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Preface

This volume is halfway between being a textbook and a monograph. It
describes a wide variety of ideas, some classical and others at the cutting
edge of current research. Because it is directed at graduate students and
young researchers, it often provides the simplest version of a theorem rather
than the deepest one. It contains a variety of examples and problems that
might be used in lecture courses on the subject.

It is frequently said that over the last few decades there has been a decisive
shift in mathematics from the linear to the non-linear. Even if this is the case it
is easy to justify writing a book on the theory of linear operators. The range of
applications of the subject continues to grow rapidly, and young researchers
need to have an accessible account of its main lines of development, together
with references to further sources for more detailed reading.

Probability theory and quantum theory are two absolutely fundamental
fields of science. In terms of their technological impact they have been far
more important than Einstein’s relativity theory. Both are entirely linear. In
the first case this is in the nature of the subject. Many sustained attempts
have been made to introduce non-linearities into quantum theory, but none
has yet been successful, while the linear theory has gone from triumph to
triumph. Nobody can predict what the future will hold, but it seems likely
that quantum theory will be used for a long time yet, even if a non-linear
successor is found.

The fundamental equations of quantum mechanics involve self-adjoint and
unitary operators. However, once one comes to applications, the situation
changes. Non-self-adjoint operators play an important role in topics as diverse
as the optical model of nuclear scattering, the analysis of resonances using
complex scaling, the behaviour of unstable lasers and the scattering of atoms
by periodic electric fields.1

1 A short list of references to such problems may be found in [Berry, website].

ix



x Preface

There are many routes into the theory of non-linear partial differential
equations. One approach depends in a fundamental way on perturbing linear
equations. Another idea is to use comparison theorems to show that certain
non-linear equations retain desired properties of linear cousins. In the case
of the Kortweg-de Vries equation, the exact solution of a highly non-linear
equation depends on reducing it to a linear inverse problem. In all these
cases progress depends upon a deep technical knowledge of what is, and
is not, possible in the linear theory. A standard technique for studying the
non-linear stochastic Navier-Stokes equation involves reformulating it as a
Markov process acting on an infinite-dimensional configuration space X. This
process is closely associated with a linear Markov semigroup acting on a space
of observables, i.e. bounded functions f � X → C. The decay properties of
this semigroup give valuable information about the behaviour of the original
non-linear equation. The material in Section 13.6 is related to this issue.

There is a vast number of applications of spectral theory to problems in
engineering, and I mention just three. The unexpected oscillations of the
London Millennium Bridge when it opened in 2000 were due to inadequate
eigenvalue analysis. There is a considerable literature analyzing the charac-
teristic timbres of musical instruments in terms of the complex eigenvalues
of the differential equations that govern their vibrations. Of more practical
importance are resonances in turbines, which can destroy them if not taken
seriously.

As a final example of the importance of spectral theory I select the work
of Babenko, Mayer and others on the Gauss-Kuzmin theorem about the
distribution of continued fractions, which has many connections with modular
curves and other topics; see [Manin and Marcolli 2002]. This profound work
involves many different ideas, but a theorem about the dominant eigenvalue
of a certain compact operator having an invariant closed cone is at the centre
of the theory. This theorem is close to ideas in Chapter 13, and in particular
to Theorem 13.1.9.

Once one has decided to study linear operators, a fundamental choice
needs to be made. Self-adjoint operators on Hilbert spaces have an extremely
detailed theory, and are of great importance for many applications. We have
carefully avoided trying to compete with the many books on this subject and
have concentrated on the non-self-adjoint theory. This is much more diverse –
indeed it can hardly be called a theory. Studying non-self-adjoint operators is
like being a vet rather than a doctor: one has to acquire a much wider range
of knowledge, and to accept that one cannot expect to have as high a rate
of success when confronted with particular cases. It comprises a collection
of methods, each of which is useful for some class of such operators. Some
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of these are described in the recent monograph of Trefethen and Embree
on pseudospectra, Haase’s monograph based on the holomorphic functional
calculus, Ouhabaz’s detailed theory of the Lp semigroups associated with
NSA second order elliptic operators, and the much older work of Sz.-Nagy
and Foias, still being actively developed by Naboko and others. If there is a
common thread in all of these it is the idea of using theorems from analytic
function theory to understand NSA operators.

One of the few methods with some degree of general application is the
theory of one-parameter semigroups. Many of the older monographs on this
subject (particularly my own) make rather little reference to the wide range
of applications of the subject. In this book I have presented a much larger
number of examples and problems here in order to demonstrate the value of
the general theory. I have also tried to make it more user-friendly by including
motivating comments.

The present book has a slight philosophical bias towards explicit bounds
and away from abstract existence theorems. I have not gone so far as to insist
that every result should be presented in the language of constructive analysis,
but I have sometimes chosen more constructive proofs, even when they are
less general. Such proofs often provide new insights, but at the very least they
may be more useful for numerical analysts than proofs which merely assert
the existence of a constant or some other entity.

There are, however, many entirely non-constructive proofs in the book.
The fact that the spectrum of a bounded linear operator is always non-empty
depends upon Liouville’s theorem and a contradiction argument. It does not
suggest a procedure for finding even one point in the spectrum. It should
therefore come as no surprise that the spectrum can be highly unstable under
small perturbations of the operator. The pseudospectra are more stable, and
because of that arguably more important for non-self-adjoint operators.

It is particularly hard to give precise historical credit for many theorems in
analysis. The most general version of a theorem often emerges several decades
after the first one, with a proof which may be completely different from the
original one. I have made no attempt to give references to the original literature
for results discovered before 1950, and have attached the conventional names
to theorems of that era. The books of Dunford and Schwartz should be
consulted for more detailed information; see [Dunford and Schwartz 1966,
Dunford and Schwartz 1963]. I only assign credit on a systematic basis for
results proved since 1980, which is already a quarter of a century ago. I may
not even have succeeded in doing that correctly, and hope that those who feel
slighted will forgive my failings, and let me know, so that the situation can
be rectified on my website and in future editions.
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I conclude by thanking the large number of people who have influenced
me, particularly in relation to the contents of this book. The most important of
these have been Barry Simon and, more recently, Nick Trefethen, to both of
whom I owe a great debt. I have also benefited greatly from many discussions
with Wolfgang Arendt, Anna Aslanyan, Charles Batty, Albrecht Böttcher,
Lyonell Boulton, Ilya Goldsheid, Markus Haase, Evans Harrell, Paul Incani,
Boris Khoruzhenko, Michael Levitin, Terry Lyons, Reiner Nagel, Leonid
Parnovski, Michael Plum, Yuri Safarov, Eugene Shargorodsky, Stanislav
Shkarin, Johannes Sjöstrand, Dan Stroock, John Weir, Hans Zwart, Maciej
Zworski and many other good friends and colleagues. Finally I want to record
my thanks to my wife Jane, whose practical and moral support over many
years has meant so much to me. She has also helped me to remember that
there is more to life than proving theorems!



1
Elementary operator theory

1.1 Banach spaces

In this chapter we collect together material which should be covered in
an introductory course of functional analysis and operator theory. We do
not always include proofs, since there are many excellent textbooks on the
subject.1 The theorems provide a list of results which we use throughout
the book.

We start at the obvious point. A normed space is a vector space � (assumed
to be over the complex number field C) provided with a norm � ·� satisfying

�f� ≥ 0�

�f� = 0 implies f = 0,

��f� = ��� �f��

�f +g� ≤ �f�+�g��

for all � ∈ C and all f� g ∈ �. Many of our definitions and theorems also
apply to real normed spaces, but we will not keep pointing this out. We say
that � · � is a seminorm if it satisfies all of the axioms except the second.

A Banach space is defined to be a normed space � which is complete in
the sense that every Cauchy sequence in � converges to a limit in �. Every
normed space � has a completion �, which is a Banach space in which � is
embedded isometrically and densely. (An isometric embedding is a linear, norm-
preserving (and hence one-one) map of one normed space into another in which
every element of the first space is identified with its image in the second.)

1 One of the most systematic is [Dunford and Schwartz 1966].
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2 Elementary operator theory

Problem 1.1.1 Prove that the following conditions on a normed space � are
equivalent:

(i) � is complete.
(ii) Every series

∑�
n=1 fn in � such that

∑�
n=1 �fn� < � is norm convergent.

(iii) Every series
∑�

n=1 fn in � such that �fn� ≤ 2−n for all n is norm con-
vergent.

Prove also that any two completions of a normed space � are isometrically
isomorphic. �

The following results from point set topology are rarely used below, but they
provide worthwhile background knowledge. We say that a topological space
X is normal if given any pair of disjoint closed subsets A� B of X there exists
a pair of disjoint open sets U� V such that A ⊆ U and B ⊆ V . All metric
spaces and all compact Hausdorff spaces are normal. The size of the space
of continuous functions on a normal space is revealed by Urysohn’s lemma.

Lemma 1.1.2 (Urysohn)2 If A�B are disjoint closed sets in the normal topo-
logical space X, then there exists a continuous function f � X → �0� 1� such
that f�x� = 0 for all x ∈ A and f�x� = 1 for all x ∈ B.

Problem 1.1.3 Use the continuity of the distance function x → dist�x�A� to
provide a direct proof of Urysohn’s lemma when X is a metric space. �

Theorem 1.1.4 (Tietze) Let S be a closed subset of the normal topological
space X and let f � S → �0� 1� be a continuous function. Then there exists
a continuous extension of f to X, i.e. a continuous function g � X → �0� 1�

which coincides with f on S.3

Problem 1.1.5 Prove the Tietze extension theorem by using Urysohn’s lemma
to construct a sequence of functions gn � X → �0� 1� which converge uniformly
on X and also uniformly on S to f . �

If K is a compact Hausdorff space then C�K� stands for the space of all
continuous complex-valued functions on K with the supremum norm

�f�� �= sup	�f�x�� � x ∈ K
�

C�K� is a Banach space with this norm, and the supremum is actually a
maximum. We also use the notation CR�K� to stand for the real Banach space
of all continuous, real-valued functions on K.

2 See [Bollobas 1999], [Simmons 1963, p. 135] or [Kelley 1955, p. 115].
3 See [Bollobas 1999].
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The following theorem is of interest in spite of the fact that it is rarely useful:
in most applications it is equally evident that all four statements are true (or
false).

Theorem 1.1.6 (Urysohn) If K is a compact Hausdorff space then the fol-
lowing statements are equivalent.

(i) K is metrizable;
(ii) the topology of K has a countable base;

(iii) K can be homeomorphically embedded in the unit cube � �=∏�
n=1�0� 1�

of countable dimension;
(iv) the space CR�K� is separable in the sense that it contains a countable

norm dense subset.

The equivalence of the first three statements uses methods of point-set topol-
ogy, for which we refer to [Kelley 1955, p. 125]. The equivalence of the
fourth statement uses the Stone-Weierstrass theorem 2.3.17.

Problem 1.1.7 Without using Theorem 1.1.6, prove that the topological
product of a countable number of compact metrizable spaces is also compact
metrizable. �

We say that � is a Hilbert space if it is a Banach space with respect to a
norm associated with an inner product f� g → 
f� g� according to the formula

�f� �=√
f� f��

We always assume that an inner product is linear in the first variable and
conjugate linear in the second variable. We assume familiarity with the basic
theory of Hilbert spaces. Although we do not restrict the statements of many
theorems in the book to separable Hilbert spaces, we frequently only give
the proof in that case. The proof in the non-separable context can usually
be obtained by either of two devices: one may replace the word sequence
by generalized sequence, or one may show that if the result is true on every
separable subspace then it is true in general.

Example 1.1.8 If X is a finite or countable set then l2�X� is defined to be
the space of all functions f � X → C such that

�f�2 �=
√∑

x∈X

�f�x��2 < ��
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This is the norm associated with the inner product


f� g� �= ∑

x∈X

f�x�g�x��

the sum being absolutely convergent for all f� g ∈ l2�X�. �

A sequence 	
n

�
n=1 in a Hilbert space � is said to be an orthonormal

sequence if



m�
n� =
{

1 if m = n,
0 otherwise.

It is said to be a complete orthonormal sequence or an orthonormal basis, if
it satisfies the conditions of the following theorem.

Theorem 1.1.9 The following conditions on an orthonormal sequence 	
n

�
n=1

in a Hilbert space � are equivalent.

(i) The linear span of 	
n

�
n=1 is a dense linear subspace of � .

(ii) The identity

f =
�∑

n=1


f�
n�
n (1.1)

holds for all f ∈ � .
(iii) The identity

�f�2 =
�∑

n=1

�
f�
n��2

holds for all f ∈ � .
(iv) The identity


f� g� =
�∑

n=1


f�
n� 

n� g�

holds for all f� g ∈ � , the series being absolutely convergent.

The formula (1.1) is sometimes called a generalized Fourier expansion and

f�
n� are then called the Fourier coefficients of f . The rate of convergence
in (1.1) depends on f , and is discussed further in Theorem 5.4.12.

Problem 1.1.10 (Haar) Let 	vn

�
n=0 be a dense sequence of distinct numbers

in �0� 1� such that v0 = 0 and v1 = 1. Put e1�x� �= 1 for all x ∈ �0� 1� and
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define en ∈ L2�0� 1� for n = 2� 3� � � � by

en�x� �=

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < un�

�n if un < x < vn�

−�n if vn < x < wn�

0 if x > wn�

where

un �= max	vr � r < n and vr < vn
�

wn �= min	vr � r < n and vr > vn
�

and �n > 0, �n > 0 are the solutions of

�n�vn −un�−�n�wn −vn� = 0�

�vn −un��
2
n + �wn −vn��

2
n = 1�

Prove that 	en

�
n=1 is an orthonormal basis in L2�0� 1�. If 	vn


�
n=0 is the

sequence 	0� 1� 1/2� 1/4� 3/4� 1/8� 3/8� 5/8� 7/8� 1/16� � � �
 one obtains the
standard Haar basis of L2�0� 1�, discussed in all texts on wavelets and of
importance in image processing. If 	mr


�
r=1 is a sequence of integers such that

m1 ≥ 2 and mr is a proper factor of mr+1 for all r, then one may define a gen-
eralized Haar basis of L2�0� 1� by concatenating 0� 1� 	r/m1


m1
r=1� 	r/m2


m2
r=1,

	r/m3

m3
r=1� � � � and removing duplicated numbers as they arise. �

If X is a set with a �-algebra � of subsets, and dx is a countably additive
�-finite measure on �, then the formula

�f�2 �=
√∫

X
�f�x��2 dx

defines a norm on the space L2�X� dx� of all functions f for which the integral
is finite. The norm is associated with the inner product


f� g� �=
∫

X
f�x�g�x� dx�

Strictly speaking one only gets a norm by identifying two functions which
are equal almost everywhere. If the integral used is that of Lebesgue, then
L2�X� dx� is complete.4

Notation If � is a Banach space of functions on a locally compact, Hausdorff
space X, then we will always use the notation �c to stand for all those

4 See [Lieb and Loss 1997] for one among many more complete accounts of Lebesgue
integration. See also Section 2.1.
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functions in � which have compact support, and �0 to stand for the closure
of �c in �. Also C0�X� stands for the closure of Cc�X� with respect to the
supremum norm; equivalently C0�X� is the space of continuous functions on
X that vanish at infinity. If X is a region in RN then Cn�X� will stand for the
space of n times continuously differentiable functions on X.

Problem 1.1.11 The space L1�a� b� may be defined as the abstract comple-
tion of the space � of piecewise continuous functions on �a� b�, with respect
to the norm

�f�1 �=
∫ b

a
�f�x��dx�

Without using any properties of Lebesgue integration prove that Ck�a� b� is
dense in L1�a� b� for every k ≥ 0. �

Lemma 1.1.12 A finite-dimensional normed space V is necessarily complete.
Any two norms � · �1 and � · �2 on V are equivalent in the sense that there
exist positive constants a and b such that

a�f�1 ≤ �f�2 ≤ b�f�1 (1.2)

for all f ∈ V .

Problem 1.1.13 Find the optimal values of the constants a and b in (1.2) for
the norms on Cn given by

�f�1 �=
n∑

r=1

�fr �� �f�2 �=
{ n∑

r=1

�fr �2
}1/2

� �

A bounded linear functional 
 � � → C is a linear map for which

�
� �= sup	�
�f�� � �f� ≤ 1


is finite. The dual space �∗ of � is defined to be the space of all bounded
linear functionals on �, and is itself a Banach space for the norm given above.
The Hahn-Banach theorem states that if L is any linear subspace of �, then
any bounded linear functional 
 on L has a linear extension � to � which
has the same norm:

sup	�
�f��/�f� � 0 
= f ∈ L
 = sup	���f��/�f� � 0 
= f ∈ �
�

It is not always easy to find a useful representation of the dual space of a
Banach space, but the Hilbert space is particularly simple.
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Theorem 1.1.14 (Fréchet-Riesz)5 If � is a Hilbert space then the formula


�f� �= 
f� g�
defines a one-one correspondence between all g ∈� and all 
 ∈� ∗. More-
over �
� = �g�.

Note The correspondence 
 ↔ g is conjugate linear rather than linear, and
this can cause some confusion if forgotten.

Problem 1.1.15 Prove that if 
 is a bounded linear functional on the closed
linear subspace � of a Hilbert space � , then there is only one linear extension
of 
 to � with the same norm. �

The following theorem is not elementary, and we will not use it until Chap-
ter 13.1. The notation CR�K� refers to the real Banach space of continuous
functions f � K → R with the supremum norm.6

Theorem 1.1.16 (Riesz-Kakutani) Let K be a compact Hausdorff space and
let 
 ∈ CR�K�∗. If 
 is non-negative in the sense that 
�f� ≥ 0 for all
non-negative f ∈ CR�K� then there exists a non-negative countably additive
measure � on K such that


�f� =
∫

X
f�x���dx�

for all f ∈ CR�K�. Moreover �
� = 
�1� = ��K�.

One may reduce the representation of more general bounded linear functionals
to the above special case by means of the following theorem. Given 
� � ∈
CR�K�∗, we write 
 ≥ � if 
�f� ≥ ��f� for all non-negative f ∈ CR�K�.

Theorem 1.1.17 If K is a compact Hausdorff space and 
 ∈ CR�K�∗ then
one may write 
 �= 
+ −
− where 
± are canonically defined, non-negative,
bounded linear functionals. If �
� �= 
+ +
− then �
� ≥ ±
. If � ≥ ±
 ∈
CR�K�∗ then � ≥ �
�. Finally � �
� � = �
�.

5 See [Dunford and Schwartz 1966, Theorem IV.4.5] for the proof.
6 A combination of the next two theorems is usually called the Riesz representation theorem.

According to [Dunford and Schwartz 1966, p. 380] Riesz provided an explicit representation
of C�0� 1�∗. The corresponding theorem for CR�K�∗, where K is a general compact Hausdorff
space, was obtained some years later by Kakutani. The formula 
 �= 
+ −
− is called the
Jordan decomposition. For the proof of the theorem see [Dunford and Schwartz 1966,
Theorem IV.6.3]. A more abstract formulation, in terms of Banach lattices and AM-spaces, is
given in [Schaefer 1974, Proposition II.5.5 and Section II.7].
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Proof. The proof is straightforward but lengthy. Let � �= CR�K�, let �+
denote the convex cone of all non-negative continuous functions on K, and
let �∗

+ denote the convex cone of all non-negative functionals � ∈ �∗.
Given 
 ∈ �∗, we define 
+ � �+ → R+ by


+�f� �= sup	
�f0� � 0 ≤ f0 ≤ f
�

If 0 ≤ f0 ≤ f and 0 ≤ g0 ≤ g then


�f0�+
�g0� = 
�f0 +g0� ≤ 
+�f +g��

Letting f0 and g0 vary subject to the stated constraints, we deduce that


+�f�+
+�g� ≤ 
+�f +g�

for all f� g ∈ �+.
The reverse inequality is harder to prove. If f� g ∈ �+ and 0 ≤ h ≤ f + g

then one puts f0 �= min	h� f
 and g0 �= h − f0. By considering each point
x ∈ K separately one sees that 0 ≤ f0 ≤ f and 0 ≤ g0 ≤ g. hence


�h� = 
�f0�+
�g0� ≤ 
+�f�+
+�g��

Since h is arbitrary subject to the stated constraints one obtains


+�f +g� ≤ 
+�f�+
+�g�

for all f� g ∈ �+.
We are now in a position to extend 
+ to the whole of �. If f ∈ � we put


+�f� �= 
+�f +�1�−�
+�1�

where � ∈ R is chosen so that f +�1 ≥ 0. The linearity of 
+ on �+ implies
that the particular choice of � does not matter subject to the stated constraint.

Our next task is to prove that the extended 
+ is a linear functional on �+.
If f� g ∈ �, f +�1 ≥ 0 and g +�1 ≥ 0, then


+�f +g� = 
+�f +g +�1+�1�− ��+��
+�1�

= 
+�f +�1�+
+�g +�1�− ��+��
+�1�

= 
+�f�+
+�g��

It follows immediately from the definition that 
+��h� = �
+�h� for all
� ≥ 0 and h ∈ �+. Hence f ∈ � implies


+��f� = 
��f +��1�−��
+�1� = �
�f +�1�−��
+�1� = �
+�f��
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If � < 0 then

0 = 
+��f +���f� = 
+��f�+
+����f� = 
+��f�+���
+�f��

Therefore


+��f� = −���
+�f� = �
+�f��

Therefore 
+ is a linear functional on �. It is non-negative in the sense
defined above.

We define 
− by 
− �= 
+ −
, and deduce immediately that it is linear.
Since f ∈�+ implies that 
+�f� ≥ 
�f�, we see that 
− is non-negative. The
boundedness of 
± will be a consequence of the boundedness of �
� and the
formulae


+ = 1
2 ��
�+
�� 
− = 1

2 ��
�−
��

We will need the following formula for �
�. If f ∈ �+ then the identity
�
� = 2
+ −
 implies

�
��f� = 2 sup	
�f0� � 0 ≤ f0 ≤ f
−
�f�

= sup	
�2f0 −f� � 0 ≤ f0 ≤ f


= sup	
�f1� � −f ≤ f1 ≤ f
� (1.3)

The inequality �
� ≥ ±
 of the theorem follows from

�
� = 
+2
− ≥ 


�
� = 2
+ −
 ≥ −
�

If � ≥ ±
, f ≥ 0 and −f ≤ f1 ≤ f then adding the two inequalities �� + 
�

�f − f1� ≥ 0 and �� −
��f + f1� ≥ 0 yields ��f� ≥ 
�f1�. Letting f1 vary
subject to the stated constraint we obtain ��f� ≥ �
��f� by using (1.3). There-
fore � ≥ �
�.

We finally have to evaluate � �
� �. If f ∈ � and 
 ∈ �∗ then

�
�f�� = �
+�f+�−
+�f−�−
−�f+�+
−�f−��
≤ 
+�f+�+
+�f−�+
−�f+�+
−�f−�

= �
���f ��
≤ � �
� � � �f � �
= � �
� � �f��

Since f is arbitrary we deduce that �
� ≤ � �
� �.
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Conversely suppose that f ∈ �. The inequality −�f � ≤ f ≤ �f � implies

−�
���f �� ≤ �
��f� ≤ �
���f ���
Therefore

� �
��f�� ≤ �
���f ��
= sup	
�f1� � −�f � ≤ f1 ≤ �f �

≤ �
� sup	�f1� � −�f � ≤ f1 ≤ �f �

= �
��f��

Hence � �
� � ≤ �
�. �

If L is a closed linear subspace of the normed space �, then the quotient space
�/L is defined to be the algebraic quotient, provided with the quotient norm

�f +L� �= inf	�f +g� � g ∈ L
�

It is known that if � is a Banach space then so is �/L.

Problem 1.1.18 If � = C�a�b� and L is the subspace of all functions in �
which vanish on the closed subset K of �a� b�, find an explicit representation
of �/L and of its norm. �

The Hahn-Banach theorem implies immediately that there is a canonical and
isometric embedding j from � into the second dual space �∗∗ = ��∗�∗,
given by

�jx��
� �= 
�x�

for all x ∈ � and all 
 ∈ �∗. The space � is said to be reflexive if j maps �
one-one onto �∗∗.

We will often use the more symmetrical notation 
x�
� in place of 
�x�,
and regard � as a subset of �∗∗, suppressing mention of its natural embedding.

Problem 1.1.19 Prove that � is reflexive if and only if �∗ is reflexive. �

Example 1.1.20 The dual �∗ of a Banach space � is usually not isometrically
isomorphic to � even if � is reflexive. The following provides a large
number of spaces for which they are isometrically isomorphic. We simply
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choose any reflexive Banach space � and consider � �= � ⊕ �∗ with the
norm

��x�
�� �= ��x�2 +�
�2
�1/2� �

If X is an infinite set, c0�X� is defined to be the vector space of functions f

which converge to 0 at infinity; more precisely we assume that for all � > 0
there exists a finite set F ⊂ X depending upon f and � such that x � F implies
�f�x�� < �.

Problem 1.1.21 Prove that c0�X� is a Banach space with respect to the
supremum norm. �

Problem 1.1.22 Prove that c0�X� is separable if and only if X is
countable. �

Problem 1.1.23 Prove that the dual space of c0�X� may be identified naturally
with l1�X�, the pairing being given by


f� g� �= ∑

x∈X

f�x�g�x�

where f ∈ c0�X� and g ∈ l1�X�. �

Problem 1.1.24 Prove that the dual space of l1�X� may be identified with the
space l��X� of all bounded functions f � X → C with the supremum norm.
Prove also that if X is infinite, l1�X� is not reflexive. �

Problem 1.1.25 Use the Hahn-Banach theorem to prove that if � is a finite-
dimensional subspace of the Banach space � then there exists a closed linear
subspace � of � such that �∩� = 	0
 and �+� = �. Moreover there
exists a constant c > 0 such that

c−1��l�+�m�� ≤ �l+m� ≤ c��l�+�m��

for all l ∈ � and m ∈ � . �
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We will frequently use the concept of integration7 for functions which take
their values in a Banach space �. If f � �a� b� → � is a piecewise continuous
function, there is an element of �, denoted by

∫ b

a
f�x� dx

which is defined by approximating f by piecewise constant functions, for
which the definition of the integral is evident. It is easy to show that the
integral depends linearly on f and that

�
∫ b

a
f�x� dx� ≤

∫ b

a
�f�x��dx�

Moreover
〈∫ b

a
f�x� dx�


〉

=
∫ b

a

f�x��
�dx

for all 
 ∈ �∗, where 
f�
� denotes 
�f� as explained above. Both of these
relations are proved first for piecewise constant functions. The integral may
also be defined for functions f � R →� which decay rapidly enough at infinity.
Many other familiar results, such as the fundamental theorem of calculus, and
the possibility of taking a bounded linear operator under the integral sign,
may be proved by the same method as is used for complex-valued functions.

1.2 Bounded linear operators

A bounded linear operator A � � → � between two Banach spaces is defined
to be a linear map for which the norm

�A� �= sup	�Af� � �f� ≤ 1


is finite. In this chapter we will use the term ‘operator’ to stand for ‘bounded
linear operator’ unless the context makes this inappropriate. The set ������

of all such operators itself forms a Banach space under the obvious operations
and the above norm.

The set ���� of all operators from � to itself is an algebra, the multipli-
cation being defined by

�AB��f� �= A�B�f��

7 We treat this at a very elementary level. A more sophisticated treatment is given in
[Dunford and Schwartz 1966, Chap. 3], but we will not need to use this.
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for all f ∈ �. In fact ���� is called a Banach algebra by virtue of being a
Banach space and an algebra satisfying

�AB� ≤ �A��B�
for all A� B ∈����. The identity operator I satisfies �I� = 1 and AI = IA = A

for all A ∈ ����, so ���� is a Banach algebra with identity.

Problem 1.2.1 Prove that ���� is only commutative as a Banach algebra
if � = C, and that ���� is only finite-dimensional if � is finite
-dimensional. �

Every operator A on � has a dual operator A∗ acting on �∗, satisfying the
identity


Af�
� = 
f�A∗
�
for all f ∈� and all 
 ∈�∗. The map A → A∗ from ���� to ���∗� is linear
and isometric, but reverses the order of multiplication.

For every bounded operator A on a Hilbert space � there is a unique
bounded operator A∗, also acting on � , called its adjoint, such that


Af�g� = 
f�A∗g��
for all f� g ∈� . This is not totally compatible with the notion of dual operator
in the Banach space context, because the adjoint map is conjugate linear in
the sense that

��A+�B�∗ = �A∗ +�B∗

for all operators A� B and all complex numbers �� �. However, almost every
other result is the same for the two concepts. In particular A∗∗ = A. The
concept of self-adjointness, A = A∗, is peculiar to Hilbert spaces, and is of
great importance. We say that an operator U is unitary if it satisfies the
conditions of the problem below.

Problem 1.2.2 Let U be a bounded operator on a Hilbert space � . Use the
polarization identity

4
x� y� = �x+y�2 −�x−y�2 + i�x+ iy�2 − i�x− iy�2

to prove that the following three conditions are equivalent.

(i) U ∗U = UU ∗ = I;
(ii) U is one-one onto and isometric in the sense that �Ux� = �x� for all

x ∈ � ;
(iii) U is one-one onto and 
Uf�Ug� = 
f� g� for all f� g ∈ � . �
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The inverse mapping theorem below establishes that algebraic invertibility of
a bounded linear operator between Banach spaces is equivalent to invertibility
in the category of bounded operators.8

Theorem 1.2.3 (Banach) If the bounded linear operator A from the Banach
space �1 to the Banach space �2 is one-one and onto, then the inverse
operator is also bounded.

Let � be an associative algebra over the complex field with identity element
e. The number � ∈ C is said to lie in the resolvent set of a ∈ � if �e − a

has an inverse in �. We call R���a� �= ��e −a�−1 the resolvent operators
of a. The Spec�a� of a is by definition the complement of the resolvent set.
If A is a bounded linear operator on a Banach space � we assume that the
spectrum and resolvent are calculated with respect to �=����, unless stated
otherwise.

The appearance of the spectrum and resolvent at such an early stage in
the book is no accident. They are the key concepts on which everything else
is based. An enormous amount of effort has been devoted to their study for
over a hundred years, and sophisticated software exists for computing both
in a wide variety of fields. No book could aspire to treating all of this in a
comprehensive manner, but we can describe the foundations on which this
vast subject has been built. One of these is the resolvent identity.

Problem 1.2.4 Prove the resolvent identity

R�z�a�−R�w�a� = �w− z�R�z�a�R�w�a�

for all z� w � Spec�a�. �

Problem 1.2.5 Let a�b lie in the associative algebra � with identity e and
let 0 
= z ∈ C. Prove that ab − ze is invertible if and only if ba − ze is
invertible. �

Problem 1.2.6 Let A�B be linear maps on the vector space 	 and let 0 
=
z ∈ C. Prove that the eigenspaces

� �= 	f ∈ 	 � ABf = zf
� 
 �= 	g ∈ 	 � BAg = zg


have the same dimension. �

8 See [Dunford and Schwartz 1966, Theorem II.2.2].
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Problem 1.2.7 Let a be an element of the associative algebra � with identity
e. Prove that

Spec�a� = Spec�La�

where La � � → � is defined by La�x� �= ax. �

Problem 1.2.8 Let A be an operator on the Banach space � satisfying �A� <

1. Prove that �I −A� is invertible and that

�I −A�−1 =
�∑

n=0

An� (1.4)

the sum being norm convergent. �

Theorem 1.2.9 The set � of all bounded invertible operators on a Banach

space � is open. More precisely, if A ∈� and �B−A� < �A−1�−1
then B ∈�.

Proof. If C �= I −BA−1 then under the stated conditions

�C� = ��A−B�A−1� ≤ �A−1�−1�A−1� < 1�

Therefore �I −C� is invertible by Problem 1.2.8. But B = �BA−1�A = �I − C�A,
so B is invertible with

B−1 = A−1
�∑

n=0

Cn� (1.5)

�

Theorem 1.2.10 The resolvent operator R�z�A� satisfies

�R�z�A�� ≥ dist�z� Spec�A��−1 (1.6)

for all z � Spec�A�, where dist�z� S� denotes the distance of z from the set S.

Proof. If z � Spec�A� and �w− z� < �R�z�A��−1
then

D �= R�z�A� 	I − �z−w�R�z�A�
−1

=
�∑

n=0

�z−w�nR�z�A�n+1

is a bounded invertible operator on �; the inverse involved exists by Prob-
lem 1.2.8. It satisfies

D 	I − �z−w�R�z�A�
 = R�z�A�
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and hence

D 	zI −A− �z−w�I
 = I�

We deduce that D�wI − A� = I , and similarly that �wI − A�D = I . Hence
w � Spec�A�. The statement of the theorem follows immediately. �

Our next theorem uses the concept of an analytic operator-valued function.
This is developed in more detail in Section 1.4.

Theorem 1.2.11 Every bounded linear operator A on a Banach space has a
non-empty, closed, bounded spectrum, which satisfies

Spec�A� ⊆ 	z ∈ C � �z� ≤ �A�
� (1.7)

If �z� > �A� then

��zI −A�−1� ≤ ��z�−�A��−1� (1.8)

The resolvent operator R�z�A� is a norm analytic function of z on C\Spec�A�.

Proof. If �z� > �A� then zI − A = z�I − z−1A� and this is invertible, with
inverse

�zI −A�−1 = z−1
�∑

n=1

�z−1A�n�

The bound (1.8) follows by estimating each of the terms in the geometric
series. This implies (1.7). Theorem 1.2.10 implies that Spec�A� is closed.
An examination of the proof of Theorem 1.2.10 leads to the conclusion that
R�z�A� is a norm analytic function of z in some neighbourhood of every
z � Spec�A�. It remains only to prove that Spec�A� is non-empty.

Since

�zI −A�−1 =
�∑

n=0

z−n−1An

if �z� > �A�, we see that ��zI −A�−1� → 0 as �z� → �. The Banach space
version of Liouville’s theorem given in Problem 1.4.9 now implies that if
R�z�A� is entire, it vanishes identically. The contradiction establishes that
Spec�A� must be non-empty. �

We note that this proof is highly non-constructive: it does not give any clues
about how to find even a single point in Spec�A�. We will show in Section 9.1
that computing the spectrum may pose fundamental difficulties.



1.2 Bounded linear operators 17

Problem 1.2.12 Let a be an element of the Banach algebra �, whose mul-
tiplicative identity 1 satisfies �1� = 1. Prove that a has a non-empty, closed,
bounded spectrum, which satisfies

Spec�a� ⊆ 	z ∈ C � �z� ≤ �a�
� �

Our definition of the spectrum of an operator A was algebraic in that it only
refers to properties of A as an element of the algebra ����. One can also
give a characterization that is geometric in the sense that it refers to vectors
in the Banach space.

Lemma 1.2.13 The number � lies in the spectrum of the bounded operator
A on the Banach space � if and only if at least one of the following occurs:

(i) � is an eigenvalue of A. That is Af = �f for some non-zero f ∈ �.
(ii) � is an eigenvalue of A∗. Equivalently the range of the operator �I −A

is not dense in �.
(iii) There exists a sequence fn ∈ � such that �fn� = 1 for all n and

lim
n→� �Afn −�fn� = 0�

Proof. The operator B �= �I −A may fail to be invertible because it is not
one-one or because it is not onto. In the second case it may have closed range
not equal to � or it may have range which is not closed. If it has closed range
L not equal to �, then there exists a non-zero 
 ∈ �∗ which vanishes on L

by the Hahn-Banach theorem. Therefore 0 is an eigenvalue of B∗ = �I −A∗,
with eigenvector 
. If B is one-one with range which is not closed, then B−1

is unbounded; equivalently there exists a sequence fn such that �fn� = 1 for
all n and limn→� �Bfn� = 0. �

In case (iii) we say that � lies in the approximate point spectrum of A.
Note In the Hilbert space context we must replace (ii) by the statement

that � is an eigenvalue of A∗.

Problem 1.2.14 Prove that

Spec�A� = Spec�A∗�

for every bounded operator A � � → �. �

Problem 1.2.15 Prove that if � lies on the topological boundary of the spec-
trum of A, then it is also in its approximate point spectrum. �
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Problem 1.2.16 Find the spectrum and the approximate point spectrum of
the shift operator

Af�x� �= f�x+1�

acting on L2�0���, and of its adjoint operator. �

Problem 1.2.17 Let a1� � � � � an be elements of an associative algebra � with
identity. Prove that if the elements commute then the product a1 � � � an is
invertible if and only if every ai is invertible. Prove also that this statement
is not always true if the ai do not commute. Finally prove that if a1 � � � an and
an � � � a1 are both invertible then ar is invertible for all r ∈ 	1� � � � � n
. �

The following is the most elementary of a series of spectral mapping theorems
in this book.

Theorem 1.2.18 If p is a polynomial and a is an element of the associative
algebra � with identity e then

Spec�p �a�� = p �Spec�a���

Proof. We assume that p is monic and of degree n. Given w ∈ C we have to
prove that w ∈ Spec�p �a�� if and only if there exists z ∈ Spec�a� such that
w = p �z�. Putting q�z� �= p �z� − w this is equivalent to the statement that
0 ∈ Spec�q�a�� if and only if there exists z ∈ Spec�a� such that q�z� = 0. We
now write

q�z� =
n∏

r=1

�z− zr�

where zr are the zeros of q, so that

q�a� =
n∏

r=1

�a− zre��

The theorem reduces to the statement that q�a� is invertible if and only if
�a− zre� is invertible for all r. This follows from Problem 1.2.17. �

Problem 1.2.19 Let A � � → � be a bounded operator. We say that the
closed linear subspace � of � is invariant under A if A��� ⊆ �. Prove that
this implies that � is also invariant under R�z�A� for all z in the unbounded
component of C\Spec�A�. Give an example in which � is not invariant under
R�z�A� for some other z � Spec�A�. �
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1.3 Topologies on vector spaces

We define a topological vector space (TVS) to be a complex vector space
	 provided with a topology � such that the map 	����u� v
 → �u+�v is
jointly continuous from C × C ×	 ×	 to 	 . All of the TVSs in this book
are generated by a family of seminorms 	pa
a∈A in the sense that every open
set U ∈ � is the union of basic open neighbourhoods

n⋂

r=1

	v � pa�r��v−u� < �r


of some central point u ∈ 	 . In addition we will assume that if pa�u� = 0 for
all a ∈ A then u = 0.9

Problem 1.3.1 Prove that the topology generated by a family of seminorms
turns 	 into a TVS as defined above. �

Problem 1.3.2 Prove that the topology on 	 generated by a countable family
of seminorms 	pn


�
n=1 coincides with the topology for the metric

d�u� v� �=
�∑

n=1

2−n pn�u−v�

1+pn�u−v�
� �

One says that a TVS 	 is a Fréchet space if � is generated by a countable
family of seminorms and the metric d above is complete.

Every Banach space � has a weak topology in addition to its norm topol-
ogy. This is defined as the smallest topology on � for which the bounded
linear functionals 
 ∈ �∗ are all continuous. It is generated by the family of
seminorms p
�f� �= �
�f��. We will write

w-lim
n→� fn = f or fn

w→ f

to indicate that the sequence fn ∈ � converges weakly to f ∈ �, that is

lim
n→� 
fn�
� = 
f�
�

for all 
 ∈ �∗.

Problem 1.3.3 Use the Hahn-Banach theorem to prove that a linear subspace
L of a Banach space � is norm closed if and only if it is weakly closed. �

9 Systematic accounts of the theory of TVSs are given in [Narici and Beckenstein 1985,
Treves 1967, Wilansky 1978].
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Our next result is called the uniform boundedness theorem and also the
Banach-Steinhaus theorem.10

Theorem 1.3.4 Let �� � be two Banach spaces and let 	A�
�∈� be a family
of bounded linear operators from � to � . Then the following are equivalent.

(i) sup
�∈�

�A�� < ��

(ii) sup
�∈�

�A�x� < � for every x ∈ �;

(iii) sup
�∈�

�
�A�x�� < � for every x ∈ � and 
 ∈ �∗.

Proof. Clearly (i)⇒(ii)⇒(iii). Suppose that (ii) holds but (i) does not. We
construct sequences xn ∈ � and ��n� ∈ � as follows. Let x1 be any vector
satisfying �x1� = 1/4. Given x1� � � � � xn−1 ∈ � satisfying �xr� = 4−r for all
r ∈ 	1� � � � � n−1
, let

cn−1 �= sup
�∈�

�A��x1 +· · ·+xn−1���

Since (i) is false there exists ��n� such that

�A��n�� ≥ 4n+1�n+ cn−1��

There also exists xn ∈ � such that �xn� = 4−n and

�A��n�xn� ≥ 2
3
�A��n���xn��

The series x �=∑�
n=1 xn is norm convergent and

�A��n�x� ≥ �A��n�xn�−�A��n��x1 +· · ·+xn−1��−�A��n��
�∑

r=n+1

�xr�

≥ 2
3
�A��n��4−n − cn−1 − 1

3
�A��n��4−n

≥ �A��n��4−n−1 − cn−1

≥ n�

The contradiction implies (i).
The proof of (iii)⇒(ii) uses (ii)⇒(i) twice, with appropriate choices of �

and � . �

10 According to [Carothers 2005, p. 53], whom we follow, the proof below was first published
by Hausdorff in 1932, but the ‘sliding hump’ idea was already well-known. Most texts give a
longer proof based on the Baire category theorem. The sliding hump argument is also used in
Theorem 3.3.11.
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Corollary 1.3.5 If the sequence fn ∈� converges weakly to f ∈� as n → �,
then there exists a constant c such that �fn� ≤ c for all n.

In applications, the hypothesis of the corollary is usually harder to prove than
the conclusion. Indeed the boundedness of a sequence of vectors or operators
is often one of the ingredients used when proving its convergence, as in the
following problem.

Problem 1.3.6 Let At be a bounded operator on the Banach space � for
every t ∈ �a� b�, and let 
 be a dense linear subspace of �. If �At� ≤ c < �
for all t ∈ �a� b� and t → Atf is norm continuous for all f ∈ 
, prove that
�t� f� → Atf is a jointly continuous function from �a� b�×� to �. �

We define the weak* topology of �∗ to be the smallest topology for which
all of the functionals 
 → 
f�
� are continuous, where f ∈�. It is generated
by the family of seminorms pf �
� �= �
�f�� where f ∈ �. If � is reflexive
the weak and weak* topologies on �∗ coincide, but generally they do not.

Theorem 1.3.7 (Banach-Alaoglu) Every norm bounded set in �∗ is relatively
compact for the weak* topology, in the sense that its weak* closure is weak*
compact.

Proof. It is sufficient to prove that the ball

B∗
1 �= 	
 ∈ �∗ � �
� ≤ 1


is compact. We first note that the topological product

S �= ∏

f∈�
	z ∈ C � �z� ≤ �f�


is a compact Hausdorff space. It is routine to prove that the map � � B∗
1 → S

defined by
	��
�
�f� �= 
f�
�

is a homeomorphism of B∗
1 onto a closed subset of S. �

Problem 1.3.8 Prove that the unit ball B∗
1 of B∗ provided with the weak*

topology is metrizable if and only if � is separable. �

Problem 1.3.9 Suppose that fn ∈ lp�Z� and that �fn�p
≤ 1 for all n = 1� 2� � � � .

Prove that if 1 < p < � then the sequence fn converges weakly to 0 if and
only if the functions converge pointwise to 0, but that if p = 1 this is not
always the case. Deduce that the unit ball in l1�Z� is not weakly compact, so
l1�Z� cannot be reflexive. �
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Bounded operators between two Banach spaces � and � can converge in
three different senses. Given a sequence of operators An � � → � , we will

write An

n→ A, An

s→ A and An

w→ A respectively in place of

lim
n→� �An −A� = 0�

lim
n→� �Anf −Af� = 0 for all f ∈ �,

lim
n→� 
Anf�
� = 
Af�
� for all f ∈ �, 
 ∈ �∗.

Another notation is limn→� An = A, s-limn→� An = A, w-limn→� An = A.

Problem 1.3.10 Let A�An be bounded operators on the Banach space � and
let 
 be a dense linear subspace of �. Use the uniform boundedness theorem
to prove that An

s→ A if and only if there exists a constant c such that �An� ≤ c

for all n and limn→� Anf = Af for all f ∈ 
. �

Problem 1.3.11 Given two sequences of operators An ��→ � and Bn � � →

, prove the following results:
(a) If An

s→ A and Bn

s→ B then BnAn

s→ BA.

(b) If An

s→ A and Bn

w→ B then BnAn

w→ BA.

(c) If An

w→ A and Bn

w→ B then BnAn

w→ BA may be false.
Prove or give counterexamples to all other combinations of these types of
convergence. �

From the point of view of applications, norm convergence is the best, but it
is too strong to be true in many situations; weak convergence is the easiest to
prove, but it does not have good enough properties to prove many theorems.
One is left with strong convergence as the most useful concept.

Problem 1.3.12 Let Pn be a sequence of projections on �, i.e. operators such

that P2
n = Pn for all n. Prove that if Pn

s→ P then P is a projection, and give a
counterexample to this statement if one replaces strong convergence by weak
convergence. �

Problem 1.3.13 Let A�An be operators on the Hilbert space � . Prove that if

An

s→ A then A∗
n

w→ A∗, and give an example in which A∗
n does not converge

strongly to A∗. �

One sometimes says that An converges in the strong* sense to A if An

s→ A

and A∗
n

s→ A∗.
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1.4 Differentiation of vector-valued functions

We discuss various notions of differentiability for two functions f � �a� b� →�
and 
 � �a� b� →�∗. We write Cn to denote the space of n times continuously
differentiable functions if n ≥ 1, and the space of continuous functions if n = 0.

Lemma 1.4.1 If 
f�t���� is C1 for all � ∈ �∗ then f�t� is C0. Similarly, if

g�
�t�� is C1 for all g ∈ � then 
�t� is C0.

Proof. By the uniform boundedness theorem there is a constant N such that
�f�t�� ≤ N for all t ∈ �a� b�. If a ≤ c ≤ b then

lim
�→0


�−1	f�c+��−f�c�
��� = d
dc


f�c�����
so using the uniform boundedness theorem again there exists a constant M
such that

��−1	f�c+��−f�c�
� ≤ M

for all small enough � 
= 0. This implies that

lim
�→0

�f�c+��−f�c�� = 0�

The other part of the lemma has a similar proof. �

Lemma 1.4.2 If 
f�t���� is C2 for all � ∈ �∗ then f�t� is C1. Similarly, if

g�
�t�� is C2 for all g ∈ � then 
�t� is C1.

Proof. By the uniform boundedness theorem there exist g�t� ∈ �∗∗ for each
t ∈ �a� b� such that

d
dt


f�t���� = 
g�t�����
Moreover 
g�t���� is C1 for all � ∈ �∗, so by Lemma 1.4.1 g�t� depends
norm continuously on t. Therefore

∫ t

a
g�s� ds

is defined as an element of �∗∗, and

d
dt

〈

f�t�−f�a�−
∫ t

a
g�s� ds��

〉

= 0

for all t ∈ �a� b� and � ∈ �∗. It follows that

f�t�−f�a� =
∫ t

a
g�s� ds
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for all t ∈ �a� b�. We deduce that

g�t� = lim
h→0

h−1	f�t +h�−f�t�


the limit being taken in the norm sense. Therefore g�t� ∈ �, and f�t� is C1.
The proof for 
�t� is similar. �

Corollary 1.4.3 If 
f�t���� is C� for all � ∈ �∗ then f�t� is C�. Similarly,
if 
g�
�t�� is C� for all g ∈ � then 
�t� is C�.

Proof. One shows inductively that if 
f�t���� is Cn+1 for all � ∈ �∗ then
f�t� is Cn. �

We will need the following technical lemma later in the book.

Lemma 1.4.4 (i) If f � �0��� → R is continuous and for all x ≥ 0 there exists
a strictly monotonic decreasing sequence xn such that

lim
n→� xn = x� lim sup

n→�
f�xn�−f�x�

xn −x
≤ 0

then f is non-increasing on �0���.
(ii) If f � �0��� → � is norm continuous and for all x ≥ 0 there exists a

strictly monotonic decreasing sequence xn such that

lim
n→� xn = x� lim

n→�

〈
f�xn�−f�x�

xn −x
�


〉

= 0

for all 
 ∈ �∗ then f is constant on �0���.

Proof. (i) If � > 0, a ≥ 0 and

S��a �= 	x ≥ a � f�x� ≤ f�a�+��x−a�


then S��a is closed, contains a, and for all x ∈ S��a and � > 0 there exists
t ∈ S��a such that x < t < x +�. If u > a then there exists a largest number
s ∈ S��a satisfying s ≤ u. The above property of S��a implies that s = u. We
deduce that S��a = �a��� for every � > 0, and then that f�x� ≤ f�a� for all
x ≥ a.

(ii) We apply part (i) to Re
{
ei�
f�x��
�} for every 
 ∈ �∗ and every

� ∈ R to deduce that 
f�x��
� = 0 for all x ≥ 0. Since 
 ∈ �∗ is arbitrary
we deduce that f�x� is constant. �

All of the above ideas can be extended to operator-valued functions. We omit
a systematic treatment of the various topologies for which one can define
differentiability, but mention three results.



1.4 Differentiation of vector-valued functions 25

Problem 1.4.5 Prove that if A� B � �a� b� → ���� are continuously differen-
tiable in the strong operator topology then they are norm continuous. Moreover
A�t�B�t� is continuously differentiable in the same sense and

d
dt

	A�t�B�t�
 = A�t�′B�t�+A�t�B�t�′

for all t ∈ �a� b�. �

Problem 1.4.6 Prove that if A � �a� b� → ���� is differentiable in the strong
operator topology then A�t�−1 is strongly differentiable and

d
dt

A�t�−1 = −A�t�−1A�t�′A�t�−1

for all t ∈ �a� b�. �

Problem 1.4.7 Prove that if A�t� is a differentiable family of m×m matrices
for t ∈ �a� b� then

d
dt

A�t�n 
= nA�t�′A�t�n−1

in general, but nevertheless

d
dt

tr�A�t�n� = n tr�A�t�′A�t�n−1�� �

We now turn to the study of analytic functions. Let f�z� be a function from
the region (connected open subset) U of the complex plane C taking values in
the complex Banach space �. We say that f is analytic on U if it is infinitely
differentiable in the norm topology at every point of U .

Lemma 1.4.8 If 
f�z��
� is analytic on U for all 
 ∈�∗ then f�z� is analytic
on U .

Proof. We first note that by a complex variables version of Lemma 1.4.1,
z → f�z� is norm continuous. If � is the boundary of a disc inside U then


f�z��
� = 1
2�i

∫

�


f�w��
�
w− z

dw

=
〈

1
2�i

∫

�

f�w�

w− z
dw�


〉
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for all 
 ∈ �∗. This implies the vector-valued Cauchy’s integral formula

f�z� = 1
2�i

∫

�

f�w�

w− z
dw� (1.9)

the right-hand side of which is clearly an analytic function of z. �

Problem 1.4.9 Prove a vector-valued Liouville’s theorem: namely if f � C →
� is uniformly bounded in norm and analytic then it is constant. �

Lemma 1.4.10 Let fn ∈ � and suppose that

�∑

n=0


fn�
�zn

converges for all 
 ∈ �∗ and all �z� < R. Then the power series

�∑

n=0

fnz
n (1.10)

is norm convergent for all �z� < R, and the limit is a �-valued analytic
function.

Proof. We define the linear functional f�z� on �∗ by


f�z��
� �=
�∑

n=0


fn�
�zn�

The uniform boundedness theorem implies that f�z� ∈ �∗∗ for all �z� < R.
An argument similar to that of Lemma 1.4.1 establishes that z → f�z� is
norm continuous, and an application of the Cauchy integral formula as in
Lemma 1.4.8 shows that f�z� is norm analytic. A routine modification of the
usual proof for the case � = C now establishes that the series (1.10) is norm
convergent, so we finally see that f�z� ∈ � for all �z� < R. �

If an ∈ � for n = 0� 1� 2� � � � then the power series
∑�

n=0 anz
n defines a �-

valued analytic function for all z for which the series converges. The radius
of convergence R is defined as the radius of the largest circle with centre at 0
within which the series converges. As in the scalar case R = 0 and R = +�
are allowed.

Problem 1.4.11 Prove that

R = sup	� � 	�an��n
n is a bounded sequence
�
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Alternatively

R−1 = lim sup
n→�

�an�
1/n

� �

The following theorem establishes that the powers series of an analytic func-
tion converges on the maximal possible ball B�0� r� �= 	z � �z� < r
.

Theorem 1.4.12 Let f � B�0� r� → � be an analytic function which cannot
be analytically continued to a larger ball. Then the power series of f has
radius of convergence r.

Proof. If we denote the radius of convergence by R, then it follows immedi-
ately from Problem 1.4.11 that R ≤ r. If �z� < r and t = �r +�z��/2 then by
adapting the classical proof (which depends on using (1.9)) we obtain

f�z� = f�0�+f ′�0�
z

1! + · · ·+f �n��0�
zn

n! +Rem�n�

where

Rem�n� �= 1
2�i

∫

�w�=t

f�w�

w− z

( z

w

)n+1
dw�

This implies that

�Rem�n�� ≤ cz�t�z/t�n+1

which converges to 0 as n → �. Therefore the power series converges for
every z such that �z� < r. This implies that R ≥ r. �

All of the results above can be extended to operator-valued analytic functions.
Since the space ���� is itself a Banach space with respect to the operator
norm, the only new issue is dealing with weaker topologies.

Problem 1.4.13 Prove that if A�z� is an operator-valued function on U ⊆ C,
and z → 
A�z�f�
� is analytic for all f ∈ � and 
 ∈ �∗, then A�z� is an
analytic function of z. �

1.5 The holomorphic functional calculus

The material in this section was developed by Hilbert, E. H. Moore, F. Riesz
and others early in the twentieth century. A functional calculus is a procedure
for defining an operator f�A�, given an operator A and some class of complex-
valued functions f defined on the spectrum of A. One requires f�A� to satisfy
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certain properties, including (1.11) below. The following theorem defines a
holomorphic functional calculus for bounded linear operators. Several of the
proofs in this section apply with minimal changes to unbounded operators,
and we will take advantage of that fact later in the book.

Theorem 1.5.1 Let S be a compact component of the spectrum Spec�A� of
the operator A acting on �, and let f�·� be a function which is analytic on a
neighbourhood U of S. Let � be a closed curve in U such that S is inside �

and Spec�A�\S is outside �. Then

B �= 1
2�i

∫

�
f�z�R�z�A�dz

is a bounded operator commuting with A. It is independent of the choice of
�, subject to the above conditions. Writing B in the form f�A� we have

f�A�g�A� = �fg��A� (1.11)

for any two functions f , g of the stated type. The map f → f�A� is norm
continuous from the stated class of functions with �f� �= max	�f�z�� � z ∈ �


to ����.

Proof. It is immediate from its definition that

BR�w�A� = R�w�A�B

for all w � Spec�A�. This implies that B commutes with A. In the following
argument we label B according to the contour used to define it. If � is a
second contour with the same properties as �, and we put � �= � −� , then

B� −B� = B� = 0

by the operator version of Cauchy’s Theorem.
To prove (1.11), let �� � be two curves satisfying the stated conditions,

with � inside �. Then

f�A�g�A� = − 1
4�2

∫

�

∫

�
f�z�g�w�R�z�A�R�w�A� dz dw

= − 1
4�2

∫

�

∫

�

f�z�g�w�

z−w
�R�w�A�−R�z�A�� dz dw

= 1
2�i

∫

�
f�w�g�w�R�w�A� dw

= �fg��A�� �
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Problem 1.5.2 Let A be a bounded operator on � and let � be the closed
curve � → rei� where r > �A�. Prove that if p�z� �=∑n

m=0 amzm then

p�A� =
n∑

m=0

amAm� �

Example 1.5.3 Let A be a bounded operator on � and suppose that Spec�A�

does not intersect �−�� 0�. Then there exists a closed contour � that winds
around Spec�A� and which does not intersect �−�� 0�. If t > 0 then the
function zt is holomorphic on and inside �, so one may use the holomorphic
functional calculus to define At. However, one should not suppose that �At�
must be of the same order of magnitude as �A� for 0 < t < 1. Figure 1.1
displays the norms of At for n �= 100, c �= 0�6 and 0 < t < 2, where A is the
n×n matrix

Ar�s �=
⎧
⎨

⎩

r/n if s = r +1,
c if r = s,
0 otherwise.

0 0.5 1 1.5 2
0

50

100

150

200

250

300

350

400

450

500

Figure 1.1: Norms of fractional powers in Example 1.5.3
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Note that �At� is of order 1 for t = 0� 1� 2. It can be much larger for
other t because the resolvent norm must be extremely large on a portion
of the contour �, for any contour satisfying the stated conditions. See also
Example 10.2.1. �

Theorem 1.5.4 (Riesz) Let � be a closed contour enclosing the compact
component S of the spectrum of the bounded operator A acting in �, and
suppose that T = Spec�A�\S is outside �. Then

P �= 1
2�i

∫

�
R�z�A� dz

is a bounded projection commuting with A. The restriction of A to P� has
spectrum S and the restriction of A to �I −P�� has spectrum T . P is said to
be the spectral projection of A associated with S.

Proof. It follows from Theorem 1.5.1 with f = g = 1 that P2 = P. If we
put �0 = Ran�P� and �1 = Ker�P� then � = �0 ⊕�1 and A��i� ⊆ �i for
i = 0� 1. If Ai denotes the restriction of A to �i then

Spec�A� = Spec�A0�∪Spec�A1��

The proof is completed by showing that

Spec�A0�∩T = ∅� Spec�A1�∩S = ∅�

If w is in T , then it is outside �, and we put

Cw �= 1
2�i

∫

�

1
w− z

R�z�A� dz�

Theorem 1.5.1 implies that

CwP = PCw = Cw�

�wI −A�Cw = Cw�wI −A� = P�

Therefore w � Spec�A0�. Hence Spec�A0�∩T = ∅.
Now let � be the circle with centre 0 and radius ��A�+1�. By expanding

the resolvent on powers of 1/z we see that

I = 1
2�i

∫

�
R�z�A� dz�
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If � denotes the curve �� −�� then we deduce that

I −P = 1
2�i

∫

�
R�z�A� dz�

By following the same argument as in the first paragraph we see that if w

is in S, then it is inside � and outside � , so w � Spec�A1�. Hence Spec�A1�

∩S = ∅. �

If S consists of a single point z then the restriction of A to �0 = Ran�P�

has spectrum equal to 	z
, but this does not imply that �0 consists entirely
of eigenvectors of A. Even if �0 is finite-dimensional, the restriction of A

to �0 may have a non-trivial Jordan form. The full theory of what happens
under small perturbations of A is beyond the scope of this book, but the
next theorem is often useful. Its proof depends upon the following lemma.
The properties of orthogonal projections on a Hilbert space are studied more
thoroughly in Section 5.3. We define the rank of an operator to be the possibly
infinite dimension of its range.

Lemma 1.5.5 If P and Q are two bounded projections and �P −Q� < 1 then

rank�P� = rank�Q��

Proof. If 0 
= x ∈ Ran�P� then �Qx − x� = ��Q − P�x� < �x�, so Qx 
= 0.
Therefore Q maps Ran�P� one-one into Ran�Q� and rank�P� ≤ rank�Q�. The
converse has a similar proof. �

A more general version of the following theorem is given in Theorem 11.1.6,
but even that is less general than the case treated by Rellich, in which
one simply assumes that the operator depends analytically on a complex
parameter z.11

Theorem 1.5.6 (Rellich) Suppose that � is an isolated eigenvalue of A and
that the associated spectral projection P has rank 1. Then for any operator
B and all small enough w ∈ C, �A+wB� has a single eigenvalue ��w� near
to �, and this eigenvalue depends analytically upon w.

Proof. Let � be a circle enclosing � and no other point of Spec�A�, and let
P be defined as in Theorem 1.5.4. If

�w� < �B�−1
min	�R�z�A��−1

� z ∈ �


11 A systematic treatment of the perturbation of eigenvalues of higher multiplicity is given in
[Kato 1966A].
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then �zI −�A+wB�� is invertible for all z ∈ � by Theorem 1.2.9. By examin-
ing the expansion (1.5) one sees that �zI − �A+wB��−1 depends analytically
upon w for every z ∈ �. It follows that the projections

Pw �= 1
2�i

∫

�
�zI − �A+wB��−1dz

depend analytically upon w. By Lemma 1.5.5 Pw has rank 1 for all such w.
If f ∈ Ran�P� then fw �= Pwf depends analytically upon w and lies in

the range of Pw for all w. Assuming f 
= 0 it follows that fw 
= 0 for all
small enough w. Therefore fw is the eigenvector of �A+wB� associated with
the eigenvalue lying within � for all small enough w. The corresponding
eigenvalue satisfies


�A+wB�fw�
� = �w
fw�
�
where 
 is any vector in �∗ which satisfies 
f�
� = 1. The analytic
dependence of �w on w for all small enough w follows from this
equation. �

Example 1.5.7 The following example shows that the eigenvalues of non-
self-adjoint operators may behave in counter-intuitive ways (for those brought
up in self-adjoint environments). Let H be a self-adjoint n×n matrix and let
Bf �= 
f�
�
, where 
 is a fixed vector of norm 1 in Cn. If As �= H + isB

then Im
Asf� f� is a monotone increasing function of s ∈ R for all f ∈ Cn,
and this implies that every eigenvalue of As has a positive imaginary part for
all s > 0. If 	�r�s


n
r=1 are the eigenvalues of As then

n∑

r=1

�r�s = tr�As� = tr�H�+ is

for all s. All these facts (wrongly) suggest that the imaginary part of each
individual eigenvalue is a positive, monotonically increasing function of s for
s ≥ 0.

More careful theoretical arguments show that the eigenvalues of such an
operator move from the real axis into the upper half plane as s increases
from 0. All except one then turn around and converge back to the real axis
as s → +�. For n = 2 the calculations are elementary, but the case

As �=
⎛

⎝
−1+ is is is

is is is

is is 1+ is

⎞

⎠ (1.12)

is more typical.12 �

12 See Lemma 11.2.9 for further examples of a similar type.
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Figure 1.2: Eigenvalues of (1.12) for 0 ≤ s ≤ 1

If an operator A�z� has several eigenvalues �r�z�, all of which depend ana-
lytically on z, then generically they will only coincide in pairs, and this will
happen for certain discrete values of z. One can analyze the z-dependence of
two such eigenvalues by restricting attention to the two-dimensional linear
span of the corresponding eigenvectors. The following example illustrates
what can happen.

Example 1.5.8 If

A�z� �=
(

a�z� b�z�

c�z� d�z�

)

where a�b� c�d are all analytic functions, then the eigenvalues of A�z� are
given by

�±�z� �= �a�z�+d�z��/2±{�a�z�−d�z��2/4+b�z�c�z�
}1/2

�
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For most values of z the two branches are analytic functions of z, but for
certain special z they coincide and one has a square root singularity. In the
typical case

A�z� �=
(

0 z

1 0

)

one has ��z� = ±√
z. The two eigenvalues coincide for z = 0, but when this

happens the matrix has a non-trivial Jordan form and the eigenvalue 0 has
multiplicity 1. �



2
Function spaces

2.1 Lp spaces

The serious analysis of any operators acting in infinite-dimensional spaces
has to start with the precise specification of the spaces and their norms. In this
chapter we present the definitions and properties of the Lp spaces that will be
used for most of the applications in the book. Although these are only a tiny
fraction of the function spaces that have been used in various applications,
they are by far the most important ones. Indeed a large number of books
confine attention to operators acting in Hilbert space, the case p �= 2, but this
is not natural for many applications, such as those to probability theory.

Before we start this section we need to make a series of standing hypotheses
of a measure-theoretic character. We recommend that the reader skims through
these, and refers back to them as necessary. The conditions are satisfied in
all normal contexts within measure theory.1

(i) We define a measure space to be a triple �X����� consisting of a set X,
a �-field � of ‘measurable’ subsets of X, and a non-negative countably
additive measure � on �. We will usually denote the measure by dx.

(ii) We will always assume that the measure � is �-finite in the sense that there
is an increasing sequence of measurable subsets Xn with finite measures
and union equal to X.

(iii) We assume that each Xn is provided with a finite partition �n, by which we
mean a sequence of disjoint measurable subsets 	E1�E2� 
 
 
 �Em�n��, each
of which has positive measure �Er � �= ��Er�. The union of the subsets Er

must equal Xn.

1 Lebesgue integration and measure theory date back to the beginning of the twentieth century.
There are many good accounts of the subject, for example [Lieb and Loss 1997, Rudin 1966,
Weir 1973.]
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(iv) We assume that the partition �n+1 is finer than �n for every n, in the sense
that each set in �n is the union of one or more sets in �n+1.

(v) We define �n to be the linear space of all functions f �= ∑m�n�
r=1 �r



r ,

where 

r denotes the characteristic function of a set Er ∈ �n. Condition

(iv) is then equivalent to �n ⊆ �n+1 for all n.
(vi) We assume that the �-field � is countably generated in the sense that it

is generated by the totality of all sets in all partitions �n.
(vii) If 1 ≤ p < �, the expression Lp�X� dx�, or more briefly Lp�X�, denotes

the space of all measurable functions f � X → C such that

�f�
p

�=
{∫

X
�f�x��p dx

}1/p

< ��

two functions being identified if they are equal almost everywhere. If
f� g ∈ Lp�X� dx� and �� � ∈ C, the pointwise inequality

��f�x�+�g�x��p ≤ 2p���p�f�x��p +2p���p�g�x��p

implies that Lp�X� dx� is a vector space. We prove that � · �
p

is a norm
in Theorem 2.1.7. Condition (vi) is equivalent to

⋃
n≥1 �n being dense in

Lp�X� dx� for all 1 ≤ p < �. It follows that Lp�X� dx� is separable in the
sense of containing a countable dense set.

(viii) If X is a finite or countable set, lp�X� refers to the space Lp�X� dx�,
taking � to consist of all subsets of X and the measure to be the counting
measure.

(ix) If f � X → C is a measurable function we define its support by

supp�f� �= 	x � f�x� 
= 0�


This is only defined up to modification by a null set, i.e. a set of zero
measure.

If f� g � X → C are measurable functions and fg ∈ L1�X� dx� we will often
use the notation

�f� g� �=
∫

X
f�x�g�x� dx


Sometimes g�x� should be replaced by g�x�.

Example 2.1.1 The construction of Lebesgue measure on RN is not elemen-
tary, but we indicate how the above conditions are satisfied in that case. We
start by defining the sets Xn by

Xn �= 	x ∈ RN � −n ≤ xr < n for all 1 ≤ r ≤ N�
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It is immediate that �Xn� = �2n�N . We define the partition �n of Xn to consist
of all subsets E of Xn which are of the form

N∏

r=1

[
mr −1

2n
�

mr

2n

)

for suitable integers m1� 
 
 
 �mN . Every such ‘cube’ in �n is the union of 2N

disjoint cubes in �n+1. The totality of all such cubes in all �n as n varies
generates the Borel �-field of RN . �

We say that a measurable function f � X → C is essentially bounded if the set
	x � �f�x�� > c� has zero measure for some c. The space L��X� is defined to
be the set of all measurable, essentially bounded functions on X, where we
again identify two such functions if they coincide except on a null set. We
define �f�� to be the smallest constant c above. The proof that L��X� is a
Banach space for this norm is routine.

If 1 ≤ p < �, the proof that � · �
p

is a norm is not elementary, except in
the cases p = 1� 2. We approach it via a series of definitions and lemmas.
We say that a function � � �a� b� → �0��� is log-convex if

���1−��u+�v� ≤ ��u�1−���v��

for all u� v ∈ �a� b� and 0 < � < 1. We first deal with a singular case. We warn
the reader that when referring to the exponents in Lp spaces one often uses the
notation �p� q� to refer to 	�1−��p+�q � 0 ≤ � ≤ 1� without any requirement
that p ≤ q. Similarly �p� q� may refer to 	�1−��p+�q � 0 ≤ � < 1�.

Problem 2.1.2 Prove that if � is log-convex on �a� b� and ��c� = 0 for some
c ∈ �a� b� then ��x� = 0 for all x ∈ �a� b�. �

Problem 2.1.3 Prove that if � � �a� b� → �0��� is C2 then it is log-convex
if and only if

d2

dx2
log���x�� ≥ 0

for all x ∈ �a� b�. �

Problem 2.1.4 Suppose that 0 < a < b < � and that h � X → �0��� is mea-
surable. If

��s� �=
∫

X
h�x�s dx

is finite for s = a�b, prove that � is finite and log-convex on the interval
�a� b�. �
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Problem 2.1.5 Suppose that 1 ≤ p < q ≤ � and that ft ∈ Lp�X� dx�∩Lq�X� dx�

for all t ∈ �0� 1�. If limt→0 �ft�p
= 0 and sup0<t<1 �ft�q

< �, prove that

limt→0 �ft�r
= 0 for all r ∈ �p� q�. �

Lemma 2.1.6 (Hölder inequality) If 1 ≤ p ≤ � and q is the conjugate index
in the sense that 1/p + 1/q = 1, then fg ∈ L1�X� dx� for all f ∈ Lp�X� dx�

and g ∈ Lq�X� dx�, and

��f� g�� ≤ �f�
p
�g�

q

 (2.1)

Proof. The cases p = 1 and p = � are elementary, so we assume that 1 <

p < �. Given f ∈ Lp and g ∈ Lq we consider the log-convex function

��s� �=
∫

X
�f�x��sp�g�x���1−s�q dx


Putting s �= 1/p yields 1− s = 1/q and

��1/p� ≤ ��0�1/q��1�1/p


This implies the required inequality directly. �

Theorem 2.1.7 If 1 ≤ p < � then the quantity � ·�
p

is a norm on Lp�X� dx�,
and makes it a Banach space. If fr ∈ Lp�X� dx� and

�∑

r=1

�fr�p
< �

then the partial sums sn �=∑n
r=1 fr converge in Lp norm and almost every-

where to the same limit.

Proof. One can check that � · �
p

satisfies all the axioms for a norm by using
the identity

�f�
p
= sup

{
��f� g�� � �g�

q
≤ 1

}

which is proved with the help of Lemma 2.1.6. The supremum is
achieved for

g �= f �f �p−2 �f�1−p

p



We prove completeness and the final statement of the theorem together, using
Problem 1.1.1. If fn satisfy the stated conditions and we put

gn �=
n∑

r=1

�fr �
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then gn is a monotonic increasing sequence and

�gn�p
≤

�∑

r=1

�fr�p
< �

for all n. By applying the monotone convergence theorem to gp
n we conclude

that gn converges almost everywhere to a finite limit. This implies by a
domination argument that sn converges almost everywhere to a finite limit,
which we call s. Given � > 0, Fatou’s lemma then implies that

�s − sn�p
≤ lim inf

m→� �sm − sn�p
< �

for all large enough n. Hence s ∈ Lp�X� dx� and �sn − s�
p

→ 0 as
n → �. �

Problem 2.1.8 Prove that if gn converges in norm to g in Lp�X� dx� then
there exists a subsequence gn�r� which converges to g almost everywhere as
r → �. �

Problem 2.1.9 Prove that if X contains two disjoint sets with positive
measures and Lp�X� dx� is isometrically isomorphic to a Hilbert space then
p = 2. �

Problem 2.1.10 Construct a sequence of continuous, non-negative functions
fn on �0� 1� which converge to 0 in L2 norm without converging pointwise
anywhere in �0� 1�. �

Problem 2.1.11 Prove that if f ∈ Lp�X� for all large enough finite p,
then f ∈ L��X� if and only if the norms �f�

p
are uniformly bounded as

p → �. �

Theorem 2.1.12 Let 1 ≤ p�q ≤ �, 0 < � < 1 and

1
r

�= 1−�

p
+ �

q



If f ∈ Lp�X� dx�∩Lq�X� dx� then f ∈ Lr�X� dx� and

�f�
r
≤ �f�1−�

p
�f��

q

 (2.2)

Proof. If p = � this reduces to the elementary statement that
∫

X
�f�x��r dx ≤ �f�r−q

�
∫

X
�f�x��q dx
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provided q < r < �. A similar proof applies if q = �, so we henceforth
assume that both are finite.

We may rewrite (2.2) in the form

∫

X
�f�x��r dx ≤

{∫

X
�f�x��p dx

}�1−��r/p {∫

X
�f�x��q dx

}�r/q




Putting s �= �r/q this is equivalent to

∫

X
�f�x���1−s�p+sq dx ≤

{∫

X
�f�x��p dx

}1−s {∫

X
�f�x��q dx

}s




The proof is completed by applying Problem 2.1.4, which implies the log-
convexity of the function

��t� �=
∫

X
�f�x��t dx
 �

Theorem 2.1.13 Let f ∈ Lp�X� dx� and g ∈ Lq�X� dx� where 1 ≤ p ≤ � and
1 ≤ q ≤ �. Also suppose that

1/r �= 1/p+1/q


Then fg ∈ Lr�X� dx� and

�fg�
r
≤ �f�

p
�g�

q



Proof. This is elementary if p = � or q = �, so we assume that both are
finite. Put d′x �= �g�x��qdx and h �= �f �p�g�−q


E , where E �= 	x � g�x� 
= 0�.
One sees immediately that

∫

X
1 d′x =

∫

X
�g�x��q dx�

∫

X
h�x� d′x =

∫

E
�f�x��p dx�

∫

X
h�x�s d′x =

∫

X
�f�x�g�x��r dx�

provided s �= q/�p+q�. Problem 2.1.4 implies that

∫

X
h�x�s d′x ≤

{∫

X
1 d′x

}1−s {∫

X
h�x� d′x

}s
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This may be rewritten in the form

∫

X
�f�x�g�x��r dx ≤

{∫

X
�g�x��q dx

}p/�p+q� {∫

E
�f�x��p dx

}q/�p+q�

�

which leads directly to the statement of the theorem if one uses r = pq/

�p+q�. �

Both of the above theorems are still valid if the conditions p�q� r ≥ 1 are
relaxed to p�q� r > 0. The stronger assumptions are present for the following
reason.

Problem 2.1.14 Prove that if X contains two disjoint sets with positive finite
measures then

�f�
p

�=
{∫

X
�f�x��p dx

}1/p

is not a norm if 0 < p < 1. Prove also that

d�f� g� �=
∫

X
�f�x�−g�x��p dx

is a metric. �

We end the section with a few results from the geometry of Banach spaces,
with particular reference to Lp�X� dx�.

Theorem 2.1.15 (James)2 The Banach space � is reflexive if and only if
every � ∈ �∗ achieves its norm, i.e. there exists x ∈ � such that �x� = 1 and
��x� = ���.

Problem 2.1.16 Prove that the Banach spaces l1�Z� and C��0� 1�� are not
reflexive. �

Theorem 2.1.17 (Clarkson)3 If 2 ≤ p < � and f� g ∈ Lp�X� dx� then

�f +g�p

p
+�f −g�p

p
≤ 2p−1

(
�f�p

p
+�g�p

p

)

 (2.3)

2 See [Diestel 1975, Chap. 1] for several proofs of James’s theorem and references to even
more. Another proof may be found in [Megginson 1998, Sect. 1.13]. For separable Banach
spaces the proof in [Nygaard 2005] is comparatively simple.

3 (2.3) is just one of several inequalities due to Clarkson. They are closely related to the
concept of uniform convexity of Banach spaces, a subject with many ramifications, which we
touch on in Problem 2.1.18.
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Proof. We prove that

�u+v�p +�u−v�p ≤ 2p−1 ��u�p +�v�p� (2.4)

for all u� v ∈ C. This yields (2.3) by putting u �= f�x�, v �= g�x� and integrating
over X. The bound (2.4) can be rewritten in the form

�Aw�
p
≤ 21−1/p�w�

p

for all w �= �u� v�′ ∈ C2 where

A �=
(

1 1
1 −1

)




If �A�
p

denotes the norm of A regarded as an operator acting on C2 provided

with the Lp norm, then the bound �A�
p
≤ 21−1/p is an immediate corollary of

the Riesz-Thorin interpolation Theorem 2.2.14 – all the Lp spaces involved
being two-dimensional. The identity �A�2 = √

2 is obtained by observing
that the eigenvalues of the self-adjoint matrix A are ±√

2, while �A�� = 2
is entirely elementary. �

Problem 2.1.18 4 Prove that Lp�X� dx� is uniformly convex for 2 ≤ p < � in
the following sense. For every � > 0 there exists �� > 0 such that if �f�

p
= 1,

�g�
p
= 1 and �f +g�

p
> 2−�� then �f −g�

p
< �. �

Lemma 2.1.19 If 1 < p < �, s ∈ R and f� h ∈ Lp�X� dx� then

d
ds

�f + sh�p

p
= p Re

{∫

X
h�x�gs�x� dx

}

where gs ∈ Lq�X� dx� is defined by

gs�x� �= f�x�+ sh�x� �f�x�+ sh�x��p−2

and is a norm continuous function of s.

Proof. A direct calculation shows that

d
ds

�f�x�+ sh�x��p = p Re 	h�x�gs�x��

for all x ∈ X and s ∈ R. Therefore

�f�x�+ sh�x��p = �f�x��p +p
∫ s

u=0
Re 	h�x�gu�x�� du


4 The space Lp�X� dx� is also uniformly convex for all 1 < p < 2, but the proof uses a different
Clarkson inequality.
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Integrating both sides with respect to x yields

�f + sh�p

p
= �f�p

p
+p

∫ s

u=0

∫

X
Re 	h�x�gu�x�� dxdu
 (2.5)

The interchange of the order of integration is justified by the bound

�h�x�gu�x�� ≤ �h�x�� ��f�x��+S�h�x���p−1

valid for all x ∈ X and all u ∈ �−S�S�; the right-hand side lies in L1�X ×
�−S�S��. Differentiating (2.5) with respect to s yields the statement of the
lemma. �

Theorem 2.1.20 5 If 1 ≤ p < � then the Banach dual space of Lp�X� dx� is
isometrically isomorphic to Lq�X� dx� where 1/p+ 1/q = 1. The functional
� ∈ Lp�X� dx�∗ corresponds to the function g ∈ Lq�X� dx� according to the
formula

��f� �=
∫

X
f�x�g�x� dx
 (2.6)

Proof. We start by considering the case in which 1 < p ≤ 2 and X has finite
measure. Since L2 is continuously embedded in Lp the Riesz representation
theorem for Hilbert spaces implies that for any � ∈ �Lp�∗ there exists g ∈ L2

such that (2.6) holds for all f ∈ L2. If we put

gn�x� �=
{

g�x� if �g�x�� ≤ n,
0 otherwise,

and fn �= gn�gn�q−2 then fn and gn are both bounded and hence lie in all Lr

spaces. Moreover

�gn�
q

q
=
∫

X
fn�x�g�x� dx = ��fn� ≤ �fn�p

��� = �gn�
q/p

q
���


Therefore �gn�q
≤ ��� for all n. Letting n → � we deduce that �g�

q
≤ ���.

Since L2�X� dx� is dense in Lp�X� dx�, an approximation argument implies
that (2.6) holds for all f ∈ Lp�X� dx�. An application of Lemma 2.1.6 finally
proves that �g�

q
= ���.

If 1 < p ≤ 2 but X has infinite measure then we write X as a disjoint
union of sets En, each of which has finite measure. By the first part of the
proof, for each n there exists gn ∈ Lq�En� dx� such that (2.6) holds for all

5 The proof of this theorem in Dunford and Schwartz 1966, Theorems IV.8.1 and IV.8.5 is
based on the Radon-Nikodym theorem. Some authors, such as [Carleson 1966, Kuttler 1997,
Lieb and Loss 1997,] make use of uniform convexity. Our proof uses the former method for
1 ≤ p ≤ 2 and the latter for 2 ≤ p < �.
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f ∈ Lp�X� dx� with support in En. We now concatenate the gn to produce a
function g � X → C. If Xn �=⋃n

r=1 Er then the restriction gn of g to Xn lies in
Lq�Xn� dx� and (2.6) holds for all f ∈ Lp�X� dx� with support in Xn. Moreover
�gn�q

≤ ��� for all n. By letting n → � we conclude that g ∈ Lq�X� dx� and

�g�
q
= ���.

If p = 1 then a straightforward modification of the above argument yields
the identity �L1�∗ = L�.

The above argument establishes that if 1 < p ≤ 2 every � ∈ �Lp�∗ is of
the form ��f� �= ∫

X
f�x�g�x� dx for some g ∈ Lq. � therefore achieves its

norm at f �= ggq−2/�ggq−2�
p

∈ Lp. Theorem 2.1.15 now implies that Lp is
reflexive, so �Lq�∗ = Lp for all 2 ≤ q < �.

Our second proof of the result proved in the last paragraph is longer but
more elementary. Let 2 ≤ p < � and let � ∈ �Lp�∗ satisfy ��� = 1. There
exists a sequence fn ∈ Lp such that �fn�p

= 1 and ��fn� → 1 as n → �.

Since ��fm + fn� → 2 as m� n → � we deduce that �fm + fn�p
→ 2. The

uniform convexity of Lp implies that fn converges to a limit f ∈ Lp such that
�f�

p
= 1 and ��f� = 1; see Problem 2.1.18. If g �= f �f �p−2 then �g�

q
= 1 and

the functional ��h� �= ∫

X
h�x�g�x� dx on Lp satisfies ��� = 1 and ��f� = 1.

If we show that � = �, then it follows that �Lp�∗ = Lq.
It suffices to prove that Ker��� ⊆ Ker���, because both kernels have

co-dimension 1. If ��h� = 0 then ��f + sh� = 1 for all s ∈ R. Therefore
�f + sh�

p
≥ 1 for all s ∈ R. The function F�s� �= �f + sh�p

p
is differentiable

by Lemma 2.1.19 and takes its minimum value at s = 0, so F ′�0� = 0.
Lemma 2.1.19 also yields

Re
{∫

X
h�x�g�x� dx

}

= 0


Repeating the above argument with h replaced by ih we deduce that

∫

X
h�x�g�x� dx = 0�

so h ∈ Ker���. �

Problem 2.1.21 Give an elementary, ab initio proof that the dual of lp�X�

is isometrically isomorphic to lq�X� for all 1 ≤ p < �, where 1/p +
1/q = 1. �
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2.2 Operators acting on Lp spaces

In this section we prove the boundedness of various operators acting between
Lp spaces. We start by considering multiplication operators, whose spectrum
is easy to describe. They are of central importance in our treatment of the
spectral theorem for normal and self-adjoint operators in Section 5.4.

Problem 2.2.1 If m is a measurable function on X, we say that z lies in
the essential range of m if 	x � �m�x� − z� < �� has positive measure for
all � > 0. Equivalently z is not in the essential range if �m�x� − z�−1 is a
bounded function of x on X, possibly after alteration on a null set. Prove
that if m is a bounded, measurable function on X and the multiplication
operator M � Lp�X� dx� → Lp�X� dx� is defined by �Mf��x� �= m�x�f�x�,
where 1 ≤ p < �, then Spec�M� equals the essential range of m. Prove also
that if m � RN → C is a bounded, continuous function, then Spec�M� is the
closure of 	m�x� � x ∈ RN �. �

In the theorems below we will not labour the obvious requirement that all inte-
gral kernels must be measurable. The following lemma characterizes Hilbert-
Schmidt operators.

Lemma 2.2.2 If K ∈ L2�X ×X� then the formula

�Af��x� �=
∫

X
K�x� y�f�y� dy

defines a bounded linear operator on L2�X� satisfying �A� ≤ �K�2.

Proof. If f ∈ L2�X� then

��Af��x��2 ≤
{∫

X
�K�x� y�f�y��dy

}2

≤
∫

X
�K�x� y��2 dy

∫

X
�f�y��2 dy


Therefore

�Af�2

2 ≤ �K�2

2�f�2

2

and the lemma follows. �

We call

�A�2 �=
{∫

X×X
�K�x� y��2 dxdy

}1/2

the Hilbert-Schmidt or Frobenius norm of A. The notation �·�HS is also used.
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Problem 2.2.3 Prove that the Hilbert-Schmidt norm

�A�2 �= 	
n∑

r�s=1

�Ar�s�2�1/2

of an n×n matrix A and its operator norm

�A� �= sup	�Av�/�v� � 0 
= v ∈ Cn�

are related by

�A� ≤ �A�2 ≤ n1/2�A�
 �

Problem 2.2.4 Prove that if the Hilbert-Schmidt operators An converge in
the weak operator topology to A and �An�2 ≤ c < � for all n then A is
Hilbert-Schmidt and �A�2 ≤ c. �

Lemma 2.2.2 is of rather limited application, because every Hilbert-Schmidt
operator is compact for reasons explained in Theorem 4.2.16. Our next series
of results depend upon proving boundedness in L1 and L� first, and then
interpolating. As a consequence they prove that the relevant operators are
bounded on all Lp spaces.

Theorem 2.2.5 If K � X ×X → C is measurable and

c1 �= ess-sup
y∈X

∫

X
�K�x� y��dx < �

then the formula

�Af��x� �=
∫

X
K�x� y�f�y� dy

defines a bounded linear operator on L1 with �A� = c1.

This is a special case of the following more general theorem.

Theorem 2.2.6 If � is a separable Banach space and the measurable function
K � X → � satisfies

c �= ess-sup
y∈X

�K�y�� < �

then the formula

Af �=
∫

X
K�y�f�y� dy

defines a bounded linear operator from L1 to � with �A� = c.
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Proof. If c is finite then

�Af� ≤
∫

X
�K�y�f�y��dy

≤
∫

X
c�f�y��dy

= c�f�1

for all f ∈ L1�X�. Therefore �A� ≤ c.
In the reverse direction if � lies in the unit ball S of �∗ then the bound

�
∫

X
�K�x����f�x� dx� = ��Af���� ≤ �A��f�1

implies that

��K�x����� ≤ �A�
for all x not in a certain null set N�. If 	�n�

�
n=1 is a weak* dense sequence in

S and N �=⋃�
n=1 N�n

then N is a null set and

��K�x���n�� ≤ �A�
for all n and all x � N . A density argument now implies that

��K�x����� ≤ �A�
for all � ∈ S and all x � N . The Hahn-Banach theorem finally implies that
c ≤ �A�. �

In spite of Theorem 2.2.5, it is not the case that every bounded operator on
L1�X� dx� has an integral kernel (consider the identity operator). Nevertheless
some results of this type do exist.

Theorem 2.2.7 The formula

�Af��x� �=
∫

X
K�x� y�f�y� dy

establishes a one-one correspondence between bounded linear operators

A � L1�X� dx� → L��X� dx�

and K ∈ L��X ×X� d2x�. Moreover �A� = �K��.

Proof. If A has a bounded integral kernel then the final statement follows
from Theorem 2.2.6 with �= L��X� dx�, so we only have to prove that every
bounded operator A between the stated spaces possesses a suitable kernel.
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Let � = 	E1�E2� 
 
 
 �En� be a finite sequence of disjoint subsets of X with
positive and finite measures. For each r ∈ 	1� 
 
 
 � n� let 


Er
and �Er � denote

the characteristic function and measure respectively of Er . Let

K��x� y� =
n∑

r=1

A�
Er
��x�
Er

�y��Er �−1


It is easy to verify that

�Af��x� =
∫

X
K��x� y�f�y� dy

for all f ∈ L� �= lin	
r � 1 ≤ r ≤ n�. Moreover �K��x� y�� ≤ �A� for all
x� y ∈ X.

Given two such sequences � and � we write � ≤ � if every set in �
is the union of one or more sets in � , or equivalently if L� ⊆ L� . Let �n

be an increasing sequence for which ∪�
n=1Ln is norm dense in L1�X�, where

henceforth the subscript n stands in for �n. Since Kn lie in the weak* compact
ball 	� ∈ L��X ×X� � ���� ≤ �A��, there is a subsequence which converges
in the weak* topology to K ∈ L��X ×X�. Henceforth the letter n refers to
terms in this subsequence.

If f ∈ Ln and g ∈ L1�X� then

�Af�g� =
∫

X×X
Kn�x� y�f�y�g�x� dxdy

for all large enough n so

�Af�g� =
∫

X×X
K�x� y�f�y�g�x� dxdy


Since n and g are arbitrary we deduce that

�Af��x� =
∫

X
K�x� y�f�y� dy

for all f ∈ ∪�
n=1Ln, and by density also for all f ∈ L1�X�. �

Theorem 2.2.8 If

c� �= ess-sup
x∈X

∫

X
�K�x� y��dy < �

then the formula

�Af��x� �=
∫

X
K�x� y�f�y� dy

defines a bounded linear operator on L� with �A� = c�.
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Proof. Every such operator is the dual of an operator on L1�X� dx� with the
kernel K�y�x�, to which we can apply Theorem 2.2.5. �

The following theorems consider operators which act on several Lp spaces
simultaneously. We need to formulate some general concepts before dis-
cussing this. We say that two Banach spaces �1 and �2 or their associated
norms are compatible if � = �1 ∩�2 is dense in each of them, and the fol-
lowing condition is satisfied. If fn ∈ �, �fn −f�1 → 0 and �fn −g�2 → 0 as
n → � then f = g ∈ �. Equivalently � is complete with respect to the norm

�f� �= �f�1 +�f�2


Problem 2.2.9 Prove that the spaces Lp�X� dx� are compatible as p

varies. �

In the above context two bounded operators Ai � �i → �i are said to be
consistent if A1f = A2f for all f ∈ �1 ∩�2.

Problem 2.2.10 Prove that if the bounded operators Ai � �i → �i are consis-
tent for i = 1� 2, then R�z�A1� and R�z�A2� are consistent for all z in the
unbounded component U of

W �= C\	Spec�A1�∪Spec�A2��
 �

Before continuing we give a word of warning about the possible p-dependence
of the Lp spectrum of an operator.

Example 2.2.11 The operator �Af��x� �= f�x + 1� is an invertible isometry
on Lp�R� dx� for all p ∈ �1���. However, if we denote the ‘same’ operator
acting on �p �= Lp�R� e−�x�dx� for 1 ≤ p < � by Ap, the situation changes.
Direct calculations show that �A±

p � = e1/p. Defining fz�x� �= ezx, we see that
fz ∈ �p if �Re�z�� < 1/p and Apfz = ezfz. These facts imply that

Spec�Ap� = 	z � e−1/p ≤ �z� ≤ e1/p�
 �

Our next two lemmas are needed for the proof of Theorem 2.2.14.

Lemma 2.2.12 (Three Lines Lemma) Let S �= 	z ∈ C � 0 ≤ Re�z� ≤ 1�. Let F

be a continuous bounded function on S which is analytic in the interior
of S. If

c� �= sup	�F��+ iy�� � y ∈ R�
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for 0 ≤ � ≤ 1 then

c� ≤ c1−�
0 c�

1 


Proof.Apply the maximum principle to

G��z� �= F�z�e�z+��1+�z�−1

for all � > 0, where �� � ∈ R are determined by

e−� = c0� e−�−� = c1
 �

Let Lp denote the space Lp�X� dx�. We write f ∈ � if

f�x� =
n∑

r=1

�r



Er
�x�

where �r ∈ C and 	Er�
n
r=1 is any (f -dependent) family of disjoint sets with

finite positive measures. � is a linear subspace of Lp for all 1 ≤ p ≤ �, and
it is norm (resp. weak*) dense in Lp if 1 ≤ p < � (resp. p = �).

Lemma 2.2.13 Given f ∈ � , � ∈ �0� 1�, p1� p2 ∈ �1��� and 1/p �= �1 −
��/p0 + �/p1. Then there exist �� � ∈ R such that the analytic family of
functions

fz�x� �= �f�x���z+�−1f�x��

which all lie in � , satisfy f� = f and

�fiy�
p0

p0
= �f�p

p
= �f1+iy�

p1

p1

for all y ∈ R.

Proof. One may verify directly that the choices

� �= p

p1

− p

p0

� � �= p

p0

lead to the claimed result. �

The following interpolation theorem is used throughout the book.

Theorem 2.2.14 (Riesz-Thorin) Let 1 ≤ p0� p1� q0� q1 ≤ � and 0 < � < 1,
and define p�q by

1
p

�= 1−�

p0

+ �

p1

�

1
q

�= 1−�

q0

+ �

q1
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Let A be a linear map from Lp0 ∩Lp1 to Lq0 ∩Lq1 . If

�Af�
q0

≤ c0�f�
p0

�

�Af�
q1

≤ c1�f�
p1

for all f ∈ Lp0 ∩Lp1 , then A can be extended to a bounded linear operator
from Lp to Lq with norm at most c1−�

0 c�
1 .

Proof. We only treat the case in which the exponents are all finite. The
other cases are similar. Let r� r0� r1 be the indices conjugate to q� q0� q1

respectively, so that

1
r

= 1−�

r0

+ �

r1




Given f ∈� , let fz ∈� be constructed using Lemma 2.2.13. Given g ∈� ,
use an analogous procedure to construct gz ∈ � which satisfy g� = g and

�giy�
r0

r0
= �g�r

r
= �g1+iy�

r1

r1

for all y ∈ R.
Now consider the analytic function

F�z� �= �Afz� gz�

Since

�F�iy�� ≤ c0�f�p/p0

p
�g�r/r0

r
�

�F�1+ iy�� ≤ c1�f�p/p1

p
�g�r/r1

r
�

for all y ∈ R, we deduce using the Three Lines Lemma that

�F���� ≤ c1−�
0 c�

1 �f�
p
�g�

r



Since g is arbitrary subject to g ∈ � , we deduce that

�Af�
q
≤ c1−�

0 c�
1 �f�

p

for all f ∈ � . Density arguments now imply the same bound for all f ∈
Lp0 ∩Lp1 , and then for all f ∈ Lp. �

Corollary 2.2.15 If A is defined on L1�X�∩L��X� by

�Af��x� �=
∫

X
K�x� y�f�y� dy
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and

c1 �= ess-sup
y∈X

∫

X
�K�x� y��dx < ��

c� �= ess-sup
x∈X

∫

X
�K�x� y��dy < ��

then A extends to a bounded operator on L2�X� satisfying

�A�2 ≤ √
c1 c�


Proof. Interpolate between the operator bounds of Theorems 2.2.5 and
2.2.8. �

Problem 2.2.16 Give an elementary proof of the above corollary, using only
Schwarz’s lemma. �

Problem 2.2.17 Let A � Lp�0� 1� → Lp�0� 1� be defined by

�Af��x� �=
∫ 1

0
K�x� y�f�y� dy

where

K�x� y� �=
{

1 if x+y ≤ 1,
0 otherwise.

Prove that �A�1 = �A�� = 1 but �A�2 = 2/�. Hence interpolation does not
give the sharp value of the norm of A on L2�0� 1�. �

Problem 2.2.18 Let A be a bounded self-adjoint operator on L2�X� dx� and
suppose that �Af�� ≤ c�f�� for all f ∈ L2�X� dx�∩L��X�. Prove that for
every p ∈ �1���, A extends from L2�X� dx�∩Lp�X� dx� to a bounded linear
operator Ap on Lp�X� dx� with �Ap� ≤ c. �

Corollary 2.2.19 If X is a measurable subset of RN and A is defined on
L1�X�∩L��X� by

�Af��x� �=
∫

X
K�x� y�f�y� dN y�

where �K�x� y�� ≤ k�x − y� for all x� y ∈ X and some k ∈ L1�RN �, then A

extends to a bounded operator on Lp�X� satisfying �A�
p
≤ �k�1 for every p

satisfying 1 ≤ p < �.
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Given a ∈ L1�RN � and f ∈ Lp�RN �, where 1 ≤ p < �, the convolution

�a∗f��x� �=
∫

RN
a�x−y�f�y� dN y

of a and f lies in Lp�RN � by Corollary 2.2.19, and the convolution transform
Ta�f� �= a∗f is a bounded linear operator on Lp�RN � with �Ta� ≤ �a�1. One
may verify directly that the Banach space L1�RN � becomes a commutative
Banach algebra under the convolution multiplication.

