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PREFACE 

This book is about decompositions, or partitions, of manifolds, usually 
into cell-like sets. (These are the compact sets, similar to the contractable 
ones, that behave homotopically much like points.) Equivalently, it is about 
cell-like mappings defined on manifolds. Originating with work of R. L. 
Moore in the 1920s, this topic was renewed by results of R. H. Bing in the 
1950s. As an unmistakable sign of its importance, the subject has proved in- 
dispensable to the recent characterization of higher-dimensional manifolds 
in terms of elementary topological properties, based upon the work of R. D. 
Edwards and F. Quinn. 

Decomposition theory is one component of geometric topology, a 
heading that encompasses many topics, such as PL or differential topology, 
manifold structure theory, embedding theory, knot theory, shape theory, 
even parts of dimension theory. While most of the others have been studied 
systematically, decomposition theory has not. Filling that gap is the over- 
riding goal. The need is startlingly acute because a detailed proof of its fun- 
damental result, the cell-like approximation theorem, has not been pub- 
lished heretofore. 

Placing the subject in proper context within geometric topology is a 
secondary goal. Its interrelationships with the other portions of the 
discipline nourish its vitality. Demonstrating those interrelationships is a 
significant factor among the intentions. On one hand, material from other 
topics occasionally will be developed for use here when it enhances the cen- 
tral purpose; on the other hand, applications of decomposition theory to 
the others will be developed as frequently as possible. Nevertheless, this 
book does not attempt to organize all of geometric topology, just the 
decomposition-theoretic aspects, in coherent, linear fashion. 

ix 



X Preface 

Uppermost in my thinking, from the earliest stages of the book’s concep- 
tion, has been the belief it should be put together as a text, with as few 
prerequisites as possible, and so it has evolved. Not intended for experts, it 
aims to help students interested in geometric topology bridge the gap be- 
tween entry-level graduate courses and research at the frontier. Along the 
way it touches on many issues embraced by decomposition theory but 
makes no attempt to be encyclopedic. It depicts foundational material in 
fine detail, and as more of the canvas is unveiled, it employs a coarser 
brush. In particular, after the proof of the climactic result, the cell-like ap- 
proximation theorem, it tends to present merely the cruder features of later 
topics, to expose items deserving further individual pursuit. All in all, it 
should equip mature readers with a broad, substantial background for suc- 
cessfully doing research in this area. 
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INTRODUCTION 

What is an n-manifold? A popular answer is a recitation of the definition : 
an n-manifold is a metric space covered by open sets homeomorphic to 
Euclidean n-space E". From a foundational perspective, that answer merely 
suggests another question: what is the topological nature of E"? Such 
questions form the central theme around which this book is organized. The 
real line is characterized by a short list of simple properties; the plane, by 
properties almost as simple. What about the other Euclidean spaces? The 
goal here is to explore the topological structure of E" in case n 2 3, almost 
invariably paying attention only to the cases n 2 5. 

The book is about decompositions, or  partitions, of manifolds. The typical 
object of study will be the decomposition space, or quotient space, associated 
with a decomposition of some manifold. Technically speaking, the decompo- 
sitions are all upper semicontinuous ones, meaning that the decomposition 
elements fit together in a fashion nice enough to  ensure metrizability of the 
decomposition spaces. The latter can be fairly pathological ; nevertheless, 
they are not totally removed from the more familiar world of Euclidean 
topology, for in this context they arrive on the scene equipped with an explicit 
connection, via the decomposition mapping, to manifolds. The decom- 
positions themselves will be restricted somewhat, for it happens to be well 
known that every Peano continuum is the continuous image of a manifold, 
and the subject here will be more restricted than the study of Peano continua. 
Cell-like decompositions, in which the partition elements behave homo- 
topically like points, will be the predominant topic. In n-manifolds such 
decompositions form the class for which it is reasonable to expect the product 
of E' with the decomposition space to be an (n + 1)-manifold. 

There have been three distinct periods during which decomposition theory 
has flourished. The first of them, the early period, occurred in the first half 
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2 Introduction 

of this century, in the 1920s and 1930s, led by R .  L. Moore and G .  T. 
Whyburn. Next, the classical period started in the early 1950s’ headed by 
R. H. Bing; supported by S. Armentrout, it continued on through the 1960s 
and beyond. The current era, the modern period, began in 1977 with the work 
of R. D. Edwards, spurred by earlier results of J. W. Cannon. 

The three periods are distinguished by their characteristic emphases on 
certain dimensions as the realm of study. During the first one the central 
results pertained to decompositions of the plane and of 2-manifolds; next, 
of 3-manifolds ; and, last, of higher-dimensional manifolds. (“Higher- 
dimensional” usually means of dimension n L 5 ,  because the n = 4 case so 
often demands its own, separate treatment.) 

In addition to such chronological and numerical differences, the three are 
clearly distinguished by significant methodological differences. The explana- 
tion demands a bit of the standard notation: consider a nice decomposition 
(or partition) G of an n-manifold M a n d  also the natural map 7c: M + M/C 
of M to the quotient space, called M / G .  Usually one hopes to prove that, 
under sufficient conditions about the sets comprising G ,  M / G  is topologi- 
cally equivalent to M. The strategy of the early period was to use topological 
characterizations of the objects involved, the familiar plane, %-sphere, or 
other 2-manifold, to deduce the desired equivalence. Customarily that plan 
did not work at all for 3-manifolds, due in part to the comparative difficulty 
of distinguishing one 3-manifold from another, but also due to the more 
complicated problem, which still remains unsatisfactorily resolved, of 
understanding when a space is a 3-manifold. The classical period got under 
way when Bing invented a new, workable strategy embodied in his shrink- 
ability criterion, introduced here in Section 5 .  It posits the existence of a 
homeomorphism from M to itself sending the elements of G to sets of small 
size, the key feature, while simultaneously submitting to certain mild cover 
controls. When this shrinkability criterion holds, the quotient space M / G  
turns out to be homeomorphic to M ,  under a naturally arising function 
obtained as the limit of a sequence of such shrinking homeomorphisms. 
Accordingly, under Bing’s strategy, one investigated the source manifold M 
to see whether the shrinkability criterion was valid. That strategy has proved 
effective for solving a multitude of decomposition problems, not just in 
3-dimensional manifolds but also in higher-dimensional ones. The modern 
period began abruptly, not so much because of a successful attack on higher- 
dimensional manifolds, for powerful results about decompositions of 
higher-dimensional manifolds had already been discovered at the time, but 
because of a new strategy, a synthesis of its predecessors, developed by 
Edwards. He studied the decomposition map K :  M + M / G  with an eye 
toward approximating it by homeomorphisms. While the possibility of 
obtaining such approximations was a by-product of the shrinkability 
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criterion, it was not a fundamental tenet of the prevailing philosophy. 
Operating with these new tactics, Edwards was able to approximate II via 
successive maps that were 1-1 over larger and larger subsets of M / G ,  
culminating at the final stage in a limiting homeomorphism. 

The essence of each period, for the most part, can be distilled into a single, 
typifying result. In the early period it was the famous theorem of R. L. 
Moore. 

Theorem (Moore). If G is an upper semicontinuous decomposition of the 
plane E 2  into continua, none of which separates E2,  then E 2 / G  is homeo- 
morphic to E 2 .  

From the classical period, the most difficult era to recapture in just one 
epitomizing theorem, a reasonable candidate is the following combination 
of the work of Bing [2]  and Armentrout [6]. 

Theorem. Let G be an upper semicontinuous decomposition of a 3- 
manifold M into cellular sets. Then M / G  is homeomorphic to M i f  and on& 
if G is shrinkable. 

Examples from Bing made it plain that not all nice decompositions of E 3  
reproduce E 3 ,  so several people, Bing among them, engaged in wholesale 
testing, particularly during the early portions of the period, testing of geo- 
metric conditions imposed on the decomposition elements to see which 
implied shrinkability and which did not. That effort generated a lot of 
empirical data, no one piece of which stands out as characteristic of the 
period, although the entire effort might. The theorem mentioned above 
reflects Bing’s methodology characteristic of that era and also Armentrout’s 
complementary contribution that, in order for M / G  to be homeomorphic to 
M ,  G must be shrinkable. The modern period is set off by the following 
breakthrough result of Edwards, marking the change from the earlier era to 
the current one. 

Theorem (cell-like approximation). Let G denote an upper semicon- 
tinuous decomposition of an n-manifold M ,  n 2 5 ,  into cell-like sets. Then 
the decomposition map II: M -+ M / G  can be approximated by homeo- 
morphisms if and only i f  M / G  is finite-dimensional and satisfies the 
following disjoint disksproperty : any two maps of the 2-cell B2 to M / G  can 
be approximated by maps having disjoint images. 

The point, of course, is that M / G  is topologically equivalent to M when the 
latter two conditions hold; it is also the case that then G is shrinkable. 

The paramount result treated in this book is Edwards’s cell-like approxi- 
mation theorem, established here as Theorem 24.3. Although Edwards’s 
proof has been available in manuscript form and has been disseminated 
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publicly in his lectures at the 1978 CBMS Regional Conference at Stillwater, 
Oklahoma, it has never been published. (A brief but splendid outline appears 
in Edwards [ 5 ] . )  A primary function of this book is to rectify that matter. 

Structurally the book is divided into seven chapters. Chapter I, the 
preliminaries, introduces the basic terminology and studies some of the 
elementary consequences. Functioning throughout at a level of difficulty no 
higher than what is encountered in an elementary general topology text, it 
provides a hint of the methodology, though none of the major 2-dimensional 
results, prevalent during the early period of decomposition theory. Chapter 
11, which is more demanding, pushes ahead into the classical period. Delving 
into a wide variety of results and examples about decompositions of 3- 
manifolds, without attempting to  be exhaustive, Chapter I1 presents a fairly 
large sample of Bing’s 3-dimensional work. In particular, in Section 9 it sets 
forth several key examples of interesting, unusual, historically significant 
decompositions of 3-space, some of which yield 3-space again and others of 
which do not yield any manifold whatsoever; taken on the whole, these 
examples absolutely must be understood if one is to fully appreciate the 
pitfalls in this subject or to  recognize potential circumvention techniques. 
Chapter I1 is not exclusively 3-dimensional in focus, however, for it also 
includes an elementary proof of the important result (also an immediate 
consequence of the cell-like approximation theorem studied later) that non- 
combinatorial triangulations of n-manifolds, n 5. 5 ,  do exist. The unifying 
device is Bing’s shrinkability criterion. At the beginning this part lays out 
several refined notions of shrinkability and at the end, based on the local 
contractibility of manifold homeomorphism groups, shows all of them to be 
equivalent in topological manifolds. Chapter 111, somewhat more technical 
in nature, involves an investigation of properties preserved by the typical 
decompositions and sets the stage for the substantial effort in the sequel. 
Moving from the classical to the modern period, Chapter IV steadily builds 
up to its climax, the proof of the cell-like approximation theorem. A con- 
cluding, almost parenthetical note for this part demonstrates how the 
original aspects of the subject are reinvigorated by the most contemporary ; 
it makes use of Edwards’s methodology and the planar Schonflies theorem 
to derive the chief result of the early period, Moore’s theorem. Chapter V 
deals with the consequences of Edwards’s result, mainly for products involv- 
ing such decomposition spaces, either with a line or with another such space. 
Positive in tone, it stresses the conditions under which a decomposition under 
consideration is shrinkable. By contrast, Chapter VI is more negative, setting 
forth techniques for constructing pathological decompositions of high- 
dimensional manifolds. Finally, Chapter VII treats the far-reaching, grander 
applications of decomposition theory to the rest of geometric topology. Not 
at all self-contained, nowhere close to it, Chapter VII displays the power, 
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centrality, and diversity potentially available in what has gone on before. It 
does so by suddenly bringing into play several big results from other branches 
of geometric topology, something done as infrequently as possible in the 
earlier parts of the book. 

This brings us to the twin issues of textual scope and exegetical style. Two 
limitations confine the material to manageable size. The first, of course, 
pertains to  the subject that titles the book ; the emphasis involves the part of 
geometric topology concerning decompositions. As stated in the Preface, this 
book strives to  organize linearly decomposition theory, not all of geometric 
topology. Accordingly, in the interest of efficiency, occasionally one will 
encounter, with little explanation or justification, invocation of some 
profound result from one of these collateral topics (e.g., the Kirby-Edwards 
local contractibility theorem in Section 13, the Bing-Kister isotopy theorem 
in Section 21, and the Lickorish-Siebenmann PL regular neighborhood 
classification theorem in Section 38). While invocation of a deus ex machina 
can detract from the stark beauty of a rigorous, orderly mathematical 
development, the demands to maintain finiteness and to make progress seem 
to allow no other course. Construed positively, this practice can highlight for 
the reader the significance of certain major theorems while identifying 
subjects for future study. 

The second limitation pertains to the residence of the decompositions to 
be considered. Almost invariably these decompositions live in finite-dimen- 
sional manifolds, largely in those of dimension n 2 5 .  The classical n = 2 
case, which presents little difficulty, receives scant attention. The n = 3 case, 
which carries a great deal of significance and which provides both satisfac- 
tion and motivation to  the visual imagination, receives much more. We study 
the salient examples in painstaking detail. Full exposition of this case, how- 
ever, entails a variety of powerful but uniquely 3-dimensional techniques, 
which by choice we avoid, preferring instead to  move forward into the less 
well-charted world of higher-dimensional manifolds. That is why we give no 
proof, for instance, of Armentrout’s homeomorphic approximation theorem, 
alluded to earlier, or of the Denman-Starbird theorem that upper semi- 
continuous decompositions of E 3  into points and countably many starlike- 
equivalent compacta are shrinkable. We pay even scarcer attention to  the 
n = 4 case, encountering the 4-dimensional world mostly through results 
that hold in other dimensions as well.* At another end of the spectrum is the 
n = 00 case, which also is totally ignored here. While some methods for 
studying decompositions of infinite-dimensional manifolds are similar to 
those developed for the n 2 5 case, many others are intrinsic to  that subject. 

* For more information about this highly intriguing situation, probably the toughest finite- 
dimensional case of them all, keep an eye out for a forthcoming book by M. H. Freedman and 
F. Quinn. 
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T. A. Chapman’s book [2] and H. Torunczyk’s characterizations [ l ,  21 
provide a good introduction. 

What background is needed to be able to  read this material? At the outset, 
nothing beyond an introduction to point-set topology. As the text progresses, 
increasingly more collateral material is brought into play, primarily taken 
from classical dimension theory and the beginnings of algebraic topology and 
of PL topology. It probably is imperative that the reader know about the PL 
regular neighborhood theorem and something about general position, or 
transversality, techniques. Perhaps the single best reference is T. B. 
Rushing’s Topological Embeddings-indeed, we conceived this text as a kind 
of companion volume to Rushing’s. The PL preliminaries laid out there 
should suffice for this as well, and the engulfing methodology presented there 
in elaborate and careful detail is extremely valuable for efforts here involving 
higher-dimensional manifolds. 

In light of the above, the ideal personal reference library would contain: 

Dimension Theory, by W. Hurewicz and H. Wallman 
Introduction to Piecewise-Linear Topology, by C .  P. Rourke and B. J. 

Topological Embeddings, by T. B. Rushing 
Algebraic Topology, by E. H. Spanier 

Sanderson 

For later use, upon completion of this text, it might also include: 

Lectures on Hilbert Cube Manifolds, by T. A. Chapman 

Designed as a text, this book includes many problems, ranging from simple 
to  fairly difficult. Some preview future subjects, others require filling in steps 
omitted from a proof, and still others call for reapplication of techniques 
developed in the body of the text. None of them, except by accident, should 
be impossibly hard; those at the level of recent thesis problems are suggested 
only after substantial groundwork has been laid. The reader is urged to do  
the problems, as the optimal method to begin reworking this particular 
canvas to reflect one’s own insight and vision. 

Two closing remarks about typographical shortcuts. First, within any one 
section specification of a result from another section is given, for example, 
as “Lemma 30.4”, referring to Lemma 4 of Section 30. Specification of any 
result from the same section is made without using the section number. 
Second, bibliographic references are given by author’s name plus the number 
of the item in the list of References here, as in, say, “(Bing [5 ] ) ” .  When it 
is totally obvious that it is Bing’s work being discussed, the reference may 
be given omitting “Bing” and appearing solely as “[,I”. 



I 

PRELIMINARIES 

Chapter I lays out the basic concept of upper semicontinuity and explores 
its basic features. When attention is restricted to a class of reasonably nice 
spaces, like metric spaces, this part also exhibits why the study of upper semi- 
continuous decompositions coincides with the study of proper mappings. 
Finally, sampling a bit of the flavor from the early period of decomposition 
theory, it sets forth a quick overview of monotone decompositions (decom- 
positions into connected subsets). 

1. ELEMENTARY PROPERTIES OF UPPER SEMICONTINUOUS 
DECOMPOSITIONS 

Throughout this text we will reserve the term n-manifold for a separable 
metric space modeled on Euclidean n-space E". Accordingly, manifolds have 
no boundary. When we wish to  allow boundary, we will say so explicitly. For 
precision, we declare that an n-manifold with boundary M is a separable 
metric space in which each point has a closed neighborhood homeomorphic 
to the standard n-cell B", consisting of all points in E" whose distance from 
the origin is no more than 1; the interior of M ,  denoted as Int M ,  is the subset 
of points having Euclidean neighborhoods, and the boundary of M ,  denoted 
as aM, is the remainder M - Int M.  

Given a metric space ( X ,  p) ,  a subset A of X ,  and a positive number E ,  

we shall use N(A; E )  to denote the &-neighborhood of A ;  that is, 

N(A; E )  = ( x  E Xlp(x ,A)  < E ) .  

A decomposition G of a topological space S is a partition of S .  Explicitly, 
G is a subset of the power set of S ,  and its elements are pairwise disjoint 
nonempty sets that cover S .  

7 



8 1. Preliminaries 

Associated with any decomposition G of a space S is the decomposition 
space having underlying point set G but denoted as S/G (to be read as 
“5’ mod G”) in order to emphasize the distinction between the generating 
partition and the resultant space, which often warrants attention as an entity 
distinct from G. Its topology is prescribed by means of the decomposition 
map n:  S 4 S/G sending each s E S to the unique element of G containing 
s; the topology on S/G is the quotient space topology induced by Ic-namely, 
the richest topology for which n is continuous. In this topology a subset A 
of S/G is open (closed) if and only if n-’(A) is open (closed) in S .  Expanding 
the vocabulary, one says that a subset X of S is saturated (or, to prevent 
ambiguity, is G-saturated) if n-’(n(X)) = X. Accordingly, the image under 
n of a saturated open (closed) subset of S is open (closed) in S/G. 

Without further conditions governing the alignment of the decomposition 
elements in S ,  there is no reason to  expect that S/G will have a reasonable 
topological structure. In fact, there seems to  be just one connection, and not 
a powerful one at that, between properties possessed by elements of G and 
separation properties satisfied by S / G :  S/C is a Z-space if and only if each 
element of G is closed. Our desire is to deal with topologies richer than those 
of arbitrary T-spaces, like those of metric spaces. To  focus on them, we must 
identify the kind of decompositions worthy of consideration. 

The following is a weak form of the definition eventually to  be employed. 
A decomposition G of a space S is (provisionally) said to  be upper semi- 
continuous if each g E G is closed in S and if, for each g E G and each open 
subset U of S containing g, there exists another open subset Vof S containing 
g such that every g’ E G intersecting V is contained in U. 

Here is the basic elementary characterization of upper semicontinuity. 

Proposition 1. Let G be a decomposition of a space S into closed subsets. 
The following statements are equivalent: 

G is upper semicontinuous. 
For each open set U in S ,  the set U* = U [ g  E G I g C U )  is an open 

The decomposition map n :  S + S/G is closed. 
subset of S .  

The proof is an exercise. 

degenerate elements of G (that is, 
In case G is a decomposition of S ,  we use HG to denote the set of non- 

HG = ( g  E G 1 g contains more than one point)) 

and NG t o  denote the union of the elements of H G .  We call NG the non- 
degeneracy set of G .  
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Below we list some examples. 

( 1 )  S is the plane E 2  and G is the partition consisting of the origin 0 and 

(2 )  S is the plane E 2  and HG consists of a single element, the y-axis. 
(3) S is the unit circle and G consists of all pairs of diametrically opposite 

points on S .  
(4) S is the unit circle in E 2  and HG consists of a single element, 

{ ( -  l , O ) ,  ( 1 , O ) I .  
( 5 )  S is the real line E’ and HG consists of all intervals [2n - 1,2n],  where 

n ranges over the integers. 

All of the ones above are upper semicontinuous. Next, we have some 
examples that are not. 

(6 )  S is the plane E 2  and G consists of all (vertical) lines parallel to  the 
y-axis. 

(7) S is the real line and HG consists of a single element-HG = 

( ( x  E E’ I x  > 0)). 
(8) S is the subset of E 2  given by S = ( ( x , y >  E E 2  11x1 I 1, lyl 5 1 )  and 

HG consists of the vertical line segments in S having length 2 and not con- 
taining the origin. 

In a sense example (8) best illustrates the essence of upper semicontinuity : 
a sequence of small elements may converge to  a big element, but no sequence 
of big elements may converge to  a small element, as occurs there. This loose 
conceptual notion can be sharpened with the aid of some special limits. 

Let (A,,] denote a sequence of subsets of a space S .  The inferior limit of 
(A , ) ,  written as lim inf A,, is 

the circles centered at 0. 

( x  E S I each neighborhood of x intersects all 
but a finite number of the sets A,], 

and the superior limit of (An], written as lim sup A,, , is 

[ x  E S I each neighborhood of x intersects infinitely many of the sets A,,] .  

Clearly, liminfA, is a subset of limsupA,. Figure 1 - 1  reveals the 
distinction. 

Proposition 2. Suppose G is an upper semicontinuous decomposition of a 
Z-space S and (gn] is a sequence of elements of G such that lim inf g, contains 
a point of some g E G. Then lim sup g, c g. 

Proof. Suppose to  the contrary that s E g n lim infg, and that 
s’ E g’ n lim sup gn , where g’ E G and g‘ # g. Since S is G , there exist 
disjoint open subsets U and Win S with g’ c U and s E W .  Invoking upper 
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A5 
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' 43  

'44 

A1 

A 2  

FIG. 1-1 

semicontinuity, we can assume that Uis saturated (by passing to the maximal 
saturated subset U* as in Proposition 1). According to the definition of 
lim inf, there exists a positive integer N such that i > N implies gi inter- 
sects Wand, thus, cannot meet U, which contradicts the supposition that 
s' E lim sup g,. 

Remark. Let f denote a function from E' to the nonnegative reals. In 
classical analysis f is called an upper semicontinuous function if for each 
x E E' and each E > 0 there exists a neighborhood V of x such that 
f(x') < f (x )  + E ,  for all x' E V. One way to explain the evolution of the 
decomposition-theoretic term is to consider the decomposition G of E2 into 
singletons and the vertical line segments ( x  x [0, f(x)] I x E E'J:  then G is an 
upper semicontinuous decomposition if and only i f f  is an upper semicon- 
tinuous function. 

Just as there are both upper and lower semicontinuous functions, so also 
there are both upper and lower semicontinuous decompositions. The quick 
definition involves the decomposition map: a decomposition G of a space 
S is said to be lower semicontinuous if R :  S -, S/G is open. In addition, G 
is said to be continuous if it is both upper and lower semicontinuous. Lower 
semicontinuous decompositions rarely come up in geometric topology, 
except in conjunction with continuous ones, which do play a role. Neither 
term will reappear here. 

H 

If the source S satisfies a fairly strong separation property, so also does 
each decomposition space S/G associated with an upper semicontinuous 
decomposition G .  

Proposition 3. 
space S ,  then S/G is normal. 

Let A1 and A2 denote disjoint closed subsets of S/G.  Then 
n-'(A1) and ~ - ' ( . 4 2 )  are disjoint closed subsets of S ,  and the normality 

If G is an upper semicontinuous decomposition of a normal 

Proof. 
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of S guarantees disjoint open sets U1 and UZ is S containing them. The 
characterization of upper semicontinuity in Proposition 1 implies that U: 
and U2 are saturated open sets, necessarily disjoint and necessarily con- 
taining n-'(A 1 )  and nP1(A2), respectively. Consequently, n( U:) and n(U2) 
act as the required open sets in S/G.  

Considered set-theoretically, the next definition is an abuse of language, 
but as a descriptive tool it is too efficient to pass up. We say that a decom- 
position G is finite (or countable) if HG is a finite (countable) set. With this 
terminology we record a simple condition implying upper semicontinuity. 

Proposition 4. Every finite decomposition of a space S into closed subsets 
is upper semicontinuous. 

Proof. Let C denote an arbitrary closed subset of S .  Then n-'(n(C)), 
which is the union of C and those elements of HG that intersect C,  is also 
closed. Hence, n(C) = n(n-'(n(C))), which is the image of a saturated 
closed set, is closed in the decomposition space. Upper semicontinuity 
follows from Proposition 1. 

Throughout what lies ahead, a fundamental concern will be the deter- 
mination of the topological type of specific decomposition spaces. Toward 
that end, the following elementary realization theorem is indispensable. 

Theorem 5 (realization). Suppose G is an upper semicontinuous decom- 
position of a space S and f is a closed map of S onto a space Y such that 
G = If - ' (y)  I y E Y ) .  Then S/G is homeomorphic to Y .  

Proof. Consider the diagram 

with the implicit relation F: S/G -+ Y defined as F = f 0 n - l .  The hypothesis 
implies f is a one-to-one and onto function. The continuity o f f  and the 
closedness of n imply that, for each closed subset Cof Y,  F - ' ( C )  = nf -'(C) 
is closed in S/G, so F is continuous. Similarly, the closedness off and the 
continuity of n imply that F-'  is continuous. Therefore, F is a homeo- 
morphism. 
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It is worth noting that in case f is just a map (meaning continuous function) 
of S onto Y for which G = [ f - ' (y )  I y E Y ) ,  then F = f 0 7r-I is a one-to-one 
map of S/G onto Y .  

Obviously the quickest applications of the realization theorem occur in the 
realm of compact Hausdorff spaces. 

Corollary 5A. f f  G isan upper semicontinuous decomposition of a compact 
Hausdorff space and f is a map of S onto a Hausdorff space Y such that 
G = [ f - ' (y )  I y E Y ) ,  then S/G is homeomorphic to Y.  

By way of application one can discern the extensive variety of spaces that 
arise from upper semicontinuous decompositions of some familiar spaces. 

Corollary 5B. Each Peano continuum is homeomorphic to the decom- 
position space associated with some upper semicontinuous decomposition of 
[O, 11. 

Corollary 5C. Suppose the compact Hausdorff space S contains an arc. 
Then each Peano continuum is homeomorphic to the decomposition space 
associated with some upper semicontinuous decomposition of S.  

It follows from the Tietze extension theorem that there is a map of S onto 
10, 11. 

Corollary 5D. Each compact metric space is homeomorphic to the decom- 
position space associated with some upper semicontinuous decomposition of 
the Cantor set. 

EXERCISES 

1. Prove Proposition 1. 
2. Show that if f is a closed map of the space S to the Ti-space Y,  then 

G = ( f - ' ( y )  1 y E Y ]  is an upper semicontinuous decomposition of S. 
3. A T,-space S is regular iff for each closed subset C of S the space S/Gc is 

Hausdorff, where Gc is the decomposition for which HG, = (C). 
4. A TI-space S is normal iff for each upper semicontinuous decomposition G of 

S, S/G is Hausdorff. 
5. The decomposition space of example (8) is not Hausdorff. 
6. The decomposition space of example (2) is not metrizable. 
7. What are the decomposition spaces of examples (l), (3), and (5)? 
8. Show that if G is an upper semicontinuous decomposition of a locally connected 

9. If G is an upper semicontinuous decomposition of a Hausdorff space S into 
space S, then S/G is locally connected. 

compact subsets, then S/G is Hausdorff. 
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10. Suppose S is a compact connected Hausdorff space having at least two points. 
Then each Peano continuum is topologically the decomposition space associated 
with some upper semicontinuous decomposition of S .  

11. Suppose G is a decomposition of a compact metric space into closed subsets such 
that whenever (g,]is a sequence of elements of G andg n lim inf g, # Q (g E G), 
then lim sup g, C g. Show that G is upper semicontinuous. 

12. Prove the remark made following Proposition 2 about the relationship between 
upper semicontinuous functions and upper semicontinuous decompositions. 

2. UPPER SEMICONTINUOUS DECOMPOSITIONS 

From now on we shall concern ourselves only with a more restrictive notion 
of upper semicontinuity. 

Definition (permanent). A decomposition G of a space S is upper semi- 
continuous (use) if it is upper semicontinuous in the sense of Section 1 and 
if, in addition, each g E G is compact. 

With this definition the unpleasant phenomena illustrated in some of the 
exercises of Section 1 all disappear. For instance, the Hausdorff property is 
preserved. More important, and ultimately justifying this definition, metriz- 
ability is preserved. 

Proposition 1. If G is an upper semicontinuous decomposition of a 
Hausdorff space S ,  then S/G is Hausdorff. 

The proof is an earlier exercise (Exercise 1.9). 

Proposition 2. If G is a use decomposition of a metric space S, then S/G 
is metrizable. In particular, if G is separable metric, then S/G is separable 
metric. 

Proof. The case when S is separable metric is more familiar than the 
general case, for then S is second countable, and a general topology result 
implies that S/G is second countable. A basis for its topology is 

[rc(V*) I U any finite union of basis elements for S ] .  

The proof of the general case is usually attributed to A. H. Stone [l]. 
However, Stone himself credits the result in the situation at hand to S .  Hanai 
[l]. At the same time, L. F. McAuley developed his own proof [l]. 
Proposition 2 also can be construed as a corollary to the Bing-Nagata- 
Smirnov metrization theorem. H 
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Another basic fact identifies a class of decompositions in metric spaces that 
are upper semicontinuous. A countable collection (Ail of subsets from a 
metric space is said to form a null sequence if, for each E > 0, only finitely 
many of the sets Ai have diameter greater than E .  

Proposition 3. 
forms a null sequence of compact sets is USC. 

Every decomposition G of a metric space for which HG 

The proof is left as an exercise. 
The next result applies to considerations involving the product of decom- 

position spaces. 

Proposition 4. If Gi is a usc decomposition of S; (i = 1,2), then G I  x G2 
is a USC decomposition of S1 x SZ and (Sl x &)/(GI x Gz) is homeomorphic 
to (Si/Gl) x (SiIG2). 

Proof. The argument showing G1 x G2 to be usc is routine [but involves 
the compactness of decomposition elements ! Recall example (6)  of Section 11. 
Let 71 denote the decomposition map S1 x SZ 3 (Sl x &)/(GI x Gz) and 
TCI x n2 the product map S1 x S2 + (SdGI)  x (SdG2). From the realization 
theorem 1.5 one knows that 

F = (XI  X 712) 0 71-l: (SI X S2)/(G1 x Gz) --* (Si/GI) x (S2/G2) 

is a continuous bijection. To show that F is a homeomorphism, the easiest 
method is to show that it is an open map. 

Given a space X ,  we will abuse notation a bit and also speak of X as a 
decomposition of itself, by which we will mean the partition into the 
singletons ( x ) ,  x E X .  

Corollary 4A. If G is a USC decomposition of a space Sand i f X  is a Z-space, 
then G x X is USC and (S  x X ) / ( G  x X )  is homeomorphic to ( S / G )  x X .  

Manipulations with this symbolism reveal some flaws, for we have the 
strange identity X / X  = X .  Cancellation requires brackets : S/(S ) is a point. 

Here are three more notational items. Given a closed and compact 
(nondegenerate) subset A of a space S ,  we shall denote by GA the usc 
decomposition of S having A as its only nondegenerate element. Given a map 
f: S + Y,  we shall denote by Gf the decomposition (of S )  induced by f, 
namely, the decomposition into the point inverses f - '(y),  y E Y .  Also, given 
a usc decomposition G of a subspace C of S ,  we shall denote by GT the trivial 
extension of G over S ;  explicitly, 

GT = G u (1s) I S  E S - C). 
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Proposition 5. If G is a usc decomposition of a closed subspace C of a 
K-space S ,  then its trivial extension GT over S is USC. 

The derivation of upper semicontinuity of GT at g E GT n G is completely 
straightforward and works whether or not C is closed in S .  The closedness 
hypothesis is significant only for those g E GT - G. 

EXCERCISES 

1. If G is a usc decomposition of a regular space S ,  then S/G is regular. 
2. Prove Proposition 3 .  
3. Prove Proposition 5 .  
4. Suppose G is a decomposition of a metric space (S ,p )  into compact sets and 

suppose there exist closed sets C1, CZ , . . . in S and positive numbers E I  , E Z  , . . . such 
that ( 1 )  each Ci is G-saturated, (2) the restriction of G to each Ci is USC, (3) 
NG c UCi ,  (4) g E G and g C Ci implies diamg < ~ i ,  and (5) ti -+ 0 as i -+ 03. 
Then G is USC. 

5. If G, is a usc decomposition of a space S ,  for each a E A, then n, G, 
is a usc decomposition of n,S, and (n,S,)/(n,G,) is homeomorphic to 
n , (SJG,).  

3. PROPER MAPS 

It follows from realization theorem 1.5 that the study of usc decom- 
positions in compact Hausdorff spaces coincides with the study of maps 
between such spaces, because those maps are necessarily closed. Given a 
mapfdefined on a noncompact space S that induces a usc decomposition, 
we want to recognize when f is closed in order to more quickly understand 
the homeomorphism type of the decomposition space. To aid that, we 
shall say that a map f: X + Y is proper if for each compact subset C of 
Y,  f - ' ( ~ )  is compact. 

Proposition 1. If G is a usc decomposition of a space S ,  then n : S -, S / G  
is proper. 

Proof. Consider any compact subset C of S / G  and any cover 
'U = (U,) of n-l(C) by open subsets of S .  For each g E G contained in 
n-'(C), some finite subcollection (Uf I i = 1, ..., n(g)) of 'U covers g, and 
the union of these sets contains a saturated open set V,  3 g. Corre- 
sponding to the resulting open cover (n(Vg)) of C is a finite subset A of 
G such that (n( V,) I g E A) also covers C.  Then the finite subcollection 

(Ui" I g E A; i = 1, ..., n(g) )  

of TI. must cover n - ' ( ~ ) .  
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Corollary 1A. Every closed map with compact point inverses from a space 
onto a Ti-space is proper. 

This raises questions of some technical importance. Which proper maps 
are closed? Which proper maps induce usc decompositions? 

Proposition 2. A map f :  X -+ Y between locally compact Hausdorff spaces 
is proper i f  and only i f  its extension f * X *  + Y* to the one-point com- 
pactifications that sends the point at infinity in X *  to the point at infinity 
in Y* is continuous. 

The proof is straightforward. 

Proposition 3. Each proper map f :  X+ Y between iocally compact 
Hausdorff spaces is closed. 

Proof. Apply Proposition 2 to extend f to  a continuous function 
f*: X *  --+ Y* of one-point compactifications, preserving infinity. For any 
closed set B in X ,  f*(B* = B u (00)) is a closed subset of Y*.  As a result, 
f (B )  = f* (B*)  n Y is a closed subset of Y .  

Corollary 3A. Suppose G is a usc decomposition of a locally compact 
Hausdorff space S and f is a proper map of S onto a locally compact 
Hausdorff space Y such that G = ( f  - '(y) 1 y E Y ) .  Then S/G is homeo- 
morphic to Y.  

Proposition 4. Each proper map f : X -, Y to afirst countable Hausdorff 
space Y is closed. 

Proof. Suppose to the contrary that for some closed subset B of X 
there exists yo E C1 f ( B )  but yo e f ( B ) .  Then there exists a sequence 
[yi 1 i = 1,2, ...I of points in f ( B )  converging to yo. Since the set Z = 
(yi I i = 0, 1,2, ...I is compact, the properness off implies f - ' (Z )  is compact 
as well. By choosing a point xi E f -'(yi) for i = 1,2, ..., we produce a 
sequence in the compact set B nf-'(Z), which must have a limit point xo in 
B.  But then yo = limi+= f(xi) = f(xo) E f ( B ) ,  which is preposterous. H 

Corollary 4A. Suppose G is a usc decomposition of a space S and f is a 
proper map of S onto a first countable Hausdorff space Y such that 
G = ( f  - '(y) I y E Y ) .  Then S/G is homeomorphic to Y. 

The statement below summarizes and improves on the preceding analysis 
of proper maps. 

Theorem 5. Suppose f :  S -, Y is a proper surjective map between 
Hausdorff spaces S and Y such that Y is either tocally compact or first 
countable. Then the decomposition Gf = f f -'(y) I y E Y )  induced by f is usc 
and S/Gf is homeomorphic to Y. 
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See Propositions 3 and 4 and their corollaries, and also Exercises 1.2 and 
3.2. 

As a result, we can assert that in metric spaces the study of usc decom- 
positions coincides with the study of proper maps. The big distinction is the 
level of adventure undertaken: with an ordinary proper map f: X -P Y one 
presumably has good information about the target Y,  but with a proper map 
determined by a usc decomposition Gone must venture off toward uncharted 
territory. Decomposition maps n: X + X/G are like proper maps f: X + ? 
with unknown range. Successful charting of that range best advances 
through careful survey, back in the source X, of the point preimages under f. 

Warning. Conditions besides Hausdorff on the space Y in Propositions 3 
and 4 are not extraneous. Let X denote an uncountable set with distinguished 
element SZ, endowed with the discrete topology. Let Y denote the same point 
set with the topology generated by the singletons (x )  where x # 0, together 
with all complements of countable sets. Then the identity function Id: X -P Y 
is a proper continuous bijection having a locally compact Hausdorff (metric) 
space as its domain, but Id fails to be closed. 

1. 
2. 

3. 

4. 

4. 

EXERCISES 

Iffis amap of E' onto E' such thatf-'(r) is finite for each t E E' ,  thenfis proper. 
Let G denote a usc decomposition of a Hausdorff space S. Then S is locally 
compact iff S/G is. 
A mapfof a space S onto a locally compact Hausdorff space Y is proper iff each 
y E Y has a neighborhood W ,  such that f-'(Cl W,) is compact. 
The identity function mentioned in the warning is proper. 

MONOTONE DECOMPOSITIONS 

Early in the twentieth century, when questions concerning the structure of 
continua were prevalent, it was natural for those topologists looking at 
decompositions to emphasize a connectedness property called monotonicity. 
Explicitly, a decomposition G is monotone if each g E G is compact and 
connected; similarly, a mapf: X -+ Y is monotone if each inverse setf-'(y) 
is compact and connected. Currently this concept provides a valuable per- 
spective, to be reinforced repeatedly in what lies ahead: with specific 
restrictions on the structure of the decomposition elements one can often 
establish strong conclusions about the topological type of resulting decom- 
position space. For example, if G is a monotone usc decomposition of E' ,  
then E' /G  is topologically E l ,  and if G is a monotone usc decomposition 
of Z = [0, 11 (G # [ I ) ) ,  then Z/G is homeomorphic to Z. (Contrast these state- 
ments with Corollary 1.5B.) Another example is the theorem of R. L. Moore 
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mentioned in the Introduction asserting that if G is a monotone usc decom- 
position of E 2  such that no g E G separates E 2 ,  then E2/G is topologically 
E2.  

Here is an elementary characterization of monotonicity. 

Proposition 1. Let G denote a usc decomposition of a space S. Then G is 
monotone if and only if n-'(C) is connected whenever Cis a connectedsubset 
of S/G. 

Monotone decompositions are far from scarce. With any usc decomposi- 
tion we can naturally associate a monotone one. 

Proposition 2. If  G is a usc decomposition of a Hausdorff space S, then 
the collection Mconsisting of all components of elements of G is a monotone 
usc decomposition. 

Let U be an open subset of S containing m E M ,  where m 
represents a component of g E G .  The compactness of g (and the fact that 
S is Hausdorff) enables one to find an open subset Wof S containing g ,  with 
W expressed as the disjoint union of open sets WU and WS such that 
m c WU c U. Since G is USC, g is contained in the G-saturated open set 
W* c W. To see that M i s  usc, define Vas WU n W * .  Then for any rn' E A4 
that intersects V,  rn' c W* c WS u WU, and the connectedness of m' 
guarantees that rn' c WU c U. W 

Corollary 2A. In any compact Hausdorff space S the decomposition 
consisting of all components of S is USC. 

Proof. 

Proof. The degenerate decomposition G = ( S ]  is USC. H 

A primary application of Proposition 2 to abstract topology shows that 
certain closed maps are expressible as the composition of two maps, a 
monotone one and, at the other extreme, a light one. A map f :  X + Y is said 
to be light if each inverse set f -'( y )  is totally disconnected. 

Theorem 3 (monotone-light factorization). Let f :  S + T be a closed map 
between Hausdorff spaces such that f - ' ( t )  is compact for  each t E T. Then 
there exists a unique monotone usc decomposition A4 of S for which there 
is a light map I :  S / M  -+ Tsatisfying I n  = f (n: S -+ S/M being the decom- 
position map). 

Since f is closed and T is Hausdorff, the decomposition Gf 
induced by f is usc (Exercise 1.2). Let M denote the decomposition of S 
consisting of the components of elements from G f .  According to Proposition 
2, Mis  monotone and USC. The map I defined as I = fn-' is light, for if C 
is a component of A - ' ( t )  = nf - '( t) ,  t E T, then z-l(C) c f -'(t) must be 
connected by Proposition 1, and nz-'(C) = C is necessarily a point. 

Proof. 
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The decomposition Mpossesses the largest possible connected elements for 
which fn-' is a function. The uniqueness of M follows from the observation 
that any decomposition having a smaller element would fail to produce a light 
m a p I  =fn- ' .  

A philosophical consequence of the monotone-light factorization theorem 
is that an understanding of all (appropriate) maps defined on a domain Scan 
be achieved by understanding all light maps defined on monotone images of 
S .  In case S = I or S = S' ,  where the monotone images of S coincide with 
S ,  the philosophy is particularly significant-every map from S onto a non- 
degenerate Hausdorff space is essentially light. In case S = S 2  the philosophy 
maintains some value, because the monotone images of S 2 ,  2-dimensional 
spaces called cactoids, were carefully analyzed in the 1920s; as a result, the 
passage from S 2  to its monotone images, though less routine than in the 
above 1 -dimensional cases, does proceed along well-charted routes. 

Having noted that these examples generate monotone images with dimen- 
sion no larger than those of the source, the suspicious reader may wonder if 
monotonicity has equally nice consequences in higher-dimensional situations. 
It tends not to. Special features of the 1-sphere and the 2-sphere limit the 
possible monotone images. Monotone images of the 3-sphere, in compari- 
son, can be highly arbitrary, as was first observed by W. Hurewicz [l]. 

Proposition 4. Each compact metric space Xcan be embedded in the space 
associated with some monotone use decomposition of S 3 .  

Proof. Let t denote a tetrahedron (3-simplex) in S3, el and e2 a pair of 
nonintersecting edges of t, and C1 and CZ Cantor sets in el and ez , respec- 
tively. For i = 1 ,2  there exists a map ty; of Ci onto X .  For each x E X let gx 
denote the subset of r consisting of all line segments jointing a point of v i l ( X )  

to a point of ty;'(x). See Fig. 4-1. The desired decomposition G is defined 

The crucial geometric fact here is that each point of t - (el u e2) lies on 
a unique line segment determined by a point of el and a point of ez. This 
implies G is a decomposition. One can readily show then that G is monotone 
and usc. 

The desired embedding t9 of X in S3/G is given symbolically by 
6' = n(ty~)- ' .  Exactly as in the realization theorem, 8 is an embedding. 

Proposition 5. If M is a compact connected n-manifold, there is a mono- 
tone use decomposition G of M having one nondegenerate element such that 
M / G  is homeomorphic to S".  

Proof. Given an embedding f of E" in M ,  let G denote the decomposition 
whose only nondegenerate element is M - f(1nt B"). There is a map 

by HG = lgx I x  E XI. 
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FIG. 4-1 

F:  M --t S" that sends f(1nt B") homeomorphically onto the complement of 
some point and realizes the (monotone) decomposition G .  

Proposition 6. Let N be a compact connected n-manifold and 
y :  M x (- 1 , l )  + N an embedding, where M is a compact connected 
( n  - 1)-manifold, such that N - y ( M  x (-  1, 1)) has exactly two com- 
ponents. Then there exists a monotone usc decomposition G of N such that 
N /G is the n-sphere and each g E G either lies in y (M x ( t ) ) ,  for some 
t E (- 1, l), or is a component of N - v/(M x (- 1, l ) ) .  

Proof. By Proposition 5 M contains a connected set X such that M/Gx 
is S"-'. The decomposition G here has for its (possible) nondegenerate 
elements the sets y(X x ( t ) ) ,  t E (- 1, I), plus the two components of 
N - y(M x ( -  1, 1)). One readily obtains a map F: N -+ S" realizing G ,  
which is defined in the obvious manner after Proposition 5 so as to send 
y ( M  x (-  1,  1)) onto the complement of two points in S". 

Example. The decomposition G of S 3  = E 3  u ( 0 0 )  having nondegenerate 
elements the circles Co and CI shown in Fig. 4-2, plus all figure eights as 
shown whose wedge points lie on the line segment joining the two centers 
of these circles, yields S 3 ,  because its construction is patterned after the one 
given for Proposition 6 .  To see how this works, express S 3  - (CO u CI) as 
S' x S' x (0, 1). Details are given in Bing [9]. 
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1. 
2. 
3. 

4. 
5. 

6 .  

7. 
8. 

9. 

FIG. 4-2 

EXERCISES 

Every monotone map of El onto itself is proper. 
Iff: S" + S" is a monotone surjective map, then nof-'(s), s E S", separates S". 
Use a topological characterization of I to show that for each monotone usc 
decomposition G of I (G # ( I ) ) ,  I /G is homeomorphic to I .  
Establish the analogous result for S ' .  
Let G be a monotone usc decomposition of a locally pathwise-connected space S 
and V a cover of S/G by connected open sets. For each mapf: I + S/G there exists 
a partition 0 = to < t I  < t 2  < ... < t k  = 1 of I such that corresponding to any 
choices; E n-'(f(t;))(fori E (0, 1, ..., k)) i samapF:  I - +  Ssatisfying(l)F(t;) = s; 
and (2) both f ( [ t ; - l ,  t ; ] )  and nF([t;-],  t ; ] )  are contained in some V; E 1? for 
i = 1, ..., k. 
Suppose G is a monotone usc decomposition of a locally pathwise-connected 
Hausdorff space S and S/G has a basis of contractible (or even simply connected) 
open subsets. Then x: S --t S/G induces an epimorphism of fundamental groups. 
There is no monotone map of S" onto S' x Sk (n 2 2, k 2 0). 
If G is a usc decomposition of S" such that HG is countable and S"/G is the 
n-sphere, then G is monotone. 
If G is a monotone usc decomposition of a unicoherent space S ,  then S/G is 
unicoherent. (A space X i s  unicoherent if, whenever X i s  expressed as the union 
of closed and connected subsets A and B ,  then A n B is connected.) 
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THE SHRINKABILITY 
CRITERION 

Bing's shrinkability criterion marked a redirection of decomposition theory 
from emphasis on properties of the decomposition space to inspection of 
properties held in the source space. The first task involves a study of various 
notions of shrinkability and their uses. With such tools Chapter I1 sets forth 
some, but far from all, of the cardinal developments from the classical period, 
including the fundamental notion of cellularity and its role in establishing the 
generalized Schonflies theorem, plus Bing's work on geometric properties 
implying that countable cellular decompositions of Euclidean spaces are 
shrinkable. On the opposite side of the coin, Chapter I1 displays, in Section 
9, a wealth of examples of nonshrinkable cellular decompositions of E 3 .  

A remarkable phenomenon arose with one of these examples, Bing's 
dogbone space, a nonmanifold stemming from a usc decomposition G of E3 
into points and flat arcs. Although nonshrinkable, stably G is well behaved: 
G x El is a shrinkable decomposition of E3 x E' = E4.  Section 10 looks 
at related phenomena, including the result that every decomposition of E" 
into points and an arc is stably shrinkable. This is used, in conjunction with 
a clever observation of Giffen, to reproduce a more recent example of 
Edwards providing noncombinatorial simplicia1 triangulations of S", n > 4. 

Because its proof relies so heavily on tools peculiar to 3-dimensional 
topology, Armentrout's theorem that cellular usc decompositions of 3- 
manifolds are shrinkable if and only if they yield 3-manifolds, one of the 
pivotal facts from the classical period, is not touched on here (although its 
analogue for n > 4 eventually is). All the other loose ends concerning various 
notions of shrinkability are tied up in Section 13, where their equivalence is 
demonstrated. 

22 
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5. SHRINKABLE DECOMPOSITIONS 

During the 1950s R. H. Bing introduced and exploited several forms of a 
remarkable condition now called his shrinkability criterion. It prompted a 
major change in decomposition theory, shifting the focus from the decom- 
position space back to the source. The need for a fresh point of view arose 
in studying decompositions G of S3 because, even when it appeared certain 
that S 3 / G  was S3, one then had and still has no reasonable characterization 
of S 3  for establishing the topological equivalence. The shrinkability criterion 
was aimed at describing the decomposition space by means of a realization 
as the known source space, a realization achieved as the end result of 
manipulations there on the decomposition elements. 

In its most general form, the criterion is expressed as follows: a usc 
decomposition G of a space S is shrinkable if and only if (shrinkability 
criterion) for each G-saturated open cover U of S and each arbitrary open 
cover V of S there is a homeomorphism h of S onto itself satisfying 

(a) for each s E S there exists U E U such that s, h(s) E U ,  and 
(b) for each g E G there exists V E  V such that h(g) C V. 

In other words, the homeomorphism h called for must shrink elements of G 
to small size, determined by Y', under an action limited by 'U (see Fig. 5-1). 

Experience suggests that the decomposition space associated with a shrink- 
able decomposition is likely to be homeomorphic with the source space S .  
To guarantee that this be true, additional restrictions, like metrizability, must 
be imposed on S .  This section explores some of the variations on those 
restrictions. 

A good starting point is the compact metric case. The elegance of the 
argument for this case, which is due to R. D. Edwards [ 5 ] ,  compensates for 
the eventual duplication. 

Lemma 1. Let S be a compact metric space, G a use decomposition of S ,  
and PG a metric on S/G.  Then G is shrinkable if and only if (shrinkability 
criterion in the compact metric case) for each E > 0 there exists a homeo- 
morphism h of S onto itself satisfying: 

(a) pG(zh(s), n(s)) C &for  each s E S ,  and 
(b) diam h(g) < E for each g E G .  

This lemma follows routinely from the Lebesgue covering theorem, 
applied in both S and S / G .  

Theorem 2. Suppose G is a use decomposition of a compact metric space 
S. Then the decomposition map n: S -+ S/G can be approximated by 
homeomorphisms if and only if G is shrinkable. 
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FIG. 5-1 

Proof. The forward implication is the easier. Fix E > 0. By hypothesis 
there exists a homeomorphism Fof S onto S/G such that pG(F, K) < ~ / 2 .  The 
uniform continuity of F-' provides 6 > 0 such that the image under F-' of 
each &subset of S/G has diameter less than 6. Again, there exists a homeo- 
morphism F* of S onto S/G for which p#*, 11) < min(s/2,6/2]. For 
each g E G, F*(g) lies in the (6/2)-neighborhood of Ir(g), implying that 
diam F*(g) < 6. Now define h as F-'F*. The choice of 6 guarantees that h 
satisfies condition (b) of the shrinkability criterion. To see that it satisfies 
condition (a) as well, note that for each s E S 

pG(n(s)t nh(s)) 5 pG(ds),  F*(s)) + pG(F*(s), nF-'F*(s)) 

< &/2 + p f 3 ( F ( P F * ( s ) ) ,  z(F-'F*(s))) 

< &/2 + E/2 = E. 

For the reverse implication, in the space 312. of all maps of S to S/G, 
endowed with the sup-norm metric, let 2 denote the closure of that subset 
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consisting of all maps 7th-', where h represents a homeomorphism of S onto 
itself. Also, for n = 1,2, ... define 

Z,, = {F E 2 I diam F-'(x) < l / n  for each x E S/G) .  

The claim is that each Z,, is open and dense in Z .  Openness is derived via a 
standard argument given by Hurewicz and Wallman [ 11 : for each F E 2, the 
compactness of S provides a > 0 such that A c S and diam A 2 l/n imply 
diam F(A) > a; then any F' E Z satisfying pc(F, F') < a/2 necessarily 
belongs to Z,,. For denseness, given F E Z and 47 > 0 one first of all 
obtains nh-' (h a homeomorphism) such that pc(F, nh-') < 47/2 and then 
applies the shrinkability criterion to obtain another homeomorphism 
H: S -+ S for which ~ G ( T C ,  n H )  < 47/2 and diamHn-'(x) is so small 
( x  E S/G)  that diam hHn-'(x) < l /n .  Clearly the map P = nH-'h-' 
satisfies diamp-'(x) < l/n for each x E S/G.  Moreover, p ~ ( n ,  nH-') = 
PG(TC, KH) because to each s E S there corresponds s* E S such that 
H(s*) = s and then 

PG(n(S), nH-'(s)) = pG(nff(s*) ,  n(s*)). 

As a result, 

pc(F, P )  = pc(F, XH-lh-') I pc(F, nh-') + pc(xh-', nH-'h-') 

< 4712 + pc(n, ZIT- ' )  < 47/2 + 4712. 

To conclude the argument, one observes that Z ,  being a closed subset of 
the complete metric space nt, is itself complete. By the Baire category 
theorem n,, Z,, is dense in Z .  Any F E n, 2, is necessarily a homeomorphism 
because it is necessarily one-to-one and onto. Thus, TC E Z can be approxi- 
mated by homeomorphisms F E nn2,,. 

Corollary 2A. Let f: S + X be a surjective map between compact metric 
spaces, Then f can be approximated by homeomorphisms if and only if the 
decomposition Gf induced by f is shrinkable. 

Corollary 2B. Let G be a use decomposition of a compact metric space S 
and p~ a metric on S/G. Then G is shrinkable if and only i f t  for each E > 0, 
there exists a map p of S onto itserf such that G = (p-'(s) 1s E Sl and 
pc(n, w)  < 

Proof. First assume that p is a map of S onto itself that realizes G and 
satisfies pc(n, np) < E .  Then F = np-' is a homeomorphism of S onto S / G .  
Moreover, for each s E S there exists s* E p-'(s) and 

pc(n(s), F(s)) = pc(n(s), w - ' ( s ) )  = pc(n(s), n(s*)) 
= pc(np(s*), n(s*)) 5 pc(np, n) < E .  

Thus, pc(n, F )  < E and G is shrinkable by Theorem 2. 
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Conversely, assume G is shrinkable. Given E > 0, one can invoke Theorem 
2 to produce a homeomorphism F of S onto S/G satisfying p ~ ( n ,  F )  < E .  

Define p :  S -, S as p = F-'n.  For s E S ,  

~ G ( A ( s ) ,  A&)) = PC(A(S), n F - ' n ( ~ ) )  = PG(FF-'A(s), nF-'n(s)) 

5 P G V ,  71) < E ,  

as required. 

For several technical reasons it is advantageous to consider further con- 
trols on the shrinking process. To that end, let G denote a usc decomposition 
of S and Wan open subset of S containing NG . Then G is shrinkablefixing 
S - W if shrinking homeomorphisms h fulfilling the shrinkability criterion 
can always be obtained that keep each point of S - W fixed. Furthermore, 
G is strongly shrinkable if, for every open set W containing NG,  G is 
shrinkable fixing S - W. 

By restricting the action on S - W ,  one can readily adapt the proof given 
for Theorem 2 to establish the following, which lends itself to quick study 
of shrinkability in the locally compact metric case. 

Theorem 3. Suppose G is a use decomposition of a compact metric space 
S and W is an open subset of S containing NG . Then A : S 4 S/G can be 
approximated by homeomorphisms agreeing with A on S - W if and only 
i f  G is shrinkable fixing S - W. 

Theorem 4. Suppose G is a use decomposition of a locally compact, 
separable metric space S and PG is a metric on S/G.  Then A :  S -+ S/G can 
be approximated (in the space of maps from S to S/G,  endowed with the 
compact-open topology) by homeomorphisms if and only i f  for each 
compact subset C of S/G and each E > 0 there exists a homeomorphism h 
of S onto itself satisfying 

(a) PG(A(S), Ah@)) < E for each s E n-'(C) u h-'n-'(C), and 
(b) diam hn-'(c) < E for each c E C. 

Proof. Let S *  = S u [m] denote the one-point compactification of S, 
G* the extension of G to S *  with [m] E G*,  and R*:  S *  -+ S*/G* the 
obvious map, which "extends" IZ. Since S is locally compact and second 
countable, S* is a compact metric space; the decomposition G* is usc at (-1 
because A :  S + S/G is proper. The point is that x can be approximated (in 
the compact-open topology) by homeomorphisms if and only if 
A*: S* -+ S*/G* can be approximated (in the sup-norm) by homeo- 
morphisms respecting the action on (a)], and that the shrinkability criterion 
implicit in Theorem 4 is satisfied if and only if G* is shrinkable fixing [oo). 
This translation reduces Theorem 4 to Theorem 3.  



5. Shrinkable Decompositioris 27 

Corollary 4A. 
connected metric space. 

Theorem 4 holds in case S is a locally compact and locally 

Proof. One can verify directly that the components of S/G are 0- 

compact and therefore separable (see Dugundji 11, p. 2411). The corollary 
follows from component-by-component application of Theorem 4, with 
local connectedness ensuring that if C is a component of S/G and if 
h: S -+ S/G is a homeomorphism such that h(s0) E C for some SO E x-I(C), 
then h(n-'(C)) = C. 

Let f: S 4 X be a surjective map and W an open cover of X. Then a map 
F: S -+ Xis  said to be W-close to f if for each s E S there exists W, E W such 
that f ( s ) ,  F(s) E W,. In addition, f is said to be a near-homeomorphism if 
for each open cover W of X there exists a homeomorphism F of S onto X 
that is W-close to f. 

Suppose U is a cover of a space X and A c X .  By the star of A in 'u we 
mean the set S t ( A , ' U ) = U [ U E ' u J U n A  # 0). A cover 211  star- 
refines a cover UO if for each Ul E U1 there exists UOEUO such that 
St(U1, Ul) C UO. The key fact to keep in mind is that for each open cover 
UO of a paracompact Hausdorff space, there is another open cover U1 that 
star-refines UO (Dugundji [ l ,  p. 1671). 

Proposition 5. Suppose G is a usc decomposition of a paracompact 
Hausdorff space S such that n: S -+ S/G is a near-homeomorphism. Then 
G is shrinkable. 

Proof. Fix a G-saturated open cover U of S and an arbitrary open cover 
V of S .  Since closed continuous surjections preserve paracompactness 
(Dugundji [ l ,  p. 165]), S/G is paracompact. 

The set n('u) = (x (U)  I U E U 1 is an open cover of S/G. Hence, there exist 
open covers WI and WO of S/G,  with W1 star-refining WO and WO star- 
refining x(U). By hypothesis there exists a homeomorphism F: S -+ S/G that 
is Wl-close to n. Let W2 be still another open cover of S/G,  star-refining 

W1 nF(V) = (Wl n F ( V ) (  Wl E W 1  and V E V J ,  

thereby simultaneously star-refining W 1 and F(V). Again by hypothesis 
there exists a homeomorphism E: S -. S/G that is Wz-close to n. Define 
h :  S - +  S a s  h = F-'F. 

For s E g E G both F(s) and n(s) lie in some W2 E W2. Hence, P(g)  is 
contained in St(n(g), W2) C F( V) for some V E V, implying 

h(g) = F1P(g) c F- 'F(V)  = V. 

Therefore, h shrinks G V-small. 
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It remains to be shown that h is %-close to the identity. For s E g E G, P(s) 
is contained in St(n(g), W2) C WI E WI and, similarly, 

F(g) u F(g)  c St(n(g), W1) c wo E wo. 
Consequently, g u F-'P(g) C F-'( K). To complete the proof it suffices to 
show that F-*(Wo) c U for some U E U. For x E F-'(Wo) both n(x) and 
F(x) belong to some W, E WO and W, C St(W0, WO); thus 

nF-'(Wo) c St(W0, Wo) c n ( ~ )  for some u E U. 

Without some kind of completeness hypothesis on S ,  the converse to 
Proposition 5 is false. 

Example. Let C denote the Cantor set and Q C E' the rationals. The 
decomposition G = (C x (q)  1 q E Q] is a shrinkable decomposition of 
C x Q but, obviously, (C x Q)/G is not homeomorphic to C x Q. 

Here is the central result of this chapter. 

Theorem 6 .  Let G be a use decomposition of a complete metric space S .  
Then n: S + S/G is a near-homeomorphism i f  and only i f  G is shrinkable. 

Proof. The forward implication is Proposition 5 .  The reverse impli- 
cation first was proved by R. D. Edwards and L. C .  Glaser [l] and later was 
polished by A. Marin and Y. M. Visetti [l]. It is essentially Marin and 
Visetti's argument reproduced below. 

Let p denote a complete metric for S .  Set c0 = 00, and let ( E ~ J E ~  denote a 
sequence of positive numbers approaching 0. Let W be an open cover of S/G. 
We will produce a homeomorphism F: S -+ S/G W-close to II in two steps. 

Part I. Analysis. In Part I1 we will construct (1) a sequence 
UO, % I ,  UZ , . . . of G-saturated open covers S such that 

= [Ooo( UO E vO] refines n - ' ( ~ ) ,  

% , + I  refines U,, and 

'U, refines both "(g; En) I g E GI and (n-'(N(n(g); E n ) )  I g E GI; 

as well as (2) a sequence HO = Id, H I ,  HZ , . . . of homeomorphisms of S to 
itself satisfying 

( a n )  for each g E G there exists Ug E Un such that for every V E  % n + l  

containing g,  

Hn(V) u Hn+l(V) C Hn(ug) 

( P n )  for each U E U,, diam Hn(U)  < E n .  
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We note that (,!?,,) and ( a n + i )  for i E (0, 1 ,  ..., k - 1) imply 

(y , )  for each g E  G there exists U," E U, such that 

diamH,,(U,") < E,, and H,,+k(g) c H,,(U,"). 

As a result, (H,,) is a Cauchy sequence of homeomorphisms (measured in the 
sup-norm metric determined by p), and this sequence converges uniformly 
to a continuous function p: S + S .  

Lemma 7 .  Let (x,,) be a sequence of points in a metric space (M,  d )  satis- 
fying the hypothesis (*) : 

(*) For each E > 0 there exists a compact subset C, of M such that 
N(C,; E )  contains all but a finite number of the points x,. 

Then [x,) has a subsequence that is Cauchy with respect to d .  

Proof. Noting that each subsequence of a sequence satisfying (*) also 
satisfies (*), we can suppose that diam[x, I n = 1,2,  ...) is less than some 
bound b.  Then (*) provides a compact set C such that all but finitely many 
x, belong to N(C; b /6 ) .  For most n ,  there exists Z, E C with p(x,,, z,) < b /6 .  
Thus, (2,) has a convergent subsequence ( ~ n ( i ) ]  for which diamlz,(i) 1 i = 

1,2, ...) < b /6 .  As a result, diam(x,(i) 1 i = 1, 2 ,  ...I < b/2 .  
This procedure allows us to extract successive subsequences of (x,,), which 

we denote as ( d ] ,  (xi], ..., (x!). ..., such that diam(x,P 1 n = 1,2, ...I < b/2P.  
The diagonal sequence (x;) is Cauchy. 

Returning to the proof of Theorem 6, we fix s E S and consider [x,,) where 
H,+l(x,) = s. Applying (a,) to  the element g, E G for which x, E g n ,  we 
obtain U, E U, such that g,, C U, and H,+l(V) u Hn(V) C H,(U,,) for all 
V E %,+ 1 containing g, . We claim that [ U,] is a decreasing nest. To see this, 
if g,+l  c W E  Uu+2, we have 

To show that p is onto, we will need the following lemma. 

W 

s = Hfl+Z(X,+l) E Hn+Z(gn+l) c Hn+2(W) c Hn+l(U,+l), 

which implies that x, = H,L1l(s) E U,,+I, and g, C Vn+1 as well. Then by 
(a,), H,(U,) 3 Hn(Un+d,  so V,, 3 U,+I for all n. 

Consequently, (*) of Lemma 7 holds for the sequence (x,) because, given 
E > 0 we can choose E,, < E and can see for k E (0, 1 , 2 ,  ...) that 

x n + k  E un C N(g; en) C N(g; E ) ,  

for some g E G. If (x,,(~)) is the Cauchy subsequence promised by Lemma 7,  
(Xn(i)) -+ z E S and 

p(z) = lim p(Xn(i)) = lim Hn(i)+l(xn(i)) = S. 
I - -  I - + -  
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Next, we prove that p realizes G .  Fix g E G and let U, E 'U, be as in ( y n ) .  

Then Hn+k(g) C H(U,) for k E (0, 1,2, ...I, which yields 

p(g )  c C1 Hn(Un) = Hn(on)* 

Since diam H,(D,) = diam H,(U,), we have that diam p(g) < En for each E, . 
Thus, p(g) is a point. Given another g' E G, consider En smaller than one- 
fourth the distance between n(g) and n(g'), and suppose g' C VA E %,. 
With this choice of n and en it follows that D,, and D,', are disjoint and, in 
turn, p(g) c H,(D,,) and p ( g ' )  C H,(U,',), which shows that p(g) # p(g').  

Now we show that p is closed. Let F C S be closed and g E G such that 
g n n-'n(F) = 0. Since TI is closed, we can choose En smaller than one- 
fourth the distance between n(F) and n(g). If g C U, E %n as in ( y n ) ,  then 
D,, n CI(St(F, U,)) = 0. The observations 

p(g) c Hn(Dn) and p(F)  C C1 Hn(St(F, Q n ) )  = Hn(CI(St(F, UJ)) 

reveal that p(g)  E [S - C1 Hn(St(F, U,))] C S - p(F).  
Finally, observe that np-' is a homeomorphism of S to S/G. In particular, 

for s E S we have s E UO = Ho(UO) 3 HI(UI)  3 [where s E g, and 
U,, 3 g, as in (y,)]. Hence, H,(s) E UO for each n. Therefore, p(s) E 00. It 
follows that p is n-'(W)-close to the identity and that np-l is W-close to n. 

To get started one can easily find (using nothing 
deeper than the regularity of S/G) a G-saturated open cover %O of S such 
that ( DO I UO E UO] refines n-'(W). Inductively, suppose we have found open 
covers UO , 'U 1 , . . . , %, fulfilling the appropriate refinement conditions and 
homeomorphisms HO = Id, HI, ..., H, satisfying (ai) for i E {O, 1, ..., 
n - I ]  and (pi) for i E (0, 1, ..., n).  Use the paracompactness of S/G to 
produce a G-saturated open cover %A of S that star-refines U,, and let V 
be an open cover of S by en+l-sets. Since Hn(G) is shrinkable, there exists a 
homeomorphism h: S -P S that is H,(%A) close to the identity and shrinks 
elements of Hn(G) to %size. Define H,+] as hH,. 

Fix g E G and U,', E %A with g c U,',. Since h is H,(UA)-close to Id, both 
z and h(z) lie in some H,(Un*) E h,(UA) implying 

Part 11. Construction. 

Hn+l(U,',) = hHn(Ui) C St(Hn(U,',), Hn(QA)) = Hn(st(UA, %A)). 
Since UA star-refines CU,, there exists U, E Un such that 

(t) Hn+l(UA) u Hn(UA) C Hn(St(uA, %A)) C Hn(Ug). 

Clearly, for each g E G diam H,+](g) < &,+I. Find a G-saturated open 
cover 92 = (M, I g E GI of S refining each of %A, (N(g; E ~ + I )  1 g E GI, and 
(n-'(N(n(g); E n + ] ) )  I g E G)suchthat,inaddition,M, 3 g, diarnH,,+l(M,) < 
&,+I, and there exists V, E U, such that Hfl+l(Mg) u H,(Mg) c Hfl(Ug). 
Then n(3n) is an open cover of WG, and we take %,+I to be the inverse 
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under 71 of an open cover star-refining ~ ( 3 2 ) .  Obviously Hn+ 1 and U n +  1 then 
fulfill (/3n+l). To see that they fulfill ( a n )  as well, observe that St(g, %,+I)  is 
contained in some U,‘, E %L; then ( a n )  follows directly from (7) above, where 
U, E U,, is the open set associated with U,’, there. 

Corollary 6A. Let G be a usc decomposition of a complete metric space S. 
Then G is shrinkable if and only $,for each G-saturated open cover % of 
S ,  there exists a proper map fl  of S onto itself such that p realizes G and p 
is %-close to the identity. 

Theorem 8. Let G be a use decomposition of a locally compact, separable 
metric space S. The following statements are equivalent: 

H 

(a) 
(b) G is shrinkable; 
(c) 

7c: S -+ S/G is a near-homeomorphism; 

For each compact subset C of S ,  each E > 0,  and each G-saturated 
open cover % of S ,  there exists a homeomorphism h of S onto itselfsuch that 
h is %-close to the identity and diam h(g) < E for every g E G where g C C. 

Since S is an open subset of its one-point 
compactification, a compact metric space, S has a complete metric p. 
Therefore, the equivalence of (a) and (b) is Theorem 6. That (b) implies (c) 
is obvious. For the reverse implication, find (0) a sequence of compact G- 
saturated sets CI,  CZ, ... whose union is S ,  (1) a sequence UO, UI, ..., 
%n , . . . of G-saturated open covers of S ,  and (2) a sequence of homeo- 
morphisms HO = Id, H I ,  ..., H , ,  . .. of S to itself fulfilling ( a n )  of Theorem 
6, as well as 

(PA) for each U E %n such that U n C, # 0, diam Hn(U) < E n .  

Remarks about the proof. 

Then allow the analysis there to operate on this modified construction. H 

Still stronger regulations can be imposed on the shrinking process. We say 
that a usc decomposition G of a space S is ideally shrinkable if for every open 
subset W of S containing NG,  every G-saturated open cover U of W, and 
every arbitrary open cover V of W, there exists a homeomorphism h of S to 
itself such that h 1 S - W = Id, h 1 W is %-close to the identity, and h sends 
each element g of HG into some member of V. Obviously all ideally 
shrinkable decompositions are strongly shrinkable. 

The limitations called for in the definition of “ideally shrinkable” can be 
measured in metric terms, set forth in the following result. Such measures are 
particularly suitable for treating the majorant topology on function spaces. 

Theorem 9. Let G be a usc decomposition of a metric space S. Then G is 
ideally shrinkable ifand only if for every continuous function E :  S -+ [0, 1) 
with ~-l((0, 1)) 3 NG and every continuous function 6: S/G -+ [0, 1 )  with 
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6-'((0, 1)) 3 ~ ( N G )  there exists a homeomorphism h of S onto itself 
satisfying : 

(a) for  each s E S p(n(s), nh(s)) I 6(n(s)) and 
(b) for  each g E HC there exists s E S such that h(g) C N(s; E(s)). 

First we need a technical lemma. 

Lemma 10. If 'Is? is an open cover of a metric space W,  then there exists 
acontinuous function&: W +  (0, ])such that thecover(N(w; E(w))  I w E W) 
refines 151. If ,  in addition, W is an open subset of a metric space S ,  then the 
map E can be attained as the restriction of a map E :  S -+ [0, 1) for  which 

Proof. For the first part, see Dugundji [ l ,  p. 1711. Once that 
has been done, define a new map on all of S to be 0 on S - W and 
min(e(w), p(w,  S - W ) )  on W. 

Only the reverse implication will be established 
here. Suppose W,  U, and V are given. Lemma 10 provides a continuous 
function E :  S + [0, I),  with &C1(0) = S - W,  such that (N(w; ~ ( w ) )  1 w E W )  
refines V. Lemma 10 also provides a continuous function 6 :  S / G  -, [0,  l), 
with 6-'(0) = n(S - W ) ,  such that the cover {N(x;  6(x))  1 x E n( W ) )  refines 
n(%). With these two functions, the homeomorphism h:  S + S satisfying 
conclusions (a) and (b) above shows G to be ideally shrinkable. 

Having disposed of the prominent results, we shall now mention some 
properties necessarily possessed by the elements of shrinkable decom- 
positions. 

Proposition 11. If G is a shrinkable decomposition of a locally connected 
regular space S ,  then G is monotone. 

Suppose to the contrary that some go E G failed to be connected. 
Some open subset W of S containing go would be expressible as the disjoint 
union of open sets W1 and W2, each of which meets go. 

Prior to applying the shrinkability hypothesis, we construct the appro- 
priate limiting open covers. The regularity of S / G  (see Exercise 2.1) provides 
open sets U1, UZ, and U3 in S/G such that 

&-yo) = s - w. 

Proof of Theorem 9. 

H 

Proof. 

n(go) E Ui+l C Oi+1 C Ui (i  = 1, 2)  and z-'(Ui) c W. 

Let U denote the G-saturated open cover 

( S  - d(O2),  n-'(U1 - I%), n-'(Uz) - go,  n-yU3)] 

and let V be an open cover of S refining 'U and consisting of connected open 
sets. 
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The shrinkability of G gives rise to a homeomorphism h: S -+ S shrinking 
go into some VO E V while staying %-close to Id. Then go C h-'( Vo). We shall 
reach a contradiction by showing that h-'(Vo) c W. 

Suppose there exists w E h-'(Vo) - W c h-'(Vo) - n-'(Ul). Then 
S - n-'(u2) is the only element of % containing w ;  as a result, both w and 
h(w) lie in S - n-%). Moreover, S - TI-'(&) and n-'(Ul - u3) are the 
only elements of % containing h(w) E Vo ; thus VO , which necessarily lies 
in one of these sets, is a subset of S - n-'(D3). On the other hand, for 
SO E g o ,  both SO and h(so) must belong to 7r-'(U3). The recollection that 
h(s0) E h(g0) C VO leads to the impossibility 

h(s0) E n-'(&) n v0 c n-l(u3) n [S - n-'(U3)] = 0. 

This argument is probably more important than the result just established. 
Given an open cover V by sets with the favorite property of the moment and 
given any neighborhood W of g E G ,  we produced a homeomorphism h 
showing g C h-'( V )  C W, for some V E V. The consequence merits explicit 
statement. 

Proposition 12. Let 6 represent a topological property applicable to 
subsets of a given space. Suppose G is a shrinkable decomposition of a 
regular space S in which each point s E S has arbitrarily small neighbor- 
hoods satisfying 6. Then each g E G has arbitrarily small neighborhoods 
satisfying 6. 

Examples of useful properties 6 to apply are connectedness, simple con- 
nectedness, contractibility, compactness, and being homeomorphic to E". 

Very often in the theory of manifold decompositions a stronger notion of 
shrinkability arises. That notion is worth considering, for immediate contrast 
but eventually for the lack of contrast. 

A usc decomposition G of a space S is realized by a pseudo-isotopy if 
there exists a pseudo-isotopy yr of S to S such that YO = identity and 
G = [wi'(S) 1 s E S ) .  By apseudo-isotopy yt of S to S we mean a homotopy 
yt: S -P S such that yt is a homeomorphism for each t E [0, 1) and Y I  is a 
closed surjection. Similarly, by an isotopy wt of S to S we mean a homotopy 
yt:  S -P S such that vt is a homeomorphism for each t E [0, 11. Throughout 
past history, a great deal of attention has been given to the decompositions 
that can be realized by pseudo-isotopies. 

Proposition 13. If G is a usc decomposition of a compact Hausdorff space 
S that is realized by a pseudo-isotopy, then G is monotone. 

Proof. Suppose that go E G can be expressed as the disjoint union of 
closed sets A0 and Bo . Then some closed set C separates A0 and BO , in the 
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sense that S - Ccan be expressed as the disjoint union of two open sets, one 
containing A0 and the other BO . 

Consider uo E A0 and bo E BO . The pseudo-isotopy vt implicitly defines 
paths a: 1 --t S as a(t) = yt(ao) and p: Z + S as P(t )  = vt(bo) joining a0 and 
bo , respectively, to a common endpoint a(1) = /3(1) = wl(g0). The key is that 
vr is a homeomorphism for t < 1 ; as a result, 

WdC) n "t, 11) u P W ,  11)l f 0 (t < 111 

because wt(C) necessarily meets the connected set [a([t, 11) u P([t ,  l])] 
joining vt(uo) to ~ ~ ( b o ) .  Then a typical compactness argument yields 

W l ( 0  n 4 1 )  = W l ( 0  n W l k O )  # 0. 
which indicates go n vilvI(C) = wi'vi(g0) n vi'vI(C) # 0, a contra- 
diction. 

The ensuing exercises make it clear that shrinkable decompositions of 
arbitrary metric spaces are not necessarily monotone, nor are they necessarily 
realized by pseudo-isotopies ; however, shrinkable decompositions of 
manifolds possess both properties. For the first of these statements, see 
Exercise 2;  for the second, one must look forward to Theorem 13.4. 

EXERCISES 

1. Suppose that G is a shrinkable decomposition of S and h is a homeomorphism of 
S onto itself. Show that h(G) = (h(g) 1 g E G)  is a shrinkable decomposition of S. 

2. On the Cantor set C a usc decomposition G is shrinkable iff C/G is homeomorphic 
to c. 

3. The cone over the Cantor set C [that is, the space (C x [0,1])/G~~(1)] is a 
pathwise-connected metric space admitting a shrinkable but nonmonotone usc 
decomposition. 

4. The decomposition G = (C x ( g )  1 g E Q) = (C) x Q of C x Q is shrinkable. 
5. Prove Theorem 8. 
6. Complete the proof of Theorem 9. 
7. Suppose G is a usc decomposition of a compact Hausdorff space X that can be 

realized by a pseudo-isotopy and % is a G-saturated open cover of X. Show that 
there exists a pseudo-isotopy Qt realizing G such that to each X E X  there 
corresponds U, E 21 for which &(x)  E U, for all t E [0, 11. 

8. Suppose G is a usc decomposition of a compact Hausdorff space X that can be 
realized by a pseudo-isotopy, and suppose Go is the decomposition of X x E' 
consisting of [g x [O) C X x E' I g E G) together with singletons from 
X x (El - (0)). Show that ( X  x E')/Go is homeomorphic to X x E l .  Is Go 
shrinkable? 

9. Let G denote a usc decomposition of a space S. Then n: S -+ S/G is a near- 
homeomorphism if and only if for each G-saturated open cover % of S there is 
a closed map ,u of S onto itself that realizes G and is %-close to the identity. 
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6. CELLULAR SETS 

Given a decomposition G of S, as a primary problem one is frequently 
confronted with the need for detecting the topological type of S / G .  When G 
is shrinkable (and S is complete metric), we now know that this primary 
problem has a strong resolution-not only is S/G homeomorphic to S ,  the 
decomposition map itself is a near-homeomorphism. The question to face 
next is: under what conditions is a decomposition shrinkable? 

The subsets of Euclidean spaces consistently present in shrinkable 
decompositions are the cellular ones. A subset Xof E n  (or, more generally, 
of an n-manifold) is said to be cellular if there exists a sequence (Bij of n-cells 
in E" such that Bi+l C Int Bi ( i  = 1,2, ...) and X = n?=.=, Bi. Alternatively, 
X C E" is cellular if and only if for each open set U 3 Xthere exists an n-cell 
B such that X C Int B C B C U. As another possibility, X C E" is cellular 
if and only if X is compact and has arbitrarily small neighborhoods homeo- 
morphic to En.  

Clearly, cellular sets are compact and connected ; however, they need not 
be locally connected. For example, consider the sine (l/x)-continuum in EZ 
(see Fig. 6-1). 

In manifolds cellularity of the decomposition elements is a necessary 
condition for shrinkability. It is not a sufficient one, as we shall see later. 

Proposition 1. If G is a shrinkable usc decomposition of an n-manifold, 
then each g E G is cellular. 

This follows directly from Proposition 5.12. 
As a consequence of Proposition 1, we have a monotone decomposition 

G of an n-manifold M for which M / G  is equivalent to M even though we 

FIG. 6-1 



36 11. The Shrinkability Criterion 

know G fails to be shrinkable. Recall the decomposition G of S3, whose 
nondegenerate elements are circles and figure eights, described at the end of 
Section 4. No circle C in S3 can be cellular. Some neighborhood U of C 
retracts to C under a map r. If C were cellular, C would lie in a 3-cell B in 
U, and since there is a contraction $t of B in itself, one would obtain a 
contraction r4t 1 C of C in itself, which is impossible. Thus G cannot be 
shrinkable. Nevertheless, C was constructed so that S3/G is S 3 .  

Propositioe 2. If X is a cellular subset of an n-manifold M ,  then the 
decomposition GX whose only nondegenerate element is X is strongly 
shrinkable . 

To establish Proposition 2 we first set forth an elementary geometric fact. 

Lemma. Let X be a compact subset of the interior of an n-cell B and E > 0. 
There is a homeomorphism h of B onto itserf fixed on aB for  which 
diam h(X)  < E .  

Briefly put, one equates B with B", interior to it constructs another round 
n-cell B' 3 Xcentered at the origin of B = B", and radially compresses B' 
very near the origin while keeping dB pointwise fixed. 

Proof of Proposition 2. Fix a Gx-saturated open cover 'U. of M ,  another 
open cover V of M ,  and an open set W 3 X .  Restricting W,  if necessary, we 
assume C1 Wis compact and lies in some U E 'U.. There exists E > 0 such that 
any subset of C1 W having diameter < E  is contained in some V E V. The 
cellularity of X implies the existence of an n-cell B such that 

X C  I n t B C  B C  W. 

The homeomorphism h promised by the lemma, extended over M - B via 
the identity, shows that G satisfies the shrinkability criterion. 

In a sense the best possible converse to Proposition 1 is the next result. 

Corollary 2A. If G is a finite cellular (each g E G is cellular) decomposition 
of an n-manifold M ,  then G is strongly shrinkable. 

Corollary 2B. If U is an open subset of an n-manifold and i f f  is a closed 
map of C1 U onto an n-cell R for which the only nondegenerate inverse image 
under f is a cellular subset X of U ,  then C1 U is an n-cell. 

Proof. Let G denote the decomposition of C1 U for which HG = { X ) .  

c1u 2 ClU/G 
/ 

/ 
/ 

/ 

,/ fn-' (homeomorphism) 
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Since G is shrinkable, TI is approximable by homeomorphisms. But C1 U/G 
is homeomorphic to R .  H 

The topic of cellularity leads to one of the major themes of this book : the 
intimate connection between decomposition theory and taming theory. J. W. 
Cannon probably first stressed this theme, but the connections themselves 
have been, or should have been, visible from the outset, in the work dating 
back to the 1950s of R. H. Bing, E. E. Moise, and Morton Brown. Brown's 
important generalized Schonflies theorem [l], one of the first and perhaps 
the most elegant taming theorem, displays an aspect of that connection 
through its dependence on decomposition methods. 

An (n  - 1)-sphere Z in S" is said to be flat, or flatly embedded, if there 
exists a homeomorphism of S" to itself sending Z to the standardly embedded 
sphere S"-' = ( ( x i ,  ..., X n + i )  E S" I X n + l  = 0) .  

A method for detecting flatness in this situation stems from the observa- 
tion that S"-' bounds two n-cells in S" ; accordingly, an (n - 1)-sphere C in 
S" is flat if and only if it bounds two n-cells. In case C is known to bound, 
a fixed homeomorphism of Z onto S"-' can be extended over the two 
bounded cells, one at a time, onto the cells representing the upper and lower 
hemispheres of S".  

By an inverse set of a map f ,  we mean a nondegenerate inverse image 
under f. 

Proposition 3. Suppose Q is an n-cell and f is a map of Q into S" such that 
X C Int Q is the only inverse set o f f  and f(Int Q) is open in S" (which must 
hold, by invariance of domain). Then X is cellular in Q. 

Let U be an open subset of Int Q containing X .  Then f(U) = 
f(1nt Q) - f ( Q  - U) is an open subset of S".  There is a homeomorphism 
8: S" -, S" fixed on some neighborhood Vof f ( X )  such that 8f(Q) c f ( U ) .  
Define a function F of Q into U as the identity on f -'( V )  and as f - ' e f  on 
Q - X .  Since F is well defined, it is an embedding, and F(Q) is an n-cell in 
U containing X in its interior. 

Proposition 4. 
A and B,  then each of A and B is cellular. 

Proof. 

H 

If w is a map of S" onto itself with exactly two inverse sets 

Proof. We will show that B is cellular. Let Q be an n-cell in S" containing 
A u B in its interior. Then y/(Int Q) is open and contains an open set U for 
which w(A) E U but w(B) e U. There is a homeomorphism 6' of S" to itself 
carrying u/ (Q)  into Uand fixing some neighborhood Vof yl(A). Define a map 
f of Q into S" as the identity on w-'(V) and as w-'Oty on Q - A .  Then 
f(1nt Q) is open and B is the only inverse set off. By Proposition 3,  B is 
cellular. 
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Proposition 5 .  I f f  is a map of S" onto itself with only afinite number of 
inverse sets, then each is cellular. 

This follows from Proposition 4 more quickly than Proposition 4 followed 
from Proposition 3. Later we shall be concerned with conditions under which 
the finiteness restriction can be removed. 

Theorem 6 (generalized Schonflies theorem). If h is an embedding of 
S"-' x [- 1, 11 in S", then h(S"-' x (0)) isflat. In particular, the closure of 
each component of S" - h(S"-' x (0)) is an n-cell. 

Let A denote the closure of that component of S" - h(S"-' x ( 1)) 
not containing C = h(S"-' x (0)) and B the closure of that component of 
S" - h(S"-' x 1-11) not containing C (see Fig. 6.2). Furthermore, let DA 
(DB) denote the closure of that component of S" - C containing A (B) .  Let 
G denote the usc decomposition of S"-' x [- 1, 11 having as its two non- 
degenerate elements the sets Sn-' x (*l). Then (Sn-' x [-1, l])/G, the 
suspension of Y-', is topologically S" and there is a homeomorphism A of 
(Sn-' x [- 1, l])/G to S" sending the image of S"-' x (0) to the standard 
sphere S"-' c S". Extend the map Anh-' from h(S"-' x [- 1, 11) onto S" to 
a map f of S" onto itself by defining f ( A )  = Anh-'(h(S"-' x (1))) and 
f(B) = Anh-'(h(S"-' x (- 1 J)). Each of A and B is cellular (Proposition 4) 
and, therefore, DA and DB are n-cells by Corollary 2B. As an alternative way 
to clinch the proof, f really acts as the decomposition map for Gf;  by 
Corollary 2A, Gf is strongly shrinkable, so there exists a homeomorphism 
F of S" to itself such that F and f agree on h(S"-' x (0)). 

In common parlance an (n - 1)-manifold C contained in an n-manifold 
A4 is bicollared if there exists an embedding h of Z x [- 1, 11 in M such that 
h(C x (0)) = C. The shorthand version of the generalized Schonflies 
theorem asserts that each bicollared (n - 1)-sphere in S" is flat. 

Applications of these techniques include a simple manifold structure 
theorem. 

Proposition 7 .  If the compact n-manifoldMcan be expressed as the union 
of two open n-cells, then M is homeomorphic to S". 

Proof. Let U and V denote the two open n-cells. Let f be a homeo- 
morphism of V onto E", considered as S"-point. Then f extends to a map 
F: M - r  S" having X = A4 - V as its only inverse set. Since X c U, X is 
contained in the interior of some n-cell Q C CJ, and Proposition 3 implies 
that Xis  cellular. By Proposition 2, the decomposition GF = IF-'@) I s E S") 
induced by Fis  shrinkable. Thus, R :  M + M/GF is a near-homeomorphism 
and FR-': M/G -r S" is a homeomorphism, so A4 and S" are topologically 
equivalent. W 

Proof. 
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f(B) 

FIG. 6-2 

Now consider the slightly more complicated situation where C1 and C2 
denote disjoint bicollared (n - 1)-spheres in S". Let (El ,  &) denote that 
component of S" - (CI u &) having both these spheres in its frontier, 
[El, &) = C1 u ( X I ,  C2) and [El,  &] = C1 u & u (El ,  Cz). The conjecture 
that [ X I ,  CZ] is topologically S"-' x [- 1 ,  11 is a famous statement known as 
the annulus conjecture. It is now known in all dimensions, having been 
proved primarily by Kirby [ 11 for n 1 5 and more recently by Quinn [2] for 
n = 4. Their arguments are considerably more complex than the proof of the 
Schonflies theorem itself. However, the comparable conjectures about the 
topological types of [ X I ,  C2) and (E l ,  X2) do follow easily from the 
Schonflies theorem. 
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One-sided variations to the concept of a bicollaring pervade the subject of 
embedding theory. A subset C of a space Xis said to be collared in Xprovided 
there exists an embedding Iz  of C x [0, 1)  onto an open subset of X such that 
i l ( (c ,  0)) = c for all c E C,  and it is said to be locally collared if it can be 
covered by a collection of open sets (relative to C ) ,  each of which is collared 
in X. 

