deforms S into its
complement. Instead of homotopies, one might consider a sequence of ap-
proximations to the inclusion; a codimension-one sphere Σ in Sn is said to
be free if, for each ε > 0 and each component U of Sn � Σ, there is a map
fε : Σ → U that moves points less than ε. As of this writing, whether free
(n− 1)-spheres in Sn, n ≥ 3, must be 1-LCC embedded is still unknown; a
partial result about the implications of freeness toward flatness appears in
§7.11.

C. E. Burgess (1965) introduced the locally spanned concept and proved
Theorem 7.9.15 in the 3-dimensional setting; his proof immediately applies
in all dimensions.

Exercises

7.9.1. Suppose Σn−1 ⊂ Sn, n ≥ 5, is a wildly embedded (n − 1)-sphere
with complementary domains U, V for which there is a homeomor-
phism ψ : U → V with ψ|Σ = inclΣ. Also suppose Σ is locally flat
modulo a k-cell, k ≤ n − 3, or a Cantor set C. Show that C is
wildly embedded in Sn.

7.9.2. Prove Theorem 7.9.6.

7.9.3. Show that most embeddings of Sn−1 in Sn, n ≥ 5, are locally flat
(i.e., show that the locally flat embeddings form a dense, Gδ-subset
of Emb(Sn−1, Sn)).

7.10. Sewings of crumpled n-cubes

Definitions. Let Σ be an (n− 1)-sphere topologically embedded in Sn and
U one of the components of Sn �Σ. Then U is a crumpled n-cube, and the
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sphere Σ is called the boundary of U , denoted BdU . A crumpled n-cube C
in Sn is a closed n-cell complement if Cl(Sn � C) is an n-cell.

Restated in this terminology, Theorem 7.7.14 certifies that every crum-
pled n-cube (n ≥ 5) admits an embedding in Sn as a closed n-cell comple-
ment. This signals that wildness on one side of an embedded codimension-
one manifold forces no corresponding wildness on the other side. Our at-
tention next turns to a complementary issue: what sorts of wildness on one
side can be matched with wildness on the other side?

Definitions. A sewing of crumpled n-cubes C1 and C2 is a homeomorphism
h : BdC1 → BdC2. Associated with any such sewing h is the sewing space
C1∪hC2, namely, the quotient space obtained from the disjoint union C1
C2

after identification of each x ∈ BdC1 with h(x) ∈ BdC2.

Sewings of crumpled cubes enhance the proliferation of wildness. The
crucial question about a sewing of crumpled n-cubes is whether the sewing
space is an n-manifold. When it is, the manifold necessarily is Sn (see Corol-
lary 7.10.3), and then Sn contains a separating (n − 1)-sphere Σ bounding
copies of the two crumpled cubes, which are matched up along Σ exactly as
prescribed by the sewing.

In light of Theorem 7.7.14, the sewing will always yield Sn when no
wild point in one crumpled cube is matched with a wild point in the other.
This section presents several examples indicating that an arbitrary sewing of
crumpled cubes need not have a manifold as its sewing space and it probes
conditions under which a sewing space is Sn, despite possible overlapping of
the wildness. It also introduces an inflation technique for producing wild-
ness, which it exploits to fabricate wild spheres in Rn that are locally flat
modulo subspheres flatly embedded in Rn. The most elaborate example—
Example 7.10.14, which relies upon the construction of ramified wild Can-
tor sets from §4.8—is a crumpled cube C such that C ∪Id C does not yield
Sn. This C contains two embedded loops such that any singular disk in C
bounded by the first meets every singular disk in Sn bounded by the second.
That is precisely the feature necessitating the elaborate blow-up procedure
of §7.7 used to establish the 1-LCC Approximation Theorem.

Here is an elementary consequence of Theorem 7.7.14.

Proposition 7.10.1. If C is any crumpled n-cube in Sn, n ≥ 5, and h :
BdC → ∂Bn any sewing to the boundary of an n-cell, then C ∪h B

n ∼= Sn.

Proposition 7.10.2. For any sewing h : BdC1 → BdC2 of crumpled n-
cubes, n ≥ 5, there exists a cell-like mapping Sn → C1 ∪h C2.

Proof. Apply Theorem 7.4.14 or the preceding proposition to regard C2

as embedded in Sn so that Cl(Sn � C2) is an n-cell B. Specify a collar
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λ : ∂B × [0, 1] → B on ∂B = BdC2 (with λ0 = incl∂B), set

B′ = C2 ∪ λ(∂B × [0, 1]),

and note that, by Corollary 2.4.12 to the Generalized Schönflies Theorem,
B′ is also an n-cell (see Figure 7.11). Define a sewing h′ : BdC1 → ∂B′ as
h′(x) = λ(h(x), 1). Then C1 ∪h′ B′ ∼= Sn, by Proposition 7.10.1, and the
decomposition of Sn = C1 ∪h′ B′ into points and the arcs

{λ({b} × [0, 1]) ⊂ B′ | b ∈ ∂B}
gives rise to a cell-like mapping Sn → C1 ∪h C2. �

λ(∂B×[0,1])

λ(∂B×{1})

C2

2B B = C  ∪ λ(∂B×[0,1])

Figure 7.11. The domain of the cell-like map Sn → C1 ∪h C2

With an application of Corollary 7.4.2 we obtain:

Corollary 7.10.3. If a sewing h : BdC1 → BdC2 of crumpled n-cubes
(n ≥ 5) yields a manifold, then C1 ∪h C2 ≈ Sn.

Proposition 7.10.4. Let C1 and C2 be closed n-cell complements in Sn,
n ≥ 5, and h : BdC1 → BdC2 a sewing. Then a necessary condition for
C1 ∪h C2 to be Sn is that any two maps fi : I2 → Ci, i ∈ {1, 2}, can be
approximated, arbitrarily closely, by maps Fi : I

2 → Sn such that

F2(I
2) ∩ h(BdC1 ∩ F1(I

2)) = ∅.

Proof. Let λi : Ci → Sn, i ∈ {1, 2}, be embeddings such that

λ1(C1) ∩ λ2(C2) = λ1(BdC1) = λ2(BdC2),

λ1(C1)∪ λ2(C2) = Sn, and λ1|BdC1 = λ2h. Find a small neighborhood Wi

of λi(Ci) and a retraction Ri : Wi → λi(Ci) close to the identity on Wi, with
Ri(Wi � λi(Ci)) ⊂ λi(BdCi). Approximate the maps λifi : I

2 → λi(Ci) by
maps gi : I

2 → Wi with disjoint images and with λ−1
i Rigi close to fi. Set

Ui = g−1
i (Wi � λi(Ci)), observe that λ−1

i Rigi(Ui) ⊂ BdCi, and use the fact

that each Ci is a closed n-cell complement in Sn to adjust each λ−1
i Rigi to a
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new map Fi : I
2 → Sn such that Fi|I2�Ui = λ−1

i Rigi|I2�Ui = λ−1
i gi|I2�Ui

and Fi(Ui) ⊂ Sn � Ci. Set Yi = (Fi)
−1(BdCi). It follows that

F2(I
2) ∩ h(BdC1 ∩ F1(I

2)) ⊂ λ−1
2 g2(Y2) ∩ hλ−1

1 g1(Y1)

⊂ λ−1
2 (g2(Y2) ∩ g1(Y1)) = ∅. �

Theorem 7.10.5. Let C1 and C2 be crumpled n-cubes (n ≥ 5) satisfying
the Disjoint Disks Property and let h : BdC1 → BdC2 be a sewing such
that any two maps fi : I

2 → Ci, i ∈ {1, 2}, can be approximated, arbitrarily
closely, by maps Fi : I

2 → Ci such that

F2(I
2) ∩ h(BdC1 ∩ F1(I

2)) = ∅.

Then C1 ∪h C2 is topologically Sn.

Proof. This is mainly a rephrasing of Proposition 7.4.12. Its hypotheses
hold by Proposition 7.10.2 and Corollary 7.4.8. �

Remark. Regardless of whether C1 and C2 satisfy the Disjoint Disks Prop-
erty, a sewing h : BdC1 → BdC2 yields Sn if h satisfies the mismatch
property of Theorem 7.10.5 (Cannon and Daverman, 1981).

Theorem 7.10.6. For any crumpled n-cube C, n ≥ 5, C ∪IdC ∼= Sn if and
only if C satisfies the Disjoint Disks Property.

Proof. If C satisfies the Disjoint Disks Property, then the identity sewing
satisfies the mismatch property of Theorem 7.10.5 and C ∪Id C ∼= Sn.

For the other implication, in case C∪IdC ∼= Sn, there exists a retraction
r : Sn → C that is 1-1 over BdC; r simply folds one of the copies of C over
onto the other. As in 7.10.4, let λi : C → Sn, i ∈ {1, 2}, be embeddings
such that λ1(C) ∪ λ2(C) = Sn, λ1(C) ∩ λ2(C) = λ1(BdC) = λ2(BdC) and
rλ1 = rλ2 = IdC . Given maps µ1, µ2 : I2 → C, approximate λ1µ1, λ2µ2 by
maps µ′

1, µ
′
2 : I2 → Sn with disjoint images. Then rµ′

1, rµ
′
2 are maps of I2

to C such that

rµ′
1(I

2) ∩ rµ′
2(I

2) ∩ BdC = ∅.
Make a further (general position) approximation over the n-manifold IntC
to obtain maps µ′′

1, µ
′′
2 : I2 → C with disjoint images. �

Corollary 7.10.7. If C is a crumpled n-cube, n ≥ 5, satisfying the Disjoint
Disks Property, then there exists an involution u : Sn → Sn with orbit space
homeomorphic to C. In particular, the fixed point set of u is a wild (n− 1)-
sphere (provided C is not an n-cell).

Definition. The orbit space of an involution u : Sn → Sn is the quotient
of Sn obtained by identifying each x ∈ Sn with u(x).
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To obtain quick applications of Theorem 7.10.5 it is advantageous to
develop conditions under which a crumpled cube C has the Disjoint Disks
Property.

Lemma 7.10.8. If the boundary of a crumpled n-cube C ⊂ Sn is locally flat
modulo a Cantor set, k-cell or k-sphere Z that is flat in BdC, where n ≥ 5
and 1 ≤ k ≤ n− 4, then C has the Disjoint Disks Property.

Proof. As before, identify a neighborhood W of C in Sn and retraction
R : W → C for which R(W � C) ⊂ BdC. Given maps f1, f2 : I2 → C,
produce approximations f ′

1, f
′
2 : I

2 → W ⊂ Sn such that f ′
1(I

2)∩f ′
2(I

2) = ∅.
Restrict W to assure that each Rf ′

i is a close approximation to fi. Let
Ui = (f ′

i)
−1(W � C). Invoke the hypothesis about Z being flat in BdC

to determine maps F1, F2 : I2 → C such that Fi|I2 � Ui = Rf ′
i |I2 � Ui =

f ′
i |I2 � Ui, Fi(Ui) ⊂ BdC � Z, and Fi is close to Rf ′

i . Since BdC is locally
collared in C at points of Fi(Ui), the maps Fi can be further adjusted, fixing
I2 � Ui while pushing points of Fi(Ui) away from BdC, thereby yielding
maps F ′

i : I
2 → C such that

F ′
1(I

2) ∩ F ′
2(I

2) ∩ BdC ⊂ f ′
1(I

2 � U1) ∩ f ′
2(I

2 � U2) ∩ BdC = ∅.
Finally, they can be adjusted once more over IntC so as to have disjoint
images. �

Example 7.10.9. There exists a wild (n− 1)-sphere Σ in Rn that is locally
flat modulo a k-sphere flatly embedded in Rn (1 ≤ k ≤ n− 2).