The above definitions can all be adapted in an obvious way if RN is
replaced by ZN or �−����N

per. Indeed they apply to any locally compact
abelian group, if one integrates with respect to the translation invariant Haar
measure. A convolution operator on l2�Z� is often called a Laurent operator,
and is associated with an infinite matrix which is constant on diagonals, as in

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝


 
 


 
 



 
 


 
 
 c d e

 
 
 b c d e

a b c d e
a b c d e

a b c d


 


a b c

 
 



 
 


 
 



 
 


⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠




In this book we will be concerned with the mathematical applications of
convolutions, but the convolution transform is also of major importance in
applied science, for example image processing. If we neglect the important
contribution of noise, the perceived image g is often taken to be of the form
g �= a∗f , where f is the true image and a is a known function representing
the degradation of the image by the camera optics. Reconstructing the true
image from the perceived one amounts to inverting the convolution transform.
Unfortunately this is an ill-posed inverse problem – by Theorem 3.1.19 the
inverse operator is always unbounded if it exists. In order to approximate the
inverse it is normal to adopt a variational approach, in which the quantity to
be minimized incorporates some expectations about the nature of the image.
Several such deconvolution algorithms exist.

If one takes the finite resolution of the instrument into account by replacing
RN by a finite set, the operator Ta becomes a matrix. If this is one-one then it
is invertible, but the norm of the inverse will normally be very large, so the
problem is still ill-posed in a numerical sense.
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2.3 Approximation and regularization

One frequently needs to approximate functions in Lp�RN � and similar spaces
by a sequence of more regular functions. The following methods of doing so
are often used in combination.

Lemma 2.3.1 If 1 ≤ p < �, f ∈ Lp�RN � and

fn�x� �=
{

0 if �x� ≥ n or if �f�x�� ≥ n�

f�x� otherwise,

then limn→� �fn −f�
p
= 0, and each fn is bounded with bounded support.

We write f ∈ C�
c �U� when f is smooth (i.e. infinitely differentiable) and has

compact support contained in the region U ⊆ RN . The existence of many such
functions starts with the observation that

��s� �=
{

e−1/s if s > 0,
0 if s ≤ 0

(2.7)

is a smooth function on R. The function

��s� �= ��1− s�

��1− s�+��s�

is also smooth. It equals 0 if s ≥ 1 and 1 if s ≤ 0.
Finally

��x� �= ���x�−1� (2.8)

is a smooth function on RN . It equals 1 if �x� ≤ 1 and 0 if �x� ≥ 2. For all
other x ∈ RN its value lies in �0� 1�.

Problem 2.3.2 Prove that if f� g are continuous functions on R, f is differ-
entiable on R\	0� and f ′�x� = g�x� for all x 
= 0, then f is also differentiable
at 0 with f ′�0� = g�0�. Use this to deduce that the function � defined in (2.7)
is smooth. �

Problem 2.3.3 Prove that if 1 ≤ p < �, f ∈ Lp�RN � and

fn�x� �= f�x���x/n��

then limn→� �fn −f�
p
= 0. �

Theorem 2.3.4 Let

�n�x� �= c−1nN ��nx�
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where � is defined by (2.8) and c �= ∫

RN ��y�dN y. If f ∈ Lp�RN � and fn �=
�n ∗f , then fn is a smooth function and

lim
n→� �fn −f�

p
= 0
 (2.9)

If S is the support of f then the support of fn is contained in S +B�0� 2/n�.

Proof.The smoothness of fn follows by differentiating the convolution for-
mula

�f ∗�n��x� =
∫

RN
f�y��n�x−y� dN y

under the integral sign repeatedly. This is justified by standard methods. If f

is a continuous function of compact support then fn converges uniformly to
f and the supports of fn are uniformly bounded. This implies (2.9) for such
functions. Its general validity follows by density arguments, making use of
the bound

�fn�p
≤ ��n�1 �f�

p
= �f�

p

 �

Corollary 2.3.5 C�
c �U� is norm dense in Lp�U� for any region U ⊆ RN and

any 1 ≤ p < �.

Proof.The first step is to approximate f ∈ Lp�U� by fn where

fn�x� �=
{

f�x� if dist�x� RN\U� ≥ 1/n and �x� ≤ n,
0 otherwise.

We may then apply the convolution procedure of Theorem 2.3.4 to approxi-
mate fn. �

Corollary 2.3.6 If f ∈ Lp1�RN �∩Lp2�RN � where 1 ≤ p1 < p2 < �, then there
exists a sequence fn ∈ C�

c �RN � such that

lim
n→� �fn −f�

pi
= 0

simultaneously for i = 1� 2.

Proof.Given n we first apply the procedure of Lemma 2.3.1 to construct
gn ∈ L�

c such that �gn −f�
pi

< 1/�2n� for i = 1� 2. We then use the procedure

of Theorem 2.3.4 to construct fn ∈ C�
c such that �fn − gn�pi

< 1/�2n� for
i = 1� 2. �
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Problem 2.3.7 In Theorem 2.3.4 replace the stated choice of � by

��x� = e−�x�2 


Prove that every statement of the theorem remains true except the final one.
What can you say about the decay of fn�x� and its derivatives as �x� → � if
f has compact support? �

One can also develop approximation procedures in the periodic context. In
one dimension we say that k is a trigonometric polynomial of order n on
�−���� if

k��� �=
n∑

r=−n

cre
ir�

= a0 +
n∑

r=1

	ar cos�r��+br sin�r���

for suitable complex coefficients.

Lemma 2.3.8 There exist trigonometric polynomials kn of order n such that
kn��� = kn�−�� ≥ 0 for all �,

∫ �

−�
kn��� d� = 1 for all n, and

lim
n→�

∫

���>�
kn��� d� = 0

for all � ∈ �0���.

Proof. We put

kn��� �= c−1
n �1+ cos����n (2.10)

where

cn �=
∫ �

−�
�1+ cos����n d� (2.11)

= 2
∫ �

0
�1+ cos����n d�

≥ 2
∫ �

0
�1+ cos����n sin��� d�

= 2
∫ 1

−1
�1+x�n dx

= 2n+2

n+1





2.3 Approximation and regularization 57

The fact that kn is a trigonometric polynomial of order n follows by rewriting
(2.10) in terms of complex exponentials and expanding. Finally, given � > 0,
we have

∫

���>�
kn��� d� ≤ �2� −2��kn���

≤ 2�
n+1
2n+2

�1+ cos����n

≤ 2�n+1� cos2n��/2��

which converges to zero as n → � for all � in the stated range. �

Problem 2.3.9 Find an explicit expression for the constant cn in (2.11) by
expanding �1+ cos����n as a linear combination of eir� for −n ≤ r ≤ n. Use
Stirling’s formula to find the asymptotic form of cn as n → �. �

Theorem 2.3.10 If f is a continuous periodic function on �−���� then
fn �= kn ∗ f are trigonometric polynomials and converge uniformly to f as
n → �.

Proof. If we write kn in the form

kn��� �=
n∑

r=−n

cre
ir��

then the formula

fn��� �= �kn ∗f���� =
∫ �

−�

n∑

r=−n

cre
ir��−��f��� d�

establishes that fn is a trigonometric polynomial of order at most n. The
uniform convergence of fn to f uses the alternative expression

fn��� =
∫ �

−�
f�� −��kn��� d�


One estimates the difference

fn���−f��� =
∫ �

−�
	f�� −��−f����kn��� d�

using the uniform continuity of f and Lemma 2.3.8. �

Corollary 2.3.11 The functions

er��� �= eir�

√
2�

�



58 Function spaces

where r ∈ Z, form a complete orthonormal set in L2�−����. Hence

f = lim
n→�

n∑

r=−n

�f� er�er and �f�2

2 =
�∑

r=−�
��f� er��2

for every f ∈ L2�−����.

Proof.A direct calculation verifies that they form an orthonormal set. Com-
pleteness is equivalent to their linear span being dense in L2�−����. This
follows by combining Theorem 2.3.10 with the density of the continuous
periodic functions in L2�−����, a fact that depends upon the manner of
construction of the Lebesgue integral. �

Example 2.3.12 The Fourier series of a continuous periodic function on
�−���� converges uniformly to f under weak regularity assumptions, given
in Theorem 3.3.10. If f has a jump discontinuity this cannot be true, and in
fact the behaviour of the Fourier series near the discontinuity exhibits what
is called the Gibbs phenomenon. It has recently been shown6 that if f has a
single discontinuity, and it is at ±�, then there is no Gibbs phenomenon and
one obtains substantially better convergence properties if one expands f in
terms of the modified orthonormal basis

�n�x� =
⎧
⎨

⎩

�2��−1/2 if n = 0,
�−1/2 cos�nx� if n ≤ −1,
�−1/2 sin��n−1/2�x� if n ≥ 1.

In particular if f ∈ C2�−���� then a direct calculation using integration by
parts shows that the ‘Fourier’ coefficients of f with respect to this basis are of
order n−2 as n → ±�. Therefore the modified Fourier series of f converges
uniformly, even though no boundary conditions have been imposed on f

at ±�.
Many of the classical formulae for Fourier expansions have analogues in

this context. It is worth noting that this modified Fourier basis is the set of all
eigenvectors of the operator �Hf��x� �= −f ′′�x� acting in L2�−���� subject
to Neumann boundary conditions at ±�. �

Problem 2.3.13 Prove the Riemann-Lebesgue lemma, which states that

lim
�n�→�

∫ �

−�
f�x�e−inx dx = 0

for all f ∈ L1�−����. �

6 See [Iserles and Nørsett 2006] for the details.
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Problem 2.3.14 Use Theorem 2.3.10 and an approximation argument to
prove that if f ∈ L1�−���� then kn ∗f → f in L1 norm as n → �. Deduce
that if f ∈ L1�−���� and

∫ �

−�
f���ein� d� = 0

for all n ∈ Z, then f = 0 almost everywhere. �

Problem 2.3.15 Prove that if f and its first m derivatives are continuous and
periodic on �−���� then the rth derivative f �r�

n of fn converges uniformly to
f �r� as n → � for all 1 ≤ r ≤ m. �

The following is the simplest and earliest of a family of related theorems. We
give a constructive proof that can be extended to higher dimensions.

Theorem 2.3.16 (Weierstrass) For every continuous function f on the inter-
val �−a�a� there exists a sequence of polynomials pn that converge uniformly
to f on �−a�a�.

Proof. We extend f continuously to R by putting

f̃ �x� �=
⎧
⎨

⎩

f�x� if �x� ≤ a,
f�ax/�x���2a−�x��/a if a < �x� < 2a,
0 if �x� ≥ 2a.

From this point onwards we omit the tilde. Given s > 0 we define

fs�x� �=
∫

R
s−1k�y/s�f�x−y� dy

where

k�x� �= �−1/2e−x2



We have

�fs�x�−f�x�� = �
∫

R
s−1k�y/s�	f�x−y�−f�x�� dy�

= �
∫

R
k�u�	f�x− su�−f�x�� du�

≤
∫

R
k�u���su� du�

where

��u� �= sup	�f�x−u�−f�x�� � x ∈ R�
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converges to 0 as �u� → 0 by the uniform continuity of f . The dominated
convergence theorem now implies that fs converges uniformly to f as s → 0.

We next fix s > 0 and rewrite fs�x� in the form

fs�x� =
∫

�y�≤2a
s−1k��x−y�/s�f�y� dy

= �−1/2
∫

�y�≤2a
s−1e−�x−y�2/s2

f�y� dy (2.12)

and compare it with the polynomial

pn�s�x� �= �−1/2
∫

�y�≤2a
s−1

n∑

r=0

�−1�r�x−y�2r

s2r r! f�y� dy
 (2.13)

The difference between (2.12) and (2.13) is estimated by using
∣
∣
∣
∣
∣
e−t −

n∑

r=0

�−t�r

r!

∣
∣
∣
∣
∣
≤ tn+1

�n+1�! �

valid for all t ≥ 0 and n ≥ 0. This may be proved by using Taylor’s the-
orem. We deduce that pn�s converges uniformly to fs on 	x � �x� ≤ a� as
n → �. �

We finally write down the general Stone-Weierstrass theorem.7 We leave the
reader to work out how this theorem contains the previous one as a special
case.

Theorem 2.3.17 (Stone-Weierstrass) Let � be a subalgebra of the algebra
CR�K� of all continuous, real-valued functions on the compact Hausdorff
space K. Suppose that � contains the constants and separates points in the
sense that for every pair x 
= y ∈ K there exists f ∈ � such that f�x� 
= f�y�.
Then � is norm dense in CR�K�.

2.4 Absolutely convergent Fourier series

In this section we prove theorems of Wiener and Bernstein about the absolute
convergence of certain Fourier series. A continuous periodic function

f��� �=∑

n∈Z

fne−in�

7 For the proof see [Bollobas 1999], [Dunford and Schwartz 1966, Theorem IV.6.18] or
[Rudin 1973, Theorem 5.7].
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is said to lie in the Wiener space � if

���f ��� �=∑

n∈Z

�fn� < �


Clearly �f�� ≤ ���f ��� for all f ∈ �.
Given f� g ∈ �, the identity

f���g��� =
{
∑

n∈Z

fne−in�

}{
∑

m∈Z

gme−im�

}

implies

�fg�n = ∑

m∈Z

fmgn−m

and hence

���fg��� ≤ ���f ��� ���g���

In the application of the lemma below to Wiener’s Theorem 2.4.2 one puts
c = k = 1 in (2.14). We have written it in the more general form because this
is needed for the generalization of Wiener’s theorem to higher dimensions
and for applications. The estimate of ���f−1��� obtained in the proof depends on
the size of cg and �g. The size of these for a given f depends upon how easy
it is to approximate f by a suitable function g ∈ 	.8

Lemma 2.4.1 (Newman)9 Let X be a compact Hausdorff space and let �
be a subalgebra of C�X� that contains the constants. Suppose that � is a
Banach algebra with respect to a norm ��� · ���, and that 	 is a dense subset of
�. Suppose that whenever g ∈ 	 satisfies �g�x�� ≥ �g for some �g > 0 and
all x ∈ X, it follows that g is invertible in � and

���g−n��� ≤ cgn
kcn�g

−n (2.14)

for all positive integers n; we assume that k and c do not depend on g or n

and that cg and �g do not depend on n. Then every f ∈ � which is invertible
in C�X� is also invertible in �.

8 According to [El-Fallah et al. 1999] it is not possible to obtain an upper bound on �f−1� in
terms of ���f ��� and min	�f����� alone.

9 The standard proof of Wiener’s theorem uses Gel’fand’s representation theorem for
commutative Banach algebras, and is not constructive; see [Rudin 1973]. We adapt the
beautiful proof of Newman, which provides explicit information about the constants involved,
as well as being particularly elementary, [Newman 1975]. Some further applications of our
version are given in [Davies 2006].
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Proof. If f ∈ � and �z� > ���f ��� then �z− f� is invertible in � and therefore
also invertible in C�X�. Hence

	f�x� � x ∈ X� ⊆ 	z � �z� ≤ ���f ����

We deduce that �f�� ≤ ���f ��� for all f ∈ �.

If f ∈ � and �f�x�� ≥ � > 0 for all x ∈ X, let g ∈ 	 satisfy ���g −f ��� < ��

where � �= 	2�1+c��−1. This implies that �g�x�� ≥ �1−��� > 0 for all x ∈ X.
Therefore g is invertible in � and (2.14) implies that

���g−n��� ≤ cgn
kcn�1−��−n�−n

for all positive integers n. The inverse of f is given by the formula

f−1 =
�∑

n=0

�g −f�ng−n−1

in the sense of pointwise convergence on X. The following estimate shows
that the series is norm convergent in �, and hence also uniformly convergent
in C�X�.

���f−1��� ≤
�∑

n=0

����ncg�n+1�kcn+1�1−��−n−1�−n−1

= cg

��

�∑

n=0

�n+1�k

(
�c

1−�

)n+1

= cg

��

�∑

n=0

�n+1�k

(
c

1+2c

)n+1

≤ cg

��

�∑

n=0

�n+1�k2−n−1
 �

We now apply the abstract theorem above to the Wiener space �.

Theorem 2.4.2 (Wiener) If f ∈ � and f��� is non-zero for all � ∈ �−����

then 1/f ∈ �.

Proof. We choose the dense subset 	 of � in Lemma 2.4.1 to be C1
per�−����;

the set of all trigonometric polynomials would do equally well. The bounds

∑

n∈Z

�fn�2 = 1
2�

∫ �

−�
�f����2 d� ≤ �f�2

��

∑

n∈Z

n2�fn�2 = 1
2�

∫ �

−�
�f ′����2 d� ≤ �f ′�2

��
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imply that

���f ��� = �f0�+
∑

n
=0

�n�−1�nfn�

≤ �f0�+
√∑

n
=0

n−2
√∑

n
=0

n2�fn�2

≤ �f�� +2�f ′��

for all f ∈ C1
per�−����. Therefore C1

per�−���� ⊆ �.
Our only task is to verify (2.14). Assuming that g ∈ 	 satisfies the condi-

tions of the lemma, we have

���g−n��� ≤ �g−n�� +2��g−n�′��

= �g−n�� +2n�g′g−n−1��

≤ �g
−n +2n�g′���g

−n−1

≤ �1+2�g′��/�g�n�g
−n �

which is of the required form. �

The above results can be interpreted as follows. The Banach space � �= l1�Z�

is a commutative Banach algebra with identity if one assigns it the convolu-
tion multiplication. The element �0 ∈ l1�Z� is the multiplicative identity. Its
Gel’fand representation is the algebra homomorphism ˆ � � → Cper�−����

defined by

f̂ ��� �=∑

n∈Z

fne−in�


Theorem 2.4.2 then states that f ∈ � has a multiplicative inverse if and only
if f̂ is invertible in Cper�−����. Moreover it provides a construction for f−1.

The following is yet another perspective on the problem.

Theorem 2.4.3 The operator A on l1�Z� is translation invariant if and only
if it is of the form Af �= a∗f where a ∈ l1�Z�. The algebra of all translation
invariant operators may be identified with l1�Z� regarded as a commutative
Banach algebra with the convolution product. Moreover

Spec�A� = 	â��� � −� ≤ � ≤ ��
 (2.15)

Proof. We say that an operator A � l1�Z� → l1�Z� is translation invariant if
AT = TA, where �Tf��n� �= f�n+1� for all f ∈ l1�Z�. It is immediate that the
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set 
 of all translation invariant operators is a Banach algebra with identity,
the norm being the operator norm; we will see that it is commutative, but this
is not so obvious.

If AT = TA then ATn = TnA for all n ∈ Z. This is equivalent to the
validity of

A�n = �A�0�∗�n

for all f ∈ l1�Z� and n ∈ Z, where �n ∈ l1�Z� is given by

��n�m �=
{

1 if m = n,
0 otherwise.

Every f ∈ l1�Z� has the norm convergent expansion f �=∑
n∈Z fn�n. Putting

a �= A�0 we obtain

Af =∑

n∈Z

fn�A�n�

=∑

n∈Z

fn�A�0�∗�n

=∑

n∈Z

fna∗�n

= a∗f


It follows directly from this representation that 
 is isomorphic as a Banach
algebra to l1�Z�, and hence that it is commutative.

If Af �= a∗f and a has the multiplicative inverse b within l1�Z� then

b ∗ �Af� = b ∗a∗f = f = a∗b ∗f = A�b ∗f�

for all f ∈ l1�Z�. Therefore A is an invertible operator with A−1f = b ∗ f

for all f ∈ l1�Z�. Conversely if A is translation invariant and invertible as
an operator on l1�Z� then the inverse must be translation invariant, so there
exists b ∈ l1�Z� such that A−1f = b ∗f for all f ∈ l1�Z�. It follows that b is
the multiplicative inverse of a.

The above results imply that zI −A is an invertible operator if and only if
z�0 −a is an invertible element of l1�Z�. Therefore the spectrum of A as an
operator equals the spectrum of a as an element of the Banach algebra l1�Z�.
This equals the RHS of (2.15) by Wiener’s Theorem 2.4.2. �
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The last theorem may be generalized in various directions. We start with its
extension to lp�Z�. A half-line analogue for Toeplitz operators is proved in
Theorem 4.4.1. See also Theorem 3.1.19, where the following theorem is
extended from Z to RN , for p = 2. The spectra of two convolution operators
on l2�Z� are shown in figures on pages 127 and 267.

Theorem 2.4.4 Let A � lp�Z� → lp�Z� be the bounded operator Af �= a∗f ,
where a ∈ l1�Z� and 1 ≤ p ≤ �. Then

Spec�A� = 	â��� � −� ≤ � ≤ ��
 (2.16)

Proof. Let S denote the RHS of (2.16) and suppose that z � S. Then Wiener’s
Theorem 2.4.2 implies the existence of b ∈ l1�Z� such that b∗ �a−z�0� = �0.
Putting Bf �= b ∗ f we deduce that B�A− zI� = �A− zI�B = I as operators
on lp�Z�. Therefore z � Spec�A�.

Conversely suppose that z = â��� for some � ∈ �−����. We prove that
z ∈ Spec�A� by constructing a sequence fn ∈ lp�Z� such that �fn�p

→ 1 and

�Afn − zfn�p
→ 0 as n → �. Let g � R → R+ be a continuous function with

support in �−1� 1� and satisfying �g�
Lp = 1. Then define fn ∈ lp�Z� by

fn�m� �= n−1/pg�m/n�eim�


Straightforward calculations show that �fn�p
→ 1. If Tr denotes the isometry

�Trf��m� �= f�m− r� acting on lp�Z� then

�Trfn��m�− e−ir�fn�m� = ei�m−r��n−1/p 	g��m− r�/n�−g�m/n��

for all m� n� r ∈ Z. Therefore

lim
n→� �Trfn − e−ir�fn�

p

p
= lim

n→�

�∑

m=−�
n−1�g��m− r�/n�−g�m/n��p

= 0

for every r ∈ Z. Hence

lim
n→� �Afn − â���fn�p

= lim
n→�

∥
∥
∥
∥

�∑

r=−�
a�r��Trfn − e−ir�fn�

∥
∥
∥
∥

p

≤ lim
n→�

�∑

r=−�
�a�r�� �Trfn − e−ir�fn�p

= 0
 �
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We conclude this section with a sufficient condition for a function f to lie in
the Wiener space.

Theorem 2.4.5 (Bernstein) Let f be a continuous periodic function on
�−���� satisfying

�f�u�−f�v�� ≤ c�u−v��
for all u� v ∈ �−����, some c > 0 and some � ∈ �1/2� 1�. Then f lies in the

Wiener space �.

Proof. If we put fs�x� �= f�x+s� then the hypothesis implies that �fs −f�2 ≤
c1�s�� for all s ∈ R. If a ∈ l2�Z� is the sequence of Fourier coefficients of f

then Corollary 2.3.11 implies that
∑

n∈Z

�an�1− eins��2 ≤ c2�s�2�

for all s ∈ R. Equivalently
∑

n
=0

�an�2	1− cos�ns�� ≤ c3s
2�

for all s > 0. Assuming � > 0, we define

bn �=
∫ 1

0
	1− cos�ns��s2�−1−2� ds

∼ n2�−2�
∫ �

0
	1− cos�t��t2�−1−2� dt

as n → �, the last integral being finite provided � > 0 is small enough.
Therefore there exists c4 ∈ �0��� such that

∑

n
=0

�an�2�n�2�−2� ≤ c4

∑

n
=0

�an�2bn

= c4

∫ 1

0

∑

n
=0

�an�2	1− cos�ns��s2�−1−2� ds

≤ c4

∫ 1

0
c3s

2�−1 ds

= c3c4/�2��

< �


The Schwarz inequality now implies that

�
∑

n
=0

�an��2 ≤ �
∑

n
=0

�an�2�n�2�−2���
∑

n
=0

�n�2�−2�� < �

provided � > 0 is small enough. �



3
Fourier transforms and bases

3.1 The Fourier transform

In this chapter we treat two topics: the theory of Fourier transforms and general
bases in Banach spaces. These both generalize the classical L2 convergence
theory for Fourier series, which we regard as already understood. We will see
that these topics provide key ingredients for the detailed spectral analysis of
many bounded and unbounded linear operators.

One of the reasons for the importance of the Fourier transform is that it
simplifies the analysis of constant coefficient differential operators, discussed
below and in the next chapter. One of our main goals is to establish the
following results.

� � � → � one-one onto�

� � L2�RN � → L2�RN � one-one onto and unitary,

� � L1�RN � → C0�RN � one-one, but not onto,

� � Lp�RN � → Lq�RN � if 1 ≤ p ≤ 2 and 1/p+1/q = 1,

� � �′ → �′ one-one onto.

If f � RN → C and � �= ��1��2� � � � ��N � is a multi-index of non-negative inte-
gers, then we write D�f to denote the result of differentiating f �r times with
respect to xr for every r. The order of the derivative is defined to be ��� �=
�1 +· · ·+�N . If ��� = 0 then D�f �= f by convention. If x ∈ RN we define

x� �= x
�1
1 x

�2
2 � � � x

�N
N �

67
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The Schwartz space � is defined to be the space of all smooth (i.e. infinitely
differentiable) functions f � RN → C such that for every multi-index � and
every m ≥ 0 there exists c��m satisfying

�D�f�x�� ≤ c��m�1+�x��−m

for all x ∈ RN . An equivalent condition is that there exist constants c��� such
that

�x�D�f�x�� ≤ c���

for all x ∈ RN and all �� �. One can put a topology on � by means of the
countable family of seminorms

p����f� �= sup	�x�D�f�x�� � x ∈ RN 
�

It may be shown that this turns � into a Fréchet space, but we will not need
to use this fact.

Problem 3.1.1 Prove that if p is a polynomial on RN then f�x� �= p�x�e−�x�2

lies in �. �

Problem 3.1.2 Prove that if p is a polynomial on RN and there exist c > 0,
R > 0 such that p�x� ≥ c�x� for all �x� ≥ R then f�x� = e−p�x� lies in �. �

We omit the proofs of our next two lemmas, which are somewhat tedious but
entirely elementary exercises in the use of differentiation under the integral
sign and integration by parts.

Lemma 3.1.3 If f� g ∈ � then fg ∈ � and f ∗g ∈ �, where

�f ∗g��x� �=
∫

RN
f�x−y�g�y� dN y = �g ∗f��x��

Lemma 3.1.4 The Fourier transform

�� f���� �= �2��−N/2
∫

RN
f�x�e−ix·� dN x

maps � into �. It satisfies

��D�f���� = i������� f����
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for all f ∈ � and � ∈ RN . Moreover

��Q�f���� = i����D�� f����

for all f ∈ � and � ∈ RN , where �Q�f��x� �= x�f�x�.

The formula

��
f���� = −���2�� f���� (3.1)

is an immediate consequence of the lemma.
Our next lemma is needed in the proof of Theorem 3.1.6.

Lemma 3.1.5 If

kt�x� �= �2�t�−N/2 exp	−�x�2/2t


then

�� kt���� = �2��−N/2 exp	−t���2/2
�

If f ∈ � then

lim
t→0+

�kt ∗f��x� = f�x�

for all x ∈ RN .

Proof. One proves the first statement by separating variables in the Fourier
integral and applying the well-known result in the case N = 1. The second is
proved by applying the dominated convergence theorem to the final integral in

�kt ∗f��x�−f�x� =
∫

RN
	f�x−y�−f�x�
kt�y� dN y

=
∫

RN
	f�x− t1/2u�−f�x�
k1�u� dN u� �

Theorem 3.1.6 (Plancherel) The operator � � � → � extends by completion
to a unitary operator on L2�RN �. Its inverse is given for all g ∈ � by

�� −1g��x� = �2��−N/2
∫

RN
g���eix·� dN ��
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Proof. We first establish the inversion formula, and thereby prove that �
maps � one-one onto �. If g �=� f and kt�x� �= �2�t�−N/2 exp	−�x�2/2t
 then

�2��−N/2
∫

RN
g���eix·� dN � = lim

t→0+
�2��−N/2

∫

RN
g���e−t���2/2eix·� dN �

= lim
t→0+

�2��−N
∫

RN ×RN
f�y�e−t���2/2ei�x−y�·� dN ydN �

= lim
t→0+

�2�t�−N/2
∫

RN
f�y�e−�x−y�2/2t dN y

= lim
t→0+

∫

RN
f�y�kt�x−y� dN y

= f�x�

by Lemma 3.1.5.
We next prove that � preserves inner products. The above calculation

establishes that

	f�� g
 = 	� −1f� g

for all f� g ∈ � by writing out the relevant double integrals on each side.
Therefore

	� f�� g
 = 	� −1� f� g
 = 	f� g
�
Putting f = g we obtain �� f�2 = �f�2. Corollary 2.3.6 implies that � is
norm dense in L2�RN �. We may therefore extend � in a unique way to an
isometric linear operator � � L2�RN � → L2�RN �. Continuity arguments imply
that the extension is also unitary. Similar considerations apply to � −1 and
imply that � is surjective, and hence unitary. �

The space C�
c �RN � of smooth functions with compact support is much less

useful than � for Fourier analysis because it is not invariant under � .

Problem 3.1.7 Prove that if f and � f both lie in C�
c �RN � then f is identi-

cally zero. �

We also define

f̂ ��� �=
∫

RN
f�x�e−ix·� dN x = �2��N/2�� f����� (3.2)

One can avoid having two different normalizations for the Fourier transform
by replacing e−ix·� by e−2�ix·� everywhere. Unfortunately this is not the con-
vention used in books of tables of Fourier transforms, and we will adopt the
usual definitions.
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Theorem 3.1.8 The map f → f̂ is a linear operator of norm 1 from L1�RN �

to C0�RN �. It is a homomorphism of Banach algebras, if L1 is given the
convolution multiplication and C0 is given pointwise multiplication.

Proof. Fundamental properties of the Lebesgue integral imply that �f̂ ���� ≤
�f�1 for all � ∈ RN . If f ≥ 0 then �f̂�� = f̂ �0� = �f�1. The dominated
convergence theorem implies that f̂ is continuous. If f ∈ � then f̂ ∈ � ⊆
C0�RN �, so the density of � in L1�RN �, which follows from Corollary 2.3.6,
implies that f̂ ∈ C0�RN � for all f ∈ L1�RN �. This result is called the Riemann-
Lebesgue lemma.

The final statement of the theorem depends on the calculation

̂�f ∗g���� =
∫

RN
�f ∗g��x�e−ix·� dN x

=
∫

RN ×RN
f�x−y�g�y�e−ix·� dN xdN y

=
∫

RN ×RN
f�x�g�y�e−i�x+y�·� dN xdN y

= f̂ ���ĝ���� �

Problem 3.1.9 Prove, by a direct computation, that the Fourier transform of
the function

g�x� �= max	a−b�x�� 0


is non-negative for all positive constants a� b. Deduce by taking convex
combinations that the Fourier transform of the even, non-negative, continuous
function f ∈ L1�R� is non-negative if f is convex on �0���. (These conditions
imply that f�x� → 0 as �x� → �.) �

Problem 3.1.10 The computation of multidimensional Fourier transforms is
not easy, but the following elementary observation is sometimes useful, when
combined with the use of tables of Laplace transforms.

Prove that if a ∈ L1�0��� and

f�x� �=
∫ �

0
a�t��4�t�−N/2e−�x�2/4t dt�

then f ∈ L1�RN � and

f̂ ��� =
∫ �

0
a�t�e−t���2 dt�
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Determine f and f̂ explicitly in the particular case a�t� = e−�2t where � > 0
and N = 3. �

Problem 3.1.11 Prove that if
∫

RN
�f�x���1+�x�2�n dN x < �

for all n, then f̂ is a smooth function, all of whose derivatives vanish at
infinity. �

Theorem 3.1.12 The map f →� f on � extends to a bounded linear operator
from Lp�RN � into Lq�RN � if 1 ≤ p ≤ 2 and 1/p+1/q = 1.

Proof. One interpolates between the cases p = 1 (Theorem 3.1.8) and p = 2
(Theorem 3.1.6). �

There is a logical possibility that if f lies in two function spaces, different
definitions of the Fourier transform of f are not consistent with each other.
Such concerns may be resolved by showing that each is the restriction of
a very abstract Fourier transform defined on an extremely large space. We
define �′ to be the algebraic dual space of �.1 We will refer to elements of �′

as distributions. If g � RN → C is a function which is locally integrable and
polynomially bounded in the sense that

∫

RN
�g�x���1+�x��−m dN x < �

for some m, then it determines a distribution by means of the formula

�g�f� �=
∫

RN
f�x�g�x� dN x (3.3)

for all f ∈ �. This class of functions contains Lp�RN � for all 1 ≤ p ≤ �.
However, there are many distributions that are not associated with functions,
for example

��
x �f� �= �D�f��x�

and

��f� �=
∫

RN
f�x���dx�

1 Ignoring the standard convention, we do not impose any continuity conditions on elements of
�′. This is good enough for proving consistency, but would prevent our using the deep
theorems about tempered distributions if we needed them. See [Friedlander and Joshi 1998,
Hörmander 1990] for much deeper accounts of the subject.



3.1 The Fourier transform 73

for any finite measure � on RN . We define the Fourier transform
� � �′ → �′ by

�����f� �= ��� f� (3.4)

for all f ∈ �. Clearly � is a one-one linear map from �′ onto �′. If �n → � as
n → � in the sense that limn→� �n�f�� = ��f� for all f ∈ �, then ��n →��

as n → �.

Theorem 3.1.13 If 1 ≤ p ≤ 2 and � � Lp�RN � → �′ is defined by (3.3) then
the Fourier transform of g ∈ Lp�RN � as defined in Theorem 3.1.12 is con-
sistent with the Fourier transform of �g as defined in (3.4) in the sense that
�� g = ��g.

Proof. If g ∈ Lp�RN � then there exists a sequence gn ∈ L�
c such that �gn −

g�
p
→ 0 as n → �. Given any f ∈ �, by using the fact that f ∈ Lq�RN � for

all q ∈ �1���, we obtain

�� g�f� =
∫

RN
�� g��x�f�x� dN x

= lim
n→�

∫

RN
�� gn��x�f�x� dN x

= lim
n→�

∫

RN ×RN
gn���e−ix·�f�x� dN �dN x

= lim
n→�

∫

RN
gn����� f���� dN �

=
∫

RN
g����� f���� dN �

= ��g��� f�

= ���g��f��

Therefore �� g = ��g. �

Problem 3.1.14 Calculate the Fourier transform of the function f ∈ L1�R�

defined for 0 < � < 1 and � > 0 by

f�x� �= �x�−�e−��x��

Use the result to prove that the Fourier transform of the distribution determined
by the function f�x� �= �x�−� is the distribution determined by the function
g��� �= c����−�1−�� where c� is a certain positive constant. �
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Theorem 3.1.15 The Fourier transform map f → f̂ of Theorem 3.1.8 maps
L1�RN � one-one into, but not onto, C0�RN �.

Proof. By Theorem 3.1.13 the map is the restriction of the Fourier transform
map � � �′ → �′ (up to a constant), and this is invertible, because � � � → �
is invertible. Therefore the map of the theorem is one-one. If it were onto
there would be a constant c > 0 such that �f̂�� ≥ c�f�1 for all f ∈ L1�RN �,
by the inverse mapping theorem. We prove that this assertion is false.

We first treat the case N = 1. If � > 1 and

f��x� �= ����

2�
�1− ix�−�

then f� ∈ L1�R� and

f̂���� =
{

��−1e−� if � > 0�

0 otherwise.

(It is easier to compute the inverse Fourier transforms.) A direct calculation
shows that

lim
�→1+

�f��1 = +�� lim
�→1+

�f̂��� = 1�

For N > 1 one does a similar calculation for

F��x� �=
N∏

r=1

f��xr�� �

Problem 3.1.16 The following is a solution of the moment problem.2 Let
f ∈ L1�R� satisfy

∫

R
�f�x��e��x� dx < �

for some � > 0. Prove that f̂ ��� may be extended to an analytic function on
the strip 	� � �Im���� < �
. Deduce that if

∫

R
f�x�xn dx = 0

for all non-negative integers n, then f�x� = 0 almost everywhere. �

2 See [Simon 1998] for a systematic account of this problem.
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Note Theorem 3.3.11 provides a more constructive proof of a closely related
result.

One may define the weak derivative of an element of �′ without imposing
any differentiability conditions as follows.

Problem 3.1.17 Prove that if � ∈ �′ then the definition

�D����f� �= �−1������D�f��

where f ∈ � is arbitrary, is consistent with the definition of D� on � in the
sense that

D��g = �D�g

for all g ∈ �. �

Theorem 3.1.18 If a ∈ L1�RN � then the convolution transform Taf �= a∗ f

is a bounded linear operator on Lp�RN � for all 1 ≤ p ≤ �, with norm at most
�a�1. For p = 1 and p = � its norm equals �a�1. If 1 ≤ p ≤ 2 then

�� Taf���� = â����� f���� (3.5)

almost everywhere on RN , where â is defined by (3.2).

Proof. The first part of the theorem follows directly from the definitions if
p = 1 or p = �. For other p one obtains it by interpolation.

The identity (3.5) holds for f ∈ L1�RN � ∩ Lp�RN � by Theorem 3.1.8. Its
validity for general f ∈ Lp�RN � then follows by an approximation procedure.

�
We mention in passing that there is a large body of theory concerning

singular integral operators, including those of the form

�Af��x� �=
∫

RN
k�x−y�f�y� dN y

where k does not lie in L1�RN �. An example is the Hilbert transform

�Hf��x� �=
∫ �

−�
f�y�

x−y
dy�

One of the goals in the subject is to find conditions under which such operators
are bounded on Lp�RN � for all p ∈ �1���. Since we are more interested in
operators that are bounded for all p satisfying 1 ≤ p ≤ +� we will not pursue
this subject.3

3 A good introduction is [Stein 1970].
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Theorem 3.1.19 If a ∈ L1�RN � and Ta � L2�RN � → L2�RN � is defined by
Taf �= a∗f , then

Spec�Ta� = 	â��� � � ∈ RN 
∪ 	0


and

�Ta� = max	�â���� � � ∈ RN 
�

Moreover Ta is one-one if and only if 	� � â��� = 0
 has zero Lebesgue
measure. If Ta is one-one, the inverse operator is always unbounded.

Proof. It follows by Theorem 3.1.18 that B �= � Ta�
−1 is a multiplication

operator. Indeed

�Bg���� = â���g���

for all g ∈ L2�RN �. Since Ta and B have the same norm and spectrum, the
statements of the theorem follow by using Problem 2.2.1. Note that â�·� is
continuous and vanishes at infinity by Theorem 3.1.8, so B−1 must be an
unbounded operator if it exists. �

Problem 3.1.20 If f ∈ � and f�x� ≥ 0 almost everywhere, prove that all the
eigenvalues of the real symmetric matrix

Ai�j �= �2f̂

��i��j

�0�

are negative, unless f is identically zero. �

Problem 3.1.21 Prove that for every t > 0 the Fourier transform of the func-
tion ft��� �= e−t���4 lies in � and that f̂t�x� < 0 on a non-empty open set.
Prove also that �f̂t�1 is independent of t. �

Problem 3.1.22 Prove that if k ∈ L1�RN � then there exists a bounded operator
A on L2�RN � such that

	Af�f
 =
∫

RN

∫

RN
k�x−y��f�x�−f�y��2 dN xdN y

for all f ∈ L2�RN �. Determine the spectrum of A. �

Example 3.1.23 One can make sense of the operators defined in Prob-
lem 3.1.22 for considerably more singular functions k. In particular the
formula

	Hf�f
 =
∫

R

∫

R

�f�x�−f�y��2
�x−y�1+�

dxdy
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is known to define an unbounded, non-negative, self-adjoint operator H act-
ing in L2�R�, provided 0 ≤ � < 2. The operators e−Ht are bounded for all
t ≥ 0 and define an extremely important Markov semigroup called a Levy
semigroup.4 �

3.2 Sobolev spaces

The Sobolev spaces W n�2�RN � are often useful when studying differential
operators. One can define W n�2�RN � for any real number n but we will only
need to consider the case in which n is a non-negative integer. One can also
replace 2 by p ∈ �1��� and obtain analogous theorems, usually with harder
proofs.5

Let � be the Fourier transform operator on L2�RN �. The Sobolev space
W n�2�RN � is defined to be the set of all f ∈ L2�RN � such that f̃ �= � f

satisfies

���f ���2n �=
∫

RN
�1+���2�n�f̃ ����2 dN � < �� (3.6)

Note that W 0�2 = L2�RN �. Each W n�2 is a Hilbert space with respect to the
inner product

	f� g
n �=
∫

RN
�1+���2�nf̃ ���g̃��� dN � < ��

It is easy to prove that f ∈ W n�2�RN � if and only if the functions � → ��f̃ ���

lie in L2�RN � for all � such that ��� ≤ n. This is equivalent to the condition that
D�f ∈ L2�RN � for all such �, where D�f are weak derivatives, as defined in
Problem 3.1.17.

The following diagrams provide inclusions between some of the important
spaces of functions on RN . We assume that n ≥ 0 and 1 ≤ p ≤ �.

C�
c −→ � −→ W n�2 −→ L2 −→ �′

C�
c −→ Cc −→ L�

c −→ Lp −→ �′

For large enough values of n the derivatives of a function in W n�2 may be
calculated in the classical manner.

4 See [Bañuelos and Kulczycki 2004, Song and Vondraček 2003] for information about recent
research in this field.

5 See [Adams 1975] for a comprehensive treatment of Sobolev spaces and their embedding
properties.
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Theorem 3.2.1 If n > k+N/2 then every f ∈ W n�2 is k times continuously
differentiable. Indeed W n�2�RN � ⊆ C0�RN � if n > N/2.

Proof. By using the Schwarz inequality we see that if ��� ≤ k then our
assumption implies that

∫

RN
���f̃ ����dN � ≤ c

{∫

RN
�1+���2�n�f̃ ����2 dN �

}1/2

where

c �=
{∫

RN
����2�1+���2�−n dN �

}1/2

< ��

By taking inverse Fourier transforms we deduce that �D�f��x� is a continuous
function of x vanishing as �x� → � for all � such that ��� ≤ k. �

Let L be the nth order differential operator given formally by

�Lf��x� �= ∑

���≤n

a��x��D�f��x�

where a� are bounded measurable functions on RN . Then L may be defined
as an operator on � by

�Lf��x� �= �2��−N/2
∫

RN
eix���x� ��f̃ ��� dN �

where the symbol � of the operator is given by

��x��� �= ∑

���≤n

a��x�i������ (3.7)

Finding the proper domain of such an operator depends on making further
hypotheses concerning its coefficients.

One of the important notions in the theory of differential operators is that
of ellipticity. Subject to suitable differentiability assumptions, the symbol of
a real second order elliptic operator may always be written in the form

��x��� �=
N∑

r�s=1

ar�s�x��r�s +
N∑

r=1

br�x��r + c�x�

where a�x� is a real symmetric matrix. The symbol, or the associated oper-
ator, is said to be elliptic if the eigenvalues of a�x� are all positive for all
relevant x.6

6 We refer to [Hörmander 1990, Taylor 1996] for introductions to the large literature on elliptic
differential operators.
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The case of constant coefficient operators is particularly simple because
the symbol is then a polynomial. Such an operator has symbol

���� = ∑

���≤n

a�i������

It is said to be elliptic if there exist positive constants c0� c1 such that the
principal part of the symbol, namely

�n��� = ∑

���=n

a�i�����

satisfies

c0���n ≤ ��n���� ≤ c1���n

for all � ∈ RN . We determine the spectrum of any constant coefficient differ-
ential operator acting on L2�RN � in Theorem 8.1.1.

Example 3.2.2 The Laplace operator, or Laplacian, H0 �= −
 has the asso-
ciated symbol ���� �= ���2. According to the above arguments its natural
domain is W 2�2�RN �. By examining the function f��� �= z−���2 one sees that
the operator �zI −H0� maps W 2�2�RN � one-one onto L2�RN � if and only if
z � �0���. This justifies the statement that the spectrum of H0 is �0���. See
Theorem 8.1.1, where this is put in a more general context. �

Problem 3.2.3 Use Fourier transform methods, and in particular Problem 3.1.11,
to prove that if g ∈ ��R3� then the differential equation −
f = g has a smooth
solution that vanishes at infinity together with all of its partial derivatives.
Prove that f ∈ L2�R3� if and only if

∫

R3
g�x� d3x = 0�

and that in this case f ∈ W n�2 for all n. �

Problem 3.2.4 Suppose that L is a constant coefficient elliptic differential
operator of order 2n whose principal symbol satisfies

c0���2n ≤ �2n��� ≤ c1���2n

for some positive constants c0� c1 and all � ∈ RN . Prove that �L+�I� maps
W 2n�2 one-one onto L2�RN � for all large enough � > 0, and that the inverse
operator is bounded on L2�RN �. �
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Problem 3.2.5 Prove that the first order differential operator

�Lf��x� y� �= �f

�x
+ i

�f

�y

is elliptic in L2�R2�. Can a first order constant coefficient differential operator
acting in L2�RN � be elliptic if N > 2 ? �

3.3 Bases of Banach spaces

We say that a sequence 	fn

�
n=1 in a Banach space � is complete if its linear

span is dense in �. We say that it is a basis if every f ∈ � has a unique
expansion

f = lim
n→�

(
n∑

r=1

�rfr

)

�

The terms Schauder basis and conditional basis are also used in this context.7

The prototypes for our study are orthonormal bases in Hilbert space, and in
particular Fourier series. Our goal will be to understand the extent to which
one can adapt that theory to Banach spaces and to non-orthonormal sequences
in Hilbert space. Our analysis is organized around four concepts:

complete sequence

minimal complete sequence

conditional (or Schauder) basis

unconditional basis

each of which is more special than the one before it. We explain their
significance and provide a range of examples to illustrate our results.

Lemma 3.3.1 If 	fn

�
n=1 is a basis in a Banach space � then there exist

�n ∈ �∗ such that the ‘Fourier’ coefficients �n are given by �n �= 	f��n
.
The pair of sequences 	fn


�
n=1, 	�n


�
n=1 is biorthogonal in the sense that

	fn��m
 = �m�n

for all m�n.

7 We can do no more than mention the vast literature on bases, and refer to more serious
studies of the topic in [Singer 1970, Singer 1981] and, more recently, [Carothers 2005],
where a wide range of examples are presented.
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Proof. The idea of the following proof is to use the fact that if sn �=∑n
r=1 �rfr

then sn − sn−1 ∈ Cfn.
Let K be the compact space obtained by adjoining � to Z+ and let �

be the space of all continuous functions s � K → � such that s1 ∈ C�f1 and
�sn − sn−1� ∈ C�fn for all n ≥ 2. Then � is a Banach space under the uniform
norm inherited from C�K���, and T � s → s� is a bounded linear operator
from � to �. The basis property implies that T is one-one onto, and we
deduce that T−1 is bounded by the inverse mapping theorem. The identity

�nfn = 	T−1f
n − 	T−1f
n−1

implies that the Fourier coefficient �n of f ∈ � depends continuously on f .
The remainder of the lemma is elementary. �

Problem 3.3.2 If 	fn

�
n=1 is a complete set in a Banach space �, prove that

it is minimal complete, in the sense that the removal of any term makes it
incomplete, if and only if there exists a sequence 	�n


�
n=1 in �∗ such that the

pair is biorthogonal. �

If 	fn

�
n=1, 	�n


�
n=1 is a biorthogonal pair in the Banach space � then we

define operators Pn for n = 1� 2� � � � by

Pnf �=
n∑

r=1

	f��r
fr � (3.8)

Lemma 3.3.3 The operators Pn are finite rank bounded projections. If 	fn

�
n=1

is a basis then Pn are uniformly bounded in norm and converge strongly to
the identity operator as n → �. If the Pn are uniformly bounded in norm and
	fn


�
n=1 is complete, then 	fn


�
n=1 is a basis.

Proof. The first statement follows directly from (3.8). The sequence 	fn

�
n=1 is

a basis if and only if Pn converges strongly to I , by Lemma 3.3.1. The second
statement is therefore a consequence of the uniform boundedness theorem.

If f lies in the linear span � of 	fn

�
n=1 then Pnf = f for all large enough

n. If � is dense in � and Pn are uniformly bounded in norm, then the strong
convergence of Pn to I follows by an approximation argument. �

Problem 3.3.4 Prove that if 	fn

�
n=1 is a basis in the reflexive Banach space

�, then the sequence 	�n

�
n=1 is a basis in �∗. Prove that this need not be

true if � is non-reflexive. �
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Example 3.3.5 (Schauder) Let 	vn

�
n=1 be a dense sequence of distinct num-

bers in �0� 1� such that v1 = 0 and v2 = 1. We construct a basis in C�0� 1� as
follows. We put e1�x� �= 1 and e2�x� �= x for all x ∈ �0� 1�. For each n ≥ 3
we put

un �= max	vr � r < nandvr < vn
�

wn �= min	vr � r < nandvr > vn
�

We then define en ∈ C�0� 1� by

en�x� �=

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ un�

�x−un�/�vn −un� if un ≤ x ≤ vn�

�wn −x�/�wn −vn� if vn ≤ x ≤ wn�

0 if x ≥ wn�

We also define �n ∈ �C�0� 1��∗ by

�n�f� �=
⎧
⎨

⎩

f�0� ifn = 1�

f�1�−f�0� ifn = 2�

f�vn�− 	f�un�+f�wn�
/2 if n ≥ 3�

Using the fact that en�vm� = 0 if m < n, a direct calculation shows that
	en


�
n=1, 	�n


�
n=1 is a biorthogonal pair in C�0� 1�. In order to prove that

	en

�
n=1 is a basis we examine the projection Pn. This is given explicitly by

Pnf �= fn where fn is the continuous, piecewise linear function on �0� 1�

obtained by interpolating between the values of f at 	v1� v2� � � � � vn
. The
uniform convergence of fn to f as n → � is proved by exploiting the
uniform continuity of f . We also see that �Pn� = 1 for all n. �

Complete minimal sequences of eigenvectors which are not bases turn up in
many applications involving non-self-adjoint differential operators. One says
that 	fn


�
n=1 is an Abel-Lidskii basis in the Banach space � if it is a part of

a biorthogonal pair 	fn

�
n=1, 	�n


�
n=1 and for all f ∈ � one has

f = lim
�→0

�∑

n=1

e−�n	f��n
fn�

In applications one frequently has to group the terms before summing as
follows. One supposes that there is an increasing sequence N�r� with N�1� = 0,
such that

f = lim
�→0

�∑

r=1

e−�r

{
N�r+1�∑

n=N�r�+1

	f��n
fn

}

�
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The point of the grouping is that the operators

Brf �=
N�r+1�∑

n=N�r�+1

	f��n
fn

may have much smaller norms than the individual terms in the finite sums
would suggest.8

Let 	fn

�
n=1, 	�n


�
n=1 be a biorthogonal pair for the Banach space �. The

rank one projection Qn �= Pn −Pn−1, defined by Qnf �= 	f��n
fn, has norm

�Qn� = ��n��fn� ≥ 1�

We say that the biorthogonal pair has a polynomial growth bound if there
exist c�� such that �Qn� ≤ cn� for all n. We say that it is wild if no such
bound exists. A basis has a polynomial growth bound with � = 0.

Problem 3.3.6 Prove that the existence of a polynomial growth bound is
invariant under a change from the given norm of � to an equivalent norm, and
that the infimum of all possible values of the constant � is also invariant. �

Our next lemma demonstrates the importance of biorthogonal sequences in
spectral theory.

Theorem 3.3.7 Suppose that 	fn

�
n=1 is a sequence in � and that �n ∈ �∗

satisfy 	fn��n
 = 1 for all n. Then 	fn

�
n=1, 	�n


�
n=1 is a biorthogonal pair if

and only if there exist a bounded operator A and distinct constants �n such
that Afn = �nfn and A∗�n = �n�n for all n.

Proof. If there exist A and �n with the stated properties then

�n	fn��m
 = 	Afn��m
 = 	fn�A∗�m
 = �m	fn��m

for all m� n. If m �= n then �m �= �n, so 	fn��m
 = 0.

Suppose, conversely, that 	fn

�
n=1, 	�n


�
n=1 is a biorthogonal pair, and put

cn �= �fn���n� for all n. Assuming that �� �n ∈ C satisfy

s �=
�∑

n=1

��n −��cn < ��

8 See [Lidskii 1962]. For a range of applications of Abel-Lidskii bases see [Agronovich 1996].
Note, however, that the set of eigenvectors of the NSA harmonic oscillator is not an
Abel-Lidskii basis; see Corollary 14.5.2.
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we can define the operator A by

Ag �= �g +
�∑

n=1

��n −��	g��n
fn�

The sum is norm convergent and �A� ≤ ���+ s. One may verify directly that
Afn = �nfn and A∗�n = �n�n for all n. �

Problem 3.3.8 Prove that in Theorem 3.3.7 one has

Spec�A� = 	�
∪ 	�n � n ≥ 1
�

and write down an explicit formula for �zI −A�−1 when z � Spec�A�. �

We have indicated the importance of expanding arbitrary vectors in terms
of the eigenvectors of suitable operators. The remainder of this section is
devoted to related expansion problems in Fourier analysis. Corollary 2.3.11
established the L2 norm convergence of the standard Fourier series of an
arbitrary function in L2�−����. The same holds if we replace L2 by Lp

where 1 < p < �, but the proof is harder.9 However, the situation is quite
different for p = 1.

Theorem 3.3.9 The sequence 	en
n∈Z in L1�−���� defined by en�x� �= einx

does not form a basis.

Proof. A direct calculation shows that the projection Pn is given by Pn�f� =
kn ∗f where

kn�x� �= 1
2�

n∑

r=−n

eirx = sin��n+1/2�x�

2� sin�x/2�
�

Theorem 3.1.18 implies that

�Pn� = �kn�1 =
∫ �

0

∣
∣
∣
∣
sin��n+1/2�x�

� sin�x/2�

∣
∣
∣
∣ dx�

Routine estimates show that this diverges logarithmically as n → �. �

The same formula for �Pn�, where Pn is considered as an operator on
Cper�−����, proves that the sequence 	en
n∈Z does not form a basis in
Cper�−����, a result due to du Bois Reymond. One obstacle to produc-
ing simple functions in Cper�−���� whose Fourier series do not converge
pointwise is provided by the following result. The Dini condition holds for

9 See [Zygmund 1968, Theorem VII.6.4] or [Grafakos 2004, Theorem 3.5.6]. The key issue is
to establish the Lp boundedness of the Hilbert transform for 1 < p < �.
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all Hölder continuous periodic functions, but also for many other functions
with much weaker moduli of continuity.

Theorem 3.3.10 (Dini) If f ∈ Cper�−���� and there exists a continuous
increasing function � on �0��� such that ��0� = 0,

�f�x�−f�y�� ≤ ���x−y��
for all x� y ∈ �−����, and

∫ �

0

��x�

x
dx < ��

then the Fourier series of f converges uniformly.

Proof. A direct calculation shows that the partial sums of the Fourier series
are given by

sn�x� �=
∫ �

−�
kn�y�f�x−y� dy

where

kn�y� �= 1
2�

n∑

r=−n

eiry = sin��n+1/2�y�

2� sin�y/2�
�

We deduce that

sn�x�−f�x� =
∫ �

−�
kn�y�	f�x−y�−f�x�
 dy

=
∫ �

−�
gx�y� sin��n+1/2�y� dy

=
∫ �

−�
gx�y�	sin�ny� cos�y/2�+ cos�ny� sin�y/2�
 dy

where

gx�y� �= f�x−y�−f�x�

2� sin�y/2�
�

The conditions of the theorem imply that
∫ �

−�
�gx�y��dy ≤ 2

∫ �

0

��y�

2� sin�y/2�
dy ≤

∫ �

0

��y�

y
dy < ��

The pointwise convergence of the Fourier series is now a consequence of
the Riemann-Lebesgue lemma; see Problem 2.3.13. The proof of its uniform
convergence depends upon using the fact that gx depend continuously on x

in the L1 norm. �

The following relatively elementary example of a continuous periodic function
whose Fourier series does not converge at the origin appears to be new.
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Theorem 3.3.11 If

f��� �=
�∑

r=1

�r!�−1/2 sin	�2r! + 1
2 ����
 (3.9)

then f ∈ Cper�−����. However, the Fourier series of f does not converge at
� = 0.

Proof. Given u� v > 0, put

K�u�v� �= 1
�

∫ �

0

sin�u�� sin�v��

sin��/2�
d��

If 0 < u ≤ v then

�K�u�v�� ≤ 1
�

∫ �

0

� sin�u���
sin��/2�

d�

≤
∫ �

0

� sin�u���
�

d�

=
∫ u

0

� sin��s��
s

ds

≤ � + log�u��

Therefore

�K�u�v�� ≤ 5/4 log�u� (3.10)

for all sufficiently large u > 1, provided u ≤ v.
On the other hand

K�u�u� = 1
�

∫ �

0

sin2�u��

sin��/2�
d�

≥ 2
�

∫ �

0

sin2�u��

�
d�

≥ 2
�

∫ u

1

sin2��s�

s
ds

∼ log�u�

�

as u → �. Therefore

K�u�u� ≥ 3
10

log�u� (3.11)

for all sufficiently large u > 0.
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The partial sums of the Fourier series of f at � = 0 are given by

s�n� �= 1
2�

∫ �

−�
f���

sin��n+ 1
2 ���

sin��/2�
d��

Since f is even we can rewrite t�n� �= s�2n!� in the form

t�n� =
�∑

r=1

�r!�−1/2K�2r! + 1
2 � 2n! + 1

2 ��

We show that this sequence diverges. By using (3.11) we see that the r = n

term is greater than

3
10

�n!�−1/2 log�2n! + 1
2 � ∼ 3

10
�n!�1/2 log�2� ≥ �n!�1/2

5

for all large enough n. Using (3.10) we see that the sum of the terms with
r > n is dominated by

�∑

r=n+1

�r!�−1/2 5
4

log�2n! + 1
2 � ∼ 5

4
log�2�

�∑

r=n+1

�r!�−1/2n! ≤ �n!�1/2

20

for all large enough n. We obtain an upper bound of the sum of the terms with
r < n by using (3.10), noting that this estimate is only valid for large enough
u. There exist M� c not depending on n such that the sum is dominated by

c+
n−1∑

r=M

�r!�−1/2 5
4

log�2r! + 1
2 � ∼ c+ 5

4
log�2�

n−1∑

r=M

�r!�1/2 ≤ �n!�1/2

20

for all large enough n. Since

1
20

+ 1
20

<
1
5

we conclude that t�n� diverges as n → �. �

Note The two r! terms in the definition of f can be replaced by many other
sequences of positive integers.

The choice of coefficients in the series (3.9) is illuminated to some extent
by the following problem.

Problem 3.3.12 Prove that if

f��� �=
�∑

n=1

an sin	�n+ 1
2 ����


and
∑�

n=1 �an�n� < � for some � > 0 then the Fourier series of f converges
uniformly to f . �
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We should not leave this topic without mentioning that Carleson has proved
that the Fourier series of every L2 function on �−���� converges to it almost
everywhere. In the reverse direction given any set E ⊆ �−���� with zero
measure, there exists a function f ∈ Cper�−���� whose Fourier series diverges
on E.10

Problem 3.3.13 Prove that the sequence of monomials fn in C�−1� 1� defined
for n ≥ 0 by fn�x� �= xn is complete, and that if S is obtained from 	0� 1� 2� � � �


by the removal of a finite number of terms, then the closed linear span of
	fn
n∈S is equal to C�−1� 1� or to 	f ∈ C�−1� 1� � f�0� = 0
. These facts imply
that 	fn


�
n=0 cannot be a basis. �

Problem 3.3.14 Prove that the sequence of functions fn�x� �= xne−x2/2, n =
0� 1� 2� � � �, is complete in L2�R�. This result implies that the sequence of
Hermite functions, defined as what one obtains by applying the Gram-Schmidt
procedure to 	fn


�
n=1, form a complete orthonormal set in L2�R�. �

The above issues are relevant when one examines the convergence of Fourier
series in weighted L2 spaces. Let w be a non-negative measurable function
on �−���� such that

∫ �

−�
w���2 d� < � and let L2

w denote the Hilbert space
L2��−�����w���2d��. We use the notations 	·� ·
w and � · �

w
to denote the

inner product and norm in this space. One can then ask whether the standard
Fourier expansion of every function f ∈ L2

w converges to f in the L2
w norm.

This holds if

lim
n→� �f −

n∑

r=−n

�rur�w
= 0

where

ur��� �= eir��

�r �= �2��−1	f�ur
 = 	f�u∗
r 
w�

u∗
r ��� �= eir�/2�w���2�

Note that the set on which u∗
r is undefined is a null set with respect to the

measure w���2d�, and that 	ur� u∗
s 
w = �r�s for all r� s ∈ Z.

If we put g��� �= f���w��� and en��� �= w���ein� then one may ask instead
whether

lim
n→� �g −

n∑

r=−n

�rer� = 0

10 See [Carleson 1966, Jørsboe and Mejlbro 1982, Kahane and Katznelson 1966].
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for all g ∈ L2��−����� d��. This is the form in which we will solve the
problem.

Theorem 3.3.15 Let en be defined for all n ∈ Z by en�x� �= w�x�einx where
w ∈ � = L2�−����. Then 	en
n∈Z is a complete set in � if and only if
S �= 	x � w�x� = 0
 is a Lebesgue null set. It is a minimal complete set if and
only if w ∈ � and w−1 ∈ � .11

Proof. If S has positive measure then 	en��
S
 = 0 for all n ∈ Z, so the

sequence 	en
n∈Z is not complete. On the other hand if S has zero measure
and 	en� g
 = 0 for some g ∈ � and all n ∈ Z then wg ∈ L1�−���� and

∫ �

−�
w�x�g�x�einx dx = 0

for all n ∈ Z. It follows by Problem 2.3.14 that wg = 0. Hence g = 0 and the
sequence 	en
n∈Z is complete.

If w±1 ∈ � then 	en
n∈Z is complete. If we put

e∗
n�x� �= einx

2�w�x�

then e∗
n ∈ � and 	em� e∗

n
 = �m�n for all m�n ∈ Z. Problem 3.3.2 now implies
that 	en
n∈Z is minimal complete.

Conversely suppose that 	en
n∈Z is minimal complete. Given n ∈ Z there
must exist a non-zero g ∈ � such that 	em� g
 = 0 for all m �= n. Hence

∫ �

−�
w�x�g�x�eimx dx = 0

for all m �= n. By choosing the constant � appropriately we obtain
∫ �

−�

(
w�x�g�x�−�e−inx

)
eimx dx = 0

for all m ∈ Z. It follows by Problem 2.3.14 that

w�x�g�x�−�e−inx = 0

almost everywhere. Therefore g�x� = �einx/w�x� and w−1 ∈ � . �

We discuss this sequence of functions further in Theorem 3.4.8 and a closely
related sequence in Theorem 3.4.10.

11 The precise condition for 	en
n∈Z to be a basis involves Mockenhaupt classes. See
[Garcia-Cueva and De Francia 1985.]
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Example 3.3.16 In a series of recent papers Maz’ya and Schmidt12 have
advocated the use of translated Gaussian functions for the numerical solution
of a variety of integral and differential equations on Rn. They base their
analysis on the use of formulae such as

�Mg��x� �= ����−n/2
∑

m∈Zn

g�mh� exp
(−�x−mh�2

�h2

)

� (3.12)

where the lattice spacing h > 0 and the cut-off parameter � > 0 together
determine the error in the approximation Mg to the function g, assumed to
be sufficiently smooth.

One may write this approximation in the form

Mg �= ∑

m∈Zn

	g��m
fm

where 	g��m
 �= g�hm� and

fm�x� �= ����−n/2 exp
(−�x−mh�2

�h2

)

�

While this bears a superficial resemblance to the expansion of a function with
respect to a given basis one should note that

	fm��n
 = ����−n/2 exp
(−�m−n�2

�

)

so 	fm
�
m=1 and 	�n


�
n=1 do not form a biorthogonal set. This has the conse-

quence that M�fm� is not even approximately equal to fm. In spite of this the
approximation (3.12) is highly accurate for slowly varying, smooth functions
g provided h is small enough.

The moral of this example is that one cannot describe all series expan-
sion procedures in the framework associated with bases and biorthogonal
systems: sometimes these concepts are appropriate, but on other occasions
they are not. �

3.4 Unconditional bases

We say that a basis 	fn

�
n=1 in a Banach space � is unconditional if every

permutation of the sequence is still a basis.13 This property is very restrictive,
but it has correspondingly strong consequences. We assume this condition

12 See [Maz’ya and Schmidt to appear].
13 This definition and most of the results in this section are due to Lorch. See [Lorch 1939].
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throughout the section. As usual we let	�n

�
n=1 denote the other half of the

biorthogonal pair.

Theorem 3.4.1 There exist bounded operators PE on � for every E ⊆ Z+

with the following properties. E → PE is a uniformly bounded, countably
additive, projection-valued measure. For every E ⊆ Z+ and n ∈ Z+ we have

PEfn =
{

fn if n ∈ E,
0 otherwise.

(3.13)

Proof. If E is a finite subset of Z+ we define the projection PE on � by

PEf �= ∑

n∈E

	f��n
fn�

Our first task is to prove the existence of a constant c such that �PE� ≤ c for
all such E.

We use the method of contradiction. If no such constant exists we construct
a sequence of finite sets En such that 	1� 2� � � � � n
 ⊆ En, En ⊆ En+1 and
�PEn

� ≥ n for all n. We put E1 �= 	1
 and construct En+1 inductively from

En. Put F �= En ∪ 	n + 1
 and put k �= max	�PH� � H ⊆ F
. Now let G be
any finite set such that �PG� ≥ 2k+n+1. Using the formula

PG∪F +PG∩F = PG +PF

we see that

�PG∪F� ≥ �PG�−2k ≥ n+1�

We may therefore put En+1 �= G∪F to complete the induction.
We next relabel (permute) the sequence 	fn


�
n=1 so that En = 	1� 2� � � � �mn


where mn is a strictly increasing sequence. The conclusion, that the projections
PEn

are not uniformly bounded in norm, contradicts the assumption that the
permuted sequence is a basis. Hence the constant c mentioned above does
exist.

Now let In �= 	1� 2� � � � � n
 and for any set E ⊆ Z+, finite or not, put PEf �=
limn→� PE∩In

f . This limit certainly exists for all finite linear combinations of
the fn, and by a density argument which depends upon the uniform bound
proved above it exists for all f ∈ �.

The other statements of the theorem follow easily from (3.13) and the
bounds �PE� ≤ c. �
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Theorem 3.4.2 Let � �= 	�n

�
n=1 be a bounded, complex-valued sequence.

Then there exists a bounded operator T� on � such that

T�fn = �nfn (3.14)

for all n. Moreover

�T�� ≤ 6c����� (3.15)

Proof. We start by assuming that � is real-valued. For every integer m ≥ 0
we define the ‘dyadic approximation’ ��m� to � on Z+ by

��m�
n �=

{
r2−m���� if r2−m���� ≤ �n < �r +1�2−m�����

0 otherwise�

where r is taken to be an integer.
It follows from the definition that

��m� −��m−1� = 2−m�
Em

����

for some subset Em of Z+ and also that ��m� converge uniformly to � in
l��Z+�. The definition and boundedness of each T��m� follows from the bound
�PE� ≤ c for all E of Theorem 3.4.1, since each ��m� takes only a finite number
of values. The same bound also yields

�T��0�� ≤ 2c����

and

�T��m� −T��m−1�� ≤ 2−mc�����

It follows that T��m� converge in norm as m → � to a bounded operator which
we call T� .

The identity (3.14) follows from the method of definition, as does the
bound �T�� ≤ 3c����. The weaker bound (3.15) for complex � is deduced
by considering its real and imaginary parts separately. �

Corollary 3.4.3 If f �=∑�
n=1 �nfn in � and 	�n


�
n=1 is a bounded, complex-

valued sequence then
∑�

n=1 �n�nfn is also norm convergent.

Corollary 3.4.4 The map � → T� from l��Z+� to ���� is an algebra
homomorphism. If ��n� ∈ l� are uniformly bounded and converge pointwise
to � as n → �, then T��n� converge to T� in the strong operator topology.
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Proof. This follows directly by the use of (3.14). �

If we assume that � is a Hilbert space, there is a complete characterization
of unconditional bases, which are then also called Riesz bases.

Theorem 3.4.5 Let 	fn

�
n=1 be a basis in the Hilbert space � , normalized by

requiring that �fn� = 1 for all n. Then the following properties are equivalent.

(i) 	fn

�
n=1 is an unconditional basis.

(ii) Given a complete orthonormal set 	en

�
n=1 in � , there exists a bounded

invertible operator B on � such that Bfn = en for all n.
(iii) The series

∑�
n=1 �nfn is norm convergent if and only if

∑�
n=1 ��n�2 < �.

(iv) There is a positive constant c such that

c−1�f�2 ≤
�∑

n=1

�	f� fn
�2 ≤ c�f�2

for all f ∈ � .

Proof. (i)⇒(ii). Let 	�n

�
n=1 be a sequence of distinct numbers of modulus 1

and let T be the operator defined by the method of Theorem 3.4.2, so that
�T±n� ≤ c for all n ∈ Z+. For each positive integer n we put

Yn �= 1
n+1

n∑

r=0

�T ∗�rT r

noting that c−2I ≤ Yn ≤ c2I . The identity

lim
n→�	Ynfr� fs
 = �r�s

establishes that Yn converges in the weak operator topology to a limit Y ,
which satisfies c−2I ≤ Y ≤ c2I and

	Yfr� fs
 = �r�s� (3.16)

Putting B �= Y 1/2 (see Lemma 5.2.1), the identity (3.16) implies that en �= Bfn

is an orthonormal sequence, and the invertibility of B implies that it is
complete.

(ii)⇒(iii) and (ii)⇒(i). The stated properties hold for complete orthonormal
sets and are preserved under similarity transformations.

(iii)⇒(ii). The assumed property establishes that the map � →∑�
n=1 �nfn is

a linear isomorphism between l2�Z+� and � . It is bounded and invertible by
the closed graph theorem. The proof is completed by composing this with
any unitary map from l2�Z+� onto � .
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(ii)⇒(iv). Given B as in (ii) we have
�∑

n=1

�	f� fn
�2 =
�∑

n=1

�	f�B−1en
�2 =
�∑

n=1

�	�B−1�∗f� en
�2 = ��B−1�∗f�2
�

The second inequality of (iv) follows immediately. The first inequality is
deduced by using

�f� = �B∗�B−1�∗f� ≤ �B∗� ��B−1�∗f��

(iv)⇒(ii). If we put define C � � → � by Cf �=∑�
n=1	f� fn
en then C�m =

em for all m, so C has dense range. Combining this with the identity

�Cf�2 =∑

m�n

	f� fn
	en� em
	fm� f
 =∑

n

�	f� fn
�2

we deduce by (iv) that C is bounded and invertible. Putting B �= �C−1�∗, a
direct calculation shows that Bfn = en for all n. �

Theorem 3.4.6 Let 	fn

�
n=1 be a sequence of unit vectors in the Hilbert space

� . Then 	fn

�
n=1 is a Riesz basis for the closed linear span � of the sequence if

�	fn� fm
� ≤ cn−m

for all m� n and

s �= ∑

	r�r �=0


cr < 1�

Proof. Let � denote the dense linear subspace of l2�Z� consisting of all
sequences of finite support. We define the linear operator B � � → � by
B� =∑

n∈Z �nfn. Since

	B��B�
 =∑

m�n

�n�m	fn� fm


we deduce that B∗B = I +C, where C has the infinite matrix

Cm�n �=
{	fn� fm
 if m �= n,

0 otherwise�

Therefore

�Cm�n� ≤
{

cn−m ifm �= n,
0 otherwise�

It follows by Corollary 2.2.15 that �C� < s and hence that �B∗B− I� ≤ s < 1.
Therefore B may be extended to an invertible bounded linear operator mapping
l2�Z� onto �. This implies that 	fn


�
n=1 is a Riesz basis for � by a slight

modification of Theorem 3.4.5(ii). �
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Problem 3.4.7 Let 	fn

�
n=1 be a sequence of unit vectors in the Hilbert space

� . Prove that 	fn

�
n=1 is a Riesz basis for the closed linear span � of the

sequence if

∑

	m�n�m�=n


�	fn� fm
�2 < 1� �

Theorem 3.4.8 The sequence fn�x� �= w�x�einx, where n ∈ Z, of Theorem
3.3.15 is an unconditional basis in L2�−���� if and only if w and w−1 are
both bounded functions.

Proof. If w±1 are both bounded, then 	fn
n∈Z is an unconditional basis by
Theorem 3.4.5(ii).
If 	fn
n∈Z is an unconditional basis and a > 0 put

Sa �= 	x � a−1 ≤ �w�x�� ≤ a
�

If f ∈ L2�−���� has support in Sa then Theorem 3.4.5(iv) implies that

c−1�f�2

2 ≤
�∑

n=−�
�	f� fn
�2 ≤ c�f�2

where c > 0 does not depend on a. Equivalently

c−1�f�2

2 ≤ 2��fw�2

2 ≤ c�f�2
�

Since f is arbitrary subject to the stated condition we deduce that

c−1 ≤ 2��w�x��2 ≤ c

for almost all x ∈ Sa and all a > 0. Since a > 0 is arbitrary we deduce that
w±1 are both bounded. �

The following application of Problem 2.3.14 is needed in the proof of our
next theorem.

Problem 3.4.9 Let f � �0��� → C satisfy
∫ �

0 �f�x�� sin�x� dx < � and let

∫ �

0
f�x� sin�nx� dx = 0

for all n ∈ N. Prove that f�x� = 0 almost everywhere in �0���. �
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Theorem 3.4.10 (Nath)14 Let en�x� �= w�x� sin�nx� for n = 1� 2� � � � . Then
en ∈ L2�0��� for all n if and only if

∫ �

0
�w�x��2 sin�x�2 dx < ��

Assuming this, the following hold.

(i) 	en

�
n=1 is a complete set if and only if S = 	x � w�x� = 0
 is a Lebesgue

null set in �0���.
(ii) 	en


�
n=1 is a minimal complete set if and only if

∫ �

0
�w�x��−2 sin�x�2 dx < ��

(iii) If 	en

�
n=1 is a basis then w±1 ∈ L2�0���.

(iv) 	en

�
n=1 is an unconditional basis if and only if w±1 are both bounded

on �0���.

Proof. The first statement uses the fact that sin�nx�/ sin�x� is a bounded
function of x for every n.

(i) If S has positive measure then 	en��
S
 = 0 for all n, so the sequence

	en

�
n=1 cannot be complete. If S has zero measure and g ∈ L2�−���� satisfies

	en� g
 = 0 for all n then f = wg satisfies the conditions of Problem 3.4.9 so
f�x� = 0 almost everywhere. This implies that g�x� = 0 almost everywhere,
from which we deduce that the sequence 	en


�
n=1 is complete.

(ii) If the sequence 	en

�
n=1 is minimal complete then S has zero measure and

there exists a non-zero g ∈ L2�0��� such that 	en� g
 = 0 for all n ≥ 2. The
function f�x� �= w�x�g�x�−� sin�x� satisfies the conditions of Problem 3.4.9
provided � ∈ C is chosen suitably, so f�x� = 0 almost everywhere. Therefore

g�x� = � sin�x�

w�x�

almost everywhere. Since g is non-zero and lies in L2�0��� we conclude that
∫ �

0
�w�x��−2 sin�x�2 dx < ��

Conversely, if this condition holds and we put

e∗
n�x� �= 2 sin�nx�

�w�x�
�

14 See [Nath 2001].
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then e∗
n ∈ L2�0��� for all n and 	em� e∗

n
 = �m�n. Therefore the sequence
	en


�
n=1 is minimal complete.

(iii) If 	en

�
n=1 is a basis then the projections

Qnf �= 	f� e∗
n
en (3.17)

are uniformly bounded in norm. We have

�Qn�
2 = �en�

2 �e∗
n�

2

= 4
�2

∫ �

0
�w�x��2 sin�nx�2 dx

∫ �

0
�w�x��−2 sin�nx�2 dx�

If w±1 ∈ L2�0��� this converges to �−2�w�2

2 �w−1�2

2, and otherwise it diverges.

(iv) If w±1 are both bounded, then 	en
n∈Z is an unconditional basis by
Theorem 3.4.5(ii).

If 	en
n∈Z is an unconditional basis and a > 0 put Sa �= 	x � �w�x�� ≤ a
. If
f ∈ L2�0��� has support in Sa then Theorem 3.4.5(iv) states that

c−1�f�2

2 ≤
�∑

n=1

�	f� en
�2 ≤ c�f�2

2

where c > 0 does not depend upon the choice of a. Equivalently

c−1�f�2

2 ≤ 1
2 ��fw�2

2 ≤ c�f�2

2�

Since f is arbitrary subject to the stated condition we deduce that

c−1 ≤ 1
2 ��w�x��2 ≤ c

for almost all x ∈ Sa and all a > 0. Since a > 0 is arbitrary we deduce that
w±1 are both bounded. �

Problem 3.4.11 If w�x� �= x−� and 1/2 < ��� < 3/2, find the exact rate of
divergence of �Qn� as n → �, where Qn is defined by (3.17). �

The theory of wavelets provides examples of Riesz bases, as well as a method
of constructing the operator B of Theorem 3.4.5.

Theorem 3.4.1215 Let � ∈ L2�R� and put �n�x� �= ��x−n� for all n ∈ Z. If
there exists a constant c > 0 such that

���� �=
{
∑

n∈Z

������� +2�n��2
}1/2

(3.18)

15 The converse of this theorem is also true, and we refer to any book on wavelet theory for its
proof, e.g. [Daubechies 1992, Jensen and Cour-Harbo 2001].
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satisfies

c−1 ≤ ���� ≤ c

for all � ∈ R then 	�n
n∈Z is a Riesz basis in its closed linear span.

Proof. We start by defining the bounded invertible operator B on L2�R� by

�� Bf���� �= �� f����√
2�����

�

We then observe that �n �= B�n satisfy

	�m��n
 =
∫

R

���n�������m����

2�����2
d�

=
∫

R

���������2ei�m−n��

2�����2
d��

Since � is periodic with period 2� the integral can be expressed as the sum
of integrals over �2�r� 2��r +1��, where r ∈ Z. An application of (3.18) now
implies that

	�m��n
 = 1
2�

∫ 2�

0
ei�m−n��d� = �m�n� �

Problem 3.4.13 Prove directly that the set of functions

�n�x� �= max	1−�x−n�� 0
�

where n ∈ Z, form a Riesz basis in its closed linear span �, and identify �
explicitly. �



4
Intermediate operator theory

4.1 The spectral radius

This chapter is devoted to three closely related topics – compact linear
operators, Fredholm operators and the essential spectrum. Each of these is a
classical subject, but the last is the least settled. There are several distinct def-
initions of the essential spectrum, and we only consider the one that is related
to the notion of Fredholm operators. This section treats some preliminary
material.

We have already shown in Theorem 1.2.11 that the spectrum Spec�A� of
a bounded linear operator A on the Banach space � is a non-empty closed
bounded set. We define the spectral radius of A by

Rad�A� �= max��z� � z ∈ Spec�A���

In this section we present Gel’fand’s classical formula for Rad�A�, and then
give some examples that illustrate the importance of the concept.

Lemma 4.1.1 If A is a bounded linear operator on � then the limit

� �= lim
n→� �An�1/n

exists and satisfies 0 ≤ � ≤ �A�.

Proof. If we put

p�n� �= log��An��

then it is immediate that p is subadditive in the sense that p�m + n� ≤
p�m�+p�n� for all non-negative integers m	 n. The proof is completed by
applying the following lemma. �

99
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Lemma 4.1.2 If p � Z+ → 
−�	�� is a subadditive sequence then

−� ≤ inf
n

�n−1p�n�� = lim
n→��n−1p�n�� < �� (4.1)

Proof. If a > 0 and p�a� = −� then p�n� = −� for all n > a by the
subadditivity, and the lemma is trivial, so let us assume that p�n� is finite for
all n ≥ 0.

If a−1p�a� < � and na ≤ t < �n+1�a for some positive integer n then

t−1p�t� ≤ t−1�np�a�+p�t −na��

≤ a−1p�a�+ t−1 max�p�s� � 0 ≤ s ≤ a�	

which is less than � for all large enough t. This implies the stated result. �

Theorem 4.1.3 (Gel’fand) If A is bounded then

Rad�A� = lim
n→� �An�1/n

�

Proof. We proved in Theorem 1.2.11 that

R�z	A� =
�∑

n=0

z−n−1An

for all �z� > �A�. We also proved that R�z	A� is a norm analytic function of z.
Theorem 1.2.10 implies that �R�z	A�� diverges to infinity as z → Spec�A�.
Theorem 1.4.12 now implies that the power series

∑�
n=0 wnAn has radius

of convergence Rad�A�−1. The proof is completed by applying Problem
1.4.11. �

Problem 4.1.4 Use Theorem 4.1.3 to find the spectral radius of the Volterra
operator

�Af��x� �=
∫ x

0
f�t� dt

acting on L2
0	 1�.
An operator A with spectral radius 1 need not be power-bounded in the

sense that �An� ≤ c for some c and all n ∈ N.1

1 There are some very deep results about this question. See Theorem 10.5.1 and the note on
page 317 for some results about power-bounded operators, and [Ransford 2005,
Ransford and Roginskaya 2006] for new results and references to the literature on operators
that have spectral radius 1 but are not power-bounded.
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The asymptotics of �Anf�2 as n → � can be more complicated than that
of �An�. For the Volterra operator in Problem 4.1.4, Shkarin has proved that

lim
n→��n! �Anf�2�

1/n = 1− inf supp�f�

for all f ∈ L2�0	 1�.2 �

Example 4.1.5 The linear recurrence equation

xn+1 = 
0xn +
1xn−1 +· · ·+
kxn−k +�n

arises in many areas of applied mathematics. It may be rewritten in the vector
form

an+1 = Aan +bn

where an is the column vector �xn	 xn−1	 � � � 	 xn−k�
′, A is a certain highly

non-self-adjoint �k+1�×�k+1� matrix and bn are suitable vectors. If k �= 4,
for example, one has

A �=

⎛

⎜
⎜
⎜
⎜
⎜
⎝


0 
1 
2 
3 
4

1 0
1 0

1 0
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

	

all the unmarked entries vanishing. The eigenvalues of A are obtained by
solving the characteristic equation

zk+1 = 
0z
k +
1z

k−1 +· · ·+
k−1z+
k�

One readily sees that the stability condition

�
0�+ �
1�+ · · ·+ �
k� < 1

implies that every eigenvalue z satisfies �z� < 1. If one assumes this condition
and uses the l� norm on Ck+1 then �A� = 1 by Theorem 2.2.8. Although
Rad�A� < 1, the norms �Ar� do not start decreasing until r > k: by computing
�Ar1�� one sees that �Ar� = 1 for all r ≤ k.

More generally one may consider the equation

an+1 = Aan +bn

2 The same holds if one replaces 2 by p for any 1 ≤ p ≤ �, [Shkarin 2006]. Shkarin also
proves analogous results for fractional integration operators.
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where A is a bounded linear operator on the Banach space � and bn is a
sequence of vectors in �. Assuming that bn is sufficiently well-behaved and
�An� → 0 as n → �, one can often determine the long time asymptotics of
the solution of the equation, namely

an = Ana0 +
n−1∑

r=0

Arbn−r �

The obvious condition to impose is that �A� < 1, but a better condition is
Rad�A� < 1. By Theorem 4.1.3 this implies that there exist positive constants
M and c < 1 such that

�An� ≤ Mcn (4.2)

for all n ≥ 1. The constant M will be quite large if �An� remains of order
1 for all n up to some critical time k, after which it starts to decrease at an
exponential rate.

If bn = b for all n and Rad�A� < 1 then

an = Ana0 + �I −An��I −A�−1b

and

lim
n→� an = �I −A�−1b�

Numerically the convergence of an depends on the rate at which �An�
decreases and on the size of ��I −A�−1�. �

Problem 4.1.6 Find the explicit solution for an and use it to determine the
long time asymptotic behaviour of an, given that

an = Aan−1 +nb+ c

for all n ≥ 1, where b	 c ∈ � and Rad�A� < 1. �

4.2 Compact linear operators

Disentangling the historical development of the spectral theory of compact
operators is particularly hard, because many of the results were originally
proved early in the twentieth century for integral equations acting on particular
Banach spaces of functions. In this section we describe the apparently final
form that the subject has now taken.3

3 We refer the interested reader to [Dunford and Schwartz 1966, pp. 609 ff.] for an account of
the history.
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Lemma 4.2.14 In a complete metric space �M	 d�, the following three condi-
tions on a set K ⊆ M are equivalent.

(i) K is compact.

(ii) Every sequence xn ∈ K has a subsequence which converges, the limit
also lying in K(sequential compactness).

(iii) K is closed and totally bounded in the sense that for every � > 0 there
exists a finite set �xr�

n
r=1 ⊆ K such that

K ⊆
n⋃

r=1

B�xr	 ��

where B�a	 s� denotes the open ball with centre a and radius s.

Note that the closure of a totally bounded set is also totally bounded, and
hence compact. An operator A � � → � is said to be compact if A�B�0	 1��

has compact closure in �.

Theorem 4.2.2 The set ���� of all compact operators on a Banach space
� forms a norm closed, two-sided ideal in the algebra ���� of all bounded
operators on �.

Proof. The proof is routine except for the statement that ���� is norm closed.
Let limn→� �An −A� = 0, where An are compact and A is bounded. Let � > 0
and choose n so that �An −A� < �/2. Putting S �= A�B�0	 1�� we have

S ⊆ An�B�0	 1��+B�0	 �/2� ⊆ K +B�0	 �/2�

where K is compact. There exists a finite set a1	 ��	 am such that K ⊆
⋃m

r=1 B�ar	 �/2�, and this implies that S ⊆⋃m
r=1 B�ar	 ��. Hence S is totally

bounded, and A is compact. �

Problem 4.2.3 Prove that if B is a compact operator and An converges
strongly to A then limn→� �AnB−AB� = 0. �

It is easy to see that every finite rank operator on � lies in ����. If every
compact operator is a norm limit of finite rank operators, one says that �
has the approximation property. All of the standard Banach spaces have the
approximation property, but spaces without it do exist.5

4 Proofs may be found in [Pitts 1972, Theorem 5.6.1] and [Sutherland 1975, Chap. 7].
5 A famous counterexample was constructed by Enflo in [Enflo 1973].
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Theorem 4.2.4 If there exists a sequence of finite rank operators An on �
which converges strongly to the identity operator, then an operator on � is
compact if and only if it is a norm limit of finite rank operators.

Proof. This follows directly from Problem 4.2.3 and Theorem 4.2.2. �

We recall from Problem 2.2.9 that two operators Ap on Lp�X	 dx� and Aq on
Lq�X	 dx� are said to be consistent if Apf = Aqf for all f ∈ Lp ∩Lq.

Theorem 4.2.5 Let �X	�	 dx� be a measure space satisfying conditions
(i)–(viii) in Section 2.1. Then Lp�X	 dx� has the approximation property
for all p ∈ 
1	��. Indeed there exists a consistent sequence of finite rank
projections Pp	n with norm 1 acting in Lp�X	 dx� which converges strongly
to I as n → � for each p.

Proof. We use the notation of the conditions (i)–(viii) freely. For each n we
use the partition �n to define the operator Pp	n on Lp�X� by

Pp	nf �=
m�n�∑

r=1

�Er �−1�f	�
Er


�Er
�

It is immediate that Pp	n is a projection with range equal to �n and that the
projections are consistent as p varies. If 1/p+1/q = 1 and f ∈ Lp�X� then

�Pp	nf�p

p
=

m�n�∑

r=1

�Er �−p��f	�
Er


�p�Er �

≤
m�n�∑

r=1

�Er �1−p�f�
Er

�p

p
��

Er
�p

q

=
m�n�∑

r=1

�f�
Er

�p

p

≤ �f�p

p
�

Therefore �Pp	n� ≤ 1.
If f lies in the dense linear subspace � �=⋃

n≥1 �n of Lp�X� then Pp	nf = f

for all large enough n. Therefore �Pp	ng−g�
p
→ 0 as n → � for all g ∈ Lp�X�

and all p ∈ 
1	��. �

The proof of the following theorem is motivated by the finite element approx-
imation method in numerical analysis.
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Theorem 4.2.6 Let �K	 d� be a compact metric space and let � = C�K�.
Then � has the approximation property.

Proof. Given � > 0 there exists a finite set of points a1	 � � � 	an ∈ K such that

min
1≤r≤n

d�x	ar� < �

for all x ∈ K. Define the functions �r on K by

�r�x� �=
{

�−d�x	ar� if d�x	ar� < �,
0 otherwise,

and put


r�x� �= �r�x�
∑n

s=1 �s�x�
�

Then 
r are continuous and non-negative with
∑n

r=1 
r�x� = 1 for all x ∈ K.
Moreover 
r�x� = 0 if d�x	ar� ≥ �. One calls such a set of functions a
(continuous) partition of the identity.

The formula

�Q�f��x� �=
n∑

r=1

f�ar�
r�x�

defines a finite rank operator on C�K�. It is immediate from the definition that
�Q�� ≤ 1 for all � > 0, and we have to show that Q�f converges uniformly
to f as � → 0 for every f ∈ C�K�.

Given � > 0 and f ∈ C�K� there exists � > 0 such that d�u	 v� < � implies
�f�u�−f�v�� < �. For any such �, some choice of a1	 ��	 an and any x ∈ K let

S�x� �= �r � d�x	ar� < ���

Then

��Q�f��x�−f�x�� = �
n∑

r=1


r�x��f�ar�−f�x���

≤ ∑

r∈S�x�


r�x��f�ar�−f�x��

< �
∑

r∈S�x�


r�x�

≤ ��

In other words Q�f converges uniformly to f as � → 0. �
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A set S of complex-valued functions on a topological space K is said to be
equicontinuous if for all a ∈ K and all � > 0 there exists an open set Ua	� ⊆ K

such that x ∈ Ua	� implies �f�x�−f�a�� < � for all f ∈ S.

Theorem 4.2.7 (Arzela-Ascoli) Let K be a compact Hausdorff space. A set
S ⊆ C�K� is totally bounded in the uniform norm � · �� if and only if it is
bounded and equicontinuous.

Proof. We do not indicate the dependence of various quantities on S and �

below. If S ⊆ C�K� is totally bounded and � > 0 then there exist f1	 � � � 	 fM ∈ S

such that

S ⊆
M⋃

m=1

B�fm	�/3��

By using the continuity of each fm, we see that if a ∈ K and � > 0 there
exists an open set U such that x ∈ U implies �fm�x�− fm�a�� < �/3 for all
m ∈ �1	 � � � 	M�. Given f ∈ S there exists m ∈ �1	 � � � 	M� such that �f −
fm�� < �/3. If x ∈ U then

�f�x�−f�a�� ≤ �f�x�−fm�x��
+ �fm�x�−fm�a��+ �fm�a�−f�a��

< ��

Therefore S is an equicontinuous set. The boundedness of S is elementary.
Conversely suppose that S is bounded and equicontinuous and � > 0.

Given a ∈ K there exists an open set Ua ⊆ K such that x ∈ Ua implies
�f�x� − f�a�� < �/3 for all f ∈ S. The sets �Ua�a∈K form an open cover of
K, so there exists a finite subcover �Uan

�N
n=1. Let � � C�K� → CN be the map

defined by ��f�n �= f�an�, and give CN the l� norm. The set � �S� is bounded
and finite-dimensional, so there exists a finite set f1	 � � � 	 fM ∈ S such that

� �S� ⊆
M⋃

m=1

B�� �fm�	 �/3��

Given f ∈ S there exists m ∈ �1	 � � � 	M� such that ��f −�fm�� < �/3.
Given x ∈ K there exists n ∈ �1	 � � � 	N� such that x ∈ Uan

. Hence

�f�x�−fm�x�� < �f�x�−f�an��
+ �f�an�−fm�an��+ �fm�an�−fm�x��

< ��
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Since m does not depend on x we deduce that �f − fm�� < �, and that S is
totally bounded. �

For a set S in Lp�X	 dx� to be compact one needs to impose decay conditions
at infinity and local oscillation restrictions, in both cases uniformly for all
f ∈ S.6 Characterizing the compact subsets of lp�X� is somewhat easier, and
the following special case is often useful.

Theorem 4.2.8 Suppose that X is a countable set and 1 ≤ p < �. If f � X →

0	�� then S �= �g � �g� ≤ f� is a compact subset of lp�X� if and only if
f ∈ lp�X�.

Proof. If f ∈ lp�X� then for any choice of � > 0 there exists a finite set E ⊆ X

such that
∑

x�E

�f�x��p ≤ ��/2�p�

This implies that �g −g�
E�

p
≤ �/2 for all g ∈ S.

The set �
ES is a closed bounded set in a finite-dimensional space, so it is

compact. Lemma 4.2.1 implies that there exists a finite sequence x1	 � � � 	 xn ∈
�

ES such that �
ES ⊆⋃n

r=1 B�xr	 �/2�. We deduce that S ⊆⋃n
r=1 B�xr	 ��. The

total boundedness of S implies that it is compact by a second application of
Lemma 4.2.1.

Conversely, let En be an increasing sequence of finite sets with union equal
to X. If f � lp�X� then the functions fn �= �

En
f lie in S and �fn�p

diverges
as n → �. Therefore S is not a bounded set and cannot be compact. �

Problem 4.2.9 Suppose that X is a countable set and 1 ≤ p < �. By mod-
ifying the proof of Theorem 4.2.8 prove that a closed bounded subset S of
lp�X� is compact if and only if for every � > 0 there exists a finite set E ⊆ X

depending only on S, p and � such that

∑

x�E

�f�x��p ≤ �p

for all f ∈ S. �

The following problem shows that the continuous analogue of Theorem 4.2.8
is false.

6 See [Dunford and Schwartz 1966, Theorem IV.8.21].
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Problem 4.2.10 Prove that the set �f ∈ Lp�0	 1� � �f � ≤ 1� is not a compact
subset of Lp�0	 1� for any choice of p ∈ 
1	��. �

The closed convex hull Conv�S� of a subset S of a Banach space � is
defined to be the smallest closed convex subset of � that contains S. It
may be obtained by taking the norm closure of the set of all finite convex
combinations x �=∑n

r=1 �rxr where xr ∈ S, �r ≥ 0 and
∑n

r=1 �r = 1.

Theorem 4.2.11 (Mazur) The closed convex hull of a compact subset X in a
Banach space � is also compact.

Proof. Since X is a compact metric space it contains a countable dense set.
This set generates a closed separable subspace � of �, and the whole proof
may be carried out within �. We may therefore assume that � is separable
without loss of generality. Let K denote the unit ball in �∗. This is compact
with respect to the weak* topology by Theorem 1.3.7 and the topology is
associated with a metric d by Problem 1.3.8. The linear map � � � → C�K�

defined by ��f��
� �= 
�f� for all 
 ∈ K is isometric by the Hahn-Banach
theorem, so the image is a closed linear subspace L of C�K�.7 The set � �X�

is compact and hence equicontinuous by Theorem 4.2.7.
Given � > 0 there exists � > 0 such that �f�x�−f�y�� < � for all x	 y ∈ K

such that d�x	 y� < � and for all f ∈ � �X�. A direct calculation shows that
the same estimate holds for all f ∈ � �Conv�X��. Therefore � �Conv�X�� is
equicontinuous and bounded. Theorem 4.2.7 now implies that � �Conv�X��

is totally bounded in C�K�. Hence Conv�X� is totally bounded in � and
Conv�X� is compact. �

Problem 4.2.12 Give a direct proof of Theorem 4.2.11 by using finite convex
combinations of elements of X to show that Conv�X� is totally bounded if X

is totally bounded. �

Theorem 4.2.13 (Schauder) Let A be a bounded linear operator on the
Banach space �. Then A is compact if and only if A∗ is compact.