A prototypical setting occurs in manifolds with boundary, where by 
definition the boundaries are locally collared. The local collars can be 
uniformly reorganized into a collar on the entire boundary. 

Theorem 8. The boundary aM of any n-manifold with boundary M is 
collared in M. 

Proof. Form a new space & from M U  (aM x Z) by identifying each 
point p in i3M with ( p ,  0) in aM x I .  Clearly aa is collared in a. 

Let G be the usc decomposition of fi into singletons and the arcs corre- 
sponding to ( p )  x I .  It should be obvious why a / G  is equivalent to M. The 
remaining step is to prove G is shrinkable, indicating f i / G  is also equivalent 
to M. 

According to Theorem 5 .8 ,  it suffices to consider the case where the 
nondegenerate elements of G lie in a compact subset Z of a. The problem 
then reduces to one where Y = 2 n afi is covered by two open subsets U1 
and U2 of afi, each of which is collared in A?. Find closed subsets C1 and 
CZ of Y in U1 and UZ , respectively, covering Y,  and use the local collarings 
on the Ui'S to produce controlled homeomorphisms hl and then h2 of fi to 
itself sending each arc ( p )  x Z of the appended collar into itself and, 
specifically, shrinking those arcs where p E C1 or, secondly, p E CZ to very 
small size. The composition hl 0 hZ shrinks all of G ,  as required. 

Theorem 8 is due to M. Brown [2]. The proof was suggested by an 
argument of R. Connelly [ 11, and it actually establishes a more general result, 
also due to Brown. 

Theorem 9. Let C be a closed subset of a locally compact separable metric 
space X .  Then C is locally collared in X if and only if C is collared in X .  

Returning briefly to the Schonflies theorem, one might wish to note that 
therefore an (n - 1)-sphere X in S" is bicollared if it is locally collared in the 
closure of each component of S" - X. 

Prior to Brown's work, decomposition theorists tended to employ a 
different concept closely related to cellularity. A subset C of a space X is 
pointlike (for emphasis, in X )  if X - Cis homeomorphic to the complement 
of some point of X. When the ambient space is S", the pointlike subsets 
coincide with the cellular subsets (an exercise). In an arbitrary n-manifold, 
each cellular subset is pointlike (Proposition 2), but the converse fails. 
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For example, C. 0. Christenson and R. P. Osborne [I]  construct a 
3-manifold Mby deleting from E 3  the integer points along the positive x-axis 
together with the circles of radius centered at integer points along the 
negative x-axis; the circle in M of radius centered at the origin is pointlike 
but noncellular. The noncompactness of Mis  fundamental to this and to all 
other examples distinguishing the twin concepts of "cellular" and 
"pointlike," which coincide in compact n-manifolds. 

EXERCISES 

1. A closed subset C of S" is cellular iff it is pointlike. 
2. A closed and connected subset C of E n  is cellular iff it is pointlike. 
3. Suppose X i s  a cellular subset of an n-manifold M and some neighborhood U 

4. Prove Proposition 5 .  
5. Suppose C is an (n  - 1)-sphere in En and Uis the bounded component of E n  - C. 

Suppose p: S"-' x [0, I ]  -+ Enisanembeddingsuchthat w(S"-' x (0)) = Xand 
p(S"-' x (0, 11) c U .  Show that C1 U is an n-cell. 

6. For each n L 2 there is a proper mapfof a connected n-manifold Monto itself 
having exactly one nondegenerate inverse image X and X is noncellular. 

7. Let X be a compact subset of En.  Then E"/Gx is a manifold iff X is cellular. 
8. Suppose Mis an n-manifold whose universal cover is En or S" and Xis  a compact 

contractible subset of M for which M/Gx is an n-manifold. Then X is cellular. 
9. If the suspension CX of a compact metric space X is an n-manifold, then ZX is 

homeomorphic to S". 
10. If Z1 and Cz are disjoint bicollared (n - 1)-spheres in S", then [ X I ,  CZ) is 

homeomorphic to S"-' x [0,1) and (XI, Cz) is homeomorphic to S"-' x (0, 1). 
A decomposition G (necessarily monotone) of an n-manifold M is said to be 

defined by n-cells provided there exists a sequence IAj 1 j = 1,2 ,  ...I such that 

(i) each Aj is a finite union of pairwise disjoint n-cells ; 
(ii) Int A, 3 A,, 1 ; 

(iii) C ~ N G  = n j A j ;  
(iv) each component of n j A ,  is an element of G. 

11. If the decomposition G of the n-manifold M is defined by n-cells, then G is 
shrinkable. 

12. Let A be any arc in E 3  with a designated point a0 such that A - (ao) is the 
countable union of straight line segments (any two of which meet only in a 
common endpoint). Then A is cellular. 

of X in M retracts to X .  Show that X is contractible. 

7. COUNTABLE DECOMPOSITIONS AND SHRINKABILITY 

In one of his early papers about usc decompositions, R. H. Bing [2] set 
forth several conditions about countable cellular decompositions of E 3  
implying shrinkability. His techniques depended on nothing intrinsically 
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3-dimensional ; the arguments functioned equally well in any Euclidean 
space. Among the first to recognize the potential generality of Bing’s 
methods was L. F. McAuley (21, who adapted them to nonmanifold settings 
by isolating a useful shrinkability property inherent in the notion of 
cellularity. With it we shall investigate conditions comparable to Bing’s 
implying shrinkability for decompositions of complete metric spaces. 

A compact subset C of the space S is locally shrinkable in S (or, simply, 
locally shrinkable) if for each open set U in S containing C and for each open 
cover V of S there exists a homeomorphism h of S onto itself such that h(C) 
is contained in some V E V and h 1 S - U = identity. 

Listed below are two obvious connections to previous sections. Details for 
their verification involve only definitions and earlier results. 

Proposition 1. Let C denote a closed and compact subset of a T-space S. 
Then the decomposition GC of S is strongly shrinkable i f  and only i f  C is 
locaily shrinkable in S. 

Proposition 2. A compact subset C of an n-manifold M is cellular in M i f  
and only i f  it is locally shrinkable in M. 

Not only does the next result serve as a lemma for the theorem to follow, 
it also has a consequence of interest in itself. 

Proposition 3. Let G be a use decomposition of S and V an open cover of 
S. Then the union C of all g E G contained in no member of V is a closed 
subset of S. 

Proof. Each x E S - C lies in some g E G found in V, E 9. Upper 
semicontinuity gives an open neighborhood V,* of x ,  which misses C,  by 
definition, and shows that S - C is open. H 

Corollary 3A. Let G be a use decomposition of a metric space (S ,  p) and 
E > 0. Then the union of all elements of G having p-diameter at least E is a 
closed subset of S. Consequently, NG is an F,-subset of S. 

Given a decomposition G for which HG is a countable collection of locally 
shrinkable sets, one might expect to be able to shrink them one at a time, in 
the limit effecting a total shrinking. Bing showed how to make this work in 
case NG forms a Ga-subset. One can eliminate some of the chaff from the 
forthcoming proof by considering the special case where NG is closed (and 
Gs). Justification of the need for some hypotheses on HG will be given after 
the proof has been completed. 
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Theorem 4. Suppose G is a use decomposition of a complete metric space 
(S ,  p) such that HG is a countable collection of locally shrinkable sets and NG 
is a Gs-subset of S. Then G is strongly shrinkable. 

Consider an open set Wcontaining NG , a G-saturated open cover 
% of S ,  and another open cover V of S .  By hypothesis, HG can be enumerated 
as gl , g2,  ... and NG can be expressed as the intersection of open sets 
WI = W, W2, ..., where Wi+l C Wi. 

The first step is a special replacement of %. Since ~ ( N G )  is a countable 
set, its cover n(Q) has a refinement consisting of pairwise disjoint open sets. 
Pulling these back to S, for k E (1,2, ...) we obtain a G-saturated open set 
uk containing gk and contained in some member of 21 such that for distinct 
indices i and j either Ui = Uj or Ui n Uj = 0. Ultimately these will ensure 
%-closeness, without any further refinements. We shall produce homeo- 
morphisms ho = Id, hl , h2, ... satisfying hi 1 S - Ui = hi-1 I S - Ui (i > 0),  
and it will follow from the construction of these open sets that each hk is 
%-close to the identity. 

Let CI denote the union of all those g E G contained in no member of V. 
According to Proposition 3 ,  C1 is closed. B y  normality, there exists a 
G-saturated open set 21 such that CI C 21 C 21 C WI . 

Since gl is locally shrinkable, there exists a homeomorphism hl of S to 
itself such that hl = Id outside 21 n U1 and that hl(g1) is V-small. ( I f  
gl  n 21 = 0, gl is already V-small, and hl = Id works.) Then gl has a G- 
saturated closed neighborhood Q1 such that hl(Q1) is contained in some 
V E V. This neighborhood Q1 will serve as a protective buffer about gl , in 
which no further motion will occur. 

Now all the components for the construction scheme have been laid out. 
Generally, we shall produce a sequence ho = Id, hl , h2, ... of homeo- 
morphisms of S ,  another sequence Z I , Z Z ,  . . . of G-saturated open sets, and 
a third sequence Q1, Q2, ,.. of G-saturated closed subsets of S such that, 
for i E (1,2, ...I, 

Proof. 

(1) Zi+l c Zi+l c W,+l nZi ,  
(2) g E G and g n Zi = 0 implies h;(g) is V-small, 
(3 )  
(4) h i I S -  U i = h i - ~ ( S - U i ,  

hi 1 S - Zi = hi-1 1 S - Zi,  

( 5 )  
(6) 
(7) 

Having constructed hl , Z1, and Q1, we assume hj, Zj ,  and a have been 
constructed. Then hj(G) is usc and, by condition (2), hj(g) is V-small for 
every g E G not contained in Z j .  Hence, there exists a closed set Cj+l 

Qj is a closed neighborhood of gi such that hi(Qi) C K E V, 
hi+k 1 Qi = hi 1 Qi for every integer k 2 1, and 
either hi@) # hi-l(X) for some x E g; or hi = hi-1. 
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consisting of those g E G for which hj(g) fails to be V-small and Cj+ 1 C Z;. 
Furthermore, C;+I C W;+I - uj=l Qi by conditions ( 5 )  and (6). Again, 
normality provides a G-saturated open set Zj+l such that 

Now consider h;(g;+l): if V-small, set hj+l = hj; if not, by repeated 
applications of condition (4) together with the construction of the Ui'S, we 
see that hj(gj+l) c U;+1. The local shrinkability of hj(gj+l) in S leads to a 
homeomorphism O of S to itself fixed outside h;(Zn+l n U;+1) and making 
Bh;(g;+l) be 9-small. Define h;+l as Oh;. Finally, complete the cycle by 
naming a G-saturated closed neighborhood a+l of g;+ I such that hj+l(Q,+l) 
is a subset of some V E V. It should be noted that the definitions of Z;+l and 
C,+l plus the requirement that 8 act as the identity outside h;(Zj+l) yield 
condition (2) in case i = j + 1. The other six conditions governing our 
iterative construction are readily verified. 

At this point we specialize to the case that S is (locally) compact. The secret 
then is that the sequence of homeomorphisms (hi] eventually becomes 
(locally) stationary. For suppose to the contrary that i( l),  i(2), . . . , i(n), . . . is 
an infinite increasing sequence of indices such that each differs from its 
predecessor hi(n)-1 (on a compact neighborhood of a given point), Taking a 
sequence X n  E gicn), we find a limit point y E S. If y 6 NG , there exists an 
indexj such that y @ W;, which implies that infinitely many of the sets gi(n) 

fall outside Z;, forcing the homeomorphisms hi(k) of corresponding indices 
to agree with their predecessors [see condition (3)]. On the other hand, if 
y E gj C NG , then infinitely many of the sets gi(,,) lie inside Q, , forcing hi(k) 
to agree with hj on Q, for those corresponding indices i(k) > j ,  thereby 
implying that hi(k) = hi(k)-l [see condition (7)]. In either situation, we have 
acontraction. Thus, thereexists anindex ksuch that hk = hk+l = hk+2 = . 
This means that some h k  achieves the desired shrinking. 

Corollary 4A. If G is a cellular use decomposition of an n-manifold Msuch 
thatHG iscountabIeandNGisaG6-subset ofM,  then Gisstronglyshrinkable. 

Corollary 40. If G is a usc decomposition of a complete metric space Ssuch 
that HG forms a countable collection of locally shrinkable sets and NG is a 
Ga set, then R: S -+ S/G is a near-homeomorphism. Moreover, for  each open 
set W containing NG and each open cover '151 of SIC, there exists a homeo- 
morphism F:  S .+ S/G with F 1 S - W = R S - W and F '151-close to R.  

If G is a usc decomposition of a metric space (S ,  p) and E > 0, by G(LE) 
we mean the decomposition of S whose nondegenerate elements are those 
g E G having p-diameter at least E .  It follows from Proposition 3 and 
Proposition 2.5 that G ( 1  E )  is usc. 
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Corollary 4C. I f  G is a countable, cellular usc decomposition of an 
n-mangold M and E > 0,  then G( 2 E )  is strongly shrinkable. 

Proof. This is immediate because N G ( ~ ~ )  is closed, hence Gs,  in M .  

The corollary above may suggest too much. If M were compact and one 
wanted to shrink all the elements of G to small size, one could apply Theorem 
4 or Corollary 4C to shrink the big elements of G ,  that is, those g E HG that 
also lie in G(r  E ) .  Caution! Although the original big elements of G can be 
shrunk in this manner, there is nothing to prevent elements which are small 
at the outset [thus, being the union of singletons from G ( 2  E) ]  from getting 
stretched to very large size during the so-called shrinking process. This 
represents a significant problem, precluding real progress toward a total 
shrinking of G .  

In manifolds, examples revealing the phenomenon are rather delicate. In 
more general metric spaces, examples are easier to dissect, and it is instructive 
to examine one. 

Example 1. A usc decomposition G of a compact metric space S such that 
HG forms a null sequence of locally shrinkable sets but G itself is not 
shrinkable. 

The space S is a subset of E 3 .  The major part of it is a 2-cell B in the xy- 
plane consisting of all points at distance one or less from the point ( 5 , O ) .  
On the interval [ O ,  11 x (0)  in B one names the standard middle-thirds Cantor 
set C x (0). With each accessible point c E C (that is, a point living in the 
closure of one of the components of E’ - C ) ,  we associate a number r(c) 
as the length of the interval component having c in its closure, subject to the 
convention that r(0) = 1 = r(1). For each such c, we‘ attach to B the circle 
J, in the plane perpendicular to the x-axis at c of radius r(c) and centered at 
( c ,  0, r(c)) . The result is the oecessarily compact space S illustrated in Fig. 7-1. 

The decomposition G is the one having as its nondegenerate elements the 
null sequence of circles (Jc 1 c an accessible point of C ) .  

The nonshrinkability of G is no surprise. The function f: S -+ B fixing B 
and sending J, to ( c ,  0) realizes G and implies that S/G is homeomorphic 
to B. However, S certainly cannot be homeomorphic to B. Consequently, 
n: S -+ S/G cannot be a near-homeomorphism or, equivalently (Theorem 
5.1), G cannot be shrinkable. 

Much more surprising is the claim that each J ,  E HG is locally shrinkable. 
To be explicit, we consider JO as being typical. Given E > 0 we choose 
c = (4,” E C smaller than d 2 ,  and we name two circular disks in B, an outer 
one D of radius (f)“ centered at (6 (-f)“, 0) and an inner one D’ of radius 

* (i)” centered at the same point. We rigidly rotate D‘ through 180°, 
keeping the center point fixed and tapering the rotation off to the identity 



46 11. The Shrinkability Criterion 

JO 
1 J1 

J% J% 

FIG. 7-I 

FIG. 7-2 

outside D, as shown in Fig. 7-2. All that remains is to extend the homeo- 
morphism T of B to itself to a homeomorphism of S onto itself. Since T 
permutes the accessible points of C x 0, it extends to a function T that 
permutes the curves [.Ic), whose restriction to any one of them is a homeo- 
morphism onto another, and that reduces to the identity on those meeting 
B outside D.  Because these curves form a null sequence, the extended 
function T is a homeomorphism, and it shrinks JO to small size while keeping 
points fixed outside the &-neighborhood of Jo.  H 
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It is instructive to note that for any homeomorphism h of S to itself, 
h(B) = B. If ~ ( J o )  is small, JO = h(Jc) for some c E C ,  probably c # 1. In 
other words, no matter how one attempts to shrink G ,  some Jc E HC will be 
sent onto Jo. This points to a rigidity property of the decomposition G :  every 
homeomorphism of S to itself permutes the decomposition elements, 
precluding any possibility of shrinking G .  

With a minor variation to G we can discern further limitations to the 
usefulness of shrinkability for establishing whether a decomposition of an 
arbitrary space is homeomorphic to its source. In spaces other than complete 
metric ones, the example of Section 5 reveals that shrinkability is not 
sufficient for doing this. Even in compact metric spaces, however, shrink- 
ability is not a necessary condition; the example of Section 4 provides a 
monotone usc decomposition G of S 3  such that S3/G is topologically S 3  but 
G is nonshrinkable, because its elements are not cellular (locally shrinkable). 
The local shrinkability of decomposition elements is not enough to rectify 
the matter. 

Example 2. A usc decomposition G’ of a compact metric space S such that 
HGt forms a null sequence of locally shrinkable sets and S/G‘  = S ,  but G’ 
fails to be shrinkable. 

The space S coincides with the one in Example 1. The only difference 
between G there and G‘ is that G’ involves just “half” of the other’s 
nondegenerate elements. Explicitly, the nondegenerate elements of G’ consist 
of those Jc E HG where c 2 +. 

Given a countable usc decomposition into locally shrinkable sets, how then 
should one hope to shrink the individual nondegenerate elements successively 
so as to produce a shrinking of the entire collection? While shrinking any 
particular element, one must be able to monitor the elements nearby so that 
their sizes do not expand excessively. The next result (also from Bing [2]) 
furnishes a suitable monitoring condition. 

Theorem 5. Suppose S is a locally compact metric space and G is a 
countable usc decomposition of S such that, for  each go E HG and each 
E > 0,  there exists a homeomorphism h of S onto itself satisfying 

(a) h I S - N(g0; E )  = Id, 
(b) diam h(g0) < E ,  and 
(c) for  g E G ,  either diam h(g) < E or h(g) C N(g;  E ) .  

Then G is strongly shrinkable. 

Note first that given a homeomorphism f of S to itself, go E G ,  and 
E > 0 such that C1 N(g0; E )  is compact, one can use the uniform continuity 

Proof. 
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off1 ClN(g0; E )  to obtain another homeomorphismf’ = fh of S satisfying 

(a’) f’ 1 S - Mgo; E )  = f l  S - N(g0; E ) ,  
(b’) diamf’(g0) < E ,  

(c’) for each g E G, diamf’(g) < E + diamf(g). 

We use this modified version of the hypothesis to prove Theorem 5 .  We shall 
consider only the case in which S is compact ; the more general result follows 
exactly as in the hints for the locally compact case dropped during the proof 
of Theorem 4. 

Let W be an open set containing NG and E > 0. By Proposition 3, the set 
N G ( ~ ~ / Z )  is compact. Enumerate the elements of H G ( z e / 2 )  as gl ,  g2, ... . 

As in the proof of Theorem 4, we can determine G-saturated open sets 
U1, Uz, ... in W such that Ui contains gi, Ui and Uj either coincide or 
do not intersect, and n(Ui) has diameter less than E .  Then, just as before, 
we shall encounter the desired shrinking homeomorphism hk at the end of 
a finite sequence ho = Id, hl ,  h2, ..., hk of homeomorphisms satisfying 
hi 1 S - Ui = hi- 1 I S - Ui (i E (1,2, .. . , k)), which will imply that hk agrees 
with the identity outside Wand that h k  is &-close to K. 

By hypothesis, there exists a homeomorphism hl of S onto itself such 
that 

(ad hl 1 S - U1 = Id, 
(bl) diam hl(g1) < ~ / 4 ,  
(CI) diam hi(g) < ( ~ 1 4 )  + diam g, for each g E G. 

As a result, gl has a G-saturated closed neighborhood QI such that, for each 
g E G with g c QI, diam hl(g) < E .  

Recursively, we aim to produce a sequence of homeomorphisms ho = Id, 
hl , ... , hi, .. . and a sequence QI , .. ., Q,, . . ., where Q, denotes a G-saturated 
closed neighborhood of gj, satisfying (for j E (1,2, ...)), 

(aj) hjl S - Uj = hj-I I S  - V,, 
(bj) diamhj(gj) < E ,  

(Cj) 

(ej) 

diam hj(g) < (1 - 1/2’)(~/2) + diamg, for each g E G, 

g E G and g C 
(dj) hj+l 1 Q1 U u Q, = hjl Q1 U .*. U Q,, 

implies diam hj(g) < E ,  and 
(fj) hj = hj-1 if diam hj-l(gj) < E .  

Assuming that ho , hl , . . ., hj and QI , . .., a have been constructed subject to 
the conditions above, we consider the element gj+l. If diam hj(gj+l) < E ,  we 
define hj+l as hj. If not, it follows from the various possible conditions (di) 
and (ei) that gj+ 1 @ QI u u a. Application of the modified version of the 
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hypothesis yields a homeomorphism hi+ such that 

hj+l 1 S - (Uj+1 U [QI U U a]) = hj 1 S - (Uj+l U [Ql U U Q j ] ) ,  

diam hj+ I(gj+ 1) < E / ~ J + ~ ,  

and for each g E G, 

The third of these combines with condition (cj) to give 

diam hj+~(g) < (1/2'+')(~/2) + (1 - 1/2')(~/2) + diamg 

= (1 - 1 / 2 j + ' ) ( ~ / 2 )  + diam g. 

In either case, it is possible to find a G-saturated closed neighborhood Qj+l 
of gj+l for which every g E G in a+l satisfies diam h,+l(g) c E .  

The compact set N G ( * ~ / Z )  is covered by the interiors of the sets Qj. Hence, 
for some k that set is contained in Q1 u ... u Q k .  Repeated applications of 
conditions (dj) and (ej) establish that diam hk(g) < E for all g E G found in 
Q1 U U Q k .  Conditions ( f k c i )  force all the later homeomorphisms hk+i to 
agree with h k .  Finally, for those g E G that were not large originally, 
that is, for those of diameter less than ~ / 2 ,  condition (ck) reveals that 
diam hk(g) c E .  This means that hk has shrunk everything &-small, and it 
fulfills the requirements of the shrinkability criterion in the compact metric 
case. 

The argument just given actually yields the following variation to 
Theorem 5 .  

Theorem 6. Suppose S is a locally compact metric space and G is a 
countable usc decomposition of S such that for each homeomorphism f of 
S onto itsev, each go E G, and each E > 0, there exists a homeomorphism 
f ' on S satisfying 

f' I s - m o ;  E )  = f 1 s - N k o ;  E l ,  

diam f '(go) < E ,  

and for each g E G ,  

diam f ' (8)  c E + diam f ( g ) .  

Then G is strongly shrinkable. 
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EXERCISES 

1. Suppose G is a strongly shrinkable, countable usc decomposition of a locally 
connected metric space S. Then each go E HG is locally shrinkable in S. In 
particular, show that for each homeomorphism f of S onto itself, each go E HG , 
and each E > 0, there exists a homeomorphism f' on S such that 

f'ls - M g o ;  E )  = f  I S  - N k o ;  d, 

diamf'(g0) c E ,  

and for each g E G, 

diamf'(g) c E + diam f ( g ) .  

2. Prove Theorem 4 in case S is a complete metric space. 
3. Prove Theorems 5 and 6 ,in case S is a locally compact metric space. 
4. Prove Theorem 4 in case S is a (locally) compact normal space. 
5. Is Theorem 5 valid in case S is a complete metric space? (Apparently this question 

is unsolved.) 
6. Show that there exists a nonshrinkable decomposition G of a compact metric space 
C such that HG is a null sequence of 2-cells, each locally shrinkable in C, and C/G 
is homeomorphic to C. 

8. COUNTABLE DECOMPOSITIONS OF E" 

This section applies the work from Section 7, mainly Theorem 7.5, to 
countable decompositions of Euclidean space. Based on results developed 
first, in spirit if not in deed, by R. H. Bing [2], the hypotheses here invariably 
include special geometric properties possessed by the decomposition 
elements. Such hypotheses are necessary, since according to examples to be 
presented in the next section not all countable, cellular decompositions of E" 
are shrinkable. 

Given a space X with some preferred embedding e in E", one says that a 
subspace X'  of E" homeomorphic to X is flat (or is flatly embedded in En) 
provided there exists a homeomorphism 8 of E n  onto itself such that 
e(X')  = e(X) .  In particular, one says that an arc A in E n  isflat provided there 
is a self-homeomorphism 8 of E n  carrying A to a straight line segment. 

Theorem 1. If G is a countable use decomposition of E n  into points and 
flat arcs, then G is strongly shrinkable. 

Any flat arc can be considered as a line segment. Invoking uniform 
continuity of the inverse of the flattening homeomorphism, restricted to a 
compact neighborhood of the segment, one quickly reduces the verification 
that the hypotheses of Theorem 7.5 are satisfied to the lemma below. 
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Lemma 2. Let G be a monotone usc decomposition of E", go E G a straight 
line segment, and 6 > 0. Then there exists a homeomorphism H of E" onto 
itself satisfying 

(a) H I E" - N(g0; 6 )  = Id, 
(b) diam H(g0) < 6, and 
(c) for g E G either H(g) C N(g;  6)  or diam H(g) < 6. 

Proof. Without loss of generality, go is the line segment ((0, ..., 0, xn) E 
E" I 0 I xn I b). Choose an integer k > 0 large enough that b/k  < 6/8,  and 
let P: denote the (n - 1)-dimensional hyperplane of E" perpendicular to the 
xn-axis at the point (ib)/k (i E 10, 1, ..., k]). 

For each E > 0 the set of points at distance exactly E from go can be seen 
to be a bicollared (n - 1)-sphere ; details, for a much more general setting, 
are provided in Lemma 3. Hence, for i E (0, 1, . . . , k )  there exists e(i) > 0, 
with 

6/8 > ~(0) > ~ ( 1 )  > 0 . .  > E(i) > E ( i  + 1) > > ~ ( k ) ,  

such that the sets Si of points at distance e( i )  from go are bicollared (n - 1)- 
spheres and 

(*) whenever g E G and g n Si # 0, then g n Si+l = 0. 

The c(i)'s (and Si's) are obtained in successive order ; upper semicontinuity 
of G makes condition (*) possible. 

Three additional notational matters : for i E ( 1,2, . . . , k )  T will denote the 
points of Si below the plane P;- I ,  Bi-1 will denote the open (n - 1)-cell 
Pi-1 n N(g0; E(i)), and Ci (a chamber) will denote the closure of that part 
of N(g0 ; ~ ( 0 ) )  between the planes Pi- 1 and Pi while CO will denote the closure 
of that part of N(g0; ~(0)) below PO (see Fig. 8-1). An important aspect of 
these chambers is their size, which, by construction, is less than 6/2.  

The homeomorphism H will be defined so that H(g0) C ck , forcing H(g0) 
to  have small size. Control on the other elements will be derived from the 
following: i f x  E N(g0; ~ ( i  - 1)) - N(g0; E(i + 1))fori E (1, ..., k - l f a n d  
if H(x) # x,  then 

H(x) E Ci-1 u Ci . 
For those g E G meeting N(g0; E ( O ) ) ,  condition (*) implies the existence of 
an integer i such that 

g E W g o ;  4 i  - 1)) - N(g0; E(i + 1)) 

[or g E E" - N(g0; ~(1) ) ;  or g E N(g0; ~ ( k ) ) ] .  It will follow then that 

H(g) C g u Ci- 1 u Ci 
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[or H(g) C g u CO; or H(g)C g u Ck]. The monotonicity hypothesis 
coupled with the fact diam(Ci-1 u Ci) < 6yields that either H(g) C N(g; 6) 
[which occurs in case H(g) n g # 01 or diamH(g) < 6. 

Here is one way to define H. Require that it be the identity everywhere 
outside SO [that is, on E" - N(g0; ~ ( 0 ) ) ] ,  also on those points of E" above 
Pi and outside Si ( i  E [ 1, . . . , k - 1 )), and finally on all points of En above 
P k .  Define HI T so that H(TJ = Bi-1 for i E [ 1 ,  .. ., k - 1). Extend over the 
remaining parts of N(g0; ~ ( 0 ) )  in a cell-by-cell fashion. This is straight- 
forward because if Qi denotes the closure of the region below Pi and between 
Si and Si+l, then Qi is an n-cell and H i s  defined so as to send dQi onto the 
boundary of another cell in En. 

The next topic is a generalized convexity property. A compact set X in E" 
is starlike with respect to apoint xo E X if for any other point x E X the line 
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segment determined by x and xo is a subset of X ;  equivalently, each geometric 
ray in E" emanating from xo intersects X is a connected set. Generally, a 
compact subset X of E" is starEike if it is starlike with respect to some point 
xo E X. It should be obvious that every compact, convex subset of E" is 
starlike with respect to each of its points. 

Lemma 3.  Let X be a compact subset of E" that is starlike with respect to 
xo E X and Z the set of all points at distance exactly some fixed 6 > 0 from 
X .  Then each ray emanating from xo intersects Z in a single point, and Z is 
a bicollared (n - ])-sphere. 

Corollary 3A. Each starlike subset of E n  is cellular. 

The complement of Z can be expressed as the union of N(X; 6) 
and E n  - Cl(N(X; 6)) .  Since each ray emanating from xo meets both of 
these, it must also meet Z at least once. We argue that it meets 2 exactly once. 

Suppose to the contrary that on some ray R there are two points ZI and 
z2 of R n Z. Without loss of generality we can assume z1 lies between xo and 
22 on R. By definition of Z and by compactness of X ,  there exists a point 
x2 of X whose distance from zz equals 6. Let a = ~ ( x o ,  ZI)/~(XO, 22) and note 
that CY < 1. 

The connectedness of X n R ensures that the ray R' from xo through x2 

is not collinear with R. On R' let 21 denote the point such that p ( 2 1 ,  xo) = 
ap(x2, XO).  (See the accompanying diagram.) Then the triangles determined 
by xo , x2 , and 22 and by xo , 21 , and z1 are similar, implying that p(zl ,21) = 
ap(z2, x2). As a result, 

Proof. 

p(z1, X )  4 p(z1121) = CY * 6 < 6, 

which is impossible. 
R C  
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The fact that rays from xo meet Z in unique points implies that radial 
projection of E" - [XO)  to the unit ( n  - 1)-sphere centered at X O ,  when 
restricted to 2, gives a one-to-one and onto (continuous) function. To the 
reader we leave the verification that this homeomorphism can be extended 
to a ray-preserving homeomorphism of E n ,  thereby establishing that Z is a 
flat (n - 1)-sphere. 

Like flat arcs, starlike sets admit carefully controlled shrinkings; a 
particularly nice shrinking is described in what follows. 

Lemma 4. Suppose X is a compact subset of E n  that is starlike with 
respect to xo E X ,  U is an open subset of E" containing X ,  6 > 0, and B is 
a round n-cell centered at  xo such that X C N(E;  6).  Then there exists a 
homeomorphism f of En onto itself satisfying 

(a) f 1 E n  - ( U n  N(B;  6)) = Id, 
(b) C Int By 
(c) f ( X )  is starlike with respect to xo and 
(d) PU Id) < 6.  
Proof. First choose a1 > 0 such that N ( X ;  al) C U n N(B;  a), set 

a2 = a1/2, and define (n - 1)-spheres Zj as 

Zj = (Z E E" I P(Z, X )  = aj) (j = 1,2). 

Let r represent the radius of the n-cell B. 
The homeomorphism f will send each ray emanating from xo onto itself, 

implying conclusion (c). On each such ray R three points hold special 
significance : the point q = R n Z1 , the point p = R n 22, and the point p' 
at distance r from xo @' = R n 13s). Certainlyp lies between xo and q on R ; 
however, where p' is to be found depends on circumstances like the length 
of X n R and the sizes of a1 and a2. 

Of course, f is required to send xo to itself. In addition, it is to act as the 
identity on q and on all other points of R n (E" - N ( X ;  al)). What f does 
t o p  breaks down into two cases: in casep' lies between xo andp,f@) = p' ;  
in case p = p' or p lies between xo and p', f(p) = p. Finally, f is defined to 
take the interval [ x o , ~ ]  in R linearly onto [XO,  f ( p ) J  and the interval [p, q] 
linearly onto [ f(p), q] .  (See the accompanying diagram.) 

Several features off are worth attention. In case f ( p )  # p ,  p( f ( p ) ,  p) < 6, 
becausep is trapped between f ( p )  = p' and the point at distance r + 6 from 
xo on R .  In the other case p( f(p), p) < 6 for trivial reasons. Thus, in either 
case the linearity properties o f f  lead to conclusion (d). Moreover, since 
X n R  c [XOYP), 

f ( X n R ) =  f ( X ) n R C [ x o , p ' ) = R n I n t B ,  

which implies conclusion (b). 
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The next argument supplies a fundamental technique, a shrinking of one 
element by means of a composition of finitely many small moves, with an 
interspersed monitoring of other displaced decomposition elements to 
prevent undue stretching. 

Lemma 5. Suppose G is a USC decomposition of En, go E G is a starlike set, 
and HG forms a null sequence (or the elements of G in some neighborhood 
of go form a nuN sequence). Then for each 6 > 0 there exists a homeo- 
morphism F of E n  to itsevsatisfying 

(a) FI E n  - N(g0; 6) = Id, 
(b) diamF(g0) < 6, and 
(c) for  g E G either diam F(g) < 6 or F(g) = g. 

Proof. Fix xo E go such that go is starlike with respect to X O ,  and find the 
least positive integer k for which go C N(x0; k6/3). 

The homeomorphismFwil1 be expressed as F = fk-I 0 -.. o f l ,  where theJ's 
are determined from Lemma 4 and where they produce, in stages, sets 
f ,  0 o f , ( X )  starlike with respect toxo and contained inN(xo; (k ,- j )  * 613). 
At the first stage one uses the nullity of HC to insist that f i  move no point 
outside an open set Ul obtained so near to go that any other g E G meeting 
U 1  has diameter less than 6/3 ; after& ..., f i  have been defined, one insists 
that f ,  move no point outside an open set Uj C Uj- 1 so near& I 0 0 f i (go)  
that, for any other g E G with f J - 1  0 0 f l ( g )  n Uj # 0, diamfj-1 0 

0 f l ( g )  < 6/3 .  In the application of Lemma 4, thefi's will move no point 
more than 6/3 .  Thus, for g E G (g # go) a n d j  E 12, 3 ,  ..., k - 11, either 

fi O * * -  o f , ( g )  = f,-1 a . * -  o f l ( g )  

or 
diamf, 0 -.. o f l ( g )  < 6. 
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In particular, the above holds for F = f k -  I 0 ... 0 f1 ,  and if at thejth stage, 
6/3 5 diamf, 0 0 f l ( g )  < 6, then F(g) = fi 0 0 f l (g>,  which implies 
conclusion (c). Finally, since 

F(g0) = f k - 1  O *.. O f i ( g 0 )  C N ( X O  ; 6/3),  

F shrinks go to sufficiently small size. 

A subset X of E" is said to be (ambiently) starlike-equivalent if there exists 
a homeomorphism B of E n  onto itself sending Xonto a starlike set. Once this 
terminology is at hand, the theorem should be transparent. 

Theorem 6. If G is a use decomposition of E" such that HG forms a null 
sequence of starlike-equivalent sets, then G is strongly shrinkable. 

Theorem 6 officially was proved by R. J. Bean [l], who attributed credit 
for much of the technique to R. H. Bing. It can be derived from Lemma 5 
just as Theorem 1 was derived from Lemma 2. 

Corollary 6A. Every use decomposition of En into points and a null 
sequence of flat cells is strongly shrinkable. 

The kind of argument around which Theorem 6 revolves, given here to 
prove Lemma 5 ,  plays a central role in many shrinking theorems, including 
R. D. Edwards's cell-like approximation theorem and M. H. Freedman's 
analysis of Casson 2-handles in 4-space. For that reason Theorem 6 probably 
represents the most significant result of this section. 

Whether Theorem 6 is valid when HC forms a countable collection (rather 
than a null sequence) of starlike-equivalent sets is unknown for n 2 4 ,  
although it is known for n = 3 (Denman-Starbird [l]); it is valid when HG 
is a countable collection of rectilinearly starlike sets. Demonstrating this fact 
is our next aim. The published proof, again due to Bing [2], is rather 
complicated; the one given below, which was described orally by him in 
response to a complaint about intricacies of his published argument, more 
clearly displays the rigidly geometric controls imposed on the shrinking 
process. Denman [l] presents a slightly different proof of this fact. 

Theorem 7. If G is a countable usc decomposition of E" into starlike sets, 
then G is strongly shrinkable. 

Globally, the proof is exactly like that of Theorem 7.6. For a given E > 0 
we enumerate the elements of H G ( > ~ / Z )  as gl , g 2 ,  ... and construct a 
sequence {hi] of homeomorphisms on E n  satisfying, first of all, conditions 
to ensure that each hi is some preassigned G-saturated open cover %-close 
to the identity and equals the identity off some preassigned open neigh- 
borhood W of NG, and second, 
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(1) diam h;(g;) < E ,  

(2)  diam h;(g) < diamg + Cj=, ( ~ / 2 " ~ )  for all g E G ,  
( 3 )  hi 1 Qi U 
(4) hi = hi-1 if diam h;-l(g;) < E ,  

U Qi-1 = hi-1 1 Qi u I . -  u Q;-1, and 

where Q;, as usual, denotes a G-saturated closed neighborhood of gj 

(j = 1,2, . . .) such that diam h; (a )  < E .  Ultimately, the point of the argument 
will be that the rule h = lim hi is actually a homeomorphism because locally 
it is just hk, for some large integer k. With such a rule, almost before one 
expects it, the clutch of this mechanism engages, terminating the motion. The 
role of starlikeness in all of this is to enable the construction of the shrinking 
homeomorphisms hi satisfying conditions (1)  and (2) simultaneously. 
Condition (2) prevents undue stretching of the surrounding elements. 

A controlled shrinking of any one decomposition element, which combines 
techniques from Theorem 1 and Theorem 6, is isolated in the next result. 

Lemma 8. Suppose G is a usc decomposition of E", go E G is a starlike set, 
and 6 is a positive number. Then there exist an integer K > 0 and positive 
numbers do,&, ...* C ~ K ,  with 

6/4 = 60 > 61 > '.* > 6 K ,  

such that to each g E G corresponds i E (0% 1, ..., K ]  for which 

g c N(g0; 6;-1) - N(g0, 6i+d 

(here interpret 
morphism f of E" onto itselfsatisfying 

as 00 and N(go; &+;) as 0) and there exists a homeo- 

(a) f 1 E" - N(g0; 61) = Id, 
(b) diamf(g0) < 6, and 
(c) diamf(X) < 6 + diamXforeachsetXc N(g0; 6i-1) - N(g0; 6;+1). 

Proof. Name a point xo E go for which go is starlike with respect to 
X O .  Choose K as the least integer for which go C N(x0; K -  6/4). Find 
61 E (0,6/4) such that any g E G meeting N(g0; 61) is contained in 
N(go; 60) and C1 N(g0 ; 61) C N(x0; K + 6/4). Then determine the numbers 6; 
( i  E (2, ..., K ] )  successively so that any g E G meeting N(g0; S;) is contained 
in N(g0; 6;-I). 

Let S; denote the frontier of N(g0; S;); on any ray R emanating from xo 
let si = R n Si (see Lemma 3 )  and let t; be the point of R at distance 
( K  - i + 1) * 6/4 from xo (i E (0, 1, . . . , K]) .  Define f I R as the identity on xo 
as well as on points of R beyond SO; 

s; if s; is between xo and ti I t; otherwise; 
f ( S i )  = 
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and so as to be linear on the intervals between S;+I and s; and also on 
the one between xo and SK. Because go C N(xo; K * 6/4), ClN(g0; 60) C 
N(xo; (K + 1) - 6/4), which implies that SO lies between xo and t o ;  by 
construction of 61, C1 N(g0; 61) C N(x0; K - 6/4), which implies that SI lies 
between xo and tl . As a result,  SO) = SO and ~ ( s I )  = SI . Furthermore, 

f(go n R )  c R n N(xo ; 6/2) .  

These observations indicate that f satisfies conclusions (a) and (b). 
To see why it satisfies conclusion (c) as well, let w; denote the radial projec- 

tion of E" onto C1 N(x0; (K - i + 1)6/4) sending all points of R beyond ti 
to t; (i E (0, 1, ..., K ] ) .  Geometric considerations reveal that wi does 
not increase distances between pairs of points, so that for any set X ,  
diam n ( X )  s diamX. Inparticular,ifXisacompactsubset ofN(g0; 6i-1) - 
N(g0; 6;+1), thenf(XJ C N(y/;(X); 612) (here i > 0), which yields 

diamf(X) < 6 + diam ty;(X) 5 6 + diamX. W 

Proof of Theorem 7 .  Step 1. If diam gi < E ,  set hl = Id. If not, apply 
Lemma 8 for the decomposition G, starlike set gl, and positive number 
6' < ~ / 8 ,  to obtain positive numbers 6b , 6: , . . . , &I) and a homeomorphism 
hl = f1 satisfying those conclusions. Afterwards, find a G-saturated closed 
neighborhood QI of gl such that diamhl(Q1) c E .  

If diam hl(g2) < E ,  set h2 = hl (and, implicitly, definefi = Id). 
If not, g2 n QI = 0, and there is some neighborhood Ui of gz in E" - Q1 
such that, for some index i E (0, 1, ..., K(l)), 

Step 2. 

ui c N(g1; 6;- 1) - N(g1; &+I).  

Pick a2 E (0, ~ 1 1 6 )  so small that N(gz; 6') C Ui and that, for any A c Ui 
having diameter less than d2, diam hl(A) < E .  Apply Lemma 8 again for the 
starlike set g2 and positive number 6* to obtain positive numbers a;, a:, ..., 
6&2) and a homeomorphismf2. Define hz as hlfi. Certainly diam hz(g2) < E .  

For any set X in N(g2; &I) - N(g2; #+I)  where j > 0, 

diamfZ(X) < S2 + diam X < d l 6  + diam X; 

since fi(x) c N(gl; 4- 1) - N(g1; &+ 11, 

diam h2(X) = diam hl(f2(X)) < ~ / 8  + diamf2(X) < ~ / 8  + &/16 + diam X .  

Of course, for X C E" - N(gz; a:), f2 1 X = Id, and thus hz I X = h l  I X ,  
which indicates that X is no more distorted after Step 2 than after Step 1. 
Name, as usual, a G-saturated closed neighborhood Q2 of g2 for which 
diam h2(Q~) < E .  
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Step 3.  If diam h2(g3) < E or if g3 n Ui = 0, this step proceeds like 
Step 2. If not, there is some neighborhood U4 of g3 in E n  - (Q1 u Q2) such 
that, for some index j E (0, 1, ..., K(2)) ,  

u4 c N(g2; S;-d - N(g2; S?+*). 

Pick d3 E (0, 
for any subset A of U4 having diameter < d3. Apply Lemma 8 again, for the 
set g3 and number S3, to obtain a homeomorphismf3 and define h3 as h2 f 3 .  

Now check that for any subset X of some N(g3,Si- I) - N(g3 ; & + I )  where 
k > 0, 

diamf3(X) < d3 + diamX < &D5 + diamX, 

so small that N(g3 ; d3) c Ui and that diam h4A) < 

and sincefdX) C N(g2, & I >  - N(g2; S;+I), 

diam h3(X) = diam h2f3(X) < &a3 + &n4 + diamf3(X) 

< e/23 + &D4 + &/Z5 + diam X ;  

on the other hand, for X C E" - N(g3; S:), f4X)  = X ,  so 

diam h3(X) = diam h2f3(X) = diam h2(X). 

Name Q3. 

The above process is continued, as with Steps 2 and 3,  but 
with more cases to consider. If diamh,(g,+l) < E, set h m + l  = h m .  If 
gm+l n Uh = 0, Step m + 1 proceeds exactly like Step m. If gm+l C Uh, 
one can repeat the constructions and analyses as above to obtain f m + ~  and 
h m + l  = hmfm+l, with size controls applying not simply to g E G but more 
broadly to subsets of the various sets N(g;; Sj~l-1) - N(gi; &;)+I), which 
makes possible analogous size controls under later homeomorphisms 

In most of the earlier work, in order to construct a sequence (hi)  of 
homeomorphisms successively shrinking more decomposition elements 
g; E G to small size, once we had obtained hi we turned to the usc decomposi- 
tion hi(G) and, by whatever means available, we compressed h;(g;+l) to 
produce h i + , .  In Theorem 8 that approach would not be so fruitful, because 
an arbitrary homeomorphism on E" is likely to destroy the starlikeness of 
decomposition elements. To circumvent the potential difficulty, we obtain 

from h; instead by constructing a homeomorphism fi+l affecting g;+i 
rather than hi(gi+l) and setting = h;fi+l. Each approach has its merits, 
and occasionally one functions smoothly when the other resists. 

We exploit radial shrinking techniques still another time in the final result 
of this section, originally established by T. M. Price [l] .  

Later steps. 

hrn+k.  
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Theorem 9. Suppose G is a countable usc decomposition of an n-manifold 
M such that, for each go E HG and each open set U 3 g o ,  there exists an 
n-cell B such that go c B C W and aB n Nc; = 0. Then G is strongly 
shrinkable. 

Proof. All that is required here is a verification that G satisfies the 
conditions of Theorem 7.5. With that in mind, fix go E HC and E > 0. 

The hypothesis provides an n-cell B in M with go C B C N(g0; E )  and 
aB n NG = 0. Let B be a homeomorphism of B onto the standard n-cell B". 
Choose 6 > 0 so that diam B-'(A) < E whenever A C B" has diameter less 
than 46, and let B(G) represent the decomposition of B" given by {B(g) 1 g E G 
and g C B ) .  

Determine an integer k > 0 such that l / k  c 6. Since Nqc) n dB" = 0, 
thereexists do E (0, 1)so small that, for anyg E B(G)intersectingN(aB"; do), 
its radial projection to aBR has diameter less than 26. Find a sequence of 
numbers 60 > 61 > 6 2  > > d k  > 0 such that every g E 8(G) intersecting 
N(aB"; 6i+l) is contained in N(aB"; Si). 

For any radius R of B", let s; denote the point of R at distance 6; from 
R n aB" and let t; denote the point of R at distance i lk  from the origin. 
Define a homeomorphism f of B" onto itself as the identity on the end- 
points of R, so as to send Si onto ti ,  and so as to be linear on the intervals 
in between. Now consider g' E B(G): if g' meets B" - N(aB"; do), then 
g' c B" - N(aB"; 6') and f(g') C N(origin; a), which has diameter less 
than 26; otherwise, as long as g' n aB" = 0, g' lies in some N(aB"; 6i-I) - 
N(aB"; 6i+l), and then f(g') is trapped in that sector of the cone over its own 
projection onto aB" between the spheres of radius (i - l ) / k  and of radius 
(i + l ) / k  centered at the origin, which implies that diam f(g') < 46, because 
the sector itself is that small. 

Finally, define h:  M -+ M as K ' f 9  on B and as the identity else- 
where. 

The following is a corollary to each of the theorems given in this section. 

Corollary 10. Every monotone usc decomposition G of E' or S ' ,  except 
G = { S ' ] ,  is strongly shrinkable. 

SOME UNSOLVED QUESTIONS 

1. If G is a USC decomposition of E" with points and countably many flat cells, is 
G shrinkable? [Yes, if n = 3 (Starbird-Woodruff [l], Everett [2]).] 

2. If G is a USC decomposition of E" into points and countably many starlike- 
equivalent sets, is G shrinkable? [Yes, if n = 3 (Denman-Starbird [I]). T. L. Lay 
[ l ]  has obtained a partial result, which appears as Exercise 4.1 
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3. Suppose G is a USC decomposition of E n  such that for each g E HG and each open 
neighborhood W, of g there exists a neighborhood U, with g C U, C W, , where 
the frontier of U, is an ( n  - 1)-sphere missing NG. Is G shrinkable? [Yes, if n = 3 
(Woodruff [ l]).] 

4. Is there a USC decomposition of E" into points and straight line segments that is 
not shrinkable? [Yes, if n = 3 (Armentrout [4]). See also Bing [9] and Eaton (31.1 

EXERCISES 

1. If G is a USC decomposition of an n-manifold M such that HG forms a countable 
collection of essentially flat arcs, then G is strongly shrinkable. [An arc A in an 
n-manifold is said to  be essentially flat if there exist a neighborhood U of A and 
a homeomorphism w of U onto E n  such that w(A) is flat.] 

2. Suppose G is a USC decomposition of E" such that HG forms a null sequence and, 
foreachgo E H~andeachopenset Ucontaininggo , thereexistsastarlike-equivalent 
set XO with go C XO C U and XO n NG = go. Then G is strongly shrinkable. 

3. Suppose G is a usc decomposition of E" for which HG has at most two elements. 
Then E"/G can be embedded in En". 

4. Suppose G is a countable monotone usc decomposition of E" such that for each 
g E HG there exists a homeomorphism 0, of E" onto itself sending g into the cone 
from the origin over a compact 0-dimensional subset of S"-'. Then G is strongly 
shrinkable. 

5. If G is a USC decomposition of E n  such that HG forms a null sequence of collapsible 
(tame) polyhedral subsets, then G is strongly shrinkable. 

A monotone usc decomposition G of an n-manifold M is said to be constrained 
by n-cells if for each E > 0 and each open set W 3 there exist pairwise 
disjoint n-cells BI , .. . , Bk in M such that N G ( ~ ~ )  C u, Bi C Wand 8Bi n NG = 0 

6 .  If C is a monotone USC decomposition of an n-manifold such that (1) G is con- 
strained by n-cells and (2) ~ ( N G )  is 0-dimensional, then G is strongly shrinkable. 

( i  = 1, ..., k). 

9. SOME CELLULAR DECOMPOSITIONS OF E 3  

The classical concept of a defining sequence provides a prefabricated form 
for building decompositions of manifolds, A specific instance where this 
already has been put to work occurs in the exercises at the end of Section 6 .  
Generally, a defining sequence for a decomposition of an n-manifold M is 
a sequence S = (Ci 1 i = 1,2 ,  . . .I,  where each Ci is a compact n-manifold 
with boundary and Int Ci 3 Cj+l; the decomposition G associated with S 
consists of the components of fl Ci and the singletons from M - n Ci. 

As a more inclusive way of treating noncompact manifolds M it is 
permissible, in place of requiring that each Ci in a defining sequence be 
compact, to demand instead that each of its components be compact. We will 
not strive to be fully comprehensive, however, until Section 37, where we will 
lay out an all-inclusive notion of defining sequence. 
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Proposition 1. The decomposition G associated with any definingsequence 
S of an n-manifold is use ; moreover, C1 n(Nc) is compact and O-dimensional. 

Proof. According to Corollary 4.2A and Proposition 2.5, G is usc. By 
Proposition 4.1, C1 ~ ( N G )  is totally disconnected (and compact). 

Often the elementary result below is perfectly tailored for identifying a 
cellular decomposition. 

Proposition 2. Suppose S = (Cl , CZ, ...I is a defining sequence in an 
n-manifold such that for each index i and each component K of Ci+ 1 there 
exists an n-cell BK with 

K C Int BK C BK C Ci. 

Then the decomposition G associated with S is celluIar. 

The aims now are to delineate some historically important cellular (in one 
case, merely cell-like) decompositions of E 3 ,  all of which crop up from 
defining sequences, and then to examine their properties. 

A general remark about the forthcoming descriptive procedure is in order 
at the outset. The examples will be specified largely by a single figure 
depicting the initial (first two) stages of a defining sequence. The way to 
“see” later stages is to replicate the pictured pattern. Making such replication 
possible is the fact that in every example the largest object, the first stage C1 
of the defining sequence, is a compact 3-manifold with boundary T and 
each of the smaller objects T j ,  a component of the second stage CZ, is 
homeomorphic to T. The third stage C3 can be produced by choosing a 
homeomorphism fj of T onto TJ and setting C3 equal to the union of all the 
various sets fj(C2). Successive stages can be reproduced in exactly the same 
fashion. As a result, like the old Quaker Oats box with the picture of the 
elderly Quaker holding another box, on which is a picture of the elderly 
Quaker holding still another box, etc., the initial structure is reproduced 
repeatedly, so that the part of Ci+ inside a given component of Ci looks just 
like CZ inside CI . Unless additional requirements are explicitly imposed, the 
choice of homeomorphismsfj arranging Ci+ 1 inside C, will not be significant. 

Example 1. The decomposition GI has a defining sequence resulting from 
infinite iteration of the structures illustrated in Fig. 9-1. 

It should be clear from Fig. 9-1 and Proposition 2 that GI is a cellular 
decomposition. Even though defined by solid tori rather than 3-cells, GI is 
shrinkable. As we shall learn, n ( n  Ci) is a Cantor set strangely embedded in 
the decomposition space, since its complement fails to be simply connected. 
If (Ci) is constructed with care, n 1 P can be made 1-1. With such a con- 
struction, R. H. Bing [l]  established the shrinkability of GI .  Trading on 
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FIG. 9-1 

symmetries of (Ci] about the plane P ,  he devised thereby an involution of 
the decomposition space, which coincides with E 3 ,  interchanging its left and 
right halves by reflecting through the wild plane n(P); the involution is not 
equivalent to any standard involution, because the fixed point set is wild. 

Example 2. The decomposition G2 has a defining sequence resulting from 
infinite iteration of the structures illustrated in Fig. 9-2. 

As before, GZ is cellular. We shall show in Proposition 7 that it is not 
shrinkable. 

Example 3. The decomposition G3 is suggested in the usual way by the 
structures illustrated in Fig. 9-3. 

A more complicated version of Example 2, G3 is another cellular, 
nonshrinkable decomposition. The same would be true if Fig. 9-3 were 
modified to position an arbitrary number k > 4 of solid tori in similar 
linked fashion inside T. 
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FIG. 9-2 

FIG. 9-3 

Example 4. The decomposition G4 has a defining sequence suggested 
by Fig. 9-4 and gives rise to  the famous dogbone decomposition space of 
Bing [3]. 
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FIG. 9-4 

Like the two previous examples, G4 is nonshrinkable, but the argument for 
this case is formidable and we will not retrace it. 

The defining sequence can be aligned so the nondegenerate elements are 
all flat arcs. That punctuates a fine distinction with Theorem 8.1. As an even 
more significant attribute, E3/G4 is a manifold factor, the first ever to be 
discovered. Bing [5 ]  proved in 1959 that (E3/G4) x E' is homeomorphic to 
E4. In particular, his work on this, on Example 1, and on countable 
decompositions of E 3  supplied the original evidence exposing the usefulness 
of the shrinkability criterion. 

Example 5. The decomposition G5 has a defining sequence determined by 
the entangled sets pictured in Fig. 9-5. 

With careful regulation Gs can be constructed so all its nondegenerate 
elements are flat arcs. Consequently, it represents another cellular, non- 
shrinkable dogbone decomposition, comparable to Example 4. A close 
relative of an example discovered by W. T. Eaton [l], this particular 
manifestation was found by D. G .  Wright [2]. It is cited here because G5, 
rather than G4, functions as the model for higher-dimensional analogues- 
cellular, nonshrinkable decompositions of E"-and also, a matter directly 
pertinent to this section, because the forthcoming examination of linking 
patterns in E 3  lends itself to a more efficient analysis of G5 than of G4. Part 
of the reason is that the solid tori forming the upper and lower ends of T 
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in Fig. 9-5 contain several subsets from 

C z = T , u T , u f i u T 4  

reminiscent of structures depicted in Fig. 9-1. An important by-product of 
the shrinkable decomposition GI is the wild Cantor set it engenders. Here Gs 
ramifies that wildness at  both the upper and lower ends of T and, we shall 
see, joins the pieces together in a manner designed specifically to preclude 
shrinkability. 

Example 6. The decomposition G6 has a defining sequence suggested by 
Fig. 9-6. 

To incorporate the more remarkable aspects of G6, the most delicate 
among these examples, one must be exceptionally meticulous about the 
iterative construction of its defining sequence. Two features of the initial 
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T 

FIG. 9-6 

structures deserve notice. First, each T has a core simple closed curve that 
lies in one of two 2-dimensional planes, either a horizontal plane PH or a 
vertical one PV , and 7;: can be regarded as a slight thickening of this core. 
Second, Zi appears nearly as large as T itself while Tz can be made as small 
as desired; specify it with diameter less than $. 

Observe that T also can be regarded as a slight thickening of a core circle 
in PH . Here then is a recursive description of an optimal defining sequence 
ICi) for G6: in forming ci from Ci-1, presume each component T' of Ci-1 
has a core curve either in PH or in Pv;  determine solid tori 7i' and Tz' in T ' ,  
with the pair embedded there as 5 and Tz are embedded in T but subject 
to two additional conditions-first, that F and Ti both have a core simple 
closed curve in PH or in P v ,  one in each plane, with each 22 included setwise 
in the 2-I-neighborhood of its own core (k = 1,2), and second, that Ti has 
diameter less than 2- i .  

With such a defining sequence (Ci), the associated decomposition G6 has 
only a null sequence of nondegenerate elements, by the second of the two 
conditions above. Components of n Ci can be uniquely specified by infinite 
sequences (ej I j = 2,3, ...), where ej E {1,2]. The correspondence comes 
about naturally, by associating with each initial segment { e ~ ,  ..., ei) of the 
sequence a component A(e2, ..- ei) of Ci, defined by the rules (1) that 
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and generally ( 2 )  that A(e2 ... e; 1) is the large component of Ci+ 1 inA(e2 ei) 
while A(e2 ei2) is the small one; a component X of n C; is paired with the 
sequence (e;) for which X = nA(e2 e;). This makes it easy to enumerate 
the big elements, since the only elements of G6 having diameter as large as 
2-" (n > I )  are among the finitely many corresponding to sequences (e;) 
where e; is 1 for all i L n. 

Furthermore, each nondegenerate element of G6 is contained in one of two 
planes, either PH or P v .  This follows quickly from the first fact governing 
the defining sequence. 

By construction and Proposition 2 ,  G6 is cellular. It also is nonshrinkable, 
a fact to be explored in Proposition 10. The rigorous accounting promises 
to  be more intricate than that for Example 7.1,  but the philosophical 
explanation is similar : any homeomorphism of E3 submitting to mild cover 
controls and shrinking the large elements of G6 necessarily must expand some 
of the small ones. 

Example 6 was developed, as one by now must expect, by Bing [8]. 
Interesting not merely by virtue of the null sequence phenomenon, it arose 
as the first nonshrinkable cellular decomposition involving just countably 
many nondegenerate elements. Its additional properties permit it to stand as 
the minimal nonshrinkable example. 

Example 7. The decomposition G7 results by iterating the structures 
pictured in Fig. 9-7. 

T 

FIG. 9-7 
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This differs radically from the previous examples since it has only a single 
nondegenerate element, a noncellular set, causing G7 to be nonshrinkable for 
trivial reasons. When the iterative nest is constructed efficiently to  force 
(among other things) 1-dimensionality of the intersection Wh, then Wh is 
called the Whitehead continuum, after J. H. C. Whitehead [l] .  

What makes this unusual? After all, if C is a simple closed curve in E 3 ,  
Gc cannot be shrinkable, nor can it yield a 3-manifold (Exercise 6.7). 
Example 7 plays a foreshadowing role, hinting that ultimately the paramount 
concern about decompositions might not be cellularity. In addition, it is 
mentioned here because (1) like Example 5, but for simpler reasons, it is a 
nonmanifold that is a manifold factor (indeed, all of the decomposition 
spaces described in this section are factors of E4), (2) the noncellularity of 
Wh follows from properties employed to expose the nonshrinkability of the 
other examples given in this section, and (3) these Whitehead continua play 
a major part in M. H. Freedman’s [ l ]  notable 4-manifold decomposition 
work, culminating in his result that Casson 2-handles are real 2-handles and, 
consequently, in the solution of the 4-dimensional Poincart conjecture. 

Next, some explanations of the properties possessed by these examples. 
Briefly, about an exception among them, the shrinkable decomposition GI : 
we intend to present a pivotal clue about its shrinkability but will leave the 
details as an instructive exercise in manipulative techniques. Looking deep 
enough into the defining sequence (C;) for G I ,  one should compress the 
various components T of some C; close to a core curve and then should dice 
up each such T by a finite collection of planes p j ,  as shown in Fig. 9-8, 
spaced close enough together that the part of T between any two planes P J -  1 

and & + I  has small size. One achieves the desired shrinking by rearranging 
those elements of GI in T so that none meets more than one of the planes 
p j .  To be successful, according to Bing, one must avoid the trap of being too 
greedy by attempting to accomplish too much at once; instead, the tactics 
are to diligently reduce, a little bit at a time, the maximal number of planes 
PJ intersecting any one component of the successive stages C i + m  in T. The crux 
of this suggestion is the rearrangement pictured in Fig. 9-8. 

The remainder of this section is devoted primarily to an investigation of 
nonshrinkability in the other examples, excluding Example 4. To that end we 
shall use (without proof) the following elementary transversality result. When 
both manifolds present are PL, the conclusion can be achieved most easily by 
adjusting the given map f to one in general position with respect to Z. 

Proposition 3 .  Suppose M is an n-manifold, C is an (n  - 1)-manifold 
embedded in M as a closed and bicollared subset, f: B2 -+ M is a map, U is 
an open subset of M containing Z, and E > 0. Then there exists a map 
F B2 + M satisfying 
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FIG. 9-8 

F [  BZ - f - ' ( U )  = f [ B2 - f - ' ( U ) ,  
P(F9.f) c E ,  
F-'(E) is a 1-manifold in B z  with aF-'(C) = F-'(C) n aBZ, and 
for any point p E F-'(C),  F(B2) pierces E at F(p)  [that is, for each 
neighborhood W of p in B2, F( W )  touches both sides of the bicollar 
on C near F(p)]. 

Given a map F B2 -+ M satisfying (c) and ( d ) ,  we say that F(B*) is 
transverse to E. 

Consider a defining sequence (Ci] for a usc decomposition G of an 
n-manifold such that each aCi is bicollared, a property holding in Examples 
1-7 here. Consider also a map f :  B2 -+ M with CZ n f (aB2)  = 0. The 
foremost benefit of Proposition 3 is to supply a map F: B2 + M close tof, 
agreeing with f o n  aB2, with F-'(aCi) being a collection of pairwise disjoint 
simple closed curves in Int B2,  for all i > 1. Of course, the planar Schonflies 
theorem ensures that every component of F-'(aCi) bounds a 2-cell in Int BZ. 

To fully comprehend the nonshrinkability of these decompositions, in 
effect one must come to terms with the wildness of Antoine's necklace, a 
Cantor set with an unusual embedding in E 3  (Antoine [l]). It is generated 
by an infinite iteration of the objects pictured in Fig. 9-9, the construction 
of which can be controlled so that n Ci is totally disconnected, in which event 
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T 

FIG. 9-9 

A = n Ci is Antoine’s necklace. Although the construction gives a defining 
sequence somewhat like that of Example 1, the associated decomposition, 
being trivial, is not of interest. 

For some geometric tricks to study A ,  refer first to  Fig. 9-10. 

1. E~ - L retracts to D - 1x1. 
Retract E 3  - L vertically into the plane of D and then radially to D - (XI. 

Compactify E 3  and then decompactify again by removing another point, 
not on L .  This transforms the line L into the circle J of Fig. 9-1 1. Thus we 
have: 

2. E~ - J retracts to  D - 1x1. 

As a simple consequence, the inclusion-induced homomorphism 
nl(D - ( x ) )  -+ n1(E3 - J) is an injection. Split E 3  by means of a vertical 
plane separating the curves J1 and J 2 ,  shown in Fig. 9-12, and apply the 
Seifert-van Kampen theorem to derive : 

3. n l ( ~  - [ x , y ] )  -, n l ( ~ ~  - ( J ~  u ~ 2 ) )  is an injection. 

Lemma 4. For the structures pictured in Fig. 9-9, any loop in E 3  - T that 
contracts in E 3  - U X is null homotopic in E 3  - Int T. 

Let Ji denote a core of x; explicitly, the pair (Z , Ji) is homeo- 
morphic to the standard pair (S1 x B2, S’ x (0)). Install planar disks DZ and 
0 4 ,  bounded by 52 and J4 ,  respectively, so that each of these disks D; meets 
the two adjacent circles as in Fig. 9-12. 

The set J1 u DZ u J3 u D4 contains a simple closed curve C which is a core 
of T. Hence, T - Cretracts to ar and the smaller T - (J1 U D2 U J3 U 0 4 )  

retracts to 8T as well. 

Proof. 
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FIG. 9- I0 

FIG. 9-II 

FIG. 9-12 
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Let L denote a loop in E 3  - T that contracts in E 3  - UJi. It suffices to 
prove L contracts in E’ - (51 u D2 u J3 u 04). Name a map f of B2 into 
E 3  - u Ji with f 1 aB2 defining L. 

By Proposition 3,fcan be approximated by a new map (still called f )  with 
the properties above such that, in addition, f -‘(Dz u 0 4 )  is a I-manifold K. 
Let H denote the component of B2 - K containing aBZ. Each component S 
of aH, other than aB2, is mapped by f to either DZ - UJi or 0 4  - UJ;. 
Trick 3 ensures that f can be redefined on the disk BS in B2 bounded by S 
to send it into the part of D2 or D4 missing U Ji . The new map f can be further 
adjusted, near each Bs, to send the image to the appropriate side of a disk 
Di , causingf(B2) to  avoid 4 and 0 4  completely, thereby demonstrating that 
L contracts in the complement of ( J I  u 0 2  u J3 u 0 4 ) .  

As a tool for sorting out nonshrinkability properties as well as detecting 
the failure of simple connectedness, we shall exploit 2-planes and 2-cells 
embedded or, more generally, mapped in a given n-manifold. The ensuing 
terminology helps identify certain decisive intersections. Let Q denote an n- 
manifold with boundary and H a 2-manifold with boundary. A map 
f: H -+ Q for whichf(aH) C aQ is said to be I-inessential (an abbreviation 
of interior-inessential) if there exists a mapf’: H --t aQ satisfying f I aH = 
f 1 aH; when no such map f exists, f is said to be I-essential. 

What are the I-essential maps of, say, B2 to Q? Thenf(aB2) is an essential 
loop in aQ but an inessential loop in Q. In particular, in case Q is a solid torus 
T, this indicates f I dB2 is homotopic in aT to some multiple of a meridian. 

A technical variation of the notion of I-essential map is even more useful 
in the situations to be studied ahead. Let H denote a compact 2-manifold in 
a 2-cell B .  A mapfof H to an n-manifold Q with f ( a H )  C aQ is said to be 
virtually I-essential iff extends to an I-essential map F :  BH --t Q satisfying 
F(BH - H )  c aQ, where BH denotes the unique 2-cell in B containing H for 
which aBH c aH. The value of this variation becomes apparent when a 
covering map p: Q’ -+ Q is at hand, for, due to the simple connectivity of 
B H ,  f then admits a lift f‘: H --* Q’ (with pf ’ = f). 

Remark. A map f: H --t Q such that f ( a H )  c aQ is virtually I-essential if 
and only iff sends the outermost component of aH to a nontrivial loop in 
aQ while sending all other components of aH to trivial curves there. 

Proposition 5.  E 3  - A fails to be simply connected. 

Proof. Given a map f of aB2 to a homotopically nontrivial loop in 
E 3  - T, we shall show that f does not extend to a map f of B2 into E3 - A .  
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Suppose the contrary. Use Proposition 3 to alter f so that f -'(U Z) is a 
compact 2-manifold K. By Lemma 4 K is nonvoid. It must contain some 
component Hon which f 1 His I-essential, for otherwise f could be redefined 
on K so that f ( B )  n (U Ji) = 0, which would contradict Lemma 4. Among 
all such components H ,  select an innermost one H' (H' is contained in a 
2-cell in B2 missing the other components on which f is I-essential). 

Now we claim that f [ H' is virtually I-essential. There are two types of 
boundary components in H' : the special outermost boundary component S' ,  
which coincides with the boundary of the minimal 2-cell B H ~  containing H',  
and the others, individually denoted as S, which are characterized by the 
property of bounding 2-cells D in BZ whose interiors meet no component of 
K on whichfis I-essential. As argued in the preceding paragraph, f 10 can 
be modified to satisfy f(1nt D) n (U Ji) = 0. Assuming TI to be the second 
stage torus containing f ( S ) ,  f ( S )  is some combination of meridian and 
longitude on dT, . Nontrivial multiples of the meridian, plus any multiple of 
the longitude, link the core of Z in E 3 ,  and nontrivial multiples of the 
longitude plus meridians link the core of T2 , but f ( S )  links neither, since f ( 0 )  
provides a contraction of f ( S )  in their complement. Accordingly, f ( S )  must 
be homotopically trivial on dT1. With this information we see that f ( S ' )  must 
be nontrivial there, for otherwise f I H would not be I-essential. Conse- 
quently, f 1 H is virtually I-essential. 

Since it misses A , f ( H )  also misses some stage ck of the defining sequence 
for A .  (Here equate C1 with T and CZ with U i7 .) The argument given above 
translates, with little change, to one showing inductively for each j  > 2 the 
existence of a component Hj in f -'(Cj) [after suitable adjustments to f ,  
maintaining the property that f ( H )  misses c k ]  on which f I Hj is virtually 
I-essential. This leads to a contradiction whenj  = k,  and, therefore, no such 
contraction of f ( d B 2 )  in E3 can exist. 

Before scrutinizing the examples, we pause to state more of the termi- 
nology from embedding theory. A Cantor set X embedded in E n  is said to 
be tame if there exists a homeomorphism 8 of En to itself such that 8(X)  lies 
in a straight line segment; if X is not tame, it is said to be wild. 

Corollary 5A. Antoine's necklace is wild. 

connected complement. 

Lemma 6 .  Let H be a compact 2-manifold with boundary in a 2-cell B ,  and 
f a  virtually I-essential map of H into the solid torus T o f  Fig. 9.9. Then f ( H )  
intersects U T .  Moreover, on some component o f f - ' ( U  T) ,  f is virtually 
I-essen tial. 

It should be clear that every tame Cantor set in E", n 2 3,  has simply 

The proof of Proposition 5 yields the following: 
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Proposition 7. 

Let B1 and B2 be two disjoint, meridional disks in the solid torus 
T of Fig. 9-2 (that is, each Bj is equivalent in T = S' x B2 to a 2-cell of the 
form ( p )  x B2) .  Assume to the contrary that G2 is strongly shrinkable. Then 
there exists a homeomorphism of E 3  to  itself, fixed outside T, shrinking the 
elements of G2 to  such small size that, for some stage k ,  no component of 
Ck meets both B1 and B2. Its inverse h satisfies : 

(*) for any component P of ck, P does not intersect both h(B1) and h(B2). 

Using Proposition 3 we find a map f on BI u BZ near h such that for each 
component Q o f  Cj, 0 < j < k ,  f - ' ( Q )  is a 2-manifold with boundary. 

Remark. The constructions required for demonstrating the failure of 
shrinkability are only slightly more elaborate than the ones given about 
strong shrinkability. In order to  prove directly that G2 is nonshrinkable, one 
should enlarge the 2-cells B 1 ,  B2 to disjoint 2-cells Bi , Bi with 

The decomposition G2 of Example 2 is nonshrinkable. 

Proof. 

Bj C Int Bj' and Bj' n T = Bj. 

Exercising standard controls, one can obtain a homeomorphism h,  satisfying 
(*)as above, such that each h(dB,!) c E 3  - T, where it is not null homotopic. 
Applying earlier arguments, one can find a map f defined on Bi u Bi such 
that f -*(C;) is a 2-manifold with boundary (1 4 i 5 k )  and ( f  I Bj)- ' (T)  
contains a component Pj' on which f :  Pj' + T is virtually I-essential. This 
ensures the correct sort of intersection with the first stage, which auto- 
matically occurred in the strongly shrinkable situation. Now one can engage 
the remainder of the forthcoming proof, with only minor changes. 

Lemma 8. Let H; denote a compact 2-manifold in Bi such that f: Hi + T 
is a virtually I-essential map (i = 1,2). Then there exists j E {1,2,  31 for  
which H I  and H2 contain (nonempty) components M I  and M2, respectively, 
of f - ' ( ? j ) ,  such that f: Mi + is virtually I-essential. 

One key here is the observation that any two of the second stage 
tori 7; in Fig. 9-2 are embedded in T exactly like the two second stage tori 
found in Fig. 9-1. In the standard 2-1 coverp: T' -, Tof T, these two second 
stage tori have preimages p - ' ( T  u T2) lying in T' just like the first stage 
picture given to define Antoine's necklace in Fig. 9-9. The other key is that 
f 1 H I  U H2 lifts to F: HI u H2 --t T' because, being virtually I-essential, 
f 1 Hi can be extended to  map f ' of a 2-cell Di t o  T. According to  Lemma 6 ,  
F(HI)  and F(H2) each hit p - ' ( T  u Tz) in virtually I-essential fashion. Thus, 
either 7i or Tz  is hit the same way by f (HI) ,  and one or the other is also hit 
by f(H2).  The same holds true of the other two pairs of second stage tori 
given in Fig. 9-2. Lemma 8 follows by the pigeonhole principle. 

Proof. 

W 
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The contradiction that will establish Proposition 7 should be obvious now. 
One of the second stage tori, say T I ,  has nontrivial intersection with both 
f ( B 1 )  and ~(Bz), where the nontriviality is measured in a form allowing 
repeated application of Lemma 8. As a result, some component of the third 
stage in TI has similar nontrivial intersection with both singular disks, and 
so on through successive stages. The impossibility of this occurring is fully 
transparent at the kth stage. 

A duplicate analysis can be employed to verify the nonshrinkability of 
Example 3. As an alternative, one could determine a closed subset C of the 
decomposition space E3/G3 such that the decomposition G3(C) induced over 
C coincides with Gz; if G3 were shrinkable, homeomorphisms shrinking G3 
could be modified somewhat to do the same for G4C).  

Turning next to Example 7, we already have employed all the techniques 
needed for showing each meridional disk B in Tintersects the nondegenerate 
element of G7. The proof of the following is left as a review exercise. 

Proposition 9. 

Proposition 10. 

Proof. Let B1 and B2 denote disjoint, meridional disks in the solid torus 
T of Fig. 9-6. As in the proof of Proposition 7 ,  suppose the contrary and 
obtain a homeomorphism h of E3 to itself, fixed outside T, such that no 
component P of some stage C k  of the defining sequence for G6 meets both 
h(B1) and h(B2). We shall consider only the technically simple case in which 
h(B1) and h(&) are transverse to T, u Tz (h can be adjusted to a PL homeo- 
morphism in general position to ensure this). 

Lemma 11. 
components H I  and H z ,  respectively, of h-'(Tj) for  which h: Hi + 

virtually I-essential (i = 1,2). 

Let p :  T' + T denote the standard 2-1 covering, and let Ti and 
E' denote the lifts of TI and Tz to T' shown in Fig. 9-13 (the other pair of 
such lifts to T' has no role to play in Lemma 11). These two are embedded 
in T' just as the two second stage tori pictured in Fig. 9-1 sit in the torus T 
there. 

Assume for the moment that h(B1) misses Tz . Name the two lifts F and 
F' of h 1 B1 to T'. By the first part of the proof of Lemma 8, F(BI) has a 
virtually I-essential intersection with Z or 72, and it must be with T i .  On 
the other hand, only one of the components W of 

The decomposition G7 of Example 7 is noncellular. 

The decomposition G6 of Example 6 is nonshrinkable. 

The crux of the argument is given in the following lemma. 

There exists j E [1 ,2 )  such that B1 and BZ contain nonempty 
is 

Proof. 

T' - (Wi) U F'(B1)) 
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FIG. 9-I3 

contains Tz' , and only one of the two lifts of h I B2 to T' goes into W ;  the 
other lift must have a virtually I-essential intersection with Z , since it has 
none with Z'. Consequently, both h(B1) and h(B2) have the same type of 
intersection with 5. 

In any event, h(B1) has some virtually I-essential intersection with T, or 
T2 , say with G , and h(B2) has the same with the other. To draw closer to 
the situation where h(B1) misses Tz, we do disk trading between h(B;) and 
a(?i u Tz). Whenever J i s  a component of h-'(aZ u aT2) in Bi such that h(J)  
bounds a disk in aZ u aTz, we redefine h on the disk DJ in Bi bounded by 
J t o  send it (homeomorphically) onto a disk in aZ and then adjust slightly, 
using the collar structure on the boundary to  push the image off that Z. By 
continually working with curves J whose images bound innermost disks in 
a5 u aTz [i.e., disks EJ there whose interiors intersect neither h(B1) nor 
h(B2)], we modify h,  without introducing any singularities, so that no 
component of h(Bi) n a7j bounds a 2-cell in a l j .  

Because there exists a virtually I-essential component of intersection 
between h(B2) and Tz, the intersection contains a meridional disk. If after 
disk trading h(B1) still meets aTz , there exists an  innermost component K in 
B1 of h-'(dTz), and h(K) bounds a meridional disk in Tz, since it necessarily 
is parallel in a T t o  each of the components of h(B2) n dE. If DK denotes the 
disk in B1 bounded by K ,  ~ ( D K )  must be contained in Tz , for otherwise ~ ( D K )  
would give a null homotopy of h(K) in E3-Int Z, which is ruled out by 
trick 2. This implies h :  DK -+ Tz is virtually I-essential and proves that Tz 
satisfies the desired conclusion. 
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Rephrasing Lemma 11 to expedite iteration, one can complete the proof 
of Proposition 10 by imitating the way Lemma 8 was used to prove 
Proposition 7. 

Finally, we study Example 5 .  At this point detecting its nonshrinkability 
is fairly simple-the example is far less delicate than Example 6 .  The 
structures comprising the defining sequence, cubes with two handles, 
differ from the less complicated solid tori employed in the other examples. 
Nonetheless, ignoring the stems joining the stuff in the upper part to the 
stuff in the lower part, we see ramified, or duplicated, versions of 
the more familiar, shrinkable structures pictured in Fig. 9-1. The extra 
ingredient in this example, and the source of its nonshrinkability, is the 
connection between nondegeneracy in the upper and lower parts given by 
these stems. We begin the analysis by exploring that connection in an 
abstract setting. 

Prescribe a Cantor set K as the countable product of copies of the two- 
point space (0, 1 I T  Think of K as arising from a defining sequence (GI, so 
that its points are naturally and uniquely expressed as n D ( i l ,  i2, ..., i k ) ,  

where ik E (0, 1) and, in addition, for all k 

D(i1, . . ., ik) is a component of c k  

and 

D(i1, ..., i k ,  i k + l )  c D(i1, ..., ik). 

Say that a (nonempty) compact subset A of K is admissible if, whenever A 
intersects D(i l ,  . . . , i k )  and k is odd, then A intersects both D(il ,  . . ., ik, 0) and 
D(i,, ..., i k ,  1). 

Name the switching homeomorphism s of the space 2 = (0, 1) x (0, 1) to 
itself sending (x, y )  to ( y ,  x), and determine a mixing homeomorphism 
S: K -+ K using s as the action on each copy of Z = Zi in the representation 
K = n i Z i .  

Lemma 12. Forevery two admissiblesubsets A and A’  of K ,  S(A) intersects 
A ‘ .  

Proof. Being nonempty, A’  meets either D(0) or D(1), say D(1). By 
definition of admissibility, A’ must meet both D(1,O) and D(1, 1). Similarly, 
A intersects both D(i1, 0) and D(i l ,  1). The definition of S ensures that S(A) 
and A’  intersect the same component D(1, i l )  of C2. 

This represents the inductive step of the argument eventually showing both 
S(A) and A’  intersect a common component of C2k , from which Lemma 12 
follows. rn 
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FIG. 9- I 4  

Displayed in Fig. 9-14 are the first three stages of a defining sequence, 
regarded as stages 0, 1, and 2 to correspond with the abstract setup given 
prior to the statement of Lemma 12. With such structures a single application 
of the typical iteration procedure to the kth stage produce stages k + 1 and 
k + 2. Assuming the resulting defining sequence generates a Cantor set 
n c k ,  label the components of c k  as D(i1, ..., i k ) ,  where i k  E f0,1) and 

D(i1, ..., i k ,  i k + l )  C D(i1, ..., i k ) ,  

and say that a nonempty compact subset A o f  n c k  is admissible if it has the 
intersection property previously specified. 

Lemma 13. Suppose His a compact 2-manifold in a 2-cell B and f :  H -+ T 
is a virtually I-essential map. Then f ( H )  contains an admissible subset of 

Proof. Invoke Proposition 3 to approximate f ,  fixing dHandf- '(n c k ) ,  

so that each component off - l ( C k )  is a 2-manifold. Let R k  denote the union 
of all components o f f  - l ( C k )  on which f is virtually I-essential. According 
to the rephrased Lemma 11 (see also Exercise 3), R I  is nonvoid. The con- 
centricity of elements at the next stage guarantees that every component H I  
of R1 contains components H2 and Hj from R2 such that 

f ( H 2 )  C D ( h ,  0)  and f ( H i )  c D(i1, 1). 

The preceding argument serves as the inductive step establishing that each 
component of R k  contains a component O f  R k + l  and, whenever k is odd, that 
each component H k  of R k  contains at least two components of R k + I ,  

one mapped to each of the two components of Ck+l interior to the part of 
c k  touching f ( w k ) .  Consequently, f(n&) is an admissible subset of 
rick. 

rick- 

Now for Example 5 .  
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Proposition 14. The decomposition G5 of Example 5 is nonshrinkable. 

Proof. Suppose the contrary and obtain a homeomorphism h of E 3  to 
itself, fixed outside the double torus T of Fig. 9-5, such that no element of 
G5 intersects each of two meridional disks B1 and B2, spanning the upper and 
lower toroidal parts of T. 

Each of the components of the stages c k  in the defining sequence for Gs 
is a double torus consisting of upper and lower parts, with a stem connecting 
the two. The set of all upper parts (lower parts) gives a defining sequence 
quite like the one in Fig. 9-14; interpolating extra stages whose components 
in any piece of c k  consist of two solid tori, each incorporating a pair of the 
parallel, ramifying objects from c k + l ,  makes the correspondence with 
Fig. 9-14 exact. Moreover, if the upper and lower parts are regarded as two 
copies of the same defining sequence, then the connection between com- 
ponents provided by the stems is precisely that specified by the mixing 
homeomorphism S of Lemma 12. 

We plac to adjust h I B1 u B2 to  a mapftransverse to certain parts of the 
defining sequence structures. The adjustment can easily be limited so no 
element of G5 intersects both f(B1) and f(B2). Subject to that stipulation, 
modify h 1 B1 to obtain f I BI transverse to just the upper parts. Nothing 
confinesf(B1) to the upper part; like h(B1),  it can wander anywhere through 
T. Temporarily inserting a 3-cell plug to  fill the hole of the lower part, we 
enlarge Tto a solid torus T' in which the upper defining sequence is topolog- 
ically that of Fig. 9-14, and into which f maps B1 in virtually I-essential 
fashion (because h does). By Lemma 13,f(B1) contains an admissible subset 
of the upper part. Sirnilarly,f(Bz) contains an admissible subset of the lower 
part. Combined with the observation above that the stems of the defining 
sequence geometrically realize the mixing homeomorphism S, Lemma 12 
establishes the desired contradiction : some element of G5 does intersect both 
f ( B d  andf(B2). 

EXERCISES 

1. Verify that GI is shrinkable. 
2. Prove Proposition 9. 
3. Iff:  H --t T is a virtually I-essential map into the solid torus T of Fig. 9-1, then 

f- ' (Z u f i )  contains a component H' such that f: H' -+ Z u E is virtually 
I-essential. 

4. Suppose S = (CiJ is a defining sequence for a strongly shrinkable decomposition 
of an n-manifold M .  If Q is a closed subset of M / G  and S is the trivial extension 
of the decomposition (n-'(q) I q E Q )  induced over Q, then 6 is strongly 
shrinkable. 
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10. PRODUCTS OF DECOMPOSITIONS WITH A LINE 

For every known cellular decomposition G of E", not only is the product 
of E"/G with El homeomorphic to En+' but, in addition, the decomposition 
G x E' of E n  x E' = En+' is (strongly) shrinkable. What is more, the 
cellularity of G functions as an unnecessarily strong hypothesis. This section 
is devoted to an exploration of these facts in some specific cases; a more 
general and extensive exploration is reserved for later. 

First, a result supplying a convenient method for detecting shrinkability 
in certain product decompositions. It is a direct consequence of Theorem 5.4. 

Theorem 1. Let G denote a usc decomposition of E" associated with a 
defining sequence [ C , ,  CZ, ...) and let R ' :  E"+l -+ (E" x E')/(G x El )  
denote the related decomposition map. Then n' can be approximated by 
homeomorphisms ij', for each E > 0 and each integer k ,  there exists a 
homeomorphism h of En" onto itself satisfying (for all t E E' and g E G )  

(a) hl(E" - C k )  x E' = Id, 
(b) h(Ck x It)) C C k  x [t - E ,  t + E ] ,  and 
(c) diam h(g x ( t ) )  < 3 ~ .  

The initial goal here is to demonstrate how, even though G may be 
nonshrinkable, the product G x E' might be shrinkable. Bing credits 
A. Shapiro (see Bing [7] and also Freedman [ 1, p. 4221) with discovery of this 
phenomenon for the decomposition of Example 9.7 involving the Whitehead 
continuum. The argument below, due to J. J. Andrews and L. R. Rubin [l], 
is as slick as any found in this area. 

Lemma 2. Suppose the interior of the solid torus T = B2 x S' contains a 
finite polyhedron Q such that the inclusion Q - T is null homotopic. Then 
there exists (Y > 0 and there exists a homeomorphism f of T x El onto itself 
satisfying (for all t E E')  

(a) f 1 8B2 x S' x E' = Id, 
(b) f(T x It)) C T x [t - a,  t + a ] ,  and 
(c) f ( Q  x ( t ) )  C B2 x [point) x [t - a,  t + a] .  

Proof. Prescribe coordinates of S' as eit and adjust the situation so that 
Q C B* x S ' ,  where B* denotes the subdisk of B2 consisting of those points 
having norm s&. 

Let p :  B2 x E' -+ B2 x S' denote the universal covering, explicitly given 
as p( (b ,  t ) )  = ( b ,  ei'>, and let proj: T x E' + T denote the projection. 
Define an embedding k of the total space B2 x E' into B2 x S' x E' = 
T x E' as k((b ,  t ) )  = ( b ,  e", t ) ,  and note that proj 0 k = p.  
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According to the homotopy lifting theorem, the inclusion j :  Q -+ T lifts 
to a map (embedding) J: Q -+ B2 x E' such that pJ = j .  Following this map 
J by projection to the E '-factor gives a map w: Q -+ E' such that for points 

= ( b , ~ )  E Q 

J((b ,  s)) = ( b ,  ~ ( ( b ,  s ) ) )  E B2 x E l .  

The requirement pJ = j leads to the crucial identity 

eiw((b,s)) = S. (t) 
Moreover, w: Q -+ E' satisfies the additional identity: for q E Q 

(tt) kJ(4) = (4 ,  w(q))  E T x  E' ,  

because proj 0 kJ = pJ = j .  
Certainly there exists some a > 0 such that w(Q) C [-a, a]. By Tietze's 

extension theorem, w extends to a map w :  T --t [-a, a] such that w(u) = 0 
for every u E aT = aB2 x s'. 