Such an example arises by inflating any crumpled (n − 1)-cube C in Rn−1

whose double C ∪Id C is Sn−1 (or, equivalently, C has the Disjoint Disks
Property). Think of C as a subset of Rn−1—for definiteness, assume C to
be collared in Rn−1 � IntC—and let ν : C → [0, 1] be a map such that
ν−1(0) = BdC. By an inflation of C we mean

Infl(C, ν) = {〈x, t〉 ∈ Rn−1 × R1 = Rn | x ∈ C and |t| ≤ ν(x)}.
The frontier Σ of Infl(C, ν) is the union of the two copies of C, the graphs
of ±ν, sewn together via the Identity map along their boundaries and so, by
hypothesis, is an (n − 1)-sphere. Clearly, the topological type of Infl(C, ν)
does not depend on the choice of map ν, so from here on out we shall refer to
such a construction as an inflation of C, denoted Infl(C), without reference
to any specific ν.

The (n − 1)-sphere Σ = Bd Infl(C) is locally flat modulo the (n − 2)-
sphere Σ∩ (Rn−1 ×{0}) ∼= BdC, which is flat in Rn (see Exercise 6.3.2 and
Theorem 6.3.6). Moreover, Σ is wildly embedded (assuming C is not a cell)
because C×{0} is a strong deformation retract of Infl(C) via a deformation
that moves points vertically—in the R1 direction—and preserves interiors;
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hence, the interior of Infl(C) is 1-LCC at 〈x, 0〉 ∈ BdC × {0} if and only if
IntC is 1-LCC at x.

Take C to be a crumpled (n − 1)-cube in Rn−1, n > 5, whose fron-
tier is locally flat modulo a Cantor set X standardly embedded in BdC.
Theorem 7.10.6 and Lemma 7.10.8 assure that C ∪Id C ∼= Sn−1. For
k = 1, . . . , n − 2 let Dk denote a k-cell in BdC containing X. Then Σ
is locally flat modulo the k-cell Dk ×{0} ⊂ BdC ×{0} ⊂ Σ, which is flat in
Rn by Corollary 4.6.10 when k < n−2 and by Theorem 6.3.6 when k = n−2.
For that matter, Σ is locally flat modulo the Cantor set X×{0}, which also
is flat in Rn.

Lemma 7.10.10. If the boundary of a crumpled n-cube C is locally flat
modulo a Cantor set, k-cell or k-sphere that is flat in Sn, where n ≥ 5 and
1 ≤ k ≤ n− 3, then C has the Disjoint Disks Property.

The proof, which is similar to that of 7.10.8, is left as an exercise.

Definition. A group G of homeomorphisms on a space X is said to act
semifreely on X if there exists a subset Z of X such that for every g ∈ G,
g(z) = z for all z ∈ Z and g(x) �= x for all x ∈ X � Z and all g �= IdX .

Theorem 7.10.11. Let C be a crumpled n-cube, n ≥ 5, such that C∪IdC ∼=
Sn. Then there exists a semifree S1-action on Sn+1 having an (n−1)-sphere
as its fixed point set and having orbit space homeomorphic to C.

Proof. There is a map p : S1×C → Infl(C)∪Id Infl(C) which is 1-1 on S1×
IntC and which behaves like projection to the second factor on S1 × BdC.
The obvious free S1-action on S1×C (trivial on the C factor) descends under
p to a semifree action on Infl(C) ∪Id Infl(C), and the latter is topologically
Sn, since Infl(C) has the Disjoint Disks Property (another exercise). �

Example 7.10.12. There exist a crumpled n-cube C having the Disjoint
Disks Property and a homeomorphism h : BdC → BdC such that C ∪h C
fails to be a manifold.

Proof. Start with a wild Cantor set Xn in Sn equipped with a special
geometric defining sequence and an embedded loop en(∂I

2) ⊂ Sn � Xn as
in Lemma 4.8.5. Construct an n-cell B in Sn � en(∂I

2) containing Xn as
a standardly embedded Cantor set in ∂B, and set C = Sn � IntB. Apply
Mixing Lemma 4.8.1 to obtain a homeomorphism τ : Xn → Xn mixing the
admissible subsets of Xn. Since Xn is flat in BdC = ∂B, τ extends to
a homeomorphism h : BdC → BdC. Now by Proposition 7.10.4 C ∪h C
cannot be an n-manifold: there is a special Cantor set X, the image of Xn

in the sewing space, and disjoint loops away from X, one in each copy of C,
which ought to bound essentially disjoint disks in the n-manifold (at least
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for n ≥ 5), but any two such singular disks must meet somewhere in X, by
the mixing property. �

Example 7.10.13. There exist a crumpled n-cube C∗ ⊂ Sn and embedded
loops en(∂I

2), e′(∂I2) in IntC∗ such that the image of every singular disk in
C∗ bounded by en intersects the image of every singular disk in Sn bounded
by e′.

For k = n − 1, n, apply Lemma 4.8.7 to produce wild Cantor sets Xk

in Sk equipped with compatible special geometric defining sequences, each
with the strong interior inessential property. Identity loops ek(∂I

2) ⊂ Sk �
Xk such that every singular disk in Sk bounded by ek(∂I

2) contains an
admissible subset of Xk (Corollary 4.8.6). Build k-cells Bk ⊂ Sk � ek(∂I

2)
withXk standardly embedded in ∂Bk and ∂Bk locally flat moduloXk. Form
the complementary crumpled k-cube Ck = Sk � IntBk.

Note that Ck has the Disjoint Disks Property by Lemma 7.10.8 (provided
k ≥ 5) . Inflate Cn−1 to a crumpled n-cube C ′ = Infl(Cn−1). There is a
natural embedding e′ : ∂I2 → C ′ for which every singular disk F ′(I2) in
C ′ bounded by e′(∂I2) contains an admissible subset of Xn−1. Construct
an (n− 1)-cell β′ ⊂ BdC ′ containing Xn−1 in its boundary as a standardly
embedded subset, with β′ locally flatly embedded in BdC ′ modulo Xn−1,
and construct a similar (n−1)-cell β ⊂ BdCn withXn standardly embedded
in Bdβ. Produce a homeomorphism h : β′ → β such that h|Xn−1 : Xn−1 →
Xn mixes the admissible subsets of the Cantor sets.

Let C∗ = C ′ 
h Cn denote the object obtained from the disjoint union
of C ′ and Cn by gluing β′ ⊂ BdC ′ to β ⊂ BdCn via h. Regard C ′ as
embedded in Sn so Sn�IntC ′ is an n-cell B′. Thicken β′ to an n-cellD′ ⊂ B′

locally flat modulo Xn−1 ⊂ ∂D′, where β′ and Xn−1 are flatly embedded
in ∂D′. Then D′ is flat in Sn, so Sn � IntD′ is an n-cell D ⊃ C ′. The
homeomorphism h : β′ → β extends to a homeomorphism H : ∂D → BdCn.
Then C∗ = C ′ ∪h Cn has an obvious embedding in D ∪H Cn

∼= Sn.

This object C∗ contains two noteworthy loops: en : ∂I2 → Cn ⊂ C∗

and e′ : ∂I2 → C ′ ⊂ C∗. Consider singular disks Fn(I
2), F ′(I2) in Sn, C ′

bounded by en, e
′, respectively. Then Fn(I

2) contains an admissible subset
of j(Xn) ⊂ j(Cn). To see that F ′(I2) contains an admissible subset of
j′(Xn−1) ⊂ j′(C ′), one can modify F ′ using Lemma 7.9.1 to obtain another
map F ∗ : I2 → C ′ such that F ∗(I2) ⊂ F ′(I2) ∪ β∗, where β∗ denotes the
image of β = h(β′) in C∗, and where F ∗(I2) ∩ ∂β∗ = F ′(I2) ∩ ∂β∗. Hence,
F ′(I2) ∩ j′(Xn−1) = F ∗(I2) ∩ j(Xn−1) contains the image under j′ of an
admissible subset of Xn−1. This implies that F ′(I2) and Fn(I

2) intersect.

Clearly C∗ cannot have the Disjoint Disks Property. As a result, it also
serves as:
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Example 7.10.14. There exists a crumpled n-cube C∗ such that C∗ ∪Id C
∗

fails to be a manifold.

Historical Notes. Bing was the first to produce periodic homeomorphisms
of Rn and Sn having wild fixed point sets; in perhaps his most widely known
example of this type, he demonstrated (Bing, 1952) that AH ∪Id AH ∼= S3,
where AH denotes the crumpled 3-cube bounded by Alexander’s horned
sphere, so S3 admits an involution fixing a wild 2-sphere. R. J. Daverman
and W. T. Eaton (1969) proved that an arbitrary sewing h : BdC1 → BdC2

of crumpled 3-cubes can be approximated by another sewing h′ such that
C1 ∪h′ C2

∼= S3; nothing comparable is known about arbitrary sewings of
crumpled n-cubes, n ≥ 5. Eaton (1972) showed the mismatch property of
Theorem 7.10.5 to be a necessary and sufficient condition for a sewing of two
crumpled 3-cubes to yield S3; Cannon and Daverman (1981) showed it be
a sufficient condition for a sewing of crumpled n-cubes to yield Sn, n ≥ 4.
Daverman (see comments in (1981)) introduced the inflation process as a
method of constructing wild codimension-one embeddings. He also (2007)
provided various mismatch properties under which a sewing of crumpled
cubes yields Sn.

Exercises

7.10.1. If the inflation Infl(C) of a crumpled (n− 1)-cube C is bounded by
a sphere Σ, n ≥ 5, then Σ is collared from Cl(Rn � Infl(C)).

7.10.2. Prove Lemma 7.10.10.

7.10.3. If the crumpled cube C satisfies the Disjoint Disks Property, then
so does Infl(C).

7.10.4. For n > 3 the suspension of any crumpled n-cube C satisfies the
Disjoint Disks Property.

7.10.5. If the crumpled cube C satisfies the Disjoint Disks Property, then
each map f : I2 → C can be approximated by an embedding
F : I2 → C such that F (I2) ∩ BdC is 0-dimensional.

7.11. Wild examples and mapping cylinder neighborhoods

The presence of mapping cylinder neighborhoods imposes considerable reg-
ularity on an embedding, but not enough regularity to ensure local flatness.
At the heart of §7.11 is a construction in Example 7.11.2 of a codimension-
one sphere wildly embedded in Sn despite possessing a mapping cylinder
neighborhood. Complementing the example is an initial result indicating
that the combination of mapping cylinder neighborhood and freeness im-
plies local flatness for codimension-one manifold embeddings.
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The methods for producing Example 7.11.2 lead to other applications,
including the construction here of a wild Cantor set whose embedding sat-
isfies a strong homogeneity property.