Proof. Suppose that A is compact and let K be the compact set �Ax � �x� ≤ 1�

in �. Let � be the closed subspace of C�K� consisting of all continuous
functions f on K such that f��x+�y� = �f�x�+�f�y� provided �	 � ∈ C,
x	 y ∈ K and �x+�y ∈ K. Let E � �∗ → � be defined by �E
��k� �= �k	


7 The fact that every Banach space � is isometrically isomorphic to a closed subspace of

C�K� for some compact Hausdorff space K is called the Banach-Mazur theorem.
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for all 
 ∈�∗ and all k ∈ K. Let D ��→�∗ be defined by �Df��x� �= f�Ax�

for all f ∈ � and all x ∈ � such that �x� ≤ 1. One sees immediately that
A∗ = DE. Since E is compact by Theorem 4.2.7 and D is bounded, we deduce
that A∗ is compact.

Conversely, if A∗ is compact then A∗∗ must be compact. But A is the
restriction of A∗∗ from �∗∗ to �, so it also is compact. �

Theorem 4.2.148 Let Ap be a consistent family of bounded operators on
Lp�X	 dx�, where

1
p

�= 1−�

p0

+ �

p1

	

1 ≤ p0	 p1 ≤ � and 0 ≤ � ≤ 1. If Ap0
is compact, then Ap is compact on Lp

for all p ∈ 
p0	 p1�.

Proof. Let Bp	n �= Pp	nAp where Pp	n is the consistent sequence of finite rank
projections defined in Theorem 4.2.5. Then

lim
n→� �Bp0	n −Ap0

� = 0

by Problem 4.2.3. We also have

�Bp1	n −Ap1
� ≤ 2�Ap1

�
for all n. By interpolation, i.e. Theorem 2.2.14, we deduce that

lim
n→� �Bp	n −Ap� = 0

for all p0 < p < p1. Hence Ap is compact. �

The fact that the spectrum of Ap is independent of p follows from the
following more general theorem.9

Theorem 4.2.15 Let �1 and �2 be compatible Banach spaces as defined on
page 49. If A1 and A2 are consistent compact operators acting in �1 and �2

respectively then

Spec�A1� = Spec�A2��

8 See [Krasnosel’skii 1960] and [Persson 1964], which led to several further papers on this
matter for abstract interpolation spaces.

9 Note that the spectrum of Ap may depend on p if one only assumes that Ap is a consistent
family of bounded operators. See also Example 2.2.11 and Theorem 12.6.2.
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The range of the spectral projection Pr of Ar associated with any non-
zero eigenvalue � is independent of r and is contained in �1 ∩�2. Every
eigenvector of either operator is also an eigenvector of the other operator.

Proof. The set S �= Spec�A1�∪Spec�A2� is closed and its only possible limit
point is 0 by Theorem 4.3.19. Let 0 �= a ∈ S and let � be a sufficiently small
circle with centre at a. The resolvent operators R�z	A1� and R�z	A2� are
consistent for all z � S by Problem 2.2.10, so the spectral projections defined
as in Theorem 1.5.4 by

Pr �= 1
2�i

∫

�
R�z	Ar� dz

are also consistent. It follows from Theorem 4.3.19 that Pr are of finite rank.
This implies that Ran�Pr� = Pr��1 ∩�2�. Therefore the two projections have
the same range. The final assertion follows from the fact that any eigenvector
lies in the range of the spectral projection. �

We conclude the section with some miscellaneous results which will be used
later.

The following compactness theorem for Hilbert-Schmidt operators strength-
ens Lemma 2.2.2. We will treat this class of operators again, at a greater level
of abstraction, in Section 5.5.

Theorem 4.2.16 If K ∈ L2�X ×X� then the formula

�Af��x� �=
∫

X
K�x	 y�f�y� dy

defines a compact linear operator on L2�X	 dx�.

Proof. We see that A depends linearly on K and recall from Lemma 2.2.2
that �A� ≤ �K�2 for all K ∈ L2�X ×X�.

If 
n, n = 1	 2	 � � � is a complete orthonormal set in L2�X�, then the
set of functions �m	n�x	 y� �= 
m�x�
n�y� is a complete orthonormal set in
L2�X ×X�.10 The kernel K has an expansion

K�x	 y� =
�∑

m	n=1

�m	n
m�x�
n�y�

which is norm convergent in L2�X×X�. The Fourier coefficients are given by

�m	n �= �K	�m	n
 = �A
n	
m
	
10 The proof of this depends upon the way in which the product measure dx×dy is constructed.
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where the first inner product is in L2�X ×X� and the second is in L2�X�. The
corresponding operator expansion

Af =
�∑

m	n=1

�m	n
m�f	
n


is convergent in the operator norm by the first half of this proof. Since A is the
limit of a norm convergent sequence of finite rank operators it is compact. �

The Hilbert-Schmidt norm of such operators is defined by

�A�2

2 �=
∫

X×X
�K�x	 y��2 dxdy

=
�∑

m	n=1

��A
n	
m
�2� (4.3)

Theorem 4.2.17 Let � �= L2�X	 dx� where X has finite measure. If A �

L2�X	 dx� → L��X	 dx� is a bounded linear operator then A is Hilbert-
Schmidt and hence compact considered as an operator from L2�X	 dx� to
L2�X	 dx�.

Proof. We first observe that if �Af�� ≤ c�f�2 for all f ∈ L2�X� then
�A∗f�2 ≤ c�f�1 for all f ∈ L1�X�∩L2�X�.11

If � �= �E1	 � � � 	En� is a finite partition of X and each set Er has positive
measure, then we define the finite rank projection P� on L2�X� by

P�f �=
n∑

r=1

�Er �−1�
Er

�f	�
Er


�

A direct calculation shows that

�P�Af��x� =
∫

X
K��x	 y�f�y� dy

for all f ∈ L2�X�, where

K��x	 y� �=
n∑

r=1

�Er �−1�
Er

�x��A∗�
Er

��y��

For every x ∈ X there exists r such that

K��x	 y� �= �Er �−1�A∗�
Er

��y�

11 The operator A∗ maps �L��X��∗ into L2�X�∗ ∼ L2�X�, but L1�X� is isometrically embedded
in �L��X��∗, so we also have A∗ � L1�X� → L2�X� after restriction.
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for all y ∈ X, so

�K��x	 ·��2 = �Er �−1�A∗�
Er

�2

≤ �Er �−1c��
Er

�1

= c�

Therefore �K��
2

2 ≤ c2�X�. We use the fact that this bound does not depend
on �.

By conditions (i)–(ix) of Section 2.1, there exists an increasing sequence
of partitions ��n� such that ∪�

n=1�n is norm dense in L2�X�. This implies
that P��n� converges strongly to I . Therefore P��n�A converges strongly to

A and �P��n�A�2 ≤ c2�X� for all n. Problem 2.2.4 now implies that A is
Hilbert-Schmidt. The compactness of A follows by Theorem 4.2.16. �

Problem 4.2.18 Use Theorem 4.2.17 to prove that if X has finite measure
then any linear subspace of L2�X	 dx� closed with respect to both � · �� and
� · �2 is finite-dimensional. �

In Theorem 4.2.17 one may not replace � by any finite constant p. Indeed
one major technique in constructive quantum field theory depends on this
fact.12

Theorem 4.2.19 There exists a measure space �X	�	 d�� such that ��X� =
1, and a closed linear subspace � of L2�X	 d�� which is also a closed linear
subspace of Lp�X	 d�� for all 1 ≤ p < �. Indeed all Lp norms are equal on �
up to multiplicative constants. The orthogonal projection P from L2�X	 d��

onto � is bounded from L2 to Lp for all 1 ≤ p < �, but is not compact.

Proof. Let X �= R� with the countable infinite product measure ��dx� �=
∏�

n=1 ��dxn�, where x �= �xn�
�
n=1 and ��ds� �= �2��−1/2e−s2/2ds. Then define

the subspace � to consist of all functions

f�x� �=
n∑

r=1

�rxr

12 We refer to the theory of hypercontractive semigroups, described in [Glimm and Jaffe 1981,
Simon 1974]. The subspace � constructed in Theorem 4.2.19 is the one-particle subspace of
Fock space.
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where � ∈ Cn and ��� denotes its Euclidean norm. By exploiting the rotational
invariance of the measure � we see that

�f�p

p
=
∫

R
���p�s�p��ds� = cp���p�

Therefore

�f�
p
= c1/p

p c
−1/2
2 �f�2

for all f ∈ � . If � is defined to be the L2 norm closure of � then the same
equality extends to �. The final statement of the theorem depends on the fact
that the projection is not compact regarded as an operator on L2�X�, because
its range is infinite-dimensional. �

Theorem 4.2.20 Let X be a compact set in RN and assume that the restriction
of the Lebesgue measure to X has support equal to X; equivalently if f ∈ C�X�

and �f�2 = 0 then f�x� = 0 for all x ∈ X. If K is a continuous function on
X ×X then the formula

�Af��x� �=
∫

X
K�x	 y�f�y� dN y

defines a compact linear operator on C�X�. The spectrum of A is the same as
for the Hilbert-Schmidt operator on L2�X	 dN x� defined by the same formula.

Proof. The initial condition of the theorem is needed to ensure that the spaces
C�X� and L2�X	 dx� are compatible; see page 49. The first statement is a
special case of our next theorem, but we give a direct proof below. The
second statement is a corollary of Theorems 4.2.15 and 4.2.16.

The kernel K must be uniformly continuous on X×X, so given � > 0 there
exists � > 0 such that d�x	x′� < � implies

�K�x	 y�−K�x′	 y�� < �/�X�
for all y ∈ X. This implies that

��Af��x�− �Af��x′�� < �

provided �f�� ≤ 1. Therefore the set A�f � �f�� ≤ 1� is equicontinuous, and
the first statement follows by Theorem 4.2.7. �

Theorem 4.2.21 If X is a compact set in RN and K is a continuous function
from X to a Banach space �, then the formula

Af �=
∫

X
K�x�f�x� dN x

defines a compact linear operator from C�X� to �.
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Proof. Given � > 0 and f ∈ C�X� satisfying �f�� ≤ 1, there exists a finite
partition �E1	 � � � 	EM� of X and points xm ∈ Em such that if x ∈ Em then
�f�x�−f�xm�� < � and �K�x�−K�xm�� < �. Therefore

�Af −
M∑

m=1

�Em�f�xm�K�xm�� < �X��1+ c��

where
c �= max��K�x�� � x ∈ X��

Since
∑M

m=1 �Em�/�X� = 1 we deduce that Af lies in the closed convex hull
of the compact subset

T �= �zg � z ∈ C	 �z� ≤ �X� and g ∈ K�X��

of �. The inclusion

A�f ∈ C�X� � �f�� ≤ 1� ⊆ Conv�T�

implies that A is a compact operator by Theorem 4.2.11. �

Theorem 4.2.23 below is a consequence of Theorem 4.3.19, but there is also
a simple direct proof, which makes use of the following lemma.

Lemma 4.2.22 Let A be a compact, self-adjoint operator acting on the
Hilbert space � . Then there exists a non-zero vector f ∈ � such that either
Af = �A�f or Af = −�A�f .

Proof. We assume that c �= �A� is non-zero. There must exist a sequence
fn ∈ � such that �fn� = 1 for all n and �Afn� → c. Using the compactness
of A and passing to a subsequence, we may assume that Afn → g, where
�g� = c. We next observe that

lim
n→� �Ag − c2fn�

2 = lim
n→���Ag�2 − c2�Ag	fn
− c2�fn	Ag
+ c4�fn�

2
�

≤ lim
n→��c4 − c2�g	Afn
− c2�Afn	 g
+ c4�

= 2c4 −2c2�g�2

= 0�

We deduce that

A2g − c2g = lim
n→��A�Ag − c2fn�+ c2�Afn −g�� = 0�

Rewriting this in the form

�A+ cI��A− cI�g = 0	
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we conclude either that Ag − cg = 0 or that h �= �A − cI�g �= 0 and Ah +
ch = 0. �

Theorem 4.2.23 Let A be a compact self-adjoint operator acting in the sepa-
rable Hilbert space � . Then there exists a complete orthonormal set �en�

�
n=1

in � and real numbers �n which converge to 0 as n → � such that

Aen = �nen

for all n = 1	 2	 � � � . Each non-zero eigenvalue of A has finite multiplicity.

Proof. We construct an orthonormal sequence �en�
�
n=1 in � such that Aen =

±cnen and 0 ≤ cn ≤ cn−1 for all n.
We start the construction by using Lemma 4.2.22 to choose e1 such that

Ae1 = ±c1e1, where c1 �= �A�, and proceed inductively. Given e1	 � � � 	 en−1,
we put

�n �= �f ∈ � � �f	 er
 = 0 for all r ≤ n−1��

It is immediate that A��n� ⊆ �n. Let cn �= �A��n
� and then let en be a

unit vector in �n such that Aen = ±cnen. Since �n ⊆ �n−1, it follows that
cn ≤ cn−1. This completes the inductive step.

By combining the compactness of A with the equality

�Aem −Aen�
2 = c2

m + c2
n

we deduce that the sequence cn converges to zero. We now put

�� �= �f ∈ � � �f	 er
 = 0 for all r��

If �� = �0� then the proof of the main statement of the theorem is finished,
so suppose that this is not the case. Since �� ⊆ �n for all n we have

�A���� ≤ �A��n
� = cn

for all n. Hence A��� = 0. We now supplement �en�
�
n=1 by any complete

orthonormal set of �� to complete the proof.
The final statement of the theorem may be proved independently of the

above. Let � be the eigenspace associated with a non-zero eigenvalue � of
A. If �un�

�
n=1 is an infinite complete orthonormal set in � then the equality

�Aum −Aun� = ��� �um −un� = ���√2

implies that Aun has no convergent subsequence, contradicting the compact-
ness of A. �
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4.3 Fredholm operators

Our goal in this section is three-fold – to develop the theory of Fredholm
operators, to prove the spectral theorem for compact operators, and to describe
some properties of the essential spectrum of general bounded linear operators.
By doing all three things together we hope to make the exposition easier to
understand than it would otherwise be.

A bounded operator A � �→ 	 between two Banach spaces is said to be a
Fredholm operator if its kernel Ker�A� and cokernel Coker�A� �= 	/Ran�A�

are both finite-dimensional. Fredholm operators are important for a variety of
reasons, one being the role that their index

index�A� �= dim�Ker�A��−dim�Coker�A��

plays in global analysis.13

Problem 4.3.1 Let A � C1
0	 1� → C
0	 1� be defined by

�Af��x� �= f ′�x�+a�x�f�x�

where a ∈ C
0	 1�. By solving f ′�x�+a�x�f�x� = g�x� explicitly prove that
A is a Fredholm operator and find its index. �

Problem 4.3.2 By evaluating it explicitly, prove that the index of a linear
map A � Cm → Cn depends on m and n but not on A. �

Lemma 4.3.3 If A is a compact operator on � then ��I −A� is Fredholm
for all � �= 0.

Proof. We first prove that � �= Ker��I − A� is finite-dimensional by con-
tradiction. If this were not the case there would exist an infinite sequence
xn ∈� such that �xn� = 1 and �xm −xn� ≥ 1/2 for all distinct m and n. Since
Axn = �xn and � �= 0, we could conclude that Axn has no convergent subse-
quence. Problem 1.1.25 allows us to write � = �+� , where �∩� = �0�

and � is a closed linear subspace on which ��I −A� is one-one.
We next prove that 
 �= Ran��I −A� is closed. If gn ∈
 and �gn −g� → 0

then there exist fn ∈ � such that gn = ��I −A�fn. If �fn� is not a bounded
sequence then by passing to a subsequence (without change of notation)

13 It is, perhaps, worth mentioning that Fredholm only studied compact integral operators.
‘Fredholm’ operators are often called Noether operators in the German and Russian
literature, after Fritz Noether, who was responsible for discovering the importance of the
index. We refer to [Gilkey 1996] for an account of the applications of ‘Fredholm theory’ to
the study of pseudo-differential operators on manifolds.
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we may assume that �fn� → � as n → �. Putting hn �= fn/�fn� we have
�hn� = 1 and kn �= ��I −A�hn → 0. The compactness of A implies that hn =
�−1�Ahn + kn� has a convergent subsequence. Passing to this subsequence
we have hn → h where �h� = 1, h ∈ � , and h = �−1Ah. We conclude that
h ∈ � ∩�. The contradiction implies that �fn� is a bounded sequence.

Given this fact the compactness of A implies that the sequence fn =
�−1�Afn +gn� has a convergent subsequence. Passing to this subsequence we
obtain fn → f as n → �, so f = �−1�Af +g�, and g = ��I −A�f . Therefore

 is closed.

Since Ran��I −A� is closed, an application of the Hahn-Banach theorem
implies that its codimension equals the dimension of Ker��I −A∗� in �∗. But
A∗ is compact by Theorem 4.2.13, so this is finite by the first paragraph. �

Our next theorem provides a second characterization of Fredholm operators.

Theorem 4.3.4 Every Fredholm operator has closed range. The bounded
operator A � � → 	 is Fredholm if and only if there is a bounded operator
B � 	 → � such that both �AB− I� and �BA− I� are compact.

Proof. If A is Fredholm then �1 �= Ker�A� is finite-dimensional and so has a
complementary closed subspace �0 in � by Problem 1.1.25. Moreover A maps
�0 one-one onto 	0 �= Ran�A�. If 	1 is a complementary finite-dimensional
subspace of 	0 in 	 then the operator X � �0 ⊕	1 → 	 defined by

X�f ⊕v� �= Af +v

is bounded and invertible. We deduce by the inverse mapping theorem that
	0 �= X��0� is closed. This completes the proof of the first statement of the
theorem.

Still assuming that A is Fredholm, put B�g ⊕ v� �= �A0�
−1g for all g ∈ 	0

and v ∈ 	1, where A0 � �0 → 	0 is the restriction of A to �0. Then B is a
bounded operator from 	 to � and both of

K1 �= AB− I	 K2 �= BA− I (4.4)

are finite rank and hence compact.
Conversely suppose that A	 B are bounded, K1	 K2 are compact and (4.4)

hold. Then

Ker�A� ⊆ Ker�I +K2�	

Ran�A� ⊇ Ran�I +K1��
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Since �I +K1� and �I +K2� are both Fredholm by Lemma 4.3.3, it follows
that A must be Fredholm. �

The proof of Theorem 4.3.4 provides an important structure theorem for
Fredholm operators.

Theorem 4.3.5 If A is a Fredholm operator then there exist decompositions
� = �0 ⊕�1 and 	 = 	0 ⊕	1 such that

(i) �0 and 	0 are closed subspaces;
(ii) �1 and 	1 are finite-dimensional subspaces;

(iii) �1 = Ker�A� and 	0 = Ran�A�;
(iv) Index�A� = dim��1�−dim�	1�;
(v) A has the matrix representation

A =
(

A0 0
0 0

)

(4.5)

where A0 � �0 → 	0 is one-one onto.

Problem 4.3.6 Let A be a Fredholm operator on the Banach space �. Prove
that if Ker�A� = �0� then Ker�A−�I� = �0� for all small enough �. Prove
also that if Ran�A� = � then Ran�A−�I� = � for all small enough �. �

Before stating our next theorem we make some definitions. We say that � lies
in the essential spectrum EssSpec�A� of a bounded operator A if ��I −A� is
not a Fredholm operator.14

Since the set ���� of all compact operators is a norm closed two-sided
ideal in the Banach algebra ���� of all bounded operators on �, the quotient
algebra 	 �= ����/���� is a Banach algebra with respect to the quotient
norm

���A�� �= inf��A+K� � K ∈ �����

where � � ���� → 	 is the quotient map. The Calkin algebra 	 enables us
to rewrite Theorem 4.3.4 in a particularly simple form.

Theorem 4.3.7 The bounded operator A on � is Fredholm if and only if
��A� is invertible in the Calkin algebra 	 . If A ∈ ���� then

EssSpec�A� = Spec���A���

14 A systematic treatment of five different definitions of essential spectrum may be found in
[Edmunds and Evans 1987, pp. 40 ff.]. See also [Kato 1966A]. For self-adjoint operators on
a Hilbert space these notions all coincide, but in general they have different properties.
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Proof. Both statements of the theorem are elementary consequences of The-
orem 4.3.4. �

Corollary 4.3.8 If A ��→� is a Fredholm operator and B �= A+K where
K is compact, then B is a Fredholm operator and

EssSpec�A� = EssSpec�B��

Theorem 4.3.9 If A is a Fredholm operator on � then A∗ is Fredholm.

Proof. Suppose that AB = I +K1 and BA = I +K2 where K1	K2 are compact.
Then B∗A∗ = I +K∗

1 and A∗B∗ = I +K∗
2 . We deduce that A∗ is Fredholm by

applying Theorem 4.3.4 and Theorem 4.2.13. �

Problem 4.3.10 Prove directly from the definition that if A1 and A2 are both
Fredholm operators then so is A1A2.

Note: If �1 = �2 then this is an obvious consequence of Theorem 4.3.7,
but there is an elementary direct proof. �

Theorem 4.3.11 If A ��→ 	 is a Fredholm operator then there exists � > 0
such that every bounded operator X satisfying �X −A� < � is also Fredholm
with

index�X� = index�A��

Proof. We make use of the matrix representation (4.5) of Theorem 4.3.5. If

X =
(

B C

D E

)

and �X −A� < � then �B −A0� ≤ c�, so B is invertible provided � > 0 is
small enough.

If f ∈ �0 and g ∈ �1 then X�f ⊕g� = 0 if and only if

Bf +Cg = 0	

Df +Eg = 0�

This reduces to

�E −DB−1C�g = 0	

where �E−DB−1C� ��1 → 	1, both of these spaces being finite-dimensional.
We deduce that

dim�Ker�X�� = dim�Ker�E −DB−1C��
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for all small enough � > 0. By applying a similar argument to

X∗ =
(

B∗ D∗

C∗ E∗

)

we obtain

dim�Coker�X�� = dim�Coker�E −DB−1C��

for all small enough � > 0. Problem 4.3.2 now implies that

index�X� = index�E −DB−1C� = dim��1�−dim�	1��

This formula establishes that index�X� does not depend on X, provided
�X −A� is small enough. �

Theorem 4.3.11 establishes that the index is a homotopy invariant: if t → At

is a norm continuous family of Fredholm operators then index�At� does not
depend on t. In a Hilbert space context one can even identify the homotopy
classes, by using some results which are only proved in the next chapter.

Theorem 4.3.12 If A is a Fredholm operator on the Hilbert space � then
there exists a norm continuous family of Fredholm operators At defined for
0 ≤ t ≤ 1 with A0 = A and A1 = I if and only if index�A� = 0.

Proof. If such a norm continuous family At exists then Theorem 4.3.11
implies that index�A� = index�I� = 0.

Conversely suppose that A is a Fredholm operator with zero index. We
construct a norm continuous homotopy connecting A and I in three steps.
The three maps are linked together at the end of the process in an obvious
manner.

Since dim��1� = dim�	1� < �, there exists a bounded linear map B on
� such that Bf = 0 for all f ∈ �0 and B maps �1 one-one onto 	1. The
operators At �= A+ tB depend norm continuously on t and are invertible for
t �= 0. This reduces the proof to the case in which A is invertible.

Since A is invertible it has a polar decomposition A = U �A� in which �A�
is self-adjoint, positive and invertible while U is unitary; see Theorem 5.2.4.
The one-parameter family of operators At �= U �A�1−t satisfies A0 = A and
A1 = U and is a norm continuous function of t by Theorem 1.5.1. This reduces
the proof to the case in which A = U is unitary.

If A is unitary there exists a bounded self-adjoint operator H such that
A = eiH by the corollary Problem 5.4.3 of the spectral theorem for normal
operators. We finally define At = eiH�1−t� to obtain a norm continuous homo-
topy from A to I . �
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Problem 4.3.13 By considering appropriate left and right shift operators on
l2�Z+�, prove that for every choice of n ∈ Z there exists a Fredholm operator
A with index�A� = n. �

Problem 4.3.14 Let � be the space consisting of those continuous functions
on the closed unit disc D that are analytic in the interior of D, provided with
the sup norm. Let g ∈ � be non-zero on the boundary �D of D, and let Z�g�

denote the number of zeros of g in D, counting multiplicities. Prove that if A

is defined by Af �= gf then

index�A� = −Z�g�� �

Lemma 11.2.1 extends the following lemma to unbounded operators.

Lemma 4.3.15 Let A be a bounded operator on � and let z ∈ C. If the
sequence of vectors fn in � converges weakly to 0 as n → � and satisfies

lim
n→� �fn� = 1	 lim

n→� �Afn − zfn� = 0	

then z ∈ EssSpec�A�.

Proof. Suppose that z � EssSpec�A� and put B �= A− zI . Then B is a Fred-
holm operator so K �= Ker�B� is finite-dimensional. There exists a finite rank
projection P on � with range K. If we put M �= Ker�P� then � = K ⊕ M

and it follows from the proof of Theorem 4.3.4 that there exists a positive
constant c such that

�Bg� ≥ c�g� (4.6)

for all g ∈ M . Since P is of finite rank and fn converge weakly to 0, we
see that �Pfn� → 0. Therefore gn �= �I −P�fn satisfy limn→� �gn� = 1 and
limn→� �Bgn� = 0. These results contradict (4.6). �

For self-adjoint operators the essential spectrum is easy to determine.

Problem 4.3.16 Prove that if A is a bounded self-adjoint operator on the
Hilbert space � , then � ∈ Spec�A� lies in the essential spectrum unless it is
an isolated eigenvalue of finite multiplicity. �

An analysis of Problem 1.2.16 shows that the analogous statement for more
general operators may be false.
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Lemma 4.3.17 If � is an isolated point of Spec�A� and � is the range of
the associated spectral projection P then � ∈ EssSpec�A� if and only if � is
infinite-dimensional.

Proof. Let � (resp. �) be the range (resp. kernel) of the spectral projection
P constructed in Theorem 1.5.4. Both subspaces are invariant with respect
to A with Spec�A��� = ��� and Spec�A��� = Spec�A�\���. By restricting to
� it is sufficient to treat the case in which Spec�A� = ���. The condition
� � EssSpec�A� is then equivalent to EssSpec�A� = ∅.

It is elementary that if � is finite-dimensional then EssSpec�A� = ∅. Con-
versely suppose that EssSpec�A� = ∅. The 	-valued analytic function f�z� �=
���zI −A�−1� is defined for all z ∈ C and satisfies f�z� = z−11 +O�z−2� as
�z� → �. The Banach space version of Liouville’s theorem (Problem 1.4.9)
implies that 1 = 0 in 	 . This implies that I ∈ ���� is compact, so � must be
finite-dimensional. �

If � is infinite-dimensional then EssSpec�A� is closed by an application of
Problem 1.2.12 to the Calkin algebra.

Theorem 4.3.18 Let A be a bounded operator on the Banach space �. Let
S denote the essential spectrum of A, and let U be the unbounded component
of C\S. Then �zI −A� is a Fredholm operator of zero index for all z ∈ U and
Spec�A�∩U consists of a finite or countable set of isolated eigenvalues with
finite algebraic and geometric multiplicities.

Proof. It follows from the definition of the essential spectrum that �zI −A�

is a Fredholm operator for all z ∈ U , and from Theorem 4.3.11 that the
index is constant on U . We prove that every z ∈ U ∩ Spec�A� is isolated.
We assume that z = 0 by replacing A by �A− zI�, but return to the original
operator A in the final paragraph. The operators An are Fredholm for all
n ≥ 1 by Problem 4.3.10, so the subspaces Mn �= Ran�An� are all closed.
These subspaces decrease as n increases, and their intersection M� is also
closed.

The inclusion A�Mn� ⊆ Mn+1 for all n implies that A�M�� ⊆ M�. We next
prove that if B denotes the restriction of A to M� then B�M�� = M� and B

is a Fredholm operator on M�. If f ∈ M� and f = Ah then

�g ∈ Mn � Ag = f� = Mn ∩ �h+Ker�A���
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This is a decreasing sequence of non-empty finite-dimensional affine sub-
spaces of �, and so must be constant beyond some critical value of n. In
other words there exists g such that Ag = f and g ∈ Mn for all n. Hence
g ∈ M� and B is surjective. Since Ker�B� ⊆ Ker�A�, it follows that B is a
Fredholm operator on M�.

We next relate the index of �B − �I� with that of �A − �I� for all small
enough � �= 0. The fact that B is Fredholm with B���� = �� implies that
�B −�I����� = �� for all small enough � by Problem 4.3.6. If � �= 0 and
f ∈ Ker�A−�I� then f = �−nAnf for all n ≥ 1, so f ∈ M�. This implies that
Ker�A−�I� = Ker�B−�I� for all � �= 0. Therefore

dim Ker�A−�I� = dim Ker�B−�I�

= index�B−�I�

for all small enough � �= 0. But the index does not depend on �, so dim Ker�A−
�I� does not depend on � for all small enough � �= 0. Applying a similar argu-
ment to A∗ we see that dim Coker�A−�I� does not depend on � for all small
enough � �= 0.

We now return to the original operator A. A topological argument implies
that dim Ker�A − zI� and dim Coker�A − zI� are constant on U except at
a finite or countable sequence of points whose limit points must lie in
EssSpec�A�. Since �A−zI� is invertible if �z� > �A�, we deduce that �A−zI�

is invertible for all z ∈ U , excluding the possible exceptional points. Therefore
index�A− zI� = 0 throughout U .

Since every � ∈ U ∩ Spec�A� is an isolated point, the associated spectral
projection is of finite rank by Lemma 4.3.17. �

The spectral theorem for a compact operator A is a direct corollary of
Theorem 4.3.18, the essential spectrum of A being equal to �0� provided
dim��� = �. We omit the description of the restriction of A to its finite-
dimensional spectral subspaces, since this amounts to the description of gen-
eral n×n matrices by means of Jordan forms.

Theorem 4.3.19 (Riesz) Let A be a compact operator acting on the infinite-
dimensional Banach space �. Then the spectrum of A contains 0 and is finite
or countable. Every non-zero point � in the spectrum is associated with a
spectral projection P of finite rank which commutes with A. The restriction of
A to the range of P has spectrum equal to ���. If Spec�A� is countable then

Spec�A� = �0�∪ ��n � n = 1	 2	 � � � �	

where limn→� �n = 0.
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We finally mention the extension of the ideas of this section to unbounded
operators; we will return to this in Section 11.2. If � is a linear subspace of
the Banach space � and A � � → � is a possibly unbounded linear operator,
we say that z � Spec�A� if �zI −A� maps � one-one onto � and the inverse
operator R�z	A� is bounded. Suppose also that � is a Banach space with
respect to another norm ��� · ��� and that the inclusion map I � ��	 ��� · ���� →
��	� ·�� is continuous. We assume that A is bounded as an operator from �
to �. We then define the essential spectrum of A to be the set of all z such
that �A − zI� is not a Fredholm operator from � to �. As before this is a
subset of Spec�A�.

4.4 Finding the essential spectrum

In this section we find the essential spectra of a number of simple operators,
as illustrations of the theory of the last section. We start by considering
Toeplitz operators,15 and then go on to examples which make use of the
results obtained in that case. Many of the results obtained in this section can
be extended to differential operators in several dimensions; the applications
to Schrödinger operators whose potentials have different asymptotic forms in
different directions are of importance in multi-body quantum mechanics.

Problem 1.2.16 provides the simplest example of a Toeplitz operator. More
generally if a ∈ l1�Z� and 1 < p < � we define the bounded Toeplitz operator
A on lp�N�, where N denotes the set of natural numbers, by

�Af��n� �=
�∑

m=1

a�n−m�f�m� (4.7)

for all n ∈ N. Alternatively Af �= P+�a ∗ f� for all f ∈ lp�N�, where P+ is
the projection from lp�Z� onto lp�N� defined by P+f = �

Nf . One sees that
A has the semi-infinite matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a−1 a−2 a−3 � � �

a1 a0 a−1 a−2 � � �

a2 a1 a0 a−1 � � �

a3 a2 a1 a0 � � �

� � � � � � � � � � � � � � �

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

We define the symbol of the operator A by

â��� �=
�∑

m=−�
a�m�e−im��

15 We refer to [Böttcher and Silbermann 1999] for a much more comprehensive treatment.
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The following theorems are associated with the names of Gohberg, Hartman,
Krein and Wintner. The first is closely related to Theorem 2.4.4.

Theorem 4.4.1 If a ∈ l1�Z� and 1 < p < � then the essential spectrum of
the Toeplitz operator A on lp�N� defined by (4.7) satisfies

EssSpec�A� = �â��� � � ∈ 
0	 2����

Proof. We write A in the form

A =
�∑

m=−�
a�m�Tm

where the contractions Tm on lp�N� are defined for all m ∈ Z and n ∈ N by

�Tmf��n� �=
{

f�n−m� if n−m ≥ 1,
0 otherwise.

Given two bounded operators B	C we will write B ∼ C if �B−C� is compact,
or equivalently if ��B−C� = 0 in the Calkin algebra ����/����. A direct
computation shows that TmTn ∼ Tm+n for all m	n ∈ Z.

Now suppose that z � S where S �= �â��� � � ∈ 
0	 2���. Wiener’s Theo-
rem 2.4.2 implies the existence of b ∈ l1�Z� such that �ze−a�∗b = e, where ∗
denotes convolution and e �= �0 is the identity element of the Banach algebra
l1�Z�. Putting

B �=
�∑

m=−�
b�m�Tm

we see that

�zI −A�B = zB−
( �∑

m=−�
a�m�Tm

)( �∑

n=−�
b�n�Tn

)

∼ zB−
�∑

m=−�

�∑

n=−�
a�m�b�n�Tm+n

= zB−
�∑

m=−�
�a∗b��m�Tm

=
�∑

m=−�
�zb−a∗b��m�Tm

=
�∑

m=−�
e�m�Tm

= I�
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Since B�zI −A� ∼ I by a similar argument, Theorem 4.3.4 implies that z �
EssSpec�A�.

Conversely suppose that z �= â��� for some � ∈ 
0	 2��. We prove that
z ∈ EssSpec�A� by constructing a sequence fn satisfying the conditions of
Lemma 4.3.15. Let g � R → R+ be a continuous function with support in
�0	 1� and satisfying �g�

p
= 1. Then define fn ∈ lp�N� by

fn�m� �= n−1/pg�m/n�eim��

It follows immediately that �fn�p
→ 1, fn → 0 weakly and one sees as in the

proof of Theorem 2.4.4 that limn→� �Afn − â���fn�p
= 0. �

Theorem 4.4.2 (Krein) Suppose that a ∈ l1�Z�, 1 < p < � and 0 � �â��� �

� ∈ 
0	 2���. Then the associated Toeplitz operator A on lp�N� is Fredholm
and its index equals16 the winding number of â around 0.

Proof. Both the index and the winding number are invariant under homotopies,
so we can prove the theorem by deforming the operator continuously into one
for which the identity is easy to prove. We start by truncating a at a large
enough distance from 0 so that neither the index nor the winding number are
changed. This has the effect of ensuring that â is a smooth periodic function
on 
0	 2�� which does not vanish anywhere. We write

â��� �= r���ei
���

where r is a positive smooth function which is periodic with period 2�, and

 is a smooth real-valued function such that 
�2�� = 
�0�+2�N , where N

is the winding number. Given t ∈ 
0	 1�, we now put

ât��� �= r���1−tetNi�+�1−t�i
���

noting that ât has absolutely summable Fourier coefficients for every such t.
Homotopy arguments imply that A has the same index as the Toeplitz operator
B associated with the symbol

â1��� �= eNi��

16 Some accounts prove that the index is minus the winding number, because they adopt a
different convention relating the symbol of the operator to its Fourier coefficients.
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The operator B is given explicitly on lp�N� by

�Bf��n� �=
{

f�n+N� if n+N ≥ 1,
0 otherwise,

and its index is N by inspection. �

Example 4.4.3 Let A be the convolution operator A�f� �= a ∗ f on l2�N�,
where

an �=
⎧
⎨

⎩

4 if n = 1,
1 if n = 6 or −4,
0 otherwise.

The essential spectrum of A is the curve shown in Figure 4.1. The spectrum
also contains every point inside the closed curve, by Theorem 4.4.2. �

In the case p �= 2 it is possible to analyze Toeplitz operators with much more
general symbols in considerable detail. It is also more natural to formulate the
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Figure 4.1: Spectrum of the operator A of Example 4.4.3
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problem in a different manner. We define the Hardy space H2 ⊆ L2�−�	�� by

H2 �= lin�ein� � n = 0	 1	 2	 � � � ��

By identifying ein� with zn it may also be regarded as the set of boundary
values of a certain space of analytic functions on �z � �z� < 1�. Given a bounded
measurable function a on �−�	�� one may then define the Toeplitz operator
T�a� � H2 → H2 with symbol a by

T�a�f �= P�af�

where P is the orthogonal projection of L2�−�	�� onto H2. The spectral
analysis of such operators is extremely delicate, and we content ourselves
with the following theorem, which already treats a larger class of symbols a

than Theorem 4.4.1.

Theorem 4.4.4 If a	b ∈ Cper
−�	�� then T�ab� − T�a�T�b� is a compact
operator on H2. Moreover the essential spectrum of T�a� satisfies

EssSpec�T�a�� = �a��� � � ∈ 
0	 2����

Proof. Since T�ab�−T�a�T�b� is the restriction of Pa�I −P�bP to H2, the first
statement follows if �I −P�bP is a compact operator on L2�−�	��. If b is a
trigonometric polynomial then this operator is of finite rank, and the general
statement follows by expressing b as the uniform limit of trigonometric
polynomials.

The essential spectrum of T�a� is equal to the spectrum of the element
��T�a�� of the Calkin algebra, by Theorem 4.3.7. By using the identity

��T�a− z1����T�b�� = ��T�1�� = 1

where z � �a��� � � ∈ 
−�	��� and b = �a − z1�−1, we deduce that
EssSpec�T�a�� is contained in �a��� � � ∈ 
0	 2���. Equality is proved by
constructing a suitable sequence of approximate eigenvectors, as in the proof
of Theorem 4.4.1. �

Although the above theorem determines the essential spectrum of such Toeplitz
operators, Problem 1.2.16 shows that the spectrum may be much larger.17 We
treat the corresponding problem for differential operators on the half-line
more completely in Section 11.3.

17 We refer to [Böttcher and Silbermann 1999] for the full description of the spectrum and
essential spectrum for piecewise continuous and more general symbols. It is remarkable that
the natural generalization of Theorem 4.4.4 to piecewise continuous symbols is false.
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We leave the study of Toeplitz operators at this point, and describe a mis-
cellany of other examples for which the essential spectrum can be determined.

Example 4.4.5 The study of obstacle scattering involves operators of the
following type. Let X �= ZN\F where F is any finite set. Let A be the bounded
operator on l2�X� whose matrix is given by ax	y �= bx−y for all x	 y ∈ X, where

br are the Fourier coefficients of some function b̂ ∈ Cper�
−�	��N �.
The operator A may have some eigenvalues, whose corresponding eigen-

functions decay rapidly as one moves away from F . The essential spectrum
of A is easier to determine. One first replaces A by the operator A ⊕ 0 on
l2�ZN �, where 0 is the zero operator in l2�F�. One sees immediately that
B − �A⊕ 0� is of finite rank, where B is the operator of convolution by the
sequence �bn�n∈ZN . We use the Fourier operator � � l2�ZN � → L2�
−�	��N �

defined by

�� c���� �= �2��−N/2
∑

n∈ZN

cne−in·�	

where c ∈ l2�ZN � and � ∈ 
−�	��N . The proof that � is unitary uses the
N -dimensional analogue of Corollary 2.3.11. Putting B̂ �= � B� −1 one sees
that

�B̂f���� = b̂���f���

for all f ∈ L2�
−�	��N �. Therefore

EssSpec�A� = EssSpec�A⊕0�

= EssSpec�B�

= EssSpec�B̂�

= �b̂��� � � ∈ 
−�	��N �� �

We now turn to the study of operators on l2�Z� which have different asymp-
totic forms at ±�.

Theorem 4.4.6 Let A � l2�Z� → l2�Z� be the bounded operator associated
with an infinite matrix am	n satisfying am	n = 0 if �m−n� > k and

lim
r→±�

am+r	n+r = b±	m−n

for all m	 n ∈ Z. If we put

b±��� �=
k∑

r=−k

b±	 re
−ir�	



130 Intermediate operator theory

then the essential spectrum of A is given by

EssSpec�A� = �b+��� � −� ≤ � ≤ ��∪ �b−��� � −� ≤ � ≤ ��� (4.8)

Proof. 18 The boundedness of A is proved by using Corollary 2.2.15. We
compare A with the operator B whose associated matrix is defined by

bm	n �=
⎧
⎨

⎩

b+	m−n if m ≥ 0 and n ≥ 0	

b−	m−n if m ≤ −1 and n ≤ −1	

0 otherwise.

Note that bm	n = 0 if �m−n� > k. Since the matrix coefficients of the differ-
ence C �= A−B converge to zero as m → ±� and vanish if �m−n� > k, it
follows that �CN −C� → 0 as N → � where

CN	m	n �=
{

am	n −bm	n if �m� ≤ N and �n� ≤ N	

0 otherwise.

But CN is of finite rank, so C is compact.
We next observe that B = B+ ⊕B− where B+ � l2�0	�� → l2�0	�� and

B− � l2�−�	−1� → l2�−�	−1� are both Toeplitz operators. (In the case of
B− one needs to relabel the subscripts.) Corollary 4.3.8 and Theorem 4.4.1
now yield

EssSpec�A� = EssSpec�B�

= EssSpec�B+�∪EssSpec�B−�

= �b+��� � −� ≤ � ≤ ��∪ �b−��� � −� ≤ � ≤ ��� �

Problem 4.4.7 Let A be the operator on l2�Z� associated with the infinite
matrix

Ar	s �=

⎧
⎪⎪⎨

⎪⎪⎩

1 if �r − s� = 1,
i if r = s > 0,
−i if r = s < 0,
0 otherwise.

Find the essential spectrum of A. Prove that 0 is an isolated eigenvalue of
A, and that the corresponding eigenvector is concentrated around the origin.
Does A have any other eigenvalues?

18 An alternative proof that the LHS of (4.8) contains the RHS is indicated in Problem 14.4.5.
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If one also specifies that A0	0 = is where −1 ≤ s ≤ 1, determine how the
eigenvalue found above depends on s. �

In the above theorem one can consider Z as a graph with two ends, on
which A has different forms. One can also consider a graph with a larger
number of ends. Mathematically one takes A to be a bounded operator on
l2�F ∪ 
�1	 � � � 	 k�×Z+��, where k is the number of ends and F is a finite set
to which they are all joined. One assumes that A =∑k

r=1 Br +C where C is
compact (or even of finite rank) and each Br is a Toeplitz operator acting in
l2��r�×Z+� with symbol br ∈ Cper
−�	��.

Theorem 4.4.8 Under the above assumptions the essential spectrum of A is
given by

EssSpec�A� =
k⋃

r=1

�br��� � −� ≤ � ≤ ���

The proof is an obvious modification of the proof of Theorem 4.4.6.
One often needs to consider more complicated situations, in which each

point of ZN has several internal degrees of freedom attached. These are
analyzed by considering matrix-valued convolution operators.

Theorem 4.4.9 Let � be a finite-dimensional inner product space and let
� �= l2�ZN 	�� be the space of all square-summable � -valued sequences
on ZN . Let A � � → � be defined by

�Af��n� �= ∑

m∈ZN

an−mfm

where a � ZN → ���� satisfies
∑

n∈ZN �an� < �. Then

Spec�A� = EssSpec�A� =⋃
�Spec�b���� � � ∈ 
−�	��N �

where

b��� �= ∑

n∈ZN

ane−in·� ∈ ���� (4.9)

for all � ∈ 
−�	��N .
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Proof. We use the unitarity19 of the Fourier operator � � l2�ZN 	�� →
L2�
−�	��N 	�� defined by

�� c���� �= �2��−N/2
∑

n∈ZN

cne−in·�	

where c ∈ l2�ZN 	�� and � ∈ 
−�	��N .
A direct calculation shows that B �= �A� −1 is given by

�Bf���� = b���f���

for all f ∈ L2�
−�	��N 	��, where b is defined by (4.9) and is a continuous
����-valued function. We therefore need only establish the relevant spectral
properties of B.

Identifying � with Ck for some k, we note that each b��� is a k × k matrix,
and its spectrum is a set of k or fewer eigenvalues. These are the roots of the �-
dependent characteristic polynomial, and depend continuously on� by Rouche’s
theorem. Let S �=⋃

�Spec�b���� � � ∈ 
−�	��N �. If z � S then the function

r��� �= �zI −b����−1

is bounded and continuous so the corresponding multiplication operator R

satisfies �zI −B�R = R�zI −B� = I . Therefore z � Spec�B�.
Conversely suppose that z ∈ Spec�b���� for some �; more explicitly suppose

that b���v = zv for some unit vector v ∈ � . Given � > 0 there exists � > 0
such that �b�
�v− zv� < � provided �
− �� < �. Putting fv�x� �= f�x�v we
deduce that �Bfv −zfv� < ��fv� for all f ∈ L2�
−�	��N � such that supp�f� ⊆
�
 � �
−�� < ��. By choosing a sequence of f whose supports decrease to
���, we deduce using Lemma 4.3.15 that

S ⊆ EssSpec�B� ⊆ Spec�B� ⊆ S� �

Problem 4.4.10 Let A be a bounded operator on l2�Z� with a tridiagonal
matrix a, i.e. one that satisfies am	n = 0 if �m−n� > 1. Suppose also that A is
periodic with period k in the sense that am+k	n+k = am	n for all m	 n ∈ Z. Let
� � Z×�0	 1	 � � � 	 k−1� → Z be the map ��m	 j� �= km+ j. Use this map to
identify l2�Z� with l2�Z	 Ck� and hence to rewrite A in the form considered
in Theorem 4.4.9. Hence prove that the spectrum of A is the union of at most
k closed curves (or intervals) in C. �

19 The proof of unitarity involves choosing some orthonormal basis �e1	 � � � 	 ek� in � and
applying the N -dimensional analogue of Corollary 2.3.11 to each sequence �c	 er
 ∈ l2�ZN �.
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Problem 4.4.11 Find the spectrum of the operator A on l2�Z� associated with
the infinite, tridiagonal, period 2 matrix

A �=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

� � �
� � �

� � � � �

� −� �

� � �

� −� �

� � �

� −�
�� �

� � �
� � �

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.10)

where �	 �	 � are real non-zero constants. 20 �

Figure 4.2 shows the spectrum of the N ×N matrix corresponding to (4.10)
for N �= 100, � �= 1, � �= 5 and � �= 3�9. We imposed periodic boundary
conditions by putting AN	1 �= � and A1	N �= �. If these entries are put equal
to 0, then A is similar to a self-adjoint matrix and has real eigenvalues.

If one replaces the diagonal entries Ar	r = �−1�r� above by the values ±�

chosen randomly, one would expect the eigenvalues of A to be distributed
randomly in the complex plane. The fact that they are in fact regularly
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Figure 4.2: Spectrum of a period 2 matrix

20 In spite of the explicit formula for the spectrum, this operator is not similar to a normal
operator if ��� = ��−��: equivalently it is not then an operator of scalar type in the sense of
[Dunford and Schwartz 1971, Theorem XV.6.2]. The corresponding problem for Schrödinger
operators has been fully analyzed in [Gesztesy and Tkachenko 2005].
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Figure 4.3: Spectrum of a matrix with random diagonal entries

distributed along certain curves was one of the real surprises in the field of
random matrix theory. indexMartinez21 Figure 4.3 shows a typical spectral
diagram with the same values of N , �, � and � as before. Once again if AN	1

and A1	N are put equal to 0, then A is similar to a self-adjoint matrix and has
real eigenvalues.

21 See Goldsheid and Khoruzhenko 2000, Goldsheid and Khoruzhenko 2003 for the proof and
references to the earlier literature on what is called the non-self-adjoint Anderson model. An
‘exactly soluble’ special case was analyzed in [Trefethen et al. 2001]. See
Trefethen and Embree 2005, Chap.8for a discussion of these models in terms of
pseudospectra. The spectrum of the corresponding infinite-dimensional random matrices is
significantly different and was investigated in [Davies 2001A, Davies 2001B,
Davies 2005B, Martinez 2005].
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Operators on Hilbert space

5.1 Bounded operators

In this chapter we describe some of the special theorems that can be proved for
operators on a Hilbert space. The best known of these is the spectral theorem
for self-adjoint operators, but we also derive the basic properties of Hilbert-
Schmidt and trace class operators. Some of the theorems in this chapter have
clumsier versions in Banach spaces, but others have no analogues.

Lemma 5.1.1 If A is a bounded self-adjoint operator on � then Spec�A� ⊂
R and

��zI −A�−1� ≤ �Im�z��−1 (5.1)

for all z � R.

Proof. Let z �= x+ iy where x� y ∈ R and y �= 0. A direct calculation estab-
lishes that

��A− zI�f�2 = ��A−xI�f�2 +y2�f�2 = ��A− zI�f�2

for all f ∈ � . The inequality

��A− zI�f� ≥ �y� �f� (5.2)

establishes that �A− zI� is one-one with closed range. The orthogonal com-
plement of Ran�A − zI� is Ker�A − zI�, and this equals �0� by a similar
argument. We conclude that z � Spec�A�. The bound (5.1) is equivalent to
(5.2). �

Lemma 5.1.2 If the bounded self-adjoint operator B on � is non-negative
in the sense that 
Bx�x� ≥ 0 for all x ∈ � , then

�B� = sup�
Bx�x� � �x� = 1��

135
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It follows that if A is a bounded operator on � then

�A�2 = �A∗A�� (5.3)

Proof. Let 	 denote the supremum of the lemma. Applying Schwarz’s inequal-
ity to the semi-definite inner product

�x� y� �= 
Bx�y�
we obtain

�
Bx�y��2 ≤ 
Bx�x� 
By� y� ≤ 	2

provided �x� = �y� = 1. This implies that

�
Bx�y�� ≤ 	�x��y�
for all x� y ∈ � . Putting y �= Bx yields �B� ≤ 	. The reverse inequality is
elementary.

If we put 
 �= sup�
A∗Ax�x� � �x� = 1�, then

�Ax�2 = 
Ax�Ax� = 
A∗Ax�x� ≤ 


provided �x� = 1. This implies that

�A�2 ≤ 
 = �A∗A�
by the first half of the lemma. Once again the reverse inequality is
elementary. �

Lemma 5.1.3 If A is a bounded self-adjoint operator then

�Am� = �A�m
(5.4)

for all positive integers m. Hence Rad�A� = �A�.

Proof. Lemma 5.1.2 implies that �A2n� = �A�2n

for all positive integers n. If
m is a positive integer and m ≤ 2n then

�A�2n

= �A2n� = �AmA2n−m� ≤ �Am��A2n−m� ≤ �A�2n

�

This implies (5.4). The proof is completed by using Theorem 4.1.3. �

If A and B are two bounded self-adjoint operators we will write A ≥ B when


Ax�x� ≥ 
Bx�x�
for all x ∈ � .
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Problem 5.1.4 Prove that the set

� �= �A ∈ ��� � � A = A∗ and A ≥ 0�

is a closed convex cone in ��� �, and that � ∩ �−�� = �0�. �

Lemma 5.1.5 If A is a bounded self-adjoint operator on � then

max�Spec�A�� = sup�
Ax�x� � �x� = 1�

and

min�Spec�A�� = inf�
Ax�x� � �x� = 1��

Proof. Let 
 (resp. �) denote the infimum (resp. supremum) of the lemma.
We have A−
I ≥ 0 and

sup�
�A−
I�x�x� � �x� = 1� = �−
�

Therefore

�A−
I� = �−
�

Lemma 5.1.3 now implies that

Rad�A−
I� = �−
�

Since Spec�A� is real it follows that Spec�A� ⊆ �2
−���
 and that either
2
−� ∈ Spec�A� or � ∈ Spec�A� (or both).

By applying a similar argument to �I −A we obtain Spec�A� ⊆ �
� 2�−



and that either 2�−
 ∈ Spec�A� or 
 ∈ Spec�A� (or both).
On combining these two statements we obtain Spec�A� ⊆ �
��
, 
 ∈

Spec�A� and � ∈ Spec�A�. �

Problem 5.1.6 Prove that a bounded operator H on the Hilbert space � is
self-adjoint if and only if the bounded operators

Ut �=
�∑

n=0

�iHt�n/n!

are unitary for all t ∈ R. �

5.2 Polar decompositions

In this section we construct the polar decomposition of a bounded linear
operator; this is the operator analogue of the formula z �= rei� for complex
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numbers. The construction depends on the following lemma, which we prove
directly, i.e. without using the spectral theorem below.

Lemma 5.2.1 (square root lemma) If A is a bounded, non-negative, self-
adjoint operator then there exists a bounded operator Q such that Q = Q∗ ≥ 0
and Q2 = A. Moreover Q is the norm limit of a sequence of polynomials in
A.

Proof. The power series

�∑

n=1

anx
n �= 1− �1−x�1/2

converges for all complex x such that �x� < 1, and the coefficients an are
all positive. If we let 0 < x < 1 and take the limit x → 1 we deduce that
∑�

n=1 an = 1.
It is sufficient to prove the lemma when A = A∗ ≥ 0 and �A� = 1.

Lemma 5.1.2 implies that �I −A� ≤ 1, so the series of operators

Q �= I −
�∑

n=1

an�I −A�n

is norm convergent. The operator Q is clearly self-adjoint and the bound
�Q − I� ≤ 1 implies that Q ≥ 0. The identity Q2 = A uses the rule for
multiplying together two series term by term. �

Problem 5.2.2 Let A = A∗ ≥ 0 and let Q be defined by the series in Lemma
5.2.1. Prove that if B = B∗ ≥ 0 and B2 = A then B commutes with Q, and
then that B = Q. �

Problem 5.2.3 Let A1� A2� B be bounded, self-adjoint operators on � and
suppose that B is positive and invertible. Prove that A1 ≤ A2 if and only
if B−1/2A1B

−1/2 ≤ B−1/2A2B
−1/2. In particular 0 ≤ A1 ≤ B if and only if

0 ≤ B−1/2A1B
−1/2 ≤ I . �

If A is a bounded linear operator on a Hilbert space � we define �A� by

�A� �= �A∗A�1/2�

The formula (5.5) below is called the polar decomposition of A.
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Theorem 5.2.4 If A is a bounded operator on the Hilbert space � then there
exists a linear operator V such that �V� ≤ 1 and

�A� = V ∗A� A = V �A�� (5.5)

Moreover the compactness of any of A, �A� and A∗A implies the compactness
of the others. If A is invertible then �A� is positive and invertible while V is
unitary.

Proof. We observe that

� �A�f�2 = 
�A�2f� f� = 
A∗Af�f� = �Af�2

for all f ∈ � . Hence

Ker�A� = Ker��A���
The formula V��A�f� �= Af unambiguously defines an isometry mapping
Ran��A�� onto Ran�A�; this can be extended to an isometry from Ran��A��
onto Ran�A� and then to a contraction (actually a partial isometry as defined
on page 140) on � by putting Vg �= 0 for all g ∈ Ran��A��⊥. Note that
Ran��A��⊥ = Ker��A�� is a special case of the identity Ker�B∗� = Ran�B�⊥,
valid for all bounded operators B.

The above arguments show that A = V �A�. The properties of V already
established imply that V ∗Vg = g for all g ∈ Ran��A��. Therefore

V ∗Af = V ∗V �A�f = �A�f
for all f ∈ � , so V ∗A = �A�.

If A is compact then A∗A is compact by Theorem 4.2.2. If B = A∗A ≥ 0 is
compact then the two identities

�A� = I −
�∑

n=1

an�I −B�n�

0 = 1−
�∑

n=1

an�

together yield the norm convergent expansion

�A� =
�∑

n=1

an�I − �I −B�n��

Each term in this series is compact, so �A� must be compact by Theorem 4.2.2.
Finally if �A� is compact then A is compact by (5.5) and Theorem 4.2.2.

The last statement of the theorem follows by examining the details of the
proof. �
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The following problem is a warning that one should not carry over results
from function spaces to ��� � without proof.

Problem 5.2.5 Prove that if A� B are bounded self-adjoint operators on �
then ±A ≤ B does not imply �A� ≤ B. (Find suitable 2×2 matrices.) Deduce
that there exist self-adjoint operators S� T such that �S +T � �≤ �S�+ �T �. �

5.3 Orthogonal projections

In Lemma 1.5.5 we established that the rank of a projection on a Banach space
does not change under small enough perturbations. In this section we study
projections on a Hilbert space � in more detail.1 An orthogonal projection
on � is defined to be a bounded operator P such that P2 = P = P∗. We
assume that the reader is familiar with the fact that every closed subspace L

of a Hilbert space has an orthogonal complement L⊥ such that L∩L⊥ = �0�

and L+L⊥ = � . The following lemma is also standard.

Lemma 5.3.1 The map P → L �= Ran�P� defines a one-one correspondence
between orthogonal projections P and closed subspaces L of � . Moreover
Ker�P� = L⊥ for all such P.

Problem 5.3.2 Let P1� P2 be two orthogonal projections with ranges L1� L2

respectively. Prove that the following are equivalent.

(i) L1 ⊆ L2,
(ii) P1 ≤ P2,

(iii) P1P2 = P2P1 = P1. �

We take the opportunity to expand on some concepts used implicitly in the
last section. A partial isometry A on a Hilbert space � is defined to be a
bounded linear operator such that P �= A∗A is an orthogonal projection.

1 The ideas in this section go back to [Kato 1966A]. A complete set of unitary invariants for a
pair of subspaces was obtained in [Halmos 1969], while the notion of index of a pair of
subspaces was investigated in [Avron et al. 1994].
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Problem 5.3.3 Prove that if P �= A∗A is an orthogonal projection then
so is Q �= AA∗. Moreover A maps Ran�P� isometrically one-one onto
Ran�Q�. �

An isometry A on � is an operator such that A∗A = I; equivalently it is an
operator such that �Af� = �f� for all f ∈ � .

Problem 5.3.4 Let A be an isometry on � and let �0 �= �Ran�A��⊥. Prove
that �n �= An�0 are orthogonal closed subspaces for all n ∈ N, and that A

maps �n isometrically onto �n+1 for all such n. �

We define the distance between two closed subspaces L and M of the Hilbert
space � by

d�L�M� = �P −Q� (5.6)

where P� Q are the orthogonal projections with ranges L and M respectively.
This defines a metric on the set of all closed subspaces.

Lemma 5.3.5 If d�L�M� < 1 then

dim�L� = dim�M�� dim�L⊥� = dim�M⊥��

Proof. If we put

X �= PQ+ �I −P��I −Q�

then

XX∗ = PQP + �I −P��I −Q��I −P�

= PQP + I −Q−P +QP −P +PQ+P −PQP

= I −Q−P +PQ+QP

= I − �P −Q�2�

Since the identity

X∗X = I − �P −Q�2

has a similar proof, we see that X is normal. If �P −Q� < 1 we deduce that
X is invertible by using Problem 1.2.8 and Problem 1.2.17. Since X�M� ⊆ L

and X�M⊥� ⊆ L⊥, the invertibility of X implies that these are both equalities.
The statements about the dimensions follow. �
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Lemma 5.3.6 If �P −Q� < 1 then there exists a canonical unitary operator
U such that U ∗PU = Q.

Proof. The existence of such a unitary operator is equivalent to the conclusion
of Lemma 5.3.5, but there are many such U , and we provide a canonical
choice.

We have already proved that X is normal and invertible. Theorem 5.2.4
implies that X = U �X� where �X� is invertible and U is unitary. By examining
the proof one sees that X� �X� and U all commute. Since

P�X�2 = P�I − �P −Q�2� = PQP = �I − �P −Q�2�P = �X�2P
we deduce by applying Lemma 5.2.1 with A �= �X�2 that P�X� = �X�P. The
identity

�X�PU = PU �X� = PX = PQ = XQ = �X�UQ

finally implies that PU = UQ. �

Theorem 5.3.7 Let P�t� be a norm continuous family of orthogonal projec-
tions, where 0 ≤ t ≤ 1. Then there exists a norm continuous family of unitary
operators U�t� such that

U ∗�t�P�0�U�t� = P�t�

for all t ∈ �0� 1
.

Proof. Since the family of projections must be uniformly continuous as a
function of t, there exists a positive integer n such that �P�s�−P�t�� < 1 if
�s− t� ≤ 1/n. It is sufficient to prove the theorem separately for each interval
of the form �r/n� �r +1�/n
 and then string the results together.

If r/n ≤ t ≤ �r +1�/n we define Ur/n� t by

Ur/n� t �= Ar/n� tXr/n� t�

Ar/n� t �= �I − �Pr/n −Pt�
2�−1/2�

Xr/n� t �= Pr/nPt + �I −Pr/n��I −Pt��

The identity

U ∗
r/n� tPr/nUr/n� t = Pt

follows as in Lemma 5.3.6. The definition of Ur/n� t implies that it is a norm
continuous function of t. �
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The following corollary follows immediately from Lemma 5.3.5 or Theo-
rem 5.3.7, but can also be proved by using the theory of Fredholm operators.

Corollary 5.3.8 Let �Lt�0≤t≤1 be a family of closed linear subspaces which
is continuous with respect to the metric (5.6). If L0 has finite dimension n

then Lt has dimension n for all t ∈ �0� 1
.

5.4 The spectral theorem

In this section we write down the spectral theorem. The general form of the
theorem was obtained independently by Stone and von Neumann between
1929 and 1932. It is undoubtedly the most important result in the subject.
The theorem is used in several places in the book, but we do not give a proof,
which is well documented.2

Recall that a bounded operator A on � is said to be normal if A∗A = AA∗,
unitary if A∗A = AA∗ = I and self-adjoint if A = A∗.

Theorem 5.4.1 Let A be a bounded normal operator acting on the separable
Hilbert space � . Then there exists a set X provided with a �-field � of subsets
and a �-finite measure dx, together with a unitary map U �� → L2�X� dx� for
which the following holds. The operators M1 �= UAU−1 and M2 �= UA∗U−1

are of the form

�M1g��x� = m�x�g�x�� �M2g��x� = m�x�g�x�

where m is a bounded, complex-valued, measurable function on X. Moreover

�Up�A�U−1g��x� = p�m�x��g�x�

almost everywhere for every polynomial p and every g ∈ L2�X� dx�. The
spectrum of A equals the essential range of m.

One says informally that every normal operator is unitarily equivalent to a
multiplication operator as defined in Section 2.2. The last statement of the
theorem follows directly from Problem 2.2.1. It is not suggested that the
above representation is unique, but its transparent character makes up for this
lack to a considerable extent.

2 There are many quite different statements and proofs in the literature.
[Dunford and Schwartz 1963] is a standard account of the subject. [Davies 1995A,
Davies 1995B, Davies 1995C] present a completely different and very explicit definition of
the functional calculus that extends usefully to Lp spaces whenever certain resolvent
estimates are satisfied.
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The spectral theorem can be used to define a canonical functional calculus
for normal operators. It is standard to write f�N� �= � �f� where � is the
homomorphism defined below. The uniqueness statement in the theorem is
particularly important because of the large number of different constructions
of the homomorphism � .

Theorem 5.4.2 Let N be a bounded normal operator acting in a Hilbert
space � , and let � denote the space of all continuous functions on the
compact set Spec�N�. We consider � as a commutative Banach algebra
under pointwise addition and multiplication and the supremum norm. Then
there exists a unique isometric algebra homomorphism � from � into ��� �

such that

� �z� = N� � �z� = N ∗ � �1� = I�

Problem 5.4.3 Prove that the normal operator A is unitary if and only if
�m�x�� = 1 almost everywhere, and that it is self-adjoint if and only if m�x�

is real almost everywhere. Prove also that if A is a unitary operator on �
then there exists a bounded self-adjoint operator H such that A = eiH . �

The spectral theorem for bounded self-adjoint operators is a special case of
that for bounded normal operators discussed above. In the unbounded case
we need to make some definitions.3 If � is a dense linear subspace of a
Hilbert space � , we say that H � � → � is a closed operator if, whenever
fn ∈ � converges in norm to f and Hfn converges in norm to g, it follows
that f ∈ � and Hf = g. Equivalently � is complete with respect to the norm

���f ��� �= �f�+�Hf��

Now suppose that H � � → � is symmetric in the sense that 
Hf�g� =

f�Hg� for all f� g ∈ �. We say that g ∈ Dom�H∗� if f → 
Hf�g� is a
bounded linear functional on � with respect to the standard norm on � . The
Riesz representation theorem implies that there exists a unique (g-dependent)
k ∈ � such that


Hf�g� = 
f� k�
for all f ∈ �, and we write H∗g �= k. It is straightforward to verify that H∗

is a linear operator on its domain, and that H∗ is an extension of H in the

3 The spectrum of an unbounded operator was defined on page 124. The following material is
closely related to that on the Cayley transform for dissipative operators in Section 10.4. The
duality of unbounded operators is discussed in a Banach space setting in Section 7.3.
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sense that Dom�H∗� ⊇ Dom�H� and H∗f = Hf for all f ∈ Dom�H�. We say
that H is self-adjoint, and write H = H∗, if Dom�H∗� = Dom�H�.

Lemma 5.4.4 Every symmetric operator H has a closed symmetric extension
H which is minimal in the sense that every closed extension of H is also an
extension of H . Moreover H∗ is a closed extension of H .

Proof. We start by proving that H∗ is closed. If gn ∈ Dom�H∗�, gn → g and
H∗gn → k as n → � then


f� k� = lim
n→�
f�H∗gn� = lim

n→�
Hf�gn� = 
Hf�g�

for all f ∈ Dom�H�. Therefore g ∈ Dom�H∗� and H∗g = k.
We extend the norm ��� · ��� to Dom�H∗� by putting

���f ��� �= �f�+�H∗f��

Since H∗ is closed Dom�H∗� is complete with respect to this norm. We now
define H to be the restriction of H∗ to the closure � of Dom�H� with respect
to the norm ��� · ���. It follows immediately that H is closed and that it is the
least closed extension of H .

We have finally to prove that H is symmetric. If g ∈ Dom�H� then there
exist gn ∈ Dom�H� such that �gn −g� → 0 and �Hgn −Hg� → 0 as n → �.
If also f ∈ Dom�H� then


f�Hg� = lim
n→� 
f�Hgn� = lim

n→� 
Hf�gn� = 
Hf�g��

If f� g ∈ Dom�H� then there exist fn ∈ Dom�H� such that �fn − f� → 0
and �Hfn −Hf� → 0 as n → �. Therefore


f�Hg� = lim
n→� 
fn�Hg� = lim

n→� 
Hfn� g� = 
Hf�g�� �

If H is a closed symmetric operator we define its deficiency subspaces by

�± �= �f ∈ Dom�H∗� � H∗f = ±if�

= �f ∈ � � 
Hg�f� = ∓i
g� f� for all g ∈ Dom�H���

The deficiency indices of H are the dimensions of the deficiency subspaces.

Theorem 5.4.5 The closed symmetric operator H is self-adjoint if and only
if its deficiency indices are both zero.
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Proof. If H = H∗ and f ∈ �+ then

i
f� f� = 
Hf�f� = 
f�Hf� = −i
f� f��
therefore f = 0. The proof that �− = �0� is similar.

Conversely suppose that �± = �0�. The operator �H + iI� maps Dom�H�

one-one onto a subspace M+ and the inverse operator R is a contraction (with
domain M+) by virtue of the identity

��H + iI�f�2 = �Hf�2 +�f�2 = ��H − iI�f�2
�

Since H is closed, so is �H + iI�. Therefore R is a closed contraction and its
domain M+ must be a closed subspace of � . If g ⊥ M+ then 
Hf�g� = 
f� ig�
for all f ∈ Dom�H�. Therefore g ∈ Dom�H∗� and H∗g = ig. The assumption
�+ = �0� implies that M+ = � .

This last identity proves that for every g ∈ Dom�H∗� there exists f ∈
Dom�H� such that �H + iI�f = �H∗ + iI�g. Therefore �H∗ + iI��f − g� = 0.
Since �− = �0�, we deduce that f = g. Therefore Dom�H∗� = Dom�H� and
H = H∗. �

Problem 5.4.6 Let H be a symmetric operator acting in � and let �fn�n∈N

be a complete orthonormal set in � . Suppose also that fn ∈ Dom�H� and
Hfn = �nfn for all n ∈ N, where �n ∈ R. Prove that H is essentially self-adjoint
on � �= lin�fn � n ∈ N�, and that Spec�H� is the closure of ��n � n ∈ N�.
Compare this with Problem 6.1.19. �

Problem 5.4.7 Let H �= −� act in L2�T� subject to Dirichlet boundary con-
ditions, where T is a triangular region in R2. The complete list of eigenvalues
is known for three choices of T , whose interior angles are 60�, 60�, 60� or
90�, 60�, 30� or 90�, 45�, 45�. We indicate how to obtain the result in the
third case. It is not possible to write down the eigenvalues of the Dirichlet
Laplacian explicitly for the regular hexagon or most other polygonal regions.

Let T denote the triangle

��x� y� � 0 < x < �� 0 < y < x��

and let

�m�n�x� y� �= sin�mx� sin�ny�− sin�nx� sin�my�

where 1 ≤ m < n ∈ N. The main task is to prove that ��m�n� is a complete
orthogonal set in L2�T�. Once this is done one observes that �m�n ∈ Dom�H�

and

H�m�n = �m2 +n2��m�n�
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Problem 5.4.6 then implies that

Spec�H� = �m2 +n2 � 1 ≤ m < n��

Note that the eigenfunction associated with the smallest eigenvalue is positive
in the interior of T .4 �

Example 5.4.8 Let H �= −� act in L2�S
� subject to Dirichlet boundary
conditions, where S
 ⊆ R2 is the sector given in polar coordinates by the
conditions 0 < r < 1 and 0 < � < 
. The eigenvalue problem may be solved
by separation of variables, but the solution indicates the technical difficulties
that may be associated with the definition of the domain of the operator
in quite simple problems. In three dimensions these are of major concern,
because of the huge range of corners that even polyhedral regions can possess.

Every eigenfunction of H is of the form ��r� sin�n�/
� where n ∈ N
and � is a Bessel function that vanishes linearly as r → 1 but like r�/
 as
r → 0. If the sector is re-entrant, i.e. 
 > �, then the first derivatives of
the eigenfunctions diverge as one approaches the origin. The definition of
the precise domain of the operator is not elementary, and changes from one
sector to another.5 It is worth noting that the same analysis holds for 
 > 2�,
even though the ‘sector’ is no longer embeddable in R2. �

Theorem 5.4.9 If H is a (possibly unbounded) self-adjoint operator then
Spec�H� ⊆ R. Moreover

��zI −H�−1� ≤ �Im�z��−1

for all z � R.

Proof. If z �= x + iy where y �= 0 then the operator K �= �H −xI�/y is also
self-adjoint. The proof of Theorem 5.4.5 implies that �K ± iI� are one-one
with ranges equal to � and ��K± iI�−1� ≤ 1. These statements are equivalent
to the statement of the theorem. �

Theorem 5.4.10 Let H be a (possibly unbounded) self-adjoint operator act-
ing in the separable Hilbert space � . Then there exists a set X provided with
a �-field of subsets and a �-finite measure dx, together with a unitary map

4 This is a particular case of a general fact, related to the ideas in Chapter 13 and proved in
[Davies 1989].

5 Such issues are usually resolved by using quadratic form techniques as described in
[Davies 1995C], the reason being that the domain of the square root of H is W 1�2

0 ��� for a
wide variety of second order elliptic differential operators and regions �.
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U �� → L2�X� dx� for which the following holds. The operator M �= UHU−1

is of the form

�Mg��x� �= m�x�g�x�

where m is a (possibly unbounded) real-valued, measurable function on X.
In particular

U�Dom�H�� = �g ∈ L2�X� dx� � mg ∈ L2�X� dx���

Moreover the spectrum of H equals the essential range of m and

�UR���H�U−1g��x� = ��−m�x��−1g�x�

almost everywhere, for all � � Spec�H� and all g ∈ L2�X� dx�.

Problem 5.4.11 The above spectral theorem simplifies substantially in the
following situation. We suppose that ��n�

�
n=1 is an orthonormal basis in �

and that ��n�
�
n=1 is any sequence of real numbers. Then we may define the

self-adjoint operator H by

Hf �=
�∑

n=1

�n
f��n��n

with

Dom�H� �= �f ∈ � �
�∑

n=1

�2
n�
f��n��2 < ���

Identify the auxiliary space L2�X� dx� and the unitary operator U of the
general spectral theorem in this case. �

Continuing with the notation of Problem 5.4.11, the spectral projections

Pnf �=
n∑

r=1


f��r��r

converge strongly to I . The next theorem gives some information about the
rate of convergence.

Theorem 5.4.12 If ��n�
�
n=1 is an increasing and divergent sequence of posi-

tive real numbers and f ∈ Dom�Hm� for some m then

�Pnf −f� ≤ �−m
n+1�Hmf�

for all n.
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Proof. We have

�Pnf −f�2 =
�∑

r=n+1

�
f��r��2

≤ �−2m
n+1

�∑

r=n+1

�2m
r �
f��r��2

≤ �−2m
n+1 �Hmf�2

� �

This theorem has a partial converse.

Theorem 5.4.13 Suppose that ��n�
�
n=1 is an increasing and divergent

sequence of positive real numbers and that

a2 �=
�∑

r=1

�−2k
r < �

and that

�Pnf −f� ≤ c�−m−k
n+1

for all n. Then f ∈ Dom�Hm�. Indeed

�Hmf� ≤ ca�

Proof. Our hypotheses imply that

�
f��n��2 ≤ c2�−2m−2k
n

for all n. Hence

�Hmf�2 =
�∑

r=1

�2m
r �
f��r��2

≤
�∑

r=1

�2m
r c2�−2m−2k

r

≤ c2a2� �

Problem 5.4.14 Prove that a (possibly unbounded) self-adjoint operator H

acting on a Hilbert space � is non-negative in the sense that 
Hf�f� ≥ 0
for all f ∈ Dom�H� if and only if the function m in Theorem 5.4.10 satisfies
m�x� ≥ 0 for almost every x ∈ X. �
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The spectral theorem can be used to define a canonical functional calculus
for unbounded self-adjoint operators, just as in the case of normal operators
above. Once again it is standard to write f�H� �= � �f� where � is the
homomorphism defined below.

Theorem 5.4.15 Let H be an unbounded self-adjoint operator acting in a
Hilbert space � , and let � denote the space of all continuous functions on
Spec�H� which vanish at infinity. We consider � as a commutative Banach
algebra under pointwise addition and multiplication and the supremum norm.
Then there exists a unique isometric algebra homomorphism � from � into
��� � such hat

� �rz� = R�z�H�

for all z � Spec�H�, where

rz�x� �= �z−x�−1�

If H is bounded then � �p� = p�H� for every polynomial p.

Problem 5.4.16 Use the functional calculus or the spectral theorem to prove
that if A is a bounded, non-negative, self-adjoint operator on a Hilbert space
� , then there exists a bounded, non-negative, self-adjoint operator Q such
that Q2 = A. �

Problem 5.4.17 Prove that if A� B are bounded, self-adjoint operators on
� and A−B is compact then f�A�− f�B� is compact for every continuous
function f on �−c� c
, where c �= max��A���B��. �

We end this section by mentioning a problem whose solution is far less
obvious than would be expected. If a bounded operator A is close to normal
in the sense that �A∗A−AA∗� is small then one would expect A to be close
to a normal operator, and so one could apply the functional calculus to A

with small errors. The most useful result in this direction is as follows.

Theorem 5.4.18 6 Let A be an n×n matrix satisfying

�A∗A−AA∗� < ����n� �= �2

n−1

for some � > 0. Then there exists a normal matrix N such that �A−N� < �.

6 This theorem was proved by [Pearcy and Shields 1979], who also showed that there is no
corresponding result for bounded operators. Later Lin proved a similar bound in which the
constant ����n� does not depend on n, but unfortunately its dependence on � is completely
obscure; see [Lin 1997, Friis and Rørdam 1996].
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5.5 Hilbert-Schmidt operators

In this section we prove a few of the most useful results from the large
literature on classes of compact operators. In some situations below � denotes
an abstract Hilbert space.7 In others we assume that � = L2�X� dx�, where
X is a locally compact Hausdorff space and there is a countable basis to
its topology. In this case we always assume that the Borel measure dx has
support equal to X.

We will prove the following inclusions between different classes of oper-
ators on � , each of which is a two-sided, self-adjoint ideal of operators in
��� �.8

finite rank −→ trace class −→ Hilbert-Schmidt −→ compact −→ bounded

We warn the reader that we have made a tiny selection from the many classes
of operators that have been found useful in various contexts. Our first few
results provide an abstract version of Theorem 4.2.16; see also (4.3).

Lemma 5.5.1 If �en�
�
n=1 and �fn�

�
n=1 are two complete orthonormal sets in a

Hilbert space � and A is a bounded operator on � then

�∑

n=1

�Aen�
2 =

�∑

m�n=1

�
Aen� fm��2 =
�∑

m=1

�A∗fm�2

where the two sides converge or diverge together. It follows that the values of
the two outer sums do not depend upon the choice of either orthonormal set.

Proof. One simplifies the middle sum two different ways. �

We say that A is Hilbert-Schmidt or that A ∈ �2 if the above series converge,
and write

�A�2

2 �=
�∑

n=1

�Aen�
2
�

The Hilbert-Schmidt norm � ·�2 is also called the Frobenius norm. The nota-
tion � · �HS is also used.

7 In all of the proofs we will assume that � is infinite-dimensional and separable. The
finite-dimensional proofs are often simpler, but some details need modifying.

8 See Theorem 5.6.7, Problem 5.5.3, Theorem 4.2.2 and Theorem 4.2.13.
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Problem 5.5.2 Prove that �·�2 is a norm on �2. Prove also that �2 is complete
for this norm. �

Problem 5.5.3 Prove that �2 is a self-adjoint, two-sided ideal of operators in
��� �. Indeed if A ∈ �2 and B ∈ ��� � then

�A�2 = �A∗�2�

�AB�2 ≤ �A�2 �B��

�BA�2 ≤ �B��A�2� �

Lemma 5.5.4 Every Hilbert-Schmidt operator A acting on a Hilbert space
� is compact.

Proof. Given two unit vectors e� f ∈ � we can make them the first terms of
two complete orthonormal sequences. This implies

�
Ae�f��2 ≤
�∑

m�n=1

�
Aen� fm��2 = �A�2

2�

Since e� f are arbitrary we deduce that �A� ≤ �A�2.
For any positive integer N one may write A �= AN +BN where

AN g �=
N∑

m�n=1


Aen� fm� 
g� en�fm

for all g ∈ � . Since AN is finite rank and

�BN�2 ≤ �BN�2

2 =
�∑

m�n=1

�
Aen� fm��2 −
N∑

m�n=1

�
Aen� fm��2�

which converges to 0 as N → �, Theorem 4.2.2 implies that A is
compact. �

Problem 5.5.5 If A is an n×n matrix, its Hilbert-Schmidt norm is given by

�A�2 =
{

n∑

r�s=1

�Ar�s�2
}1/2

�

Prove that

�A� ≤ �A�2 ≤ n1/2�A��
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Prove also that the second inequality becomes an equality if and only if A is
a constant multiple of a unitary matrix, and that the first inequality becomes
an equality if and only if A is of rank 1. �

5.6 Trace class operators

Hilbert-Schmidt operators are not the only compact operators which turn up
in applications; we treated them first because the theory is the easiest to
develop. One can classify compact operators A acting on a Hilbert space �
by listing the eigenvalues sr of �A� in decreasing order, repeating each one
according to its multiplicity. Note that �A� is also compact by Theorem 5.2.4.
The sequence �sn�

�
n=1, called the singular values of A, may converge to zero

at various rates, and each rate defines a corresponding class of operators. In
particular one says that A ∈ �p if

∑�
n=1 sp

n < �. We will not develop the full
theory of such classes, but content ourselves with a treatment of �1, which is
the most important of the spaces after �2.9

Problem 5.6.1 Prove that the list of non-zero singular values of a compact
operator A coincides with the corresponding list for A∗. �

We say that a non-negative, self-adjoint operator A is trace class if it satisfies
the conditions of the following lemma.

Lemma 5.6.2 If A = A∗ ≥ 0 and �en�
�
n=1 is a complete orthonormal set in �

then its trace

tr�A
 �=
�∑

n=1


Aen� en� ∈ �0�+�


does not depend upon the choice of �en�
�
n=1. If tr�A
 < � then A is compact.

If ��n�
�
n=1 are its eigenvalues repeated according to their multiplicities, then

tr�A
 =
�∑

n=1

�n�

Proof. Lemma 5.5.1 implies that tr�A
 does not depend on the choice of
�en�

�
n=1, because �∑

n=1


Aen� en� =
�∑

n=1

�A1/2en�
2
�

9 See [Dunford and Schwartz 1966, Simon 2005A] for a detailed treatment of Calkin’s theory
of operator ideals and of the von Neumann-Schatten �p classes and their many applications.
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If the sum is finite then

�A1/2�2

2 = tr�A
 < � (5.7)

so A1/2 is compact by Lemma 5.5.4. This implies that A is compact. The final
statement of the lemma uses Theorem 4.2.23. �

Problem 5.6.3 If �Pn�
�
n=1 is an increasing sequence of orthogonal projections

and
⋃�

n=1 Ran�Pn� is dense in � , prove that

tr�A
 = lim
n→� tr�PnAPn


for every non-negative self-adjoint bounded operator A. �

Problem 5.6.4 Prove that

tr�AA∗
 = tr�A∗A


for all bounded operators A, where the two sides of this equality are finite or
infinite together. �

We say that a bounded operator A on a Hilbert space � is trace class (or lies
in �1) if tr��A�
 < �. We will show that �1 is a two-sided ideal in the algebra
��� � of all bounded operators on � .

Lemma 5.6.5 If A is a bounded operator on � then the following are
equivalent.

(i) c1 �= ∑�
n=1
�A�en� en� < � for some (or every) complete orthonormal

sequence �en�;

(ii) c2 �= inf��B�2�C�2 � A = BC� < �;

(iii) c3 �= sup�
∑

n �
Aen� fn�� � �en�� �fn� ∈ 	� < �, where 	 is the class of
all (not necessarily complete) orthonormal sequences in � .

Moreover c1 = c2 = c3.

Proof. We make constant reference to the properties of the polar decompo-
sition A = V �A� as described in Theorem 5.2.4.

(i)⇒(ii) If c1 < � then we may write A = BC where B �= V �A�1/2 ∈ �2,
C �= �A�1/2 ∈ �2 and V is a contraction. It follows by (5.7) and Problem 5.5.3
that �B�2 ≤ c

1/2
1 and �C�2 ≤ c

1/2
1 . Hence c2 ≤ c1.
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(ii)⇒(iii) If c2 < �, �en�� �fn� ∈ 	 and A = BC then
∑

n

�
Aen� fn�� =
∑

n

�
Cen�B∗fn��

≤∑

n

�Cen��B∗fn�

≤
{
∑

n

�Cen�
2

}1/2{
∑

n

�B∗fn�
2

}1/2

≤ �C�2�B∗�2 = �C�2�B�2�

By taking the infimum over all decompositions A = BC and then the supre-
mum over all pairs �en�� �fn� ∈ 	, we obtain c3 ≤ c2.

(iii)⇒(i) If c3 < �, we start by choosing a (possibly finite) complete
orthonormal set �en� for the subspace Ran��A��. The sequence fn �= Ven is
then a complete orthonormal set for Ran�A�. Also

tr��A�
 =∑

n


�A�en� en�

=∑

n


V ∗Aen� en�

=∑

n


Aen�Ven�

=∑

n


Aen� fn�

≤ c3�

Therefore c1 ≤ c3. �

Problem 5.6.6 Let A � L2�a� b� → L2�a� b� be defined by

�Af��x� �=
∫ b

a
a�x� y�f�y� dy�

Use Lemma 5.6.5(ii) and (4.3) to prove that A ∈ �1 if both a�x� y� and
�
�x

a�x� y� are jointly continuous on �a� b
2. �

Theorem 5.6.7 The space �1 is a two-sided, self-adjoint ideal of operators
in ��� �. Moreover �A�1 �= tr��A�
 is a complete norm on �1, which satisfies

�A�1 = �A∗�1 �

�BA�1 ≤ �B��A∗�1 �

�AB�1 ≤ �A∗�1 �B� �

for all A ∈ �1 and B ∈ ��� �.
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Proof. The proof that �1 is closed under addition would be elementary if
�A+B� ≤ �A�+�B�, for any two operators A� B, but there is no such inequality;
see Problem 5.2.5. However, it follows directly from Lemma 5.6.5(iii). The
proof that �1 is closed under left or right multiplication by any bounded
operator follows from Lemma 5.6.5(ii) and Problem 5.5.3, as does the proof
that �1 is closed under the taking of adjoints.

The required estimates of the norms are proved by examining the above
arguments in more detail. The completeness of �1 is proved by using Lemma
5.6.5(iii). �
Our next theorems describe methods of computing the trace of a non-negative
operator given its integral kernel.

Problem 5.6.8 Suppose that the non-negative, bounded, self-adjoint operator
A on L2�X� has the continuous integral kernel a�·� ·�. Prove that a�x�x� ≥ 0
for all x ∈ X and that

�a�x� y�� ≤ a�x�x�1/2a�y� y�1/2

for all x� y ∈ X. �

Proposition 5.6.9 (Mercer’s theorem) If the non-negative, bounded, self-
adjoint operator A has the continuous integral kernel a�·� ·� then

tr�A
 =
∫

X
a�x�x� dx (5.8)

where the finiteness of either side implies the finiteness of the other.

Proof. We start by considering the case in which X is compact. Let � be a par-
tition of X into a finite number of disjoint Borel sets E1� � � � �En with non-zero
measures �Ei�. Let P be the orthogonal projection onto the finite-dimensional
linear subspace spanned by the (orthogonal) characteristic functions �

i of Ei.
A direct calculation shows that

tr�PAP
 =
n∑

i=1

�Ei�−1
A�
i��

i�

=
n∑

i=1

�Ei�−1
∫

Ei

∫

Ei

a�x� y� dx dy�
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If Pn are the projections associated with a sequence of increasingly fine
partitions �n satisfying the conditions listed in Section 2.1, then 0 ≤ Pn ≤ Pn+1

for all n and Problem 5.6.3 implies that

tr�A
 = lim
n→� tr�PnAPn
�

The proof of (5.8) now depends on the uniform continuity of a�·� ·�.
We now treat the general case of the proposition. Let �Kn�

�
n=1 be an

increasing sequence of compact sets with union equal to X. Let Pn denote
the orthogonal projection on L2�X� dx� obtained by multiplying by the char-
acteristic function of Kn. The first part of this proof implies that

tr�PnAPn
 =
∫

Kn

a�x� x� dx�

The proof of the general case is completed by using Problem 5.6.3 a second
time. �

Example 5.6.10 Consider the operator R acting on L2�0��� according to the
formula

�Rf��x� �=
∫ �

0
G�x� y�f�y� dy

where the Green function G is given by

G�x� y� �=
{

x�� −y�/� if x ≤ y,
�� −x�y/� if x ≥ y.

A direct calculation shows that Rf = g if and only if g�0� = g��� = 0 and
−g′′ = f . Thus R is the inverse of the non-negative, self-adjoint operator L

acting in L2�0��� according to the formula Lg �= −g′′, subject to the stated
boundary conditions. The eigenvalues of L are 1� 4� 9� 16� ��� so

tr�R� =
�∑

n=1

1
n2

= �2

6
�

This calculation is confirmed by evaluating
∫ �

0
G�x�x� dx�

The results above are extended to more general Sturm-Liouville operators in
Example 11.2.8. �
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If the integral kernel of A is not continuous then its values on the diagonal
x = y may not be well-defined and we must proceed in a more indirect
manner.10

Theorem 5.6.11 Let A = A∗ ≥ 0 be a trace class operator acting on L2�RN �

with the kernel a ∈ L2�RN ×RN �. Let

a��x� y� �=
{

a�x� y� if �x−y� < ��

0 otherwise�

and let v��� �= vN �N � be the volume of any ball of radius �. Then a� ∈
L1�RN ×RN � and

tr�A
 = lim
�→0

v���−1
∫

RN

∫

RN
a��x� y� dN x dN y�

Proof. We first observe that the operator norm convergent spectral expansion

Af =
�∑

n=1

�n
f� en�en

provided by Theorem 4.2.23 corresponds to the L2 norm convergent expansion

a�x� y� =
�∑

n=1

�nen�x�en�y� (5.9)

in L2�RN ×RN �.
Let K� be the operator with convolution kernel k��x−y� where

k��x� �=
{

v���−1 if �x� < �,
0 otherwise�

By taking Fourier transforms we see that �K�� ≤ 1 and that K� converges
weakly to I as � → 0. If we put

t��� �=
�∑

n=1

�n
K�en� en�

then it follows that

tr�A
 = lim
�→0

t����

We therefore have to prove that a� ∈ L1�RN ×RN � and that

t��� = v���−1
∫

RN

∫

RN
a��x� y� dN x dN y

10 Compare the following with [Gohberg and Krein 1969, Theorem 10.1] .
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for every � > 0. We have

�a��1 =
∫

RN

∫

RN
�a��x� y��dN xdN y

≤
�∑

n=1

�n

∫

�u�<�

∫

x∈RN
�en�x−u���en�x��dN x dN u

≤ v���
�∑

n=1

�n

= v���tr�A
�

Also

v���−1
∫

RN

∫

RN
a��x� y� dN xdN y = v���−1

�∑

n=1

�n

∫

�u�<�

∫

x∈RN
en�x−u�

en�x� dN x dN u

=
�∑

n=1

�n
K�en� en�

= t���� �

In order to extend Theorem 5.6.11 to a more general context we need a
replacement for the convolution operator K� used in its proof.

Lemma 5.6.12 Let X be a locally compact, separable, metric space, dx a
Borel measure on X with support equal to X and � = L2�X� dx�. Let vx��

denote the volume of the open ball B�x��� with centre x and radius � > 0,
and let �

x�� denote the characteristic function of this ball. Suppose that there
exist positive constants �0 and c such that

vx�� ≤ cvy��

whenever d�x� y� < � < �0. Put

k��x� y� �=
∫

X
v−2

s��
�

s���x��s���y� ds�

Then k� is the integral kernel of a self-adjoint operator K� satisfying 0 ≤
K� ≤ cI and

lim
�→0


K�f� f� = �f�2

for all f ∈ L2.
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Proof. Direct calculations show that k��x� y� = k��y� x� ≥ 0 and

0 ≤
∫

X
k��s� y� ds =

∫

X
k��x� s� ds ≤ c

for all x� y ∈ X. It follows by Corollary 2.2.15 that �K�� ≤ c. The fact that
K� ≥ 0 follows from


K�f� f� =
∫

X
v−2

u���
�u��� f��2 du ≥ 0�

The final statement of the lemma is proved first for f ∈ Cc�X� and then
extended to all f ∈ L2 by a density argument. �

Theorem 5.6.13 Under the conditions of Lemma 5.6.12, if A = A∗ ≥ 0 and
A is trace class with integral kernel a�x� y� then

tr�A
 = lim
�→0

∫

X

∫

X
a�x� y�k��x� y� dxdy�

Proof. This is a minor modification of the proof of Theorem 5.6.11, and uses
the L2 norm convergent spectral expansion (5.9) of the kernel a�·� ·�. The
integrand lies in L1�X ×X� for every � > 0 because
∫

X

∫

X
�a�x� y�k��x� y��dxdy ≤

�∑

n=1

�n

∫

X

∫

X
�en�x���en�y��k��x� y� dxdy

=
�∑

n=1

�n
K��en�� �en��

≤ c
�∑

n=1

�n� �

5.7 The compactness of f�Q�g�P�

If f is a function on RN we define the operator f�Q� on L2�RN � by

�f�Q����x� �= f�x���x�

on its maximal domain, consisting of all � ∈ L2�RN � for which f� lies in
L2�RN �. We define g�P� by

g�P� �= 
 −1g�Q�


where 
 is the Fourier transform operator; the domain of g�P� is �f ∈ L2 �

g
 �f� ∈ L2�. The rather strange notation is derived from quantum theory,
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in which P is called the momentum operator and Q is called the position
operator. Operators of the form f�Q�g�P� are of technical importance when
proving a variety of results concerning Schrödinger operators.11

Theorem 5.7.1 The operator A �= f�Q�g�P� acting on L2�RN � is compact if
f� g both lie in L2�RN �, or if both are bounded and measurable and vanish
as �x� → �.

Proof. If g ∈ L2�RN � then g�P�� = ǧ ∗� where ǧ is the appropriately nor-
malized inverse Fourier transform of g. If f� g ∈ L2�RN � then A has the
Hilbert-Schmidt integral kernel

K�x� y� �= f�x�ǧ�x−y��

Therefore A is compact by Lemma 5.5.4.
Alternatively suppose that f� g are both bounded and vanish as �x� → �.

Since f�Q� and g�P� are bounded operators, so is A. Given � > 0 suppose
that �x� > N� implies that �f�x�� < �. Put

f1�x� �=
{

f�x� if �x� ≤ N�,
0 otherwise,

and f2 �= f − f1. Define g1 and g2 similarly, so that �f2�� < �, �g2�� < �,
while f1� g1 ∈ L�

c ⊆ L2. The first half of this proof shows that f1�Q�g1�P� is
compact, and we also have

�f�Q�g�P�−f1�Q�g1�P�� ≤ �f1�Q�g2�P�+f2�Q�g1�P�+f2�Q�g2�P��
≤ �f���+�g���+�2�

Letting � → 0 we conclude that A is compact. �

Problem 5.7.2 Assuming that f and g are sufficiently regular functions on
RN , write down the integral kernel of the commutator �f�Q�� g�P�
 and use
the formula to prove that12

� �f�Q�� g�P�
� ≤ �2��−N��f��
∫

RN
��� �ĝ����dN �� �

11 The following theorem is extracted from a large literature on such operators, surveyed in
[Simon 2005A].

12 There is some evidence (in August 2006) that

� �f�Q�� g�P�
� ≤ ��f����g��

but not enough to be confident that this is true.
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Theorem 5.7.3 If f� g ∈ Lp�RN � and 2 ≤ p < � then the operator A �=
f�Q�g�P� acting on L2�RN � is compact. Moreover

�f�Q�g�P�� ≤ cN�p�f�
p
�g�

p
� (5.10)

Proof. Since A is the product of two operators each of which may be
unbounded, we start by proving that it is bounded.

If � ∈ L2 then � �= 
 �g�P��� is given by ���� = g����
�����. Theo-
rem 2.1.13 implies that it lies in Lq where 1/q �= 1/2+1/p, so that 1 < q < 2.
It follows from Theorem 3.1.12 that g�P�� ∈ Lr where 1/r �= 1/2 −1/p, so
that 2 < r < �. This finally implies that f�Q�g�P�� ∈ L2, by another appli-
cation of Theorem 2.1.13. If one examines the bounds in those theorems one
obtains the estimate (5.10).

If f� g ∈ Lp then there exist sequences fn� gn ∈ L�
c such that �fn −f�

p
→ 0

and �gn −g�
p
→ 0. (5.10) implies that fn�Q�gn�P� converges in operator norm

as n → �. Since each operator fn�Q�gn�P� is Hilbert-Schmidt, we deduce
that the norm limit f�Q�g�P� is compact. �

Problem 5.7.4 Let f ∈ Lp + L�
0 and g ∈ Lp ∩ L�

0 where 2 ≤ p < �. Prove
that f�Q�g�P� is a compact operator. (See Section 1.5 for the definition of
L�

0 .) �



6
One-parameter semigroups

6.1 Basic properties of semigroups

One-parameter semigroups describe the evolution in time of many systems
in applied mathematics; the problems involved range from quantum theory
and the wave equation to stochastic processes. It is not our intention to
describe the vast range of applications of this subject (see the preface for
more information), but they demonstrate beyond doubt that the subject is an
important one. In this chapter we describe what is generally regarded as the
basic theory. Later chapters treat some special classes of semigroup that have
proved important in a variety of applications.