The desired homeomorphism f is expressed as the composition of a lift and 
a twist. The lift A :  T x E' -+ T x E' is defined as 

I ( ( u ,  t ) )  = ( u ,  v(u) + t ) .  

To describe the twist, for each t E E' specify a homeomorphism Tr of Tonto 
itself as 

What T~ does is to twist the inner torus B* x S' rigidly an amount that 
depends purely on t ,  with the twisting action tapering off on the region 
T - (B* x S' ) ,  reducing to the identity on aT. Then the twist T of T x E' 
is defined as 

T((u, t > )  = ( T t ( U ) ,  t ) .  

It should be obvious that both L and T are homeomorphisms; continuity is 
the only concern, for I and T have two-sided inverses given by (u, t )  -+ 

( u ,  r - ~ ( u ) )  and (u, t )  -+ (T;'(u),  t ) ,  respectively. 
Finally, it must be shown that the composition f = TI satisfies the 

conclusions of Lemma 2. First, given ( b ,  S) E aB2 x S' ,  we have Ibl = 1, 
and we see that 

f ( ( b ,  S, t > )  = T A ( ( b 9  S, f ) )  = d ( b ,  S, t ) )  

= ( r t ( b , s ) ,  t >  = ( b , s ,  t ) .  
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Second, since s preserves E '-coordinates, 

f ( T  X ( t ) )  = TA(T X i t ) )  C T(T x [t - CY, t + CY]) = T x [t - CY, t + CY]. 
Third, for ( b , s )  E Q 

proj o f ( ( b , s ,  t > )  = proj 0 rA((b,s, t ) )  

) 

) 

= (b , se  e >  

= proj 0 r (b , s ,  t + v( (b , s ) )> 
- - ( b ,  se- i (+(<b,s>t+t)  

- - ( 6 ,  Se-;$(<b,s>)e- i t  

- i w ( < b . s > )  - t z  

= ( b ,  e - i r ) ,  by Condition (t). 
In other words, proj 0 f ( Q  x f t ) )  C B* x fe-j t]  (see Fig. 10-1). This 
establishes Conclusion (c) and completes the proof of Lemma 2. R 

E 
x 

T? 

FIG. 10-1 

Theorem 3. Suppose that G is a usc decomposition of E 3  defined by solid 
tori (that is, G has a defining sequence (Ck) and each component of each ck 
is a solid torus) such that every inclusion of one solid torus into itspredecessor 
in the nest is null homotopic. Then ( E 3 / G )  x E' is homeomorphic to E4.  

Proof. Fix the defining sequence ( C k ]  for G .  We shall appeal to Theorem 
1 to show that the map n': E' x E' + (E3  x E') / (G x E') can be uniformly 
approximated by homeomorphisms. The desired conclusion will then follow 
from Corollary 2.4A. 
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In order to verify that Theorem 1 applies, consider E > 0 and an integer k .  
Focus on one component T of c k .  Let Q = T n c k + l .  Since, for each 
component T' of c k + l  contained in T, the inclusion T' 4 T is null 
homotopic, it follows that Q - Tis null homotopic. Now inside T = B2 x S' 
we perform one modification: we find a slightly smaller copy B* x S' of 
Tin Int T, with B* x S' 3 Q and shrink this, via a homeomorphism 8 fixed 
outside T, so close to a core (point x S')  that each diam B(B* x (s)) < E .  

From now on we assume this situation prevailed at the onset and suppress 8. 
Lemma 2 provides a positive number CY and a homeomorphism f T  of 

T x E' to itself. I t  is important to note that a could have been chosen small, 
had we redescribed the covering map p :  B2 x E' -+ B2 x S' at the 
beginning of the proof for Lemma 2. Alternatively, we can reparameterize 
the El-coordinate to accomplish this now, yielding [t - a, t + a] C 
[ t  - E ,  t + E ]  for all t E E' .  The required homeomorphism h is defined as 
fT on each T x E' and as the identity elsewhere. 

Corollary 3A. For the decomposition Gs of Section 9 ,  (E3/Ga) x E' is 
homeomorphic to E4. 

Corollary 3B. 
homeomorphic to E 4 .  

For the decomposition G7 of Section 9 ,  (E3/G7) x E' is 

A striking property of the latter stems from the noncellularity of G7: 
noncellular decompositions in some sense can become cellular upon forming 
the Cartesian product with a line. 

The prototype among the exotic factors (that is, nonmanifold factors) of 
Euclidean space is Bing's dogbone space, Example 5 of Section 9. 
J .  J. Andrews and M. L. Curtis [l] adapted Bing's argument establishing this 
fact to show that the product of E' with any decomposition of E" whose only 
nondegenerate element is an arc yields a space homeomorphic to Our 
next goal is to derive their result. 

An important step in the proof involves a special case of the following 
clever rearrangement device, originally given by V.  L. Klee [l]. It reveals, 
among other things, why certain objects in En x [0), no matter how badly 
embedded there, are cellularly embedded in E" x E'. 

Proposition4 (flattening). Supposeel: X - +  Ernandez: X - +  Enareboth 
embeddings of a compact space X .  Define embeddings f 1  , f 2 ,  and d of X in 
Ern+" = Em x E" as f i (x )  = ( e l (X) ,  O), f2(x) = ( 0 ,  e2(x)>, and d(x) = 
<el(x) ,  ez(x)>, respectively. Then f l  , f2 ,  and d are equivalent embeddings; 
that is, there is a homeomorphism 8i of Ern+" onto itself such that Bifi = d 
( i  = 1,2). 
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Proof. The proof is an elementary consequence of Tietze's extension 
theorem. To see, for instance, that fl and da re  equivalent, determine an n- 
cube C in E" large enough to contain e2(X), and extend ez(el)-' I e l (X)  to a 
map p :  Em + C. Define 81: Em x E" -+ Em x E" as 

81((Zl f 2 2 ) )  = (21, 22 + p(z1)), 

where addition in E" is defined coordinatewise. Certainly 81 is continuous, 
and it is a homeomorphism because it has for an inverse the (continuous) 
function (21 , 2 2 )  -+ (zl  , 22 - &I)).  For each x E X ,  

Olfdx) = W ( e l ( x ) ,  0 ) )  = (el(x),  pedx)) 

= <el(x), ezei'el(x)) = d(x). 

Corollary 4A. Every arc in E" x (OlC E"+' is flat in E"". 

Corollary 4B. Every k-cell in E" x (0) C En+k is flat in En+k .  

Corollary 4C. Every Cantor set in E" x (0) C E"" is tame in E"". 

What comes next pertains to the Andrews and Curtis result. We suppose 
A to be an arc in E n  and E > 0. We specify a homeomorphism a of I onto 
A and then partition I by points [ti I i = 0, 1 ,  ..., m + I ) ,  with a([ti-1, ti]) 
small enough to be contained in an open subset Ui of E n  (i = 1, ..., m + 1) 
such that 

Ui n Uj # 0 iff li - jl 5 1 

and 

diam (Ui U Ui+l u Ui+2 u Ui+3) < E (i = 1, ..., m - 2). 

To provide control in the El-direction, we identify some intervals and related 
sets:foriE (1, ..., m - 1)letJi = [i,2m - ilandthenletLi = Ji - IntJi+i 
when i < m - 1. 

It is a consequence of the Klee trick that each level arc A x [ t ]  C En+' can 
be shrunk to small size. To support the work of shrinking all level arcs 
simultaneously, we begin by showing how to combine a vertical compression 
with the pinching of a certain level arc to bring about a shrinking of the 
product of Ji+l and a subarc of A .  

Lemmas. Let Kbeaneighborhoodofa([O, t i])inE"(i  = 1 ,  2 ,  ..., m - 2). 
Then there exists a homeomorphism hi of E"+' = E" x E' onto itself 
satisfying 

(a) 
(b) 

hi I En+' - ( K  x Ji) = I d ,  
hi I a([ti, 11) x E' = Id, and 

(c) h i ( 4 0 ,  ti]) X Ji+l) C Ui+l X Ji. 
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Proof. By Corollary 4A the arc A x li + 1) = a([) x ( i  + 1) is flat in 
,?"+I. This makes it possible to squeeze the flat subarc a([O, ti]) x ( i  + 1) 
close to the point a(t;) x ( i  + 11, by means of a homeomorphism p of En+' 
such that 

pIE"+' - ( K  x J ; )  = Id, 

p I cr([t;, 11) x E' = Id, 

and 

p(a([O, t i ] )  x (i + 11) C Ui+i x Ji. 

It follows that p-'(U;+l x Int J;)  3 (a([O, ti]) x li + 1 j) u (a(t;) x J i + l ) .  

As a result, there exists 6 > 0 such that p-'(U;+l x Int J;) also contains 
a([t; - 6, ti]) x J;+'. Now one can produce a homeomorphism u of En+' 
itself, which acts there as a vertical compression, affecting only the 
,?'-coordinate and satisfying 

u 1 E"+l - (V;. x J;)  = Id, 

v 1 a([t; ,  1 1 )  x E' = Id, 

and 

u(c~( [o ,  ti]) x Ji+l)  c p-'(Ui+i x Int J;) .  

It can be obtained as follows: name a positive number d < 1 such that 

p-'(U;+l x Int J;) 3 a([O, ti]) x [i + 1 ,  i + 1 + d ] ;  

define a continuous function s: E" -+ [i + 1 + d, 2m - i - 11 sending 
points of E" - I4 and points of a([ti, 11) to 2m - i - 1 while sending points 
of a([O, t; - S ] )  to i + 1 + d ;  finally, define u:  En+' -+ En+' as the identity 
above E" x (2m - ij and below E" x (i + I],  so as to send each point 
( p ,  2m - i - 1 ) to ( p ,  s (p) ) ,  and so as to be the obvious linear map on the 
remaining vertical intervals (pj x J;+I and Ipj x [2m - i - 1, 2m - i]. The 
effect of u is illustrated in Fig. 10-2. 

In order to complete this proof, simply define h; as pu. Then 

hi(a([O, ti]) x J i + l )  = ~ u ( a ( [ O ,  ti]) x J i + l )  c Pp-'(Ui+l x Ji), 

as desired. The other properties required of h; should be transparent. 

Lemma 6. There exists a homeomorphism A of En+' onto itselfsatisfying 

(a) 
(b) 

A I En+' - U?Z?(U; x J;)  = Id, 
A(a([O,  ti+']) x Li) C (U; u U;+l) x J; - I  for i E 11, ..., m - 21, 

(C) L ( a ( [ O ,  tml) X Jm-11 C (urn-' U Um) X Jm-2 C (Urn-' U Urn) X J1. 
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A 
- 2m -i 
- 2n1 - i - 1 

E l  

- i  + 1  

P / V V V \ / V V V \ / \ / \ / Y  

u 
u = Id near 

cross- hatched 
area 

Proof. Here ;I will arise as a composition h lhz  - - a  hm-2  of homeo- 
morphisms resulting from Lemma 5. To begin, one obtains hl that way, using 
the neighborhood Vi = U1 of a([O, t l ] ) .  

Sincehl acts as theidentityon cw([t~, t ~ ] )  x E' and sends a( [O,  t l ] )  x JZ into 
U2 x 51, there exists a neighborhood VZ of a([O, tz]) in U1 u UZ such that 
hl( VZ x Jz) C UZ x J1. One applies Lemma 5 again, with this neighborhood 
VZ, to obtain h2. 

The iterative step retraces the pattern just laid down for obtaining hz. 
After hi-I has been procured subject to the conditions 

hi-1 I a([ti-1 11) x Ji-1 = Id 
and 

hi-1(@([0, ti-11) x Ji)  C Ui x Ji-1, 

[conclusions (b) and (c) of Lemma 51, one determines a neighborhood K of 
a ( [ O ,  ti]) in U1 U u Ui such that h;- i (K x Ji) C Ui x Ji-1 and then 
applies Lemma 5 with this neighborhood 6 to obtain hi. 

It should be obvious from the choices of Kin U1 u ... u Ui and conclusion 
(a) of Lemma 5 that I = hlhz ..- h m - 2  satisfies conclusion (a) above (see 
Fig. 10-3). In analyzing conclusions (b) and (c) it is useful to recall that 
(U, u u Um+l) are disjoint. Based on the choices of 
6, (a) of Lemma 5 then yields 

(t) 

u Ui) and (Ui+2 u 

hj I (Ui+2 U e . 0  U Um+l) x E' = Id whenever j 5 i ,  as well as 

hj I E" x (El - Ji) = Id whenever j 5 i. 

Since Li C Cl(E' - ] ; + I ) ,  the latter implies 

(tt) hj I E" x Li = Id whenever j > i. 
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To see why Conclusion (c) holds, note that 

A(a([O, trn-21)  x Jrn-1) = h1h2 ..* hrn-z(a([O, tm-21) x J r n - 1 )  

c hlhz '-A hm-3(Urn-l x Jrn-2) by (c) of Lemma 5 

C Um-1 X Jrn-2 by (t). 
In addition, by conclusion (b) of Lemma 5 ,  

A(a(I t rn -2 ,  trnl) X J r n - 1 )  = 4 [ f r n - 2 ,  trnl) x J r n - 1  

C (Urn-1 U Urn) X J m - 1 ,  

and these two inclusions readily combine to yield (c). 
In order to verify conclusion (b), it is advantageous to first observe, by con- 

clusion (a) of Lemma 5 ,  that hi(a([O, t i])  x Ji) C K x Ji.  Then (for i > 1) 

A(a([O, ti+ll) x Li) = hlhz * . *  hrn-2(a(IO, ti+11) x Li), 

= hlhz hi(a([O, t i + i l )  x Li) by (tt), 
= hihz 0 0 hi(a([O, t i ] )  x Li) 

u h l h ~  0 . * *  0 hi(a([ti, ti+l]) x Li) 

C h l h ~  0 0 hi(a([O, t i ] )  x Ji) U (Ui+l x Ji) 
by (b) of Lemma 5 ,  

C hlhz 0 * . *  ohi-l(K x Ji)  U (Ui+l x Ji) as above, 

C hlh2 0 0 hi-Z(Ui x Ji-1) u (Vi+l x Jj) 
by choice of 6 ,  

C (Ui x J i - 1 )  u (Ui+l x J i )  

C (Vi U Ui+l) X Ji-1. 

by (t) 

Why the condition also holds when i = 1 should be clear to anyone who has 
read this far. 

Theoreml. Foreach arcA in E n ,  (E"/GA) x E' ishomeomorphictoE"". 

Proof. This will follow from Corollary 2.4A and Theorem 1, once we 
construct a homeomorphismh of En+' to itself satisfying the three conditions : 

h 1 (En - N(A; E ) )  x E' = Id, 

h(E" x ( t ) )  C E" x [t - E ,  t + E ] ,  

and 
diamh(A x ( t ] )  c 3&, for each t E E l .  
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Such a homeomorphism can be fabricated by exploiting the structures named 
for Lemmas 5 and 6, craftily pieced together. To explain formally, we let k 
range over the integers and we set 

m = 2  

i = l  

m = 2  

i = l  

Dk = u (Ui x [2mk + i, 2mk + 2m - i]) 

Di, = u (Ui x [2mk + m + i, 2mk + 3m - i]). 

and 

These domains have been designed so no Dk meets any 0;. This is best 
understood by studying Fig. 10-4. For details in a typical instance, consider 
( x ,  t )  E DO where t I m.  Choose the least integer i such that x E Ui. Then 
t L i. The only set Di, that could possibly contain ( x ,  t )  is DL1 . If that were 
the case, since x E Um+z-j where j = m + 2 - i and perhaps where 
j = m + 1 - i as wel1,'the definition of Dll would force 

t I m - (m + 1 - i )  = i -  1 < i ,  

a contradiction. 
For k E E and i E ( 1 , 2 ,  ..., m - 1) define 

J,' = U [ 2 m k  + i, 2mk + 2m - i] 

Pi' = U [ 2 m k  + m + i, 2mk + 3m - il, 

and for i <  m - 1 let L: = Ji' - IntJ,'+l and Qi = P i ' -  In tE+I .  In 
addition, let D = Uk D k  and D' = U k  Di,. According to Lemma 6 there exist 
homeomorphisms AR for the Ji and L: and AL for the Pi' and Qi , each given 
as a translate of the Lemma 6 homeomorphism A to the appropriate 
components, satisfying 

k 

k 

( 1 )  A R  1 E"+l - D = Id and 
dL(E"+l - D' = Id; 

A R ( ~ ( [ O ,  ti+l]) x L:) C (Ui U Ui+l) x J1 and ( 2 )  
AL(a([tm-i, 11) x 9,) C (Um-i+l u Um-icz) x Pi; 

AR((Y([O, tml) x JA-1) C (Vm-1 u Um) x Ji and 
AL(cY([tl, 11) x PA-I)  c (Vz u U3) x PI. 

( 3 )  

Now define h as A R A L .  The resultant shrinking depends on the explicit 
juxtaposition of right and left stacks. For example, if t E Int L:,  then t E a 
wherej = m - 1 - i. Thus, by ( 2 )  

h(A X Ill) = ARAL(~([O, ti+lI) X L:)  U A R A L ( a ( [ f m - j ,  11) X QJ 
c [(u; u ~ i + l )  x E'I u [(Ui+z u Ui+3) x El]. 
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Of course, neither A R  nor A L  moves points vertically more than 2m, which, 
because D and D' are disjoint, implies 

h(A x ( t ) )  C (U; u U;+l u U;+Z u U;+3) x [t - 2m, t + 2m]. 

Initially the U;'s were chosen so that the diameter of any four successive 
ones was small. To complete the proof, all that remains is to  rescale the 
El-coordinate with 2m < E .  

Corollary 7A. For each arc A in S " ,  (S"/GA) x E' is homeomorphic to 
S" x E l .  

Corollary 7B. For each arc A in S", the suspension of (S"/GA) is homeo- 
morphic to S"". 

Corollary 7C. For each n 2 3 S" contains a wild arc LY such that S" - 01 

fails to be simply connected. 
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Proof. Such an arc in S 3  was described in Section 9. Generally, given an 
arc A in S"-' (n > 3 )  with nonsimply connected complement, one can 
produce a related arc (11 in S", considered as the suspension of S"-'/GA, 
where LY corresponds to the suspension of the bad point. Then S" - (11 is 
topologically equivalent to (Sn-' - A) x (- 1, l), and neither space is simply 
connected. H 

Corollary 7C, due to Morton Brown [3], clearly displays how pathological, 
nonmanifold decomposition spaces can lead to pathological embeddings of 
nice objects in Euclidean space. Conversely, when the topic of cellularity was 
introduced and the generalized Schonflies theorem was established, it should 
have been clear that pathological embeddings of cells do lead to pathological 
decomposition spaces. As a consequence, we have further data revealing the 
intimate connections between embedding theory and decomposition theory. 
Those connections are not limited to the production of pathology-after all, 
the concept of cellularity evolved as the empowering device for detecting 
flatly embedded (n - 1)-spheres in E". 

Suspending a k-cell in S" to obtain a (k  + 1)-cell in Sn+' combines with 
the suspending a decomposition space technique of Corollary 7C to yield the 
improvement below. 

Corollary 7D. For n 5 3 and each integer k with 1 5 k 5 n ,  S" contains 
a k-cell K such that S" - K fails to be simply connected. 

The proof of Theorem 7 develops uniform controls on a shrinking process 
to bring about the desired conclusion but falls short of incorporating the 
cover controls required by the shrinkability criterion. Those regulations can 
be managed with just a little extra effort. 

Theorem 8. If A is any arc in En, then the decomposition GA x E' of E"+l 
is strongly shrinkable. 

Name a saturated open cover 'U of En+',  an 
arbitrary open cover V, and an open set W containing A x E l .  Find another 
saturated open cover 'U' star-refining U, but exercise care so every U' E 'U' 
intersecting A x E' lies in W ;  moreover, construct 'U' so as to have an 
increasing collection (fk [ k E Z] ofrealnumbers for whicheachA x [ f k - l ,  tk] 
is contained in some U,4 E 'U' . 

Since each arc A x ( t k ]  is flat, there exists a homeomorphism f1 of En+' 
to itself shrinking each A x ( t k )  into some v k  E V while moving no point 
outside U(Ui  n U,4+1) (the collection (Ui  n Uk+l)  should be restricted so as 
to be pairwise disjoint). For each k E Z determine Bk > 0 and a neighbor- 
hood wk of A in En such that 

Outline of the Proof. 

w k  x [tk-1, f k ]  c UL and fi(wk x [tk - 3 6 k ,  tk  + 3 6 k ] )  c h. 
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Let (Yk = min[6k-1, &). Now use a variation to Theorem 7, obtained after 
identifying (tk-',  t k )  with E' by then allowing the homeomorphisms A R  and 
AL to operate on just a finite number of the domains Dk and D,i named 
therein, to produce a homeomorphism hk of E" x (tk-1, tk) to itself 
satisfying 

hk I (En - wk) X (tk-1, tk) = Id, 

hk (En X ( ( k - 1 ,  tk-1 + (Yk) U ( f k  - (Yk, tk)) = Id, 

hk(E" X ( t ] )  C En X [t - ( Y k ,  t + C Y ~ ]  

for all t E ( f k - 1 ,  fk),  

diam hk(A x I t ) )  < E for all 
t E ( 9 - 1  + 2ffk, f k  - 2ak) 

where E is chosen to be very small relative to the cover of fl(Cl(Wk) x 
[tk-1 + (Yk,  tk  - ak]) by 9. The combination of all such hk, extended 
elsewhere via the identity, is a homeomorphism f2 of En", and f1 fz achieves 
the desired shrinking. 

As a corollary to the proof, one can derive an analogous result with S' 
replacing El .  

Corollary 8A. I fA is an arc in E" (or S"),  then the decomposition GA x S' 
of E" x S' (or S" x S ' )  is strongly shrinkable. 

Theorem 8 enhances interest in the questions : given a compact subset X 
of E", under what conditions is (E"/Gx) x E' homeomorphic to En"? 
When is the product decomposition GX x E' of  E"+l shrinkable? We know 
that the cellularity of X in En is a sufficient condition in the first case and 
that the cellularity of X x (0) in En+' is a necessary condition in the second. 
These stand as fundamentally important questions, to be readdressed in what 
lies ahead. 

HistoricalRemarks. The exotic factors of E 4  resulting from Theorem 3 and 
7 are unlike anything known in E 3 .  The absence of such phenomena in 
dimension 3 has a classical explanation: if X x E' is homeomorphic to En, 
then X is what is called a generalized (n - 1)-manifold, and the only 
generalized 2-manifolds are genuine 2-manifolds-in case X is a non- 
compact, simply connected generalized 2-manifold, it must be E2.  

J .  L. Bryant [1,3] has shown that, for each k-cell K in En, (E"/GK) x E' 
is homeomorphic to En+'. In essence, his proof proceeds much like the one 
described here, squeezing out one coordinate of the k-cell at a time (this 
synopsis does depend on our current knowledge, not available at the time his 
proof was conceived, that each k-cell in E" x (0) is flat in E"+l). 
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There is an extensive history to the study of other exotic factors of En" 
arising from decompositions of E n .  Recounted at length in (Daverman [6 ] ) ,  
it is a subject of Section 26. 

Concerning factors of cells, Bing [7] showed that a space X is a 3-cell if 
its product with I is a 4-cell. One can easily see that, given an arc A in the 
interior of I", ( I n / G ~ )  x I is I"" iff I"/GA = I". Kwun and Raymond [I]  
have proved that the product of I" modulo an arc in its interior and I2 is P2. 
P. W. Harley [l] has shown that the product of I" modulo an arc in its 
boundary and I is I"". 

In the manifold setting, V. Poenaru [l] and B. Mazur [ l ]  separately have 
given examples of PL 4-manifolds that are not 4-cells whose products with 
I are 5-cells. Similar examples (in reality, compact, contractible n-manifolds 
with nonsimply connected boundary) have been given in case n 1 5 by 
M. L. Curtis [l]  and L. C. Glaser 111; the product of any such space with 
I must be an (n  + 1)-cell. 

EXERCISES 

1. If A represents an arc in an n-manifold M ,  show that (M/Ga) x E' is homeo- 
morphic to M x E L .  

2. Prove Corollary 7D. 
3. Prove Corollary 8A. 
4. Let Xbe a compact subset of E" such that GX x S' is a shrinkable decomposition 

of En x S'. Show that (E"/Gx) x E' is homeomorphic to En". 
5. Let G be a usc decomposition of S" such that HG forms a null sequence of arcs. 

Show that G x S' is a strongly shrinkable decomposition of S" x S' .  Show also 
that (S"/G)  x El = S" x E l .  

11. SQUEEZING A 2-CELL TO AN ARC 

For any positive integer k let Bk denote the standard k-cell in Ek consisting 
of all points at distance no more than 1 from the origin, and let Sk-' denote 
its boundary. When m < k,  clearly B" can be regarded as a subset of Bk; 
in that case letp: Bk + B" denote the vertical projection sending (XI , , . ., Xk ) 

Suppose K is a k-cell in some n-manifold M. A mapfof M to itself is said 
to squeeze K to an m-cell if there exist homeomorphisms h of Bk onto K and 
H of B" onto f ( K )  such that f carries M - K homeomorphically onto 
M - f(K) andfh = Hp. (See the accompanying diagram.) In particular, we 
say that f squeezes K to an m-cell [or to the image cellf(K)] along h. From 
the perspective of decomposition theory, whenever some map squeezes a k- 
cell Kin M t o  an m-cell along the guiding homeomorphism h, the appropriate 

to (XI, ..., X m ) .  
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P Bk B'" 

decomposition of M to examine is Gf, the one induced by f ;  to accentuate 
the role of h we prefer to denote this decomposition as h(Gp)T, the trivial 
extension over M of the decomposition on K induced by ph:'-in other 
words, the decomposition of Mconsisting of the singletons from M - K and 
the sets hp-'(x), where x E B". 

The situation where the fountainhead cell K is two-dimensional will attract 
the bulk of our consideration. Under a mild assumption that arcs in K can 
be altered to arcs in K that are locally flat in M(which, in actuality, involves 
no restriction whatsoever), with an argument inspired by the one used in 
Theorem 10.7 and developed in Daverman and Eaton [ l ] ,  we will show 
how such a 2-cell in Mcan be squeezed to a 1-cell (arc). As a corollary, we 
will obtain an alternate proof, in the case k = 2, of a result due to Bryant 
alluded to in Section 10, namely that for such 2-cells K ,  ( M / G K )  x E' is a 
manifold. 

An enormous payoff accrues in the subsequent section, where work of 
C .  H. Giffen, coupled with the aforementioned corollary, is capitalized on 
to demonstrate the existence of a noncombinatorial simplicia1 triangulation 
of S" (n  > 4). 

Now, about the flatness assumption, we say that a 2-cell K in a manifold 
M satisfies Axiom LF in M if, for each arc A in K with A n aK C aA and 
each E > 0, there is an &-homeomorphism I of K onto itself, fixed off the 
&-neighborhood of A ,  such that I ( A )  is locally flat in M .  Although we will 
have no cause to use the fact, every 2-cell in an n-manifold Msatisfies Axiom 
LF; this was proved by R. H. Bing [lo] for n = 3,  by R. B. Sher [l] for n = 4, 
and by C .  L. Seebeck 111 [l] for n > 4. 

An explicit statement of the central result, around which this entire section 
revolves, is given below. 

Theorem 1. If D is a 2-cell satisfying Axiom LF in an n-manifold M ,  then 
D can be squeezed to an arc. Specifically, i f  h is a homeomorphism of B2 
onto D and E > 0,  then there exist a map$ M +  M and another homeo- 
morphism h:  B2 + D such that p(h', h) < E ,  h' 1 So = h 1 So, and f squeezes 
D to an arc along h'. 

Corollary 1A. If D is a 2-cellsatisfying Axiom LF in an n-manifold M ,  then 
(M/GD) x E' is an (n + 1)-manifold. 
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See also Theorem 10.7 and Exercise 10.1. 
A bizarre phenomenon comes up when we attempt to prove Theorem 1. 

Conferred upon us is a decomposition h(GJT of M into points and arcs. 
Unexpectedly, our instructions are not to show it is shrinkable (which it might 
not be), but instead to establish an existence statement : near h(Gp)T is another 
decomposition h’(G,JTyie1dingMas the decomposition space [indeed, h’(Gp)T 
is shrinkable, as we could show later, but that is not a pressing issue here]. The 
ensuing lemma presents a suitable analog of the shrinkability criterion for the 
rather nebulous decomposition problem at hand. 

Lemma 2. Suppose D is a 2-cell satisfying Axiom LF in M, h is a homeo- 
morphism of B2 onto D,  U is an open subset of M containing h(B2 - So) ,  
and E > 0. Then there exist a homeomorphism hl:  B2 -+ D and a homeo- 
morphism F of M onto itself such that: 

(a) F 1 M - U = Id, 
(b) 
(c) P(h1, h) < &, 

(d) diam Fhl(g) c E for all g in Gp,  
(el Fhl(g) c N(h(g); E ) ,  and 
(f) to each x E M for which F(x) # x there corresponds g E Gp such that 

One-half the argument for Lemma 2 involves an arc-shrinking technique 
something like what was employed in Lemma 8.2. The other half entails a 
rearrangement of the homeomorphism from B2 onto D, identifying the new 
decomposition h’(Gp)T, which, when the rearrangement is properly meshed 
with the first technique, has been shrunk to small size. The next result focuses 
on the first half. 

Lemma 3. Suppose r > 0 and H :  [- r, r] x I -+ M is an embedding such 
that H((0J x I )  is locally flat, V is an open subset of M containing 

hi I S o  = h I S o ,  

Ix, F(X)l c N(h(g); &). 

W O J  x (0, 111, 

0 = to < tl < t2 C < tm-1 < t m  = 1, 

is a partition of I, and 6 > 0. Then there exist a homeomorphism F of M 
to itsew, fixed off M - V, and there exist numbers 

0 = ro < rl < r2 < < rm-l < rm < r 

such that, for j = 1, ..., m 
(a) F is fixed on 

U ~ ( ( [ r j t  r1 x [tj, 11)U([-r, -rjl x 1 t j 9  11)), 
j 
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(b) FH([r,-l, rj] x [ t , -~ ,  11) is contained in the &neighborhood of 

(c) FH([- r;, - rj-11 x [ t j - l ,  11) is contained in the &neighborhood of 
H([rj-i, rjl x [t;-i, t j l ) ,  and 

H([-r;, -rj-11 x “j-1,  tjl). 

Proof. The idea is to shrink the locally flat arc H((0) x I )  as one would 
a telescope having rn chambers. To that simple idea one must append regula- 
tors to curb the appropriate sets. Figure 11-1 suggests how they might appear. 

Choose rm E (0, r )  so that 

(i) H([O, rm] x [ t m - l ,  11) lies in the &neighborhood of H([rm, r] x 

(ii) H([-rm, 01 x [ tm-1 ,  l])liesinthe&neighborhoodofH([-r, -rm] x 
[ t m - l ,  11), and 

l t m - 1 ,  11). 

Let W m  = N(H([- r m ,  rm]  x [ t m - I ,  11); 6) .  Use the flatness of H({O] x I) to 
find a homeomorphism ijYm of M to itself, fixed outside V n W m  and on 

H([ - r ,  rl x 1) - H([-rm, r m l  x [ t m - ~ ,  111, 

shrinking H((0J x [ t m - l ,  11) into the &neighborhood of H((0)  X ( t m - I ) ) .  

- r  -15 -r4 6 r3  r5 r - r  -rs r3 

FIG. 11-I 
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Next, obtain r m - l  E (0, rm) such that 

(i) tymH([O, rm-l]  x [ f m - 2 ,  l])liesinthed-neighborhoodofH([rm-l, r] x 

(ii) W m H ( ( - r m - l ,  01 x [ f m - 2 ,  1 1 )  lies in the &neighborhood of 
[ f m - 2 ,  f r n - ~ ] ) ,  and 

H ( [ - r ,  - r m - l l  x [ t m - 2 ,  t m - l l ) .  

Let W,-I = N(tymH([-rm-l ,  r m - l ]  x [ t m - 2 ,  1 1 ) ;  6 ) .  Use flatness again to  
obtain a homeomorphism W,,-I shrinking the flat arc tymH((0) x [ f m - 2 ,  1 1 )  
into the &neighborhood of H((0) x ( t m - 2 ) )  while moving no point outside 
V n or on 

H ( ( [ - r ,  rl x I) - ( [ - r m - l ,  rm-d x [ f m - 2 ,  11)). 

Continuing in this fashion, one determines successive points 

rm > r m - l  > ... > r m - k  

and homeomorphisms vrn, ~ ~ - 1 ,  ..., W m - k  (for k = 0, 1, ..., m - 1 )  of M 
to itself, each fixed outside V, such that 

(i) v r n - k + l  - - -  wmH([O, Tm-k]  X [ f m - k - l ,  1 1 )  lies in the &neighborhood 

(ii) W m - k + l  tymH([-rm-k, 01 x [ f m - k - 1 ,  1 1 )  lies in the d-neighbor- 

(iii) W m - k  V / m H ( { O )  x [ f m - k - l ,  11) lies in the &neighborhood of 
H((0J x ( f m - k - I ] ) ,  and 

(iv) W m - k  is fixed on ( l /m-k+ l  WrnH(([-r, r ]  x I )  - ( [ - r m - k ,  r m - k ]  x 
[ f m - k - 1 ,  1 1 ) )  and outsideN(tym-k+l .-. wmH([-rm-k, r m - k ]  X [ f m - k - l ,  1 1 ) ;  8). 

Then the desired F is just the composition ~1 .-. vm. 
Proof of Lemma 2. The argument is given in two steps. In Step 1 the disk 

D is sectioned into thin, “vertical” strips by arcs, which, after alteration to 
flat arcs, are squeezed to small size using Lemma 3.  In Step 2 the resulting 
image disk is sectioned into small disks. Care must be exercised in Step 1 to 
ensure that the arcs of Step 2 can be realized as images of approximately 
vertical segments from BZ. 

For what will be done a rectangular model for the 2-cell is preferable to 
the round model; hence, we choose s E (0, 1) and a first coordinate- 
preserving homeomorphism d of [-s, s] x Ion to  p - ’ ( [ - s ,  s]) C B2,  where 
s is so close to 1 that each component of D - hd([-s, s] x I )  has diameter 
less than ~ / 8 .  

of H ( [ r m - k  r ]  x [ f m - k - 1  , f m - k ] ) ,  

hood Of  H ( [ -  r, - r m - k ]  X [ f m - k - 1  , t m - k ] ) ,  

H 

Step 1 .  Applying Axiom LF, we find an integer k > 0, a partition 

- s  = SO < s1 < .“ < S2k = s 
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of [-s, s] and a homeomorphism I of B2 onto D satisfying 

(1) A agrees with h onp-’([-1, 11 - (-s,s)), 
(2) P ( I ,  h) < El29 
(3) Ad((s2j) x I )  is flat, for j = 1 ,  ..., k - 1 ,  and 
(4) diam Ad([s;-l, si] x [ ( j  - 1)/2k, j/2k]) < E / 8  for i, j = 1,2,  ..., 2k. 

For j = 1,2, ..., k - 1 ,  let Bj = (s2j)  x I. Choose pairwise disjoint, open 
subsets V1, Vz,  ..., Vk-I  of U with 

( 5 )  
(6) 

Ad(Bj) C 6 C N(d(Bj); d 8 )  and 
vj n Id(([- S, s2j-I) U (~2j+1,  s] )  X I )  = 0. 

Reparameterize the various intervals [szj- 1 , s2j+ 11 as [ - r ,  r ] ,  with s2j 

corresponding to 0, in order to put Lemma 3 into operation on the associated 
flat arcs Id@,), open sets 6, partition 

0 < l/k < 2/k < * . *  < (k - l ) / k  < 1 

of I ,  and positive number y = ~ / 4 .  The arcs are to be squeezed in alternating 
directions, from top toward bottom on one and from bottom toward top on 
those adjacent to it. Precisely, on the arc determined by Bj, when j  is even 
use Lemma 3 with the embedding Ad, and when j is odd, with Adu, where 
u: [-s, s] x I + [- s, s] x Zis the inversion sending ( x ,  t )  to ( x ,  1 - t )  (see 
Fig. 11-2). The resulting shrinkings in the mutually disjoint open sets 6 
combine to give the desired homeomorphism F on M .  

At this stage the specific arcs FAd(Bj) have size less than E ,  but 
the same is not necessarily valid for an arbitrary arc FId((x] x I ) .  In order 
to procure the required rearrangement, use Lemma 3 for j = 0, 1, ..., k - 1 
to extract numbers 

Step 2. 

s 2 j  < r ( j ,  1) < r ( j ,  2) < * ’ *  < r ( j ,  k - 1) < ~ 2 j + 1  < 

~ ( j ,  1) C ~ ( j ,  2) < a * -  < ~ ( j ,  k - 1) < ~ 2 j + 2  

for which 

(7) diamFAd(C) < E ,  

where C is a component of ( [ s z ~ ,  s2j+2] x I )  - Ui A; and where A; denotes 
the arc 

(W, ill x [ i lk ,  11) u ([rdi,  0, v ( j ,  01 x Wkl) u (Iuci, 01 x LO, i/kl) 

in case j  is an odd integer and the arc 

( ( r ( j ,  ill x 10, 1 - i / m  u ([rO’, 0,  U(j, 01 x 

[ l  - i l k ] )  u ( ( ~ ( j ,  i)) x [l  - i l k ,  11) 



100 11. The Shrinkability Criterion 

FIG. 11-2 

in case j is even. Ignore the cases j = 0 and j = k - 1 for the moment. 
Elsewhere, in most instances such a set C is bounded by arcs Ai and Ai+l, 

and then application of (6) and Lemma 3 indicates FAd(C) lies in the y- 
neighborhood of Ad([r(j, i), v ( j ,  i)] x [ i /k ,  ( i  + l)/k]), which, by (4), lies in 
the 2y-neighborhood of the point Ad((sz,+g] x ((2i + 1)/2k]); in the excep- 
tional instancesFAd(C) also lies in the 2y-neighborhood of some point. In case 
j = 0 o r j  = k - 1, (7) holds because the entire image FAd([sz,, su+2] x I )  is 
small, by (4), (3, and the original choice of s. 

The argument is completed by naming a homeomorphism hl of BZ onto 
D such that 

(8) hl agrees with A onp-'([- 1, 11 - (-s,s)), 
(9) Ah1 9 1) < E/2, 

(10) hldl Bj = AdIBj, and 
(11) hld((r(j, i)) x I) = Ad(A;) for all j and for i = 1, ..., k .  

Here hl is determined by a horizontal shear on [sz,, szj+z] x I, producing 
minor change in the second factor, composed with Ad. That hl satisfies 
conclusion (b) follows from (1) and (8), and that it satisfies conclusion (c), 
from (2) and (9). The all-important conclusion (d) holds because by (10) and 
(1 1) each arcFh~(g),  unless it is near h(So) ,  is contained in someFA(C), which 
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by (7) is sufficiently small; otherwise (l) ,  (8), and the original choice of s 
certify Fhl(g) is small. Similarly, (e) holds. Finally, conclusion (f) follows 
quickly from ( 5 )  and the definition of F. 

Proof of Theorem 1. Determine a sequence E O ,  E I  , ~ 2 ,  ... of positive 
numbers such that C j E, < E ,  and identify a decreasing sequence 
UO,  U1, U2, ... of open subsets of M for which nj Uj = h(B2 - S o ) .  Set 
FO = Idw and ho = h.  Apply uniform continuity and Lemma 3 repeatedly to 
obtain a sequence [ F j )  of homeomorphisms of M to itself and another 
sequence (hj) of homeomorphism of B z  onto D such that, among other 
properties, 

(a’) F , + i I M -  U j = F , I M -  Uj ,  

(c’) Ahj+l ,  hj) < E j ,  

(b’) hj+l I S o  = hj I S o ,  

(d’) 
(e’) 
(f’) 

diam F j + l  hj+ I(g) < E j ,  for all g in Gp, 
Fj+lhj+l(g) C N(Fjhj(g); ~ j ) ,  and 
to each x E M for which F,+l(x) # F(x) there corresponds gj E Gp 

such that ( F ~ + I ( x ) ,  F ~ ( x ) )  C N(Fj(gj); ~ j ) .  

It follows from (d’), (e’), and (f ’) that IF,) is a Cauchy sequence converging 
to a map f: M + M which, by (a’), sends M - D homeomorphically onto 
A4 - f (D) .  Imposing additional controls in the course of the construction, 
we can limit the adjustment allowed in the sequence (hj] so that it converges 
to a homeomorphism (and not just a map) h’ of B2 onto D. Moreover, (d’) 
implies that, for each g E Gp,fh’(g)  is a point. Finally, we can wield controls 
similar to those on (hj) in combination with (e’) to ensure that f h ’ ( g )  and 
f l ’ ( g ‘ )  are distinct points whenever g and g‘ are distinct elements of Gp . This 
demonstrates that D is squeezed to an arc along h’,  as required. 

Notes. In 3-manifolds, all 2-cells and 3-cells can be squeezed to 1-cells and 
2-cells (Daverman-Eaton [l]). However, in n-manifolds, n > 3, there exist 
k-cells (k > 2) that cannot be squeezed to lower-dimensional cells (Daverman 
[3]). Conditions under which a given k-cell in an n-manifold M can be 
squeezed are developed in Bass [ 11. 

EXERCISES 

1. Find an embedding h of B2 into E 3  for which h(B2) cannot be squeezed to an arc 
along h (Hint: see Example 9.5). 

2. Suppose K is a k-cell ( k  > 2) in En such that, for each (k - 1)-cell R standardly 
embedded in K with R n aK = aR, there exist arbitrarily small homeomor- 
phisms A of K to itself, fixed except near R, such that A(R)is flat in E“. Show 
,that K can be squeezed to a (k - 1)-cell. 
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12. THE DOUBLE SUSPENSION OF A CERTAIN 
HOMOLOGY SPHERE 

In 1963 J .  Milnor (see Lashof [l]) listed what he considered to be the seven 
most difficult and important problems in geometric topology. Heading that 
list was the following question: if H 3  denotes a non-simply connected 
homology 3-sphere, is the double suspension of H 3  homeomorphic to S5 ? 
(By a homology n-sphere we mean a closed n-manifold having the same 
homology as S".)  Slightly more specific and almost equally important is the 
question addressed here : 

The Double Suspension Problem. Does there exist a non-simply connected 
PL homology n-sphere H" whose double suspension X2H" is S""? 

Its significance lodges in the subject of manifold structures ; combinatorial, 
or PL, triangulations are abundant, advantageous, desirable. Anyone 
attempting to understand whether an arbitrary simplicial triangulation of a 
manifold is necessarily PL immediately confronts the double suspension 
problem. If the answer to it is affirmative, then the simplicial triangulation 
of S"" arising by double suspending the one given on H" cannot be PL, since 
the link of any l-simplex in the suspension circle will be a copy of H", which 
is not even topologically equivalent to S"", let alone being PL equivalent 
to it. 

The first affirmative solution, stemming from methods highly reminiscent 
of the visual 3-dimensional shrinking techniques of Bing, was discovered in 
1975 by R. D. Edwards [3]. After several stages of development, led by 
Edwards and also J .  W. Cannon [ 5 ] ,  the problem has been completely settled. 

Theorem (double suspension). The double suspension X'H" of every 
homology n-sphere H" is homeomorphic to Sni2. 

Closer study of this rich theorem will be made in Section 24, after 
Edwards's cell-like approximation theorem has been established, and the 
unrestricted version will be derived in Section 40, after some resolution 
results have been laid out. At this point the goal is a more limited one, that 
of setting forth an affirmative solution to the double suspension problem. 
The argument, quite different from Edwards's, is due to C. H. Giffen [l], 
who in the early 1960s had made a clever observation, still a virtual secret 
at the time of Edwards's work, that would have combined with known 
decomposition results to solve the existence problem much sooner. Based on 
what Giffen aptly calls a shift-spinning technique, his observation leads to 
a short, elegant, and, for us, elementary proof of the momentous fact that 
noncombinatorial triangulations do exist. 
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The double suspension problem is linked to decomposition theory in a 
straightforward way. For any particular homology sphere H", a meta- 
morphosis of the double suspension problem to a decomposition problem 
can be bolstered by (1) finding a compact (n  + 1)-manifold W"" bounded 
by H" and (2) identifying a pseudo-spine X of W"+', i.e. a compact subset 
X of Int W"+' such that W"" - X i s  homeomorphic to a,"+' x [0, 1) = 
H" x [0, 1). Of interest then is the decomposition GX of W"", where GX has 
X as its only nondegenerate element, for clearly W"+'/Gx is equivalent to 
cH", the cone on H". When H" is not simply connected, there is no chance 
for cH" to be a manifold, but the same cannot be said of 

(cH") x E' = (W""/Gx) x E' .  

The fundamental question in the double suspension problem is whether C2H" 
is a manifold. The potential nonmanifold set there lies in the suspension 
circle, along which symmetry properties reveal C2H" to  be locally homeo- 
morphic to (Int cH") x E' ,  where Int cH" denotes the open cone. Con- 
sequently, to determine whether C2H" is an ( n  + 2)-manifold, one must 
decide whether (W"+'/Gx) x E' is an (n + 2)-manifold. This was precisely 
Edwards's original strategy: working with a certain W4 bounded by H 3 ,  he 
went to  great lengths to show GX x E' was a shrinkable decomposition of 
W 4  x E' when X was Zeeman's dunce hat, a compact contractible 
2-complex. Giffen's observation provides an even simpler pseudo-spine, a 
2-cell D, in the same manifold W4. Then, according to  Theorem 11.1 and 
Theorem 10.7, ( W 4 / G ~ )  x E' is a 5-manifold. 

It should be added that in what follows Giffen's work has been narrowed 
to fulfill the aim here of describing a single, specific example. 

Proposition 1 Let r denote the simple closed curve in S' X B2 
shown in Fig. 12-1. Consider the first coordinate-preserving inclusion 

(Giffen). 

S' x BZ c S' x S2 = S' x dB3 C S' x B3.  

Form a 4-manifold W 4  by attaching a 2-handle h = B2 x B2 to S' X B3 
along a regular neighborhood of r in S' x B2.  Then there exists a 2-cell D 
in Int W4 such that D is a locally polyhedral subset of W4 at each point of 
Int D and D is a pseudo-spine for  W4. 

A few comments about the manifold W4 and its boundary H 3  are in order. 
Historically they were conceived for a different purpose by B. Mazur [ 11, who 
introduced them to construct an involution on S4 having the nonsimply 
connected homology 3-sphere H 3  as its fixed point set, Previously M. H. A. 
Newman [l] had constructed similar involutions on S" for n > 4; Newman 
readily described how such homology (n - 1)-spheres arise in S",  just by 
taking regular neighborhoods of PL embedded, homologically trivial, 
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S' X B2 

F 

FIG. 12-1 

nonsimply connected 2-complexes. Mazur built his objects in limbo and 
showed they could be embedded in S4. No matter how the 2-handle h is 
attached to r in S' x B3, the resulting 4-manifold W4 is contractible, 
essentially because the core r of the attaching region winds once homo- 
topically (though not geometrically) around S' x BZ C S' x dB3. As a 
result, a homological computation shows or duality (Spanier (1, p. 3051) 
implies that H 3  is a homology 3-sphere. For those who know what the dunce 
hat is, it should not be hard to spot a dunce hat Z to which W4 collapses. 
That observation led to Mazur's involution on S4. Because Z x I is 
collapsible (Zeeman [l]), so is W4 x I ,  since 

w4 x I L z x Z I point. 

Therefore, W4 x 1 is a 5-cell and its boundary S4 is represented as the double 
of W4 along H 3  = a W4. Finally, and of utmost importance, if the 2-handle 
h is attached to S' x B3 with no unexpected twisting of the Bz-factor, one 
can obtain a presentation for the fundamental group G of H 3  as 

G = ( a ,  b :  a7 = b5,  b4 = a2ba2) ,  

which Mazur showed to be nontrivial. 

Before looking at the proof of Proposition 1, let us see how it disposes of 
the double suspension problem. Almost all the machinery is already in place, 
withthe disk-squeezing result of Section 11 and with Theorem 10.7 concerning 
products of arc decompositions with a line. The only other device needed is 
the following flatness result, to ensure that the disk-squeezing theorem can 
be applied. 

Proposition 2.  Let D be a disk in E n ,  n > 3, such that D is locally 
polyhedral modulo its boundary, and let A be an arc in D such that 
A n aD c aA. Then A is flat. 

Proof. We shall assume, without much loss of generality, that A is also 
locally polyhedral modulo dA. By rigidly rotating the axes so that the x,-axis 
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is parallel to no line in a 3-dimensional hyperplane determined by any four 
of either the vertices of A or points of aA, we can reposition the embedding 
so that vertical projection p of E" to the horizontal plane 

P ( ( X I ,  ..., x,) E E" J x n  = 01 

is 1-1 on A .  As in the proof of Proposition 10.4, A andp(A) are equivalently 
embedded in E", and the result follows from Corollary 10.4A. 

Theorem 3. The double suspension Z2H3 of H 3 ,  the Mazur 3-manifoId, is 
a 5-manifold (and, hence, is homeomorphic to S').  

Proof. By Proposition 1, H 3  bounds the 4-manifold W4 having a nice 
disk D as pseudo-spine. Better yet, by Proposition 2 and Theorem 11.1, W4 
has an arc a as pseudo-spine. According to Theorem 10.7 (see Exercise 10. l), 
(Int W4/G,) x E' is a 5-manifold, which implies that C2H3 is a manifold at 
each point of the suspension circle, the only place where the matter was in 
doubt. (By Exercise 6.9, C2H3 then is S'.) 

Proof of Proposition 1. Cut the solid torus S' x B2 of Mazur's example 
apart along the disk F shown in Fig. 12-1 to obtain [0, I ]  x B2, with L I  
representing the finite collection of arcs corresponding to r after the cutting. 

Let C 3  denote the one-point compactification of Ui[i - 1, i] x B2, Li the 
translate of L1 in [i - 1, i] x B2, and L = (Ui Li) LJ (031, shown in Fig. 12-2. 
Obviously C3 is a 3-cell and L is the union of two arcs, one of which, 
considered as a subset of E3 under the natural inclusion there, is wild. Let 
s: C 3  -+ C 3  be the shift homeomorphism translating everything (except 00) to 
therightbyoneunit,i.e.,s((t, b ) )  = ( t  + 1, b )  for ( t ,  b )  E U[i - 1, i] x B2 
and s(m) = 00. Now, for the spin, construct the mapping torus T of s and 
in T find the mapping torus SZ of s 1 L: L -+ L. (Recall that by definition T 
is the space resulting from C 3  x Z upon identification of (c, 1)  with 
<s(c), 0 )  .) 
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FIG. 12-3 

It should be transparent that Q is an annulus and that Tis homeomorphic 
to S' x B3.  Under.the natural embedding of D in T, with D n d T  = dR, the 
interesting component of dD corresponds to r, as suggested in Fig. 12-3. 
Thicken T to a new copy of S' x B3 in which the interesting component 
of dD still corresponds to r and the uninteresting one to S' x (01. In 
W4 = (S' x B3) u h,  where h n (S' x B3)  is a regular neighborhood of r in 
S' x aB3 and where r = dB2 x (0)  c B2 x B2 = h,  define D as 

D = Q u B2 x (0) C Int W4, 

which is a 2-cell, as promised. 
In order to check that D is a pseudo-spine for W4, it is mainly necessary 

to observe that T collapses to Q, under an infinite sequence of collapses. 
Starting from the free side of 10, 11 x B2 x 10) c C3 x (01, these collapses 
deform around the S'-factor of the mapping torus, initially freeing the first 
translate under s of [0, 11 x B2 x (01, thereby allowing iteration of the 
process to proceed. To be specific, the initial step coincides with the image 
in T of the collapse 

([0, 11 X B2 X I )  L (L1 X I )  U ([0, 11 X B2 X (1)) U ((1) X B2 X I ) .  

Successive repetition yields 

W4 (S' x B3)  u D L T U  D L D u D = D. 

Althoughproperlythe last of theseisaninfinitecollapse, this possibleproblem 
causes no major complication, for the regular neighborhood theorem attests 
that, at any stage, the closed complement in W4 of a small regular neighbor- 
hood of the uncollapsed part is naturally homeomorphic to d W4 x [0, 11 = 
H 3  x [0, 11, and so, by straightforward construction, W4 - D is homeo- 
morphic to H 3  x [0, 1). Hence, D is a pseudo-spine for W4. 

Concluding Remark. The intermediate step taken here, proving W 4  has an 
arc as pseudo-spine, is not the only way to complete the proof of Theorem 3, 
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nor is it the most familiar. Another route, of comparable length and diffi- 
culty, involves a result of Bryant [ l ]  indicating directly that ( W 4 / G ~ )  x E' 
is homeomorphic to W4 x E l .  A thorough tracing of the latter path also 
requires addressing the flatness problem, similar to the one encountered in 
Proposition 2, of showing D x [O) to be a locally flat subset of W4 x E l .  

EXERCISES 

1. Let Tbe  a PL solid torus in S' x B2 having the curve r of Fig. 12-1 as centerline. 
Form a 4-manifold with boundary N 4  from S' x B2 x Z by homeomorphically 
identifying S' x B2 x (0) with T x (1). Show that there exists a topological 
embedding H :  S' x S' + N 4  which is a homotopy equivalence. 

2. Show that the manifold N 4  of Exercise 1 can be embedded in E4. 

Remark. Surprisingly, as pointed out in Eaton-Pixley-Venema [ 11, the 
embedding H :  S' x S' -, N 4  cannot be approximated by a PL embedding. 
Matsumoto [l] has shown that when N 4  is formed without twisting the 
matched solid tori, no inclusion of a PL torus S 1  x S' in N 4  is a homotopy 
equivalence. Hence, there exists a copy of S' x S' embedded in E 4  that 
cannot be approximated by PL embedded tori. 

13. APPLICATIONS OF THE LOCAL CONTRACTABILITY OF 
MANIFOLD HOMEOMORPHISM GROUPS 

Now that the shrinkability criterion has been exercised to develop useful 
results about manifolds, it is an appropriate time to organize the data 
concerning various notions of shrinkability. Shrinkable decompositions of 
manifolds are both strongly shrinkable and ideally shrinkable ; furthermore, 
shrinkable decompositions of manifolds can be realized by pseudo-isotopies. 
Establishing these statements is the main purpose of this section. The 
techniques marshaled for the task also reveal why certain subdecompositions 
of shrinkable decompositions are themselves shrinkable. 

The results derived here all are based on the important fact, proved by R. D. 
Edwards and R. C .  Kirby [I]  and independently by A. V. Cernavskii [ I ,  21, 
that the group of self-homeomorphisms defined on a manifold is locally 
contractible. To prove it, Edwards and Kirby state a preliminary technical 
result that readily applies to situations arising in the course of this section. 

Lemma (partial straightening, Edwards and Kirby [l ,  p. 701). Let k be 
an n-manifold, C a compact subset of M ,  V a compact neighborhood of C ,  
and E > 0. Let E denote the space of all embeddings of V in fi (with the sup- 
norm metric). Then there exists 6 > 0 such that, for  the 8-neighborhood P 
in E of the inclusion 17: V ---* fi, there is a homotopy 6,: P --t E and there is 
a compact neighborhood W of C in V such that, for all CY E P,  
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(a) +0(4 = a, 
(b) +r(s) = t7, 
(c) +1(a) I c = t7 I c, 
( 4  ~(41(a),a) < E ,  and 
(e) 

One should observe that for every (Y E P the homotopy +, in E engenders 
an isotopy qr: &f -+ &f moving no point as much as E ,  leaving points outside 
a( W )  fixed, starting at the identity, and, when restricted to a(C), ending at 
a-I. [Here qr(y)  = +f (a) (~- ' (y ) )  for y E a(V).] Particularly useful in the 
first two results here is I,U = qi', which is an &-homeomorphism of &f such 
that I,U 1 A?f - a ( V )  = Id 1 A? - a(V)  and I,U 1 C = (Y I C. The existence of the 
isotopy qt does not exploit the full strength of the local contractibility 
theorem, just something like the consequence that the group of homeo- 
morphisms is locally pathwise-connected. 

Theorem 1. Let G be a usc decomposition of an n-manifold M. Then G is 
shrinkable if and only if it is strongly shrinkable. 

Proof. Our argument deals only with the compact case of the nontrivial 
implication. 

Consider a G-saturated open cover U of M ,  an open set Wcontaining NG, 
and E > 0. Set X = M - W and find an open set K in M/G such that 
n ( X )  C Vl and n(g) E fi  implies diamg < &/3. Making a preliminary 
refinement, if necessary, assume that diam U < 4 3  whenever U E U and 
n(U)  n VI # 0. Determine another G-saturated open cover % of M that 
triple star-refines U. Name E* > 0 small enough that every &*-subset of M/G 
lies in some set n(Q, 13 E %. 

Apply normality to obtain open sets VZ,  V, , and v4 in M/G for which 

n ( X ) c  h C C 1 1 / 4 C  v , C C l V , C  h c c l v z c  K .  

Since G is shrinkable, M/G is a manifold; thus, in that manifold the partial 
straightening lemma yields 6* > 0 corresponding to C1 V, = V, C1 v4 = C,  
and E * .  Without loss of generality, we may assume 

6* < min(&*, p(n(X),  (M/G)  - G), p(C1 K+,  , (M/G) - K) 
for i = 1,2, 31. 

The shrinkability of G gives a homeomorphism F: M -+ M/G such that 

Find CY > 0 so that diam F-' (A)  < E when A C M/G and diamA < a. 
Again there exists a homeomorphism f: M -+ M/G such that p ( n , f )  < 
min(a/2,6*/2). Note that p(Ff - l ,  Id) < 6* and that diam f ( g )  < a for each 
g E G. 

&(a) I V - W = (Y 1 V - W. 

p(n, F )  < 6*/2. 
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By the partial straightening lemma, there exists an &*-homeomorphism 
v / :  M/C -+ M/G such that v/  I C1 v4 = Ff 1 Cl K and v /  I (M/G)  - 
Ff-'(V,) = Id. As a result, v /  I ( M / G )  - L5 = Id. 

Define h: M -+ M as h = F-ltyf. Triple star-refinement features of %, 
combined with the choices of E* and 6*, imply that h is %-close to IdM. 
Moreover, for x E X = M - W, f(x) E v4, implying that 

h(x) = F-'v/f(x) = F-'(Ff-')f(x) = X ,  

as required. 
Finally, it must be checked that h shrinks elements of G to small size. For 

g E G, there are two cases: 

Case 1 .  n(g) n K = 0. Then f(g) misses V, ,  so v /  1 f(g) = Id. Hence, 
diam v/f(g) < a, and diam h(g)  = diam F-'Wf(g) c E. 

n(g) E I4 . In this case, h(g) C St(g, U), and any U E U meeting 
g has diameter <&/3,  so diam h(g) < E. 

Reversing the roles of C = C1 K and V1 in the preceding argument leads 
to a valuable result about the shrinkability of subdecompositions. 

Theorem 2. Suppose G is a shrinkable decomposition of an n-manifold M ,  
C is a closed subset of M/G, and G(C)  is the decomposition of A4 induced 
over C (that is, 

Case 2. 

G(C) = (x- ' (c)  I c E C)  u Itx] 1 x E A4 - n-l(c))). 

Then G(C)  is shrinkable. 

Again we shall assume M to  be compact. Consider a C(C)- 
saturated open cover %C and E > 0. After refining UC, if necessary, we can 
suppose that each U E  UC intersecting n-'(C) is C-saturated, since any 
U E UC can be expressed as the union of U - n-'(C) and its maximal G- 
saturated subset. Thus, we can produce a G-saturated open cover U of M 
such that every U E U intersecting n-'(C) is also an element of 'UC. Let % 
be another G-saturated open cover of M that double star-refines %. 

Find E* > 0 small enough that every &*-subset of M/G lies in some n ( 6 ) ,  
0 E %, and let VI = St(C, TC(%)). Apply normality to obtain open sets VZ,  
K ,  and v4 in M/G such that 

cc  KCCC11/4C f i c c 1 V , c V , c c 1 L 5 c  6. 

Use the partial straightening lemma to obtain 6* > 0 corresponding to the 
open set (M/G) - C1 V, , closed set (M/G)  - VZ , and positive number &*/3. 
Without loss, 

6* < min(&*/3, p(C, (M/G) - K), p(M+1, (M/G) - K) ( i  = 1,2,3)). 

Proof. 
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Since G is shrinkable, there exists a homeomorphism F: M -+ M/G such 
that p(n, F)  < 6*/2 < & * I 3  and there exists another homeomorphism 
f :  M -+ M/G such that p(n, f) < min(a/2,6*/2), where, as before, a > 0 is 
chosen so A C M/G and diam A < a implies diam F-'(A) < E .  

By the partial straightening lemma, there exists a homeomorphism 
y: M / G  --* M/G such that y I (M/G) - VZ = Ff -' 1 (M/G) - b and 
tyl C1 6 = Id. Define h: M - * M a s  h = F-Iyf. 

To check that h shrinks elements of G(C) to small size, consider 
g = n-'(c), c E C .  Then fn-'(c) C v4 and diam fn-'(c) < a. As a result, 
h(g) = F-' f (g) ,  and diam h(g) < E .  

To check that h is Uc-close to IdM, there are two cases : x E M - n-'( 6) 
andx E n-'( K). In the first case, h(x) = x. In the second case, one computes 
first that p(n, nh) < &*, which implies that h is %-close to IdM. Thus, there 
exists 0 E % containing x and h(x); furthermore, there exists E % such 
that x E ox and ox n n-'(C) = 0. Since there exists U E 'U for which 

o x  u 0 c stcox, %) c u 

we see that U E 'UC and that h is Uc-close to IdM. 

Corollary 2A. If G is a usc decomposition of E" such that G x E' is a 
shrinkable decomposition of En+',  then the decomposition GO whose 
nondegenerate elements are the sets g x (01, g E H G ,  is also a shrinkable 
decomposition of En". 

Corollary 2B. Suppose G is a usc decomposition of a manifold M ,  C1 and 
CZ are closed subsets of M/G such that the decomposition G(C2) induced 
over Cz is shrinkable, and 0: M + M is a proper onto map realizing G(C1). 
Then B(G(C2)) is shrinkable. 

Proof. Assume M to be compact. Consider a 0(G(C2))-saturated open 
cover U of M and E > 0. 

Determine d > 0 small enough that the 0-image of every &set has diameter 
less than E .  

Find a compact subset Z of C2 - CI such that diam 0n-'(c) < ,513 for each 
c E C2 - Z. After expanding Z and refining U, if necessary, we can suppose 
that any U E U meeting 0n-'(C2 - Z) has diameter < ~ / 3 .  

According to  Theorem 2, the decomposition G(Z) induced by n : M 4 M/G 
over Z is shrinkable, because it coincides with the one induced over 112 n-'(Z) 
by 7r2: M-+ M/G(C2). By Theorem 1 ,  G(Z) is strongly shrinkable. Hence, 
there exist a homeomorphism h*: M +  M moving no points of ~ - ' ( C I ) ,  
shrinking elements of G(Z) to d-size, and staying B-'(%)-close to IdM. The 
homeomorphism h = Bh*0-' fulfills the requirements of thiscorollary. 
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Example. The result expressed in Theorem 2 is valid only in spaces like 
manifolds, in which the partial straightening lemma holds. Recall the space 
S of Examples 7.1 and 7.2. Because the circle JO is locally shrinkable in S, 
the decomposition G* of S x Zwith HG* = IJo x [ I )  1 t E I) is shrinkable, but 
decompositions induced over points of ~ ( N G * )  fail to  be shrinkable and 
nondegenerate elements of G* fail to be locally shrinkable in S x I. 

Theorem 3. A usc decomposition G of an n-manifold Misshrinkable if and 
only if it is ideally shrinkable. 

Proof. Assume G to be shrinkable. Given an open set W in M 
containing N G ,  express n(W)  as a monotone union of closed subsets 
Xl,Xz, ... o f M / G w i t h X j c  IntXj+l .SetC1 = X ~ a n d C j =  Xj- IntXj-1 
for j > 1. By Theorems 1 and 2, the decompositions G(Cj) induced over 
Cj are strongly shrinkable. Since no point of M/G belongs to more than 
two of the sets C', one can produce homeomorphisms hj shrinking 
the individual decompositions G(Cj) and also converging to a homeo- 
morphism h: M -+ M that shows G to be ideally shrinkable. Details are left 
as an exercise. 

This section closes with a result displaying the relationship between the 
shrinkability of manifold decompositions and the presence of pseudo- 
isotopies. During the classical period people often went to extra efforts to 
substantiate the existence of pseudo-isotopies realizing various shrinkable 
decompositions. In 1969 T. M. Price [2] proved that shrinkable decomposi- 
tions of 3-manifolds always could be realized in that manner. The result at 
hand does the same thing without any restriction on dimension. 

Theorem 4. Zf G is a shrinkable decomposition of a manifold M ,  then G 
can be realized as the end of a pseudo-isotopy. Furthermore, given any G- 
saturated open cover U of M ,  there exists a pseudo-isotopy 4: M x I --t M 
such thaf each path +([pj x I ) ,  p E M ,  is contained in some U E U. 

Proof (sketch). Assume that M is compact. Choose E > 0 small enough 
that each &-subset of M / G  lies in some n(U), U E U. For E ;  = &/2;+' apply 
the partial straightening lemma (with C = V = M/G) to obtain 6; > 0 such 
that every Gi-homeomorphism of M / G  t o  itself is Ei-isotopic to  Id,wG, and 
require & + I  < 6;. For i = 0, 1, ... find a homeomorphism hi: M -+ M / G  
such that p(n, hi) < G i / 2 .  Then hi+lhi-' is within 6; of IdM/G; con- 
sequently, there exists an &;-isotopy Of between IdM/G and hi+* hr'.  Define 
%: M -+ M/G with @O = ho and @ I  = TI by having trace out Bfh; on the 
interval [ l  - 2-', 1 - 2-('+')], and then define 4,: M --t M as +t = hii'@. 
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EXERCISES 

1. Prove that the conclusion of Theorem 2 does not hold in the space S x I of the 
Example. 

2. Let X be the decomposition space resulting from the decomposition of S x I 
having J, x (11 as its only nondegenerate elements. Show that there is a shrinkable 
decomposition of X that is not strongly shrinkable. 

3. Suppose G is a shrinkable decomposition of a (compact) manifold M and 2 is a 
countable (but not necessarily closed) subset of M / G  such that G(Z)  is USC. Show 
that G ( Z )  is shrinkable. (Hint: review Section 8.) 

4. Prove Theorem 3 .  
5. Let G be a usc decomposition of an n-manifold M such that M / G  is finite- 

dimensional and each n(g) E M / G  has a closed neighborhood C, for which the 
decomposition G(C,) induced over C, is shrinkable. Then G is shrinkable. 



CELL-LIKE 
DECOMPOSITIONS 
OF ABSOLUTE 
NEIGHBORHOOD RETRACTS 

Chapter I11 is relatively technical in nature and investigates certain 
properties preserved by those usc decompositions typically considered. Up 
to this point cellular decompositions, which have been the most prevalent, 
may have seemed to be the typical ones, but, due to the phenomenon treated 
in Section 10, one can see how other more general decompositions could be 
equally workable. The appropriate concept is that of a cell-like decomposi- 
tion, set forth in Section 15. Section 18 exposes the relationship between cell- 
likeness and cellularity for subsets of manifolds. 

The optimal setting for this investigation is the family of locally compact, 
metric, absolute neighborhood retracts (ANRs). For cell-like USC decompo- 
sitions of finite-dimensional ANRs, the decomposition spaces turn out to 
possess enough nice local properties to be ANRs, provided they are known 
to be finite-dimensional. The proviso raises the fundamental problem : could 
a cell-like decomposition raise dimension ? 

The indispensability of ANRs to the study of cell-like decompositions 
becomes manifest insection 17, where the equivalence between the dimension- 
raising problem and an ANR-preserving problem (in the finite-dimensional 
rea1m)isdemonstrated. Themost profoundamong thesectionsin thischapter, 
Section 17 also includes a proof of the strongest current result pertaining to 
the fundamental problem, dueto Kozlowskiand Walsh, whichattests that cell- 
like usc decompositions of 3-manifolds cannot raise dimension. 

113 
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14. ABSOLUTE RETRACTS AND ABSOLUTE 
NEIGHBORHOOD RETRACTS 

Simplicia1 complexes are composed from simple pieces according to a 
construction code whose rigidity imposes an axiomatic basis belonging more 
to the realm of geometry than to that of topology. Studied here is a more 
general class of spaces, the absolute neighborhood retracts, defined in purely 
topological terms. Included in this class are all finite-dimensional manifolds. 

Borsuk’s book [l]  provides a comprehensive treatment of absolute 
neighborhood retracts, a topic that threads throughout the fabric of 
geometric topology in general and decomposition theory in particular. The 
topic impinges upon infinite-dimensional manifolds in beautiful and 
powerful ways, as displayed in Chapman’s book [2]. 

A subset C of a space S is a retract (neighborhood retract) of S if there 
exists a retraction R of S to C (a retraction R’ to C defined on some neighbor- 
hood U of C ) .  

The significance attached to retract properties stems partially from their 
relationship to map extension properties. 

Proposition 1. A subspace C of a space S is a retract (neighborhood retract) 
of S if and only if each map f of C to an arbitrary space Y has a continuous 
extension F: S -+ Y (a continuous extension F’: U -+ Y defined on some 
neighborhood U of C in S ) .  

For one direction, the extension F equals fR; for the other, 
choose Y = C and f = Idc, and then the promised extension F is a 
retraction. 

Proposition 1 justifies defining absolute retract properties in terms of map 
extendability. Restricting ourselves to metric spaces, we say that a metric 
space Y is an absolute retract (abbreviated as AR) if, for each closed subset 
A of a metric space X ,  every map f: A -+ Y has a continuous extension 
F: X -+ Y ;  similarly, we say that Y is an absolute neighborhood retract 
(ANR) if every such map f: A + Y has a continuous extension F‘: U -+ Y 
defined on some neighborhood U of A in X .  

Proposition 2 (invariance). For any closed embedding e of an A R  (ANR) 
Y in a metric space X ,  e (Y)  is a retract (neighborhood retract) of X .  

Proof. Since e- l :  e( Y )  --* Y can be extended to F: X -+ Y, the retraction 
to e ( Y )  can be defined as R = eF. 

Note that each AR Y is necessarily contractible, since the map Y x 
i0, 11 --* Y defined as ( y ,  0) -+ y and ( y ,  1) -+ yo can be extended to 
4: Y x 1 4  Y, which must be a contraction. Other basic properties are listed 
below. 

Proof. 
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Theorem 3. (a) Every retract of an AR is an AR.  
(b) Every retract of an ANR is an ANR. 
(c) Every open subset of an ANR is an ANR.  
(d) The Cartesian product of any countable collection of ARs is an AR. 
(e) The Cartesian product of any finite collection of ANRs is an ANR. 

The Hilbert cube I” is an A R  ; the n-cube I“ is an A R  ; and Corollary 3A. 
the n-sphere S“ (n = 1,2,  . . .) is an ANR. 

Proof. View S“ as a retract of the punctured (n + 1)-cube. 

A space S is locally contractible at s E S if each neighborhood U of s 
contains a neighborhood V of s that contracts in U ;  S is locally contractible 
if it is locally contractible at each s E S .  This is just one among many 
properties that neighborhood retracts inherit from their overriding spaces. 

Proposition 4. Every neighborhood retract C of a locally contractible 
(respectively ; locally compact ; locally connected; locally path wise- 
connected) space S is itself locally contractible (respectively : locally 
compact, locaily connected, locally path wise-connected). 

Name a retraction R :  W -+ C defined on some neighborhood W 
of C, and consider an open subset U’ of C containing some c E C. Find an 
open subset U of S with c E U C Wand R(U)  C U‘. By definition of local 
contractibility, U contains a neighborhood V of c in S for which there exists 
a contraction dt  of Vin U. Then Rdr contracts V n  C in U’. 

Corollary 4A. Each compact ANR Y is locally contractible, locally 
connected, and locally path wise-connected. 

Proof. Apply Urysohn’s metrization theorem to embed Y in I”, and use 
Proposition 2. 

The abbreviations CAR and CANR will be used henceforth to represent 
the terms “compact absolute retract” and “compact absolute neighborhood 
retract,” respectively. 

Proposition 5. Let Y be a CANR and E > 0. There exists 6 > 0 such that, 
for any two maps ho, hl of an arbitrary space S to Y with p(ho, hl )  < 6 ,  
there is a homotopy H :  S x I -+ Y satisfying HO = ho, H I  = h l ,  and 
diam H((s) x I )  < E for  every s E S .  

Proof. Equate Y with a subset of I”, which is a retract of some neigh- 
borhood U under R : U -+ Y. Determine 6 > 0 so that N(C; 6) C U and that 
diam R(Z)  < E whenever Z C N(C; 6) has diameter less than 6. Given 
&close maps ho and hl , one can define Hr as the image under R of the straight 
line homotopy connecting them. 

Proof. 
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A subspace A of a space X has the homotopy extension property (HEP) 
in X with respect to a space Y if every map f :  ( A  X I )  u ( X  x (0))  + Y has 
a continuous extension F: X x I + Y ;  moreover, A has the absolute 
homotopy extension property (AHEP) in X if it has HEP in X with respect 
to every space Y .  Borsuk [l] derived the key result. 

Theorem 6 (homotopy extension). If A is a closed subset of a metricspace 
X ,  then A has HEP in X with respect to every ANR Y. 

Proof. Each m a p 8  (A x I )  u ( X  x (0))  + Y can be extended to a map 
f ': W + Y having a larger open subset W of X x Z as domain. Then A has 
a neighborhood V in X such that V x I C W. Urysohn's lemma provides a 
map u:  X +  I such that u(A) = ( 1) and u(X - V) = (0). The desired 
extension F: X x I +  Y can be defined as F((x ,  t ) )  = f ' ( ( x ,  t - u(x ) ) ) .  

Corollary6A. Suppose Yisan ANR, A isaclosedsubset of themetricspace 
X ,  and f o ,  f1: A -+ Y are homotopic maps. Then fo has a continuous 
extension Fo: X + Y if and only if f i  has a continuous extension F1 : X --* Y. 
Moreover, for each Fo: X + Y extending f ,  there exists a map Fl:  X + Y 
extending f1 such that FI is homotopic to Fo. 

Corollary 6B. Each contractible ANR is an A R .  

Proof. Given a map f o :  A --* Y defined on a closed subset A of a metric 
space X ,  note that the contractibility hypothesis implies f-, is homotopic to 
a constant mapping f l  : A + Y. Since the latter obviously extends over X ,  so 
does fo. 

Corollary 6C. E n  is an AR.  

Corollary 6D. If  A is a closed subspace of a metric space X and (A x I )  u 
( X  x (01) is a neighborhood retract of X x I ,  then A has AHEP in X .  

Corollary 6D is a consequence of the proof for Theorem 6 .  

Corollary 6E. Suppose Y is a CANR and E > 0. There exists 6 > 0 such 
that if fo is a map of a metric space X to Y, if fA is a map of A to Y such 
that p( fA , fo 1 A )  < 6,  where A is a closed subset of X ,  and i f  U is an open 
subset of X containing A ,  then there exists a homotopy H :  X x I + Y 
satisfying (1) HO = fo, (2) H I  1 A = fA , ( 3 )  H ( ( x ,  t )) = fo(x) for  every 
x E X - U,  and (4) diam H ( ( x )  x I )  < E for every x E X .  

The proof is left as an exercise. 
Now that the basic features of ANRs have been outlined, we shall 

investigate some devices for unmasking them. 
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Theorem I. Suppose that the metric space Y is the union of closed sets YI 
and % and that Yo = YI n fi. 

(a) If Yo, YI , and yZ are ANRs (ARs), then Y is an ANR (AR). 
(b) If Y and Yo are ANRs (ARs), then Yi and yZ are ANRs (ARs). 

Proof. Statement (b) is the easier to establish. In the AR case it suffices 
to find a retraction R of Y to, say, Y1. Because y0 is an AR, there is some 
retraction r of yZ to Yo, and r extends via the identity on Yl to the desired 
retraction R.  In the ANR case it can be derived in a similar fashion. 

For statement (a), consider a map f :  A -+ Y defined on a closed subset A 
of a metric space X .  We show how to extend f over a neighborhood of A in X .  

Define Ai as f - ' ( Z ) ,  i = 1,2, and A0 = A1 n A z .  Furthermore, define 

Xi = I X  E XI P ( X ,  A I )  5 P(X, A d ) ,  

X2 = IX E X 1 P(X, Az) 5 P(X ,  A I)], 

and 

X o  = X I  nX2. 

(See Fig. 14-1.) 
Since YO is an ANR, there exists a map fo: WO -+ Yo defined on a closed 

neighborhood WO of A0 in XO and extending f 1 A o .  In particular, there exists 
'an open subset UO of X with A. c VO and UO n XO c WO. 

Since Z is an ANR for i = 1,2, there exists a neighborhood Wl of WO u Ai 
in Xi and there exists a mapfi: K -+ X extending fo u ( f  I Ai). Restrictions of 
f l  and f2 combine to give a map from [ WI - (XO - UO)] u [ WZ - (XO - UO)] 
to Y, and inspection reveals this domain to be an open subset containing 
A .  

Corollary IA. 

Corollary 7B. 
ANR, then A has AHEP in Y. 

Every finite simplicia1 complex is an ANR. 

If Y is an ANR and A is a closed subset of Y that is also an 

Proof. With the support of Theorem 3,  which indicates that A x Zis an 
ANR, Theorem 7 shows (Y x (0)) u (A x I )  to be an ANR, and Corollary 
6D does the rest. 

Corollary IC. If K is a finite simplicia1 complex and L is a (finite) 
subcomplex, then L has AHEP in K.  

Theorem 8. Every compact, locally contractible subset Y of E n  is an ANR. 
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FIG. 14-1 

Proof. It suffices to show that Y is a retract of some open subset of E". 
As a preliminary step, to convey the idea of the proof, we explain how this 
is almost the case, in that for every E > 0 there exist an open set W, 
containing Y and a map m: We + Y for which p(y, m(y))  < E ,  y E Y. 

The local contractibility and compactness of Y imply that for every 6 > 0 
there exists q(6) > 0 such that every q(d)-subset of Y is contractible in a 6- 
subset of Y. Start with 60 = ~ / 3  and recursively define 6i = q(6i-1)/3 for 
i E (1, ..., n). 

Triangulate En with simplexes of diameter less than 6" and let W denote 
the union of all simplexes meeting Y. Then W contains an open set about Y. 

Construct successive maps w k :  W'k) 4 Y, defined on the k-skeleton W(k) 
of W, as follows: 

For u E W'O', set w0(u) = y ,  where y E Y and p(y, v) < 6,. This is pos- 
sible because of the small mesh of the triangulation and the definition 
of w. 
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For any 1-simplex 0 of W, yo I do sends au into a 36, = q & ~ )  subset of 
Y. Due to the choice of q(6,-,), tyo 1 aa can be extended to a map of 0 into 
a 6n-l-subset of Y. The compilation of all these extensions is wl. 

For the iterative step, suppose tyk: W(k)  --* Y (where 1 5 k < n) has been 
determined so that tyk(r) is contained in a B,-k-subset of Y, where r denotes 
any k-simplex of W. Consider a (k + 1)-simplex y of W. Specify some 
k-simplex r, of Win ay.  Then every other k-simplex r$ of W in a y  satisfies 
tyk(r$) C N(tyk(r,); a n - k ) .  Hence, diam w k ( a y )  < 36,-k = q(&-(k+l)). By 
choice of t ,+L-(k+l ) ) ,  tyk extends to a map t y k + ’ :  -+ Y such that 
diam t y k + l ( y )  < Bn-(k+ 11, for every (k + 1)-simplex y .  

The desired map m: W -+ Y is ty”. For w E W, find a simplex u in W with 
w E 0 and choose a vertex u E u. Then 

< 6, + 6, + 60 5 360 = E .  

In order to retool this machinery for the theorem at hand, triangulate 
W - Y so that diameters of simplexes go to  zero near Y. Then, in the manner 
above, carefully build a map m’: W - Y - +  Y, working up through the 
various skeleta. In order to extend m‘ via the identity to provide a retraction 
of W to  Y, the only additional item needed is a rule demanding efficiency: 
if u if a vertex of W - Y, choose m’(u) so that p(u, m’(u)) = p(u, Y ) ;  if 0 is 
a k-simplex (k  > 0) of W - Y, and if d is the greatest lower bound of the 
diameters of all contractions of m’(do) in Y,  then choose m’ so 
diamm‘(a) 5 2d. 

Corollary 8A. Every finite-dimensional, locally contractible, compact 
metric space is an ANR. 

Corollary 8B. Every compact n-manifold is an ANR. 

Finite-dimensionality stands as an essential hypothesis in Corollary 8A. 
Borsuk has described an example of a compact, locally contractible subset 
2 of I” that cannot be an ANR because, for each n > 0, 2 retracts to  some 
n-sphere, which is prohibited on homological grounds. 

EXERCISES 

1. Show that every locally compact, separable ANR can be embedded in I” so that 

2. Prove Corollary 6E. 
3. Show that every ANR is locally contractible. 

its image is a retract of some open subset of I”. 
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4. Suppose x and f i  are closed subsets of the metric space Y such that Y = Y, u yZ 

5. Suppose UI and U2 are open subsets of a metric space and that U1 and U2 are 
and that X , fi, and x n fi are ARs. Prove that Y is an AR. 

ANRs. Show that U1 u U2 is an ANR. 

15. CELL-LIKE SETS 

A compact subset C of a space Xis cell-like in X if, for each neighborhood 
Uof Cin X ,  Ccan be contracted to a point in I/. For instance, the Whitehead 
continuum, Example 9.7, is cell-like in E 3 .  The fact that it is not cellular in 
E 3  separates the concepts of cell-likeness and cellularity . 
Lemma 1. Suppose the metric space X contains a compact subset C that 
is cell-like in Xand e is an embedding of C in an ANR Y .  Then e(C) is cell-like 
in Y. 

Let U be a neighborhood of e(C) in Y. Since Y is an ANR, there 
exist a neighborhood V of C in X and a map &: V -, U extending e. Name 
a contraction qh of C in V. Then $bfe-’ provides a contraction of e(C) 
in U. W 

Thus, unlike cellularity, which depends on the embedding, the property of 
being cell-like is invariant under embeddings in ANRs. It makes sense to 
define cell-likeness in absolute terms. 

A compact metric space C is cell-like if, for every embedding e of C in an 
ANR Y, e(C) is cell-like in Y. This should not be confused with the term 
“pointlike,” which pertains to embeddings. Cell-likeness is equivalent to the 
shape theory concept of having the shape of a point. 

Proposition 2. A compact metric space C is cell-like if and onlj if it can 
be embedded as a cell-like subset of some metric space X .  

Corollary 2A. Each compact, contractible, metric space is cell-like. 

Corollary 2B. Each cellular subset of a manifold is cell-like. 

Proof. 

Next, a homotopy-theoretic characterization. 

Theorem 3. A compact metric space C is cell-like if and only if every map 
f of C into an ANR Y is homotopic to a constant. 

Proof. (a) Since C is compact metric, there is an embedding e of C in 
the Hilbert cube I”, and e(C) is cell-like in I” by definition. Consider a map 
f of Cinto an ANR Y. There exist a neighborhood Vof e(C) in I” and a map 
F: V -, Y extending fe-’. A contraction dt of e(C) in Vleads to a homotopy 
Fc#q e between f and the constant map Fqh e. 
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( I) Suppose h is an embedding of C in an ANR Y and U is a neighbor- 
hood of h(C)  in Y. Since U is also an ANR, by hypothesis h is homotopic 
in U to a constant, which means that h(C) is contractible in U. 

Corollary 3A. A CANR is cell-like if and only i f  it is contractible. 

Proposition 4. Let C denote a compact subset of an ANR Y. Then C is cell- 
like in Y if and only i f ,  for each neighborhood U of C, some neighborhood 
V of C in U is contractible in U .  

Proof. Suppose C is cell-like in Y and U is a neighborhood of C in Y. 
Let +t denote a contraction of C in U. Define a mapf: A + U on the closed 
subsetA = (C x I )  u (U x (0, 1j)of U x I a s  f (Cu,  0 ) )  = uand f ( < u ,  I ) )  = 
c$~(C)  = point for u E U and as f ( < c ,  t ) )  = c$~(c) for c E C. Since U is also 
an ANR, f extends to a map F: W --* U defined on a neighborhood W of A 
in U x I .  Then C has a neighborhood Vwith V x Z C W, and F 1 V x Zacts 
as the desired contraction of V. 

The other implication is obvious. 

Corollary 4A. r f C  is a cell-like subset of E" (n  > 1) and U is a connected 
open set containing C ,  then U - C is connected. 

Proof. According to Hurewicz-Wallman [ l ,  p. 1001, a compact subset 
of E" separates En if and only if it admits a map to S"-' that is not null 
homotopic. Thus, E" - C is connected. Use the diagram below to verify 
Ro(U - C )  = 0. 

Hi(U, U - C )  __* Ho(U - C )  - Ho(U) =O. 
I (excision) I 

0 s Hl(E") ---+ Hl(E", E n  - C )  - Bo(E" - C )  0. 

Corollary 4B. If C is a cell-like subset of an n-manifold M (n  > 1) and V 
is a connected open subset of M containing C,  then V - C is connected. 

The relevant portion of the homology sequence for the pair 
(V,  V - C )  is just 

Proof. 

Hl(V, Y -  C )  + Ro(V - C )  -+ RO(V) z 0, 

which reveals the sufficiency of showing that HI(  V, V - C) = 0. By duality 
(see Spanier [l,  p. 3421) H1(V, V - C) = @-'(C). It follows quickly from 
the definition of cell-likeness that f iF'(C) = 0 ;  alternately, it follows from 
Exercise 15.4 that C is homeomorphic to a cellular subset C* of some 
Euclidean space Em ( m  2 n)  and from duality again that 

@-'(C) H m + l - n ( E m ,  E m  - C*)  Hm+l-n(Em, Em - origin) 0.  
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Corollary 4C. Each cell-like subset C of a 2-manifold M is cellular in M. 

Proof. This argument pertains to the case M = E2.  The general case will 
follow by lifting a neighborhood Vof C in M t o  an open subset v in  A?, the 
universal cover of M ,  which must be topologically E2 or S2. Cellularity of 
the lifted copy of C in v will imply cellularity of C in M. 

Let U denote an arbitrary neighborhood of C in E2.  Find a smaller 
neighborhood V of C that contracts in U, and then build a compact 
2-manifold with boundary H in E 2  such that C C Int H C H C V, dH is 
polygonal, and Int H i s  connected. If dHis connected, the planar Schonflies 
theorem will imply that H is a 2-cell, as required for cellularity. If dH fails 
to be connected, cut away at H until the boundary is connected. This is 
possible because, by Corollary 4A, H - C is connected, so a polygonal arc 
can be strung through H . -  C from one component of dH to another and 
carefully thickened to a disk D so that H' = CI(H - 0) is a compact 
2-manifold with boundary such that dH' is polygonal and Int H' is 
connected but that dH' has fewer components than dH. Eventually this 
yields a 2-cell B satisfying C C Int B C B C U. 

The final corollary records the cohomological property used in proving 
Corollary 4B. 

Corollary 4D. If C is a cell-like set, then I?*(C) E 0 (cech cohomology, 
with any coefficient group). 

Theorem 5.  If C is a shrinkable usc decomposition of a locally contractible 
metric space S ,  then each g E G is cell-like in S .  

Were local contractibility a topological property of certain open sets in 
themselves rather than of their inclusion into larger sets, this would be a 
direct consequence of Proposition 5.12. Nevertheless, the proof fits right into 
the pattern for Proposition 5.11, with an extra detail. 

Proof. Fix go E G and a neighborhood W of go in S .  As before, there 
exist open subsets U1, U Z ,  and U3 of S/G such that n-'(Ul) C Wand 

n(g) E Ui+I c Ui+1 c Ui (i = 1,2). 