Theorem 7.11.1. Suppose Σn−1 is a connected, two-sided (n−1)-manifold
in an n-manifold M , n ≥ 5, such that Σn−1 has a mapping cylinder neigh-
borhood and is free. Then Σn−1 is bicollared.

Proof. Specify a component U of M�Σn−1. It suffices to show that Σn−1 is
1-LCC in U . Apply the hypothesis to obtain a proper map ψ : Nn−1 → Σn−1

defined on an (n− 1)-manifold Nn−1 such that Σn−1 has a closed neighbor-
hood in U naturally homeomorphic to Map(ψ), the mapping cylinder of
ψ.

Consider s ∈ Σn−1 and ε > 0 such that B(s; ε) lies in a Euclidean patch
in M . Identify a small (n − 1)-cell D ⊂ Σn−1 ∩ B(s; ε) with s ∈ IntD.
Pushing down the mapping cylinder structure of Map(ψ), if necessary, we
assume the part W of the mapping cylinder determined by ψ−1(D) lies in
B(s; ε). Let D1, D2, D3 be additional (n− 1)-cells with

s ∈ IntDi+1 ⊂ Di+1 ⊂ IntDi ⊂ Di ⊂ IntD ⊂ D = D0,

and then let Wi denote the portion of Map(ψ) determined by ψ−1(IntDi)
(i = 0, 1, 2, 3). Delete all points of Nn−1 from Wi to form W ∗

i (i = 1, 2, 3).

We claim that any loop α inW ∗
3�Σ is null-homotopic in B(s; ε)∩U . Find

γ ∈ (0, 1) so close to 1 that the image W−
3 ⊂ W ∗ of ψ−1(IntD3) × (0, γ)

in Map(ψ) contains α. Use freeness of Σn−1 in U to obtain a map g :
D → U so close to inclD : D → U in the ANR U to allow a homotopy
µ : D × [0, 1/3] → U between µ0 = inclD and µ1/3 = g; do this so the

image of µ lies in the portion of Map(ψ) corresponding to Nn−1 × [γ, 1].
The mapping cylinder structure offers the means to push the image of g out
to the frontier FrMap(ψ) (relative to U); push first through the image of
Nn−1 × [γ, 1) to the level corresponding to γ, and then through the image
of Nn−1 × [0, γ] out to the frontier. This gives an extension of µ to a map
µ : D × [0, 1] → U satisfying

µ(D × [1/3, 1]) ⊂ U ,

µ1(D) ⊂ FrMap(ψ) (relative to U),

µ(D × [1/3, 2/3]) ⊂ Nn−1 × [γ, 1) ⊂ Map(ψ) ∩ U ,

µ(D × [2/3, 1]) ⊂ Nn−1 × [0, γ] ⊂ Map(ψ) ∩ U , and

µ(D × [0, 1)) ∩ FrMap(ψ) = ∅.
Furthermore, this can be arranged so that

µ(D × [0, 1)) ⊂ B(s; ε),

µ(∂D0 × [0, 1]) ∩W1 = ∅,
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µ((D0 � IntDi)× [0, 1]) ∩Wi+1 = ∅ (i = 1, 2), and

µ(Di × [0, 1]) ⊂ Wi−1 (i = 1, 2, 3).

By the argument given for Lemma 7.9.14, µ(D0× [0, 1]) contains points of U
very close to each point of IntD1; in view of the connections along mapping
cylinder lines and away from µ(∂D0 × [0, 1]), the same argument gives that
µ(D0 × [0, 1]) ⊃ W1. In like fashion, µ(Di × [0, 1]) ⊃ Wi+1 (i = 1, 2).

W3W3

3

2

1

0

-

N
n-1

n-1
D

D
D

D

Σ

Figure 7.12. The neighborhood W3 and other structures near s

Let Y ∗
1 denote the component of µ−1(W ∗

1 ) containing IntD1 × {0}. As
in the proof of Theorem 7.9.8, one can append a collar IntD1 × (−1, 0] to
W ∗

1 and extend µ|Y ∗
1 : Y ∗

1 → W ∗
1 to a map

ν : Y ∗
1 ∪ (IntD1 × (−1, 0]) → W ∗

1 ∪ (IntD1 × (−1, 0])

in the obvious way. Here ν has degree ±1, since it is a homeomorphism over
the appended collar (Lemma 7.9.9). Note that Y ∗

1 ⊃ IntD2 × (0, 1).

Form Y −
3 = µ−1(W−

3 ). Properties of µ force Y −
3 ⊂ IntD2 × (2/3, 1) ⊂

Y ∗
1 . List the components U1, U2, . . . of Y

−
3 and use di to denote the degree

of µ|Ui : Ui → W−
3 . Then Σidi = ±1, by Lemma 7.9.11.

Let W−
1 , like W−

3 , denote the portion of W1 corresponding to the image
of Nn−1 × (0, γ) and let Y −

1 denote the component of µ−1(W−
1 ) containing

IntD2×(2/3, 1). Now we have Y −
3 ⊂ Y −

1 ⊂ D0×(2/3, 1). Another appeal to
Lemma 7.9.11 assures that µ|Y −

1 : Y −
1 → W−

1 is a degree ±1 map between
connected manifolds. Thus, Lemma 7.9.13 promises a loop α′ ⊂ Y −

1 such
that µ(α′) is homotopic to α in W−

1 . As α′ is null homotopic in D×(2/3, 1),
α is null homotopic in µ(D × (2/3, 1)) ⊂ B(s; ε) ∩ U . �

Example 7.11.2. For n ≥ 6, Sn contains a wildly embedded (n− 1)-sphere
Σ with a mapping cylinder neighborhood.
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This example introduces a remarkably useful and direct new method
for producing wildness. It involves decompositions into acyclic sets. Typ-
ically the methodology brings about an associated decomposition space S
that contains an object which obviously is “wild”, in the sense of failing
to be 1-LCC embedded; however, it can be far from obvious that S is a
manifold. Although the given decomposition is only acyclic, not cell-like, in
many instances there does exist a cell-like map from another manifold onto
S, in which event the Cell-like Approximation Theorem possibly could be
exploited to detect that S is a manifold.

For the specific issue at hand, Example 7.11.2, the decomposition space S
associated with an acyclic decomposition of Sn contains an object Σ related
to the (n − 1)-sphere, and the latter obviously has a neighborhood P with
the structure of a mapping cylinder. Moreover, the sphere-like subspace Σ
has wildness features, by virtue of containing a 1-sphere that fails to be
1-LCC in S.

Construction of the Example. Assume n ≥ 7; something similar can be
done for n = 6, but we will ignore that special case. Fix a finite, acyclic
2-complex A that is PL embedded in Sn−2 with contractible complement
(see Example 0.10.3). Take a regular neighborhood N(A) of the embedded
A and then spin an (n− 2)-ball B, N(A) ⊂ IntB ⊂ B ⊂ Sn−2, to produce
a PL embedding of N(A)× S1 in Sn−1. Treat Sn−1 as an equatorial sphere
in Sn. Form the decomposition of Sn having the sets {A × {s} | s ∈ S1}
as nondegenerate elements, and let p : Sn → S denote the map to the
associated decomposition space S. We will show that both S and p(Sn−1)
are spheres. The image under p of an annular neighborhood of Sn−1 in Sn

will be a mapping cylinder neighborhood of p(Sn−1). The 1-sphere p(A×S1)
will be wildly embedded in S (and in p(Sn−1) as well) because it fails to be
1-LCC.

Lemma 7.11.3. The quotient space N(A)/A is the cell-like image of a ∂-
manifold W under a cell-like map that restricts to a homeomorphism on a
neighborhood of ∂W .

Proof. The complex A is embedded in Sn−2 with contractible complement.
Therefore, the closed complement C ′ of a collar on ∂N(A) in Sn−2�IntN(A)
is contractible, and N(A)/A ∼= (Sn−2 � IntN(A))/C ′, since each is a cone
over ∂N(A). �

Lemma 7.11.4. Suppose M is an m-manifold and p : M × S1 → X is
a closed, surjective mapping for which there exist an (m − 2)-dimensional,
compact ANR Z in M and a closed subset C of S1 such that the nondegen-
erate point preimages under p are the sets {Z × {s} | s ∈ C}. Let D be a
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dense subset of C. Then each map f : I2 → X can be approximated by a
map F : I2 → X such that F (I2) ∩ p(Z × C) ⊂ p(Z ×D).

Proof. Given f : I2 → X, choose a triangulation T on I2 so images of its
simplices under f have small diameter. Let L denote the subcomplex of T
containing the 1-skeleton plus all 2-simplices τ ∈ T with f(τ)∩p(Z×C) = ∅.
Here f can be approximately lifted to a map g : L → M : for each 2-simplex
τ ∈ L set g|τ = p−1f |τ ; for vertices and 1-simplices of L not contained in any
2-simplex there, the existence of such an approximate lift g follows readily
from the dimension restriction on Z. The desired map F will coincide with
pg on L. For each 2-simplex σ ∈ T � L, g|∂σ is homotopic in (U � Z) × J
to a map sending ∂σ into U ×{d}, where U is a small neighborhood of Z in
M , J is a small subset of S1, and d ∈ D. Thus, F |∂σ = pg|∂σ extends over
σ to a map F : σ → p((U � Z) × J) ∪ (U × {d}), which gives the desired
approximation to f . �

Corollary 7.11.5. The space (N(A)/A)× S1 satisfies the DDP.

Proof. Specify disjoint dense subsets D1, D2 of S1. Let p : N(A) × S1 →
X = (N(A)/A) × S1 denote the decomposition map. Given two maps fi :
I2 → (N(A)/A)× S1, approximate by maps Fi : I

2 → (N(A)/A)× S1 with
F (I2) ∩ p(A × S1) ⊂ p(A × Di) (i = 1, 2). A general position adjustment
near points of F1(I

2) ∩ F2(I
2) in the ∂-manifold p((N(A)�A)× S1) yields

disjoint approximations. �

It follows from the Cell-like Approximation Theorem that (N(A)/A)×S1

is a ∂-manifold, and hence p(Sn−1) is a manifold. The latter is a sphere since
it is a simply-connected homology sphere (by the Vietoris-Begle Theorem).
Similarly, S = p(Sn) is an n-sphere. Finally, p(A× S1) is wildly embedded
in S since it fails to be 1-LCC: it has a compact neighborhood P of the form
(c ∗ ∂(N(A)× [−1, 1]))× S1 and its complement in P deformation retracts
to ∂(N(A)× [−1, 1])× S1. �

Definition. A subset X of a space S is strongly homogeneously embedded
in S if every homeomorphism h : X → X extends to a homeomorphism
H : S → S.

Example 7.11.6. For n ≥ 6, Sn contains a wild, strongly homogeneously
embedded Cantor set.

Proof. Again we use acyclic decompositions to build a space S containing
a Cantor set X that is both strongly homogeneously embedded and wild, in
the sense of failing to be 1-LCC embedded. The real work involves showing
that S is a manifold.
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As before, consider the acyclic 2-complex A PL embedded in Sn−2 with
contractible complement. Let C be a Cantor set,

C ⊂ Int I = Int I × {1/2} ⊂ Int I2.