One-parameter semigroups are also a useful technical device for studying
unbounded linear operators. The time-dependent Schrödinger equation

i
�f

�t
= −�f�x�+V�x�f�x�

is one of the few fundamental equations in physics involving i �= √−1, but
this very fact also makes it much harder to solve. One of the standard tricks is
to replace i by −1 and study the corresponding Schrödinger semigroup. This is
much better behaved analytically (it is a self-adjoint, holomorphic, contraction
semigroup rather than a unitary group), and the spectral information obtained
about the Schrödinger operator can then be used to analyze the original
equation.

One-parameter semigroups arise as the solutions of the Cauchy problem
for the differential equation

f ′
t = Zft (6.1)

where Z is a linear operator (often a differential operator) acting in a Banach
space � and ′ denotes the derivative with respect to time. Formally the

163
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solution of (6.1) is ft = Ttf0, where

Tt �= eZt (6.2)

satisfies Ts+t = TsTt for all s� t ≥ 0. However, in most applications Z is an
unbounded operator, so the meaning of (6.2) is unclear. Much of this chapter
is devoted to a careful treatment of problems related to the unboundedness
of Z.

It might be thought that such questions are of little concern to an applied
mathematician – if an evolution equation occurs in a natural context then
surely it must have a solution and this solution must define a semigroup.
Experience shows that adopting such a relaxed attitude to theory can lead
one into serious error. If t ∈ R the expressions ei�t define a one-parameter
unitary group on L2�RN �. However, the ‘same’ operators are not bounded on
Lp�RN � for any p �= 2 (unless t = 0) by Theorem 8.3.10. The expressions e�t

define one-parameter contraction semigroups on Lp�RN � for all 1 ≤ p < � by
Example 6.3.5; however, the Lp spectrum of � depends strongly on p if one
replaces RN by hyperbolic space or by a homogeneous tree; see Section 12.6.
One must never assume without proof that properties of an unbounded oper-
ator are preserved when one considers it as acting in a different space.

Before giving the definition of a one-parameter semigroup we discuss
some basic notions concerning unbounded operators acting in a Banach space
�. Such an operator is defined to be a linear map A whose domain is a
linear subspace � of � (frequently a dense linear subspace) and whose range
is contained in �. In order to use the tools of analysis one needs some
connection between convergence in � and the operator. In the absence of
boundedness, we will need to assume that the operators that we study are
closed, or that they can be made closed by increasing their domains.

Generalizing our earlier definition, we say that an operator A with domain
Dom�A� in a Banach space � is closed if whenever fn ∈ Dom�A� converges
to a limit f ∈ � and also limn→� Afn = g, it follows that f ∈ Dom�A� and
Af = g. We say that A ⊆ B, or that B is an extension of A, if Dom�A� ⊆
Dom�B� and Af = Bf for all f ∈ Dom�A�. We finally say that A is closable
if it has a closed extension, and call its smallest closed extension A its closure.

Problem 6.1.1 Prove that A is closed if and only if its graph

Gr�A� �= ��f� g� � f ∈ Dom�A�� g = Af	

is a closed linear subspace of �×�, which is provided with the ‘product’
norm

��f� g�� �= �f�+�g�
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Prove that this is equivalent to Dom�A� being complete with respect to the
norm

���f ��� �= �f�+�Af�
 �

Problem 6.1.2 Prove that if �I − A is one-one from Dom�A� onto � for
some � ∈ C, then ��I − A�−1 is bounded if and only if A is a closed
operator. �

Problem 6.1.3 Use the Hahn-Banach theorem to prove that an unbounded
operator Z is closed if and only if it is weakly closed in the sense that if
fn ∈ Dom�Z� and

w-lim
n→� fn = f� w-lim

n→� Zfn = g

then f ∈ Dom�Z� and Zf = g. As in Section 1.3, we say that fn converges
weakly to f if

lim
n→�
fn��� = 
f���

for all � ∈ �∗. �

Problem 6.1.4 Prove that if A is a closed operator on � and �I − A is
one-one from Dom�A� onto � for some � ∈ C, then f → �f�+�Zf� and
f → ���I −Z�f� are equivalent norms on Dom�A�. �

Problem 6.1.5 Let m � RN → C be a measurable function and define the
linear multiplication operator M acting in L2�RN � by �Mf��x� �= m�x�f�x�,
where

Dom�M� �= �f ∈ L2 � mf ∈ L2	


Prove that M is a closed operator. Now suppose that m is continuous, and
let M0 be the ‘same’ operator, but with domain C�

c �RN �. Prove that M is the
closure of M0. Prove also that Spec�M�, defined as on page 124, equals the
essential range of m as defined in Problem 2.2.1. �

Problem 6.1.6 Let A be defined in C
0� 1� by �Af��x� �= f ′�x�+a�x�f�x�,
where a is a continuous function. Find a domain on which A is a closed
operator. (The same problem, but on L2�0� 1�, is much harder.) �

Lemma 6.1.7 An operator X acting in a Banach space � is closable if and
only if fn ∈ Dom�X�, limn→� fn = 0 and limn→� Xfn = g together imply that
g = 0.
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Proof. If X has a closed extension Y then the graph of Y is the closed linear
subspace ��f�Yf� � f ∈ Dom�Y�	 of �×�. Under the assumptions on the
sequence fn, we deduce that �0� g� ∈ �. Therefore g = Y 0 = 0.

Conversely, if X does not have a closed extension, then the closure � of
Gr�X� is not the graph of an operator. This implies that there exist f� g1� g2

such that �f� g1� ∈ �, �f� g2� ∈ � and g1 �= g2. There must exist sequences
f 1

n � f 2
n ∈ Dom�X� such that

lim
n→� f 1

n = f� limn→� Xf 1
n = g1 �

lim
n→� f 2

n = f� limn→� Xf 2
n = g2 


Putting fn �= f 1
n −f 2

n we deduce that

lim
n→� fn = 0� lim

n→� Xfn = g1 −g2 �= 0
 �

Lemma 6.1.8 Let X and Y be operators acting in � and �∗ respectively.
Suppose that Dom�X� is norm dense in �, that Dom�Y� is weak* dense in
�∗ and that


Xf��� = 
f�Y��
for all f ∈ Dom�X� and � ∈ Dom�Y�. Then X and Y are closable.

Proof. Suppose that fn ∈ Dom�X�, limn→� fn = 0 and limn→� Xfn = g. Then

0 = lim
n→�
fn� Y�� = lim

n→�
Xfn��� = 
g���

for all � ∈ Dom�Y�. Since Dom�Y� is weak* dense in �∗ we deduce that

g��� = 0 for all � ∈ �∗ and then that g = 0 by the Hahn-Banach theorem.
Lemma 6.1.7 finally establishes that X is closable. The proof that Y is closable
is similar. �

Example 6.1.9 Let L be a partial differential operator of the form

�Lf��x� �= ∑

���≤n

a��x��D�f��x�

acting in Lp�U�, where U is a region in RN and 1 < p < �. We assume that
a��x� ∈ C ����U� for all relevant � and that C�

c �U� ⊆ Dom�L� ⊆ Cn�U�. In
order to prove that L is closable one needs to write down an operator M ,
acting in Lq�U� where 1/p + 1/q = 1, such that 
Lf�g� = 
f�Mg� for all
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f ∈ Dom�L� and g ∈ Dom�M�. A suitable choice is

�Mg��x� �= ∑

���≤n

�−1����D��a��x�f�x�	

where Dom�M� �= C�
c �U� is dense in Lq�U�. �

We now return to the main topic of the chapter: one-parameter semigroup s.1

We define a (jointly continuous, or c0) one-parameter semigroup on a complex
Banach space � to be a family of bounded linear operators Tt � � → �
parametrized by a real, non-negative parameter t and satisfying the following
conditions:

(i) T0 = 1;

(ii) if 0 ≤ s� t < � then TsTt = Ts+t;

(iii) the map t� f → Ttf from 
0���×� to �
is jointly continuous.

Many of the results obtained in this chapter are applicable to real Banach
spaces, but we will only refer to this again in Chapters 11 and 12.

The following example shows that one cannot deduce strong continuity at
t = 0 from (i), (ii) and strong continuity for all t > 0.

Example 6.1.10 Let � �= C
0� 1�, put T0 = 1, and define

�Ttf��x� �= xtf�x�−xt log�x�f�0�

for 0 < t < �. After noting that Ttf�0� = 0 for all t > 0 one can easily show
that Tt satisfies conditions (i) and (ii). The map �t� f� → Ttf is continuous
from �0���×� to �, but

lim
t→0

�Tt� = +��

so condition (iii) cannot hold. �

1 The monograph of Hille and Phillips 1957 provides a key historical source for the following
material. Many of the results in this chapter are to be found there or in one of the other texts
on the subject, such as [Krein 1971, Butzer and Berens 1967, Yosida 1965, Kato 1966A,
Davies 1980B.]
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The parameter t is usually interpreted as time, in which case the semigroup
describes the evolution of a system. The use of semigroups is appropriate if
this evolution is irreversible and independent of time (autonomous). One of
the obvious, and well-studied, problems about such systems is determining
their long-term behaviour, that is the asymptotics of Ttf as t → �. In the
context of the Schrödinger equation this is called scattering theory. On the
other hand, if the evolution law is an approximation to some non-linear
evolution equation, the short-term behaviour of the linear equation may well
be much more important.

The (infinitesimal) generator of a one-parameter semigroup Tt is defined
by

Zf �= lim
t→0

t−1�Ttf −f��

the domain Dom�Z� of Z being the set of f for which the limit exists. It is
evident that Dom�Z� is a linear subspace of � and that Z is a linear operator
from Dom�Z� into �. Generally Dom�Z� is not equal to �, but we will prove
that it is always a dense linear subspace of �.

The theory of one-parameter semigroup s can be represented by a triangle,
the three vertices being the semigroup Tt, its generator Z and its resolvent
operators Rz �= �zI −Z�−1. A full understanding of the subject requires one
to find the conditions under which one can pass along any edge in either
direction. In this chapter we avoid any mention of the resolvents, concentrating
on the relationship between Tt and Z. We bring the resolvents into the picture
in Section 8.1.

There are several ways of defining an invariant subspace of an unbounded
operator, not all equivalent; Problem 1.2.19 gives a hint of the difficulties. If
Z is the generator of a one-parameter semigroup Tt we will say that a closed
subspace � is invariant under Z if Tt��� ⊆ � for all t ≥ 0. This is a much
more useful notion than the more elementary Z��∩Dom�Z�� ⊆�, which we
will not use.

Tt

Z Rz

Figure 6.1: Three aspects of semigroup theory
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Lemma 6.1.11 The subspace Dom�Z� is dense in �, and is invariant under
Tt in the sense that

Tt�Dom�Z�� ⊆ Dom�Z�

for all t ≥ 0. Moreover
TtZf = ZTtf

for all f ∈ Dom�Z� and all t ≥ 0.

Proof. If f ∈ � and we define

ft �=
∫ t

0
Txf dx (6.3)

then

lim
h→0

h−1�Thft −ft� = lim
h→0

{

h−1
∫ t+h

h
Txf dx−h−1

∫ t

0
Txf dx

}

= lim
h→0

{

h−1
∫ t+h

t
Txf dx−h−1

∫ h

0
Txf dx

}

= Ttf −f


Therefore ft ∈ Dom�Z� and

Z�ft� = Ttf −f
 (6.4)

Since t−1ft → f in norm as t → 0, we deduce that Dom�Z� is dense in �.
If f ∈ Dom�Z� and t ≥ 0 then

lim
h→0

h−1�Th −1�Ttf = lim
h→0

Tth
−1�Th −1�f

= TtZf


Hence Ttf ∈ Dom�Z� and TtZf = ZTtf . �

Lemma 6.1.12 If f ∈ Dom�Z� then

Ttf −f =
∫ t

0
TxZf dx


Proof. Given f ∈ Dom�Z� and � ∈�∗, we define the function F � 
0��� → C
by

F�t� �=
〈

Ttf −f −
∫ t

0
TxZf dx��

〉




Its right-hand derivative D+F�t� is given by

D+F�t� = 
ZTtf −TtZf��� = 0
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Since F�0� = 0 and F is continuous, Lemma 1.4.4 implies that F�t� = 0 for
all t ∈ 
0���. Since � ∈ �∗ is arbitrary, the lemma follows by applying the
Hahn-Banach theorem. �

Lemma 6.1.13 If f ∈ Dom�Z� then ft �= Ttf is norm continuously differen-
tiable on 
0��� with

f ′
t = Zft


Proof. The right differentiability of Ttf was proved in Lemma 6.1.11. The
left derivative at points t satisfying 0 < t < � is given by

D−Ttf = lim
h→0+

h−1�Ttf −Tt−hf�

= lim
h→0+

h−1
∫ t

t−h
TxZf dx

= TtZf

by Lemma 6.1.12. The derivative is norm continuous by virtue of the identity
f ′

t = Tt�Zf�. �

Lemma 6.1.14 The generator Z of a one-parameter semigroup Tt is a closed
operator.

Proof. Suppose that fn ∈ Dom�Z�, limn→� fn = f and limn→� Zfn = g. By
using Lemma 6.1.12 we obtain

Ttf −f = lim
n→��Ttfn −fn�

= lim
n→�

∫ t

0
TxZfn dx

=
∫ t

0
Txg dx


Therefore

lim
t→0

t−1�Ttf −f� = lim
t→0

t−1
∫ t

0
Txg dx

= g�

so f ∈ Dom�Z� and Zf = g. �

Lemma 6.1.15 The space Dom�Z� is complete with respect to the norm

���f ��� �= �f�+�Zf�
 (6.5)

Moreover Tt is a one-parameter semigroup on Dom�Z� for this norm.
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Proof. The first statement of the lemma follows by combining Problem 6.1.1
and Lemma 6.1.14. The restriction of Tt to Dom�Z� satisfies conditions (i)
and (ii) trivially. To prove (iii) we note that if T̃t is defined on �×� by

T̃t�f� g� �= �Ttf�Ttg�

then T̃t satisfies (i)–(iii) and JTtf = T̃tJf for all f ∈ Dom�Z�, where Jf �=
�f�Zf� is an isometry from �Dom�Z�� ��� · ���� into �×�. �

The following theorem describes the sense in which the semigroup Tt solves
the Cauchy problem.

Theorem 6.1.16 Let Z be the generator of a one-parameter semigroup Tt.
If a function f � 
0� a� → Dom�Z� satisfies

f ′
t = Zft (6.6)

for all t ∈ 
0� a� then

ft = Ttf0 (6.7)

for all such t. Hence Tt is uniquely determined by Z.

Proof. Given f and � ∈ �∗ and t ∈ 
0� a� define

F�s� �= 
Tsft−s���
for all 0 ≤ s ≤ t. By applying Lemma 6.1.11 we obtain

D+F�s� = lim
h→0+


h−1�Ts+hft−s−h −Tsft−s	���

= lim
h→0+


Ts+hh
−1�ft−s−h −ft−s	���

+ lim
h→0+


h−1�Ts+h −Ts	ft−s���
= −
TsZft−s���+
ZTsft−s���
= 0


Since F is continuous on 
0� t�, Lemma 1.4.4 implies that it is constant, so
F�t� = F�0�. That is


Ttf0��� = 
ft���
for all � ∈ �∗. This implies (6.7).

Now suppose that Tt and St are two one-parameter semigroup s with the
same generator Z. If f ∈ Dom�Z� then ft �= Stf satisfies the conditions of
this theorem by Lemma 6.1.13, so ft = Ttf . Since Tt and St coincide on the
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dense subspace Dom�Z� and both are bounded linear operators, they must be
equal. �

By Lemma 6.1.13 and Theorem 6.1.16 solving the Cauchy problem for the
differential equation

f ′
t = Zft

is equivalent to determining the semigroup Tt. We will often write

Tt �= eZt

below, without suggesting that the right-hand side is more than a formal
expression.

The problem of determining which operators Z are the generators of one-
parameter semigroup s is highly non-trivial. It is also extremely important,
since in applied mathematics one almost always starts from the Cauchy
problem, that is the operator Z. There is a constant strain between theorems
that are abstractly attractive and tests that can be applied to differential
operators that actually arise in ‘the real world’.2

One of the many difficulties is that the theory depends critically upon the
precise choice of the domain of the operator Z, which is frequently not easy
to describe explicitly. Fortunately, it is often possible to work in a slightly
smaller subspace �. One says that � ⊆ Dom�Z� is a core for Z if for all
f ∈ Dom�Z� there exists a sequence fn ∈ � such that

lim
n→� fn = f� lim

n→� Zfn = Zf


Equivalently � is a core for Z if it is dense in Dom�Z� for the norm defined
in Lemma 6.1.15.

Problem 6.1.17 This extends Problem 6.1.5. Let dx be a Borel measure on the
separable, locally compact Hausdorff space X. Let m � X → C be a continuous
function and define the multiplication operator M on the dense domain Cc�X�

in L2�X� dx� by Mf�x� = m�x�f�x�. Find necessary and sufficient conditions
on the function m under which the closure of M is the generator of a one-
parameter semigroup . �

It is often hard to determine whether a given subspace is a core for a generator
Z. The following criterion is particularly useful when the semigroup is given
explicitly.

2 This assumes that engineers and physicists study the real world, while mathematicians do not.
Classical Platonists, of course, take exactly the opposite view of reality.
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Theorem 6.1.18 (Nelson)3 If � ⊆ Dom�Z� is dense in � and invariant under
the semigroup Tt then � is a core for Z.

Proof. We use Lemma 6.1.15 and work simultaneously with the two norms
� ·� and ��� · ���. Let � denote the closure of � in Dom�Z� with respect to ��� · ���.
If f ∈ Dom�Z� then by the density of � in � there is a sequence fn ∈� such
that �fn −f� → 0. Since Tt is continuous with respect to ��� · ��� we have

∫ t

0
Txfn dx ∈ �


By (6.3) and (6.4)

lim
n→� ���

∫ t

0
Txfn dx−

∫ t

0
Txf dx��� = lim

n→� �
∫ t

0
Tx�fn − f� dx�

+ lim
n→� �Ttfn −fn −Ttf +f�

= 0

for every t > 0, so
∫ t

0
Txf dx ∈ �


Using (6.4) again

lim
t→0

���t−1
∫ t

0
Txf dx−f ��� = lim

t→0
�t−1

∫ t

0
Txf dx−f�

+ lim
t→0

�t−1�Ttf −f�−Zf�
= 0�

so f ∈ �. This proves that � = Dom�Z� as required. �

Problem 6.1.19 Let Tt �= eZt be a one-parameter semigroup on � and let
fn ∈ Dom�Z� satisfy Zfn = �nfn for all n ∈ N, where �n ∈ C. If � �= lin�fn �

n ∈ N	 is a dense linear subspace of � prove that it is a core for Z. Compare
this with Problem 5.4.6. �

The following example shows that it is not always easy to specify the domain
of the generator explicitly.

Example 6.1.20 If V is an increasing continuous function on R, the formula

�Ttf��x� �= f�x− t�e−V�x�+V�x−t�

3 See [Nelson 1959].
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defines a one-parameter contraction semigroup on the space C0�R�. If one
differentiates formally one obtains

�Zf��x� �= −f ′�x�−V ′�x�f�x�
 (6.8)

However, the function V need not be differentiable, and there may exist
f ∈ C1

c �R� which do not lie in Dom�Z�. If f ∈ Dom�Z� then f ′�x� must have
discontinuities at the same points as V ′�x�f�x�. If V is nowhere differentiable
then C1

c �R�∩Dom�Z� = �0	 and (6.8) must be interpreted in a distributional
sense. �

Problem 6.1.21 Show in Example 6.1.20 that if V is bounded and has a
bounded and continuous derivative, then Dom�Z� is the set of all continuously
differentiable functions such that f� f ′ ∈ C0�R�. �

The following example uses the concept of a one-parameter group. The
definition of this is almost the same as in the semigroup case, with 
0���

replaced by R. The lemmas and theorems already proved all extend to the
group context, sometimes with simpler proofs.

Example 6.1.22 Let M be a smooth C� manifold with a one-parameter group
of diffeomorphisms. More precisely let there be a smooth map from M × R
to M such that

(i) m ·0 = m for all m ∈ M ,

(ii) �m · s� · t = m · �s + t� for all s� t ∈ R.

It is easy to show that the space � �= C�
c �M� of smooth functions of compact

support is dense in C0�M�. Define the one-parameter semigroup Tt on C0�M�

by

�Ttf��m� �= f�m · t� 


It is clear that � is contained in Dom�Z� with

�Zf��m� = �

�t
f�m · t��t=0 


Since � is invariant under Tt it follows by Theorem 6.1.18 that � is a core
for Z. �

The relationship between one-parameter semigroup s and groups is further
clarified by the following theorem.
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Theorem 6.1.23 If Z and −Z are generators of one-parameter semigroup s
St and Tt respectively, both acting on the Banach space �, then the formula

Ut �=
{

St if t ≥ 0,
T�t� if t < 0,

(6.9)

defines a one-parameter group on �.

Proof. If Ut is defined by (6.9) then it is obvious that Ut is jointly continuous
at all t ∈ R, and that

lim
t→0

t−1�Utf −f� = Zf

for all f ∈ Dom�Z�. The only non-trivial fact to be proved is that

UsUt = Us+t

when s� t have opposite signs. This follows provided

StTt = 1 = TtSt (6.10)

for all t ≥ 0.
If f ∈ Dom�Z� and ft �= StTtf then ft ∈ Dom�Z� for all t ≥ 0 by

Lemma 6.1.11, and

f ′
t = lim

h→0+
h−1�St+hTt+hf −StTtf	

= lim
h→0+

St+hh
−1�Tt+hf −Ttf�

+ lim
h→0+

h−1�St+h −St�Ttf

= St�−Z�Ttf +ZStTtf

= 0

by Lemma 6.1.11. Therefore StTtf = f for all f ∈ Dom�Z� and all t ≥ 0.
We deduce the first part of (6.10) by using the density of Dom�Z� in �. The
second part has a similar proof. �

Problem 6.1.24 Let a � R × R → C be a continuous function. Prove that if
the formula

�Ttf��x� �= a�x� t�f�x− t�

defines a one-parameter group on C0�R� then there exists a function b � R → C
such that

a�x� t� = b�x�

b�x− t�

for all x� t ∈ R. What further properties must b have? �
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Problem 6.1.25 Prove that if � ∈ R and 1 ≤ p < � then the formula

�Ttf��x� �= f�x− t�

defines a one-parameter group on Lp�R� e�x�� dx� if and only if 0 ≤ � ≤ 1.
Extend your analysis to the case in which �x�� is replaced by a general
continuous function a � R → R.4 �

If A is a bounded operator on � and Z is an unbounded operator, we say that
A and Z commute if A maps Dom�Z� into Dom�Z� and

ZAf = AZf

for all f ∈ Dom�Z�.

Problem 6.1.26 If Z is a closed operator with � � Spec�Z� and A is a
bounded operator, prove that ZA = AZ in the above sense if and only if
R���Z�A = AR���Z�. �

Theorem 6.1.27 Let Tt be a one-parameter semigroup on � with generator
Z. If A is a bounded operator on � then

ATt = TtA (6.11)

for all t ≥ 0 if and only if A and Z commute in the above sense.

Proof. The fact that (6.11) implies that A and Z commute follows directly
from the definitions of Z and its domain. Conversely suppose that A and Z

commute. If f ∈ Dom�Z� and 0 ≤ s ≤ t then, using the fact that Ts�Dom�Z�� ⊆
Dom�Z� for all s ≥ 0, we obtain

d
ds

�Tt−sATsf� = Tt−s�−Z�ATsf +Tt−sAZTsf = 0

so s → Tt−sATsf must be constant. Putting s = 0 and s = t we obtain

TtAf = ATtf

for all f ∈ Dom�Z� and t ≥ 0. The conclusion follows by a density
argument. �

Problem 6.1.28 Show that A and Z commute if there is a core � for Z such
that A� ⊆ Dom�Z� and AZf = ZAf for all f ∈ �. �

4 A general analysis of this type of phenomenon may be found in [Elst and Robinson 2006].
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Problem 6.1.29 Define the one-parameter semigroup Tt on C0�R� by

Ttf�x� �= e−x2tf�x�


Find all bounded operators A on C0�R� which commute with the
semigroup. �

Our final interpolation lemma for semigroups will be used several times later
in the book.

Lemma 6.1.30 Let 1 ≤ p0 < � and 1 ≤ p1 ≤ �. Suppose that Tt is a one-
parameter semigroup acting on Lp0�X� dx� and satisfying

�Ttf�
pi

≤ Meat�f�
pi

for i = 0� 1, all t ≥ 0 and all f ∈ Lp0�X� dx�∩Lp1�X� dx�. Then Tt extends
consistently to one-parameter semigroup s acting on Lp�X� dx� for all p such
that 1/p �= �1−��/p0 +�/p1 and 0 < � < 1.

Proof. Let P denote the set of p satisfying the conditions of the theorem.
The fact that each operator Tt extends consistently to every Lp space follows
directly from Theorem 2.2.14. It is immediate that Tt+s = TtTs in Lp and that
�Tt�p

≤ Meat for all p ∈ P and all s� t ≥ 0. The remaining issue is strong
continuity.

Given g ∈ Lp0 ∩Lp1 the functions ft �= Ttg − g are uniformly bounded in
the Lp0 and Lp1 norms for 0 < t < 1 and converge to 0 as t → 0 in Lp0 .
Problem 2.1.5 now implies that limt→0 �Ttg − g�

p
= 0 for all p ∈ P. Since

Lp0 ∩Lp1 is dense in Lp for all p ∈ P we conclude by the uniform boundedness
of the norms that limt→0 �Ttg−g�

p
= 0 for all p ∈ P and all g ∈ Lp. The proof

is completed by applying Theorem 6.2.1 below. �

6.2 Other continuity conditions

In this section we investigate the continuity condition (iii) in the definition of
a one-parameter semigroup on page 167.

Theorem 6.2.1 If the bounded operators Tt satisfy (i) and (ii) in the definition
of a one-parameter semigroup , then they also satisfy (iii) if and only if

lim
t→0+

Ttf = f (6.12)
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for all f ∈ �. In this case there exist constants M�a such that

�Tt� ≤ Meat (6.13)

for all t ≥ 0.

Proof. If (6.12) holds and

cn �= sup��Tt� � 0 ≤ t ≤ 1/n	

then cn < � for some n. For otherwise there exist tn with 0 ≤ tn ≤ 1/n and
�Ttn

� ≥ n. This contradicts the uniform boundedness theorem when combined
with (6.12). We also observe that (6.12) implies that cn ≥ 1 for all n.

If cn < � and we put c �= cn
n then condition (ii) in the definition of a

semigroup on page 167 implies that �Tt� ≤ c for all 0 ≤ t ≤ 1. If 
t� denotes
the integer part of t, we deduce that

�Tt� ≤ c
t�+1 ≤ ct+1 = Meat


To prove condition (iii) in the definition of a semigroup we note that if
limn→� tn = t and limn→� fn = f then

lim
n→� �Ttn

fn −Ttf� ≤ lim
n→���Ttn

�fn −f��+�Ttn
f −Ttf�	

≤ lim
n→��Meatn�fn −f�+Mea min�tn�t��T�tn−t�f −f�	

= 0
 �

Many arguments in the theory of one-parameter semigroup s become easier
if M = 1, or even depend upon this. However all that one can say in general
is that (6.13) implies M ≥ 1. The following example shows that it may not be
possible to put M = 1, and even that �Tt� need not converge to 1 as t → 0.
A less artificial example is presented in Theorem 6.3.8.

The growth rate, usually denoted �0, of the semigroup Tt is defined as the
infimum of the constants a for which (6.13) holds for some constant Ma and
all t ≥ 0. Another characterization of �0 is given in Theorem 10.1.6.

Problem 6.2.2 Calculate the precise value of �Tt� in Problem 6.1.25 when
p = 1. Prove that �0 = 0 if 0 < � < 1 and that Ma → +� as a → 0+. �

Example 6.2.3 Let � be the Banach space of all continuous functions on R
which vanish at infinity, with the norm

�f� �= �f�� +k�f�0���
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where k > 0. This is equivalent to the usual supremum norm. We define

�Ttf��x� �= f�x− t�

for all x ∈ R and t ∈ R, so that Tt is a one-parameter group on �. Now

�Ttf� = �f�� +k�f�−t�� ≤ �k+1��f�� ≤ �k+1��f�
for all f ∈ �. On the other hand if f ∈ � satisfies �f�� = 1, f�0� = 0 and
f�−t� = 1 then �f� = 1 but

�Ttf� = �f�� +k�f�−t�� = k+1 = �k+1��f�


Therefore �Tt� = k+1 for all t �= 0, while �T0� = 1. �

The last two results suggest that the possibility that M > 1 is associated with
making the ‘wrong’ choice of norm. However, this is not very helpful, because
in applications one often does not know in advance the norm which is most
appropriate for a particular semigroup. Even if one did, the norm chosen may
measure some quantity of physical interest, such as energy, in which case one
is not free to change it at will, even to an equivalent norm.

Problem 6.2.4 Prove that if Tt is a one-parameter semigroup on � then
t → �Tt� is a lower semi-continuous function on 
0���. Find an example of
a semigroup Tt such that �Tt� = 1 for 0 ≤ t < 1 but �Tt� = 0 for t ≥ 1. �

The proof of Theorem 6.2.6 below makes use of a rather advanced fact about
the weak* topology.

Proposition 6.2.5 (Krein-Šmulian theorem)5 If X � �∗ → C is linear and its
restriction to the unit ball of �∗ is continuous with respect to the weak*
topology of �∗, then there exists f ∈ � such that X��� = 
f��� for all
� ∈ �∗.

As far as we know, the main importance of our next theorem is to rule out a
possible generalization of the notion of one-parameter semigroup .

Theorem 6.2.6 If the bounded operators Tt on � satisfy (i) and (ii) in the
definition of a one-parameter semigroup on page 167 then they also satisfy
(iii) if and only if

w-lim
t→0+

Ttf = f (6.14)

for all f ∈ �.

5 See [Dunford and Schwartz 1966, p. 429] for the proof.
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Proof. The argument in one direction is trivial so we assume that Tt satisfies
(i), (ii) and (6.14). An argument similar to that of Theorem 6.2.1 establishes
that there exist constants M�a such that

�Tt� ≤ Meat (6.15)

for all t ≥ 0.
If we choose a particular f ∈�, then the closed linear span of �Ttf � t ≥ 0	

is invariant under Tt. It is also separable by Problem 1.3.3, being the weak
and hence the norm closure of the linear subspace

lin�Ttf � t ≥ 0 and t is rational	


Since the proof that limt→0 Ttf = f may be carried out entirely in this sub-
space, there is no loss of generality in assuming that � is separable.

If f ∈� and � ∈�∗ then 
Ttf��� is locally bounded and right continuous
as a function of t, so the integral

�−1
∫ �

0

Ttf���dt

converges. It defines a bounded linear functional on �∗ which is weak*
-continuous on the unit ball of �∗ by the dominated convergence theorem and
the separability of �; see Problem 1.3.8. The Krein-Šmulian Theorem 6.2.5
implies6 that there exists f� ∈ � such that


f���� = �−1
∫ �

0

Ttf���dt

for all � ∈ �∗.
Given h > 0 we have

�
Thf� −f����� = �
f��T ∗
h ��−
f�����

= �−1

∣
∣
∣
∣

∫ �

0

Ttf�T ∗

h ��dt −
∫ �

0

Ttf���dt

∣
∣
∣
∣

= �−1

∣
∣
∣
∣

∫ �+h

h

Ttf���dt −

∫ �

0

Ttf���dt

∣
∣
∣
∣

= �−1

∣
∣
∣
∣

∫ �+h

�

Ttf���dt −

∫ h

0

Ttf���dt

∣
∣
∣
∣

≤ �−1�f����
{∫ h+�

�
Meatdt +

∫ h

0
Meatdt

}

6 Note that if � is reflexive one does not need to appeal to the Krein-Šmulian Theorem, which
is in any case trivial under this assumption.
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≤ �−1 2hMea�h+���f����


Since � ∈ �∗ is arbitrary

lim
h→0

�Thf� −f�� ≤ lim
h→0

�−1 2hMea�h+���f�
= 0


Now let L be the set of all g ∈ � for which limt→0 Ttg = g. It is immediate
that L is a linear subspace and it follows from (6.15) that L is norm closed
in �. This implies that it is weakly closed. To prove that L = � we have
only to note that it follows directly from the definition of f� that it converges
weakly to f as � → 0. �

Problem 6.2.7 Let Tt be a one-parameter semigroup acting on the Banach
space � and suppose that the closed linear subspace � is invariant under Tt

for every t ≥ 0. Prove that the family of operators T̃t induced by Tt on the
quotient space �̃ = �/� is also a one-parameter semigroup . �

Problem 6.2.8 In the example above, if �Tt� ≤ Meat for all t ≥ 0 then the
same bound holds if Tt is replaced by Tt�� or T̃t. Prove that the converse is
false, and find an analogue in the reverse direction. �

One may also use the weak topology in the definition of the generator.

Theorem 6.2.9 Let Z be the generator of a one-parameter semigroup Tt on
� and let � be a weak*-dense subset of �∗ which is invariant under T ∗

t for
all t ≥ 0. If there is a positive sequence tn → 0 such that

lim
n→� t−1

n 
Ttn
f −f��� = 
g���

for some f� g ∈ � and all � ∈ �, then f ∈ Dom�Z� and Zf = g.

Proof. We modify the argument of Lemma 6.1.12. If f� g and � are as in the
statement of the theorem and the complex-valued function F is defined by

F�t� �=
〈

Ttf −f −
∫ t

0
Txg dx��

〉
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then F is continuous and F�0� = 0. Moreover

lim
n→� t−1

n �F�t + tn�−F�t�	 = lim
n→�
t−1

n �Ttn
f −f��T ∗

t ��

− lim
n→�

〈

t−1
n

∫ t+tn

t
Txg dx��

〉

= 
g�T ∗
t ��−
Ttg���

= 0


It follows by Lemma 1.4.4(i) that F�t� = 0 for all t ≥ 0.
Since � ∈ � is arbitrary and � is weak*-dense in �∗, we deduce that

Ttf −f =
∫ t

0
Txg dx

so

lim
t→0

t−1�Ttf −f� = lim
t→0

t−1
∫ t

0
Txg dx = g
 �

Problem 6.2.10 Let u � 
a� b� → 
0� 1� be a continuous function and define
Tt on � by T0 = 1 and

�Ttf��x� �= u�x�tf�x�

for t > 0. Find the precise conditions on u under which Tt is a one-parameter
semigroup in the cases � �= C
a�b�, � �= Lp�a�b� and 1 ≤ p < �,
� �= L��a� b�. �

6.3 Some standard examples

We start our examples at a fairly general level, and then describe some
special cases. We will be working in the function spaces Lp�RN � defined for
1 ≤ p < � by the finiteness of the norms

�f�
p

�=
{∫

RN
�f�x��p dN x

}1/p




See Section 2.1. We also use the space L��RN � of all essentially bounded
functions on RN with the essential supremum norm

�f�� �= min�c � �x � �f�x�� > c	 is a Lebesgue null set	
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Let kt be complex-valued functions on RN , where t is a positive real param-
eter. We say that the family kt forms a convolution semigroup7 on RN if it
has the following properties:

(i) ks ∗kt = ks+t for all s� t > 0, where ∗ denotes convolution.
(ii) There exists a constant c such that �kt�1 ≤ c for all t > 0.

(iii) For every r > 0 we have

lim
t→0

∫

�x�>r
�kt�x��dN x = 0


(iv) For every r > 0 we have

lim
t→0

∫

�x�<r
kt�x� dN x = 1


Example 6.3.1 One may prove that the Cauchy densities

ft�x� �= t

��t2 +x2�

define a convolution semigroup on R by using the fact that

∫

R
ft�x�e−ix� dx = e−t���

for all � ∈ R. Calculating the inverse Fourier transform is actually easier. One
may also write

ft ∗� = e−Ht�

for all � ∈ L2�R� where H �= �−��1/2. �

Theorem 6.3.2 Under the conditions (i)–(iv) above, the formula

Ttf �= kt ∗f

defines a one-parameter semigroup on Lp�RN � for all p ∈ 
1���. If kt�x� ≥
0 for all x ∈ RN and t > 0 then Tt is a positivity preserving contraction
semigroup on Lp�RN � for all p ∈ 
1���, in the sense that f ≥ 0 implies that
Ttf ≥ 0 for all t ≥ 0.

7 The deep classification theory for convolution semigroups on R is described in [Feller 1966].
See [Hunt 1956] for the extension to Lie groups.
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Proof. Corollary 2.2.19 implies that �Tt� ≤ c in Lp�RN � for all p and all
t > 0. The semigroup law follows immediately from condition (i). Once we
prove that

lim
t→0

�kt ∗f −f�1 = 0 (6.16)

for all f ∈ L1�RN �, the theorem follows by applying Lemma 6.1.30.
It is sufficient to prove (6.16) for all f in the dense subset Cc�RN � of L1.

We start by proving that kt ∗ f converges uniformly to f as t → 0. Given
� > 0 there exists � > 0 such that �u−v� < � implies �f�u�−f�v�� < �. Given
x ∈ RN we deduce that

��kt ∗f��x�−f�x�� ≤
∣
∣
∣
∣

∫

�y�≤�
kt�y��f�x−y�−f�x�	 dN y

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

�y�>�
kt�y�f�x−y� dN y

∣
∣
∣
∣

+
∣
∣
∣
∣

{∫

�y�≤�
kt�y� dN y −1

}

f�x�

∣
∣
∣
∣

≤ �
∫

�y�≤�
�kt�y��dN y

+�f��
∫

�y�>�
�kt�y��dN y

+�f��

∣
∣
∣
∣

∫

�y�≤�
kt�y� dN y −1

∣
∣
∣
∣

< �c+1��

for all small enough t > 0.
If f has support in �x � �x� ≤ R	 then

lim
t→0

∫

�x�≥2R
��kt ∗f��x�−f�x��dN x = lim

t→0

∫

�x�≥2R
��kt ∗f��x��dN x

= lim
t→0

∫

�x�≥2R

∫

�y�≤R
�kt�x−y�f�y��dN y dN x

≤ lim
t→0

∫

�u�≥R

∫

�y�≤R
�kt�u�f�y��dN y dN u

= �f�1 lim
t→0

∫

�u�≥R
�kt�u��dN u

= 0




6.3 Some standard examples 185

Combining the above two bounds we see that

�kt ∗f −f�1 ≤ �kt ∗f −f����x � �x� ≤ 2R	�
+
∫

�x�≥2R
��kt ∗f��x�−f�x��dN x�

which converges to 0 as t → 0.

Problem 6.3.3 Prove that Tt acts as a one-parameter semigroup on the
space C0�RN � of continuous functions on RN which vanish at infinity, with
the supremum norm. Prove that the corresponding statement is false for the
space of all continuous bounded functions with the supremum norm. �

Problem 6.3.4 Prove that the semigroup of Theorem 6.3.2 is norm continuous
for all t > 0. �

Example 6.3.5 The Gaussian densities

kt�x� �= �4�t	−N/2e−�x�2/4t

were introduced in Lemma 3.1.5 (with a different normalization), and provide
the best known example of a convolution semigroup on RN . Property (i) above
may be proved by using the formula

∫

RN
kt�x�e−ix·� dN x = e−���2t�

proved in Lemma 3.1.5. Properties (ii)–(iv) are verified directly. The associ-
ated semigroup Tt on L2�RN � satisfies

�� Tt�
−1g���� = e−���2tg���

for all g ∈ L2�RN � and all t > 0. Its generator Z satisfies

��Z� −1g���� = −���2g���

and

Dom�Z� = �f ∈ L2 � ���2�� f���� ∈ L2	 = W 2�2�RN �


We deduce by Lemma 3.1.4 that Zf = �f for all f in the Schwartz space �.
It follows by Theorem 6.3.2 that Tt is a positivity preserving contraction

semigroup on Lp�RN � for all 1 ≤ p < �. The rate of decay of �Ttf�
p

as t → �
depends on the precise hypotheses about f . For example if f ∈ L1�RN � then

�Ttf�2 ≤ �kt�2 �f�1 ≤ �4�t�−N/4�f�1

for all t > 0. The Lp spectrum of the generator Z is determined in Exam-
ple 8.4.5. �
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Example 6.3.6 The Gaussian semigroup Tt �= e�t may also be constructed
on L2�−���� subject to periodic boundary conditions. Its convolution kernel,
given by

kt�x� �= 1
2�

∑

n∈Z

e−n2t+inx�

is positive, smooth and periodic in x, but cannot be written in closed form.
However the periodic Cauchy semigroup Tt �= e−Ht, where H �= �−��1/2 acts
in L2�−���� subject to periodic boundary conditions, has the convolution
kernel

kt�x� �= 1
2�

∑

n∈Z

e−�n�t+inx

= 1
2�

sinh�t�

cosh�t�− cos�x�



Both of the above are Markov semigroups on L1�−���� or on Cper
−����,
in the sense of Chapter 13. �

We construct some examples with higher order generators, using our results
and notation for Fourier transforms in Section 3.1.

If n is a positive integer, we define Hn to be the closure of the operator

H0�nf �= �−��nf

defined on �, so that

��Hnf���� = ���2n�� f�����

where � is the unitary Fourier transform operator on L2�RN �. See Lemma
3.1.4.

Lemma 6.3.7 The closure Z of −Hn is the generator of the one-parameter
semigroup Tt on L2�RN � given by

Ttf�x� �=
∫

RN
kt�x−y�f�y� dN y = �kt ∗f��x� (6.17)

where kt ∈ � is defined by

kt�x� �= 1
�2��N

∫

RN
e−���2nt+ix·� dN �
 (6.18)

The semigroup Tt is strongly continuous as t → 0+ and norm continuous for
t > 0. The operators Tt are contractions on L2�RN � for all t ≥ 0.
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We omit the proof, which is a routine exercise in the use of Fourier transforms.
Example 6.3.5 gives the explicit formula for kt�x� when n = 1. If n > 1

then Tt is still a contraction semigroup on L2�RN �, but not on L1�RN �. For
the sake of simplicity we restrict to the one-dimensional case, although the
same proof can be extended to higher dimensions.

Theorem 6.3.8 The operators Tt defined by (6.17) and (6.18) form a one-
parameter semigroup on L1�R�. The norm of Tt is independent of t for t > 0
and is given by

c =
∫ �

−�
�k1�x��dx


This constant is greater than 1 unless n = 1.

Proof. We have to verify that kt satisfy conditions (i)–(iv) for a convolution
semigroup on page 183. It follows from Theorem 2.2.5 that �Tt� = �kt�1 for
all t > 0. This is independent of t by virtue of the formula

kt�x� = t−1/2nk1�t
−1/2nx��

which follows from (6.18). Since
∫ �

−�
k1�x� dx = k̂1�0� = 1
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Figure 6.2: k1�x� as a function of x for n = 2
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we must have c ≥ 1. The identity c = 1 would imply that k1�x� ≥ 0 for all
x ∈ R. By Problem 3.1.20 we would conclude that

d2

d�2
e−�2n

∣
∣
∣
∣
�=0

< 0


This is only true for n = 1. Numerical calculations show that c ∼ 1
237 if
n = 2.

We finally extend some of the above considerations to constant coefficient
differential operators of the form

�Af��x� �= ∑

���≤n

a��D�f��x�

initially defined on the Schwartz space �, where a� ∈ C for all multi-indices
�. One has

��Af���� = ������ f����

for all f ∈ � and � ∈ RN , where the symbol � of A is defined by

���� �= ∑

���≤n

a�i�����


See Lemma 3.1.4.

Theorem 6.3.9 Let Z denote the closure of A as an operator acting in
L2�RN �. Then the spectrum of Z equals the closure of ����� � � ∈ RN 	.
Moreover Z is the generator of a one-parameter semigroup on L2�RN � if
and only if there is a constant c such that Re������ ≤ c for all � ∈ RN .

Proof. All of the statements follow directly from the fact that Z is unitarily
equivalent to the multiplication operator M defined by �Mg���� = ����g���,
with the maximal domain

Dom�M� �= �g ∈ L2 � Mg ∈ L2	
 �

Theorem 6.3.8 provides an example in which the ‘same’ one-parameter semi-
group has different norms when acting in L1�R� and L2�R�. The following
example shows more extreme behaviour of this type.

Example 6.3.10 Let Tt be the one-parameter semigroup acting in Lp�R3�

according to the formula Ttf �= kt ∗f , where kt ∈ � are defined by

kt�x� �= 1
�2��3

∫

R3
e−����2−1�2t+ix·� d3�
 (6.19)
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The generator Z is given on � by Zf �= −��2f +2�f + f�. It is immediate
that Tt is a one-parameter contraction semigroup on L2�R3�. However if �·�1

is the norm of Tt considered as an operator on L1�R3� then it may be shown8

that there is an absolute constant c > 0 such that

�Tt�1 = �kt�1 ≥ ct1/2

for all t ≥ 1. �

Problem 6.3.11 Formulate and prove a vector-valued version of Theorem 6.3.9,
in which a� are all m×m matrices and the operator acts in L2�RN � Cm�. �

8 See [Davies 1995D] for the proof and a description of further unexpected properties of the
one-parameter semigroup s associated with higher order differential operators, and
[Davies 1997] for a more general review of this subject.



7
Special classes of semigroup

7.1 Norm continuity

One-parameter semigroups arise in many different areas of applied mathe-
matics, so it is not surprising that different types of semigroup have proved
important. This chapter is devoted to a few of these, but others, for example
Markov semigroups, have whole chapters to themselves.

In this section we consider norm continuous semigroups. If Z is a bounded
linear operator with domain equal to �, then it is obvious that the series

Tt �=
�∑

n=0

tnZn/n!

is norm convergent for all complex t. Restricting attention to t ≥ 0, we obtain
a one-parameter semigroup with generator Z. Clearly Tt is a norm continuous
function of t. Our first result goes in the reverse direction.

Theorem 7.1.1 A one-parameter semigroup Tt is norm continuous if and
only if its generator Z is bounded.

Proof. By taking h > 0 small enough that

�h−1
∫ h

0
Tt dt −1� < 1

we may assume that

X �=
∫ h

0
Tt dt

is invertible. We define the bounded operator Z by

Z �= X−1�Th −1��

190
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Since

X�Tt −1� =
∫ t+h

t
Tx dx−

∫ h

0
Tx dx

=
∫ t+h

h
Tx dx−

∫ t

0
Tx dx

= �Th −1�
∫ t

0
Tx dx

for all t ≥ 0, we deduce that

Tt −1 =
∫ t

0
ZTx dx�

This implies that Tt is norm differentiable with

d
dt

Tt = ZTt

for all t ≥ 0. The proof that Tt =∑�
n=0 tnZn/n! now uses the uniqueness part

of Theorem 6.1.16. �

While norm continuous semigroups are of limited usefulness in applications,
the following class of semigroups is of considerable importance. Holomorphic
semigroups are discussed in Section 8.4.

Theorem 7.1.2 Let Tt be a one-parameter semigroup on � such that Ttf ∈
Dom�Z� for all f ∈ � and all t > 0. Then Tt is a norm C� function of t for
all t ∈ �0���.

Proof. If 0 < c < � then the operator ZTc is closed with domain �. Therefore
it is bounded. By Lemma 6.1.12

Ttf −f =
∫ t

0
TxZf dx

for all f ∈ Dom�Z� and all t > 0. Hence

Tt+cf −Tcf =
∫ t

0
TxZTcf dx (7.1)

for all f ∈ �. Using the bound �Tt� ≤ Meat we deduce that

�Tt+c −Tc� ≤
∫ t

0
Meax�ZTc�dx�

Therefore Tt is norm continuous at t = c for all c > 0. We deduce from (7.1)
that Tt is norm differentiable with

d
dt

Tt = ZTt



192 Special classes of semigroup

for all t > 0. If 0 < c < t we may rewrite this as

d
dt

Tt = Tt−cZTc

and differentiate repeatedly. �

Pazy has characterized the one-parameter semigroup s Tt such that Ttx is
differentiable for all x ∈� and t > a by means of conditions on the spectrum
of the generator Z and on the norms of its resolvent operators.1 The following
is a counterexample to another possible extension of Theorem 7.1.2.

Example 7.1.3 Let Tt be the one-parameter semigroup on C0�R� defined by

�Ttf��x� �= eix2t�1+x2�−tf�x�

the generator of which is given formally by

�Zf��x� �= �ix2 − log�1+x2��f�x��

Although Tt is norm continuous for all t > 0, one only has Tt� ⊆ Dom�Zn�

for n ≤ t < �. �

We turn next to the consequences of compactness conditions.

Theorem 7.1.4 If Tt is a one-parameter semigroup and Ta is compact for
some a > 0 then Tt is compact and a norm continuous function of t for all
t ≥ a.

Proof. The compactness of Tt for t ≥ a follows directly from the semigroup
property.

Let Ta be compact and let X be the compact closure of the image of the
unit ball of � under Ta. Since �t� f� → Ttf is jointly continuous, given 	 > 0,
there exists 
 > 0 such that

�Ttf −f� < 	

for all f ∈ X and all 0 ≤ t < 
. If a ≤ b ≤ t < b+
 and �f� ≤ 1 then

�Ttf −Tbf� = �Tb−a�Tt−b −1�Taf� ≤ �Tb−a�	�

Hence

�Tt −Tb� ≤ �Tb−a�	

1 See [Pazy 1968] or [Pazy 1983, p. 54].
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and Tb is norm continuous on the right for all b ≥ a. A similar argument
proves norm continuity on the left. �

Example 7.1.5 We consider a very simple retarded differential equation,
namely

f ′�t� = cf�t −1�� (7.2)

It is elementary that every continuous function f on �−1� 0� has a unique
continuous extension to �−1��� such that (7.2) holds for all t ≥ 0. In fact if
0 ≤ t ≤ 1 then

f�t� = f�0�+ c
∫ t−1

−1
f�x� dx�

For such equations the initial data at time t can be regarded as the values of
f�s� for t −1 ≤ s ≤ t, and the solutions of (7.2) can be regarded as operators
on the space C�−1� 0� of initial data: for t ≥ 0 and f ∈ C�−1� 0� we may
define Ttf ∈ C�−1� 0� by

�Ttf��x� �= f�x+ t�

where f is the solution of (7.2). It is apparent that Tt is a one-parameter
semigroup on C�−1� 0�. Moreover if 0 ≤ t ≤ 1

�Ttf��x� =
{

f�x+ t� if −1 ≤ x ≤ −t,
f�0�+ c

∫ x+t

0 f�s −1� ds if −t ≤ x ≤ 0.
(7.3)

In the special case t = 1 we have

�T1f��x� = f�0�+ c
∫ x

−1
f�s� ds

for −1 ≤ x ≤ 0 and all f ∈ C�−1� 0�. Theorem 4.2.7 implies that T1 is a
compact operator, while from (7.3) one may show that Tt is not compact for
any 0 ≤ t < 1. �

Problem 7.1.6 Show that the generator Z of the semigroup Tt of Exam-
ple 7.1.5 is

�Zf��x� �= f ′�x��

with domain the set of continuously differentiable functions f on �−1� 0�

such that f ′�0� = cf�−1�. �
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7.2 Trace class semigroups

This section is devoted to a very special type of one-parameter semigroup
acting on a Hilbert space � �= L2�X� dx�. We assume that X is a locally
compact Hausdorff space, and that there is a countable basis to its topology.
We also assume that the regular Borel measure dx has support equal to X.

Throughout this section we assume that Tt is a self-adjoint one-parameter
semigroup , or equivalently, by the spectral theorem, that Tt = e−Ht for all
t ≥ 0, where H is a self-adjoint operator. We focus on the relationship
between trace class hypotheses for such self-adjoint semigroups, as defined
in Lemma 5.6.2, and properties of integral kernels K for which

�Ttf��x� =
∫

X
Kt�x� y�f�y� dy (7.4)

for all f ∈ L2�X� dx� and t > 0. Semigroups satisfying the conditions of the
following problem are sometimes called Gibbs semigroups.2

Lemma 7.2.1 If Tt is trace class for all t > 0 then there exists a complete
orthonormal set �en�

�
n=1 in � and a non-decreasing sequence �
n�

�
n=1 of real

numbers such that

Tten = e−
nten�
�∑

n=1

e−
nt < � (7.5)

for all n and all t > 0. Moreover Tt has a square integrable kernel Kt given
for all such t by

Kt�x� y� �=
�∑

n=1

e−
nten�x�en�y�� (7.6)

Proof. Let �A�2 denote the Hilbert-Schmidt norm of an operator A on � .
Since

�Tt�
2

2 = tr�T2t� < �
for all t > 0, the operators Tt are compact. The identities in (7.5) are proved by
using Theorem 4.2.23. The L2 norm convergent expansion (7.6) is a special
case of the expansion used in the proof of Theorem 4.2.16. �

Problem 7.2.2 Under the conditions of Lemma 7.2.1 prove that if s� t > 0

2 See [Zagrebnov 2003] for a detailed study of such semigroups. Much of the material in this
section is adapted from [Davies and Simon 1984].
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then
∫

X
Ks�x� y�Kt�y� z� dy = Ks+t�x� z�

almost everywhere with respect to x� z. �

The assumption in the following theorem that all the eigenfunctions en are
continuous and bounded holds if Tt�L

2�X�� ⊆ L2�X� ∩ C0�X�. For elliptic
differential operators it may be a consequence of elliptic regularity theorems.

Theorem 7.2.3 If in addition to the hypotheses of Lemma 7.2.1 each en is
continuous and

�∑

n=1

e−
nt�en�
2

� < �

for all t > 0, then Kt�x� y� is a jointly continuous function of t� x� y for t > 0.

Proof. The condition of the theorem implies that the series (7.6) converges
uniformly for t in any compact subinterval of �0���. This is enough to
establish the joint continuity of K. �

Problem 7.2.4 If a�b���� are positive constants such that �en�� ≤ an� and

n ≥ bn� for all n ≥ 1, prove that for every � > �1 + 2��/� there exists c�

such that

�Kt�x� y�� ≤ c�t−�

for all x� y ∈ X and all t > 0. �

Our remaining theorems provide partial converses to the above results.

Theorem 7.2.53 If for each t > 0 there is a continuous integral kernel Kt�·� ·�
for which (7.4) holds and Tt is of trace class for every t > 0, then each eigen-
function en is continuous and the series (7.6) is locally uniformly convergent.
Moreover

�en�x�� ≤ e
nt/2bt�x� (7.7)

for all n�x and t > 0, where

bt�x� �= Kt�x� x�1/2�

3 See [Davies and Simon 1984, Lemma 2.1].
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Proof. We start with the observation that

�bt�
2

2 =
∫

X
Kt�x� x� dx = tr

[
e−Ht

]
< ��

Since Kt is the kernel of a non-negative, self-adjoint operator, one has

�Kt�x� y�� ≤ bt�x�bt�y�

for all x� y ∈ X. If S is a compact subset of X and x ∈ S then

�en�x�� =
∣
∣
∣e
nt

∫

X
Kt�x� y�en�y� dy

∣
∣
∣

≤ e
nt
∫

X
bt�x�bt�y��en�y��dy

≤ e
ntbt�x��bt�2

≤ ct e
nt

where

ct �= sup
x∈S

{
bt�x��bt�2

}
�

The continuity of en is proved by applying the dominated convergence theo-
rem to the formula

en�x� = e
nt
∫

X
Kt�x� y�en�y� dy�

The uniform convergence of the series (7.6) for x� y ∈ S follows from the
bound

�∑

n=1

∣
∣e−
nten�x�en�y�

∣
∣≤

�∑

n=1

c2
t/3e−
nt/3 < ��

which uses (7.8). The estimate (7.7) follows from

e−
nt�en�x��2 ≤
�∑

m=1

e−
mt�em�x��2

= Kt�x� x�

= bt�x�2� �

Corollary 7.2.6 If X has finite measure and for each t > 0 there is a contin-
uous bounded kernel Kt�·� ·� for which (7.4) holds, then the assumptions of
Theorem 7.2.3 are valid.



7.3 Semigroups on dual spaces 197

Proof. One repeats the argument of Theorem 7.2.5 with S replaced by X, and
uses the fact that bt is a bounded function on X. �

Corollary 7.2.7 Under the assumptions of Theorem 7.2.5 the sets

Ct �= �x � Kt�x� x� = 0�

are closed, of zero measure, and independent of t.

Proof. The locally uniform convergence of the series (7.6) implies that each
Ct is equal to

C �= �x � en�x� = 0 for all n��

This set is closed because each en is continuous, and it has zero measure
because the set �en�

�
n=1 is complete. �

Example 7.2.8 If we assume that a trace class semigroup Tt acts in L2�X� Cn�,
one might be tempted to repeat all of the above theory with kernels Kt�x� y�

which takes values in the set of n×n matrices. This can be done, but it is
also possible to use the scalar theory, replacing X by X × �1� 2� � � � � n�. �

7.3 Semigroups on dual spaces

If Z is a closed linear operator with dense domain � in a Banach space �,
we define its dual operator Z∗ with domain �∗ ⊆ �∗ as follows. � ∈ �∗ if
and only if the linear functional f → 
Zf��� is norm continuous on �; for
such � we define Z∗� ∈�∗ to be the extension of this functional to �. Hence


Zf��� = 
f�Z∗��
for all f ∈ � and � ∈ �∗.

Lemma 7.3.14 If Z is a closed, densely defined operator, then Z∗ is also
closed. If � is reflexive then Z∗ is densely defined with Z∗∗ = Z.

4 See [Kato 1966A, p. 168].
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Proof. Let � be the closed subspace

��f�−Zf� � f ∈ Dom�Z��

of �×�. The element ����� of �∗ ×�∗ lies in the annihilator �� of � if
and only if


f��� = 
Zf���
for all f ∈ Dom�Z�, or equivalently if and only if � ∈ Dom�Z∗� and � = Z∗�.
Since �� is a closed subspace, Z∗ is a closed operator.

If � is reflexive and f ∈ � satisfies 
f��� = 0 for all � ∈ Dom�Z∗� then
�0� f� ∈ ��� = �, so Z0 = f and f = 0. This implies that Dom�Z∗� is dense
in �∗ by the Hahn-Banach theorem. The equality Z∗∗ = Z is equivalent to
��� = �. �

Problem 7.3.2 Give examples of closed densely defined operators Z on
C�a�b� and on L1�a� b� whose adjoints Z∗ are not densely defined. �

Theorem 7.3.3 If Z is the generator of the one-parameter semigroup Tt on
the reflexive Banach space �, then T ∗

t is a one-parameter semigroup on �∗

and its generator is Z∗.

Proof. If f ∈ � and � ∈ �∗ then

lim
t→0


f�T ∗
t �� = lim

t→0

Ttf��� = 
f����

Hence T ∗
t is a one-parameter semigroup by Theorem 6.2.6. Let Z′ denote the

generator of T ∗
t . If f ∈ Dom�Z� and � ∈ Dom�Z′� then


Zf��� = lim
t→0


t−1�Ttf −f����
= lim

t→0

f� t−1�T ∗

t �−���
= 
f�Z′���

Therefore � ∈ Dom�Z∗� and Z∗� = Z′�. Conversely if f ∈ Dom�Z� and
� ∈ Dom�Z∗� then

lim
t→0


f� t−1�T ∗
t �−��� = lim

t→0

t−1�Ttf −f����

= 
Zf���
= 
f�Z∗���
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By Theorem 6.2.9 we deduce that � ∈ Dom�Z′� and Z′� = Z∗�. Hence
Z′ = Z∗. �

The next example shows that the situation is less simple if � is not reflexive.

Example 7.3.4 If � �= C0�R� then �∗ is the space of bounded, countably
additive, complex-valued measures on R. We define the one-parameter group
Tt on � by

�Ttf��x� �= f�x− t�

for all t ∈ R. If 
x is the measure of mass one concentrated at x then T ∗
t 
x =


x−t and

�T ∗
t 
x −
x� = 2

for all t �= 0. Hence T ∗
t cannot be a one-parameter semigroup as defined in

Section 6.1. �

If Tt is a one-parameter semigroup on � satisfying �Tt� ≤ Meat for all t ≥ 0
and � is not reflexive, the following subspaces of �∗ are of importance.

�1 �= �� ∈ �∗ � t−1�T ∗
t �−�� converges in norm as t → 0��

�2 �= �� ∈ �∗ � t−1�T ∗
t �−�� converges weak* as t → 0��

�3 �= �� ∈ �∗ � T ∗
t � → � in norm as t → 0��

Theorem 7.3.55 The subspaces are related by

�1 ⊆ �2 ⊆ �3�

Moreover �3 is norm closed and �1 is weak* dense in �∗. The semigroup
T ∗

t is uniquely determined by its generator Z∗ on �1.

Proof. The inclusion �1 ⊆ �2 is trivial. If � ∈ �2 then the uniform bounded-
ness theorem implies that there are positive constants c�
 such that

�t−1�T ∗
t �−��� ≤ c

for all t ∈ �0� 
�. Hence

lim
t→0

�T ∗
t �−�� ≤ lim

t→0
tc = 0

and we conclude that � ∈ �3.

5 See [Dynkin 1965, p. 40].
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Let F � R → �0��� be a C� function with compact support in �0���,
satisfying

∫ �

0
F�t� dt = 1�

If � ∈ �∗ and 	 > 0 then there exists �	 ∈ �∗ such that


f��	� �= 	−1
∫ �

0
F�	−1t�
f�T ∗

t ��dt

for all f ∈ �. Moreover the weak* limit of �	 as 	 → 0 is �, so to prove
that �1 is weak* dense in �∗ we need only show that �	 ∈ �1 for all 	 > 0.

If we define �	 ∈ �∗ by


f��	� = −	−2
∫ �

0
F ′�	−1t�
f�T ∗

t ��dt

and define Gh�	 by

Gh�	�t� �= F�	−1�t −h��−F�	−1t�

	h
+ F ′�	−1t�

	2

then

�
f�h−1�T ∗
h �	 −�	�−�	�� =

∣
∣
∣

∫ �

0
Gh�	�t�
f�T ∗

t ��dt
∣
∣
∣

≤
∫ �

0
Meat�Gh�	�t�� �f����dt�

Using the fact that F has compact support we deduce that

lim
h→0

�h−1�T ∗
h �	 −�	�−�	�

≤ lim
h→0

M���
∫ �

0
�Gh�	�t��eat dt

= lim
h→0

M���
∫ �

0

∣
∣
∣
∣
F�� −	−1h�−F���

h
+ F ′���

	

∣
∣
∣
∣ e

a	� d�

= lim

→0

M���
∫ �

0

∣
∣
∣
∣
F�� −
�−F���



+F ′���

∣
∣
∣
∣

ea	�

	
d�

= 0�

The fact that �3 is norm closed is elementary. The restriction St of T ∗
t to �3

is jointly continuous by Theorem 6.2.1, and so is uniquely determined by its
generator, the domain of which is �1. Finally each T ∗

t is weak* continuous
on �∗, and �3 is weak* dense in �∗, so T ∗

t is uniquely determined by St. �
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Lemma 7.3.6 We have � ∈ �2 if and only if

lim inf
t→0

�t−1�T ∗
t �−��� < �� (7.8)

Proof. If � satisfies (7.8) then by the relative weak* compactness of bounded
sets in �∗ (Theorem 1.3.7) there exists a (generalized) sequence tn → 0 and
� ∈ �∗ such that

w*- lim
n→� t−1

n �T ∗
tn
�−�� = ��

By an argument almost identical with that of Theorem 6.2.9 we deduce that
� ∈ �2. �

Corollary 7.3.7 If Z is the generator of a one-parameter semigroup Tt on
a reflexive Banach space � then

Dom�Z� = �f ∈ � � lim inf
t→0

t−1�Ttf −f� < ���

Proof. By Theorem 6.2.9 the subspaces �1 and �2 coincide, so we may apply
Lemma 7.3.6. �

Problem 7.3.8 Prove, in Example 7.3.4, that �3 is the space L1�R� of all
finite bounded measures which are absolutely continuous with respect to
Lebesgue measure. Prove also that �1 �= �2 in this example. �

7.4 Differentiable and analytic vectors

In this section we apply some of the results in Section 1.5 to a one-parameter
semigroup Tt acting on a Banach space �. We say that f ∈� is a C� vector
for Tt if t → Ttf is a C� function on �0���.

Theorem 7.4.1 The set �� of C� vectors of Tt is given by

�� =
�⋂

n=0

Dom�Zn� (7.9)

and is a dense subspace of �, and a core for Z.
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Proof. We start with the proof of (7.9). If f ∈ �� then f ∈ Dom�Z� and

d
dt

Ttf = Tt�Zf�� (7.10)

so Zf also lies in ��. A simple induction now establishes that f ∈ Dom�Zn�

for all n and
dn

dtn
Ttf = Tt�Z

nf�� (7.11)

Conversely if f ∈ Dom�Zn� for all n then Ttf is differentiable and (7.10)
holds. Once again we establish (7.11) inductively and conclude that f ∈ ��.

We next show that �� is a dense linear subspace of �. Let Fn�t� be non-
negative, real-valued C� functions with compact support in �0� 1/n� which
satisfy

∫ �

0
Fn�t� dt = 1

for all positive integers n. Given f ∈ � we put

fn �=
∫ �

0
Fn�t�Ttf dt (7.12)

so that limn→� fn = f . We also have

Zfn = lim
h→0+

h−1�Thfn −fn�

= lim
h→0+

h−1

{∫ �

0
Fn�t�Tt+hf dt −

∫ �

0
Fn�t�Ttf dt

}

= lim
h→0+

∫ �

0
h−1�Fn�t −h�−Fn�t��Ttf dt

= −
∫ �

0
F ′

n�t�Ttf dt�

Since this is of the same general form as (7.12), we can differentiate repeat-
edly to conclude that fn ∈ Dom�Zm� for all m and n. The fact that �� is a
core then follows by applying Theorem 6.1.18. �

Problem 7.4.2 Show that �� is a complete metric space for the metric

d�f� g� = �f −g�+
�∑

n=1

�Znf −Zng�
2n�1+�Znf −Zng��

and that

lim
r→� d�fr� f� = 0
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if and only if

lim
r→� Znfr = Znf

for all n ≥ 0. �

Combining this result with Problems 1.3.1 and 1.3.2 we see that �� is a
Fréchet space.

Problem 7.4.3 Prove that the restriction of Tt to �� is jointly continuous
with respect to the above metric topology. �

If Tt is a one-parameter semigroup on � we say that f ∈ � is an analytic
vector (resp. entire vector) for Tt if the function t → Ttf can be extended
to an analytic function on some neighbourhood of �0��� (resp. to an entire
function).

Theorem 7.4.4 (Gel’fand’s theorem)6 The set � of entire vectors of a one-
parameter group Tt is a dense linear subspace of � and a core for the
generator Z.

Proof. Given f ∈ � we put

fn �=
( n

2�

)1/2 ∫ �

−�
e−nt2/2Ttf dt�

By (6.13) this integral is convergent and limn→� fn = f , so the density of �
follows provided we can prove that each fn is an entire vector. To do this we
note that if s ∈ R then

Tsfn =
( n

2�

)1/2 ∫ �

−�
e−n�t−s�2/2Ttf dt�

The entire extension of this function is defined by

g�z� �=
( n

2�

)1/2 ∫ �

−�
e−n�t−z�2/2Ttf dt

the convergence of this integral being a consequence of (6.13) once again.
The analyticity of g�z� is an exercise in differentiating under the integral sign.
Since the set of entire vectors is dense and invariant under the action of Tt,
it is a core for Z by Theorem 6.1.18. �

6 See [Nelson 1959, Goodman 1971] for extensions of this theorem to Lie groups.
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Problem 7.4.5 Show that if f is an entire vector for Tt = eZt then

eZtf =
�∑

n=0

tnZnf/n!

for all real t. This uses Theorem 1.4.12. �

Problem 7.4.6 Use Fourier transforms to give another description of the set
of all entire vectors for the one-parameter semigroup Tt acting on L2�R�

according to the formula

�Ttf��x� �= �4�t�−1/2
∫ �

−�
e−�x−y�2/4tf�y� dy� �

The following example shows that non-zero analytic vectors need not exist
for one-parameter semigroup s.

Example 7.4.7 Let � be the space of continuous functions on �0��� which
vanish at 0 and �, with the sup norm. Define the one-parameter semigroup
Tt on � by

�Ttf��x� �=
{

f�x− t� if 0 ≤ t ≤ x,
0 if t > x.

If f ∈�, a > 0 and f�a� �= 0, we define � ∈�∗ by putting ��g� = g�a� for all
g ∈ �. Then t → 
Ttf��� is a non-zero continuous function which vanishes
for t > a. Therefore it cannot be extended analytically to any neighbourhood
of the real axis, and f is not an analytic vector. �

Problem 7.4.8 Let � be the set of analytic vectors for the one-parameter
group Ut acting on Lp�R� according to the formula

�Utf��x� �= f�x− t��

Prove that if 1 ≤ p < � then

�∩Lp
c �R� = �0�

where the notation Lp
c was defined on page 5. �

Theorem 7.4.9 Let Tt be a one-parameter group of isometries on � with
generator Z, and let � be a dense linear subspace of � contained in Dom�Z�.
If f ∈ � implies that Zf ∈ � and that

�∑

n=0

�Znf��n/n! < �

for some � > 0, which may depend upon f , then � is a core for Z.



7.5 Subordinated semigroups 205

Proof. If � denotes the closure of � in �� for the metric d of Problem 7.4.2,
then the hypothesis Z� ⊆ � implies that Z� ⊆ �. Given � > 0, define

�� �=
{

f ∈ � �
�∑

n=0

�Znf��n/n! < � for all � < �

}

� (7.13)

Then

� ⊆⋃

�

�� ⊆ � ⊆ Dom�Z��

so to prove that � is a core it is sufficient to prove that ∪��� is a core. We
will actually show that if �t� < � then Tt���� ⊆ ��.

If f ∈ �� and �t� < � then the series

f�t� �=
�∑

n=0

�Znf�tn/n!

converges in the d-metric, so f�t� ∈ �. Moreover f�t� is differentiable with
f ′�t� = Zf�t�, so f�t� = Ttf by Theorem 6.1.16. Hence Ttf ∈� for all �t� < �.
Moreover

�ZnTtf� = �TtZ
nf� = �Znf��

This implies that Ttf ∈ �� for all �t� < �. Therefore ∪��� is invariant under
Tt for all t ∈ R, by the group law for Tt. We may then apply Theorem 6.1.18
to ∪���, and conclude that � is a core for Z. �

Problem 7.4.10 Let Tt �= eZt act on L2�R� according to the formula �Ttf��x� �=
eixtf�x�. Prove that the set of functions of the form

f�x� �= e−x2
n∑

r=0

arx
r�

where n depends upon f , is a core for Z. �

7.5 Subordinated semigroups

Generalizing the ideas of Section 6.3, we define a convolution semigroup
on R to be a family of probability measures �t on R parametrized by t > 0
which satisfies

(i) �s ∗�t = �s+t for all s� t > 0,
(ii) limt→0 �t�−
�
� = 1 for all 
 > 0,
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where the convolution �∗� of two measures is defined by
∫

R
f�x���∗���dx� �=

∫

R

∫

R
f�x+y���dx���dy��

Alternatively

��∗���E� �= ��×��� ��x� y� � x+y ∈ E� �

for all Borel sets E in R. This definition is consistent with the definition of
the convolution of two functions whenever the measures � and � have L1

densities with respect to Lebesgue measure.
We say that �t is a convolution semigroup on R+ if supp��t� ⊆ �0��� for

all t ≥ 0.
Convolution semigroups are closely connected with random walks on the

real line. The following provides an example which is not covered by the
definition in Section 6.3.

Problem 7.5.1 Prove that the Poisson distribution, i.e. the measures

�t �= e−t
�∑

n=0

tn

n!
n

define a convolution semigroup in the above sense, where 
n�f� �= f�n�. �

Problem 7.5.2 Prove that if �t is a convolution semigroup and
∫

R �x��t�dx�

is finite for any t > 0 then it is finite for all t > 0, and there is a ‘drift’
coefficient a such that

∫

R
x�t�dx� = at

for all t > 0. �

Theorem 7.5.3 If Ut �= eAt is a one-parameter group of isometries on a
Banach space � and �t is a convolution semigroup on R then the formula

Ttf �=
∫

R
Usf �t�ds� (7.14)

defines a one-parameter contraction semigroup Tt on �. If �t is the Gaussian
measure

�t�dx� �= �4�t�−1/2e−�x�2/4t dx

considered in Example 6.3.5, then the generator Z of Tt is given by

Z �= A2� (7.15)
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Proof. The bound �Tt� ≤ 1 for all t ≥ 0 follows directly from its definition.
The condition (i) above implies that t → Tt is a semigroup, while (ii) implies
that it is strongly continuous at t = 0.

We now assume that �t is defined as above and use the identity
∫ �

0
�4�t�−1/2e−s2/4t−
t dt = 1

2

−1/2e−�s�
1/2

to compute the resolvent of Z. If f ∈ � and 
 > 0 then

�
−Z�−1f = 1
2

∫ �

−�

−1/2e−�s�
1/2

eAsf ds

= 1
2


−1/2�
1/2 −A�−1f + 1
2


−1/2�
1/2 +A�−1f

= �
−A2�−1f�

from which (7.15) follows. �

Problem 7.5.4 Prove the analogue of Theorem 7.5.3 when Ut is a one-
parameter contraction semigroup on � and �t is a convolution semigroup on
R+. Show that the Gamma distribution, i.e. the measures

�t�dx� �=
{

��t�−1xt−1e−x dx if x > 0,
0 otherwise,

provide an example of such a convolution semigroup. �

Some insight into the form of the generator Z of Theorem 7.5.3 can be
obtained as follows. If Re�z� ≤ 0 and

�̂t�z� �=
∫ �

0
ezx �t�dx�

then one may show that

�̂t+s�z� = �̂t�z��̂s�z�

and

lim
t→0

�̂t�z� = 1�

It follows that there exists a function f defined on �z � Re�z� ≤ 0� such that

�̂t�z� = etf�z��

It is customary to write Z �= f�A�. The following provides a partial justifica-
tion of this.
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Problem 7.5.5 Show that if A� = z� for some � ∈ Dom�A� then Re�z� = 0
in the context of Theorem 7.5.3, and Re�z� ≤ 0 in the context of Problem 7.5.4.
In both cases prove that � ∈ Dom�Z� and Z� = f�z��. �

Example 7.5.6 If we define

ft�x� �= t

2
√

�x3
e−t2/4x

for all x� t > 0 then ft is a probability density on �0���, and
∫ �

0
ft�x�e−zx dx = e−z1/2t

for all t > 0 and Re�z� ≥ 0. One may use this formula to show that

�t�dx� �= ft�x� dx

is a convolution semigroup on R+. If �−H� is the generator of a one-parameter
contraction semigroup on � then the generator Z of the semigroup

Tt� =
∫ �

0
ft�s�e−Hs� ds

is given by Z �= −H1/2 according to the above convention.
Similar procedures may be used to define other fractional powers of H .

Unfortunately the densities cannot be written down as explicitly as in the
above case.7 �

Example 7.5.7 If H �= �−��1/2 acting in L2�RN � then Example 7.5.6 implies
that the Cauchy operators e−Ht have the continuous integral kernels

K�t� x� y� �=
∫ �

s=0

t

2
√

�s3
e−t2/4s 1

�4�s�N/2
e−�x−y�2/4s ds�

We deduce that

0 < K�t� x� y� ≤ ct−N

for some c > 0, all t > 0 and all x� y ∈ RN . Indeed K�t� x� x� = ct−N for all
t > 0 and x ∈ RN .

More generally if e−At is a one-parameter semigroup on Lp�X� dx� and

�e−Atf�
q
≤ ct−�/2�f�

p

for all f ∈ Lp�X� dx� and t > 0, where 1 ≤ p < q ≤ �, then

�e−A1/2tf�
q
≤ ct−��f�

p

7 See [Dunford and Schwartz 1966, p. 641] or [Yosida 1965, p. 259].
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for all f ∈ Lp�X� dx� and t > 0.8 �

All of the ideas in this section can be generalized by replacing R by any other
locally compact group, if one has a representation of that group by isometries
on some Banach space. They may also be put into a Banach algebra setting.

Problem 7.5.8 Let ft ∈� for all t > 0, where � is a Banach algebra. Suppose
that fsft = fs+t for all s� t > 0 and ft is an approximate identity in the sense
that

lim
t→0

�ftg −g� = lim
t→0

�gft −g� = 0

for all g ∈ �. Prove that the formulae

Stg �= gft� Ttg �= ftg

define two one-parameter semigroup s on �, which commute with each
other. Prove also that t → ft is norm continuous for all t > 0. Deduce that
both semigroups are norm continuous for t > 0. �

8 Bounds of the above type are closely related to Sobolev embedding theorems. See
[Davies 1989] for the self-adjoint case and [Ouhabaz 2005] for the more recent
non-self-adjoint theory.



8
Resolvents and generators

8.1 Elementary properties of resolvents

In the last two chapters we introduced the notion of a one-parameter semigroup
Tt and defined its infinitesimal generator Z. In this chapter we complete
the triangle drawn on page 168 by studying the resolvent family of Z. We
use the resolvents to describe the relationship between the spectrum of Z

and of the semigroup operators Tt, and also to determine which unbounded
operators Z are in fact the generators of one-parameter semigroups.

Resolvent operators are particularly useful in the analysis of Sturm-Liouville
operators, because in that case one can write down their integral kernels in
closed form; a very simple example is written down in Example 5.6.10. In
higher dimensions this is not the case, and there is the added problem that their
integral kernels are singular on the diagonal. Nevertheless resolvent operators
play an important theoretical role, particularly in the analysis of perturbations.

We start by studying general unbounded operators. Just as in the bounded
case, the spectrum and resolvent play key roles. In some ways the resolvent
operators are more fundamental, because the spectrum of an unbounded oper-
ator can be empty. We will see that the resolvent norms provide important
information about many non-self-adjoint operators. This is made explicit in
the study of pseudospectra in Section 9.1, but the same issue arises throughout
the book.

We review some earlier definitions. Let Z be a closed linear operator with
domain Dom�Z� and range Ran�Z� in a Banach space �. A subspace � of
Dom�Z� is called a core if Z is the closure of its restriction to �. We define
the resolvent set of Z to be the set of all z ∈ C such that zI −Z is one-one
with range equal to �. The resolvent operator

Rz �= �zI −Z�−1

210
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is bounded for such z by the closed graph theorem. The spectrum Spec�Z�

is by definition the complement of the resolvent set. The reader should note
that we only assume that Dom�Z� is dense below when this is relevant to the
proof of the theorem.

We emphasize that the spectrum of an operator depends critically upon its
precise domain. If one takes too small or too large a domain, the spectrum
of the operator may equal C. For a differential operator acting on functions
which are defined on a region U ⊆ RN , boundary conditions are incorporated
as conditions on the domain of the operator. Altering the boundary conditions
usually changes the spectrum radically. There are only a few operators for
which the spectrum is easy to determine, the following being one.

Theorem 8.1.1 Every constant coefficient differential operator L of order n

defined on the Schwartz space � ⊆ L2�RN � is closable and the domain of its
closure L contains W n�2�RN �. Moreover

Spec�L� = ����� � � ∈ RN 	

where � is the symbol of the operator, as defined in (3.7).

Proof. We first note that � is a polynomial of degree n. Example 6.1.9 implies
that L is closable. If M �= � L� −1 then Dom�M� = � and

�Mg���� �= ����g���

for all g ∈ �. The closure M of M has domain

�g ∈ L2�RN � � �g ∈ L2�RN �	


This contains W n�2�RN � by virtue of the bound

������ ≤ c�1+���2�n/2


The identity

L �= � −1M�

implies that Spec�L� = Spec�M�; the latter equals ����� � � ∈ RN 	 by
Problem 6.1.5. �

Problem 8.1.2 Let Z be a closed operator acting in � and let z � Spec�Z�.
Prove that the following three conditions on a subspace � of Dom�Z� are
equivalent.

(i) � is a core for Z;
(ii) �zI −Z�� is dense in �;
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(iii) � is dense in Dom�Z� for the norm

���f ��� �= �f�+�Zf�
 �

Lemma 8.1.3 The resolvent set U of a closed operator Z is open, and the
resolvent operator Rz is an analytic function of z on U . If z�w ∈ U then

Rz −Rw = �w− z�RzRw
 (8.1)

Proof. Let a ∈ U and let c �= �Ra�
−1

. Then for �z−a� < c the series

Sz �=
�∑

n=0

�−1�n�z−a�nRn+1
a

converges in norm and defines a bounded operator Sz. If f ∈ Dom�Z� then

Sz�zI −Z�f =
�∑

n=0

�−1�n�z−a�nRn+1
a �aI −Z + zI −aI�f

=
�∑

n=0

�−1�n�z−a�nRn
af + �z−a�Szf

= f − �z−a�Szf + �z−a�Szf

= f
 (8.2)

On the other hand if f ∈ � and

gm �=
m∑

n=0

�−1�n�z−a�nRn+1
a f

then gm ∈ Dom�Z� and limm→� gm = Szf . Moreover

lim
m→� Zgm = lim

m→�

m∑

n=0

�−1�n�z−a�nZRn+1
a f

= lim
m→�

m∑

n=0

�−1�n�z−a�n�aRa − I�Rn
af

= aSzf + �z−a�Szf −f

= zSzf −f


Since Z is closed we deduce that Szf lies in Dom�Z� and

ZSzf = zSzf −f

or equivalently

�zI −Z�Szf = f
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Combining this with (8.2) we deduce that �z � �z − a� < c	 ⊆ U and that
Sz = Rz for all such z. This establishes the analyticity of Rz as a function of
z and also the formula

Rz =
�∑

n=0

�−1�n�z−a�nRn+1
a (8.3)

for all z such that
�z−a� < �Ra�

−1



If f ∈ � and z� w ∈ U then

�zI −Z��Rz −Rw − �w− z�RzRw�f

= f − �zI −wI +wI −Z�Rwf − �w− z�Rwf

= 0


Since �zI −Z� is one-one we deduce that

�Rz −Rw − �w− z�RzRw	f = 0

for all f ∈ �. �

Corollary 8.1.4 We have

�Rz� ≥ dist�z� Spec�Z�	−1

for all z � Spec�Z�. Hence the resolvent operator cannot be analytically
continued outside the resolvent set of Z.

We will see in Section 9.1 that there is no corresponding upper bound: the
resolvent norm may be extremely large for z which are far from the spectrum
of Z. Such phenomena are investigated under the name of pseudospectra.

In spite of the above corollary, the ‘matrix elements’ �Rzf��� of the
resolvent operator may well be analytically continued into Spec�Z� for a large
class of f ∈ � and � ∈ �∗. This is important for the theory of resonances
and for quantum scattering theory. The following theorem refers to the dual
of an unbounded closed operator, as defined in Section 7.3.

Theorem 8.1.5 Let Z be a closed, densely defined operator acting in the
reflexive Banach space �. Then

Spec�Z� = Spec�Z∗�

and
���I −Z�−1	∗ = ��I −Z∗�−1

for all � � Spec�Z�.
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Proof. Since ��I −Z∗� is the dual of ��I −Z�, it is sufficient to treat the case
� = 0. If 0 � Spec�Z� let A be the (bounded) inverse of Z. If f ∈ Dom�Z�

and � ∈ �∗ then

�Zf�A∗�� = �AZf��� = �f����

so A∗� ∈ Dom�Z∗� and Z∗A∗� = �. This implies that Z∗ has range equal to
�∗. If f ∈ � and � ∈ Dom�Z∗� then

�f�A∗Z∗�� = �Af�Z∗�� = �ZAf��� = �f���


Therefore

A∗Z∗� = �

and Z∗ has kernel �0	. We conclude that 0 � Spec�Z∗� and that A∗ is the
inverse of Z∗.

The converse argument uses Lemma 7.3.1. �

If Rz is any family of bounded operators defined for all z in a subset U of C
and satisfying

Rz −Rw = �w− z�RzRw (8.4)

for all z�w ∈ U , we call Rz a pseudo-resolvent. Note that (8.4) implies that
RzRw = RwRz for all z�w ∈ U .

Problem 8.1.6 Show that the kernel Ker�Rz� and range Ran�Rz� of a pseudo-
resolvent family are both independent of z. Moreover Rz is the resolvent
of a closed operator Z such that Spec�Z� ∩ U = ∅ if and only if Ker
�Rz� = �0	. �

Theorem 8.1.7 If Rz is a pseudo-resolvent defined for all z satisfying a < z <

� and satisfying

�Rz� ≤ M�z−a�−1 (8.5)

for all such z, then Rz is the resolvent of a closed, densely defined operator
Z if and only if the range of Rz is dense in �.

Proof. If Z exists and has dense domain then Ran�Rz� is dense because it
equals Dom�Z�.
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Conversely if the pseudo-resolvent Rz satisfies the stated conditions and
f �= Rwg then

lim
z→+� zRzf = lim

z→+� zRzRwg

= lim
z→+�

z

w− z
�Rzg −Rwg�

= lim
z→+�

z

w− z
�Rzg −f�

= f


Since Rw has dense range and the family of operators zRz is uniformly
bounded we conclude using Problem 1.3.10 that

lim
z→� zRzh = h

for all h ∈ �, so Ker�Rz� = 0 for all z by Problem 8.1.6. We deduce, again
by Problem 8.1.6, that Rz is the resolvent of an operator Z, the domain of
which equals Ran�Rz� and hence is dense in �. �

Problem 8.1.8 By applying Theorem 8.1.7 to R∗
z show that if Rz is a pseudo-

resolvent on the reflexive Banach space � and satisfies (8.5) for all a < z < �,
and if Ker�Rz� = 0, then Rz is the resolvent of a closed, densely defined
operator Z. �

We next describe the relationship between the spectrum of an operator Z and
that of its resolvent.

Lemma 8.1.9 If Z is a closed, unbounded operator acting in � and z �
Spec�Z� then

Spec�Rz� = �0	∪ ��z−��−1 � � ∈ Spec�Z�	


Proof. Since Ran�Rz� equals Dom�Z� and Z is not bounded, we see that 0
lies in Spec�Rz�. If w � Spec�Z� then the operator

S �= �z−w��zI −Z�Rw

is bounded and commutes with Rz. Moreover

��z−w�−1I −Rz	S = �zI −Z�Rw − �z−w�Rw

= �wI −Z�Rw

= I
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Therefore �z−w�−1 � Spec�Rz�.
Conversely suppose �z−w�−1 � Spec�Rz�, and put

T �= �I − �z−w�Rz	
−1Rz


If f ∈ � then

�wI −Z�Tf = �zI −Z + �w− z�I	Rz�I − �z−w�Rz	
−1f

= �I − �z−w�Rz	�I − �z−w�Rz	
−1f

= f


On the other hand, if f ∈ Dom�Z� then

T�wI −Z�f = �I − �z−w�Rz	
−1Rz�zI −Z + �w− z�I	f

= �I − �z−w�Rz	
−1�I − �z−w�Rz	f

= f


Hence w � Spec�Z�. �

Problem 8.1.10 Show that if Rz is compact for any z � Spec�Z� then it is
compact for all such z, and that Spec�Z� consists of at most a countable
number of eigenvalues of finite multiplicity, which diverge to infinity. �

Problem 8.1.11 Show that if Z is a closed operator and fn ∈ Dom�Z� satisfy
�fn� = 1 and

lim
n→� �Zfn −�fn� = 0

then � ∈ Spec�Z�. Using Corollary 8.1.4, show conversely that if � lies in the
topological boundary of Spec�Z� then such a sequence fn must exist. �

We next describe a simple example in which the computation of the spectrum
is far from elementary. Let ��n	

�
n=1 be a sequence of Hilbert spaces and put

� �=
�∑

n=1

⊕�n


We regard each �n as a subspace of � in an obvious way. Let An be a
bounded linear operator of �n for each n and define the operator A acting in
� by

�Af�n �= Anfn
 (8.6)
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We do not assume that A is bounded, and choose its maximal natural domain,
namely

Dom�A� �= �f ∈ � �
�∑

n=1

�Anfn�
2

< �	


Our next theorem establishes that the spectrum of A need not be the limit
of its truncations to the subspaces

∑N
n=1 ⊕�n as N → �. Less contrived

examples of this phenomenon are described in Examples 9.3.19 and 9.3.20.

Theorem 8.1.12 The spectrum of the operator A defined by (8.6) is given by

Spec�A� = B∪
�⋃

n=1

Spec�An��

where B is the set of z ∈ C for which the sequence n → ��zIn − An�
−1� is

unbounded.

Proof. If z ∈ Spec�An� for some n then Lemma 1.2.13 implies that either
there exists a sequence of unit vectors er in �n such that �Aner − zer� → 0
as r → �, or there exists a sequence of unit vectors er in �n such that
�A∗

ner − zer� → 0 as r → �. In both cases we conclude that z ∈ Spec�A�.
Now suppose that z ∈ B. There must exist a subsequence n�r� and unit

vectors en�r� ∈ �n�r� such that

lim
r→� ��zIn�r� −An�r��

−1en�r�� = +�


Putting

fn�r� �= �zIn�r� −An�r��
−1en�r�/��zIn�r� −An�r��

−1en�r��

we see that �fn�r�� = 1 and �Afn�r� − zfn�r�� → 0 as r → �. Therefore z ∈
Spec�A�.

Finally suppose that n → ��zIn −An�
−1� is a bounded sequence and put

�Sf�n �= �zIn −An�
−1fn

for all f ∈ � . Clearly S is a bounded operator. The verification that

�zI −A�S = S�zI −A� = I

is routine, and proves that z � Spec�A�. �
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Problem 8.1.13 In the context of (8.6), assume that �n �= Cn and that An

is the standard n×n Jordan matrix. Prove that although Spec�An� = �0	 for
each n, one has

Spec�A� = �z � �z� ≤ 1	
 �

8.2 Resolvents and semigroups

In this section we describe the relationship between a one-parameter semi-
group Tt and the resolvent family Rz associated with its generator Z. Our first
theorem provides the key formula (8.8) enabling one to pass directly from
the semigroup to the resolvent operators. Most of the subsequent analysis is
based on this formula or developments of it.

Theorem 8.2.1 Let Z be the generator of a one-parameter semigroup Tt on
� that satisfies

�Tt� ≤ Meat (8.7)

for all t ≥ 0. Then the spectrum of Z is contained in �z � Re�z� ≤ a	. If
Re�z� > a then

Rzf =
∫ �

0
e−ztTtf dt (8.8)

for all f ∈ �. Moreover

�Rz� ≤ M�Re�z�−a�−1 (8.9)

for all such z.

Proof. In this proof we define Rz by the RHS of (8.8), which is norm conver-
gent for all z such that Re�z� > a and all f ∈ �, and prove that it coincides
with the resolvent. If g �= Rzf then

lim
h→0

h−1�Thg −g�

= lim
h→0

{

h−1
∫ �

0
e−ztTt+hf dt −h−1

∫ �

0
e−ztTtf dt

}

= lim
h→0

{

h−1
∫ �

h
e−z�t−h�Ttf dt −h−1

∫ �

0
e−ztTtf dt

}

= lim
h→0

{

−h−1ezh
∫ h

0
e−ztTtf dt +h−1�ezh −1�

∫ �

0
e−ztTtf dt

}

= −f + zg
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Therefore g ∈ Dom�Z� and �zI −Z�g = f . This establishes that Ran�Rz� ⊆
Dom�Z� and that

�zI −Z�Rz = I


This identity implies that Ker�Rz� = �0	. If g ∈ Dom�Z� and g′ �= Rz�zI −Z�g

then �zI − Z��g − g′� = 0. If f �= g − g′ is non-zero then an application of
Theorem 6.1.16 implies that Ttf = eztf for all t ≥ 0. Therefore �Tt� ≥ eRe�z�t

for all t ≥ 0, which contradicts (8.7). Therefore f = 0, g′ = g, and Dom�Z� ⊆
Ran�Rz�. We finally conclude that

Rz = �zI −Z�−1


The estimate (8.9) follows directly from (8.8). �

Corollary 8.2.2 If Tt is compact for all t > 0 then Rz is compact for all
z � Spec�Z�.

Proof. First suppose that Re�z� > a. For all n ≥ 1 the integrand in

Rn�z �=
∫ n

1/n
e−ztTt dt

is norm continuous by Theorem 7.1.4. Therefore the integral is norm conver-
gent, and Rn�z is compact by Theorem 4.2.2. Since Rn�z converges in norm to
Rz as n → �, the latter operator is also compact. The compactness of Rw for
all other w � Spec�Z� follows by using the resolvent formula (8.1). �

Theorem 8.2.3 Let Tp�t be consistent one-parameter semigroup s acting on
Lp�X� dx� for all p ∈ 
p0� p1�, where 1 ≤ p0 < � and 1 ≤ p1 ≤ �. Suppose
also that Tp0�t is compact for all t > 0. Then the same holds for all p ∈ 
p0� p1�.
The generators Zp have compact resolvents for all p ∈ 
p0� p1� and Spec�Zp�

is independent of p for such p.

Proof. The compactness of Tp�t for p ∈ 
p0� p1� and t > 0 is proved by using
Theorem 4.2.14. The compactness of the resolvents for such p uses Corol-
lary 8.2.2. The fact that the spectrum of R���Zp� does not depend on p for
any sufficiently large � was proved in Theorem 4.2.15. We deduce that the
spectrum of Zp does not depend on p by using Lemma 8.1.9. �

The conclusion of the above theorem should not be taken for granted.
Although the Lp spectrum of an operator frequently does not depend on
p, there are important examples in which it does. See Theorem 12.6.2 and
the comments there.
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Problem 8.2.4 Show by induction that if Re�z� > a and n ≥ 1 then

�Rz�
nf =

∫ �

0

tn−1

�n−1�!e−ztTtf dt

for all f ∈ �, and use this formula to prove that

lim
n→�

{n

s
Rn/s

}n

f = Tsf (8.10)

for all f ∈ � and all s > 0. �

We mention in passing that the resolvent need not exist for one-parameter
groups defined on general topological vector spaces. It is entirely possible
that Spec�Z� = C, so that the resolvent set is empty.

Example 8.2.5 Let � be the space of all continuous functions on R, with the
topology of locally uniform convergence. If

�Ttf��x� �= f�x+ t�

then Tt is a one-parameter group on �. The generator of Tt is

�Zf��x� �= f ′�x��

its domain being the space of all continuously differentiable functions
on R. If � ∈ C and f�x� �= e�x, then f ∈ Dom�Z� and Zf = �f . Hence
Spec�Z� = C. �

Before starting the spectral analysis of unbounded operators, we point out
that it may sometimes provide little useful information.

Example 8.2.6 If � = L2�0� c� and t ≥ 0, define Tt on � by

�Ttf��x� �=
{

f�x+ t� if 0 ≤ t +x < c,
0 otherwise.

Then Tt is a one-parameter semigroup with �Tt� = 1 if 0 ≤ t < c and Tt = 0
if t ≥ c. Theorem 8.2.1 is applicable for every a ∈ R provided M is chosen
appropriately, so the spectrum of Z is empty. Indeed the resolvent may be
written in the form

Rzf =
∫ c

0
e−ztTtf dt

for all z ∈ C, and is an entire function of z. �
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In spite of this example, spectral analysis is often of great interest.
If Z is the generator of a one-parameter semigroup Tt acting on �, the

relationship between the spectrum of Z and of Tt is not simple. Theorem 8.2.9
states that one cannot replace the inclusion in (8.11) below by an equality
unless one imposes further conditions.