Let 'U denote the G-saturated open cover of S specified as 

[ S  - n-l(U2), n-'(U1 - &), f ' (U2)  - go,  n-l(U3)J. 

For each s E S find a neighborhood V, of s that is contractible in some 
U E 'U. Apply the shrinkability hypothesis to obtain a homeomorphism 
h: S --+ S limited by U and shrinking G to size V = [V, I s E S ] .  Thus, there 
exist V E V and U E U such that h(go) c V and V is contractible in U; 
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as a result, go C h- ' (V)  and h- ' (V)  is contractible in h-'(U).  All that 
remains is the verification, exactly like the one given to prove Proposition 
5.11, that h-'(U) c W. 

The pertinence of cell-likeness to decomposition theory is signaled by the 
two corollaries below. 

Corollary 5A. If G isashrinkable usc decomposition of an ANR, then each 
g E G is cell-like. 

Corollary 5B. If G is a usc decomposition of an n-manifold M such that 
G x Ek is a shrinkable decomposition of M x Ek for some integer k ,  then 
each g E G is cell-like. 

EXERCISES 

1. Show that the product of any finite or countable collection of cell-like spaces is 

2. I f  X1 and X2 are cell-like subsets of the Hilbert cube I" such that X1 n X2 is a 

3. Show that the suspension of any cell-like space is cell-like. 
4. Show that each cell-like subset of En admits a cellular embedding in some 

Euclidean space Em where m 2 n .  
5.  I f  X is a compact, connected subset of E2 such that E2 - X i s  connected, then 

X is cellular. 
6 .  Let f: Wl --* W2 be a proper surjective map between two n-manifolds with 

boundary such that f-'(a W2) = d W1 and f I Int Wl is 1-1. Then f is cell-like. 

cell-like. 

point, then X I  u X2 is cell-like. 

16. UV PROPERTIES AND DECOMPOSITIONS 

The cell-like property can be refracted prismatically to bring to light an 
infinite family of related properties, which were introduced and first 
analyzed by S .  Armentrout [2,3]. The setting requires a space X ,  a subset 
A ,  and a nonnegative integer n. Then A has Property n - UY in X if to 
each neighborhood Uof A in X there corresponds another neighborhood 
Vof A in Usuch that every map of aB"+' into Vextends to a map of B"+' 
into U ;  A has Property UV" in X if it has Property k - UY in X for 
k E (0, 1, ..., n) ;  and A has Property UV" i nXi f  it has Property k - UV 
in X for all integers k 2 0. 

Proposition 1. Every cell-like subset A of an ANR Y has Property UV" 
in Y. 

Proposition 15.4 makes this obvious. Almost as obvious, in view of 
methods exploited early in Sections 14 and 15, is the invariance result. 
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Proposition 2. Suppose the compact subset A of an ANR K has Property 
n - UV in K and e is an embedding of A in another ANR rt . Then e(A) 
has Property n - UV in Y2. 

Proof. For any neighborhood U of e(A) in yZ , the hypothesis that r2 is 
an ANR provides a neighborhood U' of A in K and a map f :  U' + U 
extending e. Then U' contains a neighborhood V' of A fulfilling the 
condition expressed as Property n - UV. The fact that V' is also an ANR 
leads in turn to a neighborhood V* of e(A) in U and a map f ' :  V* -+ V' 
extending e-': e(A) +A.  

Let Z denote the closed subset (A x I )  u (V* x [O, 1)) of X = V* x Z, and 
let h: Z + Udenote the map defined as h(( u, 0)) = u, h((u ,  1 )) = f f  ' (u )  for 
u E V * and ash( (e(a), t )) = e(a) for a E A and t E I. Then h extends to a map 
h : W -+ Udefined on a neighborhood Wof Z in X = V * x I. As a result, V * 
contains another neighborhood Vof e(A) such that V x I C W, which means 
that f f  ' I Vis homotopic in U, under h I V x Z, to the inclusion map V -, U. 

Consider amapp: aBnfl -+ V. Because f ' p :  aB"" + V' extends toamap 
F':  B"" -+ U', ff'pc: dB"+' -+ Uextends to fF ' :  B"" -+ U. Moreover, f f ' p  
is homotopic in U to p,  which implies p is null homotopic in U, as 
required. 

Corollary 2A. Suppose the compact subset A of an ANR Yj has Property 
UV" ( UVw)  in K and e is an embedding of A in another ANR rt . Then e(A) 
has Property UV" ( UVw) in yZ . 

Just as we did with cell-likeness, we reformulate these properties in 
absolute terms. A compact metric space A is said to have Property n - UY 
(Property UV" ; Property UV"') provided e(A) has the appropriate property 
in Y, under every embedding e of A in every ANR Y. 

In reasonable spaces the simplest property, Property UVo,  is equivalent 
to connectedness. 

Proposition 3. Suppose X i s  a locally path wise-connected Hausdorff space 
and A is a compact subspace. Then A has Property UVo  in X if and only 
if A is connected. 

The proof is an exercise. 

Corollary 3A. Every cell-like set is connected. 

Theorem 4. Suppose A is a compact subset of a metric space X such that 
A has Property UV" in X ,  and suppose U is a neighborhood of A. Then there 
exists a neighborhood V of A in U such that, f o r  every map f :  K -+ V of an 
n-dimensional finite simplicia1 complex K,  f is homotopic in U to a constant 
map. 
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Proof. Because A satisfies Property UV" in X, there exists a finite 
sequence V , + l  3 V, 3 ... 3 Vk 3 VO of neighborhoods of A ,  each one in 
U, such that every map of dBk+' into vk (0 I k I n)  extends to a map of 

into Vk+l. Set V = VO. 
Given a map f of a finite n-complex K into V, we shall explain how to 

extend f to a map F o f  the cone CK on K into U. If L denotes a subcomplex 
of K ,  we shall use CL to denote the cone on L ,  naturally embedded as a 
subcone of cK, and for k E (0, 1 ,  ..., n )  we shall use to represent the 
k-skeleton of K .  

Let MO = K u  [c)  (where K is equated with the base of cK) and 
Mk = K U c K ( ~ - ' )  (k  > 0). Extend f: K + V to fo: MO + VO by arbitrarily 
choosing fo(c) E VO. Assuming fk is a map of Mk into K ,  obtain a map 
f k + l :  Mk+l -+ ? 4 + 1  extending fk as follows: each t~ E Mk+l not in Mk is a 
(k + 1)-cell and fk is defined on da, sending it into yk; the extensions over 
the various simplexes 0, promised in the above description of the neigh- 
borhoods 6, fit together neatly as such a map f k + l .  The final map fn+l 
provides a homotopy in V,+1 C U between f and the constant mapping 
K +fo(c). W 

Corollary 4A. If the compact subset A of a simplicia1 n-complex has 
Property UV", then A is cell-like. 

Corollary 4B. If the compact subset A of E n  has Property UV", then A is 
cell-like. 

Corollary 4C. A compact subset A of E" is cell-like if and only i f  A has 
Property UV' and Hq(A; Z) z 0 (cech homology) for  q > 0. 

Proof. The elementary forward implication involves, in part, a 
homological version of Corollary 14.4D. The reverse implication depends on 
the following Hurewicz theorem from Lacher [ l ]  : if A has Property UVk-' 
and &(A; Z) = 0 (k  2 2), then A has Property UVk.  

Proposition 5. A CANR Y has Property UV" if and only if Y is 
n-connected. 

Proof. Let e be an embedding of Y in I". Since e ( Y )  is an ANR, there 
exists a retraction r:  U + e( Y )  defined on some neighborhood U of e( Y ) .  

Suppose Y has Property UV", and consider a map f :  dBk+' + Y. The 
definition of Property UV" implies the existence of a map F: Bk+' --f U 
extending ef. Then e-'rF: Bk+l + Y extends f. 

Conversely, suppose Y is n-connected. The crux of the implication is that 
each neighborhood U' of e( Y )  contains a smaller neighborhood V' of e( Y )  
such that the inclusion V' - U' and rl V' are homotopic in U' (via the 
straight-line homotopy). One can show that a given mapf: dBk+' .+ V '  is 

Bk+l 



126 Il l .  Cell-Like Decompositions of Absolute Neighborhood Retracts 

homotopic to a constant in U' by first running through this homotopy to rf 
and then, invoking the n-connectedness of Y, finding another homotopy in 
e ( Y )  between rf and a constant map. 

Returning to the subject of decompositions, as usual we call a usc 
decomposition G of a space S a UV" decomposition if each g E G has 
Property UV" in S .  Although parallelity suggests that a cell-like decom- 
position G of S should be one in which each g E G is cell-like in S ,  that is 
not the way this fundamental concept will be treated. Instead, by a cell-like 
decomposition G of a metric space X we mean a usc decomposition G of X 
such that every g E G is a cell-like set. Of course, in case G is a cell-like 
decomposition of an ANR X ,  then each g E G necessarily is cell-like in X .  

Armentrout and T. M. Price [ 11 developed virtually all the material to be 
presented in what remains of Section 16. Following their lead, we find it a 
convenient technical abbreviation to speak of a collection W of subsets from 
a space S as an n-homotopy star-refinement of another collection U of 
subsets if, for each W E  W, there exists U E U such that 

W 

(i) St(W, W) c U and 
(ii) every map f: Mk+' -, St(W, W) extends to a map F: Bk+' + U 

(k = 0,  1, ..., n) .  

Standard refinement operations settle the result below. 

Lemma 6. Suppose X is a metric space, G is a UV" decomposition of X ,  
Z is a subset of X / G ,  and U is a cover of Z by open subsets of X / G .  Then 
there exists another cover W of Z by open subsets of X / G  such that n-'(W) 
n-homotopy star-refines n- (U). 

Lemma 6 aids in showing that whenever G satisfies certain UV Properties 
then n: X +  X / G  behaves, to a limited extent, approximately like a 
fibration. The proof of this, given for the ensuing theorem, represents the 
central technique of this- section. 

Theorem 7 (approximate lifting). Suppose X is a metric space; G is a 
UV"-' decomposition (n 1 1) of X ;  K is afinite simplicia1 n-complex; L is 
asubcomplexofK; f i s a m a p o f K t o X / G ;  F ~ i s a m a p o f L  toxsuchthat  
~ F L =  f l L ; a n d E > O .  

Then there exists a map F K -+ X such that p(f ,  nF) < E and F 1 L = FL . 
Proof. For each z E f ( K )  there exists a G-saturated open subset U, of X 

such that z E n(UJ and diam n(U,) c d 2 .  This generates a G-saturated 
open cover U n  = [ U, I z E f ( K ) )  of n- ' f (K) .  Repeated application of Lemma 
6 provides successive open covers U n - 1 ,  ..., U1, 210 of n-*f(K) by 
G-saturated open subsets of X such that Ui (n - 1)-homotopy star-refines 
Ui+l ( i  = 0,  1, ..., n - 1). 
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Subdivide K into simplexes so small that to each Q in the new complex, still 
denoted as K ,  there corresponds U," E UO with f(a) C n(U,"). We shall 
produce successive extensions FO , FI , . . . , F n  of FL , where F;. is a map defined 
on L and the i-skeleton of K ,  such that nA is close to f, appropriately 
restricted. 

First, extend FL across L u K(O) to a map FO such that for u E K(O) nFo(u) = 
f ( u ) .  Given a 1-simplex Q of K and the promised U," E UO for which 
f(a) C n(U:), we see that Fo(da) C U,". Because UO ( n  - 1)-homotopy star- 
refines X I ,  FO extends to a map F1 of L u K(' )  into X such that Fl I aa = 

FO I da and Fl(o) lies in some element of Ul , for every 1-simplex a in K .  
Suppose inductively we have defined f i  on L u K") so that f i  1 L u K(O) = F 0 

and that for every a E K(') there exists U: E Ui for which A(a) c U:. In order 
to extend A to a map f i + ~ :  L u K('+') -+ X ,  consider T E K('+') - K'": fix 
a simplex y in dr, find U$ E Ui with E ( y )  C U$, note that F;(as) c St(U;, Ui), 
and apply the prearranged fact that Ui (n - 1)-homotopy star-refines %;+I 

to produce E+I,  where E+I 1 T satisfies f i + l l  87 = F; 1 a T  and F ; + I ( T )  lies in 
some element of % + I .  

The desired map F: K -+ X i s  the final map F,. Yet to  be shown, however, 
is that nFis close to$ Consider a point x in Kand a simplex Q with x E Q E K .  
By construction, F(a) c U," E U,, which forces diam nF(o) < ~ / 2 .  
Furthermore, there exists U E Un such that f(o) C n(U) ,  so diam f (o)  < ~ / 2  
as well. Choose a vertex v of Q and recall that nF(u) = f ( u ) .  This yields 

A pair (A 1 ,  A2) of subspaces of a space S ,  where A2 C A 1, is said to be 
n-connected if, for each map$ (Bk, dBk) -+ ( A  1 ,  Az), where k E lo, 1, . . . , n) ,  
there is a homotopy Ht: (Bk, dBk) -+ (AI ,  A2) such that HO = f and 
Hl(Bk) c A2. 

Corollary 7A. Suppose X is a metric space, G is a UV" decomposition of 
X ,  and W1, W2 are open subsets of X / G  with W2 c WI and (Wl , WZ) 
n-connected. Then (n-l( Wi), n-'( W2)) is n-connected. 

Given a UV"-' decomposition G of Xand  a map f of an n-complex K into 
X / G ,  one learns from Theorem 7 how to find a map F: K -+ X such that nF 
is close tof. If G is a UV" decomposition of X ,  one can find F: K -+ Xsuch 
that not only is nFc1os.e to f but it is homotopic to f under a homotopy that 
stays close tof .  

Theorem 8. Suppose X is a metric space; G is a UV" decomposition of X ;  
K is a finite simplicia1 n-complex; L is a subcomplex of K ;  f is a map of K 
into X/G, FL is a map of L to X such that RFL = f I L ; and E > 0. 
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Then there exists a map F of K to X with FI L = FL and there exists a 
homotopy Ht of K in X/G such that HO = nF, H I  = ft Ht I L = f 1 L ,  and 
p(f ,  Ht) < E for all t E [0, 11. 

The lemma below supplies the main ingredient for the proof. 

Lemma 9. Under the hypotheses of Theorem 8,  thereexists6 > Osuch that, 
for any two maps Q O ,  a1 of K in X extending FL with p(f,  xai) < 6 for 
i E (0, 11, there is a homotopy hi of K in X satisfying 

(a) ho = U O ,  

(b) hi = U I ,  

(c) ht I L = FL , and 
(d) p ( f ,  Zhr) < E for all t E [0, 11. 

The argument establishing the lemma is based on the same techniques used 
to establish Theorem 7. With Lemma 9 in hand, the proof of Theorem 8 
proceeds like the one showing the point a E A C S [with a E Cl(S - A)] to 
be pathwise-accessible from S - A if S - A is locally pathwise-connected at 
a;  this argument was outlined earlier in Theorem 13.4. 

Theorem 10. Suppose X is a metric space; G is a UV" decomposition of 
X ;  W is an open subset of X /G  ; P: X -+ X/G represents the projection map ; 
and w E P-'(W). Then P*: nk(P-'(W), w )  + Z k ( w ,  P(w)) is an iso- 
morphism for k E (0, 1, ..., n].  

Proof. To see that P* is onto, name a map p:  aBktl -+ Wsending base 
points E aBk+'toP(w). ByTheorem8thereexistsamapP: aBkf' + P-'(W) 
sending s to w such that Pp is homotopic to p in W. Thus, P*[p] = [p]. To 
see that P* is one-to-one, consider a map F: (aBk+', s) --t (P-'( W ) ,  w )  such 
that P*[F] is trivial. Then PF extends to a map f of Bk+' to W, and by 
Theorem 7, f lifts (approximately) to a map F' of Bk+' to P-'( W )  such that 
F' 1 aBk+' = F, indicating that [F]  is trivial. 

Corollary 10A. Suppose X is a metric space; G is a UV" decomposition of 
X ;  P: X -+ X/Gdenotesthedecompositionmap; Wisanopensubset o fX/G;  
w E P-'( W ) ;  and k is a nonnegative integer. Then P*: nk(P-*( W ) ,  w) + 

Rk(  W, P(w)) is an isomorphism. 

Corollary 10B. Suppose Y is an ANR ; G is a cell-like decomposition of Y ;  
P :  Y + Y/G denotes the decomposition map; W is an open subset of Y / G ;  
w E P-'(W);  and k is a nonnegative integer. Then P*: nk(P-'(W), w) -+ 
Z k (  W, P(w)) is an isomorphism. 

The UV properties offer a convenient framework for describing certain 
other local properties. We say that a space S is locally n-connected, 
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abbreviated as LC", if each points E S has Property UV" in S ;  we also write 
that S is n - LC or LC" if the analogous UVProperty holds for each s E S. 

Theorem 11. Zf G is a UV" decomposition of a metric space X ,  then X / G  
is LC". 

This is an easy consequence of Theorem 8. 

Corollary 11A. Zf G isa UV" decomposition of a metricspace X ,  then X / G  
is LC". 

Corollary 11B. Zf G is a cell-like decomposition of an ANR Y, then Y / G  
is LC". 

A glance back to the proof of Theorem 14.8 will reveal that it actually 
confirms the stronger statement below. 

Theorem 12. I f A  is a compact Len-'  subset of E n  or of any simplicial n- 
complex, then A is an ANR. 

Corollary 12A. If G is a UV" decomposition of a CANR Y such that Y / G  
is finite-dimensional, then Y / G  is an ANR. 

Corollary 12B. Zf G is a cell-like decomposition of a (locally) compact ANR 
Y such that Y /G  is finite-dimensional, then Y /G is an ANR. 

EXERCISES 

1. Prove Proposition 3. 
2. Prove Theorem 8. 
3. Suppose K is a finite simplicial n-complex with the fixed point property and G is 

a UV-' decomposition of K. Show that K/G also has the fixed point property. 
4. Show that every map of a simplicial n-complex K to an n-connected space X i s  

null homotopic. 
5 .  Suppose C is a UV" decomposition of a CAR Y such that Y/C is finite- 

dimensional. Show that Y/G is a CAR. 

17. CELL-LIKE DECOMPOSITIONS AND DIMENSION 

Consider a USC decomposition G of a locally compact ANR Y. Under what 
conditions will Y / G  also be an ANR? First principles (Section 5 )  indicate it 
will be if G is shrinkable, but that is a rather unsatisfactory answer, for 
shrinkability is an exceedingly strong property. On one hand it is very 
difficult to detect and on the other, as we shall see, it is unduly restrictive. 
A better answer is derived in this section : Y/G is an ANR in case G is cell-like 
and Y/G is finite-dimensional. This brings up another issue : if Y is finite- 
dimensional, when will Y/G also be finite-dimensional ? 
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Our investigation into these questions begins with a look at the setting 
where both Y and Y/G are ANRs and involves a useful notion of controlled 
homotopy equivalence. A decomposition map n: X -+ X / G  is said to be a 
fine homotopy equivalence if, for each open cover W of X/G,  there exists 
a map F:  X / G  -+ X such that RF is 181-homotopic to the identity [which 
means there exists a homotopy hi between nF and Idx/c such that, for each 
z E X / G ,  some W, E W contains ht(z) for all t ]  and that Fn is n-l(W)- 
homotopic to Idx. In case X is compact and metric, this translates into the 
assertion that for every E > 0 there is a map F: X / G  -+ X such that nF is 
e-homotopic to Idx/c and Fn is connected to Idx via a homotopy Hr for which 
nHr is an E-homotopy. 

The tie with cell-like decompositions is exposed in the following result, 
originally developed by G .  Kozlowski [l]  and W. E. Haver [l]. 

Theorem 1.  Suppose Y and Y/G are locally compact ANRs, where G is a 
usc decomposition of Y. Then G is cell-like if and only if the decomposition 
map n: Y -+ Y / G  is a fine homotopy equivalence. 

Suppose R is a fine homotopy equivalence. Fix g E G and an open 
subset U of Y containing g. Without loss of generality, U is G-saturated. 
Using the open cover W = (n(U),  Y/G - n(g)j of Y / G ,  apply the hypo- 
thesis to determine a map F: Y/G -, Y such that FR is n-’(W)-homotopic 
to Idy via a homotopy ht: Y + Y satisfying ho = Idy and hl = Fn. Then 
hr I g acts as a contraction of g = ho(g) to the point Fn(g) and ht(g)  c U for 
each t E I ,  which shows g to be cell-like in Y. 

Next suppose that G is cell-like. We consider only the case in which Y is 
compact. The central idea in the proof can be isolated by regarding both Y 
and Y / G  as simplicia1 complexes, for then Theorem 16.7 quickly provides 
a lift F: Y/G -+ Y, with nFclose to Idylc. When it is sufficiently close, nF 
is E-homotopic to IdY/G, forcing nFn to be e-homotopic to n as well, and 
then their two lifts Fn and Idy have projections so close to n that, according 
to Lemma 16.9, they are connected in Y by a homotopy whose image under 
n moves points less than E .  

Growing out of this idea, the argument for arbitrary CANRs imposes, in 
addition, a kind of double-entry bookkeeping to account for the way a 
CANR can be replaced by, or treated as, a simplicial complex. 

Lemma 2 (tube lemma). Suppose S is a compact subset of I” and q > 0. 
Then there exist an integer k > 0 and a finite simplicial complex P in 
1- 1 ,  l I k  such that 

s C p X Qk C N(S; v ) ,  
where Qk denotes the product of all but the first k [- 1 ,  11-factors in I”. 

Proof. 
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Proof. After covering S by basic open subsets of I” in N(S; q), one 
invokes compactness to transform the problem at hand into an analogous 
problem for S C [- 1, 1Ik. 

Continuing with the proof that n is a fine homotopy equivalence, we 
arrange Y and Y/G as embedded subsets of I”.  Being ANRs, they have closed 
neighborhoods U and U’ there, endowed with retractions r :  U --* Y and 
r ’ :  U’ -+ Y / G .  

Let E > 0. Find y > 0 such that diam n(A) < e/8 whenever A c Y and 
diam A < y ,  and then find q > 0 such that diam r(B) < y whenever B c U 
and diam B < q. Apply Lemma 2 to locate a finite complex P in [- 1, lIk 
with Y C P x Qk C N(Y;  q)  n U. Increase k, if necessary, so that 
diam((z) x Qk) < q for all z E [- 1, Ilk (this entails stripping some [- 1, 11- 
factors from Q k  and adjoining them to P). Name the projection map 
p :  P x Qk --* P and the inclusions e:  P + P x (0)  C P x Qk and 
i: Y -+ P x Qk. At this point we have maps 

i 

r 
P - P X Q k = Y ,  2- 

and there exists a natural q-homotopy tyf between ep: P x Qk 4 P x (0) and 
IdpxQ,. As a result, 

(1) rtyIi is a y-homotopy between repi and ri = Idy, and 
(2) nrty,i is an (e/8)-homotopy in Y / G  between nrepi and x. 

The map nre: P +  Y/G comes equipped with a lift (YO = re to Y. By 
Lemma 16.9, there exists 6 > 0 such that if (YI: P + Y is an approximate lift 
with p(na1, nre) < 6, then (YO = re and (YI  are related by a homotopy 
01: P -+ Y with Oo = ( Y ~ ,  O1 = ( Y ~ ,  and p(nOl(q), nre(q)) < d 8  for all q E P 
and t E I .  

Proposition 14.5 gives p > 0 such that any two p-close maps from a space 
S into Y / G  are (~/8)-homotopic in Y/G. There also exists q’ > 0 such that 
diam r’(B’) < min{6/2, p) whenever B‘ c U’ and diam B’ < q’. Apply 
Lemma 2 again to obtain a finite complex P’ in [-1, lIm with Y/G C 
P‘ x Qm C N( Y / G ;  q‘) n U’,  and also with each set { z )  x Qm of size less than 
q’. As before, name the projection p‘ :  P’ x Qm -+ P’ and name the 
inclusions e’: P’ + P’ x (0) C P’ x Qm and i f :  Y/G -+ P‘ x Qm. Thus, we 
have maps 

P‘ i ‘  
P’ P’ x Qm 7 Y/G,  

plus a natural q’-homotopy ty; in P’ x Qm between e’p‘ and Idp x ~ m ,  which 
yields 
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(3) r ' y / i '  is a homotopy in Y/G between r'e'p'i' and r'i' = Idy/G 
moving points less than min(N2, PI. 

Now we have established the existence of all the spaces and maps 
diagrammed below. According to Theorem 16.7, there exists a map 
f :  P' -+ Y satisfying 

p(nL r'e') < min(W2,p). 

Define the desired map F: Y/G + Y as F = fp'i ' .  
P & P x Q k y Y  i 

P' i' I. 
P' Y P '  x Q,,,? Y/G 

Having prescribed the map, we must still show that it is a fine homotopy 
inverse to  n. To see that nF is c-homotopic to Idr/c, note that, by choice 
of p, nf is (c/8)-homotopic to r'e' via a homotopy 8: , and then 8;p'i' serves 
as a homotopy between nfp'i' = nF and r'e'p'i'. According to (3), r'e'p'i' 
is (e/8)-homotopic to Idy/G. Strung together, the latter two homotopies 
provide an (e/4)-homotopy between nF and Idy/c. 

To demonstrate that Fn is n-'(&)-homotopic to Idy, we shall produce three 
homotopies, one between Idy and repi, another between repi and Fnrepi, 
and a third between Fnrepi and Fn. Consider the lift a1: P -+ Y given by 
a1 = Fnre. Then 

(4) p(na1, nre) = p(nfp'i'nre, nre) 
5 p(Zfp'i', IdY/c) 
I p(nfp'i', r'e'p'i') + p(r'e'p'i', Idnc )  

I p(nJ r'e') + p(r'e'p'i', Idy/c) 

< 612 + 612 = 6, 

where the final inequality follows from approximation properties off and 
from (3). By our choice of 6, there exists a homotopy Ot: P --* Y such that 
80 = re, 81 = Fnre, and diam n8((q) x I )  < c / 8  for every q E P. The 
homotopy rWti of (1) between Idr and repi and the homotopy &pi between 
repi and Fnrepi combine to give a homotopy between Idy and Fnrepi whose 
image under n moves points less than e/4. Finally, as in (4) above, 

( 5 )  p(nFn, 7 ~ )  5 p ( n 4  Idy/c) 

= p(nfp'i', IdY/c) 
I: p(nL r'e') + p(r'e'p'i', IdY/G) 
< 2p < &/4. 
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Applyipg (2) and (9, we see that Fnrvti is a homotopy between Fnrepi and 
FR whose image under n moves points along tracks of diameter less than 
3.~14. Altogether, these yield a homotopy between Idyand Fn whose z-image 
has tracks of diameter less than E ,  as required. 

Corollary 1A. If G is a usc decomposition of a metric space X and 
n: X -+ X/G is a fine homotopy equivalence, then each g E G is cell-like 
in X. 

The corollary holds because the proof given for the comparable implication 
in Theorem 1 used neither compactness properties nor properties of ANRs. 

Theorem 1 paves the way for a quick proof of the statement that the 
uniform limit of cell-like mappings between ANRs is cell-like. A (proper) 
mapf: X -, X' between locally compact metric spaces is said to be cell-like 
if each point-inverse f - ' ( X I ) ,  x '  E X', is a cell-like set. 

Before addressing the limit of cell-like mappings, we need a technical 
result. 

Lemma 3. Suppose G is a usc decomposition of a metric space X such that 
n: X -+ X/G is a fine homotopy equivalence. Suppose V is an open subset 
of X/G and C is a compact subset of V with C being contractible in V. Then 
n-'(C) is contractible in n-'( V ) .  

Proof. Name a contraction Bt : C + V.  Use compactness to find a set V' 
such that V = [ V ,  V ' )  is an open cover for X/G and &(C) n V' = (21 for 
all t .  Then obtain a map F: X/G + X for which FR is n-'('C?)-homotopic 
to Idx. 

The inclusion n-'(C) -+ n-'( V )  is homotopic to Fn I n-'(C). The latter, 
in turn, is homotopic to the constant map FBI n 1 C ' C ,  via the homotopy 
FBtn. It is easily seen that both homotopies operate in n- ' (V) ,  as 
required. 

Theorem 4. Suppose Y and Y' are ANRs and suppose (fi I i = 1,2, ...I is 
a sequence of proper cell-like maps of Y onto Y'  converging uniformly to 
f: Y + Y ' .  Then f is a proper cell-like map. 

Proof. Uniform convergence ensures f is continuous and onto. The proof 
that it is also proper is left as an exercise. What remains is a verification of its 
cell-likeness, taken from Lacher's survey of cell-like mappings (Lacher [2]). 

Fory' E Y' and a neighborhood Ooff-'(y'), find neighborhoods U, V, and 
W of y' in Y' such that 

w c  v c  P c  u c  u, 
where 0 is compact, f -'(O) C 0, and Wis contractible in V. 
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Claim 1. 
all n >- N .  

Proof. Otherwise, there would be points x,, E f ; ' (V)  - f - ' ( U )  for 
infinitely many n. In the case where Y is compact we can assume, without 
loss of generality, (x,,) converges to some xo E Y. Then, of course, 1 f(x,,)) 
converges to ~ (xo) ,  implying ~ ( x o )  6 U because no f(x,,) E U. Due to the 
uniform convergence of (f,,), ( f,,(x,,)) also converges tof(x0). Sincef,,(x,,) E V, 
it follows that ~ ( x o )  E P C U, a contradiction. 

In the noncompact case, the same argument works after passage to one- 
point compactifications, which is permissible by properness (Proposition 
3.2) and uniform convergence. 

Claim 2. There exists an integerM > 0 such that f -'(y') C f;'( W )  for all 
n 2 M. 

There exists an integer N > 0 such that f ; l (V )  C f - ' ( U )  for  

Verification, which is similar to that for Claim 1, is left as an exercise. 
Choose n = N + M. Thenf-'(y') c f ; ' (W)  C f ; ' ( V )  c 0. Using the 

result of Theorem 1 that fn is a fine homotopy equivalence [according to 
Theorem 3.5, f,, essentially functions as the decomposition map for the cell- 
like, usc decomposition {f;'(z) 1 z E Y ' ) ] ,  we invoke Lemma 3 to conclude 
that f ; ' ( m ) ,  and thus f-'(y'), is contractible in f ; ' (V)  C 0. 

Remark. 
uniform throughout Y but only over compact subsets of Y ' .  

The convergence of f,, -+ f required in Theorem 3 need not be 

Mentioned next is a well-known fact from dimension theory. In this 
context, an &-map of a metric space S to another space X means a map 
f: S -+ X such that diamf-'(x) < E for each x E X .  

Proposition 5. Suppose S is a compact metric space and n 2 0 is an integer 
such that for  each E > 0 there exists an e-map f of S into an n-dimensional 
metric space X ,  . Then dim S I n. 

Proof. This hinges on the existence of 6 > 0 such that 

diam f;'(A) c E whenever A c X,  and diamA < 6. 

Since &(S) is n-dimensional, there is a &map g of &(S) to some finite 
n-complex P ;  then g f :  S 4 P is an &-map, and S must be n-dimensional 
(Hurewicz-Wallman [ 1, p. 721). 

Proposition 6. I f  G is a use decomposition of a locally compact metric 
space X such that n: X -+ X/G is a fine homotopy equivalence, then 
dim(X/G) 5 dim X .  
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Proof. Obviously the result holds in case X is infinite-dimensional. 
Otherwise, for each E > 0, the definition of fine homotopy equivalence 
promises a map FE: X / G  --+ X such that nFE is (e/2)-close to Idx/c, causing 
FE to be an &-map. Proposition 5 certifies that dim(X/G) I dim X. H 

Corollary 6A. Suppose Y is a locally compact ANR, G is a cell-like 
decomposition of Y, and Y/G is an ANR. Then dim(Y/G) 5 dim Y. 

Corollary 6B. 
not raise dimension. 

Cell-like maps of one locally compact ANR onto another do 

A fundamental example due to J .  L. Taylor [ l ]  describes a cell-like 
decomposition G of I" for which Z"/C is not a CANR. No such example has 
been found to date on a finite-dimensional CANR. The remaining question 
stands as the most significant unresolved problem about cell-like decom- 
positions. Specifically : 

Question. 
Y, is Y/G a CANR? 

If G is a cell-like decomposition of a finite-dimensional CANR 

Equivalent Question. If G is a cell-like decomposition of a finite- 
dimensional compact metric space X ,  is X / G  finite-dimensional? 

In compact metric spaces the analogue of Corollary 6B is nearly valid, 
except that the conclusion propounds a drastic either/or-either a given cell- 
like map does not increase dimension or it raises the dimension to infinity. 

Theorem I. Suppose X is a compact metric space and G is a cell-like 
decomposition of X. Then either dim X / G  I dim X or dim X / G  = 03. 

Proof. It suffices to show that dim X / G  I dim X in case both X and 
X / G  are finite-dimensional. Letting n = dim X ,  we shall produce, for each 
E > 0, an &-map of X / G  to an n-dimensional simplicia1 complex. 

Think of X as a subset of a finite-dimensional CANR Y (for instance, 
Y = 12"+') and extend G trivially to the decomposition GT of Y. Then 
IT( Y )  = Y/G' is composed of n ( X )  = X / G  and II(Y - X) = Y - X 
(because II 1 Y - X is a homeomorphism of Y - X onto its image). As a 
result, II(Y), expressed as a union of two finite-dimensional subspaces, is 
itself finite-dimensional (Hurewicz-Wallman [ 11) and Corollary 16.12B 
indicates that Y/GT is a CANR. 

Name E > 0, and then compute 6 > 0 so that diam n(A) < 813 whenever 
A C Y has diameter less than 6. Since dim X = n, there exists a &map p of 
X to a finite n-complex P.  Because P i s  an ANR, p extends to another &map 
p: U -+ P defined on some neighborhood U of X in Y. 
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According to Theorem 1, n is a fine homotopy equivalence. In particular, 
this gives a map f: Y/GT -+ Y such that fir(X) C U and nf is (&/3)- 
homotopic to the identity. Then ,iif I n(X): n ( X )  = X / G  + P is necessarily 
an &-map, for f - ' p - ' ( p )  c ~ ( n @ - ' ( p ) ) ;  ~ 1 3 ) .  

Corollary 7A. Cell-like maps bet ween finite-dimensional compact metric 
spaces do not raise dimension. 

In view of these results, it is appropriate to seek conditions on a finite- 
dimensional space X implying dim X/G s dim X. Very little is known ; the 
theorems, for the most part, pertain to surprisingly low-dimensional spaces. 
We shall start with an easily grasped result about cell-like decompositions of 
I-dimensional compacta. Its proof forms the design of the one with which 
we end, dealing with cell-like decompositions of 3-manifolds. 

Theorem 8. If  G is a cell-like decomposition of a l-dimensional compact 
metric space X, then dim(X/G) 5 1. 

This will be proved by producing an &-map of X/G to a 1-complex P .  To 
accomplish this, several facts about 1-complexes will be employed. They 
include: 

(1) If P is a connected l-complex such that nl(P) is trivial and if K is a 

(2) A (compact) connected l-complex Kis contractible iff nl(K) is trivial. 
(3) If P is a simply connected l-complex and X i s  a compact, connected 

subset of p, then X i s  contractible. This follows because, after subdivision 
of P, X underlies a subcomplex. 

(4) Iff is a map of aBk+' (k  2 2 )  to a 1-complex P, then f can be extended 
to a map F of Bk+' to f (aBk+') .  

Proof of (4). Consider the universal covering p :  P -+ P. Since dBk+' is 
simply connected, f lifts to f: dBk+' + P with p y  = f .  By (3), f (dBk+')  is 
contractible, so f extends to P:  Bk+' + f (dBk+') .  Define F as pF.  

( 5 )  If K is a simplicia1 complex and f is a map of its 2-skeleton K"' to 
a l-complex P, then f extends to a map F of K to P such that F(a) = 

f(a n K'~ ' )  for every simplex o of K .  

This fact, the key one, follows directly by extending f over successive 
skeleta, with (4) being used to obtain extensions on the top-dimensional 
simplexes of those skeleta. 

Proof of Theorem 8. Embed X in a CANR Y and extend G trivially to 
the decomposition GT of Y, with decomposition map n: Y --* Y/GT. Regard 
Y/GT as a subset of I". 

H 

connected subcomplex of B, then nl (K)  is trivial. 
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Given E > 0, find 6 > 0 such that diam n(A) < E whenever A C Y and 
diam A < 6. The 1-dimensionality of X implies the existence of a &map p 
of X to a 1-complex P, which then extends to another &map p:  0 -+ P 
defined on some neighborhood 0 of X in Y. 

Construct a GT-saturated cover 'U2 of X by open subsets of 0 such that 
diam n(U2) < E for each U2 E U 2 .  Apply Lemma 16.6 to obtain G-saturated 
covers U1 and 'UO by open subsets of 0, where UI 1-homotopy star-refines 
2 1 2  and UO 0-homotopy star-refines U1. 

Determinep E (0, ~)suchthat3~-subsetsofn(X)lieinsomen(U0), UO E UO. 
In the next step n ( X )  is replaced by a finite complex. Lemma 2 provides 

a finite complex K in [- 1 ,  lIk for which 

n(x) C K X Qk C N(n(X); p). 

Without loss of generality, k is large enough that the projection map 
R :  K x Qk -+ K ,  where Kis equated with K X {O), moves points less than E .  

Subdivide K = K x 10) so that mesh K < p, and toss out any unnecessary 
simplexes of K ,  so that Rn(X)  meets each simplex of K whose interior is an 
open subset of K. 

The aim of what follows is to complete the diagram below, by producing 
appropriate maps f and F. 

n 

n ( X )  C K X  Qk K X  (01 = K ---I 

For each vertex u E K there exists some xu E n ( X )  such that p(u, x,) < p. 
Choosef(u) E n-l(xU).  

As a result, for each 1-simplex (T E K ,  nf(da) c N(a; p), which is a set of 
diameter less than 3p. The choice of /? ensures that f(da) lies in some 
C/O E Uo, and the determination of UO as a 0-homotopy refinement of UI 
guarantees that f, as defined on the vertex set K(O) of K,  extends to a map 
on the 1-skeleton K(') so that f(a) C U, E 

Focus on a 2-simplex 7 of K and 1-simplex (T in d7. As in the proof of 
Theorem 16.7, f(&) C St(U,, %I).  Since % I  I-homotopy star-refines U 2 ,  

for all a E K('). 
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f 1 dr extends to a map f: r -+ P with f(r) C V ,  E UZ. Doing this throughout 
gives the required map f: KC2) 4 0 such thatf(r) C V,  E Ut for all t E K'". 

By fact ( 5 )  mentioned prior to this proof, pfextends to the required map 
F: K -, P with F(y) = pf(y n K'2') for all y E K.  

This finishes the constructions ; the argument concludes with the veri- 
fication that FR I n ( X )  is an 11~-map. A primary ingredient is that 
p(nf ,  incl.) < 3e: each z E K'2) lies in some 2-simplex T E K(') with vertex u, 
and 

p(nf(z), z)  5 p(nf(z), rrf(u)) + P(Zf(U), u) + z )  
I diam nf(r) + p + diam 0 < 3 ~ .  

Consequently, for p E P and z E (p.f)-'(p), nf(z) E np-'(p), which implies 
z E N(np-'(p); 3 ~ ) .  Since diam np-'(p) c E, due to controls imposed on F ,  
it follows that pf is a 7e-map. Turning to F, we recall that to each 
z' E K n F- ' (p )  there corresponds z E K'" in the same simplex y as z', with 
F(z') = ,iif(z) = p ,  which shows F- ' (p )  C N( f -'p-'(p); E); in other words, 
F is a Be-map. Finally, because R moves points less than < E ,  we see in 
similar fashion that FR is an 11~-map. 

Monotone decompositions of 1-manifolds are shrinkable, but monotone 
decompositions of 1-dimensional compacta need not be. In contrast to what 
was just established, monotone decompositions of 1 -dimensional compacta 
can raise dimension: for any compact metric space S Proposition 4.4 
promises a monotone usc decomposition G of E 3  such that S embeds in 
E 3 / G ,  and a reinspection of that construction reveals NG to be a 
1-dimensional compactum and ~ ( N G )  to be topologically equivalent to 5'. 

Theorem 9. If G is a cell-like decomposition of a 2-manifold M ,  then 
dimM/G 5 2 .  

Proof. Focus on one point n(g) E M/G,  and let BE denote the frontier 
in M/G of the &-neighborhood of n(g). In order to prove that the (inductive) 
dimension of M/G at n(g) is I 2, it is enough to show dim BE 5 1 for all but 
a countable collection of the numbers E. 

The collection In-'(&)] consists of pairwise disjoint closed subsets of M. 
If dim n-'(Ba) = 2, then n-l(B&) must contain a nonempty open subset of 
M (Hurewicz-Wallman [ I ,  p. 46]), and the separability of M prevents an 
uncountable collection of the sets n-'(B,) from having nonvoid interior. As 
a result, dim n-'(B,) 5 1 for all but a countable collection of the sets 
n-'(BE), and for those BE such that dim n-'(BE) 5 1, Theorem 8 establishes 
d i m B E s  1. 

Corollary 9A. If G is a cell-like decomposition of a 2-dimensional CANR 
Y, then dim M G  5 2. 
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Proof. K. Sieklucki [I]  has shown that no n-dimensional CANR contains 
uncountably many pairwise disjoint n-dimensional closed subsets. The proof 
of Theorem 9 settles the corollary. 

Logically this proof pattern establishes the hypothetical statement : if cell- 
like decompositions of k-dimensional compacta do not raise dimension, then 
cell-like decompositions of ( k  + 1)-manifolds do  not raise dimension either. 
This statement has never been put to wider-ranging use because it is not 
known whether or not cell-like decompositions of the next type, those 
defined on 2-dimensional cornpacta, can raise dimension. It is known, 
however, that cell-like decompositions of 3-manifolds do not. The original 
argument is due to G. Kozlowski and J. J. Walsh [ l ] ;  the version to be 
presented here is based on notes of F. D. Ancel. Before embarking on the 
proof, we mention the salient features of 3-manifolds. 

A space S is said to be aspherical if, for each k > 1 ,  every map of the k- 
sphere aBk+' into S is null homotopic. When Mis a connected (triangulated) 
manifold and i@ represents its universal cover, then M is aspherical iff fi is 
contractible. Moreover, when M is a 3-manifold and f i i s  noncompact, then 
M is aspherical i f f  Hz(&; Z) is trivial, which holds, in turn, iff nz(n/r) is 
trivial. The chief support for this conclusion is the Hurewicz isomorphism 
theorem (Spanier [ l ,  p. 394)). 

The fundamental 3-dimensional result is the sphere theorem of C. D. 
Papakyriakopolous [l]: if M is an orientable 3-manifold with nz(iM) 
nontrivial, then there is a bicollared 2-sphere in M that is not contractible 
in M. 

It helps to be able to discern the noncontractible 2-spheres on geometric 
grounds. A bicollared 2-sphere S in a 3-manifold M is contractible there iff 
S bounds a compact, contractible 3-manifold-with-boundary C (a homotopy 
3-cell) in M .  The derivation requires showing that some component of 
M - S has compact closure C, passing to the universal cover of M to verify 
that nl(C) is trivial (for some such C ) ,  and invoking duality theory to 
conclude that H*(C; Z) is trivial, which then implies the contractibility of 
C. 

With an argument founded upon the foregoing discussion, we derive the 
lemma below. 

Lemma 10. Let G denote a cell-like decomposition of a 3-manifold M and 
ZL u G-saturated open cover of M. Then there exists an open cover 
W = { W, I g E G )  of M refining '11, where g c W, for  all g E G and where 
every finite intersection of elements of W is aspherical. 

Proof. Without loss of generality M is connected. Initially we refine '11 
so no pair of its elements covers M .  
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. Fix g E G. Choose some U, E 'U containing g and find another neigh- 
borhood V, of g that contracts in U,. There exists a compact, connected 
3-manifold-with-boundary Q, such that 

g C I n t Q , c Q , c  V,c U,. 
If dQg is not connected, one can join up the various components of dQ, by 
arcs in Q, - g (see Corollary 15.4B) and can delete tubular neighborhoods 
of these arcs to produce Q, as above having connected boundary. Let W, 
denote the interior of Q,. 

We claim that W, is aspherical. I f  not, nz(W,) # 0 and W, contains a 
bicollared 2-sphere S that is not homotopically trivial in W, . However, S is 
contractible in U,, so it bounds a homotopy 3-cell C there. Since C cannot 
be confined to W,, C must contain dQ, (due to its connectedness), and 
Wg u C = Q, u C is a compact manifold (without boundary). This is 
impossible, for it gives 

M =  W g u C C  U , # M .  

We complete the argument by showing that if WI , WZ E W, then W1 n WZ 
is aspherical (the same fact for finite intersections follows inductively). If 
not, as in the preceding paragraph W1 n WZ contains a bicollared 2-sphere 
S not contractible in WI n WZ. In this situation S bounds homotopy 3-cells 
CI and CZ in WI and W Z ,  respectively. Either CI = C2, in which case an 
obvious contradiction is at hand, or C1 n C2 = S .  The latter is impossible 
since then C1 u CZ would be a compact 3-manifold, giving 

M =  Ci u C2 C Wi U W2 # M .  

Lemma 10 will be employed in conjunction with the following. 

Lemma 11. Suppose K is a finite complex; p L 0 is an integer; f :  K c p )  -+ M 
is a map; and W is an open cover of M satisfying 

(a) if Wl , ..., W, E W then every map of the r-sphere S' ( for  all r 2 p )  
into ni W, is homotopically trivial; 

(b) for  each a E K ,  some W(a)  E W contains f (a  n K(p)).  

Then f extends to a map F: K -+ Msuch that F(a) C W(a) for  each a E K .  

Proof. Set W*(o) = n[ W(T) I a c 5 E K )  and note that f(a n K ( p ) )  c 
W*(u)  for all a E K.  

Let F@' = f. For k > p we construct inductively a map F(k):  K@' -+ X 
satisfying F(k) I K(k-" = F(k"' and F'k'(a n K'k') c W*(a) for all a E K .  
Assuming F'k") has been obtained, one defines F(k) on an arbitrary 
k-simplex y E K using (a) above to extend F(k- l )  I a y ,  which by hypothesis 
sends 6'y into W*(y), to a map of y into W*(y). 



17. Cell-Like Decompositions and Dimension 141 

To verify the inductive hypothesis that FCk'(o n KCk') C W*(cr), it must 
be shown that whenever a', 0, r E K where 

d c a n K(@ c cr c 5, 

then F'k)(a') c W(r). It suffices to show F'k'(a') C W*(a') .  If dim cr' = k, 
this occurs by construction; if dim a' < k,  then F(k' 1 a' = F'k"' I cr', and 
this occurs for inductive reasons. 

Theorem 12. If G is a cell-like decomposition of a 3-manifold M, then 
dim(M/G) I 3. 

Proof. The global strategy, suggested by Proposition 5, involves finding 
an approximate right inverse of the decomposition map n-namely a map 
w :  M/G 4 M for which ny is close to IdM/G. To a large extent the specifics 
follow the outline of Theorem 8, with Lemma 11 serving in place of the facts 
about 1 -complexes. 

Look at a compact subset X of M/G and positive number E ,  and regard 
M/G as a subset of I". We shall prove that there exists a map w :  n ( X )  4 M 
such that nyll n ( X )  is &-close to the inclusion. Proposition 5 then will certify 
that M/G is (locally) 3-dimensional. 

Construct a G-saturated open cover c U 3  of Msuch that diam n(U3) < E for 
all V3 E U3. Identify an open cover W = [W, / g  E G )  refining U 3  and 
satisfying the conclusion of Lemma 10. Although W might not be 
G-saturated, it has a G-saturated open refining cover W'. Apply Lemma 16.6 
to obtain G-saturated open covers VZ,  211, and VO of X ,  such that UZ star- 
refines W', U1 1 -homotopy star-refines U 2  , and Uo O-homotopy star-refines 
% I .  Determine P E (0, E )  for which every 3P-subset of n ( X )  lies in some 
n(Uo), uo E Vo. 

Exactly as in the proof of Theorem 8, replace n ( X )  by a finite complex; 
find a complex K so that 

n(X) C K X Q k  C N(n(X);  p )  
and K x Qk projects to K = K x (01 under a map R moving points less than 
p. Then build a map f :  K(') 4 M in precisely the same fashion as done 
previously, so that nf is &-close to the inclusion of K"' = K") x (0) in I". 

We argue that for each k-simplex cr E K,  where k 1 2, some W(a) E W 
contains f(a n K'2'). Choose a 2-simplex y E K with y c a, and name 
U, E zL2 with f ( y )  c U,. It follows routinely that f(a n K'2') c St(U,, VZ), 
which lies in some @'((a) E W because of star-refinement properties. 

The combination of Lemma 10 and Lemma 1 1 ,  applied with p = 2, 
ensures the existence of a map F: K .+ M extending f such that F(o) C W(a) 
for each o E K .  Then nF is 3c-close to the inclusion, since given z E K one 
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can find z' E K'*' in a common simplex ts and can check that 

p(nF(z), 2) 5 p(nF(z), nF(z')) + p(nf(z'), 2')  + P(Z'9 2) 

I diam z( W(a)) + E + B < 3 ~ .  

Because R moves points less than E ,  nFR 1 n ( X )  is 4eclose to the inclusion, 
and FR 1 n(X): n(X) 4 M is an &-map. 

Remark. Kozlowski and Walsh establish the stronger result in [l] that if G 
is a cell-like decomposition of a space Zthat embeds in some 3-manifold, then 
dim(Z/G) I 3. Walsh [2] has discovered another, more algebraic proof of 
Theorem 12, in which he substantiates the 3-dimensionality of all locally 
compact, metric, homology 3-manifolds. [These are locally homologically 
trivial but possibly not locally 1-connected spaces Xhaving finite homological 
dimension and for which &(X, X - ( x ) ;  Z) 3 H*(E3, E 3  - (0); Z).] When- 
ever G is a cell-like decomposition of a 3-manifold, M / G  is a homology 
3-manifold. 

The route retraced here in proving Theorem 12 has an additional payoff. 
It can be adapted for the following result about dimension-preserving 
features held by certain geometrically nice cell-like decompositions. Filling 
in the details constitutes an extremely valuable review of the earlier tech- 
niques, and the reader is strongly urged to develop a proof. 

Theorem 13. If G is a usc decomposition of E n  into convex sets, then 
dim E"/G 5 n .  

EXERCISES 

1. Supposef: 4 fi is a cell-like surjective map between CANRs. Show that B is 
a cell-like subset of fi iff f - ' ( B )  is cell-like in Y l .  

2.  Iff: Yl -+ Y, and f ': Y2 + y3 are cell-like surjective maps between ANRs, prove 
that f If: X + fi is cell-like. 

3. Supposef: XI 3 X2 is a cell-like surjective map between finite-dimensional metric 
spaces, where XI is a compact subset of En. Show that B is a cell-like subset of 
X2 iff f - ' ( B )  is cell-like in En. 

4. I f  f: X I  -+ X2 and f ': X2 + X3 are cell-like surjective maps between finite- 
dimensional metric spaces, where X I  is a compact subset of En,  prove that 
f 'f: X I  -+ X ,  is cell-like. 

5. Show that the uniform limit of proper, surjective mapsfn: X -+ X '  between locally 
compact metric spaces is a proper, surjective map. 

6. Prove Claim 2 made in the argument given for Theorem 4. 
7 .  A map m :  X -* Z between compact metric spaces is said to be approximately 

righr invertible if, for each E > 0, there exists a map p :  Z -+ X such that 
dist(z, mp(z)) < E for all z E 2. Show that if Z is compact and m: X -+ Z is 
approximately right invertible, then dim Z 5 dim X .  
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8. Suppose Y is a CANR having the fixed point property and G is a cell-like 
decomposition of Y such that Y / G  is an ANR. Prove that Y/G has the fixed point 
property. 

9. Prove Theorem 13. 

18. THE CELLULARITY CRITERION AND DECOMPOSITIONS 

Peripherally related to the UVproperties of Section 16 is.a property intro- 
duced by D. R. McMillan, Jr. [l], referred to as the (or as McMillan’s) 
cellularity criterion, measuring features pertaining to the embedding of 
subspaces instead of simply measuring absolute properties of those sub- 
spaces. A subset D of a space S is said to satisfy the cellularity criterion (in 
S )  if each neighborhood U of D in S contains another neighborhood V of 
D such that every map of aB2 into V - D can be extended to a map of B2 
into U - D.  

The naturality of the cellularity criterion, as well as a partial justification 
for the name, is manifested in the elementary observation below. 

Proposition 1. Every cellular subset of an n-manifold (n > 2) satisfies the 
cellularity criterion. 

Proposition 2. Suppose the 6-space S contains a closed subset D satis- 
fying the cellularity criterion and suppose f :  B2 -+ S is a map for  which 
f(aB2) -+ S - D. Then f I aB2 extends to a map F B2 -+ S - D ;  moreover, 
for each neighborhood U of D in S - f(aB2),  there exists a map Fu: B2 --* 
S - D such that Fu( f - ’ (U) )  C U and FU I X = f 1 X ,  where X denotes the 
component of B2 - f-’(iJ) containing aB2. 

Let U denote some neighborhood of D, with f(aB2) n U = 0. 
Since D satisfies the cellularity criterion, Ucontains a ne3ghborhood Vof D 
such that every loop in V - D is null homotopic in U - D. Construct a 
compact 2-manifold-with-boundary H in B2 with 

Proof. 

f - ’ ( D )  c I n t H C  H c  f - ’ ( V )  C IntB2. 

Enumerate the components J1, . . . , J k  of K n H ,  where K represents the 
component of E2 - H containing iM2. (Then K contains the component X 
named in the statement of this proposition. See Fig. 18-1.) 

Let Bi denote the 2-cell in B2 bounded by Ji . The construction ensures that 
the Bi’s are pairwise disjoint. Since Ji C aH C f -‘(I‘ - D), f I Ji extends to 
amapf i :  Bi --* U - D. Extend f 1 R t o  F: B2 --* S - D by setting FI Bi = F, 
for i E 11, ..., k). H 
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t 

FIG. 18-1 

Proposition 3. Suppose S is a locally pathwise-connected Tz-space; D is a 
closed subset of S such that (a) D has Property UV' in S, (b) D satisfies the 
cellularity criterion (in S ) ,  and (c) for each connected open neighborhood W 
of D,  W - D is connected; and SO E S - D. Then the inclusion-induced 
homomorphism nl(S - D, so) -+ nl(S, SO) is an isomorphism. 

Proof. Proposition 2 indicates that the homomorphism is one-to-one, so 
the only issue is surjectivity. Consider a map I :  I -+ S with I (0)  = 1(1) = SO. 

Specify a connected neighborhood V of D in S such that each loop in V is 
contractible in S, and then determine a finite number of pairwise disjoint 
subarcsA1, ..., Ak of Int Zin I - ' ( V )  whose interiors cover I-'(D). Apply (c) 
above to connect each pair of points L(aAi) by a path in V - D, and construct 
a new map 2: I -+ S - D such that X(Ai) C V - D and that 2 agrees with 1 
off U A ; ,  using these paths as guides. Because the loops produced by the 
two maps I At and I 1 Ai on the various A;'s are all contractible in S,  x and 
I are homotopic re1 aZ. W 

Corollary 3A. Zf C is a cell-like subset of an n-manifold M (n L 3) that 
satisfiestheceliularitycriterion in Mandifso E M - C, then nl(M - C,  SO) -+ 

n,(M, XO)  is an isomorphism. 

See also Proposition 16.1 and Corollary 15.4B. 
For those decompositions having a relatively mild UV property, the 

decomposition map faithfully preserves the matter of satisfying the 
cellularity criterion, at least for saturated closed subsets of the domain. 
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Proposition 4. Suppose G is a UV' decomposition of a metric space X and 
D is a closed subset of X / G .  Then D satisfies the cellularity criterion in X/G 
i f  and only i f  n-'(D) satisfies the cellularity criterion in X .  

Proof. Details demand another formal drill on the techniques from 
Section 16. We will run through the forward implication. 

Assuming D satisfies the cellularity criterion in X / G ,  consider a G- 
saturated open subset U of X containing n-'(D). Then n(U) contains a 
neighborhood V of D such that every loop in V - D is null homotopic in 
n(V) - D. Given a map F:  aB2 -, rr-'(V) - rr-'(D), one can extend nF to 
a map$ B2 .-+ n(U) - D,  which lifts (approximately) to a map F':  B2 -+ 

U - n-'(D) with F' 1 aB2 = F, by Theorem 16.7. 

Corollary 4A. Suppose G is a cell-like decomposition of an ANR Y and D 
is a closed subset of Y/G.  Then D satisfies the cellularity criterion in Y/G 
if and only if n-'(D) satisfies the cellularity criterion in Y. 

The cellularity criterion is noteworthy because it is a sufficient as well as 
a necessary condition for a cell-like subset of an n-manifold (n > 3) to be 
cellular. This pivotal fact, an important result from the topology of 
manifolds but one which requires the development of too much background 
data to be included here, was proved largely by McMillan [ I ] .  For n 1 5 his 
argument is based on engulfing methods and for n = 3 ,  insofar as it is known 
to apply, on special 3-dimensional results such as Dehn's lemma. In case 
n = 4 the result recently was established by M. H. Freedman [l], as an 
outgrowth of his solution to the 4-dimensional PoincarC conjecture. 

Theorem 5. A cell-like subset C of an n-manifold M (n 1 4) is cellular in 
M if and only if Csatisfies the cellularity criterion in M ;  similarly, a cell-like 
subset C o f E3 is cellular there i f  and only if it satisfies the cellularity criterion 
in E 3 .  

In the latter case it is essential that C lie in E 3 ,  where every bicollared 
2-sphere bounds a 3-spell. Should the 3-dimensional PoincarC conjecture 
turn out to be false, there will be a compact, contractible 3-manifold-with- 
boundary F (necessarily bounded by a 2-sphere) in a closed 3-manifold C3 
homotopy equivalent but not homeomorphic to S 3 ,  with C3 - F homeo- 
morphic to E 3 ,  and F will satisfy the cellularity criterion but it will not be 
cellular in C3, for otherwise Proposition 6.7 would show C3 to be the 
3-sphere. 

Corollary 5A. 
M. Then C x (01 is cellular in M x E'. 

Let M be an n-manifold (n 2 3) and C a cell-like subset of 
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Proof. It suffices to show that C x [O] satisfies the cellularity criterion 
in M x E l .  Given a neighborhood U of C x (0) there, find a neighborhood 
W of C in M and 6 > 0 such that W x (- 6 , 6 )  C U. Since C is cell-like, it 
has a connected open neighborhood V in W such that each loop in V is 
contractible in W. 

Let Z +  denote V x (- 6,6) - (C x ( -6 ,0])  and let Z -  denote (V  x 
( - 6 ,  6))  - (C x [0,6)). Bycorollary 15.4B, Z +  n Z -  = ( V -  C )  x ( - 6 ,  6 )  
is connected. Clearly Z +  deformation retracts to V x ( 6 / 2 ) ,  and each loop 
there is contractible in W x (6/2). The Siefert-van Kampen theorem attests 
that the inclusion-induced homomorphism 

n1(V x ( - 6 ,  6)  - (C x { O ] ) )  = n1(Z+ u z-) + n1(U - (C x 10))) 

is trivial. H 

As a result, the problem of whether there exists a cell-like decomposition 
G of a compactum X such that dim(X/G) > dimX is equivalent to the 
problem of whether there exists a cellular decomposition G* of some 
Euclidean space E n  such that dim(E"/G*) > n .  

Corollary 5B. Suppose X is a finite-dimensional, compact metric space and 
G is a cell-like decomposition of Xsuch that dim(X/G) > dim X. Then there 
exist an integer n and a cellular decomposition G* of E n  such that 
dim(E"/G*) = m. 

Let k = dimX and n = 2k + 2 .  By Theorem 17.7, k 2 2, so 
n 2 6 .  By Hurewicz-Wallman [ l ,  p. 561, X can be embedded in E2k+' ,  
thought of as EZk+' x (0) C E". The desired decomposition G* is the trivial 
extension of the image of G under this embedding. 

Let A denote a subset of a space S and a E A n Cl(S - A). We say that 
S - A is locally k-connected at a ,  or in abbreviated form that S - A is k-LC 
at a, provided that each neighborhood Uof a contains another neighborhood 
Vsuch that each map of Mk+' into V - A can be extended to a map of Bk+' 
into U - A. We also say that A is locally k-co-connected (k-LCC) provided 
S - A is k-LC at each a E A n Cl(S - A). 

Corollary 5C. Let G denote a cell-like decomposition of an n-manifold M 
( n  1 4). Then g E G is cellular in Mifand only if n(M - g )  is 1 - LC at the 
point n( g )  . 

See Proposition 4 as well as Theorem 5 .  Of course, the analogue of 
Corollary 5C in which the n-manifold M is replaced by E 3  also is valid. 

Corollary 5C reveals that whether a cell-like decomposition of a manifold 
is a cellular decomposition can be determined by examining local properties 
of the decomposition space. 

Proof. 

H 
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Corollary 5D. Suppose G is a cellular decomposition of an n-manifold M 
(n 2 4) and G' is a cell-like decomposition of M such that M/G' is homeo- 
morphic to M/G. Then G' is cellular. 

Corollary 5E. If G is a cell-like decomposition of an n-manifold A 4  (n  L 4) 
such that M/G is an n-manifold, then G is cellular. 

EXERCISES 

1. Suppose X is a nowhere dense, compact subset of a space S such that X has 
Property 1 - UV in S and X is k-LCC, k E (0, 1). Show that X satisfies the 
cellularity criterion in S. 

2. Let Kdenote a finite simplicia1 complex, L a subcomplex of Kto  which Kcollapses, 
and e an embedding of K in an n-manifold M (n > 2) such that e(K)  satisfies the 
cellularity criterion in M. Show that e(L) also satisfies the cellularity criterion. 

3. For i E [ 1,2] let Ci denote a cell-like subset of an ni-manifold, where ni > 1. Show 
that CI x Cz satisfies the cellularity criterion in M I  x Mz.  

4. Suppose G is a cellular decomposition of S", where n 2 3, and f is a map of S" 
onto S"/G such that the decomposition Glinduced byfis cell-like. Show that Gf 
is cellular. 

5. Show that the truth of Corollary 5E for n = 3 implies the truth of the 3-dimen- 
sional Poincare conjecture. 

6 .  Let X denote a cell-like subset of S", n 2 2, and EX its natural suspension in 
XS" = S"". Show that EX is cellular in Sn+' iff X has simply connected 
complement in S". 



IV 

THE CELL-LIKE 
APPROXIMATION 
THEOREM 

Chapter IV is directed toward a single goal-the proof of the fundamental 
result of manifold decomposition theory, Edwards’s cell-like approximation 
theorem. Several ingredients must be prepared. Included among them are : 
a filtration device, applicable to finite-dimensional decompositions, for 
refracting the aggregate shrinking problem into a sequence of 0-dimensional 
problems ; an amalgamation device for transforming 0-dimensional 
decomposition problems into null sequence problems ; Stan’ko’s concept of 
embedding dimension, which governs the successful solution of these null 
sequence problems; and the disjoint disks property, a minimal kind of 
general position property measured in decomposition spaces. When present, 
this disjoint disks property permits restructuring of the aggregate decomposi- 
tions, back in the source manifold, so the nondegeneracy sets have the 
appropriate embedding dimension ; the aggregate decompositions are 
shrinkable because all the related null sequence decompositions, created by 
refracting and amalgamating, are shrinkable. 

Because the disjoint disks property is a property of decomposition spaces, 
it persists when a given decomposition is restructured, under approximations 
to the natural decomposition map with other cell-like maps. In a sense, its 
chief disadvantage is its applicability just to (cell-like) decompositions of 
manifolds having dimension at least 5 .  One could compose a strong brief to 
support the contention that cell-like decompositions of such manifolds are 
better understood than those of dimensions 3 and 4 precisely because the 
disjoint disks property holds only in the former. 

148 
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The concept of embedding dimension delineates a notion of tameness for 
arbitrary compacta embedded in n-manifolds. Given a null sequence 
decomposition consisting of cell-like compacta having embedding dimension 
no more than n - 3, one can perform shrinking using methods inspired by 
those of Section 8. The taming theory undergirding these operations 
demands greater familiarity with results and techniques from PL topology 
and embedding theory than needed in the preceding chapters. Section 21 
provides an outline of what is needed, plus an explication of the functional 
properties of embedding dimension. 

19. CHARACTERIZING SHRINKABLE DECOMPOSITIONS 
OF MANIFOLDS-THE SIMPLE TEST 

This section represents a prelude to more powerful subsequent sections 
that disclose how a certain disjoint disks property characterizes shrinkable 
decompositions of n-manifolds (n  2 5 ) .  The results derived, valid without 
restriction on n ,  provide an effective means for analyzing decompositions of 
3-manifolds, somewhat similar to those stemming from the disjoint disks 
property. The arguments, originally given by J. W. Cannon [4], revive the 
spirit of Bing’s early work on shrinkability. 

Let G be a usc decomposition of an n-manifold M ,  and let A and B be 
disjoint closed subsets of M. We say that G inessentially spans A and B if 
for each G-saturated open cover (u of M there exists a homeomorphism 
h: A4 -+ M such that h is ZL-close to IdM and nh(A) n xh(B) = 0 [equiva- 
lently, no element of G meets both h(A)  and h(B)]. 

The first item below should be self-evident; it is a rephrasing of what was 
used in Section 9 to demonstrate the nonshrinkability of the examples 
described there. The second, a strong converse to the first, is nearly the 
intended characterization. 

Proposition 1. If G isashrinkabledecomposition of an n-manifoldM, then 
G inessentially spans each pair of disjoint closed subsets of M. 

Theorem 2. Suppose G is a monotone usc decomposition of an n-manifold 
M. Then G is shrinkable i f  and only if G inessentially spans each pair of 
disjoint, bicollared (n - 1)-spheres in M. 

Proof. Assume M t o  be compact, and consider E > 0. The all-important 
initial step consists of locating finitely many pairs (A1 , B I ) ,  ..., ( A k ,  Bk) of 
bicoliared (n - 1)-spheres in M ,  each pair being disjoint, such that every 
connected subspace of Mhaving diameter at least E intersects both Ai and Bi 
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for some i .  To do this, for each x E Mchoose a pair of n-cells C, and C4 with 
bicollared boundaries and satisfying 

x E Int C, C C, c IntC4 and diam Ci < E ;  

use compactness to  extract a finite subcollection C1 , ..., Ck of the smaller 
cells whose interiors cover M ,  and then set A ;  = aC; and B; = aCi' for 
i E (1, ..., k ) .  

We shall produce a homeomorphism H :  M + M shrinking each g E G to  
&-size and satisfying p(n, n H )  < E .  By hypothesis there exists a self- 
homeomorphism h~ of M satisfying 

p(n, nhl) < Elk and nrhl(A~) n nhl(B1) = 0. 

Since hl(A2) and hl(B2) are disjoint bicollared (n  - 1)-spheres, there exists 
another self-homeomorphism h2 of M such that 

nhzhl(A2) n nhhl(B2) = 0 and p(n, nh2) < d k ;  

we require, in addition, that 

p(n, nh1) < (+I * p(nh1(A1), Xhl(B1)) 

to  ensure 

nh2h1(Al) n nhzhl(B1) = 0. 
Continuing in this fashion, we determine homeomorphisms hl , h2, ..., h k  of 
M to itself such that, for i E (1, ..., k), 

p(n, nh;) < d k  and nhk .-- hl(A;) n nhk - - -  hl(Bi) = 0, 

Set H = (hk  h1)-'. According to  the above, no g E G intersects both 
H-' (A; )  and H-'(Bi) for any index i ;  equivalently, no set H(g) meets both 
A ;  and Bi. The initial choice of pairs (Ai, B;) thereby implies that each H(g) 
has diameter less than E ,  and it is easy to see that p(n, n H )  < E .  

With a slightly different construction at the outset, the second half of the 
preceding argument can be recirculated to establish the desired character- 
ization, which involves cells instead of spheres. 

Theorem 3 .  Suppose C is a monotone usc decomposition of an n-manifold 
M. Then G is shrinkable if and only i f  G inessentially spans every pair of 
disjoint, locally flat (n  - I)-cells in M. 

Remark. M. Starbird [ 11 has found some improvements to  Theorem 3 for 
the case n = 3. In particular, for any cell-like decomposition G of a 
3-manifold M such that ~ ( N G )  is 0-dimensional, he has shown G to  be 
shrinkable if it inessentially spans every pair of locally flat 2-cells in Mwhose 
boundaries miss NG.  

H 
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EXERCISES 

1. Prove Theorem 2 for noncompact manifolds M .  
2. Prove Theorem 3. 

20. AMALGAMATING DECOMPOSITIONS 

Let G denote a usc decomposition of a (compact) metric space S. Another 
usc decomposition G* of S is called an &-amalgamation of G ,  where E > 0, 
provided 

(i) for each g E G there exists g* E G* such that g C g* and 
(ii) for each g* E G* there exists g E G such that n(g*) c N(n(g); E ) .  

In almost equivalent words, G* is a G-saturated usc decomposition and 
diam n(g*) < 2~ for each g* E G*.  When one inspects the diagram, 

one sees that the implicitly defined rule F = n*n-' is a (continuous) function 
and that, for each point s* E S/G*,  F-'(s*) has diameter less than 2 ~ .  

The purpose behind this concept is unveiled in what otherwise may seem 
to be a totally innocuous result. 

Theorem 1. Suppose G is a usc decomposition of a compact metric space 
S such that, for each E > 0,  there exists a shrinkable &-amalgamation G* of 
G. Then G itself is shrinkable. 

Proof. Fix E > 0. The goal here is the usual one of producing a 
homeomorphism h :  S -+ S shrinking elements of G to &-size while satisfying 
p(n, 7th) c E .  

By hypothesis there exists a shrinkable (~/2)-amalgamation G* of 
G. According to (ii) of the definition above, each g* E G* is contained 
in some set n-'(N(n(g); d 2 ) ) ,  where g E G ;  thus, the open cover 
tn-'(N(n(g); ~ / 2 ) )  1 g E Gj has a G*-saturated open refinement U. The 
shrinkability of G* gives rise to a homeomorphism h: S -+ S that is %-close 
to Ids and that shrinks each g* E G* to size less than E .  Certainly then h 
shrinks each element of G, necessarily found in some element of G*, to size 
E ,  and h being U-close to Ids implies that p(n(s), nh(s)) < E for each 
S E S .  
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Most of the amalgamations to be used reassemble elements from a 
decomposition G for which ~ ( N G )  has dimension 0. To help cull out such 
decompositions now and to provide a measure of nondegeneracy sets later 
on, in Section 36, we say that a decomposition G of a metric space is 
k-dimensional if dim ~ ( N G )  5 k and that G is closed-k-dimensional if 
dim C1 ~ ( N G )  5 k .  

Proposition 2. Let S denote a separable metric space. Then every finite use 
decomposition of S is closed-@dimensional and every countable use 
decomposition of S is 0-dimensional. 

One might note that each of the decompositions described in Section 9 is 
closed-0-dimensional. Generally, one can produce countable, cellular 
decompositions of S" (n > 0) that are not even closed-(n - 1)-dimensional, 
by just inserting a null sequence of cellular (nondegenerate) sets densely 
throughout 5'". 

Proposition 3.  If G is a k-dimensional use decomposition of a finite- 
dimensional separable metric space S ,  then S/G is finife-dimensional. 

View S/G as ~ ( N G )  u n(S - NG).  Since n is a closed map, 
n I S - NG sends S - NG homeomorphically onto n(S - NG), implying 

Proof. 

dim n(S - NG) = dim(S - NG) 5 dim S < QO. 

Consequently, WG, the union of two finite-dimensional spaces, is itself 
finite-dimensional (Hurewicz-Wallman [ 1, p. 321). 

Corollary 3A. If G is a cell-like, k-dimensional use decomposition of a 
finite-dimensional, locally compact ANR Y, then Y / G  is an ANR. 

Proof. See also Corollary 16.12B. 

Next, a method for amalgamating certain closed-0-dimensional decom- 
positions of manifolds. The techniques can be traced back to the 1960s, 
suggested in the work of Andrews and Rubin [ I ]  and given more explicitly by 
R. D. Edwards and R. T. Miller [l] and by C.  P. Pixley and W. T. Eaton [I]. 

Proposition 4. If  G is a closed-0-dimensional, cell-like usc decomposition 
of S" (or any compact n-manifold), n 2 3 ,  and if& > 0,  then there exists a 
finite, cell-like, &-amalgamation G* of G. 

Proof. Let C denote c l n ( N ~ )  in S"/G. Since C is compact and 
0-dimensional, the open cover "(c; E )  1 c E C )  of C has a finite subcover, 
which, in turn, admits a refinement W = (K I i = 1, ..., m] consisting of 
pairwise disjoint, connected open subsets of S"/G and covering C. 

For i E I l ,  . . . , m] let Ci = C n W . Then n-'(Ci) can be written as the inter- 
section of 3 nested sequence (Mi] of compact n-manifolds-with-boundary 
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in z-'(K), where each component of Mj+l is contractible in Mj (because it 
lies very close to some n-'(c), c E Ci). By the same reasoning used to prove 
Corollary 15.4B, n-l(Ci) separates no component of any Mj; therefore, in 
Mj - z-l(Ci) tubes can be threaded through the interior of each part of Mj 
to join up its various boundary components, thereby ensuring that every 
component of Mj has connected boundary. 

Run arcs in n-'( N) from a preselected component 7i of M I  to each of the 
others, so that no arc meets M I  other than in its endpoints and that no two 
such arcs intersect. Let A I  denote the union of these arcs, and let 
S1 = A1 u M I  . Then S1 is a connected subset of n-'( W) and, of course, MZ 
contracts in S1 . (See Fig. 20-1 .) 
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To simplify the next step, focus on one component P I  of MI and select 
a component T2 of PI n Mz. Run arcs in Pl from TZ to each of the other 
components of P 1  n MZ and, in addition, run an arc (arcs) in A from T2 to 
the point(s) of P1 n A t .  Do this, as above, so that no arc meets MZ elsewhere 
besides its endpoints and no two such arcs intersect. Let A2 denote the union 
of all these arcs, obtained similarly for every component P of M I ,  and let 
SZ denote A1 u AZ u M2. Again, SZ is a connected subset of S1 and M3 
contracts in SZ, but, more important, SZ contracts in S1 (see Exercise 5) .  

Iterating this procedure, we form compact, connected sets ( S j  [ j = 
1,2, ...I such that Mj+l C Sj+l C Sj and Sj+l contracts in Sj. 

Now G* is defined to have exactly m nondegenerate elements, one in each 
n-'( W), and the nondegenerate element in n-'(W) is n S j ,  which is cell-like 
because for any neighborhood U some stage Sj+ 1 is contractible in Sj c U. 
It should be obvious that G* is a finite cell-like decomposition and that it 
is an &-amalgamation of G. 

The amalgamation process acts on certain nonshrinkable decompositions, 
like those of Section 9, to reinforce our belief in the existence of cell-like but 
noncellular sets. Given a closed-0-dimensional decomposition G of S" that 
is cellular but nonshrinkable, we can see that when a > 0 is sufficiently small, 
no finite a-amalgamation G* of G can be cellular, since the resultant 
shrinkability of G* would conflict with Theorem 1. 

Corollary 4A. The following statements are equivalent : 

(a) For each closed-@dimensional cell-like decomposition G of S", 
G x S' is a shrinkable decomposition of S" x S' ; 

(b) For each finite cell-like decomposition G* of S",  G* x S' is a 
shrinkable decomposition of S" x S ' ;  

(c) For each cell-like subset A of S",  GA x S' is a shrinkable decom- 
position of S" x s'. 

Results comparable to the above hold with E n  replacing S" and/or E' 
replacing S' ,  but the compactness of the manifolds mentioned in Corollary 
4A averts more cumbersome statements. 

In a sense, O-dimensional decompositions of a compact manifold can be 
viewed as the countable union of closed-0-dimensional ones. Since the latter, 
cell-like or not, can be amalgamated as finite decompositions, one suspects 
that O-dimensional decompositions should admit amalgamations as 
countable decompositions. The fundamental amalgamation result, due to 
R. D. Edwards [4], attests that each cell-like O-dimensional decomposition 
can be amalgamated not merely as a countable but, even better, into a null 
sequence, cell-like decomposition. The amalgamation procedure also 
accommodates some built-in peripheral controls of subsequent value. 
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Theorem 5. Suppose G is a 0-dimensional, cell-like decomposition of 
a compact n-manifold M ,  where n 2 3 ;  p I n - 2 is a nonnegative 
integer; (Z I i = 1 ,2 ,  ...I is a sequence of (curvilinear) triangulations of 
M whose p-skeleta T(’) all miss NG ; U is an open subset of M containing 
NG; and E > 0. 

Then there exists a cell-like decomposition K of M such that K is an 
&-amalgamation of G, HK forms a null sequence, and NG C NK C U - 

Proof. Since ~ ( N G )  C n(U)  and ~ ( N G )  is 0-dimensional, U can be 
trimmed back so that n( V )  has diameter less than E for every component V 
of the trimmed U. Then any monotone amalgamation K of G satisfying 
NK C U will be, of necessity, an &-amalgamation. 

denote the union of those g E G having diameter at 
least 1 / j .  

The desired amalgamation K will appear after an 
infinite sequence of constructions. The first stage, somewhat like what was 
done in Proposition 4, merely requires expressing Q1 as the union of finitely 
many pairwise disjoint (G-saturated) compacta X: ,  X i ,  . . . , X& that can 
be thickened to pairwise disjoint, G-saturated, connected open sets K1 
(i E ( 1 ,  ..., m(1))) for which 

u; p. 

F o r j  = 1 , 2 ,  . . . let 

Part I. Architecture. 

xi’ c K 1  c c1 K1 c u - 7 f p )  

and K’ is contractible in U. 

pairwise disjoint compacta X ? ,  ..., X&Z), where m(2) r_ m(l) ,  with 
The second stage construction is typical. Express Q1 u QZ as the union of 

(a21 xi’ c xi” c K’ for 1 5 i 5 m(l) ,  

such that these X!’s can be thickened to pairwise disjoint, G-saturated, 
connected open sets Kz (i  E ( 1 ,  . . . , m(2))) satisfying 

(b2) 
(CZ) 
(d2) 

The initial part of this, the determination of the X?’s, incorporates a 
conceptually significant step. Generally the set QZ - Ql is noncompact, 
which prohibits the covering of QZ - Q1 with a finite number of compact 
sets from U - Q1. By allowing the first stage sets Xi’ to expand, in order 
to absorb some of 9 2  in U K’, one can cover the rest of QZ by a finite number 
of compacta. In practice, this can be accomplished by forming sets Zi 
(i  E { 1 ,  . . . , m( I ) ] )  that are both open and closed in the 0-dimensional set 
n(Q1 u Qz) and that satisfy n(X,’) C Zi C n(K’) and then by setting 

Xi” C K2 C C1 K2 C U - (T/’) u 7$”), 
for m(1) < i I m(2), diam Kz < 1 ,  and 
for 1 9 i 5 m(l) ,  C1 Kz is included in K1 null homotopically. 
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xi” C R-’(Zi). Eventually the compact set Q2 - UyJ? X? will be fragmented 
into compacta Xi’ (i E (m(1) + 1, ..., m(2))), and these will be thickened, as 
before, to open sets K2 satisfying conditions (b2) and (c2). Logically, 
however, this fragmentation will not occur until after the sets X?, 
i E (1, ..., m(l)), have been thickened to K2’s, for it is necessary to have the 
leftover fragments placed individually in pathwise connected open subsets of 

The remaining part, the determination of the other K2’s satisfying 
conditions (d2) and (bz), demands a bit of extra wrangling. We shall describe 
how to produce a connected open subset Wl of M / G  such that 

M - u%) c1 K2. 

n(X?) c Wl c c1 Wl c n(Vll) - ?r(E(”) 

and C1 WI is contractible in n( V;), for then, as an elementary consequence 
of Theorem 17.1, the closure of Pi2 = np1(Wl) will be contractible in 6’. 
Since each point of n(X?) has a connected neighborhood in the ANR M/G 
that contracts in n( V,’ - E”)), one can extract a finite cover by neighbor- 
hoods of this type and refine to obtain another finite cover of rr(X?) by 
pairwise disjoint, compact, connected sets R 1 ,  ..., R ,  in n(K1 - T:”). The 
restrictionp I n - 2 ensures that K1 - TZ”’ is arcwise connected, and the 
hypothesis E”) n NG = 0 ensures that n( 6’) - n(E(”) is arcwise con- 
nected as well. Hence, there exists an arc al  in n( 6’ - Z‘”) from R 1  to one 
of the other Ri’s, say R z ,  meeting U Ri only in its endpoints. Similarly, there 
exists an arc 012 in n( V,’ - Z‘”) joining R 1  u al u R2 to one of the other Ri’s 
and intersecting 011 u (U Ri) only in its endpoints. Continuing in this fashion, 
eventually we will have identified arcs 011 , ..., ar-1 such that, after a 
reordering of the Ri’S, aj+l joins Rj+l u [u$= 1(ak u Rk)] to Rj+2 while 
intersecting the union of the various Ri’s and of the lower-indexed ak’s only 
in its own endpoints. As in the proof of Proposition 4, (U Ri) u (U ai) is 
contractible in n( 6’ - Tz”’), and certainly then the former has a neighbor- 
hood WI whose closure also is contractible in n(V; - T2”’). 

The j th  stage ( j  > 1) construction proceeds exactly like the second stage, 
having QI u ... u a expressed as the union of pairwise disjoint (G- 
saturated) compacta X i ,  . . . , X&j), with 

(a,) x!-’ c xi’ c ~ f - ’  for 1 5 i 5 m(j  - I), 

such that there exist pairwise disjoint, G-saturated, connected open sets K’ 
(i E (1, ..., ni( j) ])  satisfying 

(bj) X! c K’ c C1 K’ c U - (7fP’ u 
(Cj) for m(j  - 1) < i I mu) diam K j  c l / ( j  - l), 
(dj) for 1 I i 5 m(j  - 1) C1 K’ is included in Kj-’ null homotopically. 

u T”)), 
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Part II. Amalgamation. Define a decomposition K by specifying its 
nondegeneracy set as follows : X E HK iff there exist positive integers j o  
and t ,  with t I m(jo), such that 

x = n ~1 ~ j .  

j=h 

According to conditions (dj), the sets {Cl K']j form a decreasing nest; thus, 
given a neighborhood W of X ,  one can obtain an integer s 2 j o  for which 
Vrs C W, and condition (ds+l) implies that C1 I/,'+', as well as X ,  is con- 
tractible in &' C W. Consequently, X is cell-like. 

Clearly each g E HG lies in some X E H K .  Moreover, conditions (cj) 
imply that HK forms a null sequence, and conditions (bj) imply that 
NK C U - Ui ?fp). Hence, Kis an &amalgamation of G ,  as required. 

A weak application of Theorem 5 ,  which hints at its greater potential, 
indicates how the peripheral controls provided via certain skeleta can be 
regulated to force cellularity of the amalgamated decomposition. (Such 
controls simultaneously demand cellularity of the original decomposition.) 

Proposition 6 .  Suppose G is a 0-dimensional, cell-like decomposition of an 
n-manifold M ,  where n L 4 ;  (XI is a sequence of simplicial triangulations 
of Msuch that mesh Ti = max(diam CJ I CJ E 73 -, 0 as i .+ 03 and such that 
each 2-skeleton Ti"' misses NG;  and E > 0.  Then there exists Q cellular use 
decomposition K of Msuch that K is an €-amalgamation of G ,  HK forms a 
null sequence, and NK C M - U T,(2). 

Proposition 6 is an immediate result of Theorem 5 and the ensuing lemma. 

Lemma 7 .  Suppose X is a cell-like subset of an n-manifold M (n L 4) and 
1 T,) is a sequence of simplicia1 triangulations of Msuch that mesh T -, 0 as 
i -+ 00 and that Ti(') n X = (21 for  all i .  Then X is cellular in M.  

Proof. This will follow from Theorem 18.5, once it is established that X 
satisfies the cellularity criterion. One way to do this is to apply Exercise 18.1. 
A slightly more direct way is to start with an open neighborhood U of X ,  to 
name a compact neighborhood W of X in U, to find another neighborhood 
V of X that contracts in W, and to consider a loop L in V - X .  Choose an 
integer k so large that L is homotopic in V - X to a loop L' in d2' and that 
each CJ E Tk meeting Wlies in U. The key fact to be used is that the 2-skeleton 
of a complex carries the fundamental group ; consequently, for the union P 
of all simplexes from Tk that meet W, the natural homomorphism 
nl(P n d2') -, ;rr~(P) is an isomorphism. Since L' contracts in W c P, L' 
must contract in P n 7i"' c U - X ,  and thus L contracts in U - Xas  well. 
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EXERCISES 

1. Suppose G is a usc decomposition of a CANR Y such that, for each E > 0, G has 
a cell-like &-amalgamation. Show that G is cell-like. 

2. Suppose G is a usc decomposition of an n-manifold Msuch that, for each E > 0, 
G has a cellular &-amalgamation. Show that G is cellular. 

3. Suppose G is a usc decomposition of a compact metric space X such that, for each 
E > 0, G has an &-amalgamation K where f f ~  is a null sequence. Show that G is 
0-dimensional. 

4. Let G denote a usc decomposition of an n-manifold M such that M/G is also an 
n-manifold and ~ ( N G )  is contained in a tame Cantor set in M / G .  Use amalgama- 
tions to prove that G is shrinkable. 

5. Suppose DO and DI are disjoint continua in a metric space S such that both DO 
and DI are contractible in S, and suppose a: [0, I ]  -+ S is an embedding such that 
a(0) E DO, a(1) E DI ,  and 41)  n (DO u D l )  = cr(al) .  Show that DO u a(Z) u D1 
contracts in S .  

21. THE CONCEPT OF EMBEDDING DIMENSION 

Up to this point we have been relatively carefree in our treatment of 
simplicial complexes, allowing context to make plain whether the emphasis 
should fall on the collection of simplexes o r  on the underlying point set. 
Throughout this section we shall exert more precision, beginning with a brief 
review of terminology from PL topology. 

A simplicial complex K is a locally finite collection of simplexes in some 
Euclidean space such that (1) each face of any cr E K is also an element of 
Kand (2) if cr1,o~ E Kand 01 n 0 2  # (21, then 01 n 02 is a face of both 61 
and 0 2 .  (Aface of a simplex cr is another simplex determined by some subset 
of the vertices of 0.) The underlying point set of K, the set of all points in 
simplexes of K, will be denoted as ( K ( .  

By a (simplicial) triangulation of a space M we mean a pair ( K ,  w), where 
K is a simplicial complex and w is a homeomorphism of I K I onto M .  If (K, w) 
is an arbitrary triangulation of E n ,  then it is probably curvilinear, in the sense 
that w(a), cr E K, represents something homeomorphic to a simplex, not 
necessarily possessing any convexity or linearity compatible with the linear 
structure of E n .  A rectangular triangulation of, say, En can be described 
simply as a simplicial complex K for which IKl = En,  for then each cr E K 
must be a simplex in En.  

Let K and K' denote simplicial complexes. Then K' is a subdivision of K 
if IK( = ( K ' (  and if each cr' E K' is contained in some Q E K. 

A simplicial complex K is a PL n-ball (or a PL n-cell) if there exist 
subdivisions K' of K and T' of T, the complex consisting of the standard 
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n-simplex An and its faces, such that K' is simplicially isomorphic to T' .  
A P L  triangulation of an n-manifold M is a triangulation (K,  w)  of M such 
that, for each vertex u E K ,  the star of u in K ,  written as St(u; K ) ,  is a PL 
n-ball. Here St(u; K )  means the complex consisting of all 0 E K for which 
u E 0, plus their faces. 

An n-manifold M is called a PL n-manifold if it has a specified PL 
triangulation. Then M can be covered by compatible coordinate charts such 
that the simplicial structure transferred from A" to M by these charts matches 
the structure imposed by the triangulation. Accordingly, it makes sense to 
define a rectilinear triangulation of a PL manifold ; however, without 
reference to the specified triangulation, there would be no means for 
distinguishing rectilinear from curvilinear. 