Consider Sn−2 × I2 as a PL subset of Sn.

Let p : Sn → S be the decomposition map associated with the decom-
position of Sn into points and the sets {A × {c} | c ∈ C}. The Cantor
set of interest is X = p(A × C). Obviously it is strongly homogeneously
embedded in S because for any homeomorphism h : X → X there exists a
homeomorphism g : C → C rendering the following diagram commutative:

A× C
Id×g−−−−→ A× C⏐⏐�p|A×C

⏐⏐�p|A×C

X
h−−−−→ X

This g extends to a homeomorphism G : I2 → I2 that reduces to the identity
on ∂I2, and

Id×G : Sn−2 × I2 → Sn−2 × I2

extends to H : Sn → Sn via the Identity off Sn−2 × I2. Then H, in turn,
induces a homeomorphism Ĥ : S → S as Ĥ = pHp−1, and Ĥ|X = h.

By Corollary 7.11.5, S has the DDP.

Finally, we explain why S is the cell-like image of a manifold. Let N1 be
a regular neighborhood of A in IntN(A) and let E1 be the union of a pair
of disjoint 2-cells in Int I2, with IntE1 ⊃ C. As N(A)× I2 ⊂ Sn is a regular
neighborhood of a copy of A, ∂(N(A)× I2) bounds a compact, contractible
n-manifold Q0. We claim that IntQ0 contains a pair of disjoint copies of Q0

whose union Q1 satisfies Q0 � IntQ1
∼= N(A)× (I2 � Int(N1 × E1)). Form

a second compact contractible n-manifold Q′ by removing Int(N1 × E1)
from N(A)× I2 and attaching in a copy of Q0 to what remains along each
component of ∂(N1 × E1). Remarkably, Q′ is PL homeomorphic to Q0, by
the Relative h-Cobordism Theorem (Rourke and Sanderson, 1972, p. 87):
the union of Q0, Q

′ and a collar joining ∂Q0 to ∂Q′ is an n-sphere, hence
that union bounds an (n + 1)-cell W , the resulting triple (W,Q0, Q

′) is a
relative h-cobordism, so W ∼= Q0× [0, 1] with Q0 corresponding to Q0×{0}
and Q′ to Q0 × {1}.

Let N1 ⊃ N2 ⊃ · · ·Nk ⊃ · · · be regular neighborhoods of A in Sn−2

such that Nk ⊂ IntNk−1 and ∩kNk = A. For k ≥ 2 let Ek be a union of 2k

pairwise disjoint 2-cells in IntEk−1, where ∩kEk = C. Each component of
Nk−1×Ek−1� Int(Nk ×Ek) is homeomorphic to N(A)× I2� Int(N1×E1).
Now Sn−2 × I2 contains a sequence Q0 ⊃ Q1 ⊃ · · ·Qk−1 ⊃ Qk ⊃ · · · , where
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for k > 0 Qk consists of 2k pairwise disjoint copies of Q0, Qk ⊂ IntQk−1

and

Qk−1 � IntQk
∼= Nk−1 ×Ek−1 � Int(Nk × Ek).

As a result, there is a natural surjective map q : Q0 → p(N(A) × I2) ⊂ S
sending distinct components of ∩kQk to distinct points of X and being 1-1
on Q0 � ∩kQk. Rather obviously, the components of ∩Qi are cell-like sets,
so q is a cell-like mapping and therefore a near-homeomorphism. It follows
that S is a manifold. �

Constructions like those of Example 7.11.2 or §2.6 give wild but strongly
homogeneously embedded 1-spheres in S5 × S1 and S3 × S1, respectively.
Exactly the same methods, with Sk in place of S1, lead to wild but strongly
homogeneously embedded k-spheres in codimensions 5 and 3. Whether there
is a wild and strongly homogeneously embedded (or even just homogenously
embedded) codimension-one manifold example remains an open question.

Historical Notes. Theorem 7.11.1 is due to Bryant and Lacher (1975),
who did considerably more, showing there that the combination of mapping
cylinder neighborhood and a generalized concept of freeness implies local
flatness for embedded manifolds of all other codimensions. In low dimen-
sions freeness is not a necessary ingredient: V. Nicholson (1969) proved that
complexes in 3-manifolds with mapping cylinder neighborhoods are tame,
and Lacher and A. Wright (1970) showed that 3-manifolds with mapping
cylinder neighborhoods in 4-manifolds are locally flat.

S. Ferry and E. Pederson (1991) produced a catalogue of wildly embed-
ded circles in Sn (n ≥ 7) similar to the wild circles of Example 7.11.2. Theirs
are indexed by Wall’s finiteness obstruction.

M. A. Kervaire (1969) proved that every PL homology n-sphere, n ≥ 5,
bounds a compact, contractible, PL (n+ 1)-manifold; Kervaire derived the
same result in the smooth category, provided one allows modification of
the homology sphere by taking its connected sum with a (unique) smooth
homotopy sphere.

Alternate ways of getting a cell-like mapping from a manifold onto spaces
like these acyclic decomposition spaces are treated in Chapter 8.

The methods arising in the development of Example 7.11.2 are those
used to settle the Double Suspension Problem, discussed later here in §8.10.
The connection is exposed in Exercise 7.11.2 below.

The strongly homogeneous but wildly embedded Cantor set is due to
Daverman (1979).
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Exercises

7.11.1. Suppose Σn−1 is a connected, two-sided (n− 1)-manifold in a con-
nected n-manifold M (n ≥ 5), ψ : Σn−1 → Σn−1 is a cell-like
mapping, and U is a component of M �Σn−1 such that Σn−1 has a
closed neighborhood in U naturally homeomorphic to the mapping
cylinder of ψ. Then Σn−1 is collared from U .

7.11.2. Show that the join of S1 and ∂N(A), where N(A) is the acyclic,
(n − 2)-dimensional ∂-manifold described in Example 7.11.2, is
topologically Sn.

7.11.3. Show that Sn contains a wild, homogenously embedded (n − 2)-
torus (n > 2). [Hint: spin the Bing sling of Subsection 2.8.5.]



Chapter 8

Codimension-zero
Embeddings

This concluding chapter organizes a whirlwind tour past some codimension-
zero results. Offering few proofs, it highlights major developments and
presents historical perspectives.

8.1. Manifold characterizations

We begin with a reminder of two important tools, both of which are treated
in (Rourke and Sanderson, 1972).

An h-cobordism is a triple (Wn,M0,M1) that consists of a compact n-
dimensional ∂-manifold Wn with disjoint boundary components M0 and M1

such that each inclusion Mi ↪→ Wn is a homotopy equivalence.

Theorem 8.1.1 (h-Cobordism). If (Wn,M0,M1) is an h-cobordism, where
Wn is a simply connected PL ∂-manifold and n ≥ 6, then Wn is PL home-
omorphic to M0 × [0, 1].

When combined with G. Perelman’s recent solution to the 3-dimensional
Poincaré Conjecture, the h-Cobordism Theorem yields the following corol-
lary.

Corollary 8.1.2 (PL Poincaré Theorem). Any PL n-manifold homotopy
equivalent to Sn is PL homeomorphic to Sn, n �= 4.

For an arbitrary h-cobordism (Wn,M0,M1), W
n simply connected or

not, there is an element τ(W,M0) of the Whitehead group of π1(W
n) that

425
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determines whether Wn is a product. This element is called the torsion of
the cobordism.

Theorem 8.1.3 (s-Cobordism). Let (Wn,M0,M1) be an h-cobordism, where
Wn is a compact PL n-dimensional ∂-manifold, n ≥ 6. There exists a
well-defined element τ(Wn,M0) ∈ Wh(π1(W

n)) such that Wn is PL home-
omorphic to M0 × [0, 1] if and only if τ(Wn,M0) is trivial. Conversely, for
every finitely presented group G, τ0 ∈ Wh(G) and n ≥ 6, there exists a PL
h-cobordism (Wn,M0,M1) such that π1(W

n) ∼= G and τ(Wn,M0) = τ0.

Noncompact manifolds deserve some consideration as well.

Theorem 8.1.4. A contractible PL manifold Wn, n �= 4, is PL homeomor-
phic to Rn if and only if Wn is simply connected at infinity.

See Exercise 3.1.2 for the cases n ≥ 5.

Corollary 8.1.5. If V m,Wn are contractible PL manifolds of dimensions
m,n ≥ 1, where m+ n ≥ 5, then V m ×Wn is PL homeomorphic to Rm+n.

A locally compact space X is relatively 2-connected at infinity if for each
compact C ⊂ X there exists another compact D ⊂ X, D ⊃ C, such that
for every map f : (I2, ∂I2) → (X,X �D) there is a homotopy µt : I

2 → X
between f and a map into X � C that sends ∂I2 into X � C for all t ∈ I.

Theorem 8.1.6. Suppose Wn is an n-dimensional PL ∂-manifold, n ≥ 5,
with ∂Wn compact. Then Wn is PL homeomorphic to ∂Wn × [0, 1) if and
only if incl : ∂Wn → Wn is a homotopy equivalence and Wn is relatively
2-connected at infinity.

Engulfing technology assures that every compact subset C of Wn can be
PL engulfed by a collar on ∂Wn, and then collar sliding or monotone union
methods lead to a covering of Wn by copies of ∂Wn × [1− 2−k, 1− 2−(k+1)]
that fit together perfectly.

Historical Notes. The h-Cobordism Theorem is due to Smale (1962), while
the s-Cobordism Theorem was proved independently by D. Barden (1963),
Mazur (1963a), (1963b), and Stallings. The 3-dimensional Poincaré Theo-
rem was recently established by Perelman; a detailed exposition of his proof
may be found in (Morgan and Tian, 2007). Freedman (1982) proved a 4-
dimensional topological Poincaré Theorem.

Theorem 8.1.4 was first done by Stallings (1962b). McMillan handled
the 3-dimensional case of the same result, modulo the now-established 3-
dimensional Poincaré Conjecture. Freedman (1982) did the 4-dimensional
case for topological manifolds and topological homeomorphisms. Outside
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the topological category, dimension 4 is strikingly unusual: there are a mul-
titude of different PL and smooth structures on R4 (Gompf, 1985), (Taubes,
1987).

8.2. The α- and β-Approximation Theorems

When can a map f : M → N between a general pair of n-manifolds be ad-
justed to a homeomorphism? Siebenmann showed that, if dimM = dimN ≥
5 , then any cell-like mapM → N can be approximated arbitrarily closely by
homeomorphisms. Siebenmann’s result has some noteworthy improvements.

Let α denote an open cover of N . Define an α-equivalence (over N)
to be a proper map f : M → N from another n-manifold M to N which
has a homotopy inverse g for which there exist homotopies fg � IdN and
gf � IdM limited by α and f−1(α), respectively. A homotopy Φ : X×I → Y
is limited by a collection U of subsets of Y if, for each x ∈ X, some Ux ∈ U
contains Φ({x} × I).

Theorem 8.2.1 (α-Approximation). Let N be an n-manifold, n ≥ 6. For
every open cover α of N there is another open cover β of N such that if
M is any n-manifold and f : M → N any β-equivalence, then f can be
α-approximated by a homeomorphism.