Theorem 8.2.7 If t ≥ 0 then

Spec�Tt� ⊇ �e�t � � ∈ Spec�Z�	
 (8.11)

Proof. Let ���� be the algebra of all bounded operators on � and let �
be a maximal abelian subalgebra containing Tt for all t ≥ 0 and Rz for all
z � Spec�Z�. Such an algebra exists by Zorn’s lemma. If X ∈ � is invertible
then X−1 ∈ � by maximality. Therefore the spectrum of X as an operator
coincides with its spectrum as an element of �. The latter equals �X̂�m� � m ∈
M	 where M is the maximal ideal space of � and X̂ ∈ C�M� is the Gel’fand
transform of X.1

Let �� z ∈ C be fixed numbers with � ∈ Spec�Z� and z � Spec�Z�. Then
�z−��−1 ∈ Spec�Rz� so there exists m ∈ M such that

R̂z�m� = �z−��−1 �= 0


If ��t� �= T̂t�m� then ��0� = 1 and

��s���t� = ��s + t�

for all s� t ≥ 0. A simple calculation using Lemma 6.1.12 shows that TtRz

depends norm continuously on t for 0 ≤ t < �, so ��t��z−��−1 also depends
continuously on t for 0 ≤ t < �. By applying the theory of one-parameter
semigroup s to the semigroup t → ��t� acting on C we deduce that ��t� = e�t

for some � ∈ C. If Re�w� > a then
∫ �

0
e−wtTtRz dt = RwRz

as a norm convergent integral, so
∫ �

0
e�t�z−��−1e−wt dt = �z−��−1R̂w�m�


Therefore

R̂w�m� = �w−��−1


1 We follow the approach of [Hille and Phillips 1957, Chap. 16], which uses Gel’fand’s
representation of a commutative Banach algebra as an algebra of continuous functions. See
[Rudin 1973] for an exposition of this subject.
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On the other hand

R̂z�m�− R̂w�m� = �w− z�R̂z�m�R̂w�m�

so

R̂w�m� = �z−��−1�1+ �w− z��z−��−1	−1

= �w−��−1


This implies � = �. We have now shown that

T̂t�m� = e�t

so e�t ∈ Spec�Tt�. �

The following problem is used in the proof of the next theorem.

Problem 8.2.8 Let t > 0 and let S �= �eint � n = 1� 2� 3� 
 
 
 	. Then either S

is a finite subgroup of �z � �z� = 1	 or it is dense in �z � �z� = 1	. In both
cases there exists an increasing sequence n�r� of positive integers such that
limr→� ein�r�t = 1. �

Theorem 8.2.9 (Zabczyk)2 There exists a one-parameter group Tt �= eZt act-
ing on a Hilbert space � such that Spec�Z� ⊆ iR and

�Tt� = e�t� ∈ Spec�Tt� (8.12)

for all t ∈ R.

Proof. We write

� �=
�∑

n=1

⊕�n

where �n �= Cn and each subspace �n is invariant under the group Tt to
be defined. The restriction Zn of the generator Z to �n is defined to be
Zn �= Jn + inIn, where Jn is the standard n×n Jordan matrix and In is the
identity operator on �n. The identity �Jn� = 1 implies that

�eZnt� = �eJnt� ≤ e�t�

for all t ∈ R and all n ≥ 1. By combining these groups acting on their
individual spaces we obtain a one-parameter group Tt on � such that

�Tt� ≤ e�t� (8.13)
for all t ∈ R.

2 See [Zabczyk 1975].
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Our next task is to prove that e�t� ∈ Spec�Tt� for all t > 0; the corresponding
result for t < 0 has a similar proof. This implies that (8.13) is actually an
equality.

If vn ∈ �n is the unit vector vn �= n−1/2�1� 1� 
 
 
 � 1�′ then

eJntvn = n−1/2�sn−1� sn−2� 
 
 
 � s0�
′

where sm �=∑m
r=0 tr/r!. Therefore

lim
n→� �eJntvn − etvn�

2

= lim
n→� n−1��sn−1 − et�2 + �sn−2 − et�2 +· · ·+ �s0 − et�2	

= 0


For each t > 0 we use Problem 8.2.8 to select an increasing sequence n�r�

such that limr→� ein�r�t = 1. This implies that

lim
r→� �eZn�r�tvn�r� − etvn�r�� = 0


Therefore et ∈ Spec�Tt� for all t > 0.
We next identify the generator Z precisely. Let � denote the set of all

sequences f ∈ � with finite support. It is immediate that � is invariant
under Tt and that �Zf�n = Znfn for all f ∈ � and all n. Theorem 6.1.18
implies that � is a core for Z. The fact that Z is closed implies that

Dom�Z� = �f ∈ � �
�∑

n=1

�Znfn�
2

< �	


It is immediate from its definition that in is an eigenvalue of Z for every
positive integer n, and we will prove that every z � iN lies in the resolvent
set of Z. By Theorem 8.1.12 it is sufficient to prove that n → ��zIn −Zn�

−1�
is a bounded sequence for all such z. Since �Jn� = 1 for all n, we have

lim sup
n→�

��zIn −Zn�
−1� ≤ lim sup

n→�
��z− in�−�Jn��−1

= lim sup
n→�

��z− in�−1�−1

= 0


This completes the proof. �

The following spectral mapping theorem is a corollary of Theorem 8.2.11
below.
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Theorem 8.2.10 Let T̃t �= TtR�a�Z� on � where a � Spec�Z�. If Z is
unbounded, one has

Spec�T̃t� = �0	∪ �e�t�a−��−1 � � ∈ Spec�Z�	

for all t > 0 and a > �0, where �0 is defined as on page ??.

Proof. We normalize the problem by putting Z′ �= Z−�I where �0 < � < a,
a′ �= a−� and T ′

t �= e−�tTt, so that

TtR�a�Z� = e�tT ′
t R�a′�Z′�


The semigroup T ′
t is uniformly bounded since �′

0 �= �0 −� < 0. Moreover

T ′
t R�a′�Z′� =

∫ �

0
f�s�Ts ds

where

f�s� =
{

0 if 0 ≤ s < t�

e−a′�s−t� if s ≥ t.

Since f ∈ L1�0���, the stated result is implied by our next, more general,
theorem. �

Theorem 8.2.113 Let Tt be a uniformly bounded one-parameter semigroup
acting on �, with an unbounded generator Z. Let f ∈ L1�0��� and put

Xf �=
∫ �

0
f�t�Tt dt�

where the integral converges strongly in ����. Put

f̂ �z� �=
∫ �

0
f�t�ezt dt

for all z satisfying Re�z� ≤ 0. Then

Spec�Xf � = �0	∪ �f̂ ��� � � ∈ Spec�Z�	


Proof. We follow the method of Theorem 8.2.7. Let � be a maximal abelian
subalgebra of ���� which contains Tt for all t ≥ 0 and the resolvent operators
Ra for all a � Spec�Z�. Let M denote the maximal ideal space of � and let ˆ
denote the Gel’fand transform. Then � is closed under the taking of inverses
and strong operator limits. Hence

Spec�D� = �D̂�m� � m ∈ M	

3 Once again we follow the ideas in [Hille and Phillips 1957, Chap. 16]. See also
[Greiner and Muller 1993].
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for all D ∈ �.
If a�b � Spec�Z� then the identity

R̂a�m�− R̂b�m� = �b−a�R̂a�m�R̂b�m� (8.14)

implies that the closed set

N �= �m ∈ M � R̂a�m� = 0	

is independent of the choice of a. Since Z is unbounded N must be non-empty.
If m ∈ M\N then

R̂a�m� ∈ Spec�Ra�\�0	 = �a−�m�−1

for some �m ∈ Spec�Z�. A second application of (8.14) implies that �m

does not depend upon a. The definition of the topology of M implies that
� � M\N → Spec�Z� is continuous.

Let 	 denote the set of all functions f � 
0��� → C of the form

f�t� =
n∑

r=1

�re
−�r t

where Re��r� > 0 for all r. For such a function

Xf =
n∑

r=1

�rR�r



Therefore

Spec�Xf � =
{
X̂f �m� � m ∈ M

}

= �0	∪
{

n∑

r=1

�rR̂�r
�m� � m ∈ M\N

}

= �0	∪
{

n∑

r=1

�r��r −�m�−1 � m ∈ M\N

}

= �0	∪
{

n∑

r=1

�r��r −��−1 � � ∈ Spec�Z�

}

= �0	∪
{∫ �

0
f�t�e�t dt � � ∈ Spec�Z�

}

= �0	∪
{
f̂ ��� � � ∈ Spec�Z�

}
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Finally let f be a general element of L1�0���. There exists a sequence fn ∈	
which converges in L1 norm to f , and this implies that Xfn

converges in norm

to Xf , and that f̂n converges uniformly to f̂ . Hence Xf ∈ � and

Spec�Xf � = lim
n→� Spec�Xfn

�

= �0	∪ lim
n→�

{
f̂n��� � � ∈ Spec�Z�

}

= �0	∪
{
f̂ ��� � � ∈ Spec�Z�

}



In this final step we used the fact that �0	∪ �f̂ ��� � � ∈ Spec�Z�	 is a closed
set. This is because Spec�Z� is a closed subset of �z ∈ C � Re�z� ≤ 0	, and
f̂ �z� → 0 as �z� → � within this set. �

If further conditions are imposed on the semigroup Tt, a converse to Theo-
rem 8.2.7 can be proved.

Theorem 8.2.12 Suppose that Tt is a one-parameter semigroup and a norm
continuous function of t for a ≤ t < �. Then a non-zero number c lies in
Spec�Tt� if and only if c = e�t for some � ∈ Spec�Z�.

Proof. We continue with the notation of the proof of Theorem 8.2.7. If
0 �= c ∈ Spec�Tb� then there exists m ∈ M such that

��t� �= T̂t�m�

satisfies ��b� = c. Moreover ��t+ s� = ��t���s� for all s� t ∈ �0��� and ��·�
is continuous on 
a���. This implies that ��t� = e�t for some � ∈ C and all
t > 0. Now in the equality

Ta�zI −Z�−1 =
∫ �

0
e−ztTa+t dt

the integral is norm convergent provided Re�z� is large enough. Therefore

e�a��zI −Z�−1	̂ �m� =
∫ �

0
e−zt+�a+t�� dt

= e�a�z−��−1


We conclude that �z−��−1 ∈ Spec�Rz�, so � ∈ Spec�Z� by Lemma 8.1.9. �

If we assume that Tt is compact for some t > 0 even stronger conclusions can
be drawn.



8.3 Classification of generators 227

Theorem 8.2.13 If Tt is a one-parameter semigroup and Ta is compact
for some a > 0, then for all � > 0 there exists a direct sum decomposition
� = �0 ⊕�1 with the following properties. Both �0 and �1 are invariant
under Tt, �0 is finite-dimensional, and the restriction St of Tt to �1 satisfies

�St� = o�e−�t�

as t → �. The spectrum of Z consists of at most a countable, discrete set of
eigenvalues, each of finite multiplicity, and if � is infinite-dimensional

Spec�Tt� = �0	∪ et Spec�Z�


If Z has an infinite number of distinct eigenvalues ��n	
�
n=1 then limn→� Re��n� =

−�.

Proof. The last statement is an immediate consequence of Theorems 7.1.4
and 8.2.12. Since Ta is a compact operator there is a spectral decomposition
� �= �0 ⊕�1 of Ta such that �0 is finite-dimensional and

Rad�Sa� < e−a�


Since Tt commutes with Ta, �0 and �1 are both invariant with respect to Tt

for all t ≥ 0. By Theorem 10.1.6 below the spectral radius of St equals e−t�

for some � and all t ≥ 0. Clearly � > � and, again by Theorem 10.1.6,

lim
t→� e�t�St� = 0


This implies by Theorem 8.2.1 that the spectrum of the generator Y of St

lies in �z � Re�z� ≤ −�	. Since �0 is finite-dimensional, the spectrum of Z

is the union of Spec�Y� with a finite set of eigenvalues of finite multiplicity.
The stated properties of Spec�Z� now follow from the fact that � > 0 is
arbitrary. �

Problem 8.2.14 Write down the simpler proof of the above theorem when
Tt is assumed to be compact for all t > 0. �

8.3 Classification of generators

When I wrote One-Parameter Semigroups, I referred to the first theorem
below as the central result in the study of one-parameter semigroup s. Twenty-
five years later, I am not so sure. The theorem gives a complete solution of
the problem posed, but the criterion obtained is very difficult to apply. The
reason is that one is usually given the operator Z rather than its resolvent
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operators, and hypotheses involving all powers of the resolvents are rarely
easy to verify. In terms of their range of applications, Theorem 8.3.2 and
Theorem 8.3.4 are far more useful, as well as being historically earlier.

Many of the results below have analogues for real Banach spaces, in
spite of the fact that a real operator may have a complex spectrum. This is
sometimes important in applications.

Theorem 8.3.1 (Feller, Miyadera, Phillips) A closed, densely defined oper-
ator Z acting in the Banach space � is the generator of a one-parameter
semigroup Tt satisfying

�Tt� ≤ Meat (8.15)

for all t ≥ 0 if and only if

Spec�Z� ⊆ �z � Re�z� ≤ a	 (8.16)

and

���I −Z�−m� ≤ M��−a�−m (8.17)

for all � > a and all m ≥ 1.

Proof. The proof that (8.15) implies (8.16) was given in Theorem 8.2.1. The
same theorem implies that if � > a and m ≥ 1 then

���I −Z�−mf� =
∥
∥
∥

∫ �

0

 
 

∫ �

0
Tt1+···+tm

e−��t1+···+tm�f dt1 
 
 
 dtm

∥
∥
∥

≤
∫ �

0

 
 

∫ �

0
Me−��−a��t1+···+tm��f�dt1 
 
 
 dtm

= M��−a�−m�f�
for all f ∈ �. This implies (8.17).

The converse is much harder since we have to construct the semigroup Tt.
The idea is to approximate Z by bounded operators Z� and show that the
semigroups

T�
t �= eZ�t

converge as � → +� to a semigroup Tt whose generator is Z.
If � > a we define the bounded operator Z� by

Z� �= �ZR�


We first show that

lim
�→�

�ZR�f� = 0 (8.18)
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for all f ∈ �. Because

�ZR�� = �1−�R��

≤ 1+ M�

�−a

is bounded as � → �, it is sufficient by Problem 1.3.10 to prove this for f

in a dense subset of �. If f ∈ Dom�Z� then

�ZR�f� ≤ �R���Zf�

≤ M�Zf�
�−a

and this converges to 0 as � → �.
We next show that

lim
�→�

Z�f = Zf (8.19)

for all f ∈ Dom�Z�. For any such f and any b > a there exists g ∈ � such
that f = Rbg. Hence

lim
�→�

�Z�f −Zf�

= lim
�→�

��ZR�Rbg −ZRbg�

= lim
�→�

��Z�R� −Rb	�b−��−1g −ZRbg�

= lim
�→�

∥
∥
∥
∥

(
�

�−b
−1

)

ZRbg − �

�−b
ZR�g

∥
∥
∥
∥

≤ lim
�→�

b

�−b
�ZRbg�+ lim

�→�
�

�−b
�ZR�g�

= 0

by (8.18).
If T�

t �= eZ�t then (8.17) implies

�T�
t � = ∥

∥e��−I+�R�	t
∥
∥

≤ e−�t
�∑

n=0

tn�2n�Rn
��/n!

≤ e−�tMet�2/��−a�

= Meta�/��−a�

≤ Me2at (8.20)



230 Resolvents and generators

provided � ≥ 2a. Moreover

lim sup
�→�

�T�
t � ≤ Meat
 (8.21)

We next show that if f ∈� then T�
t f converges as � → � uniformly for t in

bounded intervals. By (8.20) it is sufficient to prove this when f lies in the
dense set Dom�Z�. For such f

∥
∥
∥
∥

d
ds

�T�
t−sT

�
s f	

∥
∥
∥
∥= �T�

t−s�−Z� +Z��T�
s f�

= �T�
t−sT

�
s �−Z� +Z��f�

≤ M2e2at��−Z� +Z��f�


Integrating with respect to s for 0 ≤ s ≤ t we obtain

�T�
t f −T�

t f� ≤ tM2e2at��−Z� +Z��f��

which converges to zero as ��� → �, uniformly for t in bounded intervals,
by (8.19).

This result enables us to define the bounded operators Tt by

Ttf �= lim
�→�

T�
t f


It is an immediate consequence of (8.21) and the semigroup properties of T�
t

that T0 = 1, �Tt� ≤ Meat for all t ≥ 0 and TsTt = Ts+t for all s� t ≥ 0. The
uniformity of the convergence for t in bounded intervals implies that Ttf is
jointly continuous in t and f , and so is a one-parameter semigroup.

Our final task is to verify that the generator B of Tt coincides with Z. We
start from the equation

T�
t f −f =

∫ t

0
T�

x Z�f dx (8.22)

valid for all f ∈ � by Lemma 6.1.12. If f ∈ Dom�Z� then we let � → � in
(8.22) and use (8.19) to obtain

Ttf −f =
∫ t

0
TxZf dx


Dividing by t and letting t → 0 we see that f ∈ Dom�B� and Bf = Zf . Hence
B is an extension of Z. Since both �xI −Z� and �xI −B� are one-one with
range equal to � for all x > a it follows that Z = B. �

A one-parameter contraction semigroup is defined as a one-parameter semi-
group such that �Tt� ≤ 1 for all t ≥ 0.
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Theorem 8.3.2 (Hille-Yosida)4 If Z is a closed, densely defined operator
acting in the Banach space � then the following are equivalent.

(i) Spec�Z�∩ �z � 0 < z < �	 = ∅ and ���I −Z�−1� ≤ �−1 for all � > 0.
(ii) Z is the generator of a one-parameter contraction semigroup.

(iii) Spec�Z� ⊆ �z � Re�z� ≤ 0	 and

��zI −Z�−1� ≤ �Re�z��−1 (8.23)

for all z such that Re�z� > 0.

Proof. (i)⇒(ii) follows from the case M = 1 and a = 0 of (a slight modifi-
cation of) Theorem 8.3.1. (ii)⇒(iii) is a special case of Theorem 8.2.1, and
(iii)⇒(i) is elementary. �

Problem 8.3.3 Show that in Theorem 8.3.1 and Theorem 8.3.2 it is sufficient
to assume (8.17) and (8.23) for a sequence of real �n such that limn→� �n =
+�. �

We next reformulate Theorem 8.3.2 directly in terms of the operator Z. If
an operator Z acts in � with domain �, we let 
 denote the set of pairs
�f��� ∈ �×�∗ such that f ∈ �, �f� = 1, ��� = 1 and �f��� = 1. Note
that for each f ∈ � a suitable � exists by the Hahn-Banach theorem; if �
is a Hilbert space then � is unique, but this is not true in general. We say
that Z is dissipative if Re��Zf���� ≤ 0 for all �f��� ∈ 
. If Z is an operator
with domain � in a Hilbert space � then Z is dissipative if and only if
Re��Zf�f�� ≤ 0 for all f ∈ �.

Theorem 8.3.4 (Lumer-Phillips)5 Given an operator Z with dense domain �
in a Banach space �, the following are equivalent.

(i) Z is dissipative and the range of ��I −Z� equals � for all � > 0.
(ii) Z is the generator of a one-parameter contraction semigroup.

Proof. (i)⇒(ii) If �f��� ∈ 
 then
���I −Z�f� ≥ ����I −Z�f����

= ��−�Zf����
≥ �

= ��f�


4 See [Hille 1948, Hille 1952, Yosida 1948].
5 See [Lumer and Phillips 1961].
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Therefore the operator ��I −Z� is one-one with range equal to �, and

���I −Z�−1� ≤ �−1


We may now apply Theorem 8.3.2.
(ii)⇒(i) If �f��� ∈ 
 then

Re�Zf��� = Re lim
h→0

h−1�Thf −f���
= Re lim

h→0
h−1��Thf���−1	

≤ lim
h→0

h−1��Th��f����−1	

≤ 0


The identity Ran��I −Z� = � follows from � � Spec�Z� and was proved in
Theorem 8.2.1. �

The following modification of Theorem 8.3.4 is easier to verify because it
uses a weaker notion of dissipativity and only requires one to consider a
single value of �.

Theorem 8.3.5 (Lumer-Phillips) Let Z be a closable operator with dense
domain � in a Banach space �, and suppose that the range of ��I −Z� is
dense for some � > 0. Suppose also that for all f ∈� there exists � ∈�∗ such
that ��� = 1, �f��� = �f� and Re��Zf���� ≤ 0. Then Z is dissipative and
the closure Z of Z is the generator of a one-parameter contraction semigroup.

Proof. The weaker dissipativity condition still implies that

���I −Z�f� ≥ ��f�
for all � > 0 and all f ∈ �. Therefore

���I −Z�f� ≥ ��f�
for all � > 0 and all f ∈ Dom�Z�. This implies that ��I −Z� has range equal
to � and that

���I −Z�−1� ≤ �−1


Corollary 8.1.4 now implies that

Spec�Z�∩ �z � �z−�� < �	 = ∅
and that ��I − Z� has range equal to � for all � such that 0 < � < 2�.
Replacing � by 3�/2 in the above argument, it follows by induction that

Spec�Z� ⊆ �z � Re�z� ≤ 0	


The proof is now completed by applying Theorem 8.3.2. �
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Problem 8.3.6 If fn� n ≥ 1� are eigenvectors of a closable dissipative operator
Z and � �= lin�fn � n ≥ 1	 is dense in �, show that the closure of Z is the
generator of a one-parameter contraction semigroup. �

The condition of dissipativity is also useful in relation to the Cauchy problem.

Theorem 8.3.7 Let Z be a dissipative operator with dense domain � in a
Banach space �, and suppose that for all f0 ∈ � the evolution equation

f ′
t = Zft (8.24)

is soluble with solution ft ∈ � for all t > 0. Then this solution is unique, Z

is closable, and its closure is the generator of a one-parameter contraction
semigroup.

Proof. Let ft be a solution of (8.24) and let �t ∈ �∗ satisfy ��t� = 1 and
�ft��t� = �ft� for all t ≥ 0. Then the left derivative of �ft� satisfies

D−�ft� �= lim
h→0+

h−1��ft�−�ft−h�	

≤ lim
h→0+

h−1��ft��t�−Re�ft−h��t�	
= Re�f ′

t ��t�
= Re�Zft��t�
≤ 0


A slight variation of Lemma 1.4.4 now implies that �ft� is monotonically
decreasing.

If ft and gt are two solutions of (8.24) with f0 = g0, then their difference
ht is also a solution with h0 = 0. The above argument shows that ht = 0 for
all t ≥ 0, so the solution of (8.24) is unique. This implies that ft depends
linearly on f0 and that there is a linear contraction Tt such that

ft = Ttf0 (8.25)

for all t ≥ 0 and f0 ∈ �. It follows routinely that Tt is a one-parameter
contraction semigroup.

If B is the generator of Tt then (8.24) and (8.25) imply that B is an extension
of Z. Since � is invariant under Tt it is a core for B by Theorem 6.1.18. In
other words B is the closure of Z. �
The next example shows that one may not weaken the hypothesis of
Theorem 8.3.7 by assuming the solubility of the evolution equation for an
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interval of time which depends upon f ∈ �. This is in contrast with Theo-
rems 7.4.9.

Example 8.3.8 Let � = C�
c �0� 1�, this being dense in L2�0� 1�. The operator

Z defined on � by

�Zf��x� �= −f ′�x�

is dissipative, and for all f ∈ � the evolution equation has solution ft�x� =
f0�x − t� provided 0 ≤ t < �f . In spite of this the closure of Z is not the
generator of a one-parameter semigroup . For if � ∈ C the range of ��I −Z�

is orthogonal to � ∈ L2�0� 1�, where ��x� �= e�x, so ��I −Z� does not have
dense range. In order to obtain a one-parameter semigroup one must enlarge
� so that it provides appropriate information about boundary conditions at 0
and 1. �

Problem 8.3.9 Modify the above example by taking � to be the set of all
functions f ∈ C�
0� 1� such that f�1� = cf�0�. Write down an explicit formula
for the semigroup associated with this choice of Z, and determine the values
of c for which it is a one-parameter contraction semigroup. �

In spite of its great theoretical value, we emphasize that the Hille-Yosida
Theorem 8.3.2 is numerically fragile. An estimate which differs from that
required by an unmeasurably small amount does not imply the existence of a
corresponding one-parameter semigroup .

Theorem 8.3.10 (Hörmander)6 For every � > 0 there exists a reflexive
Banach space � and a closed, densely defined operator A on � such that

(i) Spec�A� ⊆ iR,
(ii) ���I −A�−1� ≤ �1+��/�Re���� for all � � iR,

(iii) A is not the generator of a one-parameter semigroup.

Proof. Given 1 ≤ p ≤ 2, we define the operator A acting in Lp�R� by

Af�x� �= i
d2f

dx2



6 See [Hörmander 1960] for a much more general analysis of Lp multipliers. The proof here is
not original.
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As initial domain we choose Schwartz space �, which is dense in Lp�R�. The
closure of A, which we denote by the same symbol, has resolvents given by
R�f = g� ∗f , where

ĝ���� �= ��− i�2�−1

for all � � iR. If p = 2 the unitarity of the Fourier transform implies
that �R�� ≤ �Re����−1. For p = 1, however, assuming for definiteness that
Re��� > 0, Theorem 2.2.5 yields

�R�� = �g��1 = 1
���1/2

∫ �

0
exp

[−�x�Re��i��1/2	
]

dx


Putting � �= rei� where r > 0 and −�/2 < � < �/2, we get

�R�� = 1
r cos��/2+�/4�

≤ 2
�Re���� 


Interpolation then implies that if 0 < � < 1 and 1/p = � + �1−��/2 then

�R�� ≤ 2�

�Re���� 


By taking � close enough to 0 (or equivalently p close enough to 2) we
achieve the condition (ii).

Suppose next that 1 ≤ p < 2 and that a semigroup Tt on Lp�R� with
generator A does exist. If f ∈ � and ft ∈ � is defined for all t ∈ R by

f̂t��� �= e−i�2t f̂ ���

then ft is differentiable with respect to the Schwartz space topology, and
therefore with respect to the Lp norm topology, with derivative Aft. It follows
by Theorem 6.1.16 that ft = Ttf . Now assume that a > 0 and f̂ ��� �= e−a�2

,
so that f̂t��� = e−�a+it��2

. Explicit calculations of ft and f yield

�f�
p
= �4�a�1/2p−1/2p−1/2p�

�ft�p
= �4��1/2p−1/2p−1/2pa−1/2p�a2 + t2�1/2p−1/4


Hence

�Tt� ≥ �ft�p

�f�
p

= �1+ t2/a2��2−p�/4p


But this diverges as a → 0, so Tt cannot exist as a bounded operator for any
t �= 0. �

The growth properties of one-parameter semigroup s on Hilbert space need
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special treatment, as we explain in Section 10.6. Theorem 8.3.1 can be used
to obtain a variety of related results.

Theorem 8.3.11 Let Tt be a one-parameter semigroup acting on a Banach
space � and suppose that the spectrum of its generator Z is contained
in �z � Re�z� ≤ 0	. Let M � �0��� → 
1��� be a monotonically decreasing
function. Then the bound

�Tt� ≤ inf
�a�a>0	

�M�a�eat	 (8.26)

holds for all t ≥ 0 if and only if

���I −Z�−m� ≤ inf
�a�0<a<�	

�M�a���−a�−m	 (8.27)

for all � > 0 and all m ≥ 1.

Problem 8.3.12 Let Tt be a one-parameter semigroup and assume that N ≥ 1
and � > 0. Prove that

�Tt� ≤ N�1+ t��

for all t ≥ 0 if and only if

�Tt� ≤ M�a�eat

for all t ≥ 0, all a > 0 and constants M�a� which you should find explicitly.
Prove that a similar result only holds for

�Tt� ≤ N�1+ t��

if 0 ≤ � ≤ 1. �

Problem 8.3.13 Find the semigroup and resolvent bounds corresponding to
the choice

M�a� �= 1+a−1

in Theorem 8.3.11. �

Problem 8.3.14 Let Z be a closed operator whose spectrum does not meet
�0���, and suppose that

�R�a�Z�� ≤ 1
a sin���

for all a > 0. Prove that

Spec�Z� ⊆ �z � Arg�z� ≥ �	


Give an example for which one has equality in both equations. �
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8.4 Bounded holomorphic semigroups

We consider semigroups Tz for which z takes complex values in a sector

S� �= �z ∈ C � z �= 0 and �Arg�z�� < �	


We define a bounded holomorphic semigroup Tz on a Banach space � to be
a family of bounded operators parametrized by z ∈ S� for some 0 < � ≤ �/2
and satisfying the following conditions.7

(i) TzTw = Tz+w for all z�w ∈ S�.
(ii) If � > 0 then �Tz� ≤ M� for some M� < � and all z ∈ S�−�.

(iii) Tz is an analytic function of z for all z ∈ S�.
(iv) If f ∈ � and � > 0 then limz→0 Tzf = f provided z remains within

S�−�.

We define the generator Z of Tz by

Zf �= lim
t→0

t−1�Ttf −f��

where t > 0 and Dom�Z� is the set of all f ∈ � for which the limit exists.
Our next two theorems, taken together, characterize the generators of

bounded holomorphic semigroups in terms of properties of their resolvents.

Theorem 8.4.1 If Tz is a bounded holomorphic semigroup then

Spec�Z� ⊆ �w � �Arg�w�� ≥ �+�/2	 
 (8.28)

For all � > 0 there exists a constant N� < � such that

��wI −Z�−1� ≤ N��w�−1 (8.29)

for all w ∈ S�+�/2−�.

Proof. If ��� < �−�, define Vt for t > 0 by

Vt = Tei�t

7 The theory of holomorphic semigroups goes back to the earliest days of the subject, and we
follow the standard approach. See [Hille and Phillips 1957, pp. 383 ff.].
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and let W be the generator of Vt. If f ∈ Dom�W� and f�z� �= Tzf and s > 0
then

VsWf = lim
t→0+

t−1Vs�Vt −1�f

= lim
t→0+

t−1
{
f�ei�s + ei�t�−f�ei�s�

}

= ei�f ′�ei�s�

= ei� lim
t→0+

t−1
{
f�ei�s + t�−f�ei�s�

}

= ei� lim
t→0+

t−1 �Tt�Vsf�−Vsf	

= ei�Z�Vsf�


Therefore Vsf ∈ Dom�Z� and

VsWf = ei�Z�Vsf�

for all s > 0. Letting s → 0 and using the fact that Z is a closed operator we
conclude that f ∈ Dom�Z� and

Wf = ei�Zf


Reversing the argument we find that Dom�Z� = Dom�W� and W = ei�Z


Since �Vt� ≤ M� for all t ≥ 0, it follows by Theorem 8.2.1 that

Spec�W� ⊆ �w � Re�w� ≤ 0	

and

��wI −W�−1� ≤ M��Re�w��−1

for all w such that Re�w� > 0. This implies (8.28) and (8.29). �

Theorem 8.4.2 Let Z be a closed, densely defined operator acting in � with

Spec�Z� ⊆ �w � �Arg�w�� ≥ �+�/2	

where 0 < � ≤ �/2, and suppose also that for all � > 0 there is a real
constant N� such that

��wI −Z�−1� ≤ N��w�−1

for all w ∈ S�−�+�/2. Then Z is the generator of a bounded holomorphic
semigroup on �.
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Proof. We will need to evaluate a number of integrals of the form
∫

�
g�z� dz

where g is an analytic function (often operator-valued) and � � R → S�+�/2 is
a contour such that

��t� �=
{

tei� for all large enough t > 0,
�t�e−i� for all large enough t < 0


We assume that � �= �+�/2 −� and that � > 0 is small enough to ensure
that the integral converges. Cauchy’s theorem will ensure that the integral is
independent of � provided � is small enough. The integral is evaluated by
considering a closed contour �R and letting R → �. The contour �R consists
of the part of � for which �t� ≤ R together with a sector of the circle with
centre 0 and radius R. Sometimes this sector is the part of the circle to the
right of � and sometimes it is the part to the left, but in both cases the integral
around the sector vanishes as R → �.

Our definition of Tt is motivated by the formula

eaz = 1
2�i

∫

�
ezw�w−a�−1 dw
 (8.30)

The convergence of this integral, and of those below, is ensured by the expo-
nential factor in the integrand provided z = rei�, ��� ≤ �−2�, �+�/2− � <

� < � + �/2 and �Arg�a�� ≥ � + �/2. Assuming the same conditions on z

and � we define the bounded operator Tz by

Tzf �= 1
2�i

∫

�
ezw�wI −Z�−1f dw
 (8.31)

We start by proving that these operators satisfy the required bounds. By
Cauchy’s theorem the integral is independent of the particular contour chosen,
subject to the stated constraints. Therefore

Tzf = 1
2�i

∫

�
exp�ei�w	�r−1wI −Z�−1fr−1 dw

and

�Tzf� ≤ 1
2�

N��f�
∫

�
�w−1 exp�ei�w	 dw�

≤ M��f� (8.32)

for some M� < � and all ��� ≤ �−2�.
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We next prove that Tz converge strongly to I as z → 0. If f ∈ Dom�Z� and
z ∈ S�−2� then

∫

�
�wI −Z�−1w−1Zf dw = 0

by Cauchy’s theorem. By combining this with the case a = 0 of (8.30) and
(8.31) we see that if f ∈ Dom�Z� then

�Tzf −f� =
∥
∥
∥
∥

1
2�i

∫

�
�ezw�wI −Z�−1f − ezww−1f	 dw

∥
∥
∥
∥

=
∥
∥
∥
∥

1
2�i

∫

�
ezw�wI −Z�−1w−1Zf dw

∥
∥
∥
∥

=
∥
∥
∥
∥

1
2�i

∫

�
�ezw −1��wI −Z�−1w−1Zf dw

∥
∥
∥
∥

≤ lim
z→0

1
2�

∫

�
�ezw −1� c �w−2 dw� �Zf�

→ 0

as z → 0. We deduce using (8.32) that

lim
z→0

Tzf = f

for all f ∈ �, provided z ∈ S�−2�.
We show that Tz satisfies the semigroup law. If z� z′ ∈ S�−2� and ���′ are

two contours of the above type with �′ outside � then

TzTz′ =
(

1
2�i

)2 ∫

�

∫

�′
ezw+z′w′

�wI −Z�−1�w′I −Z�−1 dw dw′

=
(

1
2�i

)2 ∫

�

∫

�′

ezw+z′w′

w′ −w
��wI −Z�−1 − �w′I −Z�−1	 dw dw′

= 1
2�i

∫

�
e�z+z′�w�wI −Z�−1 dw

= Tz+z′ 


We have finally to identify the generator W of the holomorphic one-parameter
semigroup Tz. If f ∈ Dom�Z� and z ∈ S�−2� then by differentiating under the
integral sign we obtain

d
dz

�Tzf� = 1
2�i

∫

�
ezww�wI −Z�−1f dw

= 1
2�i

∫

�
ezw�f +Z�wI −Z�−1f	 dw
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= 1
2�i

∫

�
ezwZ�wI −Z�−1f dw (8.33)

= TzZf


Therefore Tzf ∈ Dom�W� and WTzf = TzZf . Letting z → 0 and using the
fact that W is closed we deduce that W is an extension of Z. Since �W − I� is
one-one and extends �Z − I�, which has range equal to �, we conclude that
W = Z. �

Problem 8.4.3 Show that condition (iv) in the definition of a bounded holo-
morphic semigroup on page 237 is implied by conditions (i)–(iii) together
with the assumption that

⋃

0<t<�
Ran�Tt�

is dense in �. �

Problem 8.4.4 Let Tz be a holomorphic semigroup defined for all z in the
open sector S�/2 and satisfying

�Tz� ≤ M (8.34)

for all such z. Show that there is a one-parameter group Ut on � such that

UtTz = Tz+it

for all z ∈ S�/2 and all t ∈ R. Show also that

Utf = lim
s↓0

Ts+itf

for all f ∈ � and t ∈ R. �

Example 8.4.5 This is a continuation of Example 6.3.5. We define the oper-
ators Tz on Lp�RN � for Re�z� > 0 and 1 ≤ p < � by Tzf �= kz ∗f where

kz�x� �= �4�z�−N/2e−�x�2/4z


A direct calculation shows that

�kz�1 =
( �z�

Re�z�

)N/2




Corollary 2.2.19 implies that Tz is a bounded operator on Lp�RN � for all p� z in
the stated ranges. One establishes that Tz is a bounded holomorphic semigroup
on each Lp space by adapting the procedure followed in Example 6.3.5. The
generators Zp are consistent as p varies, and in fact Zpf = �f for all f ∈ �.
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Theorem 8.4.1 implies that Spec�Zp� ⊆ �−�� 0� for every p. In order
to prove that Spec�Zp� = �−�� 0� for every p it is sufficient to construct
fn ∈ Dom�Zp� such that

lim
n→�

�Zpfn −�fn�p

�fn�p

= 0

for all � ≤ 0; this proves that the resolvent operator cannot be bounded, if it
exists. We actually construct fn ∈ C�

c �RN � such that

lim
n→�

��fn +���2fn�p

�fn�p

= 0 (8.35)

for all � ∈ RN . Put

fn�x� �= ��x/n�eix·�

where � ∈ C�
c �RN � is not identically zero. A direct calculation shows that

�fn�p
= c1n

N/p for all n > 0, where c1 > 0. Moreover

��fn��x�+���2fn�x� = 2n−1i� · �����x/n�eix·� +n−2�����x/n�eix·�


Therefore

��fn +���2fn�p
≤ c2n

−1������·/n��
p
+ c3n

−2������·/n��
p

= c4n
−1+N/p + c5n

−2+N/p


The formula (8.35) follows. �

Theorem 8.4.6 Let Tz be a bounded holomorphic semigroup acting on � for
z ∈ S�. Then

Tz� ⊆ Dom�Z�

for all z ∈ S�. For every � > 0 there is a constant C� such that

�ZTz� ≤ C��z�−1 (8.36)

for all z ∈ S�−�.

Proof. If � > 0 then there exists c > 0 such that for all z ∈ S�−� the circle
� with centre z and radius c�z� lies inside S�−�/2. If f ∈ � then Tzf is an
analytic function of z, so it lies in the domain of the generator Z. Cauchy’s
integral formula now implies that

ZTzf = d
dz

Tzf = 1
2�i

∫

�

Twf

�w− z�2
dw
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Therefore

�ZTzf� ≤ 1
2�

∫

�

�Twf�
�w− z�2 �dw�

≤ 1
2�

∫

�

M�/2�f�
c2�z�2 �dw�

= M�/2c
−1�z�−1�f��

which yields (8.36) with C� = M�/2c
−1. �

The following is one of many results to the effect that the long time properties
of Ttf may depend upon the choice of f .

Problem 8.4.7 Let Tz be a bounded holomorphic semigroup acting on �.
Prove that

�Ttf� = O�t−n�

as t → � for all f ∈ Ran�Zn�. �

Theorem 8.4.8 Let Tz be a bounded holomorphic semigroup on � with
generator Z. Then Tz is compact for all non-zero z ∈ S� if and only if
R�w�Z� is compact for some (equivalently all) w � Spec�Z�.

Proof. In the forward direction we use Corollary 8.2.2. In the reverse direction
we use Theorem 8.4.6 to write

Tt = ��wI −Z�Tt	R�w�Z�


We then observe that the product of a bounded and a compact operator is
compact. �

Theorem 8.4.9 Let Tt be a one-parameter semigroup on � with generator
Z, satisfying

Tt� ⊆ Dom�Z�

for all t > 0. If

�Tt� ≤ M� �ZTt� ≤ c/t

for some c� M < � and all t > 0, then there exists � > 0 such that Tt may
be extended to a bounded holomorphic semigroup on S�.
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Proof. By Theorem 6.2.9 and its proof we see that Tt is an operator-valued
C� function of t for 0 < t < � with

dn

dtn
Tt = �ZTt/n�

n


Hence ∥
∥
∥
∥

dn

dtn
Tt

∥
∥
∥
∥≤ nncnt−n


An application of Stirling’s formula shows that Tt can be analytically contin-
ued to the disc

�z � �z− t� < e−1c−1t	

by defining

Tz �=
�∑

n=0

�z− t�n

n!
dn

dtn
Tt
 (8.37)

The union of these discs is a sector S�.
We now have to verify that Tz satisfies the conditions (i)–(iv) on page 237

for small enough � > 0. Condition (i) holds by analytic continuation from the
case when z1 and z2 are both real.

If z �= rei� where ��� < � then �z− r� < �r, so

�Tz� ≤ �Tt�+
�∑

n=1

�z− r�n
n! �ZTt/n�

n

≤ M +
�∑

n=1

cn�nnn

n!
≤ N < �

if c�e < 1. This proves condition (ii). Condition (iii) is trivial and condition
(iv) is proved by using Problem 8.4.3. �

Problem 8.4.10 Let Tt be a one-parameter semigroup on � with generator
Z, satisfying Tt� ⊆ Dom�Z� for all t > 0. If

lim sup
t→0

t�ZTt� < �

show that e−�tTt extends analytically to a bounded holomorphic semigroup
on � for all � > 0. �



9
Quantitative bounds on operators

9.1 Pseudospectra

The increasing availability of numerical software such as Matlab since 1990
has provided the stimulus for the investigation of quantitative aspects of oper-
ator theory. Most of the contents of this chapter date from this period. Many
of the theorems have resulted from interactions between pure mathematicians,
applied mathematicians and numerical analysts, and their value can only be
fully appreciated with the help of numerical examples.

The notion of pseudospectra arose as a result of the realization that several
‘pathological’ properties of highly non-self-adjoint operators were closely
related.1 These include the existence of approximate eigenvalues far from the
spectrum; the instability of the spectrum under small perturbations; the anoma-
lous response of systems subject to a periodic driving term; the importance of
resolvent norm estimates in many areas of operator theory, and in particular
in semigroup theory. The connections between these can be demonstrated at
a very general level.

We start by discussing the stability of solutions of the operator equation
Ax−�x = b under perturbations of b and A. The existence of a solution and its
uniqueness are guaranteed by � � Spec�A�, and we have x = −��I −A�−1b.
It is better known to numerical analysts than to pure mathematicians that
this is not the end of the story. Suppose that � � Spec�A� and that b is
slightly altered, or that it is only known to a finite precision. One then has

1 One can only talk about pathology if one knows what constitutes normality. Once one fully
accepts that intuitions about self-adjoint matrices and operators are a very poor guide to
understanding the much greater variability of non-self-adjoint problems, the pathology
disappears. We follow [Trefethen and Embree 2005, Chap. 48] in not trying to give a precise
meaning to the phrase ‘highly non-self-adjoint’, which should really be a measure of the
failure of the spectral theorem and its consequences.

245
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the perturbed equation Ax′ − �x′ = b + r where �r� ≤ �, say. We deduce
immediately that

�x−x′� ≤ ����I −A�−1�
and for this to be small we need to know that ���I −A�−1� is not too big.
Unfortunately for one’s intuition this norm can be very large even if � is
not at all close to the spectrum of A. This phenomenon is commonplace if
dim��� ≥ 30 and can be important for smaller matrices.2

One can also consider the effect of small changes in the operator A, or of
only knowing A to finite precision. Suppose that �B� ≤ � and �A+B�x′ −
�x′ = b. Then

x−x′ = ��I −A−B�−1b− ��I −A�−1b

= ��I −A−B�−1B��I −A�−1b

= ��I −A�−1CB��I −A�−1b

where

C �= �I −B��I −A�−1�−1

exists provided � �= ����I −A�−1� < 1. Assuming this, we obtain

�x−x′� ≤ ���I −A�−1���b�
1−�

�

Once again we can only deduce that x′ is close to x if ���I −A�−1� is not
too big.

The size of the resolvent norm is also relevant when calculating the
response of a system to a periodic driving term.

Example 9.1.1 Consider the evolution equation

f ′�t� = Zf�t�+ ei	ta (9.1)

in a Banach space �, where a ∈ �, 	 is the frequency of the driving term
and Z is the generator of a one-parameter semigroup which is stable in the
sense that limt→+	 �eZtb� = 0 for all b ∈ �. The solution of (9.1) is

f�t� = eZtf�0�+ �ei	t − eZt��i	I −Z�−1a�

If one ignores a transient term which decays as t → +	 one obtains the
steady state response

f�t� = ei	t�i	I −Z�−1a�

2 See [Trefethen and Embree 2005] for a large number of examples providing support for this
assertion.
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We will see that ��i	I −Z�−1� can be very large, and that one can therefore
have a very large response to the driving term, even when i	 is not close to
the spectrum of Z. The moral of this example is that the stability of a driven
system is not controlled by the spectrum of Z but by the size of the resolvent
norms. �

Examples 8.2.6 and 9.1.7 show that knowing the spectrum of an operator
Z provides very little guidance to the behaviour of �eZt� for small t > 0.
In the second case the semigroup norm is very close to 1 for all t ∈ 
0� 1�,
but it is extremely small for t ≥ 4. Section 10.2 explores the relevance of
pseudospectral ideas in this context. Example 10.2.1 presents a matrix Z of
moderate size such that �eZt� grows rapidly for small t > 0 even though it
decays exponentially for large t.

Considerations such as those above motivate one to define the pseudospec-
tra of an operator A to be the collection of sets

Spec��A� �= Spec�A�∪ 
z ∈ C � ��zI −A�−1� > �−1��

parametrized by � > 0. It is clear that the pseudospectra of an operator change
if one replaces the given norm on � by an equivalent norm. However, there
is often a good physical or mathematical reason to choose a particular norm,
and the pseudospectra of an operator with respect to two standard norms are
frequently very similar.

One can also describe the pseudospectra in terms of approximate eigen-
values.

Lemma 9.1.2 If � > 0 and � � Spec�A� then � ∈ Spec��A� if and only if
there exists x ∈ � such that

�Ax−�x� < ��x�� (9.2)

Proof. If ���I −A�−1� > �−1 then there exists a non-zero vector y ∈ � such
that ���I −A�−1y� > �−1�y�. Putting x �= ��I −A�−1y this may be rewritten
in the form (9.2). The converse is similar. �
If A is a normal operator then it follows quickly from the spectral theorem
that

��A− zI�−1� = 
dist�z� Spec�A���−1

but for operators which are far from normal the LHS can be very large
even when the RHS is small; equivalently an approximate eigenvalue � of a
moderately large matrix need not be close to a true eigenvalue. In such circum-
stances, which are commonplace rather than exceptional, the pseudospectra
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contain much more information about the behaviour of a non-self-adjoint
operator A than the spectrum alone. The recent monograph of Trefethen and
Embree provides the first comprehensive account of the subject, and makes
full use of the EigTool software developed by Wright for computing the
pseudospectra of large matrices.3 We do not attempt to compete with this
monograph, but refer to Theorem 14.5.4, which describes the non-self-adjoint
harmonic oscillator from this point of view and contains a diagram of the
associated pseudospectra. The convection-diffusion operator provides an even
simpler illustration of the importance of pseudospectral ideas and is discussed
in Example 9.3.20 and Theorem 9.3.21.

Computations of pseudospectra make use of the following observations.
Let A be an n×n matrix, considered as an operator acting on Cn provided with
the Euclidean norm. Then z ∈ Spec��A� if and only if the smallest singular
value ��z� of zI −A is less than �, or equivalently if and only if the smallest
eigenvalue of

Bz �= �zI −A�∗�zI −A�

is less than �2. The corresponding eigenvector f of Bz satisfies (9.10). The
smallest eigenvalue of Bz may be computed using inverse power iteration or
other methods; a major speedup is obtained by first reducing A to triangular
form with respect to a suitable choice of orthonormal basis. One finally plots
the level curves of ��z� as a function of z within a chosen region of the
complex plane.

We discuss some examples that show that Spec��A� may be a much larger
set than Spec�A� even for very small � > 0.

Let a� b be non-orthogonal vectors of norm 1 in a Hilbert space � and put

Px �= �x�b

�a�b
 a

for all x ∈ � . It is immediate that P2 = P and Spec�P� = 
0� 1�. Therefore

�zI −P�−1 = �z−1�−1P + z−1�I −P��

If a = b then P = P∗ and z ∈ Spec��P� if and only if

dist�z� Spec�P�� < ��

The situation when a� b are nearly orthogonal is quite different.

Problem 9.1.3 Find an explicit formula for ��zI − P�−1� when a �= b, and
sketch the boundary of Spec��P� when � > 0 is small but a and b are nearly

3 See [Trefethen and Embree 2005]. EigTool is available at [Wright 2002].
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orthogonal. Compute the contours 
z � ��zI − P�−1� = �� numerically for
various � > 0 when � = C2. �

Example 9.1.4 We consider the standard n×n Jordan matrix Jn defined by

�Jn�r�s �=
{

1 if s = r +1,
0 otherwise.

The resolvent norm is most easily computed if one uses the l1 norm on Cn.
Starting from the formula

��zI − Jn�
−1�r�s =

{
zr−s−1 if r ≤ s,
0 otherwise,

we obtain

��zI − Jn�
−1�1 = �z�−n −1

1−�z� �

This diverges at an exponential rate as n → 	 for every z satisfying �z� < 1.
One says that the pseudospectra fill up the unit circle at an exponential rate
even though Spec�Jn� = 
0� for every n. �

Problem 9.1.5 Prove that if one uses the l2 norm on Cn then ��zI − J�−1�
once again diverges at an exponential rate as n → 	 for every z satisfying
�z� < 1. �

Problem 9.1.6 Let V denote the Volterra integral operator

�Vf��x� �=
∫ x

0
f�y� dy

acting on L2�0� 1�. Prove that Spec�V� = 
0� by writing down the explicit
solution f of Vf − zf = g for every g ∈ L2�0� 1� and z �= 0.

If z �= 0 define fz�x� �= ex/z. Calculate the size of

�Vfz − zfz�/�fz�
and use this to obtain bounds on the pseudospectra Spec��V� for every
� > 0. �

Our definition of pseudospectra applies equally well to unbounded linear
operators. In that case the difference between the spectrum and the pseu-
dospectra can be even sharper, because the spectrum of such an operator can
be empty.
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Example 9.1.7 The evolution equation for the Airy operator

�Af��x� �= f ′′�x�+ ixf�x� (9.3)

acting in L2�R� can be solved explicitly. We take the domain of A to be the
Schwartz space �. Using the Fourier transform � and putting Â �= �A� −1,
a direct calculation yields

�Âg���� = −g′���−�2g���

for all g ∈ �. One may verify directly that the evolution equation g′
t �= Âgt

has the solution gt �= T̂tg0 for all t ≥ 0, where

�T̂tg���� �= exp
(−�2t +�t2 − t3/3

)
g�� − t�

= exp
(−t�� − t/2�2 − t3/12

)
g�� − t� (9.4)

for all g ∈ �. One sees immediately that T̂t are bounded operators on L2�R�

for all t ≥ 0 and that (9.4) defines a one-parameter semigroup on L2�R�. The
formula

�T̂t� = e−t3/12

implies that the spectrum of the generator Â is empty by Theorem 8.2.1: the
constant a of that theorem can be chosen arbitrarily large and negative.

The results can now all be transferred to the original problem by putting
Tt �= � −1T̂t� . �

Problem 9.1.8 Use Theorem 6.1.18 to prove that the generator Z of Tt is the
closure of A; in other words � is a core for Z. �

Problem 9.1.9 Use the formula (9.4) and Fourier transforms to prove that

�Ttf��x� =
∫

R
K�t� x� y�f�y� dy

for all f ∈ L2�R�, where

K�t� x� y� �= �4�t�−1/2 exp
(

− �x−y�2

4t
+ i

�x−y�t

2
− t3

12
+ iyt

)

� �

Although the Airy operator (9.3) has empty spectrum, it has a large, explicit
family of approximate eigenfunctions. It is best to carry out the calculations
using Â, but the conclusions may all be restated in terms of A. For every
z ∈ C, Âg = zg has the solution

gz��� �= exp
(−�3/3− z�

)
�
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This does not lie in L2�R�, but if Re�z� = −a � 0 we may replace it by the
approximate eigenfunction

hz��� �=
{

exp
(−�3/3− z�

)
if � ≥ 0,

exp �−z�� if � < 0 �

One sees immediately that hz ∈ L2�R� ∩ C1�R� and that �hz���� takes its
maximum value at � = √

a, with

�hz�
√

a�� = exp
(
2a3/2/3

)
�

Problem 9.1.10 Find an asymptotic formula for

�Âhz − zhz�/�hz�
as Re�z� → −	. Also prove that ��zI − Â�−1� does not depend upon the
imaginary part of z. �

9.2 Generalized spectra and pseudospectra

The standard definition of pseudospectra starts with a closed linear operator
and defines the set Spec��A� for all � > 0 by

Spec��A� �= Spec�A�∪ 
z ∈ C � ��zI −A�−1� > �−1��

In this section we take a more general point of view, which has advantages in a
wide range of applications. Polynomial eigenvalue problems, for example, lie
at the heart of many dynamical problems concerning engineering structures,
and pose a continuing source of new challenges for engineers. Such problems
also arise as a result of efforts to reduce the computational difficulty of linear
eigenvalue equations, as we will see in examples below.

The standard definitions of spectrum and of pseudospectra are obtained
from the theory below by putting � = C and A��� = �I − A. Let � be a
parameter space and let 
A�����∈� be a family of closed operators acting
from a Banach space �1 to a Banach space �2. We define the spectrum of
the family to be the set

Spec�A�·�� �= 
� ∈ � � A��� is not invertible��

As usual invertibility means that A��� maps Dom�A���� one-one onto �2 with
a bounded inverse.4 One often refers to the above as non-linear eigenvalue

4 A family of operators depending non-linearly on one or more parameters is often called an
operator pencil. The spectral theory of polynomial operator pencils is the main topic in
[Markus 1988], which contains an English translation of the pioneering 1951 article of
Keldysh on the subject. For further information see [Gohberg et al. 1983] and
[Tisseur and Meerbergen 2001].
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problems, meaning that they are non-linear in the eigenvalue parameter. In
the case of polynomial pencils of operators one puts � = C and

A�z� �=
n∑

r=0

Arz
r �

This includes the linear eigenvalue problem Af = zBf , where A� B ��1 →�2

are linear operators and z is a complex parameter. If B is invertible then the
eigenvalue problem is equivalent to B−1Af = zf , or to B−1/2AB−1/2g = zg if
B is self-adjoint, positive and invertible. If neither A nor B is invertible then
the problem poses major difficulties.

Problem 9.2.15 Prove that if

A�z� �= z2I +A1z+A2 = �zI −B1��zI −B2�

are n×n matrices then

Spec�A�·�� = Spec�B1�∪Spec�B2�� �

Example 9.2.2 Quadratic pencils of operators arise naturally in the study of
an abstract wave equation.6 Given operators A� B on some space � one seeks
solutions of an equation of the form

�2f

�t2
+B

�f

�t
+Af = 0

that are of the form ft �= ektg. Assuming that suitable technical conditions
are satisfied this leads one directly to the non-linear eigenvalue equation

k2g +kBg +Ag = 0� �

Example 9.2.3 The following method of simplifying ‘matrix’ eigenvalue
problems is well established. Suppose that � �= �0 ⊕�1, where we assume
for simplicity that �1 is finite-dimensional. Let us define L � � → � by

L �=
(

A B

C D

)

5 This method of finding the spectrum of a quadratic matrix pencil depends on producing a
suitable factorization, which is often far from easy. See [Gohberg et al. 1983, Markus 1988].

6 The review of [Tisseur and Meerbergen 2001] on quadratic eigenvalue problems starts by
discussing the uncontrolled wobbling of the Millennium Bridge in London when it was
opened in June 2000.
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where A� B� C� D are bounded operators between the appropriate spaces.
Assume that

S �= Spec�A� = EssSpec�A� ⊆ R�

The fact that L is a finite rank perturbation of

L0 �=
(

A 0
0 0

)

implies that EssSpec�L� = S. A simple algebraic manipulation implies that the
eigenvalues of L in C\S are precisely those z for which the matrix equation

C�zI −A�−1Bg +Dg − zg = 0

has a non-zero solution g ∈ �1. In other words the linear eigenvalue problem
for L can be reduced to a non-linear eigenvalue problem for the analytic
family of matrices

M�z� �= C�zI −A�−1B+D− zI

where z ∈ C\S. If �1 is one-dimensional then

f�z� �= C�zI −A�−1B+D− z

is a complex-valued analytic function defined on C\S, whose zeros are the
eigenvalues of L. Compare Lemma 11.2.9. �

Example 9.2.4 Non-linear eigenvalue problems arise when transforming dif-
ferential operators into a form which is amenable to computation. We start
by describing the simplest possible example, without discussing the technical
issues in any detail.7

Consider the eigenvalue equation

−f ′′�x�+V�x�f�x� = −�2f�x� (9.5)

on R, where Re��� > 0 and V is a complex-valued, bounded function sat-
isfying V�x� = 0 if �x� > a. If f ∈ L2�R� is a solution to this equation then
there exist constants c± such that f�x� = c+e−�x if x ≥ a and f�x� = c−e�x if

7 This standard technique can be applied to both eigenvalue and resonance problems in more
than one space dimension, and does not depend on assuming that the differential operator is
self-adjoint or that � �= −�2 is real. See [Aslanyan and Davies 2001] for references to the
literature applying the radiation condition to waveguides.
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x ≤ −a. Therefore solving the linear eigenvalue problem in L2�R� is equiv-
alent to solving the non-linear system of equations

−f ′′�x�+V�x�f�x�+�2f�x� = 0� (9.6)

f ′�a�+�f�a� = 0� (9.7)

f ′�−a�−�f�−a� = 0� (9.8)

in L2�−a�a�, subject to the ‘radiation condition’ Re��� > 0.
The above procedure is exact and rigorous. It should be contrasted with

the more obvious procedure of imposing Dirichlet boundary conditions at ±n

and finding the eigenvalues of the associated operator on L2�−n�n� for large
enough values of n. Although linear, this method is much less accurate than
using the radiation condition.

The above equations may also have solutions satisfying Re��� < 0. The
numbers � �= −�2 are not then eigenvalues, and they are called resonances.
If Im��� is small then � is associated with a physical state that is nearly
stationary but eventually decays.

Numerically one might solve the initial value problem (9.6) subject to (9.8)
by the shooting method, and then evaluate

F��� �= f ′�a�+�f�a��

On letting � vary within C, the points at which F��� vanishes are eigenvalues
of (9.5).

If one has reason to expect that the eigenfunction takes its maximum value
near x = 0 then the following modification of the above method is usually
more accurate. One finds solutions f± of (9.6) that satisfy the boundary
conditions at ±a by the shooting method. The eigenvalues are then the values
of � for which

G��� �= f+�0�f ′
−�0�−f ′

+�0�f−�0�

vanishes.
If the potential V is not of compact support then one starts by determining

analytically the leading asymptotics of the solutions f± of (9.5) that decay
at ±	 respectively. These functions determine the boundary conditions that
should be imposed at the points ±a, where a is large enough to ensure that
each eigenfunction is close to its asymptotic form. One then proceeds as
before.

All of the above procedures can, by their nature, only provide approx-
imate solutions to the eigenvalue equation. Proving that these are close to
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true solutions can be a major problem if the differential operator is not
self-adjoint. �

Problem 9.2.5 Find a procedure for computing the spectrum of a polynomial
pencil of n×n matrices, and obtain an upper bound on the number of points
in the spectrum. �

In applications of the following theorem, A is often a differential operator.
The theorem is still valid if B is relatively bounded with respect to A with
relative bound 0 in the sense of Section 11.1. Even if A and B are self-adjoint
operators on a Hilbert space, the spectrum of the pencil C�·� is often complex,
because the operator X of the theorem is non-self-adjoint.

Theorem 9.2.6 Let A be a closed operator acting in the Banach space �
and let B be bounded. If z ∈ C then the operator

C�z� �= A+Bz+ z2I

is invertible if and only if z � Spec�X�, where X is the closed operator on
�⊕� with the block matrix

X �=
(−B I

−A 0

)

�

Proof. The proof that C�z� and X − zI are closed for all z ∈ C is routine.
Moreover Ran�C�z�−1� = Dom�A� provided the inverse exists. The case z = 0
of the theorem is trivial, so we assume that z �= 0. A direct algebraic calculation
shows that

�X − zI�−1 =
(−zC�z�−1 −C�z�−1

AC�z�−1 −�B+ zI�C�z�−1

)

and that the inverse on the LHS exists iff C�z�−1 exists. �

We now turn to the study of the pseudospectra of a family of operators.8 For
each � > 0 we define the pseudospectra by

Spec��A�·�� �= Spec�A�·��∪S (9.9)

where S is the set of � ∈ � for which there exists an ‘approximate eigenvector’
f ∈ Dom�A���� satisfying �A���f� < ��f�. Other equivalent definitions are
given in Theorem 9.2.7.

8 The definition of pseudospectra given in (9.9) and the lemmas below are taken from
[Davies 2005D]; a slightly different definition may be found in [Tisseur and Higham 2001].
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Theorem 9.2.7 The following three conditions on an operator family

A�����∈� are equivalent.

(i) � ∈ Spec��A�·��.

(ii) There exists a bounded operator D � �1 → �2 such that �D� < � and
A���+D is not invertible.

(iii) Either � ∈ Spec�A�·�� or �A���−1� > �−1.

Proof. (i)⇒(ii) If � ∈ Spec�A�·�� we may put D = 0. Otherwise let f ∈
Dom�A����, �f� = 1 and �A���f� < �. Let � ∈ �∗

1 satisfy ��� = 1 and
��f� = 1. Then define the rank one operator D � �1 → �2 by

Dg �= −��g�A���f�

We see immediately that �D� < � and �A���+D�f = 0.

(ii)⇒(iii) We derive a contradiction from the assumption that � � Spec
�A�·�� and �A���−1� ≤ �−1. Let B ��2 →�1 be the bounded operator defined
by the norm convergent series

B �=
	∑

n=0

A���−1
(−DA���−1

)n

= A���−1
(
1+DA���−1

)−1
�

It is immediate from these formulae that B is one-one with range equal to
Dom�A����. We also see that

B
(
1+DA���−1

)
f = A���−1f

for all f ∈ �2. Putting g �= A���−1f we conclude that

B�A���+D�g = g

for all g ∈ Dom�A����. The proof that

�A���+D�Bh = h

for all h ∈ �2 is similar. Hence A���+D is invertible, with inverse B.

(iii)⇒(i) We assume for non-triviality that � � Spec�A�·��. There exists g ∈�2

such that �A���−1g� > �−1�g�. Putting f �= A���−1g we see that �A���f� <

��f�. �
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Theorem 9.2.8 Suppose that U is an open set in the complex plane and that
A�·� is an operator-valued family on U , which is analytic in the sense that
A�z�−1 exists and is a bounded, operator-valued, analytic function of z on U .
Then

��z� �= �A�z�−1�−1

is continuous and has no local minimum in U .

Proof. It follows immediately from the assumptions and Section 1.4 that
��z� �= �A�z�−1� is a continuous function of z. The formula

��z� = sup
Re�A�z�−1f��
 � f ∈ ��� ∈ �∗��f� = ��� = 1�

implies that � is subharmonic. Such functions have no local maxima. �

Example 9.2.9 If p is a (complex-valued) polynomial of degree n and � > 0
then

Spec��p�·�� �= 
z ∈ C � �p�z�� < ��

is the union of m ≤ n disjoint open connected sets U1� � � � �Um, each of which
contains at least one root of p�z� = 0. Some of these may be very small
neighbourhoods of individual roots but others may be large irregular regions
containing several roots. If � is the maximum precision to which computations
can be made then one can only say that there is a root of the polynomial in
an open region V if Ur ⊆ V for some r. The example p�z� �= z20 − 10−20

shows that accurate numerical evaluation of the roots of a polynomial may
be infeasible if the coefficients are only given numerically.9 �

Theorem 9.2.10 Suppose that ���d� is a metric space and that

A��� �= B+D���

for all � ∈ �, where B is a closed operator and D��� are bounded operators
satisfying

�D���−D���� ≤ d�����

for all ��� ∈ �. Then

���� �=
{

0 if � ∈ Spec�A�·��,

�A���−1�−1
otherwise,

9 Pseudospectral questions associated with ordinary polynomials may lead to extraordinarily
deep mathematics, as can be seen from [Anderson and Eiderman 2006].
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satisfies

�����−����� ≤ d�����

for all ��� ∈ �.

Proof. If ��� � Spec�A�·�� then

A���−1 −A���−1 = A���−1 �D���−D����A���−1�

This implies
∣
∣
∣�A���−1�−�A���−1�

∣
∣
∣≤ d������A���−1��A���−1�

which yields the required result immediately.
If both � and � lie in Spec�A�·�� then there is nothing to prove, so suppose

that � ∈ Spec�A�·�� and � � Spec�A�·��. If ���� ≥ � then �A���−1� ≤ �−1, so
A���+D is invertible for all D such that �D� < � by Theorem 9.2.7. Since

A��� = A���+ �D���−D����

is assumed not to be invertible, we deduce that d����� ≥ �. Hence d����� < �

implies ���� < �. �

Two similar families of operators always have the same spectra, but their
pseudospectra may be very different, unless the condition number

��T� �= �T��T−1�
of the relevant operator T is fairly close to 1.

Lemma 9.2.11 Let T be a bounded invertible operator on � and put

Ã��� �= TA���T−1�

Then

Spec�A�·�� = Spec�Ã�·��
and

Spec�/��A�·�� ⊆ Spec��Ã�·�� ⊆ Spec���A�·��
for all � > 0 where � ≥ 1 is the condition number of T .

We omit the proof, which is elementary.
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Problem 9.2.12 Let A be a bounded, invertible operator on a Banach space
�. Prove that if ��� are two points in Spec�A� then

��A�−1 ≤ ��/�� ≤ ��A��

Prove that these bounds cannot be improved if � is a Hilbert space and A is
normal, i.e. AA∗ = A∗A. �

We now return to the study of a single operator. By definition the pseudospectra
of a closed operator A acting in a Banach space � are the pseudospectra of
the family A�z� �= zI −A. Each subset Spec��A� of C is the union of Spec�A�

and


z ∈ C � �Af − zf� < ��f� for some f ∈ Dom�A��� (9.10)

Theorem 9.2.13 The following three conditions on a closed operator A are
equivalent.

(i) z ∈ Spec��A�.
(ii) There exists a bounded operator D such that �D� < � and z ∈ Spec�A+D�.

(iii) Either z ∈ Spec�A� or �R�z�A�� > �−1.

Proof. See Theorem 9.2.7. �

Example 9.2.14 By applying the above theorem to Example 9.1.4 one deduces
that there must exist very small perturbations of the Jordan matrix Jn whose
spectrum is far from 
0�.10 This is confirmed in Figure 9.1, which shows the
eigenvalues of Jn +�B where n �= 100, � �= 10−20 and

Br�s �=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if r = n and s = 1,
−2 if r = n and s = 2,

3 if r = n−1 and s = 1,
5 if r = n−1 and s = 2,
0 otherwise.

�

At a theoretical level the study of pseudospectra is equivalent to determining
the behaviour of the function

��z� �=
{

0 if z ∈ Spec�A�,

�R�z�A��−1
otherwise.

10 The spectrum of such matrices has been investigated in [Davies and Hager 2006], where it is
shown that the spectrum of Jn plus a small perturbation typically concentrates close to a
certain circle, with the exception of a few eigenvalues inside it.
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Figure 9.1: Spectrum of the matrix A of Example 9.2.14

Theorem 9.2.15 The function � satisfies

���z�−��w�� ≤ �z−w�
for all z�w ∈ C. It has no local minima in the complement of Spec�A�.

Proof. This follows directly from Theorems 9.2.8 and 9.2.10. �

The following theorem may be used two ways. If one only knows an operator
A to within an error � > 0 then its pseudospectra Spec��A� do not have any
significance for � < �, although they are numerically stable for substantially
larger �. Conversely if one is only interested in the shape of the pseudospectra
of A for � > �, one may add any perturbation of norm significantly less than
� to A before carrying out the computation.

Theorem 9.2.16 Let A1� A2 be two bounded operators on � satisfying
�A1 −A2� < �. If we put

�r�z� �=
{

0 if z ∈ Spec�Ar�,

�R�z�Ar��
−1

otherwise�
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for r = 1� 2 then

��1�z�−�2�z�� ≤ �

for all z ∈ C.

Proof. If z ∈ Spec�A1� or z ∈ Spec�A2� then the theorem follows directly from
Theorem 9.2.13. If neither holds then we use the formula

R�z�A1�−R�z�A2� = R�z�A1��A1 −A2�R�z�A2�

to obtain

� �R�z�A1��−�R�z�A2�� � ≤ �R�z�A1�−R�z�A2��
≤ �R�z�A1����A1 −A2���R�z�A2�� �

which is equivalent to the stated estimate. �

Either Corollary 8.1.4 or Theorem 9.2.15 implies that the pseudospectra of a
closed operator A satisfy

Spec��A� ⊇ 
z � dist
z� Spec�A�� < ��

for all � > 0. Bounds in the reverse direction sometimes exist, but the constants
involved are frequently so large that they are not useful. We start with a
positive result.

Theorem 9.2.17 Let A and S be bounded operators on the Hilbert space � .
If S is invertible and N �= SAS−1 is normal, then

Spec��A� ⊆ 
z � dist�z� Spec�A�� < ���S��

where ��S� is the condition number of S.

Proof. If N is normal then it has the same spectrum as A and

Spec��N� = 
z � dist�z� Spec�N�� < ���

The proof is completed by applying Lemma 9.2.11. �

Sometimes one wishes to restrict the possible perturbations in the definition of
generalized pseudospectra on physical or mathematical grounds; for example
one might only be interested in perturbations which preserve some property
of the original operator family. If � is some class of perturbation operators
with its own norm ��� · ��� then one can define the structured pseudospectra

Spec����A�·�� �= 
� ∈ � � ∃D ∈ � � ���D��� < �

and A���+D is not invertible.��
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The choice of � and ��� · ��� depend heavily upon the context. One of the
most obvious choices is to restrict attention to perturbations that are real (i.e.
have real entries in the case of matrices). Examples demonstrate that even this
change can have dramatic effects on the shape of the pseudospectral regions.11

The following theorem provides a procedure for computing structured
pseudospectra. We suppose that A is a closed operator acting in a Banach
space �, and that B � � → � , C � � → � are two given bounded operators.
We also let K denote a generic bounded operator from � to �. The structured
pseudospectra, or spectral value sets, are defined by

��A�B�C��� �= ⋃


K��K�<��

Spec�A+CKB��

Theorem 9.2.18 Under the above assumptions we have

��A�B�C��� = Spec�A�∪ 
z � �BR�z�A�C� > �−1��

Proof. By putting K �= 0 one sees that

Spec�A� ⊆ ��A�B�C���

for all � > 0. If z � Spec�A� then the formula

�zI −A−CKB�−1 = R�z�A��I −CKBR�z�A��−1

shows that z � ��A�B�C��� if and only if 1 � Spec�CKBR�z�A�� for all K

with �K� < �. This is equivalent to 1 � Spec�KBR�z�A�C� for all such K,
by an adaptation of Problem 1.2.5, and hence to �BR�z�A�C� ≤ �−1. �

The following establishes a connection between pseudospectra and the norms
of the spectral projections.

Theorem 9.2.19 Let A be a closed operator acting in the Banach space �.
Suppose that � is an isolated point of Spec�A� and that P is the corresponding
spectral projection P. Let � be a Jordan curve enclosing the point � and no
other point of Spec�A�, and suppose that it is a pseudospectral contour in
the sense that �R�z�A�� = a for all z on �. Then

�P� ≤ a���
2�

�

where ��� is the length of �.

11 See [Trefethen and Embree 2005, Chap. 50], [Hinrichsen and Pritchard 1992] and
[Hinrichsen and Pritchard 2005] for further information about structured pseudospectra and
their applications to control theory.
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If Af = �f for all f ∈ Ran�P� (e.g. the Jordan form of A restricted to
Ran�P� is trivial) then

�P� = lim
z→�

�z−���R�z�A���

Proof. The first statement is obtained by a routine estimate of the RHS of the
formula

P = 1
2�i

∫

�
R�z�A� dz�

proved in Theorem 1.5.4.
Under the further hypothesis of the theorem we have

R�z�A� = P�z−��−1 + �I −P�R�z�A��

This implies

lim
z→�

�z−��R�z�A� = P (9.11)

because

lim
z→�

�I −P�R�z�A� = R���A′��I −P�

where A′ is the restriction of A to �I − P��. Equation (9.11) implies the
second statement of the theorem. �

The following is a partial converse in finite dimensions. Its usefulness is
limited by the fact that the constant c often increases very rapidly (e.g.
exponentially) with the dimension.

Problem 9.2.20 Prove that if � = CN and each spectral projection Pn of A

satisfy �Pn� ≤ c and APn = �nPn then

�R�z�A�� ≤ cN
dist�z� Spec�A���−1

for all z � Spec�A�. �

Problem 9.2.21 Prove that the n×n matrix A is normal if and only if

�R�z�A�� = 
dist�z� Spec�A���−1

for all z � Spec�A�. �

Computations of the norms of the spectral projections of randomly generated,
non-self-adjoint matrices show that they are typically very large. The rate at
which the norms increase with the dimension of the matrix depends heavily
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upon the class of random matrices considered, but such results cast a new
light on the theorem that almost every matrix is diagonalizable. This is now
a highly developed field, in which many theoretical results and numerical
experiments have been published.12

Problem 9.2.22 Calculate the eigenvectors and then the norms of the spectral
projections of the N ×N matrix A defined by

Ar�s �=
⎧
⎨

⎩

1 if r = s −1,
2−N if r = N and s = 1,
0 otherwise. �

The results in this section should not lead one to believe that the pseudospectra
of an operator A control all other quantities of interest. Ransford has shown
that for any � > 0, � > 0 and k ≥ 2 there exist n×n matrices A and B such
that

�R�z�A�� = �R�z�B��
for all z ∈ C, although �Ak� = � and �Bk� = �. One may take n �= 2k+3.13

9.3 The numerical range

If A is a bounded operator on a Banach space � then Theorem 1.2.11 implies
that

Spec��A� ⊆ 
z � �z� < �A�+���

Lemma 9.3.14 below provides a much stronger bound on Spec��A� in the
Hilbert space context. We define the numerical range Num�A� of a possibly
unbounded operator A acting in a Hilbert space � by

Num�A� �= 
�Af�f
 � f ∈ Dom�A� and �f� = 1��

In this section and the next we introduce a variety of different sets associated
with an operator. Some of the inclusions between these are summarized in
the diagram on page 281.

12 See [Trefethen and Embree 2005, Chaps 35–38] for a survey of current results from the
pseudospectral point of view.

13 Ransford also has counterexamples to a number of other conjectures of this type in
[Ransford 2006].
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Theorem 9.3.1 (Toeplitz-Hausdorff) The numerical range of an operator A

acting in a Hilbert space is a convex set. If A is bounded then

Spec�A� ⊆ Num�A� ⊆ 
z � �z� ≤ �A��

where Num stands for the closure of the numerical range.

Proof. Upon replacing A by �A + �I for suitable �� � ∈ C, the proof of
convexity reduces to the following claim: if �f� = �g� = 1 and �Af�f
 = 0,
�Ag�g
 = 1, then for all � ∈ �0� 1� there exists h ∈ lin
f� g� such that �h� = 1
and �Ah�h
 = �.

If �� s ∈ R and k��s �= f + sei�g then k��s �= 0 and

�Ak��s� k��s
 = c�s + s2

where

c� �= ei��Ag�f
+ e−i��Af�g
�
The identity c� = −c0 implies by the intermediate value theorem that there
exists � ∈ 
0��� such that c� is real. For this choice of � the real-valued
function

F�s� �= �Ak��s� k��s
/�k��s�
2

satisfies F�0� = 0 and lims→+	 F�s� = 1. It must therefore take the value � for
some s ∈ �0�	� by the intermediate value theorem. We put h �= k��s/�k��s�
for this choice of s to complete the proof of convexity.

If z ∈ Spec�A� then Lemma 1.2.13 states that either there exists a sequence
fn ∈ � such that �fn� = 1 and �Afn −zfn� → 0, or there exists f ∈ � such
that �f� = 1 and A∗f = zf . In the first case it follows that �Afn� fn
 → z

and hence z ∈ Num�A�. In the second case �Af�f
 = z so z ∈ Num�A�.
The final inclusion of the theorem is elementary. �

The proof of the above theorem reduces to proving it for an arbitrary 2 × 2
matrix. In this case one can actually say much more.

Problem 9.3.2 Prove that the numerical range of a 2 × 2 matrix consists of
the boundary and interior of a (possibly degenerate) ellipse. Prove that the
numerical range of an n×n matrix is always compact and give an example
of a bounded operator A whose numerical range is not closed. �

If P is the orthogonal projection onto a closed subspace � of a Hilbert
space � we call PAP�� the truncation of A to �. An enormous number of
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numerical computations involve truncating an operator to a large but finite-
dimensional subspace, constructed using finite element or other methods, and
then proving, or merely hoping, that the truncation provides useful spectral
information about the original operator.14 The next two results state that the
numerical range is stable under perturbation and truncation. The spectrum is
not so well behaved in either respect.15

Problem 9.3.3 Prove that if A and B are bounded operators on � and
�A−B� < � then

Num�A� ⊆ 
z � dist�z� Num�B�� < ��

and vice versa. �

Theorem 9.3.4 Let A be a bounded operator on the Hilbert space � and let
�n be an increasing sequence of closed subspaces of � with dense union. If
An is the truncation of A to �n then

Spec�An� ⊆ Num�An� ⊆ Num�A�

for all n, and Num�An� is an increasing sequence of sets whose union is
dense in Num�A�.

Proof. The first inclusion was proved in Theorem 9.3.1. The second follows
from

Num�An� = 
�Af�f
 � f ∈ �n and �f� = 1�

⊆ 
�Af�f
 � f ∈ � and �f� = 1�

= Num�A��

The convergence of the sets Num�An� to Num�A� in the stated sense follows
from the formula

lim
n→	

�APnf�Pnf

�Pnf�2 = �Af�f


�f�2

for all non-zero f ∈ � . �

14 This hope is not always justified even for self-adjoint operators. If the operator has a gap in
its essential spectrum the truncation regularly has a large number of spurious eigenvalues in
the gap. See [Davies and Plum 2004] for methods of avoiding this pathology, called spectral
pollution. We will see that the situation for non-self-adjoint operators is much worse.

15 See [Gustafson and Rao 1997] for a further discussion of the numerical range from the point
of view of both functional and numerical analysis.
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Problem 9.3.5 Use the spectral theorem to prove that if A is a normal operator
on a Hilbert space then Num�A� is the closed convex hull of Spec�A�. �

Problem 9.3.6 Use the spectral theorem to prove that if U is a unitary
operator on a Hilbert space then

Spec�U� = Num�U�∩ 
z � �z� = 1�� �

Example 9.3.7 Let A be the convolution operator A�f� �= a ∗ f on l2�Z�,
where

an �=
⎧
⎨

⎩

2 if n = 1,
1 if n = 5,
0 otherwise.

The spectrum of A is shown in Figure 9.2. If one truncates this operator to the
space of all functions with support in 
−n� � � � � n� then one obtains a strictly
upper triangular matrix An. Although Spec�An� = 
0� for all n, the numerical

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 9.2: Spectrum of the operator A of Example 9.3.7
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range of An converges to that of A by Theorem 9.3.4. This is the convex hull
of the spectrum of A by Problem 9.3.5. �

We need a result from convexity theory, which can be extended to infinite
dimensions using the Hahn-Banach theorem.

Proposition 9.3.8 (separation theorem) If K is a compact convex set in
Rn and a � K then there exists a linear functional � � Rn → R such that
��a� > max
��x� � x ∈ K�.

Problem 9.3.9 If K is a compact convex set in Rn and a � K prove that there
is a unique point k ∈ K such that

�a−k� = dist�a�K��

where � · � is the Euclidean norm. Also prove that

K� �= 
x ∈ Rn � dist�x�K� < ��

is open and convex. �

The numerical range of operators can often be determined, or at least esti-
mated, with the aid of the following theorem. An application of the ideas in
the theorem to Schrödinger operators is described in Section 14.2. One can
also determine the numerical range of certain pseudodifferential operators in
the semi-classical limit; see Theorems 14.6.8 and 14.6.12.

Theorem 9.3.10 If A is a bounded operator on � and � ∈ 
−����, put
�� �= max Spec�B�� where B� �= 1

2 �e−i�A+ ei�A∗� = B∗
� . Then

Num�A� = ⋂

�∈
−����

H�

where the half-space H� is defined by

H� = 
z � Re�e−i�z� ≤ ����

Proof. If �f� = 1 and z �= �Af�f
 then

�� ≥ �B�f� f
 = 1
2 �e−i�z+ ei�z� = Re�e−i�z��

Therefore z ∈ H� for all � ∈ 
−����.
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Conversely suppose that z � Num�A�. Proposition 9.3.8 implies that there
exists � ∈ 
−���� such that

Re�e−i�z� > max
Re�e−i�w� � w ∈ Num�A��

= sup
Re�e−i�w� � w = �Af�f
 and �f� = 1�

= sup
�B�f� f
 � �f� = 1�

= ���

Therefore z � H�. �

Note The above idea may be implemented numerically if A is a large n×
n matrix. In that case �� is the largest eigenvalue of B�, and there are
efficient algorithms for computing this. If x� is a normalized eigenvector of
B� associated with the eigenvalue �� then z� �= �Ax�� x�
 lies on the boundary
of Num�A�. Generically z� traces out the boundary of Num�A� as � varies in

−����, but if the boundary contains a straight line segment the situation is
more complicated.

Example 9.3.11 Let Jn be the usual n×n Jordan matrix:

�Jn�r�s �=
{

1 if s = r +1,
0 otherwise.

If � ∈ R and we define v� ∈ Cn by v��r �= n−1/2eir�, then a direct calculation
shows that

�Jnv�� v�
 = n−1
n

ei��

Using the convexity of Num�A� and the fact that �Jn� = 1 we deduce that


z � �z� ≤ �n−1�/n� ⊆ Num�Jn� ⊆ 
z � �z� ≤ 1��

This shows that Num�Jn� is very different from Spec�Jn� = 
0�. It may be
explained by the extreme numerical instability of the spectrum of Jn under
perturbations. �

Problem 9.3.12 Use the ideas in Theorem 9.3.10 to determine the numerical
range of the Jordan matrix Jn exactly. �

Example 9.3.13 The numerical range of the Volterra operator

�Af��x� �=
∫ x

0
f�y� dy
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acting on L2�0� 1� may be described in closed form by using Theorem 9.3.10.
The identity

Re�Af�f
 = 1
2

∣
∣
∣
∣

∫ 1

0
f�x� dx

∣
∣
∣
∣

2

implies that Num�A� ⊆ 
z � 0 ≤ Re�z� ≤ 1
2 �. Defining �� as in Theorem 9.3.10,

we see that �0 = 1
2 and �� = 0.

If � �= 0��, �f� = 1 and B�f = �f then

�f ′�x� = 1
2 e−i�f�x�− 1

2 ei�f�x� = −i sin���f�x��

Therefore � �= 0 and f�x� = e−ix sin���/� for all x ∈ 
0� 1�. The actual eigenvalues
� are obtained by re-substituting this into the eigenvalue equation. This yields

� = sin���

2� +2n�

where n ∈ Z. Therefore

�� = sin���

2�
�

This completes the description of Num�A�. �

Outside the numerical range, the pseudospectra of an operator are well-
behaved.

Lemma 9.3.14 Suppose that A is closed and that C\Num�A� is connected
and contains at least one point not in Spec�A�. Then

Spec�A� ⊆ Num�A��

Moreover

Spec��A� ⊆ 
z � dist�z� Num�A�� < ��

for all � > 0. Equivalently

��zI −A�−1� ≤ 
dist�z� Num�A���−1

for all z ∈ C.

Proof. We have


z � dist�z� Num�A�� < �� = ⋂

H∈�

z � dist�z�H� < ��

where � is the set of all closed half-spaces H which contain Num�A�. By
using this observation and replacing A by �I +�A for suitable �� � ∈ C, one
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needs only to prove the following. If Re�Af�f
 ≤ 0 for all f ∈ Dom�A� and
there exists � � Spec�A� such that Re��� > 0, then

Spec�A� ⊆ 
z � Re�z� ≤ 0�

and

��zI −A�−1� ≤ Re�z�−1

for all z such that Re�z� > 0. This is proved by combining Theorems 8.3.5
and 8.3.2. �

In the next two theorems we use the numerical range to prove operator
analogues of a classical theorem of Kakeya about zeros of polynomials – if
dim�� � = 1 and the sum in (9.12) is finite then U = C and Spec�A�·�� is the
set of zeros of the polynomial (9.12).

Theorem 9.3.15 Suppose that An are bounded, self-adjoint operators on the
Hilbert space � for all n ≥ 0 and that 0 ≤ An+1 ≤ An for all n. Suppose also
that A0 is invertible and that

A�z� �=
	∑

n=0

Anz
n� (9.12)

This series converges in norm for all z such that �z� < 1, and the resulting
operators A�z� are all invertible. If A�z� can be analytically continued to a
larger region U then it follows that

Spec�A�·�� ⊆ U ∩ 
z � �z� ≥ 1��

Proof. The norm convergence of the series if �z� < 1 is an immediate conse-
quence of the bound �An� ≤ �A0�. By considering A

−1/2
0 A�z�A

−1/2
0 and using

Problem 5.2.3 we reduce to the case in which A0 = I . Consider the expression

�1− z�A�z� = I −
	∑

n=1

Bnz
n

where Bn �= An−1 −An ≥ 0 and 0 ≤∑	
n=1 Bn ≤ I .

If �f� = 1 and �z� < 1 then

Re��1− z�A�z�f� f
 = 1−
	∑

n=1

�Bnf� f
Re�zn�

≥ 1−
	∑

n=1

�Bnf� f
�z�

≥ 1−�z��
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Therefore

Spec��1− z�A�z�� ⊆ Num��1− z�A�z�� ⊆ 
w � Re�w� ≥ 1−�z���
Therefore A�z� is invertible. �

Corollary 9.3.16 Suppose that An are bounded, self-adjoint operators on the
Hilbert space � for 0 ≤ n ≤ N and that 0 ≤ An−1 ≤ An for 1 ≤ n ≤ N .
Suppose also that AN is invertible and that

A�z� �=
N∑

n=0

Anz
n�

Then

Spec�A�·�� ⊆ 
z � �z� ≤ 1��

Proof. If z �= 0 then

zN A�z−1� =
N∑

n=0

AN−nz
n

and we may apply Theorem 9.3.15 to the RHS. �

The numerical range may be used to prove results about the zeros of orthog-
onal polynomials. Let � be a probability measure which has compact support
S in the complex plane, and suppose that � is non-trivial in the sense that S

is an infinite set. This condition implies that 
zn�	
n=0 is a linearly independent

set in L2�S� d��; equivalently every non-zero polynomial is also non-zero
as an element of L2�S� d��. One may construct the sequence of orthogonal
polynomials pn�z� of degree n by applying the Gram-Schmidt procedure to
the monomials zn, n = 0� 1� 2� � � � , regarded as elements of the Hilbert space
L2�S� d��. Two special cases are of particular interest: when S ⊆ R, in which
case the measure need not have compact support, but its moments must all
be finite, and when S ⊆ 
z � �z� = 1�.16

We recall some basic linear algebra. Every n × n matrix A possesses a
characteristic polynomial p of degree n defined by p�z� �= det�zI −A�. The
zeros of p coincide with the eigenvalues of A. The minimal polynomial m of
A is defined to be the (unique monic) polynomial of lowest degree such that
m�A� = 0. The minimal polynomial m is a factor of p, and if they have equal
degrees then m = p.

16 The recent 1100 page monograph of [Simon 2005B] on orthogonal polynomials
demonstrates the richness of this subject.
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Theorem 9.3.17 (Fejér) All of the zeros of the polynomials pn lie in Conv�S�.
In particular if S ⊆ R then all their zeros lie in 
a� b�, where a (resp. b) are
the maximum (resp. minimum) points of S.

Proof. Let M be the bounded normal operator �Mf��z� �= zf�z� acting on
L2�S� d��. Then Spec�M� = S: if a � S then �aI − M�−1 is the operator of
multiplication by �a− z�−1.

Now let Pn denote the orthogonal projection onto

�n �= lin
1� z� z2� � � � � zn−1� = lin
p0� p1� � � � � pn−1�

and let Mn �= PnMPn��n
. If p is a non-zero polynomial of degree less than n

then p�Mn�1 = p, and this is non-zero as an element of L2�S� d��. Therefore
the minimal polynomial mn of Mn cannot be of degree less than n. It follows
that mn equals the characteristic polynomial of Mn.

We next show that the minimal polynomial is pn. We first observe that if
a polynomial p has degree less than n then p = p�M�1 = p�Mn�1, and if p

has degree n then Pnp = p�Mn�1. Taking both mn and pn to be monic, their
difference qn is of degree less than n. Hence

qn = q�Mn�1 = pn�Mn�1−mn�Mn�1 = pn�Mn�1 = Pnpn = 0�

The last equality uses the fact that pn ⊥ �n. Therefore mn = pn.
We finally discuss the zeros of the polynomials. By the above results the

zeros of pn coincide with the eigenvalues of Mn. Since Mn is a restriction of
M the set Z�pn� of zeros of pn satisfies

Z�pn� = Spec�Mn� ⊆ Num�Mn� ⊆ Num�M� = Conv�S��

where the final equality uses Problem 9.3.5. �

Example 9.3.18 The orthogonal polynomials associated with the measure
� �= dx on 
−1� 1� are called the Legendre polynomials, and are (constant
multiples of)

Pn�x� �= 1
2nn!

dn

dxn
�x2 −1�n�

The first few Legendre polynomials are P0�x� �= 1, P1�x� �= x, P2�x� �=
1
2 �3x2 − 1�, P3�x� �= 1

2 �5x3 − 3x�. The fact that these particular orthogo-
nal polynomials are also the eigenfunctions of a Sturm-Liouville differential
operator acting in L2�−1� 1�, namely

�Lf��x� �= − d
dx

{

�1−x2�
df

dx

}

�
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is highly untypical. Other examples with the same property are Hermite,
Laguerre and Chebyshev polynomials. It leads to a completely different proof
of Theorem 9.3.17 in these cases.17 �

Theorem 8.1.12 and Problem 8.1.13 show that the spectrum of an operator
may change totally if one truncates it to a subspace. The remainder of the
section demonstrates the same phenomenon for operators that are important
in applied mathematics. We start by considering convolution operators.18

Example 9.3.19 Let k � R → C satisfy �k�x�� ≤ ce−��x� for some positive c� �

and all x ∈ R. Assuming that −� < � < �, the function k��x� �= e�xk�x� lies
in L1�R� and is associated with a bounded convolution operator A� defined
on L2�R� by A�f �= k� ∗f . It follows by Theorem 3.1.19 that

Spec�A�� = 
k̂�� + i�� � � ∈ R�∪ 
0��

In particular the spectrum of k� depends on � in a manner that is often simple
to calculate.

For any positive constant n one may truncate the above operators to
L2�−n�n�. Denoting the truncations by A��n, we see that

A��n = S��nA0�nS
−1
��n

where S��n is the operator of multiplication by e�x, which is bounded and
invertible on L2�−n�n�. Therefore the spectrum of A��n does not depend on

�. If k�−x� = k�x� for all x ∈ R then A0 and A0�n are self-adjoint operators.
Therefore Spec�A��n� is real for every � and n, but generically Spec�A�� is
not real except for � = 0. �

Example 9.3.20 The following theorem about the convection-diffusion oper-
ator demonstrates that the spectrum of a non-self-adjoint differential operator
sometimes provides very little information about its behaviour. It also shows
that the spectrum of such an operator may not be stable under truncation.
In this example the spectrum can be determined explicitly, but one would
except similar behaviour for variable coefficient operators that may be harder
to analyze.

17 One can use the so-called oscillation properties to prove a result analogous to
Theorem 9.3.17 for the eigenfunctions of a general Sturm-Liouville differential operator,
even though these are generally not associated with any polynomials.

18 The discrete analogue of the following example involves the great difference between the
spectra of infinite Laurent operators and of the finite Toeplitz matrices that one obtains by
truncating them. See [Schmidt and Spitzer 1960]. See also [Trefethen and Embree 2005,
Chap. 7] for the detailed discussion of an example and an explanation of the connection with
pseudospectra.
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Let � denote the dense subspace of L2�0� a� consisting of all smooth
functions on 
0� a� which vanish at 0� a. We define the operator

�Haf��x� �= f ′′�x�+f ′�x� (9.13)

to be the closure of the operator defined initially on �. The existence of a
closure is guaranteed by Example 6.1.9. The following theorem shows that
the spectrum of Ha does not converge to the spectrum of the ‘same’ operator
H	 acting on L2�R�. In fact

Spec�H	� = 	 �= 
x+ iy � x = −y2�

by Theorem 8.1.1. This implies that standard methods of computing the
spectrum of an operator on an infinite interval need to be reconsidered in
such situations. The last statement of the theorem explains this phenomenon
in terms of the pseudospectral behaviour of the operators.19 �

Theorem 9.3.21 The convection-diffusion operator (9.13) satisfies

Spec�Ha� =
{

−1
4

− �2n2

a2
� n = 1� 2� 3� � � �

}

�

Its numerical range satisfies

Num�Ha� ⊆ 	1 �= 
x+ iy � x ≤ −y2� (9.14)

and

lim
a→	 Num�Ha� = 	1� (9.15)

Given � > 0, every � in the interior 	0 of 	1 lies in Spec��Ha� for all large
enough a.

Proof. The operator Ha is similar to

�Laf��x� �= −1
4

f�x�+f ′′�x��

where La is the closure of its restriction to �, and the similarity is given by

�Laf��x� = ex/2Ha�e−x/2f�x���

The operator La is essentially self-adjoint on �, having a completeorthonormal
sequence of eigenfunctions �n�x� �= �2/a�1/2 sin��nx/a�, the corresponding

19 For further information about this operator see Problem 11.3.5 and
[Trefethen and Embree 2005, Chap. 12.]
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eigenvalues being �n �= −1/4 −�2n2/a2. This proves that the spectrum of
Ha is as stated, and that it does not converge to the spectrum of H	.

If f ∈ � then

�Haf� f
 =
∫ a

0

{
−�f ′�x��2 +f ′�x�f�x�

}
dx�

Since � ⊆ W 1�2�R� this equals
∫

R
�−�2 + i����� f�����2 d��

Putting �f�2 = 1, this implies (9.14).
We prove the last statement of the theorem by constructing approximate

eigenfunctions for every point in 	0. Given � ∈ C, the function

��x� �= e−s1x − e−s2x

satisfies Ha� = �� provided s1� s2 are the two solutions of s2 − s = �. At
least one of the solutions satisfies Re�s� > 0. The other is purely imaginary
if and only if � ∈ 	 . If � ∈ 	0 then both have positive imaginary parts, so �

decays exponentially as x → +	. If we restrict � to 
0� a� then it satisfies
the required boundary conditions exactly at 0 but only approximately at a.
We therefore define �a � 
0� a� → C by

�a�x� �= ��x���a−x�

where � is a smooth function on 
0�	� that satisfies ��0� = 0 and ��s� = 1
if s ≥ 1. Direct calculations establish that

lim
a→	 ��a�2 = ���2 > 0

and that

�Ha�a −��a�2 = O�e−�a�

as a → 	, where � �= min
Re�s1�� Re�s2�� >0.
If we put �a �= �a/��a�2 then �Ha�a� �a
 converges to � at an exponential

rate as a → 	. This proves (9.15). �

9.4 Higher order hulls and ranges

The topic described in this section is of very recent origin. It centres around
two concepts, hulls and ranges. The discovery that they are closely related is
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even newer.20 Although we start with some general theorems describing the
relationship between the various concepts, we emphasize that higher order
numerical ranges have already been used to determine the spectra of some
physically interesting operators. This facet of the subject is treated later in
the section.21

We start with higher order hulls. If A is a bounded operator on a Banach
space �, and p is a polynomial, then one can define

Hull�p�A� �= 
z � �p�z�� ≤ �p�A����

and then

Hulln�A� �= ⋂

deg�p�≤n

Hull�p�A�

and

Hull	�A� �= ⋂

n≥1

Hulln�A��

If p is a polynomial of degree n then the boundary of Hull�p�A� can be
determined by finding the n roots zr��� of the equation

p�z� = ei��p�A��
and then plotting them for every r ∈ 
1� � � � � n� and � ∈ 
0� 2��. One can then
approximate Hulln�A� by taking the intersection of Hull�p�A� for a finite
but representative collection of polynomials of degree n. The resulting region
will be too large, so it will still contain Spec�A�.