A mapffrom a simplicial complex Pin to  a P L  n-manifold M is a PL map 
if there exist subdivisions P' of P and K' of K,  where (K,  w )  denotes the 
specified triangulation of M ,  such that v-tf maps simplexes of P' linearly 
onto simplexes of K ' ;  a PL embedding, of course, is a PL map which also 
happens to be an embedding. 

The celebrated work of R. C. Kirby and L. C .  Siebenmann [l] attests that 
not every n-manifold admits a PL triangulation. Whether it must admit some 
(simplicial) triangulation is an important open question. In case n = 3, 
E. E. Moise [ I ]  and later R. H. Bing [4] proved that each 3-manifold has a 
triangulation, and it is not terribly difficult to prove that each such triangu- 
lation is a PL triangulation. 

Two triangulations (KI  , w l )  and (Kz , WZ) of a manifold M are equivalent 
if there exist subdivisions Ki and Ki of K I  and K z ,  respectively, as well as 
a simplicial isomorphism Kf .+ Ki . Standard results of P L  topology establish 
that, when (K1 , w l )  and (Kz, WZ) are equivalent, then ( K I ,  wl) is a PL 
triangulation iff (Kz ,  w 2 )  is. Thus, in speaking of a PL manifold, one 
presumes the existence of a specific P L  triangulation (K1 , tyl) but deals 
willingly with arbitrary triangulations from the same equivalence class. In 
particular, this means that, for an arbitrary P L  triangulation (K1 , wl) and 
any subdivision Ki of K1, the triangulation (Ki , wl) represents something in 
the same class. 

A subset X of an n-manifold M endowed with a triangulation (K,  w )  is a 
subpolyhedron (with respect to  said triangulation) if there exists a sub- 
division K' of K such that w-'(X) underlies a subcomplex of K' .  More 
generally, X is a tamely embedded polyhedron if there exists a homeo- 
morphism h of Monto itself such that h(X)  is a subpolyhedron ; equivalently, 
X i s  a tamely embedded polyhedron iff there exists a triangulation ( K x ,  WX) 
equivalent to (K, w )  for which X i s  a subpolyhedron relative to (Kx, wx). It 
is worth noting that every subpolyhedron and, thus, every tamely embedded 
polyhedron must be a closed subset of M .  
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These concepts should be contrasted with that of an (abstract)polyhedron, 
namely a space admitting a triangulation. The earlier terms require 
compatibility between the structure on the polyhedron and the triangulation 
of the overriding manifold. 

With this as background we are now prepared to explore the concept of 
embedding dimension, or demension, which was formalized as a compre- 
hensive theory by M. A.  Stan'ko [1,2]. A valuable source is a survey by 
R. D. Edwards [l] ,  who outlined Stan'ko's work, stressed its usefulness, and 
expanded it. That source could be particularly beneficial since the treatment 
given the topic here is somewhat cursory, intended merely as background to  
make plausible the applications that follow. 

The focus turns from abstract dimension theory to the geometry of E n  or, 
more generally, of any PL n-manifold M .  Then X C M has embedding 
dimension s k ,  written as demX I k, if for each (n - k - 1)-dimensional 
tamely embedded polyhedron P in M and each open cover V of M ,  there 
exists a homeomorphism h: M --* Msuch that h(P) n X = 0 and his V-close 
to IdM. As usual, one says that X has embedding dimension k provided 
dem X I k but not dem X 5 k - 1. Loosely put, dem X = k iff X behaves 
rather like a k-dimensional subpolyhedron of M .  

The extreme cases are easily understood. Clearly, when X c M a PL n- 
manifold, dim X = n iff dem X = n, for each is equivalent to X containing 
a nonvoid open subset of M ;  hence, dim X 9 n - 1 iff dem X I n - 1. On 
the other hand, when X denotes a 0-dimensional abstract polyhedron, 
dem X = 0 for trivial reasons. However, the existence of Cantor sets X in 
S" (n 2 3) for which nl(S" - X )  is nontrivial indicates that dim X = 0 does 
not always imply d e m X  = 0. 

Two features are obvious from the definition : embedding dimension k is 
invariant under homeomorphisms of the ambient manifold, and embedding 
dimension I k is hereditary. 

Proposition 1. If X c M with dem X = k and if h is a homeomorphism of 
M onto itsev, then dem h(X) = k. 

Proposition 2. If Y C X c M and dem X 5 k, then dem Y I k. 

When the manifold Mhas  a PL triangulation, the delicate general position 
adjustments ordinarily done in En can be performed equally well in M by 
transferring from M back to E" in chart-by-chart fashion. This yields : 

Proposition 3. If X is a tamely embedded subpolyhedron of M ,  then 
dem X = dim X .  

The philosophical attitude that dem X = k essentially means X behaves 
like a k-dimensional subpolyhedron is most valid in case X is compact. 
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In many senses, however, embedding dimension functions just as well with 
a-compact subsets of the manifolds as with subcompacta, due to the 
following : 

Theorem 4. Suppose X I ,  X2,  ... are compact subsets of M such that 
dem Xi 5 k for all i. Then dem(U Xi) I k. 

The proof is fairly routine, primarily requiring controls governing a 
Cauchy sequence of self-homeomorphisms on M sufficient to guarantee the 
limit is a homeomorphism. Besides that, say for the case of compact M ,  given 
a tamely embedded polyhedron P and E > 0, one first procures an 
(e/%)-homeomorphism hl such that hl(P)  n X I  = 0. Then one adjusts the 
tame hl(P) off X2 via a homeomorphism h2, moving points less than e / 4  and 
less than +p(hl(P), X I )  as well, so that h2hl(P) n (XI u X2) = 0. This is 
continued with care to  maintain the desired properties in the limit. 

A similar argument reveals that dem X dominates dim X .  

Theorem 5. For any a-compact subset X of a PL manifold M ,  
dem X 2 dim X .  

Proof. We suppose M = E n  and dem X = k. Since the case k = n is 
trivial, we assume k < n. By Theorem 4 it suffices to study the case in which 
X is compact. 

Consider the Nobeling space 'Xi, described in Hurewicz-Wallman [l , 
p. 291, consisting of all points (XI, ..., x,) in E n  at most k of whose 
coordinates are rational. Its complement, the subset .A%+' consisting of all 
points with at least k + 1 rational coordinates, can be naturally viewed as 
a countable union (n - k - I)-dimensional affine hyperplanes Pj, 
individually determined by assigning a rational number in each of (k + 1) 
coordinates while allowing complete freedom in the remainder. The hypo- 
thesis dem X s k implies that X can be pushed off each hyperplane Pj. 
With meticulous care, like that suggested for the proof of Theorem 4, we 
can produce a limiting homeomorphism h of E" onto itself such that 
h(X)  n C:+' = 0, forcing h(X)  c 'Xf:. Since dim 'Xi = k, this establishes 
that d imX 5 k, as required. 

Another mechanism at work here is a basic geometric duality. Given an 
n-simplex a, identify its k-skeleton K and the (n - k - 1)-complex P dual 
to Kin R, where R denotes the (complex associated with the) first barycentric 
subdivision of 0 ;  namely 

P = ( T E R J T ~ \ K I  = 0). 

Then CI - JPJ deformation retracts to K .  Moreover, each simplex of R is 
uniquely expressible as the geometric join of a simplex from K and a simplex 
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from P(one possibly empty); hence, if X is a compact subset of a - \PI and 
if W is an open subset of 0 containing IKI, there exists a homeomorphism 
of a onto itself compressing X in W while fixing 1 K u PI. Expanding this, 
when X i s  a subset of a PL n-manifold Mand  dem X I k ,  then for each PL 
triangulation T of M we see that X can be pushed off the (n  - k - 1)- 
complex P dual to TCk’ in T‘ ,  the first barycentric subdivision of T, causing 
X to lie in an open regular neighborhood of some k-spine, a portion of TCk’ 
near X, which neighborhood deformation retracts to the spine via a 
homotopy moving points less than mesh T. Furthermore, if X is compact it 
can be compressed arbitrarily near that spine by a homeomorphism of M 
moving points less than mesh T. Such neighborhoods are characteristic of the 
sets X C M satisfying dem X 4 k. 

Theorem 6. Let X be a subset of a compact PL n-manifold M. Then 
dem X I k i f  and only if, for each E > 0,  there exists a k-dimensional 
polyhedron K tamely embedded in M and there exists an open regular 
neighborhood V of K that &-deformation retracts to K along the “lines” of 
the regular neighborhood, such that X c V c N(X; E) .  

Two important results from PL topology will be applied frequently; their 
proofs fall outside the scope of this text. The first is due to  R. H. Bing and 
J .  M. Kister [I], promising an ambient isotopy “covering” a homotopy 
between PL embeddings in the trivial range. 

Theorem 7. Let Mdenote a PL n-manifold; ’u = (U,) a collection of open 
subsets of M ;  K a finite simplicia1 k-complex, with 2k + 2 5 n ; f o  and f i  PL 
embeddings0fKinM;andF K x I-+MamapsuchthatF~ = f o , K  = f i ,  
and, for every x E IKI on which Fr is nonconstant, some U, E 21 contains 
R l X l  x 0. 

Then there exists a PL isotopy Or of M to itseu, with 80 = Id, such that 
O1 f Q  = f i  ; moreover, for everyp E Mon which Ot isnonconstant, thereexist 
U,, U, E ‘u such that Ot(p) C U, u U, (for afl t E I ) .  

Corollary IA. If X is a a-compact subset of a PL n-manifold. Msuch that 
d i m X s n - 2 a n d n 2 4 , t h e n d e m X s n - 2 .  

Proof. Consider the situation where X i s  compact. For each 1-complex 
K in M ,  there is a short homotopy between the inclusion and a (PL) 
embedding of K in M - X. 

The second important result stems from the homotopy-implies-isotopy 
results developed with engulfing techniques. This was independently derived 
by J .  L. Bryant [2] and M. A. Stan’ko [2].  
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Theorem 8. Suppose X is a compact subset of a PL n-manifold M ,  n 2 5 ,  
such that X is 1-LCC in M and dim X 5 n - 3. Then dim X = dem X .  

According to a result of T. Homma [ l ]  and R. H. Bing [6] ,  Theorem 8 also 
holds when n = 3 .  R. D. Edwards recently announced that it holds when 
n = 4 as well. 

Theorem 8 affords a quick method for dispensing with most cases in 
another key result. It should be mentioned that Theorem 8 is not a necessary 
tool-the result could be established from first principles ; however, doing 
that would require further coping with the technical intricacies of PL 
topology. 

Theorem 9. Let X denote a a-compact subset of a PL n-manifold M. Then 
dem X 5 k if and only i f  M has a sequence of PL triangulations [ K), each 
equivalent to the specified one, such that mesh Z + 0 as i -+ 00 and 
~n Z ( n - k - 1 )  - 

- 9. 

Proof. The forward implication is straightforward in all dimensions ; we 

The hypothesis about the triangulations 7;. implies, among other things, 

to the k-complex dual to T("-'-') in the first barycentric subdivision of 7;. . 
When k = n, n - 1, or n - 2, dem X is known to be bounded by k,  so that 
the only case of interest is k I n - 3. But then X i s  1-LCC (any small loop 
in M - X can be adjusted to lie in some i'f2), and contractibility in a small 
subset of Mimplies contractibility in a small subset of c M - X ) ,  and 
Theorem 8 settles the matter. 

Corollary 9A. If X is a cell-like subset of a PL n-manifold M and 
dem X I n - 3, then X is cellular. 

Proof. See also Lemma 20.7. 

consider the reverse implication only for n 1 5 and for compact X .  

that dim X S  k, becauseofthenicemaps fromX(indeed, f romM - $ " - k - l )  1 

W 

Summary. For a o-compact subset X of M" (PL) where n 1 4: 

(1) d e m X r  dimX; 
( 2 )  demX r dem Y for all Y c X ;  
(3) dem X = max(dem C I C is a compact subset of X ) ;  
(4) d e m X = d i m X u n l e s s d e m X = n - 2 a n d d i m X c n  - 2 .  

Anomalies compared with Property (4) above appear in case n = 3 .  The 
tangled continua X of H. G. Bothe [l] and of D. R. McMillan, Jr., and 
H. Row [l] satisfy dim X = 1 = n - 2 and dem X = 2. Such anomalies arise 
because nice l-dimensional objects in E 3  can be knotted. 

Next, material reinforcement for the viewpoint that objects of embedding 
dimension k behave like k-dimensional tame polyhedra. 
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Proposition 10. If X and X' are compact subsets of a PL n-manifold M 
such that dem X + demX' < n,  then for each E > 0 there exists an 
&-homeomorphism h of M onto itself such that h ( X )  n X' = 0. 

Apply Theorem 9 to obtain a triangulation Twith small 
mesh such that X n T(n-k-')  = 0, where k = dem X ,  and let P denote the 
k-complex dual to T ( " - k - l )  in T ' ,  the first barycentric subdivision of T. 
Because dem X + dem X' < n,  there exists a small homeomorphism g of M" 
for which g(P)  n X' = 0. The linear structure in T' between T("-k- l )  and 
P facilitates the naming of another small (PL) homeomorphism ty com- 
pressing X so close to P that gty(X) n X'  = 0. 

The following generalization of Proposition 10 is needed for Section 22. 

Proposition 11. Let X and X '  denote compact subsets of a PL n-manifold 
M ,  and let E > 0 .  Then there exists an &-homeomorphism h of M onto itsew 
such that 

dem[h(X) n X ' ]  I dem X + dem X' - n. 

Sketch of proof. 

Sketch of proof. This is accomplished by producing (e/2)-homeo- 
morphisms 'c/ and ty' of A4 such that 

dem[ty(X) n ty'(X')] 5 demX + dem X' - n 

and by setting h = (ty')-'ty. These are obtained as limits, bolstered at the 
various stages by a triangulation 7; of small mesh and by small homeo- 
morphisms Bi , 0: of M such that &(X)  n B:(X') lies in a thin regular neigh- 
borhood (in the sense of Theorem 6 )  of some m-complex, where 
rn = dem X + dem X' - n. Let k = dem X and k' = dem X'. Typical 
general position modifications give rise to a very small (PL) homeomorphism 
f of M t o  itself for which f (Z(k ' )  n 7 f )  is an m-complex P. Consequently, 
there exist small (limited by mesh Ti) homeomorphisms Bi moving X (more 
precisely, its image after previous adjustments) so close to 7;(k) and 0; moving 
X '  so close to Ti(k') that f&(X) n &(X')  is confined to a thin regular 
neighborhood of P. Subsequent motion must be controlled to preserve this 
property in the limit. 

Finally, this section closes by presenting two technical results with 
important forthcoming roles to play. They promise the capability of a kind 
of shadow-building and give the expected bounds on embedding dimension 
of the shadows. A related kind of polyhedral shadow-building forms the 
backbone of most engulfing arguments. 

Proposition 12. For any compact subset Y of Int B", there exists a starlike- 
equivalent compact subset X of Int B" such that X 3 Y and dem X 5 
dem Y + 1. 
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Proof. Adjust Y so that it avoids the origin 0. Choose a sequence of 
triangulations (;GI of aB" with mesh going to zero. Let k = dem Y, and let 
Pi denote the geometric cone in B" from 0 over the (n - k - 2)-skeleton of 
z. 

We want Y to miss each Pi, which can be achieved by a small perturbation, 
exactly as in the proof of Theorem 5 .  As a result, we have a homeomorphism 
f of Int B" onto itself for which f ( Y )  n Pi = 0 for all i .  

Name the radial retraction r from B" - 0 to aB", and let 2 = r f (Y) .  Note 
that by construction Z has embedding dimension 5 k in aB". Determine a 
compactsubconeX*oftheconefromOoverZsuchthatf(Y) c X* c Int B", 
and define Xas  f -'(X*).  According to Proposition 1, dem X = dem X*, so 
it suffices to show that dem X *  I k + 1. 

One way to do this is to construct "triangulations" of B" by coning from 
0 over the triangulations Ti of as" and then truncating the result by cutting 
along finite families of (n - 1)-spheres concentric with aB"; this provides 
"triangulations" R; of B" consisting of convex linear cells (when B" is 
regarded as Z"), with mesh Ri tending toward zero and with the (n - k - 2)- 
skeleton of each Ri missing X*. These function enough like ordinary PL 
triangulations that the argument of Theorem 8 applies. 

Another method is to observe that dim X* I dim 2 + 1 I k + 1 because 
dim Z 5 dem 2 I k.  Specializing to n B 5 ,  we know dem X *  = dim X* 
unless (possibly) k + 1 < n - 2. In the remaining cases, Theorem 7 attests 
that demX* = dimX* I k + 1 provided X* is 1-LCC, which follows 
quickly (an exercise) from the fact that 2 is 1-LCC in aB". 

The last result serves as a relative version of Proposition 12. 

Proposition 13. Suppose Y is a compact subset of Int B" C B" C E", A is 
a closedsubset ofE", and& > 0. Then there exist &-homeomorphisms fyand 

f A  of En,  supported in compact sets, and there exists a pair (X, XA) of 
compact subsets of Bn, each starlike with respect to the origin 0,  satisfying 

(a) f y ( Y )  C X and dem X = dem Y + 1, 
(b) X n f A ( A ) C X ~ a n d d e m X A I d e m X + d e m A + l  - n ,  

Proof. In the manner described before, without regard to A ,  construct 
a homeomorphism f y  of E n  to itself, fixed outside B", adjusting Y so as to 
place it in a cone X, where aB" contains a compact set Z with embedding 
dimension (relative to aB") bounded by dem Y, and where X corresponds to 
the cone from 0 over 2. Then dem X 5 dem Y + 1. Attaching another cone 
from 0, if necessary, we can assume dem X = dem Y + 1. 

In a similar manner, construct another small homeomorphism fA  of E" to 
itself, fixed outside a neighborhood of B" (not just outside B", because 
A n aB" could be a snarl), adjusting A n B" so as to place it in a cone CA , 
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where this time aB" contains a compactum ZA with embedding dimension 
(relative to dB") bounded by dem A and where the cone CA from 0 over ZA 
contains fk(A) n B". 

The decisive measure is initiated by a minor perturbation of aB" 
minimizing the intersection of Z and ZA . By Proposition 11 there exists a 
small homeomorphism ha of dB" such that 

dem[Z n ha(Z~)]  5 dem 2 + dem ZA - (n  - 1) 

I dem Y + demA + 1 - n. 

Now ha extends over B" by coning from 0, which further extends to a 
homeomorphism h of E", by tapering ha off the identity on a collar in 
E" - Int B". Then h simplifies intersections betweenxand CA , with bounds 
given by : 

dem[Xn ~ ( C A ) ]  = 1 + dem[Z n ha(Z~) ]  

5 1 + (demY+ demA + 1 - n) 

I d e m X +  demA + 1 - n. 

Set fA = hfA and XA = X n  ~ ( C A )  to complete the proof. 

EXERCISES 

1. If X is a compact subset of a PL n-manifold M and dem X I k, then Xi s  i-LCC 
f o r i E ( O , l ,  ..., n - k -  1). 

2. If the compact subset X of as" has dem X < n - 3,  then the cone over X from 
the origin is 1-LCC in E". 

3. Let G denote a cell-like decomposition of En such that HG forms a null sequence 
of (contractible) tamely embedded polyhedra, each of dimp, where 2p + 4 5 n. 
Show that G is shrinkable by using the Bing-Kister theorem to find earnalgama- 
tions 6 of G such that HG forms a null sequence of starlike-equivalent compact 
polyhedra. 

22. SHRINKING SPECIAL 0-DIMENSIONAL DECOMPOSITIONS 

The heart of this section is the proof of the following result. 

Proposition 1. Let G be a cell-like decomposition of a (PL) n-manifold A4 
such that HC forms a null sequence and dem g I n - 3 for each g E G .  Then 
G is shrinkable. 

The argument, which is lengthy, incorporates one of the last bare-handed 
shrinking techniques to be described here. Before pursuing it, however, we 
look at its amalgamated consequence. 
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Theorem 2.  Let G be a cell-like, 0-dimensional decomposition of a (PL) n- 
manifold M such that dem NG 5 n - 3.  Then G is shrinkable. 

Proof. According to Theorem 21.9, there exists a sequence {TI of 
triangulations of Mfor  which NG n X C 2 )  = 0. For any E > 0, Theorem 20.5 
provides a cell-like decomposition K of M such that K is an &-amalgamation 
of G, HK forms a null sequence, and, significantly, NK n (Ui T,(2)) = 0. 
Therefore, Theorem 21.9 again reveals that dem NK I n - 3, and 
Proposition 1 attests that K is shrinkable. 

Armed with Proposition 1, for each E > 0 we have produced a shrinkable 
&-amalgamation of G .  According to Theorem 20.1, this indicates that G itself 
is shrinkable. 

Proof of Proposition 1. Enumerate the elements gl , g2, .. . of HC . 
Special Case. Each gi E HG is a subpolyhedron of Mand 2 dim gi + 2 I n. 

This special case is a worthy guide for the general case. It traces out the 
same proof pattern and identifies the appropriate shrinking technique, but 
in a setting permitting use of the more familiar PL, as opposed to embedding 
dimension, methodology. 

Given go E H c ,  a neighborhood U of go, and 6 > 0, we will find a 
homeomorphism F of M onto itself satisfying (1) F ( M  - U = Id, 
(2) diam F(g0) < 6, and (3) for each g E G either F(g) = g or diam F(g) < 6. 
The shrinkability of G will be implied then by Theorem 7.5. 

To do this, first restrict U so that every g E G, other than go, touching U 
has diameter less than 6 / 3 .  Sincego is cellular by Corollary 21.9A, there exists 
a PL n-cell B in U with go c Int B. (Alternatively, one can obtain such a B 
by applying the Bing-Kister result.) Fix a point c E Int B - go and regard B 
as the PL cone from c over dB. Let CO denote the subcone consisting of all 
points on any line segment from c to dB that meets go (i.e., CO equals the cone 
from c over the natural projection of go to 8s). With-B regarded in this 
fashion as a cone, CO is a starlike subset of B, but with B considered in situ, 
CO represents a starlike-equivalent subset of U. Furthermore, CO is a 
(dim go + 1)-subpolyhedron of M in U. 

Triangulate U - go so CO - go is a subcomplex and adjust A4 via a (PL) 
homeomorphism w fixing go, supported in U,  and placing the vertices of 
CO - go in general position with respect to those of each gi. Because 

dim Co + dimgi = dimgo + 1 + dimgi < n,  

~ ( C O )  n NG = go.  (One can attain the same ends from demension-theoretic 
methods, using the facts that dem CO = dim CO and dem gi = dim gi). 

As in the proof of Lemma 8.5 or by Exercise 8.2, the starlike-equivalent 
set w(C0) can be shrunk to size 6 without causing the sizes of other gi’S 
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touching U to swell to size 6, under a homeomorphism F supported in U. 
(Exercise 1 suggests another method for concluding the proof in this case.) 

General Case. This requires an iterated coning and general positioning, 
similar to procedures employed for codimension I 3 engulfing. The inductive 
device is set forth as the lemma below. 

Lemma 3 (a-demensional shrinking). Under the hypothesis of Proposi- 
tion 1, suppose A is a closed subset of M such that a = dem A 4 n - 2, 
gm E H G ,  and r] > 0. Then there exists a neighborhood W of gm in N(gm; r ] )  

and there exists a homeomorphism w of Monto itseu, supported in W, such 
that diam w(g;) < r ]  for each gi E G satisfying ty(g;) n W n A # 0. 

We shall postpone the proof of this lemma until after exploiting it to 
complete the proof of Proposition 1. 

Exactly as in the proof of the special case, given go E HG , a neighborhood 
U of go, and 6 > 0, we intend to describe a homeomorphism F of M onto 
itself supported in U such that diamF(g0) < 6 and, for the other g E G, 
either F(g) = g or diamF(g) < 6. 

Start as before by trimming back the neighborhood U of go so that each 
gi (#go) meeting U has diameter less than 6/3 and, using the cellularity of 
go (see Corollary 21.9A), by locating an n-cell B in U for which Int B 3 go. 
Fix a point c E Int B - go and think of B as the geometric cone from c over 
dB.  Apply Proposition 21.12 to obtain a starlike-equivalent subset Xof Int B 
such that go C X and dem X I dem go + 1 5 n - 2. We want to stress that 
X is typical of the objects A to which Lemma 3 applies. For technical 
simplicity we suppress the homeomorphism from B to the starlike cell as well 
as the homeomorphism of B to itself carrying X to a starlike set, and treat 
X as a starlike subset of Int B. 

At this spot one must recall the method used in Lemma 8.5 to shrink a 
starlike object X while regulating the sizes of nearby elements from a 
specified null sequence. The shrinking was achieved as a composition of a 
sequence f i ,  fi, ..., fk-1 of short radial moves, each disturbing points less 
than 6/3 ,  withfj sending&] fi(X) into a starlike subset of itself and with 
fi restricted so as to move no point outside an arbitrary small neighborhood 

of f i - 1  

To begin that process, we find fi as above supported in 6 = U. Note that 
diam fi(g) < 6 for each g E HG in U except go. 

Consider any one, say gm , of the finite collection of elements of G (#go) 
for which diam fi(gm) 16/3 and fl(gm) nfi(X) # 0. Construct an fi(G)- 
saturated neighborhood Qm of fi(gm) such that fi(go) n Qm = 0, 
diam Qm < 6, and no two such neighborhoods intersect. Choose r] > 0 
sufficiently small that r ]  < 613 and N( fi(gm); q) C Qm . (From here on we 

f i (X) ,  determined after f1,  ..., fi-1 had been identified. 
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treat g m  as the only one of these sets; when others are present, we perform 
similar adjustments near each.) By Lemma 3 there exists a neighborhood Wm 
of fl(gm) in N(fi(gm); v ) ,  as shown in Fig. 22-1, and there exists a homeo- 
morphism ~1 supported in W, such that diam wl(fl(gi)) < v whenever 
wlfi(gi) n Wm nf l (X)  # 0. As a result, for every g E G except 
g = go, wlfi(g) nf l (X)  # 0 implies diam wlfl(g) < 6/3. More generally, 
for all g E G in U except g = go, diam tyIfi(g) < 6. Finally, note that 

Determine a neighborhood VZ of f i ( X )  in fi so close to f l ( X )  that each 
set wlfl(g) meeting VZ (except for g = go) has diameter less than 6/3. Then, 
as in Lemma 8 .5 ,  find a (6/3)-homeomorphismf2 supported in VZ pulling the 
starlike setfi(X) inward another notch. Apply Lemma 3,  as in the preceding 
paragraph, to obtain a homeomorphism ~2 supported in VZ - f2f1(g0) and 
rectifying sizes of the elements from f2 wlfl(G) that meet fifl(X), so that, 
for each g E G in U other than go, 

wlfl(g0) = f1(go) c fl(X). 

FIG. 22-1 
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Repeat this procedure, producing in order homeomorphisms f1, V/ I  , f 2 ,  

desired effect. Not only does it shrink go to  &size [in analyzing this, a crucial 
aspect is the part of the construction ensuring that W j f j  V / I  fl(g0) = 
f i . - . f ~ ( g ~ ) ] ,  but F does so with control: if fjyj-1 fi(g) becomes 
dangerously large (diam 2 6/3), either v/j rectifies the problem or tyj pushes 
f j ~ / j - ~  .-.fi(g) off f j  . . . f l(X),  which allows the later radial compressions to 
sweep past without affecting the new image. This completes the proof of 
Proposition 1. 

Proof of Lemma 3. The argument proceeds by induction on a = dem A ,  
beginning with the vacuous case a = - 1. To be sure, general position 
(embedding dimension) methods quickly dispose of the cases a = 0, 1 ,2  as 
well; see Proposition 21.10. 

Consider a closed subset A of M with dem A = a (I n - 2), and suppose 
inductively that the (a - 1)-demensional version of Lemma 3 is true. The 
scheme to  be used is a variation on the one just described-g, E HG will be 
“shrunk,” in successive stages, by small adjustments, until it misses A ,  and 
none of the elements nearby will be stretched to large size. 

Choose a neighborhood W of g m  in N(gm ; q) so that any g (Zgm) from G 
intersecting W has diameter less than q / 3 .  If gm n A = 0, set V /  = Idw. If 
not, locate a Euclidean patch W‘ in W and a standard n-cell B in W’ 
containing gm in its interior (Corollary 21.9A). Regard B as a cone from some 
point c E Int B over aB. Apply Proposition 21.13 to  obtain a minor 
modification 0 of W’ (0 = fi’fy) and starlike-equivalent subsets X and XA 
of W ’  in B [here Xcorresponds to the set f i l ( X )  described in Proposition 
21.13, while XA corresponds to f i ’ ( X ~ ) ]  satisfying 

v / 2 ,  f3, ..., V / k - 2 ,  f k - 1 .  The composition F = f k - i  Wk-2 f k - 2  V/ i  fi h a  the 

(i) @gm) c X a n d  d e m X  = demg, + 1 5 n - 2, 
(ii) X n A  c XA and demXA I n - 2 + demA + 1 - n < demA; 

in so doing it should be noted that the starlike structure of XA is compatible 
with that of X ,  under some (suppressed) homeomorphism of W’ to E” 
carrying X and XA to starlike sets. In addition, 8 can be regulated to move 
points only a little, so we suppress 0 as well. Just as recalled earlier in proving 
Proposition 1, based on the methods of Section 8 we know how to  compress 
XA near the cone point c under the composition of a finite sequence 
fi , fi, ..., fk-1 of (q/3)-homeomorphisms. Aided by the inductive hypo- 
thesis, one can mimic the argument from the general case in Proposition 1, 
interspersing homeomorphisms V/j ( j  = 1, . . . , k - 2) supported in W - f, 
fl(gm), SO that, for each g E G in W(g  # gm), 

diam W j f j . . .  wlfi(g) < r l ,  
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and, if wjf, .-. Ylfi(g) nfj-..fi(xA) Z 0, 

diam VjfJ ... ~ j / l  f l (g)  c q /3 .  

Then the composition I,U = f k -1  W k - 2  f k - 2  -.. ~1 f l  satisfies W(gm) n A = 0, 
because W(gm) = f k - l  ..- f l ( g m )  C X - XA , and diam W(g)  c q for the other 
g E G such that W(g)  c W. These two features imply the stated conclusion 
of Lemma 3. 

Theorem 2 has several interesting consequences, among them Corollary 2B 
below, which represents a powerful improvement on Theorem 8.1. 

Corollary 2A. If  G is a countable cell-like usc decomposition of S" such 
that each g E HG has embedding dimension ~n - 3 ,  then G is shrinkable. 

Corollary 2B. I f G  is a countable usc decomposition of S" such that each 
g E G is a flat cell of dimension s n  - 3 ,  then G is shrinkable. 

Corollary 2C. If G is a countable usc decomposition of S" such that each 
g E G is a contractiblesubpolyhedron of S" having dimension s n  - 3 ,  then 
G is shrinkabie. 

EXERCISES 

1. Let G denote a cell-like decomposition of E n  such that HG forms a null sequence 
and dem NG 5 k,  where 2k + 2 5 n. Show that for each E > 0 there exists an E-  

amalgamation 6 of G such that He forms a null sequence of starlike-equivalent 
sets. 

2. Fill in details for the proof of Lemma 3 .  

23. SHRINKING SPECIAL (n - 3)-DIMENSIONAL 
DECOMPOSITIONS 

Using a simple filtration device and the 0-dimensional shrinking theorem 
of the preceding section, Edwards [4] artfully synthesized a related (n - 3)- 
demensional shrinking theorem, which in turn he exploited to derive a 1-LCC 
shrinking theorem conjectured by Cannon [ 6 ] .  

The next lemma portrays that filtration, the instrument eventually put into 
operation to measure progress toward successful approximation by a 
homeomorphism. 

Lemma 1. Each n-dimensional a-compact metric space Q" can be filtered 
into a-compact subsets Q", Q"-', ..., Q', ..., Qo such that dim Q' I i ,  
Q' 3 Q'-', and dim(Q' - Q'-') I 0. 
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Proof. (By downward induction on i . )  The a-compact space Q' has a 
countable basis {bj) of open sets whose frontiers (in Qi) have dimension 
strictlyless than that of Q'. The union Qi-' of the sets Fr bj then is o-compact, 
dim Qi-' < dim Q', and dim(Q' - Q'-') I 0. 

Theorem 2. If G is a cell-like decomposition of the PL n-manifold Msuch 
that dem NG I n - 3 and M/G is finite-dimensional, then G is shrinkable. 

Remnrk. Due to the potential existence of cell-like dimension-raising 
decompositions, the hypothesis demNG 5 n - 3 by itself is not known to 
imply dim(M/G) < 00. 

By Theorem 17.7 dirn(M/G) I n. Filter M / G  into o-compact 
subsets Q" = M / G ,  . . . , Q', . . . , Qo satisfying the conclusions of Lemma 1. 
Name an open set W containing NG , and consider the decomposition map 
T C :  M-* M / G .  For simplicity, assume M is compact. Say that a map 
f: X - *  Y is 1-1 over a subset A of Y if f 1 f - ' ( A )  is 1-1. 

Claim. For i = 0, 1, ..., n and for  each E > 0 there exists a cell-like map 
F,+ I :  M + M / G  satisfying 

(a) ~ ( R + I ,  TC) < (i + l ) ~ ,  
(b) F,+l is 1-1 over Q', 
(c) dem 5 n - 3 ,  and 

Once this claim is established, the proof will be complete, for certainly F,+ 1 

will be a homeomorphism approximating TC. The claim itself is proved by 
induction on i. The inductive step coincides essentially with that for i = 0, 
so we shall concentrate on the initial step. 

To begin, we express Qo as the countable union of compact 0-dimensional 
sets Z, ( j  = 1, 2, ...). We shall find cell-like maps fj (j = 0, 1, ...), with 
fo = T C ,  of M onto M / G  satisfying the following conditions; 

Proof. 

(d) f i + 1 1 M -  W =  T I M -  W. 

(1) P(fj+l,fj) < d 2 : ' + ' ;  
(2) fj is 1-1 over ULl Z k ;  

(3) there exists a PL triangulation T of M with mesh less than 5' ( j  > 0) 
whose 2-skeleton T,(') misses Nfi C f j - ' ( n ( N ~ ) ) ;  

for k E (1, 2, ...); 
(4) fJ+k I (M - W )  u T'') UfJ-'(Zj) = f, I (M - W )  u 5") u&-'(Zj) 

( 5 )  for x E M  - (Zj") u&-'(Zj)) and k E (0, 1, ...), p(fJ+k+l(x), 
1 

f j + k ( X ) )  5 p ( & + k ( X ) ,  &(T''') u 4). 

Before describing their construction, we describe their purpose. Condition 
(l), of course, guarantees that {fj] is a Cauchy sequence of maps converging 
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to a map F1 close to n, and F1 necessarily will be cell-like by Theorem 17.4. 
Condition (2) requiresfj to be 1-1 over Z j ,  condition (4) maintains the same 
action over Zj by subsequent maps, and condition ( 5 )  provides the crucial 
controls preventing any other points of M ,  besides those of f j - ' (Zj ) ,  from 
being sent to Zj under F1 . Consequently, Fi will be 1-1 over Qo. Similarly, 
condition (3) identifies a finely meshed triangulation whose 2-skeleton T,(2) 
misses the nondegeneracy set of f j ,  condition (4) maintains the same action 
on Tj( ')  by subsequent maps, and condition ( 5 )  prevents any other points of 
M from being sent to F I ( T ~ ( ~ ' )  = f,(Tj(2') under F1. As a result, the non- 
degeneracy set of F1 will be contained in M - U T j ( 2 ) ,  causing the non- 
degeneracy set of F1 to have embedding dimension sn - 3 ,  by Theorem 
21.9. In summary, construction of such maps (fi) will establish the claim for 
the case i = 0. 

To perform the first stage construction, observe that the decomposition 
G1 induced over Z1 byfo = n, where G1 consists of the setsf{'(z), z E Z1,  
plus the remaining singletons from M ,  is a O-dimensional, cell-like usc 
decomposition of M such that dem NG, 5 n - 3 (because NG, C NG). 
According to Theorem 22.2, G1 is strongly shrinkable. After choosing a 
triangulation K of M with mesh less than and with 2-skeleton missing NG 
(see Theorem 21.9), we obtain a map of M onto itself, the end of some 
pseudo-isotopy, such that 81 realizes G I ,  81 moves no point outside 
W - 7$2), and 81 is limited by the inverse image (under fo = n) of an open 
cover of M/G by sets having diameter less than d 2 .  

We definefl as fo 8: ', which obviously is a well-defined map close to fo . 
Its inverse, fi-' = Blf&', discloses thatfl is 1-1 over a subset of M/G when 
fo is, or, more formally, that 

Nr, C f i l f o ( N G )  = fil(n(NG)). 

Furthermore, since each nondegenerate set f i l (q) ,  q E M / G ,  is homeo- 
morphic via O1 toft'(q), f i -*(q)  is cell-like. By construction of GI and 81, 
f l  is 1-1 over Z1. In particular,fl is a cell-like map satisfying conditions (l), 

The second stage construction is typical of the iteration. The decomposi- 
tion G2 induced over 2 2  byfl is an O-dimensional cell-like decomposition of 
M such that 

dem NG2 I dem Nf, 5 n - 3 

(a fact verified later as Lemma 3). Again by Theorem 22.2, G2 is strongly 
shrinkable. After choosing a triangulation Tz having mesh less then f and 
having 2-skeleton missing Nf, 3 N G ~ ,  we obtain a map 82 of M onto itself, 
the end of another pseudo-isotopy, such that 82 realizes G2, 82 fixes points 
outside W - (7f2) u TiC2) u f L 1 ( Z l ) ) ,  and 82 is U2-close to Idw, where U 2  is 

(21, and (3). 
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the inverse image under f1 of an open cover of M/G by sets having diameter 
less than ~ / 4 .  In addition, 82 is allowed to move no point outsidefi-'(fi), 
where I5 is an open set containingfl(NcJ in M / G  - (Z1 uf1(7f2')) whose 
components yz satisfy 

diam yz 5 bp(C1 y2, ZI u f1(Z(2))). 

Define& asf18i1. Conditions (l), (2), and (3) hold as before. Condition 
(4) follows quickly from the limitations on 82, and condition ( 5 )  follows from 
the additional limitation at the end. 

By continuing in similar fashion, we build the maps (fj), establishing the 
claim for i = 0. It may be worth mentioning here that breaking Qo apart into 
the Zj's is indispensable : although the decomposition induced by fo over Qo, 
like that over Z1, partitions Minto singletons and a 0-dimensional collection 
of cell-like sets (whose union even has the appropriate embedding dimen- 
sion!), this decomposition is not likely to be USC. 

Now, on to the inductive step. Suppose that R is a cell-like map of Monto 
M/G satisfying statements (a) through (d) in the claim. The new goal is to 
produce another cell-like map F;:+l: M + M/G close to f i  and 1-1 over Q'. 
Toward that end, express Q' as a countable union of compact i-dimensional 
sets Zl ,Zz ,  . . . . Exactly like the case i = 0, we find cell-like mapsfj of Monto 
M/G (j E (0, 1, ...)), with f o  = f i ,  satisfying conditions (1) through ( 5 )  listed 
there, except for condition (2), which is upgraded to : 

(2') f j  is 1-1 over Q'-' u <Uj,=, zk). 

The key for starting, and for iterating, is that the decomposition GI induced 
over Z1 by f o  = fi  is 0-dimensional, because fO(NGI) C ZI - Qi-' C 
Q' - Q'-'. This exposes the principal benefit of the filtration. We shrink out 
GI via 81, define f1 as f o  OF1, and continue the iteration, proceeding precisely 
through the same drill as in the case i = 0, to complete the proof of the 
inductive step. This finishes the proof of the Claim and of Theorem 2, modulo 
the following omitted result about embedding dimension. 

Lemma 3. Suppose G is a cell-like decomposition of a (compact) PL 
n-manifold Msuch that dem NG 5 n - 3, Z is a closed subset of M/G such 
that thedecomposition G(Z) inducedoverZisstronglyshrinkable, 8 :  M -+ M 
is a map realizing G(Z)  which equals the end pl of some pseudo-isotopy 
pt: M -+ M ,  and f is the natural map d-'. Then dem Nf 5 n - 3. 

Proof. Recall from the proof of Theorem 2, or recheck, that ~ ( N G )  3 Nf. 
To determine a typical 2-skeleton in M - Nf, start with a triangulation T 
having very small mesh and having 2-skeleton T(') C M - N G .  Then 
8( T"') C M - ~ ( N c )  C M - Nf .  We shall prove that 8( 7"2') is the 2-skeleton 
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of some triangulation of M having small mesh [since 0 is just a map, B(T) 
itself will not serve as a triangulation]. 

Fix E > 0. Suppose Twas chosen with mesh so fine that diamp,(o) < ~ / 5  
for all o E T and all t E I. Choose a value s E (0, 1) close enough to 1 that 

diamp,(g*) < ~ / 5  for each g* E G(Z), 

and 

p(6pi1, IdM) < d 5 .  

Becausep,(G(Z)) is strongly shrinkable, there exists an (e/5)-map w :  M -+ M 
fixed on P~(T'~')  and realizing p,(G(Z)). Then 0p;'w-' is a (2~/5)-homeo- 
morphism of M carrying the tamely embedded polyhedron ~ P ~ ( T ( ~ ' )  = 
pS(T(") onto S(T(2)), which shows 6(Tc2)) to be the 2-skeleton of the 
triangulation (Op;'ty-')ps(T), whose mesh is less than E .  

Embedded in the proof of Theorem 2 are motion controls, pertaining to 
a special case, forcing maps f J  1-1 over a closed subset Z1 u ... u Zj to 
converge to a map 1-1 over the union of the Zj's. Because such controls will 
be called for repeatedly, under more general circumstances, it is convenient 
now to dispose of the details, once and for all. 

Proposition 4. Let G denote a cell-like decomposition of an n-manifold M ,  
and for j = 1,2, ..., let Zj denote a closed subset of M / G  such that the 
decomposition G(Zj) induced over Zj is shrinkable. Then R: M + M / G  can 
be approximated, arbitrarily closely, by a cell-like map F: M -+ M/G that is 
1-1 over UjZj. 

Proof. For simplicity again focus on the case of a compact manifold M. 
Fix E > 0. Following now-standard practice, we secure Fas  a limit of cell-like 
maps (51, with fo = R. The relevant controls include some obvious ones: 

W 

(1) P ( f J , f j + l )  < E/2'+', 
(2) f j  is 1-1 over uf=1 Zj; and 
(3) f j +k  Ih-'(Zj) = f j  lfj-'(Zj) for k E (1,2, ...I. 

In addition, after fj has been obtained, later maps must be regulated so no 
points of M - fi-'(Zj) are sent to Zj by F. This is the slightly more trouble- 
some control; it can be attained by requiring (for k = 1,2, ...) 

(4) 

The first step is the easiest. Since G(Z1) is shrinkable, Madmits a self-map 

for P E M - fi-'(Zj)* ~ ( f j + k ( ~ ) , h ( ~ ) )  < SP(A(P), Zj). 

O1 realizing G(Zl), limited by 

p( foe? , fo )  = P(Rel, R) < 
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The map f1 = f o 8 i '  satisfies all four conditions above (the last two 
vacuously). 

More complicated is the second step, aimed at shrinking out the decom- 
position induced over 2 2  byfl . That decomposition coincides with 81 G(Zz), 
by virtue of the identity 

fi% = elfcl(z) = e1n-l(z). 

According to Corollary 13.2B, O1 G(Zz) is shrinkable; furthermore, by 
Theorem 13.3 it is ideally shrinkable. As a result, M admits a self-map 02 
realizing 81 G(Z2) (the decomposition induced over 22 by fl), reducing to the 
identity on fi1(21), and limited by the regulations 

p ( f l O F 1 , f d  < ~ 1 4  and ~ ( f 1  & ' (~ ) , fd~) )  5 & ~ I ( P ) ,  Zl). 

Then the mapf2 = fl 8;' = f~ 8; '8T1 satisfies conditions (1) through (4). The 
composition 8 ~ 8 ,  , it should be noted, realizes the decomposition G(Z1 u 2 2 )  

induced over 2 1  u 2 2 .  

Inductively, one should presume the existence of mapsf1 , ...,A satisfying 
conditions (1)-(4) so that, in addition,fi = f&' ,  where Ai: M -+ M is a map 
realizing the decomposition induced over 21 u u Zi.  With this extra 
hypothesis one can construct a mapfi+l satisfying the expanded induction 
hypothesis, by imitating what was done in the second step. 

Next, the dimension constraints found in Theorem 2 undergo a notable 
metamorphosis, shifting from a limitation on embedding dimension in the 
source to a more advantageous one on dimension in the quotient. 

Theorem 5 (1-LCC shrinking). I f G  is a closed-(n - 3)-dimensional cell- 
like decomposition of a (PL) n-rnanvold M ,  n ? 5 ,  for which n(iV~) is 
I-LCC embedded in M/G, then G is shrinkable. 

Proof. The similarity between this theorem and Theorem 2 suggests 
a workable strategy: approximate n: M + M/G by a cell-like map 
F :  M -+ M / G  such that dem NF 5 n - 3 ,  for then such an F(and, therefore, 
n) is a near-homeomorphism. 

The desired map F materializes as the limit of cell-like maps whose non- 
degeneracy sets avoid successively finer skeleta. Specifically, for E > 0 and 
j E { I ,  2, ...) we produce a triangulation Ij. of M with mesh less than l / j  and 
a cell-like map f j  of M onto M / G  satisfying (where fo = n) 

W 

(1) P ( f j , f i - l )  < &/2J;  
(2) fj(~'*') n n(iTG> = 0 ; 
(3) fj is 1-1 over n(M - &); and 
(4) each Ij . (2)  has a closed neighborhood & in M - h-ln(&) such that 

fi+k 1 W, = fil for k = 1,2, ... . 
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Consequently, the map F = limfj will be a cell-like map of M onto M/G 
and, because FI Wj =fjI W,, it will be 1 - 1  over each fj(G(')), forcing 
d e m N F s  n - 3 .  

Since the construction of f1 from fo = TC is just a special case, we assume 
TI, . . . , 7j and f . . . , & have been obtained, subject to conditions (1) through 
(4). We select a triangulation 7;.+1 of Mhaving mesh less than 1/cj + 1). The 
difficulty to be faced is the possibility that T?! nJ-'z(Nc) # 0, and the 
point is that such unpleasantness can be remedied by a homeomorphism v /  
of Mpushing T#] offf,-'n(&), fixed on the previously defined sets K ,  and 
controlled to makefj+l = &v /  be close to fj. 

Readers well versed in radial engulfing techniques should readily perceive 
how to obtain v / .  As an alternative, we fill in a few details for n L 6 based 
not on engulfin but on the Bing-Kister theorem. 

Subdivide 7;.+1 to get a subcomplex whose underlying point set C lies in 
Tj?! - fj-'z(N~) and contains each U: n T,?! in its interior. Use the 1-LCC 
(and the implicit 0-LCC) condition to approximate f j l  7;.JZI' by a map 
p:  Tf!  -+ M/G such that p I C = fj I C and p(l$!) C M/G - TC(&). 
Recall how the approximate lifting theorem (Theorem 16.7) allows p to be 
regarded as fja, where a: 7j!2! + M is a map for which a I C = inclusion. 
Invoke general position methods to adjust a slightly to a PL (with respect 
to 7j+ 1) embedding having the same properties. In addition, require j j c ~  to 
be so close to f j  I Tj!:' that there exists a short homotopy ht: 7j?! -+ M/G 
between them, where hr I C = f ,  C ,  ht(Tj?! - C )  n W = 0, and each track 
h({z) x I )  has diameter less than ~ / 2 j + '  (Corollary 14.6E). Apply Theorem 
16.8 to obtain a homotopy Ht:  i$! --* M between the inclusion and a such 
that Hr I C = inclusion andfjHt has the same properties as hi ,  and then cover 
the nonstationary tracks H((zJ x I )  by open subsets U, of M for which 
diamfj(U,) < d2"'. Use Theorem 21.7 to secure a PL homeomorphism 
v / :  M-+ M such that ly I 7j$'! = a, p( f j v / , f j )  < ~ / 2 ' + ' ,  and v/ equals the 
identity on each W; . Finally, define&+ 1 as f j v /  and name a closed neighbor- 
hood W,+1 of 7;?! in M - fj;; ~ ( N G ) .  
Corollary 5A. Suppose G is a cell-like decomposition of a (PL) n-manifold 
M,  n 2 5 ,  andsuppose Z is a closed ( n  - 3)-dimensionalsubset of M / G  that 
is 1-LCC embedded there. Then the decomposition G(Z) induced over Z is 
shrinkable. 

(8 

The proof is an exercise. 

Corollary 5B. Suppose G is a cell-like decomposition of a (PL) n-manifold 
M ,  n L 5 ,  and suppose for  j E { l ,  2 ,  ...) Z j  is a closed ( n  - 3)-dimensional 
subset of M/G that is 1-LCC embedded there. Then T C :  M -+ M/G can be 
approximated, arbitrarily closely, by a cell-like map F M -+ M / G  that is 1 - 1 
over Uj Zj. 
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See also Proposition 4. It should be noted that in order to prove Corollary 
5B one need never invoke (as was done in Proposition 4) the concept of 
ideally shrinkable decomposition. Instead, one can follow the structural 
outline provided by the proof of Proposition 4, at the second step using 
Corollary 5A, applied to the decomposition of the noncompact manifold 
M - f;'(Zl) induced over 22 - ZI by f l  , to realize that decomposition by 
a map 0 2 .  It must be regulated so that, besides controls comparable to those 
given in Proposition 4,02 extends via the identity on f;'(Z,) to a map 02 of 
M onto itself. The extended map satisfies all the conditions required in the 
course of Proposition 4. 

EXERCISES 

1. Suppose G is a cellular usc decomposition of a (compact) n-manifold M .  Show 
that n: M -+ M/G can be approximated by a cell-like map F: M -+ M / G  such that 
F(NF) contains no open subset of M/G.  

2. Prove Corollary 5A. 

24. THE DISJOINT DISKS PROPERTY AND THE 
CELL-LIKE APPROXIMATION THEOREM 

Like an elaborate puzzle, Edwards's cell-like approximation theorem 
involves many pieces, most of which have been laid out heretofore. The final 
one concerns a fundamental general position property. It has antecedents in 
the work of R. H. Bing [3] (seen here as the property used in Section 9 to 
diagnose nonshrinkable decompositions), in the property of Section 19 about 
inessential spanning, and in a mismatch condition first introduced by W. T. 
Eaton [I]. It surfaced explicitly in results of J .  W. Cannon [6] preceding 
Edwards's work. 

A metric space X has the disjoint disks property, abbreviated as DDP, 
if for any two maps p1,pz: B 2  + X and for each E > 0, there exist 
approximating maps pi, pi: B2 --* X such that p(pC:, pi) < E for i E (1,2] 
and p!(B2)  n pi(B2) = 0. 

Proposition 1. 
following statements are equivalent : 

The first result displays part of the strength of the DDP. 

Let X denote a locally compact, separable ANR. The 

(a) X has the disjoint disks property. 
(b) Each map p ;  B2 -+ X can be approximated, arbitrarily closely, by an 

(c) Each map p of a finite 2-complex P into X can be approximated, 
embedding A; B2 + X .  

arbitrarily closely, by an embedding A : P -+ X .  
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(d) Each map p of a finite 2-complex P into X can be approximated by 

Proof. Clearly (d) * (c) 
Consider maps p l  , p 2 :  B2 4 X in the only case of interest, where 

p1(B2) n p2(B2) # 0. Find disjoint 2-cells D1 and D2 in B2 such that B2 
retracts to the union of DI u D2 and an arc a running between them (see Fig. 
24-1). Name homeomorphisms Bi: Di -+ B2 and define p: D1 u 0 2  --* X as 
p 1 D; = pie ,  ( i  = 1,2). Extend p over a by having p 1 a trace out a path 
connecting p(6'a) in the pathwise-connected set p1(B2) u p2(B2), and then 
extend p over the rest of B2 by first retracting to DI u a u DZ . Since p can 
be approximated by embeddings A :  B2 -+ X ,  we can obtain disjoint 
approximations A I ,  A 2  to p1,  p2 by setting Li = A(&)- ' .  

(a) * (b). The 2-cell B2 contains a countable collection ((Dk, Di)]  such 
that, for each k,  Dk and Di, are disjoint 2-cells in B2 and the collection 
separates the points of B 2 ;  that is, given any two distinct points p ,  q E B2,  
there exists a pair (Dk, DL) for which p E Dk and q E DL. Let C denote the 
space of all maps of B2 into X ,  with the sup-norm metric, and let 

an embedding A: P -+ X such that A(P) is 0-LCC and 1-LCC in X .  

(b). We show first that (b) = (a). 

& = lp E e 1 n AW = 01. 
Since the collection ( (Dk,  Di,)] separates points, each A E n k  (3k is an 
embedding. Because X has a complete metric, C is a Baire space. Hence, in 
order to show why each p E C can be approximated by an embedding 
A E n O k ,  it suffices to  prove that 8k is open and dense in e. 

B2 

FIG. 24-1 
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That O k  is open in C! should be transparent ; that O k  is dense in e requires 
some explication. To do that, consider p E C!. With the aid of homeo- 
morphisms e, e’ of B2 onto Dk , D(k, respectively, one can produce a pair of 
maps, pe and pe’, from B2 to X .  Transferring back to the domain of p,  one 
finds, using the DDP, that the map p I Dk u D k  can be approximated by 
p‘ :  Dk u DL-+ X for which p’(Dk) n p’(Di) = 0. Moreover, since Xi s  an 
ANR, Corollary 14.6E (actually, a variation of Corollary 14.6E to account 
for the noncompactness of X )  implies that p’ can be obtained so close to 
p 1 Dk u Di that p‘ extends to a map B2 --+ X approximating p: B2 + X .  As 
a result, Ok is dense. 

The implication (a) * (c) is established by a similar argument. 
For the remaining implication, we need a way to detect the 1-LCC 

property. 

Lemma 2. Suppose X is a locally compact ANR, C! is the space of all maps 
B2 -, X, 3)  = (ail is a countable dense subset of C?, and A is a closed subset 
of X in X - Ui ai(B2). Then A is 1-LCC in X. 

Focus on a neighborhood U of an arbitrary point a E A .  By local 
contractibility, a has another neighborhood Vthat contracts in U. Then any 
m a p 8  aB2 -+ V - A extends to a map F: B2 -+ U, and the denseness of 3)  

in C yields ai E 9 so close to F that ai(B2) C U and f = F I dB2 is homotopic 
to ai I aB2 in U - A. In other words,fis homotopic to a; I aB2, which in turn 
is null homotopic in a;(B2), and the range of this homotopy lies in 

(a) (d). Let C? denote the space of maps B2 -+ X. Since X has a countable 
basis, C! has a countable dense subset ( f i )  (Dugundji [ l ,  p. 2651). 

Exactly as shown earlier, in the space 3n(P, X) of maps P --* X, the subset 
E of embeddings is dense and is the intersection of open subsets O k  of 
3n(P, X). Thus, a givenp E %(P, X) can be approximated by an embedding 
A. E E. Applying the above to the 2-complex equal to the disjoint union of 
P and B2, one sees that every pair of maps defined on P and B2 can be 
approximated by disjoint embeddings of P and B2. In particular, the maps 
lo and fi can be approximated by disjoint embeddings 11: P+ X and 
f ,’ : B2 --+ X .  Similarly, A 1 and f 2  can be approximated by disjoint embeddings 
122: P --* X andfi: B2 -+ X ,  with A2 so close to A1 that &(P) n f i ( B 2 )  = 0. 
Continuing in this fashion, one can produce embeddings li: P-+ X and 
fi’: B2 --* X such that 

Proof. 

U - A .  

Ai(P) nfi’(B2) = 0 ( j  E [ I ,  2, ..., i)). 
Three aspects of this demand special care for the final outcome. First of 

all, the space E ,  being a Ga-subset of the complete metric space %(P2, X ) ,  
has a complete metric ; the successive embeddings Ai must app’roximate their 
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predecessors Ai- I sufficiently well that [Ai l  forms a Cauchy sequence in this 
metric so then (Ai l  will converge to some Am E E close to both AO E & and 
p E X ( P ,  X). Second, after A;  has been determined, the later elements in this 
sequence must be obtained so close to l i  that Am(P) n fi’(B2) = 0 for all i .  
Third, fi’ must be chosen close enough to fi that tfi’ 1 is another dense subset 
of e. 

Lemma 2 attests that A m ( P )  is 1-LCC in X .  Indeed, Am(P) is also 0-LCC. 
(If this is not clear, it should be clear how to modify the construction to 
ensure its validity.) 

At last we are prepared to prove the fundamental result of decomposition 
theory, the culmination of Edwards’s program. 

Theorem 3 (cell-like approximation). Suppose G is a cell-like decom- 
position of an n-manifold M ,  where n 2 5 .  Then G isshrinkable if and only 
if M/G is finite-dimensional and has the disjoint disks property. 

Proof. One implication is trivial. For the other our concern, by long- 
established custom, centers on the case of compact M .  To attain complete 
generality we should work in Euclidean patches containing parts of the 
nondegeneracy set, which exist by virtue of the cellularity of G (resulting from 
engulfing in topological manifolds), but to minimize technicalities we 
suppose M is a PL n-manifold. To minimize other technicalities, we also 
presume n 1 6 .  We shall describe how to approximate the decomposition 
map n: M-+ M / G  by a homeomorphism F3: M -+ M / G  within 3c of II. 

After listing the countably many finite 2-complexes Pj and recalling that 
the space of all maps Pi -+ M / G  is separable, we apply Proposition 1 to 
determine a countable collection A 1 ,  A2 , . . . of compact sets in M/G,  where 
each A, is a 1-LCC subset of M / G  homeomorphic to some Pi and, for any 
map p of some Pi to M / G ,  there is a homeomorphism of Pi onto some Ak 
that approximates p. By Corollary 23.5A the decomposition G(A,) induced 
over each Aj is shrinkable. According to Corollary 23.5B, there exists a cell- 
like map F I :  M -+ M/G such that p(F1 , n) < E and R is 1-1 over UA,.  

In the next step we will approximate FI by another cell-like map 
F2: M -+ M/G,  with p(F2, FI)  c E ,  so that the nondegeneracy set N2 of F2 has 
embedding dimension ~n - 3. Then by Theorem 23.2 we will be able to 
approximate F2 via a homeomorphism F3: M -+ M/G.  

Consequently, all that remains is the “next step” : approximating FI by 
a (cell-like) map F2 for which dem N2 5 n - 3. (This is the only step where 
the restriction from n L 5 to n L 6 matters.) To get started, we determine 
a sequence of triangulations Z , Tz , . . . of M with meshes going to zero. Since 
n 2 6 ,  we can perform a general position adjustment so the various 2-skeleta 
Rk (where R k  = 7$*)) are pairwise disjoint. We shall obtain FZ as a limit map 
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resulting from a sequence of maps fk: M + M/G to which the usual epsilonic 
restrictions pertain [that is, for fo = ~ 1 ,  p ( fk+l ,  f k )  < ~ / 2 ~ + ' ] ,  with the 
primary achievement of fk (k > 0) being that fk is 1-1 over fk(Rk), and with 
subsequent controls incorporated to guarantee that, in the limit, 

F2 1 Rk = fk I Rk and fi-'( fk(Rk)) = Rk. 

Then the nondegeneracy set N2 of F2 will lie in M - u Rk, ensuring 
dem N2 s n - 3 .  

Lemma 4. Let R be a 2-complex in M ,  f: M 4 M/G a cell-like map that 
is 1-1 over u Aj, and 6 > 0 .  Then there exists a homeomorphism h : M -+ M 
such thatp(j?z, f) < 6,  h reduces to  the identity outside f -'(N( f ( R ) ;  d)), and 
fh is 1-1 overj?z(R) u (UAj ) .  

Proof. By the construction of the subsets Aj, there exists an embedding 
1: R -+ U A j  close enough to f I R to  provide a (6/4)-homotopy 
wf: R -+ M / G  with tyo = f 1 R and tyl = A. This homotopy lifts (approxi- 
mately) to a homotopy pt: R + Mbetween the inclusion and the embedding 
f - 'A: R 3 M. Since L(R) is 1-LCC in M/G and f is 1-1 over L(R), f -'1(R) 
is 1-LCC in M(cf. the proof of Proposition 18.4). The fundamental taming 
theorem of J .  L. Bryant and C. L. Seebeck 111 [l]  then implies not only 
that f-'A(R) is tame but, when their work is combined with a result of 
H. Gluck [l], that f - 'A(R) is &-tame, meaning that there exists a small 
homeomorphism h* on M supported near f -*A(R)  such that h* f -'1(R) is 
a subpolyhedron of M (Bryant-Seebeck [l]). In the situation at hand 
we allow h* to move points only in f -'(N( f ( R ) ;  6))  and to move them so 
little that p(fh*,  f) < 6 / 2  and Qt: R 3 M admits a modification to  
$3;: R 3 M between the inclusion and h*f -'A for which f $3;: R + M/G is 
a (6/4)-homotopy. The Bing-Kister result (Theorem 21.7) provides another 
homeomorphism h': M +  M supported in f -'(N( f ( R ) ;  6))  and satisfying 
h' 1 R = h*f-'A and p(fh ' ,  f) < 612. Define h as (h*)-'h'. It follows that 
p(fh ,  f) c 6 and that h is supported in f - ' (NCf(R);  6)). Moreover, fh is 
clearly 1-1 over U A j ;  in particular, fh is 1-1 over 

The basic maneuver is set forth in what follows. 

fh(R)  = f(h*)-'h'(R) = f(h*)-'h*f-'A(R) C U A j .  

This establishes the lemma. 

To complete the proof of Theorem 3,  we apply Lemma 4 for the map 
f = Fl , polyhedron R1, and number 6 = &/2 to obtain hl . Because the map 
f~ = 0 1  is 1-1 over UA,, we can apply the lemma again. Generally, having 
found a map fk:  M -+ M/G (cell-like and 1-1 over UAj) ,  we apply Lemma 
4 to fk , Rk , and a small number 6 k  < ~ / 2 ~ + '  to obtain a homeomorphism 
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hk+ 1 , and then we set fk+ 1 = f k  h k +  . The only technical concern in performing 
the successive iterations is the choice of d k ’ s  : it must be designed to guarantee 
that on Rk later maps agree with fk 1 Rk and, in addition, that no other points 
of M are sent to (any) fk(Rk) by the limiting cell-like map Fz: A!+ M/G.  
Such technicalities were addressed in the proof of Proposition 23.4; the 
corresponding ones here are left to the reader. 

Remarks. What makes the restriction n 2 6 imperative in the preceding is 
the application of the Bing-Kister result (Theorem 21 -7) for proving Lemma 
4. It cannot be used for rearranging 2-complexes in 5-manifolds-the 
potential for linking of 2-spheres in E’ makes this transparent. Unlike the 
proof of Theorem 23.5, the difficulty cannot be circumvented through 
engulfing methods. An argument for the 5-dimensional case developed by 
J. J .  Walsh involves careful constructions with regular homotopies to 
approximate 4 by a cell-like map FZ with nondegeneracy set of embedding 
dimension 2, by virtue of avoiding a countable collection of singular 2-cells 
whose defining maps are dense in the space of all maps of BZ into the given 
5-manifold. 

H 

Knowing the equivalence between finite-dimensionality and the ANR 
property in this setting, we record formally an alternative statement of the 
cell-like approximation theorem. 

Theorem 3’. Suppose G is a cell-like decomposition of an n-manifold M ,  
where n L 5 .  Then II: M + M / G  can be approximated by homeomorphisms 
i f  and only i f  M/G is an ANR having the disjoint disks property. 

Corollary 3A. 
manifolds and both m ,  n 2 5, then f is a near-homeomorphism. 

I f f :  M“ -+ N“ is a proper cell-like surjection between 

Originally this corollary was derived by L. C. Siebenmann [l], who used 
strikingly different methods. The analog for n = 3 wasproved by Armentrout 
[6] and for n = 4 by Quinn [2]. 

As another consequence, reasonable cell-like decompositions are stably 
shrinkable. 

Corollary 3B. If G is a cell-like decomposition of an n-manifoldMsuch that 
M/G is finite-dimensional, then G x E’ is a shrinkable decomposition of 
M x E’. In particular, (M/G)  x E’ is homeomorphic to M x E’. 

H Proof. 

Improvements to Corollary 3B are discussed in Section 26. Under certain 
restrictions on G ,  one can confirm a vital, best-possible stabilization result 
due to Cannon [6] .  

(M/G)  x E’ satisfies the DDP because E’ does. 
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Corollary 3C. If G is a closed-(n - 2)-dimensional cell-like decomposition 
of an n-manifold M ,  where n 2 4, then G x E' is a shrinkable decomposi- 
tion of M x E' . In particular, ( M / G )  x E 1  is homeomorphic to M x E l .  

Proof. Clearly ( M / G )  x E' = (A4 x E') / (G x E l )  is a finite-dimen- 
sional, cell-like image of the (n  + 1)-manifold M x El .  Thus, it suffices to 
verify that (M/G)  x E' has the DDP. 

Consider maps p l  , p2: B2 + ( M / G )  x E '. Let pl : (M/G)  x E ' + M / G  
andpz: ( M / G )  x E' + E' denote the projection maps, and let Z denote the 
closure in M / G  of ~ ( N G ) .  By hypothesis, dim Z 5 n - 2, so Z must 
be nowhere dense and 0-LCC in M / G .  As a result, the maps p l p l ,  
p1p2: B2 + M / G  can be modified to send increasingly dense 1-skeleta of B2 
into ( M / G )  - Z ,  yielding in the limit approximations rn l  , m2: B2 + M/G 
such that m;'(Z) is a compact 0-dimensional set Ki (i = 1,2). Furthermore, 
for i = 1,2,  the maps p2pi: Ki + E' can be approximated by disjoint 
embeddings pi: Ki + E l ,  where pi is SO close to p2pi 1 Ki that pi extends to 
a map y i :  B2 + E' close to p2pi: B2 -+ E' (see Corollary 14.6E). 

Notice that the approximations pi, pi: B2 -+ ( M / G )  x E' top1 , p2 given by 
pj(b) = (mi(b), y i ( b ) )  satisfy 

p'1(B2) n pUi(B2) c [ (M/G)  - Z ]  x E l .  

Since this subspace is a manifold of dimension at  least 5 ,  one can perform 
a final general position adjustment to produce disjoint approximations. 

Corollary 3D. (double suspension theorem). If H" is any homology n- 
sphere (meaning a compact n-manifold whose integral homology is iso- 
morphic to that of S"),  then its double suspension, E2H", is homeomorphic 
to snc2. 

Proof. The crucial item concerns the manifold nature of Z2H". The 
result about being the (n  + 2)-sphere will follow from the consequence of the 
generalized Schonflies theorem that, whenever the suspension of a 
compactum yields a k-manifold, the manifold is actually the k-sphere. 

When n = 2, H 2  = S 2 ,  so we assume n 1 3. The nicest situation arises 
when H" is known to bound some (compact) contractible (n  + 1)-manifold 
W. Let W* be the manifold obtained by attaching a collar H" x [0,  1) to W 
along a W = H" t* H" x (0). According to Corollary 3C, (W*/Gw) x E' is 
an (n + 2)-manifold. Since each point of the suspension circle, the set of 
potential nonmanifold points in E'H", has a neighborhood homeomorphic 
to (W*/Gw)  x E l ,  E2H" is an ( n  + 2)-manifold. 

For n 2 4 each PL homology n-sphere H" bounds a contractible (PL) 
(n + 1)-manifold (Kervaire [l]), and the Kirby-Siebenmann results on PL 
structures [l]  reveal that when n 2 5 every H" admits a PL triangulation. 



24. The Cell-Like Approximation Theorem 185 

Furthermore, M. H. Freedman [I]  recently showed that every H 3  bounds a 
(not necessarily PL) contractible 4-manifold. Thus, the approach above 
works in most cases. 

Generally, Cannon [5] and Edwards [3] independently have constructed 
cell-like decompositions G of S n + 2  for which S"+?/G = X2H". Such 
decompositions are shrinkable, because X2H" satisfies DDP, essentially by 
the argument given for Corollary 3C (see also Exercise 9). In Section 40 we 
will describe a related procedure revealing why C2H" is the cell-like image 
of an (n + 2)-manifold. 

Corollary 3E. For n 2 4 En contains a compact subset X that is non-cell- 
like (and noncellular) but (E"/Gx) x E' = E"". 

Any compact polyhedral subset X of E" which is not simply 
connected but which is homologically trivial will do. Then, by duality, the 
boundary of a regular (polyhedral) neighborhood V of X is necessarily a 
homology (n - 1)-sphere H"-',  and the special point in E"/Gx has a neigh- 
borhood homeomorphic to the open cone over H"-'.  It follows from what 
was established in Corollary 3D that (E"/Gx) x E' is an (n  + 1)-manifold. 
Showing that this manifold actually represents E"+' is left to the ingenious 
reader. H 

The last two corollaries set forth conditions in a more classical mode, 
under which a given decomposition is shrinkable. 

A closed-0-dimensional decomposition G of an n-manifold M is said to be 
simple provided it has a defining sequence S = {Sl , . . . , S; , . . .) [explicitly, Si 
consists of a (locally) finite number of compact n-manifolds-with-boundary 
whose union IS;[ covers NG,  [Si+l( C Int(Si(, and the components of nlS;l 
are elements of G] such that, for each index i and each s E S;, there exist n- 
cells B1 and BZ with BI u B2 C s and, for every s' E S;+l with s' C s, either 
s' C Int B1 or s' c Int BZ . This property of decompositions was introduced, 
in a more restrictive setting, by J. Neuzil [I]. 

Corollary 3F. I f  G is a simple (necessarily cellular) usc decomposition of 
an n-manifold M ,  where n 1 5 ,  then G is shrinkable. 

The proof is an exercise. Standing in conspicuous contrast to Corollary 3F 
is the Bing minimal example, Example 9.6, a simple but nonshrinkable 
decomposition of E 3 .  

D. G. Wright [3] developed the next corollary, as well as the variation to 
it given as Exercise 12. 

Corollary 3G. If G is a countable, cellular decomposition of an n-manifold 
M ,  n 2 5 ,  where M contains an (n  - 3)-demensional closed subset X 
intersecting every g E H G ,  then G is shrinkable. 

Proof. 
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Proof. Consider any two maps p1, p2: B2 4 M / C ,  with lifts qi: B2 -+ M 
such that pi = nqi (i = 1,2). The first lift q1 can be modified slightly to avoid 
the (n - 3)-demensional set X ,  causing those g E HG touching q1(B2) to have 
diameter at least E > 0, where E denotes the distance between q1(B2) and X. 
By Proposition 23.4 p2 can be adjusted so as to miss T C ( N G ( ~ ~ $  The images 
under the altered p1 = nql and p2 intersect only at points of the n-manifold 
(M/G)  - n ( X ) ,  and a final general position adjustment there shows M / G  
satisfies the DDP. 

EXERCISES 

1. If G is a UV' decomposition of a compact metric space X such that X / G  is an 
ANR with the DDP, prove that each g E G satisfies the cellularity criterion. 

2. Suppose X is a CANR with the following disjoint k-cells property: any two 
maps of Bk into X can be approximated, arbitrarily closely, by maps Bk + X 
having disjoint images. Show that each map p of a finite k-complex K into X 
can be approximated by an embedding 1: K -+ X for which L(K) is GLCC, 

3. Suppose Xis  a CANR having the disjoint k-cells property. Show that each map 
of a compact k-dimensional metric space C into X can be approximated by an 
em bedding. 

4. Suppose G is a usc decomposition of a compact, connected n-manifold M ,  where 
M/G consists of at least two points, and suppose Z is a countable subset of M. 
Show that n: M -+ M/G can be approximated by a map f: M -+ M/G such that 
flZ is 1-1. 

5. If G is a cellular usc decomposition of a (compact) n-manifold M ,  show that 
n: M + M/G can be approximated by a cell-like map F: M + M/G such that 
d e m N F s  n - 1 .  

6. Suppose G is a cell-like decomposition of a compact PL n-manifold M ,  where 
n 2 4, such that M/G (is an ANR and) satisfies the disjoint 1-cells property. 
(a) For any finite 1-dimensional subpolyhedron P of Mand E > 0, find a cell- 

like map $ M -+ M/G such that p ( f ,  n) < &, f l  M - n-'(N(n(P); &)) = 
7~ I M - n-'(N(n(P); E ) ) ,  andfl  P i s  1-1. (Hint: In the space of all maps 
M + M/G,  let (3 denote the closure of (nh I h:  M -+ Mis a homeomorphism 
supported in n-'(N(n(P); E) ) ) .  Use the Bing-Kister result to prove that the 
desired maps form a dense Ga-subset of (3.1 

(b) For any collection of pairwise disjoint, finite 1-dimensional subpolyhedra 
P I ,  P2, . . . of Mand any E > 0, find a cell-like map F M + M/G such that 
FlUPi  is 1-1. 
Choose P I ,  9, ... as above so that the map F: M -+ M / K  promised in (b) 
yields dem F-'(q)  5 n - 2 for each q E M / G .  

7. Find an alternate result established by the proof of Corollary 3C, strong enough 
to imply the same conclusion for 0-dimensional cell-like decompositions G of M. 

8. Prove Corollary 3F. 

i E (0, 1, ..., k). 

(c) 
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9. Suppose f :  M + X x E' is a proper, cell-like mapping of an n-manifold M ,  
n 2 5,OntOX x E',whereXcontainsaclosedsubset Ysuchthatdim Y 5 n - 3 
and (X - Y )  x E' is an n-manifold. Show that X x El is an n-manifold. 

10. Use the fact that each (n - 1)-sphere in En bounds a compact contractible subset 
of En to show that, iff: En + N" is a proper map onto an n-manifold N" such 
that at most a countable number of the setsf-'(x) are nondegenerate, then each 
f - ' ( x )  is cell-like. Thus, for n 2 5 ,  f is a near-homeomorphism. 

11. Suppose G is a cell-like decomposition of an ANR Xsuch that X / G  has the DDP, 
and suppose C is a closed subset of X / G .  Then X/G(C) has the DDP. 

12. If G is a countable, cellular decomposition of a PL n-manifold M ,  n 2 5 ,  where 
M contains an (n - 2)-dimensional subpolyhedron P intersecting every g E HG , 
then G is shrinkable. 

25. CELL-LIKE DECOMPOSITIONS OF 2-MANIFOLDS- 
THE MOORE THEOREM 

In 1925 R. L. Moore [ l ]  showed every usc decomposition of S2 into 
nonseparating continua yields S 2  as the decomposition space. Translated 
into modern terminology, this amounted to showing that all cell-like 
decompositions of S 2  yield S 2 .  Although Moore never concerned himself 
with the matter, it has long been perceived that, indeed, such decompositions 
are shrinkable. That stronger result is the current subject. 

Theorem 1. Every cell-like usc decomposition G of a 2-manifold M is 
strongly shrinkable. 

There are several sound reasons for examining this low-dimensional 
situation. First, the theorem is intrinsically beautiful. Second, it holds 
immense historical significance ; throughout most of the twentieth century, 
especially since the midpoint, it has served decomposition theory as a 
motivating force, as the ideal to  be matched, and as a bench mark indicating 
the relative position of new results. Third, such an investigation offers a 
quick treatment of Theorem 1 unifying the 2-dimensional case and the 
higher-dimensional ones. In much the same style, but somewhat pared down, 
as the cell-like approximation theorem, this treatment provides, perhaps as 
an additional point in its favor, a legitimate forum in which to  review the 
lengthy argument given for the latter. 

A substantial advance toward Theorem 1 is backed by an analog of 
Theorem 22.2. 

Lemma 2. 
M is strongly shrinkable. 

Every cell-like O-dimensional decomposition G of a 2-manifold 
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Recapitulating some of Edwards's program, we first show how Lemma 2 
implies Theorem 1. The two major parts in that program not recast this time 
are the disjoint disks property, which is disregarded for obvious reasons, and 
the amalgamation trick, which is ignored because in the present low- 
dimensional setting the failure of general position to  instantaneously 
transform mapped arcs into embedded arcs makes it more difficult to 
establish amalgamation results than to prove the decomposition results 
they are designed to support. Reappearing are the filtrationdevice and the 
method for improving maps M - r  M / G ,  based on Lemma 2, over the 
successive sets comprising the filtration. 

Proof that Lemma 2 implies Theorem 1. Theorem 17.9 attests that 
dim M / G  I 2. Consequently, by Lemma 23.1 M / G  can be filtered into 0- 

compact subsets Q2, Q', Qo satisfying 

M / G  = Q2 3 Q' 3 Qo 3 Q-' = 0 

where dim Q' 5 i and dim(Q' - Qi-') 5 0. 
Write Qo as the countable union of compacta Xj. Apply Lemma 2 and 

Proposition 23.4 to approximate IC: M + Q2 by a cell-like mapfo that is 1-1 
over Qo. 

Write Q' as the countable union of compacta Z j .  Since Zj - Qo is 
O-dimensional (for all j ) ,  the decomposition Gf(Zj) induced by fo over Zj 
is cell-like and O-dimensional. Again each Gf(Zj) is shrinkable by Lemma 
2, so fo can be approximated by a cell-like map f1: M + Q2 that is 1-1 over 

In exactly the same fashion fi can be approximated by a mapfi : M -+ Q2 
that is 1-1 over Q2 and hence is a homeomorphism, implying G is 
shrinkable. 

Q'. 

When tackling Lemma 2 a person can select from a variety of approaches. 
One method is to recognize M / G  as a 2-manifold by invoking known 
characterizations. A more primitive method is to employ results from 
continua theory for extracting well-placed simple closed curves in M .  Either 
approach gives rise to well-placed disks in M that serve as both generators 
and regulators for the required shrinking homeomorphisms. The latter 
method will be used here. 

The heart of Lemma 2 is isolated in the following Claim. Verification that 
this Claim implies Lemma 2, which entails reconsideration of Theorem 8.9, 
is left as an exercise. 

Claim. For each g E HG and open subset U of M containing g ,  there exists 
a 2-cell D such that g C D C U and aD n NG = 0. 
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Prod. Restrict U ,  if necessary, to make M - U be connected (and 
nonvoid). Use cell-likeness to  obtain a smaller neighborhood Vof g such that 
every simple closed curve in C1 V is null homotopic in U ,  and apply 
Corollary 15.4C to find a 2-cell B with g C Int B C B C V. 

Let J = aB. Based on the fact that the complement in M/G of any 
0-dimensional closed subset is 0-LC, determine a sequence of maps 
fi: J -+ V - g starting with the inclusion fo and satisfying: 

(1) f i + l  is homotopic to f i ,  
(2) 

(3) 

misses all those nondegenerate elements of G having diameter 

(A] is a Cauchy sequence converging to a map F: J + C1 Vfor which 

Then F(J) separates g from M - U because eachA(1) does. It follows from 
Wilder [l,  Theorem IV.6.71 that F(J)  contains a simple closed curve S 
separating g from M - U. By the planar Schonflies theorem, S bounds a 
2-cell D in U with the desired properties. 

In the usual way Theorem 1 leads to  the 2-dimensional version of the 
Armentrout-Quinn-Siebenmann approximation theorem (Corollary 24.3A) : 

Corollary 1A. Proper cell-like maps between 2-manifolds can be approxi- 
mated by homeomorphisms. 

at least 2-', and 

F ( J ) n N c  = 0. 

EXERCISES 

1. Show that Lemma 2 follows from the Claim made after it. 
2. Let G denote a cell-like 0-dimensional decomposition of a compact 2-manifold M .  

Use the preceding results to show that for every E > 0 there is an &-amalgamation 
K of G into a null sequence cell-like decomposition. 



SHRINKABLE 
DECOMPOSITIONS 

Applications of the cell-like approximation theorem are given in Chapter 
V, most frequently to the product of two cell-like decompositions. For 
products with Euclidean spaces, it is established that all -finite-dimensional 
cell-like decompositions of manifolds are stably shrinkable, upon crossing 
with E 2  ; conditions under which the product just with E' is shrinkable are 
also studied, even in a low-dimensional case. About products with other 
spaces, work of Bass is reproduced showing the product of two finite- 
dimensional cell-like decompositions of manifolds having dimension greater 
than 1 to be invariably shrinkable. 

Also described is a fruitful method, called spinning, for employing certain 
decompositions of one manifold to form related decompositions of higher- 
dimensional ones. Then the extent to which shrinkability of the one 
determines shrinkability of the other is analyzed, in virtually all cases. 

26. PRODUCTS OF E 2  AND E' WITH DECOMPOSITIONS 

Whenever G is a finite-dimensional, cell-like decomposition of E n ,  then 
G x E k  is known to be a shrinkable decomposition of En+k,  provided k 1 5 
(Corollary 24.3B). This is not the best possible result, as we are about to learn. 
Here we open an extensive investigation concerning the stable shrinkability of 
G .  First, thecoarseestimatek 2 5 on theunrestricted shrinkabilityof G x Ek 
is improved to k L 2. The optimal estimate may well be k = 1 ; whether this 
is the case stands as a major unsettled issue. Subsequently, conditions on G 
implying the shrinkability of G x E' are examined. Corollary 24.3C has 

190 
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already provided one-that G be closed-(n - 2)-dimensional. A variation to 
be established erases the word "closed" at the cost of one dimension. 

The discussion starts with an analysis of the local separation (more 
precisely : nonseparation) properties of certain compacta in E"/G,  geared 
toward verifying the disjoint 1-cells property introduced in the Exercises 
following Section 24. Evoked by this is a class of spaces intimately related 
to cell-like decomposition spaces : the generalized manifolds. A locally 
compact (separable) metric space X is called a generalized n-manifold if X 
is a finite-dimensional ANR and if, for each x E X ,  Hk(X,  X - ( X I )  is 
isomorphic to Hk(E", E" - (origin]) for all k (singular homology with 
integer coefficients). It is a consequence of the classical Vietoris-Begle 
mapping theorem (Begle [ 11) that every finite-dimensional cell-like image of 
an n-manifold is a generalized n-manifold ; another argument is forth- 
coming. Conversely, for n > 4 F. Quinn [3,4] has shown that nearly every 
generalized n-manifold is the cell-like image of some n-manifold. As a result, 
for n 2 5 ,  it seems likely that n-manifolds are characterized topologically as 
the generalized n-manifolds having the DDP. 

Proposition 1. Let G denote a cell-like decomposition of an n-manifold M 
and x E X = M/G.  Then Hn(X, X - 1x1) = h and Hi(X, X - [x ) )  = 0 
( i  # n). 

First assumexis an ANR. Theorem 17.1 certifies that the natural 
maps n: M-+ X and M - n-'(x) -+ X - (x ]  are homotopy equivalences, 
which thereforeinduceisomorphismsat the homologylevel. The algebraic five 
lemma (Spanier [ l ,  p. 185J) discloses that H*(X, X - lx))  is isomorphic to 
H*(M, M - n-'(x)). Moreover, H*(M, M - n-'(x)) = H*(E", E" - [O]), 
essentially because homology cannot distinguish between the cell-like n-'(x) 
and a point ; more formally, Hj(M, M - n-'(x)) = fi"-j(n-'(x)),  which is 
Z when j = n and trivial otherwise, because n-'(x) is homotopically like a 
point (Corollary 15.4D). 

The same conclusion holds even when Xis  not known to be an ANR. By 
Theorem 16.10 the natural maps M + X and A4 - n-'(x) -+ X - (x)  induce 
isomorphisms at the homotopy level, which, in spirit, seems stronger than 
what was needed above. The key for understanding how to obtain homology 
isomorphisms is to view singular chains as mapped complexes, with the 
boundary of a chain regarded as an identified subcomplex. Just as with the 
proof of Theorem 16.10, the strong approximate lifting theorem (16.18) is 
perfectly tailored for determining that these natural maps induce homology 
isomorphisms. 

Corollary 1A. 
dim M/G < 03, then M/G is a generalized n-manifold. 

Proof. 

If G is a cell-like decomposition of an n-manifold M and 
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Generalized manifolds satisfy an Alexander-Lefschetz duality theorem, so 
they share the homological features of manifolds. Rather than engaging all 
the massive machinery of duality theory, we give an elementary derivation 
of some homological data. 

Lemma 2. Suppose X is a locally compact ANR such that, for  some 
integerr > Oandeveryx E X ,  H;(X,  X - ( X I )  E 0 wheneveri E (0, 1 ,  ..., r ) .  
Then for each k-dimensional closed subset A of X ,  where k I r, 
Hj(X, X - A )  = 0 whenever j E (0, ..., r - k]. 

The argument proceeds by induction on dim A. Clearly, the result 
is valid when dim A = - 1. Assuming it to be true for all closed subsets of 
dimension <k ,  we consider a k-dimensional closed subset A and some 
z E Hj(X, X - A), where 0 I j I: r - k. We shall show that z = 0. 

At the core of the proof is the observation that, when A’ and A “  are closed 
subsets of X for which dim(A’ n A ”) < k, the Mayer-Vietoris sequence for 
the excisive couple of pairs ( (X ,  X - A’), ( X ,  X - A ” ) )  yields an inclusion- 
induced isomorphism a! 

Proof. 

o 3 H j + I ( ~ ,  x - (A’ n A”) )  - H ~ ( x ,  x - (A’ u A”)) 5 

Hj(X,  X - A ’ )  @ Hj(X, X - A”) -+ Hj(X,  X - (A’ n A”) )  z 0 

because of the inductive assumption, applied to A’ n A”.  
Identify a compact pair (C,  C’) C ( X ,  X - A) carrying a representative 

of z. Since Hj(X, X - [x)) 2 0 for all x E X ,  each a E A has a neighborhood 
U, for which the image of z in Hj(X ,X  - Ua) is trivial. Elementary 
dimension-theoretic properties lead to a cover [ C; 1 i = 1,2, . . . , rn) of C n A 
by closed sets such that [Ci) refines the cover [Ua 1 a E C n A], the interior 
relative to A of U C; contains C n A ,  and the frontier in A of each C; has 
dimension <k. Define Ai as CI(A - Ugi+l Cj), where i E (0, 1, ..., m].  
Since AO does not intersect C, the image of z in Hj(X, X - Ao) is trivial. 
Inductively, we presume the image of z in Hj(X, X - Ai-I) to be trivial. For 
applying the Mayer-Vietoris argument above, think of A’ as Ai- 1 and of A ” 
as Cl(C; - U,>;C,); note that A’UA‘’  = Ai and 

dim(A‘ n A”) I: dim u Fr C, < k. 

As a result, the homomorphism a! is an isomorphism. By construction the 
image of z in Hj(X, X - A ” )  is trivial, because its image is trivial in some 
Hj(X, X - U,) where A” C Ua . Hence, a! displays that the image of z in 
Hj(X, X - (A’ u A”)) = Hj(X, X - Ai) is trivial as well. Ultimately this 
shows that z = 0, since A,,, = A. 

Corollary 2A. Each k-dimensional closed subset A of a generalized 
n-manifold X ,  where k I n - 2 ,  is 0-LCC. 

S 
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Proof. Consider a small pathwise-connected open neighborhood U of 
some point a E A. From the exact homology sequence of the pair (U, U - A),  
one finds 

Hl(U, U - A )  + Ho(U - A )  + Ho(U) s 0,  

and the left-hand term is trivial by Lemma 2. Thus, &(U - A )  = 0 or, 
equivalently, LI - A is pathwise-connected. 

Proposition 3. 
then X = M/G has the disjoint I-cells property. 

If G is a cell-like decomposition of an n-manifold M, n 2 3 ,  

Proof. Consider a map f1: B' = [- 1, 11 + X .  Partition B' as 

-1 = to < tl < < ti-1 < ti < * ' *  < t k  = 1 

so that each interval [ t i - ]  , ti] has small size (depending on f l ) .  Since Peano 
continua are arcwise-connected, each f l([t i- l ,  ti]) contains an arc from 
fl(t;-1) to f l( t;) ,  whenever fl(ti-1) # fl(ti).  Now it is a straightforward matter 
to produce a mapfi: B' -, Xnear f i  such that f i  1 [ti- 1 , t i]  is either a constant 
mapping or an embedding defining an arc in fl([t;-'  , t i ] ) .  Consequently, the 
image A = f i (B ' )  is 1-dimensional. 