This α-Approximation Theorem posits a control over the target mani-
fold, independent of the domain, and concludes that a map submitting to
that control is reasonably close to a homeomorphism. There is a complemen-
tary result involving even simpler control exclusively on the source. Given
an open cover β of space Y , say that a continuous function g : Y → X is a
β-map provided the collection {g−1(x) | x ∈ X} refines β.

Theorem 8.2.2 (β-Approximation). Let α be an open cover of an n-manifold
M , n ≥ 6. There exists another open cover β of M such that any proper
β-map g : M → N onto another n-manifold N is homotopic through α-maps
to a homeomorphism.

Historical Notes. Chapman and Ferry (1979) proved α-Approximation
Theorem 8.2.1. Exploiting 8.2.1, Ferry (1979) developed the β-Approx-
imation Theorem 8.2.2 shortly thereafter.

8.3. Ends of manifolds

Throughout this section W will denote a non-compact, n-dimensional, PL
∂-manifold (n > 5) having compact boundary (empty boundary allowed).
The question under consideration is the conditions needed to guarantee that
W can be PL embedded in a compact PL ∂-manifold W ′ such that W ′�W
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consists entirely of components of ∂W ′. When that occurs, one says that W
admits a (compact) boundary and calls W ′ a completion of W .

An end of W is a function ε that assigns to each compact subset C of
W a nonempty component U of W � C in such a way that if C ⊂ C ′, then
U ⊃ U ′. The open set U is called a neighborhood of the end. An end ε
is isolated if there exists a neighborhood U of ε such that for any compact
K ⊂ W only one component of U ∩ (W �K) has noncompact closure.

Given a closed subset C of a compact manifold M , the ends of W =
M �C correspond to components K of C: any neighborhood UK of such a
component K contains a neighborhood of the corresponding end of W ; that
end is isolated precisely when K is an open subset of C.

A collar for an end ε is the closure N of a neighborhood of ε such that
N is a connected ∂-manifold PL embedded in W so that N ∼= ∂N × [0, 1).
Obviously W admits a compact boundary if and only if it has only a finite
number of ends, each of which has a collar.

The strategy for devising a collar on an isolated end ε is to produce more
and more highly connected neighborhoods of ε. According to Theorem 8.1.6,
it suffices to find a closed neighborhood N of ε such that ∂N ↪→ N is a
homotopy equivalence and N is relatively 2-connected at ∞. Ultimately,
under the right conditions on ε, one can secure such a neighborhood N .

A 0-neighborhood of an isolated end ε is a closed connected neighborhood
V of ε such that V is a PL ∂-manifold in W and ∂V is connected. Every
isolated end of W has arbitrarily small 0-neighborhoods: if the connected,
PL ∂-manifold V is a closed neighborhood of ε, one can drill tunnels through
V to join up the various boundary components and to create thereby a 0-
neighborhood V ′ ⊂ V .

Consider an inverse sequence of groups and homomorphisms

G1
ϕ1←−−−− G2

ϕ2←−−−− G3
ϕ3←−−−− G4 ←−−−− · · · .

Its inverse limit is the subgroup

{〈g1, g2, . . . , 〉 ∈ Π∞
i=1Gi | ϕi+1(gi+1) = gi for all i}.

A subsequence of this inverse sequence is a sequence

Gn(1)
ϕ′
1←−−−− Gn(2)

ϕ′
2←−−−− Gn(3)

ϕ′
3←−−−− Gn(4) ←−−−− · · · ,

where 0 < n(1) < n(2) < · · · and ϕ′
i is the composite ϕn(i) ◦ · · · ◦ ϕn(i+1)−1.

An inverse sequence of groups is stable if there exists a subsequence such
that the induced sequence

Imϕ′
1

ϕ′
1|←−−−− Imϕ′

2

ϕ′
2|←−−−− Imϕ′

3

ϕ′
3|←−−−− Imϕ′

4 ←−−−− · · ·
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of image groups and restricted homomorphisms has isomorphisms every-
where. In that spirit, say that π1 is stable at an isolated end ε if there
exists a sequence N1 ⊃ N2 ⊃ · · · of path-connected neighborhoods of ε and
(for some base points xi ∈ Ni and for ϕi equal to the inclusion-induced
π1(Ni+1, xi+1) → πi(Ni, xi+1) followed by a change of base point automor-
phism) the sequence

π1(N1, x1)
ϕ1←−−−− π1(X2, x2)

ϕ2←−−−− π1(N3, x3) ←−−−− · · ·

is stable. When that occurs, define π1(ε), the fundamental group of the end
ε, as Imϕ′

1
∼= Imϕ′

i. The stability of π1 at ε is independent of all the relevant
choices.

Now suppose ε is an isolated end of W and π1 is stable at ε. Then a
1-neighborhood of ε is a closed 0-neighborhood N of ε such that the natural
inclusion-induced homomorphisms π1(∂N) → π1(N) and π1(ε) → π1(N)
are isomorphisms.

Lemma 8.3.1. If π1 is stable at ε and π1(ε) is finitely presented, then ε
has arbitrarily small 1-neighborhoods.

A space X is dominated by a finite complex K if there exist maps d :
K → X and u : X → K such that du � IdX . Let D denote the class of
spaces that have the homotopy type of a (not necessarily finite) CW complex
and are dominated by a finite complex.

Given an isolated end ε of W such that π1 is stable at ε and π1(ε) is
finitely presented, call ε a tame end if, in addition, every sufficiently small
1-neighborhood of ε belongs to D. The presence of tame ends is clarified by
the next result.

Lemma 8.3.2. Suppose ε is an isolated end of W such that π1 is stable at
ε and π1(ε) is finitely presented. The following statements are equivalent:

(1) There exists a connected neighborhood U of ε such that U ∈ D and
the inclusion-induced π1(ε) → π1(U) has a left inverse;

(2) Some 1-neighborhood of ε belongs to D;

(3) Every sufficiently small 1-neighborhood of ε belongs to D;

(4) Every sufficiently small 0-neighborhood of ε belongs to D.

A k-neighborhood V of ε, k ≥ 2, is a 1-neighborhood such that πi(V, ∂V )
∼= 0 (i = 0, 1, . . . , k). When ε has arbitrarily small k-neighborhoods, then
with handle-swapping and handle-sliding moves, as in the proof of the s-
Cobordism Theorem, one can improve them to obtain arbitrarily small (k+
1)-neighborhoods for k = 1, 2, . . . , n− 4. Success in securing the collar on ε
is at hand if one can take the next step.
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Theorem 8.3.3. If V is a connected PL ∂-manifold of dimension n ≥ 5
with one end ε such that V is an (n− 2)-neighborhood of ε, π1 is stable at ε
and the natural inclusion π1(ε) → π1(V ) is an isomorphism, then V is PL
homeomorphic to ∂V × [0, 1).

At this point in the lengthy process, when confronted with the need to
improve (n − 3)-neighborhoods to (n − 2)-neighborhoods, one encounters
an unavoidable new obstacle. Let R be a ring. A projective R-module is
one that is isomorphic to a direct summand of a free R-module. Two R-
modules M1,M2 are stably isomorphic if there exists a finitely generated,
free R-module F such that M1 ⊕ F,M2 ⊕ F are R-isomorphic. A finitely
generated R-module is stably free if it is stably isomorphic to a free R-
module. The stable isomorphism classes of finitely generated, projective
R-modules form an abelian group (with direct sum as the group operation),

called the projective class group of R, and written K̃0(R). The class of
stably free R-modules corresponds to the zero element of this group. Finally,

given a group G, K̃0(G) denotes K̃0(Z[G]), where Z[G] is the integral group
ring determined by G. To make the final improvement, one wants and, it

turns out, needs Hn−2(Ṽ , ∂Ṽ ) to be stably free as a Z[π1(ε)]-module (for
arbitrarily small (n− 3)-neighborhoods V of ε).

Proposition 8.3.4. Suppose ε is an isolated end of W that has arbitrarily

small (n−3)-neighborhoods V . Then, for any such V , Hn−2(Ṽ , ∂Ṽ ;Z[π1(ε)])
is a projective Z[π1(ε)]-module. Furthermore, if ε is a tame end, then

Hn−2(Ṽ , ∂Ṽ ;Z[π1(ε)]) is a finitely generated projective Z[π1(ε)]-module.

Theorem 8.3.5 (Collaring). A tame end ε of W is collared in W if and

only if an obstruction σ(ε) ∈ K̃0(π1(ε)) is trivial. Here σ(ε) is the stable

isomorphism class of Hn−2(Ṽ , ∂Ṽ ;Z[π1(ε)]), for any (n − 3)-neighborhood
V of ε.

Remarks. Up to sign, the obstruction σ(ε) is Wall’s finiteness obstruction
σ(V ), for any closed (n− 3)-neighborhood V of ε.

All obstructions can be realized. Given n ≥ 6, a finitely presented

group G and σ0 ∈ K̃0(G), there exists a PL n-manifold W having a single
(necessarily isolated) end ε such that ε is tame, π1(ε) ∼= G and σ(ε) = σ0 ∈
K̃0(G). (cf. (Wall, 1965a), (1966).)

Corollary 8.3.6. Let W be a connected PL n-manifold, n ≥ 6, having a

single end ε, where ε is tame and 0 ∼= σ(W ) ∈ K̃0(π1(ε)). Then W is
homeomorphic to the interior of a compact ∂-manifold.

As all submodules of a finitely generated Z-module are free, K̃0(G) ∼= 0
when G is the trivial group. More generally, the projective class group
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K̃0(G) is also known to be trivial for the fundamental group G of many
compact, aspherical, Riemannian manifolds. For tori (i.e., for free Abelian
groups), this is a result of H. Bass (1968); see also (Swan, 1978).

Corollary 8.3.7. A PL manifold Wn is the interior of a compact ∂-manifold
with 1-connected boundary if and only if it is simply-connected at ∞ and
H∗(W ;Z) is finitely generated.

Theorem 8.3.8. Let W be a manifold with a single isolated end ε and let
Q be a compact connected manifold with χ(Q) = 0. Then ε is tame if and
only if the end of W ×Q has a collar.

Corollary 8.3.9. Let W be a connected n-manifold, n ≥ 5, having a single
end ε such that π1(ε) is stable and ε is tame. Then W×S1 is homeomorphic
to the interior of a compact ∂-manifold.

M. W. Davis (1983) has an example of a contractible, one-ended (nec-
essarily) manifold Wn, n ≥ 4, for which the end has arbitrarily small closed
∂-manifold neighborhoods V such that ∂V ↪→ V is a homotopy equivalence
but W has no completion. Despite the fact that the neighborhoods V men-
tioned have the homotopy type of a finite complex, the end is not tame in
the strict sense employed in this discussion, because π1 fails to be stable at
the end.

Historical Notes. In his Ph.D. thesis, Siebenmann (1965) developed this
detailed analysis of conditions under which a manifold W admits a compact
boundary. Theorem 8.3.3 is also his work (1969).

Earlier, W. Browder, J. Levine and G. R. Livesay (1965) established
Corollary 8.3.7 for simply connected ends.