Lemma 9.4.1 We have

Spec�A� ⊆ Hull	�A� ⊆ Hulln�A�

for all n.

Proof. It follows from the spectral mapping theorem 1.2.18 that

p�Spec�A�� = Spec�p�A�� ⊆ 
w � �w� ≤ �p�A����

20 The main theoretical result in this section is Theorem 9.4.6, identifying three a priori quite
different objects. The equality Hull	�A� = Ŝpec�A� was proved by Nevanlinna in
[Nevanlinna 1993], while the equality Num	�A� = Ŝpec�A� is due to the author, in
[Davies 2005B]. It was subsequently shown in [Burke and Greenbaum 2004] that
Hulln�A� = Numn�A� for all n. From the point of view of applications, the sets Numn�A�
seem to be less useful than Num�p�A�. See the end of this section for further discussion.

21 There are many other generalizations of the numerical range with similar names. We refer to
[Safarov 2005, Langer 2001] for discussions of some of these.
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Therefore

Spec�A� ⊆ Hull�p�A�

for all polynomials p. The statements of the lemma follow immediately. �

Problem 9.4.2 If � has finite dimension n, use the minimal polynomial of
A to prove that

Spec�A� = Hulln�A�� �

The definition and basic properties of the higher order numerical ranges are
similar.

If A is a bounded operator on a Hilbert space � , and p is a polynomial,
then we define

Num�p�A� �= 
z � p�z� ∈ Num�p�A����

where Num denotes the closure of the numerical range. We also put

Numn�A� �= ⋂

deg�p�≤n

Num�p�A�

and

Num	�A� �= ⋂

n≥1

Numn�A��

Lemma 9.4.3 We have

Spec�A� ⊆ Num	�A� ⊆ Numn�A�

for all n.

Proof. It follows from Theorem 1.2.18 and Theorem 9.3.1 that

p�Spec�A�� = Spec�p�A�� ⊆ Num�p�A��

and this implies that

Spec�A� ⊆ Num�p�A�

for all polynomials p. The statements of the lemma follow immediately. �

Lemma 9.4.4 If A is a bounded or unbounded self-adjoint operator acting
in a Hilbert space � then

Spec�A� = Num2�A��
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Proof. We first observe that �Af�f
 ∈ R for all f ∈ � , so Num2�A� ⊆
Num�A� ⊆ R. It remains only to deal with gaps in the spectrum of A. It is
sufficient to prove that if �a� b�∩ Spec�A� = ∅ then �a� b�∩ Num�p�A� = ∅
for some quadratic polynomial. We put c �= �a + b�/2, d �= �b − a�/2 and
p�z� �= �z− c�2.

The spectrum of the self-adjoint operator p�A� is contained in 
d2�+	�.
It follows by Problem 9.3.5 that Num�p�A�� ⊆ 
d2�+	�. If x ∈ R then
x ∈ Num�p�A� implies �x− c�2 ≥ d2, so x � �a� b�. �

The following theorem is rather surprising, since Num�p�A� may be much
smaller than Hull�p�A� for individual polynomials p. Note, however, that the
definition of higher order hulls does not make sense for unbounded operators,
indicating their computational instability for matrices with very large norms.

Theorem 9.4.5 (Burke-Greenbaum)22 If A is a bounded operator acting on
a Hilbert space � then

Numn�A� = Hulln�A�

for all n ∈ N.

Proof. We will establish that Hulln�A� ⊆ Numn�A�, the reverse inclusion
being elementary. In the following argument pj always refers to a polynomial
of degree at most n.

If z � Numn�A� then there exists p1 such that p1�z� � Num�A�. Putting
p2�s� �= p1�s + z� we deduce that p2�0� � Num�p2�A− zI��. Therefore 0 �
Num�p3�A−zI�� where p3�s� �= p2�s�−p2�0� satisfies p3�0� = 0. Using the
convexity of the numerical range, one sees that if p4�s� �= ei�p3�s� for a
suitable � ∈ R, then there exists a constant � < 0 such that

Re�Bf�f
 ≤ ��f�2

for all f ∈ � , where B �= p4�A− zI�. Given � > 0 and f ∈ � we have

��I +�B�f�2 = �f�2 +2�Re�Bf�f
+�2�Bf�2

≤ �1+2�� +�2�B�2
��f�2

= k�f�2

22 See [Burke and Greenbaum 2004]. We follow an unpublished proof of Trefethen.
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where k < 1 if � > 0 is small enough. Putting p5�s� �= 1+�p4�s� we deduce
that p5�0� = 1 and �p5�A − zI�� < 1. Finally putting p6�s� �= p5�s − z� we
obtain p6�z� = 1 and �p6�A�� < 1. Therefore z � Hulln�A�. �

The polynomial convex hull of a compact subset K of C is defined to be the
complement of the unbounded component of C\K, i.e. K together with all
open regions enclosed by this set.

Theorem 9.4.6 (Nevanlinna)23 If A is a bounded linear operator on � then

Hull	�A� = Num	�A� = ̂Spec�A�� (9.16)

where ̂Spec�A� is the polynomial convex hull of Spec�A�.

Proof. The first identity follows immediately from Theorem 9.4.5, so we
concentrate on the second. If a � Num	�A� then there exists a polynomial p

such that p�a� � Num�p�A��. Since Num�p�A�� is closed and convex, there
exists a real-linear functional � � R2 → R such that ��p�a�� < 0 and

��Spec�p�A��� ⊆ ��Num�p�A��� ⊆ 
0�	��

Since Spec�p�A�� = p�Spec�A��, the harmonic function � � R2 → R defined
by ��z� �= ��p�z�� satisfies ��a� < 0 and

��Spec�A�� ⊆ 
0�	��

The maximum principle for harmonic functions implies not only that a �
Spec�A� but also that a does not lie in any bounded component of the
complement of the spectrum. Therefore a � Ŝpec�A�. This implies that

Ŝpec�A� ⊆ Num	�A�� (9.17)

Conversely we have to prove that if a � Ŝpec�A� then there exists a polynomial
p such that p�a� � Num�p�A��. We first observe that if b �= a is close enough
to a and r�z� �= �b− z�−1 then

max
�r�z�� � z ∈ Spec�A�� < �r�a���
If we put K �= Spec�A�∪
a� then Lemma 9.4.7 below shows that there exists
a sequence of polynomials which converges uniformly to r on K. Therefore
there exists a polynomial q such that

max
�q�z�� � z ∈ Spec�A�� < �q�a���
23 See [Nevanlinna 1993] and the footnote at the beginning of this section.
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Since q�Spec�A�� = Spec�q�A�� this is equivalent to

Rad�q�A�� < �q�a��
where Rad denotes the spectral radius. Since

Rad�B� = lim
n→	 �Bn�1/n

for every operator B, by Theorem 4.1.3, we deduce that if p �= qn then for
large enough n we have

�p�A�� < �p�a���
Since

Num�p�A�� ⊆ 
z � �z� ≤ �p�A���

we finally see that p�a� cannot lie in Num�p�A��. �

Lemma 9.4.7 If b lies in the exterior component of a compact set K and
r�z� �= �b−z�−1 then r is the uniform limit on K of a sequence of polynomials.

Proof. Let � � 
0�	� → C\K be a continuous curve such that ��0� = b and
��s� → 	 as s → 	. Consider the set S of all s ≥ 0 such that fs�z� �= ���s�−
z�−1 is approximable uniformly by polynomials on K. This set is closed by
a continuity argument and open because of the nature of the expansion of
���s�+�−z�−1 in powers of �. Therefore S = ∅ or S = 
0�	�. But S contains
all large enough s by virtue of the uniform convergence on K of the expansion

1
c− z

=
	∑

n=0

zn

cn+1

provided �c� > max
�z� � z ∈ K�. Therefore 0 ∈ S. �

We next list some of the inclusions between various sets associated with an
operator A.

EssSpec�A� ⊆ Spec�A� ⊆ Ŝpec�A� = Num	�A�

⊆ Numn�A� = Hulln�A� ⊆ Num�A� ⊆ B�0��A�� �

We conclude the section by applying the second order numerical range to
obtain bounds on the spectrum of a certain type of non-self-adjoint tridiago-
nal operator. The results described have been applied to the non-self-adjoint
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Anderson model, in which the coefficients of the operator are random vari-
ables, but the theory is also useful in other situations.24 For example it provides
simple quantitative bounds on the spectra of tridiagonal operators with peri-
odic coefficients, which may be useful even though the exact spectrum can
be computed for any particular such operator. (See Theorem 4.4.9 and the
succeeding problems.) We start by formulating the results at a general level.
See Examples 9.4.10 and 9.4.11 for applications involving particular oper-
ators satisfying the hypotheses. In the following theorem, one assumes that
each of the operators C� S� V is easy to analyze on its own.

Theorem 9.4.8 (Davies-Martinez) Let A �= C + iS + V where C� S� V are
bounded, self-adjoint operators on � . Suppose that there exist non-negative
constants �� � such that

S2 +�C2 ≤ �I� (9.18)

Then

Spec�A� ⊆ 
x+ iy � y2 ≤ ��x�� (9.19)

where

��x� �= inf
c∈R

{

�x− c�2 +�− ��2
c

1+�

}

(9.20)

and

�c �= dist�c� Spec�V��� (9.21)

Proof. We need to prove that x+ iy ∈ Spec�A� implies

y2 ≤ �x− c�2 +�− ��2
c

1+�

for every c ∈ R. We reduce to the case c = 0 by replacing V by V −cI . The
assumptions imply that

�x+ iy�2 ∈ Spec�A2� ⊆ Num�A2��

Therefore x2 − y2 ≥ � where � is the bottom of the spectrum of K �= �A2 +
A∗2�/2. A direct computation shows that

K = �C +V�2 −S2

≥ C2 + �CV +VC�+V 2 +�C2 −�I

24 See [Davies 2005B] and [Martinez 2005] for more substantial treatments of the material
here, and for references to other results about the non-self-adjoint Anderson model.
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= (
�1+��1/2C + �1+��−1/2V

)2 + �

1+�
V 2 −�I

≥ �

1+�
V 2 −�I

≥
(

��2
0

1+�
−�

)

I�

The statement of the theorem follows immediately. �

One should resist the temptation to put c �= x in (9.20), because the minimum
is often achieved for a different value of c. However, one has the following
corollary.

Corollary 9.4.9 If

dist�x� Spec�V��2 >
�1+���

�

then

�x+ iR�∩Spec�A� = ∅�

Proof. Put c �= x in Theorem 9.4.8 and use the fact that ��x� < 0. �

Example 9.4.10 Let A � l2�Z� → l2�Z� be defined by

�Af��x� �= af�x+1�+bf�x−1�+V�x�f�x�

where a �= b ∈ R and V � Z → R is a bounded, real-valued function. The
spectrum of V is the closure of 
V�x� � x ∈ Z�, and we assume that the
constants �c defined in (9.21) are readily computable. If we put

�Cf��x� �= ��f�x+1�+f�x−1���

�Sf��x� �= i��f�x+1�−f�x−1���

where � �= �a+b�/2 and � �= �b−a�/2 �= 0, then C� S are self-adjoint and
A = C + iS +V . Moreover (9.18) holds with � �= �2/�2 and � �= 2�2. �

In the above example Theorem 9.4.8 yields outer bounds on the spectrum of
A knowing only a� b and Spec�V�. The same bounds apply to all potentials
whose range is contained in Spec�V�. This is very appropriate if the values of
V are chosen randomly, because all of the relevant potentials have the same
spectrum with probability one. However, the spectral bound above does not
depend on the precise distribution used to choose the values V�x�, but only
on its support, and this is not usual in the random context. Theorem 9.4.8
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can equally well be used to obtain bounds on the spectrum of A when V

is periodic. Whether or not the bounds are useful depends on the particular
features of the operator, but there are cases in which it leads to a complete
determination of the spectrum of A.25

Example 9.4.11 The above example was one-dimensional, but Theorem 9.4.8
can also be applied to similar operators acting on l2�Zn� for n > 1. This
is relevant when studying the non-self-adjoint Anderson model in higher
dimensions, but we describe a non-random example.26

We consider an operator AM acting on l2�X� where X �= 
1� 2� � � � �M�2

and we impose periodic boundary conditions. We define AM by

�AMf��x� y� �= 2f�x+1� y�+2f�x� y +1�+3V�x� y�f�x� y�

where

V�x� y� �=
{

1 if �x−M/2�2 + �y −M/2�2 ≥ M2/5,
−1 otherwise.

The eigenvalues of AM lie in its numerical range, and routine calculations
show that this is contained in the convex hull of the union of the two circles
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Figure 9.3: Bounds on the spectrum of A30 in Example 9.4.11

25 See [Martinez 2005].
26 See [Davies 2005B] for further details of this example and others of a similar type.
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with centres ±3 and radius 4. Figure 9.3 shows the eigenvalues of AM for
M �= 30, and the boundary curves obtained by the method of Theorem 9.4.8.
As M → 	 the spectrum of AM fills up the two circles. �

9.5 Von Neumann’s theorem

In this section we consider a single contraction A on � . Theorem 9.5.3
provides a classical result of von Neumann concerning the functional calculus
of contractions.

Lemma 9.5.1 If A is a contraction on � then

B �=
(

A �I −�A∗�2�1/2

�I −�A�2�1/2 −A∗

)

is a unitary operator on � ⊕� .

Proof. This is elementary algebra subject to the identity

A�I −�A�2�1/2 = �I −�A∗�2�1/2A�

To prove this we first note that

A�A�2n = A�A∗A�n = �AA∗�nA = �A∗�2nA�

This implies directly that

Ap��A�2� = p��A∗�2�A
for every polynomial p. This yields

Af��A�� = f��A∗��A
for every continuous function f on 
0�	� by approximation. (Actually
Lemma 5.2.1 suffices.) �

Note One may also prove the lemma by using the polar decomposition
A = V �A�, A∗ = �A�V ∗, �A∗� = V �A�V ∗ and associated formulae provided V

is unitary, as it is in finite dimensions. See Theorem 5.2.4.

Lemma 9.5.2 Let A be a contraction on � . Then there exists a norm analytic
map A�·� � C →��� ⊕� � such that A�z� is unitary for all z such that �z� = 1
and

A�0� =
(

A 0
0 0

)

�
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Proof. Put A�z� �= E�z�BE�z� where

E�z� �=
(

I 0
0 zI

)

� B �=
(

A �I −�A∗�2�1/2

�I −�A�2�1/2 −A∗

)

�

All of the operators on � ⊕� are contractions if �z� < 1 and unitary if
�z� = 1. �

In the following theorem 
 denotes the space of all analytic functions that
have power series expansions in z with radius of convergence greater than 1,
and 
 denotes the space of analytic functions on the open unit ball D that
can be extended continuously to D. Note that 
 is dense in 
, if the latter is
assigned the norm � · �	.

Theorem 9.5.3 (von Neumann)27 If A is a contraction on a Hilbert space �
then �f�A�� ≤ �f�	 for all f ∈
. The map f → f�A� defined on 
 using the
holomorphic functional calculus of Section 1.5 may be extended continuously
to 
.

Proof. Given f ∈ 
 then, following the notation of Lemma 9.5.2, we put

F�z� �= f�A�z�� =
	∑

n=0

f �n��0�A�z�n/n!

for all z ∈ D, so that

F�0� =
(

f�A� 0
0 f�0�I

)

�

By applying the maximum principle to the operator-valued analytic function
F�z� and then the spectral theorem to the unitary operators A�z� for �z� = 1,
we deduce that

�f�A�� ≤ �F�0��
≤ max
�F�z�� � �z� = 1�

≤ max
�f�w�� � �w� = 1��

The extension of the functional calculus from 
 to 
 is a routine consequence
of the norm bound proved above. �

27 There are by now many proofs of this famous theorem, due to [von Neumann 1951]. This
one was presented in [Davies and Simon 2005]. Another is given in Theorem 10.3.5. A
detailed account of the functional calculus for contractions may be found in
[Sz.-Nagy and Foias 1970, Sect. 3.2].
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Theorem 9.5.4 Let A be a contraction and let f ∈ 
. Then the numerical
range of f�A� is contained in

K �= Conv
f�z� � �z� = 1��

Proof. If � ∈ � satisfies ��� = 1 and �̃ �= �⊕0 ∈ � ⊕� , then

�f�A����
 = �f�A�0���̃� �̃
 = 1
2�

∫ �

−�
�f�A�ei����̃� �̃
d� (9.22)

where A�z� is defined as in the proof of the last lemma. Since each operator
A�ei�� is unitary we see by using the spectral theorem and averaging that the
right-hand side of (9.22) lies in K. �

The following lemma is an immediate consequence of von Neumann’s theo-
rem, but it also has an elementary proof.

Lemma 9.5.5 If A is a contraction on � and ��� < 1 then

B �= ��I −A��1−�A�−1

is also a contraction.

Proof. The condition �B� ≤ 1 is equivalent to

�Bf�Bf
 ≤ �f� f

for all f ∈ � . Putting g = �I −�A�−1f it is also equivalent to

���I −A�g� ��I −A�g
 ≤ ��I −�A�g� �I −�A�g

for all g ∈ � , and this is valid because

�1−���2���I −A∗A�g� g
 ≥ 0� �

Problem 9.5.6 Construct a contraction A on l2�Z� such that �Af� < �f� for
all non-zero f , but Spec�A� ⊆ 
z � �z� = 1�. (Clearly such a contraction cannot
have any eigenvalues.) �

9.6 Peripheral point spectrum

Examples 9.1.4 and 9.2.14 imply that the n×n Jordan matrix

�Jn�r�s �=
{

1 if s = r +1,
0 otherwise,
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is badly behaved spectrally, in the sense that a very small perturbation may
change its eigenvalues radically. Indeed any point in the interior of the unit
disc is an approximate eigenvalue of Jn with error that decreases exponentially
with the size of the matrix. On the other hand

��zI − Jn�
−1� ≤ ��z�−1�−1

for all z such that �z� > 1, by Theorem 1.2.11. Therefore z cannot be an
approximate eigenvalue of Jn if �z� is significantly larger than 1.

In this section we discuss approximate eigenvalues of a general n×n matrix
A that are near the boundary of its numerical range. The results presented are
due to Davies and Simon, and were motivated by the need to understand the
distributions of the zeros of orthogonal polynomials on the unit circle.28 The
first part of the section only considers contractions, but in the second part we
remove this constraint.

We start with an easy version of the type of result that we will consider
in more detail below. Note that in finite dimensions an estimate of the type

��zI −A�−1� ≤ c 
dist�z� Spec�A���−1 (9.23)

implies that if �Af − zf� ≤ ��f� then A has an eigenvalue � such that
��− z� ≤ c�. In other words if z is an approximate eigenvalue of A then it
is close to a true eigenvalue. The inequality (9.23) does not make sense if
z ∈ Spec�A�, but we regard it as being true by convention in that case.

Theorem 9.6.1 If A is a contraction acting on an n-dimensional inner prod-
uct space � , and �z� = 1, then

��zI −A�−1� ≤
m∑

r=1

1+��r �
�z−�r �

≤ 2m
dist�z� Spec�A���−1 �

where m ≤ n is the degree of the minimal polynomial p of A, and �r are the
eigenvalues of A, each repeated as many times as in the minimal polynomial.

Proof. On replacing z−1A by A, we reduce to the case z = 1. If A has any
eigenvalues with modulus 1, we apply the argument below to sA, where
0 < s < 1, and let s → 1 at the end of the proof.

We put

Br �= �A−�r�

�1−�rA�

�1−�r�

�1−�r�

28 See [Davies and Simon 2005].
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and use the fact that this is a contraction by Lemma 9.5.5. Moreover
B1B2 � � � Bm = 0 because its numerator is a multiple of the minimum polyno-
mial. We have

�I −A�−1 = �I −A�−1�I −B1B2 � � � Bm�

= �I −A�−1
�I −B1�+B1�1−B2�

+B1B2�1−B3�+· · ·+B1 � � � Bm−1�1−Bm���

Since all the operators commute we deduce that

��I −A�−1� ≤
m∑

r=1

��I −A�−1�I −Br�� =
m∑

r=1

�fr�A��

where

fr�z� �= �1− z�−1

(

1− �z−�r�

�1−�rz�

�1−�r�

�1−�r�

)

= 1−��r �2
�1−�rz��1−�r�

�

One may estimate �fr�A�� by using von Neumann’s Theorem 9.5.3 or by the
following more elementary method, in which we omit the subscript r.

�f�A�� ≤ 1−���2
�1−�� �1+��A�+��A�2 +· · ·�

≤ 1−���2
�1−�� �1+���+ ���2 +· · ·�

= 1+���
�1−�� �

This proves the first inequality of the theorem. After the reduction to the case
z = 1, the second inequality depends on using

1+��r �
�1−�r �

≤ 2 
dist�1� Spec�A���−1

for all r ∈ 
1� � � � �m�. �

The remainder of the section is devoted to obtaining improvements and
generalizations of the above theorem.
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Lemma 9.6.2 Let A be an upper triangular n×n contraction with diagonal
entries �1� � � � � �n, and let B �= �I −A�−1. Then

�Bi�j� ≤

⎧
⎪⎪⎨

⎪⎪⎩

0 if i > j,
�1−�i�−1 if i = j,
√

�1−��i�2��1−��j �2�

�1−�i�2 �1−�j �2 if i < j,
(9.24)

≤ �−1Ti�j (9.25)

where

Ti�j �=
⎧
⎨

⎩

0 if i > j,
1 if i = j,
2 if i < j,

and

� �= min
1≤r≤n

�1−�r � = dist�1� Spec�A���

Proof. The first two inequalities (actually equalities) in (9.24) follow directly
from the fact that A is triangular, so we concentrate on the third. If we put

C �= B+B∗ − I

= �I −A�−1�I −AA∗��I −A∗�−1

then we see immediately that C = C∗ ≥ 0. The Schwarz inequality now
implies that

�Ci�j�2 ≤ Ci�iCj�j

for all i� j. Since Bi�j = Ci�j if i < j, the third bound in (9.24) follows as soon
as one observes that

Ci�i = Bi�i +B∗
i�i −1

= 1
1−�i

+ 1

1−�i

−1

= 1−��i�2
�1−�i�2

�

To prove (9.25) one needs the further inequality

1−��i�2
�1−�i�2

≤ 2
�1−�i�

≤ 2
�

� �
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Corollary 9.6.3 Let A be an n×n contraction with eigenvalues �1��2� � � � � �n.
If �z� = 1 then

��zI −A�−1� ≤ ��zI −A�−1�2 ≤ √
2 n
dist�z� Spec�A���−1 (9.26)

where � · �2 is the Hilbert-Schmidt norm.

Proof. We use Schur’s theorem to represent A as an upper triangular matrix
with respect to some orthonormal basis. The eigenvalues of A are then the
diagonal entries of the matrix. By passing to z−1A we reduce to the case
z = 1. The first inequality in (9.26) is elementary. The second follows from

��I −A�−1�2 ≤ �−1�T�2 ≤ �−1
√

2 n� �

Example 9.6.4 We will compute the norm of the triangular n×n matrix T

exactly, but before doing this we consider the closely related Volterra operator
V , defined on L2�0� 1� by

�Vf��x� �=
∫ x

0
f�y� dy�

By computing the Hilbert-Schmidt norm of V we see immediately that

�V� ≤ �V�2 = 1/
√

2�

The norm of V is equal to that of the Hankel operator H defined by �Hf��x� �=
�Vf��1−x�, which has the integral kernel

K�x� y� �=
{

1 if 0 ≤ x+y ≤ 1,
0 otherwise.

One checks directly that Hfn = �nfn for all n = 1� 2� � � � where

fn�x� �= cos��2n−1��x/2�� �n �= �−1�n−12
�2n−1��

�

The self-adjointness of H implies that

�V� = �H� = �1 = 2/��

We now exhibit the connection between V and T . Given a positive integer n,
put

�r�x� �= n1/2�
�r−1�/n�r/n��x�
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for all 1 ≤ r ≤ n. This defines a finite orthonormal set and one readily checks
that

�V�r��s
 = Tr�s/2n�

If Pn is the orthogonal projection onto the linear span of �1� � � � ��n we deduce
that

�T� = 2n�PnVPn� ≤ 4n/��

We will see that this bound is sharp in the sense that cn �= �T�/n converges
to 4/� as n → 	. �

Lemma 9.6.5 The n×n triangular matrix T satisfies

�T� = cot��/4n�

for all positive integers n. Hence

lim
n→	 n�T� = 4/� ∼ 1�2732 �

Proof. The norm of T is equal to that of the n×n Hankel matrix

H�i� j� �=
⎧
⎨

⎩

2 if i+ j < n,
1 if i+ j = n,
0 otherwise.

Let �s �= �2s − 1��/4n for 1 ≤ s ≤ n, so that 0 < �s < �/2 for each s.
Define the column vector vs ∈ Cn by

�vs�r �= cos��2r −1��s� = �−1�s−1 sin��2n+1−2r��s�

where 1 ≤ r ≤ n. A direct computation using the trigonometric identities

2
cos���+ cos�3��+ cos�5��+· · ·+ cos��2t −3����

+ cos��2t −1��� = cot��� sin��2t +1���

shows that Hvs = �svs, where

�s �= �−1�s−1 cot��s��

Since H is self-adjoint we deduce that

�H� = max
��s� � 1 ≤ s ≤ n� = �1 = cot��/4n�� �

We can now prove the sharp version of Theorem 9.6.1.
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Theorem 9.6.6 (Davies-Simon)29 If A is a contraction acting in an
n-dimensional inner product space � and �z� = 1 then

��zI −A�−1� ≤ cot��/4n� 
dist�z� Spec�A���−1 �

Proof. We use Schur’s theorem to represent A as an upper triangular matrix
with respect to some orthonormal basis. The eigenvalues of A are then the
diagonal entries of the matrix. On replacing A by z−1A we reduce to the case
z = 1. By using Lemmas 9.6.2 and 9.6.5 one obtains the bound

��I −A�−1� ≤ �−1�T� = �−1 cot��/4n�� �

We now describe some generalizations of the above theorem. The first is the
‘correct’ formulation.

Theorem 9.6.7 Let A be an n × n matrix and let S denote the topological
boundary of the numerical range of A. If z lies on or outside S then

��zI −A�−1� ≤ cot��/4n� 
dist�z� Spec�A���−1 �

Proof. By considering ei��A− zI� for a suitable value of � we reduce to the
case in which z = 0 and Re�Af�f
 ≤ 0 for all f ∈ Cn. We also use Schur’s
theorem to transfer to an orthonormal basis with respect to which A has an
upper triangular matrix. The result is true by convention if 0 is an eigenvalue,
so we assume that this is not the case. The matrix B �= −A−1 is also upper
triangular with Re�Bf�f
 ≥ 0 for all f ∈ Cn.

Since B+B∗ ≥ 0 the same argument as in Lemma 9.6.2 yields the bounds

�Bi�j� ≤
⎧
⎨

⎩

0 if i > j,
��i�−1 if i = j,

2��i�j�−1/2 if i < j

≤ �−1Ti�j

where � = min
��i� � 1 ≤ i ≤ n�. An application of Lemma 9.6.5 now com-
pletes the proof. �

One may also consider situations in which �Am� grows subexponentially as
m → +	. This implies that Spec�A� ⊆ 
z � �z� ≤ 1�, and suggests that one
might still be able to prove bounds on the resolvent norm when �z� = 1.
We only treat the case in which �Am� are uniformly bounded; a similar but

29 See [Davies and Simon 2005].
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weaker result holds when the norms are polynomially bounded. We do not
expect that the exponents in the following theorem are sharp.

Theorem 9.6.8 Let A be an n × n matrix and c ≥ 1 a constant such that
�Am� ≤ c for all m ≥ 0. If �z� = 1 and �Af − zf� < ��f� then A has an
eigenvalue � such that

��− z� ≤ 3n�c��2/3�

Proof. If

B �=
	∑

m=0

r−2m�A∗�mAm

where r > 1, then

I ≤ B ≤ c2

1− r−2
I�

If we define a new inner product on Cn by

�f� g
1 �= �Bf�g

then it follows that

�f� ≤ �f�1 ≤ cr�r2 −1�−1/2�f�
for all f ∈ Cn. Also

�Af�2

1 = �A∗BAf�f
 ≤ r2�Bf�f
 = r2�f�2

1�

Therefore �A�1 ≤ r.
We now put C �= r−1A so �C�1 ≤ 1. We have

�Cf − r−1zf�1 = r−1�Af − zf�1

≤ c�r2 −1�−1/2�Af − zf�
≤ �c�r2 −1�−1/2�f�
≤ �c�r2 −1�−1/2�f�1�

Therefore

�Cf − zf�1 ≤ {
�c�r2 −1�−1/2 +�z− r−1z�}�f�1

≤ {
�c�2�r −1��−1/2 + �r −1�

}�f�1�

We conclude that A has an eigenvalue �, necessarily satisfying ��� ≤ 1, such
that

�r−1�− z� ≤ 4n

�

{
�c�2�r −1��−1/2 + �r −1�

}
�
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This implies that

��− z� ≤ �r −1�+ 4n

�

{
�c�2�r −1��−1/2 + �r −1�

}
�

Finally, putting r = 1+ 1
2 �c��2/3, we obtain

��− z� ≤
(

1
2

+ 6n

�

)

�c��2/3

≤ 3n�c��2/3� �



10
Quantitative bounds on semigroups

10.1 Long time growth bounds

In most applications of semigroup theory one is given the generator Z

explicitly, and has to infer properties of the solutions of the evolution equation
f ′�t� = Zf�t�, i.e. of the semigroup Tt. This is not an easy task, and much of
the analysis depends on obtaining bounds on the resolvent norms. We devote
this section to establishing a connection between the spectrum of Z and the
long time asymptotics of Tt. Before starting it may be useful to summarize
some of the results already obtained. These include

(i) If �Tt� ≤ Meat for all t ≥ 0 then Spec�Z� ⊆ �z � Re�z� ≤ a� and �Rz� ≤
M/�Re�z�−a� for all z such that Re�z� > a. (Theorem 8.2.1)

(ii) If Rz is the resolvent of a densely defined operator Z and �Rx� ≤ 1/x

for all x > 0, then Z is the generator of a one-parameter contraction
semigroup, and conversely. (Theorem 8.3.2)

(iii) For every � > 0 there exists a densely defined operator Z acting in a
reflexive Banach space such that �Rx� ≤ �1+��/x for all x > 0, but Z

is not the generator of a one-parameter semigroup . (Theorem 8.3.10)
(iv) Tt is a bounded holomorphic semigroup if and only if there exist � > 0

and N < � such that the associated resolvents satisfy �Rz� ≤ N �z�−1 for
all z such that �Arg�z�� ≤ �+	/2. (Theorems 8.4.1 and 8.4.2)

(v) If 
 	 Spec�Z�, then z ∈ Spec�Z� if and only if �
− z�−1 ∈ Spec�R
�,
and both imply that ezt ∈ Spec�Tt� for all t ≥ 0. (Lemma 8.1.9 and
Theorem 8.2.7)

(vi) There exists a one-parameter group Tt acting on a Hilbert space � such
that Spec�Z� ⊆ iR but e�t� ∈ Spec�Tt� for all t ∈ R. (Theorem 8.2.9)

This chapter describes a number of more advanced results about one-parameter
semigroup s, mostly concerned with growth bounds. We recall from Theorem

296
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6.1.23 that every one-parameter semigroup satisfies a growth bound of the
form

�Tt� ≤ Me�t (10.1)

for all t ≥ 0. In this section we introduce various constants related to � above,
and find inequalities between them.

The exponential growth rate �0, of the semigroup Tt was defined in Sec-
tion 6.2 as the infimum of all permissible constants � in (10.1). Finding values
of M and � for which (10.1) holds provides very limited information about
the behaviour of the semigroup norms for several reasons. In Example 10.2.9
we show that it is possible for �Tt� to be highly oscillatory as a function of
t. It is also easy to produce examples in which �Tt� is close to 1 until t is
quite large, and then starts to decrease at an exponential rate. Nevertheless
we need to understand the role that �0 plays before moving on.

Problem 10.1.1 Given � ∈ R, find the exact value of �Tt� for the one-
parameter group defined on L2�R� �1+x2��/2dx� by

�Ttf��x� �= f�x− t�


Note The answer differs for � < 0 and � > 0. �

Problem 10.1.2 By changing the weight in Problem 10.1.1, find an example
of a one-parameter semigroup Tt acting on a Hilbert space � such that
�Tt� = 1 for all t ≥ 0 but

lim
t→� �Ttf� = 0

for all f ∈ � . �

Problem 10.1.3 Prove that the exponential growth rate of a one-parameter
semigroup is a similarity invariant, i.e. it is unaffected by changing from the
given norm on � to an equivalent norm. �

A function p � �0��� → �−���� is said to be subadditive if

p�x+y� ≤ p�x�+p�y� (10.2)

for all x� y ≥ 0.

Problem 10.1.4 Prove that if p � �0��� → R is concave with p�0� ≥ 0 then it
is subadditive. Give an example of a non-concave subadditive function. �
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Lemma 10.1.5 If p is subadditive on �0��� and bounded above on �0� 1�

then

−� ≤ inf
t>0

t−1p�t� = lim
t→� t−1p�t� < �
 (10.3)

Proof. If a > 0 and p�a� = −� then p�t� = −� for all t > a by (10.2), and
the lemma is trivial, so let us assume that p is finite everywhere. Since it is
bounded above on �0� 1� it is bounded above on every finite interval, again
by (10.2).

If a−1p�a� < � and na ≤ t < �n+1�a for some positive integer n then

t−1p�t� ≤ t−1�np�a�+p�t −na��

≤ a−1p�a�+ t−1 sup�p�s� � 0 ≤ s ≤ a��

which is less than � for all large enough t. This implies the stated result. �

Theorem 10.1.6 If Tt is a one-parameter semigroup on a Banach space �
then

�0 = inf
0<t<�

t−1 log�Tt� = lim
t→� t−1 log�Tt� (10.4)

satisfies −� ≤ �0 < � and

Rad�Tt� = e�0t

for all t > 0.

Proof. The function

p�t� �= log�Tt�
satisfies the conditions of Lemma 10.1.5, so

lim
t→� t−1p�t� = �0

exists. If t > 0 then Theorem 4.1.3 implies that

Rad�Tt� = lim
n→� �Tnt�

1/n

= lim
n→� exp

{
n−1p�nt�

}

= e�0t
 �

We have already seen that the rate of decay (asymptotic stability) of �Ttf� as
t → � may depend on f : in Problem 8.4.7 we proved that if Tt is a bounded
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holomorphic semigroup and f ∈ Ran�Zn� then �Ttf� = O�t−n� as t → �; in
Example 6.3.5 we saw that the Gaussian semigroup Tt on L2�RN � satisfies
�Ttf� = O�t−N/4� as t → � for all f ∈ L1�RN �∩L2�RN �.1

The following general result is of some interest. Define S to be the set of
all � ∈ R such that

�Ttx� ≤ M�e�t���x��� (10.5)

for some M�, all t ≥ 0 and all x ∈ Dom�Z�, where ���x��� �= �x�+�Zx�. We
then put

�1 �= inf�S�


We also put

s �= sup�Re�z� � z ∈ Spec�Z��


It was shown by Wrobel that for any 0 < � < 1 there exists a one-parameter
semigroup Tt acting on a Hilbert space � such that s = 0, �0 = 1 and
�1 = � .2

Theorem 10.1.7 We always have the inequalities s ≤ �1 ≤ �0. If there exists
a ≥ 0 such that Tt is norm continuous for t ≥ a, then they are all equal.

Proof. It follows from Problem 6.1.4 that if a 	 Spec�Z� then there exists a
constant c > 0 such that

c−1�AR�a�Z�� ≤ ���A��� ≤ c�AR�a�Z��
for all operators A on �, where

���A��� �= sup��Af� � ���f ��� ≤ 1�


This implies that � ∈ S if and only if

�TtR�a�Z�� ≤ M ′
�e�t

for some M ′
� and all t ≥ 0. Theorem 8.2.10 states that if z ∈ Spec�Z� then

ezt�a− z�−1 ∈ Spec�TtR�a�Z��


If � ∈ S, we deduce that

�ezt�a− z�−1� ≤ �TtR�a�Z�� ≤ M ′
�e�t


1 See [Arendt et al. 2001, Meyn and Tweedie 1996, Aldous and Fill] for references to the
substantial literature on asymptotic stability, particularly in the stochastic context.

2 See [Wrobel 1989, Ex. 4.1].
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Since t > 0 is arbitrary, this implies that Re�z� ≤ � whenever z ∈ Spec�Z�

and � ∈ S. Hence s ≤ �1. The inequality �1 ≤ �0 follows directly from the
definitions of the two quantities.

The final statement of the theorem is proved by combining Theorems 8.2.12
and 10.1.6. �

10.2 Short time growth bounds

Although the constant �0 defined in (10.4) controls the long time asymptotics
of �Tt�, it has little influence on the short time (i.e. transient) behaviour of
the norm. The reason is that if � is close to �0 then the constant M in the
bound �Tt� ≤ Me�t may be very large, even in examples of real importance.
We start by giving a very simple example of this phenomenon.

Example 10.2.1 Let Zn be the n×n matrix

�Zn�r�s �=
⎧
⎨

⎩

−1 if r = s,
2 if r +1 = s,
0 otherwise,

for which Spec�Zn� = �−1�. Put Tn�t �= eZnt for all t ≥ 0, regarded as acting
on Cn with the Euclidean norm. On writing down the (upper triangular) matrix
of Tn�t one sees that

�2t�ne−t/n! ≤ �Tn�t� ≤ �1+2t + �2t�2/2!+ · · ·+ �2t�n/n!�e−t

for all t > 0. Therefore �Tn�t� → 0 as t → � at an exponential rate. However,
for smaller t the norm grows rapidly. Figure 10.1 plots �Tn�t� as a function
of t ≥ 0 for n �= 12. For larger n the short time growth of the norm is even
more dramatic. It is easy to construct diagonalizable matrices Zn exhibiting
the same phenomenon. �

We proved in Theorem 8.3.10, item (iii) in the last section, that it may not be
easy to prove that an operator Z is the generator of a one-parameter semigroup
from numerical information about its resolvent norms. On the other hand
Theorem 10.2.5 below states that one can use the pseudospectra to obtain
lower bounds, not on the semigroup norms, but on certain regularizations
of these norms, defined below. This demonstrates that the pseudospectra
have a much greater effect on the short time (i.e. transient) behaviour of the
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Figure 10.1: Plot of �Tn�t � as a function of t for n = 12

semigroup than the spectrum does.3 Regularization of the semigroup norms
�Tt� is necessary because the norms themselves may be highly oscillatory as
functions of t; see Problem 10.2.10 below.

Although our main application is to one-parameter semigroup s, we assume
below only that � is a Banach space and that Tt � � → � is a strongly
continuous family of operators defined for t ≥ 0, satisfying �T0� = 1 and
�Tt� ≤ Me�t for some M�� and all t ≥ 0. We define N�t� to be the upper
log-concave envelope of �Tt�. In other words ��t� �= log�N�t�� is defined to
be the smallest concave function satisfying ��t� ≥ log��Tt�� for all t ≥ 0. It
is immediate that N�t� is continuous for t > 0, and that

1 = N�0� ≤ lim
t→0+

N�t�


In many cases one may have N�t� = �Tt�, but we do not study this question,
asking only for lower bounds on N�t� which are based on pseudospectral
information.

3 The theorems in this section are almost all taken from [Davies 2005A], but Trefethen has
been emphasizing the importance of this point for a number of years. See
[Trefethen and Embree 2005].



302 Quantitative bounds on semigroups

We assume throughout this section that

lim sup
t→+�

t−1 log��Tt�� = 0
 (10.6)

This identity can often be achieved by replacing Tt by ektTt for a suitable
value of k ∈ R. In the semigroup context it may be rewritten in the form
�0 = 0, and implies that �Tt� ≥ 1 for all t ≥ 0 by Theorem 10.1.6. If we
define the operators Rz on � by

Rzf �=
∫ �

0
�Ttf�e−zt dt

then �Rz� is uniformly bounded on �z � Re�z� ≥ �� for any � > 0, and the
norm converges to 0 as Re�z� → +�. In the semigroup context Rz is the
resolvent of the generator Z of the semigroup, but in the general context it is
simply a norm analytic function of z defined for Re�z� > 0.

The following lemma compares N�t� with the alternative regularization4

L�t� �= sup��Ts� � 0 ≤ s ≤ t�


Lemma 10.2.2 If t > 0 then

�Tt� ≤ L�t� ≤ N�t�


If Tt is a one-parameter semigroup then we also have

N�t� ≤ L�t/n�n+1 (10.7)

for all positive integers n and t ≥ 0.

Proof. The log-concavity of N�t� and the assumption (10.6) imply that N�t�

is a non-decreasing function of t. We deduce that �Tt� ≤ L�t� ≤ N�t�. If Tt

is a one-parameter semigroup we claim that L�t/n�1+ns/t is a log-concave
function of s which dominates �Ts� for all s ≥ 0. This implies

N�s� ≤ L�t/n�1+ns/t

for all s ≥ 0. Putting s = t yields (10.7).
Since the log-concavity is immediate, our claim depends on proving that

�Ts� ≤ L�t/n�1+ns/t (10.8)

4 The idea for studying N�t� arose after corresponding results for L�t� had been obtained by
Trefethen. See [Trefethen and Embree 2005, p. 140].
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for all s ≥ 0. If 0 ≤ s ≤ t/n then �Ts� ≤ L�t/n� by the definition of the RHS,
and this implies (10.8) because L�u� ≥ 1 for all u ≥ 0. If s > t/n there exists
a positive integer r such that rt/n < s ≤ �r +1�t/n. Putting u �= s/�r +1� we
see that 0 < u ≤ t/n, so

�Ts� = �T�1+r�u� ≤ �Tu�
1+r ≤ L�t/n�1+r ≤ L�t/n�1+ns/t

as required. �

In the following lemma we put

N ′�0+� �= lim
�→0+

�−1�N���−N�0�� ∈ �0�+��

and

� �= min�� � �Tt� ≤ e�t for all t ≥ 0�


Lemma 10.2.3 The constant � satisfies

� = N ′�0+� ≥ lim sup
t→0

t−1
{
�Tt�−1

}



If Tt is a one-parameter semigroup and � is a Hilbert space then

� = sup�Re�z� � z ∈ Num�Z�� (10.9)

where Num�Z� is the numerical range of the generator Z.

Proof. If N ′�0+� ≤ � then, since N�t� is log-concave,

�Tt� ≤ N�t� ≤ e�t

for all t ≥ 0. The converse is similar. The second statement follows from
the fact that, assuming Z to be the generator of a one-parameter semi-
group , �Z −�I� is the generator of a contraction semigroup if and only
if Num�Z −�I� is contained in �z � Re�z� ≤ 0�; see Theorem 8.3.5. �

We study the function N�t� via a transform, defined for all � > 0 by

M��� �= sup�N�t�e−�t � t ≥ 0�


Putting ��t� �= log�N�t�� and ���� �= log�M���� we obtain

���� = sup���t�−�t � t ≥ 0�


Up to a sign, the function � is the Legendre transform of � (also called
the conjugate function), and must be convex. It follows directly from the
definition that M��� is a monotonic decreasing function of � which converges
as � → +� to lim supt→0 �Tt�. Hence M��� ≥ 1 for all � > 0. We also have

N�t� = inf�M���e�t � 0 < � < �� (10.10)
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for all t > 0 by the properties of the Legendre transform (i.e. simple convexity
arguments).

In the semigroup context the constant c introduced below measures the
deviation of the generator Z from being the generator of a contraction semi-
group. The lemma is most useful when c is much larger than 1. If c = 1 it
provides no useful information.

Lemma 10.2.4 If a > 0, b ∈ R and

c �= a�Ra+ib� ≥ 1�

then

M��� ≥ M̃��� �= max��a−��c/a� 1�
 (10.11)

Proof. The formula

Ra+ib =
∫ �

0
Tte

−�a+ib�t dt (10.12)

implies that

c

a
= �Ra+ib� ≤

∫ �

0
N�t�e−at dt ≤

∫ �

0
M���e�t−at dt = M���

a−�

for all � such that 0 < � < a. The estimate follows easily. �

Theorem 10.2.5 (Davies)5 If a > 0, b ∈ R,

c �= a�Ra+ib� ≥ 1

and r �= a−a/c, then

N�t� ≥ min�ert� c�

for all t ≥ 0.

Proof. This uses

N�t� ≥ inf�M̃���e�t � � > 0��

which is proved by using (10.10) and (10.11). �

The above theorem provides a lower bound on N�t� from a single value of
the resolvent norm. The constants c�a�, defined for a > 0 by

c�a� �= a sup��Ra+ib� � b ∈ R�� (10.13)

5 See [Davies 2005A].
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are immediately calculable from the pseudospectra. It follows from (10.12)
and �0 = 0 that c�a� remains bounded as a → +�.

Corollary 10.2.6 Under the above assumptions one has

N�t� ≥ sup
�a�c�a�≥1�

{
min�er�a�t� c�a��

}
(10.14)

where

r�a� �= a−a/c�a�


The constant s0 in the following theorem is defined in Section 10.6; we prove
that it equals �0 if � is a Hilbert space in Theorem 10.6.4

Theorem 10.2.7 If Tt is a one-parameter semigroup and s0 = �0 = 0 then
c�a� ≥ 1 for all a > 0.

Proof. If c�a� < 1 then by using the resolvent expansion (8.3) one obtains

�Ra+ib+z� ≤ c�a�

a
�1−�z�c�a�/a�−1

for all z such that �z� < a/c�a�. This implies that s0 < 0. �

The quantities c�a� defined by (10.13) are simpler to evaluate if the one-
parameter semigroup is positivity-preserving in the sense that f ≥ 0 implies
Ttf ≥ 0 for all t ≥ 0. The following is only one of many special properties
of positivity-preserving semigroups to be found in Chapter 12.

Lemma 10.2.8 Let Tt be a positivity-preserving one-parameter semigroup
acting in Lp�X� dx� for some 1 ≤ p < �. If �0 = 0 then

�Ra+ib� ≤ �Ra�
for all a > 0 and b ∈ R. Hence c�a� = a�Ra�.

Proof. Let f ∈ Lp and g ∈ Lq = �Lp�∗, where 1/p+1/q = 1. Then

��Ra+ibf� g�� = �
∫ �

0
�Ttf� g�e−�a+ib�t dt �

≤
∫ �

0
��Ttf� g��e−at dt

≤
∫ �

0
�Tt�f �� �g��e−at dt

= �Ra�f �� �g��
≤ �Ra��f�

p
�g�

q
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By letting f and g vary we obtain the statement of the lemma. (See
Problem 13.1.4 for the crucial inequality ��Xf�g�� ≤ �X�f �� �g��, which holds
for all positivity-preserving operators X. It is elementary if X has a non-
negative integral kernel.) �

Example 10.2.9 Let Tt be the positivity-preserving, one-parameter semi-
group acting on L2�R+� with generator

�Zf��x� �= f ′�x�+v�x�f�x�

where v is a real-valued, bounded measurable function on R+. One may
regard Z as a bounded perturbation of the generator Y of the semigroup
�Stf��x� �= f�x+ t�. One has the explicit formula

�Ttf��x� = a�x+ t�

a�x�
f�x+ t� (10.15)

for all f ∈ L2 and all t ≥ 0, where

a�x� �= exp
{∫ x

0
v�s� ds

}




The function a is continuous and satisfies

e−�v��ta�x� ≤ a�x+ t� ≤ e�v��ta�x�

for all x� t. Hence �Tt� ≤ e�v��t for all t ≥ 0.
The detailed behaviour of �Tt� depends on the choice of v, or equivalently

of a. If c > 0 and 0 < � < 1 then the unbounded potential v�x� �= c�1−��x−�

corresponds to the choice

a�x� �= exp�cx1−��


Instead of deciding the precise domain of the generator Z, we define the
one-parameter semigroup Tt directly by (10.15), and observe that

N�t� = �Tt� = exp�ct1−��

for all t ≥ 0. This implies that

M��� = exp�c′�1−1/��

for all � > 0. If c is large and � is close to 1, the semigroup norm grows
rapidly for small t, before becoming almost stationary. The behaviour of
�Ttf� as t → � depends upon the choice of f , but one has limt→� �Ttf� = 0
for a dense set of f , including all f with compact support.
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For this unbounded potential v, every z with Re�z� < 0 is an eigenvalue,
the corresponding eigenvector being

f�x� �= exp
{
zx− c�1−��x1−�

}



Hence

Spec�Z� = �z � Re�z� ≤ 0�
 �

Problem 10.2.10 The above example may be used to show that �Tt� can be
highly oscillatory. If k > 1 prove that the choice

a�x� �= 1+ �k−1� sin2�	x/2� (10.16)

in (10.15) leads to �T2n� = 1 and �T�2n+1�� = k for all positive integers n. In
this case the regularizations N�t� and L�t� are not equal, but both are equal
to k for t ≥ 1. �

10.3 Contractions and dilations

In this section we consider a single contraction A on � , i.e. an operator A

such that �A� ≤ 1. Our main result is a dilation theorem for contractions.6

Theorem 10.3.1 (Sz.-Nagy) If A is a contraction on � then there exists a
Hilbert space � containing � and a unitary operator U on � such that

An = PUnP��
for all non-negative integers n, where P is the orthogonal projection of �
onto � .

Proof. We put � �= l2�Z�� � and identify � ∈ � with the sequence f̃r �=
�r�0� in � . The theorem follows immediately provided there exists a unitary
operator U �= D + N , where N has a strictly upper triangular block matrix
and Dr�s �= �r�0�s�0A.

6 Much fuller treatments of the theorem may be found in [Davies 1980B, Sz.-Nagy and Foias 1970].
These texts prove the uniqueness of the dilation under further conditions, but we do not need
that for the applications that we make of the theorem.
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We construct a unitary operator whose block matrix is of the form

U �=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝


 
 


 
 


0 1
0 1

0 C D

A B

0 1
0 1

0

 
 



 
 


⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the blank entries all vanish. More precisely we put

�Uf�r �=
⎧
⎨

⎩

Af0 + �I −�A∗�2�1/2f1 if r = 0,
�I −�A�2�1/2f0 −A∗f1 if r = −1,
fr+1 otherwise.

The unitarity of U follows by Lemma 9.5.1. �

Problem 10.3.2 Given a complex constant z such that �z� < 1, let � be the
m-dimensional subspace of � �= l2�Z� consisting of all sequences of the form
fr �= ��r�p�r�zr , where � is the characteristic function of �0�+�� and p is a
polynomial of degree at most �m−1�. Let P be the orthogonal projection of
� onto � and let U denote the unitary operator on � given by �Uf�r �= fr+1.
Prove that if A �= PUP�� then

An = PUnP��
for all non-negative integers n. Find the spectrum of the operator A. �

In Theorem 10.3.1 we constructed a unitary dilation of a given contraction,
but one can also start with a unitary operator and go in the reverse direction.

Theorem 10.3.3 Let U be a unitary operator on the Hilbert space � and let
�0� �1 be two closed subspaces such that �1 ⊆�0, U�0 ⊆�0 and U�1 ⊆�1.
Let P denote the orthogonal projection of � onto � �= �0 ∩�⊥

1 . Then the
contraction A �= PUP�� satisfies

An = PUnP��
for all non-negative integers n.
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Proof. Let Pi denote the orthogonal projections of � onto �i for i = 0� 1.
The hypotheses imply that P0P1 = P1P0 = P1 and PiUPi = UPi for i = 0� 1.
Moreover P = �I −P1�P0.

We start by proving that PUnP1 = 0 for all non-negative integers n. This
is obvious for n = 0 and the inductive step is

PUn+1P1 = PUn
UP1 = PUn�P1UP1� = �PUnP1�UP1 = 0


We also prove the theorem inductively, noting that it is elementary for n = 0.
The inductive step is

PUnP
PUP = PUn�P0 −P1P0�UP0�I −P1�

= PUnP0UP0�I −P1�

= PUn+1P0�I −P1�

= PUn+1P
 �

Problem 10.3.4 Find the subspaces �0 and �1 that recast Problem 10.3.2
into the setting of Theorem 10.3.3. �

One may use the dilation theorem to give another proof of von Neumann’s
theorem, previously discussed in Section 9.5.

Theorem 10.3.5 (von Neumann) If A is a contraction on a Hilbert space �
then �f�A�� ≤ �f�� for all analytic functions f on the closure of the unit
disc D.

Proof. We first note that it is sufficient to prove the result for polynomials,
by approximation. In this case Theorem 10.3.1 yields

�p�A�� = �Pp�U�P��� ≤ �p�U�� ≤ �p��


The final inequality uses the spectral theorem for unitary operators. �

The main dilation theorem of this section can be extended to one-parameter
contraction semigroups as follows.7

Theorem 10.3.6 (semigroup dilation theorem) If At is a one-parameter con-
traction semigroup on � then there exists a Hilbert space � containing �

7 See [Davies 1980B] or [Sz.-Nagy and Foias 1970] for the proof.
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and a one-parameter unitary group Ut on � such that

At = PUtP��
for all t ≥ 0, where P is the orthogonal projection of � onto � .

10.4 The Cayley transform

We have already shown (Theorem 8.3.5) that an operator Z with dense domain
� in a Hilbert space � is the generator of a one-parameter semigroup of
contractions if and only if it is dissipative, i.e.

Re�Zf�f� ≤ 0

for all f ∈ �, and also

�
I −Z�� = �

for some, or equivalently all, 
 > 0. Our goal is to replace the second condition
by one that is sometimes easier to verify.

If Z is a densely defined dissipative operator and 0 �= f ∈ � then

Re��Z − I�f� f� ≤ −�f� f� < 0�

so �Z − I�f �= 0. In other words �Z − I� is one-one on its domain. We define
the Cayley transform of a dissipative operator Z with dense domain � by

Cf �= �Z + I��Z − I�−1f�

its domain being � = �Z − I��, which need not be a dense subspace of � .

Lemma 10.4.1 The Cayley transform C is a contraction from � into � , and
�C − I� has dense range. Moreover every contraction C with this property is
the Cayley transform of a unique densely defined dissipative operator Z.

Proof. Given Z, we start by showing that C has the stated properties. If f ∈�
then

��Z + I�f�2 = �f�2 +2Re�Zf�f�+�Zf�2

≤ �f�2 −2Re�Zf�f�+�Zf�2

= ��Z − I�f�2
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Putting g �= �Z−I�f , this establishes that �Cg� ≤ �g� for all g ∈ �. It follows
from the definition of C that

�C − I�g = 2�Z − I�−1g (10.17)

for all g ∈ �. Therefore the range of �C − I� equals the domain � of �Z− I�,
which is dense by hypothesis. The equation (10.17) also establishes that the
relationship between Z and C is one-one.

We next prove that if C is a contraction with domain � and �C − I�

has dense range � then �C − I� is one-one: equivalently if f ∈ � and
Cf = f then f = 0. We start by writing � �= �0 ⊕ �1 where �0 �= Cf

and �1 �= �h ∈ � � �h�f� = 0�. If h ∈ �1, � > 0 and �f�Ch� �= 0 we put
� �= ��f�Ch�. We then have

�C��h+f��2 = ��Ch+f�2

= ���2�Ch�2 +2���f�Ch��2 +�f�2

> ���2�h�2 +�f�2

= ��h+f�2

for all sufficiently small � > 0, because a term of size O��� is larger than
terms of size O��2� as � → 0. This contradicts the fact that C is a contraction,
so we deduce that �f�Ch� = 0, and hence C�1 ⊆ �1. This implies that

� = �C − I�� = �C − I��0 + �C − I��1 ⊆ �1


The density of � and the definition of �1 finally imply that f = 0.
We now prove that a contraction C such that � �= Ran�C − I� is dense is

the Cayley transform of a densely defined dissipative operator Z. Given C,
we use the fact that �C − I� is one-one to define Z by (10.17). Since

Dom�Z� = Ran��Z − I�−1� = Ran�C − I� = ��

we see that Z is densely defined. Since C is a contraction and

C = �Z + I��Z − I�−1

we deduce that

��Z + I�f�2 ≤ ��Z − I�f�2

for all f ∈ �. By expanding both sides and simplifying we see that this is
equivalent to Z being dissipative. �
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We define a maximal dissipative operator to be a (densely defined) dissipative
operator that has no dissipative extensions. The following theorem does not
extend to general Banach spaces.

Theorem 10.4.2 The operator Z is the generator of a one-parameter con-
traction semigroup on the Hilbert space � if and only if it is a maximal
dissipative operator.

Proof. It is immediate from the proof of Lemma 10.4.1, in particular (10.17),
that there is a one-one correspondence between contractive extensions C ′ of
C and dissipative extensions Z′ of Z. Therefore Z is maximal if and only if
C is maximal.

If Z is the generator of a one-parameter contraction semigroup then
Ran�I −Z� = � so Dom�C� = � and C is maximal.

Conversely suppose that C is a contraction with domain �, that �C − I�

has dense range and that C has no proper extension with these properties.
By taking limits we deduce that � is a closed subspace of � . If it were a
proper closed subspace then we would be able to put C ′ = CP, where P is the
orthogonal projection of � onto �, to get a proper extension of C. Therefore
Ran�I −Z� = � = � . Theorem 8.3.5 now implies that Z is the generator of
a one-parameter contraction semigroup. �

In Lemma 5.4.4 we proved that a closed symmetric operator H is self-adjoint
if and only if its deficiency indices are both zero. In the following theorem
we deal with the case in which this is not necessarily so. We first clarify the
relationship with Lemma 5.4.4, in which the dimensions of the following two
subspaces are called the deficiency indices of H .

Lemma 10.4.3 If C is the Cayley transform of Z �= iH , where H is a densely
defined symmetric operator, then

Dom�C�⊥ = �f ∈ Dom�H∗� � H∗f = if��

Ran�C�⊥ = �f ∈ Dom�H∗� � H∗f = −if�


Proof. By definition Dom�C� = �iH − I��. Therefore the following state-
ments are equivalent.

f ⊥ Dom�C��

��iH − I�g� f� = 0 for all g ∈ ��

�Hg�f� = �g� if� for all g ∈ �
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The third of these statements is equivalent to f ∈ Dom�H∗� and H∗f = if .
The proof that f ⊥ Ran�C� iff f ∈ Dom�H∗� and H∗f = −if is similar. �

Theorem 10.4.4 If H is a densely defined symmetric operator then the Cayley
transform C of Z = iH is isometric. If H is maximal symmetric then either
iH or −iH is the generator of a one-parameter semigroup of isometries. If
H = H∗ then H is the generator of a one-parameter unitary group.

Proof. The hypotheses imply that Re�Zf�f� = 0 for all f ∈ Dom�Z�. There-
fore

��iH +1�f�2 = �Hf�2 +�f�2 = ��iH −1�f�2

for all such f , which implies that C �= �iH + I��iH − I�−1 is an isometry.
If � �= Dom�C�⊥ and � �= Ran�C�⊥ are both non-zero then they contain

subspaces �′ and � ′ which have the same positive dimension, and there
exists a unitary operator V mapping �′ onto � ′. We define the isometric
extension C ′ � Dom�C�⊕�′ → Ran�C�⊕� ′ by

C ′�f ⊕g� �= Cf ⊕Vg


Since there is a one-one correspondence between symmetric extensions of H

and isometric extensions of C, we conclude that H is not maximal symmetric.
If H is maximal symmetric there are two cases to consider. If � = �0�

then Ran�I −Z� = � , so Z is the generator of a one-parameter contraction
semigroup Tt on � by Theorem 8.3.5. If f ∈ Dom�Z� and ft = Ttf then

d
dt

�ft�
2 = �Zft� ft�+�ft�Zft� = 2Re�Zft� ft� = 0


Therefore Tt is a one-parameter semigroup of isometries.
A similar argument shows that if � = �0� then �−iH� is the generator of

a one-parameter semigroup of isometries.
If H = H∗ then Lemma 10.4.3 implies that the deficiency indices of H

both vanish, because a symmetric operator cannot have complex eigenvalues.
Therefore �=� = �0�, and ±iH are both generators of one-parameter semi-
group s of isometries. This is sufficient to establish that iH is the generator
of a one-parameter unitary group by using Theorem 6.1.23. �

Problem 10.4.5 The formula

�Ttf��x� �=
{

f�x− t� if 0 ≤ t ≤ x�

0 otherwise,
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defines a one-parameter semigroup of isometries on L2�0��� whose gen-
erator Z is given formally by �Zf��x� �= −f ′�x�. Prove that C1

c �0��� is a
core for the generator Z and that every f ∈ Dom�Z� is a continuous function
satisfying f�0� = 0. Prove also that Re�Zf�f� = 0 for all f ∈ Dom�Z�. �

If Tt is a one-parameter contraction semigroup on � , we say that it is unitary
on the closed subspace � if Tt maps � isometrically onto � for every t ≥ 0.
We say that Tt is completely non-unitary if the only such subspace is �0�.

Theorem 10.4.6 If Tt is a one-parameter contraction semigroup on � then
there is a unique orthogonal decomposition � �= �1 ⊕�2 such that �1

and �2 are both invariant, Tt is unitary on �1 and completely non-unitary
on �2.

Proof. We start by identifying a closed linear subspace on which Tt is iso-
metric. Let � denote the set of all f ∈� such that �Ttf� = �f� for all t ≥ 0.
If f� g ∈ � then

2�f�2 +2�g�2 = 2�Ttf�2 +2�Ttg�2

= �Tt�f +g��2 +�Tt�f −g��2

≤ �f +g�2 +�f −g�2

= 2�f�2 +2�g�2



Therefore �Tt�f + g�� = �f + g�. It is easy to show that � is closed under
scalar multiples and norm limits, so we conclude that it is a closed linear
subspace of � .

If Tt maps a closed linear subspace � isometrically onto � for all t ≥ 0
then it is immediate that � ⊆�. Therefore � = Tt��� ⊆ Tt��� for all t ≥ 0,
and we conclude that

� ⊆ �1 �=⋂

t≥0

Tt���


If we prove that Tt is unitary when restricted to �1 then it follows that �1

is the largest subspace with this property.
We first prove that �1 is an invariant subspace for Tt. It follows from its

definition that Ts��� ⊆ � for all s ≥ 0. Hence

Ts��1� ⊆ Ts�Tt�� = Tt�Ts�� ⊆ Tt�

for all s� t ≥ 0. This implies that Ts�1 ⊆ �1 for all s ≥ 0.
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We next prove that Tt maps �1 onto �1 for all t ≥ 0. If f ∈ �1 and t ≥ 0
then there exists g ∈ � such that f = Ttg; moreover g is unique because Tt

is isometric when restricted to �. If s ≥ 0 then there also exists gs ∈ � such
that f = Tt+sgs. It follows by the uniqueness property that g = Tsgs. Hence
g ∈ Ts��� for all s ≥ 0, so g ∈ �1.

We finally have to prove that �2 �= �⊥
1 is an invariant subspace for Tt.

The direct sum decomposition � = �1 ⊕�2 allows us to write Tt in the
block form

Tt �=
(

Ut At

0 Bt

)

where Ut � �1 → �1 is unitary, At � �2 → �1 and Bt � �2 → �2. Since T ∗
t

is a contraction, we see that

�f�2 +�A∗
t f�2 = �U ∗

t f�2 +�A∗
t f�2

= �T ∗
t �f ⊕0��2

≤ �f ⊕0�2

= �f�2

for all f ∈ �1. Hence A∗
t = 0, so At = 0 and Tt��2� ⊆ �2. �

Problem 10.4.7 If eZt is a one-parameter contraction semigroup on a finite-
dimensional space � , use the Jordan canonical form for Z to prove that Tt

is completely non-unitary if and only if every eigenvalue 
 of Z satisfies
Re�
� < 0. �

10.5 One-parameter groups

We start with a classical result due to Sz.-Nagy.8

Theorem 10.5.1 (Sz.-Nagy) Let A be a bounded invertible operator acting
on a Hilbert space � and suppose that �An� ≤ c for all n ∈ Z. Then there
exists a bounded invertible operator S such that SAS−1 is unitary. Moreover
�S±1� ≤ c.

Proof. The bound

1 = �A−nAn� ≤ �A−n��An� ≤ c�An�
8 See [Sz.-Nagy 1947].
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implies that c−1 ≤ �An� ≤ c for all n ∈ Z. We now define new inner products

�f� g�n �= n−1
n−1∑

r=0

�Arf�Arg�

for all positive integers n, and use the above inequalities to deduce that

c−2�f�2 ≤ �f�2

n
≤ c2�f�2

for all f ∈� . This implies the existence of positive self-adjoint operators Bn

such that c−2I ≤ Bn ≤ c2I and

�f� g�n = �Bnf� g�
for all f� g ∈ � .

We next show that A±1 are close to being contractions with respect to the
norms � · �

n
, provided n is large enough. If f ∈ � then

�Af�2

n
= n−1

n−1∑

r=1

�Af�2 +n−1�Anf�2

≤ �f�2

n
+n−2

n−1∑

r=0

�An−rArf�2

≤ �f�2

n
+ c2n−2

n−1∑

r=0

�Arf�2

= �1+ c2/n��f�2

n



Therefore

�A�2

n
≤ 1+ c2/n


A similar calculation applies to A−1.
The final step is to let n → �. Since Bn need not converge we use the

weak operator compactness (see Problem 10.5.2 below) of the set

� �= �B ∈ ��� � � c−2I ≤ B ≤ c2I�� (10.18)

to pass to a subsequence Bn�r� that converges in the weak operator topology
as r → � to a limit B� that also lies in �. Letting r → � in

0 ≤ �Bn�r�A
±1f�A±1f� ≤ �1+ c2/n�r���Bn�r�f� f�

yields

0 ≤ �B�A±1f�A±1f� ≤ �B�f� f�
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We now put S �= B1/2
� and g �= Sf to get

�SA±1S−1g� ≤ �g�
for all g ∈� . In other words SA±1S−1 are both contractions. The final bound
�S±1� ≤ c follows directly from (10.18) and the definition of S. �

Problem 10.5.2 Let

K �= ∏

f�g∈�
Kf�g

where

Kf�g �= �z ∈ C � �z� ≤ c2�f��g���

so that K is compact for the product topology. Let M be the subset of K

consisting of all functions z � � ×� → C for which

zf+h�g = zf�g + zh�g

zf�g = zg�f

c−2�f�2 ≤ zf�f = zf�f ≤ c2�f�2

z�f�g = �zf�g

for all f� g� h ∈ � and � ∈ C. Prove that M is a compact subset of K and
that it is homeomorphic to the set � defined in (10.18), provided the latter is
given its weak operator topology. �

Note The one-sided analogue of Theorem 10.5.1 is false: Foguel has con-
structed a power-bounded operator A (i.e. an operator such that �An� are
uniformly bounded for n ≥ 1) which is not similar to a contraction.9

Our proof of Theorem 10.5.1 used a compactness argument but was oth-
erwise rather explicit and computational. One can also base the proof on the
following fixed-point theorem.

Problem 10.5.3 (Markov-Kakutani theorem) Let X be a compact convex set
in a locally convex Hausdorff topological vector space. Let S � X → X be
continuous and affine in the sense that

S�
x+ �1−
�y� = 
S�x�+ �1−
�S�y�

9 See [Foguel 1964] and [Lebow 1968]. [Chernoff 1976] discusses the corresponding problem
for one-parameter semigroup s. For a complete analysis of the one-sided case sees
[Paulsen 1984] and [Pisier 1997]
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for all x� y ∈ S and all 
 ∈ �0� 1�. By adapting the proof of Theorem 10.5.1
prove that there exists a ∈ S such that S�a� = a. �

Theorem 10.5.4 Let Tt be a one-parameter group acting on a Hilbert space
� and suppose that �Tt� ≤ c for all t ∈ R. Then there exists a bounded
invertible operator S such that Ut = STtS

−1 are unitary for all t ∈ R.

Proof. This is a routine modification of the proof of Theorem 10.5.1. One
puts

�f� g�n �= 1
n

∫ n

0
�Ttf�Ttg�dt

to obtain

c−1�f� ≤ �f�
n
≤ c�f�

for all f ∈ � . One then rewrites the bound

�Ts�
2

n
≤ 1+ c2�s�/n

in the form

0 ≤ �BnTsf�Tsf� ≤ �1+ c2�s�/n��Bnf� f�
and passes to a subsequence Bn�r� as before. �

The remainder of this section discusses generalizations of the above theorems.
We will need to use the following standard result below.

Problem 10.5.5 Let � be a dense linear subspace of the Hilbert space � ,
and let Q � � ×� → C be a map which is linear in the first variable and
conjugate linear in the second. Suppose also that

Q�f� g� = Q�g� f�

for all f� g ∈ � and there exist �� � ∈ R such that

��f�2 ≤ Q�f� f� ≤ ��f�2

for all f ∈�. Prove that there exists a bounded self-adjoint operator A �� →
� such that �I ≤ A ≤ �I and

Q�f� g� = �Af�g�
for all f� g�∈ �. �

Theorem 10.5.6 If Z is the generator of the one-parameter group Tt on the
Hilbert space � then the following conditions are equivalent.
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(i) There exists a constant a ≥ 0 such that

�Re�Zf�f�� ≤ a�f�2

for all f ∈ Dom�Z�.

(ii) There exists a constant a ≥ 0 such that

�Tt� ≤ ea�t�

for all t ∈ R.

(iii) One has Z �= iH + A where H is self-adjoint and A is bounded and
self-adjoint.

Proof. (i)⇒(ii) If f ∈ Dom�Z� and ft �= Ttf then
∣
∣
∣
∣

d
dt

�ft�
2
∣
∣
∣
∣= ��Zft� ft�+�ft�Zft�� ≤ 2a�ft�

2

for all t ∈ R. Hence �Ttf� ≤ ea�t��f� for all f ∈ Dom�Z�; the same bound
holds for all f ∈ � by continuity.

(ii)⇒(iii) The first step is to construct the bounded operator A of the theorem.
If f ∈ Dom�Z� then

−a�f�2 ≤ 	�f� f� ≤ a�f�2

where

	�f� g� �= 1
2

��Zf�g�+�f�Zg�� 


It follows by Problem 10.5.5 that there exists a bounded self-adjoint operator A

on � and an unbounded symmetric operator H with Dom�H� = Dom�Z� such
that Z = iH +A. Since iH is a bounded perturbation of Z, Theorem 11.4.1
implies that it is the generator of a one-parameter group Ut. Since H is
symmetric Ut is a one-parameter group of isometries. Differentiating U ∗

t = U−t

at t = 0 yields H = H∗ by Theorem 7.3.3.

(iii)⇒(i) The definition of Z yields

�Re�Zf�f�� ≤ �A��f�2

for all f ∈ Dom�Z� immediately. Since H is self-adjoint its deficiency indices
vanish and iH is the generator of a one-parameter group of isometries by
Theorem 10.4.4. Since Z is a bounded perturbation of iH , it is the generator
of a one-parameter group by Theorem 11.4.1. �
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Theorem 10.5.7 (Haase)10 If Tt �= eZt is a one-parameter group on the
Hilbert space � there exists an equivalent inner product �·� ·�Q on �
such that Z �= iH + A where H is Q-self-adjoint and A is bounded and
Q-self-adjoint.

Proof. We use the inner product of

�f� g�Q �=
∫ �

−�
�Ttf�Ttg�e−2b�t� dt

where b > a and �Tt� ≤ Mea�t� for all t ∈ R. We start by proving that this is
equivalent to the given inner product. If f ∈ � then

�f�2

Q
≤
∫ �

−�
M2e2a�t�−2b�t��f�2

dt = M2

b−a
�f�2




In the reverse direction we use the fact that

1 = �T0� ≤ �Tt��T−t�

to deduce that

�Tt� ≥ M−1e−a�t�

for all t ∈ R. Therefore

�f�2

Q
≥
∫ �

−�
M−2e−2a�t�−2b�t��f�2

dt = �f�2

M2�b+a�

for all f ∈ � .
We next prove that �Ts�Q

≤ eb�s� for all s ∈ R. If f ∈ � then

�Tsf�2

Q
=
∫ �

−�
e−2b�t��Ts+tf�2

dt

=
∫ �

−�
e−2b�t−s��Ttf�2

dt

≤
∫ �

−�
e2b�s�−2b�t��Ttf�2

dt

= e2b�s��f�2

Q



The proof is completed by applying Theorem 10.5.6. �

10 See [Haase 2004].
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Problem 10.5.8 The conditions of Theorem 10.5.6 imply that Dom�Z� =
Dom�Z∗�. Construct a one-parameter group acting on the Hilbert space
� = L2�R� such that

Dom�Z�∩Dom�Z∗� = �0�
 �

10.6 Resolvent bounds in Hilbert space

If Tt �= eZt is a one-parameter semigroup acting on a Banach space � then
we have defined �0 to be the infimum of all constants a such that

�Tt� ≤ M�a�eat

for some M�a� and all t ≥ 0. We define s0 to be the infimum of all constants
b such that

sup��R�z�Z�� � Re�z� ≥ b� < �


It follows directly from the identity

R�z�Z� =
∫ �

0
Tte

−zt dt

of Theorem 8.2.1 that s0 ≤ �0. In a finite-dimensional context these constants
are equal but in general they may differ.

In Theorem 10.6.4 we prove the surprising fact that they are always equal
in a Hilbert space. The proof depends on three preliminary lemmas.

Lemma 10.6.1 Let A be a closed operator acting in the Banach space � and
satisfying Spec�A�∩S = ∅, where

S �= �x+ iy � � < x < � and y ∈ R�


Suppose also that �R�z�A�� ≤ k for all z ∈ S. If 0 < p < � and f ∈ � and
∫ �

−�
�R�u+ iy�A�f�p

dy ≤ c

for some u ∈ S then
∫ �

−�
�R�v+ iy�A�f�p

dy ≤ c�1+ ��−��k�p

for all v ∈ S.

Proof. By using the translation invariance of the integrals with respect to y

we can reduce to the case in which u and v are both real.
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The resolvent identity

R�v+ iy�A�f = R�u+ iy�A�f + �u−v�R�v+ iy�A�R�u+ iy�A�f

yields the bound

�R�v+ iy�A�f� ≤ �1+ ��−��k��R�u+ iy�A�f��

from which the statement of the lemma follows directly. �

Lemma 10.6.2 Let Tt �= eZt be a one-parameter semigroup on the Banach
space � and let Re�z� > �0. Then

∫ �

0
te−zt�Ttf���dt = �R�z�Z�2f���

for all f ∈ � and � ∈ �∗.

Proof. This relies upon the formula

d
dt

�te−zt�TtR�z�Z�f���� = e−zt�TtR�z�Z�f���− te−zt�Ttf���

The condition Re�z� > �0 allows us to integrate both sides with respect to t

to obtain the stated result. �

Lemma 10.6.3 Let Tt �= eZt be a one-parameter semigroup on the Hilbert
space � and let a > �0. Then there exists a constant c such that

∫ �

−�
�R�a+ iy�Z�f�2

dy = 2	
∫ �

0
e−2at�Ttf�2

dt

≤ c�f�2
(10.19)

for all f ∈ � .

Proof. If �en�
�
n=1 is a complete orthonormal set in � and a > �0 then
∫ �

0
e−at�Ttf� en�e−iyt dt = �R�a+ iy�Z�f� en�


Note that the integrand lies in L1�0���∩L2�0���. Using the unitarity of the
Fourier transform we deduce that

∫ �

0
�e−at�Ttf� en��2 dt = 1

2	

∫ �

−�
��R�a+ iy�Z�f� en��2 dy


Summing this over n yields the statement of the lemma. An upper bound
to the second integral in (10.19) is obtained by using the hypothesis
that a > �0. �
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Theorem 10.6.4 If Tt �= eZt is a one-parameter semigroup acting on a
Hilbert space � then s0 = �0.

Proof. By adding a suitable multiple of the identity operator to Z this reduces
to proving that if s0 < 0 then �0 < 0, and hence to the proposition that if
there is a constant c such that �R�z�Z�� ≤ c for all z such that Re�z� ≥ 0
then �0 < 0.

Given f� g ∈ � and z satisfying Re�z� > 0 we consider the function

�z�t� �=
{

te−zt�Ttf� g� if t ≥ 0,
0 otherwise.

If Re�z� > �0 then �z ∈ L1�R� and its Fourier transform is

�z�y� �= �R�z+ iy�Z�2f� g�
by Lemma 10.6.2. We consider this latter function of y for all values of the
parameter z in

S �= �x+ iv � 0 < x < �+
0 +2 and v ∈ R�

where �+
0 �= max��0� 0�. Since

��z�y�� ≤ �R�z+ iy�Z�f��R�z− iy�Z∗�g�
we deduce that

��z�1 ≤
{∫ �

−�
�R�z+ iy�Z�f�2

dy

}1/2 {∫ �

−�
�R�z− iy�Z∗�g�2

dy

}1/2

whenever the RHS is finite.
There exists a constant k such that �R�z�Z�� ≤ k for all z ∈ S by hypoth-

esis, and there exists a constant c such that
∫ �

−�
�R���+

0 +1�+ iy�Z�f�2
dy ≤ c�f�2

by Lemma 10.6.3. It follows by Lemma 10.6.1 that there exists a constant b

such that
∫ �

−�
�R�z+ iy�Z�f�2

dy ≤ b�f�2

for all z ∈ S. A similar argument implies that
∫ �

−�
�R�z− iy�Z∗�g�2

dy ≤ b�g�2

for all z ∈ S. We deduce that

��z�1 ≤ b�f��g�
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for all f� g ∈ � and all z ∈ S. We now take the inverse Fourier transform of
�z to obtain

�te−zt�Ttf� g�� ≤ b

2	
�f��g�

for all t ≥ 0, z ∈ S and f� g ∈ � . Letting z → 0 we deduce that �Tt� < 1 for
sufficiently large t > 0. This implies that �0 < 0 by Theorem 10.1.6. �

The proof of the above theorem is entirely constructive in the sense that all
of the constants are controlled. This suggests, correctly, that one can obtain a
variety of related bounds by modifying the assumptions.

Theorem 10.6.5 (Eisner-Zwart)11 Let Tt �= eZt be a one-parameter semi-
group acting on the Hilbert space � . Then one has the relations (i)⇒(ii)⇒(iii)
between the conditions

(i) �Tt� ≤ M for some M > 0 and all t ≥ 0;
(ii) �R�
�Z�� ≤ M/Re�z� for all z such that Re�z� > 0;

(iii) �Tt� ≤ K�1+ t� for some K > 0 and all t ≥ 0.

However (ii) does not imply a bound of the form �Tt� ≤ K�1 + t�� for any
� < 1.

11 For the proof see [Zwart 2003, Eisner and Zwart 2005].



11
Perturbation theory

11.1 Perturbations of unbounded operators

Very few differential equations can be solved in closed form, and mathemati-
cians have developed a variety of techniques for understanding the general
properties of solutions of many of the others. One of the earliest is by means
of perturbation theory. As well as providing a method of evaluating solutions
by means of series expansions, it provides valuable theoretical insights. The
latter are the focus of attention in this chapter.

If Z is an unbounded operator in a Banach space �, one can define
several types of perturbation of Z. The simplest case arises when W �= Z+A

where Dom�W� �= Dom�Z� and A is a bounded operator on �. Whatever the
technical assumptions the goal is to determine spectral and other properties
of W , assuming that Z is an operator which can be analyzed in great detail.

If A is an unbounded operator with Dom�A� ⊇ Dom�Z� we say that A is
relatively bounded with respect to Z if there exist constants c, d such that

�Af� ≤ c�Zf�+d�f� (11.1)

for all f ∈ Dom�Z�. The infimum of all possible constants c is called the
relative bound of A with respect to Z. If a � Spec�Z� then Problem 6.1.4
implies that A is relatively bounded with respect to Z if and only if AR�a�Z�

is a bounded operator on �.
Many of the calculations in the chapter are related in some way to the

following result.

Problem 11.1.1 Let Z be a closed operator acting in � and let A be relatively
bounded with respect to Z. If z does not lie in Spec�Z� or Spec�Z +A� then

R�z�Z +A�−R�z�Z� = R�z�Z +A�AR�z�Z� �

325
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Lemma 11.1.2 If Z is closed and A has relative bound less than one with
respect to Z then W �= Z +A is also closed.

Proof. Suppose that 0 < c < 1, 0 ≤ d < � and

�Af� ≤ c�Zf�+d�f�

for all f ∈ Dom�Z�. Consider the two norms

�f�1 �= �Zf�+�f��

�f�2 �= �Wf�+�f��

on Dom�Z�. It follows from Problem 6.1.1 that Dom�Z� is complete with
respect to the first norm and that it is sufficient to prove that it is complete
with respect to the second norm. We shall prove that the two norms are
equivalent.

If f ∈ Dom�Z� then

�Wf�+�f� ≤ �Zf�+�Af�+�f�
≤ �1+ c��Zf�+ �1+d��f�
≤ �1+ c+d���Zf�+�f���

Conversely

�1+d���Wf�+�f�� ≥ �Wf�+ �1+d��f�
≥ �Zf�−�Af�+ �1+d��f�
≥ �1− c��Zf�+�f�
≥ �1− c���Zf�+�f��� �

By considering the case A �= −Z, one sees that the conclusion of Lemma
11.1.2 need not hold if c = 1 in (11.1).

Theorem 11.1.3 Let Z be a closed operator acting in the Banach space �
and suppose that a � Spec�Z�. If A is relatively bounded with respect to Z

then a � Spec�Z+cA� provided c ∈ C satisfies 	c	 �AR�a�Z�� < 1. Moreover

lim
c→0

�R�a�Z + cA�−R�a�Z�� = 0�
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Proof. We need to prove that if c satisfies the stated condition then a �
Spec�Z + cA� and

R�a�Z + cA� = R�a�Z��1− cAR�a�Z��−1� (11.2)

If we denote the right-hand side of (11.2) by B then it is immediate that B is
bounded and one-one with range equal to Dom�Z�. The first statement of the
theorem is completed by observing that

�aI − �Z + cA��B = ��aI −Z�− cA�R�a�Z��1− cAR�a�Z��−1

= �I − cAR�a�Z���1− cAR�a�Z��−1

= I�

The norm convergence of the resolvent as c → 0 follows directly from
(11.2). �

Theorem 11.1.3 is a semicontinuity result for the spectrum under small pertur-
bations. The following example shows that full continuity cannot be proved
under such conditions.

Problem 11.1.4 Consider the bounded operator Ac defined on l2�Z� by

�Acf��n� �=
{

f�n+1� if n �= 0,
cf�n+1� if n = 0.

Prove that Spec�Ac� equals �z ∈ C � 	z	 = 1� unless c = 0, in which case it
equals �z ∈ C � 	z	 ≤ 1�. �

Theorem 11.1.5 (Riesz) Let 	 be a closed contour enclosing the compact
component S of the spectrum of the closed operator A acting in �, and
suppose that T = Spec�A�\S is outside 	. Then

P �= 1
2
i

∫

	
R�z�A� dz

is a bounded projection commuting with A. The restriction of A to P� has
spectrum S and the restriction of A to �I −P�� has spectrum T .

Proof. The proof of Theorem 1.5.4 is not directly applicable because it uses
the boundedness of A, but we can use that theorem together with Lemma 8.1.9
to prove this one.

If a is just outside 	 then a � Spec�A� and B �= R�a�A� is a bounded
operator. Suppose that 	 is parametrized by s ∈ �0� 1� with 	�0� = 	�1�. If we
put 
�s� �= �a−	�s��−1 then the map z → w �= �a−z�−1 maps the part of the



328 Perturbation theory

spectrum of A inside 	 one-one onto the part of the spectrum of B inside 
 by
Lemma 8.1.9. The following identities establish that the associated spectral
projections are equal.
∫



R�w�B� dw =

∫ 1

0
R�
�s��B�
 ′�s� ds

=
∫ 1

0

{
�a−	�s��−1 − �aI −A�−1

}−1
�a−	�s��−2	′�s� ds

=
∫

	

{
R�z�A�− �z−a�−1I

}
dz

=
∫

	
R�z�A� dz� �

The following theorem generalizes Theorem 1.5.6 to unbounded operators
and also to spectral projections with rank greater than 1.1 For simplicity we
restrict attention to bounded perturbations, but the theorem can be modified
so as to apply to relatively bounded perturbations.

Theorem 11.1.6 (Rellich) Let 	 be a simple closed curve enclosing a non-
empty compact subset S of the spectrum of a closed operator A acting in
the Banach space �. Suppose that �R�z�A�� ≤ c for all z ∈ 	 and that B

is a bounded operator on �. Then Spec�A+ tB�∩U �= ∅ for all t ∈ C such
that 	t	 �B� c < 1, where U is the region inside 	. The spectral projections of
A+ tB associated with the region U depend analytically on t and the spectral
subspaces all have the same dimension.

Proof. If t satisfies the stated bound and At �= A+ tB then Spec�At�∩	 = ∅
and

R�z�At� = R�z�A��1− tBR�z�A��−1

for all z ∈ 	 by (11.2). Moreover R�z�At� is a jointly analytic function of
�z� t� and

�R�z�At�� ≤ c

1−	t	 �B� c

for all relevant �z� t�.
The spectral projection of At associated with the region U is given by

Pt �= 1
2
i

∫

	
R�z�At� dz

1 As before it is a special case of results of Rellich which are treated systematically in
[Kato 1966A].
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by Theorem 11.1.5. These projections depend analytically on t. Lemma 1.5.5
now implies that the rank of Pt does not depend on t. �

Example 11.1.7 Complex scaling is an important technique in quantum
mechanics, particularly when determining resonances numerically. It is a
large subject in its own right, so we only attempt to give a flavour of the
method. By starting with the eigenfunction rather than the potential and
confining ourselves to the one-dimensional case, we make the calculations
entirely elementary.

Let f be an analytic function which does not vanish anywhere in the sector
S� �= �z � 	Arg�z�	 < ��. Suppose also that

−f ′′�x�+V�x�f�x� = �f�x�

for all x > 0. Then V is the restriction to the positive real line of the analytic
function

V�z� �= �+ f ′′�z�
f�z�

defined on the sector S�. If 	�	 < � and we define f��x� �= f�ei�x� for all
x > 0 then

−f ′′
� �x�+V��x�f��x� = e2i��f�x�

for all x > 0, where

V��x� �= e2i�V�ei�x��

Starting from f�z� �= e−z2/2 one discovers that if 	�	 < 
/4 then e2i� is an
eigenvalue for the NSA harmonic oscillator

�A�g��x� �= −g′′�x�+ e4i�x2g�x�

acting in L2�0��� subject to Neumann boundary conditions at 0, or in L2�R�.
Starting from f�z� �= ze−z one finds that −e2i� is an eigenvalue for the
hydrogen atom with a complex coupling constant

�B�g��x� �= −g′′�x�−2ei�x−1g�x�

acting in L2�0��� subject to Dirichlet boundary conditions at 0.
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Conversely, if one is given a potential V that is analytic in the sector S�

then one may consider the analytic family of operators Hz acting in L2�0���

according to the formula

�Hzf��x� �= −f ′′�x�+V�zx�f�x��

Under suitable technical assumptions, which include the specification of
boundary conditions, an obvious modification of Theorem 11.1.6 allows one
to conclude that the eigenvalues and eigenfunctions of Hz depend analytically
on z in a manner that can be analyzed in detail. �

11.2 Relatively compact perturbations

In this section we consider relatively compact perturbations of an operator Z

and their effect on the essential spectrum. We assume throughout the section
that Z is a closed, densely defined operator acting in a Banach space � and
that Spec�Z� �= C. We define � to be the vector space Dom�Z� provided
with the Banach space norm

			f 			 �= �Zf�+�f�� (11.3)

We say that Z is a Fredholm operator if it is closed and Fredholm consid-
ered as a bounded operator from � to �. We define the essential spectrum
EssSpec�Z� of Z to be the set of all z ∈ C such that zI −Z is not Fredholm
in this sense. Evidently the essential spectrum is a closed subset of the spec-
trum of Z.

Lemma 11.2.1 Let Z be a closed operator on � and let z ∈ C. If the sequence
of vectors fn ∈ � converges weakly in � to 0 as n → � and satisfies

lim
n→� 			fn			 = 1� lim

n→� �Zfn − zfn� = 0�

then z ∈ EssSpec�Z�.

Proof. This is a minor modification of the proof of Lemma 4.3.15, in which
the projection P acts in the Banach space �. �

The essential spectrum of an unbounded operator Z can be determined from
any of its resolvent operators, and this has the advantage of avoiding explicit
reference to its domain.
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Theorem 11.2.2 Let Z be a closed unbounded operator acting in � and let
� � Spec�Z�. Then z ∈ EssSpec�Z� if and only if z �= � and

��− z�−1 ∈ EssSpec���I −Z�−1��

Proof. We start from the identity

��− z�−1I − ��I −Z�−1 = ��− z�−1 ���I −Z�− ��− z�I� ��I −Z�−1

= ��− z�−1�zI −Z���I −Z�−1�

Since ��I − Z�−1 is a bounded invertible map from � onto Dom�Z�, the
latter being given its natural norm, we see that ���− z�−1I − ��I −Z�−1� is
Fredholm if and only if zI −Z is Fredholm. This is equivalent to the statement
of the theorem. �

Corollary 11.2.3 If Z1� Z2 are two closed unbounded operators acting in �
and there exists � � Spec�Z1�∪Spec�Z2� for which

��I −Z1�
−1 − ��I −Z2�

−1

is compact, then Z1 and Z2 have the same essential spectrum.

If Z is a closed operator on � and A is a perturbation satisfying

Dom�Z� ⊆ Dom�A�

then we say that A is relatively compact with respect to Z if A is compact
considered as an operator from � to �. If a � Spec�Z� then Problem 6.1.4
implies that A is relatively compact with respect to Z if and only if AR�a�Z�

is a compact operator. 2

Lemma 11.2.4 If A is relatively compact with respect to Z then it is rela-
tively bounded. If � is reflexive and satisfies the approximation property of
Section 4.2 then the relative bound is 0.

Proof. The first statement is elementary. If � has the approximation property
and a � Spec�Z� then AR�a�Z� may be approximated arbitrarily closely by

2 Our theorems on relatively compact and rank 1 perturbations have several variants and may
be extended in a number of directions. See [Desch and Schappacher 1988,
Arendt and Batty 2005A, Arendt and Batty 2005B].



332 Perturbation theory

finite rank operators by Theorem 4.2.4. That is, given � > 0 there exist
f1� � � � � fn ∈ � and �1� � � � ��n ∈ �∗ such that

∥
∥
∥
∥
∥
AR�a�Z�f −

n∑

r=1

fr�f��r�
∥
∥
∥
∥
∥

< ��f� (11.4)

for all f ∈ �. We next observe that R�a�Z�∗ has dense range in �∗: if this
were not true the Hahn-Banach theorem together with reflexivity would imply
that there exists a non-zero f ∈ � such that R�a�Z�f = 0. It follows that by
slightly changing �r one can achieve (11.4) as well as �r = R�a�Z�∗�r ,
where �r ∈ �∗. Putting g �= R�a�Z�f we see that (11.4) is equivalent to

∥
∥
∥
∥
∥
Ag −

n∑

r=1

fr�g��r�
∥
∥
∥
∥
∥

< ���aI −Z�g�

for all g ∈ Dom�Z�. Therefore

�Ag� < ��Zg�+
(

�	a	+
n∑

r=1

�fr���r�
)

�g�

for all such g. �

Problem 11.2.5 Let Z be the closed operator on � �= L1�R� defined by
�Zf��x� �= xf�x� with the maximal domain. Defining � as usual, find � ∈�∗

and g ∈� such that the rank one operator Af �= ��f�g does not have relative
bound 0 with respect to Z. �

The fact that the following theorem does not require � to be reflexive is
crucial for its application in Theorem 14.3.5.

Theorem 11.2.6 Let Z be a closed operator acting in � with Spec�Z� �= C.
If A is a relatively compact perturbation of Z then Z and Z + A have the
same essential spectrum. Moreover Z+A is closed on the same domain as Z.

Proof. The hypotheses of the theorem imply that Z � � → � is bounded
and A � � → � is compact. Therefore zI −Z −A is Fredholm regarded as a
bounded operator from � to � if and only if zI −Z is Fredholm.

We prove that Z+A is closed on Dom�Z� without using Lemma 11.1.2. By
adding a suitable constant to Z we reduce to the case in which 0 � Spec�Z�, so
that Z �� →� is bounded and invertible. Since Y �= Z+A is Fredholm, there
exist closed subspaces �1 and �2 of � such that � = �1 ⊕�2, Y 	�1

= 0,
�1 is finite-dimensional, and

�Yf� ≥ c			f 			 (11.5)

for some c > 0 and all f ∈ �2. See Theorem 4.3.5.
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Now suppose that fn ∈ � and that �fn − f� → 0 and �Yfn − k� → 0 as
n → � for some f� k ∈ �. We may write fn in the form fn �= gn +hn where
gn ∈ �1, hn ∈ �2 and Ygn = 0 for all n. Since �Yhn −k� → 0, (11.5) implies
that hn is a Cauchy sequence in �2. Therefore there exists h ∈ �2 such that
			hn −h			 → 0 as n → �. Since gn = fn −hn we deduce that gn converges
in �1, the two norms being equivalent on this space because it is finite-
dimensional. Therefore fn converges in �. The limit must coincide with f ,
so f ∈ �. Since Y � � → � is bounded Yf = k and Y is closed. �

Theorem 11.2.7 Let H0f �= −f ′′ in L2�0�
� subject to Dirichlet bound-
ary conditions at 0� 
. If V is a possibly complex-valued potential and
V ∈ L2�0�
� then H �= H0 + V has empty essential spectrum and compact
resolvent operators.

Proof. The normalized eigenfunctions of H0 are �n�x� �= �2/
�1/2 sin�nx�,
where n ∈ N, and the corresponding eigenvalues are n2. The resolvent operator
H−1

0 has the integral kernel

G�x� y� �=
�∑

n=1

n−2�n�x��n�y�� (11.6)

Because this series converges uniformly, G is a continuous function on
�0�
�2 which vanishes on the boundary of the square. The operator VH−1

0

has the Hilbert-Schmidt kernel V�x�G�x� y�. Theorem 11.2.6 implies that H

has empty essential spectrum. A further calculation of the same type shows
that the Hilbert-Schmidt norm of V�aI −H0�

−1 converges to 0 as a → −�.
Hence a � Spec�H� for all large enough negative a by Theorem 11.1.3. The
formula (11.2) becomes

R�a�H� = R�a�H0��I −AR�a�H��−1

and implies that R�a�H� is compact. �

Example 11.2.8 Let H act in L2�a� b� subject to Dirichlet boundary condi-
tions according to the formula

�Hf��x� �= �H0f +Vf��x� �= −f ′′�x�+V�x�f�x�

where V is a complex-valued, continuous function on �a� b�. (The results
of this example have been extended to much more general Sturm-Liouville
operators and other boundary conditions.) We infer as in Theorem 11.2.7 that
H has empty essential spectrum and compact resolvent.
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If a �= 0 and b �= 
 then Spec�H0� = �n2 � n ∈ N� and �V�zI −H0�
−1� < 1

provided dist�z� Spec�H0�� > �V��. Theorem 11.1.3 implies that

Spec�H� ⊆
�⋃

n=1

B�n2��V����

For large enough n these balls are disjoint and there is exactly one eigenvalue
in each ball by Theorem 11.1.6. The precise asymptotics of the eigenvalues
is well understood in the self-adjoint case, but much less so for complex-
valued V .3

Assuming that 0 is not an eigenvalue of H there are linearly independent
solutions � and � of Hf = 0 satisfying ��a� = 0, �′�a� = 1, ��b� = 0,
�′�b� = −1. By differentiating the RHS one sees that the Wronskian w �=
�′�x���x� − ��x��′�x� is independent of x. Putting x = a and using the
assumption that 0 is not an eigenvalue of H we deduce that w �= 0. Direct
calculations show that Hf = g if and only if

f�x� =
∫ b

a
G�x� y�g�y� dy

where

G�x� y� �=
{

w−1��x���y� if x ≤ y,
w−1��x���y� if y ≤ x.