Given another map f2: B' --* X ,  we invoke Corollary 2A to determine a 
map fi' approximating f2 but with f i ( B 2 )  C X - A = X - f i (B ' ) .  

Corollary 3A. Suppose G is a cell-like decomposition of an n-manifold M ,  
n 2 3. Then each map f: P' -, M / G  of a finite 1-complex P' can be 
approximated, arbitrarily closely, by an embedding F P' + M / G  for which 
F(P') is 0-LCC. 

Proof. W 

Up to this juncture we have used both the disjoint disks property and a 
disjoint arcs property. The central results of this section involve an inter- 
mediate concept. We say that a metric space S has the disjoint arc-disk 
property (DADP) if for all maps f :  B' + S and m: B2 + S and for all E > 0, 
there exist maps f ' :  B' -, S and m':  B2 + S such that p(m', m )  < E ,  

p( f ', f )  < E ,  and f ' ( B ' )  n m'(BZ) = 0. 

Proposition 4. For a locally compact metric space S ,  the following state- 
ments are equivalent : 

W 

See also Exercise 24.2 or the proof of Proposition 24.1. 

(a) S has the DADP; 
(b) Each map f :  B' --f S can be approximated, arbitrarily closely, by a 

(c) Each map m :  B2 + S can be approximated, arbitrarily closely, by a 
map f ' :  B' --* S such that f ' ( B ' )  is nowhere dense, 0-LCC, and 1-LCC; 

map m': B2 -, S such that m'(B2) is nowhere dense and 0-LCC. 
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This follows from Baire category arguments similar to those employed in 
proving Proposition 24.1. 

Lemma 5 .  Suppose S is an LC’ metricspace having the DADP, p1 andp2 are 
mapsofB’toS,Pisafinite 1-complexin B2,ande > 0. Thenthereexistmaps 
pi, pi:  B2 --* S such that (pj , pi) < E (i = 1,2) and pU;(P) n pi(B2) = 0. 

Proof. As an elementary consequence of the DADP, there exist maps 
f: P + S and pi:  B2 + S approximating p1 I P and p~ , respectively, where 
f ( P )  n pi(B2) = 0. When S is an ANR, f can be obtained so close to p~ 1 P 
that it extends to pi : B2 + S within E of pl (Corollary 14.6E) ; under the hypo- 
thesis that Sis LC’, one can extendfover theskeleta of some fine triangulation 
of BZ for which P is a subcomplex to achieve the same conclusion. 

Upon stabilization of a given decomposition, each extra El-factor 
enhances the disjoint cells property held by the decomposition space. 

Proposition 6 .  I f S  is an LC’ metric space having the DADP, then S x E’ 
has the DDP. 

Consider maps P I ,  p2: B2 + S x El and E > 0. Name a trian- 
gulation Tof B2 having mesh so small that diampi(a) < E ‘  = ~ / 1 7  for each 
a E T and i E (1,2j, and let P denote its 1-skeleton. Let p :  S x E’ + S 
denote the projection map. 

Since S has the DADP, Lemma 5 establishes the existence of maps 
p i ,  pi: B2 + S x El within E’ of pl, ,142, whose projections to E’ agree with 
those of pl , p2, and which satisfy 

(*I pp’l(P) n ppi(B2) = 0. 
Repeating, while limiting the motion so as to maintain (*), one procures maps 
pr ,  p i :  B2 + S x E’ satisfying p@P, pj) c E’ and 

H 

Proof. 

(**I p p i ‘ ( ~ ~ )  nppz”(P) = 0 = P ~ P ( P )  n ppz”(~’ ) .  

Note that diam pl (a) < 5e‘ for each a E T. 
Enumerate the 2-simplexes of T as a1,02, ..., am. For each aj choose a 

point sj E E’ so that p;(Oj)  is within 5 ~ ‘  of S x Is,), and then choose another 
point t j  E E’ so that pz”(aj) is within 5 ~ ’  of S x [ t i )  but no’tj belongs to 
Is, I j = 1, ..., m ) .  Now one can easily define pLiN and pi” such that p!‘ I P = 
p,!‘ 1 P (i E (1,2)) and, for j = 1,2,  ..., m, pi” (aj) is contained in 

[pp?(aaj) X (sj - 5 ~ ‘ s  sj + 5 0 1  L“p~P(aj )  X Isjll, 

a set of diameter < l h ’ ,  while pi”(aj)  is contained in 

[Ppi’(daj)  X (tj - 5 ~ ’ ,  t j  + 5 ~ ’ ) l  U[Ppz”(aj) X l t j l l .  

The effect is suggested in Fig. 26-1. 
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It follows from (**) and the choice of points s, and tj that p?(B2)  n 
p$'(B2) = 0. Moreover, p(pi", p; )  < 1 7 ~ '  = E .  

Proposition 7. If G isa cell-likedecomposition of an n-manifoldM, n z 3 ,  
then ( M / G )  x E' has the DADP. 

Let X = M / G  and let px:  X x E' 4 X and p ~ :  X x E' 4 E' 
denote the projection mappings. Given a map$ B' --t X x E ' ,  we can apply 
Corollary 3A to approximate px f by a 0-LCC embedding ex: B' 3 X .  
We shall prove that the product embedding e :  B' + X x E l ,  defined by 
e(b) = (ex@),  p~ f(b)), gives a 1-LCC embedded arc. 

First, however, we shall explain why the arc A = ex(B') x (0) is 1-LCC 
embedded in X x E'. This is an application of the Seifert-van Kampen 
theorem, similar to the proof of Corollary 18.5A. Let W x (-8,d) be a 
neighborhood of a E A .  There exists a connected open subset U of X such 
that U x (-&a) is another neighborhood of a and that every loop in CJ is 
null homotopic in W. By Corollary 2A, U - ex(B') is pathwise-connected. 
Every loop in (U x (- 6,d)) - A can be expressed as a finite composition 
of loops from (U x (-a, 6)) - (ex(B2) x [0,6)) and from (U x (-a, 6)) - 
(ex@') x (- 6, 01). Ineither case, such loopsarecontractiblein W x (- a,&). 
As a result, the image of nl((U x (-a,&) - A )  in zl((W x (-6,a)) - A )  
is trivial, and A is 1-LCC embedded at a.  

Additionally, one should note the relatively obvious facts that A is 
nowhere dense and 0-LCC in X x E' .  

The Klee trick (see the proof of Proposition 10.4) indicates that e(B') and 
A are equivalently embedded in X x E l ,  via a homeomorphism 6' of X x E' 

H 

Proof. 
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to itself such that px0 = p x .  Certainly then e(B') is nowhere dense, 0-LCC, 
and 1-LCC in X x E l .  According to Proposition 4, X x E' has the 
DADP. 

Theorem 8. If G is a cell-like decomposition of an n-manifold M ,  where 
n 2 3 ,  then ( M / G )  x E2 has the DDP. 

Propositions 6 and 7 combine to give Theorem 8. The cell-like approxi- 
mation theorem of Section 24 then yields a fairly strong result concerning the 
stable shrinkability of G. 

Corollary 8A. If G is a cell-like decomposition of an n-manifold M ,  where 
n L 3 ,  such that dim(M/G) < 03, then G x E2 is shrinkable and 
(M/G) x E2 is homeomorphic to M x E'. 

Whether G x E' itself is always shrinkable is not known. With this in 
mind, we turn to an examination of some conditions on G implying G x E 1  
is shrinkable. 

Theorem 9. If G is an (n - 3)-dimensional cell-like decomposition of an 
n-manifold M ,  where n 2 4, then G x E 1  is shrinkable and (M/G)  x E 1  is 
homeomorphic to M x E l .  

In order to show that (M/G)  x E' has the DDP, we will prove 
that M/G has the DADP and will apply Proposition 7. In order to prove that 
M/G does have the DADP, we shall show how to approximate a given map 
m :  BZ + M / G  by a map m': B2 + M / G  such that dim m'(B2) 5 n - 2. 
Then Corollary 2A will corroborate that m'(B2) is 0-LCC, and Proposition 4 
will certify that M/G has the DADP. 

For support in producing the desired approximation m', consider the 
complete metric space C? of maps B2 + M / G .  Determine open subsets 
W1, WZ, ... of M/G,  with ~ ( N G )  C W+I C FK for all i ,  such that 
dim(n FK) 5 n - 3, and construct straight line segments L 1 ,  L z ,  ... in B2 
such that dim (B2 - ULi) = 0. Define 

(3k = (h E C? : h I h-'(M/G - Wk) is a (l/k)-map] 

Proof. 

f k 

Routine arguments show both Ok and 6% to be open subsets of C?. Moreover, 
each is dense: that Ok is dense follows when n 2 5 because each h can be 
approximated by the projection under n of an embedding into Mand when 
n = 4, at least for the apparently worst possible situation where NG is dense 
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in M ,  because each map h E C can be approximated by the projection of an 
immersion into M whose points of self-intersection all lie in NG; that 6 'k  is 
dense follows from Corollary 3A and the proof of Lemma 5 .  By the Baire 
category theorem, each rn E C can be approximated by a map m' E (n ( 3 k )  n 
(n6'k). Each point inverse under m' is 0-dimensional (because it is the 
union of at most one point from ULi  together with a subset of 
B2 - ULi) ,  and the image Sz(m') of the nondegeneracy set (i.e., Sz(m') = 
(x  E m'(B2) I (rn')-'(x) # point]) is contained in n W and, therefore, has 
dimension at most n - 3. According to a result of H. Freudenthal [ l ]  

dim m'(B2) I max(dim B2, 1 + dim &(m')] 5 n - 2. 

As explained previously, this implies that M / G  has the DADP. 

Whenever G is a closed (n - 2)-dimensional cell-like decomposition, it is 
fairly easy to obtain a map m': B2 + M / G ,  close to a given map 
m :  B2 -, M / G ,  such that dim rn'(B2) I n - 2. Thus, the first part of the 
argument just presented provides an alternative proof of Corollary 24.3D, 
which attests that G x E' is shrinkable. 

Even when G is a closed-(n - 1)-dimensional cell-like decomposition of 
En,  whether G x E' must be shrinkable remains unresolved. Nonetheless, it 
is shrinkable provided ~ ( N G )  lies in a subset with its own inherently well- 
behaved structure-namely in a generalized (n - 1)-manifold or in an 
(n - 1)-complex (Theorem 12). The crux of this argument involves a 
verification of the DDP outlined in a separate lemma, Lemma 11, which has 
other applications later on ; before embarking on that argument, we treat an 
important special case. The proof is brief, its techniques minimal, and its 
structure similar to that of Lemma 11. 

Theorem 10. If G is a .  cell-like decomposition of En-' ,  regarded as 
En-' X [ O ]  C E", n 2 5 ,  such that E"-'/G isfinite-dimensional, then the 
trivial extension GT of G over En is shrinkable. 

It suffices to show that E"/GT has the DDP, so consider maps 
p1 ,  p2:  B2 + E"/GT. For notational simplicity, let n: En + E"/GT denote 
the obvious map, X = n(E"-' x ( O ] ) ,  Y+ = n(E"-' x [0,  00)) and 
Y- = x(E"-' x (-00,Ol). 

First, improve P I ,  p2 to maps p i ,  pi such that each (&)- ' (X)  is a 
1-dimensional compactum Ai (or, if preferred, a 1-manifold) by taking pj to 
be the image under n of a nice map B2 + E". Set Ti = (p ; ) - ' (Y+)  and 
Lj = ( p j ) - ' ( ~ - )  for i = 1,2. 

Next, approximate pj I Ai by p / :  Ai -+ X with pi'(A1) n pul(A2) = 0. 
The capability of performing this step is substantiated by Corollary 3A or 
Exercise 24.2. Moreover, this can be done with pf so close to pj IAi that 

Proof. 
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pi’ extends to maps pi’: j7 + Y+ and pi’: Li .+ Y- for which the combined pj’ , 
defined on B2, is close to pi .  

The final step depends on the simple verification that X is 0-LCC and 
1-LCC in both Y+ and Y- . Consequently, pj’ can be approximated by p/“ 
such that p/” (A i  = pi’ IAi, pF(B2 - Ai) n X = 0, and ,ur(B2 - A1) n 
pP(B2 - A2) = 0, by first exploiting these LCC properties to obtain 
pi (x - Ai) C Y+ - Xandp/”(Li - Ai) C Y- - X ,  andbytradingthenon 
the manifold nature of Y+ - X and Y- - X to adjust further so that the two 
images of B2 - Ai are disjoint. Because ,uF(Ai) C X and pT(A1) n 
pP(A2) = 0, it follows that pf’(B2) npi”(B2)  = 0. 

111 

In [6] Cannon states a result much like the following promised improve- 
ment of Theorem 10. 

Lemma 11. Suppose Y is a generalized n-manifold, n L 5 ; YI and fi are 
closed subsets of Y, each satisfying the DDP, whose intersection X is a 
generalized (n - 1)-manifold, with Y - X being a manifold; and each pair 
of maps fe: B2 -, X (e = 1,2) can be approximated arbitrarily closely by 
maps fd : B2 + X having disjoint images. Then Ysatisfes the DDP. 

Proof. Consider p1, p2: B2 -P Y. Since X is nowhere dense in the 
generalized n-manifold Y, these maps can be adjusted to pi, pi where each 
(&)-‘(X) is a 1-dimensional compactum Ai. 

As before, it is possible to approximate the two maps pj 1 Ai by disjoint 
embeddings p? of Ai in X. The crucial operation in the proof involves the 
advance identification of a dense collection of nice 2-cell images in Y1 and 
yZ, permitting a subsequent extension of pP over B2 in which the image of 
B2 - Ai is diverted around pcir(A1) u p$(Az). In Theorem 10, where X was 
1-LCC embedded, this was no problem; in the current situation, this is a real 
issue. 

Claim 1. Fore = 1,2, the space (3, of all maps B2 + X has two (disjoint) 
countable dense subsets ( l e j ] ,  (A&,) such that each l e j  and each A& is an 
embedding and no two of 11j(B2), lik(B2), l i , (B2) ,  15,(B2) intersect. 

The proof of the Claim, which is an exercise, depends on the hypothesized 
disjoint disks properties and an argument like that of Proposition 24.1. 

Claim 2. If U is an open subset of B2 and p:  C1 U --* K is a map, then ,u 
can be approximated by a map pt : C1 U -+ Ye such that pt I Fr U = p I Fr U 
and 

pt( V )  n X C U[le j (B2)  n X I .  
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Proof. Since Y is a generalized manifold and, therefore, satisfies duality 
(Wilder [l]), it follows that K - X is 0-LC at each point of X .  Choose a 
triangulation T of U with mesh tending toward zero near Fr U, carefully 
approximate p by p' with p'(T('))  C Ye - X ,  and then adjust the map on 
the various 2-simplexes to achieve the desired conclusion. This disposes of 
Claim 2. 

Here is the primary difference between this argument and the one given 
for Theorem 10. Each A e j ( B 2 )  n X ,  &j(B2) n X is a 2-dimensional closed 
subset of X ;  hence, each is 0-LCC embedded there (by Corollary 2A). As a 
result, the maps pj I Ai can be approximated by disjoint embeddings p! of 
Ai in X ,  missing every Aej(B2) and every ALj(B2). Of course, p!' extends to a 
map p:: B2 + Y with p!((p;)- ' (  K)) c K for e = 1,2 and with p f  close to 

Apply Claim 2 to approximate p!' by pi"' such that pi"' 1 A; = pi' I Ai and 
p: . 

2 

 pi"(^^ - n x c U U[Aej(B2) n XI, 

 pi"(^' - A ~ )  n x c U U[A;(B~) n X I .  

This yields that p;'(B2) n pf'(B2) n X = 0. As usual, a final general 
position adjustment in the manifold Y - X completes the proof. 

Theorem 12. If G is a cell-like decomposition of an n-manifold M,  n L 4 ,  
for which R(NG) is contained in a generalized (n - 1)-manifold X embedded 
in M / G  as a closed subset, then G x E' is a shrinkable decomposition of 
M x  E l .  

Proof. Clearly (A4 x E ' ) / (G  x E l )  is finite-dimensional; the more 
substantial matter is to detect that it satisfies the DDP. 

The problem being essentially local, we can assume X to be connected, and 
because of the duality properties arising from a local orientation in M/G,  X 
to separate M / G  into two components, with closures X and yZ . 

The argument rests on the elementary observation that, since each X is 
an ANR (Theorem 14.7) and X - Xis 0-LCC, given any dense subset D of 
E' ,  one can approximate each map of B2 in X x E' by another map of B2 
into 

((K - X )  x E ' ) U ( X x  0). 

The presence of disjoint dense subsets of E' makes it easy to check that the 
cover of (M/G)  x E' by Y1 x E' and fi x E' has the piecewise disjoint disks 
properties required for applying Lemma 11. 

e = l  j 

2 

e = l  j 
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Corollary 12A. Suppose G is a cell-like decomposition of an n-manifold M, 
n 1 4; X is a generalized (n - 1)-manifold embedded in M / G  as a closed 
subset; and G ( X )  is the decomposition of M induced over X .  Then 
G ( X )  x E' is a shrinkable decomposition of M x E' .  

Corollary 12B. If G isa cell-like decomposition of an n-manifoldM, n 2 4, 
for which ~ ( N G )  is contained in an (n - 1)-complex P topologically 
embedded in M/G as a closed subset, then G x E' is shrinkable. 

Proof. Underlying the (n  - 2)-skeleton of P is a (closed) subset A ,  and 
P - A is an (n  - 1)-manifold. The decomposition G(A) of M induced over 
A by n is shrinkable, by Corollary 24.3C. Consequently, the natural map of 
M x E 1  onto (M/G)  x E 1  is approximable by a cell-like map w 1-1  over both 
A x E' and ( (M/G)  - P) x E ' .  Deleting ly-'(A x E l )  from the domain and 
A x E' from the range, one finds from Theorem 12 that the restricted w 
can be approximated by a homeomorphism w' of (M x E')  - w-'(A x E l )  
onto ( (M/G)  - A )  x E ' ,  subject to controls forcing its extension over 
y/-'(A x E ' )  via ly to be a homeomorphism close to the original map. 

Corollary 12C. Suppose G is a cell-like decomposition of an n-manifold M ,  
n 2 4; P is an (n - 1)-complex embedded in M/G as a closed subset; and 
G(P) is the decomposition of M over P. Then G(P) x E' is a shrinkable 
decomposition of M x E ' .  

A generalized n-manifold X is said to be locally encompassed by manifolds 
if each point x E Xhas arbitrarily small neighborhoods U, whose frontiers in 
X are (n  - 1)-manifolds. If such a space X is the cell-like image of an 
n-manifold ( n  2 4), the next result attests that X x E' is a manifold. 
Unfortunately, not all generalized (n  - 1)-manifolds have this property; 
there are examples of cell-like decompositions Gof S",  due to Bing and Borsuk 
[ l ]  and also to S .  Singh [ l ]  for the case n = 3, generalized to n > 3 by D. G. 
Wright [ l ] ,  Singh [2, 31, and later by J. J. Walshand theauthor [ l ] ,  such that 
S"/G contains no 2-cell and certainly, therefore, no (n  - 1)-manifold. 

The proof of Theorem 13 is lengthy and laborious. Those willing to skip 
ahead may prefer to look first at Section 30, particularly the proof of Lemma 
30.2, as an easier warm-up. 

Theorem 13. If G is a cell-like decomposition of an n-manifold M, n 2 4, 
such that M/G is locally encompassed by manifolds, then G x E' is a 
shrinkable decomposition of M x E l .  

That M/G is locally encompassed by manifolds certainly implies 
dim(M/G) 5 n .  Thus, to establish this theorem, the essential part is to show 
that ( M / G )  x E' satisfies the DDP. The argument is delicate and drawn out, 
so we break it down into seven fairly short steps. 

Proof. 
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Fix maps p1, p2: B2 -+ ( M / G )  x E' and a rational positive number E .  

Step 1 .  An alteration of the decomposition map. Because M/G is 
locally encompassed by manifolds, it contains a countable collection (N;) of 
compact (n - 1)-manifolds such that each point of M/G has arbitrarily small 
neighborhoods with frontiers equal to some N;. By Corollary 12A the 
decompositions G(N;) x E' are shrinkable, and by Theorem 10 the trivial 
extensions to M x E' of the decompositions G x ( t )  defined on M x ( t )  are 
shrinkable for all t E E'.  According to Proposition 23.4, the decomposition 
map M x E' -+ (M/G)  x E' can be approximated by a cell-like map 
p :  M x E' + (M/G)  x E' that is 1-1 over all the sets N; x E' and over 
(M/G) x (q), for every rational number q. This putsp(N,) in the product of 
( (M/G) - U Ni) with the irrationals, so there exist 0-dimensional F, sets C 
and C' in M/G and E l ,  respectively, such that p(N,) c C x C' .  

Determine a triangulation T of 
B2 such that diam pe(0) < E for all 0 E T and e = 1,2. Since (M/G)  x E' 
satisfies the DADP, just as in the proof of Proposition 6 we can adjust p1 
and p2 so that 

Step 2 .  Modifications of the map pe. 

pi(B2) n p2( T"') = 0 = pi( T"') n p2(B2) ; 

taking each of these adjusted maps to be the image under p of disjoint 
embeddings in M x E l ,  we may assume that p1(B2) n ,u2(B2) c C x C' .  

Noting that C x E' is 1-dimensional and mcompact, which implies it is 
0-LCC in ( M / G )  x E l ,  we can modify the pe'S further so that pe(T(')) n 
(C x E ' )  = 0, without affecting the set S = pu1(B2) n p2(B2). Finally, since 
C x ( t )  is 1-LCC in (M/G)  x E' for each t E E l ,  we may assume, in 
addition, that for e = 1 , 2  and k an integer 

Pe(B2) n (C x (ke /2) )  = 0. 

Step 3 .  Finiteness considerations. Choose a neighborhood W *  of C in 
M / G  whose components each have diameter less than ~ / 2 ,  and define W 
as W* x (E' - U k [ k e / 2 ) ) .  Every point s E S = p1(B2) np2(B2) then has 
a neighborhood K in W of the form K = Us x J s ,  where J, = 
(k, d 2 ,  (k, + 1) - &/2) for some integer k, and where Us is a connected open 
subset of M/G with closure in W * ,  having manifold frontier, and satisfying 

('40) (us X E l )  n (p i (T( ' ) )  U pz(T"')) = 0, 

(BO) 

(CO) 

(Fr Us x EL) n p ] ( B 2 )  n p2(B2) = 0, 

(Us x Fr J,) n (p1(B2) u p2(B2)) = 0. 

Cover S by a finite collection ( V , . . . , 6) of such sets K . 
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Step 4. A reduction. For j = 1, ..., r we intend to describe maps pl, j  
andp2,jof B2 to (M/G)  x E' agreeing withp1 andp2 over ( (M/G)  x El)  - W 
and satisfying the analogs of (Ao), (Bo), and (CO) above, as well as the two 
conditions below : 

pe,jOlil(W)) C W, and p1,j(B2) np2,j(B2) C S - U K . 

Of course, in the terminal case j = r we will have the required disjoint 
approximations. 

This can be accomplished by verifying the following implicit inductive 
step: if f 1  and f 2  are maps of B2 into (M/G)  x E' such that 

f1(B2) nf2(B2) n u (Fr Urn x E l )  = 0 

(;I1 ) 

I 
I 

(Bi- I )  [ m L 1  

(Ci- 1) [ m :  1 
[fi(B2) Ufi(B2)1 n U (Urn X Fr Jm) = 0, 

where V, = U m  x J m ,  and that 

1 -  1 

f 1 ( ~ ' )  n f 2 ( ~ ' )  c s - U 6, 
j=  1 

then there exist maps F I ,  &: B2 + (M/G)  x E' such that for e = I ,  2 

FL'(W) = f ; ' (W) ,  F, I B~ - &-'(W) = f e  I B~ - ~ L ' ( w ) ,  

1 [FdB') u F2(B2)1 n u (U, x Fr J,) = 0 
[ m : 1  

F~(B') n F~(B') c ( f l ( ~ 2 )  n f 2 ( ~ ~ ) )  - K c s - U . 
( j i 1  ) 

Step 5 .  Elimination of intersections from K .  
such that 

Choose a point ti E Ji 

[ f l (B2)  u ~ ~ ( B ~ ) I  n (u; x ( t i ) )  = 0 

[see (C;-I)]. For e = 1,2 define Ze = fL'(C1 K) and 

Ye = $F'(Fr K)  = fL1((Fr U;) x Ji). 

By Theorem 14.7, ((Fr V;) x J; )  u (U; x ( t i ) )  is an ANR, so by Borsuk's 
homotopy extension theorem (14.6), the mapfl I YI extends to 

ml: ZI 3 ((Fr U;) x J; )  u (U; x ( t i ) ) ,  
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sincefl I YI is homotopic to one extendable over 21 (namelyfl followed by 
the “projection” of C1 Ui x Ji to C1 Ui x [ t i ) ) .  Now choose si E J; such that 

[ml(Zl) u ~ ~ ( B ~ ) I  n (ui x (s~I) = 0. 

As above, f 2  I YZ extends to (see Fig. 26-2) 

m2: 2 2  4 ((Fr Vi) x Ji) u (Vi X ( ~ i ] ) .  

Summarizing, we have produced maps me: Ze + (Cl Ui) x Ji for e = 1,2  
that extend over the rest of B2 via fe ,  and the images of which intersect 
nowhere in 6, although they may intersect at points of (Fr Vi) x Ji .  

Step 6. General position improvements. To circumvent difficulties 
peculiar to the case n = 4, we specialize to the case n L 5 .  For e = 1 ,  2 let 
Re = mp’((Fr Vi) x Ji). Because Fr V; x E’ is an n-manifold of dim L 5 
and because the sets Vj x (s;) and Ui x (ti) are disjoint, the maps me of Re 
in ((Fr Vi) x Ji) u (V; x (si, t i ] )  admit general position modifications, 
affecting no points of Fr Re,  hence extending over 2, - Re via me,  SO that 
ml(21 - YI) n m2(Z2 - yZ) = 0. Define maps fh: B2 + ( M / G )  x E’ as 
me on Ze and as fe elsewhere. Then any s E f { ( B 2 )  n fi’ (B2) belongs either to 

I 

[ S  nf l (B2)  n f 2 ( ~ ~ ) 1  - 6 c s - U 6 
j =  1 

or to 

[ f d Y l )  n mdZ2 - Y2)l u ~ ( Z I  - YI) nfdY2)l 
[see (Bi-l)]. By expelling points of the second kind, without adding any 
others, we will achieve our goal. 

Ji 

- - u, C M  

FIG. 26-2 
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Step 7. Final modifications. It follows from condition (Bj-1) that 
ml( Y1) n m2( rt) = 0. Thus, for e = 1 ,2  B2 contains disjoint open subsets 
Pe and Q e ,  as depicted in Fig. 26-3, satisfying 

K C Pe C ( f i ) - ' (  W n [((MIG) - U;) x Ji]), 

(me 1 Z e  - K)-'(mi(Zl)  n mz(Z2)) C Qe C Z e  - K ,  

fi(9) n f i W  = 0 = fi(Qd nfi'(Q2). 

Note that any point b E B2 for which 

fW) E [ f l ( X )  n mdZ2 - El1 u [ml(Zl - K) nf2(rt)l 

belongs to Pe u Q e .  

Since Fr Ui is an (n - 1)-manifold separating M/G,  properties of 
generalized manifolds guarantee that Ui and (M/G)  - C1 Ui are 0-LC at 
Fr Ui. After choosing disjoint dense subsets D, D' of E' - (s;, t i ) ,  we exploit 
once again the observation used to prove Theorem 12 to obtain maps 
Fe: B2 -+ (M/G) x El such that 

FIG. 26-3 
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all of which can be arranged with minor care in the approximation so that, 
in addition, 

FdPd n Fz(P2) = 0 = FdQd n FdQ2), 

FdP1 u Q1) n mz(B2 - (Pz u Q2))  = 0, 
ml(B2 - (PI u Qd n F2(4 u Qz) = 0. 

K(P1 u Zl) n F~(Pz u 2 2 )  = 0. 

F~(B') n F Z ( B ~ )  c fi ( B ~ )  n fi' (B'), 

and they eradicate intersections of the second kind identified in Step 6 .  
Routine auditing of the entries will confirm that these maps fulfill the 
requirements of the reduction designated in Step 4. 

Corollary 13A. Suppose G is a cell-like decomposition of an n-manifoldM, 
n 2 4, and (Pi) is a countable collection of closed subsets of M/G such that 
each Pi is either an ( n  - 1)-complex or a generalized (n - 1)-manifold and 
that each point of ( M / G )  - U Pi is locally encompassed by manifolds. Then 
G x E' is a shrinkable decomposition of M x E l .  

The disjointness of D and D' then implies that 

Consequently, the maps F1 and FZ satisfy 

EXERCISES 

1. Suppose G is a cell-like decomposition of an n-manifold M ,  n 2 5 ,  such that 
M / G  is an ANR and suppose k is an integer such that every map p :  B2 + M/G 
can be approximated by p':  B2 -+ M/G for which dimp'(B2) I k .  Show that 
R :  M -+ M/G can be approximated by a cell-like map F: M -+ M / G  such that 
dimF(Nf) 5 k. 

2. Suppose G is a cell-like decomposition of E" such that E"/G has the following 
disjoint point-disk property: any two maps Bo -+ E"/G, B2 + E"/G can be 
approximated by maps with disjoint images. Show that the set of points in E"/G 
having cellular preimages is dense in E"/G.  

3. Suppose G is a cell-like decomposition of an n-manifold M ,  n 2 3 .  Show that 
( M / G )  x E' has the following disjoint disk triples property: any three maps 
pi: B2 + M / G  (i = 1 , 2 , 3 )  can be approximated by maps pj:  B2 -+ M/G, where 
p(p!, pi) < E for i E [ 1 , 2 , 3 ) ,  such that pi (B') n pi (B') n pi (B2)  = 0.  

4. If G is a cell-like decomposition of an n-manifold M ,  n 2 4, such that 
d e m N ~  5 n - 2, prove that (M/G)  x E' has the DDP. 

5. For any cell-like decomposition G of an n-manifold M ,  n 2 3 ,  every map 
f: B2 -+ M/G can be approximated by a map F B2 -+ M/G such that 
dimF-'(x) I 0 for all x E M / G .  

6. Prove Claim 1 made in the proof of Lemma 11. 
7. Establish Lemma 11 without the hypothesis that Y - X i s  a manifold. 
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8. Suppose S is a locally compact ANR and U is an open subset of S whose frontier 
Fis an ANR such that Uis 0-LC at each point of F. Let (Z, Z') be a pair of closed 
subsets of B2 (2' C Z), f a map of (Z, Z') into ( Y  x E l ,  F x El) ,  where 
Y = U u F, and D any dense subset of E l .  Show that f can be approximated by 
a map f' of (Z, Z') into ( Y  x E l ,  F x E l )  such that f' 1 Z' = f l  Z' and 
f ' ( 2  - Z ' )  C [(U X E l )  u (F x D)]. 

9. Prove Corollary 13A. 
10. If G is a finite-dimensional cell-like decomposition of an n-manifold M ,  n 2 4, 

show that the natural map M x E' -+ (M/G)  x E' can be approximated by a 
cell-like map p for which dim p(N,) 5 1 .  

27. PRODUCTS OF E' WITH DECOMPOSITIONS OF E 3  

According to Theorem 17.12, each cell-like decomposition C of E 3  is 
finite-dimensional. Therefore, Corollary 26.8A reveals G x E 2  to be a 
shrinkable decomposition of E5. Nothing in Section 26 sheds much light on 
the shrinkability of the product G x E' ,  however, because the cell-like 
approximation theorem does not apply. It is noteworthy that Theorem 23.4, 
with no lower bound on the dimensions in which it applies, can be used in 
E4 for studying G x E l .  As an initiation into systematic investigation of such 
product decompositions, we analyze the first nontrivial case, where G is a 
closed-0-dimensional. 

Theorem 1. If G is a closed-0-dimensional cell-like decomposition of S 3 ,  
then ( S 3 / G )  x E' is homeomorphic to S 3  x E l .  In particular, G x E' is a 
shrinkable decomposition of S 3  x E l .  

Theorem 1 was derived independently in 1974 by R. D. Edwards and R. 
T. Miller [l] and by C. P. Pixley and W. T. Eaton [l]. Later an alternative 
proof was given by J. W. Cannon [4]. Their clever, diverse ad hoc techniques, 
predating Edwards's work on the cell-like approximation theorem, presently 
seem less mainstream than those to be laid out here, which exploit several 
philosophical and substantive facets of what has been developed thus far. 

By Corollary 20.4A it suffices to prove the ensuing reduction of Theorem 1. 

Proposition 2. I f X  is a cell-like subset of E 3 ,  then GX x E' is a shrinkable 
decomposition of E3  x E' = E4.  

At the outset one can simplify the problem presented in Proposition 2 by 
selecting, in whatever way seems beneficial, a preferred cell-like set X* C E3 
for which E 3  - X = E 3  - X * .  A convenient simplification involves the 
notion of split handle pair, introduced in Cannon 141. A pair ( H I ,  Hz) of 
(3-dimensional) cubes with handles is called a split handle pair provided HZ 
has twice as many handles as H I ,  which run through the handles of H1 as 
shown in Fig. 27-1. We will make use of the following (Cannon [4, Lemma]) : 
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FIG. 27-1 

Lemma 3 .  Let X be a cell-like set in E 3  and U an open set containing X. 
Then there exists a split handle pair ( H I ,  H2) and a PL embedding 
F: H1 --* E 3  such that U 3 F(H1) 3 F(Int Hz) 3 X .  

We say that a cell-like subset X* of E 3  is in standardposition if there exists 
a sequence of PL cubes with handles H I ,  H2, H3, ... such that for 
j E ( 1 , 2 ,  ...) : 

(1) Hj+l C IntHj; 
(2) X* = n j H j ;  
( 3 )  (Hzj-1, Hu) is a split handle pair; 
(4) Hzj-1 is the union of a 3-cell having diameter < l / j  and of 1-handles 

having cross-sectional diameter < 1 / j ;  and 
( 5 )  -the linking pairs of handles in Hzj each lie in a 3-cell in Hzj-1 having 

diameter less than l /j .  

This rigid linking pattern will expedite the shrinking argument eventually 
sought here. For now, observe that Property (4) prompts the familiar 
d e m X s  1. 

It is permissible to treat only cell-like sets X* in standard position, for by 
Lemma 3 every cell-like set X in E 3  is equivalent to such an X*, the weak 
interpretation of equivalence being that E 3  - X* is homeomorphic to 
E 3  - X .  Better yet, first given a measure of closeness, one can obtain X* and 
then can approximate the original decomposition map E 3  + E 3 / G x  by a map 
f: E 3  + E3/Gx whose only nondegenerate preimage is X*.  

Throughout the rest of this section we shall employ the following notation : 
X ,  for a cell-like subset of E 3  in standard position; Q, for (E3/Gx)  x E l ;  
and f i ,  for the natural map E4 = E3 x E' + Q. 

The result stated below is the main lemma. It has applications to other, 
more general 4-space decomposition problems. 

Lemma 4. Let X be a cell-like subset 0 f E3 in standardposition. Then there 
exists a sequence of triangulations (lj) of E 4 ,  with mesh lj 4 0, and there 
exists a sequence of cell-like maps [A: E4 + Q) satisfying: 



208 V. Shrinkable Decompositions 

(a) limf, = f is a proper cell-like map (close to f o )  ; 
(b) f is 1-1 over Q - fo(X x E l ) ;  and 
(c) f i s  1-1 over Ujf(TjC2'). 

Proof that Lemma 4 implies Proposition 2. Consider the decomposition 
Gf = [ f -'(q) 1 q E Q] induced by f. Conclusion (a) of Lemma 4 implies that 
Cf is cell-like and conclusion (c) implies that its nondegeneracy set has 
embedding dimension at most 1. Consequently, Theorem 23.2 attests that Gf 
is shrinkable, so there exists a homeomorphism h: E4 -+ E4/Gf approxi- 
mating the decomposition map p .  As customary, set F = fp-lh,  which is a 
homeomorphism E4 + Q. With controls on the choice of f ensured by 
conclusion (a), one can obtain F close to f o ,  showing that GX x E' is 
shrinkable. 

A prismatic triangulation of E4 = E3 x E' is a cell-complex subdivision 
of E4 expressible as T = T* x T**, where T* and T** denote triangulations 
of E 3  and E',  respectively. For Lemma 2, working with prismatic triangula- 
tions is equally acceptable as with the usual simplicia1 ones. The advantage 
of the former stems from the l-demensionality of X ,  indicating that the 
l-skeleton of T* can be taken to miss X ;  this puts the only portion of the 
entire 2-skeleton of T meeting X x El in those levels determined by the 
O-skeleton of T**.  

The argument for the technical lemma stated next embodies the crucial 
geometric features needed to prove Lemma 4. The rest of the proof of 
Lemma 4 is dirty detail. 

Lemma 5. Let E > 0 and let T = T* x T** be aprismatic triangulation of 
E4 with T*(') n X = (73. Then there exist an &-homeomorphism g :  E4 -+ E4,  
an isotopy B t :  E4 + E 4 ,  and an index k E H+ satisfying: 

(a) gt  1 [E3 - N(X;  E ) ]  x E' = Id, 
(b) B t (  E 3  X [El - N(T**(');e)] = Id, 

(d) ( t  E E' I g(T ) n Bl(Hk x ( t ) )  # (731 is nowhere dense; 
(e) for  all t E E l ,  g(T(2)) n 91(Hk x ( t ) )  = g(T'2)) n (Hk x I t]);  
(f) g(T(2') n &(Hk x It]) # (73 implies diam & ( H ~ + I  x ( t ) )  < E ;  and 
(8) for each t E E' with g(T@)) n (Hk x It]) # 0, there exists a 

neighborhood Ui of t in E' for  which 61 1 H k + l  x Ur is aproduct embedding. 

Proof. Choose an odd integer k E Z+ so that Hk consists of a small 
(diam < ~ / 3 )  3-cell and thin (cross-sectional diam < &/3) handles. 

Approximate the inclusion T(2)  -+ E4 by a level-preserving homeo- 
morphism g' of E4 = E3 x E' to itself such that g'(T")) n (Hk x ( t ] ) ,  
where nonvoid, consists of mutually exclusive disks in the handles and away 

(c) 81 I g(T'2') =(id, 
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/ I I I I  

FIG. 27-2 

from the linked overlaps present in Hk+l x [t ) .  Keeping E3-coordinates 
fixed, approximate g’ by g :  E4 + E4 such that g(Tc2’) n (Hk x [t’]) ,  when 
nonvoid, is a single disk. See Fig. 27-2. Perform these adjustments in a 
uniform way to  cause 

( t  E E’Ig(T(’))  n (Hk x [tl) # 01 
to be a countable discrete set. 

The prearranged linking pattern now allows quick description of the 
isotopy el that shrinks the aforementioned countable collection of level sets 
Hk+l x It] to small size, fixing g(Tc2’). Unlink the handles of such an 
H ~ + I  x ( t )  and replace them, in unlinked fashion, back in Hk x [ t ] ;  then 
shrink the image in Hk x [ t )  near the single disk g(T(2’) n (Hk x ( t ) ) .  This 
can easily be accomplished, subject to (a), (b), and (c), with 81 behaving like 
a product map near the level sets H k + 2  x It] where g(T‘2’) n ( H k  X It]) # 0. 
See Fig. 21-3. 
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Before applying 8, 

Handles of Hk+ 1 X { f 1 unlinked and replaced 

After applying 8, 

FIG. 27-3 

With standard epsilonic and convergence controls superimposed, repeated 
applications of Lemma 5 give rise to the next result indicating that fo can be 
approximated by a map f i :  E4 + Q which is 1-1  over the image of a given 
2-skeleton. 

Lemma 6.  Let T = T* x T** be a prismatic triangulation of E4 with 
T*(') n X = and let 6 > 0. Then there exist a &homeomorphism 
g :  E4 + E4 and a pseudo-isotopy i,uf of E4 (with i,uo = Id) satisfying: 
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(a) w t )  [E3 - N(X;6)]  x E' = Id; 
(b) wt I E 3  x [E' - N(T**(O); S)] = Id; 
(c) each nondegenerate inverse set under w1 is also an inverse set of 

(d) for some closed 0-dimensional subset C of El ,  X x C contains the 

(e) wl(X x It)) n g(T(") # 0 implies wl(X x It)) = point; and 
( f )  i+vt is ultimately stationary away from the nondegeneracy set (that is, 

for  each compact set K in E4 missing the nondegeneracy set of w1 , there exists 
t(0) E [0, 1) such that wt 1 K = wt(0)  1 K for all t E [t(O), 11). 

The following straightforward application of Lemma 6 arranges a more 
pronounced coherence with the main lemma. 

Lemma I. For each E > 0 there exists a triangulation Z of E4 having mesh 
less than E and there exists a cell-like map f i  : E4 + Q such that 

fo (giving it the form X x f t ] ) ;  

nondegenerate inverses under V/I ; 

(a) P ( f O Y f 1 )  < E ;  
(b) f 1 1 [ E 3 - N ( X ; ~ ) ] x E 1  = f o I [ E 3 - N ( X ; ~ ) ] x E i ;  
(c) for some closed @dimensional subset CI of E l ,  X x CI contains the 

(d) f 1  is 1-1 overfl(T(") u f0((E3 - X )  x E') .  

Proof. 

nondegenerate inverses under fi ; and 

Name a prismatic triangulation Tof E4 with T = T* x T** such 
that mesh T < ~ / 3  and T*(') n X = 0. Apply Lemma 6 to obtain g and tyr, 
using 6 E (0, d 3 )  so small that the &neighborhood of any inverse set of fo 
is mapped to an m e t  in Q. Let w = W I  . 

Set Ti = g(T)  and f 1  = f o ( w ) - l .  Conclusion (c) of Lemma 6 implies fi is 
well defined and continuous. Conclusions (a) and (b) and the choice of 6 
imply that conclusion (a) here holds ; conclusion (a), that (b) here holds ; and 
conclusion (d), that (c) here holds. 

Since fi' = tyfi-', f 1  is 1-1 over each point q E Q over which f1  is 1-1, 
substantiating part of (d). For the other part, consider z E Ti(') = g(T(')). If 
fL ' f i ( z )  is not a point, f i l f l ( z )  is not a point either, which implies it is a set 
X x  ( t ) .  Then 

z E (X  x It)) n g(T(')) 

and w(X x It]) = wfC'fi(z) is a point by conclusion (e) of Lemma 6 .  As a 
result, f 1  is 1-1 over fl(Ti(')), as required. 

Remarks about theproof of Lemma 4. Lemma 7 inaugurates the construc- 
tion of the sequence of triangulations and cell-like maps called for in Lemma 
4. Continuation of the process is not quite standard nor quite automatic, for 
the map f1 destroys parts of the product geometry prevalent info. Before 
dropping the subject, we indicate some critical aspects of the repetitions. 
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To be able to exploit uniform continuity, we expand the Euclidean factors 
into their natural compactifications so as to have X C E 3  C S 3  and E' C S ' ,  
and we work in S 3  x S' instead of E 3  x E l .  

Name a small number ~2 E (0, d 2 )  and focus on the pseudo-isotopy wt 
used to define fi = few-'. There exists 6 > 0 such that for A c S 3  x S' 
with diam A < 6, diam wt(A) < ~ 2 .  Choose a prismatic triangulation 
T = F* x F** of S 3  x S' such that mesh F < 613, F*(') n X = 0, and 
F**(') n CI = 0. (This displays the primary purpose of C1-it helps 
contrive a prismatic triangulation whose 2-skeleton avoids the sets shrunk 
out by wi). 

Find q > 0 for which N ( p ( 2 ) ;  q) n (X  x Cl) = 0 and (N(X; q )  x 
N( p* * ( O ) ;  q)) n p(2) = 0. Apply Lemma 6 again with triangulation T and 
positive number min(6/3, q) to obtain g2 and f i t .  Then mesh gz(T) < 6. 
Also, g2(F(2)) n (X  x Cl) = 0,  s 0 f g ' f ~ g 2 ( ~ ( ~ ) )  is a compact set K missing 
X x C1, which contains the nondegeneracy set of wt . Due to that constraint, 
conclusion (f)  of Lemma 6 gives t(0) E (0, 1) such that ~ ~ ( 0 )  I K = w I K .  

Set T2 = t,vr(o)g2(T). Since mesh g 2 ( T )  < 6, the earlier choice of 6 yields 
mesh Tz c e t .  Further, let fi = @I and f 2  = f ~ f i - ' ~ - ' .  

It should be clear that epsilonic restrictions can be installed to get at (a) 
and (b) of Lemma 4. The most absorbing conclusion there is (c). To see 
why f 2  is 1-1 over fi(Z("), note that f 2  I EC2) = f 2  1 wt(0)g2(TC2)) and 
f2yrCo) I g ~ ( p ( ~ ) )  = f o f i - ' w - ' w t C ~ )  1 ~ Z ( T ( ~ ) )  = fop-' 1 gz(T(") by the choice 
of t(0) above. Hencef2 is 1-1 overf2(Tf2') for precisely the same reasons that 
f l  is 1-1 overf1(Kf2)). To see why f 2  is also 1-1 overf~(K(~)) ,  check that the 
choice of q causes bt to be stationary on l$'), implyingfi and f1 coincide 
there. This suggests that f will agree with fl on 7iC2), but for the ultimate 
conclusion one must begin adding other controls, as in the proof of 
Proposition 23.4, to guarantee that the limit map f will agree withfl over 

The next step in the process is a repeat of the one just described, with the 
composition wt fit playing the role of w t .  Successive steps proceed similarly. 
This completes our outline toward a proof of Lemma 4. 

Notes. Modifications of the techniques just described are made in 
Daverman-Row [I]  to show that G x E' is a shrinkable decomposition of 
E4 provided G is a O-dimensional cell-like decomposition of E 3  and in 
Daverman-Preston [2] to do the same provided G is a cell-like decomposition 
of E 3  for which NG has embedding dimension 1. 

fd Tl(2)). 

28. SPUN DECOMPOSITIONS 

Among the various nonshrinkable cellular decompositions of E 3 ,  the ones 
described in Section 9 hold extraordinary appeal because of their specific, 
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uncomplicated, pictorial description. Notably, in light of the proliferating 
collection of positive results concerning shrinkability of cell-like decom- 
positions in higher dimensions, we have not yet encountered a single 
nonshrinkable cellular decomposition there, let alone one having an equally 
specific and uncomplicated description. As we saw in the preceding sections, 
the most obvious technique, taking the product of E' with a cell-like 
decomposition of En-' ,  has never produced an interesting example. A more 
fruitful technique is presented in this section; it provides fairly specific 
examples which are cellular but nonshrinkable. 

The method, that of spinning decompositions, was first detailed in a 
general form by J. W. Cannon [l]. He passes credit for the idea to 
E. Cheeseman, who described to him a wild Cantor set in E4 obtained by 
spinning a 3-dimensional solid horned sphere (see Corollary 9B), but others 
such as L. L. Lininger [l]  had exploited spinning earlier for similar purposes. 

At the onset the point of view is based on generalized polar coordinates, 
where points of Ek+' are represented in terms of direction and distance from 
the origin. Explicitly, one can regard Ek+' as 

(10, 03) x s k ) / s k  = (E: x s k ) / s k ,  

where $j'k denotes the decomposition (not cell-like) whose only nondegenerate 
element is [0) x S k .  Taking products with one can regard E" as 

E" = X E: X S k ) / @ k  = (E:-k X S k ) / @ k ,  

.where @ k  denotes the trivial extension over E:-k x Sk of the relation 

( ( x )  x S k  J x  E En-k-* x 101). 

This is easiest to visualize when k = 1, for then one can imagine rotating E:-' 
about its "edge" En-2 x (0); when n = 3,  this coincides with rotating a half- 
plane about a linear axis. 

In similar fashion, passing to one-point compactifications, one can view 
S" as (Bn-k x S k ) / 3 k ,  where 3 k  denotes the trivial extension over B"-k of 
((b] x S k  1 b E dB"-k]. Due to compactness features, we prefer working in 
S" ; nevertheless, comparable properties usually hold in the related repre- 
sentation of E". 

A useful notational item is the map t y k :  S" -+ B"-k induced from the 
diagram 

P 
B"-k x S k  - S" = (Bn-k x S k ) / 3 k  

/ 
/ 

proj / I //' vk ' 
B n - k d  
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It is 1-1 over aB"-k, and its other point-inverses are k-spheres. The set 
tyi'(aB"-k) serves as the distinguished (n - k - I)-sphere about which an 
(n - k)-cell is spun to sweep out S". 

If Xis a subset of B"-k, then by the k-spin of X we mean the subset Spk(X) 
of S" defined as P(X x Sk) = ~ k l ( X ) .  For instance, in case X is an arc in 
BR-k such that X n aB"-k is an endpoint e of X ,  then Spk(X) is topologically 

(X X S k ) / G { e } x s k  = ([O, 11 X Sk) /G{o}xsk ,  

which is a (k  + 1)-cell. 

Lemma 1 Let X denote a compact subset of B"-k intersecting aB"-k. Zf 
both X and X n aB"-k are cell-like, then Spk(X) is cell-like; conversely, i f  
Spk(X) is cell-like, then X is cell-like. 

Suppose first that X and X n aB"-k are cell-like. As a special 
case, assume that X n aB"-k is a single point z. Let U be an open subset of 
S" containing X. Choose an open subset V of B"-k containing X such that 
P( V X S k )  C U. Since X is cell-like and V is an ANR, there exists a map 
&: X + V starting at the inclusion, fixing z throughout, and ending at the 
constant 81: X +  (2). The map & induced by Or x Id functions as the 
required contraction of P(X x S k )  in P( V x S k )  c U. 

Proof. 

P 
X X S k  - P(XxSk) 

8, x Id 

I 
I 
I 8, 
-1- P 

-1- 
V x  S k  - P(Vx  S k )  

In the general case, either find a contraction of X in V that keeps 
X n in V n I ~ B " - ~  throughout, or use the argument above to prove 
that P(X x S k ) / G p ( W n a w - k ) X s k )  is cell-like and infer that P(X x S k )  itself 
must be. 

Next suppose that Spk(X) is cell-like. Fix a point * of Sk and let 
j :  Bn-k + S" be the natural map 

P Bn-k --t B n - k  x * LI B"-k x Sk ___t S". 

Then t y k j  = IdBn-k. Let U be a neighborhood in B"-k of X. The set 
Spk(U) = P(U x S k )  is a neighborhood in S" of Spk(X). Since Spk(X)is cell- 
like, there exists a contraction ht of Spk(X) in Spk(U), and tykhtj provides 
a contraction of X in U. 

Proposition 2. Suppose X is a cell-like proper subset of B"-k intersecting 
aB"-k nontrivially. Then X satisfies the cellularity criterion in B"-k i f  and 
only i f  Spk(X) = P(X x Sk) satisfies the cellularity criterion in S". 
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Proof. Suppose first that Spk(X) satisfies the cellularity criterion in S".  
Consider a neighborhood Uof Xin B"-&. Find another neighborhood Vsuch 
that each loop in Spk( V )  - Spk(X) is contractible in Spk(U) - Spk(X). Let 
j :  Bn-k -+ S" denote an embedding, as before, such that w k j  = Ids.-k. 
Given a loopf: aB2 + V - X one can produce an extension F B2 -+ U - X 
by extending jf: aB2 -, Spk( V )  - Spk(X) to i? B2 -+ Spk( U) - Spk(X) and 
defining F as wki? 

Next suppose that X satisfies the cellularity criterion, and consider a 
neighborhood W of Spk(X). Determine a neighborhood U of X in B"-k 
for which Spk(U) c W. By hypothesis U contains another neighborhood 
Vof Xsuch that loops in V - Xare null homotopic in U - X .  We shall show 
that loops in Spk(V) - Spk(X) are null homotopic in Spk(U) - Spk(X). 
Our argument applies only when k r 1; the case k = 0 is left to the 
reader. 

Consider f: aB2 -, Spk(V) - Spk(X). Since the distinguished sphere 
Spk(aBndk) has dimension sn - 2, we can perform a short preliminary 
homotopy [in Spk( V )  - Spk(X)] moving f (aB2) off 'Spk(aBn-'). Because 
f (aB2) then misses the image of the nondegeneracy set of P ,  P induces a 
map 

aB2 ', 

proj - Spk(U) - Spk(X) - (U - X) x Sk 

f aB2 + (V  - X )  x Sk such that Pf = f. The prearranged neighborhoods 
give rise to a map F: B2 -+ U - X extending proj 0.f It is convenient to 
regard F as a homotopy F: S' x [0, 1) -+ U - X between proj 03 and a 
constant map. Since X is cell-like, it does not separate any open subset 
of S n - k ,  making possible a modification of the constant mapping so its 
image rests in U n aB"-k. Homotopy lifting properties then yield another 
map P: S' x [0, 11 -+ (U - X )  x Sk preserving commutativity in the 
following diagram. Although F(S1 x (11) is not likely to be a point (when 
k = 1;  when k > 1 such difficulties dissolve), PF(S' x (11) must be a 
point, and PE' provides a homotopy between f = Pf and a constant map, 
with range in P((U - X) x Sk) c W - Spk(X). 
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s' x ( O I L  s' x [O, 11 
/ .  

u - X  
-C J-proj 

(U - X )  x S k  

Corollary 2A. Suppose X is a cell-like subset of B"-k that satisfies the 
cellularity criterion in B"-k and intersects aB"-k in a cell-like set. Then 
spk(x) is ceNu1ar in s". 

See also Lemma 1 and Theorem 18.5. 

Corollary 2B. If X is a compact subset of B"-k such that X n aB"-k is cell- 
like and Spo(X) is cellular in S " - k ,  then Spk(X) is cellular in s". 
Corollary 2C. Suppose Xis a compact subset of B" such that X n aB" is 
celi-like. Then Spk(X) is cellular in Sm+k i f  and only i f  Sp"(X) is cellular in 
S"+". 

The method initially uncovered for concocting noncellular cell-like sets in 
S" (n > 3)involvessuspensions: theiteratedsuspension XXof agiven cell-like 
set Xin S k  ( k  < n) having nonsimply-connected complement resides naturally 
as a noncellular subset of C S k  = S" (Exercise 18.6). A new method involves 
spins: if an arc A directly connects a given noncellular, cell-like subset X' 
of Int Bk to aBk, then the k-spin of A u X' is a noncellular subset of S". 

Equipped now with precepts for recognizing spins that are cellular, we 
revert to studying decompositions. A usc decomposition G of Bn-k is 
admissible if each g E HG intersects aB"-k in a cell-like (nonempty) set. Given 
an admissible decomposition G of BnTk,  we define the associated k-foldspun 
decomposition (of S"),  often referred to simply as the k-spin of G ,  denoted 
by Spk(G), as the trivial extension of [P(g x S k )  l g  E HG).  Admissible cell- 
like decompositions of B"-k are natural forerunners, though not the most 
general ones, of cell-like spun decompositions of S".  

Proposition 3. Let G denote an admissible use decomposition of B"-k. 
Then Spk(G) is a cell-like decomposition ifand only if G is cell-like. Further- 
more, in case G is cell-like, Spk(G) is a cellular decomposition if and only 
i f  each g E HG satisfies the cellularity criterion in BnFk.  

This is an immediate consequence of Lemma 1 and Proposition 2, plus, 
of course, Theorem 18.5. 

The next lemma introduces more notation. Its proof is obvious. 

Lemma 4. If  G is an admissible decomposition of B"-k, then Wk induces 
a map p k :  S"/Spk(G) -+ B"-k/G that is 1-1 over 7t(aB"-k) and that is con- 
jugate to the projection Y x S k  + Y over Y = B"-k/G - n(aB"-k). In 
particular, P k  Ts = ni+vk.  
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Proposition 5. Suppose G is an admissible decomposition of .Bn-k ,  
n - k L 5 ,  such that S"/Spk(G) is homeomorphic to S". Then B"-k/G has 
the disjoint disks property. 

Consider two maps f i ,  f z :  B2 -+ B"-k/G and E > 0. Define an 
embedding; B"-k/G -+ S"/Spk(G) a s 1  = f jn - ' ,  so that the diagram below 
is commutative, 

Proof. 

Then @ k J =  @k77,in-l = nykjn-l  = Idp-kIG. Since S R / S p k ( G )  = S" by 
hypothesis, the mapsfil and22 can be approximated by disjoint embeddings 
Fl ,  Fz: B2 + S",  subject to the requirement that p ( @ k f i ,  @kjfi) < E 

( i  = 1, 2) .  Although @kF1(B2) and @kFz(B2) could intersect, they cannot 
intersect at any point of ~ l ( d B " - ~ ) ,  over which @k is 1-1. Hence, a final 
general position adjustment in the (n  - k)-manifold (B"-k/G)  - n(dB"-k) 
will remove all intersections. 

The dimension restriction n - k r 5 is significant only for the final 
general position modification. In case n 2 5 but n - k is unrestricted, the 
initial part of the argument establishes the following. 

Proposition 6. Suppose G is an admissible decomposition of B"-k such that 
S"/Spk(G) is homeomorphic to S", n 2 5 .  Then for any two maps f i ,  f2 of 
B2 to B"-k/G and any E > 0 there exist mapsfl ,&: BZ -+ B"-k/G such that 
p ( J , f i )  < E ( i  = 1,2) and 

A ( B 2 )  n j ; (B2)  n z ( ~ B " - ~ )  = 0. 

When n is low-dimensional, it is less easy to find nice maps of B2 into S", 
but with apparently stronger hypotheses on the decomposition of Bn-k,  it is 
still possible to obtain the same conclusion as in Proposition 6 .  

Proposition 7. Suppose G is an admissible cell-like decomposition of Bm 
such that Spo(G) is shrinkable. Then any two maps f i ,  f2 of B2 into Bm/G 
can be approximated by maps f 1 ,  A: B2 --* B m / G  such that 

A ( B 2 )  n &(Bz) n n(dB") = 0. 

Proof. One can naturally express S" as the union of two embedded m- 
cells, j l (Bm)  and j2(Bm), where ji(aB") = P(dB" X So) and @ o f j i  = 

n: B" + B"/G (i = 1,2). Given maps f l ,  f2: B2 --* B"/G, one can lift them 
to maps F l ,  Fz: B2 - + B m  that satisfy p( f i ,  nfi) < e / 2  and then modify the 
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lifts slightly so that R(B2) C Int Bm. The two copies jlR(B2) and j2fi(B2) 
are disjoint subsets of S", having some distance 6 between them. 

Determine y > 0 so that 70 sends y-subsets of Sm/Spo(G) to d2-subsets 
of B"/G. Since Spo(G) is shrinkable, there exists a homeomorphism h of S" 
to itself such that 

diam h(Spo(g)) < 6 for each g E HG 

and 

p(*h, 77) < Y 
It follows that h-'jlR(B2) and h-'j2F'(B2) meet no common element of 
Spo(G); in other words, Rh-'jlR(B2) n Zh-'j2Fz(B2) = 0. Define as 
QOiih-'jiE. Since QO is 1-1 over n(dBm), &(B2) n&(B2) n n(dB") = 0 .  

S" S"/Spo(G) 
I I r0 I" 

B" a B"/G 

Furthermore, 

p(Ji A) 5 ~ ( 3  nE) + P ( ~ R  ,A) 5 ~ ( $ 0  *h-'jifi I QO * j i iR)  + ~ / 2  

I P(Qo*h-', Po*) + ~ / 2  c ~ / 2  + ~ / 2  = E .  

Example 1. A nonshrinkable cellular decomposition of S" (n > 3). It is 
the (n - 3)-spin of a decomposition G of B3 suggested by Fig. 28-1, and it 
represents a variation of Example 9.2 with minor modifications causing it to 
be admissible. The nonshrinkability of SP"-~(G) follows from properties of 
Example 9.2 that conflict with the necessary condition of Propositions 6and 7. 

FIG. 28-1 
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FIG. 28-2 

Example 2. Another nonshrinkable cellular decomposition of S" (n > 3). 
This is the (n - 3)-spin of an example sometimes called the three-toed sloth, 
constructed by L. 0. Cannon [ l ]  and suggested by Fig. 28-2. Of historical 
interest, it was the first such example obtained by spinning. Cannon's 
argument that Example 2 does not satisfy the conclusions of Propositions 6 
and 7 is much subtler than that for Example 1. 

A partial converse to Proposition 6, the main positive result of this section 
provides a sufficient condition for a spun (admissible) decomposition to be 
shrinkable. Stated below is a technical lemma used in the proof. 

Lemma 8. Suppose G is a cell-like decomposition of Bm such that any two 
maps f i  , f2: B2 + Bm/G can be approximated by maps fI ,& such that 

f I ( B z )  nA(B2) n n(dB") = 0. 

Then f o r  any map f: B2 + Bm/G and any finite open cover W of n(dB") 
there exist approximationsf B2 + B"/G to f such that, f o r  each W E W ,  

( W n  n(8B")) - f ( B z )  # 0. 

Proof. Exercise. 

Theorem 9. Suppose G is an admissible cell-like decomposition of Bn-k, 
n 2 5 ,  such that dim(B"-k/G) < 00. Then Spk(G) is shrinkable i f  and only 
if every pair of maps f 1, f2 from Bz to B"- k / G  can be approximated by maps 
A,&: B2 -+ B"-k/G such that 

fl(B2) n&(BZ) n n(dB"-k) = 0. 

The forward implication is Proposition 6. Proof. 
To establish the other implication, one can simply show that S"/Spk(G) 

is a finite-dimensional space satisfying the DDP. The finite-dimensionality 
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is relatively automatic-S"/Spk(G) splits into a closed piece homeomorphic 
to x ( ~ B " - ~ )  and another open piece homeomorphic to [ R ( B " - ~ )  - 
~r(aB"-~)] x S k ,  each of which is finite-dimensional, implying that the union 
is. 

For notational convenience, set Z = @ i ' ~ ( d B " - ~ )  = iiP(~3B"-~ x S k ) .  
Since 2 3 ii(Nspk(c)) it will suffice to show that any two maps p l ,  p2: B2 -+ 

S"/Spk(G) can be approximated by maps $1, $2 such that $1(B2) n $2(B2) n 
Z = 0. Details are given only for the case k 1 1 ; the remaining case is left 
to the reader. 

Name an open cover W of x ( ~ B " - ~ )  = @ k ( Z )  in BnPk/G by connected 
open subsets so small that diam @ i l ( W )  < &/2 for each W E W. Determine 
a closed neighborhood Q of n(aBnPk) small enough that W covers Q. Find 
q > 0 so that any q-subset of Q is contained in some W E W. Finally, 
determine 6 > 0 so that the image, under @ k ,  of any &subset of S"/Spk(G) 
has diameter smaller than q / 3 .  

Given maps p1,p2: B2 + S"/Spk(G), subdivide B2 with a small mesh 
triangulation Tand approximate the maps by p i ,  pi so thatpUi( T'") n Z = 0, 
diam pi(a) < 6 for each (T E T, and pci(o) n Z # 0 implies pUi(a) C @i'(Q) 
( i  = 1,2). Then set Ci = U(a E TlpUi(o) n Z = 01. 

By hypothesis, the two maps @ k p i ,  4k.U;:  B2 + B"-k/G can be 
approximated by maps whose images have no intersection in common with 
x ( ~ B " - ~ )  = @ k ( z ) .  Since B"-k/G is an ANR, there exists approximations 
f i ,  f 2  to @kpLf, @kpi,  respectively, such that for i = 1,2,  

fi I ci = @ k / d  1 ci, p ( f i ,  @ k d )  < q13, 

fi(o) C Q for every (T E T such that pUi((~) n 2 # 0, 

f1(B2) nf2(B2) n @ k ( z )  = 0. 
Furthermore, it is an elementary consequence of Lemma 8 that such maps 
f;. can be obtained so that fi(B2) n @ k ( z )  contains no W n p k ( z ) ,  W E W. 
[Here 151 should be redefined as a finite cover, every element of which meets 

All that remains to be done is a controlled "lifting" of the maps fi I r.7, 

similar to that performed in proving Proposition 3.  For i = 1,2  set pi = pUi 
on those simplexes (T of T for which a C Ci . With the remaining 2-simplexes 
a of T, regardfi I (T as a homotopy betweenfi I aa and a constant map. The 
crucial step is to determine this constant map as a mapping into n(aBnPk) = 

1,5k(Z). This can be done because B"-k/G - x ( ~ B " - ~ )  is 0-LC at each point 
of n(13B"-~); thus, a path in any W E  W from an arbitrary point to 
z E W n tpk(z )  can be modified to a new path meeting @ k ( Z )  in (at most) 
its endpoints. It is also significant that, for the simplexes (T in question, 
diamfi(a) < q, so that by the initial choice of numbers some W, E W 

@ k ( z ) . l  
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containsf,(a). The homotopy of Fi I do we choose will operate in W, and will 
end, not at an arbitrary constant map, but in one that sends aa to a point 
of t+?k(Z )  not in the other image of B2, and the adjustments from the earlier 
homotopy to this one produce no additional points of intersection with t+?k(Z) 
besides this point of constancy. 

Now we claim that there exists a map pi: o -, S"/Spk(G) such that pi I ao 
= pi 1 aa and t+?k,Ei(o) is so close to &(a) that the new image also misses the 
other image of B 2 .  Clearly there exists a map F,:  do x I -+ f l ( W )  so that 
IcFi(aa x I) is close enough to f i ( h  x I )  to miss the other image and that 
Fi(do x 11)) C aB"-k. Exactly as in Proposition 2, there exists a lift I?: aa x 
I -, ~ i ' n - ' ( W )  agreeing with pi on ao x to), now thought of as aa. Then 
pi = f f f  acts as the desired map on o. 

a 0  7i ,u/ Wiln-'(W) - t+?kl(W) 4 

To finish, maps pi must be defined on the appropriate simplexes a E T 
successively, constantly measuring disjointness properties at Z, in like 
fashion. Ultimately, this provides the required mapspl, p2: B2 -, S"/Spk(G) 
such that p1(B2) n p2(B2) n 2 = 0. 
Corollary 9A. Suppose G is an admissible cell-like decomposition of Bm 
such that Spo(G) is a shrinkable decomposition of S", and suppose 
m + k 2 5 .  Then Spk(G) is shrinkable. 

W 

Proof. See Proposition 7 for the requisite disjoint disk property. 

Corollary 9B. If C is the decomposition of B3 intopoints and arcs described 
by the defining sequence suggested in Fig. 28-3 (whose 0-spin is the Bing 
decomposition given as Example 9.1), then for all k 2 2 Spk(G) is a shrink- 
able decomposition of S3+k .  Consequently, is(C1 Nspk(c)) is a Cantor set 
wildly embedded in S3+k .  

In Section 9 it was shown that Spo(G) is shrinkable and that C1 NG 
has nonsimply connected complement in B3. A global variation to the argu- 
ment set forth in the first half of Proposition 2 (see Exercise 4) demonstrates 
that C1 NsPk(c) [as well as is(C1 N s ~ ~ ( ( G ) ) ]  also has nonsimply connected 
complement, which implies the wildness of the Cantor set is(C1 Nspk(c)) in 

Remarks. A shrinking of the spun Bing decomposition Spk(G) can be 
carried out explicitly, even when k = 1 ,  by manual techniques like those of 
Section 9. Lininger [l] first observed this; Edwards [ 3 ]  depicted with rich 

Proof. 

S3+k/Spk(G) 5: S3+k . m  
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B3 

detail how to do it when k = 1 in his early work on the double suspension 
problem. Accordingly, the spun Bing decomposition Spk(G) is shrinkable for 
all k 2 0, and wild Cantor sets can be found in S" whenever n 2 3 (earlier 
results give wild cells of dim k 2 1 in S" whenever n 2 3). 

Theorem 9 is noteworthy for what it does not do. It does not attest that 
Spk(G) is shrinkable if and only if Spo(G) is shrinkable. By Corollary 9A the 
latter is sufficient to imply the former (at least for n 2 5 ) ;  however, it is not 
necessary, and that fact accounts for some of the technical variations 
demanded in this section. If one modifies Bing's minimal example (Example 
9.6) slightly, as in Example 1 of this section, to obtain an admissible decom- 
position GM of B3, one finds from Theorem 9 or from Corollary 24.3F that 
S p k ( G ~ )  is shrinkable for all k 2 2. Similarly, if Bing's dogbone decom- 
position GD is appropriately described in B3 C S 3 ,  then one finds from 
Theorem 9 that Spk(G~)  is shrinkable (k  2 2); in fact, Spl (G~)  is also known 
to be shrinkable (Cannon-Daverman [2, Theorem 8-31). On the other hand, 
neither Spo(G~)  nor Spo(G~) is shrinkable. 

EXERCISES 

1. A compact subset C of an m-manifold-with-boundary Mis said to be cellular-at- 
the-boundary if, for each open subset U of M containing C, there exists an 
embedding e: B"-' x [0, 11 + U such that 

C n aM c e(Int B"-' x to)) c aM and C c e(Int Bm-' x [0, 1)). 

Show geometrically, with reference to the cellularity criterion, that if the compact 
subset C of Bm is cellular-at-the-boundary in Bm, then Spk(C) is cellular in Sm+k, 
for each k 2 0. 
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2. Prove the analogue of Proposition 6 in case n = 4, under the assumption that 

3. Prove Lemma 8. 
4. I f  G is an admissible USC decomposition of B"-k such that S" - NS,,X(G) is simply 

connected, prove that B"-' - NG is simply connected. Do the same when these 
nondegeneracy sets are replaced by their closures. 

5. Let e be an embedding of X x I in B" ( X  a Cantor set) such that e(X x (0)) = 
e(X x I )  n aB" and that B" - e(X x I )  is 1-LC at each point of e(X x (0, l)) ,  
and let G denote the decomposition of B" in which HG = (e((x1 x I ) l x  E XI.  
Show that Spk(G) is a shrinkable decomposition of Sm+' provided m 2 4 and 
m + k 2 5 .  

6 .  Prove Theorem 9 in case k = 0. 

dim n(aB"-k) < 4. 

29. PRODUCTS OF GENERALIZED MANIFOLDS 

For n L 3 Euclidean (n + 1)-space admits exotic factorizations-E4 is the 
product of E' with Bing's dogbone space; En+' is the product of E' with E" 
modulo any arc ; indeed, for essentially every known cell-like decomposition 
G of En,  En+' is the product of E' with E"/G.  

Examples like these do not exhaust the list, however, because it is possible 
to express En (n  2 6) as the product of two nonmanifolds. Generalizing the 
Andrews-Curtis result about the product of E' with En modulo an arc 
(Theorem 10.7), K. W. Kwun [ l ]  showed that the product of Em modulo an 
arc with E" modulo an arc is always Em+". Since then, others have found 
additional nonmanifold decomposition spaces whose product is Em+". The 
definitive result was derived by C. D. Bass [2], based, as might be expected, 
on the cell-like approximation theorem. Bass proved that if Gm is a cell-like 
decomposition of an m-manifold M m  and Gn is a cell-like decomposition of 
an n-manifold N" (m L 3 ,  n 1 3) such that both Mm/Gm and N"/G,  are 
ANRs, then G ,  x G ,  is shrinkable, so (Mm/Gm) x (Nn/Gn) is homeo- 
morphic to M" x N".  The argument, of course, reduces to showing the 
product has the DDP, and that is the subject of this section. 

As notational shortcuts throughout, we write Mm/Gm and N"/G,  as X and 
Y ,  respectively, and we use Px: X x Y -+ X and PY:  X x Y + Y to denote 
the projection maps. 

Lemma 1. Suppose A is a nowhere dense, 0-LCC subset of X ,  f :  B2 + 

X x Y,CisaclosedsubsetofB'suchthatf(C) n (A x Y )  = 0 , a n d ~  > 0.  
Then there exists F: B2 --+ X x Y such that p(F, f )  < E ,  FI C = f I C,  
F(B2) n ( A  x Y )  is a 0-dimensional set K ,  and Py  I K is 1-1. Furthermore, 
ifZisaclosedsubsetofA x Ysuchthat, foreverya E A ,  P y ( Z n  ( [a ]  x Y ) )  
is nowhere dense in Y ,  then Z is 1-LCC in X x Y.  
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Proof. Since A x Y is nowhere dense and 0-LCC in X x Y ,  standard 
approximation methods yield a minor adjustment to f so that f - ' ( A  x Y )  
is a 0-dimensional set Q. The required map F, which, among other features, 
must send a set like Q onto something 0-dimensional, will be obtained as a 
limit of a convergent sequence ( f ] .  We shall describe how to obtain the first 
approximation F1 to f; the usual iterative details will be left to the reader. 

Specifically, the goal is to find a triangulation Tof B2 having small mesh 
and a map F I :  B2 + X x Y satisfying 

(0 P(F13 f) < E ; 
(ii) F1 I C u T(')  = f I C u T(') ; 

(iii) for each 2-simplex a E T, K(a) n ( A  x Y )  c S, x {y,], where S,  is 
a small subset of X and where the points y,, corresponding to distinct 
2-simplexes are themselves distinct ; and 

(iv) R ( B 2 )  n Z = 0 (thisautomatically yieldsthat Zis 1-LCCinX x Y ) .  

Each q E Q has a neighborhood U, in B2 - Csuch thatf(U,) C V, x W,, 
where V, and W, are open subsets of Xand Y,  respectively, W, is contractible 
in some connected open subset Wj' of Y, diam(V, x W,l) < E ,  and Z n 
(V, x 0,) = 0, where 0, is another open subset of W,. [Starting with a 
neighborhood Wj' of Pyf (q ) ,  choose W,, V,, and 0,, and then U,, in that 
order.] 

Determine a triangulation T of B2 whose 1-skeleton T(') misses Q and 
whose mesh is so small that any a E T touching Q is associated with some 
q E Q for which U, 3 a. 

For a E T such that a n Q = 0, define F1 I a as f l u .  For the other 
2-simplexes a E T, we intend to modifyf 1 a slightly, dissecting it into a part 
with horizontal (X-direction) image and another part with vertical (Y-  
direction) image. In the situation at hand, where there exists q E Q such that 
U, 3 a, we choose a point w, E 0, C W,, doing this so that the w,'s 
associated with different 2-simplexes are distinct, and we name a contraction 
vr of W, to w,, in Wj' . For notational convenience, we also name a collar 
c,, = da x I on do in a, with each s E da corresponding to  (s, 0) E do x I ,  
and a homeomorphism h,: a + Cl(o - c,,) respecting the collar structure, 
meaning that h,(s) = (s, 1 ) E c,, for eachs E do. Then for 3 E 6 = Cl(o - c,) 
we define R(3) = Pxf(h-'(3)) x {w,) and for (s, t )  E c,, = da x I w e  define 
Fl((s, t ) )  = Pxf((s, 0 ) )  x v 1 P y f ( ( s ,  0)). It should be clear, because 
f(da) n (A x Y )  = 0, that R(c , )  n ( A  x Y )  = 0 as well and that R(a)  n 
(A x Y )  = R(6) n ( A  x Y )  is contained in the product of V, n A with ( w,), 
which gives R ( B 2 )  n 2 = (21, as required. 

Lemma 2. The space X x Y has the disjoint arc-disk property. 
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Proof. Since each of Xand Y has the disjoint 1-cells property, any map 
p:  B' - + X x  YleadstoPxp: B' +XandPyp :  B' -+ Ythatcanbeapproxi- 
mated by embeddings ex: B' 4 X and e y :  B' -+ Y .  Set A = ex@) and 
2 = e(B'), where e(b) = (ex@),  ey (b ) ) .  For any a E A ,  PY(Z n ( (a)  x Y ) )  
is a singleton, which certainly is nowhere dense in Y .  By Lemma 1, e(B') is 
1-LCC. According to Proposition 26.4, X x Y has the DADP. 

Theorem 3.  Suppose G m  is a cell-like decompositon of an m-manifold M m  
(m L 3 )  and G, is a cell-likedecomposition of an n-manifoldN" (n  1 3 )  such 
that the spaces X = M"/Gm and Y = N"/G, are ANRs. Then G m  x Gn is 
a shrinkable decomposition of M" x N". 

It suffices to show that X x Y = (Mm x N")/(Gm x Gn) has the 
DDP. Toward that end, let ( Y O ,  PO: B2 -+ X x Y. Choose a triangulation T 
of B2 so that the diameters of both (YO(O) and po(a) are small for every a E T.  

By Lemma 2 the maps (YO, PO can be approximated by maps (YI , PI,  
respectively, such that al(T(')) n p1(B2) = 0. Symmetrically, the latter can 
be approximated by maps ( ~ 2 ,  f l 2  for which a2(B2) n p2(T")) = 0, but with 
controls limiting the motion to maintain the original disjointness property; 
that is, 

u2(T(')) n p2(B2) = 0 = a2(B2) n pz(T(')). 

Since X has the disjoint 1-cells property, the maps ( ~ 2 ,  f l 2  have 
approximations a3, B 3  such that Pxa3 I T(') and Pxp3 1 T(') are embeddings 
with disjoint images. These can be obtained subject to limitations ensuring 
again that 

a3(T('))  n p3(B2) = 0 = a3(B2) n p3(T(')). 

Exactly as in the proof of Lemma 1, for each 2-simplex a E T we 
can produce a collar co = da x Zon da in a (with each s E aa corresponding 
to (s, 0) E co = d o  x I )  and also a 2-cell 6 = Cl(a - co), Just as was done 
in that argument, we find maps ( ~ 4 ,  p4 close to a3 , / I 3  (the degree of closeness 
dependent on the mesh of T )  satisfying 

Proof. 

Step 1. 

Step 2.  

Step 3. 

(i) a4 1 T(') = a3 1 T(')  and p 4  1 T( ' )  = p3 1 T'"; 
(ii) a4(c0) is contained in a small subset of P x ( Y ~ ( ~ o )  x Y, while p4(c0) 

(iii) ( ~ 4 6 )  = Pxa3(a) x tw,,,) and fl.46.) = Pxp3(o) x ( w , ~ ) ;  and 
(iv) the sets { w ~ , ~  12-simplexes o E T )  and (wO,o 12-simplexes li E T )  are 

disjoint. 

We shall refer to the sets aq(cO), p4(c,) as walls and to the sets 4 d ) ,  p4(6) 
as floors. It follows from step 2 and condition (ii) that no wall of cu4(Bz) meets 
a wall of p4(B2), and it follows from conditions (iii) and (iv) above that no 

is contained in a small subset of Px/33(do) x Y ;  
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floor of a4(B2) meets a floor of /34(B2). Thus, the only possible intersections 
occur where a wall of one meets a floor of the other. 

To improve the floors of a@'), we apply Lemma 1 and obtain 
an approximation a5 to a4 such that 01s IUc, = a4\Ucu and as(B2) n 
( P x / ~ ~ ( T ( ' ) )  x Y )  is a compact 0-dimensional set K for which PY I K is 1-1. 
The map a5 can be obtained so close to a 4  that a5(U 6) still misses the floors 
of /A@). Since PX 1 a3(T(')) and PX 1 P3(T(')) were made disjoint in Step 2, 
it should be clear that K n (Pxas(T(')) x Y )  = 0. 

Here we renovate the walls of 84(B2). Let K, denote K n  
(P~/34(da) x Y ) ,  for each 2-simplex a E T. Then da x Y = S' x Y is very 
nearly an (n + 1)-manifold. What sets X x Y apart from X x El (when 
n = dim Y > 1) is that K, is 1-LCC in P~fi4(aa)  x Y.  This fact, which does 
not hold in case Y = E l ,  follows directly from the Seifert-van Kampen 
argument given in Proposition 26.7, based on the property that PY 1 K, is 1-1. 
Previous modifications have determined 8 4  so that /l4(acU) n a5(B2) = 
/34(ac,) n K, = 4. Consequently, because of the 1-LCC condition on K,, the 
various 8 4  1 c, can be approximated by maps P5 I c, satisfying 

and 

Such maps combine to produce Ps: B2 -, X x Y agreeing with P4 on U6. 
The walls of /35(B2) now avoid a5(B2) completely. 

Repeat steps 4 and 5 for the symmetric situation to 
improve, first, the floors of Ps(B*) and, then, the walls of as(B2). Although 
a5 no longer has floors in the same horizontal sense as a d ,  its walls agree with 
those of a 4 ,  and the modification of step 7 pertains to those walls. On the 
other hand, P5(B2) has the same floors as P4(B2) and it has walls quite like 
those of p4(B2); nevertheless, the final modification (step 6 )  of P5(B2) 
involves the common floors. After completing all seven steps, one will have 
eliminated all intersections between (Y6(B2) and P6(B2). 

Corollary 3A. If G I ,  G2, and Gs are cell-like decompositions of positive- 
dimensional manifolds such that the three decomposition spaces are ANRs, 
then GI x G2 x G3 is shrinkable. 

Step 4. 

Step 5 .  

PS 1 dc, = 8 4  1 ac, Ps(c,) c (P~84(da)  x Y )  - K,. 

Steps 6 and 7. 

This establishes that X x Y has the DDP. 

EXERCISES 

1. Let G1 and G2 denote admissible cell-like decompositions of Bm (m 2 1) and B" 
(n 2 l), respectively, such that Bm(G1 and B"/G2 are ANRs. Prove that GI x G2 
is an admissible decomposition of B"' x B". Then prove that Spk(G1 x G2) is 
shrinkable whenever m + n 2 4 and k z 1. 

2. For n 2 3 show that there exists an uncountable collection (X,) of topologically 
distinct spaces such that each product X ,  x X ,  is homeomorphic to E'". 
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30. A MISMATCH PROPERTY IN LOCALLY SPHERICAL 
DECOMPOSITION SPACES 

In order to apply the cell-like approximation theorem to a particular cell- 
like decomposition G of an n-manifold M ,  two problems must be addressed : 
the first and often harder is to detect the finite-dimensionality of M/G,  and 
the second is to verify that M / G  satisfies the DDP. In this section we 
investigate a property that immediately dispels the first problem. When G is 
a (cell-like) usc decomposition of an n-manifold M ,  we say that M / G  is 
locally spherical if each x E M / G  has arbitrarily small neighborhoods U, 
whose frontiers Fr Ux are (n - 1)-spheres. Under such circumstances, when 
M / G  is spherical, it clearly is a finite-dimensional space ; whether it satisfies 
the DDP when n 1 5 and G is cell-like remains unsolved. However, evidence 
from lower dimensions suggests that it might not, for S. Armentrout [5 ]  has 
shown the decomposition space associated with his decomposition [7] of E3 
into points and straight line segments to be locally spherical despite being a 
nonmanifold. 

The initial result pertaining to locally spherical, cell-like decompositions 
G of n-manifolds M (n L 5 )  preceded the establishment of the cell-like 
approximation theorem. In 1973 J. W. Cannon [ l ,  Theorem 621 showed that 
G is shrinkable if the ( n  - 1)-spheres Fr U, promised by the sphericality 
hypothesis are 1-LCC embedded in M / G .  Later, with the aid of Edwards’s 
theorem, Daverman [7] obtained the same conclusion in case a one-sided 
1-LCC property holds-if the neighborhoods U, are 1-LC at points of Fr U,. 

Here such strict 1-LCC conditions about sides of the (n - 1)-spheres Fr Ux 
are exchanged for a more relaxed property. An (n  - 1)-sphere S in the 
decomposition space M / G  (associated, as usual, with a cell-like decom- 
position of a connected n-manifold M )  is said to satisfy the homotopy 
mismatch property (HMP) if S contains disjoint subsets Q1 and ( 2 2  such that 
each map p;: B2 --t C1 U; can be approximated, arbitrarily closely, by a map 
pi :  Bz -+ U; u Qi ( i  = 1,2), where U1 and UZ denote the components of 
M / G  - S .  The principal result to be proved is the following: 

Theorem 1. Suppose G is a cell-like decomposition of an n-manifold M ,  
n 1 5 ,  such that each x E M/G has arbitrarily small neighborhoods U, whose 
frontiers Fr U, are (n - 1)-spheres satisfying the homotopy mismatch 
property. Then G is shrinkable. 

A corollary subsumes both of the earlier theorems by Cannon and 
Daverman about locally spherical decompositions. It serves as a significant 
extension of Theorem 8.9 and the result of Exercise 8.6 as well. 

Corollary 1A. Suppose G is a cell-like decomposition of an n-manifold M ,  
n 2 5 ,  such thateachx E M/G has arbifrarilysmall neighborhoods U, whose 
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frontiers are (n  - 1)-spheres and for which either U, or M/G - C1 U, is 
1-LC at every point of Fr U x .  Then G is shrinkable. 

Work of E. P. Woodruff [1,2] concerning decompositions of E 3  lends 
motivation for Theorem 1. Bred in the same spirit as Theorem 8.9, her 
emphasis was placed on the geometry surrounding the decomposition itself 
rather than on the decomposition space. The operant hypothesis in 
(Woodruff [ 11) required each nondegenerate element to possess arbitrarily 
small neighborhoods in E 3  whose frontiers were 2-spheres, possibly wildly 
embedded in E 3 ,  but missing all the nondegenerate elements. The proof of 
Theorem 1 establishes a high-dimensional analog of her result. 

Corollary 1B. Suppose G is a cell-like decomposition of an n-manifold, 
n 2 5 ,  such that each g E HG has arbitrarily small neighborhoods V ,  in M 
whose frontiers are (n - 1)-spheres that miss NG and satisfy the homotopy 
mismatch property in M. Then G is shrinkable. 

In the 3-dimensional situation studied by Woodruff, Eaton's mismatch 
theorem [l] reveals that each 2-sphere in E3 satisfies the HMP, but in higher 
dimensions (n - 1)-spheres in E n  do not necessarily satisfy it. That accounts, 
in a way, for the appearance of HMP in Corollary lB ,  even though it does 
not appear in the statement of Woodruff's result. Whether Corollary 1B is 
valid without the hypothesis about frontiers satisfying HMP has endured as 
an open question. 

The central features about the proof of Theorem 1 emerge in the following 
result. 

Lemma 2. Suppose G is a cell-like decomposition of an n-manifold M ,  
n 2 5 ,  such that M/G is locally spherical and the (n - 1)-spheres Fr Usatisfy 
the HMP; f l  and fz, maps of BZ to M / G ;  C,  a closed subset of M / G  such 
that CO = C n f1(B2) n fz(B2) is @dimensional; and W, an open subset of 
M/G containing CO . Then there exist maps FI , F'z; BZ -+ M/G satisfying 

(a) F1(B2) n F2(B2) n C = 0, 
(b) Rfi-'(W) c W,  and 
(c) K I B z  - f i - ' (W)  =fi1B2 - f i - ' ( W )  (i  = 1,2). 

Proof. We break the proof into several steps. 

Step 1. Finiteness considerations. By hypothesis each point c E CO has 
an open neighborhood U, whose closure is in Wand whose frontier Fr Uc 
is an (n  - 1)-sphere satisfying the HMP. Since CO is compact we can extract 
from the open cover [ Uc I c E CO) a finite subcover [ Uj I 1 5 j 5 r) and trim 
the latter to another cover (6 I 1 5 j 5 r] of CO by open sets in M / G  such 
that Vj c C1 Vj c U,. 
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Step 2.  A reduction. Given maps f1, f2: B2 -+ M/G for which 
r 

f1(B2) n f 2 ( ~ ' )  n c c U c: , 
j =  k 

we shall describe maps FI, Fz: B2 -+ M / G  such that 
r 

j = k + l  
(a') F1(B2) n F2(B2) n C c u 6, 
(b') Fifi-'(W) C W ;  and 
(c') R 1 B2 - W )  = f, 1 B2 - fi-'( W )  ( i  = 1,2). 

Repeated application (r  times) of this reduced version will establish Lemma 2. 

Define Zi = fi-'(Cl Uk) and 
Y ,  = fi-'(Fr Vk) ( i  = 1,2). The map f i l  Yi: X -+ Fr Uk extends to a map 
mi: Zi -+ Fr U k  ( i  = I ,  2), since Fr u k  is a simply connected ANR. See Fig. 

Step 3. Eradication of f , (B2)  from U k .  