L. S. Husch and T. M. Price (1970) showed that, modulo the now-
established 3-dimensional Poincaré Conjecture, a 3-dimensional ∂-manifold
M is the interior of a compact ∂-manifold if ∂M is compact, M has single
isolated end ε, π1 is stable at ε, and π1(ε) �= Z/2.

The obstruction σ(W ) was developed by C. T. C. Wall (1965a), (1966) to
provide a negative answer to Whitehead’s problem asking whether a finitely
dominated CW complex must be homotopy equivalent to a finite complex.
In other words, Collaring Theorem 8.3.5 promises that a tame end ε is
collared if and only if ε has a neighborhood homotopy equivalent to a finite
complex.

Theorem 8.3.8 was derived by Siebenmann (1965) and S. M. Gersten
(1966) independently, as part of a more general product formula. Corollary
8.3.9 was originally proved by M. Mather (1965).
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8.4. Ends of maps

Like manifolds, maps themselves occasionally admit completions. Given
a ∂-manifold W and map e : W → X, a completion of e consists of an
embedding of W ⊂ W ′ into a ∂-manifold W ′ with W ′ � W ⊂ ∂W ′ and
an extension of e to a proper map e′ : W ′ → X. Unlike with manifolds,
however, one does not distinguish various distinct ends for a map; instead,
the target space X parameterizes the end.

The conditions under which a completion of a map exists are rather
elaborate. A neighborhood of the end of e is an open subset U of W such
that e|W � U is proper. The end is onto if each neighborhood of the end
surjects to X via e. The end is 0-LC if for each neighborhood U of the end,
each x ∈ X, and each neighborhood Vx of x, there exist a neighborhood
U ′ ⊂ U of the end and a neighborhood V ′

x ⊂ V of x such that any two
points in U ′ ∩ e−1(V ′

x) can be joined by paths in U ∩ e−1(Vx). The end is
1-LC if U ′ and V ′

x can be obtained so that, in addition to the 0-LC condition,
loops in U ′ ∩ e−1(V ′

x) are null-homotopic in U ∩ e−1(Vx).

A 0-LC map e : W → X has locally constant fundamental group at the
end if for each x ∈ X there are neighborhoods U of the end and Vx of
x such that U ∩ e−1(Vx) has a regular covering space whose end is 1-LC
over Vx. The local fundamental group of the end is the group of covering
transformations of this cover. Well-defined up to isomorphism, it determines
a twisted coefficient system on X.

Given a metric space X and continuous ε : X → (0,∞), say that a
homotopy h : Y × I → X has diameter less than ε over X if the diameter
of each path h({y} × I) is less than the minimum of ε on that path.

The end is tame if, for each neighborhood U of the end and each map
ε : X → (0,∞), there exist a neighborhood V of the end, V ⊂ U , and a
homotopy ht of W such that h0 = IdW , h1(W ) ⊂ W�V , ht|W�U = IdW�U

and eh : M × I → X has diameter less than ε over X. Tameness of the
end is a necessary condition: if e has a completion, then the homotopies
required for tameness can be readily obtained by pushing along collar lines
in a neighborhood of the added boundary.

This homotopical notion of tameness has a homological analog. Suppose
e : W → X is 0-LC and has locally constant fundamental group π at the
end. The end of e is homologically tame if π is finitely presented and for
every neighborhood of the end and every continuous ε : X → (0,∞) there is
a neighborhood U ′ of the end such that for every K ⊂ X the homomorphism

H∗(e
−1(K), e−1(K)� U ;Zπ) → H∗(e

−1(Kε), e−1(Kε)� U ′;Zπ)

is trivial. In this formula Kε is just shorthand for B(K; ε).
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Lemma 8.4.1. Suppose the end of the map e : W → X from a manifold W
to a locally compact, locally 1-connected metric space X is onto, 0-LC and
has locally constant, finitely presented fundamental group π. Then the end
is tame if and only if it is homologically tame.

With the preliminaries now completed, here is a statement of the End
Theorem.

Theorem 8.4.2 (End). Suppose e : W → X is a map from an n-manifold,
n ≥ 6, to a locally compact, locally 1-connected space X. Suppose also that
the end of e is tame, onto, and has locally constant fundamental group π
such that the Whitehead groups Wh(π × Zk) are trivial for all k ≥ 0. Then
e has a completion e′ : W ′ → X.

Siebenmann’s Collaring Theorem in §8.3, an unparameterized version
of this End Theorem, amounts to producing a completion for the constant
map e : W → {point}.

Corollary 8.4.3. Let W be a PL n-manifold and Y ⊂ W be a compact
ANR that is 1-LCC embedded in N , where n ≥ 6 and n− dimY ≥ 3. Then
Y has a mapping cylinder neighborhood in W .

The idea behind the proof of the Corollary is to identify a closed neigh-
borhood N ⊂ W of Y , with N an n-dimensional PL ∂-manifold equipped
with a retraction r : N → Y . Examine the restriction

r′ = r|N � Y : N � Y → Y.

Its end is 0-LC, due to the codimension restriction on Y . The 1-LCC hypoth-
esis assures that the end is 1-LC; this means, of course, that r′ has locally
constant fundamental group π at the end, where π is the trivial group. One
then shows that the end of r′ is tame by showing it is homologically tame.

Hence, Theorem 8.4.2 applies. In the resulting completion r∗ : N∗ → Y ,
a collar on ∂N∗ = N∗ � (N � Y ) projects in a natural way to a manifold
mapping cylinder neighborhood of Y ⊂ W .

At the heart of the End Theorem is a result—the Thin h-Cobordism
Theorem—offering controls on collar images as one approaches the end.
Suppose M is a compact ∂-manifold, with ∂M the disjoint union of (n− 1)-
manifolds N0, N1, e : M → X is continuous and δ > 0. Say that (M,N0) is
a (δ, h)-cobordism over X if for i = 0, 1 there is a homotopy M × [0, 1] → M
starting at the identity, ending with a map into Ni and having diameter < δ
over X. In addition, say that (M,N0) has a δ-product structure over X if
there is a homeomorphism h : N0×[0, 1] → M such that h0 is the Identity on
N0 and, when considered as a homotopy, h has diameter less than δ over X.
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Theorem 8.4.4 (Thin h-Cobordism). Suppose X is a compact, locally 1-
connected metric space, n ≥ 5 and ε > 0. Then there exists δ > 0 such that
if M is a compact, n-dimensional ∂-manifold, (M,N0) is a (δ, h)-cobordism

over X, and M has a regular covering M̃ → M so that the composite M̃ →
X is (δ, 1)-connected over X, where the group of covering translations π
satisfies Wh(π×Zk) ∼= 0 for all k, then (M,N0) has an ε-product structure
over X.

Remark. There is a much more general version of this Thin h-Cobordism
Theorem for non-compact X and proper maps e : M → X.

A cell-like resolution of a space X is a pair (M, f) consisting of an n-
dimensional topological manifold M and a proper, cell-like, surjective map-
ping f : M → X; X is said to be resolvable if it has a cell-like resolution.

Corollary 8.4.5. Let X be an n-dimensional metric space, n ≥ 5. The
following statements are equivalent:

a) X is resolvable;

b) X × Rk is resolvable for some integer k ≥ 0;

c) X × Rk is resolvable for all k ≥ 0.

Proof. Obviously a) =⇒ c) =⇒ b). To see that b) =⇒ a), name a cell-
like map f : M → X×Rk and consider e = proj ◦f : M → X×Rk−1, where
proj: X × Rk → X × Rk−1 is the projection. End Theorem 8.4.2 applies,
providing a completion e′ : M ′ → X × Rk−1. Restrict e′ to (a component
of) ∂M ′ �M ; it is easily seen that this restricted map provides a resolution
of X × Rk−1. Induction gives a resolution of X itself. �

Corollary 8.4.6. For any n-dimensional metric space X, the following
statements are equivalent:

a) X is resolvable;

b) X × Rk is a manifold for some integer k ≥ 0;

c) X × R2 is a manifold.

Under the standard hypotheses, completions are unique in a strongly
controlled sense.

Theorem 8.4.7. Suppose W → X satisfies the conditions of Theorem 8.4.2,
and suppose e′ : W ′ → X and e′′ : W ′′ → X are two completions of e. Then
for every ε : X → (0,∞) there is an isotopy of W that takes a collar
neighborhood of W ′ � W to a collar neighborhood of W ′′ � W and whose
image under e has diameter less than ε.
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Historical Notes. The program outlined in this section is due to F. Quinn
(1979), (1982).

8.5. Quinn’s obstruction and the topological
characterization of manifolds

Loosely put, homology manifolds are spaces possessing the local homology
properties of manifolds. Formally, an n-dimensional homology manifold is a
locally compact, finite-dimensional, metric ANR X such that at each point
x ∈ X,

Hr(X,X � {x}) =
{
Z if r = n

0 otherwise.

Clearly topological manifolds are themselves examples of homology man-
ifolds. Work of R. L. Wilder (1979) assures that all homology 2-manifolds are
topological 2-manifolds, but that classical result does not generalize to any
dimensions above 2. Numerous nonmanifold examples arise from cell-like
decompositions. The quotient of S3 obtained by identifying the Whitehead
continuum to a point constitutes a minimal 3-dimensional example; like-
wise, the quotient of Sn obtained using a non-cellular arc in place of the
Whitehead continuum gives minimal higher-dimensional examples.

Corollary 7.4.7 and either the Vietoris-Begle Theorem (0.4.1) or Propo-
sition 3.2.9 lead to:

Proposition 8.5.1. Every n-dimensional resolvable space X is an n-dimen-
sional homology manifold.

Quinn (1987) discovered an obstruction to the existence of cell-like res-
olutions. The obstruction has the following properties:

Theorem 8.5.2 (Index). Let X be a connected, homology n-manifold, n >
3. Then there is an integer i(X), called the index of X, such that i(X) = 1
if and only if X has a cell-like resolution. Moreover, the index function i
satisfies:

(1) i(X) ≡ 1 mod 8,

(2) i(X) = i(U) for all connected open subsets U ⊂ X,

(3) i(X × Y ) = i(X) · i(Y ), and

(4) i is invariant under cell-like, surjective mappings between homology
n-manifolds.

The important business of realizing the possible Quinn obstructions is
treated in the next section.
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The combination of Quinn’s Index Theorem 8.5.2 and Edwards’s Cell-
like Approximation Theorem 7.4.1 gives the following notable characteriza-
tion of topological manifolds:

Theorem 8.5.3. A connected homology n-manifold X, n ≥ 5, is a topolog-
ical n-manifold if and only if i(X) = 1 and X has the DDP.

Corollary 8.5.4. A connected homology n-manifold X, n ≥ 5, is a topo-
logical n-manifold provided some open subset of X is an n-manifold and X
has the DDP.

Corollary 8.5.5. Let X be a connected homology n-manifold, n ≥ 4. Then
i(X) = 1 if and only if X × R2 is a manifold.

Finally, here is a characterization of ∂-manifolds.

Theorem 8.5.6. Suppose X is a locally compact ANR containing a closed
subset C such that X�C is an n-manifold, n ≥ 5, C is an (n−1)-manifold,
and H∗(X,X � {c};Z) ∼= 0 for all c ∈ C. Then X is a ∂-manifold with
∂X = C if and only if C is 1-LCC in X.