Hence G is the integral kernel for the resolvent operator H−1. The Green
function for the particular case V = 0, a = 0 and b = 
 is written down in
Example 5.6.10. �

Lemma 11.2.9 Let Z be a closed operator on � and let A � � → � be
defined by Af �= ��f�g where � ∈ �∗ and g ∈ �. Then z � Spec�Z� is an
eigenvalue of Z +A if and only if

��R�z�Z�g� = 1� (11.7)

The LHS is an analytic function of z, so the solutions of (11.7) form a discrete
subset of C\Spec�Z�.

Proof. The eigenvalue equation Zf + ��f�g = zf may be rewritten in the
form �zI −Z�f = ��f�g. This is in turn equivalent to f = ��f�R�z�Z�g. The
assumption that z � Spec�Z� implies that ��f� �= 0. Normalizing to the case
��f� = 1 leads to the stated conclusion. �

3 See, however, [Tkachenko 2002]. The paper of [Albeverio et al. 2006] provides the solution
of the inverse spectral problem for a class of complex-valued distributional potentials.
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Problem 11.2.10 Let H be defined in L2�R� by

�Hf��x� �= xf�x�+��x�
∫

R
f�s���s� ds

where ��x� �= c�x+ i�−n for some c ∈ C and n ∈ N. Find all the eigenvalues
of H and describe how they move as c varies. �

We conclude the section with an application of the above theorem to
Schrödinger operators with possibly complex potentials. Example 11.4.10
provides further information about the following operator.

Theorem 11.2.11 Let Z �= � on L2�RN �. Let A be the operator of multipli-
cation by a function a ∈ Lp�RN � where p = 2 if N ≤ 3, and p > N/2 if N ≥ 4.
Also let B be the operator of multiplication by a bounded measurable func-
tion b which vanishes as 	x	 → �, i.e. b ∈ L�

0 �RN �. Then �A+B���I −Z�−1

is compact for all � > 0. Therefore the essential spectrum of Z + A + B,
regarded as acting in L2�RN �, is �−�� 0�.

Proof. We rely upon the results in Section 5.7. In the notation of that section
we have

�A+B���I −Z�−1 = �a�Q�+b�Q��g�P� (11.8)

where g��� �= �	�	2 + ��−1. We note that g ∈ Lq ∩ L�
0 provided q > N/2.

Problem 5.7.4 implies that (11.8) is a compact operator on L2�RN �. Theo-
rem 11.2.6 now implies that the essential spectrum of Z +A+B is the same
as that of Z. The latter equals �−�� 0� by Theorem 8.1.1. �

This theorem is far from the sharpest that can be proved,4 but the most impor-
tant case excluded concerns Schrödinger operators with locally L1 potentials
in one dimension, for which we refer to Section 14.3.

11.3 Constant coefficient differential operators
on the half-line

The spectral properties of ordinary differential operators depend heavily on
the boundary conditions. However, we shall see that their essential spectrum
does not. We establish this first at an abstract level.

4 See [Simon 1982] for a comprehensive survey.
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Lemma 11.3.1 Let �0 be a closed subspace of finite codimension in the
Banach space �1. Let A1 be a bounded operator from �1 to � and let A0 be
its restriction to �0. Then A1 is Fredholm if and only if A0 is Fredholm.

Proof. We start by writing �1 �= �0 ⊕� where � is finite-dimensional. We
define D � �1 →� by D�f ⊕g� �= �A0f�⊕0. Since �A1 −D� is of finite rank
either both A1 and D are Fredholm or neither is. Since Ran�D� = Ran�A0�

and Ker�D� = Ker�A0�⊕� either both A0 and D are Fredholm or neither is.
This completes the proof. �

Lemma 11.3.2 Let A1 and A2 be two closed operators acting in the Banach
space � and suppose that they coincide on � = Dom�A1�∩ Dom�A2�. If �
has finite codimension in both Dom�A1� and Dom�A2� then

EssSpec�A1� = EssSpec�A2��

Proof. Given z ∈ C and j = 1� 2 let B denote the restriction of either of
�zI −Aj� to �. It follows from Lemma 11.3.1 that �zI −Aj� is Fredholm if
and only if B is Fredholm. This completes the proof. �

The spectral properties of the constant coefficient differential operator

�Af��x� �=
n∑

r=0

arf
�r��x�� (11.9)

with an �= 0, depend heavily on the interval chosen and on the boundary
conditions. Our next theorem shows that the essential spectrum is much more
stable in this respect. The first half of the theorem can easily be extended to
a wide class of variable coefficient differential operators.

Let � be the space of n times continuously differentiable functions
on �0��� all of whose derivatives lie in L2. Given any linear subspace
L of Cn let �L denote the subspace consisting of all f ∈ � such that
�f�0�� f ′�0� ����� f �n−1��0�� ∈ L.

The operator A is closable on �L by an argument very similar to that of
Example 6.1.9. We denote the closure by AL, and refer to it as the operator
A acting in L2�0��� subject to the imposition of the boundary conditions L.

Theorem 11.3.3 The essential spectrum of the operator AL is independent
of the choice of L. Indeed

EssSpec�AL� = �
��� � � ∈ R��
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where the symbol 
 of the operator is given by


��� �=
n∑

r=0

ari
r�r �

Proof. Each of the stated operators is an extension of the operator AM

corresponding to the choice M = �0�. Moreover �M has finite codimension
in �L for any choice of L, so the first statement follows from Lemma 11.3.2.

Let BM denote the ‘same’ differential operator but acting in L2�−�� 0�

and subject to the boundary conditions f�0� = f ′�0� = · · · = f �n−1��0� = 0.
Finally let T denote the ‘same’ operator acting in L2�R�. Since AM ⊕ BM

is the restriction of T to a subdomain of finite codimension, it follows by
Lemma 11.3.2 that

EssSpec�AM� ⊆ EssSpec�AM�∪EssSpec�BM�

= EssSpec�AM ⊕BM�

= EssSpec�T�

= �
��� � � ∈ R��

The last equality follows by using the Fourier transform to prove that T is
unitarily equivalent to the operator of multiplication by 
�·� acting on its
maximal domain.

Conversely suppose that z ∈ C and there exists � ∈ R such that 
��� = z. Let
� ∈ C�

c �0��� ⊆ Dom�AL� satisfy ��x� = 0 if x ≤ 1 or x ≥ 4, and ��x� = 1
if 2 ≤ x ≤ 3. Then define fn ∈ C�

c �0��� for positive n by

fn�x� �= ei�x��x/n��

A direct computation establishes that

lim
n→� �ALfn − zfn�/	�fn	� = 0�

(The denominator diverges more rapidly than the numerator as n → �.) An
application of Lemma 11.2.1 proves that z ∈ EssSpec�AL�. �

In order to determine the full spectrum of such operators acting in L2�0���

we must specify the boundary conditions. We suppose from now on that A

is of even order, i.e.

�Af��x� �=
2n∑

r=0

arf
�r��x��
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where a2n = 0. We impose the ‘Dirichlet’ boundary conditions

f�0� = f ′�0� = · · · = f �n−1��0� = 0�

but the theorem below may easily be extended to other boundary conditions.
The symbol of A is given by


��� �=
2n∑

r=0

ari
r�r

and satisfies 	Re�
����	 → +� as � → ±�.

Theorem 11.3.4 5 The spectrum of the operator A is the union of S = �
��� �

� ∈ R�, the set of eigenvalues of A and the set of eigenvalues of A∗. If z � S

then z cannot be an eigenvalue of both A and A∗. It is an eigenvalue of one
of these operators unless the winding number of 	 around z equals n.

Proof. The first statement of the theorem follows directly from Theorem 11.3.3.
We next identify the eigenvalues of A.

If we disregard the boundary conditions then Af = zf has exactly 2n

linearly independent solutions. We present an explicit basis for the intersection
of the solution space with L2�0���. If z � EssSpec�A� then none of the roots
of 
��� = z lies on the real axis. Suppose first that the roots �1� � � � � �2n are
distinct. After re-ordering them we may assume that �1� � � � � �k have negative
imaginary parts while the remainder have positive imaginary parts – we
include 0 as a possible value of k. If we disregard the boundary conditions
the space of L2 solutions of Af = zf is k-dimensional and consists precisely
of the functions of the form

f�x� �=
k∑

r=1

�re
�r x�

These only lie in the domain of A if they satisfy the boundary conditions at
x = 0. These boundary conditions involve the derivatives

f �m��0� =
k∑

r=1

�r�
m
r

for m = 0� 1� 2� � � � . The non-vanishing of the Vandermonde determinant
implies that if k ≤ n the only such solution is f = 0 while if k > n a non-zero
solution exists.

5 See [Edmunds and Evans 1987, Theorem IX.7.3]. The reformulation in terms of winding
numbers may be found in [Reddy 1993, Davies 2000B].
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If the equation 
��� = z has some repeated roots then the set of solutions
of Af = zf are generated by functions of the form xse�r x where the possible
values of s ≥ 0 depend upon the multiplicity of �r . The same argument applies,
since the relevant generalized Vandermonde determinants are still non-zero.6

We see that z is an eigenvalue of A if and only if the number of roots of

��� = z that have negative real parts is greater than n. By a similar argument
one sees that z is an eigenvalue of A∗ if and only if the number of roots of

��� = z that have positive real parts is greater than n. These two facts imply
the second statement of the theorem.

We have now completed the proof, except for the fact that the result is
expressed in terms of the number of solutions of 
��� = z that have positive
or negative real parts. The final statement of the theorem follows by applying
Rouche’s theorem to the integral

1
2
i

∫ �

−�

 ′���


���− z
d�� �

Problem 11.3.5 Let A be the convection-diffusion operator defined on L2�0���

by

�Af��x� �= f ′′�x�+f ′�x�

subject to the Dirichlet boundary conditions f�0� = 0. Find the spectrum of
A. Compare your result with Example 9.3.20 and Theorem 9.3.21. �

11.4 Perturbations: semigroup based methods

One may often show that if Z is the generator of a one-parameter semigroup
and A is a perturbation which is ‘small’ in some sense then Z+A is also the
generator of a one-parameter semigroup . We start by considering the easiest
case, in which A is a bounded operator.

Theorem 11.4.1 Let Z be the generator of a one-parameter semigroup St

on the Banach space � and suppose that

�St� ≤ Meat

6 See [Muir 1923].
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for all t ≥ 0. If A is a bounded operator on � then �Z +A� is the generator
of a one-parameter semigroup Tt on � such that

�Tt� ≤ Me�a+M�A��t

for all t ≥ 0.

Proof. We define the operators Tt by

Ttf �= Stf +
∫ t

s=0
St−sASsf ds

+
∫ t

s=0

∫ s

u=0
St−sASs−uASuf du ds

+
∫ t

s=0

∫ s

u=0

∫ u

v=0
St−sASs−uASu−vASvf dv du ds + · · · � (11.10)

The nth term is an n-fold integral whose integrand is a norm continuous
function of the variables. It is easy to verify that the series is norm convergent
and that

�Ttf� ≤ Meat�f�
�∑

n=0

�tM�A��n/n!

= Me�a+M�A��t

for all f ∈ �.
The proof that TsTt = Ts+t for all s� t ≥ 0 is a straightforward but lengthy

exercise in multiplying together series term by term and rearranging integrals,
which we leave to the reader. If f ∈ � then

lim
t→0

�Ttf −f� ≤ lim
t→0

{

�Stf −f�+
�∑

n=1

Meat�f��tM�A��n/n!
}

= 0

so Tt is a one-parameter semigroup .
If f ∈ � then

lim
t→0

�t−1�Ttf −f�− t−1�Stf −f�−Af�

≤ lim
t→0

∥
∥
∥
∥t

−1
∫ t

0
St−sASsf ds −Af

∥
∥
∥
∥

+ lim
t→0

t−1Meat�f�
�∑

n=2

�tM�A��n/n!

= 0�
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It follows that f lies in the domain of the generator Y of Tt if and only if it
lies in the domain of Z, and that

Yf �= Zf +Af

for all such f . �

As well as being illuminating in its own right (11.10) easily leads to the
identities

Ttf = Stf +
∫ t

s=0
Tt−sASsf ds (11.11)

= Stf +
∫ t

s=0
St−sATsf ds� (11.12)

Corollary 11.4.2 Let T�
t be the one-parameter semigroup on � with gener-

ator Z +�A, where Z is the generator of a one-parameter semigroup , A is
a bounded operator and � ∈ C. Then for every t ≥ 0, T�

t is an entire function
of the coupling constant �.

Proof. This is an immediate consequence of (11.10). �
We mention in passing that the analytic dependence of an n×n matrix A�z�

on a complex parameter z does not imply that the eigenvalues of A�z� depend
analytically on z: branch points may occur even for n = 2.

Problem 11.4.3 Let St �= eZt be a one-parameter semigroup acting on
L2�X� dx� and suppose that

�Stf��x� �=
∫

X
Kt�x� y�f�y� dy

for all f ∈ L2�X�, where K is a non-negative integral kernel which depends
continuously on t > 0 and on x� y ∈ X. Suppose also that Tt = e�Z+A�t where
A is multiplication by a (possibly complex-valued) bounded function a on X.
Use the expansion (11.10) to prove that Tt has an integral kernel L satisfying

	Lt�x� y�	 ≤ e�a��tKt�x� y�

for all t > 0 and x� y ∈ X. �

We next extend the method of Theorem 11.4.1 to what we call class �
perturbations, after Phillips. We do not intend to imply that this class of
unbounded perturbations is well adapted to all applications, but it is simple
and provides a prototype for more sophisticated results. We discuss some
alternatives on page 348.
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We say that the operator A is a class � perturbation of the generator Z of
the one-parameter semigroup St if

(i) A is a closed operator,
(ii) Dom�A� ⊇⋃

t>0

St����

�iii�
∫ 1

0
�ASt�dt < �� (11.13)

Note that ASt is bounded for all t > 0 under conditions (i) and (ii) by the
closed graph theorem.

Lemma 11.4.4 If A is a class � perturbation of the generator Z then

Dom�A� ⊇ Dom�Z��

If � > 0 then

�AR���Z�� ≤ � (11.14)

for all large enough � > 0. Hence A has relative bound 0 with respect to Z.

Proof. Combining (11.13) with the bound

�ASt� ≤ �AS1�Mea�t−1�

valid for all t ≥ 1, we see that
∫ �

0
�ASt�e−�t dt < �

for all � > a. If � > 0 then for all large enough � we have

∫ �

0
�ASt�e−�t dt ≤ ��

Now
∫ �

0
Ste

−�tf dt = R���Z�f

for all f ∈ �, so by the closedness of A we see that R���Z�f ∈ Dom�A� and

�AR���Z�f� ≤ ��f�
as required to prove (11.14).
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If g ∈ Dom�Z� and we put f �= ��I − Z�g then we deduce from (11.14)
that

�Ag� ≤ ����I −Z�g�
≤ ��Zg�+���g�

for all large enough � > 0. This implies the last statement of the theorem. �

Theorem 11.4.5 If A is a class � perturbation of the generator Z of the one-
parameter semigroup St on � then Z+A is the generator of a one-parameter
semigroup Tt on �.

Proof. Let a be small enough that

c �=
∫ 2a

0
�ASt�dt < 1�

We may define Tt by the convergent series (11.10) for 0 ≤ t ≤ 2a, and verify
as in the proof of Theorem 11.4.1 that TsTt = Ts+t for all s� t ≥ 0 such that
s + t ≤ 2a. We now extend the definition of Tt inductively for t ≥ 2a by
putting

Tt �= �Ta�
nTt−na

if n ∈ N and na < t ≤ �n + 1�a. It is straightforward to verify that Tt is a
semigroup.

Now suppose that �St� ≤ N for 0 ≤ t ≤ a. If f ∈ � then

�Ttf −f� ≤ �Stf −f�+
�∑

n=1

N

(∫ t

0
�ASs�ds

)n

�f��

so

lim
t→0

�Ttf −f� = 0

and Tt is a one-parameter semigroup on �.
It is an immediate consequence of the definition that

Ttf = Stf +
∫ t

0
Tt−sASsf ds (11.15)
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for all f ∈ � and all 0 ≤ t ≤ a. Suppose that this holds for all t such that
0 ≤ t ≤ na. If na < u ≤ �n+1�a then

Tuf = TaTu−af

= Ta

{

Su−af +
∫ u−a

0
Tu−a−sASsf ds

}

= SaSu−af +
∫ a

0
Ta−sASs�Su−af� ds

+
∫ u−a

0
Tu−sASsf ds

= Suf +
∫ u

0
Tu−sASsf ds�

By induction (11.15) holds for all t ≥ 0.
We finally have to identify the generator Y of Tt. The subspace

� �=⋃

t>0

St�Dom�Z��

is contained in Dom�Z� and is invariant under St and so is a core for Z by
Theorem 6.1.18. If f ∈ � then there exist g ∈ Dom�Z� and � > 0 such that
f = S�g. Hence

lim
t→0

t−1�Ttf −f� = lim
t→0

t−1�Stf −f�+ lim
t→0

t−1
∫ t

0
Tt−s�AS��Ssg ds

= Zf + �AS��g

= �Z +A�f�

Therefore Dom�Y� contains � and Yf = �Z + A�f for all f ∈ �. If f ∈
Dom�Z� then there exists a sequence fn ∈ � such that �fn − f� → 0 and
�Zfn −Zf� → 0 as n → �. It follows by Lemma 11.4.4 that �Afn −Af� → 0
and hence that Yfn converges. Since Y is a generator it is closed, and we
deduce that

Yf = �Z +A�f

for all f ∈ Dom�Z�.
Multiplying (11.15) by e−�t and integrating over �0��� we see as in the

proof of Lemma 11.4.4 that if � > 0 is large enough then

R���Y�f = R���Z�f +R���Y�AR���Z�f

for all f ∈ �. If � is also large enough that

�AR���Z�� < 1
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we deduce that

R���Y� = R���Z��I −AR���Z��−1�

Hence

Dom�Y� = Ran�R���Y�� = Ran�R���Z�� = Dom�Z�

and Y = Z +A. �

Problem 11.4.6 Prove that if A is closed, 0 < � < 1, c1 > 0 and

�ASt� ≤ c1t
−�

for all 0 < t ≤ 1, then

�AR���Z�� = O���−1�

as � → +�. Deduce that there exists a constant c2 such that for all small
enough � > 0 and all f ∈ Dom�Z� one has

�Af� ≤ ��Zf�+ c2�
−�/�1−���f�� �

Theorem 11.4.7 provides a converse to Problem 11.4.6 for holomorphic semi-
groups. A generalization of this theorem is presented in Theorem 11.5.7.

Theorem 11.4.7 Suppose that the holomorphic semigroup St has generator
Z and that

�St� ≤ c1� �ZSt� ≤ c2/t

for all t such that 0 < t ≤ 1. Suppose also that the operator A has domain
containing Dom�Z� and that there exists � ∈ �0� 1� such that

�Af� ≤ ��Zf�+ c3�
−�/�1−���f� (11.16)

for all f ∈ Dom�Z� and 0 < � ≤ 1. Then

�ASt� ≤ �c2 + c1c3�t
−� (11.17)

for all t such that 0 < t ≤ 1. Hence A is a class � perturbation of Z and
Theorem 11.4.5 is applicable.

Proof. Under the stated conditions on t and � we have

�AStf� ≤ ��ZStf�+ c3�
−�/�1−���Stf�

≤ ��c2t
−1 + c1c3�

−�/�1−����f��

If we put � �= t1−� we obtain (11.17). �
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Problem 11.4.8 Given 0 < � < 1, prove that (11.16) holds for all � > 0 if
and only if there is a constant c4 such that

�Af� ≤ c4�Zf���f�1−�

for all f ∈ Dom�Z�. �

Our next result can be adapted to holomorphic semigroups, but our more
limited version has a simpler proof.7

Problem 11.4.9 Suppose that 0 < � < 1, H is a non-negative self-adjoint
operator on � and A is a linear operator with Dom�A� ⊇ Dom�H�. Use
Problem 11.4.8 and the spectral theorem to prove that if

�Af� ≤ c��H + I��f� (11.18)

for all f ∈ Dom�H� then there exists c3 such that

�Af� ≤ ��Hf�+ c3�
−�/�1−���f�

for all f ∈ Dom�H� and all � satisfying 0 < � ≤ 1. This implies that Theo-
rem 11.4.7 can be applied to perturbations satisfying (11.18). �

The application of the above results to partial differential operators could
take up an entire chapter, because of the variety of different conditions which
might be imposed on the coefficients. We can do no more than indicate some
of the standard applications. We start with the case in which �Z + A� is a
Schrödinger operator.

Example 11.4.10 The following develops the example in Theorem 11.2.11
using semigroup techniques. Let Z �= � and let St �= eZt be the Gaussian one-
parameter semigroup acting in L2�RN � and given for t > 0 by Stf �= kt ∗ f

where

kt�x� �= �4
t�−N/2e−	x	2/4t�

(See Example 6.3.5 and Theorem 6.3.2.) Let A ∈ Lp�RN � where 2 ≤ p < �.
One may use (5.10) to prove that

�ASt� ≤ cN�A�
p
t−N/2p

for all t satisfying 0 < t ≤ 1. This implies that the conditions of Theorem 11.4.5
are satisfied provided p ≥ 2 and p > N/2. Hence Z +A is the generator of a
one-parameter semigroup Tt acting on L2�RN �. �

7 See [Cachia and Zagrebnov 2001] and [Kato 1966A, Chap. 9, Cor. 2.5].
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One may also apply the methods described above to higher order differential
operators.

Theorem 11.4.11 Let Z �= −H where H = H∗ �= �−��n ≥ 0 acts in L2�RN �.
Also let A be a lower order perturbation of the form

�Af��x� �= ∑

	�	<2n

a��x��D�f��x��

If a� ∈ Lp��RN �+L��RN � for each �, where p� ≥ 2 and p� > N/�2n−	�	�,
then Z+A is the generator of a one-parameter semigroup and A has relative
bound 0 with respect to Z.

Proof. It follows by applying Problem 11.4.9, Theorem 11.4.7 and then The-
orem 11.4.5 that it is sufficient to prove that for each � there exists � < 1 for
which

X� �= a��·�D��H +1�−�

is bounded. Following the notation of Theorem 5.7.3, we may put
X� �= a��Q�b��P� where

b���� �= i	�	��

�	�	2n +1��
�

If a� ∈ L��RN � then �X� ≤ �a����b��� < � provided 	�	/2n < � < 1. On
the other hand if a� ∈ Lp�RN � where p ≥ 2 and p > N/�2n−	�	� then there
exists � such that

N +	�	p
2np

< � < 1�

This implies that �	�	−2n��p+N < 0 and hence b� ∈ Lp�RN �. The bound-
edness of X may now be deduced from Theorem 5.7.3. �

Corollary 11.4.12 If a� ∈ Lp��RN �+L�
0 �RN � for each �, where p� ≥ 2 and

p� > N/�2n−	�	�, then

EssSpec�H +A� = �0����

Proof. By examining the proof, and in particular Theorems 5.7.1 and 5.7.3,
in more detail we see that A is a relatively compact perturbation of H . We
can therefore apply Theorem 11.2.6. �
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The following theorem enables us to construct a one-parameter semigroup
acting on Lp�R� for a Schrödinger operator with a singular potential, without
specifying the Lp domain of its generator.8

Theorem 11.4.13 Let St �= e�t be the Gaussian one-parameter semigroup
acting in L1�R� and given by Stf �= kt ∗f where

kt�x� �= �4
t�−1/2e−x2/4t�

(See Example 6.3.5 and Theorem 6.3.2.) If V ∈ L1�R� then Z �= �+V is the
generator of a one-parameter semigroup Tt acting on L1�R�. This semigroup
may be extended consistently to one-parameter semigroup s on Lp�R� for all
1 ≤ p < �.

Proof. We first consider the perturbed semigroup as acting in L1. The formula

�Ve�tf��x� =
∫

R
V�x��4
t�−1/2e−�x−y�2/4tf�y� dy

implies

�Ve�t� ≤ �4
t�−1/2�V�1

for all t > 0 by Theorem 2.2.5. This implies that Tt �= e��+V�t is a one-
parameter semigroup acting on L1 by Theorem 11.4.5. Let �Tt� ≤ Meat for
all t ≥ 0.

By comparing the perturbation expansions on the two sides we see that

�Ttf� g� = �f�Ttg�
for all f� g ∈ L1 ∩L�, where the inner product is complex linear in both terms.
Therefore

	�Ttf� g�	 = 	�f�Ttg�	 ≤ �f���Ttg�1 ≤ �f��Meat�g�1 �

Since g is arbitrary this implies that

�Ttf�� ≤ Meat�f��

for all f ∈ L1 ∩L� and all t ≥ 0. The proof is now completed by applying
Lemma 6.1.30. �

We finally discuss modifications of condition (11.13) in the definition of class
� perturbations. One can modify or weaken it in several ways. We emphasize

8 A systematic investigation of the same idea in higher dimensions is provided in [Simon 1982].
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that in particular contexts, such as those relating to Schrödinger operators,
further refinements are needed to get the optimal results.9

(i) The proof and conclusion of Theorem 11.4.5 remain valid if we replace
condition (i) in the definition of a class � perturbation on page 342
by the (weaker) assumption that St� ⊆ Dom�Z� for all t > 0 and A is
bounded from Dom�Z� to � with respect to the natural norms of the two
spaces.

(ii) One may assume the Miyadera-Voigt condition10

∫ �

0
�AStx�dt ≤ c�x�

for some � > 0, some c < 1 and all x in a dense linear subspace of �.
This has the advantage of being applicable in some cases in which St is
a one-parameter group of isometries; note that if St is a one-parameter
group and A is a class � perturbation then A must be bounded.

(iii) If A is a more singular perturbation then both definitions may fail. One
alternative is to assume that A = BC where B and C lie in some class of
unbounded perturbations for which

∫ 1

0
�CStB�dt < ��

It is possible to show that the perturbation expansion (11.10) is still
convergent for small enough t under this condition.11

(iv) In extreme cases A is not an operator in any obvious sense but one can
make the assumption12

�SsASt� ≤ c�st�−1/2+�

for some � > 0 and all s� t ∈ �0� 1�.

The following example indicates that (iii) may be used to define the one-
parameter group e�i�+V�t acting on L2�R� for t ∈ R and complex-valued V ∈
L1�R�.

Problem 11.4.14 Prove that if A� B ∈ L2�R� then the operator

Ct �= Aei�tB

9 See [Simon 1982] for a detailed and systematic survey.
10 See [Miyadera 1966, Voigt 1977].
11 See [Kato 1966B, Davies 1974] for the details.
12 See [Davies 1977].
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satisfies

�Ct� ≤ �4
	t	�−1/2�A�2 �B�2

for all t ∈ R\�0�. �

Problem 11.4.15 Prove that if St �= e−Ht where H is a non-negative, self-
adjoint operator acting in the Hilbert space � then condition (iv) above
implies that �H + I�−1/2A�H + I�−1/2 is a bounded operator. �

11.5 Perturbations: resolvent based methods

In the last section we considered situations in which the perturbed semigroups
could be constructed directly. In this section we adopt a more indirect method,
based on estimates of the resolvent operators instead of the semigroups. Some
of the hypotheses in this section are weaker than they were for the analogous
results in the last section, but it needs to be noted that the conclusions are
also weaker – the existence of the perturbed semigroups is proved, but the
validity of the perturbation expansion (11.10) is not proved.

Let Z and A be operators acting in the Banach space � and satisfying

Dom�Z� ⊆ Dom�A��

We need the concept of relative bound defined in Section 5.1 and the concept
of dissipativity defined in Section 8.3.

Theorem 11.5.1 Suppose that Z is the generator of a one-parameter contrac-
tion semigroup St on � and that A is a perturbation of Z with relative bound
less than 1/2. If Z+A is also dissipative (as happens if A is dissipative) then
Z +A is the generator of a one-parameter contraction semigroup.

Proof. Since Z +A is dissipative it is sufficient by Theorem 8.3.5 to show
that

Ran��I −Z −A� = �

for some � satisfying � > 0. Since

Ran��I −Z −A� = ��I −Z −A���I −Z�−1�

= �I −A��I −Z�−1��

it suffices to show that

�A��I −Z�−1� < 1 (11.19)
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for all large enough � > 0. If

�Ag� ≤ a�Zg�+b�g� (11.20)

for all g ∈ Dom�Z� then

�A��I −Z�−1f� ≤ a�Z��I −Z�−1f�+b���I −Z�−1f�
≤ a����I −Z�−1f�+a�f�+b���I −Z�−1f�
≤ �2a+b�−1��f�

for all f ∈�; in the final inequality we used the Hille-Yosida Theorem 8.3.2.
If a < 1/2 then �2a + b�−1� < 1 for all large enough � > 0, so (11.19) is
valid. �

Corollary 11.5.2 It is sufficient in Theorem 11.5.1 that the relative bound of
A with respect to Z is less than 1.

Proof. We first note that Z and Z+A are dissipative, so Z+�A is dissipative
for all � ∈ �0� 1�. Suppose that (11.20) holds for some a satisfying 0 < a < 1.
Let n be a positive integer satisfying 0 < 1/n ≤ �1 −a�/2 and let � �= 1/n.
We prove inductively that Z + m�A is the generator of a one-parameter
contraction semigroup on � for all m such that 0 ≤ m ≤ n.

Suppose that this holds for some integer m satisfying 0 ≤ m < n. Then

��Af� ≤ 1
2

�1−a��Af�

≤ 1
2

�1−am���Af�

≤ 1
2

�a�Zf�+b�f�−am��Af��

≤ a

2
��Z +m�A�f�+ b

2
�f�

for all f ∈ Dom�Z� = Dom�Z +m�A�. Therefore Z + �m+1��A is the gen-
erator of a one-parameter contraction semigroup by Theorem 11.5.1. This
calculation allows us to carry out a finite induction from m = 0 to m = n. �

In applications the operators Z and A are often only specified on acore of Z.

Lemma 11.5.3 Let � be a core for the generator Z of a one-parameter
contraction semigroup on the Banach space �. If the operator A has domain
� and satisfies

�Af� ≤ a�Zf�+b�f� (11.21)
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for all f ∈ �, then A may be extended uniquely to Dom�Z� so as to satisfy
(11.21) for all f ∈ Dom�Z�.

Proof. Since � is a core for Z the subspace � �= �I −Z�� is dense in �.
The operator B defined on � by

Bf �= A�I −Z�−1f

is bounded by Problem 6.1.4 and so may be extended uniquely to a bounded
linear operator on �, which we also denote by B. The operator A is then
extended to Dom�Z� by putting

Af �= B�I −Z�f

for all f ∈ Dom�Z�. If f ∈ Dom�Z� then since � is a core, there exist fn ∈�
such that �fn −f� → 0 and �Zfn −Zf� → 0 as n → �. The bounds

�Afn� ≤ a�Zfn�+b�fn��

valid for all n, imply (11.21) by continuity. �

Problem 11.5.4 Suppose that L acts in L2�RN � and is given by

�Lf��x� �= � · �a�x��f�x��� (11.22)

where 0 < � ≤ a�x� ≤ � < � for all x ∈ RN and �a�x� is bounded on RN .
Then one may write L = Z +A where Z �= �� and

�Af��x� �= �a�x�−����f��x�+�a�x� ·�f�x��

Prove that A satisfies the conditions of Corollary 11.5.2. �

Problem 11.5.5 Formulate and prove an analogous result for the operator

�Lf��x� �= −��a�x��f�x��

acting in L2�RN �. �

This approach is not capable of treating operators such as (11.22) in which
a�·� is matrix-valued or not differentiable. In such cases one needs to use
quadratic form techniques.13

Problem 11.5.6 Prove that the domain of the operator defined formally in
L2�R� by

�Lf��x� �= d
dx

(

a�x�
df

dx

)

13 See, for example, [Davies 1989].
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cannot contain C�
c �R� if

a�x� �= 1+	x	�
2+	x	�

and 0 < � ≤ 1/2. By combining the ideas in Theorem 11.4.11 and Problem
11.5.4 show that if � > 1/2 then L, defined on a suitable domain containing
C�

c �R�, is the generator of a one-parameter contraction semigroup. �

We conclude with a more general version of Theorem 11.4.7. The main
hypothesis is weaker than (11.16), but the perturbed semigroup has eventually
to be constructed from its resolvent operators rather than directly from the
perturbation expansion (11.10).

Theorem 11.5.7 (Hille) Let Z be the generator of a bounded holomorphic
semigroup St on the Banach space � and let A be a perturbation with
Dom�A� ⊇ Dom�Z�. If A has a sufficiently small relative bound with respect
to Z then Z +A− cI is also the generator of a bounded holomorphic semi-
group Tt for all large enough c.

Proof. The constants in the proof are all explicit, but we have suppressed
reference to their values in the statement of the theorem.

Theorem 8.4.1 implies that there exist constants N and � ∈ �0�
/2� such
that �R�w�Z�� ≤ N 	w	−1 for all w ∈ S, where S �= �w � 	Arg�w�	 < �+
/2�.
Our main task is to prove that there exists a constant c > 0 such that

�AR�w+ c�Z�� ≤ 1/2 (11.23)

for all w ∈ S. We assume that

�Ag� ≤ ��Zg�+b�g�
for all g ∈ Dom�Z�, where 0 ≤ ��N +1� ≤ 1/4. If f ∈� and g �= R�w+c�Z�f

then

�AR�w+ c�Z�f� = �Ag�
≤ ��Zg�+b�g�
≤ ��Zg − �c+w�g�+ �b+	c+w	��g�
= ��f�+ �b+	c+w	��R�w+ c�Z�f�

≤ ��f�+ �b+	c+w	�N
	c+w	 �f�
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≤ ���N +1�+b/	c+w	��f�
≤ �1/4+b/	c+w	��f��

We obtain (11.23) by choosing c large enough to ensure that b/	c+w	 ≤ 1/4
for all w ∈ S.

Armed with (11.23), we now observe that the resolvent identity

R�w�Z +A− cI� = R�w+ c�Z�+R�w�Z +A− cI�AR�w+ c�Z�

implies

R�w�Z +A− cI� = R�w+ c�Z��I −AR�w+ c�Z��−1

and hence

�R�w�Z +A− cI�� ≤ 2N

	w+ c	 ≤ M

	w	
for all w ∈ S. This assumes the existence of the resolvent R�w�Z +A− cI�,
a matter which is dealt with as in Theorem 11.1.3. One completes the proof
by applying Theorem 8.4.2. �



12
Markov chains and graphs

12.1 Definition of Markov operators

This chapter and the next are concerned with the spectral theory of positive
(i.e. positivity preserving) operators. This theory can be developed at many
levels. The space � on which the operator acts may be an ordered Banach
space, a Banach lattice, or Lp�X� dx� where 1 ≤ p ≤ �. In this chapter we
usually put � �= l1�X�, where X is a (finite or) countable set. As well as
providing the simplest context for the theorems, this case has a wide variety
of important applications to probability theory and graph theory.

We start with some comments about the significance of the differences
between the l1 and l2 norms. In the context of Markov semigroups the relevant
norm is the l1 norm. All of the probabilistic properties of Markov operators are
naturally formulated in terms of this norm, and they need not even be bounded
with respect to the l2 norm. Nevertheless spectral theory has traditionally been
developed in a Hilbert space context, largely because this is technically much
easier. In many situations one can prove that the spectrum of an operator is
the same whether this operator is regarded as acting in l1�X� or l2�X�, but
this is not always the case; see Theorem 12.6.2.

Given u ∈ X we define �u ∈ l1�X� by

�u�x� �=
{

1 if x = u,
0 otherwise.

Note that

f = ∑

x∈X

fx�x

355
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is an l1 norm convergent expansion for all f ∈ l1�X�. If A � l1�X� → l1�X� is
a bounded linear operator then we define its matrix Ax�y by the formula

Ax�y �= �A�y��x��

so that

�Af��x� = ∑

y∈X

Ax�yf�y�

for all f ∈ l1�X�, the series being absolutely convergent. In our present context
Theorems 2.2.5 and 2.2.8 state that the norm of every bounded linear operator
A on l1�X� is given by

�A� = sup
y∈X

{
∑

x∈X

�Ax�y�
}

� (12.1)

Conversely an infinite matrix Ax�y determines a bounded operator A on l1�X�

if and only if the RHS of (12.1) is finite.
The analogous statement for l��X� is not true, unless X is finite, because

the subspace consisting of functions of finite support is not dense in l��X�.
However, if Ax�y is a matrix with subscripts x� y ∈ X then the formula

�Af��x� = ∑

y∈X

Ax�yf�y�

defines a bounded linear operator A on l��X� if and only if the RHS of (12.2)
is finite. In that case

�A� = sup
x∈X

{
∑

y∈X

�Ax�y�
}

� (12.2)

We say that a linear operator P � l1�X� → l1�X� is a Markov operator if its
matrix satisfies Px�y ≥ 0 and

∑
x∈X Px�y = 1 for all y ∈ X. One may equivalently

require that

f ≥ 0 implies Pf ≥ 0� 	Pf� 1
 = 	f� 1
 (12.3)

for all f ∈ l1�X�. Here the angular brackets refer to the natural pairing between
the Banach space l1�X� and its dual space l��X�. A third definition requires
that P�K� ⊆ K, where

K �= �f � f ≥ 0 and
∑

x∈X

f�x� = 1	 (12.4)

is the set of all probability distributions on X.
The matrix Px�y describes a situation in which a particle or other entity

at the site y jumps randomly to another site x with ‘transition probability’
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Px�y. The diagonal entry Py�y gives the probability that no jump occurs, and
the two assumptions on the matrix entries are then simply the conditions that
probabilities are always non-negative and that the sum of the probabilities
of all possible outcomes must equal 1. One may regard the jumps as taking
place between times t and t + 1, but this makes two important assumptions,
the first one being that the transition probabilities do not vary with time. The
second, Markov, assumption is that the probability of jumping from y to x

between times t and t + 1 does not depend upon how the particle got to the
site y at time t. In other words the history of the particle is irrelevant. This
assumption is not always valid, and in such situations one must use much
more sophisticated stochastic ideas than are to be found here.

If a particle starts at the site x0 = a it may then move successively to
x1� x2� � � � � xn. The Markov laws state that the probability of each jump is
independent of the previous one, so the probability of this particular path,
which we call 
, is

��
� �=
n∏

r=1

P�yr� yr−1��

If we denote by ��n�a� the sample space of all paths of length n starting at
a ∈ X then it is easy to see that

∑


∈��n�a�

��
� = 1�

One may associate a directed graph �X��� with a Markov operator P by
putting �y� x� ∈ � if P�x� y� > 0. One then says that 
 �= �x0� x2� � � � � xn� is
a permitted path if P�xr� xr−1� > 0 for all relevant r. Equivalently P�
� > 0.
We will see that the graph of a Markov operator provides valuable insights
into its behaviour.

Under the standing assumptions of time independence and the Markov
property, if f ∈ K is the distribution of some system at time 0 then the
induced distribution at time t > 0 is Ptf . The long time behaviour of the
system depends on the existence and nature of the limit of Ptf as t → �.

Although Markov operators are naturally defined on l1
R�X�, if one wants

to ask questions about their spectral properties one has to pass to l1
C�X�. If

1 ≤ p < � the complexification of a real operator AR � l
p
R�X� → l

p
R�X� is

defined by

AC�f + ig� �= �ARf�+ i�ARg�

where f� g are arbitrary functions in l
p
R�X�. One may readily check that AC

is a complex-linear operator acting on the complex linear space l
p
C�X�. An

alternative proof of our next theorem is given in Theorem 13.1.2.
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Theorem 12.1.1 Let AR � l
p
R�X� → l

p
R�X� be real and let AC be its complex-

ification, where 1 ≤ p < �. Then AC has the same norm as AR.

Proof. For p = 1 the statement follows immediately from the fact that (12.1)
holds whether one works in the real or the complex space. If p > 1 then the
inequality

�AR� ≤ �AC�

follows directly from the definition of the norm of an operator. To prove the
converse we use the fact that

�a+ ib�p = c−1
∫ �

−�
�a cos 
 +b sin 
�p d


for all a�b ∈ R, where

c �=
∫ �

−�
� cos 
�p d
�

If f� g ∈ l
p
R�X� then

�AC�f + ig��p =∑

x∈X

��ARf��x�+ i�ARg��x��p

= c−1
∑

x∈X

∫ �

−�
��ARf��x� cos�
�+ �ARg��x� sin�
��p d


= c−1
∫ �

−�

∑

x∈X

��ARf��x� cos�
�+ �ARg��x� sin�
��p d


= c−1
∫ �

−�
�AR�f cos�
�+g sin�
����p

d


≤ �AR�p
c−1

∫ �

−�
�f cos�
�+g sin�
��p

d


= �AR�p
c−1

∫ �

−�

∑

x∈X

�f�x� cos�
�+g�x� sin�
��p d


= �AR�p
c−1

∑

x∈X

∫ �

−�
�f�x� cos�
�+g�x� sin�
��p d


= �AR�p ∑

x∈X

�f�x�+ ig�x��p

= �AR�p�f + ig�p
� �
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From now on we often do not specify whether an operator acts on the real
or complex Banach space, because of the freedom afforded by the above
theorem.

12.2 Irreducibility and spectrum

Let � �= l1
R�X�. Given f� g ∈� we can define several new functions, such as

�f ��x� �= �f�x���
f+�x� �= max�f�x�� 0	�

f−�x� �= −min�f�x�� 0	�

�f ∨g��x� �= max�f�x�� g�x�	�

�f ∧g��x� �= min�f�x�� g�x�	�

Each of the operations can be defined in terms of the map f → �f �. In
particular

f ∨g = f +g

2
+
∣
∣
∣
∣
f −g

2

∣
∣
∣
∣ �

f ∧g = f +g

2
−
∣
∣
∣
∣
f −g

2

∣
∣
∣
∣ �

We define the positive part of � by

�+ �= �f ∈ � � f ≥ 0	�

where f ≥ 0 means f�x� ≥ 0 for all x ∈ X.

Problem 12.2.1 Prove that �+ is a closed convex cone and that the map
f → �f � is a non-linear contraction from � to �+, i.e.

� �f �− �g� � ≤ �f −g�
for all f� g ∈ �. �

We will need a number of lemmas.

Lemma 12.2.2 If 0 ≤ f ≤ g ∈ �+ then �f� ≤ �g�, and �f� = �g� implies
f = g.

We define a linear sublattice � of � to be a linear subspace such that f ∈ �
implies �f � ∈ �.
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Problem 12.2.3 Given a linear sublattice � in �, prove that if f� g ∈ � then
f+� f−� f ∨ g� f ∧ g ∈ �. Use Problem 12.2.1 to prove that the norm closure
of � is also a linear sublattice. �

Problem 12.2.4 If S is any subset of �, prove that the subspace

�f ∈ � � f�x� = 0 for all x ∈ S	

is a linear sublattice. If a�b ∈ X and � > 0, prove that

�f ∈ � � f�b� = �f�a�	

is a linear sublattice, but that if � < 0 it is not. �

Lemma 12.2.5 If A � � → � is a positive operator then

�A� = sup

{
�Af�
�f� � 0 �= f ∈ �+

}

� (12.5)

If A is positive and has norm 1 then

� �= �f ∈ � � Af = f	�

is a linear sublattice of �.

Proof. If f ∈ � then −�f � ≤ f ≤ �f � and A ≥ 0 together imply −A��f �� ≤
A�f� ≤ A��f ��. Hence

�A�f�� ≤ A��f ���
If c denotes the RHS of (12.5) then one sees immediately that c ≤ �A�.
Conversely

�Af� = � �A�f�� � ≤ �A��f ��� ≤ c� �f � � = �f�
for all f ∈ �. Therefore �A� ≤ c.

If �A� = 1 and Af = f then

� �f � � = �f� = �A�f�� = � �A�f�� � ≤ �A��f ��� ≤ � �f � ��

Since the two extreme quantities are equal, Lemma 12.2.2 implies that

A��f �� = �A�f�� = �f ��
so � is a linear sublattice. �

Given f ∈ � we define

supp�f� �= �x ∈ X � f�x� �= 0	�
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Let A be a positive operator acting on �. We say that E ⊆ X is an invariant
set if for every f ∈ �+ such that supp�f� ⊆ E one has supp�Af� ⊆ E. This is
equivalent to the condition that x ∈ E and �x� y� ∈ � implies y ∈ E. We say
that A is irreducible if the only invariant sets are X and ∅. This is equivalent
to the operator-theoretic condition that for all x� y ∈ X there exists n > 0 such
that �An�x�y > 0. From a graph-theoretic perspective irreducibility demands
that for all x� y ∈ X there exists a path 
 �= �y = x0� x1� � � � � xn = x� such that
�xr−1� xr� ∈ � for all relevant r.

Theorem 12.2.6 If A ��→� is a positive, irreducible operator and �A� = 1
then the subspace � �= �f � Af = f	 is of dimension at most 1. If � is one-
dimensional then the associated eigenfunction satisfies f�x� > 0 for all x ∈ X

(possibly after replacing f by −f ).

Proof. If f ∈ �+ �= �∩�+ and f�y� > 0 and Ax�y > 0 then

f�x� = �Af��x� = ∑

u∈X

Ax�uf�u� ≥ Ax�yf�y� > 0�

This implies that the set E �= supp�f� is invariant with respect to A.
Using the irreducibility assumption we deduce that f ∈�+ implies supp�f� =

X, unless f vanishes identically. If f ∈ � then f± ∈ � because � is a sub-
lattice. It follows that either f+ = 0 or f− = 0. This establishes that every
non-zero f ∈ � is strictly positive, possibly after multiplying it by −1.

If f� g ∈ �+ and � = f�a�/g�a� for some choice of a ∈ X then h = f −�g

lies in � and vanishes at a. Hence h is identically zero, and f� g are linearly
dependent. We conclude that dim��� = 1. �

If P is a Markov operator then P∗1 = 1, and this implies that 1 ∈ Spec�P�

by Problem 1.2.14. However, it does not imply that 1 is an eigenvalue of
P without further hypotheses. If X is finite, then 1 is indeed always an
eigenvalue of P.

Corollary 12.2.7 Let X be a finite set and let P � l1�X� → l1�X� be an
irreducible Markov operator. Then � is one-dimensional and there exists a
unique vector � ∈ RX such that ��x� > 0 for all x ∈ X,

∑
x∈X ��x� = 1 and

P� = �.

Theorem 12.2.8 Suppose that p�x� ≥ 0 for all x ∈ Z, p�x� = 0 if �x� ≥ k

and
∑

x∈Z p�x� = 1. Then the Markov operator P � l1�Z� → l1�Z� defined by
Pf = p∗f has no eigenvalues, and in particular � = �0	.
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Proof. If p∗f = �f for some � ∈ C then, on putting

p̂�
� �=∑

n∈Z

p�n�e−in
�

f̂ �
� �=∑

n∈Z

f�n�e−in
�

a direct calculation yields p̂�
�f̂ �
� = �f̂�
� for all 
 ∈ �−����. Note that
the first series is finite and the second converges absolutely and uniformly.
Now p̂�
� is an entire function of 
, so there are only a finite number of
solutions of p̂�
� = � in �−����. We conclude that f̂ �
� = 0 for all except
a finite number of points in �−����. But f̂ is continuous so f̂ must vanish
identically. Therefore f = 0. �

12.3 Continuous time Markov chains

Markov operators and their integer powers describe the evolution of a random
system whose state changes at integer times, or whose state is only inspected
at integer times. It is clearly also of interest to ask the same questions for
random systems which change continuously in time.

We again assume that � �= l1�X� where X is a finite or countable set. We
say that Pt is a Markov semigroup on l1�X� if it is a one-parameter semigroup
and each operator Pt is a Markov operator. The condition t ≥ 0 is important
in the following arguments.

Theorem 12.3.1 Let A � l1�X� → l1�X� be a bounded linear operator. Then
eAt is a positive operator for all t ≥ 0 if and only if A�x� y� ≥ 0 for all x �= y.
It is a Markov operator for all t ≥ 0 if and only if in addition to the above
condition

A�y� y� = − ∑

�x�x �=y	

A�x� y�

for all y ∈ X.

Proof. Suppose that eAt is positive and x �= y. Then

A�x� y� = lim
t→0+

t−1	eAt�y� �x




12.3 Continuous time Markov chains 363

and the RHS is non-negative. Conversely suppose that A�x� y� ≥ 0 for all
x �= y. We may write A �= B+cI where B ≥ 0 and c �= inf�A�x�x� � x ∈ X	.
Note that �c� ≤ �A�. It follows that

eAt = ect
�∑

n=0

tnBn

n! ≥ 0

for all t ≥ 0. If eAt is positive for all t ≥ 0 then it is a Markov semigroup if
and only if

	eAtf� 1
 = 	f� 1

for all f ∈ l1�X� and t ≥ 0. Differentiating this at t = 0 implies that 	Af� 1
 =
0 for all f ∈ l1�X�, or equivalently that

∑
x∈X A�x� y� = 0 for all y ∈ X.

Conversely if this holds then

	eAtf� 1
 =
�∑

n=0

tn

n! 	A
nf� 1
 = 	f� 1


for all t ∈ R. �

Note A continuous time Markov semigroup Pt �= eAt acting on l1�X� with
a bounded generator A is actually defined for all t ∈ C, not just for t ≥ 0.
The Markov property implies that �Pt� = 1 for all t ≥ 0. However for t < 0
the operators Pt are generally not positive. If X is finite then all of the
eigenvalues of A must satisfy Re��� ≤ 0 because �e�t� ≤ �eAt� = 1 for all
t ≥ 0. By evaluating the trace of A one sees that at least one eigenvalue �

must satisfy Re��� < 0, unless A is identically zero. Since �eAt� ≥ �e�t�, it
follows that the norm grows exponentially as t → −�.

Theorem 12.3.1 has an analogue for subMarkov semigroups.

Theorem 12.3.2 Let A � l1�X� → l1�X� be a bounded linear operator such
that A�x� y� ≥ 0 for all x �= y, so that Pt �= eAt ≥ 0 for all t ≥ 0. Then the
following are equivalent.

(i) Pt is a subMarkov operator for all t ≥ 0 in the sense that

0 ≤ 	Ptf� 1
 ≤ 	f� 1

for all f ∈ l1�X�+ and all t ≥ 0;

(ii)
∑

x∈X

A�x� y� ≤ 0 for all y ∈ X;

(iii) 	Af� 1
 ≤ 0 for all f ∈ l1�X�+.
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Proof. This depends upon using the formula

	Ptf� 1
 = 	f� 1
+
∫ t

0
	APsf� 1
ds� �

Example 12.3.3 Consider the discrete Laplacian A defined by

Af�n� �= f�n−1�−2f�n�+f�n+1�

for all f ∈ l1�Z� and all n ∈ Z. It is evident that this satisfies the conditions
for the generator of a Markov semigroup Pt. The semigroup is most easily
written down by using Fourier analysis. One has

�Af	ˆ�
� = �2 cos�
�−2� f̂ �
�

where

f̂ �
� �=∑

n∈Z

fne−in
�

Hence

�Ptf�̂ �
� = e−2t�1−cos�
��f̂ �
�

for all t > 0. It follows that

Ptf = kt ∗f (12.6)

where kt ≥ 0 is determined by the identity

k̂t �
� �= e−2t�1−cos�
���

The Fourier coefficients of this function are

kt�n� �= 1
2�

∫ �

−�
e−2t�1−cos�
��+in
 d
�

One sees that t → kt�n� is a Bessel function. �

The following method of constructing continuous time Markov chains is fairly
general, and is said to represent the chain as a Poisson process over a discrete
time chain.

Lemma 12.3.4 If Q is a Markov operator acting on l1�X� and c is a positive
constant then the operator

A �= c�Q− I�

is the generator of a Markov semigroup Pt.
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Proof. We only have to check that A�x� y� ≥ 0 for all x �= y and that
	Af� 1
 = 0 for all f ∈ l1�X�. �

The semigroup operators are given by

Pt �= ectQ−ctI = e−ct
�∑

n=0

cntnQn

n! �

This may be rewritten in the form

Pt =
�∑

n=0

a�t� n�Qn

where a�t� n� > 0 for all t� n ≥ 0 and
∑�

n=0 a�t� n� = 1. This equation can be
interpreted as describing a particle which makes jumps at random real times
according to the Poisson law a�t� n�, and when it jumps it does so from one
point of X to another according to the law of Q.

The above lemma has a converse.

Lemma 12.3.5 If A is the bounded infinitesimal generator of a continuous
time Markov semigroup Pt acting on l1�X�, then there exists a positive con-
stant c and a Markov operator Q such that

A = c�Q− I��

Proof. If c �= sup�−A�x�x� � x ∈ X	 then 0 ≤ c ≤ �A�. The case c = 0 implies
A = 0, for which we can make any choice of Q. Now suppose that c > 0. It
is immediate that B �= A+ cI is a positive operator and that

	Bf� 1
 = 	Af� 1
+ c	f� 1
 = c	f� 1

for all f ∈ l1�X�. Therefore Q �= c−1B is a Markov operator and
A = c�Q− I�. �

If Pt�x� y� > 0 for all x� y ∈ X and all t > 0 we say that Pt is irreducible.

Theorem 12.3.6 Let the continuous time Markov semigroup Pt acting on
l1�X� for t ≥ 0 have the bounded infinitesimal generator A �= c�Q − I�. If
x� y ∈ X then either Pt�x� y� > 0 for all t > 0 or Pt�x� y� = 0 for all t > 0.
The Markov semigroup Pt is irreducible if and only if the Markov operator
Q is irreducible.

Proof. The first statement follows directly from the formula

Pt�x� y� = e−ct
�∑

n=0

cntn

n! Qn�x� y�
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in which every term is non-negative. If x �= y then Pt�x� y� > 0 if and only
if Qn�x� y� > 0 for some n ≥ 1. On the other hand Pt�x� x� > 0 for all x ∈ X

and all t > 0, whatever Q may be.
The second statement of the theorem depends on the fact that Q is

irreducible if and only if for all x� y ∈ X there exists n ≥ 1 for which
Qn�x� y� > 0. �

12.4 Reversible Markov semigroups

A bounded operator A � l1�X� → l1�X� is said to be reversible (or to satisfy
detailed balance) with respect to a positive weight � � X → �0��� if

A�x� y���y� = A�y�x���x�

for all x� y ∈ X. If A ≥ 0 then reversibility implies that the associated graph
�X��� is undirected in the sense that �x� y� ∈ � if and only if �y� x� ∈ �.

Lemma 12.4.1 If the Markov operator P is reversible with respect to � and
� ∈ l1�X�+ then P� = �.

Proof. We have

�P���x� = ∑

y∈X

P�x� y���y� = ∑

y∈X

P�y� x���x� = ��x�

for all x ∈ X. �

Lemma 12.4.2 If P is a reversible Markov operator and X is finite then
Spec�P� ⊆ �−1� 1�.

Proof. Since P is a contraction on l1�X�, its spectrum is contained in �z � �z� ≤
1	. It remains to prove that the spectrum is real. The operator B �= �−1/2P�1/2

is similar to P and therefore has the same spectrum. Its matrix satisfies

B�x� y� = ��x�−1/2 �P�x� y���y����y�−1/2

= ��x�−1/2 �P�y� x���x����y�−1/2

= B�y�x��

Since B is real and symmetric, its spectrum is real. �

The above proof does not extend to infinite sets X, because the multiplication
operators �±1/2 need not be bounded, and in the important applications they
are not.
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Lemma 12.4.3 Let A be the bounded generator of a Markov semigroup Pt

acting on l1�X�, and let � � X → �0���. Then Pt is reversible with respect to
� for every t ≥ 0 if and only if A is reversible with respect to �.

Proof. We use the reversibility condition in the form A� = �A′, where A′ is
the transpose of A. We use this to deduce that An� = ��A′�n. This implies
the reversibility of the semigroup by using the power series expansion of eAt.
In the converse direction we differentiate the reversibility condition for Pt at
t = 0. �

The remainder of this section will be concerned with the construction of
reversible Markov operators, which are of importance in statistical dynamics.1

The goal is to describe the relaxation to equilibrium of a system of interacting
particles. We allow X to be infinite and assume that ∼ is a symmetric relation
such that

0 < n�y� �= #�x � x ∼ y	 ≤ k

for some k < � and all y ∈ X. We also assume that x ∼ x is false for all
x ∈ X.

We leave the proof of the next theorem to the reader, since it is a routine
verification of the necessary conditions. The semigroup eAt is said to define
the Glauber dynamics of the statistical system.

Theorem 12.4.4 Let � � X → �0�+�� be a weight such that

c−1 ≤ ��x�/��y� ≤ c (12.7)

whenever x ∼ y. Then

A�x� y� �=
⎧
⎨

⎩

��x�1/2��y�−1/2 if x ∼ y,
−∑�u�u∼x	 ��u�1/2��y�−1/2 if x = y,
0 otherwise,

is the matrix of a bounded linear operator A on l1�X�, and A satisfies the
detailed balance condition with respect to �. Moreover A is the generator
of a one-parameter Markov semigroup on l1�X� that satisfies the detailed
balance condition with respect to �.

1 See [Streater 1995, pp. 104 ff.] for a comprehensive account of this approach to
non-equilibrium statistical mechanics.
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In applications X might describe (a discrete approximation to) the possible
configurations of a large molecule and one puts

��x� �= Z−1e−�h�x� (12.8)

where h�x� is the ground state energy of a particular configuration. The func-
tion h � X → R is called the Hamiltonian of the system, � > 0 is the inverse
temperature of the environment, the partition function Z �= ∑

x∈X e−�h�x� is
assumed to be finite, and � is called the equilibrium state or Gibbs state.

Example 12.4.5 We consider a model in statistical dynamics for which S is
a large finite subset of Zn and X �= 2S , so that every state x ∈ X is a function
x � S → �−1� 1	. Every state can be represented by a diagram consisting of
±’s on the plane region S. A typical state is given below; it assumes the
choice S �= �1� � � � � 6	2 ⊆ Z2. Even in this case #�X� = 236.

+ + − + + +
+ − − − + +
− + − − + −
+ + + − − −
− + + + + −
− + + − + +

We define the Hamiltonian or energy function h�x� of a state x to be the sum
of the energies associated with its ‘bonds’ as follows. We start by specifying
a function J � �−1� 1	2 → R and assume that J�u� v� = J�v�u� for all u� v. We
interpret J�u� v� as the energy of the bond �u� v�. We then put

h�x� �= ∑

�s�t∈S��s−t�=1	

J�x�s�� x�t��

where �s − t� is the Euclidean distance between s and t in S; other measures
of closeness of s and t could be used.

We say that x ∼ y if the states differ at only one site s. Every x ∈ X has
exactly #�S� neighbours. If x ∼ y then the sums defining h�x� and h�y� differ
only for those bonds which start or end at the relevant site s ∈ S. If n is the
dimension, then there are 4n such bonds if s is an interior point of S, but
fewer if it is a boundary point. Hence x ∼ y implies

�h�x�−h�y�� ≤ 4n�J��� (12.9)

Given the function h and � > 0, we define the Gibbs state � by (12.8)
and then the reversible Markov semigroup on l1�X� as described in Theo-
rem 12.4.4. The bound (12.9) provides the necessary upper and lower bounds
on ��x�/��y� for such x� y. �
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Problem 12.4.6 Prove that the Markov semigroup defined in Example 12.4.5
is irreducible. �

Example 12.4.7 We say that the bond interactions are ferromagnetic if
J�u� v� �= �u−v�2, which implies that

h�x� �= ∑

��s�t���s−t�=1	

�x�s�−x�t��2�

Assuming that S is connected, the minimum value of h�x� is taken at two
sites: when x�s� = 1 for all s ∈ S and also when x�s� = −1 for all s ∈ S. If the
temperature is very small, i.e. � > 0 is very large, then the equilibrium state

���x� = Z−1e−�h�x�

is highly concentrated around these two minima, with equal probabilities of
being close to each. �

Problem 12.4.8 Find the minimum energy configurations x if the bonds are
anti-ferromagnetic, i.e. J�u� v� �= −�u−v�2. �

12.5 Recurrence and transience

In this section we study the long time asymptotics of irreducible Markov
operators and semigroups, obtaining results that are more specific than those
in Section 10.1. We start with the discrete time case. Recall that a Markov
operator P acting on l1�X� is said to be irreducible if for all x� y ∈ X there
exists n > 0 such that Pn�x� y� > 0; in other words it is possible to get from
x to y if one waits a suitable length of time. We also say that P is aperiodic
if Pn�x� x� > 0 for all large enough n.

Problem 12.5.1 Let X �= �1� 2� � � � � n	 where we identify n with 0 to get a
periodic set. Define the Markov operator P � l1�X� → l1�X� by

�Pf��x� �= pf�x+1�+qf�x−1�

where p > 0, q > 0 and p+q = 1. Prove that P is aperiodic if and only if n is
odd. Also find the spectrum of P and the number of eigenvalues of modulus
1.2 �

2 The matrix of P is an example of a circulant matrix. Every eigenvector f is of the form
fj = wj for all j ∈ X where w ∈ C satisfies wn = 1.
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If P is an irreducible Markov operator, we say that it is recurrent (at x) if

�∑

n=1

Pn�x� x� = +� (12.10)

and if this sum is finite we say that it is transient. The reason for using these
names will become clear in Theorem 12.5.5.

Lemma 12.5.2 If P is an irreducible Markov operator then the notions of
recurrence, transience and aperiodicity are independent of the choice of the
point x ∈ X.

Proof. Let c�x� stand for the sum in (12.10). Since P is irreducible, given
x �= y ∈ X there exist a�b > 0 such that Pa�x� y� > 0 and Pb�y� x� > 0. This
implies

0 ≤ Pa�x� y�Pn�y� y�Pb�y� x�

≤ ∑

u�v∈X

Pa�x�u�Pt�u� v�Pb�v� x�

= Pn+a+b�x� x� (12.11)

for all n ≥ 0. Hence

0 ≤ Pa�x� y�c�y�Pb�y� x� ≤ c�x��

Combining this with a similar inequality in the reverse direction we see that
c�y� < � if and only if c�x� < �.

The inequality (12.11) also establishes that if Pn�y� y� > 0 for all large
enough n then Pn+a+b�x� x� > 0 for all large enough n. �

Problem 12.5.3 If X is finite prove that every irreducible Markov operator
on l1�X� is recurrent. �

Problem 12.5.4 Let P be an irreducible Markov operator on l1�X� and sup-
pose that

Pn�x� x� ∼ ena�x�

as n → +� in the sense that

lim
n→+� n−1 log�Pn�x� x�� = a�x��

Prove that a�x� is independent of x. Note that if a�x� < 0 for some (every) x

then P is transient. �
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If P is an irreducible Markov operator and x ∈ X, we put pn �= Pn�x� x�.
Alternatively

pn �=∑

n�x

��
�

where 
 �= �x0� x1� � � � � xn	 and

��
� �= P�xn� xn−1�P�xn−1� xn−2� � � � P�x1� x0��

The notation
∑

n�x indicates that one sums over all paths 
 for which x =
x0 = xn.

We also define the first return probability fn at x for the time n by

fn �=
⎧
⎨

⎩

0 if n = 0,
p1 if n = 1,
∑′

n�x ��
� if n > 1,

where
∑′

n�x denotes the sum over all paths 
 which start at x at time zero
and return to x again for the first time at time n.

The following theorem states that the irreducible Markov operator P is
recurrent if and only if every path which starts at x eventually returns to x

with probability 1.

Theorem 12.5.5 One always has

�∑

n=0

fn ≤ 1� (12.12)

Moreover the sum equals 1 if and only if

�∑

n=0

pn = ��

Proof. The first statement is the consequence of the fact that one is summing
the probabilities of disjoint events. The second relies on the formula

pn = �n�0 +fnp0 +fn−1p1 +fn−2p2 +· · ·+f1pn−1 �

which is proved by dividing all relevant paths into subclasses. If 0 < s < 1
and we define

p�s� �=
�∑

n=0

pns
n� f�s� �=

�∑

n=0

fns
n�

then

p�s� = 1+f�s�p�s��



372 Markov chains and graphs

Taking the limit s → 1− in

p�s� = 1/�1−f�s��

yields the stated result. �

Problem 12.5.6 Let P be the irreducible Markov operator on l1�Z+� associ-
ated with the infinite tridiagonal matrix

P �=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 �

1 0 �

� 0 �

� 0 �

� 0
� � �

� � �
� � �

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where � > 0� � > 0 and �+� = 1. Prove that P is transient if and only if
� < 1/2. �

We now progress to the analogous questions for continuous time Markov
semigroups.

Theorem 12.5.7 Let the Markov semigroup Pt on l1�X� have a bounded
infinitesimal generator. If Pt is irreducible then the condition

∫ �

0
Pt�x� x� dt < � (12.13)

holds for all x ∈ X or for no x ∈ X.

Proof. This is essentially the same as the discrete time case (Lemma 12.5.2)
with the sum replaced by an integral. �

If the condition (12.13) holds for all x ∈ X we say that Pt is transient and
otherwise we say it is recurrent.

Problem 12.5.8 In Example 12.3.3

Pt�0� 0� = 1
2�

∫ �

−�
e−2�1−cos�
��t d
�

By evaluating the integrals involved prove that this semigroup is recurrent. �
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Example 12.5.9 The discrete Laplacian on l1�Z2� is of the form A �= A1 +A2

where

�A1f��m�n� �= f�m−1� n�−2f�m�n�+f�m+1� n�

and

�A2f��m�n� �= f�m�n−1�−2f�m�n�+f�m�n+1��

Since �A1� = �A2� ≤ 4, we see that �A� ≤ 8. It is also clear that A generates
a Markov semigroup Pt. One can show that

Ptf = ht ∗f

for all f ∈ l1�Z2� and for a suitable function ht by copying the procedure
in Example 12.3.3. The main modification is that one needs to use the two-
dimensional version of Fourier series, in which the transform of a function
on Z2 is a periodic function on �−����2.

The following observation makes the computation of Pt easy. A direct
calculation shows that A1A2 = A2A1. Therefore

eAt = e�A1+A2�t = eA1t eA2t

for all t ≥ 0. Since we have already solved the one-dimensional problem, we
can immediately write

ht�u� = kt�u1�kt�u2�

where kt is the sequence defined in Example 12.3.3. �

Problem 12.5.10 Write down the definition of the discrete Laplacian acting
on Z3 and find the expression for Pt�0� 0�. Prove that the Markov semigroup
is transient. �

Lemma 12.5.11 Let Pt �= eAt for all t ≥ 0, where A �= c�Q− I�, c > 0 and
Q is an irreducible Markov operator. Then Pt is recurrent if and only if Q is
recurrent.

Proof. This depends upon integrating both sides of the formula

Pt�x� x� =
�∑

n=0

a�t� n�Qn�x� x�

with respect to t, where

a�t� n� �= e−ctcntn/n! �
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12.6 Spectral theory of graphs

Recall that an undirected graph �X��� is a graph such that �x� y� ∈ �
implies �y� x� ∈ �. The graph is said to be connected if there is a path
�x = x0� x1� � � � � xn = y� joining every pair of points x� y ∈ X, such that
�xr−1� xr� ∈ � for all r ∈ �1� � � � � n	. The length of the shortest such path
is called the graph distance d�x� y� between x and y.

Every graph, directed or not, has an associated incidence matrix J , defined
by

J�x� y� �=
{

1 if �y� x� ∈ �,
0 otherwise.

The spectral properties of J provide invariants for the graph. If X is finite
there is no ambiguity in talking about the spectrum of J , but for infinite X

one has to state what Banach space J acts on and impose conditions which
imply that it is bounded on that space. The spectrum of J is also called the
spectrum of the graph itself.3

The degree of a point a in a graph �X��� is defined to be #�x � �a� x� ∈ �	.
We say �X��� is locally finite if every point has finite degree and that �X���

has constant degree k if every point has the same degree k.
A path �x0� x1� � � � � xn� in a graph �X��� is said to be closed if x0 = xn and

it is said to be minimal if all other points in the path are different from each
other and from x0. A tree is defined to be an undirected, connected graph
�X��� which contains no minimal closed paths of length greater than 2. In
a tree any pair of points can be joined in exactly one way by a path whose
length is d�x� y�. We say that a tree �X��� is a k-tree if it has constant degree
k < �. There is only one k-tree up to isomorphism, and it is infinite with
no free ends. A k-tree is said to be hyperbolic if k ≥ 3. This implies that the
number s�r� of points whose graph distance from a ∈ X equals r is given by

s�r� = k�k−1�r−1� (12.14)

This grows exponentially as r → � provided k ≥ 3, as happens for the surface
areas of spheres in hyperbolic geometry. Figure 12.1 shows the 4 vertices at
distance 1 and the 12 vertices at distance 2 from a chosen vertex of a 4-tree.

We show that the l2 spectrum of a k-tree is different from its l1 spectrum
provided k ≥ 3. This is false for k = 2 because a 2-tree is isomorphic as a
graph to Z. We actually prove that k does not lie in the l2 spectrum of the

3 The spectral theory of graphs is a well-developed subject to which hundreds of papers and
several books have been devoted. See, for example, [Chung 1997, Woess 2000].
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Figure 12.1: 17 neighbouring vertices in a 4-tree

graph; it does lie in the l1 spectrum because k−1J is a Markov operator on
l1�X�.

Theorem 12.6.2 below is not an isolated result. The Lp spectrum of (the
Laplacian on) hyperbolic space also depends on p. In particular, the L2 spec-
trum of two-dimensional hyperbolic space is �1/4��� while its L1 spectrum
is the whole of the region on or inside the parabola y2 = x; this contains zero,
as it should for probabilistic reasons.4

Lemma 12.6.1 There exists � > 0 on X with

0 < �J���x� ≤ ���x� (12.15)

for all x ∈ X, where � �= 2�k−1�1/2. The l2 spectrum of J satisfies

Spec�J� ⊆ �−�����

4 See [Lohoué and Rychener 1982]. A short survey of further results of this type may be found
in [Davies 1989, Sect. 5.7].
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Proof. We start by choosing some base point a ∈ X arbitrarily, and then
define ��x� �= �d�x�a� where 0 < � < 1. Direct calculations establish that

�J���x� =
{

k���x� if x = a,
��k−1��+�−1	��x� if x �= a.

This implies that 0 ≤ J� ≤ �� where � �= �k − 1�� + �−1. The quantity
�k − 1�� + �−1 is minimized by putting � �= �k − 1�−1/2, and this leads to
(12.15).

Since J = J ∗, the second statement of the proof now follows by Theo-
rem 13.1.6, but we provide a more direct proof. We emphasize that neither
proof requires � ∈ l2�X�, which does not hold in this context. If f ∈ l2�X�

then using the Schwarz inequality we have

�Jf�2

2 =∑

x∈X

∣
∣
∣
∣
∣

∑

y∈X

J�x� y�f�y�

∣
∣
∣
∣
∣

2

≤ ∑

x∈X

(
∑

y∈X

J�x� y���y�

)(
∑

y∈X

J�x� y���y�−1�f�y��2
)

≤ ∑

x∈X

(
∑

y∈X

J�x� y����x���y�−1�f�y��2
)

=∑

y∈X

(
∑

x∈X

J�y� x����x���y�−1�f�y��2
)

≤∑

y∈X

�2�f�y��2

= �2�f�2

2� �

Theorem 12.6.2 (Kesten)5 The l2 spectrum of the incidence matrix J of a
k-tree equals �−����, where � �= 2�k−1�1/2 satisfies 0 < � < k if k ≥ 3.

Proof. It follows from Lemma 12.6.1 that we only have to prove that s ∈
Spec�J� for all s ∈ �−����.

First choose an arbitrary base point a ∈ X. Given 
 ∈ R and n ∈ N define
fn ∈ l2�X� by

5 See [Kesten 1959].
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fn�x� �=
{

��ei
�d�x�a� if d�x�a� ≤ n,
0 otherwise,

where � �= �k−1�−1/2 as before. An easy calculation shows that

�fn�
2

2 = 1+
n∑

r=1

�2rk�k−1�r−1 = 1+nk/�k−1��

Moreover

�Jfn��x� =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k�ei
 if d�x�a� = 0,
� cos�
�fn�x� if 1 ≤ d�x�a� ≤ n−1,
��ei
�n−1 if d�x�a� = n,
��ei
�n if d�x�a� = n+1,
0 if d�x�a� > n+1.

Putting s �= � cos�
� we obtain

�Jfn − sfn�
2

2 = �k�ei
 − s�2

+k�k−1�n−1
∣
∣��ei
�n−1 − s��ei
�n

∣
∣2

+k�k−1�n
∣
∣��ei
�n

∣
∣2

= O�1�

as n → �. Therefore

�Jfn − sfn�2/�fn�2 = O�n−1/2�

as n → �. This establishes that s ∈ Spec�J� for all s ∈ �−����. �

Example 12.6.3 The above theorem again illustrates the dangers of uncritical
numerical approximation. If one chooses a base point a ∈ X and puts Xn �=
�x ∈ X � dist�x�a� ≤ n	 then one may determine the spectrum of the operator
Jn obtained by restricting J to lp�Xn�; this is independent of p because the
space is finite-dimensional. However, Xn has a large number of free ends, and
one has to decide how to define Jn near these; this is analogous to choosing
boundary conditions for a differential operator. The fact that the limit of
Spec�Jn� depends on the choice of boundary conditions ultimately explains
the p-dependence of the spectrum of J in lp�X�. �

Another difference between the random walk on a k-tree and that on ZN is
that in the former case a random path moves away from its starting point at
a linear rate as the time increases.
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Problem 12.6.4 Prove that if d�x� denotes the distance of x from a fixed
centre a in the k-tree �X��� then

∑

x∈X

d�x��Pt�a��x� ∼ t�k−2�/k

as t → +�, provided k ≥ 3. �

We now turn from trees to more general graphs with constant degree k < �.
We show that whether k lies in the l2 spectrum of the incidence matrix J

on X depends on the rate of growth of the volume of balls in the graph as
their radius increases. We say that an undirected, connected graph �X��� has
polynomial volume growth if

v�n� ≤ cns

for some choice of the base point a ∈ X, some c� s > 0 and all positive integers
n, where v�n� �= #�x � d�x�a� ≤ n	. The infimum of all values of s for which
such an inequality holds is called the asymptotic dimension of the graph at
infinity. This condition is not satisfied by k-trees. On the other hand ZN is a
graph with polynomial growth if we put �x� y� ∈ � when

N∑

r=1

�xr −yr � = 1�

Moreover ZN has asymptotic dimension N . We finally say that a graph has
subexponential volume growth if

lim sup
n→�

v�n�1/n = 1�

Problem 12.6.5 Prove that if �X��� is an undirected, locally finite, connected
graph then its asymptotic dimension does not depend on the choice of the base
point. Prove the same for the concept of subexponential volume growth. �

Problem 12.6.6 Give an example of an undirected, locally finite, connected
graph whose asymptotic dimension s satisfies 1 < s < 2. Which positive real
numbers are possible asymptotic dimensions of graphs? �

The following theorem does not establish that the l1 spectrum of the graph
equals the l2 spectrum, but it provides a first step in that direction.

Theorem 12.6.7 Let J be the incidence matrix of an undirected, connected
graph �X��� with constant degree k < � and subexponential volume growth.
Then k lies in the l2 spectrum of J .
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Proof. Choose a base point a ∈ X and put

v�n� �= #�x � d�x�a� ≤ n	�

s�n� �= #�x � d�x�a� = n	�

On defining

fn�x� �=
{

1 if d�x�a� ≤ n,
0 otherwise,

one sees immediately that �fn�
2

2 = v�n� for all n. Using the fact that �Jfn��x� =
kfn�x� for all x such that d�x�a� ≤ n−1, one obtains

�Jfn −kfn�
2

2/�fn�
2

2 ≤ k2 s�n�+ s�n+1�

v�n�

≤ k2 s�n�+ s�n+1�

v�n−1�

= k2

{
v�n+1�

v�n−1�
−1

}

�

If we show that the lim inf of the final expression is 0, then it follows that k

lies in the l2 spectrum of J .
If lim infn→� v�n+ 1�/v�n− 1� = 1 + 2� for some � > 0 then there exists

N such that v�n+1�/v�n−1� ≥ 1+� for all n ≥ N . This implies that

v�N +2r� ≥ v�N��1+��r

for all r ≥ 1. Hence v�r� grows at an exponential rate as r → �, contrary to
the hypothesis of the theorem. �

Problem 12.6.8 Let X be the subgraph of Zn obtained by removing a set S

of vertices and all of the edges that have one of their ends in S. Suppose
that for every positive integer n there exists an ∈ Zn such that the Euclidean
ball with centre a and radius n does not meet S. Prove that the spectrum of
the incidence matrix of X contains 2n, which is the maximum value of the
degree of all points in X. �



13
Positive semigroups

13.1 Aspects of positivity

In this chapter we extend some of the ideas in Chapter 12 to a more general
context and describe some of the special spectral properties of positive opera-
tors. These were first discovered for n×n matrices with non-negative entries
by Perron and Frobenius, but many aspects of the theory can be extended to
a much more general level. 1

When we write � �= Lp�X� dx� in this chapter, we usually refer to the
space of real-valued functions. We assume throughout that the measure space
satisfies the assumptions listed on page 35. Sometimes we will consider the
corresponding complex space, and when we need to distinguish between these
we do so by adding subscripts, as in �R and �C.

If X is a countable set and dx is the counting measure we write lp�X� in
place of Lp�X� dx�. A number of the theorems have slightly less technical
proofs in the discrete case, because one does not have to worry about null
sets and can use pointwise evaluation of functions.

Later in the chapter we assume that X is a compact metric space, and
consider certain positive one-parameter semigroup s acting on C�X�.

If f ∈ �, the positive and negative parts of f are defined by

f+ �= max�f� 0� = 1
2 ��f �+f��

f− �= max�−f� 0� = 1
2 ��f �−f��

Note that �f � ≤ �g� implies �f� ≤ �g�. The set �+ of all non-negative f ∈ �
is a convex cone, and is closed with respect to the norm and weak topologies

1 This chapter is only an introduction to a large and important subject. Systematic accounts
may be found in [Schaefer 1974, Engel and Nagel 1999]. In this book we concentrate on the
infinite-dimensional theory, but [Minc 1988] reveals a wealth of more detailed results for
finite matrices with non-negative entries.

380
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of �. An operator A � � → � is said to be positive, symbolically A ≥ 0, if
Af ≥ 0 for all f ≥ 0. We say that Tt is a positive one-parameter semigroup
on � if Tt ≥ 0 for all t ≥ 0.

Lemma 13.1.1 If A is a positive operator acting on � = L
p
R�X� dx�, then A

is bounded and

�A� = sup��Af�/�f� � f ≥ 0 and f �= 0��

Proof. Suppose first that for all n ∈ Z+ there exists fn ≥ 0 such that �fn� = 1
and �Afn� ≥ 4n. If we put

f �=
	∑

n=1

2−nfn

then f ≥ 0, �f� ≤ 1 and 0 ≤ 2−nfn ≤ f for all n. Hence 0 ≤ 2−nAfn ≤ Af ,
and

2n ≤ 2−n�Afn� ≤ �Af�
for all n. The contradiction implies that there exists c such that �Af� ≤ c

whenever f ≥ 0 and �f� = 1. If c is the smallest such constant then c ≤
�A� ≤ +	.

Given f ∈ �, the inequality −�f � ≤ f ≤ �f � implies −A�f � ≤ Af ≤ A�f �
and hence �Af � ≤ A�f �. Therefore

�Af� = � �Af � � ≤ �A�f � � ≤ c� �f � � = c�f��

This implies that �A� ≤ c. �

In order to study the spectrum of an operator AR acting on �R = L
p
R�X� dx�,

one must pass to the complexification �C = L
p
C�X� dx�. The complex-linear

operator AC is defined in the natural way by AC�f + ig� �= ARf + iARg.
The proof in Theorem 13.1.2 that �AC� = �AR� is only valid for positive
operators. One may also adapt the proof of Theorem 12.1.1 to Lp�X� dx�;
this does not require A to be positive, but Problem 13.1.3 shows that it does
require p = q.

Theorem 13.1.2 Let 1 ≤ p�q ≤ 	 and let AR � L
p
R�X� dx� → L

q
R�X� dx� be a

positive linear operator. Then

�AC�f + ig�� ≤ AR��f + ig��
for all f� g ∈ L

p
R�X� dx�. Hence �AC� = �AR�.



382 Positive semigroups

Proof. Given 	 ∈ R we have

��ARf� cos�	�+ �ARg� sin�	�� = �AR�f cos�	�+g sin�	���
≤ AR��f cos�	�+g sin�	���
≤ AR��f + ig���

Let u� v�w � X → R be functions in the classes of ARf�ARg�AR��f + ig��.
Then we have shown that

�u�x� cos�	�+v�x� sin�	�� ≤ w�x�

for all x not in some null set N�	�. If �	n�
	
n=1 is a countable dense subset of


−���� then

�u�x�+ iv�x�� = sup
1≤n<	

�u�x� cos�	n�+v�x� sin�	n�� ≤ w�x�

for all x not in the null set
⋃	

n=1 N�	n�. This implies the first statement of the
theorem, from which the second follows immediately. �

Problem 13.1.3 The following shows that the positivity condition in Theo-
rem 13.1.2 is necessary if p �= q. Consider the matrix

A �=
(

1 1
1 −1

)

as a bounded operator from l	 to l1. Show that �AR� = 2 but
�AC� = 23/2. �

Problem 13.1.4 Let A be a positive linear operator on Lp�X� dx� where
1 ≤ p < 	, and let 1/p+1/q = 1. Use Theorem 13.1.2 to prove that

�
A
���� ≤ 
A�
�� ����
for all complex-valued 
 ∈ Lp�X� dx� and � ∈ Lq�X� dx�. Also give the
much more elementary proof available when A has a non-negative integral
kernel. �

Our next lemma might be regarded as an operator version of the Schwarz
inequality. An operator version of the Hölder inequality (2.1) may be proved
by the same method.

Lemma 13.1.5 Let 1 ≤ p�q ≤ 	 and let AR � L
p
R�X� dx� → L

q
R�X� dx� be a

positive linear operator. Then

�AC�fg��x��2 ≤ �AR��f �2��x���AR��g�2��x��

almost everywhere, for all f� g ∈ L
2p
C �X� dx�.
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Proof. If A has a non-negative integral kernel K then

�AC�fg��x��2 =
∣
∣
∣

∫

X
�K�x� y�1/2f�y���K�x� y�1/2g�y�� dy

∣
∣
∣
2

≤
∫

X
K�x� y��f�y��2 dy

∫

X
K�x� y��g�y��2 dy

= �AR��f �2��x���AR��g�2��x���

This finishes the proof if X is finite or countable. We deal with the general
case by using an approximation procedure.

If � �= �E1� � � � �En� is a sequence of disjoint Borel sets with finite measures
�Er �, we define the orthogonal projection P� by

P�f �=
n∑

r=1

�Er �−1�
Er


f��
Er

��

We then note that the operator P�A has the non-negative integral kernel

K�x� y� �=
n∑

r=1

�Er �−1�
Er

�x��A∗��Er
��y���

Hence
�P��p��x��2 ≤ �P��q��x���P��r��x��

almost everywhere, where p �= AC�fg�, q �= AR��f �2� and r �= AR��g�2�. The
proof is completed by choosing a sequence of increasingly fine partitions ��n�

for which P��n��p�, P��n��q� and P��n��r� converge to p, q and r respectively
not only in norm but also almost everywhere (see Theorem 2.1.7). �

The following theorem has a wider scope than is apparent at first sight,
because it is not required that 
 ∈ L2�X� dx�.

Theorem 13.1.6 Let A be a positive linear operator on L2�X� dx� and let 


be a measurable function on X. If 
�x� > 0 almost everywhere, 0 ≤ A
 ≤ �


and 0 ≤ A∗
 ≤ �
 then
�A� ≤ ����1/2�

Proof. Assume first that 
 ∈ L2�X� dx�, so that 
�x�2dx is a finite measure
and L	�X� ⊆ L2�X�
2dx�. We define the unitary operator U � L2�X�
2dx� →
L2�X� dx� by Uf �= 
f . We then observe that B �= U−1AU is positive and
satisfies 0 ≤ B1 ≤ �1 and 0 ≤ B∗1 ≤ �1. If f ∈ L	�X� then

��Bf��x��2 ≤ B��f �2��x�B�1��x� ≤ �B��f �2��x�
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almost everywhere by Lemma 13.1.5. Therefore

�Bf�2

2 ≤ �
B��f �2�� 1� = �
�f �2�B∗�1�� ≤ ��
�f �2� 1� = ���f�2

2�

Since L	�X� is dense in L2�X�
2dx� we deduce that �A� = �B� ≤ ����1/2.
If 
 � L2�X� dx� then the assumptions of the theorem have to be interpreted

appropriately. We assume that 0 ≤ A
̃ ≤ �
 for all 
̃ ∈ L2�X� dx� that satisfy
0 ≤ 
̃ ≤ 
, and similarly for A∗. We then define B as before, and observe
that 0 ≤ Bf ≤ �1 and 0 ≤ B∗f ≤ �1 for all f ∈ L	�X�∩L2�X�
2dx� such
that 0 ≤ f ≤ 1.

From this point on we work in the weighted L2 space. Let � denote the
set of all bounded functions on X whose supports have finite measure with
respect to the measure 
�x�2dx. If f ∈ � and supp�f� = E then

��Bf��x��2 = ��B�f�
E���x��2 ≤ B��f �2��x�B��2

E��x� ≤ �B��f �2��x�

almost everywhere, by Lemma 13.1.5. If the set F has finite measure then
∫

F
��Bf��2
2 dx ≤ �

∫

F
B��f �2�
2 dx

= �
B��f �2���
F�

= �
�f �2�B∗�
F�

≤ ��
�f �2� 1�
= ���f�2

2�

Since F is arbitrary subject to having finite measure we deduce that

�Bf�2

2 ≤ ���f�2

2

for all f ∈ �, and since � is a dense subspace of L2 we obtain the same
bound for all f ∈ L2. Therefore �A� = �B� ≤ ����1/2. �

Corollary 13.1.7 Let A be a positivity preserving2 self-adjoint linear opera-
tor on L2

R�X� dx� and let 
 ∈ L2
R�X� dx�. If 
�x� > 0 almost everywhere and

A
 = �
 then

�A� = ��

Our next lemma states that the singularity closest to the origin of certain
operator-valued analytic functions lies on the positive real axis.

2 Because A is self-adjoint, we use this term instead of ‘positive’ to distinguish it from the
condition that 
Af�f� ≥ 0 for all f .
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Lemma 13.1.8 Suppose that An are positive operators on � �= Lp�X� dx�

and that for all z such that �z� < R the series

A�z� �=
	∑

n=0

Anz
n (13.1)

converges in norm to an operator A�z�. Suppose also that A�z� may be
analytically continued to the region �z � �z−R� < S�. Then the series (13.1)
is convergent for all z such that �z� < R+S.

Proof. If 0 ≤ f ∈ � and 0 ≤ g ∈ �∗ then the function

F�z� �= 
A�z�f� g�
is analytic in

D �= �z � �z� < R�∪ �z � �z−R� < S��

We have

F�n��R� = lim
r→R−

F�n��r�

=
	∑

m=n

m!
�m−n�! 
Amf�g�Rm−n

by a monotone convergence argument that uses the non-negativity of the
coefficients. Moreover

0 ≤
	∑

n=0

F�n��R�xn/n! < 	

for all x such that 0 ≤ x < S by the analyticity of F in �z � �z − R� < S�.
Therefore the series

	∑

m=0


Amf�g��R+x�m =
	∑

n=0

	∑

m=n

m!
�m−n�!n! 
Amf�g�Rm−nxn

of non-negative terms is convergent for 0 ≤ x < S, and the series

	∑

m=0


Amf�g�zm

has radius of convergence at least �R + S�. The same holds for all f ∈ �
(resp. g ∈ �∗) since every element of � (resp. �∗) is a linear combination of
four elements of �+ (resp. �∗

+). The proof that (13.1) is norm convergent for
all z such that �z� < R+S is similar to that of Lemma 1.4.10. �
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Theorem 13.1.9 Let A be a positive operator on � and let

r �= max��z� � z ∈ Spec�A��

be its spectral radius. Then r ∈ Spec�A�.

Proof. If �z� > r then the series

�zI −A�−1 =
	∑

n=0

z−n−1An

is norm convergent. Since the analytic function z → �zI − A�−1 cannot be
analytically continued to any set �z � �z� > r −��, the function must have a
singularity at z = r by Lemma 13.1.8. Therefore r ∈ Spec�A�. �

All of the above ideas can be adapted to the context of one-parameter semi-
group s.

Semigroups of the following type occur in population growth models and
the neutron diffusion equation. These models are unstable if �Tt� increases
indefinitely with t. In such cases one either has a population explosion, or it
is prevented by some non-linear effect.

Lemma 13.1.10 Let the operator Z �= −M +A act in � �= Lp�X� dx�, where
M denotes the operator of multiplication by a measurable function m that is
bounded below and A is a bounded, positive operator on �. Then Tt �= eZt

is a positive one-parameter semigroup.

Proof. Putting St �= e−Mt, we note that Z is a bounded perturbation of −M ,
so Theorem 11.4.1 is applicable. Tt is a positive operator for all t ≥ 0 because
every term in the perturbation expansion (11.10) is positive. �

Given f ∈ �+ one might interpret f�t� y� �= �Ttf��y� as the local density of
some entities at a site y, which can increase (if m�y� < 0) or decrease (if
m�y� > 0) as time passes without moving from y. Entities at the position y

can cause new entities to appear at the position x at the rate A�x� y� if A

has an integral kernel A�x� y�. The nth term on the right-hand side of (11.10)
describes the part of the state at time t for which exactly �n−1� such creations
have taken place.

13.2 Invariant subsets

Given any Borel set E, the linear subspace

�E �= �f � supp�f� ⊆ E�
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is called a closed order ideal in � by virtue of possessing the following
properties. It is a closed linear subspace � of � such that if �f � ≤ �g� and
g ∈ � then f ∈ �. We see that if f lies in some ideal, then so do f± and �f �.

Theorem 13.2.1 Every ideal � in � �= Lp�X� dx� is of the form �E for some
Borel set E, which is uniquely determined up to a null set.

Proof. We start by observing that since we always assume that the �-field of
Borel subsets of X is countably generated, the space � is separable. Let fn

be a countable dense subset of � and let E be the support of

k �=
	∑

n=1

2−n�fn�/�fn��

It is immediate that supp�fn� ⊆ E for all n, and this implies by a limiting
argument that supp�f� ⊆ E (up to a null set) for every f ∈ �. Therefore
� ⊆ �E .

Conversely let 0 ≤ g ∈�E and define gn �= min�g�nk�. Since 0 ≤ gn ≤ nk,
k ∈ � and � is an ideal, gn ∈ �. Since �gn − g� → 0 as n → 	 by the
dominated convergence theorem it follows that g ∈�. If h ∈�E we conclude
from the decomposition h = h+ − h− and the above argument that h ∈ �.
Therefore � = �E . �

Now let A be a positive operator on �. We say that the Borel set E is
invariant with respect to A if A��E� ⊆ �E , or equivalently if supp�f� ⊆ E

implies supp�Af� ⊆ E (up to null sets).

Problem 13.2.2 Prove that the class of all invariant sets with respect to a
given positive operator A is closed under countable unions and countable
intersections. If p = 2 and A is self-adjoint, prove that it is also closed under
complements. �

Theorem 13.2.3 Let 1 ≤ p < 	 and let A be a positive operator on Lp�X� dx�.
If E is a measurable subset of X then the following are equivalent.

(i) E is invariant with respect to A;
(ii) there exists f ≥ 0 in Lp such that supp�f� = E and supp�Af� ⊆ E;

(iii) there exists g ≥ 0 in Lp such that supp�g� = E and 0 ≤ Ag ≤ �g for
some � > 0.

If X is countable and dx is the counting measure then they are also
equivalent to

(iv) if y ∈ E, x � E and n ∈ N then An�x� y� = 0;
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(v) the set E is invariant in the directed graph �X��� defined by specifying
that �y� x� ∈ � if A�x� y� > 0.

Proof. (i) ⇒ (ii) If En is a sequence of sets of finite measure with union equal
to E then fn �= �

En
/�En�1/p satisfy �fn�p

= 1. The function f =∑	
n=1 2−nfn

is non-negative, lies in Lp and has support equal to E. Since E is invariant
supp�Af� ⊆ E.
(ii) ⇒ (iii) If � > �A� then the series

g �=
	∑

n=0

�−nAnf

is norm convergent in Lp. We have 0 ≤ g ∈ Lp, supp�g� = E and

0 ≤ Ag =
	∑

n=0

�−nAn+1f = �
	∑

n=1

�−nAnf ≤ �g�

(iii) ⇒ (i) If 0 ≤ h ∈ Lp and supp�h� ⊆ E we define hn for all n ∈ N by
hn �= h∧ �ng�. It is immediate by the dominated convergence theorem that
�h−hn� → 0 as n → 	. Also 0 ≤ hn ≤ ng implies 0 ≤ Ahn ≤ nAg ≤ n�g so
supp�Ahn� ⊆ E. On letting n → 	 we obtain supp�Ah� ⊆ E, so E is invariant.

(i) ⇒ (iv) If y ∈ E then �y ∈ �E so An�y ∈ �E for all n ∈ N. If also x � E

then

0 = �An�y��x� = An�x� y��

(iv) ⇒ (v) This depends on the fact that An�x� y� �= �An�y��x� is the sum of
all (necessarily non-negative) expressions of the form

A�xn� xn−1� � � �A�x2� x1�A�x1� x0�

such that x0 = y and xn = x. If An�x� y� = 0 it follows that there cannot exist
a path �y = x0� x1� ���� xn = x� such that xr−1 → xr for all r ∈ �1� ���� n�. If
x ∈ E and y � E no such path can exist for any n ∈ N. Hence E is invariant
in the directed graph on X.

(v) ⇒ (i) By using the decomposition f = f+ −f− one sees that it is sufficient
to prove that if 0 ≤ f ∈ Lp, supp�f� ⊆ E and E is invariant in the graph-
theoretic sense then supp�Af� ⊆ E. We assume that E is countable, the finite
case being easier. We have �fn −f� → 0 as n → 	 where

fn �=
n∑

r=1

f�xr��xr
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and �xr�
	
r=1 is any enumeration of the points in E. We have

supp�Afn� ⊆
n⋃

r=1

supp�A�xr
�

and this is contained in E because (v) implies supp�A�x� ⊆ E for all x ∈ E.
Letting n → 	, supp�fn� ⊆ E for all n implies supp�f� ⊆ E. �

We adapt these ideas to semigroups in the obvious way; namely we say that
E is an invariant set with respect to the positive one-parameter semigroup Tt

acting on � if Tt��E� ⊆ �E for all t ≥ 0.

Theorem 13.2.4 Let 1 ≤ p < 	 and � �= lp�X�, where X is a countable set.
Let Tt �= eZt where Z �= −M + A, M is the operator of multiplication by
a measurable function that is bounded below and A is a positive bounded
operator. If E is a measurable subset of X then the following are equivalent.