30-1. 

fi ' (B2)  

FIG. 30-1 



230 V. Shrinkable Decompositions 

Step 4. General position improvements. To circumvent special diffi- 
culties when n = 5 ,  we consider only the case n 1 6, leaving the extra case 
to the reader. Because dimFr u k  5 5 ,  ml and mz admit general position 
modifications, affecting no points of Yl or Yz ,  so that ml(Z1 - Y1) n 
m2(Zz - Yz) = 0. Define maps fi’: BZ M / G  as m; on Z;  and as fi 
elsewhere ( i  = 1,2). Then any c E f i ( B 2 )  nfi(B2) n C belongs either to 

f l ( ~ ~ )  n f 2 ( ~ ’ )  - vk c f1(~’) n fz(~’) n U rg. 
( j = I + 1  ) 

or 

C n ([fl(Yl) n mz(Zz - Yz)] u [rnl(Z1 - K) nfz(Y2)l). 

Only the points of the second kind cause any further concern. 

Step 5. Final improvements to mi. Define sets 

X I  = Z1 n mi’(Cn ml(Z1) nf2(Yz)) and X? = X I  - mT1( u 6) 
j = k + l  

and define sets XZ and X? symmetrically. Then Xi* is a compact subset of 
X; and Xi* c Z; - K (i = 1,2), for if x EX? n Y I ,  then 

r r 

j = k  j = k  
ml(x) E [C n ml(Y1) nf2(fi)1 - U rg. c [C n f l ( ~ )  ~--~h(fi)l - U b, 

which is empty by the reductive hypothesis of step 2. Define TI = fi’mz(X?) 
and T2 = &-‘ml(X?). It should be clear that Z C X (i = 1,2) and thus that 

ml(Xi7 n rn2(X2*> = fl(T1) nfdT2) = 0. 

Next determine open sets Nj and 0; in B2 such that 

Z C N ; C ~ ~ - ’ ( W ) ,  X ? C O ~ C C I O ~ C Z ~ -  X, 

N; n 0; = (2J ( i  = 1,2) 

and 

fi(C1 N l )  nfi(C1 Nz) = 0 = fi(C1 01) nfi’(Cl4). 

Since c nfi(B2) nfi(P) c f i ( ~ ? )  ufi(x2*) u ( U S = k + l  v), it follows that 

r 

j = k + l  
c n [fi(~’) nfi(B2 - 0211 u I f i (~~ - 01) nfi(~’)i c U 5. 

Let Q1 and QZ denote disjoint sets in Fr Uk , promised by the hypothesis that 
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Fr I / k  satisfies the HMP, such that u k  U Q1 and (M/G - C1 u k )  U Q2 are 1- 
LC at points of Fr ( l k  . Then one can produce maps Fi’ : Cl(N; U 0;) -+ M/G 
such that 

F,’(ClN;) C ( w  - c1 u k )  U Q2, 

F,‘(CI 0;) C ( lk  U QI, 

and 

F/ 1FrNi u Fr 0i = fi’1FrN; U Fr 0i ( i  = 1,2) 

with controls on the closeness of F,‘ to fi’ (i = 1,2) so that 

Fi(C1 01) n Fi(C102) = 0 
and 

(See Fig. 30-2.) Consequently, the maps f i  defined as Fi’ on N; u 0; 
and as f /  elsewhere fulfill the requirements for the reduction given in 
Step 2. 

Lemma 3. Suppose G is a cell-like decomposition of an n-manifold M ,  
n 2 5 ,  such that M/G is locally spherical and the (n - I)-spheres Fr Usatisfy 
the HMP; fl  and f 2  maps of B2 to M / G ;  C c M/G a closed q-dimensional 
subset of M / G ;  Wan open subset of M/G containing f1(B2) n f2(B2) n C ;  
and E > 0. Then there exists maps F1, fi; B2 -+ M/G satisfying 

(a) Fl(B2) n F2(B2) n C = 0, 
(b) p(F;,fi) < E ,  and 
(c) f i ( B 2 - f i f ; : - ’ ( W ) = f i ( B 2 - f i f i - 1 ( W ) ( i =  1,2). 

FIG. 30-2 
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Proof. The argument proceeds by induction on q, and Lemma 2 
establishes the initial case q = 0. Assume that Lemma 3 holds for all (q - 1)- 
dimensional closed subsets of M / G .  In the q-dimensional set C find closed 
subsets A ' ,  A2, ... of dimension rq - 1 such that C - U A j  is O-dimen- 
sional. Apply the inductive hypothesis repeatedly, imposing controls with an 
eye toward the limit, t o  obtain (limit) maps A*: B2 --* M / G  such that 
f;"(B2) n fi*(B2) n (U Aj) = 0, p(fi* ,  5 )  < d 2 ,  and 

Then C n F;"(B2) nfi*(B2) is 0-dimensional, since it is a subset of C - U Aj .  
Now apply Lemma 1 again, this time with open set W* in W containing 
C n f;"(B2) n fi*(B2) and having no component of diameter 2 ~ / 2 ,  to  obtain 
the required maps FI and F2. 

When q = n and C = M / G ,  Lemma 3 reveals that M/G satisfies the DDP. 
Theorem 1 follows from the cell-like approximation theorem. 

Stripping the argument to its essentials, one discovers that it proves the 
following result. 

Theorem 4. Suppose G is a cell-like USC decomposition of an n-manifold, 
n L 5 ,  such that each point x of ~ ( N G )  has arbitrarily small neighborhoods 
U, such that Fr U, is a simply connected (n - I)-manifold or a simply 
connected ANR with the DDP and Fr U, satisfies the HMP. Then G is 
shrinkable. 

Corollary lB, mentioned near the beginning of this section, can be derived 
immediately from Theorem 4. 

f i * J ~ '  -J- ' (w)  = J I B '  -$-'(w) ( i  = 1,2). 

H 

EXERCISES 

1. Redo Step 4 of Lemma 2 to take care of the case n = 5 .  
2. Suppose G is a cell-like decomposition of an n-manifold M ,  n 2 5 ,  such that M/G 

has a closed subset S for which (M/G)  - S is an n-manifold and each point x E S 
has arbitrarily small neighborhoods U, whose frontiers Fr Ux are (n - 1)-spheres, 
with S n Fr U, 0-LCC and 1- LCC embedded in Fr Ux.  Show that G is shrinkable. 

31. SLICED DECOMPOSITIONS OF E"+l 

A decomposition G of X x E' (or of X x S ' )  is said to be sliced if each de- 
composition element g of G is contained in some slice X x (s], where s E E' 
(or s E S'). Product decompositions G = G* x E' of X x E' arising from 
a decomposition G *  of X serve as a natural and important class of sliced 
decompositions. Furthermore, at least for n 2 4, there are powerful results, 
described in Section 26, concerning the shrinkability of cell-like product 
decompositions of En x E' .  This section develops a connection, based on 
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relatively elementary techniques, between the shrinkability of such product 
decompositions and that of sliced decompositions. The main result shows 
that a sliced decomposition of En+' is shrinkable if, for every decomposition 
G s  of E" induced by G from a slice E n  x (s), s E E',  the associated product 
decomposition G S  x E' of En+* is shrinkable. Most of what is described here 
was done in conjunction with D. K. Preston (Daverman-Preston [l]). 

With any sliced decomposition G of X x S' (or of X x E l ) ,  for fixed 
s E S' one can distinguish two new decompositions associated with the slice 
X x (s). The first is the decomposition G s  of X given by 

G S  = f g  C X l g  x ( s )  E G ) ,  

and the second is the decomposition G(s) of X x S' consisting of all those 
g E G contained in the slice X x (s) together with the singletons from 
X x (S' - (s)). The latter coincides with the trivial extension of G s  x {s] on 
x x IS) to all of x x s'. 
Lemma 1. Suppose that G is a sliced cell-like decomposition of S" x S and 
that C is a compact 0-dimensional subset of S' satisfying 

(a) NG is contained in S" x C,  and 
(b) for  each c E C the decomposition G(c) is shrinkable. 

Then G itself is shrinkable. 

Fix a metric p on (S" x S' ) /G ,  and determine 6 E (0, &/3) so that 
if F: S" x S' + S" x S' is a homeomorphism moving points less than 6, 
then p(n, nF) < d 3 .  

According to hypothesis (b) above and Theorem 13.1,  for each c E C the 
decomposition G(c) is strongly shrinkable. Consequently, there exists a 
homeomorphism h, of S" x S' to itself shrinking each g E G(c) to diameter 
less than ~ / 3 ,  satisfying p(n, nh,) < &/3, and fixing points outside S" x Uc,  
where U, denotes the &neighborhood of c in S ' .  

Corresponding to  each c E C there is an open interval J, such that 
c E J, c U,, Bd J ,  n C = 0, and, for each g E G n (S" x J,), the diameter 
of hc(g) is less than &/3. From the open cover (Jc I c E C] we extract a finite 
subcover (Jc(i) 1 i = 1 ,  . .., N), and we cut back these intervals slightly so that 
the collection consists of pairwise disjoint intervals. 

For i = 1, . . . , Nwe name a homeomorphismfi of C1 Uc(i, onto C1 Jc( i )  that 
keeps Jc(i)  n C pointwise fixed and then name the product homeomorphism 

f i  = Id x f i :  S" x S' + S" x S ' .  

Finally, we produce the required shrinking homeomorphism h as the one 
equal to  fihc(i)Fi' on S" x Jcci) ( i  = 1, ..., N) and equal to the identity 
elsewhere. 

Proof. 
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Lemma 2. Let G be a decomposition of S" such that G x S' is a shrinkable 
decompositionofS" x S ' ,  CacompactsubsetofS',andeamapofS" x S' 
to itserf realizing the decomposition G x C, trivially extended over S" x S '. 
Then for each point c of C,  e(S" x (c))  is bicollared in S" x S ' .  

Proof. Let II denote the decomposition map S" x S' -, (S" x S ' ) /  
(G x S ' ) .  It follows from Corollary 13.2B and Theorem 13.1 that the 
decomposition 8(G x S ' )  is strongly shrinkable. Thus, there exists a map 6' 
of S" x S' to itself fixing e(S" x C )  and realizing B(G x S') .  This yields 

S" x S' __+ (S" x S')/(G x S') = (S"/G) x S' 
R 

/ jete L( / / 8 ' 8 R - '  

/ 
/ 

S" x s' 
with B'esr-' being a homeomorphism. Clearly (S"/G) x (c) is bicollared 
in (S"/G) x S ' .  As a result, the homeomorphism above transports 
(S"/G) x (c) to the bicollared set 

e'eII-'((s"/G) x (c]) = e'e(s" x (c)) 

= e(sn x ( ~ 1 ) .  

Lemma 3. Let G be a shrinkable sliced decomposition of S" x S ' ,  0 a map 
of S" x S' to itself realizing the decomposition G,  and s apoint of S' such 
that G s  x S' is a shrinkable decomposition of S" x S ' .  Then e(S" x 1s)) is 
bicollared in S" x S' .  

Proof. Because Gs x S' is shrinkable, the decomposition G(s) of 
S" x S' must be shrinkable as well (Theorem 13.2). Hence, there exists a map 
f of S" x S' to itself realizing the decomposition G(s). As in the proof of 
Lemma 2, the decomposition AG) is strongly shrinkable, and thus there 
exists a map f '  of S" x S' to itself fixing f ( S "  x Is)) and realizing f ( G ) .  At 
this point we have a diagram 

e S" x s' - S" x s' 
f 

S" x s' 
with the induced function e( f '  f ) - I  a homeomorphism. By Lemma 2, the set 
f ' f ( S "  x (s)) = f ( S "  x Is)) is bicollared in S" x S ' ,  and then its image 
@(S" x (s)) under e( f ' f ) - '  must also be bicollared. 
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Lemma 4. Suppose that for j = 1,2,  ... there exists an embedding hj of a 
compact space Xj x [- 1, 11 in S" x S' satisfying 

(a) hj(Xj x f 1)) is bicollared, 
(b) 
(c) 

hj(Xj x [- 1, 11) n hk(Xk x [- 1, 11) = 0 whenever j # k ,  and 
The maximal diameter i l j  of a fiber arc hj(p x [- 1, l]), p E Xj ,  

approaches 0 as j + oc. 

ThenthedecompositionGofS" x S'intopointsandthearcshj(p x [- 1 ,  11, 
where p E Xj and j = 1,2, . .., is usc and shrinkable. 

Proof. Exercise. (Hint: See the proof of Theorem 8.6.) 

Theorem 5. Suppose G is a sliced cell-like decomposition of S" x S' 
satisfying 

(a) for each s E S' the decomposition G(s) of S" x S' is shrinkable, and 
(b) S' contains a countable dense set D = (d(i))  for which the decom- 

positions Gd(i) of S" yield an (n + l)-manifold factor (that is, Gd'" x E' is 
shrinkable). 

Then G itself is shrinkable. 

Proof. Step I .  Stretching the original decomposition. By repro- 
ducing the model of a monotone decomposition of s' with nondegenerate 
elements dense in S ' ,  we construct a cell-like map f of S' to itself such that 
f -'(d(i)) is an interval for each d(i)  E D and that otherwise f -'(s) is a point. 
(Recall that any two countable dense subsets of S' are equivalently embedded 
there.) We name the product map F = Id x f of S" x S' to itself and 
consider the induced decomposition 

GF = (F- ' (g)  1 g E GI, 

which closely resembles G except that elements from the D-levels have been 
stretched out along the vertical, or the S ' ,  direction. 

Our intention is to prove that GF is shrinkable. Before proceeding with 
that, we point out how to establish the shrinkability of G, assuming the 
shrinkability of GF,  based on the diagram below : 

F 
S" x s' - S" x s' 

/ 

1 L ( /  1 
(S" x S') /GF - - - - -+ (S" x S') /G H 
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The natural function H = nF(m)-' clearly is a homeomorphism. Both n~ 
and F clearly are approximable by homeomorphisms. As relatively easy 
consequences, one can show, in order, that F* = ~ F F - '  and n = HF* are 
approximable by homeomorphisms as well. 

Step 2. Slicing the stretched decomposition. There are two related 
decompositions instrumental to the shrinking of GF.  The first of these is the 
sliced decomposition, a kind of level stratification, defined as 

GI = ( g F n  (S" x [ s ] ) l g ~  E GFand s E S ' ) .  

Step 3. Opening the sliced decomposition. The second related decom- 
position is a fenestration of GI obtained by eliminating nondegenerate 
elements from a certain dense and open subset of levels. Specifically, for the 
union A'' of the nondegenerate elements of [ f - ' ( s )  1s E S ' ] ,  GZ consists of 
the singletons from S" x Int NJ together with 

[ g F  n (S" x Is]) l g ~  E GF and s E CI(S' - A'')). 

In other words, GZ has for its nondegenerate elements those (nondegenerate) 
elements of GI from levels not interior to any nondegenerate element off. 

Shrinking GF. According to Lemma 1, the fenestrated decom- 
position GZ is shrinkable. Hence, there exists a map 82 of S" x S' to itself 
that realizes this decomposition, in the sense that 

Step 4. 

GZ = ( B ~ ' ( x ) ~ x  E S" x S ' ] ,  

and where 132 is the end of a pseudo-isotopy t,u? defined on S" x S' such that 
p ( m ,  ~ F W ? )  < &/3 (see Theorem 13.3). 

Naturally, we next look at the modified decomposition &(G1), whose 
nondegenerate elements are partitioned into countably many (curvilinear) 
product decompositions. Explicitly, for each inverse Ai = f - ' (d( i ) )  in S',  
&(GI n (S" x IntAi)) is topologically equivalent with Gd(j) x E ' ,  which 
is shrinkable by hypothesis. In particular, &(GI n (S" x A,)), which 
corresponds to the image under 82 of that decomposition induced from 
Gd'" x S' over (S"/Gd'") x Ai ,  can be shrunk to arbitrarily small size by 
means of a homeomorphism fixed outside &(Sn x Ai). Since no more than 
a finite number of indices i give rise to a decomposition element of &(G1 n 
(S" x A)) having diameter larger than any preassigned positive number, we 
can assemble a finite number of such homeomorphisms to show that the 
decomposition &(GI) is shrinkable, and again we can produce a map O1 of 
S" x S' to itself that realizes &(GI), where 81 is the end of a pseudo-isotopy 
ty: such that p(n, nty:) < d 3 .  

Finally, we turn to the resultant decompositions 81 &(GF), from which all 
the strata of GI have been crushed to points, leaving only products of an 
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arc w<ith the decomposition spaces Xi = S"/Gd"' associated with the dense 
set D of special levels, where the fiber arcs of these products form the 
nondegenerate decomposition elements. By Lemma 4 (refer to Lemma 3 
concerning the bicollarability hypothesis in Lemma 4), 81 &(GF) is shrink- 
able, and there exists a map 6~ realizing this decomposition, where OF is the 
end of a pseudo-isotopy I,$ such that ~ ( z F ,  n ~ l y f j  < e / 3 .  

Now we see that & B l &  realizes the decomposition GF.  Choosing y E [0, 1) 
very close to 1, we determine a homeomorphism t+~y"u/$ I& of S" x S' to itself 
fulfilling the conditions required to verify that GF is shrinkable. 

Remark. The compactness of the domain S" x S' considerably simplifies 
the proofs, but is not necessary for them. In the applications that follow we 
transfer the setting from the compact S" x S' to  the more natural E" x 15'. 

Another Remark. Those who regularly meditate on Q-manifolds will 
perceive that similar methods establish the result analogous to Theorem 5 
pertaining to sliced decompositions of Q x I. 

Corollary 5A. If G is a sliced decomposition of En+' such that, for  each 
s E E l ,  G s  x E' is shrinkable, then G is shrinkable. 

Corollary 5B. If G is a sliced decomposition of En+' such that, for each 
s E E l ,  G s  is a shrinkable decomposition of E n ,  then C is shrinkable. 

From this one can obtain a decomposition-theoretic proof for a result of 

W 

Dyer and Hamstrom [l]. 

Corollary 5C. 

(Theorem 25.1). 

Corollary 5D. If G is a 0-dimensional cell-like decomposition of En,  
considered as E n  x (01 in En x E l ,  then the trivial extension GT [consisting 
of elements of G and singletons from E" x (El - (O))] to all of En+' is 
shrinkable. 

Proof. By elementary methods like those found in Hurewicz-Wallman 
[I]  there exists a m a p 8  E"/G -, E' such that f I R(NG) is an embedding. Let 
0 denote the En-coordinate preserving homeomorphism of En+' to itself 
defined by 

Every sliced cell-like decomposition of E 3  is shrinkable. 

This follows from Corollary 5B and the classical Moore theorem 

We also obtain another proof for a result of D. L. Everett [l]. 

( x ,  s> -+ ( x ,  s + fm>. 
Then B(G) is a sliced cell-like decomposition of En+' such that each slice 
E" x is) contains at most one nondegenerate element e(g). By Corollary 
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18.5A, each such e(g) is itself cellular in E n i l ,  so each (8(G))(s) is shrink- 
able. Furthermore, for s from a dense subset of E l ,  (8(G))s contains only 
singletons, trivially implying that its product with E' is shrinkable. 

Corollary 5E. Suppose G is a s k e d  cell-like decomposition of En' (n  2 4) 
such that (E"+'/G) is a finite-dimensional space and E' contains a dense 
subset D for  which the decompositions 

G d = ( g C E " I g x d ~ G ]  ( d e l l )  

yield En+' factors (that is, Gd  x E' is shrinkable). Then G itself is 
shrinkable. 

Proof. According to Theorem 25.10, for every s E E' the decomposition 
G(s) is shrinkable. 

Corollary 5F. If G is a sliced cell-like decomposition of En' (n  L 4) such 
that, for each s E E l ,  the decomposition G S  is (n  - 3)-dimensional or 
closed-(n - 2)-dimensional, then G is shrinkable. 

It was established in Corollary 24.3C and Theorem 26.9 that 
under these conditions G S  x E' is shrinkable. 

Corollary 5G. Every (n - 3)-dimensional or closed-(n - 2)-dimensional 
sliced cell-like decomposition of En+' (n 2 4) is shrinkable. 

The next two corollaries are due to D. K. Preston 111. 

Proof. 
-m 

Corollary 5H. If G is a sliced cell-like decomposition of E" such that E"/G 
is finite-dimensional, then (E"/G)  x E' is homeomorphic to En+'.  

Corollary 51. If G is a decomposition of En+2 such that Eni2 /G  isfinite- 
dimensional and each g E G is contained in some hyperplane En x [zgj, 
where z, E E 2 ,  then G is shrinkable. 

The proofs are exercises. 

EXERCISES 

1. Prove Lemma 4. 
2. Prove Corollaries 5H and 51. 



NONSHRINKABLE 
DECOMPOSITIONS 

Nonshrinkable cellular decompositions exist in dimensions greater than 4. 
Chapter VI presents a variety of examples. In so doing it lays out two 
construction techniques, the first a workable modification of the classical 
notion of a defining sequence (for closed-0-dimensional decompositions) and 
the second a more complicated but completely general method, which can 
be used to fabricate any cell-like decomposition whatsoever. 

32. NONSHRINKABLE CELLULAR DECOMPOSITIONS 
OBTAINED BY MIXING 

An efficient method for generating a nonshrinkable cell-like decomposition 
of S", when II > 3, is to multiply suspend a cell-Iike'subset C of S3 having 
nonsimply connected complement (Exercise 18.6). For generating non- 
shrinkable cellular ones, the spinning technique of Section 28 is equally 
efficient. Several other techniques are available as well. A foundational one, 
treated briefly in this section, macrocosmically entails the tubing together of 
two disjointly and wildly embedded Cantor sets, directed by a given homeo- 
morphism h between them; microcosmically, the nucleus of the technique 
involves obtaining a homeomorphism h that mixes the admissible subsets of 
the embedded Cantor sets. This notion of mixing is a concept we previously 
encountered while examining 3-dimensional examples. Because no sub- 
stantial changes occur in moving to the higher-dimensional cases, all we will 
do here is quickly review the construction and lightly sketch in the supporting 
devices. 

239 
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FIG. 32-1 

Historically, the original nonshrinkable cellular decomposition of S", 
n > 3,  was Eaton's dogbone space (Eaton 121). We shall examine a modifi- 
cation of it suggested by D. G. Wright [2], just as we did in the 3-dimensional 
case, where our primary attention fell not on the original example, Bing's 
dogbone space, but on Example 9.5. At the hub of Wright's modification 
stands the ramified Bing Cantor set, suitably spun to put it in S". 

Lemma 1. For the decomposition K of B3 depicted in Fig. 32-1, SP"-~(K) 
is a shrinkable decomposition of S" (n  L 5). 

The shrinkability of SP"-~(K) follows from Theorem 28.9. 

A Cantor set in S 3  having as its defining sequence the 0-spin of the 
structures shown in Fig. 32-1 is called a ramified Bing Cantor set. Two 
features of the defining sequence deserve retrospection: first, how the 0-spin 
compares with the defining sequence for the (unramified) Bing Cantor set of 
Example 9.1, and second, that it is ambiently equivalent to both the upper 
half and lower half of what is shown in Fig. 9-5. 

Theorem 2 .  
n L 5 ,  into points and flat arcs. 

The decomposition G is determined by a defining sequence 
[Tjlj  = 0, 1,2, ...I schematically identical to that shown in Fig. 9-5. Each 
component of each T/  consists of three parts, two being thickened ( n  - 2)- 
spheres and the third a tube joining them. 

Proof. 
Details are left to the reader. H 

There exists a nonshrinkable cellular decomposition G of S",  

Proof. 
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Lemma 1 promises a defining sequence (Kj) for a spun, ramified Bing 
Cantor set X i n  S". Hence, it also gives a defining sequence (Kj) for another 
spun, ramified, Bing Cantor set X '  there, arranged so that KO and Kd are 
disjoint. Each component of a Kj (Kj') is a thickened (n - 2)-sphere. 

Connect KO and Kd by a tube (equivalent to I x B"-l),  forming the initial 
stage To.  Repeat at even-numbered stages, tying components of K2j to those 
of Ki, to form stage T j ,  while following the algorithm of Example 9.5 in 
assigning the component of Kij+z which is to be joined in to a given 
component of Kzj+2. Use thinner and thinner tubes as j increases, each 
running straight through its predecessors, in order to ensure that the com- 
ponents of n T j  are arcs locally flatly embedded at their interior points. By 
the proof of Proposition 12.2, each component of n T j  is then a flat arc. 

The argument that G is nonshrinkable coincides with the one given for the 
nonshrinkability of Example 9.5, because the Kj's have similar properties 
with respect to mappings of 2-cells into the n-sphere as do the elements of 
a standard defining sequence for the (unspun) ramified Bing Cantor set in 
S 3  (see Exercise 3) and because the identical rule is employed for tubing 
together the thickened (n - 2)-spheres. Due to this rule, the nondegenerate 
elements expose an implicit homeomorphism S from X to X' such that, for 
every pair of admissible subsets A of X and A' of X ' ,  S(A) n A' # 0 (see 
the definition of admissibility given prior to Lemma 9.12). 

Remark. The preceding construction also works when n = 4, the main 
difference then being the extra effort it takes to show Sp'(K) is shrinkable, 
which can be done either by brute force or by applying (Neuzil [l]). 
Altogether avoiding the question of whether Sp'(K) is shrinkable, one still 
can resort to this construction for producing a nonshrinkable cellular decom- 
position of S4; the only loss will be the certainty that the nondegenerate 
elements consist of flat arcs. 

EXERCISES 

1. Prove Lemma 1. 
2. Show that Spo(K) is a shrinkable decomposition of S 3 .  
3. Suppose H is a compact 2-manifold with boundary in a 2-cell B and f: H + KO 

is a virtually I-essential map. Show that f ( H )  contains an admissible subset of 
n K j .  

33. NONSHRINKABLE NULL SEQUENCE CELLULAR 
DECOMPOSITIONS OBTAINED BY AMALGAMATING 

In this section the objective is to explain why there is a nonshrinkable 
decomposition of E" (n > 3) determined by a null sequence of cellular sets. 
Bing did this for n = 3 with his minimal example (Example 9.5). Unlike the 
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graphic representation he gave when describing his, our rendering here just 
establishes an existence result. 

A more explicit representation of a nonshrinkable decomposition in which 
the nondegenerate elements form a null sequence of cellular arcs has been 
described by J. J .  Walsh and the author [2]. Generated from a specific source 
decomposition in B3,  it is spun to sweep out a relatively specific decom- 
position of S". A complete analysis of the source decomposition would 
demand tortuous manipulation of 3-dimensional embedding techniques; 
providing full detail would necessitate some exacting and highly specialized 
methods, beyond the purview of this text. 

Theorem 1. There exists a cellular, nonshrinkable use decomposition 
X of E" (n 1 5 )  whose nondegenerate elements form a null sequence. 

Proof. The guide leading up to the example X is the nonshrinkable 
decomposition G of E" into points and a Cantor set of flat arcs constructed 
in the preceding section. At the heart of that construction is an embedding 
A of C x [- 1, 11 in E n ,  where C denotes a Cantor set, such that 

NG = A(c x [- 1, I]), 

A(C x [- 1, 11) intersects En-' x (01 at A(C x ( O ) ) ,  

A(C X [- 1,Ol) C E!! = En-' X (- O O , ~ ] ,  

A(C x [O,  I]) C E: = En-' x [0, m), 

and 

for 0 < 6 < 1, 

If it seems desirable, one can insist I(C x (0)) be standardly embedded in 
En-' x (0). 

To streamline notation, let Q = E"/G,  Q+ = n(E:), Q- = n(E!!), and 
X = Q+ n Q- = z(E"-' x (0)). Also, set Z = nA(C x [- 1, 11). Clearly Q 
is an n-manifold except at points of Z .  

The plan is to locate a special F, set F i n  Z such that Q - X is 1-ULC in 
F u (Q - X) [that is, very small loops in Q - Xwill be contractible in small 
subsets of F u (Q - X)] and then to produce a cell-like approximation 
f :  E" -, Q to 7c that is 1-1 over F u (Q - X). How this is to be secured 
will be described later on, in Lemma 2. 

For the moment assume such a set F and map f have been obtained. Then 
the decomposition Gf induced by f ,  which has the nonmanifold Q as 
decomposition space, cannot be shrinkable. By Theorem 20.1, there exists 
E > 0 such that no &-amalgamation of Gf is shrinkable. 

I(C x [- 1 + 6, 1 - 4 )  has embedding dimension 1. 
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This sets the stage for another appearance of Edwards's amalgamation 
trick, first exposed in Theorem 20.5, backed up this time by special devices 
to bring about cellular elements. With Nf denoting the nondegeneracy set of 
G f ,  which is contained in f - ' (Z - F ) ,  we express Nfas the union of compact 
sets H I ,  . . . , Hk , . . . such that any compact component of H k  is a point inverse 
off having diameter at least l/k. Then we cover f(N') by a null sequence ( & I  
of pairwise disjoint cell-like sets in X - F such that diam y j  < E for each j 
andf(Hk) is covered by a finite number of sets from {&I; the amalgamation 
techniques developed in Theorem 20.5 accomplish exactly this end, and the 
extra requirement here, that each v misses the 0-dimensional F, set F, 
presents little difficulty. 

Since the sequence (5) is null and only a finite number of the setsf-'(&) 
contain big elements from G f ,  the sequence { f -'(&)I is also null. The latter 
determines the desired decomposition X. Certainly each f -'(%) is cell-like 
(Exercise 17. I), and certainly X is nonshrinkable, being an &-amalgamation 

What yet remains is a proof that X is cellular. It depends on Q - X being 
1-ULC in F u (Q - X ) .  As a consequence, each neighborhood U of a given 
I;. contains a smaller neighborhood V of x, with V n X connected, such 
that every loop in V - X is null homotopic in (U n F )  u (U - X )  C 
U - 5. Due to the connectedness of V n X ,  each loop in V - y j  is freely 
homotopic there to the composition of loops in V -  X .  By the Seifert- 
van Kampen Theorem, satisfies the cellularity criterion in Q, implying 
f-'(&) satisfies it in E" (Corollary 18.4A). Therefore I-'(&) is cellular 
(Theorem 18.5). 

of G f .  

Lemma 2. In the notation introduced in Theorem 1 ,  there exists an F, set 
Fin Z such that Q - X i s  1-ULC in F u (Q - X )  and there exists a cell-like 
map f :  E" -+ Q approximating 7~ that is 1-1 over F u (Q - X ) .  

Proof. The required F, set is extracted later, based on geometric proper- 
ties of the embeddings of A(C x I )  n E: in E: . Select PL triangulations 
zj+l of EL', with mesh l $ + l  + 0. Adjust them, using the hypothesized 
embedding dimension properties of A(C x [- 1, l]), so that 7$i1 n 
A(C x [- 1,Ol)  C A(C x {- -  1)) (to avoid unnecessary trouble, it is per- 
missible to presume E5221 n A(C x (0)) = @). Set F2j+1 = E,JiL!l n A(C x 
[- 1, O]), and note that dem F2j+1 5 0 [in E" or in En-' x (- 03, O)]; more- 
over, Elf - A(C x [- l ,  01) is l-ULC in (Uj F2j+l) u (Elf - A(C x [- l ,  01)). 
Similarly, obtain compact subsets F2j of A(C x ( l)), with dem F2j 5 0, such 
that E: - A(C X [0, 11) is 1-ULC in (UjF2j) u (E: - A(C X [0, 11). 

Define F as u j n ( 6 ) .  It should be obvious that Q - X is 1-ULC in 
F u ( Q  - X ) .  
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The map f will be the limit of cell-like maps fo = x, f1 ,  ...,fk , ... such 
that fk is 1-1 over x(F1 u ... U Fk). In addition, f will be made 1-1 over 
F u (Q - 2)  by expressing 2 as an intersection of a decreasing collection of 
open sets wk and by requiringfk to  be 1-1 over x(Fk) u (Q - wk), later maps 
fk+, to  be in agreement withfk over this set, and the convergence throughout 
t o  be rapid enough that, for each k, the restrictions of f  and fk agree on 

fcl(x(Fk) u (Q - wk)). 

The controls are the familiar ones of Proposition 23.4. 
In order to  procure such maps fk (k > O), one must show that the succes- 

sive decompositions Gk of E" induced by the maps fk-1 over n(Fk) are 
shrinkable. To explain why Gk is shrinkable in general, it suffices to explain 
why, in particular, GI is shrinkable. The nondegenerate elements of G I  are 
those components of A(C x [- 1, I]) meeting FI .  One can show that E"/GI 
has the DDP by approximately lifting given maps P I ,  p2: B2 -, E"/G1 to 
disjoint PL  embeddings m l ,  m2: B2 -+ E", adjusting so neither image meets 
F, (recall: demFl = 0), and then modifying further so that neither image 
meets A(C x [- 1, 1)) n NG, and the two new images are still disjoint. 
Projecting back to E"/GI produces disjoint disks there, close to p1(B2) and 
,u2(B2). Hence, G I  is shrinkable by Theorem 24.3 Alternatively, one can 
exploit what was established implicitly above, namely 

dem[A(C x [- 1, 1)) n Nc,]  5 1, 

to physically compress the nondegenerate elements of GI near A(C x (I]), 
while abiding by the usual shrinkability regulations. 

Following standard practice, one can obtain fi from fo = II, by defining 
f~ = foe , ' ,  where 81 is a map of E" to itself realizing GI and wherefl is close 
tofo . Successive maps can be obtained similarly, subject to the convergence 
controls alluded to above. 

In [2] D. G .  Wright particularized these methods a bit ; he also established 
the existence of nonshrinkable, null, cellular decompositions of E n ,  where 
n 2 3.  In so doing, he imposed enough regimentation on the process to  detect 
cellularity geometrically, without reference to the cellularity criterion. 

A diversion of sorts, not entirely frivolous, as we shall see, can be used to  
summarize more precisely the effort just expended. Let k 2 - 1 denote an 
integer. Say that a cell-like decomposition G of an n-manifold M is secretly 
k-dimensional (a term coined by F. D. Ancel and W. T. Eaton) provided 
there exists a cell-like map f of M onto M/G for which dimf(Nj) I k.  For 
example, each cellular decomposition G of Mwith dim M / G  < 00 is secretly 
(n  - 1)-dimensional (Exercise 24.5). Moreover, asking whether G is shrink- 
able amounts to  asking whether it is secretly (- I)-dimensional. 
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In the opposite vein, say that a cell-like decomposition G of Mis intrinsi- 
calfy'k-dimensional (where k L - 1 )  if it is secretly k-dimensional but not 
secretly (k - 1)-dimensional. At this juncture we have encountered some 
intrinsically 0-dimensional cell-like (cellular) decompositions of E" ( n  2 3) 
but no intrinsically positive-dimensional ones. That will be changed before 
long. 

EXERCISES 

1. Suppose G is a cell-like decomposition of an n-manifold M ,  n 2 3, such that 
dim TC(NG) = k and no g E HC satisfies the cellularity criterion. Show that G is 
intrinsically k-dimensional. 

2. Let G beasecretly (n - 1)-dimensional cell-like decompositionof E", n 2 5 .  Prove 
that E"/G contains a Cantor set Csuch that the decomposition G(C) induced over 
C is shrinkable. 

3. Suppose Cis a finite-dimensional, cell-like decomposition of a compact n-manifold 
M ,  n 2 5 ,  such that for each E > 0 there exists a secretly k-dimensional 
&-amalgamation K of G. Show that then G is secretly k-dimensional. 

4. If G is a secretly k-dimensional cell-like decomposition of an n-manifold M ,  n 2 5 ,  
show that any two maps p l ,  p2: B2 + M / G  can be approximated, arbitrarily 
closely, by maps pi,  pi such that 

dim[pi(B2) n &(B2)] 5 k. 

34. NESTED DEFINING SEQUENCES FOR DECOMPOSITIONS 

Repeatedly, notable and peculiar cell-like decompositions have been speci- 
fied by means of a sequence of nested manifolds-with-boundary. That kind 
of defining sequence, effective merely for generating closed-0-dimensional 
decompositions, is too constricted to function as a useful systematizing device. 
Here the concept is enlarged to speed the construction of decompositions 
whose nondegeneracy set has positive-dimensional image. The techniques 
were developed originally in Cannon-Daverman [ 11. 

It is not hard to produce examples where this occurs. Given an embedding 
e of Bk x Z in S", one can consider the decomposition G of S" whose non- 
degenerate elements are the arcs e((b) x I ) ,  b E Bk; then ~ ( N G )  is another k- 
cell. It is more difficult, and more in the spirit of what we intend, to produce 
a cellular decomposition of S" (n > l), every element of which is 
nondegenerate. Once the methodology is in place we suggest how to build these 
totally nondegenerate cellular decompositions. 

The same methodology will be mobilized in the ensuing section to form a 
cell-like decomposition of S" (n  L 3) with no cellular elements (in particular, 
with no singletons). As a warm-up, it is also used at the end of this 
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section to generate an easier cell-like decomposition of E 3  having a large 
collection of nondegenerate (and noncellular) elements. 

Let X be a space and 311. a collection of subsets of X ,  not necessarily 
covering X .  Given an arbitrary set Z in X ,  define its star in 311. as 

s t (z ,%) = z u ( U { M E 3 1 1 . \ M n Z #  011, 

also written as St’(Z, X ) ,  and, recursively for any integer k > 1, its kth star 
in 311. as 

Stk(Z, 311.) = St(Stk-’(z, rm), 311.). 

When Z = (x), we write Stk((x), 311.) simply as Stk(x, 311.). 
Now suppose X is a PL n-manifold. A nested PL defining sequence (in X )  

is a sequence S = (XI, 311.2, ...) satisfying the following three conditions: 

Disjointness criterion. For each index i, the set 311.i is a locally finite 
collection (Aj] of PL n-manifolds-with-boundary (embedded in X as sub- 
polyhedra), whose interiors are pairwise disjoint ; 

Nesting criterion. For each index i > 1, each A E 311.i has a unique 
predecessor, Pre A, in mi- 1 that properly contains A .  

Boundary size criterion. For each index i ,  each A E Xi, and each pair 
of distinct points x, y from aA, there is an integer s > i such that no element 
of 92, contains both x and y .  

Nothing in these criteria forces the elements of 311.i to  become small as i 
grows large, for the resultant decomposition then would be trivial. Instead, 
the size control pertains only to the various pseudo-@ - 1)-skeleta, 
U(aA IA E X k ) ,  taken with fixed index k; the implicit “triangulations” of 
such sets induced by successive 3 n i ’ S  have meshes tending toward zero with 
increasing i (at least, when restricted to subcompacta). 

The decomposition G of X associated with a nested defining sequence 
S = (311.1, 311.2, ...) is the relation prescribed by the rule: distinct points 
x, y E X belong to the same element of G provided there exists an integer k, 
depending simply on x and y, such that each mi has a chain A 1, ..., A k  of 
elements of length k (or less) connecting x to y (that is, x E A1 , y E Ak, and 
Aj nAj+, # (ZJ for j E (1,2, ..., k - I]). Clearly G is a decomposition 
(partition) of X .  Let 71: X + X / G  denote the decomposition map. 

As an aid to thoroughly understanding G ,  it is advantageous to have a 
more explicit, set-theoretic description of G. 

Lemma 1. 

as U(aA IA E Ui Xi). 

(a) For each x E X ,  n-’n(x) = ni St2(x, mi). 
(b) No element g E G contains more than one point of the set aS defined 
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(c) I f x E g E G a n d i f e i t h e r x E a S o r g n a S =  0, thenn- 'n (x )=  

Proof. Certainly n, St2(x, 3n;) C Z-'R(X). To examine the reverse 
inclusion, consider distinct points x, y in the same decomposition element 
n-'n(x) and determine the minimal positive integer k such that each 92; has 
a chain {Ail, . . . , A;k) of length k from x to y. Since a particular 92 ;  contains 
at most finitely many such chains, an easy counting argument substantiates 
thatthesecanbearrangedwithAij = PreAi+l , j foral l iandal l j  E (1 ,  ..., k) .  
When i is sufficiently large, the sets Ail ,  ..., A;k must be distinct, for other- 
wise k would not be minimal. 

NOW we prove that k 5 2. If not, the sets G = Ajl n A@ and Zj = Ajz n 
Aj3 ( j  1 i )  are disjoint, nonempty, compact subsets of aAJ2. Furthermore, 
8 3 Y,+1 and Zj 3 Zj+l, because the contrary property would cause k to 
increase. As a result, there exist points p E nja; and q E nj2; Zj; these 
(distinct) points from aA;2 contradict the boundary size criterion. Hence, 
k = 2 and n-ln(x) = niStZ(X, mi). 

If x E aAil for some i and if the minimal chain length from x to y equaled 
2, we could define sets = (x) and Z j  = Ajl n A,2 and could obtain points 
p = x and q E n Zj as before, reaching a contradiction. Consequently, when 
x E as, R-%(x)  = nj St(x, mi). The boundary size criterion ensures that 
n-'n(x) n dS is then equal to 1x1. 

Finally, if g = n-'n(x) contains no element of as, the minimal chain 
length k is 1, for otherwise g would contain a point p E nj,;(Ajl n Ajt) C 
gndS .  H 

Theorem 2. The decomposition G associated with a nested PL defining 
sequence S = ( X I ,  9 2 2 ,  ...) is usc. 

To see this directly from the definition, start with a neighborhood 
U of some g E G ,  where g = nSt2(x,  '32;). Lemmg 1 and compactness 
considerations imply the existence of an integer r > 0 such that 
St4(x, '3%) C U. Define a neighborhood V of g as 

n; st(x, w. 

Proof. 

V =  u - UIA E X r l A  ,l St2(X, Xr) (21). 

Thus, for each A E 'Xr  satisfying A n V # 0, A C St3(x, mr), and 

St2(V, n t r )  = vu st4(x, n t r )  c U. 

By Lemma 1, any g' E G intersecting Vis contained in St2( V,  'Xr )  C U. H 

Due to the obvious property, recorded below, that decompositions asso- 
ciated with nested PL defining sequences cannot raise dimension, not all usc 
decompositions can emanate from such defining sequences. 
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Proposition 3. If G is a usc decomposition associated with some nested PL 
defining sequence (3121, 3 1 2 2 ,  ...I in X ,  then dim X / G  5 dim X .  

Given a neighborhood W of a point z in X / G ,  one can select a 
point x E n-'(z) and an index rsuch that St3(x, X,) C z-'( W ) .  Let C denote 
the (n - 1)-complex equal to the frontier of St3(x, 312,). Then n(St3(x, 32,)) 
contains a neighborhood of z having frontier n(C), and dim n(C) = dim C 
by Lemma 1. 

When do nested PL defining sequences generate cell-like decompositions? 
The next result sets forth a readily identified sufficient condition. 

Proposition 4. The usc decomposition G of Xassociafed with a nested PL 
defining sequence S = (XI, 3 2 2 ,  ...) is cell-like if S satisfies the null 
homotopy criterion : For each index i > 1 and each A E X i ,  the inclusion 
mapping A --+ Pre A is null-homotopic. 

Proof. 

Proof. There are two cases. 

Case 1. Suppose x E g E G and x E dA C A E mi. Fix a neighborhood 
CJ of g. By Lemma 1, there exists an integer r 1 i such that 

g c St(x, 312,) c CJ. 

Enumerate the elements A1, ..., A& of X r + l  containing x. According to the 
null homotopy criterion, each Aj can be contracted to x, keeping x fixed, in 
Pre A, C St(x, 32,). These individual contractions, restricted to g n Aj ,  can 
be assembled into a contraction of g in CJ, which is well-defined because 

g n (UW4,l.i = 1, ..., k ) )  = [XI, 
by Lemma 1. 

Case 2. Suppose x E g and g n dS = 0. Then g = ni St(x, mi) and 
either St(x, Xi) ultimately equals [x )  or St(x, 312,) always equals a single 
element of mi, in which situation St(x, Xi+l) contracts in St(x, Xi) by 
hypothesis. In either case, g is obviously cell-like. 

If G is a decomposition of a PL  n-manifold X endowed with a nested PL 
defining sequence S ,  not only is dim X / G  I n but also X / G  contains a multi- 
tude of embedded 2-cells, in n(dS). Certain cell-like decomposition spaces 
obtained from S", which were mentioned in Section 26, contain no 2-cells 
whatever, so not all cell-like decompositions have such defining sequences. 

Then why bother with them? Having mentioned some of their limitations, 
we submit two justifications for their inclusion. First, the nesting aspect is 
both a natural and desirable feature: useful decompositions can be easily 
described by means of nested PL defining sequences, and the elements from 
those decompositions that can seem less amorphous than the ones from 
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those that cannot. Second, with such defining sequences the problem of 
shrinkability for the stabilized decomposition is solvable (n 2 4 ) .  In a way 
the latter remark also serves as a justification for the rather lengthy final 
result of Section 26. 

Theorem 5 .  Suppose G is a cell-like decomposition of a PL n-manifold X ,  
n 2 4, associated with a nested PL defining sequence S .  Then G x E' is a 
shrinkable decomposition of X x E I .  

Proof. The decomposition map n: X + X / G  is 1-1 on as c X .  Con- 
sequently, X / G  is locally encompassed by manifolds at enough points 
(perhaps not all points) to permit application of Corollary 26.13A. 

Example 1. A totally nondegenerate cellular decomposition GI of S" 
( n  > 1). A nested PL defining sequence (XI, X2, ...) for GI is obtained 
by modifying a sequence of triangulations 7i , Ti, . . .), where 2;+1 subdivides 
K and mesh 7;. approaches 0. One can regard these T's as a defining sequence 
for the trivial decomposition of S". 

Choose nonvoid open sets W1 and W2 in S" having disjoint closures. These 
are to function as a crude pair of calipers, gauging that the elements of G I  
are indeed nondegenerate, because every one will touch both W1 and W 2 .  

The idea simply is to perturb E so that that all of its elements meet both 
W1 and WZ. This is easy enough with 7i. Generally, assuming Tk has been 
modified to give " I Z p  ( k  2 l), where eachA E Xp intersects both W1 and W2, 
one constructs a PL homeomorphism of S" fixing each aA, A E 3 n k ,  and 
causing each image of an n-simplex c E Tk+l to touch both Wl and W2, by 
manually pushing a point Xi from the adjusted (T into W ( i  = 1,2) with a 
motion supported inside the unique A E Xk containing the adjusted (T. 

Define Xk+' as the resulting image of G+l. 

Note. J. H. Roberts [l] devised the first example of a totally nondegenerate, 
cell-like decomposition of E 2 ,  back in 1929. Related examples in E n  (n > 2) 
spring up immediately on crossing with En-'. 

It is an exercise that the elements of GI are cellular. The next example 
supplies an extensive stock of noncellular ones. 

Example 2. A cell-like decomposition GZ of E 3  whose set of noncellular 
elements has 2-dimensional image. In particular, the image will be a 2-cell, 
and it will stem from a planar 2-cell Bin E 3  touching the individual elements 
g E H G ~ ,  each of which is noncellular, in exactly one point. 

The source for GZ is another nested PL defining sequence (921, X2, ...). 
Each A in each Xi will be a solid torus and will include precisely four elements 
from 3ti+' .  The first stage 3tl will consist of one torus, and the containment 
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FIG. 34-I 

pattern, essentially unvarying under passage from stage to stage, will be fixed 
by the manner in which the four tori A ;  E 322 lie in A E 321. That is depicted 
in Fig. 34-1. 

Clearly GZ is cell-like. Thicken the first stage solid torus A E XI slightly 
to A* (with A C Int A*), and identify a meridional simple closed curve J o n  
I ~ A  *. No nondegenerate element g can be cellular in E 3  because J then would 
be contractible in A* - g, but g must contain at least one copy Wh of the 
Whitehead continuum, standardly embedded in A *, and J i s  not contractible 
in A* - Wh (see Section 9). 
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EXERCISES 

1. Prove that every monotone usc decomposition of E' or S' is associated with a 

2. Show that there exists a totally nondegenerate cellular usc decomposition of E" 

3. Construct a cell-like decomposition of S" (n > 3) whose set of noncellular 

nested P L  defining sequence. 

(n > 1). 

elements has (n - 1)-dimensional image. 

35. CELL-LIKE BUT TOTALLY NONCELLULAR 
DECOMPOSITIONS 

This section reproduces the construction due to Cannon and Daverman [l] 
of a nested PL defining sequence S for a cell-like, totally noncellular decom- 
position G of an arbitrary, compact PL n-manifold M ,  n 1 3. The strategy 
is to specify S in such a way that each g E G is 1-dimensional and contains 
a wild Cantor set. 

Description of XI. Let 312, = ( M )  and set S(M) = do ,  for some (n - 1)- 
simplex o in M. 

Observe that S(M) has a PL-product neighborhood S(M) x B2 in M. 
Choose a simple closed curve J in M corresponding to { p )  x dB2, p E S(M),  
in S(M) x B2.  This curve J is a useful object of reference because it cannot 
be contracted in M - S(M). 

Inductive Hypothesisj. Suppose 3 1 2 1 ,  3122, . . . , 312, and compact, orientable 
(n - 2)-manifolds S(A), A E u;'=l Xi, are given satisfying the following 
properties : 

The sequence S is compiled inductively. 

(a) 
(b) 3121, ..., 312j satisfy the disjointness and nesting criteria in the 

definition of nested PL defining sequence; 

The remaining properties all pertain to arbitrary A E 'Xi, where 1 < i I j .  

(c) diam[dA n d P r e A ]  < l / i ;  
(d) the inclusion map A + Pre A is null homotopic ; 
(e) there exists a (l/i)-map of A to a 1-complex; 
( f )  S(A) is a finite union of pairwise disjoint (n - 2)-spheres and S(A) 

For i E (1, . . . , j ) ,  Xi is a cover of M ;  

has a PL-product neighborhood S(A) x B2 in 

Int A n Int(S(Pre A )  x B') 

with S(A) corresponding to S(A) x (0) in S(A) x B 2 ,  such that the curve J 
cannot be contracted i n  M - S(A).  
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Description of " l j + l .  Assuming inductive hypothesis j ,  we specify %j+l 

and the (n - 2)-manifolds S(A), A E %,+I, so that 3121,3172, ..., % j + l ,  

together with the associated (n - 2)-manifolds, fulfill the parallel inductive 
hypothesis ( j  + 1). We fix A E %, and S = S(A). Clearly it suffices to 
describe the elements of 312j+ 1 contained in A (that is, those elements of %j+ 1 

having A as predecessor). We choose a collar neighborhood dA x [0, 11 on 
dA in A (which is empty in case j = I )  disjoint from S x B2,  with &I 
corresponding to dA x (0). We also choose E ,  0 < E < l / j ,  so small that 
2~-subsets of A are contractible in A. We will construct n-manifolds 
A I ,  ..., A ,  filling up A and (n - 2)-manifolds S1 = ~ ( A I ) ,  ..., S, = S(A,) in 
Int A 1 ,  ..., Int A, [as well as in S(A) x B2] in five steps. 

Step 1. Splitting the surface S = S(A).  Rather than dealing with this 
step, and thus with Property (0, in truly recursive fashion, we announce that 
our global intention is to develop the various surfaces S(A) as follows : given 
elements A ;  E 9% (i = 1, 2, ...), with A1 3 At 3 -.., we want the collection 
(S(A;) x B 2 )  to intersect in a Cantor set embedded in a Euclidean piece of 
M exactly like the spun Bing Cantor set of Corollary 28.9B. For M E 3171, 
S(M) x B2 initiates this project correctly. Assuming that for 
A ] ,  ..., Aj = A ,  nested as above, with A; E 3n;, the associated sets 
S(A;) x B2 begin to describe a spun Bing Cantor set, we find a finite col- 
lection R I ,  ..., R, of (n - 2)-spheres in Int S(A) x B2 such that 

(i) these spheres have pairwise disjoint PL-product neighborhoods 
RI  x B 2 ,  ..., R, x B2 in Int S(A) x B 2 ,  each of diameter less than 
l / ( j  + 1);  and 

the collection (S(A1) x B 2 ,  ..., S(Aj) x B 2 ,  U(Ri x B2)]  is topologi- 
cally equivalent to an initial set of stages (not necessarily consecutive) from 
some preassigned representation of the spun Bing Cantor set. 

(Anyone more familiar with other wild Cantor sets in E", such as those of 
Antoine [ l ]  or Blankinship [ l ] ,  or with other constructions of Cantor sets 
defined by sets having PL-product neighborhoods R; x B2,  may mentally 
substitute the appropriate structures from the construction patterns of their 
favorite examples.) Of course, since "J" cannot be shrunk missing the spun 
Bing Cantor set, it cannot be shrunk missing any stage of it. See Fig. 35-1 
for a specific 3-dimensional representation of this pattern. 

(ii) 

Step 2. Decomposing A into cells. Let Ta denote a triangulation of dA . 
Then Ta x [0, 11 defines a cell-decomposition of the collar dA x [0, 11,  and 
Ta x [0, 11 extends to a PL cell-decomposition TI of A .  Shortening the collar 
and subdividing both 7'a and A minus its collar, if necessary, we may assume 
that each of the n-cells CI, ..., C, of TI has diameter less than E .  Furthermore, 
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FIG. 35-1 

we may assume each C; to be so small that there exists a point pi in Int Bz 
such that Ci misses 

(R1 U *.. U Rr) x (pi)  C (R1 u * * .  u Rr) x B2 = (R1 x B2)  U U (Rr X B2).  

Step 3 .  Pick distinct points 
pl . . . , p s  one for each n-cell C; of TI as in the preceding step, and let 
Si = (R1 u . - .  U R , )  x ( p ; ) , i  = 1, ..., s.SeeFig.35-2.NotethatS;lookslike 
the core of a deeper stage than S(A) x B2 from the defining structure of a 
spun Bing Cantor set, so Jcannot be contracted in M - S; . We reemphasize 
that Si misses Ci.  

Let a], . . . as denote pairwise disjoint 
compact sets, each the union of r disjoint PL arcs in Int A such that, for each 
i = 1, . . . , s, the r arcs of ai irreducibly join the r components of Si to Ci . 

Ramifying the surfaces R I  u 1.- u R,. 

Step 4. Connecting C; to si . 

RiX ip11 ’ ‘ R i X j p 3 t  

FIG. 35-2 
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FIG. 35-3 

The map collapsing Ci as well as each component of Si individually to 
(distinct) points defines an &-map from the compact connected set 
Ci u ai u Si onto the endpoint wedge of r arcs. In addition, the size restric- 
tions on Ci and on the components of Si imply that Ci u ai u Si is con- 
tractible in A. See Fig. 35-3. 

Step5. DefiningA1, ..., A , .  After slight general position adjustments, 
we may assume that a, n Sk = 0 whenever i # k and that each ai and Si 

meet each ack transversely. We choose a finite simplicia1 subdivision T2 of 
E such that each C i ,  each ai, and each Si is covered by a full subcomplex 
of Tz. If the subdivision Tz is sufficiently fine, the sets a1 u SI, . .., a, u S, 
will have pairwise disjoint simplicia1 (regular) neighborhoods N1, .. ., N, in 
the first derived subdivision T3 of Tz , and the sets A 1 ,  ..., A, defined below, 
like their predecessors CI u a1 u S1, ..., C, u as u S, ,  will admit an &-map 
to a finite graph. We define Ai as (Ci U Ni) - U k p i  Int N k  and s(Ai) X B2 
as a PL-thickening of Si in both Ai and the previously mentioned product 

This finishes the inductive description of the defining sequence S .  With the 
specification of A 1 ,  ..., A , ,  we have completed the construction of the 
elements from ntj, found in A E Xj, and in the course of that construction 
we also have designated the associated (n - 2)-manifolds S(Ai), i E I 1 , . . ., 4. 

(R1 u * . a  u R,) x B2. 
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The six properties of inductive hypothesis (j + 1) are identifiable features of 
the construction. 

Determination of the defining sequence prompts the following : 

Theorem 1. The sequence S = { Xl , 3 1 1 2 ,  . . .] defined above is a nested PL 
defining sequence for  a cell-like decomposition G of M such that no g E G 
is cellular. 

Proof. The three criteria required in order that S be a nested PL defining 
sequence drop out of properties (b) and (c) of the inductive hypothesis. By 
Theorem 34.2, G is USC. Furthermore, because of property (d), S satisfies the 
null homotopy criterion, and Proposition 34.4 attests that G is cell-like, 

Fix g E G .  First, we claim that dim g I 1. The proof of this fact resembles 
the proof of Proposition 34.4, showing g to be cell-like. In the notation of 
that argument (Case l) ,  instead of using that A, n g contracts to x in Pre A,, 
one uses that Aj n g &-maps to some 1-complex and that, as a consequence, 
g itself &-maps to a finite wedge of such 1-complexes, all wedged together at 
the appropriate images of x. In the other case of Proposition 34.4, the same 
conclusion is more easily obtained. Thus, dim g I 1. 

Second, we note that g contains a Cantor set C, in Int(S(A4) x B2) such 
that J is not contractible in A4 - C,. To see this, choose sets A, E X, such 
that A1 3 A2 3 ..- and each meets g .  Then nj(S(Aj) x B2) is the desired 
Cantor set. 

Third, because dim g I 1, the curve J is homotopic in A4 - C, to a curve 
J' in M - g .  If g were cellular, J '  would be contractible, not only in M - g ,  
but then also in M - S(Ak) for some large index k ,  which is ruled out by 
property ( f )  of the inductive hypothesis. 

Corollary 1A. There exists a compact, generalized n-manifold X ,  n 2 3 ,  
such that X - ( x )  fails to be locally simply connected at x,  for  every x E X .  

Corollary 1B. Let Mdenote a compact PL n-manifold, n I 3. There exists 
a cell-like decomposition G of A4 and there exists an embedding A : aB2 -+ 

M"/G such that every map F: B2 + M / G  extending A satisfies 
F(B2) = M / G .  

Require during the construction delineated for Theorem 1 that 
the special curve J lie in 8s. Then the decomposition map 71 will inspire a 
homeomorphism I of aB2 onto n(J). 

Consider any map F: B2 -, M / G  extending A .  Should F(Bz) avoid some 
point n(g) E M / G ,  F could be lifted to a map contracting J in M - g 
(Theorem 16.7), which was proved impossible in Theorem 1. 

Corollary 1C. There exists a cell-like decomposition G of S" (n  L 3) such 
that no g E G is cellular but G x E 1  is shrinkable. 

Proof. 
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Proof. For n L 4 see Theorem 34.5. Alternately, in all cases n L 3 the 
construction of Theorem 1 can be varied slightly to impose some other, 
relatively minor, technical controls, with which one can bring about a 
shrinking by bare hands. See (Cannon-Daverman [l]). 

Rephrased, Exercise 33.1 shows that the decomposition of Theorem 1 is 
intrinsically n-dimensional. Cellular decompositions cannot achieve the 
same degree of pathology, however ; Exercise 24.5 indicates that all finite- 
dimensional cellular decompositions of S" are secretly (n - 1)-dimensional. 
Exploiting a more subtle intertwining of the various surfaces S(A) arising in 
the proof of Theorem 1, D. J. Garity and the author [l  , 21 have constructed 
nested defining sequences for intrinsically k-dimensional (0 c k < n) 
cellular decompositions of S". 

EXERCISES 

1. What modifications must be incorporated to produce a totally noncellular, cell- 
like decomposition of E" (n ? 3)?  

2. Let S be a nested PL defining sequence for a cell-like decomposition G of En such 
that no g E G is cellular (satisfies the cellularity criterion), where G x E is shrink- 
able. Show that no line of the form ( x )  x E' is standardly embedded in 

3. If G is the cell-like decomposition of S" promised in Corollary l B ,  prove that there 
( E " / G )  x El = En". 

is no cell-like map of S"/G onto an n-manifold. 

36. MEASURES OF COMPLEXITY IN DECOMPOSITION SPACES 

Due to their geometric simplicity, manifolds represent the quintessential 
objects of our attention ; the other generalized manifolds, by contrast, 
riddled with baroque complexities, are less ideal. We will be better able to 
topologically distinguish the various generalized manifolds if we can weigh, 
or quantify, such complexities. What are the effective measures ? 

Several methods have been exposed already. A crude one is just the 
dimension of the set S(X)  of nonmanifold points in a given generalized 
manifold X .  Another is the dimension of the set 

Q ( X )  = ( x  E XI X - ( x )  is not 1-LC at XI. 

When X is the cell-like image of an n-manifold M (n > 3), with G the 
associated cell-like decomposition, Q ( X )  coincides with the image of the 
noncellular elements from G ;  furthermore, for n > 4 dim S(X)  = k iff G is 
intrinsically closed-k-dimensional. 

The notion of intrinsic dimension, discussed briefly at the end of Section 
33, provides a more refined measure. Its primary advantage materializes 
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from the direct connection it provides to the nondegeneracy set NG of some 
decomposition G efficiently giving rise to X, instead of to C1 NG , which is 
more closely aligned with S(X) .  Of course, dim[S(X) = S(M/G)]  serves as 
an upper bound to the intrinsic dimension of G ,  but the latter can assume 
(for varying G )  any integral value between - 1 and dim S(M/G) .  

D. J.  Garity [2, 31 has discovered a still more discriminating measure, 
involving the following generalizations of the disjoint disks property. A 
metric space X is said to satisfy the disjoint k-tuples property, abbreviated 
as DDk, if every collection of k maps p ; :  B2 + X ( i  = 1,2, ..., k) can be 
approximated, arbitrarily closely, by maps pi : B2 -, Xsuch that ni pI(B2) = 

0 ; similarly, X i s  said to satisfy DD, if, for each E > 0, and each countable 
collection of maps p;: B2 + X, there exist maps pi!: B2 -+ X such that 
p(pui, pi) < E and ni pI(B2) = 0. 

The countable property deserves mention because cellular decompositions 
are precisely the cell-like decompositions satisfying DD, . 

Theorem 1. Let G be a cell-like decomposition of an n-manifold M ,  n > 3 .  
Then G is cellular i f  and only if M / G  satisfies DD, . 

Proof. Assume M/G satisfies DD,. The goal is to show that each g E G 
satisfies the cellularity criterion in M ;  by Proposition 18.4 it suffices to show 
that each point x of M/G satisfies the cellularity criterion there. Given a map 
f: B2 + M / G ,  one can set p ;  = f for i E (1,2, . . .] and apply DD, to find some 
close approximation pj to f avoiding x,  where pj I dB2 is homotopic tof 1 dB2 
under a short homotopy in M / G  - Ix). This essentially verifies the cellularity 
criterion. 

Conversely, assume G is cellular. Fix E > 0 and maps p1, pz  , ... of B2 to 
M / G .  One can find n-cells C1 , C2, . . . in M such that (1) M / G  has an open 
cover (VI,  I$, ...] where n- ' (V)  C Cj and (2) diamx(Cj) < E for 
j E (1,2, ...). Then the maps p,  can be adjusted to pj with p(pj,  p j )  < E and 
5 n pj(B2) = 0. Consequently, npj(B2) = 0, and DD, holds. 

Theorem 1 is also valid in case n = 3 ,  provided each g E G is known to 
have a neighborhood embeddable in E 3 .  

Before taking up property DDk , we characterize the secretly s-dimensional 
cell-like decompositions in terms of the dimension of intersecting pairs of 
2-cell images in the decomposition space. 

Proposition 2. Let G be a finite-dimensional cell-like decomposition of an 
n-manifold M ,  n > 4. Then G is secretly s-dimensional i f  and only i f  each 
pair of maps p 1 ,  p2; B2 -+ M / G  is approximable by mapsp; , pi: B2 + M / G  
such that 

dim[pi(B2) n pi(B2)] I s. 

H 
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Proof. Suppose the map approximation property holds. Select a count- 
able dense subset ((ai, pi)) from the space of all pairs of maps from BZ to 
M / G ,  where, from this hypothesis, 

dim[ai(B2) n pi(B2)] I s, for each i .  

Then Q = Ui[ai(B2) n pi(B2)] is an s-dimensional F, subset of M / G ,  and it 
is included in some s-dimensional Ga subset R of M / G .  By Proposition 24.4, 
decompositions induced over arbitrary compact subsets of ( M / G )  - R are 
shrinkable. Hence, according to Proposition 23.4, the given decomposition 
map is approximable by a cell-like map p :  M + M / G  that is 1-1 over 
(M/G) - R. As a result, 

dimp(N,) I dim R 5 s. 

The converse is Exercise 33.4. 

The ensuing result supplies the technical core for the forthcoming analysis. 
Its proof requires a minor generalization of the one given for Proposition 
24.1 ; details are left as an exercise. 

Proposition 3. Let X denote a locally compact, separable ANR and k > 1 
an integer. Then X satisfies DDk if and only if each map f: B2 -+ X can 
be approximated, arbitrarily closely, by a map F: B2 -+ X such that 
card F-'(x) < k for each x E X .  

With Proposition 3 one can make a rough estimate about the possible 
dimension of 2-cell images in X. 

Corollary 3A. I f  X as above satisfies DDk , then each map f: B2 .+ X can 
be approximated by a map F for  which dim F(B2) I k. 

This follows from the classical dimension theory result, dis- 
covered by W. Hurewicz [2], that if h: Y -+ 2 is a closed surjective map 
between separable metric spaces and card h-'(z) I m for all z E Z, then 
d i m 2  5 dim Y + (m - 1). See also (Engelking [ l ,  p. 1341). 

Next comes the central result, revealing the pertinence of DDk to secret 
dimension. 

Theorem 4. If G is a finite-dimensional cell-like decomposition of an 
n-manifold M ,  n > 4, and M / G  satisfies DDk, then G is secretly (k  - 3)- 
dimensional. 

Proof. Fork = 2 this is just a restatement of Edwards's cell-like approxi- 
mation theorem; for k > n + 1 it is a triviality because of Theorem 1 and 
the fact that finite-dimensional cellular decompositions of M are secretly 
(n - 1)-dimensional (see Exercise 24.5). The argument given below works 

Proof. 
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when 2 < k < n - 1. The case k = n - 1 is dealt with in the exercises, and 
the remaining two cases (as well as the others) are proved by Garity [2]. 

Consider maps P I ,  p2: B2 -+ M / G .  Corollary 3A ensures that maps of B2 
to M/G can be adjusted so as to have (n - 2)-dimensional images (assuming 
k < n - 1). Then an old technique, modifying a map on a infinite l-skeleton 
to avoid (n - 2)-dimensional compacta, combines with Proposition 3 to 
furnish approximations p1, p2 : B2 -+ M / G  where 

A = pi'(p1(B2) n p2(B2)) is O-dimensional 

and no point of M / G  has more than ( k  - 1) preimages under p1 u pz . This 
means that p1(B2) n p2(B2) is the (at most) (k - 2)-to-1 image of A under p l ,  
so, for dimension theory reasons (Engelking [ 1, p. 134]), 

dim[P1(B2) n DZ(B')] = dimpI(A) I k - 3. 

Proposition 2 secures the desired conclusion. 

This automatically upgrades a result given as Exercise 26.10. 

Corollary 4A. 
,n-manifold, n > 3, then G x El is secretly O-dimensional. 

If G is a finite-dimensional, cell-like decomposition of an 

Proof, The fact that the decomposition space satisfies DD3 is Exercise 
25.3. H 

Corollary 4A leads to an alternative proof that G x E2 is shrinkable, 
without reference to the intermediary DADP of Section 26, for now we see 
that [(M x E')/(G x El)] x E' has the DDP by the proof of Corollary 
24.3C (Exercise 24.7). 

The converse of Theorem 4 is false. It fails in part because the decom- 
position space determined by any cell-like, noncellular decomposition does 
not satisfy DD, , let alone DD3. More important, when attention is restricted 
to the cellular case, it fails because of decompositions like an analogue of 
Example 28.1, an ( n  - 3)-spin of a modified Example 9.3, which is a closed- 
O-dimensional cellular decomposition of S" whose associated decomposition 
space satisfies DD4 but not DD3. Garity [2, 31 has described other cellular 
decomposition spaces satisfying DDk+l but not DD3, built with mixing and 
tubing methods like those used in Section 32. 

The failure of the converse to Theorem 4 upholds the contention that the 
properties DDk do not measure the same complexities as intrinsic dimension 
does. Reinforcing that contention, we now can pinpoint differences between 
the secretly countable and some secretly O-dimensional cellular decomposi- 
tions, such as the spin of a modified Example 9.3 : the secretly countable ones 
all have DD3 (Exercise 1). 
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EXERCISES 

1. If G is a countable cellular usc decomposition of E n ,  show that E"/G has DD3. 
2. Prove Proposition 3. 
3. Let G be a cellular usc decomposition of an n-manifold M ,  n > 2. Show that every 

pair of maps P I ,  PZ: B2 -, M/G can be approximated by maps , G I ,  ,& such that 

d imp;1~l (B2)  npz(B2)1 5 1. 

4. Let G denote a finite-dimensional, cell-like decomposition of an n-manifold M ,  
n > 4, such that M/G satisfies DDk. 
(a) Use Exercise 3 to prove G is secretly (k  - 2)-dimensional when k > n - 2; 
(b) For k = n - 1 use the consequence of (a) that M/G satisfies DADP 

(Proposition 25.9) to prove G is secretly (k - 3)-dimensional. 
5. Show that the decomposition of Example 28.1 satisfies DD3. 
6 .  For k > 3 construct a closed-0-dimensional decomposition G of S" (n 2 3) such 

that S"/G satisfies DDk, but not DDk . 

37. DEFINING SEQUENCES FOR DECOMPOSITIONS 

Nested PL defining sequences can be put to effective use, evidenced in 
Section 35, for manufacturing nontrivial generalized manifolds. Neverthe- 
less, several limitations prevent this type of defining sequence from being the 
paradigm. Another type is available, somewhat more cumbersome but all- 
encompassing in the sense that every usc decomposition of a locally compact 
metric space is associated with this more general variety of defining sequence. 

A paraphrase of (Daverman-Walsh [l]), this section lays the foundation 
for a broad notion of defining sequence, introduces a criterion for cell- 
likeness of the resulting decomposition, and treats the naturality of each. 

Throughout this part X will denote (at the least) a locally compact metric 
space. A defining sequence (in X )  is a sequence S = ('XI, 3122, . . .] satisfying 
two criteria: 

For each index i ,  3ni is a locally finite collection 
of compact subsets of X having pairwise disjoint interiors. 

For each i and x E X 

Disjointness criterion. 

Star nesting criterion. 

The decomposition G of X associated with a defining sequence 
S = 3122, . . .) is the relation prescribed by the rule: for x E X ,  G(x) is 
the subset of X consisting of all y E X such that y E St2(x, nti) for every 
integer i > 0. 

Such a relation G obviously is reflexive and symmetric. 
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Lemma 1. The relation G associated with a defining sequence [ntl, n t z ,  ...I 
is transitive. 

Proof. Supposey E G(x) and z E G(y) .  It follows that z E St4(x, 92;) for 
all i > 0. The heart of the proof is the claim that 

St4(X, ntk+l) c St3(X, ntk) 

for each x E Xand each integer k > 0. Then by the claim and the star nesting 
criterion, 

z E St4(X, nt;+2) c St3(X, nt;+1) c St2(X, nt;), 

implying z E G(x). 
In order to establish the claim, note that each x’ E St4(x, 92k+l) satisfies 

x’ E St(x*, ntk+l) for some x* E St3(x, 92kil). By the star nesting criterion, 

x* E st3(x, ntk+l) c Int St2(x, mk). 
ChooseA* E 3nk+l such that x* E A* C St3(x, X k + l ) .  According to the dis- 
jointness criterion, A* has nonempty interior, and the local finiteness of CJnk 
yields a point x** E A* such that some A E n t k  contains x** in its interior. 
The uniqueness of this A containing x**, guaranteed again by disjointness, 
indicates that A = St(x**, n t k ) .  Then the fact that x** E A* C St2(x, n t k )  

implies A C St2(x, ntk), and the observation that x’ E St2(x**, %+I)  

reveals 

x‘ E St2(X**, ntk+l) c StZ(x**, 3 n k )  = St(A, ntk) c St3(X, ntk), 

as required. W 

Therefore, the equivalence relation G induces a decomposition (partition) 
of x. 
Theorem 2. 
is use. 

The decomposition G associated with a defining sequence S 

The proof coincides with that of Theorem 34.2. 
With this we have an entirely satisfactory notion of defining sequence for 

USC decompositions. Although the star nesting criterion may seem awkward 
or artificial at first, the superficially more natural requirement of 

st2(x, % k + l )  c Int st(x, nt;) 

simply does not work. It cannot be attained even when S = (%I ,  nt2,  ... 1 
represents a nested PL defining sequence on a PL manifold. The next result 
makes plain the comprehensiveness of the notion at hand. 



262 VI. Nonshrinkable Decompositions 

Theorem 3. If G is an arbitrary usc decomposition of a locally compact 
metric space X, then G is the decomposition associated with some defining 
sequence. 

Proof. Let X/G denote the associated decomposition space and 
n: X + X / G  the induced map. For the moment, assume the existence of a 
defining sequence (61, 62, ...) in X/G for the trivial decomposition into 
singletons; furthermore, assume each 6 k  is a cover of X / G  and 
Int n-'(FrA) = 0 for all A E 6 k .  Then it is an easy matter to verify that 
(Xl, 3122, ...) is a defining sequence, where 312k = { n - ' ( A ) ( A  E 6 k ] ,  and 
that G is the associated decomposition. 

What remains is the production of the defining sequence (61,62, . . .]. The 
forthcoming construction can also be adapted to obtain 61. Generally, 
presuming O)k-' has already been obtained, we find a locally finite open cover 
U of X/G such that : 

(1) each element of %. has compact closure and diameter less than Ilk; 
(2) Int n-'(Fr U) = 0 for each U E U; and 
(3) for each z E X/G, St3(z, a) c St2(z, %I),  where = (01 U E V). 

If an initial choice of U satisfying conditions (1) and (3) does not satisfy 
(2) as well, perform the following modification. Let { V( U) I U E U) be an 
open cover such that V(U) C C1 V(U) C U for all U E U (see Dugundji [ 1, 
p. 1521). For each U E 'u determine a mapf: C1 U -+ [O,  11 withf(Fr U) = 0 
and f(C1 V(U)) = 1. Since the compact set n- ' (U) is second countable, 
U, = f - ' ( ( t ,  1)) has the property that Int n-'(Fr U,) = 12, for all but count- 
ably many t E (0, 1). Alter the given cover %. by replacing each U E U with 
such a U,. 

Let UI, U2, ..., U,, ... be a well-ordering of the elements of U. For 
each a define P, as CI(U, - Up<, C1 Up). Finally, let 6 k  be the col- 
lection consisting of the nonempty Pa's. The local finiteness of U implies 
n-'(Fr Pol) meets only a finite subcollection of {n-'(Fr Up) I a), so 
Int n-'(Fr P,) = 0. 

A criterion that is vitally instrumental for analyzing the cell-likeness of a 
decomposition G associated with a defining sequence (3121, 3122, . . .] is the 

Star null homotopy criterion. For each index i and each x E X there exists 
an integer k > i such that St3(x, X k )  is contractible in St2(x, mi). 

Given another defining sequence S' = {'Xi, Xi, ...) for G,  for every 
index k and every x E X one can find some integer j with St3(x, 312;) c 
St3(x, Entk). Consequently, when this criterion is satisfied by some defining 
sequence for G, it is satisfied by every one. 
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Proposition 4. Let X denote a locally compact ANR. A necessary and 
sufficient condition for a decomposition G of X associated with a defining 
sequence S = (XI, 9 2 2 ,  ...) to be cell-like is that S satisfy the star null 
homotopy criterion. 

The proof is elementary; one implication, in a more general setting, is an 
exercise. 

With an infinite recycling of the techniques from Section 35, one can grind 
out a defining sequence S for a cell-like decomposition G of S" (n  > 2) more 
convoluted than that secured from Theorem 35.1 : if J is any simple closed 
curve embedded in S"/G,  every contraction of Jcontains an open subset of 
S"/G,  and the decomposition space includes neither any ANR nor any cell- 
like set having dimension strictly between 1 and n (Daverman-Walsh [l]). 

EXERCISES 

1. If S is a defining sequence for a decomposition G of a locally compact metric space 
Xand S satisfies the star null homotopy criterion, show that eachg E G is cell-like 
in X. 

2. If X is a locally compact ANR containing no cell-like set of dimension strictly 
between 1 and n (n > 2), show that there is no cell-like map of X onto an n- 
manifold, with or without boundary. 



APPLICATIONS TO 
MANIFOLDS 

The study of cell-like decompositions is an indispensable component of the 
fabric of geometric topology. It is interwoven with several topics : analysis 
of manifolds, embedding theory, simple-homotopy theory. Chapter VII 
highlights several strands from this intricate texture. 

At the beginning this chapter assembles some formidable machinery 
involving gropes, due to Cannon. Ultimately gropes aid in procuring resolu- 
tions of generalized n-manifolds. Although Quinn has given a very general 
result about the existence of resolutions, explicit blueprints outlining the 
construction of this machinery remain necessary for deriving some of the 
envisioned applications, primarily the ones showing how arbitrary embed- 
dings of compact objects in manifolds can be approximated by nice 
embeddings. This fact exemplifies once again the strong magnetic attraction 
between decomposition theory and embedding theory. 

Quinn’s important result combines with Edwards’s cell-like approxi- 
mation theorem to  (essentially) provide the crowning touch : a criterion for 
recognizing n-manifolds. 

Last of all, Section 41 puts to work other methods from embedding theory, 
suggested by penetrating insights of Miller, and makes close inspection of 
the resulting cell-like decompositions to show how finite-dimensional ANRs 
can be positioned in manifolds so as to have manifold mapping cylinder 
neighborhoods. 

Throughout this part one should keep in mind the vague warning from the 
Introduction that, for the kind of far-reaching applications being sought, 
there will be a new price for progress. In the strict confines of the text, we 
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will become wholesale dealers of mathematics, who feel no reluctance to 
trade on results from other topics in geometric topology with little attempt 
at motivation or justification, whenever it helps the cause. 

38. GROPES AND CLOSED n-CELL-COMPLEMENTS 

Gropes appear to have originated, buried implicitly deep in the con- 
struction, in the marvelous work of M. A. Stan’ko [3] showing how to 
approximate embeddings of codimension 3 compacta in manifolds by I-LCC 
embeddings. When he extended Stan’ko’s work, particularly while delivering 
certain formal addresses on the subject, R. D. Edwards [2] assigned them a 
more conspicuous role, and later on, perhaps more significantly, he reiter- 
ated their benefits in his initial unpublished work on the double suspension 
theorem [3]. Since then, it is J. W. Cannon who has been the primary 
manipulator and champion of gropes, under various designations, through 
his work with F. D. Ancel (Ancel-Cannon [l]) on the locally flat approxi- 
mation theorem for codimension one embeddings, his own results (Cannon 
[6]) about normal forms for decompositions, which led to the final solution 
of the double suspension problem, and his work with J. L. Bryant and R. 
C. Lacher (Cannon-Bryant-Lacher [ 11) about resolutions of certain general- 
ized manifolds. Cannon also has described the connections of gropes with 
wildness and decomposition problems in a revelatory survey paper [3]. The 
preceding list of prominent applications should furnish motivation enough 
for studying gropes now. 

Gropes unite homology and homotopy properties in a special way. That 
conjunction will be partially sketched in this section, but other noteworthy 
aspects will be brought forward in the sequel. Here the resoundingly geo- 
metric central issue will be the manner in which thickened gropes can be 
attained from cell-like decompositions of the n-cell. 

The indispensable building block for concocting a grope is the disk-with- 
handles, specifically, a compact, connected, orientable 2-manifold D having 
just one boundary component. In the typical case where it is is not a disk, 
D contains simple closed curves A 1 and B1 in Int D meeting each other trans- 
versely in a single point, and the decomposition whose only nondegenerate 
element is A u B1 yields a disk-with-handles having one less handle than D. 
Iteration provides disjoint pairs (A 1 ,  B I ) ,  . . . , (A, Bk) of simple closed 
curves in Int D such that Ai meets B, transversely in a single point and the 
decomposition whose nondegenerate elements are the sets Ai U Bi, 
i E (1, ..., k), yields a disk. The union J = A1 u B1 u .-- u A k  u B k  is called 
a complete handle curve for D.  

A grope is composed of infinitely many disks-with-handles, attached 
together in the following manner. Start with a disk-with-handles DO on 
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which is prescribed a complete handle curve JO = A1 u BI u ... u 
Ak u Bk . For the next stage D I ,  name a collection D(Al), D(BI), ..., D(Ak), 
D(&) of mutually exclusive disks-with-handles, one for each of the simple 
closed curves of Jo,  and identify dD(Ai) with A; and aD(Bi) with B; .  Also 
specify a prescribed complete handle curve J I  for DI (meaning a complete 
handle curve for each component of 01). Repeat for the next stage Dz, 
naming a collection of mutually exclusive disks-with-handles, one for each 
of the simple closed curves in J1 , identifying each boundary in D2 with the 
corresponding curve in J I  (and permitting no other intersections of DZ with 
DO u DI) ,  and also specifying a prescribed complete handle curve JZ for DZ . 
Repeating this infinitely often, one obtains an infinite 2-dimensional com- 
plex D = DO u D1 u DZ u a - .  called a grope, or sometimes, an infinite 
commutator, in which Di+l n (Do U DI U U Di) = Ji = aDi+l. We call 
Di the ith stage of D and aD = aDo the boundary of D .  

Abstractly, a compactifed grope D+ (occasionally called a generalized 
2-disk in the literature, a term avoided here because D+ is not a generalized 
2-manifold) is the Freudenthal, or endpoint, compactification of a grope D. 
More concretely, the compactified grope can be realized as a subset of E3 
by controlling the embedding of a grope shown in Fig. 38-1. View each of 
the handle curves of JO as being spanned by thickened disks, or pillboxes, two 
of which intersect only along their boundaries and do so only if their asso- 
ciated handle curves intersect, and put the next stage disks-with-handles in 
the appropriate pillboxes. Make the pillboxes for this new stage lie interior 
to some pillbox at the initial stage, and pictured in Fig. 38-2. Iterate. If Pi 
denotes the pillboxes used at stage i and if sizes are limited by requiring the 
pillboxes at stage i to have diameter less than l/i, then the compactified grope 
D+ corresponds to 

n(D0 u Di u Pi). 

Disk-with-handles 

Complete 
Handle 
Curve 

Grope D 

FIG. 38-1 



38. Gropes and Closed n-Cell-Complements 

Pillbox 

267 

Stage o of grope 

Pillboxes for Stage 1 

FIG. 38-2 

The resulting intersection is what we call a standard realization of D+ 
in E 3 .  

Gropes serve as topological representation of elements in, as well as certain 
subgroups of, perfect groups. Recall that a group II is said to be perfect if 
n equals its commutator subgroup ; equivalently, II is perfect if and only if 
its Abelianization is trivial. The fundamental group of any grope is perfect. 
Taking the opposite tack, let II denote the fundamental grope of some space 
Xand let [ f] be an element of some perfect subgroup P o f  II, wheref: S' -+ X 
is a (based) loop. Then [ f] is homotopic to a product o f  commutators in P ,  
so f bounds a singular disk-with-handles DO in X ,  where images of the simple 
closed curves from a complete handle curve for DO represent conjugates of 
elements of P. Accordingly, the image handle curves bound disks-with- 
handles, whose handle curves then bound disks-with-handles, whose handle 
curves bound, and so on. The infinite process gives a map of a grope D into 
X agreeing with f on the boundary. 

The applications envisioned will cause us to operate on embedded gropes, 
not just those in E 3  as shown in Fig. 38-2, but also those in arbitrary 
manifolds o f  dimension n 2 5 .  For this we will need the following deep result 
of W. B. R. Lickorish and L. C .  Siebenmann [l]. 

Theorem 1 (Lickorish-Siebenmann). Fix an integer n 2 5 and a locally 
finite k-complex K ,  where 2k + 1 I n ,  and consider the closed PL embed- 
dings F: K -+ M of K into arbitrary PL n-manifolds M and the regular 
neighborhoods U(F(K)) of F(K) in M.  Then the PL homeomorphism types 
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of thepairs (U(F(K)),  F(K))  are classified by the tangent PL microbundle of 
the open PL manifolds Int U(F(K)). Equivalently, the homeomorphism 
types are in 1-1 correspondence with the homotopy set [K,  BPL], where BPL 
is the classifying space for stable tangent PL microbundles. 

Corollary 1A. Let D be a grope and F:  D -, M any closed PL embedding 
of D in a PL n-manifold M ,  n 2 5 ,  and let U be a regular neighborhood of 
F(D) in M. Then the PL homeomorphism type of (U,  F(D)) is uniquely 
determined by D and n. 

Proof. In (Cannon-Bryant-Lacher [ l ] )  it is shown that the homotopy set 
[D, BPL] consists of a single element, so Theorem I applies. I 

Consequently, in order to understand all regular neighborhoods of all PL 
embeddings of a given grope in n-manifolds (for fixed n 1 5) ,  it suffices to 
completely understand just one. The most convenient embedding to inspect 
is the one given by the standard realization of D+ in 

E 3  = E 3  X (0) C E 3  x = E". 

Thickening this copy of D in E"  precipitates a familiar sort of wild object 
in S" called a crumpled n-cube, meaning the solid in S" bounded by a wild 
(n - 1)-sphere. (Precisely, a crumpled n-cube Cis a space homeomorphic to 
the closure of one of the components of S" - S, where S denotes any (n - 1)- 
sphere topologically embedded in S"; its boundary, denoted Bd C, is the set 
corresponding to S, or the set at which C fails to be a boundaryless 
n-manifold.) A special class of crumpled n-cubes stands out : the closed 
n-cell-complements. A crumpled n-cube C is a closed n-cell-complement if 
C can be embedded in S" as the closure of the complement of an n-cell. 
Impending is a proof (Corollary 40.1D) that all crumpled n-cubes (n z 5 )  are 
closed n-cell-complements, but the approach to be taken requires early 
confirmation that thickened gropes belong to this special class. 

What makes closed n-cell-complements advantageous is the fact that they 
crop up from well-regulated, admissible, cell-like decompositions of the 
n-cell. 

Lemma 2. If C is any closed n-cell-complement, then there exists a collar 
c: S"-' X I + B" on S"-' = aB" and thereexists a map f of B" onto C whose 
nondegenerate point inverses are the fiber arcs c((s) x I ) ,  s E S n - ' ,  of this 
collar. 

Proof. Assume C is embedded in S" so that Cl(S" - C) is an n-cell B. 
There is an embedding w: aB x Z 4 B with w((b, 0)) = b for all b E aB. 
Thus, C u w(aB x [0,4]) is homeomorphic to B", and f: B" --* C 
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corresponds to the retraction of C u w(aB x [0, )I) to C send,ing w((b)  x 
[0, )I) to  b E aB = Bd C. H 

Proposition 3.  Let D+ C E 3  x (0) C E 3  x E n P 3  = E", n 2 3 ,  be the 
(extended) standard realization of a compactified grope D+, and let U be a 
regular neighborhood of D in E n  - (D' - 0). Then C" = U u Df is a 
closed n-cell-complement that strong deformation retracts to D+ . 

Showing C" strong deformation retracts to D+ is straightforward ; the 
chief difficulty in Proposition 3 is showing C" is a closed n-cell-complement. 
Several preliminary matters must be discussed before looking at Proposition 
3 itself. 

By way of introduction to the analysis, focus on the case n = 3, in the 
situation where the grope D+ is what has been called the fundamental grope, 
which at every stage consists of disks-with-a-single-handle. See Fig. 38-3. 
Almost by visual comparison one can see that a familiar admissible cell-Like 
decomposition G3 of B 3 ,  shown in Fig. 38-4, yields a quotient space equiva- 
lent to a natural pinched thickening C 3  of D'; simply compress the tubes 
comprising the components of the defining sequence down into small pill- 
boxes spanning these tubes near their centers. Here C 3  = B3/G3 coincides 
with the closed 3-cell-complement bounded by the famous Alexander horned 
sphere. 

The case n = 4 (still dealing with the fundamental grope D+) exposes a 
big clue about the relationship between G3 and the higher-dimensional 

Pillbox 

FIG. 38-3 
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thickenings. The enlargement to form C4 can be regarded as a pinched 
thickening of C 3  modulo its frontier. Thus, 

C4 = ( (  c, t )  E E3 x E' I c E C and (ti I d(c)), 

where d: C -, [0, 11 is a map such that d-'(O) = Bd C. The frontier of C4 
in E4 consists of two copies of C 3 ,  corresponding to the graphs of d and - d ,  
which copies are attached together via the identity homeomorphism along 
their frontiers. By the foregoing analysis, this frontier is equivalent to the 
space associated with the O-spin of the decomposition on B3 of Corollary 
28.9B, which yields S 3 .  Hence, C4 is a crumpled 4-cube. 