Proof. Attach an open collar C × (−1, 0] to X along C = C × {0}. An
elementary Mayer-Vietoris computation confirms thatX∗ = X∪(C×(−1, 0])
is a homology n-manifold. Quinn’s Index Theorem assures the existence of
a cell-like resolution for X∗. Then X∗ is an n-manifold, as it has the DDP
by Corollary 7.4.13. Either Theorem 7.2.3 or Theorem 7.6.1 yields that
C × {0} is bicollared in X∗. In other words, C is collared in X, so X is a
∂-manifold. �

End Theorem 8.4.2 can be used to prove an analogous result in codimen-
sions ≥ 2. This allows the codimension-three and codimension-two flatness
theorems (Corollary 5.7.3 and Theorem 6.3.6) to be generalized to mani-
fold factors in homology manifolds. In particular, it gives a proof of The-
orem 6.3.6. A space X is a manifold factor if X × R2 is a manifold (cf.
Corollary 8.4.6). A subset X of a space Y is locally flat at x ∈ X if
there exist a neighborhood U of x in Y and an integer k ≥ 1 such that
(U,U ∩X) ∼= ((U ∩X)× Rk, (U ∩X)× {0}).

Theorem 8.5.7. Assume M is a homology n-manifold, n ≥ 6, X is a closed
subset of M , X is a manifold factor, and M �X is an n-manifold.

(1) If dimX ≤ n−2 and X is locally flat in M , then M is a manifold.

(2) If dimX ≤ n − 3, then X is locally flat in M if and only if X is
1-LCC in M .

(3) If dimX = n − 2, then X is locally flat in M if and only if X is
locally homotopically unknotted in M .
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Historical Notes. Ferry (1979) published the first proof of Theorem 8.5.6.
The same result also was claimed by Černavskĭı and Seebeck. Černavskĭı’s
claim was later retracted. Although Seebeck circulated a manuscript, his
work never appeared in print. Theorem 8.5.7 is from (Quinn, 1979).

8.6. Exotic homology manifolds

A pressing question asks: does every homology manifold admit a resolution?
Could it be that Quinn’s index is always trivial? The answer is negative.
J. Bryant, S. Ferry, W. Mio and S. Weinberger (1996) showed that all pos-
sible Quinn obstructions can be realized:

Example 8.6.1. For every compact simply-connected n-dimensional topo-
logical manifold M , n ≥ 6, and every integer k ≡ 1 mod 8 there exists a
compact n-dimensional ANR homology manifold X homotopy equivalent to
M with i(X) = k.

Nonresolvable homology manifolds are called exotic. The exotic ho-
mology manifolds are important new objects in high-dimensional mani-
fold theory. They provide valuable periodicity in the theory of manifold
structure sets. An n-dimensional homology ∂-manifold is an ANR pair
(X,Z), such that Z is closed in X, X � Z is a homology n-manifold, and
H∗(X,X � {z};Z) ∼= 0 for all z ∈ Z. The (simple-homotopy) structure set
S(X) associated with such a pair (X,Z) is the collection of all simple homo-
topy equivalences ψ : Y → X defined on another n-dimensional homology ∂-
manifold (Y, Z ′) such that φ|Z ′ : (Z ′ = ψ−1(Z)) → Z is a homeomorphism,
modulo the relation given by s-cobordism involving homology ∂-manifolds.

Theorem 8.6.2. Let X be an n-dimensional homology ∂-manifold, n ≥ 5.
Then S(X) is isomorphic to S(X ×B4).

The latter admits the structure of an abelian group, more or less like
that of higher homotopy groups. Such group structures can be imposed on
topological manifold structure sets, but periodicity as in 8.6.2 fails when
restricted to genuine manifolds.

The impossibility of having a codimension-one embedding of one homol-
ogy manifold in another if they have different indices is easy to see. In codi-
mension two there can be no locally homotopically unknotted embedding
of an exotic homology manifold in a genuine one—Quinn’s End Theorem
would give a manifold mapping cylinder neighborhood N of the embedded
homology manifold X, and a second application of the End Theorem to the

map ∂̃N → X on the universal cover would give that X is resolvable. In-
equality of indices is no barrier to embeddability when the codimension is
greater than two.
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Theorem 8.6.3. Let X be a compact homology n-manifold, V s a compact s-
dimensional ∂-manifold, s−n ≥ 3, and f : X → V s a homotopy equivalence.
Then f is homotopic to an embedding.

Theorem 8.6.4. For any compact homology n-manifold X, n ≥ 5, there
exists an embedding of X in some topological (n+ 3)-manifold.

Theorem 8.6.5. If X is a homology n-manifold X, n ≥ 5, then there exist
a homology n-manifold X ′ satisfying the DDP and a cell-like, surjective
mapping f : X ′ → X.

Thus, there are homology manifolds with the DDP representing every
possible homotopy type. These objects carry some of the useful properties
of genuine manifolds.

Proposition 8.6.6. Let X be a homology n-manifold with the DDP, n ≥ 5,
and let P and Q be polyhedra of dimensions p and q, respectively. Then all
maps f : P → X and g : Q → X can be approximated by maps f ′ and g′

such that dim[f ′(P ) ∩ g′(Q)] ≤ p + q − n; moreover, if p + q − n ≤ n − 3,
then f ′, g′ can be obtained such that f ′(P )∩ g′(Q) is 1-LCC embedded in X.

Corollary 8.6.7. Suppose X is a homology n-manifold with the DDP and
K is a finite k-complex, 2k + 1 ≤ n. Then every map f : K → X can be
approximated by a 1-LCC embedding.

Theorem 8.6.8. Suppose Xn is a homology n-manifold, n ≥ 5, having the
DDP, Mm is a closed PL m-manifold, 3m ≤ 2n−2, and f : Mm → Xn is a
(2m− n+ 2)-connected map. Then f is homotopic to a 1-LCC embedding.

Corollary 8.6.9. Let λ : Mm → X be an embedding of a closed, PL m-
manifold in a homology n-manifold X with the DDP, 3m ≤ 2n− 2. Then λ
can be approximated by a 1-LCC embedding.

Historical Notes. Theorems 8.6.3 and 8.6.4 were proved by (Bryant and
Mio, 1999) and independently by H. Johnston (1999). Theorem 8.6.5 was
treated in (Bryant et al., 2007). Proposition 8.6.6 was handled in (Bryant,
1986). Theorem 8.6.8 and the Corollary (to its proof) were done by (Bryant
and Mio, 2000). In addition, a transversality result for 1-LCC embeddings
of two metastable range manifolds in a homology n-manifold with the DDP
was developed in both (Bryant and Mio, 2000) and (Johnston, 1999).

Exercise

8.6.1. Show that every homology n-manifold X homotopy equivalent to
Tn is resolvable. [Hint: find a connected homology n-manifold Y
such that both Rn�Bn and some open subset U of X embed in Y ,

by lifting the homotopy equivalence to a controlled map X̃ → Rn

and using Proposition 8.8.2.]
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8.7. Homotopy tori are tori

Let Tn denote the n-torus S1 × · · · × S1 (n factors of S1). Consider pairs
(M, f) where M denotes a closed PL n-manifold and f : M → Tn a homo-
topy equivalence. Define an equivalence relation on this collection by declar-
ing (M, f) ∼ (M ′, f) if there exists a PL homeomorphism H : M → M ′ with
f � f ′H. The set of equivalence classes, denoted as S (Tn), is called the
homotopy structure set for Tn. It turns out that S (Tn) is a finite set with
remarkable properties:

Theorem 8.7.1. For n ≥ 5 there is a bijection H3(Tn;Z2) → S (Tn) that
is natural with respect to covering maps Tn → Tn.

Corollary 8.7.2. For every (M, f) ∈ S (Tn), n ≥ 5, there exists a finite

covering map θ : T̃n → Tn for which the pull-back f̃ : M̃ → T̃n is homotopic
to a PL homeomorphism.

In the topological category, the related structure set is simple.

Theorem 8.7.3. For n ≥ 5 every n-manifold homotopy equivalent to Tn is
homeomorphic to Tn.

Consequently, PL structures on the n-torus are not unique—the Haupt-
vermutung fails even for compact PL manifolds.

Historical Notes. Theorem 8.7.1 was established by W. C. Hsiang and
Shaneson (1970) and byWall (1969), independently; A. Casson is also known
to have obtained the result, recast in a more geometric form. Theorem 8.7.3
was proved in (Hsiang and Wall, 1969).

8.8. Approximating stable homeomorphisms of Rn by PL
homeomorphisms

A homeomorphism h : S → S is stable if it can be expressed as a composition
h = hk ◦ · · · ◦h1 of homeomorphisms hi : S → S such that hi|U(i) = inclU(i)

on some nonempty open subset U(i) of S, for i = 1, 2, . . . , k.

Back in the 1960s stable homeomorphisms were a hot topic, due to close
ties with the then-unsettled annulus conjecture. The n-dimensional sta-
ble homeomorphism conjecture propounded that all orientation-preserving
homeomorphisms of Sn are stable. M. Brown and H. Gluck (1964) proved
that the n-dimensional stable homeomorphism conjecture implies the n-
dimensional annulus conjecture, and that the annulus conjecture in all di-
mensions ≤ n implies the stable homeomorphism conjecture in dimensions
≤ n.
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Elementary PL theory assures that, on any connected, PL manifold,
the orientation-preserving, PL self-homeomorphisms are stable. With con-
trolled engulfing methods, guided by homotopies moving points along rays
emanating from the origin (and their images under a given homeomorphism),
Connell (1963) proved a near-converse.

Theorem 8.8.1. Every stable homeomorphism h : Rn → Rn (n ≥ 5) can
be approximated by a PL homeomorphism.

The following clever trick has proved to be useful in other contexts.

Proposition 8.8.2. Every bounded homeomorphism h : Rn → Rn is stable.

Proof. Define q : Rn → IntBn as q(x) = x/(1 + ‖x‖) and h′ : Rn → Rn as

h′(x) =

{
qhq−1(x) for x ∈ IntBn

x for x ∈ Rn � IntBn.

The boundedness of h implies that h′ is a homeomorphism.

Let Dn ⊂ Bn denote the ball or radius 1/2 centered at the origin.
Rescale Rn so there exists an open set V ⊂ Rn with V ∪ h(V ) ⊂ Dn.
Modify q so q|Dn is the inclusion Dn → IntBn and q(x) = x/(1 + ‖x‖) for
points x outside a compact neighborhood of Dn in IntBn. For h′ defined
as before, h′ is the identity on Rn �Bn, h|V = h′|V , and h = [h(h′)−1] ◦ h′.
Consequently, h is stable. �

Corollary 8.8.3. Suppose the homeomorphism g : Tn → Tn is homotopic
to the Identity. Then every lift g̃ : Rn → Rn of g to the universal cover is
bounded and, hence, stable.

Corollary 8.8.4. All orientation-preserving homeomorphisms g : Tn → Tn

are stable.

Proof. Find a PL homeomorphism h : Tn → Tn such that h◦g is homotopic
to Id. Then h ◦ g and g = h−1(h ◦ g) are stable. �

Kirby (1969) settled the stable homeomorphism conjecture and, with it,
the annulus conjecture. The crux of the proof involved showing:

Theorem 8.8.5. Orientation-preserving homeomorphisms g : Rn → Rn

(n ≥ 5) are stable.