(i) E is invariant under the semigroup Tt;

(ii) if y ∈ E and x � E then Tt�x� y� = 0 for all t > 0;

(iii) if y ∈ E and x � E then Tt�x� y� = 0 for some t > 0;

(iv) E is invariant under A.

Proof. (i) ⇒ (ii) This follows by applying Theorem 13.2.3 to each Tt sepa-
rately.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (iv) This depends upon (11.11), all the terms of which are non-
negative. If Tn�t denotes the term in (11.11) involving an n-dimensional
integral, then (iii) implies that Tn�t�x� y� = 0 and hence that

A�xn� xn−1����A�x2� x1�A�x1� x0� = 0

for every path such that x0 = y and xn = x. This implies that An�x� y� = 0 for
all n ∈ N. We deduce (iv) by applying Theorem 13.2.3.

(iv) ⇒ (i) On inspecting (11.11) one sees that all of the operators concerned
leave �E invariant. �

Problem 13.2.5 Find all the invariant sets for the positive one-parameter
semigroup Tt acting on Lp�R� for all t ≥ 0 according to the formula

�Ttf��x� �= f�x− t�� �
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13.3 Irreducibility

A positive operator A acting on � = Lp�X� dx� is said to be irreducible, or
to act irreducibly on X, if its only invariant sets are ∅ and X, and other sets
that differ from these by a null set.

Theorem 13.3.1 Let 1 ≤ p < 	 and let A be a positive operator on Lp�X� dx�.
The following are equivalent.

(i) A acts irreducibly on X;
(ii) if f ≥ 0 in Lp and supp�Af� ⊆ supp�f� then either f = 0 or supp�f� = X;

(iii) if g ≥ 0 in Lp and 0 ≤ Ag ≤ �g for some � > 0 then either g = 0 or
supp�g� = X.

If X is countable and dx is the counting measure then these are also equivalent
to

(iv) for all x� y ∈ X, there exists n ∈ N for which An�x� y� > 0;
(v) the directed graph associated with A is irreducible.

Proof. Each of the statements is the translation of the corresponding statement
of Theorem 13.2.3 when the only possible sets E are ∅ and X. �

The following lemma is needed in the proof of Theorem 13.3.3.

Lemma 13.3.2 Let S ⊆ N be a semigroup in the sense that �m+n� ∈ S for
all m�n ∈ S. Then there exists p ∈ N such that S ⊆ Np and also kp ∈ S for
all sufficiently large k ∈ N. We call p the period of S.

Proof.The set

G �= �m−n � m�n ∈ S�

is a subgroup of Z so there exists p ∈ N such that G = Zp. If a�b� c ∈ S then
p is a factor of ��a+b�−c� and of �b−c� since both of these lie in G. Hence
p is a factor of a, and S ⊆ Np.

It follows from the definition of G that there exist m�n ∈ S such that
m − n = p. We claim that �n2 + rp� ∈ S for all r ∈ N. To prove this put
r = sn+ t where s ≥ 0 and 1 ≤ t ≤ n to get

n2 + rp = n2 + �sn+ t�p = n2 + snp+ t�m−n� = tm+ �n+ sp− t�n�

which lies in S because the coefficients of m and n are both non-
negative. �
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The number p identified in the following theorem is called the period of the
irreducible operator A. If p = 1 we say that A is aperiodic.

Theorem 13.3.3 Let 1 ≤ p < 	 and let A be a positive operator on lp�X�.
Given x ∈ X let px be the period of the semigroup

Sx �= �n ∈ N � An�x� x� > 0��

If A is irreducible then px is independent of x.

Proof. We first establish that Sx is a semigroup. If m�n ∈ Sx then

Am+n�x� x� =∑

y∈X

Am�x� y�An�y� x�

≥ Am�x�x�An�x� x�

> 0�

so �m+n� ∈ Sx.
Since A is irreducible, for any x� y ∈ X there exist m�n such that

Am�x� y� > 0� An�y� x� > 0�

Therefore

Am+n+kpx �y� y� ≥ An�y� x�Akpx�x� x�Am�x� y� > 0

for all large enough k ∈ N. This implies that px is a multiple of py. One
proves that py is a multiple of px similarly, so px = py. �

Problem 13.3.4 Construct an irreducible positive operator A acting on l2�X�

for a suitable choice of the finite set X, with the following properties. A has
period 1, but for every x ∈ X and every n ≤ 1010 one has An�x�x� > 0 if and
only if n is even. �

We say that a positive one-parameter semigroup Tt is irreducible on � =
Lp�X� dx� if the only invariant sets of the semigroup are ∅ and X, and other
sets that differ from these by a null set.

Theorem 13.3.5 Let Tt �= eZt be a one-parameter semigroup on lp�X� where
1 ≤ p < 	, Z �= −M +A, M is the operator of multiplication by a measurable
function that is bounded below, and A is a positive, bounded operator on
lp�X�. Then the following are equivalent.

(i) Tt is irreducible;
(ii) if x� y ∈ X then Tt�x� y� > 0 for some t > 0;
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(iii) if x� y ∈ X then Tt�x� y� > 0 for all t > 0;
(iv) A is irreducible.

Proof. Each statement is an immediate consequence of Theorem 13.2.4 using
the fact that the only possible sets E are ∅ and X. �

We next turn to the properties of eigenfunctions of positive operators. We
say that � is a linear sublattice of � = Lp�X� dx� if it is a linear subspace
and f ∈ � implies �f � ∈ �. Given f� g ∈ � we put

�f ∨g��x� �= max�f�x�� g�x���

�f ∧g��x� �= min�f�x�� g�x���

If � is a linear sublattice of � then f� g ∈ � implies that f± ∈ �, f ∨ g ∈ �
and f ∧g ∈ �. Moreover the closure � of � is also a linear sublattice of �,
for the same reason as in Problem 12.2.3.

Theorem 13.3.6 Let A be a positive contraction acting on � �= Lp�X� dx�,
where 1 ≤ p < 	. Then

� = �f � Af = f�

is a closed linear sublattice of �. If A is irreducible then � has dimension at
most 1 and f ∈ � implies f�x� > 0 except on a null set (after multiplying f

by −1 if necessary).

Proof. The proof that � is a closed linear sublattice follows Theorem 12.2.6
closely, as does the proof that if f ∈� then either f�x� > 0 almost everywhere
or f�x� < 0 almost everywhere.

We have to prove that dim��� ≤ 1 by a different method. If f and g are
two positive functions in �, put hs �= sf − �1− s�g for all s ∈ 
0� 1�. We note
that I+ �= �s � hs ≥ 0� is a closed interval containing 1 while I− �= �s � hs ≤ 0�

is a closed interval containing 0. These intervals must intersect at some point
c, at which hc = 0. This implies that f and g are linearly dependent. �

Note that 1 ∈ Spec�A� does not imply that 1 is an eigenvalue of A without
some further assumption, such as the compactness of A or the finiteness of
X. A similar comment applies to our next theorem.

Theorem 13.3.7 Let Tt �= eZt be a positive one-parameter contraction semi-
group acting on � �= Lp�X� dx�, where 1 ≤ p < 	. Then

� �= �f ∈ Dom�Z� � Zf = 0�
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is a closed linear sublattice of �. If Tt is irreducible then � has dimension
at most 1 and f ∈ � implies f�x� > 0 except on a null set (after replacing f

by −f if necessary).

Proof. An elementary calculation shows that

� = �f � Ttf = f for all t > 0��

after which one follows the same argument as in Theorem 13.3.6. �

13.4 Renormalization

Let A be a positive operator on Lp�X� dx�, where 1 ≤ p < 	. Suppose also
that A
 = �
, where 
�x� > 0 for all x outside some null set and �
�

p
= 1.

We can transfer the operator to a new Lp space as follows. Define a new,
finite measure on X by d̃x = 
�x�pdx and define the isometry T � Lp�X� d̃x� →
Lp�X� dx� by

�Tf��x� = f�x�
�x��

Then Ã = T−1AT � Lp�X� d̃x� → Lp�X� d̃x� is positive and has the same norm
and spectrum as A. The maps from A to Ã and from dx to d̃x are called
renormalizations.

Lemma 13.4.1 Under the above conditions the operator Ã restricts to a
bounded operator Ã	 on L	�X� d̃x� whose norm is �. If p = 2 and A is
self-adjoint then Ã extends (or restricts) compatibly to bounded operators Ãq

on Lq�X� d̃x� for all 1 ≤ q ≤ 	.

Proof. We first observe that

1 ∈ L	�X� d̃x� ⊆ Lp�X� d̃x��

the inclusion being a contraction, and that Ã1 = �1. If �f�	 ≤ 1 then −1 ≤
f ≤ 1 and by the positivity of Ã we have

−�1 = −Ã1 ≤ Ãf ≤ Ã1 = �1�

Therefore �Ã�	 ≤ �. The identity Ã1 = �1 now implies �Ã�	 = �.
The fact that Ã extends or restricts to a bounded operator on Lp�X� d̃x�

for all p ∈ 
1�	� uses self-adjointness and interpolation; see Problem
2.2.18. �
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It is known that the spectra of Ã and Ã	 need not coincide.3 The following
theorem provides conditions under which this is true.

Theorem 13.4.2 Let A be a bounded self-adjoint operator on L2�X� dx�,
where X has finite measure. If A is ultracontractive in the sense that it is
bounded considered as an operator from L2�X� dx� to L	�X� dx� then A

extends (or restricts) to a bounded operator Ap on Lp�X� dx� for 1 ≤ p ≤ 	.
These operators are compact for 1 < p < 	 and have the same spectrum for
1 ≤ p ≤ 	.

Proof. We omit the subscript p on Ap. It follows from Theorem 4.2.17 that A

is compact as an operator on L2. Since A is bounded from L2 to L	 and L	 is
continuously embedded in L2, A is bounded on L	. By a duality argument it
is bounded on L1. Theorem 4.2.14 now implies that A is compact considered
as an operator on Lp for all p ∈ �1�	�.

Since A is bounded from L1 to L2 and L2 is continuously embedded in L1

it follows that A2 is a compact operator on L1. By taking adjoints it is also
compact on L	. Hence it is compact as an operator on Lp for all p ∈ 
1�	�

by Theorem 4.2.14, and its spectrum is independent of p by Theorem 4.2.15.
By considering the case p = 2 we deduce that Spec�A2

p� ⊆ 
0�	� for all
p ∈ 
1�	�. Theorem 1.2.18 now implies that

Spec�Ap� ⊆ R (13.2)

for all p ∈ 
1�	�.
Since L	 is continuously embedded in L1 a similar argument implies that

A3 is a compact operator on L1. By taking adjoints it is also compact on L	.
Hence it is compact as an operator on Lp for all p ∈ 
1�	� by Theorem 4.2.14,
and its spectrum is independent of p by Theorem 4.2.15. By combining (13.2)
and Theorem 1.2.18 with

Spec�A3
p� = Spec�A3

2� ⊆ R

we deduce that

Spec�Ap� = Spec�A2� ⊆ R

for all p ∈ 
1�	�. �

Problem 13.4.3 Formulate and prove a weaker version of Theorem 13.4.2
when the self-adjointness assumption is omitted. �

3 See [Davies 1989, Theorem 4.3.5] for an example which arose in the study of the harmonic
oscillator, and for which the fact that the two spectra differed was quite a surprise.
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Example 13.4.4 The ideas above can be used to study certain convection-
diffusion operators. We give a partial account of the simplest case.4 Let a �

R → R be a smooth function and define the operator L � C	
c �R� → C	

c �R� by

�Lf��x� �= −f ′′�x�+2a′�x�f ′�x��

A routine calculation shows that

Lf�g� = 
f ′� g′�

for all f� g ∈ C	
c �R�, where the inner products are calculated in �̃ �= L2

�R�
�x�2dx� and 
�x� �= e−a�x�. It follows that L is symmetric and non-
negative in the sense that 
Lf�f� ≥ 0 for all f ∈ C	

c �R�.
We may transfer L to � �= L2�R� dx� by means of the unitary map U �

� → �̃ defined by �Uf��x� �= 
�x�−1f�x�. Putting H �= U−1LU we obtain

�Hf��x� �= −f ′′�x�+V�x�f�x�

for all f ∈ C	
c �R�, where V�x� �= a′�x�2 − a′′�x�. It follows that the

Schrödinger operator H is symmetric and non-negative in � in the same
sense as before.

Formally one sees that L1 = 0 and H
 = 0, but the two functions are
not in the domains of the respective operators. We assume that H is essen-
tially self-adjoint on C	

c �R�, and denote its self-adjoint closure by the same
symbol. We then assume that 
 ∈ Dom�H� and that the equation H
 = 0
is valid. It may be proved that e−Ht is a positivity preserving one-parameter
semigroup on � . By applying U we deduce that e−Lt is a positivity pre-
serving one-parameter semigroup on �̃ . One may add a constant to a to
ensure that �
�2 = 1; this implies that 
�x�2dx is a probability measure and
e−Lt1 = 1 for all t ≥ 0. It follows by using Lemma 13.4.1 that e−Lt restricts to
a one-parameter contraction semigroup on Lp�R�
�x�2dx� for all 1 ≤ p < 	.

A more detailed analysis of the properties of these semigroups turns out
to depend on the precise rate at which a�x� → +	 as �x� → 	. The cases
a�x� �= �1 + x2�s are quite different in certain key respects depending on
whether s > 1 or 0 < s ≤ 1. In particular Theorem 13.4.2 is only applicable
to e−Lt if s > 1. See the indicated references. �

13.5 Ergodic theory

A measure space �X��� dx� is said to be a probability space if the measure
of X is 1. One also says that dx is a probability measure or distribution. We

4 Extensions and technical details may be found in [Davies and Simon 1984] and [Davies 1989,
Chap. 4].
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start by considering a measure-preserving and invertible map � � X → X on
such a probability space. Then the formula

�Af��x� = f��x�

defines an invertible isometry on Lp�X� for all 1 ≤ p ≤ 	. We restrict attention
to the case p = 2, when A is a unitary operator.

The map � is said to be ergodic if the only invariant sets of X are ∅ and X.
Note that ��E� ⊆ E implies ��E� = E and ��X\E� = X\E because � is measure
preserving and invertible. The following theorem is often summarized by
saying that for an ergodic system the space average of any quantity equals its
time average. We discuss this at the end of the section.

Theorem 13.5.1 If � is a measure preserving and invertible map on the
probability space �X� dx� then

lim
n→	

1
n+1

�1+A+A2 +· · ·+An�f = Pf (13.3)

for all f ∈ L2�X�, where P is the spectral projection of A associated with the
eigenvalue 1. If also � is ergodic then

Pf = 
f� 1�1

for all f ∈ L2�X�.

Proof. The first part is a consequence of the Spectral Theorem 5.4.1. Since
A is unitary it is equivalent to the operator of multiplication by m�s� in some
space L2�S ds�, where �m�s�� = 1 almost everywhere. The equation (13.3)
follows directly from

lim
n→	

1
n+1

�1+m�s�+m�s�2 +· · ·+m�s�n� = �
E�s�

almost everywhere, where E �= �s � m�s� = 1�.
The second part follows from the fact that ergodicity is equivalent to the

subspace � �= �f � Af = f� being of dimension 1. �

It is not always easy to determine whether a map � is ergodic, just as it is
not always easy to determine whether a number is irrational, even if it can be
computed with arbitrary accuracy by an explicit algorithm.

Theorem 13.5.2 Let X �= 
0� 1� with 0 and 1 identified, and put ��x� �= x+ t

where all additions are carried out mod 1. Then � is ergodic if and only if t

is irrational.
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Proof. Once again � is ergodic if and only if � �= �f � Af = f� is one-
dimensional. The eigenfunctions of A are given by

fn�x� �= e2�inx

where n ∈ Z, and the corresponding eigenvalues are

�n �= e2�int�

Clearly �0 = 1. This is the only eigenvalue equal to 1 if and only if t is
irrational. �

If � is a probability measure on a compact metric space K, the support of �

is defined to be K\U where U is the largest open set for which ��U� = 0.
Let K be a compact metric space and � a probability measure with support
equal to K, so that ��U� > 0 for all non-empty open sets U . The compact
space X �= KZ of all maps x � Z → K is a probability space if we provide
it with the infinite product measure dx �= �Z. The bilateral shift � on X is
defined by

���x��n �= xn−1�

Theorem 13.5.3 The bilateral shift is an ergodic map on X.

Proof. Let �n denote the subspace of functions f ∈ L2�X� that depend only
on those coordinates xm of x ∈ X for which −n ≤ m ≤ n. If K is finite then
dim��n� = �#�K��2n+1. It may be seen that � �=⋃	

n=1 �n is dense in L2�X�.
If f� g ∈ �n then Amf and g depend on entirely different coordinates if

m > 2n+1. Therefore


Amf�g� = 
f� 1�
1� g�
for all such m. A density argument now implies that

lim
m→	
Amf�g� = 
f� 1�
1� g�

for all f� g ∈ L2�X�. It is immediate from this that 1 is the only eigen-
value of A, and that its multiplicity is 1. The ergodicity of � follows
immediately. �

Problem 13.5.4 Write out the analogous definitions and theorems for a one-
parameter group of measure preserving maps on a probability space. Let X be
the torus 
0� 1�2 subject to periodic boundary conditions, and let �t�x� y� �=
�x+ t� y+ut� for all t ∈ R, where all additions are evaluated mod 1. Find the
precise conditions on u for this group to be ergodic. �
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The above theorems do no more than indicate some of the issues that may
arise in more complicated dynamical systems. Given a Hamiltonian system
with phase space X, one can solve Hamilton’s equations to obtain volume-
preserving dynamics on X. The operators on L2�X� associated with integer
times cannot be ergodic because the Hamiltonian function is invariant under
the evolution. However, the evolution may well be ergodic on some or all
of the energy surfaces. Another example is the billiards problem. Here one
considers a region in R2 with a sufficiently regular boundary and a particle
moving in straight lines with perfect reflection at the boundary. Once again
one might hope that generically the motion is ergodic.

Intensive research into such problems has shown that the proof of ergod-
icity is extremely hard in those cases in which it has been proved. The KAM
theory shows that certain types of Hamiltonian systems cannot be ergodic.
Some systems are believed to be ergodic on the basis of numerical and other
evidence, but there is no proof. Nevertheless, the issue is of great importance
in equilibrium statistical mechanics, and research is still active.

A much greater range of phenomena arise for dynamical systems. One
considers a continuous map S on a topological space X, which we assume to
be a compact metric space. This induces a so-called Koopman operator

�Vf��x� �= f�S�x��

which we consider as acting on C�X�; one can consider V as acting on a
variety of other function spaces. We say that a probability measure � on X

is invariant with respect to S if ��E� = ��S−1�E�� for all Borel subsets of X.
This is equivalent to

∫

X
f�S�x����dx� =

∫

X
f�x���dx�

holding for all non-negative measurable functions f on X. One may then
define the Perron-Frobenius operator U to be the restriction of V ∗ to L1

�X���dx��, which is an invariant subspace for V ∗; once again one may
consider the ‘same’ operator acting on other function spaces. These caveats
are important because in examples the spectrum of the operator often depends
on the Banach space being considered.5

Problem 13.5.5 Let X denote the interval 
0� 1�per and let S � X → X be
defined by S�x� = 2x mod 1. Prove that the Lebesgue measure is invariant

5 We refer the reader to [Bedford et al. 1991, Baladi 2000] for reviews of this subject and
[Antoniou et al. 2002] for the analysis of a surprisingly difficult example, with references to a
number of earlier studies.
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under S. Deduce that V is an isometric operator on L2�
0� 1�� dx� and find its
exact range. Write down an explicit formula for the Perron-Frobenius operator
V ∗, also regarded as an operator on L2�
0� 1�� dx�. If 0 �= f ∈ �Ran�V��⊥ and
�z� < 1 prove that fz �=∑	

n=0 znV nf is a (non-zero) eigenvector of V ∗. Deduce
that Spec�V� = �z � �z� ≤ 1�. See also Problem 5.3.4. �

13.6 Positive semigroups on C�X�

In this section we consider the spectral properties of a positive one-parameter
semigroup Tt � C�X� → C�X� such that Tt1 = 1 for all t ≥ 0, where X is a
compact metric space.6 We will call Tt a Markov semigroup although this is
essentially the dual of the earlier meaning that we gave to this term. Note,
however, that no special measure on X is specified. All the results in this
section, except Theorem 13.6.14 and its corollary, are classical.

The concepts in this section may be regarded as an introduction to the much
deeper theory of stochastic differential equations, in which X is replaced by
an infinite-dimensional set, normally some class of functions. One of the main
tasks is to replace the uniform norm on C�X� by another norm defined on a
subspace of C�X� by a formula that is well-adapted to the problem in hand.
This is a well-developed but highly non-trivial subject.7 Our goal here is to
explain how to walk, leaving those interested to find out for themselves how
much harder running is.

C�X� is an ordered Banach space in which quantities such as �f �� f+� f−

can be defined, and many of the results proved for Lp�X� dx� may be adapted
to C�X�. In particular the proof of Theorem 13.1.2 shows that if A is a positive
operator on C�X� then

�Af � ≤ A��f �� (13.4)

for all f ∈ C�X�. However, C�X� has two differences from the Lp spaces.
The first is that one has to replace the phrase ‘measurable set’ by ‘open
set’ in various places; this is not quite as harmless as it appears, because
complements of open sets are not open. The second and more important
difference is that 0 ≤ f ≤ g and �f� = �g� do not together imply that f = g.
The following problem shows that this is not a mere technical detail.

6 We always take the norm in C�X� to be the supremum norm and define f ≥ 0 to mean that
f�x� ≥ 0 for all x ∈ X. We make no assumption about the existence of some favoured
measure on X.

7 See [Hairer and Mattingly 2005] for one of the latest and deepest contributions to the
stochastic Navier-Stokes equation, as well as references to earlier literature.
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Problem 13.6.1 Let Q � C
0� 1� → C
0� 1� be defined by

�Qf��x� �= �1−x�f�0�+xf�1��

Prove that Q is positive, Q1 = 1, and that � �= �f � Qf = f� is a two-
dimensional subspace of C
0� 1� but not a closed sublattice. �

Theorem 13.6.2 A bounded operator Z on C�X� is the generator of a norm
continuous semigroup of positive operators if and only if

Z +�Z�I ≥ 0� (13.5)

Proof. If (13.5) holds then

Tt = e−�Z�t
	∑

n=0

�Z +�Z�I�ntn/n!

so Tt is a positive operator for all t ≥ 0.
Conversely suppose that Tt ≥ 0 for all t ≥ 0. If �x denotes the unit measure

concentrated at x then

T ∗
t �x �= ��x� t��x +�x�t

where ��x� t� ≥ 0 and �x�t is a non-negative, countably additive measure
satisfying �x�t��x�� = 0. We have

�1−��x� t�� ≤ �1−��x� t��+��x�t�
= �T ∗

t �x −�x�
≤ �eZ∗t −1�

≤
	∑

n=1

�Z�n
tn/n!

= e�Z�t −1

for all t ≥ 0. Therefore

��x� t� ≥ 2− e�Z�t

for all such t. If � > �Z� we deduce that there exists � > 0 such that
��x� t� ≥ e−�t for all t ∈ �0� ��.
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If f ∈ C�X�+ and x ∈ X then

�e�Z+�I�tf��x� = e�t
f� eZ∗t�x�
≥ e�t
f���x� t��x�
≥ 
f��x�
= f�x�

provided 0 < t < �. Therefore

�Z +�I�f = lim
t→0

t−1�e�Z+�I�tf −f� ≥ 0

for all f ∈ �+. Letting � → �Z� we deduce that Z +�Z�I ≥ 0. �

Theorem 13.6.3 If Z is the generator of a norm continuous Markov semi-
group Tt on C�X� then 0 ∈ Spec�Z� and

Spec�Z� ⊆ �z � �z+�Z� � ≤ �Z��� (13.6)

Proof. If we differentiate Tt1 = 1 at t = 0 we obtain Z�1� = 0, which implies
that 0 ∈ Spec�Z�. Since W �= Z +�Z�I is a positive operator, we see that

�W� = �W�1�� = �Z��

Therefore

Spec�W� ⊆ �z � �z� ≤ �Z���

This implies (13.6). �

Example 13.6.4 Suppose that X is a compact metric space and Q�x�E� ∈ R
for all x ∈ X and all Borel subsets E of X. We say that Q is a Markov kernel
on X if

(i) Q�x�X� = 1 for all x ∈ X.
(ii) E → Q�x�E� is a non-negative, countably additive measure for all x ∈ X.

(iii) x → ∫

X
f�y�Q�x� dy� is continuous for all f ∈ C�X�.

Given a continuous function � � X → R+, one may consider the evolution
equation

�

�t
f�x� t� = −��x�f�x�+

∫

X
��x�f�y�Q�x� dy�� (13.7)

The associated Markov semigroup describes a particle which jumps from x

to some other position randomly, the rate being ��x�, and the new location
being controlled by the kernel Q.
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If X is not compact, but � is still bounded, then a Markov semigroup
with a bounded generator may still be associated with the evolution equation.
However, if � is unbounded the subject becomes much more difficult and
interesting. Probabilistically, a particle may jump from one position to another
more and more rapidly as it moves away from its starting point, and it may
have a finite first passage time to infinity. This corresponds to the technical
possibility that the natural minimal solution to the evolution equation does
not satisfy Tt1 = 1. In such cases one needs to specify a re-entry law at 	 in
order to associate a Markov semigroup with (13.7). �

Theorem 13.6.5 A densely defined operator Z on C�X� with 1 ∈ Dom�Z� is
the generator of a Markov semigroup if and only if the following conditions
are all satisfied.

(i) If f ∈ Dom�Z� then f ∈ Dom�Z� and Zf = Zf .
(ii) If g ∈ C�X� then there exists f ∈ Dom�Z� such that f −Zf = g.

(iii) If a ∈ X, f ∈ Dom�Z� and f�x� ≤ f�a� for all x ∈ X then �Zf��a� ≤ 0.

Proof. If Z is the generator of a Markov semigroup then (i) is elementary and
(ii) is a consequence of Theorem 8.3.2. Since Tt1 = 1 for all t ≥ 0 it follows
that 1 ∈ Dom�Z� and that Z1 = 0. If f ∈ Dom�Z� and f�x� ≤ f�a� for all
x ∈ X then we put g �= f +�f�1, so that g ≥ 0 and �g� = 
g��a�. Therefore

�Zf��a� = 
Zf��a�
= 
Zg��a�
= lim

t→0
t−1�
Ttg��a�−
g��a��

≤ lim
t→0

t−1��Tt��g���a�−�g��

≤ 0�

Conversely suppose that Z satisfies (i)–(iii), and let ZR denote the restriction
of Z to Dom�Z� ∩ CR�X�. The hypothesis (iii) implies that ZR�1� = 0. If
f ∈ Dom�ZR� then one of ±f�a� = �f� holds and (iii) then implies that
one of 
ZRf�±�a� ≤ 0 holds. Therefore ZR satisfies the weak dissipativity
condition of Theorem 8.3.5.

Condition (ii) states that Ran�I −ZR� = CR�X�, so by (the real version of)
Theorem 8.3.5 ZR is the generator of a one-parameter contraction semigroup
on CR�X�. The proof that the complexification of Tt is a Markov semigroup
is straightforward. �
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If U is an open set in the compact metric space X we define the closed
subspace �U ⊆ C�X� by

�U �= �f ∈ C�X� � �x � f�x� �= 0� ⊆ U��

It is easy to show that �U = Cc�U�, where Cc�U� is the space of f ∈ C�X�

whose supports

supp�f� �= �x � f�x� �= 0�

are contained in U .8 We say that U is invariant under the Markov semigroup
Tt on C�X� if Tt��U � ⊆ �U for all t ≥ 0, and that Tt is irreducible if ∅ and X

are the only invariant sets.

Problem 13.6.6 Prove that �U is an order ideal. Prove also that every order
ideal in C�X� is of the form �U for some open set U in X. �

Lemma 13.6.7 If Tt is a Markov semigroup on C�X� and 0 ≤ f ∈ C�X� then

U �=⋃

t≥0

�x � �Ttf��x� > 0�

is an invariant set under Tt.

Proof. If � is the set of all g ∈ C�X� such that

�g� ≤ Tt1
f +Tt2

f +· · ·+Ttn
f

for some finite sequence tr ≥ 0, then an application of (13.4) implies that �
is a linear subspace invariant under Tt. Since �U is the norm closure of � it
is also invariant under Tt. �

Theorem 13.6.8 If Tt �= eZt is an irreducible norm continuous Markov semi-
group on C�X�, and f ∈ C�X�+ is not identically zero, then

�Ttf��x� > 0

for all t > 0 and all x ∈ X.

Proof. Given f as specified and t > 0 put

Un �= �x � ��Z +�Z�I�nf��x� > 0�

and
Wt �= �x � �Ttf��x� > 0��

8 This is different from our previous definition of support, but in the present context no special
measure is identified, and the previous definition is inapplicable.
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Since Z +�Z�I ≥ 0, the identity

�Ttf��x� = e−�Z�t
	∑

n=0

��Z +�Z�I�nf��x�tn/n! (13.8)

implies that Wt =⋃
n≥1 Un. Therefore Wt does not depend on t, and we may

drop the subscript.
If g ∈ Cc�W� then there exists � such that �g� ≤ �T1f . Therefore �Ttg� ≤

�Tt+1f ∈ �W . This implies that Tt��W � ⊆ �W and hence, by irreducibility, that
W = X. The theorem now follows immediately. �

Example 13.6.9 Theorem 13.6.8 depends on the norm continuity of the semi-
group. If X �= 
0� 1� with periodic boundary conditions and �Ttf��x� �=
f�x + t� then Tt is irreducible but the conclusion of Theorem 13.6.8 is
false. �

Our next theorem assumes the conclusion of Theorem 13.6.8, but does not
require the semigroup Tt to be norm continuous.

Theorem 13.6.10 Let Tt be a Markov semigroup on C�X� such that if f ∈
C�X�+ is not identically zero then �Ttf��x� > 0 for all x ∈ X and all t > 0. If
�Ttf � t ≥ 0� has norm compact closure for all f ∈ C�X� then it is mixing in
the sense that there exists a (necessarily unique) probability measure � with
support X such that

lim
t→	 �Ttf −
f���1� = 0 (13.9)

for all f ∈ C�X�.

Proof. If f ∈ C�X�+ then

m�t� �= min��Ttf��x� � x ∈ X�

is continuous and monotonically increasing with 0 ≤ m�t� ≤ �f� for all t ≥ 0.
Let m �= limt→	 m�t� and let g be the norm limit of some sequence Ttn

f such
that tn → 	 as n → 	. If t ≥ 0 then

min��Ttg��x� � x ∈ X� = lim
n→	 min��Tt+tn

f��x� � x ∈ X�

= lim
n→	 m�tn + t�

= m� (13.10)

We show that this implies that g�x� = m for all x ∈ X. Putting t = 0 in
(13.10) we see that g = m1 +h for some h ∈ C�X�+. If h is not identically
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zero then our hypotheses imply that �Tth��x� > 0 for all x ∈ X and hence that
min��Ttg��x� � x ∈ X� > m for all t > 0. This contradicts (13.10).

We have now proved that the only possible norm limit of any sequence
Ttn

f is m1. The compactness hypothesis implies that Ttf converges in norm
to m1 as t → 	. We deduce immediately m depends linearly on f . Indeed

m =
∫

X
f�x���dx�

where � is a probability measure on X. Since m > 0 for every f ∈ C�X�+

that is not identically zero, we finally see that the support of � equals X. �

Example 13.6.11 The compactness condition of the above theorem is
satisfied if Tt is compact for all t > 0, but it is much weaker than that.
Put X �= 
0� 1�per and define the Markov semigroup Tt on C�X� by

�Ttf��x� �= e−�tf�x+ t�+ �1− e−�t�
f� 1�1

where � > 0. One sees immediately that Tt satisfies all the conditions of the
theorem. However, the operators Tt are not compact and do not depend norm
continuously on t. The generator

�Zf��x� �= −�f�x�+f ′�x�+�
f� 1�1

of the semigroup is unbounded. �

The remainder of this section is devoted to the study of the peripheral point
spectrum. This is defined as the set of all purely imaginary eigenvalues of the
generator Z of a Markov semigroup Tt acting on C�X�, where X is a compact
metric space.9

Theorem 13.6.12 If Tt �= eZt is an irreducible Markov semigroup acting on
C�X�, then the peripheral point spectrum of Z is a subgroup of iR. Moreover
each such eigenvalue has multiplicity 1.

Proof. Let Zf = i�f where � ∈ R and �f� = 1. Then Ttf = ei�tf for all
t ≥ 0, so (13.4) implies

0 ≤ �f � = �Ttf � ≤ Tt��f �� ≤ 1�

9 The theorem below is a part of the classical Perron-Frobenius theory when X is finite and Tt

is replaced by the powers of a single Markov operator. A Banach lattice version may be
found in [Schaefer 1974, pp. 329 ff.].
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Putting g �= 1 − �f � we deduce that 0 ≤ Ttg ≤ g for all t ≥ 0, so U �= �x �

g�x� > 0� is an invariant set by Lemma 13.6.7. Since �f� = 1, U �= X, so
using the irreducibility hypothesis, we see that U = ∅; hence �f�x�� = 1 for
all x ∈ X.

If h ∈ C�X�, �h� = 1 and Zh = i�h for the same � as above then for any
choice of a ∈ X the eigenfunction f�a�h−h�a�f vanishes at a. By the above
argument it must vanish everywhere. Hence h is a multiple of f , and the
eigenvalue i� must Have multiplicity 1.

For each x ∈ X and t ≥ 0 let �x�t be the probability measure on X such that

�Ttk��x� =
∫

X
k�u��x�t�du�

for all k ∈ C�X�. If f� � are as above then the identities �f�x�� = �f� = 1 and

ei�tf�x� =
∫

X
f�u��x�t�du�

together imply that �x�t�E� = 1, where

E �= �u ∈ X � f�u� = ei�tf�x���

For every h ∈ C�X� we have

�Tt�fh���x� =
∫

E
f�u�h�u��x�t�du�

=
∫

E
ei�tf�x�h�u��x�t�du�

= e−i�tf�x��Tth��x��

Now suppose that h ∈ Dom�Z� and Zh = i�h for some � ∈ R. Since
Tth = ei�th for all t ≥ 0 we see that

Tt�fh� = ei��−��tfh

for all t ≥ 0. Therefore fh ∈ Dom�Z� and

Z�fh� = i��−��fh�

This concludes the proof that the peripheral point spectrum of Z is a subgroup
of iR. �

Those familiar with Fourier analysis on locally compact abelian groups will
see that the following example can be extended to any subgroup � of R
provided Sn is replaced by the compact dual group of � .
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Example 13.6.13 Given � ∈ Rn we define the subgroup � of R by

� �= �m ·� � m ∈ Zn��

Putting S �= �z ∈ C � �z� = 1�, we also define the one-parameter group Tt on
C�Sn� by

�Ttf��z� �= f�ei�1tz1� ���� ei�ntzn�

where z �= �z1� ���� zn�. We claim that the generator Z of Tt has peripheral
point spectrum i� .

If fm�z� �= z
m1
1 ���zmn

n for some m ∈ Zn and all z ∈ Sn then

Ttfm = eitm·�fm

for all t ∈ R. Therefore fm ∈ Dom�Z� and

Zfm = im ·�fm�

This proves that i� is contained in the peripheral point spectrum of Z.
Conversely suppose that Ttf = ei�tf for all t ∈ R, where f ∈ C�Sn� is not

identically zero. Since Tt may be extended to a one-parameter unitary group
on L2�Sn�, we have

ei�t
f� fm� = 
Ttf� fm� = 
f�T−tfm� = 
f� e−itm·�fm� = eitm·�
f� fm�
for all m ∈ Zn. Since �fm � m ∈ Zn� is a complete orthonormal set in L2�Sn�, we
deduce that � = m ·� for some m ∈ Zn. Note also that 
f� fr� = 0 unless r ·� =
m · �. If �1� �����n are rationally independent this implies that 
f� fr� = 0
unless r = m. �

We conclude the section with two recent results whose technical assumptions
differ slightly from those elsewhere in this section.10

Theorem 13.6.14 (Davies) Let X be a locally compact, metrizable space,
and let dx be a Borel measure with support equal to X. Let Tt �= eZt be a
positive one-parameter semigroup acting on Lp�X� dx� for some p ∈ 
1�	�

and assume the Feller property Tt�L
p�X�� ⊆ C�X� for all t > 0. Then the

peripheral point spectrum of Z cannot contain any non-zero points.

Corollary 13.6.15 Let X be a countable set and let Tt �= eZt be a positive
one-parameter semigroup acting on lp�X� for some p ∈ 
1�	�. Then the
peripheral point spectrum of Z cannot contain any non-zero points.

10 We refer to [Davies 2005C] for the proofs and to [Keicher 2006] for a generalization of the
results to atomic Banach lattices.
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NSA Schrödinger operators

14.1 Introduction

There is an extensive literature on the spectral theory of self-adjoint Schrödinger
operators, motivated by their applications in quantum theory and other areas
of mathematical physics. The subject has been dominated by three tech-
niques: the spectral theorem, the use of variational methods for estimating
eigenvalues, and theorems related to scattering theory.

By comparison, the non-self-adjoint (NSA) theory is in its infancy.
Attempts to carry over techniques from the self-adjoint theory have had a
limited success, but numerical experiments have shown that the NSA theory
has crucial differences. Natural NSA analogues of self-adjoint theorems often
turn out to be false, and recent studies have revealed new and unexpected
phenomena. This chapter reveals some of the results in this field. Because the
subject is so new, we mostly confine attention to the one-dimensional theory,
in which special techniques allow some progress to be made. Many of the
results in this chapter were discovered after 1990, and we make no claim that
they have reached their final form. In some cases we do not give complete
proofs.

By a NSA Schrödinger operator we will mean an operator of the form

�Hpf��x� �= �H0f��x�+V�x�f�x� (14.1)

acting in Lp�RN �, where 1 ≤ p < �, H0f �= −�f and V is a complex-
valued potential. The precise domain of the operators will be specified in
each section.

One can also study Schrödinger operators with NSA boundary conditions.

Example 14.1.1 Let Hf�x� �= −f ′′�x� act in L2�0��� subject to the bound-
ary condition f ′�0� + cf�0� = 0, where c is a complex constant. The only

408
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possible eigenvalue of H is −c2, the corresponding eigenfunction being
f�x� �= −e−cx. This lies in L2�0��� if and only if Re�c� > 0. Theorem 11.3.3
implies that

Spec�H� =
{

�0��� if Re�c� ≤ 0,
�0���∪ �−c2	 if Re�c� > 0.

Note that the single complex eigenvalue −c2 is absorbed into the positive
real axis as c approaches the imaginary axis from the right.

If Re�
� > 0 and 
 �= c then the method of Example 11.2.8 yields

��
2I +H�−1f��x� =
∫ �

0
G�x� y�f�y� dy

where

G�x� y� �=
{

w−1��x���y� if x ≤ y,
w−1��x���y� if y ≤ x,

and

��x� �= �
− c�e
x + �
+ c�e−
x�

��x� �= e−
x�

w �= 2
�
− c�


The Green function G satisfies the conditions of Corollary 2.2.19 and hence
determines a bounded operator on L2�0���. �

14.2 Bounds on the numerical range

One way of controlling the spectrum of a NSA operator is by using the
fact that under fairly weak conditions it is contained in the closure of the
numerical range. For bounded operators this is proved in Theorem 9.3.1,
while for unbounded operators it is a consequence of Lemma 9.3.14. The
main hypothesis of this lemma can often be proved by using Theorem 11.5.1
or Corollary 11.5.2. In this section we concentrate on bounding the numerical
range itself.

We assume that H is a non-negative self-adjoint operator acting in a Hilbert
space � and that �R is a real vector space of symmetric operators on � ,
each of which has domain containing Dom�H�. We also suppose that every
V ∈ �R satisfies a bound of the form

−c�V��f� f	 ≤ �Vf� f	+�Hf�f	
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for all f ∈ Dom�H�. If V ∈ �C �= �R + i�R then it follows immediately
(see below) that the numerical range of H + V , which includes all of its
eigenvalues, satisfies

Num�H +V� ⊆ �z � Re�z� ≥ −c�Re�V��	


Our goal is to obtain sharper bounds on the numerical range of H +V .1

Theorem 14.2.1 If −�/2 < � < �/2 and x+ iy ∈ Num�H +V� then

x cos���−y sin��� ≥ − cos���c�V��

where

V� �= Re�ei�V/ cos����

= Re�V�− tan���Im�V�


Proof. If �f� = 1 and ��H +V�f� f	 = x+ iy then

Re�ei��x+ iy�	 = Re�ei��Vf� f		+Re�ei��Hf�f		
= cos��� ��V�f� f	+�Hf�f		
≥ − cos���c�V��
 �

Corollary 14.2.2 Num�H + V� is contained in the region on or inside the
envelope of the family of lines

x cos���−y sin��� = − cos���c�V�� (14.2)

where −�/2 < � < �/2.

Proof. The intersection of the half planes is the region on or inside the
envelope of the lines. �

Example 14.2.3 One can determine the envelope explicitly if � �= L2�X� dx�

and �R is a vector space of real-valued functions on X, regarded as multipli-
cation operators (i.e. potentials). We also assume that c�W/s� �= k�
W 
�/s�

1 An early version of the ideas in this section, for bounded potentials only, appeared in
[Abramov et al. 2001]. The theorems here are abstracted from [Frank et al. 2006], where the
authors also prove a Lieb-Thirring bound for Schrödinger operators with complex potentials.
The application of Lieb-Thirring bounds to self-adjoint Schrödinger operators is an important
subject, discussed in [Weidl 1996, Laptev and Weidl 2000].
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for some � > 1, all W ∈ �R and all s > 0. We assume that 0 ≤ k�W1� ≤ k�W2�

if 0 ≤ W1 ≤ W2 ∈ �R. These conditions hold if X �= RN and

c�V� =
{∫

RN

V�x�
p dx

}�

for suitable positive p� �, a property that is commonplace in the theory of
Schrödinger operators. �

Theorem 14.2.4 Under the assumptions of Example 14.2.3, Num�H +V� is
contained on or inside the curve given parametrically by

x = k�
V 
� cos���−�
{
�� −1� sin���2 − cos���2

}
�

y = k�
V 
�� cos���1−� sin��� �

where −�/2 < � < �/2.

Proof. It follows by Corollary 14.2.2 that we need to find the envelope of the
lines

x cos���−y sin��� = − cos���1−�k�
V 
� (14.3)

where −�/2 < � < �/2. This is obtained by solving the simultaneous equa-
tions

x cos���−y sin��� = − cos���1−�k�
V 
� �

x sin���+y cos��� = �� −1� cos���−� sin���k�
V 
� 
 �

Note 1 The envelope of Theorem 14.2.4 crosses the x-axis at x = −k�
V 
�
and the y-axis at

y = ±k�
V 
���−1/2�� −1�1−�


Note 2 By putting cos��� = � > 0 and letting � → 0, we obtain the asymptotic
form

y ∼ ±ax1−1/�

of the envelope as x → +�, where a > 0 may be computed explicitly.
Note 3 The case � = 1 may be treated similarly. The envelope is the

semicircle 
x + iy
 = k�
V 
�� x ≤ 0 together with the two lines x ≥ 0� y =
±k�
V 
�. This case is applicable when dealing with bounded functions V ,
with c�V� �= �V��.

Note 4 If Hf �= −f ′′ acting in L2�R� and �R �= L1�R� then the method
of proof of Theorem 14.3.1 implies that

c�V� = �V�2

1/4
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Numerical range methods cannot lead to the optimal bound

Spec�H +V� ⊆ �0�+��∪ �z � 
z
 ≤ �V�2

1/4	

of Theorem 14.3.1 and Corollary 14.3.11. The numerical range is always con-
vex, and so arguments using it cannot imply the non-existence of eigenvalues
with large real parts.

Problem 14.2.5 Test the sharpness of the bounds on the numerical range
proved in Note 2 by evaluating

z����� �= ��H +V�f� f	
�f� f	

for all � ∈ �0� 1� and all � > 0, where

V�x� �= i�2��−1
x
�−1e−x2

satisfies �V�1 ≤ 1 for all � ∈ �0� 1� and

f�x� �= e−�x2/2

lies in Dom�H� for all � > 0. �

14.3 Bounds in one space dimension

The spectral bounds of the last section can be improved dramatically for
Schrödinger operators in one dimension. We start by assuming that

�H2f��x� �= �H0f��x�+V�x�f�x� (14.4)

acts in L2�R�, where H0f �= −f ′′ and the complex potential V lies in L1�R�∩
L2�R�. The condition V ∈ L2�R� implies that V is a relatively compact
perturbation of H0 by Theorem 11.2.11. The same theorem implies that the
spectrum of H2 is equal to �0��� together with eigenvalues which can only
accumulate on the non-negative real axis or at infinity. Moreover the domain
of H2 is equal to the Sobolev space W 2�2�R� by Example 3.2.2, and this is
contained in C0�R� by Theorem 3.2.1.

Theorem 14.3.1 2 If V ∈ L1�R� ∩ L2�R� then every eigenvalue 
 of the

2 This theorem was proved in the stated form in [Abramov et al. 2001]. It was subsequently
extended by two very different arguments to all V ∈ L1�R� in [Brown and Eastham 2002] and
[Davies and Nath 2002]. See Corollary 14.3.11 below.
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Schrödinger operator H which does not lie on the positive real axis sat-
isfies




 ≤ �V�2

1/4
 (14.5)

Hence

Spec�H� ⊆ �0���∪ �z ∈ C � 
z
 ≤ �V�2

1/4	


Proof. Let 
 �= −z2 be an eigenvalue of H2 where Re�z� > 0, and let f be
the corresponding eigenfunction, so that f ∈ W 2�2�R� ⊆ C0�R�. Then

�H0 + z2�f = −Vf

so

−f = �H0 + z2�−1Vf


Putting X �= 
V 
1/2, W �= V/X and g �= Wf ∈ L2, we deduce that

−g = W�H0 + z2�−1Xg

so

−1 ∈ Spec�W�H0 + z2�−1X�


We complete the proof by estimating the Hilbert-Schmidt norm of this oper-
ator, whose kernel is

W�x�
e−z
x−y


2z
X�y�


We have

1 ≤ �W�H0 + z2�−1X�2

2

= �4
z
2�−1
∫

R2

W�x�
2e−2Re�z�
x−y

X�y�
2 dxdy

≤ �4
z
2�−1�V�2

1


Therefore 
z
 ≤ �V�2

1/4. �

Note that the same bounds can be proved for the corresponding operator on
the half-line subject to either Neumann or Dirichlet boundary conditions, by
minor adjustments to the proof.

Example 14.3.2 One may show that the constant 1/4 in (14.5) is sharp by
evaluating an eigenvalue of a well-known Schrödinger operator.3

3 Depending on the choice of a and b, the differential operator may have other eigenvalues. See
[Langmann et al. 2006] for a complete analysis in the self-adjoint case.
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We consider the differential equation

−f ′′�x�+V�x�f�x� = 
f�x�

on R where V is the Pöschl-Teller potential

V�x� �= − b�b+1�a2

�cosh�ax�	2

with a > 0 and Re�b� > 0. A direct calculation shows that the function

f�x� �= �cosh�ax�	−b

lies in � ⊆ Dom�H� and that it satisfies the equation with 
 �= −b2a2. More-
over




 = �V�2

1

4
b+1
2 


Letting b → 0 subject to the constraint Re�b� > 0, one sees that the constant
1/4 is sharp. Further examination of the calculation shows that the eigen-
value 
 may be as close as one likes to any point on the circle �z � 
z
 =
�V�2

1/4	. �

Those who are familiar with the theory of self-adjoint Schrödinger operators
might expect that H has only a finite number of isolated eigenvalues under the
hypotheses, but in the NSA case this need not be true. Relative compactness
of the potential only implies that any accumulation point of the eigenvalues
must lie on the non-negative real axis. Another difference with the self-adjoint
theory is that eigenvalues do not only appear or disappear at the origin as the
potential varies. They may emerge from or be absorbed into points on the
positive real axis.

In Corollary 14.3.11 we obtain the bound (14.5) assuming only that V ∈
L1�R�. Our strategy is to regard H as acting in L1�R�, and then to obtain the
L2 result by interpolation at the end of the main theory. We do not specify
the domain of H acting as an operator in L2�R� or use the theory of quadratic
forms. Our main goal is not to remove an unnecessary technical condition
but to obtain explicit bounds on the eigenvalues for a much larger class of
potentials.

We say that the complex-valued potential V lies in � if V has a decom-
position V = W +X where W ∈ L1�R� and X lies in the space L�

0 �R� of all
bounded measurable functions on R which vanish at infinity. For every V ∈ �
many such decompositions exist. Roughly speaking V ∈ � if V is locally L1

and it decays to zero at infinity.
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We consider the operator H1 �= H0 +V acting in L1�R�, where V ∈ � . It
follows from the bounds below that H1 is a densely defined operator with the
same domain as H0 in L1�R�. We will use the notation �A�

p
to denote the

norm of any operator A acting on Lp�R�.
The next two lemmas will be used to determine the essential spectrum of

the operator H1.

Lemma 14.3.3 If K is a uniformly continuous, bounded function on R then
the operator S defined by

�Sf��x� �=
∫

R
K�x−y�f�y� dy

is compact from L1�R� to C�a�b� for any finite a� b.

Proof. We note that for f ∈ L1�R� and x ∈ �a� b�


�Sf��x�
 ≤
∫

R

K�x−y�

f�y�
dy

≤ �K���f�1


This implies that �S� ≤ �K�� < �
 If we show that �Sf � �f�1 ≤ 1	 is an
equicontinuous family of functions then by using the Arzela-Ascoli Theo-
rem 4.2.7 we may conclude that the operator S is compact.

Let � > 0. By the uniform continuity of K there exists a � > 0 such that

K�u�−K�v�
 < � whenever 
u−v
 < �. For such u� v we conclude that


�Sf��u�− �Sf��v�
 ≤
∫

R

K�u−y�−K�v−y�
 
f�y�
dy

< �
 �

Lemma 14.3.4 If V ∈ L1�R� and K is uniformly continuous and bounded on
R then the operator T defined by

�Tf��x� �=
∫

R
V�x�K�x−y�f�y� dy

is compact from L1�R� to L1�R�.

Proof. We regard C�−n�n� as a subspace of L1�R� by putting every function
in the former space equal to 0 outside �−n�n�. We put

Vn�x� �=
{

V�x� if 
x
 ≤ n,
0 otherwise
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We put Tn �= VnSn, where Sn � L1�R� → C�−n�n� is given by

�Snf��x� �=
∫

R
K�x−y�f�y� dy


An application of Lemma 14.3.3 implies that Tn is a compact operator from
L1�R� to L1�R�. Since �Tn −T�1 → 0 as n → � we conclude that T is a
compact operator on L1�R�. �

Theorem 14.3.5 The essential spectrum of the operator H1 is �0��� for
every V ∈ � .

Proof. Let 
 > 0. Given � > 0 we may write V �= W� +X� where W� ∈ L1�R�

and �X��� < �. This implies that

�V�H0 +
2�−1 −W��H0 +
2�−1�1 ≤ ���H0 +
2�−1�1


Letting � → 0 we deduce by approximation that V�H0 + 
2�−1 is compact.
The proof is completed by applying Theorem 11.2.6 and Example 8.4.5. �
To determine the spectrum of the operator H1 completely we need only
find its discrete eigenvalues. This is a numerical problem, but useful bounds
are provided by Theorem 14.3.9. These bounds are expressed in terms of a
function F on �0���, which is defined by

F�s� �= sup
y∈R

{∫

R

V�x�
 e−s
x−y
 dx

}


 (14.6)

Lemma 14.3.6 F�s� is a positive, decreasing, convex function of s for s > 0.
It is bounded if and only if V ∈ L1�R�, in which case

lim
s→0+

F�s� = �V�1


The equation F�s� = 2s has a unique solution.

Proof. It is clear that F�s� is a positive decreasing function of s for s > 0. We
next observe that for a fixed value of y and compactly supported V ∈ L1�R�

the integral
∫

R

V�x�
 e−s
x−y
 dx

is a convex function of s; this can be proved by differentiating twice under
the integral sign with respect to s. Convexity with respect to s for each fixed
y then follows for all V ∈ � by an approximation argument. Finally convexity
is preserved on taking the supremum with respect to y.
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The behaviour of F�s� as s → 0+ follows directly from its definition. The
last statement of the theorem may be seen by inspecting the graphs of F�s�

and 2s. �

Problem 14.3.7 Prove that if 
V�x�
 is a decreasing function of 
x
 then

F�s� = 2
∫ �

0

V�x�
 e−xs dx
 �

Lemma 14.3.8 If Re�
� > 0 then

�V�H0 +
2�−1�1 = F�Re�
��

2


 


Proof. We have

V�H0 +
2�−1f�x� =
∫

R
K�x� y�f�y� dy

where

K�x� y� �= V�x�
e−

x−y


2




Theorem 2.2.5 now implies that

�V�H0 +
2�−1�1 = sup
y∈R

{∫

R

K�x� y�
dx

}

= F�Re�
��

2


 
 �

Theorem 14.3.9 Let z �= −
2, where 
 �= 
1 + i
2, 
1 > 0 and 
2 ∈ R. If z

is an eigenvalue of the Schrödinger operator H1 then



2
 ≤
√

F�
1�
2/4−
2

1 (14.7)

and 0 < 
1 ≤ �, where � > 0 is determined by F��� = 2�. Therefore

Spec�H1� ⊆ �0���∪
{

−�
1 + i
2�
2 ∈ C � 0 < 
1 ≤ � and 

2
 ≤

√

F�
1�
2/4−
2

1

}




In this estimate one may replace F by any upper bound of F .
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Proof. We proceed by contradiction. If (14.7) is false then F�
1� < 2


, so
�V�H0 +
2I�−1�1 < 1 by Lemma 14.3.8. The resolvent formula

�H1 +
2I�−1 = �H0 +
2I�−1
(
I +V�H0 +
2I�−1

)−1

now implies that −
2 � Spec�H1�. �
We now extend the above results from L1�R� to Lp�R� for 1 < p < �.
Theorem 11.4.13 implies that there is a one-parameter semigroup Tt on
L1�R� whose generator is −H1. Moreover this semigroup may be extended
compatibly to Lp�R� for all 1 ≤ p < �; we denote the generators of the
corresponding semigroups by −Hp. We regard H0 as acting in any of the Lp

spaces without explicitly indicating this.

Theorem 14.3.10 The essential spectrum of Hp equals �0��� for all 1 ≤ p <

�. In addition the spectrum of Hp does not depend on p.

Proof. We first observe that for all large enough 
 > 0 the formula

C1 �= �H0 +
2I�−1 − �H1 +
2I�−1

= �H1 +
2I�−1V�H0 +
2I�−1

defines a compact operator on L1�R�. The formula

Cp �= �H0 +
2I�−1 − �Hp +
2I�−1

defines a family of consistent bounded operators on Lp�R�, and Theo-
rem 4.2.14 implies that they are all compact. It follows by Theorem 11.2.6
or Corollary 11.2.3 that the essential spectrum of Hp equals that of H0.
Example 8.4.5 implies that this equals �0���.

The proof that the non-essential parts of the spectra of Hp do not depend
on p uses the same argument as Theorem 4.2.15. �
Theorem 14.3.10 allows us to apply any spectral results proved in L1�R�

to other Lp spaces, and from now on we do this freely; we also drop the
subscript on Hp.

Corollary 14.3.11 4 If V ∈ L1�R� and z is an eigenvalue of H �= H0 +V then
either z ≥ 0 or


z
 ≤ �V�2

1

4



4 See the historical comments on Theorem 14.3.1 above.
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Proof. Lemma 14.3.6 implies that

F�s� ≤ �V�1

and we substitute this into (14.7). �

Corollary 14.3.12 Let V ∈ Lp�R� where 1 < p < �, and put k �= �2/q�1/q�V�
p

where 1/p+1/q = 1. If z �= −
2 is an eigenvalue of H1, where 
 �= 
1 + i
2,

1 > 0 and 
2 ∈ R, then 
1 ≤ �k/2�q/�q+1� and



2
 ≤
√

k2

4



−2/q
1 −
2

1


Proof. We note that

F�s� = sup
y∈R

∫

R

V�x�
e−s
x−y
 dx

≤ �V�
p

(∫

R
e−s
t
q dt

)1/q

= �V�
p

( 2
qs

)1/q

= ks−1/q


We insert this estimate into Theorem 14.3.9 to obtain the result. To obtain
the value of � we simply solve k2

4 �−2/q −�2 = 0. �

Problem 14.3.13 Compute the function F when V�x� �= ce−
x
 and c is a
complex constant. Compare the conclusions of Theorem 14.3.9 and Corol-
lary 14.3.11 for this example. �

Example 14.3.14 If V�x� �= c
x
a−1 where 0 < a < 1 and c is a complex
constant such that 
c
 = 1 then

F�s� = 12��a�s−a



420 NSA Schrödinger operators

−15 −10 −5 0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

10

15

Figure 14.1: Bounds on the spectrum of H0 +V in Example 14.3.14

for all s > 0. The curve (14.7) bounding the spectrum of H0 +V is given in
polar coordinates by

r = ��a�2/�1+a��sin��/2�	−2a/�1+a�

where 0 < � < 2�. The curve is depicted in Figure 14.1 for a = 1/4. �

14.4 The essential spectrum of Schrödinger operators

In this section we consider Schrödinger operators H �= H0 + V acting on
L2�RN � for potentials that do not vanish at infinity. The natural domain of
H0 �= −� is W 2�2�RN � by Examples 3.2.2 and 6.3.5; its spectrum is �0��� by
Examples 3.2.2 or 8.4.5. Throughout this section we assume for simplicity that
V is a bounded, complex-valued potential, so that the results in Section 11.1
are applicable.

We are interested in examining the essential spectrum of H . Our first
lemma states that it depends only on the asymptotic behaviour of the potential
at infinity.5

5 One may prove that the difference of the two resolvents is compact under much weaker
hypotheses by using Dirichlet-Neumann bracketing, a technique discussed at length in
[Reed and Simon 1979B, Sect. XIII.15], or the twisting trick of [Davies and Simon 1978], or
the Enss approach to scattering theory in [Davies 1980A, Perry 1983]. These techniques also
allow the invariance of the absolutely continuous and singular continuous spectrum under
local perturbations to be proved.
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Lemma 14.4.1 If Hi �= H0 +Vi for i = 1� 2 where Vi are two bounded poten-
tials on RN satisfying lim
x
→� 
V1�x�−V2�x�
 = 0, then

EssSpec�H1� = EssSpec�H2�


Proof. The proof is related to that of Theorem 11.2.11. We first observe
that H2 = H1 + W where W is bounded and vanishes at infinity. If z �
Spec�H1�∪Spec�H0� then

W�H1 − zI�−1 = AB

where A �= W�H0 − zI�−1 is compact by Problem 5.7.4 and B �= �H0 −
zI��H1 −zI�−1 is bounded. We deduce that H1 and H2 have the same essential
spectrum by Theorem 11.2.6. �

Theorem 14.4.2 Let

lim
n→� V�x−an� = W�x�

for all x ∈ RN , where an ∈ RN and limn→� 
an
 = �. Then

Spec�H0 +W� ⊆ EssSpec�H0 +V�


Proof. We first observe that the standard norm 


 · 


 on W 2�2�RN �, defined
in (3.6), is equivalent to the domain norms of the operators H0, H0 +V and
H0 +W as defined in Problem 6.1.1.

If z ∈ Spec�H0 +W� then an obvious modification of the proof of Lemma 1.2.13
implies that there exists a sequence �n ∈ Dom�H0� such that 


�n


 = 1 and
either ��H0 +W��n − z�n� < 1/n for all n or ��H0 +W�∗�n − z�n� < 1/n

for all n. The two cases are treated in the same way, so we only consider the
first.

If Ur � L2�RN � → L2�RN � are defined by �Urf��x� �= f�x+ar� then Ur are
unitary and

U−1
r �H0 +V�Ur = H0 +Vr

where Vr�x� �= V�x−ar�. Our assumptions imply that

lim
r→��H0 +Vr�f = �H0 +W�f

for all f ∈ Dom�H0�.
Let �es	

�
s=1 be a complete orthonormal sequence in Dom�H0� = W 2�2�RN �

for the standard inner product

�g�h	0 �= �g�h	+�H0g�H0h	
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on that space. For each n the sequence Ur�n converges weakly to 0 in
W 2�2�RN � as r → �. Moreover

lim
r→� ��H0 +V�Ur�n − zUr�n� = lim

r→� ��H0 +Vr��n − z�n�

= ��H0 +W��n − z�n�
< 1/n


Therefore there exists r�n� such that 
�Ur�n��n� es	0
 < 1/n for all s = 1� 
 
 
 � n

and ��H0 +V�Ur�n��n −zUr�n��n� < 1/n. Putting �n �= Ur�n��n we deduce that




�n


 =1, �n converges weakly to 0 in W 2�2�RN � and ��H0 +V��n − z�n� →0
as n → �. Therefore z ∈ EssSpec�H0 +V� by Lemma 11.2.1. �

Example 14.4.3 Let H �= H0 +V , where V is bounded and periodic in the
sense that V�x+a� = V�x� for all x ∈ RN and all a ∈ ZN . It follows immedi-
ately from Theorem 14.4.2 that the spectrum of H coincides with its essential
spectrum. Even in the self-adjoint case (i.e. when V is real-valued) this does
not imply that H has no eigenvalues: it seems possible that H might have
an eigenvalue of infinite multiplicity. The proof that this cannot occur is
very difficult, particularly if one includes a periodic magnetic field term in
the operator. The spectral analysis of non-self-adjoint, periodic Schrödinger
operators involves surprising difficulties even in one dimension.6 �

Our next example has been examined in great detail in several dimensions in
the self-adjoint case, with a full description of its associated scattering theory.
The inclusion in (14.8) is actually an equality, as in Theorem 4.4.6.7

Example 14.4.4 Let H �= H0 +V in L2�R�, where limn→� V�x∓n� = W±�x�

and W± are complex-valued, bounded, periodic potentials. (n is supposed to
be a positive integer.) Then

EssSpec�H� ⊇ Spec�H0 +W+�∪Spec�H0 +W−�
 (14.8)

�

6 See [Kuchment 2004, Sobolev 1999] for further information about self-adjoint magnetic
Schrödinger operators. Non-self-adjoint periodic Schrödinger operators in one dimension
were analyzed in [Gesztesy and Tkachenko 2005], who determined the conditions under
which they are of scalar type in the sense of [Dunford and Schwartz 1971, Theorem XV.6.2];
the reader might also look at the simpler Problem 4.4.11.

7 See [Davies and Simon 1978] for a proof of this and other related results.
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Problem 14.4.5 Let H be the operator with domain W 2�2�R� in L2�R� defined
by

�Hf��x� = −f ′′�x�+ i sin�
x
��f�x�

where 0 < � < 1. Use Theorems 9.3.1 and 14.4.2 to prove that

Spec�H� = EssSpec�H� = �x+ iy � x ≥ 0 and 
y
 ≤ 1	


State and prove a generalization for bounded, complex-valued potentials that
are slowly varying at infinity in the sense that lim
x
→� V ′�x� = 0. �

Our final example is a huge simplification of operators that have been stud-
ied in multi-body quantum mechanics. We assume that there are two one-
dimensional particles, and that they are attracted to each other and also to
some external centres. The four parts of the essential spectrum that we iden-
tify correspond to both particles moving to infinity in different directions,
one or other of the particles moving to infinity while the other remains in
a bound state, and the two particles moving to infinity but staying bound
to each other. Our potentials are complex-valued, which might seem to be
non-physical, but such operators arise naturally when using complex scaling
methods to identify resonances.8

Theorem 14.4.6 Let H �= H0 +V on L2�R2�, where V �= V1 +V2 +V3 and Vi

are given by V1�x� y� �= W1�x�, V2�x� y� �= W2�y�, V3�x� y� �= W3��x−y�/
√

2�;
we assume that Wi are complex-valued, bounded potentials on R which also
lie in L1�R�. Then

EssSpec�H� ⊇ ⋃

0≤i≤3

�Spec�Ki�+ �0����

where

�Kif��x� �= −f ′′�x�+Wi�x�f�x�

acting in L2�R�, and W0 �= 0.

Proof. One applies Theorem 14.4.2 with different choices of an in each case.
The hardest is for i = 3 in which case we have to put an �= �n�n�, and obtain
the limit operator L2 �= H0 +W3��x−y�/

√
2�. This is unitarily equivalent by

8 See [Reed and Simon 1979A, Cycon et al. 1987, Perry 1983] for introductions to multi-body
quantum mechanics. The first of these was written prior to the geometric revolution in
scattering theory of Enss, but it remains a useful account of the subject.
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a rotation in R2 to M3 �= H0 +W3�x�. Finally separation of variables implies
that

Spec�M3� = Spec�K3�+�0���
 �

The theorem states that the essential spectrum of H contains a series of semi-
infinite horizontal straight lines, starting at 0 or at any of the L2 eigenvalues
of Ki, i = 1� 2� 3. In fact one has equality, but this is quite hard to prove. The
hypothesis Wi ∈ L1�R� implies that all of the eigenvalues, called thresholds
of H , lie within a ball of finite radius and centre at 0, by Theorem 14.3.1.
The operator H may also have eigenvalues corresponding to bound states of
the pair of particles with each other and with the external centres.

14.5 The NSA harmonic oscillator

In this final section we summarize some results concerning the non-self-
adjoint (NSA) harmonic oscillator without proofs. As well as being of math-
ematical interest, and in some respects exactly soluble, it arises in physics as
the model for a damped or unstable laser. The fact that its eigenvectors do
not form a basis is surprising and was not anticipated in the physics literature.
The results in this section once again illustrate how different non-self-adjoint
operators are from their self-adjoint cousins.

The harmonic oscillator is the closure of the operator

�Haf��x� �= −f ′′�x�+ax2f�x� (14.9)

initially defined on Schwartz space � in L2�R�. For a > 0 this is one of the
most famous examples in quantum theory. Its spectrum is

Spec�Ha� = ��2n+1�a1/2 � n = 0� 1� 
 
 
	


Each eigenvalue 
n �= �2n+1�a1/2 is of multiplicity 1, and a corresponding
eigenfunction is

�n�x� �= Hn�a
1/4x�e−a1/2x2/2

where the Hermite polynomial Hn is of degree n. After normalization, the
eigenfunctions provide a complete orthonormal set in L2�R�; see Prob-
lem 3.3.14. The operator Ha is essentially self-adjoint on � by Problem 5.4.6
and the resolvent operators are compact.

The NSA harmonic oscillator is obtained by allowing a to be complex. At
first sight this has little effect, since all of the results above except the essential
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self-adjointness extend to this situation with no changes. The eigenvalues are
now complex, but they are given by the same formula as before. Since

�Haf� f	 =
∫

R

{
f ′�x�
2 +ax2
f�x�
2} dx

for all f ∈ �, the numerical range of Ha is contained in �z � 0 ≤ Arg�z� ≤
Arg�a�	.

The first evidence of a major difference between the SA and NSA harmonic
oscillators comes when one tries to expand an arbitrary function f ∈ L2�R� in
terms of the eigenfunctions �n. It has been proved that the sequence ��n	 does
not form a basis in the sense of Section 3.3 unless a is real and positive. One
obtains a biorthogonal sequence by putting �∗

n�x� �= �n�x� and normalizing
properly, but the norms of the spectral projections Pn grow exponentially as
n → �.

Theorem 14.5.1 (Davies-Kuijlaars)9 If a = ei� where −� < � < � then

lim
n→� n−1 log��Pn�� = 2Re

{
f�r���ei�/4�

}

where

f�z� �= log�z+ �z2 −1�1/2�− z�z2 −1�1/2

and

r��� �= �2 cos��/2��−1/2 


This theorem has profound implications for results that one would accept
without thought in the self-adjoint context.

Corollary 14.5.2 The expansion

e−Hat �=
�∑

n=0

e−
ntPn

is norm convergent if

t > ta �= Re
{
f�r���ei�/4�

}

cos��/2�

and divergent if 0 < t < ta.

It follows that the sequence ��n	 cannot be an Abel-Lidskii basis.

9 See [Davies and Kuijlaars 2004] for the proof. The squares of the norms of the spectral
projections are called the Petermann factors in the physics literature [Berry 2003].



426 NSA Schrödinger operators

Example 14.5.3 The above ideas may be extended to more general opera-
tors, although currently the known bounds are less sharp. If one defines the
anharmonic oscillator by

�Haf��x� �= −f ′′�x�+ax2mf�x�

where m is a positive integer and a > 0, then Ha is essentially self-adjoint on
� and it has a complete sequence ��n	

�
n=0 of eigenfunctions such that

Ha�n = a1/�m+1�
n�n

for all n. The eigenvalues 
n of H1 all have multiplicity 1 and satisfy
limn→� 
n = +�. All of the above statements except for the essential self-
adjointness extend to complex a. The norms of the spectral projections Pn

again diverge as n → � if a is complex, and it is known that the rate of
divergence is super-polynomial.10 �

The NSA harmonic oscillator also provides an ideal example to prove the
importance of pseudospectra.

Theorem 14.5.4 (Davies) Let

Rr�� �= �rei�I −Ha�
−1

where r > 0, � ∈ R and Ha is defined by (14.9). If Arg�a� < � < 2� then

lim
r→� �Rr��� = 0


On the other hand if 0 < � < Arg�a� then �Rr��� diverges at a super-
polynomial rate as r → �.

Figure 14.2 shows level curves for the pseudospectra of the harmonic oscil-
lator for the case a = i. The resolvent norm equals 1 on the outermost curve,
and it increases by a factor of

√
10 on each successive curve moving inwards.

This theorem establishes that the norm of �zI −Ha�
−1 may increase rapidly

as z moves away from the spectrum of Ha, depending on the direction in
which z travels. The theorem has been extended to anharmonic oscillators in
[Davies 1999A, Davies 1999B]. It has been proved that the rate of divergence
of the resolvent norm is exponential if 0 < � < Arg�a�, but the exact exponent
is not known; see [Zworski 2001, Dencker et al. 2004]. Pravda-Starov has
found the precise asymptotics at infinity of the pseudospectral contours for the
NSA harmonic oscillator, solving a conjecture of Boulton; see [Boulton 2002,
Pravda-Starov 2005].

10 See [Davies 2000A].
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Figure 14.2: Pseudospectra of the NSA harmonic oscillator

14.6 Semi-classical analysis

Semi-classical analysis is a huge subject, and we describe only a few of the
ideas in the field. Some of the material presented is half a century old, but
other results have not previously been published. We start by discussing the
notion of quantization at a very general level.

The goal is to associate an operator acting on L2�RN � with a function,
called a symbol, on the phase space RN × RN . This can be done in two
directions. One might define a linear quantization map � from symbols to
operators or a reverse map � from operators to symbols. It is not realistic to
expect these maps to be inverse to each other, but this might hold in the semi-
classical limit h → 0. There are various ways of constructing such maps, but
they differ from each other by terms that vanish asymptotically as h → 0. We
confine attention to the coherent state quantization, because it is particularly
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easy to describe in operator-theoretic terms and has some nice properties. It
uses the theory of reproducing kernel Hilbert spaces, which has applications
ranging from the analysis of square-integrable, unitary group representations
to quantum theory.11

In the most general formulation one starts with a Hilbert space � and a
measurable family of vectors �x ∈� , often called coherent states, parametrized
by points x in a measure space �X� dx�. We henceforth assume that the for-
mula

�Pf��x� �= �f��x	
defines an isometric embedding of � into L2�X�. The map P allows one
to regard � as a Hilbert space of functions in which point evaluation is
continuous.12 Equivalently we assume that ��x	x∈X is a resolution of the
identity in the sense that

∫

X

�f��x	
2 dx = �f�2

(14.10)

for all f ∈ � . In almost all applications X is a topological space and �x

depends norm continuously on x, but this is not needed for the general
theory, provided the range of a function is understood to refer to its essential
range. We will not focus on such issues below.

Problem 14.6.1 Let � be a positive continuous function on U ⊆ C and let
� be the space of analytic functions f on U such that

�f�2

2 �=
∫

U

f�x+ iy�
2��x� y� dxdy < �


Prove that point evaluation f → f�z� defines a bounded linear functional �z

on � for every z ∈ U and that �z depends norm continuously on z. This puts
such spaces into the abstract framework just described.13 �

The quantization procedure that we describe below can be extended to
unbounded symbols and operators subject to suitable assumptions, but we
confine attention to the bounded case.14

11 The general study of reproducing kernel Hilbert spaces was initiated in [Aronsajn 1950], but
the earlier work of [Gabor 1946] has also been extremely influential. Some of the early
applications to physics were described in [Davies 1976, Sect. 8.5]. The method is now
regularly used for studying the spectra of self-adjoint Schrödinger operators.

12 A particular case of the operator P, often called the Gabor transform, arises in signal
processing; see [Gabor 1946, Heil and Walnut 1989].

13 The Bargmann space of analytic functions is a special case, and has had important
applications in quantum field theory; see [Bargmann 1961].

14 A much fuller account of quantization may be found in [Berezin and Shubin 1991].
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Theorem 14.6.2 The formula

Af �=
∫

X
��x��f��x	�x dx (14.11)

defines a bounded linear quantization map ���� �= A from L��X� to ��� �

with the properties

(i) ���� = �����	∗ for all � ∈ L��X�;

(ii) if ��x� ≥ 0 for all x ∈ X then ���� ≥ 0;

(iii) ������ ≤ ���� for all � ∈ L��X�.

Moreover ���� = P∗�̃P, where �̃ is the bounded multiplication operator on
L2�X� associated with � .

Proof. If f� g ∈ � then

�����f� g	 =
∫

X
��x��f��x	��x� g	dx

=
∫

X
��x��Pf��x��Pg��x� dx

= ��̃Pf�Pg	
= �P∗�̃Pf� g	


Hence ���� = P∗�̃P. The convergence of the integrals is proved by using
the Schwarz inequality to obtain
∫

X

��x��f��x	��x� g	
dx ≤ ����

∫

X

�f��x	
 
��x� g	
dx

≤ ����

{∫

X

�f��x	
2 dx

∫

X

�g��x	
2 dx

}1/2

= �����f��g�


The other statements of the theorem follow directly. �
The symbol � above is often said to be contravariant, and � below is then
said to be a covariant symbol.

Lemma 14.6.3 The formula

��x� �= �A�x��x	/��x�
2



430 NSA Schrödinger operators

defines a bounded linear map ��A� �= � from ��� � to L��X� with the
properties

(i) ��A∗� = ��A� for all A ∈ ��� �;
(ii) if A ≥ 0 then ��x� ≥ 0 for all x ∈ X;

(iii) ���A��� ≤ �A� for all A ∈ ��� �.

Proof. All of the statements follow directly from the definition. �

Although � is not the inverse of �, it is approximately so if the kernel K in
the next theorem is heavily concentrated near the diagonal in X ×X. We will
give an example of this later.

Lemma 14.6.4 If � ∈ L��X� then � �= ����� is given by

��x� =
∫

X
K�x�x′���x′� dx′

where

K�x�x′� �= 
��x��x′ 	
2/��x�
2

satisfies

(i) K�x�x′� ≥ 0 for all x� x′ ∈ X;
(ii)

∫

X
K�x�x′� dx′ = 1 for all x ∈ X.

Hence �� is a positive linear map on L��X� satisfying ���1� = 1.

Proof. If we put A �= ���� then

��x� =��A��x�

= �A�x��x	/��x�
2

=
∫

X
��x′���x��x′ 	��x′ ��x	/��x�

2
dx′

=
∫

X
K�x�x′���x′� dx′


The other statements of the theorem follow immediately. �

Theorem 14.6.5 Put w�x� �= ��x�
2
. The quantization formula (14.11) defines

a bounded linear map � from L1�X�w�x�dx� into the space �1�� � of trace
class operators on � . If � ∈ L1�X�w�x�dx� and A �= ���� then

tr�A� =
∫

X
��x�w�x� dx
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Proof. Let �en	
�
n=1 be a complete orthonormal set in � . If 0 ≤ � ∈ L1�X�w�x�dx�

and A �= ���� then

tr�A� =
�∑

n=1

∫

X
��x�
�en��x	
2 dx

=
∫

X
��x�

�∑

n=1


�en��x	
2 dx

=
∫

X
��x���x�

2
dx

=
∫

X
��x�w�x� dx


The proof of the theorem is completed by noting that every � ∈ L1�X�w�x�dx�

is a linear combination of four non-negative functions in the same space. �

Problem 14.6.6 Under the same hypotheses, if L�
0 �X� is defined as the norm

closure in L��X� of L1�X�w�x�dx�∩L��X�, prove that ���� is compact for
all � ∈ L�

0 �X�. �

Problem 14.6.7 If 0 ≤ � ∈ L1�X�w�x�dx� and � �=�����, prove that � ≥ 0
and

∫

X
��x�w�x� dx =

∫

X
��x�w�x� dx
 �

The remainder of this section is devoted to determining the numerical range
of a pseudodifferential operator in the semi-classical limit. The next theorem
provides the key ingredient.

Theorem 14.6.8 (Berezin) If � ∈ L��X�, A �= ���� and � �= ��A� then

Conv���x� � x ∈ X	 ⊆ Num�A� ⊆ Conv���x� � x ∈ X	
 (14.12)

Proof. The definition of Num�A� yields ���x� � x ∈ X	 ⊆ Num�A� directly,
and the LHS of (14.12) follows by the convexity of Num�A�, proved in
Theorem 9.3.1.
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The RH inclusion follows as in Theorem 9.3.4.

Num�A� = ��P∗�̃Pf� f	/�f�2
� 0 �= f ∈ �	

= ���̃g� g	/�g�2
� 0 �= g ∈ P�	

⊆ ���̃g� g	/�g�2
� 0 �= g ∈ L2�X�	

= Num��̃�

= Conv���x� � x ∈ X	


The last line uses the normality of the multiplication operator �̃ . �
We now move to a more particular context. The definition of the coherent state
quantization involves putting � �= L2�RN �, X �= RN × RN , x �= �p� q� and
dx �= dNp dNq. Given a function � ∈ L2�RN � of norm 1 and h > 0 we construct
functions �p�q ∈ L2�RN � that are concentrated in a small neighbourhood of
the point �p� q� in phase space.15

Lemma 14.6.9 If
�p�q�u� �= ch���u−q�/h1/2�eip·u/h (14.13)

where u ∈ RN , ���2 = 1, h > 0 and ch �= �2��−N/2h−3N/4, then
∫

RN×RN

�f��p�q	
2 dNp dNq = �f�2

2 (14.14)

for all f ∈ L2�RN �.

Proof. We have
��p�q� f	 = ch

∫

RN
���u−q�/h1/2�f�u�eip·u/h dN u

= �2��−N/2
∫

RN
�f �v� q�eip·v dN v

where
�f �v� q� �= �2��N/2chh

N ��h1/2v−h−1/2q�f�hv�


Therefore
∫

RN

��p�q� f	
2 dN p

=
∫

RN

�f �v� q�
2 dN v

= �2��N c2
hh

2N
∫

RN

��h1/2v−h−1/2q�
2
f�hv�
2 dN v�

15 The anti-Wick quantization studied in [Berezin 1971] corresponds to taking � to be a
Gaussian function, but this choice is not required in our context.
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and
∫

RN ×RN

��p�q� f	
2 dNp dNq

= �2��N c2
hh

5N/2
∫

RN ×RN

��h1/2v−w�
2
f�hv�
2 dN v dN w

= �2��N c2
hh

3N/2���2

2 �f�2

2

= �f�2

2
 �

Before investigating the coherent state quantization � based on the family
��p�q	 further, we describe its relationship with the classical (or Kohn-
Nirenberg) quantization

��cl���f��x� �= �2��−N
∫

RN
eix·���x� ��f̂ ��� d�

where f̂ is the Fourier transform of f . The integral converges absolutely for
all f ∈ � provided � ∈ L��RN×RN �.

Problem 14.6.10 If �� �̂ ∈ L1�RN �, h = 1, f ∈ � and � ∈ L��RN × RN �,
prove that

����f = �cl��̃�f

where

�̃�x� �� �= �2��−N
∫

RN×RN
��p�q���x−q��̂�� −p� ei�x−q�·�p−�� dNp dNq

is a bounded function on RN × RN . Deduce that if ��p�q� �= f�p� + g�q�,
where f� g � RN → C are bounded functions, then

���� = f̃ �P�+ g̃�Q�

for functions f̃ � g̃ that you should determine. �

We now make the h-dependence of �h, �h, �h�x and �h explicit. We write x �=
�p� q�, X �= RN × RN and dx �= dNp dNq as convenient without explanation.
We restrict the statement of Theorem 14.6.12 to bounded, continuous symbols
in order to avoid technical details.

Lemma 14.6.11 If � ∈ L��X�, Ah �= �h��� and �h �= �h�Ah� then

�h�x� =
∫

X
h−N k��x−x′�/h1/2���x′� dx′ (14.15)

where k � X → �0��� is continuous and
∫

X
k�x� dx = 1.
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Proof. Lemma 14.6.4 states that

�h�x� =
∫

X
Kh�x� x′���x′� dx′

where

Kh�x�x′� �= 
��h�x��h�x′ 	
2/��h�x�
2



In our particular case

��h�x�
2

2 = c2
h

∫

RN

���u−q�/h1/2�eip·u/h
2 dN u

= c2
hh

N/2
∫

RN

��v−q/h1/2�
2 dN v

= �2��−N h−N

and

��h�x��h�x′ 	 = c2
hh

N/2ei�p−p′�·q/h
∫

RN
��w���w+ �q −q′�/h1/2�

ei�p−p′�·w/h1/2
dN w

= c2
hh

N/2ei�p−p′�·q/h���x−x′�/h1/2�

for a certain function � � X → C. The assumption � ∈ L2�RN � implies the
convergence of the last integral and the continuity of the function �. Therefore

K�x�x′� = �2��−N h−N 
���x−x′�/h1/2�
2

This implies (14.15). The inequality k ≥ 0 follows directly from the above
calculations, and Lemma 14.6.4 implies that

∫

X
k�x� dx = 1. �

Theorem 14.6.12 If � is a bounded continuous function on RN × RN and
Ah �= �h��� then

lim
h→0

Num�Ah� = Conv���p�q� � p� q ∈ RN 	


Proof. Theorem 14.6.8 implies that it is sufficient to prove that

lim
h→0

�h�x� = ��x�

for all x ∈ X. This follows directly from Lemma 14.6.11 and the assumed
continuity of � . �
Note that if � has a given modulus of continuity and enough is known about
�, then one may estimate the rate of convergence in the above theorem.
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Theorem 14.6.12 encourages one to speculate that

lim
h→0

Spec�Ah� = ���p�q� � p� q ∈ RN 	

but the results in the last section demonstrate that this is surely wrong. In
general one can only hope to obtain convergence of the pseudospectra in such
a context.
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�′, 72
dist, 2
�·� ·�, 3, 10, 36
� · �2, 45, 111, 151

� · �HS, 45, 151
�0, 178, 297

	, 286
Conv, 108
s-lim, 22
supp, 36, 403
�A�, 138
w-lim, 19, 22
c0�X�, 11
f�H�, 150
f�N�, 144
f ∨g and f ∧g, 359
f+ and f−, 359
k-tree, 374
lp�X�, 3, 36

Abel-Lidskii basis, 82, 425
adjoint operator, 13
Airy operator, 250
analytic

functions, 25
spaces of, 428

vector, 203
Anderson model, 134, 282, 284
anharmonic oscillator, 426
annihilator, 198
anti-ferromagnetic, 369
aperiodic, 369, 391
approximate

eigenvalues, 247
point spectrum, 17
approximation and regularization, 54
approximation property, 103
approximately normal, 150

Arzela-Ascoli theorem, 106
asymptotic

dimension, 378
stability, 298
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Banach
algebra, 13, 61, 63
lattice, 7
space, 1

Banach-Alaoglu theorem, 21
Banach-Mazur theorem, 108
Banach-Steinhaus theorem, 20
Bargmann, 428
base point, 376
basis, 4, 80

unconditional, 90
Berezin, 431
Bernstein’s theorem, 66
bilateral shift, 397
billiards, 398
biorthogonal, 80
Böttcher, 124
boundary conditions, 336
bounded linear functional, 6
Burke-Greenbaum theorem, 279

Calkin, 153
algebra, 118

Carleson, 88
Cauchy problem, 163, 171
Cauchy process, 183, 186, 208
Cauchy’s integral formula, 26
Cayley transform, 144, 310
Chebyshev polynomials, 274
circulant matrix, 369
Clarkson inequalities, 41
class 
 , 341
closed operator, 144, 164
coherent state, 428
cokernel, 116
commutator bound, 161
commuting operators, 176
compact operator, 103, 123
compatible Banach spaces, 49, 109
complete, 80
completely non-unitary, 314
completion, 1
complex scaling, 329, 423
complexification, 357
condition number, 258
conditional basis, 80
conjugate function, 303
conjugate index, 38
connected graph, 374
consistent operators, 49, 104, 109, 177, 348
continued fractions, xii

contraction, dilation of, 307
contraction semigroup, 230
control theory, 262
convection-diffusion, 248, 274, 275, 339, 395
convex hull, 108
convexity theory, 268
convolution, 53, 63, 75, 129, 131, 274

semigroup, 183, 205
core, 172, 210
coupling constant, 341

Davies, 277
Davies’s theorem, 304, 407, 426
Davies-Kuijlaars theorem, 425
Davies-Martinez theorem, 282
Davies-Simon, 288
Davies-Simon theorem, 293
deficiency indices, 145, 312
degree, 374
detailed balance, 366
differentiability, 23, 201
differential operator, 78, 188, 211, 335, 347
dilation theorem, 309
Dini’s theorem, 85
discrete Laplacian, 364
dissipative, 231, 310
distance, between subspaces, 140
distribution, 72
domain, 164, 210
du Bois Reymond, 84
dual

operator, 13, 197
space, 6, 72

dynamical system, 398

EigTool, 248
Eisner-Zwart theorem, 324
elliptic, 78, 79
embedding, 1
Embree, 248
Enss, 423
entire vector, 203
equicontinuous, 106
equilibrium state, 368
equivalent norms, 6
ergodic, 396
essential range, 45, 143, 148, 165
essentially bounded, 37
exponential growth rate, 297
extension, 164
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Fejér’s theorem, 273
Feller, 228

property, 407
ferromagnetic, 369
finite element method, 104, 266
finite rank operator, 103
first return probability, 371
Fock space, 112
Fourier series, 4, 80

L2 convergence, 57
Lp convergence, 84
absolutely convergent, 60
pointwise divergence, 85

Fourier transform, 67
fractional powers, 29, 208
Fréchet space, 19, 68, 203
Fréchet-Riesz theorem, 7
Fredholm operator, 116, 330
Frobenius, 380, 405

norm, 45, 151
functional calculus, 144, 150

holomorphic, 27

Gabor transform, 428
Gauss, xii
Gaussian function, 69, 90, 185, 206, 241, 346
Gel’fand, 61, 63, 203, 221
Gel’fand’s theorem, 100
generator, 168

classification of, 227
Gesztesy-Tkachenko, 133
Gibbs

phenomenon, 58
semigroup, 194
state, 368

Glauber dynamics, 367
Gohberg, 125
Goldsheid, 134
Gram-Schmidt, 272
graph, 131, 164, 357, 374, 388
Green function, 157, 333, 408
growth bounds

basic, 177
long time, 369

Haar
basis, 4
measure, 53

Haase’s theorem, 320
Hahn-Banach theorem, 6
Hamiltonian, 368

Hankel operator, 291
Hardy space, 128
harmonic oscillator, 329, 424
Hartman, 125
Hermite polynomials, 88, 274, 424
higher order hull and range, 277
Hilbert transform, 75
Hilbert-Schmidt operator, 45, 110, 151
Hille’s theorem, 353
Hille-Yosida theorem, 231
Hölder

continuous, 85
inequality, 38

holomorphic semigroup, 237, 345, 353
homotopy invariant, 120
Hörmander, 234
hydrogen atom, 329
hyperbolic tree, 374
hypercontractive, 112

ideal, of operators, 103, 151, 155
image processing, 53
incidence matrix, 374
index, 116
interpolation, 50, 177, 183, 219, 393
invariant set, 361, 387, 389, 403
invariant subspace, 18, 168, 173, 314
inverse mapping theorem, 14
inverse temperature, 368
irreducible, 361, 365, 369, 390, 403

isometric embedding, 1
isometry

partial, 140
spectrum of, 398

James’s theorem, 41
Jordan decomposition, 7
Jordan matrix, 31, 34, 218, 222, 249, 269

Kakeya, 271
Keldysh, 251
kernel, 116
Kesten’s theorem, 376
Khoruzhenko, 134
Koopman operator, 398
Kortweg-de Vries equation, xii
Krein’s theorem, 126
Krein-Šmulian theorem, 179

Laguerre polynomials, 274
Laplacian, 69, 185
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and Gaussian semigroup, 185
L2 spectrum, 79
Lp spectrum, 241

lasers, unstable, xi, 424
Laurent operator, 53, 274
Lebesgue measure, 36
Legendre

polynomials, 273
transform, 303

Levy process, 76
Lieb-Thirring bound, 410
linear sublattice, 359
Liouville’s theorem, 16, 26
locally finite graph, 374
log-concave envelope, 301
log-convex, 37
Lorch, 90
Lumer-Phillips theorem, 231

Markov
operator, 356
semigroup, 362, 399

reversible, 366
Markov-Kakutani theorem, 317
Martinez, 282
maximal dissipative, 312
Mazur’s theorem, 108
Maz’ya and Schmidt, 90
measure space, 35, 395
Mercer’s theorem, 156
Millennium Bridge, xii, 252
minimal

complete, 81
polynomial, 272

mixing, 404
Miyadera, 228, 349
Mockenhaupt classes, 89
molecule, 368
moment problem, 74
momentum operator, 161
multi-index, 67
multiplication operator, 45, 76, 132, 143, 165,

172, 188

Navier-Stokes equation, xii, 399
Nelson’s theorem, 173
neutron diffusion equation, 386
Nevanlinna’s theorem, 280
Newman’s lemma, 61
non-linear, 251
non-negative operator, 135

norm continuous semigroup, 190
normal, 2, 143, 259
normed space, 1
null set, 36
numerical range, 264, 268, 272,

409, 431

obstacle scattering, 129
one-parameter

group, 174, 315
semigroup, 167

generator of, 227
holomorphic, 237
long time bounds, 296
norm continuous, 190
on dual space, 197
short time bounds, 300
subordinated, 205
trace class, 194

operator
bounded, 12
closed, 164
compact, 102
Fredholm, 116
Hilbert-Schmidt, 151
on a Hilbert space, 135
on an Lp space, 45
pencil, 251
positive, 380
trace class, 153

order ideal, 387, 403
ordered Banach space, 355
ordering of operators, 136
orthogonal

polynomials, 272, 288
projection, 140

orthonormal, 4, 58, 80, 88, 93
oscillation properties, 274

partition, 35
function, 368
of the identity, 105

path, 357, 371
Pazy, 192
pencils of operators, 252
period of a semigroup, 390
periodic operator, 132, 282, 422
peripheral point spectrum, 287, 405
Perron, 380, 405
Perron-Frobenius operator, 398
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perturbation
bounded, 339
of an operator, 31, 325
of spectrum, 31, 328
rank one, 32, 334
relatively compact, 330
resolvent based method, 350
semigroup based method, 339

Phillips, 228
Plancherel theorem, 69
Poisson

distribution, 206
process, 364

polar decomposition, 138, 285
polarization identity, 13
polynomial

convex hull, 280
growth bound, 83, 378

population growth models, 386
Pöschl-Teller potential, 413
position operator, 161
positive operator, 381
power series, 26
power-bounded, 100, 317
principal part, 79
probability distribution, 356, 395
projection, 22, 140
pseudo-resolvent, 214
pseudospectra, 213, 245, 247, 426

generalized, 255
structured, 261

quantization, 428
quantum mechanics, 423
quotient space, 10

radiation condition, 254
radius of convergence, 26
Radon-Nikodym theorem, 43
random

matrix, 134, 263
walk, 206

range, 210
rank, of an operator, 31
Ransford, 100, 264
recurrence equation, 101
recurrent, 370, 372
reflexive, 10, 41
relative bound, 325

relatively compact, 21, 331
Rellich, 31

Rellich’s theorem, 328
renormalization, 393
reproducing kernel Hilbert space, 428
resolvent, 14

bounds in Hilbert space, 321
operators, 210
set, 210

resonance, 254
reversible, 366
Riemann-Lebesgue lemma, 58, 71
Riesz, 7, 30

basis, 93
Riesz’s theorem, 123, 327
Riesz-Kakutani theorem, 7
Riesz-Thorin theorem, 50
Rouche’s theorem, 339

sample space, 357
scalar type operator, 133, 422
scattering theory, 168, 422
Schatten, 153
Schauder basis, 80
Schauder’s theorem, 108
Schrödinger operator, 163, 335, 346, 348,

395, 408, 413, 417
Schur’s theorem, 291, 293
Schwartz space, 68
second dual space, 10
sector, 147, 237
self-adjoint, 13, 143, 145
semi-classical analysis, 427
semigroup, 390
seminorm, 1, 19
separable, 36
separation theorem, 268
sequential compactness, 103
shift operator, 18, 121
Shkarin, 101
shooting method for ODEs, 253
Silbermann, 124
similarity invariant, 297
Simon, 272
singular

integral operators, 75
potential, 348
values, 153

smooth, 68
Sobolev space, 77
spectral

mapping theorem, 18, 215, 221, 223
pollution, 266
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projection, 30, 110
radius, 99
theorem, 143

spectrum
Lp dependence, 49
definition, 14, 211
essential, 118, 124, 330, 420
of a k-tree, 374
of Airy operator, 247
of consistent operators, 109, 219
of convolution operators, 65
of multiplication operator, 45
of operator pencil, 251
of Schrödinger operator, 418
of Toeplitz operator, 125
of ultracontractive operators, 394
peripheral, 287

square root lemma, 138
stability, 245
statistical dynamics, 367
Stone, 143
Stone-Weierstrass theorem, 60
strong operator limit, 22
Sturm-Liouville, 157, 273, 333, 408
subadditive, 99, 297
subexponential growth, 378
sublattice, 392
subMarkov operator, 363
subordinated semigroup, 205
subspaces, two, 140
support, 36, 397, 403
supremum norm, 2
symbol, 78, 124, 128, 211, 337
symmetric, 144
Sz.-Nagy dilation theorem, 307
Sz.-Nagy theorem, 315

three lines lemma, 49
thresholds, 424
Tietze extension theorem, 2
Toeplitz operator, 124, 128
Toeplitz-Hausdorff theorem, 265
topological vector space, 19, 220
totally bounded, 103
trace class

operator, 154

semigroup, 194
transient, 370, 372
translation invariant, 63
tree, 374
Trefethen, 248
triangle, 146, 168
tridiagonal operator, 281
trigonometric polynomial, 56
truncation, 217, 265, 274

ultracontractive, 394
unconditional basis, 90
undirected graph, 366, 374
uniform boundedness theorem, 20
uniform convexity, 41
unitary, 13, 143
unstable, 386
Urysohn’s lemma, 2

Vandermonde determinant, 338
Voigt, 349
Volterra operator, 100, 249, 291
von Neumann, 143, 153
von Neumann’s theorem, 286, 309

wave equation, 252
waveguides, 253
wavelets, 5, 97
weak

convergence, 165
derivative, 75
operator limit, 22
topology, 19
weak* topology, 21
weakly closed operator, 165

Weierstrass’s theorem, 59
Wiener, 125
Wiener’s theorem, 62
wild, 83
winding number, 126
Wintner, 125
Wright, 248
Wrobel, 299

Zabczyk’s example, 222
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