In order to explain why it is a closed 4-cell complement and also to study 
C" when n > 4, it will pay to have some further terminology. For any 
crumpled n-cube C ,  define the inflation Infl C of C as 

Infl C = (<c, t )  E C x El 1 c E C and It1 5 d(c)) ,  

where d :  C + [0, 11 is a map such that d-'(O) = Bd C .  Generally, let C be 
a space, S a closed subset of C, and d :  C - +  [0, I ]  a map such that 
S = d-'(0) .  By the inflation of C relative to S we mean the space 

Infl(C, S )  = ((c, t )  E C x E' I c  E C and It1 5 d(c)) .  

[The topological type of Infl C or Infl(C, S )  does not depend on the choice 
of map d.]  Somewhat similarly, given an admissible cell-like decomposition 
G of the n-cell B", define the inflated decomposition Z(G) of B"+' and a 
doubled decomposition 2G of S" = dB"+' as the decompositions whose 
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/ B" 
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element of G 
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of I ( G )  

S" = as"  

*_-- - - --- ~. 

Corresponding 
element of 2C 

FIG. 38-5 

aondegenerate elements are, respectively, the sets ( g  x E l )  n B"+l and 
(g  x El)  n S", where g is a nondegenerate element of G and En+' = 
E n  x E l .  See Fig. 38-5. 

The next two results set forth relationships among pinched thickenings, 
inflations, and inflated decompositions. Details are left as exercises. 

Lemma 4. Suppose D+ is a compactifed grope in E" having a pinched 
thickening C", as in Proposition 3 ,  that is a crumpled n-cube. Then, con- 
sidered as a subset of En+',  D+ has apinched thickening C"' ' homeomorphic 
to Infl C". Moreover, i f  there exists an admissible cell-like decomposition Gn 
of B" for which B"/Gn is equivalent to C", then C"+' is homeomorphic 

Lemma 5. Suppose G is an admissible cell-like decomposition of B", 
C = B"/G, and S represents the image of S"-' in C. Then I(G) is an 
admissible cell-like decomposition of B"+ I ,  B"+'/I(G) is homeomorphic to 
Infl(C, S ) ,  and Sn/2G is homeomorphic to the decomposition space 
S"/Spo(G) associated with the 0-spin of G. 

Let G denote an admissible, cell-like decomposition of B". An embedding 
q: B"/G + E n  is said to be collared if there exists an embedding 

to B"+'/I(Gn). 
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X: S x Z -, E", where S represents the image of S"-' in B"/G, such that 
X(S x Z) n q(B"/G) = X(S x (0)) and A((s ,  0)) = q(s) for all s E S .  When 
B"/G is a crumpled n-cube, it admits a collared embedding in E n  precisely 
when it is a closed n-cell-complement. 

Lemma 6. In the setting of Lemma 5 ,  there is a collared embedding of 
B"+'/I(G) in En+' provided the following two conditions are satisfied: 

(a) the decomposition Z(G), extended trivially over En+ ', is a shrinkable 
decomposition of En+ ' , and 

(b) the decomposition 2G x E' is a shrinkable decomposition of 
S" x E ' .  

Proof. Condition (a) gives an embedding B"+'/Z(G) -, En", which is 
collared by condition (b) and the proof of Lemma 31.2. 

At this point it is instructive to return our attention to  the special crumpled 
4-cube C4. As shown previously, C3 = B3/G3 (G3 being an admissible cell- 
like decomposition of B3). By Lemma 4, C4 = Infl C3, so C4 = B4/Z(G3). 
Certainly the trivial extension G: of G3 over E 3  is shrinkable, so Z(G3)T is 
shrinkable (see Exercise 6); furthermore, 2G3 x E' is a shrinkable decom- 
position of S 3  x E l ,  by Exercise 9.1 or by Theorem 27.1. Hence, Lemma 
6 ensures that C4 has a collared embedding in E4,  implying this crumpled 
4-cube is a closed 4-cell-complement. 

One should extrapolate from this argument to  assimilate the philosophy 
that the crucial question asks whether the thickened object C" is a crumpled 
n-cube, for once that question is decided affirmatively, the refinements 
needed for establishing C" is a closed n-cell-complement become routine. 

Proof of Proposition 3. Exactly as in the case of the fundamental grope, 
the standard realization of an arbitrary D+ in E 3  has a pinched thickening 
C3 there that is equivalent to B3/G3, where G3 is a closed-0-dimensional, 
admissible, cell-like decomposition of B3 whose trivial extension G: over E 3  
is shrinkable. In particular, one can see that the decomposition G3 n aB3 
induced by G3 on aB3 is the trivial one, from which it follows directly that 
C3 = B3/G3 is a closed 3-cell-complement. 

Consider n > 3 and a pinched thickening C" of D+ in E". The main 
problem now is to show that C" is a crumpled n-cube. Once that is done, we 
can verify it is indeed a closed n-cell-complement by observing C" = B"/G, , 
where Gn is a closed-0-dimensional admissible decomposition of B" resulting 
from successive inflations, beginning with G3. Just as with the fundamental 
grope, GJ is a shrinkable decomposition of E" (Exercise 6 )  and, due to  the 
closed-0-dimensional nature of 2Gn-1, 2Gn-1 x E' is a shrinkable decom- 
position of S"-l x E' (Corollary 24.3C or Theorem 27.1), so Lemma 6 will 
attest that C" is a closed n-cell-complement. 



38. Gropes and Closed n-Cell-Complements 

\ 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
t 

Grope 

Defining sequence for the decomposition 

P 

273 

yieldmg a thickened grope 

FIG. 38-6 

To show C" is a crumpled n-cube, we start out knowing C" embeds in E", 
which means we need only show its frontier there is an (n - 1)-sphere. The 
frontier S corresponds to the image of S"-' in E" = E"/GT and, hence, S 
is equivalent to S "-'/2Gn-1. To complete the argument, we must take into 
account the differences between the decompositions G3 of B3 associated with 
the fundamental grope and with an arbitrary grope. The latter, exemplified 
by the decomposition of Lemma 32.1, are just ramified versions of the 
former. See Fig. 38-6. The other fact to check (another exercise) is that 2Gn-1 
equals SP"-~(G~).  Then, for the case n = 4, Spo(G3), being just a ramified 
version of Example 9.1, is shrinkable by the classical techniques employed 
in Section 9. Consequently, when n > 5 the shrinkability of S P " - ~ ( G ~ )  
follows from Corollary 28.9A and when n = 5 from (Neuzil[l]), or bare- 
handed methods alluded to at the close of Section 32. 
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Corollary 3A. Suppose D is a grope embedded in a PL n-manifold M ,  
n L 5 ,  as a closed and PL subset, and suppose U is a regular neighborhood 
of D in M.  Then the Freudenthal compactification C" ( 2: U u D', properly 
topologized) of U is a closed n-cell-complement. 

Proof. See also Corollary 1A. H 

EXERCISES 

1. Show directly that every compactified grope D+ is contractible. 
2. Let f ,  and f 2  be 1-LCC embeddings of a compactified grope D+ in E n ,  n L 6,  such 

that f l ( D '  - D =fzlD' - D and f i l D  is PL ( i  = 1,2). Then there exists a 
homeomorphism H of E" to itself such that Hf1 = f 2  and HI f l(D+ - 0) is the 
identity. 

3. If F1 and F2 are I-LCC embeddings of the same compactified grope Df in a 
connected n-manifold M ,  n 2 6 ,  then there exists a homeomorphism H of M to 
itself such that HFI = F2. 

4. Prove Lemma 4. 
5. Prove Lemma 5 .  
6. If G is an admissible cell-like decomposition of B" C E" C E"+' whose trivial 

extension G' over En" is shrinkable, then the trivial extension Z(G)T of I (G)  over 
E"+ 1 

7. Show that the decomposition 2Gn-1 of S"-' arising in the proof of Proposition 3 
is also shrinkable. 

equals SP"-~(G~) .  

39. REPLACEMENT PROCEDURES FOR IMPROVING 
GENERALIZED MANIFOLDS 

Supported by the analysis of thickened gropes in Section 38, this section 
conscripts gropes into service as surveyors, as markers of the optimal spots 
for making improvements to the nonmanifold set in certain generalized 
manifolds. Bringing about such improvements is likely to entail changing the 
homeomorphism types of the objects studied. Such change engenders an 
advance similar to the output of the Stan'ko reembedding theorem in that, 
given a preassigned subset 2 of the source space containing the nonmanifold 
set, one obtains another embedding of Z in the resultant space, better by 
virtue of being 1-LCC, whose image also contains the nonmanifold set there. 

The work is divided into two separate portions, the first of which deals with 
the replacement process per se and the second, with the blueprint for con- 
structing gropes and thickenings which, when replaced, consummate the 
desired improvements. The ideas and methods are taken from (Cannon- 
Bryant-Lacher [l]). 
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The first portion, the replacement process, applies to a given generalized 
n-manifold Y containing a specified null sequence of pinched closed n-cell- 
complements. In that setting we carefully describe a process of replacing the 
crumpled objects by pinched, real n-cells. The kind of pinching licensed in 
this section does not conform to the pinched thickening of gropes done in 
the preceding one but, instead, involves the banding together of collections 
of boundary points from the n-cells and n-cell-complements. Perhaps the 
subtlest aspect of the process is the determination of the appropriate 
topology to impose on the newly constructed space; to make this choice of 
topology as straightforward as possible, we embed Y as a closed subset of 
some high-dimensional Euclidean space E k  (it is known that dim Y 5 n, 
implying that Y embeds as a closed subset of E2"+',  but the particular value 
of k is irrelevant for our purposes). 

Formally, we consider the following setting : 

Y ,  a generalized n-manifold embedded as a closed subset of Ek ( k  L 2n); 
f;: B; -+ Ci ( i  = 1,2, 3, . . .), continuous surjective functions from n-cells Bi 

to closed n-cell complements Ci ,  as in Lemma 38.2, whose nondegenerate 
point preimages are the arc fibers of some possibly wild collars (all;) x i on 
aBi; and 

gi: Ci -+ Y ( i  = 1,2 ,3 ,  ...), continuous functions that embed Int C; in Y 
in such a way that {g;(Ci)) forms a null sequence of sets having pairwise 
disjoint interiors. 

In this setting we have the following construction : 

Regard Y as a subset of 

Ek = Ek x (01 C Ek x E 2  = Ek+2,  

Let 41, 9 2 ,  q3, ... denote distinct points from the unit circle in E2,  and let 
H I ,  HZ , H3 , . . . be the half-spaces in Ek+' isometric to Ef", with q; E Hi and 
13Hi = Ek.  Note that any two such Hi intersect only along Ek. For fixed i, 
g ; J :  B; -+ Y takes B; into Ek = aHi, so (because k + 1 2 2n + 1) there 
exists a map hi: Bi -+ H; satisfying 

hi 1 Int B; is an embedding into Int H; = H; - Ek,  

hi 1 aBj = g i f i  1 dBi, 

and 

diam h;(B;) < 2 diam g;fi(B;) = 2 diam g;(C;). 

Define X to be the subspace of Ek+' given as 

X = ( Y  - UgdCi))  u (Uhi(Bi)). 
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Proposition 1. The space X of the Construction is a generalized n-manifold 
embedded as a closed subset of Ek+’, and there exists a cell-like map 
p :  X -+ Y that reduces to the identity on X n Y .  

Proof. Part 1. X is closed in E k + 2 .  Since (hi(Bj)] forms a null 
sequence of compact sets, this should be obvious. 

Part 2. X i s  an ANR. According to Theorem 14.8, it suffices to show 
the finite-dimensional space X is locally contractible. Before doing that, we 
describe a controlled homotopy equivalence X + Y.  Recalling that 5 takes 
dBi homeomorphically onto Bd Cj , we can produce another map ei: Ci -+ Bi 
for which eifi 1dBi is the identity. Thus, eifi = Id (re1 dB;) and Lei = 
Id (re1 Bd Ci), since the ranges in every case are ARs. For Bi = hi(Bi) and 
Ci’ = gi(Ci), the maps5  and ei induce mapsfi’: BI + Ci and ei: Ci + Bi such 
that ejfi’ = Id (re1 hi(dB;)) and fi’ei = Id (re1 gi(Bd C;)). Piecing these maps 
e: andfi’ together, we obtain homotopy equivalences e: Y -+ Xandp :  X + Y 
defined by the rules 

i f y E  Y n X  
if y E Ci‘. e(u) = 

Then ep = Idx (re1 X n Y )  via an induced homotopy sending each BI into 
itself and pe = Idy (re1 X n Y )  via a similar homotopy sending each C/ into 
it self. 

Now we can show X is locally contractible at x E X .  Since the individual 
sets hi(Int B;) are open in X and locally contractible, it suffices to  consider 
only x E X n Y.  Given a neighborhood U of x in X ,  we choose successively 
(1) a neighborhood T of x = p(x)  in Y for which e(T) c U, (2) a smaller 
neighborhood T i  of x in Y that contracts, via a contraction c t ,  in T,  (3) 
another neighborhood V C U of x in X for which p(  V )  C T’ , and (4) a still 
smaller neighborhood V ’  C V of x such that ep 1 V’:  V’ + U is homotopic 
in U to the inclusion V’ + U (because of the homotopy between ep and Idx 
fixing X n  Y ) .  In addition, ec,p provides another homotopy in e(T)  c U 
between ep(  V’ and a constant map, and the composition of these two 
homotopies gives a contraction of V’ in U, as required. 

Part 3.  p is a cell-like map. Clearly p :  X -+ Y is a closed surjection 
reducing to the identity on X n Y.  In order to study its nondegenerate point 
preimages, examine the mapf;: Bi --$ Ci for some fixed i. By hypothesis the 
nondegenerate point preimages of the latter are fibers of an interior collar 
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(aB;) x I o n  aBi in Bi. If (s) x I i s  one of the fibers crushed out byfi ,  then 
hi@) x I )  is an arc crushed out by p .  There exists a deformation of 
U hi((aB;) x I )  starting with the identity and contracting each fiber 
hi({s) x I )  to the endpoint h; ( ( s ,  0)). Restrictions of this contraction reveal 
the point inverses of p to be contractible in themselves, showing them to be 
cell-like subsets of X .  

Part 4. 
X E X ~ Y .  

X is a generalized n-manifold. It suffices to verify this for 

Claiml. p , :  H,(X, X - p-'p(x)) -r H,( Y ,  Y - {p(x)))isanisomorphism. 

ByTheorem17.1,themapsp:X-r Y a n d p ( : X - p - ' p ( x ) - +  Y - (p(x))  
are homotopy equivalences. Thus, this claim follows from the algebraic five 
lemma, applied to the homology ladder 

.'. f f k ( x  - p-'p(X)) - ffk(x) -+ H k ( x ,  x - p-'p(X))  -+ H k - i ( x  - P-'p(X)) -+ H k - ~ ( x )  * "' 

L 4 ) * I Z  
P. I u,,*I- .*I= 

y * ]  1. .*I ..I I= 

'" Hk(Y - [p(X)l) -+ f fk (y )  + f f k ( y ,  y - IP(X)l) -+ H k - I ( Y  - IP(X)l)  --t H k - I ( y )  "' 

Claim 2. 
is an isomorphism. 

The inclusion-induced w*:  H,(X, X - p-'p(x)) -+ H,(X, X - ( X I )  

Examine the commutative diagram 

... f i k ( x  - { X I )  + fik(x) -t f f k ( x ,  x - 1x1) --* f i k , - I (x  - 1x1) + f i k - I ( x )  -+ "' 

... f i k ( x  - p-lp(X)) --* fik(x) --* Hk(X,  x - p-'p(X)) -+ H k -  I ( X  - P-'P(X)) + f i k - l ( X )  -t "' 

We shall prove the central vertical arrow y, is an isomorphism by verifying 
the first and fourth arrows y* are isomorphisms. 

Let z denote a reduced k-cycle in X - p-'p(x) that 
bounds a (k + 1)-chain b in X - 1x1. Only finitely many of (hi(Bi)] can hit 
both x and 6. Let hi(&) be one of them, let (a&) x I be the specified interior 
collar on M i ,  whose fiber arcs are the nondegenerate point preimages of 
fi: Bi -+ Ci , and let Xi denote the compact subset of aBi mapped by hi to x. 
Without changing z and without changing b - hi(Int Bi), we shall alter b in 
hi(Int Bi) so that the altered b misses hi(X; x I ) .  Finite iteration then will 
yield that z bounds in X - p-'p(x). 

Subdividing b, if necessary, we express b as the sum of two chains b' and 
b" such that bf is disjoint from z and lies in h;(IntBi) while b" misses 
hi(Xi x I). Thus ab' is a reduced k-cycle in hi(Int Bi - Xi x (0, 1)). Regard 

Step I .  y ,  is monic. 
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B; as the standard n-cell in S". Then (S" - Int B;) u (Xi x I )  is contractible, 
so by Lefschetz duality (Spanier [ 1, p. 2981) 

&(h;(Int B; - Xi x (0, I])) s f i k ( S "  - [(S" - Int B;) u (X; x I)]) 

= 0. 

This implies the existence of a (k + 1)-chain c in h;(Int Bi - Xi x (0, 11) such 
that 8b' = ac, and the (k + 1)-chain c + 6'' is the desired alteration of b 
showing z bounds in X - h;(X; x I ) .  

This time let z denote a reduced k-cycle in 
X - (x), and again suppose hi(Bi) meets both x and z .  As in Step 1, 
z = b' + b" with b' in hi(B;) and b" missing h;(Xi x I ) .  Also as in Step 1, db' 
bounds a k-chain c in hi(Int B; - X ;  x (0, 11). Since &(hj(ht B;)) is trivial, 
the cycle b' - c is the boundary of a (k + 1)-chain d i n  h(Int B;) c X - (x). 
Thus, 

Step 2. y* is surjective. 

z - (b" + C) = (b' + b") - (b" + C) = b' - c = ad, 

so z is homologous in X - [x )  to the cycle b" + c, which misses hi(X; x I ) .  
Again, finite iteration moves z off all of p-'p(x). 

Steps 1 and 2 complete the proof of Claim 2. Claims 1 and 2 combine to 
give that 

H*V, X - [XI) 2 H*(Y,  y - (P(X)J), 

and, since Y is a generalized n-manifold, X is one too. 

Remark. It would be helpful to have a simple topological proof that, if the 
space Y of the construction is a manifold, so also is X .  

Before selecting specific thickened gropes and then engaging Proposition 
1 ,  we derive some technical results needed for the main theorems. The first 
pair sheds more light on the way gropes unite homology and homotopy 
properties. 

To be explicit, in a generalized n-manifold X the singular set, or the 
nonmanifold set, denoted S(X) ,  consists of all points at which X fails to be 
a genuine n-manifold. 

Lemma 2. Suppose Y is a generalized n-manifold, Z is a closed (n - 3)- 
dimensional subset of Y,  a: B2 -+ Y is a map, and E > 0. Then there exist 
a compacfified grope D +  and a map p: Df -+ Y satisfying 

(a) P(D') C N ( 4 B 2 ) ;  E ) ,  

(b) p 1 aD+ is a loop within E of a I aB2,  and 
(c) p-yz) = D+ - D. 
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Proof. It follows from Lemma 26.2 that Z ,  being (n  - 3)-dimensional, 
is 0-LCC and 1-lcc (each neighborhood U of z E Z contains a smaller neigh- 
borhood Vof z such that every loop in V - Z is null homologous in U - Z ) .  

Choose an approximation ao: B2 -+ Y to CY such that a g l ( Z )  is 
0-dimensional and lies in Int B2. Identify pairwise disjoint subdisks 
A I ,  Az, ..., Am of Int B2 whose interiors cover crg'(Z) and whose images are 
tiny. In particular, assume ao(A;) to be so small that a0 I aA; bounds a small 
singular disk-with-handles poi: DO; -+ Y - Z. Let 

DO = B2 - U(Int A;) u (U DO;), 

appropriately conjoined, and let PO: Do -+ Y - Z be the map defined as 010 
on B2 - u Int Ai and as poi on DO;, Specify a complete handle curve JO for 
DO with JO C U D O ; .  

Assume D;- ,, J;- 1,  and pi- : D;- I -+ Y - Z already have been 
defined, with the image of each component of J;-' very small. For each 
simple closed curve J i n  Ji- let B(J)  be an abstract 2-disk bounded by J and 
let CYJ: B (J )  -+ Y be a small singular 2-disk bounded by pi-1 1 Ji with aJ ' (Z )  
a 0-dimensional subset of Int B(J) .  Exactly as in Stage 0, replace B(J)  by a 
small disk-with-handles D(J) and CYJ by a map PJ: D(J) + Y - Z near the 
image of C Y J .  Set Di = u D ( J )  and pi = U ~ J :  Di -+ Y - 2. Specify a 
complete handle curve J; for Di, each component of J; having very small 
image under pi. 

By installing suitable size controls while constructing DO, 
D1, . .., and P O ,  P I ,  . .., we obtain a natural extension p: D+ -+ Y of the map 
Up;: D = U D ;  -+ Y - Z .  Such a map obviously satisfies the conclusions of 
lemma. 

Lemma 2 has a variation in a slightly different setting, the proof of which 
is left as an exercise. 

Lemma 2'. Suppose Y is a generalized n-manifold, 2 is a connected 
generalized (n  - 1)-manifold embedded in Y as a closed subset that separates 
Yintodisjointopensets Wand W ' , a :  B2 -+ C1 Wisamap,ande > 0. Then 
there exists a compactvied grope D+ and a map p: D+ -+ Y satisfying 

Stage 0. 

Stage i. 

Stage o. 

(a) /3(D+) c N(a(B2); e) n C1 W ,  
(b) p 1 aD+ is a loop within E of CY I aB2, and 
(c) p-'(z) = D+ - D.  

Below is another lemma detailing the existence of partial PL structures and 
allowing extensive application of Corollary 38.3Aingeneralized n-manifolds, 
which, due to their nonmanifold sets, tend not to admit global PL structures. 
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Lemma3. SupposeDisagrope,Misann-manifold, n 1 5,andF: D -+ M 
is a closed 1-LCC embedding. Then some neighborhood W of F(D) in M 
admits a PL triangulation for which F(D) is a subpolyhedron. 

According to (Bryant-Seebeck [l,  2]), F(D) is locally tame. 
Hence, it has a neighborhood W that strong deformation retracts to F(D). 
The structure theorem of (Kirby-Siebenmann [ 11) attests that the obstruction 
to imposing a PL structure on W lies in H4( W ;  ZZ) z H4(D; ZZ), which is 
trivial. In the resulting PL structure F(D) is ambiently equivalent to a PL 
embedding, again by (Bryant-Seebeck [I, 2]) ,  and the inverse of said 
equivalence transforms the PL structure on Wto one in which F(D) is a PL 
subcomplex. 

Next we have the first version of the main result. For its proof the tactics 
are to identify a dense collection of gropes in Y, to reorganize them into a 
null sequence of pairwise disjoint gropes, still sufficiently dense, and to 
replace thickenings of the reorganized collection, as in Proposition 1, thereby 
forming th: desired generalized n-manifold X .  It will be clear that the natural 
copy of Z in X incorporates S(X).  While it may be intuitively clear that Z 
is 1-LCC embedded, a large share of the argument is devoted to detailing why 
this 1-LCC property holds. 

Theorem 4. Suppose Y is a generalized n-manifold, n 2 5 ,  embedded as a 
closed subset of some Euclidean space Ek, k L 2n, and Z is a closed, (n - 3)- 
dimensional subset of Y containing S(Y) .  

Then there exist a generalized n-manifold X ,  a 1-LCC embedding 
A :  Z -+ X such that S(X)  C A(Z), and aproper cell-like mapping p :  X -+ Y 
such that pA = Id=. 

Proof. Let a1 , 012 , a3, ... : B2 -+ Y be a dense subset of the space of all 
maps B2 -+ Y .  By Lemma 2, there exist compactified gropes ' D + ,  2D+,  
30+, ... and maps pi: '0' -+ Y satisfying 

Proof. 

(a) pi('D+) C N(a;(Bz); l/i), 
(b) pi I d'D' is a loop within l/i of a; I dB2, and 
(c) p;'(Z) = '0' - 'D. 

Since the nonmanifold part S( Y )  of Y lies in 2, it follows from (c) that each 
fl;('D) is a closed subset of the manifold Y - 2. Consequently, by the proof 
of Proposition 24.1 we may assume that the maps p; I 'D: 'D -+ Y - Z are 
closed 1 -LCC embeddings having pairwise disjoint images. 

By Lemma 3 each of the sets p;('D) has a neighborhood W, in Y - Z admit- 
ting a PL triangulation for which p;('D) is a subpolyhedron. We could apply 
Corollary 38.3A to choose pinched closed n-cell complements Ci such that 

Pi('D') C Ci C C1 W ,  
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but that action would be premature, because we also need to have the collection 
(Ci) form a null sequence, so we must vary the construction somewhat. 

First crumpled cubes. Choose a stage 'Dk of ' D  such that images of 
components 'D - (lD1 u u 'Dk) under p1 have diameter less than 1. Let 
U1 denote the interior of a regular neighborhood of 'DI u -.. u 'Dk in 'D.  
Then 'D - u k  is a finite union of pairwise disjoint gropes mapped by p1 to 
sets of diameter less than 1. It is these gropes, rather thanPl('D), that we shall 
thicken in W1. 

such that pl('D - UI) covers a 
subcomplex, and choose a second derived subdivision such that, if M1 is the 
simplicia1 neighborhood of p;('D - Ul) in this second derived, then: 

(1) each component of M I  has diameter less than 1,  and 
(2) each simplex of M I  meeting pl('Dj u 'Dj+l u . - a )  has diameter less 

than l / j  and misses pj(jD) (j > 1). 

Let M1l, ..., Ml,k(l) be the components of M I  whose closures touch Z. 
Their Freudenthal compactifications Cll,  . . . , C 1 ,  k(1)  are closed n-cell- 
complements by Corollary 38.3A, and there is a unique map 

Determine a PL triangulation of 

g1j: Clj -+ C1 Mlj C Y 

that reduces to  the identity on Mlj.  In addition, there exist n-cells Blj and 
cell-like maps f l j :  B1j + Clj satisfying the conclusions of Lemma 38.2. 

Assume all.& Bij -+ C;j and gij: Cij -+ C1 Mij C Y 
have been chosen for i < m ,  with the C,,j pairwise disjoint objects missing 
pr('D), r > i, and having diameter < l / i .  Proceed as with the first one, 
choosing a stage "D, of "D such that images of components "D - 
("'Dl u 1.. u mDs) under P m  have diameter less than l /m and miss all of the 
M;j, i < m .  Pick U m  as U1 was picked, triangulate W m  as WI was triangulated 
so that pm(mD - Urn) covers a subcomplex, and choose the second derived so 
that the simplicial neighborhood M,  of p m ( m D  - Um) satisfies 

( l m )  each component of M,,, has diameter less than l / m  and misses all 
previous Mij's and 

( 2 4  each simplex of MI,, hitting pm(mDj u "Dj+l u ...) has diameter less 
than l / j  and misses /3j('D) (j > m). 

Again let Mm1, . . . , Mm,k(m)  be the components of M, whose closures touch 
Z ,  and let C m l ,  ..., Cm,k(m)  denote their Freudenthal compactifications, with 
gmj: C m j  -+ C1 M m j  C Y and f m j :  B,j -+ C,,, the associated maps. 

Repeating the above, one eventually obtains countably many maps 
fi,: Bij + Cij and gij: Cij + CIMij C Y producing the setting previously 
described. Let X be the generalized n-manifold, p :  X --f Y the proper cell-like 
map, and A :  2 + X the identity embedding promised in Proposition 1. 

Later crumpled cubes. 
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Clearly 1 is a closed embedding and pl  = Id=. Moreover, X - A(2) is a 
manifold because only finitely many changes are made near any point of 
Y - 2, due to the fact that each of the sets g;j(C;j) intersects 2 and {gij(Cij)] 
forms a null sequence. 

Because X - p-'(Z) and Y - Z are manifolds, we can apply the cell- 
like approximation theorem to modify p in a manner that introduces no 
changes over 2 and provides a new cell-like surjection p :  X -+ Y such that 
p 1 p-'(  Y - 2): p-'( Y - 2)  -+ Y - 2 is 1-1. The nondegeneracy set of this 
new mapp then corresponds to those collar arcs from Bij whose images under 
gijhj belong to 2. Since the set of points in any Cij mapped by gij to Z is 
0-dimensional, consisting solely of those points associated with the tip set 
D+ - D of that compactified grope giving rise to Cij, the preimage of 2 in 
Bij under gijfij is 1-dimensional. As a consequence, p-'(Z) - A ( 2 )  is also 
1 -dimensional. 

The only thing left to do is to check that the embedding A :  2 -+ Xis  1-LCC. 
Toward that end, consider a neighborhood U of zo E A(2). Find an open set 
U* about A ( 2 )  - Usuch thatp-'p(zo) n C1 U* = 0, and set 0 = U u U*. 

Claim. Thereexist aneighborhood Wofp-'(Z) in Xand amap R :  W -+ 0 
fixing a neighborhood Q of 1(Z), sending W - A(Z), into 0 - A(Z), and 
sending each p-'(z) into itseF. 

Proof of the Claim. Let h : Bh -+ X be any map from an n-cell Bh defining 
one of the pinched n-cells in X used in changing Y to X .  Let S h  = dBh and 
let S h  x [0, 11 denote the collar on Sh in Bh (with Sh = S h  x (01) used to 
identify the nondegenerate point preimages of Bh -+ c h ,  where g(Ch) = 

ClMh C Y.  Select a point bh of Bh - ( S h  x [0, 11) and name a retraction 
rh: BI, - [bh) + S h  x [0, 11 for which a(Bh - (SI, x [0, 11)) = S h  x {I). (If 
the existence of rh is not obvious, just retract a neighborhood of SI, x [O, 11.) 
Pick t h  E (0, 11 and let sh: S h  x [0, 11 --f Sh x [0, th] be the retraction sending 
[sj x [ t h ,  11 to (s, t h ) .  Then for some t h  E (0, 11 and some neighborhood Wh 

of h(Bh np-'(Z) in h(Bh), hshrhhh'(K) c 0. 
With 3 representing the (finite) set of defining maps h: Bh -+ X for which 

h(Bh) is not contained in 0, define Was 

W = (0 - U(h(Bh) I h E Fj) u (Ut Wfi 1 h E 511, 

and define R:  W -+ X by the formula 

if X E  0 - U[h(Bfi)lh E 5 )  
R(x)  = 

This map R has the properties called for in the claim. H 
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Apply the claim to locate a neighborhood V of p-'p(zo) in W such 
that R(V)  C U. Choose neighborhoods T and T' of ~ ( z o ) ,  with T' C 
T,  p- ' (T)  C V,  and, for some integer K,  every C1 Mij having diameter less 
than 1/K and meeting T'  lies in T. Then pick neighborhoods V' and V" of zo 
in Q n V n U such that p(  V ' )  c T' and every loop in V" is null homotopic 
in V' .  

Having made all the necessary constructions, we assert that every loop L 
in V" - A(Z) is null homotopic in U - A(Z). Since p - ' ( Z )  - A(Z) is 
1-dimensional, L can be adjusted in V" - A(Z) to a loop L*: S' -+ 

V" - p- ' (Z) .  By construction, L* extends to a map a: B2 -+ V'. The singular 
disk pa: B2 + T' then is the uniform limit of some subsequence of ( ~ 1 ,  

a2, ... : BZ -+ Y. Choose m > K S O  that b m ( m D + )  C T ' ,  P m ( d m D )  C T' - Z ,  
and p-'pmIi3'"D is homotopic to L* in V" - p- ' (Z) .  To complete the 
argument, it suffices to verify P-'& I amD is null homotopic in U - A(Z). 

Recall the manner in which portions of pni('"D+) were thickened in Y - Z 
to form Mm . With Mml,  .. ., Mmk denoting the components of M m  whose 
closures touch T ' ,  note that each M m j  is a pinched crumpled n-cube of 
diameter less than 1/K, which implies it lies in T. Using the spaces and maps 

Bmj 

associated with the sets C m j  in the construction, one finds that P-'Pm 1 d"Df 
contracts in 

p-'(T'  - 2 )  u (Uhmj(Int B m j ) )  C (X  - A(2)) n p - ' ( T ) .  

Since R fixes p-'/3m(dmD), p - ' (T )  C V, and R(V - A(Z)) C U - A(Z), it 
follows that p-'Pm 1 dmDt contracts in ( X  - A(Z)) n Rp- ' (T)  c U - A(Z),  
as was to be shown. 

Here is an alternative version of the main result. 

Theorem 4'. Suppose Y is a generalized n-manifold, n 2 5 ,  embedded as 
a closed subset of some Euclidean space E k ,  k 2 2n, and Z is a generalized 
(n-1)-manifold embedded as a closed subset of Y with Z 3 S(Y) .  

Then there exist a generalized n-manifold X ,  a 1-LCC embedding 
A ; Z -+ X such that S(X)  C A(Z), and a proper cell-like mapping p :  X + Y 
such that p l  = Id=. 

Proof. The only variation from the argument for Theorem 4 involves a 
splitting at the very beginning. To get started properly, assume Z to be 
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connected and to separate Y into two components YI and Y2, properties 
which hold locally (by duality), and for j = 1,2,  let 

. . .  
a;, a;,  a:, ... : B2 + c1 Y J  

be dense in the space of all maps B2 + C1 8.  Then proceed exactly as in 
Theorem 4, invoking Lemma 2‘ instead of Lemma 2, and replace pinched 
crumpled cubes in both C1 K and C1 yZ with pinched n-cells. 

EXERCISES 

1. Prove Lemma 2’. 

40. RESOLUTIONS AND APPLICATIONS 

Throughout this text the preponderant stress has fallen upon cell-like 
decompositions and cell-like mapsf: M -+ Ydefined on manifolds. The bulk 
of the information given usually has pertained to  M ;  based on that informa- 
tion, the overriding objective has been to deduce corresponding information 
about Y .  What now looms up ahead concerns an important reverse problem : 
given a space Y, under what conditions can one obtain a cell-like surjection 
f :  M + Y defined on an n-manifold M ?  

Succinctly, in the reigning terminology, the problem concerns the existence 
of resolutions. A resolution for a space Y is a pair (M,f) consisting of a 
manifold M and a proper cell-like surjection f :  M + Y. On a finite-dimen- 
sional space Y a necessary condition for the existence of a resolution is that 
Y be a generalized n-manifold (Corollary 26.1A). The condition is nearly 
sufficient ; that fact, due to  F. Quinn [3,4], has profound implications, some 
of which will be presented in this section. 

The exceedingly complex proof of Quinn’s result involves controlled 
surgery techniques quite unlike anything used here, techniques far too 
lengthy and too complicated for us to adequately treat in this text. While the 
proof is beyond our grasp, nevertheless the result itself cannot be ignored ; 
the most powerful unifying aspects and far-reaching consequences of cell- 
like decomposition theory elsewhere in geometric topology frequently 
depend on the existence of such resolutions. Hence, because of their over- 
whelming significance, developing resolutions by nonsurgical methods seems 
a worthwhile endeavor. That constitutes a partial purpose behind this 
section. In case the nonmanifold set lies in an (n - 1)-manifold we apply a 
result of Seebeck and Ferry and, using it, in case the singular set is low-dimen- 
sional we recite an argument of Cannon, Bryant, and Lacher, involving only 
relatively familiar techniques, both of which lead directly to  the existence of 
resolutions and both of which also have fundamental applications. Then we 
take up Quinn’s resolution theorem and study the unilateral applications. 
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The key result to be employed initially is stated below. Originally it was 
claimed by C. L. Seebeck and A. V. cernavskii, independently, but 
eventually cernavskii’s claim was retracted. Later, better results were 
obtained by S. Ferry [l] ,  who published the first proof. The theorem also was 
derived by Quinn, as a consequence of his end theorem [ 11. 

Theorem 1 (Seebeck-Ferry). SupposeMis a locally compact metric ANR 
containing a closed subset B such that M - B is an n-manifold, n 2 5 ,  B is 
an (n - 1)-manifold 1-LCC embedded in M ,  and H,(M, M - (bJ)  = 0 for 
all b E B. Then M is an n-manifold with boundary and aM = B. 

Remark. In case M is known to be an n-manifold with boundary at some 
point b of B (connected), a situation arising in many applications, then a 
proof can be given based on traditional engulfing methods initiated by Price 
and Seebeck [ 11. The local collar structure at b can be dragged along (n - 1)- 
cells in B to produce local collars everywhere throughout B. Theorem 1 
obviously incorporates the 1-LCC characterization of flatness in codimen- 
sion one (see cernavskii [3] or Price-Seebeck [l] and Daverman [2]), which 
attests that every (n  - 1)-manifold 1-LCC embedded in an n-manifold, 
n 2 5 ,  is locally bicollared. 

Corollary 1A. If X is a generalized n-manifold, n 2 5 ,  whose singular set 
S(X)  is contained in an (n - 1)-manifold Z embedded as a closed, 1-LCC 
subset of Y,  then X is an n-manifold. 

Proof. Locally 2 separates Y into two pieces and satisfies the hypotheses 
of Theorem 1 in the closure of each. 

Corollary 1B. If  Y is a generalized n-manifold, n 2 5 ,  whose singular set 
S ( Y )  is contained in an (n - 1)-manifold Z embedded as a closed subset of 
Y ,  then Y has a resolution. 

Proof. Theorem 39.4‘ provides another generalized manifold X, a copy 
of Z 1-LCC embedded in X and including S(X),  and a cell-like map 
p :  X -+ Y .  By Corollary 1 A, p :  X -P Y is a (manifold) resolution of Y .  

The existence of resolutions in the above setting brings about another 
proof of the locally flat approximation theorem for codimension one 
embeddings by F. D. Ancel and J. W. Cannon [l]. 

Corollary 1C (Ancel-Cannon). Each closed embedding of an (n  - 1)- 
manifold N in an n-manifold M ,  n 2 5 ,  can be approximated, arbitrarily 
closely, by a locally flat embedding. 

Proof. As in Corollary 1B there exists a cell-like mapp:  X --* Mdefined 
on a generalized n-manifold X and a 1-LCC embedding A :  N + X such 
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that S(X)  C l ( N )  and pl  = IdN. Corollary 1A ensures X is a manifold in 
which L(N) is locally bicollared and, therefore, Edwards's cell-like approxi- 
mation theorem yields homeomorphic approximations h: X + M to p ,  
which transform the local bicollars on I ( N )  to bicollared embeddings near 
N. 

In Corollary 1C as well as in several other applications to manifolds given 
in this section, the conclusions would be even more accessible if there were 
an elementary verification that when the replacement procedures of Section 
39 are put into operation on an n-manifold Y,  the resulting generalized 
manifold X is automatically an n-manifold. 

Corollary 1B also furnishes a new proof that all crumpled n-cubes are 
closed n-cell-complements (Daverman [4]). In effect, this indicates that 
codimension one wildness can be studied one side at a time. 

Corollary 1D. Each crumpled n-cube C, n 2 5 ,  is a closed n-cell-comple- 
ment. In fact, ifC is embedded in S", then there exist embeddingse: C + S",  
arbitrarily close to the inclusion, such that S" - e(1nt C) is an n-cell. 

Proof. Applying the technique of Theorem 39.4' only on the one side 
S" - Int C, we find a generalized n-manifold Y, a cell-like map p: Y 4 S", 
and an embedding e: C -+ Y such that pe = Idc and Y - e(C) is 1-LCC. 
Theorem 1 implies that K = Y - e(1nt C )  is an n-manifold with (n - 1)- 
sphere boundary. In addition, Y satisfies the DDP, a fact left as an exercise. 
Since Y has a resolution by Corollary lB, the cell-like approximation 
theorem certifies Y is manifold. Another application, starting this time with 
p :  Y 4 S", yields homeomorphisms p :  Y + S" with pe as close as desired to 
the inclusion C -+ S". Finally, by the generalized Schonflies theorem, Kis an 
n-cell. 1 

Examined next are analogues to the above for generalized manifolds 
in which the dimension of the singular set falls in the strongly trivial 
range. Proposition 2 was derived by Cannon, Bryant, and Lacher [l], who 
through much extra exertion confirmed it for the slightly better range 
2 (dim S( Y ) )  + 2 I n. 

Proposition 2. If X is a generalized n-manifold whose singular set S(X)  
is 1-LCC embedded and has dimension k, where 2k + 3 5; n, then X is an 
n-manifold. 

Proof. First consider the case where S(X) is compact O-dimensional. 
Given a Cantor set K topologically embedded in a connected n-manifold M 
(n 2 3), J .  W. Alexander [l] demonstrated how to build an n-cell Bin M s o  
that K lies in its boundary. Beginning with a small n-cell near K ,  one simply 
pushes out along branched feelers nearer and nearer to K .  In particular, 
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when n > 3, this can be organized so that, at the end, K is standardly 
embedded in aB, as a tame subset. 

Precisely the same construction can be applied in X to show that S(X) lies 
standardly in the boundary of some n-cell B in X. Here “standardly” means 
S(X) is 1-LCC embedded in aB. If any reasonable sort of construction 
procedure is followed, aB - S(X) will be locally flatly or 1-LCC embedded 
in X - S(X),  from which it will follow that B itself is I-LCC embedded in 
X. Theorem 1 indicates Cl(X - B) is an n-manifold with boundary, and X ,  
being expressed as the union of two n-manifolds B and Cl(X - B), which 
have common boundary, is an n-manifold without boundary. 

The proof for the general case, where 2k + 3 5 n,  depends on essentially 
the same idea. Focus o n s  E S(X) .  Since S(X) is 1-LCC and low-dimensional, 
there exists a map (embedding) m: S(X)  + X - S(X) homotopic in X 
to the inclusion. Find a closed n-cell B in X - S(X)  containing m(s) in its 
interior. Then s has a closed neighborhood T in S(X)  for which 
m(T) C Int B. Due to the dimension restriction on S(X) ,  there exists a I-LCC 
embedding8 T + aB, which then is homotopic in X t o  the inclusion T --t X .  
It is easy to find a homotopy F: T x I + X - Int €3 between f and the 
inclusion; since S(X) and B are 1-LCC, it can be adjusted so that F(T x 
(0, 1)) n (S(X) u B) = 0, and then it can be adjusted further, using the 
manifold properties of X - S(X), to be a 1-LCC embedding. Now the arcs 
F((tJ x I )  can be squeezed down to T ;  specifically, one can find a map q of 
Xwith nondegeneracy set (F((t) x I) 1 t E T ]  and such that q 1 S(X) = Idscx). 
Then q I B is 1-1. Check that q(B) is 1-LCC embedded. In an open subset U 
of s with U n S(X) C T, apply Theorem 1 to see that U - q(1nt B) is an n- 
manifold with boundary U n q(aB) and, therefore, U is an n-manifold 
without boundary. Accordingly, every point of S(X) has a manifold neigh- 
borhood in X ,  so X itself is a manifold. = 

Proposition 2 has two antecedents, both about generalized manifolds 
having 0-dimensional singular sets. Bryant and Hollingsworth [I] proved 
that a generalized n-manifold X, n L 5 ,  has a resolution provided 
dim S(X) = 0 and X x E’ is a manifold. Bryant and Lacher [l] were able 
to do the same without hypothesizing that X x E’ is a manifold. 

Corollary 2A. 
singular set S(Y) ,  where 2k + 3 I n, then Y has a resolution. 

If Y is a generalized n-manifold, n 2 5 ,  with k-dimensional 

See also Theorem 39.4. 

Corollary 2B. 
(n + 1)-manifold. 

For n L 4 each homology n-sphere H” bounds a contractible 
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Proof. The open cone Yon H" is a generalized (n + 1)-manifold whose 
singular set S(X)  is the cone point. Theorem 39.4 produces another general- 
ized (n  + 1)-manifold X and a cell-like map p :  X + Y carrying the potential 
nonmanifold set S(X) onto S ( Y )  in 1-1 fashion, such that S(X)  is 1-LCC. 
Since X is a manifold by Proposition 2, we can adjust p over Y - S(Y) so 
that it carries p-'( Y - S( Y ) )  homeomorphically onto Y - S( Y ) .  Then, for 
a natural copy of the (closed) cone C on H" in Y ,  p - ' (C)  is an (n + 1)- 
manifold bounded by H", which is contractible becausep is a fine homotopy 
equivalence (Theorem 17.1). 

Corollary 2C. The double suspension of every homology n-sphere H" is 

Assume n 2 3 .  For the most part this was taken care of in 
Corollary 24.3D, except that in some cases extraneous results were invoked 
asserting that the double suspension of H" has a resolution. Since E2H" is 
a generalized (n + 2)-manifold having I-dimensionaA singular set, that step 
now follows from Corollary 2A. 

Finally, we will consider Quinn's full resolution theorem and its con- 
sequences. 

Theorem 3 (Quinn [3,4]). A connectedgeneralized n-manifold Y ,  n 1 5 ,  
has a resolution i f  and only i f  a certain integer-valued local index i (Y)  
equals 1. 

Remark. Whether the obstruction i( Y )  to the existence of a resolution ever 
is nonunitary is unknown. It is known to  be locally defined and locally 
constant [4]. Hence, Y is resolvable whenever some nonempty open subset 
of Y is. According to Quinn [l] an object like Y has a resolution if its product 
with some Ek does, and consequently Y has a resolution if stably some 
nonempty open subset does. 

CoroHary 3A. Each connected generalized n-manifold Y ,  n 2 5 ,  for  which 
S( Y) # Y has a resolution. 

As previously mentioned, Theorem 3 and Edwards's cell-like approxi- 
mation theorem coalesce to provide a striking topological characterization 
of manifolds. The potentially unnecessary hypothesis for Theorem 3 brings 
about the solitary discordant note in the statement ; elimination of the need 
for that one instantaneously would eliminate the need for the corresponding 
phrase in Theorem 4. 

Theorem 4 (Edwards-Quinn). A generalized n-manifold Y ,  n 1 5 ,  is an 
n-manifold if and only if it satisfies the disjoint disks property and each 
component of Y has a local index 1 .  

~ n + 2  

Proof. 
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Corollary 4A. Let Y be a generalized n-manifold, n 2 4, whose singular set 
S( Y) is either (n - 2)-dimensional or lies in a generalized (n - 1)-manifold 
contained in Y as a closed subset. Then Y x E’ is an (n + 1)-manifold. 

26.12, Y x E’ has the DDP. 

Theorem 4 sustains an extension of Corollary 1C to cover the case where 
N is a generalized (n  - 1)-manifold whose product with E’ is a manifold. 

Corollary 4B. Let N be a generalized (n - 1)-manifold, n 2 5 ,  whose 
product with E is a manifold. Each closed embedding of N in an n-manifold 
M can be approximated, arbitrarily closely, by a locally bicollared 
em bedding. 

Proof. 

Proof. By the proof of Corollary 24.3C or, respectively, of Theorem 

Theorem 39.4’ gives a generalized n-manifold X in which a 
1-LCC copy of N contains the singular set, plus a cell-like map X -, M .  
Corollary 3A promises a resolution for X .  That resolution is used here, in 
combination with Lemma 26.11 (applied locally), to verify X is an n- 
manifold. With engulfing methods Cannon [2] has shown that locally Nhas 
product neighborhoods in X of the form U x (- 1 ,  1 )  (U open in N), from 
which the conclusion follows as in Corollary 2B. 

The existence of resolutions for those generalized manifolds having 
codimension three singular sets leads to another proof of the very beautiful 
codimension three tame approximation theorem of M. A. Stan’ko [3], which 
inspired the development of gropes. His theorem attests that embeddings of 
codimension three compacta in manifolds can be approximated by 1-LCC 
embeddings. When the compacta themselves are manifolds, the 1 -LCC 
embeddings are locally flat ; when the compacta are polyhedra and the range 
manifold is PL, the 1-LCC approximations are ambiently equivalent to PL 
embeddings. 

Corollary 4C (Stan’ko). I f Z  is an (n - 3)-dimensional closed subset of 
an n-manifoldMand E :  Z + (0, 1) is continuous, then there exists a 1-LCC 
embedding A: Z + M satisfying p(z, A(z)) < E(Z) for all z E Z .  

For n < 5 this stems from the classical techniques of Hurewicz 
and Wallman [l] showing that the embeddings are dense in the space of all 
maps from Z to M .  For n 1 5 this follows from a variant to the proof of 
Corollary 1C. H 

Proof. 

There is also a uniqueness aspect to resolutions. The source manifold M 
appearing in any resolution of a given generalized n-manifold Y is, in most 
cases, known to be unique. When Yrepresents a genuine n-manifold (n 2 5 ) ,  
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for which the only resolutions are the near-homeomorphisms, this fact is 
obvious ; with arbitrary generalized manifolds of this dimension, it is 
not quite so obvious but follows from the thin h-cobordism theorem of 
Quinn [ l ] .  

Theorem 5 (Quinn). Let f 1 :  MI -+ Y and f 2 :  MZ + Y be two resolutions 
of a generalized n-manifold Y ,  n 2 5 .  Then, for each open cover 'u of Y,  
there exists a 

homeomorphism H :  Ml + MZ such that f2H is %-close to f i .  

The uniqueness of resolutions lends support to the following result 
suggested in (Cannon [6]) about the normal form for closed-(n - 3)- 
dimensional cell-like decompositions. 

Theorem 6 (Normal form for decompositions). Suppose G is a closed- 
(n - 3)-dimensional cell-like decomposition of an n-manifold M ,  n r 5 .  Set 
Y = M/G.  Then there exist a closed 1 -LCC embedding A : S( Y )  -+ M and a 
cell-like map p :  M + Y satisfying 

(a) P A  = Ids(n ,  
(b) p is 1-1 over Y - S(Y) ,  
(c) p-'(S( Y ) )  - A(S( Y ) )  is 1-dimensional, and 
(d) each nondegenerate preirnage of p is a I-dimensional, contractable 

set. 

Proof. Virtually all of this was established in the course of deriving 
previous results. In particular, in Section 39 (Proposition 39.1 and Theorem 
39.4) it was shown how to obtain a cell-like map p :  X -+ Y and 1-LCC 
embedding A : S( Y )  -+ X satisfying conclusions (a)-(c) and such that S(X)  c 
l ( S ( Y ) ) .  The proof actually reveals what the point inverses are like: for 
s E S( Y )  p-'(s) is composed of a null sequence of cones over 0-dimensional 
compacta, all wedged together at the common cone point A@).  This verifies 
conclusion (d). By Theorem 4, X is an n-manifold. 

In a sense this is almost enough: the study of Y = M/G can be approached 
by studying the decomposition of X induced by p.  Theorem 6 adds the 
final touch-the manifold X coincides with the given manifold M 
begetting Y.  
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EXERCISES 

1. Let C be any crumpled (n - 1)-cube in En-' ,  n 2 5 ,  such that Spo(C) = S"-' .  
Apply Theorem 1 to prove Infl(C) is a crumpled n-cube whose boundary is 
collared in Cl(E" - Infl(C)). 

2. Attach an n-cell B to an arbitrary crumpled n-cube C, n 2 5 ,  via a homeomor- 
phism between their boundaries. Show directly that Y = B u C is a generalized 
n-manifold. 

3. Show that the space Y of Exercise 2 satisfies the DDP. 
4. If E is an n-cell in a generalized n-manifold Y and K C aB is a Cantor set satisfying 

(i) K is 1-LCC embedded in Y and (ii) aE - K is 1-LCC embedded in Y - Int B, 
then B is 1-LCC embedded in Y .  

5. Show that the n-cell q(B) identified in the proof of Proposition 2 is 1-LCC 
embedded. 

6 .  Prove Corollary 4C. 
7. Letfl : M I  + Y and f2: M2 --t Y be two resolutions of a generalized n-manifold Y,  

n 2 4. Identify the mapping cylinders off1 and f2 together along Y to form a space 
W. Show that Wis a compact (n + 1)-manifold having two boundary components 
M I  and M2, each of which is a strong deformation retract of W. 

41. MAPPING CYLINDER NEIGHBORHOODS 

Every finite-dimensional ANR Y can be embedded in some manifold of 
sufficiently high dimension. Taking a retrospective look at such ANRs Y ,  in 
this concluding section we seek optimal neighborhoods of the embedded 
objects. Given a closed subset X of a manifold M ,  we say W is a manifold 
mapping cylinder neighborhood of X in M (henceforth to  be abbreviated as 
manifold MCN) provided (1) W is a manifold with boundary, (2) W is a 
closed neighborhood of Xin  M ,  and (3) there is a proper retraction r: W -, X 
such that W is equivalent to  the mapping cylinder, denoted Map(r'), of the 
map r' = r 1 a W ,  under a homeomorphism preserving both X and a W .  
Certainly those cornpacta X having manifold MCNs must themselves be 
ANRs. The aim of this section is to  establish a converse, that every ANR 
nicely embedded in a manifold M ,  subject to  certain codimension restric- 
tions, has a manifold MCN. The proof relies heavily on the approximation 
results previously developed and ultimately, in a crucial way, on a special case 
of Quinn's resolution theorem, Theorem 40.3. 

This sort of result was first obtained in the PL category by J. H .  C. 
Whitehead [2], who showed that a PL regular neighborhood of a subcomplex 
Xof  a PL manifoldMis a (PL) manifold MCN of X. In the wider topological 
category, M. W. Hirsch [l] showed that stably a submanifold X of a 
manifold M has a disk-bundle neighborhood; that is, X = X x 10) has a 
disk-bundle neighborhood in M x E k ,  where k is large. 
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Work on the problem is closely connected to an old question first raised 
in 1954 by K. Borsuk [2], which asks whether every compact metric ANR Y 
has the homotopy type of a finite complex. In 1950 Whitehead [3] had proved 
that every such Y has the homotopy type of a countable CW complex and 
asked whether it would have the type of a finite-dimensional one. Affirm- 
ative answers to Borsuk’s question were obtained for the I-connected 
ANRs by C. B. deLyra [l] in 1957, for finite-dimensional manifolds by 
Kirby-Siebenmann [l]  in 1969, and for Hilbert cube manifolds by T. A. 
Chapman [I] in 1973. The issue was completely settled in 1974 by J. E. West 
[l], inspired by work of R. T. Miller [l] at virtually the same time. Miller 
showed that if Y is a compact, k-dimensional ANR 1-LCC embedded in an 
n-manifold M ,  where n - k L 4 and n 1 5 ,  then Y x [0, 1) has a manifold 
MCN in M x (- 1, I ) .  Transferring the problem to the infinite-dimensional 
world, West obtained the analogue for an arbitrary compact ANR Y nicely 
embedded (as a 2-set) in a Hilbert cube manifold A4 and employed infinite- 
dimensional techniques to  prove that then Y itself has a Hilbert cube 
manifold MCN in M x (- 1 ,  1 ) ;  the final answer to Borsuk’s question 
followed immediately from the work of Chapman. More recently, F. Quinn 
developed an alternative way to answer the question, based on his end 
theorem (Quinn [l]). 

Our initial concern will be with the proof of Miller’s result. Later, after 
locating a manifold MCN Wof Y x [0, 1)  in M x (- 1, l ) ,  we will reproduce 
an argument presented by R. D. Edwards in his 1978 lectures at  the CBMS 
Regional Conference held in Oklahoma. In essence, his argument exploits 
decomposition methods to show the closure of W in M x E l ,  a kind of 
pinched neighborhood of Y x [0, 11 there, is a generalized manifold (in fact, 
is a manifold factor) MCN of Y itself. Application of Quinn’s work on 
resolutions quickly will lead to a genuine manifold MCN. 

For pinpointing precisely which embedded ANRs have manifold MCNs, 
Quinn’s alternative argument mentioned above gives a better result than 
what is derived here. While he is able to treat any codimension 3 ANR Y 
I-LCC embedded in an n-manifold M ,  we not only must restrict to 
codimension 4 ANRs Y but also must stabilize to M x E 1  before successfully 
obtaining a manifold MCN of Y = Y x (0). On the other hand, for 
addressing the basic question of which abstract ANRs have manifold MCNs, 
the approach to be taken does offer two advantages. First, it involves a 
more constructive technique: given a specific embedded ANR Y,  the 
procedures outlined can be retraced to recover a specific map determining 
the MCN. Second, it involves a simpler argument: without relying on 
anything more powerful than engulfing results, it displays the existence of 
manifold factor MCNs. Showing that manifold factors have resolutions, 
which requires ingredients used to prove Quinn’s end theorem (see Quinn [l]  
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or Chapman [3]), unquestionably is far less complicated than establishing the 
full-strength resolution theorem. 

Theorem 1 (Miller). Let Y be a compact, k-dimensional ANR I-LCC 
embedded in an n-manifold M ,  where n - k 1 4 and n 1 5 .  Then Y x [0, 1) 
has a manifold MCN in M x (- 1, 1). 

Following Miller, we say that a subset X of M is constrictable if for each 
E > 0 there exists an E-pseudo-isotopy tyf of M to itself, fixed on X and 
outside N(X;  E ) ,  such that tyf retracts some neighborhood of X to X and is 
a homeomorphism over M - X .  Given a constrictable subset X o f  M ,  which 
of necessity is an ANR, Miller devised an ingenious, captivating proof that 
X x [0, 1) has a manifold MCN in M x (- 1, 1). Before looking at it, we spell 
out the link with Theorem 1. 

Lemma 2. If Y c M is a compact ANR as in Theorem I ,  then Y is con- 
strictable in M .  

This depends on an engulfing argument. A sketch of the proof, for the case 
where M is a PL manifold, is given in an Appendix at  the end of this section. 

The following result furnishes the basic technical controls. 

Lemma 3. Suppose Y c A4 is constrictable and E > 0. Then there exists a 
proper, level-preserving, surjective map F :  M x I + M x Isuch that, for  all 
t E I ,  

(a) Ft: M -+ M is cell-like, 
(b) Fo = I&, 

(d) Ft is 1-1 over M - Y ,  and 
(e) f o r s  < t ,  F;'(Y) c IntMF;'(Y). 

(c) FtlM - N(Y; E )  = Id, 

Proof. Let p represent a metric on M x I. By reparameterizing the 
pseudo-isotopies tyf stemming from the constrictability of Y,  for every 
a E (0, 11 and E E (0, a)  we build a level-preserving surjective map 
G[a, E]: M x I + M x I satisfying 

0) p(G[a, 4, Id) < E ,  

(ii) G[a, E ]  is fixed off the &-neighborhood of Y x I and on ( M x  

(iii) G[a, E] is 1-1 over ( (M - Y) x I )  U (M x [0,  a)), 
(iv) C[a,  &lo: M + M retracts some neighborhood of Y to Y ,  and 
(v) G[a, &Is = G[a,  &Iu for all s E [a, 11. 

[ O ,  a - 4) u (Y x 0, 
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Of course, here 

Id for t E [0, a - E ]  

v/1 for t E [a, 11 

(v / .  for t E [a - E ,  a] ,  where u = u(t) E [0, 11. 

The desired map F: M x I + M x I will be the limit of compositions of 
suitable G[a, ~1's .  

Fix E > 0 and choose positive numbers EO , E I  , . . . for which EE; c ~ / 2  and 
E ;  < ti+'. Assume without loss of generality that N ( Y ;  E )  has compact 
closure. 

Set NO = G[~ ,Eo] .  
Set H I  = G [  1, EO] 0 G[i,  ~ i ] ,  where among other properties to be mentioned 

Set H2 = G[1, EO] 0 G[$,  E J ]  0 G[S, ~ i ]  0 G[i,  ,541, with EJ E (0, ~ 2 )  chosen 

Continue in this fashion, determining H3, ..., Hi,  ... (see Fig. 41-1). 
Define F: M x I + M x I to be the limit of these Hi's. Most of the proper- 

ties required of F are standardly derived. It is a proper, level-preserving, 
surjective map, because (Hi] forms a Cauchy sequence of such maps, all 
having common compact support. Clearly Fo = IdM and Fi I M - N( Y ;  E )  = 

inclusion. Each F,, being the limit of cell-like maps, is itself cell-like 
(Theorem 17.4). One can impose additional bounds on E/! E (0, ~ j ) ,  as has 
been done countless times before, to force Ft to be 1-1 over M - Y. 

The final property required of F, however, is less standard. To understand 
why it holds, we must understand F-'(Y x I ) ,  which is approachable 
through studying the various Hi-'(Y x I ) .  Restricting the ~j' E (0, E,) even 

when pertinent, ~i E (0, E I )  is chosen small enough that  HI, Ho) < E I .  

to ensure (among other things) p(H2, H I )  < ~ 2 .  

T . , 
FIG. 41-1 



41. Mapping Cylinder Neighborhoods 295 

more, for every dyadic rational d = m/2' E (0, 11, we can force 

~i '( Y) = (Hi) j  Y) 

and 

F C ' ( M  - IntM(Fi'(Y)) = Fd(M - IntM(Fi'(Y)) whenever s E [O, d ] .  

This implies F;'(Y) C FZ'(Y) and, more generally, F;'(Y) C F;'(Y) for 
all s, t E I with s < t. Finally, given such s, t E I we can obtain dyadics 
c = (rn - 1)/2' and d = m/2' for which s < c < d < t and then see that 

F~-'(Y) c F,-'(Y) = (Hi)F'(Y) 

C IntM(Hi)d'(Y) C FZ'(Y) C FF1(Y). 

Let F: M x Z -+ M x I denote the map of Lemma 
3. Restrict F t o  M x [0, 1) and extend via the identity on M x (- 1,0] to get 
a proper, level-preserving surjection F: M x (- 1, 1) -, M x (- 1, 1). 

H 

Proof of Theorem 1. 

According to Conclusion (e) of Lemma 3, the set 

u = U(F?(Y) I t E [O, 1)) 

is open in M. Except for the unsatisfactory feature that W* = U x [-*, 1) 
fails to be closed in M x (- 1, l), W* supplies the precursor of the mapping 
cylinder structure. To overcome the nonclosedness of W*,  determine a first 
coordinate-preserving embedding h of W* in itself such that h( W*) is closed 
in M x (- 1, 1) and h(U x (-i, 1)) 3 F-'(Y x (0, 1)). This can be accom- 
plished by defining u :  U -+ [0, 1) as 

u(x) = inf[t E [o, l ) ( x  E K'(Y)), 

noting that u is continuous by conclusion (e) of Lemma 3,  naming another 
continuous function u*:  U -+ [-f, 1) such that u*(x) < u(x) and u*(x) -+ 1 
as x -+ M - U, and defining h so h ( ( x ,  -4)) = (x, u*(x)) and h ( ( x ,  t ) )  = 
( x ,  t )  when t > u(x). The effect is illustrated in Fig. 41-2. 

Specify another first coordinate-preserving embedding A: U x I 4  W* 
with A((x, 0)) = ( x ,  u*(x) )  and A((x ,  1)) = ( x ,  u (x ) )  for all x E U. Note 
that 

A(U x [0, 1)) = h(W*) - F-'(Y X [0, 1)). 

Define Was Fh( W*). The rest should be transparent: W is a manifold with 
boundary, where a W = Fh(U x [ - &), and W is naturally equivalent to the 
mapping cylinder of FAi: U -+ Y x [0, l), where i: U -+ U x (1 )  denotes 
inclusion. Explicitly, the mapping cylinder structure lines in W, shown in Fig. 
41-3, are the images under Fof  the vertical arcs, those of the form NIX) X I ) ,  
from h(U x {-*I) up to F - ' (Y  x [0, 1)). 



296 

Y 

VII. Applications to Manifolds 

MX (-1, 1 )  MX (-1, 1) 

FIG. 41-3 

Having produced one manifold MCN of Y x [O, 1) in M x (- 1, l), next 
we improve it to produce another one on Y x (0). We proceed by examining 

z= W U ( Y X ( l ~ ) C M X E ' ,  

a set to be regarded as a mapping cylinder neighborhood of Y x I pinched 
at Y x (1). 

Several additional constructions help expose the mapping cylinder struc- 
ture on 2. Let R t :  Z + 2 denote the strong deformation retraction of 2 to 
Y x Z moving points at a constant rate along the mapping cylinder structure 
of W. Then Rt is cell-like (point inverses are contractable) and invariably 
R;'(Y x (1)) = Y x (1). 

Define sets 

At = f i - ' (Y )  - U[F,-'(Y)Is E [O ,  t)] 

2, = ( F h ( K ' ( Y )  x { -  t / 2 ,  t ) )  u ( A  x [- t / 2 ,  t ] ) ) .  

and 
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FIG. 41-4 

Split 2 apart along Z W ~ ,  to form two compacta Z+ and Z - ,  with 
2, = U{Z,J t E [i, 11) and Z -  = U(Z,I t E [0,9]1 (see Fig. 41-4). 

There is a map s: Z -  + Y defined as s(z) = proj 0 R(z) (proj : Y x I -+ Y 
denoting the projection). Geometrically s(z) is determined by moving z along 
the mapping cylinder flow lines to some (y,, t , )  E Y x [0, and setting 
s(z) = y,. For (y, t )  E Y x [0, i], s( (y ,  t ) )  = y. As the composition of cell- 
like maps, s is cell-like. 

Still to be defined is a map @ of 2, to X x [i, 11, where X i s  some cell-like 
image of 2 ~ 2 .  This will be carried out componentwise. Let X be the decom- 
position space resulting from the usc decomposition G of 2 1 / 2  having non- 
degeneracy set (Fh((aj x [- i, t ] )  1 a E A M ) ,  and let 71: Z1/2 -+ X be the 
decomposition map. Using coordinate projections p1 and p2 on X x [t, 11, 
define p2@(z) to be the unique t E [*, I ]  for which z E Z. If Rt(z) n 
Z1/2 # 0 for some t ,  define p1 @(z) = n(Rt(z)) for the smallest such t ;  
otherwise, represent R&) as ( y ,  s) E Y x (4, 11 and define p1 @(z) = 

~ ( ( y ,  5)) E Z d G .  
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Lemma 4. 

Proof. That O 1 Z1/2 is cell-like is obvious, so concentrate on O 1 Z , ,  
where s > t .  Note that O I Y x [i, 11 is 1-1 .  

By Exercise 17.1 it suffices to show OF is cell-like. Focus on z E X x Is), 
s > i, the only points of interest being z = O((y ,  s)) for some y E Y,  and 
consider F-' O-'(z) = C,*. Since C, = h-'(C,*) is topologically equivalent to 
C,*, it is enough to prove that the more regularly parameterized C, is cell-like. 

0:  Z -P X x [t, 11 is a cell-like map. 

There are three distinguishable parts to C,: 

the top Tz = C, n (M x is]), 
the bottom B, = C, n (M x I-s/21), 
and the lateral sides L, = C1(Cz - (Tz  u B,)). 

Here & = FC'(y) x (s), which therefore is cell-like, 

L, = ( ~ [ ' ( y )  n A,)  x [-s/2,s], 

and 

B, = U(At n f i - ' (y )  1 t E [+, s]) x (-s/2]. 

Define Q, as 

Qz = Cz U (B: x [-s/2, s]), 

where Bz = B: x {-s/2]. Then Qz is cell-like, due to the existence of the 
vertical cell-like map Q, + Tz shown in Fig. 41-5. 

We prove that C, itself is cell-like by suggesting how to construct, for any 
neighborhood 0 of C,, a contraction ct of C, in 0. Given points s(1) E (0, +) 
and s(2) E (i, s) we form an auxiliary cell-like decomposition 6 of 
M x (- 1 ,  1) having 

( F a y )  x (4  IY  E y ,  t E (- 1, -s(l))J 

u l~ s&Y)  x It1 IY  E y, t E [-s(l), @)I1 

- -1 - 
FIG. 41-5 
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FIG. 41-6 

as its nondegeneracy set. For some choice of s(l), s(2) and also some 
s(3) E (s, 1) one can find a neighborhood O* of y E Y,  where Q((y, s)) = z ,  
such that (see Fig. 41-6) 

0 3 F;'(O*) x (-~(3)/2,  ~ ( 3 ) )  - Ns. 

By the proof of Theorem 13.2, one can show the existence of a level- 
preserving map f of M x (- 1, 1) onto itself realizing the decomposition s, 
sending NG onto Y x (- 1, s(2)], and controlled to  ensure that f I Cz = 

inclusion and f ( 0 )  3 QZ. Define a contraction vf of Qz in f ( 0 )  - (Y  x 
(- 1, s(2)]) and set cf = f -'qf I C, .  

Corollary 4A. 

Proof. Observe that, under the natural map 11: Z I , ~  + X ,  II I Y x ($1 is 
1-1 and X - n(Y x (r)) is an n-manifold. This corollary follows from the 
variation to  Corollary 24.3C given as Exercise 24.9. 

Theorem 5 (Edwards). There is a mapping cylinder neighborhood of 
Y x {O) in M x E' determined by a cell-like map X --t Y x (0). 

The restriction s I 2 1 1 2 :  Z1/2 --* Y induces a map 3: X -+ Y and 
gives rise to a mapping cylinder indentification rl/: X x [*, 11 -+ Map(3) 
behaving like 3 on X x ($1. This has been arranged so that I@: Z -+ Map@ 
extends to a well-defined Y:  Z + Map(3) for which 

X x ($, 1) is an (n  + 1)manifold. 

Proof. 

cp v/  Z +  - X x It, 11 i; Map(3) 
I . 

0 
0 
I , 

I' Y 
n 

I , 
Z-' 

Y 12- = s: Z- -+ Y C Map(5). Consequently, Y is cell-like, for on Y-'( Y )  = 
2- , Y agrees with the cell-like maps, while on Y'(Map(3) - Y )  = 2 - Z- , 
Y is also cell-like, essentially by Lemma 4. 
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Pushing upward again along the mapping cylinder structure lines, we 
devise a map dl of 2 onto itself such that dl 2- = RI I Z -  and dl is 1-1 over 
Z - ( Y  x [0, *I). Compressing vertically downward (relative to the E' direc- 
tion), we form a second map dz of 2 onto itself such that &( Y x [0,3]) = 
Y x (0) and dz is 1-1 over Z - ( Y  x (0)). The composition d = dl 0 d2 is 1-1 
over Z - ( Y  x (0)), satisfies d-'(Y x (0)) = Z - ,  and induces the same 
decomposition on Z -  as s. 

Define Y ' :  2 + Map(3) as Y' = Yd-'. Then Y' is cell-like, is 1-1 over Y,  
and sends each (y, 0) E Y x [ O )  to  y .  Because w(X x (i, 1)) is an (n + 1)- 
manifold by Corollary 4A, the cell-like approximation theorem indi- 
cates Y' 1 Int Z can be approximated by a homeomorphism Y * :  Int Z -+ 

u/(X x [t, 1)) for which Y* I Y x (0) = Y'I Y x $0). Finally, Y*-'(w(X x 
[i, a])) is a mapping cylinder neighborhood of Y x f0). 

Together Corollary 4A and Theorem 5 demonstrate that Y x (0) has a 
manifold factor mapping cylinder neighborhood in M x E '. The concluding 
step, which requires application of a weak form of Theorem 40.3, for 
generalized manifolds that are manifold factors (see Quinn [ l]), promising 
a cell-like map p :  N + X having a compact n-manifold N as its domain, is 
left as an exercise. 

Theorem 6. Let Y be a compact ANR 1-LCC embedded in an n-manifold 
M ,  where n L 5 and dim Y I n - 4. Then Y x (0) has a manifold MCN in 
M x E (naturally equivalent to Map@)). 

W 

APPENDIX 

Here is an outline of the engulfing procedures needed for showing the 
constrictability of Y C M. 

Lemma Al .  Let Y be a compact ANR 1-LCC embedded in a (PL) 
n-manifold M ,  where n - dim Y L 3, and let E > 0. Then Y has an  open 
neighborhood U c N( Y ;  E )  such that to any open neighborhood Vof Y there 
corresponds another neighborhood Q of Y in V and for every finite 
k-complex K in U there exists a PL &-push Hr of (M,  Y) satisfying HO = IdM, 
HI I Q = inclusion, and H I (  V )  3 K .  

Distinguishing this from the conclusions of most 
engulfing results is the claim that HI can be obtained leaving the neighbor- 
hood Q of Y pointwise fixed. To d o  this, first one sets up according to  the 
usual procedure, obtaining a neighborhood U such that, for every k-complex 
K' in U, every neighborhood Vof  Y,  and every finite (n - 3)-complex L in 
I/, there exists an (eM)-push BI of (M,  Y )  fixing a neighborhood of L ,  such 

Sketch of the proof. 
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that el( V )  3 K ' .  Using demension theory, one chooses a nice neighborhood 
Q of Y in V for which there exists a PL  (e/4)-map c: M + M fixed outside V 
and collapsing Wto some finite complex L ,  where dim L = dem Y I n - 3 ,  
such that c restricts t o  a homeomorphism of M - Q onto M - L .  [Here Q 
is a regular neighborhood of part of the (dem Y)-skeleton S of a small mesh 
triangulation T of M ,  chosen so the dual (n  - dem Y - 1)-skeleton to  S in 
T ' ,  the first barycentric subdivision of T, misses Y.] Then obtain Or engulfing 
K' = c(K) from V = c( V )  while keeping a neighborhood of L = c(Q) fixed, 
and define 

Lemma A2. Let Y be a compact ANR 1-LCC embedded in a (PL) 
n-manifold M ,  where n - dim Y L 4 and n 2 5 ,  and let E > 0. Then there 
exists an open neighborhood U, of Y in N( Y ;  E )  with the property that for 
any neighborhood V of Y there exists an &-push 4, of ( M ,  Y )  fixed outside 
N ( Y ;  E )  and on some neighborhood of Y such that &(U,) C V. 

Sketch of the proof. Apply Lemma with positive number ~ / 5  to 
obtain U*.  Restrict U* to  an (~/20)-thickening U,* of some (dem Y)-complex 
R, using the fact that Y is 1-LCC embedded, and delete a thin collar of U,* 
to  obtain a similar object U,, a closed PL regular neighborhood of Y with 
Y C Int U, . Given V,  let Q be the neighborhood of Y,  as promised in Lemma 
Al ,  corresponding to V and ~ / 5 .  Determine a triangulation T of U, having 
mesh less than ~ / 5  so small that any simplex of T touching Y is contained 
in Q ;  then St( Y, T )  contains another neighborhood Q' of Y in Q. Adjust T, 
using the hypothesis that Y is 1-LCC embedded, so that the dual 2-skeleton 
P to T(n-3)  in T' misses Y ,  and invoke Lemma A1 to obtain an (s/5)-push 
Ht of (M,  Y )  fixed on Q for which H1(V) 3 T(n-3) .  Because of the extra 
restriction dem Y 5 n - 4, for each i-complex C (i  = 0,  1,2) in M - Y there 
exists an (~/2O)-homotopy pulling C into M - U through M - Y ,  having 
support in U, - Y and having U,* - Y as the range of its support. Con- 
sequently, by radial engulfing methods (Bing [l 1 1 )  there exists an (e/5)-push 
g, of (M,  Y ) ,  fixed outside U,* and on Y,  such that gl(M - U,) 3 P. Stretch 
gl(M - U,) across the join structure of T via an (s/5)-push Pr of ( M ,  Y )  
fixed outside U,* and on Q' such that 

M = p1g,(M - U,) lJ Hl(V) .  

Then U, C (plgl)- 'Hl(V),  and 4, = (ptg,)-'Ht is an &-push of (M,  Y )  
moving no point of Y ,  as required. rn 
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Proof of Lemma 2. This is now routine. Let E > 0. For j = 1,2, . . . let 
Uj be the open set containing Y given by Lemma A2 for E j  = ~/2.'. Repeated 
applications of Lemma A2 give cj-pushes $4 of (M,  Y ) ,  fixing Y ,  such that 
&(Uj) c q + l .  The limit of c$! ...&+: (properly parameterized) shows Y to 
be constrictable. 1 

EXERCISES 

1. If Y is a constrictable compact subset of an n-manifold M ,  show that Y x S' has 

2. Construct the map f mentioned in the proof of Lemma 4. 
3. Prove Theorem 6. 

a manifold MCN in M x S'. 
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A 

Admissible subset, 78-80, 239, 241 
AHEP, see Homotopy extension property, 

€-Amalgamation, 148, 151-158, 188-189, 

ANR, see Retract, absolute neighborhood 
Approximation Theorem 

absolute 

242-243 

cell-like, 3-4, 56, 102, 148, 178, 181-183 
187-188, 190, 206, 227, 232, 242, 
258, 264, 280, 286, 288, 300 

locally flat, 265, 285 
homeomorphic, 3, 5, 183, 189 

AR, see Retract, absolute 
Arc 

cellular, 41 
essentially flat, 62 
flat, 50-52, 85, 95-99, 104-105 

in decompositions, 22, 50-52, 65, 
85-93, 95-101, 241-242, 268-269 

wild, 91-92 
Aspherical space, 139-140 
Axiom LF, 95-96, 98 

B 

Bicollared set, 234-235, 237, 289, see also 
Sphere, bicollared 

C 

Cantor set, 12, 28, 34, 45-46, 62, 70, 78-79, 
223, 242, 291, see also Necklace, of 
Antoine 

ramified, of Bing, 240-241, 252-253 
tame, 74, 85, 158 
wild, 66, 74, 160, 213, 221-222, 251-252, 

255 
Cell 

factor, 94 
flat, 85, 93, 101, 107, 150 
recognition of, 36, 41 
wild, 92 

Cell-likeness, see Cellularity; Decomposi- 
tion, cell-like; Map, cell-like 

Cell-like set, 120-125, 214-216 
Cellular-at-the-boundary set, 222 
Cellularity, 2, 22, 35-38, 40-41, 53-54, 69, 

92, 143, 145, 157, 167, 216, 222, see 
also Cell-likeness; Decomposition, 
cellular 

relation to cell-likeness, 120, 122-123, 
163, 216 

Cellularity criterion, 143- 147, 2 14-2 16, 

Closed n-cell-complement, see Crumpled 

'W-Closeness, of maps, 27, 44 
Collared subset, 40 

Complete handle curve, 265-267 
Compactification, one point, 16, 26, 105, 

k-Connectedness, 125, 129, see also Local 

243-245, 256 

n-cube 

embedding, 27 1-272 

213 

k-co-connectedness 
of complement, 146 

of pair, 127 
local, 128-129 

313 
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Constrictable set, 293, 300-302 
Contractability, 41, 94, 120-121, 133, 

Convex set, 53, 142 
Crumpled n-cube, 268-270, 2’12-273, 286, 

139-140, 184, 187, 287-288,290 

29 1 
boundary, 268 
inflation, 270, 291 
interior, 268 
pinched, 275, 280-284 

D 

DAP, see Disjointness property, arcs 
DADP, see Disjointness property, arc-disk 
DD,, see Disjointness property, k-tuples 
DDP, see Disjointness property, disks 
Decomposition, 7 

274 
admissible, 216-223, 226, 268, 270-271, 

associated with defining sequence 
classical, 61-82, 248, 260 
general, 260-263 
nested, 246-250 

big element, 44-45 
countable, 11, 22, 43-61, 152, 171, 185, 

187, 260 
cell-like, 1, 113, 126, 128-132, 146-147. 

154-158, 166-178, 181-193, 195-213, 
219, 225-239 

noncellular, 68-69. 249-256 
cellular, 50, 146-147, 157-158, 177, 

nonshrinkable, 212-213, 218, 219, 

shrinkable, 62-63, 221-222, 249 
totally nondegenerate, 249, 251 

185-187, 216, 256-257, 259-260 

239-245 

constrained by n-cells, 61 
continuous, 10 
defined 

by closed set, 14, 36, 41-42, 103, 
184-185, 206-212 

arc, 84-95 
cell, 93-95, 103, 107 

by n-cells, 41 
k-dimensional, 152 

closed, 152 
intrinsically, 244-245, 256, 257 
secretly, 244-245, 257-260 

doubled, 270-273 
finite, 11, 19-20, 36, 61, 152-154 

induced 
over closed set, 76. 109-110, 172-178, 

by function, 11-12, 14, 16-18, 25, 38, 

inessentially spanning two sets, 149-150, 

inflated, 270-272 
locally encompassed by manifolds, 

locally spherical, 227-228, 230-232 
lower semicontinuous, 10 
minimal example, 66-68, 185, 222. 241 
monotone, 7, 17-21, 32-34, 47, 51, 61, 

normal form, 290 
products of, 14-15, 123, 183, 225-226 

with line, 22, 81-94, 103-104, 107, 

187-188, 200-201 

147, 235-237,242-244 

178 

200-205, 249 

138. 149-150, 251 

183. 190-191, 195-197, 199-212, 
232-233.237-238, 249, 255-256, 
259 

with plane, 190, 196 
realization of, 11-12. 33, 111, 234, 

shrinkable, 3, 22-35, 41-42, 45-47, 
236-237 

62-63, 80-84, 89-91, %, 107-1 12, 
122-123, 148-151, 154, 166-178, 181, 
190, 196-212, 217-223, 225-238, 241, 
244-245, 249,255, 272-274 

F i n g  closed set, 26, 233-234 
ideally, 31, 111, 176 
strongly, 26, 31, 36, 38, 42-45, 47-52, 

56-61, 75,92-93, 108-109 
simple, 185 
sliced, 232-238 
spun, 213, 216-223, 240-241, 259, 

trivially extended, 14-15, 80, 95-%, 
270-271, 273 

135-137, 197-198, 233-234, 237, 
272-214 

upper semicontinuous, 8-15, 44, 62, 247, 
261 

UP, 126-129 
Decomposition space, 8 
Defining sequence 

classical, 61-82, 245 
example, 62-69, 218-219 
by solid tori, 83-84 

general, 260-263 
nested, 246-251, 260-261 

Dimension-raising problem, 113, 129, 
135-142, 146, 227, 247-248 
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Disjointness property 
arcs, 186, 191-193 
arc-disk, 193-197, 201, 224-225, 259-260 
k-cells, 186 
disks, 3, 148, 178-183, 185-186, 188, 191, 

194-205, 217-221, 225-227, 232, 257, 
259, 288-289, 291 

disk triples, 205. 223, 225-226 
point-disk, 205 
k-tuples, 257-260 

Disk-with-handles, 265-267, 269 
Distinguished (n - k - ])-sphere, 214-215 
Dogbone space, 22, 64-65, 84, 222-223, 240 
Double suspension, 102-106, 184-185, 265, 

287-288 

E 

Embedding dimension, 149, 160-171, 185, 

Engulfing, 145, 164, 177, 292-293, 300-302 
205, 207-208, 212, 242-244 

F 

Filtration, 171-174, 188 
Fine homotopy equivalence, 130-136, 270 
Flatness, 50, 84-85, 107, 285, see also 

Function, upper semicontinuous, 10, 13 
Tameness 

G 

G,, see Decomposition, defined, by closed 

G', see Decomposition, trivially extended 
@at), see Decomposition, big element 
G(C), see Decomposition, induced, over 

Generalized manifold, 93, 191-192, 

set 

closed set 

198-200, 255-256, 276-280, 283-291, 
300 

product of, 223-236 
singular set of, 278, 280, 284, 287-290, 

300 
Grope, 264-270, 272-275, 278-283 

boundary, 266 
compactified, 266 
standard realization. 267 

H 

H,, see Nondegenerate element 
Handle pair, split, 206-210 
HEP, see Homotopy extension property 
HMP, see Homotopy mismatch property 

Homotopy extension property, 116 

Homology n-sphere, 102, see also Double 

Homotopy mismatch property, 227-228, 

absolute, 116-117 

suspension 

23 1-232 

1 

Inflation, closed set, 270-271, see also 

Inverse set, 18, 37-38, 211 

I-essential, see Map, interior-essential 
I-inessential, see Map, interior-inessential 
Infl(C,S), see Inflation, closed set 
Infl(C), see Crumpled n-cube, inflation 

Crumpled n-cube, inflated 

Isotopy, 33-34, 108, 162, 177, 182, 208-209 

L 

Lifting, approximate, 126-128, 130-132, 
137-138, 145, 177, 186, 191, 220-221, 
224 

Limit 
inferior, 9-10, 13 
superior, 9-10, 13 

Locally collared set, 40, 285 
Local contractability, 115, 117-119, 121 

of homeomorphism group, 107-1 11 
at point, 115 

Local k-co-connectedness, 146-147, 163, 
165, 177-184, 186, 192-196, 198-199, 
223-227, 274, 279-285, 287, 289-293, 
300-302 

Locally shrinkable set, 42-50, 11 1 
LC", see k-Connectedness, local 
k-LC, see k-Connectedness, local 
k-LCC, see Local k-co-connectedness 

M 

Manifold, 1, 7, see also Generalized 
manifold 

boundary, 7 
with boundary, 7, 285 
characterization, 288 
factor, 65, 69, 81, 83-84, 89, 91-94, 

interior, 7 
mapping cylinder neighborhood, 264, 

183-185, 292, 300 

291-300 
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Map 
approximately right invertible, 142 
cell-like, 133-136, 142, 147, 172-178, 

182-183, 186-187, 189, 206, 256, 
263, 276-278, 280-286, 288-290, 
298-300 

interior-essential, 73-74 
interior-inessential, 73 
light, 18-19 
t-map, 134-138, 142 
monotone, 17, 21 
one-to-one, over subset, 3, 172-178, 

181-183, 200-201, 210-212, 216-218, 
242-244 

piecewise linear, 159 
proper, 15-17, 41, 133, 142, 187 
virtually interior-essential, 73-80, 241 

Mapping torus, 105 
MCN, see Manifold, mapping cylinder 

Metrizability, 12-13 
Mixing homeomorphism, 78, 80, 239, 241 

neighborhood 

N 

Near-homeomorphism, 27-31, 38, 44-45, 
see also Aproximation theorem, 
cell-like 

Necklace, of Antoine, 70-75 
e-Neighborhood, 7 
Nondegenerate element, 8 
Nondegeneracy set 

decomposition, 8 
map, 243 

star, 262-263 
Null homotopy criterion, 248, 255, 

Null sequence, 14, 45-46, 50, 55-56, 67-68, 

N(A;e), see t-Neighborhood 
N,, see Nondegeneracy set, map 
No, see Nondegeneracy set, decomposition 

152, 154-158, 166-171, 189, 241-244 

P 

Peano continuum, 1, 12-13 
Perfect group, 267 
Piecewise linearity, 158-159 
Pillbox, 266-267, 269 
Pointlike set, 40-41 
Polyhedron, 160 

Poincart conjecture, 69, 145, 147 
Property n-UV, 123-129 

tamely embedded, 61, 159 

Property UV", 123-129, 144-145, 147 
Property UVw, 123-129 
Pseudo-isotopy, 33-34, 11 1, 173-175, 

210-21 1, 236-237 
ultimately stationary, 21 1 

Pseudo-spine, 103, 105-106 
PL, see Piecewise linearity 

R 

Retract, 113-120 
absolute, 113-1 17, 120, 129 
absolute neighborhood, 113-121, 

123-125, 129, 135, 138-139, 142-143, 
145, 158, 183, 186-187, 205-206, 
223, 225-226, 232, 263-264, 285, 
291-302 

Resolution, 158, 284-293 

S 

Saturated set, 8 
Shrinkability criterion, 2-4, 22-27, 49, 92, 

see also Decomposition, shrinkable 
Shrinking theorem, 176-177 
Simplicial complex, 117, 158, see also 

Triangulation, noncombinatorial 
underlying point set, 158 

Sp'(G), see Decomposition, spun 
SP*(X), see Spin 
Sphere 

bicollared, 38-41, 53-54, 139-140, 

characterization, 38, 41 
flat, 37-39, 54 
horned, 213, 269 

Spin, 214-216, 222 
Squeeze, cell to another cell, 94-101 
Standard position, 207-208 
Star 

149-1 50 

in collection, 26 
in cover, 27 
in complex, 159 

with respect to point, 52 
Starlikeness, 52-61, 164-166, 168-171 

Starlike-equivalence, 56, see also Starlikeness 
Star-refinement, 27-28, 30-31, 108-109 

Subdivision, 158 
Subpolyhedron, 159, 187, 267-268, 280-28 1 

homotopy, 126-127, 137, 141 

T 

Tameness, 74 85, 149, 159, see also Flatness 
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Transversality, 67-70 
Triangulation 

equivalence of, 159 
noncombinatorial, 22, 95. 102 
piecewise linear. 159 
prismatic, 208-212 
rectilinear, 158 
simplicial, 102, 157-158 

U 

Unicoherence, 21 
usc, see Decomposition, upper 

semicontinuous 

W 

Whitehead continuum, 68-69, 81, 120, 250 
Wildness, 74, 265 
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