Corollary 8.8.6. Every homeomorphism Rn → Rn (n ≥ 5) can be approx-
imated by a PL homeomorphism.

To make sense of what comes next, it pays to say that a homeomorphism
h between open subsets of Rn is stable if each point of the domain has a
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neighborhood W such that h|W extends to a stable homeomorphism of Rn.
This is a condition about atlases of coordinate charts; using it, one can
define stable manifolds in the usual way, as well as stable homeomorphisms
between stable manifolds. Clearly then a homeomorphism between stable
manifolds is stable if its restriction to some open set is stable.

The key to proving Theorem 8.8.5 then is to put a patch of the action on
the n-torus. Consider a homeomorphism g of Rn to itself. Find an immersion

α of Tn �Dn in Rn (where Dn is a PL n-ball in Tn). Let ˜Tn �Dn denote
Tn�Dn with the PL structure induced by g ◦α. This leads to the following
commutative diagram:

Tn �Dn Id−−−−→ ˜Tn �Dn

α

⏐⏐� ⏐⏐�gα

Rn g−−−−→ Rn

where α and gα are PL and hence stable. Hence, the diagram reveals that
g is stable if and only if Id is stable.

The end of ˜Tn �Dn obviously has a PL neighborhood V topologically
homeomorphic to Sn−1 × R. By attaching a PL collar and ball to V , using
either Corollary 8.3.7 and the PL Poincaré Theorem for the (n− 1)-sphere
(n > 5) or a result of (Wall, 1967) that a PL end topologically homeomorphic

to S4 × R is actually PL homeomorphic to it, we see that ˜Tn �Dn can be
extended to a PL structure on a PL manifold τn, which is a topological
n-torus.

Let 2Dn denote a larger n-disk in Tn containing Dn. The topologi-
cal Generalized Schönflies Theorem assures that Id|Tn � 2Dn extends to a
homeomorphism f of Tn onto τn. Since the extended homeomorphism is

stable, so is Id : Tn � 2Dn → ˜Tn � 2Dn, which suffices.

Historical Notes. M. W. Hirsch (1961) showed the existence of smooth
(and PL) immersions of the punctured n-torus in Rn. Later Ferry (1974)
gave an explicit formula for them.

With the techniques outlined here, Kirby (1969) proved that the group
of homeomorphisms of Rn (with the compact-open topology) is locally con-
tractible. This was generalized to compact manifolds and to interiors of
compact ∂-manifolds (Edwards and Kirby, 1971). Černavskĭı (1969c) had
an independent proof of this same result. Applications of local contractibil-
ity have already occurred here, most notably in §7.3.

From the analysis of PL structures on the n-torus emerged the landmark
Foundational Essays on Topological Manifolds, Smoothings, and Triangula-
tions of (Kirby and Siebenmann, 1977). Included in that momentous work



442 8. Codimension-zero Embeddings

was the existence of manifolds with no PL structure, the PL Structure The-
orem given as Theorem 6.8.2 here, the PL Product Structure Theorem given
as Theorem 6.8.5 here, the result that concordant PL structures on a given
manifold are PL equivalent in an isotopic sense, and the classification of PL
or differentiable structures on a manifold in terms of a stable reduction of
the topological tangent bundle to a PL or differentiable bundle. Applica-
tions of these fundamental codimension-zero results to codimension two and
one appear in Chapters 6 and 7.

Exercises

8.8.1. Every stable homeomorphism h : Sn → Sn is isotopic to the iden-
tity.

8.8.2. Suppose f, g : Rn → Rn are homeomorphisms for which there exists
B > 0 such that d(f(x), g(x)) < B for all x ∈ Rn. Then f is stable
if and only if g is stable.

8.9. Rigidity: Homotopy equivalence implies
homeomorphism

A closed manifold N is said to be topologically rigid if every homotopy
equivalence f : M → N from another manifold M is homotopic to a homeo-
morphism. In other words, N is topologically rigid if the homotopy structure
set S (N), discussed in §8.7, consists of a single element. Spheres are famil-
iar examples of topologically rigid manifolds; as mentioned in the preceding
section, tori also are topologically rigid (for n > 4).

The Borel Conjecture posits that all closed aspherical manifolds are
topologically rigid.

Riemannian manifolds provide fertile ground for testing the Borel Con-
jecture, since all complete Riemannian manifolds with non-positive sectional
curvature are aspherical, by the Cartan-Hadamard Theorem. In support of
the Borel Conjecture itself, L. Bieberbach (1912) proved that every homo-
topy equivalence between compact, flat Riemannian manifolds is homotopic
to an affine diffeomorphism. G. D. Mostow (1968) showed that every ho-
motopy equivalence between compact hyperbolic manifolds is homotopic to
an isometry, and a few years later he proved that a homotopy equivalence
between compact, non-positively curved locally symmetric spaces is homo-
topic to diffeomorphism, provided that the target has no 1- or 2-dimensional
geodesic subspaces which locally are direct Cartesian factors.

The results of Bieberbach and Mostow offer evidence in favor of rigidity,
without quite attaining that level, due to assumptions about Riemannian
structure on both domain and range. F. T. Farrell, W. C. Hsiang and
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L. E. Jones have been the leaders of prolonged, far-reaching efforts con-
cerning rigidity. Their work involves a vast array of techniques, including
methods from controlled topology, like those Quinn used in attacking the
End Theorem, but extending across surgery theory, K-theory, and geomet-
ric analysis. Here is a far-reaching result, due to Farrell and Jones (1993),
which encapsulates progress at a juncture a few years back.

Theorem 8.9.1. All closed non-positively curved Riemannian n-manifolds,
n > 4, are topologically rigid.

For additional developments in this direction, consult the survey put
together by C. W. Stark (2002).

8.10. Simplicial triangulations

Shortly after Kirby and Siebenmann established the existence of compact
manifolds with no PL structure, the Double Suspension Problem was re-
solved in the affirmative. The problem asked whether there was a PL non-
simply connected homology (n − 2)-sphere Σ—namely, a (n − 2)-manifold
with the homology of Sn−2—whose double suspension is topologically Sn.
The affirmative solution implied that even simple manifolds like spheres
could admit non-PL simplicial triangulations. (A manifold M is said to ad-
mit a simplicial triangulation if it is homeomorphic to a simplicial complex.)

Example 8.10.1. For n ≥ 5, Sn admits a non-PL, simplicial triangulation.

Proof. If Σ is a non-simply connected PL homology (n − 2)-sphere such
that S0 ∗S0 ∗Σ = S1 ∗Σ an n-manifold, then in the obvious triangulation T
determined by the join structure S1∗Σ, the link of any 1-simplex from the S1

factor is the homology sphere Σ, which is not even topologically equivalent,
let alone PL equivalent, to Sn−2. If a manifold, S0 ∗ S0 ∗Σ must be Sn, by
Proposition 2.4.9. �

An example revealing how the double suspension of a homology sphere
can be a manifold appears here in Exercise 7.11.2.

A result of Cannon (1979) assures that the double suspension of every
PL homology n− 2-sphere is Sn. This gave rise to a characterization of the
manifolds within the class of simplicial complexes.

Theorem 8.10.2. A simplicial complex K is the underlying set of a topo-
logical n-manifold if and only if, for each simplex σ ∈ K, lk(σ,K) has the
homology of Sn−k−1 and, for each vertex v ∈ K, lk(v,K) is simply connected.

In this setting, lk(σ,K) must be a (k−1)-sphere for each codimension-k
simplex σ ∈ K, k ≤ 3, and thus lk(σ,K) must be a 3-manifold for each
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4-simplex σ. The double suspension result implies that |K � K(0)| is an
n-manifold. Simple connectedness of vertex links yields that the open star
of each vertex is topologically equivalent to Rn (see Corollary 8.3.7; this
was also known for n = 4 even before Perelman’s work on the Poincaré
Conjecture).

The existence of non-PL simplicial triangulations then caused people to
wonder whether all manifolds would admit, at the very least, a simplicial
triangulation.

Theorem 8.10.3. Every topological n-manifold M , n ≥ 5, admits a simpli-
cial triangulation if and only if there exists a homology 3-sphere Σ3 such that
Σ3 has Rochlin invariant 1 and Σ3#Σ3 bounds an acyclic 4-dimensional PL
∂-manifold.

Whether such a homology 3-sphere Σ3 exists remains unsettled. The
connected sum mentioned in Theorem 8.10.3 is the oriented version. For
each oriented homology 3-sphere Σ3, unlike for Σ3#(−Σ3), which bounds
the acyclic ∂-manifold (Σ3 � Int 3-cell) × I, the requirement that Σ3#Σ3

bounds an acyclic manifold has content. Each homology 3-sphere Σ3 is the
boundary of a smooth, compact ∂-manifold W with trivial second Stiefel-
Whitney class w2(W ). The signature of W—namely, the signature of the
intersection form on H2(W )—is divisible by 8, and a theorem of Rochlin
(1952) shows that, modulo 16, this value does not depend on the choice
of W . The Rochlin invariant of Σ then is the value of signature(W )/8,
modulo 2.

Historical Notes. In unpublished work, Edwards produced the first ex-
ample of a non-simply connected homology sphere whose double suspension
is a manifold and, therefore, a topological sphere. He also showed, among
other things, that the triple suspension of any homology n-sphere is Sn+3.

Theorem 8.10.3 is due to D. Galewski and R. Stern (1980) and, inde-
pendently, T. Matumoto (1978).
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A topological embedding is a homeomorphism 
of one space onto a subspace of another. The 
book analyzes how and when objects like 
polyhedra or manifolds embed in a given higher-dimensional manifold. The main 
problem is to determine when two topological embeddings of the same object 
are equivalent in the sense of differing only by a homeomorphism of the ambient 
manifold. Knot theory is the special case of spheres smoothly embedded in spheres; 
in this book, much more general spaces and much more general embeddings are 
considered. A key aspect of the main problem is taming: when is a topological 
embedding of a polyhedron equivalent to a piecewise linear embedding? A central 
theme of the book is the fundamental role played by local homotopy properties of 
the complement in answering this taming question.

The book begins with a fresh description of the various classic examples of 
wild embeddings (i.e., embeddings inequivalent to piecewise linear embeddings). 
Engulfing, the fundamental tool of the subject, is developed next.  After that, the 
study of embeddings is organized by codimension (the difference between the 
ambient dimension and the dimension of the embedded space). In all codimensions 
greater than two, topological embeddings of compacta are approximated by nicer 
embeddings, nice embeddings of polyhedra are tamed, topological embeddings of 
polyhedra are approximated by piecewise linear embeddings, and piecewise linear 
embeddings are locally unknotted. Complete details of the codimension-three 
proofs, including the requisite piecewise linear tools, are provided. The treatment of 
codimension-two embeddings includes a self-contained, elementary exposition of 
the algebraic invariants needed to construct counterexamples to the approxima-
tion and existence of embeddings. The treatment of codimension-one embeddings 
includes the locally flat approximation theorem for manifolds as well as the charac-
terization of local flatness in terms of local homotopy properties.


